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Abstract

A novel modeling for the assessment of structures with uncertain, spatially variable
system properties is presented. The use of flexibility-based (or force-based) fiber
elements for structures whose properties are described by homogeneous non-Gaussian
translation fields is discussed. For deterministic problems, force-based fiber elements
have been proven able to provide accurate response estimates using a single beam
element per structural member. The proposed modeling allows using different
integration schemes depending on the correlation length parameter of the field and is
able to consistently integrate the spatial variability of the uncertain system properties.
This formulation allows to overcome the need for a very dense mesh of beam elements
and considerably reduces the computing effort, even for stochastic fields of short
correlation length and for highly nonlinear problems. The performance of the proposed
modeling is demonstrated on a steel portal frame and on a reinforced concrete bridge
and is assessed by using the Monte Carlo Simulation under the assumption of a pre-
defined power spectral density function of the stochastic fields. Nonlinear static analysis
offers probabilistic capacity curves that provide valuable information on the sensitivity
of the proposed modeling with respect to the correlation length (correlation scale) of the
stochastic fields and its effect on the system response variability and reliability.
Furthermore, a series of nonlinear response history analyses are performed using natural
ground motions of levels of increasing seismic intensity and subsequently used for
calculating the bridge’s system fragility. The dissertation underlines the importance of
realistic uncertainty quantification and provides a valuable guidance for the nonlinear

stochastic analysis of skeletal structures.



Extended summary (in Greek)

H pnébodog twv otoyactikav nenepacuévav otoryeiov yvopilel peydin dviion
ta tedevtaio 25 ypdvia. Ot Epeputeg afePfardtnteg oe OPOVE VAKDOV, YEOUETPIOG KO
QOPTICEMY TOV KATOOKEL®V £Yovv @Epel Tig mBavotikég pefddovg avdivong oto
TPOCKNVI0, KAOMG TO VIETEPUIVIOTIKA TPOGOUOIDUOTO  OyVOOUV  CNUOVTIKEG
TOPOUETPOVS OVOPOPIKA LE TNV TPAYHOTIK OmOKPIon €vOog dopnuatog. Mikpég
OLOKVUAVOELS KATOIWV 1010THTOV UTOPOVV VO dNUOVPYNCOLV UEYAAES ATOKAIGEIS GTNV
amOKPLoT KOl GUVOAKE 6TV 0E0TOTION TNG KATAGKEVTG.

Or mMlocwtég KaTaokKeLEG &yovv  peAetnBel vmOAOYIOTIKA ©TO TANIGLO
TOOVOTIKOV avOADGE®MV pe TOALES neBddovg Ko moparrayéc. Tlemepacuéva otoryeio 2
kol 3 dwotdoewv £xovv ypnolwomondel yio TNV AETTOUEPECTEPT TEPLYPOPY| TV
OLOKVUAVOEDV TWV OGTOYOOTIKOV TESI®MV, Topd TO HEYOAO VTOAOYIOTIKO kOoTOC. O
oLVOVACUOG OVTAOV TV CTOYEI®V PE OLVOIKEG AVAAVGELS (XpovoloTopies) KabloTd TIg
HeBOO0VG AKATAAANAES Y10 EPUPUOYEG OE TPUYUOTIKES KOTACKEVEG UEYOANG KATLOKOG.
To papdwtd menepacuévo otoryeio petatomioewv (displacement-based beam-column
element) pmopei va PBpebel oe epaprOYEC OTOYACTIKGOV OVOADGE®Y, OUMG 1) TUKVN
dlakpitomoinon mov ypelaletor yio akpieis VTOAOYIGHOVE ALEAVEL TO VITOAOYIGTIKO
k6ot0oc. H mapovoa epyacio LeEAETA TV e@oproyn TV pafdOTdV GTotElV dVVANE®DY
(force-based beam-column element) otnv pébodo TV GTOYACTIKMOV TETEPUCUEVMV
otoyeimv. Z& VIETEPUIVIOTIKEC OVOADGELS TO OCLYKEKPEVO OTOYEID TPOGEPEPEL
eEapetikn axpifela pe €va povo otoryeio oe Kabe péAoc. Meletdton 1 GLUTEPLPOPA
TOL 6€ OPoVG aKPIPELOC KOl KOGTOVG GE GTATIKES KOl SUVAUIKES CTOYOUCTIKES VOADGELS.

210 TP®OTO KEPAAOO YiveTal piot GLVOYT TOV T TPOCPUTMOV CYETIKOV LEAETMOV
(state of the art) kaOdg Kol GYOMAGHOG YOP® GO THV EPEVVNTIKN dPOCTNPLOTNTO GTO
TOUEN TV GTOYOCTIKAOV VITOAOYIGTIKMOV HEBOO®V Y10 TAAIGIOTES KOTACKEVES.

210 dgvtepo KepdAao mopovstalovtal ot Poacikés Bewpntikés apyés TV
pafdwtdv otoreiwv dlovepnuévng mTAacTIKOTNTOG M otoeiov waov (distributed
plasticity elements or fiber beam-column elements). Anocagnviovtal ot dapopéc amd
T0. KAOGOIKE poPdmTd GTOLEl0 CLYKEVIPOUEVNS TAACTIKOTNTOG ONMG EMIONG Kol Ot

owpopég petaEd TOL  OTOYEIOL OUVAULE®V KOl TOL GTOWEIOL UETOTOTICEMV.
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AvapépovTal GUVOTTIKA 01 PaCIKEG GYECELS TV CGTOWYEIMV WMV, amd TIG KIVIULOTIKEG
OepNoES KOl TO COUATOOETO GUGTNUO, CUVTETAYUEVOV UEYXPL KOl TNV EKGPACT TOV
UNTPOOL SueKAUYING Yio To SV0 S0UPOPETIKA GTOLYE QL.

Y10 Tpito KEPAAMIO TOPOLSLALOVTAL GLVOTTIKA Ol PaCIKOTEPEG OPYES TNG
peBOO0L TV GTOYACTIKMOV TENEPUCUEVOV GTOLKEIDV. EEKIVAOVTAG 0d TOV OPIGUO TOV
OTOYOOTIKOV TESMV/SAOIKAGIDV, OVUPEPOVTOL 01 S1APOPOL TPOTOL S10KPITOTOINGNG
OTm¢ emiong Kot ot INUOPIAESTEPES HEDOOOL VTTOAOYIGHOV NG UETARANTOTNTOG TNG
amoOKpIoNG. XNV €pyacio ypnolwomolovvtal wpocopowwosl; Monte Carlo yw tov
VTOAOYIGUO TOV OMOTEAECUATMOV KOl KATOTLY GTOTIOTIKY| enelepyacio Tov eEayouevmv
derypatov. Epgacn divetal 6tovg TpOTOVS TOPAY®YNG TOV CTOYOCTIK®OV TESI®MV UE
Kovovikn xatavoun kot otn petafoon HECH UETACYNUATIOU®V O©E TEdIOL pHE Un
Koavovin xatavoun.

210 TETOPTO KEPAAOIO OVATTUGOETOL OVOALTIKA 1) TPOTEWOUEVT HeBodoroyia
mg epyaciag. Ilapovoidlovtar ot oxéoelg mov meptypdeovy TV SdAdoon  TNG
afefardomrag péca oTo GTOEID OLVAUE®V UEYPL TNV TOPAYWOYT TOV GTOYXUGTIKOV
unTp®ov dvokapyiog. Me v mpotevopevn pebodoroyion UmopovV vo EQUPUOGTOVV
dbpopeg pébodor apBuntikng olokAnpwong, pe v pébodo Gauss-Lobatto va
TpoTdTol G  KotaAAnAotepn. O  oplBudg Tov  onuelov  0AOKANp®ONG  OTO
nenepacpévo otoyeio etvar xouPwoc yw v puéBodo, kobmg yopaktnpiler v
TEPLYPAPT TOL OTOYOOTIKOV Tediov kol Kotd ocvvémeln v akpifelo g pebodov.
Axoun, mapovotdletar ovoALTIKA 1) €paproyn TG HEBOSOL Kol 0 TPOYPOUUUOTIGUOG GE
H/Y péoo tov mpoypappdtwv MATLAB wor OpenSees, e KOUUATIO KOOWKO KOt
eneénNynoels.

To méunto KePdAAIO TEPLEYEL TNV EPAPUOYT| TNG TPOTEWOUEVNG LeBOdOL oE Eval
dwbotato, olotvho, petoddikd mAaicro. Ov Wotteg oL YOAVPa Bewpeitar OTL
TEPLYPAGOVTAL OO GTOYACTIKA TEdiD AOYAPOUOKOVOVIKNG KaTtavoung og kébe pérog.
To mlaicio vmofdAieTon o Un YPOLKY OTATIKY] OVAALGN KOl GE UN YPOUUIKN
avéivon ypovototopiog. Ta amoteléopata TV avaADcEOV GUYKPIVOVTOL LE OVOAVGELS
TOV KAOGIKOD GTOLYEIOV PETATOTIGEWV e TUKVY SOKPITOTTOING. X& OA0 TO KEPAANLO
TOPOLGIAlOVTOL Kol TOPAUETPIKEG AVOAVOELS Yoo TO UNKOG cvoyétiong (correlation
length) tev otoyaotik®v ediov. Me tov KatdAAnio apBud onueimv oAokAnpmong 1

oLYKAMoN €lval KOVOTOMTIKY, €VA €EAYOVTOL OTMUOVTIKO GULUTEPAGULOTO Yol TNV

- VII -



OAANAETIOpOON TNG GTOYACTIKOTNTAG LE TNV U1 YPOUUKOTNTO. To VTOAOYIGTIKO KOGTOG
LEUDVETAL EVTVIMOLOKA, €01KE otV duvapukn avdivon. To yeyovdg avtd kabiotd
HEB0S0 EPaPUOGIUN GE KATAOKEVEG LEYOANG KALOKOG.

>10 €KkT0 KEPOAOO yivetor gpapuoyn e pebddov e yépupa amd omAouévo
OKLPOJEUD LE OKOTO TNV €E0y®YN TOV KOUmMOA®V Tpototnroc. O ¢opéag sivar
eumvevopévog amd v ['épvpa tov Apdybov oty Eyvatia 0O86. Ot d1dtnteg tov
OTTAoUEVOL  oKVPodEpaTog TV  Pabpov  Bewpeiton 01t  petafdrriovion  Pdoet
OTOYOOTIKAOV TTedimv. ['a v eaywyn TOV KAUTLVADV TPOTOTNTOS XPNCYLOTOIOVVTOL LN
YPOUUIKEG SOUVOUKEG avaADGELS Le 15 oeloukéc kaTaypapég Kot Ttpocopolncel; Monte
Carlo. TIpaypotonoleiton TOPAUETPIKT OVAALOT Y10 TO UAKOG GUGYETIONG TV TESIMV,
eV yiveTon Kol GYOAOGHOG Yo TNV EMAOYN TOV UNYOVIKOV TOUPOUETPOV OTOKPIoNG
(engineering demand parameters) o€ pio avaivon tpoTOTNTAC.

10 £Boopo ke@AAaio cuvoyilovtol To PacIKOTEPO GUUTEPACUOTO TG EPYOCTOG
Kol NG mpotewodpevng pebodov. AxoiovBovv ot PiPAoypagikés avapopég Tov
amoTeEAOVV €vav KOAO 0dMNYO Yio HEAETN TOPOUOI®V €pELVNTIKOV Bepdtov. Axoun,
TEPLEYETOL TOPAPTNUOL LE XPNOUYES EQAPLOYES KO TTANPOPOPIEG TOV YPNGILOTO|ONKOV
otV gpyacio, OTMG TIVOKES KOvOVMV aplOUNnTIKNG OAOKANPWOGONG, TPOYPOUUATIGHOS TNG
apBuntikng olokAnpwong Gauss-Lobatto, mpoypappotionds g nebddov PAGUATIKNAG
OMEIKOVIONG YL TNV TOPAY®YN OTOYUOTIKOV 7Tediowv ['Kaovowavig katovoung kot
KOdKog o€ YAdooa Tcl yia to mpdypappo OpenSees pe epappoyn g TpOTEWVOLEVTS

pueBOS0L Yo Piol GTOYUGTIKNY, OTOTIKY, U1 YPOUUKT avdAvoT TAGIOV.
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Georgios A. Balokas Seismic risk assessment of frame structures
using stochastic beam-column elements

1. Introduction

The stochastic approach is a valuable a tool for the probabilistic assessment of
structures. The inherent randomness, e.g. in material, geometry and loads, hampers the
deterministic treatment of the problem, while often a small variation of a system
property can affect considerably the response. Beam theory is appropriate for the
assessment of many structural analysis problems, and is certainly the most popular
choice for the performance assessment of inelastic frame structures. However, the use of
beam elements for the stochastic assessment of inelastic problems is rather limited,
since most researchers prefer other modelling choices.

Most and Bucher (2006, 2007) proposed using a 2D and a 3D discretization for the
stochastic assessment of beams. Their approach offers a more detailed description of the
stochastic fields, but the computational resources required obstruct the extension of the
method to full-scale buildings. A 2D model for the stochastic assessment of beam
problems is also used for reinforced concrete structures in Vasconcellos et al. (2003).
Especially when dynamic loads are applied, the use of higher order finite elements is
prohibitive. The computing cost also depends on the algorithm that will be adopted for
solving the stochastic problem. Despite the many extensive efforts on the development
of analytical methods, the Monte Carlo simulation method (MCS) (Shinozuka, 1972)
remains the most reliable option, despite its increased cost. The use of efficient finite
element modeling is, therefore, critical for the successful application of the stochastic
method.

Fiber elements have been used on several occasions for the reliability assessment of
frame structures. Contrary to the deterministic problem, where inelastic deformations
are lumped at the beam ends, in stochastic analysis we need distributed plasticity

elements so that our calculations consider the variation of system properties along the
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member. One of the early efforts using fiber elements was that of Lee and Mosalam
(2003) who introduced a stochastic fiber-element model for the assessment of RC
structures. Their work is based on common displacement-based elements and hence
requires significant computing resources.

The use of force-based fiber beam-column elements, allows to consistently integrate
the spatial variability of inelastic systems with uncertain system properties. For
deterministic problems these elements are able to provide accurate response estimates
using a single beam element per member. The use of force-based elements for the
stochastic assessment of steel frames was first presented in Stefanou and Fragiadakis
(2009) where the seismic capacity of a steel frame subjected to several natural ground
motion records was examined. Hamutcuoglu and Scott (2009) used the force-based
formulation for the reliability assessment of bridges under moving loads, while Feng
and Li (2015) used force-based fiber elements for the stochastic nonlinear static
assessment of a simple two-bay reinforced concrete frame.

This study proposes a novel modeling for the dynamic seismic assessment of
structural systems within the stochastic finite element method. The proposed modeling
is able to consistently integrate the spatial variability of the uncertain system properties
on frame structures, using a force-based fiber beam-column element. Previous work has
proven the ability of this element to provide accurate estimates of nonlinear behavior
using a single beam element per structural member. By using a variation of the
integration point method, the fluctuation of the stochastic field is adequately described
within the member. Once the proposed element formulation is implemented in a
computer code, the user is able to adopt different integration schemes and a varying
order of integration, having full control and considerably reducing the computing cost
without compromising the accuracy, even for stochastic fields of very small correlation
lengths.

Homogeneous non-Gaussian translation stochastic fields are generated to describe the
modeling uncertainties in a realistic way. The performance of the method is
demonstrated on a steel portal frame under both static and dynamic nonlinear analysis.
As reference solution, we consider models that use a very dense mesh of displacement-

based fiber beam-column elements. The response variability is assessed with the aid of
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the Monte Carlo simulation under the assumption of a pre-defined spectral density
function. Furthermore, the proposed modeling is implemented on a real-scale reinforced
concrete bridge structure to assess the fragility and highlight the importance of realistic
uncertainty quantification. A parametric investigation is carried out throughout the
whole study regarding the spectral characteristics of the provided stochastic fields and

their influence on the response variability.
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2. Fiber beam-column elements

Contrary to plastic-hinge beam-column elements, where inelastic demand is lumped at
the beam ends, distributed plasticity elements allow yielding to occur at any location
along the element. The two most common formulations of distributed plasticity
elements are the displacement-based (DB) and the force-based (FB) approach.

natural coordinate
~ system

Figure 1: Cartesian and natural coordinates of a plane beam-column element.

Displacement-based elements, also known as stiffness-based elements, follow the
classical finite element theory and use cubic Hermitian shape functions to interpolate
the displacement field. These elements require a fine mesh at the regions where inelastic
deformations are expected to be high, e.g. the beam ends. On the other hand, force-
based elements (Zeris and Mahin 1988, Spacone et al. 1996, Neuenhofer and Filippou
1998) use force interpolation functions to overcome the problem of the unknown
curvature distribution once yielding occurs. This approach always maintains equilibrium

of both forces and deformations and converges to a state that satisfies the constitutive
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laws within a specified tolerance. For deterministic problems a single force-based
element per member is sufficient for accurately predicting the nonlinear behavior,
provided that no element loads are present.

Nonlinear beam-column elements are usually based on the “natural” coordinate
system (also known as “basic” or “corotational” system). This system translates and
rotates following the motion of the element. The beam element has three degrees-of-
freedom (Figure 1), the axial displacement e and two rotations ¢, and &, which fully
describe the inelastic demand and are grouped in: v = [e, 61, 62]". Following the Euler-
Bernoulli beam theory, the strain &x(x,y) is obtained as:

R by RCTWE 0

where as(y) is the section kinematic matrix and dsec(x) is the section deformation vector.

The section stiffness matrix is calculated as the derivative of the section forces Dy With
respect to the section deformations dsec:

1 —
ksec = aDsec = aDsec 8_0 O = v|‘as a_Ga-srdA = ja—o- z/ dA (2)
od 0o O¢ ddy, 4 ~ Os Zo0e|-y Y

Sec

where do/0¢ is the tangent of the nonlinear uniaxial constitutive law and y is the distance
from the neutral axis. Distributed plasticity elements are also known as “fiber”
elements, since each section is discretized to a finite number of fibers which are used to
numerically calculate the section stiffness ke 0f Eq. (2). If N is the axial force and M is
the bending moment of the cross-section, the section forces are calculated by integrating

the section stresses:

D= L\Nﬂ } = Lly}adi = {a;adi 3)

A

2.1. Displacement-based fiber elements

The DB method interpolates the displacements of the element and the relationship

between section and element deformations is given by:

) 11 0 0
dS“_BN(X)v_Jo 23/ L—2) 2(3x/L—1)}v )
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where By(X) is the strain-displacement transformation matrix of the element. The

element stiffness matrix is first calculated in the natural system as:

B, dL 5)

sec

Ky =Bk
L

The global element stiffness matrix is obtained from Ky with the aid of simple algebraic
transformations (Fragiadakis, 2016).

2.2. Force-based fiber elements

Force-based elements use force interpolation functions, which are always exact since
the distribution of bending moment remains linear after element yielding. The force

interpolation matrix bs relates section forces with the natural forces S, thus:

D.=bS<D —1 0 0 S 6
sec ~ ~S sec 0 X/L—l X/L ()

The natural stiffness matrix is calculated as the inverse of the element flexibility matrix

as:
K@l = I:N = J‘L bg (ksec )_1 bS dL (7)

The element stiffness matrix is calculated numerically using Gauss-Lobatto integration.
Gauss-Lobatto integration is a variation of Gauss integration that considers the beam
ends as integration sections, where the bending moment receives its maximum values.
The flexibility formulation does not allow calculating directly the internal forces of the
element. To overcome this, an additional iterative process at the element level, known
as “element-state” determination process is introduced (Ciampi and Carlesimo 1986,
Spacone et al, 1996).

The first step of the iterative procedure is to determine the vector of the natural forces
from the vector of the nodal Cartesian displacements. Then using force interpolation
functions, the section forces are obtained and subsequently are corrected according to
the constitutive law of the fibers. The residual section forces are then multiplied with
the section flexibility and integrated along the element length to obtain the element

residual deformations. The iterative process at the element level is terminated when the
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residual deformations are minimized following an energy convergence criterion. A non-
iterative alternative was proposed by Neuenhofer and Filippou (1998).

Force-based elements present localization issues and may lose objectivity at the local
or global level, depending on the section constitutive behavior. For elastic-perfectly
plastic section responses, the section curvature demands are a function of the number of
integration points of the numerical integration scheme used for the integrals. For strain-
softening section responses, both the section curvature demands and the element
response (and thus the overall structural response) are sensitive to the number of
integration points. Strain localization issues also affect displacement-based elements,
but the displacement interpolation functions force localization within a single element
instead of one integration point (Coleman and Spacone, 2001).
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3. Stochastic finite element method

The stochastic finite element method (SFEM) is an extension of the common
deterministic process for solving static and dynamic engineering systems, as it involves
finite elements with random properties. Stochastic mechanics account for uncertainties
in the material properties, geometry of the structure or applied loads, but it is the
utilization of the SFEM that allows the derivation and subsequently the evaluation of
the stochastic response of the system. The SFEM also arises as a powerful tool for the
solution of stochastic (PDEs), from a more mathematical perspective.

A stochastic (or random) field H(x,w) is a mapping from a random outcome w to a
function of space (or time) of a random variable x. It is usually called “field” when it
varies in space and “process” when it varies in time. The statistical properties of
stochastic fields (e.g. probability distribution and correlation structure) are either
assumed or obtained from experimental measurements. The general framework of the
stochastic finite element method includes the discretization of the stochastic field and

the calculation of the response variability (Stefanou 2009).

3.1. Stochastic field discretization

For nonlinear inelastic problems the discretization of the stochastic field requires special
attention. As “discretization” we refer to the approximation of the continuous stochastic

field H(x) by a finite number of random variables which form a random vector A(x):

H (X) discretization N |_“| (X) :{Hi} ®)

Common discretization methods are the midpoint method, the integration point method,
the local average method, the shape function method and the weighted integral method
(Stefanou, 2009). The first two methods are the most popular choices. The midpoint

method (Der Kiureghian and Ke, 1988) approximates the stochastic field of every
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element Q. by a single random variable corresponding to the value of the field at the

center x. of the element, thus:
H(X)=H(x,), X, €Q, 9)
The approximate field A is fully described by the random vector:
x={H(x), HOC), - HOC )} (10)

where N is the number of elements of the FE mesh. The mean and the covariance
matrix of the field are obtained from the mean, variance and autocorrelation coefficient
functions of H evaluated at the center of the element. The integration point method
(Matthies et al, 1997) differs from the midpoint method since it interpolates the
stochastic field at locations that coincide with the integration (or Gauss) points of every
element. This scheme is preferred when force-based elements are used.

The choice of the FE mesh size is critical as it affects the discretization of the
stochastic field. In principle, the FE mesh size is controlled by the geometry and the
expected gradient of the stress field, which in nonlinear problems is not constant during
analysis. The discretization of the stochastic field should follow the variation of the
field, which is a property of the structure. The variation of the stochastic field is usually
measured using the correlation length parameter b, which is the distance over which
significant loss of correlation occurs. This quantity determines the degree of correlation
between the values H(x;) and H(x,) of the stochastic field in two different positions and
constitutes a measure of the uncorrelated random variables needed for the field
description with satisfactory quality.

In several problems where homogeneous stochastic fields are used, the correlation

length is usually defined as:
b= [|p(z)dz (11)
0

where p(z) is the normalized (divided by the standard deviation) autocorrelation

function of the stochastic field. For example, if:
—alt]

(@)=, >0 (12)

the correlation length is given by:
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b= j e¥dr =1 (13)
0

(24

When the correlation length tends to infinity (b—o0), the field is considered as fully
correlated. In this case, all the random variables are linearly dependent between them
and thus the stochastic field degenerates to a random variable. In the opposite case
(b—0), the field tends to the ideal white noise and it is completely uncorrelated.

For all the above reasons, the FE mesh should be dense enough in order to capture the
essential features of the random field and avoid loss of information. A recommended
element length L., suitable for linear displacement-based elements, is given by the
formula (Der Kiureghian and Ke, 1988):

b b
—<L <= 14
2 <k<3 (14)

3.2. Calculation of response variability

Different approaches for calculating the response variability of stochastic systems can
be found in the literature. The most popular choices are the perturbation approach
(based on a Taylor series expansion of the response vector), the spectral method (each
response quantity is represented using a series of random Hermite polynomials) and
Monte Carlo simulation (MCS). Monte Carlo simulation is the most straightforward and
powerful method which entails the generation of a large number of random field
realizations and then performing numerical simulations in order to obtain the response
quantities of interest. These quantities are then post-processed, to obtain unbiased
response estimates and their statistics. The first and the second moment of a response
quantity r (e.g. displacement, force, stress, etc) can be obtained after N simulations as:

N

1
:WZH

N—Jl(grf—NEZ(rf)J

A unitless measure of the response variability is also given by the coefficient of

(15)

variation:

-10 -
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cov =2 (16)

#(r)

With a larger sample size it is possible to estimate the cumulative distribution
function (CDF) and the probability density function (PDF) of the response. The direct
(crude) MCS is robust, simple to use and has the capability of handling practically every
possible problem regardless of its complexity. For that reason, it is often used in the
literature as a reference method in order to check the accuracy of other approaches.
However the computational cost involved becomes excessive due to the large sample
size N required. Hence, it is best to combine MCS with discretization methods that do
not involve a large number of random variables (e.g. midpoint method, integration point
method). In order to reduce the computational effort, other sampling methods can be
used (Hurtado and Barbat, 1998) such as Latin hypercube sampling (LHS), line
sampling and subset simulation. Additionally, methods that intend to surrogate the
deterministic FEM analysis of every sample realization of the MCS have been
implemented in engineering problems, such as the response surface method (RSA —
based on statistical regression analysis) and artificial neural networks (ANN — soft

computing method based on a heuristic approach) (Papadrakakis et al, 1996).

3.3. Simulation of non-Gaussian stochastic fields

Non-Gaussian stochastic fields are suitable for the description of many practical
engineering parameters, such as material properties, geometric characteristics of
structural systems, soil properties, waves, wind loads, etc. In order to simulate a non-
Gaussian stochastic field, a transformation of a Gaussian field with known second-order
statistics must be performed.

The spectral representation method (Shinozuka and Deodatis 1991) is a direct
method for the simulation of Gaussian stochastic fields. The method describes the
stochastic field as the sum of cosines with random phase angles and amplitudes. It is
based on the power spectrum concept, which is a real, non-negative function that
describes how the variance of the stochastic field is distributed over the frequency
domain. For a one-dimensional univariate (1D-1V) homogeneous Gaussian stochastic

field, the i-th realization (sample function) is generated from the sum of M terms:

-11-



Georgios A. Balokas Seismic risk assessment of frame structures
using stochastic beam-column elements

H(i)(x):\/EMfM cos(@,x-+l" ) | (17)

where ¢,® denotes the random phase angle, which is uniformly distributed in [0,2x] and

A is the amplitude term, defined as:

A =25, (m,)Aw (18)

where:
o, =NAw, Aw=— (19)

Sk is the power spectral density function of the stochastic field, w, is the frequency
number (wave number), 4w is the frequency increment and w, the upper-cut frequency
after which the power spectrum becomes practically zero. Spectral density functions
include the variance and the correlation scale characteristics of the stochastic field and
usually are functions of exponential or square exponential type.

The Fourier analysis is fundamental in the application of stochastic fields since all of
the properties of a stochastic field can be formulated in a simple and more elegant
manner in the space of frequency. In particular, the Fourier transform of the
autocorrelation function Rg(z) of a homogeneous stochastic field leads to the power

spectral density function of this field:
1 T —iwr
S, (0)=— j R, (r)e " dr (20)
2r )
The inverse Fourier transform provides the autocorrelation function:
R, (r) = j S, () do (21)

A power spectrum of square exponential type is shown in Figure 2a for different
values of the correlation length b, while the influence of the correlation length
parameter to the sample functions of a Gaussian stochastic field, generated by the

spectral representation method, is shown in Figure 2b.

-12 -
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Figure 2: (a) Sample spectral density function S¢(w) of square exponential for different

correlation length values (standard deviation, o#=0.1), (b) sample functions of a Gaussian
stochastic field for different correlation length values b.

In order to simulate a non-Gaussian stochastic field, a transformation of a Gaussian
field with known second-order statistics needs to be performed. Specifically, a zero-
mean homogeneous non-Gaussian stochastic field f(x) with spectral density function Sg
(w), can be obtained with the aid of a nonlinear monotonic transformation of a zero-

mean Gaussian field H(x) as:
f(x)=F ®[H(x)] (22)

where F is the non-Gaussian marginal cumulative distribution function (CDF) of f(x)

and @ is the standard Gaussian CDF. The above transformation is a memoryless

-13-
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translation of every space coordinate x;. The choice of the marginal distribution for the
translation field f(x) imposes constraints to its correlation structure (Grigoriu 1998). For
non-Gaussian translation fields whose autocorrelation function has some inadmissible
values, or is not positive-definite, the approximation error should be also taken into
consideration (Bocchini and Deodatis 2008, Shields and Deodatis 2013).
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4. Proposed methodology

4.1. Theoretical approach

We propose the use of flexibility-based elements for the probabilistic seismic
assessment of nonlinear frame structures with stochastic properties. For the
deterministic analysis of inelastic frame structures, flexibility-based elements are able to
capture the response using a single element per member. When stochastic problems are
considered, the frame properties vary along the length of every member. Most FE types
require appropriately modifying the FE mesh depending on the properties of the
stochastic field and also on the regions where concentration of inelastic demand is
expected, i.e. beam ends, region of concentrated forces etc. However, for stochastic
problems the critical locations are not known a priori since the structural properties
vary. We show that force-based elements, if combined with a pertinent numerical
integration scheme, offer accurate estimates of the response variability, maintaining the
advantage of a single element per member. The resulting FE scheme is suitable for full-
scale frame structures with affordable computing cost and accuracy.

We use stochastic non-Gaussian fields to simulate the material properties.
Constitutive laws typically depend on several parameters. For example, a simple
bilinear steel model depends on two parameters: the elastic modulus E and the yield
stress fy. More parameters may be required for other material models, e.g. reinforced
concrete models. Each material parameter may be denoted as D; and is distributed along
each member following a zero-mean stochastic field H(x). Therefore, if Do; is the

expected value of each parameter, the material property is described as Di(x) = Do;i(1 +

Hi(x)).
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The section stiffness k. is calculated with the aid of Eq. (2), where the constitutive
material law is a function of D = [Dy, Do, ..., Dn]". For a bilinear steel material D = [E,
fy,]T and the section stiffness is obtained as (Eqg. (2)):

0o (D)

P aldA (23)

ksec = J.a.;—
A
The element stiffness matrix is calculated with Gauss-Lobatto quadrature, as:

Ky =] bTkbTdL <

sec

K = Wb (% )K e (X)D(X ) + Wy ™ (X JK e (X JO (X ) + (24)
NIP-1

+ 2 Wb (%K (x)b(x)

where NIP is the number of integration points, w; and x; are the weights and the location
of Gauss-Lobatto integration sections. Note that x; and xyp refer to the two ends of the
beam element. This integration scheme is also adopted for the element internal forces.
The above methodology is implemented with the aid of OpenSees (McKenna and
Fenves 2001). OpenSees is an open-source structural analysis software that allows the
user to define any numerical integration scheme. The pre and the post processing of our
results are performed with the aid of customized in-house software.

We first generate zero-mean Gaussian stochastic fields using the spectral
representation method (Eq. (17)). These fields have a spectral density function of square

exponential type:

Sy () = 7 J; exp(—b o ] (25)

where ¢ is the standard deviation of the stochastic field and b is the correlation length
parameter. The lognormal fields are subsequently obtained using Eqg. (22).

The required number of integration points strongly depends on the correlation length
b of the stochastic field. Figure 3a and 3b show two stochastic fields with correlation
lengths equal to 10 and 100, respectively. Both fields are integrated using five Gauss-
Lobatto integration points. For the small correlation length (b=10, Figure 3a) the

number of integration points is not adequate, while as the correlation length increases
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the five integration points are able to sufficiently capture the variation of the properties

along the beam’s length.
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(a) (b)
Figure 3: Stochastic field description using five integration points: (a) b=10, small correlation
length: the number of integration points is not sufficient causing loss of information, and (b)
b=100, large correlation length: the five integration points are enough.

In the remainder of the paper we consider as reference, or “correct”, solution, FE
models that use a very dense mesh of 50 displacement-based fiber elements per
member. Such a dense mesh is expected to accurately describe randomness for any
correlation length. In the latter case, due to the short length of the displacement-based

elements, the stochastic field is interpolated using the midpoint method.

4.2. Computational implementation

We use MATLAB (2014) for the implementation of the spectral representation method
and the consequent generation of the lognormal stochastic fields (see Appendix C). The
stochastic mesh is quite dense for a qualitative description of the continuous fields,
since it is required only once throughout the Monte Carlo simulations. The appropriate
fields’ values corresponding to the Gauss-Lobatto integration points are stored in data
files, to be processed later by OpenSees. The number of integration points is essentially
the finite element mesh of the method. If we assume a force-based beam element with
20 integration points, a temporary OpenSees file with the form of Figure 4 must be
exported from MATLAB for each Monte Carlo realization. The variables f and g
represent the first and second stochastic field respectively, assuming steel material with

two random parameters (E and f,).
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set f1 0.197391
set g1-0.058184
set f2 0.325228
set g2 -0.140837
set f3-0.023358
set g3 -0.081030

set 20 0.197391
set g20-0.058184

Figure 4: Stochastic field values of temporary OpenSees file

The main OpenSees file reads the temporary file (Stoch_field.tcl) for each realization
and sets the stochastic field values into lists, in order to propagate them into the Gauss-
Lobatto integration of the element. An example of the implementation of the values to
the material properties according to equation Dj(X) = Do, (1 + Hi(x)), is presented in
Figure 5.

After setting the material properties, the 20 different material tags must be assigned to
the 20 Gauss points of the force-based element. This is done by creating 20 sections,
each one corresponding to the material tags and subsequently using these sections for
the integration input. We choose the “User-defined integration” out of the many force-
based integration options of OpenSees, simply because it allows total freedom to the
user regarding locations and weights but most importantly because it does not have
limitations regarding the number of integration points. With the user-defined integration
option the user can easily switch to other numerical integration schemes (Gauss-Radau,
Newton-Cotes etc.).

After setting the integration input, the beam element input is straightforward. The
important thing is the consistency of the main OpenSees file, so that the stochastic field
values of the integration points are updated in each Monte Carlo realization, simply by
sourcing the updated temporary OpenSees file of the new values. The integration
propagation process mentioned above is presented in Figure 6. It is noted that the values

of locations and weights of the Gauss-Lobatto integration points, can be sourced from a

-18 -



Georgios A. Balokas Seismic risk assessment of frame structures
using stochastic beam-column elements

file generated by MATLAB (see Appendix B) in order to avoid stating all these values
by hand.

source Stoch_field.tcl

# Steel attributes — mean values (kN/m~2)
set fy 235e3;
set E 210e6;

set f [list $f1 $f2 $f3 $f4 Sf5 $f6 $f7 $f8 $f9 $f10 \
$f11 $f12 $f13 $f14 $f15 $f16 $f17 $F18 $f19 $£20]
set g [list Sg1 5g2 $g3 Sg4 Sg5 $gb Sg7 $g8 59 510\
Sg11 $g12 $g13 Sgl14 5g15 Sg16 Sg17 $g18 $g19 $g20]

for {set i 1} {Si <=20} {incr i} {
set a [lindex Sf Si-1]
set b [lindex Sg Si-1]
lappend Elist [expr SE*(1+5a)]
lappend fylist [expr Sfy*(1+5b)]
}

# Bilinear material (S_235) law with hardening
# uniaxialMaterial Steel01 SmatTag SFy SEO Sb <Sal Sa2 Sa3 Sa4>

for {set i 1} {Si <=20} {incr i} {
set a [lindex SElist Si-1]
set b [lindex Sfylist Si-1]
uniaxialMaterial Steel01 Si $b $Sa 0.000001

Figure 5: Code for the propagation of the stochastic fields in the material properties
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for {set i 1} {Si <=20} {incr i} {
lappend sectag Si
}

# HEB 200

for {set i 1} {Si<=20} {incr i} {
set a [lindex Ssectag Si-1]
# section WFSection2d SsecTag SmatTag Sd Stw Sbf Stf SNfw SNff
section WFSection2d Sa Si 0.2 0.009 0.2 0.01515 5

}

#Gauss - Lobatto Integration

set locations "0 0.009628147553043 0.032032750593667 0.066561010955025 \
0.112315869523972 0.168111798854844 0.232503567984057 \
0.303823408143045 0.380224147038507 0.459727031380589 \
0.540272968619411 0.619775852961493 0.696176591856955 \
0.767496432015943 0.831888201145156 0.887684130476028 \
0.933438989044975 0.967967249406333 0.990371852446957 1.0"

set weights "0.002631578947368 0.016118561594244 0.028590901063783 \
0.040315881998060 0.050995749849725 0.060354613814337 \
0.068150241179362 0.074180777035458 0.078290051323738 \
0.080371643193923 0.080371643193923 0.078290051323738 \
0.074180777035458 0.068150241179362 0.060354613814337 \
0.050995749849725 0.040315881998060 0.028590901063783 \
0.016118561594244 0.002631578947368"

setsectags"12345678910111213141516 17 1819 20";

set np 20;
set integration "UserDefined Snp Ssectags Slocations Sweights";

geomTransf Corotational 2; # all geometric nonlinearities

4

# element forceBeamColumn SeleTag SiNode SjNode StransfTag "IntegrationType’
element forceBeamColumn 1 1 2 2 Sintegration

Figure 6: Code for the propagation of stochastic fields in the element integration
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5. Steel portal frame example

We first consider as a case study the steel portal frame of Figure 7. All the members of
the frame have HEB 200 wide flange cross-sections and are modeled with a single
force-based beam-column element. A distributed load g=40kN/m is applied at the bay
and remains constant throughout the loading history. The uncertain material properties
are the Young’s modulus E and the yield stress f,, both assumed to vary stochastically
along each member according to the two fields H; and H,. Therefore, the material
properties are described by the expressions:

E(X)=E,[1+H,(x)]

(26)
f,(x) = f,o[1+H, ()]
q (KN/m)
Pow ¢ J LI
HEB 200
7 ,I:':;,,: o ’/‘//

Figure 7: One-storey steel frame.

where Hi(x), Hz(X) are two zero-mean 1D-1V homogeneous lognormal stochastic fields.
The COV for both fields was assumed equal to 10% as indicated by the Joint
Committee for Structural Safety (JCSS, 2001). Different values of the correlation length
parameter b are considered in order to investigate the sensitivity of the response to the

correlation scale of the fields.
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5.1. Nonlinear static analysis

Nonlinear static analysis is a valuable tool for the seismic capacity assessment of
frame structures. The response variability of the steel portal frame is calculated for a
sample size of 500 crude Monte Carlo simulations. For every simulation we obtain the
capacity curve in terms of drift versus applied load. The mean capacity curve of the
frame is shown in Figure 8, together with the mean plus and the mean minus one
standard deviation curves. The vertical dashed line separates the pre-yielding from the
post-yielding phase of loading. Figure 8a clearly shows that the effect of the elastic
modulus is rather small (pre-yielding phase), while considerable variability is observed
after yielding where f, comes into play (right of the dashed line).
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Figure 8: (a) Mean and mean =+ one sigma capacity curves of the portal frame, (b) mean capacity
curves for ranging number of integration points.

According to Figure 8b the calculation of the mean capacity is not sensitive to the
number of integration sections even for this small correlation length (b=0.1). On the
other hand, Figure 9 examines the necessary number of integration points in order to
capture the response variability defined as the COV conditional on the drift. As
reference solution we use the red solid curve obtained with the aid of a very dense mesh
of 50 displacement-based elements per member. For four correlation length values, we
compare the COV estimates using force-based elements of 5, 10, 15 and 20 integration
sections. All four plots of Figure 9 show that increasing the number of integration points
the COV values converge to the “correct” solution. This means that more integration

points offer a better description of the random fields. The convergence is faster as the
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correlation length b becomes large, e.g. compare Figure 9a and Figure 9d. The vertical
dashed line (defined in Figure 8) provides the threshold between linear elastic and
inelastic response. In the elastic region, the COV is practically constant and very low, of
the order 2-6%. When the frame starts to yield, the COV increases almost

monotonically as the drift also increases.
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Figure 9: Sensitivity of response variability to the number of integration points for different

correlation lengths: (a) b=0.1, (b) b=2, (¢) b=10 and (d) b=20.

The accurate modelling should account for the correlation scale and hence the
variance of the field through its power spectrum. According to Figure 9, the simulation
without the proper number of integration sections is insensitive to the spectral
characteristics of the stochastic fields (e.g. Figure 9, five integration sections). This is
also verified in Figure 10 where we study the effect of the correlation length b
comparing the variation of the “correct” solution shown (Figure 10a), to that of a force-

based element with 5 integration sections (Figure 10b). Since five integration sections
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are not adequate, all curves of Figure 10b practically coincide and thus are unable to
predict the response variation accurately.
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Figure 10: Correlation length sensitivity: (a) “correct” solution and (b) poor description offered
from a mesh of force-based elements with 5 integration points.

As mentioned in Chapter 2, force-based elements often suffer from localization
effects and may lose objectivity in local or global scale. Loss of objectivity means that a
possible increase of integrations points does not lead to a convergence of the results.
Perfectly plastic and softening sectional responses are the most susceptible to non-
objective responses (Coleman and Spacone, 2001).

The deformation localization due to the numerical integration of the element integrals
is typically observed at the end integration points, where the bending moments reach
their maximum value. This is verified by the portal frame example as shown in Figure
11, where the curvatures of the left column’s lowest integration sections developed
during the static analysis, have been plotted against the incremental horizontal load for
the deterministic problem (the IP 1 is the integration point closest to the fixed end).
However, for the stochastic problem due to the material properties variance
irregularities may occur, as in Figure 12, where localization occurs at the third

integration point, for a single realization of the stochastic fields.
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Figure 11: Curvatures against load for the deterministic problem.
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Figure 12: Curvatures against load for the stochastic problem.

The aforementioned are more obvious as presented in Figure 13, where the curvature
distribution along the column height is plotted for a pre-yield and a post-yield snapshot,
for all 20 Gauss-Lobatto integrations sections. The stochastic variation and the
interaction of stiffness and strength variability cause irregularities to the curvature
distribution (Figure 13b). Nevertheless, these irregularities of the individual stochastic
realizations are not mirrored on the mean curvature distribution, as it can be shown in

Figure 14, where the curvature distribution of the ensemble average is again smooth.
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Figure 14: Mean curvature distribution (stochastic ensemble average)

For the above example, no loss of objectivity is observed on the response, in terms of
capacity curves. In Figure 15a we present the deterministic capacity curves for different
numbers of integration points and in Figure 15b the capacity curves for different
stochastic fields are presented. It is clear that in the second case the variability is
exclusively because of the stochastic variability, as it is in terms of pure translation (the

path shape in every case is the same).
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Figure 15: (a) Deterministic capacity curves with respect to the number of integration points
(b) capacity curves for different stochastic fields

5.2. Nonlinear response history analysis

The seismic performance of the steel portal frame is also studied using nonlinear
response history analysis. Nonlinear response history analysis using ground motion
records is considered the most realistic and accurate analysis method available
(Fragiadakis et al. 2014). Seismic demand is measured with the aid of the maximum
drift ratio (fmax). A lumped mass matrix is formed in agreement to the distributed load q
(Figure 7), while the fundamental mode of the frame was found equal to T1=1.24sec
when the mean value of the Young modulus E is used. The damping matrix was
obtained assuming 5%-Rayleigh damping on the first and the second mode. All
response history analyses were performed using for every member a single force-based
beam-column element with 20 Gauss-Lobatto integration sections. Again we assume

that the “correct” solution is that of a dense mesh of displacement-based elements.
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Figure 16: Drift demand of the natural ground motion records of Table 1 (red circles) plotted on
the capacity curve of the frame (solid line).

All response history analyses are performed with the fifteen ground motion records of
Table 1. The records cover a wide range of seismic intensities in order to evaluate the
structural behavior at different levels of seismic demand. All records are scaled with a
uniform scaling factor equal to 2. This guarantees that some of the records will yield the
frame. Figure 16 shows the maximum drift demand for every record plotted against the
capacity curve of the frame. The drift values were obtained with assuming mean values
for the random variables. The response practically convergences after 300 Monte Carlo
simulations, regardless of the correlation scale. This is shown in Figure 17 where the
evolution of the first two statistical moments of storey drift for two different values of
the correlation length parameter (b=0.1 and b=10) are computed for the Loma Prieta
1989 (WAHO) record (Table 1).
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Table 1: Natural ground motion records considered

Seismic risk assessment of frame structures
using stochastic beam-column elements

No. Event Station 0" Soil" M! RY(km) PGA(g)
1 Imperial Valley, 1979 Compuertas 015 CD 65 326 0.186
2  Loma Prieta, 1989 Agnews State Hospital 090 CD 6.9 282 0.159
3 Loma Prieta, 1989 Anderson Dam Downstrm 360 BD 69 214 024
4 Loma Prieta, 1989 Halls Valley 090 C,C 69 316 0.103
5  Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 223 0.179
6 Loma Prieta, 1989 WAHO 000 -D 69 169 0.37
7  San Fernando, 1971 LA, Hollywood Stor. Lot 090 CD 66 212 021
8  Superstition Hills, 1987  Wildlife Liquefaction Array 090 CD 6.7 244 0.18
9  Loma Prieta, 1989 Hollister Diff. Array 255 -D 69 258 0.279
10 Loma Prieta, 1989 Hollister Diff. Array 165 -D 69 258 0.269
11  Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 69 288 0.207
12 Imperial Valley, 1979 Chihuahua 282 CD 65 287 0.254
13  Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 69 288 0.209
14 Loma Prieta, 1989 WAHO 090 -D 69 169 0.638
15 Superstition Hills, 1987  Wildlife Liquefaction Array 360 CD 6.7 244 0.2

“Component

"USGC, Geomatrix soil class

* Moment Magnitude

¥ Closest distance to fault rupture
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Figure 17: Statistical convergence of (a) mean and (b) COV of drift for b=0.1 and b=10
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Figure 18: Mean drift demand for correlation values equal to b=0.1, 0.5, 2 and 10.

The accuracy of the proposed method is examined considering the first three
statistical moments and the sensitivity of the drift Onax With respect to the correlation
length and the ground motion record considered. Figure 18 shows the mean storey drift
(Omax) Tor four values of the correlation length, i.e. b = 0.1, 0.5, 2 and 10. The proposed
force-based modeling provides results that are practically identical to the “correct”
solution. Note that in Figure 18, the records are sorted from left to right according to the
maximum expected drift demand (Figure 16).

Figure 19 shows the effect of stochastic material properties on the COV of drift (fmnax)
demand. For all b values considered, the accuracy of the force-based formulation is
again very close to the correct solution. The errors observed are small proving that the
discretization with 20 sections is sufficient. Furthermore, records that do not cause large
inelastic demand (records towards the left) have smaller COV values than records that
caused inelastic damage on the building (records towards the right). Still, the COV
values are very sensitive to the record characteristics while, for most ground motions,
the COV of the response is lower than the variance of the stochastic input parameters. In
Figure 20 we group the COV values for every record for different correlation length
values. The effect of the correlation length is small compared to the significance of the

ground motion properties, while large correlation lengths tend to increase the COV.
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Figure 19: COV of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10.
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Figure 20: COV of maximum storey drift with respect to the correlation length parameter b.
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Figure 21: Skewness of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10.
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Figure 22: Skewness of maximum storey drift demand with respect to the correlation length
parameter b.

Figure 21 and Figure 22 show the skewness (third statistical moment). The skewness
provides a measure of the asymmetry of sample’s probability density function. Figure
22 shows the skewness as function of the correlation length b. Contrary to the COV
case, the skewness is quite sensitive to the correlation length and varies with the record
properties. For many records the skewness differs considerably for different b values

and doesn’t follow the properties of the lognormal material/input properties.
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Furthermore, samples of opposite skewness for the same natural record, e.g. records 11
and 15, were found. In all cases, the proposed modeling gave excellent estimates of the
skewness when compared to the correct solution and despite the inherent sensitivity of
the problem to this parameter (Figure 21).

The effect of record-to-record variability is further examined looking at the
probability density function (PDF) of the maximum storey drift demand. The PDF is
calculated with the aid of the kernel density estimation method (Bowman and Azzalini,
1997). Figure 23a compares the PDFs of a randomly chosen ground motion for different
correlation length values. The sensitivity of the shape of the PDF with respect to the
correlation length is rather small but cannot be overlooked. However, if we examine the
PDFs of different ground motions and assume the same correlation length (e.g. b=0.1),
the PDFs differ considerably in terms of both COV and skewness (Figure 23b). Still,
however, all PDFs are unimodal and retain the lognormal PDF shape of the input

variables.
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Figure 23: Response probability density functions: (a) effect of correlation length (record: Loma
Prieta 1989, Sunny Colton Ave), (b) effect of different ground motion records (b=0.1, constant).

Apart from accuracy, the proposed method also reduces considerably the computing
cost. Figure 24 compares the computational cost of the proposed element to that of the
displacement-based formulation for both static and dynamic analysis. An Intel Core 2
Duo processor required more than double time to run 500 Monte Carlo simulations for
the nonlinear static case. For the stochastic response history analysis with a single
record (Superstition Hills, 1987), the proposed methodology required approximately

10% of the time of the displacement-based element for the same number of simulations.
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Although the computational effort of the displacement-based element can be reduced
using a more coarse mesh, Figure 24 provides a clear indication of the exceptional
computing performance of the force-based element which can be adopted for the
simulation of real-scale problems.
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Figure 24: Computing cost of 500 Monte Carlo simulations of the portal frame for the force-
based and the displacement-based formulation.
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6. Reliability assessment of a reinforced
concrete bridge

6.1. Model description

The second case-study is a reinforced concrete bridge inspired from the Arahthos-
Peristeri Bridge in Egnatia Highway (Figure 25). The bridge model has a total length of
240m and is shown in Figure 26. The slab of the deck is continuous and is assumed
monolithically connected to the piers. Our finite element model assumes that the
abutments are free to move in the longitudinal direction, while the piers are assumed
fully fixed. The deck has a box-girder cross-section (Figure 27a) and 13.5m total width.
The piers are wall-like columns and their cross-section is rounded, as shown in Figure
27h.

Figure 25: Arahthos-Peristeri Bridge in Egnatia Highway
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Figure 27: Cross-sections of: (a) deck and (b) bridge piers.
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The reinforced concrete sections of the piers are discretized assuming unconfined
concrete properties for the cover and confined properties for the core. Both cover and
core were modelled with a uniaxial Kent-Scott-Park concrete material model (McKenna
and Fenves, 2001) with degraded linear unloading/reloading stiffness. The tensile
strength of concrete is neglected for both the confined and the unconfined case.
Furthermore, a bilinear law with pure kinematic hardening is assumed for the
reinforcing steel fibers. Three parameters were chosen to vary along the members
following uncorrelated lognormal stochastic fields: the compressive strength f., the
corresponding strain e and the steel yield stress f, of the reinforcement. The same
stochastic field was used for the confined and the unconfined concrete of every cross
section. The mean values and the COV of the lognormal stochastic fields are shown in
Table 2. The COV values assumed were obtained from JCSS (2001) and are in
agreement with typical values in the literature which are summarized in Dymiotis et al.
(1999). Three different stochastic fields are produced, denoted in Table 2 as H;, H, and
Hs. The stochastic field that each random parameter follows is shown in the last column
of Table 2.
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Table 2: Properties of the RC cross-sections of the piers

Random parameter mean cov sto;zia;tic
Compressive strength (confined) 45MPa 20% H;
Compressive strength (unconfined) 27.6MPa 20% Hi
Ultimate strength (confined) 44MPa 20% H;
Ultimate strength (unconfined) OMPa 20% H;
Compressive strain (confined) 3.67%o 20% H>
Compressive strain (unconfined) 2% 20% H>
Crushing strain (confined) 36%o 20% H>
Crushing strain (unconfined) 6%o 20% H>
Reinforcement yield stress 460MPa 10% Hs

The bridge piers are simulated with a single force-based fiber beam-column element
assuming 20 Gauss-Lobatto integration sections per member. The deck is simulated
with elastic beam elements, while appropriate restraints were imposed in order to ensure
its rigid diaphragm behavior. Moreover, a uniformly distributed load of 300kN/m is
applied on the bridge deck in order to simulate the loads on the bridge. The response of
the bridge is dominated by the first mode which corresponds to an eigenperiod equal to
T,=0.342sec for the mean values of all parameters. The damping matrix is formed
proportional to the mass and the stiffness (Rayleigh damping) assuming 5% damping

for the first two modes.

6.2. Fragility assessment

Seismic fragility is defined as the probability that a structural system violates a limit-
state when subjected to an earthquake of given intensity. The seismic intensity is
measured with the aid of an intensity measure. A commonly adopted intensity measure
is the 5%-damped first-mode spectral acceleration S,(T1,5%). Therefore, the limit-state

fragility curve is expressed as:

F.(x)=P[LS,

S, (T,,5%) = x| (27)
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where LS; represents the exceedance of the i limit-state. A limit-state is exceeded when
the demand exceeds the corresponding limit-state capacity, both measured with the aid
of an engineering demand parameter (EDP). The EDP adopted for the bridge problem is
the maximum drift Omax Of the shortest pier.

We use the Monte Carlo simulation method in order to calculate Eq. (27) for
increasing levels of the intensity measure. We therefore scale the ground motion records
of Table 1 and subsequently calculate Eq. (27) as the conditional probability that fmax

exceeds the limit-state capacityémax. The limit-state probability is calculated from the
empirical distribution, simply as:

NH

PLS;N

(28)
sim

where Ny is the number the simulations where 6nmax exceeds the threshold/capacity drift
for the limit-state examined, and N, is the total number of simulations per intensity
level.

The fragility curves are calculated for three different cases: (i) lognormal stochastic
fields with b=0.2, (ii) lognormal stochastic fields with b=10 and (iii) the random
parameters are considered lognormal random variables, which practically is equivalent
to a stochastic field with very large correlation length. The latter assumption is very

common in earthquake engineering applications. Figure 28 shows the fragility curves

for three limit-states, i.e. 6_. > 0.25%, 0.5% and 1%. As shown in Figure 28, the

e =
assumption of modelling the frame properties as random variables (case iii),
underestimates the conditional failure probabilities (fragilities) compared to the case of
stochastic distribution, especially for high values of the intensity measure where the
structure approaches collapse. Moreover, the bridge fragilities are not affected by the

correlation length, since the b=0.2 and b=10 curves, practically coincide.
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Figure 28: Fragility curves considering different values of the correlation length parameter

Often the response variability is counteracted and hence hidden when it is measured
with a global demand parameter (Li et al. 2015). In other words, while in many cases
the response variability in terms of displacements (or drifts) may be small, the
variability in terms of local demand parameters can be more pronounced. For example,
in the local level the demand and capacity are expressed in terms of curvature Kmax. We,
therefore, examine the curvature demand at the bottom of the shortest pier (Figure 26)
and we produce the corresponding fragility curves. The fragility curves are compared in
Figure 29 for the three cases previously discussed. Again the coupling of stochasticity
and nonlinearity is strong for large seismic intensities. Contrary to Figure 28, the
random variable case overestimates the fragility of the pier, while considerable
variability between the b=0.2 and b=10 curves is also observed. It is therefore evident
that the proper description of randomness significantly affects the response, although

this may be hidden if global response parameters (EDPs) are studied instead.
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Figure 29: Single pier fragility curves for different values of the correlation length parameter.

-40 -



Georgios A. Balokas Seismic risk assessment of frame structures
using stochastic beam-column elements

7. Concluding remarks

A novel modeling approach for the probabilistic seismic assessment of frame structures
with stochastic system properties is proposed. The proposed method extends the use of
flexibility-based fiber elements to the stochastic finite element method, which now can
be applied for the study of real-scale problems due to the remarkable computational
performance and the stability of these elements. The performance of the proposed
modelling is demonstrated on a one-storey steel portal frame and on a reinforced
concrete bridge. The study provides a valuable guidance for the analysis and the design
of structures with non-Gaussian system properties and its main conclusions are
summarized as follows:

e  The number of integration sections is critical. The integration should be able to
capture the spectral characteristics of the input stochastic field.

e  The proposed modelling combines remarkable accuracy and reduced computing
effort, even for very small values of the correlation length parameter.

e  The computational performance was exceptional, especially for the case of
response history analysis where the proposed modelling reduced the required
computing effort by 90% compared to ordinary displacement-based fiber
elements.

e  The parametric investigation revealed notable influence of the correlation scale of
the stochastic parameters, especially for higher order statistical moments. The
record-to-record variability for the dynamic response of the structures was found
also very important.

e  The influence of stochastic system properties grows as inelastic demand increases,
i.e. for levels of high seismic intensity. The discrepancies of the probabilistic

characteristics of the input, particularly the difference between the widely used
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random variables and the stochastic fields, are clearly reflected through the
fragility curves, even though the response variability is milder when it is measured
globally. Therefore, local demand parameters (e.g. column/pier curvature) should

be also studied in the framework of seismic reliability assessment.
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Appendix A

Numerical Integration Rules

Table A.3: Gauss-Legendre quadrature

Number of integration points Points Weights
m ¢h Wh

2 +0.57735 1.0

+0.861136 0.347855

+0.339981 0.652145

+0.93247 0.171324
6 +0.661209 0.360762
+0.238619 0.467914
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10

+0.96029

+0.796666

+0.525532

+0.183435

+0.973907

+0.865063

+0.67941

+0.433395

+0.148874
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0.101229
0.222381
0.313707

0.362684

0.066671

0.149451

0.219086

0.269267

0.295524
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Table A.4: Gauss-Lobatto quadrature

Number of integration points Points Weights
m ¢h Wh

2 +1.0 1.0

+1.0 0.166667

+0.447214 0.833333

+1.0 0.066667
6 +0.765055 0.378475
+0.285232 0.554858

+1.0 0.035714

+0.87174 0.210704

° +0.5917 0.341123
+0.209299 0.412459
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+1.0

+0.899758

+0.677186

+0.363117

0.0
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0.027778
0.165495
0.274539
0.346429
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Appendix B

Matlab script for Gauss-Lobatto quadrature

% Gauss - Lobatto integration rule
% Calculation of locations and weights of integration points

clear all; clc;
format long

n=20; % number of integration points
Ssyms x ;

x = solve(diff(legendreP(n-1,x)),x);

x = double(x);

x = real(x);

x = sort(x);

% locations & weights
x=[-1x"1];
w = 2./(n*(n-1)*(legendreP(n-1,x)).72);

% transformation to the natural domain [0,1]

x = 0.5%(1+x)
w = 0.5%w
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Appendix C

Matlab script for the Spectral representation method

% Stochastic field generation
% 1D-1V homogeneous zero-mean Gaussian random field
% Spectral representation method

clear all; clc;

% Spectral density function

symssbk

SDF = (s"2*b)/(2*pi*0.5)*exp(-0.25*%(b"2)*(k"2));

SDF = subs(SDF,s,0.1); % input of standard deviation
SDF = subs(SDF,b,20); % input of correlation length

% Generate 1000 sample functions of the random field
a=int(SDF); % symbolic integration of power spectrum
fori=1:1:1000 % procedure for calculating the upper frequency
b=double(limit(a,i));
c=double(limit(a,inf));

if (b/c)>0.999
break
end
end
wus=i; % upper cut frequency (power spectrum is practically
zero)
Sf=inline(char(SDF)); % convert sym to inline function
N=100; % truncation
Dw=wu/N; % frequency step
for j=1:1:1000
for i=0:1:N-1
wn=i*Dw;

An=(2*Sf(wn)*Dw)"0.5;
t=linspace(0,2*pi/Dw,300);
z=(270.5)*An*cos(wn*t+2*pi*rand());
f(i+1,:)=z; % place generated data in a Nx300 matrix
end
F_temp=sum(f);
F(j,:)=F_temp;
end
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Appendix D

OpenSees script for stochastic nonlinear static analysis of 2D portal frame

# Create ModelBuilder (with 2-dimensions and 3 DOF/node)
model basic -ndm 2

set height 6;

set width 8;
node100

node 2 0 Sheight

node 3 Swidth Sheight
node 4 Swidth 0

# Fix supports
fix1111
fixa111

source Stoch_field.tcl

#Steel attributes (kN/mA2)
set fy 235e3;
set E 210e6;

set f [list $f1 $f2 $f3 $f4 $f5 $f6 $f7 $f8 $f9 $f10 \

$f11 $f12 $f13 $f14 $f15 $f16 $f17  $f18 $f19 $f20]
set g [list Sg1 5g2 Sg3 Sg4 Sg5 $g6 5g7 $g8 5g9 5810\

$g11 $g12 $g13 Sg14 $g15 Sg16 Sg17 Sg18 $g19 $g20]

for {set i 1} {Si <=20} {incr i} {
set a [lindex Sf $i-1]
set b [lindex Sg Si-1]
lappend Elist [expr SE*(1+$a)]
lappend fylist [expr Sfy*(1+Sb)]
}

# Bilinear material (S_235) law with hardening
# uniaxialMaterial Steel01 SmatTag SFy SEO Sb <Sal Sa2 Sa3 Sasd>
for {set i 1} {Si <=20} {incr i} {

set a [lindex SElist Si-1]

set b [lindex Sfylist Si-1]

uniaxialMaterial Steel01 Si Sb Sa 0.000001
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for {set i 1} {$i <=20} {incr i} {
lappend sectag Si

}

# HEB 200

for {set i 1} {Si<=20} {incr i} {
set a [lindex Ssectag Si-1]
section WFSection2d Sa Si 0.2 0.009 0.2 0.01515 5

}

geomTransf Corotational 1;
geomTransf Corotational 2;

# beams
# columns

# Gauss - Lobatto Integration

set locations "0 0.009628147553043 0.032032750593667 0.066561010955025 \

0.112315869523972
0.303823408143045
0.540272968619411
0.767496432015943
0.933438989044975

0.168111798854844
0.380224147038507
0.619775852961493
0.831888201145156
0.967967249406333

Seismic risk assessment of frame structures
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0.232503567984057 \
0.459727031380589 \
0.696176591856955 \
0.887684130476028 \
0.990371852446957 1.0"

set weights "0.002631578947368 0.016118561594244 0.028590901063783 \
0.040315881998060 0.050995749849725 0.060354613814337 \
0.068150241179362 0.074180777035458 0.078290051323738 \
0.080371643193923 0.080371643193923 0.078290051323738 \
0.074180777035458 0.068150241179362 0.060354613814337 \
0.050995749849725 0.040315881998060 0.028590901063783 \
0.016118561594244 0.002631578947368"

setsectags"12345678910111213141516 17 1819 20";

set np 20;
set integration "UserDefined Snp Ssectags Slocations Sweights";

# element forceBeamColumn SeleTag SiNode SjNode StransfTag "IntegrationType”

element forceBeamColumn 1 1 2 2 Sintegration
element forceBeamColumn 2 2 3 1 Sintegration
element forceBeamColumn 3 3 4 2 Sintegration

# Set gravity load

set gravityLoad [expr-80]; #kN
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# Define constant Gravity load
pattern Plain 1 "Constant" {
# nodetag load value 3 DOF (x,y,0)
load 2 0 SgravityLoad 0
load 3 0 SgravityLoad 0
}

# Define analysis parameters
initialize

system SparseGeneral -piv

test NormUnbalance 1.0e-4 10000
numberer Plain

constraints Plain

algorithm Newton

# Create recorders
recorder Node -file Fdisp20.txt -time -node 3 -dof 1 disp

# Set horizontal load
set horizontalLoad 1
pattern Plain 2 "Linear" {
load 2 ShorizontalLoad 00

}

set numincr 300;

set maxdisp 0.25;

# integrator DisplacementControl Snode Sdof Sincr

integrator DisplacementControl 3 1 [expr Smaxdisp/Snumincr]
analysis Static

set ok [analyze Snumincr];

if {Sok == 0} {
puts "Pushover analysis completed SUCCESSFULLY";
}
else {
puts "Pushover analysis FAILED";
}

set fileErr [open err.txt w]
puts SfileErr "Sok"
close SfileErr;
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