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AmayopeleTol 1 avTiypan, amodiKeuon Kal JlaVopUn NG Topovods epyoaciog, €€ OAOKANPOL 1
TUNHOTOG 0TS, Yo EUTOP1kd okomd. Emtpénetol ) avatunmon, amwobikeno Kot Slovopn Yo 6KoTo
L1 KEPOOGKOTMIKO, EKTOIOEVTIKNG 1) EPEVVNTIKNG GUOTG, VIO TNV TPoLIOBEST Vo avapEPETAL 1| TN
npoélevong kot va dtatnpeiton to Tapdv unvope. Epotipata mov apopoldv ) ypion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VO OTELOVVOVTAL TPOG TOV GUYYPUPEQ.

Ot amOWeELg Kol TO. GUUTEPACLOTO TOL TEPLEXOVIOAL GE OVTO TO £YYPUPO EKPPALOLY TOV GUYYPOUPEN

Kol dgv mpémel va, epunvevdel Ot avtmposmnrevovy Tig enionueg Béoelg Tov EBvikod Metcofiov
[Tolvteyveiov.



Iepiinyn

"Exovue mAéov e16éA0e1 oty emoyn 6oV 0 OYKOG TV dedOUEVOV TPOg enelepyacia eivol acVAANTTA
LEYAAOG KO TO GLUGTILLOTA/EPAPHOYES TTOL KOAOVVTOL VA, YPNGUYLOTOGOVY TOGO GYKO TANpOPOpiag
advvatobv, otav otnpiloviat otig mapadoctakég pedddove. I' avtd to Adyo, £xovv dnuovpyndel
TOALTPNVO GUCTIHHOTA, GUYYPOVEG APYLTEKTOVIKEG VTOAOYIGTAOV Kal LEBodot TapdAining encéepya-
ciog LE 6TOYO VO, AVGOVV TO TOPUTAVED TPOPATLLOL LLE OTOSOTIKO Kot YP1yopo Tpomo. 26T0G0, To VEL
VRTOAOYIGTIKA GLGTHLATO Kot 01 Tpdmot enelepyaciog dabétovy Eva peydrlo Pabud molvmlokotnTog
GTN AELTOVPYIO TOVC, TOV OTOI0 KOl LETAPEPOVLY GTNV TPOCUPLOYT TOV EQAPLOYDV KOl TPOYPOULLLLE-
TV 1oL Yepilovial peydriovg dykovg dedopuévav. Tavtdypova, £xovv dnuovpyndei 6pla anddoong
KOl KATOVOA®ONG EVEPYELAG TO OTTOL0L EIVOL ATOPOLTNTO VO TNPOVVTOL YO TV €£0IKOVOUNGT TOPMV
Kot evépyelag. Méypt oTiypng, autd ta dVo KopPikd onueio KoAEIToL Vo EKTEAEGEL O 010G 0 TPOYPUL-
patiots. [pémet va avoivoet to kébe mpdypappo aveEaptnto Kot vo eEETAGEL TOV TPOTO EKTEAECNG
TOV UEYPL VO BPeL TNV KOTAAANAT pLopo1| Tov Ba tnpel Toug meplopiopovg mov Exovv tebel. [Ipoea-
VOGS, 0TO TO £pY0 amoTeLel TOAD SVOKOAN SOVAELS Kot GUVHBWE 1) TPOGUPLOYN TPOYPUAUUATOV AT
avBpomovg dev e&avthel OAa Ta mepBmpia Pertioong. Zuvenmg, kobicToTol amapaitntn 1 onpovp-
yia evog epyaieiov mov Ba avtopatonotel avTo To £pyo Kot o TapE el AmOd0TIKOTEPEG LOPPES TOV
TPOYPAUUATOV GE UKPO YPOVIKO OLACTN L.

H nopovca simhopotikny epyacio mapovotdlel tov Autotuner, £vo. GUECO KOl KAUOK®OTO EpYOAEIO TOV
avartoyOnke edkd yio v TAateoppe Intel Xeon Phi coprocessor kot Tpoteivel, yio kabe epoappoyn
7oV d€yETAL, TEPPAAAOVTO SIUUOPPMONG Y10 TNV OTOSOTIKOTEPT EKTEAECT] TOVG OTNV TAUTOOPLLO.
AvTika010Ta £TCL TNV XEPOVOAKTIKT SOVAEIDN TOV ETPETE VO KAVEL O TPOYPUUUOTIOTHS KOODG KoAoD-
vrav va e&epevvioet 2,880 dtapopeTikd mepiPdilovia extédeons. Avti va avoliel kdBe epaproyn
TAve 6° OA0 Ta TEPPAAAOVTA EKTEAEDT|G, YPTOYLOTOIEL TATPOPOPIEG TOV TO EPYOLELD £xEL OmOBNKED-
o€l amo Tpornyovpeveg spappoyéc. H Aettovpyia tov Pacileton o€ pia collaborative filtering péBodo
£T01 MOTE YPTYOPO KA e akpiPelo va KoTnyopomolEl o EpupHoYN o€ GOVOAN TEPPAALOVTIOV EKTE-
Aeong BpiokovTog OpOLOTNTES LLE TPOTYOVUEVES EQUPLOYEG TTOV €YoV BeATioTomomOet.

O Autotuner e éyONKe TAVO G€ VO GCHVOLO ATALTNTIKMV Kol OLOLPOPETIKADV EPAPUOYDV amd 600 GVY-
YPOVEC COVITEC KOl OL LETPNGELS NTOV TTOAD EVOAPPUVTIKEC. ZVYKEPIUEVO, GE ALYOTEPO ATO 8 AETTA Yol
KkéOe epappoyn o Autotuner mpdtewve Eva mepPIAlov SLOPOPPOONG TOV 1| andd0GN TOL Eenepvovce
10 90% NG KaAVTEPN G EKTELEONG.

A&Eeic KAEWOWA

OVTOLLOTT TPOGAPUOYT], AVTOUATT SUUOPPOOT, UNYovIKT pdBnon, Intel Xeon Phi ene&epyactig, mo-
ALTOPNVE GUGTAUOTO, GUUPOVAEVTIKO GOGTN IO, LOVTELOD HOIPALOUEVIG LVIUNG, TOPaKOAOVOT O, LLE-
YAAOG OYKOC ded0UEVOV.






Abstract

We have already entered the era where the size of the data that need processing is extremely large and
the applications that use them face difficulties if they follow the traditional ways. For that reason, new
approaches have been developed, multi- and many- core systems, modern computing architectures and
parallel processing models that aim to provide a solution for that problem efficiently and in a timely
manner. However, these new computing systems kai processing methods are characterized by a lot
inner complexity and that complexity is transfered also to programs’ and applications’ tuning which
analyze big data. Concurrently, there have beed set performance and power limitations that need to
comply with. Until now, these two major tasks are tackled by the application developer himself. He has
to analyze every application independently and examine the its execution in order to find the version
that will fulfill the restraints that have been set. Obviously, this is an onerous task and usually hand
tuning does not fully exploit the margins for improvement. Hence, it is crusial the developement of a
tool that will automate program tuning and will provide efficient tuned programs in a small period of
time.

This diploma thesis presents, the Autotuner, an online and scalable tool that was developed specifi-
cally for the Inte Xeon Phi coprocessor and suggests for every incoming application, a performance
effective and energy-saving tuning configuration. It substitutes the hard work the application devel-
oper had to do, as he had to explore 2,880 different tuning configurations. Instead of analyzing every
application against every tuning configuration, it uses previously cached information from already
checked applications. The Autotuner is based on a collaborative filtering technique that quickly and
with accuracy classifies an application with respect to sets of tuning configurations by identifying
similarities to previously optimized applications.

The Autotuner was tested against a set of demanding and diverse applications from two modern bench-
mark suites and the evaluation looked very promising. Particularly, in less than 8 minutes for every
appplication the Autotuner suggested a tuning environment in which the application achieved more
than 90% of the best tuning configuration.

Key words

automatic tuning, machine learning, Intel Xeon Phi coprocessor, manycore systems, multicore sys-
tems, recommender system, shared memory model, monitoring, big data.






Evyoprotieg

H mopodoa dumhopotikn epyacio. onNUatodoTel TNV OAOKANP®OGCT) TOV GTOLOMY LOV GTN GYOAN TOV
HAextpordywv Mnyovikov kot Mnyovikeov Ymoloyiotov tov E.MLIT. kot kheivel Eva ta&idt 6To ydpo
TOV VTOAOYLGTAOV OV AV TNV TPDTY] HEPO PALVOTAV EVOLOPEPOV CTUEPO POVTALEL CLVAPTOCTIKO Kol
povadkd. Ot yvdoelg Kot o1 epmelpiec mov anéktnoa pe eE€MEav cav dvBpomo kot pe fondncav va
ovarmtOE® T O1KN OV OKEYT OC UNYOVIKOC.

Apyika, Oo 10eia va evyaplotnom Tov eXPAETOVTO KaBNYNTH LoV K. ANURTPLo ZoOVTPN Y10 TV EUTL-
6TOGUVI IOV Hov £0€1&E, Yo To BepUd TOV KOAOCHOPIGUA dTAV TPMTOT YO 6T0 microlab kot yio tnv
ouveYN Tov apéPLoTn vtooTnPEN. Me Bondnoe va epappdcm Ty Bewpia otny TPdcn Kot £To1 va £x®
L0l TTO TPOKTIKN TPOGEYYIOoN OAAL TaVTOYpOova cmoTd Bepeopévn. Eniong 0o n0eia va ekppdom
TNV EVYVOL®MOHVN LoV Tov Ap. ZmTipn EON 0 omoiog pov petépepe v 10€a Tov Kot poll v ovo-
nTOEapE TEPLOGOTEPO - BE®PDd TPOG TO KAAVTEPO - pe anoTérespa avtn v epyacio. H kabodrynon
Tov KB’ OAN TN S1dpKELD TG SUTAMULOTIKNG OV KOl 1) TPOTPOTT TOL Y10l TO KATL TOPATAVE® CUVERAAAY
uovo Betikd 6T0 GHVOAO ALY KoL GE péEva ToV 1810.

Téhoc, opeilm €va peydAo gvyoploTd GTOLG YOVEIG LoV TOL NTAV KoL ivat hvta SiTAa oL Kot pe
otpilovv, KaBMOS Kl 6Ta KOVTIVE oL TPOGMTA Kot PIAoVS, TaAL0VG Kol VEOLS, otV EALGSO Kol 6TO
€EMTEPIKO, LLE TOVG OTTOIOVG 1] GVVAVAGTPOPT] KoL 1 AvTOAAAYT| 10emV S1EpLVE TOVG 0piloVTEC LoV KoL
pe éxove kaAvtepo. H gidia toug stvar avavtikatdotatn kot kabévag kot kabepio £xel onpoadéyel tov
YOPOKTNPOL LLOV.

EXevBépiog - lopdavng Xpiotopopidng,
Abnva, 211 IovAiov 2016






Exterapévn Hepidnyn

Ewsayoyn

Eivar yvoo16 g Dotepa amd mepimov mévte dekaeTies, epyOIOoTE 6TO TELOG TOVL VOOV ToL Moore.
H kataokevn pkpotepov tpaviiotop dev eyyvatal mo 6t Oa givol ypryopa, EVEPYELNKA OTOSOTIKA,
éumoto Kot eONvoTepa. QoTOGO AVTO deV ONUOIVEL OTL 1) TPOODOG TNG VITOAOYICTIKTG IKOVOTITOG EXEL
@tdoel ota Opla TG, AAAG OTL 1] eOoN NG €xel aAldéel. 'Etot, mapdiinlio pe v mo apyn PeAtioon
g am6d0omg ToL VAoV (hardware), To HEALOV T®V VTOAOYIGTOV OpileTOl KUPIMG OO TPES AAAES
KaTNYOplEG.

H npdm givon to Aoyiopko. IToAra mapadeiypata avapesa ota onoia kot to AlphaGo[19], £xouvv
amodei&el 0T peydia KEPON otV amddoon eival eQIKTd pHEc® vEmV oAyopiBuwy, dtnpdvTag TO
vAkd. H devtepn givon to ’cloud”, 1o diktvo Tmv Kévipav dedopévev tov drabétovv on-line van-
peciec. Epocov potpalovtatl tovg Tépoug Toug, 01 VITOAOYIGTEG LTOPOVY OUASIKE, VO ALENCOVY KOTA
UEYAAEC TOGOTNTES TIG OLVATOTNTEG TOVG. TEAOC, M Tpitn KT yopio PPicKETOL OTIG VEEC OPYLTEKTOVL-
Kkég vodoylot@v. Aloonueinto Tapadeiypata eivol ol TOAVTOPNVOL EXEEEPYAGTES KOl OL ENLTAYVVTES
(GPGPUs, FPGAs). AvTég o1 apylTeKTOVIKEG VTTOGTNPILOVV EMIONG TOV TAPOAANMOUO EKTELECTG EV-
ToA®V kot cuvtdoovv v High Performance Computing (HPC) area.

ZYETIKA LLE TNV TEAEVTOLO KOTYOPIO TOV OVOQEPOLLE, TOPATPOVLE OTL TO TUPAAAAO VITOAOYICTIKA
cuoTipaTo Yivovtal cuveymg To tolvmAoka. Ot attieg fpickovtat kuping otny ekBetikn avénon Tomv
dedoéveV TPog emeepyacio Kol OTIG O AMOITNTIKES EQUPLOYES (T.Y. EMOTNUES, PeEXTioTOTOIN O,
npocopolmcelg). Ta cvotiuata Tov TopeABovTog eival avikave vo eneEepyacTovy 1000 dESOUEVA
670 XPOVO OV 0 KOCUOG mTAEoV avapével. I'Y’ avtovg tovg Adyovg, o HPC cvotiuota pe péyiom
0tO00GT TOAADV TETPAKIC EKOTOUUVPI®V TPAEEMV KIVITHG DTOSIUGTOANG, £X0VV EKATOVTAOEG (1A
dec TuPNVES o1 0TToioL TPEMEL vat lvar Kool vo SOVAEHOLV ATOJOTIKE TAVTOYPOVA Kot va, Lo1palovtat
€ELTVOL TOVG VITOAOYIGTIKOVG TOVG TOPOLS. XPTGLLOTO0VV ETIONG EMTOYVVTEG DAKOV LE GUYKEKPL-
pévn Aettovpyia ko eEeAtypévec pebddovg oty amodnkevon dedopévayv, 1Icoppomio, popTiov Kol 6TV
EVOOETMIKOVOVIN. AVGTLYMG, Ol EPAPLOYES OTMG ELYOV GYESAOTEL Yio VO, EKTEAOVVTAL, OEV ATOdidOVV
TO MEYIOTO LE AVTE TO GUOTHUOTO. ZVVETMG, VYNAEG TOGOTNTEG EVEPYELNG KO YPNUATAOV YdvovTal
e€artiog ™G YoUNANG SEKTEPAIOTIKNG tKavoTNTag KGO emelepyaotr|. o va aAlGEn avth 1 Kotd-
GTOOT], Ol TPOYPOUUOATIOTEG TTPETEL VO LEAETICOVV ATOUIKE TNV OPYLTEKTOVIKT KOAOE GUGTANATOC Kot
VO TPOGOUPUOGOVV TO TPOYPULLLE TOVG LE TETOLO TPOTO MGTE VO EKUETUAAEVOVTOAL KAOE PLOVASH VALKOD
Bértiota. Mdvo to1e 1 epappoyn Ba eTdvel T péytotn duvoth puOUaTOS00T| TOL GLOTHLOTOG.

[Tépa amd v kabapn amddoon, sival avaykaio Kot 1 LEimoN TS KATAVAAMGONG EVEPYELNS OVTMV TOV
ocvotudtev. H evepyesiaxn kpion €xet BEcel Oplo. 6TIG TOGOTNTEG EVEPYELNG TOL KAOE GVOTNUA KOO
Advel. IIpoc avtd Tov 6160, 0 TPOYPAUUATICTIS EQOPLOLEL TPOYOPNUEVES TEXVIKEG TOGO VAKOD 0G0
KOl AOYIGHIKOD OV STULOVPYOVV [0, KOTAGTOOT] TOV TPENEL VAL PTACEL GE 160ppoTia peTaé&h amddo-
O1G KOl E£0IKOVOUNGNG EVEPYELOG, LLE ATOTELEC LA VO, VEAVETOL EMTALOV 1] S1OOIKAGI0 TPOGAPLOYNC.
YVUYKEVIPOVOVTOG OAO TIG EMAOYEG KOl TIG SIUOPPADCELS TTOV EVOG TPOYPUUUATIOTHS EXEL va {uyicel
Y0 VO TPOGOPUOGEL KATAAANAQ TNV EQOPLOYT TOV, VO OHOYEVES GUGTILLOL LETALOPPDVETAL TEAMK(L
0€ V0. ETEPOYEVEC, TO OO0 TTEPITAEKEL TEPIGGOTEPO TNV KATAGTCT).
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Emmléov, o1 mpoypopIaTIoTEG OPIEPMVOLY GTLOVTIKO XPOVO Y10 VO TPOGOPUOGOLY TNV EQPAPUOTT
TOVG G€ GUYKEKPIUEVO GUCTHHOTO. AVTN EIVOL L0l KUKALKT O1001KOGT0L GUAAOYNG OESOUEV®V, AVVYVD-
PLONG TEPLOY DV KMITKO TOV UTOPOLV VoL BEATIOO0VV Kol TAAL TPOGAPLLOYH AVTAV TOV TEPLOYDV [24].
Enopévacg, vt n dtadikacio eival KOmOoTIKY, YpovoPopa Kot LEPIKEG POPEC TPUKTIKE adOVATN Yol
va yivel xepokivnta.

O otoyog eivor va avtopatorondel avt 1 dtodikacio pe KOADTEPO ATOTEAECUATO O’ VT TNG
ouvtnPNTIKNG HeBddov. o vo TETVYEL LTO 1| EPEVVITIKT KOWOTNTO £XEL SLPESEL TNV JAOIKOGIOL
TPOCOPLOYNAG OTO epYaAEia avdAvong amddoonS Kot oTo epyaieios avTOHATNG Tposapproyne. Kat o
OKOONUOTKOS KOl 0 EUTOPIKOG KOGLOG, EX0VV avamTHEEL Epyalein TOV VTOGTNPILOVY KoL EV PEPEL O-
TOLLOTOTOLOVV TNV OVOyVAPLoT Kot TV Tapokolovdnon epappoydv [ 13, 43]. Eniong, 10k avapopd
Aappaver to Roofline model [65] to omoio amokoAvmTel T Oplo. ATOS0ONG oG ApYITEKTOVIKNG poli
pe 1 0éon pog epappoyng mov e&etdletor, dvovtag Lo To TPOUKTIKN ONTIKY 6TN dodkacio Tng

TPOGOPHOYNG.

Ta epyadeia, péypt TP, dev Tapdyovy ovTONOTH Vo PEATIOTO EKTEAEGIUO, avTIOETMC TTEplopilovv
TNV AEITOVPYIO TOVG GTOV YOPOKTNPICUO TEPLOYDY KMIKO Kol 68 OMAES GUUPOVAEG TTPOG TOV TPO-
YPOLUATIOTH], O 0TTO10G XEpoKivTa KAVEL KABe aAAayn GTOV KOOIKA Kol TPOXWPAEL e SOKIMES Kot
AGOT. ZVVETMG, TO, TEAELTALN YPOVIL, TTOAD EPEVVA EXEL YIVEL TAV® GTNV OTOWATOTOINGN TNG dtadika-
ol0g TPOGAPUOYNG. ZTPOUTNYIKES TTOL EYOLV YpNnoomomei, £xovv cav Kpicito onueio ™V avToOLOTN
K0l aod0TIKY avaliTNoT TOL KOADTEPOL GLUVOLUC OV TAPUUETPWOV TOV TEPIPAAAOVTOG EKTEAEGNC Y10
KkG0e epappoyn oe kdbe apyrtektoviky. Ot 10€eg TOL £X0VV avaKOAVPOEL GTOV TOPEN TNG AVTOUOTIG
TPOGUPLOYNG EYOVV ODGEL EVOUPPUVTIKE ATOTEAEGLOTO KO £YOVV OPEANGEL TOVG TPOYPOUUUATIOTES
[52, 60, 38].

‘Eva tpa@tondpo mapddetyo. moAVTOpNV®EY GUCTNUATMOY TOL ¥PNOILOTolEiTOL onpepa gival 1 Intel
Many Integrated Core Architecture (Intel MIC)[4], évog cuvene&epyaotig mov avamtdydnke and v
Intel. To mpwtéTLVIO KLKAOPOPNGE TO 2010 pe TO KWOWKO Ovopa Knights Ferry. 'Eva ypdvo apyo-
tepa 10 Knights Corner avaxowmbnke kot ard tov lovvio tov 2013 o cvvenelepyoaotng ivar otnv
devtepn yevid tov Knights Landing. I1oAd cbvtopa, pali pe ta Intel Xeon processors-based cvoth-
Loto, £YVoV To KOPLE GUGTATIKG TV VIEP-VTOAOYIGTAV. AVTh TN otiyun, o Tianhe-2(MilkyWay-2)
0 VIEP-VTOAOYI0TNG 0T0 EBvid Kévipo vep-vmoroyiotdv Guangzhou, Katéyet tnv tpdn 060 ot
nepipnun Aloto TopS00 list[15] kot meptapPdaver 32,000 Intel Xeon ES-2692 12C ota 2.200 GHz
and 48,000 Xeon Phi 31S1P, etévovtag ta 33,862.7 TFLOP/S. Qo1660, TOAAEG e@appoyég Oev Exouv
TPOCUPLOCOEL AKOLLA Y10 VOL EKUETAAAEDOVTOL TO LEYIGTO LEYEDOG TAPUAANALG OV, TOVS VYNAOHS pLb-
LOVG EVOOETIKOWVOVING KOl LETAPOPAG SESOUEVOV KOOMG EMIGNG KoL TIG SLOVOGUATIKES OVUVUTOTITEG
tov Intel Xeon Phi. "o va pTdcovpe vynAég amodocelg | avTh TV TAATEOPLA XPENLOUAGTE TOAD
npocmdfela otV TapoAAnAoToincn, oty aviivon Kot oty fertioTonoinon otpatyk®dv [33].

Apa, avalntoviog kol 0E0A0YOVTOC TV JL0dIKAGIN TPOCUPHOYNG GE v GUGTNLLO TEAEVTOING TE-
yxvoroyiag 6w o Intel Xeon Phi, ivat ciyovpa pioe ToADTIUN KOl EVOI®VT GUVEIGPOPE GTOVE TOUELG
tov HPC ka1 ¢ avtopatomompévng Tposaployng.

YovelsQpopa.

2’ 00T TNV SIAGUATIKY, ovVATTOELE VO LTOLOTOTOMUEVO EpYaAEio Yia Tov Intel Xeon Phi cuverne-
Eepyoot Paciopévo o avolutikég peBodove. O 61dyog Tov gival va amaAdEEL TOV TPOYPALLOTIOTH
oo TNV YEPOKIVITN TPOGUPLOYH TOV LETAYAWMTIOT Kol TOV TEPPAALOVTOC eKTEAESN PpioKovTog
0od0TIKG Kot BEATIOTA TN ADOT| UE TO KOADTEPO OMOTELEGLO AopuPavovTag v’ Oyn Kot TV Kabopn
omAd00T KoL TNV EVEPYELOL.

Yuvontikd, o Autotuner &yl ua offline Bdon dedopuévav pe dedopéva amddoons ard £vo GHVoOAO dlo-
QOPETIKMDV EPUPLOYDV EKTELECUEVOV GE £V GTUVOLO OO TOPAUETPOVE. AVTA T0, dedOUEVI GLAAEYO-
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oav ypnoponowdvtag to LIKWID[62], éva ehappl epyaleio yia x86 modlvmopnva nepifdriovta. To
gpyoieio pag ypnoomotet avtd to Sedopéva Yia va, Bpel GUCYETICUOVE LETAED EQOPLOYDY KoL TOPa-
péETp@v mpooappoyng wov Eetalovtat. [a va to TeTvyel avtd PBoociletor o€ pia teyviky collaborative
filtering technique[48, 35] kot otnv 10é€a ¢ Singular Value Decomposition (SVD)[50]. Etot, ot epap-
LOYEG KOl Ol TAPAUETPOL TPOCUPLOYNG TPOPAALOVTIOL GTO YDPO YOPAKTNPLOTIKMV. AVTOG gival Evog
GUVOAO YVOPICUAT®V TO OTTO10 ATOTEAOVVTAL A0 TYLES TOPAUETPOV KoLl TN PaBpmT oxéon TV eQap-
LOY®V KOl TOV TOPOUETPOV LW VTA TO YVOPICUOTH. XTr GUVEXELD, KAOE EQPOPLOYT TOV KATAPOAVEL,
EKTEAEITOL Y10 LEPIKA SLOVIGLLOT TOPAUETPOV KoL TPOPAAAETOL GTOV KATAGKEVAGUEVO YDPO YAPO-
KINPOTIKOV pe Paon 115 dikég g Pabuoroyies. Ot cvoyetioels pe Kabe yopakTnploTikd Tapdyovtol
Ue amoTéAecp, Ol Ayvooteg Pabpoloyieg va umopodv va VTOAOYIGTOVV. XT0 TEAOC, £YOVUE EVa Ye-
UATO SIAVUGLLOL LE TIG TPOYVAGCELG Y10, OAEG TIG TAPOUETPOVG, OO TO OTOI0 UTOPOVLE VO SLaAEEOVLLE
TNV KAADTEPN OV AVTICTOLYEL GE GLYKEKPLUEVO OLAVUGLO TTOPAUETP®V.

Emiong, 1o epyaieio mov avartoéape otnpilel v epapuoyn e UNXavikng uabnong kot twv duvo-
TOTNTOV TNG 6TO0 TTEdI0 TN LTOLATNG TPOGUPIOYNG Kot SVUPBAAAEL onpavTikd 6”7 avTo. [T€pa amd Tig
YPTYOPEG TPOYVAOGELS KOl TNV KOAN omddoon, 1 pébodog singular value decomposition peimvel emi-
O1G TO XDOPO TOV YPELALETAL Y10 TOV YAPOUKTNPIOUO TMV EPAPUOYDY EVOVTL TOV TOPUUETP®V, Kol £TGL
amofniedel tepdotio TANpoPopia 6E KPS YDPO.

M potid oto aroteAéopata pog AEeL 0TL, 0 Autotuner KOTOQEPVEL VO SIVEL GUVEXDS €V SIAVLGLOL
TPOCAPUOYNG TOL KaTaAapPavel meptocdTepo ToL 90% TG EKTELECT|G TOV AVTIGTOLYEL GTNV KOAVTEPT
npocappoyn. Exiong, avtd copPaivel oe Aydtepo and 8 Aemtd, mov gival o xpOVOS Yo TOV LEPIKO
YOPAKTNPIoUO TG ePappoyns. H swcova 0.1 delyvel TV amdd06m 1oL EXTLYYAVEL IO TIG TPOYVMOGELS
Yy 6 epapUOYEC.

Performance of predicted tuning configurations

0.9980
1.0
0.9715 0.9578 - 0.9487
: 0.9016
0.8
0.8
g
i
0.4
0.2
0.0
backprop lavaMD heartwall myocyte sp I

Zyqpa 0.1: Anoédoon and g tpoPrEyelc o ypovo AyoTePo omd 8 AEMTA LEPIKOD YOLPAKTNPIGLOD.

13



Hewpopotikn Hioteoppa ko Heprpaiiov

ApPLTEKTOVIKY

¥’ autn TV gpyacia ypnoyomomoape tov cvvenegepyaotn g Intel, Intel®Xeon Phi™1nc cepdg
3100 pe kmdwd ovoua Knights Corner. Ta yapaKTnploTiKd TOL (OivOVTOL TOPOKATO:

22nm péyebog emeéepyaotn

Intel Many Integrated Core (MIC) apyitektovikn

[MoAvereEepyaotig popalopevng Mviung kot tpéxet Atvovg

57, in-order, dual issue, x86 mopiveg ota 1.1GHz pe 4 vijpoto VAIKOV 0 Kabévog

6 GB GDDRS5 «0pwo uviun ota 240 GB/devteporento

32KB L1 (eviolov & dedopévmv) kai 512 KB L2 yia k66e puoikd moprva.

O\ot 1 TLUPNVEG KOl 01 EXLTNPNTEG HVAUNG GLUVOEOVTAL TAV® G€ Eva appidpopo daktuAiot (ODI) 6nwg
eatveton 6to Zynuo 0.2.

& 7/

Tyqna 0.2: O cuvene&epyaotg ot eminedo mupitiov[46].

Emiong 1o tikpoapyitektoviko d1dypapLo. Tov eneéepyaotr paivetal oto Tapakdto Xynua 0.3

Hapaperpor Iipocappoync

Ol TapAUETPOL TPOGAPUOYNG TOL YPTGILOTOTONKAY Yia TIV OTULOVPYIC TOL YDPOL ovalTNOoTG Tap-
Onkav omd emMAOYEG KOTA TNV HETAYADTTION OAAL KoLl OO TOPAUETPOVS EKTEAECTG. XTOV TOPUKAT®
nivaxa 0.1 goaivovtol cuykeTpmTIKA:

YVvoAKd, amotelobv 2,880 cuvdvacovc.
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m . Code Cache Miss
m ™ TLB Miss r
4 Threads 1 GB.I'CycI_e (21PC)
[enizy Decode ﬂ_-;__;. uCode ﬂ
3 ¥y P
g - & TLB
[ Pipe 0 [ Pipe 1 Miss -
’ I_-Iandlnr
1 1 L ¥ L2 TLB
{ VPU RF L X8T RF Scalar RF
x87 ‘ ALUO H ALU1 { L,
VPU A S
DCache Miss
Core To On-Die Interconnect

x86 specific logic < 2% of core + L2 area

Zympa 0.3: MiKpo-apyITEKTOVIKT VOG PUOIKOV TLupPHVa ToL cuveneEepyaoti[46].

Flag Arguments
-O[=n] n=2,3
-opt-prefetch[=n] n=0,2,3,4

-opt-streaming-stores [keyword] keyword=never,always
-opt-streaming-cache-evict{=n]  m=0,1,2,3

-unroll enabled/disabled
huge pages enabled/disabled
affinity [type] type=scatter,balanced
cores 19,38,57

threads per core 2,34

Mivaxog 0.1: TTapaperpot mpocappoyns.

E@appoyég Avagopag

O e@aployég Tov emAEYONoAY Y100 TOV EAEYYO Kal TNV a&LOAOYNOT] TOV GLGTHLATOG TOPUTPOVVTOL
G€ TOALEG ONUEPIVEG TEPALATIKEG EQPOPLOYEG TV NUEPDV pag. IIpoépyovtal and Tig coviteg Rodinia
kol NAS Parallel Benchmarks.

[Mopaxdto eaivovtol To YopaKTNPIoTIKG TOVG GUYKEVIPMTIKA:

Xapaxktnpiopos tov Eeappoyov og tpog to X®@po Avalntnong

Ipokeévou va dei&ovpe 6Tt o1 epapproyéc pag ennpedlovrat amd TV SIKOUOVGT TOV XDPOoL avaln-
TNOMG TV TAPAUETPYY TPOGAPLOYNGS, TIG a&lodoyolue g tpog MFlops/devt. kon PAémovpe g kdOe
L0 TOPAUETPOC EMNPEGLEL TV KATAVOUT TNG OTOS0GNE TNG.

[Mapatnpovpe 0T1, 01 EPOPHOYES EYOVV HEYOAT SUKOUOVOT GTNV OOS0GT TOVG MG TPOG KABE mapd-
UETPO. LVVETMG, 0 ¥MPOG avalNTNoNG EIVOL IKOVOTOINTIKOG KoL TANPTG, ONANOT KAOE Ui TOPAUETPOG
umopel vo ennpedletl apvnTika 1 BTt TV EKTEAECT] OGS EPAPULOYNG.
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Application Domain MFlops

LUD Linear Algebra 350,950.0
Hotspot Physics Simulation 3,144.5
Hotspot3D Physics Simulation 3,770.0
Streamcluster Data Mining 1,716.0
K-means Data Mining  63,492.0
LavaMD Molecular Dynamics  14,720.0
Heartwall Medical Imaging 175.9
Myocyte Biological Simulation 2331.2
srad vl Image Processing 103,462.0
srad_v2 Image Processing 151,200.0
Back Propagation Pattern Recognition 469.8
NN Data Mining 182.4
CFD Fluid Dynamics 157,347.4
pre-CFD Fluid Dynamics 168,371.0

Mivaxag 0.2: Epappoyéc Avagopdg and tn covita Rodinia.

Benchmark Class MFlops

BT A 168,300.0
SP A 85,000.0
LU A 119,280.0
FT B 92,050.0
MG C 155,700.0
CG B 54,700.0

IMivaxag 0.3: Egappoyég Avagopdc amd t covita NAS Parallel Benchmarks.

O Autotuner:
YnofaOpo & Yromoinon

O Autotuner £ygl 600 otddio, to offline kot to online, Ta omoia kot eme&nyodie TAPUKAT.

Offline Xtdow0

Kotd 1o offline otddio yrileTon n fdon pddnong mov Ba ypnoomrombei. Ot epappoyég mov Bo v
amotelovv TpEyovv atov Intel Xeon Phi yio kdOe duvatd didvuopa mopapéTpov TPOGaproynS. Ao
™V ekTéAESN avT, K T xpnon tov Likwid gpyaieiov, cuAAEYOLUE TIG TIHEG TOV LETPNTAOV 0TTOS0-
ong and Tovug omoiovg katackevalovpe petpikés. Avtég eivor: IPC, MFlops/sec, Bandwidth, Time,
Vectorization, Power. Me avtég Aomdv cuvtdcovpie €va csv apyeio yia kabe epapuoyn. To chvoro
OAOV TV csv apyeiov anoterel tn Pdon pabnong pog.

Online Xtdowo

Kotd 1o online 614610 yivetal ) mpdPAeyn Tov PEATIOTOL SLOVOGLOTOG TPOGUPLOYNG Y1 KAOE gl0ep-
yxouevn epoppoyn. Onwg kot oto offline otdd10, N EPAPUOYN TOV £PYETOL EKTEAEITOL OTOV GUVETE-
Eepyoaot Ko yapoktnpileTor ALA Yio TOAD AyOTEPQ S1OVOGHLOTO TOPAUETPMOV TPOGOPLOYNG A0 TO
ovvolro, Téén 1%. X1 ovvéyeia pali pe v Pdon pabnong amod to offline otddio, péom pag Kpioung
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oLVAoTNOTG TTOL opilel To oyédto Pabuoroyia pog, PTIAYVOVY TO GUVOLO EKTOIOEVOTG TOV LOVTELOL
Yy TV TPoOPAEYN TV Pabpoioyidv.

To povtélo avTd aviKEL GTIV OIKOYEVELD T®V GLOTNUATOY 6VoTNoNG (recommendation systems) Kot
ovykekpéva oty katnyopia collaborative filtering (cuvepyatikd putpapiopa). To povtéro avtod
TPOPAALEL TOVG YPNOTEG-EPAPLOYEG KOL TO OVTIKEILEVO-OLOVOGLOTO TPOCAPUOYNG GTOV 1010 YMPO
O6mov pmopovv vo. cuykpldovv. O ydpog avtodg ovopdaletat latent factors.

H popon tov povtéhov pog eivat:
Pui = o+ by + i+ pug]

To povtérho mpooapudletar pndevilovtag to TeTpaymvikd Adbog pe Kabe mapoInpnon mov Tov oi-
VOULLE:

min L = Z (Tui _M_bu_bi_quiT)Z'i_)‘lZHpu’P—'_)‘Z ZHQZ’H2+)‘SZZ)12L+)\4ZZ712

* *b*
P*,q*, ek -

H mopoandveo cvvdptnon undevileton pe v yprion g pebodov Stochastic Gradient Descent (mpo-
o£YYloN e OTOYOOTIKY KAIoN) Kot eV €€l AVOALTIKTY AVoT).

Ipaeucd, to 000 oTadio QOivovTol GTO TOPAKATO CGYLOTA:

Offline Stage

Likwid

Learning Base

Collection of
Performance
Counters

Applications 2,880
confs

e Processed on the Native Execution on Process of theraw |
L A A 4 3 Intel Xeon the coprocessor data C8V files

Xympa 0.5: Offline otddio.
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Applications

000 —

Processed on the
Intel Xeon

4-20
confs

Online Stage

Likwid

Known Ratings to
train our model

—_—

Collection of
Performance
Counters

lg—

Known Ratings for
every conf
o

Yympa 0.6: Online otddio.

Process of the raw

data — CSV file
— =
Critical
Function —
Predicted
Tuning Configuration
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Amoteléopata

IMopaxdto mopovcidlovpe To amoTeléouato yio TV Kpicwun cuvaptmon MFlops/sec/Watt. T to
AGBoc ¢ TPOPAEYNG XPTOLOTOI0VUE TO PLLIKO péco TeTpaymvikd Aabog (RMSE).

Apyika pénet vo Ppodpe to péyebog Tov latent factor ydpov o omoiog yapaxtnpilel ETapPKMOS TG
EPAPUOYEG KO TO SILVOCHOTO TPOGAPUOYNG. XTO Zyfua paivetot 6Tt o péyebog givar 12, kabmg and
exel kKo émerta dev Eyovpe Kamota peiwoet tov RMSE.

Training size 10% without feedback

1.4

1.2

1.0 i: ——
m
Y 08 —— ———
E _\-_"'l-—___

0.6

04 e —

0.2

‘4 Training size 10% with feedback

1.2

1.0 T —
m
@ 08 = - —

0.6

0.4 T

02

2 4 6 ] 10 12 14
Number of features
— hotspot3D — myocyte sp
lavaMD —_— f L

Zyiqpa 0.7: RMSE ywo petafintd apifpd xopakmmpiotik®dv e 1| YOpIG ETOVATPOPOdOTNaT.

21N GUVEXELD TTPEMEL VO OOVE TG CUUTEPLPEPETAL TO LOVTELD avdAoya pe To pEyeBog Tov LePIKOV
YOPOKTNPIoUOV KAOE e15epyOUeVNG epapuoyns. Etot éxovpie To Tapakdto oyfuo:

[Mopatnpovpue 411 yio KaOe péyebog Exovpe mapondve omd 90% anddoon g Tpdc TV KAAVTEPT EKTE-
Aeon. [To ovuykekpuéva UTopov e va dOVLLE TIG AmOOOGEIC GUYKPLTIKA LIE TNV KAADTEPT] EKTELECT] KOl
v Pactkn.

Xolntnon

O Autotuner amodeikvieTal 0Tl lval AmOTEAESHOTIKOG 6 TOAAG TepiBdAlovta. e mowkileg Paoelc
amo TS omoieg pabaivel, o dapopetikég cuvaptnoels Pabuoroyiag kot péyebog pabnong. Iavra
Opm¢ Oa Tpémel va EIPAOTE TPOCEKTIKOL e TNV avABEsT TILADV 5T 6TOYXACTIKY TpocEyyion (SGD),
ONAad1| oToLG TAPAYOVTEG LABNoNG Kal pHOLoN g doTE vo amo@edyeTot To overfitting Twv 0edoUEVOV
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Comparison of Predicted Ratings

- 0.94550.9454 0948109429 0,9517.0-2651 0949508432 0.95860,9558 09547 0435
09049

08

Rating Normalized
=4
>

o
=

02

B no feedback
[0 feedback

00
0.1% 02% 05% 1.0% 20% 50% 10.0%

Training Sizes for the Incoming Apps

Xypa 0.8: Méco RMSE vyia 12 yapaktnpiotikd kot perafAntd péyebog ekmaidevong pe N xopig
EMAVOTPOPOSOTNOM).

1 Comparison of actual, predicted and base performance

14

12

10
actual
predicted 2%
predicted 5%
predicted 10%
base

0 [ -

hotspot3D lavaMD myocyte I

=]

Rating

E [s2]

Hon

Zypa 0.9: X0ykpion amddoong yia 12 yapaktnpiotikd, 2%, 5% and 10% yvootég Babporoyieg, e
N YOPIG ETOVUTPOPOSOTNON.

uabnong kot ToauTtodYPove. Vo, GuyKAivel o amodektég TIES. To TpoPAeTOueEVO SOVOGLLOTO TOPOUE-
Tpev Eemepvovv TNV omddoon TG Pacikng pHOULIONG TV EQPOPLOYDV Kol JELYVOLV AETTOUEPT TPO-
capUOYN Y10, KAOE Eappoy. AVTo eival TOAD GNUAVTIKO YOPOKTNPIOTIKO KaODE gival ToAD 606KOA0
Yo VOV TPOYPOLOTIOTY] VO TPOCOPUMCEL PUE AETTOUEPELD [t EPOPHOYT. XPedleTon Vo EKTEAECEL
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avAALGT) 0TOS0ONG Y10 KAOE LOPPT] TOL TPOYPAUUATOG DGTE VO, BPEL Ta KPIGUO OTUEIN GTOV KOJIKA
mov ypetdlovian Pertimon. AvEdvel TV Amdd00T GTASIAKA Kot O)L ALECO.

Emiong, o Autotuner givar oyetikd ypnyopog poAlg yivetr online. To offline pépog tov eivor to mo
xPovoPOpo aALA TO TAEOVEKTN LA, £YKELTOL OTL YpeldleTar va yivel Ldvo o opd. Av 1 faon pnabnong
nepriapPavet 14 epappoyég, n kabepio pe péco xpovo extéreong 15 devteporenta, ToTe Yo 2,880 S10-
VOGUOTO TOPAUETPOV Kot 4 eKTEAETELS TO KaBEVH Taipvoupe Eva aBpotcpa 2,419,200 devteporéntmv
N 672 opov. And ekel Kot £MELTA, Y10 KAOE EIGEPYOUEVT] EQOPUOYN YPEWLOLOCTE UEPIKO YOPOKTNPL-
opd mve 610 0.1%-1% tov CLVOLOL TV JSAVLGUATOV TOPAUETP®Y. AVTO TO Bpa xpetdleton 4-40
Aemtd 1O TWOAD KoL 0 Autotuner emotpéPel o Ayotepo amd 30 dgvtepdrenta TNV TPOYVMOOT] Y10 TO
dlavucpa Tapapétpov. Avaroya pe To enineda amddoong Tov YaYVOLLE, To péyebog ndbnong moiki-
AEL KOl GUVETMG KoL 0 YpOVOG oL ypelaletar To online Tppa. [Tdvia wotodco, Eemepvaype o 90% g
EKTEAEOTG TTOV AVTIGTOLYEL GTO KAAVTEPO dtdvuG o TapapéTpwy. Eniong, pmopovpe va {nTioovpie Kot
™V TPOoPAETOUEVT] TOS0GT Y10 OTOLUONTOTE SLAVUCLN TOPUAUETPOV.

TENoG, oV YPNGLOTOMGOVE ETUVATPOPOOITNON TEPIUEVOVLE VO TAPOLE PEATIOUEVEG TPOPAEYELC
KkaOdG T0 povtéro pobaivel meplocdTEPO OO KAOE E1GEPYOLEVT] EPAPLOYT. T TEPAUATA [LOG, OEV
pocéEape Kamowo peydAn mpdodo Kabde 10 TANB0C TV EQUPROYDV TOL AEYEQLE NTAV PIKPO Kot
1N enidpaon dev mpoAafe vo dladobel. Oewpolpe OLmG OTL eivat Eva Aoykd emtyeipnpa ovtd Kot Oa
npénel vo. Bewpeital amodekTo.

O mivakag 0.4 delyvel ta péca 10600t amdd0omg TV TPoPAEYE®V OV EAEYONGAV GTa TEWPAUATA
oG

Training size Best Rating Base Rating

0.1% 90.06% 131.42%
0.2% 93.39% 136.28%
0.5% 95.06% 138.71%
1% 94.53% 137.94%
2% 95.43% 139.25%
5% 95.47% 139.31%
10% 95.85% 139.87%

Mivakog 0.4: Méoa T0606TA AmO306MG TV TPOPAETOUEVOV SOVUGUATOV TOPAUETPOV MG TPOG TNV
BéATiotn Kot Ty Pooikr| Pabporoyia.

INa va cvykpivovpe pe dAla epyaireia, o Autotuner mapovcstalel TOAAG TAEOVEKTALATA. APYIKA, Ol
odnyoi yw tn yepokivn mpocappoyn dev givar kovoi va odnynoovv otn BEATIOT Sopdppmon
v K6Oe ouykekpyévn epapuoyn. Ilpoteivouv yevikég adliayéc kot mepBAAlovTa EKTELEOTG Yo TV
TAELOYNPlo TOV EQAPUOYDV. Ag0TEPOV, 0 Autotuner €ival IKOVOG VoL ETIGTPEYEL TO KAADTEPO TPOPAe-
TOLLEVO SIAVLGLLOL TAPOUETPOV OVALESO GE £Va TOAD LEYAAO YMDPO avalTNoNG G€ GUVIOUO YPOVIKO
oo, EEMEPVAOVTUG OE ATOS0GT] TO, EMAVOANTTIKA epyoleio avalnnong. Av kol to teletaio €y-
yoovtol 0Tt 8o eTGTPEYOLV TO KAAVTEPO O1EVVCLA, 0 Autotuner EMGTPEPEL SIAVOGHOTO TTOL PTAVOLY
o€ peyaiotepa emineda g 90% g anddoong Tov KaAHTEPOL SLOVOGLATOG TPOCUPLOYNS.

Qg epyaleio, o Autotuner avomTOYONKE Y100 TV TPOGOPLOYN KOt SLOUOPP®CT) EPOPLOYDV TOV EKTE-
Aovvtar puotkd méve otov Intel Xeon Phi Coprocessor. Opmg, 1 mAat@oppa dev anotedel Op1o Kot oV
TPOGOPLOCOVIE TNV EKTELEGT] KOL TOV LEPIKO YOPAKTNPICUO Y10 L0 SIUPOPETIKY OPYITEKTOVIKN TO
EPYOAEID LOG HOopEl TOAD VKON, VO TPOCAPHOCTEL KOt Vo, SOVAEYEL OTOSOTIKA Y10 TO VEO GUGTILOL.
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IIpotdoeig Yo "Epgvva

O ovykekpiévog Autotuner pmopei va eelyfel o€ moArég katevBivoeis. [pota, pmopei va mpootedel
UNYOVIGHOS doTE Vo a&lodoyel emions Kot Topamdve TG oG EKTEAECTG TAV®D GTOV GUVEREEEPYUCTY].
Av16 onuaivel 6t Ba givar tkavog va petpdet Ty mapépufaon peta&d TV EPAPUOYOV TOL EKTEAOVV-
ToL Ko va, Tig avabécel og EEva PeTo&h TOVG GUVOAD TUPNVAYV, KAT® OO TEPIOPICHOVG ATOS00Tg
Kat evépyslag. Emiong, o host, Intel Xeon Processor, pmopel eniong Oa yiver pépog g e&icmong kot
va 0AAGEEL | TpoGEyyion TV exTédeong. To kvplo exteléaipo mepifdriov aAldlel 6° awtd Tov host
Kol 0 cuveneEepyaoTtng ypnoonoteitat yuo offloading vwOAOYIGTIKA OTOUTNTIKOV TEPLOYDV KOSIKO.
'Etot, o Autotuner mpénet va. TopakoAovOel TNV EKTEAEST) TNG EPAPUOYNG KOl OTOV EMEEEPYACTN KO
GTOV CLUVETEEEPYOOTH KOl VO EEEPEVVIGEL TIG TOPAUETPOVS TPOGUPLOYNG LE OTOYO VO WPEANOEl amd
™V apLTeKTOVIKN Tov. Ontdte, 0 Autotuner PTOPEL VO OMOKTNGEL £VOL TTLO YEVIKO YOPOKTIPO VITOGT-
pilovtag StopopeTiké apyLtekToVIKES Kot LeBddovg ektédeong, enekteivovtog o€ GPUs kot og dAleC
TOALTOPNVOVG EMEEEPYOOTEG.

H ypnowonoinon e unyavikng nanong otnv autdlotn Tpocapoyn eivot pio oAy voimvn Tpo-
oéyylon kot omodei&ape OTL Eivol EQPIKTO VO ETITOYOVE GTOVONIN ATOTEAEGLLOTO.
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Chapter 1

Introduction

It is evident that after almost five decades, the end of Moore’s law is in sight. Making transistors
smaller no longer guarantees that they will be faster, power efficient, reliable and cheaper. However,
this does not mean progress in computing has reached its limit, but the nature of that progress is
altered. So, in parallel with the now slower improvement of raw hardware performance, the future of
computing will be primarily defined by improvements in three other areas.

The first one is software. Many examples and very recently AlphaGo[19], have demonstrated that huge
performance gains can be achieved through new algorithms, persevering the current hardware. The
second is the “’cloud”, the networks of data centers that deliver on-line services. By sharing their re-
sources, existing computers can greatly add to their capabilities. Lastly, the third area lies in new com-
puting architectures. Examples are multi- and many-core processors, accelerators(GPGPUs,FPGAs).
These new architectures support also parallelism and they form the High Performance Computing(HPC)
area.

Focusing on the latter, we note that parallel computer systems are getting increasingly complex. The
reasons mainly lie in the exponential upsurge of data to interpret and the far more demanding appli-
cations (e.g. sciences, optimization, simulations). Systems of the past are incapable of processing that
data quickly as the world demands. For these reasons, HPC systems today with a peak performance
of several petaflops have hundreds of thousands of cores that have to be able to work together and
use their resources efficiently. They consist of hardware units that accelerate a specific operation and
they use evolved ideas in data storage, load balancing and intercommunication. Unfortunately, appli-
cations as they were used to run, do not deliver the maximum performance when they are ported on
these systems. As a consequence, high amount of energy and money are being lost because of the low
processor utilization. To reverse that state, programmers need to understood their machine’s unique
architecture and tune their program in a way that exploits every hardware unit optimally. Only then
their program will get the maximum capable throughput.

Besides performance, there is a need to reduce power consumption of those systems. The energy crisis
sets limitations to the amounts of power every system consumes. Towards that goal, a programmer
applies advanced hardware and software techniques (e.g. GPUs, Dynamic Voltage and Frequency
Scaling) which create a trade-off between performance and power saving, thus increasing the difficulty
of the tuning process. By assembling all the choices and the configurations that a programmer has to
weight in order to tune effectively his application, a homogeneous system transforms eventually into
a heterogeneous one, which complicates programming tasks.

However, the tuning process is not at all easy. Application developers are investing significant time to
tune their codes for the current and emerging systems. This tuning can be described as a cyclic process
of gathering data, identifying code regions that can be improved, and tuning those code regions[24].
Alas, this task is toilsome, time-consuming and sometimes practically forbidden to be carried out
manually.

The goal is to automate that task and outperform the human tuning. To accomplish that the research
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community has divided the tuning process into two blocks, performance analysis tools and perfor-
mance autotuning tools. Both the academic and the commercial world have developed tools that
support and partially automate the identification and monitoring of applications[13, 43]. Moreover,
special reference receives the Roofline model[65] which exposes the performance ceilings of an ar-
chitecture along with the position of the application under evaluation, thus providing more accurate
guidance in the tuning procedure.

The tools, until now, do not produce automatically an optimized executable, on the contrary they limit
their operation to characterizations of code regions and simple suggestions to the developer, who man-
ually makes any changes and repeats the tuning phase. As a result much research has been dedicated
during the latest years to automate the tuning phase. Strategies that are employed, have as critical point
to automatically and efficiently search for the best combination of parameter configurations of the ex-
ecution environment for each particular application on a specific architecture. The ideas that have
emerged in the area of automatic tuning have provided encouraging results and have highly benefited
application programmers [52, 60, 38].

A leading example of manycore systems that is used today is Intel Many Integrated Core Architec-
ture (Intel MIC)[4], a coprocessor developed by Intel. The first prototype was launched in 2010 with
the code name Knights Ferry. A year later the Knights Corner product was announced and from
June 2013 the coprocessor is in its second generation Knights Landing. Very soon, along with Intel
Xeon processors-based systems, they became the primary components of supercomputers. Currently,
Tianhe-2(MilkyWay-2) the supercomputer at National Supercomputer Center in Guangzhou, which
holds the first place in the Top500 list[15], is composed of 32,000 Intel Xeon E5-2692 12C at 2.200
GHz and 48,000 Xeon Phi 31S1P, reaching 33,862.7 TFLOP/S. However, many applications have not
yet been structured to take advantage of the full magnitude of parallelism, the high interconnection and
bandwidth rates and the vectorization capabilities of the Intel Xeon Phi. Achieving high performance
with that platform still needs lot of effort on parallelization, analysis and optimization strategies[33].

Hence, investigating and evaluating tuning on a state of the art system, such as Intel Xeon Phi, is
certainly a very valuable and a promising contribution in the areas of HPC and auto-tuning.
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1.1 Contribution

In this thesis, we develop an auto-tuning framework for Intel Xeon Phi co-processors based on analyt-
ical methods. Its purpose is to relieve the application developer from configuring the compiler and the
execution environment by efficiently and optimally finding the solution that delivers the best outcome
in respect of performance and power.

Shortly, the Autotuner has an offline database of performance data from a set of diverse applica-
tions executed on a set of configurations. These data were collected using LIKWID[62], a lightweight
performance-oriented tool suite for x86 multicore environments. The framework uses these data to
find correlations between the applications and the configurations that are being examined. To achieve
this it uses a collaborative filtering technique[48, 35] that exploits the idea behind Singular Value De-
composition (SVD)[50]. Hence, applications and configurations are mapped to a feature space. That
is a set of attributes, which consists of some configurations, and the scalar relation of the applications
and the configurations to those attributes. Then each new application that arrives, is minimally profiled
to a couple configurations and then it is projected to the constructed feature space, based on its ratings
for the known configurations. Correlations with each feature are produced and consequently, its un-
known ratings can be calculated. In the end, we have a fully populated vector with predicted ratings
for all the configurations, from which we are able to choose the best predicted rating that corresponds
to a specific configuration.

In addition, the auto-tuning framework we developed substantiates the employment of machine learn-
ing techniques and the utilization of their capabilities in the scarce field of autotuners and contributes
significantly to it. Besides the fast predictions and the good performance, singular value decomposition
also reduces the space needed for the characterization of the applications against the configurations,
thus storing huge info in small space.

To have a glance at our results, the Aufotuner manages to constantly report a tuning configuration
that achieves more than 90% of the performance that corresponds to the best execution. In addition,
that happens in less than 8 minutes, which is the time for the partial profiling of the application over a
couple tuning configurations. Figure 1.1 shows the performance achieved from the predicted config-
urations for 6 applications.
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Figure 1.1: Performance achieved from predicted configurations in less than 8 minutes profiling.

1.2 Thesis Structure

The thesis is organized as follows:

Chapter 2

We describe performance analysis and tuning tools along with worth noting examples. In addition
some related auto-tuners and their field of application. Lastly, we point out the main differences be-
tween our auto-tuning framework and the rest of the bibliography.

Chapter 3

We describe the system we used, Intel Xeon Phi and the application programming interface (API).
Furthermore we present the Roofline model [reference] for the Intel Xeon Phi. Lastly, we define our
tuning exploration space and we describe the applications used in the evaluation.

Chapter 4

We present meticulously the strategy and the theory behind the Autotuner and its building blocks.
How we extract information while executing an application and how we apply collaborative filtering
for our recommendation system.
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Chapter 5

We demonstrate the experimental results and the efficiency of the Autotuner. We perform an scrupu-
lous evaluation with many varying parameters.

Chapter 6

We briefly conclude and refer to future work.

Appendix A

User manual and source code for the set up of the Autotuner framework.
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Chapter 2

Related Work

2.1 Performance Analysis

Performance analysis tools support the programmer in gathering execution data of an application and
identifying code regions that can be improved. Overall, they monitor a running application. Perfor-
mance data are both summarized and stored as profile data or all details are stored in trace files.

State of the art performance analysis tools fall into two major classes depending on their monitoring
approach:

e profiling tools

e and tracing tools

Profiling tools summarize performance data for the overall execution and provide information such
as the execution time for code regions, number of cache misses, time spent in MPI routines, and
synchronization overhead for OpenMP synchronization constructs.

Tracing tools provide information about individual events, generate typically huge trace files and
provide means to visually analyze those data to identify bottlenecks in the execution.

Representatives for these two classes are Gprof[3], OmpP[36], Vampir[17], PAPI[26], Likwid[62]
and Intel® VTune™Amplifier[43].

2.1.1 Gprof

Gprof is the GNU Profiler tool. It provides a flat profile and a call graph profile for the program’s
functions. Instrumentation code is automatically inserted into the code during compilation, to gather
caller-function data. The flat profile shows how much time the program spent in each function and
how many times that function was called. The call graph shows for each function, which functions
called it, which other functions it called, and how many times. There is also an estimate of how much
time was spent in the subroutines of each function. Lastly there is the annotated source listing which
is a copy of the program’s source code, labeled with the number of times each line of the program
was executed. Yet, Gprof cannot measure time spent in kernel mode (syscalls, waiting for CPU or I/O
waiting) and it is not thread-safe. Typically it only profiles the main thread.
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2.1.2 OmpP

OmpP is a profiling tool specifically for OpenMP developed at TUM and the University of Tennessee.
It is based on instrumentation with Opari, while it supports the measurement of hardware performance
counters using PAPI. It is capable to expose productivity features such as overhead analysis and detec-
tion of common inefficiency situations and determines certain overhead categories of parallel regions.

2.1.3 Vampir

Vampir is a commercial trace-based performance analysis tool for MPI, from Technische Universitét
Dresden. It provides a powerful visualization of traces and scales to thousands of processors based on
a parallel visualization server. It relies on the MPI profiling interface that allows the interception and
replacement of MPI routines by simply re-linking the user-application with the tracing or profiling
library The tool is well-proven and widely used in the high performance computing community for
many years.

2.1.4 PAPI

The Performance API (PAPI) project specifies a standard application programming interface for ac-
cessing hardware performance counters available on most modern microprocessors. Developed at the
University of Tennessee, it provides two interfaces to the underlying counter hardware; a simple, high
level interface for the acquisition of simple measurements and a fully programmable, low level ,inter-
face directed towards users with more sophisticated needs. In addition, it provides portability across
different platforms. It can be used both as a standalone tool and as lower layer of 3™ party tools (ompP,
Vampir etc.)

2.1.5 Intel® VTune™Amplifier

Intel® VTune™Amplifier is the commercial performance analysis tool of Intel. It provides insight into
CPU and GPU performance, threading performance and scalability, bandwidth, caching, hardware
event sampling etc. In addition, it provides detailed data for each OpenMP region highlights tuning
opportunities.

2.1.6 Likwid

Likwid (Like I knew What I Am Doing) developed at University of Erlangen-Nuremberg, is a set of
command-line utilities that addresses four key problems: Probing the thread and cache topology of
a shared-memory node, enforcing thread-core affinity on a program, measuring performance counter
metrics, and toggling hardware prefetchers. An API for using the performance counting features from
user code is also included.

To the previous list have been added lately PA tools that automate the analysis and improve the scal-
ability of the tools. In addition, automation of the analysis facilitates a lot the application developer’s
task.

These tools are based on the APART Specification Language, a formalization of the performance
problems and the data required to detect them, with aim of supporting automatic performance analysis
for a variety of programming paradigms and architectures.

Some are:
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2.1.7 Paradyn

Paradyn[11] is a performance measurement tool for parallel and distributed programs from University
of Wisconsin, and it was the first automatic online analysis tool. It is based on a dynamic notion of
performance instrumentation and measurement. Unmodified executable files are placed into execution
and then performance instrumentation is inserted into the application program and modified during
execution. The instrumentation is controlled by the Performance Consultant module, that automati-
cally directs the placement of instrumentation. The Performance Consultant has a well-defined notion
of performance bottlenecks and program structure, so that it can associate bottlenecks with specific
causes and specific parts of a program.

2.1.8 SCALASCA

SCALASCAJ13] is an automatic performance analysis tool developed at the German Research School
on Simulation Sciences, the Technische Universitidt Darmstadt and Forschungszentrum Jiilich. It is
based on performance profiles as well as on traces. It supports the performance optimization of par-
allel programs by measuring and analyzing their runtime behavior. The analysis identifies potential
performance bottlenecks - in particular those concerning communication and synchronization - and
offers guidance in exploring their causes.

2.1.9 Periscope

Periscope[39] is an automatic performance analysis tool for highly parallel applications written in
MPI and/or OpenMP developed at Technische Universitdt Miinchen. Unique to Periscope is that it
is an online tool and it works in a distributed fashion. This means that the analysis is done while
the application is executing (online) and by a set of analysis agents, each searching for performance
problems in a subset of the application’s processes (distributed). The properties found by Periscope
point to code regions that might benefit from further tuning.

Many more tools have been developed over the years. We mentioned some examples with particular
interest.

2.2 Performance Autotuning

The core of the tuning process is the search for the optimal combination of code transformations and
parameter settings of the execution environment that satisfy a specific goal. This creates an enormous
search space which further complicates the tuning task. Thus, automation of that step is more than
essential. Much research has been conducted on that matter and as a result many different ideas have
been published. These can be grouped into four categories:

e self-tuning libraries for linear algebra and signal processing like ATLAS, FFTW, OSKI, FEniCS
and SPIRAL;

e tools that automatically analyze alternative compiler optimizations and search for their optimal
combination;

e autotuners that search a space of application-level parameters that are believed to impact the
performance of an application;

e frameworks that try to combine ideas from all the other groups.
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2.2.1 Self-Tuning libraries

The Automatically Tuned Linear Algebra Software[1] (ATLAS) supports the developers in applying
empirical techniques in order to provide portable performance to numerical programs. It automati-
cally generates and optimizes the popular Basic Linear Algebra Subroutines (BLAS) kernels for the
currently used architecture.

Similarly, FFTW[34] is a library for producing efficient signal processing kernels on different archi-
tectures without modification.

OSKI[9] is a collection of low-level C primitives that provide automatically tuned computational
kernels on sparse matrices, for use in solver libraries and applications.

The FEniCS Project[20] is a collaborative project for the development of innovative concepts and tools
for automated scientific computing, with a particular focus on the solution of differential equations by
finite element methods.

Divergent from the previous, SPIRAL[56] is a program generation system (software that generates
other software) for linear transforms and an increasing list of other mathematical functions. The
goal of Spiral is to automate the development and porting of performance libraries producing high-
performance tuned signal processing kernels.

2.2.2 Compiler optimizations search

This approach is based on the need for more general and application independent auto-tuning. Hence,
the goal is to define the right compiler optimization parameters on any platform. Such tools are divided
into two categories, depending on their strategy.

Iterative search tools iteratively enable certain optimization parameters and run the compiled pro-
gram while monitoring its execution. Following, based on the outcome, they decide on the new
tuning combination. Due to the huge search space, they are relatively slow. In order to tackle
that drawback some algorithms have been built that prune the search space.

Triantafyllis et al[63] as well as Haneda et al[41] enhance that idea by employing heuristics and
statistic methods achieving remarkable results.

Machine Learning tools use knowledge about the program’s behavior and machine learning tech-
niques (e.g. linear regression, support vector machines) to select the optimal combination of
optimization parameters. This approach is based on an automatically build per-system model
which maps performance counters to good optimization options. This model can then be used
with different applications to guide their tuning. Current research work is also targeting the
creation of a self-optimizing compiler that automatically learns the best optimization heuristics
based on the behavior of the underlying platform, as the work of Fursin et al[37] indicates. In
general, machine learning tools explore a much larger space and faster comparing with iterative
search tools.

Ganapathi et al[38], Bergstra et al[25], Leather et al[49] and Cavazos et al[27] are some who
have experimented with machine learning techniques in auto-tuning with auspicious results.

2.2.3 Application parameters search

Somehow more specific, this approach evaluates application’s behavior by exploring its parameters
and implementation. By parameters we refer to global loop transformations (i.e. blocking factor, tiling,
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loop unroll, etc) and by implementation we refer to which algorithms are being used. Thus, this tech-
nique requires in advance some info regarding the application and which parameters should be tuned,
although it is able to get some generality regarding applications with common functions such as matrix
multiplications.

Tools in this category are also divided into two groups. 1. Iterative search tools 2. and Machine learning
tools.

The Intel Software Autotuning tool (ISAT)[51] is an example of iterative search tool which explores
an application’s parameter space which is defined by the user. Yet, it is a time consuming task.

The Active Harmony system[61] is a runtime parameter optimization tool that helps focus on the
application-dependent parameters that are performance critical. The system tries to improve perfor-
mance during a single execution based on the observed historical performance data. It can be used to
tune parameters such as the size of a read-ahead buffer or what algorithm is being used (e.g., heap sort
vs. quick sort).

Focusing on the algorithmic autotuning, Ansel et al[22] developed PetaBricks a new implicitly parallel
programming language for high performance computing. Programs written in PetaBricks can naturally
describe multiple algorithms for solving a problem and how they can be fit together. This information
is used by the PetaBricks compiler and runtime to create and autotune an optimized hybrid algo-
rithm. The PetaBricks system also optimizes and autotunes parameters relating to data distribution,
parallelization, iteration, and accuracy. The knowledge of algorithmic choice allows the PetaBricks
compiler to automatically parallelize programs using the algorithms with the most parallelism.

A different approach followed by Nelson et al[55], interacts with the programmer to get high-level
models of the impact of parameter values. These models are then used by the system to guide the search
for optimization parameters. This approach is called model-guided empirical optimization where mod-
els and empirical techniques are used in a hybrid approach.

Using a totally different method from everything else MATE (Monitoring, Analysis and Tuning
Environment)[53] is an online tuning environment for MPI parallel applications developed by the
Universidad Autonoma de Barcelona. The fundamental idea is that dynamic analysis and online mod-
ifications adapt the application behavior to changing conditions in the execution environment or in
the application itself. MATE automatically instruments at runtime the running application in order
to gather information about the applications behavior. The analysis phase receives events, searches
for bottlenecks by applying a performance model and determines solutions for overcoming such per-
formance bottlenecks. Finally, the application is dynamically tuned by setting appropriate runtime
parameters. All these steps are performed automatically and continuously during application execu-
tion by using the technique called dynamic instrumentation provided by the Dyninst library. MATE
was designed and tested for cluster and grid environments.

2.2.4 Compiler optimizations & Application parameters search

The last category mixes ideas and strategies from both the last two, achieving very positive results.
Some solutions are problem targeted, meaning that they are implemented for specific applications and
some others are more general as they tackle a bigger and more diverse set of applications. Proportion-
ally, their complexity is increasing.

Many autotuning methods have been developed focusing on signal processing applications, matrix
vector multiplication and stencil computations. They take into account both application’s and sys-
tem’s environment parameters. Contributions to this approach come from S. Williams[66] who im-
plements autotuners for two important scientific kernels, Lattice Boltzmann Magnetohydrodynamics
(LBMHD) and sparse matrix-vector multiplication (SpMV). In an automated fashion, these autotuners
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explore the optimization space for the particular computational kernels on an extremely wide range
of architectures. In doing so, it is determined the best combination of algorithm, implementation, and
data structure for the combination of architecture and input data.

As stencil computations are difficult to be assembled into a library because they have a large va-
riety and diverse areas of applications in the heart of many structured grid codes, some autotuning
approaches[31, 47, 30] have been proposed that substantiate the enormous promise for architectural
efficiency, programmer productivity, performance portability, and algorithmic adaptability on exist-
ing and emerging multicore systems.

General autotuners need more information about each application they examine, and for that reason
a performance tool is also needed to reckon the bottlenecks and the critical areas that will deliver
more performance by optimization. Popular examples are Parallel Active Harmony, the Autopilot
framework and the AutoTune project.

The Parallel Active Harmony[60] is a combination of the Harmony system and the CHiLL[29] com-
piler framework. It is an autotuner for scientific codes that applies a search-based autotuning approach.
While monitoring the program performance, the system investigates multiple dynamically generated
versions of the detected hot loop nests. The performance of these code segments is then evaluated in
parallel on the target architecture and the results are processed by a parallel search algorithm. The best
candidate is integrated into the application.

The Autopilot[57] is an integrated toolkit for performance monitoring and dynamical tuning of het-
erogeneous computational grids based on closed loop control. It uses distributed sensors to extract
qualitative and quantitative performance data from the executing applications. This data is processed
by distributed actuators and the preliminary performance benchmark is reported to the application
developer.

AutoTune project[52] extends Periscope with plugins for performance and energy efficiency tuning,
and constitutes a part of the Periscope Tuning Framework (PTF)[39]. PTF supports tuning of appli-
cations at design time. The most important novelty of PTF is the close integration of performance
analysis and tuning. It enables the plugins to gather detailed performance information during the eval-
uation of tuning scenarios to shrink the search space and to increase the efficiency of the tuning plugins.
The performance analysis determines information about the execution of an application in the form
of performance properties. The HPC tuning plugins that implemet PTF are: Compliler Flags Selec-
tion Tuning, MPI Tuning, Energy Tuning, Tuning Master Worker Application and Tuning Pipeline
Applications.

An ongoing tuning project is X-TUNE][ 18] which evaluates ideas to refine the search space and search
approach for autotuning. Its goal is to seamlessly integrate programmer-directed and compiler-directed
auto-tuning, so that a programmer and the compiler system can work collaboratively to tune a code,
unlike previous systems that place the entire tuning burden on either programmer or compiler.

Readex project[12] is another current project which aims to develop a tools-aided methodology for
dynamic autotuning for performance and energy efficiency. The project brings together experts from
two ends of the compute spectrum: the system scenario methodology[40] from the embedded systems
domain as well as the High Performance Computing community with the Periscope Tuning Frame-
work (PTF).

2.3 Autotuners tested on Intel Xeon Phi

Many researchers have been experimenting on the coprocessor developed by Intel to establish a work-
ing and useful autotuner. Intel Xeon Phi coprocessor is interesting among the HPC community because
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of its simple programming model and its highly parallel architecture. Hence, there is a trend to derive
its maximum computational power through fine automatic tuning.

Wai Teng Tang et al[59] implemented sparse matrix vector multiplication (SpMV), a popular kernel
among many HPC applications that use scale-free sparse matrices (e.g. fluid dynamics, social net-
work analysis and data mining), on the Intel Xeon Phi Architecture and optimized its performance.
Their kernel makes use of a vector format that is designed for efficient vector processing and load bal-
ancing. Furthermore, they employed a 2D jagged partitioning method together with tiling in order to
improve the cache locality and reduce the overhead of expensive gather and scatter operations. They
also employed efficient prefix sum computations using SIMD and masked operations that are spe-
cially supported by the Xeon Phi hardware. The optimal panel number in the 2D jagged partitioning
method varies for different matrices due to their differences in non-zero distribution, hence a tuning
tool was developed. Their experiments indicated that the SpMV implementation achieves an aver-
age 3x speedup over Intel MKL for scale-free matrices, and the performance tuning method achieves
within 10 % of the optimal configuration.

Williams et al[64] explored the optimization of geometric multigrid (MG) - one of the most important
algorithms for computational scientists - on a variety of leading multi- and manycore architectural
designs, including Intel Xeon Phi. They optimized and analyzed all the required components within an
entire multigrid V-cycle using a variable coefficient, Red-Black, Gauss-Seidel (GSRB) relaxation on
these advanced platforms. They also implemented a number of effective optimizations geared toward
bandwidth-constrained, wide-SIMD, manycore architectures including the application of wavefront
to variable-coefficient, Gauss-Seidel, Red-Black (GSRB), SIMDization within the GSRB relaxation,
and intelligent communication-avoiding techniques that reduce DRAM traffic. They also explored
message aggregation, residual restriction fusion, nested parallelism, as well as CPUand KNC-specific
tuning strategies. Overall results showed a significant performance improvement of up to 3.8x on
the Intel Xeon Phi compared with the parallel reference implementation, by combining autotuned
threading, wavefront, hand-tuned prefetching, SIMD vectorization, array padding and the use of 2MB

pages.

Heirman et al[42] extent ClusteR - aware Undersubscribed Scheduling of Threads (CRUST), a varia-
tion on dynamic concurrency throttling (DCT) specialized for clustered last-level cache architectures,
to incorporate the effects of simultaneous multithreading, which in addition to competition for cache
capacity, exhibits additional effects incurred by core resource sharing. They implemented this im-
proved version of CRUST inside the Intel OpenMP runtime library and explored its performance
when running on Xeon Phi hardware. Finally, CRUST can be integrated easily into the OpenMP run-
time library; by combining application phase behavior and leveraging hardware performance counter
information it is able to reach the best static thread count for most applications and can even outper-
form static tuning on more complex applications where the optimum thread count varies throughout
the application.

Sclocco et al[58] designed and developed a many-core dedispersion algorithm, and implemented it us-
ing the Open Computing Language (OpenCL). Because of its low arithmetic intensity, they designed
the algorithm in a way that exposes the parameters controlling the amount of parallelism and possi-
ble data-reuse. They showed how, by auto-tuning these user-controlled parameters, it is possible to
achieve high performance on different many-core accelerators, including one AMD GPU (HD7970),
three NVIDIA GPUs (GTX 680, K20 and GTX Titan) and the Intel Xeon Phi. they not only auto-tuned
the algorithm for different accelerators, but also used auto-tuning to adapt the algorithm to different
observational configurations.

ppOpen-HPC[54] is an open source infrastructure for development and execution of large-scale scien-
tific applications on post-peta-scale (pp) supercomputers with automatic tuning (AT). ppOpen-HPC
focuses on parallel computers based on many-core architectures and consists of various types of li-
braries covering general procedures for scientific computations. The source code, developed on a PC
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with a single processor, is linked with these libraries, and the parallel code generated is optimized
for post-peta-scale systems. Specifically on the Intel Xeon Phi coprocessor, the performance of a par-
allel 3D finite-difference method (FDM) simulation of seismic wave propagation was evaluated by
using a standard parallel finite-difference method (FDM) library (ppOpen-APPL/FDM) as part of the
ppOpen-HPC project.

2.4 How our work is different from the bibliography?

The autotuning framework we developed is based on data mining. The autotuner derives its sugges-
tions from an already known set of profiled applications against the full set of configuration space.
Thus, it is sensitive on the choice of those applications that constitute its initial knowledge. It belongs
in the category of machine learning autotuners like Ganapathi[38]. It explores mainly compiler and
execution environment parameters because the configuration space of the coprocessor is large enough.
There is not a specified target group of applications to autotune. It performs well independently of the
current testing application that is why it is a general autotuner.

From our experience with this framework and the employment of data mining techniques, we conclude
that valuable knowledge and fine tuning can be derived from their use and at the same time in timely
fashion with high accuracy. We know the optimal tuning of many applications, we need only to project
them to newly machine architectures in a way to benefit from their capabilities and specifications.
Then it is able to find correlations between them and unoptimized applications in order to suggest the
optimal tuning.

The idea to use data mining techniques in autotuning for a heterogeneous - because of its vary con-
figurations - coprocessor came from the work of Delimitrou and Kozyrakis[32] who developed an
heterogeneity- and interference-aware scheduler, Paragon, for large-scale datacenters. Paragon is an
online and scalable scheduler based on collaborative filtering techniques to quickly and accurately
classify an unknown incoming workload with respect to heterogeneity and interference in multiple
shared resources.
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Chapter 3

Experimental Testbed & Environment

3.1 Intel Xeon Phi

3.1.1 Architecture

In this work we used an Intel®Xeon Phi™coprocessor of the 3100 Series with code name Knights
Corner. It is Intel’s first many-cores commercial product made at a 22nm process size that uses Intel’s
Many Integrated Core (MIC) architecture. A coprocessor needs to be connected to a Host CPU, via
the PCI Express bus and in that way they share access to main memory with other processors.

The coprocessor is a symmetric multiprocessor (SMP) on-a-chip running Linux. It consists of 57 cores
who are in-order dual issue x86 processor cores, they support 64-bit execution environment-based
on Intel64 Architecture and are clocked at 1.1GHz. Each one has four hardware threads, resulting
in 228 available hardware threads. They are used mainly to hide latencies implicit to the in-order
microarchitecture. In addition to the cores, the coprocessor has six memory controllers supporting
two GDDRS (high speed) memory channels each at SGT/sec. Each memory transaction to the total
6GB GDDRS5 memory is 4 bytes of data resulting in SGT/s x 4 or 20GB/s per channel. 12 total channels
provide maximum transfer rate of 240GB/s. Then it consists of other device interfaces including the
PCI Express system interface.

All the cores, the memory controllers, and PCI Express system I/O logic are interconnected with a high
speed ring-based bidirectional on-die interconnect (ODI), as shown in Figure 3.1. Communication
over the ODI is transparent to the running code with transactions managed solely by the hardware.

\

./

Figure 3.1: Overview of the coprocessor silicon and the On-Die Interconnect (ODI)[46].
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At the core level, exclusives 32-KB L1 instruction cache and L1 data cache as well as a 512-KB Level
2 (L2) are assigned to provide high speed, reusable data access. In Table 3.1 we are summarized the
main properties of the L1 and L2 caches.

Parameter L1 L2
Coherence MESI MESI
Size 32 KB +32KB 512 KB
Associativity 8-way 8-way
Line size 64 Bytes 64 Bytes
Banks 8 8
Access Time 1 cycle 11 cycles
Policy Pseudo LRU Pseudo LRU

Table 3.1: Coprocessors core’s cache parameters.

Furthermore, fast access to data in another core’s cache over the ODI is provided to improve perfor-
mance when the data already resides “on chip.” Using a distributed Tag Directory (TD) mechanism,
the cache accesses are kept “coherent” such that any cached data referenced remains consistent across
all cores without software intervention. There are two primary instruction processing units. The scalar
unit executes code using existing traditional x86 and x87 instructions and registers. The vector pro-
cessing unit (VPU) executes the Intel Initial Many Core Instructions (IMCI) utilizing a 512-bit wide
vector length enabling very high computational throughput for both single and double precision cal-
culations. Along there is an Extended Math Unit (EMU) for high performance key transcendental
functions, such as reciprocal, square root, power and exponent functions. The microarchitectural dia-
gram of a core is shown in the Figure 3.2.
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Figure 3.2: Architecture of a Single Intel Xeon Phi Coprocessor Core[46].

Each core’s instruction pipeline has an in-order superscalar architecture. It can execute two instruc-
tions per clock cycle, one on the U-pipe and one on the V-pipe. The V-pipe cannot execute all instruc-
tion types, and simultaneous execution is governed by instruction pairing rules. Vector instructions are
mainly executed only on the U-pipe. The instruction decoder is designed as a two-cycle fully pipelined
unit, which greatly simplifies the core design allowing for higher cycle rate than otherwise could be
implemented. The result is that any given hardware thread that is scheduled back-to-back will stall in
decode for one cycle. Therefore, single-threaded code will only achieve a maximum of 50% utilization
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of the core’s computational potential. However, if additional hardware thread contexts are utilized, a
different thread’s instruction may be scheduled each cycle and full core computational throughput
of the coprocessor can be realized. Therefore, to maximize the coprocessor silicon’s utilization for
compute-intensive application sequences, at least two hardware thread contexts should be run.

The coprocessor silicon supports virtual memory management with 4 KB (standard), 64 KB (not
standard), and 2 MB (huge and standard) page sizes available and includes Translation Lookaside
Buffer (TLB) page table entry cache management to speed physical to virtual address lookup as in
other Intel architecture microprocessors.

The Intel Xeon Phi coprocessor includes memory prefetching support to maximize the availability
of data to the computation units of the cores. Prefetching is a request to the coprocessor’s cache and
memory access subsystem to look ahead and begin the relative slow process of bringing data we expect
to use in the near future into the much faster to access L1 and/or L2 caches. The coprocessor provides
two kinds of prefetch support, software and hardware prefetching. Software prefetching is provided
in the coprocessor VPU instruction set. The processing impact of the prefetch requests can be reduced
or eliminated because the prefetch instructions can be paired on the V-pipe in the same cycle with
a vector computation instruction. The hardware prefetching (HWP) is implemented in the core’s L2
cache control logic section.

3.1.2 Performance Monitoring Units

In order to monitor hardware events, the coprocessor is supported by a performance monitoring unit
(PMU). Each physical Intel Xeon Phi coprocessor core has an independent-programmable core PMU
with two performance counters and two event select registers, thus it supports performance monitoring
at the individual thread level. User-space applications are allowed to interface with and use the PMU
features via specialized instructions such as RDMSR, WRMSR, RDTSC, RDPMC. Coprocessor-
centric events are able to measure memory controller events, vector processing unit utilization and
statistics, local and remote cache read/write statistics, and more[44]. In Table 3.2, are shown some
important hardware events of the coprocessor. The rest can be found on [2].

3.1.3 Power Management

Unlike the multicore family of Intel Xeon processors, there is no hardware-level power control unit
in the coprocessor. Instead power management (PM) is controlled by the coprocessor’s operating
system and is performed in the background. Intel Xeon Phi coprocessor power management software
is organized into two major blocks. One is integrated into the coprocessor OS running locally on
the coprocessor hardware. The other is part of the host driver running on the host. Each contributes
uniquely to the overall PM solution.

The power management infrastructure collects the necessary data to select performance states and
target idle states for the individual cores and the whole system. Below, we describe these power
states[44, 45]:

Coprocessor in C0 state; Memory in M0 state In this power state, the coprocessor (cores and
memory) is expected to operate at its maximum thermal design power (TDP), for our coprocessor that
is 300 Watts. While in that state, all cores are active and run at the same P-state, or performance state.
P-states are different frequency settings that the OS or the applications can request. Each frequency
setting of the coprocessor requires a specific voltage identification (VID) voltage setting in order to
guarantee proper operation, thus each P-state corresponds to one of these frequency and voltage pairs.
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Event Description

CPU_CLK UNHALTED The number of cycles (commonly known as clock-
ticks) where any thread on a core is active. A core
is active if any thread on that core is not halted.
This event is counted at the core level at any given
time, all the hardware threads running on the same
core will have the same value.

INSTRUCTIONS EXECUTED Counts the number of instructions executed by a
hardware thread.

DATA CACHE LINES WRITTEN BACK Number of dirty lines (all) that are written back,
regardless of the cause.

L2 DATA READ MISS MEM FILL Counts data loads that missed the local L2 cache,
and were serviced from memory (on the same In-
tel Xeon Phi coprocessor). This event counts at the
hardware thread level. It includes L2 prefetches
that missed the local L2 cache and so is not use-
ful for determining demand cache fills or standard
metrics like L2 Hit/Miss Rate.

L2 DATA WRITE MISS MEM FILL Counts data Reads for Ownership (due to a store
operation) that missed the local L2 cache, and
were serviced from memory (on the same Intel
Xeon Phi coprocessor). This event counts at the
hardware thread level.

Table 3.2: Some hardware events of the coprocessor.

P1 is the highest P-state setting and it can have multiple sequentially lower frequency settings referred
as P2,P3,...,Pn where Pn is the lowest pair.

Some cores are in C0 state and other cores in C1 state; Memory in M0 state When all four
threads in a core have halted, the clock at the core shuts off, changing his state to C1. The last thread
to halt is responsible to collect idle residency data and store it in a data structure accessible to the
OS. A coprocessor can have some cores in CO state and some in C1 state with memory in MO state.
In this case, clocks are gated on a core-by-core basis, reducing core power and allowing the cores
in CI state to lose clock source. After a core drops in C1 state, there is the option the core shuts
down, become electrically isolated. That is the core C6 state and it is decided by the coprocessor’s
PM SW, which also writes to a certain status register the current core’s status before issuing HALT to
all the threads active on that core. The memory clock can be fully stopped to reduce memory power
and memory subsystem enters M3 state. The price of dropping into a deeper core C state is an added
latency resulting from bringing the core back up to the non-idle state, so the OS evaluates if the power-
savings are worthwhile.

The coprocessor in package Auto-C3 state; Memory in M1 state If all the cores enter C1 state,
the coprocessor automatically enters auto-package C3 (PC3) state by clock gating also the uncore part
of the card. For this transition both the coprossesor’s PM software and the host’s coprocessor PM
are involved, that is because it may be needed a core to return to CO state and in order to happen the
coprossesor PM SW must initiate it. In addition, the host’s coprocessors PM may override the request
to PC3 under certain conditions, such as when the host knows that the uncore part of the coprocessor
is still busy. Finally, the clock source to the memory can be gated off also, thus reducing memory
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power. This is the M1 state for the memory.

The coprocessor in package Deep-C3; Memory in M2 state In this state only the host’s copro-
cessor PM SW functions and decides for the transitions as it has a broader sense of the events on
the coprocessor and the coprocessor’s PM SW is essential suspended for the power savings. So the
host’s coprocessor PM SW looks at idle residency history, interrupts (such as PCI Express traffic),
and the cost of waking the coprocessor up from package Deep-C3 to decide whether to transition from
package Auto-C3 state into package Deep-C3 state. In package Deep-C3 the core voltage is further
reduced and the voltage regulators (VRs) enter low power mode. The memory changes to self-refresh
mode, i.e. M2 state.

The coprocessor in package C6; Memory in M3 state The transition to this state can be initiated
from both the coprocessor and the host. More reductions in power consumption are done in the uncore
part, the cores are shut off and the memory clock can be fully stopped, reducing memory power to its
minimum state (M3).

The Table 3.3 shows the power consumed in each state.

Coprocessor’s Power State  Power(Watts)

Co 300
Cl <115
PC3 <50
PC6 <30

Table 3.3: Coprocessor’s power consumption on different power states[45].

3.2 Roofline Model

The roofline model is a visual performance model that offers insights to programmers on improving
parallel software for floating point computations relatively to the specifications of the architecture used
or defined by the user. Proposed by Williams et al [65], it has been used and proved valuable both to
guide manual code optimization and in education. Therefore, creating the roofline for our testbed will
aid us in the characterization of the autotuning process, how exactly the unoptimized and optimized
benchmarks move in the 2D space. Firstly, we describe the roofline model and its background.

3.2.1 Model’s Background

The platform’s peak computational performance - generally floating operations - together with the
peak memory bandwidth - generally between the CPU and the main memory - create a performance
”ceiling” in the 2 dimensional space. These peak values are calculated from the hardware specifi-
cations. On the x-axis is the operational intensity, which is defined as the amount of floating points
operations per byte of main memory traffic. On the y-axis is the performance. Both axis are in log
scale. The roofline is visually constructed by one horizontal and one diagonal line. The horizontal line
is the peak performance and the diagonal is the performance limited by memory bandwidth. Thus, the
mathematical equation is:

Roofline(op. intensity) = min(BW * op. intensity, peak performance)
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The point where the two lines intersect:
Peak Performance = Operational Intensity * Memory Bandwidth

is called ridge point and defines the minimum operational intensity that is required in order to reach
maximum computational performance. In addition, the area on the right of the ridge point is called
computational bound and on the left memory bound.

Besides using the peak values calculated from the architecture, one can create a roofline using soft-
ware peak values (lower than the ones from hardware) such as performance limited to thread level
parallelism , instruction level parallelism and SIMD, without memory optimizations (e.g. prefetches,
affinity). In addition, more realistic performance ceilings can be obtained by running standard bench-
marks such as the high-performance LINPACK[8] and the Stream Triad[14] benchmarks. We assume
that any real world application’s performance can be characterized somewhere between totally mem-
ory bandwidth bound (represented by Stream Triad) and totally compute or Flop/s bound (represented
by Linpack).

For a given kernel, we can find a point on the x-axis based on its operation intensity. A vertical
line from that point to the roofline shows what performance is able to achieve for that operational
intensity[65]. From the definition of the ridge point, if the operational intensity of the kernel is on
the left of the ridge point then the kernel is bound from the bandwidth performance and if it is on
the right then the kernel is bound from the peak computational performance. So, by plotting along
with the peak performances also the performances from the software tunings, it can be reckoned what
optimizations will benefit the most the kernel under examination, guide in other words the developer
for the optimum tuning appropriately.

3.2.2 The Roofline of our Testbed

As we noted before, our testbed consists of one Intel Xeon Phi coprocessor 3120A. From the technical
specifications we can calculate the theoretical peak computational performance. With 57 cores, each
running at maximum 1.1GHz, a 512-bit wide VPU unit and support of the instruction fused multiply
and add (FMA) enabling two floating point operations in one instruction, the peak computational
performance is obtained from the formula:

Clock Frequency x Number of Cores x 16 lanes(SP floats) x 2(FMA) FLOPs/cycle

So, by substituting the technical specification values we get: 2006.4 GFlops/sec for SP and 1003.2
GFlops/sec for DP, which is usually the reported one. The theoretical bandwidth between the CPU
and the main memory is 240GB/sec.

By running the standard performance benchmarks with the appropriate optimizations, we get from
Linpack 727.9911! GFlops/sec (DP) and from Stream triad we get 128.31?> GB/sec. Both values are
very close to the ones reported by Intel using the same benchmarks[6]. The choice of these two bench-
marks provides a strong hypothesis and we may argue that even if they remain far from ideal reference
points, they represent a better approximation than the hardware theoretical peaks because they at least
include the minimum overhead required to execute an instruction stream on the processing device[21].

! The performance reported was achieved with the following configuration: compact affinity, 228 threads, size=24592,
1d=24616, 4KB align. The optimized benchmark from the Intel was used[5]

2 The performance reported was achieved with the following configurations as they are suggested here[10]: 110M ele-
ments per array, prefetch distance=64,8, streaming cache evict=0, streaming stores=always, 57 threads, balanced affinity.
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So, now we can compute the operational intensity (OI) of the ridge point for both the theoretical and
the achievable peak performances, as: (using double precision)

1003.2

Iih = = 4.18Flops/B
Ol 540 8F'lops/Byte
727.9911
I¥ = —— =5.67F B
OI% 198 31 5.67Flops/Byte

Figure 3.3 shows the roofline model for our testbed in double precision.
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Figure 3.3: Roofline model

3.3 Tuning Parameters

In this section, we describe the parameters we used to build our tuning space. It is composed of com-
piler’s flags as well as environmental configurations for the tuning of each application. The compiler
is the system’s default, Intel®C Intel®64 Compiler XE for applications running on Intel®64, Version
14.0.3.174 (icc).

3.3.1 Compiler’s Flags

The compiler’s flags used where chosen from the icc’s optimization category.

-O[=n]

Specifies the code optimization for applications.
Arguments:
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0O2: Enables optimizations for speed. Vectorization is enabled at O2 and higher levels. Some basic
loop optimizations such as Distribution, Predicate Opt, Interchange, multi-versioning, and scalar
replacements are performed. More detailed information can be found on [16].

0O3: Performs O2 optimizations and enables more aggressive loop transformations such as Fusion,
Block-Unroll-and-Jam, and collapsing IF statements. The O3 optimizations may not cause higher
performance unless loop and memory access transformations take place. The optimizations may
slow down code in some cases compared to O2 optimizations.

-opt-prefetch[=n]

This option enables or disables prefetch insertion optimization. The goal of prefetching is to reduce
cache misses by providing hints to the processor about when data should be loaded into the cache.
Arguments:

0: Disables software prefetching.

2-4: Enables different levels of software prefetching.

Prefetching is an important topic to consider regardless of what coding method we use to write an
algorithm. To avoid having a vector load operation request data that is not in cache, we can make sure
prefetch operations are happening. Any time a load requests data not in the L1 cache, a delay occurs
to fetch the data from an L2 cache. If data is not in any L2 cache, an even longer delay occurs to fetch
data from memory. The lengths of these delays are nontrivial, and avoiding the delays can greatly
enhance the performance of an application.

-opt-streaming-stores [keyword]

This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.
Arguments:

never: Disables generation of streaming stores for optimization. Normal stores are performed.

always: Enables generation of streaming stores for optimization. The compiler optimizes under the as-
sumption that the application is memory bound.

Streaming stores are a special consideration in vectorization. Streaming stores are instructions espe-
cially designed for a continuous stream of output data that fills in a section of memory with no gaps
between data items. An interesting property of an output stream is that the result in memory does not
require knowledge of the prior memory content. This means that the original data does not need to
be fetched from memory. This is the problem that streaming stores solve - the ability to output a data
stream but not use memory bandwidth to read data needlessly. Having the compiler generate stream-
ing stores can improve performance by not having the coprocessor fetch caches lines from memory
that will be completely overwritten. This effectively avoids wasted prefetching efforts and eventually
helps with memory bandwidth utilization.
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-opt-streaming-cache-evict[=n]

This option specifies the cache eviction (clevict) level to be used by the compiler for streaming loads
and stores. Depending on the level used, the compiler will generate clevict0 and/or clevictl instruc-
tions that evict the cache-line (corresponding to the load or the store) from the first-level and second-
level caches. These cache eviction instructions will be generated after performing the corresponding
load/store operation.

Arguments:

0: Tells the compiler to use no cache eviction level.
1: Tells the compiler to use the L1 cache eviction level.
2: Tells the compiler to use the L2 cache eviction level.

3: Tells the compiler to use the L1 and L2 cache eviction level.

-unroll[=n]

This option tells the compiler the maximum number of times to unroll loops.
Arguments:

0: Disables loop unrolling.

N/A: With unspecified n, the optimizer determines how many times loops can be unrolled.

The Intel C Compiler can typically generate efficient vectorized code if a loop structure is not manually
unrolled. Unrolling means duplicating the loop body as many times as needed to operate on data using
full vectors. For single precision on Intel Xeon Phi coprocessors, this commonly means unrolling 16-
times. In other words, the loop body would do 16 iterations at once and the loop itself would need to
skip ahead 16 per iteration of the new loop.

3.3.2 Huge Pages

To get good performance for executions on the coprocessor, huge memory pages (2MB) are often
necessary for memory allocations on the coprocessor. This is because large variables and buffers are
sometimes handled more efficiently with 2MB vs 4KB pages. With 2MB pages, TLB misses and page
faults may be reduced, and there is a lower allocation cost.

In order to enable 2MB pages for applications running on the coprocessor we can either manually
instrument the program with mmap system calls or use the hugetlbfs library[7]. In our case, we used
the hugetlbfs library dynamically linked with the applications.

Although, Manycore Platform Software Stack(MPSS) versions later than 2.1.4982-15 support “Trans-
parent Huge Pages (THP)” which automatically promotes 4K pages to 2MB pages for stack and heap
allocated data, we use the hugetlbfs library to allocate data directly in 2MB pages. This is useful be-
cause if the data access pattern is such that the program can still benefit from allocating data in 2MB
pages even though THP may not get triggered in the uOS.

So, we examined the performance of the applications with huge pages enable or not.
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3.3.3 OpenMP Thread Affinity Control
Threading and Thread placement

As a minimum number of threads per physical core we set 2 because of the two-cycle fully pipelined
instruction decoder as we mentioned in the coprocessor’s architecture. We examine the performance of
each application on 19, 38 and 57 physical cores and with the different combinations of enabled threads
percore we get 38,57,76, 114,152, 171 and 228 threads with different however mappings on the cores.
That is implemented by using the environmental variable KMP PLACE THREADS=ccC, 7,000,
where:

C: denotes the number of physical cores
T: denotes the number of threads per core

O: denotes the offset of cores

So, with this variable we specify the topology of the system to the OpenMP runtime.

Affinity

In order to specify how the threads are bound within the topology we use the environmental variable
KMP AFFINITY[=type], where type:

scatter: The threads are distributed as evenly as possible across the entire system. OpenMP thread num-
bers with close numerical proximity are on different cores.

balanced: The threads are distributed as evenly as possible across the entire system while ensuring the
OpenMP thread numbers are close to each other.

Below, the Figure 3.4 illustrates the two different affinity types. We note that both types use cores be-
fore threads, thus they gain from every available core. In addition, while in balanced thread allocation
cache utilization should be efficient if the neighbor threads access data that is near in store. Generally
however, tuning affinity is a complicated and machine specific process.

In the Table 3.4 we present a summary of the tuning parameters with their possible values. The total
combinations are 2880 tuning states.

Flag Arguments
-O[=n] n=2,3
-opt-prefetch[=n] n=0,2,3.4

-opt-streaming-stores [keyword] keyword=never,always
-opt-streaming-cache-evict{=n]  m=0,1,2,3

-unroll enabled/disabled
huge pages enabled/disabled
affinity [type] type=scatter,balanced
cores 19,38,57

threads per core 2,34

Table 3.4: Summary of tuning parameters.
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Allocation with scatter affinity type.
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Allocation with balanced affinity type.
171 threads over 57 cores
Core 0 Cored | e Core 56
(romim)om) ()oY (fmmfm)
0 1 2 3 4 5 168 169 170 Thread IDs

(b)
Figure 3.4: Affinity Types (a) Scatter (b) Balanced.

3.4 Applications Used

In order to build and evaluate our autotuner for the coprocessor we used applications from two bench-
marks suites, the Rodinia Benchmark Suite[28] and the NAS Parallel Benchmarks[23]. We focused
only on applications with floating point operations and profiled them against the previous tuning states.
We used the OpenMP implementations.

3.4.1 Rodinia Benchmarks Suite

Rodinia is a benchmark suite for heterogeneous computing. It includes applications and kernels which
target multi- and manycore CPU and GPU platforms. The choice of applications is inspired by Berke-
ley’s dwarf taxonomy. It has been shown[28] that Rodinia covers a wide range of parallel commu-
nication patterns, synchronization techniques and power consumption and has led to some important
architectural insight, such as the growing importance of memory bandwidth limitations and the con-
sequent importance of data layout.

Below we list the applications and kernels we used along with some specifications.
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LU Decomposition(LUD)

LU Decomposition is an algorithm to calculate the solutions of a set of linear equations. The LUD
kernel decomposes a matrix as the product of a lower triangular matrix and an upper triangular ma-
trix. This application has many row-wise and column-wise interdependencies and requires significant
optimization to achieve good parallel performance. The size of the matrix was 8000x8000.

Hotspot

Hotspot is a thermal simulation tool used for estimating processor temperature based on an architec-
tural floor plan and simulated power measurements. It includes the 2D transient thermal simulation
kernel of HotSpot, which iteratively solves a series of differential equations for block temperatures.
The inputs to the program are power and initial temperatures. Each output cell in the grid represents
the average temperature value of the corresponding area of the chip. There is also a 3 dimensional
implementation of the same application. For the standard version we used arrays with 1024x1024
elements for the temperature and the power.

Streamcluster

Streamcluster solves the online clustering problem. For a stream of input points, it finds a pre-determined
number of medians so that each point is assigned to its nearest center. The quality of the clustering is
measured by the sum of squared distances (SSQ) metric. The original code is from the Parsec Bench-
mark suite developed by Princeton University. We used 32768 data points per block and 1 block.

K-means

K-means is a clustering algorithm used extensively in data mining. This identifies related points by
associating each data point with its nearest cluster, computing new cluster centroids, and iterating until
convergence. We used 494020 objects with 34 attributes each.

LavaMD

The code calculates particle potential and relocation due to mutual forces between particles within
a large 3D space. This space is divided into cubes, or large boxes, that are allocated to individual
cluster nodes. The large box at each node is further divided into cubes, called boxes. 26 neighbor
boxes surround each box (the home box). Home boxes at the boundaries of the particle space have
fewer neighbors. Particles only interact with those other particles that are within a cutoff radius since
ones at larger distances exert negligible forces. Thus the box size is chosen so that cutoff radius does
not span beyond any neighbor box for any particle in a home box, thus limiting the reference space
to a finite number of boxes. The space examined was divided into 8000 cubes each with dimensions
20x20x20.

Heartwall

The Heart Wall application tracks the movement of a mouse heart over a sequence of 30 (maximum
104) 744x656 ultrasound images to record response to the stimulus. In its initial stage, the program
performs image processing operations on the first image to detect initial, partial shapes of inner and
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outer heart walls. These operations include: edge detection, SRAD despeckling, morphological trans-
formation and dilation. In order to reconstruct approximated full shapes of heart walls, the program
generates ellipses that are superimposed over the image and sampled to mark points on the heart walls
(Hough Search). In its final stage, program tracks movement of surfaces by detecting the movement
of image areas under sample points as the shapes of the heart walls change throughout the sequence
of images.

Myocyte

Myocyte application models cardiac myocyte (heart muscle cell) and simulates its behavior. The
model integrates cardiac myocyte electrical activity with the calcineurin pathway, which is a key
aspect of the development of heart failure. The model spans large number of temporal scales to reflect
how changes in heart rate as observed during exercise or stress contribute to calcineurin pathway acti-
vation, which ultimately leads to the expression of numerous genes that remodel the heart’s structure.
It can be used to identify potential therapeutic targets that may be useful for the treatment of heart
failure. Biochemical reactions, ion transport and electrical activity in the cell are modeled with 91 or-
dinary differential equations (ODEs) that are determined by more than 200 experimentally validated
parameters. The model is simulated by solving this group of ODEs for a specified time interval. The
process of ODE solving is based on the causal relationship between values of ODEs at different time
steps, thus it is mostly sequential. At every dynamically determined time step, the solver evaluates
the model consisting of a set of 91 ODEs and 480 supporting equations to determine behavior of the
system at that particular time instance. If evaluation results are not within the expected tolerance at
a given time step (usually as a result of incorrect determination of the time step), another calculation
attempt is made at a modified (usually reduced) time step. Since the ODEs are stiff (exhibit fast rate
of change within short time intervals), they need to be simulated at small time scales with an adaptive
step size solver. The simulation time interval used is 30msec and the number of instances of simulation
228.

Speckle Reducing Anisotropic Diffusion(SRAD)

SRAD is a diffusion method for ultrasonic and radar imaging applications based on partial differential
equations (PDEs). It is used to remove locally correlated noise, known as speckles, without destroy-
ing important image features. SRAD consists of several pieces of work: image extraction, continuous
iterations over the image (preparation, reduction, statistics, computation 1 and computation 2) and
image compression. The sequential dependency between all of these stages requires synchronization
after each stage (because each stage operates on the entire image). The inputs to the program are ul-
trasound images and the value of each point in the computation domain depends on its four neighbors.
The dimensions used were 502x458 over 1000 iterations. For the second version we used 6000x6000
image over 100 iterations.

Back Propagation

Back Propagation is a machine-learning algorithm that trains the weights of connecting nodes on a
layered neural network. The application is comprised of two phases: the Forward Phase, in which the
activations are propagated from the input to the output layer, and the Backward Phase, in which the
error between the observed and requested values in the output layer is propagated backwards to adjust
the weights and bias values. In each layer, the processing of all the nodes can be done in parallel. The
size of the layer used was 4,194,304.
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Nearest Neighbors(NN)

NN finds the k-nearest neighbors from an unstructured data set. The sequential NN algorithm reads
in one record at a time, calculates the Euclidean distance from the target latitude and longitude, and
evaluates the k nearest neighbors. We looked for the k=8 nearest neighbors over 22,800,000 records.

Computational Fluid Dynamics(CFD)

The CFD solver is an unstructured grid finite volume solver for the three-dimensional Euler equations
for compressible flow. The CFD solver is released with two versions: one with precomputed fluxes,
and the other with redundant flux computations. Both versions used 97,000 elements.

The Table 3.5 shows all the Rodinia applications used characterized by their domain and their floating
point operations. We calculated the floating point operations manually by scrutinizing the source code.

Application Domain MFlops
LUD Linear Algebra 350,950.0
Hotspot Physics Simulation 3,144.5
Hotspot3D Physics Simulation 3,770.0
Streamcluster Data Mining 1,716.0
K-means Data Mining  63,492.0
LavaMD Molecular Dynamics  14,720.0
Heartwall Medical Imaging 175.9
Myocyte Biological Simulation 2331.2
srad vl Image Processing 103,462.0
srad_v2 Image Processing 151,200.0
Back Propagation Pattern Recognition 469.8
NN Data Mining 182.4
CFD Fluid Dynamics 157,347.4
pre-CFD Fluid Dynamics 168,371.0

Table 3.5: Summary of Rodinia Applications

3.4.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help evaluate the perfor-
mance of parallel supercomputers. The benchmarks are derived from computational fluid dynamics
(CFD) applications and consist of five kernels and three pseudo-applications in the original "pencil-
and-paper” specification. The benchmark suite has been extended to include new benchmarks for
unstructured adaptive mesh, parallel I/O, multi-zone applications, and computational grids. Problem
sizes in NPB are predefined and indicated as different classes. Reference implementations of NPB are
available in commonly-used programming models like MPI and OpenMP.

For our work, once again we used only benchmarks with floating point operations and profiled them
against the tuning states defined in the previous section.

Block Tri-diagonal solver (BT)

BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional compress-
ible Navier-Stokes equations. The finite differences solution to the problem is based on an Alternating

58



Direction Implicit (ADI) approximate factorization that decouples the x, y and z dimensions. The re-
sulting systems are Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension.
The problem size used was class A.

Scalar Penta-diagonal solver (SP)

SP is a simulated CFD application that has a similar structure to BT. The finite differences solution
to the problem is based on a Beam-Warming approximate factorization that decouples the x, y and z
dimensions. The resulting system has Scalar Pentadiagonal bands of linear equations that are solved
sequentially along each dimension. The problem size used was class A.

Lower-Upper Gauss-Seidel solver (LU)

LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR) method
to solve a seven-block-diagonal system resulting from finite-difference discretization of the Navier-
Stokes equations in 3-D by splitting it into block Lower and Upper triangular systems. The problem
size used was class A.

Discrete 3D fast Fourier Transform (FT)

FT contains the computational kernel of a 3-D fast Fourier Transform (FFT)-based spectral method.
FT performs three one-dimensional (1-D) FFT’s, one for each dimension. The problem size used was
class B.

Multi-Grid on a sequence of meshes (MG)

MG uses a V-cycle MultiGrid method to compute the solution of the 3-D scalar Poisson equation. The
algorithm works continuously on a set of grids that are made between coarse and fine. It tests both
short and long distance data movement. The problem size used was class C.

Conjugate Gradient (CG)

CG uses a Conjugate Gradient method to compute an approximation to the smallest eigenvalue of a
large, sparse, unstructured matrix. This kernel tests unstructured grid computations and communica-
tions by using a matrix with randomly generated locations of entries. The problem size used was class
B.

The Table 3.6 shows all the NAS Benchmarks used along with their class size and their total floating

point operations.

3.5 Characterization of the Tuning Space

In this section we evaluate the tuning’s space level of variance over the applications used. As a perfor-
mance rate we use the (MFlops/sec)/Watt>. In particular, we compare how the different arguments of
the tuning variables affect the performance of the applications. In addition, we prove that the chosen

3 The power consumed is the maximum power reported by micsme tool, for the whole coprocessor during the execution.
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Benchmark Class MFlops

BT A 168,300.0
SP A 85,000.0
LU A 119,280.0
FT B 92,050.0
MG C 155,700.0
CG B 54,700.0

Table 3.6: Summary of NAS benchmarks.

tuning space is able to improve the performance of an application relative to a base configuration 4.
Hence, we are aiming for the configurations that correspond to a performance greater than 1.0.

The largest deviation can be observed in the configurations of working threads and their affinity. The
Figure 3.5 depicts how different applications respond to variation of the previous tuning parameters.
If we try to derive a general rule of cores, threads and affinity from our benchmark set, it appears
difficult to choose a configuration with certainty, as Figures 3.5¢ and 3.5f show. That is an expected
result because each application is affected differently from the configurations.

Following, we present the violin plots for the tuning parameters prefetch, unroll and optimization
level. Especially for the latter one we noticed small variations. Figure 3.6 shows the performance gain
or deterioration for two selected applications.

Concerning the prefetch parameter we notice that between the 3 levels of software prefetch (2,3 and
4) no obvious difference exists. Therefore, that parameter should me examined more thoroughly and
precisely in the future.

Noticeable alterations also occur in the configuration of huge pages and streaming stores. Figure 3.7
shows that. Some configurations may not change dramatically the performance of an application as
we observe in Figure 3.7c.

To compare with the base configuration, Figure 3.8 shows the distribution of the performance relative
to the base for the different configuration parameters. We see that there are many variations and some
parameters benefit applications positively and some negatively. For instance, the mean performance
of the application mg (Figure 3.8f) when evaluated on the optimization level seems to be degraded.
Yet, the 4th quartiles exceed the base performance and these are the configurations we need. For the
hotspot3D (Figure 3.8d) the mean performance is constantly over 1.0 and under 1.2. In particular for
the option 0 (disabled prefetches) the ratio exceeds 1.2. The performance gain can even reach x2 the
base configurations, such as in Figure 3.8e. The applications that have been selected to illustrate the
distributions are the ones that presented the most variation from the corresponding parameter.

Overall, we can argue that our benchmark set is characterized by adequate deviation in respect of the
tuning space and can be used in our goal of extracting features characterized by our tuning parameters.
We will explain in more detail our method in the next chapter.

4 As a base configuration we define the execution of an application without any compiler optimization but using every
available hardware thread for its parallel execution. The thread affinity by default is set to balanced.
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Figure 3.5: Violin plots for the affinity and cores-threads tuning parameters.
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Chapter 4

The Autotuner:
Background & Implementation

In this chapter, we present our autotuner. We answer the questions how it works and of what it is
composed. The autotuner has two stages the offline and the online. During the offline stage the learn-
ing base is being built by profiling a set of representative applications against every configuration in
our tuning space. That needs to happen only once and it is apparently the most time consuming part.
Then, the autotuner is always online, meaning that he is able to provide us with a tuning recommen-
dation for any application we query him, as long as the application has been profiled against a very
small percentage of the tuning space (=~ 10%). To derive its recommendations it uses a collaborative
filtering technique based on matrix factorization, similar to the solutions given on the Netflix Prize
competition[48].

In the following section, we define collaborative filtering in order to substantiate our methodology in
the development of the autotuner. Then, we describe the offline and the online stages.

4.1 Collaborative Filtering

The world nowadays is overwhelmed by products for specific tastes and variety of needs, making
a difficult choice for the consumers. Hence, an essential goal arises to match consumers with the
most appropriate products. That is accomplished by developing recommender systems, which analyze
patterns of user interest in items to provide personalized suggestion. Many services like Amazon,
Netflix, Google and Yahoo want to enhance their customers experience by making recommender
systems a rigid part of their businesses. An example can be found in the entertainment business where
movies and TV shows are rated by each user. Their ratings expose a trend and a personal taste which
can be processed in order to suggest them unrated movies with high possibility of success.

Recommendation systems use a number of different technologies. We can classify these systems into
two broad groups[50].

o Content-based systems examine properties of the user or the item to characterize its nature. For
example, a user profile could include demographic information, his favorite actor and genre,
whereas a movie profile could include attributes regarding its genre, the participating actors, its
box office popularity, and so forth. Of course, content-based systems require explicit information
that might not be available or easy to collect.

o Collaborative filtering systems analyze relationships between users and interdependencies among
products to identify new user-item associations. Based on these associations they make their rec-
ommendations. Their advantage over content filtering is they do not require domain knowledge
and avoid the need for extensive data collection. In addition, relying directly on user behavior
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allows uncovering complex and unexpected patterns that would be difficult or impossible to
profile using known data attributes. Lastly, they rely only on past user behavior.

Collaborative filtering (CF) has been a very popular approach in the past decade to recommenda-
tion systems. Especially from 2006, when Netflix announced their contest to find a more accurate
movie recommendation system than their current, Cinematch, and from 2009 when the grand prize
was awarded to team “Bellkor’s Pragmatic Chaos” for developing a system which improved by 10%
the root mean square error (RMSE) of the recommendations compared with its predecessor.

To deepen into the case, CF has two primary areas: neighborhood methods and latent factor models
[48].

The neighborhood methods are centered on computing the relationships between items or, alterna-
tively, between users. For a user oriented approach, the user’s rating for a particular item is calculated
based on the similar users’ ratings for that item. Similar (or neighbor) users are other users that tend
to give the same ratings to the same items. In a sense, these methods transform items to the user space
by viewing them as baskets with assigned users. This way, we no longer need to compare users to
items, but rather directly relate users to users. It is important to realize that the same applies to items
also and that is called the duality of the similarity[50]. To measure similarity many functions are used
such us the Jaccard Distance, the Cosine Distance, the Pearson Distance and more.

The latent factor models, such as Singular Value Decomposition (SVD), comprise an alternative ap-
proach by transforming both items and users to the same latent factor space (20 to 100 factors inferred
from the ratings pattern), thus making them directly comparable. From another perspective, these fac-
tors comprise a computerized alternative to the human created movie attributes in the content-based
systems. For example, when the products are movies, factors might measure obvious dimensions such
as comedy vs. drama, amount of action, or orientation to children; less well defined dimensions such as
depth of character development or “quirkiness”; or completely uninterpretable dimensions. For users,
each factor measures how much the user likes movies that score high on the corresponding movie
factor.

Figure 4.1 illustrates the latent factor approach, which characterizes both users and movies using two
axes. Male vs. Female and Serious vs. Escapist. For this model, similarity between user-movie, user-
user and movie-movie can be reckoned by their dot product. For instance, Gus we expect to give high
rating to Dump and Dumper and to Independence Day because their cosine is close to 1. In contrast,
Gus will not like at all The Color Purple. In addition, Jane and Peter have a cosine close to 1 hence,
they will have many similar ratings.

If we change users with applications and items with tuning configurations then we can map our prob-
lem of autotuning to the one of suggesting movies to users. In our approach we use a latent factor
model, an instance of SVD, which we present in the following section.

4.1.1 The Latent Factor Model

Our model is a combination of two:

a. Baseline predictor

b. Matrix Factorization

For the following we define as K the set of the known ratings, r,; the rating of user « for the item .
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Figure 4.1: Fictitious latent factor illustration for users and movies[48].

Baseline Predictor

It has been noted that much of the observed rating values are due to effects associated with either
users or items independently of their interaction, thus standard CF models are unable to capture the
true interactions between them. That is explained by the fact that CF data exhibit large user and item
biases, i.e. systematic tendencies for some users to rate higher than others, and for some items to
receive lower ratings than others. Baseline predictors filter these biases, and leave the part of the
signal that truly represents user-item interaction.

A baseline prediction for an unknown rating r,,; is denoted by b,,; and accounts for the user and item
effects:

where 1 denotes the global average rating. The parameters b,,, b; measure the observed variations of
user u and item ¢ from the average.

An example from users movies, suppose we want a baseline prediction for the rating of the movie
Independence Day by user Dave. Now, say that the average rating over all movies is . = 3.4. On the
one hand, Independence Day is better than an average movie, so it tends to be rated 0.6 stars above the
average. On the other hand, Dave is a generous user, who tends to rate 0.3 stars higher than the average.
Thus, the baseline predictor for Independence Day’s rating by Dave would be 3.4 4+ 0.6 + 0.3 = 4.3.
The biases by, b; can be calculated by solving the least squares problem:

min (rui — 1 — by —bl-)2+)\(z bi+2b?)
(u,0)eK U i
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Here, the firstterm ) _ (ui)eK (7wi—p1—by—b;)? strives to find b, ’s and b;’s that fit the given ratings. The

regularized term A(}, b2+ ", b?) avoids overfitting by penalizing the magnitudes of the parameters.
This least square problem can be solved fairly efficiently by the method of stochastic gradient descent.

Matrix Factorization

Matrix factorization is the cause behind the most successful realizations of latent factor models. It is
able to map both users and items to a joint latent factor space of dimensionality &, such that user-item
interactions are modeled as inner product in that space. Accordingly, each item i is associated with a
vector q; € R¥, and each user u is associated with a vector Py € RF. Fora given item ¢ the elements of
the ¢; measure the extent to which the item possesses those k factors. A positive value denotes the item
is completely characterized by the corresponding factor, whereas a negative value the exact opposite.
For a given user u the elements of the p,, measure the extent to which the user is interested towards
those factors. Again a positive values means he likes that factor, while on the contrary a negative value
means he dislike it. The resulting dot product, p,q! , captures the interaction between user u and item
1, the user’s overall interest in the item’s characteristics. This approximates user’s u rating of item 4,
which is denoted by r;, leading to the estimate[48]:

" T
Tui = Pu4;

The major challenge is computing the mapping of each user and item to their factor vectors. After the
recommender system completes this mapping, it is relative easy to estimate the rating a user will give
to any item.

By examining that model, we can relate it to singular value decomposition (SVD), a well established
technique for identifying latent semantic factors in information retrieval. However, applying SVD to
explicit ratings in the CF domain raises difficulties due to the sparseness of the user-item rating matrix.
It needs a complete matrix in order to produce legit results. Moreover, carelessly addressing only the
relatively few known entries is highly prone to overfitting. Earlier works relied on imputation to make
the rating matrix dense. Yet, it is proven very expensive as it significantly increases the amount of
data. In addition, inaccurate imputation might distort the data considerably. Hence, processing only
the observed ratings and building directly on those the model, while avoiding overfitting, is considered
a reliable approach.

A recent enlightening example, is the Netflix challenge. The data consisted of approximately 500K
users and 17K movies producing a total of 8.5 billions ratings. However, of those total ratings only
around 100M where known. There were missing 98.8% of the values. Hence, any imputation to make
the matrix dense would be based on a minute proportion of the total ratings, and probably falsifying
the data. In addition, a complete matrix would need 34 GBytes (supposing 4 Bytes per rating) which
is a huge amount of memory and very time consuming to process. And lastly, computing the SVD
of a immense matrix is nearly impossible and excessively demanding. Instead, if there exists a map
of the users and the movies in the latent factor space of dimensionality k=40 for instance, the stor-
age requirements and the computational work are lesser (matrices S00Kx40 and 17Kx40 total 82.72
MBytes).

Back to the definitions, in order to calculate the factor vectors p,, and g;, the system minimizes the
regularized squared error on the set of known ratings[48]:

min Y (rui = pual )’ + Apal® + llaill*)
p,q -
(u,0)eK

The system learns the model by fitting the previously observed ratings. However, the goal is to general-
ize those previous ratings in a way that predicts future, unknown ratings. Thus, the system should avoid
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overfitting the observed data by regularizing the learned parameters, whose magnitudes are penalized.
The constant A controls the extent of regularization and is usually determined by cross-validation. The
minimization is typically performed by either stochastic gradient descent or alternating least squares.

Our Model

By combining the two previous models, we benefit from both approaches. We model in parallel both
biases and true interactions between users and items. So, our model is comprised of four components,
as follows:

Fui = p 4 bu + bi + pugi (4.1)

The system learns by minimizing the squared error function (or loss function):

Jmin L = D (rui—p=bu=bi—pug] +21 Y _llpulP A2 D> _lailP+As D b24HM D> b (4.2)
o u i€k u i u i

In our work, for each learned parameter we used different regulators A1, Aa, A3, A4 in order to achieve
better accuracy. In addition, to minimize the regularized squared error we used stochastic gradient
descent which we explain in the next section.

4.1.2 Stochastic Gradient Descent

For each given rating, the system computes the corresponding prediction error:
€ui = Tui — Pui = Tui — (,u + by, + b; "’puqz‘T) 4.3)

According to stochastic gradient descent, the current estimate of the error function (4.3) is updated by
one training example at a time. So, for each training example, we take the derivative of the loss function
with respect to each parameter and adjust the latter according to the following iterative formula:

oL

I’k;_t'_l $— T — naixk

where 7 is the learning rate which leverages how much our update modifies the feature weights and
is unique for each parameter.

Let’s calculate for instance the derivative with respect to py,:

oL
) = Q(Tui — K — by, — b; _puqiT)(_Qi) + 2X 1Dy
Pu
oL
= —2(ewiq; A u
. (ewii + M1pu)

Hence, the corresponding formula becomes:

- oL
DPu Pu m P}

u

Pu < Put+ M (euiQi - Alpu) (44)

Accordingly, for the rest parameters, the formulas end up being:

¢ < ¢ + m2(ewiPu — A2¢i) 4.5)
by < by + n3(€yi — A3by) (4.6)
bi <= b; + nalewi — Aaby) 4.7)
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The updates continue until there is no meaningful change in the parameters after two consecutive
iterations or until we reach a predefined number of iterations. We need to note that the learning rates
n;,J = 1,2, 3,4 and the regulators \;, j = 1,2, 3,4 are obtained by grid exploration.

By having established the analytical background of our methodology, we proceed with the description
of the autotuner.

4.2 Offline Stage

4.2.1 Structure

In this stage, the learning base is constructed in order to be used later. An application is evaluated
against every tuning configuration by extracting metrics from the hardware performance counters
while it is executed. Towards that goal, we need to use the performance counters the coprocessor
provides and calculate Cycles per Instruction (CPI) for every thread, bandwidth between the CPUs
and the main memory, vectorization, power consumed and execution time.

A tool that can easily probe the performance counters with minute latency is Likwid[62], a perfor-
mance monitor tool for the GNU Linux operating system.

So, for an application we establish the tuning state (compiler’s flags and execution environment) and
run the executable inside likwid-perfctr, a command line tool from the likwid suite, for simple end-to-
end measurements that can be used as an application wrapper. With that command line tool we define
the event set which consists of that many events as there are physical counters on a given CPU, in our
case two. Because we need to take measurements from seven hardware events, we run the executable
four times.

The hardware events which are monitored are:

e INSTRUCTION_EXECUTED: Counts the number of instructions executed by a hardware
thread.

e CPU_CLK UNHALTED: The number of cycles (commonly known as clockticks) where any
thread on a core is active. A core is active if any thread on that core is not halted. This event is
counted at the core level at any given time, all the hardware threads running on the same core
will have the same value.

e L2 DATA_READ MISS_MEM_FILL: Counts data loads that missed the local L2 cache, and
were serviced from memory (on the same Intel Xeon Phi coprocessor). This event counts at the
hardware thread level. It includes L2 prefetches that missed the local L2 cache and so is not
useful for determining demand cache fills or standard metrics like L2 Hit/Miss Rate.

e L2 DATA_ WRITE_MISS MEM_FILL: Counts data Reads for Ownership (due to a store
operation) that missed the local L2 cache, and were serviced from memory (on the same Intel
Xeon Phi coprocessor). This event counts at the hardware thread level.

e DATA CACHE _LINES WRITTEN_ BACK: Number of dirty lines (all) that are written back,
regardless of the cause.

e VPU_ELEMENTS_ACTIVE: Increments by 1 for every element to which an executed VPU
instruction applies. For example, if a VPU instruction executes with a mask register containing
1, it applies to only one element and so this event increments by 1. If a VPU instruction executes
with a mask register containing OxFF, this event is incremented by 8. Counts at the hardware
thread level.
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e VPU_INSTRUCTIONS_EXECUTED: Counts the number of VPU instructions executed by
a hardware thread. It is a subset of INSTRUCTIONS EXECUTED.

Specifically for the execution time, the value from the time stamp counter (TSC) is taken, and it reports
the wall clock time. Each physical core has a TSC for all the hardware threads which counts cycles
while the core is in the CO state. While we monitor only the performance counters of the threads we
have enabled, meaning that the assigned cores are always in CO state, the TSC increments based on
the active core frequency. Hence, we argue that it is a rational way of measuring the wall clock time.

After collecting the hardware events we need to pre-process them and reckon the metrics, before the
learning base is populated. Below, we present the formulas used, where the values are the average
ones from the threads used.

e CPI:

CPU CLK UNHALTED CPlipyea
_ - CP Icore thread

CPLipread = =
thread = INSTRUCTION_EXECUTED' fithreads per core

e BW:

Bytes transferred = (L2 DATA_READ MISS_MEM FILL
+ L2 DATA WRITE _MISS MEM FILL
+ DATA_CACHE_LINES WRITTEN_ BACK) x 64Bytes

B — Bytes transferred

Execution Time
e Vectorization:

VPU ELEMENTS ACTIVE
VPU _INSTRUCTIONS EXECUTED

Vectorization =

Lastly, the power is extracted by using micsmc utility developed by Intel. It uses the Symmetric Com-
munications Interface (SCIF), the capabilities designed into the coprocessor OS, and the host driver to
deliver the coprocessor’s status. That method is called ”in-band”. Micsmc reports the 1-second moving
average of the total power that is being consumed on the coprocessor at any given time, in watts. This
form of power analysis is chosen because it is thermally relevant. This averaging provides correlation
to real-world measureable thermal events. For example, if we only measure instantaneous power, we
may see spikes in power levels for very short durations that will not have measureable impacts to the
silicon temperature on the heat sink or other thermal solution[67].

The result is a comma separated values (csv) file for each application, in the form:
Configuration, CPI, BW, Vectorization, Power, Time

where configuration is the set of the tuning parameters that produced the corresponding metrics. The
file has 2880 lines, as many configurations in our tuning space.

4.2.2 The Composition of the Learning Base

A very important step to build our autotuner is to choose the applications that will compose the learning
base. An application that will be part of the base needs to be different from the already existing ones
and exhibit, by itself or as a member of a small number of similar applications, a set of features than
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can represent a larger group of applications. In other words, we need the learning base to be diverse
so that any new incoming application has as many similarities as possible with the others in the base.

One way to achieve this is to factorize all of our set. The applications are mapped to the latent factor
space and can be projected into a 2-dimensional space (alternatively 3-dimensional) in respect of the
2 (or 3) major latent factors, which are the most descriptive dimensions for applications and tuning
configurations.

The factorization is based on the Singular Value Decomposition (SVD). Through SVD, a matrix A :
n X m can be written in the form:
A=Uzv"

where:

1. r is the rank of A. We refer to this value as the dimension of the latent factor space.

2. U is an x r column-orthonormal matrix; that is, each of its columns is a unit vector and the dot
product of any two columns is 0.

3. Y isar x r diagonal matrix. The elements of 3 are called singular values of A and they appear
in decreasing order of magnitude.

4. V is am x r column-orthonormal matrix. V7 is the transposed form.

In order to create the application and the configurations latent factor vectors, we can use the products
of SVD in the following way:

Pu = U\/i
q; = V\/ET

So, p,, measures the correlation between application v and each feature and ¢; measures the correlation
between tuning configuration and each feature. Note however, this method is validated only when the
initial matrix A is complete. Unless A is full, not legit correlation factors can be produced.

Let’s examine the Netflix example which is more intuitive. Figure 4.2 shows the first two factors
from the Netflix data matrix factorization. Movies are placed according to their factor vector (¢;). By
observing the movies shown we can easily derive the meaning of the factor vectors. The first one
(x-axis) has on the one side lightweight comedies and horror movies aimed at a male or adolescent
audience (Road Trip, Freddy vs. Jason), while the other side contains drama or comedy with serious
undertones and strong female leads (Sophie’s Choice, Moonstruck). The second factor vector (y-axis)
has independent, critically acclaimed, quirky films (Punch-Drunk Love, Being John Malkovich) on
the top, and on the bottom, mainstream formulaic films (Armageddon, The Fast and the Furious).
Appealing to all types seems to be The Wizard of Oz, right in the middle. Moreover there are interesting
intersections in the corners. On the top left corner, Kill Bill:Vol. 1 meets Natural Born Killer, both
arty movies that play off violent themes. On the bottom right, The Sound of Music meets Sister Act,
two serious female-driven movies and mainstream crowd-pleasers[48].

Based on the previous observations, we came up with the idea that if we fully know the ratings of some
movies then we will be able to produce the ratings of other similar movies, partially unknown, rather
easily as they have near factor vectors. So, in the Figure 4.2 we may try and group some movies and
choose one or two to represent a neighborhood. For instance, consider the group The Longest Yard,
The Fast and the Furius, Armageddon, Catwoman, Coyote Ugly and that we choose as representatives
the movies The Fast and the Furius and Catwoman. Then, for the rest of the movies as well as for
any other that it would happen to have the same features (mainstream formulaic and lightweight films,
e.g. Transporter, Batman), their full rating vector would be approximated with a small error, even with
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Figure 4.2: The first two features from a matrix decomposition of the Netflix Prize data[48].

very few ratings known. Hence, with high certainty we would provide ratings for partially unknown
movies.

We should note however that the 2-dimensional space is able to mislead us, as it hides differences
between items which are separated by their 3th o gth - R™ feature and present them next to each
other. For that reason we will examine our autotuner in respect of the learning base also.

Another way to create our learning base, more analytically substantiated, is by finding the correlations
between the applications in the latent factor space using a similarity function. A widely used function
is the Pearson’s correlation and that is because of its attribute being invariant to adding and scaling.
If we have one dataset {z1, ..., x,} containing n values and another dataset {y1, ..., y, } containing
n values then the Pearson’s correlation coefficient is defined as:

doici(zi =) (yi — )
Vi (@i = 2)2/ 2 (v — §)?

where & = % >, x; and analogously for 7.

COTT gy =

Based on the coefficients, we may divide the set of applications into a training and a test set. We define
the similarity threshold at the 0.80.

The second method works best when we have a large enough latent factor space, and consequently
the 2-dimensional projection hides a large proportion of the information for each application. Later,
in our analysis we use both methods to derive a learning base.

Back to our problem of applications-configurations, we define two ratings of an application (u) for a
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configuration (7) as:

. MFI
u MFlops/see (Normalized to the base run) (4.8)
Watts
) IPC
UL — 4.9
"2 Watts 9

For the 7, we define as the base rating the rating achieved when the application runs on the co-
processor with no compiler optimizations and using every hardware thread available with balanced
affinity.

We create therefore two matrices Ay, As of size Nz M where N = 20 is the number of the applications
and M = 2880 is the number of the total tuning configurations. By applying the matrix factorization
(SVD) to both matrices we map the applications and the configurations to a joint latent factor space
from which we are able to create a 2-dimensional graph with respect to the two major latent factors.
Figures 4.3 and 4.5 present the first two latent vectors of our data for the applications.

2D - Application Projection
Rating: MFlops/sec per Watt (Normalized to the base run)
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e (1, 'kmeans') e (5 'sradv1) e (9 'lavaMD") o (13, 'pre_euler') e (17, 'cg_B')
e (2, 'backprop') e (B, 'streamcluster’) ¢ (10, 'heartwall’) e (14, 'bt_A") e (18,'lu_A’)
e (3 'cfd) e (7, 'lud) s (11, 'hotspot') s (15, 'ft B) s (19,'mg_C"

Figure 4.3: Two-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized to the
base rating).

Considering the 2-dimensional latent factor space (Figure 4.3) which was created based on the rating
1, we can divide the applications into a training and a test set (Table 4.1). (Note that this is a typical
neighboring as we will variate our learning base later)

However, from the 3-dimensional projection we see the groups are ambiguous. Figure 4.4 shows that.
For instance, it seems that myocyte is close to streamcluster and backprop to kmeans. We need to
substantiate our composition of learning base and towards that goal we will use the second method.

Using the Pearson’s similarity function 4.2.2, the following coefficient matrix is calculated, Table 4.2.
We choose the neighbor threshold at 0.80 and with boldface we annotate the applications that have
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Training set Test Set

cfd, pre_euler backprop
streamcluster,lavaMD lu
hotspot3D, kmeans bt

hotspot, lud bt
nn, ft sp
myocyte, cg mg

sradvl, sradv2

Table 4.1: Table with the training and test sets from the 2D neighboring.

3D - Application Projection
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Figure 4.4: Three-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized to
the base rating).

similarity greater than or equal to the threshold. That neighboring is more rational and we expect to
get more satisfying and accurate predictions. The training and the test sets are composed as:
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nn  kmeans BP cfd HS3D sradvl SC lud myocyte lavaMD HW HS sradv2 pre_euler bt ft sp cg lu mg
nn 1.00 0.64 0.73 0.63  0.75 0.79 0.68 0.29 0.73 0.71 0.60 0.75 0.74 0.53 0.67 0.71 0.70 0.40 0.65 0.50
kmeans  0.64 1.00 0.69 0.65 0.73 0.63 0.66 0.28 0.69 0.69 0.59 0.66 0.67 0.53 0.53 0.60 055 042 0.59 047
BP 0.73 0.69 1.00 0.68 0.83 0.72 0.77 029 0.78 0.78 0.63 0.76 0.75 056 0.59 0.67 0.61 038 0.66 051
cfd 0.63 0.65 0.68 1.00 0.65 0.73 0.61 0.36 0.62 0.84 0.67 0.67 0.76 0.66 0.66 0.77 0.71 0.75 0.71 0.65
HS3D 0.75 0.73 0.83 0.65 1.00 0.72 0.80 033 0.80 0.78 0.73 0.81 0.74 054 0.64 0.72 0.64 035 0.75 051
sradv1 0.79 0.63 0.72 0.73 0.72 1.00 0.67 0.44 0.67 0.77 0.63 0.73 0.77 0.63 0.69 0.73 071 049 071 0.62
SC 0.68 0.66 0.77 0.61 0.80 0.67 1.00 022 0.81 0.66 0.64 0.71 0.65 046 0.55 0.56 058 0.25 0.60 041
lud 0.29 028 029 036 0.33 044 022 1.00 0.33 041 027 024 0.44 049 038 029 037 030 030 0.60
myocyte  0.73 0.69 0.78 0.62  0.80 0.67 0.81 033 1.00 0.68 0.62 0.76 0.64 0.50 0.59 0.60 0.59 036 0.64 043
lavaMD  0.71 0.69 0.78 0.84  0.78 0.77 0.66 041 0.68 1.00 0.70 0.74 0.85 0.73 0.74 0.82 0.74 0.62 0.78 0.63
HW 0.60 0.59 0.63 0.67 0.73 0.63 0.64 027 0.62 0.70 1.00 0.68 0.66 0.54 0.69 072 0.68 037 0.75 0.3
HS 0.75 0.66 0.76 0.67  0.81 073 071 024 0.76 0.74 0.68 1.00 0.74 0.54 0.62 0.64 0.65 033 0.67 0.50
sradv2 0.74 0.67 0.75 0.76  0.74 0.77 0.65 044 0.64 0.85 0.66 0.74 1.00 0.67 0.72 0.83 0.71 0.61 0.75 0.60
pre_euler 0.53 0.53 0.56 0.66  0.54 0.63 046 049 0.50 073 0.54 0.54 0.67 1.00 0.65 0.63 0.60 0.61 057 0.50
bt 0.67 0.53 0.59 0.66  0.64 0.69 0.55 038 0.59 0.74 0.69 0.62 0.72 0.65 100 072 0.88 043 0.88 0.55
ft 0.71 0.60 0.67 0.77  0.72 0.73 0.56 0.29 0.60 0.82 0.72 0.64 0.83 0.63 0.72 1.00 075 0.52 0.75 0.65
sp 0.70 0.55 0.61 0.71 0.64 0.71 0.58 037 0.59 0.74 0.68 0.65 0.71 0.60 0.88 0.75 1.00 0.50 0.86 0.57
cg 0.40 042 038 075 0.35 049 025 030 0.36 0.62 0.37 033 0.61 0.61 043 052 050 1.00 041 049
Iu 0.65 0.59 0.66 0.71 0.75 0.71 0.60 0.30 0.64 0.78 0.75 0.67 0.75 0.57 0.88 0.75 0.86 041 1.00 0.57
mg 0.50 047 0.51 0.65 0.51 0.62 041 0.60 0.43 0.63 0.53 0.50 0.60 0.50 0.55 0.65 057 049 0.57 1.00
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Table 4.2: Coefficient matrix for all the applications when rated by 1



Training set

Test Set

nn, kmeans, hotspot
backprop, cfd
sradvl, sradv2
streamcluster, lud
cfd, pre_euler
bt,cg, mg

hotspot3D
lavaMD
myocyte
ft

Sp

Iu

Table 4.3: Table with the training and test sets from the coefficient matrix 4.2.

Accordingly, from the Figure 4.5, we can create application neighbors, when rated by 2: (similarly

this is a typical neighboring)

2D - Application Projection

Rating: IPC/Watts

4
8 i 3
2 .
% 1§ &
4 ] 3 19
L ] L
0 2, * % 16 6.5 17
11 13 * 1
L L
-2
4
-6
_8 1
-10
-14 -12 -10 -8 -6 -4 -2 0
e (0 'nn" e (4 'hotspot3D') s (8, 'myocyte’) e (12 'sradv2’) e (16,'sp_A")
e (1, 'kmeans') e (5, 'sradv1) e (9 'lavaMD") o (13, 'pre_euler') e (17,'cg_B")
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Figure 4.5: Two-dimensional graph of the applications, rating IPC/Watts.

Training set

Test Set

myocyte, kmeans
hotspot, hotspot3D
heartwall, backprop
bt, sp, sradvl
lavaMD, pre_euler
ft, lud, cg

Iu

nn

sradv2

mg

cfd
streamcluster

Table 4.4: Table with the training and test sets from the 2D projection 4.5.

Analogously with the previous rating, we create also the learning base that the coefficient matrix
depicts. Using the Pearson’s similarity function for this rating, we get the following correlations. The
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similarity threshold is set again to 0.80.

nn kmeans BP cfd HS3D sradvl SC lud myocyte lavaMD HW HS sradv2 pre euler bt ft sp cg lu mg

nn 1.00 0.65 0.85 0.64 0.95 093 0.68 038 0.83 0.82 0.84 0.76 0.54 0.73 0.88 059 0.81 061 079 0.52
kmeans 0.65 1.00 0.63 0.1 0.63 0.69 0.54 033 0.57 0.57 0.59 0.64 0.39 0.71 0.64 041 0.61 059 055 037
BP 0.85 0.63  1.00 0.60 0.85 0.84 0.67 037 0.77 0.75 0.78 0.71 0.52 0.70 0.79 059 0.72 055 0.74 0.50
cfd 0.64 0.51 0.60 1.00 0.63 0.67 0.57 0.15 0.59 0.62 0.63 0.58 0.49 029 0.61 055 0.60 046 0.61 0.50
HS3D 0.95 0.63 0.85 0.63 1.00 0.90 0.68 038 0.83 0.82 0.86 0.75 0.56 0.71 0.87 062 079 059 081 0.52
sradvl 0.93 0.69 0.84 0.67 0.90 1.00  0.68 0.42 0.82 0.82 0.83 0.77 0.59 0.70 0.88 0.64 0.83 062 0.79 0.62
SC 0.68 0.54 0.67 0.57 0.68 0.68 1.00 0.32 0.64 0.53 0.63 0.52 0.43 0.50 0.64 0.56 0.60 051 0.54 048
lud 0.38 0.33 037 0.15 0.38 042 032 1.00 0.39 0.38 039 031 0.29 0.52 043 031 037 029 036 041
myocyte  0.83 0.57 0.77 0.59 0.83 0.82 0.64 039 1.00 0.77 0.84 0.72 0.58 0.69 083 0.62 0.68 055 0.75 0.53
lavaMD  0.82 0.57 0.75 0.62 0.82 0.82 0.53 038 0.77 1.00 0.87 0.73 0.75 0.73 089 074 0.72 055 0.83 0.59
HW 0.84 0.59 0.78 0.63 0.86 0.83 0.63 039 0.84 0.87 1.00 0.76 0.71 0.70 0.89 0.76 0.75 051 0.88 0.62
HS 0.76 0.64 0.71 0.58 0.75 0.77 0.52 0.31 0.72 0.73 0.76 1.00 0.55 0.66 0.76 0.55 0.69 0.53 0.71 0.50
sradv2 0.54 039 052 049 0.56 0.59 043 029 0.58 0.75 0.71 0.55 1.00 0.57 0.70 0.76 0.49 036 0.65 0.52
pre_euler 0.73 0.71 0.70 0.29 0.71 0.70 0.50 0.52 0.69 0.73  0.70 0.66 0.57 1.00 0.75 0.59 0.68 047 071 0.52
bt 0.88 0.64 0.79 0.61 0.87 0.88 0.64 0.43 0.83 0.89 0.89 0.76 0.70 0.75 1.00 0.75 0.82 0.59 081 0.62
ft 0.59 041 0.59 0.55 0.62 0.64 0.56 0.31 0.62 0.74 0.76 0.55 0.76 0.59 0.75 1.00 0.51 0.33 0.66 0.56
sp 0.81 0.61 0.72 0.60 0.79 0.83 0.60 0.37 0.68 072 0.75 0.69 0.49 0.68 0.82 0.51 1.00 0.74 0.73 0.55
cg 0.61 0.59 0.55 0.46 0.59 0.62 0.51 029 0.55 0.55 0.51 0.53 0.36 047 059 033 074 100 050 044
lu 0.79 0.55 0.74 0.61 0.81 0.79 0.54 0.36 0.75 0.83 0.88 0.71 0.65 0.71 081 0.66 0.73 050 1.00 0.53
mg 0.52 0.37 0.50 0.50 0.52 0.62 048 0.41 0.53 0.59 0.62 0.50 0.52 052 062 056 055 044 053 1.00

Table 4.5: Coefficient matrix for all the applications when rated by 2

The training and the test set are composed of the following applications:

Training Set Test Set
nn, kmeans backprop
hotspot, hotspot3D  heartwall
sradv2, sradvl, myocyte
cfd, pre euler lavaMD
streamcluster, lud  sp

ft, mg, bt, cg Iu

Hence, starting from the above groups we form our learning base and investigate how our recommen-
dation system behaves.

4.3 Online Stage

In this stage, the tuning recommendation happens. Any new incoming application to run natively
on the coprocessor, is profiled against a small proportion of the tuning configuration, in the same
way as the profiling was implemented in the offline stage. Then it gets into the autotuner who uses
the application’s partial profiling along with his own established base to produce the application’s
personal tuning configuration. The mechanism behind the recommendation is the latent factor model
we described in Section 4.1.1. In particular, a set of applications ratings for configurations, which
includes the whole learning base plus the ratings from the partial profiling of the new application, is
used to train our model 4.1. Using the stochastic gradient descent 4.1.2, we try to minimize the squared
error function 4.2. So, a rating is described as in Figure 4.6 and therefore the prediction is the sum of
the four parts.

The outcome is two vectors of application and configuration biases and two matrices, one for the
applications and one for the configurations with values that represent the preferences over the latent
factor space.

The size of the partial profiling will be examined along with the composition of the learning base,
targeting both speed and accuracy over the system. In addition, towards improving our base and con-
sequently recommendation’s accuracy, we consider providing feedback to the system from the partial
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Figure 4.6: Break up of a rating.

profilings. So, gradually our autotuner refines his recommendations. That also means that the size of
the tuning configurations’ set for the online stage could also decrease while the autotuner is online,
contributing to lesser time spent on new applications’ profiling. However, as the base grows, the pro-
cessing time of the latent factor model also increases. Thus, we need to investigate that also and find
a trade-off between recommendation accuracy and time.

The autotuner and its building blocks are illustrated in the Figure 4.7 below.
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Figure 4.7: Autotuner’s components.

79






Chapter 5

Experimental Results

In this chapter we present the accuracy of our autotuner in respect of the learning base composition,
of the number of features, of the profile size for the incoming applications and of their feedback. In
the last part we compare the tuning configurations when we use an energy aware and an no energy
aware rating, so that we measure power savings.

To summarize our setup, our learning base (see 4.2.2) has been fully profiled against 2880 tuning
configurations. Each application that belongs to the learning base ran natively on the Intel Xeon Phi
coprocessor. Each new application was partially profiled against a varying but small proportion of the
tuning configurations.

Based on the aforementioned setup’s description we examine our autotuner.

5.1 Accuracy of Predictions

In order to measure our predictions, we employ the root mean square error (RMSE) metric and then
we compare the best predicted configuration with the best actual one as measured during normal
execution. The RMSE is defined as:

i Tui — Tui)?
RMSE — \/Z(u,z)elC|(IC| )

where /C is the training set.

The ratings, as we mentioned before, are two:

1. pwi — MFlops/sec

1" = —Waits — (normalized to the base rating)

ui _ IPC
2. 2" = Watts

and we examine both.

5.1.1 Rating: MFlops/sec per Watt

The initial learning base includes the applications: nn, kmeans, backprop, cfd, sradvl, streamcluster,
lud, heartwall, hotspot, sradv2, pre_euler, bt, cg and mg. A total of 14 applications. Ratings are pre-
dicted for hotspot3D, lavaMD, myocyte, ft, sp and [u. This composition of the learning base and the
test applications is based on the Pearson’s similarity function described in Section 4.2.2. In addition,
as a training percent from the incoming applications we use 10% of the total tuning configurations,
chosen randomly.
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m 72 73 4 A1 A2 A3 A4
0.002 0.002 0.002 0.003 0.01 0.01 0.02 0.03

Table 5.1: Learing and regulating rates used.

For the latent factor model, we used the following learning and regulating rates, Table 5.1, which
where reckoned by grid search.

Firstly, we examine the number of features used to describe the latent factor space with and without
feedback. Figure 5.1 shows the RMSE.
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Figure 5.1: RMSE for a number of features with or without feedback.

We notice that after 12 features every test application has its RMSE stabilized. Some applications,
such us myocyte and hotspot3D reach their best RMSE with about 8 features. However, that is caused
by the amount of similar applications in the learning base. For example, myocyte is close to only
streamcluster. Hence, we can choose 12 features as our dimension of latent factor space, the minimum
number as we are time aware and we care about the respond time of the autotuner. Furthermore, from
the RMSE with feedback we do not see any obvious improvement and that may be caused to the
small amount of feedback ratings used from the incoming applications that do not add significant
information to our learning base. However, from the similarity definition we know that some test
applications have resemblances, lavaMD and ft, sp and lu, so we choose the feedback version.

Now, we may examine the average RMSE for different training sizes of the incoming applications and
number of features. Figure 5.2 shows the RMSE as a function of two variables, number of features
and size of training set, with and without feedback.
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Figure 5.2: Average RMSE for a number of features and training size with or without feedback.

It is apparent that the average RMSE for the known 1% and 2% training ratings of the new appli-
cations is high comparable with the rest training sizes, however not at prohibited levels. The 5% of
the configurations, which accounts for only 144 random tuning configurations, provides an average
RMSE very close to the one achieved when we know half the ratings (50% training size). The 10%
does not lead to any major improvement, but it is also an acceptable time consuming option which
should be examined also. So, we will examine the predictions of both the 5% and 10% training sizes.
The dimension of the latent factor space to which the model exhibits the best RMSE is 12 features
and slight better it is for 13 features. The feedback version also seems to add some accuracy, which is
more notable at the higher training sizes (>10%).

With reference to a latent feature space of dimension 12, we compare the predicted rating for different
training sizes of the incoming applications, with or without feedback as well as the correlation between
the predicted configurations and the actual best one in the latent factor space. For that relation we use
the Pearson function (4.2.2). The smaller the training size the faster the tuning prediction, thus we
start from very low sizes: 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%. From the previous Figure (5.2), as
the RMSE for small sizes was increasing, we expect that the small sizes’ predicted configurations will
present major divergences from the actual best one, which translates to small correlations. Figure 5.3
shows the average predicted ratings normalized to the best one.

We notice that on average the lowest rating we achieve we the predicted configurations is 90.49%
without feedback and 92.65% with feedback relative to the best rating. In addition, the base con-
figuration reaches the 70.0%, so we have a major improvement. However, we need to see also the
configurations that correspond to these values and their relation with the actual best. Table 5.2 shows
the correlation coefficients of the tuning configurations by application and by average.
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Comparison of Predicted Ratings
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Figure 5.3: Normalized ratings of predicted configurations with respect to training size.

Training Sizes
0.1% 0.2% 0.5% 1% 2% 5% 10%
nfb fbo nfb fb nfb fo  nfb fbo  nfb fbo nfb fb nfb fb

hotspot3D 0.56 0.56 0.56 0.56 0.56 0.56 0.70 0.71 0.73 0.70 0.73 0.73 0.73 0.73
lavaMD 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.69 0.69 0.66 0.66 0.66 0.66
myocyte 0.81 081 078 0.78 0.78 0.61 060 060 078 078 078 0.60 0.78 0.60

ft 0.77 0.78 0.78 0.87 0.87 087 087 087 092 093 092 092 092 092
sp 095 075 0.89 0.88 095 088 085 095 095 095 091 095 095 0.8
lu 0.68 1.00 090 090 090 090 090 090 090 090 085 090 090 0.9

Average 0.76 0.78 0.78 0.80 0.81 0.77 0.78 080 0.83 0.83 081 080 0.82 0.78

Table 5.2: Correlations between the predicted configurations and the best one by application and by
average for different training sizes.

With boldface are annotated the maximum correlations for each application and average. Overall, the
predicted tuning configurations have from the least 0.1% a correlation greater than 0.70 with the best
one. On average, the closest configurations to the actual one occur for the 2%. Yet, since for every
training size we have a rating greater than 90% of the best and a tuning configuration with correlation
to the best one greater than 0.70 we may choose the training size which satisfies our needs both in
accuracy and time.

Further to the evaluation of the predictions, we present the performance achieved of the predicted
values specifically for the 2%, 5% and 10% training sizes, compared to the best ones and to the base
configuration. These are the training sizes with the most relative predicted configurations to the best
one (>0.80). Figure 5.4 shows the four performances for test set, as it was created in the Section 4.2.2,
when the predictions are run with feedback.

We see that the predicted configurations are very close to the actual ones. In addition, the improvement
from the base configuration is apparent. The predicted configurations from every training size are
almost equal, so the best choice would be the one that satisfies also the time constraints, i.e. provides
the fastest result. Thus the 2% is the optimum size of known ratings for the current model. Table 5.3
shows the exact ratings.

In order to finish our evaluation we need also to look with more detail and compare the configuration
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Comparison of actual, predicted and base performance
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Figure 5.4: Performance comparison for 12 features, 2%, 5% and 10% known ratings, with feedback.

Ratings
Application Actual Predicted 2% Predicted 5% Predicted 10%  Base
hotspot3D  15.066466 13.667847 13.635916 13.635916  10.00
lavaMD 11.271719 10.160522 10.502893 10.502893 10.00
myocyte 12.166096 11.732373 11.812218 11.812218 10.00
ft 13.712121 13.478020 13.536496 13.536496 10.00
sp 12.665992 12.132006 12.132006 11.203003  10.00
lu 12.879007 12.643508 12.643508 12.643508 10.00

Table 5.3: Predicted ratings for 12 features, 2%, 5% and 10% known ratings, with feedback along
with the actual and the base ratings.

vectors of the best and the predicted performances. Then we can find the features that benefit each
application. Table 5.4 presents the configuration vectors for the best actual and the predicted 2%, 5%
and 10% ratings.

The configuration vectors generally agree over the number of cores and threads and over thread affin-
ity. They also have common optimization level and unroll policy. Some alterations are noted over the
huge pages, e.g. lavaMD, however that may be caused to the fact that huge pages do not affect a lot
the execution of the application. The memory requests may be few and can be served both from a 4KB
and a 2MB page without comparable latency. Furthermore, streaming stores do not always agree on
the cache eviction, but that may be also irrelevant because the cache eviction depends on the problem
size. Lastly, prefetch presents also some differences between the best actual and the predicted config-
urations vector. As a compiler’s flag prefetch represents a finer tuning, hence it is difficult to expose
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Tuning Configurations

opt prefetch sstores cache evict unroll huge pages affinity cores threads per core
hotspot3D
Actual 2 0 always 2 v v scatter 19 2
Predicted 2% 3 0 always 0 v v balanced 19 3
Predicted 5% 3 0 always 3 v - balanced 19 3
Predicted 10% 3 0 always 3 v - balanced 19 3
lavaMD
Actual 3 4 always 2 v - balanced 38 2
Predicted 2% 3 4 always 1 v v balanced 57 4
Predicted 5% 2 2 always 0 v - balanced 57 3
Predicted 10% 2 2 always 0 v - balanced 57 3
myocyte
Actual 3 2 never - - v balanced 19 4
Predicted 2% 2 3 never - v - balanced 19 3
Predicted 5% 3 0 always 3 v - balanced 19 3
Predicted 10% 3 0 always 3 v - balanced 19 3
ft
Actual 2 2 always 0 - - scatter 57 2
Predicted 2% 3 2 always 0 - v scatter 57 2
Predicted 5% 2 2 always 0 v - scatter 57 2
Predicted 10% 2 2 always 0 v - scatter 57 2
sp
Actual 2 2 always 1 v - balanced 38 2
Predicted 2% 2 2 always 0 v v balanced 38 2
Predicted 5% 2 2 always 0 v v balanced 38 2
Predicted 10% 3 4 always 3 v - balanced 38 2
lu
Actual 2 2 never - v v balanced 38 2
Predicted 2% 2 2 always 0 v v balanced 38 2
Predicted 5% 2 2 always 0 v v balanced 38 2
Predicted 10% 2 2 always 0 v v balanced 38 2

Table 5.4: Best configurations both actual and predicted.
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its effects. In addition, it is also a parameter affected by the problem size. By looking at the results as
a whole, the predictions are more than satisfying with fine accuracy.

To continue our evaluation, we will vary our learning base in order to observe how it behaves. The
test set will remain the same. From the coefficient matrix we can get the applications that are similar
to the test set (correlation >0.80). So, each testing application is connected with the following ones:

hotspot3D, backprop, streamcluster, myocyte, hotspot

lavaMD, cfd, sradv2, ft

myocyte, hotspot3D, streamcluster

ft, lavaMD, sradv2

sp, bt, Iu

Iu, bt, sp

If we leave only those relatives applications in our learning base we expect not to get a big degradation
in our predictions. We refer to the new learning base as ”’learning base 2”. Figure 5.5 shows the RMSE
for the test applications.
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Figure 5.5: RMSE for different number of features, with or without feedback based upon the learning
base 2.

Eventually, the learning base 2 seems to be insufficient and the threshold of the 0.80 does not fully
expose the similarities between the applications. For instance, myocyte’s RMSE is constant at around
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1.0 which means that streamcluster does not fully characterize its attributes. Furthermore, even though
hotspot3D has 0.8 correlation with myocyte, in the feedback version it does not provide noteworthy
improvement. The same applies also to the applications f#, hotspot3D, lu. If we lower the threshold
to 0.70 then the learning base will almost be identical with the first tested but omitting /ud, cg, mg.
Hence, we will have the same outcome.

Overall, good results were achieved with a latent factor dimension of 12 and feedback. The train-
ing size of the incoming applications depends on the accuracy of the predictions we aim, hence for
training sizes of 0.1%-1% that require 3-30 minutes we get an accuracy around 0.70 and for training
sizes of 2%-5% that require 57-144 minutes we get an accuracy greater than 0.80. Still, always our
performance exceeds the 90% of the best configuration.

5.1.2 Rating: IPC per Watt

The initial learning base includes the applications: myocyte, kmeans, hotspot, heartwall, backprop,
lavaMD, hotspot3D, lud, sradvl, pre euler, sp, ft, bt and cg. A total of 14 applications. Ratings are
predicted for sradv2, cfd, streamcluster, nn, lu and mg. The composition of the learning base was
derived from the neighboring of the 2 dimensional projection described in Section 4.2.2. In addition,
as a training percent from the incoming applications we use 10% of the total tuning configurations,
chosen randomly. For the latent factor model, we used the following learning and regulating rates,
Table 5.5, which where reckoned by grid search.

M 72 73 74 At A A3\
0.002 0.001 0.005 0.005 0.01 0.01 0.01 o0.01

Table 5.5: Learing and regulating rates used.

Firstly, we examine the number of features required to describe the latent factor space with and without
feedback. Figure 5.6 shows the RMSE.

We notice that after 9 features the RMSE is stabilized at 0.2375 without feedback and 0.2387 with
feedback, on average. Thus, we can choose 9 features as our dimension of latent factor space, which
provides the fastest predictions as higher dimensions impute more latency. In addition, feedback does
not seem to benefit a lot our predictions. The best RMSE with feedback happens for features=11,
RMSE=0.2373 on average. So, we may argue that our learning base is consistent and does not need
any more information or that the knowledge from the partial profilings do not provide any substantial
contribution to the recommender model. Hence, we may also choose the non feedback version in order
to save time along with space. It should be noted that in order to be considerable the time and the space
latency from the feedback version, many applications should be tested as one application may add a
couple of seconds and space in the scale of bytes, depending on the training size.

Now, we may examine the average RMSE for different training sizes of the incoming applications and
number of features. Figure 5.7 shows the RMSE as a function of two variables, number of features
and size of training set, with and without feedback.

We notice that the biggest alterations happen between training sizes 1%, 2% and 5%, while the RMSEs
for the higher training sizes are very close with the latter one. For once more, we observe that the RMSE
converges to 0.24 after 9 features for training sizes >5%. Overall, a good choice would be 5% or 10%
for the training size, as they produce a satisfactory RMSE. However, that should also be examined
by the prediction accuracy. The 20% does not provide considerable improvement when we take into
account the time needed for the partial profiling, around 576 tuning configurations. Furthermore, by
looking at the 50% we see no dramatic improvement, so probably the error remaining is due to the
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Figure 5.6: RMSE for a number of features with or without feedback.

incompleteness of the model used. Yet, it is negligible. Lastly, feedback seems that it does not affect
our current model, hence we choose the most time saving approach, i.e. without feedback.

Besides the RMSE for the training sizes, the predictions accuracy compared to the best tuning con-
figuration should be evaluated. For that reason, the autotuner is run with training sizes 0.1%, 0.2%,
0.5%, 1%, 2%, 5%, 10%, a latent space dimension of 9 with and without feedback. The parameter
”prediction accuracy” consists of both performance achieved relative to the maximum and correla-
tion between the predicted tuning configuration and best one. The relation is defined by the Pearson
function, as done before. Figure 5.8 shows the average predicted ratings normalized to the best one.

As we expected, the bigger the training size the better the performance achieved. Still, for training
sizes >1%, the rating is steady at around 95%. For every training size, the ratings exceed the 85% of
the best configuration, both in the feedback and non feedback version. Slightly worse is the feedback
version so we could choose the no feedback version. That is not a general rule, as the specific test set
behaves in that way, for a more wider set of incoming applications in respect of features, feedback
should be considered because it has been proved to improve the tuning suggestions. Lastly, the base
configuration accounts to only 67.8% of the best one, so our predictions increase by a 25% which is
a considerable percentage.

To deepen our evaluation, we will examine the predicted tuning configurations of each application
that correspond to the previous training sizes with respect to their similarity with the best tuning con-
figuration. The similarity is calculated in the full latent feature space. Table 5.6 presents the similarity
coefficients.

For all the training sizes the correlation is greater than or equal to 0.75 and in particular for the training
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Figure 5.7: Average RMSE for a number of features and training size with or without feedback.
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Figure 5.8: Normalized ratings of predicted configurations with respect to training sizes.

sizes 0.5%,1%,2%,5% and 10% the similarities are over 0.80, which is a good result. With boldface
are annotated the coefficients with the largest values over the training sizes for each application. On
average, the best tuning configurations are produced for training sizes greater than 0.5%.

Next we will examine more meticulously the accuracy and the efficiency of our predictions for 9
features, without feedback, for 0.5%, 1%, 2% and 5% as the training size, because these values provide

good performance and tuning configurations.
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Training Sizes

0.1% 0.2% 0.5% 1% 2% 5% 10%
nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb
sradv2 0.75 0.75 073 0.73 0.78 0.73 076 0.73 0.76 081 0.83 0.83 0.83 0.83
cfd 0.75 082 0.82 0.75 093 1.00 095 099 099 096 096 096 0.96 0.95
streamcluster 0.78 0.78 0.78 0.74 0.78 0.80 0.80 0.78 0.79 0.80 0.80 0.79 0.80 0.80
nn 0.77 077 076 0.77 084 076 0.84 0.84 0.83 083 0.83 0.79 0.79 0.79
Iu 0.59 062 059 062 059 061 079 061 0.63 072 081 072 0.72 0.71
mg 0.89 096 096 093 096 096 098 096 0.98 098 098 0.94 0.98 0.98
Average 0.75 0.78 077 0.76 0.81 081 0.8 0.82 0.83 0.85 0.87 0.84 0.85 0.84

Table 5.6: Correlations between the predicted configurations and the best one by application and by
average for different training sizes.

Figure 5.9 shows the best actual, the best predicted and the base rating for the six files that were tested
on the autotuner under the previous settings.

Comparison of actual, predicted and base performance
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Figure 5.9: Performance comparison for 9 features, 0.5%, 1%, 2% and 5 % known ratings, without
feedback.

We observe that the predicted ratings are close to the actual ones and that profiling over smaller
percentages provide satisfactory tuning configurations, instead of the higher more time consuming
percentages. The 0.5% seems to be a good choice for the partial profiling. It accounts for only 14 tuning
configurations and requires approximately only 14 minutes. Lastly, it is apparent the improvement
from the base rating, which can reach up to 112% (sradv2) and at least 2.6% (cfd). In particular, the
Table 5.7 shows the exact ratings, where the percentage changes can be calculated.
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Ratings

Predicted
Application Actual Base 0.5% 1% 2% 5%
sradv2 4.497278 2.069584 4.416150 4.401062 4.401062 4.469881
cfd 4.579562 4.449481 4.570718 4.100565 4.527340 4.242349
streamcluster 4.012238 2.461628 3.923021 3.638051 3.933886 3.954854
nn 6.373608 4.996673 6.271984 6.271984 6.146772 6.146772
Iu 6.785066 4.658377 6.123672 6.181696 6.182525 6.135312
mg 3.896091 2.143704 3.626442 3.628947 3.628947 3.628947

Table 5.7: Predicted ratings for 9 features, 5% and 10% known ratings, without feedback along with
the actual and the base ratings.

It would be interesting to see also the tuning configurations to which these ratings correspond, and
try to extract the attributes that benefit each application. Table 5.8 presents the best configurations,
both actual and predicted, meticulously. We notice that our predictions agree with the actual ratings
in many fields, affinity, threading, optimization level. Thereafter we get some small variations. For
example, for streamcluster the best configuration use loop unroll whereas the predicted configurations
do not. Similarly, for mg the best configuration use the L1 as cache eviction level for the streaming
stores while the predicted configurations do not use any cache. Despite those small notes, the result
satisfies our aim.

To continue our evaluation of the autotuner, we will change our learning base in order to observe how
the model behaves and the consequences of such an action to the predictions. The test set will remain
the same. Towards that goal the two dimensional projection 4.5 from Section 4.2.2 would assist us.
We see that the test applications belong to two neighborhoods. Applications nn, lu belong to the group
lavaMD, hotspot3D, backprop, bt, sradvl, pre_euler and applications sradv2, cfd, streamcluster and
mg belong to the group f#, lud. So a first notion would be to get rid of the applications outside those
groups, referring to cg, myocyte, hotspot, kmeans, heartwall, sp, resulting in a learning base consist-
ing of lavaMD, hotspot3D, backprop, bt, sradvli, pre euler, ft, lud. This learning base is referred as
”learning base 2.

Figure 5.10 shows the RMSE that is produced under the new learning base. We notice that after 6
features the RMSE converges and the values are satisfying while for particular applications, such as
nn, streamcluster, it is even lower. Again there is not any obvious benefit from the feedback. This
result was expected as we kept the full neighborhoods as before, yet some alterations can be noted,
such as lu, cfd, which could possibly be ascribed to the fact that we omitted some relations between the
applications by looking only to the 2D projection. The number of features reduced to 6 as we removed
some irrelevant” applications that would provide their own features.

If we further reduce the learning base to the set bt, sradvl, ft, lud which are the closest neighbors to the
testing applications in the 2D projection, we get a slight worse RMSE comparing to the previous. This
learning base is referred as ’learning base 3”. Figure 5.11 shows that. We note also that after 4 features
the RMSE is stable. That happens because the learning base is far too small and the applications too
similar, in order for the model to extract a big enough latent factor space. Therefore, even though we
are able to predict ratings for the testing applications with a mediocre RMSE, we are missing important
information and the learning base could be characterized deficient. Again we may have omitted other
related applications to the ones in the test set as we are based only on the 2D factor space.

Concerning the learning base as an fundamental factor of our autotuner, we need to choose a set of
applications with a lot of diversity, which the model will be able to use and reckon a complete latent
factor space where the majority of the application will be able to map efficiently. For that reason,
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Figure 5.10: RMSE for different number of features, with or without feedback based upon the learn-
ing base 2.

between the three we created the most formal is the initial one. It proves to have more variance than
the rests.

For the particular rating formula and chosen learning base, the autotuner works best with a latent factor
of dimension 9. The training size is satisfying at 0.5% of known configurations. The feedback is not
essential however as the autotuner suggests more and more configurations the extra information could
be handy.

Now we will examine the learning base which was composed by the Pearson’s similarity function. It
consists of the applications: nn, kmeans, hotspot3D, cfd, streamcluster, lud, hotspot, sradvl, sradv2,
pre_euler, cg, bt, mg and ft. A total of 14 applications. Ratings are predicted for the applications
backprop, myocyte, lavaMD, heartwall, sp, lu. We use 10% of the ratings as known values for the
incoming applications. Figure 5.12 shows the RMSE for each application with respect to number of
features and with and without feedback.

We observe that early on, from 6 features, every application’s RMSE is steady. Every application
but myocyte has a RMSE below 0.5. That may not necessarily mean a bad outcome for myocyte. We
will evaluate it in the comparison between the actual and predicted best configurations. The fact that
we need only 6 features to characterize the test files can be justified by their neighborhood. Most of
the applications in the test set have strong correlations between them and they are similar to only 4
application in the learning base, nn, hotspot3D, sradvi and bt. Hence, it is a very focused test set and
the rest applications should affect predictions by a small degree.

By varying the training size in the Figure 5.13, the predicted configurations can be compared with the
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Figure 5.11: RMSE for different number of features, with or without feedback based upon the learn-
ing base 3.

best actual one.

From the very small training size of 0.1% the rating achieved is slightly over 93.0% and for every
higher size it gets better and better reaching 96.0%. That is a very good performance and on the
contrary with the previous test set that was based on the 2D projection, these values show the maximum
performance that can be obtained, based on a robust and correlated test set. So, even if we use the 0.1%
of the tuning configurations for the partial profiling we get very promptly a decent suggestion. Note
that the 0.1% requires approximately 3 minutes of profiling.

So, if we specifically examine each application’s predicted configurations for the training sizes 0.1%,
0.2% and 5% with feedback we get Figure 5.14. The ratings of predictions from the two smaller
training sizes begin from 90.0% and escalate to 99.8% of the best rating. Generally, the predictions
are always over 90% of performance. The 5% on the contrary performs a bit better as its lowest rating
is at 94% and its highest 99.0%. It has a smaller range yet not important when we think of the time
required to achieve it, which is 50 times greater than the 0.1%.

Based on the previous results, we expect that the predicted configurations have high correlation coef-
ficients with the best configuration. That argument is true as it can be seen in the Table 5.9.

The coefficients are over 0.80 which means a strong similarity, and that also proves the fact that the
test set was very focused along some specific applications.

Overall, the coefficient matrix calculated by the Pearson’s correlation provides a strong learning base
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Figure 5.12: RMSE for different number of features, with or without feedback based upon the learn-
ing base by Pearson’s similarity.
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Figure 5.13: Predicted configurations ratings normalized to the best one with respect to training size.
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Training Sizes
0.1% 0.2% 5%
nfb fb nfb fb aofb fb

min 0.70 0.64 0.67 0.71 0.72 0.72
max 098 098 098 0.82 092 0.93
average 0.85 0.80 0.83 0.78 0.84 0.84

Table 5.9: Minimum, maximum and average correlations of the 0.1%, 0.2% and 5% predicted con-
figurations with the best one.

and consequently very accurate predictions as the model is able to use effectively every application.

Comparison of actual, predicted and base performance

12
B actual
[ predicted 0.1%
1 predicted 0.2%
10 I predicted 5%
I base
8
on
E &
4
2
0

backprop lavaMD heartwall myocyte

Figure 5.14: Performance comparison for 6 features, 0.1%, 0.2% and 5% known ratings, without
feedback.

5.2 Comparison with the Brute Force Search

In order to show the efficiency of our autotuner we need to compare him with the brute force search
over this large exploration space. Two variables are taken into account, time needed and performance
achieved relative to the best of the tuning configurations. We use the rating 1 and the applications we
used in that evaluation hotspot3D, lavaMD, myocyte, ft, sp and lu for the comparison. We examine two
training sizes, 0.2% and 1% with and without feedback. The time required is calculated as the average
execution time of each application over the whole tuning space multiplied by 4, which is the times
needed to take every performance counter required and following multiplied by the size of the tuning
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configurations’ subset for the autotuner and by the whole tuning space, i.e. 2880 configurations, for
the brute force.

Figure 5.15 shows how the autotuner without feedback performs along with the brute force search and
Figure 5.16 shows the same but the autotuner uses feedback.

The mapping of the applications is: 1. hotspot3D, 2. lavaMD, 3. myocyte, 4. ft, 5. sp and 6. lu.

Performance vs. Time
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s R
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0.85
+ 0.2% no feedback
. m 1% no feedback
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107 10° 10° 10% 10° 10*

Time (minutes)
Figure 5.15: Performance vs Time, autotuner without feedback, 0.1% and 2% training sizes

We observe that with 0.2% training size for every prediction we need less than 8§ minutes while we
achieve 82% to 98% performance relative to the best one. For the 1% training size we need maximum
40 minutes (5 times more configurations) to reduce the range of the performance achieved between
89% and 99%. The brute force search is prohibitively slow. Particularly, it requires 500 to 3800 min-
utes for each application in order to improve the performance by 22% to a mere 1%. Thus, it is apparent
that a 62.5 fold increase in time does not compensate for a 22% improvement in performance.

For the version with feedback, the times required for the predictions are the same as before however the
performances have less variations and are more focused around 90%. Specifically, the 0.2% training
size reaches performances of 99% with 94.5% on average and the 1% further reduces its range between
92% and 99% with an average of 96.5%. More than before, the performances from the predictions in
less than 8 minutes and even those in less than 40 minutes, value more than the best ones that need
8.5 to 63 hours.
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Performance vs. Time
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Figure 5.16: Performance vs Time, autotuner with feedback, 0.1% and 2% training sizes

5.3 Energy Aware and Unaware Predictions

In this section we compare the tuning configuration predictions from the energy aware rating 1 with

the ones from non aware ré” =M f;lgp ®(Normalized to the base). The test files are the same in both

versions and we evaluate also the power savings.

By executing the autotuner with rating 5.3 for the test applications hotspot3D, lavaMD, myocyte, ft,
sp and [u we get the following tuning configurations along with the relative ratings, Table 5.11. We
use 10% of the total tuning configurations as the training size. We notice that the power consumption
of the coprocessor agree with the ratings, e.g. energy aware configurations consume less power than
the non aware. The major variations in power seem to happen proportionally to the physical cores and
hardware threads activated on the card. The power range depending on the physical cores:

19 : 100-125 Watts
38 : 140-165 Watts

57 :135-200 Watts

The performance reported is M felgp ® normalized. If we calculate the percentage change of the energy

aware configurations from the non aware we get the following results, Table 5.10. We see that from
the predicted configurations we have on average 7.49% power savings for only 0.8% raw performance
degradation. That result is important as it demonstrates also energy efficiency of the coprocessor and
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Power Performance

hotspot3D -16.30% -6.91%
lavaMD -15.76% -8.70%
myocyte 0.95% 1.40%
ft 0% 0.01%
sp -6.32% 8.62%
lu -7.50% 0.80%
Average -7.49% -0.80%

Table 5.10: Percentage change of raw performance between energy aware and unaware predictions.

shows also that an energy aware approach has more advantages and is limited in deteriorating raw
performance.
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Chapter 6

Discussion

6.1 General Assessment

Our autotuner proves to be effective in various environments. While varying the learning base, the
rating formula and the training size. However, caution should be exercised when tuning the stochastic
gradient descent’s parameters, i.e. learning rates and regulators, so that the model avoids overfitting
the training data and at the same time converges to satisfactory values. The predicted configurations
surpass the base performance and exhibit fine tuning for each application specifically. That is a very
important feature as for a developer to fine tune an application is a very toilsome task. He needs to
run performance analysis on each version of the application he makes in order to find critical sections
and modify them accordingly. He achieves higher performance gradually and not instantly.

In addition, the autotuner is relative fast once he is online. The offline part is the most time consuming
but the advantage is that it needs to happen only once. If the learning base consists of 14 applications,
with an average execution time on the coprocessor of 15 seconds, then for 2,880 tuning configura-
tions and 4 executions each we get a sum of 2,419,200 seconds or 672 hours. Thereafter, for each
new incoming application we need a partial profiling over the 0.1%-1% of the total tuning config-
urations. That step needs 4-40 minutes maximum and the autotuner returns in less than 30 seconds
the predicted best configuration. Depending on the performance levels we aim for, the training size
varies and consequently the time needed in the online stage. Yet, always we exceed the 90% of the
best performance. Besides the best configuration someone may ask the predicted rating/performance
for a particular tuning configuration which is also provided by the model.

Lastly, if we use feedback we expect to get improved predictions as the model further learns from the
incoming applications. In our experiments, we did not notice a major improvement because the test
size was small and the effect of the feedback was not propagated. However, it is a valid argument a
should be taken as plausible.

Table 6.1 shows the average percentage levels of the predicted configurations that were tested in our
experiments.

To compare with other tuning tools, the autotuner presents many advantages. Firstly, the manual guide-
lines are not able to provide assistance for particular applications, instead they suggest general modifi-
cations and execution environments for the majority of the applications. Certainly, they do not guide to
the best tuning configuration. Secondly, the autotuner is able to respond for the best configuration over
a very large space of tuning exploration in a timely fashion outperforming iterative searching tools.
Even though the iterative searching tools guarantee the best configuration, our autotuner constantly
reports a configuration achieving more than the 90% performance of the best one, a very important
realization.

As a tool our autotuner was built to tune applications that run natively on the Intel Xeon Phi Copro-
cessor. However, the platform is not a restriction and by modifying the execution and the profiling for
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Training size Best Rating Base Rating

0.1% 90.06% 131.42%
0.2% 93.39% 136.28%
0.5% 95.06% 138.71%
1% 94.53% 137.94%
2% 95.43% 139.25%
5% 95.47% 139.31%
10% 95.85% 139.87%

Table 6.1: Average percentages of the predicted configurations from the best and base ratings.

a different architecture the autotuner can easily be adapted and work efficiently.

6.2 Future Work

The current Autotuner can be expanded in various directions. Firstly, it can be extended by evaluat-
ing also concurrent execution on the Intel Xeon Phi Coprocessor. That means to be able and measure
the interference between the executing applications and assign them to exclusive sets of cores, under
performance and power restrictions. Furthermore, the host, the Intel Xeon Processor, can also be “’re-
cruited” and change the approach of application execution. The main running environment changes
to the processor and the coprocessor is used for offloading computing intensive parts of the code. So,
the Autotuner has to monitor the execution both on the processor and on the coprocessor as well as
explore the tuning configurations of the processor and exploit his architecture. Then the Autotuner
can acquire a generic profile by supporting different architectures and modes of execution, extending
also to GPUs and other multicore processors.

The employment of machine learning into the automatic tuning is very propitious approach and we
proved that we can achieve great results.
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Appendix

6.3 Source Code

The source code of the Autotuner tool that was developed for the purpose of this diploma thesis can
be found at https://github.com/LefterisChris/thesis-NTUA. The code is licensed under the
GPLV3 licence and can be modified and redistributed under these terms.

Copyright ©2016, Eleftherios - lordanis Christoforidis.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see http://www.gnu.org/licenses/.

111


https://github.com/LefterisChris/thesis-NTUA
http://www.gnu.org/licenses/

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη
	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution
	Thesis Structure

	Related Work
	Performance Analysis
	Gprof
	OmpP
	Vampir
	PAPI
	Intel® VTune™Amplifier
	Likwid
	Paradyn
	SCALASCA
	Periscope

	Performance Autotuning
	Self-Tuning libraries
	Compiler optimizations search
	Application parameters search
	Compiler optimizations & Application parameters search

	Autotuners tested on Intel Xeon Phi
	How our work is different from the bibliography?

	Experimental Testbed & Environment
	Intel Xeon Phi
	Architecture
	Performance Monitoring Units
	Power Management

	Roofline Model
	Model's Background
	The Roofline of our Testbed

	Tuning Parameters
	Compiler's Flags
	Huge Pages
	OpenMP Thread Affinity Control

	Applications Used
	Rodinia Benchmarks Suite
	NAS Parallel Benchmarks

	Characterization of the Tuning Space

	The Autotuner: Background & Implementation
	Collaborative Filtering
	The Latent Factor Model
	Stochastic Gradient Descent

	Offline Stage
	Structure
	The Composition of the Learning Base

	Online Stage

	Experimental Results
	Accuracy of Predictions
	Rating: MFlops/sec per Watt
	Rating: IPC per Watt

	Comparison with the Brute Force Search
	Energy Aware and Unaware Predictions

	Discussion
	General Assessment
	Future Work

	Bibliography
	Appendix
	Source Code


