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Abstract:

This study explores the performance of two differeomputer-vision approaches,
namely thecircular Hough transform(CHT) and thedeterminant of Hessia(DoH), to
crater detection on a digital terrain model of ptaMars. CHT exploits the edges of
circular features such as craters, revealed af®eral steps of image processing.
However, the performance of the standard versioGHT on the Martian digital terrain
model generated poor results as the interferenc@otde from irrelevant features
persistent in the processed DTM generated numdatsss responses. On the other hand,
published adaptations of CHT engaging additionadttao isolate much of the influence

of noise were deemed as impractical for routinéecrdetection.

As a substitute, DoH was successful in detectireg dierwhelming majority of the
craters appearing on a horizontal Martian terréhre percentage of success deteriorated
as topographically more complex surfaces were epessed. Even though, DoH scored
higher than CHT despite the perplexity because Pabved to be less sensitive to the
noise than CHT. Current results, although not oaltinencourage future research to

improving the performance of DoH for routine cradetection undertakings.

Keywords: impact craters; circular Hough transform; deteranit of Hessian; space-

scale
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Mepidnyn

H xotopétpnon HETEOPNTIKOV KPOTHP®V GTNV EMPAVELD TOV BPoy®d®V TAAVNTOV Kol
TOV J0pLEOP®Y TOL MAOKOV GLOTIUOTOS Eival €VOg OVLGLACTIKOG TPOTOG GYETIKNG
YEOYPOVOALOGYNGNG TOV avdTEPOL TAavNTIKOD Protov (Hartman et al., 2001; Carr et al.,
2010) kabmg emiong wor TPOmMOG MEAETNC mapeABOVTOV  TapoLOHIKOY  QAGEDV

LETEMPNTIKOV KATUKPNUVIGEDV KOTé TO TpdIHo NAlakd cvotnua (Gomes et al., 2005).

[TAn00¢ S0oTNIKOV OTOGTOADV YOPTOYPAPNONG KOl TNAETICKOMNONG TG EMPAVELNG
tov mhovitn Apn (Pyle, 2012)kxatd t dSidpkeld TV TELELTOIOV OEKAETIDV, £XOLV
OLAAEEEL Oedopéva Yoo OAOKANPY TNV EMPAVELDL TOL TAGVATY, EMTPEMOVTIOS TOLG
TAOVNTIKOVG  YEWAOYOLG VO OlEEAYOUV HOPPOUETPIKES UEAETEG TOV UETEOPNTIKOV
Kpathpov oty empdveia Tov Apn (Brunetti et al., 2014)X0t660, N KatapéTpnon Tov

TOALAPLOUOV HETEOPNTIKAOV KPaTHp®V glvar o xpovoBopa dtadikacia.



Yuxvé M yewAoyio, CUVETMG KOl 1 OOTPOYEMAOYiQ, KOTAMAvETOl He CNTNUOTO TOV
aQOPOVV GTNV aAvVAcLVOEST TOV APYIKOD GYNHUOTOS TV YEOHOPPDV OO TO, CTUEPIVA TOVG
VTOAEIPHOTO, KOU ©OC €K TOUTOV, GLYVO TO HOPPOAOYIKO TPOPANUATO UTOPOVV Vi
edmbovv o¢ yeopetpikd mtpoPfrnuoto (Bayer, 1985)Tétoa mpofAfuato pumopodv va
OVTILETOTIOTOOV LE TN XPNON AAYOPIOU®V EQOPUOCIUOV GE YNELOKA LOVTEAN EOAPOVG
(YME). XZvvendc, n ovayvopion Kpatipov OSloUEcov TEXVIKOV TexvNTG Opacng
(computer vision)eivor eEoupetikd TPAKTIK TNV AGTPOYE®AOYiO, KaOMG Hmopel vo

OVTOLLOITOTIONOEL, KOl (PO VOL ETITOYVVEL, T1] O100TKOGI0 KATOUETPTONG TOV KPOTHPWOV.

Qo61660, o1 omocafpoTikég Kot SoPpmTikég depyacieg mov Aapfdvovv ydpo oTtnv
empavew opropévav taavntav (Berman et al., 200R0ovac va gilodyovv tuyoieg Kot
povipeg odroiwoels (BopvPoc) omv apywn popen (cNque) kotd T SldpKe TOV
YEOAOYIKOV XpOVoL. AVTd akplBdg cupPaivel Kot e TOVG APELLVOVG KPOUTPES, O OKUES
TV omoimv €yovv vrootel SWPpwon amd Tov TAAML TOTE APEVO VIPOAOYIKO KVUKAO

(Andrews-Hanna et al., 2007).

H upébodog Circular Hough transform (CHT¥yet mpotabel g pébodog avtopatmg
aviyvevong kpatpov (Kim et al. 2005; Stepinski et al., 2006; Bue &tdpinski, 2007).
H pébodoc CHT (lllingworth and Kittler, 1987)éxer Bewpntikd ™ SvvordotnTo va
avaoLvOEGEL TNV TTEPIIETPO TOV KPOUTP®V, OKOUO Kot oV avtol onuepa epeoavifovrot
atereic AOY® daPpmonc. AVTd EMTVYYAVETAL LEGH UIOG OOOIKAGIOG WwHPopopiag amd TO

d160146TATO YDPO HOG EIKOVOG OE £VAV S1GOLAGTATO 1) TPLOGOIACTOTO TAPAUETPIKO YDPO.



H onuepwvn xotdotoon tov HETEOPNTIKOV Kpathnpwv umopel va etvor «@opuPddng»
enewdn M owWPpwon {omg va el GAAOIDGEL TIG OKUEG TOLG KATO TN OLAPKEWL TOL
YE®AOYIKOD YPOVOL. ZVVETMG, Ol TPOYUOTIKEG AKUES EVOG EvTova dafpopévon KpaTnpa

Ba avapévovtal pe Kdmola mavotnTo YOP® omd TO KEVTPO.

‘Evag GAhog tpdmoc vo mopoakapbel 1o mpofAnua tov ateAdv pope®dv kpotinpmv (to
omoi0 UTOPEL VO KATAGTHOEL OVATOTELEGUOTIKES TIG HEBOSOVE aviyvevong akumy), givat
N aVixvevon avIIKEIUEVOV BE@Pp®VTOS OTL OVTA AVTITPOGMOTEVOVY [0 OLOLOYEVH] TEPLOYN
otV ewova (blob), happavovtag vadyn v meployn mov avtd kaddmrovy. H aviyvevon
tov blobs anockonel otov eviomiopud meploydv mov gpeovifovv TomKE péyoTa 1
erdytota. Metalh Tov S1dQop®V VTOAOYISTIK®V HEBOS®OV OLTOUATNG OVOYVAOPLONG
blobs, n mo dwdedouévn pébodog (Lindeberg, 1993, 1998ivor m opilovea tov
Eooiavod rmivoxo (determinant of Hessian)yvoot| kot pe 1o akpovopo DoH.
Yvykekpéva, n DoH avalntd oty ewodva mePoyés mov mOPOLGLALOVV  1oYLPES
mapaydyovg o KaBetn oevbuvon. H pebodoroyia otmpiletonr otov vmoloyicpd tov
Tivako TOV Topaydyov dgvutepov Pabuod g ewovas, yvomotdg og Eooiavog. Xt
ocvvéyela, N pebodoroyio avalntd onueio (pixels) oty ewdva 6mov peyiotonoleitat N

opifovoa.

H mapovoa perétn diepeuvd v amdd0oom V0 SPOPETIKOV HeBOd®V Unyavikng Opaong
Kot ovykekpipéva g circular Hough transform(CHT) kot tg determinant of Hessian
(DoH), pe otdéyo TV 0VTOUATY AVIXVELOT] KPATHPOV HETEMPNTOV GTNV ETPAVELDL TOV

TAavnTn Apn, kavovtag emelepyacia o évo ynoakd poviélo g emeavelds (PME)



tov mhavntn. Ewdikdtepa, avtn 1 epyacio mepilapfaver o mrotiky epapuoyn s DoH
oTNV oVTOUATN aviyvevon Kpoathpwv otnv emedvein tov Apn. Av kot n DoH éyxet
gpappootel moAAAKIG 010 mapeABov o ovpuPatikég ewdveg (BAéne my. Grauman and
Leibe, 2011),n gpappoyr g DOH yia v aviyvevon HETEMPNTIKOV KPATHPOV GE
YNEKO HOVIEAOL €00(QOVG LAOTOLEITAL Y100 TMOTN QPOPO GTO. YPOVIKA GE OLTN TNV
epyacio, ypnowonroiwvtag Eva apelavd YME amoktn6év katd tn S10oTnKn omrocToAn
Mars Global SurveyoZuv toig dAloig, 1 amddoon thg DOH cuykpiveTor g mpog exeivn

™¢ CHT ya ta ouykekpuéva dedopéva.

O1 dvo TEYVIKEG SOKIUAGTNKOY TAVED GE £va Yyneokd HOVTEAO €04POVS TOL ApT 7OV
npoopépetor and 10 "Tlpdypappa Actpoyswroyioag' g ['ewioywmg Yanpeoiag tov
H.IL.A. (http://astrogeology.usgs.gov/)Avtdé to WME éyet vmootel katdAAnin
emelepyacio, OOTE vo €ivar GUESOH Y. XPNON OE KOWG GCULOTIUOTO YEWYPUPIKDOV
TANPOPOPLDY KOl £YEL KATACKELOOTEL 0d dedOUEVO TOL GLAAEYONGOV KaTd TN ddpKELDL
Tov Jotukod mpoypaupotog Mars Global Surveyor (MGS)H svpOtepn mepioyn
peiétng Ppioketon peta&d tov yewypaekov midtovg 0° kot -30° kot Tov yemypapikoy

unkovg 30%E kot 60FE mov mepiéyovtol oty mepoyn Terra Sabaeaov Apn.

Qo1600, (o TPoseKTIKn HEAETN Tov apelavod WME amodeikviel Twg ol Kpatnpeg oev
&yovv mapapeivel adiktol amd v emoyn dnuovpyiog tovc. H apelav atpooeoipikn
KUKAOQOPia, 1 TAAOL TOTE EMPAVEWNKY] ATOPPON Kot O cvveyns PopPapdiopog g
empaveag Tov TAavitn (Barlow, 2016 ¥xovv empépel alhoimon, og kdmowo Badud, tav

YEOUETPIKDOV YOUPOKTNPIOTIKOV TOV KPATHP®V. AVTO £YEl OG amoTéAES TV "ElG0y®mYN



Bopufov” katd ™ dadiKacio TG AvVayVOPIoNG. LVUVETMG, o pEB0d0G TeXVNTNS OpaoNg
Bo pémel va eivar kavn vo avayvopicel o oviotn o aKOpo Kot HEGO omd TNV oTEAN

g mapovcio e&antiog tov BopvPov.

H aviyvevon pe ™ ypnon g pebodoroyiog CHT Paociletor 61OV EVIOMGUO OKU®OV
KUKMK®V  OVIOTHT®V, OT®MG Ol Kpatnpes, oaeolv mponynbodv moAAOmAG oTAd
eneEepyaciog eoOvVag, MOTE 01 OVTOTNTEG TOV avayvopilovtatl amd to avOpdOTIVo pdtt vo
EKTTECOVV GE YPOUUIKES. AVTO EMLTVYYAVETOL LE TOV VITOAOYIGHO TOPAY®YNG EIKOVOG Omd
10 apyikd YME kot cvykekpiuévo g KOPmLAOTNTAG TOV OvayADQOL, opov EXEL
mponyn el cuvéMEN pe ykaovolavd @idtpo Yo eEopdAvven Tov avoyAvgov. Akolovbel
KOTOQAIOT, HOPPOAOYIKO KAEIGIHO KOl AETTUVOY NG €KOVOG TPV Yivel EToyun yuo

avaivon pe v CHT.

Av glval YvooTO €K TOV TPOTEPOV TG 01 KHKAOL TNG E1KOVAG £0VV oTofepn OLAUETPO, M
CHT mpofdiel ta onueio ¢ SioddoTotng €KOVOG G KUKAOVG G £vav d160146TATO
TOPOUUETPIKO YDPO. AV, o'tV GAAN, o1 KOKAOL €400V HETOPANTH SIAUETPO OTNV EKOVO,
101e 1 CHT Oa mpoPdiel Tor onpeio TG EIKOVOG MG KOVOLG GE £VAV TAPOUUETPIKO YD PO.
Oco ovyvotepa téuvovtal ot kOkAoL (] ot KOvol avtictolya) o€ évo onueio otov
TOPOUETPIKO YDPO, TOGO THAVOTEPO Ol GLVTETUYUEVEG OVTOD TOVL GNUEID VO TOPATELOVY
o€ KEVIPO TPOYUOTIKOD KUKAOL omnv €Kova. Avtiy owadikacio KaAeitor wnpopopio.
(voting). Oco evtovotepn eivor OU®C M Tapovsion avemBOUNTOV AVIIKEWEVOY GTNV

gwova  (06pvPog), 1000 peyaADTEPN Elvol 1 GLUUETOXN| TOVG OTNV  WHPOQOpIA,



EKAEYOVTAG-TIOPUTAAVITIKA- ONUEID TTOV OEV OVTIGTOLYOVV GE TPOYLOTIKA KEVIPO KOKA®V

oTNV EIKOVO.

IIpwv v epappoyn g CHT n ewdva vréotn kamown emeepyacio, ®ote OAO TO
OVTIKEIEVOL TG EIKOVOG VO EKTEGOVV G€ YPApUEG Tayovg evog eatviov (Kim et al., 2005;
Stepinski et al., 2006; Bue and Stepinski, 20@A)yykekpipéva, £ywve covéMén ue
ykaovolovd @iltpo, ®ote va meploplotel o€ kdmowo Pabud o BopvPog. Xnv cvvéyela,
vroAoyiotnke N kopumvAidtnTo Tov YME 0¢ 1 devtepn mapdymyog tov YME, kabmg £1o1
AVAOEIKVOOVTOL KOADTEPO Ol OKUEG TOV KPATNPOV. XTN GLVEYXELN, oKoAoVONGav T €E1G
otaola, omwg éxovv mpotabei and tovg Bue and Stepinsky (2007): kproeiioon pe
oTOY0 VO TPOKVWEL Hio SVAdIKY €OV, 2) Hopeoloykd KAgiowo (SiooToAn Kot
ddPpmwon) ypnoiporoldvtag dopkd ototyeio dtwotdoewv 3x3, kot téhog 3) Aémtvveon

YPNOYLOTOIDOVTOS dOpKO atoyeio 3% 3.

H xotopMoon g ewdvog ypnoYonOolEitol G o TPOKOTOPKTIKY  dladtkacio
KOTATUNONG TNG EKOVAG. TNV anAoVGTEPT EKOOYN NG, N KATOEAIWOT avtikadiotd kdbe
eaTvio TG €IKOVOG [E £voL AOTPO POTViO, €0V 1 £vTOaon TOL Gatviov givol Tave and v
T KOTOEAI®ONG KoL [LE LoPO GATVIO av 1) T TG £VTAOTG TOV OVTIGTOUXEL 8 eKElvo

10 Qatvio ivol Kat® omd TV T KatoeAioong.

To popporoyikd KAeioio mepAapPavel SIOGTOAN TG EIKOVOG YPTNOLUOTOIDVTAG OOUIKO
otoryelo ko ot ovvéxewn dwPpwon g ewovog pe to 100 otoryeio. H dwaotoin

OOCKOTEL 6TN JLOYKMON TOV OVIIKEWEVOV NG €KOVOG (AoTTpa QoTvie) TANPOVOVTOG



HKpA KeVO mov gueoavifovtol avapeso oTo OVTIKEIHEVO. XTn GUVEXEW, 1 OPpmon
OmOTEAEL TN HOONUOTIKOG avTioTpoen dadtkacia, Katd v omoia £va dopkd oTotyeio
ocvvedooetal pe TN SLAOIKY] EKOVO TPOKOAMDVIONG TNV GULGTOAN TOV THYOVS TWOV
OVTIKEILEVOV. ZVVETMC, N OOIKOGIO TOV HOPPOAOYIKOV KAEIGIHATOS EMTLYYXAVEL TNV
OVATAY)PMOT] TOV ATEAELDV TOV OTEADV OVTIKEWEVOV, SATNPAOVTOS TO YOG TOVS HKPO.
21N GuvEyELa, aKoAoVONGCE N AVAOEIEN TOV OKUMV UE AETTVVGT), KATA TNV OTToiot OAM TOL

YPOLLUIKA OVTIKEIPEVO TNG EIKOVOG EKTUTTOVY GE YPAUUES TAYOVG EVOS GATVIOL.

Axolovnoe gepappoyn e CHT og mepifarrov Matlabypnoiporoidvrag tov akydpibuo
CircularHough_Grd  oxedwopévo  yuo  Matlab.  Qotéco, o  aAlydpiBuog
CircularHough_Grdrpocdiopioe ké€vipa KOKA®V og BEGEIG TOV GIAVIO AVTIGTOLYOVGAV
o€ KEVIPO Kpatnp®v. Avtd 10 amotélecua amodidetor 6to Bopufddn YapoKTHPO TNG
emeCepyacpévng ewovag. H epappoyn g tomikng exdoyng ms CHT oto apeiavo YME
dev eiye emrvyia, kabdc M mapepPorn ACYETOV YETOVIKOV OVIOTHTOV, TO OToin
eEakohovONGav va VITAPYOLY GTNV EIKOVA Kot LETA TNV emesepyacia, l0nyoye EMmTALOV
06pvPo Kol odynoe otV eupdvion yevdmv onudteov (ovtotntev). Tovvavtiov,
onupoctevuéveg mopoariayéc g pebodoroyiag CHT mepihapfdvovy e&ovbevmtikég
dwdkacieg emeEepyaciog KOV Yo Vo TEPLOPIGOLY TNV eMidpacn Tov BopvPov, Kot Yo

OV AMdY0 anTd, avTtég BepnOnKoy MG UN-TPAKTIKES Y10 EQAPUOYES POLTIVOC.

Evalaktikd, o gvtomiopog kpotnpov deénybel péca amd v mpocéyyion tov blobs,
ypnoporoldvtag tov olyopiBuo blob_doh mov sivar oyedacuévog yia ™mv yAdooo

npoypappaticpod Python. Tlpwv v epapuoyn tov olyopiBuov blob_dohn swdva
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véotn eAdttoon BopvPov, cuvvehicoovtag ykoaovowavd @iktpo. Otav - blob_doh
gpapuootnke o tunuata ov YME mov ftav oyetikd eminedo (Onwg amokdAvyay ot
OVTIGTOLYEG TOMOYPUPIKES TOUEG) TO TTOGOGTA EMLTUYIOG THG AViXVELONG KPOTHPOV NTAV

a&oroya, ™ tééng tov 88%.

Qot6c0, o0tov n blob_doh epoppoéotnke o€ moO  mEPITAOKEC  TOTMOYPUPIES,
YOPOKTNPWLOUEVES OO MTOVOEWN OLOKVUOVOT KOl KAIGN, TO OTOTEAECUATO TTOV
Myotepo wovomontikd. Av kor m blob_doh kukhdver oyeddv Oleg TIc «apvnTIKEG»
TOTOYPAPIKEG avopories (Tpayuatikol kpotnpeg) oe avtibeon pe v mepinTmon Tov
oxetikd eninedov YME 6mov amaviodv HOVO «OpVNTIKEG» TOTMOYPOPIKES OVMOUOAES
(kpatnpeg), oto Ntovoeldég kot kekApévo YME o adyopiBpog kukidvet (€ opiopod)
KoL TI§ “OPVNTIKES» KOl TIC <«DETIKES» TOMOYPUPIKES avopoAies (yevdelg kpathpes-

e&apoetg). O yevdeig kpotnpeg eivat avemBounTot.

‘Evag tpémog yoo va mapaxopuedei n mwopeufoin TV «peuddv Kpatnpmv», NTaV Vo
OTOKOTOUV Ol TOAD VYNAEG TIHEG €vTaomG amd TNV €KOVA, OOTE vo. eUmodlchel m
blob_doh andé 10 va xvkldoer «pwtewva» blobs. Mg avtov tov tpdmo, vor pev
emtevyOnoav va omopovmboiy o1 Yevudeic Kpatnpes, OALAL amd TNV AAAN 1 ATOppLYN TOV
VYNADV TILOV TG €IKOVOG, €lxe g amotéleoua va amoppipbel to 50% mepimov g
EMPAVELNG TNG EKOVAG, YAVOVTOS OGOVG KPOUTNPES KEITOVTIOV GE TOTOYPOUPIKO LYNAEG
nepoyés. [lapora awtd, 10 T0c00T0 emttvyiog e DOH mapépeive vynidtepo and ekeivo

¢ CHT, axépa kot 6ty nepintmon tov mepimAokov avayAdeov.
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Yvvoakd, g vrokatdotato g CHT, n pebodoroyia DOH @dvnke va égel kaldtepa
OTOTEAEGLLOTA, AVIXVEDOVTOG TN UEYAAT TAEIOYNQIC KPOTP®V TOV OTOVTOVV GE GYETIKA
eMinEdeC MEPLOYEG TOL APEWLVOD PAOLOV, UE TO TOo0GTO emttvyiag va ayyilel to 88%.
Q61660, T0 TOCOGTO EMTVYING TNG TEYVIKNG emdevabnke 6tav 1 DOH gpappdotke og
7o TEPIMAOKES TOMOYPOPiEg TNG EMPAvELRG TOV TAAVIT. Molatdvta, cuvoiikd 1 DoH
elye xaAvtepa amotedéopato ond v CHT mopd v moAvmlokdtnTo TOv ovayAdbeov,
ywti 1 DOH anodeiybnke Mydtepo gvaictntn oto 06pvPo arm'ott n CHT. Ta mapdvia
amoteAécpata, ov Kot Oyl BéATIoTa, evBappivouy peAlovTiKn €pgvva Yo T Pertioon
Tov emddcemv ™G DOH ce epappoyéc pouvtivag mov amattodv aviyvevon Kpotpoy o

TAOVITEG TOL NALOKOL GUGTHULOTOG,.

Aggarg KAEWO: UETEMPNTIKOL KPOTNPES, OVIXVELOT OKUAOV, OVIYVELON TEPLOYDOV,
opifovca tov Ecclavol mivaka



12

List of Contents page
O 1 o 18 ox 1 o] o FA PP 15
B2 = = Tox (| (01 T 18
2.1, Impact craters Of MarS ... ..ccoieie it e e e s 18
2.2. The recognition problem.........coo ot e 19
ST IY/ =3 i o T (o] [0 o | 2P 23
3.1 . Hough transSform. ... 23
3.1.1. Linear Hough transform.............coooiii i e 23......
3.1.2. Circular Hough transform............ccooooii i e, 217..
3.2. Blob detection through the scale-space theergpective..................... 32
4. Source data and photointerpretation...............ooeir i it e e 37
D RBSUIS . . e 43
5.1. Circular Hough transform. ..o e e e 43
5.2. BIOD deteCtion. ......ce e 50
B. DISCUSSION ... .ttt et et e e et et e e e et e e et e e et 57
7. Conclusions and future direCtioNS..........o.uieiie it e e e 60

8. R B B BN C S . .. et e e e e e e s 62



List of Figures page
Fig. 2.1. IMPACE Craters 0N MAIS............oummseeeeeieiaaeeeaeeaeeaaeeeeaaeeae e e e e e erssse s 18
Fig. 3.1. A line from the image corresponds to efpim Hough space..............cccceeeennnns
Fig. 3.2. A point from the image corresponds tma in Hough space............cccccceeeennns
Fig. 3.3. The solution of intersecting lines in lhuspace............ccceeeeeeeeieieee e 25
Fig. 3.4. A line correspond to local in the accuaboit array...............ceevvveevvvrivenennsmm 25
Fig. 3.5. The Hessian form of the lINe.......ccccccuviiiiiiiiii s 26
Fig. 3.6. Parametric representation of a line audigulation matriX............cccccevvvveeeeee. 27
Fig. 3.7. The Circle formula ........ ... 28
Fig. 3.8. CHT of circles from the image to the Hbwgpace for a given radius............... 29
Fig. 3.9. CHTof circles from the image to the Howglace for variable radiuses...........
Fig. 3.10. Accumulator array for two different rasles................cccceeeeeiiiiiiiiiiiieinenn. 30
Fig. 3.11. Flow chart of the CHT algorithm in Sim@orm.............cccccvevviiiiinieiiinnnnnns 31
Fig. 3.12. Simplified algorithm for blob detectian...............ccccoiiiiiiiiiiiiiiii s 36
Fig. 4.1. Terrain map of the Study area.........c.cuuueviiiiiiiiiiiiiiiiiiiiiiieeiie e 37
Fig. 4.2. MOC image of the StUdy area.......cccceeuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeneeeeee e 38
Fig. 4.3. The digital terrain model (DTM) of theidy area............ccooeeviviiiiiieeeenneeen. 39
Fig. 4.4. The gradient of the DTM for the studyaare...............ccoee e 40
Fig. 4.5 NW-SE topography profile of test area.A..........ccccoeeieiiiee, 41
Fig. 4.6. W-E topography profile of test area B............ccccccvviviiiiiiiiiiiiiiiiiieiiieeeeen 41
Fig. 5.1. Processing steps of the Martian DTM....c.....oooooiiiiiiiieeee, 43
Fig. 5.2. The accumulation matrix for area A..........ccoeeermmimiiiiiesneeseees e 46

Fig.

13

5.3. CHT candidate CIirCleS fOr ArCa A. .ot eee e 47



Fig. 5.4. The accumulation matrix for area B................eee 48
Fig. 5.5. CHT candidate circles for area B. .. cceeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieivieeenee e 49
Fig. 5.6. Blobs detected in test area B by DOH.........cccoooiiiiiiiiiiii s 51
Fig. 5.7. Blobs detected in test area A by DOH...........coooviiiiiiiiiiiiieeeee 53
Fig. 5.8. Blobs detected in test area A by DoH gisin intensity cut-off........................ 55

Fig. 5.9. Blobs detected in test area A by DoH gisin intensity cut-off (grater scale)..55

Fig. 5.10. Blob detection at the scale of a SimgEer.............coooeeeieiiiii e 56



15

1. Introduction

Frequency counting of impact craters on terresgplanets and moons of the Solar
System is an essential means of relative geochoggobf the upper planetary crust
(Hartman et al., 2001; Carr et al., 2010), as wsllprobing into paroxysmal phases of

meteor showers in the early Solar System (Gomak, &2005).

Numerous spaceborne surveying and remote senssgjoms to Mars (Pyle, 2012) over
the last decades have acquired digital elevatiala filar the entire planet at usable
resolutions, enabling planetary geologists to camay morphometric analysis of the
Martian meteor craters (Brunetti et al., 2014). ldgar, counting of myriads of impact

craters manually is a tedious and time-consumigk} ta

Subjects of research in geology, and consequemtlyastrogeology, involving the
reconstruction of original landforms from their et remnants, can be dealt with if they
are reduced to morphological, and eventually gencagt problems (Bayer, 1985). Such
problems can be dealt with by computer algorithrpsrating on digital terrain models
(DTM). Hence, impact crater detection through cotapwision methods may be
extremely practical in astrogeology as it can aatienand thus expedite, the crater-
counting procedure. Computer vision (also knowmeagge understanding) is a branch of
computer science aiming at replicating biologidalirhan) vision through appropriate
algorithms at different levels so that certain imagomponents (objects) can be

detected/recognized by computers.
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Nevertheless, planet surface processes (Bermah, €2089) may induce random and
persistent disturbance (noise) to the originalcttme (signal) over the course of time,
resulting in the gradual deformation of the origilamdform. This is particularly the case
of the Martian impact craters whose edges haverexued some degree of erosion by

the former Martian hydrological cycle (Andrews-Haret al., 2007).

Circular Hough transform (CHT) has been promotedh asethod for the detection of
impact craters (Kim et al. 2005; Stepinski et 2006; Bue and Stepinski, 2007). CHT
(lingworth and Kittler, 1987) is an adaptation ldbugh transform (e.g. Xiao and Weij,
2006; Mingzhu and Huanrong, 2008). It is a feategection method that exploits the
edges of circular objects in an image to reconsthair perimeter out of their imperfect
instances. This is achieved through a voting proeffom the 2D space of the imagery

to a 2D or 3D parametric space.

Nevertheless, the present state of impact cratersars can be very noisy as degradation
may have deformed their edges during the geologima. Therefore the actual edge of a
heavily eroded crater will be expected within acsfie probability within a given area
around its center. Recognition may become even piaiglematic when neighborhoods
of different edges start to intersect. In theseesastersecting edges cannot be

reconstructed accurately (Bayer, 1985).

Another way to go around the problem of imperfaetter instances (which may render

edge-detection methods ineffective) is region-badetection.Blob detection (Kaspers,
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2011) utilizes operators capable of delineatingoreg that exhibit uniform properties.
Therefore blob detection is not affected by impeiéss of linear components such as
the eroded crater edges. Among various blob detectiethods (Kaspers, 2011), the
determinant of Hessiar(Lindeberg, 1993, 1998) is well-known. Specificallthe
determinant of HessiafDoH) looks for locations on the image that demonstsateng
derivatives in perpendicular directions. The teghei takes advantage of the matrix of

the second-order derivatives of the image, knowth@klessian

This work is a pilot application of DoH for impactater detection on Mars. Although
blob detection has been applied to numerous casedvzing conventional images (e.g.
Grauman and Leibe, 2011) and satellite imagerydHKiaalos and Argialas, 2004) this is,
to our knowledge, the first application of DoH fionpact crater detection on a digital
terrain model. This work undertakes to test DoHadvartian DTM acquired during the
Mars Global Surveyor mission. The performance oHOs also compared to that of

CHT.
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2. Background

2.1. Impact craters of Mars

Impact cratering on rocky planets and moons daéek ko the dawn the Solar System,
over 4 billion years (gigayears, Ga) ago (Claeyd ®lorbidelli, 2011). Meteor craters

are created by collision of interplanetary debmigorites, asteroids or comets) with the
planetary crust. Although resurfacing processethertarth (e.g. plate tectonics, erosion
and sedimentation) have erased much of the primloirdpact record, on planets such as

Mercury, Mars and the Moon, where intense geoldgictvity ceased earlier, the scars

of ancient meteorite bombardment have been preséovéonger time-scales.

A major proportion of cratering on Mars is assaaiatvith theHeavy Late Bombardment

(LHB) in the early Solar System (Claeys and Morbid2011), which is an astronomical
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event of cataclysmic dimensions that occurred 461@Ba ago. During this event a
massive amount of meteorites collided with the l=lke planets of the inner Solar
System (i.e. Mercury, Venus, Mars) and the Moora€@é and Morbidelli, 2011) leading

to the well-known mottled appearance of their caustace.

Martian impact craters exhibit a broad diversitytygfes. The weathering influence of the
Martian atmosphere, and the former hydrological ley(Fig. 2.1), have acted as
substantial moderators of the crater morphologyttislia craters crop up in a broad range
of sizes. Documented craters with diameters exoge® km are estimated to be
substantially more than 42,000 (Barlow, 1988). Bheambers grow geometrically for
smaller craters. There is a striking differencecnater density between the planet's
latitudinal hemispheres, with the southern hemisptexhibiting a substantially greater

number of craters than the northern hemisphere.

2.2. The recognition problem

Computer vision tasks employ algorithms to recogr8D objects in 2D images whose
properties are knowm priori. Several methodologies for object detection hagenb
developed, depending on the nature of the featorbg detected. These can be grouped
in two major categories, namely tedge-basednethods and theegion-basednethods,

depending on whether the algorithms deal with liraareal properties.

Both approaches require that a mathematical modlethe features concerned be

conceived on the basis of the feature geometry spatial properties. Then, the
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methodology should present a stepped procedurerfdlign) capable of reconstructing,
within a degree of tolerance, the shape by takibg account the instances of the objects.
Because noise may be added to the image, an gffdetaiture detection technique should

be designed in such a way that its results arskewed by the presence of noise.

As far as theedge-basedfamily of techniques are concerned, tbiecular Hough
transform (e.g. Argialas and Krishnamurthy, 1992; Xiao andiyv2006; Mingzhu and
Huanrong, 2008) and thellipse and line segment detect@atraucean et al., 2012),
known as ELSD, are the most noteworthy examplesticRiarly, Circular Hough
Transform (CHT) is most celebrated in computerarisapplications such as magnetic
resonance imaging (e.g. Zhong et al., 2014), @®gnition (e.g. Verma et al., 2012) and
biometry (e.g. Prakash and Rajesh, 2008). CHT vwsraance of the Hough transform
(Duda and Hart, 1972). The Hough transform fadégathe detection of primitives such
as lines circles and ellipses. The philosophy HBHT is the construction of a
parameter space where the coordinates vote fopanameters being searched in the

image space.

Regarding theregion-basedgroup of detection methods, these perceive thengity
fluctuations in the image as a succession of basidshills and, hence, an object can be
simulated by either way. A traditional means ofragting objects through the basin/hill
perception is thevatershed segmentatigiBeucher and Lantuéjoul, 1979). Watershed
segmentation mimics the process of rain watenfgllihe basins while it is flowing along

the hill slopes until the basins become full of evgfloodedimage). When the procedure
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is completed, basin-like objects will appear as aubmome compact regions while hill-

like objects will crop up as lighter-colored regson

If topographicfluctuations in the image can be simulated asdiedped surfaces (upright
or inverted) then the teriob may be applied. Lindeberg (1993) defines blobsaall
extrema of approximately Gaussian functions. Waestsand blob detection methods
have been widely applied to numerous case studiegirg from the detection of
boundaries of mineral grains in geological thintees (Barraud, 2006) to cell detection

in biological tissue (Li et al., 2007).

Planetary scientists undertaking studies on extestgial DTMs have made use of CHT
(Bue and Stepinski, 2007) and watershed segmentéioe and Stepinski, 2007, Fig. 4a
therein) to facilitate meteor crater detection. dighveless, both approaches have faced
serious shortcomings. Regarding watershed segrnmmtatot all resulting basins will
correspond to craters, but also to irrelevant degpoas. In addition, in cases where
craters have been exhumed in the interior of laogaters they will be masked by the

"flood" and become merged with the larger crater.

So far as CHT is concerned, the noisy nature oDifills involved inevitably introduces
votes from irrelevant objects, frequently leadirmgthe emergence of falsghostor
phantom craters. Only very meticulous image pre-progegssuch as fragmentation of
the original image into numerous smaller imagese(Band Stepiknski, 2007) may reduce

the noise in the crater neighborhood. This studysab explore the potential of the so far
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untested blob detection operators for impact crasénaction and to contrast its results to

those by CHT.
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3. Methodology

3.1. Hough Transform

Hough Transform involves switching back and foribni the 2D image spadg,y) to a
multi-dimensional space (depending on the numbehefcurve parameters), known as
the parametric space, from which object candidatesietected as local maxima of votes
cast into the so-called accumulator matrix. Sucpaeametric space is known as the
“Hough” space (Duda and Hart, 1972; Argialas andstframurthy, 1992), and its
dimensions are designated by the number of parasneteolved (e.g. 2D for lines, 3D
for circles etc). The manuscript proceeds with ammoduction to the Linear Hough
Transform (LHT), which provides the fundamentalsutalerstand the higher-parameter

Circular Hough Transform (CHT) methodology theréiea

3.1.1. Linear Hough Transform

In case of a liney = mx + ¢ with m,c corresponding to the slope and the offset
respectively (Fig.3.1), the Hough space is two disienal (1,9 and the linegy = mx + ¢
plots as a point in Hough spaa®ycy). Conversely, a given poinky(yo) in the image
space would correspond to a line in the Hough sgige3.2). The infinite number of
lines crossing that point are characterized byitdipairs of i, which fulfill equation

c = y- mpx. The linear relationship betweerandm means that the parameters plot as a

line in the Hough space.
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Fig. 3.1. A line in image spece corresponds to iatpga the 2D Hough parameter space
(from Grauman, 2014).
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Fig. 3.2. A point in the image space corresponda lime in the Hough parameter space
(from Grauman, 2014).

In order to calculate the line that passes thrawghknown points, i.e. the parametens
andb of the line being sought, the points are plottedirges in the Hough space and their
intersection coordinates reveal the parametershefline being sought (Fig.3.3). The

coordinates are calculated by solving the systeagohtions =-Xom+yp andc=-xsm+y.
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Fig.3.3. The line passing through two points in thrage space is the solution of the
intersecting lines in Hough space (from Graumari, 40

For a larger set of collinear points (Fig.3.4) frtime image space, each pair of points is
plotted as a line in the parametric space. If #tw@metric space is gridded, the higher the
intersections strike in a bin the more likely thia will contain thec andm parameters of
the line passing through the points on the imageepThis procedure is calledting as
each intersecting line in the parametric spacesviiieline parameters that define a line

in the image space.
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Fig.3.4. The parameters describing a line passhrgugh collinear points correspond to
a local maximum of votes cast in the accumulatoaya(from Grauman, 2014).
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However, as vertical lines are associated withnitditangents théessianform for the

line is preferred:r = xcos@ + ysind, wherer is the distance from the origin addthe

angle from the horizontal axis. In that case, tammetric space is defined by the angle

and the distance from the origin ) instead of the slope and the offset.

In this alternative form, parameter® are estimated in the Hough space in a different
fashion. Consider, for example, the supposedliingar points of Fig.3.5. For a given
data point a number of lines are drawn througkath at different angle (solid lines in

Fig. 3.5). Each solid line is then intersected lmpther vertical line (dashed lines in

Fig.3.5) passing through the origin.

Arngle | Dist,
( 40
30 596
=11 cl.2
90 /0
150 0.4

Figure 3.5. Alternative voting procedure for linetdction exploiting the hessian form of

Angle | Dist,
0 =71
20 7950
60 5050
30 50
130 —-19.3

fAngle | Dist,
0 46
20 89.6
=1 206
Ell a0
120 -39.6

the line. Parameters are angle of intersection ahistance from the origin (source

Wikipedia).
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The length (i.e. the perpendicular distance tootiigin) and the angle of each dashed line
are then measured. The procedure is repeated ¢br agatapoint, and the pairs of the

results are shown in the accompanying tables. Tdrerethe parametric space is now

defined by distances and angles.

Each point from the image space now plots as aeculive defined by the angle/distance
pairs (Fig.3.6a). Each line corresponds to a vbte intersection of the curves defines
the wantedr,§ parameters. If the graph shown in Fig.3.6a. isldgd then it can be

illustrated in the form of a raster graph, knowrtesaccumulation matriXFig.3.6b).

100
30 5,
596
W 60,
I
S 401
_|_>

N 20
=

distanoe

O30 &0 90 120 450
—20| @) Angle b)

—40° Angle (8)
Fig. 3.6. a) Parametric representation of points @asves in the 2D Hough space. b)

accumulation matrix illustrating the higher incidem of curve intersection (source
Wikipedia)

3.1.2. Circular Hough Transform
The Hough transform can be used to determine treaners of a circle when a number

of points of its perimeter are known. Circular Houlyansform (CHT) exploits the circle

formula (Eg.1) to calculate triplets of paramefgrb,r) which satisfy Eq.1 when they are
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combined with the coordinateg,y) of at least three points in the image-the necgssa

and sufficient condition for drawing a circle.

(x, —a)® +(y, —b)? =r? Eq.1
Parameterg,b can be expressed as a function of the coordindtaspqy) point on the
perimeter of the circle (Fig. 3.7) and its diametes:x = a + R cos¢) andy = b + R
sin(@). Estimation of triplets of parameters is achievkbugh the transformation of
points from the biaxial image space into geomegiements in a triaxial a(b,r)

parametric space (Fig.3.8).

P R ,'k.!x'y
_I"I EI. b ‘-fﬁ_.f I".I

‘ || T |
I\'\\. /‘I

\'*-\-.. P
B % = a + Rcos8 )
¥ = b+ Rsing
- - B
a

Fig. 3.7. The circle formula expressed as a fumctid the center (a,b) coordinates, the
radius (R) and the angle of the radius.(

For a giverr, points from the image space can be transformedigjiréhe circle formula
into circles in the 3D Hough space. When the radieses along the axis then a point

from the image space will plot as a cone in theypetric (Hough) space.
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Fig. 3.8. Transformation of circles from the imagpmace (left) to the Hough space for a

Circle candidates in the image space are obtaisetbal maxima (candidate circle

centers) of cone intersection counts in the accataulmatrix, resulting from the voting

procedure carried out in a parameter space.
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Fig. 3.9. Transformation of circles from the imagmgace (left) to the 3D Hough space

(right) for variable radiuses.

In principle, the voting procedure involves cougtie votes within a range of radiuses

(several horizontal plains in 3D Hough space) dredhigher the cone intersections strike
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in a bin of theaxb matrix the more likely the cell’slacoordinates map out the center of

an actual circle in the image (Fig.3.9).

i Hough Array Radius= 52 M= i Hough Array Radius= 73 M= E
400 400
Joo 3Joo

200 200

100 100

200 200

Fig. 3.10. Accumulator array for two different radies (from Rhody, 2005).

Prominent peaks correspond to circle centers (Ri)3It is understood that if the search
radius changes the distribution of peaks will valso. It is possible that spurious centers
appear, resulting in phantom instances-they caremmeved by matching to actual image.

Hough become evident.

Hough circle transform requires some amount of Enpige-processing so that the circle
edges mark out. The profile curvature is typicaiyculated to reveal the edges. Then a
threshold is set to the gradient magnitude so asioert the grey-scale image into black
and white (binary image). A step including morplypdal opening and skeletonization of

the image is usually interposed. In that way oohe§round pixels with high gradient are
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designated for casting votes. Basic steps of thd @igorithm are illustrated in the

following flow chart (Fig.3.11).

Fig.3.11. Flow chart of the CHT algorithm in simptem
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3.2. Blob detection through the scale-space theergpective

In computer vision research, blobs refer to regimnan image whose brightness differ
from their surroundings (Lindegerg, 1993, 1998; dldiczyk and Schmid, 2004).
Contrary to the edge detection methods, blob deteeixtracts information from regions
in an image that cannot be obtained from edge ttete€f. CHT). There are several
definitions of blob (Kaspers, 2011). In the caseDdfM-processing a blob may be
described by the definition of Lindeberg (1993, 8P%ccording to which a blob
corresponds to a region associated with a localesxtm, either a maximum or a
minimum (e.g. a bright blob on a darker surroundarga dark blob on a brighter

surrounding).

Blobs are detected by employing operators thatctiehee gradient fluctuations on an
image. If the image is viewed as a function defibgdhree variablef(x,y,z)wherex,y
the coordinates and the image intensity, then the gradient is a vede&fined by the

partial derivatives of:

Of (x,y,2) = <—(Xy2) (xyz) (XyZ)> Eq. 2.

Recognition of geological patterns often involvebraad spectrum of instabilities and
deformations under variable scales of observat®tnuctural stability is essential for
perceiving and classifying objects (Bayer, 1985). dontrast to the mathematical

perception where lines and points remain stablallagcales of observation, in natural
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world, objects manifest themselves in different svayhich depend on the observation
scale, a fact with significant consequences to aregd signal processing with automatic

techniques.

Blob detection procedures are amenable to the l&dcscale-space theoryWitkin,
1983; Koenderink, 1984; Lindeberg, 1993, 1998),chlgonstitutes a set of axioms for
the representation of signals and images at melspales in a manner that would allow
to comprehend the structure of the image (or thead) "at all levels of resolution and
link images at successive scales. The scale atwdhimaximum over scales is attained
will be assumed to give information about how laagelob i$ (Kaspers, 2011)n scale-
space theory (SST) the representation of an inh@g@ corresponds to a one-parameter
family of derived (smoothed) images¢x,y,!), defined by the convolution of(x,y) by the

Gaussian filter:

—(x?+y?)/2t

1
g(x, y;t) = Ee Eq.3.

where the parametée O corresponds to the scale parameter, i.e. theessiee levels of
scaling, and is equal to the standard deviatiothef Gaussian kerneb?). Fort = 0,
L(x,y,d =f(x,y) and ad increased. corresponds to a progressively smoothed versidn of

Overall, this method aims at suppressing fineruexaind it is supposed that structures of

width S\/f have been smoothed out at sc¢ale

Smoothing should be carried out in such a wayctbatolution does not induce spurious

structures as the scale coarsens. SST claims libaGaussian kernel is the approved
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means of producing a linear scale-space. SST postutheopological stabilityof the
objects, also known asructural stability(Bayer, 1985), meaning that the pattern should
remain practically unchanged under disturbancessmiay be induced by varying scales
of observation (Lindeberg, 1993, 1998). SST is eomed with constraining the range of
scales at which objects appear structurally stdidéore further processing. This
gualitative information is obtained through a tyfeepresentation known gsale-space

primal sketchLindeberg, 1993, 1998).

In the absence of any prior knowledge of the obje@ST advances that image
processing will deliver significant structures Xeeuted in a bottom-up fashion so that
image structures can be detected in a reprodueialg from low-level analysis to

abstraction, irrespective of transformations thatmccur such as rotation, deformation
and scaling (Grauman and Leibe, 2011). Therefdrignea scales only tiny blobs or blob-
like noise will be detected. Successive coarsepinthe scale through pixel merging
achieved by convolutions with the Gaussian kernél pvogressively suppresses the
subtle structures leading to the detection of nmegfal objects, as local extrema, that

emerge as simplifications of the original objetisideberg, 1993, 1998; Kaspers, 2011).

There are two common approaches to blob detectiom,Laplacian of Gaussian
(Mikolajczyk and Schmid, 2001) and thH2eterminant of HessiariLindeberg, 1998)
operator. Both aim at detecting either convex aicawe structures in an image. Because
of the apparent resemblance between the graplapatsentation of the Determinant of

Hessian DoH) and the crater geometry (impact craters rese@blenverted Gaussian-
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like depressions) it is thBoH operator that is here tested on the DTM from therdM

Global Surveyor.

The Determinant of Hessiagearches the image for locations that display s#en
derivatives in orthogonal directions (Grauman aeibe, 2011). The detector calculates
the second-order derivatives of the scalar-valdadction” of the imageat a pixel X =
(x,y) and at scale which can be represented by the commonly-namessianmatrix
(Eq.4),

L (X,0) L, (X,0)

H(X,0)= L,(X,0) L,(X,0) Eq.4

where Ly (X, o) is the convolution of the Gaussian second orderivakére

0% f

F* g(o) and so forth. Then the method searches for pixairevthe determinant &f
X

(Eq.5), simply known as thdessian is maximized (Grauman and Leibe, 2011; Bay et

al., 2008):

detH) =L,L, -L%  Eq5

Fig.3.12. presents a simplified version of a bl@bedtion algorithm according to Ming

and Ma (2007).
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Fig.3.12. Simplified algorithm for blob detectioRor a detailed explanation of the
parameters see Ming and Ma (2007).
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4. Sour ce data and photointepr etation

If seen from south to north, the generalized tarmaap of Mars demonstrates an abrupt
decrease in the frequency and the size of the itguaters in flat areaplanitia) around
the North Pole (Fig.4.1). Relatively smooth aras® occur in the western extremes of

the western hemisphere for geological reasondithaeyond the scopes of this study.

m'E Fdd e wE (233 we
W W W [ I W W T

HELLAS

PLANITIA

Fig.4.1. Excerpt from the MOLA terrain map of Mamntered on the equator and the
prime meridian. Red rectangular marks out the stadya. (a NASA image modified by
Jim Secosky http://planetarynames.wr.usgs.gov/isiag#a_regional_boundaries.pdf).

For this reason, the selection of the study windowe crater-perforated region of Mars

was more or less arbitrary, and is shown in Fig. 4l study area captures a segment of
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the equatorial area of Mars bound between latitud®snd -30° and longitudes 30° and
60°. According to the USGS Astrogeology Research ogiRam
(http://astrogeology.usgs.gov/) this window maimigptures the northern parts of the

Sinus Sabaeuguadrangle (Fig.4.1).
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Fig.4.2. Map showing the broader study area on Marsl two excerpts (A, B) submitted
for CHT and DoH analysis respectively. Image frorar81Orbiter Camera (MOC) of
Mars Global Surveyor (source: USGS Planetary GI® \Berver).

The Planetary GIS Web Server of thaited States Geological Survey (USGS) makes
available a GIS-ready digital terrain model (DTM)tbhe Martian surface, released by
NASA Goddard Flight Center. The DTM used here weguaed by the Mars Orbiter

Laser Altimeter (MOLA) of the Mars Global Survey(WGS) robotic spacecraft at a

resolution of ~ 463 m/pixel (observed topographyhimi a 0.00781 x 0.00781 degree
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window). In addition to the narrow-angle cameragmdFig. 4.2), the DTM (Fig. 4.3.)

portrays the qualitative characteristics of the Marimpact craters in the study area.
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Fig.4.3. The digital terrain model (DTM) of the dyuarea.

Impact craters are perceived as negative topografgatures in relation to their
immediate neighborhood. Contrary to concavitieddiffierent origin, such as tectonic
grabens (chasmata) or erosional channels, impatgrsrare enclosed by almost perfectly
circular edges. But how do we define crater eddes®iforms are perceived through
relief undulations. From the outside inwards, thefie of an impact crater is
morphologically expressed by a ridge (resultingrfrthe buckling of the lithosphere
during collision) that sharply goes over a low-lyiflat area. Because the blurry DTM

raster image cannot be readily read as is, théutitions of the gradient of the DTM (i.e.
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Fig.4.4. The gradient of the DTM. (1) crater whasecular edge has been eroded
acquiring a jigsaw-like shape. (2) crater nestingdrater, (3) overlapping craters, (4)
combination of (1), (2) and (3).

the partial derivative of the relief function) chighlight crater ridges as embossed lines
(edges) on a low intensity background (Fig. 4.4)péact craters range in diameter from

~450 km to as less as 1 km or even lesser. Theimpger often seems to be partially

eroded by the former Martian hydrological cycle @dews-Hanna et al., 2007).

Martian impact craters do not exist in isolationt hbey have been influenced by
moderators involving the Martian weather and subeatj meteor showers. As such,
crater morphology on Mars is diverse. Aeolian dogiél processes (Barlow, 2016) may
distort the original perimeter of the craters fragarly circular to jigsaw-like edges, as in

the case of the prominent crater in the bottomtrighrner of Fig. 4.4 (1). In addition,
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ongoing bombardment may produce overlapping cratesibiting complex

configurations: from "matryoshka doll"-like struc#s, where craters are completely
nested in larger craters (2 in Fig.4.4), to intekkd rings (3 in Fig.4.4), or a combination
of the two (4 in Fig.4.4). Therefore, the appam@rhplexity of crater shapes encountered

on Mars poses a challenge to the methodologiesamgplhere.

NW-SE Topographic Profile in Area A

3,000
D 000 A e e )
R 0]t el el e e e el el gt B St o bt et o T Tt A 0

WEO e ey A

o 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450000 500,000 550,000 600,000 650,000 700,000
Distance (m)

Prafile Graph Subtitie

Fig.4.5 Topography profile of test area A in a NW-S8irection. Topography is
characterized by sinusoidal fluctuations while #és an overall increase of the intensity
towards the SE.
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Fig.4.6. Topography profile of test area B in a \WiEection, drawn across the middle of

Despite the recurrent morphological pattern intbedzontal sense, Martian topography
is anything but monotonous when seen three-dimealjo Figures 4.5 and 4.6 illustrate
two topographic profiles corresponding to the ddsliees in sections A and B
respectively (in Fig.4.3) and reveal that meteatens may crop up at diverse landscapes
from tilted sinusoid-like (Fig.4.5) to remarkablyatf areas (4.6). Even though the
topographic fluctuations should not affect the hedraof CHT, which basically draws

votes from a 2D landscape, they might however affeeperformance of DoH that relies
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on the topographic gradient. CHT and DoH was teatginst two distinctive landscape
settings designated as A and B in Fig.4.2 in otdexompare their performance for both

oscillating (A) and plane (B) topographies.
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5. Results

5.1. Circular Hough Transform

Before applying CHT to image excerpt "A" it is nssary that all feature edges be
reduced to single-pixel wide curves (Kim et al.020Stepinski et al., 2006; Bue and
Stepinski, 2007). First, a Gaussian kernel 981} was convolved with the image to

reduce the noise.

Profile curvature

YD

o Oh

\gf’*- i SR  Binary image

- Thinned image

Fig.5.1. Intermediate processing steps of the MariDTM leading to a derived image
ready for CHT. Top left: profile curvature, top hg binary image, bottom left dilated
image, bottom right: thinning of the eroded imadger dilation.

Then the profile curvature was calculated as arcatdr of the crater edges. The profile

curvature image underwent specific preprocessimgpsstas suggested by (Bue and

Stepinsky, 2007) which included 1) thresholdingcteate a binary image, 2) a single
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morphological closing (dilation and erosion usirgB3structural elements), and finally

thinning using 3x3 structural elements (Bue angigsky, 2007).

Image thresholding is used as a preliminary fornmage segmentation. In its simplest
form thresholding replaces each pixel in the imédgea white pixel, if the pixel's
intensity is greater that the threshold or by alblaixel, if the intensity value assigned to

that pixel is lower than the threshold.

Morphological closing involves dilation of the im@adpy a structural element, and then
erosion of the image by the same element. Dilations at expanding (dilating) the
boundaries of objects (white pixels) in the binamage by filling (fully or partially) the

small voids appearing between the image objectenTRrosion is the mathematically
inverse procedure and involves convolution withtauctural element such that the
resulting objects in the image appear contracteatplblogical closing thus achieves to
fill gaps in imperfect objects while maintainingeth contracted. Thinning, on the other
hand, is a morphological operator marking out dbgeiges by reducing all linear features
to single-pixel thick lines. Tools embedded in coencml geographic information

systems (ArcGIS) offer the options for automatidcakation of the above-mentioned

image products.

Fig.5.1. illustrates the intermediate image proecgssteps leading to the thinned image

ready for CHT analysis. CHT was performed on thendéd image utilizing the
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CircularHough_Grdalgorithm written for Matlab. The algorithm's paraters read as

follows:

[accum, cirrad] = CircularHough_Grd(img, radrange)

where i) accumcreates the accumulator array to receive votew fitee CHT, and it
should have the same dimensions as the imaggira)d creates a column vector with a
one-to-one correspondence to the outpngen iii) img is the image to be processed, iv)

radrangeis the minimum and maximum radii of the circledtsearched.

Having inserted a range of radiafiragne between [2,40CircularHough_Grdreturned
the accumulation matrix (Fig. 5.2) and the deteciedes (Fig. 5.3b). The range of radii
was selected in such a way that it captures ath@fpotential crater sizes appearing in the
image. However, as seen from Fig.5.2a, the 2D aagfation array is noisy, and the
neighborhoods of candidate crater centers are baoadoverlapping, marked by the
continuous bright green coloring. This sort of disttion yields a similarly noisy 3D
accumulation array with poor signal-to-noise rasigoontrary to prominent peaks in the
paradigms in Fig.3.10 that where they can be agtamtiwith circle centers confidently).
CircularHough_Grd therefore, allocates candidate centers in imagasahat are hardly
relevant to crater centers (Fig. 5.3b). This obsigwowes to the noisy character of the
pre-processed image (Fig. 5.3a). The procedure nepsated on area B which is

characterized by a flatter topography.
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Accumulation Array from Circular Hough Transfarm
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Fig.5.2. a) Accumulation matrix, provided as raster area A Casting of votes appears
to be spread across the accumulation matrix ratttean explicitly focalized. b) 3D
representation of the accumulation matrix. Noteahsence of prominent peaks.
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Fig.5.3. Area A: a) derived image after morpholagiclosing and thining of the
curvature of the Martian DTM. b) Candidate centéed crosses) and circle perimeters
generated by the CircularHough_Grd algorithm.
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Accumulation Array from Circular Hough Transform
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Fig.5.4. a) Accumulation matrix provided as raster area B. b) 3D representation of
the accumulation matrix.
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Fig.5.5. Area b: a) derived image after morphol@jiclosing and thinning of the

curvature of the Martian DTM b) Candidate centengellow crosses) and circle
perimeters generated by the CircularHough_Grd aiton.
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The results of CHT for area B (Fig. 5.4, 5.5) d¢ swore better for area B, implying that

subdued topographic oscillations do not necessianipyove the performance of CHT.

5.2. Blob detection

For the detection of impact craters as blobs, shigly takes advantage of the
blob_doh algorithm available from thecikit-image library for image processing in
Python programming language. The algorithm defites center of a blob where the
Hessian is maximized, and then delivers they) (coordinates and the standard deviation
of the Gaussian kernels convolved with the Hessiatrix. The radii of the blobs are
approximately equal to the standard deviation ef @aussian kernel. One shortcoming
of blob_dohis that it cannot detect radii smaller than 3 [sixgide due to the box filters
(Bay et al., 2008) employed in the approximatiomhef Hessian Determinant. The syntax

of blob_dohin pythonis as follows:

blob_doh (image, min_sigma=a, max_sigma=Db, thre$ho)

whereadmageis the image to be analyzedin_sigmaandmax_sigmga and b, scalars)
the minimum and maximum standard deviations of @aissian kernel for detecting
small and large blobs respectively atideshold (c, scalar) is known as thecale

parameterthat defines the smallest scale-space maxima tieteeted.
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Fig. 5.6. a) Test area B (outlined in the DTM pmasel in Fig.14). Red circles
correspond to blobs detected by blob_doh functietection parameters: [80, 3, 0.001]
Small arrows indicate the direction of the intepgitofile. b)Intensity profile of test area
B in a NW-SE direction. Dramatic depressions (C2, €3) correspond to impact
craters.

Generally, it is recommended that blob detectorsrate on grayscale images. Their
performance will be challenged in color imagesthes summation of the derivatives of

the individual channels will eliminate any corréat between the color channels if the
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derivatives trend in opposite directions (Ming avid, 2007). The DTM used here is in

grayscale mode anyway.

Fig. 5.6a corresponds to test area B excerpted thenrbroader DTM image (Fig. 4.2).
Before applying theblob_doh algorithm the image underwent noise reduction by
convolving it with a 9x9 Gaussian kernel. A stamddeviations=1 was chosen as it
lends a greater smoothing effect to the kernel thamaller one. Fig.5.6b illustrates the
representative intensity profile of the image inBAdirection. Generally, the intensity
landscape corresponds to a relatively horizontat@l intermittently perforated by abrupt
depressions that reflect impact craters. Experism@vith a series of combinations of
min_sigma, max_sigmand thresholdreturned optimum results for the triplet [80, 3,
0.001], for whichblob_dohdetected 28 out of 32 craters implying 88% of sascehich

is a remarkably good performance.

The performance oblob_dohwas further challenged by testing it against theran
complex landscape of section "A" (Fig. 4.3), whishcharacterized by sinuous-like
topographic fluctuations on an inclined plane. Frbig. 5.7 it becomes apparent that
blob_dohcaptures a great portion of the craters existmghe image represented by
darker areas (true craters) but also encircleshbiggeas which do not correspond to
craters (false craters). By default, DoH operagarshes for local extrema between 0-255
in the intensity landscape corresponding to eitbpographic maxima or minima. Area B
is typified by topographic minima only and for thisason it is free of circles associated

to convex landforms. However, this is not the clasetest area A where topographical
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hillocks occasionally interpose in the crater-peated landscape. Because of this,

blob_dohwill inevitably encircle both concave (dark bloke)d convex (bright blobs)

landforms; the latter are unwanted.

ik i i
Fig. 5.7. Output of the blob_doh function after gaang the excerpt from the Martian
DTM (test area A). Red circles correspond to bldetected by blob_doh, being either
convex or concave. Detection parameters: [80, GO0}

One way to get rid of false craters is to inserirgansity cut-off in the Python so that
blob_dohis prevented from circling around bright blobs. Bygressively lowering the
cut-off we managed to free the output from falssens only when an intensity value of
80 was reached. Nevertheless, in doingbsah dohcaptures a smaller number of true
craters (29 out of true 60), excluding craters mgping in bright areas (i.e. high
elevations) as seen from Fig. 5.8a. This can lzegétiforwardly explained by recalling

the shape of the profile of the intensity landsc@pg. 5.8b). Insertion of an intensity cut-
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off at value 80 (Y-axis) inevitably leads to th¢ection of almost half of the image area

and exclusion of craters resting at higher elewatio

b) NW-SE intensity profile
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Fig.5.8. a) Blob detection on test area B aftereni;ig an intensity cut-off at 80.
Detection parameters: [80, 3, 0.001]. Blue-shadedaaindicates the portion of image
abolished by inserting the intensity cut-off. Yllarrows indicate the direction of the
intensity profile. Bright-green arrows point at ¢eas nested within larger craters. b)
Intensity profile of test area B in a NW-SE direnti Topography is characterized by
sinusoidal fluctuations while there is an overailtiease in intensity towards the SE.
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Fig.5.9. Blob detection at a greater scale befdedft and after (right) applying the
intensity cut-off at value 80. Detection paramet¢®®, 3, 0.001]. Bright-green arrows
point at craters emplaced within larger craters.

Apart from testing DoH’s sensitivity to diverse tmpaphies, we also test its sensitivity
as to the scale of observation. A closer look at Bi9 reveals that a few craters may
exhibit internal structure, meaning smaller cratdrat were emplaced within larger
craters. At the scale of Fig 58lob_doh treats such craters as uniform structures
eliminating any information for their interior. Fi§.9 (coming central-right sector of Fig.
5.8a) illustrates an excerpt from Fig. 5.8a at rescale. Application dblob_doh(using

the detection parameters and intensity cut-off eals in Fig.5.9) returns blobs that still

maintain their internal structure disclosed.

Analysis goes further by turning the scale of obston on an example involving a
single crater only (Fig. 5.10). At this scale ofsebvation the internal structure of the
crater becomes more explicit revealing smaller it sizable craters for the given
observation scale. Despite the elimination of fdiebs resulting from the brighter
surrounding using an intensity cut-off value of 3Big. 5.10), blob_doh keeps

suppressing the internal structure of the crater.
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Fig. 5.10. Blob detection at the scale of a singlater before (left) and after (right)
applying the intensity cut-off at value 30. Detectparameters: [80, 3, 0.001]. Bright-
green arrows point at craters exhumed
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6. Discussion

Circular Hough Transform was run on the Martian DTand returned a blurry

accumulation matrix, lacking prominent peaks asrgjrcandidates for crater centers
(Fig. 5.2- 5.5). CHT results turned out to be pdaiting to capture a meaningful number
of craters. This deficiency is attributed to 1) thgerfect instantiation of the craters in
the skeletonized image due to natural erosion @fctiater edges, 2) low signal-to-noise
ratios as edges from other irrelevant objects (ekct drainage network and other types
of topographic discontinuities) have permeated theoskeletonized image, casting false

votes in the accumulation matrix.

Investigators on the CHT detection of impact csatéKim et al.,, 2005; Bue and
Stepinksi, 2007) address the deficiency of CHT dtedt impact craters directly from the
skeletonized image. Bue and Stepinski (2007) mahage enhance the detection
capacities of CHT by employing a long-drawn-out gess (which lies beyond the
purposes of this work) deploying algorithms whichgiment the DTM into numerous
small images, each aimed at wrapping one cratastlgxén this way the noisy influence

of other objects lying in the neighborhood of aera waned.

On the other hand, thgdob_dohalgorithm yielded noteworthy success when appticed
sets of craters cropping up on a horizontal plagteyning a success rate of 88%. Among
the detected craters are included craters ofzdksieven the less prominent ones in terms

of contrast. This score is better than that acluidyeCHT.
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Nevertheless, the fact that some craters emplacedyger cratersnay escapeblob_doh
scrutiny may not be perceived as failure for theremt state-of-the-art of computer
vision. For instance, craters exhumed in otherecsawill too go amiss when the image is
“flooded” during the widely applicable watershedgseentation procedure. And
watershed segmentation has been the workhorseagfeiprocessing for 30 years; there

is no need to apologize for it.

In spite of the notable successbtdb_dohin the first example, such high rates of success
are not universal. The performance @bb_dohon a topographically more complex
excerpt of the Martian DTM, demonstrating inclimatiand sinusoidal topographical
variability, scored poorer, yielding a success rafe30%. Sinusoidal topography
necessitated the introduction of an intensity d@tvalue in order to prevent hill-like

blobs from being revealed.

However, introduction of the cut-off will inevitaplbiscard all image “elevations” above
that which, for the case of the DTM excerpt illaséd in Fig.5.8, correspond to a large
portion of the image area. This image informatiah wwevitably be lost, as well as any
craters emplaced in high-lying areas. Such a defay instantly narrows the range of
DTMs suitable for crater detection usibtpb_dohto flat perforated landscapes only.
Despite the loss of information induced by the mmmplex landscap®job_dohscored
more true positives than CHT. This primarily oweghe fact thablob_dohis less prone

to noise than is CHT for the given pre-processealgien Generally, it is more prudent to
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detect more conservatively and fail to spot a featers rather than turn up with many

false responses.
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7. Conclusions and futuredirections

Expectations for the conventional CHT to detecicefhtly meteorite craters on the
Martian digital terrain model are low as long a® throcessed image cannot be
substantially released from noise introduced bypifesence of surrounding features (e.g.
relict drainage network, rims of irregular basins)e Adaptations of CHT that make use
of meticulously pre-processed images including rfragtation of the image into small
icons (Bue and Stepinski, 2007) have been charaeteby a higher rate of success.
Nevertheless, the higher computational cost inwblue such an approach (Bue and
Stepinski, 2007) renders the adapted CHT less ipghdior routine crater detection.
Nevertheless, employment of the anisotropic difnstechnique at the pre-processing
stage might be capable of returning images witldsat noise without weakening much
the objects of interest (Karantzalos, 2004). Amguc diffusion generates a family of
parameterized images with each subsequent imageg ldbie simplification of its
immediate predecessor by solving the diffusion &gnaand convolving a Gaussian

kernel (Perona and Malik, 1990).

On the other handplob_dohsucceeded in capturing the vast majority of theters
cropping up in a flat Martian terrain. The succest® declined when a more complex
terrain was encountered. Stillob_dohgenerated a higher success rate than CHT even if
a complex topography was involved. Despite the siocel need for heuristics (i.e.
selection of an intensity cut-off deliberately)jstthought thablob_dohcan outperform

CHT in routine crater detection because flgb_dohcan cope with the image noise
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better than CHT and (2) image preprocessing reopgngs are least: it can be directly

applied to the DTM or, optionally, after some Gaaissmoothing.

Future work will be dedicated to tackling the sFkal$ caused by the insertion of an
intensity cut-off in landscapes shown overall tapgdic inclination. One way to go
around the problem would be to divide the imag® iapparent windows where the
individual topographies can be practically consedehorizontal, so that the insertion of
an intensity cut-off excludes topographic bulgethaut affecting the delineation of the
craters. Such an improvement would expedite imgaater detection on the rocky

planets and facilitate astronomical research irSithlar System.
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