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Summary 

 

This doctoral thesis describes the development and application of a new computational 

methodology for calculating the rate constants governing the motion of sorbate molecules 

strongly confined within shape-selective nanoporous materials. An umbrella sampling strategy, 

employing repulsive walls to confine the sorbate within specific regions of the pore space or 

within specific orientations, is invoked to extract free energy profiles with respect to the sorbate 

degrees of freedom.  Based on these profiles, it is shown how the multidimensional problem of 

translational diffusion of a sorbate (e.g., benzene) in a flexible nanoporous medium (e.g. in the 

zeolite silicalite-1) can be reduced first to a 6-dimensional problem, then to a 3-dimensional one, 

and finally to a 1-dimensional one. A 3-dimensional free energy distribution is accumulated as a 

function of the sorbate center of mass position and ultimately reduced to a set of 1-dimensional 

profiles for the sorbate center of mass along the pore axes.  From these profiles, the rate 

constants for  jumps executed by the sorbate molecule between sorption sites are calculated using 

Transition State Theory; from the latter rate constants, the low-occupancy self-diffusivity is 

obtained. The advantage of this modified methodology of Curvilinear Umbrella Sampling (CUS) 

in comparison with conventional umbrella sampling, on which it was based, is that it can be 

applied to curvilinear transition paths in addition to straight ones.   

In this thesis, a new method was also invented to obtain the low-occupancy self-diffusivity 

from the rate constants of elementary jumps, in addition to the existing Kinetic Monte Carlo one. 

This new method solves the master equation for a system evolving on a spatially periodic 

network of states.  The network contains 2
λ
 images  of  a ―unit cell‖ of n states, arranged along 

one direction with periodic boundary conditions at the ends.  We  explore the structure of the 

symmetrized (2
λ
n)(2

λ
n)  rate constant matrix for this system and derive a recursive scheme for 

determining its eigenvalues and eigenvectors, and therefore analytically expressing the time-

dependent probabilities of all states in the network, based on diagonalizations of  nn matrices 

formed by consideration of a single unit cell.    We call the new method MESoRReD, for Master 

Equation Solution by Recurive Reduction of Dimensionality.  MESoRReD is applied to the 

problem of low-temperature, low-occupancy diffusion of xenon in the zeolite silicalite-1 using 
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the states, interstate transitions, and transition state theory-based rate constants previously 

derived by R. L. June et al., J. Phys. Chem., 95, 8866 (1991).  MESoRReD yields a diffusion 

tensor for this system which differs by less than 3%  from the values derived previously via 

Kinetic Monte Carlo (KMC) simulations and confirmed by new KMC simulations conducted in 

the present thesis.   The computational requirements of MESoRReD are compared against those 

of KMC, numerical solution of the master equation by the Euler method, and direct molecular 

dynamics simulation.  In the problem of diffusion of xenon in silicalite-1, the new method is 

shown to be faster than these alternative methods by factors of  about  3.510
5
, 1.310

6
, and 

1.710
7
, respectively. The computational savings and ease of setting up calculations afforded by 

the MESoRReD in diagonalizing the rate constant matrix make it attractive as a means of  

predicting medium- and long-time dynamical phenomena in spatially periodic systems from 

atomic-level information.  

Next, the specific computational methodologies we have described are applied for the 

calculation of the self-diffusion coefficients of para-xylene and benzene in silicalite-1 at infinite 

dilution. In addition, the orientational distributions of phenyl rings and methyl stems of para-

xylene and benzene sorbed in the zeolite were studied and the existence of entropic barriers to 

translational motion was checked.  A new reduction method for the states appearing in the free 

energy profiles is presented and used for the calculation of transition rate constants for 

elementary jumps. These results agree with Quasi-Elastic neutron scattering measurements.  A 

major conclusion from simulations is that para-xylene diffuses roughly 100 times faster than 

benzene when sorbed at low occupancy in silicalite.  Benzene encounters strong entropic barriers 

to translational motion at channel intersections, where it can adopt a variety of orientations.  The 

corresponding barriers for para-xylene are much lower, reflecting the inability of its major axis to 

reorient within channel intersections. Finally, the paradox that the heavier and larger molecule 

diffuses faster than the lighter and smaller one inside silicalite-1 is explained for first time.  

 

 

 

 



3 
 

Περίληψη 
 

ηελ παξνύζα δηδαθηνξηθή δηαηξηβή πεξηγξάθεηαη ε αλάπηπμε θαη ε εθαξκνγή κίαο λέαο 

κεζνδνινγίαο γηα ηνλ ππνινγηζκό ησλ ζηαζεξώλ ξπζκνύ πνπ δηέπνπλ ηηο θηλήζεηο ησλ 

ξνθεκέλσλ κνξίσλ κέζα ζε λαλνπνξώδε πιηθά πνπ ιεηηνπξγνύλ σο κνξηαθά θόζθηλα. Η 

κεζνδνινγία απηή,  βαζηζκέλε ζηε κεζνδνινγία ηεο ‗δεηγκαηνιεςίαο νκπξέιιαο‘, εθαξκόδεη 

απσζηηθνύο ηνίρνπο νη νπνίνη πεξηνξίδνπλ ην ξνθεκέλν κόξην ζε ζπγθεθξηκέλεο πεξηνρέο ησλ 

πόξσλ ελόο λαλνπνξώδνπο πιηθνύ θαη βνεζνύλ ζηελ εμαγσγή ησλ πξνθίι ηεο ηνπηθήο 

ειεύζεξεο ελέξγεηαο. Με βάζε απηά ηα πξνθίι, δείρλεηαη πσο ην πνιπδηάζηαην πξόβιεκα 

πξόβιεςεο ηεο κεηαθνξηθήο δηάρπζεο ηνπ ξνθνύκελνπ κνξίνπ κπνξεί λα αλαρζεί πξώηα ζ‘έλα 

6-δηάζηαην, έπεηηα ζε έλα 3-δηάζηαην θαη ηειηθά ζε 1-δηάζηαην πξόβιεκα. Από ηα κνλνδηάζηαηα 

πξνθίι πξνθύπηνπλ, κε ρξήζε ηεο ζεσξίαο κεηαβαηηθώλ θαηαζηάζεσλ, νη ζηαζεξέο ξπζκνύ γηα 

ηηο κεηαβαζεηο ησλ ξνθνύκελσλ κνξίσλ κεηαμύ ησλ ζέζεσλ ξόθεζεο. Έλα πιενλέθηεκα ηεο 

ηξνπνπνηεκέλεο απηήο κεζνδνινγίαο, πνπ νλνκάζηεθε Κακππιόγξακκε Γεηγκαηνιεςία 

Οκπξέιαο ή CUS (Curvilinear Umbrella Sampling) ζε ζρέζε κε ηελ απιή δεηγκαηνιεςία 

νκπξέιαο, είλαη όηη κπνξεί λα εθαξκνζηεί θαη ζε κή επζύγξακκα κνλνπάηηα κεηάβαζεο.   

Από ηηο ζηαζεξέο ξπζκνύ πνπ ππνινγηδνληαη κε ρξήζε ηεο CUS,  ππνινγίδεηαη ν 

ζπληειεζηήο απηoδηάρπζεο κε ρξήζε κίαο επίζεο λέαο κεζνδνινγίαο πνπ εηζάγεηαη ζε απηήλ ηε 

δηαηξηβή. Πην ζπγθεθξηκέλα, εθεπξέζεθε κηα λέα κεζνδνινγία γηα ηνλ ππνινγηζκό ηνπ 

ζπληειεζηή απηνδηάρπζεο από ηηο ζηαζεξέο ξπζκνύ ησλ ζηνηρεησδώλ αικάησλ θαη γεληθά ηελ 

αθξηβή πεξηγξαθή ηεο κεζνζθνπηθήο ζπκπεξηθνξάο ησλ ξνθνύκελσλ κνξίσλ κέζα ζε 

λαλνπνξώδε πιηθά ηόζν γηα κηθξνύο όζν θαη γηα κεγάινπο ρξόλνπο.  Η κεζνδνινγία απηή είλαη 

ελαιιαθηηθή πξνο ηελ θηλεηηθή πξνζνκνίσζε Monte Carlo (kinetic Monte Carlo, KMC) θαη 

εκθαλίδεη ζαθή πιενλεθηήκαηα έλαληη ηεο ηειεπηαίαο. Η λέα κέζνδνο επηιύεη ηελ εμίζσζε 

εμέιημεο (εμίζσζε Master) γηα έλα ζύζηεκα πνπ πξνζιακβάλεη δηαθξηηέο θαηαζηάζεηο πνπ 

εκθαλίδνπλ πεξηνδηθόηεηα ζην ρώξν.  Σν ζεσξνύκελν δίθηπν θαηαζηάζεσλ πεξηέρεη 2
λ
 εηθόλεο 

κηαο κνλαδηαίαο θπςειίδαο n θαηαζηάζεσλ, δηαηεηαγκέλεο θαηά κήθνο κηαο δηεύζπλζεο ηνπ 

ρώξνπ.  ηα άθξα ηνπ δηθηύνπ επηθξαηνύλ πεξηνδηθέο νξηαθέο ζπλζήθεο. Αλαιύζεθε ε δνκή ηνπ 

(2
λ
n)(2

λ
n) ζπκκεηξηθνύ πίλαθα ησλ ζηαζεξώλ ξπζκνύ θαη βξέζεθε έλα αλαδξνκηθό ζρήκα γηα 

ηνλ ππνινγηζκό ησλ ηδηνηηκώλ θαη ησλ ηδηνδηαλπζκάησλ.  Ωο απνηέιεζκα εθθξάζηεθαλ 
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αλαιπηηθά νη πηζαλόηεηεο θαηάιεςεο, ζπλαξηήζεη ηνπ ρξόλνπ, όισλ ησλ θαηαζηάζεσλ πνπ 

κπνξεί λα πξνζιάβεη ην ζύζηεκα μεθηλώληαο από ζπγθεθξηκέλεο αξρηθέο ζπλζήθεο.  Οη 

αλαιπηηθέο απηέο εθθξαζεηο βαζίδνληαη ζηε δηαγσλνπνίεζε nn πηλάθσλ νη νπνίνη 

ζρεκαηίδνληαη από ηηο θαηαζηάζεηο κίαο θαη κόλν κίαο θπςειίδαο.  Απηή ε λέα κέζνδνο, ελ 

νλόκαηη MESoRReD (Master Equation Solution by Rercursive Reduction of Dimensionality)  

εθαξκόζηεθε ζην πξόβιεκα ηεο δηάρπζεο ην Ξέλνπ ζην δεόιηζν ζηιηθαιίηε-1 όηαλ απηό 

βξίζθεηαη ζε ρακειέο ζπγθεληξώζεηο θαη ζε ρακειέο ζεξκνθξαζίεο, ρξεζηκνπνηώληαο ηηο 

ζηαζεξεο ξπζκνύ από ηελ δνπιεηά ησλ June et al., J. Phys. Chem., 95, 8866 (1991). Η κέζνδνο 

MESoRReD καο δίλεη έλα ηαλπζηή δηαρπηόηεηαο γηα ην ζπγθεθξηκέλν ζύζηεκα ν νπνίνο 

δηαθέξεη θαηά ιηγόηεξν από 3% από ηηο ηηκέο πνπ είραλ παξαρζεί ζην παξειζόλ από 

πξνζνκνηώζεηο Κηλεηηθήο Monte Carlo (ΚΜC) αιιά θαη από πξνζνκνηώζεηο ΚΜC πνπ 

δηεμάρζεθαλ ζηα πιαίζηα ηεο παξνύζαο δηδαθηνξηθή δηαηξηβή.   Οη ππνινγηζηηθέο απαηηήζεηο ηεο 

ζπγθεθξηκελεο κεζόδνπ  ζπγθξίλνληαη κε εθείλεο ηεο ΚΜC, θαη ηεο αξηζκεηηθήο επίιπζεο ηεο 

εμίζσζεο Master κε ηελ κεζνδν Euler, θαζώο θαη κε άκεζεο πξνζνκνηώζεηο Μνξηαθήο 

Γπλακηθήο. ην πξόβιεκα ηεο δηάρπζεο ηνπ Ξέλνπ ζην ζηιηθαιίηε-1, ε λέα κέζνδνο είλαη 

γξεγνξόηεξε από απηέο ηηο ελαιιαθηηθέο κεζόδνπο θαηά παξάγνληεο 3.510
5
, 1.310

6
, and 

1.710
7
 αληίζηνηρα. Ο ππνινγηζηηθόο ρξόλνο  πνπ εμνηθνλνκείηαη από ηελ λέα κέζνδν 

MESoRReD ζηε δηαγσλνπνίεζε ηνπ πίλαθα ζηαζεξώλ ξπζκνύ ηελ θαζηζηά ηδηαίηεξα ειθπζηηθή 

σο κέζν πξόβιεςεο δπλακηθώλ θαηλνκέλσλ κεζαίαο αιιά θαη κεγάιεο δηάξθεηαο 

ρξεζηκνπνηώληαο πιεξνθνξίεο βαζηζκέλεο ζην αηνκηθό επίπεδν.  

ηελ ζπλέρεηα, νη ππνινγηζηηθέο κεζνδνινγίεο πνπ πεξηγξάςακε  εθαξκόζηεθαλ γηα ηελ 

πξόβιεςε ηνπ ζπληειεζηή απηνδηάρπζεο ηνπ παξα-μπινιίνπ θαη ηνπ βελδνιίνπ ζην δεόιηζν 

ζηιηθαιίηε-1 όηαλ ηα κόξηα απηά βξίζθνληαη ζε άπεηξε αξαίσζε. Δπηπιένλ κειεηήζεθαλ νη 

θαηαλνκέο πξνζαλαηνιηζκνύ ησλ θαηλπιηθώλ δαθηπιίσλ θαη ησλ κεζπιίσλ ηνπ παξαμπινιίνπ 

θαη ηνπ βελδνιίνπ ξνθεκέλσλ ζην δεόιηζν θαη ειέγρζεθε ε ύπαξμε εληξνπηθώλ θξαγκάησλ ζηε 

κεηαθνξηθή θίλεζε.  Αλαπηύρζεθε κηα λέα κέζνδνο αλαγσγήο ησλ θαηαζηάζεσλ πνπ 

εκθαλίδνληαη ζηα πξνθίι ηεο ηνπηθήο ειεύζεξεο ελέξγεηαο θαη ρξεζηκνπνηήζεθε γηα ηνλ 

ππνινγηζκό ησλ ζηαζεξώλ ξπζκνύ ζηνηρεησδώλ αικάησλ κέζα ζην δεόιηζν. Σα απνηειέζκαηα 

πνπ πξνέθπςαλ γηα ηε δηάρπζε ζπκθσλνύλ κε κεηξήζεηο νηνλεί ειαζηηθήο ζθέδαζεο λεηξνλίσλ. 

Σν θύξην ζπκπέξαζκα από ηηο πξνζνκνηώζεηο είλαη όηη ην παξαμπιόιην δηαρεέηαη πεξίπνπ 100 

θνξέο γξεγνξόηεξα από ην βελδόιην όηαλ θαη ηα δύν είλαη ξνθεκέλα ζε άπεηξε αξαίσζε. Σν 
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βελδόιην ππόθεηηαη ζε ηζρπξά εληξνπηθά θξάγκαηα όηαλ βξίζθεηαη ζηελ πεξηνρή δηαζηαύξσζεο 

ησλ θαλαιηώλ ηνπ ζηιηθαιίηε, όπνπ κπνξεί λα πξνζιακβάλεη πνιινύο πξνζαλαηνιηζκνύο. Σα 

αληίζηνηρα θξάγκαηα γηα ην παξα-μπιόιην είλαη πνιύ ρακειόηεξα, αληηθαηνπηξίδνληαο ηε 

δπζθνιία ηνπ θύξηνπ αμνλά ηνπ λα αλαπξνζαλαηνιηζηεί κέζα ζηηο δηαζηαπξώζεηο ησλ 

θαλαιηώλ.  Δλ ηέιεη εμεγείηαη γηα πξώηε θνξά ην παξάδνμν όηη ην βαξύηεξν θαη κεγαιύηεξν ζε 

κέγεζνο κόξην (παξα-μπιόιην) δηαρέεηαη γξεγνξόηεξα από έλα ειαθξύηεξν θαη κηθξόηεξν 

(βελδόιην) κέζα ζην ζηιηθαιίηε.      
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Chapter 1  

Introduction 

1.1 Silicalite-1: Why is it important and what are its properties   

Zeolites are  microporous aluminosilicates  widely used in the petroleum and 

petrochemical industries as catalysts or storage materials for sorbates such as CO2, CH4, and 

aromatic molecules.
1
 A widely used zeolite is ZSM-5 (acronym for  Zeolite Socony Mobil 5)  

which belongs to the pentasil family of zeolites. ZSM-5 in its purely siliceous form is known as 

silicalite-1.
2,3

 Silicalite-1 is an MFI
1,4

 (Mobil FIve) -type zeolite which consists of SiO2 

tetrahedra and can be found in 3 phases: Mono
5
, Ortho

6
, and Para

7,8
. Ortho and Para are 

orthorhombic, while Mono is  monoclinic.  At low temperatures, silicalite-1 takes its Mono form, 

while at high temperatures it prefers the Ortho.  Para has been observed when there is large 

loading of sorbates in silicalite-1.
9
 Distortion of silicalite-1 by sorbates at  large loadings is 

described extensively in the work of Sartbaeva et al.
10

  At atmospheric pressure, the first-order 

transition from the Mono to the Ortho phase takes place at 300-350K
11,12

 according to most 

experimental studies.  Some experimental measurements show a kind of smooth transition,
13,14 

 

where the α monoclinic angle of the unit cell becomes approximately 90 degrees at 400K. An 

explanation of these transitions has been proposed in terms of the displacement of  SiO2 

tetrahedra, which are considered to  be very rigid according to the rigid unit mode (RUM)
15

 

theory. This displacement of SiO2 tetrahedra explains transitions in a wide range of silicate 

materials.  Tetrahedra have common edges which constrain their degrees of freedom. We can see 

these tetrahedra and the silicalite-1 structure in the Ortho phase in Figure 1.1. 
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Figure 1.1 Silicalite-1 projection on the x-z plane of 223 unit cells in Ortho phase. Oxygens 

are illustrated with red spheres and the tetrahedra which have silicon as their central atom are 

illustrated with yellow color. The blue lines are the limits of one unit cell. 

Silicalite-1 has two kinds of channels, both of diameter approximately 5.5 Å, which are 

called  sinusoidal or zigzag (Z) and straight (S) channels, respectively.  The channel diameter is 

similar with the kinetic diameter of benzene (~6 Å).
16,17

 These channels communicate in areas 

called intersections (I). The network of channels is depicted schematically in Figure 1.2. The 

topology and geometry of this network and the relatively hydrophobic nature of the channel 

walls impart to silicalite-1 its unique molecular sieving properties.  Silicalite-1 can be used in the 

separation of small aromatic molecules with different kinetic diameters such as benzene, toluene 

and the three xylene isomers, known in the petroleum industry as BTX. There are a lot of 

chemicals which are produced from BTX compounds,
18

  such as Nylon-6 from benzene, 

terephtalic acid and polyester fibers from p-xylene, and  phtalic anhydride from o-xylene.  
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Figure 1.2  (a) Schematic of structure of silicalite-1 (MFI). (b) Diffusion unit cell for silicalite-1 

connecting intersection sites (large black dots) via straight and zig–zag channels.  

 

1.2 Controversy among the experimental measurements of diffusion of 

aromatics in silicalite-1 in the literature and the role of past molecular 

simulations 

1.2.1 Controversy among the experimental measurements 

A wide range of experimental measurements have been carried out for the transport of 

BTX molecules in silicalite.  Some controversy still exists concerning the diffusivity of p-xylene. 

Some studies
19-22  

show that the diffusion of p-xylene is of the same order as that of  benzene
23-28  

(actually slightly faster), while others
29-32 

support that p-xylene‘s diffusivity is 2 orders of 

magnitude higher than that of benzene. These experiments have been performed for sorbates at 

infinite dilution in the Ortho
6
 phase of silicalite. Molecular simulations can be used to shed light 

on this controversy. 

1.2.2 Past molecular simulations of the system benzene-silicalite-1 

A wide range of computational studies of benzene in silicalite-1 have been undertaken in 

the past. The first were those of Nowak et al.
33

 and Pickett et al.,
34

 in which some 1-D potential 

energy  profiles along the straight channel are presented. These works managed to convey a first 

idea of the barriers encountered by benzene in its translational motion through silicalite-1. 

However, their accuracy is very limited, as only few points were used and the symmetry rules 
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that should hold along the straight channel for the free energy profile are not satisfied.  Better 

accuracy, but still not sufficient for use in the context of Transition State Theory (TST) to 

calculate diffusion, was provided by the work of Talu.
35

 He approximated benzene free energy 

profiles as minimized potential energies by allowing only specific moves in his Monte Carlo 

simulation, while the force field parameters he invoked do not yield Henry‘s constant values that 

are consistent with experiment, as he mentions.  One should bear in mind that the computational 

tools at the time of these early studies were very modest in comparison to those available 

nowadays. 

 A pioneering TST-based study of benzene diffusion in silicalite-1 was  conducted by Snurr 

et al.
36

  Here, rigid models were considered for both silicalite-1 and benzene.  Local minima of 

the energy were calculated exhaustively in six degrees of freedom (coordinates of the center of 

mass and Euler angles of the benzene molecule).  Saddle points between these minima were 

obtained with Baker‘s
37

 algorithm and transition paths connecting adjacent minima via the saddle 

points were constructed in six-dimensional space.  The possibility was shown of lumping states 

constructed around individual minima into macrostates for the purpose of calculating transition 

rate constants.  The use of six degrees of freedom made an exhaustive calculation of all paths and 

the use of Baker‘s algorithm feasible. The force field parameters invoked were able to predict the 

sorption of benzene in silicalite-1.
38

 The long-time evolution of the system as a succession of 

infrequent transitions was tracked via Kinetic Monte Carlo simulation.  The self-diffusion 

coefficient was underestimated by two order of magnitude (predicted D=1.1 10
-16

m
2
s

-1
 at 300K), 

a fact attributed to the use of a rigid model for silicalite-1. Consequently, an investigation of 

benzene in a flexible silicalite-1 was recommended.  

Forester and Smith
39

 dealt with the problem of computing the diffusivity of benzene in 

silicalite-1 via infrequent event analysis in a flexible silicalite model.  For this purpose they used 

the bluemoon ensemble.
40

  For the first time they showed the large difference in barriers between 

rigid and flexible crystals and the major importance of flexibility of the crystal for tightly fitting 

sorbates. They calculated 1-Dimensional (1-D) free energy profiles for flexible and rigid crystal 

models, but gave rate constants only for the flexible one. To perform these calculations, they 

made some assumptions:  a) their paths were not accurate enough, as there are discontinuities in 

their computed points, while it is not examined if these paths describe the dividing surface well; 
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b) the possible existence of states differentiated by benzene‘s orientation were not studied; c) 

they used an average rate for the intersection to sinusoidal channel transition, instead of two 

different rates that are generally needed; d) they did not invoke the usual Kinetic Monte Carlo
41

 

algorithm to compute self-diffusivities from their rate constants.  More specifically, they 

considered a specific mean timestep for each Monte Carlo move, instead of choosing the 

timestep from an exponential distribution.   Consequently, their results for the diffusivity are one 

order of magnitude off from what would be predicted from their rate constants (D=6.17 10
-13         

m
2
s

-1
) through a more rigorous Kinetic Monte Carlo approach.  The same offset is observed from 

estimates of the diffusivities obtained via the semiempirical relationships of Eq. (1.1) proposed 

by Kärger
42,43

 where a, b, c are the lengths of the silicalite-1 unit cell for x, y, z direction 

respectively and k is the symbol of the rate constant from a transition from one intersection I to 

other intersection I. 
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,I I ,I I
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,  ,   D
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y x
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   Eq. (1.1) 

Here we remind the reader that, for one-dimensional diffusion from a state I to another state I, 

the diffusion coefficient is described by Eq. (1.2). 

2

,I I I Ixx xD k l                                                                                               Eq. (1.2) 

where I Il   is the distance between the two states.  

e) a transmission coefficient was computed along the  y direction in the straight channel and not 

in the direction of their  path at the saddle point; f) they actually constrained the benzene center 

of mass at specific points of a path, while its projection on the path should be constrained 

instead. As a result, the phase space was sampled insufficiently and this was the reason for the 

short duration of their molecular dynamics simulations; the total time was 30 ps with 1.2 fs 

timestep, and 50ps with 12 fs timestep for their flexible and rigid silicalite models, respectively. 

These times were sufficient to sample the phase space of a specific center of mass position, 

however, as already mentioned, the phase space of the center of mass projection should be 

sampled instead and much more time should be needed for this. g) In addition to these 
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assumptions, their flexible and rigid free energy profiles for the sinusoidal channel show 

different minimum positions (differing by 2 Å along the reaction coordinate path); this may be 

attributable to a drift of the crystal because of collisions of the benzene with it. h) In their 

simulations, Forester and Smith
39

 used a flexible model for silicalite-1 described by the force 

field and parameters of Schröder et al.,
44 

 and a rigid benzene. They chose to work with half the 

charges of benzene, because Schröder et al.‘s
44

 zeolite has twice the charges of  Snurr et al.‘s
36

 

rigid ion and rigid lattice model. This trick is admissible for benzene at infinite dilution in 

silicalite-1. However, the force field they used does not keep silicalite atoms around their 

crystallographic positions. This is very important for the prediction of sorption properties if we 

consider the work of Clark and Snurr
45

.  

Another more recent relevant work is that of Rungsirisakun et al.
46

 In this work molecular 

dynamics (MD) simulations of benzene in silicalite-1 were performed. They used for the first 

time a flexible benzene molecule proposed by Sastre et al.
47

 Using these parameters they 

calculated a self diffusivity 

2
10

300

m
2.50 10

s
T KD 
   for a loading of 2 benzenes per unit cell, 

which is 4 orders of magnitude higher than experimental values at infinite dilution.
23-28

 This 

shows that diffusivity is extremely sensitive to the flexibility of benzene.  Judging from 

experimental values, diffusion of benzene in silicalite is too slow to be predicted reliably by 

molecular dynamics.
17

  

Another work that deserves to be mentioned in relation to the calculation of free energy 

profiles is that of Amirjalayer and Schmid,
48

 which studies the mechanism of benzene diffusion 

in MOF-5 via molecular dynamics. This work calculates 3-D and 1-D free energy profiles of 

benzene in MOF for different loadings. However, because benzene diffuses fast in such materials 

(
9

2

300

m
2.00 10

s
T KD 

   ), no special infrequent event technique is needed to study diffusion. 

In those studies, diffusion was calculated from the mean square displacement via the Einstein 

Diffusion Equation.
17

 It is important to note that Transition State Theory is appropriate only if 

the free energy profiles show that diffusion occurs as a succession of infrequent jumps of the 

sorbate in the zeolite.  
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In this thesis we revisit the problem of computing the diffusivity of benzene in a flexible 

silicalite model through infrequent event analysis.  Our work aims at complementing the 

pioneering studies of Snurr et al.
36

 and Forester and Smith.
39

  It differs from Forester and Smith‘s 

work
39

 in the following respects:  (1) It invokes a new methodology, based on umbrella 

sampling, to calculate free energy profiles in the zeolite crystal; (2) it explicitly considers 

orientational degrees of freedom and checks whether transitions between different orientational 

states are fast enough or slow enough to allow consideration of a three-dimensional free energy 

depending only on the center of mass coordinates for the purpose of analyzing elementary jumps 

leading to translational diffusion in the zeolite; (3) Calculations are performed with a different 

flexible model than invoked by Forester and Smith
39

 at three different temperatures and estimates 

for the activation energy and the diffusion prefactor are extracted.   

 

1.2.3 Past molecular simulations of the system para-xylene - silicalite-1 

 

The first computational work on para-xylene in silicalite-1 was that of Pickett et al.
49

 They used a 

rigid silicalite-1 model and they described the pairwise interactions using a Lennard-Jones 

potential without electrostatic interactions. Using this force field they followed an energy 

mimimization procedure to find the potential energy minima of para-xylene (p-xylene) in 

silicalite-1. These minima do not always show us the favorite macrostates p-xylene prefers, as 

entropy effects are also important and must also be considered. Better accuracy, but still not 

sufficient for use in the context of Transition State Theory (TST) to calculate diffusion, was 

provided by the work of Talu.
35

 He approximated p-xylene free energy profiles as minimized 

potential energies by allowing only specific moves in his Monte Carlo simulation, while the 

force field parameters he invoked do not yield Henry‘s constant values that are consistent with 

experiment, as he mentions. As we have pointed out previously, one should bear in mind that the 

computational tools at the time of these early studies were very modest in comparison to those 

available nowadays. Force field parameters that describe well the isosteric heat, Henry‘s constant 

and the isotherm of p-xylene in silicalite-1 were used in the work of Snurr et al.
38,50

  To our 

knowledge, the current thesis is the first time that diffusion of p-xylene in silicalite-1 is studied 

computationally.  This can probably be attributed to the small self-diffusion coefficients of p-
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xylene in silicalte-1
19-22, 29-32

 which makes extremely difficult the use of conventional molecular 

dynamics simulations for their calculations. Transition state theory techniques should be applied 

in conjuction to molecular dynamics simulations.  
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Chapter 2  

A new modified umbrella sampling methodology 

2.1 Why is a new modified umbrella sampling necessary? 

 

As mentioned before, inordinately long computation times would be required in order to 

compute the diffusion coefficient of benzene in silicalite-1 via ―brute force‖ MD simulations.  

Thus, it is necessary to resort to a methodology capable of estimating the rates of infrequent 

transitions in configuration space, through which diffusion occurs.  Forester and Smith
39

 chose to 

work with the bluemoon ensemble.
40,51,52

 Later, it will be shown that it is impossible to use the 

bluemoon ensemble in such a way that all phase space can be sampled and simultaneously 

projected to onto one reaction coordinate if the projection refers to the center of mass of the 

sorbate along curved lines. In this work we invoke another method of constraint dynamics, 

inspired by umbrella sampling.
52,53 

Here, it is important to mention that umbrella sampling is a 

biased dynamics method while bluemoon is a constraint dynamics one.  

There are three reasons why we chose to adopt a new umbrella sampling method. First, we 

choose to bias the system in such a way that the Jacobian matrix of transformation from the 

original Cartesian coordinates of the sorbate center of mass to those invoked in the projection is 

not needed for the calculation of the constraint force.
52

 Even so, 3-dimensional umbrella 

sampling could be used, as it does not require a Jacobian matrix calculation
54

 by default.  For 

example, the Weighted Histogram Analysis method (WHAM)
55,56

 could be used for 3-

dimensional calculations, but it would be  difficult to implement for our 1-dimensional 

calculations.  3-dimensional calculations of the free energy profile with extensive enough 

sampling  to provide estimates of the rate constants of elementary diffusive jumps with 

acceptably low statistical error would be computationally very demanding, however.   

Secondly, conventional umbrella sampling cannot be applied along curved paths. As will 

be discussed extensively later, in case the sorbate‘s center of mass can be projected on more than 

one points along a path, a distance criterion must be used to decide on which point it will 

ultimately be projected. In Figure 2.1, we see the center of mass of a sorbate that it is initially 
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projected on ξ1 and the bias potential energy it experiences is V(ξ1). After elapse of time dt, the 

sorbate‘s center of mass is projected on ξ2 and its bias potential energy is V(μ2). This leads to a 

discontinuity in the bias potential energy and, consequently, the umbrella force is impossible to 

calculate for this case.  This problem does not exist along straight paths, where conventional 

umbrella sampling can be applied correctly. 

Thirdly, from our experience we have seen that, if we choose to use WHAM, we need to 

change the spring constant of the harmonic umbrella sampling force very often if we want to 

sample specific areas with high accuracy.  This is a consequence of the ―ruggedness‖ of the 

atomistic benzene - silicalite-1 potential. 

 

Figure 2.1 Projection of benzene‘s center of mass (CM) on a curvilinear path at two different 

instants  and the bias potential energy it experiences in each case.    

As we mentioned before, the projection definition does not allow using classical umbrella 

sampling along curvilinear paths. This problem does not arise for straight paths. Straight paths 

and classical umbrella sampling have been recently used by Verploegh et al.
57

 and Camp et al. 
58

 

to study the diffusion of hydrocarbon molecules in zeolitic imidazolate frameworks  and light gas 

diffusion in a porous organic cage crystal 3 (CC3), respectively. Curvilinear paths are impossible 

to avoid in some crystals, however, as in the case of silicalite-1, because of its sinusoidal 

channels. In addition, curved paths help us describe well the dimensionality reduction of a multi-
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dimensional dividing surface to a single point along a one-dimensional curved path coordinate 

without losing any information. Such loss of information is common when we use straight paths. 

The calculation of transmission coefficients
59

 (ratios of the number of transitions that actually 

take place divided by the number of transitions that are predicted to take place based on the TST 

approximation) is one way to compensate for this loss, without being able to eliminate it, as can 

be understood from the 2-dimensional free energy profiles of Figure 2.2. Using curvilinear paths 

derived from the 3-dimensional free energy landscape, one can ensure that transmission 

coefficient values depend only on the strength of coupling to the thermostat process of the crystal 

and, as a result, are expected to be near unity for sharply peaked free energy profiles. For this 

reason we have decided to apply the new modified umbrella sampling method we introduce here 

and not the classical umbrella sampling in the present work.  Both classical umbrella sampling 

and our new modified umbrella sampling are biased dynamics methods, while the bluemoon 

ensemble
40,51

 (another method used with transition state theory) is a constraint dynamics one
52

.  

As already mentioned, bluemoon ensemble cannot be used for curved paths with the definition of 

projection we suggest, because it is not possible to calculate the Jacobian determinant it needs.
52

 

As a result, a new modified umbrella sampling method seems to be a one-way road for our 

problem.        

In Figure 2.2 we can see that an area of the channel intersection state can be wrongly 

attributed to the sinusoidal channel state. This cannot be corrected by transmission coefficients if 

the one-dimensional projection includes areas away from the 3-D saddle point, such as the one 

shown in Figure 2.2. As a result, transmission coefficients from right to left will be different 

from transmission coefficients from left to right. Equality of the latter transmission coefficients 

can also be used as a check for the correctness of the path. 
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Figure 2.2 2-Dimensional cross-section (at plane y=14.94Å) of the 3-D Free Energy Profile of 

benzene in sinusoidal channel of silicalite-1 (we will explain later extensively the way it is 

derived). The colorbar is in -RT units and the temperature is 300K. The dashed black line traces 

a possible straight path. Blue and red boxes outline areas of the dividing surface as determined 

based on the dashed black line path. The orange box includes a part of the area of the intersection 

(I) which is projected to the Z state (see sections 3.4 and 4.6 later) based on the dashed black line 

path. The black box outlined the dividing surface around the second saddle point for the straight 

black line path.  Blue and green lines will be examined as alternative reaction paths. 

 

2.2 Description of a new modified umbrella sampling methodology 

 

  To adjust constraint dynamics to our problem, we have added some initial steps before 

invoking the 1-Dimensional (1-D) umbrella sampling technique, as explained  in detail in Figure 

2.3.  
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Figure 2.3 Algorithm designed to find the diffusion of benzene in silicalite-1. With red color is 

the route we follow in this work.   

 

The first steps of this algorithm are extremely important before applying 1-D umbrella 

sampling. The estimated diffusion coefficient is sensitive to the choices made in these steps (see 

below).  If these steps are not performed correctly, the diffusivity will be overestimated. The 

algorithm of Figure 2.3 is generally applicable to any sorbate, rigid or flexible, and to any 

nanoporous material, whether it is considered rigid or not.   When a rigid sorbent model is 

considered, a separate thermostat for the sorbate is essential.  In the following we examine each 

step of the algorithm of Figure 2.3 separately.  

The algorithm primarily aims at calculating the diffusivity, which first demands the 

calculation of rate constants for all jumps that control diffusive progress of the sorbate. The rate 

constant for moving from state  i  to a neighboring state j is defined in Eq. (2.1) and calculated by 

Eq. (2.2).
36

  It is actually the conditional probability per unit time that a move from state  i to 

state j will occur, provided the system starts off in state i.  In the first order phenomenological 

law expressed by Eq. (2.1), i jP is the probability of observing a transition from state i to state j 

within time t and iP  is the probability of occupancy of state i.  If the conditions of time scale 
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separation are valid which make the transition from i to j an infrequent event, 
i jk 

 is practically 

a constant, independent of time.  An analogous expression is valid for the inverse transition, from 

state j to state i.  In our case, r is the vector of coordinates specifying  the configuration of the 

zeolite plus sorbate system, N is the dimensionality of that vector, and q is the vector of mass-

reduced coordinates (qi=mi
1/2

 ri for every atom i). Eq. (2.2) requires the calculation of 

configurational integrals, or free energies, over a (N-1)-dimensional bottleneck (hyper)surface 

separating states i and j in configuration space,  and also over the origin state i.  It is obvious that 

the free energy profile must be calculated along the considered path leading from state i to state j.  

If we are able to define an appropriate 1-dimensional transition path spanned by a reaction 

coordinate leading from state i to state j and compute a free energy profile with respect to that 

reaction coordinate, the rate constant will be proportional to the ratio of the Boltzmann factor of 

the free energy at the barrier between i and j divided by the integral of the Boltzmann factor of 

the free energy over the origin state i.   
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In this thesis, Eq. (2.2) is implemented by taking the following steps: 

2.2.1 Step (1)- Finding initial estimates of the transition paths  

 

 

Figure 2.4 Unit cell of silicalite-1 viewed along the x (left) and along the y (right) 

crystallographic axes. Silicalite-1 atoms are represented in blue color. Red outline shows the 

asymmetric cell, from which the unit cell is constructed using symmetry rules. Paths obtained by 

for the repulsive sphere method are illustrated with green color.  Minima of the energy felt by the 

soft spherical probe are shown in orange and saddle points in purple. 

 

Nanoporous materials have channels. We will use paths constructed in the three-

dimensional void space of these pores and channels as initial estimates of the transition paths 

required for application of Eq. (2.2).  As initial path we define a line in 3-D space which satisfies 

the following properties: i) it lies entirely inside the pores (i.e., in the free volume of the 

material);  ii) it is continuous and its tangent unit vector is continuous; iii) it does not intersect 

itself; iv) it satisfies the periodic boundary conditions of the crystal. One way to form an initial 

path
60

  is to place a soft repulsive sphere of size commensurate with the pore diameter in the pore 

space, determine all local energy minima for that sphere in a rigid model of the medium, locate 

first order saddle points between the minima, e.g. by application of Baker‘s
37

 algorithm in the 
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three translational degrees of freedom of the sphere, and trace reaction paths connecting the 

minima via the saddle points based on Fukui‘s intrinsic reaction coordinate approach.
61

 This 

method is designed to be used in the general case of nanoporous sorbent-sorbate systems where 

paths are not geometrically obvious. A good example of such a system is the xenon-silicalite-1 

system
62

, where direct channel-to-channel transitions that circumvent the channel intersection are 

encountered. For the system of benzene/p-xylene in silicalite-1 that we examine here, the 

channels are obvious and a more straightforward, empirical method could be used for the 

identification of paths, such as tracing a smooth line through a set of points chosen by visual 

inspection of the intracrystalline pore system.  In this thesis we have used the soft repulsive 

sphere approach of Maginn et al
60

 described by the repulsive term of the Lennard-Jones potential 

with A=1398858.3kJ mol
-1

 Å
12

, to locate initial transition paths in 3-D space, as we can see in 

Figure 2.4. Note that, if all subsequent calculations are conducted correctly, the exact choice of 

the initial transition path does not influence the final value of the diffusivity that we calculate 

later; it may affect the efficiency of computing 3-D free energy profiles, as we will see later in 

Step (2). For the straight channel we also worked with a different path than was obtained by 

Maginn et al.‘s repulsive sphere approach.  This alternative path was a straight line consisting of 

points with coordinates  (x=10.00 Å, y=y,  z=0.0), where y is the only variable that can change 

values.   

 

2.2.2 Step (2)- Introduction of soft repulsive walls and calculation of 3-D free energy 

profiles along the initial paths  

 

Initial transition paths are defined so that we can move the sorbate (in our case a single 

sorbate in the periodic simulation box consisting of 333 unit cells) in areas that it rarely visits. 

Our strategy is to drag the sorbate to any region we choose to examine within the void 

space of the nanoporous medium using pairs of soft repulsive walls.  A repulsive wall will be 

represented by a pair of planes, Plane 1 and Plane 2, a distance R2 apart,  Plane 1 being normal to 

the transition path and proximal to the sorbate molecule (see Figure 2.5). In  Figure 2.6 we see 

that only with a wall that is perpendicular to the path can one be sure about the intervals along 

the path in which the sorbate is not influenced by the walls. Of course this remains a problem in 
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very curved paths. We can deal with these problems by adjusting the distance between the two 

walls. We will elaborate on this later.  

 The wall generates a potential Vw
(r) that depends on the  distance r between the sorbate 

center of mass and Plane 2.  Vw
(r) is harshly repulsive in the vicinity of Plane 2 and drops to zero 

on Plane 1, where its first and second derivatives are also zero.  It has the form of a Lennard-

Jones potential for 0 < r < R1  and a quintic spline for R1 < r < R2. V
w
(r), its first and second 

derivatives are continuous.  The wall potential is given by the following expression, first 

proposed in Ref. 63.  
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where we have used the abbreviations 
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Eq. (2.4) 

The parameter values 
w =2.5 Å, 

w =0.5975 kcal/mol = 2.510
2
 amu Å

2
/ps

2
, 

1 w/R  = 0.60, 

2 w/R  =0.80 were used in all calculations reported here.  
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Figure 2.5 Walls along a path. Green line shows the path, blue boxes are the walls 

 

Figure 2.6 Projection of benzene‘s center of mass (CM) on a path which is  not  normal to the 

wall. 

The two wall potentials Vw
(r) are introduced on either side of the penetrant in integrating the 

equations of motion of the penetrant plus flexible nanoporous medium.  In this way, the 

penetrant‘s center of mass is confined to reside in a region of the intracrystalline void space  

corresponding to a specific region around a chosen transition path and bounded by the two walls 

and the internal surface of the nanoporous medium.  This confinement is graphically depicted in 

Figure 2.7.  The walls exert a force on the sorbate‘s center of mass only, which is added to the 

force exerted by the crystal on the sorbate. However, the torques and the orientations of the 

sorbate are not influenced by the walls.  Here we remind the reader that the Verlet leapfrog 

algorithm we invoke uses only torques and forces exerted on the sorbate center of mass. The 
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force of the walls is exerted on the sorbate‘s center of mass. As a result, it treats the sorbate as a 

pointwise 1-dimensional object.  From Newton‘s law, the velocity change due to the wall force 

will be 

w

CM dt
m

 
F

v
                                                                                          Eq. (2.5)

 

This change of the velocity of the center of mass is added to the velocity vector of each atom of 

the sorbate.  In other words,  

,unconstrained CMi i  v v v
                                                                       Eq. (2.6) 

 

  From Figure 2.7 the reader can appreciate that the wall potential is very steep and that 

most of the path interval considered is free of interactions with the walls.  The way walls work in 

MD simulation can be seen in Video 1 provided with this thesis.
 

 

We stress the need for the proximal wall to be normal to the transition path considered 

(Figure 2.6). If this condition is not fulfilled, the void space cannot be projected uniquely onto 

the path.  Transition paths are stored as sequences of points (xi, yi, zi) in 3-D space.  The tangent 

vector to the path at point (xi, yi, zi) is approximated as i/i= i/|i| with 

i=(
1 1 1,  ,  i i i i i ix x y y z z     ).  This is a good approximation, given that the distance between 

adjacent stored points along the path is only i=0.05 Å.  To confine the penetrant in the interval 

between two points, ro.p.1 and ro.p.2 , on the transition path, we erect the proximal wall planes 

(Planes 1) at ro.p.1 and ro.p.2  with normal vectors i1 and i2, respectively.   We then construct the 

distal planes (Planes 2) with the same normal vectors, at positions  

1
n.p.1 o.p.1 2

1

2
n.p.2 o.p.2 2

2

    (wall 1)

   (wall 2)

R
i

R
i

  

  

i
r r

i
r r

     Eq. (2.7) 

The procedure is explained pictorially in Figure 2.8. This methodology is not constrained by the 

rigidity or the flexibility of the sorbate.  
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Figure 2.7 Silicalite-1 unit cell with soft repulsive walls added to confine the benzene penetrant.   

The walls are shown as blue boxes. Oxygen and silicon atoms are illustrated in red and yellow, 

respectively.  The transition path along which the benzene is moved, in this case a straight line 

directed along a straight channel axis of silicalite-1, is shown in green. The potential energy Vw
 

exerted on  benzene center of mass by each of the two walls is shown in the inset.   

 

 

Figure 2.8 Construction of the walls.  
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If we assume that the diffusive progress of the sorbate is not associated with structural 

transitions of the sorbent framework and that the characteristic times of vibrational motion of the  

framework are short in comparison to the waiting times spent by the sorbate in a sorption state, 

as has been shown by neutron experiments for benzene,
64

 the reaction coordinate for infrequent 

jumps between sorption states will be dominated by the 6 degrees of freedom (three translational 

and three orientational) of the sorbate.  If, in addition, we assume that the orientational relaxation 

time of the sorbate while it is confined in a state is much shorter than the waiting time in the 

state, the dimensionality of the problem can be reduced further; the reaction coordinate can be 

considered to be dominated by the three translational degrees of freedom of the sorbate center of 

mass.  We will return to the problem of assessing the role of orientational degrees of freedom in 

Step 4.  For the time being we will assume that the translational degrees of freedom of the 

sorbate center of mass dominate the reaction coordinate.  Under these conditions, the rate 

constants of transitions between sorption states described by the multidimensional expression, 

Eq. (2.2), will be expressible in terms of a local free energy field depending on the center of mass 

coordinates, rCM:  
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where CM( )f r  is a known function which yields the center of mass position vector given the 

vector r of all configurational degrees of freedom of the system and V ( )r  is the system‘s total 

potential energy, also appearing in Eq. (2.2).  In the second line of Eq. (2.8),
65

  the local free 

energy CM( )A r  is expressed in terms of the equilibrium probability density CM( )n r  of the sorbate 

center of mass.   The presence of free energy barriers in CM( )A r  that are high relative to kBT  

precludes a direct calculation of CM( )n r  by ―brute-force‖ MD simulation.  This is why the idea of 

umbrella sampling using artificial wall potentials V
w

 (compare Eqs. (2.3), (2.4)) was introduced.  
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We will use the constraining walls in order to accumulate density profiles CM( )n r  within small 

regions of the 3-D space spanned by CMr .  Within such a small region, V ( )r  will not vary 

dramatically; thus, a reasonable estimate of the equilibrium distribution CM( )n r will be obtained.  

Hence, the local free energy CM( )A r  in the region can be extracted via Eq. (2.8), up to an additive 

constant.  Near the edges of the region this estimate will be affected by the artificial wall 

potentials imposed in order to confine the system in the region.  In a broad central part of the 

region, however, these potentials are zero  and the accumulated CM( )A r  will be representative of 

the original, wall-free system. If the calculation of CM( )A r  is undertaken in overlapping small 

regions and artifactual results for the edges of the regions are discarded,  the remaining profiles 

for CM( )A r  at the central intervals of the regions can be stitched together by translation into a 

global three-dimensional free energy field.  Once CM( )A r  is available in 3-D, rate constants for 

infrequent transitions between sorption sites, surrounding local minima of CM( )A r , can be 

computed via a three-dimensional analog of Eq. (2.9): 
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with m being the mass of the sorbate molecule.  

 

The density distribution n(rCM) was accumulated on a cubic grid with edge length 0.1 Å.  

The procedure we have devised for stitching together local free energy profiles derived from MD 

simulations within regions delimited by the wall potentials is outlined in Figure 2.9.  In this 

Figure, for the overlapping points i of green and red fragments it is valid 

that ,1 ,2ln( ) ln( () ))( i st i nd cn n      where n is the value of the histogram accumulating the 

density along the reaction coordinate,  1
st
 denotes the green and  2

nd
 the red fragment. These 

fragments are stitched using a constant c, which is estimated as the average value of the 

difference between the overlapping parts of the red and green fragments.  More specifically, with 

Nd being the number of points for which overlap occurs,   
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 Eq. (2.10) 

This is a consequence of applying a least squares method with known slope to match the  two 

fragments. After the calculation of c, we move the red fragment by c.  It is possible that the 

points of fragments accumulated with small accuracy (=not statistically equilibrated) may not be 

stitched perfectly. If they diverge a lot,  these points are omitted. This can happen if the distance 

between the two walls is large for points where the slope of the free energy profile is large.  After 

stitching, a new red fragment is created which contains the old red fragment plus the points of 

the green fragment that are not overlapping.  The same procedure is repeated by stitching a new 

green fragment, with the red fragment growing in extent until all green fragments are exhausted. 

The fact that the periodicity and the symmetries imposed by the crystal structure on the free 

energy profile are satisfied to an excellent approximation and that deviations between 

corresponding points of the stitched fragments are very small constitutes a proof of good 

stitching.  

In our problem, 3-D free energy profiles are very helpful in understanding where minima of 

the free energy CM( )A r  (sorption sites) are and where saddle points and dividing surfaces between 

these minima are located.  The location of saddle points and dividing surfaces is most critical for 

the calculation of diffusivity. As stated by Smit and Maesen,
66

  although a transmission 

coefficient can be used to correct an unfortunate choice of reaction coordinate, if the 

transmission coefficient is very small, it is expensive to compute it accurately.  

 This is why we proceed to refine our one-dimensional transition paths based on the 

information we have accumulated concerning CM( )A r .   
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Figure 2.9  Procedure used to stitch together local free energy profiles over successive 

overlapping regions along a transition path.  The optimal vertical displacement of the green 

profile in order to link it with the red profile is determined via a least squares method.  Next, 

from the common part of red and green fragment, we keep only the red one.  The joint fragment 

is now made all red and the same process is repeated.   

 

2.2.3 Step (3)- Refining transition paths                

 

Knowing the 3-D free energy profile helps us choose a better transition path for tracking 

the translational progress of the sorbate center of mass between two states. The first criterion that 

this new path must satisfy is that all points of the dividing surface and only these points must be 

projected on the point of maximal free energy along the path. The second criterion is that the 

path should work as a ―rail‖ for the walls and  statistically enrich  the area the sorbate rarely 

visits, better than other candidate paths. This area is known because of the 3-D free energy 

profile.    This improved transition path is used to compute a 1-D free energy profile along the 

path, as outlined in Eq. (2.8).  In this equation ξ is the length measured along the, in general 

curvilinear, transition path.  A point on the path is arbitrarily assigned the value ξ=0.  n(ξ) is a 

one-dimensional probability distribution of the center of mass of the sorbate along the path.  The 
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rate constant for transition from state i to state j is computed from the one-dimensional free 

energy profile A(ξ) via Eq. (2.12).  Here ( )

1

i  and ( )

2

i stand for the curvilinear coordinates, along 

the path, of the local maxima in A(ξ) which delimit state i.  The value † , on the other hand, is 

the curvilinear coordinate, along the transition path, of the highest maximum in A(ξ) (free energy 

barrier) which controls the rate of transitions from state i to state j.   
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 From Eq. (2.12),  we can see that the path does not actually influence the denominator (its 

value is shaped by a very small area around the free energy minimum of state i, where the 

Boltzmann factor of the local free energy is appreciable).  The numerator, on the other hand, is 

strongly influenced by the exact value of the free energy maximum. An error of kBT in the free 

energy barrier brings about an error of a factor of e in the rate constant. This sensitivity of the 

rate constant to the saddle point free energy can be seen in Eq. (2.13).
 

error

CM,

1/2

BB

,

CM,

B

CM,

1/2 error

B B

CM, B

B

( )
exp

( )2
exp

( )
exp

exp
( )2

exp

exp

i j

pr

i j err

pr

state

pr

pr

state

k

i j

A r A

k Tk T
k

A rm
dr

k T

A r

k T Ak T

A rm k T
dr

k T

A
k











 
 

     
  
 
 

 
 

        
     
 

 





error
B

error 1

B

2.7182
A k T

i jk
k T





 
 

 

                              Eq. (2.13)
 



38 
 

 This shows the enormous importance of the transition path on which center of mass 

projections are made. To understand this better, we first have to define what we mean by 

projection. Because we are dealing with curves in three-dimensional space, it is possible that a 

given position of the center of mass of the sorbate may be projected onto more than one points 

along the same transition path. This should be avoided, to avoid ambiguities in the definition of 

the local free energy. To deal with this, we have added the criterion of minimum distance in case 

more than one projections to the path exist. In Figure 2.10, we can see how the projection is 

calculated exactly.  

 

Figure 2.10 Projection of center of mass of benzene. Points considered along the transition path 

are shown in red, while the path itself is depicted as a green line.  At the encircled points the 

inner product of the vector from the benzene center of mass to the path and the tangent vector to 

the path changes sign.  These are candidate projection points.  Of the two candidate points in this 

example, the one lying closer to the benzene center of mass is chosen.  

 

2.2.4 Step (4)-Calculation of rotational free energy profiles   

 

Before continuing to the reduction to the 1-D free energy profile using Eq. 2.11, we must 

confirm that the rotational degrees of freedom do not play a significant role in the elementary 

transitions through which translational diffusion occurs and that the 1-D free energy profile is 

independent of orientation. To do this, we move the sorbate with the walls to areas which it 

rarely visits, sample its orientations there as vigorously as possible and accumulate distributions 

of the  orientations it adopts.  
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2.2.5 Step (5)-Calculation of the 1-D free energy profiles 

 

We examine overlapping intervals of contour length 0.75Å or 15 points along the transition 

paths of the straight channel and 1Å or 20 points along the sinusoidal channel. We chose to work 

with more points along the sinusoidal channel than the straight, because the sinusoidal channel is 

curved and we wanted to avoid the case  of two walls intersecting each other.     

 

Figure 2.11 Two walls which intersect each other and, if applied simultaneously, do not allow  

the sorbate center of mass to visit areas that we must sample. This leads to a wrong calculation of 

the free energy profile value at the point of projection. This can also be the reason for the case 

that two consecutive free energy fragments do not stitch perfectly. 3-Dimensional free energy 

profiles help us define the distance between the walls.  

 

To sample each interval, we move the walls by two points every time (=0.1Å) along the 

paths, place the sorbate molecule with its center in the wall-free region of the interval at a 

random initial orientation, and integrate the equations of motion of the flexible sorbent plus 

sorbate system with MD for 7.5 ns with a time step of 0.5fs.  A previously sampled configuration 

from an already examined overlapping interval may serve as initial configuration for the MD run.  

Every 0.5fs we project the center of mass of the sorbate on the sinusoidal and straight channel 

paths, assign it to the considered interval if the minimum distance criterion discussed in Figure 

2.10 is fulfilled and determine its ξ value along the considered interval based on the projection.  
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At the end of the MD simulation we recover the density distribution of centers of mass n(ξ)  over 

the considered interval and take its logarithm to determine the one-dimensional local free energy 

profile A(ξ) in the interval via Eq. (2.11).  As already mentioned, values of  A(ξ)  near the edges 

of the interval may be affected by the wall potential and therefore not be representative of the 

wall-free system.  Such artifacts become obvious during the stitching of local free energy profiles 

from overlapping intervals.   

To make sure that the final free energy profiles obtained from stitching are completely 

independent of the wall potentials, we repeated the whole calculation at 465 K for benzene using 

a different value for w = 0.05975 kcal/mol (see section 4 for a more extensive description).  The 

free energy profiles obtained were identical.  Smaller w means weaker (less steep) walls, which 

in turn means that more time may be required for equilibrating the  center of mass distributions 

within each interval, as the sorbate will spend more time near the wall on the side of the interval 

where V due to the zeolite is lower.  On the other hand, walls that are too hard (very high w) 

may impart very high momenta to the sorbate upon collision, preventing thermal equilibration 

with the crystal over reasonable time scales.  The wall potential parameters used in our 

production runs and stated above were optimized based on results of preliminary simulations.    

 

 

Figure 2.12 Unsucessful stitching because of very steep walls. Red arrows show points where 

perfect overlap is not achieved because the accumulated free energy profile is affected by the 

confining walls.  Such terminal sections of local free energy profiles are discarded during the 

stitching process.   
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2.2.6 Step (6)-Calculation of rate constants and diffusivities via Kinetic Monte Carlo 

(KMC) and Isosteric heat calculations 

 

From the 1-D free energy profiles, we can calculate the transition rate constants using Eq. 

(2.14) as soon as we define the states (areas between two maxima of the free energy). In Eq. 

(2.14), ( ( )

1

i , ( )

2

i ) is the interval, along the reaction coordinate, corresponding to state i and † is 

the reaction coordinate value at the free energy maximum separating states i and j; m is the mass 

of the diffusing molecule.  In the cases we studied, a large number of states have been found. To 

be able to compare exactly the transition rate constants calculated here from different force-fields 

we should have the same states in all these force fields. We will see later that we propose a 

reduction of the total number of macro-states to 4 for p-xylene. These states are the Intersection 

state in which the sorbate has the orientation of the straight channel (IS), the Intersection state in 

which the sorbate has the orientation of the zig-zag channel (IZ), the Straight Channel state (S), 

and the Zig-zag or sinusoidal channel state (Z). In the case of benzene, the total number of 

macro-states is 3, as we have only one state in the intersection (I). If the suggested reduction in 

the number of states is correct, it should not influence the predicted values of the diffusion 

coefficients.   Also, this reduction has the advantage of simplifying the description of the systems 

we study without losing any important information. 
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                        Eq. (2.14)                         

In the sketch of Figure 2.13 two cases are illustrated, which we encountered in our 1-D free 

energy profiles. In the first case, two states with low energy barriers between them (< 1RT) and 

four transition rate constants are reduced to one state and two transition rate constants (see Figure 

2.13a).  In the second case, two states with high energy barriers (states 1 and 3) separated by a 

state with low energy barrier (state 2) are reduced to two states with high energy barriers (see 

Figure 2.13b). In addition, the new rates produced after the reduction must also satisfy the 
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microscopic reversibility condition. A proof that this is always the case for the states defined 

here is given in Eq. (2.15).   
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Eq. (2.15)

 

 To our knowledge, this is the first time this method is used for rate constant calculation after a 

reduction in the number of states. In the first case, the transition rates are calculated for the 

values ξ1 tν ξ3 of the reaction coordinate for the state 1 of  Figure 2.13a. In the second case, a 

special manipulation is needed.  Because of the high free energy of state 2 of Figure 2.13b, the 

sorbate resides there with low probability. In case the sorbate enters state 2, it will move on 

quickly to another state, because the free energy barrier that must be overcome in order to escape 

from state 2 is low. The probability for a transition from state 2 via the μ2 saddle point to state 1 

to take place will be different from the probability for a transition from state 2 via the μ3 saddle 

point to state 3 to take place.  The two probabilities are described by Eq. (2.16). Pξi is the 

conditional probability that a transition out of state 2 will take place via the route of ξi and ρ is 

proportional to the probability density of the sorbate center of mass. In other words, a fraction of 

the trajectories which lead to transition from state 1 to state 2, will manage to pass successfully 

to state 3. This, of course, has similarities with the transmission coefficient definition
67,68

. 

1

32

2 3

2 3 2 3

( )

,   ,where e
D i

i

A

RTP P




  

   




   



  
                               Eq. (2.16) 

As a result, the rate constant for the transition from state 1 of Figure 2.13b to state 3 of the same 

Figure will be described by Eq. (2.17). 
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                                      Eq. (2.17) 

Combining the 1-D free energy profiles and the method of Figure 2.13, we get the final macro-

states. For these macro-states, using Eq. (2.17), we calculate the transition rate constants. Solving 

a linear system of equations obeying microscopic reversibility  TST TST

i j j ii jk P k P
 

  , we calculate the 

equilibrium probability Pi for each macro-state i.  

To compute the isosteric heat of sorption, we place repulsive walls at the entrances to each 

state (maxima in the 1-D free energy profiles) to trap the sorbate in this state. Then, we write out 

the sorbate-silicalite-1 potential energy (VS-Z) in every timestep of an MD trajectory confined to 

the state.  From the recorded values we compute a mean energy of interactions for each state.  The 

isosteric heat is then obtained from Eq. (2.18).
50

      

states
state

1

,   or  i

st S Z st i S ZNVT NVT
i

Q RT Q P RT 



     V V
               Eq. (2.18)   
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Figure 2.13 Two different methods of reduction in the number of states are illustrated. (a) two 

states with low energy barriers between them (< 1RT) and four transition rate constants are 

reduced to one state and two transition rate constants, (b) two states with high energy barriers 

(states 1 and 3) divided by a state with low energy barrier (state 2) are reduced to two states with 

high energy barriers 

  

Knowing the rates for all interstate transitions, one only has to solve the Master equation, Eq. 

(2.19),  in the probabilities of occupancy of the states Pi(t)  subject to given initial conditions in 

order to determine the self-diffusion tensor.   

d

d
i

i j i j i j

j j

P
k P k P

t
                                                                                                Eq. (2.19) 

The master equation, Eq. (2.19), can be written in compact form for all states as  

( )
 ( )

t
t

t






P
K P                                                                                        Eq. (2.20) 

We have used two methods to solve Eq. (2.20): Kinetic Monte Carlo simulation (KMC)
17,41,69

 

and the analytical approach known as Master Equation Solution by Recursive Reduction of 

Dimensionality (MESoRReD). Now, we will elaborate on KMC and we will refer to 
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MESoRReD in the next chapter extensively, as MESoRReD is a new method invented in this 

thesis.   

KMC is the most common method for solving the Master Equation. However, there is a 

risk that it may be very slow if interstate rate constants are very broadly distributed.  The Kinetic 

Monte Carlo method was applied to a single unit cell satisfying periodic boundary conditions. 

In this work for the diffusion coefficient of benzene, 4000 noninteracting walkers were 

deployed among the states of a unit cell according to the equilibrium probabilities of occupancy 

of the states Let Ni(t) be the number of walkers in state (site) i at time t .  After initialization, the 

KMC simulation proceeded as follows: 

(i) For each state i that is occupied at the current time t, we calculate the expected fluxes Rij(t) = 

Ni(t) kij  to all states j to which state i is connected. We also compute the overall flux   

( ) ( )i j

i j

R t R t  and the conditional probabilities qij(t)= Rij(t)/R(t). 

 
(ii) We generate a uniformly distributed pseudorandom number  s[0,1).  We then choose the 

time for occurrence of the next transition (jump event) in the network as Γt= ln(1s)/R(t).  We 

also choose the type of the next transition by picking one of the possible transitions ij 

according to the conditional probabilities qij(t).
 

(iii) Of the Ni(t) walkers present in state i we pick one with probability 1/ Ni(t)  and move it to 

state j.  

(iv) We advance the simulation time by Γt.  We update the array that keeps track of the current 

positions of all walkers to reflect the implemented transition.  We update the occupancy numbers 

Ni(t +Γt)= Ni(t)1 and N j(t +Γt)= N j(t)+1. 

(v) We return to step (i) to implement the next transition. 

In KMC, the elements of the self-diffusivity tensor are calculated by tracking the mean square 

displacement of the walkers as a function of time, via the Einstein relation
17

. 

                                                           Eq. (2.21) 
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Figure 2.14 Computational methods which must be used to arrive at accurate predictions of 

macroscopic properties for systems of tight-fitting sorbates inside nanoporous materials. 

The results from the Kinetic Monte Carlo for benzene will be presented later extensively in 

Chapter 4.  

Here, it is important to add that the algorithm we described in this Chapter 2 helps to predict 

macroscopic properties from the miscroscopic ones (in this case using molecular dynamics). In 

Figure 2.14, we can see all stages of modeling and simulation that must be undertaken in order to 

arrive at accurate macroscopic predictions for the diffusion of tight-fitting sorbates in 

nanoporous materials.   
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Chapter 3 

On solving the master equation on orthorhombic 

spatially periodic systems 

3.1 Introduction to the problem 

3.1.1  States, transition rate constants, and Master Equation 

 

Consider a system capable of adopting discrete states i. The evolution of the system is described 

as a succession of elementary transitions between its states.  These elementary transitions are 

assumed to be infrequent events, in the sense that the waiting time of the system within each 

state i, before it jumps to another state, is long in comparison with the time required to visit all 

configurations internal to state i and establish a restricted equilibrium within that state.  Under 

this condition of time scale separation, the probability per unit time of observing a transition 

from state i  into a new state j at time t is expressed by the first-order kinetic law ( )i j ik P t , where 

i jk   is the rate constant for transitions from state i to state j and Pi(t) is the probability that the 

system finds itself in state i at time t.
67-70

 The rate of change of ( )iP t  with time emerges as an 

algebraic sum of efflux of probability from i to other states j and influx of probability from other 

states j to i, according to the Master Equation: 

d

d

i
i j i j i j

j i

P
k P k P

t
             Eq. (3.1) 

Forward and reverse transition rate constants satisfy the condition of microscopic reversibility:  

eq eq

i i j j j iP k P k                      Eq. (3.2) 

where 
eq

iP  stands for the probability of occupancy of state i when an equilibrium distribution 

among all states has been established.  From Eqs. (3.1) and (3.2) it is obvious that the 

equilibrium distribution is a steady-state solution of the master equation.    
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Let the total number of states be n.  We collect the state probabilities Pi(t) to form an n-

dimensional vector P(t).  P(t) will be normalized over all states at all times:   

1

( ) 1   
n

i

i

P t t


                        Eq. (3.3) 

The master equation, Eq. (3.1), can be written in compact form for all states as  

( )
 ( )

t
t

t






P
K P                      Eq.  (3.4) 

with initial condition P(0).   The  nn rate constant matrix K is defined by ij j iK k   for j i  

and 
ii i j

j i

K k 



  .   

 

3.1.2 Solution of the Master Equation 

 

A number of methods are available for solving the Master Equation for the time-dependent 

probabilities of occupancy of the states, subject to the initial condition of a prescribed 

distribution  P(0) at t=0. 

One popular numerical solution strategy is to employ Kinetic Monte Carlo (KMC) 

simulations.  A starting ensemble of systems is sampled according to the initial distribution P(0).   

A number of stochastic trajectories is then generated for each system in the starting ensemble.   

Each stochastic trajectory consists of a long succession of elementary jumps between states.  The 

time at which each jump will occur and the destination state of the jump are chosen by pseudo-

random number generation, utilizing the known connectivity of the network of states, the known 

rate constants i jk  , and the properties of Poisson processes.
71-73

   By analyzing the states at 

which all sampled trajectories find themselves at time t, the distribution P(t) can be obtained.  

Furthermore, time-dependent averages and correlation functions characterizing the dynamics of 

the system can be accumulated. 

In many physical problems, such as ageing of glasses, protein folding, and diffusion in 

complex media, the eigenvalues of the rate constant matrix K cover several decades.  This is 

usually a consequence of a very rugged energy landscape, exhibiting a wide distribution of 

barrier heights between local minima of the potential energy in the space of microscopic 

configurational degrees of freedom.  For such problems KMC simulation becomes inefficient, 
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since the time step it takes at every point along a trajectory is commensurate with the inverse rate 

constant of the fastest elementary jump that can occur out of the current state.  KMC may thus 

end up sampling, over and over again, fast transitions within small subsets of states that are 

connected with each other by passages of high 
i jk 

 but to the rest of the state space only through 

passages of much lower 
i jk 

.  In other words, KMC trajectories may be trapped for long periods 

of time within small subsets of states.  In such cases it is more advantageous to proceed with a 

direct analytical solution for the time-dependent state probabilities P(t).   

Schemes for solving the master equation analytically express the solution as a sum of 

exponentially decaying functions of time, after diagonalizing the rate constant matrix.
74-76

  To 

solve Eq. (3.4) for given P(0) it is advantageous
74-76

 to transform the state probability vector P(t) 

into a reduced vector ( )tP  with elements  

eq( ) ( ) /i i iP t P t P              Eq. (3.5) 

This satisfies the reduced master equation  

( )
 ( )

t
t

t






P
K P                                       Eq. (3.6) 

with 
eq eq/ij ij j iK K P P . The matrix K  is symmetric by virtue of detailed balance, Eq. (3.2). 

One can readily show that K has the same eigenvalues
77

 as K. These eigenvalues are real, 

because K is symmetric.  Of these eigenvalues, one (corresponding to the establishment of the 

equilibrium distribution among states) is zero, and the remaining eigenvalues are negative 

because K is a negative semidefinite matrix.  

The reader is reminded that a real symmetric matrix A is negative semidefinite if   

T 0  y A y   for all non-zero vectors y with real entries ( )ny . Superscript T on vectors and 

matrices is used here to indicate a matrix transpose.  For the particular case of matrix K we 

obtain: 
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where the microscopic reversibility condition, Eq. (3.2), has been used in the algebraic 

manipulations.  This proves that the symmetric real matrix K is negative semidefinite. This 

proof seems to have been given for the first time by Shuler.
78  

Now, if λ is one of the real 

eigenvalues of K  with corresponding real eigenvector x, λ K x x  and therefore 

T Tλ  x K x x x , which means that 
2T

2
λx K x x    with 

2
x  being the Euclidean norm of x 

and
2

2
0x .  Because K is negative semidefinite, the left-hand side 

Tx K x   is always   

negative or zero, hence 0λ  .  

As a real, symmetric negative semidefinite matrix, therefore, K has zero or negative 

eigenvalues.  We denote these eigenvalues by 
0 1 10 ... nλ λ λ     . We symbolize by 

1, 2, , ,( ,  ,...,  ,...,  )m m m i m n mu u u uu  the eigenvector of K corresponding to eigenvalue
mλ ,  0  m  

n1.  Note that 
eq eq

,0i i iu P P  , corresponding to the equilibrium distribution among states.  

The Euclidean norm of 
0u  is unity by the normalization of eq

iP . The solution of the master 

equation can be written (see also Appendix A) as: 

 

 
1 1

eq

0 1

e  =   + e(0) (0)m m

n n
t t

m m m m

m m

t
 

 

 

   
   

  P u u P u uP P                                       Eq. (3.7)     

where the normalization condition 
1

(0) 1
n

i

i

P


  has been used in separating out the equilibrium 

contribution (
0 0λ  ). The eigenvectors 

mu  form an orthonormal basis set:  

δm l mlu u , 0  m, l  n-1. 
79

                                  Eq. (3.8) 

with ml being the Kronecker delta. They also satisfy
79

 
1

, ,

0

n

i m j m ij

m

u u




  . 

3.1.3. Spatially periodic sets of states 

 

In many physical problems the set of states is characterized by spatial periodicity, i.e. can be 

obtained by periodic replication of a ―unit cell‖ of states in one or more directions.  These 

directions may correspond to spatial coordinate axes, or to generalized coordinates.    Obvious 

examples are the set of sorption sites where a penetrant molecule can reside within a crystalline 
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porous or nonporous material in the context of diffusion in three directions, the set of surface 

sites where an adsorbate can reside on a crystal surface in the context of surface diffusion, or the 

set of  rotational states adopted by the torsion angles of a flexible organic molecule.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Example of a system characterized by periodic boundary conditions with n=4 states 

in the unit cell.  Broken curves indicate equalities between rate constants for entering and exiting 

the unit cell, arising from the periodic boundary conditions.  16 distinct rate constants are 

defined.  The symmetrized rate constant matrix for the system, 1K , is also given.  

 

An example of periodicity in two directions is shown schematically in Figure 3.1.  Here, 

four states are considered within the unit cell.  The right and left sides of the unit cell are 

connected via periodic boundary conditions, and so are the top and bottom sides, as indicated by 

the broken lines.  States are assumed to be connected with a coordination number of four.  
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Sixteen distinct rate constants are indicated, pairs of forward and reverse rate constants satisfying 

the microscopic reversibility condition, Eq. (3.2).   The superscripts ―R‖ and ―L‖ are used to 

indicate transitions to the right and to the left, respectively, along the horizontal axis.  The 

superscripts ―U‖ and ―D‖ are used to indicate transitions upwards and downwards, respectively, 

along the vertical axis.  In the following, we will use the symbol n to indicate the total number of 

states in the unit cell (in our example, n=4).  The unit cell is characterized by a n  n rate 

constant matrix, which we shall call K1, and a corresponding symmetrized  matrix 
1K , obtained 

from K1 as outlined above. 

Let us now consider the periodic set of states as resulting from periodic replication of two 

adjacent unit cells, as shown in Figure 3.2.  Now there are 2n states (8 in our example, the 

primed states being images of the unprimed states) in the doubled unit cell, but the number of 

distinct rate constants remains equal to that in the original unit cell (16 in our example).  Clearly, 

the description of Figure 3.2 allows accessing fluctuations in the time-dependent occupancy 

probabilities of states with greater characteristic length than the description of Figure 3.1.  One 

can write a 2n  2n rate constant matrix K2  and a corresponding symmetrized matrix 2K for the 

description of Figure 3.2 in terms of the doubled unit cell.  2K  is also given in the figure for our 

example.  One readily sees that 2K  is related to 1K of the original unit cell (compare Figure 3.1) 

as 

1 RL1 RL1

2

RL1 1 RL1

 
  

 

K K K
K

K K K
                        Eq. (3.9) 

 

The n  n matrix RL1K is defined as 

RL1 R1 L1 K K K                    Eq.  (3.10) 

The n  n matrix R1K (respectively, L1K ) collects those entries in 1K  which correspond to 

transitions taking place across the right (respectively, left) boundary of the original unit cell 

(Figure 3.1), all other entries being zero.  By virtue of the microscopic reversibility condition, 

Eq. (3.2), applied to every connection traversing the right and left periodic boundaries, one 

obtains  

T

L1 R1K K               Eq. (3.11) 
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As a consequence, matrix 
RL1K  is symmetric.  Given that  

1K and 
RL1K are symmetric, the 2n  

2n matrix 
2K , as defined in Eq. (3.9), is also symmetric.  Figures 3.1 and 3.2 refer to a specific 

example.  It is easy to convince oneself that, given 
1K and the connectivity of states in the 

original unit cell, 
R1K , 

L1K and, consequently,
RL1K can be written down by inspection.  

We can extend this idea, stringing together 4, 8, …, 2
λ
 adjacent copies of the original unit cell 

along the horizontal direction, in order to form larger and larger unit cells.   
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Figure 3.2  Same system as in Figure 1, considered as resulting from periodic replication of two adjacent unit cells. The 

symmetrized rate constant matrix 2K  and its relation to rate constant matrices 1K , R1K , L1K  are explained. 
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Periodic boundary conditions hold between the two sides of the string, as shown 

schematically in Figure 3.3. Formulating the master equation in terms of these larger unit cells 

is useful, as it allows studying the dynamics over larger and larger length scales.  The 

symmetrized (2
λ
n)(2

λ
n) rate constant matrix corresponding to a supercell consisting of 2

λ
 

original cells and containing 2
λ
n states is 

 

1 RL1 L1 R1

R1 1 RL1 L1

R1 1 RL1 L1

R1 1 RL1 L1

2

R1 1 RL1 L1

R1 1 RL1 L1

R1 1 RL1 L1

L1 R1 1 RL1

. .

. . .

. . .

. . . .

. . .. . . . .

. . . . .

. . .

. . .

. .



 



 





 








K K K 0 0 0 K

K K K K 0 0

0 K K K K 0

0 K K K K

K

K K K K

0 K K K K 0

0 0 K K K K

K 0 0 0 K K K












 
 
 
 

Eq. (3.12)

 

 

expressed in terms of the n  n matrices 
1K , 

R1K , 
L1K , 

RL1K  introduced above and the n  n 

matrix 0 with all elements equal to zero.  By virtue of the symmetry of 1K and Eq. (3.11) one 

can readily prove that 
2

K  is symmetric, and therefore has real eigenvalues. 

 Given an initial probability distribution P(0) among the states contained in the supercell of 

2
λ
n states, one can determine the time-dependent probabilities of the states P(t) as the system 

evolves, subject to periodic boundary conditions at its boundaries, via Eq. (3.7) with n 

replaced by 2
λ
n and 

mλ , 
mu  standing for the eigenvalues and corresponding eigenvectors of 

the (2
λ
n)(2

λ
n) symmetrized rate constant matrix 

2
K .  Diagonalizing a matrix of such high 

dimensionality in order to determine 
mλ , 

mu , however, requires considerable computational 

effort.  It is highly desirable to express the eigenvalues and eigenvectors of 
2

K  in terms of 

eigenvalues and eigenvectors of matrices of smaller dimensionality, which can be obtained 

with much less effort.  If possible, we would like to reduce the calculation of all eigenvalues 

and eigenvectors of 
2

K  to a diagonalization of mere nn matrices, such as 1K , as the latter 

presents no computational difficulty.   
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Figure 3.3 Periodic system of 2
λ
 unit cells arranged in the l direction (l = x, y, or z), 

considered in the theoretical derivations and applications.  Periodic boundary conditions apply 

in directions normal to the l direction.    Boxes  represent unit cells and arrows indicate the 

―right‖ and ―left‖ senses invoked in the theoretical development.  The blue line shows that the 

right edge of the last unit cell communicates with the left edge of  the first unit cell, by virtue 

of periodic boundary conditions.  The lengths of a unit cell, Ld, and of the entire system, 2Lp, 

in the l direction, are also shown. 

 

Reducing the diagonalization of 
2

K  to a diagonalization of matrices of smaller dimension is 

the major focus of this paper.  We will show that it is possible to achieve this reduction in a 

recursive manner, by utilizing the structure of 
2

K  [Eq. (3.12)], which reflects the spatial 

periodicity of the set of states in the l-direction.  We develop a methodology for obtaining 
mλ , 

mu  though diagonalization of matrices of smaller dimension than 
2

K .  Furthermore, we 

apply this methodology to obtain P(t) in a specific problem, that of  low-temperature diffusion 

of xenon in the zeolite silicalite, using rate constants computed from atomistic analysis of the 

potential energy hypersurface within a unit cell of the zeolite.  Starting from an  initial 

distribution  P(0) localized in the middle of the periodic array of states, we show that P(t), 

summed over unit cells, exhibits a diffusive behavior in space and time.  We use this diffusive 

response to extract the self-diffusivity and compare with corresponding estimates obtained 

through (a) diagonalization of the entire 
2

K  and subsequent application of Eq. (3.7); (b) 

numerical solution of the master equation, Eq. (3.4), with  
2

K   in place of K , for the entire 

supercell; (c) Kinetic Monte Carlo simulation in an infinite array of states.  Furthermore, we 

Ld 

 .  .  .                                                  .  .  

.    .  . 

Cell 1 Cell 2 Cell 2ν-1 Cell 2ν
 Cell 2ν-1

+1 Cell 2ν-1 

  Left  

   Right 

2Lp 
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compare the computational requirements of these approaches and demonstrate the superiority 

of the new recursive reduction approach. 

 

3.2  Mathematical and Algorithmic development 

 

3.2.1. Recursive relations satisfied by 
2

K , its eigenvalues and eigenvectors 

 

From Eq. (3.12) one sees that 
2

K  can be written as  

1 1 1

1 1 1

2 RL2 RL2

2

RL2 2 RL2

  



  

  

  

 
  

  

K K K
K

K K K
         Eq. (3.13) 

where 12 
K  is the (2

λ-1
n)(2

λ-1
n) symmetrized rate constant matrix characterizing a string of 

2
λ-1

 unit cells with periodic boundary conditions between its right and left extremities, of the 

same structure as 
2

K , and 1RL2 
K is the sum of two (2

λ-1
n)(2

λ-1
n) matrices 1R 2 

K , 1L2 
K , 

defined by: 

 

1 1 1RL2 R 2 L2     K K K           Eq. (3.14) 

 

1

R1

R 2

.

. . .

. . .

.

 

 
 
 
 
 
  

0 0 K

0
K

0

0 0 0

,      1L2

L1

.

. . .

. . .

.

 

 
 
 
 
 
  

0 0 0

0
K

0

K 0 0

       Eq. (3.15) 

 

Note that all elements of 1R 2 
K are zero, except the n  n elements at its top right, which 

comprise the matrix R1K , introduced above.  Likewise, all elements of 1L2 
K are zero, except 

the n  n elements at its bottom left, which comprise the matrix L1K , introduced above.  

Because R1K  and L1K  are transpose of each other, by Eq. (3.11), matrices 1R 2 
K  and 1L2 

K  

are also transpose, hence 1RL2 
K  is symmetric, as is required for 

2
K  to be symmetric. 
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Let 
2

K 
  be an eigenvalue of 

2
K , with corresponding eigenvector 

1

2
1

2 ,A

2 ,B










 
  
  

K

x
x

x
, with 

12 ,A x , 12 ,B x  being 2
λ-1

n-long vectors.  Since 
2

K  is symmetric, its eigenvalue
2

K 
  will be 

real, as pointed out for  the matrix K in the general form of the master equation, Eq. (3.16).  

The norm of eigenvector 
2

K
x is related to the norm of sub-vectors 12 ,A x and 12 ,B x  via the 

equation 

1 1

2 22

2 2 ,A 2 ,B2 2 2
    x x x                     Eq. (3.16) 

If we require that 
2

K
x  be normalized, then both sides of Eq. (3.16) should equal 1.  Here we 

will not require that eigenvectors be necessarily normalized, i.e. we will assume that 

eigenvectors are defined up to a multiplicative constant; as discussed in Appendix A 

normalization corresponds to a particular choice of that constant.  
2

K , 
2

K 
 , 12 ,A x  and 

12 ,B x  satisfy the eigenvalue equation: 

 

1 1

2
1 1

2 ,A 2 ,A

2

2 ,B 2 ,B

 

 

   
   

      
K

x x
K

x x

 




 

          Eq.  (3.17) 

 

Substituting 
2

K  from Eq. (3.13), we find that Eq. (3.17) is equivalent to the following set of 

equations: 

 

 

 

1 1 1 1 1 1

2

1 1 1 1 1 1

2

2 RL2 2 ,A RL2 2 ,B 2 ,A

RL2 2 ,A 2 RL2 2 ,B 2 ,B

     

     

  

  

K

K

K K x K x x

K x K K x x

     


     





       Eq.  (3.18) 

 

Adding and subtracting Eqs. (3.18) from each other, one obtains the equivalent set of 

equations: 

   

    

1 1 1 1 1

2

1 1 1 1 1 1

2

2 2 ,A 2 ,B 2 ,A 2 ,B

2 RL2 2 ,A 2 ,B 2 ,A 2 ,B
2

    

     

  

   

K

K

K x x x x

K K x x x x

    


     





      Eq. (3.19) 

 

Eq. (3.19) is equivalent to the following requirement: 
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1 1 1 1 1

2

1 1 1 1

2

2 2 ,A 2 ,B 2 ,A 2 ,B

2 RL2 2 ,A 2 ,B

 is an eigenvalue of with eigenvector  and =0                              , or

 is an eigenvalue of 2 with eigenvector  and 

ν ν ν ν ν
ν

ν ν ν ν
ν

λ

λ

    

   

 

 

K

K

K x x x x

K K x x x 1 1

1 1 1 1 1 1 1

2

2 ,A 2 ,B

2 2 ,A 2 ,B 2 RL2 2 ,A 2 ,B

=0              , or 

 is an eigenvalue of both  (eigvec. ) and of 2 (eigvec. ) 

ν ν

ν ν ν ν ν ν ν
ν

λ

 

      








  
 K

x

K x x K K x x

                                                              Eq.     (3.20) 

 

 

We examine each of the cases in Eq. (3.20) separately. 

 

Case A:  

1 1 1 1 1

2
2 2 ,A 2 ,B 2 ,A 2 ,B

 is an eigenvalue of with eigenvector  and =0 ν ν ν ν ν
ν

λ      
K

K x x x x . 

In this case we obtain 1 12 ,B 2 ,Aν ν x x  and, from Eq. (3.19),  the eigenvector 
12

K
x of 

12 
K corresponding to eigenvalue 

2
K 
 is 2 12 ,Aνx or, more generally, 1/ζ 12 ,Aνx  where 1/ζ  is a 

multiplying factor.  The number 
2

K 
 , originally defined as an eigenvalue of 

2
K , is also an 

eigenvalue of 12 
K , and the eigenvectors of the two matrices are related via 

12

2

12












 
 
 
 

K

K

K

x

x
x

      Eq. (3.21) 

If 
2

K 
 happens to be a multiple eigenvalue of 12 

K , then 
2

K
x is more generally of the form 

12

2

12

( )

( )

i

i i
i












 
 
 
 


K

K

K

x
x

x
  where 

12

( )i

 K
x are the eigenvectors corresponding to the multiple 

eigenvalue 
2

K 
  of 12 

K .  Therefore, 
2

K 
 is a multiple eigenvalue of 

2
K  as well, with the 

same multiplicity. 

 

 

Case B: 

1 1 1 1 1 1

2
2 RL2 2 ,A 2 ,B 2 ,A 2 ,B

 is an eigenvalue of 2 with eigenvector  and =0 ν ν ν ν ν ν
ν

λ        
K

K K x x x x . 

In this case we obtain 1 12 ,B 2 ,Bν ν  x x .  From Eq. (3.19), the eigenvector 
1 12 RL2

2  K K
x of 

1 12 RL2
2ν ν K K  corresponding to eigenvalue 

2
K 
  is 2 12 ,Aνx or, more generally, 1/ξ 12 ,Aνx  
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where 1/ξ  is a multiplying factor.  The number
2

K 
 , originally defined as an eigenvalue of 

2
K , is also an eigenvalue of 1 12 RL2

2ν ν K K , and the eigenvectors of the two matrices are 

related via 

1 12 RL 2

2

1 12 RL 2

2

2

 



 


 

 





 
 
 
 

K K

K

K K

x

x
x

           Eq. (3.22) 

If 
2

K 
  happens to be a multiple eigenvalue of 1 12 RL2

2ν ν K K , then 
2

K
x is more generally of 

the form 

1 12 RL 2

2

1 12 RL 2

( )

2

( )

2

i

i i
i

 



 


 

 





 
 
 
 


K K

K

K K

x
x

x
  where 

1 12 RL 2

( )

2

i

  K K
x are the eigenvectors corresponding to the 

multiple eigenvalue 
2
  of 1 12 RL2

2ν ν K K .  Therefore, 
2

K 
 is a multiple eigenvalue of 

2
K  

as well, with the same multiplicity. 

 

 

Case C: 

1 1 1 1 1

2

1 1

2 2 ,A 2 ,B 2 RL2

2 ,A 2 ,B

 is an eigenvalue of both , with eigenvector  and of 2 , with 

eigenvector  

ν ν ν ν ν
ν

ν ν

λ     

 

 



K
K x x K K

x x

 

We have: 

1 1
12

1 1
1 12 RL2

2 ,A 2 ,B

2 2 ,A 2 ,B

 


 
 

 

 

K

K K

x x x

x x x

 


 
 

          Eq.  (3.23) 

with 
12 K

x


, 
1 12 RL2

2  K K
x  being eigenvectors of matrices 12 

K , 1 12 RL2
2ν ν K K , respectively, 

both corresponding to eigenvalue 
2

K 
 .  From Eqs. (3.23) we obtain: 

1 1 12 2 RL 2

1

1 1 12 2 RL 2

1

2

2 ,A

2

2 ,B

2

2

  



  













K K K

K K K

x x
x

x x
x

  



  



           Eq.  (3.24) 

or, more generally,  
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1 1 12 2 RL 2

2

1 1 12 2 RL 2

2

2

  



  

 
  

  





   
    

   
   

K K K

K

K K K

x x

x
x x

           Eq. (3.25) 

We note that the expression of Eq. (3.25), which has been derived for case C, contains 

Eqs.(3.21) and (3.22), derived for cases A and C, as special cases. 

 

From the above discussion of cases (A,B,C) one sees that finding the eigenvalues and 

eigenvectors of the 2ν n -dimensional matrix 
2

K  has been reduced to finding the eigenvalues and 

eigenvectors of the 12ν n -dimensional matrices 12 
K  and 1 12 RL2

2ν ν K K .   Recursive application 

of this strategy can be symbolized by the tree diagram: 

4

3

2

4 41

3 3

2 2

1

2

2

2

2 RL22

2

2 RL2

2 RL2

2

...
                 

...              
  

 2        

 2                          

  2                                     

2







 

 

 















K
K

K
K KK

K
K K

K K

K K







 



 

 

 1RL2
                                           

         Eq.  (3.26) 

 

3.2.2. Reduction of the diagonalization of matrix 1 12 RL2
2ν ν K K  to that of (2

-2
n) (2

-

2
n)-dimensional matrices 

We now seek to  express the eigenvalues of matrix 1 12 RL2
2ν ν K K  in terms of the 

eigenvalues of lower-dimensional matrices.  For this purpose, it is useful to prove the 

following 

 

Theorem 1:  The eigenvalues of the (2
ν-1

n) (2
ν-1

n)-dimensional matrix 1 12 RL2
2ν ν K K  are 

the same as the eigenvalues of the (2
ν-2

n)(2
ν-2

n)-dimensional matrices 

   2 2 2 22 RL2 R2 L2μ μ μ μi     K K K K .   

 

A proof of Theorem 1 is provided in Appendix B.  In the same Appendix expressions 

are derived for the eigenvectors of matrix 1 12 RL2
2ν ν K K  in terms of the eigenvectors of  

matrices    2 2 2 22 RL2 R2 L2μ μ μ μi     K K K K that correspond to the same eigenvalue.  

 



62 
 

In discussing the eigenvalue equations for matrices    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  

we make use of the following  

 

Theorem 2:  Matrix    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  is the transpose of matrix 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K . 

Theorem 2 is proved in Appendix C. 

 

Corollary: Each of the matrices    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  and 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  equals the transpose of its complex conjugate, and is 

therefore Hermitian.  This ensures that    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  and 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  have real eigenvalues. 

 

Now, the eigenvalues of a square matrix are equal to the eigenvalues of its transpose. 

Hence,    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  and    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  actually 

have the same eigenvalues (but different eigenvectors).  This means that the eigenvalues 

1 12 RL2
2ν ν

λ
 K K

of matrix 1 12 RL2
2ν ν K K  are actually double, and can be obtained by 

diagonalizing either    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  or 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K .  

From the tree diagram of Eq. (3.26) we see that diagonalizing the (2
ν
n)(2

ν
n) matrix 

2νK  is ultimately reduced to diagonalizing the nn matrix 1K , as well as the (2
μ-1

n)(2
μ-1

n) 

matrices 1 12 RL2
2μ μ K K , with 1    .   On the other hand, application of the derivations 

outlined in the present section for μ=ν shows that diagonalization of 1 12 RL2
2μ μ K K  , 

2    is reduced to diagonalization of the (2
μ-2

n)(2
μ-2

n)  matrices 

   2 2 2 22 RL2 R2 L2μ μ μ μi     K K K K , which are transpose of each other and therefore have 

the same eigenvalues.  In the following section we show that this stepdown in the size of 

matrices to be diagonalized in order to find the eigenvalues and eigenvectors of each (2
μ-
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1
n)(2

μ-1
n)  matrix 1 12 RL2

2μ μ K K , 2     can be extended, ultimately reducing the 

problem of diagonalizing 1 12 RL2
2μ μ K K  to one of diagonalizing 2

μ-1
 matrices of size nn. 

 

3.2.3. Reduction of diagonalization of 1 12 RL2
2μ μ K K to the diagonalization of nn 

matrices 

 

Theorem 3: Consider the matrices    12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K  with index 

b being an integer, 2≤b≤μ1, and the (generally complex) coefficients aj  given by 
1 1a   ,  

1j ja a   , 2 1j b   . (Note that  aj assumes multiple values for j  2.)  Let 
2 b  be an 

eigenvalue of one of these matrices, formed using a specific choice of pluses and minuses in 

the definition of the aj‘s, and let 
1

1

2 ,E

2

2 ,F

b

b

b







 



 

 
  
  

x
x

x
 be the eigenvector of this matrix 

corresponding to eigenvalue 
2 b  , with 12 ,Eb x , 12 ,Fb x  being 2

μ-b-1
n-dimensional vectors.  

Then, at least one of the following statements is true: (a) 
2 b  is an eigenvalue of matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a        

    K K K K , with corresponding eigenvector 

1 112 ,E 2 ,Fb bba   x x  ; (b) 1 112 ,E 2 ,F
0b bba    x x  .  

A proof of Theorem 3 is provided in Appendix D. 

 

From the proof of Theorem 3, it is clear that, given a set of 
1 2, ,..., ba a a , if 

1ba 
 is used to 

denote one of the values 1b ba a   , the following equations will be satisfied 

simultaneously: 

       1 1 1 1 1 1 1 11 1 1 1 12 RL2 R2 L2 2 ,E 2 ,F 2 2 ,E 2 ,F
...μ b μ b μ b μ b μ b μ b μ b μ b μ bb b b b ba a a a a λ a                   

       K K K K x x x x

       1 1 1 1 1 1 1 11 1 1 1 12 RL2 R2 L2 2 ,E 2 ,F 2 2 ,E 2 ,F
...μ b μ b μ b μ b μ b μ b μ b μ b μ bb b b b ba a a a a λ a                   

       K K K K x x x x

           Eq.   (3.27) 

 

Eq. (3.27) tells us that the following three cases are possible: 
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A. 
2μ bλ   is an eigenvalue of the 2

μ-b-1
n2

μ-b-1
n matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb b ba a a a        

    K K K K  with corresponding eigenvector 

1 1 112 2 ,E 2 ,Fμ b μ b μ bba     
 x x x  and 1 112 ,E 2 ,F

0μ b μ bba    x x  

B. 
2μ bλ   is an eigenvalue of the 2

μ-b-1
n2

μ-b-1
n matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb b ba a a a        

    K K K K  with corresponding eigenvector 

1 1 112 2 ,E 2 ,Fμ b μ b μ bbax x x     
   and 1 112 ,E 2 ,F

0μ b μ bba    x x  

C. 
2μ bλ   is an eigenvalue of the 2

μ-b-1
n2

μ-b-1
n matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb b ba a a a        

    K K K K  with corresponding eigenvector 

1 1 112 2 ,E 2 ,Fμ b μ b μ bba     
 x x x  and at the same time an eigenvalue of the 2

μ-b-1
n2

μ-b-1
n matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb b ba a a a        

    K K K K  with corresponding eigenvector 

1 1 112 2 ,E 2 ,Fμ b μ b μ bbax x x     
  . 

 

We proceed to determine 12 ,Eμ b x and 12 ,Fμ b x , hence the eigenvector 
2 bx of the 2

μ-b
n2

μ-b
n  

matrix    12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K , for each one of these cases by analogy 

to the development following Eq. (3.20). 

 

Case A 

We have 

1 1 1

1 1

12 ,E 2 ,F 2

12 ,E 2 ,F
0

μ b μ b μ b

μ b μ b

b

b

a

a

     

   

 



 

 

x x x

x x
, 

hence 

 

1 1

1 1

2 ,E 2

12 ,E 2

/ 2

/ 2

μ b μ b

μ b μ b ba

   

   









x x

x x
 

or, allowing for a multiplicative constant,  

1

1

2

2
12

/

b

b

b ba

x
x

x

 



 





 
  

 







                      Eq. (3.28) 
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Case B 

We have 

1 1 1

1 1

12 ,E 2 ,F 2

12 ,E 2 ,F
0

μ b μ b μ b

μ b μ b

b

b

a

a

     

   

 



 

 

x x x

x x
, 

hence 

 

1 1

1 1

2 ,E 2

12 ,F 2

/ 2

/ 2

μ b μ b

μ b μ b ba

x x

x x

   

   







 
 

or, allowing for a multiplicative constant,  

1

1

2

2
12

/

b

b

b ba

x
x

x

 



 





 
  

 







          Eq.  (3.29) 

 

Case C 

We have 

1 1 1

1 1 1

12 ,E 2 ,F 2

12 ,E 2 ,F 2

μ b μ b μ b

μ b μ b μ b

b

b

a

a

     

     

 

 

 

 

x x x

x x x
 

hence 

 

   

1 1 1

1 1 1

2 ,E 2 2

12 ,F 2 2

/ 2

/ 2

μ b μ b μ b

μ b μ b μ b ba

     

     

 

 

 

 

x x x

x x x
 

or, allowing for multiplicative constants in the eigenvalues,  

1 1

1 1

2 2

2
1 12 2

/ /

b b

b

b bb ba a

x x
x

x x

   



   

 

  

   
    

   

 



 

                    Eq.  (3.30) 

We note that the general expression of Eq. (3.30) contains Eqs. (3.28) and (3.29) as special 

cases, and can therefore be used to cover all cases.  We also note that Eq. (30) remains 

invariant upon assigning the value –ab+1 to ab+1, as expected from the definition 1b ba a    

 

We have shown that the diagonalization of a (2
μ-b

n)(2
μ-b

n) –dimensional matrix 

   12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K  is reduced to the diagonalization of the two        

(2
μ-b-1

n)(2
μ-b-1

n)-dimensional matrices    1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a        

    K K K K  

with 1b ba a    and obtained straightforward recursive relations for the eigenvectors of the 

former matrix in terms of the eigenvectors of the latter.   
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According to the tree diagram of Eq. (3.26) and by virtue of Theorems 1 and 3 and the 

recursive expressions for the determination of eigenvalues and eigenvectors developed in 

conjunction with these theorems, the diagonalization of 
2

K  is ultimately reduced to 2
ν
 

diagonalizations of matrices of dimension nn.  These are the matrix 
1K  , the matrix 

1 RL12K K , and the matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K , with 
1 1a   ,  

1j ja a   , 2 j   , for 2,...,μ ν .   

As a result, we reduce the  determination of eigenvalues and  eigenvectors of   
2

K  to the 

determination of these quantities for 2
λ
  matrices coming from the procedure we mentioned 

above. Actually, we need only the diagonalization of  2 1

3

2 2 2i

i

 matrices for the 

determination of the eigenvalues of 
2

K .  As shown in Appendix E, there is a way to assign 

each double eigenvalue to the lower-dimensional matrices where it comes from, within the 

recursive scheme. The minimum number of double eigenvalues is 2

3

2i

i

, considering that, 

if an eigenvalue is 4-fold, it counts as 2 double eigenvalues. Similarly, if an eigenvalue is 8-

fold, it counts as 4 double eigenvalues, etc. 

 

Here it is important to remind the definition of the ―principal‖ square root, the  ―principal‖ 

cubic root, the ―principal‖ forth root,…,etc. When a positive real number ψ is presented under 

the radical symbol , it must return only one result like a function, so a non-negative real 

root, called the principal γth root, is preferred to others and it is  symbolized it as 1/ or . 

For example, 2 4 2 and the principal square root is 2 not 2. So, 2 4 2 . Similarly, 

3

1

1 1
1 3

2 2

1 1
3

2 2

i

i

 and the principal cubic root of 1 is 1. So, 3 1 1  . In complex 

numbers, if , the principal γth root of the complex number ire is defined to be  

/ / /ir e1 1 , while all the γ roots are  / / / / ,     ,i w i
set r e e w1 1 2 0 1and  r,θ are the polar 

coordinates of a complex number. We emphasize that  when we mention a root in our text, 

we mean the prinicipal one.
79
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3.2.4. Recursive algorithm for the diagonalization of 
2

K  based on diagonalization of 

nn matrices. 

 

Based on the theoretical developments outlined above, we have designed an algorithm for 

computing all the eigenvalues and eigenvectors of the symmetrized rate constant matrix 
2

K  

of the periodic system consisting of 2
λ
 unit cells and containing 2

λ
n states based on 

diagonalizations of strictly nn matrices.  The general flow of the calculations is indicated in 

Figure 3.4.  The light green, light blue, and grey-brown boxes in the flow diagram of Figure 

3.4 are analyzed further in Figures 3.5 and 3.6.  Both the colors and the lines bordering these 

boxes have been designed so as to make obvious what fits where.   The part of the algorithm 

that accomplishes the diagonalization of matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K  

discussed in Theorem 3 and the associated discussion, shown in Figure 3.6, involves ν1 

levels of recursion.   The flow diagram in Figure 3.7 has been drawn for the particular case 

ν=5.  It is obvious, however, how this diagram can be extended, by further branching, to deal 

with larger ν.  The contents of the orange and purple boxes appearing at all levels in the 

recursive flow sheet of Figure 3.6 are explained in detail in Figure 3.7.  In the same figure is 

provided an explanation of the grey box performing the level initialization and of the red and 

blue decision diamonds controlling the flow of calculations at each level.  We can see that the 

algorithm of Figure 3.6 actually involves 4 internal loops and can be very  easily constructed, 

despite the apparent complexity of the Figure.  

Eigenvalues and eigenvectors determined through the recursive scheme outlined above 

are used to calculate the probabilities of occupancy of states at any time, starting from a given 

initial probability distribution, via Eq. (3.7) as shown in Figure 3.8.  We shall call the 

algorithm of Figures 3.4-3.8, applied to the solution of the master equation of a spatially 

periodic system with given initial conditions, ―Master Equation Solution by Recursive 

Reduction of Dimensionality‖ of the symmetric rate constant matrix, or MESoRReD. 
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Figure 3.4 Overall algorithm for finding all the eigenvalues and eigenvectors of matrix 
2

K . 

The contents of boxes shown with different colors and outlines in the flow diagram are 

explained in detail in Figures 3.5 and 3.6. 

1

2

Diagonalize matrix  

and from this compute  eigenvalues 

and eigenvectors of .

n



K

K

 

0level  

0level  

2

Diagonalize all  matrices appearing in 

the recursive scheme.

From this determine the remaining eigenvalues 

and eigenvectors of .

n n





K

 

1 RL1

2

Diagonalize matrix 2

and from this compute  eigenvalues 

and eigenvectors of .

n



K K

K

 

1

1 R1 L1 RL1

Set up rate constant matrix  for one unit cell.

Choose direction ( , , or ) in which diffusion will be studied. 

Define reduced rate constant matrices , , , .

x y z

K
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Figure 3.5 Algorithm for diagonalization of 
1K  and of 1 RL12K K  and 

determination of the contributions of these matrices to the eigenvalues (here 

denoted as 
1


Κ

and 
1 RL12


Κ Κ

) and eigenvectors (here denoted as 
2

x ) of 
2

K . 



70 
 

 

Figure 3.6 Algorithm for diagonalization of nn-dimensional matrices  

   1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K  appearing in the recursive scheme and for finding the 

contribution of these matrices to the eigenvalues and eigenvectors of 
2

K .  Recursive scheme 

is shown here for ν=5. The contents of the colored boxes and diamonds are further explained 

in Figure  3.7.  



71 
 

 

Figure 3.7  Details of the algorithm for finding all the eigenvectors and eigenvalues 

contributed to 
2

K  from nn matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K   

 

according to the recursive scheme described in the theory section.  The boxes and diamonds 

should be inserted in all similarly colored and bordered boxes and diamonds appearing in the 

flow diagram of Figure 3.6, at all levels of recursion indicated in that figure.  The index aslevel 

is a decision variable indicating whether a plus or minus sign will be used in forming the 

coefficient aν for the current level of recursion from the corresponding coefficient of the 

previous level, or whether the calculation has been completed for the current level.   

 

3.3.  Calculation of diffusivity  in a spatially periodic medium 

 

3.3.1. Setup of the diffusion problem 

We now apply Direct Diagonalization of the rate constant matrix 
2νK  and MESoRReD to 

the problem of unidimensional diffusion in a periodic medium.  Our objective is to calculate 

the diffusivity along a particular direction from microscopic information concerning the 

geometrical arrangement of sorption sites in a unit cell and the rate constants for jumps 

between the sites. 

The particular system on which we focus our attention consists of an array of 2
λ
 unit 

cells (ν>>1) arranged along the l-direction, along which diffusion will be studied.  (In the 

application considered below, l will be x, y, or z.)    Periodic boundary conditions hold 
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between the left and right extremities of the array, as well as in the two transverse directions.  

Let Ld be the length of a unit cell along the l-direction and  2Lp = 2
λ
 Ld  be the length of the 

entire array of unit cells (see Figure 3.3).  We determine the diffusivity along l by studying 

the response of the system to a transient experiment.   Initially, all mass is placed in the two 

central unit cells, i.e. cells 2
λ-1

 and 2
λ-1

+1 in Figure 3.3.  The initial probability of occupancy 

of each state in each of these cells will be proportional to the state‘s equilibrium probability.  

In other words, the initial probability distribution among states is: 

eq
1 1

eq

1

1
,   if cell 2  or cell 2 +1 

2
(0)

0,            otherwise                          

i

n

ji
j

P
i

PP       Eq. (3.31) 

The time-dependent probabilities of all states, Pi(t), are then calculated based on the 

MESoRReD scheme developed in Section 3.2 for solving the master equation,  Eq. (3.6), up 

to a maximum time tmax.   A flow sheet for this calculation is given in Figure 3.8.   

As a test for the analytically based MESoRReD, we also solve the master equation 

numerically, as a set of first-order differential equations constituting an initial value problem, 

using the Euler method (see below). 

 

3.3.2. Continuum formulation of the diffusion problem 

 

The diffusivity along direction l (l=x, y, or z)  will be computed by matching the evolving 

probability profiles for the transient diffusion problem described above with the 

corresponding solution of  the continuum diffusion equation.
80

  For convenience, we place 

l=0 at the interface between unit cells 2
λ-1

 and 2
λ-1

+1 of Figure 3.3.  In the continuum 

formulation we speak of a probability density 
cell ( , )l t , resolved at the level of entire unit 

cells.  This probability density is related to the discrete probabilities of the previous section 

by: 

cell,

cell

  unit cell
centered at 

( ) 1
( , ) ( )

l

i

id d
l

P t
l t P t

L L
                       Eq. (3.32) 

The probability density 
cell ( , )l t  evolves according to the diffusion equation: 

2

cell cell

2
D

t l
           Eq.(3.33)
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Figure 3.8 Algorithm for calculating  the probability density profile for one-dimensional 

diffusion based on the MESoRReD scheme. 

Set 0t 

Increment 

by Γ

t

t

 

 

2 1
*

2
0

1
eq *

2
1

Calculate vector of reduced  

state occupancy probabilities at  via

1
e  , or

1
=   + e

where ,  are the eigenvalues and

eigenvectors of

(0)

(0)

m

m

n
t

m m

m m

n
t

m m

m m

m m

t

t

t









 
 

 
 









P x x
x

P P x x
x

x

P

P









2
 matrix K 

eq

cell,

Calculate ( ) ( ) .

Calculate cell occupancy probabilities at :

( ) ( ) ,   1,2,..., .

i i i

l i

i l

P t P t P

t

P t P t i




  

max ?t t

NO

YES

END

START

2 

2 

eq 1 1

max

Set initial probability distribution among states:

(0) ,  1,...,  within unit cells 2  and 2 1,

(0) 0  for all remaining (2 2)  states .

Set maximum time ,  out to which calculation

wil

ν ν

i i

ν

j

P P i n

P n j

t

   

 

l  be performed.

Form initial vector of reduced state probabilities (0).P

 



74 
 

where D is the diffusivity along the l direction.   The function 
cell ( , )l t  obeys the boundary 

conditions: 

cell cell
cell cell

, ,

( , ) ( , ),  and  

p p

p p

L t L t

L t L t
l l

                 Eq.   (3.34)  

and the initial condition: 

cell

1
,      

2( ,0)

0,             otherwise  

d d

d

L l L
Ll                                 Eq.  (3.35) 

With this initial condition, the profile 
cell ( , )l t  evolves so as to remain symmetric around l=0 

and 
cell / l  equals zero at ,0,  and p pl L L  at all times.   

As shown in Appendix F,
 
 the solution to the continuum diffusion problem of Eqs. (3.33)  to 

(3.35) is: 

 

2

cell
1

sin
1

( , ) cos
2

p

d
f

D t
Lp

fp pd

f L

L f l
l t e

L f L L

 
 
 
 





  
  

     
   

  
 
 

  








                               Eq. (3.36)  

For short times (t << Lp
2
/D) , a large number of terms (f>>1) is required in Eq. (3.36) to 

obtain accurate results. For such times an excellent approximation of the solution is provided 

by the solution to the problem of unidimensional diffusion into an infinite medium starting 

from the initial probability density of Eq. (3.35).  In that problem, the boundary conditions of 

Eq. (3.34) are replaced by the conditions: 

 cell cell
lim ( , ) lim ( , ) 0

l l
l t l t                                                                  Eq.  (3.37) 

The solution to the problem of Eqs. (3.33), (3.35), and (3.37) is:
79

 

cell

1
( , ) erf erf

4 2 2
d d

d

L l L l
l t

L Dt Dt
                                                            Eq. (3.38) 

with erf(x) being the error function of x.   

On the other hand, for t << Lp
2
/D  and |l|>>Ld, a reasonable approximation to Eq. (3.38), and 

therefore, to Eq. (3.36), is provided by the solution to the problem of unidimensional 

diffusion in an infinite medium starting from an initial probability density profile
81,82

 that has 

the form of a delta function in l.  That problem is comprised of the partial differential Eq. 

(3.33), the boundary conditions of Eq. (3.37) and the initial condition 

cell ( ,0) ( )l l                           Eq.  (3.39) 
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The solution to this problem is 

2

cell 1/2

1
( , ) exp

44

l
l t

DtDt
                                                                               Eq.   (3.40) 

In the iterative schemes used below to fit solutions of the discrete master equation to the 

corresponding solution of the continuum diffusion problem, Eq. (3.40) will be employed as a 

basis for obtaining an initial estimate of the diffusivity from the probability density at the 

origin, as  

 
2

cell cell

1

( / 2, ) ( / 2, )
4

2
d d

D
L t L t

t


  

 
 

 


                                                            Eq.  (3.41)  

where the approximation  

cell cell
cell

( / 2, ) ( / 2, )

2
(0, ) d d

L t L t
t                                                                Eq.  (3.42) 

has been invoked.  The probability density values 
cell

( / 2, )
d

L t  and 
cell

( / 2, )
d

L t  are 

obtained from the total probabilities of occupancy of unit cells 2
λ-1

 and 2
λ-1

+1, respectively, 

via Eq. (3.32). 

 

3.3.3. Fitting of continuum solution to the solution of the master equation 

Values of the diffusivity D in the l-direction are obtained by fitting the solution for 
cell ( , )l t  

from the continuum formulation, Eq. (3.36), and its short-time approximation, Eq. (3.38), to 

the profile of values
cell ( , )l t  in all unit cells of the system obtained from the solution of the 

master equation for the evolution of state probabilities via Eq. (3.32).  The algorithm used to 

perform this fitting (nonlinear regression) is outlined in Figure 3.9.   As seen from the 

algorithm, a separate estimate for the diffusivity, D(t),  is obtained at each time t through the 

nonlinear regression.  The Gaussian solution, Eq. (3.40), is employed to obtain an initial 

guess Dguess(t)  for the diffusivity at each time.   The discreteness of the network of states is 

expected to have a strong effect on the solution to the master equation at short times, when 

only a few states are populated.  At longer times, however, D(t) is expected to fluctuate 

around a constant asymptotic value.  The mean of D(t) extracted from the fit is taken as our 

best estimate of D in the studied direction, while the standard deviation of these values is 

taken as an estimate of the error in estimating D from the master equation results.  
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Figure 3.9 Algorithm for calculating  the diffusivity by fitting the solution to the continuum 

diffusion equation to the probability density profile from MESoRReD. 
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Fitting the continuum solution to the master equation is not necessary for obtaining the 

diffusivity, however. As shown below, D can be obtained directly from the spectrum of 

eigenvalues  of matrix 
2

K  computed via MESoRRED through a term-by-term comparison 

of the arguments of the exponentials appearing in the solution to the master equation, Eq. 

(3.7), and the continuum solution, Eq. (3.36). 

 

3.4.  Application to the diffusion  of  Xenon  in  Silicalite-1 

 

3.4.1. Brief description of the system and setup of transition rate constant matrices 

The zeolite silicalite-1 is a microporous crystalline material whose unit cell has the chemical 

constitution Si96O192.  Calculations here will be conducted with its orthorhombic form, which 

has lattice parameters (edge lengths of the unit cell) a= 20.07Å, b=19.92Å, and c=13.42Å 

along the x, y, and z directions respectively.  This zeolite is of great importance in separation 

applications.
83

 It possesses two intersecting systems of channels, both of diameter around 

5.5Å: Straight channels, which run along the b crystallographic axis (y-direction), and 

sinusoidal or zig-zag channels, which run along the a crystallographic axis (x-directions).  

The channel systems come together at intersections, which are more spacious (diameter 

around 9Å). Xenon (Xe) is one of the simplest molecules whose diffusion has been studied in 

silicalite-1, both experimentally and theoretically.  Molecular dynamics simulations of  Xe in 

silicalite-1 at a variety of temperatures and occupancies, as well as a Transition State Theory-

based analysis of its diffusion at low temperature and low occupancy, have been conducted 

by June et al.
84,62

  Here we apply our MESoRReD method to Xe in a periodic array of unit 

cells of  silicalite using the TST-based model developed by June et al.
62

  This offers us the 

advantage of immediate comparability of our results against theirs, in terms of diffusivity 

values obtained, memory (RAM) and central processor unit (CPU) time required. 

In the work of June et al.,
84,62

  silicalite was considered as rigid and its interaction with 

Xe was described as a sum of Lennard-Jones potentials between each oxygen in its 

framework and the Xe molecule.  These authors conducted a thorough analysis of the 

potential energy hypersurface experienced by Xe within the zeolite as a function of its three 

translational degrees of freedom, identified states and transitions between them, and 

computed rate constants i jk  for all transitions using Transition State  Theory with and 

without dynamical corrections.
62

  Our study will be conducted at 150K and will employ the 
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dynamically uncorrected transition state theory-based rate constants of June et al.  Although 

these values are expected to provide a less realistic (too high) estimate for the diffusivity than 

the dynamically corrected ones,
84,62

 they are adopted here because they (or, more precisely, 

their inverses ij
TST

 =1/
i jk ) are reported in full detail in Table 3.4 of June et al.‘s paper,

62
  

allowing reproduction of the diffusivity calculations presented in that paper.   

 

June et al.‘s
62

  analysis led to the identification of n=12 sorption states per unit cell for Xe in 

silicalite-1 at very low loading.  These fall in three categories: states in the interior of straight 

channel segments (S), states in the interior of sinusoidal, or zig-zag, channel segments (Z), 

and states inside intersections (I).  There are four states of each category in a unit cell, as a 

result of the Pnma symmetry of the considered silicalite crystal.  The spatial arrangement of 

these states in a unit cell is shown in Figure 3.10, based on Ref. 62. 

 

                                        

Figure 3.10  Schematic outline of the pore structure of a unit cell of silicalite.  Spheres 

represent the three types of sorption states (Z = sinusoidal-channel state, S = straight-channel 

state, and I = intersection state)  on the zeolite-sorbate potential hypersurface. The thick lines 

provide a rough depiction of the axes of straight and sinusoidal (zig-zag) channels.   

 

For Xe, which is a small molecule, Z and I states are more favorable, since they allow 

the sorbed molecule to maximize its attractive dispersive interactions with the surrounding 

zeolite framework.  I states, corresponding to the more spacious intersections, are less 

favorable.  The equilibrium probabilities of occupancy of the three types of states are shown 

in Table 3.1.  
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Table 3.1: Corrected Equilibrium Probabilities
62

  for Sorption States of Xenon  in 

Silicalite-1 at 150K 

               
eq

I
P                 

eq

S
P                 

eq

Z
P  

                0.014                 0.412                 0.574 

 

 

There is a rich connectivity among the states.  Apart from I to S and I to Z transitions and 

their inverses, there are direct transitions between S and Z states which circumvent the 

intersection regions, as defined in Ref. 62. There are eleven distinct types of transitions.  

These types, and their associated rate constants, taken from Table 3.4 of Ref. 62, are shown 

in Table 3.2. 

 

 

 

Figure 3.11 Transitions of xenon in silicalite-1, depicted as straight lines in three-dimensional 

space. Red color shows S (straight channel) states, yellow color shows Z (zig zag channel) 

states, pink color shows I (intersection) states. Green box defines the borders of one unit cell. 

Orange color shows the borders of cells along the x axis. 

Figure 3.11 provides a  pictorial depiction of the spatial arrangement of sorption states 1-12 

in a central unit cell (outlined with green borders) and of the periodic images of these states 

within adjacent unit cells located to the right (R) and to the left (L) of the central unit cell.  

The numbering of states adopted here is different from that of June et al.
62

 Here states 1-4 are 
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I states; states 5-8 are S states; and states 9-12 are Z states.  Figure 3.11 also shows the 

network of transitions as a set of straight line segments connecting the states.   

 

Each I, S, and Z state is connected to another 4, 6, and 8 states, respectively.  Thus, there are 

72 transitions per unit cell where forward and reverse transitions are counted separately.  The 

third column of Table 3.2 summarizes all transitions originating or terminating in states of the 

central unit cell; to each of these transitions a type and a rate constant are assigned in the first 

and second columns of Table 3.2. The rate constants of Table 3.2, along with the equilibrium 

occupancy probabilities of Table 3.1, are used in forming the 1212 matrix 
1K  as well as the 

1212  matrices 
L1K  and T

R1 L1K K  for transport in the x (considered in Figure 3.11), y, and 

z directions.  However, we first must check if the rates of Table 3.2 satisfy the equations of 

microscopic reversibility (Eq. (3.2)). If this does not happen, then 
2

K will not be symmetric, 

resulting in accumulation of error in the eigenvalue and eigenvector calculation.  To 

overcome  this obstacle, we first find how many types of states we have in the system we 

examine. In our case, we have 3.  This means that we have to calculate the 3 equilibrium 

probabilities ( eq eq eq

S Z I, ,P P P ), while we already know that eq eq eq

S Z IP P P 1within  a unit 

cell.  So, we need just 2 microscopic reversibility equations to calculate the 3 probabilities at 

equilibrium. We arbitrarily  chose the rates of I S,  S I,  I Z,  Z I
a a

     transitions 

reported by June et al.
62

 as a basis for our calculations and used them in 2 equations  of 

microscopic reversibility. From this process we found the  probabilities listed in Table I, 

which are slightly different from the probabilities reported by June et al.
62

  Next, we 

arbitrarily chose the I Z,  Z S,  S Z
b b a
     rate constants reported by June et al.

62
 as a basis 

for calculating all remaining rate constants.  The refined rate constants obtained in this way 

are listed in Table 3.2.  
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Table 3.2: Rate Constants
62

 for Interstate Transitions of Xenon  in Silicalite at 150K 

 

Type  of 

Transitions 

 

 

 Rate constant (s
-1

)  

kij TST

1

time constant ijη
  

  

 Transitions   

 

I S  
111.309 10  1 5, 1 6,  2 5,  2 6 ,

 3 7, 3 8,  4 7,  4 8    

S I  
94.444 10  5 1, 5 2,  6 1,  6 2, 

7 3, 7 4,8 3,  8 4    

I Z
a

 
102.958 10  1 9, 2 12,  3 10,  4 11   

L  

Z I
a

 
87.241 10  9 1, 10 3,  11 4,  12 2   

R  

I Z
b

 
101.501 10  1 10, 2 11,  3 9,  4 12   

L
 

Z I
b

 
83.673 10  9 3,  10 1, 11 2,   12 4   

R  

S Z
a

 
83.974 10  5 9,  6 9,  7 10, 8 10, 

7 11,  8 11,  5 12,  6 12   

L L

 

Z S
a

 
82.853 10  9 5,  9 6,  10 7, 10 8, 

11 7,  11 8,  12 5,  12 6   

R R

 

S Z
b

 
88.570 10  5 10,  5 11,  6 10,  6 11,  

7 9, 7 12,  8 9, 8 12    
L L

 

Z S
b

 
86.150 10  10 5,  11 5,  10 6,  11 6,  

9 7, 12 7,  9 8, 12 8   
R R

 

Z Z  
89.737 10  9 10,  9 10,  10 9, 10 9,  

11 12, 11 12, 12 11, 12 11

L R

L R

 

I represents a channel intersection, S  represents a straight channel, Z represents a 

sinusoidal channel state.  The indices under the arrows label the  route of the transition  

from a state i to a state j .     
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3.4.2. Application of  the recursive reduction method 

 

We chose to work with 2
7
(=128) cells in a row along the a, b, or c crystallographic 

directions (ν=7) and applied MESoRReD (Figures 3.4-3.8) and direct diagonalization (DD) 

of 
2

K , along with fitting to the solution of the corresponding continuum diffusion problem 

(Figure 3.9).  The diffusivity in each of the three directions was extracted from the temporal 

evolution of the occupancy probabilities of states, starting from the initial probability 

distribution of Eq. (3.31). A periodic system consisting of 128 cells in a row was considered 

long enough to be described satisfactorily by the continuum diffusion problem, Eqs. (3.33) – 

(3.35), at long times.  Evidence that this is true is provided below. 

All diagonalizations required in our recursive reduction algorithm were performed with 

the appropriate IMSL
85,86

 and LAPACK
87

 subroutines. From IMSL we used: 

a) the DRLIN
85

 subroutine to find the diffusivity which minimized the sum of square 

deviations as shown in Figure 3.9;  b) the DEVCCG
86

 subroutine for calculation of  

eigenvalues and eigenvectors of a complex or real general matrix ; c) the DEPICG
86

 

subroutine for calculating a performance index, as defined in Eq. (3.43).  From LAPACK we 

used the ZGEEV
87

 routine for eigenvalue and eigenvector calculation of a complex or real 

general matrix . For DD we used the IMSL routine DEVCSF which calculates the 

eigenvalues and the eigenvectors of a symmetric matrix. We note here that we use DEVCCG 

instead of  DEVCSF because the matrices appearing in MESoRReD are not necessarily 

symmetric. We also used the PGPLOT library to plot the occupancy probability profile for 

different times and assess the fitting process visually (see Figure 3.12). DEVCCG, ZGEEV 

and DEVCSF have in common that they use the QR method.
88

 Unfortunately, these routines 

invoke a default tolerance for convergence of the calculations. As shown in the  work of Ma 

et al,
89

 the tolerance sets the CPU time.  Given that the tolerance is common, we  expect that 

MESoRReD and DD will compute  eigenvalues with the same or very similar  accuracy.  We 

can use the routine estimate for the zero eigenvalue of 1K , 72
K as a criterion for the accuracy of our 

diagonalizations.  IMSL and LAPACK routines give -105.37 s-1
 instead of zero for this 

eigenvalue (worse accuracy than MATLAB R2009b-see below); this is actually satisfactorily 

close to zero, if one considers that the eigenvalue of  largest absolute value is       3.140 

10
11

 s-1.   
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The eigenvalues  determined for the nn=1212 matrices 
1K , 

1 RL12K K , and 

1 RL1 R1 1 L1( ) ...a a aK K K K     via the IMSL routine exhibited an absolute deviation of less 

than 10
-3

s
-1

 from those determined via the LAPACK routines, while the eigenvalue of 

smallest absolute value was 5.810510
5
s

-1
. This similarity of results between IMSL and 

LAPACK  is reflected in the eigenvalue spectra obtained for 
2

K via MESoRReD and shown 

in Figure 3.12a,b.  The eigenvalues determined by DD of the 2
λ
n2

λ
n=15361536 matrix 

2
K  via the IMSL routines (Figure 3.13c) exhibited a maximum absolute deviation of 

1.0310
-3

 s
-1

 from the eigenvalues determined  using MESoRReD.  We note here that, if the 

rate constants of Table 3.2 did not satisfy microscopic reversibility exactly, then DD would 

incur a very large error; in other words, DD exhibits extreme sensitivity to microscopic 

reversibility. On the other hand, MESoRReD, which merely diagonalizes 1212 matrices, is 

much less sensitive to how well the condition of microscopic reversibility is satisfied.  This 

robustness to small deviations from microscopic reversibility is a significant advantage of 

MESoRReD relative to DD as a method for solving the master equation of the spatially 

periodic system.   

As an additional check of the accuracy of numerical diagonalizations provided by the 

IMSL and LAPACK routines, we have calculated the Perfomance Index as 

2

1
2 2

max
 

j j j

j M
j

λ
PI

M ε 

 


A x x

A x
                                                                                      Eq. (3.43) 

where M is dimensionality of the matrix A whose eigenvalues λ and eigenvectors x we 

calculate and  
2
 symbolizes the Euclidean norm of a matrix. The machine precision ε is an 

upper bound on the relative error due to rounding in floating point arithmetic. In our case, ε is 

1.19210
-7

.   We have found that PI<1 for the nn=1212 matrices 1K , 1 RL12K K , and 

1 RL1 R1 1 L1( ) ...a a aK K K K      involved in MESoRReD, which indicates excellent 

numerical performance.
86

 The Performance Index applied to 72
K with the eigenvalues and 

eigenvectors obtained from MESoRReD is 32.2, indicating merely good performance. We 

attribute this to loss of  accuracy in the recursive calculations invoked for finding the  

eigenvectors.  The Performance Index for DD of 72
K , on the other hand, is 1.56810

-2
, 

indicating that DD of a strictly symmetric 72
K  can yield better performance than 

MESoRReD in the calculation of eigenvectors. An additional criterion of performance in the 
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diagonalization of 72
K is the sum of square deviations (SSD)  obtained at the end of the 

regression process described in Figure 3.9. Worst case values for this SSD for times between 

tinitial=10
-8

s and tmax=210
-5

s
  
using either MESoRReD or DD to diagonalize 72

K  were on the 

order of 10
-10

 Å
-2

.   

All eigenvalues were computed in units of s
-1

, while all eigenvectors were 

dimensionless. The routines we used for the diagonalization of small matrices yielded 

complex eigenvalues, where the absolute value of the imaginary part was lower than the 

absolute value of the real part by a factor of at least 10
6
, confirming that the eigenvalues are 

real, as theoretically expected from the symmetry of 
2

K .  Most of the eigenvectors 

computed for matrices of the type 
1 RL1 R1 1 L1( ) ...a a aK K K K     (Figure 3.7) contained 

complex elements.  Upon using all computed eigenvectors and eigenvalues within Eq. (3.7), 

however, the absolute value of the complex part of the state occupancy probabilities was 

lower than the absolute value of the real part of the same probabilities by a factor of more 

than 10
11

.  This indicates that the computed state and, therefore, unit cell [compare Eq. 

(3.32)] probabilities are practically real numbers, providing additional evidence for the 

validity and accuracy of the MESoRReD approach.   

MESoRReD significantly reduces the CPU time required for calculation of the 

eigenvectors of 72
K .  The calculation of the eigenvalues and the eigenvectors of 72

K  by DD 

demands 35.12 s of CPU time on the machine we have used (see below), in addition to being 

very sensitive to the exact symmetry of 72
K , as discussed above.   Of this CPU time, 4.51 s 

goes to the calculation of eigenvalues.  On the other hand, MESoRReD requires 0.14 CPU s 

to compute the eigenvalues  and eigenvectors of 72
K , of which less than 0.0059 CPU s goes 

to the calculation of eigenvalues.  The number of arithmetic operations needed for calculating 

the eigenvalues of an MM symmetric matrix scales as O (M 
2
) with the matrix dimension M  

when M is large, while we need  O (M 
3
) operations to  calculate the eigenvalues of a large 

MM general matrix.
88

 We remind the reader that the recursive scheme of MESoRReD 

involves the diagonalization of  2
λ-1

 in general non-symmetric matrices of dimension nn, 

instead of a single symmetric (2
λ
n)(2

λ
n) matrix.  The time required by MESoRReD to 

calculate the eigenvalues is by a factor of 765 lower than the time required for DD.   This 

ratio is significantly larger than the factor  (2
λ
n)

2
/2

λ-1 
n

3
 = 2

λ+1
/n = 21 expected from scaling 

assuming the same prefactors.   
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The state occupancy probability profile was calculated from the eigenvalues and eigenvectors 

of 72
K  as outlined in Figure 3.8 from tinitial=10

-8
s to tmax=210

-5
s  with step Γt=10

-8
s .  For 

t>tmax, ρcell(l=0)  ρcell(l=Lp) < 10
-5

Å
-1.  Beyond tmax the  system is practically at equilibrium 

and it is impossible to obtain an accurate estimate of the diffusion coefficient by fitting the 

profile to the solution of the continuum diffusion equation. Fitting of the probability density 

profile to extract a diffusivity at every time examined followed the algorithm outlined in 

Figure 3.9.  The SSD at the minimum oscillates in the area of 10
-10

Å
-2

.  Performing the fitting 

for a specific time requires 2.69 CPU s on the machine we have used (see also Table 3.3). 

Probability density profiles calculated from our recursive reduction method at times of  

10
-8

s, 210
-8

s and  410
-8

s are shown in Figure 3.14 with the colored points.  The symmetry 

of the profiles in Figure 3.12 around l=0 is a criterion for success of the calculations.  Lines 

drawn through each set of points with the same color display the fittings with the solution to 

the continuum diffusion equation. All three profiles along each direction yielded the same 

value for the diffusion coefficient along that direction.  These values are listed in the sixth 

row of Table 3.4 (row labeled ―MESoRReD-TST‖).  

Setting up the matrices 
1K  , L1K  is a prerequisite for applying MESoRReD.  The effort 

required of an experienced user of the code to do this is very small.  In fact, only half of the 

elements of these matrices need be declared, the other half being calculable via the 

microscopic reversibility condition, Eq. (3.2). 

The FORTRAN program we have developed to implement MESoRReD required 

42MB of RAM.  All calculations  reported in this paper were undertaken on a personal 

computer with the following characteristics:   

a) Intel Celeron CPU E200 at 2.40 GHz 

b) 1.99GB RAM 

c) Microsoft Windows XP Professional, Version 2002, Service Pack 3   

d) Compaq Visual Fortran Version 6.6    
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Figure 3.12  Spectrum of eigenvalues λ in the 128 unit cell system [see Eq. (3.7)] for 

diffusion in the x direction using a) MESoRReD and the IMSL routine; b) MESoRReD 

and the LAPACK routine. c) Factors –λFICK = Dxx(fπ/Lp)
2
 , f=1, 2, … multiplying time 

within the exponentials in the macroscopic solution to the diffusion equation,     Eq. (3.36), 

for Dxx=

2
10 m

9.7132 10
s

.  The value λ=0 is not included.  
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Figure 3.13  Spectrum of eigenvalues λ for diffusion in the x direction using direct 

diagonalization and IMSL routines  for a) 1 unit cell system,  b) 16 unit cell system,  c) 

128 unit cell system . The value λ=0 is not included.   
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Figure 3.14 Probability density profiles for xenon in silicalite-1. Lines represent the fitting to 

the continuum diffusion equation.  Red diamonds, green stars and blue circles display the 

profile from analytical solution of the master equation for 110
-8

s, 210
-8

s and 410
-8

s, 

respectively through the MESoRReD scheme. The pink bars represent the probability density 

as obtained from numerical solution of the master equation by the Euler method for the same 

times.  

The spectrum of eigenvalues of 0 4 72 2 2
, ,K K K , as obtained from DD, is displayed in 

Figure 3.13, which is intended to show how eigenvalues change with the size of the system. 

We note that less than n=12 eigenvalues (11 if we do not count the zero eigenvalue) are 

displayed for 02
K . This is because some eigenvalues are double.  As we can see from Eq. 

(3.7), (negative) eigenvalues with large absolute value contribute less to the probability 

density profile.  In the system we study here, we associate the eigenvalue of largest absolute 

value with the fastest transition, which is the IS. This eigenvalue of  largest absolute value 

is observed for every direction x, y, z, as it is an eigenvalue of matrix 02
K .We remind the 

reader that the eigenvalues of 02
K are eigenvalues of  

2vK  for every direction x, y or z. In 

Figure 3.13 we can see that, as the system size increases, (negative) eigenvalues of smaller 

and smaller absolute value emerge.  These correspond to slower, longer-range motions, 

which need a larger system to be expressed.   Because a larger  system needs longer time to 

equilibrate than  a smaller one, we expect from Eq. (3.7) that the larger a system would have 
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a broader spectrum of eigenvalues, extending to eigenvalues of very small absolute value.  

Figure 3.13 verifies this expectation. The nonzero eigenvalue of smallest absolute magnitude, 

λ1, becomes smaller and smaller as Lp increases.                                                                                 

Comparing the solution to the discrete master equation, Eq. (3.7), to the solution of the 

continuum diffusion problem, Eq. (3.36), we see similarities. Both solutions have the form of 

a sum of exponentially decaying functions of time.  The preexponential factors appearing in 

each sum are dependent on the initial conditions, while the diffusion coefficient is, of course, 

independent of those.  In order for the solution of the master equation to go over to the 

solution of the continuous Fickian diffusion problem at long times, the exponents of the 

exponentials in corresponding terms of Eqs. (3.7) and (3.36)  must be the same for low-index 

(small absolute magnitude) eigenvalues. That is to say,  

2

,      1, 2,...f

f
D f

L
p

 
   
 
 


                                                                                           Eq. (3.44) 

where f=1 for the nonzero eigenvalue of smallest absolute value, f=2 for the nonzero 

eigenvalue of second smallest absolute value, etc.  Index f  here counts only distinct 

eigenvalues, in contrast to the index m appearing in Eq. (3.7).  In other words, when f is used, 

multiple eigenvalues are counted as one.  The nonzero eigenvalue of smallest absolute value  

will  contribute most to Eq. (3.7)  at very long times.  As a result, the diffusion coefficient can 

be calculated from Eq. (3.45) for a large system, where the discrete description is expected to 

go over to the continuous one at long times. 

 1

2

lim
pL

L
p

D


 
  
 
 




                                                                                                     Eq. (3.45) 

A graph of the functional dependence of the eigenvalues  f  on (fπ/Lp)
1/2

  suggested by Eq. 

(3.44) is shown  in Figure 3.15 for periodic Xe/silicalite systems of different sizes along the x 

direction  .  From this Figure it is clear that for large systems ( pL   ), and for small values 

of f, there is a linear region in the graph, from the slope of which one can immediately obtain 

the diffusivity D.  Figure 3.15 makes it clear that the set of eigenvalues for a 2
λ
n state system 

is a subset of the set of eigenvalues for a 2
λ
n state system with λ > λ, as predicted by the 

mathematical development of Part 3.2.  From Figure 3.15 and Eqs. (3.44), (3.45) we see that 

a reliable calculation of the diffusivity requires that eigenvalues of small absolute magnitude 

be computed with very good accuracy. A method for increasing the accuracy in the 

calculation of small eigenvalues has been presented by  Alfa et al
91

.  
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Figure 3.15 Dependence of eigenvalues on  

2

p

fπ

L

 
  
 

for 128, 64, 32 and 16 cell-systems along 

the x direction. f is the index of the eigenvalue, after sorting their absolute values in ascending 

order.  Multiple eigenvalues are taken as one.  Blue line indicates where the dependence 

diverges from linearity.   

 

In addition to finding the slope in Figure 3.15, we can calculate the diffusivity using 

Eq.(3.46) 

 
1 2

2
lim min

L
dD





 
            

 

Α







                                                                        Eq. (3.46) 

where  1 RL1 R1 L11 1
1 cos sin

2 2
ν ν ν

π π
i

 

    
        

    
A K K K K  are the nn matrices, within 

the MESoRReD scheme, which contribute the nonzero eigenvalue of 
2νK  with smallest 

absolute magnitude.  A proof can be found in Appendices G and H.  Eq. (3.46) is strategically 

very important, for it reduces the problem of calculating the diffusivity in a spatially periodic 

system via MESoRReD to finding the absolutely smallest eigenvalue of a single nn matrix!  
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For calculating the eigenvalues of    1 RL1 R1 L11 1
1 cos sin

2 2
ν ν ν

π π
i

 

    
        

    
A K K K K  , 

or equivalently  1 RL1 R1 L11 1
1 cos sin

2 2
ν ν ν

π π
i

 

    
        

    
A K K K K  (the proof of 

MESoRReD with matrices
1K ,

RL1K ,
R1K ,

L1K  instead of 
1K ,

RL1K ,
R1K ,

L1K was used to 

prove the existence of double eigenvalues) we have found it convenient to use the eigs 

function of MATLAB R2009b.
92

  This function  calculates absolutely small eigenvalues very 

accurately, while it provides the user the ability to change the settings of eigenvalue 

convergence criteria. For example, with its default settings, the eigs function calculates the 

zero eigenvalue of 
1K  as 5.15610

-6
 s

1
 in 0.0242 CPU s on the machine we have used, 

which is far superior to the accuracy offered by the IMSL and LAPACK routines discussed 

above.  Results from application of  Eq.(3.46) to our system are shown in Figure 3.16.   

 
1 2

2
min

L
dD

 
   
   

 
Α



 


converges very quickly with increasing ν to a specific value D 

for each direction.  However, because eigenvalues λ1 are extremely small for λ>21 ( for 

example, λ1,ν=21,x= 2.1569  10
-3

 s
-1

), it is impossible to calculate the diffusivity with 

satisfactory accuracy for very large values of λ.  We remind the reader that ν=21 means that 

we are dealing with a system of 2
21

cells, which is huge.   As we see from Figure 3.16, 

Eq.(3.46) gives us the ability to calculate diffusion for a wide range of system sizes.     

 

3.4.3. Comparison with other methods for calculation of the diffusivity 

 

As pointed out in the 3.1.1 section, there are several methods for solving the master equation 

for the evolution of state occupancy probabilities.  We have applied some of these methods to 

our problem of low-temperature and low-occupancy diffusion of Xe in silicalite-1, using the 

states, state probabilities, interstate transitions and rate constants summarized in Figures 3.10 

and 3.11 and Tables 3.1 and 3.2.  This allows us to check whether diffusivity values extracted 

from these alternative methods are consistent with those obtained through our new 

MESoRReD scheme and to compare the computational requirements of these methods 

against those of our new method.   
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Figure 3.16 Diffusivity of Xe along each of the principal directions of a silicalite-1 crystal at 

150 K, as calculated from Eq.(3.46) using the eigs function of MATLAB R2009b in periodic 

systems of 2
ν
 cells as a function of ν. Red diamonds, green stars and blue circles  display the 

diffusion coefficient Dxx, Dyy, Dzz respectively. 

 

The methods we have tried on our problem are the following: 

A) Kinetic Monte Carlo (KMC) simulations.  This is the most commonly used method 

for calculating diffusivities from a network of states with known state probabilities and 

interstate transition rate constants.  It has been applied to the Xe/silicalite-1 problem by June 

et al.
62

   We have performed our own KMC calculations to confirm consistency with the 

results of June et al.
62

 In our work we used a three-dimensional network of  10  10  10 unit 

cells (1000 unit cells total) with periodic boundary conditions in all three directions, on which 

we deployed  N=4000 walkers. We distributed the walkers according to the equilibrium 

probabilities of Table 3.1, which are consistent with the rate constants of Table 3.2.  With 

these choices our KMC runs were efficient, with a low level of noise in the results, allowing  

for a fair comparison with other methods for calculating diffusivities.  For KMC we used the 

algorithm described in Chapter 2.2.6. 

 

The diffusivity along the x direction is computed as the slope of the mean square 

displacement with respect to time at long times, via the Einstein relation: 

2
( ) (0)

lim
2

xx
t

x t x
D

t
       Eq.(3.47) 

where the angular brackets symbolize averaging over all walkers using multiple time origins.  

Similar expressions are used along the y and z directions.   
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For applying KMC, we constructed a FORTRAN program and ran it on the machine 

described in the previous section. The maximum time we simulated was 1087800 steps, or 

2.310
-2

 κs . Requirements to determine the diffusivity with an uncertainly comparable to 

that afforded by MESoRReD were:  

a) 6 MB RAM memory 

b) 6183.46 seconds (1 hour, 43 minutes, 3.46 seconds) of CPU time.    

y

x

z

(s)t
 

Figure 3.17 Mean Square Displacement as a function of time from our Kinetic Monte Carlo 

simulations. Red, green, and blue show results along the x (rα=x), y (rα=y) , z (rα=z) direction, 

respectively.    

 

Figure 3.17 displays the mean square displacement as a function of time along the x, y, and z 

directions as obtained from one of our KMC runs.  Diffusivities extracted from the KMC 

method as functions of the number of executed KMC steps are shown in Figure 3.17.  After 

an initial equilibration period, these diffusivity estimates are seen to fluctuate around well-

defined mean values (red parts of the curves).  The latter values, listed in the fifth row of 

Table 3.4 (row labeled ―Our KMC-TST‖) are in excellent agreement with the KMC results of 

June et al
63

  based on the dynamically uncorrected transition rate constants employed here 

(third row of the same table, labeled ―June et al. KMC-TST‖).  Both sets of KMC results are 
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in excellent agreement with results from MESoRReD (sixth row of the same table).   This is 

also seen from the comparison of  the cyan horizontal lines (diffusivities from MESoRReD 

method) against the fluctuating KMC estimates of the diffusivities in Figure 3.18. 

 

Figure 3.18  Diffusion coefficients along the  x,y,z directions calculated via Eq. (3.45) from 

KMC, as functions of the number of KMC steps. The cyan  lines indicate the values of 

diffusivity from MESoRReD based on analytical solution of the master equation by 

diagonalization of nn matrices and the algorithm of Figure 3.9 .  

 

Computational requirements for extracting the diffusivities from different methods in the 

xenon/silicalite-1 system are compared in Table 3.3.  Clearly, KMC is slower by more than 3 

orders of magnitude relative to our MESoRReD method with fitting to the solution of the 

continuum diffusion equation. KMC is slower by 5 orders of magnitude relative to 

MESoRReD with D calculated from the nonzero eigenvalue of smallest absolute magnitude 

[Eq. (3.45)]. It is also important to realize that KMC requires considerable effort in order to 

generate the lattice of states on which to conduct the KMC simulations.  Different systems 

are characterized by different lattices, so the researcher must modify a KMC  code 

considerably in order to port it to another system.  The MESoRReD method is more robust in 



95 
 

this respect, as setting up the  the 
1K   and 

L1K  matrices for a different system is quite 

straightforward.        

 

Table 3.3 CPU time and Memory (RAM) requirements for each method 

Method CPU Time(s)      Memory(MB) 

June et al MD
84

         309173
*
                 - 

Our Euler Method            23760.00             401 

Our KMC             6183.46                 6 

Direct Diagonalization and Diffusion coefficient 

calculation from Figure 3.9 algorithm 

         3  37.81
**    38 

 a)Find eigenvalues and eigenvectors           3  35.12  

 b) Find Diffusion coefficient by fitting profile of 

cell probabilities 

          3    2.69 

MESoRReD and Diffusion coefficient calculation 

from Figure 3.9 algorithm: 

          3    2.83  44 

 a)Find eigenvalues and eigenvectors            3    0.14 

 b) Find Diffusion coefficient by fitting profile of 

cell probabilities 

          3    2.69 

Direct Diagonalization (eigenvalues only) and 

Diffusion coefficient calculation from Eq.(3.45) 

          3    4.51 19 

MESoRReD (eigenvalues of all MESoRReD 

matrices only) and Diffusion coefficient calculation 

from Eq.(3.45) 

         3    0.0059   2 

*
using CPU time of our KMC and a ratio  0.02  taken from June et al

63
 for  the CPU 

requirements  of their MD and their KMC.  

**
we multiply by 3 to get CPU time needed for obtaining the diffusivity in all three directions.  

 

B) Euler Method. The master equation, Eq. (3.4), is an initial value problem (system of  

first-order differential equations in time) and can therefore be solved by numerical methods 

developed for such problems.  One such method is that of Euler,
88,93 

which relies on a 

discretization of the differential equations using a constant time step δt.  We have applied the 
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Euler method to solve the master equation for xenon in a system of 505050 unit cells of 

silicalite-1 without periodic boundary conditions.  In this calculation we have used a time 

step of δt=10
-12

s, which proved satisfactory.  Note that  the Euler method is very unstable,
93

 

longer time steps leading to divergence.  Initially all mass was placed at the center of the 

system, i.e., the probability for xenon to be in a central S state  was set equal to 1, all other 

probabilities being zero. We integrated the master equation forward in time to obtain the 

three-dimensional state probability profile { ( )iP t }.  From the state probabilities we calculated 

the time-dependent cell probabilities via Eq. (3.32) and from those we obtained the three-

dimensional probability density 
cell( , , , )x y z t  by dividing by the cell volume.  Subsequently, 

we calculated marginal probability densities in each direction by projecting the three-

dimensional distribution:
 

    
  

cell, cell cell( , ) ( , , , ) ( , , )x

y z

x t x y z t dydz x y z y z                                         Eq. (3.48)
 

and similarly for y and z.  For sufficiently long, but not too long times, these marginal 

probability densities are immediately comparable to the one-dimensional probability density 

profiles obtained via our MESoRReD method applied to linear arrays of 2
7
 unit cells with 

periodic boundary conditions.  Marginal probability profiles obtained via the Euler method 

are given as histograms in Figure 3.14.  Clearly, agreement with results from MESoRReD is 

excellent.   

The probability density profile 
cell( , , , )x y z t  from our numerical solution to the master 

equation via the Euler method corresponds to a solution of the diffusion equation in three 

dimensions with a delta function initial condition.  The marginal probability densities 

cell, cell,y cell,z( , ),  ( , ),  ( , )x x t y t z t  correspond to solutions of the unidimensional diffusion 

equation, Eq. (3.33), with a delta function initial condition.
81

  They should then be  described 

by the Gaussian form, Eq. (3.40).  By fitting this form to our results from the Euler method 

after 10000 time steps (time equal to 10
-8

s) we have obtained the diffusivities shown in the 

fourth row of Table 3.4 (row labeled ―Our Euler method- TST‖).  Clearly, these estimates are 

in excellent agreement with ones obtained from MESoRReD.  
 

For applying the Euler method for solution of the master equation we have developed a  

FORTRAN program. The computational requirements of this program on the machine we 

have described above are: 

a) 401 MB RAM memory 

b) 2.4 CPU seconds per integration time step. 
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This means that we needed 6 hours and 36 minutes of CPU time for carrying out 10000 

integration time steps, a time satisfactorily long for extracting the diffusivity through fitting 

with the analytical solution to the diffusion equation, Eq.(3.40). These computational 

requirements are summarized and compared to those of all other methods we have 

implemented in Table 3.3.  Clearly, the Euler method is much more time-consuming than 

both KMC and MESoRReD.  Also, from the point of view of ease of use, one should bear in 

mind that it is necessary for the researcher to modify the  code every time he/she wishes to 

study a new system.  

 

 Table 3.4: Diffusion coefficient  from different methods  for Xenon  in Silicalite at 150K 

 

Method 

Dxx (10
-10

 m
2
 

s
-1

)  
Dyy (10

-10 
m

2
 s

-1
) Dzz (10

-10 
m

2
 s

-1
) D (10

-10 
m

2
 s

-1
) 

June et al 

MD
62

 
4.3  10  0.99  5.1  

June et al 

KMC-DC TST
62

 
5.1  7.3  0.83  4.41  

June et al 

KMC-TST
62 

10  12  1.7  7.9  

Our Euler Method-

TST 
9.70  12.5  1.83  8.01  

Our KMC-TST 9.67 0.14  11.62 0.25  1.71 0.02  7.66 0.14  

Direct 

Diagonalization-

TST 

9.7088 0.0029  11.676 0.002  1.7627 0.0093  7.7157 0.0044  

MESoRReD-TST  

(using Figure 3.9 

algorithm) 

9.7088 0.0029  11.676 0.002  1.7627 0.0093  7.7157 0.0044  

MESoRReD-TST 

(using Eq.(3.45)) 
9.7132  11.684  1.7531 7.7171 

PFG NMR
90 

- - - 1.633  
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C) Molecular Dynamics (MD). This is the most straightforward method for studying 

diffusion in zeolite/sorbate systems based on atomic-level structure and interactions.  How 

useful MD will be for this purpose depends on how rarely the sorbate moves from one state 

to the other. For example, MD can be used in the xenon/silicalite-1 system to estimate the  

diffusion coefficient, as  transitions of Xe between I, S, and Z states are not so rare,  but it 

cannot be used for the benzene/silicalite-1 system.  In the latter system, benzene prefers to 

reside within specific sites (primarily corresponding to I states) in silicalite and moves 

extremely rarely out of these sites, across very high free energy barriers. Interstate transition 

rate constants
39

  kij for benzene/silicalite-1 are on the order of 10
6
 s

-1
.  In the case of 

benzene, a MD run would exhaust itself in tracking the fast motions of the sorbate within a 

sorption site and would hardly sample state-to-state jumps contributing to translational 

diffusion. 

MD simulations for xenon in silicalite-1 have been performed by June et al.
62,84

  They 

have not been repeated here.  Instead, we have used the ratio of CPU times reported by June 

et al.
63

 between their KMC and MD in order to estimate how long it would take in order to 

estimate the diffusivities along x, y, and z  at 150 K via MD simulation on the machine we 

have used in our calculations.  As seen in Table 3.3, brute-force MD would require 309173 s 

to calculate a diffusivity at 150 K. This time is extremely long compared to those of the rate 

constant-based methods, underlinng the utility of the latter at low temperatures.   

Direct MD simulations provide an ―exact solution‖ for the diffusivity for the force field 

used, free of any approximations associated with infrequent event analysis.  The values of 

Dxx, Dyy, Dzz obtained by June et al.
62,84

 at 150K are reproduced in the first row of Table 3.4 

(row labeled ―June et al. MD‖).  In the second row of the same table (row labeled ―June et al. 

KMC-DMC TST‖) are provided the corresponding values obtained by June et al
62

 via KMC 

using rate rate constants computed via dynamically corrected transition state theory in place 

of the dynamically uncorrected values listed in Table 3.2.  Dynamically corrected TST is seen 

to provide a very good approximation of the exact  MD results.  If dynamical corrections are 

not applied (rows 3-8 of Table IV) the diffusivities are overestimated, as expected.  In the last 

row of Table 3.4 (row labeled ―PFG NMR‖) is the best experimental estimate of the 

orientationally averaged self-diffusivity at 150 K and an occupancy of 3-4 Xe atoms per 24 

(Si + Al) atoms, or else 12-16 Xe molecules per unit cell, obtained via pulsed field gradient 

nuclear magnetic resonance measurements using 
129

Xe.
90

  Compared to experiment, the MD 

value of D is seen to be in the correct order of magnitude, but too high.   This disparity is 
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partly due to the  fact that experiments were conducted at finite occupancy, the self-

diffusivity being a decreasing function of occupancy.
94

  Defects present in the crystals used in 

the measurement may be another source for the difference between diffusivity estimates from 

PFG NMR and MD simulation.  Most of the disparity, however, is probably due to the simple 

molecular model (orthorhombic, high-temperature form of silicalite-1) and force field 

invoked in the simulations.          
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Chapter 4  

Application of the new modified umbrella sampling 

methodology to the system of benzene in silicalite-1 

at infinite dilution 

4.1 Silicalite-1 and benzene interactions  

 

A forcefield for silicalite-1 has to be chosen. There is a wide range of charges on the silicon 

in forcefields for silicates from +4.0e
95

, to +2.4e
96 

, to 1.3e
97

 to +1.1e
98

, while the majority 

tends to the value of +1.6e.
99

  More complicated models
100,101

 which take into account 

polarizabilities for silica also exist. A nice discussion of charges found in the literature is 

given in the work of Bordat et al.
102

 They choose to modify the BKS
96

 model by assigning 

charges of +1.6e to silicon. Charges are an important parameter especially for silicalite-1, as 

its hydrophobicity is dependent on these.   

   A variety of models for silica or, more specifically, for zeolites and silicalite-1, are 

available in the literature. However, few of these models are in the Ortho phase over the 

temperature range where this phase is stable and, as a result, few of them can be used for 

simulations. The criterion by which we chose the model employed here was to have 

reasonably realistic results at a small computational cost. Because of its low compressibility 

(bulk modulus 18.2 GPa),
103

 silicalite-1 is not distorted very much upon sorption; its atoms 

are displaced little from their equilibrium positions and, as a result, a harmonic 

approximation should be satisfactory for describing Si-O and O-O interactions. Another 

criterion was the ability to let the user choose his/her own electrostatics for the crystal, 

because of the wide range of charges suggested in the literature.  

Firstly, we have adopted the Vlugt and Schenk and the Smirnov and Bougeart models 

to describe silicalite-1, as described in detail in section 4.2.  The Vlugt and Schenk
104

 model 

is a modified version of the model of Demontis et al.
105

 The difference is that in the Vlugt 

and Schenk model each bond is considered to have its own equilibrium distance, equal to that 

extracted from the crystallographic measurements of Olson et al.
106

 This yields average atom 

positions that are in good agreement with the crystallographic structure, which is very 
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important for predicting diffusion, as pointed out by Krishna and Van Baten
107

 and by 

Zimmermann et al.
108

 This model is simple (it does not invoke nonbonded interactions among 

the atoms of silicalite) and it is consistent with the RUM theory.   When coupled with 

reasonable fluid-phase models for alkanes, it yields satisfactory predictions for their sorption 

equilibria.
104

  It does not reproduce well the actual volumetric properties of pure silicalite-1, 

however, as we have established through MD simulations.  We choose to apply the Vlugt and 

Schenk model here because of its simplicity, bearing in mind that it may not lead to fully 

satisfactory predictions.  

We also chose to work with the charges of Snurr et al.
36

 Their charges were +2.0e and -1.0e 

for Si and O atoms and +0.150 and 0.150 for H and C atoms of the benzene. Similar charges 

for benzene are recommended by Sun.
109

    

   From the COMPASS
109

 model for benzene and the models of Demontis et al
105

 and 

Smirnov et al
110

 for silicalite-1, we can conclude that the bond stretching and bond angle  

bending forces in benzene are 2-5 times stronger than the corresponding forces in silicalite-1. 

As a result, it is a more reasonable choice to work with a flexible silicalite-1 and a rigid 

benzene, instead of a flexible benzene and a rigid silicalite-1.   Here we have chosen to work 

with a rigid benzene with C-C and C-H bond lengths equal to 1.40 Å and 1.08 Å, 

respectively, for consistency with the previous work of Snurr et al.
36

 and Forester and 

Smith.
39

 

     We chose to do most of our calculations with an electrostatic field  that is fixed in 

space, emanating from the silicalite atoms in their equilibrium positions according to the 

charges of Snurr et al.
36

 This trick saves us a lot of computational cost, as the computation of 

electrostatic interactions is the slowest stage of the energy calculation. We have chosen to 

work with a static electrostatic map in order to have the same electrostatic field as Snurr et 

al.
36

 and therefore be justified in using the same Lennard-Jones parameters for zeolite-sorbate 

interactions as Snurr et al.
36

 The latter parameters have been shown to reproduce Henry‘s law 

constants for low-occupancy sorption of aromatics in silicalite-1 very successfully.  Another 

reason why we have chosen to work with a static electrostatic field is the great uncertainty in 

the partial charges attributed to silicalite-1 atoms mentioned in the beginning of this section; 

errors resulting from this uncertainty are likely to be more significant than errors due to 

neglect of thermal fluctuations in the electrostatic field.  Thus, in our calculations we have 

two main types of interactions: 1) silicalite-1 atoms with silicalite-1 atoms, and 2) benzene 

with silicalite-1 interactions. The silicalite-1 atoms interact with each through 1-2 and 1-3 
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harmonic potentials based on the Vlugt and Schenk
104

 model mentioned above.  The benzene-

silicalite interactions are divided into two categories:  

a) Lennard-Jones interactions between the oxygen atoms of silicalite-1 with the carbon and 

hydrogen atoms of benzene. These interactions are presented in detail in Tables 4.1, 4.2, 4.3 

and 4.4. Oxygens are considered as the only silicalite atoms with Lennard Jones interactions, 

as they are the outer atoms of the tetrahedra and ―protect‖ the silicon atoms; this 

approximation, originally due to Kiselev, was taken from Makrodimitris et al.
111

 and was also 

invoked by Snurr et al.
36 

The Lennard-Jones parameters are the same as those of Snurr et al.
36

 

They are chosen in such a way as to yield results in good agreement with experiment for  the 

sorption of rigid benzene in rigid silicalite.
38,50 

b) Electrostatic interactions.  Here, forces are exerted only on the atoms of benzene and not 

on the atoms of silicalite-1.  The partial charges of silicalite-1 are considered affixed to the 

equilibrium positions of Si and O atoms in the Ortho crystal, generating an electrostatic field 

which does not fluctuate with time.  This electrostatic field is pretabulated at the nodes of a 

fine cubic grid with voxel edge length 0.2 Å and computed by three-dimensional Hermite 

interpolation based on the pretabulated values.
112,84

 Clark and Snurr
45

 have shown the great 

sensitivity of electrostatics on crystallographic positions.  The combination of electrostatic 

map and Lennard-Jones interactions used here describe well the Henry‘s law constant of 

benzene in a rigid silicalite-1 model with atoms placed at the equilibrium positions of the 

flexible model we invoke in this work.
50

 Vlugt and Schenk
104

 have shown that Henry‘s law 

constants are not significantly influenced by the rigidity of the framework for small 

hydrocarbons.   

 To check the consequences of using a fixed electrostatic field on our results, we have 

performed some calculations with a fluctuating electrostatic field, wherein we assigned the 

partial charges of Table 4.3 to the instantaneous positions of Si and O atoms and let them 

move in space along with these atoms.  How electrostatic interactions were computed by 

explicit summation in this model of fluctuating charges is explained in Section 4.3. 

Furthermore, to check the consequences of keeping the benzene rigid, we performed 

some calculations using a flexible benzene model, described by the COMPASS force field.  

As the partial charges assigned to C and H atoms of the benzene in the COMPASS force field 

are somewhat different from those of Table 4.3, in these flexible benzene calculations we 

adjusted the charges on the Si and O atoms of the zeolite to ensure that framework-benzene 

electrostatic interactions would be described by the same potentials as when our rigid 



104 
 

benzene model was invoked.  These adjusted charges on silicalite atoms, along with the 

COMPASS partial charges on flexible benzene, are given in Table 4.5 below. 

By construction, the  Vlugt and Schenk
104

 model has an energy minimum at the 

crystallographically correct structure of Ortho silicalite-1.
106

  

 

4.2 Choice of force-field for the description of intra-silicalite-1 interactions 

 

The force-field of Vlugt and Schenk
104

 is a modified edition of the force-field of Demontis et 

al.
107

. Actually, the Vlugt and Schenk
104

 force-field uses the crystallographic equilibrium 

distances for all the bonds, while the Demontis et al.
105

 force-field uses specific mean 

equilibrium values. As mentioned before, Clark and Snurr
45

 found it necessary to keep the 

zeolite atoms in their crystallographically correct positions
106

 in order to predict the Henry‘s 

law constant and the isosteric heat in close agreement with experimental values.  The 

Demontis et al.
105

 force-field describes the IR spectra of zeolites well; the same is expected of 

the Vlugt and Schenk
104

 force-field, as they use the same spring constants.  However, the 

Vlugt and Schenk
104

 force-field fails to keep the volume of silicalite-1 (the lattice actually 

collapses) when used in MD simulations under constant pressure (Parrinnello-Rahman 

isothermal-isostress algorithm with characteristic time ηP=1000fs)
113,114

 and constant 

temperature (Nosé-Hoover algorithm with characteristic thermostat relaxation time 

ηΤ=100fs)
114,115

 simulation, and so it can be used only in constant volume simulations. The 

above characteristic times are defined by Melchionna et al
114

 in the isothermal-isostress 

algorithm they present. From now on, we use the term DHFF-O (Demontis Harmonic Force 

Field-Original) for the Demontis et al. force-field and the term DHFF for the Vlugt and 

Schenk one.   Calculations reported below will be based on DHFF, unless indicated 

otherwise. 

A different force-field for zeolites has been proposed by Smirnov and Bougeard.
110

  We use 

the term SGVFF-O (Simplified Generalized Force Field-Original) for this one. They 

introduced harmonic angle potentials in addition to a harmonic bond potential for the Si-O 

bond. They also used specific mean equilibrium values for all the bond lengths and angles.  

We need to modify this force field by using the equilibrium crystallographic bonds and 

angles
106

, for the reasons mentioned before, if we want to study the diffusion of aromatics in 

silicalite-1. We call this modified force-field SGVFF.  From our calculations, by conducting 
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constant pressure and temperature simulations with the parameters we mentioned, we 

obtained a bulk modulus 20.63GPa for the SGVFF-O and 40.46GPa for the SGVFF. We 

remind the reader that the experimental value is 18.2 GPa
103

. It is important to add that, for 

pressures around 1atm, a negative thermal expansion coefficient is observed. Experiments 

also show this behavior
116

. The volumetric properties of these force-fields are illustrated in 

Figure 4.1. In the literature one can find other force-fields for silicates.
95-102,116

 However, 

these force fields incorporate explicit electrostatic and Lennard-Jones interactions among 

crystal atoms instead of the harmonic potentials invoked in DHFF and SGVFF.  We have 

decided to use only the DHFF and the SGVFF force-fields in our simulations of benzene and 

p-xylene in silicalite-1 because of their simplicity and relative success in reproducing pure 

silicalite-1 properties.   
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Figure 4.1 I) Pressure as a function of volume of silicalite-1, after 1ns of NPT MD 

simulation a) for SGVFF-O force field and temperature 300Κ (blue) b) for SGVFF-O force 

field and temperarure 465Κ (green) c) for SGVFF force field and temperature 300Κ (red) d) 

light orange point shows the experimental volume of Olson et al.
106

 e) purple star points show 

the volumetric behavior of silicalite-1 as synthesized using a bulk material dissolution 

technique
103 

(fluoride route) f) dark orange points show the properties of silicalite-1 which has 

been synthesized using NaOH, tetrapropylammonium bromide and tetraethyl orthosilicate as 

described in ref 103 (alkaline route) II) Volume of silicalite-1 unit cell as a function of 

temperature, a) after 10ns of NPT MD simulation using SGVFF-O force field b) after 10ns of 

NPT MD simulation using SGVFF force field c) experimental values by Krokidas et al.
116
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The comparative study of DHFF and SGVFF helps us examine how much the silicalite-1 

force-field choice influences our final results (free energy profiles, rate constants, diffusion 

coefficients).   All the force-fields parameters used in this work are provided in Tables 4.1-

4.5. 

 a) Silicalite-1 – Silicalite-1 interactions   

         i) DHFF
104

 

Table 4.1: Interactions between silicalite-1 atoms 

Form of potential    Spring constant k/kB (K/Å
2
) r0(Å) 

VSi-O(r)=kSi-O(r-r0)
2 

                    1.3 × 10
5
 

Equilibrium bond distance Si-O 

from crystallography106 

VO-O(r)=kO-O(r-r0)
2
 2.6 × 10

4
 

Equilibrium bond distance Ο-O 

from crystallography106 

 

         

 ii) SGVFF 
110

  

Table 4.2: Interactions between silicalite-1 atoms 

Form of potential    Spring constant k (kcal/mol/Å
2
 

  or  kcal/mol/rad
2
) 

r0(Å) or θ0(rad) 

VSi-O(r)=kSi-O(r-r0)
2 

                      298.65 
Equilibrium bond distance Si-O 

from crystallography106 

VO-Si-O(θ)=kO-Si-O(θ-θ0)
2
 69.055 

Equilibrium angles Ο-Si-O from 

crystallography106 

VSi-O-Si(θ)=kSi-O-Si(θ-θ0)
2 9.067 

Equilibrium angles Si-O-Si from 

crystallography
106
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   b) Silicalite-1 – benzene interactions
36,50

 

       i) rigid benzene  

          α) electrostatic interactions 

Table 4.3: Electrostatic interactions between silicalite-1 atoms with benzene atoms. 

Form of 

potential 
qSi(e) qO(e) qC(e) qH(e) 

el

0

1

4

i jq q

r
V  +2.0 1.0 0.15 +0.15 

 

          β) Lennard-Jones interactions 

Table 4.4: Van der Waals interactions between benzene atoms and silicalite-1 oxygens 

Potential Α (kcal/mol Å
12

 ) Β (kcal/mol Å
6
 ) 

C-O C-O

C-O 12 6
( )

A B
r

r r
V  

319072.6577 431.8833 

H-O H-O

H-O 12 6
( )

A B
r

r r
V  

38217.017 122.0841 

 

      ii) flexible benzene 

          α) electrostatic interactions 

Table 4.5: Electrostatic interactions between silicalite-1 atoms and benzene atoms. 

Form of 

potential 
qSi(e) qO(e) qC(e) qH(e) 

el

0

1

4

i jq q

r
V  +2.3658 1.1829 0.1268 +0.1268 

 

          β) Lennard-Jones interactions 

             Same as for rigid benzene 
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4.3  Details of explicit calculation of  electrostatics  

 

For the explicit calculation of electrostatic interactions with fluctuating charges on the 

silicalite-1 framework, we chose to use the particle-particle-particle mesh Ewald
117-119

 

summation method (P
3
M) in every timestep. Because we deal with a large number of atoms 

(more than 1000), the P
3
M method was preferred to the classical Ewald technique. In the 

former method the computational time scales as NlogN, while in the latter it scales as N
3/2

.
118

 

More specifically, in the P
3
M method we split the partial charges into a Gaussian and its 

complementary distribution, so that their total sum is a delta function at the position of each 

partial charge. We used a value for the split parameter =0.21732Å
-1

, or equivalently, a 

standard deviation of  1/ 2 3.2538   Å for the Gaussian charge distribution. In the 

P
3
M method a mesh is also needed. The contribution of the Gaussian charge distribution to 

the total force and energy can be calculated directly. In this case, we used a cutoff of 13 Å. A 

special technique is needed to find the contribution of the complementary reciprocal charge 

distribution. More specifically,  we used a mesh of 20×20×20 grid points for a system of 

2×2×3 silicalite-1 unit cells to solve the Poisson equation and finally to get the electric field. 

To solve the Poisson equation in a specific mesh, a fast Fourier transform was performed in 

the reciprocal charge density and then a reverse fast Fourier transform was also used to get 

the electric field. The parameters of the Gaussian and the mesh size were chosen so that the 

relative error in forces is less than 8.76 × 10
-5

, as is expected from theory.
120

 The reason we 

chose to work with 2×2×3 unit cells instead of the 3×3×3 we have used in the past, is the high 

computational cost when we increase the number of atoms (see above). On the other hand, 

we want to have large model systems to avoid possible size effects. To limit overall 

translational motion of the crystal in our finite simulation box caused by its collisions with 

the sorbate molecules, or to avoid a possible flying ice cube effect
121

, we have used a spring 

constant of 5000 kcal/mol/Å to tether the center of mass of the crystal in the simulation box 

to a fixed point in space. This spring force was applied only to the crystal, not to the sorbate 

molecules.     

More adjustments were needed to compare the influence on free energy profiles of the rigid 

electrostatic map versus explicit calculation of the electrostatic interactions with fluctuating 

charges. As we mentioned, the model of Vlugt and Schenk
104

 and a modified model of 

Smirnov and Bougeard
110

 was used to describe the flexibility of silicalite-1 and to keep its 
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atoms near their crystallographic positions.  In these models, electrostatic interactions among 

the atoms of silicalite-1 were effectively incorporated in the spring constants, i.e., no intra-

zeolite electrostatic interactions were considered. To apply P
3
M in this type of model, a 

special trick was needed because of the presence of the sorbate benzene molecule. In 

particular, in every timestep of the simulation, we first calculated the electrostatic forces for 

the system silicalite-benzene and secondly we calculated the electrostatic forces for the 

silicalite alone. Then, we subtracted the bare electrostatic silicalite-1 forces from the forces of 

the system silicalite-benzene. As a result, the electrostatic forces exerted on the benzene were 

calculated using the P
3
M, while only the electrostatic forces because of the benzene were 

exerted on the crystal.  Lennard-Jones interactions between benzene and silicalite-1, 

parameterized as in Tables 4.1-4.2, were added to the electrostatic forces.  A neighbor list 

was constructed for a radius of 15 Å and was updated every time an atom was moved by 

more than 1 Å. 

 

4.4  Details of the simulation of flexible benzene in flexible silcalite-1  

 

As already mentioned, the COMPASS
109

 model assigns different charges to benzene 

than those used in the works of  Snurr et al.
36

 that describe well the Henry‘s constant and the 

isosteric heat of benzene in the crystal. To deal with this, we decided to scale up by 1.1829 

the charges of silicalite-1 so as to make the electrostatic interactions between benzene and 

silicalite the same as in the previous models, while simultaneously keeping the intra-benzene 

electrostatic interactions consistent with those of the COMPASS model. This does not 

influence the silicalite-silicalite interactions, as the electrostatic contributions to those have 

been effectively incorporated in the spring constants. For all these simulations we used the 

wall potential and its parameters described in Section 4.2. However, for the explicit P
3
M 

calculation we used a timestep of 1fs rather than the 0.5fs that was used for the static 

electrostatic map calculations.  In this way, fewer  MD steps were needed for the same real 

time in the explicit P
3
M calculations.  In addition, a RESPA (Reference System Propagation 

Algorithm)
122

 technique was used in integrating the equations of motion for the flexible 

benzene model, using an inner timestep of 0.5fs for the spring and the wall potential forces 

and an outer timestep of 1fs for the remaining forces. The total wall potential force, 

dependent on the center of mass position, was assigned to each atom of benzene 
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proportionally to its mass.  In this way, the wall causes the same acceleration on all benzene 

atoms and no rotational motion is induced on the benzene molecule by the walls. 

 

4.5 Molecular Dynamics Simulation details 

 

We have used the Verlet
123,124

  algorithm for moving the zeolite atoms and the Fincham
125

 

leap-frog scheme to move the rigid benzene. We thermostat the zeolite atoms only by 

rescaling of their velocities. With a timestep of 0.5fs,  benzene manages to stabilize its 

translational and rotational  temperature as it exchanges energy with the flexible crystal. To 

ensure this, we always calculate the distribution of speeds of the benzene center of mass.  In 

all cases (see Figure 4.2) this was Maxwell-Boltzmann, as it should be in the NVT ensemble. 

Thus, the flexible crystal operates as a heat bath for the sorbate. Because the rigid benzene 

has only 6 degrees of freedom (3 translational of its center of mass and 3 rotational) instead 

of the 36 degrees of freedom that a flexible benzene would possess, the thermostating is 

difficult to establish in every area of the silicalite-1 channels. However as we can see in 

Figure 4.2, it is established in our simulations for the Vlugt and Schenk
104

 model we have 

used.   

               

Figure 4.2  Points: Speed distributions of  the benzene center of mass  in areas with large 

slope of local free energy during our simulations for 300K, 465K, 555K.   The lines are 

Maxwell-Boltzmann distributions at the corresponding temperatures.  
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To perform our simulations, we first had to introduce the geometry and topology of silicalite-

1 in our program. From crystallography data and the symmetry rules of the Ortho Pnma 

structure we constructed the contents of 333 cells with periodic boundary conditions. The 

unit cell parameters were a = 20.07 Å, b = 19.92 Å, c = 13.42 Å, so the dimensions of our 

periodic simulation box were Lx= 3a, Ly=3b, Lz=3c along the x, y, z directions, respectively. 

We chose to work with 27 unit cells in our box with periodic boundary conditions in order 

to minimize model system size effects. During our initial simulations we actually noticed a 

drift of the zeolite, which is attributed to the collisions of the benzene with the silicalite-1 

tetrahedra. Clearly, this would not happen in the real material for benzene at infinite dilution, 

and is undesirable. To deal with this problem, we moved the zeolite and the sorbate every 10 

MD simulation time steps so that the center of mass of the zeolite remained the same as in the 

beginning of the simulation. In addition, we subtracted from the velocities of silicalite-1 and 

benzene the silicalite-1 center of mass velocity.  Use of a large model system ensures that this 

correction for the drift does not influence the local behavior of the system. In addition, the 

bigger the system, the smaller the drift. A system of 27 unit cells was found to be large 

enough for the measures described above to eliminate drift.  If no correction for the drift were 

applied, the diffusivity of the benzene would be overestimated, as we shall see later.  

 

4.6 Results and Discussion  

 

From our first simulations with both flexible and rigid silicalite, we observed that 

benzene prefers to reside in the channel intersection regions of silicalite-1, contrary to smaller 

molecules such as Xenon
62

 and the lower alkanes, which prefer to reside in the interiors of 

channel segments. This is also in agreement with the computational works of Snurr et al.
36

 

and Forester and Smith
39

. 

We focus on rigid benzene in flexible silicalite-1, which are more reliable, because our 

flexible crystals can thermostat benzene.   

Following Step 2 of the calculation, as described in Chapter 2, we have prepared video 

2S. This video shows how we began from the 3-D free energy profile of the intersection and, 

while moving the walls, we discovered new 3-D free energy maps that we stitched together to 

obtain the total 3-D free energy map A(rCM). The free energy profiles we have obtained 

through the procedure described in Chapter 2 are presented in Figures 4.3 and 4.4. In these 
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Figures, one can see the sorption states in red color, while in blue color one sees areas that are 

rarely visited by the benzene.   

 

Figure 4.3 Cross-section of 3-D free energy profiles to planes for the straight channel at 

T=300K. The color bar is in units of kBT .   

 

Figure 4.4 Cross-section of 3-D free energy profiles  in the x-z plane going through a  set of 

sinusoidal channels at y=14.94 Å. The color bar is in units of  kBT.  The blue line is our 

initial path. The purple is a smooth line added to this initial path. The green line is just 

another path that could be used. The boxes show the area where the benzene center of mass is 

allowed to go if walls are used in the indicated parts of the paths.  
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Because of the symmetry of silicalite, we have calculated the profile in the straight 

channel over a quite restricted area. However, we have calculated the 3-D free energy profile 

for the sinusoidal channel over a larger region than was necessary given the existing 

symmetries, to show that periodicity is not satisfied fully. In Figure 4.4 we can see the 

sorption states of benzene, which are indicated with red color. We discern two sorption states 

in the sinusoidal channel. One state inside the sinusoidal (or else zig-zag) channel segment, 

which we will symbolize with Z, and one more in the intersection, symbolized by I.  From the 

colors, we see that the most preferable position is the intersection. We can see that state Z has 

different color on the left than the same state on the right. This is consequence of not fully 

accurate stitching of the free energy profiles in three dimensions. Despite these limitations, 

we can clearly see that it is easier, upon leaving an intersection region, to enter the sinusoidal 

channel segment to the left of the intersection (we will call this route a) than the sinusoidal 

channel segment to the right of the intersection ( we will call this route b). In Figure 4.3 we 

see a cross-section of the 3-D free energy profile going through a straight channel. Here we 

discern two sorption states. The state of the intersection (I) we encountered in the case of the 

cross-section going through the sinusoidal channel, and one state inside a straight channel 

segment, symbolized as (S).  

An example of an undesirable projection can be seen in the lower part of Figure 4.4.  

With green color we have sketched an arbitrary path.  We see that, for this path, points are 

projected in the saddle point region that should not be (see points inside the green box). The 

green path of Figure 4.4 is a bad path. Benzene will visit the red area of the 3-D free energy 

profile within the black box much more frequently than the area near to the green path. The 

area in the black box of Figure 4.4  is not affected by the walls;  however, because of the 

distance criterion, not all the points in the black box are projected on the path interval lying 

inside it. As a result, the free energy in this area of the 1-D free energy profile for the green 

path cannot be accurately computed. Probability values will need a very long time to be  

statistically equilibrated and the walls do not help in this, as they let benzene visit areas of 

higher probability.  Our choice for this path was to modify the initial path (blue line in Figure 

4.4) by smoothing a 1
st
 order discontinuity in the intersection region using a spline (purple 

color in Figure 4.4).  First order discontinuities along paths are undesirable, as the normal 

vector of the path, i, cannot be defined at such points and, consequently, the projection and 

the free energy profile are not defined.  The initial path can describe well the area near the 

saddle point. The points of the path are chosen to have a distance of 0.05 Ǻ from each other.  
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For lower distances (higher resolution), we obtained more noisy results in the 1-D free energy 

profile extracted from the A(rCM) map via  projection onto the path.  

Following Step 3 of Chapter 2, we studied the orientations adopted by benzene in each 

region of the intracrystalline space.  We study orientation through a unit vector normal to the 

benzene plane, depicted schematically as a red vector in the explanatory graphic of Figure 

4.5. From Figures 4.5, 4.6a, we can compute the rotational free energy profile of benzene in 

specific areas along the path. We see that it is possible for the benzene to rotate by 180 

degrees and acquire the same position, as expected from its symmetry. It is also obvious that 

there are specific orientations in the straight and in the sinusoidal channels which benzene 

does not prefer (the sphere indicating the orientational distribution of the tip of the normal 

vector is blue in these  areas). We compare our predictions for the benzene orientation against 

the orientations reported by Goyal et al.
126

 on the basis of powder neutron and X-ray 

diffraction measurements. Predicted orientations within the S and the Z channel states are 

practically coincident with the measured ones. In the intersection (I),  we have one orientation 

very similar to the one reported by Goyal et al.,
126

 but also a second one that is slightly 

different, as we can see in Figures 4.4 and 4.5. The rotational free energy profiles show that 

benzene has one orientational state when located in most areas within the sinusoidal and 

straight channels. In case there are two orientations, as happens near the saddle points of 

A(rCM), the free energy barrier between them is small relative to kBT and can be overcome 

readily at the considered temperatures.  In the intersection we also have two different 

orientations with low barrier between them, which means that they can be assigned as one 

state. 
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Figure 4.5  Local free energy associated with the orientational distribution of benzene at 

various center of mass positions along the straight channel at 300 K and experimentally 

determined orientations of Goyal et al.
126

 Color bar is in  units of (kBT).  

 

Based on these graphs we can decipher the way in which a  transition takes place from 

the intersections to the channel states. Benzene changes its orientation as it goes near the 

saddle points. Based on the graphs discussed above, we can proceed with reducing the free 

energy profile to 1-D.  Also, we expect that the initial orientation of the benzene will not 

influence its final distribution of orientations in each run. Figure 4.6b helps us associate the x 

coordinate with the curvilinear position coordinate ξzig measured along the contour of the 

transition path going through a sinusoidal path and so to associate the 1-D free energy 

profiles (Figures 4.7- 4.10) with the orientation and the exact position along the path.   No 

corresponding figure is presented for the straight channel, as it is not needed.  The transition 

path considered is a straight line consisting of points with coordinates  (x=10.00 Å, y=y,  

z=0.0), where y is the only variable that can change values, as we mentioned before. This path 

is the same as the initial one for the straight channel.  

In Figures 4.7b and 4.8b one can see the fragments of the one-dimensional free energy 

profile A(ξ) which are stitched together by vertical translation to give the 1-D free energy 

profile. Video 3S  provides an animated description of the stitching process.  
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 In Figures 4.7 and 4.8, we can see that the points from different overlapping fragments 

are very close to each other. We remind the reader that we used path intervals consisting of 

points that were 0.05 Ǻ apart.   With a smaller distance we would have more points to stitch 

but with more noise, while with a larger distance than 0.05 Ǻ we would have less points to 

stitch, which gives rise to difficulties  in areas with large slope of free energy profile, such 

as in the areas with  μzig =13-14 Ǻ  of  the sinusoidal channel.   

 

Figure 4.6 Top, a: Local free energy associated with the orientational distribution of benzene 

at 300 K at various positions along the sinusoidal  channel  in a unit cell. Bottom, b:  Graph 

describing the relationship between the reaction coordinate ξ and the x coordinate along the 

sinusoidal path we used. 

 

It is interesting to undertake a comparison of Figures 4.7 and 4.9 with Figures 4.3 and 

4.4 for the 3-D free energy profiles as well as with Figures 4.5 and 4.6 for the orientational 

distributions. This comparison confirms the existence of 3 states (I,S,Z).  Comparing our 

result with Forester and Smith‘s
39

 free energy profiles and with the corresponding profiles 

obtained from the rigid zeolite model, we can see that, in our flexible silicalite, some small 

barriers inside the channels predicted by Forester and Smith
39

 have disappeared. These 

barriers also exist in rigid free energy profiles. We attribute this change to the flexibility of 
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the Si-O-Si bond angle.  The Vlugt and Schenk
104

 model has no bending potential for this 

angle. In addition, artifactual barriers can arise in 1-D free energy profiles as a side effect of a 

path that does not curve well and because of the distance dependence of the definition of a 

projection.  The rate constant depends on the shape of the free energy profile and not only on 

the difference between saddle point and minimum, as Eq. (2.9) shows. In the graphs obtained 

through stitching we see that the periodicity of the profile across an entire unit cell is 

satisfied.  This provides additional confirmation that the stitching was successful.   

 

 

Figure 4.7 a) Free energy profiles for benzene, in RT units, as functions of the reaction 

coordinate  at temperatures of  i) 300K (blue) ii) 465Κ (red) iii) 555Κ (green) along the 

straight silicalite-1 channel for a crystal described by the DHFF force field and b) free energy 

fragments of the area between the walls (where there is no influence of the bias potential of 

the wall), from which the 1-dimensional local free energy profile has been derived by the 

stitching process.  S and I mark sorption sites (free energy minimum regions) in the straight 

channels and intersections. 
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Figure 4.8 a) Free energy profiles for benzene, in RT units, as functions of the reaction 

coordinate  at temperatures of  i) 300K (blue) ii) 465Κ (red) iii) 555Κ (green) along the 

straight silicalite-1 channel for a crystal described by the SGVFF force field and b) free 

energy fragments of the area between the walls (where there is no influence of the bias 

potential of the wall), from which the 1-dimensional local free energy profile has been 

derived by the stitching process.  S and I mark sorption sites (free energy minimum regions) 

in the straight channels and intersections. 
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Figure 4.9 a) Free energy profiles for benzene, in RT units, as a function of the reaction 

coordinate at temperatures of i) 300K (blue) ii) 465Κ (red) iii) 555Κ (green) along the 

sinusoidal silicalite-1 channel for a crystal described by DHFF force field and  b) free energy 

fragments of the area between the walls (where there is no influence of the bias potential of 

the wall), from which the 1-dimensional local free energy profile has been derived by the 

stitching process. Z and I mark sorption sites (free energy minimum regions) in the sinusoidal 

channels and intersections.  
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Figure 4.10 a) Free energy profiles for benzene, in RT units, as a function of the reaction 

coordinate at temperatures of i) 300K (blue) ii) 465Κ (red) iii) 555Κ (green) along the 

sinusoidal silicalite-1 channel for a crystal described by SGVFF force field and  b) free 

energy fragments of the area between the walls (where there is no influence of the bias 

potential of the wall), from which the 1-dimensional local free energy profile has been 

derived by the stitching process. Z and I mark sorption sites (free energy minimum regions) 

in the sinusoidal channels and intersections.  

 

 

From the three sets of free energy profiles we have calculated the rates for elementary 

transitions between states according to Eq. (2.14) at each of the three temperatures mentioned 

in Table 4.7, 4.8. This would cause the majority of trajectories which begin from the saddle 

point to be successful and limit barrier recrossing events.
68

  

 

Table 4.6: Definitions of states used in rate constant calculation for the system benzene-

silicalite-1 (SGVFF) 

State ξ(Å) 

Ι  (Figure 4.8) (12.80,17.08) 

I  (Figure 4.10) (9.96,13.80) 

S (Figure 4.8) (9.96,11.10)(18.60,19.92] 

Z (Figure 4.10) (3.50,8.56) 
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Table 4.7: Rate constants of transitions of  benzene in silicalite-1 (DHFF) 

Transition Temperature 

From To 300K 465K 555K 

I 

S 5.2410
5 

3.31410
7
 1.1310

8
 

Z(route a) 1.7610
6
 6.1810

7
 2.0110

8
 

Z(route b) 9.38210
4
 9.51 10

6
 3.29510

7
 

S I 1.88710
7
 1.09 10

9
 3.7210

9
 

Z 
I 3.0410

8
 3.22 10

9
 8.6610

9
 

I 1.61710
7
 4.97 10

8
 1.4110

9
 

 

 

Table 4.8: Rate constants of transitions of  benzene in silicalite-1 (SGVFF) 

Transition Temperature 

From To 300K 465K 555K 

I 

S 1.284×10
5
 1.1755×10

7
 4.6391×10

7
 

Z(route a) 3.776×10
5
 2.324×10

7
 5.916×10

7
 

Z(route b) 8.77×10
3
 2.08×10

6
 1.064×10

7
 

S I 2.21×10
7
 1.0818×10

9
 3.7563×10

9
 

Z 
I 2.53×10

8
 3.615×10

9
 5.09×10

9
 

I 5.881×10
6
 3.239×10

8
 9.16×10

8
 

 

 

 

 

 

 



123 
 

Table 4.9: Residence Probabilities of  benzene in silicalite-1 (DHFF) 

Probabilities Temperature 

 300K 465K 555K 

I 0.9675 0.9528 0.949 

S 0.0269 0.029 0.0288 

Z 0.0056 0.0182 0.0222 

 

Table 4.10: Residence Probabilities of  benzene in silicalite-1 (SGVFF) 

Probabilities Temperature 

 300K 465K 555K 

I 0.9928 0.9830 0.9766 

S 0.0058 0.0107 0.0121 

Z 0.0015 0.0063 0.0114 

 

Table 4.11: Mean Potential Energies and isosteric heat of sorption for  benzene in   silicalite-

1 (DHFF) 

Potential Energies Temperature 

kJ/mol 300K 465K 555K 

I 54.7794 50.1793 48.007 

S 58.8209 54.3226 52.0768 

Z 53.0205 49.3032 47.6678 

Qst 57.37242 54.14952 52.73095 
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Table 4.12: Mean Potential Energies and isosteric heat of sorption for benzene in     silicalite-

1(SGVFF) 

Potential Energies Temperature 

kJ/mol 300K 465K 555K 

I 54.5815 50.4817 48.5095 

S 53.949 50.9064 49.04 

Z 50.269 47.3384 45.97755 

Qst 57.071 54.33245 53.1061 

*Qst=56kJ/mol for benzene in rigid silicalite-1 at 250K 50 

**experimental values for benzene Qst  [51.3,58.0] kJ/mol 50 

 

Results for the low-occupancy self-diffusivity obtained with the KMC algorithm are 

presented in Figure 4.11.
 

The results obtained at each temperature from KMC and MESoRReD are in excellent 

agreement.   Those from MESoRReD are presented in Figure 4.12.  From these  two methods 

we calculated the diffusion coefficients shown in Table 4.13, which satisfy the Kärger 

relationship
42

  

2 2 2

zz xx yy

c a b
D D D

                                                                                Eq. (4.1) 

 

Knowing the diffusivity for each of these three temperatures, allows us to calculate the 

diffusion prefactor D0, and the activation energy Ea in the Arrhenius expression, Eq. (4.2). 

 

D=D0exp(Ea/RT)                                                                              Eq. (4.2) 

We have found D0
TST

= 1.8977×10
-8

 m
2
s

-1
 and Ea

TST
= 29.93 kJ/mol.  Experimental results

23
 

give D0= 2.30×10
-9

 m
2
s

-1
 and Ea= 30 kJ/mol.  
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Figure 4.11 Mean square displacement graphs for 300K, 465K and 555K as a function of 

time  

 

Other experimental results for diffusivity values available in the literature are presented 

in Figure 4.13, along with our predictions. The neutron spin-echo (NSE) results were 

obtained at the Institut Laue-Langevin using two different spectrometers. The first 

measurements were performed on IN11 with an incident neutron wavelength of 7.2 Å.
23

 

More recent experiments were carried out on IN15 with a higher resolution (incident 

wavelength of 14.5 Å).
129

 The concentrations in benzene were the same in both studies, 3 

molecules per unit cell, but silicalite was used in the recent experiments instead of ZSM-5. 

In addition to diffusion coefficients by TST,  dynamically corrected diffusion 

coefficients were also calculated after computing transmission coefficients for 300K, 465K 

and 555K. To obtain a transmission coefficient, we first analyzed the trajectories we had 

accumulated from simulations around the area of the saddle point.  From these trajectories, 

whenever benzene was projected on the saddle point (ξ=16.95Å  in the straight channel), we 

saved the velocities and the position vectors of all silicalite-1 atoms, the position vector, as 

well as the quaternions and the angular momentum of  the benzene molecule only if 50 steps 

(1 step=0.5fs) at least had elapsed since the previous save and only if the y component of the 

benzene center of mass velocity was smaller than 0. Next, we used the first 270, 460, 530 

saved configurations for 300K, 465K and 555K, respectively, as initial configurations for 
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new molecular dynamics runs in the absence of confining walls.  These runs had a duration of 

10 ps each, with a time step of 0.5fs; they quickly thermalized in one of the two states coming 

together at the saddle point. As we can see in Figure 4.2, the dynamical correction factor, 

obtained as discussed by Chandler and Voter,
67,68

 quickly converged to 

I S,300K I S,465K I S,555K0.81,  0.88 and 0.91 f f f  for 300 K, 465 K and 555 K, respectively.  So, 

transmission coefficients for rate constants are close 1, as  was anticipated because of high 

and sharp barriers  near the saddle points and the choice of a path that describes the dividing 

surface well.
59

   

 

 

Figure 4.12 Plots for 300K, 465K and 555K of diffusion coefficient per direction as a 

function of ν, as obtained from MESoRReD Eq. (3.46).   

 

If we assume that the transmission coefficient at each temperature is the same for  the 

remaining 2 transitions involving the sinusoidal channel, then from Eq. (3.46) we have an 

estimate of the self-diffusion coefficient 

TSTD fD                                                                                   Eq.  (4.3)         

Eq. (4.3) is a consequence of Eq. (3.46), if we consider that the eigenvalues of a scalar 

multiple of a matrix is the corresponding multiple of the eigenvalue. Using Eq. (4.3) we 

calculated the dynamically corrected diffusivities D300K=0.987 ×10
-13

 m
2
s

-1
, D465K=7.58 × 10

-
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12
 m

2
s

-1
, D555K=2.672 × 10

-11
 m

2
s

-1
. Note that Figure 4.12 displays only the TST diffusivities 

we calculated from our simulations, which are slightly different from the dynamical corrected 

ones. 

 

Table 4.13: Self-Diffusion coefficients of benzene in silicalite-1 (DHFF) 

Self-Diffusivity (m
2
s

-1
) Temperature 

 300K 465K 555K 

Dxx 8.67  10
-14 

7.90 10
-12

 2.707  10
-11

 

Dyy 2.50  10
-13

 1.56  10
-11

 5.3  10
-11

 

Dzz 2.895  10
-14

 2.36  10
-12

 8.6  10
-12

 

D 1.218  10
-13

 8.62  10
-12

 2.937  10
-11

 

 

Table 4.14: Self-Diffusion coefficients of benzene in silicalite-1 (SGVFF) 

Self-Diffusivity(m
2
s

-1
) Temperature 

 300K 465K 555K 

Dxx 8.568×10
-15

 1.89×10
-12

 8.869×10
-12

 

Dyy 6.323×10
-14

 5.731×10
-12

 2.247×10
-11

 

Dzz 3.38×10
-15

 6.378×10
-13

 2.855×10
-12

 

D 2.50×10
-14

 2.75×10
-12

 1.14×10
-11

 

 

From Figure 4.13 we can see that we overestimate the diffusion coefficient in 

comparison to all experiments for the DHFF model, while SGVFF shows excellent behavior 

for 300K, without being able to predict an activation energy near to experiment.
23,25-27

  This is 

mainly due to the model we have  invoked to describe the flexibility of the silicalite-1.  It 

seems advisable to try  other models, which describe better the volumetric properties of 

silicalite-1, in the future.   
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Figure 4.13 Diffusion coefficients calculated in this work for DHFF force-field and 

measured experimentally.  Brown color shows our calculations and measurement.   

 

 

Figure 4.14 Transmission coefficient f as a function of time and  temperature for the 

transition between Intersection (I) and Straight channel (S), as determined through MD runs 

initiated at the saddle point.  
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Chapter 5  

Sensitivity of free energy profiles to i) electrostatics 

calculation and ii) flexibility of the sorbate   

In chapter 4, we saw the results coming from the use of a static electrostatic map to 

describe the electrostatic interactions between silicalite-1 and benzene in order to enhance the 

speed of the calculations. This means that partial charges were considered fixed at the 

crystallographic positions corresponding to mechanical equilibrium of the pure crystal,
106

 

while the atoms of the crystal were able to move around these positions as dictated by a 

flexible model force field. The work of Clark and Snurr
45

 showed that it is necessary for the 

atoms of the crystal to oscillate around their crystallographic positions, otherwise the 

predicted Henry‘s law constant will deviate significantly from experimental values. Having 

this in mind, the model of Vlugt and Schenk
104

 was used to describe the flexibility of 

silicalite-1 and to keep its atoms near their crystallographic positions. In the present chapter 

we have decided to check the deviation in free energy profiles when we use a static 

electrostatic map versus explicit calculation of all electrostatics from moving partial charges 

on the zeolite. The latter explicit calculation is not trivial if we want to keep the atoms around 

their crystallographic positions, and special computational provisions are needed. The details 

of this explicit calculation are outlined in the chapter 4. 

From Figure 5.1 one can see that molecular simulation using a static electrostatic map 

is 8 times faster in 1 CPU than a simulation which uses explicit P
3
M

117-119
 calculation, even 

though the former was conducted on a larger number of atoms (3×3×3 silicalite unit cells 

instead of 2×2×3 of the P
3
M calculation). The static electrostatic map calculation is still 

faster, even though we use 8 CPUs in the P
3
M calculation.  At the same time the free energy 

profiles are practically the same, as one can see from Figure 5.2.  A large number of MD 

simulations are needed to obtain fragments of the free energy profile.  It is preferable to 

conduct many serial (1 CPU) simultaneous simulations than parallel ones on 8 CPUs, as 

Figure 5.1 shows that, in this way, we can achieve significant savings in computer time. 
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Figure 5.1 Computation time required a) for the system benzene-27 silicalite unit cells using 

a static map for the electrostatics and a time-step of δt=0.5fs  (red color); b) for the system 

benzene-12 cells (blue color) with explicit summation of electrostatic interactions from 

moving partial charges on the zeolite and a time-step of δt=1fs.  All calculations conducted 

on Dell PowerEdge 1950 QUAD Core Servers with Intel XEON E5430 processors at 2.66 

GHz and 16GB Memory. It must be noted that the subroutine which projects the center of 

mass of the sorbate molecule has been written for one only processor. However, the 

calculation of electrostatic interactions is by far the limiting step in all calculations. 

 

In addition to the simulations of the rigid benzene in flexible silicalite-1 with a) static 

electrostatic map and b) explicit calculation of electrostatic interactions with moving charges 

on the atoms, we decided to study the influence of the benzene flexibility on the free energy 

profiles. To do this, we used the Consensed-phase Optimized Potentials for Atomistic 

Simulation Studies (COMPASS) model to describe intra-benzene interactions.
109

 Because of 

the high computational requirements of the P
3
M calculation (see Figure 5.1), 1-dimensional 

free energy fragments were calculated for the range of 11.6 to 15.1 Å of the ξ coordinate of 

the straight channel. This range was chosen because of the large slope of free energy profiles 

observed inside it, which make it the most sensitive to flexibility issues.   

The free energy profiles calculated from the previous simulations are illustrated in 

Figure 5.2. From these results one can see that neither the use of a static electrostatic map nor 

the flexibility of benzene influence at all the 1-dimensional free energy profile. In addition, 

combining Figure 5.2 with Figure 5.1, one can see that the use of a static electrostatic map 



131 
 

and a rigid benzene is the most profitable method for simulating the sorption and diffusion of 

benzene inside silicalite. Similar behavior is expected for simulation of sorbates in crystals at 

such loadings of sorbate that a phase transition of the crystal does not occur. The method of 

using a static electrostatic map along with Lennard-Jones interactions which follow the 

oscillations of the atoms of the crystal can be very useful in the simulation of systems with 

very large unit cells, such as MIL100
128

, especially when one examines the diffusion of 

molecules with similar kinetic diameter as the MIL100 window.  In these systems the 

diffusants of interest can be drug molecules, as MIL100 crystals have been developed having 

drug delivery systems in mind.     
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 Figure 5.2 a) Local 1-dimensional free energy profile of benzene in silicalite-1 in the 

straight channel for a temperature of 555Κ using FF1(analytical calculation of electrostatic 

interactions with a flexible zeolite framework and a rigid benzene), FF2(analytical calculation 

of electrostatic interactions with a flexible zeolite framework and a flexible benzene), 

FF3(static electrostatic map and rigid benzene). b) free energy fragments of the area between 

the walls (where there is no influence of the bias potential of the wall), from which the 1-

dimensional local free energy profile has been derived by the stitching process.  is the 

reaction coordinate along the straight channel.  The labels S and I indicate the sorption sites 

(free energy minimum regions) corresponding to the benzene center of mass residing in the 

straight channel and in the channel intersection region, respectively  
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Chapter 6 

Application of the new modified umbrella sampling 

methodology to the system of para-xylene  

silicalite-1 at infinite dilution 

6.1 Molecular dynamics details 

 

To simulate p-xylene in silicalite-1 we have used the same algorithms (Verlet - rescale 

thermostat, Fincham),
123-125

 timesteps, wall parameters, and reaction coordinate paths as in 

Chapter 4 for benzene. The parameters of the rigid p-xylene (charges, bond lengths, Lennard-

Jones parameters) are described analytically in the Tables 6.1, 6.2 ; they have been used 

successfully in the past to describe Henry‘s constants, isosteric heats, and sorption isotherms 

of p-xylene in rigid silicalite-1
38,50

. The methyl group of p-xylene is represented in a united 

atom approximation.  

c) Silicalite-1 – p-xylene interactions
38,50

 

   α) electrostatic interactions 

Table 6.1: Electric charges of silicalite-1 atoms 

Form of potential qSi(e) qO(e) 

el

0

1

4

i jq q

r
V  +2.0 1.0 
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    β) Lennard-Jones interactions  

  Table 6.2: Van der Waals interactions between silicalite-1 oxygens and p-xylene atoms. 

Potential Α (kcal/mol Å
12

 ) Β (kcal/mol Å
6
 ) 

C-O C-O

C-O 12 6
( )

A B
r

r r
V  

319072.6577 431.8833 

H-O H-O

H-O 12 6
( )

A B
r

r r
V  

38217.017 122.0841 

CH -O CH -O

CH -O 12 6

3 3

3
( )

A B
r

r r
V  

1343213.291 926.023 

 

                                    

Figure 6.1 Para-xylene bond lengths and partial charges which were used in our simulations. 

The principal axes x,y are also illustrated and their start is the center of mass of p-xylene.  
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The principal axes of Figure 6.1  give Ixx=89.0112 amu Å
2
  , Iyy=330.7534 amu Å

2
, 

Izz=419.7646 amu Å
2
 .  In the principal axis system the off-diagonal elements  of the moment 

of inertia tensor are zero.   The principal axes must be considered if we wish to apply the 

Fincham integration algorithm
125

. 

 

6.2 Results 

 

In contrast to the benzene case, the 3-dimensional (3-D) free energy profiles of p-

xylene in silicalite-1 have not been studied in the past. We have chosen to use the paths 

proven to be satisfactory for the study of benzene in silicalite-1 and, by moving the repulsive 

walls along them, to acquire the 3-D free energy fragments for p-xylene as well. As pointed 

out in Chapter 4, these fragments are not accurate enough for computing transition rate 

constants reliably because of their high resolution and corresponding limited sample size; 

their main purpose is to show us the locations of the minima (states) and the dividing 

surfaces.  

The 3-D free energy profiles of p-xylene compared with those calculated in chapter 4 

for benzene are illustrated in Figure 6.2a. Clearly, p-xylene is more restricted in the 

intersection than benzene. From these profiles we can see that the straight line used in chapter 

4 is also satisfactory as a reaction coordinate (i.e., describes the dividing surface well) for 

projecting the center of mass of p-xylene and ultimately determining its 1-D free energy 

profile. Because we have used the same path (x=10 Å, y=y, z=0.0), we can compare the 1-D 

free energy profiles of benzene and p-xylene directly, as we can see in Figure 6.2b. There is a 

large difference between the 1-D free energy profiles in the region of the intersection. 
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Figure 6.2 a) 2-dimensional cross-section through the 3-D free energy profile of p-xylene 

(left) and benzene (right) for the plane x=10Å b) 1-dimensional free energy profiles of p-

xylene (red) and benzene (blue) and the 1-dimensional free energy fragments from which 

they have been constructed c)  Orientational free energy profiles of i) normal vector to 

benzene ring ii) normal vector to p-xylene ring and iii) carbon-methyl bond (methyl stem) of 

p-xylene. The orientational free energy profiles have been determined from the natural 

logarithm of the probability density distribution of the vector shown in red in the small 

molecular diagrams and are depicted as contour plots on the surface of a sphere for various 

values ξ of the reaction coordinate along the straight channel.  In these contour plots, red 

color signifies high probability for the orientation considered. All these calculations have 

been conducted with the DHFF force-field for a temperature of 300K. 
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Figure 6.3 a) Orientation of one methyl of p-xylene along the straight channel of silicalite b) 

Orientation of one hydrogen of benzene along the same channel for a temperature of 300K. 

Colorbar is in RT units. All calculations have been performed with the DHFF forcefield. 

 

To explain this, we use Figure 6.2c. In this Figure, the orientational free energy profiles 

of the phenyl rings of benzene and p-xylene are compared. We can see that in the intersection 

the benzene ring can orient easily in a variety of directions (cyan color on the surfaces of the 

little spheres), while it actually prefers one orientation (red color) for each position of its 

center of mass. P-xylene, on the other hand, behaves differently.  The normal vector to its 

phenyl ring exhibits a far less diffuse orientational distribution and a strong preference for a 

specific orientation (sharp red points on the surfaces of the little spheres) at each position of 

its center of mass. It seems to be very difficult for p-xylene to turn to other directions and its 
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long axis seems restricted to be roughly parallel to the axis of the straight channel of the 

zeolite. This means that benzene in the intersection adopts a lot more microstates than does p-

xylene and, as a result, its entropy in the intersection region is higher and its free energy 

displays a deeper minimum in the intersection region.  Thus, the difference in the 1-D free 

energy profiles between benzene (blue) and p-xylene (red) in Figure 6.2b is attributable to 

entropic effects associated with the ability of the molecules to adopt different orientations in 

the intersection region. We will elaborate on this topic later. Similar conclusions can be 

reached if we compare the methyl orientational free energy profile of Figure 6.2c  (and, for a 

better view, Figure 6.3a ), with the benzene hydrogen orientational free energy profile, Figure 

6.3b. The benzene hydrogen orientations have been measured by Quasi Elastic Neutron 

Scaterring and Nuclear Magnetic Resonance in the past
64,129

 and are in perfect agreement 

with the orientational free energy profiles of Figure 6.3b. It is also important to add that the 

ring orientational free energy profiles of benzene and p-xylene in the interior of the straight 

channel (far from the intersection) are very similar and this is the reason for the small 

difference between their 1-D free energy profiles within the channel.  Thus, we suspect the 

presence of a significantly higher barrier to translational motion along the straight channel in 

the case of benzene relative to p-xylene.   This barrier is of entropic origin and arises in the 

intersection region. 

We have performed  simulations for the temperatures of 405K and 485K in addition to 

300K, because as we will present later, Quasi Elastic Neutron Scattering measurements have 

also been conducted at those temperatures. The 1-D free energy profiles for these higher 

temperatures are illustrated in Figure 6.4. 

 Until now we have examined the free energy profiles in the straight channels. Next, we 

focus on the behavior of p-xylene in the sinusoidal channel. Similarly to the straight channel, 

we chose the sinusoidal channel path that has proved to be satisfactory for the study of 

benzene in silicalite-1.  By moving the repulsive walls we have acquired the 3-D free energy 

fragments. We have stitched these 3-D free energy fragments together and the final 3-D free 

energy profile is illustrated in Figure 6.5.  

 



139 
 

 

Figure 6.4 i) Free energy profiles  of p-xylene, in RT units, as a function of the reaction 

coordinate for 300K (blue),  405Κ (red), and 485Κ(green) along the straight silicalite-1 

channel for a crystal described by the DHFF force field (a) and the SGVFF force field (b) and 

ii)  free energy fragments of the area between the walls (where there is no influence of the 

bias potential of the walls), from which the 1-dimensional local free energy profile has been 

derived by the stitching process  

The path we used for the sinusoidal channel in chapter 4 and in Figure 6.6 was not able 

to describe well the areas of the intersection. The main reason for this is that p-xylene prefers 

the straight orientation (long axis of p-xylene parallel to the y direction, i.e., to the axis of the 

straight channels, marked as orientation C in Figure 6.5) when it finds itself in the 

intersection.  As a result, it very rarely  visits areas of the sinusoidal channel that are far from 

the red region within the intersection in Figure 5.6 and our sampling of these areas is not 
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reliable. Repulsive walls constructed vertical to the sinusoidal channel path are not able to 

keep p-xylene in specific areas of the intersection, as we can see in Figure 6.6. When placed 

in these areas, p-xylene prefers to leave and visit areas of the sinusoidal channel which are 

not constrained by the repulsive walls.  In addition, from the 3-D free energy profile we can 

see that constraining walls must be constructed with a large distance between them, so that 

they do not influence sampling in the intersection. In case they influence the sampling, the 1-

D free energy fragments will not stitch perfectly together.  After making these observations, 

we have tried to use other paths, which are illustrated with bold purple and  bold red color in 

Figure 6.7. The 1-D free energy fragments we obtained upon moving the repulsive walls 

along these paths were not able to be stitched together because they did not fit in some areas 

(see Figure 6.7). If we examine Figure 6.8, we can attribute this stitching problem to the 

existence of different orientational states. This means that we were not able to sample 

configuration space with precision, because p-xylene could be trapped in a free energy basin 

with low probability of escape.   

    

Figure 6.5 2-dimensional cross-section (at plane y=14.94Å) of the 3-dimensional free energy 

profile of p-xylene inside the sinusoidal channel for the DHFF force-field and temperature 

T=300K. Red color shows the areas where the p-xylene center of mass spends most of its 

time. The colorbar is in RT units.   
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In view of these problems, we chose to use a new path shown in red in Figure 6.5, 

instead of the old path shown in blue (actually including a spline to deal with the 

discontinuity in the intersection – see Chapter 5)  in the same figure, and to deal with the 

issue of orientation within the intersection as discussed below. The difference between the 

old and the new paths is localized just in the intersection area. This means that the 1-D p-

xylene free energy profile can be compared directly with that of benzene for values of the ξ 

reaction coordinate along the sinusoidal axis from 3.2 to 10 Å.  The new red path is shorter 

than the old blue one.   This new red path is the reaction coordinate of the 1-D free energy 

profiles of p-xylene shown in Figure 6.11.  We will elaborate on this Figure later.  

 

Figure 6.6 2-dimensional cross-section (at plane y=14.94Å) of the 3-D free energy profile of 

p-xylene in silicalite-1. The shaded area shows the space where no force from the walls is 

exerted if we use the green path.  Blue and green lines were examined as alternative paths in 

the past   
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Figure 6.7 2-dimensional cross-section (at plane y=14.94Å) of the 3-D free energy profile of 

p-xylene in silicalite-1. The bold red and purple lines are the new paths we tried to use. The 

spheres show the orientation p-xylene wants to assume, when it is projected in the specific 

position of the bold red path. Thin blue and green lines were examined as alternative paths in 

chapter 4.  The thin red path is another path we wish to examine. The 1-D free energy profiles 

we obtain along the bold red path are illustrated on the left. The grey colored boxes show the 

walls we used in the entrances of the intersection. 

 

Figure 6.8 Same as Figure 6.7, the only difference being that we have zoomed on the 

orientation spheres on the left. 
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Figure 6.9 Center of mass of p-xylene contour plot with a p-xylene molecule illustrated on 

the same scale with this contour plot.  
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Figure 6.10 i) Free energy profiles of p-xylene, in RT units, as a function of the reaction 

coordinate for 300K (blue), 405Κ (red), and 485Κ (green) along the sinusoidal channel of 

silicalite-1 for a crystal described by DHFF force field (a) and the SGVFF force field (b) and 

ii) free energy fragments of the area between the walls (where there is no influence of the 

bias potential of the wall), from which the 1-dimensional local free energy profile has been 

derived by the stitching process  

As we mentioned, the probability of p-xylene to visit areas in the intersection with 

orientations different from the orientation it adopts inside the straight channels is small. 

Consequently, a new technique must be used to constrain p-xylene to these orientations, so 

that we can sample them sufficiently. To do this, we have invented orientationally 

constraining walls. First, these walls must keep p-xylene in specific orientations without 

influencing the dynamics, as was done in the case of  the center of mass constraining walls 
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we have already discussed. Secondly, these orientational walls must exert zero total force on 

p-xylene.  

 If we use a biased potential V(y17), where y17=y7-y1, then a force will be exerted on the 

1st and 7th atom only (see Figure 6.11) and only in the y direction (which seems to describe 

well the dividing surface of the orientational free energy-for the importance of the dividing 

surface, see Figure 2.2). This force is described in detail by Eqs (6.1) and (6.2).  

 

 Figure 6.11 Description of the orientation wall and the way we can obtain the 1-D 

orientation free energy profiles. Green color is used for the methyl united atoms. 

If we use a bias potential V(y17), where y17=y7-y1, then a force described by eq S2 will be 

exerted on atoms 1 and 7.  
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The same force can be described more succinctly by Eq (6.2) 
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                                                      Eq.(6.2) 

 

The repulsive potential V(y17) has the same form as the repulsive walls on the center of 

mass described in Chapter 4. The y direction we chose for the orientation walls seems to 

describe well the orientational free energy dividing surface (see Figure 6.8). Moving these 

orientational walls along the y17 coordinate, we obtain 1-D orientational free energy profiles. 

To sample y17, we bin it in steps of 0.01 Å. In the projection of the center of mass of p-xylene 

and benzene, we have used steps of 0.05Å instead of  0.01Å. Because y17 can have values 

from 1.51Å to 1.51Å (very short compared with center of mass paths), we do not face noise 

issues using 0.01Å. As a result, this choice helps us improve our stitching accuracy.  

We remind the reader that the wall potential is given by Eqs. (2.3), (2.4). The parameter 

values for the center of mass walls used in all calculations here are: 

 

 
w =2.5 Å, 

w =0.5975 kcal/mol = 2.510
2
 amu Å

2
/ps

2
, 

1 w/R  = 0.60. 
2 w/R  =0.80   

The parameter values for the orientational walls used in all calculations are: 

w =2.5 Å, 
w =5.975 kcal/mol = 2510

2
 amu Å

2
/ps

2
, 

1 w/R  = 0.60. 
2 w/R  =0.80 

The 1-D orientational free energy profiles we get applying this procedure are shown in 

Figure 6.12. Figure 6.12 shows the existence of two orientational states in the intersection. 

The first state is the domain ξ[1.51 Å,0.90 Å)(0.90 Å, 1.51 Å] and we symbolize it as 

IS, while the second state is the domain ξ[0.90Å, 0.90 Å] and is symbolized as IZ.  In the 

first state p-xylene adopts the orientation it likes when it is in the straight channel, depicted in 

Figure 6.2c, in  Figure 6.3 and in Figure 6.5 (orientation C). This orientational state is much 

more favorable than the second state. In the second state, p-xylene prefers to have its ring in 

the x-z plane. Because this state is unfavorable and p-xylene rarely visits it, we decided to use 

orientation walls located in the saddle points of Figure 6.12. Simultaneously, we conducted 

molecular dynamics simulations with the use of center of mass repulsive walls for μ 

belonging to [10.00Å, 13.00 Å]. Using this method we managed to obtain the 1-D free energy 

profile of Figure 6.10.  
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Figure 6.12 i) Profiles of the free energy of p-xylene, in RT units, as a function of the 

reaction coordinate at 300K (blue), 405Κ (red), and 485Κ (green) for a crystal described by 

the DHFF force field (a) and the SGVFF force field (b) and ii)  free energy fragments of the 

area between the walls (where there is no influence of the bias potential of the wall), from 

which the 1-dimensional local free energy profile has been derived by the stitching process. 

The reaction coordinate is the projection of a C-CH3 bond onto the y axis.  

   

From Figure 6.12 of the main text, we can see that we have IS,R and IS,L states, where R stands 

for right and L is for left . From these states, we define IS as IS= IS,R IS,L . 

If we write the master equation of these states for the transitions between them, we have that  
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From Eqs (6.5) and (6.6), we can see that we can reduce the IS,R, IS,L and IZ states to IS and IZ 

states, without losing any information. The new rates for these new states are described by 

Eq. (6.7) and Eq. (6.8).   

          Eq.(6.7)  
Z I Z I Z IS S SL R

k k k
  

 
 

        Eq.(6.8)
S S SL R

I Z I Z I Zk k k     

We collect all the results for rate constants, probabilities, isosteric heats and diffusion 

coefficients in Tables 6.3-6.12 for p-xylene-silicalite-1 (DHFF), and p-xylene-silicalite-1 

(SGVFF).  
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Table 6.3 Definitions of states used in rate constant calculation for the system p-xylene-

silicalite-1 (DHFF) 

State ξ(Å) 

ΙS  (Figure 7 main text) (12.80,17.08) 

IZ  (Figure 9 main text) (9.96,12.96) 

S  (Figure 7 main text) (9.96,12.80)(17.08,19.92) 

Z  (Figure 9 main text) (3.50,8.56) 

 

Table 6.4 Definitions of states used in rate constant calculation for the system p-xylene-

silicalite-1 (SGVFF) 

State ξ(Å) 

ΙS  (Figure 12 main text) (12.80,17.08) 

IZ  (Figure 13 main text) (9.96,12.96) 

S  (Figure 12 main text) (9.96,11.10)(18.60,19.92] 

Z  (Figure 13 main text) (3.50,8.56) 

 

Table 6.5 Rate constants, in s
-1

, of transitions of p-xylene in silicalite-1 (DHFF model) 

Transition Temperature 

From To 300K 405K 485K 

IS 
IZ 2.34×10

8
 1.74×10

9
 5.61×10

9
 

S 4.47×10
7 

5.60×10
8
 1.65×10

9
 

S IS 6.59×10
7
 1.25×10

9
 4.08×10

9
 

Z 
IZ (route a) 7.82×10

7
 7.86×10

8
 2.25×10

9
 

IZ (route b) 9.20×10
7
 7.11×10

8
 1.88×10

9
 

IZ 

Z(route a) 4.20×10
9
 1.19×10

10
 1.56×10

10
 

Z(route b) 4.94×10
9
 1.08×10

10
 1.31×10

10
 

IS 1.87×10
11

 2.90×10
11

 2.81×10
11

 

*Routes a and b are defined in Figure 6.5 
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Table 6.6 Rate constants, in s
-1

,  of transitions of p-xylene in silicalite-1 (SGVFF model) 

Transition Temperature 

From To 300K 405K 485K 

IS 
IZ 4.74×10

7
 1.46×10

9
 4.79×10

9
 

S 7.25×10
6
 1.50×10

8
 4.35×10

8
 

S IS 9.86×10
7
 1.31×10

9
 3.71×10

9
 

Z 
IZ(route a) 9.77×10

7
 8.05×10

8
 2.45×10

9
 

IZ(route b) 6.19×10
7
 5.43×10

8
 1.40×10

9
 

IZ 

Z(route a) 1.14×10
9
 4.29×10

9
 8.91×10

9
 

Z(route b) 7.25×10
8
 2.89×10

9
 5.09×10

9
 

IS 7.42×10
10

 1.83×10
11

 2.32×10
11

 

*Routes a and b are defined in Figure 6.5  

Table 6.7 Residence probabilities of p-xylene in silicalite-1 (DHFF model) 

Probabilities Temperature 

 300K 405K 485K 

IS 0.5724 0.6485 0.6395 

IZ 7.16×10
-4

 0.0039 0.0128 

S 0.3884 0.2885 0.2589 

Z 0.0385 0.0592 0.0889 

 

Table 6.8 Residence Probabilities of p-xylene in silicalite-1 (SGVFF model) 

Probabilities Temperature 

 300K 405K 485K 

IS 0.9245 0.8586 0.8246 

IZ 5.9×10
-4

 0.0069 0.0170 

S 0.0680 0.0980 0.0965 

Z 0.0069 0.0365 0.0619 
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Table 6.9 Mean Potential Energies and isosteric heat of sorption of p-xylene in                         

silicalite-1(DHFF model) 

Potential Energies Temperature 

kJ/mol 300K 405K 485K 

IS 69.02 65.48 62.66 

IZ 53.21 49.89 47.65 

S 76.11 72.33 69.98 

Z 70.55 67.97 65.88 

Qst 74.31 70.92 68.69 

 

Table 6.10 Mean Potential Energies and isosteric heat of sorption of p-xylene in                        

silicalite-1 (SGVFF model) 

Potential Energies Temperature 

kJ/mol 300K 405K 485K 

IS 68.95 65.70 63.06 

IZ 53.86 49.00 47.56 

S 70.38 68.07 65.92 

Z 66.96 64.73 63.10 

Qst 71.51 69.15 67.10 

*Qst=70kJ/mol for p-xylene in rigid silicalite-1 at 250K [50] 

**experimental values Qst  [64.4,80.0] kJ/mol [50] 
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Figure 6.13 Mean Square Displacement as a function of time from direct Molecular 

Dynamics simulations for rigid p-xylene using the DHFF force-field at a temperature of 

485K. Red, green and blue show results along the x (ra=x), y (ra=y), z (ra=z) direction, 

respectively. 

 

In addition to the application of the curvilinear umbrella sampling we introduced in 

Chapter 2, we conducted 48 Molecular Dynamics (MD) simulations of time of duration 14ns 

for 1 p-xylene in 27 unit cells of silicalite-1, starting from 48 different initial positions. In all 

these simulations we have used multiple time origins to improve statistics and we have 

obtained the mean square displacement versus time curves of Figure 6.13.  From the slopes in 

this Figure, extracted via a linear least squares fit to the individual curves over the range of 

times, we have calculated the self-diffusion coefficients shown in  Table 6.11 of the main text 

(right column).    

                                                                                   Eq. (6.9) 
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Table 6.11. Self-Diffusion coefficients of p-xylene in silicalite-1 (DHFF model)  

Self-Diffusion(m
2
s

-1
) Temperature (TST) 

Temperature 

(MD- 

see Figure 6.13) 

 300K 405K 485K 485K 

Dxx 1.641×10
-12

 2.225×10
-11

 9.179×10
-11

 1.189×10
-10

 

Dyy 1.271×10
-11

 1.800×10
-10

 5.242×10
-10

 4.451×10
-10

 

Dzz 6.239×10
-13

 8.285×10
-12

 3.221×10
-11

 3.242×10
-11

 

D 4.991×10
-12

 7.020×10
-11

 2.160×10
-10

 1.988×10
-10

 

 

Table 6.12 Self-Diffusion coefficients of p-xylene in silicalite-1 (SGVFF model) 

Self-Diffusion(m
2
s

-1
) Temperature 

 300K 405K 485K 

Dxx 2.643×10
-13

 1.194×10
-11

 5.558×10
-11

 

Dyy 3.327×10
-12

 6.395×10
-11

 1.780×10
-10

 

Dzz 1.072×10
-13

 4.369×10
-12

 1.823×10
-11

 

D 1.232×10
-12

 2.680×10
-11

 8.390×10
-11

 

 

The values of Table 6.13 have been derived by linear least squares fitting of  Eq. (6.10) on 

the data of Tables 6.11 and 6.12. 

0 0exp ln lna aE E
D D D D

RT RT

 
     

 
                                                       Eq. (6.10) 
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Table 6.13 Diffusion prefactors (D0) and Activation Energies (Ea)  

System D0(m
2
s

-1
) Ea(kJ/mol) 

benzene 

Silicalite-1(DHFF) 1.89777×10
-8

 29.82232 

Silicalite-1(SGVFF) 1.49284×10
-8

 33.1895 

QENS 1.42371×10
-9

 27.4362 

p-xylene 

Silicalite-1(DHFF) 1.03883×10
-7

 24.75909 

Silicalite-1(SGVFF) 9.3062×10
-8

 27.9101 

QENS 1.62136×10
-9

 10.3676 

 

Figure 6.14 Diffusion coefficients calculated via simulations and Quasi Elastic Neutron 

Scattering (QENS).  
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Chapter 7 

Investigation of entropic effects 

 

From the tables of the mean potential energies for each state (Tables 4.11, 4.12, 6.9 and 

6.10) we can see that p-xylene has lower potential energy than benzene.  We also have in 

mind that 
NVT

A U TS K TS    V  where U is the internal energy, K is  the kinetic 

energy, V is the potential energy, T is the temperature and S is the entropy. In addition, we 

already  know the Helmholtz free energy barrier ΓΑ from Figures 4.7, 4.8, 6.2, 6.5. From 

now on, we define ΓΑ= 
Smax,IA 

Smin,IA . Similarly, we define the barriers for the internal, the 

kinetic, the potential energies and the entropy. It is important to mention that ΓΚ=0 because 

the simulations are in the canonical ensemble and, consequently, (ΓU)NVT =(ΓV )NVT. From 

the previous analysis we see that we just need to calculate the average potential energy 

around the maximum (we remind the reader that we have already calculated the potential 

energy around the minimum in the intersection in Tables 4.11, 4.12, 6.9 and 6.10) if we want 

to calculate the entropic barriers for the transition from the intersection to  the straight 

channel.  To do this we use the repulsive walls to keep the center of mass of benzene and p-

xylene in the interval ξ[12.60 Å,12.90 Å) of the straight channel. As a result, benzene and 

p-xylene move around the maximum of the 1-D free energy profile.  At the same time, we 

write down every 1ps the potential energy between the sorbate and the crystal. The total time 

of the simulations is 5ns. From this sampling, we calculate the mean potential energy around 

the saddle point and finally we calculate the internal energy barrier. We performed the 

calculations for 300K only, because this is the common temperature between benzene and p-

xylene in the simulations we mentioned before. We see these results in Figure 7.1 and Tables 

7.1, 7.2. From Figure 7.1 it is clear that the entropy barriers for benzene are much higher than 

those for p-xylene, while the internal energy barrier contributes the most to the free energy 

barrier. We would expect Smax,Is<Smin,Is because of the larger number of microstates in the 

minimum than in the saddle point. as we can see in 3-D orientational free energy profiles of 

Figures 6.2 and 6.3. From these Figures we can also see that benzene has much more entropy 

than p-xylene generally. This, of course, does not ensure that the same will happen with the 

entropy barriers.  However, in Figure 7.1 we see that the entropy barriers lead to a much 
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faster diffusion of p-xylene than benzene. As a result, benzene is more entropic than p-xylene 

and it also  experiences larger entropy barriers.  This conclusion does not depend on the intra-

silicalite-1 force-field chosen (DHFF or SGVFF).     

 

Table 7.1: Potential energy, free energy  and entropy barriers according to DHFF force field 

for the temperature of 300K. 

DHFF 

Benzene p-xylene 

A(kJ/mol) VS-Z (kJ/mol) A(kJ/mol) VS-Z (kJ/mol) 

Minimum 34.2204 54.779 0 69.0200 

Maximum 1.3967 34.217 24.0391 51.5931 

ΓΑ or ΓU 35.6171 20.562 24.0391 17.4269 

TΓS 15.0551 6.6122 

ΓS(kJ/mol/K) 0.0501 0.0220 

 

 

 

 

 

 

 

 

 

 



157 
 

Table 7.2: Potential energy, free energy  and entropy barriers according to SGVFF force field 

for the temperature of 300K 

SGVFF 

benzene p-xylene 

A(kJ/mol) VS-Z (kJ/mol) A(kJ/mol) VS-Z (kJ/mol) 

Minimum 0 54.5815 0 68.9500 

Maximum 39.2575 30.4226 28.4464 49.3074 

ΓΑ or ΓU 39.2575 24.1589 28.4464 19.6426 

TΓS 15.0986 8.8038 

ΓS(kJ/mol/K) 0.0503 0.0293 

 

 

 

Figure 7.1. Free energy barriers at 300K between the saddle point of the straight channel and 

the minimum of the intersection for benzene and p-xylene using the DHFF and the SGVFF 

force-fields, and their energy and entropy components. Green color shows the internal energy 

barrier, while the red color shows the contribution of the entropic barrier. 
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From Figures 6.2, and comparing the rates of Table 6.5, 6.6 of p-xylene with those of 

Table 4.7, 4.8, we see  the existence of small differences in rates for the transition S to I for 

benzene from the transition S to Is for p-xylene. In contrast, there is a large difference 

between the transition I to S of benzene and Is to S for p-xylene. Here we have to add that, 

from Eq. (2.17), if the free energy profiles were the same, one would expect the heavier 

molecule (p-xylene) to diffuse more slowly than the lighter benzene.  The same conclusion 

would be arrived at by naively comparing the kinetic diameters of benzene and p-xylene. In 

this interesting system, the heavier and larger molecule diffuses faster than the lighter and 

smaller one. This apparent paradox is explained by the entropic barriers we discussed  in 

Figure 7.1.  

From the 1-D free energy profile Figures, we see that the 1-D free energy fragments in 

all cases stitch perfectly together. This is evidence that we have sampled sufficiently the same 

micro-state or micro-states with low barriers between them. It also provides evidence that the 

parts of free energy fragments we stitch together are not influenced by the repulsive walls 

(center of mass walls or orientational walls).  Comparing the 1-D free energy profiles along 

the straight channels derived by DHFF and SGVFF force-fields, no significant differences for 

the potential energies in the intersections were found. However, differences were found in the 

S state, where, whether we look at benzene or p-xylene, the mean potential energy is always 

smaller in DHFF than SGVFF. Differences with the same trend for benzene and p-xylene 

appear for the 1-D free energy barrier in the intersection, where this barrier is always smaller 

according to the DHFF force-field than according to the SVGFF one. In the 1-D free energy 

profiles in the straight channels computed according to DHFF, the small barrier at ξ=11.2 Å 

has disappeared.  The same is true of the barriers at ξ=8.5 Å and ξ=14.5 Å noted along the 

sinusoidal channel. This could be an evidence that DHFF is more flexible than the SGVFF. 

We can also see from Tables 6.7, 6.8 that p-xylene has a very large probability to be in the 

intersection in SGVFF.  The intersection is still the most favorable state, but with much lower 

probability in DHFF. As regards the 1-D orientational free energy, the stitch continues to be 

very good. This constitutes proof that the Orientations A and B of Figure 6.5 have small 

barriers between them and can be lumped into one state, which we have called IZ . This was 

not obvious from Figure 6.8. Figure 6.8 shows the orientation preferred in spheres in a very 

constrained area of the intersection each time. For the 1-D orientational free energy profile 

we used all the intersection area.   
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In the beginning we mentioned that the Henry‘s law constant and isosteric heat for p-

xylene sorbed in silicalite-1 have been predicted in excellent agreement with experimental 

results for a rigid silicalite-1 model described by the Olson coordinates
106

. In this work, we 

also calculate the isosteric heat using  Eq. (2.18) combined with transition state theory. 

Another way to calculate the isosteric heat is the biased  insertion method introduced by 

Snurr et al. for the rigid crystal
38

.  However, because our crystal is flexible, a large number of 

frames would be needed to apply the same methodology with sufficient accuracy.   We found 

it preferable to apply transition state theory-derived probabilities along with eq (2.18). In our 

flexible crystal model, the isosteric heat continues to be in excellent agreement with 

experimental measurements. This is evidence that p-xylene-silicalite-1 interactions remain 

satisfactory for the study of sorption in flexible silicalite-1 besides the rigid one. Probabilities 

calculated in this work show that the intersection is more preferable for p-xylene and that the 

S state follows. X-ray measurements confirm this behavior 
130,131

.  

From Figure 6.10 in the interval ξ=(5,7) Å the free energy profile at 300K has a 

different shape than the profiles at the other two temperatures. We attribute this difference to 

the existence of two different orientations inside the sinusoidal channel. Because of the low 

temperature, benzene cannot pass from one to the other and it prefers to stay in the 

orientation it likes to have in the previous interval. We do not encounter this behavior at the 

other temperatures, because the higher temperatures help benzene to undergo the transition 

easily and, as a result, all the phase space is sampled. These two orientations in the sinusoidal 

channels can be also seen in Figure 4.6.  

It is important to add that a jump model is used in the interpretation of QENS 

measurements, considering diffusion only along the y-axis for p-xylene. From our results, we 

see that p-xylene diffuses much faster in the y direction than in the other two and, as a result, 

this justifies the jump model used here to derive the diffusion coefficients from QENS.   

From Figure 6.14 we see that simulations and QENS agree qualitatively that p-xylene 

diffuses much faster than benzene in silicalite-1 for the range of the temperatures we studied. 

Comparing the force-fields DHFF and SGVFF for the same range of temperatures, we see 

that SGVFF results for the benzene are in better agreement with experiment than those of 

DHFF. We cannot make the same statement for the p-xylene. QENS results display a much 

lower activation energy (Ea)  for p-xylene than for benzene in silicalite-1. The same behavior, 

but less strong, is noted from the simulations if we compare SGVFF-benzene with SGVFF-p-
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xylene activation energies and DHFF-benzene with DHFF-p-xylene activation energies 

respectively (compare Table 6.13). We have to add that the QENS activation energy for 

benzene has been calculated for all the 5 experimental points, one of which has been 

measured in a bare silicalite (Si/Al=∞)  and the others in ZSM-5 crystal with Si/Al=35.
23

 In 

Chapter 4, we had calculated separately the activation energy only for the ZSM-5 

experimental points.  Here we remind the reader that the QENS measurements have been 

performed at an occupancy of 3 benzene molecules per unit cell and 2.5 p-xylene molecules 

per unit cell. If we bear in mind that a unit cell contains 4 intersection states, and that benzene 

and p-xylene prefer to reside in intersections, then we have less than one benzene or p-xylene 

per intersection in these states. As a result, these loadings are not expected to behave very 

differently from infinite dilution. Furthermore, it is important to add that the activation 

energy for benzene using the DHFF force-field is in perfect agreement with the QENS results 

(see Table 6.13). From the SGVFF force-field for benzene, we obtain a larger activation 

energy than from the QENS measurements (by approximately 3.5kJ/mol). The activation 

energy agreement is very important, because it defines the behavior for a broad range of 

temperatures.  Small activation energy would result if the lines of 1-D Free Energy profiles 

(measured in RT units) exhibited only a slight dependence on temperature.  The transmission 

coefficient for individual transitions was not calculated in this work, as  it is expected to be 

close to unity, as shown in Figure 4.14. Actually, for the temperature of 485K and using the 

DHFF model we see from Table 6.11 that there is excellent agreement between the transition 

state theory-based diffusion coefficients and diffusion coefficients derived from direct 

molecular dynamics simulations. Here it is important to add that, for lower temperature, 

diffusion coefficients are extremely difficult to compute directly by MD, because of the large 

computer time we need. In addition, conducting transition state theory-based analysis helps 

us understand exactly the mechanism of diffusion via the free energy profiles. The rate 

constants can be also used for mesoscopic simulations in the future.    In Figure 6.14, other 

experiments are not mentioned.  The large differences in diffusivity between benzene and p-

xylene, which are found on the microscopic scale, cannot be observed by other experimental 

techniques, probably because of defects in the silicalite structure.
132
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Chapter 8 

Conclusions 

 

We have presented a new method for solving the master equation of a system evolving 

on a network of states that is formed by periodic replication of  a ―unit cell‖ of n states.   The 

mathematical development focused on networks consisting of 2
λ
 unit cells arranged along one 

coordinate direction with periodic boundary conditions at the ends, although different 

numbers of unit cells and replication in more than one coordinate directions could be handled 

by similar strategies.  Our new method rests upon expressing the time-dependent probabilities 

of occupancy of all states analytically as sums of exponentially decaying contributions from 

2
λ
n relaxation modes.  The time constants and amplitudes of these modes are calculated from 

the eigenvalues and eigenvectors of the matrix of interstate transition rate constants, 

transformed into a symmetric matrix by virtue of the conditions of microscopic 

reversibility.
74-76

  

We have analyzed how the symmetrized (2
λ
n)(2

λ
n)  rate constant matrix 

2
K  for the 

periodic system can be written in terms of the corresponding nn matrix 
1K  of the unit cell 

and the nn matrices L1K  and T

R1 L1K K  which collect the rate constants ―to the left‖ and 

―to the right‖ out of a unit cell across its periodic boundaries in the direction of replication.  

We have then shown that the eigenvalues and eigenvectors of  
2

K  can be obtained through a 

recursive reduction scheme involving the diagonalization exclusively of  nn matrices.  A 

detailed algorithm for this new recursive reduction (MESoRReD) has been presented in 

Figures 3.4-3.7.   

We have applied MESoRReD to the problem of low-temperature, low-occupancy 

diffusion of xenon in silicalite-1, studied previously with MD
84

 and infrequent event 

analysis
62

 methods by June et al.   In our application we have employed the sorption states 

and interstate transitions identified by June et al.
62

 (Figures 3.10, 3.11 and Table 3.1).  We 

have also employed the transition rate constants computed by June et al.
62

 based on 

transition-state theory without dynamical corrections (Table 3.2), to ensure direct 

comparability with previously reported results.  Diffusivities were calculated by matching our 

MESoRReD solution to the corresponding solution of the continuum diffusion equation 
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under the same initial and boundary conditions (Figures 3.9, 3.12).   Furthermore, by 

comparing the analytical solution to the master equation as a sum of exponentially decaying 

functions [Eq. (3.7)] to the analytical solution to the continuum diffusion problem [Eq. 

(3.36)] we have shown that the diffusivity can be obtained straightforwardly from the 

nonzero eigenvalue of smallest absolute magnitude obtained by MESoRReD [Eq. (3.45) and 

Figure 3.15].  Our new method yields estimates for the diffusivities Dxx, Dyy, Dzz along the 

three coordinate directions and for the orientationally averaged diffusivity D that are within 

3.5% and 2.5%, respectively, of the values reported by June et al.
86

 based on KMC 

simulations (Table 3.4).  Our own KMC runs in a three-dimensional array of unit cells 

yielded values which are within simulation error from those from MESoRReD.  As an 

additional check of consistency of  results obtained by the MESoRReD method, we have 

solved the master equation numerically as an initial value problem using the Euler method.  

Diffusivities from the Euler method display the same high level of consistency with those 

from our new method (Table 3.4). 

Thanks to its reduction of a (2
λ
n)(2

λ
n) matrix diagonalization problem to 2

λ
 nn 

matrix diagonalization problems, the new method affords great savings in computer time and 

in computer memory (RAM), especially as regards the calculation of the eigenvectors.  We 

have compared the computational requirements of MESoRReD against those of  Kinetic 

Monte Carlo, numerical solution of the master equation by the Euler method, and direct MD 

simulation for the problem of calculating diffusion coefficients for Xe in silicalite-1 at 150 K 

and low occupancy to the same level of accuracy (Table 3.3).  Calculation of the diffusivity 

after determination of all eigenvalues of the rate constant matrix of the periodic system 

through MESoRReD  is faster than KMC by a factor of 3.49310
5
, faster than the Euler 

method by a factor of 1.34210
6
, and faster than direct MD by a factor of roughly 1.74710

7
 

.  These acceleration factors are expected to be more favorable in more complex problems 

characterized by more rugged energy landscapes.  

Furthermore, for diffusion problems, we have tracked down which nn matrices within 

the MESoRReD reduction scheme contributes the nonzero eigenvalue of smallest absolute 

magnitude to the (2
ν
n)(2

ν
n) rate constant matrix of the full periodic system.  This allows us 

to obtain the diffusivity through determination of the absolutely smallest eigenvalue of a 

single nn matrix [Eq. (3.46) and Figure 3.16], which is trivial computationally.   

We conclude that the new method proposed here for solving the master equation by 

spectral decomposition based on recursive reduction of the dimensionality of the rate constant 
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matrix (MESoRReD) offers great computational advantages, relative to alternative 

deterministic or stochastic methods, for tracking the long-time evolution of material systems 

characterized by spatial periodicity.   Furthermore, setting up the 
1K   and 

R1K  matrices for 

implementing the method is quite straightforward.  FORTRAN codes implementing the 

method are available from the authors upon request.   

In addition to MESoRReD, a new infrequent event-based study of diffusion of 

benzene in silicalite-1 has been presented to complement the two main simulation studies that 

have been conducted on the subject in the past.
36,39

  We have used a flexible model for 

silicalite-1 described by Vlugt and Schenk,
104

 and a second flexible model based on the work 

of Smirnov and Bougeard.
110

 We have also introduced a new algorithm to reduce the 

possibility of overestimating the rate constants, hence the diffusion coefficients, in  Transition 

State Theory calculations.  We have discussed the risks associated with reducing the 

Transition State Theory calculation to 1-D from the full multidimensional problem.   

The orientational distribution of benzene in a variety of positions has been tested and 

compared against available experimental results.  Good agreement has been found with the 3 

of the 4 orientations extracted from experiments.   We show that, in the case of benzene, 

orientational states are separated by low free energy barriers, permitting an analysis of the 

local free energy as a function of the center of mass position only.  

We have introduced a technique for computing the local free energy using isothermal 

MD simulations in the presence of confining soft repulsive walls.  Using these tools, we have 

calculated the 3 dimensional free energy profile A(rCM) which helped us find one-

dimensional paths on which the benzene center of mass motion should be projected. We 

defined projections from 3-D to 1-D curvilinear transition paths, identified states and 

computed interstate rate constants from the 1-D local free energy profiles, A(ξ).  Three 

sorption states were located for benzene, a dominant one in the channel intersection region 

and two additional ones in the interiors of straight and sinusoidal channel segments.   

From the transition rate constants we have  calculated the elements of the self-

diffusivity tensor by  two different methods,  Kinetic Monte Carlo and  MESoRReD.
 
 Results 

from the two methods were in excellent agreement. Consistent with previous investigators, 

we have found that the diffusion is fastest along the y crystallographic axis and slowest along 

the z.  The orientationally averaged diffusion coefficient based on the DHFF force field was 

overestimated by one order of magnitude relative to experimental results, while the activation 
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energy from the simulation came out in almost perfect agreement with quasi-elastic neutron 

scattering measurements.   The SGVFF force field, on the other hand, yielded diffusivity 

values that are within a factor of 3 of those measured by QENS, but an activation energy that 

is by 20% higher than the QENS-based value. 

Previous works have pointed out the importance of framework flexibility for transport 

modeling in zeolite-type materials.
133,134

   

In this work we have first conducted a sensitivity analysis to determine how umbrella 

sampling-based free energy profiles of aromatic molecules in the zeolite silicalite-1 depend 

on the force field used to represent these systems.  We have shown that the use of a static 

electrostatic map in conjunction with a flexible zeolite model cast in terms of harmonic 

potentials among the atoms  is the fastest method by far for conducting our molecular 

simulations, without significant departure of the final results from those obtained by more 

elaborate model representations. The flexibility of the benzene model also does not seem to 

influence the results. One can conclude that representing the equilibriun structure and the 

vibrations of the zeolite lattice reasonably realistically is the key factor for the diffusion of 

aromatics in silicalite-1.  Of the two flexible force fields we have studied, the SGVFF yields 

volumetric properties for pure silicalite which are close to the experimental ones, including a 

negative thermal expansion coefficient. A method for applying the P
3
M technique for a 

zeolite crystal where intra-zeolite interactions are described by spring constants only, without 

simultaneously eliminating the electrostatic interactions with the sorbate, was explained. 

Furthermore, our repulsive wall curvilinear umbrella sampling strategy has been applied for 

the first time for a flexible sorbate. Finally, diffusion coefficients were calculated by finding 

the absolutely minimal nonzero eigenvalue of an appropriately designed rate constant matrix. 

The equation underpinning this calculation was proposed in the context of the MESoRReD 

method and allows going directly from interstate transition rate constants to diffusivities with 

negligible computer time, circumventing the need for costly kinetic Monte Carlo 

computations.  Results from these infrequent event analysis-based techniques were found to 

be in excellent agreement with the corresponding results obtained from direct molecular 

dynamics simulation of p-xylene in silicalite-1 at a temperature of 485K. The reader is 

reminded that only for p-xylene at this elevated temperature is intracrystalline dynamics fast 

enough to be captured reliably by direct MD, so our consistency check was necessarily 

confined to this state point.   
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Our simulation showed the existence of entropic barriers to translational motion with 

both flexible force-fields we have used for silicalite. These entropic barriers are much larger 

for benzene than for p-xylene in the channel intersection region.  A new technique of 

orientational confining walls was used to calculate the rate constant for transitions between 

different orientations of p-xylene in the intersection region.  This technique is an extension of 

our umbrella sampling using repulsive walls, invoked in computing the free energy of the 

sorbate molecule as a function of its center of mass position.  From the orientational free 

energy profiles  accumulated, it became clear that p-xylene strongly prefers to orient itself 

parallel to the straight channel axis when residing in the channel intersection region; 

transitions from this orientation to an orientation parallel to the sinusoidal channels are rare.  

Thus, diffusion along the straight channels and diffusion along the sinusoidal channels take 

place largely independently for p-xylene in silicalite-1.  A new path was proposed for 

translational motion along the sinusoidal channel for p-xylene, which differs from the 

corresponding path that has been used in the past for benzene.  A new technique for lumping 

sorption states and simplifying the network of transitions was also proposed. The atomistic 

dynamics can be described at a coarse-grained level through  introduction of two 

orientational states for p-xylene residing in the intersection region, IS and IZ.  Rate constants 

for all transitions involving these states have been computed by transition state theory. The 

situation for p-xylene in the intersection is markedly different from that of benzene, which 

can rapidly sample a variety of orientations and, as a consequence, can be described 

satisfactorily through a single intersection state, I, of low free energy (high entropy).  This 

difference is the physical reason for the much higher entropic barriers to translational motion 

experienced by benzene in comparison to p-xylene and for the lower diffusivity of benzene. 

Our simulations show that, for both aromatic sorbate molecules, channel intersections 

are the most favorable positions for sorption, with sites inside the straight channels coming 

second. Isosteric heats of sorption were calculated based on the transition rate constant 

analysis for both benzene and p-xylene with both flexible zeolite models (DHFF anf SGVFF) 

and found to be in excellent agreement with experiment.  

QENS measurements were conducted  and the obtained diffusivities were compared 

with those computed from the simulations.  Despite differences among simulation predictions 

obtained from different model representations, both QENS measurements and computer 

simulations lead to the conclusion that microscopic diffusion in silicalite-1 is by roughly two 

orders of magnitude faster for p-xylene than for benzene, because of the entropic barriers to 
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translational motion encountered by the latter due to its ability to reorient within channel 

intersections.  The elongated shape of p-xylene largely deprives it of this reorientational 

ability and enables it to move faster through channel intersections. 

In future work, other aromatics, such as toluene, ortho- and meta-xylene, can be also 

studied applying the methodology proposed here. In addition, the rate constants calculated 

here can be used in mesoscale calculations to address diffusion and reaction phenomena over 

larger length and time scales, e.g. within beds of silicalite-1 or ZSM-5.     
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Chapter 9 

Future Work 

 

As we mentioned in Chapter 4, there is a wide range of partial charges for silicalite-1 and 

for silicates general. Consequently, it would be good if a case study of the influence of the 

silicalite-1 charges on the self-diffusion coefficient was conducted in the future. It is very 

probable that a new, more sophisticated force-field for the sorbate-zeolite interactions may 

predict better the small entropy barriers that Quasi Elastic Neutron Scattering measurements 

show, which were impossible to predict with the existent force-field. In this thesis, we also 

saw that explicit electrostatics and flexible benzene give the same free energy profiles as a 

static electrostatic map and a rigid benzene. It is most probable that the same would happen 

with p-xylene. However, in order to be sure about this, it can be tested in the future.  

Furthermore, in this study we focused on the comparison of the self-diffusion of benzene and 

p-xylene inside silicalite-1 at infinite dilution. This comparison can include other aromatics 

that we did not study in this thesis (toluene, o-xylene, m-xylene) so that we can have a more 

general idea about the diffusion of aromatics in silicalite-1 at infinite dilution and its 

mechanism.  

Another study that would be useful to undertake is the calculation of self-diffusion 

coefficients for the mixture benzene/p-xylene. At infinite dilution, this could be accomplished 

using the transition rate constants we have calculated in this thesis and zero rate constants in 

case a position in silicalite lattice is already occupied by another sorbate. Of course, these rate 

constants can be used in combination with  Kinetic Monte Carlo. This cannot be extended to 

larger loadings of benzene and p-xylene. To calculate self-diffusion coefficients in such high-

occupancy systems, we have to apply again the CUS method just on one only sorbate 

molecule in the presence of other sorbate molecules, leaving the other sorbates uninfluenced 

by the walls. In this way, we can calculate transition rate constants appropriate for higher 

loadings. Applying this CUS methodology for different loadings, we can get the transition 

rate constants for every combination of loadings. Then we can use these rate constants (which 

will depend on the loading around the state the rate constant of which we want to calculate) 

by applying Kinetic Monte Carlo. In this way, Kinetic Monte Carlo will be much more 

realistic. Another aspect that can also be studied in the future is the surface barriers and the 
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rate constants for the transition from the crystal surface to the bulk phase and vice versa. 

Finally, application of the CUS methodology for the study of sorbates which are tight-fitting 

to new kinds of materials, such as Metal Organic Frameworks, would be valuable.     
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Appendices-Mathematical Proofs 

 

Appendix A: General solution of the Master Equation 

 

The symmetrized Master Equation, Eq. (3.6) of the main text, is actually a system of 

differential equations of first order. The general solution such a system is  of the form 

1
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n
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m m

m

t c eP x







           (A1) 

with 
mλ , 

mx  being the eigenvalues and eigenvectors of the matrix K of constant coefficients 

on the right-hand side.     

For t=0, Eq. (A1) gives: 
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where *

mx   symbolizes a vector whose elements are complex conjugate to those of 

eigenvector  mx  .  If K is Hermitian, its eigenvalues 
mλ  are real.  Furthermore, eigenvectors 

corresponding to different eigenvalues are orthogonal to each other.  This allows us to 

calculate the coefficients cm from Eq.(A2) as follows: 
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and consequently 
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In our application, K is a real symmetric matrix (a special case of a Hermitian matrix).   

Furthermore, one can choose the eigenvectors as 
2

/m m mu x x  and therefore 
2

1mu ,  

i.e., such that they form an orthonormal set.  Under these conditions, Eq. (A4) reduces to Eq. 

(3.7) of the main text.   

 

For  t  ,  using Eqs. (A1), (A4): 
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Appendix B:  Proof of Theorem 1 

By Eqs. (3.13-3.15) of the main text, 1 12 RL2
2ν ν K K  can be rewritten as: 
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Let  
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 be an eigenvalue of 1 12 RL2
2ν ν K K , with corresponding eigenvector 
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Using Eqs. (B1) and (B2), we write the eigenvalue equation as 
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Multiplying the second of Eqs. (B4) with a coefficient a and adding the two equations 

together, we obtain: 
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If coefficient a is chosen such that 
1

a
a

  , or 2 1a   , or a i         (B7) 

where i is the imaginary unit, then Eq. (B7) reduces to a single eigenvalue equation, 
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       2 2 2 2 2 2 2 2
1 12 RL2

22 RL2 R2 L2 2 ,C 2 ,D 2 ,C 2 ,Dν ν ν ν ν ν ν ν
ν ν

a a λ a       
 

      
  K K

K K K K x x x x   (B8) 

 

Eq. (B8) is valid for both a=i and a=i;  thus, the following equations are satisfied 

simultaneously: 

       

       

2 2 2 2 2 2 2 2
1 12 RL 2

2 2 2 2 2 2 2 2
1 12 RL 2

22 RL2 R2 L2 2 ,C 2 ,D 2 ,C 2 ,D

22 RL2 R2 L2 2 ,C 2 ,D 2 ,C 2 ,D

ν ν ν ν ν ν ν ν
ν ν

ν ν ν ν ν ν ν ν
ν ν

i i λ i

i i λ i

       
 

       
 





      
 

      
 

K K

K K

K K K K x x x x

K K K K x x x x

     (B9) 

 

As we shall see below (Theorem 2) the matrices    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  and 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  have the same eigenvalues, which are real. On the other 

hand, 2 22 RL2ν ν K K , 2 2R 2 L2ν ν K K , 22 ,Cνx , and 22 ,Dνx are also real.  Thus, the second of 

Eqs. (B9) follows from the first by taking the complex conjugate of both sides.  The vectors 

2 22 ,C 2 ,Dν νi x x  cannot be zero, as this would lead to a 
1 12 RL2

2ν ν K K
x  that is identically zero.  

We conclude that 
1 12 RL2

2ν ν

λ
 K K

must necessarily be an eigenvalue of both matrices 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K .  Let 22ν 
x  be the (complex) eigenvector of 

   2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  corresponding to eigenvalue 
1 12 RL2

2ν ν

λ
 K K

 and 22ν 
x  be 

the  eigenvector of    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K  corresponding to eigenvalue 

1 12 RL2
2ν ν

λ
 K K

.  Then, by Eq. (B9) we have: 

2 2 22 ,C 2 ,D 2ν ν νi   
 x x x  

2 2 22 ,C 2 ,D 2ν ν νi   
 x x x  

 

Hence,   

 

   

2 2 2

2 2 2

2 ,C 2 2

2 ,D 2 2

/ 2

/ 2

ν ν ν

ν ν ν i

  

  

 

 

 

 

x x x

x x x
          (B10) 

or, allowing for multiplicative constants in the eigenvalues, 

 

2 2 2

2 2 2

2 ,C 2 2

2 ,D 2 2
/

ν ν ν

ν ν ν

ζ ξ

ζ ξ i

  

  

 

 

 

 

x x x

x x x
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2 2 2

1 12 RL2 2 22

2 ,C 2 2

2

2 22 ,D
/ /

ν ν ν

ν ν
ν νν

ζ ξ
i i

  

 
 

 



 

     
       

      
K K

x x x
x

x xx
 

Thus, the procedure of diagonalizing 1 12 RL2
2ν ν K K  is reduced to diagonalizing the two 

matrices    2 2 2 22 RL2 R 2 L2ν ν ν νi     K K K K , Q.E.D. 

 

 

Appendix C:  Proof of Theorem 2 

As pointed out following the definition, Eq. (3.15) of the main text, applied here for ν-1 in 

place of ν, matrices 2R 2νK  and 2L2νK  are transpose of each other, while their sum, matrix  

2RL2νK , is a symmetric matrix.  On the other hand, by the definition, Eq. (3.12) of the main 

text, matrix 22νK  is symmetric.  Therefore, 

       

   

2 2 2 2 2 2 2 2

2 2 2 2

T T T

2 RL2 R2 L2 2 RL2 R2 L2

T
T T

2 RL2 R2 L2
                                                             

                               

ν ν ν ν ν ν ν ν

ν ν ν ν

i i

i

       

   

       
 

   

K K K K K K K K

K K K K

   

   

2 2 2 2

2 2 2 2

T T

2 RL2 L2 R2

2 RL2 R2 L2

                              

                                                             

ν ν ν ν

ν ν ν ν

i

i

   

   

   

   

K K K K

K K K K

 

QED                          (C1) 

 

 

Appendix D:  Proof of Theorem 3 

 

It suffices to show that the matrices corresponding to two successive values of the index, b1 

and b,  are characterized by the same eigenvalues. 

 

Let 
2 b   be an eigenvalue of one of  the (2

μ-b
n)(2

μ-b
n) –dimensional matrices 

   12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K , for a specific choice of the coefficients a1, a2, 

…, ab, defined by the prescription given in the theorem.  We wish to relate 
2 b   to the 

eigenvalues of  either one of the (2
μ-b-1

n)(2
μ-b-1

n)-dimensional matrices 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a        

    K K K K , with ab+1 being one of the two values 

defined from ab according to the prescription. 
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Let 
1

1

2 ,E

2

2 ,F

b

b

b







 



 

 
  
  

x
x

x
 be the eigenvector corresponding to eigenvalue 

2 b   of matrix 

   12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K , where 12 ,Eb x  and 12 ,Fb x  are (2
μ-1-b

n)-

dimensional vectors.   From the definition of 
2μ bK , 

R 2μ bK , 
L2μ bK , and 

RL2μ bK  [Eqs. (3.12), 

(3.14), (3.15) of  the main text] we can write [compare also Eq. (3.13) of the main text]:  

1 1 1

1 1 1

2 RL2 RL2

2

RL2 2 RL2

μ b μ b μ b

μ b

μ b μ b μ b

     



     

 
  

  

K K K
K

K K K
, 

1

1

R2

RL2

L2

μ b

μ b

μ b

 



 

 
  
  

0 K
K

K 0
, 

1R 2

R 2

μ b

μ b

 



 
  
 

0 K
K

0 0
, 

1
L2

L2

μ b

μ b



 

 
  
 

0 0
K

K 0
 hence 

   

 

1 1 1 1 1

1 1 1 1

1

1

12 RL2 R 2 L2

2 RL2 RL2 R 2 R 2

RL2 2 RL2 L2

2 R
1

L2

...

...

μ b μ b μ b μ b

μ b μ b μ b μ b μ b

μ b μ b μ b μ b

μ b

μ b

b b

b

b

a a a

a

a a

   

         

       

 

 

     

     
       

        

 
 

 

K K K K

K K K 0 K 0 K

K K K K 0 0 0

0 0 K K

K 0  
1 1 1

1 1 1 1

L2 L2 R 2

1R 2 L2 2 RL2
...

μ b μ b μ b

μ b μ b μ b μ b

b

b

a

a a

     

       

 
 

   

K K

K K K K

       

                                                                                                                                        (D1) 

 

The eigenvalue equation for    12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a   

    K K K K  is thus written: 

 

1 1
1 1 1 1

1 1 1 1 1 1

2 ,E 2 ,E2 RL2 L2 R2

2
1R2 L2 2 RL2 2 ,F 2 ,F
...

μ b μ b
μ b μ b μ b μ b

μ b

μ b μ b μ b μ b μ b μ b

b

b

a
λ

a a

   
       



           

     
    

           

x xK K K K

K K K K x x
                 (D2) 

or 

   

   

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 RL2 2 ,E L2 R2 2 ,F 2 2 ,E

1R2 L2 2 ,E 2 RL2 2 ,F 2 2 ,F
...

μ b μ b μ b μ b μ b μ b μ b μ b

μ b μ b μ b μ b μ b μ b μ b μ b

b

b

a λ

a a λ

              

              

   

     

K K x K K x x

K K x K K x x
                 (D3) 

Multiplying the second of Eqs. (D3) by ab+1 and  adding the two equations together, we 

obtain: 

   

   

1 1 1 1 1

1 1 1 1 1 1 1

1 1 12 RL2 R 2 L2 2 ,E

1 1L2 R 2 2 RL2 2 ,F 2 2 ,E 2 ,F

...

 

μ b μ b μ b μ b μ b

μ b μ b μ b μ b μ b μ b μ b μ b

b b b

b b b

a a a a

a a λ a

         

              

 

 

    
 

     
 

K K K K x

K K K K x x x
     (D4)            

or  
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1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 12 RL2 2 ,E 2 ,F R 2 L2 2 ,E

1L2 R 2 2 ,F 2 2 ,E 2 ,F

...

  

μ b μ b μ b μ b μ b μ b μ b

μ b μ b μ b μ b μ b μ b

b b b b

b b

a a a a a

a λ a

             

          

  



      

   

K K x x K K x

K K x x x
                                                                                                                                      

               (D5) 

We note that 

   

   

 

1 1 1 1

1 1 1 1

1 1

2 2

1 1 1 1 1 1 1R 2 L2 R 2 L2

2

1 1R 2 L2 R 2 L2

1 1 1R 2 L2

R 2

... ...

   ... ...

    = ... ...

    =

μ b μ b μ b μ b

μ b μ b μ b μ b

μ b μ b

μ

b b b b b b b

b b b b b

b b b

b

a a a a a a a a a

a a a a a a a

a a a a

a

       

       

   

    

 

     

    

 

K K K K

K K K K

K K

K 1 1 1 1

2

1 L2 R 2 L2b μ b μ b μ bba a         K K K

      (D6) 

 

Hence, Eq. (D5) can be rewritten as 

 

    

   

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 12 RL2 2 ,E 2 ,F R 2 L2 2 ,E

1 1 1 1 1R 2 L2 2 ,F 2 2 ,E 2 ,F

...

    ...

μ b μ b μ b μ b μ b μ b μ b

μ b μ b μ b μ b μ b μ b

b b b b

b b b b b

a a a a a

a a a a a λ a

             

          

  

   

      

     

K K x x K K x

K K x x x
 

or 

       1 1 1 1 1 1 1 11 1 1 1 12 RL2 R2 L2 2 ,E 2 ,F 2 2 ,E 2 ,F
...μ b μ b μ b μ b μ b μ b μ b μ b μ bb b b b ba a a a a λ a                   

       K K K K x x x x

                (D7) 

From Eq. (D7) we conclude that at least one of the following two statements is true: (a) 

2μ bλ  is an eigenvalue of the (2
μ-1-b

n)(2
μ-1-b

n)-dimensional matrix 

   1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb ba a a        

    K K K K , with corresponding eigenvector 

1 112 ,E 2 ,Fμ b μ bba   x x ; (b) 1 112 ,E 2 ,F
0μ b μ bba    x x ,  Q.E.D. 

 

 

 

Appendix E:  Proof  that the  matrices in the recursive scheme with the same signs after 

the 2
nd

 coefficient,  have the same eigenvalues.  

We calculate the conjugate of    1 1 1 11 1 12 RL2 R 2 L2
...μ b μ b μ b μ bb b ba a a aK K K K        

     in Eq. 

(E1), symbolizing the conjugate of a complex number or matrix with an asterisk (*) as  

superscript. 
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1 1 1 1

1 1 1 1

1 1 1 1

*

1 1 12 RL2 R 2 L2

* *
* *

1 1 12 RL2 R 2 L2

** * * * *

1 1 12 RL2 R 2 L2

*

2

...

...

...

μ b μ b μ b μ b

μ b μ b μ b μ b

μ b μ b μ b μ b

μ

b b b

b b b

b b b

a a a a

a a a a

a a a a

       

       

       

 

 

 

       

    
  

    
 



K K K K

K K K K

K K K K

K 1 1 1 1

* * * * * * *

1 1 1RL2 R 2 L2
...b μ b μ b μ bb b ba a a a        

    K K K

                             (E1) 

Because 1 1 1 12 RL2 R 2 L2
, , ,μ b μ b μ b μ bK K K K        are real matrices, they equal their complex 

conjugates. As result, from Eq. (E1) we get Eq. (E2) 

   

 

1 1 1 1

1 1 1 1

*

1 1 12 RL2 R 2 L2

* * * *

1 1 12 RL2 R 2 L2

...

...

μ b μ b μ b μ b

μ b μ b μ b μ b

b b b

b b b

a a a a

a a a a

       

       

 

 

       

    

K K K K

K K K K

                                 (E2) 

In addition, it is valid that if we have a complex number  cos sinire r i  where ζ is 

the angle and  take values  with direction  from Real number axis to Image number 

axis, then its principal square root is
 
  

     / / cos sinr i1 2 1 2

2 2
                                                                                      (E3) 

It is also known that the conjucate of ψ is * ( ) cos sinire r i and  its principle 

square root is      

/
* / / /cos sin cos sin     r i r i
1 2 1 2 1 2 1 2

2 2 2 2
                                     (E4)                                  

Because we proved in Eq.(E3-E4) that the principle square root of a complex number is the 

conjugate of the principle square root of its conjugate number,  if   sign jj ja a 1  and 

sign jj ja a 1 , where a i2  and    a i2   and sign =signj j  for 3,..., 1j b  , then 

*  , for ,... j j j ba a 2 1 , and consequently, the matrices with these a coefficients are 

conjugate matrices. Because a) the eigenvalues of conjugate matrices are  conjugate too and 

b) we have already proved that these matrices have real eigenvalues, we conclude that they 

have the same eigenvalues, as the conjugate of real number is the same real number.    

Appendix F:  Solution of the continuum diffusion problem of Eqs. (3.33)-(3.35) of the 

main text 

 

Applying the method of separation of variables on the partial differential Eq. (3.33) and 

imposing the periodic boundary conditions of Eq. (3.34) of the main text leads to the 

following expression for the probability density as a function of position and time:  
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2 2

cell

0 1

( , ) cos sinp p

f f
D t D t

L L

f f

f fp p

f l f l
l t A e B e

L L

   
      

   
   

 

   
       

   
 

 

 
                                     (F1) 

 The constants can be calculated based on the initial condition: 

0 cell

cell

cell

1
( , 0)

2

1
( , 0)cos  , 1,2,3,...,

2

1
( , 0)sin  , 1,2,3,...,

2

p

p

p

p

p

p

L

p L

L

f

p pL

L

f

p pL

A l t dl
L

f l
A l t dl f

L L

f l
B l t dl f

L L







 

 
     

 

 
     

 















                                               (F2) 

Substituting the initial condition of Eq.(3.35) of the main text in Eqs.(E2), we obtain 

0

1

2

sin

 ,   1,2,3,...,

0 ,   1,2,3,...,

p

d

p

f

d

f

A
L

f L

L
A f

f L

B f



 
  
   

  




                                                                             (F3) 

As a result,  Eq. (F1) takes the form of  Eq. (3.36) of the main text. 

 

Appendix G:  Alternative form of the matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K   

obtained using positive signs after the second  coefficient in the recursive scheme and 

convergence of these matrices to 1K  for very large μ 

Following the definition of Theorem 3 with the restriction that only positive signs be used 

after the second coefficient in the recursive scheme, the coefficients aj appearing in the 

matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K  satisfy 
1 21,  ,a a i      1j ja a  , 

3 j   .  

a) Let 
2a i  whose polar coordinates are  r=1 and θ=π/2 .  Then, 

-2

2

1 1

2 2   ,   2

μ

μ

μa i i μ


 
 
               (G1) 

and  

1

12 2 2

1
1

2
11 1 1 1 11 2 11 ... 1

22 4 22 2 2 2
1 2...

μ

μμ μ μ

μa a a i i i i i i



  



 
       

                 (G2) 
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It is also known that 1/ 1/ cos sinγ γ θ θ
ψ r i

γ γ

    
     

    
                                                    (G3) 

where ψ is a complex number. As a result,  

21/2

2 2 1 1

/ 2 / 2
cos sin cos sin

2 2 2 2

μ

μ μ μ μ μ

π π π π
a i i i



   

          
              

          
                           (G4) 

Similarly, 

2

2

1

2
1 2 1

2
1 1

1 1

2 2 1 1

1 1

1 1
...

cos sin
2 2

cos sin
2 2

cos sin
2 2

cos sin
2 2

μ

μ

μ

μ μ

μ μ

μ μ

μ μ

a a a i
π π

ii

π π
i

π π
i

π π







 

 

 

 

  
    

    
    

    
    

              
          

      
      

                                      (G5) 

 

Therefore  

     

 

2 2

1 1

2 2
1 RL1 R1 1 2 L1 1 RL1 R1 L1

1 RL1 R1 L11 1

...

                                             1 cos sin
2 2

μ μ

μ μ

μ μ

a a a a i i

π π
i

 


 

 
          

 

    
       

    

K K K K K K K K

K K K K

         (G6) 

 

Note that, for μ=1, Eq. (G6) gives the matrix  1 RL12K K  (compare Eq. (3.20) of the main 

text), while for μ=2 , Eq. (G6) gives the matrix    1 RL1 R1 L1i  K K K K   (compare the 

matrices appearing in Theorem 1 in the main text).  

 

b) Let 
2a i    whose polar coordinates are  r=1 and θ=-π/2.  Similarly, 

   
-2

2

1 1

2 2   ,   2

μ

μ

μa i i μ

 
 
         

2

2

1
1

2
2

κ 1 κ 1

κ 1 κ 1

π π π π
( ) cos sin cos sin

2 2 2 2

π π
cos sin

2 2

μ

μ

μa i i i

i





 

 

          
                   

          

    
     

    

               (G7) 

and  
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1

1
2 2 2

2

2

1
1 11 1 1 1 12 121 ... 2212 4 2 2 211 2

2

1

2
1 1 1

2

...

1
cos sin

2 2

μ
μ

μ μ μ

μ

μ

μ

μ μ

a a a i i i i i i

π π
i i

i




  





  
       



 


            

    
       

    

             (G8) 

Therefore  

         

 

2 2

1 1

2 2
1 RL1 R1 1 2 L1 1 RL1 R1 L1

1 RL1 R1 L11 1

...

                                             1 cos sin
2 2

μ μ

μ μ

μ μ

a a a a i i

π π
i

 


 

               

    
       

    

K K K K K K K K

K K K K

       

                                                                                                                                       (G9) 

For μ=1, Eq. (G9) gives again the matrix  1 RL12K K , while for μ=2 , Eq. (G9) gives the 

matrix    1 RL1 R1 L1i  K K K K   (compare the matrices appearing in Theorem 1 in the 

main text). As shown in Appendix E above, the matrices produced by Eq. (G6) are complex 

conjugate of those produced by Eq. (G6).   

 

Taking the limit μ   we see that the argument of the trigonometric functions in Eqs. 

(G6) and (G9) goes to zero.  In this limit, the matrix    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K   

obtained using positive signs after the second  coefficient in the MESoRReD recursive 

scheme converges to 1K  and its eigenvalue of smallest absolute magnitude converges to the 

corresponding eigenvalue of 1K , which is zero.   

 

 

 

Appendix H:  Proof that  matrices    1 RL1 R1 1 2 L1...μ μa a a a   
 

K K K K with at least 

one negative sign after the  second  coefficient, do not  converge or converge more 

slowly to  1K than matrices with positive signs after the second coefficient 

 

1 2 3 2

84
1 2 3 2

1/2 1/4 1/8 1/ 1/

1 2 3 2

lim lim sign sign sign sign ..... sign

sign sign sign sign .... sign

sign sign sign sign ....sign

μ μ μ μ μ
μ μ

μ μ μ μ

μ μ μ μ

a i

i

i

  
 


  

 

  







                                               (H1) 
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where sign μ
we symbolize  the sign of aμ , and so it  can be either +1 or -1. 

 As a result, we can write  (H1) as  

1 2 3 0

1 2 3

1/2 1/4 1/8

(1/2) (1/4) (1/ )

( (1/2) (1/4) ..... 1/( ))

lim (+1 or -1)(1 or i)(1 or i )(1 or i )(1 or i )....1

.....μ μ μ

μ μ μ

μ
μ

b b b b

b b b

a

i i i i

i

  

  





    



 

 

                                               (H2)                      

Where b coefficients are one if the sign is + or zero  if the sign is -1.  

If lim 1μ
μ

a


  then it must happen that  

1 2 3(1 / 4) (1 / 8) (1 / 16) ..... 0 0μ μ μ μb b b b                                                                              (H3) 

Because b coefficients take values 1 or zero, we can see from Eq.(H3) that  the 
μa of matrix 

with only positive signs(=all b coefficients to be zero)  converges quickest to 1 than the rest 

matrices. From Eq.(H3) we can also see that μa  of matrices with negative signs at the first  a 

coefficients converge quickier to 1   than the μa of  matrices with    negative signs at the last  

a coefficients.  

Next, we  examine how  1 2 3... μa a a a converges for μ   

   
3 4

1 2 3 2 3 2 3 2 4 3 2 1 2 3 2

                                          

... ... sign sign sign ....sign sign sign sign .....μ μ μ μ μ μ

a a

a a a a a a a a a a α  
  

   

     

     

                                            

3 4 2 2 3 2 4 3 2 1 2 3 2

1/2 1/2 1/4 1/2 1/4 1/8

2 2 3 2 4 3 2

3

sign sign ....sign sign sign sign .... sign sign sign .....

sign sign sign sign .... s

μa

μ μ μ μ

μ

ι

ι

a a a a α

a a a a

  



  
      

 
  
 
   

 

1

1 2 1

1/2 1/4 1/8 1/2

1 2 3 2

1/2 1/4 ...1/2 1/2 1/4 ...1/2 1/2 1 1/2 1/4 1/8 ...1/2

3 4 1 2

3

ign sign sign ......

sign sign sign ...sign

μ

μ μ μ

μ μ μ

μ

ι μ

ι

a
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                                                                                                                                                (H4) 
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(H5) 

So, only if all signs after the second coefficient  are positive,  1 2 3lim ... 1μ
μ

a a a a


 . In the rest 

cases, we can see that the  1 2 3... μa a a a  of some matrices can  converge to 1  but slower than the 

matrices with only positive signs after the second coefficient. As a result, matrices from Eq. (G6), 

Eq.(G9) which are  1 RL1 R1 L11 1
1 cos sin

2 2μ μ

π π
i

 

    
       

    
K K K K converge quickest than any 

other  matrix to 
1K . 

In the limit μ  , the matrices  1 RL1 R1 L11 1
1 cos sin

2 2
μ μ μ

π π
i

 

    
        

    
A K K K K   

converge quickier than any other matrix of MESoRReD to 1K  and as a result  their eigenvalue of 

smallest absolute magnitude(they have the same  eigenvalues as the are conjugate matrices and 

they have real eigenvalues-see Appendix E ) converges  quickier than any other matrix of 

MESoRReD to the corresponding eigenvalue of 1K , which is zero. As  a result, the smallest in 

absolute value  eigenvalue of these matrices is   the nonzero eigenvalue λ1 of matrix 
2νK with 

smallest absolute magnitude. 

As seen from Eq. (3.45),  λ1  is of strategic importance in extracting the diffusivity in periodic 

systems.  Thus, the diffusivity can be calculated from the eigenvalue of smallest absolute 

magnitude of a single nn matrix, given by Eq. (G6) or  Eq. (G9)  .  We can also see that κ=λ, 

where 2
λ
 is the number of cells in a periodic system. 
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