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Περίληψη 

 
Στην παρούσα µεταπτυχιακή µελέτη θα ασχοληθούµε µε το Αβελιανό-
Higgs µοντέλο και εν συνεχεία θα επεκταθούµε σε µη-Αβελιανές 
αυθόρµητα σπασµένες θεωρίες βαθµίδος, και συγκεκριµένα το 
Καθιερωµένο Πρότυπο, προκειµένου να εξετάσουµε τον τρόπο µε τον 
οποίο επιδρούν οι κβαντικές διορθώσεις στις φυσικές παραµέτρους των 
µοντέλων, όπως είναι οι σταθερές σύζευξης και οι µάζες. Συγκεκριµένα, 
ενώ µπορούµε να διαλέξουµε µια συγκεκριµένη βαθµίδα για να 
υπολογίσουµε το εµείς κάνουµε όλη την διαδικασία σε δύο ξεχωριστές 
βαθµίδες. Ειδικότερα, ξεκινάµε τον υπολογισµό µε την βαθµίδα Unitary, 
όπου εκεί υπάρχουν µόνο οι φυσικοί βαθµοί ελευθερίας, και εν συνεχεία 
χρησιµοποιώντας το υπόβαθρο της διαταρακτικής Κβαντικής Θεωρίας 
Πεδίου, δηλαδή µέσω των διαγραµµάτων Feynman, εισάγουµε 
διαράµµατα ενός βρόνχου ως κβαντικές διορθώσεις αποκοµίζοντας την 
ενεργό Λαγκραντζιανή την οποία επανακανονικοποιούµε µε φυσικό 
τρόπο. Πλέον οι επανακανονικοποιηµένες παράµετροι µεταβάλλονται 
ως συνάρτηση της ενεργειακής κλίµακας. Εν συνεχεία, 
πραγµατοποιούµε ακριβώς τον ίδιο υπολογισµό και σε µια τυχαία Rξ 
βαθµίδα όπου και πάλι αποκοµίζουµε τις φυσικές ποσότητες. Τώρα 
όµως δείχνουµε µε ποιον τρόπο οι τελευταίες είναι ανεξάρτητες της 
βαθµίδας και ίδιες µε αυτές της Unitary βαθµίδας. 

Τώρα, το ενδιαφέρον µας στρέφεται στην επανακανονικοποιηµένη µάζα 
του Higgs µποζονίου, καθώς εκτός από λογαριθµικές κβαντικές 
διορθώσεις δέχεται και τετραγωνικές, ανάλογες των µαζών των 
σωµατιδίων µε τα οποία αλληλεπιδρά το πεδίο Higgs. Αυτό το 
αποτέλεσµα οδηγεί στο πρόβληµα της Ιεραρχίας και ο βασικός στόχος 
της παρούσας διδακτορικής διατριβής είναι η µελέτη µιας νέας 
προσέγγισης του τρόπου διαχείρισης του προβλήµατος αλλά και µιας 
πιθανής κατεύθυνσης επίλυσης του. Προκειµένου αυτό να καταστεί 
δυνατό, ακολουθούµε µια συγκεκριµένη µεθοδολογία σύµφωνα µε την 
οποία υπολογίζουµε για το Αβελιανό-Higgs µοντέλο και το Καθιερωµένο 
Πρότυπο στις τέσσερις διαστάσεις, τις ροές της οµάδας 
επανακανονικοποίησης που αφορούν συγκεκριµένες ανεξάρτητες 
παραµέτρους. Εν συνεχεία, χρησιµοποιώντας την σχέση µεταξύ γυµνών 
και επανακανονικοποιηµένων παραµέτρων φτιάχνουµε έναν ν-διάστατο 
χώρο φάσεων για τις v ανεξάρτητες παραµέτρους. Εκεί σχεδιάζονται οι 
Γραµµές Σταθερής Φυσικής οι οποίες καταγράφουν την µεταβολή των 
ανεξάρτητων παραµέτρων ως προς την ενεργειακή κλίµακα απαιτώντας 
οι φυσικές ποσότητες, όπως η µάζα του Higgs µποζονίου, να 
παραµένουν σταθερές. Με αυτόν τον τρόπο αποκαλύπτεται το 



πρόβληµα της Ιεραρχίας και βλέπουµε την εξέλιξη του µέχρι το πόλο 
Landau. Το επόµενο βήµα είναι να θεωρήσουµε το ίδιο µοντέλο 
προερχόµενο από τις πέντε διαστάσεις, µε συνοριακές συνθήκες 
orbifold, εισάγοντας τις καταστάσεις Kaluza-Klein. Αυτό µας οδηγεί πάλι 
στις τέσσερις διαστάσεις αλλά τώρα έχουµε έναν πύργο Kaluza-Klein 
σωµατιδίων για κάθε ένα από τα είδη υπάρχοντα σωµατίδια. 
Σχεδιάζοντας πάλι τις Γραµµές Σταθερής Φυσικής θα δούµε αν και πώς 
τα νέα σωµατίδια ακυρώνουν τους τετραγωνικούς όρους από την 
επανακανονικοποιηµένη µάζα του Higgs µποζονίου δίνοντας µια διέξοδο 
στο Πρόβληµα της Ιεραρχίας. Τέλος γνωρίζουµε ότι το πρόβληµα αυτό 
έγκειται στο θεωρητικό πλαίσιο της Φυσικότητας, οπότε πέρα από το 
πρόβληµα της Ιεραρχίας εξετάζουµε το αν και πως συνδέονται µε την 
µεθοδολογία µας άλλα προβλήµατα αυτού του πλαισίου. 





Εισαγωγή 

Αδιαµφισβήτητο γεγονός είναι ότι το Καθιερωµένο Πρότυπο των 
στοιχειωδών σωµατιδίων έχει µελετηθεί διεξοδικά και έχει επιβεβαιωθεί 
από όλα τα µέχρι τώρα πειραµατικά δεδοµένα. Η τελευταία εξαιρετικά 
σηµαντική επιβεβαίωση του έρχεται από την πρόσφατη πειραµατική 
ανακάλυψη του σωµατιδίου Higgs του αντίστοιχου µηχανισµού, ο οποίος 
αποτελεί τον ακρογωνιαίο λίθο του Καθιερωµένου Προτύπου. Το πρώτο 
στοιχείο το οποίο αναδεικνύει την σηµασία του πεδίου Higgs έγκειται στο 
γεγονός ότι µέσω της αλληλεπίδρασης του µε τα άλλα σωµατίδια, τα 
τελευταία αποκτούν µάζα χωρίς όµως να υπάρχει ρητά σπάσιµο της 
συµµετρίας βαθµίδος όταν περιλαµβάνονται σωµατίδια βαθµίδος µε 
µάζα. Αυτό επιτυγχάνεται όταν το πεδίο Higgs αποκτά µια αναµενόµενη 
τιµή στο κενό µέσω του αυθόρµητου σπασίµατος της συµµετρίας 
βαθµίδος, διατηρώντας την συµµετρία Lorentz, και το οποίο έχει σαν 
αποτέλεσµα τα σωµατίδια που συζεύγονται µαζί του να αποκτούν µάζα. 
Στην ουσία η συµµετρία βαθµίδας έχει κρυφτεί και εξακολουθεί να 
διατηρείται κάτι που καθιστά το Καθιερωµένο Πρότυπο µια 
επανακανονικοποιήσηµη θεωρία. Πέρα από τον µηχανισµό Higgs αυτό 
που παίζει εξίσου σηµαντικό ρόλο στην κατανόηση του φυσικού κόσµου 
είναι οι παράµετροι που έχει το δυναµικό Higgs, δηλαδή η µάζα του και η 
σταθερά ζεύξης µε τον εαυτό του λ. Ξεκινώντας µε την δεύτερη 
παράµετρο, και πραγµατοποιώντας µια ποιοτική ανάλυση, γνωρίζουµε 
ότι το επανακανονικοποιηµένο λ µεταβάλλεται ως συνάρτηση της 
ενεργειακής κλίµακας επηρεαζόµενο κατά κόρων από την τιµή της µάζας 
του Higgs σωµατιδίου. Για την ακρίβεια εάν η τελευταία είναι πολύ 
µεγάλη τότε, για µια σταθερή αναµενόµενη τιµή του κενού, το λ έχει 
µεγάλη τιµή µε αποτέλεσµα να οδηγήται προς το πόλο Landau η 
επανακανονικοποιηµένη λ. Άρα µεγαλύτερη µάζα του Higgs σωµατιδίου 
συνεπάγεται µεγαλύτερο λ που οδηγεί τον πόλο Landau σε πειραµατικά 
επιτρεπόµενες περιοχές. Αυτό σηµαίνει ότι σε εκείνη την ενεργειακή 
κλίµακα η θεωρία διαταραχών δεν ισχύει και θα πρέπει να υπάρχει µια 
νέα µη διαταρακτική θεωρία ισχυρών αλληλεπιδράσεων. Το όριο αυτό 
για το λ ονοµάζεται Τετριµµένο Όριο. Αντιθέτως, εάν η µάζα του Higgs 
σωµατιδίου είναι µικρή τότε εµφανίζεται ένα άλλο ενδιαφέρον όριο όπου 
το επανακανονικοποιηµένο λ επηρεάζεται κυρίως από τα βαρέα 
κουάρκς, και δει από το top κουάρκ, αποκοµίζοντας αρνητικές τιµές στις 
υψηλές ενέργειες. Αυτό δηλώνει µια αρνητική συνεισφορά στο δυναµικό 
Higgs που έχει σαν αποτέλεσµα η θεωρία να γίνεται ασταθής και το 
Καθιερωµένο Πρότυπο να γίνεται µη συνεπές πάνω από µια ενεργειακή 
κλίµακα. Το όριο αυτό λέγεται Όριο Αστάθειας. Βέβαια η µάζα του Higgs 
σωµατιδίου µετρήθηκε πειραµατικά και η τιµή της οδηγεί το λ να είναι 
ανάµεσα στα δύο όρια, δηλαδή στο Όριο Μετασταθερότητας. Η µελέτη 



της επανακανονικοποιηµένης µάζας του Higgs σωµατιδίου είναι εξίσου 
σηµαντική και αποτελεί το βασικό θέµα της παρούσας διδακτορικής 
διατριβής. Συγκεκριµένα, η τελευταία έχει µια πολύ ενδιαφέρουσα 
ιδιότητα σύµφωνα µε την οποία µεταβάλλεται µε την ενεργειακή κλίµακα 
λογαριθµικά αλλά και τετραγωνικά ως προς τις µάζες των σωµατιδίων 
που αλληλεπιδρούν µε το πεδίο Higgs. Αρχικά γνωρίζουµε ότι η φυσική 
µάζα του πεδίου Higgs είναι µετρήσιµη πειραµατικά και είναι ίση µε 125 
GeV. Οπότε παρατηρήται µια µεγάλη διαφορά µεταξύ των τετραγώνων 
της φυσικής και της επανακανονικοποιηµένης µάζας του Higgs, η οποία 
είναι ανάλογη των τετραγώνων των µαζών των σωµατιδίων που 
αλληλεπιδρούν µε το πεδίο Higgs καθώς και του ίδιου. Άρα από την 
στιγµή που τα βαρέα σωµατίδια δεν αποσυζεύγονται, η µάζα του πεδίου 
Higgs είναι ευαίσθητη στις υψηλές ενέργειες. Υποθέτοντας ότι το 
Καθιερωµένο Πρότυπο είναι το όριο στις χαµηλές ενέργειες µιας πιο 
ολοκληρωµένης θεωρίας που εµφανίζεται πάνω από µια ενεργειακή 
κλίµακα Λ, τότε η γυµνή µάζα του Higgs σωµατιδίου ισούται µε το 
άθροισµα της φυσική µάζας και του τετραγώνου του Λ. Ως συνέπεια 
αυτού, και αφού η φυσική µάζα είναι ίση µε 125 GeV, εάν το Λ ανήκει 
στην κλίµακα Planck, θα υπάρχει ένα τεράστιο ενεργειακό κενό µεταξύ 
των δύο. Το γεγονός ότι η φυσική µάζα του Higgs σωµατιδίου είναι τόσο 
µικρότερη από το Λ οδηγεί στο Πρόβληµα της Ιεραρχίας. Η 
σπουδαιότητα του προβλήµατος αυτού έγκειται στο γεγονός ότι 
απαιτώντας η φυσική µάζα του πεδίου Higgs να παραµένει ίση µε την 
πειραµατική της τιµή, θα πρέπει να υπάρχει ακύρωση όλων των 
ευαίσθητων στις υψηλές ενέργειες τετραγωνικών όρων µε τεράστια 
ακρίβεια, το οποίο δεν προκύπτει ως φυσική διαδικασία της θεωρίας. Το 
παρόν πρόβληµα έγκειται στο θεωρητικό πλαίσιο της Φυσικότητας, 
συµφωνα µε το οποίο όλες οι παράµετροι µιας στοιχειώδους θεωρίας 
πρέπει να είναι της τάξης της µονάδας. 
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1 Abelian Higgs Model in the Unitary Gauge

In the present work we demonstrate how to perform the on-shell renormalization of the

Abelian Higgs Model so as to obtain the physical quantities. In order to do so we start

from the classical Lagrangian of the model that we study in a general gauge which reads

LAH = �1

4
F 2
µ⌫ �

1

2⇠
(@µA

µ)2 + |DµH|2 +m2|H|2 � �|H|4 + const. (1)

The next step is to consider the spontaneous symmetry breaking of the Z2 global

symmetry of the theory which through the Higgs mechanism will give mass to the gauge

boson and will produce several interacting terms. In order to see the Higgs mechanism

we should give to the scalar field a vacuum expectation value(vev) and this is done by

minimizing the potential that we have here, thus the minimization condition gives

dV (H)

dH
= �2m2H + 4�H3 ,

dV (H)

dH
= 2H

⇣
�m2 + 2�H2

⌘
= 0 (2)

which shows us that there is a local maximum at hHi = 0 and, in this specific geometry

space, two local minima at hHi = ± mp
2�
. Therefore the vev that our scalar takes has the

form v0 =
mp
�
.

Now, we can use two di↵erent ways in order to insert the vev inside the Lagrangian,

namely using the Cartesian or the Polar basis expansion of the scalar field. Here we

choose to use the second case which gives

H =
�e

i �
v0p
2

(3)

and including the vacuum expectation value we obtain the following form

H (x) =
(� (x) + v0) e

i �
v0

(x)

p
2

(4)

where now � (x) is the Higgs field and � (x) is the massless Goldstone boson. Thus if

we insert (4) in the Lagrangian (1) then we get two sets of multiplying terms which give

the following

4



|DµH|2 =
1

2
(@µ + igAµ) (�+ v0) e

i �
v0 (@µ � igAµ) (�+ v0) e

�i �
v0 ,

|DµH|2 =
1

2
[@µ�+ igAµ�+ igAµv0] [@

µ�� igAµ�� igAµv0]

+ (�+ v0)
2 (@µ�)

2

v20
+ g (�+ v0)

2 Aµ
@µ�

v0
(5)

thus doing the calculation we get

|DµH|2 =
1

2
@µ�@

µ�� i
1

2
g@µ�A

µ�� i
1

2
gv0@µ�A

µ

+ i
1

2
g@µ�Aµ�+

1

2
g2AµAµ�

2 +
1

2
g2Aµv0Aµ�

+ i
1

2
g@µ�Aµv0 +

1

2
g2Aµv0Aµ�+

1

2
g2v20A

µAµ

+ (�+ v0)
2 (@µ�)

2

v20
+ g (�+ v0)

2 Aµ
@µ�

v0
,

|DµH|2 =
1

2
@µ�@

µ�+
1

2
g2AµAµ�

2 + g2Aµv0Aµ�+
1

2
g2v20A

µAµ

+ (�+ v0)
2 (@µ�)

2

v20
+ g (�+ v0)

2 Aµ
@µ�

v0
.

(6)

It is very important to mention that from the forth and the sixth term of equation (6)

we obtain that our Lagrangian would be proportional to

L ⇠ g2v20
2

 

Aµ +
1

g

@µ�

v0

!2

(7)

which gives a mass term for the physical gauge boson and a cross term between this

field and the non-physical Goldstone boson.

Next we consider the m2H2 term which reads

m2|H|2 =
m2

2
(�+ v0)

2 ,

m2|H|2 =
m2

2
�2 +

m3

p
�
�+

m4

2�2
(8)
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where we have used the explicit form v0 =
mp
�
. Finally we have the term �|H|4 which

after the spontaneous symmetry breaking gives

�|H|4 =
�

4

⇣
v40 + 4v30�+ 6v20�

2 + 4v0�
3 + �4

⌘
,

�|H|4 =
m4

4�2
+

m3

p
�
�+

3m2

2
�2 + �v0�

3 +
�

4
�4 (9)

where again we have used that v0 = mp
�
. Now, we should put the equations (6), (8)

and (9) back in the Lagrangian (1). According to what we noticed in (7), doing this will

give us non-physical fluctuating degrees of freedom concerning the Goldstone bosons, in

addition of the extra non-physical fields corresponding to ghosts. Therefore, in order not

to have such states we should work in a physical gauge and thus we choose the unitary

gauge. In order to work in this gauge we should demanded that ⇠ ! 1 and we should

perform a gauge transformation of the form

Aµ(x) ! Aµ(x) +
1

g
@µ↵(x)

�(x) ! �(x)� ↵(x)v0

(10)

so as to set �(x) = 0 which gives only a massive physical gauge boson. Thus combining

every thing that we have mentioned before our Lagrangian becomes

LAH =� 1

4
F 2
µ⌫ +

1

2
(@µ�0) (@

µ�0) +
1

2
m2

Z0
A0

µA
0µ +

gµ⌫

2
g20�

2
0A

0
µA

0
⌫

+ gµ⌫g0mZ�A
0
µA

0
⌫ �

1

2
m2

H0
�2
0 � �0v0�

3
0 �

�0
4
�4
0 + const.

(11)

where we have defined that the subscript 0 denotes the bare parameters and fields of

the model.

Moreover, here we set that g20 = e20z
2
H , where zH is a parameter that will be defined later,

m2
Z0

= e20v
2
0z

2
H = g20v

2
0 is our gauge field square-mass, mH0 =

p
2m is the Higgs mass, �0

is the quartic Higgs coupling and e0 is the gauge boson coupling. Finally, v0 =
mH0p
2�0

is

the classical vacuum expectation value of the Higgs field.

Here we will have Feynman rules concerning the gauge and Higgs field propagators and

the vertexes that can be made from their combination, as we can see in Appendix A.

Fortunately, our Lagrangian does not have fluctuating non-physical degrees of freedom

and the only term coming from ghosts is non-dynamical, therefore there would not be

neither propagators concerning the ghosts fields c̄ and c nor propagators concerning the
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Goldstone boson �. Finally we can express all the parameters of the model as function of

the independent ones, using the following notation

g0 =
mZ0

mH0

q
2�0

v0 =
mH0p
2�0

�0v0 =

s
�0
2
mH0

g20v0 =
m2

Z0

mH0

q
2�0

(12)

and according to this the only independent parameters left in this model are the Higgs

quartic �0, the Higgs mH0 and Z-boson mass mZ0 .

Thus the final form of (11) reads

LAH = �1

4
F 2
µ⌫ +

1

2
(@µ�0) (@

µ�0) +
1

2
m2

Z0
A0

µA
0µ + gµ⌫

�0m
2
Z0

m2
H0

�2
0A

0
µA

0
⌫

+ gµ⌫
p
2�0m2

Z0

mH0

�A0
µA

0
⌫ �

1

2
m2

H0
�2
0 �

s
�0
2
mH0�

3
0 �

�0
4
�4
0 + const. (13)

2 One-loop Corrections of the Abelian Higgs Model

XXX

2.1 One-point functions

The first quantum corrections at one-loop order come from the one-point functions,

namely the one-leg Tadpoles. Such diagrams come from the �3 and �AµA⌫ vertices.

Here the first case reads

(14)
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and it has the form

iT 1
H = �6iS1

T

s
�0
2
mH0

Z d4k

(2⇡)4
i

⇣
k2 �m2

H0

⌘ , (15)

T 1
H = �6S1

T

s
�0
2
mH0

Z d4k

(2⇡)4
i

⇣
k2 �m2

H0

⌘ (16)

which in d-dimensions could be written as

T 1
H = 6S1

T

q
�0
2
mH0µ

4�d

(4⇡)d/2

Z ddk

i⇡d/2

1
⇣
k2 �m2

H0

⌘ .

where we have defined that the term S1
T corresponds to a symmetry factor which

contains the number that multiplies the corresponding vertex. Generally, in every case

of Feynman diagrams that we face throughout this work we should consider symmetry

factors like the previous one. Therefore, before we move on, we should first declare the

way that we evaluate them in order to include them properly in our calculation. Now,

the procedure that we follow so as to consider the correct symmetry factors in each case

is the following:

Firstly we should consider the number of possibilities to connect outer lines with lines of

the vertices, thus we define nO as the coe�cient of this possibility.

Next we define the number of possibilities to connect all the inner lines of the given

vertices, and we define this number as nI .

Now we should consider all the possible lines that are equivalent in a vertex i and this is

given by the factor `i.

Finally, as a last step we define the number of all the equal vertices of type j by vj.

Thus, having all these definitions in mind we can construct a general form that would

give us the symmetry factors of any Feynman diagram and which will read

Sa
b = ⌘

nOnIQ
i
`i!
Q
j
vj!

(17)

where a, b are indices which indicate the diagram that we study each time. So, for

this first case that we consider here, namely T 1
H , we have that it comes from a �3 vertex

which means that it has the following relations

8



nO = 3

nI = 1

`1 = 3

v1 = 1 (18)

therefore, the symmetry factor here reads S1
T = 1

2
.

In addition this integral corresponds to the first case of the equation (454) so it gives

(4⇡)d/2T 1
H = 3

s
�0
2
mH0µ

4�dA0(mH0). (19)

The second one-leg Tadpole takes the form

(20)

which reads

iT 2
H = 2iS2

T g
µ⌫

p
2�0m2

Z0

mH0

Z d4k

(2⇡)4

i
✓
�gµ⌫ +

kµk⌫
m2

Z0

◆

⇣
k2 �m2

Z0

⌘ , (21)

T 2
H = 2(d+ ")S2

T

p
2�0m2

Z0

mH0

Z d4k

(2⇡)4
�i

k2 �m2
Z0

+ 2
d+ "

d

S2
T

p
2�0

mH0

Z d4k

(2⇡)4
ik2

k2 �m2
Z0

(22)

where we have expanded the numerator and we have done the calculation. Here,

and in what follows, we use the fact that in d-dimensions the trace of the metric reads

gµ⌫g
µ⌫ = d + ". Moreover, using the relation kµk⌫ = gµ⌫

d k2 in d-dimensions the above

integral, which is similar with that from the first Tadpole, reads

T 2↵
H = 2

(d+ ")S2
T

p
2�0m2

Z0
mH0

µ4�d

(4⇡)d/2

Z ddk

i⇡d/2

1

k2 �m2
Z0

,

(4⇡)d/2T 2↵
H = 2(d+ ")S2

T

p
2�0m2

Z0

mH0

µ4�dA0(mZ0).

(23)

The second term of (22) corresponds to the case of equation (513) in the Appendix,

thus here we get that
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T 2�
H = 2

d+ "

d

p
2�0mZ0
mH0

S2
T

mZ0

m4
Z0

m4
Z0

Z ddk

(2⇡)d
ik2

k2 �m2
Z0

,

(4⇡)d/2T 2�
H = �2

d+ "

d
S2
T

p
2�0m4

Z0

mH0

µ4�dUT (1,mZ0).

(24)

Now adding equations (23) and (24) we obtain that

(4⇡)d/2T 2
H = 2S2

Tµ
4�d

 

(d+ ")

p
2�0m2

Z0

mH0

A0(mZ0)�
d+ "

d

p
2�0m4

Z0

mH0

UT (1,mZ0)

!

(25)

moreover in this case we have that the diagram comes from a �AµA⌫ vertex which

means that it has the following relations

nO = 1

nI = 1

`1 = 2

v1 = 1 (26)

thus, the symmetry factor here reads S2
T = 1

2
and therefore the full contribution of the

Tadpoles using equation (520) reads

(4⇡)d/2TH = µ4�d

8
<

:3

s
�0
2
mH0A0(mH0) + 3

p
2�0m2

Z0

mH0

A0(mZ0) +
3
p
2�0m4

Z0

2mH0

9
=

;. (27)

2.2 Two-point functions

Now we move on to the calculation of the one-loop two-point functions of the Higgs boson,

which will indicate the nature of the Hierarchy problem.

First we begin with a diagram coming from the �2
0A

0
µA

0
⌫ vertex, which has the form:

= iM1
H . (28)
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The exact relation of this diagram is

iM1
H = 4iS1

MH
gµ⌫

�0m
2
Z0

m2
H0

Z d4k

(2⇡)4

i
✓
�gµ⌫ +

kµk⌫
m2

Z0

◆

⇣
k2 �m2

Z0

⌘ , (29)

M1
H = 4(d+ ")S1

MH

�0m
2
Z0

m2
H0

Z d4k

(2⇡)4
�i

k2 �m2
Z0

+ 4
d+ "

d

S1
MH

�0m2
Z0

m2
H0

m2
Z0

Z d4k

(2⇡)4
ik2

k2 �m2
Z0

(30)

and as we can see except the coe�cient of the integral everything else is the same with

that of (22), moreover in this case we have that the diagram comes from a �2
0A

0
µA

0
⌫ vertex

which means that it has the following relations

nO = 2

nI = 1

`1 = 2

`2 = 2

v1 = 1 (31)

therefore, the symmetry factor here reads S1
MH

= 1
2
. Thus, with that in mind in

d-dimensions and using the relation (520) from the Appendix, we obtain the following

(4⇡)d/2M1
H = µd�4

⇢
2(d+ ")

�0m
2
Z0

m2
H0

A0(mZ0)� 2
d+ "

d

�0m
4
Z0

m2
H0

UT (1,mZ0)
�
,

(4⇡)d/2M1
H = µd�4

⇢
6
�0m

2
Z0

m2
H0

A0(mZ0) + 3
�0m

4
Z0

m2
H0

�
.

(32)

Next diagram that contributes as a one-loop two-point function comes from the �4
0

vertex and has the form

= iM2
H (33)

which reads
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iM2
H = �6iS2

MH
�0

Z d4k

(2⇡)4
i

k2 �m2
H0

,

M2
H = 6S2

MH
�0

Z d4k

(2⇡)4
�i

k2 �m2
H0

.

(34)

again this is similar with the first one-leg Higgs Tadpole and moreover since that

diagram comes from a �4 vertex it has the following relations

nO = 4 · 3
nI = 1

`1 = 4

v1 = 1 (35)

therefore, the symmetry factor here reads S2
MH

= 1
2
and thus in d-dimensions we get

that

(4⇡)d/2M2
H = 3�0µ

4�dA0(mH0). (36)

Now we move on to the next diagram which can be obtained multiplying the �3
0 vertex

with itself and gives

= iM3
H (37)

which is equal to

iM3
H = �18S3

MH
�0m

2
H0

Z d4k

(2⇡)4
i

⇣
k2 �m2

H0

⌘
i

⇣
(k + p)2 �m2

H0

⌘ ,

M3
H = 18S3

MH
�m2

H0

Z d4k

(2⇡)4
�i

⇣
k2 �m2

H0

⌘ ⇣
(k + p)2 �m2

H0

⌘ (38)

where we should consider that since that diagram comes from the square of the �3

vertex it has the following relations
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nO = 3 · 3
nI = 2 · 1
`1 = 3

`2 = 3

v1 = 1

v2 = 1 (39)

therefore, the symmetry factor here reads S3
MH

= 1
2
.

Thus we can write this integral in d-dimensions where it takes the form

M3
H =

9�0m2
H0
µd�4

(4⇡)d/2

Z ddk

i⇡d/2

1
⇣
k2 �m2

H0

⌘ ⇣
(k + p)2 �m2

H0

⌘ ,

(4⇡)d/2M3
H = 9�0m

2
H0
µd�4B0(p,mH0 ,mH0) (40)

where we have used the exact form of the first case of the equation (455) in Appendix

B.

The last two-point one-loop diagram that contributes to the Higgs-mass counterterm

comes from the square of the �0A
0
µA

0
⌫ vertex and gives

= iM4
H . (41)

This diagram corresponds to the following integral

iM4
H = �8S4

MH
gµ⌫g↵�

�0m
4
Z0

m2
H0

Z d4k

(2⇡)4

i
✓
�gµ↵ + kµk↵

m2
Z0

◆

⇣
k2 �m2

Z0

⌘
i
✓
�g⌫� +

(k+p)⌫(k+p)�
m2

Z0

◆

⇣
(k + p)2 �m2

Z0

⌘ ,

M4
H = 8S4

MH
gµ⌫g↵�

�0m
4
Z0

m2
H0

Z d4k

(2⇡)4

�i
✓
�gµ↵ + kµk↵

m2
Z0

◆

⇣
k2 �m2

Z0

⌘

✓
�g⌫� +

(k+p)⌫(k+p)�
m2

Z0

◆

⇣
(k + p)2 �m2

Z0

⌘ . (42)

where since it comes from the square of the �0A
0
µA⌫ vertex it has the following relations
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nO = 1 · 1
nI = 2 · 1
`1 = 2

`2 = 2

v1 = 1

v2 = 1 (43)

therefore, the symmetry factor here reads S4
MH

= 1
2
. In order to go on properly we

have first to deal with the numerator, namely we should simplify it so as to be able to

identify its terms with the relations that we have presented in B. Therefore, we have that

the numerator becomes

N = gµ⌫g↵�
 

�gµ↵ +
kµk↵
m2

Z0

! 

�g⌫� +
(k + p)⌫(k + p)�

m2
Z0

!

= gµ⌫
 

�g�µ +
kµk

�

m2
Z0

! 

�g⌫� +
(k + p)⌫(k + p)�

m2
Z0

!

=

 

�g⌫� +
k⌫k�

m2
Z0

! 

�g⌫� +
(k + p)⌫(k + p)�

m2
Z0

!

= g⌫�g⌫� � g⌫�

m2
Z0

(k⌫k� + k⌫p� + p⌫k� + p⌫p�)� k⌫k�

m2
Z0

g⌫� +
k⌫k�

m4
Z0

(k⌫k� + k⌫p� + p⌫k� + p⌫p�)

= (d+ ")� d+ "

d

⇢
k2 + 2k · p+ p2

m2
Z0

+
k2

m2
Z0

�
+

(d+ ")

d2
k4 + 2k2k · p+ k2p2

m4
Z0

.

(44)

where we can see that there appears a term proportional to k4 which actually will give

rise to a highly divergent U -integral. In particular, this integral will read

UM4(p,mZ0 ,mZ0) =
1

m4
Z0

Z d4k

(2⇡)4
�ik4

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘

(45)

and its solution is given in App.D. Fortunately, here we do not have to evaluate it

since the last term of the numerator could be written as
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k4 + 2k2k · p+ k2p2

m4
Z0

=
k2(k + p)2

m4
Z0

(46)

making the reduction easier.

Thus, putting the numerator that we found in equation (42) we get four terms, namely

M4
H = (d+ ")

�0m
4
Z0

m2
H0

Z d4k

(2⇡)4
�i4

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘

+ 4
(d+ ")

d

�0m
2
Z0

m2
H0

Z d4k

(2⇡)4
ik2

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘

+ 4
(d+ ")

d

�0m
2
Z0

m2
H0

Z d4k

(2⇡)4
i(k + p)2

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘

� 4(d+ ")

d2
�0
m2

H0

Z d4k

(2⇡)4
ik2(k + p)2

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘

(47)

where we notice that these terms correspond to the relations (455) and (576) from the

Appendix, thus we can write M4
H in a compactified form as follows

(4⇡)d/2M4
H = µd�4

8
<

:4(d+ ")
�0m

4
Z0

m2
H0

B0(p,mZ0 ,mZ0)

� 4(d+ ")

d

�0m
2
Z0

m2
H0

gµ⌫B
µ⌫(p,mZ0 ,mZ0)�

4(d+ ")

d

�0m
2
Z0

m2
H0

gµ⌫B
µ⌫
k+p(p,mZ0 ,mZ0)

+
4(d+ ")

d2
�0
m2

H0

m2
Z0
gµ⌫B

µ⌫(p,mZ0 ,mZ0) +
4(d+ ")

d2
�0
m2

H0

m2
Z0
A0(mZ0)

9
=

;

(48)

where we have defined that

gµ⌫B
µ⌫
k+p(p,mZ0 ,mZ0) =

Z d4k

(2⇡)4
�i(k + p)2

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘ . (49)

Finally, we should add all the corresponding diagrams in order to compute the com-

plete contribution of the one-loop two-point functions to the Higgs boson propagator, thus

adding (32), (36), (40) and (48) we obtain
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(4⇡)d/2MH(p) = µd�4

8
<

:6
�m2

Z0

m2
H0

A0(mZ0) +
3�m4

Z0

m2
H0

+ 3�0A0(mH0)

+ 9�0m
2
H0
B0(p,mH0 ,mH0) +

�0m
2
Z0

m2
H0

⇢
4(d+ ")B0(p,mZ0 ,mZ0)

� 4(d+ ")

d
gµ⌫B

µ⌫(p,mZ0 ,mZ0)�
4(d+ ")

d
gµ⌫B

µ⌫
k+p(p,mZ0 ,mZ0)

+
4(d+ ")

d2
gµ⌫B

µ⌫(p,mZ0 ,mZ0) +
4(d+ ")

d2
A0(mZ0)

�9=

;.

(50)

Next we should find the reduced form of the above result using the the scalar integrals

that we have presented in the Appendix. This would be done for every set of diagrams

that we will calculate here. Therefore, using equations (471), (473) we obtain the following

form

(4⇡)d/2MH(p) = µd�4

8
<

:6
�0m

2
Z0

m2
H0

A0(mZ0) +
3�m4

Z0

m2
H0

+ 3�0A0(mH0)

+ 9�0m
2
H0
B0(p,mH0 ,mH0) + 4(d+ ")

�0m
4
Z0

m2
H0

B0(p,mZ0 ,mZ0)

� 8(d+ ")

d

�0m
4
Z0

m2
H0

"

B0(p,mZ0 ,mZ0) +
1

m2
Z0

A0(mZ0)

#

+
4(d+ ")

d2
�0m

4
Z0

m2
H0

"

B0(p,mZ0 ,mZ0) +
2

m2
Z0

A0(mZ0)

#9=

; .

(51)

Now, since we have finished with the first set of the one-loop two-point functions

concerning the Higgs field, comes the turn of the Z-boson. Here, we use the same form

of Feynman rules with the case of the Higgs field and thus the symmetry factors are

straightforward. Fortunately in the second set of the one-loop two-point functions, that

we consider here, contribute only two individual diagrams. In particular, the first one

comes from the �2
0A

0
µA

0
⌫ vertex and reads

= iM1
Z,µ⌫ (52)
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where

iM1
Z,µ⌫ = i2gµ⌫

m2
Z0

m2
H0

�0

Z d4k

(2⇡)4
i

k2 �m2
H0

, (53)

M1
Z,µ⌫ = �2gµ⌫

m2
Z0

m2
H0

�0

Z d4k

(2⇡)4
�i

k2 �m2
H0

(54)

which is similar with the case of the loop diagram (284) which in d-dimensions reads

(4⇡)d/2M1
Z,µ⌫ = �2gµ⌫

m2
Z0

m2
H0

�0µ
4�dA0(mH0) . (55)

The next two-point one-loop correction comes from the diagram involving the square

of the �0A
0
µA

0
⌫ vertex, which gives

= iM2
Z,µ⌫ (56)

where

iM2
Z,µ⌫ = �8gµ↵g⌫�

m4
Z0

m2
H0

�0

Z d4k

(2⇡)4
i

(k + p)2 �m2
H0

i
✓
�g↵� +

k↵k�
m2

Z0

◆

⇣
k2 �m2

Z0

⌘ ,

M2
Z,µ⌫ = �8gµ↵g⌫�

m4
Z0

m2
H0

�0

Z d4k

(2⇡)4
i

(k + p)2 �m2
H0

✓
�g↵� +

k↵k�
m2

Z0

◆

⇣
k2 �m2

Z0

⌘ ,

M2
Z,µ⌫ = �8gµ↵g⌫�

m4
Z0

m2
H0

�0

Z d4k

(2⇡)4
�ig↵�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘

� 8gµ↵g⌫�
m2

Z0

m2
H0

�0

Z d4k

(2⇡)4
ik↵k�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘ . (57)

Again the first term of this diagram corresponds to the first case of (455) but here we

have to be careful because we have two di↵erent masses in the denominators d1 and d2.

Therefore we get that
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M2A
Z,µ⌫ = �8gµ↵g⌫�

m4
Z0

m2
H0

�0

Z d4k

(2⇡)4
�ig↵�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘ ,

M2A
Z,µ⌫ = �8gµ⌫

m4
Z0

m2
H0

�0µ
4�d

(4⇡)d/2
B0(p,mZ0 ,mH0) ,

(4⇡)d/2M2A
Z,µ⌫ = �8gµ⌫

m4
Z0

m2
H0

�0µ
4�dB0(p,mZ0 ,mH0). (58)

Now we move on to the next term of equation (57) which is a little bit more complicated

than the previous one. To be more specific, here we have the following

M2B
Z,µ⌫ = �8gµ↵g⌫�

m2
Z0

m2
H0

�0

Z d4k

(2⇡)4
ik↵k�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘ ,

M2B
Z,µ⌫ = 8

m2
Z0

m2
H0

�0

Z d4k

(2⇡)4
�ikµk⌫

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘ ,

M2B
Z,µ⌫ = 8

gµ⌫

d

m2
Z0

m2
H0

�0
µ4�d

(4⇡)d/2
gµ⌫B

µ⌫(p,mZ0 ,mH0) ,

(4⇡)d/2M2B
Z,µ⌫ = 8

gµ⌫

d

m2
Z0

m2
H0

�0µ
4�dgµ⌫B

µ⌫(p,mZ0 ,mH0) (59)

where we have used the third case of the relation (455). Thus adding the equations

(58) and (59) we get

(4⇡)d/2M2
Z,µ⌫ = �8gµ⌫

m4
Z0

m2
H0

�0µ
4�dB0(p,mZ0 ,mH0)

+ 8
gµ⌫

d

m2
Z0

m2
H0

�0µ
4�d

h
m2

Z0
B0(p,mZ0 ,mH0) + A0(mH0)

i
.

(60)

Finally, in order to obtain the full result of the one-loop two-point functions concerning

the Z-boson that we have, we should add the two diagrams. Therefore we get the final

form

(4⇡)d/2MZ,µ⌫ = gµ⌫
m2

Z0

m2
H0

�0µ
4�d

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; .

(61)
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Now, as we have done earlier, we should reduce this form using the scalar integrals

that we have defined in the Appendix. The di↵erence here is that we need the contracted

form of MZ,µ⌫ . To be more specific, The Z-boson vacuum polarization amplitude can be

Lorentz-covariantly split into a transverse and a longitudinal part

MZ,µ⌫ =

 

�gµ⌫ +
pµp⌫
p2

!

⇧T (p2) +
pµp⌫
p2

⇧L(p2). (62)

Contracting with pµp⌫ both sides fixes

⇧L(p2) =
pµp⌫
p2

MZ,µ⌫ . (63)

Contracting with gµ⌫ gives on the other hand

gµ⌫MZ,µ⌫ = �(d� 1)⇧T + ⇧L (64)

that can be easily solved for the transverse part in d = 4

⇧T =
1

3

 

�gµ⌫ +
pµp⌫
p2

!

MZ,µ⌫ . (65)

Now, the Schwinger-Dyson equation that the dressed Z-propagator

Gµ⌫ = �gµ⌫G(p2) +
pµp⌫

m2
Z0

L(p2) (66)

obeys is written as

Gµ⌫ = Gµ⌫ +Dµ⇢M⇢�G�⌫ (67)

with Dµ⇢ the tree level gauge boson propagator

Dµ⇢ =

✓
�gµ⇢ +

pµp⇢
m2

Z0

◆

p2 �m2
Z0

. (68)
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So, performing the contractions the Schwinger-Dyson equation becomes

�gµ⌫G+
pµp⌫

m2
Z0

L =

✓
�gµ⌫ +

pµp⌫
m2

Z0

◆

p2 �m2
Z0

+

⇣
�gµ⌫ +

pµp⌫
p2

⌘

p2 �m2
Z0

⇧TG. (69)

Contracting with pµp⌫ we have that

�G+
p2

m2
Z0

L =
1

m2
Z0

h
1� ⇧L(G� L)

i
(70)

while contracting with the metric gives

�dG+
p2

m2
Z0

L =
�d+ p2

m2
Z0

p2 �m2
Z0

+
�d+ 1

p2 �m2
Z0

⇧TG� 1

m2
Z0

⇧L(G� L). (71)

The solution of the above system reads

G(p2) =
1

p2 �m2
Z0

� ⇧T (p2)

L(p2) = G(p2)

"

1� ⇧T

p2 � ⇧L

#

.

(72)

Finally, for the reason that we have demonstrated in the previous argument, along

with the condition that gives the physical Z-mass

G(m2
Z) =

1

m2
Z �m2

Z0
� ⇧T (m2

Z)
(73)

the reduction should be made in the term

(4⇡)d/2MZ = (4⇡)d/2
1

3

 

�gµ⌫ +
pµp⌫
p2

!

MZ,µ⌫(p
2 = m2

Z) (74)

Therefore, we can split the above equation into two pieces so as to make our calculation

easier. In particular, the two terms read

20



(4⇡)d/2MZ1 = (4⇡)d/2gµ⌫MZ,µ⌫(p
2 = m2

Z)

(4⇡)d/2MZ2 = (4⇡)d/2
pµp⌫
p2

MZ,µ⌫(p
2 = m2

Z)

so starting with the first one we and contracting with the metric we get that

(4⇡)d/2MZ1 = (4⇡)d/2gµ⌫MZ,µ⌫ = (d+ ")
m2

Z0

m2
H0

�0µ
4�d

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; .

(75)

Now we move on to the MZ2 term which read

(4⇡)d/2MZ2 = (4⇡)d/2
pµp⌫
p2

MZ,µ⌫(p)

=
m2

Z0

m2
H0

�0µ
4�dp

µp⌫

p2
gµ⌫

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

;,

(4⇡)d/2MZ2 =
m2

Z0

m2
H0

�0µ
4�d

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; .

(76)

Finally, in order to see the full one-loop contribution on the vacuum polarization of

the Z -boson, as it was defined by equation (61), we should evaluate the deference between

equations (75) and (76) multiplied by 1
3
. Thus, the full MZ reads

(4⇡)d/2MZ(p
2 = m2

Z) =
1

3

m2
Z0

m2
H0

�0µ
4�d

8
<

:(d+ ")
⇢
8m2

Z0
B0(p,mZ0 ,mH0) + 2A0(mH0)

� 8

d
m2

Z0
B0(p,mZ0 ,mH0)�

8

d
A0(mH0)

�
� 8m2

Z0
B0(p,mZ0 ,mH0)

� 2A0(mH0) +
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; .

(77)
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For completeness in Unitary gauge we present also the calculation of the three- and

four-point functions in the next subsection.

2.3 Three-point functions

In the previous subsection we devoted our work to find and compute all the one-loop

two-point functions that can occur from the model that we study. As we mentioned there

the corresponding functions would reveal the Hierarchy problem through the physical

quantities, which is one of the main motivations of this work. The present subsection is

devoted to the calculation of the one-loop three-point functions which we need in order

to renormalize properly this model.

As we can see from the vertices that we have, there would be four such diagrams that

refer to quantum corrections to the Higgs boson. Therefore we start with the first one

which comes from the cubic power of �3 vertex and reads

= iK1
H (78)

and has the following explicit form

iK1
H = iS1

KH
�3v30

Z d4k

(2⇡)4
i

(k2 �m2
H)

i
⇣
(k + p1)

2 �m2
H

⌘
i

⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

K1
H = S1

KH
�3v30

Z d4k

(2⇡)4
�i

(k2 �m2
H)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ . (79)

the symmetry factor here reads S1
KH

= 216 · 33 · 4. Now we can rewrite this integral

but this time in d-dimensions where it reads

K1
H =

216 · 33 · 4�3v30µd�4

(4⇡)d/2

Z ddk

i⇡d/2

1

(k2 �m2
H)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘

and as we can see this integral has the same form with the first case of equation (456)

form the Appendix B, thus it takes the final form

(4⇡)d/2K1
H = 216 · 33 · 4�3v30µd�4C0 (p1, p2,mH ,mH ,mH) . (80)
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Now we move on to the next diagram that corresponds to the cubic power of the

�AµA⌫ vertex. In particular we have

= iK2
H (81)

which reads

iK2
H = �iS2

KH
gµ⌫g3m3

Z

Z d4k

(2⇡)4

i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

i
✓
�g⌫� +

(k+p1)⌫(k+p1)�
m2

Z

◆

⇣
(k + p1)

2 �m2
Z

⌘
i
✓
�g�↵ +

(k+p1+p2)�(k+p1+p2)↵
m2

Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘

K2
H = �S2

KH
gµ⌫g3m3

Z

Z d4k

(2⇡)4

�i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

✓
�g⌫� +

(k+p1)⌫(k+p1)�
m2

Z

◆

⇣
(k + p1)

2 �m2
Z

⌘

✓
�g�↵ +

(k+p1+p2)�(k+p1+p2)↵
m2

Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘ .

(82)

Now, since this diagram comes from the cubic power of the �AµA⌫ vertex i the sym-

metry factor here reads S2
KH

= 8 · 4 In order to calculate it properly we should first divide

it into eight individual parts and consider each one separately. Thus we get that

K2
HA = 8 · 4g3m3

Z

Z d4k

(2⇡)4
�i4

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ (83)

K2
HB = �8 · 4g3mZ

Z d4k

(2⇡)4
�ig�↵(k + p1 + p2)�(k + p1 + p2)↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘(84)

K2
HC = �8 · 4g3mZ

Z d4k

(2⇡)4
�ig⌫�(k + p1)⌫(k + p1)�

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘(85)

K2
HD =

8 · 4g3
mZ

Z d4k

(2⇡)4
�ig↵⌫(k + p1)⌫(k + p1)�(k + p1 + p2)� (k + p1 + p2)↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ (86)

K2
HE = �8 · 4g3mZ

Z d4k

(2⇡)4
�igµ↵kµk↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘(87)

K2
HF =

8 · 4g3
mZ

Z d4k

(2⇡)4
�igµ�kµk↵(k + p1 + p2)�(k + p1 + p2)↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ (88)
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K2
HG =

8 · 4g3
mZ

Z d4k

(2⇡)4
�igµ⌫g�↵kµk↵(k + p1)⌫(k + p1)�

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ (89)

K2
HI = �8 · 4g3

m3
Z

Z d4k

(2⇡)4
�igµ⌫kµk↵(k + p1)�(k + p1)⌫(k + p1 + p2)↵ (k + p1 + p2)�

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

(90)

so we start our calculation with the first integral, namely K2
HA, which is similar with

(80), therefore we get that

(4⇡)d/2K2
HA = 32 · 4g3m3

Zµ
d�4C0 (p1, p2,mZ ,mZ ,mZ) . (91)

Now we move on to the next integral which is K2
HB where we should first calculate the

numerator which gives

N = (k + p1 + p2)�(k + p1 + p2)↵

= k�k↵ + k�(p1 + p2)↵ + (p1 + p2)�k↵ + (p1 + p2)�(p1 + p2)↵ ,
g�↵N = g�↵k�k↵ + p21 + 2p1 · p2 + p22 + 2k(p1 + p2) (92)

thus putting this in (84) we obtain that

K2
HB = �8 · 4g3mZ

Z d4k

(2⇡)4
�ig�↵k�k↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZ

Z d4k

(2⇡)4
�i(p21 + 2p1 · p2 + p22)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZ

Z d4k

(2⇡)4
�i2(p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ .

Now in d-dimensions and using the first and the second case of the relation (456) we

get that
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K2
HB = �8 · 4g3mZµ

4�d

(4⇡)d/2

Z ddk

⇡d/2

�ig�↵k�k↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZµ
4�d

(4⇡)d/2

Z ddk

⇡d/2

�i(p21 + 2p1 · p2 + p22)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZµ
4�d

(4⇡)d/2

Z ddk

⇡d/2

�i2k(p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ ,

K2
HB = �8 · 4g3mZµ

4�d

(4⇡)d/2
gµ⌫C

µ⌫ (p1, p2,mZ ,mZ ,mZ)

� 8 · 4g3mZµ
4�d

(4⇡)d/2
(p21 + 2p1 · p2 + p22)C0 (p1, p2,mZ ,mZ ,mZ)

� 8 · 4g3mZµ
4�d

(4⇡)d/2
(p1 + p2)µC

µ (p1, p2,mZ ,mZ ,mZ) ,

(4⇡)d/2K2
HB = �8 · 4g3mZµ

4�d

8
<

:gµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ) (93)

+ 2(p1 + p2)µC
µ(p1, p2,mZ ,mZ ,mZ) + (p21 + 2p1 · p2 + p22)C0 (p1, p2,mZ ,mZ ,mZ)

9
=

;.

The next integral is K2
HC which is quite similar with the previous one but witht

de↵erent numerator, namely here we have that

N = (k + p1)⌫(k + p1)�

N = k⌫k� + k⌫p1� + p1⌫k� + p1⌫p1� ,
g⌫�N = g⌫�k⌫k� + 2kp1 + p21 (94)

thus we can write straightforward that

K2
HC = �8 · 4g3mZ

Z d4k

(2⇡)4
�ig⌫�k⌫k�

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZ

Z d4k

(2⇡)4
�ip21

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 8 · 4g3mZ

Z d4k

(2⇡)4
�i2kp1

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ .

Therefore, in d-dimensions we get that
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K2
HC = �8 · 4g3mZµ

4�d

(4⇡)d/2
gµ⌫C

µ⌫ (p1, p2,mZ ,mZ ,mZ)

� 8g3mZµ
4�d

(4⇡)d/2
p21C0 (p1, p2,mZ ,mZ ,mZ)

� 8 · 4g3mZµ
4�d

(4⇡)d/2
p1µC

µ (p1, p2,mZ ,mZ ,mZ) ,

(4⇡)d/2K2
HC = �8 · 4g3mZµ

4�d

8
<

:gµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ)

+ 2p1µC
µ(p1, p2,mZ ,mZ ,mZ) + p21C0 (p1, p2,mZ ,mZ ,mZ)

9
=

;.

(95)

Now we move on to the K2
HD integral whose numerator gives the following

N = (k + p1)⌫(k + p1)
�(k + p1 + p2)�(k + p1 + p2)↵

= (k + p1)⌫(k + p1 + p2)↵
⇣
k2 + k · (2p1 + p2) + p1 · (p1 + p2)

⌘
,

g⌫↵N =
⇣
k2 + k · (2p1 + p2) + p1 · (p1 + p2)

⌘ ⇣
k2 + k · (2p1 + p2) + p1 · (p1 + p2)

⌘
,

g⌫↵N = k4 + k2k · (4p1 + 2p2) + k2
h
2p1 · (p1 + p2) + (2p1 + p2)

2
i

+ 2k · p1(p1 + p2)(2p1 + p2) + p21 · (p1 + p2)
2 ,

g⌫↵N = k4 + k2k · (4p1 + 2p2) + k2(6p1
2 + 6p2p1 + p2

2) + 2k · p1(p1 + p2)(2p1 + p2) + p21 · (p1 + p2)
2.

(96)

Thus we get that

K2
HD =

8 · 4g3
mZ

Z d4k

(2⇡)4
�ik4

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
8 · 4g3
mZ

Z d4k

(2⇡)4
�igµ⌫k

µk⌫(6p12 + 6p2p1 + p2
2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
8 · 4g3
mZ

Z d4k

(2⇡)4
�igµ⌫g↵�(4p1 + 2p2)�kµk⌫k↵

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
8 · 4g3
mZ

Z d4k

(2⇡)4
�igµ⌫p1µ(p1 + p2)(2p1 · 4 + p2)⌫kµ

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
8 · 4g3
mZ

Z d4k

(2⇡)4
�ip21 · (p1 + p2)

2

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ . (97)
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Thus in d-dimensions (97) reads

K2
HD =

8 · 4g3µ4�d

mZ(4⇡)d/2
(6p1

2 + 6p2 · p1 + p2
2)gµ⌫C

µ⌫ (p1, p2,mZ ,mZ ,mZ)

+
8 · 4g3µ4�d

mZ(4⇡)d/2
gµ⌫(4p1 + 2p2)⇢C

µ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+
8 · 4g3µ4�d

mZ(4⇡)d/2
(p1 + p2)(2p1 + p2)p1µC

µ (p1, p2,mZ ,mZ ,mZ)

+
8 · 4g3µ4�d

mZ(4⇡)d/2
p21 · (p1 + p2)

2C0 (p1, p2,mZ ,mZ ,mZ)

+
8 · 4g3mZµ

4�d

(4⇡)d/2
UK4(p1, p2,mZ ,mZ ,mZ) (98)

where we have defined

UK4(p1, p2,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4
�ik4

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘(99)

which finally gives that

(4⇡)d/2K2
HD =

8 · 4g3µ4�d

mZ

8
<

:p
2
1 · (p1 + p2)

2C0 (p1, p2,mZ ,mZ ,mZ) +m2
ZUK4(p1, p2,mZ ,mZ ,mZ)

+ (p1 + p2)(2p1 + p2)p1µC
µ (p1, p2,mZ ,mZ ,mZ)

+ (6p1
2 + 6p2 · p1 + p2

2)gµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ)

+ gµ⌫(4p1 + 2p2)↵C
µ⌫↵ (p1, p2,mZ ,mZ ,mZ)

9
=

;. (100)

The next integral that we have to calculate is K2
HE whose result is known since it

corresponds to the second case of equation (456) and it is like the (95), thus it gives

(4⇡)d/2K2
HE = �8 · 4g3mZµ

4�dgµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ) . (101)

The next two integrals that have to be considered are similar with the case of (97),

but they di↵er on the numerator. To be more specific, the numerator of K2
HF reads

N = k�k↵(k + p1 + p2)�(k + p1 + p2)↵

= k · (k + p1 + p2) k · (k + p1 + p2) ,
N = k4 + 2k2k · (p1 + p2) + k2(p1 + p2)

2 (102)
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thus in d-dimensions the final form of this integral becomes

(4⇡)d/2K2
HF =

8 · 4g3µ4�d

mZ

8
<

:(p1 + p2)
2gµ⌫C

µ⌫ (p1, p2,mZ ,mZ ,mZ)

+ 2gµ⌫(p1 + p2)⇢C
µ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+ m2
ZUK4(p1, p2,mZ ,mZ ,mZ)

9
=

;. (103)

Now, for the K2
HG integral we can see that its numerator is the same with that of K2

HF

if we perform the replacement (p1 + p2) ! p1, then we take just the following form

N = k4 + 2k2k · p1 + k2p21 (104)

therefore we get that

(4⇡)d/2K2
HG =

8 · 4g3µ4�d

mZ

8
<

:p
2
1gµ⌫C

µ⌫ (p1, p2,mZ ,mZ ,mZ)

+ 2gµ⌫p1⇢C
µ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+ m2
ZUK4(p1, p2,mZ ,mZ ,mZ)

9
=

;. (105)

Finally, the last integral coming from the diagram (81) is the K2
HI whose numerator

reads

N = gµ⌫kµk↵(k + p1)�(k + p1)⌫(k + p1 + p2)↵(k + p1 + p2)�

= k2 (k + p1)
2 (k + p1 + p2)

2 ,
N = k6 + 4k4k · p1 + 2(k · p1)3 + 2k4k · p2 + 3(k · p1)2(k · p2) + (k · p1)(k · p2)2 + k4p21

+ k2(k · p1)2 + k2(k · (p1 + p2))
2 + 2k2(k · p1)p21 + (k · p1)2p21 + k2(k · p2)p21 + (k · p1)(k · p2)p21

+ k4(p1 · p2) + 2k2(k · p1)(p1 · p2) + (k · p1)2(p1 · p2) + k2(k · p2)(p1 · p2) + (k · p1)(k · p2)(p1 · p2) .
(106)

Therefore, we get that the final integral for the present diagram becomes
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(4⇡)d/2K2
HI = �8 · 4g3µ4�d

8
<

:

⇢
2p41 + (p21 + p22 + 2p1 · p2) p21

m3
Z

+
2p41 + (p21 + p22 + 2p1 · p2) p22

2m3
Z

�
B0(p,mZ ,mZ)

+

 
(�6p21 � 2p22 � 4p1 · p2) p1µ

m3
Z

+
(�p21 � 2p22 � 4p1 · p2) p2µ

m3
Z

!

Bµ(p,mZ ,mZ)

+

 
4p12 + 2p22 + 2p1 · p2

m3
Z

� 2

mZ

!

gµ⌫B
µ⌫(p,mZ ,mZ)

� mZUK6(p1, p2,mZ ,mZ ,mZ)� (4p1µ + 2p2µ)UK5(p1, p2,mZ ,mZ ,mZ)

+

 

4m2
Z � p21

mZ
� p1 · p2

mZ

!

UK4(p1, p2,mZ ,mZ ,mZ)

+

 
p41
m3

Z

+
p42

2m3
Z

+
(p1 · p2)2

m3
Z

!

gµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ)

+

 "

� p21
m3

Z

� p1 · p2
m3

Z

#

p1µp1⌫ +

"

� p21
m3

Z

� p1 · p2
m3

Z

#

p1µp2⌫

!

Cµ⌫ (p1, p2,mZ ,mZ ,mZ)

+ gµ⌫

 "

�2p21
m3

Z

� 2p1 · p2
m3

Z

#

p1⇢ +

"

� p21
m3

Z

� p1 · p2
m3

Z

#

p2⇢

!

Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+

 

� 2

m3
Z

p1µp1⌫p1⇢ � 3

m3
Z

p1µp1⌫p2⇢ � 1

m3
Z

p1µp2⌫p2⇢

!

Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

9
=

;.

(107)

where we have defined that

UK5(p1, p2,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4
�ik4kµ

m3
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

(108)

and

UK6(p1, p2,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4
�ik6

m4
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

(109)

Now, in order to find the full form of the (81) integral we should add all the previously

calculated relations. Therefore adding (91), (93), (95), (100), (101), (103), (105) and

(107) we obtain a general and compactified form of (81) which reads
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(4⇡)d/2K2
H = 8 · 4g3µ4�d

8
<

:

⇢
4m3

Z �mZp
2
1 +

(p1 · P1)
2

mZ
�mZP

2
1

�
C0 (p1, p2,mZ ,mZ ,mZ)

+
⇢
�2mZp1µ � 2mZP1µ +

2p1 · P1

mZ
p1µ +

2p1 · P1

mZ
P1µ

�
Cµ (p1, p2,mZ ,mZ ,mZ)

+
⇢
�3mZgµ⌫ +

2p1µp1⌫
mZ

+
2p1µP1⌫

mZ

+
2P1µP1⌫

mZ
+

2p1 · P1

mZ
gµ⌫ � p1 · P1

m3
Z

p1µP1⌫

�
Cµ⌫ (p1, p2,mZ ,mZ ,mZ)

+
⇢
�p1µp1⌫

m3
Z

� 3p1µP1⌫

m3
Z

� P1µP1⌫

m3
Z

�⇣
Bµ⌫(p1,mZ ,mZ) +m2

ZC
µ⌫ (p1, p2,mZ ,mZ ,mZ)

⌘

+
⇢
4gµ⌫p1⇢
mZ

+
4gµ⌫P1⇢

mZ
� p1µp1⌫P1⇢

m3
Z

� P1µP1⌫p1⇢
m3

Z

� gµ⌫p1⇢
m3

Z

p1 · P1 � gµ⌫P1⇢

m3
Z

p1 · P1

�
Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+
⇢
3mZ � p1 · P1

mZ

�
UK4 +

⇢
�2p1µ � 2P1µ

�
UK5 �mZUK6

9
=

;

(110)

where we have defined that P1µ = p1µ + p2µ .

Next contribution to the Higgs three-point function comes from the combination of

the �3 and �4 vertices and gives

= iK3
H (111)

and it reminds us the two-point diagram that we have already calculated in the pre-

vious subsection, namely (37). Therefore, considering the appropriate coe�cients, the

calculation here is straightforward and it gives

iK3
H = �S3

KH
�2v0

Z d4k

(2⇡)4
i

(k2 �m2
H)

i
⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

K3
H = S3

KH
�2v0

Z d4k

(2⇡)4
�i

(k2 �m2
H)
⇣
(k + p1 + p2)

2 �m2
H

⌘ . (112)
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Here we should mentioned that these two vertices have the same coe�cient multiplying

the coupling, thus we obtain that the symmetry factor here reads S3
KH

= 36 · 48.
Thus we can write this integral in d-dimensions where it takes the form

K3
H =

36 · 48�2v0µd�4

(4⇡)d/2

Z ddk

i⇡d/2

1

(k2 �m2
H)
⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

(4⇡)d/2K3
H = 36 · 48�2v0µd�4B0(p1, p2,mH ,mH) ,

(4⇡)d/2µd�4K3
H = (4⇡)d/2µd�48

3

M3
H

v0
(113)

where we have used the exact form of the first case of the equation (455) in Appendix B.

Another case like the previous one is that of the diagram that occur from the combination

of the �AµA⌫ and �2AµA⌫ vertices, giving

= iK4
H (114)

which is similar with that of (41)

iK4
H = �S4

KH
gµ⌫g↵�g3mZ

Z d4k

(2⇡)4

i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

i
✓
�g⌫� +

(k+p1+p2)⌫(k+p1+p2)�
m2

Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘ ,

K4
H = S4

KH
gµ⌫g↵�g3mZ

Z d4k

(2⇡)4

�i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

✓
�g⌫� +

(k+p1+p2)⌫(k+p1+p2)�
m2

Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘ .(115)

where again here the two vertices have the same coe�cient multiplying the coupling,

thus we obtain that the symmetry factor here reads S4
KH

= 4 · 4.
Thus, since we have already calculated an integral like this, we get that the final result

here is
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(4⇡)d/2K4
H = µd�4

8
<

:(64g
3mZ � 16g3p2

mZ
)B0(p1,mZ ,mZ)� 32g3µd�4

mZ
gµ⌫B

µ⌫(p1,mZ ,mZ)

+
16g3µ4�d

m3
Z

pµp⌫B
µ⌫(p1,mZ ,mZ) + 16g3mZµ

d�4UM4(p1, p2,mZ ,mZ)

9
=

;,

(4⇡)d/2µd�4K4
H = (4⇡)d/2µd�42M4

H

v0
(116)

Finally, in order to see the complete contribution of the one-loop three-point functions

to the Higgs boson we should add all the corresponding diagrams. Therefore adding (80),

(110), (113) and (116) we get that

(4⇡)d/2KH = µ4�d

8
<

:216 · 3
3 · 4�3v30C0 (p1, p2,mH ,mH ,mH)

+ 8 · 4g3µ4�d
⇢ 

4m3
Z �mZp

2
1 +

(p1 · P1)
2

mZ
�mZP

2
1

!

C0 (p1, p2,mZ ,mZ ,mZ)

+
✓
�2mZp1µ � 2mZP1µ +

2p1 · P1

mZ
p1µ +

2p1 · P1

mZ
P1µ

◆
Cµ (p1, p2,mZ ,mZ ,mZ)

+
⇢
�3mZgµ⌫ +

2p1µp1⌫
mZ

+
2p1µP1⌫

mZ

+
2P1µP1⌫

mZ
+

2p1 · P1

mZ
gµ⌫ � p1 · P1

m3
Z

p1µP1⌫

�
Cµ⌫ (p1, p2,mZ ,mZ ,mZ)

+

 

�p1µp1⌫
m3

Z

� 3p1µP1⌫

m3
Z

� P1µP1⌫

m3
Z

!⇣
Bµ⌫(p1,mZ ,mZ) +m2

ZC
µ⌫ (p1, p2,mZ ,mZ ,mZ)

⌘

+
⇢
4gµ⌫p1⇢
mZ

+
4gµ⌫P1⇢

mZ
� p1µp1⌫P1⇢

m3
Z

� P1µP1⌫p1⇢
m3

Z

� gµ⌫p1⇢
m3

Z

p1 · P1 � gµ⌫P1⇢

m3
Z

p1 · P1

�
Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+
✓
3mZ � p1 · P1

mZ

◆
UK4 + (�2p1µ � 2P1µ)UK5 �mZUK6

�

+ (64g3mZ � 16g3p2

mZ
)B0(p1,mZ ,mZ) +

16g3

mZ
(�2gµ⌫ +

pµp⌫
2m2

Z

)Bµ⌫(p1,mZ ,mZ)

+ 16g3mZUM4(p1, p2,mZ ,mZ) + 36 · 48�2v0B0(p1,mH ,mH)

9
=

; . (117)

or it can be written as
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(4⇡)d/2KH = µ4�d

8
<

:216 · 3
3 · 4�3v30C0 (p1, p2,mH ,mH ,mH)

+ 8 · 4g3µ4�d
⇢ 

4m3
Z �mZp

2
1 +

(p1 · P1)
2

mZ
�mZP

2
1

!

C0 (p1, p2,mZ ,mZ ,mZ)

+
✓
�2mZp1µ � 2mZP1µ +

2p1 · P1

mZ
p1µ +

2p1 · P1

mZ
P1µ

◆
Cµ (p1, p2,mZ ,mZ ,mZ)

+
⇢
�3mZgµ⌫ +

2p1µp1⌫
mZ

+
2p1µP1⌫

mZ

+
2P1µP1⌫

mZ
+

2p1 · P1

mZ
gµ⌫ � p1 · P1

m3
Z

p1µP1⌫

�
Cµ⌫ (p1, p2,mZ ,mZ ,mZ)

+

 

�p1µp1⌫
m3

Z

� 3p1µP1⌫

m3
Z

� P1µP1⌫

m3
Z

!⇣
Bµ⌫(p1,mZ ,mZ) +m2

ZC
µ⌫ (p1, p2,mZ ,mZ ,mZ)

⌘

+
⇢
4gµ⌫p1⇢
mZ

+
4gµ⌫P1⇢

mZ
� p1µp1⌫P1⇢

m3
Z

� P1µP1⌫p1⇢
m3

Z

� gµ⌫p1⇢
m3

Z

p1 · P1 � gµ⌫P1⇢

m3
Z

p1 · P1

�
Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+
✓
3mZ � p1 · P1

mZ

◆
UK4 + (�2p1µ � 2P1µ)UK5 �mZUK6

�

+
8

3

M3
H

v0
+

2M4
H

v0

9
=

; . (118)

Now has come the time to use the complete reduction formulae that we have presented

in the Appendix B. Therefore, using these relations we will be able to express the final

result of KH as a function of only the scalar integrals A0, B0 and C0. To be more specific,

we should use the equations defined in (469), (471), (532), (538), (545) and (551) and

then we get that the reduced form of equation (117) reads
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(4⇡)d/2KH = µ4�d

8
<

:
16g3m2

H

m3
Z

A0(mZ) + 36 · 24�2v0B0(mH ,mH ,mH)

+ 216 · 33 · 4�3v30C0 (mH ,mH ,mH ,mH ,mH)

+ g3
⇢
�8mZ +

 
38m4

H

9m3
Z

� 52m2
H

9mZ
+

80mZ

3

!

B0{1,2}(mH ,mZ ,mZ)

+

 �46m4
H

9m3
Z

� 604m2
H

9mZ
+

224mZ

3

!

B0{1,3}(mH ,mZ ,mZ)

+

 
272m4

H

9m3
Z

� 340m2
H

9mZ
� 160mZ

3

!

B0{2,3}(mH ,mZ ,mZ)

+

+

 
4m6

H

9m3
Z

+
352m4

H

9mZ
� 400m2

HmZ

3
+ 96m3

Z

!

C0(mH ,mH ,mZ ,mZ ,mZ)
�9=

;

(119)

where the index notation {· · ·} refers to the denominators of the calculated integrals.

Moreover, we have defined the relation D = 1
detG2

and the G2 determinant which in

on-shell reads

detG2 =
3m4

H

4
. (120)

Until now we have presented the calculation of the three-point one-loop diagrams con-

cerning the Higgs boson and in addition we have shown how we can reduce this contribu-

tion using only scalar integrals. Therefore, before we move on to the quantum corrections

of the Higgs quartic coupling we should present the corresponding diagram calculation

concerning the Higgs-Z three-vertex. These loop-corrections contribute to the renormal-

ization of the gauge coupling, thus it is necessary for us to consider them in order to

renormalize properly our Lagrangian. Therefore we start with the three-point diagram

which comes from the combination of the �AµA⌫ and �3 vertices which reads

= iK1
HZ,µ⌫ (121)

and it has the following form
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iK1
HZ,µ⌫ = i12⇥ 24g2m2

Z�v0g
µ↵g⌫�

Z d4k

(2⇡)4
i(�g↵� +

k↵k�
m2

Z
)

(k2 �m2
Z)

i
⇣
(k + p1)

2 �m2
H

⌘
i

⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

K1
HZ,µ⌫ = 12⇥ 24g2m2

Z�v0g
µ↵g⌫�

Z d4k

(2⇡)4
�i(�g↵� +

k↵k�
m2

Z
)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ . (122)

Now, as we have done in previous calculations, we will separate this integral in two

terms which we will evaluate them independently, therefore we get that

K1A
HZ,µ⌫ = �12⇥ 24g2m2

Z�v0g
µ⌫
Z d4k

(2⇡)4
�i

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘

= �12⇥ 24

(4⇡)d/2

Z ddk

⇡d/2

�ig2m2
Z�v0g

µ⌫µ4�d

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

(4⇡)d/2K1A
HZ,µ⌫ = �12⇥ 24g2m2

Z�v0g
µ⌫µ4�dC0(p1, p2,mZ ,mH ,mH) (123)

where we have used the first case of the relation (456). Now, the second term we have

reads

K1B
HZ,µ⌫ = 12⇥ 24g2m2

Z�v0

Z d4k

(2⇡)4
�ikµk⌫

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘

=
12⇥ 24g2�v0µ4�d

(4⇡)d/2

Z ddk

⇡d/2

�ikµk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ,

(4⇡)d/2K1B
HZ,µ⌫ = 12⇥ 24g2�v0µ

4�dCµ⌫(p1, p2,mZ ,mH ,mH) (124)

thus adding the two contributions we get that K1
HZ reads

(4⇡)d/2K1
HZ,µ⌫ = 12⇥24g2�v0µ

4�d

8
<

:�gµ⌫m2
ZC0(p1, p2,mZ ,mH ,mH)+Cµ⌫(p1, p2,mZ ,mH ,mH)

9
=

; .

(125)

Next we move on to the diagram that occurs from the cubic power of the �AµA⌫

vertex which gives

= iK2
HZ,µ⌫ (126)
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and it reads

iK2
HZ,µ⌫ = �i4⇥ 8g3m3

Zgµ�g⌫↵g��

Z d4k

(2⇡)4
i(�g�� + k�k�

m2
Z
)

(k2 �m2
Z)

i
⇣
(k + p1)

2 �m2
H

⌘
i(�g↵� + k↵k�

m2
Z
)

⇣
(k + p1 + p2)

2 �m2
Z

⌘ ,

K2
HZ,µ⌫ = �4⇥ 8g3m3

Zgµ�g⌫↵g��

Z d4k

(2⇡)4
�i(�g�� + k�k�

m2
Z
)(�g↵� + k↵k�

m2
Z
)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘ . (127)

Therefore in order to evaluate this integral we have first to calculate its numerator

which, as we expect, will give four independent terms. To be more specific, the numerator

becomes

N = gµ�g⌫↵g��(�g�� +
k�k�

m2
Z

)(�g↵� +
k↵k�

m2
Z

)

= gµ�g⌫↵g��

8
<

:g
��g↵� � g��

(k + p1 + p2)
↵(k + p1 + p2)

�

m2
Z

� g↵�
k�k�

m2
Z

+
k�k�(k + p1 + p2)

↵(k + p1 + p2)
�

m4
Z

9
=

;,

N = gµ⌫ � (k + p1 + p2)
µ(k + p1 + p2)

⌫

m2
Z

� kµk⌫

m2
Z

+
kµ(k + p1 + p2)

⌫k · (k + p1 + p2)

m4
Z

= gµ⌫ � 2kµk⌫

m2
Z

� kµ(p1 + p2)⌫

m2
Z

� (p1 + p2)µk⌫

m2
Z

� (p1 + p2)µ(p1 + p2)⌫

m2
Z

+
kµk⌫k2

m4
Z

+
kµk⌫k · (p1 + p2)

m4
Z

+
kµ(p1 + p2)⌫k2

m4
Z

+
kµ(p1 + p2)⌫k · (p1 + p2)

m4
Z

(128)

and putting this in the relation for the K2
HZ,µ⌫ we get the following
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K2
HZ,µ⌫ = �4⇥ 8g3m3

Z

Z d4k

(2⇡)4
�igµ⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+ 4⇥ 16g3mZ

Z d4k

(2⇡)4
�ikµk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+ 4⇥ 8g3mZ

Z d4k

(2⇡)4
�ikµ(p1 + p2)⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+ 4⇥ 8g3mZ

Z d4k

(2⇡)4
�i(p1 + p2)µk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+ 4⇥ 8g3mZ

Z d4k

(2⇡)4
�i(p1 + p2)µ(p1 + p2)⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3

mZ

Z d4k

(2⇡)4
�ikµk⌫k2

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3

mZ

Z d4k

(2⇡)4
�ikµk⌫k · (p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3

mZ

Z d4k

(2⇡)4
�ikµ(p1 + p2)⌫k2

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3

mZ

Z d4k

(2⇡)4
�ikµ(p1 + p2)⌫k · (p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘ .

(129)

This terms could be reduced to scalar integrals according to the procedure that we

follow throughout this work, therefore writing them in d-dimensions we get that

K2
HZ,µ⌫ = �4⇥ 8g3m3

Zµ
d�4

(4⇡)d/2

Z ddk

⇡d/2

�igµ⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
4⇥ 16g3mZµ

d�4

(4⇡)d/2

Z ddk

⇡d/2

�ikµk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
4⇥ 8g3mZµ

d�4

(4⇡)d/2

Z ddk

⇡d/2

�ikµ(p1 + p2)⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

+
4⇥ 8g3mZµ

d�4

(4⇡)d/2

Z ddk

⇡d/2

�i(p1 + p2)µk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘
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+
4⇥ 8g3mZµ

d�4

(4⇡)d/2

Z ddk

⇡d/2

�i(p1 + p2)µ(p1 + p2)⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3µd�4

mZ(4⇡)d/2

Z ddk

⇡d/2

�ikµk⌫k2

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3µd�4

mZ(4⇡)d/2

Z ddk

⇡d/2

�ikµk⌫k · (p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3µd�4

mZ(4⇡)d/2

Z ddk

⇡d/2

�ikµ(p1 + p2)⌫k2

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

� 4⇥ 8g3µd�4

mZ(4⇡)d/2

Z ddk

⇡d/2

�ikµ(p1 + p2)⌫k · (p1 + p2)

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘

(130)

and now if we recall the relations (456) from the Appendix, then we get that K2
HZ,µ⌫

takes its final form which reads

(4⇡)d/2K2
HZ,µ⌫ = 4⇥ 8g3µd�4

8
<

:�m3
Zg

µ⌫C0(p1, p2,mZ ,mH ,mZ) + 2mZC
µ⌫(p1, p2,mZ ,mH ,mZ)

+ mZ(p1 + p2)
⌫Cµ(p1, p2,mZ ,mH ,mZ)

+ mZ(p1 + p2)
µC⌫(p1, p2,mZ ,mH ,mZ) +mZ(p1 + p2)

µ(p1 + p2)
⌫C0(p1, p2,mZ ,mH ,mZ)

� mZU
µ⌫
K4 �

(p1 + p2)⇢
mZ

Cµ⌫⇢(p1, p2,mZ ,mH ,mZ)� (p1 + p2)⌫
mZ

Cµ⇢�(p1, p2,mZ ,mH ,mZ)

� (p1 + p2)⌫(p1 + p2)⇢
mZ

Cµ⇢(p1, p2,mZ ,mH ,mZ)

9
=

; . (131)

Moreover, we have defined the dimensionless integral Uµ⌫
K4 as

Uµ⌫
K4 =

Z d4k

(4⇡)4
�ikµk⌫k2

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
H

⌘⇣
(k + p1 + p2)

2 �m2
Z

⌘ . (132)

Next comes a diagram that occurs from the combination of the �2AµA⌫ and �3 vertices

which gives

= iK3
HZ,µ⌫ (133)
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which is very easy to see that it is connected with the diagram (111) which is connected

with the diagram (37). Therefore we get that

(4⇡)d/2K3
HZ,µ⌫ =

�g2gµ⌫

6⇥ 3�
(4⇡)d/2µd�4K3

H =
�g2gµ⌫

6⇥ 3v0�
(4⇡)d/2µd�4M3

H ,
(4⇡)d/2K3

HZ,µ⌫ = �8⇥ 12g2gµ⌫�v0µ
d�4B0(p1,mH ,mH)

(134)

Finally, in order to evaluate the full contribution of these diagrams to the Higgs-Z

vertex we should add equations (125), (131) and (134), obtaining

(4⇡)d/2KHZ,µ⌫ = �8⇥ 12g2gµ⌫�v0µ
d�4B0(p1,mH ,mH)

+ 4⇥ 8g2µ4�d

8
<

:3⇥ 3�v0

⇢
� gµ⌫m2

ZC0(p1, p2,mZ ,mH ,mH)

+ Cµ⌫(p1, p2,mZ ,mH ,mH)
�

+ g
⇢
(mZ(p1 + p2)

µ(p1 + p2)
⌫ �m3

Zg
µ⌫)C0(p1, p2,mZ ,mH ,mZ)

+ 2mZC
µ⌫(p1, p2,mZ ,mH ,mZ) +mZ(p1 + p2)

⌫Cµ(p1, p2,mZ ,mH ,mZ)

+ mZ(p1 + p2)
µC⌫(p1, p2,mZ ,mH ,mZ)�mZU

µ⌫
K4

� (p1 + p2)⇢
mZ

Cµ⌫⇢(p1, p2,mZ ,mH ,mZ)� (p1 + p2)⌫
mZ

Cµ⇢�(p1, p2,mZ ,mH ,mZ)

� (p1 + p2)⌫(p1 + p2)⇢
mZ

Cµ⇢(p1, p2,mZ ,mH ,mZ)
�9=

; . (135)

As we can see this result has many common features with the result that we have

obtained from the one-loop three-point functions concerning the Higgs field. On the

other hand it seems more di�cult for KHZ,µ⌫ to be reduced to scalar integrals since it has

tensor form. Fortunately, this is not the case since for the on-shell renormalization that

we discuss later, we should consider the contracted with the metric case of this result,

namely gµ⌫KHZ,µ⌫ . Therefore here the reduction into scalar integrals of the Higgs-Z vertex

correction will concern its contacted version. Therefore, using the equations (493), (494),

(499) and (538) we get the reduced form
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(4⇡)d/2gµ⌫KHZ,µ⌫ = µ4�d

8
<

:8g
2�v0B0(mZ ,mH ,mH) +

4⇥ 8g3

mZ
A0(mH)� 32g3

3mZ
A0(mZ)

+
4g3(�7m2

H + 16m2
Z)

9mZ
B0(mZ ,mH ,mZ)

+
g3(35Dm8

H + 32m2
Hm

2
Z � 136Dm6

Hm
2
Z)

6mZ
C0(mZ ,mZ ,mZ ,mH ,mZ)

+
g3(�80m4

Z + 144Dm4
Hm

4
Z � 64Dm2

Hm
6
Z)

18mZ
C0(mZ ,mZ ,mZ ,mH ,mZ)

� 24g2m2
Z�v0C0(mZ ,mZ ,mZ ,mH ,mH)

9
=

; .

(136)

where we have defined the relationD = 1
detG2

and the G2 determinant which in on-shell

reads

detG2 = 2m2
Hm

2
Z � m4

H

4
�m4

Z . (137)

2.4 Four-point functions

In the present subsection we deal with an other important set of one-loop quantum cor-

rections corresponding to the four-point functions, namely the box diagrams. The first

set of these diagrams contributes to the correction of the quartic coupling of the Higgs

boson and corresponds to four external Higgs fields. In particular we start with a diagram

coming from the combination of the �3 and �4 vertices which gives

= iB1
H (138)

and as we can see if we could replace one of the external Higgs fields with v0 then we

would obtain exactly the same diagram with that of (78) except the symmetry factor.

Generally in what follows we will consider diagrams similar with that of the previous

section but with di↵erent symmetry factors. Therefore the only thing left is to evaluate

these factors, so for the current diagram, following the reasoning that we have developed

in the previous cases, we have that
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the symmetry factor here reads S1
BKH

= 216 · 33 · 16.
thus it is straightforward to write here that

(4⇡)d/2B1
H = 216 · 33 · 16�3v20µd�4C0 (p1, p2,mH ,mH ,mH) ,

(139)

otherwise, we have that

K1
H =

v0
4
B1
H . (140)

Same arguments are true for the case of the next diagram coming from the combination

of the �AµA⌫ and �2AµA⌫ which reads

= iB2
H (141)

and it is similar with that of (81). Again here following the known procedure for

calculating the symmetry factor we get S2
BKH

= 8 · 8.
Thus its final form here becomes
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(4⇡)d/2B2
H = 8 · 8g4µ4�d

8
<

:

 

4m2
Z � p21 � (p1 + p2)

2 +
1

m2
Z

⇣
p21 + p1 · p2

⌘2
!

C0 (p1, p2,mZ ,mZ ,mZ)

+

 "

�4 +
4p21
m2

Z

+
4p1 · p2
m2

Z

#

p1µ +

"

�2 +
2p21
m2

Z

+
2p1 · p2
m2

Z

#

p2µ

!

Cµ (p1, p2,mZ ,mZ ,mZ)

+

 

�3 +
2p21
m2

Z

+
2p1 · p2
m2

Z

!

gµ⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ)

+

 "
6

m2
Z

� p21
m4

Z

� p1 · p2
m4

Z

#

p1µp1⌫ +

"
6

m2
Z

� p21
m4

Z

� p1 · p2
m4

Z

#

p1µp2⌫

!

Cµ⌫ (p1, p2,mZ ,mZ ,mZ)

+
2

m2
Z

p2µp2⌫C
µ⌫ (p1, p2,mZ ,mZ ,mZ)

+ gµ⌫

 "
8

m2
Z

� 2p21
m4

Z

� 2p1 · p2
m4

Z

#

p1⇢ +

"
4

m2
Z

� p21
m4

Z

� p1 · p2
m4

Z

#

p2⇢

!

Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+

 

� 2

m4
Z

p1µp1⌫p1⇢ � 3

m4
Z

p1µp1⌫p2⇢ � 1

m4
Z

p1µp2⌫p2⇢

!

Cµ⌫⇢ (p1, p2,mZ ,mZ ,mZ)

+

 

3� p21
m2

Z

� p1 · p2
m2

Z

!

UK4(p1, p2,mZ ,mZ ,mZ)

+ �UK6(p1, p2,mZ ,mZ ,mZ)� (
4p1µ
mZ

+
2p2µ
mZ

)UK5(p1, p2,mZ ,mZ ,mZ)

9
=

;

(142)

which gives that

K2
H =

v0
2
B2
H . (143)

Next we deal with two more Box diagrams which are related with the Triangular case

in the same way that we have described previously. To be more specific, the first one that

we consider here comes from the square of the �4 vertex and gives

= iB3
H (144)

which is exactly the same with (111) divided by v0 but its symmetry factor is di↵erent.

To be more specific, here the �4 vertex gives S3
BKH

= 1
2
.

Moreover, in this particular set of four point functions, we should take into consideration

the existence of u- and t-channels in addition of the s-channel that we have presented
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here. Thus, we have to add two more contributions coming from these channels. Here s,

u and t represent the Mandelstam variables and in the center-of-mass frame are defined

as

s = (p1 + p2)
2 = 4E2 = E2

CM (145)

t = (p1 � p3)
2 = m2

1 +m2
2 � 2E2 + 2~k · ~p (146)

u = (p2 � p4)
2 = m2

1 +m2
2 � 2E2 � 2~k · ~p. (147)

These relations, as we will see later in this work, help us to specify the kinematics of

the Feynman diagrams which plays a very important role in the evaluation of the physical

quantities. Thus if we suppose that the external legs of this diagram have indices i, j, k

and l, then the combination of these channels will give that this diagram reads

(4⇡)d/2B3
H = 18�2µd�4(�ij�kl + �ik�jl + �il�jk)B0(p1,mH ,mH). (148)

since every contribution of the s-, u- and t-channels is identical, with only di↵erence

in the way that the external legs combine each other. Therefore for each pair of ij and

kl we get that

K3
H =

v0
6
B3
H . (149)

Now, the second diagram comes from the square of the �2AµA⌫ vertex and reads

= iB4
H (150)

thus, using the same arguments with diagram (144), we get S4
BKH

= 1
2
and so we

obtain that
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(4⇡)d/2B4
H = (�ij�kl + �ik�jl + �il�jk)µd�4

8
<

:6
�m2

Z0

m2
H0

A0(mZ0) +
3�m4

Z0

m2
H0

+ 3�0A0(mH0)

+ 9�0m
2
H0
B0(p,mH0 ,mH0) +

�0m
2
Z0

m2
H0

⇢
4(d+ ")B0(p,mZ0 ,mZ0)

� 4(d+ ")

d
gµ⌫B

µ⌫(p,mZ0 ,mZ0)�
4(d+ ")

d
gµ⌫B

µ⌫
k+p(p,mZ0 ,mZ0)

+
4(d+ ")

d2
gµ⌫B

µ⌫(p,mZ0 ,mZ0) +
4(d+ ")

d2
A0(mZ0)

�9=

; (151)

which means that

K4
H =

v0
2
B4
H (152)

Now we move on to the final two Box diagrams that contribute to the Higgs quartic

coupling. These diagrams do not have any relation with Triangles as the cases that we

have previously dealt with. The first of these new diagrams comes from the fourth power

of the �3 vertex and gives

= iB5
H (153)

which reads

iB5
H =

Z d4k

(2⇡)4
i

(k2 �m2
H)

i
⇣
(k + p1)

2 �m2
H

⌘
i�4v40S1

BH⇣
(k + p1 + p2)

2 �m2
H

⌘
i

⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘

B5
H =

Z d4k

(2⇡)4
�i�4v40S1

BH

(k2 �m2
H)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘ .

Here the symmetry factor is given by using the same technic with the previous set,

thus we get that the symmetry factor here reads S1
BH

= 64 · 81 · 8 .

Now, writing this integral in d-dimensions we see that it reads

B5
H = 64 · 81 · 8�

4v40µ
d�4

(4⇡)d/2

Z ddk

i⇡d/2

�i

d1d2d3d4
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where di =
✓
k +

i�1P

k=1
pk

◆2

�mi + i" with , i = 1, .., 4. Thus, recalling the first case of

the relation (457) from the Appendix B we obtain the following

(4⇡)d/2B5
H = 64 · 81 · 8�4v40µd�4D0 (p1, p2, p3,mH ,mH ,mH ,mH) . (154)

The last diagram that we have to consider here comes from the fourth power of the

�AµA⌫ vertex and it has the form

= iB6
H (155)

with symmetry factor S2
BH

which is given by S2
BH

= 16 · 8 . Therefore this diagram

reads

iB6
H = 16 · 8g4m4

Zgµ�g⌫�

Z d4k

(2⇡)4

8
<

:

i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

i
✓
�g↵� + (k+p1)

↵(k+p1)
�

m2
Z

◆

⇣
(k + p1)

2 �m2
Z

⌘

⇥
i
✓
�g�⌫ + (k+p1+p2)

�(k+p1+p2)⌫

m2
Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘
i
✓
�g�� + (k+p1+p2+p3)

�(k+p1+p2+p3)
�

m2
Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘

9
=

;,

B6
H = 16 · 8g4m4

Zgµ�g⌫�

Z d4k

(2⇡)4

8
<

:

�i
✓
�gµ↵ + kµk↵

m2
Z

◆

(k2 �m2
Z)

✓
�g↵� + (k+p1)

↵(k+p1)
�

m2
Z

◆

⇣
(k + p1)

2 �m2
Z

⌘

⇥

✓
�g�⌫ + (k+p1+p2)

�(k+p1+p2)⌫

m2
Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘

✓
�g�� + (k+p1+p2+p3)

�(k+p1+p2+p3)
�

m2
Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘

9
=

;.

(156)

Before we start our calculation using the reduction formula as we have done till now,

we should notice that the numerator of this Box diagram has four parenthesis which

give sixteen independent terms. The general form of calculating such integrals which we

have followed throughout this work says that we should fully expand the numerator and

consider each term separately. Nevertheless, here we can change a little bit the procedure,

namely we can expand only the last parenthesis in the numerator. Doing this, including

gµ�g
�
" , we obtain two terms for the numerator which read
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N = N1 +N2

= �gµ⌫

 

�gµ↵ +
kµk↵

m2
Z

! 

�g↵� +
(k + p1)

↵(k + p1)
�

m2
Z

! 

�g�⌫ +
(k + p1 + p2)

�(k + p1 + p2)⌫

m2
Z

!

+
(k + p1 + p2 + p3)µ(k + p1 + p2 + p3)⌫

m2
Z

 

�gµ↵ +
kµk↵

m2
Z

! 

�g↵� +
(k + p1)

↵(k + p1)
�

m2
Z

!

⇥
 

�g�⌫ +
(k + p1 + p2)

�(k + p1 + p2)⌫

m2
Z

!

. (157)

Comparing this with the Triangular integral (82) we notice that we have its numerator

multiplied with two di↵erent terms. Thus for our case here we can calculate separately

the sixteen terms coming from the two numerators N1 and N2 using the results from

the corresponding Triangle diagram. To be more specific, from the numerator N1 we get

exactly the terms that we have in (81), thus the first eight of them are B6
HA, B6

HB, B6
HC ,

B6
HD, B6

HE, B6
HF , B6

HG and B6
HI the first one gives

and gives that

(4⇡)d/2B6
HA = 64 · 8g4m4

Zµ
4�dD0(p1, p2, p3,mZ ,mZ ,mZ). (158)

The second integral has

N = gµ⌫k
µk⌫ + p1

2 + 2p1p2 + p2
2 + 2k(p1 + p2) (159)

and gives that

(4⇡)d/2B6
HB = �16 · 8g4m2

Zµ
4�d

8
<

:gµ⌫D
µ⌫(p1, p2, p3,mZ ,mZ ,mZ)

+ (p1
2 + 2p1p2 + p2

2)D0(p1, p2, p3,mZ ,mZ ,mZ) + 2(p1 + p2)µD
µ(p1, p2, p3,mZ ,mZ ,mZ)

9
=

;.

(160)

The next integral is the same with the previous one if we replace (p1 + p2) ! p1, thus

it reads
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(4⇡)d/2B6
HC = �16 · 8g4m2

Zµ
4�d

8
<

:gµ⌫D
µ⌫(p1, p2, p3,mZ ,mZ ,mZ)

+ p1
2D0(p1, p2, p3,mZ ,mZ ,mZ) + 2p1µD

µ(p1, p2, p3,mZ ,mZ ,mZ)

9
=

;.

(161)

The fourth integral in the row is more complicated since it has bigger mass dimension

than the previous three integrals. However, we know that its numerator becomes

N = k4+k2k ·(4p1+2p2)+k2(6p1
2+6p2p1+p2

2)+2k ·p1(p1+p2)(2p1+p2)+p21 ·(p1 + p2)
2

(162)

so using this relation we obtain that

(4⇡)d/2B6
HD = 16 · 8g4µ4�d

8
<

:p
2
1(p1 + p2)

2D0 (p1, p2, p3,mZ ,mZ ,mZ) + UB4(p1, p2, p3,mZ ,mZ ,mZ)

+ [p1(p1 + p2)(2p1 + p2)]µD
µ (p1, p2, p3,mZ ,mZ ,mZ)

+ (6p1
2 + 6p2 · p1 + p2

2)gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(4p1 + 2p2)↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (163)

where we have defined

UB4(p1, p2, p3,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4

8
<

:
�ik4

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

;. (164)

The next integral correspond to the second case of equation (457) and we can write

straightforward that

(4⇡)d/2B6
HE = �16 · 8g4m2

Zµ
4�dgµ⌫D

µ⌫(p1, p2, p3,mZ ,mZ ,mZ). (165)

Now we move on to the sixth integral which is similar with (163) and whose numerator

according to (102) reads
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N = k4 + 2k2k · (p1 + p2) + k2(p1 + p2)
2 (166)

so in d-dimensions this integral gives

(4⇡)d/2B6
HF = 16 · 8g4µ4�d

8
<

:(p1 + p2)
2gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫(p1 + p2)↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

+ UB4(p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (167)

The next integral corresponds to B6
HG and as we already know is exactly the same

with B6
HF if we perform the replacement (p1 + p2) ! p1, then we obtain the following

(4⇡)d/2B6
HG = 16 · 8g4µ4�d

8
<

:p
2
1gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫p1↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

+ UB4(p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (168)

The last integral coming from the first eight terms that we calculate here is B6
HI and

its numerator according to (106) reads

N = k6+k4k·(4p1+2p2)+k4(6p1
2+6p2p1+p2

2)+2k2k·p1(p1+p2)(2p1+p2)+k2p21·(p1 + p2)
2

(169)

and it gives that

(4⇡)d/2B6
HI = �16 · 8g4µ4�d

m2
Z

8
<

:(6p
2
1 + 6p1 · p2 + p22)UB4(p1, p2, p3,mZ ,mZ ,mZ)

+ m2
ZUB6(p1, p2, p3,mZ ,mZ ,mZ) +mZ(4p1 + 2p2)µUB5(p1, p2, p3,mZ ,mZ ,mZ)

+ p21(p1 + p2)
2gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(4p
3
1 + 6p21p2 + 2p1p

2
2)↵D

µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (170)

where we have defined the following
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UB5(p1, p2, p3,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4

8
<

:
�ik4kµ

mZ (k2 �m2
Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

; (171)

and

UB6(p1, p2, p3,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4

8
<

:
�ik6

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

;. (172)

Now that we have finished with the calculation of the first parenthesis integrals we

move on to the next eight integrals that occur from the N2 numerator which are B6
HJ ,

B6
HK , B6

HL, B6
HM , B6

HN , B6
HO, B6

HP , B6
HQ. As we can recall, the di↵erence here is that we

have the numerator of the (82) multiplied with a zero-mass dimension term. Thus, in

order to evaluate these integrals we have first to calculate the corresponding numerators

something that we should do for each case separately. As an example we give the first

integral of the second set where we have that its numerator reads

N = (k + p1 + p2 + p3) · (k + p1 + p2 + p3) ,
N = k2 + 2k(p1 + p2 + p3) + (p1 + p2 + p3)

2 (173)

and now using the same arguments as in each previous case that we have faced, we

get that

(4⇡)d/2B6
HJ = �16 · 8g4m2

Zµ
4�d

8
<

:gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2(p1 + p2 + p3)µD
µ (p1, p2, p3,mZ ,mZ ,mZ) + (p1 + p2 + p3)

2D0 (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;.

(174)

Next we have B6
HK whose numerator becomes
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N = (k + p1 + p2 + p3) · (k + p1 + p2 + p3)
⇣
k2 + (p1 + p2)

2
⌘
,

N = k4 + 2k2k(2p1 + 2p2 + p3) + k2[(p1 + p2 + p3)
2

+ (p1 + p2)
2 + 4(p1 + p2 + p3)(p1 + p2)] + 2k[(p1 + p2 + p3)

2(p1 + p2) + (p1 + p2)
2(p1 + p2 + p3)]

+ (p1 + p2 + p3)
2(p1 + p2)

2

(175)

so putting this in the corresponding integral it gives

(4⇡)d/2B6
HK = 16 · 8g4µ4�d

8
<

:UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ (p1 + p2 + p3)
2(p1 + p2)

2D0 (p1, p2, p3,mZ ,mZ ,mZ)

+ [(p1 + p2 + p3)
2(p1 + p2) + (p1 + p2)

2(p1 + p2 + p3)]µD
µ (p1, p2, p3,mZ ,mZ ,mZ)

+ (6p21 + 6p22 + 6p2 · p3 + p23 + 6p1 · (2p2 + p3))gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(4p1 + 4p2 + 2p3)↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (176)

Similar with the previous arguments, the next integral occurs by replacing (p1+p2) !
p1. therefore we get that

(4⇡)d/2B6
HL = 16 · 8g4µ4�d

8
<

:UB4 (p1, p2, p3,mZ ,mZ ,mZ) + (p1 + p2 + p3)
2p21D0 (p1, p2, p3,mZ ,mZ ,mZ)

+ [(p1 + p2 + p3)
2p1 + p21(p1 + p2 + p3)]µD

µ (p1, p2, p3,mZ ,mZ ,mZ)

+ (6p21 + 6p1 · (p2 + p3) + (p2 + p3)
2)gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(4p1 + 4p2 + 2p3)↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (177)

Next we have the integral B6
HM so we follow the same procedure as before, which

finally gives that
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(4⇡)d/2B6
HM = �16 · 8g4µ4�d

m2
Z

8
<

:m
2
ZUB6 (p1, p2, p3,mZ ,mZ ,mZ)

+ mZ((4p1 + 2p2)
2 + (8p1 + 4p2)(p1 + p2 + p3))UB5 (p1, p2, p3,mZ ,mZ ,mZ)

+ (6p21 + 6p1 · p2 + p22 + (p1 + p2 + p3)
2)UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ (p1 + p2 + p3)
2(p1 + p2)

2p21D0 (p1, p2, p3,mZ ,mZ ,mZ)

+ [2(p1 + p2)
2p21(p1 + p2 + p3)

+ 2p1(p1 + p2)(2p1 + p2)(p1 + p2 + p3)
2]µD

µ (p1, p2, p3,mZ ,mZ ,mZ)

+ ((p1 + p2)
2p21 + (6p21 + 6p1 · p2 + p22)(p1 + p2 + p3)

2)gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 4[(p1 + p2)(2p1 + p2)]⌫(p1 + p2 + p3)µD
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫ [(p1 + p2)p1(2p1 + p2) + (6p21 + 6p1 · p2

+ p22)(p1 + p2 + p3) + (4p1 + 2p2)(p1 + p2 + p3)
2]↵D

µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;.(178)

The next integral that we face is B6
HN and its numerator has much simplier form than

the previous one. This case reads

(4⇡)d/2B6
HN = 16 · 8g4µ4�d

8
<

:UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ (p1 + p2 + p3)
2gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(2p1 + 2p2 + 2p3)↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (179)

Now we move on to the next two integrals, namely we have B6
HO and B6

HP which are

similar with the integral (178) but with much simpler results. To be more specific here

we have that

(4⇡)d/2B6
HO = �16 · 8g4µ4�d

m2
Z

8
<

:m
2
ZUB6 (p1, p2, p3,mZ ,mZ ,mZ)

+ mZ(4p1 + 4p2 + 2p3)UB5 (p1, p2, p3,mZ ,mZ ,mZ)

+ [(p1 + p2)
2 + (p1 + p2 + p3)

2]UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ (p1 + p2)
2(p1 + p2 + p3)

2gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫ [(p1 + p2)(p1 + p2 + p3)
2 + (p1 + p2)

2(p1 + p2 + p3)]↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫(p1 + p2)↵(p1 + p2 + p3)�D
µ⌫↵� (p1, p2, p3,mZ ,mZ ,mZ)

9
=

; (180)
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and moreover we now know that B6
HP could be obtained from B6

HO by doing the

replacement (p1 + p2) ! p1, therefore we get that

(4⇡)d/2B6
HP = �16 · 8g4µ4�d

m2
Z

8
<

:m
2
ZUB6 (p1, p2, p3,mZ ,mZ ,mZ)

+ mZ(4p1 + 2p2 + 2p3)UB5 (p1, p2, p3,mZ ,mZ ,mZ)

+ [p21 + (p1 + p2 + p3)
2]UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ p21(p1 + p2 + p3)
2gµ⌫D

µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫ [p1(p1 + p2 + p3)
2 + p21(p1 + p2 + p3)]↵D

µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

+ gµ⌫p1↵(p1 + p2 + p3)�D
µ⌫↵� (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (181)

Finally, here we consider the most complicated integral from these that we have faced

until now, namely the B6
HQ integral. Its numerator occurs using (169) in the same way

that we have treated the previous cases and thus we obtain that the final form of this

integral becomes

(4⇡)d/2B6
HQ =

16 · 8g4µ4�d

m4
Z

8
<

:m
4
ZUB8 (p1, p2, p3,mZ ,mZ ,mZ)

+ m3
Z(6p1 + 4p2 + 2p3)µUB7 (p1, p2, p3,mZ ,mZ ,mZ)

+ m2
Z [(6p

2
1 + 6p1 · p2 + p22) + (8p1 + 4p2) · (p1 + p2 + p3) (182)

+ (p1 + p2 + p3)
2]UB6 (p1, p2, p3,mZ ,mZ ,mZ)

+ m2
Z [(p

2
1 + p1 · p2)µ(2p1 + p2)⌫ + (4p1 + 2p2)µ(p1 + p2 + p3)

2
⌫

+ (2p21 + 3p1 · p2 + p22)µ(p1 + p2 + p3)⌫ ]U
µ⌫
B6 (p1, p2, p3,mZ ,mZ ,mZ)

+ mZ(6p
2
1 + 6p1 · p2 + p22)(p1 + p2 + p3)µUB5 (p1, p2, p3,mZ ,mZ ,mZ)

+ [p21(p1 + p2)
2 + (6p21 + 6p1 · p2 + p22)(p1 + p2 + p3)

2]UB4 (p1, p2, p3,mZ ,mZ ,mZ)

+ (p21(p1 + p2)
2(p1 + p2 + p3)

2)gµ⌫D
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ)

+ 2gµ⌫ [p1 · (p1 + p2)(2p1 + p2)(p1 + p2 + p3)
2

+ (p1 + p2 + p3)p
2
1(p1 + p2)

2]↵D
µ⌫↵ (p1, p2, p3,mZ ,mZ ,mZ)

9
=

;. (183)

where we have defined the zero-mass dimension integrals
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Uµ⌫
B6 (p1, p2, p3,mZ ,mZ ,mZ) =

Z d4k

(2⇡)4

8
<

:
�ik4kµk⌫

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

; (184)

UB7(p1, p2, p3,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4

8
<

:
�ik6kµ

m3
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

; (185)

and

UB8(p1, p2, p3,mZ ,mZ ,mZ) =
Z d4k

(2⇡)4

8
<

:
�ik8

m4
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
Z)

9
=

;. (186)

In order to move on we should sum up all the sixteen results which we have found and

which constitute the box diagram (156). In addition we can use the similar notation with

that used in the case of the Triangle diagrams so as to obtain a general and compactified

form for the current diagram. Moreover here it should be cleared that we use a similar

calculation technic with that of the evaluation of the U -integrals in App. D. To be more

specific, in the calculation of the B6
H we deal with highly divergent integrals which in this

diagram correspond to the Dµ⌫⇢, Dµ⌫⇢↵ and Dµ⌫⇢↵� terms. Thus, these cases are treated

using the following relations

*
k2kµ · · · k↵

d1d2d3d4

+

=

*
(k2 �m2

Z) k
µ · · · k↵

d1d2d3d4

+

+

*
m2

Zk
µ · · · k↵

d1d2d3d4

+

(187)

*
pi · kkµ · · · k↵

d1d2d3d4

+

=

*
1
2
(fi + di+1 � di) kµ · · · k↵

d1d2d3d4

+

(188)

where we have used the equation (478) from the Appendix .

Therefore, considering the above equations each time that we face the corresponding

highly divergent integrals, (156) reads
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(4⇡)d/2B6
H = 16 · 8g4µ4�d

8
<

:UB8 (p1, p2, p3,mZ ,mZ ,mZ)

+
⇢
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=

; .

(189)

Finally, in order to see the complete quantum corrections of the one-loop four-point

diagrams to the Higgs quartic coupling, we should add all the results that we have pre-

sented here. In particular, we should sum the results from equations (139), (142), (148),

(151), (154) and (189). Therefore, the final result coming from the box diagrams reads
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+ 2P1 · P2P2µ � p1 · P2P1 · P2

m2
Z

p1µ � p1 · P1P1 · P2

m2
Z

P2µ

� p1 · P2P1 · P2

m2
Z

p1µ � p1 · P2P1 · P2

m2
Z

P1µ

�
Dµ (p1, p2, p3,mZ ,mZ ,mZ)

+
⇢
p1 · P1

m4
Z

p1µP1⌫ +
2p1 · P1

m2
Z

p1µP2⌫ +
p1 · P1

m4
Z

P1µP2⌫ +
p1 · P1

m4
Z

P2µP2⌫ +
P1 · P2

m4
Z

p1µp1⌫

+
P1 · P2

m4
Z

p1µP1⌫ +
2P1 · P2

m4
Z

p1µP2⌫

+
P1 · P2

m4
Z

P1µP2⌫

�⇣
m2

ZD
µ⌫ (p1, p2, p3,mZ ,mZ ,mZ) + Cµ⌫

{2,3,4} (p1, p2,mZ ,mZ ,mZ)
⌘

+
⇢
�2p1 · P1

m2
Z

P2µ � 2p1 · P1p1µ
m2

Z

� 2p1 · P1P1µ

m2
Z

� 2p1 · P2P2⌫

m2
Z

� 2P1 · P2

m2
Z

p1µ � 2P1 · P2

m2
Z

P1µ

� 2P1 · P2

m2
Z

P1⌫ +
p1 · P1P1 · P2

m4
Z

p1µ

+
p1 · P1P1 · P2

m4
Z

P2µ

�⇣
m2

ZD
µ (p1, p2, p3,mZ ,mZ ,mZ) + Cµ

{2,3,4} (p1, p2,mZ ,mZ ,mZ)
⌘�
9
=

;. (190)

Since we have obtained the full one-loop corrections to the Higgs four-point function,
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we should proceed similarly with the previous two subsections. To be more specific, we

should reduce the result with the help of the scalar integrals. Here we have to consider

six Box-diagrams, but as we have already mentioned in this section, the first four are

connected with the corresponding Triangle-diagrams. Therefore we can use their relation

in order to obtain the reduced form of this set of Box-diagrams. The remaining two,

which are not included in the previous case, have been treated separately.

An interesting point that could be noticed here is that the reduced form of BH depends

on the diagram kinematics. This result plays a crucial role to the understanding of the

physical quantities as we will explain in the section where we obtain the physical quartic

coupling. In this section this dependence just makes our results very complicated and

di�cult to be written. So we choose, only for now, a specific allowed value for the

kinematics, namely cs = 1 and ct = 1, and therefore the reduced form of BH reads

(4⇡)d/2BH = µ4�d

8
<

:48g
4 + (�744g4m2

H

m4
Z

� 384g4

m2
Z

)A0(mZ)

+ (�1600g4m2
H +

16g4m6
H

3m4
Z

+
1408g4m4

H

3m2
Z

+ 1152g4m2
Z)C0[mZ ,mZ ,mZ ]

+ (
96g4m6

H

m2
Z

+ 1152g4m2
Hm

2
Z + 3072g4m4

Z)D0[mZ ,mZ ,mZ ,mZ ]

+ 31104�2B0[mH ,mH , 0,mH ] + 559872v20�
3C0[mH ,mH ,mH ]

+ 2519424v40�
4D0[mH ,mH ,mH ,mH ]

+ (�32g4 +
8g4m4

H

3m4
Z

+
128g4m2

H

3m2
Z

� 512g4m2
Z

m2
H

)B0[mH ,mH , 0,mH ]

+ (192g4 +
24g4m4

H

m4
Z

� 96g4m2
H

m2
Z

)B0[mH ,mH , 0,mH ]

+ (�416g4 � 184g4m4
H

3m4
Z

+
176g4m2

H

3m2
Z

)B0[mH ,mZ , 0,mH ]

+ (�1472g4 +
1088g4m2

H

m2
Z

)B0[mH ,mZ , 0,mH ]

+ (�192g4 +
56g4m2

H

m2
Z

� 128g4m2
Z

m2
H

)B0[mH ,mZ , 0,mH ]

+ (�3008g4

3
+

1592g4m4
H

3m4
Z

� 5944g4m2
H

3m2
Z

+
128g4m2

Z

m2
H

)B0[mH ,mZ ,mH ,mH ]

+ (
8992g4

3
� 24g4m4

H

m4
Z

� 208g4m2
H

m2
Z

+
384g4m2

Z

m2
H

)B0[mH ,mZ ,mH ,mH ]
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+ (2944g4 +
1280g4m2

H

m2
Z

)B0[mZ ,mZ ,mH ,mH ]

+ (�4736g4

3
� 756g4m4

H

m4
Z

� 4024g4m2
H

m2
Z

+
128g4m2

Z

m2
H

B0[mZ ,mZ ,mH ,mH ]

+ (160g4m2
H +

104g4m4
H

m2
Z

� 512g4m2
Z)C0[mH ,mH ,mZ , 0,mH ,mH ]

+ (�72g4m4
H

m2
Z

� 384g4m2
Z)C0[mH ,mH ,mZ , 0,mH ,mH ]

+ (3904g4m2
H � 1216g4m4

H

m2
Z

)C0[mH ,mZ ,mZ , 0,mH ,mH ]

+ (�224g4m2
H � 344g4m4

H

m2
Z

� 384g4m2
Z)C0[mH ,mZ ,mZ , 0,mH ,mH ]

+ (�2912g4m2
H � 80g4m6

H

m4
Z

+
5464g4m4

H

3m2
Z

+ 4736g4m2
Z)C0[mH ,mZ ,mZ ,mH ,mH ,mH ]

9
=

;

(191)

where we have defined and used that L is the inverse of the determinant of the G3

matrix which reads

L =
1

detG3

=
�4

m6
H

(192)

Before we move on to the renormalization of the Abelian Higgs model that we study

here, we should consider the contribution of the one-loop four point functions with two

external gauge bosons, to the gauge coupling g. Here, the procedure that we follow is

quite the same with that of the Higgs Box diagrams, thus we can start with the first

contribution coming from the combination of the square of �AµA⌫ vertex with the �4

vertex. The resulting diagram is

= iB1
HZ,µ⌫ (193)

where we can notice that putting on of the external Higgs legs equal to v0 we get the

result of diagram (121). Therefore we can write the following relation
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(4⇡)d/2B1
HZ,µ⌫ = (4⇡)d/2µ4�dK1

HZ,µ⌫

v0
,

(4⇡)d/2B1
HZ,µ⌫ = 24�1

KHZg
2�µ4�d

8
<

:�gµ⌫m2
ZC0(p1, p2,mZ ,mH ,mH) + Cµ⌫(p1, p2,mZ ,mH ,mH)

9
=

; .

(194)

The next integral which we consider here comes from the square of �AµA⌫ vertex with

the �2AµA⌫ vertex and it reads

= iB2
HZ,µ⌫ (195)

therefore following the same reasoning with the previous diagram, namely comparing

B2
HZ,µ⌫ with (126) we get that

(4⇡)d/2B2
HZ,µ⌫ = (4⇡)d/2µ4�dK2

HZ,µ⌫

v0
,

(4⇡)d/2B2
HZ,µ⌫ =

8�2
KHZg

4µd�4

v0

8
<

:�m2
Zg

µ⌫C0(p1, p2,mZ ,mH ,mZ) + 2Cµ⌫(p1, p2,mZ ,mH ,mZ)

+ (p1 + p2)
⌫Cµ(p1, p2,mZ ,mH ,mZ)

+ (p1 + p2)
µC⌫(p1, p2,mZ ,mH ,mZ) + (p1 + p2)

µ(p1 + p2)
⌫C0(p1, p2,mZ ,mH ,mZ)

� Uµ⌫
K4 �

(p1 + p2)⇢
m2

Z

Cµ⌫⇢(p1, p2,mZ ,mH ,mZ)� (p1 + p2)⌫
m2

Z

Cµ⇢�(p1, p2,mZ ,mH ,mZ)

� (p1 + p2)⌫(p1 + p2)⇢
m2

Z

Cµ⇢(p1, p2,mZ ,mH ,mZ)

9
=

; (196)

Now we move on to the next diagram which occur from the combination of the �2AµA⌫

and �4 vertices. To be more specific, this contribution reads

= iB3
HZ,µ⌫ (197)
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which is exactly the same with the Triangle diagram (133) divide with v0. Therefore

we get that

(4⇡)d/2B3
HZ,µ⌫ = (4⇡)d/2µ4�dK3

HZ,µ⌫

v0
,

(4⇡)d/2B3
HZ,µ⌫ =

�g2gµ⌫

3�v0
(4⇡)d/2µd�4K3

H =
�g2gµ⌫

3v20�
(4⇡)d/2µd�4M3

H ,
(4⇡)d/2B3

HZ,µ⌫ = �6g2gµ⌫�µd�4B0(p1,mH ,mH) .

(198)

Now it is time to move on to the Box diagrams corresponding to the Higgs-Z inter-

actions. Therefore, we start with the diagram which occurs from the combination of the

square of �AµA⌫ vertex with the square of the �2AµA⌫ vertex, giving

= iB4
HZ,µ⌫ (199)

which reads

iB4
HZ,µ⌫ = 144gµ↵g⌫�g2m2

Z�
2v20

Z d4k

(2⇡)4
i

(k2 �m2
H)

i
✓
�g↵� +

(k+p1)↵(k+p1)�
m2

Z

◆

⇣
(k + p1)

2 �m2
Z

⌘

⇥ i
⇣
(k + p1 + p2)

2 �m2
H

⌘
i

⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘ ,

B4
HZ,µ⌫ =

Z d4k

(2⇡)4

�i144gµ↵g⌫�g2m2
Z�

2v20

✓
�g↵� +

(k+p1)↵(k+p1)�
m2

Z

◆

(k2 �m2
H)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘ .

(200)

Here, similarly with all the other previous cases, we separate this integral into to pieces

and we calculate them independently. So, we start with the first one which reads

B4A
HZ,µ⌫ = �

Z d4k

(2⇡)4
�i144gµ⌫g2m2

Z�
2v20

(k2 �m2
H)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘
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where considering this in d-dimensions and using the first case of equation (457) we

obtain that

(4⇡)d/2B4A
HZ,µ⌫ = �144gµ⌫g2m2

Z�
2v20µ

d�4D0(p1, p1, p1,mH ,mZ ,mH ,mH) . (201)

The second integral that we consider here has the following explicit form

B4B
HZ,µ⌫ =

Z d4k

(2⇡)4
�i144gµ↵g⌫�g2�2v20(k + p1)↵(k + p1)�

(k2 �m2
H)
⇣
(k + p1)

2 �m2
Z

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
H

⌘

where its numerator reads

N = gµ↵g⌫�(k + p1)↵(k + p1)� ,
N = kµk⌫ + k⌫pµ1 + kµp⌫1 + pµ1p

⌫
1 . (202)

Thus, using the above result along with equation (457) we obtain that

(4⇡)d/2B4B
HZ,µ⌫ = 144g2�2v20µ

d�4

8
<

:D
µ⌫(p1, p2, p3,mH ,mZ ,mH) + p⌫1D

µ(p1, p2, p3,mH ,mZ ,mH)

+ pµ1D
⌫(p1, p2, p3,mH ,mZ ,mH) + pµ1p

⌫
1D0(p1, p2, p3,mH ,mZ ,mH)

9
=

; .

(203)

Therefore adding equations (201) and (203) we get the final form for B4
HZ,µ⌫ which

gives

(4⇡)d/2B4
HZ,µ⌫ = 144�1

BHZg
2�2v20µ

d�4

8
<

:�gµ⌫m2
ZD0(p1, p2, p3,mH ,mZ ,mH)

+ Dµ⌫(p1, p2, p3,mH ,mZ ,mH) + p⌫1D
µ(p1, p2, p3,mH ,mZ ,mH)

+ pµ1D
⌫(p1, p2, p3,mH ,mZ ,mH) + pµ1p

⌫
1D0(p1, p2, p3,mH ,mZ ,mH)

9
=

; .

(204)

where �1
BHZ is a symmetry factor as usual. The next diagram comes from the com-

bination of the third power of the �AµA⌫ vertex along with the �3 vertex, specifically it

gives
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= iB5
HZ,µ⌫ (205)

and its explicit form reads

iB5
HZ,µ⌫ = 24gµ↵g⌫�

�m4
Z

v0

Z d4k

(2⇡)4

i
✓
�g↵� +

k↵k�
m2

Z

◆

(k2 �m2
Z)

i
⇣
(k + p1)

2 �m2
H

⌘
i

⇣
(k + p1 + p2)

2 �m2
H

⌘

⇥
i
✓
�g�� +

(k+p1+p2+p3)�(k+p1+p2+p3)�
m2

Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘ ,

B5
HZ,µ⌫ = 24gµ↵g⌫�

�m4
Z

v0

Z d4k

(2⇡)4

⇢ �i
✓
�g↵� +

k↵k�
m2

Z

◆

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
H

⌘

⇥

✓
�g�� +

(k+p1+p2+p3)�(k+p1+p2+p3)�
m2

Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘
�
. (206)

The numerator of this integral has two parenthesis and therefore after expanding them

we obtain the following relation

N = gµ↵g⌫�m4
Z

 

�g↵� +
k↵k�
m2

Z

! 

�g�� +
(k + p1 + p2 + p3)�(k + p1 + p2 + p3)�

m2
Z

!

,

N = m4
Zg

µ⌫ � 2m2
Zkµk⌫ + k · kkµk⌫ + (p1 + p2 + p3) · kkµk⌫ �m2

Z(p1 + p2 + p3) · k
� m2

Z(p1 + p2 + p3)
⌫kµ + (p1 + p2 + p3)

⌫kµk · k + kµ(p1 + p2 + p3)
⌫(p1 + p2 + p3) · k

� m2
Z(p1 + p2 + p3)

⌫(p1 + p2 + p3)
µ . (207)

Now putting this expression in the (206) integral we obtain the following final form
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(4⇡)d/2B5
HZ,µ⌫ =

24�2
BHZ�µ

d�4

v0

8
<

:m
4
Zg

µ⌫D0(p1, p2, p3,mZ ,mH ,mH)

� 2m2
ZD

µ⌫(p1, p2, p3,mZ ,mH ,mH) + Uµ⌫
B4

+ (p1 + p2 + p3)⇢D
µ⌫⇢(p1, p2, p3,mZ ,mH ,mH)

� m2
Z(p1 + p2 + p3)

µD⌫(p1, p2, p3,mZ ,mH ,mH ,mZ)

� m2
Z(p1 + p2 + p3)

⌫Dµ(p1, p2, p3,mZ ,mH ,mH)

+ (p1 + p2 + p3)
⌫g⇢�D

µ⇢�(p1, p2, p3,mZ ,mH ,mH)

+ (p1 + p2 + p3)
⌫(p1 + p2 + p3)⇢D

µ⇢(p1, p2, p3,mZ ,mH ,mH)

� m2
Z(p1 + p2 + p3)

⌫(p1 + p2 + p3)
µD0(p1, p2, p3,mZ ,mH ,mH)

9
=

;

(208)

where �2
BHZ is again a symmetry factor.

Finally, the last diagram that we should consider here comes from the fourth power

of the �AµA⌫ vertex, giving

= iB6
HZ,µ⌫ (209)

which has the explicit form

iB6
HZ,µ⌫ = 16igµ↵g⌫�g4m4

Z

Z d4k

(2⇡)4

i
✓
�g�↵ + k�k↵

m2
Z

◆

(k2 �m2
Z)

i
⇣
(k + p1)

2 �m2
H

⌘
i
✓
�g�� +

(k+p1+p2)�(k+p1+p2)�
m2

Z

◆

⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥
i
✓
�g�� +

(k+p1+p2+p3)�(k+p1+p2+p3)�
m2

Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘ ,

B6
HZ,µ⌫ = 16gµ↵g⌫�g4m4

Z

Z d4k

(2⇡)4

⇢ �i
✓
�g�↵ + k�k↵

m2
Z

◆✓
�g�� +

(k+p1+p2)�(k+p1+p2)�
m2

Z

◆

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘

⇥

✓
�g�� +

(k+p1+p2+p3)�(k+p1+p2+p3)�
m2

Z

◆

⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘
�
. (210)
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As we can recall integrals like this one have occurred again in this section and in

particular in the case of (156). Therefore, we are familiar with integrals like these one

no matter how complicated they are. So we begin this calculation by obtaining the

corresponding numerator which in our case reads

N = gµ↵g⌫�m4
Z

 

�g�↵ +
k�k↵
m2

Z

! 

�g�� +
(k + p1 + p2)�(k + p1 + p2)�

m2
Z

!

⇥
 

�g�� +
(k + p1 + p2 + p3)�(k + p1 + p2 + p3)�

m2
Z

!

,

N = �m4
Zgµ⌫ + 3m2

Zkµk⌫ � 3k2kµk⌫ +
k4kµk⌫
m2

Z

� 2k · (p1 + p2)kµk⌫

+
2k2k · (p1 + p2)kµk⌫

m2
Z

+
(k · (p1 + p2))2kµk⌫

m2
Z

� 2k · (p1 + p2 + p3)kµk⌫ +
k2k · (p1 + p2 + p3)kµk⌫

m2
Z

+
k · (p1 + p2)k · (p1 + p2 + p3)kµk⌫

m2
Z

� kµk⌫(p1 + p2) · (p1 + p2 + p3)

+
k · (p1 + p2)kµk⌫(p1 + p2) · (p1 + p2 + p3)

m2
Z

+
k2kµk⌫(p1 + p2) · (p1 + p2 + p3)

m2
Z

+ m2
Zkµ(p1 + p2)⌫ � k2kµ(p1 + p2)⌫ � k · (p1 + p2)kµ(p1 + p2)⌫ +m2

Zkµ(p1 + p2)⌫ � k2kµ(p1 + p2)⌫

� k · (p1 + p2)kµ(p1 + p2)⌫ � k · (p1 + p2 + p3)kµ(p1 + p2)⌫ � kµ(p1 + p2) · (p1 + p2 + p3)(p1 + p2)⌫

+ m2
Z(p1 + p2)µ(p1 + p2)⌫ +m2

Zk⌫(p1 + p2 + p3)µ � 2k2kµ(p1 + p2 + p3)⌫ +
k4k⌫(p1 + p2 + p3)µ

m2
Z

� k · (p1 + p2)k⌫(p1 + p2 + p3)µ +
2k2k · (p1 + p2)k⌫(p1 + p2 + p3)µ

m2
Z

+
(k · (p1 + p2))2k⌫(p1 + p2 + p3)µ

m2
Z

� 2k · (p1 + p2 + p3)k⌫(p1 + p2 + p3)µ +
k2k · (p1 + p2 + p3)k⌫(p1 + p2 + p3)µ

m2
Z

+
k · (p1 + p2)k · (p1 + p2 + p3)k⌫(p1 + p2 + p3)µ

m2
Z

� k⌫(p1 + p2 + p3)µ(p1 + p2) · (p1 + p2 + p3)

+
k2k⌫(p1 + p2 + p3)µ(p1 + p2) · (p1 + p2 + p3)

m2
Z

� k2(p1 + p2)⌫(p1 + p2 + p3)µ

� k · (p1 + p2)(p1 + p2)⌫(p1 + p2 + p3)µ � k · (p1 + p2 + p3)(p1 + p2)⌫(p1 + p2 + p3)µ

+ (p1 + p2) · (p1 + p2 + p3)(p1 + p2)⌫(p1 + p2 + p3)µ +m2
Zkµ(p1 + p2 + p3)⌫

+ m2
Z(p1 + p2)⌫(p1 + p2 + p3)µ +

k⌫(p1 + p2 + p3)µk · (p1 + p2)(p1 + p2) · (p1 + p2 + p3)

m2
Z

.

(211)

Therefore, now that we have evaluated the numerator of this integral according to

previous calculations, we have that B5
HZ,µ⌫ takes the final form
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9
=

;

(212)

where �3
BHZ is a symmetry factor. Moreover, we have defined the following relations

Uµ⌫
B4HZ =

Z d4k

(2⇡)4
�ik2kµk⌫

(k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘

(213)

Uµ⌫
B5HZ =

Z d4k

(2⇡)4
�ik4k⌫

mZ (k2 �m2
Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘

(214)

and

Uµ⌫
B6HZ =

Z d4k

(2⇡)4
�ik4kµk⌫

m2
Z (k2 �m2

Z)
⇣
(k + p1)

2 �m2
H

⌘ ⇣
(k + p1 + p2)

2 �m2
Z

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
Z

⌘ .

(215)

Finally, in order to obtain the full contribution of the one-loop four-point functions

to the gauge coupling we should add the results of equations (194), (196), (198), (204),

(208) and (212). Thus we get that

69



(4⇡)d/2BHZ,µ⌫ = µ4�d

8
<

:24�
1
KHZg

2�
⇢
�gµ⌫m2

ZC0(p1, p2,mZ ,mH ,mH) + Cµ⌫(p1, p2,mZ ,mH ,mH)
�

+
8�2

KHZg
4

v0

⇢
�m2

Zg
µ⌫C0(p1, p2,mZ ,mH ,mZ) + 2Cµ⌫(p1, p2,mZ ,mH ,mZ)

+ (p1 + p2)
⌫Cµ(p1, p2,mZ ,mH ,mZ)

+ (p1 + p2)
µC⌫(p1, p2,mZ ,mH ,mZ) + (p1 + p2)

µ(p1 + p2)
⌫C0(p1, p2,mZ ,mH ,mZ)

� Uµ⌫
K4 �

(p1 + p2)⇢
m2

Z

Cµ⌫⇢(p1, p2,mZ ,mH ,mZ)� (p1 + p2)⌫
m2

Z

Cµ⇢�(p1, p2,mZ ,mH ,mZ)

� (p1 + p2)⌫(p1 + p2)⇢
m2

Z

Cµ⇢(p1, p2,mZ ,mH ,mZ)
�
� 6g2gµ⌫�B0(p1,mH ,mH)

+ 144�1
BHZg

2�2v20

⇢
�gµ⌫m2

ZD0(p1, p2, p3,mH ,mZ ,mH)

+ Dµ⌫(p1, p2, p3,mH ,mZ ,mH) + p⌫1D
µ(p1, p2, p3,mH ,mZ ,mH)

+ pµ1D
⌫(p1, p2, p3,mH ,mZ ,mH ,mH) + pµ1p

⌫
1D0(p1, p2, p3,mH ,mZ ,mH)

�

+
24�2

BHZ�µ
d�4

v0

⇢
m4

Zg
µ⌫D0(p1, p2, p3,mZ ,mH ,mH)

� 2m2
ZD

µ⌫(p1, p2, p3,mZ ,mH ,mH) + Uµ⌫
B4

+ (p1 + p2 + p3)⇢D
µ⌫⇢(p1, p2, p3,mZ ,mH ,mH)

� m2
Z(p1 + p2 + p3)

µD⌫(p1, p2, p3,mZ ,mH ,mH ,mZ)

� m2
Z(p1 + p2 + p3)

⌫Dµ(p1, p2, p3,mZ ,mH ,mH)

+ (p1 + p2 + p3)
⌫g⇢�D

µ⇢�(p1, p2, p3,mZ ,mH ,mH)

+ (p1 + p2 + p3)
⌫(p1 + p2 + p3)⇢D

µ⇢(p1, p2, p3,mZ ,mH ,mH)

� m2
Z(p1 + p2 + p3)
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⇢
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9
=

;

9
=

; .

(216)

Again here, in order to obtain the reduced form of the Box diagrams with two gauge-

boson and two Higgs-boson external propagators we have to consider the contracted ver-

sion of BHZ,µ⌫ with the metric. Therefore we get that
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9
=

;

9
=

; .

(217)

Finally, lets see which is the reduced into scalar integrals form of gµ⌫BHZ,µ⌫ . Similarly

with the Box diagrams of the Higgs sector, here we will need the help of some specific

functions. The reason why we should do that is because we have a huge result of the

above integral. Therefore, we have that
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where we have defined that L and D are the inverse determinant of the G3 and G2

matrix respectively and to be more specific they have the following form

L =
1

�1
4
m4

Hm
2
Z � m2

Hm4
Z

2
� m6

Z

4

D =
1

2m2
Hm

2
Z � m4

H

4
�m4

Z

.

(219)

3 Abelian Higgs Lagrangian in R⇠ gauge

Since we have finished with the calculation of all the one-loop corrections in the of the

Abelian Higgs Model in Unitary gauge, we proceed with the same calculation in the R⇠-

gauge. There, the gauge-fixing term is present and moreover we have both the physical

and the un-physical degrees of freedom. The reason why we are dealing with this, is that

in the renormalization section we clarify the arguments which demand that the physical

quantities should be gauge independent. Thus, we need the above calculation in order to

compare the physical results in the two gauges, and that will help us understand how and

why there would be a ⇠-cancelation from the physical quantities.

76



LR⇠
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(220)

where we have used a specific notation for the parameters of the model in order to clarify

exactly which of them are independent and which are not. Thus we make the following

replacements

g0 =
mZ0

mH0

q
2�0

v0 =
mH0p
2�0

�0v0 =

s
�0
2
mH0

g20v0 =
m2

Z0

mH0

q
2�0

(221)

and according to this the only independent parameters left in this model are the Higgs

quartic �0, the Higgs mH0 and Z-boson mass mZ0 .

The above Lagrangian is not yet complete since we can not extract the gauge boson prop-

agator, by inverting the operator acting on the gauge field kinetic term. Mathematically

the reason is that we get a zero determinant. On the other hand, from the physics point of

view, gauge invariance prevent us from having a uniq definition of the gauge propagator.

Thus, we have to insert a term which will break gauge invariance without a↵ecting the

physical quantities. Now, according to the path integral formulation we have that

Z [0] =
Z

DAµD�e
i
R

d4xL(A,�) (222)

where L (A,�) is the Lagrangian coming from Eq.(220). In order to break gauge

invariance we do a gauge fixing by picking some element of the equivalence class of the

gauge field. So, the fields in that gauge will follow a constrain given by G[A] = 0. In our
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case we have that the constrain reads G ⌘ G[A,�].

Now, we can insert in the above relation the unit written as follows

1 =
Z
Da�

 

G

"

A+
1

g0
@µa,�� a (v0 + �)

#!

det

 
�G [A� @µa,�+ a (v0 + �)]

�a

!

(223)

so choosing the constrain to be G[A,�] = 1p
⇠
(@µAµ � ⇠g0v0�) and the gauge transfor-

mation of the fields as

Aµ ! Aµ +
1

g0
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� ! �� a(v0 + �) (224)

we get that
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Therefore, Eq.(222) becomes

Z [0] =
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ei
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where the a integral is just an infinite constant. As we can see, if we shift G by a

constant the determinant does not change and therefore we can average over a Gaussian-

weighted selection of shifts using

Z
Dke�i

R
d4x k2

2⇠ � (G [A,�]� k) =e�i
R

d4xG2

2⇠ (227)

which makes Eq.(226) as follows
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where Const. is a constant containing the four dimensional volume.

Now, as final step, we use a known general path integral formulation concerning the

anti-commuting fields, which gives that

det[O] =
Z

DcDc̄e�i
R

d4xc̄(O)c (229)

and therefore combining all the previous arguments we get that in our case the path

integral reads
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Thus the Lagrangian in Eq.(220) takes its final form which reads

LR⇠
= �1

4
F 2
µ⌫ +

1

2
(@µ�0) (@

µ�0) +
1

2
(@µ�0) (@

µ�0)� 1

2⇠

⇣
@µA

0
µ

⌘2
+

1

2
m2

Z0
A0

µA
0µ

+ 2
mZ0

mH0

q
2�0A

0
µ@µ�0�0 +

p
2�0

mH0

(@µ�0)
2�0 +

2�0mZ0

m2
H0

A0
µ@µ�0�

2
0 +

�0
m2

H0

(@µ�0)
2�2

0

+ gµ⌫
�0m

2
Z0

m2
H0

A0
µA

0
⌫�

2
0 + gµ⌫

m2
Z0

mH0

q
2�0�0A

0
µA

0
⌫ �

1

2
⇠m2

Z0
�2
0

� 1

2
m2

H0
�2
0 �

�0
4
�4
0 �

s
�0
2
mH0�

3
0 + Lghost + const.

(231)

where

Lghost = (@µc̄) (@
µc)� ⇠m2

Z0
c̄c�

q
2�0

⇠m2
Z0

mH0

�c̄c . (232)

An important notation is that by inserting this specific gauge fixing term in the La-

grangian we have get rid of the mixing term between gauge and Goldstone bosons. On

the other hand, the gauge fixing term gave birth to a mass term for the Goldstone boson

which is defined as m�0 = ⇠mZ0 .

Moreover, with our gauge fixing choice the ghost fields have a kinetic term, a mass term

equal to the Goldstone boson’s and they are coupled to the Higgs field but not to the

gauge boson. So, the ghosts are not completely decoupled and unfortunately, an other

un-physical field has been inserted to our calculations.

Now, in order to calculate the n-loop quantum corrections of the tree level procedures we
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need the Feynman diagrams and rules coming from the above Lagrangian. Therefore, in

this case they read

Gauge boson propagator

=
i
✓
�gµ⌫ + (1�⇠)kµk⌫

k2�⇠m2
Z0

◆

k2 �m2
Z0

+ i"
(233)

Higgs boson propagator

=
i

k2 �m2
H0

+ i"
(234)

Goldstone boson propagator

=
i

k2 � ⇠m2
Z0

+ i"
(235)

Ghost filed propagator

=
i

k2 � ⇠m2
Z0

+ i"
(236)

and now we go on to present the Feynman rules for the trilinear vertices:

Higgs-�-Z vertex

= �2mZ0

mH0

q
2�0k

µ (237)
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Higgs-Z-Z vertex

= 2igµ⌫
m2

Z0

mH0

q
2�0 (238)

Three-Higgs vertex

= �6i

s
�0
2
mH0 (239)

Higgs-�-� vertex

= 2i

p
2�0

mH0

k · (k + p) (240)

Higgs-c̄-c vertex

= �i
q
2�0

⇠m2
Z0

mH0

(241)

next we have the Feynman rules of the quadrilinear vertices:

Higgs-Higgs-Z-Z vertex
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= 4i
�0m

2
Z0

m2
H0

gµ⌫ (242)

Four-Higgs vertex

= �6i�0 (243)

Higgs-Higgs-�-Z vertex

= �4
�0mZ0

m2
H0

kµ (244)

�-�-Higgs-Higgs vertex

= 4i
�0
m2

H0

k · (k + p1 + p2) (245)

where here, we have defined that the momenta k and pi, with i = 1, 2, correspond

to the Goldstone boson and the Higgs boson respectively, assuming that one Goldstone

boson gets in and the other gets out of the vertex.
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3.1 Tadpoles in R⇠ gauge

Here we present the calculation of the Higgs Tadpoles which are playing a crucial role in

our analysis, since they contribute as a shift of the vacuum and as a correction to the

Higgs mass. The first Tadpole which contributes here reads

(246)

and it has the form

iT 1R⇠

H = �i6S1
T

s
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2
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Z d4k

(2⇡)4
i
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⌘ , (247)
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Z d4k

(2⇡)4
i

⇣
k2 �m2
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⌘ (248)

where its symmetry factor is S1
T = 1

2
. In d-dimensions this integral takes the form

(4⇡)d/2T 1R⇠

H = 3

s
�0
2
mH0µ

4�dA0(mH0) . (249)

The next tadpole comes from the contribution of the gauge boson and thus it has the

following form

(250)

which reads
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(251)

with symmetry factor S2
T = 1

2
. Here, and in what follows, we use the fact that in

d-dimensions the trace of the metric reads gµ⌫gµ⌫ = d + ". Moreover, using the relation

kµk⌫ = gµ⌫
d k2 in d-dimensions the above integral reads
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(252)

where we can see that the argument of the B0 scalar integral corresponds to the

specific case where p2 = 0. As a consequence B0 does not have its usual form, since it

is completely symmetric under the interchange of its arguments, and thus it obtains the

following symmetrical relation

B0(1, 2) =
A0(1)� A0(2)

m2
1 �m2

2

. (253)

Therefore, replacing this relation to Eq. (252) we obtain the following
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(254)

The next Tadpole comes from the interaction of the Higgs boson to the un-physical

Goldstone boson and reads

(255)
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and it has the form
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where its symmetry factor is S3
T = 1

2
. This is essentially a U -integral, similar with the

integrals that we face in the Unitary gauge. This fact, as we comment in the next section,

comes from our choice to use Polar basis in order to express the scalar field as a function

of the physical Higgs. Now, in d-dimensions and using the Eq.(513) this integral takes

the form

(4⇡)d/2T 3R⇠

H = �
p
2�0

mH0

m2
�0
µ4�dA0(m�0) . (258)

Finally, the last Higgs Tadpole that contributes to the shift of the vacuum comes from

the interaction of the Higgs field with the un-physical ghost field which has been inserted

to the Lagrangian. As a consequence, we get the following diagram

(259)

which has the following specific form
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where we have inserted a necessary factor (�1) in the loop, since the ghosts are anti-

commuting bosons. In addition, the symmetry factor of the above diagram is S4
T = 1 and

in d-dimensions this integral takes the form

(4⇡)d/2T 4R⇠

H = �
q
2�0

⇠m2
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µ4�dA0(m�0) . (262)
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3.2 Gauge boson two point functions

Here the one-loop corrections to gauge boson propagator in R⇠ gauge are calculated. The

contributing diagrams are the following

= iM1R⇠

Z,µ⌫ (263)

where

iM1R⇠

Z,µ⌫ = 4iS1
gg

µ⌫ m
2
Z0

m2
H0

�0

Z d4k

(2⇡)4
i

k2 �m2
H0

, (264)

M1R⇠

Z,µ⌫ = �2gµ⌫
m2

Z0

m2
H0

�0

Z d4k

(2⇡)4
�i

k2 �m2
H0

(265)

where the symmetry factor is S1
g = 1

2
. In d-dimensions this integral reads

(4⇡)d/2M1R⇠

Z,µ⌫ = �2gµ⌫
m2

Z0

m2
H0

�0µ
4�dA0(mH0) . (266)

Now, the next one-loop correction to the gauge boson propagator coming from

= iM2R⇠

Z,µ⌫ (267)

where

iM2R⇠

Z,µ⌫ = �8S3
gg

µ↵g⌫�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4
i

(k + p)2 �m2
H0

i
✓
�g↵� +

(1�⇠)k↵k�
k2�⇠m2

Z0

◆

⇣
k2 �m2

Z0

⌘ ,

M2R⇠

Z,µ⌫ = �8gµ↵g⌫�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4
i

(k + p)2 �m2
H0

✓
�g↵� +

(1�⇠)k↵k�
k2�⇠m2

Z0

◆

⇣
k2 �m2

Z0

⌘ ,
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M2R⇠

Z,µ⌫ = �8gµ↵g⌫�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4
�ig↵�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘

� 8gµ↵g⌫�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4
i(1� ⇠)k↵k�⇣

k2 �m2
Z0

⌘ ⇣
(k + p)2 �m2

H0

⌘ ⇣
k2 � ⇠m2

Z0

⌘ .(268)

where here the symmetry factor is S2
g = 1. Now, using the Veltman-Passarino reduc-

tion formula in d-dimensions we obtain the following

(4⇡)d/2M2R⇠

Z,µ⌫ = 8
m4

Z0

m2
H0

�0µ
4�d

8
<

:�gµ⌫B0(p,mZ0 ,mH0)

+ (1� ⇠)
gµ⌫
d


m2

Z0
C0(mZ0 ,

q
⇠mZ0 ,mH0) + B0(p,m�0 ,mH0)

�9=

; .

(269)

Finally, the last diagram that contributes to the one-loop corrections of the gauge

boson propagator reads

= iM3R⇠

Z,µ⌫ (270)

iM3R⇠

Z,µ⌫ = �8S4
g

m2
Z0

m2
H0

�0

Z d4k

(2⇡)4
ikµ

k2 � ⇠m2
Z0

ik⌫

(k + p)2 �m2
H0

,

M3R⇠

Z,µ⌫ = 8
m2

Z0

m2
H0

�0

Z d4k

(2⇡)4
�ikµk⌫

(k2 � ⇠m2
Z0
)((k + p)2 �m2

H0
)
. (271)

where here the symmetry factor is S3
g = 1. Therefore, with the help of the integral

notation developed from the Veltman-Passarino reduction formula, in d-dimensions the

final form of M3R⇠

Z,µ⌫ reads

(4⇡)d/2M3R⇠

Z,µ⌫ = 8
m2

Z0

m2
H0

�0µ
4�d g

µ⌫

d

8
<

:m�0B0(p,m�0 ,mH0) + A0(mH0)

9
=

; . (272)

Thus, since we have finished with the evaluation of the one-loop diagrams of the

gauge boson two-point function, we should add all of them in order to calculate the full

corrections of the corresponding propagator. So we get that
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(4⇡)d/2MR⇠

Z,µ⌫ =
m2

Z0

m2
H0

�0µ
4�d

8
<

:�2gµ⌫A0(mH0)� 8gµ⌫B0(p,mZ0 ,mH0)

+ 8(1� ⇠)
gµ⌫
d


m2

Z0
C0(mZ0 ,

q
⇠mZ0 ,mH0) + B0(p,m�0 ,mH0)

�

+ 8
gµ⌫

d
m2

�0
B0(p,m�0 ,mH0) + 8

gµ⌫

d
A0(mH0)

9
=

;

(273)

and for completeness here we present the corresponding one-loop corrections to the

gauge boson propagator calculated in the Unitary gauge. The exact form reads

(4⇡)d/2MU
Z,µ⌫ = gµ⌫

m2
Z0

m2
H0

�0µ
4�d

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; .

(274)

Actually the relation of MR⇠

Z,µ⌫ is far from being complete. As we should recall from

the first section, a gauge boson propagator can be split into a transverse part and a

longitudinal part as follows

Gµ⌫(p) =

 

gµ⌫ � pµp⌫
p2

!

MTR⇠

Z,µ⌫ +
pµp⌫
p2

MLR⇠

Z,µ⌫ . (275)

In addition, if the mass of the propagators running the loop is zero or smaller than

the external field mass, then we are allowed to ignore the pµp⌫ terms from Eqs.(275).

Generally this is not the case but here for simplicity and in order to see some qualitative

results, we will consider only the contracted with the metric term of Gµ⌫(p). And now we

can use the Veltman-Passarino reduction formula so as to express Eqs.(273) as a function

of the scalar integrals. Now we present some useful relations that we should use in order

to manage to reduce our expressions to scalar integrals

f1 = m2
2 �m2

1 � p2

pµB
µ(1, 2) =

f1
2
B0(1, 2) +

1

2
A0(1)� 1

2
A0(2)

gµ⌫B
µ⌫(1, 2) = m2

1B0(1, 2) + A0(2)
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pµp⌫B
µ⌫(1, 2) =

m2
2 �m2

1 � p2

4
A0(1) +

m2
1 �m2

2 + 3p2

4
A0(2)

+

 
m4

1 +m4
2 � 2m2

1m
2
2

4
+

p2(m2
1 �m2

2 + p2)

4

!

B0(1, 2)

gµ⌫C
µ⌫(1, 2, 3) = m2

1C0(1, 2, 3) + B0(2, 3)

pµp⌫C
µ⌫(1, 2, 3) =

(m2
2 �m2

1 � p2)2

4
C0(1, 2, 3) +

m2
3 +m2

2 � 2m2
1 � 2p2

4
B0(1, 3)

+
�m2

3 +m2
1 + 2p2

4
B0(2, 3) +

1

4
A0(1)� 1

4
A0(2)

(276)

so as an example, we can use these relations obtaining that

gµ⌫MR⇠

Z,µ⌫ = (d+ ")
m2

Z0

m2
H0

�0
µ"

16⇡2

8
<

:�2A0(mH0)� 8B0(p,mZ0 ,mH0)

+ 8(1� ⇠)
1

d


m2

Z0
C0(mZ0 ,

q
⇠mZ0 ,mH0) + B0(p,m�0 ,mH0)

�

+ 8
1

d
m2

�0
B0(p,m�0 ,mH0) + 8

1

d
A0(mH0)

9
=

; .

(277)

The corresponding contribution of the contracted with the metric MU
Z,µ⌫ gives

gµ⌫MU
Z,µ⌫ = (d+ ")

m2
Z0

m2
H0

�0
µ"

16⇡2

8
<

:�8m2
Z0
B0(p,mZ0 ,mH0)� 2A0(mH0)

+
8

d
m2

Z0
B0(p,mZ0 ,mH0) +

8

d
A0(mH0)

9
=

; . (278)

3.3 Corrections to the Higgs mass

Since we have finished with the corrections of the gauge propagator in both R⇠ and Unitary

gauge, we move on to the demonstration of the same procedure for the Higgs propagator,

namely to the corrections of the Higgs mass. In this case the corrections coming from the

following contributions
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= iM1R⇠

H . (279)

iM1R⇠

H = 4iS1
MH

gµ⌫
m2

Z0

m2
H0

�0

Z d4k

(2⇡)4

i
✓
�gµ⌫ + (1� ⇠) kµk⌫

k2�⇠m2
Z0

◆

⇣
k2 �m2

Z0

⌘ ,

M1R⇠

H = 2(d+ ")
m2

Z0

m2
H0

�0

Z d4k

(2⇡)4
�i

k2 �m2
Z0

+
2(1� ⇠)m2

Z0

m2
H0

�0gµ⌫

Z d4k

(2⇡)4
ikµk⌫

⇣
k2 �m2

Z0

⌘ ⇣
k2 � ⇠m2

Z0

⌘

(280)

where the symmetry factor here is S1
MH

= 1
2
. Now in d-dimensions using the Veltman-

Passarino reduction formula and the Eqs.(276), the above integral reads

(4⇡)d/2M1R⇠

H = µ4�d

8
<

:2(d+ ")
m2

Z0

m2
H0

�0A0(mZ0)� 2
(d+ ")

d
(1� ⇠)

m2
Z0

m2
H0

�0gµ⌫B
µ⌫(mZ0 ,

q
⇠mZ0)

9
=

;,

(4⇡)d/2M1R⇠

H =
m2

Z0

m2
H0

�0µ
4�d

8
<

:8A0(mZ0)� 2(1� ⇠)A0(
q
⇠mZ0)� 2(1� ⇠)m2

Z0
B0(mZ0 ,

q
⇠mZ0)

+ 2(1 + ⇠)m2
Z0

9
=

; .

(281)

where again here we can see that the argument of the B0 scalar integral corresponds

to the specific case where p2 = 0. As a consequence this B0 does not have its usual form

so in every time that we face an integral like that, we will denote it as B1
0(m1,m2) i.e.

without a p argument. Finally, since this scalar integral is completely symmetric under

the interchange of its arguments, it obtains the following symmetrical relation

B1
0(m1,m2) =

A0(1)� A0(2)

m2
1 �m2

2

. (282)

Now, applying the above formula to our case in Eq. (281) we get that
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(4⇡)d/2M1R⇠

H =
m2

Z0

m2
H0

�0µ
4�d

8
<

:6A0(mZ0) + 2⇠A0(m�0) + 2(1 + ⇠)m2
Z0

9
=

; .

(283)

The next contribution comes from the diagram

= iM2R⇠

H (284)

which has the following explicit form

iM2R⇠

H = �6iS2
MH

�0

Z d4k

(2⇡)4
i

k2 �m2
H0

,

M2R⇠

H = 3�0
Z d4k

(2⇡)4
�i

k2 �m2
H0

.

(285)

Its symmetry factor reads S2
MH

= 1
2
and thus in d-dimensions we get that

(4⇡)d/2M2R⇠

H = 3�0µ
4�dA0(mH0). (286)

Next comes the Goldstone boson Tadpole which reads

= iM3
H (287)

and its explicit form is

iM3R⇠

H = 4iS3
MH

�0
m2

H0

Z d4k

(2⇡)4
ik2

k2 �m2
�0

, (288)

M3R⇠

H = �2
�0
m2

H0

m2
�0

Z d4k

(2⇡)4
�i

k2 �m2
�0

(289)
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where here the symmetry factor reads S3
MH

= 1
2

. Now in d-dimensions we get the

following final result

(4⇡)d/2M3R⇠

H = � 2�0
m2

H0

m2
�0
µ4�dA0(m�0). (290)

So now we move on to more complicated contributions starting with the following

= iM4R⇠

H (291)

which is equal to

iM4R⇠

H = �18S4
MH

�0m
2
H0

Z d4k

(2⇡)4
i

⇣
k2 �m2

H0

⌘
i

⇣
(k + p)2 �m2

H0

⌘ ,

M4R⇠

H = 9�0m
2
H0

Z d4k

(2⇡)4
�i

⇣
k2 �m2

H0

⌘ ⇣
(k + p)2 �m2

H0

⌘ . (292)

The symmetry factor here is S4
MH

= 1
2
and in d-dimensions, using the Veltman-

Passarino reduction formula, M4R⇠

H reads

(4⇡)d/2M4R⇠

H = 9�0m
2
H0
µd�4B0(p,mH0 ,mH0) . (293)

Next we have the Higgs-Goldstone self loop contribution which reads

= iM5
H (294)

which is equal to
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iM5R⇠

H = �8S5
MH

�0
m2

H0

Z d4k

(2⇡)4
ik · (k + p)
⇣
k2 �m2

�0

⌘
ik · (k + p)

⇣
(k + p)2 �m2

�0

⌘ ,

M5R⇠

H = �4S5
MH

�0
m2

H0

Z d4k

(2⇡)4
i[k4 + 2k2k · p+ 1

dp
2k2]

⇣
k2 �m2

�0

⌘ ⇣
(k + p)2 �m2

�0

⌘ (295)

where the symmetry factor here reads S5
MH

= 1
2
.

From the above relation it is clear that Eq.(295) needs a specific treatment, since it be-

longs to the family of the U -integrals which we have defined in the case of Unitary gauge.

Now, someone could say that this is quite unexpected since in R⇠-gauge we do not see

these specific integrals, but we should recall that we have used the Polar basis in order to

express the scalar field as a function of the real Higgs field not the Cartesian. Thus our

argument stays that if we have a theory in R⇠-gauge and we consider the scalar field in

Polar basis, then highly divergent integrals i.e. the U -integrals, should appear.

Now, using the Veltman-Passarino reduction formula and the UM4 ’s results, in d-dimensions

we obtain the following

(4⇡)d/2M5R⇠

H = 4
�0
m2

H0

µd�4

8
<

:[2m
2
�0

� 3

d
p2]A0(m�0) + (m4

�0
� 3

d
p2m2

�0
)B0(p,m�0 ,m�0)

9
=

; .

(296)

Next we consider the one-loop correction to the Higgs mass coming from the ghost

fields, which have been inserted in the Lagrangian through the gauge fixing. Thus, we

have that

= iM6
H (297)

which reads

iM6R⇠

H = �2S6
MH

�0⇠
2m4

Z0

m2
H0

Z d4k

(2⇡)4
i

⇣
k2 �m2

�0

⌘
i

⇣
(k + p)2 �m2

�0

⌘ ,

M6R⇠

H = 2
�0⇠

2m4
Z0

m2
H0

Z d4k

(2⇡)4
�i

⇣
k2 �m2

�0

⌘ ⇣
(k + p)2 �m2

�0

⌘ (298)
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with symmetry factor S6
MH

= 1. Therefore using the Veltman-Passarino reduction

formula in d-dimensions we obtain the following

(4⇡)d/2M6R⇠

H = 2
�0⇠

2m4
Z0

m2
H0

µd�4B0(p,m�0 ,m�0) . (299)

Now we are left only with two more diagrams contributing to the corrections of Higgs

mass. The first one exists also in the Unitary gauge prescription and reads

= iM7R⇠

H . (300)

Its explicit form is given by the following integral

iM7R⇠

H = �8S7
MH

gµ⌫g↵�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4

i
✓
�gµ↵ + (1�⇠)kµk↵

k2�⇠m2
Z0

◆

⇣
k2 �m2

Z0

⌘
i
✓
�g⌫� +

(1�⇠)(k+p)⌫(k+p)�
(k+p)2�⇠m2

Z0

◆

⇣
(k + p)2 �m2

Z0

⌘ ,

M7R⇠

H = 4gµ⌫g↵�
m4

Z0

m2
H0

�0

Z d4k

(2⇡)4

�i
✓
�gµ↵ + (1�⇠)kµk↵

k2�⇠m2
Z0

◆

⇣
k2 �m2

Z0

⌘

✓
�g⌫� +

(1�⇠)(k+p)⌫(k+p)�
(k+p)2�⇠m2

Z0

◆

⇣
(k + p)2 �m2

Z0

⌘ (301)

where the symmetry factor here is S7
MH

= 1
2
. Now, we perform the computation in

the contracted numerator of M7R⇠

H from which we obtain the following

N = gµ⌫g↵�
 

�gµ↵ +
(1� ⇠)kµk↵
k2 � ⇠m2

Z0

! 

�g⌫� +
(1� ⇠) (k + p)⌫(k + p)�

(k + p)2 � ⇠m2
Z0

!

,

N = (d+ ")� (1� ⇠)
d+ "

d

⇢
k2

k2 � ⇠m2
Z0

+
k2 + 2k · p+ p2

(k + p)2 � ⇠m2
Z0

�

+ (1� ⇠)2
d+ "

d2

⇢
k4 + 2k2k · p+ k2p2

[k2 � ⇠m2
Z0
][(k + p)2 � ⇠m2

Z0
]

�
.

(302)

Thus, now if we replace this expression in Eq.(301), performing the Veltamn-Passarino

reduction, we will obtain the following form
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(4⇡)d/2M7R⇠

H = 4
m4

Z0

m2
H0

�0µ
d�4

8
<

:(d+ ")B0(p,mZ0 ,mZ0)� (1� ⇠)
d+ "

d

⇢
m2

Z0
C1

0(p,mZ0 ,mZ0 ,m�0)

+ B1
0(mZ0 ,m�0) + (2m2

Z0
+ f1 + p2)C2

0(p,mZ0 ,mZ0 ,m�0)

+ 2B2
0(p,mZ0 ,m�0)� B2

0(p,mZ0 ,m�0)
�

+ (1� ⇠)2
d+ "

d2

⇢
B3

0(p,mZ0 ,m�0) +m2
Z0
Ca

0 (p,mZ0 ,m�0 ,m�0)

+ m2
Z0
gµ⌫D

µ⌫(p,mZ0 ,mZ0 ,m�0 ,m�0)
�9=

;

(303)

where the i = 1, 2 and j = a, b indices correspond to the possible di↵erent combinations

of the denominators in the B0
0s and C 0

0s scalar integrals. To be more specific, for a given

scalar integral B0 we have that

B1
0(mZ0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
k2 �m2

�0

⌘

B2
0(p,mZ0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

�0

⌘

B3
0(p,mZ0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

�0

⌘ .

(304)

while for a C0 we define the following relations

C1
0(p,mZ0 ,mZ0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘ ⇣
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�0

⌘

C2
0(p,mZ0 ,mZ0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

Z0

⌘ ⇣
(k + p)2 �m2

�0

⌘

Ca
0 (p,mZ0 ,m�0 ,m�0) =

Z d4k

(2⇡)4
�i

⇣
k2 �m2

Z0

⌘ ⇣
k2 �m2

�0

⌘ ⇣
(k + p)2 �m2

�0

⌘ .

(305)

Finally, the last contribution to the one-loop corrections of the Higgs mass comes from

the following
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= iM8R⇠

H (306)

and its explicit form reads

iM8R⇠

H = �8�0
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m2
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k2 �m2
�0

i
✓
�gµ⌫ +

(1�⇠)(k+p)µ(k+p)⌫
(k+p)2�⇠m2

Z0

◆

⇣
(k + p)2 �m2

Z0

⌘ ,

M8R⇠

H = �8�0
m2

Z0

m2
H0

Z d4k

(2⇡)4
ikµk⌫

k2 �m2
�0

✓
�gµ⌫ +
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][(k + p)2 �m2

Z0
][(k + p)

2 �m2
�0
]

(307)

where its symmetry factor is S8
MH

= 1. So we see that M8R⇠

H can be split into two

terms which we calculate separately. Therefore we have the following relations

M8R⇠A
H = �8

d+ "

d
�0

m2
Z0

m2
H0

gµ⌫B
µ⌫(p,m�0 ,mZ0)

M8R⇠B
H = 8
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(1� ⇠)�0

m2
Z0
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H0

Z d4k

(2⇡)4
�i[k4 + 2k2k · p+ k2p2]

[k2 �m2
�0
][(k + p)2 �m2

Z0
][(k + p)

2 �m2
�0
]
.

(308)

The first one in d-dimensions, using the Veltman-Passarino reduction formula and

Eqs.(276) reads

(4⇡)d/2M8R⇠A
H = �8

d+ "

d
�0

m2
Z0

m2
H0

µd�4
h
m2

�0
B0(p,m�0 ,mZ0) + A0(mZ0)

i

(309)

while the second term, using the same arguments, obtains the following form
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(4⇡)d/2M8R⇠B
H = 8

d+ "
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8
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9
=

;

(310)

therefore, in order to obtain the full contribution of M8R⇠

H we should add the two

results calculated above.Therefore, we obtain the following two relation

(4⇡)d/2M8R⇠

H = 8
d+ "

d
�0

m2
Z0

m2
H0

µd�4

8
<

:�m2
�0
B0(p,m�0 ,mZ0)� A0(mZ0)

+
1

d
(1� ⇠)

⇢
A0(m�0) +m2

�0
B0(p,m�0 ,m�0)

+ m2
Z0
B0(p,mZ0 ,m�0) +m2

�0
m2

Z0
C0(p,m�0 ,mZ0 ,m�0)

�9=

;

(311)

Here we have a misleading point, since someone could say that we need to consider

the M8R⇠

H ’s mirror diagram which occurs from the interchange of the Goldstone boson

with the gauge boson inside the loop. Nevertheless, this is a step that should not be done

here, since we have that the mirror contribution is exactly the same with that of M8R⇠

H .

Until now we have calculated all of the necessary diagrams that contribute to the one-

loop corrections of the Higgs mass. Thus, the final step is to evaluate their sum which will

be the complete one-loop correction to the Higgs two point function. So this correction,

which we define as MR⇠

H reads
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(4⇡)d/2MR⇠

H (p) = µd�4
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�9=

; .

(312)

where the gµ⌫D⌫µ term gives only C0 and D0 contributions which are completely finite.

Now, in order to have a complete description of what we have obtained with the above

calculation, we present the corresponding one-loop correction coming from Unitary gauge.

So, using the parametrization from Eq.(221) the correction to Higgs mass in this gauge

reads
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(4⇡)d/2MU
H(p) = µd�4
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<
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�0m
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H0
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3�m4
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B0(p,mZ0 ,mZ0) +
2

m2
Z0

A0(mZ0)

#9=

; .

(313)

4 Renormalization of the Abelian Higgs Model

Until now we have calculated all the one-loop corrections of the two- and four-point

functions in both the Unitary and the R⇠ gauge. Generally our final goal is to evaluate

the LCP ’s, and thus we should evaluate the e↵ective potential. This would be done by

first adding the one-loop corrections and then renormalizing the potential. Thus, we need

all of the above calculations in order to obtain the e↵ective potential. Moreover, here

we perform a comparison between the counterterms of the physical quantities in the two

gauges, showing the procedure that makes them gauge-independent and clarifying some

dark spots on this calculation. Finally, we show how we should treat the insertion of

the Tadpoles in the e↵ective potential, since in our case there is not any condition which

absorbs them.

4.1 Renormalization in R⇠ gauge

Our Lagrangian reads

LR⇠
= �1

4
F 2
µ⌫ +

1

2
(@µ�0) (@

µ�0) +
1

2
(@µ�0) (@

µ�0)� 1
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⇣
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+ 2
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0 +

�0
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�0m
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⌫�

2
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2�0�0A

0
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0
⌫ �

1

2
⇠m2

Z0
�2
0

� 1

2
m2

H0
�2
0 �

�0
4
�4
0 �

s
�0
2
mH0�

3
0 + Lghost + const.

(314)
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We proceed with the renormalization of the Lagrangian (314). We define renormalized

quantities only for the independent parameters which read

m2
H0

= m2
H + �mH

m2
Z0

= m2
Z + �mZ

�0 = �+ �� (315)

where the subscript 0 denotes the bare quantities. Substituting the above definitions

into the classical Lagrangian, including all the one-loop corrections of the model we will

be able to obtain the 1-loop e↵ective Lagrangian. An important point here, according

to the next section, is that there is a non-zero anomalous dimension only for the Higgs

field and the un-physical Goldstone field. On the other hand, the Z-boson has zero

anomalous dimension. Thus, we have to renormalize also these fields i.e., we should

consider counterterms for � and � fields. As a consequence, we obtain the following

relations

�0 =
q
Z��

�0 =
q
Z��

(316)

where Zj = 1 + �j.

Therefore, considering all of the above arguments, the renormalized 1-loop e↵ective La-

grangian reads
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(317)

where the e↵ective Lagrangian for the ghosts reads

Leff
ghost = @µc̄@

µc�
h
m2

� + �m� �MR⇠

gh

i
c̄c (318)

and the Higgs e↵ective potential reads
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where, essentially, the Higgs wave function counterterm is just a shift of the re-

minimized vev. As we can see from the above relations, we have inserted in both the

Z- and the Higgs-quadratic terms the reducible and un-physical diagrams, i.e. the two-

leg Tadpoles. Generally, this is a necessary step in order to obtain gauge independent

physical quantities. Nevertheless, it is not exactly clear how and in what physical quan-

tities we should use the two-leg Tadpoles.

In particular, we can recall from Eq.(314) that we have inserted a gauge fixing term which

seems to break gauge invariance. Actually gauge invariance is steel there but is hidden

and it can be revealed through the combination of Z- and the Goldstone boson. To be

more specific, when we perform the resummation of the gauge boson propagator in tree

and one-loop level, evaluating the quantum corrections to the Z-mass, we include both

the physical and the un-physical degrees of freedom. Thus, since mZ is protected through

the gauge invariance, we would expect that the one-loop corrections, the counterterm

and the �-function of the Z-mass should be ⇠-independent without the use of the two-leg

Tadpoles.

On the other hand, for the Higgs mass we do not have a specific symmetry that protects

it from being ⇠-dependent. All that we know, from the Nielsen Identities, is that the

extrema of the e↵ective potential should be gauge invariant and this includes only the

mH and not the quartic coupling. Unfortunately, the above statement does not indicate if

and with what coe�cients the reducible diagrams should be introduced to the Higgs-mass

counterterm so as to get a gauge independent result. Therefore, in what follows we are

going to clarify the above situation.

Now, here we face a very interesting situation, since as we can see from Eq.(314)

we do not have a linear in � term in Polar basis. Nevertheless, inserting the one-loop

contributions so as to obtain the e↵ective potential, a liear term with Tadpoles and ��

appears. Moreover, these Tadpoles should come with a specific combination since the

potential should be finite. Thus, we can perform the following steps:

Since any counterterm and Tadpole is a function of the scalar integrals we can write

generally that

�a =
µ"

(4⇡)2

0

@C↵

"
+
X
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fk
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ln
µ2
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+
X

k,i

fk
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1Z

0

dx ln

 
µ2

�i
k(mk,mi)

!

+
X

k

fk
A0

1

A

(320)

and having in mind that
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& i (321)

where i indicates the kind of the field that is running the loop and the straight line

indicates the Higgs field, we get that

T i
H =

µ"

(4⇡)2

0

@C i
T
"
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X

k

F i,k
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k(mk,mi)

!

+
X

k

F i,k
A0

1

A

(322)

where in our case, k corresponds to the subscript Z, H and �, �↵ is an arbitrary

counterterm and moreover C↵ ⌘ 2
P

k

h
fk
A0

+ fk
B0

i
and CT ⌘ 2

P
k

h
F i,k
A0

+ F i,k
B0

i
.

So, since �i
k ⌘ �i

k(mk,mi) we can separate the last logarithm of the above relations and

in each case we can write the following
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and
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H =

µ"
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(324)

where �i
k(mk,mi) = �p2x(1� x) +m2

i (1� x) +m2
kx and �0i

k ⌘ �i
k

mk
.

Now, since we want a finite e↵ective potential, we demand from Eq.(319) that
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(325)

obtaining a finite linear term

T fR⇠
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8
<

:
X

k

"

ai[F
i,k
A0

+ F i,k
B0

] +
v30
2
[fk

A0
+ fk

B0
]

#

ln
µ2

m2
k

� X

k

h
aiF

i,k
B0

+ fk
B0

i 1Z

0

dx ln�0i
k(mk,mi) +

X

k

[aiF
i,k
A0

+
v30
2
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; (326)

which generally is not zero and it could be gauge-dependent. Here, the subscript f

indicates the word finite.

Now, recalling that the Tadpoles in the above relation are fixed through Sec.3.1, while ��

is fixed through the anomalous dimension in Eq.(339), we can imply the above procedure

in our case. To be more specific, we have that

aiT iR⇠

H = 3a1

s
�

2
mHµ

"A0(mH) +

p
2�m2

Z
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while the Higgs field counterterm reads

�� = µ"
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(328)

and from the above relations we can identify the following
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Now, using Eq.(325) we obtain the following specific relation
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So, now we can use Eq.(326) in order to define the remaining finite part, obtaining
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where we have defined that
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with �B0(m1,m2) = �p2x(1� x) +m2
2(1� x) +m2

1x and

c0(m1,m2,m3) ⌘ �
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with �C0(m1,m2,m3) = �p21x(1� x)� 2p2 · p2xz � p22z(1� z) + [m2
1x+m2

2y +m2
3z].

Finally, we can use Eq.(325) in order to simplify the above result, but in order to

do it we should first perform some calculations. To be more specific, we should add

in Eq.(331) the terms ±3a1
�
2
m3

H lnm� and ±3a2
p
2�m4

Z

m2
H

ln ⇠, which help us to create the

proper condition of Eq.(325) as a multiplicative coe�cient of ln µ2

m2
�
. Thus, following the

above arguments we obtain a finite result for the linear � term
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which is both non-zero and gauge dependent. Thus, in what follows we will see if and

how the above result will a↵ect the physical quantities.

For completeness, and before we move on, we should mention that the amplitudes

T R⇠

H , MR⇠

H , KR⇠

H and BR⇠

H correspond to the one-loop corrections of the Higgs one-, two-,

three- and four-point functions respectively. The quantity MR⇠

Z is an extraction of MR⇠

Zµ⌫

and corresponds to the one-loop corrections of the Z-boson two-point function. Moreover,

KR⇠

Z�H , KR⇠

��H , KR⇠

�HH , BR⇠

�H , BR⇠

HZ and KR⇠

HZ are amplitudes with both Higgs, Z and �-boson

external legs and will not be presented here since they will not contribute in the physical

quantities under consideration.

Now, in order to continue with renormalization, we need to use specific conditions

which will help us define the counterterms needed to adsorb the divergences from the one-

loop corrections. Therefore, we choose to use a Physical prescription which is equivalent
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to on-shell renormalization conditions.

To be more specific, and similarly with the Unitary gauge, our Physical prescription

requires that:

• The physical Higgs mass is defined by

�m
R⇠

H = MR⇠

H + ciT iR⇠

H �m2
H��

R⇠ + ck · T fR⇠

H (335)

demanding that

V (v)00 = m2
H (336)

where, as we have shown, T fR⇠

H is non-zero and mH ⌘ mHphy
, i.e. corresponds to

the physical Higgs mass. Here all the c’s have dimension of inverse mass.

• The Higgs quartic coupling is defined by

V (v)0000 = 6� (337)

• The physical Z-mass is

mZphy
⌘ mZ . (338)

So, using the above renormalization conditions we fix the needed counterterms, ob-

taining the 1-loop renormalized e↵ective potential. To be more specific, from Eq.(317) we

observe that there are six di↵erent counterterms involved into the renormalization proce-

dure, from which, the wave function counterterms are determined through the following

relations

��R⇠ = � dMR⇠

H (p)

dp2

������
p2=m2

H

�� = �� . (339)

Thus, we are left with four undetermined counterterms which will be fixed in the

following. Actually, there are four conditions fixing �mH , �mZ , �� and �m� but in the
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last case we should be careful. The last counterterm comes from the renormalization of

the �-mass, and since Goldstone boson is un-physical there is not a uniq renormalization

condition that could be used. Nevertheless, we are interested in the quantities that are

determined through the Higgs potential and the Z-mass renormalization condition, thus,

starting with Eq.(337) we get that

��R⇠ = BR⇠

H � 2���R⇠ (340)

which is used to eliminate �� from the term in Eq.(319) proportional to �3. Next we

consider the condition Eq.(338) from which we get that

�m
R⇠

Z = MR⇠

Z +
1

3
diT iR⇠

H (341)

which will shows us the necessity of the two-leg Tadpole insertion. Here, all the d’s

have dimension of inverse mass, and the condition Eq.(336) which fixes �mH according

to Eq.(335) .

Finally, we should notice that we have quantized a classical Lagrangian expanded around

its true vacuum v0, but after the one-loop corrections we end up wth an e↵ective potential

that needs to be re-minimized. This is maximally unconventional since we start from

a ”broken” action (its scalar mass and quartic terms have the same sign) and upon

quantization we require that it generates an ”unbroken” e↵ective potential. Therefore,

we consider the 1-loop corrected vev through the condition that minimises V (�), which

is given by

V (v)0 = 0 (342)

where, after renormalization, the one-loop e↵ective potential reads

V (�) = T fR⇠

H �+
1

2

h
m2

H � ck · T fR⇠

H

i
�2

+

2

4

s
�

2
mH +

s
�

2

MR⇠

H

2mH
+

s
�

2

ciT iR⇠

H

2mH
+

s
�

2

ck · T fR⇠

H

2mH
�mH

BR⇠

H

2
p
2�

+KR⇠

H

3

5�3 +
�

4
�4

(343)

which generally could be gauge-dependent and hence un-physical. So, using the above

renormalization conditions in order to fix the counterterms and then replacing them into
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V (�), we observe that ��R⇠ has been vanished from every term except the linear one.

Therefore, it is valid to say that Higgs wave function counterterm plays just the role of a

shift to the vacuum of the re-minimized one-loop e↵ective potential.

Now, let us use our last condition, so as to calculate the 1-loop corrected vev. To be more

specific, Eq.(381) gives the cubic equation

�v3 + 3

2

4

s
�

2
mH +

s
�

2

MR⇠

H

2mH
+

s
�

2

ciT iR⇠

H

2mH
+

s
�

2

ck · T fR⇠

H

2mH
�mH

BR⇠

H

2
p
2�

+KR⇠

H

3

5 v2

+

"

m2
H �

p
2�

mH
ck · T fR⇠

H

#

v + T fR⇠

H = 0

(344)

with complex solutions in general.

In the present case, calculating the discriminant of the above cubic equation by expanding

all the amplitudes to the first order we obtain that

�cubic =
m6

H�

2
+

m4
H�

4

8
<

:18ciT
iR⇠

H + 30ck · T fR⇠

H

+ 18MR⇠

H + 36

p
2mHp
�

KR⇠

H � 18
m2

H

�
BR⇠

H

9
=

;~+O(~2)

(345)

which is expected to be positive. Actually, writing the above relation as

�cubic = �0 +�1~+O(~2)
(346)

where

�0 =
m6

H�

2

�1 =
m4

H�

4

8
<

:18ciT
iR⇠

H + 30ck · T fR⇠

H + 18MR⇠

H + 36

p
2mHp
�

KR⇠

H � 18
m2

H

�
BR⇠

H

9
=

;

(347)

we can see that there are additional constraints that should be fulfilled so as to have

at least one real solution. To be more specific, since �0 > 0 always, then if
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�1 > 0 (348)

the discriminant stays positive and we have three real solutions one of which corre-

sponds to the deepest minimum. An other case is if

�1 < 0

�0 > �1~ (349)

which corresponds to the previous case obtaining again three real solutions. Next we

can consider that there is a high energy limit where

|�0| = |�1~| (350)

and then if

�1 < 0

(351)

we have that

�cubic = 0 (352)

which has a multiple root and all of them are real corresponding to one minimum.

Finally, if we suppose that there is a high energy limit where

|�0| < |�1~| (353)

and

�1 < 0

(354)
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we get

�cubic < 0 (355)

which means that the potential has three solutions, corresponding to one real and two

complex conjugate roots. Thus, if there is a limit like that one should check only if the

real solution corresponds to the deepest minimum.

Nevertheless, since the physical Higgs mass is of order

m2
H � O(~) (356)

the Eq.(345) seems to correspond to the first case where the discriminant stays positive.

Now, if we have a positive discriminant then there are three real independent solutions.

Now, the next step is to determine the appropriate solution for the re-minimized vev, and

a first constrain is that the correct solution should correspond to a global minimum. In

particular, beginning with the last one we get that

v3 = � mHp
2�

+

2

4� 3MR⇠

H

2mH

p
2�

� 3BR⇠

H mH

(2�)3/2
+

3KR⇠

H

�
+

3ciT iR⇠

H

2m2
H

� 2T fR⇠

H

m2
H

3

5 ~+O(~2)

(357)

therefore, replacing it to the second derivative of the potential Eq.(343), we get that

V 00(v3) = �m2
H

2
+

8
<

:�
3MR⇠

H

2
+

3BR⇠

H m2
H

2�
� 3

p
2KR⇠

H mH

2
p
�

� 3
p
2�ciT iR⇠

H

2mH

�
p
2�

mH
ck · T fR⇠

H + 3

p
2�

mH
T fR⇠

H

9
=

;~+O(~2)

(358)

where the above relation is negative and gives a local maximum for v3. Thus we are

left with the other two possible solutions which both correspond to a minimum. Actually,

for the second solution we have that

v2 = �2
mHp
2�

+

2

4� 3MR⇠

H

mH

p
2�

+
3BR⇠

H mHp
2(�)3/2

� 6KR⇠

H

�
� 3ciT iR⇠

H

m2
H

� T fR⇠

H

m2
H

3

5 ~+O(~2)

(359)
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so if we replace it to the second derivative of the e↵ective potential we get that

V 00(v2) = m2
H +

8
<

:6M
R⇠

H � 6BR⇠

H m2
H

�
+

12
p
2KR⇠

H mHp
�

+
6
p
2�ciT iR⇠

H

mH

�
p
2�

mH
ck · T fR⇠

H + 3

p
2�

mH
T fR⇠

H

9
=

;~+O(~2)

(360)

which corresponds to a minimum since we have supposed that

6MR⇠

H � 6BR⇠

H m2
H

�
+

12
p
2KR⇠

H mHp
�

+
6
p
2�ciT iR⇠

H

mH
�

p
2�

mH
ck · T fR⇠

H + 3

p
2�

mH
T fR⇠

H < m2
H .

(361)

Finally we have the first solution which reads

v1 = �T fR⇠

H

2m2
H

~+O(~2)

(362)

and the second derivative of the e↵ective potential with this solution gives

V 00(v1) = m2
H �

 

3

p
�p

2mH

+ 2 · ck
!

T fR⇠

H ~+O(~2) . (363)

Actually, if the inequality

�
 

3

p
�p

2mH

+ 2 · ck
!

T fR⇠

H < 6MR⇠

H � 6BR⇠

H m2
H

�
+

12
p
2KR⇠

H mHp
�

+
6
p
2�ciT iR⇠

H

mH

�
p
2�

mH
ck · T fR⇠

H + 3

p
2�

mH
T fR⇠

H (364)

holds, then v2 corresponds to a local minimum and v1 to the global minimum.

This seems to be the correct vacuum shift, since we should recall that we started by

quantizing an ”unbroken” Lagrangian and after the 1-loop correction of the potential we

get a vev of order O(~).
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Finally, the renormalization condition Eq.(336) with the chosen vev reads

V 00(v) = m2
H �

 

3

p
�p

2mH

+ 2 · ck
!

T fR⇠

H (365)

and since T fR⇠

H is non-zero and our renormalization condition defines the physical

Higgs mass as the second derivative of the potential calculated on the vev, we get that

ck = �3

2

p
�p

2mH

(366)

and if we express the above relation as a function of the vev, then we get that

ck ⇠ 1

2v0
. (367)

Thus, with the above definition we have that

V 00(v) = m2
H (368)

and that the physical Higgs mass and the corresponding counterterm would be given

by

m2
H = m2

H0
�MR⇠

H � ciT iR⇠

H � 3

2

p
�p

2mH

T fR⇠

H +m2
H��

R⇠

(369)

and

�m
R⇠

H = MR⇠

H + ciT iR⇠

H �m2
H��

R⇠ � 3

2

p
�p

2mH

T fR⇠

H (370)

respectively. Here, notice that even if T fR⇠

H is finite will a↵ect the physical Higgs mass

through its relation with the bare Higgs mass, which we will use for the LCP ’s. We will

see how to handle this in following sections.
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Finally, using all the above arguments, the renormalized one-loop e↵ective potential

reads

V R⇠(�) = T fR⇠

H �+
1

2

"

m2
H +

3

2

p
�p

2mH

T fR⇠

H

#

�2

+

2

4

s
�

2
mH +

s
�

2

MR⇠

H

2mH
+

p
�

2
p
2mH

ciT iR⇠

H � 3
p
�

4
p
2mH

T fR⇠

H �mH
BR⇠

H

2
p
2�

+KR⇠

H

3

5�3 +
�

4
�4 .

(371)

At this point and before we move on to the next section, we would like to present

some comments concerning the choice of the Polar instead of the Cartesian Basis and

how this could a↵ect our results. To be more specific, we have inserted the physical Higgs

field through the Polar Basis and all the calculations and the arguments that have been

developed here are based on this choice. Now, if we have used the Cartesian Basis, then

the Feynman rules would be quite di↵erent preventing us from seeing the unexpected

appearance of the highly divergent integral, UM4 , in R⇠-gauge. Of course this would not

a↵ect the results of the physical quantities that we have.

On the other hand, it is common for R⇠-Lagrangian in Cartesian Basis to be renormal-

ized before the SSB. Thus, after the SSB, adding the one-loop corrections, the e↵ective

potential would contain a linear � term multiplied by a counterterm combination. In that

case we could define a condition which would absorb all the Tadpoles from the linear �

term making it finite and this would a↵ect the vev. This procedure seems helpful with

the Tadpoles, but recall that the above counterterm combination would be proportional

to the counterterm of the Higgs-mass and that indicates that the contributions of these

tadpoles would a↵ect the Higgs two-point functions. Thus, with the above procedure

essentially the Tadpoles disappear from one quantity and then they appear in an other.

4.2 Renormalization in Unitary gauge

In the previous section we have presented the way of renormalizing the Lagrangian

Eq.(314) in the R⇠ gauge. Actually, we have shown that we can have a renormalized

potential which is finite and generally ⇠-dependent, by implying specific conditions for

the counterterms. Therefore, in order to have a complete picture of the renormalization

procedure we should do the same calculation in the Unitary gauge where actually the

result is quite unexpected. To be more specific, both the e↵ective potential and the vev

in Unitary gauge could be infinite, without that result a↵ecting the physical quantities.

Now recall that the Lagrangian in Unitary gauge is
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LU
AH =� 1

4
F 2
µ⌫ +

1

2
(@µ�0) (@

µ�0) +
1

2
m2

Z0
A0

µA
0µ + gµ⌫

�0m
2
Z0

m2
H0

�2
0A

0
µA

0
⌫

+ gµ⌫
p
2�0m2

Z0

mH0

�A0
µA

0
⌫ �

1

2
m2

H0
�2
0 �

s
�0
2
mH0�

3
0 �

�0
4
�4
0 + const.

(372)

Notice here that there is not any contribution from the Goldstone and ghost fields,

since we are in the physical gauge and thus all the unphysical degrees of freedom have

been decoupled.

Now, generally the potential is gauge-dependent and thus unphysical, but nevertheless,

the physical quantities are gauge-independent and so there should be a matching between

Unitary and R⇠ gauge. Thus, we start with the Lagrangian (372) defining the same

independent renormalized quantities with Eq.(315) and again here we should consider

wave function renormalization for both the gauge and the Higgs boson at 1-loop. Substi-

tuting the above definitions into the classical Lagrangian, we obtain the 1-loop e↵ective

Lagrangian

Le↵U
AH = �ZA

4
F 2
µ⌫ +

Z�

2
(@µ�) (@

µ�) +
1

2

h
m2

Z + �mZ �MU
Z � d0iT iU

H +m2
Z�A

i
AµA

µ

+ gµ⌫

2

4ZAZ�

(�+ � �mZ

m2
Z
� � �mH

m2
H

+ ��)m2
Z0

m2
H0

+ BU
HZ

3

5AµA⌫�
2

+ gµ⌫

2

4ZA

q
Z�

m2
Z

p
2�(1� �mH

2m2
H
+ �mZ

m2
Z
+ ��

2�)

mH
+KU

HZ

3

5�AµA⌫

� V (�) (373)

where

V (�) =

"

a0iT iU
H +

m3
H

(2�)3/2
��U

2

#

�+
1

2

h
m2

H + �mH �MU
H � c0iT iU

H +m2
H��

U
i
�2

+

2

4

s
�

2
mH +

3

2

s
�

2
mH��

U +

s
�

2

�mH

2mH
+mH

��

2
p
2�

+KU
H

3

5�3

+

h
�+ 2���U + ��� BU

H

i

4
�4 (374)

is the e↵ective Higgs potential. Again here, somebody would expect that we should

define a relation between the Tadpoles and �� in such a way that we would get a finite

result like the following
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a0iT iU
H +

m3
H

(2�)3/2
��U

2
= T Uf

H . (375)

Unfortunately, in Unitary gauge we have that

��U = �dMU
H

dp2
= 0 (376)

and form the above equation we are left only with

a0iT iU
H = a0iT iU

H (") + a0iT Uf
H . (377)

Thus, here we have something very interesting and seemingly disastrous, since Eq.(377)

will get in our calculations. To be more specific, this infinite contribution will get in the

first derivative of the e↵ective potential, a↵ecting the vev, and moreover it will be inserted

into the definition of the Higgs-mass counterterm. Thus, in the following we show how

we should treat this situation.

Now, before we move on and similarly with the previous section, we should mention

that the amplitudes T U
H , MU

H , KU
H and BU

H which are computed in Sec.2. The quantity

MZ is an extraction of MU
Z,µ⌫ which was determined in Sect. 2.2. The KU

HZ and BU
HZ

are amplitudes with both Higgs and Z-boson external legs and will not be presented here

because they will not play a role in what follows.

In Unitary gauge our Physical prescription requires:

• That the physical Higgs mass and quartic coupling are defined by

�mH = MU
H + c0iT iU

H + c0k
h
T U
H (") + T Uf

H

i
�m2

H��
U (378)

V (v)0000 = 6�,
��U = BU

H � 2���U (379)

with c0i and c0k two yet undetermined constants with inverse mass dimension.

• That the physical Z-mass is

mZ = mZphy
. (380)
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Finally, the 1-loop corrected vev v is the one that minimises V (�)

V 0(v) = 0 (381)

where V (�) is the one-loop, renormalized e↵ective potential

V (�) =
h
T U
H (") + T Uf

H

i
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2

⇢
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2
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i
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2
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2�

+KU
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9
=
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3 +

�

4
�4

(382)

which has the same form with that of Eq.(343). Thus using the same arguments and

performing the same calculations with the previous section we obtain

• that the correct vacuum shift is

vU = � T U
H

2m2
H

~+O(~2) ⌘ �
h
T U
H (") + T Uf

H

i

2m2
H

~+O(~2) (383)

which shows clearly that in Unitary gauge the vev is divergent and the divergence

is proportional to the physical Tadpoles of the theory.

• that the second derivative of the potential is

V 00(vU) = m2
H (384)

which, recalling the similar situation in R⇠-gauge, gives that

V 00(vU) = m2
H �

 

3

p
�p

2mH

+ 2c0k

! h
T U
H (") + T Uf

H

i
(385)

and demanding the above condition to hold, we get that c0k = �3
2

p
�p

2mH
, giving the

following relation
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mH ⌘ mHphy
= mH0 �MU

H � c0iT iU
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p
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h
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H (") + T Uf
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H��
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(386)

• that the counterterms of the physical Higgs and Z-mass reads

�mU
H = MU

H + c0iT iU
H �m2

H��
U � 3
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(387)

and

�mU
Z = MU

Z +
1

3
d0iT iU

H �m2
Z�A

U (388)

respectively. Here, the d0’s are dimensionfull with dimension of inverse mass,

Finally we get that the one-loop renormalized e↵ective potential in Unitary gauge

reads
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(389)

which, generally, is infinite.

4.3 Evaluation of the Counterterms

In this part of the present document we calculate the counterterms associated with the

renormalized Higgs and gauge boson mass. Moreover, we give a qualitative relation be-

tween the renormalized quartic coupling and its counterterm. According to the previous

section, we should recall that we perform the renormalization using only the independent

parameters of the Lagrangian through the relation Eq.(315).
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Thus, using these arguments along with the Physical renormalization conditions, we have

developed in Sec.4.1, specific relations for our counterterms. But before we move on, let

us present the divergent part of the Tadpoles calculated in Sec.3.1 . This is very impor-

tant since we will use it to investigate if there would be a ⇠-cancelation from the physical

quantities. Actually, for completeness we present the divergent part of the Tadpoles in

both R⇠ and Unitary gauge, so

T R⇠

H =
µ"

16⇡2

8
<
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A0(m�)

9
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;

(390)

from which we can extract the divergent part reading
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(391)

On the other hand, concerning the Unitary gauge, we have the following relations

T U
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which gives
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(393)

Now, we move on to the calculation of the counterterm of the Higgs mass. To be

more specific, according to the Physical renormalization conditions that we applied on

the Higgs e↵ective potential, the Higgs-mass counterterm is given by Eq.(335)

�m
R⇠

H = MR⇠

H + ciT IR⇠

H �m2
H��

R⇠ � 3

2

p
�p

2mH

T fR⇠

H (394)
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for ck = �3
2

p
�p

2mH
and i = 1, 2, 3, 4 in R⇠ gauge.

Here, the term ciT iR⇠

H includes all the possible terms corresponding to the two-leg Tad-

poles. This is a very important notation since, considering the contribution of these

reducible diagrams to the Higgs and Z two-point functions we will investigate if our re-

sults will be gauge dependent, i.e. unphysical, or not.

Moreover, here we should notice that the term �3
2

p
�p

2mH
T fR⇠

H is finite and thus, the coun-

terterm is not just the divergent part of the corresponding amplitudes. This argument

is not so strange if we recall that the renormalization conditions that we have used in

order to fix this counterterm was a generalization of the On-shell renormalization scheme.

Therefore, our �mH is not a MS counterterm so it can include finite parts.

Nevertheless, for the following analysis it i enough to consider only the divergent part

of the one-loop corrections in order to obtain the Higgs mass counterterm and to verify

the previous argument. The reason is that �-functions do not understand the convention

that we make in order to fix the counterterms, they need only the divergent part of them.

Therefore at On-shell, namely at p2 = m2
H , using Eq.(391) and Eq.(339) we obtain for

�m
R⇠

H that

�m
R⇠

H =
µ"

16⇡2

8
<

:

0

@24�m2
H + 6

s
�

2
m3

Hc1

1

A

+

 

�24�m2
Z + 20

�m4
Z

m2
H

+ 2
�m4

Z

m2
H

⇠ + [c2 � c3 � c4]⇠

p
2�m4

Z

mH

!

⇠

+

 

18
�m4

Z

m2
H

+ 6c2

p
2�m4

Z

mH

!9=

;
1

"

(395)

where ��R⇠ = 12⇠
�m2

Z

m2
H
. Therefore, demanding the counterterm, and as a consequence

the physical Higgs mass, to be gauge independent we get the following

c2 � c3 � c4 = 24

p
�mH

⇠
p
2m2

Z

� 20

p
�

⇠
p
2mH

� 2

p
�p

2mH

,

c2 � c3 � c4 =

 

12
m2

H

⇠m2
Z

� 10

⇠
� 1

!
1

v0
(396)

while c1 and c2 stay yet undetermined. Now, replacing the above relation in Eq.(395)

we get that the Higgs mass counterterm reads
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�m
R⇠

H =
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16⇡2

8
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(397)

On the other hand, we should perform the same calculation for the Unitary gauge in

order to compare the corresponding counterterms. But, here we should recall that the

expression that gives mass counterterm in Unitary gauge, is enhanced by the quantity

�3
2

p
�p

2mH

h
T U
H (") + T Uf

H

i
.

In particular, we have that

�mU
H = MU

H + c0iT Ui
H � 3

2

p
�p

2mH

h
T U
H (") + T Uf

H

i
�m2

H��
U (398)

and thus, concerning here only for the divergent parts, the above relation gives

�mU
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,

�mU
H =

µ"

16⇡2

8
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s
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(399)

where ��U = 0.

So, since �m
R⇠

H has been left only with its ⇠-independent parts, in order to perform a

matching between the R⇠ and Unitary gauge counterterms, the following relation should

be fulfilled

c1 = c01 �
3

2

s
�

2

1

mH
⌘ c01 �

3

2v0

c2 = c02 �
3

4

s
�

2

1

mH
⌘ c02 �

3

4v0
.

(400)

Finally, as we can see from the above relation, there is an extra freedom in the choice

of c01 and c02. Nevertheless, we know that the Tadpoles should not a↵ect the physical

quantities and generally there are arguments which say that they cancel from them.
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Thus, for our case this possibility comes from the choice c01 = 3
2v0

and c02 = 3
4v0

which

set c1 = c2 = 0. Thus, now in both the Unitary and the R⇠ gauge we are left with two

identical relations, which read

�m
R⇠

H =
µ"

16⇡2

8
<

:24�m
2
H + 18

�m4
Z

m2
H

9
=

;
1

"

�mU
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µ"

16⇡2

8
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:24�m
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H + 18

�m4
Z

m2
H

9
=

;
1

"

(401)

respectively.

Here, before we move on to obtain the counterterm for the Z-mass, let us present a very

important comment concerning the introduction of the reducible two-leg Tadpoles. In

particular, it is well known that in R⇠ gauges in order to have ⇠-independent countert-

erms for the masses, we should consider also the two-leg Tadpoles. But here, we face a

contradiction. To be more specific, the general idea is that we add the two-leg Tadpoles

as corrections of the propagator, and thus, performing the resumation we obtain their

contribution to the masses. But this procedure says something very constrained, since if

we follow it, then the two-leg Tadpoles should have coe�cient unity, there should not be

any mixing and we should add all of them despite of their ⇠-dependence.

Now, our analysis shows something di↵erent, since recalling Eq.(400) we see that the phys-

ical two-leg Tadpoles can be and should be absent from the physical quantities, which

means that we need only the un-physical Tadpole contributions in order to make our

result ⇠-independent. In addition, from Eq.(396) for c2 = 0, we observe that there is not

solution for c3 = c4 = 1
v0

and moreover, in order to make �m
R⇠

H gauge independent we

should consider mixing between the two-leg Tadpoles.

Now, lets move on to the calculation of the Z -boson mass counterterm. Again from

the On-shell renormalization condition that we apply in the e↵ective Lagrangian for the

Z -boson pole mass we get that

�m
R⇠

Z = MR⇠

Z +
1

3
diT iR⇠

H �m2
Z�A

R⇠ (402)

where i = 1, 2, · · ·, n. Now, according to our calculations we have that

MR⇠

Z = ⇧T (m2
Z) =

�1

3

 

gµ⌫ � pµp⌫
p2

!

Mµ⌫
ZR⇠

(p2 = m2
Z) . (403)
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which could be split into two parts and we will calculate them separately. Thus, form

Eq.(277) the first part reads

gµ⌫MR⇠

Z,µ⌫ = (d+ ")
m2

Z0

m2
H0

�0
µ"

16⇡2

8
<
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q
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+ 8
1

d
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�0
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1

d
A0(mH0)

9
=

; .

(404)

As we showed previously, the second part of MZR⇠
corresponds to the contraction of

Eq.(273) with the term pµp⌫

p2 , so performing this calculation we get the following relation

pµp⌫

p2
Mµ⌫

ZR⇠
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(405)

Finally, as we mentioned previously, the term that we need to evaluate is given by

Eq.(403), so following this relation we get that

MZR⇠
(p) =
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(406)
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Thus according to Eq.(341), with �AR⇠ = 0, we get at On-shell that

�m
R⇠

Z =
µ"

(4⇡)2

8
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�m4

Z

m2
H

+ 6d1
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9
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;
1
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(407)

and as we can see it is ⇠-independent without using the two-leg Tadpoles as we have

expected through the gauge invariance argumnets that we have developed previously. So

a non-trivial check for our calculation and a physical expectation, is to find exactly the

same counterterm in Unitary gauge where there are only the physical degrees of freedom

and is gauge independent from the beginning.

Thus, according to Eq.(388), again with �AU = 0 we find that

�mU
Z =

µ"

(4⇡)2

8
<

:12
�m4

Z

m2
H

+ 6d01

s
�
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m3

H + 6d02
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9
=

;
1

"

(408)

which is identical with the �m
R⇠

Z relation. Again we should consider that d1 = d2 =

d01 = d02 = 0 getting that

�m
R⇠

Z = �mU
Z =

µ"

(4⇡)2
12�m4

Z

m2
H

1

"
.

(409)

Thus, we have ended up with some very interesting conclusions. To be more specific,

we saw that we indeed need the reducible two-leg Tadpoles in order to make the Higgs

mass counterterm gauge independent, but for that purpose we should considered specific

coe�cients, di↵erent to unity, and mixing between the Tadpoles. On the other hand we

saw that in the case of the Z-boson mass counterterm, the result was ⇠-independent from

the very beginning and we did not worry about the insertion of the two-leg Tadpoles.

5 Physical quantities and the �-functions

5.1 General Framework

Let us start here with a theoretical framework for the evaluation of the �-functions so as

to have a complete picture of the derivation that follows in the next sections. Therefore,
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we begin by denoting a generic bare coupling by ↵0, the corresponding renormalized

coupling and counter-term by ↵ and �↵ respectively and its beta function by �↵. Quantum

corrections introduce a µ-dependence of the counterterms that induces a µ-dependence of

the renormalized coupling so that the bare coupling

↵0 = ↵(µ) + �↵(µ) , (410)

is µ-independent. Now, ↵(µ) will denote the renormalized running coupling and the

counterterm �↵(µ) is considered to be a function of the renormalized couplings, through

their dependence on µ. In addition, we define the value of the renormalized running

coupling at some renormalization scale µ = mphys. to be

↵(µ = mphy.) ⌘ ↵ . (411)

Now, we can express any counterterm as

�a =
µ"

(4⇡)2
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dx ln
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�i
k(mk,mi)

!

+
X

k

fk
A0

1

A (412)

where we have defined that the summation on index i corresponds to all the possible

di↵erent fields that contribute to the quantum corrections. In addition, we should notice

that the relation " = 4� d, indicates that the µ-dependence is only explicit.

Now, the RG flow equation in d-dimensions, where for dimensional reasons all the renor-

malized couplings, must be rescaled by µ" which is pulled out in front of the counterterm,

and thus, defining the following relations

�↵ ⌘ �↵(µ)

a(µ)

�↵ = µ
d

dµ
↵(µ)

�̃↵ ⌘ �↵
↵

(413)
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we have for a general coupling that

0 = µ
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,
(414)

where, since �↵ ⌘ �↵~, we have performed an expansion in ~ in order to get rid of

terms of O(~2) like �↵ · @�↵
@µ . Now, since we have more than one couplings, the above

relation should become as follows
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Now, in our case where the only couplings are �, mH and mZ we get that
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which, collecting the equal �-functions in each case, reads
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which could be written in the following matrix form
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thus, inverting the matrix in our case we get that
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Thus, all that we need to do in order to obtain the various �-functions, is to identify

from the explicit form of the counterterms the quantities C↵ and f↵ defined in Eq.(412)

and build the �-function, according to Eq.(419). Moreover, the solution of the di↵erential

equation of the second term in (413) gives the following relation

↵ = ↵(µ) + �↵ ln

 
mphy.

µ

!

,

↵ =
↵(µ)

1� �̃↵ ln
⇣
mphy.

µ

⌘

(420)
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for the RG evolution of the coupling. We can write it also as

↵(µ) =
↵

1 + �̃↵ ln
⇣
mphy.

µ

⌘ (421)

where the latter determines the Landau pole associated with the coupling ↵ to be

µ↵
Lp = me

1
�̃↵ ,

µ↵
Lp = me

↵
�↵ . (422)

5.2 Evaluation of the �-functions

In the previous section we have developed the full procedure that someone should follow

in order to calculate the �-functions of a model. Thus, we are ready to imply all the

above arguments on the counterterms that we have extracted in Sec.4.3, obtaining the

corresponding beta functions and as a consequence the ”running” of the independent

couplings that we have defined previously.

Let us start with the �-function of the Higgs mass �mH
, thus comparing Eq.(394) with

the general form Eq.(412) for the counterterms we can see that
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= 24�m2
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�m4
Z
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.

(423)

Now, using the definition of the �-function Eq.(419) we obtain the following
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and from Eq.(413)
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Therefore, according to the definition in Eq.(421) we get that the ”running” Higgs

mass reads
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m2
H(µ) =
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Now, we can perform the same calculation for the Z-boson mass beta function �mZ
.

To be more specific, following the same arguments with the previous derivation we get

that

CmZ
= 12

�m4
Z
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.
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So, using again Eq.(419) we obtain the following
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and
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Thus, here the ”running” Z-mass reads

m2
Z(µ) =

m2
Z

1 + �̃mZ
ln

 
m2

Zphy.

µ2

! . (430)

Finally, in order to investigate further the results that we obtained in the above rela-

tions, we present here the Renormalization Group Equation’s flow for the physical Higgs-

and Z-mass in Fig.1 and Fig.2 respectively. This, would be very helpful for the next

section where we evaluate the LCP ’s since, in order to have a complete picture about the

physical results, we should compare the RGE ’s flow with them.

Here, we should notice that both the physical Higgs- and Z-mass are getting bigger for

a vast variety of energy scales. Nevertheless, this is not generally the case since, looking

carefully the above Figures, we can observe that there is a energy scale where both masses

go to infinity. This energy scale is the known Landau Pole, which was obtained through
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Figure 1: The ”running” of the physical Higgs-mass as a function of the renormalization

scale µ

Figure 2: The ”running” of the physical Z-mass as a function of the renormalization scale

µ
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Eq.(422) for each mass. Generally, the Landau Pole is di↵erent for each coupling and

here reads for the Higgs- and the Z-mass

µmH
Lp = 5⇥ 1021GeV

µmZ
Lp = 6⇥ 1091GeV

(431)

respectively.

5.3 Lines of Constant Physics

In this last subsection, as we have already mentioned, we are dealing with the evaluation

of the Lines of Constant Physics. Therefore, here we should make an important notation

here concerning the physical quantities. To be more specific, we know that in order to

obtain the RGE ’s, Eq.(426) and Eq.(430) are what we need. Nevertheless, in what follows

we will evaluate the LCP ’s, and thus, we will need a relation between the bare and the

physical independent couplings. Thus, for the purpose of this specific calculation we

should use the general relation of the renormalized quantities which reads

↵ = ↵0 � �↵ (432)

where ↵ is an arbitrary coupling. Thus, preparing our selves for the calculation of the

LCP ’s we perform a mini comparison between the physical quantities coming form the

�-functions analysis and the physical quantities coming from the above relation.

Therefore, we will use Eq.(320) in order to see the exact expanded form of the countert-

erms, but now including also their finite parts and excluding the divergent ones. This

is a legitimate step since we have renormalized our Lagrangian. Then, with the help of

Eq.(432) we will find the physical quantities in order to see if and how it di↵ers from that

of the previous section.

Let us start with the Higgs mass where, implying all the previous arguments and adding

the appropriate terms so as to create everywhere ln µ2

m2
H
, we get that
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+ ⇠2[c3 + c4]

p
2�m4

Z
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� 3�m2
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�m4
Z

2m2
H

+ 3�m2
Z⇠ � 9

�m4
Z
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⇠ � �m4
Z
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which generally seems ⇠-dependent. Here, as in the previous section, we have define

that

b0(m1,m2) ⌘
1Z

0

dx ln�B0(m1,m2)

b00(m1,m2) ⌘
1Z

0

dx ln
�B0(m1,m2)

m2
1

c0(m1,m2,m3) ⌘ �
1Z

0

dx

1Z

0

dy

1Z

0

dz
1

�C0(m1,m2,m3)

d0(m1,m2,m3,m4) ⌘
1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw
1

�2
D0
(m1,m2,m3)

. (434)

Nevertheless, we should not forget that the relation between the bare and the renor-

malized couplings is quite arbitrary from the very beginning. To be more specific, we

know that generally a bare quantity can take any value that it wants and it could be

infinite, so we always can write that

a0 = aR + �a ,
a0(") + af0(⇠) + af0 = aR + �a(") + �f (⇠) + �fa .

(435)
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Now, recall that here we want to evaluate the LCP ’s coming form a perturbative

regime and then to compare them with LCP ’s coming from a non-perturbative regime

from Lattice. In order to do so, we have to consider a specific action in Lattice which

would correspond to a specific prescription choice in the perturbation theory. For our

case, this choice corresponds to the absorption of �a(") and �f (⇠) from a0(") and af0(⇠).

Thus, for the LCP ’s, we are left only with the following relation

m2
H = m2

H0
�
8
<

:12�m
2
H + 9

�m4
Z

m2
H

9
=

; ln
µ2

m2
Hphy

+ �mf
H

(436)

where using the above arguments, we define that

�mf
H = 9�m2

Hb
0
0(mH ,mH) + 16

�m4
Z

m2
H

b00(mZ ,mZ)

� 4
�m4

Z

m2
H

ln
m2

H

m2
Z

� 3�m2
H � 3

�m4
Z

2m2
H

. (437)

which is completely ⇠-independent and finite. Now, from Eq.(426) we have that

m2
H = m2

H(µ) + �mH
ln

m2
Hphy

µ2
⌘ m2

H(µ)�
8
<

:24�m
2
H + 18

�m4
Z

m2
H

9
=

; ln
µ2

m2
Hphy

(438)

which gives a very interesting result since, comparing the above relation with Eq.(436)

we see that it lacks a finite part but nevertheless, the two results have the same relative

signs in the coe�cient of ln µ2

m2
Hphy

. This result is crucial since any di↵erence here could

a↵ect the physical Higgs mass and as a consequence the LCP ’s. On the other hand, the

term �mf
H could be an indication of the Hierarchy problem, which is hidden in dimensional

regularization, since it contains terms proportional to the square of the masses. The

validity of this statement will be checked when we will construct the LCP ’s in the next

section.

Following the same arguments with the Higgs-mass, we perform the same calculation

for the mZ obtaining the following relations

m2
Z = m2

Z0
� 12

�m4
Z

m2
H

ln
µ2

m2
Zphy

+ �mf
Z

(439)
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where we have defined that

�mf
Z = �8�m4

Z

m2
H

b00(mZ ,mH) +
4�m4

Z

m2
H

(440)

and from Eq.(430) we get that

m2
Z = m2

Z(µ) + �mZ
ln

m2
Zphy

µ2
⌘ m2

Z(µ)� 12
�m4

Z

m2
H

ln
µ2

m2
Zphy

(441)

Thus, again here, we have found that the second relation lacks a finite part but the

relative signs of the ln µ2

m2
Zphy

coe�cient are the same.

Appendices

A Feynman Rules

As we have mentioned in the first section of this document, here we study the Abelian

Higgs model in the Polar basis, and its Lagrangian in the unitary gauge has the form

LAH =� 1

4
F 2
µ⌫ +

1

2
(@µ�) (@

µ�) +
1

2
m2

ZAµA
µ +

gµ⌫

2
g2�2AµA⌫

+ gµ⌫gmZ�AµA⌫ � 1

2
m2

H�
2 � �

4
�4 � �v0�

3 + const.

The loop Feynman diagrams that we encounter in section 2 are based on the specific

Feynman rules of this Lagrangian which read:

Gauge boson propagator

=
i
✓
�gµ⌫ + kµk⌫

m2
Z

◆

k2 �m2
Z + i"

(442)

Higgs boson propagator

=
i

k2 �m2
H + i"

(443)
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and now we go on to present the Feynman rules for the trilinear vertices:

Higgs-Z-Z vertex

= 2igµ⌫gmZ (444)

Three-Higgs vertex

= �6i�v0 (445)

next we have the Feynman rules of the quadrilinear vertices:

Higgs-Higgs-Z-Z vertex

= 2ig2gµ⌫ (446)

Four-Higgs vertex

= �6i� (447)
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B Veltman-Passarino Reduction Formula

Here we demonstrate the full mathematical formulation that we have used in the section 2

following [1] . This has been done since we would like to simplify our results coming from

the calculation of the one loop Feynman diagrams. In contrast the traditional approach

that someone uses along with the dimensional regularization(DR), in order to calculate

one-loop diagrams, gives quite messy results. To be more specific, when we have to

calculate one-loop diagrams in any possible model, then we have deal with integrals of

the following form

IN ⇠
Z d4k

(4⇡)2
N (k)

⇣
(k + q0)

2 �m2
1

⌘ ⇣
(k + q1)

2 �m2
2

⌘
· · ·

⇣
(k + qN�1)

2 �m2
N

⌘ (448)

whereN is the number of the external particles, qj =
jP

k=1
pk and p1+p2+···+pN = 0 due

to the momentum conservation at the loop vertexes. Generally, the N (k) is a polynomial

function of the loop momentum k , the external momenta pi , the external polarization

vectors, the spinors etc. Moreover there is a special case where N (k) = 1 which is referred

to as the scalar integral. Now, if we have to calculate an integral like (448) , then scalar

integrals make our life easier since, as we will show, in them we can compactify all the bits

of information encoded in the original integral. Thus, since we would like to obtain an

e�cient way to perform this calculations without doing it explicitly with the traditional

way, the scalar integrals played a crucial role in our computation.

Generally it turns out that in the limit D ! 4 any integral IN can be written as a linear

combination of the one-loop scalar integrals which include one-, two-, three- and four-

point functions and a remnant of the dimensional regularization that is called rational

part R. The form of that specific combination is

IN = c4;jI4;j + c3;jI3;j + c2;jI2;j + c1;jI1;j +R+O (d� 4) (449)

where the coe�cients cN ;j with (N = 1, ...4) are evaluated in d = 4, namely they do

not have any dependence on ". In addition IL;j stands for an L-point one-loop scalar

integral of type j, specifying the combination of the external momenta pi which built up

the qi. This kind of decomposition has its origin on simple Lorentz invariance which allows

us to decompose a tensor integral to invariant form factors and on the four dimensional

nature of space time which allows scalar higher point integrals to be reduced to sums of

boxes.

Specifically the possible scalar integrals that may appear in (449) are tadpoles, bubbles,

triangles and boxes. Their form is
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I1
⇣
m2

1

⌘
=

µd�4

i⇡d/2r�

Z ddk

d1
(450)

I2
⇣
p21;m

2
1,m

2
2

⌘
=

µd�4

i⇡d/2r�

Z ddk

d1d2
(451)

I3
⇣
p21, p

2
2, p

2
3;m

2
1,m

2
2,m

2
3

⌘
=

µd�4

i⇡d/2r�

Z ddk

d1d2d3
(452)

I4
⇣
p21, p

2
2, p

2
3, p

2
4; s12, s23;m

2
1,m

2
2,m

2
3,m

2
4

⌘
=

µd�4

i⇡d/2r�

Z ddk

d1d2d3d4
(453)

where di = (k + pi�1)
2�mi+i" , qn =

nP
1
pi , sij = (pi + pj)

2 and r� = �2 (1� ")� (1 + ") /� (1� 2").

Now, here we calculate one-loop Feynman diagrams which give rise to tensor integrals con-

taining powers of the loop momentum in the numerator, as we can see in section 2. The

calculation of these integrals is simple but quite messy, thus we should reduce them to the

scalar integrals that we mentioned previously. Following [1] we define the scalars integrals

A0, B0, C0, D0 which correspond to scalar tadpole, bubble, triangle and box integrals

respectively. The exact form of these integrals reads

A0 (m1) =
1

i⇡d/2

Z
ddk

1

d1
(454)

B0;B
µ;Bµ⌫ (p1,m1,m2) =

1

i⇡d/2

Z
ddk

1; kµ; kµk⌫

d1d2
(455)

C0;C
µ;Cµ⌫ ;Cµ⌫↵ (p1, p2,m1,m2,m3) =

1

i⇡d/2

Z
ddk

1; kµ; kµk⌫ ; kµk⌫k↵

d1d2d3
(456)

D0;D
µ;Dµ⌫ ;Dµ⌫↵;Dµ⌫↵� (p1, p2, p3,m1,m2,m3,m4) =

1

i⇡d/2

Z
ddk

1; kµ; kµk⌫ ; kµk⌫k↵; kµk⌫k↵k�

d1d2d3d4
(457)

where the denominators are given by di =
✓
k +

i�1P

k=1
pk

◆2

� mi + i" with , i = 1, .., 4.

Now, the next step that we should follow in order to make this reduction to scalar integrals

procedure easier, is that we should present the pattern which we use.

B.1 B
0

scalar integrals

A non-trivial example that we can give is that of the reduction of the rank-one and rank-

two tensor bubble functions to scalar integrals. Thus form Lorentz invariance we have

that

Bµ = pµB1

Bµ⌫ = gµ⌫B00 + pµp⌫B11

(458)
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where we refer to the coe�cients Bi, B00, B11 as form factors. The exact dependence

of these form factors on the appropriate Lorentz invariants, namely p2, m2
i , have been

dropped for simplicity.

In order to express these form factors as scalars integrals we have first to perform two

steps. The first one is to contract Bµ and Bµ⌫ with respect to p1µ and the second one is

to contract Bµ⌫ with the metric gµ⌫ . Thus contracting with p1µ we obtain that

pµB
µ = p · pB1. (459)

No we have to calculate the lefthand side so we use the relation

k · p1 = 1

2
(f1 + d2 � d1) (460)

where we should define here the following useful relations

f1 = m2
2 �m2

1 � p21*
kµ

d1d2d3 · · ·
+

=
1

i⇡d/2

Z
ddk

kµ

d1d2d3 · · · (461)

and we get that

pµB
µ =

1

i⇡d/2

Z
ddk

pµk
µ

d1d2
=

1

i⇡d/2

Z
ddk

1
2
(f1 + d2 � d1)

d1d2

=
1

2
(f1B0 (1, 2) + A0 (1)� A0 (2))

(462)

thus replacing this to equation (459) it reads

p · pB1 =
1

2
(f1B0 (1, 2) + A0 (1)� A0 (2)) ,

B1(p,m1,m2) =
1

2p2
(f1B0 (1, 2) + A0 (1)� A0 (2))

(463)

Since we have fund the form factor B1 now we contract with pµ the Bµ⌫ getting

pµB
µ⌫ = p⌫B00 + p⌫p · pB11 (464)

and therefore the left hand side becomes

pµB
µ⌫ =

1

i⇡d/2

Z
ddk

pµk
µk⌫

d1d2
=

1

i⇡d/2

Z
ddk

1
2
(f1 + d2 � d1) k⌫

d1d2

=
p⌫

2
(f1B1 (1, 2) + A0 (2)) .

(465)
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Finally, if we put this relation into equation (464), then we will obtain that

p⌫(p · pB11 +B00) = p⌫

2
(f1B1 (1, 2) + A0 (2)) ,

B11(p,m1,m2) = 1
2p2 (f1B1 (1, 2) + A0 (2)� 2B00) . (466)

Now, the second step that we should make, as we have already mentioned, is to

contract with gµ⌫ the Bµ⌫ , which will give the following

gµ⌫B
µ⌫ =

D
k2
E
= dB00 + p2B11 ,

D
k2 �m2

1

E
= dB00 + p2B11 �m2

1B0(1, 2) ,
m2

1B0(1, 2) = dB00 +
1

2
(f1B1 (1, 2)� A0 (2))� B00 ,

B00(p,m1,m2) =
1

2(d� 1)

⇣
2m2

1B0(1, 2)� f1B1 (1, 2) + A0 (2)
⌘

(467)

where according to (454) and (455) we have that

A0(2) =
1

i⇡d/2

Z
ddk

1

k2 �m2
2

gµ⌫B
µ⌫ =

1

i⇡d/2

Z
ddk

gµ⌫k
µk⌫

d1d2
=

1

i⇡d/2

Z
ddk

k2

d1d2

respectively. Thus, until now we have presented the exact formula that we follow in

order to reduce Bµ and Bµ⌫ into scalar integrals.

Nevertheless, before we move on in this section the last step that is missing and it is very

useful for our calculation, is to obtain an explicit general form of Bµ⌫ and its contraction

gµ⌫B
µ⌫ as functions of the B0’s and A0’s. To do so, we expand Bµ⌫ as in (458) and we

use the relations (466) and (467) along with the relation f = m2
H �m2

Z � p2 in order to

obtain the following
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Bµ⌫ = gµ⌫B00 + pµp⌫B11 ,

Bµ⌫(p,mZ ,mH) =

8
<

:�
gµ⌫

p2


m4

H +
⇣
m2

Z � p2
⌘2 � 2m2

H

⇣
m2

Z + p2
⌘�

+
pµp⌫

p4


�4m2

Zp
2 + d

⇣
�m2

H +m2
Z + p2

⌘2�
9
=

;
B0(p,mZ ,mH)

4(d� 1)

+

8
<

:�
gµ⌫

p2

⇣
m2

Z �m2
H � p2

⌘
+

pµp⌫

p4

h
�4p2 + d

⇣
3p2 +m2

Z �m2
H

⌘i
9
=

;
A0 (mH)

4(d� 1)

+

8
<

:�
gµ⌫

p2

⇣
m2

H �m2
Z � p2

⌘
+

pµp⌫

p4
d
⇣
m2

H �m2
Z � p2

⌘
9
=

;
A0 (mZ)

4(d� 1)
(468)

and moreover, after contracting this relation with respect to gµ⌫ we get that

gµ⌫B
µ⌫(p,mZ ,mH) = m2

ZB0(p,mZ ,mH) + A0(mH). (469)

and if we do this with pµp⌫ we get that

pµp⌫B
µ⌫(p,mZ ,mH) =

m2
H �m2

Z � p2

4
A0(mZ) +

m2
Z �m2

H + 3p2

4
A0(mH)

+

 
m4

Z +m4
H �m2

Zm
2
H

4
+

p2(m2
Z �m2

H + p2)

4

!

B0(p,mZ ,mH)

(470)

which for equal masses mZ = mH = ma, it reads

pµp⌫B
µ⌫(p,ma,ma) =

p4

4
B0(p,ma,ma) +

p2

2
A0(ma) . (471)

Moreover, if we had the relation B0(p,ma,ma) we just have to replace each mass with

ma obtaining

Bµ⌫(p,ma,ma) =

8
<

:�
gµ⌫

p2

h
p4 � 4m2

ap
2
i
+

pµp⌫

p4

h
�4m2

ap
2 + dp4

i
9
=

;
B0(p2,ma,ma)

4(d� 1)

+

8
<

:g
µ⌫ +

pµp⌫

p4

h
�4p2 + 3dp2

i
9
=

;
A0 (ma)

4(d� 1)

+

8
<

:g
µ⌫ � dpµp⌫

p2

9
=

;
A0 (ma)

4(d� 1)

(472)
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and thus, performing the contraction with the metric, we will obtain the following

relation

gµ⌫B
µ⌫(p,ma,ma) = m2

aB0(p,ma,ma) + A0(ma). (473)

B.2 C
0

scalar integrals

Now we move on to another useful example of this formula is the reduction of the triangle

functions to scalar integrals. This will be su�cient to illustrate the general pattern of the

reduction method that we follow through out this work, in order to simplify our results.

Thus from Lorentz invariance we have that

Cµ = pµ1C1 + pµ2C2 (474)

Cµ⌫ = gµ⌫C00 +
2X

i,j=1

pµi p
⌫
jCij (475)

where C12 = C21 and we define the coe�cients Ci, C00, Cij, i, j = 1, 2 as form fac-

tors. Of course these coe�cients have an appropriate dependance on specific Lorentz

invariants,namely p21, p
2
2, (p1 + p2)2, m2

1, m
2
2 and m2

3 which for now we have suppressed.

Therefore, contracting (474) with p1 and p2 we get that

p1µC
µ = p1 · p1C1 + p1 · p2C2 (476)

p2µC
µ = p2 · p1C1 + p2 · p2C2. (477)

The numerator in the left hand side of the previous equation can be expressed accord-

ing to the following relations

k · p1 =
1

2
(f1 + d2 � d1) (478)

k · p2 =
1

2
(f2 + d3 � d2) (479)

where f1 = m2
2 �m2

1 � p21 and f2 = m2
3 �m2

2 � p22 � 2p1 · p2. With that in mind and

using the second case of the terms (456) the left hand side of (476) and (477) obtain a

specific form. Particularly the first term reads
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p1µC
µ =

1

i⇡d/2

Z
ddk

p1µk
µ

d1d2d3
=

1

i⇡d/2

Z
ddk

1
2
(f1 + d2 � d1)

d1d2d3
(480)

=
1

2
(f1C0 (1, 2, 3) + B0 (1, 3)� B0 (2, 3)) (481)

and the second

p2µC
µ =

1

i⇡d/2

Z
ddk

p2µk
µ

d1d2d3
=

1

i⇡d/2

Z
ddk

1
2
(f2 + d3 � d2)

d1d2d3
(482)

=
1

2
(f2C0 (1, 2, 3) + B0 (1, 2)� B0 (1, 3)) . (483)

Thus, we can make a system of equations for the coe�cients C1, C2 of the form

G2

0

@ C1

C2

1

A =

0

@ hk · p1i
hk · p2i

1

A =

0

@ R
[c]
1

R
[c]
2

1

A (484)

where the G2 is a 2⇥ 2 Gram matrix which reads

G2 =

0

@ p1 · p1 p1 · p2
p1 · p2 p2 · p2

1

A

and we have used the notation

hk · pii = 1

i⇡d/2

Z
ddk

pi · k
d1d2d3

for i = 1, 2. Thus, from (484) we can define R
[c]
1,2 as follows

R
[c]
1 =

1

2
(f1C0 (1, 2, 3) + B0 (1, 3)� B0 (2, 3)) (485)

R
[c]
2 =

1

2
(f2C0 (1, 2, 3) + B0 (1, 2)� B0 (1, 3)) (486)

where we have used a compact notation which labels the form factors according to the

denominators that they have, namely we get that

B0 (2, 3) ⌘ B0 (p1, p2,m2,m3) =
Z ddk

i⇡d/2

1

(k2 �m2
2)
⇣
(k + p2)

2 �m2
3

⌘ . (487)
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where the loop momentum k has been shifted with respect to the defining equation

for the triangle integrals since d1 has been cancelled.

Finally, in order to solve the system of the equations that we have obtained, we should

invert G2 which reads

G�1
2 =

1

detG2

0

@ p2 · p2 �p1 · p2
�p1 · p2 p1 · p1

1

A

so we get that our system becomes

0

@ C1

C2

1

A = G�1
2

0

@ R
[c]
1

R
[c]
2

1

A (488)

which gives the coe�cients C1 and C2. For this example we get that

C1(p1, p2,m1,m2,m3) =
1

detG2

⇣
p2 · p2R[c]

1 � p1 · p2R[c]
2

⌘
(489)

C2(p1, p2,m1,m2,m3) =
1

detG2

⇣
�p1 · p2R[c]

1 + p1 · p1R[c]
2

⌘
(490)

where, as we have already mentioned, R[c]
1 and R

[c]
2 are given from equation (485) and

(486) respectively.

Now, we move on to the next case which refers to the equation (475). Here we contract

this relation with p1 and p2 in order to define C11 and C12. Moreover we want to find the

exact form of the C00 so we should multiply from left with the metric gµ⌫ , which in our

case reads gµ⌫ = diag[1,�1,�1,�1]. Thus, the first step in this calculation gives

p1µC
µ⌫ = p⌫1 (p1 · p1C11 + p1 · p2C12 + C00) + p⌫2 (p1 · p1C12 + p1 · p2C22)

p2µC
µ⌫ = p⌫1 (p1 · p2C11 + p2 · p2C12) + p⌫2 (p1 · p2C12 + p2 · p2C22 + C00) . (491)

As we can see from the above equation along with the obtained relations of k · p1 and
k · p2, here we have to solve two systems independently, namely we get that

G2

0

@ C11

C12

1

A =

0

@ R
[c1]
1

R
[c1]
2

1

A G2

0

@ C12

C22

1

A =

0

@ R
[c2]
1

R
[c2]
2

1

A . (492)
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Now we have to define the terms R[c1]
1 , R[c1]

2 , R[c2]
1 and R

[c2]
2 , which could be done by

calculating the lefthand side of the (491). Thus concerning the first case we have that

p1µC
µ⌫ =

1

i⇡d/2

Z
ddk

p1µk
µk⌫

d1d2d3
=
1

2
(f1 + d2 � d1)C

⌫

=
p⌫1
2
(f1C1 (1, 2, 3) + B1 (1, 3)� B1 (2, 3)� 2C00 (1, 2, 3))

+
p⌫2
2
(f1C2 (1, 2, 3) + B1 (1, 3)� B1 (2, 3))

(493)

and for the second case we obtain

p2µC
µ⌫(p1, p2,m1,m2,m3) =

1

i⇡d/2

Z
ddk

p2µk
µk⌫

d1d2d3
=
1

2
(f2 + d3 � d2)C

⌫

=
p⌫1
2
(f2C1 (1, 2, 3) + B1 (1, 2)� B1 (1, 3))

+
p⌫2
2
(f2C2 (1, 2, 3) + B1 (1, 2)� B1 (1, 3)� 2C00 (1, 2, 3))

(494)

thus we get the desired relations

R
[c1]
1 =

1

2
(f1C1 (1, 2, 3) + B1 (1, 3) + B0 (2, 3)� 2C00 (1, 2, 3)) (495)

R
[c1]
2 =

1

2
(f2C1 (1, 2, 3) + B1 (1, 2)� B1 (1, 3)) (496)

and

R
[c2]
1 =

1

2
(f1C2 (1, 2, 3) + B1 (1, 3)� B1 (2, 3)) (497)

R
[c2]
2 =

1

2
(f2C2 (1, 2, 3)� B1 (1, 3)� 2C00 (1, 2, 3)) . (498)

Finally, contracting (475) with the metric we obtain that in one hand

gµ⌫C
µ⌫ =

D
k2
E
,

gµ⌫C
µ⌫ =

D
k2 �m2

1

E
+
D
m2

1

E
,

gµ⌫C
µ⌫ = m2

1C0(1, 2, 3) + B0 (2, 3) (499)
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where we have used the first case of (456) and the equation (487), and in the other

hand that

gµ⌫C
µ⌫ = dC00 +

1

2
(f1C1 (1, 2, 3) + B1 (1, 2) + B0 (2, 3))� C00

+
1

2
(f2C2 (1, 2, 3)� B1 (1, 2))� C00 �m2

1C0 (500)

thus combining this two relations we get that

C00(p1, p2,m1,m2,m3) =
1

2 (d� 2)

⇣
2m2

1C0 � f2C2 (1, 2, 3)� f1C1 (1, 2, 3) + B0 (2, 3)
⌘
.

(501)

Thus, as follows from the analysis that has been done here, we note that the coe�cients

which we face through the diagram calculation, follow a special pattern which reads

Cij ! C00, Ci, Bi, (B0)

C00 ! Ci, (C0, B0)

Ci ! (C0, B0) .

Similar patterns with the previous one govern the B, as we have already seen, and

the D integrals, making our life easier and demanding from us to calculate only the cor-

responding scalar integrals B0 , C0 and D0.

B.3 D
0

scalar integrals

Until now, we have presented specific examples explaining the procedure that we follow

through the loop-integrals calculation referring to the bubble and triangular integral cases.

Nevertheless, in our calculation we face also box integrals where we follow the same

reasoning as we described here. Thus in the following we present the needed relations

that we deal with in 2.

So, we start here by presenting the coe�cients that we deal with in the case of the box

integrals, specifically here we have that
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Dµ = pµ1D1 + pµ2D2 + pµ3D3 (502)

Dµ⌫ = gµ⌫D00 +
3X

i,j=1

pµi p
⌫
jDij (503)

Dµ⌫↵ =
3X

i=1

g{µ⌫p↵}i D00i +
3X

i,j,k=1

pµi p
⌫
j p

↵
kDijk (504)

Dµ⌫↵� = g{µ⌫g↵�}D0000 +
3X

i,j=1

g{µ⌫p↵i p
�}
j D00ij +

3X

i,j,k,l=1

pµi p
⌫
j p

↵
kp

�
l Dijkl (505)

where the curly braces denote fully symmetrization of the indices. The main result

that we demonstrated before and we use here in order to reduce the box integrals to scalar

ones is that many of mentioned coe�cients satisfy equations like

0

BB@

D1

D2

D3

1

CCA = G�1
3

0

BB@

R
[d]
1

R
[d]
2

R
[d]
3

1

CCA (506)

where G3 is the 3⇥ 3 Gram matrix whose definition reads

G3 =

0

BB@

p1 · p1 p1 · p2 p1 · p3
p2 · p1 p2 · p2 p2 · p3
p3 · p1 p3 · p2 p3 · p3

1

CCA . (507)

The interesting feature of this procedure is that all the form factor triplets which

satisfy equations of the form of equation (506) can be defined through the reasoning that

we have followed till now corresponding to the bubble and triangle integrals. Now we

demonstrate a short list with the needed relations that govern the form factors of the box

integrals. Therefore we give the Table which contains these relations, which reads
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Form Factors

RHS

D1 D2 D3 Rd

D11 D12 D13 Rd1

D21 D22 D23 Rd2

D31 D23 D33 Rd3

D001 D002 D003 Rd00

D112 D122 D123 Rd12

D113 D123 D133 Rd13

D123 D223 D233 Rd23

D111 D112 D113 Rd11

D122 D222 D223 Rd22

D133 D233 D333 Rd33

D0011 D0012 D0013 Rd001

D0012 D0022 D0023 Rd002

D0013 D0023 D0033 Rd003

D1111 D1112 D1113 Rd111

D1222 D2222 D2223 Rd222

D1333 D2333 D3333 Rd333

D1112 D1122 D1123 Rd112

D1113 D1123 D1133 Rd113

D1122 D1222 D1223 Rd122

D1133 D1233 D1333 Rd133

D1223 D2223 D2233 Rd223

D1233 D2233 D2333 Rd233

D1123 D1223 D1233 Rd123

C Integrals in d-Dimensions

In the present work we adopted the formalism explained in the previous section, coming

from [1], in order to calculate the emergent integrals coming from the loop Feynman

diagrams. However, we face situations where these integrals do not correspond to any

relation familiar with what we have presented until now. Thus these cases, which we refer

to as the Ui integrals, are treated separately. To be more specific, when we deal with them

we use the traditional calculation procedure as could be seen from section 2. Therefore,
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here we present the basic tools that we use in order to perform that kind of calculation.

C.1 Feynman Parameterization

The first step is to demonstrate the way that the products of the denominators can be

rewritten according to the Feynman parameterization, namely the general case is

1

A1A2 · · · An
= (n� 1)!

1Z

0

dx1

1Z

0

dx2 · · ·
1Z

0

dxn�

 

1�X

n

xn

!

⇥ 1

[A1x1 + A2x2 + · · ·+ Anxn]
n .

(508)

In the case that we have n = 2 and the denominators are in first power then we take

1

AB
=

1Z

0

dx
1

[A+ (B � A) x]2
(509)

but if the denominators are raised to a general power in the n = 2 case then we obtain

1

AaBb
=

� (↵ + �)

� (↵)� (�)

1Z

0

dx
x↵�1(1� x)��1

[xA+ (1� x)B]↵+� . (510)

As a finall example we give the n = 3 case which reads

1

ABC
= 2

1Z

0

dx

1Z

0

dy
y

[xyA+ (1� x) yB + (1� y)C]3
(511)

C.2 d-Dimensional Integrals with Gamma Functions

Now that we have demonstrated the Feynman parameterization we move on to the next

step that we follow when we perform the traditional loop diagram calculation. Specif-

ically, we refer to d-dimensional integrals which occur from the transormation of the

4-dimensional ones when we perform a specific variable changing. Generally each one of

the resulting integrals has its own mass dimension, but here we would like to obtain di-

mensonless relations thus we multiply them with the factor (m2
a)

x. The resulting integrals

read

J0(n,�) = (m2
a)

n�2
Z ddk

(2⇡)d
�i

(k2 ��)n
= i(m2

a)
n�2 (�1)n

(4⇡)d/2
�
⇣
n� d

2

⌘

� (n)

✓
1

�

◆n�d/2

(512)
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gµ⌫U
µ⌫
T (n,�) = gµ⌫J

µ⌫ = (m2
a)

n�3
Z ddk

(2⇡)d
�ik2

(k2 ��)n
= �i

d

2
(m2

a)
n�3 (�1)n

(4⇡)d/2
�
⇣
n� 1� d

2

⌘

� (n)

✓
1

�

◆n�1�d/2

(513)

Jµ⌫(n,�) = Uµ⌫
T (n,�) = (m2

a)
n�3

Z ddk

(2⇡)d
�ikµk⌫

(k2 ��)n
= � i

2
(m2

a)
n�3gµ⌫

(�1)n

(4⇡)d/2
�
⇣
n� 1� d

2

⌘

� (n)

✓
1

�

◆n�1�d/2

(514)

gµ⌫g⇢�J
µ⌫⇢�(n,�) = (m2

a)
n�4

Z ddk

(2⇡)d
�i (k2)2

(k2 ��)n
= i(m2

a)
n�4d (d+ 2)

4

(�1)n

(4⇡)d/2
�
⇣
n� 2� d

2

⌘

� (n)

✓
1

�

◆n�2�d/2

(515)

Jµ⌫⇢�(n,�) = (m2
a)

n�4
Z ddk

(2⇡)d
�ikµk⌫k⇢k�

(k2 ��)n
=i(m2

a)
n�4 (�1)n

(4⇡)d/2
�
⇣
n� 2� d

2

⌘

� (n)

✓
1

�

◆n�2�d/2

⇥ 1

4
(gµ⌫g⇢� + gµ⇢g�⌫ + gµ�g⇢⌫)

(516)

where we have used the demand that

4� 2n+ 2x = 0 , x = n� 2

4 + 2� 2n+ 2x = 0 , x = n� 3

4 + 4� 2n+ 2x = 0 , x = n� 4

for equations (512), (513) and (515) respectively. Thus the final result of these d-

dimensional integrals remains dimensionless.

Next for symmetry reasons we demand that the odd powers of the kµ in the numerator

should vanish, namely

Z ddk

(2⇡)d
kµf(k2) = 0. (517)

Before we move on to the final part of this subsection and since we have defined

Bµ⌫ , B0 and A0 we would like to obtain a relation between the above integrals and these

quantities because it would be very interesting for our calculation. Therefore starting

from equation (513) for n = 1 and � = m, and defining that

*
k2

k2 �m2

+

=
Z ddk

i (2⇡)d
k2

k2 �m2
(518)

we can write the following relations
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Uµ⌫
T (1,m) =

1

m4

*
kµk⌫

k2 �m2

+

=
1

m4

gµ⌫
d

*
k2

k2 �m2

+

,

gµ⌫U
µ⌫
T (1,m) =

d+ "

m4d

*
k2

k2 �m2

+

,

gµ⌫U
µ⌫
T (1,m) =

d+ "

m2d

⌧
1

k2 �m2

�
+

d+ "

m4d

*
k2 �m2

k2 �m2

+

(519)

and now, since we know that the volume integral in dimensional regularization is zero

and the scalar integral A0 is written as

A0(m) = m2

"
2

"
+ ln

µ2

m2
+ 1

#

we obtain that Eq.(519) reads

gµ⌫U
µ⌫
T (1,m) =

1

m2
A0(m) +

1

2
(520)

An other relation occurs if we start from (455) which gives

Bµ⌫ = �i(2
p
⇡)d

Z ddk

(2⇡)d
kµk⌫

d1d2
,

gµ⌫B
µ⌫ = �i(2

p
⇡)d

Z ddk

(2⇡)d
k2

d1d2
.

Now according to the traditional calculation of these integrals, in order to calculate

them we should find the Feynman parameters. Thus for the n = 2 case we get from

Appendix D that our relation reads

gµ⌫B
µ⌫ = �i(2

p
⇡)d

1Z

0

dx
Z ddk

(2⇡)d
k2 + p2(x� 1)2

(k2 ��)2

where we have defined that � = �p2x(1 � x) + m2
a and we have made the shift

k ! k + p(x� 1). Then using the relations from (512) and (513) we get that

gµ⌫B
µ⌫ = �i(2

p
⇡)d

1Z

0

dx
Z ddk

(2⇡)d
k2 + p2(x� 1)2

(k2 ��)2
,

gµ⌫B
µ⌫ = (2

p
⇡)d

1Z

0

dx
⇣
�m2

agµ⌫J
µ⌫(2,�) + p2(x� 1)2J0(2,�)

⌘
.

(521)

150



Now, as we know from equation (458), we have that

gµ⌫B
µ⌫ = gµ⌫ (g

µ⌫B00 + pµp⌫B11)

so replacing this relation into (521) we obtain that

gµ⌫ (g
µ⌫B00 + pµp⌫B11) = �gµ⌫(2

p
⇡)dm2

a

1Z

0

dxJµ⌫(2,�) + gµ⌫(2
p
⇡)d

1Z

0

dxpµp⌫(x� 1)2J0(2,�) ,

gµ⌫B00 + pµp⌫B11 = �(2
p
⇡)dm2

a

1Z

0

dxJµ⌫(2,�) + pµp⌫(2
p
⇡)d

1Z

0

dx(x� 1)2J0(2,�) ,
(522)

and therefore comparing the lefthand side with righthand side we get that

(2
p
⇡)d

1Z

0

dx(x� 1)2J0(2,�) = B11 ,

1Z

0

dx(x� 1)2J0(2,�) =
1

(2
p
⇡)d

B11 , (523)

1Z

0

dx(x� 1)2J0(2,�) =
1

2(2
p
⇡)

d
p2

" 
dp2 � 4m2

a

2 (d� 1)

!

B0

⇣
p2,ma,ma

⌘
+

d

d� 1
A0

⇣
m2

a

⌘#

and

�(2
p
⇡)dm2

a

1Z

0

dxJµ⌫(2,�) = gµ⌫B00 ,

1Z

0

dxJµ⌫(2,�) = � 1

m2
a(2

p
⇡)d

gµ⌫B00 , (524)

1Z

0

dxJµ⌫(2,�) = � gµ⌫

2m2
a(2

p
⇡)d(d� 1)

" 

2m2
a �

p2

2

!

B0

⇣
p2,ma,ma

⌘
� A0

⇣
m2

a

⌘#

where we have expanded B11 and B00 according to the equations (466) and (467)

respectively. Thus we have obtained a specific relation between the Jµ⌫ integrals and the

scalar integrals B0 and A0.

An other relation that can be produced is that between the Jµ⌫⇢� and Bµ⌫ when we have

the n = 2 case, which could be useful for our calculation. In particular we have from

(516) that

151



iJµ⌫⇢�(2,�) =
1

m4
a

Z ddk

(2⇡)d
kµk⌫k⇢k�

(k2 ��)2
,

ip⇢p�J
µ⌫⇢�(2,�) =

1

m4
a

Z ddk

(2⇡)d
kµk⌫(p · k)(p · k)

(k2 ��)2
,

ip⇢p�J
µ⌫⇢�(2,�) =

1

m4
a

Z ddk

(2⇡)d
kµk⌫ 1

4
(f1 + d2 � d1)2

(k2 ��)2
,

ip⇢p�J
µ⌫⇢�(2,�) =

1

4m4
a

Z ddk

(2⇡)d
kµk⌫ [f 2

1 + f1(d2 � d1) + (d2 � d1)2]

(k2 ��)2
(525)

where we have used the relation (460). Now, from the relation (455) we get that

Bµ⌫ = �i(2
p
⇡)d

1Z

0

dx
Z ddk

(2⇡)d
kµk⌫ + pµp⌫(x� 1)2

(k2 ��)2
,

Bµ⌫ = �i(2
p
⇡)d

1Z

0

dx
Z ddk

(2⇡)d
kµk⌫

(k2 ��)2
� i(2

p
⇡)d

1Z

0

dxpµp⌫(x� 1)2J0(2,�)

(526)

so integrating (525) with respect to x and combining it with (526) we get that

1Z

0

dxp⇢p�J
µ⌫⇢�(2,�) =

1

4(2
p
⇡)dm4

a

Bµ⌫ � 1

4m4
a

1Z

0

dxpµp⌫(x� 1)2J0(2,�)

� i
1

4m4
a

Z ddk

(2⇡)d
kµk⌫ [f1(d2 � d1) + (d2 � d1)2]

(k2 ��)2
,

1Z

0

dxp⇢p�J
µ⌫⇢�(2,�) =

1

4(2
p
⇡)dm4

a

Bµ⌫(p2,ma,mb)

� 1

8(2
p
⇡)

d
m6

ap
2

" 
dp2 � 4m2

a

2 (d� 1)

!

B0

⇣
p2,ma,mb

⌘
+

d

d� 1
A0

⇣
m2

a

⌘#

� i
1

4m4
a

Z ddk

(2⇡)d
kµk⌫ [f1(d2 � d1) + (d2 � d1)2]

(k2 ��)2
(527)

which gives a specific relation between the quantities Jµ⌫⇢� and Bµ⌫ .

Now lets forget about the above calculations and move on to the next subject of this

Appendix. In particular, we present the necessary steps that should be followed, concern-

ing the dimensional expansion, in order to use properly the DR procedure. Therefore, the

terms ��", µ" and (4⇡)" would be expanded as follows
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��" = 1� " ln�+O
⇣
"2
⌘

µ" = 1 + " lnµ+O
⇣
"2
⌘

(4⇡)" = 1 + " ln 4⇡ +O
⇣
"2
⌘

(528)

where we have used the general form

✓
1

�

◆n�d/2

=
✓
1

�

◆n�2

·
2

41�
 

2� d

2

!

ln�+O
0

@
 

2� d

2

!2
1

A

3

5 .

Moreover we should deal with the Gamma function �(x). Here we deal with two cases

where the first one is when Gamma function has integer arguments, which gives � (1) = 1,

� (2) = 1, � (3) = 2, � (x) = (x� 1)!. The second one occurs when the argument of the

Gamma function is zero or negative integer, where it has a pole1. So if we expand the

argument around the two kind of poles we get that

� (") =
1

"
� �E +O (") + · · ·

�
✓
�n+

"

2

◆
=

(�1)n

n!


2

"
+  (n+ 1) +O (")

�

respectively, where  (z + 1) =  (z)+ 1
z ,  (1) = ��E and �E is the Euler-Mascheroni

constant defined as �E ⇡ 0.577.

D Calculation of the U-integrals

In this part of the Appendices we present two di↵erent methods in order to calculate

several integrals that we face through out our calculation. Generally this integrals could

be either identified with the cases contained in Appendix B or not. In particular, here

we deal with a specific form of highly divergent integrals, namely the Ui’s, which will

evaluated by using the reduction formulas from Appendix B and explicitly. Of course

the straightforward calculation of these integrals is the explicit one, but here, we use the

scalar integrals coming from the Veltman - Passarino reduction formula to compactify

our results. It is very interesting to see if these two di↵erent procedures are essentially

equivalent, containing the same physical information and leading to the same physical

results.
1
A short notation that we have to mention is that when we perform the expansion around d = 2� "

we do not have negative integers as Gamma function pole.
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D.1 Ui’s as scalar integrals

Lets start the calculation of the U -integrals with the first case that we mentioned before,

namely using the scalar integrals and their relations. Thus we start with the dimensionless

integral that we face for the first time at the calculation of the one-loop two-point functions

of the Higgs boson in section 2, which reads

UM4(p,ma,ma) =
Z d4k

(2⇡)4
ik4

m4
a (k

2 �m2
a)
⇣
(k + p)2 �m2

a

⌘ ,

UM4(p,ma,ma) =

*
k4

m4
a (k

2 �m2
a)
⇣
(k + p)2 �m2

a

⌘
+

(529)

where we used the second case of relation (461). Generally, the evaluation of integrals

like this one or like the upcoming ones which are more and more divergent, could be done

using several mathematical tricks. A common one, which is mainly used, refers to specific

shifts of the integrating momentum. In particular, someone could perform shifts of the

integrating constant momenta contained in the denominator of the integrals under con-

sideration. This can reduce the order of divergence but this is done in an inappropriate

way, since it adds extra infinite integrals which give wrong physical quantities.

Therefore, the way that we choose to consider so as to lower the divergence of our inte-

grals, namely of the U -integrals, is quite di↵erent. Specifically we use the terms in the

integral’s numerator in order to construct the corresponding denominators. This reduces

the divergence without inserting extra infinities and seems to work correctly. Neverthe-

less, for completeness, after evaluating UM4 we present the same calculation using the

shift-procedure in order to highlight the di↵erences that appear even in the simplest case

of the U ’s. Thus we start the calculation-procedure as follows

UM4(p,ma,ma) =

*
k4

m4
a (k

2 �m2
a)
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*
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a

⌘
+

+
1

m2
a

gµ⌫B
µ⌫ (p,ma,ma) .

(530)

Now lets deal with the first term since the others are already known, therefore we have

that
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where we have canceled the 2k · p term because it is odd under k ! �k and we have

used the relation (454). Therefore adding (530) and (531) and using the equation (469),

we get the final form

UM4(p,ma,ma) =
1

2
+

 
2m2

a � p2

m4
a

!

A0(ma) + B0(p,ma,ma) .

(532)

Now that we have finished with this calculation we present the results coming from

the evaluation of UM4 using the shift procedure. In order to do so we start again with the

first part of the equation (530) where now we complete the square obtaining the following

U shift
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(533)

Now lets deal with the first term since the others are already known, therefore doing

a shift of the form k ! k � p we have that
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(534)
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where we have canceled the 2k · p term because it is odd under k ! �k and we have

used the relation (454) . Therefore adding (533) and (534) we get that

U shift
M4 (p,ma,ma) = gµ⌫J

µ⌫(1,ma) +

 
p2

m4
a

� 1

m2
a

!

A0(ma) +
2

m2
a

gµ⌫B
µ⌫(p,ma,ma)� B0(p,ma,ma)

(535)

so using the Eqs. (473) and (520) the final form of UM4 integral reads

U shift
M4 (p,ma,ma) =

1

2
+

 
p2 + 2m2

a

m4
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!

A0(ma) + B0(p,ma,ma) .

(536)

Therefore if we compare Eqs. (532) and (536) we will see that there is only one dif-

ference. In particular, p2 in the coe�cient of A0(ma) has opposite sign in the two cases.

This is a tiny but very important di↵erence since we can see that UM4 calculated using

shifts, and calculated using Veltman-Passarino reduction formula, has a di↵erence analog

to a Tadpole contribution. And this is exactly the problem with the insertion of the

U -integrals in Unitary gauge. In particular, we should be very careful when we use these

integrals, since they are highly divergent and using shifts, in order to reduce them, seems

that is not allowed.

Now, even in this case which is quite easy to handle there is an inconsistence between the

two procedures. So, it is clear that things getting worst as we move to more complicated

integrals and we should be very careful about the correct usage of the shifts when we

apply them on highly divergent integrals.

Now, we move on to an other dimensionless integral, which is similar with the previous

one, and comes from the triangle one-loop diagrams. To be more specific we have that
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+

(537)

so, again here we try to construct all the possible denominators until we get a reduced

divergent integral, which we know how to calculate. Therefore we get that
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(538)

and again here appears a dilemma between the usage of shifts and the usage of the

general Veltman-Passarino reduction formula. To be more specific the first term of the

above relation forgetting 1
m2

a
, reads

A =

*
k2

⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
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A = A0(ma)�
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a � p21
⌘
B0(ma,ma) (539)

and thus in the second term there is not d1 in the denominator as usual. Therefore,

we have two chooses. To be more specific, we can perform a shift of the form k ! k � p1

and then to use the Veltman-Passarino formula obtaining

U2shifts
K4 = p21B0(ma,ma, 0, p2) (540)

or we can use directly the Veltman-Passarino reduction formula getting

U2V�P
K4 = �p21B0(ma,ma, p1, p1 + p2) . (541)

Therefore, there is a di↵erence in B0’s arguments which does not play any role, and

also we can observe that, for equal masses, the two results are equal and opposite. This is

a very important di↵erence which could a↵ect drastically our results and thus, we should

choose correctly the way that we will calculate these integrals. Thus, since in these highly

divergent integrals the usage of shifts is ambiguous, here and in what follows we will

evaluate the U -integrals performing directly the Veltman-Passarino reduction formula.

Now, let us move on to the next case, where as we can see from equation (117), except

from the UK4 we face in addition two more dimensionless integrals, namely UK5 and UK6.

Starting with the first one we get that
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(542)

so following the same reasoning with the previous cases we get that
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So now we deal with the first term which becomes
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(544)

where again here we have canceled the k-odd term. Therefore combining (544) with

the second term that we obtained from the UK5 we take the form
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(545)
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Finally we move on to the second integrals that we mentioned before, namely the UK6.

Therefore, following the same procedure as before this integral reads
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again here we have that
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Now we should evaluate the first term of the above relation therefore using the same

reasoning with the previous calculations we get that
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so now we have to deal with the first and the second term of (548). Starting with the

first one we we get
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where we have defined that P1 = p1 + p2. Now we move on to the second term which

reads
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therefore combining all these together we obtain the final form of UK6 which reads

UK6 =
1

2
+

 
1

m2
a

� P 2
1

m4
a

!

A0(ma) +

 
2p21
m4

a

p1µ � 2p1µ
m2

a

!

Bµ
{2,3}(p1,ma,ma)

+

 
2gµ⌫
m2

a

� gµ⌫p
2
1

m4
a

+
4p1µp1⌫
m4

a

!

Bµ⌫
{2,3}(p1,ma,ma) + gµ⌫C

µ⌫
{1,2,3}(p1, p2,ma,ma,ma) .

(551)

Since now we have seen all the Ui’s that occur in the case of the scalar reduction of

the Triangle-integrals. Thus it is time to move on to the Ui integrals that occur in the

calculation of the Box diagrams which we have defined in subsection 2.4 . Generally, the

method that we use in order to reduce these integrals is exactly the same with that we have

followed throughout the calculation of the Triangle Ui’s. To be more specific, again we are

trying to construct the appropriate denominator in the numerator of the corresponding

integrals, and then we manage to reduce its divergence in a proper way. Therefore it is

straightforward to write the exact form of these integrals since the calculation is already

known. So we start with the dimensionless integral UB4 which reads
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where we have defined that [k] ⌘ (k2 �m2
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Next, following the same reasoning we present the reduced form of the UB5 integral

which reads
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so after using the relations that we have obtained previously we have that
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Now using the same arguments for the gµ⌫Dµ⌫⇢(a, a, a, a) we get the final form of UB5
which reads
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(556)

where we have left intact the terms with indices since they are contracted with the

momenta or the metric when we consider their full calculation. Now we move on to the

next dimensionless Box integral which is

UB6(p1, p2, p3,ma,ma,ma,ma) =
Z d4k

(2⇡)4

8
<

:
�ik6

m2
a (k

2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
a)

9
=

;,

UB6(p1, p2, p3,ma,ma,ma,ma) =

*
k2k4

m2
a [k] [k + p1][k + p1 + p2] [k + p1 + p2 + p3]

+

.

(557)

This integral could be seen as the UB4 integral with an extra k2 term in the nominator

and divided by m2
a. Therefore we get that the reduced form reads

UB6(p1, p2, p3,ma,ma,ma,ma) =

*
k4

m2
a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

+ gµ⌫C
µ⌫
{2,3,4}(p1, p2,ma,ma,ma) +m2

agµ⌫D
µ⌫(a, a, a, a) ,

UB6(p1, p2, p3,ma,ma,ma,ma) =

*
k4

m2
a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

+ UB4 .

(558)
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Now we should deal with the first term of the above equation which we define as B

and it reads

B =

*
k4

m2
a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

,

B =

*
k2 [k + p1]

m2
a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

�
*

2k2k · p1
m2

a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

�
*

k2p21
m2

a [k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

+

*
k2

[k + p1] [k + p1 + p2] [k + p1 + p2 + p3]

+

,

B =
gµ⌫
m2

a

Bµ⌫
{3,4}(p1,ma,ma)� 2p1µ

m2
a

g⌫⇢C
µ⌫⇢
{2,3,4}(p1, p2,ma,ma,ma)

+

 

1� p21
m2

a

!

gµ⌫C
µ⌫
{2,3,4}(p1, p2,ma,ma,ma)

(559)

thus we obtain the final form of the UB6 which reads

UB6(p1, p2, p3,ma,ma,ma,ma) =
gµ⌫
m2

a

Bµ⌫
{3,4}(p1,ma,ma)� 2p1µ

m2
a

g⌫⇢C
µ⌫⇢
{2,3,4}(p1, p2,ma,ma,ma)

+

 

1� p21
m2

a

!

gµ⌫C
µ⌫
{2,3,4}(p1, p2,ma,ma,ma) + UB4 . (560)

Here we have an other dimensionless integral of the same numerator dimension, namely

Uµ⌫
B6 which is exactly as the UB6 but without being contracted with either the metric or

the momentum. Therefore we can write straightforward that

Uµ⌫
B6 (p1, p2, p3,ma,ma,ma,ma) =

Z d4k

(2⇡)4

8
<

:
�ik4kµk⌫

m2
a (k

2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
a)

9
=

;,

Uµ⌫
B6 (p1, p2, p3,ma,ma,ma,ma) =

*
k4kµk⌫

m2
a [k] [k + p1][k + p1 + p2] [k + p1 + p2 + p3]

+

(561)
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so we have that

Uµ⌫
B6 (p1, p2, p3,ma,ma,ma,ma) =

1

m2
a

Bµ⌫
{3,4}(p1,ma,ma)� 2p1⇢

m2
a

Cµ⌫⇢
{2,3,4}(p1, p2,ma,ma,ma)

+

 

2� p21
m2

a

!

Cµ⌫
{2,3,4}(p1, p2,ma,ma,ma) +m2

aD
µ⌫(a, a, a, a) .

(562)

Now we move on to the next dimensionless integral that we face in the Box calculation

which is UB7 and has the following form

UB7(p1, p2, p3,ma,ma,ma,ma) =
Z d4k

(2⇡)4

8
<

:
�ik6kµ

m3
a (k

2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
a)

9
=

;,

UB7(p1, p2, p3,ma,ma,ma,ma) =

*
k6kµ

m3
a [k] [k + p1][k + p1 + p2] [k + p1 + p2 + p3]

+

(563)

Since now we have seen in a very analytical way the method that we use in order

to evaluate the U -integrals. Thus, the remaining two highly divergent integrals could be

written without the intermediate steps, since we have already seen them. So we get that

UB7(p1, p2, p3,ma,ma,ma,ma) =

 
1

ma
� P 2

1

m3
a

!

Bµ
{3,4}(p1,ma,ma) +

 

�2p1⌫
m3

a

� 2P1⌫

m3
a

!

Bµ⌫
{3,4}(p1,ma,ma)

+

 
2p21
m3

a

� 2

ma

!

p1⌫C
µ⌫
{2,3,4}(p1, p2,ma,ma,ma)

+

 
4p1⇢p1⌫
m3

a

� p21
m3

a

g⌫⇢ +
g⌫⇢
ma

!

p1⌫C
µ⌫⇢
{2,3,4}(p1, p2,ma,ma,ma) + UB5 .

(564)

Finally, we have the last dimensionless Box integral which is UB8 which has the fol-

lowing form

165



UB8(p1, p2, p3,ma,ma,ma,ma) =
Z d4k

(2⇡)4

8
<

:
�ik8

m4
a (k

2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘

⇥ 1

((k + p1 + p2 + p3)2 �m2
a)

9
=

;,

UB8(p1, p2, p3,ma,ma,ma,ma) =

*
k8

m4
a [k] [k + p1][k + p1 + p2] [k + p1 + p2 + p3]

+

(565)

therefore its reduced form reads

UB8(p1, p2, p3,ma,ma,ma,ma) =
1

2
+

 
1

m2
a

� P 2
2

m4
a

!

A0(ma) +

 
4P 2

1

m2
a

� 4

m4
a

!

p1µB
µ
{3,4}(p1,ma,ma)

+

 
2gµ⌫
m2

a

� P 2
1

m4
a

gµ⌫ � p21
m4

a

gµ⌫ +
8p1µP1⌫

m4
a

+
4p1µp1⌫
m4

a

!

Bµ⌫
{3,4}(p1,ma,ma)

+

8
<

:gµ⌫ � 2
p21
m2

a

gµ⌫ +
p41
m4

a

gµ⌫

+
4

m2
a

p1µp1⌫ � 4p41
m4

a

p1µp1⌫

9
=

;C
µ⌫
{2,3,4}(p1, p2,ma,ma,ma)

+

8
<

:� 2p1µ
m2

a

g⌫⇢ +
2p21p1µ
m4

a

g⌫⇢

+

 
2p21
m4

a

� 2

m2
a

!

gµ⌫p1⇢ � 8

m4
a

p1µp1⌫p1⇢

9
=

;C
µ⌫⇢
{2,3,4}(p1, p2,ma,ma,ma) .

(566)

XXX

D.2 Explicit calculation of the U-integrals

The first case that we have is the following

U1(p,ma,ma) =
Z d4k

(2⇡)4
i

(k2 �m2
a)
⇣
(k + p)2 �m2

a

⌘ (567)

here we can see that the Feynman parameters are that of the equation (509), thus we

have that the denominator takes the form
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1

AB
=

1Z

0

dx
1

[A+ (B � A) x]2
(568)

where A = k2 �m2
a and B = (k + p)2 �m2

a. This gives

⇧ = [A+ (B � A) x] =
h
k2 �m2

a +
⇣
(k + p)2 �m2

a � k2 +m2
a

⌘
x
i

=
h
k2 + p2x+ 2kpx�m2

a

i (569)

then we complete the square adding the term ±p2 (1� x)2 and we get

⇧ =
h
(k + px)2 + p2x (1� x)�m2

a

i

= k2 ��
(570)

where we have performed the shift k ! k � px and we have defined that � =

�p2x (1� x) +m2
a. Thus, now U1 becomes

U1(p,ma,ma) =

1Z

0

dx
Z d4k

(2⇡)4
i

(k2 ��)2
.

Now in d-dimensions and using equation (512) this integral reads

U1(p,ma,ma) =

1Z

0

dx
Z ddk

(2⇡)d
i

(k2 ��)2
,

U1(p,ma,ma) =
1

(4⇡)d/2

1Z

0

dx�

 

2� d

2

!✓
1

�

◆2�d/2

.

(571)

and using the expansion relations of the Gamma function and expanding around d =

4� " the U1(p,ma,ma) becomes

U1(p,ma,ma) =
1

(4⇡)2

0

@2

"
+

1Z

0

dx ln
4⇡e��E

�

1

A . (572)

The next integral that we deal here is a little bit more complicated but we use the

same reasoning in order to calculate it. In particular we have the following

U2(p,ma,ma) =
Z d4k

(2⇡)4
ik2

(k2 �m2
a)
⇣
(k + p)2 �m2

a

⌘ (573)
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where we have again the same n = 2 case concerning the Feynman parameters and

thus we obtain that the shift is k ! k � p (x� 1) and � = �p2x (1� x) +m2
a.

The only di↵erence with the previous calculation occurs in the numerator where here it

has to be shifted, namely

N = k2 = (k � px)2

= k2 + p2x2

where we have omitted terms which are odd to the k. Therefore we obtain that

U2(p,ma,ma) =

1Z

0

dx
Z d4k

(2⇡)4
i(k2 + p2x2)

(k2 ��)2

so in d-dimensions and using equations (512) and (513) this integral reads

U2(p,ma,ma) =

1Z

0

dx
Z ddk

(2⇡)d
i(k2 + p2x2)

(k2 ��)2
,

U2(p,ma,ma) = � 1

(4⇡)d/2

1Z

0

dx�

 

1� d

2

!✓
1

�

◆1�d/2

+
1

(4⇡)d/2

1Z

0

dxp2x2�

 

2� d

2

!✓
1

�

◆2�d/2

(574)

and using the expansion relations of the Gamma function and expanding around d =

4� " the U2(p,ma,ma) becomes

U2(p,ma,ma) =
1

(4⇡)2

0

@�p2

3"
+

m2
a

"
+

1Z

0

dx� ln
4⇡e��E

�
� p2

6
+m2

a

1

A

+
1

(4⇡)2

0

@2p2

3"
+

1Z

0

dxp2x2 ln
4⇡e��E

�

1

A,

U2(p,ma,ma) =
1

(4⇡)2

0

@p2

3"
� m2

a

"
+

1Z

0

dxp2x (2x� 1) ln
4⇡e��E

�
� p2

6
+m2

a

1

A(575)

Now, lets deal with the explicit calculation of the dimensionless integral UM4 where

we already know that the Feynman parameters are in the n = 2 case. In addition the

corresponding shift and � are the same with the previous two integrals. Moreover the

numerator after the shift becomes

N = k4 = (k + px)4

= k4 + 6k2p2x2 + p4x4
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therefore we obtain that

UM4(p,ma,ma) =

1Z

0

dx
Z d4k

(2⇡)4
i(k4 + 6k2p2x2 + p4x4)

m4
a (k

2 ��)2

so in d-dimensions and using equations (512) , (513) and (515) this integral reads

UM4(p,ma,ma) =

1Z

0

dx
Z ddk

(2⇡)d
i(k4 + 6k2p2x2 + p4x4)

m4
a (k

2 ��)2
,
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dxp4x4J0(2,�)

9
=

;

(576)

so after expanding around d = 4� " the UM4 becomes

UM4(p,ma,ma) =
1

(4⇡)2
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@
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� 9
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=

; (577)

Finally a common case that we face in that kind of calculations is that of

U 0
M4(p,ma,ma) = µ4�dUM4(p,ma,ma)
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so if we combine equation (577) with U 0
M4 and do the expansion around d = 4 � ",

then we will obtain the following form

(4⇡)2U 0
M4(p,ma,ma) =

8
<

:

 

6 +
6p2

m2
a

� 3p4

5m4
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!
1

"
+

1Z
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dx
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� 6p2x4
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2
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m2
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� 9

20

p4

m4
a

9
=

; . (578)

Next integral that corresponds to interesting features of our work is the dimensionless

UK4. This case is between the most common integrals that we face during the calculation

of the one-loop three-point functions in section 2. So we have that

UK4 =
Z d4k

(2⇡)4
�ik4

m2
a (k

2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘ (579)

where its Feynman parameters correspond to the n = 3 case. In particular we notice

that this integral is exactly the same with (597) concerning the denominators and the

Feynman parametrization thus using the relation (511) for A = k2�m2
a, B = (k + p1)

2�
m2

a and C = (k + p1 + p2)
2 �m2

a the denominator reads

⇧ = [Ax+By + Cz] ,
⇧ =

h
xk2 � xm2

a + yk2 + yp21 + 2ykp1 � ym2
a + zk2 + z(p1 + p2)

2 + 2zk(p1 + p2)� zm2
a

i

=
h
k2 + 2k (p1y + (p1 + p2)z) + yp21 + z(p1 + p2)�m2

a

i

=
h
k2 + 2k (p1y + (p1 + p2)z)± (yp1 + z(p1 + p2))

2 + yp21 + z(p1 + p2)�m2
a

i
,

⇧ = k2 �� (580)

where we have completed the square adding the term ±(yp1 + z(p1 + p2))2, we have

used the relation x + y + z = 1 and we have done the shift k ! k � p1y � (p1 + p2)z.

Finally considering everything mentioned above, we have defined that � = �p21x(1�x)�
2p1p2xz � p22z(1� z) +m2

a. Now we should do the shift in the numerator which becomes

N = k4 ! (k � p1y � (p1 + p2)z)
4 ,

N = k4 � 4(p1y + (p1 + p2)z)k
3 + 6(p1y + (p1 + p2)z)

2k2 � 4(p1y + (p1 + p2)z)
3k + (p1y + (p1 + p2)z)

4

(581)
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and if we putt it in (579) it will read

UK4(p1, p2,ma) = 2
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.(582)

Similarly with the case of the Triangular integrals here we face integrals that have

numerator which is di↵erent from one. One case like that is the dimensionless integral

UB4 =
Z d4k

(2⇡)4
�ik4

(k2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
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2 �m2
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(k + p1 + p2 + p3)

2 �m2
a

⌘

(583)

and this integral has the same Feynman parameterization with that of (602), thus

using the n = 4 case for the Feynman parameters we get that the denominator gives

⇧ = [Ax+By + Cz +Dw] ,
⇧ =

⇢
xk2 � xm2

a + yk2 + yp21 + 2ykp1 � ym2
a + zk2 + z(p1 + p2)

2 + 2zk(p1 + p2)� zm2
a

+ wk2 + w(p1 + p2 + p3)
2 + 2wk(p1 + p2 + p3)� wm2

a

�
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⇢
k2 + 2k (p1y + (p1 + p2)z + w(p1 + p2 + p3)) + yp21 + z(p1 + p2)

2 + w(p1 + p2 + p3)
2 �m2

a

�

=
⇢
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2

+ yp21 + z(p1 + p2)
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2 �m2
a

�
,

⇧ = k2 �� (584)

where we have completed the square adding the term ±(yp1 + z(p1 + p2) + w(p1 +

p2 + p3))2, we have used the relation x + y + z + w = 1 and we have done the shift
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k ! k � p1y � (p1 + p2)z � w(p1 + p2 + p3). Finally we have defined that � = �yp21 �
z(p1 + p2)2 � w(p1 + p2 + p3)2 + (yp1 + z(p1 + p2) + w(p1 + p2 + p3))2 +m2

a.

Now performing the shift that we have mentioned we get that the numerator reads

N = k4 ! (k � p1y � (p1 + p2)z � w(p1 + p2 + p3))
4 ,

N = k4 � 4(p1y + (p1 + p2)z + w(p1 + p2 + p3))k
3 + 6(p1y + (p1 + p2)z + w(p1 + p2 + p3))

2k2

� 4(p1y + (p1 + p2)z + w(p1 + p2 + p3))
3k + (p1y + (p1 + p2)z + w(p1 + p2 + p3))

4

(585)

and if we putt it in (583) it will read

UB4(pi,ma) = 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1

xi

!Z d4k

(2⇡)4
�ik4

(k2 ��)4

� 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1

xi

!Z d4k

(2⇡)4
�i4(p1(1� x) + p2(z + w) + wp3)k3

(k2 ��)4

+ 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1

xi

!Z d4k

(2⇡)4
�i6(p1(1� x) + p2(z + w) + wp3)2k2

(k2 ��)4

� 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1

xi

!Z d4k

(2⇡)4
�i4(p1(1� x) + p2(z + w) + wp3)3k

(k2 ��)4

+ 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1

xi

!Z d4k

(2⇡)4
�i(p1(1� x) + p2(z + w) + wp3)4

(k2 ��)4
.

(586)

where i takes the values i = 1, 2, 3.

XXX

E Calculation of the A0, B0, C0 and D0 Integrals

In the present section of the Appendices we demonstrate the analytic calculation of the

scalar integrals that we have used throughout this work. This is very important since

every reduced result that we have obtain in section 2 is according to these scalar integrals,

therefore in order to use them to calculate properly the �-functions we will need their

analytic form. So, we start with the A0(ma) which reads
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A0(ma) = µd�4
Z d4k

(2⇡)4
�i

k2 �m2
a

(587)

and with the help of equation (512) for the n = 1 case in d-dimensions we get that

A0(ma) = µd�4m2
aJ0(1,ma) ,

A0(ma) =
�µd�4

(4⇡)d/2
�

 

1� d

2

!
1

m
1�d/2
a

. (588)

Now, we should perform the expansion around the d = 4 � " which will give us the

following relation

A0(ma) =
m2

a

"
+m2

a ln
µ2

m2
a

+m2
a .

(589)

Next we move on to the B0(p,m1,m2) case which reads

B0(p,m1,m2) =
Z d4k

(2⇡)4
�i

(k2 �m2
1)
⇣
(k + p)2 �m2

2

⌘ (590)

and as we can see, the Feynman parameters are that of the equation (509), thus we

get that the denominator takes the form

1

AB
=

1Z

0

dx
1

[A+ (B � A) x]2
(591)

where A = (k + p)2 �m2
2 and B = k2 �m2

1. This gives

⇧ = [A+ (B � A) x] =
h
(k + p)2 �m2

2 +
⇣
k2 �m2

1 � (k + p)2 +m2
2

⌘
x
i

=
h
k2 + p2 (1� x) + 2kp (1� x)�m2

2(1� x)�m2
1x
i (592)

then we complete the square adding the term ±p2 (1� x)2 and we get

⇧ =
h
(k + p (1� x))2 + p2x (1� x)�m2

2(1� x)�m2
1x
i

= k2 ��
(593)
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where we have performed the shift k ! k + p (x� 1) and we have defined that � =

�p2x (1� x) +m2
2(1� x) +m2

1x. Thus, now B0(p2,m1,m2) becomes

B0(p,m1,m2) =

1Z

0

dx
Z d4k

(2⇡)4
�i

(k2 ��)2
.

Now in d-dimensions, using equation (512), this integral reads

B0(p,m1,m2) =

1Z

0

dx
Z ddk

(2⇡)d
�i

(k2 ��)2
,

B0(p,m1,m2) =
1

(4⇡)d/2

1Z

0

dx�

 

2� d

2

!✓
1

�

◆2�d/2
(594)

thus, using the expansion relations of the Gamma function and expanding around

d = 4� " we obtain

B0(p,m1,m2) =
1

(4⇡)2

0

@2

"
+

1Z

0

dx ln
4⇡e��E

�

1

A (595)

or we can have the following useful relation for our calculation which reads

B0(p,m1,m2) = µd�4B0
0(p,m1,m2) ,

B0(p,m1,m2) =
1

(4⇡)2

0

@2

"
+

1Z

0

dx ln
µ2

�B0(x)

1

A (596)

Following the same procedure we can see that the integral B0(p,m2,m1) has the same

"-expansion with the one that we have just calculated, namely with B0(p,m1,m2), inter-

changing the two masses m2
1 and m2

2 in the � expression.

Now lets move on to consider a di↵erent case from what we have seen till now, namely

we will explicitly calculate the integral corresponding to the C0(p1, p2,ma,ma,ma) case of

the Appendix B. To be more specific, integrals like C0(p1, p2,ma,ma,ma) has 1/m2
a mass

dimensions, therefore here

C0(1, 2, 3) =
Z d4k

(2⇡)4
�i

(k2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘ (597)
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and as we can see its Feynman parameters correspond to the n = 3 case. Therefore

using the relation (511) for A = k2�m2
a, B = (k + p1)

2�m2
a and C = (k + p1 + p2)

2�m2
a

the denominator reads

⇧ = [Ax+By + Cz] ,
⇧ =

h
xk2 � xm2

a + yk2 + yp21 + 2ykp1 � ym2
a + zk2 + z(p1 + p2)

2 + 2zk(p1 + p2)� zm2
a

i

=
h
k2 + 2k (p1y + (p1 + p2)z) + yp21 + z(p1 + p2)

2 �m2
a

i

=
h
k2 + 2k (p1y + (p1 + p2)z)± (yp1 + z(p1 + p2))

2 + yp21 + z(p1 + p2)
2 �m2

a

i
,

⇧ = k2 �� (598)

where we have completed the square adding the term ±(yp1 + z(p1 + p2))2, we have

used the relation x + y + z = 1 and we have done the shift k ! k � p1y � (p1 + p2)z.

Finally considering everything mentioned above, we have defined that � = �p21x(1�x)�
2p1p2xz � p22z(1� z) +m2

a. Therefore equation (597) becomes

C0(1, 2, 3) = 2

1Z

0

dx

1Z

0

dy

1Z

0

dz�

 

1�
3X

i=1

xi

!Z d4k

(2⇡)4
�i

(k2 ��)3
(599)

and this specific form corresponds to the equation (512) for n = 3, thus the above

integral in d-dimensions reads

C0(1, 2, 3) = 2

1Z

0

dx

1Z

0

dy

1Z

0

dz�

 

1�
3X

i=1

xi

!Z ddk

(2⇡)d
�i

(k2 ��)3
,

C0(1, 2, 3) = 2

1Z

0

dx

1Z

0

dy

1Z

0

dz�

 

1�
3X

i=1

xi

!
J0(3,�)

m2
a

. (600)

Now, in order to compute explicitly the C0(1, 2, 3) we should do the expansion d = 4�",
thus using the expansion forms that we have presented in Appendix C.2 we obtain the

final form

C0(p1, p2,ma,ma,ma) =
�1

(4⇡)d/2

1Z

0

dx

1Z

0

dy

1Z

0

dz�

 

1�
3X

i=1

xi

!

�

 

3� d

2

! 
1

�C0(x, y, z)

!3�d/2

,

C0(p1, p2,ma,ma,ma) = � 1

(4⇡)2

1Z

0

dx

1Z

0

dy

1Z

0

dz�

 

1�
3X

i=1

xi

!
1

�C0(x, y, z)
(601)
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where we have defined the notation x1 ⌘ x, x2 ⌘ y, x3 ⌘ z. As we could have seen

from the beginning, the above result is completely finite.

Now we move on to another interesting case that occurs in section 2 and in partic-

ular, it refers to the Box diagrams. To be more specific, here we deal with the case

of the D0(p1, p2, p3,ma,ma,ma,ma) which has mass-dimension 1/m4
a. Thus we have the

following

D0(1, 2, 3, 4) =
Z d4k

(2⇡)4
�i

(k2 �m2
a)
⇣
(k + p1)

2 �m2
a

⌘ ⇣
(k + p1 + p2)

2 �m2
a

⌘ ⇣
(k + p1 + p2 + p3)

2 �m2
a

⌘

(602)

and as we can see its Feynman parameters correspond to the n = 4 case. Therefore

using the relation (511) for A = k2 �m2
a, B = (k + p1)

2 �m2
a, C = (k + p1 + p2)

2 �m2
a

and D = (k + p1 + p2 + p3)
2 �m2

a the denominator reads

⇧ = [Ax+By + Cz +Dw] ,
⇧ =

⇢
xk2 � xm2

a + yk2 + yp21 + 2ykp1 � ym2
a + zk2 + z(p1 + p2)

2 + 2zk(p1 + p2)� zm2
a

+ wk2 + w(p1 + p2 + p3)
2 + 2wk(p1 + p2 + p3)� wm2

a

�

=
⇢
k2 + 2k (p1y + (p1 + p2)z + w(p1 + p2 + p3)) + yp21 + z(p1 + p2)

2 + w(p1 + p2 + p3)
2 �m2

a

�

=
⇢
k2 + 2k (p1y + (p1 + p2)z + w(p1 + p2 + p3))± (yp1 + z(p1 + p2) + w(p1 + p2 + p3))

2

+ yp21 + z(p1 + p2)
2 + w(p1 + p2 + p3)

2 �m2
a

�
,

⇧ = k2 �� (603)

where we have completed the square adding the term ±(yp1 + z(p1 + p2) + w(p1 +

p2 + p3))2, we have used the relation x + y + z + w = 1 and we have done the shift

k ! k � p1y � (p1 + p2)z � w(p1 + p2 + p3). Finally considering everything mentioned

above, we have defined that � = �yp21 � z(p1 + p2)2 � w(p1 + p2 + p3)2 + (yp1 + z(p1 +

p2) + w(p1 + p2 + p3))2 +m2
a. Therefore equation (602) becomes

D0(1, 2, 3, 4) = 6

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
4X

i=1
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!Z d4k

(2⇡)4
�i

(k2 ��)4
(604)

and in d-dimensions using equation (512) for n = 4 it reads
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D0(1, 2, 3, 4) = 6

1Z
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dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�
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0
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. (605)

Now in order to have an explicit calculation of this integral we use the exact form of

the equation (512) and therefore we obtain the following

D0(p1, p2, p3,ma,ma,ma,ma) =
1

(4⇡)d/2

1Z

0

dx

1Z

0

dy

1Z

0

dz

1Z

0

dw�

 

1�
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�
⇣
4� d
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⌘

(�D0(x, y, z, w))
4�d/2
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1
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dx
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0

dz
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0
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1�
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xi
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�2
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.

(606)

where here we have defined that x1 ⌘ x, x2 ⌘ y, x3 ⌘ z and x4 ⌘ w
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