
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Προσεγγιστικοί Αλγόριθμοι Δρομολόγησης Παραλληλοποιήσιμων

Εργασιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Λεωνίδα Π. Τσεπενέκα

Επιβλέπων: Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Σεπτέμβριος 2016





ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Προσεγγιστικοί Αλγόριθμοι Δρομολόγησης Παραλληλοποιήσιμων

Εργασιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Λεωνίδα Π. Τσεπενέκα

Επιβλέπων: Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή στις 14 Σεπτεμβρίου 2016.

........................................

Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

........................................

Ιωάννης Μήλης

Καθηγητής Ο.Π.Α.

........................................

Αριστείδης Παγουρτζής

Αναπληρωτής Καθηγητής Ε.Μ.Π .

Αθήνα, Σεπτέμβριος 2016



...................................

Λεωνίδας Π. Τσεπενέκας

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright c○ Λεωνίδας Π. Τσεπενέκας, 2016.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφο-

ρούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον

συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.



Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή αυτής της εργασίας, κ.

Δημήτρη Φωτάκη, για την εμπιστοσύνη του, τη συνεχή καθοδήγηση και ενθάρρυνση και

για τη δυνατότητα που μου έδωσε να γνωρίσω εκ των έσω την ερευνητική διαδικασία. Ο

ενθουσιασμός με τον οποίο αντιμετωπίζει τόσο το διδακτικό όσο και το ερευνητικό κομμάτι

της δουλειάς του, υπήρξε ένας από τους βασικότερους παράγοντες που με ενέπνευσαν να

ασχοληθώ με το πεδίο των Αλγορίθμων.

Επιπλέον, οφείλω πολλά στον Ορέστη Παπαδιγενόπουλο, με τον οποίο το τελευταίο

χρόνο είχαμε μια εξαιρετική συνεργασία. Οι συμβουλές και η βοήθεια που μου προσέφερε

όντας εμπειρότερος, ήταν καθοριστικής σημασίας για την περάτωση της εν λόγω εργασίας

και τα αποτελέσματα αυτής δεν θα είχαν προκύψει χωρίς τη συμμετοχή του.

Ακόμη, νιώθω την ανάγκη να ευχαριστήσω από καρδιάς τον Αλέξανδρο, το Γιάννη, το

Σπύρο και το Πέτρο για τα 6 καταπληκτικά χρόνια που περάσαμε μαζί στη Σχολή. Σε αυτή

τη παρέα χρωστάω τις υπέροχες αναμνήσεις των φοιτητικών μου χρόνων.

Ιδιαίτερα θα ήθελα να ευχαριστήσω την οικογενειά μου για την αμέριστη στήριξη που

μου έδειξαν σε όλη τη διάρκεια των σπουδών μου. Κάθε φορά που τους χρειάστηκα ήταν

δίπλα μου και σίγουρα χωρίς αυτούς δεν θα είχα καταφέρει τίποτα. Η προσφορά τους στη

μέχρι τώρα διαδρομή μου είναι ανεκτίμητη.

Τέλος, ένα μεγάλο ευχαριστώ στην αγαπημένη μου Δήμητρα που τόσα χρόνια ήταν πάντα

κοντά μου, και στα εύκολα και στα δύσκολα.



Περίληψη

Μια τυπική υπόθεση στα κλασσικά προβλήματα χρονοδρομολόγησης είναι ότι οι εργα-

σίες, χρησιμοποιούν μόνο μια επεξεραστική μονάδα για την εκτέλεσή τους. Παρόλα αυτά,

υπάρχει πληθώρα προβλημάτων που εμφανίζονται σε πολλούς και διαφορετικούς τομείς, στα

οποία η εν λόγω υπόθεση δεν είναι επαρκής για να μοντελοποιήσει τις ιδιαίτερες απαιτήσεις

που παρουσιάζουν. Σε αυτές τις περιπτώσεις θα πρέπει να επεκτείνουμε το κλασικό μον-

τέλο, επιτρέποντας σε μια εργασία να εκτελείται ταυτόχρονα σε περισσότερους του ενός

επεξεργαστές και μάλιστα ενιαία. Αυτό σημαίνει ότι η εργασία θα έχει κοινό χρόνο εκκίνη-

σης και ολοκλήρωσης σε όλους τους επεξεργαστές που της έχουν ανατεθεί και μάλιστα

ο χρόνος εκτέλεσης της θα είναι συνάρτηση αυτών. Στην αλγοριθμική βιβλιογραφία προ-

βλήματα της παραπάνω μορφής συναντώνται ως malleable ή multiprocessor ή parallelizable

job scheduling.

΄Οπως και στο κλασικό μοντέλο μιας εργασίας σε μια μηχανή, έτσι και εδώ υπάρχει η

ανάγκη σχεδίασης αποδοτικών αλγορίθμων. Στη διπλωματική αυτή, μελετάμε το πρόβλημα

της χρονοδρομολόγησης σε τέτοια μοντέλα από τη σκοπιά της θεωρίας δρομολόγησης και

των προσεγγιστικών αλγορίθμων. Ξεκινάμε παρουσιάζοντας τα πιο γνωστά αποτελέσματα,

επεκτείνοντας παράλληλα μερικά από αυτά. Η βασική συνεισφορά μας είναι η δημιουργία

ενός μοντέλου για malleable job scheduling που γενικεύει την ιδέα του uniform machine

scheduling και η παρουσίαση προσεγγιστικών αλγορίθμων σταθερού παράγοντα για αυτό.

Λέξεις-Κλειδιά:Χρονοδρομολόγηση, Προσεγγιστικοί αλγόριθμοι, Ανάθεση πόρων,Mal-

leable/Parallelizable/Multiprocessor εργασίες, Μοντέλο μίας εργασίας σε πολλές μηχανές



Abstract

A typical hypothesis in classical scheduling is that a job can be processed by only one

machine at a time. However, in many problems arising in a variety of fields, this may

not be an adequate model. In this case, we must extend the classical model, allowing a

job to use more than one machines for its execution. The processing time of a job is a

a function of the machines allocated to it. Also, all the machines allocated to a job are

required to execute the job in unison. That is, they are required to start and finish the

job at the same time. In algorithmic literature, the above are mentioned as malleable

or multiprocessor or parallelizable job scheduling problems.

In this diploma thesis, we study scheduling problems of that nature from the view-

point of approximation algorithms and the typical scheduling theory. We present several

known results and we also slightly extend some of them. Our main contribution is a

novel malleable job scheduling model, that generalizes the idea of the well known uniform

machine scheduling, and some constant factor approximation algorithms for it.

Keywords: Scheduling, Approximation Algorithms, Resource allocation, Malleable/-

Parallelizable/Multiprocessor jobs, One-job-multiple-machines model



Contents

1 Introduction 1

1.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Formal Definition of a Scheduling Problem . . . . . . . . . . . . . . . . . 3

1.1.2 Machine Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Objective Functions and Metrics . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 The Standard Three Field Notation . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Formal Definition of the One-Job-Multiple-Machines Model . . . . . . . . 6

1.2 Overview of Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Malleable Job Scheduling 9

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Minimizing the Makespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The InsertSmall Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Partitioning the Jobs into 2 Shelves . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 The BuildFeasible Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Minimizing the Makespan for Identical Jobs . . . . . . . . . . . . . . . . . . . . . 16

2.4 Minimizing the Sum of Completion Times . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Lower Bounds for the Rigid Problem . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 A Scheduling Algorithm for the Rigid Problem . . . . . . . . . . . . . . . 20

2.4.3 Restricting an Allotment . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Finding an Initial Allotment . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Scheduling with Resource Dependent Processing Times . . . . . . . . . . . . . . 23



Contents

2.5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 A 4-Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2.1 Relaxing the Problem . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2.2 The Rounding Procedure . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2.3 The Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 A 3.75-Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 Connection to the Malleable Problem . . . . . . . . . . . . . . . . . . . . 28

2.6 Minimizing the Sum of Weighted Completion Times . . . . . . . . . . . . . . . . 29

2.6.1 A 25.55-Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 29

3 General Multiprocessor Job Scheduling 33

3.1 Inapproximability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 The Non-Preemptive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 The Peemptive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Linear Array Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 The Non-Preemptive Problem . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 The Preemptive Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Fixed Number of Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 The 𝑚 = 2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 The 𝑚 = 3 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 The General Fixed 𝑚 Case . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3.1 The (𝑚, 𝜖)-Canonical Schedules . . . . . . . . . . . . . . . . . . . 45

3.3.3.2 The Approximation Scheme . . . . . . . . . . . . . . . . . . . . . 47

4 Malleable Job Scheduling In Uniform Machines 50

4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 𝑁𝑃 -Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 The Identical Jobs Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Jobs With Different Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures

1.1 A graph representing the precedence constraints among jobs. . . . . . . . 3

1.2 Job execution under the new model. . . . . . . . . . . . . . . . . . . . . . 6

2.1 The InsertSmall subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Structure of the result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A phase schedule for identical malleable jobs. . . . . . . . . . . . . . . . . 17

2.4 The Squashed Area Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Scheduling for the 𝑚 = 2 case. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Scheduling for the 𝑚 = 3 case. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Example of a floor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The grouping structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 A schedule for unequal workload jobs. . . . . . . . . . . . . . . . . . . . . 61



Chapter 1

Introduction

In this diploma thesis we are dealing with scheduling problems. But what exactly is

a scheduling problem? Informally, one may think of scheduling as a family of problems,

in which a set of jobs must be assigned for execution in a set of processing resources,

with the jobs competing over time for the use of these resources. The objective is to

allocate the available resources to jobs, in such a way that a particular criterion is met

and also all kinds of different constraints, unique to each problem, are satisfied.

Scheduling problems are of great importance. First of all, they have way too many ap-

plications in real life situations. Perhaps, their most important application is in computer

systems. Nowadays, all computer systems, from personal computers to supercomputer

clusters, consist of many individual processing units and also have to satisfy thousands

of applications. So the need for efficient schedulers is crucial, in order for these systems

to meet their performance standards. Apart from computer systems, scheduling prob-

lems are also relevant in many other different fields, such as human resource planning,

production planing, transportation and even formal language theory [1]. Beside their

many applications, scheduling problems are also important from a purely algorithmic

viewpoint. They have a rich and intriguing combinatorial structure and their study has

led to some central, as well as mathematically elegant results for the field.

Although the algorithmic literature concerning scheduling problems is vast, the ma-

jority of the studied models are based on the following hypothesis. Every job that

needs to be executed, can only use one processing unit at a time. This is the so-called

one-job-one-machine model. However, in many settings arising in a variety of fields,

this may not be an adequate model. There are many real life situations in which a

job may use or even demand multiple processors for its execution. Thus, the classical

model must be extended to this direction, in order to capture the special requirements

and characteristics of such cases. This is the so-called one-job-multiple-machines model.

1



Chapter 1. Introduction 2

The aforementioned model, although equally important, is not very well studied in the

existing literature and that drove us to work on it.

We now present some of the most typical examples of problems, in which jobs may

require several resources at once for their processing. To begin with, there are many

programming frameworks for modern multicore computer systems that allow the par-

allelization of particular tasks, in order to exploit the inherent parallel capabilities of

the underlying architecture. Parallelizing a job simply stands for using more than one

computational cores for its execution and of course in parallel. In such systems, the more

processors a job uses simultaneously, the smaller its processing time. That happens be-

cause the workload of the job is distributed among the processors alloted to it. Parallel

architectures and frameworks that support this type of job parallelization, are very pop-

ular lately, because of the better performance guarantees they offer. Some examples of

such frameworks that take into account the underlying parallel architecture, and try to

exploit it via job parallelization are MPI [2], OpenMP [3] and Cilk [4]. It is quite clear,

that the classical scheduling algorithms that have been developed for parallel machines

of the nineties are not well adapted to these new execution supports. Thus, the study

of the one-job-multiple-machines model is necessary for providing better schedulers for

such systems.

The real life applications of the one-job-multiple-machines model are not limited only

in multiprocessor computer systems. Another typical example is the berth allocation or

berth scheduling problem, which is a well known 𝒩𝒫-complete problem in operations

research. In that problem we have large vessels that need to be loaded or unloaded and

they may occupy several berths at once for their processing. Here, the berths play the

role of the machines, and it may very easily be the case that a large vessel cannot be

satisfied by only one berth. A similar problem involves human workforce planning and

is the following. There is a group of workers, each with a different set of skills. There is

also a set of tasks that the group should complete before they leave work. But each task

demands for its execution specific skills, that not all workers posses. Thus, the workers

must find the best way to form teams, which will work on different tasks, such that each

team possesses in total the skills required for the task assigned to it. And of course the

final goal is to complete all tasks as soon as possible in order to leave work early. In this

problem, every member of the group corresponds to a computational unit, and a task

may need more than one workers for its completion, because a single worker may not

master all the appropriate skills.

Finally, we have to mention that the classical one-job-one-machine scheduling model

is just a special case of the one-job-multiple-machines model that we are interested in.

Thus, the study of the latter is more difficult and more demanding, but nonetheless

necessary, as well as fascinating and thought-provoking.



Chapter 1. Introduction 3

1.1 Notation and Definitions

In this section, we are going to present all the basic notation and definitions, needed

for understanding the rest of this thesis. We begin by examining the above for the

typical one-job-one-machine scheduling model, and then continue by extending it to the

more complex one-job-multiple-machines case.

1.1.1 Formal Definition of a Scheduling Problem

In every classical scheduling problem we have a set of jobs 𝒥 , and a set of machines

ℳ. We use 𝑛 = |𝒥 | and 𝑚 = |ℳ| to denote the number of jobs and machines re-

spectively. In the rest of the thesis we are going to use the terms ”jobs” and ”tasks”,

as well as the terms ”machines” and ”processors” interchangeably. Every job 𝑗 ∈ 𝒥
must be assigned for execution to some machine 𝑖 ∈ ℳ, and its processing time there

is denoted by 𝑝𝑖,𝑗 . That is, if 𝑗 ∈ 𝒥 ends up running on machine 𝑖 ∈ ℳ, it will burden

that machine for 𝑝𝑖,𝑗 > 0 units of time.

A schedule is a function 𝑓 : 𝒥 →ℳ× IR, that maps every job to a machine-time pair.

That is, the job will use that machine for its processing, starting at the time indicated

in the pair. A schedule is called feasible, if at any point in time every machine executes

at most one job.

In many scheduling problems there are also some other special constraints that need

to be satisfied, apart from the feasibility described above. We are going to mention only

one type of such constraints, which will be later encountered in our study and is very

common in many problems. That is the precedence constraints. In a few words, we say

that a job 𝑖 precedes job 𝑗, denoted by 𝑖 ≺ 𝑗, if the execution of the latter can start

only after the completion of the former job. Usually the precedence relations of jobs are

depicted as a Directed Acyclic Graph. An example is following.

𝑗1

𝑗2

𝑗3

𝑗4 𝑗5

Figure 1.1: A graph representing the precedence constraints among jobs.

As we can see, there is a node for each job and an edge 𝑖 → 𝑗 suggests that, job 𝑗

cannot start its execution, unless 𝑖 is done processing.



Chapter 1. Introduction 4

Another important characteristic of some scheduling problems is the notion of pre-

emption. In problems that do not allow preemption, once a job 𝑗 ∈ 𝒥 begins processing

on some machine 𝑖 ∈ℳ, it will occupy this machine consecutively for 𝑝𝑖,𝑗 units of time.

On the other hand, in problems with the preemptive feature, the execution of a job can

be interrupted at any time and resumed later. For example, suppose that a job has to

run for 7 time units on the machine that it is assigned to. In a preemptive problem

initially it can occupy the machine for 4 time units, then be interrupted so that another

job can use the machine, and finally occupy it again for another 3 time units until its

completion.

1.1.2 Machine Environment

Perhaps, the most important characteristic of a scheduling problem is the machine

environment, in which it takes place. The machine environment defines the fundamental

properties of the available machines. In the previous section, we defined the processing

time of job 𝑗 ∈ 𝒥 , when executed on machine 𝑖 ∈ ℳ to be 𝑝𝑖,𝑗 . We are now going to

see, that this quantity is actually determined by the intrinsic characteristics of ℳ. In

the scheduling literature there are three well studied types of environments:

∙ Identical machines, denoted by 𝑃 . In this case we assume that all 𝑚 machines

have exactly the same computational capabilities. In other worlds, each job per-

ceives all machines in the same way, and thus its processing time is independent of

the machine it will use. So, ∀𝑖 ∈ ℳ : 𝑝𝑖,𝑗 = 𝑝𝑗 and we can simplify the notation

by just writing 𝑝𝑗 .

∙ Uniform machines, denoted by 𝑄. In this case we assume that every machine

has its own computational speed, say 𝑠𝑖. That is, each machine can process at

a different rate. If the workload of a job is 𝑤𝑗 , then the processing time of 𝑗 in

machine 𝑖 ∈ℳ is defined as 𝑝𝑖,𝑗 =
𝑤𝑗

𝑠𝑖
. Observe that identical machines are just a

special case of uniform machines, in which all processors are of the same speed.

∙ Unrelated machines, denoted by 𝑅. This is the most general machine environ-

ment and constitutes an extension of both the two mentioned earlier. In this case,

we assume no relation at all between the processing time of a job and the machine

it is scheduled on. Thus we simply write 𝑝𝑖,𝑗 . Any algorithm designed for this

case, will provide results for the above environments as well.

1.1.3 Objective Functions and Metrics

All scheduling problems that we study in this work are optimization problems. That

means that any algorithm concerning them, apart from satisfying the required feasibility



Chapter 1. Introduction 5

constraints, also tries to either maximize or minimize a desired objective function. To

be more precise, the vast majority of scheduling problems are minimization problems,

and now we will provide a short review of some of the most usual metrics considered in

the literature. Before we begin, we need a bit more notation. Let us denote by 𝐶𝑗 the

completion time of job 𝑗 ∈ 𝒥 in a given feasible schedule.

∙ The Makespan objective. Formally defined as 𝐶𝑚𝑎𝑥 = max
𝑗∈𝒥

𝐶𝑗 . The makespan

is the length of the produced schedule. It can also be seen, as the latest time that

a machine is still active, or the latest time that a job is still undergoing execution.

Historically it was the first metric considered for scheduling problems. Makespan

is an ideal metric for situations that we care a lot about the total length of the

whole execution process. One such case is when we have a single user system and

we want to service that user as soon as possible.

∙ The Sum of Completion Times or
∑︁
𝑗∈𝒥

𝐶𝑗 . Observe that minimizing this ob-

jective is equivalent to the problem of minimizing the average completion time,

since the average completion time just rescales the objective function for each fea-

sible solution by a factor of 1/𝑛. This metric is suitable for multi-user systems

with tasks from many different agents. In that case we would like to minimize the

average completion time and not just satisfy particular users.

∙ The Sum of Weighted Completion Times. Suppose that each job 𝑗 ∈ 𝒥
has a positive weight 𝑤𝑗 , indicating its significance. Then we aim at minimizing∑︁
𝑗∈𝒥

𝑤𝑗 · 𝐶𝑗 . The purpose of this metric is almost the same as the one described

above, with just a slight difference. In this case, jobs with higher priority ought

to be scheduled earlier.

The objective functions described above are just the ones we are going to use through-

out this thesis. There are actually many more considered in the literature [5].

1.1.4 The Standard Three Field Notation

In the beginning of the eighties Graham, Lawler, Lenstra and Kan [6] developed a

very concrete and elegant notation for describing scheduling problems. This notation is

now widely accepted and used. It consists of three independent fields, of the following

form 𝐴|𝐵|𝐶, each referring to a different aspect of the problem.

∙ The first field 𝐴, describes the machine environment. For example, if the first field

contains 𝑅, then we are dealing with an unrelated machines problem.



Chapter 1. Introduction 6

∙ The second field 𝐵, describes all types of special constraints concerning the prob-

lem. For example, if we are dealing with a problem that allows preemption, we

have to state that in the second field.

∙ The third field 𝐶, contains the objective function we want to minimize.

1.1.5 Formal Definition of the One-Job-Multiple-Machines Model

We are now going to see how all the above notation and definitions adjust, in the

case of the one-job-multiple-machines model. First of all, again we have a set of jobs 𝒥
that need to be scheduled using a set of machinesℳ, with 𝑛 = |𝒥 |, 𝑚 = |ℳ|. The only
difference is that now, a job 𝑗 ∈ 𝒥 can be assigned for execution to some set 𝑆 ⊆ ℳ
of machines, with processing time denoted by 𝑝𝑗(𝑆) and 𝑆 ̸= ∅. When 𝑗 ∈ 𝒥 runs on

𝑆 ⊆ ℳ, it occupies all machines of 𝑆 in unison. That is, 𝑗 has the same starting and

finishing time in all of those machines. For better understanding, we present a visual

example.

(a) One-job-one-machine model (b) One-job-multiple-machines model

Figure 1.2: Job execution under the new model.

A schedule in this case is a function 𝑓 : 𝒥 → 2ℳ × IR, that maps every job to

a set of machines-time pair. Again, a schedule is called feasible, if at any point in

time every machine executes at most one job. The notion of precedence constraints is

relevant for this model too, maintaining exactly the same form. Also, problems with

preemption can still arise in this new model. If a problem allows preemption, then after

a job 𝑗 ∈ 𝒥 is assigned for execution to a set 𝑆 ⊆ℳ, it can be interrupted at any time,

leaving the machines of 𝑆 available for other jobs, and resume at a later point possibly

occupying a different set, for the rest of its processing. Finally, the aforementioned

objective functions hold in this case too, and our study is totally based on them.

The most important and interesting fact is to see how the three machine environments

presented earlier, are generalized for this model. The intrinsic aspects of the machine

environment again define the difficulty and the unique structure of the problem.

∙ The identical machines setting. In this case, all machines of ℳ have the

same computational capabilities. So, the processing time of each task is a known

function of just the number of processors alloted to it. For simplicity, we denote



Chapter 1. Introduction 7

by 𝑝𝑗(𝑛) the processing time function of job 𝑗 ∈ 𝒥 , where 𝑛 is the variable used for

the number of machines 𝑗 uses during its execution. In order for any problem to

make sense in this kind of setting, 𝑝𝑗(𝑛) ought to be a non-increasing function of

𝑛. The more processors a job occupies, the more its workload is distributed among

them and thus the smaller its processing time. The goal is to find for each task

𝑗 ∈ 𝒥 , an allotment of processors 𝑛𝑗 and an overall schedule assigning the tasks

to the machines, which minimizes the desired objective function. Usually in the

literature, problems in such settings are referenced as Malleable Job Scheduling.

Finally observe, that an algorithm designed for this case, can provide results for the

classical identical machine scheduling problem too, by assuming ∀𝑛 : 𝑝𝑗(𝑛) = 𝑝𝑗 .

∙ The uniform machines setting. In this case, each machine processes at a

different rate and so has its own speed 𝑠𝑖. The execution time of a task depends

on the amount of speed allocated to it and thus is represented as a function 𝑝𝑗(𝑠),

where 𝑠 denotes the total speed it utilizes. For example, if job 𝑗 ∈ 𝒥 runs on two

machines, one with speed 4 and the other with speed 6, its processing time will

be 𝑝𝑗(10). Again, we assume that ∀𝑗 ∈ 𝒥 , 𝑝𝑗(𝑠) is a non-increasing function in 𝑠.

Observe, that again the identical setting is just a special case of this environment,

because we can assume that identical machines are just uniform machines with the

same speed. Problems of this kind have never been studied in the literature, and

to the extend of our knowledge we are the first to deal with them.

∙ The unrelated machines setting. This case is the more general, as it consti-

tutes an extension of both the previous mentioned. In problems of such nature, we

assume no relation at all between the processing time of a job 𝑗 and the set of pro-

cessors it will occupy. So, ∀𝑆 ⊆ℳ, ∀𝑗 ∈ 𝒥 there is a value 𝑝𝑗(𝑆) representing the

corresponding processing time. Such problems appear in the literature as General

Parallel Task Scheduling or Multiprocessor Job Scheduling. Observe again, that

an algorithm designed for this case, can provide results for the classical unrelated

machine scheduling problem too, by assuming that ∀𝑗 ∈ 𝒥 :

𝑝𝑗(𝑆) =

⎧⎨⎩𝑝𝑖,𝑗 if 𝑆 = {𝑠𝑖}

+∞ otherwise
.

Finally we must mention, that there is no globally accepted and widespread used

generalization of the three field notation we presented earlier, for the one-job-multiple-

machines model. Each problem has to be presented analytically here.



Chapter 1. Introduction 8

1.2 Overview of Approximation Algorithms

All optimization problems considered in this thesis are known to be 𝒩𝒫-hard. Per-

haps, the most common approach in dealing with 𝒩𝒫-hardness is via approximation

algorithms. Approximation algorithms aim at finding a near optimal solution in poly-

nomial time. The quality of a given solution and consequently the quality of an approx-

imation algorithm is measured via the approximation ratio or guarantee. We formally

define the approximation ratio of an algorithm for a minimization problem as follows.

Definition 1.1. An algorithm𝐴 for a minimization problem Π is called an 𝜌-approximation,

with 𝜌 > 1, if for every instance 𝐼 of Π we have 𝑂𝑃𝑇 (𝐼) ≤ 𝑆𝑂𝐿𝐴(𝐼) ≤ 𝜌 · 𝑂𝑃𝑇 (𝐼).

𝑂𝑃𝑇 (𝐼) is the value of the optimal solution for instance 𝐼 and 𝑆𝑂𝐿𝐴(𝐼) is the value

returned by the algorithm for the same instance.

There is a very similar definition for approximating maximization problems. In gen-

eral 𝜌 can be a function of the size of the input, that is 𝜌 = 𝑓(|𝐼|). The goal when

designing an approximation algorithm is to ensure the lowest possible ratio. A constant

factor is the best we can wish for, although sometimes this is not possible and we have

to settle for logarithmic, linear or other function of the input size ratios.

1.3 Organization of the Thesis

In Chapter 2, we study the Malleable Job Scheduling Problem. We begin by pre-

senting a 3/2-approximation algorithm for the makespan objective. Furthermore, we

briefly discuss the same problem under the assumption of identical jobs. We continue

by surveying a 2-approximation algorithm for the problem of minimizing the average

completion time. Next, we examine a problem that at first sight doesn’t seem to have

a connection with our model. We present some results concerning the minimization of

makespan for it, and show that it can actually stand as a generalization of the malleable

setting. Finally, as a contribution we extend these existing results in the case of the

average weighted completion time objective.

The purpose of Chapter 3 is to introduce the more generalMultiprocessor Job Schedul-

ing Model. All problems considered in this chapter are dealing with the makespan ob-

jective. We begin by presenting an inapproximability result for this model, and two

algorithms for some special cases. Finally, we study a central result of the field, which

consists of a PTAS in the case where the number of machines is fixed.

Chapter 4 contains our research work. Initially, we introduce a new model, regarding

malleable scheduling in uniform machines. We then concentrate on some special cases

of the model and provide approximation algorithms for them.



Chapter 2

Malleable Job Scheduling

The purpose of this chapter is to introduce the reader to the problem of scheduling

malleable jobs. For this reason, we present a collection of the most important algorithms

and results, concerning all different types of objective functions. We begin by formally

defining the problem.

2.1 Problem Definition

In the Malleable Job Scheduling Problem we have a set ℳ of 𝑚 = |ℳ| identical
processors, as well as a set 𝒥 of 𝑛 = |𝒥 | independent malleable tasks. A malleable task

is a computational unit that may be executed using several processors, and its processing

time depends only on the number of them. A set of jobs is called independent, if there are

no precedence constraints among them. More formally, a task 𝑗 ∈ 𝒥 has an execution

time 𝑝𝑗(𝑛𝑗), which is a known function of the number of machines 𝑛𝑗 , with 1 ≤ 𝑛𝑗 ≤ 𝑚,

that it uses during its processing. All processors alloted to a job are required to execute

that job in unison. That is, the 𝑛𝑗 processors should start the job at the same time 𝑠𝑡𝑗 ,

and process it non-preemptively until time 𝑠𝑡𝑗 +𝑝𝑗(𝑛𝑗). Such a job can also be observed

as a malleable rectangle, whose width 𝑝𝑗(𝑛𝑗) stretches along a time-axis and whose

height 𝑛𝑗 stretches along a machine-axis, although the 𝑛𝑗 machines are not required to

be consecutive with respect to some ordering.

Computing a feasible schedule for such a problem, consists in finding for each job

𝑗 ∈ 𝒥 a machine allotment 𝑛𝑗 and a starting time 𝑠𝑡𝑗 satisfying the following constraints:

∙ At any time 𝑡 in the schedule, all machines execute at most one job.

∙ The total processor consumption at any moment 𝑡 doesn’t exceed 𝑚. That is:

∑︁
{𝑗∈𝒥 | 𝑠𝑡𝑗≤𝑡≤𝑠𝑡𝑗+𝑝𝑗(𝑛𝑗)}

𝑛𝑗 ≤ 𝑚

9



Chapter 2. Malleable Job Scheduling 10

Before we continue, we need to define a very important function and then state some

very crucial assumptions used in most of the literature, which we will take into account

throughout this chapter.

Definition 2.1 (Work function). For every job 𝑗 ∈ 𝒥 , we define its work function

as, 𝑤𝑗(𝑛𝑗) = 𝑛𝑗 · 𝑝𝑗(𝑛𝑗). Geometrically, this function corresponds to the area of the

aforementioned malleable rectangle.

Definition 2.2 (Monotony Hypothesis). A set of jobs 𝒥 is said to be monotonic, if for

each job 𝑗 ∈ 𝒥 , 𝑝𝑗(𝑛𝑗) is a non-increasing and 𝑤𝑗(𝑛𝑗) is a non-decreasing function of 𝑛𝑗 .

Observe, that the assumption concerning the execution time function of a job is

quite reasonable to make. The more processors a job utilizes, the more its workload

is distributed and thus the smaller its processing time. However, this not actually a

restriction, since every such function 𝑝𝑗(𝑛𝑗) can be transformed to fulfil the monotony

hypothesis by setting:

𝑝′𝑗(𝑛𝑗) = min
1≤𝑗≤𝑛𝑗

𝑝𝑗(𝑛𝑗)

This new function is clearly non-increasing. We simply make the optimal number of

machines do the work and leave the rest idle. Note also, that this transformation doesn’t

affect the optimal solution of any problem.

Furthermore, the assumption about the non-decreasing work is very meaningful, since

it depicts the typical behaviour of parallel applications. From that point of view, this

monotonic hypothesis may be interpreted by the well-know Brent’s lemma [7], which

states that although the parallel execution of a job achieves some speedup, that cannot

be superlinear due to the unavoidable communication overhead.

2.2 Minimizing the Makespan

We begin by examining the problem under the makespan minimization objective.

This form of the problem is actually well studied in the literature with some very

interesting results regarding it. Perhaps, the most important is a PTAS by Jansen

and Porkolab [8]. Their result cannot be further improved to a fully polynomial time

scheme since the problem is strongly 𝑁𝑃 -hard [9]. The complexity of their scheme,

although polynomial in the size of the input contains some large exponential factors,

which render it useless for any practical application. Thus, low complexity, constant

factor approximation algorithms are still relevant. One of the first such algorithms was

a 2-approximation proposed by Turek et al. [10], based on some simple discrete resource

allocation techniques, as well as a classical list scheduling argument. In our study, we



Chapter 2. Malleable Job Scheduling 11

prefer to present more extensively the best known, in terms of minimum ratio, constant

factor approximation, which is a 3
2 + 𝜖 due to Mounie et al.[11].

Before we continue with the analysis of the algorithm, we must give another useful

definition.

Definition 2.3 (Canonical number of processors). For every job 𝑗 ∈ 𝒥 , we define its

canonical number of processors 𝛾(𝑗, ℎ), as the minimum number of machines needed, in

order for 𝑗 to have 𝑝𝑗(𝛾(𝑗, ℎ)) ≤ ℎ. Even if by using all 𝑚 machines, 𝑗 cannot have an

execution time less or equal to ℎ, then by convention we write 𝛾(𝑗, ℎ) = +∞.

In addition, observe that 𝑤𝑗(𝛾(𝑗, ℎ)) is also the minimum work needed to execute 𝑗

in time at most ℎ, if of course 𝛾(𝑗, ℎ) < +∞.

2.2.1 Description of the Algorithm

The algorithm of [11] is based on a dual approximation technique [12]. A 𝜆-dual

approximation procedure for a scheduling problem can be described as follows:

A 𝜆-approximation procedure

1: Take as input a target makespan 𝑑.
2: Deliver a schedule with makespan 𝐶 ≤ 𝜆𝑑, or answer correctly that no feasible

schedule of length at most 𝑑 exists for the problem.

Using the above procedure and a binary search on the target makespan, we can get

a 𝜆(1 + 𝜖) approximation for every 𝜖 > 0. If this procedure runs in polynomial time,

and 𝑙𝑜𝑔(𝐶𝑚𝑎𝑥) is also polynomial (where 𝐶𝑚𝑎𝑥 the upper bound of 𝑑 used in the binary

search), then obviously the approximate schedule is also computed in polynomial time.

The factor 𝜖 has to do with the precision of the binary search, and defines a trade-off

between running time and good approximation ratio.

The algorithm presented in this section uses a dual approximation technique in the

following way. For a given 𝑑, if the oracle doesn’t answer ”NO”, it returns a schedule

partitioned into two shelves. The first shelf is of length 𝑑 and contains jobs with pro-

cessing time 𝑑
2 ≤ 𝑝 ≤ 𝑑. All these jobs can actually run in parallel and so the first shelf

is a legal schedule. In the second shelf, of length 𝑑
2 , we have jobs with processing time at

most 𝑑
2 . Ideally, we would like the second shelf to be a legal schedule too. Unfortunately,

this is not the case, and some local transformations, which should maintain the length

of both shelves, should take place. After that, the whole 2-shelves schedule of makespan

at most 3𝑑
2 will be feasible, and that concludes the design of a 3

2 -dual approximation

procedure for the problem.

Next, we sketch the main structure of the algorithm. In latter sections, we study

separately all of its subroutines, providing both intuition and in-depth mathematical



Chapter 2. Malleable Job Scheduling 12

analysis. Note that the properties of step 3 of the below algorithm define the construction

of the desired oracle.

A 3
2-dual approximation

1: Take as input a target makespan 𝑑, the number of machines 𝑚 and the set of
monotonic malleable jobs 𝒥 .

2: Let 𝒥𝒮 = {𝑗 ∈ 𝒥 | 𝑝𝑗(1) ≤ 𝑑
2} and 𝑊𝒮 =

∑︀
𝑗∈𝒥𝒮

𝑝𝑗(1).
3: For the rest of the tasks, 𝒥 − 𝒥𝒮 , find an allotment of machines to each of them,

with the following properties:

∙ The total work is at most 𝑚𝑑−𝑊𝒮 .

∙ The processing time of all jobs is at most 𝑑.

∙ The jobs with processing time greater than 𝑑
2 require in total at most 𝑚 pro-

cessors, and thus can run in parallel.

If you fail to do so, answer NO and stop.
4: Use the BuildFeasible subroutine, in order to transform the above schedule into a

feasible one.
5: Use the InsertSmall subroutine to schedule the remained tasks of 𝒥𝒮 , and return

the final solution.

2.2.2 The InsertSmall Subroutine

It is clear form the above description, that the algorithm temporarily doesn’t con-

sider the tasks of 𝒥𝒮 . These are the ones with sequential time at most 𝑑
2 . That hap-

pens, because every 𝑗 ∈ 𝒥𝒮 is quite ”small” in a way, and scheduling 𝒥𝒮 doesn’t affect

substantially the optimal solution. Hence, given a YES answer of the oracle and the

corresponding computed allotment, we must legally insert the tasks of 𝒥𝒮 in the con-

structed schedule for 𝒥 − 𝒥𝒮 . So suppose that after step 4 of the algorithm we have a

feasible 2-Shelves schedule for the jobs of 𝒥 −𝒥𝒮 , with the following property. The jobs

of each self can run in parallel. In a latter section we will see how this is achieved by

the BuildFeasible subroutine.

Lemma 2.4. If there exists a 2-Shelves schedule of length 3𝑑
2 for 𝒥 − 𝒥𝒮 with work at

most 𝑚𝑑−𝑊𝒮 , then a schedule of length 3𝑑
2 can be derived for 𝒥 in polynomial time.

Proof. Consider the 2-Shelves schedule of figure 2.1(𝐴), which is the one produced by

the BuildFeasible subroutine. Initially, modify the starting time of all tasks of the second

shelf, so that they complete at time exactly 3𝑑
2 (Figure 2.2(𝐵)). Next, define the load

of processor 𝑖 ∈ ℳ, as 𝑙𝑜𝑎𝑑(𝑖) = 3𝑑
2 − 𝑖𝑑𝑙𝑒(𝑖), where 𝑖𝑑𝑙𝑒(𝑖) is the idle time of that

processor.

Now schedule the jobs of 𝒥𝒮 using the following naive rule. Order them in an arbitrary

way, and consider one task at a time. Allocate that task to the least loaded processor,



Chapter 2. Malleable Job Scheduling 13

at the earliest possible time. The only problem with this approach is that a job of 𝒥𝒮
may not be completed before the jobs of the second shelf start execution. But at each

step, every processor has a load of at most 𝑑. Suppose otherwise. Then:

∀𝑖 ∈ℳ : 𝑙𝑜𝑎𝑑(𝑖) > 𝑑 =⇒ 𝑊𝑡𝑜𝑡𝑎𝑙 > 𝑚𝑑

, where 𝑊𝑡𝑜𝑡𝑎𝑙 the total work area of the schedule. However we know that:

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝒥−𝒥𝒮 +𝑊𝒮

𝑊𝑡𝑜𝑡𝑎𝑙 ≤ 𝑚𝑑−𝑊𝒮 +𝑊𝒮

𝑊𝑡𝑜𝑡𝑎𝑙 ≤ 𝑚𝑑

, and so we reached a contradiction. Thus 𝑙𝑜𝑎𝑑(𝑖) ≤ 𝑑, in each iteration of scheduling

tasks of 𝒥𝒮 .
𝑙𝑜𝑎𝑑(𝑖) =

3𝑑

2
− 𝑖𝑑𝑙𝑒(𝑖)

3𝑑

2
− 𝑖𝑑𝑙𝑒(𝑖) ≤ 𝑑 =⇒ 𝑖𝑑𝑙𝑒(𝑖) ≥ 𝑑

2

Hence, the idle time interval on the least loaded machine has enough length to contain

the sequential execution of a job 𝑗 ∈ 𝒥𝒮 . For better understanding of the whole process,

we present a visual example.

(a) After the BuildFeasible subroutine (b) After moving the jobs of the second shelf

(c) After the InsertSmall subroutine

Figure 2.1: The InsertSmall subroutine.



Chapter 2. Malleable Job Scheduling 14

2.2.3 Partitioning the Jobs into 2 Shelves

As mentioned earlier, the most vital part of the algorithm is the design of the dual

approximation oracle. This oracle tries to partition the jobs of 𝒥 −𝒥𝒮 into two shelves,

with a machine allotment that satisfies the properties of step 3. Apart from presenting

its construction in detail, we are also going to prove that if such an allotment doesn’t

exist then there is no schedule of makespan at most 𝑑.

In the first shelf, call it 𝑆1, we must place jobs with processing time in the interval

[𝑑2 , 𝑑], that can all run in parallel. In the second shelf, call it 𝑆2, we must place jobs

with running time at most 𝑑
2 . We would also like 𝑚𝑑−𝑊𝒮 to be an upper bound of the

total work area. Due to the monotonic hypothesis, when it comes to deciding in which

shelf we will place a job, we have only two choices to consider regarding its allotment.

We either place it in 𝑆1 with 𝛾(𝑗, 𝑑) processors or in 𝑆2 with 𝛾(𝑗, 𝑑2) processors. So

constructing the oracle relies on solving the following optimization problem.

Find 𝑊 ⋆ = min
𝑆1⊆𝒥

{︁ ∑︁
𝑗∈𝑆1

𝑤(𝑗, 𝛾(𝑗, 𝑑)) +
∑︁
𝑗 /∈𝑆1

𝑤(𝑗, 𝛾(𝑗,
𝑑

2
))
}︁

Such that
∑︁
𝑗∈𝑆1

𝛾(𝑗, 𝑑) ≤ 𝑚

In the end, by checking if 𝑊 ⋆ ≤ 𝑚𝑑−𝑊𝒮 we can answer properly.

We can solve the above problem by a simple reduction to knapsack. Suppose that

initially all jobs are alloted 𝛾(𝑗, 𝑑2) processors and are all required to run in 𝑆2. By

choosing some of the jobs to run in 𝑆1 we decrease the total work. That too follows

directly from the monotony assumption. Hence, we can interpret 𝑣𝑗 = 𝑤(𝑗, 𝛾(𝑗, 𝑑2)) −
𝑤(𝑗, 𝛾(𝑗, 𝑑)), as the profit of a job, when it enters the knapsack. Also, 𝜔𝑗 = 𝛾(𝑗, 𝑑) stands

for its weight and the total capacity 𝑊 is naturally 𝑚. Thus, the partition problem is

transformed in the following way.

Find 𝑊 ⋆ =
∑︁
𝑗∈𝒥

𝑤(𝑗, 𝛾(𝑗,
𝑑

2
))− max

𝑆1⊆𝒥

∑︁
𝑗∈𝑆1

𝑣𝑗

Such that
∑︁
𝑗∈𝑆1

𝜔𝑗 ≤ 𝑚

By using the well-known pseudopolynomial algorithm for knapsack [13], we can get a

solution in time 𝒪(𝑛𝑊 ) = 𝒪(𝑛𝑚). The only thing left to prove is that if𝑊 ⋆ > 𝑚𝑑−𝑊𝒮 ,

then there in no schedule of makespan at most 𝑑.

Lemma 2.5. If there exists a schedule of length at most 𝑑, then the knapsack formulation

of the problem delivers a desired allotment.



Chapter 2. Malleable Job Scheduling 15

Proof. Due to the monotony hypothesis it is clear that 𝑊𝒥𝒮 ≤ 𝑊𝒮 . Also, because the

optimal makespan is at most 𝑑 we have 𝑊𝑂𝑃𝑇 ≤ 𝑚𝑑, where 𝑊𝑂𝑃𝑇 the total work in

the optimal schedule. The above imply, that the tasks of 𝒥 −𝒥𝒮 in the optimal solution

occupy an area 𝑊𝑂𝑃𝑇
𝒥−𝒥𝒮

≤ 𝑚𝑑 − 𝑊𝒮 . We denote by 𝑆𝑂𝑃𝑇
1 the set of jobs that have

processing time at least 𝑑
2 in that schedule. Obviously, their machine allotment is at

least 𝛾(𝑗, 𝑑). Now observe that the jobs of 𝑆𝑂𝑃𝑇
1 must run in parallel, since the makespan

of the schedule is bounded by 𝑑. From all the above, we conclude that 𝑆𝑂𝑃𝑇
1 is a feasible

solution for our knapsack formulation and thus 𝑊 ⋆ ≤𝑊𝑂𝑃𝑇
𝒥−𝒥𝒮

.

2.2.4 The BuildFeasible Subroutine

As we have already mentioned, after the partitioning done by the oracle, the tasks

of the first shelf constitute a feasible schedule, in the sense that they can all run in

parallel. The same doesn’t hold for the tasks of the second shelf. An example is shown

in figure 2.2(𝐴). In order to finally deliver a feasible schedule, Mounie et al. provide in

their paper a subroutine that takes as input the allotment given by the oracle, and by

applying some local transformations achieves feasibility.

A detailed analysis of this subroutine is not within the scope of this thesis, as it

requires a great deal of mathematical work, which is also not that insightful. Instead

we prefer to provide a more abstract description of it. The goal of this procedure is

to partition the set of machines into two groups, 𝑆0 with cardinality 𝑚0 and 𝑆′ with

cardinality 𝑚′, such that 𝑚 = 𝑚0 +𝑚′. In the 𝑚0 processors will run the jobs that are

relocated in the transformation process, and their total makespan will not exceed 3𝑑
2 .

The 2-shelves schedule produced by the oracle is now restricted in the 𝑚′ processors.

The only difference is that after BuildFeasible the tasks can run in parallel in both

shelves. Figure 2.2(𝐵) shows the final result. So in general, this transformation phase

is just a way of choosing some jobs, change their initial allotment and schedule them in

the machines of 𝑆0, while trying to ensure that the jobs left in the second shelf can run

in parallel too. Finally, this procedure also ensures that the total work of tasks in 𝑆′ is

bounded by 𝑚′𝑑−𝑊𝒮 and so the conditions of application of Lemma 2.4 are verified.

(a) Orcale’s Output (b) BuildFeasible Output

Figure 2.2: Structure of the result.



Chapter 2. Malleable Job Scheduling 16

2.3 Minimizing the Makespan for Identical Jobs

In this section, we are focusing our attention on a special case of the previously

studied problem. In particular, we suppose that the tasks under consideration are all

identical, in the sense that they have the same processing time function, say 𝑝(𝑥). We

denote by 𝑥 the variable indicating the number of alloted machines. This problem has

some practical interest, as many applications generate at each step a set of identical

tasks to be computed on a parallel platform. Another motivation for studying this case

comes from some well-known algorithmic techniques, such as Divide and Conquer, or

Branch and Bound. Using these techniques to solve a problem, the problem is split into

smaller independent subproblems, which can be processed in parallel and are almost

identical.

We begin by presenting a fairly simple 2-approximation proposed in [14]. The algo-

rithm consists of a straightforward case analysis, which follows in full detail. Before we

continue, we need one more definition.

Definition 2.6 (Phase Schedule). A set of tasks is said to be executed in a phase, when

all the tasks in the set start at the same time, and no other task starts processing before

the completion of all the tasks in the phase.

∙ Case 1: 𝑛 ≥ 𝑚. Let us denote by 𝐶⋆, 𝑊 ⋆ the makespan and the total work in

the optimal schedule respectively. We know that 𝑊 ⋆

𝑚 ≤ 𝐶⋆. Suppose otherwise.

Then 𝑊 ⋆ > 𝑚𝐶⋆. This is clearly a contradiction, because it states that the total

work of the optimal solution cannot fit inside the area of the rectangle representing

the whole schedule. Thus, due to the work monotonicity, we can conclude that
𝑛𝑝(1)
𝑚 ≤ 𝑚. Now, we are going to build a schedule of

⌊︀
𝑛
𝑚

⌋︀
phases, each consisting

of 𝑚 jobs. Every job inside the phase uses only one processor. The remaining

𝑛 𝑚𝑜𝑑 𝑚 jobs will be scheduled last, on a phase of their own, sharing uniformly

the 𝑚 machines. Hence, the makespan of the constructed schedule will be:

𝐶 ≤
⌊︁ 𝑛

𝑚

⌋︁
𝑝(1) + 𝑝(

⌊︁ 𝑚

𝑛 𝑚𝑜𝑑 𝑚

⌋︁
)

𝐶 ≤ 𝑛

𝑚
𝑝(1) + 𝑝(1) ≤ (

𝑛

𝑚
+ 1)𝑝(1)

𝐶 ≤ 2
𝑛

𝑚
𝑝(1) ≤ 2𝐶⋆

The second inequality follows since 𝑝(
⌊︀

𝑚
𝑛 𝑚𝑜𝑑 𝑚

⌋︀
) ≤ 𝑝(1) and the last since 𝑛

𝑚 > 1.

See figure 2.3 for a graphical representation.

∙ Case 2: 𝑛 < 𝑚. Here, the resulting schedule will consist of only one phase,

where each task utilizes
⌊︀
𝑚
𝑛

⌋︀
processors. Obviously, the makespan of this solution



Chapter 2. Malleable Job Scheduling 17

is 𝐶 = 𝑝(
⌊︀
𝑚
𝑛

⌋︀
). Since this is not the optimal solution, we can deduce that every

job must use there at least
⌊︀
𝑚
𝑛

⌋︀
processors for its execution. This means that

𝑛𝑝(
⌊︀
𝑚
𝑛

⌋︀
)
⌊︀
𝑚
𝑛

⌋︀
≤𝑊 ⋆ and consequently 𝑛

𝑚𝑝(
⌊︀
𝑚
𝑛

⌋︀
)
⌊︀
𝑚
𝑛

⌋︀
≤ 𝐶⋆. To conclude:

𝐶

𝐶⋆
≤

𝑝(
⌊︀
𝑚
𝑛

⌋︀
)

𝑛
𝑚𝑝(

⌊︀
𝑚
𝑛

⌋︀
)
⌊︀
𝑚
𝑛

⌋︀ =
𝑚

𝑛
⌊︀
𝑚
𝑛

⌋︀ ≤ 𝑚
𝑛⌊︀
𝑚
𝑛

⌋︀ ≤ 2

Figure 2.3: A phase schedule for identical malleable jobs.

The best result regarding the problem of minimizing the makespan in a system of

identical malleable jobs is due to Decker et al. [15]. In their paper, they present a

more sophisticated case analysis, based more or less on the ideas shown above and they

achieve a 5
4 approximation. Their result clearly beats the 3

2 factor of [11], when we are

restricted in this special case of the problem.

2.4 Minimizing the Sum of Completion Times

In this section, we study the problem under the objective of minimizing the sum of

completion times. As we have already mentioned, in every feasible schedule each job

𝑗 ∈ 𝒥 has a starting time 𝑠𝑡𝑗 , and a machine allotment 𝑛𝑗 . Its completion time is

then 𝐶𝑗 = 𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗), and thus we wish to minimize
∑︁
𝑗∈𝒥

𝐶𝑗 =
∑︁
𝑗∈𝒥

(𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗)). The

monotony assumptions will hold in this case too. This problem is also known to be

𝑁𝑃 -hard in the strong sense [16]. We are going to present a 2-approximation algorithm,

proposed by Turek et al. [17]. Before we continue with the description of the algorithm,

we need to define a restricted version of the Malleable Job Scheduling Problem used in

the analysis.

Definition 2.7 (Rigid Job Scheduling Problem). The Rigid Job Scheduling Problem [5]

is almost identical with the Malleable Job Scheduling Problem. The only difference lies



Chapter 2. Malleable Job Scheduling 18

in the machine allotment. In this case, the number of machines that a job 𝑗 ∈ 𝒥 will use

during its processing is determined before the execution. In other words, the allotments

are fixed parameters of the input.

It is obvious that the Rigid Job Scheduling Problem is indeed a special case of Mal-

leable Job Scheduling. If the fixed allotment for every job 𝑗 ∈ 𝒥 is 𝑛𝑗 , we can define an

execution time function for the malleable version as follows:

𝑝′𝑗(𝑥) =

⎧⎨⎩+∞ 𝑥 < 𝑛𝑗

𝑝𝑗(𝑛𝑗) 𝑥 ≥ 𝑛𝑗

The algorithm of Turek et al. is based on a 2-phase approach. In the first phase

an allotment is computed, satisfying some particular properties. In the second phase,

a schedule is constructed for the Rigid Job Scheduling Problem, with fixed allotment

the one found in the previous phase. That schedule is a 2-approximation for the rigid

problem, and due to the properties of the chosen allotment this ratio is also maintained

for the malleable case.

2.4.1 Lower Bounds for the Rigid Problem

First of all, we need some lower bounds on the optimal solution of the rigid problem.

Let us denote by 𝐹 ⋆
𝒥 the optimal value for a monotonic task set 𝒥 , with fixed allotments

𝑛𝑗 . We denote by −→𝑛 = {𝑛1, 𝑛2, . . . , 𝑛𝑛} the vector of all machine allotments.

Definition 2.8 (Squashed Area Bound). Let 𝒥 be a set of 𝑛 monotonic rigid jobs.

Arrange the jobs in order of increasing work, so that 𝑛𝑗𝑝𝑗(𝑛𝑗) ≤ 𝑛𝑗+1𝑝𝑗+1(𝑛𝑗+1), ∀𝑗 ∈
[1, 𝑛). The squashed area bound is defined as:

𝐴𝒥 (
−→𝑛 ) =

1

𝑚

∑︁
𝑗∈𝒥

𝑛𝑗𝑝𝑗(𝑛𝑗)(𝑛− 𝑗 + 1) ≤ 𝐹 ⋆
𝒥 [18]

Figure 2.4: The Squashed Area Bound



Chapter 2. Malleable Job Scheduling 19

Figure 2.4 illustrates a graphic representation of the squashed area bound. Note that

in the above definition 𝐴𝒥 (
−→𝑛 ) is evaluated as a horizontal sum. Vertical summation

yields the alternative expression:

𝐴𝒥 (
−→𝑛 ) =

1

𝑚

∑︁
𝑗∈𝒥

𝑗∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘)

Definition 2.9 (Height Bound). Let 𝒥 be a set of 𝑛 monotonic rigid jobs. The height

bound for an allotment vector −→𝑛 is defined to be 𝐻𝒥 (
−→𝑛 ) =

∑︁
𝑗∈𝒥

𝑝𝑗(𝑛𝑗) ≤ 𝐹 ⋆
𝒥 .

Definition 2.10 (Normalized Work Bound). Let 𝒥 be a set of 𝑛 monotonic rigid jobs.

The normalized work bound for an allotment vector −→𝑛 is defined to be 𝑊𝒥 (
−→𝑛 ) =

1
𝑚

∑︁
𝑗∈𝒥

𝑛𝑗𝑝𝑗(𝑛𝑗) ≤ 𝐹 ⋆
𝒥 .

The above two quantities are obvious lower bounds. The height bound corresponds

to the second sum of
∑︁
𝑗∈𝒥

𝐶𝑗 =
∑︁
𝑗∈𝒥

(𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗)), and since 1 ≤ 𝑛𝑗 ≤ 𝑚 we have

𝑊𝒥 (
−→𝑛 ) ≤ 𝐻𝒥 (

−→𝑛 ). In the following, we are going to combine all the above lower

bounds, in order to provide a tighter one.

Lemma 2.11. Let 𝒥 be a set of 𝑛 monotonic rigid jobs, with an allotment vector −→𝑛 .

Then 𝐴𝒥 (
−→𝑛 ) + 1

2(𝐻𝒥 (
−→𝑛 ))−𝑊𝒥 (

−→𝑛 )) ≤ 𝐹 ⋆
𝒥 .

Proof. For a given schedule let 𝐸𝒥 (𝑡) = {𝑗 ∈ 𝒥 | 𝑠𝑡𝑗 ≤ 𝑡 < 𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗)} be the set of

jobs active at time 𝑡. Also, 𝐶𝒥 (𝑡) = {𝑗 ∈ 𝒥 | 𝑡 < 𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗)} the set of jobs that have

not yet completed by time 𝑡. For each job, we define a function corresponding to the

fraction of it, that is left to be completed at time 𝑡.

𝑐𝑗𝒥 (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑡 ≤ 𝑠𝑡𝑗

1− 𝑡−𝑠𝑡𝑗
𝑝𝑗(𝑛𝑗)

𝑠𝑡𝑗 ≤ 𝑡 < 𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗)

0 𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗) < 𝑡

The total fractional number of jobs to be completed at time 𝑡 is:

𝑐𝒥 (𝑡) =
∑︁
𝑗∈𝒥

𝑐𝑗𝒥 (𝑡) = |𝐶𝒥 (𝑡)| −
∑︁

𝑗∈𝐸𝒥 (𝑡)

𝑡− 𝑠𝑡𝑗
𝑝𝑗(𝑛𝑗)

∫︁ ∞

0
𝑐𝒥 (𝑡) d𝑡 =

∑︁
𝑗∈𝒥

∫︁ ∞

0
𝑐𝑗𝒥 (𝑡) d𝑡 =

∑︁
𝑗∈𝒥

(︁∫︁ 𝑠𝑡𝑗+𝑝𝑗(𝑛𝑗)

0
d𝑡−

∫︁ 𝑠𝑡𝑗+𝑝𝑗(𝑛𝑗)

𝑠𝑡𝑗

𝑡− 𝑠𝑡𝑗
𝑝𝑗(𝑛𝑗)

d𝑡
)︁

∫︁ ∞

0
𝑐𝒥 (𝑡) d𝑡 =

∑︁
𝑗∈𝒥

(𝑠𝑡𝑗 + 𝑝𝑗(𝑛𝑗))−
∑︁
𝑗∈𝒥

𝑝𝑗(𝑛𝑗)

2
= 𝐹𝒥 −

1

2
𝐻𝒥 (
−→𝑛 )



Chapter 2. Malleable Job Scheduling 20

, where 𝐹𝒥 is the solution cost of the given schedule.

Now, we need to talk a bit about the squashed area construction. From the given set

𝒥 with jobs ordered by increasing work, we create a new set of 𝑛 jobs 𝒮. Job 𝑗 ∈ 𝒮 has

a fixed allotment of 𝑛𝒮,𝑗 = 𝑚 processors and an execution time 1
𝑚𝑛𝑗𝑝𝑗(𝑛𝑗). It is clear

that:

𝐴𝒥 (
−→𝑛 ) = 𝐴𝒮(

−→𝑛𝒮) = 𝐹 ⋆
𝒮

𝑊𝒥 (
−→𝑛 ) = 𝐻𝒮(

−→𝑛𝒮)

Furthermore, given any feasible schedule for 𝒥 it can be shown by a simple convexity

argument that the optimal schedule for 𝒮 obeys 𝑐𝒥 (𝑡) ≥ 𝑐𝒮(𝑡) for every 𝑡. Thus, we

have
∫︀∞
0 𝑐𝒥 (𝑡) ≥

∫︀∞
0 𝑐𝒮(𝑡). Using the resulted form of the integral and the above two

equations we get: ∫︁ ∞

0
𝑐𝒥 (𝑡) ≥

∫︁ ∞

0
𝑐𝒮(𝑡)

𝐹𝒥 −
1

2
𝐻𝒥 (
−→𝑛 ) ≥ 𝐹 ⋆

𝒮 −
1

2
𝐻𝒮(
−→𝑛𝒮)

𝐹𝒥 −
1

2
𝐻𝒥 (
−→𝑛 ) ≥ 𝐴𝒥 (

−→𝑛 )− 1

2
𝑊𝒥 (

−→𝑛 )

𝐹𝒥 ≥ 𝐴𝒥 (
−→𝑛 ) +

1

2
(𝐻𝒥 (

−→𝑛 ))−𝑊𝒥 (
−→𝑛 ))

The above holds for every feasible schedule of 𝒥 , and so it holds for the optimal too.

2.4.2 A Scheduling Algorithm for the Rigid Problem

Let 𝒥 be a set of 𝑛 monotonic rigid jobs, with an allotment vector −→𝑛 , such that

∀𝑗 ∈ 𝒥 : 𝑛𝑗 <
⌈︀
𝑚
2

⌉︀
. We present a 2-approximation algorithm for this case, which is a

simple extension of the classical list scheduling algorithms of the literature [19].

The LIST algorithm

1: Arrange the jobs in order of increasing work.
2: In this order, schedule job 𝑗 ∈ 𝒥 at the earliest possible time that at least 𝑛𝑗

processors are available.

Lemma 2.12. LIST is a 2-approximation algorithm for the Rigid Job Scheduling Prob-

lem, when for every job 𝑛𝑗 <
⌈︀
𝑚
2

⌉︀
.

Proof. Let us denote by 𝐹𝒥 the solution cost of LIST. It suffices to prove that 𝐹𝒥 ≤
2𝐴𝒥 (

−→𝑛 ) +𝐻𝒥 (
−→𝑛 )) − 2𝑊𝒥 (

−→𝑛 ), since by Lemma 2.11 we get the desired result. We

already now that 𝐹𝒥 =
∑︁
𝑗∈𝒥

𝑠𝑡𝑗 +
∑︁
𝑗∈𝒥

𝑝𝑗(𝑛𝑗) =
∑︁
𝑗∈𝒥

𝑠𝑡𝑗 +𝐻𝒥 (
−→𝑛 )



Chapter 2. Malleable Job Scheduling 21

Therefore, to prove the bound in the lemma we can show that:

∑︁
𝑗∈𝒥

𝑠𝑡𝑗 ≤ 2𝐴𝒥 (
−→𝑛 ) +−2𝑊𝒥 (

−→𝑛 )

Using the vertical summation for the squashed area bound and the definition of the work

normalized bound, this is equivalent to showing:

∑︁
𝑗∈𝒥

𝑠𝑡𝑗 ≤
2

𝑚

∑︁
𝑗∈𝒥

𝑗∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘)−
2

𝑚

∑︁
𝑗∈𝒥

𝑛𝑗𝑝𝑗(𝑛𝑗)

To prove the above, it suffices to show the inequality for the 𝑗𝑡ℎ summand.

𝑠𝑡𝑗 ≤
2

𝑚

𝑗∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘)−
2

𝑚
𝑛𝑗𝑝𝑗(𝑛𝑗) =

2

𝑚

𝑗−1∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘)

The above equality follows since we consider the jobs in order of increasing work.

Now, all that is left to do is prove the inequality for each 𝑠𝑡𝑗 . Consider the moment that

job 𝑗 ∈ 𝒥 starts processing in the schedule constructed by LIST. Up until that point,

the whole schedule area consists of useful work, denoted by 𝑊 , and idle periods, with

total area denoted by 𝐼. Observe that the number of idle processors in any time prior to

𝑠𝑡𝑗 must be less than
⌈︀
𝑚
2

⌉︀
. The opposite would contradict the scheduling rule. Thus, 𝐼

cannot exceed 𝑊 . But it is easy to see that 𝑊 ≤
∑︀𝑗−1

𝑘=1 𝑛𝑘𝑝𝑘(𝑛𝑘). So, because 𝐼 ≤ 𝑊 ,

we also have 𝐼 ≤
∑︀𝑗−1

𝑘=1 𝑛𝑘𝑝𝑘(𝑛𝑘). Finally we get:

𝑚 · 𝑠𝑡𝑗 = 𝐼 +𝑊 ≤ 2

𝑗−1∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘) =⇒ 𝑠𝑡𝑗 ≤
2

𝑚

𝑗−1∑︁
𝑘=1

𝑛𝑘𝑝𝑘(𝑛𝑘)

2.4.3 Restricting an Allotment

Now we come back to the malleable version of the problem. The result of the previous

section obviously applies for the more general case too. That is, if we have a set of

malleable jobs 𝒥 together with an arbitrary allotment −→𝑛 for which ∀𝑗 : 𝑛𝑗 <
⌈︀
𝑚
2

⌉︀
, and

we apply LIST, then we get a schedule with cost 𝐹 ≤ 2𝐴𝒥 (
−→𝑛 ) +𝐻𝒥 (

−→𝑛 ))− 2𝑊𝒥 (
−→𝑛 ).

In this section, we show how to get a similar result for every possible initial allotment,

even if it does not obey the above requirement. So, for a given allotment −→𝑛 , we define

a new allotment −→𝑧 , called the skinny allotment, as follows:



Chapter 2. Malleable Job Scheduling 22

𝑧𝑗 =

⎧⎨⎩𝑛𝑗 if 𝑛𝑗 ≤
⌈︀
𝑚
2

⌉︀
⌈︀
𝑚
2

⌉︀
otherwise

Lemma 2.13. Applying LIST to −→𝑧 yields a schedule with solution cost:

𝐹 ≤ 2𝐴𝒥 (
−→𝑛 ) +𝐻𝒥 (

−→𝑛 ))−𝑊𝒥 (
−→𝑛 )

Proof. Due to Lemma 2.12 we have 𝐹 ≤ 2𝐴𝒥 (
−→𝑧 )+𝐻𝒥 (

−→𝑧 ))−2𝑊𝒥 (
−→𝑧 ). Also, because

of the work monotonicity hypothesis and the fact that 𝑧𝑗 ≤ 𝑛𝑗 for all jobs, we have

𝐴𝒥 (
−→𝑧 ) ≤ 𝐴𝒥 (

−→𝑛 ). Hence, it suffices to prove:

𝐻𝒥 (
−→𝑧 ))− 2𝑊𝒥 (

−→𝑧 ) ≤ 𝐻𝒥 (
−→𝑛 ))−𝑊𝒥 (

−→𝑛 )

Using the definitions of the height and the normalized work bound, we need to show

that for all 𝑗:

𝑝𝑗(𝑧𝑗)(1−
2𝑧𝑗
𝑚

) ≤ 𝑝𝑗(𝑛𝑗)(1−
𝑛𝑗

𝑚
)

To prove the above consider the following two cases:

∙ 𝑛𝑗 ≤
⌈︀
𝑚
2

⌉︀
=⇒ 𝑧𝑗 = 𝑛𝑗 . The inequality holds trivially.

∙ 𝑛𝑗 >
⌈︀
𝑚
2

⌉︀
=⇒ 𝑧𝑗 =

⌈︀
𝑚
2

⌉︀
. The left-hand side of the inequality becomes

𝑝𝑗(
⌈︀
𝑚
2

⌉︀
)(1 − 2⌈𝑚2 ⌉

𝑚 ), which is clearly non-positive. For the right-hand side of the

inequality we have 𝑝𝑗(𝑛𝑗)(1− 𝑛𝑗

𝑚 ) > 𝑝𝑗(𝑛𝑗)(1−
⌈𝑚2 ⌉
𝑚 ) ≥ 0. The result follows.

2.4.4 Finding an Initial Allotment

Given lemmas 2.11, 2.12, 2.13, we can understand that the final step of a 2-

approximation is just a matter of finding a proper initial allotment. Let
−→
𝑛⋆ be the

allotment vector of the optimal solution. We would like to compute an initial allotment
−→𝑛 such that:

2𝐴𝒥 (
−→𝑛 ) +𝐻𝒥 (

−→𝑛 ))−𝑊𝒥 (
−→𝑛 ) ≤ 2𝐴𝒥 (

−→
𝑛⋆) +𝐻𝒥 (

−→
𝑛⋆))−𝑊𝒥 (

−→
𝑛⋆)

In their paper, Turek et al. provide a method of minimizing 2𝐴𝒥 (
−→𝑛 ) + 𝐻𝒥 (

−→𝑛 )) −
𝑊𝒥 (

−→𝑛 ), over all possible allotment vectors −→𝑛 . We will describe it briefly.



Chapter 2. Malleable Job Scheduling 23

∙ For all jobs 𝑗 ∈ 𝒥 and for all possible positions 𝑘, that 𝑗 may have in the relative

work ordering of tasks in the desired allotment −→𝑛 , compute:

𝑛𝑘
𝑗 = 𝑎𝑟𝑔 min

1≤𝑖≤𝑚
{𝑝𝑗(𝑖) + (2(𝑛− 𝑠) + 1)

𝑖

𝑚
𝑝𝑗(𝑖)}

∙ For all jobs 𝑗 ∈ 𝒥 and for all possible positions 𝑘, compute

𝐹 𝑘
𝑗 = 𝑝𝑗(𝑛

𝑘
𝑗 ) + (2(𝑛− 𝑠) + 1)

𝑛𝑘
𝑗

𝑚
𝑝𝑗(𝑛

𝑘
𝑗 )

This quantity is the minimum cost attributed to job 𝑗, in the lower bound of

Lemma 2.11, if it is assigned the 𝑘𝑡ℎ position in the relative work ordering.

∙ Construct a complete bipartite graph 𝐺(𝐴,𝐵,𝐸). In 𝐴 there is a node for every

job of 𝒥 . In 𝐵 there is node representing all possible 𝑛 positions that a job may

have in the work-based ordering of an allotment. The weight of edge (𝑗, 𝑘) is 𝐹 𝑘
𝑗 .

∙ Find a minimum weight matching in 𝐺. This can be done in polynomial time [20].

If edge (𝑗, 𝑘) is included in the matching, then 𝑛𝑗 = 𝑛𝑘
𝑗 .

Although, the above procedure seems intuitively correct, some technical mathemat-

ical analysis is still needed. To be more precise, it must be shown that the optimal

allotment corresponds to a matching in 𝐺, as well as a matching produced in such a way

is legal. In other words, the positions assigned to jobs reflect the true work ordering. In

their paper, Turek et al. provide detailed proofs for the above.

2.5 Scheduling with Resource Dependent Processing Times

In this section, we address a scheduling model, which at first sight seems irrelevant

to the malleable problem considered earlier. This particular model was first introduced

and studied by Grigoriev et al.[21–23]. Its connection to the Malleable Job Scheduling

problem will be made clear by the end of the section.

2.5.1 Problem Definition

Let 𝒱 = {1, . . . , } be a set of jobs that need to be scheduled non-preemptively on

a set of unrelated machines ℳ = {1, . . . ,𝑚}. There is also a pool of 𝑘 additional

identical renewable resources, that can be distributed over the jobs in process, in order

to speedup their execution. Thus, if job 𝑗 uses machine 𝑖 for its processing and also has



Chapter 2. Malleable Job Scheduling 24

been assigned 𝑠 ∈ [0, 𝑘] of the addition resources, then it has an execution time 𝑝𝑖,𝑗,𝑠.

We assume that for all pairs (𝑖, 𝑗) we have

𝑝𝑖,𝑗,0 ≥ 𝑝𝑖,𝑗,1 ≥ . . . ≥ 𝑝𝑖,𝑗,𝑘

Without loss of generality, we also assume that all 𝑝𝑖,𝑗,𝑠 are integral and hence we

can restrict to feasible schedules where jobs start and stop at integral points in time.

Regarding the allocation of resources to jobs, we have the following restrictions. In

any feasible schedule, the total resource consumption at any time cannot exceed 𝑘.

Furthermore, the amount of the additional resources assigned to a job cannot change

during its execution. It is obvious, that this model is actually an extension of the

classical 𝑅||𝐶𝑚𝑎𝑥 problem, as well as a natural variant of the generalized assignment

problem studied by Shmoys and Tardos [24].

2.5.2 A 4-Approximation Algorithm

We begin by presenting a 4-approximation algorithm, for the problem of minimizing

the makespan in this model, proposed in [23].

2.5.2.1 Relaxing the Problem

Initially, Grigoriev et al. consider an integer programming formulation that defines

a relaxation of the problem. Let 𝑥𝑖,𝑗,𝑠 be binary variables, indicating that job 𝑗 uses

machine 𝑖, while an amount of 𝑠 resources is allocated to it. Moreover, let 𝑆𝑖,𝑗 =

{0} ∪ {𝑠 | 𝑠 ≤ 𝑘, 𝑝𝑖,𝑗,𝑠 < 𝑝𝑖,𝑗,𝑠−1} be the set of relevant indices for job 𝑗 on machine 𝑖.

Considering only this index sets obviously suffices, as the feasibility and the makespan

of any solution is not violated. We then have the following program.

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠 = 1, ∀𝑗 ∈ 𝒱 (2.1)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶, ∀𝑖 ∈ℳ (2.2)

∑︁
𝑗∈𝒱

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝑘𝐶 (2.3)

𝑥𝑖,𝑗,𝑠 = 0, if 𝑝𝑖,𝑗,𝑠 > 𝐶 (2.4)

𝑥𝑖,𝑗,𝑠 ∈ {0, 1}, ∀𝑖, 𝑗, 𝑠 (2.5)

Here, 𝐶 represents the schedule makespan. Equalities (2.20) ensure that every job

runs on some machine, using an amount of 𝑠 resources. Inequalities (2.21) imply that

the load of each machine is a lower bound on the makespan. The left-hand side of



Chapter 2. Malleable Job Scheduling 25

inequality (2.22) is the total resource consumption over the whole schedule, and (2.22)

simply expresses the fact that this quantity cannot exceed 𝑘𝐶. Finally, constraints (2.23)

make sure we do not use machine-resource pairs such that the processing time of a job

is greater than 𝐶.

From all the above, it is clear that if a feasible schedule of makespan 𝐶 exists, then

there is a solution (𝐶, 𝑥) for program (2.20)-(2.24). Hence, there is also a solution for

the linear relaxation of (2.20)-(2.24). By using binary search on the target makespan 𝐶

(we care only for integral values), we can find in polynomial time a solution (𝐶⋆, 𝑥𝐿𝑃 )

for the resulted linear program. Certainly, 𝐶⋆ will be a lower bound of the optimal

makespan.

2.5.2.2 The Rounding Procedure

Given a feasible solution (𝐶⋆, 𝑥𝐿𝑃 ) for the linear relaxation of (2.20)-(2.24), Grigoriev

et al. aim at rounding this fractional solution to an integer one without violating too

much constraints (2.21) and (2.22). They have proven the following lemma by giving a

rounding method with the desired result.

Lemma 2.14. Let 𝐶⋆ be the minimal integer for which the following linear program has

a feasible solution. ∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠 = 1, ∀𝑗 ∈ 𝒱 (2.6)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶⋆, ∀𝑖 ∈ ℳ (2.7)

∑︁
𝑗∈𝒱

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑐𝑖,𝑗,𝑠 ≤ 𝑘𝐶⋆ (2.8)

𝑥𝑖,𝑗,𝑠 = 0, if 𝑝𝑖,𝑗,𝑠 > 𝐶⋆ (2.9)

𝑥𝑖,𝑗,𝑠 ≥ 0, ∀𝑖, 𝑗, 𝑠 (2.10)

and let (𝐶⋆, 𝑥𝐿𝑃 ) be the corresponding solution, then we can find in polynomial time a

solution 𝑥⋆ for the following integer program:∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠 = 1, ∀𝑗 ∈ 𝒱 (2.11)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶⋆ + 𝑝𝑚𝑎𝑥, ∀𝑖 ∈ ℳ (2.12)

∑︁
𝑗∈𝒱

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑐𝑖,𝑗,𝑠 ≤ 𝑘𝐶⋆ (2.13)

𝑥𝑖,𝑗,𝑠 ∈ {0, 1}, ∀𝑖, 𝑗, 𝑠 (2.14)

where 𝑝𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑝𝑖,𝑗,𝑠 | 𝑥𝐿𝑃𝑖,𝑗,𝑠 > 0} and 𝑐𝑖,𝑗,𝑠 non-negative fixed values.

The above lemma can be viewed as an extension of the famous Shmoys and Tardos

rounding theorem [24] for the generalized assignment problem. The extension lies in the



Chapter 2. Malleable Job Scheduling 26

fact that the rounding is done in a bipartite multigraph, instead of a simple bipartite

graph. Moreover, the rounding method that Grigoriev et al. propose in their paper, can

also be viewed as the derandomization of the randomized rounding algorithm of Kumar

et al. [25], by applying the technique of conditional probabilities.

2.5.2.3 The Scheduling Algorithm

The approach for obtaining the final constant approximation result consists of the

following. In the first place, the rounding procedure described earlier must be used,

in order to decide the resource allocations and the machine assignments. To be more

precise, job 𝑗 will run on machine 𝑖, using 𝑠 additional resources iff 𝑥⋆𝑖,𝑗,𝑠 = 1. In the

application of Lemma 2.14 we set 𝑐𝑖,𝑗,𝑠 = 𝑠 · 𝑝𝑖,𝑗,𝑠. Afterwards, the jobs are scheduled

via a greedy list scheduling algorithm.

Algorithm LP-GREEDY

1: The machine assignments and the resource allocations are determined by the round-
ing procedure.

2: Consider the jobs in an arbitrary order starting with 𝑡 = 0:

∙ If there are enough resources available, so that some yet unscheduled job can
start running on its predetermined machine at time 𝑡, then schedule it there.

∙ If there is not such an unscheduled job available, update 𝑡 to the next smallest
completion time in the currently constructed schedule.

Theorem 2.15. Algorithm LP-GREEDY is a 4-approximation for the problem at

hand.

Proof. Denote by 𝐶𝐿𝑃𝐺 the makespan of the schedule produce by LP-GREEDY and

by 𝐶𝑂𝑃𝑇 the optimal one. Let 𝑡(𝛽) the earliest point in time after which only big

jobs are scheduled in the constructed solution. We define as big jobs the ones with

resource consumption greater than 𝑘
2 . The part of the schedule after time 𝑡(𝛽) has

length 𝛽 = 𝐶𝐿𝑃𝐺 − 𝑡(𝛽). During that period only big jobs are getting processed.

Furthermore, there must be a machine 𝑖 on which some job completes at time 𝑡(𝛽),

that it is not a big job. Suppose otherwise. Then, due to the definition of 𝑡(𝛽) all

machines must be idle right before this point in time. But that clearly contradicts the

greedy scheduling rule. We now focus our attention on this specific machine 𝑖. In the

time interval [0, 𝑡(𝛽)] there must be periods that 𝑖 is either busy or idle. Let us denote

be 𝛼 the total length of the busy periods. From constraint (2.12) we know that:

𝛼 =
∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶⋆ + 𝑝𝑚𝑎𝑥 ≤ 2𝐶⋆



Chapter 2. Malleable Job Scheduling 27

The last inequality follows directly from (2.28). If we denote by 𝛾 the length of the idle

periods then we have:

𝐶𝐿𝑃𝐺 ≤ 𝛼+ 𝛽 + 𝛾

The next step provides an upper bound for the quantity 𝛽 + 𝛾.

Observe that the total resource consumption of the constructed schedule is at least

𝛽 𝑘
2 + 𝛾 𝑘

2 . During the time interval [𝑡(𝛽), 𝐶𝐿𝑃𝐺] only big jobs are undergoing processing

and thus, the total resource consumption there is at least 𝛽 𝑘
2 , since at any point in time

at least 𝑘
2 of the additional resources are used. It is also the case, that during the idle

periods of machine 𝑖 in the time interval [0, 𝑡(𝛽)], at least 𝑘
2 resources are used at any

time. Suppose otherwise. Then there was an idle time in 𝑖, with at least 𝑘
2 available

resources. But this contradicts the scheduling rule. The job that finishes at time 𝑡(𝛽)

in 𝑖 could have been scheduled earlier at that idle time. Finally, recall that 𝑘𝐶⋆ is an

upper bound of the total resource consumption of the schedule (2.13). Hence, we have

𝑘𝐶⋆ ≥ 𝛽
𝑘

2
+ 𝛾

𝑘

2
=⇒ 𝛾 + 𝛽 ≤ 2𝐶⋆

By combining the above, we get the lower bound of 4. Remember also that 𝐶⋆ ≤ 𝐶𝑂𝑃𝑇 .

2.5.3 A 3.75-Approximation Algorithm

In their paper[23] Grigoriev et al., provide a slightly improved approximation al-

gorithm compared to the one presented earlier. Their main approach is just a better

tuning of the techniques already used. Initially, they formulate an alternative integer

programming relaxation for the problem. Let 𝐵𝑖,𝑗 = {𝑠 ∈ 𝑆𝑖,𝑗 | 𝑘2 < 𝑠 ≤ 𝑘} be the set of

indices that lie in the interval (𝑘2 , 𝑘].∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠 = 1, ∀𝑗 ∈ 𝒱 (2.15)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶, ∀𝑖 ∈ℳ (2.16)

∑︁
𝑗∈𝒱

∑︁
𝑖∈ℳ

(︁
1.5

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠
𝑠

𝑘
𝑝𝑖,𝑗,𝑠 + 0.25

∑︁
𝑠∈𝐵𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠

)︁
≤ 1.75𝐶 (2.17)

𝑥𝑖,𝑗,𝑠 = 0, if 𝑝𝑖,𝑗,𝑠 > 𝐶 (2.18)

𝑥𝑖,𝑗,𝑠 ∈ {0, 1}, ∀𝑖, 𝑗, 𝑠 (2.19)

The above integer program defines a relaxation of the original problem. To prove this,

we only need to verify validity of constraint (2.17), since the rest stay the same as in

program (2.20)-(2.24). Considering any feasible schedule, any two jobs with resource



Chapter 2. Malleable Job Scheduling 28

consumption in 𝐵𝑖,𝑗 cannot be processed in parallel. Thus:

∑︁
𝑗∈𝒱

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝐵𝑖,𝑗

𝑥𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝐶

Combining the above with valid inequality (2.22) yields (2.17).

As before, the linear relaxation of (2.15)-(2.19) is also a relaxation of the original

problem, and by using the same binary search we can acquire a fractional solution

(𝐶⋆, 𝑥𝐿𝑃 ), such that 𝐶⋆ ≤ 𝐶𝑂𝑃𝑇 . The rounding procedure of Lemma 2.14 with

𝑐𝑖,𝑗,𝑠 =

⎧⎨⎩(1.5 𝑠
𝑘 + 0.25)

𝑝𝑖,𝑗,𝑠
1.75 if 𝑠 ∈ 𝐵𝑖,𝑗

1.5 𝑠
𝑘
𝑝𝑖,𝑗,𝑠
1.75 if 𝑠 ∈ 𝑆𝑖,𝑗∖𝐵𝑖,𝑗

gives an integral solution that violates only constraint (2.17) by a factor at most 𝐶⋆.

The scheduling algorithm used after the determination of machine assignments and

resource allocations is also modified. In particular, it is a more sophisticated version of

list scheduling that can be interpreted as a restricted version of the harmonic algorithm

for bin packing. The concluding result is an approximation factor of 3.75.

2.5.4 Connection to the Malleable Problem

We are going to prove that the Malleable Job Scheduling problem is just a special

case of the model consider by Grigoriev et al.[21–23]. This means that all algorithms

for scheduling with resource dependent processing times apply directly to the malleable

setting. The importance of this observation will be evident in the next section.

We now present the reduction between the two problems. Suppose we have an in-

stance of the Malleable Job Scheduling problem, with 𝑛 jobs, 𝑚 identical machines and

processing time functions 𝑝𝑗(𝑥). We build an instance for the resource dependent prob-

lem as follows:

∙ For each malleable job 𝑗 we have a corresponding ”classical” job 𝑗.

∙ For each malleable job 𝑗 we have a corresponding unrelated machine 𝑗. Thus, in

total we have 𝑛 machines.

∙ ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} : 𝑝𝑖,𝑗,0 = +∞. No job can run without any resources.

∙ 𝑝𝑖,𝑗,𝑠 =

⎧⎨⎩𝑝𝑖,𝑗,𝑠 = 𝑝𝑗(𝑠), if 𝑖 = 𝑗

𝑝𝑖,𝑗,𝑠 = +∞, otherwise



Chapter 2. Malleable Job Scheduling 29

A solution for the above instance can easily be transformed to a feasible schedule for

the malleable case, maintaining the completion times of all jobs. If 𝑠𝑡𝑗 is the starting

time of 𝑗 in its dedicated machine using 𝑠𝑗 additional resources, then we can start that

job at 𝑠𝑡𝑗 in the malleable schedule, since there will be 𝑠𝑗 available machines at that

time. That holds because the machines of the malleable problem are interpreted as

the additional resource. Obviously, the processing time of each job is the same in both

situations. Finally, via the same transformation, though in the other direction, we can

prove that any malleable schedule (and so the optimal too) corresponds to a solution of

the resource dependent problem for the constructed instance.

2.6 Minimizing the Sum of Weighted Completion Times

In this section, we address the non-preemptive Malleable Job Scheduling problem

under the objective of minimizing the sum of weighted completion times. To provide a

result for this case, we utilize the unrelated machine scheduling with resource dependent

processing times problem. As we have already mentioned, each algorithm for that model

applies directly to the malleable problem as well. Thus, our aim is to extend the results

of Grigoriev et al.[21–23]. presented earlier, in order to capture the unique characteristics

of the alternative objective function considered here.

2.6.1 A 25.55-Approximation Algorithm

In order to schedule the jobs on the machines of ℳ, using the ideas of [26], we

create the following interval-indexed LP-relaxation for minimizing the total weighted

completion time. We define (0, 𝑡max = min𝑖∈ℳ
∑︀

𝑗∈𝒱 𝑝𝑖,𝑗,𝑘] to be the time horizon of

potential completion times, where 𝑡max is an upper bound on the makespan of any

optimal schedule. We discretize the time horizon into intervals [1, 1], (1, (1 + 𝛿)], ((1 +

𝛿), (1 + 𝛿)2], . . . , ((1 + 𝛿)𝐿−1, (1 + 𝛿)𝐿], where 𝛿 ∈ (0, 1) is a small constant, and 𝐿 is

the smallest integer such that (1 + 𝛿)𝐿−1 ≥ 𝑡max. Let 𝐼ℓ = ((1 + 𝛿)ℓ−1, (1 + 𝛿)ℓ], for

1 ≤ ℓ ≤ 𝐿, and ℒ = {1, 2, . . . , 𝐿}. Note that, interval [1, 1] implies that no job finishes

its execution before time 1; in fact, we can assume, w.l.o.g., that all processing times

are positive integers. Obviously, the number of intervals is polynomial in the size of the

instance and in 1
𝛿 . We denote by 𝑥𝑖,𝑗,𝑠,ℓ the binary indicator variables denoting that job



Chapter 2. Malleable Job Scheduling 30

𝑗 has completed its execution on machine 𝑖 with 𝑠 additional resources within 𝐼ℓ.

LP : minimize
∑︁
𝑗∈𝒱

𝑤𝑗𝐶𝑗

subject to :
∑︁
𝑖∈ℳ

∑︁
ℓ∈ℒ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠,ℓ = 1, ∀𝑗 ∈ 𝒱 (2.20)

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑥𝑖,𝑗,𝑠,ℓ ≤ 𝐶𝑗 , ∀𝑗 ∈ 𝒱 (2.21)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

𝑝𝑖,𝑗,𝑠
∑︁
𝑡≤ℓ

𝑥𝑖,𝑗,𝑠,𝑡 ≤ (1 + 𝛿)ℓ, ∀𝑖 ∈ℳ, ℓ ∈ ℒ (2.22)

∑︁
𝑗∈𝒱

∑︁
𝑠∈𝑆𝑖,𝑗

∑︁
𝑖∈ℳ

𝑠𝑝𝑖,𝑗,𝑠
∑︁
𝑡≤ℓ

𝑥𝑖,𝑗,𝑠,𝑡 ≤ 𝑘(1 + 𝛿)ℓ, ∀ℓ ∈ ℒ (2.23)

𝑝𝑖,𝑗,𝑠 > (1 + 𝛿)ℓ ⇒ 𝑥𝑖,𝑗,𝑠,ℓ = 0, ∀𝑖 ∈ℳ, 𝑗 ∈ 𝒱, 𝑠 ∈ 𝑆𝑖,𝑗 , ℓ ∈ ℒ (2.24)

𝑥𝑖,𝑗,𝑠,ℓ ≥ 0, ∀𝑖 ∈ℳ, 𝑗 ∈ 𝒱, 𝑠 ∈ 𝑆𝑖,𝑗 , ℓ ∈ ℒ

Our objective is to minimize the sum of weighted completion times of all jobs. Con-

straints (2.20) ensure that every job is completed on some machine using some number

of additional resources in some time interval. Constraints (2.21) impose a lower bound

on the completion time of each job. Constraints (2.22) are validity constraints which

state that the total processing time of jobs executed up to an interval 𝐼ℓ on a processor

𝑖 ∈ℳ is at most (1+𝛿)ℓ. Constraints (2.23) impose upper bounds for the total resource

usage until the time (1 + 𝛿)ℓ. For each ℓ ∈ ℒ, constraints (2.24) indicate that if pro-

cessing time of a job 𝑗 on a processor 𝑖 takes more than (1 + 𝛿)ℓ, then 𝑗 cannot not be

scheduled on 𝑖 and complete its execution within 𝐼ℓ. Note that even the corresponding

integer program of the LP-formulation is a (1 + 𝛿)-relaxation of the original problem.

Our algorithm, begins from a fractional solution (�̄�𝑖,𝑗,𝑠,ℓ, 𝐶𝑗) of the LP and rounds it

to an integral schedule keeping a constant approximation factor. In order to succeed it,

the algorithm separates the jobs into sets 𝑆(ℓ) = {𝑗 ∈ 𝒱 | (1 + 𝛿)ℓ−1 ≤ 𝛼𝐶𝑗 ≤ (1 + 𝛿)ℓ},
where 𝛼 > 1 is a fixed constant. Then, it schedules integrally the jobs of each 𝑆(ℓ) on

processors of ℳ(using the techniques of Grigoriev et al. [23]) and greedily places the

produced schedules, one after the other, in an increasing order of ℓ.

Rounding Routine

1: Find a fractional solution to the LP (�̄�𝑖,𝑗,𝑠,ℓ, 𝐶𝑗).

2: Partition the tasks into sets 𝑆(ℓ) = {𝑗 ∈ 𝒱 | (1 + 𝛿)ℓ−1 ≤ 𝑎𝐶𝑗 ≤ (1 + 𝛿)ℓ}, where
𝛼 > 1 a fixed constant.

3: For each ℓ = 1 . . . 𝐿 in an increasing order, find an integral assignment and schedule

of the jobs in 𝑆(ℓ) onℳ using the rounding theorem of [23].

In the following, we present the analysis of this algorithm.



Chapter 2. Malleable Job Scheduling 31

Lemma 2.16. For each ℓ = 1 . . . 𝐿, the fractional assignment of jobs in 𝑆(ℓ) can be

scheduled alone on the machines ofℳ with a makespan at most 3 𝛼
𝛼−1(1+ 𝛿)ℓ+(1+ 𝛿)ℓ.

Proof. We are going to use the well-known filtering technique of [27]. We can see that

for a job 𝑗 ∈ 𝑆(ℓ) it is the case that:

∑︁
𝑡>ℓ

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠,𝑡 ≤
1

𝛼

Assuming the contrary yields that by constraints (2.21):

𝐶𝑗 ≥
∑︁
𝑖∈ℳ

∑︁
ℓ∈ℒ

∑︁
𝑠∈𝑆𝑖,𝑗

(1 + 𝛿)ℓ−1𝑥𝑖,𝑗,𝑠,ℓ

≥
∑︁
𝑖∈ℳ

∑︁
𝑡>ℓ

∑︁
𝑠∈𝑆𝑖,𝑗

(1 + 𝛿)𝑡−1𝑥𝑖,𝑗,𝑠,𝑡

+
∑︁
𝑖∈ℳ

∑︁
𝑡≤ℓ

∑︁
𝑠∈𝑆𝑖,𝑗

(1 + 𝛿)𝑡−1𝑥𝑖,𝑗,𝑠,𝑡

≥
∑︁
𝑖∈ℳ

∑︁
𝑡>ℓ

∑︁
𝑠∈𝑆𝑖,𝑗

(1 + 𝛿)𝑡−1𝑥𝑖,𝑗,𝑠,𝑡

≥ (1 + 𝛿)ℓ
∑︁
𝑖∈ℳ

∑︁
𝑡>ℓ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠,𝑡

> (1 + 𝛿)ℓ
1

𝛼
,

which is a contradiction to the definition of 𝑆(ℓ):

Therefore, using constraints (2.20) we can see that:

∑︁
𝑡≤ℓ

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑥𝑖,𝑗,𝑠,𝑡 ≥
𝛼− 1

𝛼

Now, for each job 𝑗 ∈ 𝑆(ℓ) if we set 𝑥′𝑖,𝑗,𝑠,𝑡 = 0 when 𝑡 > ℓ and

𝑥′𝑖,𝑗,𝑠,𝑡 =
𝑥𝑖,𝑗,𝑠,𝑡∑︀

𝑖∈ℳ,𝑠

∑︀
𝑡≤ℓ 𝑥𝑖,𝑗,𝑠,𝑡

when 𝑡 ≤ ℓ, the solution < 𝑥′ > would satisfy the constraints (2.20) and (2.24) of the

LP. Moreover, the solution < 𝑥′ > would satisfy the constraints (2.22) and (2.23) if we

multiply the right hand of the equation by the factor 𝛼
𝛼−1 . Given this, if we set

𝑦𝑖,𝑗,𝑠 =
∑︁
𝑡≤ℓ

𝑥′𝑖,𝑗,𝑠,𝑡

then < 𝑦 > consists a feasible solution to the following linear formulation for each ℓ ∈ ℒ.



Chapter 2. Malleable Job Scheduling 32

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑦𝑖,𝑗,𝑠 = 1 ,∀𝑗 ∈ 𝑆(𝑙) (2.25)

∑︁
𝑗∈𝑆(𝑙)

∑︁
𝑠∈𝑆𝑖,𝑗

𝑦𝑖,𝑗,𝑠𝑝𝑖,𝑗,𝑠 ≤
𝛼

𝛼− 1
(1 + 𝛿)ℓ , ∀𝑖 ∈ℳ (2.26)

∑︁
𝑗∈𝑆(𝑙)

∑︁
𝑖∈ℳ

∑︁
𝑠∈𝑆𝑖,𝑗

𝑦𝑖,𝑗,𝑠𝑠𝑝𝑖,𝑗,𝑠 ≤ 𝑘
𝛼

𝛼− 1
(1 + 𝛿)ℓ (2.27)

𝑦𝑖,𝑗,𝑠 = 0 , if 𝑝𝑖,𝑗,𝑠 > (1 + 𝛿)ℓ (2.28)

𝑦𝑖,𝑗,𝑠 ≥ 0 , ∀𝑖, 𝑗, 𝑠

Note that the above formulation is the same as in Subsection 2.5.2.1. Therefore, using

the algorithm for the makespan minimization, with target makespan 𝐶⋆ = 𝛼
𝛼−1(1 + 𝛿)ℓ

and 𝑝𝑚𝑎𝑥 = (1+ 𝛿)ℓ, it follows that the jobs of 𝑆(ℓ) can be integrally scheduled alone on

the processors of 𝒫 with makespan at most 3𝐶⋆ + 𝑝𝑚𝑎𝑥 = 3 𝛼
𝛼−1(1 + 𝛿)ℓ + (1 + 𝛿)ℓ.

Theorem 2.17. There is a 25.55-approximation algorithm for the problem of scheduling

jobs on unrelated machines with resource dependent processing times.

Proof. Let 𝑗 ∈ 𝒱 be a job that belongs to the set 𝑆(ℓ) and is scheduled by our algorithm

on a processor 𝑖 using 𝑠 additional resources. For the completion time of 𝑗, taking the

union of the schedules 𝑆(𝑡), for 𝑡 ≤ ℓ, it must hold:

𝐶𝑗 ≤
∑︁
𝑡≤ℓ

(3𝑥𝑖,𝑗,𝑠,𝑡 + (1 + 𝛿)𝑡)

≤ 3
∑︁
𝑡≤ℓ

𝑥𝑖,𝑗,𝑠,𝑡 +
∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡

≤ 3
∑︁
𝑡≤ℓ

𝑥𝑖,𝑗,𝑠,𝑡 +
∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡

≤ 3
𝛼

𝛼− 1
(1 + 𝛿)ℓ +

1

𝛿
(1 + 𝛿)ℓ+1

≤ (3
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)ℓ

≤ 𝛼(3
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)𝐶𝑗

Recal that
∑︀

𝑗∈𝒱 𝑤𝑗𝐶𝑗 ≤ 𝑂𝑃𝑇 . Therefore, by choosing (𝛼, 𝛿) = (1.65817, 0.341831) we

get a 25.55 approximation algorithm. That is the value that minimizes the function

representing the approximation guarantee.

As we have proved in the previous section, the approximation ratio of 25.55 applies

directly to the malleable case. To the extend of our knowledge this is the first result

regarding the
∑︀

𝑗∈𝒥 𝑤𝑗𝐶𝑗 metric. Previous results, concern either the rigid problem

[28], or the preemptive setting [29].



Chapter 3

General Multiprocessor Job

Scheduling

In this chapter, we focus our attention on the most general version of the one-job-

multiple-machines model. In this kind of setting a job can be processed in parallel on

any subset of processors, and its execution time depends only on the particular subset

it is assigned to. So, if 𝒥 the set of tasks (𝑛 = |𝒥 |) and ℳ the set of machines

(𝑚 = |ℳ|), then ∀𝑆 ⊆ ℳ, with 𝑆 ̸= ∅, and ∀𝑗 ∈ 𝒥 there is a value 𝑝𝑗(𝑆) representing

the corresponding processing time. In total there are 2𝑚− 1 alternative set assignments

for each job. In many situations a job is not allowed to run on some of these sets, thus

there is a different, although equivalent formal definition for the problem. For each job

𝑗 ∈ 𝒥 there is a set of 𝑙𝑗 available processing modes:

𝑀𝑗 = {𝑀𝑗,𝑘 = (𝑄𝑗,𝑘, 𝑡𝑗,𝑘) | 1 ≤ 𝑘 ≤ 𝑙𝑗}

𝑄𝑗,𝑘 is a non-empty subset of ℳ on which the processing time of of 𝑗 is 𝑡𝑗,𝑘 < ∞.

If a processor subset 𝑆 is not contained in any mode, then we assume 𝑝𝑗(𝑆) = ∞.

Throughout the whole chapter, we will study the problem only under the makespan

objective.

Furthermore, we are going to present results for both the preemptive and the non-

preemptive case. In a non-preemptive problem, a job undergoing execution will never be

suspended until its completion. On the other hand, in the preemptive setting one may

suspend a job before its completion and resume its execution at a later point, possibly

on a different mode. The strict meaning of the preemptive execution of a job 𝑗 is the

following. If 𝑗 runs on mode 𝑀𝑗,𝑘 for 𝑝𝑗,𝑘 units of time, then it is necessary that:

∑︁
1≤𝑘≤𝑙𝑗

𝑝𝑗,𝑘
𝑡𝑗,𝑘

= 1

33



Chapter 3. General Multiprocessor Job Scheduling 34

.

Finally, a special case of the problem will come in handy in our study. In this special

case there is only one available mode for each job, i.e. |𝑀𝑗 | = 1. In other worlds, the

assignment of sets to jobs is fixed beforehand and what remains is only the scheduling

decisions. The fixed setting has been extensively studied in the literature and we will

use some of these results in our advantage.

3.1 Inapproximability Results

In this section, we present inapproximability results for both the preemptive and the

non-preemptive case. These results suggest that probably there is no efficient approxi-

mation, and thus we have to focus on restricted versions of the original problem.

3.1.1 The Non-Preemptive Case

We provide an approximation factor preserving reduction from the Minimum Ver-

tex Coloring Problem [30]. We are going to use the fixed version of the scheduling

problem, where additionally the processing time of all jobs in their only available mode

is the same, say a constant 𝑐 > 0. First of all, note that because all jobs have the

same processing time in their available machine allocation, we can discretize the time

horizon into intervals of length 𝑐. The maximum number of such intervals necessary for

scheduling all jobs is obviously 𝑛 (one for each job). Every job will run on one of these

intervals in the optimal solution. So the scheduling problem is equivalent to finding the

minimum number of intervals in which all jobs can be legally scheduled.

Theorem 3.1. If there is an 𝜌−approximation algorithm for General Multiproces-

sor Job Scheduling then there is an 𝜌−approximation algorithm for the problem of

Minimum Vertex Coloring.

Proof. Suppose we have a graph 𝐺(𝑉,𝐸) as an instance 𝐼 of the coloring problem. We

can create in polynomial time an instance 𝐼 ′ of the multiprocessor problem.

∙ First for every 𝑣 ∈ 𝑉 create a job 𝑗𝑣 ∈ 𝒥 . Every job 𝑗𝑣 ∈ 𝒥 will have only one set

of machines where it can be run, call it 𝑠𝑣 (initially empty). Also, 𝑝𝑗𝑣(𝑠𝑣) = 𝑐 > 0,

a constant common for every job.

∙ For every {𝑢, 𝑣} ∈ 𝐸 create a machine 𝑖𝑢𝑣 ∈ℳ and 𝑠𝑢 ← 𝑠𝑢∪{𝑖𝑢𝑣}, 𝑠𝑣 ← 𝑠𝑣∪{𝑖𝑢𝑣}.

We will now prove that 𝑂𝑃𝑇 (𝐼) = 𝑂𝑃𝑇 (𝐼 ′) and given a solution of 𝐼 ′ we can translate

it to a solution of 𝐼 with the same cost.



Chapter 3. General Multiprocessor Job Scheduling 35

∙ Suppose we are given the optimal solution for the coloring problem. That is the

minimum number of different colors needed for graph 𝐺. We can schedule all jobs

(vertices) of the same color in the same time interval because these vertices don’t

share an edge in the graph and thus they don’t have a common machine in the

scheduling instance 𝐼 ′. So 𝑂𝑃𝑇 (𝐼 ′) ≤ 𝑂𝑃𝑇 (𝐼).

∙ Suppose we are given the optimal solution for the scheduling problem. We know

that all jobs are scheduled inside the time intervals of length 𝑐. So the jobs inside

any time interval don’t share a common machine. Furthermore, the corresponding

vertices of the graph don’t share edges and thus can have the same color. So

𝑂𝑃𝑇 (𝐼) ≤ 𝑂𝑃𝑇 (𝐼 ′).

The procedure of the second bullet shows how to translate a solution of 𝐼 ′ to a solution

of 𝐼 with the same cost. So, if we have an 𝜌−approximation algorithm for Multipro-

cessor Job Scheduling, then given any graph 𝐺(𝑉,𝐸) we can built an instance of the

scheduling problem as shown above and use our algorithm there to obtain:

𝑆𝑂𝐿𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 ≤ 𝜌 ·𝑂𝑃𝑇 (𝐼 ′) = 𝜌 ·𝑂𝑃𝑇 (𝐼)
translation−−−−−−→ 𝑆𝑂𝐿𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔 ≤ 𝜌 ·𝑂𝑃𝑇 (𝐼)

Finally, it is known that no polynomial time algorithm for vertex coloring can achieve

an approximation guarantee of Ω(𝑛
1
10 ) unless 𝑁𝑃 = 𝑐𝑜-𝑁𝑃 [31]. Due to the above

theorem this result will also hold for our problem.

3.1.2 The Peemptive Case

We provide a reduction from the 3-SAT Problem [30], which was first proposed in

[32]. We use the general version of the preemptive problem, where the processing time

of every job in each of its modes is 1. In [33, 34] a method was proposed, that constructs

from every 3𝐶𝑁𝐹 formula 𝜑 with 𝑚 variables, a graph 𝐺𝜑 of 𝑛 = 𝑚𝒪(1) nodes with the

following properties:

∙ The 𝑛 nodes are partitioned into 𝑟 cliques 𝐶1, . . . , 𝐶𝑟.

∙ If 𝜑 is satisfiable, then 𝛼(𝐺𝜑) = 𝑟 (the cardinality of the maximum independent

set is denoted by 𝛼(𝐺𝜑)). In other words, 𝐺𝜑 has an independent set with exactly

one node from each clique.

∙ If 𝜑 is not satisfiable, then 𝛼(𝐺𝜑) ≤ 𝑟
𝑔 , where 𝑔 = 𝑛𝜖 for some positive constant 𝜖.



Chapter 3. General Multiprocessor Job Scheduling 36

Given such a graph 𝐺𝜑, let 𝑢𝑗,1, . . . , 𝑢𝑗,𝑐𝑗 be the vertices of clique 𝐶𝑗 . We then

construct an instance 𝐼 of the scheduling problem as follows:

∙ For every clique 𝐶𝑗 we have a corresponding job 𝑗.

∙ For every node 𝑢𝑗,𝑘 ∈ 𝐶𝑗 we have a corresponding processing mode for job 𝑗,

𝑀𝑗,𝑘 = (𝑄𝑗,𝑘, 1).

∙ Each edge of the graph corresponds to a machine 𝑖 of our scheduling problem.

∙ 𝑄𝑗,𝑘 contains all processors corresponding to edges incident to 𝑢𝑗,𝑘.

Theorem 3.2. There is no polynomial time 𝜌-approximation algorithm for Preemptive

Multiprocessor Scheduling with 𝜌 < 𝑔 unless 𝑃 = 𝑁𝑃 .

Proof. For a given 3𝐶𝑁𝐹 formula 𝜑 we construct 𝐺𝜑 and subsequently the correspond-

ing instance 𝐼 of the scheduling problem. If 𝜑 is satisfiable we know that there is an

independent set {𝑢1,𝑘1 , . . . , 𝑢𝑟,𝑘𝑟} containing a vertex from each clique. Furthermore, due

to the way of building 𝐼, there exists a schedule with length 1 by assigning 𝑗 to 𝑄𝑗,𝑘𝑗 . In

this particular schedule, all jobs can run without preemption in parallel. Obviously, this

is an optimal solution. Instead, if 𝜑 is not satisfiable, then 𝛼(𝐺𝜑) ≤ 𝑟
𝑔 . That means that

any time instance of any schedule no more than 𝑟
𝑔 jobs can be executed simultaneously.

Therefore, the makespan of any schedule will be greater than 𝑔, since there are 𝑟 jobs in

total. Given the existence of a polynomial time 𝜌-approximation algorithm, with 𝜌 < 𝑔,

we can determine in polynomial time the satisfiability of 𝜑.

∙ 𝜑 satisfiable =⇒ 𝑂𝑃𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 1. The approximation algorithm will return a

solution of cost 1 ≤ 𝑆𝑂𝐿 ≤ 𝜌.

∙ 𝜑 not satisfiable =⇒ 𝑂𝑃𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 > 𝑔 > 𝜌. Thus, the approximation algorithm

will return a solution of cost 𝑆𝑂𝐿 ≥ 𝜌.

However, 3-𝑆𝐴𝑇 is known to be 𝑁𝑃 -complete.

3.2 Linear Array Networks

In this section, we study a restricted version of the problem, introduced in [32]. This

version is motivated by actual computer networks. In practice, the parallel processors

are connected together by a network of a specific topology, and in those systems jobs

require that the machines they utilize, satisfy certain topological properties. In linear

array networks, the machines form a one dimensional array. Jobs in such networks can

only run in sets of consecutive machines, regarding the ordering of the array. We present

algorithms for both the preemptive and the non-preemptive case [32].



Chapter 3. General Multiprocessor Job Scheduling 37

3.2.1 The Non-Preemptive Problem

Suppose we have jobs 𝒥 , machinesℳ and processing modes 𝑀𝑗 as presented earlier.

In this case, ∀𝑗 ∈ 𝒥 , ∀𝑘 ∈ [1, 𝑙𝑗 ] : 𝑄𝑗,𝑘 is a set of consecutive elements of ℳ. This

problem is clearly 𝑁𝑃 -hard, since it generalizes 𝑅||𝐶𝑚𝑎𝑥. We give the following integer

programming relaxation of the problem, where 𝑥𝑗,𝑘 are binary variables indicating that

job 𝑗 runs on its 𝑘-𝑡ℎ mode. Also, the variable 𝐶 is the target makespan.

∑︁
𝑘∈[1,𝑙𝑗 ]

𝑥𝑗,𝑘 = 1, ∀𝑗 ∈ 𝒥 (3.1)

∑︁
𝑗∈𝒥

∑︁
∀𝑘: 𝑖∈𝑄𝑗,𝑘

𝑥𝑗,𝑘 · 𝑡𝑗,𝑘 ≤ 𝐶, ∀𝑖 ∈ℳ (3.2)

𝑥𝑗,𝑘 = 0, if 𝑝𝑗,𝑘 > 𝐶 (3.3)

𝑥𝑗,𝑘 ∈ {0, 1}, ∀𝑗, 𝑘 (3.4)

Following the same reasoning of section 2.5.2.1 it is easy to verify that for 𝐶 equal the

optimal value of the problem, integer program (3.1)-(3.4) is a relaxation of the original

problem, and hence so is the linear relaxation of (3.1)-(3.4). Again, by using binary

search on the target makespan 𝐶, we can find in polynomial time a solution (𝑥𝐿𝑃 , 𝐶𝐿𝑃 )

of the linear program, such that 𝐶𝐿𝑃 ≤ 𝑂𝑃𝑇 .

From the fractional solution 𝑥𝐿𝑃 we construct a bipartite multigraph 𝐵(𝑥𝐿𝑃 ) =

(𝑈, 𝑉,𝐸) as follows. In 𝑈 there is a vertex 𝑢𝑗 corresponding to each job 𝑗 ∈ 𝒥 and

similarly, in 𝑉 there is a vertex 𝑣𝑖 for every machine 𝑖 ∈ℳ. For each 𝑥𝐿𝑃𝑗,𝑘 > 0, find the

maximum integer ℎ ∈ [0, ⌈𝑙𝑜𝑔𝑚⌉−1], such that there exists an integer 𝑐 with 𝑐·2ℎ ∈ 𝑄𝑗,𝑘.

Then add 𝑒 = (𝑢𝑖, 𝑣𝑐2ℎ) in 𝐸. 𝑐 · 2ℎ works as a representative for 𝑄𝑗,𝑘. Let 𝑙𝑒𝑣𝑒𝑙(𝑒) = ℎ,

𝑤1(𝑒) = 𝑥𝐿𝑃𝑗,𝑘 and 𝑤2(𝑒) = 𝑡𝑗,𝑘. Note also that 𝑐 must always be an odd number. If not,

we can increment ℎ by choosing 𝑐
2 .

By using the multigraph rounding method of Grigoriev et al.[23] we acquire a graph

𝐵′, in which each job node is incident to only one edge and the total load of every

machine node (calculated as the sum of 𝑤2(𝑒) for edges incident to it) is at most 2𝐶𝐿𝑃 .

Let 𝐵
′
ℎ be the subgraph of 𝐵′ induced by edges of level ℎ. Observe that the sets 𝑈

′
ℎ

partition 𝑈 .

Lemma 3.3. For each ℎ, the jobs of 𝑈
′
ℎ can be scheduled with makespan at most 2𝐶𝐿𝑃 .

Proof. We will show that for any two nodes 𝑢𝑗 , 𝑢𝑧 ∈ 𝑈
′
ℎ that do not share an end

vertex, the corresponding processing modes of their incident edges are disjoint. Let

𝑒𝑗 = (𝑢𝑗 , 𝑣𝑐𝑗 ·2ℎ), 𝑒𝑧 = (𝑢𝑧, 𝑣𝑐𝑧 ·2ℎ) the edges incident to the two nodes. Let also 𝑄𝑗 , 𝑄𝑧

the processing modes that resulted in these two edges. Suppose that without loss of

generality 𝑐𝑗 < 𝑐𝑧, and also 𝑄𝑗 ∩𝑄𝑧 ̸= ∅ for contradiction.



Chapter 3. General Multiprocessor Job Scheduling 38

Since 𝑐𝑗 , 𝑐𝑧 are odd numbers and 𝑄𝑗 , 𝑄𝑧 contain consecutive elements of ℳ, we

can conclude that there exists an even number 𝑐, such that 𝑐𝑗 < 𝑐 < 𝑐𝑧 and 𝑐 · 2ℎ ∈
𝑄𝑗 ∨ 𝑐 · 2ℎ ∈ 𝑄𝑧. But this means that 𝑐

2 · 2
ℎ ∈ 𝑄𝑗 ∨ 𝑐

2 · 2
ℎ ∈ 𝑄𝑧, which is clearly a

contradiction because of the method of selecting ℎ.

Since 𝑄𝑗 ∩𝑄𝑧 = ∅ for any pair of edges that do not share an end vertex, we do not

need to concern about the ordering of the tasks of 𝑈
′
ℎ in their schedule. By assigning

each job to the mode specified by its incident edge, we get a feasible schedule with

makespan at most 2𝐶𝐿𝑃 ≤ 2𝑂𝑃𝑇 .

Theorem 3.4. There is an 𝒪(𝑙𝑜𝑔𝑚)-approximation algorithm for Multiprocessor Job

Scheduling in linear array networks.

Proof. The previous lemma states that for each ℎ ∈ [0, ⌈𝑙𝑜𝑔𝑚⌉− 1], we can schedule the

jobs of 𝑈
′
ℎ with total makespan at most 2𝑂𝑃𝑇 . Due to the fact that 𝑈

′
ℎ partition the

job set, we can simply merge all the resulting schedules serially and obtain an 𝒪(𝑙𝑜𝑔𝑚)-

approximation.

Regarding the approach of solving the linear relaxation and rounding the fractional

solution, the authors of [32] also provide a result concerning the integrality gap[35] of

program (3.1)-(3.4).

Theorem 3.5. There is an instance of the problem such that the linear program has a

feasible solution, but no schedule of makespan less than Ω(𝐶𝐿𝑃 · 𝑙𝑜𝑔𝑚
𝑙𝑜𝑔𝑙𝑜𝑔𝑚) exists.

3.2.2 The Preemptive Problem

In this case everything is similar to the previous section’s problem, except the fact

that we allow preemption of jobs. This version it is also 𝑁𝑃 -hard, since it embeds

in itself the Subset Sum problem [30]. Consider the following linear programming

relaxation of the problem. Again 𝐶 stands for the target makespan.

∑︁
𝑘∈[1,𝑙𝑗 ]

𝑥𝑗,𝑘 = 1, ∀𝑗 ∈ 𝒥 (3.5)

∑︁
𝑗∈𝒥

∑︁
∀𝑘: 𝑖∈𝑄𝑗,𝑘

𝑥𝑗,𝑘 · 𝑡𝑗,𝑘 ≤ 𝐶, ∀𝑖 ∈ℳ (3.6)

∑︁
𝑘∈[1,𝑙𝑗 ]

𝑥𝑗,𝑘 · 𝑡𝑗,𝑘 ≤ 𝐶, ∀𝑗 ∈ 𝒥 (3.7)

𝑥𝑗,𝑘 = 0, if 𝑝𝑗,𝑘 > 𝐶 (3.8)

𝑥𝑗,𝑘 ≥ 0, ∀𝑗, 𝑘 (3.9)



Chapter 3. General Multiprocessor Job Scheduling 39

It is easy to verify that for 𝐶 equal the optimal value of the problem, integer program

(3.5)-(3.9) is a relaxation of the original problem. So, again by using binary search on

the target makespan 𝐶, we can find in polynomial time a solution (𝑥𝐿𝑃 , 𝐶𝐿𝑃 ), such that

𝐶𝐿𝑃 ≤ 𝑂𝑃𝑇 . This particular solution partitions each job 𝑗 ∈ 𝒥 into subjobs 𝑇𝑗,𝑘 for

1 ≤ 𝑘 ≤ 𝑙𝑗 . Subjob 𝑇𝑗,𝑘 requires the set 𝑄𝑗,𝑘 for 𝑥𝐿𝑃𝑗,𝑘 · 𝑡𝑗,𝑘 units of time. Obviously, we

do not mind having a fractional solution now. Moreover, no two subtasks of the same

job can run in parallel, and that is expressed via constrained (3.7).

A 2-approximation greedy algorithm

1: Let 𝑡𝑐𝑢𝑟 = 0 and 𝑇 the set of all subtasks created after solving the previous linear
program.

2: Sort the subtasks in 𝑇 according to the leftmost processor they require, with respect
to the machine ordering. Consider the subtasks of 𝑇 in this order one by one. For
𝑇𝑗,𝑘, if all processors in 𝑄𝑗,𝑘 are idle at time 𝑡𝑐𝑢𝑟 and also no other subtask of the
initial job 𝑗 is already scheduled to start at 𝑡𝑐𝑢𝑟, then start 𝑇𝑗,𝑘.

3: Let 𝑡𝑚𝑖𝑛 the minimum time that a subtask which started in the previous step com-
pleted its processing. Suspend all running subtasks at that time, define their re-
maining portions and add them again in 𝑇 . Set 𝑡𝑐𝑢𝑟 ← 𝑡𝑚𝑖𝑛 and go back to Step 2,
until 𝑇 = ∅.

First of all, observe that the above algorithm is polynomial in terms of its running

time. In each iteration at least one of the original subtasks is completed, and their total

number 𝑓 is bounded by the size of the input, 𝑓 ≤
∑︀

𝑗∈𝒥 𝑙𝑗 .

Theorem 3.6. Our algorithm is a 2-approximation for the problem at hand.

Proof. Let 𝑇𝑝,𝑞 the subtask that finishes last in the constructed schedule. Let 𝑠𝑡𝑝,𝑞 be

its starting time and 𝑓𝑝,𝑞 its finishing time. Furthermore, let 𝑟 be the leftmost processor

of 𝑄𝑝,𝑞. It is clear, that at any time instance 𝑡 < 𝑠𝑝,𝑞 either 𝑟 is busy or another subtask

of the original job 𝑝 is undergoing execution. Because we consider the subtasks in an

increasing order of their leftmost machine, if 𝑟 is not busy at some time 𝑡, then all

processors of 𝑄𝑝,𝑞 are not busy either. That means that if the above two conditions

do not hold, then 𝑇𝑝,𝑞 can start its execution earlier, something that contradicts the

scheduling rule.

Therefore, we conclude that 𝑓𝑝,𝑞 is at most the total execution time of the subtasks

occupying 𝑟 plus the total execution time of the subtasks created from 𝑝. From con-

straints (3.6) and (3.7) we get that:

𝑓𝑝,𝑞 ≤ 2𝐶𝐿𝑃 ≤ 2𝑂𝑃𝑇

.



Chapter 3. General Multiprocessor Job Scheduling 40

3.3 Fixed Number of Machines

As we have already mentioned, the hardness results of section 3.1 dictate that good

approximation algorithms can only be found for restricted versions of the problem. In

this section, we study the problem assuming that the number of machines 𝑚 is fixed

and not part of the input. More precisely, we present some fairly simple algorithms for

the 𝑚 = 2 and 𝑚 = 3 case, as well as a sophisticated 𝑃𝑇𝐴𝑆 for general fixed 𝑚.

3.3.1 The 𝑚 = 2 Case

First of all, observe that the problem at hand is actually an extension of the classical

𝑅2||𝐶𝑚𝑎𝑥 problem, and thus it is 𝑁𝑃 -hard. We present an optimal pseudopolynomial

algorithm for the problem, proposed in [36].

In problems of such nature, there are actually two kinds of decisions that need to be

made. At first, there is the assignment, where for each job 𝑗 ∈ 𝒥 we have to choose the

proper processing mode. Then comes the scheduling, where we decide when to start

the execution of each job. We will deal separately with these decisions, starting from

finding a desirable assignment. We would like to find an assignment 𝐴⋆ of modes to

jobs, such that the maximum load of a machine under this assignment is the minimum

possible. The load of a machine under a given assignment 𝐴⋆ is calculated as the sum of

processing times of jobs, that will occupy that machine in the mode chosen for them. Let

us denote by 𝑇𝐴⋆ the maximum machine load under the desired assignment. Obviously:

𝑇𝐴⋆ ≤ 𝑂𝑃𝑇

Letℳ = {1, 2} and ∀𝑗 ∈ 𝒥 : 𝑝𝑚𝑖𝑛(𝑗) = 𝑚𝑖𝑛{𝑝𝑗({1}), 𝑝𝑗({2}), 𝑝𝑗({1, 2})}. Define

𝑇0 =
∑︁
𝑗∈𝒥

𝑝𝑚𝑖𝑛(𝑗)

𝑇0 is just an upper bound estimation of the optimal makespan.

We present a dynamic programming approach that calculates the value 𝑇𝐴⋆ for a two

machine system. Define the value 𝑓(𝑗, 𝑥) for 𝑗 ≥ 1, 0 ≤ 𝑥 < ∞ to be the minimum 𝑦

such that there exists an assignment 𝐴 for jobs 1, . . . , 𝑗, for which the total processing

time on machine 1 is 𝑥, and the total processing time on machine 2 is 𝑦, where 𝑥, 𝑦 finite

numbers. If there does not exist an assignment for these jobs, with the load of machine

1 to be 𝑥 and the load of machine 2 to be 𝑦, then we set 𝑓(𝑗, 𝑥) = ∞. The dynamic

program is based on the fact that each new job has only three mode alternatives. That

means that we know exactly how it will affect the load of each machine, and thus we

can incorporate that knowledge into the recursive equations.



Chapter 3. General Multiprocessor Job Scheduling 41

Initial conditions:

𝑓(1, 0) = 𝑝1({2})

𝑓(1, 𝑝1({1})) = 0

𝑓(1, 𝑝1({1, 2})) = 𝑝1({1, 2})

𝑓(1, 𝑥) =∞ for all other 𝑥

Recursive Equations:

𝑓(𝑗, 𝑥) = 𝑚𝑖𝑛{ 𝑓(𝑗−1, 𝑥−𝑝𝑗({1})), 𝑓(𝑗−1, 𝑥)+𝑝𝑗({2}), 𝑓(𝑗−1, 𝑥−𝑝𝑗({1, 2}))+𝑝𝑗({1, 2}) }

,where 2 ≤ 𝑗 ≤ 𝑛 and 0 ≤ 𝑥 ≤ 𝑇0

The time complexity of solving the above dynamic program is 𝒪(𝑛·𝑇0). It is also clear

that 𝑚𝑖𝑛{𝑚𝑎𝑥(𝑥, 𝑓(𝑛, 𝑥)) : 0 ≤ 𝑥 ≤ 𝑇0} = 𝑇𝐴⋆ and that concludes our search for the

optimal value for the assignment problem. Now, all that is left to do is the scheduling.

This is actually fairly simple for the two machines case. We use the following algorithm.

Pseudopolynomial Algorithm for 𝑚 = 2

1: Solve the aforementioned DP to find the proper assignment 𝐴⋆.
2: Schedule the jobs that are assigned to set {1, 2} in arbitrary order.
3: Schedule the jobs that are assigned to sets {1} and {2} in parallel, and in any

arbitrary order.

Figure 3.1 provides a graphical representation of such a schedule. Observe, that

under this schedule there is no idle time between jobs on each machine. Hence, the

completion time will equal 𝑇𝐴⋆ and thus it is optimal.

Figure 3.1: Scheduling for the 𝑚 = 2 case.

3.3.2 The 𝑚 = 3 Case

Hoogeveen et al. [37] showed that even the fixed version of this problem is strongly

𝑁𝑃 -hard. The lowest approximation ratio achieved so far for the general case of the

𝑚 = 3 problem is a 7
6 + 𝜖, proposed by Miranda [38] and for the fixed version a 7

6 , due

to Goemans [39]. In this section, we tackle the general 𝑚 = 3 problem, and we present

a slightly simpler approximation algorithm of ratio 3
2 + 𝜖, found in [36].



Chapter 3. General Multiprocessor Job Scheduling 42

Following the reasoning of the previous section we first find an assignment 𝐴⋆ that

minimizes the maximum load of a machine, 𝑇𝐴⋆ . We use a modified dynamic pro-

gramming approach. Define the function 𝑓(𝑗, 𝑥, 𝑦) as the minimum value of the total

processing time assigned to machine 3, given that there exists an assignment for jobs

1, . . . , 𝑗, where 𝑥 is the total processing time of machine 1 and 𝑦 the total processing

time of machine 2. In case there is no such assignment we set 𝑓(𝑗, 𝑥, 𝑦) =∞.

Initial conditions:

𝑓(1, 𝑝1({1}), 0) = 0

𝑓(1, 𝑝1({1, 2}), 𝑝1({1, 2})) = 0

𝑓(1, 𝑝1({1, 3}), 0) =

⎧⎨⎩𝑝1({1, 3}), if 𝑝1({1, 3}) ̸= 𝑝1({1})

0, otherwise

𝑓(1, 0, 𝑝1({1, 2})) = 0

𝑓(1, 0, 𝑝1({2, 3})) =

⎧⎨⎩𝑝1({2, 3}), if 𝑝1({2, 3}) ̸= 𝑝1({2})

0, otherwise

𝑓(1, 0, 0) = 𝑝1({3})

𝑓(1, 𝑝1({1, 2, 3}), 𝑝1({1, 2, 3})) =

⎧⎨⎩𝑝1({1, 2, 3}), if 𝑝1({1, 2, 3}) ̸= 𝑝1({1, 2})

0, otherwise

𝑓(1, 𝑥, 𝑦) =∞ for all other 𝑥

Recursive Equations:

𝑓(𝑗, 𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓(𝑗 − 1, 𝑥− 𝑝𝑗({1}), 𝑦)

𝑓(𝑗 − 1, 𝑥, 𝑦 − 𝑝𝑗({2}))

𝑓(𝑗 − 1, 𝑥, 𝑦)) + 𝑝𝑗({3}

𝑓(𝑗 − 1, 𝑥− 𝑝𝑗({1, 2}, 𝑦 − 𝑝𝑗({1, 2}))

𝑓(𝑗 − 1, 𝑥− 𝑝𝑗({1, 3}), 𝑦) + 𝑝𝑗({1, 3})

𝑓(𝑗 − 1, 𝑥, 𝑦 − 𝑝𝑗({2, 3})) + 𝑝𝑗({2, 3})

𝑓(𝑗 − 1, 𝑥− 𝑝𝑗({1, 2, 3}), 𝑦 − 𝑝𝑗({1, 2, 3})) + 𝑝𝑗({1, 2, 3})

,where 2 ≤ 𝑗 ≤ 𝑛 and 0 ≤ 𝑥, 𝑦 ≤ 𝑇0

The time complexity of solving the above dynamic program is 𝒪(𝑛 · 𝑇 2
0 ). It is also

clear that 𝑚𝑖𝑛{𝑚𝑎𝑥(𝑥, 𝑦, 𝑓(𝑛, 𝑥, 𝑦)) : 0 ≤ 𝑥, 𝑦 ≤ 𝑇0} = 𝑇𝐴⋆ and that concludes our

search for the optimal value for the assignment problem.



Chapter 3. General Multiprocessor Job Scheduling 43

The authors of [36] also provide a fully polynomial time approximation scheme for the

assignment problem, which is based on the above pseudopolynomial algorithm. More

precisely, they use the standard scaling technique by dividing all processing times by

a constant 𝐾 = 𝜖𝑇0
3𝑛 , for any 𝜖 > 0. In the job system that results from this transfor-

mation, they apply the aforementioned pseudopolynomial algorithm that constructs an

assignment 𝐴𝑎𝑝𝑥 for the new system. Keeping the same job-processor assignments, 𝐴𝑎𝑝𝑥

is also an assignment for the original job system, with maximum machine load 𝑇𝐴𝑎𝑝𝑥 .

They prove the following theorem.

Theorem 3.7. The assignment 𝐴𝑎𝑝𝑥 for the original job set can be constructed in time

𝒪(𝑛3

𝜖2
) and also 𝑇𝐴𝑎𝑝𝑥 ≤ (1 + 𝜖)𝑇𝐴⋆.

Given the assignment 𝐴𝑎𝑝𝑥 the only thing left is the scheduling algorithm. Let us

denote by 𝑙(1) the sum of the processing times of the jobs assigned to {1} under 𝐴𝑎𝑝𝑥.

Similarly, we define 𝑙(2), 𝑙(3). Without loss of generality, assume that 𝑙(1) ≥ 𝑙(2) ≥ 𝑙(3).

Otherwise, simply reindex the machines. We present an algorithm that schedules the

jobs of 𝒥 , whilst respecting 𝐴𝑎𝑝𝑥.

A 3
2 + 𝜖-approximation greedy algorithm

1: Starting from time 0, execute the jobs assigned to {1, 2, 3} on all three machines, in
any arbitrary order. Suppose that the last of them finishes at time 𝑓1,2,3.

2: Starting from time 𝑓1,2,3, execute the jobs assigned to {1, 2} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time 𝑓1,2.

3: Starting from time 𝑓1,2, execute the jobs assigned to {1, 3} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time 𝑓1,3.

4: Starting from time 𝑓1,3, execute the jobs assigned to {2, 3} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time 𝑓2,3.

5: Starting from time 𝑓1,3, execute the jobs assigned to {1}, in any arbitrary order.
Starting from time 𝑓2,3, execute the jobs assigned to {2}, in any arbitrary order.
Starting from time 𝑓2,3, execute the jobs assigned to {3}, in any arbitrary order.

Theorem 3.8. Let 𝐶 be the makespan of the schedule constructed by the above algorithm.

Then 𝐶 ≤ 3
2(1 + 𝜖)𝑇𝐴⋆.

Proof. Since 𝑇𝐴𝑎𝑝𝑥 ≤ (1 + 𝜖)𝑇𝐴⋆ , it suffices to show that 𝐶 ≤ 3
2𝑇𝐴𝑎𝑝𝑥 . Let 𝑓1, 𝑓2, 𝑓3 the

completion times of the three machines, respectively. Obviously, 𝐶 = 𝑚𝑎𝑥{𝑓1, 𝑓2, 𝑓3}.
As a result of the scheduling algorithm and the assumption made about 𝑙(1), 𝑙(2), 𝑙(3),

we always have 𝑓2 ≥ 𝑓3. In order to complete the proof, we need to distinguish between

two cases.

∙ 𝑓1 ≥ 𝑓2. Hence 𝐶 = 𝑓1. Clearly, 𝐶 = 𝑇𝐴𝑎𝑝𝑥 , since there is no idle time on processor

1. See figure 3.2(A).



Chapter 3. General Multiprocessor Job Scheduling 44

∙ 𝑓1 < 𝑓2. Hence 𝐶 = 𝑓2. In this case, the total sum of processing times on all three

machines can be expressed as follows:

𝑇𝑡𝑜𝑡𝑎𝑙 = 3𝑓1,2,3 + 2(𝑓1,3 − 𝑓1,2) + 2(𝑓2,3 − 𝑓1,3)

+ (𝑓1 − 𝑓1,3) + (𝑓2 − 𝑓2,3) + (𝑓3 − 𝑓2,3)

≤ 2𝑓2,3 + 2(𝑓2 − 𝑓2,3)

= 2𝑓2 = 2𝐶

The inequality follows because (𝑓1 − 𝑓1,3) = 𝑙(1) ≥ 𝑙(2) = (𝑓2 − 𝑓2,3). For a better

understanding see Figure 3.2(B). Observe also that 𝑇𝐴𝑎𝑝𝑥 ≥ 𝑇𝑡𝑜𝑡𝑎𝑙
3 . Suppose

otherwise. Then 3𝑇𝐴𝑎𝑝𝑥 < 𝑇𝑡𝑜𝑡𝑎𝑙, which is clearly a contradiction since 𝑇𝐴𝑎𝑝𝑥 is the

greatest load among the three machines. Combining all the above we get

𝐶 ≤ 3

2
𝑇𝐴𝑎𝑝𝑥

(a) 𝑓1 ≥ 𝑓2

(b) 𝑓1 < 𝑓2

Figure 3.2: Scheduling for the 𝑚 = 3 case.

To conclude, the algorithm described here is tight in terms of its approximation ratio.

There exists an instance in which the ratio is arbitrarily close to 3
2 .



Chapter 3. General Multiprocessor Job Scheduling 45

3.3.3 The General Fixed 𝑚 Case

This particular version of the problem is still 𝑁𝑃 -hard in the strong sense, as it

constitutes a generalization of the 𝑚 = 3 case. Regarding the fixed modes setting, the

best known result is a 𝑃𝑇𝐴𝑆 developed by Amoura et al. [40]. However, in this section

we are going to present a 𝑃𝑇𝐴𝑆 for the most general case, in which every job may have

many alternative processing modes. This specific result is due to Chen et al. [41].

The aforementioned 𝑃𝑇𝐴𝑆 is based on a special class of schedules, namely the (𝑚, 𝜖)-

canonical schedules, which will be formally defined later. The authors prove that for any

instance of the problem, there is an (𝑚, 𝜖)-canonical schedule, whose makespan is very

close to that of the optimal. Subsequently, they provide a scheme that approximates

that particular schedule and thus get a good approximation for the initial problem.

Before we continue with the analysis we need to introduce some combinatorial facts.

First, the number of different partitions of a set of 𝑚 elements is called the 𝑚-th Bell

number [42], and it is denoted by 𝐵𝑚. It can be proved easily by induction that 𝐵𝑚 ≤ 𝑚!.

Furthermore:

Lemma 3.9. Let 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a non-increasing sequence of integers, with

𝑚 ≥ 2 a fixed integer and 𝜖 > 0 an arbitrary real number. Then there is an index 𝑗0

such that:

∙ 𝑗0 = (3𝑚𝐵𝑚 + 1)𝑘, where 𝑘 ≤
⌊︀
𝑚
𝜖

⌋︀
.

∙ For any subset 𝑇 ′ of at most 3𝑗0𝑚𝐵𝑚 integers 𝑡𝑞 in 𝑇 with 𝑞 > 𝑗0, we have:

∑︁
𝑡𝑞∈𝑇 ′

𝑡𝑞 ≤
𝜖

𝑚

𝑛∑︁
𝑖=1

𝑡𝑖

We will denote by 𝑗𝑚,𝜖 the smallest index that satisfies the above conditions and we

will call it the cut-index for the sequence 𝑇 . Observe also that given the existential

guarantee of Lemma 3.9, 𝑗𝑚,𝜖 can be found in polynomial time, since 𝑚 and 𝜖 are fixed

constants.

3.3.3.1 The (𝑚, 𝜖)-Canonical Schedules

This special class of schedules is only defined for the version of the problem in which

the processing modes are fixed. Suppose then that each job 𝑗 ∈ 𝒥 can run only in

𝑄𝑗 ⊆ ℳ, with processing time 𝑡𝑗 . Now define the sequence 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} and

without loss of generality assume that it is non-increasing. For the fixed number 𝑚 of



Chapter 3. General Multiprocessor Job Scheduling 46

processors and for any arbitrary 𝜖 > 0 find the cut-index 𝑗𝑚,𝜖. We then split the job set

𝒥 into two subsets:

𝒥𝐿 = {𝑗 ∈ 𝒥 | 𝑗 ≤ 𝑗𝑚,𝜖} ,the large jobs

𝒥𝑆 = {𝑗 ∈ 𝒥 | 𝑗 > 𝑗𝑚,𝜖} ,the small jobs

Consider any schedule for the job set 𝒥 . Let {𝑦1, 𝑦2, . . . , 𝑦ℎ} be the non-decreasing

sequence of the starting and finishing times of the 𝑗𝑚,𝜖 large jobs. A small job block 𝜒

consists of the subsetℳ′ ⊆ℳ of processors that are not used by large jobs in the time

interval [𝑦𝑝, 𝑦𝑝+1]. Therefore, the small job blocks in the studied schedules are those

”areas” that small jobs actually run. At any time moment 𝜏 in [𝑦𝑝, 𝑦𝑝+1] some small

jobs run, each utilizing a processor subset 𝑄𝑗 . The collection [𝑄1, . . . , 𝑄𝑠] of all the

processor subsets of small jobs that run at time 𝜏 in the small job block 𝜒 will be called

the type of 𝜏 . A layer in 𝜒 is a maximal interval in [𝑦𝑝, 𝑦𝑝+1] such that all moments

have the same type. The type of any moment 𝜏 of a layer is defined as the type of the

layer.

Let 𝐿1 and 𝐿2 be two layers of the same small job block 𝜒, with types [𝑄1, . . . , 𝑄𝑠]

and [𝑅1, . . . , 𝑅𝑙] respectively. 𝐿1 covers 𝐿2 if [𝑅1, . . . , 𝑅𝑙] ⊆ [𝑄1, . . . , 𝑄𝑠]. In particular,

if 𝐿1 and 𝐿2 are two consecutive layers in 𝜒 such that 𝐿2 starts right after 𝐿1 finishes

and 𝐿1 covers 𝐿2, then 𝐿2 is actually a continuation of 𝐿1 with some of the small jobs

finished.

Definition 3.10. A floor 𝜎 in the small job block 𝜒 is a sequence of consecutive layers

{𝐿1, 𝐿2, . . . , 𝐿𝑧}. Moreover, all jobs interlacing 𝐿1 start in 𝐿1 and all jobs interlacing

𝐿𝑧 finish in 𝐿𝑧.

An example of a floor follows in Figure 3.3. Note that a small job block may not

have any non-empty floor at all. Furthermore, it is easy to see that any greedy list-

scheduling argument can construct from the jobs 𝒥𝜎 of a floor 𝜎, another floor 𝜎′ with

the same height.

Figure 3.3: Example of a floor.



Chapter 3. General Multiprocessor Job Scheduling 47

Definition 3.11. Let [𝑄1, . . . , 𝑄𝑠] be a partition ofℳ′. We say that we can assign the

type [𝑄1, . . . , 𝑄𝑠] to a floor 𝜎 = {𝐿1, 𝐿2, . . . , 𝐿𝑧} if the type of layer 𝐿1 is a subcollection

of {𝑄1, . . . , 𝑄𝑠}.

Definition 3.12. A small job block 𝜒 is a tower if it is constituted by a sequence of

floors each with a unique type.

Note that since each floor corresponds to a different partition of ℳ′, in a tower

inside a small job block we can have at most 𝐵𝑚 ≤ 𝑚! floors. In our discussion, we will

concentrate only on schedules of the following form.

Definition 3.13. Let 𝒥 be the job set of an instance to the fixed modes problem. For

fixed 𝑚 ≥ 2 and 𝜖 > 0 we divide the jobs into the two sets 𝒥𝐿, 𝒥𝑆 . A schedule for 𝒥 is

called (𝑚, 𝜖)-canonical if every small job block is a tower.

Concerning the above described class of schedules, the authors of [41] have proved two

very crucial theorems. We are going to present these two results without their proofs,

as they are quite detailed and their analysis goes beyond the scope of our thesis.

Theorem 3.14. Let 𝐶(𝒥 ) be an (𝑚, 𝜖)-canonical schedule for the job set 𝒥 . Let 𝜋 be

the sequence of large jobs and towers (regarded as a single job) in 𝐶(𝒥 ), ordered in terms

of their starting times. The the classical list-scheduling algorithm based on the order 𝜋

constructs a schedule with makespan not larger than that of 𝐶(𝒥 ).

Theorem 3.15. Let 𝒥 be an instance of the problem with the fixed mode assignments,

with optimal solution 𝑂𝑃𝑇 . For any 𝜖 > 0, there is an (𝑚, 𝜖)-canonical schedule of 𝒥
whose makespan is upper bounded by (1 + 𝜖)𝑂𝑃𝑇 .

Before we continue with the presentation of the approximation scheme we need an-

other useful definition.

Definition 3.16. Let 𝜎 be a floor of type [𝑄1, 𝑄2, . . . , 𝑄𝑠] and height 𝑙. Then subset

𝑄𝑗 plus the height 𝑙 is called a room of type 𝑄𝑗 in 𝜎.

3.3.3.2 The Approximation Scheme

Now we come back to the original problem, in which each job 𝑗 ∈ 𝒥 may have many

alternative processing modes 𝑀𝑗,𝑘 = (𝑄𝑗,𝑘, 𝑡𝑗,𝑘). The main idea behind this scheme is

that the fixed 𝑚 allows us to use a quite extensive brute force approach. Initially, we

define 𝑚𝑖𝑛𝑗 = min1≤𝑘≤𝑙𝑗 𝑡𝑗,𝑘 and 𝑇0 =
∑︀

𝑗∈𝒥 𝑚𝑖𝑛𝑗 . The value 𝑇0 is an obvious upper

bound for the optimal makespan. Furthermore, for the time being let us assume that

we know the partition of large and small jobs in the optimal solution and the order of



Chapter 3. General Multiprocessor Job Scheduling 48

large jobs and towers there. We would then like to place the small jobs inside the known

towers and arrange large jobs and towers in a proper way.

To do so, we are going to use a dynamic program based on an boolean array 𝐷.

For each tower 𝜒𝑞, where 1 ≤ 𝑞 ≤ 2𝑗𝑚,𝜖 + 1, associated with the processor subset 𝑀𝑞,

the total number of floors is 𝑓𝑞 = 𝐵|𝑀𝑞 | ≤ 𝐵𝑚 ≤ 𝑚!. Let 𝜎𝑞,1, 𝜎𝑞,2, . . . , 𝜎𝑞,𝑓𝑞 all the

different floors of tower 𝜒𝑞. For each floor 𝜎𝑞,𝑓 , let 𝛾𝑘,𝑓,1, 𝛾𝑘,𝑓,2, . . . , 𝛾𝑘,𝑓,𝑟𝑘,𝑓 the 𝑟𝑘,𝑓 ≤ 𝑚

rooms of that floor. Therefore, the configuration of small jobs in the towers, when we

try to obtain an (𝑚, 𝜖)-canonical schedule, is specified by a ((2𝑗𝑚,𝜖 + 1)𝑚𝐵𝑚) tuple

indicating the running time of all possible different rooms. Finally, the needed array

element 𝐷[𝑗, 𝑡1,1,1, . . . , 𝑡𝑞,𝑓,𝑟, . . . , 𝑡2𝑗𝑚,𝜖+1,𝐵𝑚,𝑚] has the value TRUE if and only if there

is a schedule of the first 𝑗 small jobs, such that the running time of room 𝛾𝑞,𝑓,𝑟 is 𝑡𝑞,𝑓,𝑟.

By assuming that all elements of 𝐷 have initially the value false we use the following

DP algorithm.

SCHEDULE-SMALL
1: Input: The set 𝒥𝑆 of small jobs and the order 𝜋 of large jobs and towers.
2: 𝐷[0, 0, . . . , 0]← TRUE
3: for 𝑗 = 1 to 𝑛𝑆 do
4: for each mode 𝑄𝑗,𝑘 of small job 𝑗 do
5: for each 𝐷[𝑗 − 1, . . . , 𝑡𝑞,𝑓,𝑟, . . .] = TRUE such that 𝑗 can be added to room

𝛾𝑞,𝑓,𝑟 under mode 𝑄𝑗,𝑘 without exceeding 𝑇0 do
6: 𝐷[𝑗, . . . , 𝑡𝑞,𝑓,𝑟 + 𝑡𝑗,𝑘, . . .]← TRUE

7: for each 𝐷[𝑛𝑆 , . . . , 𝑡𝑞,𝑓,𝑟, . . .] = TRUE do
8: Call the list scheduling algorithm based on the order 𝜋.

9: Return the schedule with the minimum makespan.

Combining the results of Theorem 3.14, Theorem 3.15 and the fact the the

brute force search described above will eventually find the jobs to rooms assignments

of the near optimal (𝑚, 𝜖)-canonical schedule, we get that the result of SCHEDULE-

SMALL will have a makespan bounded by 𝑂𝑃𝑇 . Moreover, with careful analysis we

can see that its running time is 𝒪(𝑛 · 2𝑚 · 𝑇 (2𝑗𝑚,𝜖+1)𝑚𝐵𝑚

0 · ((2𝑗𝑚,𝜖 + 1)𝑚𝐵𝑚)), which

is pseudopolynomial due to the factor 𝑇0. Fortunately, that can be corrected via the

standard scaling technique.

The only thing left now is to determine the partition of jobs into 𝒥𝑆 and 𝒥𝐿, the
modes of large jobs, the modes of towers and the sequence of towers and large jobs.

Again a brute force approach can guarantee all the above. Furthermore, the processing

times will be scaled down by a factor 𝐾, which will be defined later. So the final 𝑃𝑇𝐴𝑆

follows.

Obviously, if we forget about the scaling down the above algorithm will indeed find a

schedule with makespan bounded by (1+𝜖)𝑂𝑃𝑇 . However, the authors of [41] prove that

the scaling down and then the expansion procedure actually burden the final makespan



Chapter 3. General Multiprocessor Job Scheduling 49

APPROX-SCHEME

1: 𝐾 ← 𝜖𝑇0
𝑛𝑚

2: Let 𝒥 ′ be the job set obtained by scaling down all processing times by 𝐾.
3: for 𝑘 = 0 to

⌊︀
𝑚
𝜖

⌋︀
do

4: 𝑗0 ← (3𝑚𝐵𝑚 + 1)𝑘

5: for each subset 𝒥 ′
𝐿 of 𝑗0 large jobs in 𝒥 ′ do

6: for each mode assignment to the jobs in 𝒥 ′
𝐿 do

7: for each mode assignment to the 2𝑗0 + 1 towers do
8: for each possible sequence 𝜋 of towers and large jobs do
9: Call SCHEDULE-SMALL

10: In the schedule with the minimum makespan resulted form step 9, expand the pro-
cessing time of all jobs in order to avoid the effects of the scaling down and return
that schedule.

by a factor 𝑛𝐾. Furthermore, it is quite clear that 𝑇0
𝑚 ≤ 𝑂𝑃𝑇 . Thus:

𝐶 ≤ (1 + 𝜖)𝑂𝑃𝑇 + 𝑛𝐾

= (1 + 𝜖)𝑂𝑃𝑇 +
𝜖𝑇0

𝑚

≤ (1 + 2𝜖)𝑂𝑃𝑇

To conclude, the running time of the described approximation scheme is proved to be

𝒪(
⌊︁𝑚
𝜖

⌋︁
· 𝑛𝑗𝑚,𝜖 · 2𝑚𝑗𝑚,𝜖 · 22𝑚𝑗𝑚,𝜖+𝑚 · (3𝑗𝑚,𝜖 + 1)!)





Chapter 4

Malleable Job Scheduling In

Uniform Machines

In this chapter, we introduce a new model regarding malleable jobs. Again we have

a set of tasks 𝒥 , 𝑛 = |𝒥 |, that need to be scheduled using a set of uniform or related

machines ℳ, 𝑚 = |ℳ|. What makes the difference is that in this case the machines

may have different processing rates, and that is represented by a speed factor. Thus,

each machine 𝑖 ∈ℳ has a speed 𝑠𝑖 ≥ 1. Furthermore, following the malleable paradigm,

each job can run using several machines simultaneously and in unison, as in all previous

models. However, the processing time of a job will now depend on the total speed it

utilizes. To be more precise, suppose that 𝑗 ∈ 𝒥 is processed on 𝑆 ⊆ ℳ, with 𝑆 ̸= ∅.
Then its execution time is 𝑝𝑗(

∑︀
𝑖∈𝑆 𝑠𝑖).

To the extent of our knowledge this particular model have never been studied in

the literature, despite its practical significance. From a practical viewpoint, there are

many parallel malleable processing applications, in which the processing units have

different computational capacities. Moreover, since this particular model constitutes

a generalization of Malleable Job Scheduling in identical machines, its study is quite

interesting and thought-provoking from an algorithmic viewpoint as well. Observe also,

that due to that relation all problems regarding our model remain 𝑁𝑃 -hard.

Finally, in this diploma thesis we are focusing our attention in a restricted version

of the above described setting. Specifically, we study processing time functions with

a predetermined structure, rather than the totally abstract case. This simplification,

which has actually some practical value, helped us comprehend the unique difficulties

and characteristics of the problem at hand, and so produce some approximation results.

In addition, this assumption about the 𝑝𝑗(𝑠) functions gave us an insight into how to

deal with the general problem too.

51



Chapter 4. Malleable Job Scheduling In Uniform Machines 52

4.1 The Model

We begin by formally presenting the problem we are interested in.

∙ We have a set 𝒥 = {1, . . . , 𝑛} of jobs, a setℳ = {1, . . . ,𝑚} of related processors

and for every machine 𝑖 ∈ℳ a speed 𝑠𝑖 ≥ 1. Every job 𝑗 ∈ 𝒥 has a fixed amount

of work 𝑤𝑗 > 0 and a fixed delay 𝑑𝑗 > 0. When job 𝑗 ∈ 𝒥 runs on 𝑆 ⊆ ℳ, with

𝑆 ̸= ∅, its processing time is 𝑝𝑗(𝑆) = 𝑑𝑗 +
𝑤𝑗∑︀
𝑖∈𝑆 𝑠𝑖

.

∙ We want to find a feasible non-preemptive schedule with the minimum makespan.

In any feasible schedule every job 𝑗 ∈ 𝒥 will run on a set 𝑆 ⊆ 𝑀 of machines,

with 𝑆 ̸= ∅, and at any point in time every machine must execute only one job.

The general intuition behind the above model is the following. Firstly, every job

requires a fixed amount of processing 𝑑𝑗 , independent of its machine allocation. In actual

systems, this factor can be interpreted as a predetermined set-up time that the job has

to undergo before its parallelization. Furthermore, the other factor that influences the

execution of a job is its workload, namely the quantity 𝑤𝑗 . Inspired by the classical

𝑄||𝐶𝑚𝑎𝑥 problem, we suppose that the amount of processing time resulting from 𝑤𝑗 is

derived by a division with the total speed utilized. To conclude, one may say that the

execution time of a job has two parts. An identical part 𝑑𝑗 , and a related part
𝑤𝑗∑︀
𝑖∈𝑆 𝑠𝑖

.

In order to denote the processing time functions we are also going to use the following

notation. For 𝑗 ∈ 𝒥 , 𝑝𝑗(𝑠) = 𝑑𝑗 +
𝑤𝑗

𝑠 , where 𝑠 is the variable indicating the total speed

assigned to 𝑗.

Observe also, that this particular setting satisfies the monotonic assumptions men-

tioned in Section 2.1. For one thing, the more speed a job utilizes the less its processing

time. Thus, 𝑝𝑗(𝑠) is a decreasing function of 𝑠. Furthermore, let us define the work func-

tion for a job 𝑗 as 𝑤𝑟𝑘𝑗(𝑠) = 𝑠 · 𝑝𝑗(𝑠) = 𝑤𝑗 + 𝑑𝑗 · 𝑠. It is then obvious that 𝑤𝑟𝑘𝑗(𝑠) is

increasing in 𝑠.

Finally, someone may wonder about the necessity of the 𝑑𝑗 factor in the definition

of the processing time function, claiming that a straight-forward generalization of the

𝑄||𝐶𝑚𝑎𝑥 problem for the malleable case would suggest a function of the following form,

𝑝𝑗(𝑠) =
𝑤𝑗

𝑠 . The thing is that such a model is actually trivial. We prove this right away.

Theorem 4.1.
∑︀

𝑗∈𝒥 𝑤𝑗∑︀
𝑖∈ℳ 𝑠𝑖

≤ 𝑂𝑃𝑇

Proof. Suppose
∑︀

𝑗∈𝒥 𝑤𝑗∑︀
𝑖∈ℳ 𝑠𝑖

> 𝑂𝑃𝑇 . Denote by Π⋆
𝑖 the last point in time where machine 𝑖

is active in the optimal solution. Because of our hypothesis we have:

∀ 𝑖 ∈ℳ : Π⋆
𝑖 ≤ 𝑂𝑃𝑇 <

∑︀
𝑗∈𝒥 𝑤𝑗∑︀
𝑖∈ℳ 𝑠𝑖



Chapter 4. Malleable Job Scheduling In Uniform Machines 53

The total work performed by machine 𝑖 is at most 𝑠𝑖Π
⋆
𝑖 . Thus, the total work performed

by all the machines is:

∑︁
𝑘∈ℳ

𝑠𝑘Π
⋆
𝑘 <

∑︀
𝑗∈𝒥 𝑤𝑗∑︀
𝑖∈ℳ 𝑠𝑖

∑︁
𝑘∈ℳ

𝑠𝑘 =
∑︁
𝑗∈𝒥

𝑤𝑗

Therefore, the total work performed by all the machines is strictly less than the total

work needed for executing all jobs. Contradiction.

Based on the above result we present a fairly simple optimal algorithm.

An optimal trivial algorithm

1: Let 𝐿 = {1, . . . , 𝑛} be an arbitrary list of the 𝑛 jobs.
2: Schedule one job at a time from 𝐿 using all𝑚 processors. Thus, jobs run sequentially.

Theorem 4.2. The above algorithm is optimal for the problem where 𝑑𝑗 = 0, ∀𝑗 ∈ 𝒥 .

Proof. Because jobs run sequentially the makespan of the schedule is:

𝐶 =
𝑤1∑︀
𝑖∈𝑀 𝑠𝑖

+ . . .+
𝑤𝑛∑︀
𝑖∈𝑀 𝑠𝑖

=

∑︀
𝑗∈𝐽 𝑤𝑗∑︀
𝑖∈𝑀 𝑠𝑖

≤ 𝑂𝑃𝑇

where the inequality follows from Theorem 4.1.

4.2 𝑁𝑃 -Hardness

Before we continue with our approximation algorithms, we have to be sure that the

problem at hand is indeed 𝑁𝑃 -hard. In this section, we present a fairly simple reduction

from the famous Partition problem, which is already known to be 𝑁𝑃 -hard.

An instance of Partition consists of a set 𝐴 = {𝑎1, . . . , 𝑎𝑚} of 𝑚 positive integers.

We define 𝑆𝐴 =
∑︀𝑚

𝑖=1 𝑎𝑖, and the question is whether there exist two non-empty subsets

𝐴1, 𝐴2 ⊆ 𝐴 such that:

∙ 𝐴1 ∩𝐴2 = ∅ and 𝐴1 ∪𝐴2 = 𝐴.

∙
∑︁

𝑎𝑖∈𝐴1

𝑎𝑖 =
∑︁

𝑎𝑖∈𝐴2

𝑎𝑖 =
𝑆𝐴

2

The reduction goes as follows. From a given instance of Partition we construct an

instance of our scheduling problem. First, for every item 𝑎𝑖 ∈ 𝐴 we have a machine

𝑖 ∈ ℳ with speed 𝑠𝑖 = 𝑎𝑖. Regarding the jobs, we are going to have only two of those,

which will also be identical. Their common processing time function is defined to be:

𝑝(𝑠) = 𝑑+ 𝑑 · 𝑆𝐴

2𝑠



Chapter 4. Malleable Job Scheduling In Uniform Machines 54

Let us denote by 𝑂𝑃𝑇 the optimal solution of the scheduling problem. Observe that

in any case 𝑂𝑃𝑇 ≥ 2𝑑. If the two jobs are to be sequenced then definitely that holds.

If they are going to run in parallel, then they cannot both have speed allocation strictly

greater than 𝑆𝐴
2 , as the total amount of speed is 𝑆𝐴. Therefore, at least one of them

will have speed consumption 𝑠′ ≤ 𝑆𝐴
2 and so:

𝑑+
𝑆𝐴

2𝑠′
≥ 𝑑+

𝑆𝐴

2 · 𝑆𝐴
2

= 2𝑑

Finally, observe that if there exists a YES answer solution to the Partition prob-

lem, then by assigning the machines corresponding to subset 𝐴1 to the first job, and the

machines corresponding to 𝐴2 to the second job, executing them in parallel, we get a

schedule of makespan 2𝑑. Actually, this is the only situation in which the constructed

instance has 𝑂𝑃𝑇 = 2𝑑. Hence, solving optimally the scheduling problem implies cor-

rectly deciding about Partition.

4.3 The Identical Jobs Case

In this section, we are studying the problem, under the assumption that all jobs

in 𝒥 are identical. That means that they share a common processing time function

𝑝(𝑠) = 𝑑+ 𝑤
𝑠 . This version of the problem has some practical merit, since many applica-

tions generate at each step a set of identical tasks to be computed on a parallel platform.

Finally, observe that the 𝑁𝑃 -hardness reduction presented in the previous section, en-

sures that even this special case of the problem is 𝑁𝑃 -hard, since the reduction only

utilizes identical jobs.

We continue with the analysis of a constant factor approximation algorithm for the

problem. Initially, we partition the machines into two sets. 𝑀𝑓 = {𝑖 ∈ ℳ | 𝑠𝑖 > 𝑤
𝑑 },

the set of ”fast” machines and 𝑀𝑠 = {𝑖 ∈ ℳ | 𝑠𝑖 ≤ 𝑤
𝑑 } the set of ”slow” machines.

The intuition behind this separation is that a job using a ”fast” machine has always a

processing time of at most 2𝑑, regardless of all the other processors it utilizes.

Suppose now that 𝑛𝑓 jobs use at least one machine of 𝑀𝑓 in the optimal solution.

We can use exhaustive search (for 𝑛𝑓 ← 1 to n) to determine 𝑛𝑓 . The rest of the

jobs, 𝑛𝑠 = 𝑛 − 𝑛𝑓 , use only machines of 𝑀𝑠 in the optimal solution. This brute force

approach, with time complexity 𝒪(𝑛), guarantees that at some iteration 𝑛𝑓 , 𝑛𝑠 will be

the actual values of the optimal schedule. Given the correct 𝑛𝑓 , 𝑛𝑠 we proceed with the

rest of our scheduling algorithm.

At first we must construct a schedule of 𝑛𝑓 jobs on 𝑀𝑓 . Suppose that we have the

optimal solution of our initial problem, and we isolate the 𝑛𝑓 jobs that use at least one



Chapter 4. Malleable Job Scheduling In Uniform Machines 55

machine of 𝑀𝑓 . We then assign each of them to only one machine of 𝑀𝑓 , which they

already use in the optimal schedule. By their definition this can always be achieved,

and their processing time becomes at most 2𝑑. The last claim holds because in either

case 𝑑 > 𝑤
𝑠𝑝 , where 𝑠𝑝 is the total speed assigned to each of them. W.l.o.g we may

also assume that their processing time becomes exactly 2𝑑. This newly constructed

schedule obviously has makespan 𝐶 ≤ 2 ·𝑂𝑃𝑇 , when restricted only to the 𝑛𝑓 jobs. But

this schedule, is actually a solution of 𝑃 |𝑝 = 2𝑑|𝐶𝑚𝑎𝑥 with |𝑃 | = |𝑀𝑓 |, since our last

assumption totally ignores the machine speeds.

Because of all the above, solving 𝑃 |𝑝 = 2𝑑|𝐶𝑚𝑎𝑥 can give us an approximation of

the schedule of the 𝑛𝑓 jobs on 𝑀𝑓 . But 𝑃 |𝑝 = 2𝑑|𝐶𝑚𝑎𝑥 can be solved optimally in

polynomial time through a greedy algorithm, and by using that we get a schedule with

makespan 𝐶⋆ ≤ 𝐶 ≤ 2 ·𝑂𝑃𝑇 . Finally, since 𝐶⋆ isn’t feasible for our problem (actually is

a solution of 𝑃 |𝑝 = 2𝑑|𝐶𝑚𝑎𝑥), we simply assign to each of the |𝑀𝑓 | identical machines a

unique speed from 𝑀𝑓 and the processing time of each job becomes 𝑑+ 𝑤
𝑥 < 2𝑑 instead

of 2𝑑, because 𝑥 > 𝑤
𝑑 . So we get a schedule for the 𝑛𝑓 jobs on 𝑀𝑓 with makespan

𝐶𝑓 ≤ 𝐶⋆ ≤ 2 ·𝑂𝑃𝑇 .

Now we are concerned with scheduling the 𝑛𝑠 jobs, which in the optimal solution use

only machines of 𝑀𝑠. To do so, we must first provide a lower bound on their optimal

makespan. Let us define 𝑆 =
∑︀

𝑖∈𝑀𝑠
𝑠𝑖. Also, we denote by 𝑞⋆𝑗 the speed allocation of a

job in the optimal schedule and by 𝒥𝑠 the set of the 𝑛𝑠 jobs under consideration. Each of

these jobs occupies 𝑤+ 𝑑 · 𝑞⋆𝑗 units of area (work) in the optimal solution. Furthermore,

since all jobs of 𝒥𝑠 utilize only machines of 𝑀𝑠, the total area provided for them is at

most 𝑆 ·𝑂𝑃𝑇 . Thus:

𝑛𝑠𝑤 + 𝑑
∑︀

𝑗∈𝒥𝑠
𝑞⋆𝑗

𝑆
≤ 𝑂𝑃𝑇 (4.1)

Supposing otherwise would mean:

𝑛𝑠𝑤 + 𝑑
∑︁
𝑗∈𝒥𝑠

𝑞⋆𝑗 > 𝑆 ·𝑂𝑃𝑇

This is clearly a contradiction, since it implies that the total area occupied by the 𝑛𝑠

jobs is greater than the total available area for them.

To construct a schedule for the jobs in 𝒥𝑠 we are going to use parametrized analysis,

based on an parameter 𝛼 ≤ 1. In the end, the resulted approximation ratio will be

expressed as a function of 𝛼 and obviously we are going to minimize this function over

all values of 𝛼. Furthermore, we distinguish two cases based on the value of 𝑆 and give

distinct ways of scheduling in each situation. The first case consists of a straight-forward

algorithm, whilst the second one demands a more thorough and careful approach.



Chapter 4. Malleable Job Scheduling In Uniform Machines 56

First of all, if 𝑆 ≤ 𝑤
𝛼𝑑 , where 𝛼 ≤ 1, we can serialize the 𝑛𝑠 jobs by giving all 𝑆 to

each of them. This schedule has a makespan:

𝐶𝑠,1 = 𝑛𝑠(𝑑+
𝑤

𝑆
)

≤ 𝑛𝑠(
𝑤

𝛼𝑆
+

𝑤

𝑆
)

=
𝑛𝑠𝑤

𝑆
(1 +

1

𝛼
)

≤ (1 +
1

𝛼
)𝑂𝑃𝑇 (4.2)

The first inequality results from the assumption about 𝑆. For the second inequality

observe that 𝑛𝑠𝑤
𝑆 is also a lower bound, as indicated by 4.1.

Now, if 𝑆 > 𝑤
𝛼𝑑 we are going to construct disjoint groups of machines in 𝑀𝑠, where

each of these groups will act as a new ”virtual” machine. The jobs will no longer see

ℳ𝑠 as their processing environment, rather they could be only executed on one of these

groups, utilizing simultaneously all machines it contains. The intuition behind this

approach is to make these groups resemble a ”fast” machine, in terms of total speed.

To do so, we are going to use the famous First Fit algorithm for Bin Packing, with

bins of size 𝑤
𝛼𝑑 . The bins represent the groups, the items placed in the bins are obviously

the machines of 𝑀𝑠 and the size of each item is the speed of the corresponding machine.

However, unlike the Bin Packing problem we are not interested in the final number

of used bins. In our case, we take advantage of another special property of First Fit,

namely that given the correct conditions, it always fills at least half of all the bins, except

perhaps the last one. These conditions are satisfied in our case, since ∀𝑖 ∈𝑀𝑠 : 𝑠𝑖 ≤ 𝑤
𝑑 ,

𝛼 ≤ 1 and 𝑆 > 𝑤
𝛼𝑑 . 𝑆 > 𝑤

𝛼𝑑 implies that there is enough speed to fill at least two bins

and ∀𝑖 ∈𝑀𝑠 : 𝑠𝑖 ≤ 𝑤
𝑑 , 𝛼 ≤ 1 ensures that all item sizes are less than the size of the bin.

Construct-Groups Algorithm

1: Consider the machines of 𝑀𝑠 in any arbitrary order.
2: Construct the first group and place in it the first machine regarding that order.
3: Place the next machine in the first group that can fit without violating the total size

𝑤
𝛼𝑑 . If it cannot fit anywhere construct a new group and place it there.

4: Continue with the above until you are out of machines.

It is pretty obvious that at the end of this procedure every group is at least half full.

If this is not the case we could have merged the contents of two groups. However, this

may not hold for the last group. To sum up, this algorithm will build ℎ groups with the

following properties:

∙ 𝑠𝑔,1 ≤ 𝑠𝑔,2 ≤ . . . ≤ 𝑠𝑔,ℎ

∙ ∀𝑖 ∈ [1, ℎ] : 𝑠𝑔,𝑖 ≤ 𝑤
𝛼𝑑



Chapter 4. Malleable Job Scheduling In Uniform Machines 57

∙ ∀𝑖 ∈ [2, ℎ] : 𝑠𝑔,𝑖 ≥ 𝑤
2𝛼𝑑 . Perhaps, the smallest group will not be at least half full.

But because 𝑆 > 𝑤
𝛼𝑑 , the algorithm cannot construct only one group which will

also be not half full.

After the the above procedure, if 𝑠𝑔,1 <
𝑤
2𝛼𝑑 we redistribute (in any possible way) its

speed to the other groups, even if we violate the 𝑤
𝛼𝑑 size. Finally, we obtain a machine

grouping with the following properties:

𝑠′𝑔,1 ≤ 𝑠′𝑔,2 ≤ . . . ≤ 𝑠′𝑔,ℎ′

∀𝑖 ∈ [1, ℎ′] :
𝑤

2𝛼𝑑
≤ 𝑠′𝑔,𝑖 ≤

3𝑤

2𝛼𝑑
(4.3)

The second property results, since:

∀𝑖 ∈ [2, ℎ] : 𝑠𝑔,𝑖 + 𝑠𝑔,1 ≤
𝑤

𝛼𝑑
+

𝑤

2𝛼𝑑
=

3𝑤

2𝛼𝑑

Now that we have the machine groups, we use the following simple scheduling rule.

Every group gets
⌈︁
𝑛𝑠·𝑠′𝑔,𝑖

𝑆

⌉︁
jobs. This is an attempt to uniformly distribute work, de-

pending on the group speed. The first thing that needs to be done is to prove that the

aforementioned rule guarantees that all jobs will be scheduled. This is fairly simple.

ℎ′∑︁
𝑖=1

⌈︂
𝑛𝑠 · 𝑠′𝑔,𝑖

𝑆

⌉︂
≥

ℎ′∑︁
𝑖=1

𝑛𝑠 · 𝑠′𝑔,𝑖
𝑆

=
𝑛𝑠

𝑆

ℎ′∑︁
𝑖=1

𝑠′𝑔,𝑖 =
𝑛𝑠

𝑆
𝑆 = 𝑛𝑠

We begin using the above rule, scheduling the groups in an increasing order of speed.

At some point, when scheduling for group 𝑖, we may not have enough jobs to fulfil the⌈︁
𝑛𝑠·𝑠′𝑔,𝑖

𝑆

⌉︁
requirement. This actually does not pose any problem, due to the fact the total

machine load, and thus the makespan will not be affected. And that leads us to the next

step of our analysis, namely computing the resulted makespan of this rule. The load of

each group, 𝑙𝑖, will be the following:

𝑙𝑖 =

⌈︂
𝑛𝑠 · 𝑠′𝑔,𝑖

𝑆

⌉︂
(𝑑+

𝑤

𝑠′𝑔,𝑖
)

≤ (
𝑛𝑠 · 𝑠′𝑔,𝑖

𝑆
+ 1)(𝑑+

𝑤

𝑠′𝑔,𝑖
)

=
𝑛𝑠

𝑆
(𝑤 + 𝑠′𝑔,𝑖𝑑) + (𝑑+

𝑤

𝑠′𝑔,𝑖
)

≤ 𝑛𝑠

𝑆
(𝑤 +

3𝑤

2𝛼
) + (𝑑+

𝑤

𝑠′𝑔,𝑖
)

=
𝑛𝑠𝑤

𝑆
(1 +

3

2𝛼
) + (𝑑+

𝑤

𝑠′𝑔,𝑖
) (4.4)

The last inequality follows directly from 4.3.



Chapter 4. Malleable Job Scheduling In Uniform Machines 58

Let us denote by 𝐶𝑠,2 the makespan of such a schedule. Obviously,

𝐶𝑠,2 = max
1≤𝑖≤ℎ′

{𝑙𝑖} ≤
𝑛𝑠𝑤

𝑆
(1 +

3

2𝛼
) + (𝑑+

𝑤

𝑠′𝑔,𝑖
)

, for some group 𝑖. Hence, to conclude our proof we need to analyse quantity 4.4, in

terms of relating it to 𝑂𝑃𝑇 . To do so, we proceed with a case analysis on the optimal

solution, which will result in different lower bounds. Furthermore, observe that the two

cases mentioned below are mutually exclusive.

∙ Case A) ∀𝑗 ∈ 𝒥𝑠 : 𝑞⋆𝑗 > 𝑤
2𝛼𝑑 . In this case we have the following:

𝑛𝑠𝑤 + 𝑑𝑛𝑠
𝑤
2𝛼𝑑

𝑆
≤

𝑛𝑠𝑤 + 𝑑
∑︀

𝑗∈𝒥𝑠
𝑞⋆𝑗

𝑆
=⇒ 𝑛𝑠𝑤

𝑆
(1 +

1

2𝛼
) ≤ 𝑂𝑃𝑇 (4.5)

The implication follows from 4.1.

∙ Case B) ∃𝑗 ∈ 𝒥𝑠 : 𝑞⋆𝑗 ≤ 𝑤
2𝛼𝑑 . Because 𝑠′𝑔,𝑖 ≥ 𝑤

2𝛼𝑑 for all groups, we conclude that:

𝑑+
𝑤

𝑠′𝑔,𝑖
≤ 𝑑+

𝑤

𝑞⋆𝑗
≤ 𝑂𝑃𝑇 (4.6)

Suppose that Case A holds. Then:

𝐶𝑠,2 ≤
𝑛𝑠𝑤

𝑆
(1 +

3

2𝛼
) + (𝑑+

𝑤

𝑠′𝑔,𝑖
)

≤
1 + 3

2𝛼

1 + 1
2𝛼

𝑂𝑃𝑇 + (1 + 2𝛼)𝑑

≤
(︁1 + 3

2𝛼

1 + 1
2𝛼

+ (1 + 2𝛼)
)︁
𝑂𝑃𝑇

The second inequality results from 4.3 and from comparing 𝑛𝑠𝑤
𝑆 (1 + 3

2𝛼) with the lower

bound of 4.5. The third inequality is straight-forward since obviously 𝑑 ≤ 𝑂𝑃𝑇 . Finally,

we say that this case results in an approximation ratio 𝜌𝐴(𝛼) =
1+ 3

2𝛼

1+ 1
2𝛼

+ (1 + 2𝛼).

Now suppose that Case B holds. Then:

𝐶𝑠,2 ≤
𝑛𝑠𝑤

𝑆
(1 +

3

2𝛼
) + (𝑑+

𝑤

𝑠′𝑔,𝑖
)

≤ (1 +
3

2𝛼
)𝑂𝑃𝑇 +𝑂𝑃𝑇

The second inequality results by utilizing 4.1 and 4.6. So, we say that this case gives an

approximation ratio 𝜌𝐵(𝛼) = 2 + 3
2𝛼 .

The total approximation ratio, when scheduling with 𝑆 > 𝑤
𝛼𝑑 , is 𝜌(𝛼) = 𝑚𝑎𝑥{𝜌𝐴(𝛼), 𝜌𝐵(𝛼)}.

In order to minimize 𝜌(𝛼) we need to find an 𝛼𝑚 such that 𝜌𝐴(𝛼𝑚) = 𝜌𝐵(𝛼𝑚). By solv-

ing the latter equation we get 𝛼𝑚 ≈ 0.67965204. The approximation ratio at that



Chapter 4. Malleable Job Scheduling In Uniform Machines 59

value is 𝜌𝑠 = 4.20701. Thus, we constructed a schedule for the 𝑛𝑠 jobs with makespan

𝐶𝑠 ≤ 4.20701 · 𝑂𝑃𝑇 . Observe also that 𝜌𝐵 always dominates (1 + 1
𝛼) from 𝐶𝑠,1 and so

we don’t need to take it into account at all.

Finally, because 𝑀𝑓 ∩ 𝑀𝑠 = ∅ the two schedules we have constructed can run in

parallel. So, 𝐶 = 𝑚𝑎𝑥{𝐶𝑠, 𝐶𝑓} ≤ 4.20701 · 𝑂𝑃𝑇 is the overall schedule makespan. We

also provide a total synopsis of the algorithm.

Identical-Jobs Algorithm

1: for 𝑛𝑓 = 1 to 𝑛 do
2: 𝑛𝑠 ← 𝑛− 𝑛𝑓

3: Schedule 𝑛𝑓 jobs on 𝑀𝑓 using the greedy algorithm for 𝑃 |𝑝 = 2𝑑|𝐶𝑚𝑎𝑥.
4: if 𝑆 ≤ 𝑤

𝛼𝑚𝑑 then
5: Schedule all 𝑛𝑠 jobs sequentially giving all of 𝑆 to each of them.
6: else
7: Use the Construct-Groups algorithm.
8: If necessary redistribute the speed of the slowest group.

9: In each group 𝑖 with speed 𝑠′𝑔,𝑖 schedule
⌈︁
𝑛𝑠·𝑠′𝑔,𝑖

𝑆

⌉︁
jobs.

10: Return the schedule with the minimum makespan.

Theorem 4.3. The above algorithm is a 4.20701-approximation for our problem.

Theorem 4.4. The running time of the above algorithm is 𝒪(𝑛 ·𝑚2)

Proof. Steps 5 and 8 can actually be implemented in constant time. Step 3 takes time

𝒪(𝑚). Moreover, the algorithm of step 7, which is actually First Fit, has running time

𝒪(𝑚2), while step 9 can be completed in time 𝒪(𝑚). Combined with the initial for

iteration we get the final result.

4.4 Jobs With Different Workloads

In this section, we tackle another special version of the general model. More precisely,

we suppose that again all jobs of 𝒥 share a common delay 𝑑, however each of them has

a workload, 𝑤𝑗 , of its own. The problem at hand is clearly a general case of the identical

jobs problem, and hence it remains 𝑁𝑃 -hard. In order to solve this problem, we try

to exploit the results of the previous section. To do so, we need a rather restricting

assumption, namely:

∀𝑖 ∈ℳ : ∀𝑗 ∈ 𝒥 : 𝑠𝑖 ≤
𝑤𝑗

𝑑
(4.7)

What the above hypothesis actually claims, is that all machines are ”slow”, as defined

earlier, for every job.



Chapter 4. Malleable Job Scheduling In Uniform Machines 60

To begin with, we need again a lower bound on the optimal makespan. Following the

reasoning behind acquiring 4.1, we can prove that:∑︀
𝑗∈𝒥 𝑤𝑗

𝑆
≤ 𝑂𝑃𝑇 (4.8)

where 𝑆 =
∑︀

𝑖∈ℳ 𝑠𝑖.

Initially, we get rid of the heaviest jobs, that is the ones with sufficiently big 𝑤𝑗 . So,

we schedule all jobs with 𝑆 ≤ 𝑤𝑗

𝑑 sequentially, giving each of them all machines of ℳ.

The resulted schedule has makespan:

𝐶1 =
∑︁

{𝑗∈𝒥 | 𝑆≤
𝑤𝑗
𝑑
}

(𝑑+
𝑤𝑗

𝑆
)

≤
∑︁

{𝑗∈𝒥 | 𝑆≤
𝑤𝑗
𝑑
}

2
𝑤𝑗

𝑆

≤ 2 ·𝑂𝑃𝑇 (4.9)

The first inequality follows from the definition of these jobs, whilst the second from 4.8.

Subsequently, we need to deal with the rest of the jobs, 𝒥𝑠 = {𝑗 ∈ 𝒥 | 𝑆 >
𝑤𝑗

𝑑 }. In

order to schedule them, we will take advantage of the identical jobs algorithm. To do

so, we must partition 𝒥𝑠 into classes of jobs that have similar workloads. The algorithm

for achieving this follows.

Create-Classes Algorithm

1: Arrange the jobs of 𝒥𝑠 in order of increasing 𝑤𝑗 .
2: Take as pivot the first job in the list, with workload 𝑤1. Place in the first class, 𝒥1,

all jobs 𝑗 ∈ 𝒥 with 𝑤1
2 ≤ 𝑤𝑗 ≤ 𝑤1. Remove 𝒥1 from the list.

3: Continue the above procedure by taking as pivot the first job in the remaining list.
4: In the end, we have 𝑙 classes, 𝒥1, . . ., 𝒥𝑐, . . ., 𝒥𝑙, with their pivoting elements

satisfying 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑐 ≥ . . . ≥ 𝑤𝑙.

Observe, that for the first class 𝒥1, that is the one with the heaviest pivoting element,

we can use the Construct-Groups algorithm based on 𝑤1, since 𝑆 > 𝑤1
𝑑 and ∀𝑖 ∈

ℳ : 𝑠𝑖 ≤ 𝑤1
𝑑 . The parameter 𝛼 of the previous section is now set to be 1. Therefore,

we create ℎ1 machine groups with total speed each:

𝑤1

2𝑑
≤ 𝑠1𝑔,𝑖 ≤

3𝑤1

2𝑑
(4.10)

Consider now an arbitrary group from the ones that are built specifically for 𝒥1. The
machines inside it can be also used in order to construct groups for the second class 𝒥2.
From the way we partition the jobs into classes we know that the relation between the

pivoting elements of the first and the second class is 𝑤2 < 𝑤1
2 . Thus, for the group of



Chapter 4. Malleable Job Scheduling In Uniform Machines 61

𝒥1 considered we have:

𝑠1𝑔,𝑖 ≥
𝑤1

2𝑑
>

𝑤2

𝑑

The first inequality follows from 4.10, whilst the second is a result of the relation between

𝑤1 and 𝑤2. Furthermore, because the machines of that group are ”slow” for 𝑤2 as well

4.7, we can indeed build the groups for 𝒥2 inside the initial group for 𝒥1. The above

procedure can be extended in every pair of consecutive classes 𝒥𝑐, 𝒥𝑐+1. To sum up, we

have achieved the following:

∙ For the class 𝒥1, with pivoting element 𝑤1 we have constructed groups of speed
𝑤1
2𝑑 ≤ 𝑠1𝑔,𝑖 ≤

3𝑤1
2𝑑 .

∙ Every group of the class 𝒥𝑐, can be further partitioned into groups for the class

𝒥𝑐+1, each with speed 𝑤𝑐+1

2𝑑 ≤ 𝑠𝑐+1
𝑔,𝑖 ≤

3𝑤𝑐+1

2𝑑 , where 𝑤𝑐+1 the pivoting element of

𝒥𝑐+1.

A visual representation of this structure follows.

Figure 4.1: The grouping structure.

The only thing left to do now, is to schedule the jobs of 𝒥𝑠 using the above presented

structure. The algorithm to do this is fairly simple and is based on a classical list

scheduling argument.

Schedule Unequal Workloads Algorithm

1: Consider the job classes in decreasing order of their pivoting element, 𝒥1, . . . ,𝒥𝑙.
2: Start with the jobs of 𝒥1, scheduling them on the groups corresponding to that class.

Consider on job at a time, and place it in the group such that the resulting total
makespan is as small as possible.

3: Continue with this procedure until you finish with all classes.

Notice that due to the specific structure presented in Figure 4.1, there is no idle time

before the job finishing last starts processing. This is a result of the greedy scheduling

rule and the fact that the groups of class 𝑐+ 1 are formed within the groups of class 𝑐.

A visual example can clarify this property.



Chapter 4. Malleable Job Scheduling In Uniform Machines 62

Figure 4.2: A schedule for unequal workload jobs.

Let us denote by 𝑠𝑡 the starting time of the job finishing last, by 𝑠𝑝𝑗 the speed

allocated to job 𝑗 in the schedule and by 𝑤𝑐(𝑗) the pivoting element of the class containing

𝑗. Then, because there is no idle time before 𝑠𝑡 we have:

𝑠𝑡 ≤
∑︀

𝑗∈𝒥𝑠
(𝑤𝑗 + 𝑑 · 𝑠𝑝𝑗)

𝑆

≤
∑︀

𝑗∈𝒥𝑠
(𝑤𝑗 + 𝑑 · 3𝑤𝑐(𝑗)

2𝑑 )

𝑆

≤
∑︀

𝑗∈𝒥𝑠
4𝑤𝑗

𝑆

≤ 4 ·𝑂𝑃𝑇

The second inequality follows, since each job is assigned to a group of its class. The

third results from the relation between 𝑤𝑐 and 𝑤𝑐+1.

The final makespan of such a schedule is obviously 𝑠𝑡 plus the processing time of the

last job, which is bounded by 3 · 𝑂𝑃𝑇 . Hence, 𝐶2 ≤ 7 · 𝑂𝑃𝑇 . The total schedule is

obtained via sequencing the large jobs and the jobs of 𝒥𝑠. Thus, 𝐶 = 𝐶1+𝐶2 ≤ 9 ·𝑂𝑃𝑇 .

4.5 Future Work

Regarding the new model we introduce in this thesis, there are many intriguing future

research directions. First of all, one may try to improve the approximation factor of the

identical jobs case. Since we do not know if this particular problem is 𝑁𝑃 -hard in the

strong sense, there may even be a 𝐹𝑃𝑇𝐴𝑆 for it. Furthermore, the hypothesis about the

machine speeds 4.7, for the version with the unequal workloads should be removed, in

order to provide a general solution to that problem. Moreover, it would be interesting to

study the model even when the job delays are not identical, namely assuming processing

time functions of the form 𝑝𝑗(𝑠) = 𝑑𝑗 +
𝑤𝑗

𝑠 . Finally, the most interesting direction

to follow, is studying malleable job scheduling with general processing time functions,

without assuming any particular structure for them.



Bibliography

[1] Jakob Gonczarowski and Manfred K. Warmuth. Applications of scheduling theory

to formal language theory. Theoretical Computer Science, 37:217 – 243, 1985. ISSN

0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(85)90092-1. URL http://

www.sciencedirect.com/science/article/pii/0304397585900921.

[2] open-mpi.org. https://www.open-mpi.org/. Accessed: 2016-05-26.

[3] openmp.org. http://openmp.org/wp/. Accessed: 2016-05-26.

[4] cilkplus.org. https://www.cilkplus.org/. Accessed: 2016-05-26.

[5] Joseph Leung, Laurie Kelly, and James H. Anderson. Handbook of Scheduling:

Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton, FL,

USA, 2004. ISBN 1584883979.

[6] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. In Dis-

crete Optimization II Proceedings of the Advanced Research Institute on Discrete

Optimization and Systems Applications of the Systems Science Panel of NATO and

of the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM

Banff, Aha. and Vancouver, volume 5 of Annals of Discrete Mathematics, pages 287

– 326. Elsevier, 1979. URL http://www.sciencedirect.com/science/article/

pii/S016750600870356X.

[7] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.

ACM, 21(2):201–206, April 1974. ISSN 0004-5411. doi: 10.1145/321812.321815.

URL http://doi.acm.org/10.1145/321812.321815.

[8] Klaus Jansen and Lorant Porkolab. Linear-time approximation schemes for schedul-

ing malleable parallel tasks. In Proceedings of the Tenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’99, pages 490–498, Philadelphia, PA, USA,

1999. Society for Industrial and Applied Mathematics. ISBN 0-89871-434-6. URL

http://dl.acm.org/citation.cfm?id=314500.314870.

63

http://www.sciencedirect.com/science/article/pii/0304397585900921
http://www.sciencedirect.com/science/article/pii/0304397585900921
https://www.open-mpi.org/
http://openmp.org/wp/
https://www.cilkplus.org/
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://doi.acm.org/10.1145/321812.321815
http://dl.acm.org/citation.cfm?id=314500.314870


Bibliography 64

[9] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM

J. Discret. Math., 2(4):473–487, November 1989. ISSN 0895-4801. doi: 10.1137/

0402042. URL http://dx.doi.org/10.1137/0402042.

[10] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms scheduling

parallelizable tasks. In Proceedings of the Fourth Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA ’92, pages 323–332, New York, NY,

USA, 1992. ACM. ISBN 0-89791-483-X. doi: 10.1145/140901.141909. URL http:

//doi.acm.org/10.1145/140901.141909.

[11] Gregory Mounie, Christophe Rapine, and Denis Trystram. A 3/2-approximation

algorithm for scheduling independent monotonic malleable tasks. SIAM Journal

on Computing, 37(2):401–412, 2007. doi: 10.1137/S0097539701385995. URL http:

//dx.doi.org/10.1137/S0097539701385995.

[12] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms

for scheduling problems theoretical and practical results. J. ACM, 34(1):144–162,

January 1987. ISSN 0004-5411. doi: 10.1145/7531.7535. URL http://doi.acm.

org/10.1145/7531.7535.

[13] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990. ISBN

0-471-92420-2.

[14] T. Decker. Ein universelles Lastverteilungssystem und seine Anwendung bei der

Isolierung reeller Nullstellen. PhD thesis, 2000.

[15] T. Decker, T. Lücking, and B. Monien. A 5/4-approximation algorithm for schedul-

ing identical malleable tasks. Theor. Comput. Sci., 361(2):226–240, September

2006. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.05.012. URL http://dx.doi.org/

10.1016/j.tcs.2006.05.012.

[16] Jason Glasgow and Hadas Shachnai. Minimizing the flow time for parallelizable

task systems. Technical report, 1993.

[17] John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Prasoon Tiwari, Jason

Glasgow, Uwe Schwiegelshohn, and Philip S. Yu. Scheduling parallelizable tasks

to minimize average response time. In Proceedings of the Sixth Annual ACM Sym-

posium on Parallel Algorithms and Architectures, SPAA ’94, pages 200–209, New

York, NY, USA, 1994. ACM. ISBN 0-89791-671-9. doi: 10.1145/181014.181331.

URL http://doi.acm.org/10.1145/181014.181331.

[18] John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S. Yu. Scheduling

parallel tasks to minimize average response time. In Proceedings of the Fifth

http://dx.doi.org/10.1137/0402042
http://doi.acm.org/10.1145/140901.141909
http://doi.acm.org/10.1145/140901.141909
http://dx.doi.org/10.1137/S0097539701385995
http://dx.doi.org/10.1137/S0097539701385995
http://doi.acm.org/10.1145/7531.7535
http://doi.acm.org/10.1145/7531.7535
http://dx.doi.org/10.1016/j.tcs.2006.05.012
http://dx.doi.org/10.1016/j.tcs.2006.05.012
http://doi.acm.org/10.1145/181014.181331


Bibliography 65

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, pages 112–

121, Philadelphia, PA, USA, 1994. Society for Industrial and Applied Mathemat-

ics. ISBN 0-89871-329-3. URL http://dl.acm.org/citation.cfm?id=314464.

314485.

[19] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with

resource constraints. SIAM Journal on Computing, 4(2):187–200, 1975. doi:

10.1137/0204015. URL http://dx.doi.org/10.1137/0204015.

[20] H. W. Kuhn. The hungarian method for the assignment problem. Naval Re-

search Logistics Quarterly, 2(1-2):83–97, 1955. ISSN 1931-9193. doi: 10.1002/

nav.3800020109. URL http://dx.doi.org/10.1002/nav.3800020109.

[21] Alexander Grigoriev, Maxim Sviridenko, and Marc Uetz. Unrelated Parallel

Machine Scheduling with Resource Dependent Processing Times, pages 182–195.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-32102-6. doi:

10.1007/11496915 14. URL http://dx.doi.org/10.1007/11496915_14.

[22] Alexander Grigoriev, Maxim Sviridenko, and Marc Uetz. LP Rounding and an

Almost Harmonic Algorithm for Scheduling with Resource Dependent Processing

Times, pages 140–151. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN

978-3-540-38045-0. doi: 10.1007/11830924 15. URL http://dx.doi.org/10.1007/

11830924_15.

[23] Alexander Grigoriev, Maxim Sviridenko, and Marc Uetz. Machine scheduling with

resource dependent processing times. Mathematical Programming, 110(1):209–228,

2007. ISSN 1436-4646. doi: 10.1007/s10107-006-0059-3. URL http://dx.doi.

org/10.1007/s10107-006-0059-3.

[24] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized

assignment problem. Mathematical Programming, 62(1):461–474, 1993. doi: 10.

1007/BF01585178. URL http://dx.doi.org/10.1007/BF01585178.

[25] V. S. Anil Kumar and M. V. Marathe. Approximation algorithms for scheduling on

multiple machines. In 46th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’05), pages 254–263, Oct 2005. doi: 10.1109/SFCS.2005.21.

[26] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to

minimize average completion time: Off-line and on-line approximation algorithms.

Math. Oper. Res., 22(3):513–544, August 1997. ISSN 0364-765X. doi: 10.1287/

moor.22.3.513. URL http://dx.doi.org/10.1287/moor.22.3.513.

http://dl.acm.org/citation.cfm?id=314464.314485
http://dl.acm.org/citation.cfm?id=314464.314485
http://dx.doi.org/10.1137/0204015
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1007/11496915_14
http://dx.doi.org/10.1007/11830924_15
http://dx.doi.org/10.1007/11830924_15
http://dx.doi.org/10.1007/s10107-006-0059-3
http://dx.doi.org/10.1007/s10107-006-0059-3
http://dx.doi.org/10.1007/BF01585178
http://dx.doi.org/10.1287/moor.22.3.513


Bibliography 66

[27] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing

constraint violation (extended abstract). In Proceedings of the Twenty-fourth An-

nual ACM Symposium on Theory of Computing, STOC ’92, pages 771–782, New

York, NY, USA, 1992. ACM. ISBN 0-89791-511-9. doi: 10.1145/129712.129787.

URL http://doi.acm.org/10.1145/129712.129787.

[28] Uwe Schwiegelshohn, Walter Ludwig, Joel L. Wolf, John Turek, and Philip S. Yu.

Smart smart bounds for weighted response time scheduling. SIAM J. Comput., 28

(1):237–253, February 1999. ISSN 0097-5397. doi: 10.1137/S0097539795286831.

URL http://dx.doi.org/10.1137/S0097539795286831.

[29] O. Beaumont, N. Bonichon, L. Eyraud-Dubois, and L. Marchal. Minimizing

weighted mean completion time for malleable tasks scheduling. In Parallel Dis-

tributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 273–

284, May 2012. doi: 10.1109/IPDPS.2012.34.

[30] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1979. ISBN 0716710447.

[31] Mihir Bellare and Madhu Sudan. Improved non-approximability results. In Proceed-

ings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC

’94, pages 184–193, New York, NY, USA, 1994. ACM. ISBN 0-89791-663-8. doi:

10.1145/195058.195129. URL http://doi.acm.org/10.1145/195058.195129.

[32] Oh-Heum Kwon and Kyung-Yong Chwa. Approximation algorithms for general

parallel task scheduling. Inf. Process. Lett., 81(3):143–150, February 2002. ISSN

0020-0190. doi: 10.1016/S0020-0190(01)00210-1. URL http://dx.doi.org/10.

1016/S0020-0190(01)00210-1.

[33] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

Proof verification and the hardness of approximation problems. J. ACM, 45(3):

501–555, May 1998. ISSN 0004-5411. doi: 10.1145/278298.278306. URL http:

//doi.acm.org/10.1145/278298.278306.

[34] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating mini-

mization problems. J. ACM, 41(5):960–981, September 1994. ISSN 0004-5411. doi:

10.1145/185675.306789. URL http://doi.acm.org/10.1145/185675.306789.

[35] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011. ISBN

0521195276, 9780521195270.

http://doi.acm.org/10.1145/129712.129787
http://dx.doi.org/10.1137/S0097539795286831
http://doi.acm.org/10.1145/195058.195129
http://dx.doi.org/10.1016/S0020-0190(01)00210-1
http://dx.doi.org/10.1016/S0020-0190(01)00210-1
http://doi.acm.org/10.1145/278298.278306
http://doi.acm.org/10.1145/278298.278306
http://doi.acm.org/10.1145/185675.306789


Bibliography 67

[36] Jianer Chen and Chung-Yee Lee. General multiprocessor task scheduling. Naval

Research Logistics (NRL), 46(1):57–74, 1999. ISSN 1520-6750. doi: 10.1002/(SICI)

1520-6750(199902)46:1⟨57::AID-NAV4⟩3.0.CO;2-H. URL http://dx.doi.org/10.

1002/(SICI)1520-6750(199902)46:1<57::AID-NAV4>3.0.CO;2-H.

[37] J.A. Hoogeveen, S.L. van de Velde, and B. Veltman. Complexity of schedul-

ing multiprocessor tasks with prespecified processor allocations. Discrete Applied

Mathematics, 55(3):259 – 272, 1994. ISSN 0166-218X. doi: http://dx.doi.org/

10.1016/0166-218X(94)90012-4. URL http://www.sciencedirect.com/science/

article/pii/0166218X94900124.

[38] A. Miranda-Garcia. Approximation Algorithms for Multiprocessor Task Schedul-

ing. Texas A & M University, 1998. URL https://books.google.gr/books?id=

T--aNwAACAAJ.

[39] Michel X. Goemans. An approximation algorithm for scheduling on three dedicated

machines. Discrete Appl. Math., 61(1):49–59, July 1995. ISSN 0166-218X. doi: 10.

1016/0166-218X(94)00160-F. URL http://dx.doi.org/10.1016/0166-218X(94)

00160-F.

[40] Amoura, Bampis, Kenyon, and Manoussakis. Scheduling independent multipro-

cessor tasks. Algorithmica, 32(2):247–261, 2002. doi: 10.1007/s00453-001-0076-9.

URL http://dx.doi.org/10.1007/s00453-001-0076-9.

[41] Jianer Chen and Antonio Miranda. A polynomial time approximation scheme

for general multiprocessor job scheduling. SIAM Journal on Computing, 31(1):1–

17, 2001. doi: 10.1137/S0097539798348110. URL http://dx.doi.org/10.1137/

S0097539798348110.

[42] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:

A Foundation for Computer Science. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2nd edition, 1994. ISBN 0201558025.

http://dx.doi.org/10.1002/(SICI)1520-6750(199902)46:1<57::AID-NAV4>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1520-6750(199902)46:1<57::AID-NAV4>3.0.CO;2-H
http://www.sciencedirect.com/science/article/pii/0166218X94900124
http://www.sciencedirect.com/science/article/pii/0166218X94900124
https://books.google.gr/books?id=T--aNwAACAAJ
https://books.google.gr/books?id=T--aNwAACAAJ
http://dx.doi.org/10.1016/0166-218X(94)00160-F
http://dx.doi.org/10.1016/0166-218X(94)00160-F
http://dx.doi.org/10.1007/s00453-001-0076-9
http://dx.doi.org/10.1137/S0097539798348110
http://dx.doi.org/10.1137/S0097539798348110

	1 Introduction
	1.1 Notation and Definitions
	1.1.1 Formal Definition of a Scheduling Problem
	1.1.2 Machine Environment
	1.1.3 Objective Functions and Metrics
	1.1.4 The Standard Three Field Notation
	1.1.5 Formal Definition of the One-Job-Multiple-Machines Model

	1.2 Overview of Approximation Algorithms
	1.3 Organization of the Thesis

	2 Malleable Job Scheduling
	2.1 Problem Definition
	2.2 Minimizing the Makespan
	2.2.1 Description of the Algorithm
	2.2.2 The InsertSmall Subroutine
	2.2.3 Partitioning the Jobs into 2 Shelves
	2.2.4 The BuildFeasible Subroutine

	2.3 Minimizing the Makespan for Identical Jobs
	2.4 Minimizing the Sum of Completion Times
	2.4.1 Lower Bounds for the Rigid Problem
	2.4.2 A Scheduling Algorithm for the Rigid Problem
	2.4.3 Restricting an Allotment
	2.4.4 Finding an Initial Allotment

	2.5 Scheduling with Resource Dependent Processing Times
	2.5.1 Problem Definition
	2.5.2 A 4-Approximation Algorithm
	2.5.2.1 Relaxing the Problem
	2.5.2.2 The Rounding Procedure
	2.5.2.3 The Scheduling Algorithm

	2.5.3 A 3.75-Approximation Algorithm
	2.5.4 Connection to the Malleable Problem

	2.6 Minimizing the Sum of Weighted Completion Times
	2.6.1 A 25.55-Approximation Algorithm


	3 General Multiprocessor Job Scheduling
	3.1 Inapproximability Results
	3.1.1 The Non-Preemptive Case
	3.1.2 The Peemptive Case

	3.2 Linear Array Networks
	3.2.1 The Non-Preemptive Problem
	3.2.2 The Preemptive Problem

	3.3 Fixed Number of Machines
	3.3.1 The m=2 Case
	3.3.2 The m=3 Case
	3.3.3 The General Fixed m Case
	3.3.3.1 The (m,)-Canonical Schedules
	3.3.3.2 The Approximation Scheme



	4 Malleable Job Scheduling In Uniform Machines
	4.1 The Model
	4.2 NP-Hardness
	4.3 The Identical Jobs Case
	4.4 Jobs With Different Workloads
	4.5 Future Work


