é

£

5

nVPPoro

POMMHOEVS -

N

WA

”,

|

E®GNIKO METZOBIO ITOAYTEXNEIO
TMHMA HAEKTPOAOT'QON MHXANIKON KAI MHXANIKON YTIOAOTIETON

TOMEAX TEXNOAOI'TAZ ITAHPO®OPIKHE KAI YIIOAOI'TETQN
EPTAXTHPIO YIIOAOTIETIKQN XYXTHMATQN

Merétn kou ASoroynon Teyvikav Iaparinromoinong Aop®v
Agdopévav kKar AkyopiOpov

AITTAQMATIKH EPT'AXIA

Xpwotiva Xp. Tavvodra

Empiénov: ['eopyroc ['kovpag
Aéxtopag E.MLIT.

ABMva, lobAlog 2016

EOGNIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOI'QN MHXANIKQN KAI

&
4O
5%

. A’?‘g § MHXANIKON YIIOAOTIETON
< @Y i IL | TOMEAS TEXNOAOIIAS TAHPO®OPIKHE
% % Eﬁr KAI YIIOAOTIETON

5/ EPTASTHPIO YTIOAOTIETIKON EYSTHMA-

TON

Merétn kor A&oroynon Teyvikav [laparinromoinong Aop®v
Agdopévov kot AryopiOpmyv

AIITIAQMATIKH EPT'AXIA

Xprotive Xp. Tavvovio

Empiénov: I'eopyrog ['kovpag
Aéxtopog E.MLIL.

Eykpifnke and v tpuehn eetaotikn| emtponn v 141 lovAiov 2016.

T'. 'kodpog N. Kolopng K. Zaydvag
Aéxropog E.ML.IL Kabnynmg E.M.IL Avaninpotg Kodnyntig E.M.IL.

AbBnMva, IovAog 2016.

Xprotive Xp. T'avvovira
Authopoatovyog Hiektpoddyog Mnyavikog kot Mnyoavikog Yrnoroyiotov E.MLIT.

Copyright © Xpiotiva ['avvooia, 2016. EBviké Metoopio [ToAvteyveio.
Me emporoén kabe dikanmdpatog. All rights reserved.

AmayopebeToln aviypapr], omodnKevo Kot Slvo | TG Topovoag EpYACIs, €€ OAOKAN-
POV M TUHOTOG VTG, Yo epmoptkd okomd. Emrpénetal 1 avotdnwon, amobrikevon Kot
dlavoun Yo 6Komo Un KEPOOOKOTIKO, EKTOLOEVTIKNG 1| EPEVVNTIKNG PVONC, VIO TNV TPO-
¥mofeon vo avaeépetal 1 YN TPOEAEVGNG KL va dlatnpeital To Topdv uivoua. Epwo-
TAHOTO, TTOL APOPOVV T1| YPNON TNG EPYACING YLl KEPOOGKOTIKO GKOMO TPEMEL VO, AmELOV-
VOVTOL TTPOG TN GLYYPOPEQ.

Ot amdYeIC KoL TO GUUTEPAGLLOTA TTOL TEPLEYOVTOL OE ALTO TO £YYPUPO EKPPALOLV TN
GLYYPOPED KoL dEV TPETEL VO, EPUNVEVTEL OTL OVTITPOSOTEHOLV TIG emionueg 0Ecelg TOV
EBvikod Metoofrov IToAvteyveiov.

Hepiinyn

2TIG UEPEG OGS, Ol TOAVTOPNVOL EMEEEPYACTEG EXOVV YiVEL 1) KLPIOPYN TAATEOPLUA VTTO-
Aoyiop®V kat £xovv gloaybel oe TOAAG TpoypapupaTioTiKd TepiBaiiovia. O mapdAiniog
TPOYPOLULOTIGHOG 08V apOpd TAEOV UOVO EMIGTNLOVIKEG EQUPLOYEG OV TPEYOLYV GE V-
TEPLTOAOYIGTEG, OAAD, KOAVTITEL EMTIONG VO LEYAAO PAGLO EPUPLOYDV Y10 TPOCHOTIKOVG
VoAoy1oTtéS. ‘Eval amd ta o 606KoAN TPoPANUATO GTO CUGTNLLOTA TOPAAANANG enelep-
yoolog givar 1 avanTuén TapdAANAOL A0YIGUIKOD TO OTTOI0 KALLOK®OVEL AmodoTiKd. Ap-
KETEG EPAPHOYESG OV KAMPOKOVOLV LETE amd Evay aplBpod enelepyaotdv eattiag Tov av-
Enuévov kootovg emkovaviag. Ipokepévou va agromomboidv o1 dabécipeg apyitexto-
VIKEG, ol Baotkég dopég OedopévaV Kal 01 GEPLOKOL aAYOPIOLOL TPETEL VO EMaVaoYEO10-
c000v. To Tp®dTO PEPOG AVTNG TG SMADUATIKNG APOPE TIG TAPAAANAEG DOUEG HEdOUEV@V,
pe Wiaitepn éupacm oto dvadtkd 6évrpa avalntnong, e£etalovtag Tov TpOTO GLYYPOVL-
GOV TOVG, TO. WOWHTEPT YOPUKTIPLIOTIKA TOVG KOl TNV KAUUKOGILOTITA TOV TPOCPEPOLV.
210 dg0TEPO UEPOC TNG SMAMUATIKNG Tapovsilaletat pia Tapaiinioroinen tov adyopid-
pov tov Dijkstra mov givat évag oelprokdg adyopdpog. Avti n vAomoinon ypnoilomolel
Transactional Memory, Y10 vo. GUVTOVIGEL ATOTEAEGUATIKG TIC TOVTOYPOVEG TPOGPACELS
TOV VIUATOV oTIG KOwEG dopég dedopévmv kot tnv évvown Tov Helper Threads, yuo va
e&ayet mapariniopd. H a&oldynon tov alyopibpov yiverar og évo cOGTNHA TOV VITO-
otnpiler Hardware Transactional Memory.

A€Eeic-Khedia: mapaiinieg dopég dedouévav, dvadtkd dévipa avalntnongs, KAMUOK®OGL-
LOTNTA, TOUPAAANAOG TPOYPAUUATIGHOS, alyopiBpog tov Dijkstra, Helper Threads, Hard-
ware Transactional Memory

Abstract

Nowadays, multicore processors have become the dominant computing platform and are
being used by many programming environments. Parallel programming is no longer about
scientific applications run in supercomputers, but covers a wider range of applications on
personal computers, too. The most difficult problem is to develop parallel software that
scales efficiently. Several applications do not scale further than a number of processors due
to communication overhead. To exploit the available architectures basic data structures
and sequential algorithms must be redesigned. In the first part of this thesis we study
concurrent data structures, particularly focusing on concurrent binary search trees, with
respect to the way they are synchronized, their special characteristics and the scalability
they provide. The second part of this thesis presents a parallelization of the inherently
serial Dijkstra's algorithm. This implementation employs Transactional Memory to efficie-
ntly orchestrate the concurrent thread's accesses to shared data structures and the concept
of Helper Threads to extract parallelism. We evaluate the execution of the algorithm on a
system that supports Hardware Transactional Memory.

Keywords: Concurrent Data Structures, Binary Search Trees, scalability, parallel program-
ming, Dijkstra's algorithm, Helper Threads, Hardware Transactional Memory

Evyoprotieg

H mapotvoa dtmhopotikni epyacio ekmoviOnke oto Epyaotiplo Ymoloyiotikdv Zvotn-
patov g Zyoing Hiextpordymv Mnyovikdv kor Mnyovikdv Ynoroyiotdv tov EBvikon
Metoopiov IToAvteyveiov, vid v enifreyn tov Aéktopa E.M.IL. I'edpyrov ['kodpa.

®a ffeha vo gvyaploTnom Tov Kabnynt) pov k. Fedpyo I'kodua, yio v enonteio
KOTO TNV EKTOVNON TNG EPYOCING OV, TIG YVAGELS TOV OV TPOCEPEPE LE T1) O1O0CKAATL
TOV KOl TNV EVKALPI0 TOV OV £dMGE VA, SOVAEY® GTO EPYACTNPIO.

®a 10eha eniong va evyoplotHom Tov kabnynti g oxoAng K. Nektdpro Kolopn yia
TNV EUMVELGT] TOV OV TPOGEPEPE [LE T1] SOUCKOAIN TOL KOL VO TOV GLYXUP® Y10 VYNAO
eMinedo omovdOV TOV LAONUATOV S1O0CKAAMOS TOV KoL TOV EPYASTNPIOV.

[Switepa Ba NOeha va svyaptotcm tov YToyneo Addktop Anuntpro Zokafapa
Yo T cvveyn kKabBodynor| Tov Katd T SIPKELD EKTOVIONG QVTNG TNG OWTAMUOTIKNG Ep-
yaoiog, Kafdg Kot yio Tnv evOdppuven Tov, TNV DITOUOVY| TOL Kol TO ¥POVO IOV APIEPMGE.
Xwpig ™ cvpPforn) Tov 1 0OAOKANP®GT aVTAG TG EpYaciog de Oa NTov epukt.

Emumhéov, emiPaiietol va euyopioTiom Toug GIAOVE OV KOl TOVG GULLPOLTNTEG LoV
Yo TNV TOALTIUN Po10g1d TOVG 08 EMGTNUOVIKO KOl TPOCOTIKO EMIMESO.

Téhog, Ba Beha vo evyaploTHoW BEPILA TNV OIKOYEVELY LLOV, TOVG YOVEIG LoV Kot TNV

0dEPPN OV Y10l TNV AYATT, TNV AUEPLOTN VIOGTHPIEN TOVE OAN GLTE T ¥POVIL, KOL TV
EUMIGTOGVVI TOVG G€ KAOE oL emMAOYT.

Xpiotiva ['oavvodia

Iepreyopeva

1 Ewoayom 19
1.1 EmOKOMNOT o o e e e e e e 19
1.2 Ovépogtovo Amdahl 20
1.3 TTopOAANAEG OPYITEKTOVIKEG .« « « « v v v v v v e e e e e e e e e e e 22

1.3.1 ApyuteKToviK] KOWNG UVAMNG « « « v v v v e o e e e e e e e e e 22
1.3.2 ApyuteKToviKi] KATOVEUNUEVC LIVAUNG « « « « v v v v v v e o v 24
1.3.3 YPpiokn apyitekToviKn LWVALNG « « v v v v v v v v e e e e e 25
14 ZUYYPOVIGHOGC . . . o v o o e e e 26

2 TMopdriinha dvadkd 6évTpa avalRTnong 29
2.1 TIopOAAnAeg SOLEC OEQOUEVAOV v v v v vttt 29
2.2 AEvTpa OVOLATINGNG -« o v v e e e e e e e e e e e e 30

2.2.1 Amhé dvadwkd dévtpa ovaltnong (BST) 30
222 AVL Aévipa e 31
223 Red-Black Aévtpa 32
2.3 Teyvikég KoTaoKELNC TAPUAANA®Y SOUMV dedoUEVOY 33
2.3.1 Coarse-grained locking 34
2.3.2 Fine-grained locking, .. 34
2.3.3 Lock-free mpoypopttatiods oo e 34
2.4 Booikég Aettovpyég mapaAiniov dévipov avalntong 35
2.5 Mia omAOTKN TPOGEYYION .+ v v v v e o e e e e e e e e e e e 35
251 Tepuypoy@n o oo 36
2.5.2 AemtOUEPEIEGVAOTOMONG « « « « v v v v e e e e e . 37
2.6 Mia o TOADTAOKN TTPOCEYYION + v v v v v o e e e e e e e e e e e 39
2.6.1 Tlepypo®@f o . o e e e e 39
2.6.2 AEMTOUEPEIECVAOTOMONG » « « v v v v v o e e e e e e e e e 42
2.7 AGOAOYNON . . . o e e e e 42
2.7.1 XapoKInploTiKd GUCTANOTOC OEWOAOYNONG « « « « v v v v v v . . 42
272 XOpPOKTNPIOTIKA EKTEAECTIG « « « v v v v e e e e e e e e e e e o 43
273 ATOTEAEGHOTO . . .« v v v e e e e e e e e e e 43

3 Transactional Memory
Transactional Memory (TM)
Software Transactional Memory (STM)
3.1.2 Hardware Transactional Memory (HTM)
Hybrid Transactional Memory
Baowad yapokmpiotikd TM cvetnudtov L
Intel's Haswell HTM .

3.1

32
3.3

3.1.1

3.13

3.3.1

Transactional Synchronizations Extensions (TSX)

4 TIaparinhlomordvrag Tov arlyépiOpo tov Dijkstra
O aAyopilBpogtov Dijkstra L.

4.1

4.2
43
4.4

4.5

4.6

4.1.1

O aAiyopibuog .

4.1.2 H molvmhokotnTo Tov 0AyopiBovo
Mia teyvikn Tapoiiniomroinong otov adydpidpo tov Dijkstra
XOPOKTNPIGTUKA GUGTIHOTOS « « « v v v v e e e e e e e e e e e e e e
AZworldoynon
A&oAdynon tov ceplakol adyopiBpuov Lo
442 A&oAidynon tov mapdiiniov aiyopiBpov L L L L L L
Amoteléouato
H anédoon tov adyopiBpovo
4.5.2 Avoldovtag TepIoCOTEPO TA AMOTEAECUOTO, . « . .+
4.53 A&woAdynon g teyvikng structure padding L L
Xpnowonmowwvtogskip list oL

4.4.1

4.5.1

4.6.1

H skip list dopn

4.6.2 X0YKPLoN HE TO dVASIKO COPO v v e .

4.6.3

Amotehéopatal

5 ZXvpnepaopata kon Merhovrikéc Enektaosig

12

51
51
52
52
52
53
53
54

59
59
59
61
61
66
67
67
70
76
76
77
80
82
82
85
88

93

Kotaloyog Xynuatov

1.1

1.2
1.3
1.4
1.5

2.1

2.2
23
24
25
2.6
2.7
2.8
2.9
2.10
2.11

2.12

3.1
3.2

H ovvolikn emtdyvvon evog TopaAANAOD TPOYPAUNATOS, KAO®OG TO TTo-
PAAANAO KAAGLO TOV TPOYPAUUATOG KoL 0 aptOIdC TV EMEEEPYUTTMV A~

AACOUV. . o o e 21
Hta&woépnontov Flynn., 23
Klooowm opydvoon pog SMP apyltektovikng. L 24
KAacown opydvmon Pviung o€ Lo apyLTEKTOVIKT KOTOVEUNUEVNG LVAUNG. 25
KAacowm opydvoon po YPPIOikng opyltekKTovIKAG. . . « v . v o 26

To intreface piog doung avalnmonc. Ot Aettovpyieg evnuépmong £yovv
Vo edoeig: pio edon avalTnong Tov o6Tolyeiov Kot tio PAcn eKTéEAEOT|C

NG EVNUEPMONG OTN OO, « « v v v v e v e e e e e e e e e e e e e 30
"Eva mapdderypa evog external kot evog internal dévtpov. L L. 31
Mio de€1d kat pio aploTePt) TEPIGTPOPT| OEVIPOL. v o v v o v . . 32
‘Eva mapdaderypa evog red—black dévtpov. L Lo L 33
Mio avamoapdotacn vog bst kKoo atn pviun xpnoiponowmvrog padding,

€101 ®oTE 0VTOHG Vo kKaToopPavel okpipog pia cache line. 38
Kotd v daypaen evog koppov D oe éva internal 6évtpo, mpénet To v-
n6devTpo pe pila tov kouPo D va mapapével kKAewdopévo. L L L 39
H amdd0oom anhoikdv mapdAAnimv Suadik®my dEVIP®V Yo E0POS KAEOIDV

2K kot yio 3 StopopeTIKEG OVAAOYIEG AELTOVPYIOV. 44
H amdd0om anmhoikdv mapdAAnimy SuadiK®mV dEVIP®V Yo 0POS KAEOIDV

32K kot yuor 3 SlopopeTIKES OVOAOYiEG AEITTOVPYIDV. 45
H anddoon anhoik@v mapdAAnimv SLadSIKOY SEVIPMV Y10 E0POG KAEWOIOV
2000000 kot yuor 3 S1opOopETIKES VOAOYIEG AELTOVPYIDV. 46
H am6d00m TV moATOAOK®OV TAPIAANA®Y SVASIKGV dEVIP®V Y10, EDPOG
KAewdwmv 2K kot yia 3 S1opopeTIKEG avaloyieg AEITOVPYIOV. 47
H am6d00m tev moAdTOAOK®OV TApIAANA®Y SVASIKOV dEVTIP®V Y10, EDPOG
KAewdwmv 32K kat yia 3 S109popeTIkég avaAoyieg ASLTOVpy®dV. 48
H am6doom tov moAdToAOK®OV TapIAANA®Y SVadIK®V dEVIP®V Y10, EDPOG
KAewdwmv 2000000 kot yuo 3 dupopetikég avoroyieg Asttovpytdv. 48

H xatdotaon g docoinyiog amotundveral ota bit tov EAX katayopnty. 56
Mio mapdAAnin extédeon 600 vnuatov pe RTM mov odnyel o€ mpoPAn-
LOTO GUVAQELOG TG IVIING: + « « v v o v v e e e e e e e e e e e e e e 58

4.1
4.2

43
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12
4.13
4.14
4.15

4.16
4.17

4.18
4.19
4.20
4.21

4.22

ZyMUo EKTEAECTG TOL OAYOPIOIOL. o L.
Aotloynon tov 4 pacemv ToL GEPLUKOD alyopiBpov og 3 S1apopETIKOVG
YPOQOUG. . . o o o e e e
A&ordynon g texvikng structure padding oto ceprokd akyopbuo. . . .
O ypovog extéreong yia évav random node-1M-edge-10M ypdoo yia dia-
QOPETIKO apOUd eTovaANYE®V avd docoinyia Tov main thread.
O yp6vog extédeong yuo évav rmat node-10M-edge-500M ypdeo yia dia-
QOPETIKO aplBpd emavarnyewy avd docoAnyia tov main thread.
O ypdvog ektéreong otov random node-1M-edge-10M ypdopo yio dropo-
PETIKO aPOUd eTavaANYE®Y ava docoAnyia tov helper threads.
O ypovog extédeong o€ Eva rmat node-10M-edge-500M ypdapo yio dtopo-
PETIKO apBud dvvatwv exavoinyemy avd docoinyio twv helper threads.
O ypdvog extéheong yo Eva ypaeo random node-1M-edge-100M yia dio-
QOPETIKO aplBNd YeITOVOV Tpog e&€taon yia relaxation og pio Socoinyio
tovmainthread. L
O ypdvog extédeong Yo éva ypagpo rmat node-10M-edge-500M yia dio-
QOPETIKO aplBpod yertovev Tpog eE€taomn vy relaxation og pio Socoinyio
tovmainthread. oL
O ypovog ektéleong yuo Eva ypdeo random node-1M-edge-100M yia Sia-
@opeTIKO aplBud yertdovav mpog e&étaon yia relaxation oe piot SocoAnyio
tov helperthreads. L
O ypoévog extédeong o Eva ypagpo rmat node-10M-edge-500M yia Swa-
QopeTkd aplBud yertdovav mpog e&étaon yia relaxation oe piat SocoAnyio
tov helperthreads. L
H amdd00m o0 0dyopiBpov yio dtapopetikd TAN00C VIUATOV Y10 YPAPOvS
OLOPOPETIKNG TUKVOTNTOG. . « + v v v e e e e e e e e e e e e e e e e e
Kotavoun tov relaxations avapecso oto main kot ta helper threads.

O apBpdc twv commits/aborts tov main thread.
To 060016 TV GLUVOAMKGV transactional aborts yia 6Aa To VOTO GTO
GUVOMKO OPOUO SOGOAMWIDY. . .« v v v v e e e e e e e e e e e e e
Koatavoun tov ypodvov otig d1dpopeg pAcEL; eKTéEAEONG TOV main thread. .
ITapd t0 611 ¢ YpnoomomOnke padding, Tavtdypova relaxations exte-
AovvTon o€ KopuPEG mov Ppickovton o€ dopopetikég cache lines.
A&ordynon g texvikng padding otov mapdAinio akyopibpo.

‘Eva mopdderypo pog skip list. oL oL

O xpOVOG EKTELEGNG TOV GELPLOKOV OAYOPIOLOV Y10 TIG 3 S1aPOPETIKEG OO-
LLEG TTOL YPTCLULOTOLOVVTOL Y10l TNV OVPE TPOTEPAOTNTAG. . .« .«
O ypbévog ektéheong tng mapdArniov alyopiBpov yio 115 3 S1opOopPETIKEG
SoUEG TTOL YPNCLLOTOLOVVTAL Y10 TNV 0LPE TpoTEPAOTNTOG. +
H xatovopn twv relaxations avdpeso oto main kot ta helper threads yuo
tov random-node-10M-edge-500M ypdapo yia 2 dtapopeTIKEG OOUEC TOV
YPNOLLOTOLOVVTOL Y10 TV OVPE TPOTEPALOTNTOS. .+« =« « v v v v v v v .

14

62

72

73

84

86

4.23

4.24

4.25

4.26

4.27

4.28

O apBpdc tv commits/aborts Tov main thread otov mapdiinio aiyod-
pOpo Yo TiG 3 S10QOPETIKEG SOUEG TOV YPNCUYLOTOLOVVTAL Yo TV 0LPA
TPOTEPOLOTITOG. « « « v v o v e v e e e e e e e e e e e e e e e e
O apBuodc Twv commits/aborts Twv helper threads yio Tov mopdAinio ok-
y6p10p0 Y10 TIG 3 SLOPOPETIKES OOWEG TTOV YPTCLOTOLOVVTOL Y1 TNV OVPA
TPOTEPOUOTITOG. « « v v o e
H amo6doon tov adyopiBpov yia ypaeovg dapOPETIKNG TUKVOTNTAS LE
ypnon ¢ Pertiotomomuévngskip list. oL oL

‘Eva mopadetypa binary heap. Ot kopv@ég pe KOKKIVO ¥pdpo. dgv £xovv

KOO, OTTOKTNGEL TIG PEATIOTEC TIMEGTOVG. + v v v v v v v v v e e e e e
M Tpocéyyion tng omddoong mov Pociletol ota relaxations mov ekte-
Ael o main thread oty nepintoon tov 14 viudtov Kot n amrdd06M Tov
emetedyBel 0tav yprnowomombnke binary heap.
Muo mpocéyyion g anddoong mov PacileTon oto relaxations mov exte-
Ael To main thread otnv mepintoon tov 14 vipudtov Kot 1 0rdd061 TOv
enetevybetl 0tav ypnoonomdnke n Pektiotomompévn skip list.

15

Listings

2.1
3.1
3.2

33
4.1
4.2
43
4.4

Mia tomikn Soun bst KOUPov L L 38
MMopdderypoypionc HLEo 55
Hopaderypa: Tpocdnkm tov kaboAkod KAeWmpotog oto read set tng 6o-

COMMWIOG .« o o o o e e e e e e e e e e e e e e e 57
‘Eva RTM mapdderypo o oo 57
O aiyopOpoctov Dijsktra 60
O k®dwag Tov main thread ywa éva npaypaticdo HTM cvotua. 65
O kodkag Tov helper threads yia éva tpaypoatiké HTM coompa. 65
O14 pdoeig tov okyopiBpov. L 67

17

Kepdaiaro 1

Ewoayoyn

1.1 Emokonnon

To 1965, o Moore poéfieye 0Tt 0 apBudS TV TpaviicTop 6€ £vo, OLOKANP®UEVO
KoK opo 0o dSuthaocidletarl oxedov kabe 2 ypovia. Qotdco, 1 adENoN Tov apBpod TV
tpaviiotop ava enegepyaotr BETEL KATO10VG PLGIKOVE TEPLOPIGLOVS. Ta TOAD TVKVE ToLT
APNOWOTOLOVV TEPIGTOTEPT] NAEKTPIKT EVEPYELD KOl TAPAYOLV TTEPIGGOTEPT BepproTnTO
nepropilovrag v eEEMEN TV ENeEEPYOOTOV.

O vépog Tov Moore ypnoonomdnke ot Prounyavio nuayoydv. Oloéva Kot me-
procotepa Tpalictop evompoTddnkay 6to 1610 Touw Kot 1 amddoon dumiacialdtav kabe
18 punvec. Avtoi ot vYNANG amdS0oNC KPOETEEEPYUSTES OVOLACTNKAY TOAVTOPVOL €-
nelepyaotés. XNuepa, ol ToALTOPTVOL ENeEePYOOTEG ATOTEAOVV TO PACIKO GUGTATIKO V-
TEPVTOALOYIOTMV, KATAVEUNLEVAOV GUOTNHATOV KOl TPOCSOTIKMV VIToAoylotdv. H adénon
ToV apOPoY TV eneepyaoT®V divel TOAD LYNAN 0mdS06T KATE TNV EKTEAECT] VITOAOYL-
oudv. Opmg, To TOATOPNVE GUGTHIATO TPOKAAOVY TPOPANLAT ETKOVOVING KOl GUY-
YPOVIGLOV Kal 1 KAMUOKOGUOTNTO GVTOV TOV GCUCTNUAT®V OTOTEAEL LEYOAN TPOKANON.

[Tpokepévou va, ekeTaAAEVTEL OAEC AVTEG TIC SLOOESILEG TTNYEC LAIKOV, 1) Bropmyovi-
0, TOV VIOAOYIGTMV OVETTLEE VEEG APYLTEKTOVIKEC. 1o mopddetypa, n xpnon Pabdtepov
superscalar apyltektovik®v BeAtimoe TNV eKTEAECT] HOG EVTOANC KOl G GUVETELD Ol GULL-
Botucég apyITeKTOVIKEG AVTIKOTAGTAONKAY LE TOPAAANAESG OPYITEKTOVIKEG LE GKOTO Vol
LLEYIGTOTOGOVV THV aOS0GT TOV EPAPUOYDV.

Ta TOAVTOPN VA GLGTHHOTO ATOTEAOVY TAEOV [io ADGT) GE EPUPLOYES UTOLTNTIKEG OF
VIOAOYIGHOVS. EMGTNHOVIKES EPapLOYES OTWOC TPOGOUOLDGELS AGTPOPVGIKDOV (PUIVOLLE-
VOV, EPUPUOYES Y10 TPOPAEYT KOpOoV, EPUPUOYES 0T Propnyovia aALd Kot 6€ GALOVS TO-
Helg kafnpeptving xpnong 0mmg ot unyavég avoaltnong ival VITOAOYIOTIKA ATOLTNTIKES.
O1 obyypovor ceiprakoi akyopiBuol, av Kol BEATIoTOTomLEVOL, OE HTOPOVV VO TPOCPE-
povv N BEATIOTN amdd0oN OTAV EKTEAOVVTOL GE TOAVTOPNVES apyLtekTOVIKES. Emopévac,
ot oglploKol aAyopiBpol TpEmet va enovacyedtactovy, £T61 MOTE VoL TPEYOLY TOPAAAN AL
KOL VO EKUETOAAEVTOVV TIC SOEGUIES APYLITEKTOVIKEG,

O mapaAANAoG TPOYPOURATIGUOG amortel cuYYPOVICUO PETAED TOV TAPIAANA®Y dlep-

19

YOGLOV PE OKOTO VO AmOQUYEL TIC CVYKPOVGELS KOl TIS KATOGTAGELS GLUVAY®OVIGHOV. Te-
YVIKEG GLYYPOVIGHOD VAOTOIOVVTOL TOGO o€ software 6co kot g hardware. Qotdco, N
EMKOVOVIO KOl O CLUYYPOVIGLOS TOV dAPOP®V EPYOCIDOV EIVAL TA PLEYAAVTEPO EUTOOINL
oV enitevén VYNANG amddoong oe mopdiinies epapuoyés. H mpoxinon eivar va on-
povpynOet hardware ko software péca amd to omoia Ba Kabictator €0KOAN 1 AVATTLEN
TAPOIAANA®Y TPOYPOUUATOV TOV TPOGOEPOVY DYNAT 0TOS00T KOl KAUAUKOGILOTN T KO-
0mg 0 ap1Budg TV TVPNVAOV avd T oVEAVEL

1.2 O vopog Tov Amdahl

Y10ou¢ TapaAAnLovg aAdyopiBovg, Eva peydro TpoPAnua ywpileton o€ pkpdTeEpO, TO
omoia emAvovtal Tovtdypova. Kabe da0écipog mopnvag avarapupdvel Ty ektéleon evog
UIKPOTEPOL TPOPANUATOG. ZVYKPITIKE LLE TOVE GEPLUKOVS AAYOPlOLLOVG, eival o dOGKO-
Ao v avartuyBel Evag Tapaiiniog adyopifuoc. Qot660 £va TaPAAANAO TPOYPALLL EXEL
KOADTEPT ATOS00T Kol KAMUOKOGIHOTNTA.

O vopog tov Amdahl [1] eivon évag Bempntikdg TOTOG OV divel T péyiotn Bewpn-
TiKn emrdyvvon (speedup) mov pmopet va emttevyBel. H emrdyvvon eivon éva péyebog
OV dElYVEL TOGEC POPEG TO TOPAAANAO TPOYPOLLLLN EIVUL YPNYOPOTEPO OO TOV KAAVTEPO
oelplaKd oAyoppo. Av Ty givol o ¥pOvog EKTELEGTG TOV KOAVTEPOV GEIPLOKOL OAyOP10-
pov ko 77, eivar o xpovog EKTELEONG 10 TOPAAANANG EKOOYNG TOV TPOYPEULOTOS GE P
enekepynoTéc, 1 emttdyvuvon opileTal g:

Speedup(S) = L
T
Tomikd, n emirdyvovon S oyetiletar pe Tov aplfud TV enelepyacT®OV p [LE TNV AVIGOTNTA!
S < p. Av § = p, 1 emrdyvvon eivon ypouuixy.

O vopog tov Amdahl deiyvel 6Ti 1 BewpnTiKy enttdyvVon avEaveTol PeATidvVoVTaG £val
KOUUATL TOV TTpoypappatos. Ag Bemprioovpe 6t f gival To KAdopa Tov TpofAnaTog To
omoio dev pmopel va mapoariniomoindel Kot TpEneL vo, EKTELECTEL GEIPLAKA, TOTE O YPOVOG
EKTELEOTG EVOG TIOPAAATAOL TPOYPAULOTOS EIVaL:

Tp:fTerm
b

Kol 1 EKQEPOCT Yo TNV EMTAYLVOT YivETOL:

1

-7
f+=

Yvvoikn Emtdyvvon (speedup)s S =

O vopog tov Amdahl ypnoyonoeitat cuyva yio va TpoPréyel tn Bewmpntikn emttdyvv-
o1 OV UTopEl va emLTELYDEL ATV XPNOLLOTOLOVVTOL TEPICTOTEPOL TOL EVOG ENEEEPYUTTEG,
Otav 0 ap1Budc TV eneEePYOcTOV P TEIVEL VAL YIVEL ATELPOG, T| GUVOALKT EMLTAYLVOT) TEIVEL
oto 1/f. Ankadn, n Beopntikn emtdyvvon neplopiletar amd TO KOUUATL TOL TPOYPAL-
HATOG TTOL O UopEl va ekTeAEGOEl TaPAAANAL. AV TO TUPAAANAO KOLUATL TOV TPOYPELL-
HaTog gival oxeTika pkpd, n emtdyvvon Ba eivor avriotorya pupn. o mapddetrypa, ov

20

70 ogploKd KAdopa givar f = 90%, tote T0 TOPIAANAO TPOYpape propel va givar 10
QOPEG YPNYOPOTEPO GTNV KOADTEPT TEPITTMGT GO TO GEPLOKO TPOYPOULL, oveEapTnTa
omd Tov apBpd tev enetepyactav. H eicodva 1.1 anewcovilel T cuvolki emttdyvvon mo-
POAANA®V EKTELEGEMV Y10 SIOPOPETIKA GEPLaKA KAAGHoTo f Kot aptOpd emelepyootmdv
p. ZOUOOVO LE OLTNHY, 1 CUVOMKT ETITAYVVCT] TOV TPOYPAULOTOS TeptopileTal amd To
GEPLOKO LEPOG TOL TTPOYPALLATOS KOLL 1] PTOT|] TEPLOGOTEP®V ENEEEPYATTAOV OeV aVEAVEL
v emtéyvvon o€ OAeG TIC meputtdoelg. H mapaiinlomoinon peyoaddtepov pHépovg Tov
GELPLOKOV TPOYPALLLLOTOG ELVOL T) ADGT Y10, VO LEYIGTOTO|COVLE TNV amOS00T.

Amdahl’s Law
20.00 —
L]
1800 ,f"f
/ Parallel Portion
18,00 7 — E0%
z’f — T75%
14.00 — S0%
,” — 95%
12,00 4
(=9
: /
@ 10,00
[:1} I.'r -
=8 ——
]
8.00 "'f/-""f
6.00 /f
P
4,00
¥
"’:’_ﬂ_,_,—'-""ﬂ_._‘_.
2,00 -
WITETS e 8 @ 2 & 8 4 & 2 8 5 @ ¢ B
A -

Number of Processors

Yympo 1.1: H cvvoAikn emtdyvvon evog mopdAinAov mTpoypapupatoc, Kadog to
TAPIAANAO KAGGLO TOV TPOYPAULATOS Kot 0 aptfuds TV emelepyaotdv aArd-
Covv.

H iipoxkooipotta, eivorl Eva dAlo péyebog pétpnong g amdo06NG TOV OVOQPEPETOL
OTNV IKOVOTNTO EVOG GUOTHHOTOC 1 EVOG TPOYPELLOTOC VA ALENCOLV TV ATOS0CT| TOVG
otav o aplfuods tev enefepyact@v avénbei. Ag vmobécovpe 6Tl T0 TPOYPAUpO EXEL EVa
o1a0epo péyebog. O xpodVOg EKTELECNG TOL TPOYPAUUOTOS AVAUEVETOL VO, KAMUOKOVEL KO-
0mg 0 apBpog Tov eneéepyactav avgavetal. [lap'dda avtd, vedpyovy moAlol Tapdyov-
TG OV TEPLoPilovy TV KAMUOKOGIUOTNTO EVOG TPpOoYpappatoc. IpdTov, 1o Tpoypapo
npénel vo yopileTal og LKpd ico KOPPUATIO KOdK, kKaféva amd To omoin TPEMEL VO EKTE-
Agital og d1opopeTiKd encEepyaostn. AV 0LTA TOL KOPUATIO KOdWKa dev givan ioa, KAmolot
eneEepynotéc Ba mePUEVOLY AALOVG LE LEYOADTEPO VA TEpLOTicoVY. EmumAéoy, n Kia-
KOGOTNTO TEPLopileTor Kot e£attiog ToL ¥pOHVOL TOV CTATAANTOL GTIV EMKOVOVIN Kol

21

GTO GLYYPOVIGUO LETAED TV enelepyaotdv. Av 0 ¥pOVOG GLYYPOVIGHOD KOl ETKOVOVI-
ag eivat oVYKpioIHOG LE TO GUVOAKS YPOVO EKTEAEONC, TO TPOYPApLLO OE o KALaK®DVEL
pe v avénon tov apBpod TV eneEepyactdv. Zuvoyilovtag 1 KaTavoun eoptov £p-
YOoi0g 6TOVG ETEEEPYAOTES KOl O XPOVOG TTOL E0OEVETAL Y10, GUYYPOVIGUO KOl ETKOVMVIOL
B£TOVV OTILOVTIKOVG TEPLOPIGHOVG GTIV KALLAKMOGILITNTA EVOS TPOYPAUUOTOS KO TPETEL
va AUPAvVOVTOL VTOYV GTOV TAPAAANAO TPOYPULUATIGHO.

1.3 THoparinres aPYLTEKTOVIKES

H ta&wvounon tov Flynn dwoywpilet T1g apylteKTOVIKEG VTOAOYIGTMOV, COLPOVE LLE TO
EMMEDO TOV TAPUAANAIGLOD TTOV YPNGILOTOLOVV Yl VoL EXEEEPYASTOVV TIG POEG EVIOADV
Kot dedopEVAV. YTTapyovv 4 Katnyopieg:

+ SISD: Single Instruction, Single Data
"Evog oepraxodg vmoroyiotig. Ot oelplakol vroAoylotég dev eKTEAOVV EVTOAES O~
PAAAN AL

» SIMD: Single Instruction, Multiple Data
"Evag mopdAANA0C VTOAOYIGTNG LLE Liol pOT| EVTOADV, 1] 0Tt010 EKTEAEL TNV 1010 EVTOAN
o€ ToAaTAGQ dedopéva.

» MISD: Multiple Instruction, Single Data
[ToAMamAéc povadeg eneepyaciag eKTEAOHV TEPIGGOTEPES EVIOLEG oTa 1010 O€d0-
péva. H MISD apyttektovikn 6gv ypnotponoteital 6To Umoplo.

* MIMD: Multiple Instruction, Multiple Data
"Evag mapdriniog vmoAroyiotig, otov onoio kdle eneepyaoctg extelel aveEdpn-
TEG POEG EVIOA®V o€ OveEApTNTA dE0OUEVO. AVTN 1) OPYITEKTOVIKN EIVAL 1] TLO GL-
VO KL EVPEDS YPNOILOTOMUEV TOPUAANAN apylTeEKTOVIKT. AVO TapadeiypoTa
TETOLOG OPYLTEKTOVIKNG €lvat Tal clusters Kot To GLGTHILATO, TOAVTOPVOV APYLTE-
KTOVIKOV.

Onwg avapépbnke mponyovpévog, 1 MIMD molveneEepydoTiky opyLTEKTOVIKY ivat
N o S1dedoUEVT] TAPGAAANAT] OPYITEKTOVIKY KOl KATAAANAN Yo o TANOdpa epappo-
yov. Ot MIMD apyltektoviKéC Pmopovv va Katryoplonombovv e Baon v opydvoon
NG UWVHUNG TOVG G€ 3 KOTNYOPIES: aPYLITEKTOVIKEG KOG VNG, OPYLTEKTOVIKES KOTAVE-

UNUEVNC VNG Kot VPPIOIKEG apYITEKTOVIKEC.

1.3.1 ApylTteKTOVIKI] KOG UVIUNG

2TIG OPYLITEKTOVIKES KOWNG HVAUNG, KOG emeepyaostng £xel T O1K1| TOV O1OTIKN
KpLeN pviun Kot 6Aot ot enelepyaotés popdloviot £vo puoIKO Ydpo, YVOGTO i¢ Kobo-
Ak pvaun. ‘Eva cdotnpa dtavlov dtacvuvdéel 6Aovg Tovg enetepyactés. Tétoln cuoth-
HOTO. LTOPOVV VAL EKTEAOVV aVEEAPTNTEG EPYUGIES, 01 OTTOIES £YOVV TO S1KO TOVG EIKOVIKO

22

SISD MISD

SISD Instruction Pool MISD Instruction Pool

=) =)

=] =]

F U - -
s

& &

a a

Data Pool
Data Pool

Yympa 1.2: H ta&ivépnon tov Flynn.

Y ®po d1evhivoemv, akdpa Kot av Lotpaloviat Tov id1o puoikd ymdpo dievbivoemwv. Ot ene-
EEPYOOTEG EMKOVOVOVV LIE KOWVEG LETAPANTES AmoONKEVUEVEG OTIV KOV KOOOAIKY vi)-
U1 Kot Uropodv va Kavouy tpdcfacn og onotadnmote digvbvvor pviung pécw loads kot
stores. Xtnv mepintwon mov N tpdcPaocn o€ pia devbvvon pvnung dapkel Tov 1010 ypo-
VO Y100 OAOVG TOVG EMEEEPYAGTES, 1| OPYAVOOT TNG UvNUNG ivan cuppetpikn (Symmetric
multiprocessor SMP) kot Ttapovetaletor otny ikova 1.3,

H apyrtektovikny kovig pviung €xetl 2 Kotnyoplonomoels. Av o ypdvog tpdsfacng
otV kaBolkrn pviun givat 1610¢ Yo OA0VG TOVG EMelepyaoTEG, TOTE 1] OPYAVOOT] VTN TNG
pvaung Aéyetor Uniform Memory Access (UMA). Av kdmoleg tpooPacelg pviung etvon
YPNYOPOTEPES OO KATOES BALES, avaloya e TO TTolog eneepyaotng {ntdel Tnv TpdcPa-
o1 LVAUNG, TOTE) 0pYdveon TG viung Aéyetar Non-Uniform Memory Access (NUMA).
O1 NUMA apyttektovikég Egouv yopmin kabvotépnon yio tpocPaoelg oty KOVIvi te
tov enefepyactn wvun Kot vynAd gvpog {dvng uvnung (memory bandwidth). Ot ene-

23

Aiadpopog Mvrjung (memory bus)

F-t-‘ﬁ‘-‘-.-‘-...-
LR R B N B B B N B B N & E K & 5 B X N

Yympa 1.3: Khaoown opydvoon pog SMP apyttektovikig.

EEPYOOTEG OTNV OPYLITEKTOVIKT KOWNG LVIUNG LTOPOVY VO EKTEAOVV EPYOGIEC TAPAAANAL
YPNOUYLOTOLDVTAG TO, 1610l KOWVA SESOUEVA, AAAG UTOPOVV VO GUUPOVY KUTOGTAGEL GOV~
YOVIGHOV. ¢ amoTELECLLA, Ol ENEEEPYOOTES XPEBLOVTOL VO GUVTOVIGTOUV TPOKEUEVOLY
va amo@evyfodv TavTdYpoveg TPocsPacels ota ida kKowvd dedopéva. ‘Etot, og autés Tig me-
PUTTAOCELS YPNOYLOTOLOVVTOL UNYOVICHOT GUYYPOVIGHOD, OTMG KAEOMLOTOL, KOl ATOUIKES
petaPfAnTés.

H amoteleopotikn kot €0koAn tpdcsPacn ota Kowd dedopEva omd OTOI0ONTTOTE EME-
Eepyoaoth HEc® uag amAng eviodng load 1) store kaB16Td TNV APYITEKTOVIKY] KOG LVi)-
UNG TTOAD EAKVGTIKT Y10 TOV TAPAAANAO TPOYPOUUATIOUS. 26TOGO, GLTH 1) OPYAVOGT TNG
UVAUNG €)EL Evay KOVO S10LAO TOV S1AGVVIEEL OAOVG TOVG EMEEEPYOOTEG KOl TTEPLOPIOUEVO
gvpog Lovng uvpung. Emopévac, avti n apyltektovikn de Umopet vo ypnoiponomet yio
mhvo and 20 1 30 enebepyactég e&artiog TOL TEPLOPIGUEVOL EVPOVS {DVNG LVIUNG.

1.3.2 ApyrteKTOVIKY KOTAVEPNPUEVS PV UG

2NV OPYLTEKTOVIKT] KOTAVEUNUEVNG LVLNG KAOE ETEEEPYOOTTNG EYEL Ui TOTIKT) 1EPOP-
yio pvAung kot pia Tomikn kevipikn pvnun. Ot emeéepynotég cuvdéovtal oe éva dikTLO
dtaovvoeong (mapddetypa Ethernet) kot Aéyovtor kOppot. Aev éxovv Kovég dievbuvoelg
UVAUNG Kot 0 HOVOG TPOTOG Y1l VO, EXKOIVAOVOVV HETOED TOVS Elval HEG® PNVOUATOV GTO
diktvo O1acvvdeons. To chotnua Tapéyel GTOV TPOYPOUUATIOTI] POVTIVES YO ATOCTO-
M Kot Aqym punvopdtov tpog Kot ond tov enelepyaoty. H ewodva 1.4 ameucoviler v
0pYAVOGT UVAUNG OE 0L APYLITEKTOVIKT|] KATOVEUTLEVIC VI UNG.

Avt M apyrtekToviky ypnoponoteitol o€ cluster ta omoia givor cuAloyég amd epmo-
PIKOVG VTOAOYIGTEG TOL GLUVOEOVTAL LETAED TOVG TAV® amd éva [/O dikTvo dtachvdeong.
Kda0e emeepyaotic €xet Eva Eexmptotd avtiypa@o Tov AEITOVPYIKOD GUGTHOTOC.

‘Eva pelovéktmua tov clusters givatl to kéotog dtayeipiong. To kdoTog dayeipiong

24

KépBog 2 KéuBog N

Aiktuo Alaouvdeong (11.X. Ethernet, Myrinet, SCI)

Yympo 1.4: KAaooikn opydvoon Pviung € U0l 0PYLTEKTOVIKT KOTAVEUNUEVNG
HVAUNG.

gvog cluster pe n kK6uPovg ival 1010 pe 10 KOGTOG JLYEIPIONG N VTOAOYIGTMV, EVD TO
KOGTOG dLoyElplomng EVOG TOAETEEEPYAGTIKOD GUGTILLOTOG LLE 7 TVPNVEG EIvat id10 e AVTO
Tov gvOg vTohoylot. Emiong, éva aAlo pelovéktmuo tov cluster givatl 1o dpog Lmvng.
O eme€epyaotés o€ €va culster cuvdcovton ypnolpomordvog I/O dtacvvdeon, evd o€ Eva
TOAVENEEEPYOOTIKO GUGTILLOL YPT|CLLOTOLEITOL SLOGVVOEST] VI UG,

O TPOYPOUUUATIGHOG OE L0l APYLTEKTOVIKT] KATUVEUTLLEVIC LVAUNG TTOTEAEL i TPO-
KAnon, kabmg kabe Tpoomdbeia emkovaviog peta&d Tmv enetepyactdv TPémel va, kabo-
piletot ek TV TPOTEP®V. M1 OTOTEAEGLOTIKN TOPUAANAOTTOINGT OALTEL TNV TANPY| KO-
TAVOTNON TOV EEUPTNOEMV LUVIUNG TOV TPOYPAUUATOS KOl i OTOTELEGLLOTIKY KOTOVOUN
NG LVIALNG 0o TNV apyn Ke oKomd va, ehaytotorombel n) exikotvavio petalld amopokpv-
OUEVOV ENEEEPYOOTAOV.

TéNog, 6T, KOTAVEUNILEVO CLGTHLOTA, LTOPET Vo emttevyBel LYNAN KALAKOGILOTN T
g€antiog TG 0mOVGiag KOWVNG VNG KOl KATAOTAGE®DY GUVAY®OVIoUOD. Ta Katavepnuéva
GLOGTHHOTO KoTaokeVAlovTal amd yIlddeg ave&iptnTong KOUBOLS ol 0oiot UTopovV va
gloayfovv Kot vo, agalpgdovy dSuvapikd amd To dikTvo.

1.3.3 YPpuown ap)tteKTOVIKY pviiung

H vBpdkn apyitextovikny cuvovdlet Tic 600 TPonyoOUEVES OPYLTEKTOVIKEG KOl ETM-
oeheitar amd ta TAeovekTHaTo Kol TV 600. 'Eva vBpidkd cvotnua gival cov €vo ka-
TAVEUNUEVO GUGTNLLCL, GTO OTO10 £VOG GUUUETPIKOG TOAVETEEEPYUOTTNG EYEL TAPEL TN BEOT
gvog emeEepyactikov kOpuPov. H ewova Figure 1.5 mapovcidlet pio vPpidkn apyrtekto-
VIKT. AVT 1] TUTIKT OPYLITEKTOVIKT ¥PNOILOTOIEITOL o€ clusters Kot VTEPLTOAOYIOTES KO
KMUOKAOVEL GOV L0l APYLITEKTOVIKT] KATOVEUNUEVIG LVILNG.

25

SMP ko6ppog 1 SMP koépupog 2 SMP k6pBog N

Seseseesssonosd
rFresssssssanw
CE X T

(]
(]
(]

Aiktuo Alaouvdeong (1r.x. Ethernet, Myrinet, SCI)

Xympe 1.5: Khaoown opydvoon pia Y BpLotkng apyLteKToVIKNG.

1.4 XZvyypoviopog

Y10V TopUAANAO TPOYPAUUATIOHO, YpetdleTon To VApoTa 1} Ot diepyasies * va emucot-
voOVoUV PETAED TOVS Kot VoL EKTEAOVV AEITOVPYIES 6Ta 010 KOve dedopéva 1 LeTafANTEC.
Ot Aertovpyieg 1 0 KOdKaG piag depyaciag TPEMEL VO EKTEAOVVTAL GaV 1) dlepyacia va
TPEXEL AMOUOVOLEVO amtd TIG VIOAOmES. Q0TOG0, 0TOV dlepyacieg TpEYovV TapdAAnia
KoL EKTEAOVV AEITOVPIEG O KOWVEC SOUEG OEOOLEVMV OTaLTeEiTOL EVOC PUNYAVIoUOS GLUYYPO-
VIGO0V, 0AMMDG TO OMOTELEGLLO TOV AELTOVPYIOV Ba Elval ampocsdOPIoTo.

O ovyypovicopudc depyaciav opiletarl cav pio TEXVIKN KOTA TNV 0noio TOAAEG TaVTO-
YPOVEG dlEPYaGies 6 UTOPOHV VO, EKTEAEGOVV TAVTOYPOVA VO TUNLLO TOL TPOYPEUIOTOG
oL KoAgital Kpiowo Tpunpa. To kpicyo Tupa sivol éva Geplokd TULO TOL TPOYPALL-
patog. Otav pia depyacio apyilel vo ektelel TO KPIOIHO TUNLLO, Ol VITOAOLTEC TPETEL VOl
TEPYEVOV LEYPL N TPDTN VO, OAOKANPADGEL TNV EKTEAEGT TOV KPIGIUOL TUNHATOG. AV dgv
£QopHOcOel KATO10 £100G GLYYPOVIGLOV, OL TIUEG TOV HETUPANTOV dE PLmopovV va TpoPAe-
@BovV kot e€aptdvton amd ta context switches peta&d Tv depyaciov.

Yrhipyovv S1AQpopeg TEXVIKEC GUYYPOVIGHOV:

* Apoifaiog omokAEIGUOG
O apotfaiog amoxielopog ivai n mo dadedopévn blocking teyvikn cuyypovicov.
Mmopei va viomombei pécm punyavicu®v OTmg 01 GNUAPOPOL Kol To. KAEWOMUATO.
Zyxeddv oA ta Khewopato ypnoomrolovy v Test-And-Set (TAS) atopuxn ev-
toAn. H diepyacia mov Bétel 10 kheidmpa oe katdotacn LOCKED Aéue 611 £xet
TAPEL TO KAEWD OO KO UTOPEl TPOYWPNGEL GTO KPIGLLO TUM LA,

H evroi) TAS etvor atopikn ko pévo pia diepyasio pmopel va BEcet tn B€on puvn-
ung pio dedopévn otiyun. Av m 0éon pvnqung eivar og katdotacn UNLOCKED,

*@a. ¥PNGLOTOMGOVLE TOV OpO depyacio Yo va. ovaepOolie Gg pio TopdANAN epyocia,
OAAG OTOV TOPIAANAO TPOYPAUUOTIGUO UTOPOVUE VO EXOVIE TOGO dlEPYacieg OGO Kot VILLOTA.

26

to1E M dtepyacio pmopet va 1 0écel cav LOCKED kot va tpoywpnost. Atagpope-
TIKG, av 1 0éom pvnung eivon og katdotacn LOCKED 1 diepyacio mepipuével evm
eAlEyyel Kat TV KaTaotaon g 8éong pvnung pnéxpt avtiyv va yivet UNLOCKED.

Me v atopukn] evtoAr TAS pia diepyacio Bétel v Katdotoon piag 6éong pvn-
ung oe LOCKED «oit dtofalet TNV Tponyovpevn TN TG Yo VoL TPOYWPNGEL 7] VO
TEPUEVEL. AVTO OUMG TPOKAAEL peydAn kivnon oto dlavio e€attiag Tov TPWTO-
KOALOL cuvaQElC. Q¢ amotédeoua, pio fertioon g TAS sivol 1 atopukn evion
Test-and-Test-And-Set (TTAS), n onoia tpdta dafalel Ty katdotaor g 0Eong
pviung kot Tpoomnabel va ™ 8écel oce LOCKED pévo 6tav avtn goivetol vo €xet
népel v iwy UNLOCKED. H diepyacia dev 0étel cuveymg tn BEom pviung eved
EPYEVEL, 0AAG TN Stafalet Tomikd Kot £T61 1) Kivnon AOY® GUVAPELNG PELDMVETAL.

H viomoinon cuyypovicpol pe KAEWO®HoTO deV €ival TOGO EDKOAN KOt LEPIKES (PO-
péc o1 diepyaciec ypelaletal vo TAPOVV MEPIGGOTEPA TOV VOGS KAeWdmuata. Mia
TPOPANUOTIKT KATAGTOGT IOV TPOKVTTEL KATE TO GLYYPOVIGUO UE KAEWDUATA Ei-
vat to adEEodo (deadlock). To adié€odo eival pa KatdoToon Katd Ty onoio dVo
M TEPLOGOTEPES AVTAYMVIOTIKEG Olepyncieg mepIévouy 1 pio Kamowo GAAN va Te-
Aewwoet. [apaderypo amotelel 1 mepintmon OV dVO VAKLATO TOL KATEXOLVY dVO
SLOPOPETIKA KAEWMUOTO KOl TO €va VAR Tpoomadel va omoKTioEl To KAgidmpa
TOV GAAOVL.

ATopukég eviorég

‘Eva mpofinua pe tov apoifaio amokielopd givat 6Tt av £va Vo ToV KPOTAEL TO
KAEWMUO AVAGTEILEL TN AEITOVPYIO TOV, TO VITOAOLTO VIJLLATA B0l LITAOKAPOVTOL LLE-
%P1 aTo va cvveyioet, KaBdS o apoiPaiog amokielcpog etvat blocking punyoviopds.
I"a va amo@uyovpe 0VTO TO TPOPANLL YPNCLLOTOIOVLE TIG OTOUIKES EVTOAEG. Me
TIG OTOUIKEG EVIOAEG HOVO évag emesepyaotng umopel va dofdcet pio digvBvvon
LVAUNG KOl VO, YPAWYEL GE auTiV. AVTO TpoAapfavel dAlovg emelepyaotés va ypd-
youv 1 va dtafdoovv avti tn BEon pvnung tn dedopévn ypovikn otryun. Otav pio
dtepyacio exterel pio atopikn eviodn] avtd eaivetol oav vo cupfaivel otrypiaio.

To TAEOVEKTNLO TOV OTOUIKOV EVTOADY GUYKPLTIKG [E TO KAEW®UOTO gival OTL -
mopevyovtol ta 0dEE0da Kat amotehovv €va non-blocking unyaviopd. To kvplo
LLELOVEKTN LA TOVG ETvat OTL UTOPOVV VO EKTELEGOVV £Vl TEPLOPIGUEVO SEt EVIOADV.
‘Eva mapdoetypo atopikng evroAng eivar n Compare And Swap (CAS). Avti cuy-
Kpivel 1o TepleyOUEVO Log BEonc LviUNgG 1e pio SOGUEVT] TIUR KOt LOVO OTOV QUTES
glvan 101eg oAAGCel To mepteyduevo g B€om pviung pe pio véa Tiun. Av 1 T
glvar evIEPOUEVT, 1] EVTOAN Elval EMLTUYNG. ALOQOPETIKA, 1| TIUN €Yl OALGEEL OTO
evOLpeco amd pio GAAN dlepyacio Kol 1 EVIOA TPETEL VO ETAVEKKIVIGEL.

Transactional Memory

"Eva dAlo non-blocking oyfua yio cuyypoviopod givor m transactional memory. H
transactional memory eivar pio TexvoAoyio TOL ¥PNGUYLOTOLEITAL Y10 TO GLYYPOVL-
OUO TOVTOYPOVAOV SLEPYUCLDY KOl OTAOTOLEL TOV TOPAAANAO TpOYpappoTIGHd. E-
KTeEAEL YKPOLT EVIOADV GOV OTOUIKES docoAnyiec. Ta kOpla o@éAN avThg TG TE-

27

YVOAOYIaG ivatl OTL dEV VIAPYOLY KAELODUOTO KOl 0001EE000, TO ENITEDO TOV TOPOA-
AInAopov givor avénpévo, opoimg kat 1 ardS0oT Kol 1] TOPUY®Y KOSIKO e 0UTY
™V teXvoLoYia elval oYeTIKA OmTAT.

28

Kepdaiaro 2

Hopariinio OVAOIKA OEVTPU
avaCHTIoNG

2.1 THopdariiniec oopéc 0cd0uEVOY

Mia dour| dedopuévav gival £vag GUYKEKPIUEVOS TPOTOG OTOONKELONG KOl OPYAVMGTG
dedoUéVmV Gg £vaV VTOAOYLOTH, £TG1 MOTE AVTA VO YPNGILOTOLOVVTAL aodoTikd. Ot do-
UEG dedopéEVmV gival Evo HEGO Yo VoL dLoXEPLLOLOGTE TOAAA OEGOUEVE, ATOSOTIKE KO XPT)-
GLOTOL0VVTOL G€ PACELS Oe00UEVAOV KOL VTN PEGTES eVPNTNPI®VY. ALUPOPETIKEG EPAPUOYES
amoITOHV SLOPOPETIKA €101 SOUDV dESOUEDV KOl 1) amdO00T| TG EPAPUOYNG eMNpedleTaL
ONUAVTIKE amd T oY OEOOUEVMV TTOV YPNGULOTOLEL.

2T1C UEPEG Hog M Kuplapyn TAUTEOPLO EKTEAECTIG VITOAYIGU®Y €ival Ol TOALTOPNVOL
VIOAOYOTES. [0 va TpE€EOVY GE AVTA TOL GUGTHUATO 01 SOLES OEOOLEVMV EMPETE VOL EMAVOL-
oed106TOLV KOl va cvyypovifovtar o1 tpocPdoelc o avtés. TloAhamid vijpoTo pwopovv
Vo KAvouv TpOSRacelg ot Sopn Sed0UEVOVY TAVTOYPOVA, 0OV QLT TPEXOVY TAVTOYPOVOL
o€ JPOPETIKOVS TVPNVES. 20TOGO, 0 TAPAAANAOG TPOYPOUUATICUOS EIGAYEL SLAPOPES
dvokohiec. H viomoinon moapdAiniov dopwv dedoUévev eival 0pKETA TOADTAOKN Kol
OOUTEL GUVETELD. OOUNG.

O Paoikog meplopiopds otn oyediaon ToapdAANA®Y dOUDV dE0OUEVMV EivVaL TO GEL-
pLokd pépog Tov aAyopibpov. Eivor emBountd ot dopéc dedopévav va divouv kaAdtepn
amddoon pe v avéEnomn Tov aptdpod tov vudtomv. Avtég ot dopéc ovopdlovtol KAa-
kooueg (scalable). O cuyypoviopodg peta&d tmv vnudtov vrofafpitel Tnv KAMUOKOGILO-
mra. Eniong, éva dAlo TpoPANLa TOV TapAAANAOL TPOYPAUUATIGLOV EIVOLT) GUUPOPTON
pviung. IoAlomAd vipata aroitody TpoosPacelg ota idlo dEdoUEVA KOt anTd dNUIovpYEl
Kivnom oto diowAo pviung kot teplopilel TNy KMpokooipotto. O 6tdYog TV TPOYPULL-
HATIOTOV OV oYeAAL0VV TAPAAANAEG SOUEC OEOOUEVMV E1VaL VO LELDGOVY TO GELPLOKO
HEPOG TOL OAYOPIOLOL KOl TO KOGTY GLYYPOVIGUOV HETAED TV VHATOV.

29

2.2 Aévtpo avalnnong

To dévtpo avalrtnong eivar pio dopn dedouévov otnv omoia KaOe otoryeio TG £xel
éva (ebyog KAEO100-TIUNG KO TPOGOIPILEL CUYKEKPIUEVES TILEG EVOG GET. Y TAPYOVV TPELS
Baocikég Aettovpyiec oe avtn TN dopn, N avalTnon, 1 laymyn Kol 1 dloypoer VO 6Tot-
xelov, 6mmg eaiveron oty gwkova 2.1. Me oxomd va pewwbet o xpodvog avalnnong evoc
otoyeiov Kamown dévipa avalnmong eival woolvytopéva, oniadn 6Aa ta UALNL Exouvv
oyeTIKd 1010 Pdbog 610 dévipo. Ze avTd TO KEPAANIO O LEAETGOVLE TPELS SLOPOPETL-
KOVG TOOLG OEVTpV avalntnong: to anid dvadikd dévipa avalntnong (Binary Search
Trees BST), ta. AVL dévtpa kot too Red-black dévrpa (RBT).

searchikew)

»

ke

—

»
phazel: parzse(key) k_} | up date [kev)

phaze modifylew]

Xyquoe 2.1: To intreface piog doung avalnimnong. Ot Asttovpyleg evnuépmong
&xouv 000 QAacels: pia edorn avalRTnong Tov oTotyelov Kot pio EAcT EKTEAEONS
™G EVNUEP®ONG TN dou).

Ta dévtpa avalntnong yopiloviat og 600 Katnyopieg avaloya Le TV opyavmon TV
Cevyav Khewdrov-tyune. Ot kopfot mov £xovv Toudid Aéyoviat ecwtepikoi KOUPot Kot ov-
Tol oL 3&v €yovv Tandid Aéyovral eEmtepikol kOpPol. Otav ta {evyn KAES100-TIUNAG O-
mobnkevoviar uovo o e@tepong KOUPoLs (UALY) Kot 0l E0TEPIKOL KOUPOL ¥p1ot-
HOTO100VTOL HOVO MG KOUPoL dpopordynong 10te 10 dévipo Aéyetar external. Otoav ot
e0mTEPIKOL KOpPOL dev glvar poévo kopPol dpopordynong aAld amobnkevovv kot {gvyn
KAEW00-TIUNG, Ta 6évTpa avalntnong Aéyovtor internal. H swova 2.2 amekoviletl Eva
external kot éva internal dévtpo avalnimong. Ta TeTpdyva oyYfHaTe XPNCLLOTOLOVVTOL
Yo va, Sy opicovy ta OAAN oL TTEPIEXOVV (ghyN KAEO10V-TIUNG OITO TOVS ECMTEPIKOVG
KOpUPovg dpopordynong oto external 6€vTpo.

2.2.1 Amha ovadka oévrpa avalntinong (BST)

"Eva dvadikod dévipo avalnitnong eivor Eva ta&ivounpévo dévepo 6To omoio kdbe Kou-
Bog éxer péxpt 6o maudid-kdépPovc. Avtd to dévipo dev givan wolvyiopévo kol Kabe
KOpUPoc-mardi eivan gite eOALO gite pila evog aAAOV dvadtkobd dévipov avalntnone. Ka-
Oe ecmTepkog KOPPOC Exet éva KAWL Kot £xel dVO LLOOEVTPA, TO aPloTEPO Kot TO de&i
vddevTpo. To dévipo tkavomotel ™ dvadikn WwidTTa avalRTnong, 1 omoia avapépet 6-
TL 10 KAEW kdBe KOUPov Tpémel va glvar peyarhtepo amd OAa To KAEW TOV ApLeTEPOD

30

NULL NULL NULL NULL

Xypa 2.2: 'Eva mapddetrypa evog external kot gvog internal 6€vipov.

VIOSEVTPOL KoL LUKPOTEPO OO OAQ. TO KAELOLA TOV 0€E10V VTTOSEVTPOV. AEV EMITPEMOVTOL
KOUPot mov va Exouvv To 1010 KAEWOL.

H Baown 10éa eivar ta KAEO1E TOV dEVTIPOL Vo gival o€ Tavounpévn cepd, yio va
UTOPOVV VO, EKTEAEGTOVV AT0d0TIKG 01 AglToVpYieg 6T0 dévTpo. Katd péso 6po, ke Aet-
ToVPYia TAPUAEITEL TOG GOV KOUPOVG TOV SEVTPOV, £TCL MOTE VO TAIPVEL YPOVO AVAAOYO
pe to Aoyapifpo tov apBpot tov koppwv n tov dévipov (O(logn)). Qotdco, ot YEL-
pOTEPT TTEPITTOON TO OEVTPO eKEVAAILETOL GE Ypapukn aAvcida kKOpPwv (Alota) Kot n
Aertovpyia drapkel xpovo O(n).

2.2.2 AVL Aévtpa

To AVL dévtpo givan €va 160luyioLévo 0€vTpo e BAcT To HYog ToV TOL OVOUAGTNKE
€101 amd toug epepevteg Tov Georgy Adelson-Velsky kot Evgenii Landis [3]. "Hrtav to
TPMTO SUVOUIKA 160LVYIGHEVO JEVTPO TTOL TTpoTadNKE Kot £yl dvo WidtnTec. H mpdt
Wotnta givarl 6tL kdBe vddevtpo eivan opoimg éva AVL dévtpo. YmobBétovtag 6Tl t0
VYOG TOV dEVIPOV €ival 0 aplBpoc Tov KOUP®Y 6T0 HOKPVTEPO HovordTtt and) pilo o€
éva eOAAO, N 0évuTEPN 10T TO OVAPEPEL OTL TOL VYT SVO VITOSEVIPOV-TOIIDV TPETEL VL
SopEPOVY TO TOAD KOTA Eva. AvTh 1) Slapopd Aéyetan Topdyoviog tloolvyiouov (balance
factor). Av omoladNToTe GTIYUN 0 TOPAYOVTOS 1I60LVYIGHOD Eival LEYOADTEPOG TOV EVOG,
amouteiton e€loopponnon (rebalancing) 6to 66vrpo. AVTO EMLTLYYAVETOL EKTEADVTOG LidL |
TEPLOGOTEPES TEPLOTPOPEG GTO dEvTpo. OAeg o1 Aettovpyieg evog AVL dévtpov maipvoovv
XPOVO avdAoyo tov AoyapiBpov tov apBpov tewv képPwv Tov dévipov (O(logn)) kat ot
YEWPOTEPT TEPiMTMOT).

Otav exteleiton pia Aettovpyia evnuépmong (insertion, deletion) oto dévtpo, pmopet
va ypelaotei rebalancing, to onoio pmopei va edeyyBel pe tn fonbela Tov Tapdyovta 1Go-
Cuyopot. Otav avtdg o Tapdyovtag evog KOpPov gival pikpdtepog tov -1 1| peyoddtepog
Tov +1, t0 Vddevipov pe pila To cvykekpiévo kopPo dev sivar twolvyicpévo. ‘Etot,
TPEMEL VO EKTEAEGTOVV OPLOTEPES Kot EELEC TEPIOTPOPEG GTO dEVTPO Yo va 1ooluylotel

31

2.3.
Right Rotation n g
»

»~

o

. =
e e Left Rotation

Tyqpae 2.3: Mio 0e€1d Kot pio aptotep] TEPIOTPOPT| HEVTPOV.

2.2.3 Red-Black Aévtpa

‘Eva. Red-Black dévtpo sivan emiong éva dévipo toolvyicpévo oto Oyog tov. Ba-
ciletanl oo CUUPETPIKA dvadikd B-tree kot meprypdgpetar otn dnpocicvon pe titho "A
Dichromatic Framework for Balanced Trees" [4]. K&Oe kopupog evog Red-Black dévtpov
€xel évol eMTAEOV bit TO 07010 AVTITPOCOTEVEL TO YPAOUO TOL KOUPOL Kot Uropel va eivat
KOKKIVO 1} Lodpo. AvTtd TO YpdLLO YPNOUYLOTOLEITAL Y10 VO SLUTNPNOEL TNV LGOPPOTIO. TOV
dévtpov. Ta RBT dévtpa ikavomotoOv KAmoleg GUYKEKPLUEVEG 1O10TNTES TTOVL OvVopdlovTal
coloring properties kot Befatmvovy 6TL To dEVTIpO givan oyeddv 1coppomnuévo. Otav ekte-
AoOvTal Aertovpyieg evUEPOONG OGS EIGAYMYN 1 Saypapn TO dEVIPO UTOPEL VAL YPELOL-
otel va avadtataydel Kot kdmotol KOpPot Tov va aAAdEovy ypdua yio vo dtotnpnbodv ot
coloring properties.

Avtég givor ot axdAovOEG:

1. "Evag xoppog givar gite kOkKIvog gite pavpog.
2. H pila tov 6évpov givar podpn (root property).
3. KdéBe @vAho givar podpo.

4. Av évag xopPog givar kOKKvog, TOTe Kot To. 600 Todd Tov TPEMEL va. €Ivarl pLowpa.
(red property).

5. Kd&Be povomdtt amod Evay k6pupo og omolodnmote GUAAO £xeL TO 1010 TANB0G pLavpmv
kopuPaov (black property). O ap1Buds tov pavpov kKOpPv amod t pila o Eva KOpPo
glvai to fabog tov kKOpPoL Kot 0 18106 aptBpog pavpwv KOUP®V 6€ OAL TO LOVOTTATLOL
mpog ta @OALY Aéyetal black-height Tov Red—Black dévtpov.

AVTEC 01 1010TNTEG Y01V OYed10GHEL e TETOW0 TPOTO £TGL MGTE TO OEVTPO VAL AV~
dwtdooetan amodotikd. H ewova 2.4 deiyvel éva mapdderypo evoc Red-Black dévrpov.

32

Yympa 2.4: 'Eva mapaderypo evog red—black dévtpov.

SOUemVO pE TIG 1O10TNTEG TO UEYOADTEPO LOVOTIATL GE £VOL OEVTPO O€ UTOPEL val gival po-
KpOTEPO OO TO SUTAAGIO TOL GLVTOUOTEPOV LOVOTOTION, OOy OAO TO, LOVOTTATIO £X0VV
ToV 1010 apOpd povpov KOUPV.

Ot Baocikég Aertovpyieg (lookup, insertion, deletion) amaitobv otn yEWPITEPT TTEPINTO-
on xpoévo avaroyo ov Hyovg tov dévipov O(logn), 6mov n givol 0 GUVOAKOS aPBUOS
TV KOUPOV 670 8€vtpo. Avtd T0 BepnTKd Gvmd dplo Dyovg enttpénel oto Red-Black
S&VTPO Vo elval amodoTikd Kol 6T YEWPOTEPN Tepintwon. Otav giodystan £vag KOUPog
N dypapeton évog kKopPBog cuvnbmg mapafialoviol ol TaPATive WBOTNTEG KOL TO OEV-
TPO YAVEL TNV 1G0ppoTio TOv. Ydpyovv dvo mbavig napafidoeic, N red-red violation,
otav £vag KOKKIVOG KOUPOG amokTioel £va, kokKvo Ttoudi kot mapafialeron n red property
wam double black violation, dtav Eva LOVOTIATL TOL OEVTPOL TTEPLEYEL ALYOTEPOVS LLOPOVG
KOpPovg amd dAla povomdatio kot tapafrialetorn black property. ['a va aviipetomiotody
oVTEG 01 TAPOPLACELS EKTEAOVVTOL TEPLOTPOPES KO OALOYEG YPOUUTIGLMV GTOVG KOUBOLE
TOV OEVTPOV.

2.3 Teyvikég KOTUOKEVNS TAPAAAAMY OOV OEDO-
HEVOV

2T1¢ TopAAANAEG dVASIKEC OOUEC LITOPOVV VO EKTEAOVVTAL TOVTOYPOVA AEITOLPYiEG
mov aAralovv ™ dopn. [lpoxeipévov va Befoiwbodpe 6Tt Tapdyoviol GOOGTA OTOTEAE-
GLOTO KOt 1) OOUN TOPAEVEL GUVETNG OMALTEITAL EVOG UNYOVIGHOG CLYYPOVIGHOD 6T d0-
. Z11g Pacikég Aettovpyieg TG HOUNG YPNOLOTOLOVVTIOL OLAPOPES TEXVIKEG GLYYPOVL-
ool OTmG 0 apolPaiog amoKAEIoHOG Kot O atopukég Asttovpyiec. Ot tpelg mo dtadedo-
UEVEC TEXVIKEG GLYYPOVIGLOV Yo TapdAAnAa dévtpa avalntnong sival: coarse-grained
locking, fine-grained locking kot lock-free programming.

33

2.3.1 Coarse-grained locking

Coarse-grained locking givot pio TeYVIKT KOTOAGKELNC TUPAAANA®Y SLASIKDY SOUMDY
XPNOWOTOLDVTAG TOV apolPaio amokieiond Kot o kKAswmpoto. Qg lock granularity opi-
Cetan éva PéETPO TOV TOGOD TV SEOOUEVOV TOV €VoL KAEIOMILOL TPOGTATEVEL. TN coarse-
grained locking teyvikn dtav pia depyacio/vipa ypetdletol va Kivel TpocaocT o€ Kot-
va dedopéva, OLeC oL TPosPaoelg 6T KOvd dedOUEVA TPOSTATELOVTAL LE EVO KADOAKO
KAeldopa (global lock). Extelovvtot ol anapaitnteg read/write Agttovpyieg Kot PeTd T0
KAeldopa anelevbepmvetat. O mposPioelg ota Kovd dedopéva GEPLOTOLOVVTAL KAl [LO-
vo pia diepyacio/viapa unopel va £xel tpocPact og avtd. OmoTE OVGLOOTIKE dEV LILAPYEL
TOPOAAAMGHOG. AT 1 TEXVIKY €lval E0KOAN 6TV vAOToinon kot otn y¥prion. To pelo-
VEKTNUA NG €lvar O6TL meptopilel TV amddoon eVOG TOATENEEEPYUGTIKOD GUGTHILOTOC.
2V TepInT®ON TOAATAGY VIUAT®OV 0T YPEALETAL VO TEPIUEVOLV PEXPL TO VIILOL TTOV
Kpatdel To KaBOAKSO KAEIOMLO VO TEAEIDGEL TN AELTOVPYIO TOV KOl VO, ATELELOEPDTEL TO
Kieldopa. Avt n tepintmon dnpovpyel YA cupEOPN oM 0T0 KAEIdWA Kot vToPad -
Cer v amddoom. H coarse-grained locking teyvikn eivat yprioyun 6tav To KpiGiLo TUpa.
glvar pikpd Kot e SNUovpyéLtal VYNAN GLUEOPTOT GTNV ATOKTNGT TOV KAEWOMUATOG.

2.3.2 Fine-grained locking

g VTN TNV TEYVIKT YPNOLOTOLOVVTUL TOAAUTAG KAEDDUATO TTOV TPOGTOTELOLVV LI
KpO HEPOG NG doung. Avtd mpokadel avénuévo lock overhead, yioti ypnoiporolovvran
TOALG KAEIOMULOTA, ATOLTELTOL TEPLOCOTEPT) LVILLT KOL DITAPYEL EMTAEOV KOGTOG AOY® GL-
AVOV AEITOVPYLDV 0mOKTNONC/ ameAenfépwong TV kKA oudtoy. Amd v GAAN TAELPA,
to fine-grained locking emitpémel VYNAG TOPAAANMGLO YLOTL LELDOVEL TN CLUPOPT|ON OTNV
amoKTNoT KAEWOUdTOV Kol £xel KoAn Khpokooyotnta. [Todhaniég diepyoaoieg/viuo-
TO, LTOPOVV VO, TPOYWPNGOVY TapdAANAa O6tav dev Kdvouv TpocPacn ota idta Hépn g
KOWNG 0opNG dedopévav. QoT000, ALTN 1 TEYVIKN €ivol apKeTE cOVOET Kol SVGKOAN
GTNV VAOTTOIGN, QPOV OTOLTEITOL O TPOYPOUUATIOTHS VO YVOPILEL EK TMV TPOTEP®V O,
Kiewopata Oa anoktnBovv amd o kdbe vijpa kot pe oo oelpd. To vt Tpénet va, Ko-
talopBavouv ta KAewopato pe Ty idwa katevBovvon (global order) yio vo amo@evybovv
ta adé&oda (deadlocks).

2.3.3 Lock-free mpoypoppatiopdg

O lock-free mpoypappaTIGHOg O XPNOUOTOLEL KAEWMUATA KOl BEATIOVEL TNV ATTO-
5001 TOV GLGTHHOTOG KOl TNV EVPMOTIE, APOV gival £vag non-blocking punyaviopog. Ot
SoUEG IOV YPNGLULOTOOVY aVTAV TNV TeYVIKN Aéyovtatl non-blocking kot pmwopel va givat
wait-free, 6tav kaBe Agttovpyia eyyvdtor 61t o tekerdoel o Eva opiopuévo aplfud Pn-
patov, lock-free 6tav Kdmoleg Aettovpyieg LTOPOVY VO TEAELDCOVY GE OPIGUEVO aplOpd
Bnudrov kot obstruction-free, 0tav pia Aeitovpyio propel va TELEIOCEL G€ OPIGUEVO ap1D-
no6 Pnudrov. To kAedi oto lock-free mpoypappatiopd givar n vIosTAPIEN A6 TO LAMKO.
Ot non-blocking S0UEG ¥PNOLUOTOLOVV TIG OTOUIKES EVIOAEG. AVTEC EYYVMVTOL ATOULKO-
™mro, ONAadn OTL T VI LLOTO LITOPOVY VoL 0LV TV KOTAGTACT TPV 1 HETA amd pia Aet-

34

Tovpyia Kot Oyl pio evoldpeon katdotaon. Ot o O1dE00UEVEG ATOKEG EVTOAES Elval
n compare-and-swap (CAS), test-and-set (TAS), test-and-test-and-set (TTAS) ko load-
linked/store-conditional (LL/SC) gvtoAn.

2.4 Boaowkéc AEtTOVPYES TAPAANAQV OEVTPOV UVU-
ceng

Onwg &xer Mo avapepbei, Eva mapdrinio dévipo avaltnong eival éva chvVoAo GTot-
yelwv. O Pacikéc Aettovpyleg TOV UTOPOVY VO, EKTEAEGTOVV G€ 0LTO £ivan 1 avalniTnon
(lookup), n ewcaywyn (insertion) kot 1 Swaypagn (deletion). Kébe ororyeio Tov cuvorov
ovtol amodnkevetal o€ Evav KOUPo Tov dEvipov Kot amotehet Eva {e0yog KAEIO00-TIUNG.
To K el tpocdopilel povadikd Eva otorygio Tov cuvorov. Ot facikég Aertovpyieg Exovv
Vv ak6AoVON onpaciloroyia:

* lookup(key): avalnrei évav koppo e 10 doopévo kAedi. Av avtdg Bpebei, 1 Aet-
TOVPYia EMGTPEPEL TNV TIUN TOV GYETILETAL [E TO SOOUEVO KAELDT SLOPOPETIKA L~
otpépet NULL.

* insertion(key, value): npoonabei va giodyst Evav Kavovpylo kKoo 610 dEVTIPO
avalnnong pe To cLYKEKPLUEVO docpévo (g0yog KAeWov-Tiung. H elcaymyn eivar
EMTUYNG OTAV dEV LVILAPYEL AALOG KOUPOG GTO OEVTPO LE TO 1010 KAELOL.

* deletion(key): mpocmadei va dtoypdyel amd 10 dEVIpo Tov KOUPO Tov TTEPLEYEL TO
ovykekpévo khewdi. H Aettovpyia givarn enttuyng dtav vdpyet £vag TETol0g KO-
Boc oto dévtpo.

01600 terevtaies Aettovpyieg (insertion kon deletion) amotedovvtat amd dV0 S1oKPITEG
oaoccic. [pdta, vrdpyel pia didoyion oto dévipo uéxpt va Ppebet o embupuntdg KdUPog
KoL JETG TPOLY LOLTOTTOLEITOL 1] TPOTOTOINOT] TNG OOUNG TOV SEVIPOV GTOV KOO auToHV.

2.5 Mia amAoiki) TPpocEyyIon

e auTnV TNV €vOTNTO. O TOPOLGLICOVUE KATOLEG VAOTOWGELS AMAOTKMY TOPAAAT-
AV dévtpav avalnmmone. Kdamowo amd avtd viomombnkay otig dnpocievoelg [5], [6].
[Ipwv Tapovcidcovue Tig dtbpopeg vAomomoaelg Ba elodyovpe 600 TPOGEYYIGEIS Yo TNV
e€looppomnon evog dévTpov petd amd pio Asttovpyio evnuépwong mov Tapafralet Tig -
d10tNTEG TOV. AVTEG 01 Tpoceyyioels oyetTilovtal Le TN GEPA e TNV OToio eKTEAEITOL M)
e€1o0ppoOTNON TOL BEVTPOL Kot 1) Agttovpyia evnuépmong. H etcaymyn ko 1 dtaypagr| o
&va OEVTPO EYOLV dVO PAGELG. XTNV TPATN PACT VIAPYEL pin S1AGYLoT TOL SEVIPOL UE Eval
top-down tpdmo, .y and T pila Tpog o PUALL pEYPL va Ppebel o KatdAAnAog kOpUPog
avaloya pe T Aettovpyia mov ektereitat. 'Eneita, exteAeital) Asttovpyio evUEPOONG
KoL vdpyet pio S1acy1on Tov OEVTIPOL LE Evav bottom-up Tpdmo pe kaTevOLVON TPOS T

35

pila Tov 36VTPOL KOTA TNV OTOolo EKTEAOVVTOL Ol KATAAANAES TPOTOTOGELS GTN OOUN|
TOV JEVTPOV (T, TEPIGTPOPES) Yio. TNV €E1G0PPOTNGT TOv. AVLTH N TPOGEYYIoT AEyETOL
bottom-up. Otav o1 Aertovpyieg evnuépwong (insertion, deletion) exteAovvton pe pio pévo
top-down ddioyom TOL dEVTPOL M TPooEyyior kaAgitar top-down. [Tpokeévou va givar
eoluyiopévo 1o 6évtpo oty top-down vVAOTOINOT EKTEAOVVTOL TEPIOTPOPEG KOl KATAA-
ANAES TPOTOTOMGELG GTT) dOUN TOL SEVTPOV EK TMV TPOTEP®V KATA TNV top-down didoyion
Kat 0tav pBdoovpe otov embountd kdpPo yo va yivouv ot aAAAYES, TPOYULATOTOEITOL 1|
EVIILEPW®OT KO] dOUN EIVAL GUVETNC.

2.5.1 Ilgprypayon

"Exovue avamtH&el evvea S10popETIKEG VAOTOOELS TAPAAANA®V dévpmv avalnTn-
ong, oo internal Kot externa. ypMOLOTOLOVTOG TIC TEXVIKEG GUYPOVIGLOV TTOL AVOPEPON-
Ko KoL vTapyovv 1060 bottom-up 660 kot top-down TpoceYYicelS Yo TV €£1000pOTNON
TOV 34VTpOv.

Ta tapdAinda dvadikd dévipa avalnnong eivat:

* avl-bu-cg-ext-lock tree

— AVL d8évtpo

external dévtpo

coarse-grained locking

bottom-up mpocéyyion yua v e£160PPOTNOT TOV SEVIPOL
emovaAnmTikn (iterative) viomoinon

* bst-td-fg-int-lock tree

BST dévtpo

internal dévtpo

fine-grained locking

top-down (d¢ yperalerar eElcoppdmnon)

* rbt-bu-cg-ext-iter-lock tree

Red-Black 8évtpo

external dévtpo

coarse-grained locking

bottom-up mpocéyyion yia v e€lcoppdnnon
emovoinmTikn (iterative) vAomoinon

* rbt-bu-cg-int-iter-lock tree

Red-Black dévtpo

internal dévtpo

coarse-grained locking

bottom-up wpocyyion yio v €€160ppoOTNON
enovoinmTikn (iterative) vAomoinon

36

* rbt-bu-cg-ext-rec-lock tree

— Red-Black 6évtpo

external dévtpo

— coarse-grained locking

bottom-up mpocéyyion yio v eE1GoppoTNOoN
avadpoutkn (iterative) vAomoinon

* rbt-td-cg-ext-lock tree

Red-Black dévtpo

external dévtpo

coarse grained locking

top-down mpocéyyion yia v elcoppdmnon

* rbt-td-fg-ext-lock tree

Red-Black dévtpo

external dévtpo

fine-grained locking

— top-down mpocéyyion yo v eElcoppomnon

* rbt-td-cg-int-lock tree

Red-Black dévtpo

internal 6évtpo

coarse grained locking

top-down mpocéyyion yua v e€lcoppdmnon

* rbt-td-fg-int-lock tree
— Red-Black 6évtpo
internal 6évtpo
fine-grained locking
top-down mpocéyyion yio v e&looppdmnon

2.5.2 Aegntopépereg viomoinong

* Ot viomomoelg avantdynkay e C YAOGCA TPOYPAUUOTIGLOV.

* To false sharing &ivat 0 T TEPLOPIOTIKOG TOPAYOVTOG KALOKOGUOTNTAG OTNV O~
PAANAN ekTédeon vudtov oto moAveneEepyaotikd cvotipota. Epeaviletot 6-
Tav 000 1) TEPLEGOTEPA VILLOTO TPOSTOH0VV VO, TPOTOTO GOV aveEAPTNTOVG KO-
Boug mov Ppickovror oty idwa cache line. Avt n mepintwon mpokalel cache
misses Kot vroPabpilel v amddoon. o va aropvyovpe ovtd T0 TPOPANL TPO-
onafovpe va evBuypappicovpe T dour Tov KOUPOL GTN PV Kol ¥ PN CLOTO100-
pe v teyvikn padding. Me vt v TeQVIKT éva N TEPLocoTEPQ byte TpoatiBevton
6T doun Tov KOUPov, etcl dote Kabe kKOUPog va Ppicketal o€ SapopeTIK cache

37

line. O k®dkag 2.1 kot T0 oyua 2.5 mapovstdlovy pia Tomiky doun bst képPpov
Ko pio ovomopdoTost dVTOL GTH UWVILY.

Listing 2.1: Mio tomikr doun bst képpov

typedef struct bst node{
int key;
struct bst node *lchild;
struct bst node * rchild;
void *value;

char padding [CACHE LINE SIZE — sizeof(int) —
2 * sizeof(struct bst node *) —
sizeof (void *)];
} bst node t;

key Ichild rchild value padding

CACHE_LINE_SIZE

Xyqpo 2.5: Mio avamapdotaon evog bst kOppov otn pviun ¥pNOYLOTOIDOVTOS
padding, ét61 ®ote awTOG va katodapupdaver axpiog pia cache line.

* X1V coarse-grained vAomoinon vapyetl éva kaboAkd kKAedmpa potpaldpevo yio
ola T viparta. Kébe vijpa mov mpoonabel va exktedéoet pio amd Tig Tpelg focikés
Aettovpyiec mepiével péypt va amehevfepmbel 1o KAgidmpa, o katalopupdavet, e-
KTeAEL TN Aettovpyia Tov ot dopn Kot £TELTO TO amelevbepdveL. Movo éva vipa
umopet va £yl 1o Kotvo KoBoAko kheidmpa pio dedopévn ypovikn otyun. o ovtd
n coarse-grained vAomoinon givol gelplakt| vAomoinon.

+ X1 fine-grained exdoyn TV TopdAINAov dévipwv avaltnong Kabe koppog £xet
70 01KO Tov KAEdmpa. ‘Etot, vmapyel Eva kieidmpo ot dopn tov kopPov. Mia
bottom-up vAiomoinon eivar S0oKoAo va vAomomOet yrati de drotnpeital 1 Koot
K1 GEPA 6TV AOKTNGOT KAEWBOUATOV KOl UTopovUE Vo 0dnynbovpe ce adiE&odo.
I"a avtd To Adyo ot fine-grained viomomoelg stvar OAeg top-down vAomocelg. Q-
61000, KAt TN Agttovpyio Staypapng o€ €va internal dévtpo o kOpPog g dwarypa-
Mg umopet va gival évag ecmTepcods KOPPog Kat 0 d1ad0y6g Tov gival Eva pUALO,
70 omoio Tpémel va Tapel T BEom Tov KOUPoL TPog dlaypaer| 6To dEVTpo. AT 1
dwdwkacio amottel amokAeloTiky TpocPacn og KaOe KOUPO petald avtwv TV dVO.
[Tpokepévou va, emitevydet avtd Tpémet To VITOdeVTPO Ue pila Tov KOUPO TPOC dia-
YPaON Vo ivor KAEW®UEVO KOl £TGL KPOUTAE TOV E0AOTEPIKO KOUPO OV TPOKELTAL

38

va draypapel KAedwpévo péypt va Bpebet o dtadoyog tov. H ewkdva 2.6 ameikovi-
Cel autv TV TepinTmon. Av 6gv KpOTOOVUE KAEWBWUEVO TOV ECOTEPIKO KOUPO
TPOG JLAYPOPN KOl TOV OMEAEVOEPDCOVLE KOt TOV EAVAKAEIOMGOVLE, aPov Bpov-
Le to 010d0%0 ToL, TOTE OMOKTOVUE KAEWOUATA LE TNV avtifetn katebBovvon and
v kaBoiikn| oelpd (global order), kéti Tov pmopet va 0dnynoet o 0d1EE0d0. Ao
TNV GAAN, To external 6&vipa ekTeLoOV oAhayEg LOVO o€ VAL Kot Ogv eppavieTon
ovTO TO TPOPAN AL

e — Y

locking subtree

Yympoa 2.6: Katd v dtypagn evog kopuPov D o €va internal dévipo, mpémetl 1o
vrddevepo e pifa tov kopPo D va mapopével kKAedwpévo.

* XV avl viomoinon éyovue mpocbécel éva emmAéov medio ot doun Tov KOpPov
7OV OVOTTOPIOTA TO VYOG TOL KOLPOoV, Yo va voloyiletal o mapdyoviag 1coppo-
wiag kot opoimg ota Red-Black dévtpa éva medio yia to ypdpo Tov KOUPoL Yo va
oamokafioTovLE TIg coloring properties.

2.6 Mia mo TOAVTAOKT TPOGEYYION

Avt n evomto TepthapPdvel o mOAVTAOKEG TPOCEYYIGES TAPAAANA®Y dEVTpOV
avalntmons. Avtéc ol vAomol el gival cuvletol alyopiBuot Toco lock-based 6o kat
lock-free mov mapovoidlovtat 670 [8] Kot ¥PNGIUOTOIOVV O TOADTAOKOVG UNYAVIGLODS
GLYPOVIGHOV. X€ OVTEC TIC VAOTOWOELS TEPIUEVOVILE DYNAOTEPT 0mOO0GT Kot KOADTEPT
KMUOKOGUOTNTE. O TEPTYPAWOVE TEPIANTTIKA TNV 10E0. GVTOV TMV VAOTOIGEMV.

2.6.1 Ileprypaogn)
Bronson

Avt 1 vhomoinon eival éva relaxed 1oolvyicpévo AVL dévipo mov tpotdbnke oto
[9], eréyxer o péyebog tov Kkpicov TUNHATOS (OAeg o1 Asttovpyieg EVUEPMOELS £O0VV

39

é€va, otabepd KPIoHOo TUNILO) Kot EKUETAALEDETAL TN A0YIKT ToL validation. Mia Agttovp-
vio avalnnong pmopei vo umhokdpel péxpt pio TonTdYXpOoVN Agttovpyio evnUépmong vo
OLOKANPWOEL. Ze TEPIMTO®ON TOVTOYPOVAOV AEITOVPYLOV EVIILEPOONC O AAYOPIOLOG YXPN-
owpomnotel version numbers. Ta version numbers dgiyvouv av ekteAgitol TavTOYpOVA Liol
Aertovpyia eyypoaens. Kdbe kopPoc €xel éva version number, yio va eAéyyetot ov pio
avéyvoon stvor axopa £ykopn.

To d6évtpo avtd avagépetor cov pepkdg external tree. Xto internal dévipa 1 dwa-
Ypaen evog KouPov pe 000 maudid amattel vo fpedel o 61460x0¢ avTOL TOL KOUPOL Yio
V0L TOV OVTIKOTOGTHGEL 6TO OEVTPO. AVTOC 0 AAYOPIOLOG OpTVEL KOl OE S1YPAPEL TOVG €~
omOTEPIKOVS KOUPOLG Spoporoynong 6tav autdg Exetl dvo maudid. Otav Tpaypotonoleito
g&looppomnon 6to dEVTPO, ot un £ykvpot Koot SpopoAdynong mov Exovv Alydtepa amod
00 madid draypdeovral amd to dévipo. H dwaypagn evog koppov pe Ayodtepa amd 600
TOOLYL TPOLYLLOTOTTOLEITOL GUEGO. L€ QTN TNV LAOTTOINGT LILAPYEL 1] 1010 Sopn) KOUP®V Yo
To, QUALN Kol TOVG KOUPOVG dpOLOAOYNONG, £TCL OOTE £vag KOUPOG VA, LETATPETETAL AT
T o pop@er| TNV GAAN Kot 1o avamodo aAldlovtog pHovo Eva medio ot o Tov.

Drachsler

Avto 10 dévipo mapovotdletar 6to [10] ko glvon éva BST internal dévtpo mov e-
eappolet hoykn drdtaén petald tov kopPmv tov. To khedl ya) oyedioon amotele-
SLOTIKOV dEVIP@V avalNTNonG Tov KALAK®VOLVY gival 1 Aettovpyia avalnnong va gival
OPKETA YPYOPT). X€ QLTHV TNV VAoToinom 1 Aoyikn dudTaén Tov dévipov ympiletol amod
™V QLOIKN S1aTaén Kot ot Aettovpyieg avalnTnong LTopovV Vo TPOYmPTICOLY TAVTOYPOVO.
HE AEITOVPYIEG TOV TPOTOTOLOVY TN PLGIKN SIATAEN TOV FEVIPOL YWPLG GLYYPOVIGUO.

H Moy d1dtaén petal&d tov ototyeiov avamaplioTdtol ooy SLodoyIKe e T UATO.
INo mapaderypo, N Aoykn owdtaén tov otoeiov 1 < 3 < 5 < 7 < 9 givar ta dado-
xKa Swethpata (—oo, 1), (1,3), (3,5), (5,7), (7,9), (9, +00). "Eva ototyeio avikel 6to
S€VTpO av Kot HOVO av Eival To Akpo £vOG S10GTIHOTOG, OPOPETIKE OEV OVIKEL GTO OEV-
tpo. Ta SlaoTApaTe XPNCLOTOIOVVTOL VIO VO OTTOVTHOOVY GE AELTovpyieg avalntnong
ypryopa. Kabe kopPog mepiéyet éva deiktn ato enduevo otn Aoyikn dudtaén koppo kot
€va, 0glkTn oTOV TPONYOVREVO 6T AoYikT dtdtaln koufo. Qotdco, amarteital cuyypo-
VIGHOG KOl GE 0UTOVG TOVG OgIKTEG, Yo 0vTd vITdpyovy dvo KAewdpata. Eva treeLock
OV TPOSTATEVEL TN PLOIKN d1dTaln Tov dévipov kal éva succLock mov mpootatevet)
Aoy drdtaén tov dévrpov. [éva koppo n, To succLock Tov KOOV N TpooTHTELEL
10 Sidotnua (n, suce(n)).

BST Ticket

Avti 1 viorowon tpotddnke oto [8] kan givan £va lock-based BST dévrpo. Ilpoona-
Ol va peidoet Tov aplfpd TV KAEWOUAT®V TOL AmITOVVTOL 0VE AEITOVPYio EVILEPOONC
Ko kotd ovvénela tov TAn0og Tov cache lines mov petapépovtar. [To ocvykekppuéva, Tpod-
Kewral yio évo external d€vipo mov ypnoonolel version numbers 6Tovg KOpPovg. Avtol
XPMNOLLOTOLOVVTOL Y10l VOL YIVETAL OPYIKA Lol a161050EN d1dGY 1T GTO dEVIPO KOl apyOTEPO.
va avyvevtel mhovo conflict Aoym mapdAAniov Aeitovpyldv evnuépwong otov KOpPo.

40

H amdéktnon tov KASIOMUOTOG KoL 1 EMKVPOTOLGT TOL KOUPBOV TPAYHOTOTOOVVTAL GE
éva povo Papa. Ztig Asttovpyieg evnuépmong vapyel pio didoyion péxpt va Ppedei o
KOATAAANAOG KOUPOG, £TELTO OTTOKTIOVVTOL TO KOTAAANAN KASIOMUOTO KOl EKTEAEITOL 1 €-
VMUEP®OT). AV 1] ATOKTNON KAEWBOUATOV ATOTOYEL, CNUALVEL OTL TO Version number Tov
KOpPov xel avéndel amd pion GAAN TOLTOYPOVT] EVIILEPW®OT KOl 1) AEITOVPYIN TPEMEL VAL
Eavapyioet.

Aravind

To ovykekpyiévo external dévtpo [11] elvan évog lock-free akydpiBpog mov ypnoipo-
motel 000 atopkég evTolég Yo read kot write, Tnv compare-and-swap (CAS) kot v bit-
test-and-set (BST). Mg 6Komd va meplopiotodV 01 GLYKPOVGELS LETAED TMV AEITOLPYIDV €-
VMUEP®ONG VIAPYOVY KATOlEG PerTioTomomoels. O cuyKeEKPIUEVOG aAyOPIOLOC O LELDVEL
TIG OKUEC GOV Sy POUUEVES KOl OYL TOVG KOUPOVG, OE ¥PNOILOTOIEL EMTAEOV AVTIKEILEVDL
Y10l TO GUVTOVIGHO TOV TUPIAANA®V AEITOVPYIOV KOl EMLTPETEL T SLOYPOPT] TOAAATADY
KAEWOIDV o€ éva Pripa.

e avtifeon e TIG TPONYOVUEVEG VAOTOWGELS GVTOG O OAYOPIOLOG CTUEIDVEL TIG O
KUéG m¢ dtoypappéves. Kabe Aettovpyia evnuépmong yivetatl o "d1okt)Ng" KATOIwV o-
KUOV 0T1G omoieg mpémetl va dovAéyel. Kabe axpn cuvdéetl 600 KOUBOLS Kot GUEIDVOVTOG
pio akpn o¢ Staypappévn umopei gite va £xovv dtaypa@et kat ot 5o KOpuPot mov cuvoé-
€1 gite 0 kOpPog otov omoio kataAnyel. o va dtay®pProTodv aVTEG 01 3DO TEPMTMOGCELS,
OTov Kot o1 900 KOpPot Exovv dtaypagel 1 akun onueiwvetor cav flagged, evd dtav €xel
dwypapel Lovo 0 KoUPOG 6TOV 0TOI0V KATAANYEL 1] OKUT, TOTE 1 OKUN CNUEUDVETOL GOV
tagged.

Téhog, o adyopBuoc ypnolponotel kot pio fonntiky otpatnykn mov extereitol po-
VO OTIG AglTovpyieg dlaypagnc. Agv vdpyel BondONTIKN oTPATNYIKN Yo TIG AEITOLPYiEg
gloay®yng ywoti elodyeton emmAéov overhead. H BonOnrtikn otpatnyky exteheiton o€ pia
Aettovpyia slcaymyng 0tov avakaivgbei 6t akun ond n—parent oto n—leaf kopfo
éxel onuelndel cov flagged M tagged. Avtd onuaivel 0Tt vVGpyeL pion ToLTOYPOVN ALL-
Tovpyia dtrypaPng Tov Tpoomadel va daypdyet Tov kKOUPo n—parent amd To 6EvTpo. g
amotélecpa 1 Aettovpyia ewoaywyng fondaet Tnv Tawtdypovn doypaer| vo oOAoKANpmOEl
KoL eEmavekKvel amo v apyn. Opoiwg, pio Asttovpyia dtaypagnc evog kOpPBov pmopel va
avLYVELOEL OTL VITAPYEL pio GAAN TowTdYpOVT darypaon|, Tnv omoia B fonbnocel va olo-
KAnpwbel ko énerta Ba emavekkiviioel Eava amd) edon avalnTnong.

Ellen

H tehevtaio viomoinon mapovoidletor oto [12] kou meprypdost £va non-blocking
external dvadwd dévipo avalntnong. Eivar pia lock-free exdoyr amdod dvaducod dév-
tpov avalnmong (BST) nov epappodlet non-blocking cuyypovioud ypnoiponoidvioag my
atoptk| evtoAn compare-and-swap (CAS) otig Asttovpyieg evnpépwonc. Xtovg kOUovg
TOV 0EVTIPOV LTIAPYEL £val TTEdio OV avapEpTal cav "state”, yio vo, aviyveDOVTaL TAVTO-
ypoves Asrtovpyieg evnuépmong. To medio avutd oNUEIDVETOL avAAloYa [E TN Agttovpyia

41

gvnuépwong (eloaywyn i dtoypan)) Tov evepyel otov KOpPo dtav avtiv Eekivdel va ekte-
Aeitar. MOAG vt Tedeudoel to medio "state” onueidvetat g "clean". Gétovtag ovtd T0
medio etvat oav va KAEWOMVOLLLE TOVS OEIKTEG TPOG TOL TAd1d TOV KOO, XTI¢ Aettovpyieg
oV aALALOVV TOVG delkTES Yo TO TodLd EVOG KOUPoV Tpémet vo. TifeTan To medio "state”
KatdAAnia. Tlapddetypa, n eloaywyn eyyvdtol 6Tt 8o olokANpwOel 6TV ATOKTAGEL TO
KAeld@pa gvog kOpPov, dnradn BEcel katdAinio To medio "state".

Yg autnVv TNV VAOTOINoT LILAPYEL Emiong nio fondnTiky otpatnykn. o cvykekpi-
péva, pio Aettovpyio fonddet pio AN vo tedeidoet pdvo 6tav 1 GAAN Topepmodilel
S1K1d TG Tpdodo. E@dcov 1 Aettovpyia avalntnong dev TPOTOTOLEL T1 SO TOL OEVTIPOU,
d¢ umhokapetar woté kot o Pfondaet kapio GAAN Asttovpyia. Qotdc0, pia Asttovpyia &-
VNUEPWOONG TOV TpooTabel va KAEWmoEL Evav kKOpPo mov eivar NON KA wUEVOS amd i
GAAN Agrtovpyio fonBdet Ty GAAN Aettovpyia Tov KAEIdWOE TPMTN TOV KOUPO VO OAOKAN-
poBel Kot petd ocvveyilel otig dkég Tig aAAayég oto dévipo. [lpokepévou va emtevybel
avt 1 Pondntikny otpotnyikn xpnowonoteitat éva véo avtikeipevo, Info record. Otav
pia Aettovpyia KAEWDVEL Evav KOUPO amodnKevEL apKETES TANPOPOPIEC GTO AVTIKEILEVO
Info record, éto1 dote 1 GAAN Aertovpyeio ToL {NTdEL TO 1510 KAEW®UO VO, EXEL OPKETEG
mAnpoopieg yia va) Pondnoet va ohokAnpmdBel. QoTt6G60, 1 ¥PNoT AVTOD TOV ETITAEOV
avtikelévov Info record) mpocbiter emmiéov k6o dayeipiong TG dopng.

2.6.2 Asmropépereg viomoinong

AVTEC 01 TEVTE VAOTOMGELS TOADTAOK®Y dévTpev avalntnong viomomonkav cg C
YAOGGA TPOYPOUUUATIGHOD 6TO TANiG10 TG dnpocicvong [8]. O kdmdukag gival dtobéciiog
otV wtocehida http://Ipd.epfl.ch/site/ascylib.

2.7 A&wroynon

2.7.1 XopokTnproTikd cveTnatos aSloAdynong

To ovotnua 6T0 0Toi0 0EIOAOYGULLE TIC VAOTOIGELS TOV TOPOVCIAGTNKAY TV Uid
T oteoppo 60 Toprveov, NUMA apylteKTOVIKT LE TO TOPUKAT® YOUPUKTNPIOTIKA.

* 4 sockets (Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz)
* 15 mopnveg avé socket (30 vipata pe hyperthreading)

« 32KB L1 data cache ava mopiva

32KB L1 instruction cache avé mopiva

* 256KB L2 cache avé mopiva

38MB L3 cache ava socket

1TB RAM

42

2.7.2 XopoKTnproTiKa EKTELEONG

Mo v a&oAdynon T@v vAOTomcE®VY, EKTEAODIE TVYOLEC AELTOVPYIES V1o O10POPETL-
KO op1Opd vudtov, S1opopeTiKd e0pn KAEWIDOV Kot StapopeTIKES avaroyieg avalntnong,
gloaymyng Kot dtoypaeng. Il cvykexpuéva:

» Ké0e software vijpa "kopertomveton” oe hardware vipo KotdAAnia, €161 OOTE va
EKUETAALELTOVUE TNV TOMKOTNTA avapesa ota sockets. I'o Tapddetypa, oty me-
pintoon pucpod apBpod vnpdtov "kapertodvovpe” 6Aa To vijoTo oto 1010 socket
v va, drapotpalovtar v 0w L3 cache. Emiong, mpdta ypnoipomolovpe 6A0VG
TOVG S100EGILOVG PLGIKOVG TVPHVES Kot £TELTa Xprolomolovpe hyperthreading.

* H dibpketo tng extédeong eivar 5 devteporenta, Héca oty omoia Kabe vipa exte-
Ael Tuyaieg Aettovpyleg ot doun, COLPOVA LLE TNV AVAAOYIi0 AELTOVPYLDY OV EXEL
emheyOel.

* To e0pog KAewimv mov emiéyetal Kabopilel To péyetog tov dévipov. A&loloyn-
GOLE TIC VAOTOMOELS TV OEVTIpOV avalntnong yw gopn kiewiov 2K, 32K and
2000000. Xtnv apyn Kabe eKTELECTG TO OEVTPO OPYIKOTOLEITOL e TO GO TAN00G
KOUP®V pe KA1 amd To g0pog mov Exel emeyBel. Avtd gyyvdral OTL KOTA pE-
60 Opo 01 [GEC Aettovpyieg Ba givatl emtTuyelc Kot 0TL 0 ¥POVOG eKTEAEOTC KAOE
Agitovpyiag Ba mapapével mepinov id10g katd ™ didpkela 6ANG g ektéleong (To
TOGOGTO TV EICAYOYDV KOl TO SLypopdY 61N Soun €ival 1010, £T61 OOTE TO SEVTPO
va €xel mepimov TV id1a Lopen o€ OAN TNV eKTEAEDT)).

* XPNOOTOIOVUE TPELS SUPOPETIKES OvOAOYIES Yo Tig Agttovpyieg, 80-10-10 50-
25-25 20-40-40, pe 80%, 50% kot 20% 10 TOGOGTO AgLTOLPYIOV avalfTNoNG OTN
dopn, VA TO VTOAOUTO TOGOGTO JlApOPALETaL G0 o AgtToVPYiEg EIGUYMYNG KoL

dloypagng otn doun.

2.7.3 Amoteléopato
ATAOTKEG VAOTOMGELG TOPALANA®V OEVTPOV avalTNONS

Ot ekdveg 2.7, 2.8, 2.9 divouv TV amdO00T TOV EKTEAEGEDV Y10 TIG ATAOTKEG VAOTOL-
NOELG TAPAAANA®V SEVTPOV avalNTNONG OTNY TAATQOPLLO TOV TAPOVGLAGTNKE TPOTYOL-
pévas. Ta dévrpa pe evpog kAeWIDV 2K dev KAMPOK®VOUV Kot 1 ardS00T] TOVG PELDVETOL
0G0 0 aPONOG TOV VILATOV aVEAVETAL. XTO LUKPA 0EVTpa epLPavilovTot TOAAEG GUYKPOD-
oe1g, OMAadn TpooPdoelg oTovg 1610V¢ KOUPOVS amd SIUPOPETIKA VAULATH KOl MG OTOTE-
Aecpo vITapyEL VYNAN cvuEopnon. Kabog to evpog tov kKiedidv enekteivetal (32K kat
2000000), ot fine-grained VAOTOMGELS KALOKOVOUV LEYPL EVOL KPS aplOpd vudTov pe-
T a6 Tov omoio 1) amddoon Katappéel. 1o cuykekpéva, KALOK®VOLY LéyPt 8 vijpaTa.
[Méave and 15 vipata, n arddoon peidverarl onpoavtikd eEontiog g NUMA opyttektovi-
KNG, apov Ta vipota TAEoV "Kappiotdvovtal' o€ Tdve and éva socket. OndTe OtV g~
oaviotel £va cache miss mpémetl va petapepet pia cache line amd to éva socket oto dAlo
KoL ovTod Exel HeEYEAo K00T0C. AvTiBétmc, ol coarse-grained VAOTOMGELS dEV KAMUOKOVOLY

43

KaBO6A 0V, yloti dev mapéyovv Topaiinopnd. H doun mpootatevetal amd Eva Lovadiko
KoBoAKO KAEId MO KOl G AmToTEAEG L0 OAES 0L TPOGPACEIS GTO BEVTPO GEPLOTOLOVVTOL.

2K keys (80-10-10) 2K keys (50-25-25)
. K () K

N 4

\, \

AS\N
Ny

1 2 4 8 15 30 45 60 120 1 2 4 8 15 30 45 60 120
Number of threads Number of threads

As
A=

Throughput (Mops/sec)
Throughput (Mops/sec)
>

2K keys (20-40-40)

Throughput (Mops/sec)
© o ko ok 90N N W ow &
> i

1 2 4 8 15 30 45 60 120
Number of threads

Yympa 2.7: H amw6d00om anmAoik®v TapaAANA®Y SLadik®dV 0EVTP®YV Yo e0pOg KAEL-
dwwv 2K kat yia 3 dtopopeTikég avaroyieg AELTovpYLDV.

Avapeoa otig fine-grained viomomoeig n RBT external exdoyn €xet tn peyardtepn
amod0oT. Avtd ogeiletal oto 0TL TpoKETOL Yo Evo height-balance 6évipo 6e cOKypiom
pe t BST fine-grained vAomoinon kot ekTeLel YpnyopOTEPES S1AYPOUPES GUYKPITIKA LLE TN
RBT internal exdoyr. H diaypagn oto internal fine-grained RBT dévtpo amattel amorhet-
otikn tpdécsPaocm g kdbe KOUPO PETAED 0LTOV TOL TPOKELTOL VO Sy PaPEL Kot TOL d1ddo-
%00 Tov (successor). 'Etot, 0 k6pupog mov mpodKeiTal va dtorypapel Tapapével KAESOUEVOG
pnéxprva Bpebet o d1adoyog Tov. Me avtdv Tov TpoOTo 6X0 TO VITHSEVTPO e pila Tov KOpPo
OV TPOKELTAL VO LAY POPEL TOPAUEVEL KAEWOMUEVO KOl KAVEVO VILLOL O€ UTOPEL VA, TPOY®-
pNoEL o€ aVTO. AVTO £xEL G ATOTEAEG A OL SLALYPAPES VO, EIVaL TTLO YPTYOpeS 0T, external
tree o omoio EUTAEKOVV UOVO TOVG KOUPBOVC-@OAAN. ATo TNV GAAN, oTIg coarse-grained
vAomomoelg 1 internal £kdoyr| TOL dEVTPOV £xEL KOAVTEPT 0mdd00T 0d TV external. Xta
internal 0évtpa n Asttovpyio avalnTnong etvat ypnyopotepN, ol LITOPEL VoL TEPLOTIOTEL
o€ éva pkpo Pabog dévipov, evd ota external n Aettovpyio teppatiletar 6Tav ETAGOLE
o€ éva UAAO.

Y116 top-down vAomomoelg kabdg dacyilovpe Eva dévtpo amd T pila 6T0 KATAAANAO
POAAO, EKTELOVVTOL KO 0L KATAAANAEG TPOTOTOUOELS EK TMV TPOTEP®V YL0L VO, EYYVATOL OTL
70 dévtpo Ba givar balanced ywpig va ypeiaoctetl bottom-up Sidoyiorn. Avti N anactddoén
@Oon TV top-down TPoceyyicE®V £YEL G AMOTELECLLO VO, TPOYLATOTOLOVVTOL TEPLGGO-
TEPEG TPOTOTMOMGELS KOL TEPIGTPOPEG Yo KAOE Aettovpyio cuYKpLTIKG e TV bottom-up
vAomowon oL eKTEAEl HOVO TIG amapaitntes. g cvvémeln, ol top-down mpoceyyicelg

44

32K keys (80-10-10) 32K keys (50-25-25)

% ~ k

3. > .t

o-a 9 << 2
v

—
2. \A |A A rbt-bu-cg-ext-rec-lock
2 N

A
. <},\ \z N

«

1.
0. 0.

1 2 4 8 15 30 45 60 120 1 2 4 8 15 30 45 60 120
Number of threads Number of threads

Throughput (Mops/sec)
Throughput (Mops/sec)

32K keys (20-40-40)

~

I
>

y
A

\«%

1 2 4 8 15 30 45 60 120
Number of threads

Throughput (Mops/sec)

o

0.

Yympoa 2.8: H anddoon andloikdv TapaAAnAoy SLadik®dV SEVIP®V Yo €0Pog KAEL-
owov 32K kot yia 3 d10popeTIKES 0VaA0YIEG AEITTOVPYLDV.

£YOUV XEPOTEPES ATOOOGELG OTIG GEIPLUKES EKTELETELS (coarse-grained) kot TpokaAovV &-
mmAéov overhead. Xto andteréopatd pog ol bottom-up coarse-grained VAOTOMGELS £xoVV
vynAdTEPT amddoon and Tig top-down, Kabdg To K6GTOG va Sracyicovpe dV0 POPES TO [o-
vomdtt Kdvovtag Tig amaipaitnteg LOVO TPOmOTO|GELS Eivarl LiKpOTEPO amd pio d1doyion
LLOVOTLOTION TTOV EKTEAEL EK TV TPOTEPDV TPOTOTOINGELG GTO SEVIPO YL0L VO, U] YPELNCTEL
bottom-up dtdoyion. Tumikd, TEPIEGOTEPEG UALUYEG-TPOTOTOIGELG EKTEAOVVTAL GTIG tOp-
down mpoceyyicels.

Yvykpivovtag tnv bottom-up enavaAinmrtikn (iterative) pe v avadpopukn (recursive)
VAOTOINGT, 1 EMOVAANTTIKY] VAOTOINOT £YEL KAADTEPT AMOO0CT. X€ aVTO TO OEVIPO M
bottom-up Sidoyion tepparileton dtav dev amatteital TAéov rebalancing, evd oTic ava-
dpoukég viomomoelg n bottom-up @daon teppatiletar otn pila tov dévipov. 'Etot, ta
avadpokd 6évipa dacyilovv To povomdtt oTov KatdAinio koppog axpiPdg 6vo @o-
PEC EKTEADVTOG TIG KATAAANAEG TPOTOTOMGELS 6TO 0évipo. EmmAéov, vmapyetl emmAéov
overhead mov oyetiletal e TIg avadpopkés KANoels e€attiog Tng Poptig xpnong tng otoi-
Bog xatd TV avadpop.

TéAog, TPEMEL VAL ONUELOGOVUE OTL GTO, LIKPA OEVTPA 1 0TdO00oN TV coarse-grained
VAOTOMGEWDY PEIDOVETOL CNUAVTIKG KOOGS 0 ap1tBpdc Tov vty avéavetat, o€ avtifeon
LLE TOL LEYAADTEPO HEVTPA, OOV 1] OTAO0CT TAPAUEVEL TEPITOV D10 Y10 TOVG SLUPOPETIKOVG
apOpovg yuatov. Avtd cvpfaivel yloti ot Aeltovpyieg ota kpd 0EVTpa S1apKovV TOAD
Alyo ypdvo kat 660 peYaAnTEPOG ival 0 aplBudc TV VIULATOV TOGO TEPIGSOTEPO VILLOTO
UTAOKAPOLVTOL Ylo VO EKTEAECTEL piol Ypiiyopn Aettovpyia Tov oTo peyaArdtepa dévTpa
dlopkel TePLocdTEPO. ¢ UMOTEAEGLO, Ol AELTOVPYIEC TOV EKTEAOVVTAL GE Eva 6TAOEPO
¥POVO oTa [uKpd dévTpa gival apkeTd AyOTEPES GTNV TEPITTWOT TOALUTADY VNUATOV

45

2M keys (80-10-10) 2M keys (50-25-25)
pex

~

Throughput (Mops/sec)
° - M
£ /v(/ »
Throughput (Mops/sec)
AR
5 j: i />
ﬁ

8 30 45 60 120
Number of threads

°

w

5
°

8 45 60 120 1 2 4
Number of threads

2M keys (20-40-40)

ry

A\,

\

et b

0.

Throughput (Mops/sec)

°

1 2 4 8 15 30 45 60 120
Number of threads

Yympa 2.9: H am6d00m anAoik®v TapaAANA®Y SVadIK®V 0EVIP®YV Yo e0pOG KAEL-
v 2000000 ko Yo 3 S10pOPETIKES OVOAOYIEG AEITOVPYLDV.

GLYKPLTIKG [LE EVOL VIO

[MoAdmhokeg vAOTOMGELS TOPALANAOV FEVTPOV AVALTNONG

Ta anoteréopata (Eucoveg 2.10, 2.11, 2.12) g a&loloynong pog eivor apketd kovtd
pe avtd mov mapovoidotnkay oto [8]. EEmpdvtac to BST Ticket dévtpo avalnnong,
to Aravind mwopdAAnio 0évtpo avalnnong £xel YeVIKA T KaAvTepPn amddoon. ALt 1M
lock-free vAomoinomn ypnoylomotel 300 ATOUIKES EVTOAEG KaTd HéGo Opo Yo kb update
Aertovpyia Ko 1 omoio gival Kovtd og Eva TapaAAnAo dEvpo avaltong xwpic cuyypo-
VIoUO GYETIKA LE TOV aplBpd Tmv store mov yivovtat. [Tio cvykekpiuéva, ovtd T0 dEVTIPO
Tapovotdlet xaunio mapdOvpo cupuEdpNoNg Yol Aettovpyel o€ eninedo aKpmV (01 AKHEG
gmonpaivovtol g dtaypapévec). Aghtepov, avtd To SEVIPO SEGUEVEL MYOTEPO OVTIKEL-
peva Kot eKTeLel AyOTEPEG ATOUIKEG EVIOAES GE QLTA OVOL AELTOVPYICL GUYKPITIKEL [LE TOVG
vrdlomovg aAyopiBuove. Emiong o€ ypnoylomotlel eEMmALOV AVTIIKEILEVA Y10 TO GUYYPO-
VIGUO T@V Agrtovpyimv (0mwg .y 1 Info record dour otov adyopiBpo Ellen). ExteAeiton
pio BondNTIKN GTPOTNYIKN Yo TIG S1rypopES Kot Oev vILdpyel BondnTik) GTpATNYIKY Yo
T1G ewoaywyEg (insertions). TéAog, ToAAOTAG POALQ UTOPOVY VA SlarypapovV 6€ Eva P
Tov aAyopifuov.

Yvykpivovtag to BST Ticket mapdAinio dévipo avalntnong pe to Aravind dévrpo
avalfTnong, autd EOuV TAPOUOLN CUUTEPLPOPA KOOGS Kot To 6V0 gival TOAD KoVt o€
éva, acvyypovo dévtpo avalntong. To BST Ticket dévipo mapovoidlel Alyo kaddtepn
amodoon amd 1o Aravind d€vipo (Ewkdvec 2.10 kan 2.11 yia pukpdtepa dEvIpa), apov avtd
ektelel MydTEpEG ATOMKEG EVTOAEG ava Acttovpyia evnuépwone. Extelel 600 atopikég

46

2K keys (80-10-10) 2K keys (50-25-25)
% Ib-bst_bronson / 0 ?
> Ib-bst-drachsler
e—e |b-bst_tk
+—+ |If-bst-aravind a
A A If-bst_ellen /./)
a
A /
) T ! g
: %;//

45 60 120 1 2 4

N
&
=]

N
S
s

Throughput (Mops/sec)

Throughput (Mops/sec)
\x >

1 2 4 8 15 30
Number of threads

2K keys (20-40-40)

. /
/
A7
£ S —

N = /

e

1 2 4 8 15 30 45 60 120
Number of threads

Yympoa 2.10: H andooomn 1@V TOAOTOAOK®V TAPAAANA®Y SLOSIKOV SEVIP®V Y
€0pog KA1V 2K kat yio 3 S1opopeTikég avaloyieg AELTOVPYLOV.

EVTOAEG ava SLypapn}, v To Aravind dévtpo avaltnong eKTeAel TPELG OTOUIKEG EVTOAES
o1t dypagn (Kot ta, OO0 EKTEAOVV 0 OTOULKT EVIOAY avd el0ay®Yn).

Ta vrorowma tpia dévipa (Bronson, Drachsler, Ellen) éxovv t yewpdtepn anddoon
yio OAo T 0P KAEWLDV. 'Exouv Mo moAdmokovg unyovicpovg cvyypovicpov. To Ellen
TapAAANA0 SLASIKO SEVTPO avalnTnomng xpnolponotet pio fondnTikn oTpaTNYIKn KOl Yo
TNV E1G0YMYN KO Y10 TH Oypoen Y10l To OTOKElR IOV piak GAAT TawTd)povn Asttovpyio
0élerva tportonomoetl. H Bondntikn otpotnyikn eivat yevikd akpifn Kot amottel emmiéov
oLYYpovIcud mov pocbétel emmAéov overhead ava Aettovpyia. EmmAéov, avti 1 vho-
moinon ypnoponotet emmAéov avtikéeva (Info record) Ta omoia avédvovy tov apOpd
TV stores avd Aettovpyia kot Tov apfpd v cache lines wov petapépovratl. To devtepo
dévtpo, Draschler 6évtpo avalntnong Paciletol oTo KAEWOOUOTO Kot 0TOKTA Vo LEYAAO0
aplOpd Kiewopdtov yio kabe Aettovyio evnuépmong kdtt Tov teplopilel TNV amdd00.
"Exet kaAbtepn amdS061 6TIG avaAlOYiEG AEITOVPYLOV OTTOL TO TOGOGTO avalNTHoE®V Eival
LLEYOADTEPO KOl TO KOPLO TAEOVEKTNLLOL OVTNG TG VAOTOINGTG £ivon 0T pmopet va Ppedet o
316300 TOL KOUPOL TTOL TPHKELTOL VoL Sloypaget pe Eva povo Prpa (O(1)) pe T Pordea
TOV successor dgiktn g doung tov kopPov. Téhog, To Bronson mopdAinio svodikod dév-
Tpo avalnmong epneavilel kaavtepn anddoon amod To dvo mponyovpeva (Ellen, Draschler)
o10 meplocdtepa melpdpatd pog (Ewoveg 2.11 ko 2.12) enedn givar icolvyicuévo. Eivor
éva relaxed AVL 6évipo. Qot660, ¥pnoionolel opoing Evo moAOTAOKO UNYOVIoUO KAEL-
dopdtov kot v teyvikn hand-over-hand kot to vipota PTAOKAPOVTOL Y10 OPKETH BPO
nepuévovtag pia Aettovpyia evnuépwong vo, oAokANpwbel. Qg amotélecpa, 1 amdd00n
TOV givol TOAD YOUNAN Yo Kpa dEVTPA OOV VIEAPYEL VYNAT cupeopnon (Ewkdva 2.10).

Onwg e&nyeital oto [8] M cuvdeelo pviung eivol 0 mo TEPLOPIGTIKOG TAPAYOVTOG

47

32K keys (80-10-10)

32K keys (50-25-25)

N
3
3

G
=]

>

»—x |b-bst_bronson /
> Ib-bst-drachsler

®—e |b-bst_tk
+—+ [f-bst-aravind
A A If-bst_ellen

Throughput (Mops/sec)

//

A

Throughput (Mops/sec)

A

A

2 4 8 15 30 45 60 120
Number of threads

32K keys (20-40-40)

S

3
S

2]

Throughput (Mops/sec)

1 2 4 8 15 30 45 60 120

Number of threads

2 4 8 15 30 45 60 120
Number of threads

Yympa 2.11: H andooon t@v TOAOTOAOK®V TAPAAANA®Y SLOSIKOV dEVIPM®V Yo
€0pog KA1V 32K Kot Yo 3 S10popETIKES OVAAOYIEC AEITOVPYIDV.

2M keys (80-10-10)

2M keys (50-25-25)

% |b-bst_bronson
> Ib-bst-drachsler i

o—e |b-bst_tk
+—+ If-bst-aravind

A A If-bst_ellen

/

Y/q

>

Throughput (Mops/sec)

Y/
4

Throughput (Mops/sec)

e

1 2 4 15 30 45 60 120
Number of threads

2M keys (20-40-40)

>

Throughput (Mops/sec)

1 2 4 8 15 30 45 60 120
Number of threads

2 4 8 15 30 45 60 120
Number of threads

Yympa 2.12: H andooon t@v TOAOTOAOK®V TAPAAANA®Y SLOSIKOV SEVIPM®V Yo
e0pog KAV 2000000 kot Yo 3 S10poPETIKES OVOAOYIEC AEITOVPYIDV.

G6TOVG TAPAAANAOVS ahyopiBpovg avalTnoNng 0T TOALTHPT VA GLGTH AT, KABMS 0 0p1D-
oG v petapopmv tv cache lines avéavetat kKabmg o aptBpdc Tov ynudtov avédvetal.
Qg €K TOUTOV, 01 TEPLOTOTEPOL TAPAAANAOL adlyOpOLOL déVTp®VY avalntnong Tpooctabdovv

48

VO EAOYLOTOTOGOLY TIC LeTapopég cache lines mov amaitobvtal o pio Asttovpyio KATL TO
omoio gival dpeca cuvoedeEVO e ToV aplBpd TV stores ot dopy. Ta stores TpokaAovv
invalidation twv cache lines kol cOUE®VA e TO TPOTOKOALO GUVAPELNG TO OTTOTELECLLOL
gtvo avénon tov cache misses. O yevikog Kovovag givar 0TL 660 Aydtepa cache misses
poKaAel 0 aAyOPIOLOC, TOGO KAAVTEPO KAUOKOVEL.

Téhoc, ta amoteléopota pog amodetkvoovy 0Tt ot lock-based kot ot lock-free aiyo-
pBuot ivarl apkeTd Kovtd otny omddoot, dALL 6TV TEPITTOST VYNAOD aptBpov vipd-
TV (VYNAN copeopnon) ot lock-free VAOTOMGEIC TAPEXOVY KAADTEPT) KAMUOKOGIUOTNTO.
MdaMota 660 0 apBudg TV stores piog emiTvyovg Asttovpyiog TpEnet vo ivar o kovtd
o€ £vay 0oVYYPOVOo, GePlako oAyopiBuo. Oco mo kovid 6to oelplokd adyopduo gival
pio vAomoinon téco vyNAOTEPN amddoon EXEL.

49

Kepdiawo 3

Transactional Memory

3.1 Transactional Memory (TM)

Metafaivoviog amd To LOVOETEEEPYAOTIKG GUGTILLOTO GTO TOAVENEEEPYOUOTIKA OT)-
povpyndnke 1 avaykn yw gopeor non-blocking unyovicpudv mov Ba Edvay KoAVTEPT
KMUOKOGIUOTNTO Kot O amAomotohco Tov TOPAAANAO TPOYPAUUOTIGHS. AVTO 001 YN-
o€ oto Transactional Memory (TM). To @wo onpavtikd TAeovEKTUG TOV gival OTL dev
VIAPYOLV KAEODUOTO Kot OEV 001 YOVAOTE GE ad1EE0dA.

Me 7o transactional memory £va chvolo evtordv load Kot store ekTeAoOVVTOL LE OTO-
UIKO TpOTO. XOVOETEG EVTOAES UTOPOVV VO EKTELOVVTOL TAVTOYPOVO. GE ATOUOVAOCT] OO
TIG AAAEG Ko glte VoL oAoKANPp®OOVV gite dyl, Omwg pia docoinyio. Ot TPOYPAUUOTIOTEG
glvan gowcelopévor pe avtv Vv texvoroyia omd Tig faoelg dedopévav. H docolnyia
glval pio povada epyaciog EKTEAEITOL ATOUIKA.

H 18¢a micw amd to transactional memory givai 6T1 6V VILAPYEL AVAYKT GLYXPOVICLOD
OAAG TO GVOTNUO UTOPEL VO, aviyveEDTEL OTL i GOYKPOLOT XL ELPAVIOTEL eEULTIOG T™NG
TOPOIAANANG EKTELECT|G EPYACIDV GE TOAAUTAOVG TupHveS. Mia chykpovon cupPaivel
OTav dV0 docoANYieC ekTeAODV pia Aettovpyia oty id1a Béon uvAung. Yadpyovv 500
TOTOL GUKYPOVGEWV:

1. Mia docornyia ypaoet o€ pia B€om pvnung oty omoia pio GAAN daPdlern ypaget,
emiong.

2. Mia docolnyia dwafadet pio 0Eon pviung oty omoia pio GAAN EKTEAEL Ol EYYPOL-
.

Av dev aviyvevBohv cuyKpovsELg KOTA TN dLdpKELd TG docoinyiag, To TM cvotnua
npocmofel vo KOTAGTNOEL LOVILA TO OTOTEAECUOTO TNG SOGOANYING KO VO, EVIUEPDGEL
OAOVG TOVG EMeEePYUOTES Y10, TIG AAAAYEG TNG docoinyiag. OAeg ot adiayég yivovtal o-
POTEG Kot HOVIHEG. AvTd givor éva transactional commit. Awagopetucd, av aviyvevfovv
GLYKPOVCELS KOTA TN dtdpkela eKTELEOTG TG docoAnyiag to TM cdotnua avoipel v
TPEYOVGO OOGOANid, ATOPPITTEL OAEC TIC UAAAYEC TTOV EKOVE KOl ETAVOPEPEL TO VTN
GTNV aPYIKN TOV KATACTOGN Gav 11 S0coANYia va punv giye apyicel moté. Avtd sivon va

51

transactional abort. H toydtnra pe v omoia aviyvebovtal o1 GUYKPOVGELS KOl EKTE-
Aovvtol To commits/aborts gival 0 TO TEPLOPIGTIKOS TAPAYOVTOS OTNV 0ddocn Tov TM
GUGTNUATOG.

To TM ocbHomua yopiletar o€ Tpelg kotnyopieg, o Software Transactional Memory
(STM), 1o Hardware Transactional Memory (HTM) kot to Hybrid Transactional Memory.

3.1.1 Software Transactional Memory (STM)

To software transactional memory vAomolgiton amoKAEISTIKA o€ eminedo software.
Agv vrapyel n xpnomn hardware vAkob 6NV aviyvevorn cuykpoOce®Y 1| 6TV EKTEAEDT
commit/abort. Mmopei va viomomOei oav lock-free adyopiOpog 1 va xpnoipomotoet KAEL-
dmpoto kot givor pio software fiAodnknm. Kdanoleg STM viomomoeig eivar: TiniSTM
(C), STMNet (C#), CL-STM (Common Lisp), STM Library (Haskell), Deuce, DSTM2
(Java), ScalaSTM (Scala). Ta kOplo TAEOVEKTHUATA TOV gival OTL UTOPEL VOl (PTCLLOTOL-
n0ei o€ omoladnmoTE TAATEOP L (GVOTNHE), POV dE ¥peldleTal LTOGTHPIEN OO TO VAIKO,
EMTPENEL TNV VAOTOINGT] TOAVTAOK®V olyopifumv kot pmopel va tpomonom el e0KoAw.
Qo1660, EMEdN Elvarl LAOTOMUEVO OMOKAEISTIKG o€ software eivat oyeTikd apyo Kot [-
Kkpn anddoon. H aviyvevon cuykpodoewmy Kol 1) EX0VAPOPE TOL GUGTHUATOG GTNV OPYIKY
TOV KOTAGTAOT 6TV MEPINT®OTY transactional abort glvan damavnpéc kat ypovoPopeg.

3.1.2 Hardware Transactional Memory (HTM)

To hardware transactional memory npotdfnke wg Peitioon tov STM. H vioroinon
tov HTM yiveton anoxieioticd 6to vaAko (hardware). H aviyvevon tov cuykpodcemv
Kol eKTEAEOT TOV transactional commit/abort ekTeAOVVTOL GTO VAIKS. XTOY0G TOL €lvail 1
peimon Tov xpovov He Tov 0moio EMPAPOVETOL TO GUOTILO KOTA TV ekTédeon Tov TM.

Av kot 1o HTM d¢gv givai 1600 ypovoPopo 66o 10 STM, cuveyilel va tpocBétel Ka-
TO10 KOGTOG OTNV EKTEAEST] TG docoANYiag e0KE 6TV TEPITTOOT SL0dOYIKOV aborts.
To peyaAdtepo OUMG LELOVEKTNLLO EIVOL OL TTEPLOPIGLLEVOL TOPOL TOL VALKOD TOV UTOPEL VAL
odnynoovv o advvapio ektéleons g docoinyiog. [a mapdderypa, To péyebog g do-
coyiag mepropileton amd to péyebog e pvnung. ‘Emiong, évag dAlog meplopiopog eivat
N XPNOM ENEKTACEMV 6TO GVLVOLO TV EvTOA®Y Tov HTM. O kx®@dikag Tov TpoypaupaTog
nmpénel va EavaypdeeTat Yo kGOe dlopopeTikd eneEepyast| mov VooTnPiletl SlupopeTL-
k1 HTM vAomoinom ypnotomoldvog StapopeTIkEg enektdoelg Kabe popd. Télocg, gival
TPOPAVEG OTL £va TPdypoppa wov ypnoiponotet i HTM viormoinon dg umopel va exte-
Aeotel o€ pia mAoteopua mov dev vrrootnpilet HTM.

3.1.3 Hybrid Transactional Memory

Avt) M vAomoinon etvat £vag GuVOLACHOG TV DO TPOTYOVUEVOV LOVIEA®V KOl &-
KUETAAAEVETAL TOL TAEOVEKTHHATO Kol oo To dvo. [mapdderypa, ota [13], [14] éxovv
npotadel hybrid TM mov eivatl vAomomoelg oto software, £T61 ®GTE VAL ¥PNGILOTOL|COVY
to HTM vy1a va avé€noovv v amddoc1 Toug, 0AAG auTéC 01 VAOTOMGELS eE0PpTOVTOL AT

52

to HTM. X0, [15] kot [16] éxovv mpotabel mposEyyioelg o1 0ToieC YPTGLLOTOLOVY TO VAIKO
v va emrayvvouy TM vhomoinoeig mov eléyyovton amd software (hardware accelerated
STMs).

3.2

Baocwka yopaxktnprotikd TM cvetnudtmyv

Awopopetikéc viomomoelg TM cuvdvdlouvv dtapopeTikd yopaktnptotikd. Ta Bactkd
YopakINPoTKd Twv TM vAoromcemv etvat:

3.3

Data versioning: O punyoavioudg pe tov omoio to TM ovotnpa dwyepiletar ta
Writes TV ToVTOYPOVOV dOCOANYIDOV.

— Eager versioning (undo-log based): H pviun evnuepdveral dueco Kot og
nepintmon abort o1 maAMéG TIHES kpatiovvTan o€ €va "undo log".

— Lazy versioning (write-buffer based): Ontég (writes) piog docoinyiog ypd-
povtal og évav buffer kot 6tov 1 6ocGoANyia Kavel commit evipep®VETOL 1|
LVIUN LE QUTES.

Contflict detection: O tpdmog e Tov omoio aviyvevovtol to conflicts.

— Pessimistic detection: Ka0e popd mov yivetar €va load 1 store, yiveton Eley-
x0g Yo conflict.
— Optimistic detection: Ta conflicts e éyyovtar 6tav yivetor To commit.

Conflict resolution: H moAitikn enidvong twv conflict, étav avtd avigvevovral.
Isolation: Otav ta conflicts pmopovv va aviyvevBoldv kot e non-transactional k-
dwa éyovpe strong isolation. ‘Otov conflicts aviyvedovtar poévo og transactional
mode &yovue weak isolation.

Granularity: H povada oty omoia. to TM cvotnpa oviyvedet to conflicts.

Best effort: Avto 10 yopakpiotikd speaviferor povo o€ tpoypotikd HTM ov-
oot Xpnoonolmvtag transactional mode To chotnuo Og umopet va eyyon0el
p060d0. Mia docoAnyio Umopel va amoTuYXEVEL GUVEXDG KOl Y10, (VTO ATOLTEITOL
éva non-transactional evaAloktikod povorndrt (fallback path).

Contflicts: Mia docolnyia pmopei va 0moTOyEL Yo S1APOPOVG AOYOLG,.

Data conflict
Capacity abort
Explicit abort
Other

Intel's Haswell HTM

Xe avtv Vv gvotnta Ba avaivoovpe pio HTM viomoinon mov mpocpépet 1 Intel
péca and Tovg encEepyonotéc Haswell. H Intel 1o 2013 avaxoiveoce 6t1 1 Haswell apyt-
TEKTOVIKT TG O TpoopEpeL vTooTNPIEN VAKOD Yo transactional memory kot o Haswell
€yve o mpatog eneEepyaotng pe HTM.

53

INa v a&lomoinon tov TM 0 TPOYPOUUATIOTAG TPEMEL VA, ETLOTHOIVEL TNV TEPLOYN
TOV KMOKO, TOV TPEMEL VO EKTELETTEL (G transaction. OG0 exteLeiTOl QLTO TO KOUUATL TOV
KdOKo, cav docolnyia, To cvotnue Ppioketon og transactional mode. Xe transactional
mode 6Aeg o1 Béoeig pviung mov {ntdet n docornyia petapépoviat otn puvnun cache kot
KaTNyoplomolovvtol oe 000 GeT, To read ko to write set. To read set amoteleiton amd dheg
T1g Béoelg pvung mov SaPdler To transaction Kot to write amd OAeg eKeiveg OTIG OTOiEg
yYpbipet To transaction.

Kabog ekteleiton n docornyio propet va aviyvevdel pia cvykpovon. Tote n doco-
Inyria amotuyyaver (abort) ko to HTM avoipel Tig aAlayég mTov £Kove Kot ETAVOPEPEL TO
GUGTNHO GTNV OPYLKN TOV KATAGTAoN. Avtd vAoTolElTOL apKETE 0KOAN, KABMG OAEG Ol
aAhayéc g docornyiag amodnkévovtar oty L1D pviun (7/kot oty L2) kot 1 kopia
pviun dev €xel evnuepwBet yio 11g adlayés. Qg amotéleopa, 1o TM axvpdvel OAEG TIC
transactional cache lines tng L1D pviung kot 1 kopto. Lviun Topaptével apetapint. Av
dev aviyvevbel kapio chykpovon 1 docoinyia Kavel commit Kot OAEG Ol TPOTOTOUEVES
transactional cache lines petagépoviol 6Ty KOPLOL LVIAUN.

3.3.1 Transactional Synchronizations Extensions (TSX)

IMa v a&omoinon tov HTM 10 chvoro ¢ apyttextovikng (x86) €xet emektabdel pe
véec eVTIOAEG TTOL divouv TN duvaTdTNTA TEPOUATIGHOV e To HTM. I'a v gukoAdtepn
xpnhon tov HTM mpocpépovtar cuvaptnoels o€ YADooo mpoypoppaticpod C/CH+ mov
ovopalovtar Transactional Synchronization Extensions (TSX). O wpoypoplatiotic £xel
o 01a0gom Tov 00 demapég (software interfaces). H mpotn woeitor Hardware Lock
Elision (HLE) ko 1 de0tepn Restricted Transactional Memory (RTM), mov ivat o oho-
KAnpopévn vionoinor. H RTM omattel amd Tov TpoypapUaTioT] Vo TopEYEL EVOV EVOA-
haxteo kodika (fallback path) oe mepintwon mov 1 eKTéEAESN TOV KPICILOV TUNUATOG GE
transactional mode dev givat emTuynuévn.

H Baowm dwapopd peta&d tov HLE kot tov RTM givar 611 10 Aoyiopikd mov givat
ypappévo ypnoponowwvtog to HLE pmopel va tpééet o éva oot Tov dEV VTOGTN-
piler TSX. Ze avtn Vv mepintmon 1o kpicipo TUipe Oo EKTELESTEL XPTOILOTOIDVTAS O
mevbeiog Eva kKhéWoua. Avtifétms, To Aoyiopkd ov givor ypappévo oe RTM de pmopel
va ekteleotel o€ eneEepyaoth mov dev vmootnpiler TSX. Qotdéco, to RTM mpocpépet
MEPLEGOTEPT EVEMEIN OYETIKA [E TIG EVEPYEIEG TTOV UTOPOVV VO, TPAyLLaTomom ooy pe-
Té amd €va transactional abort. O TPOYPAULOTIOTNE WITOPEL VO OPIGEL TNV EVIOAN Kal TO
KOUUATL KOSIKO oV Oo ekTElETTEL GTNY TIEpimT®on tov abort (fallback path). T va ypn-
corotoovue TSX mpémetl 0 pHeTayA®TTIoTG v vrootnpiletl gee-4.8X (] o cuyypovn
£Kd00T) Kol Vo EI6AYEL 6TOV KOJIKA Tov TN PiAodnkn "immintrin.h" 7 av drabéter mo
molo ékdoon gee, mpénel va gloaybel oto Tpodypappa 1 tpritodnkn "rtm.h".

Hardware Lock Elision (HLE)

To hardware lock elision givait évog e0KoAog TPOTOG VO PNCULOTOLOVLE TNV transactional
memory o€ 10N vrdpyov Kodtka. H Pacwn wWéa tov HLE eivar va agapéoet ta khet-

54

dMUOTO, KOl VO EKTEAEGEL TO KPIGIHO TUNLO G SocoANyia yproiponowmvtag 1o HTM. Av
aviyvevbel Kamola ovyKkpovon 1 docoAnyia amoTvyyavel (abort) Kot To KpiclHo TURUA &-
TOVEKTEAELTAL LLE YPpN O KAEWODHOTOC. AV dgV aviyvevbei kdmola cOyKpovon 1 S0GoANYia
emTuyyavel (commit) Kot ot oAdoyEg yivovton opatég kot povipeg. To HLE givar amho a-
A pag mepropilet emeldn ypnoyomrotovviot kKAswdmpata. To listing 3.1 mapovcidlet Eva
napdaderypa yprong tov HLE og C yA®ooo mpoypoppaticuoo.

Listing 3.1: [Topdadstypa xpnong HLE

/* Traditional lock implementation */
/* acquire lock */
while(_ sync lock test and set(&lock var) == 0)
/* do nothing */;
Critical section with lock acquired
/* release lock */

__sync_lock release(&lock var);

/* HLE implementation */
/* elide lock */
while(_hle acquire test and set(&lock var) == 0)
/* do nothing */;
Critical section with lock acquired
/* release lock */

__hle release clear(&lock var);

Restricted Transactional Memory (RTM)

To restricted transactional memory (RTM) etvan pia evolhoktikny vAomoinomn and to
HLE mov divel mepiocdtepn gvedi&ia otov mpoypappatiot va kKabopioet To fallback path
7oV Oa extedeoTel av 1 SocoANYin amoTOYEL YTTApYovv Técoeplg vEes eviorés, XBEGIN,
XEND, XTEST xot XABORT. O tpoypallaTioT!G EXIGTUOIVEL TO LEPOG TOV KOSIKO TOV
0élel va exktedeotel aTopka (Kpioo TUALa) ypnoLorotdvtag Tig eviolés XBEGIN kat
XEND. Ot evrorég XBEGIN ko XEND emonuaivovv tnv apyn Kot to TEA0G TOL KPiGILov
Tufpratog ovtiotoya. Otav pia diepyacio/vipa etdoet otnv eviodn XEND otov kddwka,
N docoioyia KAvel commit Kol 1 UV EVIUEPDOVETAL Y10 TIG aAAAYEG OV ékave. H
evtol] XTEST emotpéoet 1 av n diepyasio/vipa Bpioketon og transactional mode kat
drapopetikd 0 kot pe v eviod] XABORT(status) o mpoypappotiotig pmopei pitd va
Kdvet abort pua docoinyio. H petafint status ypnoomoteitan yia va kabopicet 1o Adyo
Tov transactional abort. Mia té€tola pntn dtakonn TG docoinyiag givat yprioyn 6tav o
TPOYPOLHOTIOTAS BEAEL VO, KaBopicel TNV amoTuyia Log doGoAnyiog.

Av po ovykpovor aviyvevdel katd) dudkewn g doconyiag, mhoavdg Ba vrdp-
&el pataioon ™e. Metd and éva transactional abort o fallback handler sivor vrévbuvog
Yo T0 ol VIO Oa ektedécel 1 dlepyacio/vina Yo va cuveyiocel v ektéheon. O

55

TPOYPOALLOTIOTNG opilel TN BEon uvAUNG OTOV KMIKA TOL B0l eKTEAEGTEL GE TTEPIMTOON
transactional abort (fallback address). Avtr 1 diebBvvon givar axpiPmdg 1 exdpevn evioin
petd v XBEGIN. H XBEGIN emotpéeetl pio Tiun mov deiyvel ov pio depyacio/vipo
elvan og transactional mode 1] el yivet aborted. Qg amotéieopa, o0 EAX kotoympntig
EVIIEPDOVETAL GOUO®VO LLE TNV Katdotaor e doconyiog (oynpa 3.1). O mpoypoppa-
TIoTNG umopel va eréyéet av 1 docolnyia €xet Eekivioel 1 av €xet yivel abort exteldVTOG
pia Aoykn mpdén PETAED TG TYNG TOV EMGTPEPETOL KOL TOV TOPAKATO 6TADEPDOV:

* XBEGIN_STARTED: H docoAnyia éyet Egkivioet emtuyde.

_XABORT CONFLICT: H docoinyia €xet yiver abort Adym cOykpovong pe
PV €vOg GALOL VIUOTOG/ dlepyaciog.

_XABORT CAPACITY: H docoAnyia éyxet yiver abort Adym vmepyeidong ot
pviun.

_ XABORT EXPLICIT: H docoAnyia dtoxommke LeTd omd pnTn EVIOAN Ot TOV
TPOYPOUUUATIOTN.

~ XABORT RETRY: H docoinyia dwokdénnke aArd av Eavanpocmadncel propel
Vo, EMTUYEL

_ XABORT DEBUG: H éocoinyia Stakdénnke Aoyw debug.

_ XABORT NESTED: Transactional abort 6 pio eco0TEPIKT ELP®AELUEVN dOGO-

nria.
O¢on bit otov EAX katayompnti Inpacio
0 Eivat 670 Loywkoé 1 av o abort €ywve amd v evioli XABORT.
1 Av givan 610 A0YK6 1, T0TE 1 SocOoAN Vil
glvor mBavo vo emtdyel og endpevn TPoomddeia.
2 Eivai 010 Aoykod 1 av évag hoyudg enelepyaotng npde
og cOykpovon pe pio dtedBvvon pvipung mg docornyiog.
3 Eivat oto hoywd 1 av kémolog ecwtepikdg buffer vrepyeilioe.
4 Eivat 610 Aoy 1 av evroniotnke kdmota debug drocon).
5 Eivat 670 Loywd 1 av cuvéPn abort oe pio epooiacpévn Socoinyio.
23:6 Reserved.
31:24 To argument mov 360nke otnv evtorr] XABORT (eivar €yxvpo dtav to 0 givar 6to Aoyko 1).

Yympa 3.1: H katdotaon g docoinyiog amrotundveTon ota bit tov EAX «kata-
xopnm.

Kdmoteg artieg abort umopel va odnyodv mdvta oe amotuyio g docoinyiog. Qg a-
motéleoua, KaOe pOpa OV EKTEAOVLE TO KPIGIO TUNHO o€ transactional mode ypnot-
ponotdvtag to HTM, n docornyia Bo amotoyydvel cuvéyeia kat dg Ba vdpyel Tpdodog
610 Tpdypapupd pog. I'a mapddetypa, av to read 1 to write set pog docornyiog Eenep-
vouv 10 péyefog g LG, N docoAnyia Ba amotuyydvel cuveymdg Ady® capacity abort.
2g auTNV TNV TEPITTMON O TPOYPUULATIOTNG TPETEL VO opicet Eévav back-off unyoviopod
onmwg 1o fallback path mov éyel avapepBei. To fallback path eivon pion evariidictikn vio-
moinon kmdika wov d¢ ypnotponotel o RTM ko givar cuvBmg £va KOPUATL KOIKO e
coarse-grained locking. Avtni 1 vAomoinon &ival amapaitnTy Yo TV €yyovmon tpoddov
OTNV EKTEAECT) TOV TPOYPALLLATOG.

56

To fallback path viomoteiton cav €va coarse-grained locking Tpunqpo Kddka Tov £xel
éva kaBoAkd KAeldopa. Xtnv mepinton autn TpEnel To KOBOAKO KAIdmo va elodye-
Ta1 070 read set Twv 00GOANYL®Y, Yia va yivovtal abort 6Tav avTtd KAEWmOel amd pio GAAN
dlepyacio/VHo KoL VoL UV ELPAVIGTOVV TPOPANLOTO GUVAPEWNG TG Lvnung. To oynua
3.2 mapovotdlel Eva Tapdoetyro EKTEAECNG KOTA TO 0oio dVO VipaTe TPosTadodv va
EKTELEGOVV TOV 1010 KOJIKA TonTOYXpove. To TpdTO VLo UTaivEL GTO KPIGILO TUNLO O-
TOKTAOVTOG TO KOBOoAKO KAeldwa Kt To devTEpO Ypnoyomoidvtag tv RTM vioroinon.
e autd 10 TAPAdEYUA TO OeDTEPO VI O€ Dol aviyveELGEL GUYKPOLGT Kol 1) S0GOANYia
Ba kdvel commit kot o evnuepdOEL T PETAPANTH count, EVO TO TPMOTO VLo O¢ Ba gvi)-
pHep®Bel yio vtV TNV aAloyn. Avto givar éva mpdPAnua cuvaeslog e whiune. Kota
GUVETEL, O TPOYPOUUUOTICTNG gival vTévduvog va Tpochioet To kabohkd KAEId®O GTO
read set Tng Socoinyiog. Avto emttvyydveral pe £va amAd read g TING TOL KAEWOMLO-
10¢. Av atnv apyn g doconyiag To kabodikd KAgdmpa eival kKA pEVO amd Eva GALO
VIO, O TPOYPOUUATIOTNG TPENEL VO KAvel pnTd abort tn docoAnyia (explicit abort). To
listing 3.2 amotelel eva mapadetypa KoTd to omoio €va pthread spinlock mpootifetat oto
read set tng docoAnyiog péow evag amAol read TG TG TOL KOl O TEPITTMGT TOV AVTO
dev givar gElebBepo 1 docoinyia amotuyydvel pntd pécm tng eviodng XABORT.

Listing 3.2: TTapddetypo: mpocHnkm tov KaboAkod kKAeWmuaToc oto read set g
docoANyiag

if ((int)spin_lock != 1)
_xabort ();
if (pthread mutex t. data. lock != 0)
_xabort ();

Téhog, 1o listing 3.3 meprypdopet éva toapadetypo xpnons tov RTM oe C yAdooa npo-
YPOULOTIGHOV.

Listing 3.3: 'Eva RTM nopdostypo

int aborts = MAX TX RETRIES;
lock t = fallback global lock;
start tx:
int status = TX BEGIN();
if (status == TX BEGIN STARTED) {
if (fallback global lock is locked)
TX ABORT();
Critical Section
TX END();
telse{ /* status != TX BEGIN STARTED */
if (—aborts > 0)
/* retry tramnsaction */
goto start tx;
acquire lock(fallback global lock);
Critical Section

57

release lock (fallback global lock);

}
Thread 1 Thread 2
|
| bocki) ® useof locks *f | KBEGIN /* use of RTM®/
|
reack count)
|
| reacd{count)
|
w
E wiritefcount+=1)
=
|
| ¥END
| writejcount+=1)
|
| urnibackp)
|

Yympa 3.2: Mio mapdAinin ektédeon dvo vnuatwv pe RTM mov odnyet o€ mtpo-
BALOTO GUVAPELNG TNG UVIUNG.

58

Kegpalaro 4

Hoporiinromor@vtog TovV arlyoprOpo
tov Dijkstra

4.1 O alyoprOpog tov Dijkstra

4.1.1 O aiyopiOpog

O aiyop1Buog tov Dijkstra etvon évag greedy adyopiBog mov vroroyilet to eldyloto
HOVOTATL amd pio Hovadtkn Iyn TPog OAOLE TOVG KOUPOLG 0TV Ot aKpEG etvar un op-
wmtwcég. O adyopBpog Paciletonr onv mopoatnpnon 0Tt KAOe PKPOTEPO LOVOTATL EVOG
peyarbtepov eAdyIoToL povoratiol givat kat To 1010 BéXTioTo (eAdyioto) povordtl. To
UAKOG TOV LOVOTTION €ivat To AOpoicua TV Bapmdv OAMV T®V OKUOV TOV CUUUETEYOVY
oe oto.

O odyop1Bpog e&etdlet Tic KOPLEES GE DEOVGA GEPA OO TNV OTOCTAUCT| TOVG OO TNV
my". Kdabe popd mwov diepevvatan Evag kopfog avtdg £xel mdpet v eEAdyiot (BEATio)
amoctacn ond Ty wnyn. O alyopdpog kataokevdlel To 6EVIPO EAAYIOTOV HOVOTATIOV.
e kdBe Pripo TpootiBetan pio vEQ Ak TOV OVTICTOLKEL GTNV KOTOGKELT TOV EAAYLIGTOV
LOVOTTaTION Yia Evav Kavovpylo kOppo. H véa akur Tpootifetal 6To eAGyI6TO LLOVOTATL
Yo, To VEO KOUPO, 0V TO VEO LOVOTATL OTO TV TN TTPOg ToV KOUPo gival pikpodtepo omd
TNV TPONYOVUEVN ATOGTACT AO TV TNy Tpog Tov kOpPo. H dradikacio katd tnv omoia
vroloyiletan pio eKTipnomn e 0mdoTUOTG OO TNV TNYH TPOG TOV KOWPBO KoL EVILEPDVETOL
ovt N omdotaon pe) véa pikpotepn T ovopdletar relaxation. O wivakeg dist kot
pred amobnkedovv v BéAtiotn (eAdyiotn) T amd TNV TNy Yo kéOe kOpuPo kon Tov
OUESMS TPOTYOVLEVO KOUPO 0TO PEATIOTO LLOVOTATL, OVTIGTOLYOL.

o évaypaeo G = (V, E), 6mov V givon éva o€t and kopueéc kot E givar éva oet omd
OKLLES, O OLYOPLOLOC EYEL OVO GET 0O KOPLPEG: TO S GET TTOL EIVOIL KOPLYEC O1 OTTOTEG EYOVV
TAPEL TNV EAGYLOTN 0TOGTACT TOVG Al THV TNYN Kot To o€t V'\ S 1ov givar ot kopueég
7oV dev €yovv eEepevvnBel axopa. O alyopBpog £xet ta NG Prinata:

1. Apyikd 1o oet S givar dde€l0.

59

2. Apykomoinon 6A®V TV OTOGTACEMY TOV KOPLO®OV A0 TNV TNYN KE Amepo (00)
KoL TV aroctacn g idtog g Tnyng pe 0.
3. Evd vmdpyovv akopo kopueég oto oet V\.S (avelepedvnteg)

(al1) AudreEe v aveEepevvnn kopuen u and to oet V'\ S 1 omoia £xel v eAd-
Yot ondoTacT ond TV TNYN.

(BO) TomobBétnoe v KopveN U 670 GET S.

(v)) T'okdBe axpn g Kopueng, kdve to KatdAinAa relaxations yio toug kOpfovg
mov givon axopa oto ot V\S. To kdBe yerrovikn kopuen v, av 1 andctoo
™G KOPLENG u TpooTBEUEVN e To BApog TG aKpnS u-v gival pukpoTept ard
TNV andGTACT] TOV EYEL TO V, EVIUEPOGE TNV ATOGTACT] QLTNV.

To listing 4.1 eivar évag yevdokddkag Tov aiyopiBuov tov Dijkstra. To Q cuvo-
Lo givan to ogT TV avegepetvnTav akpav (V\.S) 1o onoio givar vhomomuévo cav ovpd
mpotepaldTNTog Kot ol ivakeg dist, prev amofnkevouy Ty arocTdon and TNy TNyn Yo
€va KOUPo vV Kot Tov Tponyovpevo KOUPo amd To v 6To PEATIOTO HOVOTATL 0o TNV Th)-
v, avtiotoya. H cvvaptnon add with priority() mpocBétel éva orotyeio oty ovpad e
pia cvoyeti{OEVN TPOTEPALOTNTO (TNV EAGYLIOTI ATOGTACT) OO TNV NYN), 1| GLVAPTN O
extract min() apaipei £va 6ToryEl0 0O TNV OVPEA TPOTEPAUOTNTAS, TO GTOLYELO LLE TN HEYOL-
AOTEPT TPOTEPALOTNTA (EAAYIOTN ATOGTACT) OO T TNYH OTO TPEYOV PLLA) Kot EMGTPEPEL
aVTO T0 oToLYElo Ko 1) cuvdptnon decrease priority() EVIUEPDOVEL TNV TPOTEPALOTNTO EVOC
oTolElOV GTNV OLPA.

Listing 4.1: O aAky6pBpoc tov Dijsktra

function dijkstra(graph, source):
dist[source] « 0 //Initialization

create vertex set Q //Set of unvisited vertices

for each vertex v in Graph:
if v # source
dist[v] <« INFINITY //Unknown distance from source to v
prev[v] <« UNDEFINED //Predecessor of v

Q.add_with_priority (v, dist[v])

while Q is not empty: //The main loop
u «— Q.extract_min() //Remove and return best vertex
for each neighbor v of u: //Only if v that is still in Q
sum = dist[u] + length(u, v)
if sum < dist[v] //A shorter path has been found
dist[v] < sum
prev[v] < u
Q.decrease_priority (v, sum)

return dist[], prev[]

60

4.1.2 H molvmlhok0TNTO TOV OAYOPiOHOV

H amhodotepn viomoinom tov aAyopiBpov amodnkedeL T0 GET TOV KOPLP®OV ooV pio
ovvnOopévn Aota 1 mivakag. H extract min() ovvaptnon naipver ypovo O(V') kou yi-
vovtat [V| tétoteg Aettovpyies. 'Etot, 0 cuvorkdg ypdvog yio tnv extract min() o€ 6X0 T0O
while loop eivor O(V?). A@od 0 cuvoAlKkdc apldudg Tov akudv oe OAn ™ AMota yerrvi-
aong givat [E|, o for loop Oa emavainedei |E| popég kat kdbe emavainym maipvel ypovo
O(1). 'Etot, molvmhokdtnto Tov adyopiBuov pe pio cuvnbiopévn cuvdedepévn Alota 1
vAomoinon pe mivaka sivar O(V2 + E) = O(V?).

INo apaiovg ypdoovg (Ypaeot e pikpd aptBpd oKU®V GUYKPLTIKGE e TOV aptOpud Tov
KOPLP®V), 0 aAYOP1B0g puropel va €xel KaAdtepn ToALTAOKOTN T 00BN KeHOVTAG TO GET
KOPLPGV cav pio Mot yerrviaong Kol ¥pNoILOTOIOVTAS £vo NUL-160 VYo HEVO dVadIKO
dévtpo avalnnong, éva dvadikd cwpd N éva Fibonacci heap cav ovpd mpotepatdTnTaS.
AvT0 €xe1 ¢ amoTELEC A, Ll TTLO ATOTEAEGILATIKT DAOTTOINGN NG extract min() cuvaptn-
ong. H extract min() naipvel ypovo O(log V') kou yivovrar [V] tétoteg Aettovpyies. H ov-
vaptnon decrease_priority() (1 decrease_key()) maipver ypovo O(log V') oty nepintmon
evOg NU-t60lVYIGHEVOL dVOBKOD 3EvTpoL avalitnong N evog duadikov cmpov kot O(1)
otV mepintmon evog fibonacci heap yo kéBe pio and tic |E| To mAn0og axpéc. Koatd
GUVETEL, O ¥POVOG EKTELEOTC TOV aAyopiBpov pe éva Nut-tlooluyiopévo duadikd SEVTPo
avalfinong N éva dvadikd cwpo givar avaroyos pe O((E+V) log V') ko pe éva fibonacci
heap yivetaw O(E + V' log V).

4.2 Mio tevikKn TapaAANA0TOINGS GTOV AAYOPLONO
Tov Dijkstra

[pwv meprypdyovpe pia TpotetvOpreVn TapOAANAOTOiNGT TAVE GTOV aAYOPBILO TOV
Dijkstra, 6a eiodyovpe v évvoln twv Helper Threads. Ta helper threads eivar pio teyvi-
K1 BEATIGTOTOINGNG TOV XPTGLOTOLEITAL Y10 TAPUAANAGUO LLE GKOTO VO EMITOYVVEL EVOL
TPOYPOLLLO Kot Vo TapEYEL VYNAY amddoot). OvclooTikd, stvor "Bondntkd” vipoto Tov
EKTELOVV GLYKEKPLUEVOLS VTOAOYIGHOVG K LEPOVG £VOG KLpimg vijnaTog (main thread)
pe otéyo va Pondncovv to main thread kot vo peidoovy Tig epyacieg tov. Tovmkd, &-
KUETOAAEVOLOGTE QTHV TNV TEXVIKN Y10, VO TPOPOPTOGOVUE UEALOVTIKA dESOUEVO GTOL
omoia Ba yivel TpdcPaocn 1 vo LVTOAOYIGOVLLE TO UTOTEAEGLO KOUHOTIOV TOV KMOOLKO TOV
dtopopetika Bo exteAovvTay 0md To main thread.

AVt 1 gvoTnTa TEPYPAREL pia Tapaiiniomoinon Tov adyopifuov tov Dijkstra mov
nmapovctaletatl otig dnpooctevoel; [20], [21]. Ta 600 mo onpavtikd TpoPARHATo TOL aAyo-
piBuov givor 6Tt éva TOAD LIKPO KOUUATL TOL pumopel va, Taparinioroindei Kot 0Tt Tpémet
va vtapEet ToAD KOAOC cuyypovicpdc. [a va avtipetwniotovy autd ta 600 TpoPfAnuata
1 TPOTEWOUEVT TapaAANLomoincT Tov alyopifuov ypnoiponotet v évvola tv Helper
Threads yio vo g€dyel meplocdTEPO TOPAAANAIOUS Kot TO unyovicpd tov Transactional
Memory ®g LEGO GLYYPOVIGLOD TOV TOLTOYPOVOV TPosPicemy oTig Lolpaloueve doUég
dedopévov.

61

extract-min [l read tid"-min relax outgoing edges

——————— Time----p»
step k step k+1 step k+2
Thread 1 | |
Z

v A 4
Thread 2 m
Thread 3
Thread 4

Yyqpa 4.1: Zyfuo ektéheons tov adyopibpov.

H 18¢a etvan 6tL Ta helper threads 6a Eepoptdvouv Aettovpyiec amd to main thread. ITo
ovykekpyéva, To main thread extedei ToAAd relaxations Tov KOPP@V-0TOYEIOV TNG OLPAS
npotepaldtroc. ‘Etot, mapdiinia BPondntucd vijpate Lropovv Toutdypova Vo EKTEA0DV
relaxations and kopPfovc. KabBmg 1o main thread €&dyet kot evnuep®mvel ToVG YEITOVEG
TOV GTOLYElOV TTOV Eival TPMTO GtV 0VPE TpoTepaLdTNTOC, Kk helper threads umopodv va
EVIILEPDVOLV TOVG YEITOVES 0O TOVG K ETOUEVOVG KOUPBOVG GTIV OVPA TPOTEPULOTNTUG LUE
oKoTo va EEPopTM@GOLY TPaelg amd To main thread oty emOUEVT TOV EXOVAANYN.

O képPor mov avorapfavovy ta helper threads Bpickovrat otig tpdtec k Oéce1g otV
ovpd kat iowg £xovv MO TapeL TN PEATIOTN TN TOVG (EAGYIOTN OOGTOCT) O TV TNYY|
ue peydAn mbavotra. ‘Etot, 6tav ta helper threads extedécovv ta relaxations yio Tic
OKHEC TOVG, 01 YEITOVEC OV AVTIGTOLOVV GE AVTEG TIS OKUEG {0ME ATOKTAGOVY KOl 0UTOL
TIc PéATIOTEG TIUEG TOVG. UG amoTédeoa, OTNV EXOUEVT EXavAAnyn To main thread Oa
eléy&el anutong Tovg yeitoves ko ¢ Ba ekteléoet kavéva relaxation. Ao tnv AN TAgLpd,
ta helper threads {ocwg extelécovy realaxations yio évov KOUPo OV dev EXEL AMOKTIGEL T
BéATIoTN TN TOL OKOUO. Xg QUTH TNV TEPITT®OT 0 KOUPog Ba amoktnoet v PEATIo
TR Tov O0tov TeEMKd e€etaotel amd to main thread apydtepa. Omdte M opBOTNTA TOV
aAyopiBuov dev ennpedletat.

To main thread ekteleiton OTMG 61N GEPLOKT €KSOYT TOVL alyopiBpov. e Kabe ema-
vainym e&ayetl Tov eldyioto KOpPo (Kopupn) amd TV 0VPA TPOTEPULOTNTAS Kol EKTEAET
ta relaxations mov ovTioToLOVV 6€ aVTOV. Tavtdypova, 1o k-06to6 helper thread dropdlet
TNV amOGTACT TOV k-06TOV KOUPOL TG 0VPAS TPOTEPAOTNTOS Kot TPpooTadel va KAveL
To, KOTAAANAQ relaxations yia Tig e€epyOUEVES AKUIEG TOV GOUQ®VO [LE QLT TNV TN TNG
amootacnc. ‘Otov to main thread teleimoel 6la ta relaxations tov, gdomoiel ta helper
threads va otopatioovy kot OAa ta vipota pall Tpoympobv GtV EXOUEVT] EMOVAANY).
AVt 10 oY omewkoveileTon oV etkova 4.1 "

Ymv mepintmon mov ta helper threads avoykdlovror ond To main thread vo otopa-

* H eucova hapfévera omd to [21].

62

TIHCOVY TOVG VITOAOYIGHOVE TOVS KOl VO TPOYMPNOOVY GTNV EMOUEVN EXAVAANYN, €lval
mBavo KATowo amd oLTE VoL UV £X0VV EVILEPADGEL KATOLOVS OTO TOVG YEITOVES TOV KO-
Bov, aenvovTog Tovg e TIC TAALEG OMOGTAGELS TOVG. AVTO OV amoTeAEl TPOPANLA KOOGS
oMot o1 yeitoveg Tov KOpUPOoV Ba amokTooVY TEMKA TIG PEATIOTEG TIHES TOVG OTAY 0 KOUPOG
OTACEL GTNV KOPLPT TNG 0LPAG TPOTEPULOTNTOG Kol &€TOOTEL 0md TO main thread.

O xoddwkag mov ekterel To main ko ta helper threads gaiveron ota listings 4.2 ko
4.3 og C yAhOOO TPOYPOUUATIGHOV, avTioTotya. X kbbe emavainyn to main thread e-
Edryer Tov KOUPo pe TV vymAoTepPN TpoTepAdTNTA (EAAYIOTN ATOGTAGT] OO TNV TNYN)
omd v ovpd mpotepandTNTaS. Tavtdypova, ta helper threads mepyévovv (koAnpuéva
oto while loop) péypt To main va teleidoel v e&oy@yn tov kKOUPov. Akorovbwg, kibe
helper thread 6wapdaler xwpig va e€dyer (ReadMin Aettovpyia ypappés 6-7 otov KMOWKO
tov helper threads) éva amd Tovg TpdTove k kOpPove oty ovpd. Omwg oM e€nynonke,
ta helper threads Eepoptdvovy vroloyiopobs amd to main thread kot £tot 1 ypopuun 28
o710 listing 4.2 Ba vroloyiotel g true Aryotepeg opég Kot To main thread e Oa ypelaotel
Vo EKTELECEL TIG AELTOVPYIES TV YpaupdV 29-31.

To mpotevoOpEVO GYNILOL TPETEL VO TAPEXEL UTOUIKOTNTA ENXELOT UTOPEL VO ELPAVICTEL
conflict 6tav 600 N TEPIGGOTEPA VIUATA EVILEPDVOLV TAVTOYPOVE TOV id10 YeiTOVa, 7
SLopopeTikovg yeitoveg aAhd aAlalovv 1o 1d1o uépog g ovpds. I'a va methyovpe ato-
LIKOTNTO, TPETEL 01 EVNUEPMGELS 6TV 0Vpa Péc® TG DecreaseKey() cuvipmong, kabadg
EMIOMNG Ko 01 EVNUEPMOELS 6TOVG TTivakeg dist kot pred va ecwrAeiovtal o€ piot SocoAnyia
1660 Y10 To main 660 Kot yio. ta helper threads. Me avtov Tov Tpomo, 0ToV EUPAVIcTEL EVal
conflict, pévo éva vipa Ba popé€oet vo Tpoywpn oL, va kdvel commit T docoAnyio Kot
VOl EVILEPDGEL TIV 0VPU, EVD TOL VILOAOUTE, B0l TPETEL VOL ETOVAAABOVY TOVG VITOAOYIGLOVG
TOLC.

Onwg 1on avaeépdnie, 6tav To main thread tedeidoetl To relaxations wov mpémel
va Kavel, gwonotel To helper threads va otapoticovy Kot Tpoympodv AN TA VALLATO
poali omv emdpevn emavainyn. [a va viomomBel avtd, o adyopiBuog ypnoipomnotet
transactional memory (TM). ITo cvykekpipéva, 6tav To main thread oAokinpdcel v
EMOVAANYN TOL Ec@TEPLKOV loop Yo To relaxations, Bétel) petafintn "done" 610 1. Av-
6 onpaivel 6T To main thread Bo Tpoywpnoel oty endueVN eMAVAANYT TOL EEMTEPIKOD
while loop yia Tov emduevo koépuPo kot avaykdletl emiong to helper threads va otopot-
GOVV KOl Vo, akoAovBncovv, teppatifovtag Toug voloyicuovs. Aeod ta helper threads
glvar og transactional mode kot 1 petafAntn "done" givai oto read set Tovg, avtd Oa, yi-
vouv aborted kot Oo Eavanpocmadncovv tn docoinyia. Qotodco, 6tav ta helper threads
poonafnoovy va ekteEAécovy véa docoAnyia, Ba Ppouvv e Leyain TOOVOTNTA TN LETO-
BAnt "done" otnv Ty 1 kot Ba otopatcovy ta relaxations Tovg Yo TOLG VTOAOTOVGS
yeitoveg Kot Bo Tpoympnoovy og véa eravainym Tov eEmtepucod while loop. Av 1o main
thread exteléoet v ExtractMin() moAd ypriyopa kot 0cet T petafintn "done" nicw 6to
0, Ta helper threads 6a ydoovv avtiv Vv Tehevtaio gW0omoinom kot Ba cuveyicovy amd o
onpeio mov otopdtnoav. Avtd dev emnpedalet v opBotTa Tov aAiyopibuov. Ta helper
threads icmg evnuep®GOVY TIC OMOGTAGEIS TOV YEITOVOV LE VIOPREATIOTES TIES. AVTEG
opm¢ o emavaypa@todV e TIg véeg PEATIOTEG TIUEG OTAV Ol KOPVPEG TOV EEETACTNKAY
ano ta helper threads gTdcovy 6TV KOPLEY TG OVPEG TPOTEPALOTNTOG.

63

O okomdg Tov adyopibpov sivat va ypnoomomBovv ta helper threads pévo yuo va Ee-
(POPTOCOVY VIOAOYIGLOVG 0td To main thread Kot 0yl va Tapepmodicovy Ty Tpdodod Tov.
Emimiéov, avto to oynpa tpoomadel vo eEAayIGTOTOGEL TO XPOVO TOL E0OEVETAL GTO G-
yYpovioud kot ota transactional aborts. Ta helper threads ektedovv Aeitovpyieg 6Tny ovpd,
nmapepPaivovtag 660 10 duvaTdv AyodTEPO OTIG EpYyacieg Tov main thread, akdpa kot ov
aVTA OV KAVOLVY ypNoin dovield. Xpnoponowdvtag 1o TM cvotnpa tpénet va vadpéet
pia ToMtiky enilvong GuyKpovoe®Y TOv va. euvoel To main thread kot va glayiotomotel
to overhead twv transactional aborts Tov main thread.

O alyopBpoc a&roroynonke o Eva mpaypatiké HTM cvotnpa (Intel's Haswell HTM).
H ovpd mpotepardtntog viomoeitan pe dvadikd copod (binary heap), ypnoomoidvrag v-
Ahomoinon pe mivaka. H ReadMin exteleiton and ta helper threads oe otabepd ypdvo
(O(1)) xar or ExtractMin() kot DecreaseKey() Aettovpyieg maipvouvv ypovo O(logn). O-
TOC PAIVETAL 6TOVG KOJIKES Y10, Too main kot o helper threads vAomomfnke pia coarse-
grained docoAnyia yio To main thread. Ztov apyikd adydpiBuo mov wpoteiveTal oTIg On-
pootevoelg [20] kon [21] vwapyetl pia docoinyia yio kabe axpn (mbavo relaxation) wov
g€etaletat. Avtd éxel oG amoTéleoa TOAAEG LKPEG HOCOANYIES E101KE GTOVG TUKVODG
YPAPOVG Kol MG cuVETELN eppaviletal emmpocbeto overhead mov oyetiletal pe v évop-
&N Kal ToV TEPUATIGHO TOAAMV dtadoyik®v docoinyimv. Etot, gueic e€etdlovpe mepio-
c0tepeg and pio oKpUEG pésa o€ pio docoAnyio. Avapévovpes avtiv N mo coarse-grained
TPOGEYYIOT VA 00N YNGEL 08 KOADTEPO speedup e LIKPOoVS YPAPOLS Kot o€ Thavd capacity
aborts 6ToVG peydlovg ypdoovs. ' avtd, mpémetl va Bpovue pio Avor 1 onoio peTpii-
Cer 10 overhead amd v HmapEn TOALDY PKP®V dOCOANYIOV Kl TO KOGTOG 0O TOAA
Sdladoyika transactional aborts.

Onwg e&nyndnke 6to TPONYOVLLEVO KEPAANIO O MO TEPLOPIOTIKOG TAPAYOVTOS V1oL
NV KMUOKOOCIHOTNTO givar To eovopevo false sharing. Awagpopetikd vipota icmg Tpo-
TOUTO0VV O10POPETIKE PéPN TG dopng mov potpalovrtal v idwo cache line. Emeidn
oto mpaypatiké HTM cdomnuo mov ypnoiponomacope ot cvykpovoelg (conflicts) avi-
yvebovtal o€ eninedo cache line, n TEPITT®ON TOL SLUPOPETIKE VIAUATO, EVILEPDVOVY GE
transactional mode ave&aptnta ototyeio mov popdlovtat Ty idta cache line B odnynoet
o¢ transactional aborts. ['la va amo@OyoLE TETOEG KOTUOTACELS YPNCULOTOLOVUE TNV TE-
xvikn structure padding oe 6Aeg TIC popaloueveg SoUEG OTMG 1) OLPE TPOTEPULOTNTOC, Ol
mivakeg dist kot pred, £T61 ®OTE TO, SIUPOPETIKA GTOLYEIN AVTOV TV SoUdV Vo, BpickovTal
o€ dapopeTikég cache lines.

Téhog, To mpaypatiké HTM cdotnpo mov ¥pnoiponomcape yio Ty a&loldynon eivat
pia best effort vAomoinomn. Xvvenmg, £va fallback path sivat amapaitnto. Xpnoomolovpe
€va KaBoAko KAeidopa, HolpaloUevo aVALESH GE OAC TO VIJLATO Y10 VO TPOGTUTEVGOVE
7o Kpicipo T, Qotdco, dTav £va Vi amokTd To Kafoiwkod kieidoua (global lock),
Ta vwoAowma o veicTavTon transactional abort, aEov £yovv To KaBOAKO KAEId®UA GTO
read o€t TOVG KO B GVVEYIGOVY VO aTOTVYYXAVOLY PEXPL Vo eEhevBepmBel To KAgidwpa. O
GKOTOG TOV aAyopifpov eivar va ekpetadAevtel v évvola tav helper thread, étol dote To
main thread va exteAéost Aydtepa relaxations kot Oyt va kabvotepeitor 1 Tpdod0g Tov.
To main thread mpémel va tpéyel oxedOV 0NV TAYXOTNTO TNG CEPLOKNG ekTéAEoNS. [
VO DVAOTTOMGOVLE QLTI TNV TOAITIKT OV €VVoel To main thread, To KaBoAkd KAEWBmuA

64

umopet va amoktnOel poévo amd to main thread. To helper threads dev maipvovv moté 10
KaBoAkd KAEIDOUA Kol EKTEAOVV OAOVE TOVG VTOAOYIGLOVS TOVG OTO KOWVA OESOUEVA LUE

docoanviec. 'Etot, pumopel vo amotuyyvouy cuveymg Kat 0ev vrdpyel £yyomomn tpoddov
v to helper threads.

Listing 4.2: O x®dwkag Tov main thread yia éva mpaypotikdé HTM cdotnua.

while (heap—>curr_size > 0){

my min = bh_extract min (heap);
done = 0;

/* Find the id of the vertex. */
my _min_id = my min—>vertex_id;

/* Read the key (weight) of my vertex.*/
my min_key = dist[my_min_id]. value;

if (my_min_key < INFINITY){

/* adjacency list for neighbors */
\ g—>adj[my_min_id];

if (v != NULL){
while (1) {

/* Check neighbors for relaxation. */

begin_transaction (num_retries , &fallback lock , tid);
for (i=0; i< num_neighbr; i++){

distv = dist[v—id]. value;
sum = my_min_key + v—>weight;

/* Relax */
if (distv > sum){
decrease_key mt(heap, v—>id, sum);
pred[v—>id]. value = my_min_id;
dist[v—>id]. value = sum;
¥
vV = v—next;
if (v == NULL)
break;
}
end_transaction(&fallback lock , counter);
if (v == NULL)
break;

done=1;

-

Listing 4.3: O xodwkog tov helper threads ywa éva npaypatiké HTM cootnuo.

while (heap—>curr_size > 0){
while (done == 1);

/* ReadMin */

my_min_id = heap—>node_array[tid]. vertex_id;

65

my_min_key = dist[my_min_id]. value;
if (my_min_key < INFINITY){

/* Check neighbors for relaxation. */
for (v=g—>adj[my_min_id]; v!=NULL && !done; v=v—>next){

if (begin_ transaction(num_ retries, &fallback lock , tid) != —I1){
if (done == 0){
distv = dist[v—>id]. value;

sum = my_min_key + v—>weight;

if(distv > sum){
decrease_key mt(heap, v—>id, sum);
pred[v—>id].value = my min_id;
dist[v—>id].value = sum;

H

}else
_xabort(0Oxaa);
telse
break;
end_transaction(&fallback lock , counter);

4.3 XopoKTNPLOTIKA GUGTINOTOS

To oOGTNIA TOV YPNGLOTOCALE Yo TNV OELOAOYNOT TNG TPOTEWVOLEVIC TEXVIKNG
mapaiiniomroinong tov aiyopiBuov Tov Dijkstra ivon pia 28-mopnvn mhatpdppo, NUMA
OPYLTEKTOVIKY] [LE TO TOPUKATM YOPOUKTNPLOTIKA.

2 sockets (Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz)
* 14 mopnveg ava socket (28 vijpato pe hyperthreading)

* 32KB L1 data cache avé mopriva

* 32KB L1 instruction cache avd woprva

* 256KB L2 cache avé mopiva

* 35MB L3 cache avd socket

* 128GB RAM

* Hardware Transactional Memory:

lazy data versioning
eager conflict resolution
best effort HTM

strong isolation

cache line granularity
4MB read set

66

— 22KB write set

210 Koppdtt g agloAdynong, kébe software thread koppirrodveral yeipokivnta oe
éva hardware thread, é161 dote va ekpetalienTode TNV TomikoTNTO TV sockets. [Ipmta
Kapoertowvovpe software threads, €161 dote va yepicel 10 mporo socket (ta mpdta 14
vipoata) kot va potpafovtot v idwa kowvn L3 cache. Ko petd kapprromdvoovpe vipoto
6710 0evTepOo socket Tov punyovipotoc pag. H agoddynon pog arokoivmtetl 6t 1o NUMA
effect ennpedlel apynTiKd TV KALOKOGIUOTNTE. X€ TEpinTmon cache miss 1 pLeTAPOPE
piog otevbuvveong pvnung amd to éva socket 6to GALO €xel peydho k6GTOC.

4.4 Afwioynon

4.4.1 A&wAroynon Tov oEPLEKOD aryopidpov

Apyikd, a&loroynoope to oeplaxd aryopipo. ITo cvykekpiéva, eKTEAEGOUE GTNV
TOPATAVEO TAATPOPLO TOV KOO Tov main thread (amhog akyopBpog Dijkstra) ya ypd-
OOVG SAPOPETIKMOV PEYEDDV, TOGO TUKVOVE OGO KOl 0patovs YPAPOLS. X& OVTEG TIG EKTE-
Aéoelc o€ ypetdletar va ektelovvTal relaxations péca oe transaction, ylorti TpOKELTOL Y10
celplok eKTéEAEST). O 0TOYX0G OVTAOV TV EKTEAECEWDV EIVOL VO EKTIUTCOVLE TO TOPAAAT-
Moo mov pmopet va e&ayBel amd tov kat'eEoynv oelplokd alyopBpo tov Dijkstra.

Xopioope Tov adyopiBpo o 4 ACGEIC KOl LETPNOOUE TO YPOVO EKTEAECTG TNG KO-
Oepiog. H mpdn @don eivan n ExtractMin() cuvdptnon mov naipvel xpoévo avaroyo pe
O(logn), n devtepn givar N AN VIOAYIGUOV Yl0. TNV EKTiUNGT TNG 0doTaoNS (YPauUn
9 oto listing 4.4) ano6 v Tnyn, n Tpitn eivan DecreaseKey() Aeitovpyio koun tétapn ot
EVNUEPADGELG TNG OTOGTOGCTG KOl TOV TPONYOVLEVOL KOUPOV GTO LLOVOTATL GTOVG IVOIKES
dist kou pred (ypappég 18-19 oto listing 4.4). To oyfua 4.2 Tapovcidlel to anoteAéc ot
Hag yro 500 TuKvoLg Ypagpovg (évay rmat ypdeo pe 1M xopueég kot 100M axpég, Kot évay
random ypdpo pe 10M kopveéc kot S00M axpég) Kot évav apatd ypagpo (rmat pe 100M
Kopueéc Kot 100M akpég).

Listing 4.4: O14 ¢doeig tov aiyopifuov.

while Q not empty do
start_timer (extract_min)
u «— ExtractMin(Q);
stop _timer (extract _min)

done « O0;

foreach v adjacent to u do
start_timer (compute_time)
sum «— d[u] + w(u, v);
stop_timer (compute_time)

Begin—Transaction

67

if d[v] > sum then
start_timer (decrease_key)
DecreaseKey (Q, v, sum);
stop_timer (decrease_key)
start_timer (update_ time)
d[v] < sum;
plv] <« u;
stop_timer (update time)

End—Transaction

end

Begin—Transaction

done « 1;

End—Transaction
end

rmat-node-1M-edge-100M random-node-10M-edge-500M rmat-node-100M-edge-100M
Time elapsed in serial execution (neighbors=5, retries=1) Time elapsed in serial execution (neighbors=5, retries=1) Time elapsed in serial execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

Time (sec)

6| extract_min 1 B extract_min
B compute_time B compute_time
4f- WM decrease_key 1 W decrease_key
EEN update_time EEN update_time
2} (HEE rest_time 1 207 | m rest_time

BN extract_min
B compute_time
B decrease_key
SOr| mmMl update_time
B rest_time

1 1 1
Number of threads Number of threads Number of threads

Yypo 4.2: Aéothoynon tov 4 pdcemv Tov GepLakov aiyopifuov oe 3 dwaupope-
TIKOVG YPAPOLG.

270 TPOTEWVOUEVO GYNpa Tapaiinioroinong povo n decrease key ko 1 update gdon
umopovv va, taparinAiicfodv. Ta helper threads exteAovv KAmO10VG VTOAOYICUOVE, £TGL
wote 7o if branch Tov main thread (ypapuun 13 oto listing 4.4) vo extehectel @¢ true At-
Y0TEPEG POPEG. ZVHPmVA U TO oxfua 4.2 0 KAGdog avtdg etvan mepimov 1o 12-25% tov
GLVOAKOV ¥pOVoL exTéleoTg Tov main thread. "Etot, To main thread pmopei va kepdioet
£€va, TOAD LKPO TOGOGTO TOV GUVOALKOV ¥POVOL EKTEAECNG KL VTN 1) TAPOAANAOTOINOT
pmopet va Tpoceépet pikpn anddoon (speedup). Ot extract min Kol compute QAGELS TOL
alyopiBpov mpémet va exteAovvTon Kot amd to main thread yio 6Aovg Tovg KOUPOLE Kot
Yo OAEG TIC OKUEC. UG OMOTELEGLO, GUUTEPAIVOLLE OTL 0 akyoptBpog Tov Dijkstra givon
£vag 000KOAN TOPUAANAOTOGLOG OAYOPIOLLOC KOl TO HEYAAVTEPO PEPOG TOV alyopiBpov
givar og1p1oKo.

Ytov rmat-node-100M-edge-100M ypdepo n extract min @don anotelel Eva peyd-
A0 Lepidlo TOL GLVOAKOD YPOVOL EKTEAEGNC, CLYKPITIKA LE TOLG GAlovg 2 ypdopove. H
ExtractMin() cuvaptmon diopket ypdvo avaroyo tov O(logn). Kata cvvénewa, 660 me-
pLecOTEPOVG KOUPOVG £xEL €vag YPAPOC, TOGO peyolvtepn gival 1 dopun binary heap kot

68

1660 TeplocdTepo dlapkel 1 ExtractMin() cvuvaptnorn. Avtd 10 copnépacia aneikovile-
Tat 6to Yphpo rmat-node-100M-edge-100M, mov eivar £vag ToAd peydrog ypdoos. Xto
010 ovumépacpa KataAnyovue kot yio v DecreaseKey() cuvéptnon, Kabdg Kot auth
dapkel xpovo avaroyo Tov O(logn).

A7 v GAAN TAELPA, GTOVG GAAOVG 600 Ypdpovg (rmat-node-10M-edge-500M ko
random-node-1M-edge-100M) n compute @don givorn mo ypovoPdpa eaomn Tov adyopid-
pov. YroAoyilel tn véa andcTooT IOV GUVOEETAL e [iol O Kot ETOVOAAUPAVEL VTV
Vv Sdkacia Yo OAEG TIG aKpéEG TOV Ypdpov. Qg amoTéAEGHLA, OGO TO TLKVOG £ivol 0
YPAPOG, TG0 TEPIEGOTEPO dLopkel avth 1 eaot. O ypdpog rmat-node-100M-edge-100M
glvar €vag apotdg Ypaeog e avoroyio akudv tpog kouPovg 1, omdte kbbe emavdinyn
tov e&mtepkov while loop amattei pdvo pia exavainym Kot péco 6po g compute Qi-
o1G, EVO GTOVG TLO TUKVOVS YPAPOVG 0VTH ETAVOAAUPAVETOL TEPIGGOTEPES POPES OE KAUDE
emavainym tov while loop. Qc¢ ek tovTOL, 1| COompute EAcN gival o ¥POvoROPU GTOVE
TUKVOVG YPAPOLG KOl OEV ATOTEAEL PLEYGAO LEPOG TOL GLVOMKOD YPOVOV EKTEAEGT|G GTOVG
apaLovg YPAPoLG,.

21N GEPLOKT EKTELEST) OV VILAPYOLY KaTd KVPLo AdYo conflict aborts, apov vdpyet
povo éva vijpa. XpnolHoTotoape Ty TeXVIKT Tov padding e okomd va amo@OyoLpE TO
oawvopevo false sharing mov o 0dnyovoe oe data conflicts otnv nepintwon mOALATADY
yudtov. Emopévac, ot dopég tov aiyopiBpov onmg o d[] kot o p[] wivakag de ypeidle-
tal vo eivan padded ot oeprokn extédeon. A&loloynoape 10 Geplakd aiyopifpo yuo
SPOPETIKOVS YPAPOLG YPIG VO XPTGLLOTOI0VUE TNV TeYVIKT padding 6Tig Sopég Kot Ta
OmOTEAEGLOTA oG paivovTol 6To oynpa 4.3.

rmat-node-1M-edge-100M random-node-10M-edge-500M rmat-node-100M-edge-100M
Time elapsed in serial execution (neighbors=5, retries=1) Time elapsed in serial execution (neighbors=S5, retries=1) Time elapsed in serial execution (neighbors=5, retries=1)

0 ol
padding no_pad_dist no_pad_pred no_pad_pred_dist padding no_pad_dist no_pad_pred no_pad_pred_dist padding no_pad_dist no_pad_pred no_pad_pred_dist

Yypa 4.3: ASoAdynon g teyviKng structure padding 610 ceplaxd aikydpiopo.

Ta andteréopatd pog deiyvouv 0TL axopa Kot otav og ypnoiponotovpe padding otig
dopég, M avaloyia Twv 4 eAce®v TOL OAYOPIOLOV OTO GUVOMKO YPOVO EKTEAECNG O~
popével 1 1d1a. To potifo tv SlopopeTikdv pacewv gival id10 o OAES TIC EKTEAECELS.
Qo1660, TOPATNPOVHE OTL OTOV O ypnopomolovpe padding o GLVOAKAC YPOVOC EKTE-
AEONG LELMVETOL CTUOVTIKG, €OWKE 0TOV apaipovue to padding and tov mwivaxa d[], o
omolog ypnoylonoteital TepliocdTEPO GtV compute PAon wov gival 1 wo ypovoPopa yio
TOVg TLKVOUG Ypdpovs. Xmpig to padding, Sradoyucd otoryeio amobnkevoviatl oty ido
cache line. 'Etot, 1o main thread pmopei va Bpet kdmowo otoryeio otnv cache pviun tov
KoL VoL amoQUYeL LETOpopéG cache lines amd tnv koplo pvniun o€ kdOe read/write Agttovp-
vio. Emumiéov, yopig to padding to capacity misses peudvovral, kabaog pio cache line

69

UTopel va amodnKevoel TEPIGGHTEPA TOV EVOC GTOLYELD KOl 1] GUVOALKT] LV atoBnKevEL
MEPLGGOTEPQ GTOLYEIRL ATTO TTPLV.

4.4.2 A&wlroynon tov Tapaiiniov aiyopiduov

A&oroynon Tov aprOpod TOV ETEVOIMYEOVY PO 00GOANYINS TPV TV 00~
KT1)61] TOV KOOOAKOU KAEWOONATOS

Onwg eEnynbnke 610 TPONYOLUEVO KEPAANLO, OTAV Lio doonAnyia amotuyyavel, &o-
vampoonafel. Q6TOG0, LIAPYOLY docoANYieg TOL Ba amoTVYYAVOLY GLuVEXDG. [l TOPdL-
detypa, 6tav to read/write ot piag docoinyiog vrepPel to read/write ot tov HTM ov-
oTHHOTOoC, N docoAnyia Ba yivetar cuvéyela abort e&attiog TG YOPNTIKOTNTOC. X€ QLTHY
v mepintoon éva evorlhaktikd povoratt (fallback path) ivon amapaitmro. Xto oyqua
pag, to fallback path viomoteitan pe éva coarse-grained locking k@duka mov ypnoLomotel
éva kaBoAko Kieidopa potpalopevo yio OAa To VILOTO TOV TPOGTATEVEL TO KPIGILO TUN-
pa. Av éva vijpo amokTioel To kaBolkd KAeldwpa, kdbe dALO Vi de pUopel Vo Tpoym-
pNoEL 670 d1kd TOV Kpiotuo T Kot Oa yivetal cuveydg abort uéypt va ameievfepmOet
70 KAEId O,

A&oroynoape v anddoorn Tov adyopiBpov yio S10popETIKONG aPLBUOVS ETOVAAN-
YEDV UG S0GOANYING TPV TNV odKTNGN ToL KaBoAuob kKAeddpotoc. [IpdTa, To main
thread extelei éva cuyKeKPLUEVO 0plOUO ETOVOANYE®DY Yo pLlio SOGOAT i Kot av EETEPA-
o€l 0vToV ToV apliud egattiog dradoykdv transactional aborts, waipvel To KAEd®, OAO
ta. helper threads yivovtai aborted kot ektedei 10 kpioipo Tuqpo pe éva coarse-grained
locking tpémo. Ta helper threads de pmopodv va amokToovy ToTé T0 KOOOAKS KAEIdwm
(ameptoplotog aplfUog ETAVOANYE®Y HidG S0GoANYiaG), Yol dtopopeTikd Ba kabvote-
povcav To main thread kot 8o TopepmTodILoy TNV TPOOOH TOL PEBVOVTAG TNV 0TOOOGT] TOV
alyopiBuov. Ta oynuata 4.4 kot 4.5 napovstalovy pio a&lordynon g arddoong yio
SopopeTKd apliud emavoinyemv piag docoinyicg tov main thread (évog random-node-
IM-edge-10M ypdaopo kot évag rmat-node-10M-edge-500M) eEepevvmvtag S yeltoveg yio
relaxation og kd0e SocoAnyia.

random-node-1M-edge-100M random-node-1M-edge-100M

Time elapsed for retries of abort in nsp thread (neighbors=10) Time elapsed in retries of abort in nsp thread per thread (neighbors=10)

X 1 retry
s Db 5 retries .
@@ 10 retries
+—+ 20 retries f
3 3

I /A 1 2
S N)/ S el
‘N

B @@ 4 threads

‘—A—_"/ 4+—+ 7 threads

A A A 14 threads
94 28 threads

7 14 28 1 5 20
Number of threads Number of retries of abort

Yympa 4.4: O xpovog ektéreong yua évav random node-1M-edge-10M ypdaopo yo
SPopeTIKO ap1BUd eTavornye®Y ava docoAnyio Tov main thread.

70

rmat-node-10M-edge-500M rmat-node-10M-edge-500M
Time elapsed for retries of abort in nsp thread (neighbors=10) Time elapsed in retries of abort in nsp thread per thread (neighbors=10)
%X 1 retry
PP 5 retries

-0 10 retries /

\ = —
A / AN -
A\ l/
Y / " L s

r/"—., @@ 4 threads
+—+ 7 threads
/ A A 14 threads
N [a 44 28 threads
N X N
A

1 2 4 7 14 28 1 5 10 20
Number of threads Number of retries of abort

Time elased (sec)
Time elapsed (sec)

Yympa 4.5: O xpovog extéreonc yia Evav rmat node-10M-edge-500M ypdpo yia
SLOLPOPETIKO aPBd ETOVOANYE®MY avd 00GOANYia Tov main thread.

ZOUPOVO [LE QVTA TO, GYNUATO, 0G0 TEPIGCOTEPEG POPEG i SOGOANYio eEmavaAapPa-
VETOL, TOGO TEPLEGOTEPO YPOVO SLOPKEL 1] EKTEAEST TOV aAyOpiBLLOV. TNV TEPINTMOT LLOG
duvatng emavaAnyng ava docoinyia, 6tov To main thread amotoyet va kdvel commit, ka-
TaAapuPavel opécmg To KAEIdmpa Kol EKTEAEL TO KPIOHO TUMHO ETTVYDOG, VO Ta helper
threads mepyévovv. 'Etot, n extéheon tov main thread eivor moAd Kovtd ot ceplokn
extéleon. Aol to main thread pmopel vo emavardfet T SOGOANYIN TOV TEPLGGOTEPES
©opég (0 apBpdc Tov eravaiyemy avé docoinyia avéavet), kaOe docoinyia dwapkel
TEPLOGOTEPO ATV dLodoyIKa transactional aborts epgaviovtat. 'Etot, o ypdvog extéde-
omMg €ivol KOADTEPOG GTNV MEPITTOOT Hiog dvvarhg eravainyng ava docoinyic. Oco
TMEPLOGOTEPEC OLVUTEG EMOVUANYELG 0vVOL SOCOAN IO ETITPEMOVTOL TOGO TEPIGSOTEPO 1 €-
Kktéleon Tov main thread amoxAivel amd TN GEPLOKN TNV TEPITTOON TOAADV SL0SOY KOV
transactional aborts.

Agdtepov, mapaTnPoVE OTL 01 EKTEAECELS e TEPIOCOTEPEG OO LU0 ETOVOANYELS VAL
docoAnyia &xovv KOAVTEPN KMUOKOGIHOTNTO. 1o Tapddetypa, o ¥povog EKTEAESTG Yid
14 viuato oTig ekterécelg e S kat 10 dvvatég emavornyels ava docornyia yivetol mepi-
7oV 1810¢ pe Vv mepintwon piog Svvatng emovainyng avd docoinyia (oxnua 4.5), eved
OGNV TEPIMTMOAN TOV EVOG VILLOTOG OVTEG SLOPEPOVY GNUOVTIKA. AvTtd cupPaivel yiati 6Tig
EKTEAECELS [E Lo duvaTT ETavAAYN avd docoAnyia Ta helper threads avactélhovtot a-
UECHG Yopig v ekTELODV TOAAG relaxations. XTiC EKTEAECELS LE TEPIGGOTEPEG SVVOTEG
emavolnyels ava doconyia ta helper threads éyovv mepiocdTEPO YPSHVO VO EKTEAEGOVY
relaxations Kot vo o KGvovv commit, £T61 @oTe To main thread va €yet peyoddtepo képdoc.

Téhog, otig exteréoelg pe 28 vipato epeaviletar 1o NUMA effect tng apyitextovi-
KNG oL ypnoporomnke. H petapopd pog cache line omd t pviun tov evog socket ot
VALY TOL GAAOL €xel LEYAAO KOGTOG Kal emnpedlel apvnTikd v KMpokoootnta. O
YPOVOG ekTéAEOT G avEGvETO eatTiog TV akpiP®v petapopdv cache lines amd T pviun
evog dAlov socket. MmopovLe emione Vo TapOTNPIGOVIE OTL O XPOVOG EKTEAEONC [E pia
duvart| emavaAnyT avd Socoinyio eitval YEIPOTEPOG A0 TIG AALEG EKTEAEGELS LIE TEPIO-
00TEPEC duvaTEG EMOVOANYELS avd docoAnyia. Avtd opsiletarl 6To Koo polpaldpevo
KkaBolkd KAeidwpo. To main thread ypdpel oe 0vtd TO KalBOoAIKO KAEISU Kot KAOE PpO-
pa wov éva helper thread Egkvaer pio docornyia kot Tpootadel vo Stofdcel To kaboAd

71

KAEIO®UO, TPETEL VO, TO LETAPEPEL TOUVMOG Ad W0 TO OTOUOKPUGHEV UVAKY. AVTO
glvat apkeTd damavnpd oTic ekTEAEcEIC ToL To main thread ypdaget To KabBolikd KAeidmpa
TOAD GLYVA OTTAC GTNV EKTEAEOT LE pia duVATH EXAVAAYN 0V SoGoANYia. Xe avTiV TNV
extéheon otav éva helper thread, To onoio Ppicketon oe drapopeTikd socket amd To main
thread, o1ofdlet To KaBoAiucd KAeldwA, TPEMEL VO, TO PETAPEPEL OO PO ATOUAKPVGE-
vn pvnun yotl £xet ypaetel amd to main thread pe peydin mboavotnta. Amod v GAAn,
o€ eKTEAECELG e TTEPLEGATEPEG OLVOTEG EMAVOAYELS avd docoAnyia To main thread de
YpapeL TOG0 cvyva To KabBolkod Kieidmpa kot £tot, ta helper threads dev extelovv da-
TOVNPES LETOPOPES TOV KABOAKOD KAEWMNATOG o€ KABe docoinyia Tovg. 261000, KabE
docoAnyia SlapKel TEPLOCOTEPO GTNV TEPIMTMOOT dlad0yIK®V transactional aborts.

Axorovbng, eEetdoape Tov apliud TV SUVOTOV ETOVIAYEDY 0vE S0GOANYiN GTa
helper threads. Xtig mponyodpueveg exteréoelg ta helper threads pmopodcav vo eravord-
Bouv pia docodnyia péypt va Kavovv commit 1 vo, yivovv pntd abort amd 1o main thread
otav 1 petaPAntn "done" yivel 1. Ilpoonadnoape va mepropicovpie Tov apBud Tv dvva-
TOV enavoinyenv avd docoAnyio ota helper threads, £é161 @ote va peiwbovv ta conflict
aborts pe To main thread. Ta helper threads pmopotdv va kdvouv éva cuykekpiévo apio-
né emavoAyemv avd Socoinyio kot av Eemepdoovv avtov tov aptBud o mepévouv o
éva while loop péypt To main thread va to €100TOGEL VAL TPOYWPTGOVY GTIV EXOUEVT|
emavainym tov e&mtepikov loop. Yrobétovpe 6t emavarapfdvovtog pio docoinyia yio
Vo KGveL commit HeTd oo Evo GUYKEKPLUEVO OPIORO ETAVOAWEWDY ITOPEL LOVO VO TTPO-
kaAéoet conflict aborts kot de pmopel moté va odnynoel og éva transactional commit. Ta
oynuota 4.6 kot 4.7 anetkovilouv To ATOTEAEGLOTA LLOG Y10 SLPOPETIKO APIOUO dSUVATOV
emavolyemv ovd docoinyia yia ta helper threads.

=1, nsp_relaxations=5)

/
/

Time elapsed (sec)
Time elapsed (sec)

/ B X 1 threa
— [

/ @@ 4 threa

s. A A A A 4+ 7 thre:

JAA 14 threads
-4 28 threads

Xympe 4.6: O ypévog ektéleong otov random node-1M-edge-10M ypdgo yia dwa-
QOPETIKO ap1Bud emavorinyewny avd docoinyia tov helper threads.

Ta amoTELEGHOTA LLOG OELYVOLV OTL OV KO TEPLOPICOLE TV APOUO TV SVVOTMV EMOL-
VOAWE®VY avd S0G0ANYia, 0 GUVOAIKOC XPOVOG EKTEAEGTC TOV aAyopiBpov e BelTidOnKe.
Ta helper threads propobdv va kKdvovy commit Tig SOGOANYIEG TOLG EXAVOAAULPAVOVTAS oV~
TéG MyoTEPES POPEG A TO SOGUEVO aPOLO TOV EMAVOANYE®DY. AKOUA KOl OV LEUDGOLLE
TOV aPLOUO TV EMAVUANYEDY € EVOL TOAD [LKPO ap1Bpd, 50 emavaAnyel, o aptdudg Lotd-
(et pe dmepoc. ‘Etol, ovumepaivovpe 6t dgv vdpyel képdog mepropifovtog Tov aplfpod

72

‘Time elapsed for abort retries for sp threads per thread (retries=1, nsp_relaxations=5)

gy

3

| S X 1 thread
P> 2 threads

00 4 trreads

—_ | |rt7ues
A 14 threads.
PR ot

o EQ o0
Number of abrt retsies

Yympa 4.7: O ypovog extéleong oe €vo rmat node-10M-edge-500M ypdapo yia
SLPOoPeTIKO aplBpd dvvatmv emavolyemy avd docoinyio twv helper threads.

TOV SLVATAOV ETAVOAYEDV avi docoANyia yia Ta helper threads.

A&oroynon tov apldpov Tov yertovov mov egetalovral Yo relaxation avé
docoinyia

INo va amoguyovpe o overhead TOAAGDY PIKPOY SLAC0YIKOV SOGOANYIDV, VAOTO-
cape évo o coarse-grained oy 6TIC SOGOANYIES Y10 VO, EAEYYOVLLE TOVG YEITOVEG TOV
TPEXOVTOG KOUPOL Kot vo ektelovpe relaxations 6e 0vTOVNG. AV EAEYYOVUE TAVD OO EVOL
yeitova o€ o docsoinyia, To overhead ekTéLEoNG TOALDY SOCOANYIDOV LEIGVETAL, KAOMG
€YOVLE PEYOADTEPEG KO AMyOTEPEG d0cOANYieG. Q0TOGO, GE PEYAAOVS YPAPOLG 1| EKTE-
Aeon pioag mo coarse-grained docoAnyiag pmwopel vo odnynoel o€ capacity transactional
aborts, Aoy 0LTO TO oYM IO KAVEL TPOGPOCT) G VOl LEYAAO KOUUATL TNG LVILNG KoL UTO-
pel va vtepPet to read N o write set tov HTM cvotruatoc. ‘Etot, npénet va e€etdoovpe
ToV aplOud TV YEITOVOVY oV eAEYYOovToL Yo relaxation o€ pio SocoAnyia.

A&loloynoape tov adydpiBpo émwg meptypdeetot ota, listnings 4.2 kot 4.3 yio To main
ko ta helper threads, avtictorya. 1o cuykekpyéva, ektelécape pio coarse-grained 6o-
coyia yia yeitoveg oto main thread, eved ta helper threads eAéyyovv povo éva yeitova
v relaxation og kG0e doconyia. Extedéoape tov adydpiBuo yio dopopetikd peyé-
on ypaoov yw 1, 2, 5, 10, 20 kar 50 yeitovec mpog e&€taon ywo relaxation og pio povo
docoinyia. Ta oyfuota 4.8 kot 4.9 deiyvovv ta anotedéopatd pog yio £va ypagpo node-
1M-edge-100M graph kot éva rmat node-10M-edge-500M ypdipo.

Ta amoteléopatd pog emPefardvouy Ty vrdbeon pog Yo pio coarse-grained 60co-
Anvia. apatnpodpe 6TL N TepinTwon mwov eAEYyeTal Evag yeitovag avd docoAnyia £xel
TO XEPOTEPO GUVOMKO XPOVO, OPOD LILAPYOLV TOAAES PIKPES SLDOYIKES SOGOAN G TOV
adedlovv kot yepilovv cache lines g pviung kot avtd givar apketd ypovoBdpo. Kabdg
0 apBpOg TOV YEITOVOV OV EAEYYOVTAL 0VE d0GOANYia aVEAVETAL O GUVOMKOS ¥POVOG
Behtidveron péypt éva cuykeKpévo aptBpd Yertovav. ZTovg LKpovg Ypapovg (random-
node-1M-edge-100M oynua 4.8) 0 KoAOTEPOG GLVOAMKOG YPOVOC eKTELEOTC El@avileTal
v 20 yeltoveg mpog e&€taon o€ pia docoAnyia, EVO GTOVG LEYOADTEPOLS YPAPOLG (rmat-

73

random-node-1M-edge-100M random-node-1M-edge-100M
Time elapsed for relaxations in one transaction for nsp thread (retries=1) Time elapsed for relaxations in one transaction (nsp thread) per thread (retries=1)

%X 1 neighbor’] 9 %X 1 thread
PP 2 neighbors

> 2 threads
@@ 5 neighbors @@ 4 threads
+—+ 10 neighbors +—+ 7 threads

7 \\ +4 20 naenoons ' 1 \ 44 1aures
N //g NN
—3—/ T~

1 2 4 7 14 28 1 2 5 10 20 50
Number of threads Number of relaxations in one transaction

Time (sec)

Time elapsed (sec)

Yympa 4.8: O xpovog extédeong yia Eva ypagpo random node-1M-edge-100M vy
SPOPETIKO aplBpd yertdovmv mpog eEétaom Yo relaxation og pio doGoAnyia Tov
main thread.

rmat-node-10M-edge-500M rmat-node-10M-edge-500M

Time elapsed for relaxations in one transaction for nsp thread (retries=1) Time elapsed for relaxations in one transaction (nsp thread) per thread (retries=1)

%X 1 neighbor %X 1 thread
PP 2 neighbors Db 2 threads
®-® 5 neighbors 1 @-@ 4 threads
+—+ 10 neighbors +—+ 7 threads
A A 20 neighbors A A 14 threads
44 50 neighbors 4 4 28 threads

Time (sec)
Time elapsed (sec)

RN \

45\’\ \‘\\XA ” \\ A
N /3 N

Zwm a \:\/.

1 2 5 10 20 50
Number of threads Number of relaxations in one transaction

Yympa 4.9: O ypdvog ektédeong yua €va ypdeo rmat node-10M-edge-500M yuo
SpopeTIKO aplBud yertdovav tpog e€étaon yio relaxation og puo SocoAnyio Tov
main thread.

node-10M-edge-500M oynpa 4.9) o kaAdtepOg XpOVOG eKTEAEGTG EPOAVIlETOL OTNV TTEPT-
ntoon tov 10 yertovov. Katd cuvéneta, pmopovie vo GOUTEPAVOLLLE OTL GO LeYOADTE-
pog gival o Ypapog, 1060 Aydtepo coarse-grained mpémet va eivar pio Socoinyia, apov ot
mo coarse-grained docoAnyieg odnyobv o€ capacity transactional aborts oTovg peydhovg
YPAPOC.

Ag0tepov, 1 TEPITTMOT OV EAEYYETAL EVOG YEITOVOC OVE SOCOAN Wi KAMUOK®DVEL KO-
A0tepa, Kabmg o aplfuds Tov vnpudtov avédvetal. Xe TV TNV EKTEAEGT 0 XPOVOG Y10
7o éva VIO €lval 0 XEPOTEPOG KOl £TGL, OGO MO TOAAG VIHOTa TpocBEéTovpe, TOCO Te-
procoTePo KEPSOG Exovpe. Ot exteléoelg e Tavw and Evav yeitovo mpog eE€Toomn ava
docoAnyia dev gival 1660 xpovoPopeg Kal TPocHETOVTAG TEPIGGOTEPU VILATA OEV £XOV-
HE T0G0 peyddo KEPSOG (LKPOTEPT KAUOKMOGIHOTNTO) A0 TNV TEPITT®OT £EETALONG EVOGC
yeitova ava docoinyio. Téhog, ol extedéoelg pe 28 vipata sivor ypovoPopeg emeldn M
NUMA 0pyITEKTOVIKT TOV GUCTNHOTOC Lo TPOKOAEL akpiPéc petapopég cache lines amd
10 éva socket 610 GALO.

74

‘Time elapsed for relaxations in one transaction

7
Number of threads Number of threads

Yympa 4.10: O ypovog extéreong v éva ypdeo random node-1M-edge-100M
Yo Sl POPETIKO aplBud yerrdvmv pog eE€taon yia relaxation oe pio docoAnyio
twv helper threads.

fmat-node-10M-edge-500M rmat-node-10M-edge-500M

‘Time elapsed for relaxations in one transaction for sp threads (retries=1, nsp_relaxations=5) ‘Time elapsed for relaxations i one transaction for sp threads (retries=1, nsp_relaxations=10)

7
~
V4
/
S

7 7
Number of threads Number of threads

Yypa 4.11: O xpovog ektédeong yia £va ypaeo rmat node-10M-edge-500M yuo
SlpopeTikd aplBud yertdovav tpog eE€taon yia relaxation o€ po S0coANYi TV
helper threads.

10 emdpevo Ppa, exteréoape tnv ida a&loloynomn ko yo ta helper threads, emiong.
Kpatioape otabepd tov apBpd twv yertdvov yio 1o main thread oe 5 ko énerta o 10
Kot vAomomoape emiong pio coarse-grained docoAnyia yia ta helper threads (1, 2, 5, 10,
20 yeitoveg mpog e€étaon o relaxation avd docoinyia). O okomdg glvar vo avaAOGOVLE
ot €EETaoT €xEL TNV KOADTEPT KMUOKOOUOTNTO, KOO OAEG o1 ekTEAéTELS EEKvoY
amd to 1010 onueio. Ta anoteAéopatd pog eaivovtar ota oynuota figures 4.10 ko 4.11.

%10 random-node-1M-edge-100M ypdpo ot ekterécelg pe 5 kan 10 yeitoveg mpog e-
E€toon avd docolnyia £xel TV KOAVTEPN KAMUOKOOLOTNTO. ‘OUOole LE TIG ToPATAvV®
exteLécELg, 660 1 docoAnyia yiverol mo coarse-grained, T0G0 0mOEEHYOVUE SATAVIPES
Sl0d0yIKES LKPEG d0GOANYiES, OAAG Oev £x0oVV KEPDOG OV EEMEPAGOVILE VO GUYKEKPIE-
vo apBud yerrovaov. Xto rmat-node-10M-edge-500M ypdpo ot ekteréoelg Tav 2 Kot 5
yerrdvev mpog eE€taon avd docoinyia divovv v kaAvtepn KApakmoipudtta. Eedcov
0 Ypaog gival PeyaAVTEPOC, 1| docoANYia TPEMEL va elval AydTEPO coarse-grained amd
ouTég o€ HKpOTEPOVS Yphpovsc. AvTog Kével TpdoPaon o€ pHeyaldTePO dVAdIKO GOPO

75

Kot propet va vrepPel to read/write ot tov HTM cvothpartog eAéyyovtag yia relaxations
pucpdteEpO apBud yertdvov péca og pio SocoAnyia.

4.5 AmoteléopoTa

4.5.1 H amdédooon Tov aAiyopiOuov

Yy a&loAdynon g amddo6nG TOV ayAOPifHoL SOKIUACAUE YPAPOVS OLOPOPETIKNAG
TOKVOTNTOTAG KO SO, Xpnoiporomoope ypdeovg pe 10K, 1M, 10M kot 100M kopv-
@¢¢ tomov Random ka1 R-MAT. Entiong, a&loloynoape Tov aAyopiOpo yio £va mporyotiko
001K06 diKTLO, £va 0d1Kd dikTvo oty Apepikn (USA-road-d.USA). To oynpa 4.12 Tapov-
odler v amoddoon mov mETHYALE e TNV VAoToinon tov aiyoptduov tov Dijkstra mov
neprypdyape (listings 4.2 kot 4.3). H anddoon yio n vipata vroroyiletar og o Adyog
TOV YPOVOL EKTEALECNG TOV GELPLOKOD 0AYOPIBILOV TPOG TNV EKTEAEST] TOL BAYOpiBpOL e n
viuata, n-1 and to omoia eivon helper threads. To mpotevopevo oynpa anédwoe onpoy-
TIKO KEPOOC OTIG MEPLGGOTEPEG TEPTMSELS. H péyiotn anddoon ntav 1.39 yia tov ypdeo
random-node-1M-edge-100M pe 14 vipoza.

Speedup (neighbors=5, retries=1)

ige-100M
A-road-d.USA-node-23947347-edge-58333344]

Speedup (Serial/Parallel)

1 2 4 7 14 28
Number of threads

Yympa 4.12: H anddoon tov adyopiBuov yio dtopopetikd TAN00¢ viudtov yio
YPAPOVG SLOUPOPETIKNG TUKVOTNTAG.

Onwc e€nyeitan oo [21] ot oeplaxn ektéreon, 0 ¥pdvog Pmopel vo extiun el og:
Tseriat = n*x O(logn) + d xn*x O(logn), 4.1)
OTOL N AVTUTPOCOTEVEL TOV AP TOV KOPLO®Y 6TO YPapo Kot d TN péor tiun e&epyo-

pevav okpov otig kopueés. H ExtractMin() cuvdaptnon Eodevet ypovo n + O(logn) ko
n DecreaseKey d * n * O(logn), nepimov.

76

O yp6voC EKTELESNG TOV TAPAAANAOD GYNILATOG TOV TEPLYPAPNKE UTOPEL VoL EKTIUNOEL
g

Tparallel =nx O(logn) +axdxnx*O(logn),a < 1 (4.2)

omov a givar o Aoyog twv DecreaseKey() Aettovpyidv Tov main thread mpog awtég mov exte-
AéoTnKOV 0T GElPlaKN TepinT®mon. Mia Tpocyyion g anddoong e fdon to relaxations
Tov main thread mov 6pmg o AapPavel VEOYIY TO ¥POVO TOV E0SEVETAL GTO GLYYPOVIGLO
TOV VIILATOV Kot TIg KaBuoTepNoelc amd dtadoykd transactional aborts pmopet va vTtoho-

yiotel o¢ e€ng:

1+d

= 43
5 l1+axd 4.3)

[pénel vo Tapatnpioovpe 0Tl 1 andd06T GUVIEETOL UE TNV TUKVOTITA TOV YPAPOV.
To cvumépacpo avtd pmopei va eEaybel kot omd Tov opiopd e amddoong 4.3. Zopemva
LE TO ATOTEAEGHLOTO TOV oXHaTog 4.12, Y10 TOVG 10 TVKVOVS YPAPOLG, 1) ardd0oT| Eival
peyarvtepn, kabmg pmopel va egoybel teptocdTEPOG TAPUAANMGUOG UTO TOV E0MTEPIKO
Bpoyo Tov adyopiBuov. AvtiBétwme, ot apaioi ypapot Onwc o rmat-node-100M-edge-100M
YPAPOG, EMTPETOVY TEPLOPIGLEVO YDPO Y10 TAPOAANAGLO KOl 001 YOOV GE YOUNAN amddo-
on. EmmAéov, 1o oyfuo ovtd anokaAdmtel 61t 1 amdd0or avEAVETOL OGO YPNCUYLOTOLOVUE
nepLocoTepa vijpato. H amddoon Bertidvetan puéypt £va péyloto onpeio Kot HETA amd 10
01010 M YPNON TEPLGGOTEPMOV VILULAT®V 0dNYElL o vIToPdOion ¢ anddoons. O apBpde
TOV VIUATOV Yo vo emttevyBel a0to 1o péytoto onueio oyetiletal pe Ty muKvOTNTO TOV
ypaeov. I'a mapdderypa, otov apatd ypdeo rmat-node-100M-edge-100M 1 avénon tov
ymudtev and 7 ot 14 peidvel eddyiota v omoddoon kot oto Ypapo USA-road-d.USA-
node-23947347-edge-58333344 n anddoon mopapével oxeddv 1 idta. Téhog, oty mepi-
TTOON TOV 28 VNUAT®V 1 000061 G€ O6A0VG ToVg Ypdpovg vroPabuileton e&ottiag Tov
NUMA effect. To cvotnud pog sivon pio NUMA apyrtektovikn pe 14 vijpoto og ke
socket. 'Etat, n yprion 28 vnuatwv og dvo sockets odnyel oe akpiPég petapopés cache
line amd to éva socket 6To dALO Ko emnpedlel apvnTIKA TNV KAMUOKOGUOTNTO.

4.5.2 Avoldovtog TEPLOGOTEPO TO. UTOTEAEGUATO

Y& auTiv TNV evOTNTa B0l TPOGTAONGOVLE VO AVOADGOVLE TEPLGGOTEPO TO GYN LA TOV
neprypavape. EEetdoape 1o képdog tov main thread o€ relaxation, To 1060616 TV abort
Kol To ypovo mov odeveTar o€ kBe Aettovpyia Tov main thread ko ypNCLOTOGALLE
OAOVG TOVG TTPOTYOVUEVOVG TPAPOLS. Tlapovcialovpe KATOIEG OVIITPOCSMTEVTIKESG EKTE-
AEGELC LE YPAPOVG SLOPOPETIKNG TUKVOTNTOC, KOOMG 01 VTOAOITOL £X0VV TOUPOUOL0 G-
TEPUPOPEL.

To oynpa 4.13 deiyvel Ty katovopr Tov relaxations Tov EKTEAEGTNKOAV OVALEGH GTO
main kot ta helper threads. Oco o apiBuog T@v vnpdtov avédvetatl, 1060 o relaxations
7oL Kdvel To main thread peidvovrot kot avtd tv helper threads avEavovrat, dikaioho-
yovTog TV Beltiooon oty amddoct. Tov apald Ypdeo, ta relaxations tmv helper threads
d¢ pumopovv moté vo. Eemepacovy awtd Tov main thread, kKabmg avtdg givar Evag apatds

77

vpapog kot ta helper threads 6e pmopovv va Eepoptdcovy ToALG relaxations amd To main
thread. Xpnoiponowdvrag to 28 vijpato 1 KMpokocpotnte vrpaduileton eéattiog Tov
NUMA effect.

random-node-1M-edge-100M rmat-node-10M-edge-500M
Relaxations (neighbors=5, retries=1) 1e7 Relaxations (neighbors=5, retries=1)

3500000 *-X main thread] %X main thread
\ > helper threads P> helper threads

3000000

2500000 /’\

200000

150000 N /

1.
1000001 /
0000 / 0.5

1 2 4 7 14 28 1 2 4 7 14 28
Number of threads Number of threads

Number of relaxations
Number of relaxations

rmat-node-100M-edge-100M USA-road-d.USA-node-23947347-edge-58333344
1e7 Relaxations (neighbors=5, retries=1) 1e7 Relaxations (neighbors=5, retries=1)

%% main thread / > %—x_main thread
4.0 > helper threads 1 > helper threads
35 \\ 2.0

w

Number of relaxations
3

Number of relaxations

5/
1. —
) //

~

1 2 4 7 14 28 1 2 4 7 14
Number of threads Number of threads

Yympa 4.13: Katoavoun tov relaxations avapeso oto main kot tao helper threads.

To oynua 4.14 anewdvilel Ttov apBud twv commit Kot abort Tov main thread. To
main thread vopiotatot éva ToAd pikpd apBuod abort, £161kd GTOVG TVKVOLG YPAPOLS. Av-
16 onpaivel 0t axdpa kot 6tav ta helper threads de coppdriovy oe ypriciun dovAieia, dev
mapepmodifovv v mpododo tov main thread. To main thread tpéyet oxedov otV ToyOTN-
TO, TNG CEPLOKNG eKTELEONC. Mia onpovTiki mapatipnon eniong eivat 61t o aptBpdc tov
transactional aborts oto main thread e£aptdtar omd T0 péyebog Tov write set g d0co-
yiag. Oco mo peydro gival avtd 1o 6eT, 1660 peyarvteprn mbovotnta yio conflict v-
napyel. Emiong, oty mo coarse-grained 60coAnyia Tov vAomolcaLe yio To main thread,
VIAPYEL peydAn mhavoTnTa Y10, capacity aborts 6tovg peydiovg ypapovg cav to USA o-
S0 dikTVO, OOV OTNV EKTEAEST TOL main thread vdpyovv ToAAG transactional capacity
aborts. TéLog, 1 TpocONKN TEPIGGOTEP®Y VILLATMOV OEV 001 YEL GE aHENGON TOL 0PIOOD TV
aborts. 'Eto1, vmofétovpe 6t av dev vanpye to NUMA effect, o adydpiBpog 6o odnyovoe
6€ KaADTEPT OTOS0GT KOl Ylo TEPLeTOTEPA 0o 14 vipata.

Ymv nepintoon tov 28 vnudtov to transactional aborts avEdavovtat. Mia poévo do-
coAnvyia dtapkel TepiocoTepo ypovo e€attiag tov NUMA effect. Ot petapopég tmv cache
line eivar axp1Pég kot draprohv ToAD ¥povo, KOO avTéS petapépoviol omd pio amopa-
Kpvouévn pvnun. Eedcov n docoinyia eiva o ypovoPopa, uropet va, yivel abort e pe-
yolvtepn mbavotnta. [Ipdtov, data conflicts givar mepiocdtepo mbavo va aviyvevbodv

78

random-node-1M-edge-100M rmat-node-10M-edge-500M
2567 Aborts of nsp thread (neighbors=5, retries=1) 1.21e8 Aborts of nsp thread (neighbors=5, retries=1)

™
o

1.5f

=)
Number of commits/aborts
o S
o

o
Y

Number of commits/aborts

o
o

[commits
A aborts

o
N

B commits
A aborts

1 2 4 7 14 28 . 1 2 4 7 14 28
Number of threads Number of threads

rmat-node-100M-edge-100M USA-road-d.USA-node-23947347-edge-58333344
Aborts of nsp thread (neighbors=5, retries=1) Aborts of nsp thread (neighbors=5, retries=1)

~
o

I
0

N
o
n

n

1.0

Number of commits/aborts
Number of commits/aborts

=3
o
0

[commits B commits
A aborts Bz aborts

o
o

0.0

Number of threads Number of threads

Yympoa 4.14: O apBuodg Tov commits/aborts Tov main thread.

o€ o ypovoPopeg docoAnyies. Kot devtepov, av pior Socoinyio dlopkel TEPIGGOTEPO
amo éva KPAvto xpovov, 0 YPOVOSPOLOAOYNTIS TOL AEITOVPYIKOD GLGTHHATOS Ba Bydiet
) deypyoaoio omd tov enelepyaotn Kot 1 docoAnyia Oa yivel abort Adym time interrupt.
210 rmat-node-100M-edge-100M ypdago, ta transactional aborts ota 28 vipata e&outiog
tov NUMA effect av&avovtatl onpovtikd, yroti outdg eivor o peyaldtepog ypapog Kot ptio
docoAnyia dtapkel Tapa TOAD YPpOVO.

To oynuo 4.15 mapovctdlel 10 T0c0GTO TV GLVOAIK®Y transactional aborts yio OAa ta
VILOTO GTO GUVOALKO aplBpd SocoAnyidv. Opoimg, o1 ypapot Le LYNAT TUKVOTITA EXOVV
HiKkp6 mocootd transactional aborts, KATL TOL dikalO0A0YEL Kot TV 0mdO0GT TOV £YOLV, €-
VO 01 apatol Ypaeot £xouv LYNAOGTEPO TOGOGTO GLVOAMK®MV aborts. To pkpd T0600Td TV
transactional aborts dgiyvel 0Tt 01 TEPIOTOTEPES TPOGPAGELS GTNV KOV dopn SESOUEVOV
elvaw non-conflicting. EmmAéov, mapatnpodpe 61t 6Toug TuKVOS Ypapovs, kabmg apid-
UOG TV VMUATOV avEAVETAL, To T0c0GTO TV transactional aborts avédvetat exiong, apov
N mlavoTnTa Vo vTapEovy mepLocoTePe; conflicting TpocPdioelg sivar peyodvtepn. Avtt-
0¢1mg, oTOVG BPALOVS YPAPOVG OTT™G oTov rmat-node-100M-edge-100M ypdgo, o aptBuods
TV transactional aborts dev av&aveTal KaOMG TPOGHETOVLE TEPLGGOTEPN VILLOTA EMELON
n mlavotnta yuo conflicting mpocsfacelg eivarl pikpy atovg apaiovg ypdeovg. Opoimg
LLE TTPOTYOVLLEVA GYNILOTA, TO TOGO0TO TO transactional aborts avEdveral oty mepinTmon
TV 28 vnpatov, aeov 1 docoinyia dtupkel tepiocotepo eEattiag tov NUMA effect o
yivetan mepLocOTEPO EMPPENNG o€ transactional abort.

To oynuo 4.16 deiyvel to xpovo mov Eodevetar amd to main thread otnv ExtractMin()

79

40 Abort ratio (neighbors=5, retries=1) . Abort ratio (neighbors=5, retries=1)

g “- random-node-1M-edge-100M

L..|EEE rmat-node-10M-edge-500M

aborts / total transactions * 100%
aborts / total transactions * 100%

Number of threads Number of threads

Abort ratio (neighbors=5, retries=1) N Abort ratio (neighbors=5, retries=1)

[|EEE rmat-node-100M-edge-100M

aborts / total transactions * 100%

aborts / total transactions * 100%

4
Number of threads Number of threads

Yynpa 4.15: To 1060010 TV GLVOAIK®OV transactional aborts Yo 6OAa To vijpoToL
GTO0 GLUVOAKO aplOUd dOGOANYLDV.

ouvdptnon, oto transactional pépog Tov kKmdKa (Ypapuég 21-37 oto listing 4.2) kot to
¥PpOVO OV dLopKOVV 01 VITOAOITOL VTOAOYIoUoi Tov main thread. H ExtractMin() cuvdp-
o Topapével otadepn yio Kabe ypdpo, Kabmg dev ennpedleTal 6TO GO TOV TEPTYPA-
yape. O xpdvog mov EodeveTar oe VTNV ALEAVETOL LOVO OTNV TEPITTOOT) TV 28 VN ILATOV
e€artiog TV axpipav petapopdv cache lines oty NUMA apyitektovikn pog. Agdtepov,
N tpocOnkm mepiocdTépmV helper threads peidvet 1o ypodvo mov Eodevetat 6€ S0GOANYi-
€G, T0 TOPAAANAO KOpupdTt 6T0 oynua poc. To main thread extelel Aydtepa relaxations.
Extelel AMyotepeg popéc t domavnpn cvvaptnon DecreaseKey() kot maipvet ypovo ovd-
hoyo pe O(logn) (6mov n givar 0 apBUOS TOV KOPLODY TOV YPAPOV) KOl MG ATOTELEGILOL
0 XpOVoG ekTéleong oe transactional mode pelmvetat.

4.5.3 A&woroynon g TeYVIKIG structure padding

‘Olec o1 TpoNyoLLEVEG OELOAOYNOELS OTOTEAEGLLATOV EYIVOV YPTCLLOTOLOVTOG TNV TE-
yvicn Tov padding otig kowég dopég. Xpnoonomoape padding otov distance kot prede-
cessor mivako, Kafhg eniong Kot otovg node array kot where in_heap mivaxo, mov ypn-
GLULOTTOLOVVTOL Y10 TV CVOTOPACTACT) TOV YPAPOL kot efvar emiong Kowvég SopéG avapeca
otovipota. Yrnobéoapue 6t av de ypnoyonotodoape padding, o aptOpudg tmv transactional
aborts Oa NTov LYNAOTEPOG Kot €101, 1| eKTéELEON o€ transactional mode Oa diaprovoe me-
pPLecOTEPO YPOVO. Alapopetid vipota Tov o ekteloby Aettovpyieg og ave&aptnta ded0-

80

random-node-1M-edge-100M rmat-node-10M-edge-500M
. _Time elapsed in parallel execution (neighbors=5, retries=1) 2o _Time elapsed in parallel execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

EEm extract_min
B transaction_time
EE rest_time

EEm extract_min
B transaction_time
HEl rest_time

4 2 4 7 14
Number of threads Number of threads

rmat-node-100M-edge-100M USA-road-d.E-node-3598623-edge-4873235
-,_Time elapsed in parallel execution (neighbors=5, retries=1) _Time elapsed in parallel execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

Q
S

EEm extract_min
B transaction_time
EEl rest_time

EEm extract_min
B transaction_time
EEl rest_time

1 2 4 7 14 28 1 2 4 7 14
Number of threads Number of threads

Yympa 4.16: Koatavopn tov ¥pdvov oTic d14popeg PACELS EKTEAEGNC TOL main
thread.

péva mov Ppickovrtal otnyv idwo cache line, Ba yvotav abort, kabmg o Tpoaypatikdé HTM
cvoTnud pog aviyvevel conflicts og eninedo cache line. Qot600, Y®pPig TN Yo padding
N WU uropel va amobnkedoel TEPIoGOTEPN GTOLXELD TNG OOUNG KOl KOTO GUVETELD £-
va vijpo. pmopet va Ppet éva otoryeio oty cache pviun pe peyaidteprn mboavotnta, vo
amovyel pia axkpipn petapopd cache line kat vo eKPETAAAELTEL TN XPOVIKN KOL YOPIKN
TOmKOTNTA.

Me okond va emPefoardcovpe TV VTOBECT LAG Yo TO XPovoPOPEG EKTEAEGELS GTNV
nepintoon mov dg ypnolponolovcape padding, extedécape Tov aAyOPIOLO 0QOIPDOVTOG
70 padding amd T Kowég dopég dedopévov. Ta amotehéopatd pag omekovilovial 6To
oynpa 4.18. Avtd amodeikvoouy 6Tt 1 vtobeoT pag MTav AdBog, Kabdg o ¥pdvog Tov
Eodevetan oe transactional mode peimOnke. AlQOPETIKE VAROTO KAVOLY TPOGROoT) G
aveEaptmra dedopéva mov Ppickovtal otny dwo cache line pe moAd pikpn mbavotnro.
AvT6 e€apTtdtol 0md TN HOPON TOL YPAPOV. XTNV o cuVNOIGHEVT TEPITTOOT), Ol AKUEG
GUVOEOVV KOPLOES TTOL ELVOIL OPKETA OTTOLLOKPVOUEVEG 1) LidL ATtO TNV AAAT Ko (0C OTOTENE-
opa o¢ Bpiockovtar otnyv idta cache line. Qg ek TovTOL, pUTOPOVUE VAL KATAANEOVE OTL OV
Ko og ypnoyonomoape padding, avtd dev ennpéace To mTocootd Twv aborts. To oynua
4.17a0 napovcidlet pio avomapdoTacn Tov SLadKov PO Gt UVHHN (01 KOPLEES TOL
popalovtat tnv idwa cache line anewovifovtot pe to 00 ypdpo) kot to oynuo 4.17p0
amekovilel To TpaypoTikd SiKTuo 6To 0010 Ol AKUEG GUVIEOLV KOPLEEG TToV Ppiokovtal
o€ dwpopetikég cache lines. v wepintwon 3 vnudtwov, to TpdTo Viuo Oo eéetdoet Yo

81

relaxation v Kopve" 7, T0 dEVLTEPO TIC KOPLPES 5, 6 Kat To TPito TNV 4. AVTEC 01 TAVTO-
YPOVEG TPOGPacelg exTeEAODVTOL GE KOPLPES TOV Ppickovtal 6 SapopeTikég cache lines
mapa to 0T Og ypnoomoOnke padding. Omote, d¢ Ba eppavicTody transactional aborts.

.\&-we

1 2 | 3 | 4 | 7| i
array repres entation in memory :
(aJ) Avarapdotoon mivaxa 6Tn pviun. (B) To mpaypotikod diktvo.

Yympa 4.17: Toapd 1o 611 d¢ ypnoporomOnke padding, tavtdypova relaxations
EKTEAOVVTOL G KOPLOEC TOL Ppiokovion o€ dapopeTikég cache lines.

Avtifétag, apapdvtog To padding o cuVOALKOG XPOVOG EKTEAEGNC TOL OAYOPiIOLOL
BeAtimOnke. [To ovykekpyéva, petmdnke o ypovog mov £odedeToL o€ transactional mode,
Wwitepo 6tav agapédnke to padding amd Tov mivaka distance, yiati oe avTtov Yivovrol
ol meplocdtepeg mpooPacelc pésa o€ pia docoinyia. To if branch mwov kével mpdofaon
OTIC VTOAOTEG OOpEG ekTELEITON AYOTEPES POpéC. 'ETOL, TO KEPSOGC OO TNV YPOVIKN Kot
XOPIKN TomiKOTNTO o)eTiletan e Tov distance wivaxo. To vipoto pmopei va fpovv €va
otoeio otn cache pvnun pe peyaddtepn mbavotnta otav o ypnoomoteiton padding
Kol VoL amo@Uyouy petapopég cache lines amd v kopo pviun. Emmdéov, amopevyovtog
oVyvéG petapopég cache lines pmopove emiong va amo@vyov e KAOVGTEPTTELG GTOV KOVO
Slowdo LVAUNG 6TV VITAPYEL GLULPOPNOT LVIUNG.

Téhog, mapatnpobpe 6TL Tapd 10 YeYovoc 0Tt apatpécalle To padding to potifo exté-
Aeong mopopével 1o i610. Kabmg o apBudg tov vpdtev avédvetat, 1 KMUOKOGOTNTO
™G ekTédeong ympic ™ ypnon padding otig dopég eivar n idta pe avtny pe ypnon padding.
H amddoom tov adyopiBuov €xet Tig id1eg TipéG ko 1 povn dtapopd ival OTL HELOVETOL O
XPOVOC eKTELEGTC TOV OAYOpiBLoL OTav dg ypnoiponoteitol padding. Xvvendc, n avaivon
HLOG Y10 TNV KALOKOGIHOTNTA Kot TV arnddoon tov aryopibpov dev emnpedletat.

4.6 Xpnowomowwvtog skip list

4.6.1 H skip list doun

H vlomoinom mov wepypdyape xpnoipomrotel Suvadikd cmpo Yo TNV ovpa TPoTEPULd-
TNTOC. X€ OUTHV TNV eVOTNTO TPooTadncape va, a&loloyncovpe TOV alyoplOpo ypnot-
pomowwvtag skip list avti yio binary heap. H DecreaseKey() cuvaptnon maipvel ypovo

82

random-node-1M-edge-100M

Time elapsed in parallel execution (neighbors=5, retries=1)
T T T T T

|

Time elapsed in parallel execution (neighbors=5, retries=1)
T T T T T

adding
to_pad_dist
- no_pad_pred
no_pad_node_array
[0_pad_wnere_in_heap|
no_pad
3 exract_min
=
=

transaction_time
rest_time

Time (sec)

4 7 14 28
Number of threads

rmat-node-10M-edge-500M

80

badding
t0_pad_dist
fo_pad_pred
no_pad_node_array
o_pad_where.in_heap|

goorn g

Time (sec)

%

Time elapsed in parallel execution (neighbors=5, retries=1)
v : . - v

7
Number of threads

rmat-node-100M-edge-100M

400 T - padding
= no_pad_dist
- o _pad_pred
no_pad_node_array
350 5 er e
= exract_min
=3 ansacton.time
=5 et ime
300 T
250 1
8
o 200 n i
E
E
150 4 4 | |
100 { - H - | 1
50 .
0
1 2 4 7 14 28

Number of threads

Yympoa 4.18: A&oloynon g texvikng padding otov mapdAinio alyopifpo.

83

avaroyo tov O(logn) kat yio TG V0 dopés dedopévov kot opoimg kot 1 ReadMin() €yt
TNV S0 TOAVTAOKOTNTA KOt Yo TIG dV0 doués. QoT1000, | ExtractMin() cuvaptnon moip-
vel xpovo avaroyo Tov O(1) otav ypnowonotodpe skip list, o avtifeon pe to dvadicd
ompd omov naipvel ypdvo O(logn).

H skip list eivou pio dopn dedopévav Tov MTPEREL YP1YOpES avalnTNOELS o8 [io Ta-
Ewopunuévn akorovbio ototyeimv (key-value pairs). H ypriyopn avalitnon emttuyydve-
Tl ST POVTOG pio cuvOEdEEVT tEpapyia. VTTOKOAOVOI®V, KAOE o TpooTEPVAEL KATOLO0
otoeio. H skip list éxel enineda. To xatdtepo emimedo Ewvar pia cvvnbicpévn ta&ivo-
unpévn AMota. ‘Eva kAedl oto eninedo 1 eppaviletan 610 eninedo i+1 pe kdmoto otabepn
mBavomra p. 'Etot, kabe ototyeio g doung £xel va Tuyaio VYOG TOL UVIUTPOCHOTEDEL
Ta, enineda ota omoia eppoaviletarl To KAewdi Tov ototyeiov. H skip list éxel éva péyioto
VYOG kol Kabe popd Tov €va otoyyelo glodyeTal, Taipvel Eva Tuyaio Vyog avdipeca og 1
Kol oto péyteto vyog g skip list. To oynua 4.19 aneucoviler éva mapdderypo piog skip
list.

_le {i} |+LO
I | |
Foc-{TT}-{75] ENCIREIS

[Fool—{ 11 =15 |={17|— 28 || 31 || 55 || 56 || 61 |—{+=c]

Yymqpo 4.19: 'Eva mapdderypo pag skip list.

Mia avalnnon yo éva otdyo-ctotyeio apyilel amd v Kopven g Alotog omd 10
VYNAGTEPO Eminedo Kot Tpoywpdel opllovTtia péypt va Ppedel Eva ototyeio peyalvtepo 1
{00 amd 10 KAEWl Tov oTOYOV-GTOLXElOL. AV TO KAEWL TOL GTOLKElOV €lvar {0 He aVTO
TOV GTOYOV, TOTE 1) AELTOVPYIO EMOTPEPEL EMTVYDG. ALAPOPETIKE, EXOvOLaUPiveTaL M
010 Sradwkacio yio To emdpevo mo yapnAod eninedo g skip list. O cuvolkdg ypovVog
ektéleong g Aettovpyiag avalitnong eivat avaroyog pe O(logn).

> skip list, to Hyog tov kdbe oToryeiov (apBUdS TOV EMMEd®V TOL GTOLYXEIOL) i~
vau évog Toyaiog apBpoc. ‘Etot, givar mbavo (e mold pikpr mbavotnta) va mopoaydei
pia kakog 1ooluyiopévn doun. Qotdco, ot skip lists dovigvovy kadd oty mpdén, Kot
éva Toyaio oynpa ivat ToAd evkolo va vhomondel oe oyéon pe Eva VIETEPUIVIGTIKO OYN-
pa. Télog, ot skip lists givor yprioies dopéS yio Tov TOPEIAANAO TPOYPAUHOTIGUO, OTTOV
gloayyEg yivovtal o dlapopeTikd uépn g skip list Tavtdypova ywpic vo amoatteitol
kaBoAwké rebalancing ot doun dedopuévav.

84

4.6.2 Xvykpion pE TO SVUOIKO PO

Xe autnv v evotnta Ba cuykpivovpe TV vAomoinomn mov ypnoiponotei skip list yuo
TNV OVPE TPOTEPAOTNTOG LLE TNV TPONYOVUEVT VAOTOINGT. Ap)iKd, KOATACKEVAGULLE Lo
skip list mov &iye éva otoryeio Yo kaOe Kopven tov yYpdpov. 'Etot, otnv DecreaseKey()
TO GTOLYEIO TTOV OVTITPOCHTEVE TNV EETALOUEVT] KOPLOT apatpovvtay amd T skip list
Kot TomofetovvTay og pia o Kovtivi B€on oty apyn g Motag. Onmg oty mepintmon
TOV dVAdIKOL GEOPOV, avTAH N Aettovpyia maipvel xpdvo avéroyo pe O(logn). Qotodoco,
0 XPOVOG EKTELEGNC TOL OAYOPiBLOL NTOV VITEPPOAKE LEYOADTEPOC KOL 1) ATTOSOGT| TTOAD
pikpn. O Adyog ftav 611 1 DecreaseKey() cuvaptnon ftav apketd ypovoBopa.

2y npooradeld pog va feltidcovpe avtiv v viomoinon pe t skip list, Tapatn-
pnoope 6tin DecreaseKey() extehovoe moALd frpata yio va Totobetoet 1o eEetalopevo
otolyeio ot véa tov Béom. [N va tomobet el éva otoryeio ot skip list, yperaleton pi-
o d1doyion amd v apyn ™ AMotag péypt va Bpebet éva ototyeio e ico 1 peyardtepo
KAewdi. Avti n dudoyion Ematpve TOALG Pripata, evéd 1) TotoBETnomn Tov oToryeiov otn véa
ToV €01 6710 SVAOIKO PO ATOLTOVCE UIKPOTEPO APLOLd SWapSs TV OTOLYEL®V TNG dOUNS.
Eniong, mapoatnproape 6t 1 skip list eiye mdpa ToAAd oTorygio L To 1610 KAEWT KOTA TN
duapkela g ektédeonc Tov alyopiBpov. Eve €tpexe o aAyopiBpog, ol anocTAGELS TV
KOPLO®V OO TIC TNYEG EVIUEPOVOTAV UE TNV 1d10 T Pe TOAD peydin mbavomra. Ka-
té cvvéneta, 1 skip list elye moALG oToryEla e 1O 1510 KAEW, amaitohoe TOAD pvhun Kot
N d1doyion and TV Kopven ¢ AMotag 6to emlBountd ctotyeio NTav apkeTd ypovofopa
e€artiog Tov OTL EXPETE VO TPOGTEPAGTOVY TOAAG GTOLYELD LE TO 1010 KAEHL.

"Etot, viomomoape pia Bertiotorompévn skip list (optimized skip list) mov mepieiye
uévo drakprtd kAewdd. Kabe otoryeio g AMotag £yl éva povadikd KAWL kol pio oA
£0MTEPIKN MoTa TOV amobNnKeHEL TIC KOPLPES TOV £YOVV TNV 1010 0TOGTACN-KAELDL 0Td
v yn. Me avtdv Tov tpomo, N skip list amortel Arydtepn pviqun, aeod €xet Aryote-
pa ototyeia, ko 1 DecreaseKey() cuvdptnon maipvel Mydtepa Pripota, a@ov diocyilet
piKpoOTEPO aplfud otoryEiy.

v a&loldynon LG TPAOTO GLYKPIVOUE TN GEPLOKT EKTEAEST Y10 TIG 3 O10POPETL-
KEG doEG, To binary heap, v amAn skip list kot v optimized skip list. To oyfqua 4.20
delyvel Ta amoteléopatd pog yio 500 SapopeTikovg Ypdpovg, Tovg rmat-node-10M-edge-
500M kot rmat-node-100M-edge-100M. H ExtractMin() €ivai Aydtepo ypovoPopa oTig
vAomomoglg mov ypnotpomotodv skip list, apov naipvel otabepd ypovo (O(1)). Ztovg
UEYAAOVG YPAPoVg Omtw¢ tov rmat-node-100M-edge-100M ypdaeo, émov 1 ExtractMin()
amoTeLEl LEYAAO TOGOGTO TOV GUVOAIKOD ¥POVOL EKTEAEGNC, VITAPYEL GNUAVTIKO KEPDOG.
Emumiéov, €ovpe va onueidoovpe 6tL 1 DecreaseKey() maipvel moAd ypovo oty amin
skip list kot yio Tovg 600 ypapove. Onwg eEnynbnke Toparndvm, avtd copPaivel yloti
yperalovtal mépo TOAAG Prpata Yo vo tomofetn0el To e€aydpevo atotyeio otn véa Tov
0o, 0pob Tpénel va mpootepaoToDY TOAAA GTOtXE D LE TO 1510 KAEW. XTNV BerTioToNOl-
nuévn exdoyn g skip list amopedyovpe T€T01EG YpOVOPOpEC Acttovpyieg Kot To GToLyEln
OV TPEMEL VO TPOCTEPOUSTOVV Yo vo. TomobetnOel to otoyyeio otn véa tov Béom sivar
ovykpioipa oto TANB0¢ e To swaps ototyeiov mov yivovtor otnv DecreaseKey() dtav
ypnoiponoteiton binary heap.

Axoro00wmg, aloloynoape TV TapdAAnin ektédeon Tov akyopifuov yio dtopopeTt-

85

rmat-node-10M-edge-500M rmat-node-100M-edge-100M
< Time elapsed in serial execution (neighbors=5, retries=1) N Time elapsed in serial execution (neighbors=5, retries=1)

Bl extract_min Bl extract_min
B compute_time 0 B compute_time
decre decrease_ke:

@
3

Time (sec)

S
3

binary_heap skip_list _ opt_skip_list binary_heap skip_list _ opt_skip_list

Yympa 4.20: O xpovog eKTELECTG TOV GEPLOKOV aAyopiBpov yia Tig 3 dapopeTi-
KEG OOUEG TTOV YPNGUYLOTOLOVVTOL Y10, TNV OLPE TPOTEPOLATITOC.

k6 apOpd vmudtov. To oynua 4.21 aneikovilel T0 GUVOAIKS YPOVO EKTELECTG Y10 TOVG
random-node-10M-edge-500M kot rmat-node-100M-edge-100M. Onwg otn ceplokn &-
ktédeon, N DecreaseKey() cuvaptnon tov random-node-10M-edge-500M ypdoov otnv
nepintwon pe v anAn skip list givon apietd xpovoPopa Kot £xel To YELPOTEPO GLVOAIKO
XPOVO eKTEAESNG avApesa oTIG 3 ekTEAEnELS. AvTd cvpPaivel yiati o ypdpog eivar Tukvog
KoL 000 TT0 TUKVOC €lvat 0 Ypapog, 100 teptocotepa relaxations (DecreaseKey()) yivov-
taol. ‘Etot, 1 DecreaseKey() exteleitor moAAEG Popég kot 0 GuVOMKOG YPOVOC avEdveTal
onuavtikd. AvtiBétog, otov rmat-node-100M-edge-100M ypdeo ival évag apaldg ypd-
@og ka1 1 DecreaseKey() dev ektedeitan 1060 TOALEG POPEG, APOV JEV VILAPYOLY TOAAES
OKHEC TTOL VO TPpoKaAoVV relaxations, ondte 0 cLVOAKOG ¥pOvog dev ennpealetatl. Onmg
TOPOTNPNOAUE 0T GEPLOKT ekTEAEOT], 1 ExtractMin() €xetl peydAo m060GTO TOL YPOVO
oTNV TEPImT®ON IOV YpMoonolove binary heap kot katd cuvénelo 1 EKTEAEOT LE TO
binary heap £ygt 10 x£1pdTEPO GUVOMKO YPOVO EKTELECTG AVALETT, OTIG TPELS.

ZHETIKA PE TNV KMUOKOGILOTNTO TNG TAPAAANANG EKTELEGTC TAPATNPOVUE OTL 1 €-
Kktéleon pe v Pertiotonompévn skip list emttvyydvel Tnv vynAdTEPT KMUOK®OGILOTNTO
Kol Yo Tovg 600 ypdpove. Qotdc0, otov rmat-node-100M-edge-100M ypdpo dev eppa-
viCeton peydAn KALOK®OGILOTNTA YioTi stvor apatdg ypagog kot ta helper threads dev Ee-
PopTOVOLY TOAAEG Aettovpyieg amd To main thread. H skip list kAiipaxdvel kodvtepa yoti
ta helper threads ektelodv TepiocdTepa relaxations kot To main thread kepdilel mepiocod-
tepo. Onwg mopatnpovpe ota oyfpote 4.22a) ko 4.22B0, o apBuog tov relaxations
tov main thread peioveton apketd mepiocdtepo dtav ypnotponoteitan skip list. Amd v
GAAN Thevpd, M ektéleon pe To binary heap de pnopei va ddGEL TOGO PeyAo KEPSOG oTa
relaxations. YroBétovpe 611 To aborts mov yivovtot 6tov ypnoyLorotovpe to binary heap
glvar abort mov Oa ektedovoay yprioia relaxations. EmmAéov, n fedtiotomompévn skip
list KApaxmvel kadvtepa and v amAn yioti ypelaletal pikpotepo read/write set kot pe
OVTO TOV TPOTO ATOPEVYEL damavNpEG dLCYIOELG Kol capacity transactional aborts. Télog,
ota 28 viuata, Tapatnpovpe 6Tt 1o NUMA effect vmofabpiletl tnv kApokooipuotna o-
AoV Tov exterécemv e€attiog Tov akpipav petapopnv cache lines amd to éva socket oto
éAro.

86

random-node-10M-edge-500M rmat-node-100M-edge-100M

. 4o Jotal time (neighbors=S5, retries=1) 30 Total time (neighbors=5, retries=1)

st

} ‘\»\\’\”4.//-]

10
Faw
Y Y ‘—/‘“\"\x/—/x/
£ E
3 T T 1
< e I

Number of threads Number of threads

Yympa 4.21: O ypdvog ektédeonc g mapdAiniov aiyopiBpov yua tig 3 dlapope-
TIKEG OOLLEG TTOV YPNCUOTOIOVVTAL Y10 TNV OVPE TPOTEPULOTNTAG.

random-node-10M-edge-500M
random-node-10M-edge-500M 1e7 Relaxations (neighbors=5, retries=1)

1e7 Relaxations (neighbors=5, retries=1) %=X main thread

i R
3.0+]
P> helper threads
\ 25 e\
5 /
1
\\/ 1.

14 28

"

Number of relaxations

Number of relaxations

1 2 4

7
0-0f 2 4 7 14 28 Number of threads

Number of threads

(B0) Using the optimized skip list

(al) Using the binary heap structure structure.

Xyfqna 4.22: H xotovopn tov relaxations avépecsa oto main kot ta helper threads
yw Tov random-node-10M-edge-500M ypaeo yia 2 S10popeTIKES SOUEG TTOL YP1-
GULOTTOLOVVTOL Y10 TNV OVPE TPOTEPULOTNTAG.

370 TEAEVTOIO KOUUATL VTG TNG EVOTNTAG TOPOLGLALOVLLE TOV aplOud TV transactio-
nal commits/aborts Tov main kot tov helper thread otig Tpeig mponyodeveg eKTELETELS.
To oyfua 4.23 anewovilel tov apBpd tov commits/aborts tov main thread. O api6-
no¢ tov transactional aborts otnv amAn skip list €ivatl apkeTd VYNAOG GLYKPITIKA LE TIG
dAdeg 000 ekteEléaelc, €WOIKA GTO peydAo ypdpo. Avtd opeiletal oto OTL 1 ddoyIon
otnv DecreaseKey() amattel moAd pviun. Amortel moAv peydro read set kot ovtd 0om-
vel o€ transactional capacity aborts. Emimhéov, vidpyet emiong vynin mbavotnta yio data
transa-ctional abort. Oco peyaAidtepo read set £yetl o docoAnyio, 1060 peyoAdTepT ML~
Bovotnta vapyel ywo conflicting accesses. Aghtepov, TOPOUTNPOVUE OTL 1] EKTELECT] LE
to binary heap kot 1 ektéleon pe v Pertioromomuévn skip list Eyovv cuykpicpo apif-
uo6 transactional aborts. Kot 6tig 600 ektelécelg o main thread epgaviCet pikpo apBpd
transactional abort mov onpaivel 6Tt ta helper threads dev epmnodilovv v TPO0d6 TOV.

87

Emumhéov o ap1Buog tov transactional aborts dev ennpedleTot cupavtikd and Tov apldpod
v vipatov. Hapapével oxedov o i610¢ 0Tav To VIHATe dvEAVOVTOL Kot KATOATYOVUE OTL
av dev elyape 10 eavopevo NUMA oty apyltekoTviky Log, 0a LTopovGapLe vo £OVLE
KOADTEPN KALOKOGIULOTNTO.

Onwg avagépape Kot otnv ovdivon pe to binary heap 1o NUMA effect ennpedlet ta
transactional aborts. E@dcov ot petagpopég twv cache lines etvar axpipég, n docoinyia
dwpkel meprocdTepo ypdvo. Katd cvvénein, data conflicts givar mo mbavo va avigvev-
Bovv og T€T01EG SosOANYieg KoL VTApYEL peyolvTep mbavdTTa Yo transactional abort
AOyo interrupt. Otav pio docoAnyia dtapkei teptocdTEPO A6 TO KPAVTO YpOVOD, O YPOVO-
SpOoLOAOYNTNG TOV AElTOVPYIKOD Bo Byddel Tn diepyacio 0o Tov TUPNVE, Kot 1) SocoANyia
Oa yivel abort.

Opoimg pe o main thread, o apOudG TV transactional aborts ywo ta helper threads
avEdveton oty extéheon pe v amnin skip list, 6nwc paivetarl oto oynua 4.24. H didoyt-
on otV DecreaseKey() elvatr moAd damavnpn kot Tpokaiovvtol moAld conflicts kat yia
ta helper threads, emiong. Xtig dAAleg dvo ekteréoelg (binary heap kot optimized skip list),
0 ap1Bpog TV transactional aborts givort oyeTiKd Yo UnAOg Kot delyvel OTL 01 TEPLGGOTEPES
TpooPaoelg ota Kowva dedopéva givar non-conflicting. EmmAéov, o apBpog tov commits
avEAVETOL OTOV TPOGHETOVE O TOAAG VAILATA, POV VITAPYOVY O TOAAR VILLOLTOL TTOV
dpovv. Ze avtd T0 oYU, 0 apOUdg TV transactional commits yio to binary heap givat
HEYOADTEPOG Ao TIC AALEG dVO ekTeEAéoels. Av kot cupfaivel avutd, 1 EKTEAEST LE TO
binary heap dgv odnyei oe neplocoTEpa yprioa relaxations. Omwg eidaje oto oyfua-
ta 4.22al] kou 4.22B0, n extéheon pe) Pektictomomuévn skip list kGvel mepiocoTepa
relaxations. Yro0étovpe 6t1 oty mepintmon Tov binary heap ta helper threads éyovv me-
pLecoTEPO YPOVO Vo TpEEoVV PéYPL To main thread va ta otapatioel. ‘Etot, icog ekteAovv
mEPLGOTEPES Ao o popég To ewTteptkd while loop Katd v extédeon oG emavaAnyng
Tov a6 To main thread. Qot6060, 0po¥ ta helper threads dev e€dyovv ta otoygia amd TV
ovpd TpotepadTNTAS, O Srafdlovv cuveydc To 1010 oTotyeio oty readMin() cuvdptnon
(To v-ooto helper thread d10falet 10 v-00T0 TPMTO GTOLYEID TG OLPAG TPOTEPAOTNTOG).
Moévo 6tav to main thread mpoympnoel otnv enOUEVT emavAANY” Tov, Ta helper threads
dpdalovv aAlo otoyeio mpog eE€taot. Q¢ €K TOVTOL, GTNV TEPITT®OT OV TO. helper
threads éyovv mepiocoTEPO YPOVO VO, TPEEOVY KOt EXOVOAAUPAVOVY TAV®D OO pio POPES
to e€mtepco while loop, Ba exteAovv TV 1d1a Sradikacio (idia relaxations) moveo amod pio
©opo, eKTEAOVTOG relaxations yio To €vo Kot HOVAOIKO GTOXEIO TOL UopovV va Stofd-
covv og Kabe emavdAnyr tov main thread. @a exteAodvv TOAAG transactional commits
xopig va extehodv véa ypnotpa relaxations.

4.6.3 Amoteléopato

210 TehevTaio HEPOG TNG OVAAVLONG LoG Ba aELOAOYGOLLLE TNV ATTOA00T| TNG TOPEAAN-
NG ektéleong mov ypnoyonotel T Pertictomoinuévn skip list Tov vAomomoape. Xpn-
GULOTOMCALE TOVG 1010V YPAPOLS LE TO HEPOG TG AEIOAGYNONG TNG ATOd00oNG Yo TO
binary heap. To oynua 4.25 mopovotdlel TNV amddoomn mov Unopel va emtevydel ypn-
syomoidvtag T Pertiotomompévn skip list. To mpotevOpeEVO oYNLL0L EMTLYYAVEL KOAN|

88

random-node-10M-edge-500M rmat-node-100M-edge-100M
1e8 _Number of commits/aborts in parallel execution (main thre:

1e7__Number of commits/aborts in parallel execution (main thread

Number of commits/aborts
Number of commits/aborts

4
Number of threads Number of threads

Yympa 4.23: O apBudg tov commits/aborts tov main thread otov mapdrAinio
aAyop1Opo Yo T1G 3 S10POPETIKES OOUES TTOV XPNGLLOTOLOVVTOL Y10, TNV OLPE TPO-
TEPOOTNTOG.

random-node-10M-edge-500M rmat-node-100M-edge-100M
5 0 110 Number of commits/aborts in parallel execution (helper threads) 19 Number of commits/aborts in parallel execution (helper threads)

Number of commits/aborts
Number of commits/aborts

Xyfqna 4.24: O opBpog tov commits/aborts tov helper threads yw tov mapdr-
AnAo aAyop1Bpo yio Tig 3 SLopOopPETIKEG OOUES TTOV YPNCUYLOTOLOVVTOL Y10 TV OVPA
TPOTEPOLOTNTAG.

amdd00T GTOVE TEPIGGOTEPOVS YPAPOLS KOt 1) LEYIoTN €lval 1.94 yia tov mokvo ypdpo
random-node-10M-edge-500M (14 vijuota).

Onwg avaeépdnke kot oy TponyoOuevn agloAdynon, 1 amrdd0c GLVIEETAL AUEGH
LE TNV TUKVOTNTO TOL YpAeov. ['a mo moukvovg ypdeovg 1 amddoon eivar peyodvtepn,
aeoVL pmopove va e&dyovpe mepiocdtepo mopoaiiniopnd. Ta helper threads pmopovv
va EePopT®OOVY TTEPIoCOTEPT EpYacio amd To main thread ce muKvoLg YPAPOVGS, OTOL O
apOpde TV akpudv etvar peyolvtepog. Avtifétmg, ot apatol ypdeot empémovy Aydtepo
TOPUAANMGLO. TNV TTepinTon TV 28 vnudtov 1 arnddoon vroPaduiletar e&attiog Tov
NUMA effect.

H viomoinon g Pertiotomompévng skip list emttuyydvet vynAn omddoomn Kot KALo-
KAOVEL KaADTEPA amd TNV vVAomoinon pe to binary heap. O kdplog Adyog Yo awtd givol
ta relaxations mwov ektehovvrol and to helper threads. Onwg 1on avagépape, ypnoipo-
molovtog T Pertiotoromuévn skip list Ta helper threads ektelodv mo mwoALA ypricya
relaxations. O apOudg TOVG Elval APKETE PEYOADTEPOG OO AVTOV TOL TPOKVATEL LE TN

89

Speedup (neighbors=5, retries=1)

-1M-edge-100M
M-edge-100M
-10M-edge-500M
0M-edge-500M

4= rm
2.0F rmat-node-100M-edge-100M
USA-road-d.USA-node-23947347-edge-58333344

Speedup (Serial/Parallel)

Yympa 4.25: H andd0oom tov adyopiBpov yia ypaeovg d1opopeTIKNG TUKVOTNTOG
pe ypnomn g Pertiotomompévng skip list.

xpnon tov binary heap, énwg paivetar ota oynuota 4.22al] kol 4.22B0, evd kot ot 0VO
vAomomoelg £xouv cuyKpicipo aplBud transactional aborts (oyfuota 4.23 kot 4.24). Xe
HePIKEG EKTEAEDELS, Ta relaxations oL EKTEAOVVTOL YPTCLULOTOLOVTOGS TN PEATICTOTOM LLE-
v skip list elvat dSuthdoiog amd avtd wov exktehovvTol 6Tav ypnotponoteitat binary heap.
Avto iomg opeiletar ota transactional aborts. YroBétovpe 6t1 otV mepintwon tov binary
heap ta transactional aborts wov ektelovvtal o odnyovsav oe yproa relaxations. E@o-
G0V o€ umopovue va kabopicovpe pia Tolttikn 6tav aviyvevetal éva conflict, dev eipoote
ciyovpot yia 1o oo docornyia Ba yiver abort. Eivor mBavd 6t éva péydro pHépog tmv
aborted docoANyidV oTNV TEPINT®OT OV Yproiponoleitan binary heap 6o odnyovoe ce
xpnotpa relaxations, kdti Tov o€ cvpPaivel oty mepinTon ¢ Pertictomoinuévng skip
list.

Agbtepov, 1o binary heap ko skip list givai dvo tekeing drapopeticég dopéEg dedopé-
vaov. H skip list etvon pia amdivta ta&vopunpuévn doun dedopévav. ‘Etot, oe pia dedopévn
¥povikn otiyun, ta helper threads S1afalovv KOpLEES LE TIC TPDTEG EAAYIOTEC ATOGTACELG
(khedia) omd v TNy Kot ekteAovV Ta, relaxations tovg. AvtiBétmg, To binary heap dev
glval pio amoAvto Ta&vounuévn doun dedopévay. e pio SEGOUEV XPOVIKT OTIYUN TO
helper threads dwfaovv To otoygia mov Ppickovrar vynAdtepa (o€ xaunio Babog) oto
binary heap, 0AAd avTA T0 GTOLYELD dEV ATOPAITNTO OL KOPLPEG LLE TIG EAGYIOTEG ATOCTA-
oelg amo v Iyn. o mopdadetypa, oto binary heap tov oynuatog4.26 av siyapue S helper
threads, avtd Ba Sdfalav Ta ototyeio pe KAewd1d 9, 4, 26, 20 and 18. Xnv nepintmon
mov ypnotponotovcape skip list, Ta 5 helper threads 0o e&éralov o otoryeio pe KAeWdd
4,9, 11, 18 ko 19, xaBmg n skip list etvan amdrvto ta&vopnpévn. ‘Etot, kotainyovpe 6Tt
o€ Kabe Prina tov aiyopiBupov ta helper threads e&etdlovv drapopeTikd ototyeia yo va
ekteAéoovv ta relaxations tovg avdioya pe T dopun mov ypnoonoteital. Ymwobétovpe
o011 M KaBoAkn dudtaén mov vadpyet ot skip list, icwg odnyel oto va e>alovrtal Kopv-
P&C OV £YOLV TAPEL TN PEATIOTN TN TOLG HE PeyoAdTEPT TOOVATNTA OO QVTOVG GTHV

90

Yympoa 4.26: 'Eva mapaderypo binary heap. Ot kopv@ég e KOKKIVO Ypoduo. gV
€YOVV aKOLO OMOKTNOEL TIG PEATIOTEG TIESG TOVG.

nepinton mov ypnoionoleital to binary heap.

Téhog, yio va kévovpe pia eKTipnom g omoddong ¥pnoyLorooape tov tomo 4.3.
Avtdg diver pia Tpocéyyion g omddoong Paciopévn ota relaxations tov main thread.
Eniong vrovositon 6t 1 anddoon avEdvetar pe 10 péco 6po eEepyduevov axpmy. Oco
O TTVKVOG €lval £vag YPAPOS, T060G TEPIOCOTEPOS TAPUAINAMOUOG urmopel var e&ayDet.
Qo1660, AVTOG 0 Be®PNTIKOG TVTOG elvar pio amAn extipunon Kot amotehel Eva BempnTikd
v 6plo. Agv Aapfavel VoY To ¥povo Tov E0JEVETUL GTO GUVTOVICUO TV VIUAT®V
Kot Tavég kabvoteproglg and dadoyikd transactional aborts. Ta oyfuota 4.27 kot 4.28
mapovstalovy pia Bewpntikny amddoon Kot TNV omdd0cT TOL TETVYOUE Yo, OAOVG TOVG
Ypapovg otnV TEpinTmon TV 14 vnudtov ypnoiporoidvog tn binary heap doun kot ™
Beltiotomomuévn skip list, avtictouya.

] Graph Ideal Speedup | Speedup achieved
random-node-1M-edge-100M 4 1.45
rmat-node-1M-edge-100M 3.58 1.27
random-node-10M-edge-500M 3.74 1.46
rmat-node-10M-edge-500M 3.09 1.35
rmat-node-100M-edge-100M 1.22 1.1
USA-road-node-23M-edge-58M 1.91 1.08

Yypa 4.27: Mo tpocéyyion g amddoong mov Pacileton ota relaxations wov
extelel To main thread oty nepintwon tov 14 vnpdtov kot n anddoon mov ene-
tevyBet OTOV YpNopomoOnke binary heap.

91

] Graph Ideal Speedup | Speedup achieved

random-node-1M-edge-100M 4.57 1.75
rmat-node-1M-edge-100M 5.11 1.49
random-node-10M-edge-500M 5.14 1.94
rmat-node-10M-edge-500M 4.74 1.82
rmat-node-100M-edge-100M 1.79 1.52
USA-road-node-23M-edge-58M 1.48 1.29

Xyqpoe 4.28: Mo tpocéyyion g anddoong mov Pacileton ota relaxations mwov
ektelel 10 main thread oty nepintwon Tov 14 vudtov kot 1 anddoomn mov ene-
tevyBetl 0TV ypnooromOnke n Pertictroromuévn skip list.

Kepaiaro 5

Xoumepoonato Kor MeAALOVTIKES
Enektdoseis

270 TPAOTO LEPOG AVTNG TG SMAMUATIKNG LEAETNOAUE TAPAAANAEG OOUEG DESOUEVOV,
KoL GVYKEKPIHEVO dvadikd dévtpa avalntone. Ta 6évrpa avalnnong eival n mo cuyvda
YPNOOTOMUEV SO GE EPAPUOYEG KOl O TAPAAANAOUOS TOVG amoTeel pio TpdKANG.

Ot TPAOTEG LAOTOCELG TOV TOPAGOVGIAGAUE OTOTELECAV Uiot OTAOTKT TPOGEYYIoN
dévipov avalntnong. Yiomomoape dvadwkd dévrpa avalntnong, AVL dévrpa kot Red-
Black dévtpa ypnoiponoidvrog coarse-grained ko fine-grained locking g pnyoavicpovg
GLYYPOVIGHOV HeTalDd Tov vnudtov. To amoteAéspotd pog deiyvouy 0TL o1 coarse-grained
VAOTONGELG 0V KALAKOVOLY KAODG AVTEG OEV TAPEXOVV TOPUAANAIGUO (GEPLOKT EKTE-
Aeon) kat ot fine-grained LAOTOMGELG KMUOKOVOLV Y10 LEYAAO dEVTpa UEXPL Eval LUKPO
apOud vnuatov. Ta Red-Black dévipa éxovv v vymAdtepn amddoon, apov ival dEvipa
16oluYIoHEVO MG TPOG TO VYOG,

Ao TV GAAN TAELPAL, 01 TLo GVUVOETEG VAOTOOELS KAPOK®OVOLY KaAvTepa. 'Exouv é-
VO KOADTEPO UNYOVIGUO CLYYPOVIGHOD Kot KATOEG amd avTéG EKTEAOVV Pondntikég otpa-
TYWKEG OTAV €KTELOVVTAL TAPAAANAQ AglTovpYies. AgOTEPOV, GOUPOVO LLE TO ATOTEAE-
GLOTO TOV TOPOVCLACTIKAY OV LILAPYEL UEYGAT S10(pOpd GTNV amdI00T AVAUESH GTIS
lock-free kot otig lock-based vAomomoeic. O KOPLOg 6TOXOG TOV MO GVVOET®Y VAOTOL-
Nnoeov givat va peudcovv tov aptfud kot to granularity tov kKAWSoUATOV, £T61 OCTE M
ektéleon va eivar Kovtd og Evav acvyypovo alyoplBpo. Oco mo Kovid oe Evav GEPLaKo
alyopBpo sivar pio vAomoinon, 1000 KaALTEPO KMUOKOVEL. TELOC, 1 KAMUOKOGIUOTH-
ta g&optaror amd 1o vAko. H NUMA opyttextovikn ennpedlel v KAMpokootudtnto
gEartiog TV akpifov petagopdv cache lines.

Extoc amd 11 vAomooelg mov eEETAGTNKAY GE AT TN SITAOUATIKY, VTAPYOVV ap-
KETEG EVOLAPEPOVGEC VAOTOMOELS TaPdAANA®Y dévipwv avalntnong, Kabe pio and Tig
omoieg €xEl TO KO TNG GUVOLO YOopaKTNPOTIKGV. [Tapdderypa, oTig dNUOGIEVCELS
[22], [23], [24], [25] xou [26] mapovoidlovTon Kot GAAa cOVBETO TapdAANAa dEvTpa o~
valnong mpog perétn. EmmAéov, Oa pmopodoope vo vAOToMcovpe TapdAinia dEvipa
avalntnong ypnoporoudvtog transactional memory Gov pPnyovicpd cuyypoviopov. A-

93

KOpa Ko pio amhn coarse-grained locking HTM viomoinon and éva i1coluyiopévo dEvipo
onwg éva Red-Black 6évtpo pumopei va ppavicel vyniéc emddoelg. Qotdc0, Yo vo TeThd-
YXOVLE KALOK®OGIUOTNTA GE LEYAAO aptOpd vLAT®V, TPETEL O TPOYPOUUATIOTHG VA Eival
EVILEPOG Y10 TOVG TEPLOPIGLOVS ToL B€Tel To HTM suotnua mov ypnotponoteiton Kot va
TPOGOPUOGEL KOTAAANAO TOV KOOIKOL.

E@ocov o okomdg autig g avdAvong gival vo Topoucldcel TapaAAnAeg dopUég de-
SOUEVOV TTOV KALAK®VOLVY 0odoTikd Kot Ba propovcay va ypnoyoromBobdv o pia mwo-
POAANAT €QOPLOYN YOl VO BEATIOGOLY TNV ATOS0GT TNG, EKTOC amd dévipa avalnTnong,
VILAPYOVY TOAAEC AALES dOpEC TTOV Bl piopovoay va pedetnBolv. Zuvdedepéveg Aloteg 6-
g FIFO queues, mivokeg KOTAKEPLOTIGLLOV KO OVPES TPOTEPALOTNTOC OTTMC binary heaps
ko skip lists gival emiong SopéC TOV YPNGYOTOOVVTOL GLUYVH GE TAPAAANAES EPUPUOYES
Kot Oa propovoav eniong vo peretnBovv.

Y70 0e0TEPO PEPOC OVTNG TNG OITAMUATIKNG, AEIOAOYACOUE Hiol TEYVIKY TapaAinLo-
moinong v otov aAyopdpo tov Dijkstra, o omoiog eivar £vag dSVGKOAN TOPAAANAOTOL-
Noog oAyoppog. Xpnoomomoape TV vAoToinon mov tpoteivetat oto [20], [21] pe
6KOTO VoL TETOHYOVLE LYNAN KAMpaKkmoidtnta og Eva mpaypotikd HTM cootnua.

O oKomog oG TG avdlvong givar va Bpebel pio moAitikn wov evvoei To main thread.
Ta helper threads pmopovv va ektelodv Aeitovpyieg TavTdYPOVA YOPIG VO TOpEUTodicouy
v Tp6odo Tov main thread. 'Eto, yia va amopdyovpe dodoywkd transactional aborts ta
onoia Ba kaBvotepovoay Ty ektédeot Tov main thread, avtd amoktd To KALId®UO ApLE-
oco. Mmopel va emovalafel v ektéleon tng dovAeiog Tov o€ transactional mode povo
pia eopd. EmumAéov, ta helper threads de prmopovv moté va amoktioovy To KafoAkd KAel-
dmpua, £Tol 0ot va unv Kabvoteproovy v ektédeon tov main thread kot tpocmadovv
GUVEYMG VA, EKTEAEGOVV TO Kpioio TUHa o€ transactional mode.

Agbtepov, viomomcape pio mo coarse-grained 60coAnyio oto main thread ywo va
peltwoovpe o overhead Twv docoANY1OY Kot dokipdoape To 1010 Kot yo ta helper threads,
emiong. Qo1660, EKTEADVTOC [ia coarse-grained SocoAnyia Lropei vo 00N yNnoeL oe capaci-
ty transactional aborts, €101K0 o€ peyGAOVG YPAPOLS, EEQLTIOG TOL HEYGAOVD KOUUATION TNG
UVAUNG 0To omoio yivetau mpodcPaon. Emiong, peletnoape v teyvikn padding oTig KowEg
dopég oedopévav kot kKoton&ape 6t to padding dev ennpedlel TV KALOKOGULOTNTO TOV
alyopiBpov Kot Tapéyel KOADTEPO YPOVO EKTEAEGNC, POV TO VIILOTO EKUETUAAEDOVTOL TN
YPOVIKT KOl YOPIKT TOTIKOTNTAL.

AkoAo0BmG, TOPOVGIAGALLE YPAPOLG Yia. To relaxations mov EKTEAOVY TO main Kot Ta
helper threads kafd¢ emiong kot 10 T0c06To TV abort otig ekterécelg pag. [apatnpodpe
011 10 K€POOC oTa relaxations givol oNUAVTIKO, 0AAG Oev elval avTioTOLO LE TO KEPOOC GE
amo0001 eEaLTiog TOV KOGTOVG GLYYPOVICLOV TV Vnudtev. Emmiéov, ta helper treads
{owg kdvovv relaxations mov dev gival ypoIa KOG 0 aAyOpOpog Tpoympdel. Xov LeA-
Aovtikn| eméktoomn Bo pmopovoe va oyxedlootel pio wapailoyn Tov aAyopiBpov mov mo-
povctldcape oty omroia Bo vaNpPye WKPITEPO KOUUATL GUYYPOVIGHOD Kot O AAYOPIOLOC
0o Khpdkmve kot e NUMA apylteKtovikec.

210 TeEAeLTOio PEPOG aVTNG TNG BEome a&loAoynoape Tov aAyOplOLo YPNGULOTOLDV-
tag skip list ylo tnv ovpd mpotepatdTTaC. Ta amoteléopatd pog deiyvouy OTL 1 Xpnon
pag omAng skip list divel apketd xepdtepn anddoomn amd to binary heap. H amkn skip

94

list amattel TOAD pvAun kot 1 ddoylon ota ototyeio ¢ sivar apketd ypovoPopa. E-
101, VAomomoape pia Bertiotomomuévn skip list mov mepi€yet pdvo drakprrd kKA. Ot
KOPLPEG OV £Y0VV TO 1010 KAEWT amodnkevovtal o€ pio E0OTEPIKN ELPOAELLEVT AloTOl
Tov ototyeiov g skip list. Me avtov tov Tpomo, 1 PertioTomompévn skip list ypeidleton
Aydtepn pvnun, kabmg vdpyovv morhot koot pe 1o 1010 KA1 katd T d1dpKelo eKTE-
Aeong Tov oAyopifuov Kot 1 d1doyion ota otoryeia TG eival apkeTd o Ypiyopn. Avty
1 viomoinon divel kaAvtepn amddoon and to binary heap kot £yl VYNAOTEPN KMUOK®-
owotta. Ta helper threads tpomomolovy tomikd tn skip list kKo ekteElovV TEPIGGOHTEPQ
ypowa relaxations amd 0Tl TNV TEPITTOOT TOV YPMoLoToteitorl binary heap.

H Beltiotonompévn skip list dev mepiéyel Eva otoryeio yo kdOBe Kopvuen Tov YPAPOL.
O apBudc Tov otoyelwv eaptdtar amd tov apliud TV KOPLPAOV TOV UTOKTOVV TNV St
amdotaon (kAedi ot skip list) amd tnv Ty Katd ™ SidpKeln EKTEAEGNC TOL 0AyopifLov.
Avto g€aptdtar amd To Papn TV akpUdV Tov Ypdpov. Katd cuvéneln, de Lmopovpe va
counepdvoupe éva otafepd HYoc mov mpénet va Exel 1 Pertictomomuévn skip list. [1pé-
nel va gEetalovpe 10 péco apliud tov otoryeimv mov £xet n skip list katd) didpkela
extédeong kot va Bétovpe o¢ péytoto Hyog to AoyapiBuo avtév Tov apBuov. I'evikd,
1 TOPAUETPOG TOV UEYIGTOVL VYOLG TG Peitiotomomuévng skip list npémel va e€etdleton
yoplotd yio ke ypdpo.

e éva dedopévo Prpa tov adyopifuov, To TpmTo GTOKEID TNG PEATIGTOTOMUEVNC
skip list &xel v eAdylotn andcTaon-kKAEWL omd Ty mnyn. Avtd 1o oToyElo iomg Tepté-
¥€L TOAAG ids KOPLE®V TOL YPAPOV Ta. 0TTOi0 £YOVV TNV EAAYIGTN OATOGTAGT) OO TV TNYN
og avutd to Pua. ‘Etol, pio mpodtaon Ba tav 61t To main thread Ba propovoe va e&dyet
00 10 ototyeio g skip list kot va avabétet Tig Stapopetikéc Kopveég ota helper threads
Y vo ekteAécouv ta relaxations tovg. Me avtd Tov TpoTO, Oa elyape moAlomAolg ege-
PELVT|LLEVOLC KOUPOVG o€ éval Brpa Kot avTd Ba 00nyovse o€ peyalvtepa kEpOT. Qo1660,
oTNV MEPIMTMOT OV pio KopuEY| eEAYETOL OO TNV OLPE TPOTEPULOTNTAS, TPEMEL VoL eEg-
TAGTOOV OAEC Ol OKUEG TNG, OLIPOPETIKA 0 aAYOpOLog Og Ba eivar opBoG. Q¢ ek TovTOV,
0 aAyOpBpog Tpémel va emavacyedlacel, €161 dote kdbe frpa va maipvel xpovo 660 M
7o ypovoPopa eEETOGT KOPLONG AVALESH GE OAQ TO, VILLOTA. X€ OVTHV TNV EKTEAEGT, TO
main thread dev mpénel va otapatdel ta helper threads 6tav avtd £xovv akdua akpéS vo
gEetdioovv.

H a&ohoynon pog exteréotnke oto cvtnua Intel's Haswell HTM. Zav cuvéyela g
S0VAELAG TTOV TTAPOVCIACTNKE, O aAYOPIBLOG Ba pmopovce va agloloyndel Kot o GALO G-
otpoto tov vrootnpitovy Hardware Transactional Memory. ®@a pmopovce va e€gpgvvn-
B¢l n emidpaom and SrapopeTikd yopakTPIoTIKd TV TM cuoTnUAT®V, 0TS 1| TOMTIKY
emilvong tv conflicts, To version management Kot 1) TOAITIKN aviyvevong tov conflicts.
TNa mapddetypa, pio Y Bpidikn TOALTIKY ETIAVGNG CLYKPOVGEMY ol LITOPOVGE Va Eivat Lo
OTOTELEGUOTIKN 1) £VOL GUGTNHA OV £)El peyaidtepo read/write transaction set Oa fTav
O KATAAANAO V1o HEYOADTEPOLS YPAPoVS. O TPOYPAULATIOTHC TPEMEL VO Elvar evre-
pouévoc yo. 1o HTM eidomnua Kot To 4opakTnploTikd Tov Kot vo 0AAGCEL TOV KMOKA
KOTAAANAQ Yio Vo emttevyBel vy KApokootpdtra.

Téhog, ot onpocicvon [21], ta amoteléopato deiyvouv daPopeTIKO SLUDECIIO To-
POAAAMG O KOTA TIG SLopopeTIKEC pdoelg ektédeons. Kabmg o alkydpiBog mpoympdet o

95

S100€010¢ TOPAAANMGIOC LELDOVETOL KOl TO, KEPON Ao TN YpN o Teplocotépwv helper
thread sivon apeintéa. Etol, oav pedhoviikn enéktacn Bo propodoav va eE€TacTOUV 01
Srapopetikég pdoelg Tov aryopiBpov kat va e&epeuvnBov oynpata ot onoio o aptBpdie
TV helper threads kot ot Aeitovpyieg mov exktelovv avtd Oa Tpocaprolovioy SVVOLKA.

96

Biiwoypagia

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Amdahl, G., The validity of the single processor approach to achieving large scale
computing capabilities, In Proceedings of AFIPS Spring Joint Computer Conference,
Atlantic City, N.J., AFIPS Press, April 1967

Flynn, M., Some Computer Organizations and Their Effectiveness, 1EEE
Transactions on Computers, 1972.

Georgy Adelson-Velsky, G.; Evgenii Landis (1962)., An algorithm for the
organization of information, Proceedings of the USSR Academy of Sciences (in
Russian) 146: 263-266. English translation by Myron J. Ricci in Soviet Math.
Doklady, 3:1259-1263, 1962.

Leonidas J. Guibas and Robert Sedgewick (1978)., A Dichromatic Framework for
Balanced Trees, Proceedings of the 19th Annual Symposium on Foundations of
Computer Science. pp. 8-21. doi:10.1109/SFCS.1978.3.

Siakavaras D., Nikas K., Goumas G., and Koziris N., Performance analysis of
concurrent red-black trees on htm platforms, TRANSACT, 2015.

Siakavaras D., Nikas K., Goumas G., and Koziris N., Massively Concurrent Red-
Black Trees with Hardware Transactional Memory, 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2016.

R. Bayer and M. Schkolnick., Readings in database systems, ch. Concurrency of
Operations on B-trees, pp. 129-139, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

Tudor, D., Guerraoui, R., Trigonakis, V., Asynchronized Concurrency: The Secret
to Scaling Concurrent Search Data Structures, In: Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, Pages 631-644. ASPLOS 2015.

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun., 4 Practical
Concurrent Binary Search Tree, PPoPP 2010.

Drachsler D., Vechev, M.T., Yahav, E., Practical concurrent binary search trees via
logical ordering, In: PPoPP, pp. 343-356. ACM(2014).

97

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Aravind Natarajan and Neeraj Mittal., Fast Concurrent Lock-free, Binary Search
Trees. PPoPP 2014.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel., Non-
blocking Binary Search Trees, PODC 2010.

Damron P., Fedorova A., Lev Y., Luchangco V., Moiv M., Nussbaum D., Hybrid
transactional memory, In: Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems, Pages 336-
346. ASPLOS 2006.

M. Moir., Hybrid transactional memory, July 2005.

Casper J., Oguntebi T., Hong S., Bronson N., Kozyrakis C., Olukotun k., Hardware
acceleration of transactional memory on commodity systems, In: Proceedings of
the sixteenth international conference on Architectural support for programming
languages and operating systems, Pages 27-38. ASPLOS 2011.

A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, and M. L.
Scott., An integrated hardware-sofiware approach to flexible transactional memory,
SIGARCH Computer Architecture News, 35, June 2007.

J. R. Larus and R. Rajwar., Transactional Memory. Synthesis Lectures on Computer
Architecture., Morgan & Claypool, 2007.

Dijkstra, E. W., 4 note on two problems in connection with graphs., Numerische
Mathematik 1: 269-271. doi:10.1007/BF01386390, 1959.

R. C. Prim, Shortest connection networks and some generalizations., In: Bell System
Technical Journal, 36 (1957), pp. 1389-1401.

N. Anastopoulos, K. Nikas, G. Goumas, and N. Koziris, Early experiences
on accelerating dijkstra’s algorithm using transactional memory., in Proc. 3rd
Workshop on Multithreaded Architectures and Applications (MTAAP’09), 20009.

K. Nikas, N. Anastopoulos, G. Goumas, N. Koziris, Employing transactional
memory and helper threads to speedup Dijkstra's algorithm., Parallel Processing,
2009. ICPP'09. International Conference on, 388-395.

Crain, T., Gramoli, V., Raynal, M., 4 speculation-friendly binary search tree, In:
PPoPP '12, Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming Pages 161-170, ACM New York, 2012.

Chatterjee, B., Nguyen, N., Tsigas, P., Efficient lock-free binary search trees, In:

PODC '14, Proceedings of the 2014 ACM symposium on Principles of distributed
computing Pages 322-331, ACM New York, 2014.

98

[24]

[25]

[26]

Prokopec, A., Bronson, N., Bagwell, P., Odersky, M., Concurrent tries with efficient
non-blocking snapshots, In: PPoPP '12, Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming Pages 151-160 ,
ACM New York, 2012.

Crain, T., Gramoli, V., Raynal, M., 4 contention-friendly binary search tree, In:
Euro-Par'13, Proceedings of the 19th international conference on Parallel Processing
Pages 229-240, Springer-Verlag Berlin, Heidelberg, 2013.

Natarajan, A., Savoie, L., Mittal, N., Concurrent Wait-Free Red Black Trees, In:
SSS 2013 Proceeding of the 15th International Symposium on Stabilization, Safety,
and Security of Distributed Systems - Volume 8255 Pages 45-60, Springer-Verlag
New York, 2013

99

é

£

5

nVPPoro

POMMHOEVS -

N

WA

”,

|

E®GNIKO METZOBIO ITOAYTEXNEIO
TMHMA HAEKTPOAOT'QON MHXANIKON KAI MHXANIKON YTIOAOTIETON

TOMEAX TEXNOAOI'TAZ ITAHPO®OPIKHE KAI YIIOAOI'TETQN
EPTAXTHPIO YIIOAOTIETIKQN XYXTHMATQN

Merétn kou ASoroynon Teyvikav Iaparinromoinong Aop®v
Agdopévav kKar AkyopiOpov

AITTAQMATIKH EPT'AXIA

Xpwotiva Xp. Tavvodra

Empiénov: ['eopyroc ['kovpag
Aéxtopag E.MLIT.

ABMva, lobAlog 2016

EOGNIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOI'QN MHXANIKQN KAI

&
4O
5%

. A’?‘g § MHXANIKON YIIOAOTIETON
< @Y i IL | TOMEAS TEXNOAOIIAS TAHPO®OPIKHE
% % Eﬁr KAI YIIOAOTIETON

5/ EPTASTHPIO YTIOAOTIETIKON EYSTHMA-

TON

Merétn kor A&oroynon Teyvikav [laparinromoinong Aop®v
Agdopévov kot AryopiOpmyv

AIITIAQMATIKH EPT'AXIA

Xprotive Xp. Tavvovio

Empiénov: I'eopyrog ['kovpag
Aéxtopog E.MLIL.

Eykpifnke and v tpuehn eetaotikn| emtponn v 141 lovAiov 2016.

T'. 'kodpog N. Kolopng K. Zaydvag
Aéxropog E.ML.IL Kabnynmg E.M.IL Avaninpotg Kodnyntig E.M.IL.

AbBnMva, IovAog 2016.

Xprotive Xp. T'avvovira
Authopoatovyog Hiektpoddyog Mnyavikog kot Mnyoavikog Yrnoroyiotov E.MLIT.

Copyright © Xpiotiva ['avvooia, 2016. EBviké Metoopio [ToAvteyveio.
Me emporoén kabe dikanmdpatog. All rights reserved.

AmayopebeToln aviypapr], omodnKevo Kot Slvo | TG Topovoag EpYACIs, €€ OAOKAN-
POV N TUNUOTOS OVTNG, Yo EUTOPIKO okomd. Emitpénetal n avatimmon, amodinkevon
KoL SLOVOLY] Y10, OKOTO U1 KEPOOOKOTIKO, EKTOIOEVTIKNG 1 EPEVVITIKNAG PVGNG, VIO TNV
wpobmdOeom va avaeEpeToL 1 TNYN TPOEAELONG KAl Vo Slotnpeitan To mapodV UVOL.
Epotmuota mov agopodv tn xpnon Tng £pyaciog Yo, KEPSOOKOTIKO GKOMO TPEMEL VA,
amevvvoVTaL TPOG T GLYYPAPEQ.

Ot amdYeIC KoL TO GUUTEPAGLLOTA TTOL TEPLEYOVTOL OE ALTO TO £YYPUPO EKPPALOLV TN
GLYYPOPED KoL dEV TPETEL VO, EPUNVEVTEL OTL OVTITPOSOTEHOLV TIG emionueg 0Ecelg TOV
EBvikod Metoofrov IToAvteyveiov.

Hepiinyn

2TIG LEPEG LG, OL TOAVTTOPTVOL EXEEEPYOCTES EYOVV YIVELT KLPIOPYN TAATPOPLLO VTTOAOYL-
oudv kot Exovv eloaybel oe moALG wpoypappoTiotikd wepiaiiovia. O TopdAANAOG
TPOYPOLLOTIGHOC OEV 0POPE TAEOV LLOVO ETICTNHOVIKES EQPOPLLOYEG TOV TPEYOVV GE VITEPV-
TOAOYIOTEG, 0AAN KOADTTEL ETIONG £VAL LEYAAO PACLLO EPOPHOYDV Y10, TPOCOTKOVG VITOAO-
v16téG. 'Eva amd ta o 60oKoAn TpoPANUATO OTO GUGTAUATO TAPAAANANG eneepyaciog
gtvon avantuén TopIAAN A0V AOYIGUIKOD TO 01010 KALOK®OVEL ATOJOTIKG. APKETES EQOP-
HOYEC OV KALLOKMVOLV LETd amd Evav aplBpd enelepyaotav e€aitiog Tov avénuévou
K6oToVG emkowvmviog. Ilpokeyévou va a&lomomBov ot S100E01EG apYITEKTOVIKES, Ol
Paocikég dopég dedopévmv Kat ot oelplakoi adyopiBpol mpénet va enavacyedioctovv. To
TPMTO HEPOG OVTNG TNG SMTAMUATIKNG 0.POPA TIG TAPAAANAEG dOpES dedopéEv@v, Pe 1d1aite-
pn éppacn ota dvadikd dévrpa avaltnong, e£eTalovtag Tov TPOTO GLYYXPOVIGLOD TOVG,
T0 1O10UTEPOL YAPOKTNPLOTIKA TOVE KOL TNV KALLOKOGILLOTNTO TOV TPOCPEPOLY. LTO SEVTEPO
UEPOC TG SMAGUOTIKNAG Tapovotldletar pia tapaiinioroinen tov adyopidpov tov Dijk-
stra mov eivat évag oeplakog aAyopdpog. Avtr 1 vAomoinomn ypnoiponotei Transactional
Memory, Yyl VO GUVTOVIGEL OMOTEAEGUATIKA TIG TOVTOYPOVEG TPOGPACELS TOV VNUATOV
oT1G KOWEG dopég dedopévav kat tny Evvola tv Helper Threads, yio va eEdyet mapoalinit-
opd. H a&oddynomn tov aiyopiBuov yiveton og éva ocvotnpo mov vrootpiler Hardware
Transactional Memory.

A€Eeic-Khedia: mapaiinieg dopég dedouévav, dvadtkd dévipa avalntnongs, KAMUOK®OGL-
LOTNTA, TOUPAAANAOG TPOYPAUUATIGHOS, alyopiBpog tov Dijkstra, Helper Threads, Hard-
ware Transactional Memory

Abstract

Nowadays, multicore processors have become the dominant computing platform and are
being used by many programming environments. Parallel programming is no longer about
scientific applications run in supercomputers, but covers a wider range of applications on
personal computers, too. The most difficult problem is to develop parallel software that
scales efficiently. Several applications do not scale further than a number of processors
due to communication overhead. To exploit the available architectures basic data struc-
tures and sequential algorithms must be redesigned. In the first part of this thesis we study
concurrent data structures, particularly focusing on concurrent binary search trees, with re-
spect to the way they are synchronized, their special characteristics and the scalability they
provide. The second part of this thesis presents a parallelization of the inherently serial
Dijkstra's algorithm. This implementation employs Transactional Memory to efficiently
orchestrate the concurrent thread's accesses to shared data structures and the concept of
Helper Threads to extract parallelism. We evaluate the execution of the algorithm on a
system that supports Hardware Transactional Memory.

Keywords: Concurrent Data Structures, Binary Search Trees, scalability, parallel pro-
gramming, Dijkstra's algorithm, Helper Threads, Hardware Transactional Memory

Evyoprotieg

H mapotvoa dtmhopotikni epyacio ekmoviOnke oto Epyaotiplo Ymoloyiotikdv Zvotn-
patov g Zyoing Hiextpordymv Mnyovikdv kor Mnyovikdv Ynoroyiotdv tov EBvikon
Metoopiov IToAvteyveiov, vid v enifreyn tov Aéktopa E.M.IL. I'edpyrov ['kodpa.

®a ffeha vo gvyaploTnom Tov Kabnynt) pov k. Fedpyo I'kodua, yio v enonteio
KOTO TNV EKTOVNON TNG EPYOCING OV, TIG YVAGELS TOV OV TPOCEPEPE LE T1) O1O0CKAATL
TOV KOl TNV EVKALPI0 TOV OV £dMGE VA, SOVAEY® GTO EPYACTNPIO.

®a 10eha eniong va evyoplotHom Tov kabnynti g oxoAng K. Nektdpro Kolopn yia
TNV EUMVELGT] TOV OV TPOGEPEPE [LE T1] SOUCKOAIN TOL KOL VO TOV GLYXUP® Y10 VYNAO
eMinedo omovdOV TOV LAONUATOV S1O0CKAAMOS TOV KoL TOV EPYASTNPIOV.

[Switepa Ba NOeha va svyaptotcm tov YToyneo Addktop Anuntpro Zokafapa
Yo T ovveyn KabodNynon Tov katd TN SLGPKELN EKTOVNONG OVTAS TNG OUTAMUOTIKNAG
gpyociog, kKabdg Kol yio Ty evOappLVGT TOL, TNV VITOLOVY| TOV K01 TO ¥POVO TOL UPLEPMOE.
Xwpig ™ cvpPforn) Tov 1 0OAOKANP®GT aVTAG TG EpYaciog de Oa NTov epukt.

Emumhéov, emiPaiietol va euyopioTiom Toug GIAOVE OV KOl TOVG GULLPOLTNTEG LoV
Yo TNV TOALTIUN Po10g1d TOVG 08 EMGTNUOVIKO KOl TPOCOTIKO EMIMESO.

Téhog, Ba Beha vo evyaploTHoW BEPILA TNV OIKOYEVELY LLOV, TOVG YOVEIG LoV Kot TNV

0dEPPN OV Y10l TNV AYATT, TNV AUEPLOTN VIOGTHPIEN TOVE OAN GLTE T ¥POVIL, KOL TV
EUMIGTOGVVI TOVG G€ KAOE oL emMAOYT.

Xpiotiva ['oavvodia

Contents

1 Introduction 19
LT OVerview oo e e 19
1.2 Parallel Architecture and Parallel Programming 20

1.2.1 Memory coherence 20
1.2.2 Memory Consistency v v v v it 21
1.23 Amdahl'slaw oo 22
1.3 Parallel Architectures o 23
1.3.1 Shared memory architecture 25
1.3.2 Distributed memory architecture 26
1.3.3 Hybrid memory architecture 27
1.4 Synchronization 27
1.4.1 Synchronization definition 27
1.4.2 Synchronization techniques 29

2 Concurrent Search Trees 33
2.1 Concurrent Data Structures L oL 33
22 SearchTrees. e 34

2.2.1 Binary Search Trees 35
222 AVLTrees i 36
223 Red-BlackTrees 37
2.3 Techniques for constructing concurrent data structures 43
2.3.1 Coarse-grained locking 43
2.3.2 Fine-grained locking 45
2.3.3 Lock-free programming 45
2.4 Basic Interface in Concurrent Search Trees 46
2.5 Anmaiveapproach 47
2.5.1 Description 48
2.5.2 Implementationdetails 49
2.6 A more sophisticated approach 52
2.6.1 Description 52
2.6.2 Implementationdetails 58
2.7 Evaluation 58
2.7.1 System Configuration 58

272 RunConfigurations
273 Results

3 Transactional Memory
3.1 Transactional Memory (TM)

3.1.1 Software Transactional Memory (STM)
3.1.2 Hardware Transactional Memory (HTM)

3.1.3 Hybrid Transactional Memory

3.2 Basic TM Characteristics v v v v v e
3.2.1 Real TM implementations
3.3 Intel'sHaswell HTM
3.3.1 Transactional Synchronizations Extensions (TSX)

4 A parallelization of Dijkstra's algorithm

4.1 Dijkstra'salgorithm L oL
4.1.1 Algorithm'shistory
4.1.2 Description e
413 Complexity

4.1.4 Proof of correctness

4.1.5 Applications

4.2 The concept of Helper Threads
4.3 Parallelizing Dijkstra's algorithm

43.1 Introduction.
432 Thealgorithm
433 Optimizations v . it e
4.4 System Configuration
4.5 Experimentation.
4.5.1 Experimentation in the serial algorithm
4.5.2 Experimentation in the parallel algorithm
4.6 Results. e
4.6.1 Performanceresults. L.
4.6.2 A closer look at the results
4.6.3 Experimentation in padding technique
4.7 Employingskiplist

4.7.1 The skip list structure

4.7.2 Comparison with the binary heap

473 Results

5 Conclusion and Future Work

12

65
65
66
66
67
68
73
73
74

81
81
81
82
&3
84
85
85
86
86
87
90
93
94
94
97
103
103
104
108
111
111
112
116

121

List of Figures

1.1

1.2

1.3
1.4
1.5
1.6

2.1

2.2
23
24

2.5

2.6

2.7

2.8
2.9

2.10

MESI state diagram. The transitions are labeled "action observed / action
performed". L

Total speedup of a parallel program as parallel fraction and number of
processors change.

Flynn's taxonomy.o
Classic organizationofaSMP.
Classic organization of a Distributed Memory Architecture.

Classic organization of a Hybrid Memory Architecture.

Search data structure interface. Updates have two phases: a parse phase,
followed by a modification phase.

An example of a tree in external and internal format.
Arightand a left treerotation.

Left left case. T1, T2, T3 and T4 represent subtrees which are themselves
balanced AVL trees.

Right right case. T1, T2, T3 and T4 represent subtrees which are them-
selves balanced AVL trees.

Leftright case. T1, T2, T3 and T4 represent subtrees which are themselves
balanced AVL trees.

Right left case. T1, T2, T3 and T4 represent subtrees which are themselves
balanced AVL trees.

An example of ared-blacktree.

Case 1 upon an insetion of a node z in a Red-Black tree. The code for case
1 changes the colors of some node to preserve the coloring properties. . .

Case 2 and case 3 upon an insetion of a node z in a Red-Black tree. We
transform case 3 into case 2 by a left rotation. Case 2 causes some color
changes and a right rotation to preserve the coloring properties.

13

21

2.11 The cases upon a deletion of a node in a Red-Black tree. Darkened nodes
have color attributes black, heavily shaded nodes have color attributes red,
and lightly shaded nodes have color attributes represented by c¢ and c',
which may be either red or black . The letters al P, ..., { represent arbi-
trary subtrees. Each case transforms the configuration on the left into the
configuration on the right by changing some colors and/or performing a
rotation. Any node pointed to by x has an extra black and is either dou-
bly black (when a black node is deleted and replaced by a black child, the
child is marked as doubly black) or red-and-black. (a) Case 1 is trans-
formed to case 2, 3, or 4 by exchanging the colors of nodes B and D and
performing a left rotation. (b) In case 2, the extra black represented by the
pointer X moves up the tree by coloring node D red and setting x to point
to node B. (c) Case 3 is transformed to case 4 by exchanging the colors
of nodes C and D and performing a right rotation. (d) Case 4 removes the
extra black represented by x by changing some colors and performing a
left rotation (without violating the coloring properties). This figure has
beentaken from [5]..
2.12 A typical bst node structure in memory using padding, such that to be the
same bytesasone cacheline.
2.13 Deletion of node D in an internal tree. While searching D's successor to
swap their key-value pairs, the subtree rooted at D node must be locked. .
2.14 The platform used in evaluation of concurrent search trees.
2.15 Throughput of concurrent naive implementations for 2K key range and the
three workloads. L
2.16 Throughput of concurrent naive implementations for 32K key range and
the three workloads. oo oL
2.17 Throughput of concurrent naive implementations for 2000000 key range
and the three workloads. L.
2.18 Throughput of concurrent sophisticated implementations for 2K key range
and the three workloads.
2.19 Throughput of concurrent sophisticated implementations for 32K key range
and the three workloads.
2.20 Throughput of concurrent sophisticated implementations for 2000000 key
range and the three workloads.

3.1 A simple example of eager versioning.
3.2 A simple example of lazy versioning.
3.3 A discussion of pessimistic detection.
3.4 A discussion of optimistic detection.
3.5 Transaction's status is captured to EAX register's bits.
3.6 A parallel execution of two threads using RTM that results to coherence
problems.

4.1 Early history of shortest paths algorithms.

14

51
59

63

82

4.2
43
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20
4.21

4.22
4.23
4.24
4.25

4.26

4.27

Proof of corectness of Dijkstra's algorithm. When a vertex « is added to

S set (visited nodes), then dist[u] = [s,u]. 84
Applications of Dijkstra's algorithm. 86
Execution pattern of the HT scheme. 88
The platform used in evaluation of Dijkstra's algorithm. 94
Evaluation of the four phases of the algorithm in different graphs. 96
Experimentation in padding technique on the serial algorithm. 97
Time elapsed in random node-1M-edge-10M graph for different number

of possible retries per transaction of the main thread. 98
Time elapsed in rmat node-10M-edge-500M graph for different number

of possible retries per transaction of the main thread. 98
Time elapsed in random node-1M-edge-10M graph for different number

of possible retries per transaction of helper threads. 100
Time elapsed in rmat node-10M-edge-500M graph for different number

of possible retries per transaction of helper threads. 100

Time elapsed in random node-1M-edge-100M graph for different number
of neighbors examined for relaxation per transaction of the main thread. . 101
Time elapsed in rmat node-10M-edge-500M graph for different number
of neighbors examined for relaxation per transaction of the main thread. . 101
Time elapsed in random node-1M-edge-100M graph for different number

of neighbors examined for relaxation per transaction of helper threads. . . 102
Time elapsed in rmat node-10M-edge-500M graph for different number

of neighbors examined for relaxation per transaction of helper threads. . . 102
Multithreaded speedups for graphs of different density. 104
Distribution of relaxations between the main and helper threads. 105
The number of main thread's commits/aborts. 106
The percentage of total transactional aborts for all threads in total number

of transactions. 107

Distribution of time spent in different phases of main thread's execution. . 108
Despite not using padding, simultaneous relaxations are performed in nodes

that reside in different cache lines. 109
Experimentation in padding technique on the parallel algorithm. 110
Anexampleofaskiplist. 111
Time elapsed in serial execution for the three different structures used for

the priority queue. 113
Time elapsed in parallel execution for the three different structures used

for the priority queue. 114

Distribution of relaxations between the main and helper threads for the
random-node-10M-edge-500M graph using two different structures for

the priority queue. 114
The number of commits/aborts of the main thread in parallel execution for
the three different structures used for the priority queue. 116

15

4.28 The number of commits/aborts of helper threads in parallel execution for

the three different structures used for the priority queue. 116
4.29 Multithreaded speedups for graphs of different density when using our
optimized skip list. 117
4.30 An example of binary heap. The vertices with the red color have not ob-
tained their optimal distance from the source. 118
4.31 A speedup approximation based on main thread's relaxations in case of 14
threads and the speedup achieved using the binary heap structure. 118

4.32 A speedup approximation based on main thread's relaxations in case of 14
threads and the speedup achieved using the optimized skip list structure. . 119

16

Listings

1.1 Inconsistencies due to lack of synchronization 28
2.1 Atypical bstnodestructure 50
3.1 Example: elisionofa TASlock 76
3.2 Example: adding global lock to transaction'sreadset 78
33 AnRTMexample oo oo 78
4.1 Dijkstra'salgorithm o 83
42 Mainthread'scode. 89
43 Helperthreads’code. 90
4.4 Main thread's code forareal HTM. 92
4.5 Helper threads' code forareal HTM. 92
4.6 The four phases of the algorithm. 95

17

Chapter 1

Introduction

1.1 Overview

In 1965, Moore predicted that the number of transistors in an integrated circuit will
double approximately every two years, resulting to exponential increase in raw computer
power. However, the increasing number of transistors per processor set physical limi-
tations. The dense chips use more electric power and generate more heat limiting the
evolution in processors.

As Moore's law was used in the semiconductor industry, more and more transistors in-
tegrated in the same silicon chip and the chip performance doubled every 18 months. These
high performance microprocessors named as multicore processors. Nowadays, multicore
processors is a characteristic of supercomputers, distributed systems and personal com-
puters. Increasing the number of processors can result to high-performance computing.
However, multiprocessors systems cause communication and synchronization problems
and the scalability of multiprocessors systems remains a challenge as the number of pro-
cessors increase.

At the same time, in order to take full advantage of these available hardware resources,
computer industry developed new architectures techniques. For example, the use of deeper
pipelines superscalar architectures increased the operation throughput. As a result, con-
ventional architectures replaced by parallel architectures with a view to maximize perfor-
mance of applications.

The multicore systems constitute a solution to computation-intensive applications.
Scientific applications such as astrophysical and cosmological simulations, weather fore-
casting, applications in industry and other sectors, user applications such as search engines
and web servers are computationally demanding. Contemporary serial algorithms, even
if optimized, cannot achieve an optimum performance when executed on multiprocessors
architectures. As a consequence, sequential algorithms must be redesigned such that run
in parallel and exploit the available architectures.

Parallel programming demands synchronization among parallel processes or threads in
order to avoid conflicts and race conditions. Synchronization techniques are implemented

19

in both software and hardware. However, communication and synchronization between
different subtasks are some of the greatest obstacles to getting good parallel performance.
The challenge is to create hardware and software that will make it easy to develop parallel
processing programs such that to achieve good performance and scalability as the number
of cores per chip increase.

1.2 Parallel Architecture and Parallel Programming

1.2.1 Memory coherence

Modern processing systems consist of multiple level of cache memory, which reduce
the cost of multiple references in the same memory location as there exist copies of recently
uses memory locations close to the processor such that to have a quick and low cost access
to them. Though, the existence of copies of the same memory location in different levels
of cache memory cause many problems. For example, in a single processor system when a
device uses Direct Memory Access (DMA) to read data from main memory, any changes
to that memory residing in processor caches must be flushed out first.

In multiprocessor systems, it is possible to have many copies of the same memory
location in multiple caches when several processors access to this memory location simul-
taneously. Provided none of the processors changes the data in this location (read only),
they can share it without any problem. But as soon as one updates the location, all the other
must be notified of the update, otherwise they might work on an out-of-date copy, that re-
sides in their local cache. As a consequence, it must be followed a scheme that ensures
that none of the processors is accessing a stale value of a memory location. This scheme
is known as memory coherence protocol. A practical multiprocessor invalidate protocol,
the most widely used, which attempts to minimize bus usage is the MESI protocol.

In MESI protocol, any cache line can be marked with one of the following states:

Modified: The cache line is present only in the current cache (the only cache copy),
and is dirty, it has been modified from the value in main memory. The cache is required
to write data back to main memory at some time in the future, before permitting any other
read of the (no longer valid) main memory state.

Exclusive: The cache line is present only in the current cache (the only cache copy)
and matches the main memory. In a read request from another processor, the cache line
will change to the Shared state and in a write request from that processor will change to
the Modified state.

Shared: The cache line may be stored in other caches of the machine and matches the
main memory.

Invalid: The cache line is not valid.

The MESI protocol uses the above mentioned states for every cache line to permit
all processor to have a consistent view on all memory locations. The cache line changes
state, according to the state diagram depicted in figure 1.1, as a function of memory access
events. An event may be due to local processor activity or due to bus activity.

20

Privr / BusRdX |

Figure 1.1: MESI state diagram. The transitions are labeled "action observed /
action performed".

1.2.2 Memory consistency

As mentioned above, cache coherence means that all the processors see the same value
for a particular memory address as they should have if there were no caches in the system.
Memory consistency on the other hand, ensures that all the memory instructions appear
to execute in the program order, that is consistency refers to the order of accesses to all
memory locations. It defines how all the memory instructions in a multiprocessor system
will be ordered.

In multiprocessors systems the order between operations of a program is not always
guaranteed. Operations issue concurrently by many processors in an order that cannot be
determined in advanced. Most real hardware use first-in-first-out (FIFO) write buffers and
in this way there is not guaranteed order in parallel programs.

A memory consistent model is a specification of the allowed behaviour of parallel pro-
grams executing with shared memory. In a parallel program, unlike to a single-threaded
execution, multiple correct behaviours are usually allowed. There are different memory
consistencies such as sequential consistency, relaxed consistency and might have an im-
pact on the final program result.

21

1.2.3 Amdahl's law

Sequential algorithms need to be redesigned in order to run in parallel and exploit
the available hardware and processors. In parallel algorithms, large problems are divided
into smaller ones, which are then solved in the same time, as the available cores execute
concurrently smaller problems. In comparison with sequential algorithms, it is harder to
develop parallel algorithms, however the parallel program have better performance and
scalability.

Amdahl's law [1] is a theoretical formula that gives the maximum theoretical speedup
achieved. Speedup is a measure of how many times the parallel program is faster than the
best sequential algorithm. If T is the runtime of the fastest sequential program and 7}, is
the runtime of the parallel version of the program on p processors, the speedup is defined
as:

Speedup(S) = s
Tp
Typically, the speedup S is related with the number of processors p in the inequality:
S < p. If S = p, the speedup is linear.

Amdahl's law show that the theoretical speedup increases by improving a part of the
total program. Consider f the fraction of the problem, which cannot be parallelized and
must be executed sequentially, then the runtime of the parallel program is:

Tp:fTS+(1_f)Ts
p

and the expression for the speedup is:

1
1

1-f
f+=

Total Speedup S =

Amdahl's law is often used to predict the theoretical speedup when using multiple
processors. As the number of processors p goes to infinity, the total speedup goes to
1/ f. The theoretical speedup is limited by the part of the program that cannot be executed
in parallel. If the parallel part of a program is relatively small, its speedup would be
equally small. For instance, the fraction is f = 90%, the parallel program can be 10 times
faster in the best case than the serial program, independently of the number of processors.
Figure 1.2 depicts the total speedup in parallel executions of different sequential fractions
f and number of processors p. According to this figure, the total speedup of a program
is bounded by the sequential part of the program and using more processors does not
increase the speedup in all cases. Parallelizing more and more of the sequential program
is the solution to maximize the performance.

Scalability, another measure for performance, can refer to the capability of a system
or a program to increase its performance when more processors are added. Assumed that
the program have a constant size, the runtime of the program is expected to scale up as the
number of processors increases. However, there are many factors that limit the scalability
of a program. First of all, the program has to be divided into small equal pieces, each of

22

Amdahl’s Law

20,00 —
P
1800 - - :
/ Parallel Portion
16,00 7 — BO%
r'/ —_— TEO
14,00 — 90%
/ — 95%
12,00 4
(=9
2 /
@ 10,00
a r-" [—
=1 |1
]
8.00 ""’ =
6.00 /f
4,00 /|
7
"’f".‘__,_.-r""-_._.-.
2,00 -
MRS e 5 3§ 8 8 S 8 225 3 88
A -

Number of Processors

Figure 1.2: Total speedup of a parallel program as parallel fraction and number
of processors change.

them is executed in a separate processor. If the pieces are not equal, the processors would
wait for other ones with the larger pieces to terminate. Furthermore, the scalability can be
limited due to the time spent in communication and synchronization among processors. If
this communication and synchronization time is significant compared with the total time,
the program does not scale up when the number of processors increases. To conclude, load
balancing and time spent for synchronization and communication restrict significantly the
scalability of a program and must be taken into consideration in parallel programming.

1.3 Parallel Architectures

Flynn's taxonomy [2] distinguishes computer architectures, according to the level of
parallelism they employ to process instructions and data streams. There are four cate-
gories:

 SISD: Single Instruction, Single Data
A sequential computer. Sequential computers are incapable of performing parallel
operations.

» SIMD: Single Instruction, Multiple Data

23

A parallel computer with a single instruction stream, which performs the same in-
struction on multiple data.

* MISD: Multiple Instruction, Single Data
Multiple processing units perform tasks-instructions on the same data. MISD is an
uncommon and non-commercial architecture.

* MIMD: Multiple Instruction, Multiple Data
A parallel computer, in which each processor executes independent instruction
streams on independent data streams. This architecture is the most common and
widely used form of parallel architecture. Two examples of this architecture are
clusters and systems of multicore processors.

SISD MISD

SISD Instruction Pool MISD Instruction Pool

Data Pool
Data Pool

Data Pool

Figure 1.3: Flynn's taxonomy.

As mentioned above, MIMD multiprocessing architecture is the most common parallel
architecture and suitable for a wide variety of tasks. MIMD architectures can be catego-

24

rized based on their memory organization in three categories that will be further analyzed
in the next sections: shared memory architectures, distributed memory architectures and
hybrid architectures.

1.3.1 Shared memory architecture

In shared memory architecture, each processor has each own private cache memory
hierarchy and all processors share a single physical space, known as global memory. A
single system bus interconnects all processors. Such systems can execute independent
tasks, which have their own virtual address spaces, even if they share a physical address
space. Processors communicate by sharing variables stored in the global memory and
can access any memory location via loads and stores. If the access to any memory loca-
tion takes the same amount of time to all processors, the memory organization is called
symmetric multiprocessor (SMP) and can be viewed in figure 1.4.

Tressssssessssesaesae=s-
e L T T T T T T T YT T TS

Figure 1.4: Classic organization of a SMP.

Shared memory architecture come in two memory organizations. If the amount of
time taken to access any global memory address is equal independently which processor
requests the access, the memory organization is called Uniform Memory Access (UMA). If
some memory accesses are much faster than the others, depending on which processor re-
quests for which global memory address, the memory organization is called Non-Uniform
Memory Access (NUMA). NUMA architectures can have lower latency to nearby memory
and higher memory bandwidth.

Processors in shared memory architectures can operate tasks in parallel using the same
shared data and race conditions may occur. As a result, processors need to coordinate in
order to avoid concurrent accesses to shared data. Thus, synchronization mechanisms
like locks and atomic variables, are used in such situations. Furthermore, as analyzed in

25

the previous section, cache coherent protocols like MESI, impose a universal sequence of
accesses to the global memory.

The efficient access to all shared data from any processor via simple load and store op-
erations on them make shared memory architectures attractive for parallel programming.
However, this memory organization has a single system bus that interconnects all proces-
sors and a limited memory bandwidth. As a result, it can be used for no more than 20 or
30 processors because of the limited single bus and the limited memory bandwidth.

1.3.2 Distributed memory architecture

In distributed memory architectures each processor has a local cache hierarchy and
a local main memory. The processors are connected in an interconnection network (e.g
Ethernet) and are called nodes. They have not shared memory addresses and the only way
to communicate each other is via message passing through the interconnection network.
The system provides to the programmer routines for send/receive messages to/from any
processor. The figure 1.5 depicts the organization of a distributed memory architecture.

Koppog 1 KéuBog 2 Kéupog N

Aiktuo Alaouvdeong (1r.x. Ethernet, Myrinet, SCI)

Figure 1.5: Classic organization of a Distributed Memory Architecture.

This architecture is used in clusters that are generally collections of commodity com-
puters that are connected to each other over an I/O interconnect in a network. Each pro-
cessor has a separate copy of the operating system.

One drawback of clusters is the management cost. The management cost of a cluster
with n nodes equals to the management cost of n computers, while the management cost
of a multiprocessor with n cores is the same management cost as one single computer.
Moreover, another drawback of clusters is the bandwidth and the latency. The processors
in a cluster are connected using the I/O interconnection, while the cores in a multiproces-
sor system are connected via memory interconnect. The memory interconnect has higher
bandwidth and lower latency and allow better communication performance.

26

Programming in a distributed memory architecture is a challenge, since every commu-
nication must be identified in advance. Efficient parallelization requires understanding the
memory dependencies of the program and an effective distribution of memory in advance
in order to eliminate communication between remote processors.

Finally, distributed systems can achieve high scalability because of the absence of
shared memory and race conditions. They are constructed of thousand independent nodes
that can be dynamically inserted and removed from the network.

1.3.3 Hybrid memory architecture

The hybrid architecture combines the previous two architectures and takes advantages
of their benefits. A hybrid system is like a distributed system, in which a symmetric mul-
tiprocessor has taken the place of each single processor node. Figure 1.6 depicts the or-
ganization of a hybrid architecture. This typical architecture is used in clusters and su-
percomputers, favors parallel processing within each node and scales up as a distributed
memory architecture.

SMP k6ppog 1 SMP ko6pupog 2 SMP k6ppog N

FPresssssssasne
Eessasssssssss
[]

[]

[]
FPresssssssasas
sseesseesessas

Aiktuo Aiaouvdeang (1r.x. Ethernet, Myrinet, SCI)

Figure 1.6: Classic organization of a Hybrid Memory Architecture.

1.4 Synchronization

1.4.1 Synchronization definition

In parallel programming, threads or processes ~ need to communicate with each other
and execute operations in the same shared data or variables. The operations or the code

*We will use the term process to refer to a parallel task, but in parallel programming we can
have either processes or threads.

27

of a process must be executed as if the processes were running in isolation, each with
access to its own memory space. However, when processes run in parallel and perform
operations on common data structures, they have to be synchronized, otherwise the result
will be undefined. The synchronization is extremely important in parallel programming.

Process synchronization is defined as a technique that more concurrent processes do
not simultaneously execute some particular segment of the program known as critical sec-
tion. The critical section is a serialized segment of the program. When one process starts
executing the critical section, the other processes should wait until the first completes the
critical section. If synchronization techniques are not applied, the values of the variables
may be unpredictable and vary depending on the timings of context switches.

A classic problem of synchronization is the Readers-Writers problem, which deals
with situations in which many processes try to access the same shared resource at the same
time. Some processes may read and some may write, with the constraint that no process
may access the share data for either reading or writing, while another process is writing
on it. It is only allowed for two or more readers to access the share data concurrently.
Another example of how the absence of synchronization among processes or threads leads
to inconsistencies can be viewed in listing 1.1. The counter is incremented once by one
thread and is decremented once by the other. When the threads execute the critical segment
concurrently, the final result of the counter can have either the same initial value or a
decreased or increased value.

Listing 1.1: Inconsistencies due to lack of synchronization

1 Thread 1 Thread 2

2 varl = counter; var2 = counter;
3 varl += 1; var2 — 1;

4 counter = varl; counter = var2;

Other than mutual exclusion synchronization can also deals with the following:

* deadlock, is a situation in which many processes are waiting for a shared resource
which is being held by another process and there is no progress in the program.

+ starvation, which occurs when a process is perpetually denied necessary resources
to enter the critical section and the process is forced to wait indefinitely.

* priority inversion, which occurs when a high priority task is in the critical section
and it may be interrupted by a medium priority task.

* busy waiting, is a situation in which a process repeatedly checks to determine if it
has access to a critical section. This spinning can generate an arbitrary time delay.

Accesses to critical section by different processes are controlled by using synchro-
nization schemes. They can be divided in two categories, blocking synchronization and
non-blocking synchronization.

Blocking synchronization

28

* deadlock-free
Using mutual exclusion”, it guarantees that some processes will finish their task in
a finite number of steps.

* starvation-free
Using mutual exclusion, it guarantees that every process will finish their task in a
finite number of steps.

Non-blocking synchronization
* lock-free
It guarantees that some processes will finish their task in a finite number of steps.
» wait-free
It guarantees that every process will finish their task in a finite number of steps.
Non-blocking schemes allow access by multiple concurrent processes without mutual
exclusion. Multiple processes access shared resources and perform operations on them
without blocking. The consistency in shared resources is guaranteed using individual op-
erations.

1.4.2 Synchronization techniques

There are different synchronization techniques:

Mutual exclusion

Mutual exclusion is the most usual technique to achieve blocking synchronization. It
ensures that two or more concurrent processes are not in their critical section at the same
time. Only one will access the critical section of the program at a given time. While one
process executes operations in the shared resources, all other should be kept waiting and
when that process has finished its work in the shared data, one of the processes waiting
will proceed. Mutual exclusion is implemented via mechanisms like semaphores, mutexes
and locks. Almost all locks use Test-And-Set (TAS) atomic operation to set a memory
location. The process that sets the lock to the LOCKED state is considered to be the lock
owner and can proceed to the critical section.

The operation TAS is atomic and only one process can set the memory location at a
time. If the shared memory location is in the UNLOCKED state the process can set it as
LOCKED, become the lock owner and proceed. Otherwise, if the shared memory loca-
tion is in the LOCKED state the process continues to loop while checking the state until
it becomes UNLOCKED and successfully acquires the lock. This continuously executing
TAS on the shared memory location causes heavy bus traffic. In TAS a process sets the
memory location of the lock and checks if the previous state of the lock was LOCKED or
UNLOCKED in order to proceed to the critical section or wait. According to cache co-
herence protocols, when a TAS operation sets the memory location (lock), all other copies
of lock will be invalidated, including the owner's. This causes heavy cache coherence

“It is further analyzed in the next subsection.

29

protocol traffic. As a result, an improvement of TAS is Test-and-Test-And-Set (TTAS)
operation, in which the state of the lock is first read locally and the process tries to set the
lock with TAS only if it appears to be in the UNLOCKED state. The process does not
write the lock while spinning, but it only reads it locally, so as the cache coherence traffic
reduces. This implements a back off mechanism, where a process that found the lock in
the LOCKED state will wait some time before checking it again.

Implementing a synchronization with locks is not so easy. Sometimes processes may
need to acquire more than one lock in order to access several memory locations in parallel.
That scheme is known as fine grained synchronization and a problematic situation in that
scheme is deadlock. Deadlock is a situation in which two or more competing processes
are each waiting for the other to finish. For example, there are two threads which hold a
lock each and each thread tries to acquire the lock held by the other. As a result, none of
the two threads has progress and the execution reaches a dead end.

Atomic operations

A problem with mutual exclusion is that if a thread holding a lock is suspended, all
other threads are blocked until the suspended thread resumes, as mutual exclusion is a
blocking mechanism and is used in blocking algorithms. In order to avoid this problem
there are non-blocking algorithms which use atomic operations instead of locking for syn-
chronization. During an atomic operation a processor can simultaneously read a memory
location and write on it in the same bus operation. This prevents any other processor from
writing or reading memory until the operation is complete. When a process performs an
atomic operation the other processes see it as happening instantaneously.

Atomicity implies indivisibility and irreducibility, so an atomic operation must be per-
formed entirely or not performed at all. Moreover, atomicity is a guarantee of isolation
from concurrent processes. The system behaves as if each operation occurred instantly.
The advantage of atomic operations is that they are quicker that locks, and do not suffer
from deadlock and convoying, as they constitute a non-blocking scheme. The disadvan-
tage is that they only perform a limited set of operations, and often there are not enough to
synthesize more complicated operations efficiently. However, the programmer should not
reject an opportunity to use an atomic operation in place of mutual exclusion and locks.

Correctness of non-blocking algorithms is challenging to prove and it can be done
using linearization points. All functions calls have a linearization point at some instant
between their invocation and their response. The state of the shared resource in parallel
non-blocking algorithms depends from the order by which the linearization points are
reached.

Compare And Swap (CAS) is a fundamental atomic operation used to many non-
blocking algorithms. It compares the contents of a memory address to a given value and,
only if they are the same, changes the contents of that memory address to the given new
value. Ifthe value is up-to-date the operation is successful. If not, the value is stale and has
been updated in the meantime by another process, so the operation will fail and the current
process must restart the operation. To indicate if the value changed, the return result from

30

CAS is either a simple boolean value or the value read from that memory address (not the
value written to it).

Transactional memory

Another non-blocking scheme for synchronization is transactional memory. Transac-
tional memory is a technology of concurrent processes synchronization that simplifies the
parallel programming by extracting instruction groups to atomic transactions. The main
benefits are that there are not locks and deadlocks, the parallelism level is increased, so
performance is boosted as well and it is relatively easy in use for programming. This
synchronization scheme will be further analyzed in next chapter.

31

Chapter 2

Concurrent Search Trees

2.1 Concurrent Data Structures

A data structure is a particular way of storing and organizing data in a computer, such
that they can be used efficiently. Data structures provide a means to manage large amounts
of data efficiently and they are used widely in large databases and internet indexing ser-
vices. Different kinds of applications demand different kinds of data structures and as
projects grow larger, it is vital the use of more sophisticated data structures. In fact, the
overall performance of the application is limited by the performance of the underlying
data structure. As a result, using efficient data structures is the key to design efficient
algorithms.

As multiprocessor computer architecture became the dominant computing platform,
these data structures had to be redesigned in order to provide safe and synchronized ac-
cess to multiple threads (or processes). Multiple threads can access data simultaneously,
because they run on different processors that communicate with one another. Thus, paral-
lel programming introduces many difficulties and concurrent data structures are far more
difficult to design than sequential ones, because threads executing concurrently may in-
terleave their steps in many ways. This requires developers to understand new design
methodologies. Furthermore, concurrent data structures have to ensure consistency against
the effects of any operation and provide safety and liveness properties. Safety properties
usually state that something bad never happens, while liveness properties state that some-
thing good keeps happening and the data structure keeps progressing and serving requests.

Designing concurrent data structures for multiprocessor systems also provides numer-
ous challenges with respect to performance and scalability. According to Amdal's law,
explained in previous chapter, the sequentially executed parts of the code constitute the
most important restricting factor to achieve the maximum gain from parallelization. The
operations on a shared data structure belong to that sequential parts of the code. In addi-
tion, concurrent data structures are also a restricting factor of application's scalability. It
is vital that the speedup of data structures have to grow while the number of processors
increases. These data structures are called scalable. In designing scalable data structures,

33

developers must take care that naive approaches to synchronization can severely under-
mine scalability.

A second problem in parallel programming and concurrent data structures is memory
contention. The results of multiple threads executed in different processors, which demand
access to the same locations in memory (same shared data structure), are the overhead in
cache coherence traffic and the bus congestion and these two constitute also a restriction in
application's performance and scalability. Finally, the attempt to reduce the serial parts of a
concurrent data structure and increase the work done in parallel, results to synchronization
costs among threads.

2.2 Search Trees

A search tree is a data structure for locating specific values from within a set. It consists
of'a set of key-value pairs and an interface for accessing and manipulating them. The three
main operations of this interface are a lookup operation and two update operations (one to
insert and one to delete), as shown in figure 2.1. Various search tree data structures exist,
several of which also allow efficient insertion and deletion of elements. In order to reduce
search time, search trees have to be reasonably balanced (all the leaves are of comparable
depths). In this chapter, we will study three different types of search trees according to
their balance: binary search trees, AVL trees and Red-Black trees.

searchikew)

»

ke

—

»
phazel: parzse(key) k_} | up date [kev)

phaze modifylew]

Figure 2.1: Search data structure interface. Updates have two phases: a parse
phase, followed by a modification phase.

Search trees are also divided in two categories according to the underlying organi-
zation of the key-value pairs in the nodes of the tree. Nodes that have two children are
called internal nodes and those that have no children are called external nodes. When the
key-value pairs (the useful information) of a search tree are stored only in external nodes
(leaves) and the internal nodes of the tree are routing nodes used only as a help for the path
to the final external node searched, the search tree is called external tree. When the internal
nodes are not only routing nodes, but they also store key-value pairs and are "true" nodes
of information, the search tree is called internal tree. The figure 2.2 depicts an external and
an internal search tree. We use square shapes to distinguish the leaves, which contain the

34

key-value pairs, from the internal nodes in the external tree. All the other nodes contain
only keys and are used for routing to the appropriate leaf.

NULL NULL NULL NULL

Figure 2.2: An example of a tree in external and internal format.

2.2.1 Binary Search Trees

A binary search tree (BST), also known as an ordered or sorted binary tree, is a node-
based data structure in which each node has no more than two child nodes. There is not
balance in binary search trees. Each child must either be a leaf node or the root of another
binary search tree. Each internal node in BST store a key (and optionally an associated
value) and have two distinguished subtrees, commonly denoted left and right. The tree sat-
isfies the binary search property, which states that the key for each node must be greater
than all keys in subtree on the left and smaller than any keys in subtree on the right. Du-
plicate keys are not allowed.

The basic idea behind this structure is to have a storing repository such that the related
sorting, searching and retrieving algorithms can be very efficient. Binary search trees are
also easy to code and can implement more abstract data structures like dynamic sets of
items, multisets, associative arrays and lookup tables that allow finding an item by its key.
They have to keep their keys in sorted order, so that lookup and other operations can use the
binary search property. While searching for a key in a tree, the traversal begins from the
root of the tree to a leaf, the desired key is compared to the keys in BST and deciding, based
on the comparison to continue searching in the left or right subtree. If the key is found in
BST, the associated value is retrieved. Basic operations (lookup, insertion, deletion) on a
BST take time proportional to the height of the tree. On average, each comparison allows
the operations to skip about half of the tree, so such operations run in time proportional
to the logarithm of the number of nodes n in the tree (O(logn)). However, in the worst
case, where the tree is a linear chain of n nodes, the same operation takes time O(n).

Although the BST allows fast lookup, addition and removal of items, it has some
disadvantages. First of all, the shape of a binary search tree totally depends on the order

35

of insertions and deletions and can become degenerate (e.g a linked list). In this case, the
basic operations take a linear time to the number of nodes in the tree. Moreover, when
searching a key in a BST, the key of each visited node has to be compared with the key of
the element to be searched. And finally, after a long sequence of random insertions and
deletions, the expected height of the BST approaches square root of the number of nodes
n, v/n, which grows much faster than log n.

2.2.2 AVL Trees

The AVL tree is a height balanced binary search tree named after its two inventors,
Georgy Adelson-Velsky and Evgenii Landis, who published it in their paper "An algorithm
for the organization of information" [3]. It was the first dynamically balanced tree to be
proposed. An AVL tree is not perfectly balanced and has two properties. The first AVL
property is that every subtree of a node is an AVL tree, too. Assuming that the height of a
tree is the number of nodes on the longest path from the root of the tree to a leaf, the second
property states that the heights of the two child subtrees of any node differ by at most one.
This difference is called balance factor. If at any time the balance factor is more than
one, rebalancing is required to restore this property. This rebalancing may require the
tree to be rebalanced by one or more rotations. Basic operations (lookup, insertion and
deletion) take time proportional to the logarithm of the number of nodes n in the AVL tree
(O(logn)) in both average and worst case.

There are many arguments for using AVL trees. First, all the basic operations take
time O(logn) in the worst case, as the AVL tree is always balanced. Furthermore, the
height balancing for the tree adds no more than a constant factor to the speed insertion.
And finally, an AVL can never be degenerated in comparison with the BST tree that can
be degenerated to a linked list. However, there are also some arguments against using
AVL trees. An AVL node has to store the balance factor in order to check violations of
the AVL property during insertion or deletion, so an AVL tree demands more space in
memory. Programming and debugging an AVL tree is more difficult because of the extra
work needed about checking the AVL property and performing rotations. And lastly,
although an AVL tree is asymptotically faster than other simple trees, the rebalancing
costs time.

Rebalancing in AVL trees

When a thread performs an update operation (insertion, deletion) in an AVL tree, a
rebalancing is needed. The rebalancing can be checked through the balance factor of the
node. If the balance factor becomes less than —1 or greater than +1, the subtree rooted at
this node is unbalanced, and a rebalancing is needed. Thus, we have to perform left or
right rotations. Figure 2.3 shows a right and a left rotation in a tree without violating the
binary search property. Anupdate operation has two phases. The first phase is the standard
BST operation (as if the tree were an ordinary binary search tree) and the second includes
rotations for rebalancing the tree. When the standard BST operation is performed, there

36

can be four possible cases of the tree that need to be handled. These are depicted in figures
2.4,2.5,2.6 and 2.7. The circles represent the nodes being rebalanced. The triangles T1,
T2, T3 and T4 represent subtrees which are themselves balanced AVL trees. The left left
case and the right right case are symmetric and need only a single rotation (a right rotation
in left left case and a left rotation in the right right case). Similarly, the left right case is
symmentric with the right left case and demand two rotations as shown in figures 2.6 and
2.7, respectively.

m Right Rotation ‘:’ ‘:’
-
>
<&
< -
o e Left Rotation

Figure 2.3: A right and a left tree rotation.

(e)
oW

rotateRight(c)
(& /A

Figure 2.4: Left left case. T1, T2, T3 and T4 represent subtrees which are them-
selves balanced AVL trees.

2.2.3 Red-Black Trees

A Red-Black tree is also a height balanced binary search tree. The Red-Black tree is
derived from the symmetric binary B-tree as described in the paper entitled "A Dichro-
matic Framework for Balanced Trees" [4]. Each node of a Red-Black tree has an extra bit
that represents the color of the node. It can be red or black. This painting of each node
of the tree preserves the balance of the tree, that is not perfect, as the Red-Black tree is
roughly height balanced. Thus, the Red-Black tree satisfies certain properties named col-
oring properties, which ensure that the tree remains approximately balanced. When the

37

@
O
M B
A A T1\ /T2\ /T3\ /T4

Figure 2.5: Right right case. T1, T2, T3 and T4 represent subtrees which are
themselves balanced AVL trees.

O (<)
A B GA rotaeRighc)
AL AN A

Figure 2.6: Left right case. T1, T2, T3 and T4 represent subtrees which are them-
selves balanced AVL trees.

(a) (a) ®
G A=A
A A A A T1 T2\ /T3 4

Figure 2.7: Right left case. T1, T2, T3 and T4 represent subtrees which are them-
selves balanced AVL trees.

38

tree is modified during operations like insertion or deletion, the tree have to be rearranged
and repainted to restore the coloring properties.
A Red-Black tree must satisfy the following coloring properties:

1. A node is either red or black.

2. The root is black (root property).

3. Every leaf (NIL) is black.

4. If anode is red, then both its children are black (red property).

5. Every path from a node to a descendent leaf has the same number of black nodes
(black property). The number of black nodes from the root to a node is the node's
black depth and the uniform number of black nodes in all paths from root to the
leaves is called the black-height of the Red—Black tree.

These properties are designed in such a way that the rearranging and the recoloring
of the tree can be performed efficiently. Figure 2.8 shows an example of a Red-Black
tree. Usually, the leaves of a tree are sentinel nodes as a convenient means of flagging a
leaf node and they are black nodes because of the third coloring property. Furthermore,
these properties pose another constraint for Red-Black trees: the deepest path in the tree
is not longer than twice the shortest one, since all maximal paths have the same number
of black nodes according to the last coloring property. More specifically, let B be the
number of black nodes of the shortest possible path from the root of the tree to a leaf. The
fourth coloring property makes it impossible to insert more than one consecutive red node.
Therefore, the longest possible path consists of 2 * B nodes, alternating black and red in
worst case. Counting the black NIL leaves, the longest possible path consists of 2% B — 1
nodes.

Figure 2.8: An example of a red—black tree.

When inserting or deleting a node, some of the aforementioned properties might be
violated and actions must be taken to restore them and rebalance the tree. The two possible
violations are: a) red-red violation, when a red node acquires a red child (violation of the

39

fourth coloring property) and b) double black violation, when a path of a tree contains one
less black node than other paths (violation of the fifth coloring property). To deal with
these violations a number of node recolors and rotations are applied.

The basic operations (lookup, insertion, deletion) require worst-case time proportional
to the height of the tree O(logn), where n is the total number of the nodes in the tree. This
theoretical upper bound on the height allows Red-Black tree to be efficient in the worst
case, unlike ordinary binary search trees. For example, inserting a key in a non-empty Red-
Black tree has three steps. In the first step, the BST insert operation is performed, which
takes O(logn) time, because the tree is balanced. The second step is to color the new
node red, which takes O(1) time, since it just requires setting the value of one node's color
field. And in the third step, a restoration of any violated coloring properties is performed.
Restoring these properties requires a small number of color changes and no more than
three tree rotations (two for insertion). Changing the color of nodes during recoloring is
O(1). However, it might be need to handle a double-red situation further up the path from
the added node to the root. In the worst-case, the fixing of a double-red situation along the
entire path from the added node to the root is performed. Therefore, in the worst-case, the
recoloring that is done during insert is O(logn) (= time for one recoloring * max number
of recolorings done = O(1) * O(logn)). So overall the third step (restoration of coloring
properties) is O(logn) and the total time for insert is also O(logn).

AVL trees are often compared with Red-Black trees because both support the same set
of operations and take O(logn) time for the basic operations. A Red-Black tree demands
less memory space than an AVL tree, since it requires only one bit of information per node
for the color, while an AVL tree demands an integer per node for the balance factor. The
Red-Black tree does not contain any other specific data, so in many cases the additional
bit of information has no additional memory cost and the memory of a Red-Black tree is
almost identical to a classic BST tree.

However, AVL trees are more rigidly balanced than Red-Black trees. The height of
an AVL tree is bounded by roughly 1.44 xlog, n, while the height of a Red-Black tree may
be up to 2 * log, n. Thus, lookup is slightly slower on the average in Red-Black trees. On
the other hand, the AVL trees may cause more rotations during insertions and deletions.
So if an application involves many frequent insertions and deletions, the Red-Black trees
should be preferred. And if the insertions and deletions are less frequent and lookup is
more frequent, then an AVL tree should be preferred. Red-Black trees can be used in data
structures for computational geometry and are valuable in time-sensitive applications such
as real-time applications and in functional programming to construct associative arrays and
sets, which can retain previous versions after mutations, while AVL trees are attractive for
data structures that may be built once and loaded without reconstruction, such as language
dictionaries.

Rebalancing in Red-Black trees

When a thread inserts a node, it must be colored red. If the new node is black, then in-
serting it into the tree always introduces a double black violation. The rest of the algorithm

40

would then need to concentrate on fixing the double black violation without introducing a
red-red violation. On the other hand, if the new node is red, there is a chance that it could
introduce a red-red violation. The rest of the algorithm would then need to work toward
fixing the red-red violation without introducing a double black violation. However, if the
new node is red, and it is inserted as the child of a black node, then no violations occur at
all, whereas if the new node is black, a double black violation always occurs. Therefore,
the logical choice is to color the new node red, because there is a possibility that insertion
will not violate the rules at all. Red-red violations are also more localized and thus, easier
to fix.

Similarly with AVL trees, when a thread runs update operations, the tree is modified
and the result may violate the coloring properties. To restore these properties, we have to
change the colors of some of the nodes (recoloring) in the tree and perform left and right
rotations as appearing in figure 2.3. Upon an insertion of a new red node, there are three
possible cases of the tree than need to be handled according to [5]:

* Case 1: the uncle of the inserted node is red

Figure 2.9 shows the tree in case 1. Both the parent and the uncle of the inserted
node are red and their parent has to be black. We can fix the problem by flipping
their colors (the parent and the uncle of the inserted node becomes black and the
grandparent red). However, if the grandparent's color changes, we risk a violation
further up the tree. It is possible that its parent could also be red and there is another
red-red violation. Therefore, after this case we have to move up the tree and repeat
checking for violations.

TR TTTETY | C

Case 1

Figure 2.9: Case 1 upon an insetion of a node z in a Red-Black tree. The code for
case 1 changes the colors of some node to preserve the coloring properties.

» Case 2: the uncle of the inserted node is black and the inserted node is a left child
Case 2 is appeared in figure 2.10 In this case, we make the grandparent of the in-
serted node red and the parent black and we single rotate around grandparent node
to the right. This fixes the red-red violation. Nevertheless, the root of this subtree

41

does not change color. The new root (parent of the inserted node) is black as the
previous root (grandparent). In this case, we can be sure that the red-red violation
will not propagate upward. Moreover, this rotation does not change the black height
of either subtree, so the tree is now balanced and no other rotations or recolors are
needed.

+ Case 3: the uncle of the inserted node is black and the inserted node is a right child
Case 3 is also appeared in figure 2.10. In this case a double rotation is needed. We

first use a left rotation and the tree becomes the same as in case 2. So, we perform
the recolors and a right rotation as they are described in case 2.

Left Right
Rotation Rotation
L T | TTTTTITT A I
A

Case 3 Case 2

Figure 2.10: Case 2 and case 3 upon an insetion of a node z in a Red-Black tree.
We transform case 3 into case 2 by a left rotation. Case 2 causes some color
changes and a right rotation to preserve the coloring properties.

The deletion of a node in a Red-Black tree is sure to cause a double black violation, if
the deleted node is black. Removing a red node cannot violate any of the coloring prop-
erties. Therefore, if we could guarantee that the node to be deleted was red, the deletion
would be simplified. When we want to delete node z and z has fewer than two children,
then z is removed from the tree, and we want y to be z. When z has two children, then y
should be Z's successor, and y moves into z's position in the tree. We also remember y’s
color before it is removed from or moved within the tree, and we keep track of the node x
that moves into y’s original position in the tree, because node x might also cause violations
of the coloring properties. We check color of sibling node to decide the appropriate case.
There are four cases to be handled [5]:

* Case 1: x's sibling is red
Case 1 occurs when the sibling node of x is red (Figure 2.11(a)). Since the sibling
node has black children, we can switch the colors of the sibling node and the parent
of the node x and then perform a left rotation rooted at the parent of node x without
violating any of the coloring properties. The new sibling of x, which is one of the
previous sibling's children, is now black and thus case 1 has be converted into case
2,3, or4.

42

» Case 2: x's sibling is black and both of its children are black
In case 2 (Figoure 2.11 (b)) the sibling node is black as well as its children. We
recolor the sibling node red. To compensate for removing one black node, we would
like an extra black node to the subtree rooted at x. We fix this by repeating the loop
for violations and seting the parent of the x as the new node x.

» Case 3: x's sibling is black, sibling's left child is red and sibling's right child is black
In case 3 (Figure 2.11 (c)) we can switch the colors of the sibling and its left child
and perform a right rotation rooted at the sibling node without violating any of the
coloring properties. The new sibling node of x is now black with a red right child,
and thus case 3 was converted into case 4.

 Case 4: x's sibling is black and its right child is red
In case 4 (Figure 2.11 (d)) we color the parent of x and the sibling's right child
black as well as the sibling node red and then perform a left rotation. Thus, we can
remove the black node x without violating any of the coloring properties.

2.3 Techniques for constructing concurrent data struc-
tures

As mentioned in the previous chapter, synchronization is vital in parallel programming
such that to ensure that two or more parallel tasks like processes or threads do not simulta-
neously execute the serial segment of the program (critical section). Furthermore, multi-
ple operations are performed simultaneously in concurrent data structures like concurrent
search trees. So in order to ensure that correct results are generated in data structures dur-
ing multiple operations performed and maintain them consistent, a synchronization mech-
anism is needed. Synchronization techniques like mutual exclusion and atomic operations
are performed in the basic operations of concurrent data structures. Programmers' aim is
to construct consistent concurrent data structures which result to high performance and
scalability in multiprocessor systems. There are at least three common techniques used
today to construct concurrent search trees: coarse-grained locking, fine-grained locking
and lock-free programming.

2.3.1 Coarse-grained locking

Coarse-grain locking is a technique to construct concurrent data structures using mu-
tual exclusion and locks. An important property of a lock is lock granularity, which is
defined as a measure of the amount of data the lock is protecting. There also two use-
ful concepts related with locks, lock overhead and lock contention. Lock overhead is the
extra resources for using locks, like the CPU time for lock initialization and destruction,
the memory space allocated for locks, and the time for acquiring or releasing locks. An
increased usage of locks in a program results to more lock overhead. And lock contention

43

Case 1)

(a)

Uy

. 8
Case 2
S —- new 1 (_

(b)

L
: Y
Case3

[X }f new x = T.root

(c)

(d)y

Figure 2.11: The cases upon a deletion of a node in a Red-Black tree. Darkened
nodes have color attributes black, heavily shaded nodes have color attributes red,
and lightly shaded nodes have color attributes represented by ¢ and ¢', which may
be either red or black . The letters o} B, ..., C represent arbitrary subtrees. Each
case transforms the configuration on the left into the configuration on the right
by changing some colors and/or performing a rotation. Any node pointed to by x
has an extra black and is either doubly black (when a black node is deleted and
replaced by a black child, the child is marked as doubly black) or red-and-black.
(a) Case 1 is transformed to case 2, 3, or 4 by exchanging the colors of nodes B and
D and performing a left rotation. (b) In case 2, the extra black represented by the
pointer x moves up the tree by coloring node D red and setting x to point to node
B. (c¢) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D
and performing a right rotation. (d) Case 4 removes the extra black represented
by x by changing some colors and performing a left rotation (without violating the
coloring properties). This figure has been taken from [5].

44

appears when a parallel task like a thread attempts to acquire a lock held by another thread.
The less granularity the available locks have, the less likely one process/thread will request
a lock held by the other.

In coarse-grained locking, when a process/thread needs to access some shared data,
the entire shared data are locked via a global lock, read/write operations are performed on
them and then the lock is released. The access to the shared data is serialized and only one
process/thread can access them, so concurrency is low. Coarse grained locking is relatively
simple to implement, easier to use, understand and debug. The only disadvantage is that it
is slow and limits the performance in a multiprocessor system. If there are many threads
that need access to the shared data, they will have to wait until the thread that holds the
global lock finishes its work and releases the lock. Such a situation means a high lock
contention and it degrades the performance. Coarse-grained locking is only useful when
the threads execute quickly and do not create a lot of lock contention. On the other hand,
it results in less lock overhead when a single process/thread is accessing the shared data.

2.3.2 Fine-grained locking

With fine-grained locking, multiple locks of small granularity are used to protect the
smallest possible part of the data structure that the current process/thread needs to operate
on. This results to an increased lock overhead because more locks are used for the same
shared data, more memory allocation is needed and it appears an additional cost of acquir-
ing/releasing locks. On the other hand, fine-grained locking allows high concurrency and
exposes more parallelism by reducing the lock contention for the shared data structure.
Multiple processes/threads can proceed in parallel when they do not access the same parts
of the shared data structure and it can be good for scalability. Although this technique
provides more parallelism, it is complex, much more difficult to implement, as it can be
very hard to know which locks are needed and in which order, and can create lock de-
pendencies causing problems like race conditions, deadlocks, livelocks. In order to avoid
such problems all processes/threads, that perform operations simultaneously on the data
structure, have to acquire locks in the same direction (global order).

So overall lock-based mutual exclusions have many disadvantages like high lock con-
tention and lock overhead and the programmer has to find a solution that trades off some
parallelism for reduced overhead. Other disadvantages are priority inversion, where a low-
priority process/thread holding a lock can prevent high-priority processes/threads from
proceeding, and convoying, where all processes/threads have to wait if a process/thread
holding a lock is descheduled. Moreover, the debugging is also a challenge, as bugs asso-
ciated with locks such as deadlocks are time dependent and extremely hard to identify.

2.3.3 Lock-free programming

Lock-free programming is programming without locks. A lock-free program can
never be stalled entirely by any single process/thread and can make progress even if in-
dividual processes/threads are suspended indefinitely. Lock-free programming can im-

45

prove system throughput and robustness (by avoiding situations like the failure of a pro-
cess/thread holding a lock can lead to a system failure) and has desirable liveness prop-
erties. The key in lock-free programming is the hardware support. However, it is very
hard to design and implement lock-free algorithms properly and programmers choose to
design concurrent data structures using non blocking synchronization which is a portable
solution and can be used in different kinds of applications. These data structures are called
non-blocking data structures.

Non-blocking data structures can be wait-free, if every operation is guaranteed to be
finished in a finite number of steps, lock-free, if some operations are guaranteed to be fin-
ished in a finite number of steps and obstruction-free, if an operation is guaranteed to be
finished in a finite number of steps, unless another operation interferes. Non-blocking data
structures do not rely on locks and mutexes to ensure thread-safety, but on techniques like
atomic operations and memory barriers. This means that any process/thread either sees the
state before or after the operation, but no intermediate state can be observed (atomicity).
Most common atomic operations with hardware support in most multiprocessor archi-
tectures are compare-and-swap (CAS), test-and-set (TAS), test-and-test-and-set (TTAS),
load-linked/store-conditional (LL/SC).

2.4 Basic Interface in Concurrent Search Trees

As mentioned above, a concurrent search tree consists of a set of elements and an
interface to access them. This interface includes three main operations: lookup, insetion
and deletion. Each element of the set is stored in a node of the tree and consists of a key-
value pair. The key uniquely identifies the element in the set. The three main operations
have the following semantics:

* lookup(key): searches for a node containing the given key. If it is found, the value
that is bound to the key is returned from the operation, otherwise the operation
returns NULL.

+ insertion(key, value): attempts to insert a new node in the search tree, binding the
given key to the given value. The insertion is successful if there is no other node
with the same key.

* deletion(key): attempts to delete the node containing the specific key from the tree.
The operation is successful if there such a node exists.

The last two operations (insertion and deletion) comprise two distinct phases. First,
there is a traversal in the tree until the desired node is reached (always a leaf in case of
insertion) and then the actual modification is attempted.

46

2.5 A naive approach

In this section, we will present some implementations of concurrent search trees which
constitute a naive approach for this data structure. Some of these were developed within
the context of the papers [6], [7]. Before describing some implementation details we will
introduce two concepts. The first that has already mentioned, is a distinction in search
trees depending on the way the key-value pairs are being stored in the tree structure. In-
ternal trees store a key-value pair in every node of the tree and external trees store the
values only in the leaves while the internal nodes contain only keys and are used solely
for routing purposes. The second concept to introduce is about the order in which the nec-
essary modifications for balancing and the update operation (insertion, deletion) related
with the given key are performed. Insertion and deletions consist of two phases. The first
one traverses the tree in a top-down manner, i.e from the root towards to the leaves for
external trees or towards to the appropriate internal node for internal trees, and locate the
place where the node with the key is going to be inserted or the node that is going to be
removed from the tree. The second phase is performed only in AVL and Red-Black trees.
It traverses the tree in a bottom-up manner, i.e from the lead towards the root, modifying
parts of the tree and rebalancing the tree in order to restore the tree properties. Whereas the
top-down phase always reaches a leaf, the bottom-up phase backtracks a number of times
depending on the violation. In the worst case it shall reach the root of the tree. Thus, when
the update operations have these two phases, the implementation is called bottom-up.

In serial implementations, bottom-up trees are very efficient, but in concurrent im-
plementations parallel processes/threads might traverse the tree in opposite directions and
in case of fine-grained locking a bottom-up implementation is very complicated. Parallel
processes/threads acquire locks in their way and there is no global order for the locks. This
may lead to a deadlock. To enable fine-grained synchronization, top-down approaches
have been proposed [4], [8], where insertion and deletion are performed in a single top-
down pass. For balanced trees (AVL, Red-Black trees) in order to achieve this, while
traversing the tree from the root to the appropriate leaf, the necessary modifications (i.e
recolors in Red-Black trees) and rotations are applied, ensuring that no bottom-up traver-
sal of the tree is required. In this case, in a concurrent execution, all processes/threads
acquire locks in the same direction usually using the well known hand-over-hand tech-
nique [9] and avoiding the possibility of deadlock. At each step the nodes that are locked,
are released only after the next nodes, that appear lower in the tree are locked. How-
ever, as top-down implementations perform generally more tree modifications compared
to bottom-up implementations, they impose more overhead and result to worse perfor-
mance in serial executions.

The lookup operation is a bit more simple and is the same for all three types of search
trees (BST, AVL, Red-Black tree). Starting from the root of the tree, a path of nodes is
traversed until the node associated with the given key is reached. In a concurrent imple-
mentation, in case of fine-grained locking the synchronization in the lookup operations
is achieved with the hand-over-hand locking techinque [9], too. Locking is performed at
each distinct step of traversal and as in update operations (insertion, deletion), the lock of

47

the next node to be visited is acquired before the lock of the current node is released.

2.5.1 Description

We have developed nine different implementations of concurrent search trees, inter-
nal and external trees, using the aforementioned techniques for synchronization and both
bottom-up and top-down approaches for rebalancing. Furthermore, there are no duplicates
in the trees. The insertion of a key is successful, only if the key does not exist in the tree,
and in this case a new node with a key-value pair is inserted, otherwise it returns false as
a sign for unsuccessful insertion.

Our concurrent search trees are:

* avl-bu-cg-ext-lock tree

AVL tree

external tree

coarse-grained locking
bottom-up approach for rebalance
iterative implementation

* bst-td-fg-int-lock tree
BST tree
internal tree

fine-grained locking
top-down (no rebalance needed)

* rbt-bu-cg-ext-iter-lock tree

Red-Black tree

external tree

coarse-grained locking
bottom-up approach for rebalance
iterative implementation

* rbt-bu-cg-int-iter-lock tree

Red-Black tree

internal tree

coarse-grained locking
bottom-up approach for rebalance
iterative implementation

* rbt-bu-cg-ext-rec-lock tree

— Red-Black tree
— external tree
— coarse-grained locking

48

— bottom-up approach for rebalance
— recursive implementation

rbt-td-cg-ext-lock tree

— Red-Black tree

— external tree

— coarse grained locking

— top-down approach for rebalance

rbt-td-fg-ext-lock tree

— Red-Black tree

— external tree

— fine-grained locking

— top-down approach for rebalance

rbt-td-cg-int-lock tree

— Red-Black tree

— internal tree

— coarse grained locking

— top-down approach for rebalance

rbt-td-fg-int-lock tree

— Red-Black tree

— internal tree

— fine-grained locking

— top-down approach for rebalance

2.5.2 Implementation details

All these implementations were developed in C programming language.

In order to implement parallelism we used POSIX threads or Pthreads as a parallel
execution model. POSIX threads is an API defined by the standard IEEE POSIX
1003.1c.

False sharing is the most limiting factor on achieving scalability for parallel threads
of execution in a symmetric multiprocessor system (SMP), where each processor
has a local cache. It occurs when threads on different processors modify indepen-
dent variables that share the same cache line. This situation invalidates the cache
line and forces an update, which degrades performance. Thus, in order to avoid
false sharing and align the node structure of the tree in memory, we applied struc-
ture padding. This is a technique in which one or more bytes are inserted between
memory addresses. As a result, nodes of the tree that were previously allocated
in consecutive addresses in memory, now reside on different cache lines. Listing

49

2.1 and figure 2.12 show a typical bst node structure and a representation of it in
memory, respectively. Supposing that a cache line is 64 bytes, the padding is 64
bytes minus the total 'real' bytes of information of a node, such that each node will
be allocated in exactly one cache line.

Listing 2.1: A typical bst node structure

typedef struct bst node{
int key;
struct bst node *lchild;
struct bst node * rchild;
void *value;

char padding[CACHE LINE SIZE — sizeof(int) —
2 * sizeof(struct bst node *) —
sizeof (void *)];

S O 0N N bk W~

} bst node t;

key Ichild rchild value padding

|

CACHE_LINE_SIZE

Figure 2.12: A typical bst node structure in memory using padding, such that to
be the same bytes as one cache line.

* Iteration is a loop based imperative repetition of a process that repeats some part
of the code and recursion a method where the solution to a problem depends on
solutions to smaller instances of the same problem. A recursive function calls itself
again to repeat some code for a smaller piece of a complicated task and then it
combines the results. We have implemented iterative versions of concurrent Red-
Black trees as well as a recursive and an iterative version of an AVL tree. In an
attempt to implement a bottom-up and iterative approach, we used stack structure.
While a thread traverses the tree with a top-down manner until the desired node
is reached, we store the path of nodes in the stack such that to access the reverse
path with a bottom-up manner and rebalance the tree. As concerning the recursive
version, the basic operations of the tree (lookup, insertion, deletion) are recursive
functions which call themselves within the program text and when they return, they
rebalance the tree if needed. The disadvantage of these recursive functions is that
they traverse the whole path from the root to the appropriate for modifications node
(always a leaf in external trees) two times, while the iterative, bottom-up approach
does not always traverse the whole reverse path to the root in the bottom-up phase,
but it stops when no rebalancing is needed.

50

* In order to implement a coarse-grained locking there is a single global lock (pthread
spinlock) shared for all threads. Every thread that performs one of the three main
operations waits until the lock is released, acquires the lock, executes the operation
and then releases the lock. Only one thread acquires the shared lock at a given time.
Coarse-grained locking is easy to implement, but leads to serialization of accesses.

* In fine-grained locking version of concurrent search trees, each node structure has
its own lock. Thus, we have added an additional field in the node structure for a
pthread spinlock. We only implement top-down approaches because, as explained
before, a bottom-up approach is hard, if possible at all, to be implemented. We also
keep a global order in locks (acquire locks always in the same direction) to avoid
deadlocks. More specifically, while a thread traverses the tree from the root to the
leaves, it acquires locks with a top-down manner (lock the node which locates in
a higher level of the tree first and then the node in the lower level) via hand-over-
hand locking technique [9]. However, internal and external trees entail different
requirements and challenges in fine-grained locking. An important one is that in
order to delete an internal node (node with two children) from an internal tree, we
have first to find its successor (the leaf node with the greatest key that is less than the
key of the node to be deleted), swap their key-value pairs and remove the successor
leaf node. This operation requires exclusive access to the every node between these
two nodes. To achieve this, we keep locked the internal node that we want to delete,
until its successor (leaf) node is found. As shown in figure 2.13 the whole subtree
rooted at this internal node is locked. If we do not keep locked the internal node, that
we want to delete, unlock it and acquire again its lock after we find its successor,
it may occur deadlock because of acquiring locks with the opposite direction (first
the lower level leaf-successor and then the higher level internal node to be deleted).
On the other hand, a deletion in an external tree involves only leaf nodes and there
is no such problems.

locking subtree

Figure 2.13: Deletion of node D in an internal tree. While searching D's successor
to swap their key-value pairs, the subtree rooted at D node must be locked.

51

* In avl implementation we have also added an additional field in the node structure
which represents the height of the node, such that to compute the balance factor
and perform rebalancing to restore the AVL property. Similarly, in Red-Black trees
each node has a color in order to restore the coloring properties. So, the structure
of a Red-Black node has also an additional field for the color.

* Finally, in internal implementations the leaves of the tree are sentinel nodes. Sen-
tinel nodes are designated nodes used as traversal path terminators instead of NULL
pointers. Using sentinel nodes, we reduce the code size by avoiding additional
checks for NULL pointers.

2.6 A more sophisticated approach

This section includes more sophisticated approaches for concurrent search trees. These
implementations are complex algorithms (lock-based or lock-free) taken from the paper
[10] and use a more complicated synchronization mechanism than naive concurrent search
trees. Thus, we expect to have higher performance and scale better. We will briefly de-
scribe the concept of each implementation.

2.6.1 Description
Bronson

This is a concurrent relaxed balance AVL tree proposed at [11], that delivers high
performance, good scalability and tolerates contention by controlling the size of critical
sections (all updates have fixed size critical sections) and taking advantage of validation
logic. A lookup can block until a concurrent update is completed. In an attempt to check
concurrent updates, this algorithm uses version numbers. In version number there is a
"changing" bit to indicate if a write is in progress and the remainder of the bits form a
counter. Each node has a version number, such that to verify if a read is still valid. For
example, at time ¢; a thread executes a read and the associated version number is v1. The
thread must block until the change bit in version number is not set (a concurrent write to
be completed), read the protected value x and then at time to rereads the version number
vy. If v1 = v9, then the read is still valid at ¢5.

Moreover, as a concurrency control mechanism for searching and traversing the binary
search tree the algorithm performs hand-over-hand optimistic validation. Hand-over-hand
locking [9] reduces the duration over which locks are acquired by releasing locks on nodes
whose rotation no longer affect the correctness of the search and optimistic validation is
used to protect critical sections and is chained with hand-over-hand approach. If a key is
present in the set of elements, then a thread must traverse the tree from the root to the node
associated with the key. Similarly, if a key & is not present in the tree, then a thread must
reach the node that would be the k's parent, if it were inserted. Through hand-over-hand
optimistic validation, in a lookup, which consists of an interval of keys, the algorithm

52

attempts to check whether a key is absent from the entire tree or present in the current
subtree. Each time a lookup operation navigates downward to the tree after performing a
comparison between keys the interval is decreased. At all times the interval includes the
target key, so if the subtree ever becomes empty, it means that there is no node with that
key present in the entire tree. The optimistic validation scheme only needs to invalidate
lookups whose state is no longer valid.

Finally, the described tree is referred as partially external tree. In internal trees with no
routing nodes the deletion of a node with two children requires that the node's successor
must be unlinked from the tree and linked in node's position in the tree. This unlink and
relink of node's successor in concurrent trees must be done atomically and every node
along the path from the node to be deleted to its successor must be locked. This excessive
locking limits scalability and performance. On the other hand, in external trees there is no
such problems in a deletion of a node with two children. However, external trees with N
nodes require N — 1 routing nodes and it increases the storage overhead and the average
search path. As a result, this algorithm uses a simple scheme referred in [11] as partially
external tree that simplifies deletions by leaving a routing node in the tree when deleting
a node has two children. When rebalancing is performed, routing nodes with fewer than
two children are unlinked from the tree. A deletion of a node with fewer than two children
is handled immediately unlinking the node. Partially external trees require fewer routing
nodes in most cases than an external tree after a sequence of update operations, but in
the worst case they may have exactly the same number of routing nodes. As concerning
the node structure, this implementation has the same node structure for both key-value
associations and routing nodes and this permits a value node to be converted to a routing
node (or the reverse) by changing a field in the node structure and without modifying other
inter-node links.

Drachsler

This tree presented in [12] is a BST internal tree that uses logical ordering among
nodes. The key to design correct and efficient concurrent binary search trees is to im-
plement a scalable design for the lookup operation. The tree ordering layout is separated
from the tree physical layout and thus, lookup operations can proceed concurrently with
operations that modify the physical tree layout without synchronization. This approach al-
lows fast lookup operations. The authors of [12] exploited this idea to obtain an intuitive,
simple and robust lookup operation, that also provide strong progress guarantees.

The logical ordering among elements can be viewed as consecutive intervals. For
instance, the logical ordering for the elements 1 < 3 < 5 < 7 < 9 can be viewed as
intervals (—o0, 1), (1,3),(3,5),(5,7),(7,9), (9,+00). An element belongs to the tree if
and only if it is an endpoint of some interval and does not belong otherwise. The algorithm
for these concurrent binary search trees uses intervals to answer lookup requests and to
synchronize operations. Each node of the tree keeps its successor endpoint (succ field in
the node structure) and its predecessor endpoint (pred field in the node structure), which
are unique. The synchronization may also be performed on these endpoints. As this tree

53

is a fine-grained locking approach, two locks are needed, a treeLock, which protects the
tree's physical layout fields (left, right, parent), and a succLock which protects the logical
layout fields (the succ field and the pred field of the node). That is, for a node n, n's
succLock protects the interval (n, succ(n)).

A key k is present in the tree if it is the endpoint of an interval (k € [k, k2]). Thus,
in a lookup operation, we have to find if there is such an interval. Lookup operation has
two phases. Firstly, there is a traversal of the physical tree layout until a leaf is reached
and if the key k was found during traversal, then the key & is in the tree. And secondly, if
the key k£ was not found, it must be found an interval with keys k; and ko, that are in the
tree and such that k£ € (k1, k2). This search for key k terminates when it reaches a node
of value "k where: (i) k € (pred("k),"k), or (ii) k € ("k, succ("k). This will be done via
the logical ordering pointers, the predecessor (pred) and the successor (succ).

Eventually, as in all concurrent search trees a synchronization mechanism is needed.
According to [12], each update operation is performed in four steps:

1. Acquire logical ordering layout locks.

2. Acquire physical layout locks.

3. Update the logical ordering layout and release logical ordering locks.
4. Update the physical layout and release physical locks.

As mentioned, acquiring the tree's physical layout locks (treeLocks) prevents simulta-
neous updates to the node's physical layout information like node's children, parent, e.t.c.
and acquiring the tree's logical ordering layout locks (succLocks) prevents simultaneous
updates to the intervals. Each interval is associated with a lock, the succLock of the node
with the beginning number of the interval as its key. When an operation updates two in-
tervals (like merging two intervals in deletion), it must acquire two succLocks for the two
intervals. Therefore, there is synchronization via locks for both the tree physical and log-
ical ordering layout. In an attempt to avoid deadlocks, succLocks, which are used for the
tree logical ordering layout should be acquired before treeLocks, which are used for the
tree physical layout. Between two succLocks the lock of the node with the smaller key
should be acquired first to keep a global order and between two treeLocks the lock of the
node that appears lower in the tree should be acquired first. However, deletion operation
must acquire treeLocks against the locking order. As a result, when locking treeLocks
against the locking order is required, threads optimistically attempt to acquire them with-
out blocking on it (using tryLock()) and if they fail, they release all locks and the operation
is restarted. In this way, deadlock cannot occur.

BST Ticket

This concurrent binary search tree proposed in [10] is a lock-based BST implemen-
tation. It attempts to reduce the number of acquired lock per update operation and as a
consequence the number of cache lines transfers. More specifically, BST Ticket is an ex-
ternal tree, where every internal node used for routing purposes is protected by a lock and
contains a version number. As referred in [10] bst-tk stands for BST Ticket and has ticket

54

locks for locking and keeping track of version numbers of nodes. The version numbers
are used in order to be able to optimistically traverse the tree and later detect concurrency.
It can be validated in order to avoid concurrent conflicting updates. Based on the observa-
tion that a ticket lock already contains a version field, the algorithm integrates the version
validation and increment, with locking and unlocking, respectively. The interface of ticket
locks is modified so that the lock acquisition involves the version number of the node and
as a result performing a locking and validating the version can be done in a single step.
Briefly, the lookup operation is executed in a wait-free manner and an update operation
traverses the tree until the appropriate for modifications node is found, acquires a num-
ber of locks and executes the update. If the lock acquisition fails, the version of the lock
has been incremented by another concurrent update and the operation has to be restarted.
Furthermore, the tree is optimized by allocating two small ticket locks for each node, such
that the left and the right child pointer of a node can be locked separately.

In insertion operation the first phase is a lookup operation that keeps track of the prede-
cessor node apart from the current one. If the update is possible, two nodes are allocated,
an external node that stores the key-value pair and a routing node, and then a lock is ac-
quired, protecting either the left or the right child pointer of the predecessor. Once the
locking succeed, the update is performed, otherwise the operation is restarted. Similarly,
the lookup phase of a deletion operation keeps tracks of both predecessor and the predeces-
sor of the predecessor, as a deletion influences both nodes. If the deletion is possible, the
appropriate child pointer (left or right) of the predecessor of the predecessor is locked, as
well as both pointers of the predecessor (this is done in a single step). If both acquisitions
are successful, then the deletion is performed, otherwise the operation has to be restarted.
Overall, this implementation demands one lock for a successful insertion and two locks
for a successful deletion.

Aravind

This concurrent binary search tree is presented in the paper [13]. It is a lock-free
algorithm that supports the three basic operations for binary search trees. Lock-freedom
requires that some process be able to complete its operation in a finite number of steps.
Thus, this lock-free approach uses two atomic operations for reads and writes, compare-
and-swap (CAS) and bit-test-and-set (BST). As in previous concurrent search tree, an
external representation of search trees has been selected. In order to limit the conflicts
among update operations and reduce the overhead of update operations there are some
optimizations. As mentioned in [13] (¢) the algorithm is based on marking edges as deleted
rather than nodes, (i7) it does not use explicit objects for coordination between conflict
operations and finally, (#i¢) it permits multiple keys (nodes) being removed from the tree
in a single step. As a result, update operations in this algorithm work on a smaller portion
of the tree (smaller contention window), allocate fewer objects and execute fewer atomic
operations (one for insertion and three for deletion).

In contrast to previous implementations this algorithm marks the edges as deleted
instead of the nodes. Each update operation becomes the "owner" of some edges that it

55

needs to work on. Note that every edge has a tail and a head node. Marking an edge means
that either both tail and head nodes or only its tail node will be deleted from the tree. Thus,
it is vital to distinguish between these two cases. In paper [13], the first type of marking
is referred as flagging and the second type as tagging and as for the implementation, to
enable flagging or tagging they exploit two bits (denoted flag and tag) from each child
address (each child pointer in the node structure). If one of the two bits in a child address
has value 1, then the corresponding outgoing edge has been marked (flagged or tagged),
otherwise the edge is not marked. For example, in a deletion operation of a node (leaf)
n, marking an edge means setting the flag bit in the child field of n—parent, that points
to n—leaf to 1 (set a bit in the pointer that is associated with the left or the right child).
Additionally, as explained in section 3.2.4 [13], if there are multiple edges marked in the
tree, this will cause multiple leaf nodes to be removed from the tree in a single step during
deletion operation.

Finally, in this algorithm there is also a helping strategy that is performed only in
deletion operations. There is no helping strategy for insertions. This is why a helping
strategy increases the overhead of an operation and may provoke duplication of work.
Moreover, this algorithm does not use explicit objects for coordination, but steals two
bits from the child address of the node structure. In an insertion operation of a node n,
a helping strategy needs to be performed when it is discovered that the the edge from
n—parent to n—leaf exists and has been marked (flagged or tagged). It means that a
concurrent deletion operations is attempting to delete n—parent from the tree. As a result,
the insertion operations helps the concurrent deletion operation to complete (n—parent
and one of its children to be removed from the tree). Subsequently, the insertion operation
restarts from the beginning (lookup phase). Similarly, the deletion operation of a leaf node
n performs a flagging of the edge from n—parent to n—leaf using CAS atomic operation.
If the CAS operation fails, the deletion operations executes a helping strategy in the same
way as in insertion operation and then it tries again by retrying the lookup phase.

Ellen

The last implementation is presented in [14] and describes a non-blocking and lin-
earizable binary search tree (BST). This algorithm is a lock-free version of a BST that
uses non-blocking synchronization and more specifically the atomic operation compare-
and-swap (CAS). Therefore, it can tolerate any number of crash failures. Furthermore, as
mentioned in [14] they use a leaf-oriented BST that has already presented as external tree.
All keys of the set of elements for the tree are stored in leaves and every internal node
that has exactly two children is used to find the path to the correct leaf and its key may or
may not be in the set of elements. Update operations (insertions and deletions) that alter
different parts of the tree and do not interfere with one another can proceed concurrently.
Lookups only perform reads of shared memory and traverse the tree from its root to a leaf
(as this is an external tree), so they do not interfere with updates, too.

In update operations the appropriate modifications for the tree are performed using
the atomic operation CAS. However, in concurrent updates this can lead to problems and

56

in an inconsistent state of the tree. To avoid analogous problems there is a mark field in
the node structure named "state", so that in a deletion operation of a leaf, the parent's state
field is set before unlinking the parent from the tree. Setting the node's state field through
CAS steps ensures that its child pointers cannot change. This field is also used to flag the
node to indicate that an update is attempting to change a child pointer of the node. Before
an update operation, that changes either of node's child pointers, the state field is changed
to a flag value according to the update operation (insertion or deletion) to be performed.
After the termination of the update operation the state changes back to a "clean" state.
Generally, setting the state field of a node is similar to locking its child pointers. In con-
current search trees an operation must successfully acquire the lock in order to alter node's
child pointers, because this ensures that they never can change until releasing the lock.
A lookup operation does not change any child pointer and thus, it does not acquire any
locks. On the other hand, insertion operation is guaranteed to complete when it acquires
a lock (sets the state field) of a single node and a deletion operation after acquiring locks
of two nodes. Since only update operations need to acquire locks of one or two nodes
near a leaf of the tree, this locking scheme does not provoke serious contention problems
and concurrent updates which do not interfere with one another (perform modifications
on different parts of the tree) can proceed simultaneously.

In this implementation there is also a helping strategy. More specifically, a process
helps another process's operation to finish only if the other operation is preventing its own
progress. As a lookup operation does not modify the tree and cannot never be blocked,
it never helps any other operation. Nevertheless, an update operation that must lock a
node (setting the state field in node structure) that is already locked helps complete the
operation that locked the node first and then in retries its own update operation. In an
attempt to achieve this helping strategy, there is an Info record. When an operation locks a
node, it stores enough information (in an Info record), so that another process that requests
the locked node, to help complete the operation. This mechanism suffices to achieve a
non-blocking synchronization. According to the update operation to be performed there
are two types of Info record, as an insertion and a deletion operation demand different
information to be stored. As described in [14], to complete an insertion a process must
have a pointer to the leaf which is to be replaced, that leaf's parent and the newly created
subtree that will be used to replace the leaf. And these are the information to be stored to
an Info record for an insertion. Similarly, to complete a deletion operation a process must
have a pointer to leaf to be deleted, its parent, its grandparent and a copy of the state and
info fields of the parent. So, these information are stored to an Info record in a deletion
operation. Therefore, if a insertion finds that some other operation has locked (has set the
state field of the node structure) the parent of the node that is to be inserted, it helps the
other operation to complete and then retries. If a deletion operation finds that the parent
or the grandparent of the node to be deleted has already locked, it helps that operation to
complete and then starts over with a new attempt. However, a deletion operation demands
two locks, one for node's grandparent (acquiring it first) and one for node's parent. Thus,
it is possible that a deletion will fail to complete after the grandparent is locked, because
the parent is already locked by another process. In this case, it helps the operation that

57

locked the parent to complete and performs a backtrack CAS to release the grandparent.

2.6.2 Implementation details

These five implementations were developed in C programming language using POSIX
threads within the context of the paper [10]. The code is avialable at http://Ipd.epfl.ch/site/ascylib.

2.7 Evaluation

2.7.1 System Configuration

The system we used to evaluate the implementations was a 60-core platform (Figure
2.14), NUMA architecture with the following characteristics.

* 4 sockets (Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz)
* 15 cores per socket (30 threads with hyperthreading)

» 32KB L1 data cache per core

« 32KB L1 instruction cache per core

* 256KB L2 cache per core

+ 38MB L3 cache per socket

+ 1TB RAM

2.7.2 Run Configurations

To evaluate the implementations of the described concurrent search trees, we perform
random operations varying the number of threads, the range of the set of elements from
which the keys are selected and the proportion of lookup, insertion and deletion operations.
More specifically:

 Each software thread is manually pinned to a hardware thread in order to take ad-
vantage of the locality with the sockets. For instance, in case of a small number of
threads we pinned them in the same socket, so as to share the same 1.3 cache. We
also pin software threads to cores in such a way that all the available physical cores
are being employed before utilizing hyperthreads. Otherwise, if we did not pin the
software threads, the operating system may execute many software threads in the
same core leaving another core idle.

* The duration of each execution is 5 sec, during which each thread performs ran-
domly chosen operations, based on the percentage of operations we have selected.

58

Machine (101068 total)

| NUMANode P#0 (25268)

—
[owe |
[| [crmaer | [comae | [comen | [z | [z | [rmen | [memace | [mimacr | [| [caomsce | [cocmaer | [comae | [comew | [z |
|L]d(32KE) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) || L1d (32KB) |
[Come |[me |[come |[ooma |[wmn |[somn |[so |[ome |[cme |[ame |[ame |[mme |[cm][][]

| NUMANode P#1 (25268)

00— reimsesons |

e
[owe |
|L2(256KE) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) |
[| [| [came | [csimn | [csrmn | [csomr | [csomr | [smer | [momer | [s | [| [cormer | [| [cocme | oo |
[[|[come |[oom | [mmm | [somw | [mom |[ome |[mme |[ame |[ame |[mme |[cms][][]

Socket P#2

[|
[men | [carmeen | [czmacer | [czmser | [zrmom | [carmarn | [crmacer | [camser | [armorm] [smomam | [coomscer | [cavmacnr | [czmer | [ecmom | [carmoes |
[Gsmn | [cssomew | [| [asimer | [sasime | [crsmen | [cssmmr | [ascomer | [casimner | [vssmn | [cssomer | [carmr | [asimer | [asimn | [cosomes |
| L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) |

| NUMANode P#3 (25268)

[owe |
[| [crmaer | [comae | [comen | [z | [z | [rmen | [memace | [mimacr | [| [caomsce | [cocmaer | [comae | [comew | [z |
| L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) |
[Come |[me |[come |[ooma |[wmn |[somn |[so |[ome |[cme |[ame |[ame |[mme |[cm][][]

PCl 208810

—O—

PCI 1000:005b

PCI 13251657

PCI1424:1657

PCI1424:1657

PCI 13251657

Pl 2026:1d02

Host: huanei
Indexes: physical

Daste: Tex 11 M 2016 06:08:18 pu EEST

Figure 2.14:

59

The platform used in evaluation of concurrent search trees.

* The key range effectively determines the size of the tree, we evaluate the concurrent
search trees for ranges 2K, 32K and 2000000 keys. In the beginning of each exe-
cution the tree is initializes with half the possible keys of the selected range. This
provides the guarantee that on average half of the operations are successful and that
the average execution time of each operation remains the same all over the whole
execution (the percentage of insertion operations is the same as deletion operations,
so that the tree remains approximately the same).

* We use various proportion of operations, three different workloads 80-10-10 50-
25-25 20-40-40, with 80%, 50% and 20% of operations respectively being lookups
in the tree, i.e. read-only traversals, while the rest are equally divided between
insertions and deletions. These workloads represent a read-dominated, read-write
and write-dominated access pattern on the tree respectively.

2.7.3 Results

Naive concurrent search trees

Figures from 2.15 to 2.17 depict the throughput obtained from executions of the naive
concurrent search trees on the described 60-core platform. Trees with key range 2K do not
scale and in this case the performance is reduced as the number of threads increases. In
small trees there are many conflicts on nodes among threads and as a result high contention.
While the key range of the tree expands (32K and 2000000), the fine-grained implementa-
tions scales until a number of threads and after that point the performance collapses. More
specifically, they scale up to 8 threads. After the point of 15 threads, the throughput is
decreased and it appears the effect of NUMA architecture as threads employs more than
one socket of the platform. In a cache miss during an operation the transfer of a cache line
for a node is very expensive from one socket to another. On the other hand, coarse-grained
locking versions do not provide parallelism. They are protected by a single global lock
and as a result they serialize all accesses on the tree. They used as a baseline.

keys (80-10-10) 2K keys (50-25-25) 2K keys (20-40-40)

N

e 4
> LR
@-® rbt-bu-cg-ext-iter-lock < < rbt-td-cg-int-lock 4 i
—+ vy 3
4 AA \
3 3 g 3.
z z “ z
£ \/\\ LS 3 ’ \ﬁ\
5 "3 2 ERIE N
2 \!\ 3 >y 31 W
= £ =
£ \\\\\\ s c N
- §§ 3 I) 0 \\\N‘Y ——
0.

1 2 4 8 15 30 45 60 120 1 2 4 8 15 30 45 60 120 1 2 4 8 15 30 45 60 120

Number of threads Number of threads Number of threads

Figure 2.15: Throughput of concurrent naive implementations for 2K key range
and the three workloads.

60

32K keys (80-10-10) 32K keys (50-25-25) 32K keys (20-40-40)

X (=) i<

~

3 > P4
oo rt 9 << 2.
v

~
o

—
2. \A |A A rbt-bu-cg-ext-rec-lock
2 N

>

i @\
TN

o

Throughput (Mops/sec)

o

Throughput (Mops/sec)
Throughput (Mops/sec)

@0/
4

=

0:0p 2 4 8 15 30 45 60 120 0.0p 2 4 8 15 30 45 60 120 001 2 4 8 15 30 45 60
Number of threads Number of threads Number of threads

Figure 2.16: Throughput of concurrent naive implementations for 32K key range
and the three workloads.

2M keys (50-25-25) 20 2M keys (20-40-40)

120

=

A\,

~
o

Throughput (Mops/sec)
:>/
Throughput (Mops/sec)

Throughput (Mops/sec)

h

Ve o T

°
i

f@\
ﬁo

o 2 4 8 15 30 45 60 120 003 2 4 8 15 30 45 60 120 1 2 4 8 15 30 45 60
Number of threads Number of threads Number of threads

Figure 2.17: Throughput of concurrent naive implementations for 2000000 key
range and the three workloads.

Among the fine grained-implementations, the RBT external tree version has the high-
est performance. This is because it is a height-balanced tree comparing to the BST fine-
grained version and performs faster deletions comparing to the RBT internal version. As
already mentioned, the deletion operation in an internal fine-grained locking tree requires
exclusive access to every node between the node to be deleted and its successor. To
achieve this in a fine-grained version the node to be deleted is kept locked until its suc-
cessor is found. In this way, the whole subtree rooted at this node is locked and no other
thread can proceed in it. All threads that attempt to proceed in this subtree block. This
results to faster deletions in an external version which involves only leaf nodes. On the
other hand, in coarse-grained implementations the internal version has a better throughput
than the external version. In internal trees a lookup operation is faster as it can terminate
in a small depth of the tree, while in external trees the operation terminates when a leaf is
reached.

In top-down approach, while traversing the tree from the root to the appropriate leaf,
modifications are proactively performed in order to guarantee that no bottom-up traversal
of the tree is required. This pessimistic nature of top-down approach generally results to
more tree modifications for each operation compared to bottom-up which performs only
the necessary modifications for the operation. Consequently, top-down approaches have
worse performance in serial executions (coarse-grained locking) and impose more over-

61

120

head. In our results bottom-up coarse-grained locking trees have higher throughput than
top-down, as the cost to traverse two times the path to the appropriate node executing only
the necessary modifications is lower than traversing it one time, executing modifications
in advance to avoid bottom-up traversal (typically more modifications are performed).

Comparing bottom-up iterative and recursive implementations, the iterative bottom-up
concurrent search trees perform better than recursive versions. The iterative trees termi-
nate the bottom-up traversal when no other rebalancing is needed (in a balanced node,
not necessary the root node), while the recursive trees in bottom-up phase have to return
up to the root of the tree. Thus, recursive trees traverse the path to the appropriate node
exactly two times performing the necessary modifications. Furthermore, there is usually
more overhead associated with the recursive calls due to the fact that the call stack is so
heavily used during recursion.

Finally, we can note that in small trees the throughput in coarse-grained locking im-
plementations is reduced significantly as the number of threads increases, in contrast to
larger coarse-grained locking trees, where throughput is approximately the same for the
different number of threads. This happens because the operations in small trees take a little
time. As a result, as the number of threads increases, each thread blocks for a long time
and performs a fast operation, while the same operation in a large tree lasts more time.
Therefore, the operations performed in the same amount of time in small trees are much
less in case of multiple threads than that in case of one thread.

More sophisticated concurrent search trees

The results (Figures 2.18, 2.19, 2.20) of our evaluation are close enough to those pre-
sented at [10]. Aside from BST Ticket search tree, Aravind concurrent search tree is
generally the best concurrent implementation. This lock-free implementation uses two
atomic operations on average per update operation, which is close to a concurrent search
tree without any synchronization in terms of the number of stores and the number of the
affected cache lines. More specifically, this tree has a small contention window because it
operates at edge-level (marking edges as deleted instead of nodes). Secondly, it allocates
fewer objects and executes fewer atomic instructions per update operation than the other
algorithms. It does not use explicit objects for coordination between conflicting opera-
tions (like Info record in Ellen concurrent search tree). Helping strategy is performed only
for deletion operations and instead of using explicit objects for coordination, the algo-
rithm uses a small number of bits from child pointers stored in the node structure to enable
coordination between operations. There is no helping strategy for insertions because it
increases the overhead of an operation and may provoke duplication of work. And as al-
ready explained, in this algorithm, multiple leaf nodes may be deleted (unlinked from the
tree) in a single step. To sum up, the algorithm reduces the contention between update
operations and lowers the overhead of an update operation.

Comparing BST Ticket concurrent search tree with Aravind search tree, they have
very similar behavior as they both are close to an asynchronous search tree. BST Ticket
tree outperforms lightly the Aravind search tree (Figure 2.18 and 2.19 for smaller trees)

62

2K keys (80-10-10)

% |b-bst_bronson
> Ib-bst-drachsler

N
&
=]

/

e—e |b-bst_tk
+—+ |If-bst-aravind

/.

N
S
s

A A [If-bst_ellen

.

e

Throughput (Mops/sec)

) vl
<

1 2 4 8 15 30 45 60
Number of threads

range and the three workloads.

32K keys (80-10-10)

120

2K keys (50-25-25)

2K keys (20-40-40)

Throughput (Mops/sec)

// VI / /
k=
Figure 2.18: Throughput of concurrent sophisticated implementations for 2K key
32K keys (50-25-25) 32K keys (20-40-40)
]

%X |b-bst_bronson
> Ib-bst-drachsler

N
S
s

e—e |b-bst_tk
+—+ If-bst-aravind
A A If-bst_ellen

o}
4

Throughput (Mops/sec)

=]

A

1 2 4 8 15 30 45 60
Number of threads

120

Throughput (Mops/sec)

A

3

3
S

2]

Throughput (Mops/sec)

1

2

P

8 15 30 45 60
Number of threads

120

1

2

4 8 15 30 45 60
Number of threads

Figure 2.19: Throughput of concurrent sophisticated implementations for 32K

key range and the three workloads.

2M keys (80-10-10)

2M keys (50-25-25)

2M keys (20-40-40)

160-| ¥—x |b-bst_bronson 9
> Ib-bst-drachsler i
1901 e—o Ib-bst_tk /
3 120L| ++ IF-bst-aravind Ve
k4 A A If-bst_ellen / a
g1
5 Wz,
Y
5 y/
&
E
8 // &
£
£
0| -
0 _X
A
1 2 4 8 15 30 45 60 120

Number of threads

Figure 2.20:

Throughput (Mops/sec)

Throughput (Mops/sec)

.
i

A

=

P

15 30 45 60
Number of threads

2000000 key range and the three workloads.

120

4 8 15 30 45 60
Number of threads

Throughput of concurrent sophisticated implementations for

as it executes less atomic operations per update. It executes two atomic operations per
deletion while Aravind search tree executes three atomic operation per deletion (they both
execute one atomic operation per insertion). However, BST Ticket has slightly increased
parsing overhead compared to Aravind and in large trees where the contention between
threads is not so high, they have approximately the same behavior (Figure 2.20).

The rest three trees (Bronson, Drachsler, Ellen) have worse throughput for all the three
key ranges used in our evaluation. They have a more complicated synchronization mecha-

63

120

nism. Ellen concurrent search tree employs helping strategy for both insertion and deletion
operation and only on elements that the current operation wants to modify. Helping strat-
egy is typically expensive, as it requires additional synchronization to be implemented and
imposes additional overhead for each operation. Furthermore, Ellen concurrent search tree
uses explicit objects (Info record) that augment the number of stores per operation and the
number of cache line transfers. Secondly, Drachsler concurrent search tree is a lock-based
tree that acquires a large number of locks for each successful update operation that limits
the performance. It has a better throughput on workloads where the lookup percentage is
high and the main advantage of this implementation is that during deletion operation it can
find the successor of node to be deleted in a single step (O(1)) through successor pointer
stored in the node structure. Finally, Bronson concurrent search tree outperforms Ellen
and Drachsler concurrent search trees in most of our experiments (Figures 2.19 and 2.20)
because of its balance. It is a relaxed balance AVL tree. However, it is also a lock-based
complex algorithm which uses hand-over-hand locking technique and threads can block
for a long time waiting an update operation to complete. As a result, its performance is
very low in small trees with high contention (Figure 2.18).

As explained in [10] cache coherence is the most significant limiting factor for scal-
ability for concurrent search algorithms on multiprocessor systems, since the number of
cache line transfers increases with the number of threads. Thus, most concurrent search
tree algorithms attempt to minimize the amount of cache traffic (cache line transfers) it
performs during each operation which is directly associated with the number of stores on
shared data structure. Stores provoke invalidation in cache lines according the cache co-
herence protocol and result to cache misses of future accesses. Generally, the fewer cache
misses an algorithm generates, the better it scales.

Finally, the results explain that lock-based and lock-free algorithms are close in terms
of performance, but in case of high number of threads (high contention) lock-free imple-
mentations provides better scalability than lock-based. Lock-free implementations also
offer robustness. Moreover, the number of stores in a successful operation should be
close to an asynchronous, sequential algorithm. The closer to the sequential algorithm
that provides no synchronization, an implementation is, the higher performance it has.

64

Chapter 3

Transactional Memory

3.1 Transactional Memory (TM)

As multiprocessor systems became the dominant computing systems, the discovery
of a non-blocking scheme for synchronization that would provide better scalability and
would simplify the parallel programming was necessary. This need led to Transactional
Memory (TM). An important benefit of transactional memory is that there are not locks
and deadlocks.

Transaction memory attempts to simplify concurrent programming by allowing a group
of load and store instructions to execute in an atomic way. Complex operations can be per-
formed concurrently, in isolation from each other, with those operations either completing
or being undone, as transaction, a model that developers are already familiar with from
database programming. Transaction is a unit of work that either completes in its entirety
or has no effect at all (is executed atomically).

Transactions must be serializable (appear to execute sequentially). Serializability is
a kind of coarse-grained version of linearizability. Linearizability is a guarantee about
single operations on single objects. Each method call of a given object should appear
to take effect instantaneously between its invocation and response. For instance, once a
write completes, all later reads should return the value of that writer or the value of a later
writer. Once a read returns a particular value, all later reads should return that value or
the value of a later write. Serializability, on the other hand, defines atomicity for entire
transactions, that is, instruction groups in the code that include calls to one or more objects.
It ensures that a transaction appears to take effect between the invocation of its first call
and the response to its last call. Furthermore, it guarantees that the execution of a set of
transactions over multiple objects is equivalent to some serial execution.

The idea of transactional memory is that during the execution of a transaction there
is no need for synchronization. The underlying TM system can detect that a conflict has
occurred because of a parallel execution of processes in multiple cores. A conflict occurs
when two transactions perform conflicting operation to the same memory address. There
are two types of conflicts:

65

1. A transaction writes to a memory address in which other processes perform a read
or a write, t0o.
2. A transaction reads a memory address in which other processes perform a write.

If no conflicts detected during the execution of a transaction, then the underlying TM
system attempts to persist the transaction's results and inform all other processors about the
transaction's modifications (make all changes visible and permanent). This is a transac-
tional commit. Otherwise, if conflicts are detected during the execution of a transaction,
then the underlying TM system rolls back the current transaction, causes all the modifica-
tions made by the transaction to be discarded and revert the system to the previous stable
state as if the transaction had never begun. This is a transactional abort. Therefore, we
can conclude that the speed in which the conflicts are detected and the commits/aborts are
executed is the most significant limiting factor for the performance of the underlying TM
system.

TM system, depending on the implementation, can be divided into three categories,
the Software Transactional Memory (STM), the Hardware Transactional Memory (HTM)
and the Hybrid Transactional Memory.

3.1.1 Software Transactional Memory (STM)

Software transactional memory provides transactional memory semantics implemented
exclusively in software, rather than as a hardware component. There is no use of hardware
components in detecting conflicts or in performing transactional commits/aborts during
transaction. It can be implemented as a lock-free algorithm or it can use locking and is
a software runtime library. Some STM implementations released are: TiniSTM (C pro-
gramming language), STMNet (C#), CL-STM (Common Lisp), STM Library (Haskell),
Deuce, DSTM2 (Java), ScalaSTM (Scala).

The main advantage of software transactional memory is that it can be used in any
platform/system, as there is no need for a particular hardware support. Furthermore, it is
more flexible, as it permits implementation of a wider variety of more sophisticated algo-
rithms and is easy to modify and evolve. However, transactional memory implemented
entirely in software is slow and come with performance penalty, when compared to hard-
ware solutions. Typically, detecting conflicts and performing the appropriate actions, after
a transactional abort, to discard the modifications made by the transaction and revert the
system to a previous stable state are very costly and time-consuming. As a result, software
transactional memory can provide increased performance only in very particular cases.

3.1.2 Hardware Transactional Memory (HTM)

Hardware transactional memory was proposed as a performance improvement of soft-
ware transactional memory. It consists of a full implementation of TM in hardware. De-
tecting conflicts and performing transactional commits or aborts are exclusively executed
on hardware. The main purpose of HTM is to reduce the overhead of performing a trans-

66

action in a system. HTM can also have better power and energy profiles than STM and can
provide strong isolation without requiring changes to non-transactional memory accesses.

As explained in [15], in attempt to implement HTM we have to add a transactional
bit to each cache line's tag. Firstly, the transactional bit is unset, but when a value is
placed in the cache line on behalf of a transaction, this bit is set and this entry is transac-
tional. Modified transactional cache lines do not be written back to main memory before
the transaction commits and invalidating a transactional cache line aborts the transaction.
More specifically:

 If a transactional cache line is invalidated according to coherence protocol (e.g
MESI), then the transaction is aborted. This invalidation indicated a synchroniza-
tion conflict (another processor accessed on this cache line), either between two
writes or a read and a write.

 If a modified transactional cache line is invalidated or evicted from the cache, the
value is discarded (it must not be written to the main memory). While the trans-
action has not commit, we cannot evict tentative transactionally written values. In
this case we must abort the transaction.

» If the cache evicts a transactional line, the cache coherence protocol cannot detect
synchronization conflicts, since the cache line is no longer in cache. The transaction
must be aborted, too.

Finally, when the transaction terminates and none of its transactional lines has been in-
validated or evicted, the transaction commits, unsetting the transactional bits in its cache
lines. If the transaction is aborted, its transactional cache lines are invalidated.

Although HTM is not so time-consuming as STM, it adds an important cost during
transaction and especially in case of consecutive aborts. Nevertheless, the most limiting
factor in HTM is the limited hardware resources. For instance, the size of the transaction
is limited by the size of cache. Moreover, most operating systems flush the cache when
a thread is descheduled, so the duration of the transaction may be limited by the time
quantum of scheduling. As a result, HTM must be used for small transactions, whereas
applications that need longer transactions should use STM or hybrid transactional memory.
When a transaction aborts, the hardware should return a condition code indicating the
reason of transactional abort. If the abort was due to a synchronization conflict (data
conflict), the transaction should be retried. If the abort was due to a hardware resource
exhaustion, there is no point in retrying the transaction. Another limitation in HTM is the
usage of extensions in instructions of HTM. The code of the program must be rewritten for
each processor that supports a different HTM implementation using different extensions
each time. Finally, it is obvious that a program that employs an HTM implementation
cannot be always executed in a platform which does not support HTM.

3.1.3 Hybrid Transactional Memory

This scheme is combination of both models, STM and HTM and provides benefits of
both of them. For example, the papers [16], [17] propose an hybrid transactional mem-
ory, which implements TM in software so that it can use hardware TM (HTM) to boost

67

performance but it does not depend on HTM and does not expose programmers to any
of its limitations. The papers [18] and [19] propose an approach, in which hardware is
used to accelerate a TM implementation controlled fundamentally by software (hardware
accelerated STMs).

3.2 Basic TM Characteristics

Different TM implementations combine different options of the basic TM character-
istics. The basic characteristics for TM implementations are:

* Data versioning

Transactional memory systems require a mechanism to manage the tentative writes
in concurrent transactions. This mechanism is known as data versioning. Transac-
tional writes require two copies of the written location to be stored: the committed
(old) version of data (to be used by other processes/threads while the transaction in
the current thread is executed, and if the transaction aborts) and the uncommitted
(new) version of data (to be used when the transaction commits). There are two
approaches of data versioning depending on the location in which the commited
and the uncommitted version of data are stored:

— Eager versioning (undo-log based)

This approach is also known as direct update because it means that the trans-
action directly updates the data in memory. The transaction maintains an
"undo log" holding the committed values that it has overwritten. This undo
log works like a stack. Every time a memory location is modified, the com-
mitted (old) values are copied in the stack. Thus, when a conflict is arised dur-
ing the transaction, the transaction aborts and the system rolls back with each
step of the undo log being executed in reverse order to restore the previous
original state of memory. Figure 3.1" shows an example of eager versioning.

— Lazy versioning (write-buffer based)

This approach is also known as deferred update because the updated are de-
layed until a transaction commits. The transaction maintains its tentative
writes in a write-buffer in cache instead of directly writing to memory. When
a transaction commits, it updates the actual memory locations from the copies
of write-buffer. Since transaction's updates are maintained in the write-buffer,
aread inside the same transaction must consult the write-buffer so that earlier
writes are seen. If a transaction fails to commit due to a transactional conflict,
the write-buffer is discarded and the transactions do not modify memory at
all. Figure 3.2" depicts an example of lazy versioning.

* Image taken from http://15418.courses.cs.cmu.edu/spring2013/article/40.

68

Eager versioning

Update memory immediately, maintain “undo log” in case of abort

Begin Xaction Write X<—15

Thread 1
Undo Undo
u Log X: 10 Log

X: 10 Memory

Thread

"
2

Memory
Commit Xaction Abort Xaction
ndo ndo
Log Log
X 15 Memory X: 10 Memory

OMU 15-418, Spring 2013

Figure 3.1: A simple example of eager versioning.

. .
Lazy versioning
Log memory updates in transaction write buffer, flush buffer on commit
Begin Xaction Write X—15
n ¥
Wirite Write
Buffer X: 15 |Buffer
X: 10 Memory X:10 | Memory
Commit Xaction Abort Xaction
rite rite
Buffer Buffer
X: 15 Memory X:10 Memory

TMU 15418, Spring 2013

Figure 3.2: A simple example of lazy versioning.

69

Generally, commits are faster in eager versioning since new (modified) data are
already stored in memory. On the other hand, rollback is faster (faster aborts) in
lazy versioning as it just discards the write-buffer, while in eager versioning the
committed (old) data has to be copied from the undo log to memory. Furthermore,
in lazy versioning each store requires only one write to buffer, whereas in eager
versioning it requires a write to memory as well as to the undo log. Finally, in
case of a crash during transaction, memory will be in an inconsistent state in eager
versioning, in contrast to lazy versioning that handles faults in a better way, since
the memory is in a consistent state during transaction.

e Conflict detection

Conflicts during transactions must be detected and handled properly to ensure cor-
rectness. There are two types of conflicts: read-write conflict and write-write con-
flict. A read-write conflict appears when a transaction reads an address, which was
written to by another pending transaction. Similarly, a write-write conflict appears
when two (or more) pending transactions write to the same address in memory. To
achieve conflict detection the system keeps track of each transaction's read set and
write set, which are the addresses read from or written to in each transaction. There
are two policies for conflict detection:

— Pessimistic detection

This policy is also known as eager conflict detection. It attempts to detect
conflicts early, as soon as a load or a store is requested. If a conflict is de-
tected, then the contention manager (contention manager is responsible for
making transactions look as if they are sequentially executed) either aborts the
transaction, or stalls one of the transactions until the other completes. There
are various priority policies to determine which transaction gets priority and
handle common case fast. Figure 3.3 shows some pessimistic detection ex-
amples.

— Optimistic detection

This policy is also known as lazy conflict detection. It attempts to check
conflicts only at commit time. Before committing, the write-set is commu-
nicated to all other pending transactions in order to check conflicts. Usually,
on a conflict, the committing transaction has priority and other transactions
may abort later on. Figure 3.4" depicts some optimistic detection examples.

Finally, there are hybrid policies that use optimistic and pessimistic schemes to-
gether. For example, several STM systems use optimistic policy for reads and pes-
simistic for writes. Comparing the two policies, in pessimistic conflict detection,
there is no forward progress guarantee and it may lead to a livelock (Figure 3.3 Case
4).

* Image taken from http://15418.courses.cs.cmu.edu/spring2013/article/40.

70

«— suwj

Pessimistic detection example

Case 1 Case 2
X0 X1 X0 X1
[[N

LT ll“-”m—_'
§' check ’ AI

© I wr BVI ~—*msE:*_'
——Check stall |

l Iwr c . ; |

ek —- commit

I commit I
commit commit
Success Early Detect

Case 3

Abort

" check
rd A
wr A
rd A

1
|~ check
|
Wr A

|
| restart
“check T
restart|

rd A
wr A
“check
restart
No progress

OMU 15-418, Spring 2013

Figure 3.3: A discussion of pessimistic detection.

Optimistic detection

Case 1

X0 X1

rd A I

wr B

I
wr C
I

commit

—check

commit
check

Success

Case 2
X0

Ier

X1

rd Al

commit_
“check

Abort

Case 3
X0

IrdA
|

commit
"~ check
com mﬂl

~check

X1

erl

Success

Case 4

X0 X1

rdA
wrA

rd A
wr A

commit
— check

|
|
: restart
I
I

rd A

Iwr A

‘commit
check

Forward progress

TMU 15418, Spring 2013

Figure 3.4: A discussion of optimistic detection.

71

¢ Conflict resolution

The conflict is resolved when the underlying system take some action to avoid con-
flicts (e.g stall or abort one of the conflicting transactions). Eager conflict detection
must resolve the conflict as soon as the transaction requests a load or a store that
conflicts with one or more other pending transactions. The resolution policy can
stall the transaction, abort the transaction, or abort others. Lazy conflict detection
must resolve the conflict as soon as a transaction, that conflicts with one or more
transactions, attempts to commit. The resolution policy can abort all others, stall or
abort the committing transaction.

» Isolation

As defined in [20] isolation requires that execution of a transaction does not af-
fect the result of concurrently executing transactions. Strong isolation implies that
transactional blocks are isolated from other transactional blocks and from concur-
rent non-transactional accesses. This means that a conflict is detected even if the
conflicting access occurs in a non-transactional code. On the other hand, weak
isolation implies that transactions are isolated only from other transactions. There-
fore, in a system with weak isolation a non-transactional read may see the state of
an incomplete transaction and a non-transactional write may appear to occur in the
middle of a transaction.

* Granularity

Transaction granularity is the unit of storage over which transactional memory sys-
tem detects conflicts. There are three alternatives for transaction granularity, object
granularity, word granularity and cache line granularity. Object granularity detects
a conflicting access to an object even if the transactions referenced different fields.
Word granularity is also known as block granularity and detects conflicting ac-
cesses to a memory word or adjacent (fixed-size group of words). And cache line
granularity detects conflicting accesses to a cache line even if transactions mod-
ify disjoint parts of a cache line. Most HTM systems detect conflicts at cache line
granularity, while most STM systems operate on an object granularity.

* Best effort

This characteristic appears only in real HTM implementations. Using only trans-
actional mode, no forward progress is guaranteed. A transaction may always fail
to commit (Figure 3.3 Case 4) and therefore a non-transactional fallback path is
necessary.

» Conflicts

A transaction may fail to commit (abort) because of different reasons of conflicts.
In STM systems a transaction aborts due to data conflicts, while in HTM systems a
transaction may abort for several reasons like data conflicts, capacity aborts, explicit
aborts and interrupts.

72

— Data conflict. This conflict appears when two or more threads perform con-
flicting operations to the same data. For example, when another process/thread
writes to a memory location that has been added to the transaction's read or
write set.

— Capacity abort: Transactional buffers of TM system have a fixed size for each
process/thread. Thus, transaction's read and write set have limited capacity.
When a transaction exceeds the maximum (write or read) buffering capacity
imposed by the TM implementation, the transaction fails to commit due to a
capacity abort.

— Explicit abort: This type of abort occurs when the programmer explicitly
aborts the transaction. For instance, in real HTM implementations that use
best effort, the code in the fallback path includes acquiring a global lock to
protect the critical section. Thus, an explicit abort is performed at the begin-
ning of a transaction if this lock is checked and found to be taken.

— Other: A transaction may abort due to several other reasons including inter-
rupts, unsupported instructions, system calls e.t.c.

3.2.1 Real TM implementations

The following examples constitute real TM implementations.
HTM implementations

» Lazy + optimistic: Stanford TCC
» Lazy + pessimistic: MIT LTM, Intel VTM, Sun’s Rock
» Eager + pessimistic: Wisconsin LogTM

STM implementations

* Lazy + optimistic (rd/wr): Sun TL2

» Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
» Eager + optimistic (rd)/pessimistic (wr): Intel STM
» Eager + pessimistic (rd/wr): Intel STM

3.3 Intel's Haswell HTM

As already mentioned, there are different TM implementations which combines the
above characteristics and manage differently the transactions. For example, Sun’s Rock
combines lazy versioning with pessimistic conflict detection and Stanford TCC uses lazy
versioning and optimistic conflict detection. In this section we will further analyze an
HTM implementation that Intel provides in Haswell processors. Intel announced that its
Haswell architecture would include hardware support for transactional memory in 2013
and Haswell became the first x86 processor to feature hardware transactional memory.

73

Haswell's HTM implementation uses lazy data versioning, pessimistic (eager) conflict de-
tection, operates on cache line granularity (64 bytes), provides strong isolation and is a
best-effort implementation.

The programmer have to mark the block of code which have to be executed as a trans-
action. Thus, the ISA (Instruction Set Architecture) of the processor has been extended
with a set of instructions that allows programmer to use the HTM infrastructure. While
this block of code is executed as a transaction, the system is in transactional mode. In
transactional mode the memory addresses that the transactional code accesses, are trans-
ferred in cache memory and are separated in two sets, the read and the write set (consist
of all memory addresses in which the transaction reads and writes, respectively). Each
cache line in L1D and L2 cache contains bits that indicate whether the line belongs to the
read set or the write set. Any transactional data must stay in L1D cache (or L2) and not
be evicted to the L3 or memory, until the transaction commits.

While the transaction is executed, possible conflicts, that may arise from the parallel
execution of different processes/threads, can be detected. This conflicts can be detected
using cache coherence protocol (e.g MESIF). Briefly, when a process/thread that runs in
a processor, reads or writes to a memory address, cache coherence protocol is responsible
to communicate with other processors that have already stored in their L1D cache this
memory address and inform them for the modification. Furthermore, since the cache co-
herence protocol informs immediately other processors for modifications, there is no need
for additional communication among processes/threads that run concurrently, something
that would limit the memory bus bandwidth.

If during transaction a conflict is detected, the transaction aborts and the HTM imple-
mentation have to roll back the current transaction, discard the modifications made by the
transaction and revert the system to the previous initial state as if the transaction had never
begun. This is simple for Haswell's HTM implementation, as all modifications made by
the transaction are stored in L1D cache (and/or L2) and the main memory of the system has
not been updated. As a result, the underlying TM system invalidates all the transactional
cache lines of L1D (and/or L2) cache and main memory remains immutable. However, if
a transaction attempts to commit and no conflict has been detected, the underlying system
has to transfer the modified transactional cache lines from cache to main memory.

Finally, there is an important limitation in Haswell's HTM implementation. The cache
detects concurrent accesses at a cache line granularity. For instance, the case of two
threads that write to adjacent elements of a large array will often cause the transaction
to fail (abort), because the hardware cannot distinguish between two accesses to the same
address, and two accesses to different addresses in the same cache line.

3.3.1 Transactional Synchronizations Extensions (TSX)

In order to implement HTM in Haswell processors, its instruction set architecture (x86)
has been extended with a set of instructions to ease the development and improve the per-
formance of existing programming models. In this system it is more convenient the use
of C or C++ programming language. Haswell's transactional support, which Intel is call-

74

ing Transactional Synchronization Extensions (TSX) provides two software interfaces.
The first, called Hardware Lock Elision (HLE) allows easy conversion of lock-based pro-
grams into transactional programs in a way that is compatible with current processors.
The second, called Restricted Transactional Memory (RTM) is a more complete transac-
tional memory implementation that allows programmers to define transactional regions
in a more flexible manner than is possible with HLE. RTM also requires programmer to
provide an alternate code path (fallback path) in case that transactional execution is not
successful, since the hardware provides no guarantees as to whether an RTM region will
ever successfully commit transactionally.

These extensions can help achieve the performance of fine-grained locking synchro-
nization through a coarse-grained locking implementation in the code. Moreover, these
extensions allow locks around critical sections and perform serialization of parallel exe-
cutions of critical sections only when this is necessary. Multiple processes/threads that
execute critical sections and do not perform any conflicting operations can proceed simul-
taneously without serialization. Although the software uses a global lock to protect critical
sections, the hardware is allowed to recognize that processes/threads do not interfere with
one another.

The main difference between HLE and RTM is that software written using HLE can
run both on legacy hardware without TSX (in this case the critical section is executed di-
rectly in lock mode) and new hardware with TSX, while software written in RTM cannot
run in a processor that does not support TSX. However, RTM offers more flexibility con-
cerning the actions that can be done after a transactional abort. The programmer defines
a memory address that points out the code that will be executed in case of abort (fallback
handler). To employ TSX the programmer must have a complier gcc-4.8x (or a later ver-
sion) and include in his program the library "immintrin.h". Otherwise, in case of an older
version of gcc, the programmer must include the library "rtm.h".

Hardware Lock Elision (HLE)

Hardware Lock Elision is a simple way of deploying transactional memory in existing
code. The idea of HLE is to remove locks and let CPU worry about consistency. Instead
of assuming that a process/thread always protect the shared data from other threads, it
can be assumed that the other processes/threads will not overwrite the variables that the
current process/thread is working on (in the critical section). If another process/thread
overwrites one of those shared variables, the whole process will be aborted by the CPU,
and the transaction will be re-executed with a traditional lock.

HLE introduces two new instruction prefixes, named XACQUIRE and XRELEASE
that are used to denote the bounds of critical section. XACQUIRE is a prefix for in-
structions that acquire a lock and it indicates the start of critical section (region for lock
elision). When a process/thread acquires a lock with an XACQUIRE instruction, the lock
is not actually acquired. The write operation is ignored, but the memory address of the
lock instruction is added to the read set of the transaction, so the transaction will fail if
something else writes to that address. The process/thread then enters transactional ex-

75

ecution and continues on to the instructions inside the critical section, adding memory
addresses to transaction's read and write set. The current process/thread will still think it
has obtained the lock, but many processes/threads will be allowed to run simultaneously
and make non-conflicting accesses to shared data.

Execution continues until the XRELEASE instruction. XRELEASE is a prefix that is
used for the instruction that releases the lock address, and it marks the end of the critical
section. When the processor reaches XRELEASE instruction, it attempts to commit the
transaction. If it succeeds, the critical section was executed without acquiring or releas-
ing the lock (none of the memory operations conflicted). If the transaction fails (when a
conflict occurs), the processor will restore the architectural register state prior to XAC-
QUIRE and discard any writes from the critical section. The process/thread will execute
the critical section again, with the standard pessimistic locking behavior. In this case, it
actually acquires the global lock. So the programmer can use coarse-grained locking as a
"fall back" solution, and HLE can exhibit as much parallelism as is present in the access
patterns, not in the locking designs.

As already mentioned, the software written using HLE can also run to hardware with-
out TSX. The system is backwards compatible. The programmer can use the new TSX
enabled library and gets the benefits of TSX if his program is executed on Haswell or
a later Intel CPU. Every other processor will ignore the prefix and just operate on the
lock, the traditional lock-based behavior. The prefixes of the instructions XACQUIRE
and XRELEASE are treated as nops.

The listing 3.1 presents an example of elision of a TAS lock:

Listing 3.1: Example: elision of a TAS lock

1 /* Traditional lock implementation */

2 /* acquire lock */

3 while(_ _sync lock test and set(&lock var) == 0)
4 /* do nothing */;

5 Critical section with lock acquired

6 /* release lock */

7 _ _sync _lock release(&lock var);

8

9

10 /* HLE implementation */

11 /* elide lock */

12 while(__hle acquire test and set(&lock var) == 0)
13 /* do nothing */;

14 Critical section with lock acquired

15 /* release lock */

16 _ hle release clear(&lock var);

76

Restricted Transactional Memory (RTM)

Restricted Transactional Memory (RTM) is an alternative implementation to HLE
which gives the programmer the flexibility to specify a fallback code path that is exe-
cuted when a transaction cannot be successfully executed. There are four new instructions,
XBEGIN, XEND, XTEST and XABORT. The programmer marks the block of code that
he wants to be executed atomically (critical section) using the instructions XBEGIN and
XEND. XBEGIN and XEND mark the start and the end of the critical section, respec-
tively. When the process/thread reaches the XEND instruction in the code, the transaction
commits and the memory is updated according to the modifications made by the trans-
action. The instruction XTEST returns 1 if the process/thread is in transactional mode,
otherwise it returns 0 and with XABORT(status) instruction the programmer can explic-
itly abort the transaction (as if a commit have been unsuccessful). The status is used to
indicate the reason for transactional abort. An explicit abort instruction is useful when the
programmer can determine that a transaction is going to fail, without any help from the
hardware. Aborting the transaction early can also help reduce the power penalty.

If a conflict occurs during transaction, it may trigger an abort. After a transactional
abort the fallback handler is responsible for the instruction that the process/thread will
execute to resume the execution. The programmer defines the memory address of the
code to be executed in case of transactional abort (fallback address). The fallback address
is exactly the next instruction after XBEGIN. XBEGIN returns a value that indicates if
the process/thread is in transactional mode or if the transaction has been aborted. As a
result, the EAX register is updated according to the transaction's status (Figure 3.5). The
programmer can check if the transaction has started or if it has been aborted performing a
logical calculation and between the return value of XBEGIN and the following constants:

* XBEGIN STARTED: Transaction has successfully begun.

*+ XABORT_CONFLICT: Transaction abort due to a memory conflict with another
thread.

* XABORT CAPACITY: Transaction abort due to the transaction using too much
memory.

« XABORT EXPLICIT: Transaction was explicitly aborted with xabort. The pa-
rameter passed to _xabort is available with XABORT CODE(status).

*+ XABORT_RETRY: Transaction retry is possible.

* XABORT DEBUG: Transaction abort due to a debug trap.

* XABORT_NESTED: Transaction abort in an inner nested transaction.

Some causes of abort may always result to transactional abort. As a result, each time
we execute the critical section in transactional mode using the HTM implementation, the
transaction always fails and there is no progress in our program. For example, if transac-
tion's read and write set exceed the size of cache, the transaction will always abort because
of capacity aborts. In this case the programmer should use a back-off mechanism like a
fallback path. The fallback path is an alternative implementation in the code of the pro-
gram that does not employ RTM and is most likely a piece of code that does coarse-grained

77

EAX register bit position Meaning

0 Set if abort caused by XABORT instruction.
1 If set, the transaction may succeed on a retry.
This bit is always clear if bit 0 is set.
2 Set if another logical processor conflicted with a memory address

that was part of the transaction that aborted.

3 Set if an internal buffer overflowed.

4 Set if debug breakpoint was hit.

5 Set if an abort occurred during execution of a nested transaction.
23:6 Reserved.
31:24 XABORT argument (only valid if bit 0 set, otherwise reserved).

Figure 3.5: Transaction's status is captured to EAX register's bits.

locking. After a specified number of aborts in a transaction the programmer can choose
the execution of the fallback path instead of transaction. This implementation is necessary
to guarantee progress in program's execution.

The fallback path is usually implemented as coarse-grained locking code that uses a
global lock. In this case this global lock has to be added to transaction's read set. If the
global lock does not be added to transaction's read set, it results to coherence problems.
Figure 3.6 presents an example of two threads that attempt to execute the same code con-
currently. The first thread enters the critical section acquiring the global lock and the
second thread using RTM implementation. In this example the second thread will not
detect any conflict and its transaction will commit updating the value of the "count" vari-
able, while the first thread will not be informed about this modification. This constitutes
a coherence problem. As a consequence, the programmer is responsible to add the global
lock to transaction's read set. To achieve this the value of the global lock must be read
without locking the global lock. If at the beginning of a transaction the global lock is used
from another thread, the programmer must explicitly abort the transaction (explicit abort).
Listing 3.2 is an example of adding a pthread spinlock in transaction's read set, since the
code reads its value, and in case that this is not free the transaction explicitly aborts via
XABORT instruction.

Listing 3.2: Example: adding global lock to transaction's read set

1 if ((int)spin lock != 1)

2 _xabort ();

3 if (pthread mutex t. _data. lock != 0)
4 _xabort ();

Finally, Listing 3.3 describes an RTM example in C programming language.

Listing 3.3: An RTM example

1 int aborts = MAX TX RETRIES;
lock t = fallback global lock;

78

start_ tx:

int status = TX BEGIN();
if(status == TX BEGIN STARTED) {

3
4
5
6 if (fallback global lock is locked)
7
8

TX ABORT();

Critical Section
9 TX END();
10 telse{ /* status != TX BEGIN STARTED */
11 if (—aborts > 0)
12 /* retry tramnsaction */
13 goto start tx;
14 acquire lock(fallback global lock);
15 ... Critical Section
16 release lock (fallback global lock);
17 }

Thread 1 Thread 2

I

| kock() ® use of locks =/ ¥BEGIN /™ use of RTM*/

I

reaccount)

I

| read{count)

I

]

E writejoount+=1j

I':

I

| XEND

I write(fcount+=1)

I

I unikocky)

I

Figure 3.6: A parallel execution of two threads using RTM that results to coher-

ence problems.

79

Chapter 4

A parallelization of Dijkstra's
algorithm

4.1 Dijkstra's algorithm

4.1.1 Algorithm's history

Dijkstra's algorithm (also known as shortest path algorithm) is a fast algorithm for
finding the shortest paths between nodes in a graph, which may represent a road network.
It was conceived by a Dutch computer scientist from Netherlands Edsger Wybe Dijkstra
(May 11, 1930 — August 6, 2002) in 1956 and published three years later [21]. Edsger
Wybe Dijkstra is also known for his many essays on programming and received the A.
M. Turing Award (widely considered the most prestigious award in computer science) in
1972.

As the history of shortest paths algorithms shown in figure 4.1 discloses, Dijkstra's
algorithm is a simpler and faster version of Ford's algorithm. Wikipedia describes that
Dijkstra thought about this algorithm when working at the Mathematical Center in Am-
sterdam in 1956 as a programmer to demonstrate capabilities of a new computer called
ARMAC. His main purpose was to present both a problem as well as an answer, that
would be produced by computer, that people could understand. He designed the shortest
path algorithm and implemented it for ARMAC computer for a slightly simplified trans-
portation map of 64 cities in Netherlands. A year later, he came across another problem
from hardware engineers working on the institute's next computer: minimize the amount
of wire needed to connect the pins on the back panel of the machine. As a solution, he
re-discovered the algorithm known as Prim's minimal spanning tree algorithm [22] and
published his algorithm in 1959, two years after Prim.

The algorithm exists of many variants. Dijkstra's original algorithm finds the shortest
path between two nodes, but the most popular variant of this algorithm fixes a single node
as the "source" node and finds the shortest paths from the source to all other nodes in the
graph, producing a shortest-path tree. Furthermore, in some fields (artificial intelligence)

81

Dijkstra's algorithm or a variant of it is known as uniform-cost search and formulated as
an instance of the more general idea of best-first search.

Shimbel (1955) Information networks.
Ford (1956). RAND, economics of transportation.
Leyzorek, Gray, Johnson, Ladew, Combat Development Dept.

Meaker, Petry, Seitz (1957). of the Army Electronic Proving Ground.
Dantzig (1958). Simplex method for linear programming.
Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.
Dijkstra (1959). Simpler and faster version of Ford's algorithm.

Figure 4.1: Early history of shortest paths algorithms.

4.1.2 Description

Dijkstra's algorithm is a greedy algorithm that solves the single-source path prob-
lem when all edges have non-negative weights. This is asymptotically the fastest known
single-source shortest-path algorithm for graphs with unbounded non-negative weights.
The algorithm is based on the observation that any subpath of any shortest path is itself
a shortest path (optimal substructure). Extending this idea we observe the existence of a
shortest path tree in which the distance from source to vertex v is the length of shortest
path from source to vertex in original tree. The length of a path p = (v0,v1, ..., vk) is
the sum of the weights of its constituent edges: length = Y% w(v;_1,v;), where the
function w : £ — IR maps edges to the real-valued weights.

Intuitively, the algorithm reports the vertices in increasing order of their distance from
the source vertex. Exploring a new vertex means exploring the vertex that has the smallest
distance. This is why the algorithm uses the distance from the source to the vertex as the
priority. Secondly, the algorithm constructs the shortest path tree edge by edge. At each
step adding one new edge corresponds to the construction of shortest path to the current
new vertex. The new edge is added to the shortest path to the current new vertex, if the new
path from the source to the vertex is shorter than the previous distance from the source to
vertex. The process by which an estimate of the distance from source to vertex is updated
is called relaxation.

For a graph, G = (V, E)) where V is a set of vertices and E is a set of edges. Dijkstra's
algorithm keeps two sets of vertices: S the set of vertices whose shortest paths from the
source have already been determined and V'\ S the remaining vertices (unvisited set). The
algorithm in steps is:

1. Set S to empty.
2. Assign a distance value to all vertices in the input graph. Initialize all distance
values as INFINITE (oc0) and the distance value as 0 for the source vertex.

82

3. While there are still vertices in V'\\S' (unvisited)

(a) Choose an unvisited vertex u from V'\ S that has the minimum distance value
from the source.

(b) Include vertex u to the set S.

(c) Relax all adjacent vertices of u that are still in V'\\S. To achieve this, iterate
through all adjacent vertices. For every adjacent vertex v, if sum of distance
value of u (from source) and weight of edge u — v, is less than the distance
value of v, then update the distance value of v.

The listing 4.1 is a pseudocode for Dijkstra's algorithm using priority queue. The Q set
is the set of unvisited vertices (V'\ S) that is implemented as a priority queue and the arrays
dist, prev have the distance from the source to a vertex v and the previous node of vertex
v in the optimal path from source, respectively. The function add with_priority() adds
an element to the queue with an associated priority (minimum distance from source), the
function extract min() removes the element from the queue that has the highest priority
(more specifically the vertex with the minimum distance from source), and return it, and
the function decrease priority() updates the priority of an element in the queue.

Listing 4.1: Dijkstra's algorithm

1 function dijkstra(graph, source):

2 dist[source] « 0 //Initialization

3

4 create vertex set Q //Set of unvisited vertices

5

6 for each vertex v in Graph:

7 if v # source

8 dist[v] « INFINITY //Unknown distance from source to v
9 prev[v] <« UNDEFINED //Predecessor of v

10

11 Q.add_with_priority (v, dist[v])

12

13

14 while Q is not empty: //The main loop

15 u «— Q.extract_min() //Remove and return best vertex

16 for each neighbor v of u: //Only if v that is still in Q
17 sum = dist[u] + length(u, v)

18 if sum < dist[v] //A shorter path has been found
19 dist[v] « sum

20 prev[v] < u

21 Q.decrease _priority (v, sum)

22

23 return dist[], prev[]

4.1.3 Complexity

The simplest implementation of the algorithm stores the vertex set as an ordinary
linked list or array. Extract min() takes O(V') time and there are |V| such operations.
Therefore, a total time for extract_min() in while loop is O(V?). Since the total number
of edges in all the adjacency list is |E|, the for loop iterates |E| times with each iteration

83

taking O(1) time. Hence, the complexity of the algorithm with an ordinary linked list or
array implementation is O(V?2 + E) = O(V?).

For sparse graphs (graphs with fewer edges), the algorithm can have a better com-
plexity by storing the vertex set in the form of adjacency lists and using a self-balancing
binary search tree, binary heap, pairing heap, or Fibonacci heap as a priority queue. This
results to a more efficient implementation of extract min() function. Extract min() takes
O(log V') time and there are |V| such operations. The function decrease_priority() (or de-
crease_key()) takes O(log V) in case of a self-balancing binary search tree or a binary
heap and O(1) in case of a fibonacci heap for each of the |E| edges. Thus, the running
time of the algorithm with self-balancing binary search tree or binary heap provided is
O((E 4 V) log V') and with fibonacci heap provided is O(E + V' log V).

4.1.4 Proof of correctness

Lemma: When a vertex v is added to S set (visited nodes), then dist[u] = [s,u],
where [s, u] the length of the shortest path from the source to the vertex u.

Proof: Suppose that the algorithm first attempts to add a vertex u to the set .S for
which dist[u] # [s,u]. Then, dist[u] > [s,u].

Consider the shortest path (Figure 4.2) from source s to vertex u (seS and ueV'\S).
Let (x,y) be the edge taken by the path, where xeS and yeV'\ S (it may be that z = s and/or

Yy = u).

o
x‘i?'

Figure 4.2: Proof of corectness of Dijkstra's algorithm. When a vertex v is added
to S set (visited nodes), then dist[u] = [s, u].

Having done the relaxation in vertex = we can conclude that
dist[y] < dist]z] + w|x, y], 4.1)

where the function w : £ — IR maps edges to the real-valued weights.

By hypothesis « is in the set .9, so:

dist[x] = [s, x]. 4.2)

84

Since <s,...,X,y> is a subpath of a shortest path, by 4.2
(s,y) = (s,2) + w(z,y) = dist[z] + w(z,y). (4.3)

By 4.1,4.3
dist[y] <= (s,y).

Therefore,
dist[y] = (s,y).

So y # u, as we suppose that dist[u] > (s, u).
As a result,An example of a graph.
distly] = (s,y) < (s,u) <= dist[u].

Thus, y would have been added to S set before u, since it has a smaller estimate of the
distance from the source. This contradicts with the assumption that v is the next vertex to
be added to the set S.

By the lemma, dist[u] = (s,u) when is added to the set S and at the end of the
algorithm, all vertices are in the set S and all distance estimates are optimal.

4.1.5 Applications

As described above, the algorithm finds the shortest path between a node and every
other. It can be also used for finding the shortest path from a single node to a single
destination by stopping the algorithm when the shortest path to the destination node has
been determined. For instance, in a road network, supposing that the cities are represented
as the nodes of the graph and driving distances between pairs of cities connected by a direct
road are represents as edges paths, Dijkstra's algorithm can find the shortest route between
one city and all other cities. Thus, the shortest path algorithm is a widely useful problem-
solving model used in network routing protocols, VLSI design, social networks and TeX
typsetting. Figure 4.3 presents some applications of Dijkstra's algorithm.

4.2 The concept of Helper Threads

Helper threads is an optimization technique used in non traditional parallelism to ac-
celerate a program and provide performance speedups. Helper threads are "assist" threads
that perform certain critical computations on behalf of a main thread in order to help the
main ("master") thread and reduce its tasks. Typically, this optimization has been ex-
ploited either to prefetch future data accesses or to precompute the outcome of blocks of
code that would otherwise be executed by the main thread.

To improve the performance of an application program using the concept of helper
threads, there are several key issues that need to be taken into consideration. First, in

85

Maps
Robot navigation
Texture mapping
Typesetting in TeX (e.g LaTeX)
Urban traffic planning
Optimal pipelining of VLSI chip
Subroutine in advanced algorithms
Telemarketer operator scheduling
Routing of telecommunications messages
Approximating piecewise linear functions
Network routing protocols (OSPF, BGP, RIP)
Exploiting arbitrage opportunities in currency exchange
Optimal truck routing through given traffic congestion pattern

Figure 4.3: Applications of Dijkstra's algorithm.

hyper-threaded processors some structures are shared or partitioned in between logical pro-
cessors in multi-threading mode, and thus, resource contention can be an issue. As a con-
sequence, helper threads can be invoked judiciously to avoid potential performance degra-
dation due to the increased resource contention. Second, the program behavior changes
dynamically, and hence helper thread invocation should be adaptable. For instance, a par-
ticular load might experience a significant number of cache misses over the total program
execution, but the temporal distribution of those misses might not be uniform. As a re-
sult, a helper thread should be able to detect the dynamic program behavior at runtime.
Finally, to adapt to the dynamic behavior, helper threads need to be activated and syn-
chronized frequently. Thus, a low overhead thread synchronization mechanism is needed.
Compared to traditional multi-threading technique where each tread should be executed in
a pre-defined order to guarantee the correctness of the program, helper threads only affect
the performance speedup of the program. Accordingly, a helper threads can be deactivated
whenever it does not improve the performance of the main thread. Finally, dynamic pro-
gram behaviors can be effectively captured at runtime and various dynamic optimizations
can be applied.

4.3 Parallelizing Dijkstra's algorithm

4.3.1 Introduction

This section describes a parallelization of Dijkstra's algorithm presented in the pa-
pers [23], [24]. As explained in these papers, dijkstra's algorithm is based on the iterative
extraction of nodes (vertices) from a priority queue. This property limits the explicit par-

86

allelism of the algorithm and any attempt to utilize the remaining parallelism results to
performance degradation due to synchronization overheads. Thus, the two major issues
inherent to the algorithm is the limited explicit parallelism and excessive synchroniza-
tion. To deal with this problems the authors of the papers employed the concept of Helper
Threads (HT) to extract more parallelism and Transactional Memory (TM) as a means of
concurrent accesses to shared data structures.

The authors of [23], [24] chose the idea of Helper Threads to coarsen the granularity
of parallelism. The key idea is that helper threads will offload operations from the main
thread. More specifically, the main thread performs many relaxations of the nodes of the
priority queue. Therefore, parallel helper threads can simultaneously relax the distances
of several nodes. While the main thread extracts and updates the neighbors of the head
of the priority queue, k helper threads can update the neighbors of the next k£ nodes in the
priority queue in order to offload operations of the main thread in its next iteration.

Finally, TM system is a promising approach for dynamic data structures and applica-
tions with independent threads providing performance gains. The programmer is able to
envelop blocks of code within a transaction, indicating that within this segment of the code
exist accesses to memory addresses that may be performed by other threads as well. The
TM system monitors the concurrent transactions of the threads and if two or more perform
conflicting accesses, it resolves the conflict. In the case of non-conflicting accesses, TM
systems perform the appropriate accesses with no overhead.

4.3.2 The algorithm

The algorithm exploits the basic property of Dijkstra's algorithm: the relaxations result
to monotonically decreasing values for the distances of unvisited nodes until each distance
reaches its final optimal (minimum) value. When a node is inserted in the queued set (its
distance from the source is no longer infinite) its neighbors could also be relaxed to newer
updated values. The original algorithm does not take into consideration this property and
avoids computing intermediate distances that will be overwritten by updating only the
neighbors of the extracted node. The idea is that Helper Threads can relax neighbors
belonging to the queued set. Some of these relaxations will be offloaded by the main
thread.

Helper threads perform relaxations to the top k positions in the queue and the corre-
sponding nodes might have already obtained their optimal distance from source with some
probability. Therefore, when helper threads read their distances and relax their outgoing
edges, the corresponding neighbors related with these outgoing edges may obtain their op-
timal distance from source, as well. As a result, when in the next iteration the main thread
checks these nodes (vertices), it will not perform any relaxations. On the other hand, a
helper thread may perform a relaxation to a node that has not obtained its optimal (min-
imum) distance yet. In this case the node will eventually be set to its optimal minimum
distance, when it will be examined by the main thread later on.

The main thread operates like in the sequential version. In each iteration it extracts
the minimum vertex from the priority queue and performs its relaxations. At the same

87

time, the k-th helper thread reads the tentative distance of the k-th vertex in the queue and
attempts to relax its outgoing edges according to this value. When the main thread finishes
all its relaxations, it notifies helper threads to stop their relaxations, and they all proceed
to the next iteration. This scheme is demonstrated in Figure 4.4 *.

extract-min [l read tid™-min relax outgoing edges
——————— Time----p
step k step k+1 step k+2
Thread 1 | |
3
y v A 4
Thread 2 Py w
r
Thread 3 @
Y
Thread 4 g

Figure 4.4: Execution pattern of the HT scheme.

In case that helper threads are forced by the main thread to stop their computations and
proceed with it to the next iteration, it is possible that at this time a helper thread might
have updated only some of the neighbors of its vertex, leaving the rest neighbors with their
old distances. Nevertheless, this is not a problem since all neighbors of this vertex will
eventually obtain their optimal distances when the vertex reaches at the top of the priority
queue.

The code executed by the main and helper threads is shown in listings 4.2 and 4.3,
respectively. In each iteration, the main thread extracts the vertex with the high priority
(minimum distance from source) from the priority queue. At the same time, helper threads
wait (spinning in a while loop) until the main thread finishes its extraction. Subsequently,
each helper thread reads (without extracting) one of the top k vertices in the queue. This
is done by ReadMin() function. In the next step, all threads, both the main and helper
threads, perform the appropriate relaxations related with the outgoing edges of the vertices
they have taken over. As explained above, helper threads offload relaxations of the main
thread and thus, it will evaluate the expression of line 7 in Listing 4.2 as true fewer times
and will not need to perform the operations of lines §-10.

The proposed scheme should provides atomicity because a conflict can arise when
two or more threads update concurrently the same neighbor, or update different neighbors
but change the same part of the queue. To achieve atomicity updates to the queue via the
DecreaseKey() function, as well as updates to the shared distance and predecessor arrays
(d[], p[] respectively) are enclosed within a single transaction for both main and helper

* Image taken from [24].

88

threads. In this way, when a conflict arises, only one thread will be allowed to proceed,
commit the transaction and perform the update to the queue, while the rest will have to
repeat their work.

As already mentioned, when the main thread finishes its relaxations, it notifies helper
threads to stop and proceed all to the next iteration. To implement this, the algorithm
employs transactional memory (TM). More specifically, when the main thread completes
the iteration of the inner loop for relaxations (line 4), it sets the notification variable "done"
to 1. This means that the main thread will proceed to the next iteration for the next vertex
and it also forces all helper threads to stop and follow, terminating their computations that
they were performing on the queue. Since helper threads are in transactional mode and
"done" variable is in their read sets, they will abort and they will retry the transaction.
However, when helper threads will attempt to perform a new transaction for their work,
they will find, with some strong probability, the "done" variable set to 1 and then they will
stop their relaxations for the remaining neighbors in the inner loop and will proceed to the
next iteration of the outer loop. If the main thread performs the ExtractMin() function too
quickly and "done" variable will set back to 0, helper threads will miss the last notification,
continuing from the point where they have stopped. This does not affect the guarantee
of correctness. Although helper threads may update the distances of the neighbors with
a suboptimal value, these will be overwritten with the optimal value when the vertices
examined by helper threads reach at the top of the priority queue.

Finally, the main purpose of the algorithm is to employ helper threads only to offload
work of the main thread and not to interfere in main thread's progress. Furthermore, this
scheme attempts to minimize the time spent on synchronization events and transactional
aborts. Helper threads perform operations on the queue, intruding at the same time as less
as possible on main thread's work, even if they do not perform useful work. By using the
underlying TM system there should exist a conflict resolution policy that favors the main
thread and minimizes its transaction abort overheads.

Listing 4.2: Main thread's code.

1 while Q not empty do

2 u «— ExtractMin(Q);
3 done « O0;

4 foreach v adjacent to u do

5 sum «— d[u] + w(u, v);

6 Begin—Transaction

7 if d[v] > sum then

8 DecreaseKey (Q, v, sum);

9 d[v] < sum;
10 plv] < u;
11 End—Transaction

12 end

13 Begin—Transaction

14 done « 1;

89

15 End—Transaction
16 end

Listing 4.3: Helper threads’ code.

1 while Q not empty do

2 while done = 1 do ;

3 x « ReadMin(Q, tid);

4 stop «— 0;

5 foreach y adjacent to x and while stop = 0 do
6 Begin—Transaction

7 if done = 0 then

8 sum «— d[x] + w(x, y);

9 if d[y] > sum then

10 DecreaseKey (Q, y, sum);
11 d[y] « sum;

12 plyl < x;

13 else

14 stop «— 1;

15 End—Transaction

16 end

17 end

4.3.3 Optimizations

The authors of the papers [23] and [24] evaluated this algorithm in a full-system simu-
lation. On the contrary, we evaluated the proposed algorithm in a real HTM system (Intel's
Haswell HTM). Therefore, in order to achieve performance speedup as the number of cores
increases we have applied some optimizations on the algorithm. More specifically:

+ Since the basic characteristic of real HTM systems is strong isolation, there is no
need to set "done" variable within a separate transaction (lines 13-15, listing 4.2).
In strong isolation a conflict can be detected even if the conflicting access occurs
in non-transactional code. Thus, remonving this transaction (line 42 listing 4.4) we
reduce the number of transactions and avoid additional cost of unnecessary trans-
actions.

* Instead of "stop" variable used in helper threads' code to exit the inner (for) loop, we
explicit abort the transaction in helper threads when "done" variable is set to 1. In
this case, helper threads do not perform any other relaxations as they are explicitly
aborted with an abort code that indicates this reason.

* Our implementation employs a binary heap (array representation of heap) for the
priority queue. A binary heap is a complete binary search tree. All levels of the

90

tree except possibly the last one are full filled, and, if the last level of the tree is
not complete the nodes of that level are filled from left to right. It also satisfies
the min-heap ordering property, which states that the value of each node is greater
than or equal to the value of its parent, with the minimum-value element at the root.
Since the heap is a complete binary search tree, a heap with n nodes has O(logn)
height. As a result, the ReadMin function takes a constant time (O(1)) and the
ExtractMin() and DecreaseKey() functions take O(logn) time.

In an attempt to increase performance speedup we implemented a more coarse-
grained transaction for the main thread. In the original algorithm the main thread
performs one transaction for each edge examined (possible relaxation). This re-
sults to many small transactions, especially in dense graphs and as a consequence
to additional overhead associated with the beginning and ending of many consec-
utive transactions. As a result, we examine more than one edge (perform possible
relaxations a certain number of neighbors) within a separate transaction (line 21
listing 4.4). We expect that this coarse-grained approach is able to provide bet-
ter performance speedup in small graphs and may result to more capacity aborts in
large graphs. Therefore, we have to find a solution that trades off between the over-
head of performing many transactions and the cost of many transactional (capacity)
aborts.

As explained in previous chapter false sharing is a liming factor for scalability.
Different threads may modify independent parts of the structure that share the same
cache line. Since real HTM systems detect conflicts at cache line granularity, the
case of different threads that perform update operations (in transactional mode) in
independent data that share the same cache line will cause data conflicts and one
or more transactions will fail (abort). To avoid such conflicts and transactional
aborts we applied structure padding to all shared structures like the priority queue,
the distance array and the predecessor array, such as different elements of these
structures to reside on different cache lines.

Finally, the real HTM system used in evaluation part is a best effort implementa-
tion. Consequently, a fallback path is necessary. We employ a global lock, shared
among threads, to protect the critical section. However, when a thread acquires the
global lock, the rest will be aborted, as they have the global lock in their read set,
and they will continue to fail until the lock is released. The purpose of the algo-
rithm is to take advantage of the concept of helper threads such that to reduce main
thread's relaxations and not to delay its progress. So, if a helper thread acquires the
global lock, the main thread will always fail (transactional abort) until the release
of the global lock and will not progress. The main thread should be allowed to
run almost at the speed of the serial execution. To implement a policy that favors
the main thread the global lock can only be acquired by the main thread. Helper
threads always attempt to perform updates (relaxations) in the shared data through
transactions and may always fail to commit, as no forward progress is guaranteed.

91

The listings 4.4 and 4.5 present our implementations in C programming language for
the main and helper threads, respectively.

Listing 4.4: Main thread's code for a real HTM.
while (heap—>curr_size > 0){

my_min bh_extract min (heap);

done = 0;

/* Find the id of the vertex. */
my_min_id = my min—>vertex_id;

[BN e N N O S

=)

/* Read the key (weight) of my vertex.*/
my min_key = dist[my min id]. value;

——
N - O

if (my _min_key < INFINITY){

—_—
W

/* adjacency list for neighbors */
v = g—>adj[my_min_id];

—_—
~N o W

if (v != NULL){
while (1) {

N = —
S © »

/* Check neighbors for relaxation. */
begin_transaction(num_retries , &fallback lock , tid);
for(i=0; i< num_neighbr; i++){

NN NN
N S

distv = dist[v—>id]. value;
sum = my_min_key + v—>weight;

NSRS O]
N O

/* Relax */

if (distv > sum){
decrease_key mt(heap, v—>id, sum);
pred[v—>id]. value = my_min_id;
dist[v—>id]. value = sum;

W W W NN
N = O 0 X

)

vV = v—next;

if (v == NULL)
break;

W W W W
[RV I U]

}

end transaction(&fallback lock , counter);
if (v == NULL)
break;

H BB WWW
N — O O
-
-

done=1;

S~

W
——

-

Listing 4.5: Helper threads' code for a real HTM.
while (heap—>curr_size > 0){
while (done == 1);
/* ReadMin */

my _min_id = heap—>node_array[tid]. vertex_id;
my _min_key = dist[my_min_id]. value;

O 00 A W A WK —

if (my_min _key < INFINITY){

92

10

11 /* Check neighbors for relaxation. */

12 for (v=g—>adj[my_min_id]; v!=NULL && !done; v=v—>next){
13

15 if (begin_transaction(num_retries , &fallback lock , tid) != —1){
16 if (done == 0){

17 distv = dist[v—>id]. value;

18 sum = my min_key + v—>weight;

19

20 if (distv > sum){

21 decrease_key mt(heap, v—>id, sum);
22 pred[v—id]. value = my_min_id;

23 dist[v—>id]. value = sum;

24 }

25 telse

26 _xabort(Oxaa);

27 }else

28 break;

29 end transaction(&fallback lock , counter);

30

31 }

32 }

33}

4.4 System Configuration

The system we used to evaluate the proposed parallelization of Dijkstra's algorithm
was a 28-core platform (Figure 4.5), NUMA architecture with the following characteris-
tics.

+ 2 sockets (Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz)
* 14 cores per socket (28 threads with hyperthreading)

» 32KB L1 data cache per core

» 32KB L1 instruction cache per core

» 256KB L2 cache per core

* 35MB L3 cache per socket

* 128GB RAM

» Hardware Transactional Memory:

lazy data versioning
eager conflict resolution
best effort HTM

— strong isolation

cache line granularity
4MB read set

— 22KB write set

In the evaluation part, each software thread is manually pinned to a hardware thread
(to a core) in order to take advantage of the locality with the sockets. We first pin software

93

Machine (12668 totall

| NUMANode P#0 (6368)

FCl 1203:2000

PCI 80861521

FCI 80861521

Ern
| L2 (35MB) |
[| [crcmsen | [crommer | [czsmm | [sacosen | [czcmsen | [cromscr | [czmmer | [cacosnm | [srcmsar | [crmecn | [czcmmor | [cmsem | [secosw |
| L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) | etho
[|[cmer | [|[wmw | [wme |[woo |[moe][] [oon | [wme |[wme][][woo | [wm]

Socket P#1

[|
[cmew | [crvmsen | [crmser | [cmm | [savmem | [cecmsen | [cramsr | [oo] [avmnm | [ecmsr | [cewmacn | [comser | | avmrm | [oo |
[wame | [| [cacmer | [cwcamer | [ssscmn | s | [cacsner | [ascmer] [cascmm | [[sacmer | [casme | [srmer | [cacmm | [sscmo |
| L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) |

PUP#L PUP#LS PUP#LE PUP#LT PUP#LE PUP#LS PUP#20 PUP#2L PUP#22 PuP#23 PuP#21 PUP#2s PUP#2E PuP#27
PUP#2 PUP#az PUP# PUP#IS PUP#IE PUP#7 PuPsaE PUP#Is PUP#SO PUP#SL PUP#s2 PUP#s3 PUP#sS PUP#SS

Host: haciz

Indexes: physical

Date: Me 31 Mp 2016 11:44:35 mp EEST

Figure 4.5: The platform used in evaluation of Dijkstra's algorithm.

threads such that to fill the first socket (first 14 threads) and share the same L3 cache. And
then we pin threads in the second socket. Our evaluation reveals that the NUMA effect
negatively influences the scalability. In case of a cache miss the transfer of the memory

address from one socket to another is costly.

4.5 Experimentation

4.5.1 Experimentation in the serial algorithm

We first evaluated the serial Dijkstra's algorithm. More specifically, we executed
on the above platform the main thread's code (simple dijkstra's algorithm) for graphs of
different sizes, both dense and sparse graphs. In this experimentation there is no need to
perform relaxations within a transaction, as this is a serial execution. Executing relaxations
in transactional mode causes an additional overhead associated with the transaction and
it is more time consuming. However, the difference in the runtime between using and
not using transaction is not important and does not affect our analysis. The main purpose
of this experimentation is to evaluate the parallelization of the inherently serial Dijkstra's

algorithm.

We separated the algorithm in four phases and measured the runtime of each phase.
The first phase is the ExtractMin() operation that takes time proportional to O(logn),
the second phase is the compute operation for the distance (line 9 in listing 4.6) from

94

source, the third is the DecreaseKey() operation and the fourth is the update operation in
the distance and predecessor arrays (lines 18-19 in listing 4.6). Figure 4.6 presents our
results for two dense graphs (a rmat graph with 1M nodes and 100M edges, and a random
graph with 10M nodes and 500M edges) and a sparse graph (a rmat graph with 100M
nodes and 100M edges).

Listing 4.6: The four phases of the algorithm.

1 while Q not empty do

2 start_timer (extract_min)

3 u «— ExtractMin(Q);

4 stop_timer (extract _min)

5

6 done «— 0;

7 foreach v adjacent to u do

8 start_timer (compute_time)

9 sum «— d[u] + w(u, v);

10 stop_timer (compute_time)

11

12 Begin—Transaction

13 if d[v] > sum then

14 start timer (decrease key)
15 DecreaseKey (Q, v, sum);
16 stop_timer (decrease key)
17 start_timer (update_time)
18 d[v] <« sum;

19 pIv] « u;

20 stop_timer (update_time)
21 End—Transaction

22 end

23

24 Begin—Transaction

25 done « 1;

26 End—Transaction

27 end

Taking into consideration the concept of this parallel algorithm, only the decrease key
and update part of the algorithm can be offloaded from the main thread. Helper threads
perform some operations such that the if branch of the main thread (line 13 in listing
4.6) can be evaluated as true fewer times. According to figure 4.6 this branch constitutes
almost the 12-25% of the total main thread's runtime. Thus, the main thread can gain a very
small percentage of the total runtime and this parallelization can offer small performance
speedups theoretically. The extract min and compute phases of the algorithm have to be
executed from the main thread too, for all the nodes and the edges of the graph. As a result,
we conclude that dijkstra's algorithm is a hard algorithm to parallelize as the most part of

95

rmat-node-1M-edge-100M random-node-10M-edge-500M rmat-node-100M-edge-100M
Time elapsed in serial execution (neighbors=5, retries=1) Time elapsed in serial execution (neighbors=5, retries=1) Time elapsed in serial execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

4t HEM decrease_key 1 BN decrease_ks
= update_time = update_time
20| HE rest_time 1 200 | E rest_time

1 1 1
Number of threads Number of threads Number of threads

Figure 4.6: Evaluation of the four phases of the algorithm in different graphs.

the algorithm is serial.

In the rmat-node-100M-edge-100M graph the extract min phase constitutes a great
portion of the total runtime, comparing with the other two graphs. ExtractMin() in a bi-
nary heap removes the root of the heap and replace it with the node with the next highest
priority (minimum distance from the source). To implement this a traversal from root to
leaves is needed and it takes time proportional to O(log n). Thus, the more nodes a graph
has, the longer the ExtractMin() function lasts. This conclusion is depicted in rmat-node-
100M-edge-100M graph that is a very large graph. We can also conclude the same for the
DecreaseKey() function, as it also takes time proportional to O(logn).

On the other hand, in the other two graphs (rmat-node-10M-edge-500M and random-
node-1M-edge-100M) the compute phase is the most time-consuming phase of the algo-
rithm. Compute phase calculates a new distance associated with an edge. It repeats this
calculation for all edges in the graph. As a result, the more dense a graph is, the more time
the compute phase lasts. The rmat-node-100M-edge-100M is a sparse graph, as the ratio
of the number of nodes to the number of edges is 1. In this graph, every repetition of the
while loop (line 1 in listing 4.6) demands only one repetition on average of the compute
phase, while in more dense graphs the compute phase is repeated many times. Therefore,
this phase is the most time-consuming phase in dense graphs and does not constitute a
large portion of the total time in sparse graphs.

In the serial execution there is no data conflict aborts, since there is only one thread.
We used structure padding technique in order to avoid false sharing that would lead to
data conflicts aborts in case of multiple threads in the execution. Thus, the structures of
the algorithm like the distance and predecessor arrays have not to be padded in the serial
execution. We evaluated the serial algorithm for different graphs without using structure
padding technique in the shared structures and our results are shown in figure 4.7.

Our experiments demonstrate that although we do not use padding in the structures,
the proportion of the 4 phases of the algorithm (extract min, compute, decrease key and
update) to the total runtime remains the same. The pattern of the different phases is similar
in all executions. However, we have to notice that the total runtime is reduced significantly
when we remove the padding from the distance array in executions where the compute
phase is the most time-consuming phase (dense graphs). Without padding in the distance
array, consecutive elements are stored in the same cache line. Therefore, the main thread

96

rmat-node-1M-edge-100M ran OM-edgesooM rmatno de-100M-edge-100M
Time elapsed in serial execution (neighbors=5, retries=1) e ion (neighbors=5, retries= Time elapsed in serial execution (neighbors=5, retries:

=1)

Time (sec)

padding no_pad_dist no_pad_pred no_pad_pred_dist padding no_pad_dist no_pad_pred no_pad_pred_dist padding no_pad_dist no_pad_pred no_pad_pred_dist

Figure 4.7: Experimentation in padding technique on the serial algorithm.

can find some elements in its cache memory and avoid transferring cache lines from the
main memory in each read/write operation. Furthermore, without structure padding the
capacity misses are reduced. One cache line can store multiple elements of the array and
cache memory can store more elements than before (in case of padding).

As a consequence, the main gain of removing padding is in compute phase, where
we avoid transferring the distance value of the current node d[u] (line 9 in listing 4.6) in
each iteration of the for loop (line 7 in listing 4.6). This element remains in the cache
memory and the main thread can read its value quickly. In sparse graphs like rmat-node-
100M-edge-100M graph (figure 4.7) there is not considerable gain, as the compute phase
is not so time-consuming. Finally, removing padding from the predecessor array (p[])
does not have any important contribution in the total runtime. In each iteration of the for
loop the adjacent nodes (v nodes) of the current u node can be in the same cache line of
the predecessor array with a very small probability. It depends on the shape of the graph.
In the most common case, edges connect nodes which are quite remote one from each
other (not consecutive nodes). These nodes are not in the same cache line and as a result
the main thread has to transfer the element p[v] from the main memory every time that if
branch is evaluated as true despite not using padding. It cannot exploit spatial locality.

4.5.2 Experimentation in the parallel algorithm

Experimentation in the number of retries per transaction before acquiring
the lock

As explained in previous chapter, when a transaction fails to commit, it retries. Never-
theless, there are transactions that they always fail to commit. For example, when transac-
tion's read/write set exceeds HTM system's read/write set, the transaction will be always
aborted due to capacity abort. In this case the fallback path must be executed. In our
scheme the fallback path is implemented as coarse-grained locking code that uses a global
lock shared among all threads that protects the critical section. If a thread acquires this
global lock, any other thread cannot proceed in the critical section and it will always fail
until the lock is released.

We evaluated the performance of the algorithm for different numbers of retries for
a transaction before acquiring the global lock. First, the main thread performs a certain

97

number of retries for each transaction and if it exceeds this number due to consecutive
transactional aborts, it acquires the lock, aborts all helper threads and executes the critical
section in a coarse-grained locking mode. Helper threads can never acquire the lock and
they always attempt to execute the critical section in transactional mode (unlimited number
of retries for a transaction). In the opposite case, where helper threads could acquire the
global lock, they would delay the main thread and would interfere its progress decreasing
the performance of the algorithm. Figures 4.8 and 4.9 present a performance evaluation for
different numbers of retries for a main thread's transaction (a random-node-1M-edge-10M
and a rmat-node-10M-edge-500M respectively) investigating 5 neighbors for relaxation
per transaction.

random-node-1M-edge-100M random-node-1M-edge-100M
Time elapsed for retries of abort in nsp thread (neighbors=10) Time elapsed in retries of abort in nsp thread per thread (neighbors=10)

X 1 retry

. > S retries] .
@@ 10 retries
+—+ 20 retries f

6. 6.

LI I/ |
N\\ // e S
‘\/

Time elapsed (sec)

e @@ 4 threads
.—A___,/’ +—+ 7 threads
A A 14 threads
a4 40 A A

94 28 threads

1 2 4 7 14 28 1 5 10 20
Number of threads Number of retries of abort

Figure 4.8: Time elapsed in random node-1M-edge-10M graph for different num-
ber of possible retries per transaction of the main thread.

rmat-node-10M-edge-500M rmat-node-10M-edge-500M
Time elapsed for retries of abort in nsp thread (neighbors=10) Time elapsed in retries of abort in nsp thread per thread (neighbors=10)
X 1 retry

PP 5 retries
@@ 10 retries

+—+ 20 retries f /
44 44
) \\\x\ /// Q)Y
= \/(%X 1 thread
/ _—* Db 2 threads
/.;—0’ -0 4 threads
+—+ 7 threads
A A 14 threads
N [——— a 4 28 threads

Time elapsed (sec)
3

Time elased (sec)

Figure 4.9: Time elapsed in rmat node-10M-edge-500M graph for different num-
ber of possible retries per transaction of the main thread.

According to these figures, the more times a transaction can retry, the more time the
execution of the algorithm lasts. In case of one possible retry per transaction, when the
main thread fails to commit, it immediately acquires the lock and executes the critical
section successfully while helper threads are stalled. Thus, this execution of the main
thread is very close to the serial execution. Since the main thread can retry its transaction

98

more times (the number of retries per transaction increases), each transaction lasts more
when consecutive transactional aborts appear. This is why the runtime is better in the
execution with one possible retry per transaction comparing with the rest executions with
more possible retries per transaction, where the main thread's runtime diverge more and
more from the serial execution's runtime.

Secondly, we can notice that in executions with more than one possible retry there is a
better scalability. For example, the runtime of 14 threads in executions of 5 and 10 retries
per transaction becomes approximately the same with that of one possible retry per trans-
action (figure 4.9), while in case of one thread they differ significantly. This is because
in executions of one possible retry per transaction helper threads are stalled immediately
without performing many relaxations. In executions with more possible retries per trans-
action helper threads have more time to perform relaxations and commit them, so as the
main thread can gain more work.

Finally, in executions with 28 threads it appears the effect of NUMA architecture.
The transfer of a cache line from the memory of one socket to the another is costly and it
negatively influences the scalability. The runtime increases because of expensive transfers
of cache lines from the memory of a different socket. We can also observe that the time
elapsed of the execution with one possible retry per transaction is worse than in executions
with more possible retries per transaction. This is due to the shared global lock. The main
thread writes (locks) the global lock and each time that a helper thread starts a transaction
and attempts to read the global lock, it has to transfer it (because of the coherence protocol)
possibly from a remote memory. This is quite costly in executions where the main thread
writes the global lock frequently like in execution with one possible retry per transaction.
In this execution when a helper thread, which resides in different socket from the main
thread, reads the global lock, it has to transfer it from a remote memory because it has
been written from the main thread with some strong probability. On the other hand, in
executions with more possible retries per transaction the main thread does not write the
global lock so frequently and thus, helper threads do not perform costly transfers of the
global lock in each transaction (frequently). However, each transaction lasts more when
consecutive transactional aborts show up. To sum up, in case of 28 threads where 2 sockets
are used, we have to find a solution about the number of possible retries per transaction
that trades off the costly frequent transfers of the global lock and the more time-consuming
transactions in case of consecutive transactional aborts in the main thread.

Subsequently, we examined the number of possible retries per transaction in helper
threads. In previous executions helper threads could retry their transaction until they com-
mit or are explicitly aborted by the main thread when "done" variable is set to 1. We at-
tempted to limit the number of possible retries per transaction in helper threads, such that
to reduce conflict aborts of the main thread. Helper threads can now perform a specific
number of retries per transaction and if they exceed this number they will wait in a while
loop until they are forced by the main thread to proceed in the next iteration (until "done"
is set to 1). We suppose that retrying a transaction to commit after a certain number of
retries can only cause conflict aborts and can never lead to a transactional commit. Figures
4.10 and 4.11 depict our results for different numbers of possible retries per transaction in

99

helper threads.

indom-node-111-edge-100M random-node-1M-edge-100M

ions=5) Time elapsed for abort retries for sp threads per thread (retries=1, nsp._relaxations=5)

! —N—

ime elapsed (sec)

B X 1 threa
,\./o‘. b 2 threa
@@ 4 threa

s, A A A A |4+ 7 threads
IA A 14 threads

-4 28 threads

T 2 0 7 14 % 50 00 200 500 1000
Number of threads Number of abort retries

Figure 4.10: Time elapsed in random node-1M-edge-10M graph for different
number of possible retries per transaction of helper threads.

yyyyyyy de-10M-edge-S00M fmat-node-10M-edge-500M
Time elapsed for abort retries for sp threads per thread (retries=1, nsp_relaxations=5)
e —

e

Time elapsed (sec)

>\.——-o\./. X 1 threa
"

2 thre:

|@-® 4 thre:
—— e S o
a4 JAA 14 thread:

s
A (69 28 0veas

Figure 4.11: Time elapsed in rmat node-10M-edge-500M graph for different
number of possible retries per transaction of helper threads.

Our results demonstrate that although we limited the number of possible retries per
transaction, the total runtime of the algorithm was not improved. Helper threads can com-
mit their transactions retrying them less times than the given number (limit) of retries.
Even though we reduced the number of possible retries per transaction to a very small
number, 50 retries, this number is like an infinite value for retries. Thus, we conclude that
there is no gain by limiting the number of retries per transaction in helper threads.

Experimentation in the number of neighbors examined for relaxation per
transaction

To avoid the overhead of beginning and ending many consecutive small transactions,
we implemented a more coarse-grained scheme in transactions for checking the neighbors
of the current node to perform relaxations on them. If we check more than one neighbor
to relax in a single transaction, the overhead of performing transactions reduces, as we

100

have bigger and fewer transactions. However, in large graphs performing a more coarse-
grained transaction can lead to capacity transactional aborts, since this scheme accesses
a large part of the memory that can exceed HTM system's read or write set. Therefore,
we examined the number of neighbors checked for relaxation within a single transaction,
such that to trade off the overhead of many consecutive small transactions and the capacity
transactional aborts that may appear in a more coarse-grained scheme.

We evaluated the algorithm as described in listings 4.4 and 4.5 for the main and helper
threads, respectively. More specifically, we performed a coarse-grained transaction for
different number of neighbors to examine in the main thread, while helper threads check
only one neighbor for relaxation in each transaction. We executed the algorithm in differ-
ent sizes of graphs for 1, 2, 5, 10, 20 and 50 neghbors examined for relaxation in a single
transaction. Figures 4.12 and 4.13 demonstrate our results for a random node-1M-edge-
100M graph and a rmat node-10M-edge-500M graph.

random-node-11-edge-100M random-node-1M-edge-100M
Time elapsed for relaxations in one transaction for nsp thread (retries=1) Time elapsed for relaxations in one transaction (nsp thread) per thread (retries=1)

%X 1 neighbor %X 1 thread
D> 2 neighbors > 2 threads
©-® 5 neighbors @-® 4 threads
+—+ 10 neighbors +—+ 7 threads
A A 20 neighbors A A 14 threads

\\ 44 50 neighbors / \ 44 28 threads

. > \

~

Time (sec)

Time elapsed (sec)

\\S/ \A\.\—\':/&

4 A A A

1 2 1 2 5 10 20 50

Number of threads Number of relaxations in one transaction

Figure 4.12: Time elapsed in random node-1M-edge-100M graph for different
number of neighbors examined for relaxation per transaction of the main thread.

rmat-node-10M-edge-500M rmat-node-10M-edge-500M
Time elapsed for relaxations in one transaction for nsp thread (retries=1) Time elapsed for relaxations in one transaction (nsp thread) per thread (retries=1)

%X 1 neighbor X 1 thread
P> 2 neighbors > 2 threads
@@ 5 neighbors @@ 4 threads
+—+ 10 neighbors +—+ 7 threads
A A 20 neighbors A A 14 threads
44 50 neighbors N 44 28 threads

RN \
NS Z: N T

ke A L)

Time (sec)
Time elapsed (sec)

28 1 2 5 10 20 50
Number of threads Number of relaxations in one transaction

Figure 4.13: Time elapsed in rmat node-10M-edge-500M graph for different
number of neighbors examined for relaxation per transaction of the main thread.

Our results confirm our hypothesis about a more coarse-grained transaction. We can
observe that the case of checking one neighbor per transaction has the worse total time

101

Figure 4.14: Time elapsed in random node-1M-edge-100M graph for different
number of neighbors examined for relaxation per transaction of helper threads.

rmat-node- 10M-edge-500M

Time elapsed for relaxations in one transa

A
N\

A

/

A\ /
=~ ¢/
Sy

Time elapsed (sec)

Figure 4.15: Time elapsed in rmat node-10M-edge-500M graph for different
number of neighbors examined for relaxation per transaction of helper threads.

elapsed, since there are many small consecutive transactions that clear and fill frequently
transactional cache lines in memory and this is quite time-consuming (high overhead).
As the numbers of neighbors checked per transaction increases the total time elapsed is
improved until a certain number of neighbors. In the smaller graph (random-node-1M-
edge-100M figure 4.12) the best time elapsed can be shown for 20 neighbors checked
within a single transaction, while in the larger graph (rmat-node-10M-edge-500M figure
4.13) the best time elapsed is appeared in case of 10 neighbors. Consequently, we can
conclude that the larger a graph is, the less coarse-grained the transaction should be, since
more coarse-grained transactions in large graphs access more memory (the priority queue
is larger) and they may lead to capacity transactional aborts.

Secondly, the case of checking one neighbor per transaction scales better as the num-
ber of threads increases. In this execution, the time elapsed for one thread only (the main
thread) is the worst and thus, the more threads we add, the more gain we have. The ex-
ecutions with more than one neighbor checked for relaxation per transaction are not so
time-consuming and adding more threads do not have so much gain (smaller scalability)
than in case of examining one neighbor per transaction. Finally, executions with 28 threads

102

are time-consuming because of the NUMA architecture effect of our system which causes
costly cache line transfers from one socket to another.

In the next step, we performed the same evaluation for helper threads, too. We fixed
the coarse-grained transaction of the main thread to 5 and then to 10 neighbors per trans-
action and implemented a coarse-grained transaction for helper threads (1, 2, 5, 10, 20
neighbors examined for relaxation per transaction). Our purpose is to analyze which ex-
ecution has the best scalability, since all executions start from the same point, the one
thread execution (main thread) with fixed (5 or 10) neighbors checked per transaction.
Our results are depicted in figures 4.14 and 4.15.

In random-node-1M-edge-100M graph the executions of 5 and 10 neghbors examined
per transaction have the best scalability. Similarly to the above conclusions, as the trans-
action becomes more coarse-grained (bigger transactions), we can avoid costly consecu-
tive small transactions, but we do not gain in performance if we exceed a certain number
of neighbors. In rmat-node-10M-edge-500M graph the executions of 2 and 5 neighbors
checked per transaction give the best scalability. Since this graph is larger, the transaction
has to be less coarse-grained than in the smaller graph. It accesses a larger binary heap
and can exceed HTM system's read/write set by checking for relaxations a smaller number
of neighbors within a single transaction.

4.6 Results

4.6.1 Performance results

In our performance evaluation we tested graphs of different density and structure. We
used graphs with 10K, 1M, 10M, 100M vertices from the Random and R-MAT fami-
lies. We also evaluated the algorithm on a real road network, a full USA road network
(USA-road-d.USA). Figure 4.16 presents the speedups achieved by the implementation of
Dijkstra's algorithm described in listings 4.4 and 4.5. The speedup obtained for n threads is
the ratio of the execution time of the serial algorithm to the execution time with n threads,
n — 1 of them being helper threads. This scheme is able to achieve significant speedups in
most cases. The maximum speedup achieved is 1.39 for the random-node-1M-edge-100M
graph (14 threads).

As explained in [24] in the serial execution, time can be estimated as:

Tseriat = 1% O(logn) + d «n x O(logn), (4.4)

where n represents the number of vertices in the graph and d the average out-degree of the
vertices. The ExtractMin() operation spends time n * O(logn) and DecreaseKey spends
d *n x O(logn) time, approximately.

The execution time of the described parallel scheme can be estimated as:

Tparallel =n* O(logn) +a*xd*nx* O(logn),a < 1 (4.5)
where a is the ratio of the main thread's DecreaseKey() operations to those executed in the

serial case. This is a simple theoretical approach. It does not take into account the time

103

Speedup (neighbors=5, retries=1)

de-10K-edge-1M

*
1.4 USA-road-d.USA-node-23947347-edge-58333344|

-
o

Speedup (Serial/Parallel)

o
©
T

o
o

.
1 2 4 7 14 28
Number of threads

Figure 4.16: Multithreaded speedups for graphs of different density.

spent for thread coordination or delays due to transactional aborts. Thus, a theoretical
speedup can be calculated as:

1+d

Szl—i—a*d

(4.6)

We have to notice that the performance is strongly related to the density of the graph.
This conclusion is implied to speedup's definition 4.6, too. According to the results of fig-
ure 4.16, for more dense graphs, the speedup is greater, as more parallelism can be exposed
in the inner loop of the algorithm. Conversely, sparse graphs like rmat-node-100M-edge-
100M leave limited space for parallelism leading to low performance. Furthermore, the
figure also reveals that the speedup increases as more threads are utilized. The perfor-
mance is improved up to a maximum point, after which utilizing more threads leads to
performance degradation. The number of threads to achieve this maximum is again re-
lated to the graph's density. For example, in rmat-node-100M-edge-100M (sparse) graph
increasing the number of threads from 7 to 14 slightly reduces the performance and in
USA-road-d.USA-node-23947347-edge-58333344 graph the performance remains nearly
the same. Finally, using 28 threads degrades the performance in all evaluated graphs be-
cause of the NUMA effect. Our system is a NUMA architecture with 14 threads per socket.
Therefore, pinning 28 threads in two sockets leads to expensive cache line transfers from
one socket to another and negatively influences scalability.

4.6.2 A closer look at the results

In this subsection, we attempted to have a closer look into the behavior of the described
scheme. We examined main thread's gain in the number of relaxations, the abort ratio and
the time spent in each main thread's operation and we tested them to all previous graphs.

104

We only present some representative graphs with different density, as the other graphs
exhibit similar behavior.

Figure 4.17 shows the distribution of performing relaxations between the main and
helper threads (lines 28-32 and 20-24 in listings 4.4 and 4.5 respectively). As more threads
are used, main thread's relaxations are reduced and helper threads' relaxations are in-
creased, justifying the performance improvement. Similar reductions in the main thread's
operations are also achieved for the sparse graph (rmat-node-100M-edge-100M). In this
graph, helper threads' relaxations can never exceed main thread's relaxations, as this is a
very sparse graph and helper threads cannot offload many relaxations of the main thread.
Employing 28 threads degrades scalability of main thread's relaxations because of the
NUMA effect, that was depicted in the previous figure 4.16 for speedup, too.

random-node-1M-edge-100M rmat-node-10M-edge-500M
Relaxations (neighbors=5, retries=1) 1e7 Relaxations (neighbors=5, retries=1)

3500000 *—x_main thread] - main thread
\ > helper threads > helper threads

301
£ 2500
] /\
s
- K\ /‘
150000
1000000

nnnnn /’/
o o

1 2 4 7 14 28 1 2 4 7 14 28

Number of threads Number of threads

~ ~
>

of

§

elaxat

Number of relaxations

Number of

o
n o

o

rmat-node-100M-edge-100M USA-road-d.USA-node-23947347-edge-58333344
1e7 Relaxations (neighbors=5, retries=1) 1e7 Relaxations (neighbors=5, retries=1)

=% main thread / 2' =% main thread
4.0r > helper threads 1 > helper threads
1.5 /
y /

7 4
Number of threads Number of threads

w
>

~

\
\ /

Number of relaxations
Number of relaxations

Figure 4.17: Distribution of relaxations between the main and helper threads.

Figure 4.18 depicts the number of commits and aborts of the main thread for the eval-
uated executions. The main thread suffers a really low number of aborts, especially in
dense graphs. This means that even when helper threads are not contributing any useful
work, they still do not obstruct main thread's progress. The main thread is allowed to run
almost at the speed of the serial execution. An important observation though, is that the
number of transactional aborts in the main thread depends on the size of the transaction's
write set. The larger the write set is, the higher probability of a conflict. Furthermore, in
the more coarse-grained transaction that we have implemented for the main thread, there
is a higher probability of capacity aborts in large graphs like the full USA road network,
where in main thread's execution there are many transactional capacity aborts. Finally, the

105

addition of more threads does not lead to an increase of the number of aborts. Thus, we
can suppose that if the NUMA effect did not exist, the algorithm would lead to a better
performance speedup for more than 14 threads.

random-node-1M-edge-100M rmat-node-10M-edge-500M
25le7 Aborts of nsp thread (neighbors=5, retries=1) 1.ole8 Aborts of nsp thread (neighbors=5, retries=1)

o

Number of commits/aborts
<
>

Number of commits/aborts

[commits
B aborts

[commits
A aborts

1 2 4 7 14 28 . 1 2 4 7 14 28
Number of threads Number of threads

rmat-node-100M-edge-100M USA-road-d.USA-node-23947347-edge-58333344
3.5le7 Aborts of nsp thread (neighbors=5, retries=1) 2517 Aborts of nsp thread (neighbors=5, retries=1)

Number of commits/aborts
Number of commits/aborts

B commits ' B commits
A aborts [z aborts

Number of threads Number of threads

Figure 4.18: The number of main thread's commits/aborts.

In case of 28 threads transactional aborts are increasing. A single transaction lasts
more time due to the NUMA effect. The cache line transfers are expensive (take a long
time), since cache lines may be transferred from a remote memory. As the transaction is
more time-consuming, it can be aborted with a stronger probability. Firstly, data conflicts
are more possible to be detected in longer transactions. And secondly, if a transaction last
more than the time quantum, the scheduler of the operating system will schedule out the
process and the transaction will be aborted because of a timer interrupt. In rmat-node-
100M-edge-100M graph, the transactional aborts in 28 threads due to the NUMA effect
are significantly increased, since this is the largest graph and a single transaction takes up
a lot of time.

To gain a better understanding of the wasted work due to transactional aborts, figure
4.19 presents the percentage of the total transactional aborts for all threads in total number
of transactions. Again, for graphs of high density the percentage of transactional aborts
is relatively small (about 3%), justifying the observed speedups, while in sparse graphs
this percentage is higher. The small percentage of transactional aborts shows that most
of the concurrent accesses to the shared data structures are non-conflicting. Moreover,
we can notice that in dense graphs, as the number of threads increases, the percentage of
transactional aborts also increases, as the probability of performing conflicting accesses

106

4 Abort ratio (neighbors=5, retries=1) 3 Abort ratio (neighbors=5, retries=1)

3.5H @ random-node-1M-edge-100M |..|M rmat-node-10M-edge-500M

2.0-

n

o

g
2
8
2
s
8
3
3
Z
g
E]
e
<
P
£
5
H
s

aborts / total transactions * 100%

4 7 14
Number of threads Number of threads

Abort ratio (neighbors=5, retries=1) Abort ratio (neighbors=5, retries=1)

[|EEE rmat-node-100M-edge-100M

100%

sactions *

aborts / total transactions * 100%
N 9 v N

aborts / total tran:

1 2 4
Number of threads Number of threads

7 14

Figure 4.19: The percentage of total transactional aborts for all threads in total
number of transactions.

becomes stronger. On the contrary, in sparse graphs like the rmat-node-100M-edge-100M
graph the number of transactional aborts does not augment when adding more threads be-
cause threads perform conflicting accesses with a very small probability in sparse graphs.
Similarly to figure 4.18, the percentage of transactional aborts is increased in 28 threads,
since the transaction lasts longer due to the NUMA effect and becomes more vulnerable
to a transactional abort.

Figure 4.20 shows the time spent by the main thread in ExtractMin() operation, in
transactional mode part (lines 21-37 in listing 4.4) and in the rest operations of the main
thread. The ExtractMin() operation remains stable for each graph, as it is not affected
in the described scheme. The time spent in ExtractMin() is only increased in case of 28
threads because of the costly cache line transfers in our NUMA architecture. The NUMA
effect is notably depicted in the large graph (rmat-node-100M-edge-100M graph). Sec-
ondly, the addition of helper threads reduces the time spent in transactions, the parallel
part of the scheme. The main thread performs less relaxations (lines 28-32 in listing 4.4).
It executes fewer times the costly DecreaseKey() operation, that takes time proportional
to O(logn) (where n is the number of vertices) and as a result the runtime in transac-
tional mode reduces. Finally, as explained in the evaluation part of the serial execution,
the ExtractMin() operation lasts more time and constitutes a large percentage of the total
runtime in larger graphs like rmat-node-100M-edge-100M graph and USA-road-d.USA
graph, since it also takes time proportional to graph's size (O(logn)).

107

random-node-1M-edge-100M rmat-node-10M-edge-500M
,_Time elapsed in parallel execution (neighbors=5, retries=1) oo _Time elapsed in parallel execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

EEm extract_min
B transaction_time
EEl rest_time

B extract_min
EEm transaction_time
EEl rest_time

2 4 7 14
Number of threads Number of threads

rmat-node-100M-edge-100M USA-road-d.E-node-3598623-edge-4873235
-, _Time elapsed in parallel execution (neighbors=5, retries=1) Time elapsed in parallel execution (neighbors=5, retries=1)

Time (sec)
Time (sec)

EEm extract_min
Em transaction_time
EEl rest_time

B extract_min
EEm transaction_time
EEl rest_time

Number of threads Number of threads

Figure 4.20: Distribution of time spent in different phases of main thread's exe-
cution.

4.6.3 Experimentation in padding technique

All previous evaluations were implemented using padding technique in shared struc-
tures. We padded the distance and predecessor arrays as well as the node_array and the
where _in_heap array, which are used for the graph representation and are shared among
threads, too. We supposed that if we were not using padding technique, the number of
transactional aborts would be higher and thus, the execution in transactional mode would
take a longer time. Different threads that perform operations (in transactional mode) in
independent data that reside in the same cache line would be aborted, as our real HTM
system detects conflicts at cache line granularity. However, without using padding mem-
ory can store more elements of the structures. As a consequence, a thread can find an
element in its cache memory with a stronger probability, avoid an expensive transfer and
can exploit temporal and spatial locality. Temporal locality defines that a data which is
referenced at one point in time will be referenced again sometime in the near future and
spatial locality defines that likelihood of referencing a data is higher if a data near it was
just referenced.

In order to verify our hypothesis for longer time spent in transactional mode in case of
not using padding technique, we executed the algorithm removing padding of the shared
structures. Our results can be shown in figure 4.22. They prove that our hypothesis was
incorrect, as the transactional runtime was reduced. Different threads access independent

108

data that reside in the same cache line with a very small probability. It depends on the
shape of the graph. In the most common case, edges connect vertices that are quite remote
one from each other (not consecutive nodes) and as a result they do not share the same
cache line. Thus, we can conclude that not using padding does not affect the abort ratio.
Figure 4.21a presents a representation of a binary heap in memory (vertices that share
the same cache line are depicted with the same color) and figure 4.21b the real network in
which edges connect nodes that reside in different cache lines. In case of 3 threads, the first
thread will relax node 7, the second nodes 5, 6 and the third node 4. These simultaneous
relaxations are performed in nodes that reside in different cache lines despite not using
padding. As a result, it will not appear any transactional abort.

.\»a

1 2 3 4 | 7] E
array representation in memory ¥
(a) Binary heap representation in memory. (b) The real network.

Figure 4.21: Despite not using padding, simultaneous relaxations are performed
in nodes that reside in different cache lines.

On the other hand, removing padding improved the total runtime of the algorithm.
More specifically, removing padding reduces the time spent in transactional mode, es-
pecially in case of removing padding from the distance array, since the distance array is
accessed mostly inside transaction (line 24 in listing 4.4). The if branch (lines 28-32) that
accesses the rest structures (predecessor array, node array and where in_heap array) is
evaluated as true fewer times. Therefore, the main gain of temporal and spatial locality
for a thread is in the distance array. Threads can find an element in their cache memory
with a stronger probability when no padding is used and avoid transferring cache lines
from the main memory. Furthermore, by avoiding frequent transfers we can also avoid
delays related to the common memory bus (memory bus congestion).

Finally, we can notice that despite removing padding the execution pattern remains the
same. As the number of threads increases, the scalability of the execution without using
padding in structures is the same with that of using padding. The performance speedups
of the algorithm have the same values for all evaluated graphs. The only difference is
that the total runtime of the algorithm is reduced when no padding is used in structures.
Consequently, our analysis for the scalability and the performance of the algorithm is not
affected.

109

random-node-1M-edge-100M

Time elapsed in parallel execution (neighbors=5, retries=1)
T T T T T

T padding
no_pad_dit
- o pac_prec
no_pad_node.array
o pad_where.in_heap
o pad
= exract min
3 transaction time
=5 rest tme
o
E
E
2 4 7 14 28
Number of threads
rmat-node-10M-edge-500M
Time elapsed in parallel execution (neighbors=5, retries=1)
80 T T T T T - paddng
no_pad._dist
- o pac prec
no_pad_node.array
= ro_pad_here_in_heap)
o pad
= extractmin
5 transaction_time
= rest ime
8
< d]
E
£
2 7 28
Number of threads
rmat-node-100M-edge-100M
Time elapsed in parallel execution (neighbors=5, retries=1)
400 T T T T T T - padding
= ro_pao_dst
= ro_pa0_prec
no_pad_node.array
350 s ern e
= edract_min
3 transaction time
=3 rest time
300]
250 1
g
< 200 1
E
E
150 1
100 1
50 1
0

1 2 4 7 14 28
Number of threads.

Figure 4.22: Experimentation in padding technique on the parallel algorithm.

110

4.7 Employing skip list

4.7.1 The skip list structure

Our implementation described employs a binary heap for the priority queue. In this
section we attempted to evaluate the algorithm employing a skip list instead of binary heap.
DecreaseKey() operation takes time proportional to O(logn) for both skip list and binary
heap and ReadMin() operation has the same complexity, too. However, ExtractMin()
operation takes time proportional to O(1) when using a skip list, in contrast with the binary
heap where it takes O(logn).

Skip list is a data structure that allows fast lookup within an ordered sequence of el-
ements (key-value pairs). Fast search is made possible by maintaining a linked hierarchy
of subsequences, each skipping over fewer elements. This structure is built in layers. The
bottom layer is an ordinary ordered linked list. A key in layer i appears in layer i+1 with
some fixed probability p. Thus, each element of the structure has a random height that
represents the layers in which the associated key appears. Skip list has a maximum height
and every time that an element is inserted, it takes a random height between 1 and skip
list's maximum height. Figure 4.23 depicts an example of a skip list.

_TOI I[%l |+T°
oo-[1T1-{15] [37}-{55 {56]—os)

|
[zool—[11 {15]—{17]— 28 |—{ 31|55 | 56 || 61 |+oc]

Figure 4.23: An example of a skip list.

A lookup for a target begins at the head element in the top layer and proceeds hori-
zontally until an element greater or equal to the target is reached. If this element is equal
to the target, it has been found and the operation returns. Otherwise, the procedure is re-
peated after returning to the previous element and dropping down vertically to the next
lower layer. The total expected complexity of the lookup operation is O(logn).

In skip list, the height of each element (number of element's layers) is a random num-
ber. Thus, it is possible (though with a very low probability) that it will be produced a
badly balanced structure. However, skip lists work well in practice, and the randomized
balancing scheme has been argued to be easier to implement than the deterministic bal-
ancing schemes used in other structures like balanced binary search trees. Finally, skip
lists are useful in parallel computing, where insertions can be done in different parts of the
skip list concurrently without any global rebalancing of the data structure.

111

4.7.2 Comparison with the binary heap

In this section we will compare the implementation that employs a skip list for the pri-
ority queue with the previous implementation (binary heap for the priority queue). In our
first approach we constructed a skip list that had an element for each vertex of the graph.
Thus, in DecreaseKey() operation the element that represents the vertex to be relaxed, is
removed from the skip list and is placed at a closest position to the top of the list. Asin case
of using a binary heap, this operation takes time proportional to O(logn). However, the
execution time of the algorithm was extremely large and the scalability was not remark-
able. The reason was the DecreaseKey() operation, which was more time-consuming than
that in case of using a binary heap.

In our attempt to improve the implementation with the skip list, we noticed that the
DecreaseKey() operation was performing many steps to place the extracted element to its
new position. To place an element in skip list, there is a traversal from the head of the
list until an element with an equal or a greater key is reached. This traversal was taking
too many steps, while placing the element to its new position in the binary heap requires a
small number of swaps in the elements of the structure. We also noticed that our skip list
had too many elements with the same key during the execution of the algorithm. While the
algorithm were executed, the distances of the vertices from the source were being updated
with the same value with some strong probability. As a consequence, our skip list had
many elements (different vertices of the graph) with the same key, was needing a lot of
memory (more cache line transfers) and the traversal from the head of the list to the desired
node, was much time-consuming (due to the large number of elements which had to be
overtaken).

Therefore, we implemented an optimized skip list that contains only discrete keys.
Each element of the list has a unique key and a simple internal nested list that stores the
ids of the vertices which have the same distance-key from the source. In this way, our skip
list demands less memory, since it contains fewer items, and the DecreaseKey() operation
takes fewer steps, since it traverses a smaller number of elements.

In our evaluation we firstly compare the serial execution of the algorithm for the three
different structures, the binary heap, the simple skip list (there is an element for each vertex
of the graph) and the optimized skip list (it contains only discrete keys). Figure 4.24 shows
our results for two different graphs, the rmat-node-10M-edge-500M and rmat-node-100M-
edge-100M. The ExtractMin() operation is much less time consuming in implementations
that employ a skip list, since it takes time proportional to O(1), while in case of binary heap
it takes O(logn). In large graphs like the rmat-node-100M-edge-100M graph, where the
ExtractMin() operation constitutes a great portion of the total runtime, there is a significant
gain. Furthermore, we have to remark that the DecreaseKey() operation takes more time
in the simple skip list for both two graphs. As explained above, this is because it takes
too many steps to place the extracted element to its new position, since it traverses many
elements of the same key. In our optimized skip list we avoid such a long traversal and
as a result the DecreaseKey() operation can place an element to its new position with
approximately the same number of steps with the binary heap. The elements that have to
be overtaken in the optimized skip list to place the extracted element to its new position

112

is comparable with the number of elements' swaps that are performed in DecreaseKey()
operation in case of binary heap.

rmat-node-10M-edge-500M rmat-node-100M-edge-100M
Time elapsed in serial execution (neighbors=5, retries=1) -o__Time elapsed in serial execution (neighbors=5, retries=1)

@ extract_min @ extract_min
B compute_time 200+ B compute_time
Bl decrease_key Bl decrease_key
BB update_time
B rest_time

B update_time
B rest_time

I}
=}

Time (sec)

o
3

50+

o
binary_heap skip_list opt_skip_list binary_heap skip_list opt_skip_list

Figure 4.24: Time elapsed in serial execution for the three different structures
used for the priority queue.

Subsequently, we evaluated the parallel execution of the algorithm for different num-
ber of threads. Figure 4.25 depicts the total runtime elapsed for the random-node-10M-
edge-500M and the rmat-node-100M-edge-100M graph. As in the serial execution, the
DecreaseKey() operation of the random-node-10M-edge-500M graph in case of using the
simple skip list is much time-consuming and as a result the total runtime is the worst
among the three executions. This is because the random-node-10M-edge-500M graph is
very dense. The more dense a graph is, the more relaxations (DecreaseKey() operations)
are performed due to the large number of edges. Thus, the DecreaseKey() operation is ex-
ecuted many times and the total execution time is increased significantly. On the contrary,
the rmat-node-100M-edge-100M graph is a sparse graph and the DecreaseKey() is not ex-
ecuted so many times, since there are not many edges to cause relaxations, and the total
runtime is not influenced. As we noticed in the serial execution, in this graph the Extract-
Min() operation constitutes a great portion of the algorithm when using a binary heap for
the priority queue. In this execution, the ExtractMin() operation depends on the number
of vertices of the graph (O(log n)), while the skip list performs the ExtractMin() operation
in a constant time (O(1)). As a consequence, in the rmat-node-100M-edge-100M graph
the binary heap execution has the worst total runtime.

Concerning the scalability of the parallel execution we observe that the execution with
the optimized skip list achieves the highest scalability for both the rmat-node-10M-edge-
500M graph and the rmat-node-100M-edge-100M graph. However, the rmat-node-100M-
edge-100M graph does not appear good scalability, since this is a sparse graph and helper
threads cannot offload many operations from the main thread. The skip list scales better
because helper threads perform more relaxations and the main thread can offload more
work. As we can see in figures 4.26a and 4.26b, the number of main thread's relaxations
decreases much more in case of using a skip list. On the other hand, the execution with the
binary heap cannot offload so much work. We suppose that the aborts performed when
using the binary heap are useful aborts that would perform useful relaxations. Moreover,

113

the optimized skip list case scales better than the simple skip list case, as it needs a smaller
read/write set and in this way, it avoids costly traversals and capacity transactional aborts.
Lastly, in case of 28 threads, we can conclude that the NUMA effect degrades the scalabil-
ity of all our executions due to expensive cache line transfers from one socket to another.
The more cache lines are transferred from one socket to another, the worse performance
the execution has.

random-node-10M-edge-500M rmat-node-100M-edge-100M

14 Total time (neighbors=5,) 300Tota\ time (neighbors= 1)
1 \ /
B o
1
: 2 ‘,’—N\x\x/_/{
E E

. M 100 A

20

Number of threads Number of threads

Figure 4.25: Time elapsed in parallel execution for the three different structures
used for the priority queue.

random-node-10M-edge-500M

random-node-10M-edge-500M 1e7 Relaxations (neighbors=5, retries=1)

1e7 Relaxations (neighbors=5, retries=1) %X main thread

W R
3.0-
P> helper threads
\\ 2.5 /\
. /
: P e X
1.5]
\\/")
v o

0. Number of threads

Number of relaxations

Number of relaxations

(b) Using the optimized skip list struc-

(a) Using the binary heap structure. ture.

Figure 4.26: Distribution of relaxations between the main and helper threads for
the random-node-10M-edge-500M graph using two different structures for the pri-
ority queue.

Finally, we present the number of transactional commits/aborts of the main and helper
threads in the three previous executions. Figure 4.27 depicts the number of commits/aborts
of the main thread. The number of transactional aborts in the simple skip list execution
is extremely high in comparison with the other two executions, especially in the larger
graph. This is due to the large memory that the traversal of the DecreaseKey() operation

114

demands. The traversal in the simple skip list demands a very large read set and this may
lead to transactional capacity aborts. Furthermore, there is also a higher probability of data
transactional abort. The larger transactional sets that threads need, the higher probability
of performing conflicting accesses among them it exists. Secondly, we can notice that the
binary heap execution and the optimized skip list execution have comparable number of
transactional aborts. In both of these executions the main thread suffers a really low num-
ber of transactional aborts and this means that helper threads do not obstruct main thread's
progress. Furthermore, the number of transactional aborts is not importantly affected by
the number of threads. It remains approximately the same as the number of threads in-
creases, and we conclude that if the NUMA effect did not exist, we could have a better
scalability.

As mentioned in previous section the NUMA effect influences the number of trans-
actional aborts. Since the cache line transfers are expensive, a single transaction lasts a
lot of time. As a consequence, data conflicts are more possible to be detected in longer
transactions and there is a stronger probability of transactional abort due to time interrupt.
When a transaction lasts more time than the time quantum, the scheduler of the operating
system schedules out the process and the transaction is aborted. In the large rmat-node-
100M-edge-100M graph, where many transactional cache lines have to be transferred in
DecreaseKey() operation, the transaction is much time-consuming and this results to a
large number of transactional aborts.

Similarly to the main thread, the number of transactional aborts of helper threads is
increased in the simple skip list execution, as shown in figure 4.28. The traversal in the
DecreaseKey() operation is very costly and causes many conflicts for helper threads, too.
In the other two executions (binary heap and optimized skip list), the number of transac-
tional aborts is relatively small and shows that the most of the concurrent accesses to the
shared data structures are non-conflicting. Moreover, the number of transactional com-
mits increases when adding more threads, since more threads perform relaxations. In this
figure, the number of transactional commits in case of binary heap is higher than in the
other two executions that use a skip list. Although the number of commits in case of bi-
nary heap is larger, these transactional commits do not result to useful relaxations. As
we see in figures 4.26a and 4.26b, the optimized skip list structure results to more useful
relaxations. We suppose that in case of using the binary heap structure, helper threads
have more time to run until the main thread stops them. Thus, they may execute more
than once the outer while loop (line 1 in listing 4.3) during the execution of one iteration
(outer while loop) of the main thread. However, since helper threads do not extract ele-
ments from the priority queue, they will always read the same element in the ReadMin()
function (the n-th helper thread reads always the n-th first element in the priority queue).
Only when the main thread proceeds to its next iteration, helper threads will read another
element to examine. Therefore, in case that helper threads have much time to run and they
repeat more than once the outer while loop, they will perform the same process (same
relaxations) more than once, executing relaxations for the one and only element that they
can read in each main thread's iteration. They will perform many transactional commits
(for the same element) without performing new useful relaxations.

115

random-node-10M-edge-500M rmat-node-100M-edge-100M

1e8 Number of commits/aborts in parallel execution (main thread)

1e7 _Number of commits/aborts in parallel execution (main thread)

Number of commits/aborts
Number of commits/aborts

0.4

°

Figure 4.27: The number of commits/aborts of the main thread in parallel execu-
tion for the three different structures used for the priority queue.

random-node-10M-edge-500M rmat-node-100M-edge-100M

1e10 Number of commits/aborts in parallel execution (helper thread:

169 Number of commits/aborts in parallel execution (helper thre:

Number of commits/aborts
Number of commits/aborts

Figure 4.28: The number of commits/aborts of helper threads in parallel execution
for the three different structures used for the priority queue.

4.7.3 Results

In the last part of our analysis we evaluated the performance of the parallel execution
that employs our optimized skip list. We used the same graphs with the previous perfor-
mance evaluation of the binary heap version. Figure 4.29 presents the speedups achieved
using the optimized skip list in Dijkstra's algorithm. The proposed optimized scheme
achieves significant speedups for all evaluated graphs. The maximum speedup achieved
is 1.94 for the dense random-node-10M-edge-500M graph (14 threads).

As mentioned in the previous evaluation, the speedup is related to the density of the
graph. For more dense graphs, the speedup is greater, as more parallelism can be exposed.
Helper threads can offload more work from the main thread in dense graphs, where the
number of edges is greater. Conversely, sparse graphs leave limited space for parallelism.
In case of 28 threads the performance is degraded due to the NUMA effect.

Our implementation of the optimized skip list achieves higher performance speedup
and scales better than the implementation with the binary heap. The main reason is the
relaxations performed by the helper threads. As already mentioned, using the optimized

116

Speedup (neighbors=5, retries=1)

P63 random-node-1M-edge-100M
PP rmat -1001

and
-

edg
M-edge-500M
at-node-100M-edge-100M

A-road-d.USA-node-23947347-edge-58333344|

"
"

i

4+
o
us,

1.5-

Speedup (Serial/Parallel)

.
1 2 4 7 14 28
Number of threads

Figure 4.29: Multithreaded speedups for graphs of different density when using
our optimized skip list.

skip list helper threads execute more useful relaxations. The number of relaxations per-
formed using the optimized skip list is much larger than using the binary heap structure as
figures 4.26a and 4.26b show, while these two implementations have comparable transac-
tional aborts (figures 4.27 and 4.28). In some executions, the relaxations performed using
our optimized skip list are double that performed when using the binary heap structure.
This may be due to transactional aborts. We suppose that in case of binary heap the trans-
actional aborts performed would result to useful relaxations. Since we cannot determine
a policy when a conflict is detected, we are not sure for which transaction will be aborted.
It is possible that a large number of the aborted transactions in case of using a binary heap
would result to useful relaxations, while this does not happen when using our optimized
skip list.

Secondly, the binary heap and the skip list are two completely different data structures.
The skip listis a totally ordered data structure. Thus, at a given time, helper threads read the
vertices with the first minimum distances (key) from the source (in ReadMin() function)
to perform their relaxations. On the contrary, the bineary heap structure is not a totally
ordered data structure. At a given time, helper threads read the elements that are located
higher (in a small depth) in the binary heap, but these elements are not necessarily the
vertices with the first minimum distances from the source. For example, in the binary
heap of figure 4.30 if we had 5 helper threads, they would read the elements with the keys
9,4, 26,20 and 18. In case case of using a skip list, the 5 helper threads would examine
the elements with the keys 4, 9, 11, 18 and 19, since skip list is totally ordered. Thus, we
conclude that in each step of the algorithm helper threads examine different elements to
perform their relaxations depending on the data structure used. We suppose that the total
order that the skip list structure has, may lead helper threads to examine vertices that have
obtained their optimal distance from the source with some stronger probability than that
in case of using the binary heap structure and perform more useful relaxations than that

117

Figure 4.30: An example of binary heap. The vertices with the red color have not
obtained their optimal distance from the source.

performed when using the binary heap structure.

Finally, to obtain an estimate of speedup we used the formula 4.6. It gives a speedup
approximation based on main thread's relaxations. It also implies that the speedup should
increase with the average out-degree. The more dense a graph is, the more parallelism
can be exposed. However, this theoretical formula is a simple estimate and constitutes a
theoretical upper bound for any performance improvement. It does not take into account
the time spent in thread orchestration or delays due to consecutive transactional aborts.
Figures 4.31 and 4.32 present a theoretical speedup and the speedup achieved for all eval-
uated graphs in case of 14 threads using the binary heap structure and the optimized skip
list structure, respectively.

] Graph \ Ideal Speedup \ Speedup achieved \
random-node-1M-edge-100M 4 1.45
rmat-node-1M-edge-100M 3.58 1.27
random-node-10M-edge-500M 3.74 1.46
rmat-node-10M-edge-500M 3.09 1.35
rmat-node-100M-edge-100M 1.22 1.1
USA-road-node-23M-edge-58M 1.91 1.08

Figure 4.31: A speedup approximation based on main thread's relaxations in case
of 14 threads and the speedup achieved using the binary heap structure.

118

] Graph Ideal Speedup | Speedup achieved

random-node-1M-edge-100M 4.57 1.75
rmat-node-1M-edge-100M 5.11 1.49
random-node-10M-edge-500M 5.14 1.94
rmat-node-10M-edge-500M 4.74 1.82
rmat-node-100M-edge-100M 1.79 1.52
USA-road-node-23M-edge-58M 1.48 1.29

Figure 4.32: A speedup approximation based on main thread's relaxations in case
of 14 threads and the speedup achieved using the optimized skip list structure.

Chapter 5

Conclusion and Future Work

In the first part of this thesis we studied concurrent data structures, in particular bi-
nary search trees. Search trees are one of the most frequently used in a wider range of
applications and parallelizing them introduces many challenges.

The first implementations presented constituted a naive approach for search tree data
structure. We implemented binary search trees, AVL trees and Red-Black trees using
coarse-grained and fine-grained locking technique for synchronization between threads.
Our results demonstrate that coarse-grained implementations do not scale as they do not
provide parallelism (serial execution) and fine-grained implementations scale in large trees
until a small number of threads. Red-Black tree implementation has the highest perfor-
mance, since this is a height-balanced tree.

On the other hand, more complex implementations scale better. They have a better
synchronization mechanism, smaller contention windows and some of them perform a
helping strategy. Secondly, according to the results presented there is no inherent dif-
ference between lock-free and lock-based algorithms. The main goal of more complex
implementations is to reduce the number and the granularity of locks such that the execu-
tion to be close to the asynchronous algorithm. The closer to the sequential algorithm an
implementation is, the better it scales. Finally, the scalability of synchronization is mostly
a property of hardware. Synchronization primitives are non-scalable on NUMA archi-
tectures due to expensive cache line transfers. Therefore, the amount of synchronization
on concurrent data structures must be reduced in order to achieve scalability on NUMA
architectures.

Apart from the implementations examined on this thesis, there are still many interest-
ing implementations of concurrent search trees to be studied, each of them has its own set
of characteristics and innovations. For example, papers [25], [26], [27], [28] and [29] also
present complex concurrent search trees to be studied. Furthermore, we could implement
concurrent search trees using transactional memory as synchronization mechanism. Even
a simple coarse-grained locking HTM implementation of a balanced tree like Red-Black
tree could outperform lock-based and wait-free alternatives. However, to enable scalabil-
ity to high numbers of threads, the programmer needs to be aware of the underlying HTM
system's limitations and optimize the code appropriately.

121

Since the purpose of this analysis is to present concurrent data structures that scale ef-
ficiently and could be used in parallel software to improve its performance, besides search
trees, there are many other data structures to be studied. Linked lists like FIFO queues,
hash tables and priority queues like binary heaps and skip lists are also frequently used
data structures and a performance and scalability analysis of such concurrent data struc-
tures would be quite challenging, too.

In the second part of this thesis, we applied some parallelization techniques to Dijk-
stra's algorithm, which is known to be hard to parallelize. We experimented on the algo-
rithm proposed in [23], [24] in order to achieve high scalability in a real HTM system.

The aim of our experimentation is to find a policy that favors the main thread. Helper
threads can perform operations simultaneously without interfering in main thread's progress.
Thus, to avoid consecutive transactional aborts that would delay main thread's execution,
we have forced main thread to acquire the global lock immediately. It can retry the exe-
cution of its work in transactional mode only once. Furthermore, helper threads can never
acquire the global lock so as not to postpone main thread's execution and they always
attempt to execute the critical section in transactional mode.

Secondly, we implemented a more coarse-grained transaction in main thread's code
such that to reduce transactions' overhead and we tested the same for helper threads,
too. However, performing a coarse-grained transaction can lead to capacity transactional
aborts, especially in large graphs, due to the large part of the memory that this scheme
accesses. We also experimented in padding technique used on the shared data structures.
We concluded that padding does not affect the scalability of the algorithm, but it provides
better runtime, as threads can exploit temporal and spatial locality.

Subsequently, we presented graphs for main thread's and helper threads' relaxations
as well as the abort ratio of our executions. We can notice that the gain in main thread's
relaxations is considerable, but there is no corresponding gain in speedup due to synchro-
nization costs. Moreover, helper threads may perform relaxations that are not useful as
the algorithms proceeds. Finally, our results also depict the effect of NUMA architecture.
The performance collapses when threads are pinned in both two sockets of our system.
As future work, it could be designed a variation of the presented algorithm in which the
amount of synchronization would be reduced, and it would scale even in the presence of
non-uniformity.

In the last part of this thesis we evaluated Dijkstra's algorithm employing a skip list
instead of a binary heap for the priority queue. The results achieved using a simple skip list
show that it has much worse performance than the binary heap version of the algorithm.
The simple skip list requires a lot of memory and the traversal to its elements is very time-
consuming. Thus, we implemented an optimized skip list that contains only discrete keys.
Vertices that have the same key are stored to an internal nested list in skip list's element.
In this way, our optimized skip list needs less memory, as there are many vertices with
the same key during the execution of the algorithm and the traversal to its elements is
much faster. This implementation achieves better performance than the binary heap and
has higher scalability. Helper threads modify locally the optimized skip list and perform
more useful relaxations than in case of using a binary heap.

122

Our optimized skip list does not contain one element for each vertex of the graph. The
number of elements depends on the number of vertices that obtain the same distance (key
in the skip list) from the source during the execution of the algorithm. It depends on the
weights of graph's edges. As a consequence, we cannot conclude a fixed maximum height
for the optimized skip list. We have to examine the average number of elements that our
skip list has during the execution and set the maximum height as the logarithm of this
average number. Generally, the parameter of the maximum height of our optimized skip
list must be examined separately for each graph.

At a given step of the algorithm, the first element of our optimized skip list has the
minimum distance-key from the source to be examined. This element may contain many
ids of vertices of the graph which have the same minimum distance from the source at
this step. Thus, a proposition would be that the main thread could extract the element
from the skip list and delegate the different vertices (ids) to helper threads to perform their
relaxations. In this way, there would be more than one settled node in a single step and this
would result to greater gains. However, in case that a vertex is extracted from the priority
queue, all of its edges have to be examined and all of its possible relaxations have to be
executed. Otherwise, the algorithm will not be correct. Therefore, the algorithm have to
be redesigned, such that each step (iteration of the outer loop) takes as much the most time
consuming vertex examination among all threads (both the main and helper threads). In
such an execution, the main thread should not stop helper threads when they still have
edges to examine.

Our evaluation was performed in Intel's Haswell HTM. As continuation of the present
work, the algorithm could be evaluated in other systems that support Hardware Trans-
actional Memory. It could be explored the impact of various TM characteristics on the
behavior of the presented schemes, such as resolution policy, version management and
conflict detection. For example, an Hybrid conflict resolution policy which tends to favor
older transactions against younger ones could be more efficient or a system with larger
read/write transaction set would be more suitable for larger graphs. The programmer has
to be informed of the underlying HTM system and its characteristics and change the code
appropriately in order to achieve high scalability.

Eventually, in paper [24], results demonstrate interesting variations in the available
parallelism between different execution phases. As the algorithm proceeds the available
parallelism is reduced and the gains from the use of more helper threads are negligible.
Thus, as future work it can be examined the different phases of the algorithm and explored
more adaptive schemes in terms of the number of helper threads. Helper threads have to
be dynamically adjusted as well as the tasks assigned to them.

123

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Amdahl, G., The validity of the single processor approach to achieving large scale
computing capabilities, In Proceedings of AFIPS Spring Joint Computer Conference,
Atlantic City, N.J., AFIPS Press, April 1967

Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE Transac-
tions on Computers, 1972.

Georgy Adelson-Velsky, G.; Evgenii Landis (1962)., An algorithm for the organiza-
tion of information, Proceedings of the USSR Academy of Sciences (in Russian) 146:
263-266. English translation by Myron J. Ricci in Soviet Math. Doklady, 3:1259—
1263, 1962.

Leonidas J. Guibas and Robert Sedgewick (1978)., A Dichromatic Framework for
Balanced Trees, Proceedings of the 19th Annual Symposium on Foundations of
Computer Science. pp. 8-21. doi:10.1109/SFCS.1978.3.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein., Introduction to Algo-
rithms, The MIT Press, 3rd ed., 2009.

Siakavaras D., Nikas K., Goumas G., and Koziris N., Performance analysis of con-
current red-black trees on htm platforms, TRANSACT, 2015.

Siakavaras D., Nikas K., Goumas G., and Koziris N., Massively Concurrent Red-
Black Trees with Hardware Transactional Memory, 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2016.

R. A. Tarjan., Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85,
Department of Computer Science, Princeton University, 1985.

R. Bayer and M. Schkolnick., Readings in database systems, ch. Concurrency of
Operations on B-trees, pp. 129-139, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

Tudor, D., Guerraoui, R., Trigonakis, V., Asynchronized Concurrency: The Secret
to Scaling Concurrent Search Data Structures, In: Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, Pages 631-644. ASPLOS 2015.

125

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun., 4 Practical
Concurrent Binary Search Tree, PPoPP 2010.

Drachsler D., Vechev, M.T., Yahav, E., Practical concurrent binary search trees via
logical ordering, In: PPoPP, pp. 343-356. ACM(2014).

Aravind Natarajan and Neeraj Mittal., Fast Concurrent Lock-free, Binary Search
Trees. PPoPP 2014.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel., Non-
blocking Binary Search Trees, PODC 2010.

Maurice Herlihy., Nir Shavit., The Art of Multiprocessor Programming, Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA ©2008.

Damron P., Fedorova A., Lev Y., Luchangco V., Moiv M., Nussbaum D., Hybrid
transactional memory, In: Proceedings of the 12th international conference on Ar-

chitectural support for programming languages and operating systems, Pages 336-
346. ASPLOS 2006.

M. Moir., Hybrid transactional memory, July 2005.

Casper J., Oguntebi T., Hong S., Bronson N., Kozyrakis C., Olukotun k., Hard-
ware acceleration of transactional memory on commodity systems, In: Proceedings
of the sixteenth international conference on Architectural support for programming
languages and operating systems, Pages 27-38. ASPLOS 2011.

A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, and M. L.
Scott., An integrated hardware-sofiware approach to flexible transactional memory,
SIGARCH Computer Architecture News, 35, June 2007.

J.R. Larus and R. Rajwar., Transactional Memory. Synthesis Lectures on Computer
Architecture., Morgan & Claypool, 2007.

Dijkstra, E. W., 4 note on two problems in connection with graphs., Numerische
Mathematik 1: 269-271. doi:10.1007/BF01386390, 1959.

R. C. Prim, Shortest connection networks and some generalizations., In: Bell System
Technical Journal, 36 (1957), pp. 1389-1401.

N. Anastopoulos, K. Nikas, G. Goumas, and N. Koziris, Early experiences on ac-
celerating dijkstra’s algorithm using transactional memory., in Proc. 3rd Workshop
on Multithreaded Architectures and Applications (MTAAP’09), 2009.

K. Nikas, N. Anastopoulos, G. Goumas, N. Koziris, Employing transactional mem-
ory and helper threads to speedup Dijkstra's algorithm., Parallel Processing, 2009.
ICPP'09. International Conference on, 388-395.

126

[25]

[26]

[27]

(28]

[29]

Crain, T., Gramoli, V., Raynal, M., 4 speculation-friendly binary search tree, In:
PPoPP '12, Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming Pages 161-170, ACM New York, 2012.

Chatterjee, B., Nguyen, N., Tsigas, P., Efficient lock-free binary search trees, In:
PODC '14, Proceedings of the 2014 ACM symposium on Principles of distributed
computing Pages 322-331, ACM New York, 2014.

Prokopec, A., Bronson, N., Bagwell, P., Odersky, M., Concurrent tries with effi-
cient non-blocking snapshots, In: PPoPP '12, Proceedings of the 17th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming Pages 151-
160 , ACM New York, 2012.

Crain, T., Gramoli, V., Raynal, M., 4 contention-friendly binary search tree, In:
Euro-Par'13, Proceedings of the 19th international conference on Parallel Processing
Pages 229-240, Springer-Verlag Berlin, Heidelberg, 2013.

Natarajan, A., Savoie, L., Mittal, N., Concurrent Wait-Free Red Black Trees, In:
SSS 2013 Proceeding of the 15th International Symposium on Stabilization, Safety,
and Security of Distributed Systems - Volume 8255 Pages 45-60, Springer-Verlag
New York, 2013

127

