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Περίληψη 

Στθν παροφςα μεταπτυχιακι εργαςία, αναλφεται θ ανάπτυξθ του ιςοδφναμου ςυνεχοφσ μζςου 

μοντζλου του γραφενίου ςε πολλαπλζσ κλίμακεσ, χρθςιμοποιϊντασ πεπεραςμζνα ςτοιχεία 

κελφφουσ. Το ιςοδφναμο μοντζλο χρθςιμοποιείται ςτθ ςυνζχεια για τθν ανάλυςθ και 

προςομοίωςθ νανοςφνκετων πολυμερϊν υλικϊν, λαμβάνοντασ υπόψθ τθν επίδραςθ τθσ 

διεπιφανειακισ αντοχισ ςτισ μθχανικζσ ιδιότθτεσ. Οι προςομοιϊςεισ που παρουςιάηονται, 

βαςίηονται ςτθ χριςθ κλαςςικϊν πεπεραςμζνων ςτοιχείων ςυνεχοφσ μζςου για τθ 

μοντελοποίθςθ των ατομικϊν αλλθλεπριδράςεων ςτο πλζγμα άνκρακα του γραφενίου. 

Σφμφωνα με κεωριςεισ δομικισ μοριακισ μθχανικισ, το πεδίο δυνάμεων που ορίηει τισ 

αλλθλεπιδράςεισ μεταξφ των ατόμων, μπορεί να αντικαταςτακεί από κλαςςικά πεπεραςμζνα 

ςτοιχεία δοκοφ. Οι μθχανικζσ και γεωμετρικζσ ιδιότθτεσ αυτϊν μποροφν να υπολογιςτοφν 

αναλυτικά. Παρζχεται ζτςι μεγάλθ ακρίβεια ςτισ μθχανικζσ ιδιότθτεσ του προςομοιϊματοσ. Για 

τθν επίτευξθ ενόσ υπολογιςτικά χαμθλοφ κόςτουσ μοντζλου, το πλζγμα των πεπεραςμζνων 

ςτοιχείων δοκοφ αντικακιςτάται από κλαςςικά πεπεραςμζνα ςτοιχεία κελφφουσ. Ο 

υπολογιςμόσ των μθχανικϊν ςτακερϊν και του πάχουσ αυτϊν, γίνεται με αλγόρικμο 

βελτιςτοποίθςθσ, κάνοντασ χριςθ κριτθρίων ιςοδφναμθσ ενζργειασ παραμόρφωςθσ και 

μετατοπίςεων ςε ςφγκριςθ με το αρχικό προςομοίωμα δοκϊν. Σαν αποτζλεςμα ζχουμε υψθλι 

ακρίβεια ςε πολλαπλζσ κλίμακεσ και πολφ χαμθλότερο υπολογιςτικό κόςτοσ ςε ςχζςθ με το 

αρχικό μοντζλο ςτοιχείων δοκοφ. Το ιςοδφναμο ςυνεχζσ που αποτελείται πλεον από 

πεπεραςμζνα ςτοιχεία κελφφουσ, χρθςιμοποιείται ςτθ ςυνζχεια για τθν μοντελοποίθςθ 

νανοςφνκετου υλικοφ πολυμερικισ μιτρασ ενιςχυμζνο με γραφζνιο. Για το νανοςφνκετο 

επιλζγεται αντιπροςωπευτικό ςτοιχείου όγκου, όπου το γραφζνιο είναι ενςωματωμζνο ςε 

ορκωνικι μιτρα πολυμεροφσ. Για τθ μοντελοποίθςθ τθσ μιτρασ χρθςιμοποιοφνται 

τριδιάςτατα πεπεραςμζνα ςτοιχεία 8 κόμβων και γραμμικζσ ελαςτικζσ ιδιότθτεσ υλικοφ. Ο 

μθχανιςμόσ μεταφοράσ δυνάμεων από τθν πολυμερικι μιτρα ςτο γραφζνιο επιτυγχάνεται 

μζςω τθσ διεπιφάνειασ αυτϊν, για τθν οποία ορίηεται επιφανειακι ςυμπεριφορά ςυνοχισ 

(cohesive zone). Η ςυμπεριφορά αυτι ζχει αποδειχκεί κατάλλθλθ για τθν ανάλυςθ τθσ 

αςτοχίασ και ολίςκθςθσ ςφνκετων υλικϊν ςτθ διεπιφάνεια. Το διάνυςμα τάςθσ μεταξφ των 

δφο επιφανειϊν, υπολογίηεται βάςει ενόσ καταςτατικοφ νόμου ωσ ςυνάρτθςθ τθσ 

απομάκρυνςθσ (traction-separation law), ζχοντασ επίςθσ τθ δυνατότθτα να ακολουκιςει 

προεπιλεγμζνο μοντζλο αςτοχίασ. Με τον ςυγκεκριμζνο τρόπο μοντελοποίθςθσ είναι δυνατόν 

να μελετθκεί πωσ επιδρά ςτισ μθχανικζσ ιδιότθτεσ του νανοςφνκετου υλικοφ θ τιμι τθσ 

διεπιφανειακισ αντοχισ, κακϊσ και ο τρόποσ αποκόλλθςθσ για απλζσ ι ανακυκλιηόμενεσ 

φορτίςεισ. Επίςθσ εξετάηονται γεωμετρικζσ ατζλειεσ, όπϊσ κυματιςμοί ςτο γραφζνιο. Τα 

αρικμθτικά αποτελζςματα καταδεικνφουν ότι ο τρόποσ μοντελοποίθςθσ του γραφενίου με 

ιςοδφναμα πεπεραςμζνα ςτοιχεία, είναι αποτελεςματικόσ για τθ μοντελοποίθςθ ςφνκετων 

υλικϊν ςε πολλαπλζσ κλίμακεσ. Η επίδραςθ τθσ διεπιφανειακισ αντοχισ και τα φαινόμενα 

ολίςκθςθσ που προκφπτουν, κρίνονται ςθμαντικά ςτθ μθχανικι ςυμπεριφορά του υλικοφ, ςε 
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ςυμφωνία επίςθσ με τθν αντίςτοιχθ βιβλιογραφία. Για τθ γζνεςθ πλεγμάτων και τουσ 

αλγορίκμουσ βελτιςτοποίθςθσ χρθςιμοποιικθκε το εμπορικό μακθματικό πακζτο MATLAB. Για 

τισ προςομοιϊςεισ πεπεραςμζνων ςτοιχείων ςτο γραφζνιο και ςτο νανοςφνκετο υλικό, 

χρθςιμοποιικθκε το εμπορικό πακζτο ABAQUS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Abstract 

In the present work, a method is introduced for the development of the equivalent continuum 

model of graphene sheets, with shell finite elements in multiple scales. The equivalent 

continuum model is then used for the modeling of graphene nanocomposite materials, with 

respect to the effect of the interfacial strength on the mechanical behavior. The simulations 

presented, are based on the use of classic continuum finite elements for the representation of 

the interatomic interactions, in the hexagonal carbon lattice of graphene. According to 

Molecular Structural Mechanics, the force field that defines the interatomic interactions can be 

replaced with beam finite elements.  The mechanical and geometrical properties of the beam 

elements are analytically calculated by making use of equivalent strain energy criteria, 

providing great accuracy in the mechanical properties of the model. For the reduction of the 

computational effort required in larger models, the beam element mesh is replaced with fewer 

shell elements, capturing the effects occurring in the multiple size scales. For the calculation of 

the mechanical and geometrical properties of the equivalent shell elements, an optimization 

algorithm is developed, searching for the solution with respect to strain energy and 

displacement criteria of the original beam element model. As a result, a high accuracy and 

much more computationally efficient model of graphene in multiple scales is derived. The 

equivalent shell model is then used as the filler in the polymer matrix of the nanocomposite. 

For the nanocomposite a representative volume element is chosen, where the graphene sheet 

is embedded in a rectangular matrix. For the modeling of the matrix three dimensional 8-

nodded continuum finite elements with linear material properties are chosen. The load 

transferring mechanism between the matrix and the filler is modeled as a cohesive zone, which 

is suitable for the study of failure and occurring slippage along the interface. The cohesive 

behavior is defined with a traction-separation law, where the traction vector between the two 

surfaces is calculated as a function of the separation. A predefined damage propagation model 

based on plastic displacement criteria is followed. With this specific way of modeling, it is 

possible to study efficiently the effects of the interfacial strength on the mechanical properties 

and behavior of the nanocomposite, in simple or cyclic loading conditions. The numerical 

results presented, reveal that the equivalent shell element model of graphene is an effective 

modeling technique along multiple scales and can capture efficiently phenomena that occur in 

interfacial strength depended behavior. In addition, the effect of wrinkles on graphene is also 

highlighted in the present study. The results present good agreement with the currently 

available literature on composite and nanocomposite materials interfacial debonding and 

delamination studies. For the mesh generation and optimization algorithms the commercial 

mathematical package MATLAB was used. For the finite element simulations of the graphene 

sheets and graphene nanocomposites the commercial simulation package ABAQUS was used. 
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1 Introduction 

Graphene as a new emerging material has attracted tremendous scientific interest, due to its 

extraordinary mechanical and electrical properties. An allotrope of carbon, graphene forms a 

hexagonal honeycomb lattice which can be one atom thick, known as single layer graphene 

sheet (SLGS) synthesized via various methods [1-3]. Graphene has been found to be the 

strongest material ever tested [4,5] with a Young’s Modulus of 1 TPa and Tensile Strength of 

130 GPa, making it a very promising material for structural applications. Graphene sheets (GS) 

and its derivative products the carbon nanontubes (CNT), have been successfully used as filler 

materials in nanostructured composites [6,7], greatly enchanching the mechanical properties of 

the matrix. Successful applications include both metal matrix [8,9] and polymer matrix [10,11] 

nanocomposites. The present work, aims to provide an efective way for the modeling of the 

mechanical behavior and properties of graphene nanocomposites in multiple scales. Two 

distinct points in the modeling process of graphene nanocomposites are presented in detail, 

first the method of simulation of graphene and second the load transferring mechanism 

between the matrix and the filler. 

The modeling methods currently available for simulation of the mechanical behavior of 

graphene, take into account the interatomic interactions between the carbon atoms in the 

hexagonal lattice. Computational methods widely used, can be generally classified into two 

categories. One is the atomistic modeling [12,13] with major techniques including molecular 

mechanics  and ab-initio calculations. The other way is the approach by continuum mechanics 

[14-16] including the analysis with finite element methods. Each of the above methods, comes 

with different performance along multiple time and size scales. Ab-initio and molecular 

mechanics techniques generally provide high accuracy at the smallest scales, but due to the 

high computational effort required, they are suitable for small size models and short time spans 

[16,17]. On the other hand, continuum mechanics techniques aim to provide accurate and 

computationally efficient models at larger size and time scales [17]. The accuracy of the 

continuum mechanics techniques depends greatly on the physical parameters of the equivalent 

continuum models, which replace the hexagonal lattice. Different continuum models with finite 

elements have been proposed [17-20]. 

The main principle behind continuum mechanics techniques, knows as Molecular Structural 

Mechanics (MSM), is the simulation of the covalent bonds between the carbon atoms, with 

equivalent structural finite elements [17]. The physical properties of the equivalent finite 

elements can be analytically calculated by making use of equivalent strain energy criteria, with 

reference to the force field that defines the interatomic interactions. Currently, the dominant 

method is replacing the carbon covalent bonds with beam finite elements, which can capture 

both stretching and rotation between atoms. While this approach is computationally effective 
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and accurate compared to the atomistic simulations [17-20], the computational effort increases 

dramatically while shifting time and size scales. For this reason the beam finite element model 

is replaced with an equivalent finite element mesh, aiming to provide a model with fewer finite 

elements but with the same degree of accuracy. The type of the elements to replace the beam 

frame depends on the initial geometry of model. This way of modeling has successfully found 

application in the simulation of the mechanical behavior of CNTs, where the beam element 

frame that represents the CNT, is replaced with an equivalent beam continuum element [21-

23]. A lower element to volume ratio is then achieved, lowering the computational effort 

required and enabling more time or size demanding results to be achieved. The present work 

aims to develop an equivalent continuum model in multiple scales, which can replace the beam 

element frame of GSs rather than CNTs. GSs are found to have shell like behavior in relatively 

large models, compared to the beam like behavior of CNTs. The problem of finding an 

equivalent shell element (ESE) of a frame structure, while retaining the original size, is the 

calculation of the physical properties of the shells, being the Young’s Modulus, Poisson’s ratio 

and the equivalent thickness. The ESE should be able to accurately represent both the 

membrane and the plate behavior of the GS, and is thoroughly discussed in the following 

chapters. 

The ESE of graphene is then embedded into a polymer matrix, for the study of the mechanical 

behavior of the nanocomposite. A representative volume element is chosen for the simulations. 

The load transferring mechanism between the matrix and the filler has been found to play a 

crucial role in the mechanical properties of nanocomposites. Numerical simulations indicate 

that the interfacial stiffness and strength, define the limits of mechanical enhancement of the 

nanocomposite by the filler and the occurring slippage when failure arises [21,24]. Techniques 

have been proposed for enchanced cohesion between the matrix and the filler [25,26]. A Load 

transferring mechanism via a friction model has been previously applied with success in 

modeling CNT nanocomposites [21,27]. In the present study, the interfacial load transferring 

mechanism is being modeled with a definition of cohesive behavior between the ESE and the 

three dimensional matrix. The cohesive behavior defines a traction-separation law between 

surfaces and can follow a predefined damage model. Cohesive elements have already been 

used to capture delamination and debonding phenomena for composite or nanocomposite 

materials [28-30] and reinforced steel [31], with good agreement with the experimental data. 

The present work concludes with numerical results of the finite element simulations of 

graphene nanocomposites. The representation of the hexagonal carbon lattice with an ESE and 

the load transferring mechanism with a cohesive behavior, are found to be effective modeling 

techniques. The process followed can be summarized in Figure 1. 
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Figure 1: Summary of the process followed in the present work 
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2 The Finite Element Model of Graphene 

2.1 The Molecular Structural Mechanics Approach 

Molecular Structural Mechanics (MSM) finite element models have been found to be effective 

ways for the modeling of graphene and carbon nanotubes (CNTs). The MSM method, originally 

developed by Li and Chou [17], aims to provide a linkage between microscopic computational 

chemistry and macroscopic structural mechanics. Graphene sheets (GS) can be regarded as 

large molecules consisting of carbon atoms in a hexagonal honeycomb lattice. From the 

molecular mechanics point of view, atomic nuclei have their motions regulated by electron-

nucleus and nucleus-nucleus interactions [32]. A representation of a GS hexagonal lattice can 

be shown in Figure 2. 

 

Figure 2: Representation of a GS hexagonal lattice 

The force field that defines the interatomic interactions depends only on the relative positions 

of the nuclei, and can be expressed in the form of steric potential energy as: 

 

Where Ur is for bond stretching, Uθ for bond angle bending, Uφ for dihedral angle torsion, Uω 

for out of plane torsion and Uvdw for Van der Waals interactions. The interactions and relative 

motions of the carbon atoms that correspond to the above relation are shown in Figure 3. In 

the present work, for simplicity and due to the assumptions of small deformations, harmonic 

approximation of the energy is adequate [17]. Considering Van der Waals interactions to be 
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negligible and merging the dihedral angle and improper torsion the energy components 

become: 

 

Where kr, kθ, kτ are force field constants that correspond to Δr, Δθ and Δφ relative motions. 

The force field constants can be selected from a suitable potential for graphene such as the 

AMBER [33] potential, where kr=938kcal×mole-1×Å-2=6.52×10-7 N/nm, kθ=126 kcal×mole-1×rad-

2=8.76×10-10 Nnm rad-2 και kτ=40 kcal×mole-1×rad-2=2.78×10-10Nnm rad-2. 

 

Figure 3: Interatomic interactions in the molecular mechanics of graphene 

Further into the MSM approach, the similarity of the expressions between the molecular 

potential energy and the strain energy of a beam element is examined. For a uniform beam 

subjected to pure tension or compression of axial force N, the strain energy according to 

structural mechanics is: 
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The strain energy for pure bending under bending moment M is: 

 

The strain energy for pure torsion under moment T is: 

 

In the above relations, ΔL in (5) represents the axial deformation, α in (6) the angle of rotation 

at the beam ends and Δβ the relative rotation between the beam ends. The loading conditions 

and deformations of the beam are depicted in Figure 4. 

 

Figure 4: The loading conditions of the beam corresponding to equations 5-7 

Comparing the equations (2-4) with the equations (5-7), the similarities in the energy terms and 

deformations are obvious. Both equation (2) and (5) represent stretching energy, equations (3) 

and (6) bending energy, and equations (4) and (7) torsional energy. Thus, the carbon-carbon 

bond can be simulated with a beam element with the following structural characteristics: 

 

In the MSM approach, the beam element constants E and G are derived in the simplest way as 

functions of the force field constants, assuming a beam of circular cross-section with diameter 

d, for which the parameters A, I and J are known as: 

 

 Substituting the relations in (10) to the relations in (8) the beam characteristics are derived as: 
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The length L of the beam is chosen to be L=0.1421nm which is the length of the covalent bond 

and the constants in (11) are be calculated as d=0.147 nm, E=5488 GPa, G=870.7 GPa. At this 

stage the MSM model is ready to be applied for the simulation of the mechanical behavior of a 

GS with beam finite elements. A beam finite elemet mesh, depicted in Figure 5, can be 

developed in a commercial simulation software package like ABAQUS. However, in the present 

work the beam finite element used, is based on a modified version of the MSM, suggesting that 

the MSM approach is suitable for in-plane loads only, due to the circular beam assumption. 

 

Figure 5:  11.08x10.58 nm circular beam finite element model of a GS 

 

2.2 The Modified Molecular Mechanics Model 

The Modified Molecular Structural Mechanics (mMSM) is a more accurate version of the MSM 

approach. In the MSM finite element model of graphene, circular cross-section for the beam 

elements was assumed, implying that the in-plane and out-of plane bending rigidities of the 

beam are equal. As stated by Lu and Hu [19] who proposed an elliptical cross-section for the 

beam, out of plane bending rigidity is largely overestimated in the MSM approach; fact 

supported both by atomistic and other analysis. Therefore, a suitable modified version of the 

MSM has to be taken into consideration. In the present work the finite element model for the 

GS, is based on a rectangular beam cross-section proposed by Chen [34]. According to the 

mMSM model, the out of plane bending rigidity of the beam elements should be related with 
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the weak inversion energy of the covalent bond. As shown in Figure 6, in a covalent bond OA 

subjected to an out of plane force Fz (inducing moment My), only one third of the inversion 

energy is developed as: 

 

Where Kω= 1.1 kcal/mol [33] is the bond inversion energy, Vω the inversion energy of the atom 

at O and Θy the bending angle.  

 

Figure 6: Out of plane loading of the covalent bonds 

Combining equation (12) with (6), the out of plane bending rigidity is related with the force field 

inversion constant as: 

 

Further combining equation (13) with (8), the relation between out of plane and in-plane 

rigidity is derived as: 

 

It is evident from equation (14) that the out of plane rigidity in the mMSM is much smaller than 

the previous in the MSM approach. Combining equations (14) and (8), with the known force 

field constants and setting L=0.1421nm, A=0.001nm2 and v=0.034 for the beam elements, the 

mechanical constants of the elements are calculated as: 

 

Where pN are pico Newtons chosen for numerical convenience. The rigidities are derived as: 
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The mMSM model of a GS can afterwards be developed in ABAQUS, using Generalized Sections 

for the beam elements. Each beam finite element captures the phenomena in the smallest 

scale between the atoms, while the total frame model behaves like a shell in larger scales. 

Validation tests for such models include the tension test, for the calculation of the mechanical 

constants. A tension test of the finite element model, provides the Young’s Modulus and the 

Poisson’s ratio of the sheet, calculated at E=1.04TPa and v=0.0607, using the graphene 

interlayer spacing t=0.34nm as equivalent thickness. The tension test was conducted for a 

22.1676x21.1676nm GS in the zig-zag direction, shown in Figure 7, which is homogenous 

enough to provide accurate results.  

 

Figure 7: Tension Test for a 22.1676x21.1676nm GS in the zig-zag direction, modeled with the mMSM 

finite element approach 

A not significant variation in the mechanical constants is observed in the armchair direction, 

which leads to fact that the GS can be regarded having isotropic membrane behavior, 

supported also by other studies [15]. The model size also has a slight effect, with an 

88.67x84.66nm model having a calculated value of Young’s modulus E=1.0369 TPa. Such 

variations are considered negligible, indicating that the mMSM frame model performs well in all 

sizes. However, even though the calculated Young’s modulus of the GS is consistent with other 

studies [12,15,17,35,36], there has been much discussion about the calculated Poisson’s ratio 

which is scattered in a wide range of 0.06 to 0.45. As stated by Baykasoglu and Mugan [35] who 
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applied the MSM method and calculated a value of v=0.063, there is lack of experimental 

studies about the Poisson’s ratio. In the present work, the value of v=0.0607 which validates 

the mMSM model will be used, for all further simulations of the GS.  

 

2.3 The Equivalent Shell Element of a Single Layer Graphene Sheet 

In paragraph 2.2 the theoretical aspects behind the mMSM finite element model of GS were 

described. The mMSM approach leads to beam finite elements capturing the interatomic 

interactions in the smallest scale of a GS, while the mechanical behavior in larger scales is 

simulated by the equivalent frame model. Even though this multiscale simulation is 

computationally effective compared to atomistic simulations [17-20], the cost of analysis is still 

high when relatively large GS models are simulated. For example an mMSM model of a single 

layer graphene sheet (SLGS) of 44.33x42.33 nm, consists of 73000 beam elements. A model of 

88.76x84.66 nm consists of 430000 beam elements, making even simple static loading 

conditions very computationally demanding. It is evident that simulations in the scales of 

micrometers with current mMSM models are very inefficient, if not impossible. The restrictions 

of size and time analysis of the mMSM method are dealt with further substitution of the beam 

frame, with an equivalent continuum element; which has already found application in the 

modeling of CNTs as an equivalent beam element (EBE) [21-23]. The process of finding the EBE 

of CNTs, shown in Figure8, involves simple loading tests for the calculations of the mechanical 

constants of the EBE. 

 

Figure 8: Mechanical tests leading to the Equivalent Beam Element of a carbon nanotube 

The much lower element to volume ratio achieved via the EBE, makes possible the simulation 

of larger scale models and longer time spans, which are necessary for various simulations in the 

studies of nanocomposites. Along with the low computational cost, great accuracy is also 

provided with the EBE [21], both by means of mechanical behavior and retention of the original 
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dimensions of the model. The present work aims to find the equivalent shell element (ESE) of a 

SLGS in a similar way. While a CNT behaves like a beam, a SLGS is found to have a plate like 

behavior when subjected to out of plane loads. A frame structure for a rectangular SLGS of 

11.08x10.58 nm with all edges clamped, subjected to an out of plane load of 6 pN at the 

middle, is shown in Figure 9. 

 

Figure 9: A rectangular 11.08x10.58 nm SLGS with all edges clamped, subjected to an out of plane 6nN 

load 

The plate behavior shown in Figure 9, along with the membrane behavior observed in the 

tension tests leads to the fact that a SLGS behaves like a shell structure. Limited studies are 

currently available about modeling the plate behavior of a SLGS with equivalent plate elements 

[37,38], but no information is available about combined plate and membrane behavior in a 

single approach. Difficulty arises when searching for the equivalent shell due to the fact that an 

ESE would have to validate both the membrane and the plate behavior of the SLGS 

simultaneously. Bending tests indicate that the correct bending rigidity for a plate SLGS is much 

less than the rigidity obtained when using the membrane behavior mechanical constants 

E=1TPa and v=0.0607. In the present work a suitable approach addresses this issue, in terms of 

the uncoupled membrane and plate behavior in thin shells. If a SLGS is to be considered as a 

thin shell, meaning that its thickness is very small compared to its size and no shear stresses are 

developed, the stiffness matrix K of a shell finite element has uncoupled membrane and plate 

behavior according to: 
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Where Km is the stiffness sub-matrix that corresponds to the membrane behavior of the shell 

and Kb the stiffness sub-matrix that corresponds to the plate behavior of the shell. Therefore, 

two equivalent continuum models are necessary, an equivalent membrane element (EME) and 

an equivalent plate element (EPE). A finite element solution of a SLGS with an ESE can 

afterwards be provided by equation (16). A representation of the degrees of freedom that 

correspond to membrane and plate finite elements with 4-nodded quadrilateral elements is 

shown in Figure 10.  

 

Figure 10: The degrees of freedom that correspond to 4-nodded quadrilateral membrane (left) and plate 

(right) finite elements 

The EME physical properties are already known from the tension tests, as E=1TPa, v=0.0607 

and thickness=0.34 nm, thus the Km finite element stiffness matrix can be directly formulated. 

For the derivation of the EPE properties, a thin plate finite element model of a SLGS is 

developed in MATLAB, aiming to provide an approximation of the EPE regarding the mMSM 

model as the exact solution. For the EPE to have consistency with the bending behavior of the 

mMSM model, certain constraints must be satisfied, such as equal strain energy and 

displacements when the same loading and boundary conditions are applied. With an EPE that 

validates the bending behavior of a SLGS in multiple size scales, the development of the ESE is 

completed as a computationally effective solution for the modeling of graphene. The EPE 

procedure is presented in paragraph 2.4. 

 

2.4 The Equivalent Plate Behavior of Graphene 

The method described in this paragraph can be regarded as a general method of deriving the 

EPE physical properties of a frame model. As stated in paragraph 2.3 the present work aims to 
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develop the EPE, which describes the bending behavior of the ESE of a SLGS. Considering the 

mMSM solution as the excact, a MATLAB optimization algorithm is applied in order to reach a 

solution that minimizes the error between the EPE and the mMSM model. Both models should 

be subjected to the same loading and boundary conditions. The loading test is chosen for a 

rectangular plate with all edges clamped, as shown in Figure 11. Constraints need to be applied 

in the algorithm for convergence to physical properties that validate the mMSM, for every 

other loading condition. The uniqueness of solution in structural mechanics, provided by the 

minimization of the potential energy, makes the strain energy a necessary constraint. The EPE 

also needs to be geometrically consistent, thus displacement constraints need to be applied. 

Therefore, assuming that the EPE exists and can be modeled with thin plate finite elements, the 

problem is formed in steps as following: 

1. Assume that an equivalent plate element of the frame exists 

2. The plate element is modeled with thin plate finite elements forming the 

stiffness matrix K, force vector F and displacement vector U 

3. Find the plate properties X by solving the optimization problem: 

 

The optimization problem in (17) can be further simplified by setting a constant value of 

v=0.0607 and thickness t to be geometrically consistent with the EME. This leads to the 

optimizer searching only for the Young’s modulus E of the EPE. The equivalent thickness can 

afterwards be altered, and then calculate the new E by solving the plate rigidity equation D for 

the new thickness t: 

 

A summary of the process followed in the EPE method is depicted in Figure 11. The finite 

element equations and matrices used in the optimization algorithm can be found in many 

textbooks regarding the finite element method in solids [39,40]. In the present work, Kirchoff 

plate finite elements numerically integrated in MATLAB were used.  
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Figure 11: Summary of the process followed for the derivation of the EPE parameters 

In the method described above, no assumptions were made about the shape of the lattice. 

Therefore, the EPE method can be applied in a frame model, regardless of lattice shape, 

provided that the frame behaves like a plate. How well is modeled the hypothetical EPE 

depends on the number of finite elements used. The necessary number of plate finite elements 

in (17), for the obtained E to be valid, can be determined by observing the effect of the mesh 

density on the Young’s modulus of the EPE. In Figure 12, the graph of E versus the Number of 

plate elements is depicted for a 11.08x10.58 nm SLGS. A finite element mesh of 40x40 plate 

elements is adequately fine and converges to a solution of E=53412035928 pN/nm2. The effect 
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of the size of the model used in the optimizer is also depicted in Figure 13; for various SLGS 

sizes modeled with 40x40 plate finite elements. 

 

Figure 12: Dependence of the EPE Young’s Modulus on the finite element mesh density 

 

Figure 13: Dependence of the EPE Young’s Modulus on the mMSM model size 
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A SLGS of 11722 nm2 that corresponds to 105x111 nm, is homogenous enough to converge to 

the value of E=53168539247.1 pN/nm2. The interesting observations from Figures 12 and 13 

illustrate the sensitivity of the method to the finite element mesh density and the size of the 

model. A mesh of 40x40 elements is adequate, while the size of the model seems to slightly 

affect the results, with a maximum of 0.37% difference in E between models of over 100 times 

difference in terms of surface. Validation of the method would include also tests of an EPE with 

different loading and boundary conditions, in the same or different size scales. In Figure 14, the 

graph of the error in displacements and strain energy, versus the model size is depicted, for an 

EPE Young’s modulus derived from the 11.08x10.58 nm SLGS. The loading and boundary 

conditions correspond to all edges clamped, with a concentrated load in the middle.  

 

Figure 14: Strain and displacement % errors for EPE versus the size of the model 

The very small error in displacements and strain energy reveals the great accuracy of the EPE, 

while the model shifts sizes. The strain energy and displacement error develop the same from a 

point up to 20 times (in terms of surface) the 11.58x10.58 nm SLGS; corresponding to a 

44.3x42.3 nm SLGS. This is attributed to the higher homogeneity of the mMSM model as the 

size increases, behaving more like a plate. However, high accuracy is observed in all model 

sizes, with a bounded error growth, which is almost zero up to a 44.3x42.3 nm SLGS. Bending 
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tests with different boundary and loading conditions, such as an asymmetric loading shown in 

Figure 15, indicate errors of similar magnitude, below 1% in strain energy and displacements for 

all model sizes. The EPE therefore exists for a SLGS and can be modeled with plate finite 

elements. 

 

Figure 15: An asymmetric bending test with a concentrated force and one edge clamped for the EPE of a 

44.3x42.3nm SLGS, modeled with 50x50 plate elements 

Regarding the computational efficiency of the EPE, the graph of Figure 16 illustrates the 

effectiveness of the EPE as the size of the SLGS increases. 

 

Figure 16: Computational time ratios achieved with the EPE 

0

100

200

300

400

500

600

1 21 41 61 81 101 121

times the 11.58x10.58 nm SLGS 

mMSM/EPE comp. time ratio versus the size of the model (EPE 
modeled with 50x50 finite elements) for simple static loading 

conditions 

2.71 
beams/she

10.8 
beams/shell 

29.2 beams/shell 

172 beams/shell 

236 bems/shell 



18 
 

The EPE approach is found to be over 600 times faster than the original mMSM model for a 

SLGS larger than 100x100 nm, while the accuracy in terms of strain energy and displacements is 

kept over 99%. Therefore, the EPE approach makes possible accurate finite element simulations 

of SLGS in large size and longer time scales. The properties of the EPE are chosen as: 

 

Where the E has been chosen as the converged value E4 regarding the model size (Figure 13), 

and afterwards recalculated for t=0.34 nm using (18). The values in (19) can be used for a SLGS 

in the scales of micrometers with over 99% accuracy, considering that the E in (19) has been 

obtained from a 105x111 nm SLGS which is highly homogenous and the error behaves as shown 

in Figure 14; with an almost zero growth for a homogenous SLGS as it shifts sizes (E2 values in 

Figure 14). The ESE of a SLGS can afterwards be formulated using (16) with finite elements, for 

the analysis of a SLGS in multiple scales.  

 

3 The Finite Element Model of Graphene Reinforced Nanocomposites  

3.1 The Interfacial Load Transferring Mechanism 

The Interfacial Load Transferring Mechanism (ILTM) between the matrix and the filler has 

attracted a lot of scientific interest, due to its importance on the mechanical behavior and 

properties of nanocomposites. In a polymer matrix nanocomposite, while the carbon atoms in 

graphene interact through strong covalent bonds, graphene or CNTs interact with the matrix 

through weak Van der Waals forces [27,41]. Techniques known as functionalization [25,26] 

have been applied, in order to covalently bond carbon atoms with the polymer, greatly 

enhancing the ILTM stiffness and strength. Experimental studies in CNT reinforced composites 

(CNT-RC) [42] reveal a non-linear pull-out force-displacement relation when the interfacial 

strength (IS) values are exceeded. In the case of an ILTM based only on VDW forces, the IS 

values are relatively low, meaning that the stiffness of a GS-RC depends on the strain. 

Therefore, the correct modeling of a CNT-RC or a GS-RC has to take into account the effect of 

the ILTM. In a similar way, as in the analysis of graphene via the multiscale mMSM model, the 

ILTM has been modeled with equivalent continuum structural mechanics techniques in 

nanocomposites. Three main approaches have been proposed in finite element simulations for 

the filler-matrix interactions, a friction or shear lag model [21,27,43], a non-linear spring model 

[41,44] and a cohesive zone simulation [30,45]. In the present work, a friction model cannot be 

directly applied due to the absence of shear stresses in the thin ESE. In addition, a non-linear 

spring model requires the simulation of the GS with beams, as the filler-matrix atom 



19 
 

interactions are modeled directly with spring elements that represent Lenard-Jones potentials.  

On the other hand, a cohesive zone simulation defines a traction-separation law between 

surfaces and can be used between the ESE and the matrix. Analytical expressions for a cohesive 

law in a GS-RC have been proposed based on a Lenard-Jones potential [46]. Also, pull-out 

molecular dynamics simulations [47] in a GS-RC reveal a similar behavior, suggesting [48] a 

cohesive zone for a multiscale finite element simulation. Therefore, the definition of a cohesive 

zone that follows a traction-separation law is applied in the present work for the modeling of 

the ILTM. A traction-separation law typically defines the traction vector t that is developed 

between two surfaces, as a function of their separation δ: 

 

Where n, s and t correspond to the normal, shear1 and shear2 directions respectively, as shown 

in Figure 17, while the K coefficients correspond to stiffness. The relation in (20) provides a fully 

coupled traction-separation behavior. In the present work, the simplest decoupled form is 

applied, keeping as non-zero only the diagonal terms Knn, Kss and Ktt. Generally the stiffness 

coefficients are constant values leading to a linear response prior to damage, which is initiated 

according to a criterion. Generally, three damage modes as shown in Figure 17 may occur. 

 

Figure 17: Left the Traction vector components and right the fracture modes 

The criteria available for the damage initiation are based on maximum traction or maximum 

strain. In the present work, the damage initiation is assumed to occur when one or more of the 

traction components reaches the maximum value. Therefore the maximum nominal stress 

criterion can be represented as: 



20 
 

 

Where tnmax, tsmax and ttmax represent the maximum values for undamaged response. Once 

damage is initiated, the cohesive stiffness is degraded according to a damage evolution law. A 

damage variable D is introduced, representing the overall damage with the value of D=0 for no 

damage and D=1 for maximum damage where no traction occurs. The contact stress 

components are calculated as functions of the damage variable D according to: 

 

Where   ̅̅̅,   ̅ and   ̅ are the tractions calculated by the elastic traction-separation response 

without damage in (20). The values of D develop dependent on the chosen damage evolution 

model. Typically the damage evolution can be based either on the fracture energy or the 

effective displacement and have a linear or exponential softening law. Modeling of failure 

depended on mix-mode condition laws can also be simulated. This general approach to the 

damage evolution could be used in every type of ILTM in a GS-RC, covalently bonded or not. In 

the present work we assume that the damage evolution in the GS-RC is based on effective 

displacements, is not depended on a mix-mode law and the stiffness degrades linearly. The 

effective displacement δm is expressed as a combination of the separations in each direction 

as: 

 

The damage variable D degrades linearly following the expression: 

 

Where   
 
   

         
    are the separations at complete failure, damage initiation and 

loading history maximum respectively. . A representative traction-separation curve is shown in 

Figure 18.  The total plastic displacement   
 

    
  when complete failure occurs is an input 

parameter for this damage simulation.  
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Figure 18: A Linear traction-separation response and damage evolution 

Currently, uncertainty about the ILTM behavior and thus for the input parameters in (20,21,22) 

exists, with limited data available. However they could originate from accurate experimental 

data or molecular dynamics simulations designed for the present multiscale purpose.  The table 

in Figure 19 summarizes traction values between the filler and the matrix with Vdw 

interactions, reported from molecular dynamics simulations. 

Reported by Loading Conditions Maximum Shear 
Traction observed 

Maximum Normal 
Traction observed 

Zhang [47] Pull-out of Flat SLGS 
in polyethylene  

- 503.4 MPa 

Liu [48] Pull-out of Flat SLGS 
in polyethylene 

112 Mpa - 

Awasthi [49,50] Normal and Shear 
Mode separation of 
SLGS in polyethylene 

108.276 Mpa 170.616 Mpa 

 

Figure 18: Traction values observed in various molecular dynamics simulations of GS-RC with Vdw 

matrix-filler interactions 

Various model parameters that affect the results in a molecular dynamics simulation, such as 

the size of the model are reported by Awasthi [50]. The input parametes of maximum 

interatomic matrix-filler distance, traction or force and stiffness, could be regarded as atomic 

scale parameters in a non-linear spring model. On the other hand, in the present work of the 

ESE model, as in the friction or shear-lag approach of the EBE model, the cohesive zone is 

modeled in a larger scale. Thus, differences exist with the non-linear spring models suggesting a 

0.85 nm [41,44] as maximum separation distance for Vdw interactions, while friction or shear-

lag models do not allow any separation in the multiscale before failure [21,27,43]. The latter 

consequently correspond to very high values in the cohesive stiffness in (20) and no separation 
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allowed after the IS values are reached. An equivalent continuum cohesive zone model 

originating from the non-linear springs, could be proposed as future work. In the present work, 

the effect of the parameters in (20,21,22), on the multiscale mechanical behavior of the SLGS-

RC is investigated for different values, with comparison to the other approaches for the ILTM. 

The numerical results of the SLGS-RC are presented in chapter 4. 

 

3.2 The Representative Volume Element of Graphene Reinforced Nanocomposites  

A representative volume element (RVE) as defined by R.Hill [51] is a sample that is entirely 

typical of the whole structure on average. Analysis with RVEs is the dominant method in 

composites and nanocomposites, both with analytical methods and numerical approaches. For 

CNT-RC different RVE geometries [52] have been used to calculate the mechanical properties. 

However the most common RVE in GS-RC and CNT-RC is of rectangular shape. Therefore in the 

present work a rectangular RVE is developed, where the SLGS is embedded in a polymer matrix. 

For all the RVE simulations the commercial finite element software ABAQUS is used. Linear 3-D 

solid elements can be used for the matrix polymer, while thin shell elements must be used for 

ESE, shown in Figure 19. The ESE can either be modeled with a custom finite element, with 

uncoupled membrane and plate behavior that have different mechanical constants, or by 

stacking thin shell and membrane elements. Both approaches lead to a stiffness matrix in (16) 

as described in paragraph 2.3. 

 

Figure 19: The finite elements used in ABAQUS for the SLGS-RC model 

If the ILTM is not to be considered, meaning that the interface does not fail (perfect bonding), 

embedded element constraints can be applied directly between the ESE and the matrix. 

Information about the embedded element techniques can be found in the CNT-RC finite 

element simulations by D.Savvas [21,27]. This technique is generally simple and avoids 
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complicated discretization, while it can be used both for straight and wrinkled SLGS. A typical 

representation of an embedded SLGS in a nanocomposite matrix is shown in Figure 20. 

 

Figure 20: An example of a RVE for a SLGS-RC with finite element discretization in ABAQUS, a) using 

embedded element constraints, b) symmetric part of the RVE 

For the consideration of the ILTM by a cohesive zone simulation as described in 3.1, ABAQUS 

offers two similar approaches, modeling with cohesive finite elements or modeling via a 

cohesive surface interaction. Cohesive elements [53] are regarded as special purpose elements 

that can have almost zero thickness, with a constitutive response defined in terms of traction 

versus separation. Previous applications include delamination and debonding analysis, both for 

composite [28-29] and nanocomposite [30] materials. Finite element formulations for cohesive 

elements can be found in the work of Davila and Camanho [54], who proposed a model for the 

problem of skin/stiffener debonding and delamination analysis; originally introduced by 

Krueger [55]. The skin/stiffener setup under tension, shown in Figure 21, presents a direct 

similarity with the symmetric RVE of a SLGS-RC shown in Figure 20.b. 

 

Figure 21: Skin/stiffener under tension with cohesive elements in the interface 
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A cohesive surface interaction on the other hand, avoids the use of special purpose elements, 

while the traction-separation law is imposed directly with a master-slave surface pair 

interaction. This approach is usually more computationally demanding, however it can be more 

flexible, as it can be applied instantly on any surface pair. Both approaches are expected to 

present similar results, with slight differences attributed to the dimensionless nature of surface 

interactions, compared to the small thickness of the cohesive elements. In addition, both 

approaches may present severe convergence issues, so ABAQUS has built in viscosity effects 

[56] for the damage propagation. Considering the modeling of wrinkled SLGS-RC with random 

geometrical defects, a special grid generator algorithm was developed in MATLAB. In the 

present work, randomness was implemented in a periodic form, assuming that the waves on a 

SLGS can be expressed as a function of trigonometric series with random initial phases. 

Generally, the random waves can be decomposed into high and low frequency components 

with different amplitudes. Therefore, the parameters of random defects on the mechanical 

behavior of the nanocomposite can be simulated. Figure 22 shows examples of randomly 

generated wavy SLGS, using different wave frequency parameters.  

 

Figure 22: Randomly generated wavy 100x100nm SLGS, a) a relatively high frequency wave, b) a low 

frequency wavy 

 

 

 

 

a 
b 
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4 Numerical Results and Discussion 

In the present chapter, the numerical results of the effect of the ILTM and wrinkles on the 

mechanical behavior of the SLGS-RC are presented and discussed. The general indicator for 

strain dependent mechanical behavior is the function of stiffness enhancement with respect to 

strain. The ESE approach can afterwards be validated by comparing results from other 

nanocomsite simulations. Conclusions are presented in Chapter 5.  

4.1 The Effect of the Interfacial Stiffness 

The effect of the interfacial cohesive stiffness (CS) (20) between the SLGS and the matrix, on the 

Young’s Modulus of the nanocomposite, is presented in the following graph in Figure 23. The 

RVE is reinforced with a volume fraction of 0.75% graphene. The matrix consists of a linear 

2GPa polymer and perfect bonding between matrix and filler is assumed, no damage is 

simulated for the polymer either. 

 

Figure 23: The effect of the interfacial cohesive stiffness on the Young’s Modulus of the SLGS-RC with 

perfect bonding assumed 
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The percentage of the Young’s Modulus enhancement with respect to CS is also presented in 

the following graph of Figure 24. It is evident that CS values over 1000 MPa/nm do not 

contribute significantly to stiffness enhancement. 

 

Figure 24: Young’s Modulus enhancement for a perfectly bonded nanocomposite as function of cohesive 

stiffness 

In addition, a high CS leads to small separations and different traction distributions arise in the 

interface. The values would of course depend on the matrix-filler bonds and the scale of the 

simulations as was stated in 3.1. The calculation and evaluation of these parameters is out of 

the scope of this work. However, as the ESE model is intended for large scale simulations, high 

CS could be used in a similar way as in conventional composites. 

 

4.2 The Effect of the Interfacial Damage Evolution  

The failure parameters of the ILTM discussed in 3.1 are the damage initiation and damage 

evolution of the traction separation law. We consider the effect of the ILTM damage evolution 

in a mean force-displacement response, similarly as the skin/stiffener under tension in Figure 

21. The test RVE is of rectangular shape with dimensions of 150x150x20nm and consists of a 

0.75%vol SLGS-RC. The damage evolution parameter is defined as the maximum plastic 

displacement (mpd) with linear degradation (24). Figure 25 shows the force-displacement 

curves for different bond cut-off separations. In Figure 26 and 27, snapshots of the 

nanocomposite as the delamination occurs are depicted. The results present direct similarity 

with the skin/stiffener delamination test [54].  A pull-out finite element test could be proposed 
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as future work, to derive the ILTM damage propagation parameters from pull-out molecular 

dynamics or experimental test data. 

 

Figure 25: The effect of the ILTM maximum cohesive plastic displacement on a mean tensile force-

displacement response  

 

Figure 26: Snapshots of the mises stress distribution on the SLGS of nanocomposite corresponding to 

the force-displcacement curve of Figure 25 for mpd = 1nm. Bright areas indicate high stress, while dark 

areas indicate low stress as delamination propagates 
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Figure 27: Snapshots of the mises stress distribution on the SLGS of nanocomposite corresponding to 

the force-displcacement curve of Figure 25 for mpd= 4nm. Bright areas indicate high stress, while dark 

areas indicate low stress as delamination propagates 

For the lowest allowed plastic displacement, delamination in a large area is observed in Figure 

25, with a resultant force close to the pure polymer. Therefore, the Young’s Modulus of the 

nanocomposite is directly affected by the damage evolution parameters. A stress-strain 

response for the nanocomposite and the Young’s Modulus % enhancement is depicted in 

Figures 28 and 29 respectively.  

 

Figure 28: Stress-strain response of a SLGS-RC with ILTM damage simulation 

0

50

100

150

200

250

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

st
re

ss
 (

M
P

A
) 

strain 

Stress strain response curves of a 0.75%vol SLGS-RC for different mpd 
values (IS=70Mpa,CS=1000 MPa/nm) 

nodamage

mpd=1nm

mpd=0.85nm

mpd=2nm

mpd=3nm

mpd=4nm

polymer



29 
 

The direct impact of the ILTM damage evolution on the stiffness enhancement, results in a 

strain dependent Young’s modulus of the nanocomposite. The non-linear spring GS-RC [41] and 

CNT-RC [44] finite element models presented similar strain dependent Young’s Modulus curves. 

 

Figure 29: Dependence of SLGS-RC Young’s Modulus enhancement on the strain  

Regarding the mechanical behavior in cyclic loading conditions, assuming that damaged bonds 

can be regenerated the stress-strain response is depicted in Figure 30. Similar hysteresis loops 

have been presented in CNT-RCs [21,27]. 

 

Figure 30: Stress-strain response of the SLGS-RC under cyclic loading conditions 
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4.3 The Effect of the Interfacial Strength 

The effect of the interfacial strength on the mechanical behavior is depicted in the graph of 

Figure 31. The same maximum stress has been in assumed for all traction directions (21). 

Higher stiffness enhancement for greater interfacial strength values is obvious, and of course 

expected, as it has been highlighted in all of the CNT-RC or GS-RC studies. Figure 32 presents 

the stiffness enhancement as a function of strain. 

 

Figure 31: The effect of the interfacial strength on the stress-strain response of the SLGS-RC 

 

Figure 32: Young’s Modulus of the SLGS-RC as a function of strain for different cohesive strength values 
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Assuming a relatively more ‘’brittle’’ bond with a maximum mpd=1.5 nm, the effect of the IS on 

the damping behavior can be studied, regarding the hysteric loop observed in the cyclic loading 

of Figure 30. Half of the stress-strain cycle is depicted in Figure 33 for better visualization of the 

hysteresis that occurs, due to bond failure and regeneration. 

 

Figure 33: Stress-strain response for half cycle of loading with respect to different IS values 

It can be seen that increasing the IS values, leads to larger dissipated energy area and also to 

higher maximum stress as was expected. However, very high values of IS, over 90 MPa initiate a 

reduction in dissipation area due to fewer bonds failing in the interface. The loss factor η for 

hysterical damping in one circle of loading can be calculated as: 

  
 

  
 

Where D is the dissipated energy area and U the energy stored during loading. Figure 34 depicts 

the graph of the loss factor with respect to different IS values for a full loading circle. 
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Figure 34: Loss factor of the SLGS-RC in cyclic loading conditions with respect to different IS values  

Therefore, damping properties along with the stiffness of the SLGS-RC are found to be highly 

affected by the IS values. A similar dependence of the loss factor on the IS values is presented in 

CNT-RC studies [21,27]. 

 

4.4 The Effect of the Wrinkles 

Randomly wrinkled SLGS with different maximum amplitudes have been considered. All of the 

wrinkled SLGS have been generated with the same frequency parameters on a 

100x100nmSLGS. Along a straight line on a SLGS a random wave is generated as: 

 

Where A is a constant that can be altered to simulate high and low amplitude waves and p is a 

random initial phase between 0 and 2π. The maximum wave amplitudes (mwa) with respect to 

the A constant for one run of the mesh generator, are calculated as: 
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Randomly generated waves for different values of A are depicted in Figure 35. The scale 

difference in the axis of vertical deflection is noted as A increases. 

 

Figure 35: Randomly generated wavy SLGS for different A amplitude parameters a) A=5, b)A=15, c)A=30 

and d)A=55. 

The stress-strain response for the wavy SLGS-RC and the Young’s modulus enhancement are 

depicted in Figures 36 and 37 respectively. Slight waviness lead to negligible changes compared 

to straight waves, however as the amplitude magnification constant A increases, reduction in 

stiffness is observed. A similar mechanical behavior has been observed in wavy CNT-RCs 

[21,27]. It is noted that no damage has been simulated in the present paragraph, with 

embedded element techniques used to model the nanocomposite. 
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Figure 36: The effect of wrinkles on a stress-strain response of the SLGS-RC 

 

 

Figure 37: Young’s modulus enhancement of the nanocomposite  for different random wave amplitude 

parameters 
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The reduction in stiffness, could be attributed to the smaller effective membrane area due to 

the sheet orientation. Figure 38 shows the stress distribution on a wrinkled and on a straight 

SLGS of the RC. As the plate behavior has small stiffness compared to the membrane, wavy 

areas have a lower contribution to the RC stiffness. 

 

Figure 38: Tensile stress distributions on a SLGS, a) wrinkled, b) straight. Bright areas indicate high stress, 

while dark areas indicate low stress  
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5. Conclusions 

In the present work, a multiscale finite element model has been developed for the study of the 

mechanical behavior of graphene nanocomposites. Equivalent continuum mechanics methods 

were applied for modeling interatomic interactions, providing a linkage between the small 

atomic scales and larger sizes with computational efficiency. The interactions between carbon 

atoms in a SLGS lead to a continuum shell behavior, which can be represented with the ESE. The 

interactions between the matrix and graphene, which define the ILTM, are modeled with a 

continuum cohesive zone. The cohesive zone can be used as general method of simulation for 

all kinds of matrix-filler bonding, weak or strong. The finite element model of the ESE 

embedded in a polymer matrix is validated by observing its mechanical behavior with other 

ILTM models both GS-RC and CNT-RC. Cohesive damage leads to a non-linear stress-strain 

response due to failed bonds. Debonding phenomena in the SLGS-RC result in the same 

behavior as delamination in conventional composites. The values of the cohesive strength have 

a direct impact on the mechanical behavior, with stronger bonds leading to better 

enhancement of the nanocomposite, and bonds that can be regenerated leading to hysteresis 

loops in cyclic loadings. Damping occurring from hysteresis, has been found depend on the 

interfacial strength and maximized in a limited range of strength values. Wrinkles on graphene 

lead to reduced stiffness of the nanocomposite, which depends on the waviness of the sheets. 

The ESE approach with a cohesive zone between matrix and filler can capture all of these 

phenomena with a low computational cost. As future work could be proposed the derivation of 

the cohesive damage initiation and propagation parameters, for specific bond types from 

molecular dynamics or experimental data designed for this purpose. 
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