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Abstract    

 

 
A novel modeling for the assessment of structures with uncertain, spatially variable 

system properties is presented. The use of flexibility-based (or force-based) fiber 

elements for structures whose properties are described by homogeneous non-Gaussian 

translation fields is discussed. For deterministic problems, force-based fiber elements 

have been proven able to provide accurate response estimates using a single beam 

element per structural member. The proposed modeling allows using different 

integration schemes depending on the correlation length parameter of the field and is 

able to consistently integrate the spatial variability of the uncertain system properties. 

This formulation allows to overcome the need for a very dense mesh of beam elements 

and considerably reduces the computing effort, even for stochastic fields of short 

correlation length and for highly nonlinear problems. The performance of the proposed 

modeling is demonstrated on a steel portal frame and on a reinforced concrete bridge 

and is assessed by using the Monte Carlo Simulation under the assumption of a pre-

defined power spectral density function of the stochastic fields. Nonlinear static analysis 

offers probabilistic capacity curves that provide valuable information on the sensitivity 

of the proposed modeling with respect to the correlation length (correlation scale) of the 

stochastic fields and its effect on the system response variability and reliability. 

Furthermore, a series of nonlinear response history analyses are performed using natural 

ground motions of levels of increasing seismic intensity and subsequently used for 

calculating the bridge’s system fragility. The dissertation underlines the importance of 

realistic uncertainty quantification and provides a valuable guidance for the nonlinear 

stochastic analysis of skeletal structures. 
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Extended summary (in Greek) 

 

 
Η μέθοδος των στοχαστικών πεπερασμένων στοιχείων γνωρίζει μεγάλη άνθιση 

τα τελευταία 25 χρόνια. Οι έμφυτες αβεβαιότητες σε όρους υλικών, γεωμετρίας και 

φορτίσεων των κατασκευών έχουν φέρει τις πιθανοτικές μεθόδους ανάλυσης στο 

προσκήνιο, καθώς τα ντετερμινιστικά προσομοιώματα αγνοούν σημαντικές 

παραμέτρους αναφορικά με την πραγματική απόκριση ενός δομήματος. Μικρές 

διακυμάνσεις κάποιων ιδιοτήτων μπορούν να δημιουργήσουν μεγάλες αποκλίσεις στην 

απόκριση και συνολικά στην αξιοπιστία της κατασκευής.  

Οι πλαισιωτές κατασκευές έχουν μελετηθεί υπολογιστικά στο πλαίσιο 

πιθανοτικών αναλύσεων με πολλές μεθόδους και παραλλαγές. Πεπερασμένα στοιχεία 2 

και 3 διαστάσεων έχουν χρησιμοποιηθεί για την λεπτομερέστερη περιγραφή των 

διακυμάνσεων των στοχαστικών πεδίων, παρά το μεγάλο υπολογιστικό κόστος. Ο 

συνδυασμός αυτών των στοιχείων με δυναμικές αναλύσεις (χρονοιστορίες) καθιστά τις 

μεθόδους ακατάλληλες για εφαρμογές σε πραγματικές κατασκευές μεγάλης κλίμακας. 

Το ραβδωτό πεπερασμένο στοιχείο μετατοπίσεων (displacement-based beam-column 

element) μπορεί να βρεθεί σε εφαρμογές στοχαστικών αναλύσεων, όμως η πυκνή 

διακριτοποίηση που χρειάζεται για ακριβείς υπολογισμούς αυξάνει το υπολογιστικό 

κόστος. Η παρούσα εργασία μελετά την εφαρμογή των ραβδωτών στοιχείων δυνάμεων 

(force-based beam-column element) στην μέθοδο των στοχαστικών πεπερασμένων 

στοιχείων. Σε ντετερμινιστικές αναλύσεις το συγκεκριμένο στοιχείο προσφέρει 

εξαιρετική ακρίβεια με ένα μόνο στοιχείο σε κάθε μέλος. Μελετάται η συμπεριφορά 

του σε όρους ακρίβειας και κόστους σε στατικές και δυναμικές στοχαστικές αναλύσεις.  

Στο πρώτο κεφάλαιο γίνεται μία σύνοψη των πιο πρόσφατων σχετικών μελετών 

(state of the art) καθώς και σχολιασμός γύρω από την ερευνητική δραστηριότητα στο 

τομέα των στοχαστικών υπολογιστικών μεθόδων για πλαισιωτές κατασκευές.  

Στο δεύτερο κεφάλαιο παρουσιάζονται οι βασικές θεωρητικές αρχές των 

ραβδωτών στοιχείων διανεμημένης πλαστικότητας ή στοιχείων ινών (distributed 

plasticity elements or fiber beam-column elements). Αποσαφηνίζονται οι διαφορές από 

τα κλασσικά ραβδωτά στοιχεία συγκεντρωμένης πλαστικότητας όπως επίσης και οι 

διαφορές μεταξύ του στοιχείου δυνάμεων και του στοιχείου μετατοπίσεων. 
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Αναφέρονται συνοπτικά οι βασικές σχέσεις των στοιχείων ινών, από τις κινηματικές 

θεωρήσεις και το σωματόδετο σύστημα συντεταγμένων μέχρι και την έκφραση του 

μητρώου δυσκαμψίας για τα δύο διαφορετικά στοιχεία.  

Στο τρίτο κεφάλαιο παρουσιάζονται συνοπτικά οι βασικότερες αρχές της 

μεθόδου των στοχαστικών πεπερασμένων στοιχείων. Ξεκινώντας από τον ορισμό των 

στοχαστικών πεδίων/διαδικασιών, αναφέρονται οι διάφοροι τρόποι διακριτοποίησης 

όπως επίσης και οι δημοφιλέστερες μέθοδοι υπολογισμού της μεταβλητότητας της 

απόκρισης. Στην εργασία χρησιμοποιούνται προσομοιώσεις Monte Carlo για τον 

υπολογισμό των αποτελεσμάτων και κατόπιν στατιστική επεξεργασία των εξαγόμενων 

δειγμάτων. Έμφαση δίνεται στους τρόπους παραγωγής των στοχαστικών πεδίων με 

Κανονική κατανομή και στη μετάβαση μέσω μετασχηματισμών σε πεδία με μη 

Κανονική κατανομή.  

Στο τέταρτο κεφάλαιο αναπτύσσεται αναλυτικά η προτεινόμενη μεθοδολογία 

της εργασίας. Παρουσιάζονται οι σχέσεις που περιγράφουν την διάδοση της 

αβεβαιότητας μέσα στο στοιχείο δυνάμεων μέχρι την παραγωγή του στοχαστικού 

μητρώου δυσκαμψίας. Με την προτεινόμενη μεθοδολογία μπορούν να εφαρμοστούν 

διάφορες μέθοδοι αριθμητικής ολοκλήρωσης, με την μέθοδο Gauss-Lobatto να 

προτιμάται ως καταλληλότερη. Ο αριθμός των σημείων ολοκλήρωσης στο 

πεπερασμένο στοιχείο είναι κομβικός για την μέθοδο, καθώς χαρακτηρίζει την 

περιγραφή του στοχαστικού πεδίου και κατά συνέπεια την ακρίβεια της μεθόδου. 

Ακόμη, παρουσιάζεται αναλυτικά η εφαρμογή της μεθόδου και ο προγραμματισμός σε 

Η/Υ μέσω των προγραμμάτων MATLAB και OpenSees, με κομμάτια κώδικα και 

επεξηγήσεις.  

Το πέμπτο κεφάλαιο περιέχει την εφαρμογή της προτεινόμενης μεθόδου σε ένα 

διδιάστατο, δίστυλο, μεταλλικό πλαίσιο. Οι ιδιότητες του χάλυβα θεωρείται ότι 

περιγράφονται από στοχαστικά πεδία λογαριθμοκανονικής κατανομής σε κάθε μέλος. 

Το πλαίσιο υποβάλλεται σε μη γραμμική στατική ανάλυση και σε μη γραμμική 

ανάλυση χρονοιστορίας. Τα αποτελέσματα των αναλύσεων συγκρίνονται με αναλύσεις 

του κλασικού στοιχείου μετατοπίσεων με πυκνή διακριτοποίηση. Σε όλο το κεφάλαιο 

παρουσιάζονται και παραμετρικές αναλύσεις για το μήκος συσχέτισης (correlation 

length) των στοχαστικών πεδίων. Με τον κατάλληλο αριθμό σημείων ολοκλήρωσης η 

σύγκλιση είναι ικανοποιητική, ενώ εξάγονται σημαντικά συμπεράσματα για την 
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αλληλεπίδραση της στοχαστικότητας με την μη γραμμικότητα. Το υπολογιστικό κόστος 

μειώνεται εντυπωσιακά, ειδικά στην δυναμική ανάλυση. Το γεγονός αυτό καθιστά τη 

μέθοδο εφαρμόσιμη σε κατασκευές μεγάλης κλίμακας.  

Στο έκτο κεφάλαιο γίνεται εφαρμογή της μεθόδου σε γέφυρα από οπλισμένο 

σκυρόδεμα με σκοπό την εξαγωγή των καμπυλών τρωτότητας. Ο φορέας είναι 

εμπνευσμένος από την Γέφυρα του Αράχθου στην Εγνατία Οδό. Οι ιδιότητες του 

οπλισμένου σκυροδέματος των βάθρων θεωρείται ότι μεταβάλλονται βάσει 

στοχαστικών πεδίων. Για την εξαγωγή των καμπυλών τρωτότητας χρησιμοποιούνται μη 

γραμμικές δυναμικές αναλύσεις με 15 σεισμικές καταγραφές και προσομοιώσεις Monte 

Carlo. Πραγματοποιείται παραμετρική ανάλυση για το μήκος συσχέτισης των πεδίων, 

ενώ γίνεται και σχολιασμός για την επιλογή των μηχανικών παραμέτρων απόκρισης 

(engineering demand parameters) σε μία ανάλυση τρωτότητας.  

Στο έβδομο κεφάλαιο συνοψίζονται τα βασικότερα συμπεράσματα της εργασίας 

και της προτεινόμενης μεθόδου. Ακολουθούν οι βιβλιογραφικές αναφορές που 

αποτελούν έναν καλό οδηγό για μελέτη παρόμοιων ερευνητικών θεμάτων. Ακόμη, 

περιέχεται παράρτημα με χρήσιμες εφαρμογές και πληροφορίες που χρησιμοποιήθηκαν 

στην εργασία, όπως πίνακες κανόνων αριθμητικής ολοκλήρωσης, προγραμματισμός της 

αριθμητικής ολοκλήρωσης Gauss-Lobatto, προγραμματισμός της μεθόδου φασματικής 

απεικόνισης για την παραγωγή στοχαστικών πεδίων Γκαουσιανής κατανομής και 

κώδικας σε γλώσσα Tcl για το πρόγραμμα OpenSees με εφαρμογή της προτεινόμενης 

μεθόδου για μία στοχαστική, στατική, μη γραμμική ανάλυση πλαισίου.  
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1.  Introduction 

The stochastic approach is a valuable a tool for the probabilistic assessment of 

structures. The inherent randomness, e.g. in material, geometry and loads, hampers the 

deterministic treatment of the problem, while often a small variation of a system 

property can affect considerably the response. Beam theory is appropriate for the 

assessment of many structural analysis problems, and is certainly the most popular 

choice for the performance assessment of inelastic frame structures. However, the use of 

beam elements for the stochastic assessment of inelastic problems is rather limited, 

since most researchers prefer other modelling choices.  

Most and Bucher (2006, 2007) proposed using a 2D and a 3D discretization for the 

stochastic assessment of beams. Their approach offers a more detailed description of the 

stochastic fields, but the computational resources required obstruct the extension of the 

method to full-scale buildings. A 2D model for the stochastic assessment of beam 

problems is also used for reinforced concrete structures in Vasconcellos et al. (2003). 

Especially when dynamic loads are applied, the use of higher order finite elements is 

prohibitive. The computing cost also depends on the algorithm that will be adopted for 

solving the stochastic problem. Despite the many extensive efforts on the development 

of analytical methods, the Monte Carlo simulation method (MCS) (Shinozuka, 1972) 

remains the most reliable option, despite its increased cost. The use of efficient finite 

element modeling is, therefore, critical for the successful application of the stochastic 

method. 

Fiber elements have been used on several occasions for the reliability assessment of 

frame structures. Contrary to the deterministic problem, where inelastic deformations 

are lumped at the beam ends, in stochastic analysis we need distributed plasticity 

elements so that our calculations consider the variation of system properties along the 
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member. One of the early efforts using fiber elements was that of Lee and Mosalam 

(2003) who introduced a stochastic fiber-element model for the assessment of RC 

structures. Their work is based on common displacement-based elements and hence 

requires significant computing resources. 

The use of force-based fiber beam-column elements, allows to consistently integrate 

the spatial variability of inelastic systems with uncertain system properties. For 

deterministic problems these elements are able to provide accurate response estimates 

using a single beam element per member. The use of force-based elements for the 

stochastic assessment of steel frames was first presented in Stefanou and Fragiadakis 

(2009) where the seismic capacity of a steel frame subjected to several natural ground 

motion records was examined. Hamutcuoglu and Scott (2009) used the force-based 

formulation for the reliability assessment of bridges under moving loads, while Feng 

and Li (2015) used force-based fiber elements for the stochastic nonlinear static 

assessment of a simple two-bay reinforced concrete frame.  

This study proposes a novel modeling for the dynamic seismic assessment of 

structural systems within the stochastic finite element method. The proposed modeling 

is able to consistently integrate the spatial variability of the uncertain system properties 

on frame structures, using a force-based fiber beam-column element. Previous work has 

proven the ability of this element to provide accurate estimates of nonlinear behavior 

using a single beam element per structural member. By using a variation of the 

integration point method, the fluctuation of the stochastic field is adequately described 

within the member. Once the proposed element formulation is implemented in a 

computer code, the user is able to adopt different integration schemes and a varying 

order of integration, having full control and considerably reducing the computing cost 

without compromising the accuracy, even for stochastic fields of very small correlation 

lengths. 

Homogeneous non-Gaussian translation stochastic fields are generated to describe the 

modeling uncertainties in a realistic way. The performance of the method is 

demonstrated on a steel portal frame under both static and dynamic nonlinear analysis. 

As reference solution, we consider models that use a very dense mesh of displacement-

based fiber beam-column elements. The response variability is assessed with the aid of 
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the Monte Carlo simulation under the assumption of a pre-defined spectral density 

function. Furthermore, the proposed modeling is implemented on a real-scale reinforced 

concrete bridge structure to assess the fragility and highlight the importance of realistic 

uncertainty quantification. A parametric investigation is carried out throughout the 

whole study regarding the spectral characteristics of the provided stochastic fields and 

their influence on the response variability. 
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2. Fiber beam-column elements 

Contrary to plastic-hinge beam-column elements, where inelastic demand is lumped at 

the beam ends, distributed plasticity elements allow yielding to occur at any location 

along the element. The two most common formulations of distributed plasticity 

elements are the displacement-based (DB) and the force-based (FB) approach. 

 

Figure 1: Cartesian and natural coordinates of a plane beam-column element. 

 Displacement-based elements, also known as stiffness-based elements, follow the 

classical finite element theory and use cubic Hermitian shape functions to interpolate 

the displacement field. These elements require a fine mesh at the regions where inelastic 

deformations are expected to be high, e.g. the beam ends. On the other hand, force-

based elements (Zeris and Mahin 1988, Spacone et al. 1996, Neuenhofer and Filippou 

1998) use force interpolation functions to overcome the problem of the unknown 

curvature distribution once yielding occurs. This approach always maintains equilibrium 

of both forces and deformations and converges to a state that satisfies the constitutive 
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laws within a specified tolerance. For deterministic problems a single force-based 

element per member is sufficient for accurately predicting the nonlinear behavior, 

provided that no element loads are present. 

Nonlinear beam-column elements are usually based on the “natural” coordinate 

system (also known as “basic” or “corotational” system). This system translates and 

rotates following the motion of the element. The beam element has three degrees-of-

freedom (Figure 1), the axial displacement e and two rotations θ1 and θ2 which fully 

describe the inelastic demand and are grouped in: v = [e, θ1, θ2]
Τ
. Following the Euler-

Bernoulli beam theory, the strain εx(x,y) is obtained as: 

    
 

 
   0

sec, 1x S

ε x
ε x y y y x

k x

 
   

 
a d   (1) 

where as(y) is the section kinematic matrix and dsec(x) is the section deformation vector. 

The section stiffness matrix is calculated as the derivative of the section forces Dsec with 

respect to the section deformations dsec: 

 
Tsec sec

sec 2

sec sec

1
 S S

A A

y
dA dA

y y

   

   

      
     

       
 

D D
k a a

d d
 (2) 

where ∂σ/∂ε is the tangent of the nonlinear uniaxial constitutive law and y is the distance 

from the neutral axis. Distributed plasticity elements are also known as “fiber” 

elements, since each section is discretized to a finite number of fibers which are used to 

numerically calculate the section stiffness ksec of Eq. (2). If N is the axial force and M is 

the bending moment of the cross-section, the section forces are calculated by integrating 

the section stresses: 

 
T

1
x S x

A A

N
σ dA σ dA

M y

   
     

   
 D a   (3) 

2.1. Displacement-based fiber elements 

The DB method interpolates the displacements of the element and the relationship 

between section and element deformations is given by: 

 sec

1 0 01
( )

0 2(3 / 2) 2(3 / 1)
N x

x L x LL

 
  

  
d B ν ν=  (4)  
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where BN(x) is the strain-displacement transformation matrix of the element. The 

element stiffness matrix is first calculated in the natural system as:  

 
T

N N sec N

L

dL K B k B   (5) 

The global element stiffness matrix is obtained from KN with the aid of simple algebraic 

transformations (Fragiadakis, 2016).  

2.2. Force-based fiber elements 

Force-based elements use force interpolation functions, which are always exact since 

the distribution of bending moment remains linear after element yielding. The force 

interpolation matrix bs relates section forces with the natural forces S, thus: 

 sec S sec

1 0 0

0 / 1 /x L x L

 
    

 
D b S D S   (6) 

The natural stiffness matrix is calculated as the inverse of the element flexibility matrix 

as: 

  
11

sec

T

N N S S
L

dL
   K F b k b   (7)  

The element stiffness matrix is calculated numerically using Gauss-Lobatto integration. 

Gauss-Lobatto integration is a variation of Gauss integration that considers the beam 

ends as integration sections, where the bending moment receives its maximum values. 

The flexibility formulation does not allow calculating directly the internal forces of the 

element. To overcome this, an additional iterative process at the element level, known 

as “element-state” determination process is introduced (Ciampi and Carlesimo 1986, 

Spacone et al, 1996).  

The first step of the iterative procedure is to determine the vector of the natural forces 

from the vector of the nodal Cartesian displacements. Then using force interpolation 

functions, the section forces are obtained and subsequently are corrected according to 

the constitutive law of the fibers. The residual section forces are then multiplied with 

the section flexibility and integrated along the element length to obtain the element 

residual deformations. The iterative process at the element level is terminated when the 
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residual deformations are minimized following an energy convergence criterion. A non-

iterative alternative was proposed by Neuenhofer and Filippou (1998). 

Force-based elements present localization issues and may lose objectivity at the local 

or global level, depending on the section constitutive behavior. For elastic-perfectly 

plastic section responses, the section curvature demands are a function of the number of 

integration points of the numerical integration scheme used for the integrals. For strain-

softening section responses, both the section curvature demands and the element 

response (and thus the overall structural response) are sensitive to the number of 

integration points. Strain localization issues also affect displacement-based elements, 

but the displacement interpolation functions force localization within a single element 

instead of one integration point (Coleman and Spacone, 2001). 
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3. Stochastic finite element method 

The stochastic finite element method (SFEM) is an extension of the common 

deterministic process for solving static and dynamic engineering systems, as it involves 

finite elements with random properties. Stochastic mechanics account for uncertainties 

in the material properties, geometry of the structure or applied loads, but it is the 

utilization of the SFEM that allows the derivation and subsequently the evaluation of 

the stochastic response of the system. The SFEM also arises as a powerful tool for the 

solution of stochastic (PDEs), from a more mathematical perspective.  

A stochastic (or random) field H(x,ω) is a mapping from a random outcome ω to a 

function of space (or time) of a random variable x. It is usually called “field” when it 

varies in space and “process” when it varies in time. The statistical properties of 

stochastic fields (e.g. probability distribution and correlation structure) are either 

assumed or obtained from experimental measurements. The general framework of the 

stochastic finite element method includes the discretization of the stochastic field and 

the calculation of the response variability (Stefanou 2009). 

3.1. Stochastic field discretization 

For nonlinear inelastic problems the discretization of the stochastic field requires special 

attention. As “discretization” we refer to the approximation of the continuous stochastic 

field H(x) by a finite number of random variables which form a random vector Ĥ(x): 

ˆ( ) ( ) { }i
discretizationH H H x x                                      (8) 

Common discretization methods are the midpoint method, the integration point method, 

the local average method, the shape function method and the weighted integral method 

(Stefanou, 2009). The first two methods are the most popular choices. The midpoint 

method (Der Kiureghian and Ke, 1988) approximates the stochastic field of every 
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element Ωe by a single random variable corresponding to the value of the field at the 

center xc of the element, thus: 

 c c
ˆ( ) ( ),  eH H x x x  (9) 

The approximate field Ĥ is fully described by the random vector:  

 
1 2{ ( ), ( ), , ( )}eN

c c cH x H x H xx  (10) 

where Ne is the number of elements of the FE mesh. The mean and the covariance 

matrix of the field are obtained from the mean, variance and autocorrelation coefficient 

functions of H evaluated at the center of the element. The integration point method 

(Matthies et al, 1997) differs from the midpoint method since it interpolates the 

stochastic field at locations that coincide with the integration (or Gauss) points of every 

element. This scheme is preferred when force-based elements are used. 

The choice of the FE mesh size is critical as it affects the discretization of the 

stochastic field. In principle, the FE mesh size is controlled by the geometry and the 

expected gradient of the stress field, which in nonlinear problems is not constant during 

analysis. The discretization of the stochastic field should follow the variation of the 

field, which is a property of the structure. The variation of the stochastic field is usually 

measured using the correlation length parameter b, which is the distance over which 

significant loss of correlation occurs. This quantity determines the degree of correlation 

between the values H(x1) and H(x2) of the stochastic field in two different positions and 

constitutes a measure of the uncorrelated random variables needed for the field 

description with satisfactory quality. 

In several problems where homogeneous stochastic fields are used, the correlation 

length is usually defined as:  

                                                        
0

( )b d  


             (11) 

where ρ(τ) is the normalized (divided by the standard deviation) autocorrelation 

function of the stochastic field. For example, if: 

                                                       ( ) ,       α>0
a

e


 


           (12) 

the correlation length is given by: 
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0

1a
b e d









            (13) 

When the correlation length tends to infinity (b→∞), the field is considered as fully 

correlated. In this case, all the random variables are linearly dependent between them 

and thus the stochastic field degenerates to a random variable. In the opposite case 

(b→0), the field tends to the ideal white noise and it is completely uncorrelated.  

For all the above reasons, the FE mesh should be dense enough in order to capture the 

essential features of the random field and avoid loss of information. A recommended 

element length Le, suitable for linear displacement-based elements, is given by the 

formula (Der Kiureghian and Ke, 1988): 

 
4 2

e

b b
L  . (14) 

3.2. Calculation of response variability 

Different approaches for calculating the response variability of stochastic systems can 

be found in the literature. The most popular choices are the perturbation approach 

(based on a Taylor series expansion of the response vector), the spectral method (each 

response quantity is represented using a series of random Hermite polynomials) and 

Monte Carlo simulation (MCS). Monte Carlo simulation is the most straightforward and 

powerful method which entails the generation of a large number of random field 

realizations and then performing numerical simulations in order to obtain the response 

quantities of interest. These quantities are then post-processed, to obtain unbiased 

response estimates and their statistics. The first and the second moment of a response 

quantity r (e.g. displacement, force, stress, etc) can be obtained after N simulations as: 

 

 

   2 2 2 2

1
            

1

1

N

j

j

N

j j

j

μ
N

σ N E
N



 
  

  





r r

r r r

 (15) 

A unitless measure of the response variability is also given by the coefficient of 

variation:  
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 

 
COV






r

r
                                                            (16) 

With a larger sample size it is possible to estimate the cumulative distribution 

function (CDF) and the probability density function (PDF) of the response. The direct 

(crude) MCS is robust, simple to use and has the capability of handling practically every 

possible problem regardless of its complexity. For that reason, it is often used in the 

literature as a reference method in order to check the accuracy of other approaches. 

However the computational cost involved becomes excessive due to the large sample 

size N required. Hence, it is best to combine MCS with discretization methods that do 

not involve a large number of random variables (e.g. midpoint method, integration point 

method). In order to reduce the computational effort, other sampling methods can be 

used (Hurtado and Barbat, 1998) such as Latin hypercube sampling (LHS), line 

sampling and subset simulation. Additionally, methods that intend to surrogate the 

deterministic FEM analysis of every sample realization of the MCS have been 

implemented in engineering problems, such as the response surface method (RSA – 

based on statistical regression analysis) and artificial neural networks (ANN – soft 

computing method based on a heuristic approach) (Papadrakakis et al, 1996). 

3.3. Simulation of non-Gaussian stochastic fields 

Non-Gaussian stochastic fields are suitable for the description of many practical 

engineering parameters, such as material properties, geometric characteristics of 

structural systems, soil properties, waves, wind loads, etc. In order to simulate a non-

Gaussian stochastic field, a transformation of a Gaussian field with known second-order 

statistics must be performed. 

The spectral representation method (Shinozuka and Deodatis 1991) is a direct 

method for the simulation of Gaussian stochastic fields. The method describes the 

stochastic field as the sum of cosines with random phase angles and amplitudes. It is 

based on the power spectrum concept, which is a real, non-negative function that 

describes how the variance of the stochastic field is distributed over the frequency 

domain. For a one-dimensional univariate (1D-1V) homogeneous Gaussian stochastic 

field, the i-th realization (sample function) is generated from the sum of M terms: 
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      

1

0

2 cos
M

i i

n n n

n

H A  




  
 x x   (17) 

where φn
(i)

 denotes the random phase angle, which is uniformly distributed in [0,2π] and 

An is the amplitude term, defined as: 

  2n ff nA S      (18) 

where: 

 ,       u
n n

N


        (19) 

Sff is the power spectral density function of the stochastic field, ωn is the frequency 

number (wave number), Δω is the frequency increment and ωu the upper-cut frequency 

after which the power spectrum becomes practically zero. Spectral density functions 

include the variance and the correlation scale characteristics of the stochastic field and 

usually are functions of exponential or square exponential type.  

The Fourier analysis is fundamental in the application of stochastic fields since all of 

the properties of a stochastic field can be formulated in a simple and more elegant 

manner in the space of frequency. In particular, the Fourier transform of the 

autocorrelation function Rff(τ) of a homogeneous stochastic field leads to the power 

spectral density function  of this field: 

 
1

( ) ( )
2

i

ff ffS R e d  








    (20) 

The inverse Fourier transform provides the autocorrelation function: 

 ( ) ( ) i

ff ffR S e d  




    (21) 

A power spectrum of square exponential type is shown in Figure 2a for different 

values of the correlation length b, while the influence of the correlation length 

parameter to the sample functions of a Gaussian stochastic field, generated by the 

spectral representation method, is shown in Figure 2b. 
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(a) 

 
(b) 

Figure 2: (a) Sample spectral density function Sff(ω) of square exponential for different 

correlation length values (standard deviation, σff=0.1), (b) sample functions of a Gaussian 
stochastic field for different correlation length values b. 

In order to simulate a non-Gaussian stochastic field, a transformation of a Gaussian 

field with known second-order statistics needs to be performed. Specifically, a zero-

mean homogeneous non-Gaussian stochastic field f(x) with spectral density function Sff 

(ω), can be obtained with the aid of a nonlinear monotonic transformation of a zero-

mean Gaussian field H(x) as: 

    1f F H   x x  (22) 

where F is the non-Gaussian marginal cumulative distribution function (CDF) of f(x) 

and Φ is the standard Gaussian CDF. The above transformation is a memoryless 



 

 
 
 
Georgios A. Balokas   Seismic risk assessment of frame structures  

             using stochastic beam-column elements 
  

 

- 14 - 

 

translation of every space coordinate xi. The choice of the marginal distribution for the 

translation field f(x) imposes constraints to its correlation structure (Grigoriu 1998). For 

non-Gaussian translation fields whose autocorrelation function has some inadmissible 

values, or is not positive-definite, the approximation error should be also taken into 

consideration (Bocchini and Deodatis 2008, Shields and Deodatis 2013).  
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4. Proposed methodology 

4.1. Theoretical approach 

We propose the use of flexibility-based elements for the probabilistic seismic 

assessment of nonlinear frame structures with stochastic properties. For the 

deterministic analysis of inelastic frame structures, flexibility-based elements are able to 

capture the response using a single element per member. When stochastic problems are 

considered, the frame properties vary along the length of every member. Most FE types 

require appropriately modifying the FE mesh depending on the properties of the 

stochastic field and also on the regions where concentration of inelastic demand is 

expected, i.e. beam ends, region of concentrated forces etc. However, for stochastic 

problems the critical locations are not known a priori since the structural properties 

vary. We show that force-based elements, if combined with a pertinent numerical 

integration scheme, offer accurate estimates of the response variability, maintaining the 

advantage of a single element per member. The resulting FE scheme is suitable for full-

scale frame structures with affordable computing cost and accuracy.  

We use stochastic non-Gaussian fields to simulate the material properties. 

Constitutive laws typically depend on several parameters. For example, a simple 

bilinear steel model depends on two parameters: the elastic modulus E and the yield 

stress fy. More parameters may be required for other material models, e.g. reinforced 

concrete models. Each material parameter may be denoted as Di and is distributed along 

each member following a zero-mean stochastic field H(x). Therefore, if D0,i is the 

expected value of each parameter, the material property is described as Di(x) = D0,i (1 +  

Hi(x)).  
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Τhe section stiffness ksec is calculated with the aid of Eq. (2), where the constitutive 

material law is a function of D = [D1, D2, …, DN]
T

. For a bilinear steel material D = [E, 

fy,]
T
 and the section stiffness is obtained as (Eq. (2)): 

 
T T

sec

( )
S S

A

dA








D

k a a  (23) 

The element stiffness matrix is calculated with Gauss-Lobatto quadrature, as: 
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b k b

  (24) 

where NIP is the number of integration points, wi and xi are the weights and the location 

of Gauss-Lobatto integration sections. Note that x1 and xNIP refer to the two ends of the 

beam element. This integration scheme is also adopted for the element internal forces. 

The above methodology is implemented with the aid of OpenSees (McKenna and 

Fenves 2001). OpenSees is an open-source structural analysis software that allows the 

user to define any numerical integration scheme. The pre and the post processing of our 

results are performed with the aid of customized in-house software.  

We first generate zero-mean Gaussian stochastic fields using the spectral 

representation method (Eq. (17)). These fields have a spectral density function of square 

exponential type: 

 
2 2 2

( ) exp
42

HH

b b
S

 




 
  

 
 (25) 

where σ is the standard deviation of the stochastic field and b is the correlation length 

parameter. The lognormal fields are subsequently obtained using Eq. (22).  

The required number of integration points strongly depends on the correlation length 

b of the stochastic field. Figure 3a and 3b show two stochastic fields with correlation 

lengths equal to 10 and 100, respectively. Both fields are integrated using five Gauss-

Lobatto integration points. For the small correlation length (b=10, Figure 3a) the 

number of integration points is not adequate, while as the correlation length increases 
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the five integration points are able to sufficiently capture the variation of the properties 

along the beam’s length.  

  
(a) (b) 

Figure 3: Stochastic field description using five integration points: (a) b=10, small correlation 
length: the number of integration points is not sufficient causing loss of information, and (b) 

b=100, large correlation length: the five integration points are enough. 

In the remainder of the paper we consider as reference, or “correct”, solution, FE 

models that use a very dense mesh of 50 displacement-based fiber elements per 

member. Such a dense mesh is expected to accurately describe randomness for any 

correlation length. In the latter case, due to the short length of the displacement-based 

elements, the stochastic field is interpolated using the midpoint method. 

4.2. Computational implementation 

We use MATLAB (2014) for the implementation of the spectral representation method 

and the consequent generation of the lognormal stochastic fields (see Appendix C). The 

stochastic mesh is quite dense for a qualitative description of the continuous fields, 

since it is required only once throughout the Monte Carlo simulations. The appropriate 

fields’ values corresponding to the Gauss-Lobatto integration points are stored in data 

files, to be processed later by OpenSees. The number of integration points is essentially 

the finite element mesh of the method. If we assume a force-based beam element with 

20 integration points, a temporary OpenSees file with the form of Figure 4 must be 

exported from MATLAB for each Monte Carlo realization. The variables f and g 

represent the first and second stochastic field respectively, assuming steel material with 

two random parameters (E and fy).       
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set f1 0.197391 
set g1 -0.058184 
set f2 0.325228 
set g2 -0.140837 
set f3 -0.023358 
set g3 -0.081030 
. 
. 
. 
set f20 0.197391 
set g20 -0.058184 

Figure 4: Stochastic field values of temporary OpenSees file 

The main OpenSees file reads the temporary file (Stoch_field.tcl) for each realization 

and sets the stochastic field values into lists, in order to propagate them into the Gauss-

Lobatto integration of the element. An example of the implementation of the values to 

the material properties according to equation Di(x) = D0,i (1 +  Hi(x)), is presented in 

Figure 5.  

After setting the material properties, the 20 different material tags must be assigned to 

the 20 Gauss points of the force-based element. This is done by creating 20 sections, 

each one corresponding to the material tags and subsequently using these sections for 

the integration input. We choose the “User-defined integration” out of the many force-

based integration options of OpenSees, simply because it allows total freedom to the 

user regarding locations and weights but most importantly because it does not have 

limitations regarding the number of integration points. With the user-defined integration 

option the user can easily switch to other numerical integration schemes (Gauss-Radau, 

Newton-Cotes etc.).  

After setting the integration input, the beam element input is straightforward. The 

important thing is the consistency of the main OpenSees file, so that the stochastic field 

values of the integration points are updated in each Monte Carlo realization, simply by 

sourcing the updated temporary OpenSees file of the new values. The integration 

propagation process mentioned above is presented in Figure 6. It is noted that the values 

of locations and weights of the Gauss-Lobatto integration points, can be sourced from a 
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file generated by MATLAB (see Appendix B) in order to avoid stating all these values 

by hand.       

 

source Stoch_field.tcl 
 
# Steel attributes – mean values (kN/m^2) 
set fy 235e3; 
set E 210e6; 
 
set f [list $f1 $f2 $f3 $f4 $f5 $f6 $f7 $f8 $f9 $f10 \  
               $f11 $f12 $f13 $f14 $f15 $f16 $f17 $f18 $f19 $f20] 
set g [list $g1 $g2 $g3 $g4 $g5 $g6 $g7 $g8 $g9 $g10 \  
                $g11 $g12 $g13 $g14 $g15 $g16 $g17 $g18 $g19 $g20] 
 
for {set i 1} {$i <=20} {incr i} { 
 set a [lindex $f $i-1] 
 set b [lindex $g $i-1] 
 lappend Elist [expr $E*(1+$a)] 
 lappend fylist [expr $fy*(1+$b)] 
} 
 
# Bilinear material (S_235) law with hardening   
# uniaxialMaterial Steel01 $matTag $Fy $E0 $b <$a1 $a2 $a3 $a4> 
 
for {set i 1} {$i <=20} {incr i} { 
 set a [lindex $Elist $i-1] 
 set b [lindex $fylist $i-1] 
 uniaxialMaterial Steel01 $i $b $a 0.000001 
} 

Figure 5: Code for the propagation of the stochastic fields in the material properties 
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for {set i 1} {$i <=20} {incr i} { 
 lappend sectag $i 
} 
 
# HEB 200 
for {set i 1} {$i<=20} {incr i} { 
 set a [lindex $sectag $i-1] 
 # section WFSection2d $secTag $matTag $d $tw $bf $tf $Nfw $Nff 
 section WFSection2d           $a           $i      0.2  0.009  0.2  0.015 15  5  
} 
 
#Gauss - Lobatto Integration 
set locations "0   0.009628147553043   0.032032750593667   0.066561010955025  \ 
0.112315869523972   0.168111798854844   0.232503567984057  \ 
0.303823408143045   0.380224147038507   0.459727031380589  \ 
0.540272968619411   0.619775852961493   0.696176591856955  \ 
0.767496432015943   0.831888201145156   0.887684130476028  \ 
0.933438989044975   0.967967249406333    0.990371852446957   1.0" 
 
set weights "0.002631578947368   0.016118561594244   0.028590901063783  \ 
0.040315881998060   0.050995749849725   0.060354613814337  \ 
0.068150241179362   0.074180777035458   0.078290051323738  \ 
0.080371643193923   0.080371643193923   0.078290051323738  \ 
0.074180777035458   0.068150241179362   0.060354613814337  \ 
0.050995749849725   0.040315881998060   0.028590901063783  \ 
0.016118561594244   0.002631578947368" 
 
set sectags "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"; 
 
set np 20; 
set integration "UserDefined $np $sectags $locations $weights";   
 
geomTransf Corotational 2; # all geometric nonlinearities 
 
# element forceBeamColumn $eleTag $iNode $jNode $transfTag "IntegrationType” 
element forceBeamColumn           1            1            2             2              $integration 

Figure 6: Code for the propagation of stochastic fields in the element integration  
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5. Steel portal frame example 

We first consider as a case study the steel portal frame of Figure 7. All the members of 

the frame have HEB 200 wide flange cross-sections and are modeled with a single 

force-based beam-column element. A distributed load q=40kN/m is applied at the bay 

and remains constant throughout the loading history. The uncertain material properties 

are the Young’s modulus E and the yield stress fy, both assumed to vary stochastically 

along each member according to the two fields H1 and H2. Therefore, the material 

properties are described by the expressions: 
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   

 (26) 

 

Figure 7: One-storey steel frame. 

where H1(x), H2(x) are two zero-mean 1D-1V homogeneous lognormal stochastic fields. 

The COV for both fields was assumed equal to 10% as indicated by the Joint 

Committee for Structural Safety (JCSS, 2001). Different values of the correlation length 

parameter b are considered in order to investigate the sensitivity of the response to the 

correlation scale of the fields. 
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5.1. Nonlinear static analysis 

Nonlinear static analysis is a valuable tool for the seismic capacity assessment of 

frame structures. The response variability of the steel portal frame is calculated for a 

sample size of 500 crude Monte Carlo simulations. For every simulation we obtain the 

capacity curve in terms of drift versus applied load. The mean capacity curve of the 

frame is shown in Figure 8, together with the mean plus and the mean minus one 

standard deviation curves. The vertical dashed line separates the pre-yielding from the 

post-yielding phase of loading. Figure 8a clearly shows that the effect of the elastic 

modulus is rather small (pre-yielding phase), while considerable variability is observed 

after yielding where fy comes into play (right of the dashed line). 

  
(a) (b) 

 

Figure 8: (a) Mean and mean ± one sigma capacity curves of the portal frame, (b) mean capacity 
curves for ranging number of integration points. 

According to Figure 8b the calculation of the mean capacity is not sensitive to the 

number of integration sections even for this small correlation length (b=0.1). On the 

other hand, Figure 9 examines the necessary number of integration points in order to 

capture the response variability defined as the COV conditional on the drift. As 

reference solution we use the red solid curve obtained with the aid of a very dense mesh 

of 50 displacement-based elements per member. For four correlation length values, we 

compare the COV estimates using force-based elements of 5, 10, 15 and 20 integration 

sections. All four plots of Figure 9 show that increasing the number of integration points 

the COV values converge to the “correct” solution. This means that more integration 

points offer a better description of the random fields. The convergence is faster as the 



 

 
 
 
Georgios A. Balokas   Seismic risk assessment of frame structures  

             using stochastic beam-column elements 
  

 

- 23 - 

 

correlation length b becomes large, e.g. compare Figure 9a and Figure 9d. The vertical 

dashed line (defined in Figure 8) provides the threshold between linear elastic and 

inelastic response. In the elastic region, the COV is practically constant and very low, of 

the order 2-6%. When the frame starts to yield, the COV increases almost 

monotonically as the drift also increases. 

  
(a) (b) 

  
(c) (d) 

Figure 9: Sensitivity of response variability to the number of integration points for different 
correlation lengths: (a) b=0.1, (b) b=2, (c) b=10 and (d) b=20. 

The accurate modelling should account for the correlation scale and hence the 

variance of the field through its power spectrum. According to Figure 9, the simulation 

without the proper number of integration sections is insensitive to the spectral 

characteristics of the stochastic fields (e.g. Figure 9, five integration sections). This is 

also verified in Figure 10 where we study the effect of the correlation length b 

comparing the variation of the “correct” solution shown (Figure 10a), to that of a force-

based element with 5 integration sections (Figure 10b). Since five integration sections 
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are not adequate, all curves of Figure 10b practically coincide and thus are unable to 

predict the response variation accurately. 

  
(a) (b) 

Figure 10: Correlation length sensitivity: (a) “correct” solution and (b) poor description offered 
from a mesh of force-based elements with 5 integration points.  

As mentioned in Chapter 2, force-based elements often suffer from localization 

effects and may lose objectivity in local or global scale. Loss of objectivity means that a 

possible increase of integrations points does not lead to a convergence of the results. 

Perfectly plastic and softening sectional responses are the most susceptible to non-

objective responses (Coleman and Spacone, 2001).  

The deformation localization due to the numerical integration of the element integrals 

is typically observed at the end integration points, where the bending moments reach 

their maximum value. This is verified by the portal frame example as shown in Figure 

11, where the curvatures of the left column’s lowest integration sections developed 

during the static analysis, have been plotted against the incremental horizontal load for 

the deterministic problem (the IP 1 is the integration point closest to the fixed end).  

However, for the stochastic problem due to the material properties variance 

irregularities may occur, as in Figure 12, where localization occurs at the third 

integration point, for a single realization of the stochastic fields.  
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Figure 11: Curvatures against load for the deterministic problem. 

 

Figure 12: Curvatures against load for the stochastic problem. 

The aforementioned are more obvious as presented in Figure 13, where the curvature 

distribution along the column height is plotted for a pre-yield and a post-yield snapshot, 

for all 20 Gauss-Lobatto integrations sections. The stochastic variation and the 

interaction of stiffness and strength variability cause irregularities to the curvature 

distribution (Figure 13b). Nevertheless, these irregularities of the individual stochastic 

realizations are not mirrored on the mean curvature distribution, as it can be shown in 

Figure 14, where the curvature distribution of the ensemble average is again smooth.  
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(a) (b) 

Figure 13: Curvature distributions for: (a) the deterministic problem and (b) the stochastic 
problem 

 

Figure 14: Mean curvature distribution (stochastic ensemble average) 

For the above example, no loss of objectivity is observed on the response, in terms of 

capacity curves. In Figure 15a we present the deterministic capacity curves for different 

numbers of integration points and in Figure 15b the capacity curves for different 

stochastic fields are presented. It is clear that in the second case the variability is 

exclusively because of the stochastic variability, as it is in terms of pure translation (the 

path shape  in every case is the same). 
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(a) (b) 

Figure 15: (a) Deterministic capacity curves with respect to the number of integration points  
(b) capacity curves for different stochastic fields 

5.2. Nonlinear response history analysis 

The seismic performance of the steel portal frame is also studied using nonlinear 

response history analysis. Nonlinear response history analysis using ground motion 

records is considered the most realistic and accurate analysis method available 

(Fragiadakis et al. 2014). Seismic demand is measured with the aid of the maximum 

drift ratio (θmax). A lumped mass matrix is formed in agreement to the distributed load q 

(Figure 7), while the fundamental mode of the frame was found equal to T1=1.24sec 

when the mean value of the Young modulus E is used. The damping matrix was 

obtained assuming 5%-Rayleigh damping on the first and the second mode. All 

response history analyses were performed using for every member a single force-based 

beam-column element with 20 Gauss-Lobatto integration sections. Again we assume 

that the “correct” solution is that of a dense mesh of displacement-based elements.  
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Figure 16: Drift demand of the natural ground motion records of Table 1 (red circles) plotted on 
the capacity curve of the frame (solid line).  

All response history analyses are performed with the fifteen ground motion records of 

Table 1. The records cover a wide range of seismic intensities in order to evaluate the 

structural behavior at different levels of seismic demand. All records are scaled with a 

uniform scaling factor equal to 2. This guarantees that some of the records will yield the 

frame. Figure 16 shows the maximum drift demand for every record plotted against the 

capacity curve of the frame. The drift values were obtained with assuming mean values 

for the random variables. The response practically convergences after 300 Monte Carlo 

simulations, regardless of the correlation scale. This is shown in Figure 17 where the 

evolution of the first two statistical moments of storey drift for two different values of 

the correlation length parameter (b=0.1 and b=10) are computed for the Loma Prieta 

1989 (WAHO) record (Table 1).  
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Table 1: Natural ground motion records considered 

No. Event Station φ°* Soil† M‡ R§(km) PGA(g) 

1 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186 

2 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159 

3 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24 

4 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103 

5 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 22.3 0.179 

6 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37 
7 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21 

8 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18 

9 Loma Prieta, 1989 Hollister Diff. Array 255 -,D 6.9 25.8 0.279 

10 Loma Prieta, 1989 Hollister Diff. Array 165 -,D 6.9 25.8 0.269 

11 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207 

12 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254 

13 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209 

14 Loma Prieta, 1989 WAHO 090 -,D 6.9 16.9 0.638 

15 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2 
* Component 
† USGC, Geomatrix soil class 
‡ Moment Magnitude 
§ Closest distance to fault rupture 

 

  
(a) (b) 

Figure 17: Statistical convergence of (a) mean and (b) COV of drift for b=0.1 and b=10  

(record: Loma Prieta 1989, WAHO) 
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Figure 18: Mean drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

The accuracy of the proposed method is examined considering the first three 

statistical moments and the sensitivity of the drift θmax with respect to the correlation 

length and the ground motion record considered. Figure 18 shows the mean storey drift 

(θmax) for four values of the correlation length, i.e. b = 0.1, 0.5, 2 and 10. The proposed 

force-based modeling provides results that are practically identical to the “correct” 

solution. Note that in Figure 18, the records are sorted from left to right according to the 

maximum expected drift demand (Figure 16).  

Figure 19 shows the effect of stochastic material properties on the COV of drift (θmax) 

demand. For all b values considered, the accuracy of the force-based formulation is 

again very close to the correct solution. The errors observed are small proving that the 

discretization with 20 sections is sufficient. Furthermore, records that do not cause large 

inelastic demand (records towards the left) have smaller COV values than records that 

caused inelastic damage on the building (records towards the right). Still, the COV 

values are very sensitive to the record characteristics while, for most ground motions, 

the COV of the response is lower than the variance of the stochastic input parameters. In 

Figure 20 we group the COV values for every record for different correlation length 

values. The effect of the correlation length is small compared to the significance of the 

ground motion properties, while large correlation lengths tend to increase the COV. 
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Figure 19: COV of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

 

Figure 20: COV of maximum storey drift with respect to the correlation length parameter b. 
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Figure 21: Skewness of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

 

Figure 22: Skewness of maximum storey drift demand with respect to the correlation length 
parameter b. 

Figure 21 and Figure 22 show the skewness (third statistical moment). The skewness 

provides a measure of the asymmetry of sample’s probability density function. Figure 

22 shows the skewness as function of the correlation length b. Contrary to the COV 

case, the skewness is quite sensitive to the correlation length and varies with the record 

properties. For many records the skewness differs considerably for different b values 

and doesn’t follow the properties of the lognormal material/input properties. 
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Furthermore, samples of opposite skewness for the same natural record, e.g. records 11 

and 15, were found. In all cases, the proposed modeling gave excellent estimates of the 

skewness when compared to the correct solution and despite the inherent sensitivity of 

the problem to this parameter (Figure 21). 

The effect of record-to-record variability is further examined looking at the 

probability density function (PDF) of the maximum storey drift demand. The PDF is 

calculated with the aid of the kernel density estimation method (Bowman and Azzalini, 

1997). Figure 23a compares the PDFs of a randomly chosen ground motion for different 

correlation length values. The sensitivity of the shape of the PDF with respect to the 

correlation length is rather small but cannot be overlooked. However, if we examine the 

PDFs of different ground motions and assume the same correlation length (e.g. b=0.1), 

the PDFs differ considerably in terms of both COV and skewness (Figure 23b). Still, 

however, all PDFs are unimodal and retain the lognormal PDF shape of the input 

variables. 

  
(a) (b) 

Figure 23: Response probability density functions: (a) effect of correlation length (record: Loma 
Prieta 1989, Sunny Colton Ave), (b) effect of different ground motion records (b=0.1, constant). 

Apart from accuracy, the proposed method also reduces considerably the computing 

cost. Figure 24 compares the computational cost of the proposed element to that of the 

displacement-based formulation for both static and dynamic analysis. An Intel Core 2 

Duo processor required more than double time to run 500 Monte Carlo simulations for 

the nonlinear static case. For the stochastic response history analysis with a single 

record (Superstition Hills, 1987), the proposed methodology required approximately 

10% of the time of the displacement-based element for the same number of simulations. 
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Although the computational effort of the displacement-based element can be reduced 

using a more coarse mesh, Figure 24 provides a clear indication of the exceptional 

computing performance of the force-based element which can be adopted for the 

simulation of real-scale problems. 

 

Figure 24: Computing cost of 500 Monte Carlo simulations of the portal frame for the force-
based and the displacement-based formulation. 
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6. Reliability assessment of a reinforced 

concrete bridge 

6.1. Model description 

The second case-study is a reinforced concrete bridge inspired from the Arahthos-

Peristeri Bridge in Egnatia Highway (Figure 25). The bridge model has a total length of 

240m and is shown in Figure 26. The slab of the deck is continuous and is assumed 

monolithically connected to the piers. Our finite element model assumes that the 

abutments are free to move in the longitudinal direction, while the piers are assumed 

fully fixed. The deck has a box-girder cross-section (Figure 27a) and 13.5m total width. 

The piers are wall-like columns and their cross-section is rounded, as shown in Figure 

27b. 

 

Figure 25: Arahthos-Peristeri Bridge in Egnatia Highway 
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Figure 26: Bridge model. 

  

(a) (b) 

Figure 27: Cross-sections of: (a) deck and (b) bridge piers. 

The reinforced concrete sections of the piers are discretized assuming unconfined 

concrete properties for the cover and confined properties for the core. Both cover and 

core were modelled with a uniaxial Kent-Scott-Park concrete material model (McKenna 

and Fenves, 2001) with degraded linear unloading/reloading stiffness. The tensile 

strength of concrete is neglected for both the confined and the unconfined case. 

Furthermore, a bilinear law with pure kinematic hardening is assumed for the 

reinforcing steel fibers. Three parameters were chosen to vary along the members 

following uncorrelated lognormal stochastic fields: the compressive strength fc, the 

corresponding strain εc and the steel yield stress fy of the reinforcement. The same 

stochastic field was used for the confined and the unconfined concrete of every cross 

section. The mean values and the COV of the lognormal stochastic fields are shown in 

Table 2. The COV values assumed were obtained from JCSS (2001) and are in 

agreement with typical values in the literature which are summarized in Dymiotis et al. 

(1999). Three different stochastic fields are produced, denoted in Table 2 as H1, H2 and 

H3. The stochastic field that each random parameter follows is shown in the last column 

of Table 2. 
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Table 2: Properties of the RC cross-sections of the piers 

Random parameter mean COV 
stochastic 

field 

Compressive strength (confined) 45MPa 20% H1 

Compressive strength (unconfined) 27.6MPa 20% H1 

Ultimate strength (confined) 44MPa 20% H1 

Ultimate strength (unconfined) 0MPa 20% H1 

Compressive strain (confined) 3.67‰ 20% H2 

Compressive strain (unconfined) 2‰ 20% H2 

Crushing strain (confined) 36‰ 20% H2 

Crushing strain (unconfined) 6‰ 20% H2 

Reinforcement yield stress  460MPa 10% H3 

 

The bridge piers are simulated with a single force-based fiber beam-column element 

assuming 20 Gauss-Lobatto integration sections per member. The deck is simulated 

with elastic beam elements, while appropriate restraints were imposed in order to ensure 

its rigid diaphragm behavior. Moreover, a uniformly distributed load of 300kN/m is 

applied on the bridge deck in order to simulate the loads on the bridge. The response of 

the bridge is dominated by the first mode which corresponds to an eigenperiod equal to 

T1=0.342sec for the mean values of all parameters. The damping matrix is formed 

proportional to the mass and the stiffness (Rayleigh damping) assuming 5% damping 

for the first two modes. 

6.2. Fragility assessment 

Seismic fragility is defined as the probability that a structural system violates a limit-

state when subjected to an earthquake of given intensity. The seismic intensity is 

measured with the aid of an intensity measure. A commonly adopted intensity measure 

is the 5%-damped first-mode spectral acceleration Sa(T1,5%). Therefore, the limit-state 

fragility curve is expressed as: 

  1( ) ,5%R i aF x P LS S T x     (27) 
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where LSi represents the exceedance of the i
th
 limit-state. A limit-state is exceeded when 

the demand exceeds the corresponding limit-state capacity, both measured with the aid 

of an engineering demand parameter (EDP). The EDP adopted for the bridge problem is 

the maximum drift θmax of the shortest pier. 

We use the Monte Carlo simulation method in order to calculate Eq. (27) for 

increasing levels of the intensity measure. We therefore scale the ground motion records 

of Table 1 and subsequently calculate Eq. (27) as the conditional probability that θmax 

exceeds the limit-state capacity max . The limit-state probability is calculated from the 

empirical distribution, simply as:  

 H
LS

sim

N
P

N
  (28) 

where NH is the number the simulations where θmax exceeds the threshold/capacity drift 

for the limit-state examined, and Nsim is the total number of simulations per intensity 

level. 

The fragility curves are calculated for three different cases: (i) lognormal stochastic 

fields with b=0.2, (ii) lognormal stochastic fields with b=10 and (iii) the random 

parameters are considered lognormal random variables, which practically is equivalent 

to a stochastic field with very large correlation length. The latter assumption is very 

common in earthquake engineering applications. Figure 28 shows the fragility curves 

for three limit-states, i.e. max  ≥ 0.25%, 0.5% and 1%. As shown in Figure 28, the 

assumption of modelling the frame properties as random variables (case iii), 

underestimates the conditional failure probabilities (fragilities) compared to the case of 

stochastic distribution, especially for high values of the intensity measure where the 

structure approaches collapse. Moreover, the bridge fragilities are not affected by the 

correlation length, since the b=0.2 and b=10 curves, practically coincide.  
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Figure 28: Fragility curves considering different values of the correlation length parameter 

Often the response variability is counteracted and hence hidden when it is measured 

with a global demand parameter (Li et al. 2015). In other words, while in many cases 

the response variability in terms of displacements (or drifts) may be small, the 

variability in terms of local demand parameters can be more pronounced. For example, 

in the local level the demand and capacity are expressed in terms of curvature kmax. We, 

therefore, examine the curvature demand at the bottom of the shortest pier (Figure 26) 

and we produce the corresponding fragility curves. The fragility curves are compared in 

Figure 29 for the three cases previously discussed. Again the coupling of stochasticity 

and nonlinearity is strong for large seismic intensities. Contrary to Figure 28, the 

random variable case overestimates the fragility of the pier, while considerable 

variability between the b=0.2 and b=10 curves is also observed. It is therefore evident 

that the proper description of randomness significantly affects the response, although 

this may be hidden if global response parameters (EDPs) are studied instead.  
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Figure 29: Single pier fragility curves for different values of the correlation length parameter. 
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7. Concluding remarks 

A novel modeling approach for the probabilistic seismic assessment of frame structures 

with stochastic system properties is proposed. The proposed method extends the use of 

flexibility-based fiber elements to the stochastic finite element method, which now can 

be applied for the study of real-scale problems due to the remarkable computational 

performance and the stability of these elements. The performance of the proposed 

modelling is demonstrated on a one-storey steel portal frame and on a reinforced 

concrete bridge. The study provides a valuable guidance for the analysis and the design 

of structures with non-Gaussian system properties and its main conclusions are 

summarized as follows: 

 The number of integration sections is critical. The integration should be able to 

capture the spectral characteristics of the input stochastic field.  

 The proposed modelling combines remarkable accuracy and reduced computing 

effort, even for very small values of the correlation length parameter.  

 The computational performance was exceptional, especially for the case of 

response history analysis where the proposed modelling reduced the required 

computing effort by 90% compared to ordinary displacement-based fiber 

elements.  

 The parametric investigation revealed notable influence of the correlation scale of 

the stochastic parameters, especially for higher order statistical moments. The 

record-to-record variability for the dynamic response of the structures was found 

also very important.  

 The influence of stochastic system properties grows as inelastic demand increases, 

i.e. for levels of high seismic intensity. The discrepancies of the probabilistic 

characteristics of the input, particularly the difference between the widely used 
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random variables and the stochastic fields, are clearly reflected through the 

fragility curves, even though the response variability is milder when it is measured 

globally. Therefore, local demand parameters (e.g. column/pier curvature) should 

be also studied in the framework of seismic reliability assessment. 
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Appendix A 

Numerical Integration Rules 

 

 

Table A.3: Gauss-Legendre quadrature 

Number of integration points 

m 

Points 

ξh 

Weights 

wh 

1 0.0 2.0 

2 ± 0.57735 1.0 

3 
± 0.774597 

0.0 

0.555556 

0.888889 

4 
± 0.861136 

± 0.339981 

0.347855 

0.652145 

5 

± 0.90618 

± 0.538469 

0.0 

0.236927 

0.478629 

0.568889 

6 

± 0.93247 

± 0.661209 

± 0.238619 

0.171324 

0.360762 

0.467914 

7 

± 0.949108 

± 0.741531 

± 0.405845 

0.0 

0.129485 

0.279705 

0.38183 

0.417959 
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8 

± 0.96029 

± 0.796666 

± 0.525532 

± 0.183435 

0.101229 

0.222381 

0.313707 

0.362684 

9 

± 0.96816 

± 0.836031 

± 0.613371 

± 0.324253 

0.0 

0.081274 

0.180648 

0.260611 

0.312347 

0.330239 

10 

± 0.973907 

± 0.865063 

± 0.67941 

± 0.433395 

± 0.148874 

0.066671 

0.149451 

0.219086 

0.269267 

0.295524 
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Table A.4: Gauss-Lobatto quadrature 

Number of integration points 

m 

Points 

ξh 

Weights 

wh 

1 - - 

2 ± 1.0 1.0 

3 
± 1.0 

0.0 

0.333333 

1.333333 

4 
± 1.0 

± 0.447214 

0.166667 

0.833333 

5 

± 1.0 

± 0.654654 

0.0 

0.1 

0.544444 

0.711111 

6 

± 1.0 

± 0.765055 

± 0.285232 

0.066667 

0.378475 

0.554858 

7 

± 1.0 

± 0.830224 

± 0.468849 

0.0 

0.047619 

0.276826 

0.431745 

0.487619 

 

8 

± 1.0 

± 0.87174 

± 0.5917 

± 0.209299 

0.035714 

0.210704 

0.341123 

0.412459 
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9 

± 1.0 

± 0.899758 

± 0.677186 

± 0.363117 

0.0 

0.027778 

0.165495 

0.274539 

0.346429 

0. 371519 

10 

± 1.0 

± 0.919534 

± 0.738774 

± 0.477925 

± 0.165279 

0.022222 

0.133306 

0.224889 

0.292043 

0.327540 
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Appendix B 

Matlab script for Gauss-Lobatto quadrature 

 

% Gauss - Lobatto integration rule 
% Calculation of locations and weights of integration points  
  
clear all; clc;  
format long 
 
n = 20 ;            % number of integration points                                                      
syms x ;  
x = solve(diff(legendreP(n-1,x)),x); 
x = double(x); 
x = real(x); 
x = sort(x); 
 
% locations & weights 
x = [-1 x' 1];                                                 
w = 2./(n*(n-1)*(legendreP(n-1,x)).^2);      
 
% transformation to the natural domain [0,1] 
x = 0.5*(1+x)                                                
w = 0.5*w 
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Appendix C 

Matlab script for the Spectral representation method 

 

 

% Stochastic field generation  
% 1D-1V homogeneous zero-mean Gaussian random field 
% Spectral representation method 
  
clear all; clc; 
  
% Spectral density function  
syms s b k  
SDF = (s^2*b)/(2*pi^0.5)*exp(-0.25*(b^2)*(k^2)); 
SDF = subs(SDF,s,0.1);             % input of standard deviation 
SDF = subs(SDF,b,20);               % input of correlation length 
  
% Generate 1000 sample functions of the random field 
a=int(SDF);                          % symbolic integration of power spectrum 
for i=1:1:1000                     % procedure for calculating the upper frequency 
    b=double(limit(a,i));            
    c=double(limit(a,inf)); 
    if (b/c)>0.999 
        break 
    end 
end 
wu=i;                                            % upper cut frequency (power spectrum is practically 
zero) 
Sf=inline(char(SDF));                 % convert sym to inline function  
N=100;                                         % truncation 
Dw=wu/N;                                   % frequency step  
for j=1:1:1000 
    for i=0:1:N-1 
        wn=i*Dw; 
        An=(2*Sf(wn)*Dw)^0.5; 
        t=linspace(0,2*pi/Dw,300); 
        z=(2^0.5)*An*cos(wn*t+2*pi*rand()); 
        f(i+1,:)=z;                        % place generated data in a Nx300 matrix 
    end 
    F_temp=sum(f); 
    F(j,:)=F_temp; 
end 
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Appendix D 

OpenSees script for stochastic nonlinear static analysis of 2D portal frame 

 

 

# Create ModelBuilder (with 2-dimensions and 3 DOF/node) 
model basic -ndm 2 
 
set height 6; 
set width 8; 
node 1 0 0  
node 2 0 $height 
node 3 $width $height 
node 4 $width 0 
 
# Fix supports  
fix 1 1 1 1 
fix 4 1 1 1   
 
source Stoch_field.tcl 
 
#Steel attributes (kN/m^2) 
set fy 235e3; 
set E 210e6; 
 
set f [list $f1 $f2 $f3 $f4 $f5 $f6 $f7 $f8 $f9 $f10 \ 
         $f11 $f12 $f13 $f14 $f15 $f16 $f17    $f18 $f19 $f20] 
set g [list $g1 $g2 $g3 $g4 $g5 $g6 $g7 $g8 $g9 $g10 \  
         $g11 $g12 $g13 $g14 $g15 $g16 $g17 $g18 $g19 $g20] 
 
for {set i 1} {$i <=20} {incr i} { 
 set a [lindex $f $i-1] 
 set b [lindex $g $i-1] 
 lappend Elist [expr $E*(1+$a)] 
 lappend fylist [expr $fy*(1+$b)] 
} 
 
# Bilinear material (S_235) law with hardening   
# uniaxialMaterial Steel01 $matTag $Fy $E0 $b <$a1 $a2 $a3 $a4> 
for {set i 1} {$i <=20} {incr i} { 
 set a [lindex $Elist $i-1] 
 set b [lindex $fylist $i-1] 
 uniaxialMaterial Steel01 $i $b $a 0.000001 
} 
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for {set i 1} {$i <=20} {incr i} { 
 lappend sectag $i 
} 
 
# HEB 200 
for {set i 1} {$i<=20} {incr i} { 
 set a [lindex $sectag $i-1] 
 section WFSection2d  $a  $i  0.2  0.009  0.2  0.015 15  5    
} 
 
geomTransf Corotational 1;        # beams 
geomTransf Corotational 2;      # columns 
 
# Gauss - Lobatto Integration 
set locations "0   0.009628147553043   0.032032750593667   0.066561010955025  \ 
0.112315869523972   0.168111798854844   0.232503567984057  \ 
0.303823408143045   0.380224147038507   0.459727031380589  \ 
0.540272968619411   0.619775852961493   0.696176591856955  \ 
0.767496432015943   0.831888201145156   0.887684130476028  \ 
0.933438989044975   0.967967249406333    0.990371852446957   1.0" 
 
set weights "0.002631578947368   0.016118561594244   0.028590901063783  \ 
0.040315881998060   0.050995749849725   0.060354613814337  \ 
0.068150241179362   0.074180777035458   0.078290051323738  \ 
0.080371643193923   0.080371643193923   0.078290051323738  \ 
0.074180777035458   0.068150241179362   0.060354613814337  \ 
0.050995749849725   0.040315881998060   0.028590901063783  \ 
0.016118561594244   0.002631578947368" 
 
set sectags "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"; 
 
set np 20; 
set integration "UserDefined $np $sectags $locations $weights";   
 
# element forceBeamColumn $eleTag $iNode $jNode $transfTag "IntegrationType” 
element forceBeamColumn          1          1            2  2   $integration     
element forceBeamColumn          2          2            3   1    $integration   
element forceBeamColumn          3          3            4  2   $integration   
 
# Set gravity load 
set gravityLoad [expr -80];  # kN 
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# Define constant Gravity load  
pattern Plain 1 "Constant" { 
       # nodetag    load value 3 DOF (x,y,θ) 
 load       2  0 $gravityLoad 0  
 load       3  0 $gravityLoad 0  
} 
 
# Define analysis parameters 
initialize 
system SparseGeneral -piv 
test NormUnbalance 1.0e-4 10000 
numberer Plain 
constraints Plain 
algorithm Newton 
 
# Create recorders 
recorder Node -file Fdisp20.txt -time -node 3 -dof 1 disp 
 
# Set horizontal load 
set horizontalLoad 1 
pattern Plain 2 "Linear" { 
 load 2 $horizontalLoad 0 0 
} 
 
set numIncr 300; 
set maxdisp 0.25; 
# integrator DisplacementControl $node $dof        $incr   
integrator DisplacementControl          3        1   [expr $maxdisp/$numIncr] 
analysis Static 
set ok [analyze $numIncr];   
 
if {$ok == 0} { 
 puts "Pushover analysis completed SUCCESSFULLY"; 
}  
else { 
  puts "Pushover analysis FAILED"; 
} 
 
set fileErr [open err.txt w] 
puts $fileErr "$ok" 
close $fileErr; 
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