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Abstract 
 

This paper analyzes the potential contribution of electric vehicles in greenhouse gas (GHG) 

emissions reduction over the next decade. The effect of electric vehicles (EVs) on traffic 

related pollution is assessed at the transportation link level in the Hamilton Census 

Metropolitan Area (CMA) following a simulation procedure from 2006 to 2021. The traffic 

emissions considered in this paper are: total hydrocarbons (HC), nitrogen oxides (NOx), 

carbon monoxide (CO) and a basic estimate of carbon dioxide (CO2). Emissions were 

estimated through a number of steps. Firstly, different EV market penetration scenarios were 

introduced (conservative, medium, optimistic) and compared to the base case scenario where 

no action or minimum policy controls are supposed to take place over the next couple of 

decades. Scenarios were determined through a comprehensive review of penetration estimates 

in the literature. Following these, the spatial distribution patterns of EVs were predicted using 

the vehicle registration data for the Hamilton CMA along with socioeconomic data obtained 

from 2006 census. Different distribution patterns of EVs adoption were assessed creating sub-

scenarios, in order to reflect the possible changes in the future. Subsequently, the results from 

the regression model were used to properly modify the Origin-Destination (OD) matrices by 

type of vehicle. These matrices were used as input into our traffic simulation model 

(TRAFFIC) that assigns traffic on the network and estimates volumes for each of the links. 

MOBILE 6.2C
1
 was customized to accept the new vehicle type and to compute the emission 

factors. The hourly emissions on each link were mapped through a geographic information 

system (GIS) framework after the integration of three parameters: street network, associated 

traffic flows and emissions (Link_emissions model). We conclude that different distribution 

patterns produce different spatial patterns of traffic related emissions in the links and even a 

modest adoption of EV technology may lead to significant reduction in traffic emissions  
 

KEY WORDS:  Electric mobility, electric cars, traffic emissions, transportation link level, regression 

model, simulation, Hamilton CMA. 

 
 

 

 

 

 

 

                                                           
1 MOBILE 6.2C is a version of MOBILE 6 originally developed by U.S Environmental Protection Agency to reflect the vehicle 
fleet and it was then modified by Environment Canada to embrace Canadian conditions. 
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Chapter 1 

1. Introduction 

Transportation in most of the urban regions of the world is dependent on the automobile. 

Suburbanization and urban sprawl has led people to use their car for every activity as houses 

and jobs are dispersed. As a result, auto-dependency has contributed to excessive congestion 

and air pollution that is detrimental to human health (Ministry of Transportation, 2011).  

 

Transport sector accounts for 14% of global greenhouse gas (GHG) emissions, and road 

transportation is the biggest of those sources, responsible for about 76 % of total transport 

emissions according to Wu et al. (1999). In Canada, the transportation sector accounts for 

75% of emitted carbon monoxide (CO), 67% of nitrogen oxides (NOx), 49% of non- methane 

hydrocarbons (HC) and 25% of carbon dioxide (CO2) (OECD, 2007). It is reported that 

84.4% of Canadian households owned or leased at least one vehicle in 2009 (Natural 

Resources Canada, 2009). The use of private vehicles by Canadians for daily trips is 

increasing while non-motorized travel for short distance utilitarian trips is declining. The urge 

for GHG emissions abatement and air quality improvement are forcing Canada’s government 

to act on the road transportation sector. 

 

In order to meet future mobility needs, fulfill all the goals set to attain urban sustainability and 

phase out dependence on oil, today’s automobiles have to be superseded by more dynamic 

and envrinmentally friendly alternatives. Electric vehicles have been identified as being such 

a technology according to the German Advisory Council on Global Change (2011) which are 

the only technical alternative on the market available today to vehicles with internal 

combustion engine. 

 

The electrification of road transport is considered as one of the most promising approaches as 

a step towards sustainability, helping to further reduce localized vehicle emissions and 

mitigate the associated health concerns. Many attempts to introduce electric vehicles (EVs) 

have failed over the years. Higher cost of EVs, challenges in battery technology, limited range 

of EVs, lack of infrastructure, consumer mindset, inadequate government support are some of 

the barriers to greater adoption of EVs. Consequently, policies to increase the number of EVs 

on the roads have become increasingly common in Canada in recent years and electric 

vehicles are expected to become even more attractive in the future, as technology and 

infrastructure improves due to zero tailpipe emissions, high efficiency and low operation 

costs.  

 



With respect to the net result regarding GHG emissions from EV adoption the literature 

suggests some contradictory findings. According to Cherry et al. (2011) the actual amount of 

emissions created per kilometer driven depends on the electricity generation mix of the grid 

from which the battery is charged. The EVs emissions are released at the electricity-

generating power plant, while the vehicle is used elsewhere. In China’s case, pollution from 

electricity plants is spreading exposure to potentially harmful particulates in the air from 

urban populations to those in more remote rural regions. Notably, a significant portion of 

power generation uses coal, which, with today’s technology, has a very high carbon 

footprint.The literature in evaluating the advantages and disadvantages of EVs underlines the 

importance of exposure of people to emissions from power generation. Huo et al. (2010) 

lamend that greater CO2 reduction could be expected in future if coal combustion 

technologies improve and the share of nonfossil electricity increases significantly. Contrary to 

countries like China or Germany, Switzerland is largely free of CO2-intensive energies and 

already today generates 60% of its electricity is from renewable sources-an ideal precondition 

for a truly sustainable electric car as reported by Beckmann (2010) giving a new insight in the 

need of adopting the new technology. For example, electricity from nuclear, hydro, solar, or 

wind-powered plants emits very low amounts of air pollutants. Ontario gets 64% of its 

electricity from nuclear power. The remainder comes from a mix of natural gas (9%), 

hydroelectricity (21%) and wind (4%) according to Canadian Nuclear Society (2013). Ontario 

has already eliminated coal’s percentage. 

 

While electric vehicle technology promises a decrease in emissions, a crucial strategy to 

promote the adoption of EVs is required. Due to urban sprawl, Hamiltonians are heavily 

dependent on private vehicles, rather than public transportation. Data from census 

demonstrated that 76% of employed persons in Hamilton commute using personal 

transportation (Statistics Canada, 2008). This is indicative of the extent of congestion and the 

resulting pollution emissions. Traditional government intervention policies into the market for 

new technologies include tax incentives and regulations that favour the adoption of beneficial 

technologies. In the case of electric vehicles, Ontario offers tax deduction, credits and HOV 

lane privileges to EVs owners. For example, they obtain special green license plates, which 

offer them high priority access to Ontario’s high occupancy vehicle (HOV) lanes, even if 

there is only one person in the vehicle (Ministry of Transportation, 2011). It is also essential 

to highlight that although EVs are currently more expensive to purchase, they can save drivers 

from significant sums of money over time, in fuel and operation savings, depending on 

gasoline prices. 

 

With regard to money saving some other concerns are arising. The introduction of more 

efficient technology (for example electric vehicles) is usually accompanied by rebound 

effects, which contradict the positive effect of increased efficiency. Increased fuel efficiency 

means lower fuel costs leading to lower costs for transportation services. In response to 



improvements in the fuel economy, people often increase vehicle miles traveled (VMT) and 

sometimes proceed to purchase bigger vehicles or more cars than actually needed in the 

family according to Haan et al. (2006). In general, when people save money from 

transportation they have the tendency to organize their lives by gradually increasing 

automobile’s usage. For example, if an electric vehicle is purchased and used as a 

supplemental vehicle for short trips where the owner previously walked or biked, overall 

emissions would increase as the VMT would rise. To avoid the rebound effect people should 

be informed about sustainable transportation and be aware of environmental issues. 

 

Several researchers have used survey data to draw conclusions about factors affecting EV 

demand. These studies generally outline the profile of potential EVs buyers and conclude that 

EVs owners tend to be in the highest income class and in the highest educational level 

according to Haan et al. (2006); Potoglou and Kanaroglou (2008); Curtin et al. (2009). The 

type of house and the capacity of owning free parking where the charging infrastructure could 

be located are also essential (Hess and Ong, 2002; Chu 2002). Therefore, it is reasonable to 

assume that raising car buyers’ awareness over the benefits of EVs usage with regard to 

environmental issues and GHG emissions reduction, may increase EVs deployment in the 

market.  

 

Since very few EVs were registered in the Hamilton CMA, it is not possible to assess 

consumer willingness to purchase electric vehicles on the basis of revealed purchasing 

behavior. Thus, this study was based on the type of persons already purchasing a hybrid 

electric vehicle to approximate who would be likely electric vehicle adopters. The counts of 

HEVs were used for the simulation of EVs and the assessment of the effect of EVs on 

emissions, following the assumption that similar penetration rate to that of HEVs could be 

found for EVs too (Cunnungham, 2009; Perujo and Ciuffo 2010). The owners of EVs have 

the same characteristics with those of hybrid cars as they share same components (batteries, 

electric motors).  

 

This study offers insight on the potential contribution of electric vehicles in GHG emissions 

reduction over the next decade in the Hamilton CMA. Although much research has been 

conducted to evaluate potential demand and acceptance from users (O'Mahony, 2011; 

Potoglou, 2007; Franke et al. 2012; Krems et al. 2010), the willingness to pay for alternative 

fuel vehicles (Dagsvik 1996; Ito et al. 2011), the reliability of battery systems (Earley et al. 

2011, the energy demand per vehicle (Bueno, 2012) less has been done to evaluate GHG 

emissions reduction at the link level after the introduction of EVs. This thesis attempts to add 

to the literature by combining various spatial distribution patterns of EVs influenced by 

socioeconomic differences with a set of integrated simulation models (MOBILE 6.2C, 

TRAFFIC, LINK EMISSIONS) to estimate the traffic related emissions in the area. The 

overall objective is to generate scenarios, using different adoption rates of the new technology 



and evaluate the results with regard to emissions produced in the Hamilton light-duty vehicle 

fleet. In particular the research focuses on the following questions: 

 Projecting to 2021, what is the change on emissions when different rates of electric 

powertrains are introduced to the vehicle fleet? 

 What contribution can electric vehicles make towards meeting GHG reduction targets? 

 How different socioeconomic factors influence EVs distribution and emissions? 

These results will be used to develop broad strategic goals which can facilitate the 

deployment of the sustainable transportation system. Study findings will help support 

informed decision-making regarding EVs development and deployment in support of energy 

and environmental policy. They will also dispel misunderstandings about EVs and emissions- 

such as the common misunderstanding that EVs would worsen air quality due to emissions 

from electricity generation for battery charging. Accordingly, there is a great need for 

generating future – year scenarios using simulation tools for assessing potential development 

policies. Additionally, the emissions are estimated at the link level, thus additional 

information on the spatial concentration of emissions will be provided compared to previous 

studies. Literature on pollution reduction due to the introduction of ‘cleaner’ vehicles lacks 

mapping. Maps are needed, for example, to identify pollution “hot-spots”, to show changes on 

spatial patterns of pollution resulting from policies and to provide estimates of exposure for 

epidemiological studies. 

The integrated models were undertaken as part of a previous project completed for 

Environment Canada by the Centre for Spatial Analysis at McMaster University in Hamilton. 

The original projects aimed to estimate traffic related emissions of Canada’s major cities 

(Toronto, Vancouver) CSpA (2009). 

The remainder of this thesis is organized in three chapters, as follows: 

The second chapter provides details on the theoretical background, motivations and 

methodology for this thesis. We first review previous research that has attempted to predict 

EVs future market deployment and  the estimated abatement in GHG emissions. Then, we 

focus on the factors that influence EVs ownership and uptake.  

On the basis of this review, an appropriate modeling approach is selected to study the 

relationship between the contributing socioeconomic factors that influence EVs market 

deployment and the decrease in GHG link emissions (Third chapter). Furthermore, it 

provides the methodological framework that was followed in this study, the determination and 

description of the analysis techniques and the software that will be used for this study. 

In the following chapter, Chapter 4, we analyze the case study after the implementation of 

the aforementioned methodological framework. A regression analysis is used to predict the 

spatial distribution patterns of electric vehicles with regard to socioeconomic characteristics. 



The results are used to properly modify the Origin-Destination matrices which will be the 

input for TRAFFIC simulation model. The emission factors are calculated in MOBILE 6.2C 

and then future emissions are simulated and mapped through LINK EMISSIONS. Following 

these, the case study is presented where the aforementioned methodological framework is 

actually executed. A detailed description of regression analysis’ results is provided, followed 

by the process of estimating emissions from the integrated models. 

The fifth chapter provides integrated results of the analysis, the overall summary of the 

findings and the conclusions. A discussion of potential areas of research concludes the thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                   Chapter 2 

2. Literature Review 

Transportation is inextricably interconnected with private car and development trends project 

substantial growth in road transport over the coming decades. According to a study conducted 

by the World Business Council for Sustainable Development (2004) automobile’s owenership 

could increase from roughly 700 million to 2 billion over the period 2000-2050. Solomon et 

al. (2007) state that, globally, private cars account for almost 10% of total energy use and 

greenhouse gas emissions (GHG). These patterns forecast an excessive use of automobiles, 

resulting in a dramatic boost of gasoline and diesel demands,  urban sprawl, and increasing 

levels of commuting trips and degradation of air quality. (Ministry of Transportation, 2011). 

 

Transportation sector produced 24% of GHG emissions growth from 1990 to 2008 (Canada's 

Action, 2010), generates around 25% of EU greenhouse gas emissions (Climate Action, 2011) 

and accounts for 51% of pollution in India (Bhattacharjee, 2012). Reducing emissions from 

this sector will generate significant benefits towards sustainability. This could be 

accomplished by abating car ownership and use (travel demand), by using alternative fuelled 

vehicles or by improving roadways.  

 

Towards this end, automobile manufacturers introduce electric vehicles that are associated 

with high efficiency, low operation costs and zero tailpipe emissions at an increasing pace. In 

the past, many attempts to implement electric vehicles have failed because of their limit range 

and the fear that a dead battery provokes, called “Range Anxiety” as reported by Accello 

(1997). Besides this barrier, researchers are concerned about the grid’s capacity to withstand 

the growing demand of electricity when loading on the grid, especially during peak hours 

according to Nemry and Brons (2010). Over the last years auto industries introduce electric 

vehicles with gradually improving electric power capacity ratios. This strengthens electric 

vehicle’s deployment as people get informed about technology and adopt it in phases. 

 

First, hybrid electric vehicles (HEV) were introduced, which combined a gasoline-fuelled 

internal combustion engine and electric batteries to power electric motors. These cars could 

be used for short urban trips. Electricity is produced in the vehicle and it doesn’t need to be 

recharged. The next generation was plug-in hybrid electric vehicles (PHEV), a hybrid with 

batteries that can be recharged by connecting a plug to an electric power source. For the first 

time the vehicles could connect to the grid to get electricity. Typically, they could be used at 

100% electric in the city with a range limit of 50 km. Third, fully electric vehicles were 

introduced with a sufficient range of 200 km in the beginning (Transport Canada, 2011). 



Technology is improving rapidly and within two years the range augmented up to 483Km 

through Tesla Motors’ new model (Model S). It is expected that the range will continue to 

grow fast and the charging time will be shortened according to Ian Hobday, CEO of Liberty 

Electric Cars Ltd (Ian Hobday, 2013).  

 

The Ontario government’s vision is to have one out of every 20 vehicles driven in the 

province electrically powered by 2020. To support this vision, Ontario has announced a 

number of incentives to help individuals, businesses and organizations choose clean and 

efficient vehicles (Ministry of Transportation, 2010). Similar visions exist in many other 

countries such as Germany, UK, USA, Ireland and British Columbia (Dempsey, 2008; 

Pembina Institute, 2010). However, the actual amount of emissions created per kilometer 

driven depends on the electricity generation mix of the grid from which the battery is charged. 

For example, electricity from nuclear, hydro, solar, or wind-powered plants emits very low 

amounts of air pollutants. 

 

Many researchers, taking the aforementioned visions into consideration, have attempted to 

analyze the impacts of new technology on society and especially the contribution to GHG 

emissions and to energy and oil consumption. Additionally, the market acceptance of new 

technology has been investigated along with projections over the rate that these new vehicle 

fleets enter the market (Perujo and Ciuffo, 2010; Cunningham, 2009). 

 

The Boston Consulting Group (2009) analysis proposed three scenarios for the introduction of 

electric vehicles in the market. In the first -slowdown- scenario the EVs including hybrids, 

achieve a 12% uptake. The second-steady pace- scenario forecasts a 28% penetration rate of 

new technology, whereas the last scenario –acceleration-scenario, which proceeds with a 45% 

of the overall market share. The market penetration of BEVs and of PHEVs ranges between 

0% and 5%. The authors developed three different scenarios to illustrate their expectations of 

the uptake of EVs in 2020 starting from 2008 in Western Europe, North America, Japan and 

China. In their view the most likely scenario to be realized is the steady pace scenario with 

reductions in CO2 emissions up to 40%. 

Deloitte (2010) released a study analyzing electric car adoption taking into consideration 

market opportunity, target customers, barriers to adoption and market forecast. The study 

concluded with a rather conservative forecast of electric car sales accounting for 3.1% of the 

US market by 2020. 

UMTRI (2009) conducted a report predicting PHEVs market uptake using six different 

models. The first 4 models assumed a fixed saturation level while the other two constituted a 

sensitivity analysis. According to the first set of models, PHEVs will range between 345 and 

371000 units, reaching its peak between 2017 and 2020. The last model - which was the most 



preferable by the authors - sets 3 scenarios –Low, medium and high – as illustrated below 

with the latter one being very aggressive: 

 
Table 1. Future scenarios- UMTRI 

Scenarios 
PHEVs Market penetration (Million units) 

2015 2025 2035 

Low 0.005 0.084 0.38 

Medium  N/A 1.2 4.2 

High 0.19 1.891 6.021 

 

According to BERR & DfT (2008) the rate of EVs deployment is assumed to be non-linear. In 

order to forecast the future market share of EVs the authors constructed four scenarios: 

 

 BAU Scenario: In this scenario it is assumed that the market continues along with the 

current situation and no new incentives are given in order to promote the diffusion of 

EVs. 

 Mid-range Scenario: The environmental incentives are constant but the costs of EVs 

are comparable to ICVs by 2015. 

 High-range Scenario: The costs of batteries have decreased and charging infrastructure 

is spread. 

 Extreme-range Scenario: In the last scenario there is extensive demand for EVs at 

such extent that all new vehicles sales are EVs.  

 

The forecasts of EVs penetration are illustrated in the following tables. Notably, the last 

scenario is very aggressive. 
Table 2. Future Scenarios-  BERR & DfT 

Scenarios 

Number of vehicles able to connect to grid 

BEVs PHEVs 

2010 2020 2030 2010 2020 2030 

BAU 3000 70000 500000 1000 200000 2500000 

Mid-range 4000 600000 1600000 1000 200000 2500000 

High-range 4000 1200000 3300000 1000 350000 7900000 

Extreme- range 4000 2600000 5800000 1000 500000 14800000 

 

Scenarios 
Percentage of vehicles able to connect to grid 

2020 2030 

Mid-range 2.50% 11.70% 

High-range 4.90% 32% 

Extreme- range 10% 60% 



 

Hadley and Tsvetkova (2008) assume that the deployment of PHEVs will be constant at 25% 

of market share, in order to estimate the potential impacts of the new automotive technology 

on electricity demand, supply, prices and emissions in 2020 and 2030 in 13 regions. 

Another report analyzing the potential contribution of PHEVs and BEVs to GHG emissions 

reduction over the next decade in Canada is that of WWF (2012). The authors build 3 

different scenarios –unhurried, moderate and aggressive market penetration scenarios- to 

evaluate future carbon emissions savings by replacing gasoline consumption with electricity 

usage. Under the first two scenarios, a low exponential growth of 15% and 25% is expected 

capturing 0.7% and 3.9% of 2020 market share, whereas the more aggressive scenario 

presents a 35% exponential growth (10.4% of 2020 market share).  

The forecasted market penetration outlook for EVs is not constant across studies resulting in 

different projections. After analyzing the literature review about 40% of the analysts expect 

EVs market uptake range to be between 2% and 5%, almost 30% suggest that EVs market 

penetration will fall between 5%-10% and the rest forecast a market share up to 25% in 2020. 

Estimates are based on different assumptions and simulation models. 

 

In an attempt to investigate potential trends across scenarios, which will contribute to the 

configuration of the scenarios of this thesis, the following chart illustrates a summary 

consisting of the annual market penetration scenarios by percentage.  

 



 
 

The studies used to the analysis were published between 2007 and 2012. The time that each 

study was released could have an impact on the market penetration scenarios because of 

different policies existing at that specific time, tax incentives, gas price and generally 

different economic conditions. It is observed that the years 2008, 2009 and 2010 share the 

same number of publications. When comparing scenarios from 2007 to 2012, it is remarkable 

that in 2007 both studies introduced aggressive scenarios with EVs reaching 80% of market 

share (EPRI and NRDC, 2007).  In 2008, the possibility of low EVs deployment was 

implemented with 20% of the studied scenarios being conservative, in 2009, 50% and in 

2010, 36% of the scenarios forecasted a market penetration under 5% of EVs uptake. 

Moreover, the methods used to forecast the EVs market adoption play a significant role in the 

projected rates (S-curve, exponential curve, different market and purchase models, general 

equilibrium model). 

 

In scientific literature many studies have explored the advantages of EVs and report that a net 

abatement in greenhouse (GHG) emissions can be attained by replacing internal combustion 

engine vehicles (ICEV) with EVs [Kromer and Heywood (2007); Dijk and Yarime (2010); 

Parks et al. (2007); WWF (2012); Bradley and Frank (2009); Thiel et al. (2010)]. More 

specifically, EPRI and NRDC (2007) after applying a set of future penetration scenarios 

conclude that PHEVs can reduce GHG emissions up to 65% when compared to conventional 

cars and 40% when compared to HEVs. Same results are observed in “On the Road in 2035” 

report (2008). Baptista et al. (2009) conclude that the introduction of new technology leads to 
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decrease in local pollution with 11%-26% reduction for CO, 30-35% for HC, 15-17% for 

NOx and 17-60% for PM. It is remarkable though that EVs’ emissions are released at the 

electricity-generating power plant, while the vehicle is used elsewhere. O’Mahony et al. 

(2011) used COPERT 4 model to measure the potential reduction in tailpipe GHG emissions 

and concluded that there will be significant reduction in GHG emissions under the most likely 

scenario of 10% market penetration by 2020. Greater CO2 reduction could be expected in 

future if the generated electricity derives from renewable sources [Huo et al. (2010); Cherry et 

al. (2011)]. With a decarbonized grid, PHEVs can reduce GHG emissions from 4% to 16% 

compared to HEVs according to The National Research Council (2010).  

 

All the aforementioned studies focus on the benefits on the environment after the introduction 

of electric vehicles. With respect to the net result regarding GHG emissions from EVs 

adoption the literature suggests some contradictory findings. Zehner O. (2013) argues that 

battery electric vehicles (BEVs) are essentially trading one environmental problem for 

another rather than moving the ball forward on clean transportation.  He states that electric 

cars lead to hidden environmental and health damages after considering their entire lifecycle. 

He makes a compelling case by arguing that the greenhouse gas (GHG) cost of electricity 

generation is too high, the production of BEVs is worse than gasoline vehicles, and that any 

personal automobile is ultimately worse for the environment than public transit. Most electric-

car assessments analyze only the charging of the car. But a more rigorous analysis would 

consider the environmental impacts over the vehicle’s full life cycle, from its construction 

through its operation and on to its eventual retirement at the junkyard. Cherry et al. (2011), in 

addition, conclude that the actual amount of emissions created per kilometer driven depends 

on the electricity generation mix of the grid from which the battery is charged. In China’s 

case, for a conventional car, emissions are worse in urban areas, whereas emissions associated 

with electric vehicles are concentrated in the populated regions surrounding China’s mostly 

coal-fired power stations. Even when this difference of exposure was taken into account, the 

total negative health consequences of electric vehicles in China exceeded those of 

conventional cars. Notably, a significant portion of power generation uses coal, which, with 

today’s technology, has a very high carbon footprint. 

 

The literature in evaluating the advantages and disadvantages of EVs underlines the 

importance of exposure of people to emissions according to the kind of power generation. 

Huo et al. (2010) stated that greater CO2 reduction could be expected in future if coal 

combustion technologies swap with renewable sources and the share of nonfossil electricity 

increases significantly. On the other hand, even if renewable sources could be applied as 

primary source of electricity generation on a large scale, manufacturing the vast number of 

photovoltaic cells required would have venomous side effects according to Intergovernmental 

Panel on Climate Change (2011). Butcher (2012) contradicts the previous statements, arguing 

that even with fairly “dirty” electricity, EVs are cleaner than ICEs. When burning gasoline it 



is produced 21-58% more carbon dioxide than getting the same amount of energy from the 

electric grid for a car of similar shape and size. 

 

Switzerland is largely free of CO2 as 60% of its electricity stems from renewable sources. 

This could be an ideal precondition for a truly sustainable electric car as reported by 

Beckmann (2010) giving a new insight in the need of adopting the new technology. For 

example, electricity from nuclear, hydro, solar, or wind-powered plants emits very low 

amounts of air pollutants. Ontario follows a greener path having already eliminated coal’s 

percentage. The region gets 64% of its electricity from nuclear power. The remainder comes 

from a mix of natural gas (9%), hydroelectricity (21%) and wind (4%) according to Canadian 

Nuclear Society (2013). 

 

While electric vehicle technology promises a decrease in emissions, a crucial strategy to 

promote the adoption of EVs is required. Traditional government intervention policies into 

the market for new technologies include tax incentives and regulations that favor the adoption 

of beneficial technologies according to a report commissioned by Tesla (2014). In the case of 

electric vehicles, UK offers 5000 pounds grant for every model S purchased, no road tax, 

exemption from London congestion charge. In Denmark, electric cars are exempted from 

environment tax and they deserve free parking in large cities. Similar patterns are followed in 

other countries as well. The US government offers a $7500 federal tax credit with the 

purchase of a new Tesla acquired for personal use. Other incentives given by US government 

are: a discount in electricity bill, free downtown parking, reduced rates for electric vehicles 

charging during off-peak hours or even fast-track permitting and customer support to make 

homes EVs ready in less than a week. Ontario offers an incentive of up to $8500 for 

purchased or leased EVs, tax deduction, credits and HOV lane privileges to EVs owners. For 

example, owners of electric vehicles can obtain special green license plates which offer them 

high priority access to Ontario’s high occupancy vehicle (HOV) lanes, even if there is only 

one person in the vehicle (Ministry of Transportation, 2011). It is also essential that although 

EVs are currently more expensive to purchase, they can save drivers from significant sums of 

money over time, in fuel and operation savings, depending on gasoline prices. 

 

With regard to money saving some other concerns are arising when a new energy-efficient 

version of private car hits the market. People know that EVs consume less and they feel 

justified in using them more frequently, which in turn augments energy consumption and thus 

negates the efficiency benefits. This phenomenon is called the rebound effect and contradicts 

the positive effect of increased efficiency. Santarius (2012) described a Japanese study, which 

found that hybrid car buyers drove 1.6 times more distance after the purchase of their new 

cars in comparison to their old vehicles.  Three financial rebound effects dive deeper into the 

seas of the economy. First, there is the income effect, which says saving energy saves money 

and that money is either spent on an increased use of the same product or on an alternative 



product that also consumes energy and resources. Second, the reinvestment effect states that 

when companies save energy through better process management or more efficient 

machinery, this money is of course reinvested. Increased fuel efficiency means lower fuel 

costs leading to lower costs for transportation services. In response to improvements in fuel 

economy, people often increase vehicle miles traveled (VMT) and sometimes proceed to 

purchase bigger vehicles or more cars than actually needed in the family according to Haan et 

al. (2006). The third financial rebound effect that Santarius identified is called market price 

effect. It basically points out that when energy prices fall due to reduced demand in one 

sector, other sectors increase their demand (and their consumption) simply because it got 

cheaper. For example, if an electric vehicle is purchased and used as a supplemental vehicle 

for short trips where the owner previously walked or biked, overall emissions would increase 

as the VMT would rise. To avoid the rebound effect people should be informed about 

sustainable transportation and eco-taxes and be aware of environmental issues such as 

emissions trading so that rebound effects will be partially contained. 

 

In order to determine the factors that influence the EVs market share from buyer’s point of 

view an appraisal of market penetration was conducted. Much research has focused on 

capturing the characteristics of potential EVs buyers which will be more or less similar to the 

characteristics of HEVs buyers. Because the decision to buy an EV is part of the total vehicle 

purchase process, studies dealing with car ownership were also assessed.  

 

According to Hybrid Auto Market Analysis (2007)  the hybrid automobile market is divided 

into different demographic groups including age, gender, generation and social class, 

education, work, marital status and location of residence as high proportion of the target 

market live in urban areas. Curtin et al. (2009) conducted a survey to assess the conditions 

under which U.S consumers would buy a PHEV and concluded that age of householder, 

income, home ownership, gender, education and geographic location have a major impact on 

preferences for PHEVs. The most important result was that age along with education 

influenced PHEVs purchase more than income because it is associated with environmental 

and technological views. A survey was also designed by Haan et al. (2006) in order to 

compare buyers of hybrid and conventional vehicles and resulted to define gender, income, 

education and age as the most important variables that influence HEV ownership. Potoglou 

and Kanaroglou (2008) tried to model car ownership and specified that household structure, 

working adults, income, household type, education and mixed density index highly affect the 

possession of a vehicle. Another variable that impacts alternative fuel vehicles’ ownership is 

the exposure to alternative technologies according to Stuben and Sterman (2008) because 

when people stay updated on new technologies the probability of purchasing a “greener” 

vehicle increases. Another study held by Choo and Mokhtarian (2002) focused on assessing 

the variables that affect vehicle type choices and deduced that along with other characteristics 

age plays a major role, as older people tend to purchase larger or more luxury cars. 



 Definitions of explanatory variables 

Household income is a variable that influences significantly car ownership in general and EVs 

ownership in particular, as it provides a household with the financial means to afford a vehicle 

and especially an EV that is more expensive (Bhat and Pulugurta, 1998; Chu, 2002; Lane, 

2005) . A single-parent family is more unlikely to own many cars because of the high costs of 

maintenance, making household type an important variable (Hess and Ong, 2002; Potoglou 

and Kanaroglou, 2008; Chu, 2002). The type of dwelling is important as well. Detached and 

semi-detached houses usually come with available parking and extra space suitable to locate 

the charging infrastructure that EVs need. The level of education of members in a household 

consistently appears to influence EVs adoption because of increased environmental sensitivity 

for GHG, increased concern for CO2 reductions and willingness to adopt new technologies in 

order to mitigate costs associated with conventional vehicle (Chu, 2002; Haan et al. 2006; 

Stuben and Sterman, 2008). The number of children in a house might increase the number of 

vehicles owned because of additional needs for non-working trips. Children in Hamilton area 

are strongly dependent on their parents for their mobility as activities like schools or sports 

are inaccessible by bike or walk. Older people are as well auto-dependent and in conjunction 

with the level of education, they are more likely to own an EV (Curtin et al. 2009; Choo and 

Mokhtarian, 2002). Another characteristic that is involved in the process is the number of 

working adults. As this number increases the probability of owning a car augments as well, 

because the household can afford a more expensive vehicle (Potoglou and Kanaroglou, 2008). 

The variable - number of licensed drivers - is contradicting because it is likely to be co-

determined with car ownerships levels according to Bhat and Pulugurta (1998). Residential 

location variable is also found to influence car ownership decisions. A study held by Bento et 

al. (2005) demonstrated that households have fewer cars when their locations are close to the 

centre of the city and these people are more likely to own EVs because of their limited range. 

All the aforementioned variables were selected to participate in the analysis process, as 

according to the literature they are considered to highly affect EV’s ownership.   

 

 

 

 

 

 



                                                        Chapter 3 

3. Data and Methodology 

This chapter provides an overview of the data and the methodology adopted in this study and 

used to interpret the results and draw conclusions about the impact of electric vehicles in 

traffic related pollution reduction. 

 

3.1 Study Area 

 

The effect of EVs on traffic related pollution is assessed at the transportation link level in the 

Hamilton Census Metropolitan Area (CMA). The Hamilton CMA is a key component of the 

Greater Toronto and Hamilton Area (GTHA), the largest urban region in Canada and the 

ninth largest CMA in Canada with a population growing almost 4% between the 2006 and 

2011 censuses (Statistics Canada, 2012b). It is located between the US border at Niagara Falls 

and Toronto, on the western shore of Lake Ontario. The Hamilton CMA is divided into eight 

municipalities as shown in the map (Burlington, Stoney Creek, Glanbrook, Ancaster, 

Hamilton, Dundas, Flamborough, Grimbsy) as shown in Figure 1. Grimbsy area though, was 

not included in the traffic simulation model.  

 

 
Figure 1. Subregions of Hamilton  



The traditional economic activity of Hamilton has been the heavy steel industry, located along 

the harbour of the city. This fact justifies the poor air quality of Hamilton and the need to 

improve it. The last years, service sector has also started developing in terms of employment 

and tends to surpass manufacturer sector. The study area is divided into 223 Traffic Analysis 

Zones (TAZ) which are connected through 831 network links. These links include 223 pseudo 

links which connect the centroid of each TAZ to the main network of the Hamilton CMA. 

Figure 2 depicts the study area and its subregion along with the arterial and the main 

highways.   

 
Figure 2. Arterial roads and highways in Hamilton 

The major provincial highways are Queen Elizabeth Way (QEW), Hwy 401, Hwy 403, Hwy 

407, and some local highways are Lincoln M. Alexander Parkway and Red Hill Valley 

Parkway. 

 



 3.2 Data 

 

The data used for this study were derived from three sources. The first set of data includes 

demographic and socioeconomic characteristics of people at the census tract level, taken from 

2006 Canadian Census and converted, when needed, into proportional data. The last set of 

data was the vehicle registration data obtained from POLK (www.polk.com). OD matrices 

were derived from household travel surveys (TTS, 2006). 

 

3.2.1 Canadian Census Data 

 

Demographic, social and economic data were derived from this source. This information was 

available in different levels of aggregation, but census tract was selected in order to match 

with the vehicle registration data. The data were converted when needed into proportional 

data or into binary categorical data. Variables like population, average income, number of 

vehicles, number of licenses per census tract were used as is. The number of children, adults 

or seniors, males and females, full time workers and part time workers, owned dwellings or 

rented and in general variables that were split into subclasses were converted into 

proportional data. Lastly, income was introduced as a set of dummy variables defined by the 

categories:  

 

 low -less than CAD 30000 (1 if income belongs to this category, 0 otherwise),  

 medium -CAD 30001-80000 (1 if income belongs in the second case, 0 otherwise) 

 high -CAD 80001 and more (reference variable).  

 

The variables that were selected to constitute our database are shown in Table 3 in Appendix. 

 

3.2.2 Vehicle Registration Data 

 

Polk data provided information on the vehicle type, fuels, model years and Gross Vehicle 

Weight Rating (GVWR) for every passenger car registered in the study area. The distribution 

of vehicles in Hamilton by model year is illustrated in Figure 3 and the distribution of HEVs 

in Fig.4. After 2000 we observe a great explosion in car ownership. Currently, 88,85% of cars 

in Hamilton CMA use gasoline, 2.66% flex fuel, 2,48% diesel,  0,003% petrol , 0,001% 

electricity, 5,58%  use unknown fuel type and 0,42% are hybrids according to POLK data. As 

the car dependency augmented, actions promoting sustainability of the transportation system 

had to be taken. With regard to these actions, beyond 2000, automobile manufacturers 

commenced to introduce a new generation of cars that produce fewer emissions and use little 

gasoline, hybrids.   

http://www.polk.com/


 
Figure 3.  Vehicle’s distribution by model year                               Figure 4. HEVs distribution by model year 

 

The total number of electric vehicles in 2012 was only 3. Since very few EVs were registered 

in the Hamilton CMA the study was based on the counts of HEVs for the simulation of EVs 

and the assessment of the effect of EVs on emissions, following the assumption that similar 

penetration rate to that of HEVs could be found for EVs too [Cunnungham (2009);Perujo and 

Ciuffo (2010)]. The owners of EVs have the same characteristics with those of hybrid cars as 

they share same components (batteries, electric motors).  

 

In 2008 the number of hybrid cars was 848, number that almost doubled during the next 4 

years. The distribution of HEVs can be observed in the following figure. There were two 

census tracts with high counts of HEVs (ctuid 5370061in Hamilton and 5370206 in 

Burlington). The two municipalities owned a number of “green” vehicles and these were 

registered in the two aforementioned CTs. In order to avoid a misappraisal these extreme 

values had to be adjusted to include only the vehicles owned by people. This was achieved by 

attributing to both CTs, the average of the counts of the neihbouring CTs.  
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Figure 5. Spatial distribution of HEVs 

 

We observe that people in downtown Hamilton don’t own many HEVs, fact that can be 

explained firstly by the kind of people living in the centre of Hamilton. Ontario’s government 

provides welfare to people in need like unemployed, drug addicts and generally persons with 

disabilities. Secondly the small distances of everything in the centre of a town make car use 

unnecessary. High counts of HEVs can be seen in Dundas, a subregion in Hamilton with 

highly-educated people and also in Burlington with a significant concentration of people with 

high incomes. The distribution of income and education is depicted in the following figures.  

 

 
   Figure 6. Average income                                                 Figure 7. Population distribution 



 

The distribution of HEVs per census tract for years 2008 and 2012 and the descriptive 

statistics are shown in Figures 8 and 9. A similar trend is presented in both graphs, with a 

narrow peak and a skew to the right, matching Poisson’s distribution.  

 

 
    Figure 8.  HEVs distribution in 2008                                        Figure 9. HEVs distribution in 2012 

  

 

 
Table 3. Descriptive statistics for number of electric cars in 2008 and 2012 

  NHEV08 NHEV12 

N Valid 172 172 

Missing 0 0 

Mean 4.92 9.44 

Std. Deviation 6.049 9.989 

Variance 36.595 99.784 

Skewness 2.057 1.873 

Std. Error of Skewness .187 .187 

Kurtosis 4.484 3.895 

Std. Error of Kurtosis .371 .371 

 



Table 3 presents descriptive statistics of hybrids for 2008 and 2012. The mean has doubled 

concluding that there was a significant increase in the number of hybrid cars during these 4 

years.  

In the following section we describe the methods utilized to approach the problem; that is, the 

different regression models used, in order to select the appropriate weights in our case, the 

tests implemented to check for the significance of the models and the integrated models that 

participated in the process.    

3.3 Methods -Determination of analysis techniques 

In order to define different distribution patterns of electric vehicles and accurately reflect 

socioeconomic variations inside Hamilton CMA a regression analysis is required. Regression 

analysis is used for this research because a regression model can estimate the statistical 

significance of multiple factors (variables) in one model. The impact of each variable on the 

dependent variable can be tested as an additional effect. The variables which show 

significance, can be interpreted that affect the dependent in addition to the rest of the 

independent variables. 

 

The number of electric vehicles per census tract is a count variable that takes on positive 

integer values (0, 1, 2 …) reflecting the number of occurrences of an event which cannot 

happen a negative number of times. The number of EVs will be the dependent variable in the 

analysis. The appliance of a linear or log-linear regression model with ordinary least squares 

(OLS) when the dependent variable is discrete should be avoided because the results from 

such models could be negative and not integer, inconsistent with the initial assumption. The 

generalized linear models (GLiM) can provide accurate results for data sets having binary, 

categorical and count dependent variables (Dobson A. J., 2002). A GLM in general, can be 

constructed by choosing an appropriate link function and response probability distribution 

according to Agresti (2002). From a methodological standpoint, the most common approach 

to analyze count data is to apply Poisson or negative binomial regression models because of 

the distributional property (i.e random, discrete and non-negative) of counts. Because the 

number of EVs is discrete and non-negative integer value, the Poisson regression technique is 

a natural first choice for modeling. Although the Poisson regression model has desirable 

statistical properties for describing this type of data, it has an important constraint which is 

that the mean must equal the variance. This can account for the observed pattern in count data 

that variability increases with level.  

 

When the variance is greater than the mean, the data are overdispersed. Overdispersion is the 

result of Bernoulli trials with unequal probability of independent events (also known as 

Poisson trials). To adjust for this overdispersion, Poisson regression model is not suggested, 

alternatively the negative binomial regression will be implemented [Lord and Mannering 



(2010); (Hauer E., 2001); (Hilbe J.M., 2007);  .Count regression models are generally fit as 

loglinear models; that is, it is the logarithm of the mean that is modeled as linear function of 

predictors, or equivalently, the mean is modeled as an exponential function of the predictors. 

This implies, for example, a proportional relationship with a variable, rather than an additive 

one.  

 

Deriving the negative binomial regression model can start with a Poisson model, which is 

defined by the following equation:  

          
            

   
           (1) 

Where P(ni) is the probability of n HEVs existing in a census tract i over the specific time 

period and λi is the expected HEVs frequency for census tract i. The expected HEVs 

frequency is assumed to be a function of explanatory variables such that: 

                            (2) 

Where Xi is a vector of explanatory variables that could include the area of the census tract i 

and the socioeconomic characteristics of its residents that determine the possession of HEVs; 

and β is a vector of estimate coefficients. With this form of λi, the coefficient vector β can be 

estimated by the maximum likelihood method.  

To overcome the overdispersion problem, negative binomial regression can be applied by 

relaxing the assumption that the mean of the number of HEVs equals the variance. To do this, 

an error term is added to the expected HEVs frequency (λi) such that the equation becomes  

                                                                                 (3) 

Where exp(ε) is a gamma-distributed error term with mean one and variance α. This gives a 

conditional probability  

           
                           

  

   
             (4) 

The form of the model equation for negative binomial regression is the same as that for 

Poisson regression. The log of the outcome is predicted with a linear combination of the 

predictors:  

                                                              (5) 

This implies:  

                                                                                                               

(6) 



To avoid multicollinearity the variance inflation factor (VIF) should be identified. VIF is the 

measure of how highly correlated each independent variable is with other predictors in the 

model. Values larger than 10 for a predictor imply large inflation of standard errors of 

regression coefficients due to this variable being in model. Inflated standard errors lead to 

small t-statistics for partial regression coefficients and wider confidence intervals. 

 --Tests of significance of model fit 

In GLiMs, the test statistic is a chi-square test which is the difference between two deviances; 

the first deviance is that from the base model and the second deviance is that from a more 

complex model. The chi-square test examines the reduction in deviance from the addition of 

one or more predictors to a base model which is the null model containing only the intercept. 

The degrees of freedom for the chi-square test equal the number of predictors added to the 

base model to form the more complete model. (Fox J., 2008) 

Omnibus test    

                                   (7) 

Where  

 LL(βu) is the log likelihood of the unrestricted model 

 LL(βR) is the log likelihood of the restricted model (without independent variables) 

Omnibus test could be used to estimate the Pseudo R ρ
2
 (Rho square) 

                                                          (8) 

Having the pseudo R it is possible to estimate R
2
 through empirical relation set by Domencich 

and Mcfadden (1975)  

 



 

Figure 10. Estimation of R
2
 by Domencich and Mcfadden 

 

3.3.1.Model adequacy 

The appropriate graphical method for assessing model adequacy is to plot the residuals 

against the predicted outcome values. For nonlinear models though, such as Poisson or 

negative binomial regression, raw residuals will always be heteroscedastic and asymmetric, so 

alternative types of residuals must be used. (Cameron A.C. and Trivedi P.K., 1998), (Hardin 

J.W. & Hilbe J.M, 2007) (Hoffman J.P., 2004). The scatterplot helps to detect non-linearity, 

unequal error variances and outliers. The plot of residuals versus each predictor should be a 

random cloud and no pattern should appear. Observations with values larger than 3 in 

absolute value are considered outliers. 

3.3.2.Tests of overdispersion  

The likelihood ratio test or the Score test (also known as the Lagrange multiplier test) is used 

to test data for overdispersion. These tests are asymptotically equivalent, meaning that they 

will produce the same result with very large sample sizes. The likelihood ratio test is a nested 

model test that compares the deviance of a model with fixed overdispersion parameter (a) to 

the deviance of a model with estimated parameter. Comparing the difference in deviances to a 

chi-square distribution will determine whether overdispersion is present or not as Hilbe 

(2007) has suggested. 



3.3.3.Integrated models 

Three models were used to carry out the objective of the report: MOBILE 6.2C, TRAFFIC 

and LINK EMISSIONS. These integrated models were developed for a series of previous 

projects at CSpA in order to estimate traffic emissions in Hamilton, Toronto and Vancouver. 

3.3.3.1.MOBILE 6.2C 

MOBILE 6.2C is the Canadian version of MOBILE 6 Vehicle Emission Modeling Software, 

developed by the US Environmental Protection Agency (EPA) and is used to support air 

quality planning and emission inventory development. The model is designed to predict 

emission factors in grams per kilometer or grams per hour under various conditions for any 

calendar year between 1952 and 2050 for 19 different pollutants including: hydrocarbons 

(HC), carbon monoxide (CO), oxides of nitrogen (NOx), carbon dioxide (CO2), particular 

matters with 2.5 cm diameter (PM2.5), particular matters with 10cm diameter (PM10) and air 

toxics in response to a set of vehicle fleet, operational and climate characteristics. 

Factors considered in emissions model development include vehicle fuel and technology, 

facility type, meteorology, vehicle speed, vehicle class and age, vehicle fleet distribution and 

emission control standard. Emission factors are characterized by vehicle fuel and technology, 

facility type, speed and calendar year (EPA, 2003).  

The output from Mobile 6.2C is a set of emission factors which depend on the meteorology of 

the study area (hourly temperature, humidity and daily barometric pressure), the type of 

vehicle (passenger vehicles, light duty commercial, medium duty commercial, heavy duty 

commercial and public transit buses), the type of emissions, the type of the road (freeway or 

arterial) and the day of the computation (weekday or weekend). All these are parameters that 

influence the estimation of emission factors.  

Mobile 6.2C classifies vehicles are based on the Gross Vehicle Weight Rating (GVWR) as 

illustrated in Table 4: US Federal (Highway Administration Quick Response Freight Manual) 
 

Table 4. Vehicles classification. Source: EPA 

Vehicle Type 
Mobile 6.2 C 
Fleet 
Number 

Mobile 6.2C Description 

Light duty 
passenger 
vehicles(LDPVs) 

1 LDGV Light‐Duty Gasoline Vehicles (Passenger Cars) 

14 LDDV Light‐Duty Diesel Vehicles (Passenger Cars) 

Light duty 
commercial 2 

LDGT1 Light‐Duty Gasoline Trucks 1 (0‐6,000 lbs. GVWR, 
0‐3,750 lbs. 



vehicle(LDCVs) 
3 

LDGT2 Light‐Duty Gasoline Trucks 2 (0‐6,000 lbs. GVWR, 
3,751‐5,750 lbs. LVW) 

4 
LDGT3 Light‐Duty Gasoline Trucks 3 (6,001‐8,500 lbs. 
GVWR, 0‐5,750 lbs. ALVW) 

5 
LDGT4 Light‐Duty Gasoline Trucks 4 (6,001‐8,500 lbs. 
GVWR, greater than 5,751 lbs. ALVW) 

15 
LDDT12 Light‐Duty Diesel Trucks 1and 2 (0‐6,000 lbs. 
GVWR) 

28 
LDDT34 Light‐Duty Diesel Trucks 3 and 4 (6,001‐8,500 
lbs. GVWR) 

Medium duty 
commercial 
vehicles(MDCVs) 

6 
HDGV2b Class 2b Heavy‐Duty Gasoline Vehicles 
(8,501‐10,000 lbs.GVWR) 

7 
HDGV3 Class 3 Heavy‐Duty Gasoline Vehicles 
(10,001‐14,000 lbs.GVWR) 

8 
HDGV4 Class 4 Heavy‐Duty Gasoline Vehicles 
(14,001‐16,000 lbs.GVWR) 

9 
HDGV5 Class 5 Heavy‐Duty Gasoline Vehicles 
(16,001‐19,500 lbs.GVWR) 

10 
HDGV6 Class 6 Heavy‐Duty Gasoline Vehicles 
(19,501‐26,000 lbs.GVWR) 

11 
HDGV7 Class 7 Heavy‐Duty Gasoline Vehicles 
(26,001‐33,000 lbs.GVWR) 

16 
HDDV2b Class 2b Heavy‐Duty Diesel Vehicles 
(8,501‐10,000 lbs.GVWR) 

17 
HDDV3 Class 3 Heavy‐Duty Diesel Vehicles 
(10,001‐14,000 lbs. GVWR) 

18 
HDDV4 Class 4 Heavy‐Duty Diesel Vehicles 
(14,001‐16,000 lbs. GVWR) 

19 
HDDV5 Class 5 Heavy‐Duty Diesel Vehicles 
(16,001‐19,500 lbs. GVWR) 

20 
HDDV6 Class 6 Heavy‐Duty Diesel Vehicles 
(19,501‐26,000 lbs. GVWR) 

21 
HDDV7 Class 7 Heavy‐Duty Diesel Vehicles 
(26,001‐33,000 lbs. GVWR) 

22 
HDDV8a Class 8a Heavy‐Duty Diesel Vehicles 
(33,001‐60,000 lbs. 

Heavy duty 
commercial 
vehicle 
vehicle(HDCVs) 

13 
HDGV8b Class 8b Heavy‐Duty Gasoline Vehicles (>60,000 
lbs. GVWR) 

23 
HDDV8b Class 8b Heavy‐Duty Diesel Vehicles (>60,000 
lbs. GVWR 

Transit buses 26 HDDBT Diesel Transit and Urban Buses 

 

Emissions differ depending on the vehicle age, type, and fuel. Emissions are also correlated 

with break wear, tire wear, hot soak, refueling, engine’s start and exhausts when the vehicle is 

running. The type of the road is also important according to CSpA (2009) as on highways for 



example higher speed is developed and congestion and commercial truck traffic are noticed. 

On weekends congestion is reduced, leading to considerably decreased traffic emissions. The 

user selects pollutants, vehicle fleet, date and hour to be modeled and adjusts road type, fuel 

characteristics and other parameters. The emission factors generated, produce emissions for 

different vehicle type, age, speed indicated for the scenario. 

3.3.3.2.TRAFFIC 

TRAFFIC is a simulation model developed by CSpA to estimate traffic flows, congested 

travel speeds on the road network of a city and integrate with the emission factors from 

MOBILE 6.2C to proceed into aggregated estimates for individual pollutants on each link. 

The input in TRAFFIC is a road network consisting of links and nodes with attributes 

informed about speed, length, design capacity, link direction, road type and truck usage and 

an origin –destination matrix for passenger and commercial flows. The O-D matrices are 

derived from household travel surveys for passenger trips that occur every five years in 

Canada or estimated from models for commercial trips (TTS, 2006). The Stochastic User 

Equilibrium (SUE) is the traffic assignment used to estimate the flows on each link, 

connecting origin and destination under the principle that travel time on all used paths in the 

city is less than or equal to travel time on any un-used path and simulating the way travelers 

choose their paths. The software is customized to allow the user to run traffic assignments for 

weekdays or weekends for any given hour of the day. Since there is information about design 

capacity, the OD matrices are expressed in passenger car equivalency units (PCE) as shown in 

table according to Kanaroglou and Buliung (2008).  

Vehicle Classes PCE values 

LDPV 1 

LDCV 1 

MDCV 2 

HDCV 2.5 

 

The traffic assignment algorithm proceeds to estimate link flows by defining free flow travel 

times for all links and starting iteration until convergence is reached. 

The result is a table summarizing the total flows of the road network. The software also takes 

the output from MOBILE6.2C (emission factors) to translate traffic flow for a particular 

vehicle type into pollution by road link for each of 19 pollutants.  

Emission estimates for the different types of vehicles are required for future years as well in 

order to simulate the future conditions the best possible. The future trips are affected by 

population and employment growth. The new O-D matrices are created by forecasting the 

number of new dwellings and population as a consequence and by predicting employment 



numbers through regression models. Thus, having the road network and future O-D matrices 

leads to estimate future emissions by road link as reported by CSpA (2009). 

3.3.3.3.LINK EMISSIONS 

This program allows users to extract and display hourly congested emissions in the Hamilton 

CMA for 2006, 2011, 2016 and 2021. It is a geographic information system (GIS) framework 

which is used to display the results from MOBILE 6.2C and TRAFFIC. It generates results 

either in tabular format or in the form of GIS shapefiles on the link for selected date and time 

after the integration of three parameters: street network, associated traffic flows and 

emissions. The outputs are expressed in grams or grams per km and constitute the final results 

for the study. 

The three models are the components used to apply the selected methodological framework, 

which is described in the following section. 

3.4 Methodology 

 

As a means to effectively approach a research topic, the development of the appropriate 

methodological framework that will lead to the problem’s solution is the most essential. The 

suggested framework should constitute a system with clearly defined boundaries, components 

and interfaces. The methodological framework is the root of the documentation and 

forecasting before the intervention of scientists in space according to Koutsopoulos (2006). 

The following graph depicts the general methodology when willing to approach this kind of 

problems and then the same scheme is adjusted to meet the needs of this study. 

 

 
Figure11. General methodological framework 
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In the order that were implemented the steps followed in the analysis are now described. First, 

data from Polk were complemented with the Census data and they were used in a regression 

analysis framework to conclude to the socioeconomic factors that influence EV ownership.  

 

The potential distribution pattern of EVs should be calculated at CT level. One method was to 

assume that the number of EVs will be equally dispersed to each census tract. This method 

was soon rejected as different people can afford and are willing to buy an EV. For example, in 

downtown Hamilton or Burlington where there exist mostly appartements and there is no 

space to locate the charging equipment it is more difficult for EV ownership.  Another method 

was to estimate the distribution of EVs by mathematical modeling based on current EV 

distributions and socioeconomic and demographic characteristics in order to understand the 

contributing factors when buying an EV. Given the vehicle registration data and data from 

Census, a statistical analysis was conducted to determine the effects of these characteristics on 

the number of EVs in order to be able to identify the weights that will affect the future EVs 

distribution. The variables that mostly influence the EV ownership according to the 

bibliography were included in the models and they are discussed later. 

 

The outputs from the regression analysis were different distributions of EVs (three different 

models). In order to determine how different socioeconomic factors influence traffic related 

emissions after the adoption of electric vehicles, the predicted values from the regression 

analysis were used as weights to modify the O-D matrices which determine the spatial 

distribution of EVs. By applying the weights, the O-D matrices for 2021 were modified with 

regard to the trips made by each vehicle type.  

 

Subsequently, the user-equilibrium traffic assignment algorithm incorporated into TRAFFIC 

module assigned the trips to the road links of the network and computed the weekday and 

weekend link flows and the congested speeds. Figure 10 represents all the steps taken from 

the determination of EV distribution to the creation of O-D matrices and the estimation of on-

road link emissions. 

 

 



 
Figure 12. Methodological framework selected for the process 

 

 

As mentioned earlier, MOBILE6.2C and TRAFFIC aren’t flexible to the introduction of a 

new vehicle category and it would acquire lengthy software modifications to incorporate one. 

To avoid this process, it was assumed that LDPV and LDCV were equivalent in traffic flow 

assignment due to their PCE value being equal. These two classes were combined into one to 

create the LDV class and EVs were introduced in place of LDPV. The LDV O-D matrices 

were created by adding the trips of passenger and commercial vehicles for all 24 hours of the 

days cell by cell. The EVs O-D matrices were based on the assumption that a percentage of 

trips made by LDV from a zone i to another zone j was made by EVs. For the base case 

scenario the fraction used was the percentage of EVs per census tract and it was multiplied 

against LDV O-D matrices. The output matrices are the requested EV matrices whilst the 

matrices arising after subtracting EV tables from LDV are the final LDV O-D matrices.  For 

example, if there were 10 trips made by LDV at 4 am and the percentage illustrates that 20% 

were made by EVs then 8 trips were made by LDVs and 2 by EVs. The modification was 

applied to the trips originating from zone i from 4am to 4pm and from 7 pm to 4 am. For the 



rush hours (4pm to 7pm) when people return from their work the changes were applied to 

trips ending in zone j.  

The weights were computed per census tract. The study area though, was divided to Traffic 

Analysis Zones (TAZs) and the TRAFFIC module was designed to accept this division. To 

make the modification CTs and TAZs were joined spatially in ArcGIS. Some values had to be 

fixed though due to the transition from 173 census tracts to 223 TAZs. There were TAZs that 

included more than one census tract in its boundary, thus the average of the proportion from 

all tracts in the boundary was taken as TAZs’ value. Also, there were census tracts 

concentrating more than one TAZ. In this case, the same proportion value was given to all 

TAZ belonging to the same census tract. After this modification the tables with the weights 

were used to modify the base case matrices along with the future O-D matrices.  

The emission factors for the Hamilton CMA were computed at MOBILE 6.2C after initiating 

vehicle fleet characteristics and the specific hour, day and month of the year. For the 

estimation of the emission factors a similar process occurred.  The emission factors for LDPV 

and LDCV were added together into one class LDV after they were calculated. While EVs 

produce zero tailpipe emissions, they still produce particulate matter created by the tires and 

the breaking systems as conventional vehicles USEPA (2003). Thus, to calculate emission 

factors for EVs all the emission outputs from the simulation were converted to a value of zero 

except brake and tire from PM2.5 and PM10 which were added together to constitute the 

particulate matters. Therefore HC, CO, NOx, CO2 values were turned to zero and from PM 

BRAKE and TIRE remained stable while the rest (SO4, OCARBON, ECARBON, GASPM, 

SO2, NH3) were nullified.  

The future EV’s counts can either be computed by a mathematical procedure or by using the 

outputs from the regression analysis as weights to distribute the predetermined number of 

EVs to the census tracts with regard to each scenario. The mathematical process would be the 

estimation of the values of all independent variables used in the regression analysis in 2021 

and the calculation of EVs count from the equation. This approach is very complicated and it 

is likely to cause bias in the calculation of EVs number due to errors in variables’ estimation.  

The predicted EV counts in each census tract divided by the total number of EVs were used as 

the weights to distribute the 10%, 5% and 2% of cars respectively in 2021. Once the 

distribution was completed for each scenario and regression’s model the EVs were converted 

into proportion by dividing the counts by the total registered vehicles in each census tract 

which were then used as weights to modify the future O-D matrices. The matrices for 2021 

were then created based on CSpA’s report (2009) with respect to estimations over population 

and employment growth and were modified with regard to the weights arising from the 

regression analysis. 



Lastly, the emission factors were combined with the traffic volume outputs to estimate the 

traffic related emissions. Finally, the contribution of EVs to the emissions reduction was 

evaluated and the results were visualized through LINK EMISSIONS program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                        Chapter 4 

4. Analysis 

 

The aim of the study is to evaluate the changes in overall traffic emission in the Hamilton 

CMA after the introduction of EVs. To accomplish this goal, the travel pattern of all vehicle 

types should be determined. Since no previous data on travel patterns existed for EVs, O-D 

matrices should be created. This was achieved by modifying O-D matrices for other vehicle 

classes. Following this, different EV market penetration scenarios were introduced and 

compared to the base case scenario where no action took place. Therefore, the first hypothesis 

–Scenario 1- constitutes the most optimistic scenario, describing the distribution pattern after 

the introduction of 10% of EVs. Under the optimistic scenario we assume that an ambitious 

10% (41899 vehicles) of vehicles will be replaced by EVs in 2021, as 30% of the reviewed 

scenarios estimate a market penetration ranging from 10% to 20% in 2030. This is based on 

the Hybrid- Technology scenario of Balducci (2008). Scenario 2 refers to moderate market 

growth of EVs which will result in attaining 5% (20950 vehicles) of market share by the end 

of 2021. Under the conservative scenario – Scenario 3- EVs will capture 2% of total vehicle 

fleet (8380 vehicles) by 2021 according to literature. 

 

The regression models were created based on current HEVs distribution. Since very few EVs 

were registered we made the assumption that they would follow the HEVs distribution as they 

share common characteristics.  In these models, the EV count was used as the dependent 

variable as it is influenced by the changes in social, economic and demographic 

characteristics. A generalized linear model (GLM) analysis was carried out to investigate the 

demographic and socioeconomic factors affecting EV ownership. Since the dependent 

variable is a count data as mentioned earlier, it may not be reasonable to assume that the data 

were normally distributed. As a result the traditional linear model is not applicable. As 

mentioned in the previous chapter, the most common approach to analyze count data is to 

apply Poisson or negative binomial regression models because of the distributional property 

of counts. This part of the study models the number of EVs that should be distributed in 

Hamilton CMA. Although the Poisson regression model has desirable statistical properties for 

describing count data, it has an important constraint which is that the mean must equal the 

variance. This can account for the observed pattern in count data that variability increases 

with level.  

 
The descriptive statistics from Table 1 illustrate that the mean of the variable tested is 9.44 

while the variance is 99.784. The variance is greater than the mean, so the data are 



overdispersed, which suggests that the results of the modeling would be biased if this research 

used the Poisson regression model. 

Another way to decide if negative binomial regression was more suitable was to fit the data to 

distribution. To determine this we made use of @RISK software, which concluded that NBR 

(negative binomial regression) fits better to the data than PR (Poisson regression), as it is 

shown below. Figure 11 depicts that NBR describes adequately the data and table 5 presents 

the differences between the distribution statistics of the two methods. Blue color describes our 

data whilst red color represents the negative binomial distribution. 

 

Figure 13. Negative Binomial Regression Distribution 

Table 5. NBR's statistics 

    Input NegBin Poisson 

Fit       

  Function   RiskNegbin(1,0.096045) RiskPoisson(9.4118) 

  Method   MLE MLE 

Rankings By Fit Statistic [2 Valid Fits]     

  Akaike (AIC)   #1 #2 

  Bayesian (BIC)   #1 #2 

  Chi-Sq Statistic   #1 #2 

 

Distribution Statistics       

  Minimum 0 0 0 

  Maximum 55 +Infinity +Infinity 

  Mean 9.4118 9.4118 9.4118 

  Mode 2 0 9 

  Median 6 6 9 

  Std. Deviation 9.9683 9.8991 3.0679 



 

 

 

In order to predict EVs distribution, a statistical analysis is required and considerate choice of 

the variables that will constitute the model and reflect who is willing to buy an EV is also 

needed. 

Much research has focused on capturing the characteristics of potential EVs buyers, as these 

groups tend to dictate the consumption behavior of HEVs buyers. To accomplish this, many 

studies on market penetration have been reviewed including surveys which gather people’s 

characteristics. Because the decision to buy an EV is part of the total vehicle purchase 

process, studies dealing with car ownership were also reviewed in the previous chapter.  

4.1 Models 

When developing a model, one of the most important rules is to adequately describe the data, 

using the minimum number of variables. In order to assess a statistical model and evaluate its 

results all the indicators and the statistical tests should be taken into consideration along with 

the logical consistency. After a few trial-and-errors we concluded to three different models. 

Each model included the minimum number of variables ensuring that no important variable 

was omitted from the equations and cause bias in the estimates of remaining coefficients. 

Three hypotheses were proposed to examine the factors that contribute to EV ownership. For 

the development of the models, the best combined independent variables that attribute proper 

results without bias were selected based on aforementioned relative research. The aspects that 

influence PHEV ownership according to Curtin et al. (2009) and vehicles in general, as 

reported by Potoglou and Kanaroglou (2008) are illustrated in the following table in Models 1 

and 2 respectively. In Model 3 another variable that was mentioned in other studies -the 

average number of persons per household- was added as it influences the number of cars that 

a family could own. 

Table 6. Initial variables generating the models 

Model 1 Model 2 Model 3 
income household structure household structure 

age of householder working adults household type 

education income education 

home ownership education average number of persons per 

HHLD 

gender household type age 

geographic location  

 

mixed density index gender 

 

  Skewness 1.882 2.0025 0.326 

  Kurtosis 6.9357 9.0102 3.1063 



In order to validate the models a graph should be created to check if any of the residuals is 

excessive or significantly large. Residuals are found to be inside the desired range between [-

3.3 – 3.3].  

4.1.1 Model 1 

The first hypothesis is based on the study of Curtin et al. (2009) who concluded that the age 

of householder, income, house ownership, gender, education and geographic location have a 

major impact on preferences for PHEVs. Older people with high income and highly educated 

are more likely to own an EV as they are aware of the new technologies and are able to afford 

a more expensive car. In addition, they use the car for shorter distances for shopping or 

entertainment, as most of them are retired. The combination of these aspects along with the 

limited range of EVs make these types of vehicles approachable. The location plays a 

significant role as well, as people who work in the same census tract of their residence can 

own an EV more easily, due to their limited range.  

After applying the Poisson regression model, the goodness of Fit test results that the ratio of 

deviance to degrees of freedom is 4.564. This is yet another indicator that the Poisson model 

is not a good fit. From the other side when the negative binomial regression was applied to the 

same dataset the ratio of deviance to degrees of freedom was 0.584 which is closer to 1. The 

model with the smallest AIC value is selected. Because models with a larger number of 

parameters fit better, this second part penalizes more complex models that use more 

parameters to achieve the same fit, as indicated by the log likelihood. In addition, the BIC 

values are smaller in the negative binomial model than Poisson which leads to the conclusion 

that negative binomial regression fits better to the dataset. 

Table 7. Statistics for Model 1 

Goodness of Fit
b
 

 
 

Negative binomial regression
 

Poisson
 

 
 Value df Value/df Value df Value/df 

Deviance 94.569 162 .584 739.427 162 4.564 

Scaled 
Deviance 

94.569 162 
  

132.008 162 
  

Pearson Chi-
Square 

111.371 162 .687 907.420 162 5.601 

Scaled 
Pearson Chi-
Square 

111.371 162 

  
162.000 162 

  

Log Likelihood
a
 -146.742     -370.990     

Akaike's 
Information 
Criterion (AIC) 

1065.365 

    

1357.979 

    

Finite Sample 
Corrected AIC 
(AICC) 

1066.260 

    

1358.874 

    



Bayesian 
Information 
Criterion (BIC) 

1090.452 

    

1383.066 

    

Consistent AIC 
(CAIC) 

1098.452 
    

1391.066 
    

 

The results after applying the negative binomial model are illustrated in the following table.  

Table 8. Regression’s results for Model 1 

Parameters B St.Error p-value 

Model 1 
   Intercept 3.188 0.726 0.000 

LEDU -2.043 0.0159 0.006 

[INC=1] -1.784 0.3496 0.000 

[INC=2] -0.927 0.1951 0.000 

[INC=3] 0
a
 . . 

SEN 1.055 0.014 0.000 

PWSCT 2.301 0.0002 0.001 

MAL -0.003 0.0585 0.961 

ODWE -0.002 0.0058 0.752 

 

The independent variables were checked for their significance and for their logical 

consistency. Those that had a p-value less than 0.05 and the sign of the coefficient being same 

of a priori expectation were added in the model. Home ownership and gender were excluded 

from the model due to their insignificance and the opposite sign of the coefficient. The 

variable LEDU has a coefficient of -2.043, which is statistically significant. This means that 

for each one unit increase on LEDU, the expected log count of the number of HEVs owned 

decreases by 2.043 cars. The dummy variable INC is also statistically significant. If a person 

moves from the third category (high income) to the second or first, the expected log count of 

EVs will decrease by 1.784 and 0.927 respectively. Association was also observed between 

the number of EVs registered in a census tract and the age of residents. Specifically, those 

census tracts with great number of seniors were more likely to own more EVs.  

In the next iteration the two variables that were insignificant were omitted. The variables were 

tested for collinearity, but it was found that they were not correlated. The results of the final 

model are depicted in the following tables. The Goodness of Fit test was slightly different but 

all the variables were now significant.  

 

 

 



Goodness of Fit
b
 

 
 Value df Value/df 

Deviance 100.532 164 .613 

Scaled Deviance 100.532 164 
  

Pearson Chi-
Square 

115.456 164 .704 

Scaled Pearson 
Chi-Square 

115.456 164 
  

Log Likelihood -126.742     

 

The Goodness of Fit test after subtracting the insignificant variables is improved. The 

Omnibus Test provides tests of the model as a whole. The likelihood ratio chi-square is the 

result after comparing the model to a model without any predictors (null model) and it proved 

significant. The Lagrange Multiplier test checked the fixed ancillary parameter for 

overdispersion, as Hilbe (2007) has suggested and concluded that the model is highly 

significant. 

In order to check if any of the residuals is excessive or significantly large, the following graph 

was created. As a result, the model is exactly predicting the responses. For census tracts with 

fewer counts of EVs a wider range of residuals is observed. The residual is the difference 

between the predicted values and the observed and is mapped below. The tracts with the 

major differences can be observed with the blue and red color. Burlington and Hamilton 

present heterogeneity along with some other tracts in the study area.  

Omnibus Testa 

Likelihood 

Ratio Chi-

Square 

df Sig. 

 
192.238 5 .000 

Lagrange 

Multiplier Test 

Likelihood 

Ratio Chi-

Square 

df Sig. 

Ancillary 

Parameter 
78.506 1 0.000 



 

 

                



 

4.1.2 Model 2 

The second model takes into consideration the independent variables that impact the vehicle 

ownership as analyzed by Potoglou and Kanaroglou (2008). In their study they concluded that 

household structure and type, income, the level of education, the working adults and the 

mixed density index influence vehicle ownership. The –mixed density index- variable was 

excluded from the beginning due to lack of data. The variable selected to represent household 

type was the single-parent households (SINPAR), as this type is deterrent to own an EV due 

to their high costs of maintenance. The other variables that belong to the same group 

(household type) were not added to avoid collinearity. The variable chosen to represent 

household structure was the couples with children at home (CWCHILD). This variable was 

expected to influence positively the model, as the number of children in a house might 

increase the number of vehicles owned because of additional needs for non-working trips. 

Both Poisson and negative binomial regression were applied to this model as well. 

Overdispersion was obvious in this model too, as the ratio of deviance to degrees of freedom 

is 4.685 for the Poisson distribution. The AIC value is smaller in the negative binomial model, 

the same for BIC value as well leading to the conclusion that negative binomial regression fits 

better to this dataset than Poisson. 

Table 9. Statistics for Model 2 

Goodness of Fit
b
 

 
 

Negative Binomial Regression
 

Poisson
 

 
 Value df Value/df Value df Value/df 

Deviance 101.875 163 .625 763.609 163 4.685 

Scaled Deviance 101.875 163   126.350 163   

Pearson Chi-Square 142.136 163 .872 985.104 163 6.044 

Scaled Pearson 
Chi-Square 

142.136 163 
  

163.000 163 
  

Log Likelihood
a
 -135.105     -283.081     

Akaike's Information 
Criterion (AIC) 

1064.211 
    

1380.162 
    

Finite Sample 
Corrected AIC 
(AICC) 

1064.902 

    
1380.853 

    

Bayesian 
Information Criterion 
(BIC) 

1086.161 

    
1402.113 

    

Consistent AIC 
(CAIC) 

1093.161 
    

1409.113 
    

 



 

The results after applying the negative binomial regression are depicted in the following table. 

The independent variables were examined for their significance to the model. All the 

variables were significant at the 99% confidence as all probability values were <0.05 except 

LEDU. This variable was marginally significant and it was not eliminated from the model, 

because education plays a major role in EVs ownership. The highest the level of education. 

the more environmentally friendly behavior and increased concern for CO2 reduction people 

have.  

Table 10. Regression's results for Model 2 

Parameters B St.Error p-value 

Model 2 
   

Intercept 4.167 0.8287 0.000 

LEDU -3.031 0.0157 0.051 

[INC=1] -0.984 0.4034 0.015 

[INC=2] -0.405 0.2325 0.081 

[INC=3] 0 . . 

SINPAR -1.532 
0.0011 0.048 

CWCHILD 2.161 0.0004 0.049 

UNEMP -3.334 0.1092 0.002 

 

The independent variables were checked for their logical consistency and the signs of the 

coefficients were similar to the a priori expectation. The variable working adults was chosen 

to be represented by the variable UNEMP and it had a coefficient of -3.334, which is 

statistically significant. This means that for each unemployed person added, the expected log 

count of the number of EVs owned decreases by 3.334 cars. It is observed that the indirect 

indication of income level has a strong impact on the model. Relationship between single-

parent households and number of EVs owned was also found. The analysis suggested that 

census tracts with a lower proportion of single-parent households were associated with a 

higher number of EVs ownership. Association was also ascertained between the number of 

couples that have children and the number of EVs registered in the census tracts. 

For the second model the result of the Omnibus test was a likelihood ratio chi-square of 

188.511, significant at the 99% confidence interval. Negative binomial regression was 

deemed adequate after the Lagrange Multiplier Test checking for overdispersion (chi-square 

for ancillary parameter was computed to be 68.200, significant at the 99% confidence 

interval). Subsequently, the graph illustrating the residuals against the predicted values was 

created. It was observed, that the model is predicting the values efficiently as the residuals 

were concentrated into the pursued range. The residuals map depicts where the difference 

between the predicted and the observed values is noticeable. 



 

         

 



4.1.3  Model 3 

For the third hypothesis, different variables were used in order to represent the same groups. 

Different combination took place in order to find the variables that don’t add bias in the 

model. For example the household type was now described by the variable owning dwelling 

(ODWE) and the household structure by the variable apartments, duplex dwellings (DDWE). 

A new variable was introduced into the model as well – the average number of persons per 

household- because the size of households has been ascertained affecting vehicle ownership 

and along with high education the EVs ownership. Income along with the level of education 

were deemed as the most important variables across the studies (Haan et al., 2006; Curtin et 

al., 2009; Chu, 2002) with the latter being added again to model. This can be explained if we 

consider that income is described by household type indirectly, because when a household 

owns a house, it is probable that it can afford owning an EV. Furthermore, if the house 

structure is a single or detached house as well, there is availability of free parking in garages 

and space suitable to locate the charging infrastructure that EVs need. Age and gender were 

added as well. The gender did not follow the a priori expectations as it is common that males 

have the willingness to adopt new technologies and the variable of age was insignificant. The 

variables were tested for collinearity existence.  

Table 11. Initial regression's results for Model 3 

Parameters B St.Error p-value 

(Intercept) 9.231 3.3046 0.005 

LEDU -1.345 0.0157 0.000 

ODWE 0.917 0.005 0.001 

DDWE -1.058 0.0206 0.005 

NPPCF -0.652 0.4637 0.066 

MAL -0.103 .0568 0.071 

SEN 0.010 .0194 0.624 

 

Poisson regression model was applied to the last model as well, with the same results. The 

ratio of deviance to degrees of freedom is 6.393 as seen in the results of Goodness of Fit test. 

The same ratio after implementing the Negative binomial regression was 0.853, the closest to 

1 value of the three models assessed.  All the other results from Goodness of Fit test indicate 

that the regression that was chosen to be applied was the most appropriate. In the second 

iteration the variables gender and age were excluded. 

 

 



Table 12. Statistics for Model 3 

Goodness of Fit
b
 

 
 Negative Binomial Regression

 
Poisson

 
 
 Value df Value/df Value df Value/df 

Deviance 140.745 165 .853 1054.923 165 6.393 

Scaled Deviance 140.745 165   137.690 165   

Pearson Chi-Square 146.685 165 .889 1264.158 165 7.662 

Scaled Pearson Chi-
Square 

146.685 165 
  

165.000 165 
  

Log Likelihood
a
 -126.79     -428.738     

Akaike's Information 
Criterion (AIC) 

1093.932 

    
1667.475 

    

Finite Sample 
Corrected AIC 
(AICC) 

1094.297 

    
1667.841 

    

Bayesian Information 
Criterion (BIC) 

1109.611 
    

1683.154 
    

Consistent AIC 
(CAIC) 

1114.611 
    

1688.154 
    

 

The results after implementing the regression model are illustrated in the following table. The 

independent variables were examined and were found significant to the model as probability 

values were all below 0.05. The independent variables were checked for their logical 

consistency. The size of the household was found to influence negatively the model. The 

variable household type was chosen to be described by the variable ODWE and it has a 

coefficient of 1.017, which is statistically significant. This means that for each one unit 

increase on owning dwellings, the expected log count of the number of HEVs owned 

increases by 1.017 cars. Relationship between apartments (household structure) and number 

of HEVs owned was also found. The analysis suggested that the highest incidence of HEVs 

counts was associated with the census tracts with a lower proportion of apartments (P=0.005). 

Table 13. Final regression’s results for Model 3 

Parameters B St.Error p-value 

Model 3 
   Intercept 6.355 1.5670 0.000 

ODWE 1.017 0.005 0.001 

DDWE -0.958 0.0206 0.005 

LEDU -2.762 0.0157 0.000 

NPPCF -0.852 0.4637 0.066 

 

For the last model the result of the Omnibus test was a likelihood ratio chi-square of 199.511, 

significant at the 95% confidence interval. Another way to check for overdispersion was the 



Lagrange Multiplier Test (chi-square for ancillary parameter was computed to be 75.755, 

significant at the 95% confidence interval). Following this, the graph illustrating the residuals 

against the predicted values was created. It was observed, that the model is predicting the 

values efficiently as the residuals were concentrated into the pursued range [-3.3 to 3.3]. 

 



                

Table 17 in the appendix presents a summary of negative binomial distribution – based 

models. The predicted EV counts from each model were used along with the observed values 

in order to calculate the pseudo-R
2 

values. These values provided an estimate on how the 

models fit the observed counts. The pseudo- R
2
 values indicate that the best model out of the 

three can explain 44% the variation in HEV ownership.  

Table 14. R
2
 computation for the three Models 

  Model 1  Model 2 Model 3 

Chi-square 192.238 188.511 199.511 

p-value 0.000 0.000 0.000 

LL(βu)2 -126.742 -135.105 -126.79 

LL(βR)3  -222.861 -229.361 -226.546 

Pseudo R2 0.4313 0.4109 0.4403 

R2 0.89 0.88 0.91 

 

The correlation between the predicted values and the observed was examined with Pearson’s 

correlation coefficient being 0.75 for Model 1, 0.78 for Model 2 and 0.62 for Model 3. 
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Unrestricted Log likelihood 

3
 Restricted log likelihood 



 Conclusions for the selected variables: 

All models included variables that were either direct or indirect indication of income levels. 

Income was found to influence EVs possession along with the education level, a variable that 

demonstrates people’s concern over environmental issues. The big size of the household does 

not indicate the need for more trips but people’s adversity in affording a more expensive car. 

The gender was not a significant variable in any of the three models created. The same was 

indicated for the variable –licensed drivers as well. No relationship was observed between the 

number of licensed drivers and the number of EVs owned. The predicted values were used as 

weights in order to create the distribution patterns of EVs in 2021. 

The observed along with the predicted values where then checked for spatial autocorrelation. 

The spatial patterns of each model are presented in the following maps. Clusters of high 

concentrations of EVs counts are depicted in Dundas, Ancaster and Burlington for the 

observed counts of EVs. The predicted values are restricted in Dundas and Ancaster after the 

statistical analysis of socioeconomic factors for Model 1, and in some census tracts of 

Burlington as well for Models 2 and 3 respectively. Downtown Hamilton concentrates groups 

of low number of EVs counts, while the rest of the study area is not statistically significant. 



 

Table 15 illustrates the percent of census tracts that belong in each cluster (HH, HL, LH, LL) 

and the correlation between each model.  

Table 15. HEV’s clustering and correlation 

  Percentage of census tracts   

Clusters HH HL LH LL 
Pearson 
Coefficient 

NHEV12 11.63% 2.91% 0.00% 34.88% 1 

Model_1 5.23% 3.49% 0.00% 27.91% 0.98359 

Model_2 12.79% 2.91% 0.00% 34.88% 0.99932 

Model_3 8.72% 4.07% 0.58% 22.67% 0.99734 

 

Pearson’s Coefficient indicates a very strong correlation between the observed values and 

Models 2 and 3. 



4.2 Results 

4.2.1 Scenario- based analysis 

This study does not focus on analyzing the explanation behind each possible EVs penetration 

rate. Rather, it tries to evaluate the potential contribution of EVs in reducing GHG emissions. 

For that reason, different market share growth scenarios are introduced and the role of EVs is 

examined under each scenario. It should be also realized that the scenarios that are described 

and will be used in the thesis will not constitute a precise representation of the future, but they 

will inform on the various impacts that could be expected from EVs introduction in the 

coming decades. 

For this thesis, the year 2006 was selected for the present scenario, as data for this year were 

available, and the year 2021 for the future scenario, as O-D matrices were estimated until this 

specific year. The future scenario incorporated the business-as-usual scenario (BAU) and 

three hypotheses with different penetration rates of EVs. Therefore the first hypothesis –

Scenario 1- constitutes the most optimistic scenario, describing the distribution pattern after 

the introduction of 10% of EVs. Under the optimistic scenario we assume that an ambitious 

10% (41899 vehicles) of vehicles will be replaced by EVs in 2021. Scenario 2 refers to 

moderate market growth of EVs which will result in attaining 5% (20950 vehicles) of market 

share by the end of 2021. Under the conservative scenario – Scenario 3- EVs will capture 2% 

of total vehicle fleet (8380 vehicles) by 202. Each hypothesis included three sub-models with 

different EVs distribution patterns combining various factors that influence EV ownership. 

Traffic emissions were estimated for January 1
st
 (Day 1) and July 1

st
 (Day 182) for the 

analysis which was conducted into two levels –the aggregate and the dissagregate. 

 

4.2.2 EV O-D matrices validation 

TRAFFIC and MOBILE 6.2C are designed to accommodate five main classes (passenger 

cars, light duty commercial vehicles, medium duty commercial vehicles, heavy duty 

commercial vehicles and bus transit vehicles) (CSpA, 2009). The models are not versatile in 

inducting new classes, hence, in order to introduce a new vehicle category, software 

modifications and validation of traffic assignment results should be avoided. In order to 

examine if this assumption is valid, the sum of all trips and the total vehicle kilometer 

travelled (VKT) must be equal across all models. The table indicates that the largest 

difference is detected in Model1_3 and Model2_3 (-0.04%) and confirms the effectiveness of 

the method used to introduce the new vehicle category.  

 

 



Table 16. O-D matrices validation 

Models 
8am 5pm 

EV LDV Total Change EV LDV Total Change 

BAU 2918.8 776606.3 779525.1 0.00% 2718.9 739925.7 742644.6 0.00% 

Model1_1 89652.9 689713.7 779366.6 -0.02% 89408.4 653197.4 742605.8 -0.01% 

Model1_2 90485.3 688867.4 779352.7 -0.02% 87861.5 654743.6 742605.1 -0.01% 

Model1_3 95947.3 683279.8 779227.0 -0.04% 100309.4 642293.5 742602.9 -0.01% 

Model2_1 44860.0 734469.5 779329.4 -0.03% 44710.5 697913.2 742623.8 0.00% 

Model2_2 45134.2 734341.2 779475.4 -0.01% 43940.4 698682.6 742623.0 0.00% 

Model2_3 47972.9 731232.7 779205.6 -0.04% 50150.9 692473.3 742624.3 0.00% 

Model3_1 17888.0 761654.4 779542.5 0.00% 17880.7 724754.8 742635.5 0.00% 

Model3_2 18055.1 761465.8 779520.9 0.00% 17573.1 725063.8 742636.9 0.00% 

Model3_3 19174.0 760348.1 779522.1 0.00% 20061.5 722575.1 742636.6 0.00% 

 

Models 
Trips 

EV LCV Total Change 

BAU 503.88 140318.25 140822.13 0.00% 

Model1_1 15243.38 125578.75 140822.13 0.00% 

Model1_2 15092.77 125729.36 140822.13 0.00% 

Model1_3 16717.96 124104.17 140822.13 0.00% 

Model2_1 7621.87 133200.26 140822.13 0.00% 

Model2_2 7546.57 133275.56 140822.13 0.00% 

Model2_3 8359.18 132462.95 140822.13 0.00% 

Model3_1 3048.75 137773.38 140822.13 0.00% 

Model3_2 3018.63 137803.50 140822.13 0.00% 

Model3_3 3343.67 137478.46 140822.13 0.00% 

 

4.2.3 Business-as-usual scenario 

The scenario analysis starts with the business-as-usual scenario, continues with the most 

optimistic scenario and goes backwards to be ensured that a sensible ceiling is placed on 

penetration rates and prevent the percentage uptakes from running out of control as it is very 

common to continually push the upper limit upwards. 

The first scenario is the business-as-usual scenario which assumes that future population and 

land use trends throughout the study region will be consistent with historical change. The 

method used to derive population projection for the BAU scenario was based on CSpA’s 

report (CSpA, 2009) and relied on forecasting the number of newly developed residential 

dwellings and then multiplying it by the average number of persons per private household. 



The assumption that 50220 new dwellings will be constructed in the period 2006-2021 was 

made. Regression models were also estimated in order to predict employment growth as well. 

In BAU scenario it was also assumed that no action or minimum policy controls will take 

place over the next couple of decades to reduce emissions. This scenario was applied in order 

to constitute the base with which all the EV market penetration models will be compared. The 

following tables illustrate the aggregate emission estimates per vehicle type for both 2006 and 

2021 for rush hours 8 am and 5 pm of January 1
st
 and July 1

st
. The last table shows the 

percent change in emissions between 2006 and 2021. 

    2006 2021 

  

Vehicle 
Type 

HC4 CO NOx CO2 PM2.5 PM10 HC CO NOx CO2 PM2.5 PM10 

    8am 8am 

Ja
n

u
ar

y 
1s

t 

EV 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.03 

HCV 1.01 39.68 23.56 2.05 2.15 2.38 0.84 33.56 20.22 1.73 1.81 2.01 

MCV 4.76 135.39 73.03 8.86 3.80 4.33 4.88 142.58 78.04 9.32 4.00 4.55 

LCPV 558.48 11711.93 712.06 133.81 96.38 108.00 648.21 14010.97 905.12 170.89 123.08 137.92 

Buses 0.62 8.71 6.24 0.99 0.51 0.57 0.66 9.25 6.62 1.05 0.54 0.61 

Ju
ly

 1
st

  

EV 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.03 

HCV 0.95 34.56 22.65 2.05 2.10 2.32 0.79 29.23 19.45 1.73 1.77 1.96 

MCV 4.49 116.22 69.60 8.85 3.74 4.25 4.59 122.38 74.39 9.31 3.93 4.47 

LCPV 613.23 8200.77 515.15 133.98 95.38 106.90 705.71 9804.66 655.23 171.10 121.81 136.52 

Buses 0.61 7.79 6.06 0.99 0.50 0.56 0.65 8.28 6.44 1.05 0.53 0.59 

 

    2006 2021 

  
Vehicle 
Type 

HC CO NOx CO2 PM2.5 PM10 HC CO NOx CO2 PM2.5 PM10 

    5pm 5pm 

Ja
n

u
ar

y 
1s

t 

EV 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.02 0.03 

HCV 0.21 8.20 4.92 0.43 0.45 0.50 0.17 6.96 4.23 0.36 0.38 0.42 

MCV 1.36 38.91 21.27 2.58 1.11 1.26 1.43 42.08 23.34 2.78 1.19 1.36 

LCPV 287.54 7138.23 646.86 130.52 94.12 105.47 362.68 9128.71 824.19 164.90 118.92 133.27 

Buses 0.86 12.09 8.72 1.39 0.71 0.80 0.91 12.72 9.19 1.46 0.75 0.84 

Ju
ly

 1
st

  

EV 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.04 

HCV 0.21 8.02 4.67 0.43 0.44 0.49 0.17 6.81 4.01 0.36 0.37 0.41 

MCV 1.37 37.77 19.90 2.58 1.09 1.24 1.44 40.85 21.85 2.78 1.17 1.34 

LCPV 307.23 5811.21 452.06 129.21 91.99 104.40 388.26 7426.46 575.66 163.02 116.06 131.91 

Buses 0.90 12.03 8.38 1.39 0.70 0.79 0.95 12.66 8.83 1.46 0.73 0.83 
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 HC, CO, NOx, PM2.5, PM10 are in Kilograms(Kg) and CO2 in tones(t) 



 

Table 17. Changes in emissions from 2006 to 2021 per vehicle type 

  
 

vehicle 
type 

HC CO NOx CO2 PM2.5 PM10 HC CO NOx CO2 PM2.5 PM10 

8am 5pm 

EV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HCV 
-

17.16% 
-

15.41% 
-

14.16% 
-

15.55% 
-

15.55% 
-

15.55% 
-

16.06% 
-

15.05% 
-

14.20% 
-

15.13% 
-

15.13% 
-

15.13% 

MCV 2.50% 5.32% 6.86% 5.20% 5.20% 5.20% 5.21% 8.16% 9.73% 7.98% 7.98% 7.98% 

LCPV 16.07% 19.63% 27.11% 27.71% 27.71% 27.71% 26.13% 27.88% 27.41% 26.34% 26.35% 26.36% 

Buses 6.17% 6.23% 6.18% 6.08% 6.08% 6.08% 5.17% 5.27% 5.34% 5.23% 5.23% 5.23% 

EV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HCV 
-

17.24% 
-

15.42% 
-

14.15% 
-

15.55% 
-

15.55% 
-

15.55% 
-

16.14% 
-

15.05% 
-

14.18% 
-

15.13% 
-

15.13% 
-

15.13% 

MCV 2.37% 5.30% 6.88% 5.20% 5.20% 5.20% 5.01% 8.16% 9.76% 7.98% 7.98% 7.98% 

LCPV 15.08% 19.56% 27.19% 27.71% 27.71% 27.71% 26.37% 27.80% 27.34% 26.16% 26.17% 26.36% 

Buses 6.18% 6.23% 6.18% 6.08% 6.08% 6.08% 5.18% 5.27% 5.34% 5.23% 5.23% 5.23% 

 

As the number of EVs is the same for 2006 and 2021, no change in emissions is depicted for 

this vehicle type. A decrease in emissions produced by heavy commercial vehicles is 

detected, which is justified by the projected development pattern of the Hamilton CMA for 

2021 according to (CSpA, 2009). The employment growth model indicated a decline in 

manufacturing industries, wholesale trade resulting to decline in HCVs VKT and produced 

emissions. The BAU scenario produces an increase in emissions approximately 16 to 27 

percentage points (for different pollutants) higher than base year levels. For the rest of the 

vehicle types an increase in emissions is represented as expected.  

Emission estimates were simulated for 24 hours in 365 days in 2006 and 2021 but only 

morning and evening rush hours (8am and 5pm) for January 1
st
 and July 1

st
 were selected to 

evaluate the potential reduction in emissions.  

4.3 Aggregated level  

The table displays the percent change in emission estimates per pollutant for all the models 

created to introduce the different EV penetration rates. Aggregate emissions are the 

summations of emission estimates across all links in the road network. A reduction in traffic 

emissions is evident across all scenarios. Slight changes are observed between the different 

distribution models as well. For Models 2 and 3 the percent change is nearly the same for all 

pollutants. A conspicuous finding is that the percent abatement in HC and CO emissions in 

the morning for both January and July and the percent of EVs in the total fleet do not follow a 

linear trend. This fact can be explained by the high traffic volume observed that time of the 



day. At 8 am in the morning people commute using their private cars, thus congestion and low 

speeds are observed. It is noticed that HC and CO emissions reduces almost by half for the 

first scenario -as high HC and CO emissions are produced at low speeds- while NOx follows a 

different trend. The difference is in the relationship of emission factors to link speed. On the 

contrary, as speeds in the evening are higher, HC and CO emissions change is lower.  While 

for HC and CO the emission factors raise as average link speed decreases, NOx emission 

factors tend to initially slightly decrease with speed, but then remain stable until about 30 

mph, increasing with speed from then on. A significant difference between the three scenarios 

is observed in all pollutants. An essential change is also detected between models 1 and 3 for 

HC and CO at 5 pm for both January and July proving that the difference in EVs distribution 

can cause changes in emissions produced. It is deduced that even a modest adoption of EV 

technology may lead to significant reduction in traffic emissions. 

Table 18. Percent aggregate emissions reduction compared to BAU for rush hours of January and July 1
st

 

  January 1st 

  8am 5pm 

 
HC CO NOx CO2 HC CO NOx CO2 

Model1_1 -48.58% -38.69% -13.41% -10.63% -12.17% -12.04% -11.47% -11.62% 

Model1_2 -47.27% -39.02% -14.89% -10.63% -11.56% -11.49% -11.10% -11.31% 

Model1_3 -49.20% -39.36% -14.13% -11.39% -18.80% -16.69% -13.16% -13.06% 

Model2_1 -6.05% -5.89% -5.03% -5.15% -5.92% -5.85% -5.57% -5.64% 

Model2_2 -5.84% -5.75% -4.97% -5.13% -5.63% -5.59% -5.38% -5.48% 

Model2_3 -6.80% -6.53% -5.42% -5.54% -6.70% -6.61% -6.27% -6.35% 

Model3_1 -2.22% -2.16% -1.81% -1.85% -2.14% -2.12% -2.02% -2.04% 

Model3_2 -2.09% -2.06% -1.80% -1.85% -2.02% -2.01% -1.94% -1.98% 

Model3_3 -2.41% -2.34% -1.96% -2.00% -2.46% -2.43% -2.30% -2.33% 

 

  July 1st 

  8am 5pm 

 
HC CO NOx CO2 HC CO NOx CO2 

Model1_1 -52.32% -38.75% -12.92% -10.63% -12.24% -12.03% -11.31% -11.62% 

Model1_2 -51.03% -39.20% -14.60% -10.63% -11.57% -11.48% -14.44% -11.32% 

Model1_3 -52.93% -39.42% -13.62% -11.39% -20.02% -16.68% -13.01% -13.05% 

Model2_1 -6.12% -5.88% -4.89% -5.15% -5.96% -5.84% -5.49% -5.63% 

Model2_2 -5.91% -5.73% -4.82% -5.13% -5.64% -5.58% -5.31% -5.48% 

Model2_3 -6.90% -6.52% -5.26% -5.54% -6.75% -6.60% -6.19% -6.35% 

Model3_1 -2.25% -2.15% -1.76% -1.85% -2.15% -2.12% -1.99% -2.04% 

Model3_2 -2.10% -2.05% -1.74% -1.85% -2.02% -2.01% -1.91% -1.98% 



Model3_3 -2.45% -2.34% -1.90% -2.00% -2.48% -2.43% -2.27% -2.33% 

 

The exponential growth of HC emissions reduction can be seen in the following graph. 

 

Figure 14. Emissions reduction after implementation of Scenarios 

 

4.4 Disaggregated level 

Before proceeding to the analysis of the spatial concentration of emissions at the link level, 

the links mostly traveled by EVs are presented. 

The links –around 5%- that weren’t travelled by electric vehicles were located at the edges of 

the study area as shown in the next figure applied for Model3. This can be explained by the 

traffic assignment model’s function which can only calculate the intra-zonal trips and not trips 

out of the study area. As it is expected the most travelled links by EVs in all models were the 

major highways and the large arterial roads. The next figure displays -for both rush hours 

included in this study, 8am and 5pm- the EVs flows. The red lines represent the links with 

zero EV flows, while the thicker blue lines correspond to the top 15% of the highest EV 

flows. Similar spatial patterns are observed in general; slight differences are noticed though 

between 8 am and 5 pm. 
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This section is focused on the spatial concentration of emissions through a selected set of 

figures. The volume of emissions was normalized with regard to the length of links in order to 

be comparable. The following figures represent the spatial concentration of HC emissions for 

the BAU scenario for both 2006 and 2021 and the percent changes. The links with the highest 

traffic emissions per kilometer included sections of QEW in Burlington, Hwy 403, Main St 

West, King St West and major highways in general which is explained by the high volume of 

traffic and high vehicle flow in these specific roads during rush hours.  

 

 

Table 19. #of links falling in each class of change  

  

Figure 15.  Change in spatial concentration of HC emissions from 2006 to 2021 

 

Classes Links Percent 

<-50% 142 20.1% 

-49.9%- -20% 41 5.8% 

-19.9%- -5% 13 1.8% 

-4.9%- 5% 74 10.5% 

5.1%- 20% 19 2.7% 

20.1%- 50% 140 19.7% 

>50% 279 39.4% 



Seven classes were created to accommodate the changes in emissions between these years. No 

significant change is observed in the core of Hamilton (-4.9%-5%). The decrease in HC 

concentration occurs at links that heavy commercial vehicles and trucks used to traverse 

before the abatement in industrial sector. Table 2 depicts the percent of links, falling in each 

class of change for CO and CO2 from 2006 to 2021. A similar trend is observed between the 

two pollutants. 

Table 20. Changes in CO and CO2 emissions from 2006 to 2021 

Classes CO CO2 

<-50% 24% 23.6% 
-49.9%- -20% 5.8% 6.1% 
-19.9%- -5% 6.1% 6.4% 
-4.9%- 5% 19.6% 20.2% 
5.1%- 20% 7.1% 6.5% 
20.1%- 50% 6.3% 6.4% 
>50% 31.1% 30.8% 

 

To compare the emissions produced by each model three ratios were obtained, dividing 

emissions from each model to the emissions of the BAU Scenario. Values close to 1 depict 

significant change in HC emissions, values between 0.8 and 0.9 illustrate a decrease and 

values less than 0.8 represent a massive HC emissions abatement. The following table 

displays HC ratio for the three models of the first scenario and accounts for the number of 

links falling in each category and the corresponding percentage. Most of the links belong to 

the second category, therefore there is an obvious decrease in emissions produced despite the 

model. While Model 1 and 2 share almost the same number of links in every category, Model 

3 follows a different trend. The distribution of EVs, as dictated by Model 3, provokes a higher 

decrease in emissions. Only 27% of the links belong to the third category “significant 

change”, compared to the 40% of the other models and 466 links are concentrated on the 

second; meaning that most of the links did not remain stable but on the opposite the 

distribution of Model 3 made the emissions to decline considerably. Massive HC emissions 

decrease is not noticed as only 10% of the links are falling in the first category. 

 

classes 
number of links/percentage 

Model 1 Model 2 Model 3 

0-0.8 77 
        10.26% 

80 
       10.67% 

83 
        11.07% 

0.8-0.9 
365 
        48.67% 

369 
        49.2% 

466 
        62.13% 

0.9-1.0 308 
        41.07% 

301 
        40.13% 

201 
        26.8% 

 



The spatial variation of the three ratios is evident in Figure 11 which illustrates the hotspots of 

changes with regard to the BAU scenario for Scenario 1. Two main ‘hot-spot’ areas of 

maximum change compared to the BAU scenario can be identified in the HC emissions map 

below. The first one is evident across the three models and occurs at Burlington city including 

the major highways. These highways constitute main routes to the city of Toronto, a major 

employment centre for Hamilton’s residents. The second significant change occurs at Stoney 

Creek and it is observed only in the second model. Across all models the modest change 

compared to the BAU scenario is depicted in the core of Hamilton.  

 
Figure 16. HC emissions changes hotspots for Model 1, Model 2 and Model 3 respectively 

The next tables present the percent of links falling in each class for the rest of the pollutants 

and the Scenarios. It is remarkable that all pollutants have a similar behavior across all 

models. It can be observed that in the first scenario –with 10% EVs in the market- a major 

decrease in emissions of all pollutants can be seen, while around 40% of the links remain 

stable. Differences can also be noticed between the models as Model 3 concentrates the 

lowest proportion of links in the third category and more in the second meaning that there is a 

higher decrease in emissions when applying the distribution of EVs of this specific model.  

CO follows the same trend as HC for Scenario 1, while the other two pollutants do not present 

great change between the Models. For the rest of the scenarios higher proportions are 

concentrated in the third category, as the decrease in emissions is lower when fewer “green” 

vehicles are adopted in the fleet. The percentages in Scenarios 2 and 3 are similar since the 

links falling in the first category dropped to almost 9%, the links in the second were almost 

eliminated and these in the third Scenario vanished. 

 

 

 

 



 

Table 21. Links’ percentage falling in each ratio category for pollutants CO NOx and CO2 

Scenario 
1 

CO NOx CO2 

M1 M2 M3 M1 M2 M3 M1 M2 M3 

0-0.8 10% 10.67% 11.07% 9.87% 10.53% 10.80% 9.47% 10.13% 10.27% 

0.8-0.9 48.13% 48.80% 61.60% 41.33% 46.40% 52.80% 44.40% 43.60% 57.60% 

0-9-1.0 41.87% 40.53% 27.33% 48.80% 43.07% 36.40% 46.13% 46.27% 32.13% 

 

Table 22. Links’ percentage falling in each ratio category for pollutants HC, CO NOx and CO2 for Scenario 2 

Scenario 
2 

HC CO NOx CO2 

M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M3 

0-0.8 8.67% 8.67% 8.67% 8.67% 8.67% 8.67% 8.67% 8.53% 8.67% 8.53% 8.53% 8.53% 

0.8-0.9 1.20% 1.60% 2.13% 1.20% 1.60% 2.13% 0.90% 1.73% 1.73% 1.07% 1.60% 1.73% 

0-9-1.0 90.13% 89.73% 89.20% 90.13% 89.73% 89.20% 90.40% 89.73% 89.60% 90.40% 89.87% 89.73% 

 

Table 23. Links’ percentage falling in each ratio category for pollutants HC, CO NOx and CO2 for Scenario 3 

Scenario 
3 

HC CO NOx CO2 

M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M3 

0-0.8 8.4% 8.53% 8.63% 8.59% 8.4% 8.53% 8.33% 8.47% 8.53% 8.53% 8.1% 8.53% 

0.8-0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

0-9-1.0 91.6% 91.47% 90.6% 91.41% 91.6% 91.47% 91.67% 91.53% 91.41% 91.41% 91.9% 91.47% 

 

The next figure illustrates the spatial pattern of HC emissions reductions for each model for 

the three scenarios. Five classes were created to accommodate the change in percent 

emissions (change more than -15%, change between -6% and -15%, -2%- -6%, 0- -2% and 

changes over 0%). The largest reductions can be seen in the major highways which are 

travelled frequently. High traffic volume observed at rush hours leads to high values of HC, 

because of the low speeds that are developed.  Introducing 10% of electric vehicles into the 

market fleet lead to a greater than 15% reduction in emissions of HC. It is remarkable that 

most of the links in the first Scenario fall in the second category, but in Scenario 2 the links 

are divided in the second and third class. The same can be seen for Scenario 3. Different 

distribution patterns produce different spatial patterns of traffic related emissions in the links. 

Each model creates another pattern with evident changes in downtown Hamilton and 

downtown Bulington. 

 

 



 

The following graph depicts the number of links falling in each class of emission reductions. 

It is observed that for CO2 as well the emissions can decrease more than 15% when applying 

Scenario 1 and 41899 vehicles enter the market. When applying Scenario 2 changes around 6-

15% in CO2 emissions are detected. Significant changes occur even when implementing 

Scenario 1 and 2% of vehicle fleet are electric. Small variations between the models can also 

be noticed. Model 3 in each scenario affects more the class with the highest decrease. For 



example, while in the classes ‘-2%-0’ and ‘-15%- -6%’ changes in emissions the links are 

almost evenly distributed across the three models, Model 3 influences more the emissions 

produced. Same impact has Model 3 on ‘-15%- -6%’ class for Scenario 3 and on ‘-6%- -2%’ 

for Scenario 3. 

 

Table 8 illustrates the number of links that present reduction in traffic related pollution. The 

first part shows CO emissions abatement, while the second depicts reduction of the pollutant 

NOx. What can be deduced from these tables is that in each scenario, Model 3 is the model 

that appears to influence more the emissions produced. Specifically model 3 concentrates 

most of the links falling in the class with the major decrease in emissions each time.  CO and 

NOx pollutants follow the same trend as observed for HC and CO2. 

Table 24. CO and NOx emissions reduction 

 CO Nox 

Classes Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

<-15% 58 51 89 2 2 2 1 1 1 50 47 70 2 2 2 1 1 1 

-15%--6% 605 612 576 170 134 226 2 1 1 606 616 595 137 109 169 0 1 1 

-6%--2% 2 2 0 493 529 437 230 192 311 9 2 0 526 554 492 191 158 261 

-2%-0% 84 84 84 84 84 84 511 550 431 84 84 84 84 84 86 552 584 481 

>0% 0 0 0 0 0 0 6 6 6 0 0 0 0 0 0 6 6 6 
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As the analysis has been focused at the link level in Hamilton CMA, it would be essential to 

mention not only the general pattern of links but also the links with the highest values of the 

pollutants. 

Table 9 depicts the 10 links with the highest emissions production for pollutants CO2, HC, 

NOx and CO. Most of them are parts of the major highways, as higher speeds are developed 

and increase emissions production. The 9 links with the highest volume are the same for all 

pollutants in different order though and the last one is different for all. It is evident that the 

length of the link is not related with pollutants’ values. 

Table25.  Top 10 links concentrating the highest volumes of traffic related pollution 

TOP 10 
LINKS 

ID 
LENGTH StreetName CO2

5 HC CO NOx 

1 4490451 1.315618 HWY403 1.47634 2.161758 68.3714 7.779099 

2 4510357 6.998608 HWY403 1.449276 2.124125 67.19023 7.636351 

3 3570343 0.93886 QEW/403 1.350844 27.49395 372.3676 9.684859 

4 2900297 1.434528 QEW 1.233215 1.793124 56.82594 6.583894 

5 2970326 5.62885 QEW 1.233128 1.794166 56.87063 6.583471 

6 4470449 1.874993 HWY403 1.13989 23.6281 319.7024 8.096006 

7 2830290 1.678029 QEW 1.124351 1.640017 51.95966 5.975906 

8 3420357 0.961316 QEW 1.099083 22.51845 304.8288 7.855726 

9 3430315 1.95752 QEW/403 1.060731 1.53039 48.46022 5.725791 

10 4870479 1.248222 

Lincoln 

Alexander 

Expwy 

0.888535 
   

10 4450446 0.188918 Main St 
 

1.371972 
  

10 4570440 0.556836 HWY403 
  

41.02175 
 

10 3150305 2.002319 QEW/403 
   

4.736492 

 

Most of the aforementioned links are parts of the major highways. The following figure illustrates the 

behavior of the pollutants in highways HWY403, QEW and Lincoln Alexander Expwy in total. It is 

obvious that higher values of HC, CO, NOx and CO2 are concentrated on the highways directing to 

Toronto, as people commute to work. Similar patterns are depicted for pollutants HC and CO. Lower 

volumes of emissions are noticed at QEW (at Stoney Creek side) as less congestion occurs at this 

specific section of the highway and higher speeds are developed. The higher speeds justify the higher 

emissions of NOx and CO2 at the same part. 
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Figure 17. Emissions of pollutants on major highways 

Figure 12 makes a classification of Hamilton CMA into subregions to illustrate the emissions 

on the highways. It is essential to analyze how socioeconomic factors from different 

subregions influence emissions and are related to them. Table 10 depicts the average 

emissions produced per subregion for the three different models for all four pollutants. Model 

3 influences more the emissions produced as lower values of every pollutant is produced by 

the distribution of electric vehicles of Model 3. Figure 13 compares the difference between 

Models 1 and 2 with Model 3. The major differences are detected for HC and CO in 

Burlington in both the Models and in Dundas when comparing Model 2 with Model 3. 

 



Table 26. Emissions produced by each model and pollutant on different subregions 

 
HC CO NOx CO2 

 
M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Ancaster 0.1744 0.1774 0.1730 4.5413 4.6213 4.5050 0.4903 0.4947 0.4868 0.1086 0.1104 0.1078 

Burlington 0.7977 0.8053 0.6630 14.7077 14.7852 12.9840 1.0785 1.0730 1.0498 0.2244 0.2266 0.2206 

Dundas 0.5483 0.6473 0.5385 13.7120 14.1257 13.4756 1.4749 1.4186 1.4514 0.3331 0.3325 0.3274 

Flamborough 0.1129 0.1125 0.1108 2.6930 2.6850 2.6436 0.2816 0.2795 0.2767 0.0708 0.0706 0.0696 

Glanbrook 0.0477 0.0461 0.0472 1.1226 1.0867 1.1099 0.1140 0.1103 0.1128 0.0290 0.0280 0.0286 

Hamilton 0.3706 0.3769 0.3669 7.3490 7.4205 7.2776 0.6751 0.6723 0.6696 0.1552 0.1557 0.1539 

Stoney Creek 0.1764 0.1669 0.1744 4.2234 4.0111 4.1777 0.4357 0.4132 0.4312 0.1044 0.0991 0.1032 

 

 

Figure 18. Comparison of the reduction percent between Models 1 and 2 with Model 3 

Lastly, a hotspot analysis of HC, CO, NOx and CO2 pollutants is following. The analysis took 

place separately for every subregion in order to detect high and low volumes of emissions in 

every neighborhood. Slight differences are observed between the pollutants resulting to a 

similar total ‘hotspot’ pattern.  
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Figure 19. Hotspots of HC, CO, NOx and CO2 emissions by subregion 

The hotspots as expected are detected on the major highways, where high values of emissions 

are concentrated, whilst low volumes are noticed at the core of Hamilton and at the edges of 

the study area. 

 

 

 



4.5 Outcomes  

The last phase of the analysis, after processing the data, consists of the summary of the most 

important points and the conclusions that can be drawn for the case study and the study area. 

In the case study we estimated the traffic related emissions reduction after the introduction of 

different rates of electric vehicles in the fleet. The process that was selected aimed to combine 

different spatial distribution patterns of EVs affected by socioeconomic factors with a set of 

integrated simulation models.  

The analysis was first conducted at an aggregated level and then at a disaggregate level. In the 

beginning the O-D matrices were modified to accommodate the introduction of the new 

vehicle category according to the outputs from the regression analysis. The matrices were 

validated to examine if the VKT changes across the models. The results indicated that there is 

no significant change and confirmed that the reductions on traffic emissions were directly 

related to the differences of the tailpipe emissions between LDV and EVs. 

After the simulation and the projection to 2021 the outputs were compared and the results 

detected an advantage of the EVs introduction over the BAU scenario. Under the first 

scenario a net reduction of 11% in CO2 emissions relative to BAU case could be achieved. 

Significant differences in emissions mitigation are noticed between 8 am and 5 pm for HC 

and CO. This finding proves what is already written in literature about high HC and CO 

emissions production at low speeds. The two pollutants were individually projected to 

decrease in the range 38-48% at 8 am and around 15% at 5pm. Full electrification of 10% of 

the passenger vehicle fleet by 2021 was found to be more effective stand alone strategy 

especially for HC and CO. An important finding was that the percent reduction in traffic 

emissions and the percent of EVs in the total fleet do not follow a linear trend. On the 

contrary, an exponential growth was detected in percent reductions at 8 am. NOx emissions 

were estimated to decrease by 13% approximately under the first scenario. The rate of change 

in emissions between 2006 and 2021 for the second scenario was around 5-6% for each 

pollutant. Under the third scenario a mild abatement of 2% was detected for HC, CO, NOx 

and CO2. 

At the disaggregate level more specific conclusions can be drawn for the links. To compare 

the emissions on each link, they had to be normalized with its length. Highest values of HC, 

CO, NOx and CO2 pollutants are detected at the major highways. These include HWY403, 

QEW and Lincoln Alexander Expwy.  HWY403 connects Hamilton with Toronto and is the 

road with the greater emissions production. It is also the road, though, where the major 

decreases in emissions occurred after the implementation of electric vehicles. As mentioned 

earlier, depending on the type of emission, the speed at which the vehicle produces the 

minimum or the maximum amount of emissions changes. This can explain how the 

introduction of 10% of electric vehicles led to greater reduction of HC and CO.  



Three ratios were obtained to compare the emissions produced by each model, dividing 

emissions from each model to the emissions of the BAU Scenario. Values close to 1 depict 

significant change in HC emissions, values between 0.8 and 0.9 illustrate a decrease and 

values less than 0.8 represent a massive HC emissions abatement. The results from the ratios 

computed lead to the conclusion that Model 3 provokes a higher decrease in emissions even 

though its distribution contained the lowest amount of electric vehicles before computing the 

weights. 

The three models produced by the regression analysis created slightly different spatial 

patterns of emissions at the link level. In every case of comparison Model 3 revealed a greater 

reduction in emissions compared to the other two models. The combination of the variables 

education, number of persons in the household but also the household type, which is an 

indirect reference to income, proved to affect emissions production and mitigation after EVs 

implementation. 

The next chapter offers an overview of the study, pointing out the benefits of EVs 

introduction in the market and the effectiveness of the selected methodological framework to 

achieve the objective of the research. Possibilities for the future are also discussed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                   Chapter 5 

5. Conclusions 

Automobile has been the main mode for private transportation in Canada, leading to 

congestion, poor air quality and health problems. The last decade, auto manufacturers have 

started implementing electric vehicles as they produce no tail pipe emissions and constitute a 

‘greener’ alternative of transportation. Although people in the beginning were reluctant to 

embrace the new technology, the idea has started to ripen according to Nemry and Brons 

(2010). Electric vehicles represent a conspicuous chance for pursuing a sustainable 

development not only of the transportation system but also of the whole world.  

Previous research with regard to electric vehicles focused on the potential market uptake and 

acceptance from users, the reliability of batteries, the energy demand, the charging system and 

the GHG emissions reductions at an aggregate level. This study attempts to fill the gap in 

literature by offering insight on the relationship between the contributing socioeconomic 

factors that influence EVs market deployment and the decrease in GHG emissions at the link 

level. 

In summary, chapter 1 constitutes an introduction to electric vehicles and justifies the need for 

research. Chapter 2 offers a critical review of the literature with respect to the potential 

market uptake, the reductions in emissions and the socioeconomic factors that impact EVs 

ownership. Afterwards we analyzed the analysis techniques that participated in the research. 

Chapter 3 describes the selected approach which is then implemented and the results drawn. 

The last chapter (Chapter 4) provides the final findings along with conclusions and directions 

for further research.  

The geographical focus of attention has been the CMA of Hamilton, Ontario, Canada, but it 

has wide applicability. The modeling months were January and July to capture the peak and 

off-peak seasons for the various pollutants. The base year for this study was 2006 and the 

results were projected to year 2021. Three scenarios were created with regard to EVs market 

share (10%, 5% and 2%) after deeply analyzing the literature. A regression analysis was used 

to determine which socioeconomic characteristics influence mostly EV ownership. Three 

models were found to affect EV possession per census tract. The predicted values were used 

as weights to modify the O-D matrices, which participate in the simulation procedure. The 

trips were then assigned to the road network using TRAFFIC and combined with the 

estimated emission factors from MOBILE 6.2C. The emissions abatement was then 

computed. Lastly, the emissions reduction was quantified and evaluated. 



The methodology was not designed only to predict pollutant concentrations resulting from 

EVs introduction. Rather, the methodology used the best available emission factors to 

estimate net changes in emissions compared to the BAU scenario. 

The results indicate that the introduction of EVs exhibits advantage over the BAU case in 

every aspect of their emissions. The introduction of 10% of electric vehicles in the fleet may 

lead to almost 50% reduction in HC emissions in the morning rush hours (8am) and 12% in 

the evening (5pm). A similar trend is observed regarding CO pollutant with 40% decrease at 

8am and 12% at 5pm for both January and July. The implementation of 5% of electric 

vehicles with the second scenario indicates a lower mitigation but still remarkable. For 

Scenarios 2 and 3 all four pollutants present the same rate of reduction. 

We also confirmed findings in the literature that the probability of mitigating GHG emissions 

is influenced by personal and housing characteristics, such as income, education status, 

household size and type. We conclude that different distribution patterns of electric vehicles 

produce different spatial patterns of emissions in the links and variations in emissions 

reductions. The predicted values from all three models contributed to emissions decrease. 

Specifically, from the three models created by the regression analysis, the third one assisted to 

mostly mitigate the emissions produced at the aggregate level. The combination of the 

variables –Owned dwellings, detached dwellings, low level of education and average number 

of persons- created a distribution pattern of EVs sufficient enough to differentiate from the 

others two, whilst the spatial distributions from all models produced slightly different spatial 

patterns in the links. 

This study represents a beginning in understanding and quantifying the impacts of market 

penetration for alternative vehicle technologies (electric) on regional vehicle emissions. As 

demonstrated in the body of this study, there are several factors affecting EVs penetration 

rates and future GHG emissions. Since these factors create uncertainty, it is difficult to 

accurately predict what the future holds for electric vehicles technologies. The effects of EVs 

on GHG emissions will depend on the rate of consumer adoption and the source of electricity 

used. Our focus on optimistic (10% market uptake), medium (5%) and conservative (2%) 

scenarios’ results allows decision makers to implement policies amplifying EVs usage. 

The results suggest that the procedure is effective and even a modest change in vehicle fleet 

could lead to traffic-related emissions reduction. Through TRAFFIC model, emissions are 

estimated at the link level. While the results are encouraging, they were based on the 

assumption that the electricity generated to charge the vehicles derived from renewable 

sources. Although only 5% of electricity in Ontario comes from burning coal, this percentage 

should be eliminated in order to benefit from the new technology. As a conclusion, the results 

obtained indicate that the time from the base year to the simulation year is sufficient for 

electric vehicles to acquire a significant share of the fleet and influence urban air quality. 



Electric vehicles are a realistic alternative to conventional vehicles and can contribute to 

emissions reductions. 

5.1 Discussion 

Technology improvements alone will not be enough to improve air quality to the extent 

indicated by the study; behavioral change will also be crucial. Public transport, walking and 

cycling should be promoted in order to prevent rebound effects from excessive use of the new 

technology. Incentives should be given to people to minimize automobile’s usage and on the 

contrary increase public transport’s usage to reach sustainable transportation. Electric vehicles 

can contribute to emissions reductions only when used instead of conventional vehicles and 

the VMT remain constant. 

It must also be emphasized that in order to achieve maximum benefit from electric vehicles, 

electricity should be acquired from renewable sources. Using the energy produced from coal-

fired power stations may lead to just a small reduction in emissions or even increase. Nuclear 

power, hydroelectric, solar, wind and natural gas are some examples of renewable sources 

that every government, aiming to incorporate EVs as part of their transportation policies, 

should adopt to benefit from low “well-to-wheels” vehicle emissions. 

5.2 Future Directions 

 

There has been substantial interest in the transportation and planning literature on examining 

the factors contributing to EV ownership. To date, research over the demand for alternative 

fuel vehicles and HEVs has been conducted but not for electric vehicles. Thus, for this study, 

the scenarios were selected based on current demand for HEVs. A survey should take place to 

capture the tendency over EVs and consumer’s preferences. Disaggregate data should also be 

collected in order to better outline consumer’s behavior and willingness to afford another 

“greener” vehicle. 

Canadian Nuclear Society (2013) reports that only 5% of electricity comes from burning coal 

in Ontario. The final cost-benefit analysis rests on whether renewable resources are used to 

generate the increased electricity demand. This study was based on the assumption that 

electricity is generated only by renewable sources of energy but is of great importance to 

include this detail in the research if even a small proportion of electricity comes from coal. An 

investigation over the energy costs after intense usage of electric cars and the way Ontario’s 

government will respond to the growing electricity demand should also be embedded. Before 

policy makers introduce to the market share a large amount of electric vehicles organizing and 

planning is needed. The charging infrastructure and the possible locations of charging points 

could be a subject of future investigation. 



Another recommendation that can be made with respect to future work is to develop more 

complex and realistic scenarios of market penetration based on analysis of data collected 

through stated preference surveys that should cover inter and intra-regional flows by vehicle 

type. Such scenarios should embed and integrate improvements in the characteristics of EVs 

(especially the range), a more widely available network of charging stations and the changing 

government policy towards incentives for the adoption of EVs.  

 

The methods used in the study to introduce electric vehicles’ class in place of LDPV and the 

conversion of LDPV and LDCV into LDV was possible only because these vehicles 

demonstrate the same passenger car equivalency values and share common characteristics. 

TRAFFIC module at the moment cannot simulate alternate vehicle technologies for an 

integrated analysis. In this study, EVs and HEVs should be considered and analyzed as two 

different and separate vehicle types. As the years pass, more vehicles become “greener” and 

alternative technologies are adopted by medium and heavy commercial vehicles as well. 

Therefore, an update to incorporate the changes should take place. 

A last reference for future research would be to include not only Hamilton CMA but Toronto 

GTHA as well, as an overview of the benefits of electric cars on traffic related emissions 

reduction on a greater study area would assist to carry out integrated results. 
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Appendices 

 

Table 27. EVs distribution in 2008, 2012 and predicted values 

Cencus 

tracts 

Observed values Predicted Number of EVs   

NHEV08 NHEV12 Model 1 Model 2 Model 3 VHHLD 

5370001.01 1 4 4 6 8 2182 

5370001.02 2 5 5 9 9 3162 

5370001.04 5 11 17 15 9 3392 

5370001.05 2 9 8 8 12 2333 

 5370001.06 6 7 15 15 6 2940 

5370001.07 1 1 4 6 6 1652 

5370001.08 4 8 15 15 7 3446 

5370001.09 0 5 11 14 10 2286 

5370002.01 2 2 4 9 8 2794 

5370002.02 4 19 35 21 9 5092 

5370002.03 2 6 9 8 10 1665 

5370002.04 1 5 13 13 6 2762 

5370003.01 9 14 15 11 14 2851 

5370003.02 2 2 7 6 7 1871 

5370003.03 2 4 4 7 8 1427 

5370003.04 3 10 9 7 8 2822 

5370004.01 0 4 5 6 7 1903 

5370004.02 1 4 6 6 6 2092 

5370005.01 2 7 12 9 7 3059 

5370005.02 0 3 5 6 6 1913 

5370005.03 0 2 7 8 8 2289 

5370006 4 4 7 6 5 2672 

5370007 1 2 8 6 8 1725 

5370008 2 2 14 7 10 1305 

5370009 0 0 5 6 5 1723 

5370010 1 3 6 6 7 1733 

5370011 3 5 7 6 11 1319 

5370012 1 2 3 5 5 709 

5370013 7 12 8 8 11 1719 

5370014 2 7 7 7 12 1618 

5370015 3 2 14 8 19 917 

5370016 0 1 4 3 5 107 

5370017 16 29 26 16 20 1931 

Scenario 1: 10% EVs 

(41899 vehicles) 

Scenario 2: 5% EVs 

(20950 vehicles) 

Scenario 3: 2% EVs 

(8380 vehicles) 

 

 

 



5370019 3 6 6 7 7 2072 

5370020 0 2 4 6 7 2144 

5370021 3 1 5 5 6 2325 

5370022 0 3 5 4 6 2495 

5370023 1 3 5 6 8 1370 

5370024 4 9 5 6 7 1454 

5370025 0 2 6 4 10 1679 

5370026.01 2 1 8 7 7 1726 

5370026.02 2 1 14 6 7 868 

5370026.03 1 4 14 9 14 1375 

5370026.04 1 1 5 4 11 905 

5370026.05 2 3 7 6 10 2258 

5370026.06 1 3 4 6 5 2484 

5370027 0 2 3 1 9 701 

5370028 1 2 6 4 7 1636 

5370029 0 2 6 4 7 2271 

5370030 1 8 5 5 8 2239 

5370031 1 5 4 4 4 1053 

5370032 0 1 7 4 4 1225 

5370033 3 6 4 5 2 1296 

5370034 1 4 2 2 4 1942 

5370035 1 0 2 3 4 1129 

5370036 14 18 15 14 19 1630 

5370037 1 3 3 3 7 860 

5370038 4 9 5 3 5 1337 

5370039 2 3 3 4 6 2133 

5370040 3 5 4 3 4 876 

5370041 1 4 7 6 7 828 

5370042 8 11 5 5 6 1474 

5370043 3 10 6 5 5 1585 

5370044 3 8 10 6 7 2079 

5370045 12 26 23 11 13 1563 

5370046 7 7 8 8 10 1373 

5370047 5 12 8 5 7 1878 

5370048 1 2 2 3 8 591 

5370049 1 6 3 5 5 942 

5370050 0 5 5 3 6 1227 

5370051 1 1 3 3 4 1276 

5370052 1 3 2 2 2 1391 

5370053 0 1 4 4 3 1322 

5370054 0 1 3 4 9 1211 



5370055 0 2 4 4 9 1940 

5370056 0 0 5 4 10 1899 

5370057 0 0 5 4 12 1434 

5370058 0 1 1 2 8 1001 

5370059 2 4 3 4 5 1419 

5370060 0 2 5 4 8 1032 

5370061 1 2 4 4 6 1991 

5370062 0 2 5 6 5 1326 

5370063 3 0 2 4 6 1311 

5370064 10 9 7 6 11 872 

5370065 2 2 2 3 7 1417 

5370066 2 7 6 4 9 2218 

5370067 0 1 3 5 9 1072 

5370068 1 0 2 2 5 743 

5370069 0 0 3 1 8 702 

5370070 0 2 4 3 14 2352 

5370071 2 3 7 4 7 2798 

5370072.01 1 4 2 3 3 1606 

5370072.02 1 3 5 5 7 1771 

5370072.03 2 6 8 9 5 2680 

5370072.04 1 2 5 7 9 1820 

5370073 4 2 2 1 3 1002 

5370080.01 1 4 11 10 10 2018 

5370080.03 4 12 9 11 6 3030 

5370080.04 5 7 22 20 7 4686 

5370080.05 7 9 18 18 12 3580 

5370081 3 6 6 6 5 1482 

5370082 3 5 7 6 6 2077 

5370083 1 2 3 4 3 1402 

5370084.01 1 2 5 8 9 1822 

5370084.02 2 3 6 7 8 1905 

5370084.03 0 2 11 8 11 1434 

5370084.04 2 7 4 4 11 2354 

5370084.05 3 6 8 11 13 1937 

5370085.01 9 9 14 13 10 2954 

5370085.02 3 6 16 21 8 4219 

5370085.03 5 10 10 7 10 3629 

5370086 9 28 15 22 13 6059 

5370100 8 16 13 15 9 8209 

5370101 23 32 15 13 10 8591 

5370120.01 23 29 25 35 17 5865 



5370120.02 4 4 12 11 11 1475 

5370121 11 11 7 10 6 1216 

5370122.01 6 13 17 14 13 3810 

5370122.02 17 29 32 32 19 4433 

5370123 23 27 38 24 14 4730 

5370124 7 20 28 21 19 2496 

5370130.02 15 32 22 21 21 2774 

5370130.03 10 14 40 16 15 2239 

5370131 17 29 20 14 10 3110 

5370132 9 13 8 6 6 1897 

5370133 27 55 45 21 15 6203 

5370140.02 11 25 14 17 11 6915 

5370140.03 4 9 8 20 13 2991 

5370140.04 3 10 9 17 13 2395 

5370141 12 21 13 15 9 3298 

5370142.01 4 18 4 9 9 4178 

5370142.02 3 15 4 9 9 3259 

5370143 5 2 10 16 9 912 

5370144 15 15 11 27 10 4548 

5370200 5 7 15 19 18 2002 

5370201 10 14 13 13 9 2757 

5370202 15 36 20 14 12 3615 

5370203 6 12 19 11 23 1804 

5370204 4 10 4 6 6 2728 

5370205.01 11 14 15 8 17 2810 

5370205.02 6 14 11 6 6 2241 

5370206 28 44 6 5 6 3239 

5370207.01 12 27 15 14 8 4364 

5370207.02 5 12 9 18 7 4235 

5370207.03 6 6 10 11 10 2681 

5370207.04 4 8 4 5 7 1653 

5370208 0 4 4 6 7 1929 

5370209 0 5 9 5 9 1144 

5370210 1 2 4 5 9 1504 

5370211 2 7 4 5 5 2319 

5370212 3 6 10 6 7 934 

5370213 18 20 8 6 5 2285 

5370214 1 7 8 7 10 1615 

5370215 5 8 6 9 11 1720 

5370216 20 31 18 20 18 2783 

5370217.01 4 10 9 6 5 3340 



5370217.02 3 15 17 14 15 2909 

5370218 17 29 15 12 11 5728 

5370219 16 28 19 23 21 3194 

5370220 9 21 11 8 10 3900 

5370221 5 6 8 9 10 2048 

5370222 13 21 18 19 14 6460 

5370223.01 5 8 7 6 7 2286 

5370223.02 3 10 6 12 6 4197 

5370223.05 4 5 8 21 12 2036 

5370223.06 7 8 9 25 10 2816 

5370223.07 6 15 10 16 12 3065 

5370223.09 10 26 12 44 28 4656 

5370223.1 2 12 8 20 20 2643 

5370223.11 32 49 25 34 20 8691 

5370223.12 14 25 6 11 22 7383 

5370224 5 24 11 13 11 5108 

Total 848 1622 1626 1634 1596 418994 

 

Table 28. Weights 

Cencus  tracts 

Scenario 1 Scenario 2 Scenario 3 

Model1 Model 2 Model3 Model1 Model 2 Model3 Model1 Model 2 Model3 

5370001.01 4.72% 7.05% 9.63% 2.36% 3.53% 4.81% 0.94% 1.41% 1.93% 

5370001.02 4.07% 7.30% 7.47% 2.04% 3.65% 3.74% 0.81% 1.46% 1.49% 

5370001.04 12.91% 11.34% 6.97% 6.46% 5.67% 3.48% 2.58% 2.27% 1.39% 

5370001.05 8.84% 8.79% 13.50% 4.42% 4.40% 6.75% 1.77% 1.76% 2.70% 

5370001.06 13.15% 13.08% 5.36% 6.57% 6.54% 2.68% 2.63% 2.62% 1.07% 

5370001.07 6.24% 9.31% 9.53% 3.12% 4.66% 4.77% 1.25% 1.86% 1.91% 

5370001.08 11.22% 11.16% 5.33% 5.61% 5.58% 2.67% 2.24% 2.23% 1.07% 

5370001.09 12.40% 15.70% 11.48% 6.20% 7.85% 5.74% 2.48% 3.14% 2.30% 

5370002.01 3.69% 8.26% 7.52% 1.84% 4.13% 3.76% 0.74% 1.65% 1.50% 

5370002.02 17.71% 10.58% 4.64% 8.86% 5.29% 2.32% 3.54% 2.12% 0.93% 

5370002.03 13.93% 12.32% 15.77% 6.96% 6.16% 7.88% 2.79% 2.46% 3.15% 

5370002.04 12.13% 12.07% 5.70% 6.06% 6.03% 2.85% 2.43% 2.41% 1.14% 

5370003.01 13.56% 9.89% 12.89% 6.78% 4.95% 6.45% 2.71% 1.98% 2.58% 

5370003.02 9.64% 8.22% 9.82% 4.82% 4.11% 4.91% 1.93% 1.64% 1.96% 

5370003.03 7.22% 12.58% 14.72% 3.61% 6.29% 7.36% 1.44% 2.52% 2.94% 

5370003.04 8.22% 6.36% 7.44% 4.11% 3.18% 3.72% 1.64% 1.27% 1.49% 

5370004.01 6.77% 8.08% 9.66% 3.39% 4.04% 4.83% 1.35% 1.62% 1.93% 

5370004.02 7.39% 7.35% 7.53% 3.70% 3.68% 3.76% 1.48% 1.47% 1.51% 

5370005.01 10.11% 7.54% 6.01% 5.05% 3.77% 3.00% 2.02% 1.51% 1.20% 

5370005.02 6.74% 8.04% 8.23% 3.37% 4.02% 4.12% 1.35% 1.61% 1.65% 

5370005.03 7.88% 8.96% 9.18% 3.94% 4.48% 4.59% 1.58% 1.79% 1.84% 

5370006.00 6.75% 5.76% 4.91% 3.38% 2.88% 2.46% 1.35% 1.15% 0.98% 

5370007.00 11.95% 8.92% 12.18% 5.98% 4.46% 6.09% 2.39% 1.78% 2.44% 

5370008.00 27.64% 13.75% 20.12% 13.82% 6.88% 10.06% 5.53% 2.75% 4.02% 

5370009.00 7.48% 8.93% 7.62% 3.74% 4.46% 3.81% 1.50% 1.79% 1.52% 

5370010.00 8.92% 8.88% 10.60% 4.46% 4.44% 5.30% 1.78% 1.78% 2.12% 

5370011.00 13.68% 11.66% 21.89% 6.84% 5.83% 10.95% 2.74% 2.33% 4.38% 

5370012.00 10.90% 18.08% 18.51% 5.45% 9.04% 9.26% 2.18% 3.62% 3.70% 



5370013.00 11.99% 11.93% 16.80% 6.00% 5.97% 8.40% 2.40% 2.39% 3.36% 

5370014.00 11.15% 11.09% 19.47% 5.57% 5.55% 9.74% 2.23% 2.22% 3.89% 

5370015.00 39.34% 22.37% 54.39% 19.67% 11.19% 27.20% 7.87% 4.47% 10.88% 

5370016.00 31.33% 27.41% 43.07% 15.66% 13.71% 21.54% 6.27% 5.48% 8.61% 

5370017.00 34.70% 21.25% 27.19% 17.35% 10.62% 13.60% 6.94% 4.25% 5.44% 

5370019.00 7.46% 8.66% 8.87% 3.73% 4.33% 4.43% 1.49% 1.73% 1.77% 

5370020.00 4.81% 7.18% 8.57% 2.40% 3.59% 4.29% 0.96% 1.44% 1.71% 

5370021.00 5.54% 5.51% 6.77% 2.77% 2.76% 3.39% 1.11% 1.10% 1.36% 

5370022.00 5.16% 4.11% 6.31% 2.58% 2.06% 3.16% 1.03% 0.82% 1.26% 

5370023.00 9.40% 11.23% 15.33% 4.70% 5.62% 7.67% 1.88% 2.25% 3.07% 

5370024.00 8.86% 10.58% 12.64% 4.43% 5.29% 6.32% 1.77% 2.12% 2.53% 

5370025.00 9.21% 6.11% 15.64% 4.60% 3.05% 7.82% 1.84% 1.22% 3.13% 

5370026.01 11.94% 10.40% 10.65% 5.97% 5.20% 5.32% 2.39% 2.08% 2.13% 

5370026.02 41.56% 17.72% 21.17% 20.78% 8.86% 10.59% 8.31% 3.55% 4.23% 

5370026.03 26.24% 16.78% 26.73% 13.12% 8.39% 13.37% 5.25% 3.36% 5.35% 

5370026.04 14.24% 11.33% 31.91% 7.12% 5.67% 15.95% 2.85% 2.27% 6.38% 

5370026.05 7.99% 6.81% 11.63% 3.99% 3.41% 5.81% 1.60% 1.36% 2.33% 

5370026.06 4.15% 6.19% 5.28% 2.07% 3.10% 2.64% 0.83% 1.24% 1.06% 

5370027.00 11.03% 3.66% 33.71% 5.51% 1.83% 16.85% 2.21% 0.73% 6.74% 

5370028.00 9.45% 6.27% 11.23% 4.73% 3.13% 5.62% 1.89% 1.25% 2.25% 

5370029.00 6.81% 4.52% 8.09% 3.40% 2.26% 4.05% 1.36% 0.90% 1.62% 

5370030.00 5.75% 5.73% 9.38% 2.88% 2.86% 4.69% 1.15% 1.15% 1.88% 

5370031.00 9.79% 9.74% 9.97% 4.89% 4.87% 4.99% 1.96% 1.95% 1.99% 

5370032.00 14.72% 8.37% 8.57% 7.36% 4.19% 4.29% 2.95% 1.67% 1.71% 

5370033.00 7.95% 9.89% 4.05% 3.98% 4.95% 2.03% 1.59% 1.98% 0.81% 

5370034.00 2.65% 2.64% 5.41% 1.33% 1.32% 2.70% 0.53% 0.53% 1.08% 

5370035.00 4.56% 6.81% 9.30% 2.28% 3.41% 4.65% 0.91% 1.36% 1.86% 

5370036.00 23.71% 22.02% 30.60% 11.86% 11.01% 15.30% 4.74% 4.40% 6.12% 

5370037.00 8.99% 8.94% 21.37% 4.49% 4.47% 10.68% 1.80% 1.79% 4.27% 

5370038.00 9.64% 5.75% 9.82% 4.82% 2.88% 4.91% 1.93% 1.15% 1.96% 

5370039.00 3.62% 4.81% 7.38% 1.81% 2.40% 3.69% 0.72% 0.96% 1.48% 

5370040.00 11.77% 8.78% 11.99% 5.88% 4.39% 5.99% 2.35% 1.76% 2.40% 

5370041.00 21.78% 18.58% 22.19% 10.89% 9.29% 11.10% 4.36% 3.72% 4.44% 

5370042.00 8.74% 8.70% 10.69% 4.37% 4.35% 5.34% 1.75% 1.74% 2.14% 

5370043.00 9.75% 8.09% 8.28% 4.88% 4.04% 4.14% 1.95% 1.62% 1.66% 

5370044.00 12.39% 7.40% 8.84% 6.20% 3.70% 4.42% 2.48% 1.48% 1.77% 

5370045.00 37.92% 18.05% 21.84% 18.96% 9.02% 10.92% 7.58% 3.61% 4.37% 

5370046.00 15.01% 14.94% 19.12% 7.51% 7.47% 9.56% 3.00% 2.99% 3.82% 

5370047.00 10.98% 6.83% 9.79% 5.49% 3.41% 4.89% 2.20% 1.37% 1.96% 

5370048.00 8.72% 13.02% 35.54% 4.36% 6.51% 17.77% 1.74% 2.60% 7.11% 

5370049.00 8.21% 13.61% 13.93% 4.10% 6.81% 6.97% 1.64% 2.72% 2.79% 

5370050.00 10.50% 6.27% 12.84% 5.25% 3.13% 6.42% 2.10% 1.25% 2.57% 

5370051.00 6.06% 6.03% 8.23% 3.03% 3.01% 4.11% 1.21% 1.21% 1.65% 

5370052.00 3.70% 3.69% 3.77% 1.85% 1.84% 1.89% 0.74% 0.74% 0.75% 

5370053.00 7.80% 7.76% 5.96% 3.90% 3.88% 2.98% 1.56% 1.55% 1.19% 

5370054.00 6.38% 8.47% 19.51% 3.19% 4.23% 9.76% 1.28% 1.69% 3.90% 

5370055.00 5.31% 5.29% 12.18% 2.66% 2.64% 6.09% 1.06% 1.06% 2.44% 

5370056.00 6.78% 5.40% 13.82% 3.39% 2.70% 6.91% 1.36% 1.08% 2.76% 

5370057.00 8.98% 7.15% 21.97% 4.49% 3.58% 10.98% 1.80% 1.43% 4.39% 

5370058.00 2.57% 5.12% 20.98% 1.29% 2.56% 10.49% 0.51% 1.02% 4.20% 

5370059.00 5.45% 7.23% 9.25% 2.72% 3.61% 4.63% 1.09% 1.45% 1.85% 

5370060.00 12.48% 9.94% 20.35% 6.24% 4.97% 10.18% 2.50% 1.99% 4.07% 

5370061.00 5.18% 5.15% 7.91% 2.59% 2.58% 3.96% 1.04% 1.03% 1.58% 

5370062.00 9.72% 11.60% 9.90% 4.86% 5.80% 4.95% 1.94% 2.32% 1.98% 

5370063.00 3.93% 7.82% 12.01% 1.97% 3.91% 6.01% 0.79% 1.56% 2.40% 

5370064.00 20.69% 17.64% 33.12% 10.34% 8.82% 16.56% 4.14% 3.53% 6.62% 

5370065.00 3.64% 5.43% 12.97% 1.82% 2.71% 6.48% 0.73% 1.09% 2.59% 

5370066.00 6.97% 4.62% 10.65% 3.49% 2.31% 5.33% 1.39% 0.92% 2.13% 



5370067.00 7.21% 11.96% 22.04% 3.61% 5.98% 11.02% 1.44% 2.39% 4.41% 

5370068.00 6.94% 6.90% 17.67% 3.47% 3.45% 8.83% 1.39% 1.38% 3.53% 

5370069.00 11.01% 3.65% 29.92% 5.51% 1.83% 14.96% 2.20% 0.73% 5.98% 

5370070.00 4.38% 3.27% 15.63% 2.19% 1.64% 7.81% 0.88% 0.65% 3.13% 

5370071.00 6.45% 3.67% 6.57% 3.22% 1.83% 3.28% 1.29% 0.73% 1.31% 

5370072.01 3.21% 4.79% 4.90% 1.60% 2.40% 2.45% 0.64% 0.96% 0.98% 

5370072.02 7.28% 7.24% 10.38% 3.64% 3.62% 5.19% 1.46% 1.45% 2.08% 

5370072.03 7.69% 8.61% 4.90% 3.85% 4.31% 2.45% 1.54% 1.72% 0.98% 

5370072.04 7.08% 9.86% 12.98% 3.54% 4.93% 6.49% 1.42% 1.97% 2.60% 

5370073.00 5.14% 2.56% 7.86% 2.57% 1.28% 3.93% 1.03% 0.51% 1.57% 

5370080.01 14.05% 12.71% 13.01% 7.02% 6.35% 6.50% 2.81% 2.54% 2.60% 

5370080.03 7.65% 9.31% 5.20% 3.83% 4.65% 2.60% 1.53% 1.86% 1.04% 

5370080.04 12.10% 10.94% 3.92% 6.05% 5.47% 1.96% 2.42% 2.19% 0.78% 

5370080.05 12.96% 12.89% 8.80% 6.48% 6.45% 4.40% 2.59% 2.58% 1.76% 

5370081.00 10.43% 10.38% 8.86% 5.22% 5.19% 4.43% 2.09% 2.08% 1.77% 

5370082.00 8.68% 7.41% 7.58% 4.34% 3.70% 3.79% 1.74% 1.48% 1.52% 

5370083.00 5.51% 7.32% 5.62% 2.76% 3.66% 2.81% 1.10% 1.46% 1.12% 

5370084.01 7.07% 11.26% 12.97% 3.54% 5.63% 6.48% 1.41% 2.25% 2.59% 

5370084.02 8.12% 9.42% 11.02% 4.06% 4.71% 5.51% 1.62% 1.88% 2.20% 

5370084.03 19.77% 14.31% 20.14% 9.88% 7.15% 10.07% 3.95% 2.86% 4.03% 

5370084.04 4.38% 4.36% 12.27% 2.19% 2.18% 6.13% 0.88% 0.87% 2.45% 

5370084.05 10.64% 14.56% 17.62% 5.32% 7.28% 8.81% 2.13% 2.91% 3.52% 

5370085.01 12.21% 11.28% 8.89% 6.11% 5.64% 4.44% 2.44% 2.26% 1.78% 

5370085.02 9.77% 12.76% 4.98% 4.89% 6.38% 2.49% 1.95% 2.55% 1.00% 

5370085.03 7.10% 4.95% 7.23% 3.55% 2.47% 3.62% 1.42% 0.99% 1.45% 

5370086.00 6.38% 9.31% 5.63% 3.19% 4.66% 2.82% 1.28% 1.86% 1.13% 

5370100.00 4.08% 4.69% 2.88% 2.04% 2.34% 1.44% 0.82% 0.94% 0.58% 

5370101.00 4.50% 3.88% 3.06% 2.25% 1.94% 1.53% 0.90% 0.78% 0.61% 

5370120.01 10.98% 15.30% 7.61% 5.49% 7.65% 3.80% 2.20% 3.06% 1.52% 

5370120.02 20.96% 19.12% 19.58% 10.48% 9.56% 9.79% 4.19% 3.82% 3.92% 

5370121.00 14.83% 21.09% 12.95% 7.42% 10.54% 6.48% 2.97% 4.22% 2.59% 

5370122.01 11.50% 9.42% 8.96% 5.75% 4.71% 4.48% 2.30% 1.88% 1.79% 

5370122.02 18.60% 18.51% 11.25% 9.30% 9.26% 5.63% 3.72% 3.70% 2.25% 

5370123.00 20.70% 13.01% 7.77% 10.35% 6.51% 3.89% 4.14% 2.60% 1.55% 

5370124.00 28.91% 21.57% 19.98% 14.45% 10.79% 9.99% 5.78% 4.31% 4.00% 

5370130.02 20.44% 19.41% 19.87% 10.22% 9.71% 9.94% 4.09% 3.88% 3.97% 

5370130.03 46.04% 18.32% 17.59% 23.02% 9.16% 8.79% 9.21% 3.66% 3.52% 

5370131.00 16.57% 11.54% 8.44% 8.29% 5.77% 4.22% 3.31% 2.31% 1.69% 

5370132.00 10.87% 8.11% 8.30% 5.43% 4.06% 4.15% 2.17% 1.62% 1.66% 

5370133.00 18.69% 8.68% 6.35% 9.35% 4.34% 3.17% 3.74% 1.74% 1.27% 

5370140.02 5.22% 6.30% 4.18% 2.61% 3.15% 2.09% 1.04% 1.26% 0.84% 

5370140.03 6.89% 17.15% 11.41% 3.45% 8.57% 5.71% 1.38% 3.43% 2.28% 

5370140.04 9.68% 18.20% 14.25% 4.84% 9.10% 7.13% 1.94% 3.64% 2.85% 

5370141.00 10.16% 11.66% 7.16% 5.08% 5.83% 3.58% 2.03% 2.33% 1.43% 

5370142.01 2.47% 5.52% 5.66% 1.23% 2.76% 2.83% 0.49% 1.10% 1.13% 

5370142.02 3.16% 7.08% 7.25% 1.58% 3.54% 3.63% 0.63% 1.42% 1.45% 

5370143.00 28.25% 44.99% 25.91% 14.13% 22.49% 12.95% 5.65% 9.00% 5.18% 

5370144.00 6.23% 15.22% 5.77% 3.12% 7.61% 2.89% 1.25% 3.04% 1.15% 

5370200.00 19.31% 24.34% 23.60% 9.65% 12.17% 11.80% 3.86% 4.87% 4.72% 

5370201.00 12.15% 12.09% 8.57% 6.08% 6.05% 4.29% 2.43% 2.42% 1.71% 

5370202.00 14.26% 9.93% 8.71% 7.13% 4.97% 4.36% 2.85% 1.99% 1.74% 

5370203.00 27.14% 15.64% 33.47% 13.57% 7.82% 16.74% 5.43% 3.13% 6.69% 

5370204.00 3.78% 5.64% 5.77% 1.89% 2.82% 2.89% 0.76% 1.13% 1.15% 

5370205.01 13.76% 7.30% 15.88% 6.88% 3.65% 7.94% 2.75% 1.46% 3.18% 

5370205.02 12.65% 6.87% 7.03% 6.32% 3.43% 3.51% 2.53% 1.37% 1.41% 

5370206.00 4.77% 3.96% 4.86% 2.39% 1.98% 2.43% 0.95% 0.79% 0.97% 

5370207.01 8.86% 8.23% 4.81% 4.43% 4.11% 2.41% 1.77% 1.65% 0.96% 

5370207.02 5.48% 10.90% 4.34% 2.74% 5.45% 2.17% 1.10% 2.18% 0.87% 



5370207.03 9.61% 10.52% 9.79% 4.81% 5.26% 4.90% 1.92% 2.10% 1.96% 

5370207.04 6.24% 7.76% 11.12% 3.12% 3.88% 5.56% 1.25% 1.55% 2.22% 

5370208.00 5.34% 7.98% 9.53% 2.67% 3.99% 4.76% 1.07% 1.60% 1.91% 

5370209.00 20.27% 11.21% 20.65% 10.14% 5.60% 10.33% 4.05% 2.24% 4.13% 

5370210.00 6.85% 8.52% 15.71% 3.43% 4.26% 7.85% 1.37% 1.70% 3.14% 

5370211.00 4.44% 5.53% 5.66% 2.22% 2.76% 2.83% 0.89% 1.11% 1.13% 

5370212.00 27.59% 16.47% 19.68% 13.79% 8.24% 9.84% 5.52% 3.29% 3.94% 

5370213.00 9.02% 6.73% 5.74% 4.51% 3.37% 2.87% 1.80% 1.35% 1.15% 

5370214.00 12.76% 11.11% 16.26% 6.38% 5.56% 8.13% 2.55% 2.22% 3.25% 

5370215.00 8.99% 13.42% 16.79% 4.49% 6.71% 8.39% 1.80% 2.68% 3.36% 

5370216.00 16.67% 18.43% 16.98% 8.33% 9.21% 8.49% 3.33% 3.69% 3.40% 

5370217.01 6.94% 4.61% 3.93% 3.47% 2.30% 1.97% 1.39% 0.92% 0.79% 

5370217.02 15.06% 12.34% 13.54% 7.53% 6.17% 6.77% 3.01% 2.47% 2.71% 

5370218.00 6.75% 5.37% 5.04% 3.37% 2.69% 2.52% 1.35% 1.07% 1.01% 

5370219.00 15.33% 18.46% 17.26% 7.66% 9.23% 8.63% 3.07% 3.69% 3.45% 

5370220.00 7.27% 5.26% 6.73% 3.63% 2.63% 3.37% 1.45% 1.05% 1.35% 

5370221.00 10.07% 11.27% 12.82% 5.03% 5.63% 6.41% 2.01% 2.25% 2.56% 

5370222.00 7.18% 7.54% 5.69% 3.59% 3.77% 2.84% 1.44% 1.51% 1.14% 

5370223.01 7.89% 6.73% 8.04% 3.95% 3.37% 4.02% 1.58% 1.35% 1.61% 

5370223.02 3.68% 7.33% 3.75% 1.84% 3.67% 1.88% 0.74% 1.47% 0.75% 

5370223.05 10.13% 26.45% 15.47% 5.06% 13.22% 7.74% 2.03% 5.29% 3.09% 

5370223.06 8.24% 22.76% 9.32% 4.12% 11.38% 4.66% 1.65% 4.55% 1.86% 

5370223.07 8.41% 13.39% 10.28% 4.20% 6.69% 5.14% 1.68% 2.68% 2.06% 

5370223.09 6.64% 24.23% 15.79% 3.32% 12.12% 7.89% 1.33% 4.85% 3.16% 

5370223.10 7.80% 19.40% 19.87% 3.90% 9.70% 9.93% 1.56% 3.88% 3.97% 

5370223.11 7.41% 10.03% 6.04% 3.71% 5.02% 3.02% 1.48% 2.01% 1.21% 

5370223.12 2.09% 3.82% 7.82% 1.05% 1.91% 3.91% 0.42% 0.76% 1.56% 

5370224.00 5.55% 6.53% 5.65% 2.77% 3.26% 2.83% 1.11% 1.31% 1.13% 

 

 

Table 29. A summary of negative binomial distribution – based models. 

 

 

 

 

 

Model 1 Model 2 Model 3 

Parameter
s B 

St. 
Error 

p-
value 

Parameter
s B 

St.Err
or 

p-
value 

Paramete
rs B 

St.Err
or 

p-
value 

Intercept 3.19 0.73 0 Intercept 4.17 0.829 0 Intercept 6.35 1.57 0 
LEDU -2.04 0.02 0.006 LEDU -3.03 0.016 0.051 ODWE 1.02 0.01 0.001 
[INC=1] -1.78 0.35 0 [INC=1] -0.98 0.403 0.015 DDWE -0.96 0.02 0.005 
[INC=2] -0.93 0.2 0 [INC=2] -0.41 0.233 0.081 LEDU -2.76 0.02 0 
[INC=3] 0a . . [INC=3] 0 . . NPPCF -0.85 0.46 0.066 

SEN 1.06 0.01 0 SINPAR -1.53 0.001 0.048 
    PWSCT 2.3 0.01 0.001 CWCHILD 2.16 0.001 0.049 
            UNEMP -3.3 0.109 0.002         



Table 30. Abbreviations 

Abbreviations Variables 

CTN cencus tract name 

CTUID cencus tract id 

POP total population 2006 

AREA land area in sq.Km 2006 

POP_DEN Population density 

CHILD total number of children  0 to 19 years 

ADUL total number of adults 20 to 64 years 

SEN total number of seniors over 65 years 

MAL males per c.t 2006 

FEM females per c.t 2006 

CNCHILD Married couples Without children at home 

CWCHILD Married couples  With children at home 

SINPAR Total lone-parent families  

DWE Total number of occupied private dwellings by structural type of dwelling - 100% data 

SIDDWE 

Total number of occupied private dwellings by structural type of dwelling - 100% data / 

Single-detached house 

DDWE 

Total number of occupied private dwellings by structural type of dwelling - 100% data / 

Apartment, duplex 

ADWE 

Total number of occupied private dwellings by structural type of dwelling - 100% data / 

Apartments  

ODWE Total number of occupied private dwellings by housing tenure - 20% sample data / Owned 

RDWE Total number of occupied private dwellings by housing tenure - 20% sample data / Rented 

HHLD Total number of households 

NCPCF Average number of children at home per census family 

NPPCF Average number of persons per census family 

NPPHHLD Average number of persons in private households 

HINC30 Household income in 2005 of private households - 20% sample data / Under $30,000 

HINC80 Household income in 2005 of private households - 20% sample data / Under $80,000 

HINCO80 Household income in 2005 of private households - 20% sample data / Over $80,000 

AHINC Average household income $ 

ATAXINC Average after tax income $ 

VHHLD vehicles per hhld 2006 

NHEV number of Hybrid Electric Vehicles POLK data 2012 

LHHLD licences per cencus tract 2006 

FTEMPL full time employers per cencus tract 2006 

PTEMPL part time workers per cencus tract 2006 

HWORK home workers cencus tract 2006 

UNEMP unemployed per cencus tract 

LEDU 

Total population by lowest level of education (including high school certificate, apprenticeship 

or trades certificate, college, CeGep or other non-university certificate or diploma) 



MEDU 

Total population be medium level of education (including university certificate, below 

bachelor level, bachelor's degree, above bachelor level, degree in medicine, dentistry, 

otometry) 

HEDU Total population by highest level of education (including master's degree, earned doctorate) 

PWSCT Usual place of work ( same census subdivision of residence) 

PWDCT Usual place of work ( different census subdivision of residence) 

 

 

 

 


