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Evyaplotieg

H mopouoa UETATTUXLAKN £pyacio onpatodoTel To TEAOG TwV OTIOUSWV HOU OTO ALATUNHOTIKO
Mpoypapupo Metatnuyltakwy Imoudwv otnv YmoAoylotikp Mnxovikr. 2to onueio autd Ba
nBela va euyaplotnow Wlaitepa tov Emikoupo KaBnynti t¢ 2xoAng MoAttikwv Mnxavikwy,
kUplo Bnooapiwv Mamaddémoulo, MoOU HOU TAPEIXE TNV €ukalpla EKMOVNONG TNG TAPOUCOC
epyooiag. H BornBela kat umootnplln Tou otV avamtuén tng epyaciag Kpibnke onuavtiki,
Sleuplivovtag TIG YVWOELG HOU OTO BEpATO HNXOQVLKAG TwV VAVOOUVOETWY UAIKWY. OgpuE
EUXOPLOTIEG OPElAW ETLONG OTNV OLKOYEVELA OV YLOL TNV EUTLOTOCUVN KOl UTIOOTAPLEN TTOU JOoU
€xouv beitel.
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Hepidnym

TNV mapoloa LETATITUXLAKN Epyacia, avaAlUeTaL n avantuén Tou L.oodUVaoU CUVEXOUG LECOU
HoVvTéAou tou ypadeviou oe TMOAATAEG KAIHLOKEG, XPNOLULOTIOLWVTOG TIETMIEPACUEVO OTOLXELD
kEAUPouG. To 0odUVAUO HOVTIEAO XPNOLUOTOLELTAL OTN OUVEXELD YlOL TNV OQVAAUCNH Kol
Tipooopoiwon vavoouvletwy TOAUPEPWY UALKwY, Aapfdvovtag unoyn tnv emnidbpaocn tng
Slemudpavelakng avtoxng ot UNXOVIKEG LOLOTNTEC. Ol TPOCOUOLWOELS TIOU Ttapouctalovtal,
BacilovtaL otn xprnon KAQACOLKWV TIEMEPOOUEVWY OTOLXEIWV OUVEXOUG HMECOU yla TN
HovteAomoinon Twv atoplkwyv aAAnAempldpdcewv oto mMAéypa avBpaka Tou ypadeviou.
JUupdwva pe Bewpnoelg SOUIKNAC HOPLOKNAC HNXOVIKAG, To Tedio Suvapewv mou opilel Tig
OAANAeTUOPACELG LETAED TWV ATOUWY, UTTOPEL va avTIKOTAOTOOEL and KAAOOIKA TIEMEPOACUEVA
otolyeia 6okoU. Ol UNXOVIKEG KOl YEWUETPIKEG OLOTNTEG AUTWY HUIMOPOUV VA UTTOAOYLOTOUV
avaAuTIKA. MapéxeTal £ToL LEYAAN aKpiBELa OTLG HNXAVLKES LOLOTNTEG TOU MPOCOUOLWUATOC. Ma
NV enitevén evog UMOAOYLOTIKA XOUNAOU KOOTOUC LOVTEAOU, TO TIAEYHA TWV TIEMEPACUEVWY
otolxeiwv O6okoU avtikablotatol amd KAAOOWKA TEMEPOOUEVA  oTolxela keAUdoug. O
UTTIOAOYLOHMOG TWV HNXOVIKWV OTaBepwv Kol TOU TAXOUC OUTWV, Yyivetal pe oAyoplBuo
BeAtiotomoinong, KAvovtag xprion Kpltnpiwv woduvapung evépyelog mopapdpdwonc Kot
HETATOTIIOEWY O€ GUYKPLON HE TO APXLKO TIPOCOMOIWUO SOKWV. Zav amotéAeopa €xoupe LPNAn
okpiPfela oe MOAAQTAEG KALLOKEG Kal TIOAU XAUNAOTEPO UTIOAOYLOTLKO KOOTOG OE OXECN HE TO
OPXIKO HOVTEAO oTolxeEiwv SokoU. To 1oodUVAUO OUVEXEC TIOU OUTOTEAE(TOL TIAEOV OO
TIEMEPACUEVO oTolXela KEAUGDOUG, XPNOLUOTOLEITAL OTNn OCUVEXELDL Yl TNV HovteAomoinon
VaVOOoUVOETOU UAIKOU TIOAUUEPIKNG MATPOAC EVIOXUUEVO ME ypadévio. Na To vavoouvBeto
ETUAEYETAL QVTIUTPOOWTIEVUTIKO OTOLXELOU OYyKOU, OToU TO YpadEVIO €lval EVOWUATWUEVO OE
opBwvik PATPa TOAUMEPOUC. T T povieAomoinon NG MATPAC XPnoLdoTolouvTal
TPLOLA0TATA TIEMEPOOUEVA OTOLXELD 8 KOUPWV KOl YPOUMULKEG EAAOTIKEG LOLOTNTEC UALKOU. O
HUNXOVIOUOG HETOPOPAG SUVAUEWVY QMO TNV TOAUHUEPLKA UATPA OTO YPOPEVIO ETLTUYXAVETOL
HEOW TNG SlemipAvelag auTwy, yla tnv omola opiletal emidpavelaky cuuneplbopd CUVOXAG
(cohesive zone). H ocuumeplpopd aut €xel amodelyBel KatdAAnAn ywa tnv availucon tng
aotoxiag kat oAioBnong ouvBetwv UVAkwv otn Slemidpavela. To Stdvuopa taong LETaEl Twv
6o emdpavewwy, umoloyiletal PdAocsl €vOC KATAOTATIKOU VOUOU WG OUVAPTNON TNG
amopakpuvong (traction-separation law), €xovtag emiong tn Suvatotnta va akoAouBroet
TIPOETIAEYUEVO HOVTEAO aoTo)iaG. Me TOV CUYKEKPLUEVO TPOTIO povteAomoinong sivat Suvatov
va PeAeTnBel mwg emdpd oOTIG UNXAVIKEG LOLOTNTEG TOU VAVOOUVOETOU UALKOU N TN TNG
Slemibavelakng avtoxng, Kabwg Kol 0 TPOTOG AmOKOAANCNG Yyl OTAEG 1 AVOKUKAL{OUEVES
doprtioels. Emiong e€etdalovial YEWUETPLKEG ATEAELEG, OMWE KUMOTIOMOL oTo ypadévio. Ta
opLOUNTIKA amoTeAEéopATA KATASEIKVUOUV OTL O TPOMOC povteAomoinong tou ypadeviou Ue
LlooSUVAUA TIEMEPOOUEVA OTOLXELD, €LVOL QTTOTEAECUATIKOG ylo. T pHovteAomoinon ouvOstwv
UALKwV o€ TIOANATAEG KALpakeS. H emiSpaon tng Slemipavelakng avtoxng Kot ta Gpavopeva
oAloBnong mou MPOKUMTOUV, KPLVOVTOL CNUAVTIKA 0T UNXAVIKH cUUTepLdOpA TOU UALKOU, OE

iv



oupdwvia emiong pe tv avtiotoyn PBiBAoypadia. MNa TN yEveon TMAEYUATWV KAl TOUG
aAyopiBuoug BeAtioTonoinong XPNoLLOTONONKE TO EUMOPLKO LaBONUATIKO TtakéTto MATLAB. MNa
TIC TIPOCOUOLWOEL TIEMEPOUOUEVWY OTOLXELWV OTO YpadEVIO KOL OTO VOVOOUVOETO UALKO,
Xpnolpomno0nke To eUnoplkod maketo ABAQUS.



Abstract

In the present work, a method is introduced for the development of the equivalent continuum
model of graphene sheets, with shell finite elements in multiple scales. The equivalent
continuum model is then used for the modeling of graphene nanocomposite materials, with
respect to the effect of the interfacial strength on the mechanical behavior. The simulations
presented, are based on the use of classic continuum finite elements for the representation of
the interatomic interactions, in the hexagonal carbon lattice of graphene. According to
Molecular Structural Mechanics, the force field that defines the interatomic interactions can be
replaced with beam finite elements. The mechanical and geometrical properties of the beam
elements are analytically calculated by making use of equivalent strain energy criteria,
providing great accuracy in the mechanical properties of the model. For the reduction of the
computational effort required in larger models, the beam element mesh is replaced with fewer
shell elements, capturing the effects occurring in the multiple size scales. For the calculation of
the mechanical and geometrical properties of the equivalent shell elements, an optimization
algorithm is developed, searching for the solution with respect to strain energy and
displacement criteria of the original beam element model. As a result, a high accuracy and
much more computationally efficient model of graphene in multiple scales is derived. The
equivalent shell model is then used as the filler in the polymer matrix of the nanocomposite.
For the nanocomposite a representative volume element is chosen, where the graphene sheet
is embedded in a rectangular matrix. For the modeling of the matrix three dimensional 8-
nodded continuum finite elements with linear material properties are chosen. The load
transferring mechanism between the matrix and the filler is modeled as a cohesive zone, which
is suitable for the study of failure and occurring slippage along the interface. The cohesive
behavior is defined with a traction-separation law, where the traction vector between the two
surfaces is calculated as a function of the separation. A predefined damage propagation model
based on plastic displacement criteria is followed. With this specific way of modeling, it is
possible to study efficiently the effects of the interfacial strength on the mechanical properties
and behavior of the nanocomposite, in simple or cyclic loading conditions. The numerical
results presented, reveal that the equivalent shell element model of graphene is an effective
modeling technique along multiple scales and can capture efficiently phenomena that occur in
interfacial strength depended behavior. In addition, the effect of wrinkles on graphene is also
highlighted in the present study. The results present good agreement with the currently
available literature on composite and nanocomposite materials interfacial debonding and
delamination studies. For the mesh generation and optimization algorithms the commercial
mathematical package MATLAB was used. For the finite element simulations of the graphene
sheets and graphene nanocomposites the commercial simulation package ABAQUS was used.
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1 Introduction

Graphene as a new emerging material has attracted tremendous scientific interest, due to its
extraordinary mechanical and electrical properties. An allotrope of carbon, graphene forms a
hexagonal honeycomb lattice which can be one atom thick, known as single layer graphene
sheet (SLGS) synthesized via various methods [1-3]. Graphene has been found to be the
strongest material ever tested [4,5] with a Young’s Modulus of 1 TPa and Tensile Strength of
130 GPa, making it a very promising material for structural applications. Graphene sheets (GS)
and its derivative products the carbon nanontubes (CNT), have been successfully used as filler
materials in nanostructured composites [6,7], greatly enchanching the mechanical properties of
the matrix. Successful applications include both metal matrix [8,9] and polymer matrix [10,11]
nanocomposites. The present work, aims to provide an efective way for the modeling of the
mechanical behavior and properties of graphene nanocomposites in multiple scales. Two
distinct points in the modeling process of graphene nanocomposites are presented in detail,
first the method of simulation of graphene and second the load transferring mechanism
between the matrix and the filler.

The modeling methods currently available for simulation of the mechanical behavior of
graphene, take into account the interatomic interactions between the carbon atoms in the
hexagonal lattice. Computational methods widely used, can be generally classified into two
categories. One is the atomistic modeling [12,13] with major techniques including molecular
mechanics and ab-initio calculations. The other way is the approach by continuum mechanics
[14-16] including the analysis with finite element methods. Each of the above methods, comes
with different performance along multiple time and size scales. Ab-initio and molecular
mechanics techniques generally provide high accuracy at the smallest scales, but due to the
high computational effort required, they are suitable for small size models and short time spans
[16,17]. On the other hand, continuum mechanics techniques aim to provide accurate and
computationally efficient models at larger size and time scales [17]. The accuracy of the
continuum mechanics techniques depends greatly on the physical parameters of the equivalent
continuum models, which replace the hexagonal lattice. Different continuum models with finite
elements have been proposed [17-20].

The main principle behind continuum mechanics techniques, knows as Molecular Structural
Mechanics (MSM), is the simulation of the covalent bonds between the carbon atoms, with
equivalent structural finite elements [17]. The physical properties of the equivalent finite
elements can be analytically calculated by making use of equivalent strain energy criteria, with
reference to the force field that defines the interatomic interactions. Currently, the dominant
method is replacing the carbon covalent bonds with beam finite elements, which can capture
both stretching and rotation between atoms. While this approach is computationally effective



and accurate compared to the atomistic simulations [17-20], the computational effort increases
dramatically while shifting time and size scales. For this reason the beam finite element model
is replaced with an equivalent finite element mesh, aiming to provide a model with fewer finite
elements but with the same degree of accuracy. The type of the elements to replace the beam
frame depends on the initial geometry of model. This way of modeling has successfully found
application in the simulation of the mechanical behavior of CNTs, where the beam element
frame that represents the CNT, is replaced with an equivalent beam continuum element [21-
23]. A lower element to volume ratio is then achieved, lowering the computational effort
required and enabling more time or size demanding results to be achieved. The present work
aims to develop an equivalent continuum model in multiple scales, which can replace the beam
element frame of GSs rather than CNTs. GSs are found to have shell like behavior in relatively
large models, compared to the beam like behavior of CNTs. The problem of finding an
equivalent shell element (ESE) of a frame structure, while retaining the original size, is the
calculation of the physical properties of the shells, being the Young’s Modulus, Poisson’s ratio
and the equivalent thickness. The ESE should be able to accurately represent both the
membrane and the plate behavior of the GS, and is thoroughly discussed in the following
chapters.

The ESE of graphene is then embedded into a polymer matrix, for the study of the mechanical
behavior of the nanocomposite. A representative volume element is chosen for the simulations.
The load transferring mechanism between the matrix and the filler has been found to play a
crucial role in the mechanical properties of nanocomposites. Numerical simulations indicate
that the interfacial stiffness and strength, define the limits of mechanical enhancement of the
nanocomposite by the filler and the occurring slippage when failure arises [21,24]. Techniques
have been proposed for enchanced cohesion between the matrix and the filler [25,26]. A Load
transferring mechanism via a friction model has been previously applied with success in
modeling CNT nanocomposites [21,27]. In the present study, the interfacial load transferring
mechanism is being modeled with a definition of cohesive behavior between the ESE and the
three dimensional matrix. The cohesive behavior defines a traction-separation law between
surfaces and can follow a predefined damage model. Cohesive elements have already been
used to capture delamination and debonding phenomena for composite or nanocomposite
materials [28-30] and reinforced steel [31], with good agreement with the experimental data.

The present work concludes with numerical results of the finite element simulations of
graphene nanocomposites. The representation of the hexagonal carbon lattice with an ESE and
the load transferring mechanism with a cohesive behavior, are found to be effective modeling
techniques. The process followed can be summarized in Figure 1.
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Figure 1: Summary of the process followed in the present work



2 The Finite Element Model of Graphene
2.1 The Molecular Structural Mechanics Approach

Molecular Structural Mechanics (MSM) finite element models have been found to be effective
ways for the modeling of graphene and carbon nanotubes (CNTs). The MSM method, originally
developed by Li and Chou [17], aims to provide a linkage between microscopic computational
chemistry and macroscopic structural mechanics. Graphene sheets (GS) can be regarded as
large molecules consisting of carbon atoms in a hexagonal honeycomb lattice. From the
molecular mechanics point of view, atomic nuclei have their motions regulated by electron-
nucleus and nucleus-nucleus interactions [32]. A representation of a GS hexagonal lattice can
be shown in Figure 2.

molecular bonds

N

carbon atoms

armchair

direction 4
zig-zag

direction

Figure 2: Representation of a GS hexagonal lattice

The force field that defines the interatomic interactions depends only on the relative positions
of the nuclei, and can be expressed in the form of steric potential energy as:

U= 2Ur + 208+ LUp + 2Un + Zlvdw (1)

Where Ur is for bond stretching, UB for bond angle bending, U¢ for dihedral angle torsion, Uw
for out of plane torsion and Uvdw for Van der Waals interactions. The interactions and relative
motions of the carbon atoms that correspond to the above relation are shown in Figure 3. In
the present work, for simplicity and due to the assumptions of small deformations, harmonic
approximation of the energy is adequate [17]. Considering Van der Waals interactions to be



negligible and merging the dihedral angle and improper torsion the energy components
become:

Ur=Up+ U= %k’r{.ﬂ@]: (4)

Where kr, kB, kt are force field constants that correspond to Ar, AB and A¢ relative motions.
The force field constants can be selected from a suitable potential for graphene such as the
AMBER [33] potential, where kr=938kcalxmole*xA?2=6.52x10" N/nm, kB=126 kcalxmole*xrad"
2=8.76x10° Nnm rad™ kot kt=40 kcalxmole*xrad-2=2.78x10°Nnm rad™.

bond stretching bond bending Van der Waals Interactions
J X
s Q
p-ar=5 f > ”;;/ \tt‘
-
QO 0—0

dihedral angle torsion out of plane torsion

Figure 3: Interatomic interactions in the molecular mechanics of graphene

Further into the MSM approach, the similarity of the expressions between the molecular
potential energy and the strain energy of a beam element is examined. For a uniform beam
subjected to pure tension or compression of axial force N, the strain energy according to
structural mechanics is:




The strain energy for pure bending under bending moment M is:

L
A A . 2Bl 5 1 E,
LE—EL o= a;’—z —(2a) (6)

The strain energy for pure torsion under moment T is:

L
o . 1L 16, 2
”—ELE‘&L—EE—ETW} (7

In the above relations, AL in (5) represents the axial deformation, a in (6) the angle of rotation
at the beam ends and A the relative rotation between the beam ends. The loading conditions
and deformations of the beam are depicted in Figure 4.

—

beam under tension beam subjected to pure bending beam subjected to pure torsion

Figure 4: The loading conditions of the beam corresponding to equations 5-7

Comparing the equations (2-4) with the equations (5-7), the similarities in the energy terms and
deformations are obvious. Both equation (2) and (5) represent stretching energy, equations (3)
and (6) bending energy, and equations (4) and (7) torsional energy. Thus, the carbon-carbon
bond can be simulated with a beam element with the following structural characteristics:

In the MSM approach, the beam element constants E and G are derived in the simplest way as
functions of the force field constants, assuming a beam of circular cross-section with diameter
d, for which the parameters A, | and J are known as:

Substituting the relations in (10) to the relations in (8) the beam characteristics are derived as:



ko L o kel
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The length L of the beam is chosen to be L=0.1421nm which is the length of the covalent bond
and the constants in (11) are be calculated as d=0.147 nm, E=5488 GPa, G=870.7 GPa. At this
stage the MSM model is ready to be applied for the simulation of the mechanical behavior of a
GS with beam finite elements. A beam finite elemet mesh, depicted in Figure 5, can be
developed in a commercial simulation software package like ABAQUS. However, in the present
work the beam finite element used, is based on a modified version of the MSM, suggesting that
the MSM approach is suitable for in-plane loads only, due to the circular beam assumption.

Figure 5: 11.08x10.58 nm circular beam finite element model of a GS

2.2 The Modified Molecular Mechanics Model

The Modified Molecular Structural Mechanics (mMSM) is a more accurate version of the MSM
approach. In the MSM finite element model of graphene, circular cross-section for the beam
elements was assumed, implying that the in-plane and out-of plane bending rigidities of the
beam are equal. As stated by Lu and Hu [19] who proposed an elliptical cross-section for the
beam, out of plane bending rigidity is largely overestimated in the MSM approach; fact
supported both by atomistic and other analysis. Therefore, a suitable modified version of the
MSM has to be taken into consideration. In the present work the finite element model for the
GS, is based on a rectangular beam cross-section proposed by Chen [34]. According to the
mMmMSM model, the out of plane bending rigidity of the beam elements should be related with



the weak inversion energy of the covalent bond. As shown in Figure 6, in a covalent bond OA
subjected to an out of plane force Fz (inducing moment My), only one third of the inversion
energy is developed as:

1

1 3
Afv= —Fo= —koth" 12
=5 Vo= ko (12)

Where Kw= 1.1 kcal/mol [33] is the bond inversion energy, Vw the inversion energy of the atom
at O and @y the bending angle.

carbhon atoms

Figure 6: Out of plane loading of the covalent bonds

Combining equation (12) with (6), the out of plane bending rigidity is related with the force field
inversion constant as:

_ 3 Elout

=7

(13)

Further combining equation (13) with (8), the relation between out of plane and in-plane
rigidity is derived as:

;‘E Im=0006Im (14)

Jout =

It is evident from equation (14) that the out of plane rigidity in the mMSM is much smaller than
the previous in the MSM approach. Combining equations (14) and (8), with the known force
field constants and setting L=0.1421nm, A=0.001nm? and v=0.034 for the beam elements, the
mechanical constants of the elements are calculated as:

M pM
E=902649200 p—,l G=44801- 10?—1

i i

Where pN are pico Newtons chosen for numerical convenience. The rigidities are derived as:
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The mMSM model of a GS can afterwards be developed in ABAQUS, using Generalized Sections
for the beam elements. Each beam finite element captures the phenomena in the smallest
scale between the atoms, while the total frame model behaves like a shell in larger scales.
Validation tests for such models include the tension test, for the calculation of the mechanical
constants. A tension test of the finite element model, provides the Young’s Modulus and the
Poisson’s ratio of the sheet, calculated at E=1.04TPa and v=0.0607, using the graphene
interlayer spacing t=0.34nm as equivalent thickness. The tension test was conducted for a
22.1676x21.1676nm GS in the zig-zag direction, shown in Figure 7, which is homogenous
enough to provide accurate results.

Figure 7: Tension Test for a 22.1676x21.1676nm GS in the zig-zag direction, modeled with the mMSM
finite element approach

A not significant variation in the mechanical constants is observed in the armchair direction,
which leads to fact that the GS can be regarded having isotropic membrane behavior,
supported also by other studies [15]. The model size also has a slight effect, with an
88.67x84.66nm model having a calculated value of Young’s modulus E=1.0369 TPa. Such
variations are considered negligible, indicating that the mMSM frame model performs well in all
sizes. However, even though the calculated Young’s modulus of the GS is consistent with other
studies [12,15,17,35,36], there has been much discussion about the calculated Poisson’s ratio
which is scattered in a wide range of 0.06 to 0.45. As stated by Baykasoglu and Mugan [35] who



applied the MSM method and calculated a value of v=0.063, there is lack of experimental
studies about the Poisson’s ratio. In the present work, the value of v=0.0607 which validates
the mMSM model will be used, for all further simulations of the GS.

2.3 The Equivalent Shell Element of a Single Layer Graphene Sheet

In paragraph 2.2 the theoretical aspects behind the mMSM finite element model of GS were
described. The mMSM approach leads to beam finite elements capturing the interatomic
interactions in the smallest scale of a GS, while the mechanical behavior in larger scales is
simulated by the equivalent frame model. Even though this multiscale simulation is
computationally effective compared to atomistic simulations [17-20], the cost of analysis is still
high when relatively large GS models are simulated. For example an mMSM model of a single
layer graphene sheet (SLGS) of 44.33x42.33 nm, consists of 73000 beam elements. A model of
88.76x84.66 nm consists of 430000 beam elements, making even simple static loading
conditions very computationally demanding. It is evident that simulations in the scales of
micrometers with current mMSM models are very inefficient, if not impossible. The restrictions
of size and time analysis of the mMSM method are dealt with further substitution of the beam
frame, with an equivalent continuum element; which has already found application in the
modeling of CNTs as an equivalent beam element (EBE) [21-23]. The process of finding the EBE
of CNTs, shown in Figure8, involves simple loading tests for the calculations of the mechanical
constants of the EBE.

S

torsion

tension

carbon nanotube equivalent beam element

Figure 8: Mechanical tests leading to the Equivalent Beam Element of a carbon nanotube

The much lower element to volume ratio achieved via the EBE, makes possible the simulation
of larger scale models and longer time spans, which are necessary for various simulations in the
studies of nanocomposites. Along with the low computational cost, great accuracy is also
provided with the EBE [21], both by means of mechanical behavior and retention of the original

10



dimensions of the model. The present work aims to find the equivalent shell element (ESE) of a
SLGS in a similar way. While a CNT behaves like a beam, a SLGS is found to have a plate like
behavior when subjected to out of plane loads. A frame structure for a rectangular SLGS of
11.08x10.58 nm with all edges clamped, subjected to an out of plane load of 6 pN at the
middle, is shown in Figure 9.
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Figure 9: A rectangular 11.08x10.58 nm SLGS with all edges clamped, subjected to an out of plane 6nN
load

The plate behavior shown in Figure 9, along with the membrane behavior observed in the
tension tests leads to the fact that a SLGS behaves like a shell structure. Limited studies are
currently available about modeling the plate behavior of a SLGS with equivalent plate elements
[37,38], but no information is available about combined plate and membrane behavior in a
single approach. Difficulty arises when searching for the equivalent shell due to the fact that an
ESE would have to validate both the membrane and the plate behavior of the SLGS
simultaneously. Bending tests indicate that the correct bending rigidity for a plate SLGS is much
less than the rigidity obtained when using the membrane behavior mechanical constants
E=1TPa and v=0.0607. In the present work a suitable approach addresses this issue, in terms of
the uncoupled membrane and plate behavior in thin shells. If a SLGS is to be considered as a
thin shell, meaning that its thickness is very small compared to its size and no shear stresses are
developed, the stiffness matrix K of a shell finite element has uncoupled membrane and plate
behavior according to:
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Where Km is the stiffness sub-matrix that corresponds to the membrane behavior of the shell
and Kb the stiffness sub-matrix that corresponds to the plate behavior of the shell. Therefore,
two equivalent continuum models are necessary, an equivalent membrane element (EME) and
an equivalent plate element (EPE). A finite element solution of a SLGS with an ESE can
afterwards be provided by equation (16). A representation of the degrees of freedom that
correspond to membrane and plate finite elements with 4-nodded quadrilateral elements is
shown in Figure 10.

Figure 10: The degrees of freedom that correspond to 4-nodded quadrilateral membrane (left) and plate
(right) finite elements

The EME physical properties are already known from the tension tests, as E=1TPa, v=0.0607
and thickness=0.34 nm, thus the Km finite element stiffness matrix can be directly formulated.
For the derivation of the EPE properties, a thin plate finite element model of a SLGS is
developed in MATLAB, aiming to provide an approximation of the EPE regarding the mMSM
model as the exact solution. For the EPE to have consistency with the bending behavior of the
mMSM model, certain constraints must be satisfied, such as equal strain energy and
displacements when the same loading and boundary conditions are applied. With an EPE that
validates the bending behavior of a SLGS in multiple size scales, the development of the ESE is
completed as a computationally effective solution for the modeling of graphene. The EPE
procedure is presented in paragraph 2.4.

2.4 The Equivalent Plate Behavior of Graphene

The method described in this paragraph can be regarded as a general method of deriving the
EPE physical properties of a frame model. As stated in paragraph 2.3 the present work aims to
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develop the EPE, which describes the bending behavior of the ESE of a SLGS. Considering the
mMSM solution as the excact, a MATLAB optimization algorithm is applied in order to reach a
solution that minimizes the error between the EPE and the mMSM model. Both models should
be subjected to the same loading and boundary conditions. The loading test is chosen for a
rectangular plate with all edges clamped, as shown in Figure 11. Constraints need to be applied
in the algorithm for convergence to physical properties that validate the mMSM, for every
other loading condition. The uniqueness of solution in structural mechanics, provided by the
minimization of the potential energy, makes the strain energy a necessary constraint. The EPE
also needs to be geometrically consistent, thus displacement constraints need to be applied.
Therefore, assuming that the EPE exists and can be modeled with thin plate finite elements, the
problem is formed in steps as following:

1. Assume that an equivalent plate element of the frame exists
The plate element is modeled with thin plate finite elements forming the
stiffness matrix K, force vector F and displacement vector U

3. Find the plate properties X by solving the optimization problem:

Minimizef(X) = |Virame — Vplate( X)) |, where V' is the strainenergy

E
where E is the Young's Modulus, v the Poisson's ratio
and t the thickness

with X=

I

constrained by g(X)=|max(Lframe) — max (Uplate(X))|=0 and X =0

(17)

The optimization problem in (17) can be further simplified by setting a constant value of
v=0.0607 and thickness t to be geometrically consistent with the EME. This leads to the
optimizer searching only for the Young’s modulus E of the EPE. The equivalent thickness can
afterwards be altered, and then calculate the new E by solving the plate rigidity equation D for
the new thickness t:

T T

A summary of the process followed in the EPE method is depicted in Figure 11. The finite
element equations and matrices used in the optimization algorithm can be found in many
textbooks regarding the finite element method in solids [39,40]. In the present work, Kirchoff
plate finite elements numerically integrated in MATLAB were used.
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Figure 11: Summary of the process followed for the derivation of the EPE parameters

In the method described above, no assumptions were made about the shape of the lattice.
Therefore, the EPE method can be applied in a frame model, regardless of lattice shape,
provided that the frame behaves like a plate. How well is modeled the hypothetical EPE
depends on the number of finite elements used. The necessary number of plate finite elements
in (17), for the obtained E to be valid, can be determined by observing the effect of the mesh
density on the Young’s modulus of the EPE. In Figure 12, the graph of E versus the Number of
plate elements is depicted for a 11.08x10.58 nm SLGS. A finite element mesh of 40x40 plate
elements is adequately fine and converges to a solution of E=53412035928 pN/an. The effect
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of the size of the model used in the optimizer is also depicted in Figure 13; for various SLGS

sizes modeled with 40x40 plate finite elements.
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Figure 12: Dependence of the EPE Young’s Modulus on the finite element mesh density

EPE Young's Modulus (pN/nm?2) versus the size (hm?2) of the SGLS
used in the optimizer (for t=0.001nm, v=0.0607) with a 40x40
element mesh
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Figure 13: Dependence of the EPE Young’s Modulus on the mMSM model size
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A SLGS of 11722 nm? that corresponds to 105x111 nm, is homogenous enough to converge to
the value of E=53168539247.1 pN/nmz. The interesting observations from Figures 12 and 13
illustrate the sensitivity of the method to the finite element mesh density and the size of the
model. A mesh of 40x40 elements is adequate, while the size of the model seems to slightly
affect the results, with a maximum of 0.37% difference in E between models of over 100 times
difference in terms of surface. Validation of the method would include also tests of an EPE with
different loading and boundary conditions, in the same or different size scales. In Figure 14, the
graph of the error in displacements and strain energy, versus the model size is depicted, for an
EPE Young’s modulus derived from the 11.08x10.58 nm SLGS. The loading and boundary
conditions correspond to all edges clamped, with a concentrated load in the middle.

EPE strain and displacement % error vsersus the size of the model
regarding the mMSM model as the excact solution ( t=0.001nm, v=0.0607
B.C. all edges clamped)

1.6 - =¢=strain en.% error
(E1)
1.4 - .
< == max.disp.% error

(E1)

strain en.% error
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== max.disp.% error
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E1 derived from
11.58x1058nm

—¢ E2 derived from
44.3x42.3 nm
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times the 11.58x10.58 nm SLGS

Figure 14: Strain and displacement % errors for EPE versus the size of the model

The very small error in displacements and strain energy reveals the great accuracy of the EPE,
while the model shifts sizes. The strain energy and displacement error develop the same from a
point up to 20 times (in terms of surface) the 11.58x10.58 nm SLGS; corresponding to a
44.3x42.3 nm SLGS. This is attributed to the higher homogeneity of the mMSM model as the
size increases, behaving more like a plate. However, high accuracy is observed in all model
sizes, with a bounded error growth, which is almost zero up to a 44.3x42.3 nm SLGS. Bending
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tests with different boundary and loading conditions, such as an asymmetric loading shown in

Figure 15, indicate errors of similar magnitude, below 1% in strain energy and displacements for

all model sizes. The EPE therefore exists for a SLGS and can be modeled with plate finite

elements.
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Figure 15: An asymmetric bending test with a concentrated force and one edge clamped for the EPE of a

44.3x42.3nm SLGS, modeled with 50x50 plate elements

Regarding the computational efficiency of the EPE, the graph of Figure 16 illustrates the

effectiveness of the EPE as the size of the SLGS increases.
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Figure 16: Computational time ratios achieved with the EPE
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The EPE approach is found to be over 600 times faster than the original mMMSM model for a
SLGS larger than 100x100 nm, while the accuracy in terms of strain energy and displacements is
kept over 99%. Therefore, the EPE approach makes possible accurate finite element simulations
of SLGS in large size and longer time scales. The properties of the EPE are chosen as:

M
E=13525 — =1.352 GPa t=0.34 pm v=0.0607 (19)

i

Where the E has been chosen as the converged value E4 regarding the model size (Figure 13),
and afterwards recalculated for t=0.34 nm using (18). The values in (19) can be used for a SLGS
in the scales of micrometers with over 99% accuracy, considering that the E in (19) has been
obtained from a 105x111 nm SLGS which is highly homogenous and the error behaves as shown
in Figure 14; with an almost zero growth for a homogenous SLGS as it shifts sizes (E2 values in
Figure 14). The ESE of a SLGS can afterwards be formulated using (16) with finite elements, for
the analysis of a SLGS in multiple scales.

3 The Finite Element Model of Graphene Reinforced Nanocomposites
3.1 The Interfacial Load Transferring Mechanism

The Interfacial Load Transferring Mechanism (ILTM) between the matrix and the filler has
attracted a lot of scientific interest, due to its importance on the mechanical behavior and
properties of nanocomposites. In a polymer matrix nanocomposite, while the carbon atoms in
graphene interact through strong covalent bonds, graphene or CNTs interact with the matrix
through weak Van der Waals forces [27,41]. Techniques known as functionalization [25,26]
have been applied, in order to covalently bond carbon atoms with the polymer, greatly
enhancing the ILTM stiffness and strength. Experimental studies in CNT reinforced composites
(CNT-RC) [42] reveal a non-linear pull-out force-displacement relation when the interfacial
strength (IS) values are exceeded. In the case of an ILTM based only on VDW forces, the IS
values are relatively low, meaning that the stiffness of a GS-RC depends on the strain.
Therefore, the correct modeling of a CNT-RC or a GS-RC has to take into account the effect of
the ILTM. In a similar way, as in the analysis of graphene via the multiscale mMSM model, the
ILTM has been modeled with equivalent continuum structural mechanics techniques in
nanocomposites. Three main approaches have been proposed in finite element simulations for
the filler-matrix interactions, a friction or shear lag model [21,27,43], a non-linear spring model
[41,44] and a cohesive zone simulation [30,45]. In the present work, a friction model cannot be
directly applied due to the absence of shear stresses in the thin ESE. In addition, a non-linear
spring model requires the simulation of the GS with beams, as the filler-matrix atom
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interactions are modeled directly with spring elements that represent Lenard-Jones potentials.
On the other hand, a cohesive zone simulation defines a traction-separation law between
surfaces and can be used between the ESE and the matrix. Analytical expressions for a cohesive
law in a GS-RC have been proposed based on a Lenard-Jones potential [46]. Also, pull-out
molecular dynamics simulations [47] in a GS-RC reveal a similar behavior, suggesting [48] a
cohesive zone for a multiscale finite element simulation. Therefore, the definition of a cohesive
zone that follows a traction-separation law is applied in the present work for the modeling of
the ILTM. A traction-separation law typically defines the traction vector t that is developed
between two surfaces, as a function of their separation 6:

in Ewmn Kns Ent || o
t=|ts |=| Kns Ess Est || &s (20)
it Ewm Kst Ent || &

Where n, s and t correspond to the normal, shearl and shear2 directions respectively, as shown
in Figure 17, while the K coefficients correspond to stiffness. The relation in (20) provides a fully
coupled traction-separation behavior. In the present work, the simplest decoupled form is
applied, keeping as non-zero only the diagonal terms Knn, Kss and Ktt. Generally the stiffness
coefficients are constant values leading to a linear response prior to damage, which is initiated
according to a criterion. Generally, three damage modes as shown in Figure 17 may occur.
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Figure 17: Left the Traction vector components and right the fracture modes

The criteria available for the damage initiation are based on maximum traction or maximum
strain. In the present work, the damage initiation is assumed to occur when one or more of the
traction components reaches the maximum value. Therefore the maximum nominal stress
criterion can be represented as:
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Where tnmax, tsmax and ttmax represent the maximum values for undamaged response. Once
damage is initiated, the cohesive stiffness is degraded according to a damage evolution law. A
damage variable D is introduced, representing the overall damage with the value of D=0 for no
damage and D=1 for maximum damage where no traction occurs. The contact stress
components are calculated as functions of the damage variable D according to:

o =1 —Djlr_r»i_ tn=0
in

T in  otherwise

ts={1—Djzs

ft=(1—D)nt

Where tn, ts and tt are the tractions calculated by the elastic traction-separation response
without damage in (20). The values of D develop dependent on the chosen damage evolution
model. Typically the damage evolution can be based either on the fracture energy or the
effective displacement and have a linear or exponential softening law. Modeling of failure
depended on mix-mode condition laws can also be simulated. This general approach to the
damage evolution could be used in every type of ILTM in a GS-RC, covalently bonded or not. In
the present work we assume that the damage evolution in the GS-RC is based on effective
displacements, is not depended on a mix-mode law and the stiffness degrades linearly. The
effective displacement dm is expressed as a combination of the separations in each direction
as:

The damage variable D degrades linearly following the expression:

max 0
o (an —5))
m

— m ) .}4
amat[a_,l'“_ al}“-l (24)
M ey

Where 5,’,;, 89 and 6M%* are the separations at complete failure, damage initiation and
loading history maximum respectively. . A representative traction-separation curve is shown in

Figure 18. The total plastic displacement 5,]; —8% when complete failure occurs is an input
parameter for this damage simulation.
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Figure 18: A Linear traction-separation response and damage evolution

Currently, uncertainty about the ILTM behavior and thus for the input parameters in (20,21,22)
exists, with limited data available. However they could originate from accurate experimental
data or molecular dynamics simulations designed for the present multiscale purpose. The table
in Figure 19 summarizes traction values between the filler and the matrix with Vdw
interactions, reported from molecular dynamics simulations.

Reported by Loading Conditions Maximum Shear Maximum Normal
Traction observed Traction observed
Zhang [47] Pull-out of Flat SLGS | - 503.4 MPa
in polyethylene
Liu [48] Pull-out of Flat SLGS | 112 Mpa -
in polyethylene
Awasthi [49,50] Normal and Shear 108.276 Mpa 170.616 Mpa
Mode separation of
SLGS in polyethylene

Figure 18: Traction values observed in various molecular dynamics simulations of GS-RC with Vdw
matrix-filler interactions

Various model parameters that affect the results in a molecular dynamics simulation, such as
the size of the model are reported by Awasthi [50]. The input parametes of maximum
interatomic matrix-filler distance, traction or force and stiffness, could be regarded as atomic
scale parameters in a non-linear spring model. On the other hand, in the present work of the
ESE model, as in the friction or shear-lag approach of the EBE model, the cohesive zone is
modeled in a larger scale. Thus, differences exist with the non-linear spring models suggesting a
0.85 nm [41,44] as maximum separation distance for Vdw interactions, while friction or shear-
lag models do not allow any separation in the multiscale before failure [21,27,43]. The latter
consequently correspond to very high values in the cohesive stiffness in (20) and no separation
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allowed after the IS values are reached. An equivalent continuum cohesive zone model
originating from the non-linear springs, could be proposed as future work. In the present work,
the effect of the parameters in (20,21,22), on the multiscale mechanical behavior of the SLGS-
RC is investigated for different values, with comparison to the other approaches for the ILTM.
The numerical results of the SLGS-RC are presented in chapter 4.

3.2 The Representative Volume Element of Graphene Reinforced Nanocomposites

A representative volume element (RVE) as defined by R.Hill [51] is a sample that is entirely
typical of the whole structure on average. Analysis with RVEs is the dominant method in
composites and nanocomposites, both with analytical methods and numerical approaches. For
CNT-RC different RVE geometries [52] have been used to calculate the mechanical properties.
However the most common RVE in GS-RC and CNT-RC is of rectangular shape. Therefore in the
present work a rectangular RVE is developed, where the SLGS is embedded in a polymer matrix.
For all the RVE simulations the commercial finite element software ABAQUS is used. Linear 3-D
solid elements can be used for the matrix polymer, while thin shell elements must be used for
ESE, shown in Figure 19. The ESE can either be modeled with a custom finite element, with
uncoupled membrane and plate behavior that have different mechanical constants, or by
stacking thin shell and membrane elements. Both approaches lead to a stiffness matrix in (16)

C3D4 4-node linear tetrahedron C3D8 linear 8-node brick

72w

S4RS linear 4-node thin shell with M3D4R linear 4-node membrane
plate only behavior

as described in paragraph 2.3.

Figure 19: The finite elements used in ABAQUS for the SLGS-RC model

If the ILTM is not to be considered, meaning that the interface does not fail (perfect bonding),
embedded element constraints can be applied directly between the ESE and the matrix.
Information about the embedded element techniques can be found in the CNT-RC finite
element simulations by D.Savvas [21,27]. This technique is generally simple and avoids
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complicated discretization, while it can be used both for straight and wrinkled SLGS. A typical
representation of an embedded SLGS in a nanocomposite matrix is shown in Figure 20.

Figure 20: An example of a RVE for a SLGS-RC with finite element discretization in ABAQUS, a) using
embedded element constraints, b) symmetric part of the RVE

For the consideration of the ILTM by a cohesive zone simulation as described in 3.1, ABAQUS
offers two similar approaches, modeling with cohesive finite elements or modeling via a
cohesive surface interaction. Cohesive elements [53] are regarded as special purpose elements
that can have almost zero thickness, with a constitutive response defined in terms of traction
versus separation. Previous applications include delamination and debonding analysis, both for
composite [28-29] and nanocomposite [30] materials. Finite element formulations for cohesive
elements can be found in the work of Davila and Camanho [54], who proposed a model for the
problem of skin/stiffener debonding and delamination analysis; originally introduced by
Krueger [55]. The skin/stiffener setup under tension, shown in Figure 21, presents a direct
similarity with the symmetric RVE of a SLGS-RC shown in Figure 20.b.
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cohesive elements in red between the
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Figure 21: Skin/stiffener under tension with cohesive elements in the interface
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A cohesive surface interaction on the other hand, avoids the use of special purpose elements,
while the traction-separation law is imposed directly with a master-slave surface pair
interaction. This approach is usually more computationally demanding, however it can be more
flexible, as it can be applied instantly on any surface pair. Both approaches are expected to
present similar results, with slight differences attributed to the dimensionless nature of surface
interactions, compared to the small thickness of the cohesive elements. In addition, both
approaches may present severe convergence issues, so ABAQUS has built in viscosity effects
[56] for the damage propagation. Considering the modeling of wrinkled SLGS-RC with random
geometrical defects, a special grid generator algorithm was developed in MATLAB. In the
present work, randomness was implemented in a periodic form, assuming that the waves on a
SLGS can be expressed as a function of trigonometric series with random initial phases.
Generally, the random waves can be decomposed into high and low frequency components
with different amplitudes. Therefore, the parameters of random defects on the mechanical
behavior of the nanocomposite can be simulated. Figure 22 shows examples of randomly
generated wavy SLGS, using different wave frequency parameters.
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Figure 22: Randomly generated wavy 100x100nm SLGS, a) a relatively high frequency wave, b) a low
frequency wavy
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4 Numerical Results and Discussion

In the present chapter, the numerical results of the effect of the ILTM and wrinkles on the
mechanical behavior of the SLGS-RC are presented and discussed. The general indicator for
strain dependent mechanical behavior is the function of stiffness enhancement with respect to
strain. The ESE approach can afterwards be validated by comparing results from other
nanocomsite simulations. Conclusions are presented in Chapter 5.

4.1 The Effect of the Interfacial Stiffness

The effect of the interfacial cohesive stiffness (CS) (20) between the SLGS and the matrix, on the
Young’s Modulus of the nanocomposite, is presented in the following graph in Figure 23. The
RVE is reinforced with a volume fraction of 0.75% graphene. The matrix consists of a linear
2GPa polymer and perfect bonding between matrix and filler is assumed, no damage is
simulated for the polymer either.

250 1 stress-strain response for a 0.75% vol SLGS-RC, perfectly bonded for
different cohesive stiffness (MPa/nm) values
200 A
(0 MPa
1 . —
= 150 3 MPa
a.
S e 5 MPa
g 10 MPa
® 100 - ———100 MPa
=== 500 MPa
1000 MPa
5o - 2000 MPa
O i T T T T T T 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
strain

Figure 23: The effect of the interfacial cohesive stiffness on the Young’s Modulus of the SLGS-RC with
perfect bonding assumed
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The percentage of the Young’s Modulus enhancement with respect to CS is also presented in
the following graph of Figure 24. It is evident that CS values over 1000 MPa/nm do not
contribute significantly to stiffness enhancement.

Young's Modulus % enhancement for the 0.75%vol SLGS-RC
versus the cohesive stiffness (MPa/nm)

5 T T
3 30 300

cohesive stiffness (MPa/nm)

Figure 24: Young’s Modulus enhancement for a perfectly bonded nanocomposite as function of cohesive
stiffness

In addition, a high CS leads to small separations and different traction distributions arise in the
interface. The values would of course depend on the matrix-filler bonds and the scale of the
simulations as was stated in 3.1. The calculation and evaluation of these parameters is out of
the scope of this work. However, as the ESE model is intended for large scale simulations, high
CS could be used in a similar way as in conventional composites.

4.2 The Effect of the Interfacial Damage Evolution

The failure parameters of the ILTM discussed in 3.1 are the damage initiation and damage
evolution of the traction separation law. We consider the effect of the ILTM damage evolution
in a mean force-displacement response, similarly as the skin/stiffener under tension in Figure
21. The test RVE is of rectangular shape with dimensions of 150x150x20nm and consists of a
0.75%vol SLGS-RC. The damage evolution parameter is defined as the maximum plastic
displacement (mpd) with linear degradation (24). Figure 25 shows the force-displacement
curves for different bond cut-off separations. In Figure 26 and 27, snapshots of the
nanocomposite as the delamination occurs are depicted. The results present direct similarity
with the skin/stiffener delamination test [54]. A pull-out finite element test could be proposed
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as future work, to derive the ILTM damage propagation parameters from pull-out molecular
dynamics or experimental test data.

mean force (nN)-displacement (nm) curves for different maximum
cohesive plastic displacements (mpd) for a 0.75%vol SLGS-RC ( 1IS=70Mpa,
6 - €S=1000 MPa/nm)

as=smpd=1nm
e mpd=2nm

=—mpd=3nm

Force nN
w

e mpd=3.5nm

e mpd=4nm

nodamage

0 T T T 1

. 10
Displacement nm

Figure 25: The effect of the ILTM maximum cohesive plastic displacement on a mean tensile force-
displacement response

Figure 26: Snapshots of the mises stress distribution on the SLGS of nanocomposite corresponding to
the force-displcacement curve of Figure 25 for mpd = 1nm. Bright areas indicate high stress, while dark
areas indicate low stress as delamination propagates
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Figure 27: Snapshots of the mises stress distribution on the SLGS of nanocomposite corresponding to
the force-displcacement curve of Figure 25 for mpd= 4nm. Bright areas indicate high stress, while dark

areas indicate low stress as delamination propagates

For the lowest allowed plastic displacement, delamination in a large area is observed in Figure
25, with a resultant force close to the pure polymer. Therefore, the Young’s Modulus of the
nanocomposite is directly affected by the damage evolution parameters. A stress-strain
response for the nanocomposite and the Young’s Modulus % enhancement is depicted in

Figures 28 and 29 respectively.

250 1 stress strain response curves of a 0.75%vol SLGS-RC for different mpd
values (IS=70Mpa,CS=1000 MPa/nm)
200 -
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S e MPd=0.85nM
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= 100 -
73 e mpd=3nm
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50 - polymer
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
strain

Figure 28: Stress-strain response of a SLGS-RC with ILTM damage simulation
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The direct impact of the ILTM damage evolution on the stiffness enhancement, results in a

strain dependent Young’s modulus of the nanocomposite. The non-linear spring GS-RC [41] and

CNT-RC [44] finite element models presented similar strain dependent Young’s Modulus curves.
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Young's Modulus % enhancement of the nanocomposite versus the
strain for a 0.75% SLGS-RC (1S=70Mpa, CS=1000MPa/nm)
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Figure 29: Dependence of SLGS-RC Young’'s Modulus enhancement on the strain

Regarding the mechanical behavior in cyclic loading conditions, assuming that damaged bonds

can be regenerated the stress-strain response is depicted in Figure 30. Similar hysteresis loops
have been presented in CNT-RCs [21,27].
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Figure 30: Stress-strain response of the SLGS-RC under cyclic loading conditions
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4.3 The Effect of the Interfacial Strength

The effect of the interfacial strength on the mechanical behavior is depicted in the graph of
Figure 31. The same maximum stress has been in assumed for all traction directions (21).
Higher stiffness enhancement for greater interfacial strength values is obvious, and of course
expected, as it has been highlighted in all of the CNT-RC or GS-RC studies. Figure 32 presents
the stiffness enhancement as a function of strain.
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Figure 31: The effect of the interfacial strength on the stress-strain response of the SLGS-RC
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Assuming a relatively more “brittle’” bond with a maximum mpd=1.5 nm, the effect of the IS on
the damping behavior can be studied, regarding the hysteric loop observed in the cyclic loading
of Figure 30. Half of the stress-strain cycle is depicted in Figure 33 for better visualization of the
hysteresis that occurs, due to bond failure and regeneration.

250 ~ Stress-strain response for a 0.75% vol SLGS-RC for different IS values for half
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Figure 33: Stress-strain response for half cycle of loading with respect to different IS values

It can be seen that increasing the IS values, leads to larger dissipated energy area and also to
higher maximum stress as was expected. However, very high values of IS, over 90 MPa initiate a
reduction in dissipation area due to fewer bonds failing in the interface. The loss factor n for
hysterical damping in one circle of loading can be calculated as:

D

U:ﬁ

Where D is the dissipated energy area and U the energy stored during loading. Figure 34 depicts
the graph of the loss factor with respect to different IS values for a full loading circle.
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Loss factor for a 0.75% vol SLGS-RC in a full circle of loading
(mpd=1.5nm,CS=500MPa/nm)
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Figure 34: Loss factor of the SLGS-RC in cyclic loading conditions with respect to different IS values

Therefore, damping properties along with the stiffness of the SLGS-RC are found to be highly
affected by the IS values. A similar dependence of the loss factor on the IS values is presented in
CNT-RC studies [21,27].

4.4 The Effect of the Wrinkles

Randomly wrinkled SLGS with different maximum amplitudes have been considered. All of the
wrinkled SLGS have been generated with the same frequency parameters on a
100x100nmSLGS. Along a straight line on a SLGS a random wave is generated as:

fix)=A(cos(10x+ pl) + sin(10x + p2) + cos(20x + p3) + sin(20x + p4))
Where A is a constant that can be altered to simulate high and low amplitude waves and p is a

random initial phase between 0 and 2n. The maximum wave amplitudes (mwa) with respect to
the A constant for one run of the mesh generator, are calculated as:

A 0 1 5 10 15 20 30 40 50 55

Mwa 0 0.3 1.4 2.5 4.2 5.7 8.1 14 16.7 | 18.9
(nm)
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Randomly generated waves for different values of A are depicted in Figure 35. The scale
difference in the axis of vertical deflection is noted as A increases.

Figure 35: Randomly generated wavy SLGS for different A amplitude parameters a) A=5, b)A=15, c)A=30
and d)A=55.

The stress-strain response for the wavy SLGS-RC and the Young’s modulus enhancement are
depicted in Figures 36 and 37 respectively. Slight waviness lead to negligible changes compared
to straight waves, however as the amplitude magnification constant A increases, reduction in
stiffness is observed. A similar mechanical behavior has been observed in wavy CNT-RCs
[21,27]. It is noted that no damage has been simulated in the present paragraph, with
embedded element techniques used to model the nanocomposite.
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The reduction in stiffness, could be attributed to the smaller effective membrane area due to
the sheet orientation. Figure 38 shows the stress distribution on a wrinkled and on a straight
SLGS of the RC. As the plate behavior has small stiffness compared to the membrane, wavy
areas have a lower contribution to the RC stiffness.

Figure 38: Tensile stress distributions on a SLGS, a) wrinkled, b) straight. Bright areas indicate high stress,
while dark areas indicate low stress
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5. Conclusions

In the present work, a multiscale finite element model has been developed for the study of the
mechanical behavior of graphene nanocomposites. Equivalent continuum mechanics methods
were applied for modeling interatomic interactions, providing a linkage between the small
atomic scales and larger sizes with computational efficiency. The interactions between carbon
atoms in a SLGS lead to a continuum shell behavior, which can be represented with the ESE. The
interactions between the matrix and graphene, which define the ILTM, are modeled with a
continuum cohesive zone. The cohesive zone can be used as general method of simulation for
all kinds of matrix-filler bonding, weak or strong. The finite element model of the ESE
embedded in a polymer matrix is validated by observing its mechanical behavior with other
ILTM models both GS-RC and CNT-RC. Cohesive damage leads to a non-linear stress-strain
response due to failed bonds. Debonding phenomena in the SLGS-RC result in the same
behavior as delamination in conventional composites. The values of the cohesive strength have
a direct impact on the mechanical behavior, with stronger bonds leading to better
enhancement of the nanocomposite, and bonds that can be regenerated leading to hysteresis
loops in cyclic loadings. Damping occurring from hysteresis, has been found depend on the
interfacial strength and maximized in a limited range of strength values. Wrinkles on graphene
lead to reduced stiffness of the nanocomposite, which depends on the waviness of the sheets.
The ESE approach with a cohesive zone between matrix and filler can capture all of these
phenomena with a low computational cost. As future work could be proposed the derivation of
the cohesive damage initiation and propagation parameters, for specific bond types from
molecular dynamics or experimental data designed for this purpose.
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