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Abstract

As communication networks grow in size, they become increasingly
vulnerable to component failures. These networks consist of nu-
merous interacting entities (agents). Since distributed systems have
become popular and widely used in contemporary networking, the
provided solutions need to cope with erroneous and malicious com-
ponents in the underlying communication network. Security and
reliability issues that arise have been objects of extensive research in
the fields of Secure Multiparty Computations and Distributed Com-
puting. In our work we contribute to the realization of fundamental
communication primitives (Reliable Broadcast and Reliable Message
Transmission) in an adversarial distributed environment, by investi-
gating the impact of the network structure and the agents’ topology
knowledge level on the achievability of these tasks. We consider a
worst-case (Byzantine) adversary, which makes the agents misbe-
have arbitrarily,

Initially, we consider the t-locally bounded adversary model, intro-
duced in 2004 by Koo, where a fixed upper bound on the number of
corruptions in each agent’s neighborhood is imposed. We explore the
tradeoff between the level of topology knowledge and the solvability
of the problem by developing a versatile technique which allows us
to obtain impossibility results for every level of topology knowledge.
Checking the necessary conditions for the solvability of the prob-
lem proves to be NP-hard but along the way we obtain an efficient
2-approximation algorithm for the ad hoc case (where agents only
know their local neighborhood). On the positive, we generalize the al-
gorithmic idea behind the simple, yet powerful Certified Propagation
Algorithm (CPA), also introduced by Koo in 2004, and propose algo-
rithms, that match the obtained bounds (unique algorithms) in every
case. Thus, we exactly characterize the classes of graphs in which re-
liable communication is possible with respect to topology knowledge.
In order to achieve these we introduced the Partial Knowledge Model
in which each agent knows a part of the network, namely a connected
subgraph containing itself. As a part of the latter contribution, we
manage to settle an open question of Pelc and Peleg (2005) in the
affirmative, by showing that in ad hoc networks, CPA is unique, that
is, it can tolerate as many local corruptions as any other Broadcast
algorithm.



Furthermore, we manage to generalize our results in the General Ad-
versary model of Hirt and Maurer (1997), which subsumes earlier
models by adapting our techniques and algorithms from the t-locally
bounded model. Thus, we devise the first optimally resilient algo-
rithms for Reliable Broadcast/Message transmission under restricted
knowledge and general adversaries. We also study the efficiency of
RMT protocols by introducing an algorithmic property which implies
that a protocol scheme is as efficient as any other for a certain prob-
lem with respect to polynomial time. To obtain our latter results
we employ, among others, a novel notion of joining operation on ad-
versary structures, appropriate notions of separators in unreliable
networks, and a self-reducibility property of the RMT problem.

Finally, we study energy-efficient Broadcast in wireless networks,
where simultaneous transmissions lead to signal interference which
prevents message propagation. In particular, we examine the k-shot
wireless network model, in which a bound k on the number of trans-
missions for every player is given. We prove a lower bound on the
Broadcast time of any protocol.

Keywords: reliable broadcast, reliable message transmission, byzan-
tine adversary, partial knowledge, general adversary, incomplete net-
works, ad hoc networks, distributed computing, topology knowledge,
wireless networks, energy efficiency, k-shot Broadcast



Preface

The current thesis involves studies which resulted from my coopera-
tion with Christos Litsas, Aris Pagourtzis and Giorgos Panagiotakos.

The rapid growth of communication networks and the plethora of
accompanying applications constantly bring up new needs and chal-
lenges. Communication networks consist of numerous interacting
entities. These entities often wish to collaborate in order to achieve
certain tasks, which vary from basic ones, for example the distribu-
tion of digital content and common decision making, to more involved
ones, which build on the former ones; such an example is electronic
voting. While it is generally expected that the entities act decently, fol-
lowing some generally respected rules, ethics and agreements, faulty
or malicious parties may exist in the network, wishing to violate these
common rules or laws in order to serve their own goals against the
interests of benign participants. Such considerations put forth the
need for securing distributed computing environments.

Real-life applications involve networks of particularly complex struc-
ture. Therefore the need for strong theoretical support for reliable
communication between parts of the network increases. It is often
the case that research has focused on simplified network structures
and strong knowledge assumptions for impossibility and feasibility
results to be obtained. In our line of work, we explicitly consider
the network structure and the a priori knowledge that the interacting
entities possess about the network and study how this parameters
affect the correctness of information-exchange procedures. We con-
tribute in the identification of the minimal structural and knowledge-
related demands, which render security and reliability issues solv-
able. Our results can be applied in the design of networks that can
optimally support the usage of reliable communication protocols. An-
other practical benefit of our work is that, using our techniques, one
can exactly determine the worst fault situations that can be tolerated
in existing network infrastructures. The above studies can be applied
in mission- critical applications, such as flight control systems, con-
trol systems in nuclear power plants and military operations where
the communication infrastructure must be able to cope with failures
(or even worse malicious corruption) of some devices. Naturally low-
memory/computing power devices such as wireless sensors are used
is these circumstances and thus minimal connectivity and knowledge
requirements are imposed.



The problems of Reliable Broadcast and Reliable Message Transmis-
sion, extensively studied in our work, constitute fundamental build-
ing blocks for achieving more complex distributed tasks in weakly
connected networks and restricted participant knowledge models.
The motivation for partial knowledge considerations comes from large
scale networks (e.g. the Internet), where topologically local estima-
tion of corruption patterns may be possible, while global estimation
may be hard to obtain due to geographical or jurisdiction constraints.
Additionally, proximity in social networks is often correlated with an
increased amount of available information, further justifying the rele-
vance of the model. Our introduction of a robust model for restricted
knowledge, contributes to the foundations of a more realistic model-
ing regarding modern communication networks and their reliability.

The emergence of social networking, electronic commerce and elec-
tronic voting can potentially have a massive impact in ensuring eco-
nomic and social prosperity in an open and interconnected digital
world. In the course of achieving this aim public trust should be
built by guaranteeing the reliability of the procedures and the partic-
ipants’ protection from malicious behaviors. These issues can only be
settled by rigorous theoretical analysis in the context of related fields
such as Distributed Computing and Cryptography. Ideally the trust-
worthiness of such electronic services will be established and will
lead to increased participation of people regardless of financial and
social factors, since access in those procedures can be highly afford-
able. The latter can result in direct-democratic procedures governed
by principles of equality and justice.

Finally, our research can be interpreted as a study on knowledge
propagation in the framework where communication between partic-
ipants increases the amount of information that each one holds. By
explicitly studying structural and a priori knowledge variations, we
provide bounds on knowledge propagation in different models. Re-
laxing the knowledge notion in a probabilistic fashion, one can use
similar techniques to obtain analogous results on belief or opinion
propagation. Among others, this would provide an approach to de-
tect minimal crucial components of communication networks, the
control of which would result in opinion and belief dissemination.
The above could apparently be employed in advertising strategies but
on the other hand it could be used for securing networks against false
belief propagation.
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Chapter 1

Introduction

1.1 Distributed systems fundamentals

Distributed computing environments model the situation where sev-
eral interacting entities, hereafter referred as players, cooperate to
achieve a common goal in the absence of a central authority. In the
message passing framework, we assume that players communicate
by sending messages over communication channels in order to coop-
erate. The player set and the pattern of connections provided by the
communication channels describes the directed communication net-
work G = (V, E) where the node set V = {v1, . . . , vn} is identified with
the player set the edge set E contains a directed edge (vi , vj) if and
only if there is a communication channel between the players vi , vj

through which vi can send messages to vj. In the following we will
use the terms players and nodes interchangeably since the notions
coincide in the present study. We denote the set of all possible graphs
with G and the nodes of graph G with V (G). Observe that through
the definition of V each player can be considered to be assigned a
unique identifier vi. With V we denote the space of all possible node
identifiers. That is, the assignment of ids is fixed and is given by the
description of the network. Different assignments of ids in the same
graph have been considered in the literature to address issues which
depend expressly on the id assignment. However these issues can
also be addressed through our approach by considering families of
isomorphic graphs instead of different id assignments.

1.1.1 Initial knowledge of players

As is usual in the distributed computing literature, we assume that
each player, due to its participation in the communication network,
has some a priori local knowledge (e.g., about the network structure).
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Specifically, we assume that each player knows its id and the ids of its
neighbors in the network. This assumption is natural and realistic,
because even if a player has no knowledge at all, communicating with
all its neighbors can obtain some basic local information regarding
the set of players with which it can communicate. Variations of a
more refined model are considered in [48] and [1] where each node-
player has a number of ports, i.e., external connection points and
every communication channel connects two ports at adjacent nodes.
In that approach, a processor sends a message to its neighbor by
loading it onto the appropriate port. Although only knowledge of the
distinct ports is assumed in that model it actually coincides with the
knowledge of the neighbors’ ids if the id assignment is fixed, thus in
this case our knowledge assumptions are as weak as these of [48, 1].

Having assumed the lowest level of knowledge as described above,
in the following, when further initial knowledge is assumed, e.g.,
additional topological knowledge, it will be clearly stated in the de-
scription of the specific knowledge model studied. We assume that
the initial knowledge of every player (including its id and the ids of its
neighbors) is provided to it as a part of its initial input information
(see below)1. Whenever the distinction between of the knowledge and
the input value of a player is necessary we will refer to them as initial
knowledge and initial input value respectively. These two components
constitute the input of a player.

1.1.2 Inputs and outputs

In order to formalize the concept of a problem in the distributed set-
ting, one should primarily address the notions of input and output of
players. Each player is assumed to provide input and output values
depending on some real-world concerns. In [25] it is assumed that
each player consists of two entities, a process which performs oper-
ations on the messages communicated and an agent which provides
input to and receives output from the corresponding process. Intu-
itively one might think of processes as computers, and of agents as
the humans using the computers.

Although the latter distinctively captures the intuition, for ease of ex-
position, in our study, given a communication graph G, we assume

1From an algorithmic point of view, this means that the initial knowledge of the
players in the context of a specific knowledge model, can be modeled as a part of
their input in any algorithm considered in the specific model.
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the existence of a virtual node ve /∈ V (G) which we call the environ-
ment node and is connected with all players in V (G) through both
incoming and outgoing edges. In our model the inputs of a player
v are modeled as messages sent by ve to v and the outputs of v as
messages sent from v to ve. The graph which results from G by the
addition of environment node ve and all the edges connecting ve with
V (G) will be denoted by G∗, i.e., given the communication graph G
we define,

G∗ = (V ∗, E∗), with V ∗ = V (G)∪{ve}, E∗ = E∪{(e, v), (v, e) | ∀v ∈ V (G)}

The environment node ve and the graph G∗ will not be explicitly in-
cluded in the study of the corresponding distributed system. Instead
G∗ is a theoretical construction which is used to model the inputs
and output of players.

With X (e.g. {0, 1}∗) we denote the message space which also includes
the input and the output values; let the element ϸ ∈ X denote the
empty value (indicates abscence of message, input or output). Finally
with F we will denote the family of all functions f : V (G) → X .

1.1.3 Player interactions and synchrony

Let G = (V, E) be a communication network of players. For a player
v ∈ V denote with N+

G (v) = {u ∈ V | (v, u) ∈ E} the set of outgoing
neighbors, with N−

G (v) = {u ∈ V | (u, v) ∈ E} the set of incoming
neighbors of v and with NG(v) = N−

G (v) ∪N+
G (v) the set of all neigh-

bors. When the graph G is clearly implied by the context we will omit
the subscript G from the neighborhood notation.

Interaction history

We define the interaction history sequence which is a full description
of the messages exchanged between players, including their inputs
and outputs (as messages exchanged with node ve). The interaction
history sequence, is a finite sequence of function pairs,

(hi)i∈{1,...,k} = h1, . . . , hk = (S1, R1), . . . (Sk, Rk)
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where

Si : E∗ → X (Assignment of sent-messages to edges).
Ri : E∗ → X (Assignment of received-messages to edges).

We will also denote sequences (hi)i∈{1,...,k} simply by h when it is
clear by the context that h is a sequence. The interaction history se-
quence naturally describes the succession of events (sent or received
messages) happening in distributed environment. Obviously, such a
succession can only be defined if we assume an external source of
“real time" that in general is not directly observable by the processors
(cf. [24]). For the sake of convenience, we assume that real time is
represented by the sequence of natural numbers. The existence of
the two different assignments of sent and received messages to an
edge can be justified by the delays on the delivery time of a mes-
sage or even by the loss of messages due to channel malfunction as
considered in the description of the synchronous model in [39].

Input/Output uniqueness

As has been explained before, an assignment of a value/message x
to the edge (ve, w) indicates that x is an input value of player w,
whereas a value assignment to the edge (w, ve) indicates an output
of player w. In our model we assume single input and output values
for an interaction history of the distributed system, namely, a player
will receive at most one input value in the beginning of the interac-
tion history and will output at most one value during the interaction
history. Technically, we require that,

(Uniqueness of input) ∀v ∈ V (G),∀i ∈ {2, . . . , k}, Ri((ve, v)) = ϸ

(Uniqueness of output) ∀v ∈ V (G), |{i ∈ {1, . . . , k} : Si((ve, v)) ̸= ϸ}| ≤ 1.

Finally denote with H the space of all possible interaction history
sequences which is obviously a function of G and X .

In our model single input/output values are assumed. More general
models (as those used to describe the Multiparty Computation prob-
lem introduced in [56]) considering multiple input 2 and output values

2Differences between the single and multiple input case are clarified in [3]
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can be easily expressed in our model by omitting the input/output
uniqueness assumptions.

Time and synchrony

Having assumed an external source of “real time" we may also as-
sume that each player has access to a non decreasing function of
real time called clock, necessary for the player to observe any succes-
sion of events. The time period between two consecutive clock pulses
(clock(i), clock(i + 1)) is often referred to as a clock cycle. Important
notions associated with timing are the synchrony between the play-
ers’ clocks and the existence of bounds on message delivery delay.
Variations of these parameters is necessary to consider, even in the
level of abstraction where no computational model has been defined,
in order to define some basic notions. As is common in the liter-
ature, we will focus in the following two extreme models regarding
synchrony:

Synchronous model. In the synchronous model we assume that all
players have access to the same global clock (or else that all clocks are
completely synchronized) and the fact that messages sent through a
channel in a clock cycle will arrive at the destination in the same
clock cycle. An equivalent assumption is that all channels delays are
bounded by a known constant time. In this model the clock cycle
is called a round or step. Since all players have access to a global
clock, the common knowledge of time can be used by the players to
deduce some information. Considering the above, one can observe
that in the synchronous model, the sequence term hi refers to the
events (sending, reception of messages, inputs and outputs) that have
occurred during round i. Since all messages sent in round i arrive
at their destination in the same round, it holds that Si = Ri ,∀i ∈
{1, . . . , k}.

Asynchronous model. In contrast, in the asynchronous model, no
synchrony between players’ clocks is assumed. More importantly,
the delivery delay of messages is assumed to be finite but no known
time bound is assumed on it. That is a message sent through a
channel will arrive at its destination within some finite but unpre-
dictable time. The latter also implies that players’ clocks are rather
useless, at least as far as communication is concerned (as analyzed
in [48]). The above suggest that the only additional information that
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the players can deduce will be due to the events they observe and
their succession; because of this, algorithms in this model are said to
be event driven. As in [48], for a given interaction history h, we define
the asynchronous round to be the time period equal to the maximum
message delivery delay that occurs in h. This definition implies that
each message incurs a delay of at most one asynchronous round and
thus is compatible with the definition of round in the synchronous
model.

Interaction view of a player

Given an interaction history h, in order to determine the part of h of
which a player v is aware we need to define the following notions:

Let E+
v = {(v, u) | (v, u) ∈ E∗} the set of outgoing from v edges

and E−
v = {(u, v) | (u, v) ∈ E∗} the set of incoming to v edges

in graph G∗. Given the interaction history (hi)i∈{1,...,k} we define3

Sv
i = Si |E+

v
, Rv

i = Ri |E−
v

, i.e., the messages that player v sends and
receives including its input and output as messages exchanged with
the environment node ve. The interaction view of a player is actually
the part of the interaction history of which the player is aware of.
There is a clear distinction on this notion regarding the synchronous
and asynchronous model.

Interaction view in the synchronous model. Note that in the syn-
chronous model, even if no message has been received by v in some
round i, v actually knows that it has received and sent nothing (empty
value ϸ) in round i. Therefore, given an interaction history (hi)i∈{1,...,k},
the interaction view of player v in the synchronous model, can be de-
fined as:

(hv
i )i∈{1,...,k} = (Sv

1, Rv
1), . . . , (Sv

k, Rv
k)

Interaction view in the asynchronous model. In the asynchronous
model, a player can only observe that some messages have been re-
ceived (or sent) after others. The only (useful) notion of time in this
model, can be extracted from the succession of events observed by
the players. Therefore the interaction view of a player v will be a sub-
sequence of (hv

i ) which constitutes only of the terms that v receives or

3Where h|A is the restriction of function h to the domain A.
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sends a (non-empty) message. Namely, we define the set of indexes:

Iv =
{

i ∈ {1, . . . , k} :
(
∃(v, u) ∈ E s.t. Sj((v, u)) ̸= ϸ

)
∨

∨
(
∃(u, v) ∈ E s.t. Rj((u, v)) ̸= ϸ

)}
The interaction view of a player in the asynchronous model is defined
to be the subsequence (hv

i )i∈Iv of (hv
i )i∈{1,...,k}.

Observe that this sequence is defined only if v ∈ V (G∗), where G∗ is
the graph implied by the interaction history sequence h. For each
interaction view sequence (ai)i∈{1,...,k} of a player v, we define the set
of partial interaction views which constitutes of all the subsequences
of sequence a which contain the first term of a. For a partial inter-
action view subsequence p of a we will say that p is a j-round partial
interaction view if the index of the last term of a contained in p is j;
i.e., if j = max{i ∈ {1, . . . , k} | ai ∈ p}. With P we denote the space
of all possible partial interaction views. Obviously P is a function of
H.

1.1.4 Message function

In the distributed setting we are interested in the case where the
communication between players follows some rules 4, after the receipt
of their input. The rules that players use to communicate can be
described by a message function 5. A message function determines
the messages that a player is sending to its neighbors and its output
value according to its partial interaction view. These sent messages
and output of a player can be described as a term of an interaction
view sequence. Therefore we assume that given a j round partial
interaction view a, its image through the message function fmes is a
(j + 1)-round partial interaction view. To model situations where the
rules only depend on specific partial interaction view subsequences

4After the introduction of a computational model, it will be clear that these rules
actually constitute the distributed algorithm.

5Often, in the related literature, an assignment of message functions to all the
players is assumed. However, assuming a universal message function is also realis-
tic because it matches the case where all the communication rules are known to all
the players. This is compatible with the usual case where a distributed algorithm
is known to its entirety by all participating players. The definitions and results
can be trivially modified to capture the case where different message functions are
assumed to be assigned to players.
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(e.g. rules that depend only in messages received in the last round) 6,
for an arbitrary class PI of partial interaction view sequences we
define:

fmes : PI → P

Specifically, we assume that for a j-round partial interaction view a of
player v, fmes(a) = a ′ is the sequence a appended with a term which
constitutes of an assignment of sent messages to the outgoing edges
of v, i.e., Sv

j+1, and thus a ′ is a (j + 1)-round partial interaction view.
Note that the id of a player v with interaction view a is included in
a as a part of its initial input and will trivially be included in all its
partial interaction views because they all contain the first term of the
corresponding interaction view.

The partial interaction views of player v and the messages sent to
its neighbors can be treated as intermediate inputs and outputs of
player v. Observe that given a message function and the initial input
of every player, then an entire interaction history (or a set of possible
interaction histories is the asynchronous model) can be uniquely de-
termined with repeatedly applying the message function. We denote
the space of all possible message functions with Fmes.

1.1.5 Problems in distributed computing

To define the problem notion in our model, we first have to address
the notion of instance.

Instance. As in [18], we assume that an instance is a pair I ∈ G×F
which consists of a graph G and a function (or equivalently vector) fin

which assigns initial (input) values to all the players V (G). We denote
with I the space of all possible instances.

Problem and solution set. Considering the notion of a search prob-
lem (cf. [22]) in the sequential setting we define its analog in the dis-
tributed setting. We will simply refer to it as problem.

6This detail is useful to model systems where players have restricted memory
and their rules may consider only a specific part of their interaction view
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A distributed problem is a relation R ⊆ I × F . Each of these pairs
contains an instance (G, fin) and a corresponding output value as-
signment (vector) fout to all the players V (G). We define the set of
solutions for the instance I as R(I) = {fout : (I, fout) ∈ R}.

Solver of a problem

Defining a solver of a problem in the distributed setting is more com-
plicated than in the sequential setting (cf. [22]). In the latter, the
solver of a problem R can simply be defined as a function that maps
each instance x to a corresponding output string y s.t. (x, y) ∈ R. In
the distributed setting, a meaningful solver definition should include
a description of the rules that the players use to communicate, i.e.,
the message function. The latter allows us to determine every inter-
mediate input and output (received and sent messages) of a player.

A solver of problem R in the distributed setting is a message function
S ∈ Fmes, such that for every instance I of a problem R, the outputs of
the players due to the repeated application of S can be described from
the function Sout ∈ F with (I, Sout) ∈ R. Given the message function
S, the output vector Sout is well defined, as shown below. We handle
the cases of the synchronous and asynchronous model separately to
clarify the difference on the determination of the output.

Output Sout of players in the synchronous setting. In the syn-
chronous model the output of the players can be deterministically
determined by the instance and the players’ message function S. Ob-
serve that given an instance (G, fin), which includes the initial input
of players, one can define the output of each player v ∈ V (G) by
repeatedly applying the function S. We denote the output vector of
all players with Sout(I). For technical reasons we assume that Sout(I)
is the singleton which contains the corresponding output function
(output vector).

Output Sout of players in the asynchronous setting. As argued
in [48], the asynchronous model is inherently non-deterministic. This
holds true even when the protocols used are strictly deterministic
and use no randomization whatsoever. The reason for this is that the
model contains an inherently nondeterministic component, namely,
the ordering of message deliveries, which in the fully asynchronous
model is completely arbitrary. Despite the fact that the this obser-
vation complicates the behavior of the solver function, we can still
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obtain a well defined determination of the set of all possible outputs.
Namely, given the description of possible delays (which is the fully
asynchronous model can be any amount of time) and the instance
(G, fin), one can define the set of all possible outputs as described in
the synchronous model, taking into consideration all possible order-
ings of message deliveries. Thus, in the asynchronous model with
Sout(I) we denote the set of all possible outputs of the players V (G)
(all possible output vectors).

More formally we define the function Sout : I → 2F ∪ {⊥} with the
property that if Sout(I) ̸= ⊥ then Sout(I) is defined as above. Slightly
abusing the definition we will write S(I) instead of Sout(I) in the fol-
lowing.

Solver of problem R. We say that S is a solver for problem R (or
solves R) if for all I ∈ I the following holds: if R(I) ̸= ∅ then S(I) ⊆
R(I) and S(I) = ⊥ otherwise.

1.2 Computational model and reductions be-
tween distributed problems

The main component of a distributed algorithm is the formal descrip-
tion of the rules that the players should follow regarding the mes-
sages they send to other players. More specifically, at any given time,
it should be clear how a player decides what messages to send to each
of its neighbors and what output it produces, with respect to informa-
tion that it has already acquired since the initiation of the protocol.
This actually means that the main component of a distributed algo-
rithm is the computation of the previously defined message function
by each player.

Primarily, a distributed algorithm can be described by a (sequential)
state machine M, an identical copy7 of which is assigned to each
player and can be used to compute the corresponding message func-
tion (message exchanges can be regarded as intermediate inputs and
outputs of players).

7As in the case of the message functions, assignment of different state machines
to each player can be assumed, without essentially changing the model
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We consider machines (algorithms) which compute a message func-
tion f ∈ Fmes. Specifically, given a graph G an algorithm M computes
the function fmes : PI → P defined by fM(a) = a ′ if, when invoked on
sequence a, algorithm M halts with output a ′. We say that algorithm
M solves problem R if fM is a solver of R. We will use the notation
M(x) instead of fM(x).

Oracle Machine. Loosely speaking, an oracle machine is a machine
that is augmented such that it may pose questions to the outside.
We consider the case in which these questions, called queries, are
answered consistently by some function f , called the oracle. That is,
if the machine makes a query q then the answer it obtains is f (q) and
we assume that this anwser is obtained in one computation step. In
such a case, we say that the oracle machine is given access to the
oracle f . For an oracle machine M , a string x and a function f , we
denote by M f (x) the output of M on input x when given access to the
oracle f . We denote this machine with oracle f by M f .

We next introduce a new notion of reduction in distributed systems
analogous to the classic Turing reduction. This notion of reduction
has been informally used the literature (e.g. in generalizing the im-
possibility result for the Consensus problem from the case of 3 play-
ers to the case of n, cf. [39])

Oracle Reduction in Distributed Systems. A distributed problem
R reduces to a problem R′ (R ≤ R′) if there exists an oracle machine
M such that for every solver S′ of R′ it holds that MS′

out solves R.

1.2.1 Distributed Systems

Detailed descriptions of computational models for distributed sys-
tems, are presented in [39, 48, 24]. Despite the several different
computational models appearing in the literature, the main idea is
roughly the same and presented below:

We can assume that through a distributed algorithm Π each player
vi is associated with a state machine Πi, with possibly infinite state
set Q such that at any given moment, Πi is at some state q ∈ Q.
The communication of players can be modeled if we assume that the
machines Πi are interactive state machines (cf. [23]) or if we assume
that the links are also state machines as proposed in [48]. Observe
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that this model is not contradictory with the idea of a sequential ma-
chine M used in the previous section. This is because we can assume
that each state machine Πi has access to the sequential machine M
or else, contains it in its description and can simulate all the in-
termediate inputs and outputs of M internally. Naturally, we require
that Πi provides M with input corresponding to the partial interaction
view that it received and sends messages to all its outgoing neighbors
(state machines) according to the output of the sequential machine
M . In the following, we assume that a distributed protocol Π also
includes the description of the sequential machine M as described.
When we want to explicitly argue about the sequential machine M
implied by the distributed algorithm Π we will also refer to the dis-
tributed algorithm as (Π, M).

Players as state machines. Through a distributed protocol Π, each
player is assigned a state machine Πi with a (possibly infinite) state
set Q. As in [39], for each state machine Πi we assume a set of initial
states Q0 ∈ Q and a set of halting states QH ∈ Q; if Πi reaches a
halting state then no further activity (no messages generated) can
occur on behalf of Πi and the only state transition is a self-loop.
With Q we denote the space of all states. State transitions of Πi are
determined by the function transi which maps the vectors of sent
a received messages of player v and a state ql to a state ql+1. The
function transv is actually specified by the sequential machine M . The
messages that are sent by a player v are determined by the function
mesv which maps the current state of Πi to a vector of messages sent
to v’s neighbors.

Inputs and outputs of players. Adopting ideas from [39], we use
the simple convention of encoding the inputs and outputs in the
states. In particular, inputs are placed in designated input variables
in the start states and outputs appear in designated output variables
which can be assigned a value only once (write-once variable). The
fact that a machine Πi can have multiple start states is important
here, so that we can accommodate different possible inputs. In fact,
we normally assume that the only source of multiplicity of start states
is the possibility of different input values in the input variables.
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Runs

The execution of a distributed algorithm Π can be described in a
similar way with that of interaction history defined in Section 1.1.3
extended in a way that it also includes the states of the players-
machines. We will call this description a run 8. A run of Π in graph
G = (V, E) is a finite sequence of function triples,

(ri)i∈{1,...,k} = r1, . . . , rk = (C1, S1, R1), . . . (Ck, Sk, Rk)

where

Ci : V → Q (Assignment of states to all players).
Si : E∗ → X (Assignment of sent-messages to edges).
Ri : E∗ → X (Assignment of received-messages to edges).

Specifically we assume that in the initial term, C1 is the assignment
of initial states (and therefore inputs) to all players. Note that the
environment node ve we used in Section 1.1.3 to model the inputs
does not exist in this description. The sent-messages vector Si is
a function (the mesv function) of Ci and the state vector Ci+1 is a
function (the transv function) of the triple (Ci , Si , Ri).

View of a player v. The view of a player is actually the part of
the run of which the player is aware of and can be defined as a
sequence in a way completely analogous to that of the interaction
view (cf. Section 1.1.3) of the player, i.e., by restricting the state,
sent-messages and received messages assignments to the ones that
v can observe. We denote the view sequence of a player in a run r
with view(v, r).

We next define the notion of indistinguishable runs which will be
used repeatedly in our study.

Definition 1.1 (Indistinguishable runs). We will say that two runs
r, r ′ are indistinguishable with respect to player v, denoted r

v∼ r ′, if
view(v, r) = view(v, r ′), i.e. if v has the same sequence of states outgo-
ing and incoming messages in both runs r, r ′. Observe that the notion
is well defined even if we assume runs in different communication
networks.

8The terms execution and scenario have been used in the literature for the same
notion.
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Distributed Systems. A distributed system is usually defined as a
set of players connected by a communication network G and run a
distributed algorithm Π. However, Halpern and Moses [24] gave a
more flexible definition of a distributed system which we are going to
adopt in this thesis. They identified a distributed system (running
distributed algorithm Π in G) with a set runs RΠ. Observe that,
corresponding to every distributed system, given an appropriate set of
assumptions about the properties of the system, there is a natural set
RΠ of all possible runs of the system. Thus, for example, a distributed
system RΠ is synchronous exactly if in all possible runs of the system
the players and the communication medium work in synchronous
phases.

As a trivial case one could consider the system RΠ which is syn-
chronous and algorithm Π which is deterministic; the only source of
multiplicity of runs in this system is the different input vectors of the
players.

1.3 Efficiency of distributed protocols

Usually in the literature, the efficiency of distributed protocols is mea-
sured with respect to the number of communication rounds that are
required for all players to halt and with respect to the amount of
communication that is required among the players.

Definition 1.2 (Round complexity). The round complexity of a dis-
tributed algorithm Π is the maximum number of rounds over all runs
r ∈ RΠ such that all players halt.

Recall that in agreement with [48], we have defined a round of a
run r in the asynchronous system to be the time period equal to the
maximum message delivery delay that occurs in r. Thus the above
definition also holds for the asynchronous model9.

Definition 1.3 (Bit/Message complexity). The bit complexity (resp.
message complexity) of a distributed algorithm Π is maximum total
number of bits (resp. messages) transmitted during a run over all runs
r ∈ RΠ.

9 A different definition of the round complexity of asynchronous systems was
assumed by Fitzi in 2002 where it is stated that the round complexity of an asyn-
chronous protocol is its round complexity when run in a synchronous network.
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Lastly, we define the local computations complexity, which represents
the worst case of computational complexity of the sequential machine
M over all runs and players. Recall that a distributed algorithm Π im-
plies the existence of the sequential machine M which essentially can
be assumed to execute all local (internal) computations of the play-
ers. As stated before, we will also refer to the distributed algorithm
also as (Π, M).

Definition 1.4 (Local computations complexity). The local compu-
tations complexity of a distributed algorithm (Π, M) is the maximum
number of local computational steps that the corresponding sequential
machine M executes in a round, over all players and all runs r ∈ RΠ.

Definition 1.5 (Fully polynomial algorithm). We will say that a dis-
tributed algorithm Π is fully polynomial if it is of polynomial round, bit
and local computations complexity over all instances.

We next give the definition of a polynomial time reduction between
distributed problems which is analogous to the notion of a Cook re-
duction.

Definition 1.6 (Polynomial oracle reduction in distributed systems).
A distributed problem P polynomially reduces to a problem P ′ (P ≤p P ′)
if there exists a fully polynomial distributed algorithm (Π, M) with M
being an oracle machine, such that for every solver S′ of R′ it holds that
MS′

out solves R.

1.4 Adversarial behavior of players

As communication networks grow in size, they become increasingly
vulnerable to component failures. Since distributed computing has
become popular and widely used in contemporary networking, the
provided solutions need to cope with erroneous and malicious com-
ponents in the underlying communication network.

The dishonesty or malfunction of players is modeled by a central
adversary that corrupts some players hereafter referred to as the cor-
rupted players; we will refer to the players that are not corrupted by
the adversary as honest. For instance, one may think of the adver-
sary as a hacker who attempts to break into the players computers.
Different adversary models can be determined with respect to the cor-
ruption capacity of the adversary; among all corruption types, Byzan-
tine (or active) corruption models a worst-case fault scenario, namely
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components can behave arbitrarily (even maliciously) as transmitters,
by either stopping, rerouting, or altering transmitted messages in a
way most detrimental to the communication process. The study of
distributed systems in the presence of adversarial behavior involves
the design of algorithms that work correctly despite the existence of
corrupted players in the network and usually without knowing their
exact location.

1.4.1 The Adversary Model

In the distributed systems setting an adversary model defines the sets
of players that can be corrupted by the adversary (possible/admissible
corruption sets) as well as the possible behavior of the corrupted
players, i.e., all the possible actions that the corrupted players can
execute. The adversarial behavior in an execution of a distributed
protocol can be described exactly by the set and the actions of the
corrupted players; more concretely, in the context of our study we can
consider the adversary model as a set of pairs T = (C,ΠC) where C is
the set of corrupted players and ΠC is the protocol they execute. We
consider the byzantine adversary model which imposes no restric-
tions on the behavior of the corrupted players; i.e., the corrupted
players are under full control of the central adversary and misbehave
in arbitrary manner.

Computational power of the adversary. The adversary model also
determines the adversarys computing power. Most common assump-
tions are that the adversary is either unlimited, or is computationally
bounded to probabilistic polynomial time computations in a security
parameter κ.

Reliability of Protocols. The extend to which a distributed protocol
achieves a given task under the existence of an adversary, is defined
with respect to a security parameter κ, allowing an error probability
ϸ that is a negligible function of κ. A protocol is said to achieve a task
in the information-theoretic setting (or is unconditionally reliable) if
it achieves the task with a negligible error probability ϸ against an
unlimited adversary. If it achieves the task with zero error probability
against an unlimited adversary then the protocol is called perfectly
reliable.
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In the current thesis we consider the existence of an unbounded
Byzantine adversary and study the solution of problems with zero
error probability, thus we focus on the perfectly reliable setting. Our
results also hold for the other adversary types of adversarial cor-
ruption capacity, since a byzantine adversary models a worst-case
scenario on the corruption strength.

As mentioned, the adversary model can be distinguished with respect
to the sets of players that can be corrupted. The extensively stud-
ied t-threshold adversary model corresponds to the situation where
the adversary can corrupt at most t players in the network. In this
work we consider the following adversary models with respect to the
possible corruption sets:

t-Locally Bounded Adversary. At most a certain number t of cor-
ruptions are allowed in the neighborhood of every node. The model
was introduced by Koo in [30]. The importance of this model comes,
among others, from the local restrictions imposed to the adversary,
which may be used to derive local criteria which can be employed in
unknown topology networks. The locally bounded adversarial model
is particularly meaningful in real-life applications and systems. For
example, in social networks it is more likely for an agent to have
a quite accurate estimation of the maximum number of malicious
agents that may appear in its neighborhood, than having such infor-
mation, as well as knowledge of connectivity, for the whole network.
In fact, this scenario applies to all kinds of networks, where each
node is assumed to be able to estimate the number of traitors in its
close neighborhood. It is also natural for these traitor bounds to vary
among different parts of the network. Motivated by such considera-
tions, in this work we also introduce a generalization of the t-locally
bounded model with a varying bound for each neighborhood.

Considering the possible corruption sets. the general adversary model
was initiated by Hirt and Maurer in [26], subsumes all known adver-
sary models, both the aforementioned included. A description fol-
lows.

General Adversary. The adversary can corrupt any set in a given
family of sets Z called the adversary structure. A structure Z for the
set of players V is a monotone family of subsets of V , i.e. Z ⊆ 2V ,
where all subsets of Z are in Z if Z ∈ Z.
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1.4.2 The Communication Model

We assume the message passing model as described in the dis-
tributed systems model in the beginning of the chapter. In this model
the players communicate through channels which are represented by
the edges of the communication network. A different case of adver-
sary has been considered in the literature (cf.[6]), namely, an adver-
sary who corrupts the communication channels in a way that either
obtains all information communicated through a corrupted edge or
even alters the messages that are send through that edge. Our study
is conducted in the model where the channels of communication are
reliable and once the message is sent through a channel, it will arrive
intact to its destination in some finite time. Specifically, we consider
the authenticated channels model.

Authenticated communication channels. In our study we assume
authenticated channels of communication which means that the chan-
nels are resistant to tampering but not necessarily resistant to over-
hearing, i.e., messages, once sent, cannot be changed but can be
read by an adversary. Moreover we adopt the usual assumption that
the receiver of a message always knows the identity of the sender.

Regarding the synchrony of channels we explicitly consider the syn-
chronous model as described in Section 1.1.3. However, our studies
can be easily extended to the asynchronous model because all the
protocols presented are event-driven.

1.4.3 Efficiency of distributed protocols in the pres-
ence of adversaries

The definitions of distributed protocols complexity measures as pre-
sented in Section 1.3 take in to account the actions of all players. This
allows a byzantine adversary to completely determine every complex-
ity measure of a protocol by either running for a very large number
of rounds, sending large messages or performing arbitrary local com-
putations. Thus, in the case where some players are controlled by
an adversary we should define the complexity measures only with re-
spect to the actions of honest players, which actually run the protocol
correctly; namely, we modify the definitions as follows:

Round complexity (RC): The maximum number of rounds that are
required by any honest player in the worst case.
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Bit Complexity (BC): The total number of bits sent by all honest play-
ers during the protocol execution in the worst case.

Local Computations Complexity (LCC): The maximum over the local
computational worst-case complexities of all honest players.

1.5 Agreement and information propagation

1.5.1 Reliable Broadcast Problem

A fundamental problem in distributed networks is Reliable Broadcast
(or Byzantine generals), in which the goal is to distribute the message
of a designated player, called the dealer, correctly despite the pres-
ence of Byzantine corruptions. In general, agreement problems have
been primarily studied under the threshold adversary model, where a
fixed upper bound t is set for the number of corrupted players and it
has been shown that Reliable Broadcast can be achieved if and only
if t < n/3, where n is the total number of players.

The Reliable Broadcast problem has been extensively studied in com-
plete networks under the threshold adversary model mainly in the
period from 1982, when it was introduced by Lamport, Shostak and
Pease [37], to 1998, when Garay and Moses [19] presented the first
fully polynomial Reliable Broadcast protocol optimal in resilience and
round complexity. The difficulty of designing a solution for can be
primarily summarized in a scenario where the dealer is corrupted be-
cause the dealer may send conflicting values to the players in which
case we demand that the players finally agree on the same arbitrary
value. Essentially, the major task is to circumvent errors without
losing unanimity. The formal definition of the Reliable Broadcast
problem follows,

Definition 1.7 (Reliable Broadcast). Let V = {p1, p2, · · · , pn} be a set
of n players, X be a finite domain and D ∈ V be the dealer. Then
we say, that Π is a Reliable Broadcast (Byzantine Generals) protocol
among players in V with values in X , where D has as input a value
m ∈ X and all players finally decide on (output) a value yi ∈ X , if it
satisfies the following conditions:

1. Validity: If the dealer is honest, then all honest players will de-
cide on m;

2. Consistency: All honest players finally decide on the same value.
i.e. ∀pi , pj honest players, yj = yi holds;
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In multi-hop networks where the dealer is not directly connected with
all the players the problem becomes more difficult; even in the case
where the dealer is honest the adversary may corrupt a crucial part
of the network and make it impossible for some players to decide on
the correct value. This situation is depicted in Figure 1.1,

Figure 1.1: Broadcast in Incomplete Networks

The case of Reliable Broadcast in incomplete networks has been stud-
ied to a much lesser extent, in a study initiated in [14, 15, 36],
mostly through protocols for Secure or Reliable Message Transmis-
sion which, combined with a Reliable Broadcast protocol for complete
networks, yield Reliable Broadcast protocols for incomplete networks.
Naturally, connectivity constraints are required to hold in addition to
the n/3 bound. For instance, in the threshold model, at most t < c/2
corruptions can be tolerated, where c is network connectivity, and
this bound is tight[14].

1.5.2 Reliable information propagation

In this work we address the problem of Reliable Broadcast with an
honest dealer in generic (incomplete) networks. As we will see in
Section 3.7, this case essentially captures the difficulty of the gen-
eral problem, where even the dealer may be corrupted by simulating
the message transmissions of a Broadcast protocol for complete net-
works. The problem definition follows.

Reliable Broadcast with Honest Dealer. The network is repre-
sented by a graph G = (V, E), where V is the set of players, and
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E represents authenticated channels between players. We assume
the existence of a designated honest player, called the dealer, who
wants to broadcast a certain value xD ∈ X , where X is the initial in-
put space, to all players. We say that a distributed protocol achieves
Reliable Broadcast if by the end of the protocol every honest player
has decided on xD, i.e. if it has been able to output the value xD

originally sent by the dealer.

As we previously pointed out, the problem is trivial in complete net-
works; we will consider the case of incomplete networks here. For
brevity we will refer to this problem as the Broadcast problem. Ob-
serve that achieving Broadcast in this way is actually equivalent with
achieving correct (reliable) message transmission from the dealer D
to all players. The honest dealer case is particularly meaningful in
the case of wireless networks. Due to he local broadcasts that occur
in this model the dealer is roughly committed to send the same value
to all its neighbors.

We also consider the closely related Reliable Message Transmission
problem where a player wants to correctly transmit a message to an-
other. In fact a solution for Reliable Message Transmission for all the
possible dealer-player pairs implies a solution for the Reliable Broad-
cast problem with an honest dealer. The definition of the problem
follows.

Reliable Message Transmission. We assume the existence of a des-
ignated player D, called the dealer, who wants to propagate a certain
value xD ∈ X , where X is the initial message space, to a designated
player R, called the receiver. We say that a distributed protocol
achieves (or solves) RMT if by the end of the protocol the receiver
R has decided on xD, i.e. if it has been able to output the value xD

originally sent by the dealer.

1.6 Topology Knowledge

Regarding the initial knowledge that the players possess about the
topology of the network, the next two cases are the ones that have
been mostly studied in the literature.

• Ad Hoc Networks: Each player is only aware of its neghbors’
ids.

• Known Topology Networks: Each player is aware of the entire
network topology.
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Furthermore, in Chapter 5 we consider a lower level of initial topology
knowledge where the players are only aware of their own ids. In this
work we also introduce the Partial Knowledge Model, in which each
player only has knowledge over the topology of an arbitrary subgraph
of the network.

As can be seen in the rest of this work, the knowledge over the possi-
ble corruption sets is naturally related with the topological knowledge
that each player possesses. The motivation for partial knowledge con-
siderations comes from large scale networks (e.g. the Internet) where
topologically local estimation of the power of the adversary may be
possible, while global estimation may be hard to obtain due to geo-
graphical or jurisdiction constraints. Additionally, proximity in social
networks is often correlated with an increased amount of available in-
formation, further justifying the relevance of the model.



35

Chapter 2

Ad Hoc Broadcast in the
Locally Bounded Model

In this chapter we consider the Reliable Broadcast problem in incom-
plete networks. We study the resilience of the Certified Propagation
Algorithm (CPA) [30], which is particularly suitable for ad hoc net-
works. We address the issue of determining the maximum number
of corrupted players tCPA

max that CPA can tolerate under the t-locally
bounded adversary model, in which the adversary may corrupt at
most t players in each player’s neighborhood. For any graph G and
dealer-node D we provide upper and lower bounds on tCPA

max that can
be efficiently computed in terms of a graph theoretic parameter that
we introduce in this work. Along the way we obtain an efficient 2-
approximation algorithm for tCPA

max . We further introduce two more
graph parameters, one of which matches tCPA

max exactly. Our approach
exactly captures the information propagation of CPA and thus allows
to provide intuitive and easily manageable conditions concerning the
behavior of the algorithm.

Finally, our study allows us to show that CPA is unique, against
locally bounded adversaries in ad hoc networks, among all safe al-
gorithms, i.e., algorithms which never cause a node to decide on an
incorrect value. This means that CPA can tolerate as many local cor-
ruptions as any other safe algorithm; this settles the open question
of CPA Uniqueness posed by Pelc and Peleg in [47].

2.1 Introduction

In the case of an honest dealer, particularly useful in wireless net-
works due to local Broadcasts, the impossibility threshold of n/3 does
not hold; for example, in complete networks the problem becomes
trivial. However, in incomplete networks the situation is different.
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A small number of traitors (corrupted players) may manage to block
the entire protocol if they control a critical part of the network, e.g. if
they form a separator of the graph. It therefore makes sense to define
criteria depending on the structure on the graph (graph parameters),
in order to bound the number or restrict the distribution of traitors
that can be tolerated.

An approach in this direction is to consider topological restrictions on
the adversary’s corruption capacity. The importance of local restric-
tions comes, among others, from the fact that they may be used to
derive local criteria which the players can employ in order to achieve
Broadcast in ad hoc networks. Such an example is the t-locally
bounded adversary model, introduced in [30], in which at most t-
corruptions are allowed in the neighborhood of every node.

2.1.1 Related work

Koo [30] proposed a simple, yet powerful protocol for the t-locally
bounded model, the Certified Propagation Algorithm (CPA) (a name
coined by Pelc and Peleg in [47]), and applied it to networks of spe-
cific topology, namely grid networks. In 2005 Pelc and Peleg [47]
considered the t-locally bounded model in generic graphs and gave
a sufficient topological condition for CPA to achieve Broadcast in
such graphs. They also provided an upper bound on the number
of corrupted players t that can be locally tolerated in order to achieve
Broadcast by any protocol, in terms of an appropriate graph param-
eter; they left the deduction of tighter bounds as an open problem.
To this end, Ichimura and Shigeno [27] proposed an efficiently com-
putable graph parameter which implies a tighter, but not exact, char-
acterization of the class of graphs on which CPA achieves Broadcast.

Two important open questions were stated in the study [47] regard-
ing reliable broadcast: (a) to derive a tight parameter revealing the
maximum number of traitors that can be locally tolerated by CPA in a
graph G with dealer D, thus yielding a tight condition for CPA correct-
ness, and (b) to check whether the CPA Uniqueness conjecture holds,
which essentially states that whenever Broadcast is possible CPA will
manage to achieve it; equivalently, that no ad hoc algorithm can tol-
erate more local corruptions than CPA on any instance (G, D). Both
these open questions have been addressed and answered mainly in
our work [38, 44]. In this chapter we will present the results of [38]
and subsequent work regarding both these questions.
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For the former question, we define a new graph parameter that cap-
tures exactly the number that can be locally tolerated by CPA, thus
providing a tight condition for CPA correctness as mentioned above.
Very recently Tseng et al. [53] independently also gave a necessary
and sufficient condition for CPA correctness; a corresponding tight
parameter is implicit in their work. Our condition is obviously equiv-
alent to that of [53]; however, no result concerning CPA Uniqueness,
neither any necessary condition for Broadcast in general are given
in [53]. On the other hand, our approach not only gives a faster
way to check the tight condition, most importantly it allows us to
prove that the same condition is necessary for achieving Broadcast
through any safe1 algorithm in the ad hoc model, thus establishing
that whenever Broadcast is possible, CPA can achieve it. This pro-
vides an affirmative answer to the second question of [47], namely we
have proved that the CPA Uniqueness conjecture holds with respect
to safe Broadcast algorithms. Note the restriction in the class of safe
algorithms was also implied in [47].

Moreover, our approach leads to an efficient 2-approximation algo-
rithm for the problem of determining the maximum local number of
traitors that CPA (and by the uniqueness result any safe algorithm)
can tolerate on a given instance (G, D). A 2-approximation scheme
was also implied in the study of [27]; however, our algorithm has
O(|E| log δ) time complexity, where δ is the minimum degree over all
players. This significantly improves upon the complexity bound for
the approximation scheme implied in [27] which is O(|V |(|V |+ |E|)).
The significance of this approximability result comes from the fact
that this number is NP-hard to compute as shown in our work in [44]
which is presented in the Chapter 3. Let us also mention that in [44]
a new (equivalent) necessary and sufficient condition for Broadcast
was given, which, despite being more adaptable to different adver-
sary models, does not yield an efficient approximation algorithm in
any obvious way. Hence, the condition presented in this chapter is
interesting per se.

2.2 Outline

We study the behavior of CPA in generic (incomplete) networks, with
an honest dealer. As we will see in Section 2.10, this case essentially

1By the term ‘safe’ we refer to the notion of algorithms that never make a node
take a wrong decision.
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captures the difficulty of the general problem, where even the dealer
may be corrupted. Our first contribution is the exact determination
of the maximum number of corrupted players tCPA

max (G, D) that can be
locally tolerated by CPA, for any graph G and dealer D. We do this by
developing three graph parameters:

• K(G, D) is determined via an appropriate level-ordering of the
nodes of the graph. We show that t < K(G, D)/2 is a sufficient
condition for CPA to be t-locally resilient and that t < K(G, D) is
a necessary condition, implying that ⌈K(G, D)/2⌉ − 1 ≤ tCPA

max <
K(G, D). We prove that our parameter coincides with the pa-
rameter X̃ (G, D) of [27]. We further propose an efficient algo-
rithm for computing K(G, D) which is faster than the algorithm
for computing X̃ (G, D) proposed in [27]. Note that this immedi-
ately gives an asymptotic 2-approximation for tCPA

max ; we provide
an example that shows that the ratio of this algorithm is tight.

• M(G, D, t), depending also on a value t, is a parameter that im-
mediately reveals whether CPA is t-locally resilient for graph G
and dealer D, by simply checking whether M(G, D, t) ≥ t + 1.
Therefore, via this parameter, we provide a necessary and suffi-
cient condition for CPA to be t-locally resilient. Such a condition
was not known until very recently, when a necessary and suf-
ficient condition was independently given in [53]. However, the
way in which the condition of [53] is defined implies a super-
exponential time algorithm to check it (actually no algorithm is
given in [53]). On the other hand, we will see that even a naïve
algorithm to compute M(G, D, t) would need single exponential
time.

• T (G, D) = max{t ∈ N
∣∣ M(G, D, t) ≥ t + 1}, gives the maxi-

mum number of corrupted players that CPA can tolerate in ev-
ery node’s neighborhood, hence exactly determining tCPA

max (G, D).

In addition, using the M(G, D, t) parameter we prove that CPA is
unique among the t-locally safe ad hoc broadcast algorithms. That is,
if a t-locally safe ad hoc broadcast algorithm is t-resilient for a graph
G with dealer D, then CPA is also t-resilient for G, D. Thus we provide
and affirmative answer to the open problem of CPA Uniqueness posed
in [47].
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2.3 Problem and Model Definition

In this section, we formally define the problem and the model as well
as some usefull notions which are going to be used throughout this
thesis. As we previously mentioned, the goal of Reliable Broadcast is
to have some designated player, called the dealer, consistently send
an input value to all other players of the network even in the presence
of a central adversary which corrupts some players and controls them
in some extend. Therefore the effectiveness of a Reliable Broadcast
protocol should be considered w.r.t. the capacity of the adversary,
i.e. the adversary model.

Adversary model T . An adversary model T defines the sets of play-
ers that can be corrupted by the T -adversary (possible/admissible
corruption sets) as well as the possible behavior of the corrupted
players, i.e., all the possible actions that the corrupted players can
execute. The adversarial behavior in an execution of a distributed
protocol can be described exactly by the set and the actions of the
corrupted players; more concretely, T can be regarded as a set of
pairs T = (C,ΠC) where C is the set of corrupted players and ΠC is
the protocol they execute. We consider the byzantine adversary model
which imposes no restrictions on the behavior of the corrupted play-
ers. Regarding the possible corruption sets, in this chapter we only
consider the t-locally bounded model.

The network model that we use in this chapter is defined below.

Network model. We assume that the players V are arranged in a
communication network which is represented by a graph G = (V, E)
where E is a set of undirected, authenticated channels of communi-
cation between pairs of players.

In this chapter we address the problem of Reliable Broadcast with an
honest dealer in generic (possibly incomplete) networks. For brevity
we will refer to it simply as the Broadcast problem. The problem is
trivial in complete networks; we will consider the case of incomplete
networks here. As we will see in Section 3.7, the case of an honest
dealer in incomplete networks essentially captures the difficulty of
the general problem, where even the dealer may be corrupted. A pro-
tocol for the general case can be devised by simulating the message
exchange of Broadcast protocols in complete networks, which have
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been extensively studied. We consider deterministic protocols for the
solution of the problem.

Definition 2.1 (Reliable Broadcast with honest dealer/Broadcast).
Let V = {v1, . . . , vn} be the set of n players arranged in a commu-
nication network G = (V, E) as described above and X be a finite
domain. Consider a distributed protocol Π among players V , where
player D ∈ V (called the dealer) holds an input value xD ∈ X and
every player v ∈ V finally decides on a single output value yv ∈ X .
Also assume any adversary model T s.t. the dealer can not be cor-
rupted. Protocol Π achieves Broadcast (or is a Broadcast protocol) in
(G, D) under the adversary model T if for any possible corruption set
T and any adversarial behavior of this set, all honest players decide
on the dealer’s input value, i.e., ∀v ∈ V \ T, yv = xD.

Usually, also “termination" is demanded by the standard definition
of Broadcast, i.e., that it must be guaranteed that all correct players
eventually terminate the protocol. As usual in the related literature,
we omit the termination study, which is implied by the studies of the
algorithms’ correctness.

Our study in this chapter concerns the t-locally bounded adversary
model introduced by [30]. The family of t-local sets (defined below)
plays an important role in our study since it coincides with the family
of admissible corruption sets.

Definition 2.2 (t-local set). Given a graph G = (V, E) and an integer
t ∈ N, a t-local set is a set C ⊆ V for which ∀u ∈ V, |N (u) ∩ C| ≤ t.

t-locally bounded adversary model. In this model the adversary
can only corrupt a t-local set during an execution of a protocol in the
system.

In contrast with the extensively studied t-threshold model (cf. [37]),
which bounds the total number of corrupted players, the t-locally
bounded model was introduced to bound the corruptions in the neigh-
borhood of honest players. This could be viewed as modeling the sit-
uation where corrupted players are distributed somewhat uniformly
across the network. Besides, bounding the total number of corrupted
players, may not be very interesting in incomplete networks since an
adversary could simply corrupt all players in the neighborhood of a
specific honest player and thus, block any message propagation to it.
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2.3.1 Protocol Properties

We next define some protocol properties, some of which were intro-
duced in [47], that facilitate our study and are used throughout this
thesis.

Definition 2.3 (t-locally resilient algorithm for (G, D)). An algorithm
which achieves Broadcast in a given graph G with dealer D for any t-
local corruption set T and any behavior of T is called t-locally resilient
for (G, D).

According to the definition of a Broadcast algorithm, a t-locally re-
silient algorithm for (G, D) is an algorithm which achieves Broadcast
in (G, D) under the t-locally bounded adversary model.

Definition 2.4 (Safe / t-locally safe algorithm). An algorithm which
never causes an honest node to decide on (output) an incorrect value,
for any graph-dealer pair (G, D), is called safe.
An algorithm which never causes an honest node to decide on an in-
correct value under any t-local corruption set and any behavior of it,
for any graph-dealer pair (G, D), is called t-locally safe.

Note that a safe algorithm might still fail, particularly by not correctly
delivering the message to all nodes of the network. Essentially, a safe
Broadcast algorithm ensures that a player will decide on a value only
in the case she can undoubtedly deduce from her view (input and
exchanged messages) that this is the actual value of the dealer.

Observe that an algorithm is t-locally safe if it satisfies the desired
property for every instance (G, D). On the other hand, the algorithm
is t-locally resilient for (G, D) if it satisfies the property for the specific
instance (G, D). Therefore, it might be the case that an algorithm is
t-locally resilient for (G, D) but not t-locally safe, even if the first
trivially implies that the safeness property holds for (G, D).

The importance of safeness is pointed out in [47], where it is regarded
as a basic requirement of a Broadcast algorithm; it guarantees that
even if all players do not have sufficient information to decide on the
dealer’s value, no one will eventually decide on an incorrect value
or accept false data. We next formally introduce the notion of the
uniqueness of an algorithm.

Definition 2.5 (Uniqueness of Algorithm). Let A be a family of algo-
rithms. An algorithm A is unique (for Broadcast) among algorithms in A
if the existence of an algorithm of family A which achieves Broadcast
in an instance (G, D) implies that A also achieves Broadcast in (G, D).
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A unique algorithm A among A, naturally defines the class of in-
stances (G, D) in which the problem is solvable by A-algorithms,
namely the ones that A achieves Broadcast in.

2.4 The Certified Propagation Algorithm

As explained in the model, we consider a network where nodes may be
corrupted, but at most t-corruptions are allowed in the neighborhood
of every node. A corruption set with the above property is called t-
local set. Given a graph G and dealer D, an algorithm which achieves
Broadcast for any t-local corruption set is called t-locally resilient.

An algorithm which achieves Broadcast in the t-locally bounded ad-
versary model is called t-locally resilient.

The previously mentioned Certified Propagation algorithm uses only
local information and thus is particularly suitable for ad hoc net-
works. CPA is probably the only Broadcast algorithm known up to
now for the t-locally bounded model, not requiring knowledge of the
network topology.

Protocol 1: Certified Propagation Algorithm (CPA) [30]

Input (for each node v): Dealer’s label D, labels of v’s neighbors, cor-
ruption bound t.
Code for D: send value xD to all neighbors, decide on xD and termi-
nate.
Code for v ∈ N (D): upon reception of xD from the dealer, decide on
xD, send it to all neighbors and terminate.
(* certified propagation rule *)
Code for v /∈ N (D) ∪ D: upon reception of t + 1 messages with the
same value x from t + 1 distinct neighbors, decide on x, send it to all
neighbors and terminate.

As shown in [30], CPA is a t-locally safe Broadcast algorithm. The
proof is given for completeness.

Theorem 2.1. CPA is t-locally safe.

Proof. We will show that if a player decides on a value x through CPA
then x = xD. Assume on contrary that there is a set of players V ′ ⊆ V
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that decide on values different than xD. Let v be the player of V ′ that
decides in the earliest round among all players in V ′, i.e., the first
player to make an incorrect decision, and assume that v decides on
x ̸= xD. v cannot be a neighbor of the dealer since all neighbors of the
dealer only decide on xD as can be shown in the respective decision
rule of CPA. Therefore v has received t+1 copies of x from t+1 distinct
neighbors. Since at most t(v) neighbors can be corrupted, at least
one honest player has decided in x ̸= xD before v. A contradiction to
the fact that v is the first player to make an incorrect decision.

We next define the quantity, the computation of which is the issue of
this chapter, namely, the maximum number of local corruptions that
CPA can tolerate.

Definition 2.6 (Max CPA Resilience). For a graph G and dealer-node
D, tCPA

max (G, D) is the maximum t such that CPA is t-locally resilient.

Whenever G and D are implied by the context, we will simply write
tCPA
max .

Bounds vs Conditions. Let us now make a simple but useful ob-
servation: for a graph-theoretic parameter X , showing that t < X
is a sufficient topological condition for CPA to be t-locally resilient
provides a lower bound of ⌈X⌉ − 1 on tCPA

max . Respectively, necessary
conditions of similar form imply upper bounds on tCPA

max . We will of-
ten use this relation between bounds and conditions throughout the
chapter.

2.5 Lower Bounds on Max CPA Resilience

Pelc and Peleg [47] were the first to present a graph-theoretic param-
eter X (G, D) that associates the maximum tolerable number of local
corruptions with the topology of the graph. This parameter repre-
sents the maximum number b such that every node v has at least b
neighbors with distance to D smaller than that of v. They give a suf-
ficient condition for CPA resilience, namely X (G, D) ≥ 2t + 1, which
implies that the nodes of graph G can be arranged in levels w.r.t.
their distance from D, the first level being the neighborhood of D, and
every node in level k having at least 2t+1 neighbors in level k−1. The
situation is depicted in Figure 2.1. This, in turn implies that every
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≥ 2t + 1 nodes of level 1

...

≥ 2t + 1 nodes of level 2

D

· · ·

· · ·

· · ·

level k = maxv∈V distance(D, v)

≥ 2t + 1 nodes of level k − 1

{ At most t corruptions

{ At most t corruptions

Figure 2.1: Level partition based on parameter X de-
fined in [47]

node in distance k from D (level k) decides in the k-th round, because
it will certainly receive at least t +1 correct values from honest nodes
in level k − 1. However, as shown in the same paper, this condition
is not necessary, because a node in level k may collect correct values
from neighbors in level k or k+1 also, thus completing the necessary
number of t +1 identical values. In other words, ⌈X/2⌉− 1 is a lower
bound for Max CPA Resilience but not a tight one.

2.5.1 A new parameter for bounding Max CPA Re-
silience

In order to derive tighter bounds on tCPA
max we introduce the notion

of minimum k-level ordering of a graph which generalizes the level
ordering that was implicit in [47]. Intuitively, a minimum k-level
ordering is an arrangement of nodes into disjoint levels, such that
every node has at least k neighbors in previous levels and belongs to
the minimum level for which this property is satisfied for this node.
Formally:

Definition 2.7. A Minimum k-Level Ordering Lk(G, D) of a graph G =
(V, E) for a given dealer-node D is a partition V \{D} =

∪m
i=1 Li , m ∈ N
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s.t.

L1 =N (D),

L2 ={v ∈ V \ L1 : |N (v) ∩ L1| ≥ k}
...

Lm ={v ∈ V \
m−1∪
j=1

Lj : |N (v) ∩
m−1∪
j=1

Lj| ≥ k}

We next define the relaxed k-level ordering notion which will be use-
ful for our proofs, by dropping the level minimality requirement for
nodes.

Definition 2.8. A Relaxed k-Level Ordering of a graph G = (V, E)
for a given dealer-node D is a partition V \ {D} =

∪m
i=1 Li , m ∈ N s.t.

L1 = N (D), ∀v ∈ Li : |N (v) ∩
i−1∪
j=1

Lj| ≥ k

Properties of k-level orderings.

Note that while there may exist several relaxed k-level orderings of a
graph, the minimum k-level ordering is unique, as can be shown in
the proof of Theorem 2.2. Let us also observe that a relaxed k-level
ordering may be easily transformed to the unique minimum k-level
ordering; to show this we will use the notion of a delayed node:

Definition 2.9 (Delayed node). Given a relaxed k-level ordering L:
V =

∪m
i=1 Li , m ∈ N we will refer to a player u ∈ Lh ∈ L as delayed

node in L if ∃ d with 1 < d < h ≤ m s.t. |N (u) ∩
∪d−1

j=1 Lj| ≥ k.

The following is immediate from the previous definitions,

Fact. A relaxed k-level ordering with no delayed nodes is a minimum
k-level ordering.

Now, given any relaxed k-level ordering L we can construct a mini-
mum k-level ordering Lk simply by repeatedly moving every delayed
node to the lowest level such that the partition remains a relaxed k-
level ordering. It is not hard to see that a relaxed k-level ordering with
no delayed nodes is actually a minimum k-level ordering. Therefore,
the following holds,
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Theorem 2.2. Given a graph G and dealer D, for every k ∈ N, if there
exists a Relaxed k-Level Ordering for G, D then there exists a unique
Minimum k-Level Ordering for G, D.

Proof. We prove that if we change the partitions set in a certain man-
ner the partition remains a relaxed k-level ordering and in the end
we obtain the Minimum k-Level Ordering Lk(G, D). We will use the
following Claim,

We first easily observe that if there exists a relaxed k-level ordering
L: V =

∪m
i=1 Li , m ∈ N with 1 < d < h ≤ m, then for arbitrary u ∈ Lh

(delayed node) with |N (u) ∩
∪d−1

j=1 Lj| ≥ k the partition L′ :

V = L1 ∪ L2 ∪ . . . ∪ {Ld ∪ {u}} ∪ · · · ∪ {Lh \ {u}} ∪ · · · ∪ Lm =
m∪

i=1

L ′
i

is also a relaxed k-level ordering.

Based on the above observation, given any relaxed k-level ordering L
we can construct a minimum k-level ordering Lk simply, by moving all
the delayed nodes in the lowest level for which the partition remains
a relaxed k-level ordering. Namely,

Given relaxed k-level ordering L : V =
∪m

i=1 Li, for every delayed node
v, move v to the set Li s.t.

i = min

{
d ∈ {1, . . . , m}

∣∣∣∣∣ |N (v) ∩
d−1∪
j=1

Lj| ≥ k

}

Furthermore, whenever we move a delayed node we should check
all other nodes that possibly became delayed due to this move. The
process terminates after at most polynomial number of moves without
delayed nodes left.

According to the fact that a relaxed k-level ordering with no delayed
nodes is a minimum k-level ordering, the resulting partition is a min-
imum k-level ordering.

Regarding the uniqueness of the minimum k-level ordering Lk we can
assume that for graph G and dealer D there exist two different mini-
mum k-level orderings L = {L1, · · · , Lm},L′ = {L ′

1, · · · , L ′
h}. From the

definition of minimum k-level ordering L1 = L ′
1 holds. Let i be the

lowest integer for which Li ̸= L ′
i and assume wlog that ∃v, s.t. v ∈ Li

and v /∈ L ′
i . It is clear that v is a delayed node in L ′

i , thus L ′
i is not a

minimum k-level ordering.
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Definition 2.10 (Parameter K). For a graph G and dealer D,

K(G, D)
def.
= max{k ∈ N | ∃ a Minimum k-Level Ordering Lk(G, D)}

Theorem 2.3 (Sufficient Condition). For every graph G, dealer D and
t ∈ N, if t < K(G, D)/2 then CPA is t-locally resilient.

Proof. Observe that 2t < K(G, D) implies the existence of a minimum
(2t + 1)-level ordering L2t+1(G, D). Let L2t+1(G, D) be the partition
{L1, . . . , Lm} of V , i.e. V =

∪m
i=1 Li. It suffices to show that for 1 ≤ i ≤

m, every honest player v ∈ Li decides on the dealer’s value xD. By
strong induction on i:

Every honest player v ∈ L1 = N (D) decides on the dealer’s value
xD due to the CPA steps 1 and 2. If all honest players u ∈ Li , 1 ≤
i ≤ h, decide on xD at some round, then every honest player v ∈ Lh+1

receives |
∪h

j=1 Lj∩N (v)| ≥ 2t+1 messages from its decided neighbors
in previous levels and at least t+1 of them are honest. Thus v decides
on xD. A graphical representation of the condition can be seen in
Figure 2.2.

Corollary 2.4 (Lower Bound). For any graph G and dealer D it holds
that tCPA

max ≥ ⌈K(G, D)/2⌉ − 1

2.5.2 Non-tightness of the lower bound

In Theorem 2.3 we proved that t < K(G, D)/2 is sufficient for CPA to be
t-locally resilient; we next prove that it is not a necessary condition.
Intuitively, the reason is that the topology of the graph may prevent
the adversary from corrupting t players in each player’s neighbor-
hood, hence some players will correctly decide by executing CPA even
if they have only t + 1 neighbors in previous levels.

Proposition 2.5. There exists a family of instances (G, D), such that
CPA is (K(G, D)− 1)-locally resilient for (G, D).

Proof. Figure 2.3 provides such an instance for each value of t. In
this instance the neighborhood of D consists of 2t2 +2t nodes, nodes
v1, . . . , v2t form a clique of size 2t and are connected with N (D) as
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· · ·

L1

...
L2

Lm−1

D

2t+ 1

v1 v2t+1

vn

· · · · · ·

Lm

· · ·

Figure 2.2: Level partition based on parameter K

shown in the figure. We can easily check that t = K(G, D)− 1. If we
run CPA on G then any player vi ∈ {v1, . . . , v2t} receives M correct
messages, with

M = MA + MB (1)

where, MA = number of messages received from N (D) and
MB = number of messages received from B = {v1, . . . , v2t} \ {vi}.

· · · · · · · · ·· · ·
t+ 1 players

} 2t subsets

· · ·

D

v1 v2 v2t
K2t}

Figure 2.3: Graph with K(G, D) = t + 1, for which CPA
is t-locally resilient.
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Let Ti = T ∩ N (D) ∩ N (vi) be the set of traitors that are common
neighbors of D and vi. Then

MA = |N (D) ∩N (vi) \ Ti | = t + 1− |Ti | (2)

In order to compute the number of correct messages that vi receives
from players in B, we define the sets:

CB1 = {v ∈ B
∣∣ v receives at most t messages from N (D) }

CB2 = {v ∈ B
∣∣ v is corrupted }

CB = CB1 ∪ CB2

We observe that CB1 becomes maximum in cardinality if the adver-
sary corrupts exactly one player in every set N (vj) ∩ N (D),∀vj ∈ B.
Therefore max

T :t-local set
|CB1 | = max

T :t-local set
|T ∩ (N (D) \N (vi))| = t −|Ti |. Also

|CB2 | ≤ t − |Ti | because B and N (vi) ∩ N (D) form the neighborhood
of vi where the corruptions can be at most t. Next we compute an
upper bound on CB.

|CB| = |CB1 ∪ CB2 | ≤ |CB1 |+ |CB2| ≤ (t − |Ti |) + (t − |Ti |) = 2t − 2|Ti |

and thus,

MB = 2t − 1− |CB| = 2t − 1− 2t + 2|Ti | = 2|Ti | − 1 (3)

Finally we can compute the total number of messages M ,

(1), (2), (3) ⇒ M = MA + MB ≥ t + 1− |Ti |+ 2|Ti | − 1 =

= t + |Ti |

For any vi, if |Ti | > 0 then M ≥ t+1. Otherwise |Ti | = 0 and vi receives
t + 1 correct messages from N (D). Thus CPA successfully achieves
Broadcast on (G, D).

2.6 An Upper Bound on Max CPA Resilience

In the previous section we have shown that tCPA
max ≥ ⌈K(G, D)/2⌉ − 1;

we have also demonstrated cases in which K(G, D) − 1 traitors are
locally tolerated by CPA. In this section we will show that the latter
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is the best possible: K(G, D) − 1 is an upper bound on the number
of local traitors for any G and D. We do this by proving a necessary
condition for CPA to be t-locally resilient.

Theorem 2.6 (Necessary Condition). For any graph G, dealer D and
t ≥ K(G, D), CPA is not t-locally resilient.

Proof. Assume that CPA is t-locally resilient, with t ≥ K(G, D). Since,
by assumption, CPA is t-locally resilient there must be a positive
integer, let s, so that the algorithm terminates after s steps in G.
Consider now the operation of CPA on graph G in terms of sets. Let
Li denote the set of nodes that decide in the i-th round. Since every
node in Li decides at the i-th round we get that it has at least t + 1
neighbors in sets L1, . . . , Li−1. That is,

∀v ∈ Li ⇒ |N (v) ∩
i−1∪
j=1

Lj| ≥ t + 1.

Observe that the above sequence is a relaxed (t +1)-level ordering for
G, D. From the above observation and according to the Theorem 2.2
we get that there must be a minimum (t + 1)-level ordering for G, D.
But this is a contradiction since we assumed that t ≥ K(G, D).

Corollary 2.7 (Upper bound on tCPA
max ). For any graph G and dealer D

it holds that tCPA
max < K(G, D)

2.6.1 Comparison with the Ichimura-Shigeno param-
eter

In [27], Ichimura and Shigeno introduce a graph theoretic parameter
X̃ (G, D) which can be used to obtain a sufficient condition for CPA
resilience. For a graph G = (V, E) and dealer D, they consider a
total ordering σ = (v1, v2, . . .) of the set V \ (N (D) ∪ D), and use
δ(Wi , v) to denote the number of neighbors that v has in the set
N (D) ∪ {v1, . . . , vi−1}. The total ordering σ has the property that
∀i, j, with 1 ≤ i < j ≤ |V \ (N (D) ∪ D)| it holds that δ(Wi−1, vi) ≥
δ(Wi−1, vj). This ordering is also referred to as max-back ordering.
They define parameter X̃ (G, D) = min{δ(Wi−1, vi) | i = 1, 2, . . .}. and
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prove that it is unique, i.e., is the same for all max-back orderings.
They essentially prove that,2

⌈X̃ (G, D)/2⌉ − 1 ≤ tCPA
max < X̃ (G, D). (1)

Hence, their parameter gives similar bounds as ours. We next show
that there is a good reason for this coincidence: despite the different
way of defining the parameters K(G, D) and X̃ (G, D), they prove to be
equal.

Theorem 2.8. K(G, D) = X̃ (G, D)

Proof. Consider the max-back ordering σ = (v1, v2, . . .). Then the
sequence {L1 = N (D), L2 = {v1}, L3 = {v2}, . . .} is trivially a relaxed
X̃ (G, D)-level ordering, because the minimum connectivity between a
level and its predecessors is X̃ (G, D). Thus, due to Proposition 2.2,
there exists a minimum X̃ (G, D)-level ordering, therefore K(G, D) ≥
X̃ (G, D). Thus, combining the last inequality with inequality (1) we
get the following:

tCPA
max < X̃ (G, D) ≤ K(G, D)

Since Proposition 2.5 implies that there is a graph for which CPA is
(K(G, D)− 1)-locally resilient the above relation yields the equality of
K(G, D) and X̃ (G, D), since X̃ (G, D) < K(G, D) would lead to tCPA

max <
K(G, D)− 1, a contradiction.

Although the two parameters K(G, D) and X̃ (G, D) are equal, the
fact that K(G, D) is defined in a completely different way leads to
an improved complexity of computing it, as we will see in the next
section.

2.7 Approximation of Max CPA Resilience

Let us now consider the approximability of computing the Max CPA
Resilience; we will give an efficient 2-approximation algorithm. We
first show how to check if there exists a minimum m-level ordering,
for a graph G and dealer D, using a slight variation of the standard

2Note that the condition t ≤ X̃ (G, D) was given as necessary in [27]; however
their proof can be easily modified to show the tighter bound t < X̃ (G, D), implying
the right part of (1).
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BFS algorithm. Subsequently, we obtain the approximation by sim-
ply computing K(G, D), using the above check. The ratio follows
immediately, by combining Corollaries 2.4 and 2.7.

Protocol 2: Existence check of a minimum m-level ordering

On input (G, D, m) do the following:

1. Assign a zero counter to each node.

2. Enqueue the dealer and every one of its neighbors.

3. Dequeue a node and increase the counters of all its neighbors.
Enqueue a neighbor only if its counter is at least m.

4. Repeat Step 3 until the queue is empty.

5. If all nodes have been enqueued then output ‘True’ (a minimum
m-level ordering exists); otherwise, output ‘False’.

Note that the above algorithm can be modified to compute the mini-
mum m-level ordering Lm(G, D).

Protocol 3: 2-Approximation of tCPA
max

1. Compute K(G, D): since K(G, D) < min
v∈V\(N (D)∪D)

deg(v) = δ, the

exact value of K(G, D) is computed by log δ repetitions of the
existence check, by simple binary search.

2. Return ⌈K(G, D)/2⌉ − 1

Since t ≥ K(G, D) ⇒ CPA is not t-locally resilient, it holds that tCPA
max <

K(G, D), consequently, the returned value is at least ⌈tCPA
max /2⌉ − 1.

A tight example for the approximation ratio of the algorithm is in fact
given by the instance in Figure 2.3 in which we present a graph for
which K(G, D) = t + 1 and CPA is t-locally resilient.
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The complexity of the above approximation algorithm is obviously
given by the complexity of the computation of K(G, D). As explained
above the algorithm requires at most log δ executions of the exis-
tence check. The latter requires O(|E|) time (same complexity as
BFS). Altogether, we get that the time complexity of the algorithm is
O(|E| log δ), which significantly improves upon the complexity bound
for the equivalent parameter X̃ (G, D) given in [27]; the complexity
stated there is O(|V |(|V |+ |E|)).

2.8 Determining tCPAmax Exactly

In this section we present a procedure to compute the exact value of
tCPA
max . To this end, we introduce two new graph parameters.

For a corruption set (t-local set) T and graph G = (V, E) we will denote
with GT̄ = (V \T, E′) the node induced subgraph of G on the node set
V \ T .

Definition 2.11 (t-safety threshold). For any graph G, dealer D and
positive integer t, the t-safety threshold is the quantity

M(G, D, t) = min
T : t-local set

K(GT̄ , D)

.

Theorem 2.9 (Necessary and Sufficient Condition). For a graph G =
(V, E) and dealer D, CPA is t-locally resilient if and only if M(G, D, t) ≥
t + 1.

Proof. (⇐) Assume M(G, D, t) ≥ t + 1 and let T ⊆ V \ D be any t-
local corruption set. It must hold that K(GT̄ , D) ≥ t +1. Hence, there
exists a minimum (t + 1)-level ordering Lt+1(GT̄ , D) = {L1, . . . , Lm}.
Therefore every honest player v has at least t + 1 honest neighbors
in previous levels of Lt+1(GT̄ , D); by a simple induction we can show
that v will decide on the dealer’s value xD.

(⇒) If CPA is t-locally resilient then for any t-local corruption set, T ,
we have that every honest player in GT̄ decides on xD and let the total
number of rounds for the termination of the protocol is m ∈ N. Define
the sequence of sets Li = {v ∈ V\T

∣∣ v decides in round i of CPA }, i ∈
{1, . . . , m}. Then we will show by induction that the sequence (Li)

m
i=1

is the (unique) minimum (t+1)-level ordering on graph GT̄ with dealer
D. Note first that L1 = N (D) \ T because the players that decide in
round 1 are exactly the neighborhood of the dealer. For the induction
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basis, we observe that L2 = {v ∈ V \ T
∣∣ N (v) ∩ L1 ≥ t + 1} because

the players that decide in round 2 are exactly those who will receive
t + 1 identical messages from decided players in round 1. Assuming
now that Lk = {v ∈ V \{T∪

∪k−1
j=1 Lj} : |N (v)∩

∪k−1
j=1 Lj| ≥ t+1} it turns

out that Lk+1 = {v ∈ V \ {T ∪
∪k

j=1 Lj} : |N (v) ∩
∪k

j=1 Lj| ≥ t + 1} due
to the fact that the players that decide in round k + 1 are exactly the
players who receive at least t + 1 messages from previously decided
players. Since the above hold for any T , the claim follows.

For exactly determining the maximum CPA resilience tCPA
max we need

the parameter,

T (G, D) = max{t ∈ N
∣∣M(G, D, t) ≥ t + 1}

It should be clear by the above discussion that T (G, D) is exactly the
maximum CPA resilience:

Corollary 2.10. tCPA
max (G, D) = T (G, D)

A simple algorithm to compute the t-safety threshold requires ex-
ponential time (consider all the t-local corruption sets and compute
K(GT̄ , D) as in Section 2.7). Note that a different necessary and suf-
ficient condition for CPA to be t-locally resilient was independently
given in [53]. However, a superexponential time to check that condi-
tion is implicit (no algorithm is given in [53]).

Moreover, for computing tCPA
max = T (G, D) it suffices to perform at most

log δ M(G, D, t) computations, where δ is the minimum degree of any
node in V \ (N (D) ∪ D).

2.9 CPA Uniqueness in Ad Hoc Networks

Based on the necessary and sufficient condition for CPA to be t-locally
resilient in a graph G with dealer D we can now prove the CPA unique-
ness conjecture for ad hoc networks, which was posed as an open
problem in [47]. The conjecture states that no algorithm can locally
tolerate more traitors than CPA in networks of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms
which never cause a node to decide on an incorrect message under
any t-local corruption set, cf.[47]
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We consider the ad hoc network model, in which the nodes know only
their own labels and the labels of their neighbors. Often, knowledge
of the dealer’s label is assumed; this assumption can be omitted in
our setting if we assume that the dealer sends its id along with the
message xD.. We call a distributed Broadcast algorithm that operates
under these assumptions an ad hoc Broadcast algorithm.

Theorem 2.11. Let A be a t-locally safe ad hoc Broadcast algorithm.
If A is t-locally resilient for a graph G with dealer D then CPA is t-locally
resilient for G, D.

Proof. From Theorem 2.9 we have that, if CPA is not t-locally resilient
in (G, D) then, M(G, D, t) = min

T : t-local set
K(GT̄ , D) ≤ t which implies that

there exists a t-local corruption set T s.t. in the remaining graph GT̄ a
minimum (t + 1)-level ordering does not exist. From the definition of
the (t + 1)-level ordering we have that given the sequence of subsets
of the nodes VT̄ = V \ (T ∪ {D}),

L1 = NGT̄
(D), Li = {v ∈ VT̄ \

i−1∪
j=1

Lj : |NGT̄
(v)∩

i−1∪
j=1

Lj| ≥ t+1}, 2 ≤ i ≤ m

there exists h ∈ N s.t. ∀j ≥ h, Lj = ∅ and
∪h

i=1 Li ⊊ VT̄ . We denote
with hmin the minimum h ∈ N with the above property. We can
assume wlog that hmin ≥ 2, because h = 1 implies that in the graph
GT̄ the dealer D is disconnected from the rest of the graph which in
turn, trivially implies that no algorithm will achieve Broadcast under
the corruption of set T .

Let A =

hmin∪
i=1

Li and B = VT̄ \ A. It is now obvious from the defini-

tion of the minimum (t + 1)-level ordering that ∀w ∈ B, |NGT̄
(w) ∩

A| ≤ t. Moreover
∪hmin

i=1 Li ⊊ VT̄ implies that B ̸= ∅. Finally let
H =

∪
w∈B

(NGT̄
(w) ∩ A) and observe that H constitutes a node-cut in

graph GT̄ separating the dealer D from the subgraph B. The partition
of graph G in the three subgraphs A, B, T is depicted in Figure 3.1.

Let G′ be a graph that results from G if we remove edges (u, v) from
the set E′ = {(u, v)|u, v ∈ A ∪ T} s.t. the set H becomes t-local in G′

(e.g. we can remove all edges that connect nodes in the set A ∪ T ).
The existence of a set of edges that guarantees such a property is
implied by the fact that ∀w ∈ B, |NGT̄

(w) ∩ H| ≤ t.
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D
...

A B

...

...
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... w

At most t(w)
neighbors in A

· · ·
T

H

Figure 2.4: Partition of G in the subgraphs A, B, T

The proof is by contradiction. Suppose that there exists a t-locally
safe Broadcast algorithm A which is t-locally resilient in graph G with
dealer D. We consider the following executions σ and σ ′ of A,

• Execution σ is on the graph G with dealer D, for the dealer’s
value we have that xD = 0, the corruption set is the set T and in
each round, all the players in this set perform the actions that
are instructed to perform in the respective round of execution
σ ′ where T is a set of honest players.

• Execution σ ′ is on the graph G′ with dealer D, for the dealer’s
value we have that xD = 1, the corruption set is the set H and in
each round, all the players in this set perform the actions that
are instructed to perform in the respective round of execution
σ where H is a set of honest players.

Note that the corruption sets T, H are admissible corruption sets in
G, G′ respectively due to their t-locality. It is easy to see that the
set H ∪ T is a node-cut which separates D from B in both G and G′

and actions of all nodes of this cut are identical in both executions
σ, σ ′. Consequently the actions of any honest node w ∈ B must be
identical in both executions. Since by our assumption algorithm A is
t-locally resilient on G with dealer D, w must decide on the dealer’s
message 0 in execution σ on G with dealer D. It must perform the
same action in execution σ ′ on G′ with dealer D. However, in this
execution the dealer’s message is 1. This contradicts the assumption
that A is t-locally safe.
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According to the definition of uniqueness, the theorem actually states
that that, CPA is unique among t-locally safe algorithms.

Beyond safe algorithms. We can show that if we drop the require-
ment for t-local safety, then the theorem does not hold. Intuitively,
the reason is that an ad hoc protocol that assumes certain topologi-
cal properties for the network may be t-locally resilient in a family of
graphs that have the assumed topological properties.

Indeed, Pelc and Peleg [47] introduced another algorithm for the uni-
form model, the Relaxed Propagation Algorithm (RPA) which uses
knowledge of the topology of the network and they proved that there
exists a graph G′′ with dealer D for which RPA is 1-locally resilient and
CPA is not. So if we use RPA in an ad hoc setting assuming that the
network is G′′ then this algorithm will be t-locally resilient for (G′′, D)
while CPA will not. Non-t-local safety of RPA follows from the fact
that the decisions depend on the assumed topology and therefore
they could be incorrect if the topological assumptions do not hold.
More specifically, a player, running RPA, could decide on a message
which she receives from 2t + 1 disjoint paths and for which she can
verify, from the assumed topology, that at most t may contain cor-
rupted nodes. However, if the topology is actually not as assumed,
then it could even be the case that all 2t + 1 paths contain corrupted
nodes and thus the decision value is incorrect. The fact that the non-
safe algorithm RPA is resilient in instances where CPA is not, shows
that there exist non-safe algorithms of higher resilience than CPA.

2.10 Conclusions

Since the existence of a t-locally resilient Broadcast algorithm in a
graph G with dealer D obviously depends on the topology of G, for a
given local number of corruptions t we may define and compare the
classes of graphs (with a designated dealer-node) determined by the
properties and topological conditions that have appeared in the litera-
ture so far, including the ones defined in this chapter. An overview of
the corresponding classes and their relation is depicted in Figure 3.4.
Parameters LPC(G, D) and X (G, D) are defined in [47] and X̃ (G, D) is
from [27]. Note that the condition t < LPC(G, D), studied in [47],
was proved necessary for every algorithm to achieve Broadcast in the
t-locally bounded model.
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G t < LPC(G,D)

∃ a t-locally resilient algorithm

∃ a t-locally resilient
safe Ad-Hoc algorithm

⇔
CPA is t-locally resilient (t ≤ T (G,D))

t < K(G,D)/2⇔ t < X̃ (G,D)/2

t < X (G,D)/2

Figure 2.5: Overview of conditions related to the exis-
tence of t-locally resilient algorithms. Continuous lines

show strict inclusions.

The General Case (Corrupted Dealer). As has been explained,
CPA achieves Broadcast under the assumption that the dealer is hon-
est. In order to address the case in which the dealer is corrupted one
may observe that if the total number of traitors is strictly less than
n/3, n = |V |, and the number of traitors in each node’s neighbor-
hood is bounded by min

D∈V
T (G, D) then we can achieve Broadcast by

simulating any protocol for complete graphs as follows: each one-to-
many (or even one-to-one) transmission is simulated by an execution
of CPA. We observe that min

D∈V
T (G, D) may not be tight in this case.

We can obtain a better bound if we define M(G, D, t) by considering
only corruption sets of size strictly less than n/3. Subsequently, we
derive an upper bound for Broadcast with corrupted dealer, namely
t ≤ min

(
⌈n/3⌉ − 1,min

D∈V
T (G, D)

)
. The deduction of a tight bound on

the number of corrupted players as well as the study of more efficient
algorithms for this problem are interesting open questions.

An other open question that arises from the studies of this chapter is
to determine another efficiently computable parameter yielding more
tight bounds than K(G, D) in order to obtain an efficient approxima-
tion algorithm for tCPA

max of ratio smaller than 2. Finally, the t-locally
bounded adversary model has been mainly considered in the wireless
network setting where one also has to deal with collisions (cf. [30, 35,
31]). In this line of work however, the authors only have considered



2.10. Conclusions 59

networks of specific topology (grid networks) and it may be interesting
to extend these results to the generic topology case considering the
results of this chapter.
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Chapter 3

Partial Knowledge and
Propagation Cuts

In this chapter we further our study on the Reliable Broadcast prob-
lem in incomplete networks against a Byzantine adversary. We exam-
ine the problem under the locally bounded adversary model of Koo
(2004) and the general adversary model of Hirt and Maurer (1997)
and explore the tradeoff between the level of topology knowledge and
the solvability of the problem. In order to explore this tradeoff we
introduce the partial knowledge model which captures the situation
where each player has arbitrary topology knowledge.

We refine the local pair-cut technique of Pelc and Peleg (2005) in
order to obtain impossibility results for every level of topology knowl-
edge and any type of corruption distribution. On the positive side
we devise protocols for every case of topology knowledge; the pro-
tocols match the obtained bounds for the extreme cases of ad hoc
networks and full topology knowledge and thus, exactly characterize
the classes of graphs in which Reliable Broadcast is possible in these
cases. Concluding the chapter, we generalize our results, for the ex-
treme cases of knowledge level, in the general adversary model of Hirt
and Maurer (1997) which subsumes earlier models by adapting our
techniques and algorithms.

Among others, our generalized pair-cut notion allows for an alterna-
tive, to that of Chapter 2, and more intuitive proof of CPA uniqueness
conjecture [47], which states that CPA can tolerate as many local cor-
ruptions as any other safe algorithm. As has been stated previously,
safe algorithms are algorithms which never cause a node to decide on
an incorrect value. Note that the proof on CPA uniqueness presented
in this chapter is the first published proof on the problem and first
appeared in [44]. Lastly, we provide an adaptation of CPA achieving
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reliable broadcast against general adversaries and prove that this al-
gorithm too is unique under this model. To the best of our knowledge
this is the first optimal algorithm for Reliable Broadcast in generic
topology ad hoc networks against general adversaries.

3.1 Outline

In this chapter we study the tradeoff between the level of topology
knowledge and the solvability of the problem, under various adver-
sary models. In the course of this study we consider the natural
class of safe Broadcast algorithms, i.e., algorithms that never cause
a player to decide on an incorrect value. The importance of this class
of algorithms has been argued in [47] and further analyzed in the
previous Chapter.

We first consider a natural generalization of the t-locally bounded
model, namely the non-uniform t-locally bounded model which sub-
sumes the (uniform) model studied so far. The new model allows for
a varying bound on the number of corruptions in each player’s neigh-
borhood. In Section 3.3, we address the issue of locally resilient ad
hoc Broadcast in the non-uniform model. We present a new nec-
essary and sufficient condition for CPA to be t-locally resilient by
extending the notion of local pair cut of Pelc and Peleg [47] to the no-
tion of partial local pair cut. Note that although equivalent conditions
exist [55, 38], the simplicity of the new condition makes it highly
adaptable to different adversary and topology knowledge models. Al-
though the equivalent condition presented in Chapter 2 easily yields
some interesting approximation results, the condition we present in
this chapter allows for extending the solvability results in different
models. We also present an alternative and more intuitive proof for
the open question of CPA Uniqueness [47] which states that if any
safe algorithm achieves Broadcast in an ad hoc network then so does
CPA. Moreover we show that computing the validity of the condition
is NP-hard and observe that the latter negative result also has a pos-
itive aspect, namely that a polynomially bounded adversary is unable
to design an optimal attack unless P = NP.

In Section 3.4, we shift focus on networks of known topology and
devise an optimal resilience protocol, which we call Path Propaga-
tion Algorithm (PPA). Using PPA we prove that a topological condition
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which was shown in [47] to be necessary for the existence of a Broad-
cast algorithm is also sufficient. Thus, we manage to exactly char-
acterize the class of networks for which there exists a solution to the
Broadcast problem. On the downside, in [44] we have proven that it
is NP-hard to compute an essential decision rule of PPA, rendering
the algorithm impractical. However, in the same work we also have
provided an indication that probably no efficient protocol of optimal
resilience exists, by showing that efficient algorithms through which
players always take the same decisions as they would if they ran PPA
do not exist if P ̸= NP.

We then take one step further in Section 3.5, by considering a hybrid
between ad hoc and known topology networks: each node knows a
part of the network, namely a connected subgraph containing itself.
We propose a protocol for this setting as well, namely the Generalized
Path Propagation Algorithm (GPPA). We use GPPA to show that this
partial knowledge model allows for Broadcast algorithms of increased
resilience.

Finally, in Section 3.6, we study the general adversary model and
show that an appropriate adaptation of CPA is unique against gen-
eral adversaries in ad hoc networks. To the best of our knowledge
this is the first algorithm for Reliable Broadcast in generic topology
ad hoc networks against a general adversary. We show an analogous
result for known topology networks, which however can be obtained
implicitly from [36] as mentioned above. We conclude by discussing
how to extend our results to the case of a corrupted dealer by simu-
lating Broadcast protocols for complete networks.

A central tool in our work is a refinement of the local pair-cut tech-
nique of Pelc and Peleg [47] which proves to be adequate for the
exact (in most cases) characterization of the class of graphs for which
Broadcast is possible for any level of topology knowledge and type of
corruption distribution. A useful by-product of practical interest is
that the refined cuts can be used to determine the exact subgraph in
which Broadcast is possible under any corruption set.

For clarity we have chosen to present our results for the t-local model
first (Sections 3.3,3.4, 3.5), for which proofs and protocols are some-
what simpler and more intuitive, and then for the more involved gen-
eral adversary model (Section 3.6). This chapter includes results
presented in [44, 45].
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3.2 Model and Definitions

We will now formally define the adversary model by generalizing the
notions originally developed in [30, 47] and presented in Chapter 2.
We will also define basic notions and terminology that we will use
throughout the chapter. We refer to the participants of the protocol
by using the terms node and player interchangeably.

Corruption function. Taking into account that each player might
be able to estimate her own upper bound on the corruptions of its
neighborhood, as discussed earlier, we introduce a model in which
the maximum number of corruptions in each player’s neighborhood
may vary from player to player. We thus generalize the standard
t-locally bounded model [30] in which a uniform upper bound on
the number of local corruptions was assumed. Here we consider
t : V → N to be a corruption function over the set of players V .

Non-Uniform t-Locally Bounded Adversary Model. The network
is represented by a graph G = (V, E) and one player D ∈ V is the
dealer (sender) as explained before. A corruption function t : V → N
is also given, implying that an adversary may corrupt at most t(u)
nodes in the neighborhood N (u) of each node u ∈ V . The family of
t-local sets (defined below) plays an important role in our study since
it coincides with the family of admissible corruption sets.

Definition 3.1 (t-local set). Given a graph G = (V, E) and a function
t : V → N a t-local set is a set C ⊆ V for which ∀u ∈ V, |N (u) ∩ C| ≤
t(u). For V ′ ⊆ V a t-local w.r.t. V ′ set is a set C ⊆ V for which
∀u ∈ V ′, |N (u) ∩ C| ≤ t(u).

Uniform vs Non-Uniform Model. Obviously the original t-locally
bounded model corresponds to the special case of t being a constant
function. Hereafter we will refer to the original t-locally bounded
model as the Uniform Model as opposed to the Non-Uniform Model
which we introduce here. Hereafter we will also refer to the Non-
Uniform Model simply as the t-locally bounded model.

In our study we will often make use of node-cuts which separate
some players from the dealer, i.e., node-cuts that do not include the
dealer. From here on we will simply use the term cut to denote such
a node-cut. The notion of t-local pair cut was introduced in [47] and
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is crucial in defining the bounds for which correct dissemination of
information in a network is possible.

Definition 3.2 (t-local pair cut). Given a graph G = (V, E) and a
function t : V → N, a pair of t-local sets C1, C2 s.t. C1 ∪C2 is a cut of G
is called a t-local pair cut.

The next definition extends the notion of t-local pair cut and is partic-
ularly useful in describing capability of achieving Broadcast in net-
works of unknown topology (ad hoc networks) where each player’s
knowledge of the topology is limited in its own neighborhood.

Definition 3.3 (t-partial local pair cut). Let C be a cut of G, partition-
ing V \ C into sets A, B ̸= ∅ s.t. D ∈ A. C is a t-partial local pair cut
(t-plp cut) if there exists a partition C = C1 ∪C2 where C1 is t-local and
C2 is t-local w.r.t. B.

In the uniform model the Local Pair Connectivity (LPC(G, D)) [47] pa-
rameter of a graph G with dealer D, was defined to be the minimum
integer t s.t. G has a t-local pair cut. To define the correspond-
ing notion in the non-uniform model we need to define a (partial)
order among corruption functions. Nevertheless, as implied by The-
orems 3.1 and 3.2, for reasoning about the feasibility of Broadcast it
suffices to consider the following decision problem:

Definition 3.4 (pLPC). Given a graph G, a dealer D and a corruption
function t determine whether there exists a t-plp cut in G.

3.2.1 The Partial Knowledge Model

We next introduce the Partial Knowledge Model where each player has
initial knowledge over an arbitrary subgraph of the actual network G.
The Partial Knowledge model was first presented in [44].

The motivation for partial knowledge considerations comes from large
scale networks (e.g. the Internet) where topologically local estimation
of the power of the adversary may be possible, while global estimation
may be hard to obtain due to geographical or jurisdiction constraints.
Additionally, proximity in social networks is often correlated with an
increased amount of available information, further justifying the rel-
evance of the model.

In this setting each player v only has knowledge of the topology of a
certain subgraph Gv of G which includes v. Namely if we consider the
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family G of subgraphs of G we use the view function γ : V (G) → G,
where γ(v) represents the subgraph over which player v has knowl-
edge of the topology. We extend the domain of γ by allowing as
input a set S ⊆ V (G). The output will correspond to the joint
view of nodes in S. More specifically, if γ(v) = Gv = (Vv, Ev) then
γ(S) = GS = (

∪
v∈S Vv,

∪
v∈S Ev). The extensively studied ad hoc model

can be seen as a special case of the Partial Knowledge Model, where
we assume that the topology knowledge of each player is limited to
its own neighborhood, i.e., ∀v ∈ V (G), γ(v) = N (v).

3.3 Ad Hoc Networks

3.3.1 Certified Propagation Algorithm (CPA)

The Certified Propagation algorithm [30] uses only local information
and thus is particularly suitable for ad hoc networks. CPA is probably
the only safe Broadcast algorithm known up to now for the t-locally
bounded model, which does not require knowledge of the network
topology or use topology discovery subroutines.

Probably another, more complex, algorithm for this setting could be
devised by employing a topology discovery algorithm (e.g. variation
of [42]), and then use the topology knowledge obtained to execute
some known Broadcast algorithm which requires topology knowledge
(e.g. RPA presented in [47]). CPA does not use any topology discovery
subroutine; despite its simplicity and minimal propagation (a player
only propagates the value she decides to all her neighbors) it proves
to be of optimal resilience (unique). The latter means that one cannot
achieve better solvability of the problem by employing more complex
schemes. Moreover the combination of the results of the current
section with those of Sections 3.4, 3.5 imply that there are instances
in which the problem is not solvable under the Ad Hoc model but is
solvable assuming higher level of topology knowledge. This suggests
that employing any topology discovery topology algorithm in the ad
hoc model does not provide any useful information which will affect
the solvability of the problem.

Protocol 4, presented here, is a modification of the original CPA that
can be employed under the generalized corruption model introduced
here. Namely a node v, upon reception of t(v) + 1 messages with the
same value x from t(v) + 1 distinct neighbors, decides on x, sends
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it to all neighbors and terminates. The description of the protocol
follows:

Protocol 4: Certified Propagation Algorithm (CPA) for the Non-
Uniform Model

Input (for each node v): Dealer’s label D, labels of v’s neighbors,
corruption bound t(v).
Message format: A single value x ∈ X .

Code for D: send value xD ∈ X to all neighbors, decide on xD and
terminate.
Code for v ∈ N (D): upon reception of xD from the dealer, decide on
xD, send it to all neighbors and terminate.
(* certified propagation rule *)
Code for v /∈ N (D)∪D: upon reception of t(v)+1 messages with the
same value x from t(v) + 1 distinct neighbors, decide on x, send it to
all neighbors and terminate.

As has been argued in Section 2.4, CPA is a t-locally safe Broadcast
algorithm. The proof for the non-uniform case is identical to that
presented for the uniform case.

3.3.2 CPA Uniqueness in Ad Hoc Networks

Based on the above definitions we can now give an alternative and
more intuitive proof for the CPA uniqueness conjecture in ad hoc net-
works, which was posed as an open problem in [47]. The conjecture
states that no algorithm can locally tolerate more corrupted nodes
than CPA in networks of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms. We
assume the ad hoc network model, in which nodes are assumed to
know only their own labels and the labels of their neighbors. We
call a distributed Broadcast algorithm that operates under these as-
sumptions an ad hoc Broadcast algorithm.

Theorem 3.1 (Sufficient Condition). Given a graph G, a corruption
function t and a dealer D, if no t-plp cut exists, then CPA is t-locally
resilient for (G, D).
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Proof. Suppose that no t-plp cut exists in G. Assume an execution
of CPA where the actual corruption set is T . By definition, T is t-
local, since we are in the t-locally bounded adversary model; clearly
T ∪ N (D) is a cut on G as defined before (i.e. not including node D).
Since T is t-local and T ∪ N (D) is not a t-plp cut there must exist
u1 ∈ V \ (T ∪N (D)∪D) s.t. |N (u1)∩ (N (D)\T)| ≥ t(u1)+1. Since u1

is honest and all players in N (D)\T will trivially decide on the correct
value xD through CPA as direct neighbors of the dealer, u1 will receive
t(u1) copies of xD and decide on the correct dealer’s value xD. Let us
now use the same argument inductively to show that every honest
node will eventually decide on the correct value xD through CPA. Let
Ck = (N (D)\T)∪{u1, u2, ..., uk−1} be the set of the honest nodes that
have decided until a certain round of the protocol, and assume that
they decided on the correct value xD. Then Ck ∪ T is a cut. Since T
is t-local, by the same argument as before there exists a node uk s.t.
|Ck ∩N (uk)| ≥ t(uk)+1 and uk will decide correctly on xD. Eventually
all honest players will correctly decide on xD. Thus CPA is t-locally
resilient in G.

Observe that the latter proof does not explicitly use the fact that
CPA is t-locally safe. Instead, we inductively show that in every step
(before all terminate), there are some nodes which decide and that
all of them decide correctly. A slight modification of the proof can
be used as an alternative proof for CPA’s t-local safety since in the
induction hypothesis we assume that all decided nodes have decided
on the correct value.

Theorem 3.2 (Necessary Condition). Let A be a t-locally safe ad hoc
Broadcast algorithm. Given a graph G, a corruption function t and a
dealer D, if a t-plp cut exists, then A is not t-locally resilient in (G, D).

Proof. Assume the partition of set V in the sets A, B, T, H such that
C = T ∪ H is a t-plp cut in graph G with dealer D which disconnects
the node sets A, B. Let T be the t-local set of the cut partition and H
the t-local w.r.t. to B set (Figure 3.1). Let G′ be a graph that results
from G if we remove some edges that connect nodes in A∪T ∪H with
nodes in H so that the set H becomes t-local in G′ (e.g. we can remove
all edges that connect nodes in A∪ T ∪H with nodes in H). Note that
the existence of a set of edges that guarantees such a property is
implied by the fact that H is t-local w.r.t. B.

The proof is by contradiction. Suppose that there exists a t-locally
safe Broadcast algorithm A which is t-locally resilient in graph G with
dealer D. We consider the following executions σ and σ ′ of A :
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Figure 3.1: Graphs G and G′

• Execution σ is on the graph G with dealer D, with dealer’s value
xD = 0, and corruption set T ; in each round, each corrupted
player in T performs the actions that its corresponding player
performs in the respective round of execution σ ′ (where T is a
set of honest players).

• Execution σ ′ is on the graph G′ with dealer D, with dealer’s value
xD = 1, and corruption set H; in each round, each corrupted
player in H performs the actions that its corresponding player
performs in the respective round of execution σ (where H is a
set of honest players).

Note that T, H are admissible corruption sets in G, G′ respectively due
to their t-locality. It is easy to see that H ∪T is a cut which separates
D from B in both G and G′ and that actions of every node of this cut
are identical in both executions σ, σ ′. Consequently, the actions of
any honest node w ∈ B must be identical in both executions. Since,
by assumption, algorithm A is t-locally resilient on G with dealer D,
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w must decide on the dealer’s message 0 in execution σ on G with
dealer D, and must do the same in execution σ ′ on G′ with dealer
D. However, in execution σ ′ the dealer’s message is 1. Therefore A
makes w decide on an incorrect message in (G′, D). This contradicts
the assumption that A is locally safe.

Note on the proof of Theorem 3.2. Although the argument of
the two simultaneous executions σ, σ ′ is standard in the literature
(e.g. [14, 36, 30, 47]), it may seem that the definition of the actions of
the corrupted players is circular and thus are not well defined. For
ease of presentation we denote with T, H the sets of the execution σ
and with T ′, H ′ their respective sets in the execution σ ′. The circular-
ity of the definition may (falsely) appear in the following example; the
actions of T depend on the actions of T ′ which may in turn depend
on the messages they receive from H ′ which depend on the actions
of H in σ which may lastly depend on the actions of T in the same
execution. To overcome this obstacle we observe that the actions
of all players are uniquely defined in an inductive manner, i.e., in
the first round of both executions the actions of honest players in
the sets H, T ′ are uniquely defined by the deterministic protocol A
and their initial values due to the fact that no messages have been
received. Therefore, the actions of the first round that the respec-
tive corruption sets H ′, T take are uniquely defined by the actions of
H, T ′. Assuming that the actions (exchanged messages) of all players
are uniquely defined until the end of round k, one can observe that
the actions of all players are uniquely defined in round k + 1 due to
the fact that the exchanged messages of round k + 1 are completely
determined by actions taken until round k.

Corollary 3.3 (CPA Uniqueness). Given a graph G and dealer D, if
there exists an ad hoc Broadcast algorithm which is t-locally resilient
in (G, D) and t-locally safe, then CPA is t-locally resilient in (G, D).

Proof. Immediate from Theorems 3.1,3.2.

This, according to the definition of uniqueness means that, CPA is
unique among t-locally safe algorithms.

3.3.3 Hardness of pLPC

Ichimura and Shigeno in [27] prove that the set splitting problem,
known as NP-hard [20], can be reduced to the problem of computing
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the minimum integer t such that a t-local pair cut exists in a graph
G. By generalizing the notion of the t-local pair cut to that of t-plp
cut and defining the pLPC problem analogously one can use a nearly
identical proof to that of [27] and show that the pLPC problem is
NP-hard.

Theorem 3.4. pLPC is NP-hard.
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Figure 3.2: An instance and the solution of a set
splitting problem with X = {1, 2, 3, 4, 5, 6} and A =
{{1, 2, 3}, {3, 4, 5}, {1, 4, 6}, {2, 4, 5}}. The solution is
depicted by the the two sets X1 = {1, 3, 5} and X2 =
{2, 4, 6} the elements of which are marked with squares
and triangles respectively. Notice that all sets in A have

at least one node of both colors.

Proof. We first consider a different (general) version of the pLPC prob-
lem which asks if there is a t-plp cut in the graph where no dealer is
specified, i.e., if there exists a t-plp cut for any possible dealer-node
in the node set. Concluding the proof we will show that if the general
pLPC problem is NP-hard then so is our original pLPC problem (with
specified dealer).

We first show that the set splitting problem known as NP-hard [20]
can be reduced to the general pLPC problem. Given a collection S
of 3-element subsets of a finite set X , the set splitting problem asks
whether there is a partition of X into two subsets X1 and X2 such that
no subset in S is entirely contained in either X1 or X2. An instance of
this problem is shown in Figure 3.2.

We propose the following reduction. Let S+ be a multiple collection
adding dummy subsets {v} to S such that the cardinality of {s ∈
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S+ : v ∈ s} is at least six for each v ∈ X . A complete graph with node
set S+ and a copy of it are denoted by KS+ and K ′

S+, respectively. We
denote with s′ ∈ V (K ′

S+) the copy of node s ∈ S+. We construct a
graph GSSP (Figure 3.3) with vertex set V (GSSP) = V (KS+)∪V (K ′

S+)∪X
and edge set

E(GSSP) = E(KS+) ∪ E(K ′
S+) ∪ {(v, s), (v, s′) : v ∈ X, s ∈ S+, v ∈ s}

where s′ is a copy of s as mentioned above.

We next prove that there is a set splitting of X if and only if there is
a 2-plp cut C in GSSP .

For the “only-if” direction it suffices to observe that a partition X =
X1 ∪ X2 for which no subset in S is entirely contained in either X1 or
X2, implies that each of the sets X1, X2 will contain at most 2 nodes
(elements) that appear in the neighborhood of every node (set) in KS+

and K ′
S+ and thus X = X1 ∪ X2 is a 2-plp cut.

For the “if” direction we argue as follows. Considering a 2-plp cut C
on GSSP we distinguish between two cases, the case X \C ̸= ∅ and the
case X \C = ∅. In the first case we observe that if a subgraph of GSSP

obtained by removing C from GSSP consists of at least two connected
components, then C must contain N (v) ∩ V (KS+) or N (v) ∩ V (K ′

S+)
for each v ∈ X \C. Since each v ∈ X has at least six neighbors in both
V (KS+) and V (K ′

S+), for any possible partition of C, either each node
in V (KS+) \C or each node in V (K ′

S+) \C has at least 3 neighbors in
some set of the partition. Therefore, since C is a 2-plp cut the case
X \ C ̸= ∅ cannot hold.

It remains to consider the case of a 2-plp cut C = C1 ∪ C2 where
X \ C = ∅, which implies that X ⊆ C; note that C1, C2 are in fact
2-local due to symmetry. Observe that X also constitutes a cut in
GSSP ; moreover, in this case both sets Xi = Ci ∩X, i = 1, 2, are 2-local
(being subsets of the 2-local sets Ci , i = 1, 2), hence X = X1 ∪ X2 is
a 2-plp cut. Therefore, no set in s ∈ S can be entirely contained in
some Xi , i = 1, 2, because |s| = 3, hence the corresponding vertex s in
KS+ (and s′ in K ′

S+) would have three neighbors in Xi contradicting
the fact that Xi is a 2-local set. Thus the set splitting instance (S, X)
has a solution X = X1 ∪ X2.

We conclude the proof by showing that NP-hardness for pLPC(G, t)
without a dealer (general case) implies NP-hardness for the case with
a dealer D, i.e., problem pLPC(G, t, D). Indeed, if pLPC(G, t, D) could
be solved with a polynomial-time algorithm then solving pLPC(G, t, v)
for every node v ∈ V would suffice to build a polynomial algorithm
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for pLPC(G, t). Therefore to compute pLPC(G, t, D) is NP-hard.
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Figure 3.3: The graph GSSP for the set splitting prob-
lem in Figure 3.2. Edges on the right side are formed
symmetrically to those on the left side and are omitted

for simplicity.

We have thus established that computing the necessary and sufficient
condition for CPA to work is NP-hard. Observe that this negative
result also has a positive aspect, namely that a polynomially bounded
adversary is unable to always compute an optimal attack unless P =
NP.

3.4 Known topology Networks

3.4.1 The Path Propagation Algorithm

Considering only safe Broadcast algorithms, the uniqueness of CPA in
the ad hoc model implies that an algorithm that achieves Broadcast
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in cases where CPA does not, must operate under a weaker model
e.g., assuming additional information on the topology of the network.
It thus makes sense to consider the setting where players have full
knowledge of the topology of the network. In this section we propose
the Path Propagation Algorithm (PPA) and show that is of optimal
resilience in the full-knowledge model. For convenience we will use
the following notions:

Definition 3.5 (Cover of paths). A set S ⊆ V \D is called a cover of a
set of paths P if and only if ∀p ∈ P , ∃s ∈ S s.t. s ∈ p (s is a node of p).

As one can see in the algorithm, each path which is propagated, is
transmitted along with a value which it carries. This value corre-
sponds to the value initially sent by the first node of the path (source
of the path). The other endpoint of the path, i.e., the last node of
path p will be denoted with tail(p). When a node v acts as a relay of
a value which has reached to it through path p, it appends its id v to
the last node of p and thus it creates a new path p′ with tail(p′) = v,
whereas the source of p and p′ remains the same. The description of
PPA follows.

Protocol 5: Path Propagation Algorithm (PPA)

Input (for each node v): dealer’s label D, graph G, t(v) = max #cor-
ruptions in N (v).
Message format: pair (x, p), where x ∈ X (message space), and p is a
path of G (message’s propagation trail).

Code for D: send message (xD, D) to all neighbors, decide on xD and
terminate.
Code for v ̸= D: Initialize decisionv := ⊥.
upon reception of (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) ̸= u) then discard the message else
send (x, p||v) 1 to all neighbors.

if (decisionv = ⊥) ∧ (decision(v) ̸= ⊥) then
decisionv := decision(v);
send message (decisionv, v) to all neighbors;
decide on decisionv.

function decision(v)

1By p||v we denote the path consisting of path p and node v, with the last node
of p connected to v.
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(* dealer propagation rule *)
if v ∈ N (D) and v receives (xD, D) then return xD.
(* honest path propagation rule *)
if v receives messages (x, p1), . . . , (x, pm) and ∄ t-local cover of

a path set P ⊆ {p1, . . . , pm}
then return x else return ⊥.

Concerning the path propagation rule of PPA, note that P is not the
whole set of collected paths received by v but rather any subset of the
paths through which v receives a value x. Observe that each player
can check the validity of the honest path propagation rule only if it has
knowledge of the corruption function t and the network’s topology.
Next, we argue about the safeness of PPA.

Theorem 3.5. PPA is t-locally safe.

Proof. We will show that if a player decides on a value x through PPA
then x = xD. Assume on the contrary that there is a set of players
V ′ ⊆ V that decide on values different than xD. Let v be the player
of V ′ that decides in the earliest round among all players in V ′, i.e.,
the first player to make an incorrect decision, and assume that v
decides on x ̸= xD. Player v cannot be a neighbor of the dealer since
all neighbors of the dealer only decide on xD as can be seen in the
respective decision rule of PPA. Therefore v has decided on x through
the honest path propagation rule. This means that v received value x
from a set of paths P such that there does not exist a t-local cover of
P. Moreover, through the check tail(p) ̸= u, we ensure that at least
one corrupted node will be included in a path which contains faulty
nodes. Due to the latter, we avoid the case where all the corrupted
nodes hide their identity in a path by changing the actual propagation
trail; this is a commonly used idea which was first presented in [14].

Since there does not exist a t-local cover for P, it is now obvious that
at least one path p of P is entirely corruption free and if p is entirely
corruption free, then value x, which is relayed through p, is the actual
value that the source-node w of p has decided on. Thus, at least one
honest player has decided in x ̸= xD before v. A contradiction to the
fact that v is the first player to make an incorrect decision.
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3.4.2 A necessary and sufficient condition

We will now show that the non-existence of a t-local pair cut is a suffi-
cient condition for PPA to achieve Broadcast in the t-locally bounded
model in networks of known topology.

Theorem 3.6 (Sufficiency). Given a graph G with dealer D and cor-
ruption function t, if no t-local pair cut exists in (G, D) then all honest
players will decide through PPA on xD.

Proof. All players in N (D) decide on xD due to the dealer propagation
rule, since the dealer is honest. We next show the rest of the players
will decide on xD due to the honest path propagation rule. Observe that
since PPA is t-locally safe, it suffices to show that, at some step, every
player will receive the correct value xD through a set of paths P which
will allow her to decide on xD through the honest path propagation
rule (if she has not aldready decided on it in a previous step).

Let v be any player in V \ N (D) and assume that no t-local pair cut
exist in (G, D). Let T be a t-local set and consider an execution σT

of PPA where T is the corruption set. Let PD,v be the set of all paths
connecting D with v that are composed entirely by nodes in V \ T
(honest nodes). Observe that PD,v ̸= ∅, otherwise T is a cut separating
D from v and T is trivially a t-local pair cut, a contradiction. Since
paths in PD,v are entirely composed by honest nodes it is easy to see
that v will receive the correct value xD through all paths in PD,v. Since
PD,v is a set of paths that propagate the same value to v, player v will
check if there is a t-local cover for it, as is dictated by the honest
path propagation rule, i.e. PD,v will coincide with P as is shown in
the algorithm.

We next prove that there does not exist a t-local cover of PD,v. As-
sume that ∃T ′ : t-local cover of PD,v. Then obviously T ∪ T ′ is a cut
separating D from v, since every path that connects D with v contains
at least a node in T ∪ T ′. Moreover the cut T ∪ T ′ can be partitioned
in the sets T \ T ′, T ′ which are trivially t-local and thus, T ∪ T ′ is a
t-local pair cut, a contradiction. Hence, there does not exist exist a
t-local cover of PD,v.

Consequently, in execution σT , node v will receive the correct value, in
some step k, through every path in PD,v along with the corresponding
propagation trail. If player v has already decided before step k then
her decision will certainly be on xD due to the t-local safety of PPA. In
any other case, v will also decide on the correct value xD by the end
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of step k due to the honest path propagation rule, because PD,v is not
covered by any t-local set.

Using the same arguments as in the proof of the necessity of con-
dition t < LPC(G, D) [47] it can be seen that the non-existence of a
t-local pair cut is a necessary condition for any algorithm to achieve
Broadcast under the non-uniform model. The proof uses similar ar-
guments with that of Theorem 3.2 but is much simpler; the different
executions are considered in the same graph. One cannot consider
executions in two different graphs since the topology is known to
all the players and the players would be able to distinguish the two
scenaria. For completeness the proof is presented below.

Theorem 3.7 (Necessity). Given a graph G with dealer D and corrup-
tion function t, if there exists a t-local pair cut in (G, D) then there is no
t-locally resilient algorithm for (G, D).

Proof. Assume that there exists a t-local pair cut C = C1∪C2 in (G, D)
partitioning V \ C into sets A, B ̸= ∅ such that D ∈ A. Also let A be a
t-locally resilient algorithm for (G, D). We will show that A does not
allow any v ∈ B to correctly decide on the value of the dealer xD in all
possible executions, which contradicts its t-local resilience. Consider
the following two executions σ and σ ′ of A on the instance (G, D).

• In execution σ the dealer’s value is xD = 0 and the corrupted
players are precisely those in C1. In each round t ≥ 1 of the
execution σ, every player in C1 performs the action that she is
instructed to perform in round t of execution σ ′ (where she is
honest).

• In execution σ ′ the dealer’s value is xD = 1 and the corrupted
players are precisely those in C2. In each round t ≥ 1 of the
execution σ ′, every player in C2 performs the action that she is
instructed to perform in round t of execution σ (where she is
honest).

The same standard argument of the two simultaneous executions is
used here. Its correctness regarding the unambiguous definition of
the players’ actions is proved in Section 3.3.2 in the paragraph “Note
on the proof of Theorem 3.2".

Similarly with the proof of Theorem 3.2, it follows that any player
v ∈ B performs identical actions in executions σ and σ ′ of A. Hence
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v decides on the same value in σ and σ ′, which cannot be correct in
both executions, since D has a different initial value in each of them.

Thus the non-existence of a t-local pair cut proves to be a necessary
and sufficient condition for the existence of a t-locally resilient algo-
rithm in both the uniform and the non-uniform model. Therefore PPA
is of optimal resilience.

3.5 Partial knowledge

Until now we have presented optimal resilience algorithms for Broad-
cast in two extreme cases, with respect to the knowledge over the
network topology: the ad hoc model and the full-knowledge model.
A natural question arises: is there any algorithm that works well in
settings where nodes have partial knowledge of the topology?

To address this question we introduce the partial knowledge model,
where each player has restricted knowledge over the topology of the
network and devise a new, generalized version of PPA that can run
with partial knowledge of the topology of the network. More specifi-
cally, as explained in the Section 3.2.1 we assume that each player
v only has knowledge of the topology of a certain subgraph Gv of G
which includes v. As has been defined, we represent the assignment
of initial topology knowledge to all players by the topology view func-
tion γ where γ(v) represents the subgraph over which player v has
knowledge of the topology. We will also use the joint view γ(S) of a
set S, which has also been defined in Section 3.2.1 and represents
the subgraph which yields if all nodes in S combine their topology
knowledge. We will call an algorithm which achieves Broadcast for
any t-local corruption set in graph G with dealer D and view function
γ, (γ, t)-locally resilient for (G, D).

GPPA algorithm. Now given a corruption function t and a view func-
tion γ we define the Generalized Path Propagation Algorithm (GPPA)
to work exactly as PPA apart from a natural modification of the hon-
est path propagation rule. The modified decision rule will be denoted
as generalized path propagation rule an is explained in the following.
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Generalized path propagation rule. Player v receives the same
value x from a set P of paths that are entirely contained in the sub-
graph γ(v) and is able to deduce (from the topology) that no t-local
cover of P exists.

Remark. Note that GPPA generalizes both CPA and PPA. Indeed, if
∀v ∈ V, γ(v) = N (v), then GPPA(G, D, t, γ) coincides with CPA(G, D, t).
If, on the other hand, ∀v ∈ V, γ(v) = G then GPPA(G, D, t, γ) coincides
with PPA(G, D, t).

We also notice that, quite naturally, as γ provides more information
for the topology of the graph, resilience increases, with CPA being
of minimal resilience in this family of algorithms, and PPA achieving
maximal resilience.

To prove necessary and sufficient conditions for GPPA being t-locally
resilient we need to generalize the notion of t-plp cut as follows:

Definition 3.6 (type 1 (γ, t)-partial local pair cut). Let C be a cut of
G, partitioning V \ C into sets A, B ̸= ∅ s.t. D ∈ A. C will be called
a type 1 (γ, t)-partial local pair cut (plp1 cut) if there exists a partition
C = C1 ∪ C2 s.t. C1 is t-local and C2 ∩ γ(B) is t-local in the graph γ(B).

Definition 3.7 (type 2 (γ, t)-partial local pair cut). Let C be a cut of
G, partitioning V \ C into sets A, B ̸= ∅ s.t. D ∈ A. C will be called
a type 2 (γ, t)-partial local pair cut (plp2 cut) if there exists a partition
C = C1 ∪ C2 s.t. C1 is t-local and ∀u ∈ B, C2 ∩ N (u) is t-local in the
graph γ(u).

We can now show the following two theorems. The proofs build on
the techniques presented for CPA and PPA.

Theorem 3.8 (sufficient condition). Let t be corruption function and γ
be a view function, if no (γ, t)-plp2 cut exists in G with dealer D then
GPPA(G, D, t, γ) is (γ, t)-locally resilient for G, D.

Proof. Suppose no (γ, t)-plp2 cut exists. Assume an execution of
GPPA where the actual corruption set is T . By definition, T is t-
local, since we are in the t-locally bounded adversary model; clearly
T ∪ N (D) is a cut on G as defined before (i.e. not including node
D). Since T is t-local and T ∪ N (D) is not a (γ, t)-plp2 cut there
must exist u1 ∈ V \ (T ∪ N (D) ∪ D) s.t. N (D) ∩ N (u1) is not t-
local on γ(u1). But since all the honest nodes in N (D) ∩ N (u1) have
decided correctly as neighbors of the dealer, u1 will receive the value
xD from paths of length 1, starting from these nodes. Finding a t-local
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corruption set covering these paths is impossible since it would have
to include all these nodes, and from the above, it would not be t-
local. So u1 will decide on the dealer’s value xD. We can use the same
argument inductively to show that every honest node will eventually
decide on the correct value xD through GPPA. Let Ck = (N (D) \ T) ∪
{u1, u2, ..., uk−1} be the set of the nodes that have decided until a
certain round of the protocol and assume that they have decided
correctly on xD. Then Ck ∪ T is a cut. Since T is t-local by the same
argument as before there exists an undecided node uk s.t. Ck ∩N (uk)
is not t-local on γ(uk). Using the same argument as before uk will
decide on the correct value. Eventually all honest players will decide
on xD. Thus GPPA is t-locally resilient in G.

Again, as in the proof of Theorem 3.1, observe that in this proof we
do not use the fact that GPPA is safe but rather prove inductively that
in the case discussed all nodes will decide correctly.

Theorem 3.9 (necessary condition). Let t be a corruption function, γ be
a view function and A be a t-locally safe ad hoc Broadcast algorithm.
If a (γ, t)-plp1 cut exists in graph G with dealer D, then A is not (γ, t)-
locally resilient for G, D.

Proof. Assume that there exists a (γ, t)-plp1 cut C = T ∪ H in graph
G with dealer D and with T being the t-local set of the partition
(Figure 3.1). γ(B) is the joint view of the nodes in B. G′ is the graph
that results from G if we remove edges from A \ γ(B) s.t. the set H
becomes t-local in G′. The existence of a set of edges that guarantees
such a property is implied by the second property of the (γ, t)-plp1
cut. Suppose that there exists a t-locally safe Broadcast algorithm A
which is t-locally resilient in graph G with dealer D. We can argue the
same way we did on Theorem 3.2 which leads to a contradiction.

One can argue that increased topology knowledge implies increased
resilience for GPPA compared to CPA; for example, the sufficient con-
dition of GPPA holds in settings where the sufficient condition of CPA
does not hold. An overview of our results concerning the t-local model
with respect to the level of topology knowledge appears in Figure 3.4.

Notice that the reason for which GPPA is not optimal is that nodes
in γ(v) do not share their knowledge of topology. An optimal re-
silience protocol should also include exchange of topological knowl-
edge among players. Such a protocol is presented in the next chapter
and is indeed proved unique for the partial knowledge model.
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G

∃ safe, t-locally resilient
Ad-Hoc algorithm (CPA)

⇔
@ a t-plp cut

@ a t-local pair cut

∃ t-locally resilient algorithm (PPA)
⇔

@ a type 1 (γ, t)-plp cut

@ a type 2 (γ, t)-plp cut

∃ a safe, (γ, t)-locally
resilient algorithm (GPPA)

Figure 3.4: Overview of conditions concerning the ex-
istence of t-locally resilient algorithms with respect to
the level of topology knowledge. Note that G refers to

the family of pairs (G, D).

3.6 General Adversary

We next shift focus to the general adversary model of Hirt and Mau-
rer [26] in order to generalize our results in this model.

General adversary model. Hirt and Maurer in [26] study the secu-
rity of multiparty computation protocols with respect to an adversary
structure, that is, a family of subsets of the players; the adversary is
able to corrupt one of these subsets. More formally,

A structure Z for the set of players V is a monotone family of subsets
of V , i.e. Z ⊆ 2V , where all subsets of a set Z ∈ Z are in Z too,
(alternatively, ∀Z ∈ Z, if Z ′ ⊆ Z then it holds that Z ′ ∈ Z).

Let us now redefine some notions that we have introduced in this
chapter in order to extend our results to the case of a general ad-
versary. We will call an algorithm that achieves Broadcast for any
corruption set T ∈ Z in graph G with dealer D, Z-resilient. A cover



82 Chapter 3. Partial Knowledge and Propagation Cuts

S ∈ Z of a set of paths P will be called a Z-cover. We next generalize
the notion of a t-local pair cut.

Definition 3.8 (Z-pair cut). A cut C of G for which there exists a
partition C = C1 ∪ C2 and C1, C2 ∈ Z is called a Z-pair cut of G.

3.6.1 Known Topology Networks

We adapt PPA in order to address the Broadcast problem under a
general adversary. The Generalized Z-PPA algorithm can be obtained
by a modification of the path propagation rule of PPA (Protocol 5).

Z-PPA Honest Path Propagation Rule. Player v receives the same
value x from a set P of paths and is able to deduce that for any T ∈ Z,
T is not a cover of P.

Moreover, the following theorems hold and their proofs are essentially
the same as the proofs of Theorems 3.6, and 3.7. The only technical
modification in the proofs is that one should replace the notions of
t-local pair cut, t-local set, t-local cover, with that of Z-pair cut,
admissible corruption set (or set which belongs to Z) and Z-cover
respectively.

Theorem 3.10 (Sufficiency). Given a graph G, dealer D, and an ad-
versary structure Z, if no Z-pair cut exists, then all honest players will
decide on xD through Z-PPA.

Theorem 3.11 (Necessity). Given a graph G, dealer D, and an adver-
sary structure Z, if there exists a Z-pair cut then there is no Z-resilient
Broadcast algorithm for (G, D).

3.6.2 Ad Hoc Networks

Since in the ad hoc model the players know only their own labels,
the labels of their neighbors and the label of the dealer it is reason-
able to assume that a player has only local knowledge on the actual
adversary structure Z. Specifically, given the actual adversary struc-
ture Z we assume that each player v knows only the local adversary
structure Zv = {A ∩ N (v) : A ∈ Z}. A similar assumption was used
in [54].

As in known topology networks, we can describe a generalized version
Z-CPA of CPA, which is an ad hoc Broadcast algorithm for the general
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adversary model. In particular, we modify step (3) of CPA (Protocol 4)
in the following way.

Z-CPA certified propagation rule. If a node v is not a neighbor of
the dealer, then upon receiving the same value x from all its neighbors
in a set N ⊆ N (v) s.t. N /∈ Zv, it decides on value x.

The proof of Z-CPA safety is essentially the same as the proof of
safety of the original CPA, presented in Theorem 2.1. Observe that
the Z-CPA certified propagation rule a very clear generalization of
the CPA certified propagation rule. It actually states that if a player
receives the same value x from a set of neighbors which cannot all be
corrupted, the player can safely decide on this message, because at
least one of them is definitely honest and sends the correct value.

In order to argue about the topological conditions which determine
the effectiveness of Z-CPA we generalize the notion of partial t-local
pair cut.

Definition 3.9 (Z-partial pair cut). Let C be a cut of G partitioning
V \ C into sets A, B ̸= ∅ s.t. D ∈ A. C is a Z-partial pair cut (Z-pp
cut) if there exists a partition C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈
B, N (u) ∩ C2 ∈ Zu.

Analogously to CPA Uniqueness, we can now prove Z-CPA Unique-
ness in the general adversary model. We present an alternative proof,
a modification of which can also be used for the proof of Theorem 3.1.

Theorem 3.12 (Sufficient Condition). Given a graph G, dealer D, and
an adversary structure Z, if no Z-pp cut exists, then Z-CPA is Z-
resilient.

Proof. Suppose that Z-CPA is not Z-resilient. Then there exists a
scenario where C are the corrupted nodes, A are the honest and
decided nodes, and B are the honest undecided nodes. All nodes in
A have decided on the correct value because Z-CPA is safe. Since
every node in B is undecided we have that ∀u ∈ B : N (u) ∩ A ∈ Zu,
otherwise u would have decided because a set of nodes that are not in
Zu would have sent him the same broadcast value. But then C ∪ A is
a Z-pp cut which is a contradiction. Hence, Z-CPA is Z-resilient.

Theorem 3.13 (Necessary Condition). Let A be a safe ad hoc Broad-
cast algorithm. Given a graph G, dealer D, and an adversary structure
Z, if a Z-pp cut exists then A is not Z-resilient for G, D.
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Proof. Let C = C1 ∪C2 be the Z-pp cut which partitions V \C in sets
A, B ̸= ∅ s.t. D ∈ A. Let Z ′ = {

∪
u∈B Z ∩N (u) : Z ∈ Z} ∪ {C2}.

For every node u in B we have:

Z ′
u = {Z ∩N (u) : Z ∈ Z ′} ∪ {C2 ∩N (u)}

=

{(∪
v∈B

Z ∩N (v)

)
∩N (u) : Z ∈ Z

}
∪ {C2 ∩N (u)}

= {Z ∩N (u) : Z ∈ Z} ∪ {C2 ∩N (u)}
= Zu

since ∀u ∈ B : N (u) ∩ C2 ∈ Zu.

So far we have established that (a) nodes in B cannot tell whether Z
or Z ′ is the adversary structure since ∀u ∈ B : Zu = Z ′

u and (b) C2 is
an admissible corruption set in Z ′.

Suppose a node in B could decide on some value in the scenario where
Z is the adversary structure. Then using the standard argument
employed in Theorem 3.2, an attack on the safeness of the algorithm
would be possible in a different scenario where Z ′ is the adversary
structure. The details of the proof are similar and are based on the
difficulty of the honest players in B to distinguish which scenario they
participate in, with respect to the adversary structure: the one with
Z or the one with Z ′.

Complexity of Z-CPA.

We will now make a simple but practical observation on the complex-
ity of Z-CPA. We measure the complexity of Z-CPA with respect to
the size of the graph |G| only, because it is interesting to consider
if CPA is fully-polynomial (of polynomial round, communication and
local computations complexity) regardless of the size of the adversary
structure description. We consider its complexity on the instances
where Broadcast is solvable, i.e., there does not exist a Z-pp cut.

Since Z-CPA is trivially of polynomial round and communication
complexity it holds that Z-CPA is fully polynomial if its local com-
putations complexity is polynomial. Observe that the local computa-
tions of every node essentially are comprised of membership checks
dictated by the Z-CPA Certified Propagation rule. Thus given any
instance (G, D,Z) of a family of instances I, if there exists a poly-
nomial algorithm B which given a set S ⊆ N (v) decides whether
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S ∈ Zv, for every player v, then Z-CPA, with subroutine B for mem-
bership checks, is fully polynomial in I. Practically, if the description
of the adversary structure allows polynomial membership checks on
the local adversary structures of all players then Z-CPA is fully poly-
nomial. Such an example is the t-locally bounded adversary model
described is the first sections. In that model the description of the
adversary structure is Z = {S ∈ V : ∀v ∈ V, |S ∩ N (v)| ≤ t}, which
allows efficient local membership checks which essentially constitute
of comparing the cardinality of a set with t. A more detailed study on
the complexity of Z-CPA is presented in Section 4.4.

3.7 Dealer Corruption

We have studied the problem of Broadcast in the case where the
dealer is honest. In order to address the general case in which the
dealer may also be corrupted one may observe that for a given ad-
versary structure Z and graph G, Z-resilient Broadcast in ad hoc
networks can be achieved if the following conditions both hold:

1. ∄Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .

2. ∀v ∈ V there does not exist a Z-pp cut for G with dealer v.

Condition 1 was proved by Hirt and Maurer [26] sufficient and nec-
essary for the existence of secure multiparty protocols in complete
networks. Z-resilient Broadcast in the general case where the net-
work is incomplete can be achieved by simulating any protocol for
complete graphs (e.g. the protocol presented in [17]) as follows: each
one-to-many transmission is replaced by an execution of Z-CPA. It
is not hard to see that the conjunction of the above two conditions is
necessary and sufficient for Broadcast in incomplete networks in the
case of corrupted dealer. Similarly in networks of known topology,
there exists a Z-resilient Broadcast algorithm if condition 1 holds
and for every v ∈ V a Z-pair cut does not exist for graph G with
dealer v. Naturally, the above observations hold also in the special
case of a locally bounded adversary.
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3.8 Conclusions

As we have shown, in both the t-locally bounded adversary and gen-
eral adversary models the idea of CPA, despite its simplicity and min-
imal propagation (a player only propagates the value she decides to
all her neighbors) yields algorithms which prove to be of optimal re-
silience (unique). The latter means that one cannot achieve better
solvability of the problem by employing more complex propagation
schemes. Moreover the results presented in this chapter imply that
there are instances in which the problem is not solvable under the ad
hoc model but is solvable assuming higher level of topology knowl-
edge. This suggests that employing any topology discovery topology
algorithm in the ad hoc model does not provide any useful infor-
mation which will affect the solvability of the problem. Since CPA
is of optimal resilience, it is also natural to ask whether it provides
the more efficient solution for the problem. We deal with the latter
question in the next chapter.

An interesting open problem would be to determine the largest class
of algorithms among which CPA (respectively Z-CPA) is unique. Pre-
vious results (cf. RPA algorithm [47]) combined with our work in this
chapter suggest that in order to achieve better solvability than CPA
one has to assume additional topological knowledge.

We have shown that necessary and sufficient criteria for Broadcast
on known topology and ad-hoc networks are NP-hard to compute.
So what is the best attack a polynomially bounded adversary could
deploy? Similar issues may be raised from the point of view of system
designers. Defining an appropriate meaningful optimization objective
on the network resilience is essential in answering such questions.



87

Chapter 4

Partial Knowledge and Reliable
Message Transmission

A fundamental primitive in distributed computing is Reliable Message
Transmission (RMT), which refers to the task of correctly sending a
message from a party to another, despite the presence of byzantine
corruptions. In this chapter we address the problem in the general
adversary model of Hirt and Maurer, which subsumes earlier models
such as the global or local threshold adversaries. Regarding the topol-
ogy knowledge, we employ the Partial Knowledge Model, introduced
in the previous chapter, which encompasses both the full knowledge
and the ad hoc model.

The following contributions are presented in this chapter: (a) A neces-
sary and sufficient condition for achieving RMT in the partial knowl-
edge model with a general adversary; in order to show sufficiency,
we propose the RMT-Partial Knowledge Algorithm (RMT-PKA), an al-
gorithm that solves RMT whenever this is possible, therefore it is
a unique algorithm. To the best of our knowledge, this is the first
unique protocol for RMT against general adversaries in the partial
knowledge model. (b) A study of efficiency in the case of the ad hoc
network model: we show that either the Z-CPA protocol, introduced
in the previous chapter, is fully polynomial or no unique fully poly-
nomial protocol for RMT exists, thus introducing a new notion of
uniqueness with respect to efficiency that we call poly-time unique-
ness.

To obtain our results we introduce, among others, a joint view oper-
ation on adversary structures, a new notion of separator (RMT-cut),
appropriate for RMT in unreliable networks, and a self-reducibility
property of the RMT problem, which we show by means of a protocol
composition. The latter plays a crucial role in proving the poly-time
uniqueness of Z-CPA.
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4.1 Introduction

Achieving reliable communication in unreliable networks is funda-
mental in distributed computing. Of course, if there is an authenti-
cated channel between two parties then reliable communication be-
tween them is guaranteed. However, it is often the case that certain
parties are only indirectly connected, and need to use intermediate
parties as relays to propagate their message to the actual receiver.
The Reliable Message Transmission problem (RMT) is the problem of
achieving correct delivery of a message m from a dealer (sender) D
to a receiver R even if some of the intermediate nodes are corrupted
and do not relay the message as agreed. In this chapter we consider
the Reliable Message Transmission under the existence of a general
Byzantine Adversary. The RMT problem has been initially considered
by Dolev [14] in the context of the closely related Broadcast problem.

RMT under Byzantine adversaries has been studied extensively in
various settings: secure or reliable transmission, general or threshold
adversary, perfect or unconditional security. Here we focus on per-
fectly reliable transmission under a general adversary and the partial
knowledge model. More specifically, RMT under a threshold Byzan-
tine adversary, was addressed in [15, 13], where additional secrecy
restrictions were posed and in [50] where a probability of failure was
allowed. Results for RMT in the general adversary model [26], where
given in [36, 51, 52]. In general, very few studies have addressed
RMT or related problems in the partial knowledge setting despite the
fact that this direction was already proposed in 2002 by Kumar et
al. [36].

We consider the RMT problem under the General Adversary and the
Partial Knowledge model, introduced in the previous chapter.

The strength of the results of this chapter lies in the combination of
these two quite general models (general adversary and partial knowl-
edge), forming the most general setting we have encountered so far
within the synchronous deterministic model.

Trivially all the aforementioned results for Broadcast with an honest
dealer, presented in previous chapters can be adapted for the RMT
problem. However, determining a necessary and sufficient condition
(tight) for the most general case of the partial knowledge model hasn’t
been achieved up to now. Moreover these previous studies have fo-
cused on feasibility and not efficiency and no complexity studies have
been conducted in this context. The latter two issues appeared to be



4.1. Introduction 89

most challenging and are both considered and answered in this chap-
ter.

4.1.1 Outline

We study the RMT problem under general adversaries. Our contri-
bution is twofold:

(a) Feasibility of RMT in the Partial Knowledge model. We prove
a necessary and sufficient condition for achieving RMT in this setting,
and present an algorithm that achieves RMT whenever this condition
is met. In terminology used in previous chapters, this is a unique
algorithm for the problem, in the sense that whenever any algorithm
achieves RMT in a certain instance so does our algorithm. This com-
pletes the feasibility study we initiated in Chapter 3. To the best of
our knowledge, the first unique algorithm for this general setting.

A key notion that we define and use is the joint adversary structure
of (a set of) players which corresponds to the worst case adversary
structure that conforms to each player’s initial knowledge; this no-
tion is crucial in obtaining the tight condition mentioned above since
it provides a way to safely utilize the maximal valid information from
all the messages exchanged. We also make use of the concept of local
pair-cut technique, introduced by Pelc and Peleg [47] in the context
of Broadcast. This technique was extended in Chapter 3 in order to
obtain characterizations of classes of graphs for which Broadcast is
possible for various levels of topology knowledge and type of corrup-
tion distribution. However, an exact characterization of teh solvable
instances for the partial knowledge setting was left unanswered. Here
we answer this question by proposing an adequate pair-cut for the
partial knowledge model together with a unique algorithm for RMT,
the first unique algorithm for this specific model proposed. This new
algorithm is quite general and encompasses earlier algorithms such
as CPA [30], PPA and Z-CPA [44], presented in previous chapters, as
special cases. A useful by-product of practical interest is that the new
cut notion can be used to determine the exact subgraph in which RMT
is possible in a network design phase. A remarkable property of our
algorithm is its safety: even when RMT is not possible the receiver
will never make an incorrect decision despite the increased adver-
sary’s attack capabilities, which include reporting fictitious topology
and false local knowledge among others.
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(b) Efficiency of RMT in the Ad Hoc network model. We study
the ad hoc case in terms of efficiency because even in this simple
case of partial knowledge, it is not clear whether an efficient (fully
polynomial1) protocol exists

We propose an adaptation of Z-CPA [44] appropriate for RMT. We
prove that this protocol is unique for RMT in the Ad Hoc model and
is the first such algorithm that we know of. We examine whether and
when this algorithm is fully polynomial. We show that no unique fully
polynomial protocol for RMT exists if Z-CPA is not fully polynomial,
thus introducing a new meaningful notion of poly-time uniqueness.
In particular, we prove that if Z-CPA is not fully polynomial in any
class of instances where RMT is solvable, then there exists a corre-
sponding class of (solvable) simpler instances in which any protocol
that achieves RMT cannot be fully polynomial. We obtain this result
by showing that Z-CPA yields a polynomial time self-reduction for the
RMT problem. Therefore Z-CPA, despite its simplicity and minimal
propagation, proves to be at least as efficient (in the sense described
above) as any other RMT protocol.

More intuitively, we enhance the uniqueness property of Z-CPA by
implicitly stating that, not only one cannot achieve better solvabililty
by employing more complex propagation schemes but one cannot
even achieve significantly lower complexity in this way. This restric-
tion seems to be inherent in the ad hoc network setting where players’
knowledge strictly relies on the information received by their neigh-
bors.

This chapter includes results presented in [46, 43].

4.1.2 Model and definitions

In this chapter we address the problem of Perfectly Reliable Message
Transmission, hereafter simply referred as Reliable Message Trans-
mission (RMT) under the influence of a general Byzantine adversary.
In our model the players have partial knowledge of the network topol-
ogy and of the adversary structure.

We assume a synchronous network represented by a graph G consist-
ing of the player (node) set V (G) and edge set E(G) which represents
authenticated channels between players. The set of neighbors of a
player v is denoted with N (v). The problem definition follows.

1A fully polynomial protocol is a protocol of polynomial round, bit and local
computations complexity.
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Reliable Message Transmission. We assume the existence of a des-
ignated player D, called the dealer, who wants to propagate a certain
value xD ∈ X , where X is the initial message space, to a designated
player R, called the receiver. We say that a distributed protocol
achieves (or solves) RMT if by the end of the protocol the receiver
R has decided on xD, i.e. if it has been able to output the value xD

originally sent by the dealer.

As in Section 3.6.2, we make the natural assumption that the knowl-
edge of a player over the adversary structure is restricted by its topo-
logical knowledge; namely, the combination of the partial knowledge
and the general adversary model that we propose regarding the play-
ers’ knowledge is as follows:

Partial Knowledge with General Adversaries. Considering the par-
tial knowledge model under the existence of a general adversary, we
extend the model of Section 3.6.2 and assume that given the actual
adversary structure Z each player v only knows the possible corrup-
tion sets in his view Zv = {A ∩ V (γ(v)) | A ∈ Z} (local adversary
structure).

We denote an instance of the problem by the tuple I = (G,Z, γ, D, R).
Analogously with the protocol properties previously defined we will
use the following notions:

Protocol properties. We will say that an RMT protocol is resilient
for an instance I if it achieves RMT on instance I for any possible
corruption set and any admissible behavior of the corrupted players.
We say that an RMT protocol is safe if it never causes the receiver R
to decide on an incorrect value in any instance. An algorithm A is
unique (for RMT) among algorithms in family A, if the existence of an
algorithm of family A which achieves RMT in an instance I implies
that A also achieves RMT in I.

Similarly with the previous chapter, we make use of node-cuts (sep-
arators) which separate the receiver R from the dealer, hence, node-
cuts that do not include the dealer. From here on we will simply use
the term cut to denote such a separator.



92 Chapter 4. Partial Knowledge RMT

4.2 Partial knowledge and general adversaries

Considering two players who have partial knowledge of the adver-
sary, it would be useful to define an operation to calculate their joint
knowledge about the adversary. For an adversary structure E and a
node set A let EA = {Z ∩ A | Z ∈ E} denote the restriction of E to the
set A. The joint adversary structure from two restricted adversary
structures can be obtained through the ⊕ operator. We define the
operation on two possibly different structures E ,F so that the oper-
ation is well defined even if a corrupted player provides a different
structure than the real one to an honest player.

Definition 4.1. Let TA = 22
A

denote the space of adversary structures
on a set of nodes A. For any node sets A, B and adversary structures
E ,F , the operation ⊕ : TA × TB → T(A∪B), is defined as follows:

EA ⊕FB = {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩ B = Z2 ∩ A)}

Informally, the EA⊕FB operation unites possible corruption sets from
EA and FB that ‘agree’ on A ∩ B. In the following, we show that the
⊕ operation is commutative, associative and idempotent. A simple
example of the ⊕ operation is depicted in Figure 4.1.

A B

Z1 Z2

Z3 Z4

Z5 Z6

Figure 4.1: Assuming that Z1, Z3, Z5 ∈ EA and
Z2, Z4, Z6 ∈ FB, we observe that EA ⊕ FB should in-

clude Z1 ∪ Z2, Z3 ∪ Z4 but not Z5 ∪ Z6.

Fact. An equivalent definition of the ⊕ operation is

EA⊕FB = {Z1∪Z2 | (Z1 ∈ EA)∧(Z2 ∈ FB)∧(Z1∩B ⊆ Z2)∧(Z2∩A ⊆ Z1)}
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We next show some algebraic properties of this operation.

Theorem 4.1. Operator ⊕ is commutative.

Proof. For any adversary structures E ,F and node sets A, B:

EA ⊕FB = {Z1 ∪ Z2 | (Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩ B = Z2 ∩ A)}
= {Z2 ∪ Z1 | (Z2 ∈ FB) ∧ (Z1 ∈ EA) ∧ (Z2 ∩ A = Z1 ∩ B)}
= FB ⊕ EA

So operator ⊕ is commutative.

Theorem 4.2. Operation ⊕ is idempotent.

Proof.

EA ⊕ EA = {Z1 ∪ Z2 | (Z1 ∈ EA) ∧ (Z2 ∈ EA) ∧ (Z1 ∩ A = Z2 ∩ A)}
= {Z1 ∪ Z2 | (Z1 ∈ EA) ∧ (Z2 ∈ EA) ∧ (Z1 = Z2)}
= {Z1|(Z1 ∈ EA)}
= EA

So operation ⊕ is idempotent.

Theorem 4.3. Operation ⊕ is associative.

The associativity proof is deferred to the Appendix 6.

The next theorem shows the importance of the ⊕ operation in this
work.

Theorem 4.4. For any adversary structures E ,F , node sets A, B and
H = EA ⊕ FB, it holds that ∀H′ ∈ TA∪B : if H′A = EA and H′B = FB

then H′ ⊆ H.

Proof. Suppose that there existed some H′ s.t. ∃Z ∈ H′ : Z ̸∈ H. For Z
we have Z1 = Z∩A ∈ EA and Z2 = Z∩B ∈ FB. Also Z1∩B = Z∩A∩B =
Z2 ∩ A. But then, definition 4.1 implies Z ∈ H, a contradiction.

Corollary 4.5. For any adversary structure Z and node sets A, B:
Z(A∪B) ⊆ ZA ⊕ZB.
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What Corollary 4.5 tells us is that the ⊕ operation gives the maximal
(w.r.t inclusion) possible adversary structure that is indistinguishable
by two agents that know ZA and ZB respectively, i.e., it coincides
with their knowledge of the adversary structures on sets A and B
respectively. Recall that Zu = ZV(γ(u)). We will prefer to use Zu to
denote the local adversary structure of player u and ZV(γ(u)) to denote
the corresponding restriction of the adversary structure. This allows
us to define the combined knowledge of a set of nodes B about the
adversary structure Z as follows. For a given adversary structure Z,
a view function γ and a node set B let

ZB =
⊕
v∈B

ZV(γ(v))

Note that ZB exactly captures the maximal adversary structure pos-
sible, restricted in γ(B), relative to the initial knowledge of players in
B. Also notice that using Corollary 4.5 we get ZV(γ(B)) ⊆ ZB. The
interpretation of this inequality in our setting, is that what nodes in
B conceive as the worst case adversary structure indistinguishable
to them, it always contains the actual adversary structure in their
scenario.

4.3 Reliable message transmission in the par-
tial knowledge model

In RMT we want the dealer D to send a message to some player R
(the receiver) in the network. We assume that the dealer knows the
id of player R. We denote an instance of the problem by the tuple
(G,Z, γ, D, R). To analyze feasibility of RMT we introduce the notion
of RMT-cut.

Definition 4.2 (RMT-cut). Let (G,Z, γ, D, R) be an RMT instance and
C = C1 ∪ C2 be a cut in G, partitioning V \ C in two sets A, B′ ̸=
∅ where D ∈ A and R ∈ B′. Let B ⊆ B′ be the node set of the
connected component that R lies in. Then C is a RMT-cut iff C1 ∈ Z
and C2 ∩ V (γ(B)) ∈ ZB.

We next prove that the non existence of an RMT-cut is a necessary
condition for the existence of safe RMT algorithms. The proof com-
bines ideas from from previous impossibility proofs with the ⊕ oper-
ation and follows in brief.
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Theorem 4.6 (Necessity). Let (G,Z, γ, D, R) be an RMT instance. If
there exists a RMT-cut in G then no safe and resilient RMT algorithm
exists for (G,Z, γ, D, R).

Proof. Let C = C1 ∪ C2 be the RMT-cut which partitions V \ C in
sets A, B ̸= ∅ s.t. D ∈ A and R ∈ B. Without loss of generality
assume that B is connected. If it is not, then by adding all nodes,
that do not belong to the connect component of R, to A, a different
RMT-cut is built with the desired properties. Consider the instance
where Z ′ = ZB and all other parameters are the same as the previous
scenario. Then, all nodes in B have the same initial knowledge in both
instances, since ZB = Z ′

B.

Suppose R could decide correctly with Z being the actual adversary
structure. Then using a standard argument of the two runs and
presented in the previous chapter, an attack on the safety of the
algorithm would be possible in the same setting with Z ′ being the ac-
tual adversary structure. The basic idea is that we can construct two
indistinguishable scenarios, where the value that the dealer broad-
casts is different. The details of the proof are similar and are based on
the difficulty of the honest players in B to distinguish which scenario
they participate in, with respect to the actual adversary structure:
the one with Z or the one with Z ′.

4.3.1 The RMT-Partial Knowledge Algorithm (RMT-
PKA)

We next present the RMT Partial Knowledge Algorithm (RMT-PKA), an
RMT protocol which succeeds whenever the condition of Theorem 4.6
(in fact, its negation) is met, rendering it a tight condition on when
RMT is possible. To prove this we provide some supplementary no-
tions.

Messages comminicated in Protocol 6. In the RMT-PKA protocol
there are two type of messages exchanged:

• Type 1 messages are used to propagate the dealer’s value and
are of the form (x, p) where x ∈ X and p is a path.

• Type 2 messages of the form ((v, γ(v),Zv), p) are used for every
node v to propagate its initial information γ(v),Zv throughout
the graph.
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Let M denote a subset of the messages of type 1 and 2 that the re-
ceiver node R receives at some round of the protocol on (G,Z, γ, D, R).
We will say that value(M) = x if and only if all the type 1 messages of
M report the same dealer value x, i.e., for every such message (y, p),
it holds that y = x, for some x ∈ X . Observe that M may consist
of messages which contain contradictory information. We next de-
fine the form of a message set M which contains no contradictory
information in our setting (a valid set M ).

Definition 4.3 (Valid set M ). A set M of both type 1 and type 2 mes-
sages corresponds to a valid scenario, or more simply is valid, if

• ∃x ∈ X s.t. value(M) = x. That is, all type 1 messages relay the
same x as dealer’s value.

• ∀m1, m2 ∈ M of type 2, their first component is the same when
they refer to the same node. That is, if m1 = ((v, γ(v),Zv), p) and
m2 = (((v′, γ ′(v),Z ′

v), p′), then v = v′ implies that γ(v) = γ ′(v)
and Zv = Z ′

v.

For every valid M we can define the pair (GM , xM) where xM = value(M).
To define GM let VM be the set of nodes u for which the informa-
tion γ(u),Zu is included in M, namely VM = {v | ((v, γ(v),Zv), p) ∈
M for some path p}. Then, GM is the node induced subgraph of graph
γ(VM) on node set VM . Therefore, a valid message set M uniquely de-
termines the pair (GM , xM). We next propose two notions that we use
to check if a valid set M contains correct information.

Definition 4.4 (full message set). A full message set M is a valid set
M that contains all the D−R paths which appear in GM as part of type
1 messages.

Definition 4.5 (Adversary cover of set M ). A set C ⊆ VM is an ad-
versary cover of message set M if C has the following property: C is
a cut between D, R on GM and if B is the node set of the connected
component that R lies in, it holds that (C ∩ V (γ(B))) ∈ ZB.

Protocol 6: RMT-PKA

Input (for each node v): dealer’s label D, γ(v), Zv.
Message format: type 1 : pair (x, p) or type 2 : pair ((u, γ(u),Zu), p) ,
where x ∈ X (message space), u the id of some node, γ(u) is the view
of node u, Zu is the adversary structure of node u, and p is a path of
G (message’s propagation trail).
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Code for D: send messages (value : xD, {D}) and ((D, γ(D),ZD), {D})
to all neighbors and terminate.
Code for v ̸∈ {D, R}: send message ((v, γ(v),Zv), {v}) to all neigh-
bors.

upon reception of type 1 or type 2 message (a, p) from node u
do:

if (v ∈ p) ∨ (tail(p) ̸= u)2 then discard (a, p) else send
(a, p||v) 3 to all neighbours.
Code for R: upon reception of (x, p) from node u do:

if decision ̸= ⊥ then decide on decision and terminate.

Subroutine decision

(* dealer propagation rule *)
if R ∈ N (D) and R receives (xD, {D}) then return xD.
(* full message set propagation rule *)
if R receives a full set M with value(M) = x and ∄ an adversary-

cover for M

then return x else return ⊥.

We next show the somewhat counterintuitive safety property of RMT-
PKA, i.e., that the receiver will never decide on an incorrect value
despite the increased adversary’s attack capabilities, which includes
reporting fictitious nodes and false local knowledge.

Theorem 4.7 (RMT-PKA Safety). RMT-PKA is safe.

Proof. It is trivial to see that the receiver R will not decide on an
incorrect dealer value by using the dealer propagation rule (case R ∈
N (D)) due to the dealer’s presumed honesty.

The hard part is to prove that R will not decide on any value x ̸= xD

by using the full message set propagation rule (case R /∈ N (D)). Let
T ∈ Z be any admissible corruption set and consider the run eT of
RMT-PKA where T is the actual corruption set. Assume that at some
round of eT , R receives a full message set M ′ with value(M ′) = x ̸= xD.
Since all D − R paths of GM ′ propagate an incorrect value x it means

2We use tail(p) to denote the last node of path p. Checking whether tail(p) ̸= u
we ensure that at least one corrupted node will be included in a faulty propagation
path.

3By p||v we denote the appending of path p with node v.
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that C = T ∩ VM ′ forms a D − R cut in graph GM ′, otherwise there
would be a D − R path in GM ′ consisting only of honest nodes and
propagating xD, a contradiction because value(M ′) = x. Since C ∈ Z,
it holds by definition that C ∩ V (γ(S)) ∈ ZS, ∀S ⊆ V (G). Therefore if
B is the connected component that R lies in under the partition that
C imposes in GM ′, it holds that C∩V (γ(B)) ∈ ZB due to the fact that B
only contains honest nodes; more specifically, B does not contain any
corrupted nodes due to the definition of C. Moreover, the adversary
cannot introduce any fictitious nodes in B because T has to be a cut
between R and every nonexistent node claimed by the adversary. The
latter observations about B imply that R can correctly compute ZB.
Thus M ′ has an adversary cover and R will not decide in value x ̸= xD

due to the full message set propagation rule.

Theorem 4.8 (Sufficiency). Let (G,Z, γ, D, R) be an RMT instance. If
no RMT-cut exists, then RMT-PKA achieves reliable message transmis-
sion.

Proof. Observe that if R ∈ N (D) then R trivially decides on xD due
to the dealer propagation rule, since the dealer is honest. Assuming
that no RMT-cut exists, we will show that if R /∈ N (D) then R will
decide on xD due to the full message set propagation rule.

Let T ∈ Z be any admissible corruption set and consider the run eT

of RMT-PKA where T is the actual corruption set. Let P be the set of
all paths connecting D with R and are composed entirely by nodes in
V (G) \ T (honest nodes). Observe that P ̸= ∅, otherwise T is a cut
separating D from R which is trivially a RMT-cut, a contradiction.

Since paths in P are entirely composed by honest nodes, it should
be clear by the protocol that by round |V (G)|, R will have obtained
xD through all paths in P by receiving the corresponding type 1 mes-
sages M1. Furthermore, by round |V (G)|, R will have received type
2 messages set M2 which includes information for all the nodes con-
nected with R via paths that do not pass through nodes in T . This
includes all nodes of paths in P. Consequently, R will have received
the full message set M = M1 ∪ M2 with value(M) = xD.

We next show that there is no adversary cover for M and thus R
will decide on xD through the full message set propagation rule on
M. Assume that there exists an adversary cover C for M . This, by
definition means that C is a cut between D, R on GM and if B is the
node set of the the connected component that R lies in, it holds that
and (C ∩ V (γ(B))) ∈ ZB (observe that R can compute ZB using the
information contained in M2 as defined in the previous paragraph).
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Then obviously T ∪ C is a cut in G separating D from R, since every
path of G that connects D with R contains at least a node in T ∪ C.
Let the cut T ∪ C partition V (G) \ {T ∪ C} in the sets A, B s.t. D ∈ A.
Then clearly T ∪C is an RMT cut by definition, a contradiction. Thus
there is no adversary cover for M and R will decide on xD.

Moreover, since RMT-PKA is safe, the receiver will not decide on any
other value different from xD.

Corollary 4.9 (Uniqueness). RMT-PKA is unique among safe algo-
rithms, i.e., given an RMT instance (G,Z, γ, D, R), if there exists any
safe RMT algorithm which is resilient for this instance, then RMT-PKA
also achieves reliable message transmission on this instance.

4.4 RMT in ad hoc networks

In this section we consider the Reliable Message Transmission prob-
lem (RMT ) in ad hoc networks. In the closely related problem of
Reliable Broadcast the receiver is not a single node but instead the
whole set V (G). Reliable Broadcast in ad hoc networks under the
influence of a general Byzantine adversary was initially studied in
Section 3.6.2 where an algorithm for this model was presented and
proven unique. The results can trivially be adapted to the case of the
RMT problem.

4.4.1 Ad hoc RMT

An instance of the RMT problem in the ad hoc setting consists of a
tuple (G,Z, D, R) as explained in previous sections. In the closely
related problem of Reliable Broadcast with an honest dealer studied
in previous sections, the notion of Z-pp cut was given and it was
proved that a necessary and sufficient condition for the solvability
of the problem is that a Z-pp cut does not exist in the instance.
Furthermore, the protocol Z-CPA (Certified Propagation Algorithm)
was given and proved that it achieves Broadcast in every instance
where Broadcast is possible, i.e., it is unique.

Since in the RMT problem we are only concerned about the decision
of the receiver R, we slightly modify the definition of the Z-pp cut in
order to capture an analogous cut (RMT Z-pp cut) between the dealer
D and the receiver R,
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Definition 4.6 (RMT Z-pp cut). Let C be a cut of G partitioning V \ C
into sets A, B ̸= ∅ s.t. D ∈ A and R ∈ B. C is an RMT Z-pp cut if there
exists a partition C = C1∪C2 with C1 ∈ Z and ∀u ∈ B, N (u)∩C2 ∈ Zu.

The Z-CPA algorithm can be trivially adapted for solving the RMT
problem. In this algorithm the dealer first sends its initial value xD to
all its neighbors and terminates. After that the actions of any player
v are defined as follows.

RMT Z-CPA code for v

1. If v ∈ N (D) then upon reception of xD from the dealer, decide
on xD.

2. If v /∈ N (D) then upon receiving the same value x from all
neighbors in a set N ⊆ N (v) s.t. N /∈ Zv, decide on value x.

3. If v = R and decided on x then output decision x and terminate,
else if v ̸= R and decided on x, send x to all neighbors N (v) and
terminate.

Note that Z-CPA is safe, in a sense that, never causes any hon-
est player to decide on an incorrect value. Following an analysis
identical to that of [44], where Z-CPA is proven unique among safe
Broadcast algorithms, we prove the uniqueness of Z-CPA (modified as
explained) among safe RMT algorithms. The following theorems are
completely analogous with those proving the uniqueness of Z − CPA
for Reliable Broadcast.

Theorem 4.10 (Sufficient Condition). Given an RMT instance (G,Z, D, R),
if no RMT Z-pp cut exists on G, thenZ-CPA achieves RMT in (G,Z, D, R).

Proof. Suppose that Z-CPA does not achieve RMT in (G,Z, D, r).
Then we can split the graph in 3 parts: A being the honest decided
nodes, B being the honest undecided nodes with R ∈ B and C being
the corrupted nodes. Now since every node in B is undecided we
have that ∀u ∈ B : N(u) ∩ A ∈ Zu (otherwise u would have decided).
But then C ∪ A is an RMT Z-pp cut which is a contradiction. Hence,
Z-CPA achieves RMT in (G,Z, D, R).

Theorem 4.11 (Necessary Condition). Given an RMT instance (G,Z, D, R),
if an RMT Z-pp cut exists on G then no safe RMT algorithm exists for
(G,Z, D, R).



4.5. Protocol uniqueness with respect to efficiency 101

The proof is a trivial adaptation of the impossibility proof for Reliable
Broadcast and is deferred to the Appendix.

Thus, Z-CPA, the first algorithm we have encountered for RMT in
generic topology ad hoc networks against general adversaries, proves
to be unique.

4.5 Protocol uniqueness with respect to ef-
ficiency

Up to now we have seen that Z-CPA is unique among the safe ad
hoc RMT algorithms. In terms of efficiency it is interesting to study
whether Z-CPA is also the more efficient one among unique RMT al-
gorithms w.r.t. polynomial time. We will measure protocol complex-
ity with respect to the size of the graph |G| = n only, because we are
mainly interested in protocols that are fully polynomial (of polynomial
round, bit and local computations complexity) regardless of the size
of the adversary structure description. Observe that, if the adversary
structure is given explicitly, Z-CPA is trivially fully polynomial w.r.t.
the total size of the input. However Z can be of exponential size w.r.t.
|G|. Measuring the complexity of Z-CPA is not straightforward since
the computations included in the protocol are not explicitly defined.
In fact, Z-CPA is actually a protocol scheme that refers to a “function-
ally specified" subroutine rather than to an actual (implementation
of such a) subroutine. We will use the following notions to facilitate
our study on distributed protocol schemes.

First we define the notion of a protocol scheme for a problem Q;
essentially, if protocol scheme A solves problem Q, then A is in fact
a reduction from Q to S in the distributed setting.

Definition 4.7 (Protocol scheme). A protocol scheme A is a family of
protocols which contains calls to a subroutine X for solving a problem
S. The computation of X is not specified, that is, X is used as a
black box. Therefore, for every algorithm B which solves problem S a
different member (protocol) AB of A is defined; that is, AB implements
subroutine X through algorithm B.

Fully polynomial protocol scheme. We will say that a protocol
scheme A is fully polynomial if there exists an algorithm B, solving S,
for which AB is fully polynomial.
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Observe that Z-CPA is a protocol scheme which contains the mem-
bership check subroutine (N /∈ Zv) appearing in its second rule. Re-
garding the efficiency of Z-CPA, one can easily observe that it is of
polynomial round and bit complexity (details appear in the proof of
Theorem 4.12). To argue about the local computations complexity
of the scheme we need to take into account the complexity of the
membership check subroutine. Indeed, the Z-CPA scheme is fully
polynomial if there exists an algorithm B through which the mem-
bership check can be performed in polynomial time w.r.t. the size
of the input graph |G|. We next introduce the property of poly-time
uniqueness; a protocol scheme that is poly-time unique for a problem
is, in a sense, optimally efficient w.r.t. a polynomial factor.

Definition 4.8 (Poly-time Uniqueness). We call a protocol scheme A
poly-time unique for problem P if it is unique (with respect to feasibility)
and the existence of a unique fully polynomial protocol for P implies
that A is also fully polynomial for P.

In other words, either A is fully polynomial (on all solvable instances)
or no fully polynomial protocol that solves Π on all solvable instances
exists. In terms of reducibility, the concept of poly-time uniqueness
of a protocol scheme A implies that A can be used as a self reduction
for the given problem, as will be clear in the following.

We believe that this concept could be of more general interest, since
it can be used to argue about optimality of protocol schemes and
identify subproblems that are crucial for solving the original problem.

In the main theorem of this section we prove that the Z-CPA scheme
is poly-time unique for the RMT problem, and thus show that the
Z-CPA scheme is at least as efficient, up to a polynomial factor, as
any other RMT protocol scheme. To show that, we build a self reduc-
tion for RMT based on Z-CPA. We essentially show that if a unique
fully polynomial RMT algorithm exists, it must be able to answer the
membership check in polynomial time w.r.t. |G| and therefore can be
used as a subroutine to make Z-CPA fully polynomial.

4.6 Self-reducibility of RMT

Consider the family of instances G where achieving RMT is possible.
By Theorems 4.10,4.11:

G = {(G,Z, D, R) | ∄RMT Z-pp cut in G }
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Also consider the family of basic instances G ′ ⊆ G which contains
the tuples (G,Z, D, R) where G is of the form shown in Figure 4.2 and
RMT is solvable. More specifically, G contains the two distinguished
nodes D, R and a “middle set” which we call A(G). The only edges
appearing are those which connect each player in the set A(G) with
the dealer D and the receiver-node R and in the resulting graph there
does not exist a RMT Z-pp cut. Finally for any G1 ⊆ G we define

...D r

A(G)G

Figure 4.2: Family of instances G′. No RMT Z-pp cut
exists.

the family of instances I(G1) ⊆ G ′ which consists of all the instances
(G′,Z ′, D′, R′) ∈ G ′ such that graph’s G′ middle-set A(G′) is a subset
of a neighborhood of a node v in a graph contained in family G1, as a
part of the instance tuple (G,Z, D, R), and Z ′ = Zv

4. More precisely,

I(G1) = {(G′,Z ′, D′, R′) ∈ G ′ | ∃(G,Z, D, R) ∈ G1, ∃v ∈
V (G) \ {D}, A(G′) ⊆ N (v),Z ′ = Zv}

Intuitively the above family consists of the decomposition of every
graph G in the G1 family into “small” graphs of the family G ′ whose
middle sets appear in G as (partial) neighborhoods of nodes, the ad-
versary structures are subsets of the original structure, and the RMT
problem is solvable.

We next show that the RMT problem in any family of instances G1 ⊆ G
(denoted RMT |G1 ), also referred to as the RMT problem with promise
set G1 (cf. [22]), reduces in polynomial time w.r.t. the size of the graph
n to the RMT |I(G1) problem. That is, if there exists an algorithm for
solving RMT in I(G1) in fully polynomial time it can be used, as a
subroutine of Z-CPA, to solve RMT in G1 in fully polynomial time.

4In this point we slightly abuse the terminology, for ease of exposition, and use
Z ′ = Zv instead of Z ′ = {S ∩ A(G′) | S ∈ Zv}. The second statement is more
accurate in the case where A(G′) ⊊ N (v) because we defined Z as a subset of
the powerset of the nodes in the instance. This however does not affect our study
because we can add the extra nodes N (v) \A(G′) in our instance (G′,Z ′, D′, R′) as
isolated nodes.



104 Chapter 4. Partial Knowledge RMT

For convenience, we will use the following notation regarding the
executions (runs) of the algorithms and the views of the players.

Runs and Views. Given a run (execution) e of a distributed proto-
col, the view(v, e, k) of player v consists of the messages exchanged
by v and its neighbors until round k. For simplification we will write
view(v, e) to refer to all the messages exchanged by v and its neigh-
bors until the end of the run e. With view(v, e, k)|A (and view(v, e)|A)
we will denote the corresponding messages exchanged by v and the
set A ⊆ N (v). The decision of a player v in run e will be denoted
by decisione(v); for deterministic protocols, considered in this work,
the decisione(v) function is in fact completely determined by player’s
v view on run e. We will simply write decision(v) whenever the run is
implied by the context.

Theorem 4.12. If there exists a fully polynomial (in n) algorithm Π for
solving RMT |I(G1) then there exist a fully polynomial algorithm (in n)
that solves RMT |G1.

Proof. We will use Z-CPA to solve RMT |G1. Z-CPA has been proven
unique, i.e., solves RMT in all instances where it is solvable, hence
also for the family of instances G1 that we consider in this theorem.

We will show that Z-CPA with protocol Π as a subroutine yields a
fully polynomial algorithm for RMT |G1. Namely, the decision rule of
Z-CPA which consists of a membership check for Zv will be answered
through simulations of protocol Π in time poly(n). Since the subrou-
tine protocol Π will only be used in the local computations phase of
Z-CPA, the round and bit complexity of Z-CPA will be maintained in
the resulting algorithm.

First, from the description of Z-CPA observe that the round complex-
ity is linear in n because at least one new player decides in every
round and each player terminates after decision. Thus the receiver
R will decide in at most n rounds. Second, one can see that the bit
complexity of Z-CPA is also of order poly(n) due to the fact that each
player sends one message to all of its neighbors. For deducing the
latter we can reasonably assume that the messages sent by honest
players are of size poly(n) or, to drop any such assumption, consider
the space X of the messages exchanged as a part of the input of size
n. It thus remains to show that in Z-CPA, the local computations
complexity, can be of order poly(n) if we use Π as subroutine.

For an arbitrary run e of Z-CPA in some instance of G1, we can define
D(i) to be the set of players that decide in round i of Z-CPA. Moreover
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since run e is on an instance in the family G1 ⊆ G, i.e., the RMT
problem is solvable, it should be the case that ∃i ∈ {1, . . . , n}, R ∈
D(i). Observe that the function D is well defined as we can assume
that we use an arbitrary algorithm, e.g. exhaustive search, to answer
the membership check for Zv (possibly in exponential time).

We next show that if we use Π as a subroutine for the local compu-
tations of the run e of Z-CPA, we can achieve RMT in time poly(n).
Namely, we show by induction that for every round i, each player
v ∈ D(i) will decide in poly(n). Since ∃i ∈ {1, . . . , n}, R ∈ D(i) RMT
will be achieved.

For round i = 1 all v ∈ N (D) receive the dealer’s value xD from the
dealer and trivially decide on it in poly(n) time.

Assume that, for every round i ≤ k every v ∈ D(i) decides in poly(n)-
time. Considering any v ∈ D(k + 1) and the Z-CPA message prop-
agation, the latter means that by the end of round k, v will have
received sufficient information view(v, e, k) to decide, from players in∪

i=1,...,k D(i), in poly(n)-time, i.e., v will have received the same value
x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv. All valid
messages exchanged in Z-CPA consist of a single value x ∈ X which
corresponds to a possible dealer’s value, and each player transmits
only once to all its neighbors. Messages of different form, which we
call erroneous, can be recognized by the recipient in poly(n) time
since |X | = poly(n). Given view(v, e, k), player v, in poly(n)-time,

can create a partition of its neighborhood N (v) =
m+1∪
i=0

Ai such that

A0 ={u ∈ N (v) | u sent nothing}
Ai ={u ∈ N (v) | u sent value ai ∈ X}, i = {1, . . . m}

Am+1 ={u ∈ N (v) | u sent erroneous messages}

Since sets A0, Am+1 do not affect our study we let A =
∪

i={1,...m} Ai.
Denote with H, Z ⊆ V the sets of actual honest and corrupted players
of run e. Also consider the sets of honest and corrupted neighbors of
v, Hv = H ∩N (v) and Zv = Z ∩N (v) respectively. Given view(v, e, k),
observe that

∃! h ∈ {1, . . . , m} s.t. Hv \ A0 ⊆ Ah

else there exists an honest player which sends an incorrect value,
a contradiction because Z-CPA is safe. Subsequently Zv ⊇ A \ Ah.
Note that all u ∈ Ah transmit the correct value ah (regardless of
whether they are honest or not) and all u ∈ A \ Ah transmit false
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values. Since, by assumption, view(v, e, k) is sufficient for v to decide
through Z-CPA, it holds that Ah /∈ Zv due to the decision rule of Z-
CPA. Moreover ∀i ∈ {1, . . . , m} \ {h} it holds that Ai ∈ Zv since
A \ Ah ⊆ Zv. Consequently

∃! h ∈ {1, . . . , m} s.t. Ah /∈ Zv and A \ Ah ∈ Zv (4.1)

We next show how player v can decide which is the actual value of h
in poly(n) time using the protocol Π, and thus decide on the correct
value ah.

For l = 1, . . . m, we define the following runs of Π that can be simu-
lated by v.

• Run el
0 is on the instance (G,Zv, D, v) ∈ G ′ with V (G) = A ∪

{D}∪ {v}, dealer’s value xD = 0, and corruption set Zv = A \Al;
in each round, all players in Zv send the messages that send in
the respective round of run el

1 (where A \ Al is a set of honest
players which runs Π). The latter means that v exchanges with
Zv messages that consist the view(el

1, v)|A\Al .

• Run el
1, is on the same graph G, with dealer’s value xD = 1, and

corruption set Zv = Al; Analogously with e0 player v exchanges
with Zv the messages view(el

0, v)|Al .

Player v simulates run el
1 in order to determine the behavior of the

corrupted players in el
0. Observe that for every l exactly one of el

0, el
1

is not in the family of instances I(G1) (due to the selection of the
corruption set) and thus the local computations complexity might
not be polynomial. Since protocol Π is fully polynomial in I(G1), it
means that there is an explicit bound B on the local computations
complexity of Π in the family I(G1). Assuming that arbitrary player
v knows such a bound 5 we modify the above runs such that if the
local computations complexity of a player w in a round i of el

0 or el
1

exceeds the bound B then v halts the simulation of the round i local
computations of w and sends nothing on behalf of player w in round
i. Such a modification of the run is necessary to obtain the desired
result.

5Although this assumption is natural and often used, it is possible to avoid it if
we consider family I(G1) consisting of directed graphs (with edges from dealer to
A(G) and from A(G) to v). In this case the view of all players in Al , A \ Al would be
the same as that of some run in I(G1) and thus their local computations complexity
would be polynomial.
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D v

Al

Zv = A \ Al

xD = 0

executes Π

executes Π
with xD = 1

view(e0, v)|Al

view(e1, v)|A\Al

Run e0

(e1)

D v

A \ Al

Zv = Al

xD = 1

executes Π

executes Π
with xD = 0

view(e0, v)|Al

view(e1, v)|A\Al

Run e1

(e0)

Figure 4.3: Runs e0 and e1.

Player v runs the following protocol in order to decide on the value of
the dealer of run e.

Decision Protocol. Player v simulates, in parallel, 2m = poly(n)
runs (el

0, el
1)l∈{1,...m} and halts all parallel simulations with decision al

if run el
0 terminates with decision(v) = 0.

We next show that v terminates run el
0 with decision(v) = 0 if and

only if Al /∈ Zv. More concretely
Al /∈ Zv ⇔ decisionel

0
(v) = 0

“⇒": Al /∈ Zv ⇒ Zv = A \ Al ∈ Zv. Since by assumption Π solves
RMT |I(G1), for any adversarial behavior, that of Zv in el

0 included, v
will decide on the correct value xD = 0, i.e., decisionel

0
(v) = 0.

“⇐": Let Al ∈ Zv and decisionel
0
(v) = 0. This by equation (4.1) means

that Zv = A \ Al /∈ Zv. Observe now that the run el
0 is not a valid

run for the instance (G,Zv, D, v) because the adversarial behavior of
Zv /∈ Zv is not valid for the adversary structure Zv. But the view of
v is the same as the valid run el

1 in which xD = 1 and Zv = Al ∈ Zv.
Since Π solves RMT |I(G1), for any adversarial behavior, that of Zv in el

1

included, v will decide on the correct value xD = 1 in the run el
1 i.e.,

decisionel
1
(v) = 1. But since the decision is a function of the view and



108 Chapter 4. Partial Knowledge RMT

player v receives exactly the same messages in runs el
0, el

1, it holds
that decisionel

0
(v) = 1, a contradiction.

The latter shows that the decision of player v in run e, which is
acquired through the Decision Protocol, is correct and uniquely de-
fined. Moreover all parallel simulations halt when the simulated run
el
0, l = h of Π terminates. Thus we have to show that run eh

0 can be
be simulated in polynomial time.

The problem is that run eh
1 , which is simulated to determine the

behavior of the corrupted players in el
0, is not a run of RMT in the

family I(G1) due to the selection of the corruption set. Therefore we
lose guarantee of full polynomiality in that run. Non-polynomiality
of the round complexity is not an obstacle since the simulations are
done in parallel. Local computations’ polynomial complexity of eh

1 is
ensured by the fact that we halt any local computations that exceed
the explicit bound B previously mentioned. Finally it is easy to see
that the bit complexity of the simulated runs is polynomial if the
round and local computations complexity is polynomial. Thus the
simulated run el

0 remains fully polynomial.

Therefore it follows that v will decide in run e in polynomial time
because the simulation of a fully polynomial protocol can be done in
polynomial time.

Based on the definition of poly-time uniqueness and Theorem 4.12,
we obtain the following corollary on Z-CPA.

Corollary 4.13. Protocol scheme Z-CPA is poly-time unique for RMT.

Observe that in terms of reductions between distributed problems as
presented in Section 1.3, Theorem 4.12 states that problem RMT |G1

polynomially reduces to problem RMT |I(G1), i.e., RMT |G1 ≤p RMT |I(G1).

4.7 Conclusions

Regarding the partial knowledge model, RMT-PKA makes players ex-
change information about the topology. Although topology discovery
was not our motive, techniques used here (e.g. the ⊕ operation) may
be applicable to that problem under a Byzantine adversary ([42],[16]).
A comparison with the techniques used in this field might give fur-
ther insight on how to efficiently extract information from maliciously
crafted topological data.
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The unique protocol proposed for the partial knowledge model only
answers the feasibility question. A natural question is whether and
when we can devise a unique and also efficient algorithm for this
setting. The techniques used so far in the bibliography to reduce the
communication complexity [36] do not seem to be directly applicable
to this model. So exploring this direction might give new insights on
message delivery in partially known graphs.

It would also be interesting to argue about uniqueness with respect
to efficiency for RMT in the partial knowledge model by extending our
analysis of the ad hoc case.

Finally, it is possible to define a stronger type of poly-time unique-
ness: we call a protocol scheme A strongly poly-time unique for prob-
lem Π if the existence of any fully-polynomial protocol for a class of
instances I implies that A is also fully polynomial for all instances
in I. We conjecture that Z-CPA is in fact strongly poly-time unique
for RMT in the ad hoc model.
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Chapter 5

k-shot Broadcast in wireless
networks

Even when no malicious or faulty behavior of players is observed in a
distributed system, many different obstacles may appear during in-
formation propagation procedures according to real-world concerns
and the nature of the communication network. We consider the case
of wireless networks in which players possess radio transceiver de-
vices in order to communicate through local broadcasts. The nature
of wireless networks adds one more consideration regarding the cor-
rectness of message propagation; namely, it is generally required that
the signal interference should be low for a message to be communi-
cated in the network. This fact is usually abstracted by assuming
that if two neighbors of a player v transmit simultaneously then a
collision occurs and v receives no message.

We study the feasibility of Broadcast with few transmissions (‘shots’)
in wireless ad hoc networks in the case where all players execute
the protocol honestly. In particular, we examine the k-shot wireless
network model, in which a bound k is given and a player may transmit
at most k times during the execution of the protocol. The motivation
for this model comes from energy efficiency considerations which are
important in the widely used wireless sensor networks in which each
player actually associates with a limited energy (battery supported)
device.

We mainly consider the general case of adaptive Broadcast algo-
rithms, which are algorithms where the actions of a player are de-
fined considering its entire transmission history. On the contrary
in an oblivious Broadcast algorithm the actions of a player only de-
pend on the id of the player. We prove a lower bound of Ω

(
n

1+k
k

)
on

the Broadcast time (rounds) of any protocol by introducing the trans-
mission tree construction which generalizes previous approaches in
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the k-shot case. To obtain the lower bound we consider the round
complexity of any adaptive Broadcast algorithm, which prove to be
the more powerful algorithms for this model. Finally, we devise the
Coordinated Transmission Algorithm (CTA), an oblivious Broadcast
algorithm for the specific family of graphs on which the lower bound
is proved. The round complexity of the algorithm is Ω

(
n

1+k
k

)
in the

specific family and thus, only differs from the lower bound by a factor
of k.

5.1 Introduction

Energy efficiency has become a central issue in wireless networks,
due to the constantly increasing use of autonomous devices with
limited power resources. A lot of recent research focuses on how
to accomplish communication tasks in an energy-efficient manner
without compromising the system performance too much. Much of
the work so far has been devoted to the problem of adjusting the
transmission ranges of nodes so that the energy cost is minimized.

However, if nodes transmit at a fixed power level it makes sense
to consider the number of transmissions as an energy consumption
measure. Such a study was initiated by Gasieniec et al. in [21],
where Broadcast protocols with few transmissions (‘shots’) per node
were considered for wireless networks with known topology. Here, we
study the problem in ad hoc wireless networks, that is, networks in
which nodes have no knowledge of the topology of the network.

We assume that a bound k is given and a node may transmit at
most k times during the Broadcast protocol (k-shot Broadcast); note
that the bound k may well represent the number of transmissions
that the power supply of a node can handle. We also assume that
the communication is synchronous, that is, nodes may transmit or
receive simultaneously, i.e., in the same step. At each step a node
may decide to act either as a transmitter or a receiver. Whenever a
node transmits all its neighbors receive the message. If, however, two
neighbors of a node v transmit simultaneously then a collision occurs
and v receives no message.

We consider two types of protocols: adaptive and oblivious protocols;
the former refers to protocols where a node may decide whether to
transmit or not by taking into account any information it has received
during the previous steps, while the latter term refers to protocols
where a node makes transmission decisions with no consideration of
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the transmission history. Even though adaptive protocols are more
powerful, oblivious algorithms are much easier to implement and
demand minimal processing time for each node.

By mainly considering the adaptive model, we study the way in which
the limitation on the number of transmissions affects the round com-
plexity of Broadcast protocols.

5.1.1 Related work

Broadcast in wireless networks of unknown topology with no limi-
tation in the number of shots has been extensively studied in the
literature. The problem was first introduced by Chlamtac and Kut-
ten [7]. Bar-Yehuda, Goldreich and Itai [2] gave the first random-
ized protocol, which completes Broadcast in O(D log n + log2 n) ex-
pected time when applied to graphs with n nodes and diameter D.
Several papers followed [12, 33] that led to a tight upper bound of
O(D log(n/D) + log2 n).

As for the deterministic case, a lower bound of Ω(n log n) for general
networks was given by Brusci and Del Pinto in [5], improved (for small
D) to Ω(n logD) by Clementi et al. [11]. Chlebus et al. [8] gave the first
Broadcast protocol of sub-quadratic time complexity O(n11/6). This
bound was later improved to O(n5/3 log3 n) by De Marco and Pelc
[41] and then by Chlebus et al. [9], who gave an algorithm with time
complexity O(n3/2) based on finite geometries. Chrobak, Ga̧sieniec
and Rytter [10] further improved the bound to O(n log2 n). Finally,
De Marco [40] gave the best currently known upper bound of O(n log n
log log n), thus leaving a sub-logarithmic gap between the upper and
lower bound.

As mentioned above, Broadcast with a limited number of shots was
first proposed in [21]. It has also been considered in [28], where
randomized algorithms were proposed; in both cases, only Broadcast
in known networks was studied. Another approach to limiting the
number of shots was presented in [4], where the authors construct
algorithms which use few shots for each node and achieve nearly
optimal Broadcast time.

Our approach in this chapter stems from the work of Koutris and
Pagourtzis [32]. In this work the authors take a first step towards
studying the behavior of adaptive Broadcast protocols by showing
an Ω(n2) lower bound for any adaptive 1-shot Broadcast protocol
and pose the generalization of the lower bound for any value k as
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an open problem. Regarding the oblivious case, in the same work
a lower bound of Ω(n2/k) on the Broadcast time of any oblivious k-
shot algorithm is given. On the positive they present an oblivious
Broadcast protocol that achieves a matching upper bound, namely
O(n2/k), for every k ≤

√
n and an upper bound of O(n3/2) for every

k >
√

n.

5.2 Model and Preliminaries

We consider the case of wireless networks, that is, networks in which
the players possess radio transmitting/receiving devices are spread
out on some physical surface (terrain), and two nodes can communi-
cate if there are within transmission range of each other and signal
interference is low. A common abstraction is to consider the network
as a graph, and assume (collision assumption) that communication
is possible if a node receives a message from only one neighbor in a
certain time-slot.

Unknown wireless networks. We model a wireless network as a
directed graph. Namely, if a player v is in the transmission range of
another player w, we model the situation with the existence of the
directed edge (w, v). Furthermore, we assume that the nodes have
unique labels from the set V = {1, 2, . . . , n}, where n is the number of
nodes in the network. Regarding the initial knowledge of the players,
we assume that initially, a node is aware only of its own label and
whether it is the dealer node or not. This means that it has no
knowledge, full or partial, about the topology of the underlying graph.
Observe that we require somewhat less initial knowledge from the ad
hoc model we studied so far, since a node does not know the labels
of its neighbors. This assumption is natural in the wireless network
model, since in reality a node locally broadcasts a message and is not
aware of any communication channels which actually correspond to
specific neighbors.

Moreover, we assume that the nodes are not capable of detecting colli-
sions, that is, if an attempt to transmit to a node v was unsuccessful,
then v is not able to sense it.

Since no adversary is assumed to exist, we say that a Broadcast
algorithm completes Broadcast when all nodes of the network have
received the dealer message. As before, the round complexity, or
running time of a Broadcast algorithm is defined as the worst-case
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number of steps needed to complete Broadcast over all possible net-
work configurations with n nodes.

Oblivious Broadcast protocols We now define the notion of obliv-
ious k-shot protocols. As mentioned earlier, a protocol is oblivious if
nodes do not take into account any information that may be gained
during the execution of the protocol. Formally, an oblivious proto-
col can be succinctly described as a sequence of transmission sets,
which are subsets of the node set V . Since no additional informa-
tion, other than the dealer’s message, is utilized by the players, it is
natural to assume that once a node receives the message at step t, it
wakes up and transmits at the first k steps after t in which it appears
in the transmission set. This model captures an important class of
Broadcast algorithms, since most known algorithms for deterministic
Broadcast in networks with unknown topology fall into this class.

5.2.1 Adaptive Broadcast protocols

For a formal definition of an adaptive Broadcast protocol we will use a
slight generalization of the model proposed by Kowalski and Pelc [34].
In our model for adaptive protocols, we allow a node to transmit a
message to its neighborhood even before it receives the dealer mes-
sage. An algorithm may use this kind of transmission for topology
knowledge exchange which may influence actions in later rounds.
We denote by Ht(v) the (interaction) view of node v until the end of
step t, i.e., a complete description of all the messages received (along
with the corresponding sender’s id) and send by v during each round
1, . . . , t. We will use the notion incoming view for the description of
the incoming messages.

A Broadcast protocol can now be defined by a function π(v, t, Ht−1(v)),
which takes values in the set {receive, transmit}. The function
decides whether node v with view Ht−1(v) acts as a receiver (receive)
or as a transmitter (transmit) at step t. If v acts as a transmitter
in step t, it sends its entire view until step t − 1 along with its id,
i.e., the message (v, Ht−1(v)). Note that the maximum information
exchange occurs when transmitters send their entire view, since the
receiver can always deduce any information from the received view.
For completeness we assume that in the initialization phase of the
protocol (step 0) each player v ∈ V \ {s} has the view H0(v) = (∅,⊥)
which actually represents the lack of an initial input value. The dealer
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node D has the initial view H0(s) = (∅, m), where m is the initial value
which will be propagated by D.

5.2.2 Outline

In this chapter we primarily address the open question of [32], re-
garding the generalization of the lower bound and manage to obtain
a bound for any value of k. In fact, we prove this lower bound on
the round complexity of any adaptive Broadcast algorithm; since the
adaptive algorithms allow the use of any available information they
prove to be the strongest algorithms for the model and thus the bound
holds for any Broadcast algorithm.

To prove the bound, we introduce the transmission tree construction
which provides a way to represent the actions that the players take
through any Broadcast algorithm given a certain view. The construc-
tion can be conveniently used to determine the id assignment that
yields the maximum delay of the message propagation in intermedi-
ate levels, from the initiation of the protocol until its termination. We
believe that the transmission tree notion could be of more general
interest, since it can be used to argue about the round complexity of
algorithms in this model. We study the graph family G of a certain
topology to obtain the lower bound.

Finally, considering the optimality of the lower bound for the spe-
cific family G, in Section 5.4, we devise an oblivious protocol which
achieves Broadcast in the specific family with round complexity Ω

(
n

1+k
k

)
,

which only differs from the lower bound by a factor of k.

This chapter includes results presented in [29].

5.3 Broadcast protocols and transmission Trees

Generalizing the lower bound approach of [5] for any number of shots
we introduce a construction, which we call the transmission tree, that
allows us to obtain a lower bound for the k-shot case. We consider
the most general case of adaptive protocols, and for any such protocol
π we construct a network in which the delay of completing Broadcast
with π is significantly increased. We use the transmission tree tool to
maximize the delay in the intermediate stages of achieving Broadcast.
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5.3.1 Family of networks

The class of radio networks G we will use for our lower bound argu-
ment are graphs of a certain topology, namely the n nodes of each
such graph can be partitioned in l layers; The first layer contains only
the dealer node D and the next l−2 contain 2 nodes each and the last
layer contains the rest of the nodes (1 or 2) to complete the partition.
Moreover each node v in layer i is connected, with a directed edge
(v, w), to each node w of layer i + 1 and no other connections exist.

More concretely, For an n-node graph G = (V, E) ∈ G, V can be
partitioned in l = ⌊n/2⌋+1 layers L1, . . . , Ll s.t. L1 = {s}, |L2| = . . . =
|Ll−1| = 2 and Ll = V \ ∪l−1

i=1Li. Moreover, E = {(w, v) ∈ Li × Lj | i, j ∈
{1, . . . l}, j − i = 1}. Having specified the topology of the family G the
different members of the family differ in the number of nodes and the
assignment of the id’s. The general topology structure of family G is
depicted in Figure 5.1.

. . .D

L1 L2 L3 . . .

Figure 5.1: Family of graphs G.

5.3.2 Designing a “bad” graph

Let us consider any deterministic k-shot Broadcast protocol π which
completes Broadcast in any graph with n nodes. We will construct
a graph Gπ ∈ G, by assigning ids to nodes, such that Broadcast is
significantly slowed down. We will gradually construct graph Gπ by
using the graph families Gi as described in the following.

Partial id assignment. For an arbitrary assignment IDi of ids in the
first i (i ∈ {1, . . . , l − 1}) layers of family G graphs, we define family
Gi ⊆ G of graphs with n nodes that have the assignment IDi in their
first i layers and thus differ only in the next l − i layers. Let S be the
set of the assigned ids and A = V \ S.
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Incoming view of a layer. Consider the execution of protocol π
in any G ∈ Gi. Observe that in all graphs G ∈ Gi nodes in layer
Li+1 receive from Li the same incoming view Hj, for every round j of
the execution. Incoming view sequence (Hj) = (H1, H2, . . .) can be
determined through protocol π given that the topology and the id’s
of the first i layers are known. Observe that according to the view
definition the term Hj contains all the information contained in terms
H1, . . . , Hj−1. We make a distinction between the incoming and the
full view because in the following we will consider the actions that
different nodes take given that they receive the same view. Since Li

contains all the incoming neighbors of nodes in Li+1, and there is no
directed path from nodes in Li+1 to nodes in Li, (Hj) is guaranteed
to capture the whole (incoming) view of nodes in Li+1 and thus their
actions (transmit, receive) can be determined for every round
of the execution.

Transmitting and receiving under a certain incoming view. To
determine if node v ∈ A transmits in round t under incoming view
Ht−1 (being in level i+1) one should simulate the execution of protocol
π, where v receives the view Ht−1 and construct v’s view Ht−1(v) which
may additionally contain messages sent by v 1. Working this way we
can define the round t transmitting/sending nodes which belong to
a set A with

SA
t = {v ∈ A | π(v, t, Ht−1(v)) = “transmit”}

and the round t receiving nodes with

RA
t = {v ∈ V | π(v, t, Ht−1(v)) = “receive”}

.

Given a family of graphs Gi and a protocol π we will construct the
family of graphs Gi+1 ⊆ Gi in which the delay of transmitting the
message from Li+1 to Li+2 maximizes. Our approach is summarized
to the “worst" choice of the two ids of layer Li+1, such that either by
collision or non-transmission the message fails to transmit to Li+2 for
the maximum number of steps.

1Obviously the messages sent by v don’t have any effect on the incoming view
due to the topology (no directed path exists from nodes in Li+1 to nodes in Li ).
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t0+1 SP
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t − 1
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t0+t SP
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...

Figure 5.2: Transmission Tree T(π, IDi , t0)

5.3.3 Transmission trees

We next introduce the notion of a transmission tree which can be used
to argue about the id assignment that yields the maximum delay of
the message propagation in intermediate layers. Recall that for the
family Gi (defined by the assignment IDi ) we denote with A the set of
unassigned ids. Also given a protocol π and a family Gi the incoming
view (Hj) of layer Li+1 is well defined as explained in Section 5.3.2.
The transmission tree T(π,Gi , t0) defined above, represents the trans-
mission sets after round t0 given that their incoming view is (Hj), i.e.,
they rounds greater than t0 that any id in A transmits as a possible
candidate for layer Li+1. The construction is depicted in Figure 5.2

Definition 5.1. A transmission tree T(π,Gi , t0) corresponding to Broad-
cast protocol π, family Gi and a round t0 is a binary tree. The id of the
root is the node set A and every child’s id is a subset of its father’s
id. The ids of the children form a partition of the father’s id and all
the leaves are singletons. For a node P at depth t − 1, its left child’s
id is RP

t+t0 whereas the right child of P is the set SP
t+t0 , i.e., the nodes

in P which are receiving (don’t transmit), respectively transmitting, in
round t + t0 given that their incoming view is (Hj).

Observe that, given a family Gi (or equivalently an id assignment IDi )
and a start time ti, any Broadcast protocol π defines a transmission
tree T(π,Gi , ti) which describes the actions that players in A take,
under the reception of the corresponding view (Hj), executing protocol
π after round ti.
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The only non-trivial point in this correspondence is why the leaves,
of the corresponding tree of any protocol π, have to be singletons.
The reason for this is that if there was a leaf P with |P| ≥ 2 then
this protocol would never achieve Broadcast in the family Gi+1 with
Li+1 ⊆ P.

Definition 5.2. A k-shot transmission tree is a transmission tree in
which each branch contains at most k right children.

This in fact ensures that each node will transmit in at most k steps
as desired for a k-shot protocol.

We next define the notion of maximum pair depth (mpd) of a tree
T(π,Gi , t) which relates to the maximum delay time between layers.
Observe that the existence of an internal node with id which consists
of exactly 2 nodes, is trivially guaranteed by the structure of the
transmission tree, and specifically from the fact that all leaves’ ids
are singletons.

Definition 5.3 (maximum pair depth). Given a transmission tree T ,
the maximum pair depth (mpd) of the tree is defined as the maximum
depth of a node P where |P| = 2. We will denote it with mpd(T).

Given a family Gi and a protocol π, with ti, we denote the first round
where the dealer’s message is propagated from Li to Li+1 due to π.
Observe that ti is well defined by Gi and π.

Theorem 5.1. Given a Broadcast protocol π and a family Gi , there ex-
ists Gi+1 ⊆ Gi s.t. the relay of the message from layer Li+1 to layer Li+2

in all graphs of Gi+1 will be delayed for more than mpd(T(π,Gi , ti)) + 1
rounds, where ti is the round in which the dealer’s message reaches
layer Li+1.

Proof. To create the family Gi+1 we only have to choose the two ids
v1, v2 that will be assigned to layer Li+1. The relay of the message from
Li+1 to Li+2 will happen in the first round that only one of v1, v2 will
transmit, in a different case either a collision or a non-transmission
phase will occur. As argued before, there is a node P with |P| = 2
and depth(P) = mpd(T(π,Gi , ti)). Choosing nodes Li+1 = {v1, v2} =
P, the first round where one of them transmits alone will be round
t ≥ depth(P) + 1 = mpd(T(π,Gi , ti)) + 1, therefore transmission to
Li+2 will be delayed until round mpd(T(π,Gi , ti)) + 1.
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Given a family Gi, we would like to determine the minimum delay
for the propagation of messages from layer Li+1 to layer Li+2 over all
Broadcast protocols.

Maximum pair depth and tree height. Without loss of generality,
for our study, we may consider only Broadcast protocols for which the
corresponding transmission trees T have the property that mpd(T)+
1 = height(T). We can make this simplifying assumption because for
every such tree (or protocol) which does not have this property there
exists another tree (protocol) due to which the propagation from Li+1

to Li+2 will be delayed for the same amount of rounds and the property
holds. The latter tree results from additionally requiring that every
singleton node of the tree is also a leaf, and thus, trivially, it is of
smaller height than the former. Thus for determining the minimum
delay, it suffices to obtain a lower bound for the minimum height of
the k-shot transmission tree.

Theorem 5.2. The minimum height of a k-shot transmission tree for
family Gi with unassigned ids A with |A| = a over all k-shot Broadcast
protocols B is

min
π∈B

height (T(π,Gi , ti)) = Ω(a
1
k )

Proof. Wlog we can assume only protocols corresponding to trans-
mission trees where every internal node has a right child. The reason
for that is that if a protocol π corresponds to a tree in which a node
v only has a left (non-transmitting) child w, then deleting this edge
along with the left child w and connecting the children of w to v will
result to a transmission tree of non-greater height and thus a protocol
which achieves a non-slower relay.

For the case of k = 1 one can observe that each right child P will
contain only one node (|P| = 1) and will be a leaf. This is obvious
from the definition of the k-shot transmission tree; since each branch
contains at most k = 1 right child and all the leafs are singletons,
each right child must be a singleton-leaf. Therefore the minimum
height tree will result if the root and every left child has a right child
leaf. Subsequently for the case of k = 1,

min
π∈B

T(π,Gi , t) = a − 1 = Ω(a)

Therefore the theorem holds for k = 1. The corresponding minimum
height tree for this case is depicted in Figure 5.3
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... ...

A {height

|A| − 1 = Ω(|A|)

singletons

Figure 5.3: Minimum height 1-shot transmission tree

Assume that the claim holds for k = i − 1, then we will prove that it
holds for k = i. First consider an i-shot transmission tree T and its
leftmost branch LB including the root. Observe that each right child
P of a node in LB is actually a root of an (i − 1)-shot transmission
tree since all nodes in P have only i − 1 shots left. By the induction
hypothesis we know that the the minimum height of every such tree
is Ω

(
|P|

1
i−1

)
.

For any i-shot transmission tree T there are two cases (two types of
transmission trees):

1. Every right child P of nodes in LB has cardinality |P| = O
(

a
i−1

i

)
.

In this case, the length of LB in this tree will be of order

|LB| = a

O
(

a
i−1

i

) = Ω

(
a

a
i−1

i

)
= Ω(a1− i−1

i ) = Ω(a1/i)

since for every pair of LB nodes Pr , Pr+1 of depth r and r + 1
respectively, it holds that |Pr+1| = |Pr | − O(a

i−1
i ).

Moreover it holds that height(T) ≥ |LB| = Ω(a
1
i ) and therefore

height(T) = Ω(a
1
i )

.

2. There exists a right child P of nodes in LB with cardinality

|P| ̸= O(a
i−1

i ) ⇔ |P| = ω(a
i−1

i )

By the induction hypothesis every such tree TP with root P will
have a minimum height of order,
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height(TP) = Ω
((

ω(a(i−1)/i)
) 1

i−1

)
= Ω

(
a

i−1
i · 1

i−1

)
= Ω

(
a

1
i

)
Moreover it holds that height(T) ≥ height(TP) = Ω(a

1
i ) and

therefore, in this case also it holds that,

height(T) = Ω(a
1
i )

.

Therefore the minimum height of any k-shot transmission tree is

min
π∈B

height (T(π,Gi , t)) = Ω(a
1
k )

An example of a structure of a minimum height k shot transmission
tree is depicted in Figure 5.5. All the right children subtrees with
root of cardinality roughly |A| k−1

k .

... ...

{
(k − 1)-shot

trees

Ω(|A|1/k)

|A| k−1
k

|A| k−1
k

|A| k−1
k |A| k−1

k

A

Ω(|A|1/k)

Figure 5.4: Example of minimum height k shot trans-
mission tree

Theorem 5.3. For any k-shot adaptive Broadcast protocol π, there
is a n-node graph G ∈ G where π needs Ω(n

1+k
k ) rounds to achieve

Broadcast.

Proof. Repeatedly applying theorems 5.1,5.2 for i = 1, . . . ⌊n/2⌋ we
construct a graph in which π will achieve Broadcast in time asymp-
totically greater or equal than

S1 = (n − 1)1/k + (n − 3)1/k + · · ·+ 21/k
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in the case where n is odd and

S2 = (n − 1)1/k + (n − 3)1/k + · · ·+ 31/k

when n is even.

Observe that in the case where n is odd the sum S1 is comprised by
⌊n/2⌋ terms and the half of these terms are lower than the (n/2)

1
k .

Hence it holds that,

S1 ≥
⌊n

4

⌋
·
(n

2

) 1
k

>
(n

4
− 1
)
·
(n

2

) 1
k ≥ 1

8
(n − 4)n

1
k ⇒ S1 = Ω

(
n

1+k
k

)
Where the last inequality holds because 2

1
k ≥ 2, k ∈ N. Using similar

arguments we can show that S2 = Ω
(

n
1+k

k

)
.

The lower bound presented coincides with the bound of [32] for the
1-shot case.

5.4 An oblivious algorithm for family G

Considering the optimality of the lower bound for the specific family
G, it is meaningful to study algorithms for the specific case. We
next present a simple oblivious Broadcast algorithm for family G, the
round complexity of which differs from the lower bound by factor
k. Observe that we only require that the specific algorithm achieves
Broadcast in family G.

Recall that an oblivious algorithm A can be described as a sequence
of transmission sets, i.e., sequence s of sets of players ids. If a player
has already received the message in a round i, its id is contained in
the set sj with j > i and it has transmitted less than k times until
round j, then it acts as a transmitter in round j.

Coordinated Transmission Algorithm (CTA). We assume the k-
dimensional cube

[
0, ⌈n1/k⌉ − 1

]k, and represent each player as an
integer point of this cube. Namely we can assume that each player v is
assigned a unique coordinate vector (xv

1 , . . . , xv
k) with 0 ≤ xv

1 , . . . , xv
k ≤

⌈n1/k⌉ − 1, and xv
1 , . . . , xv

k ∈ Z. The oblivious algorithm CTA can now
be described by the sequence (si)i∈N of transmission sets as described
in the following:
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(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

(1, 2)

(2, 2)

(2, 1)
(2, 1)

Figure 5.5: CTA execution example

∀i ∈ N, with i mod k⌈n1/k⌉ = j,

si = {v ∈ V | xj div⌈n1/k⌉+1 = j mod ⌈n1/k⌉}

Where the a mod b is the remainder of the division of a with b and
a div b denotes the integer division of a with b.

In words, in each round, the only players which act as transmit-
ters are those which have the same value for a specific coordinate.
In more details, in every round i = 0, . . . , ⌈n1/k⌉ − 1,the transmit-
ting players are exactly the players v with xv

1 = i, in every round
i = ⌈n1/k⌉, . . . , 2⌈n1/k⌉ − 1,the transmitting players are exactly the
players v with xv

2 = i mod ⌈n1/k⌉ etc. The schedule repeats after
k⌈n1/k⌉ rounds where all possible values for all coordinates have been
considered. A trivial example for the case of k = 2 and n = 9 is given
in Figure 5.5. In this example we have the following transmission
schedule every 6 rounds:

• Round 0: Players (0, 0), (0, 1), (0, 2)

• Round 1: Players (1, 0), (1, 1), (1, 2)

• Round 2: Players (2, 0), (2, 1), (2, 2)

• Round 3: Players (0, 0), (1, 0), (2, 0)

• Round 4: Players (0, 1), (1, 1), (2, 1)

• Round 5: Players (0, 2), (1, 2), (2, 2)

Theorem 5.4. CTA achieves Broadcast in family G in O
(

k · n
1+k

k

)
rounds.
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Proof. Since each player is assigned a unique coordinate vector, it
means that for any pair of players (v, w) there exists a coordinate in
which they differ, i.e., ∃i ∈ {1, . . . , k} s.t. xv

i ̸= xw
i . Thus for every

consecutive k⌈n1/k⌉ it holds that for a pair of players (v, w), exactly
one of them will transmit in at least one round. Moreover, every player
will act as a transmitter in a time period of k⌈n1/k⌉; specifically, each
player which has already received the dealer’s message will transmit
exactly k times in k⌈n1/k⌉ time period after the receipt. The previous
arguments hold holds due to the fact that in a k⌈n1/k⌉ time period,
we will have considered all values for all coordinates.

For any graph G ∈ G assume that nodes in a layer Li receive the
dealer’s message in round Ti (recall that both nodes of level Li will
receive the message simultaneously). Due to the arguments of the
previous paragraph, it should be clear that by round Ti + k⌈n1/k⌉
there exists at least one round in which exactly one node of layer Li

will transmit the message to Li+1 and thus the message will be prop-
agated to the next layer. Assuming that the dealer player transmits
its message to level L2 in the initial round of the protocol it holds that
the CTA will achieve Broadcast in O

(
k · n

1+k
k

)
rounds.

5.5 Conclusions

In this chapter, we consider the most general case of adaptive k-
shot Broadcast protocols and manage to obtain a lower bound on the
round complexity of achieving Broadcast; this partially answers the
relative open question of [32], since we generalize the lower bound
from the case of k = 1 to any value of k. We believe that the in-
troduced transmission tree notion, used for the proof of the bound,
could be of more general interest, since it relates the round complex-
ity of algorithms with a graph parameter of this tree. We take one
step further in the study of the difference between the adaptive and
oblivious algorithms by providing an oblivious algorithm, the round
complexity if which differs from the lower bound by a factor of k.

It would be interesting to further study the tightness of the lower
bound by considering different classes of graphs or even a different
way to obtain a lower bound in the specific family. We take a first
step in studying the relation between the Broadcast time of adaptive
and oblivious algorithms; however, the main question of determining
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whether adaptive protocols can provide more efficient ways for achiev-
ing Broadcast (or other distributed tasks) than oblivious algorithms
still remains an intriguing open question. Essentially, the matter in
question is whether using topology knowledge exchange can actually
yield more efficient algorithms in the context of unknown networks.
The latter point is also of practical importance since oblivious algo-
rithms are generally simpler in concept and have very small memory
requirements from the nodes.
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Chapter 6

Appendix

6.1 The ⊕ operation

Observe that an equivalent definition for the The ⊕ operation is the
following,

EA⊕FB = {Z1∪Z2 | (Z1 ∈ EA)∧(Z2 ∈ FB)∧(Z1∩B ⊆ Z2)∧(Z2∩A ⊆ Z1)}

6.1.1 Proof of Theorem 4.3

To prove that ⊕ is also associative we will need the following lemma.

Lemma 6.1. For any node sets A, B, C it holds that

(Z1 ∩ B ⊆ Z2) ∧ (Z2 ∩ A ⊆ Z1)∧(Z1 ∪ Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩ A ∪ B ⊆ Z1 ∪ Z2)

⇔
(Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩ B ⊆ Z2)∧(Z2 ∪ Z3 ∩ A ⊆ Z1) ∧ (Z1 ∩ B ∪ C ⊆ Z2 ∪ Z3)

Proof. First we prove the ⇒ direction. From (Z1 ∪ Z2 ∩ C ⊆ Z3) it
follows that:

(Z1 ∪ Z2) ∩ C ⊆ Z3 ⇒ (Z1 ∩ C) ∪ (Z2 ∩ C) ⊆ Z3

⇒ (Z1 ∩ C) ⊆ Z3 ∧ (Z2 ∩ C) ⊆ Z3
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From (Z3 ∩ (A ∪ B) ⊆ Z1 ∪ Z2) it follows that:

Z3 ∩ (A ∪ B) ⊆ Z1 ∪ Z2 ⇒ (Z3 ∩ A) ∪ (Z3 ∩ B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩ B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩ B) ∩ B ⊆ (Z1 ∪ Z2) ∩ B

⇒ (Z3 ∩ B) ⊆ (Z1 ∩ B) ∪ (Z2 ∩ B)

⇒ (Z3 ∩ B) ⊆ (Z2 ∩ B)

⇒ (Z3 ∩ B) ⊆ Z2

Z3 ∩ (A ∪ B) ⊆ Z1 ∪ Z2 ⇒ (Z3 ∩ A) ∪ (Z3 ∩ B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩ A) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩ A) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩ A) ∩ A ⊆ (Z1 ∪ Z2) ∩ A

⇒ (Z3 ∩ A) ⊆ (Z1 ∩ A) ∪ (Z2 ∩ A)

⇒ (Z3 ∩ A) ⊆ (Z2 ∩ A)

⇒ (Z3 ∩ A) ⊆ Z2

Also :

(Z2 ∪ Z3) ∩ A ⊆ (Z2 ∩ A) ∪ (Z3 ∩ A)

⊆ Z1 ∪ Z1

⊆ Z1

And

(Z1 ∩ (B ∪ C)) ⊆ (Z1 ∩ B) ∪ (Z1 ∩ C)

⊆ Z2 ∪ Z3

The proof for the ⇒ direction is complete. The other direction follows
from symmetry.

Theorem 6.1. Operator ⊕ is associative.
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Proof. For any adversary structures E ,F ,H and node sets A, B, C:

(EA ⊕FB)⊕HC = {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩ B ⊆ Z2) ∧ (Z2 ∩ A ⊆ Z1)} ⊕HC

= {Z1 ∪ Z2 ∪ Z3|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z1 ∩ B ⊆ Z2)

∧ (Z2 ∩ A ⊆ Z1) ∧ (Z1 ∪ Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩ A ∪ B ⊆ Z1 ∪ Z2)}

EA ⊕ (FB ⊕HC) = EA ⊕ {Z2 ∪ Z3|(Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩ B ⊆ Z2)}
= {Z1 ∪ Z2 ∪ Z3|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z2 ∩ C ⊆ Z3)

∧ (Z3 ∩ B ⊆ Z2) ∧ (Z2 ∪ Z3 ∩ A ⊆ Z1) ∧ (Z1 ∩ B ∪ C ⊆ Z2 ∪ Z3)}

But from lemma 6.1 it follows that:

EA ⊕ (FB ⊕HC) = (EA ⊕FB)⊕HC

So operator ⊕ is associative.

6.2 RMT Z-pp cut

6.2.1 Proof of Theorem 4.11

Proof. Let C = C1 ∪ C2 be the RMT Z-pp cut which partitions V \ C
in sets A, B ̸= ∅ s.t. D ∈ A and R ∈ B. Let Z ′ = {

∪
u∈B Z ∩ N(u) : Z ∈

Z} ∪ {C2}. We have that Z ′
u = {Z ∩ N(u) : Z ∈ Z ′} ∪ {C2 ∩ N(u)} =

{(
∪

v∈B Z ∩ N(v)) ∩ N(u) : Z ∈ Z} ∪ {C2 ∩ N(u)} = {Z ∩ N(u) : Z ∈
Z}∪{C2∩N(u)} but since ∀u ∈ B : N(u)∩C2 ∈ Zu, for every node u in
B: Zu = Z ′

u. So far we have established that (a) nodes in B cannot tell
whether Z or Z ′ is the adversary structure since ∀u ∈ B : Zu = Z ′

u

and (b) C2 is an admissible corruption set in Z ′.

Suppose that there exists a safe algorithm A which achieves RMT in
instance (G,Z, D, r). We consider the following runs e and e′ of A :

• Run e is on the instance (G,Z, D, R), with dealer’s value xD = 0,
and corruption set C1; in each round, all players in C1 perform
the actions that perform in the respective round of run e′ (where
C1 is a set of honest players).

• Run e′ is on the the instance (G,Z ′, D, R), with dealer’s value
xD = 1, and corruption set C2; in each round, all players in C2
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perform the actions that perform in the respective round of run
e (where C2 is a set of honest players).

Note that C1, C2 are admissible corruption sets in instances (G,Z, D, R),
(G,Z ′, D, R) respectively. Since C1∪C2 is a cut which separates D from
R in both (G,Z, D, R), (G,Z ′, D, R) and the actions of every node of
this cut are identical in both runs e, e′, the messages that R receives
are the same in both runs, i.e., view(v, e) = view(v, e′). Therefore
the decision of R ∈ B must be identical in both runs. Since, by as-
sumption, algorithm A achieves RMT in instance (G,Z, D, R), R must
decide on the dealer’s message 0 in run e on (G,Z, D, R), and must
do the same in run e′ on (G,Z ′, D, R). However, in run e′ the dealer’s
message is 1. Therefore A makes R decide on an incorrect message
in (G,Z ′, D, R). This contradicts the assumption that A is safe.
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