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Abstract

A typical hypothesis in classical scheduling is that a job can be processed by only one
machine at a time. However, in many problems arising in a variety of fields, this may
not be an adequate model. In this case, we must extend the classical model, allowing a
job to use more than one machines for its execution. The processing time of a job is a
a function of the machines allocated to it. Also, all the machines allocated to a job are
required to execute the job in unison. That is, they are required to start and finish the
job at the same time. In algorithmic literature, the above are mentioned as malleable

or multiprocessor or parallelizable job scheduling problems.

In this diploma thesis, we study scheduling problems of that nature from the view-
point of approximation algorithms and the typical scheduling theory. We present several
known results and we also slightly extend some of them. Our main contribution is a
novel malleable job scheduling model, that generalizes the idea of the well known uniform

machine scheduling, and some constant factor approximation algorithms for it.

Keywords: Scheduling, Approximation Algorithms, Resource allocation, Malleable/-

Parallelizable/Multiprocessor jobs, One-job-multiple-machines model
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Chapter 1

Introduction

In this diploma thesis we are dealing with scheduling problems. But what exactly is
a scheduling problem? Informally, one may think of scheduling as a family of problems,
in which a set of jobs must be assigned for execution in a set of processing resources,
with the jobs competing over time for the use of these resources. The objective is to
allocate the available resources to jobs, in such a way that a particular criterion is met

and also all kinds of different constraints, unique to each problem, are satisfied.

Scheduling problems are of great importance. First of all, they have way too many ap-
plications in real life situations. Perhaps, their most important application is in computer
systems. Nowadays, all computer systems, from personal computers to supercomputer
clusters, consist of many individual processing units and also have to satisfy thousands
of applications. So the need for efficient schedulers is crucial, in order for these systems
to meet their performance standards. Apart from computer systems, scheduling prob-
lems are also relevant in many other different fields, such as human resource planning,
production planing, transportation and even formal language theory [I]. Beside their
many applications, scheduling problems are also important from a purely algorithmic
viewpoint. They have a rich and intriguing combinatorial structure and their study has

led to some central, as well as mathematically elegant results for the field.

Although the algorithmic literature concerning scheduling problems is vast, the ma-
jority of the studied models are based on the following hypothesis. Every job that
needs to be executed, can only use one processing unit at a time. This is the so-called
one-job-one-machine model. However, in many settings arising in a variety of fields,
this may not be an adequate model. There are many real life situations in which a
job may use or even demand multiple processors for its execution. Thus, the classical
model must be extended to this direction, in order to capture the special requirements

and characteristics of such cases. This is the so-called one-job-multiple-machines model.
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The aforementioned model, although equally important, is not very well studied in the

existing literature and that drove us to work on it.

We now present some of the most typical examples of problems, in which jobs may
require several resources at once for their processing. To begin with, there are many
programming frameworks for modern multicore computer systems that allow the par-
allelization of particular tasks, in order to exploit the inherent parallel capabilities of
the underlying architecture. Parallelizing a job simply stands for using more than one
computational cores for its execution and of course in parallel. In such systems, the more
processors a job uses simultaneously, the smaller its processing time. That happens be-
cause the workload of the job is distributed among the processors alloted to it. Parallel
architectures and frameworks that support this type of job parallelization, are very pop-
ular lately, because of the better performance guarantees they offer. Some examples of
such frameworks that take into account the underlying parallel architecture, and try to
exploit it via job parallelization are MPI [2], OpenMP [3] and Cilk [4]. It is quite clear,
that the classical scheduling algorithms that have been developed for parallel machines
of the nineties are not well adapted to these new execution supports. Thus, the study
of the one-job-multiple-machines model is necessary for providing better schedulers for

such systems.

The real life applications of the one-job-multiple-machines model are not limited only
in multiprocessor computer systems. Another typical example is the berth allocation or
berth scheduling problem, which is a well known ANP-complete problem in operations
research. In that problem we have large vessels that need to be loaded or unloaded and
they may occupy several berths at once for their processing. Here, the berths play the
role of the machines, and it may very easily be the case that a large vessel cannot be
satisfied by only one berth. A similar problem involves human workforce planning and
is the following. There is a group of workers, each with a different set of skills. There is
also a set of tasks that the group should complete before they leave work. But each task
demands for its execution specific skills, that not all workers posses. Thus, the workers
must find the best way to form teams, which will work on different tasks, such that each
team possesses in total the skills required for the task assigned to it. And of course the
final goal is to complete all tasks as soon as possible in order to leave work early. In this
problem, every member of the group corresponds to a computational unit, and a task
may need more than one workers for its completion, because a single worker may not

master all the appropriate skills.

Finally, we have to mention that the classical one-job-one-machine scheduling model
is just a special case of the one-job-multiple-machines model that we are interested in.
Thus, the study of the latter is more difficult and more demanding, but nonetheless

necessary, as well as fascinating and thought-provoking.
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1.1 Notation and Definitions

In this section, we are going to present all the basic notation and definitions, needed
for understanding the rest of this thesis. We begin by examining the above for the
typical one-job-one-machine scheduling model, and then continue by extending it to the

more complex one-job-multiple-machines case.

1.1.1 Formal Definition of a Scheduling Problem

In every classical scheduling problem we have a set of jobs 7, and a set of machines
M. We use n = |J| and m = | M| to denote the number of jobs and machines re-
spectively. In the rest of the thesis we are going to use the terms ”jobs” and ”tasks”,
as well as the terms ”"machines” and ”processors” interchangeably. Every job j € J
must be assigned for execution to some machine i € M, and its processing time there
is denoted by p; j. That is, if j € J ends up running on machine ¢ € M, it will burden

that machine for p; ; > 0 units of time.

A schedule is a function f : J — M X IR, that maps every job to a machine-time pair.
That is, the job will use that machine for its processing, starting at the time indicated
in the pair. A schedule is called feasible, if at any point in time every machine executes

at most one job.

In many scheduling problems there are also some other special constraints that need
to be satisfied, apart from the feasibility described above. We are going to mention only
one type of such constraints, which will be later encountered in our study and is very
common in many problems. That is the precedence constraints. In a few words, we say
that a job i precedes job j, denoted by i < j, if the execution of the latter can start
only after the completion of the former job. Usually the precedence relations of jobs are

depicted as a Directed Acyclic Graph. An example is following.

(3)——()

FIGURE 1.1: A graph representing the precedence constraints among jobs.

As we can see, there is a node for each job and an edge ¢ — j suggests that, job j

cannot start its execution, unless ¢ is done processing.
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Another important characteristic of some scheduling problems is the notion of pre-
emption. In problems that do not allow preemption, once a job j € J begins processing
on some machine ¢ € M, it will occupy this machine consecutively for p; ; units of time.
On the other hand, in problems with the preemptive feature, the execution of a job can
be interrupted at any time and resumed later. For example, suppose that a job has to
run for 7 time units on the machine that it is assigned to. In a preemptive problem
initially it can occupy the machine for 4 time units, then be interrupted so that another
job can use the machine, and finally occupy it again for another 3 time units until its

completion.

1.1.2 Machine Environment

Perhaps, the most important characteristic of a scheduling problem is the machine
environment, in which it takes place. The machine environment defines the fundamental
properties of the available machines. In the previous section, we defined the processing
time of job j € J, when executed on machine ¢ € M to be p; ;. We are now going to
see, that this quantity is actually determined by the intrinsic characteristics of M. In

the scheduling literature there are three well studied types of environments:

e Identical machines, denoted by P. In this case we assume that all m machines
have exactly the same computational capabilities. In other worlds, each job per-
ceives all machines in the same way, and thus its processing time is independent of
the machine it will use. So, Vi € M : p;; = p; and we can simplify the notation

by just writing p;.

e Uniform machines, denoted by . In this case we assume that every machine

has its own computational speed, say s;. That is, each machine can process at

a different rate. If the workload of a job is wj, then the processing time of j in
wj

machine ¢ € M is defined as p; ; = <%. Observe that identical machines are just a

special case of uniform machines, in which all processors are of the same speed.

e Unrelated machines, denoted by R. This is the most general machine environ-
ment and constitutes an extension of both the two mentioned earlier. In this case,
we assume no relation at all between the processing time of a job and the machine
it is scheduled on. Thus we simply write p; j. Any algorithm designed for this

case, will provide results for the above environments as well.

1.1.3 Objective Functions and Metrics

All scheduling problems that we study in this work are optimization problems. That

means that any algorithm concerning them, apart from satisfying the required feasibility
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constraints, also tries to either maximize or minimize a desired objective function. To
be more precise, the vast majority of scheduling problems are minimization problems,
and now we will provide a short review of some of the most usual metrics considered in
the literature. Before we begin, we need a bit more notation. Let us denote by C; the

completion time of job j € J in a given feasible schedule.

e The Makespan objective. Formally defined as Cy,qr = I]IIEE?( C;. The makespan
is the length of the produced schedule. It can also be seen, as the latest time that
a machine is still active, or the latest time that a job is still undergoing execution.
Historically it was the first metric considered for scheduling problems. Makespan
is an ideal metric for situations that we care a lot about the total length of the
whole execution process. One such case is when we have a single user system and

we want to service that user as soon as possible.

e The Sum of Completion Times or Z C;. Observe that minimizing this ob-
JjeT
jective is equivalent to the problem of minimizing the average completion time,

since the average completion time just rescales the objective function for each fea-
sible solution by a factor of 1/n. This metric is suitable for multi-user systems
with tasks from many different agents. In that case we would like to minimize the

average completion time and not just satisfy particular users.

e The Sum of Weighted Completion Times. Suppose that each job j € J
has a positive weight wj;, indicating its significance. Then we aim at minimizing

Z w; - Cj. The purpose of this metric is almost the same as the one described
JjeT
above, with just a slight difference. In this case, jobs with higher priority ought

to be scheduled earlier.

The objective functions described above are just the ones we are going to use through-

out this thesis. There are actually many more considered in the literature [5].

1.1.4 The Standard Three Field Notation

In the beginning of the eighties Graham, Lawler, Lenstra and Kan [6] developed a
very concrete and elegant notation for describing scheduling problems. This notation is
now widely accepted and used. It consists of three independent fields, of the following

form A|B|C, each referring to a different aspect of the problem.

e The first field A, describes the machine environment. For example, if the first field

contains R, then we are dealing with an unrelated machines problem.
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e The second field B, describes all types of special constraints concerning the prob-
lem. For example, if we are dealing with a problem that allows preemption, we

have to state that in the second field.

e The third field C, contains the objective function we want to minimize.

1.1.5 Formal Definition of the One-Job-Multiple-Machines Model

We are now going to see how all the above notation and definitions adjust, in the
case of the one-job-multiple-machines model. First of all, again we have a set of jobs J
that need to be scheduled using a set of machines M, with n = |J|, m = |M|. The only
difference is that now, a job j € J can be assigned for execution to some set S C M
of machines, with processing time denoted by p;(S) and S # 0. When j € J runs on
S C M, it occupies all machines of S in unison. That is, j has the same starting and

finishing time in all of those machines. For better understanding, we present a visual

example.
Machine 1 Machine 1
Machine 2 Machine 2 Job
Machine 3 Job Machine 3
Time horizon Time horizon
(A) One-job-one-machine model (B) One-job-multiple-machines model

FIGURE 1.2: Job execution under the new model.

A schedule in this case is a function f : J — 2™ x R, that maps every job to
a set of machines-time pair. Again, a schedule is called feasible, if at any point in
time every machine executes at most one job. The notion of precedence constraints is
relevant for this model too, maintaining exactly the same form. Also, problems with
preemption can still arise in this new model. If a problem allows preemption, then after
a job j € J is assigned for execution to a set S C M, it can be interrupted at any time,
leaving the machines of S available for other jobs, and resume at a later point possibly
occupying a different set, for the rest of its processing. Finally, the aforementioned

objective functions hold in this case too, and our study is totally based on them.

The most important and interesting fact is to see how the three machine environments
presented earlier, are generalized for this model. The intrinsic aspects of the machine

environment again define the difficulty and the unique structure of the problem.

e The identical machines setting. In this case, all machines of M have the
same computational capabilities. So, the processing time of each task is a known

function of just the number of processors alloted to it. For simplicity, we denote
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by p;(n) the processing time function of job j € J, where n is the variable used for
the number of machines j uses during its execution. In order for any problem to
make sense in this kind of setting, p;(n) ought to be a non-increasing function of
n. The more processors a job occupies, the more its workload is distributed among
them and thus the smaller its processing time. The goal is to find for each task
J € J, an allotment of processors n; and an overall schedule assigning the tasks
to the machines, which minimizes the desired objective function. Usually in the
literature, problems in such settings are referenced as Malleable Job Scheduling.
Finally observe, that an algorithm designed for this case, can provide results for the

classical identical machine scheduling problem too, by assuming Vn : p;(n) = p;.

e The uniform machines setting. In this case, each machine processes at a
different rate and so has its own speed s;. The execution time of a task depends
on the amount of speed allocated to it and thus is represented as a function p;(s),
where s denotes the total speed it utilizes. For example, if job j € J runs on two
machines, one with speed 4 and the other with speed 6, its processing time will
be p;(10). Again, we assume that Vj € J, p;(s) is a non-increasing function in s.
Observe, that again the identical setting is just a special case of this environment,
because we can assume that identical machines are just uniform machines with the
same speed. Problems of this kind have never been studied in the literature, and

to the extend of our knowledge we are the first to deal with them.

e The unrelated machines setting. This case is the more general, as it consti-
tutes an extension of both the previous mentioned. In problems of such nature, we
assume no relation at all between the processing time of a job j and the set of pro-
cessors it will occupy. So, V.S C M,Vj € J there is a value p;(S) representing the
corresponding processing time. Such problems appear in the literature as General
Parallel Task Scheduling or Multiprocessor Job Scheduling. Observe again, that
an algorithm designed for this case, can provide results for the classical unrelated

machine scheduling problem too, by assuming that Vj € J :

pij it S={si)
pi(S) = :
+o00 otherwise

Finally we must mention, that there is no globally accepted and widespread used
generalization of the three field notation we presented earlier, for the one-job-multiple-

machines model. Each problem has to be presented analytically here.
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1.2 Overview of Approximation Algorithms

All optimization problems considered in this thesis are known to be N'P-hard. Per-
haps, the most common approach in dealing with NP-hardness is via approximation
algorithms. Approximation algorithms aim at finding a near optimal solution in poly-
nomial time. The quality of a given solution and consequently the quality of an approx-
imation algorithm is measured via the approximation ratio or guarantee. We formally

define the approximation ratio of an algorithm for a minimization problem as follows.

Definition 1.1. An algorithm A for a minimization problem II is called an p-approximation,
with p > 1, if for every instance I of II we have OPT'(I) < SOLA(I) < p- OPT(I).
OPT(I) is the value of the optimal solution for instance I and SOLA(I) is the value

returned by the algorithm for the same instance.

There is a very similar definition for approximating maximization problems. In gen-
eral p can be a function of the size of the input, that is p = f(|]). The goal when
designing an approximation algorithm is to ensure the lowest possible ratio. A constant
factor is the best we can wish for, although sometimes this is not possible and we have

to settle for logarithmic, linear or other function of the input size ratios.

1.3 Organization of the Thesis

In Chapter 2, we study the Malleable Job Scheduling Problem. We begin by pre-
senting a 3/2-approximation algorithm for the makespan objective. Furthermore, we
briefly discuss the same problem under the assumption of identical jobs. We continue
by surveying a 2-approximation algorithm for the problem of minimizing the average
completion time. Next, we examine a problem that at first sight doesn’t seem to have
a connection with our model. We present some results concerning the minimization of
makespan for it, and show that it can actually stand as a generalization of the malleable
setting. Finally, as a contribution we extend these existing results in the case of the

average weighted completion time objective.

The purpose of Chapter 3 is to introduce the more general Multiprocessor Job Schedul-
ing Model. All problems considered in this chapter are dealing with the makespan ob-
jective. We begin by presenting an inapproximability result for this model, and two
algorithms for some special cases. Finally, we study a central result of the field, which

consists of a PTAS in the case where the number of machines is fixed.

Chapter 4 contains our research work. Initially, we introduce a new model, regarding
malleable scheduling in uniform machines. We then concentrate on some special cases

of the model and provide approximation algorithms for them.



Chapter 2

Malleable Job Scheduling

The purpose of this chapter is to introduce the reader to the problem of scheduling
malleable jobs. For this reason, we present a collection of the most important algorithms
and results, concerning all different types of objective functions. We begin by formally

defining the problem.

2.1 Problem Definition

In the Malleable Job Scheduling Problem we have a set M of m = |M]| identical
processors, as well as a set J of n = |J| independent malleable tasks. A malleable task
is a computational unit that may be executed using several processors, and its processing
time depends only on the number of them. A set of jobs is called independent, if there are
no precedence constraints among them. More formally, a task j € J has an execution
time p;(n;), which is a known function of the number of machines n;, with 1 < n; <m,
that it uses during its processing. All processors alloted to a job are required to execute
that job in unison. That is, the n; processors should start the job at the same time st;,
and process it non-preemptively until time st; 4+ p;(n;). Such a job can also be observed
as a malleable rectangle, whose width p;(n;) stretches along a time-axis and whose
height n; stretches along a machine-axis, although the n; machines are not required to

be consecutive with respect to some ordering.

Computing a feasible schedule for such a problem, consists in finding for each job

Jj € J amachine allotment n; and a starting time st; satisfying the following constraints:

e At any time ¢ in the schedule, all machines execute at most one job.
e The total processor consumption at any moment ¢ doesn’t exceed m. That is:

Z n; <m

{J€T | st;<t<stj+pj(n;)}

9
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Before we continue, we need to define a very important function and then state some
very crucial assumptions used in most of the literature, which we will take into account

throughout this chapter.

Definition 2.1 (Work function). For every job j € J, we define its work function
as, w;j(nj) = n; - pj(n;). Geometrically, this function corresponds to the area of the

aforementioned malleable rectangle.

Definition 2.2 (Monotony Hypothesis). A set of jobs J is said to be monotonic, if for

each job j € J, p;j(n;) is a non-increasing and w;(n;) is a non-decreasing function of n;.

Observe, that the assumption concerning the execution time function of a job is
quite reasonable to make. The more processors a job utilizes, the more its workload
is distributed and thus the smaller its processing time. However, this not actually a
restriction, since every such function pj(n;) can be transformed to fulfil the monotony
hypothesis by setting:

/ ) — 1 . .
pj(ng) =, min p;(n;)

This new function is clearly non-increasing. We simply make the optimal number of

machines do the work and leave the rest idle. Note also, that this transformation doesn’t

affect the optimal solution of any problem.

Furthermore, the assumption about the non-decreasing work is very meaningful, since
it depicts the typical behaviour of parallel applications. From that point of view, this
monotonic hypothesis may be interpreted by the well-know Brent’s lemma [7], which
states that although the parallel execution of a job achieves some speedup, that cannot

be superlinear due to the unavoidable communication overhead.

2.2 Minimizing the Makespan

We begin by examining the problem under the makespan minimization objective.
This form of the problem is actually well studied in the literature with some very
interesting results regarding it. Perhaps, the most important is a PTAS by Jansen
and Porkolab [8]. Their result cannot be further improved to a fully polynomial time
scheme since the problem is strongly NP-hard [9]. The complexity of their scheme,
although polynomial in the size of the input contains some large exponential factors,
which render it useless for any practical application. Thus, low complexity, constant
factor approximation algorithms are still relevant. One of the first such algorithms was
a 2-approximation proposed by Turek et al. [10], based on some simple discrete resource

allocation techniques, as well as a classical list scheduling argument. In our study, we
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prefer to present more extensively the best known, in terms of minimum ratio, constant

factor approximation, which is a % + ¢ due to Mounie et al.[11].

Before we continue with the analysis of the algorithm, we must give another useful

definition.

Definition 2.3 (Canonical number of processors). For every job j € J, we define its
canonical number of processors y(j, k), as the minimum number of machines needed, in
order for j to have p;(y(j,h)) < h. Even if by using all m machines, j cannot have an

execution time less or equal to h, then by convention we write v(j,h) = 400.

In addition, observe that w;(y(j,h)) is also the minimum work needed to execute j

in time at most h, if of course v(j,h) < +oo0.

2.2.1 Description of the Algorithm

The algorithm of [11] is based on a dual approximation technique [12]. A A-dual

approximation procedure for a scheduling problem can be described as follows:

A )-approximation procedure
1: Take as input a target makespan d.
2: Deliver a schedule with makespan C' < Ad, or answer correctly that no feasible
schedule of length at most d exists for the problem.

Using the above procedure and a binary search on the target makespan, we can get
a A\(1 + €) approximation for every e > 0. If this procedure runs in polynomial time,
and (0g(Cinaz) is also polynomial (where C,q, the upper bound of d used in the binary
search), then obviously the approximate schedule is also computed in polynomial time.
The factor € has to do with the precision of the binary search, and defines a trade-off

between running time and good approximation ratio.

The algorithm presented in this section uses a dual approximation technique in the
following way. For a given d, if the oracle doesn’t answer ”INO”, it returns a schedule
partitioned into two shelves. The first shelf is of length d and contains jobs with pro-
cessing time % < p < d. All these jobs can actually run in parallel and so the first shelf
is a legal schedule. In the second shelf, of length g, we have jobs with processing time at
most %. Ideally, we would like the second shelf to be a legal schedule too. Unfortunately,
this is not the case, and some local transformations, which should maintain the length
of both shelves, should take place. After that, the whole 2-shelves schedule of makespan
at most 32—d will be feasible, and that concludes the design of a %-dual approximation

procedure for the problem.

Next, we sketch the main structure of the algorithm. In latter sections, we study

separately all of its subroutines, providing both intuition and in-depth mathematical
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analysis. Note that the properties of step 3 of the below algorithm define the construction

of the desired oracle.

A %-dual approximation

1: Take as input a target makespan d, the number of machines m and the set of
monotonic malleable jobs J.

2: Let Js = {j € J | pj(1) < ¢} and Ws = > ieqs Pi(1).

3: For the rest of the tasks, J — Js, find an allotment of machines to each of them,
with the following properties:

e The total work is at most md — Wgs.
e The processing time of all jobs is at most d.

e The jobs with processing time greater than % require in total at most m pro-
cessors, and thus can run in parallel.

If you fail to do so, answer NO and stop.

4: Use the BuildFeasible subroutine, in order to transform the above schedule into a
feasible one.

5: Use the InsertSmall subroutine to schedule the remained tasks of Js, and return
the final solution.

2.2.2 The InsertSmall Subroutine

It is clear form the above description, that the algorithm temporarily doesn’t con-
sider the tasks of Js. These are the ones with sequential time at most %. That hap-
pens, because every j € Js is quite "small” in a way, and scheduling Js doesn’t affect
substantially the optimal solution. Hence, given a YES answer of the oracle and the
corresponding computed allotment, we must legally insert the tasks of Js in the con-
structed schedule for J — Js. So suppose that after step 4 of the algorithm we have a
feasible 2-Shelves schedule for the jobs of J — Js, with the following property. The jobs
of each self can run in parallel. In a latter section we will see how this is achieved by

the BuildFeasible subroutine.

Lemma 2.4. If there exists a 2-Shelves schedule of length % for T — Js with work at

most md — W, then a schedule of length 3—2d can be derived for J in polynomial time.

Proof. Consider the 2-Shelves schedule of figure 2.1(A), which is the one produced by
the BuildFeasible subroutine. Initially, modify the starting time of all tasks of the second
shelf, so that they complete at time exactly %d (Figure 2.2(B)). Next, define the load
of processor i € M, as load(i) = 3¢ — idle(i), where idle(i) is the idle time of that

processor.

Now schedule the jobs of Js using the following naive rule. Order them in an arbitrary

way, and consider one task at a time. Allocate that task to the least loaded processor,
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at the earliest possible time. The only problem with this approach is that a job of Js
may not be completed before the jobs of the second shelf start execution. But at each

step, every processor has a load of at most d. Suppose otherwise. Then:
Vie M : load(i) > d = Wit > md
, where Wy, the total work area of the schedule. However we know that:
Wiotat = Wg—-gs + Ws

Wtotal < md — WS + WS
Wiotar < md

, and so we reached a contradiction. Thus load(i) < d, in each iteration of scheduling
tasks of Js.
N 3d
load(i) = 5 idle(7)

%d —idle(i) < d = idle(i) >

N |

Hence, the idle time interval on the least loaded machine has enough length to contain
the sequential execution of a job j € Js. For better understanding of the whole process,

we present a visual example.

O
————————— ade -oeonoo- 32
—————————— d B Y|
Shelf 1 Shelf 1
m processors m processors
(A) After the BuildFeasible subroutine (B) After moving the jobs of the second shelf

Shelf 2

Shelf 1

m processors

(c) After the InsertSmall subroutine

FIGURE 2.1: The InsertSmall subroutine.
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2.2.3 Partitioning the Jobs into 2 Shelves

As mentioned earlier, the most vital part of the algorithm is the design of the dual
approximation oracle. This oracle tries to partition the jobs of J — Js into two shelves,
with a machine allotment that satisfies the properties of step 3. Apart from presenting
its construction in detail, we are also going to prove that if such an allotment doesn’t

exist then there is no schedule of makespan at most d.

In the first shelf, call it S, we must place jobs with processing time in the interval
[d
29
with running time at most g. We would also like md — Ws to be an upper bound of the

d], that can all run in parallel. In the second shelf, call it Sy, we must place jobs

total work area. Due to the monotonic hypothesis, when it comes to deciding in which
shelf we will place a job, we have only two choices to consider regarding its allotment.
We either place it in S7 with ~(j,d) processors or in Se with (7, %) processors. So

constructing the oracle relies on solving the following optimization problem.

FindW*zgflCiI}{Z (U0 d) + D wli v }

JEST j¢S1

Such that Y y(j,d) <m
JES1

In the end, by checking if W* < md — Wgs we can answer properly.

We can solve the above problem by a simple reduction to knapsack. Suppose that
initially all jobs are alloted ~(j, %) processors and are all required to run in Sy. By
choosing some of the jobs to run in S; we decrease the total work. That too follows
directly from the monotony assumption. Hence, we can interpret v; = w(j,v(J, %)) —
w(j,7(j,d)), as the profit of a job, when it enters the knapsack. Also, w; = v(j, d) stands
for its weight and the total capacity W is naturally m. Thus, the partition problem is

transformed in the following way.

d
Find W* =3 w(j, 10, 5)) = max > vy
JjeT JES]
Such that Z wj <m
JEST

By using the well-known pseudopolynomial algorithm for knapsack [13], we can get a
solution in time O(nW) = O(nm). The only thing left to prove is that if W* > md—Ws,

then there in no schedule of makespan at most d.

Lemma 2.5. If there exists a schedule of length at most d, then the knapsack formulation

of the problem delivers a desired allotment.
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Proof. Due to the monotony hypothesis it is clear that Wy, < Ws. Also, because the
optimal makespan is at most d we have Woppr < md, where Woppr the total work in
the optimal schedule. The above imply, that the tasks of 7 — Js in the optimal solution
occupy an area W?f 55 < md — Ws. We denote by SIOP T the set of jobs that have
processing time at least g in that schedule. Obviously, their machine allotment is at

least (7, d). Now observe that the jobs of S{) PT must run in parallel, since the makespan

of the schedule is bounded by d. From all the above, we conclude that Slo PT is a feasible
solution for our knapsack formulation and thus W* < ng gs. O

2.2.4 The BuildFeasible Subroutine

As we have already mentioned, after the partitioning done by the oracle, the tasks
of the first shelf constitute a feasible schedule, in the sense that they can all run in
parallel. The same doesn’t hold for the tasks of the second shelf. An example is shown
in figure 2.2(A). In order to finally deliver a feasible schedule, Mounie et al. provide in
their paper a subroutine that takes as input the allotment given by the oracle, and by

applying some local transformations achieves feasibility.

A detailed analysis of this subroutine is not within the scope of this thesis, as it
requires a great deal of mathematical work, which is also not that insightful. Instead
we prefer to provide a more abstract description of it. The goal of this procedure is
to partition the set of machines into two groups, Sy with cardinality mg and S’ with
cardinality m’, such that m = mg + m’. In the mg processors will run the jobs that are
relocated in the transformation process, and their total makespan will not exceed %Cl.
The 2-shelves schedule produced by the oracle is now restricted in the m’ processors.
The only difference is that after BuildFeasible the tasks can run in parallel in both
shelves. Figure 2.2(B) shows the final result. So in general, this transformation phase
is just a way of choosing some jobs, change their initial allotment and schedule them in
the machines of Sy, while trying to ensure that the jobs left in the second shelf can run
in parallel too. Finally, this procedure also ensures that the total work of tasks in S’ is
bounded by m/d — Ws and so the conditions of application of Lemma 2.4 are verified.

- 3dr

Shelf 2 Shelf 2

Shelf 1 Shelf 1

m processors

M0 processors m' processors

(A) Orcale’s Output (B) BuildFeasible Output

FIGURE 2.2: Structure of the result.
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2.3 Minimizing the Makespan for Identical Jobs

In this section, we are focusing our attention on a special case of the previously
studied problem. In particular, we suppose that the tasks under consideration are all
identical, in the sense that they have the same processing time function, say p(x). We
denote by x the variable indicating the number of alloted machines. This problem has
some practical interest, as many applications generate at each step a set of identical
tasks to be computed on a parallel platform. Another motivation for studying this case
comes from some well-known algorithmic techniques, such as Divide and Conquer, or
Branch and Bound. Using these techniques to solve a problem, the problem is split into
smaller independent subproblems, which can be processed in parallel and are almost

identical.

We begin by presenting a fairly simple 2-approximation proposed in [I4]. The algo-
rithm consists of a straightforward case analysis, which follows in full detail. Before we

continue, we need one more definition.

Definition 2.6 (Phase Schedule). A set of tasks is said to be executed in a phase, when
all the tasks in the set start at the same time, and no other task starts processing before

the completion of all the tasks in the phase.

e Case 1: n > m. Let us denote by C*, W* the makespan and the total work in
the optimal schedule respectively. We know that WW* < C*. Suppose otherwise.
Then W* > mC™*. This is clearly a contradiction, because it states that the total
work of the optimal solution cannot fit inside the area of the rectangle representing
the whole schedule. Thus, due to the work monotonicity, we can conclude that
%(1) < m. Now, we are going to build a schedule of L%J phases, each consisting
of m jobs. Every job inside the phase uses only one processor. The remaining
n mod m jobs will be scheduled last, on a phase of their own, sharing uniformly

the m machines. Hence, the makespan of the constructed schedule will be:

C < L%J p(1)+pq )

mJ
C< %p(l) (1) < (% +1)p(1)
C< 2%;9(1) < 20*

The second inequality follows since p(|-—"5—|) < p(1) and the last since 22 > 1.

n mod m

See figure 2.3 for a graphical representation.

e Case 2: n < m. Here, the resulting schedule will consist of only one phase,

where each task utilizes L%J processors. Obviously, the makespan of this solution
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is C = p(L%J) Since this is not the optimal solution, we can deduce that every

job must use there at least L%J processors for its execution. This means that

np(|2]) |2 | < W* and consequently Zp(|2]) |2 | < C*. To conclude:

n

c (%) m n
ey R e e

Phase Phase Phase Phase Last Phase
1 2 3 4

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

FIGURE 2.3: A phase schedule for identical malleable jobs.

The best result regarding the problem of minimizing the makespan in a system of
identical malleable jobs is due to Decker et al. [I5]. In their paper, they present a
more sophisticated case analysis, based more or less on the ideas shown above and they
achieve a % approximation. Their result clearly beats the % factor of [I1], when we are

restricted in this special case of the problem.

2.4 Minimizing the Sum of Completion Times

In this section, we study the problem under the objective of minimizing the sum of
completion times. As we have already mentioned, in every feasible schedule each job
Jj € J has a starting time st;, and a machine allotment n;. Its completion time is

then C; = stj + pj(n;), and thus we wish to minimize Z Cj = Z(stj +pj(n;)). The
JET JET
monotony assumptions will hold in this case too. This problem is also known to be

N P-hard in the strong sense [16]. We are going to present a 2-approximation algorithm,
proposed by Turek et al. [I7]. Before we continue with the description of the algorithm,
we need to define a restricted version of the Malleable Job Scheduling Problem used in

the analysis.

Definition 2.7 (Rigid Job Scheduling Problem). The Rigid Job Scheduling Problem [5]
is almost identical with the Malleable Job Scheduling Problem. The only difference lies
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in the machine allotment. In this case, the number of machines that a job j € 7 will use
during its processing is determined before the execution. In other words, the allotments

are fixed parameters of the input.

It is obvious that the Rigid Job Scheduling Problem is indeed a special case of Mal-
leable Job Scheduling. If the fixed allotment for every job j € J is nj, we can define an

execution time function for the malleable version as follows:

+00 x < nj
pj(z) =
pj(nj) = >mn;

The algorithm of Turek et al. is based on a 2-phase approach. In the first phase
an allotment is computed, satisfying some particular properties. In the second phase,
a schedule is constructed for the Rigid Job Scheduling Problem, with fixed allotment
the one found in the previous phase. That schedule is a 2-approximation for the rigid
problem, and due to the properties of the chosen allotment this ratio is also maintained

for the malleable case.

2.4.1 Lower Bounds for the Rigid Problem

First of all, we need some lower bounds on the optimal solution of the rigid problem.
Let us denote by F; the optimal value for a monotonic task set 7, with fixed allotments

nj. We denote by 7 = {ni1,na,...,nn} the vector of all machine allotments.

Definition 2.8 (Squashed Area Bound). Let J be a set of n monotonic rigid jobs.
Arrange the jobs in order of increasing work, so that n;p;(n;) < njripjt1(njy1), Vj €

[1,n). The squashed area bound is defined as:

Ag () = % > npi(ny)(n—j+1) < F5 [
jer

wil/m

Job 1 Jobn

FIGURE 2.4: The Squashed Area Bound
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Figure 2.4 illustrates a graphic representation of the squashed area bound. Note that
in the above definition A j(ﬁ) is evaluated as a horizontal sum. Vertical summation

yields the alternative expression:

Ag() = % SN mpr(ng)

JjeJ k=1

Definition 2.9 (Height Bound). Let J be a set of n monotonic rigid jobs. The height
bound for an allotment vector 7 is defined to be H7(7) = ij (nj) < F7.
JjeJ

Definition 2.10 (Normalized Work Bound). Let J be a set of n monotonic rigid jobs.
The normalized work bound for an allotment vector 7/ is defined to be Wy () =
w > npi(ng) < F.

JjET

The above two quantities are obvious lower bounds. The height bound corresponds

to the second sum of ZC" = Z(stj + pj(n;)), and since 1 < n; < m we have
JjET JjET
Ws(7) < Hz(7). In the following, we are going to combine all the above lower

bounds, in order to provide a tighter one.

Lemma 2.11. Let J be a set of n monotonic rigid jobs, with an allotment vector .
Then Ay () + §(Hz (7)) — Wz (7)) < Fy.

Proof. For a given schedule let Ez(t) = {j € J | st; <t < stj + pj(n;)} be the set of
jobs active at time t. Also, C7(t) = {j € J | t < stj +p;(n;)} the set of jobs that have
not yet completed by time ¢. For each job, we define a function corresponding to the

fraction of it, that is left to be completed at time ¢.

1 t S Stj
j — t—st;
t) = 1= 255 sty <t <stj+p;(ny)
0 stj +pj(ny) <t

The total fractional number of jobs to be completed at time ¢ is:

) =S ) =lcs) - 3 L=l

jed ey v P
/OO 1) d Z Oocj (1) d Z ( stj+p;(n;) 1 stj+pj(nj) ¢ _ st; q )
cr(t) dt = / t) dt = / t—/ t
0 jer o 7 jeg V0 st pj(n;)

[ oty ae =Y tsty 4 mytn) - PG = £y - ()

jeJ jeJ
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, where F7 is the solution cost of the given schedule.

Now, we need to talk a bit about the squashed area construction. From the given set
J with jobs ordered by increasing work, we create a new set of n jobs S. Job j € S has
a fixed allotment of ns ; = m processors and an execution time %njpj(nj). It is clear
that:
Ag () = As(né) = F§

Wz(7) = Hs(nd)

Furthermore, given any feasible schedule for 7 it can be shown by a simple convexity
argument that the optimal schedule for S obeys c7(t) > cs(t) for every ¢t. Thus, we
have fooo cr(t) > fooo ¢s(t). Using the resulted form of the integral and the above two

| etz [ ety

1 1
F7— §HJ(7) > F35 — §Hs(n_§)

equations we get:

1 1
Fq— EHJ(W) > Az(7) — §WJ(7)

1
Fy > Ag(W)+ §(HJ(W)) — Wy (7))
The above holds for every feasible schedule of 7, and so it holds for the optimal too.

O]

2.4.2 A Scheduling Algorithm for the Rigid Problem

Let J be a set of n monotonic rigid jobs, with an allotment vector ﬁ), such that
VieJd: n; < [%] We present a 2-approximation algorithm for this case, which is a

simple extension of the classical list scheduling algorithms of the literature [19].

The LIST algorithm
1: Arrange the jobs in order of increasing work.
2: In this order, schedule job j € J at the earliest possible time that at least n;
processors are available.

Lemma 2.12. LIST is a 2-approximation algorithm for the Rigid Job Scheduling Prob-

lem, when for every job n; < (%1

Proof. Let us denote by F7 the solution cost of LIST. It suffices to prove that Fly <
2A47(7) + Hy (7)) — 2W4(7), since by Lemma 2.11 we get the desired result. We

already now that F; = Z stj + ij(nj) = Z st; + Hs(7)
JjeT JjeT JjeT
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Therefore, to prove the bound in the lemma we can show that:

> sty <245(W) + —2Wo(7)
JjeT

Using the vertical summation for the squashed area bound and the definition of the work

normalized bound, this is equivalent to showing:

Z st; < — Z anpk nk Z n;p; nj

JjeET ]EJk 1 jej

To prove the above, it suffices to show the inequality for the jth summand.

2 < 2
t; < —
Sty = m ];nkpk(nk) njpg (1) anpk (1)

The above equality follows since we consider the jobs in order of increasing work.
Now, all that is left to do is prove the inequality for each st;. Consider the moment that
job j € J starts processing in the schedule constructed by LIST. Up until that point,
the whole schedule area consists of useful work, denoted by W, and idle periods, with
total area denoted by I. Observe that the number of idle processors in any time prior to
st; must be less than {mw The opposite would contradict the scheduling rule. Thus, I
cannot exceed W. But it is easy to see that W < Zk 1 nkpk(nk). So, because I < W,

we also have I < Zk:l nkpr(ng). Finally we get:

Jj—1 j—1
2
m-st;=1+W < 231 ngpr(ng) = st; < — kgl nepr(nk)

2.4.3 Restricting an Allotment

Now we come back to the malleable version of the problem. The result of the previous
section obviously applies for the more general case too. That is, if we have a set of
malleable jobs J together with an arbitrary allotment 77 for which Vjin; < [%1, and
we apply LIST, then we get a schedule with cost F < 247(7) + Hy (7)) — 2W4(7).
In this section, we show how to get a similar result for every possible initial allotment,
even if it does not obey the above requirement. So, for a given allotment 7, we define

a new allotment 7, called the skinny allotment, as follows:
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CJny o ifny <[
Zj—

[%1 otherwise

Lemma 2.13. Applying LIST to Z yields a schedule with solution cost:
F <2A5()+ Hg(7)) = Wy (70)

Proof. Due to Lemma 2.12 we have F < 247(Z)+H7(7Z))—2W (7). Also, because
of the work monotonicity hypothesis and the fact that z; < n; for all jobs, we have

Az(Z) < Az(7). Hence, it suffices to prove:
Hy(Z)) —2Ws(Z) < Hy (7)) - W (T)

Using the definitions of the height and the normalized work bound, we need to show
that for all j:
22j ng
(2 )(] — < p:(n:)(1—
p;(%)( m) < pj(ng)( m)

To prove the above consider the following two cases:

o nj < [%1 = z; = n;j. The inequality holds trivially.

°n; > [%] = zj = {%1 The left-hand side of the inequality becomes
o[m
pi(3ha - 22
inequality we have p;(n;)(1 — =) > p;(n;)(1 — [mj) > 0. The result follows.

), which is clearly non-positive. For the right-hand side of the

2.4.4 Finding an Initial Allotment

Given lemmas 2.11, 2.12, 2.13, we can understand that the final step of a 2-
approximation is just a matter of finding a proper initial allotment. Let 7"? be the
allotment vector of the optimal solution. We would like to compute an initial allotment
7 such that:

%
2A7(7) + Hy (7)) = Wy () < 247(n%) + Hy(n')) = W (o)
In their paper, Turek et al. provide a method of minimizing 247 (7) + Hz (7)) —
W7 (), over all possible allotment vectors 77. We will describe it briefly.
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e For all jobs j € J and for all possible positions k, that j may have in the relative
work ordering of tasks in the desired allotment ﬁ, compute:

n? = arg 1£i§nm{pj(i) +(2(n —s) + 1)%%(@)}

e For all jobs j € J and for all possible positions k, compute

FF =pi(n®) + (2(n —s) +1)-2

k
J j pj(”j)

m
This quantity is the minimum cost attributed to job j, in the lower bound of

Lemma 2.11, if it is assigned the k** position in the relative work ordering.

e Construct a complete bipartite graph G(A, B, E). In A there is a node for every
job of J. In B there is node representing all possible n positions that a job may

have in the work-based ordering of an allotment. The weight of edge (7, k) is F]k.

e Find a minimum weight matching in G. This can be done in polynomial time [20].
If edge (j, k) is included in the matching, then n; = né“

Although, the above procedure seems intuitively correct, some technical mathemat-
ical analysis is still needed. To be more precise, it must be shown that the optimal
allotment corresponds to a matching in GG, as well as a matching produced in such a way
is legal. In other words, the positions assigned to jobs reflect the true work ordering. In

their paper, Turek et al. provide detailed proofs for the above.

2.5 Scheduling with Resource Dependent Processing Times

In this section, we address a scheduling model, which at first sight seems irrelevant
to the malleable problem considered earlier. This particular model was first introduced
and studied by Grigoriev et al.[21H23]. Its connection to the Malleable Job Scheduling

problem will be made clear by the end of the section.

2.5.1 Problem Definition

Let V = {1,...,} be a set of jobs that need to be scheduled non-preemptively on
a set of unrelated machines M = {1,...,m}. There is also a pool of k additional
identical renewable resources, that can be distributed over the jobs in process, in order

to speedup their execution. Thus, if job j uses machine i for its processing and also has
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been assigned s € [0, k| of the addition resources, then it has an execution time p; ; .

We assume that for all pairs (i, j) we have

Pij,0 = Pijl = -+ 2 Dijk

Without loss of generality, we also assume that all p; ;. are integral and hence we
can restrict to feasible schedules where jobs start and stop at integral points in time.
Regarding the allocation of resources to jobs, we have the following restrictions. In
any feasible schedule, the total resource consumption at any time cannot exceed k.
Furthermore, the amount of the additional resources assigned to a job cannot change
during its execution. It is obvious, that this model is actually an extension of the
classical R||Cpqr problem, as well as a natural variant of the generalized assignment

problem studied by Shmoys and Tardos [24].

2.5.2 A 4-Approximation Algorithm

We begin by presenting a 4-approximation algorithm, for the problem of minimizing

the makespan in this model, proposed in [23].

2.5.2.1 Relaxing the Problem

Initially, Grigoriev et al. consider an integer programming formulation that defines
a relaxation of the problem. Let z; ;s be binary variables, indicating that job j uses
machine ¢, while an amount of s resources is allocated to it. Moreover, let S;; =
{0} U{s |s < k,pijs < pijs—1} be the set of relevant indices for job j on machine i.
Considering only this index sets obviously suffices, as the feasibility and the makespan

of any solution is not violated. We then have the following program.

YD migs=1Yj€V (2.1)

iEM Sesi’j

Z Z i 5,sDi.j,s < C, Vie M (22)

2% SESi,]'

DD D Tigssbigs S kC (2.3)

JEVIEM SESL]'
Tijs = 0, if Dij,s > C (2.4)
xivjys e {07 1}7 VZ,],S (2.5)

Here, C represents the schedule makespan. Equalities (2.20) ensure that every job
runs on some machine, using an amount of s resources. Inequalities (2.21) imply that

the load of each machine is a lower bound on the makespan. The left-hand side of
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inequality (2.22) is the total resource consumption over the whole schedule, and ([2.22))
simply expresses the fact that this quantity cannot exceed kC. Finally, constraints (2.23|)
make sure we do not use machine-resource pairs such that the processing time of a job

is greater than C.

From all the above, it is clear that if a feasible schedule of makespan C' exists, then
there is a solution (C,z) for program —. Hence, there is also a solution for
the linear relaxation of —. By using binary search on the target makespan C'
(we care only for integral values), we can find in polynomial time a solution (C*, z')
for the resulted linear program. Certainly, C* will be a lower bound of the optimal

makespan.

2.5.2.2 The Rounding Procedure

Given a feasible solution (C*, zL") for the linear relaxation of (2.20)-(2.24), Grigoriev
et al. aim at rounding this fractional solution to an integer one without violating too
much constraints (2.21]) and (2.22)). They have proven the following lemma by giving a

rounding method with the desired result.

Lemma 2.14. Let C* be the minimal integer for which the following linear program has
a feasible solution.

S>> wije=1, V€V (2.6)
iEM SES;

Z Z TijsPijs < CF, Vie M (2.7)

JEV sES;

Z Z Z Zi,5,5Ci,j,s S k‘C* (28)

JEViEM SES;
Tijs =0, if pijs > C” (2.9)
Tijs 20, Vi, j, (2.10)

and let (C*,a:LP) be the corresponding solution, then we can find in polynomial time a
solution x* for the following integer program:

S>> mya=1,V€V (2.11)
IEM SES;

Z Z Li,j,sPi,5,s S C* +pmaz, Vi € M (212)

JEV s€S;

Z Z Z Ti,5,5Ci,j,s S k:C* (2.13)

JEVIEM SES,;YJ'

zijs €{0,1}, Vi, j, s (2.14)

where Pmaz = max{p; ;s | xiL]PS > 0} and ¢; j,s non-negative fized values.

The above lemma can be viewed as an extension of the famous Shmoys and Tardos

rounding theorem [24] for the generalized assignment problem. The extension lies in the
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fact that the rounding is done in a bipartite multigraph, instead of a simple bipartite
graph. Moreover, the rounding method that Grigoriev et al. propose in their paper, can
also be viewed as the derandomization of the randomized rounding algorithm of Kumar

et al. [25], by applying the technique of conditional probabilities.

2.5.2.3 The Scheduling Algorithm

The approach for obtaining the final constant approximation result consists of the
following. In the first place, the rounding procedure described earlier must be used,
in order to decide the resource allocations and the machine assignments. To be more
precise, job j will run on machine 4, using s additional resources iff x,f,jﬁ = 1. In the

application of Lemma 2.14 we set ¢; js = s p; ;. Afterwards, the jobs are scheduled

via a greedy list scheduling algorithm.

Algorithm LP-GREEDY
1: The machine assignments and the resource allocations are determined by the round-
ing procedure.
2: Consider the jobs in an arbitrary order starting with ¢ = 0:

e If there are enough resources available, so that some yet unscheduled job can
start running on its predetermined machine at time ¢, then schedule it there.

e If there is not such an unscheduled job available, update t to the next smallest
completion time in the currently constructed schedule.

Theorem 2.15. Algorithm LP-GREEDY is a 4-approrimation for the problem at
hand.

Proof. Denote by CEPE the makespan of the schedule produce by LP-GREEDY and

by COFT the optimal one. Let t(8) the earliest point in time after which only big

jobs are scheduled in the constructed solution. We define as big jobs the ones with
k

resource consumption greater than 7. The part of the schedule after time ¢(3) has

length 8 = CFPE — ¢(B). During that period only big jobs are getting processed.

Furthermore, there must be a machine ¢ on which some job completes at time ¢(3),
that it is not a big job. Suppose otherwise. Then, due to the definition of ¢(53) all
machines must be idle right before this point in time. But that clearly contradicts the
greedy scheduling rule. We now focus our attention on this specific machine ¢. In the
time interval [0,¢(/5)] there must be periods that i is either busy or idle. Let us denote
be « the total length of the busy periods. From constraint we know that:

a= Z Z Li,j,5Pi,5,5 < C* +pmax < 20*
JjeEV SGSiyj
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The last inequality follows directly from (2.28)). If we denote by = the length of the idle
periods then we have:
CHPC <a+ B4+

The next step provides an upper bound for the quantity 5 + ~.

Observe that the total resource consumption of the constructed schedule is at least
B % + V%. During the time interval [t(3), C*"¢] only big jobs are undergoing processing
and thus, the total resource consumption there is at least 8 %, since at any point in time
at least % of the additional resources are used. It is also the case, that during the idle
periods of machine i in the time interval [0,(3)], at least % resources are used at any
time. Suppose otherwise. Then there was an idle time in ¢, with at least % available
resources. But this contradicts the scheduling rule. The job that finishes at time ¢(f3)
in 7 could have been scheduled earlier at that idle time. Finally, recall that kC* is an

upper bound of the total resource consumption of the schedule (2.13)). Hence, we have

k k
kC’*ZB§+7§ — v+ p8<2C7

By combining the above, we get the lower bound of 4. Remember also that C* < COFPT',

O

2.5.3 A 3.75-Approximation Algorithm

In their paper[23] Grigoriev et al., provide a slightly improved approximation al-
gorithm compared to the one presented earlier. Their main approach is just a better
tuning of the techniques already used. Initially, they formulate an alternative integer
programming relaxation for the problem. Let B;; = {s € S; ; | % < s < k} be the set of

indices that lie in the interval (%, .

YD mige=1,Yj€eV (2.15)

ieM SESL]'

Z Z T j,sDi,j,s <C,VieM (216)
JjEV SGSi’j

S

Z Z <1.5 Z xi,j,s%pi,j,s + 0.25 Z xi,j,spi,j,s) < 1.75C (2.17)
JEVieM SESi,j SEBi’j

Tijs =0, if pijs >C (2.18)
Tij.s € {01}, Vi, j, s (2.19)

The above integer program defines a relaxation of the original problem. To prove this,
we only need to verify validity of constraint (2.17)), since the rest stay the same as in
program (2.20))-(2.24). Considering any feasible schedule, any two jobs with resource
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consumption in B; ; cannot be processed in parallel. Thus:

Z Z Z T j.sDijs < C

JEVIEM sEB; ;

Combining the above with valid inequality (2.22)) yields (2.17)).
As before, the linear relaxation of (2.15))-(2.19) is also a relaxation of the original

problem, and by using the same binary search we can acquire a fractional solution
(C*, 2P), such that C* < COPT. The rounding procedure of Lemma 2.14 with

(153 +0.25)52  if s € By

15%1’712%5& if se Si,j\Bi,j

Ci?j?'s -

gives an integral solution that violates only constraint (2.17)) by a factor at most C*.

The scheduling algorithm used after the determination of machine assignments and
resource allocations is also modified. In particular, it is a more sophisticated version of
list scheduling that can be interpreted as a restricted version of the harmonic algorithm

for bin packing. The concluding result is an approximation factor of 3.75.

2.5.4 Connection to the Malleable Problem

We are going to prove that the Malleable Job Scheduling problem is just a special
case of the model consider by Grigoriev et al.[21H23]. This means that all algorithms
for scheduling with resource dependent processing times apply directly to the malleable

setting. The importance of this observation will be evident in the next section.

We now present the reduction between the two problems. Suppose we have an in-
stance of the Malleable Job Scheduling problem, with n jobs, m identical machines and
processing time functions p;j(x). We build an instance for the resource dependent prob-

lem as follows:

For each malleable job j we have a corresponding ”classical” job j.

For each malleable job j we have a corresponding unrelated machine j. Thus, in

total we have n machines.

Vi,j e {l,...,n}: p;jo=—+oo. No job can run without any resources.

Pijs = pj(s), ifi =3

piyjys =
Di,j,s = +00, otherwise
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A solution for the above instance can easily be transformed to a feasible schedule for
the malleable case, maintaining the completion times of all jobs. If st; is the starting
time of j in its dedicated machine using s; additional resources, then we can start that
job at st; in the malleable schedule, since there will be s; available machines at that
time. That holds because the machines of the malleable problem are interpreted as
the additional resource. Obviously, the processing time of each job is the same in both
situations. Finally, via the same transformation, though in the other direction, we can
prove that any malleable schedule (and so the optimal too) corresponds to a solution of

the resource dependent problem for the constructed instance.

2.6 Minimizing the Sum of Weighted Completion Times

In this section, we address the non-preemptive Malleable Job Scheduling problem
under the objective of minimizing the sum of weighted completion times. To provide a
result for this case, we utilize the unrelated machine scheduling with resource dependent
processing times problem. As we have already mentioned, each algorithm for that model
applies directly to the malleable problem as well. Thus, our aim is to extend the results
of Grigoriev et al.[21H23]. presented earlier, in order to capture the unique characteristics

of the alternative objective function considered here.

2.6.1 A 25.55-Approximation Algorithm

In order to schedule the jobs on the machines of M, using the ideas of [26], we
create the following interval-indexed LP-relaxation for minimizing the total weighted
completion time. We define (0, tpmax = minge Zjevpi,j,k] to be the time horizon of
potential completion times, where ty.x is an upper bound on the makespan of any
optimal schedule. We discretize the time horizon into intervals [1, 1], (1, (1 + )], ((1 +
8),(1+6)2],...,((1 + 8L, (14 6)L], where 6 € (0,1) is a small constant, and L is
the smallest integer such that (1 4+ 8)*™' > tyax. Let I = ((1 + 6)1, (1 4 0)], for
1<¢<L,and £ =1{1,2,...,L}. Note that, interval [1, 1] implies that no job finishes
its execution before time 1; in fact, we can assume, w.l.o.g., that all processing times
are positive integers. Obviously, the number of intervals is polynomial in the size of the

instance and in %. We denote by z; ;s ¢ the binary indicator variables denoting that job



Chapter 2. Malleable Job Scheduling 30

7 has completed its execution on machine ¢ with s additional resources within 7.

LP : minimize Z w;C}
I%
subject to: > > Y w@ijee=1, Vjev (2.20)

iEM LEL SES;

Z Z Z(l +0) a0 < O, Vjev (2.21)

ieEM SGSZ"J' leL

SN pije Y wigas < (L+0), Vie MleLl (2.22)

JEV s€S; <t
DD spigs > wiges < k(1+0), Vlecl (2.23)
JEV €8, j iEM t<t

Pijs>(1+0) = 200=0, VieM,jEV,s€ S j,leLl (2.24)
Tijse >0, VieM,jeV,se S, lel

Our objective is to minimize the sum of weighted completion times of all jobs. Con-
straints ensure that every job is completed on some machine using some number
of additional resources in some time interval. Constraints impose a lower bound
on the completion time of each job. Constraints are validity constraints which
state that the total processing time of jobs executed up to an interval I, on a processor
i € M is at most (1+6)¢. Constraints impose upper bounds for the total resource
usage until the time (1 + §)¢. For each ¢ € L, constraints indicate that if pro-
cessing time of a job j on a processor i takes more than (1 + §)*, then j cannot not be
scheduled on i and complete its execution within I,. Note that even the corresponding

integer program of the LP-formulation is a (1 + §)-relaxation of the original problem.

Our algorithm, begins from a fractional solution (Z; ; s, C;) of the LP and rounds it
to an integral schedule keeping a constant approximation factor. In order to succeed it,
the algorithm separates the jobs into sets S(¢) = {j € V | (1+ )" < aC; < (1+6)°},
where o > 1 is a fixed constant. Then, it schedules integrally the jobs of each S(¢) on
processors of M (using the techniques of Grigoriev et al. [23]) and greedily places the

produced schedules, one after the other, in an increasing order of /.

Rounding Routine

1: Find a fractional solution to the LP (Z; ;s ¢, C}).

2: Partition the tasks into sets S(¢) = {j € V| (1 +8)*! < aC;j < (1+ 6)°}, where
a > 1 a fixed constant.

3: For each ¢ =1...L in an increasing order, find an integral assignment and schedule

of the jobs in S(¢) on M using the rounding theorem of [23].

In the following, we present the analysis of this algorithm.
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Lemma 2.16. For each ¢ = 1...L, the fractional assignment of jobs in S({) can be
scheduled alone on the machines of M with a makespan at most 3—2=(1+6)* + (1 +6)*.

Proof. We are going to use the well-known filtering technique of [27]. We can see that
for a job j € S(¢) it is the case that:

SN Y wers

t>0 i€ M sES;

Assuming the contrary yields that by constraints (2.21]):

Cj > Z Z Z (1+0) 2y jse

ieEMLeEL SESL]'

> Z Z Z (1+0)" 'wijse

iE€EM t>0 SES;

=+ Z Z Z (1 + 5)t_1$i7j’5’t

1EM t<t SESZ‘J‘

> Z Z Z (14+6)" 2 s

ieEM t>4 SESZ"]'

> (1+0)* Z Z Z Tijst

iEM t>L SGSL]'

1

> (14 6)°=,
(1+6)"~

which is a contradiction to the definition of S(¢):

Therefore, using constraints (2.20) we can see that:

SN Y wge

t<l ieM s€S;

Now, for each job j € S(¢) if we set z} =0 when t > ¢ and

sJsS

x/ _ xi:j757t
%,7,5,t o
. ZZEM,S ZtSZ va]ysyt

when ¢ < /, the solution < 2/ > would satisfy the constraints (2.20) and (2.24)) of the
LP. Moreover, the solution < 2’ > would satisfy the constraints (2.22)) and (2.23)) if we

multiply the right hand of the equation by the factor 5. Given this, if we set

_ § /
yinj’s - Ii,j,s,t

t<e

then < y > consists a feasible solution to the following linear formulation for each ¢ € L.
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S wije=1 Vi€ S(l) (2.25)

iEM SESi,j

Z Z Yij,sPij,s < %(1 + S)Z Vie M (2.26)

jES(1) s€S;,5

DD D YihsPigs < ki(l +6)* (2.27)

_]ES ZEM sES;. d
Yijs =0 i pigs > (14 0)° (2.28)

Yijs > 0 7Vi7j78

Note that the above formulation is the same as in Subsection 2.5.2.1. Therefore, using
the algorithm for the makespan minimization, with target makespan C* = %5 (1 + 5)*
and prae = (14 0)%, it follows that the jobs of S(¢) can be integrally scheduled alone on
the processors of P with makespan at most 3C* + pmaz = 3-27(1+6)" + (1 +0)*. O

Theorem 2.17. There is a 25.55-approzimation algorithm for the problem of scheduling

jobs on unrelated machines with resource dependent processing times.

Proof. Let j € V be a job that belongs to the set S(¢) and is scheduled by our algorithm
on a processor i using s additional resources. For the completion time of j, taking the
union of the schedules S(t), for t < ¢, it must hold:

C; < Z(3$i,j,s,t + (1+0)")

t<t

<3 mijert+ > (1+0)

t<t 1<t
<3 Zﬂfz’,j,s,t + Z(l +0)f

t<t 1<t
<3 (140 + (1 448)™
T oa-—1 1)

o 1

< (1 +6)*
<E 41+ Hate)

1 _
< a3 0‘1+1+5)(1+5)Cj

Recal that »_ .y, w;Cj < OPT. Therefore, by choosing (,§) = (1.65817,0.341831) we
get a 25.55 approximation algorithm. That is the value that minimizes the function

representing the approximation guarantee. O

As we have proved in the previous section, the approximation ratio of 25.55 applies
directly to the malleable case. To the extend of our knowledge this is the first result
regarding the Zje 7 w;Cj metric. Previous results, concern either the rigid problem

[28], or the preemptive setting [29].
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General Multiprocessor Job

Scheduling

In this chapter, we focus our attention on the most general version of the one-job-
multiple-machines model. In this kind of setting a job can be processed in parallel on
any subset of processors, and its execution time depends only on the particular subset
it is assigned to. So, if J the set of tasks (n = |J|) and M the set of machines
(m = |M]), then VS C M, with S # (), and Vj € J there is a value p;(S) representing
the corresponding processing time. In total there are 2™ — 1 alternative set assignments
for each job. In many situations a job is not allowed to run on some of these sets, thus
there is a different, although equivalent formal definition for the problem. For each job

Jj € J there is a set of [; available processing modes:
Mj = {Mjr = (Qjr,tix) | 1 <k <1}

Qjx is a non-empty subset of M on which the processing time of of j is ¢;; < oo.
If a processor subset S is not contained in any mode, then we assume p;(S) = oo.
Throughout the whole chapter, we will study the problem only under the makespan

objective.

Furthermore, we are going to present results for both the preemptive and the non-
preemptive case. In a non-preemptive problem, a job undergoing execution will never be
suspended until its completion. On the other hand, in the preemptive setting one may
suspend a job before its completion and resume its execution at a later point, possibly
on a different mode. The strict meaning of the preemptive execution of a job j is the

following. If j runs on mode M ; for p;; units of time, then it is necessary that:

Djk
tjk

=1
1<k<l;

33
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Finally, a special case of the problem will come in handy in our study. In this special
case there is only one available mode for each job, i.e. |M;| = 1. In other worlds, the
assignment of sets to jobs is fixed beforehand and what remains is only the scheduling
decisions. The fized setting has been extensively studied in the literature and we will

use some of these results in our advantage.

3.1 Inapproximability Results

In this section, we present inapproximability results for both the preemptive and the
non-preemptive case. These results suggest that probably there is no efficient approxi-

mation, and thus we have to focus on restricted versions of the original problem.

3.1.1 The Non-Preemptive Case

We provide an approximation factor preserving reduction from the Minimum Ver-
tex Coloring Problem [30]. We are going to use the fized version of the scheduling
problem, where additionally the processing time of all jobs in their only available mode
is the same, say a constant ¢ > 0. First of all, note that because all jobs have the
same processing time in their available machine allocation, we can discretize the time
horizon into intervals of length ¢. The maximum number of such intervals necessary for
scheduling all jobs is obviously n (one for each job). Every job will run on one of these
intervals in the optimal solution. So the scheduling problem is equivalent to finding the

minimum number of intervals in which all jobs can be legally scheduled.

Theorem 3.1. If there is an p—approximation algorithm for General Multiproces-
sor Job Scheduling then there is an p—approximation algorithm for the problem of

Minimum Vertex Coloring.

Proof. Suppose we have a graph G(V, E) as an instance I of the coloring problem. We

can create in polynomial time an instance I’ of the multiprocessor problem.

e First for every v € V create a job j, € J. Every job j, € J will have only one set
of machines where it can be run, call it s, (initially empty). Also, pj, (sy) = ¢ > 0,

a constant common for every job.

e Forevery {u,v} € E create a machine i,, € M and s, < $,U{iu}, v < SoU{iuv}-

We will now prove that OPT(I) = OPT(I') and given a solution of I’ we can translate

it to a solution of I with the same cost.
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e Suppose we are given the optimal solution for the coloring problem. That is the
minimum number of different colors needed for graph G. We can schedule all jobs
(vertices) of the same color in the same time interval because these vertices don’t
share an edge in the graph and thus they don’t have a common machine in the
scheduling instance I'. So OPT(I") < OPT(I).

e Suppose we are given the optimal solution for the scheduling problem. We know
that all jobs are scheduled inside the time intervals of length c¢. So the jobs inside
any time interval don’t share a common machine. Furthermore, the corresponding
vertices of the graph don’t share edges and thus can have the same color. So
OPT(I) < OPT(I').

The procedure of the second bullet shows how to translate a solution of I’ to a solution
of I with the same cost. So, if we have an p—approximation algorithm for Multipro-
cessor Job Scheduling, then given any graph G(V, E) we can built an instance of the

scheduling problem as shown above and use our algorithm there to obtain:

translation

SOLSChedUli”Q <p- OPT(I/) =p- OPT(I) SOLcolm“ing <p- OPT(I)

O]

Finally, it is known that no polynomial time algorithm for vertex coloring can achieve
an approximation guarantee of Q(nTlt)) unless NP = co-NP [31I]. Due to the above

theorem this result will also hold for our problem.

3.1.2 The Peemptive Case

We provide a reduction from the 3-SAT Problem [30], which was first proposed in
[32]. We use the general version of the preemptive problem, where the processing time
of every job in each of its modes is 1. In [33, 34] a method was proposed, that constructs
from every 3CNF' formula ¢ with m variables, a graph Gy of n = m®PM) nodes with the

following properties:

e The n nodes are partitioned into r cliques C1,...,C;.

e If ¢ is satisfiable, then a(Gy) = r (the cardinality of the maximum independent
set is denoted by a(Gy)). In other words, G has an independent set with exactly

one node from each clique.

o If ¢ is not satisfiable, then a(Gy) < §> where g = n° for some positive constant e.
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Given such a graph Gy, let wj1,...,uj.; be the vertices of clique Cj. We then

construct an instance I of the scheduling problem as follows:

e For every clique C; we have a corresponding job j.

e For every node u;;, € C; we have a corresponding processing mode for job j,
Mk = (Qjk, 1)
e Each edge of the graph corresponds to a machine ¢ of our scheduling problem.

e () contains all processors corresponding to edges incident to wu; .

Theorem 3.2. There is no polynomial time p-approximation algorithm for Preemptive

Multiprocessor Scheduling with p < g unless P = NP.

Proof. For a given 3C N F formula ¢ we construct G4 and subsequently the correspond-
ing instance I of the scheduling problem. If ¢ is satisfiable we know that there is an
independent set {u1 ,, ..., Uk, } containing a vertex from each clique. Furthermore, due
to the way of building I, there exists a schedule with length 1 by assigning j to Q;x,. In
this particular schedule, all jobs can run without preemption in parallel. Obviously, this
is an optimal solution. Instead, if ¢ is not satisfiable, then a(Gy4) < g. That means that
any time instance of any schedule no more than § jobs can be executed simultaneously.
Therefore, the makespan of any schedule will be greater than g, since there are r jobs in
total. Given the existence of a polynomial time p-approximation algorithm, with p < g,

we can determine in polynomial time the satisfiability of ¢.

o ¢ satisfiable == OPTcpequiing = 1. The approximation algorithm will return a
solution of cost 1 < SOL < p.

e ¢ not satisfiable == OPTscpeduiing > 9 > p- Thus, the approximation algorithm

will return a solution of cost SOL > p.

However, 3-SAT is known to be N P-complete. O

3.2 Linear Array Networks

In this section, we study a restricted version of the problem, introduced in [32]. This
version is motivated by actual computer networks. In practice, the parallel processors
are connected together by a network of a specific topology, and in those systems jobs
require that the machines they utilize, satisfy certain topological properties. In linear
array networks, the machines form a one dimensional array. Jobs in such networks can
only run in sets of consecutive machines, regarding the ordering of the array. We present

algorithms for both the preemptive and the non-preemptive case [32].
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3.2.1 The Non-Preemptive Problem

Suppose we have jobs [J, machines M and processing modes M as presented earlier.
In this case, Vj € J, Vk € [1,];] : Qjx is a set of consecutive elements of M. This
problem is clearly N P-hard, since it generalizes R||Cyq.. We give the following integer
programming relaxation of the problem, where x;; are binary variables indicating that

job j runs on its k-th mode. Also, the variable C is the target makespan.

Y app=1Y€eJ (3.1)

kel1,l5]

> mntipg<C VieM (3.2)
JET Vk: i€Qjp

zjp =0, ifpjp>C (3.3)
zi € {0,1}, Vi, k (3.4)

Following the same reasoning of section 2.5.2.1 it is easy to verify that for C equal the
optimal value of the problem, integer program — is a relaxation of the original
problem, and hence so is the linear relaxation of —. Again, by using binary
search on the target makespan C, we can find in polynomial time a solution (:ULP ,cLP )
of the linear program, such that C** < OPT.

LP we construct a bipartite multigraph B(z*F) =

From the fractional solution x
(U,V,E) as follows. In U there is a vertex u; corresponding to each job j € J and
similarly, in V' there is a vertex v; for every machine ¢ € M. For each ijf > 0, find the
maximum integer h € [0, [logm]—1], such that there exists an integer ¢ with ¢-2" € Qj k-
Then add e = (u;, v n) in E. c¢-2" works as a representative for Q; . Let level(e) = h,
wi(e) = a:JLkP and wa(e) = tj ;. Note also that ¢ must always be an odd number. If not,

we can increment h by choosing §.

By using the multigraph rounding method of Grigoriev et al.[23] we acquire a graph
B’, in which each job node is incident to only one edge and the total load of every
machine node (calculated as the sum of wo(e) for edges incident to it) is at most 2C*F,
Let B;l be the subgraph of B’ induced by edges of level h. Observe that the sets U,lZ
partition U.

Lemma 3.3. For each h, the jobs of U,,L can be scheduled with makespan at most 2077 .

Proof. We will show that for any two nodes u;, u, € U;Z that do not share an end
vertex, the corresponding processing modes of their incident edges are disjoint. Let
€j = (), Ve;.0n), €z = (Uz, 7., .on) the edges incident to the two nodes. Let also Q;, Q-
the processing modes that resulted in these two edges. Suppose that without loss of

generality ¢; < ¢;, and also Q; N Q) # 0 for contradiction.
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Since cj,c; are odd numbers and (), (). contain consecutive elements of M, we
can conclude that there exists an even number ¢, such that ¢; < ¢ < ¢, and c- 2h ¢
Q; Vv c- 2" € @,. But this means that 5 2h ¢ Q; V - 2" € Q., which is clearly a

contradiction because of the method of selecting h.

Since @Q; N Q. = () for any pair of edges that do not share an end vertex, we do not
need to concern about the ordering of the tasks of U,; in their schedule. By assigning
each job to the mode specified by its incident edge, we get a feasible schedule with
makespan at most 2CLF < 20PT. O

Theorem 3.4. There is an O(logm)-approximation algorithm for Multiprocessor Job

Scheduling in linear array networks.

Proof. The previous lemma states that for each h € [0, [logm] — 1], we can schedule the
jobs of U,; with total makespan at most 20PT. Due to the fact that U,/l partition the
job set, we can simply merge all the resulting schedules serially and obtain an O(logm)-

approximation. ]

Regarding the approach of solving the linear relaxation and rounding the fractional

solution, the authors of [32] also provide a result concerning the integrality gap[35] of

program (B:1)-(3).

Theorem 3.5. There is an instance of the problem such that the linear program has a

logm
loglogm

feasible solution, but no schedule of makespan less than Q(CLT . ) exists.

3.2.2 The Preemptive Problem

In this case everything is similar to the previous section’s problem, except the fact
that we allow preemption of jobs. This version it is also INP-hard, since it embeds
in itself the Subset Sum problem [30]. Consider the following linear programming

relaxation of the problem. Again C stands for the target makespan.

S wk=1,vjed (3.5)

ke[1,l5]

> mntip<C VieM (3.6)
JET Vk: i€Q;

Y wiktix<C VjeJ (3.7)
ke[l,lj}
Tk = 0, if Pk > C (3.8)
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It is easy to verify that for C' equal the optimal value of the problem, integer program
— is a relaxation of the original problem. So, again by using binary search on
the target makespan C, we can find in polynomial time a solution (z%*, CF), such that
CIP < OPT. This particular solution partitions each job j € J into subjobs T}, for
1 <k < ;. Subjob Tj; requires the set Q; for :BJL,I; - t; 1 units of time. Obviously, we
do not mind having a fractional solution now. Moreover, no two subtasks of the same

job can run in parallel, and that is expressed via constrained ([3.7)).

A 2-approximation greedy algorithm

1: Let teyr = 0 and T the set of all subtasks created after solving the previous linear
program.

2: Sort the subtasks in T" according to the leftmost processor they require, with respect
to the machine ordering. Consider the subtasks of T in this order one by one. For
T} i, if all processors in Q) are idle at time f., and also no other subtask of the
initial job j is already scheduled to start at t,,, then start T .

3: Let t,,;, the minimum time that a subtask which started in the previous step com-
pleted its processing. Suspend all running subtasks at that time, define their re-
maining portions and add them again in T". Set ty, < tmin and go back to Step 2,

until T = 0.

First of all, observe that the above algorithm is polynomial in terms of its running
time. In each iteration at least one of the original subtasks is completed, and their total

number f is bounded by the size of the input, f < Zjej l;.

Theorem 3.6. Our algorithm is a 2-approzimation for the problem at hand.

Proof. Let T, , the subtask that finishes last in the constructed schedule. Let st,, be
its starting time and f, 4 its finishing time. Furthermore, let r be the leftmost processor
of Qp,q- It is clear, that at any time instance t < s, 4 either r is busy or another subtask
of the original job p is undergoing execution. Because we consider the subtasks in an
increasing order of their leftmost machine, if r is not busy at some time ¢, then all
processors of (), , are not busy either. That means that if the above two conditions
do not hold, then T, can start its execution earlier, something that contradicts the

scheduling rule.

Therefore, we conclude that f, , is at most the total execution time of the subtasks

occupying r plus the total execution time of the subtasks created from p. From con-

straints (3.6) and (3.7) we get that:

foq < 2CH <20PT
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3.3 Fixed Number of Machines

As we have already mentioned, the hardness results of section 3.1 dictate that good
approximation algorithms can only be found for restricted versions of the problem. In
this section, we study the problem assuming that the number of machines m is fixed
and not part of the input. More precisely, we present some fairly simple algorithms for

the m = 2 and m = 3 case, as well as a sophisticated PT AS for general fixed m.

3.3.1 The m =2 Case

First of all, observe that the problem at hand is actually an extension of the classical
Rs||Cinaz problem, and thus it is N P-hard. We present an optimal pseudopolynomial
algorithm for the problem, proposed in [36].

In problems of such nature, there are actually two kinds of decisions that need to be
made. At first, there is the assignment, where for each job j € J we have to choose the
proper processing mode. Then comes the scheduling, where we decide when to start
the execution of each job. We will deal separately with these decisions, starting from
finding a desirable assignment. We would like to find an assignment A* of modes to
jobs, such that the maximum load of a machine under this assignment is the minimum
possible. The load of a machine under a given assignment A* is calculated as the sum of
processing times of jobs, that will occupy that machine in the mode chosen for them. Let

us denote by T4+ the maximum machine load under the desired assignment. Obviously:
Tqy <OPT
Let M ={1,2} and Vj € J : pmin(j) = min{p;({1}),p;({2}),p;({1,2})}. Define

To = Z Pmin (])

JjeT
Ty is just an upper bound estimation of the optimal makespan.

We present a dynamic programming approach that calculates the value T4+ for a two
machine system. Define the value f(j,x) for 7 > 1, 0 < 2 < oo to be the minimum y
such that there exists an assignment A for jobs 1,..., 4, for which the total processing
time on machine 1 is x, and the total processing time on machine 2 is y, where x, y finite
numbers. If there does not exist an assignment for these jobs, with the load of machine
1 to be x and the load of machine 2 to be y, then we set f(j,z) = co. The dynamic
program is based on the fact that each new job has only three mode alternatives. That
means that we know exactly how it will affect the load of each machine, and thus we

can incorporate that knowledge into the recursive equations.
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Initial conditions:

f(1,0) =p1({2})
f(,pi({1})) =0
f(lvpl({la 2})) = pl({la 2})

f(1,2) = oo for all other x

Recursive Equations:

fG @) =min{ f(i-1,2—p;({1})), FG—1,2)+p;({2}), f(G—-1 z—p;({1,2}))+p;({1,2}) }

;where 2 < j<nand 0 <x <Tj

The time complexity of solving the above dynamic program is O(n-Tp). It is also clear
that min{max(x, f(n,z)) : 0 < a < Ty} = Ty~ and that concludes our search for the
optimal value for the assignment problem. Now, all that is left to do is the scheduling.

This is actually fairly simple for the two machines case. We use the following algorithm.

Pseudopolynomial Algorithm for m = 2
1: Solve the aforementioned DP to find the proper assignment A*.
2: Schedule the jobs that are assigned to set {1,2} in arbitrary order.
3: Schedule the jobs that are assigned to sets {1} and {2} in parallel, and in any
arbitrary order.

Figure 3.1 provides a graphical representation of such a schedule. Observe, that
under this schedule there is no idle time between jobs on each machine. Hence, the

completion time will equal T4+~ and thus it is optimal.

Machine 1

Machine 2

F1cURE 3.1: Scheduling for the m = 2 case.

3.3.2 The m =3 Case

Hoogeveen et al. [37] showed that even the fized version of this problem is strongly
N P-hard. The lowest approximation ratio achieved so far for the general case of the
m = 3 problem is a % + €, proposed by Miranda [38] and for the fized version a %, due
to Goemans [39]. In this section, we tackle the general m = 3 problem, and we present

a slightly simpler approximation algorithm of ratio % + ¢, found in [36].
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Following the reasoning of the previous section we first find an assignment A* that
minimizes the maximum load of a machine, T4«~. We use a modified dynamic pro-
gramming approach. Define the function f(j,z,y) as the minimum value of the total
processing time assigned to machine 3, given that there exists an assignment for jobs
1,...,4, where x is the total processing time of machine 1 and y the total processing

time of machine 2. In case there is no such assignment we set f(j,z,y) = oc.

Initial conditions:

f(1,p1({1}),0) =0
f(lapl({la 2})’]71({17 2})) =0

pi({1,3}), if p1({1,3}) # p1({1})

0, otherwise
f(1,0,p1({1,2})) =0
p1({2,3}), if p1({2,3}) # p1({2})

0, otherwise

f(lapl({la 3})’0) =

f(1,0,p1({2,3})) =

f(l,0,0) :pl({B})
F(1,p({1,2,3)), p1({1,2,3))) = p1({1,2,3}), if p1({1,2,3}) # p1({1,2})

0, otherwise

f(1,z,y) = oo for all other x

Recursive Equations:

fG—=12—-p;({1}),y)
fG—1zy—pi({2})
fG—1Lz,9) +p;({3}
FGsxy) =9 fG - 1,2 —pi({1,2},y — p;({1,2}))
fG =12 -p;({1,3}),y) +p;({1,3})
fG =1z —p;({2,3}) +p;({2,3})
=12 -p;({1,2,3}),y — p;({1,2,3})) + p;({1,2,3})

;where 2 < j<nand 0<z,y <Tj

The time complexity of solving the above dynamic program is O(n - T§). It is also
clear that min{maz(x,y, f(n,z,y)) : 0 < z,y < Tp} = Ta~ and that concludes our

search for the optimal value for the assignment problem.
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The authors of [36] also provide a fully polynomial time approximation scheme for the
assignment problem, which is based on the above pseudopolynomial algorithm. More

precisely, they use the standard scaling technique by dividing all processing times by

€Ty
3n?

mation, they apply the aforementioned pseudopolynomial algorithm that constructs an

a constant K = for any € > 0. In the job system that results from this transfor-
assignment AP for the new system. Keeping the same job-processor assignments, A*P*
is also an assignment for the original job system, with maximum machine load T gapc.

They prove the following theorem.

Theorem 3.7. The assignment AP* for the original job set can be constructed in time

0(2—3) and also Taape < (1 + €)Tgx.

Given the assignment A% the only thing left is the scheduling algorithm. Let us
denote by (1) the sum of the processing times of the jobs assigned to {1} under A®*.
Similarly, we define 1(2), I(3). Without loss of generality, assume that I(1) > 1(2) > I(3).
Otherwise, simply reindex the machines. We present an algorithm that schedules the

jobs of J, whilst respecting A%,

A % + e-approximation greedy algorithm

1: Starting from time 0, execute the jobs assigned to {1,2,3} on all three machines, in
any arbitrary order. Suppose that the last of them finishes at time f 2 3.

2: Starting from time fi 2 3, execute the jobs assigned to {1,2} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time fi o.

3: Starting from time f; o, execute the jobs assigned to {1,3} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time fi 3.

4: Starting from time f; 3, execute the jobs assigned to {2,3} on these two machines,
in any arbitrary order. Suppose that the last of them finishes at time f 3.

5. Starting from time f; 3, execute the jobs assigned to {1}, in any arbitrary order.
Starting from time fo3, execute the jobs assigned to {2}, in any arbitrary order.
Starting from time fs 3, execute the jobs assigned to {3}, in any arbitrary order.

Theorem 3.8. Let C be the makespan of the schedule constructed by the above algorithm.
Then C < 3(1+ €)Tax.

Proof. Since Tpape < (1 4 €)T4+, it suffices to show that C' < %TAamc. Let f1, f2, f3 the
completion times of the three machines, respectively. Obviously, C' = maz{f1, fo, f3}.
As a result of the scheduling algorithm and the assumption made about [(1), 1(2), I(3),
we always have fo > f3. In order to complete the proof, we need to distinguish between

two cases.

e f1 > fo. Hence C = f1. Clearly, C' = Tqap=, since there is no idle time on processor
1. See figure 3.2(A).
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o f1 < fa. Hence C = f5. In this case, the total sum of processing times on all three

machines can be expressed as follows:

Trotar = 3f1,23 +2(f1,3 — f1,2) +2(f23 — f1,3)
+ (fi = f1,3) + (f2 = fo3) + (f3 — fo,3)
<2fa3+2(f2 — f23)
=2f, =2C

The inequality follows because (f1 — f13) ={(1) > (2) = (f2 — f2,3). For a better
understanding see Figure 3.2(B). Observe also that Tqap= > % Suppose
otherwise. Then 3T gape < Tiyrq1, Which is clearly a contradiction since T'qape is the

greatest load among the three machines. Combining all the above we get

3
c < §TAWz

f(123) 1,2) 13) (1)

Machine 1

Machine 3

f{2,3) f3) f2)

(A) fL > fo

f(123) 1,2) 1,3) (1)

Machine 1

Machine 3

123) 3) @)
(B) fi< fo

FI1GURE 3.2: Scheduling for the m = 3 case.

To conclude, the algorithm described here is tight in terms of its approximation ratio.

There exists an instance in which the ratio is arbitrarily close to %
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3.3.3 The General Fixed m Case

This particular version of the problem is still NP-hard in the strong sense, as it
constitutes a generalization of the m = 3 case. Regarding the fixed modes setting, the
best known result is a PT'AS developed by Amoura et al. [40]. However, in this section
we are going to present a PT AS for the most general case, in which every job may have

many alternative processing modes. This specific result is due to Chen et al. [41].

The aforementioned PT AS is based on a special class of schedules, namely the (m, €)-
canonical schedules, which will be formally defined later. The authors prove that for any
instance of the problem, there is an (m, €)-canonical schedule, whose makespan is very
close to that of the optimal. Subsequently, they provide a scheme that approximates

that particular schedule and thus get a good approximation for the initial problem.

Before we continue with the analysis we need to introduce some combinatorial facts.
First, the number of different partitions of a set of m elements is called the m-th Bell
number [42], and it is denoted by B,,. It can be proved easily by induction that B, < m/!.

Furthermore:

Lemma 3.9. Let T = {ti,to,...,ty} be a non-increasing sequence of integers, with
m > 2 a fixed integer and € > 0 an arbitrary real number. Then there is an index jo
such that:

® jo = (3mBp + 1), where k < [%2].

e For any subset T' of at most 3jomB,, integers ty in T with q¢ > jo, we have:

n
€
Z tq_mz;ti

ta€T’ i=

We will denote by j,  the smallest index that satisfies the above conditions and we
will call it the cut-index for the sequence T'. Observe also that given the existential
guarantee of Lemma 3.9, j,, . can be found in polynomial time, since m and € are fixed

constants.

3.3.3.1 The (m,e)-Canonical Schedules

This special class of schedules is only defined for the version of the problem in which
the processing modes are fixed. Suppose then that each job 7 € J can run only in
Q; € M, with processing time ¢;. Now define the sequence T' = {ti,t2,...,t,} and

without loss of generality assume that it is non-increasing. For the fixed number m of
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processors and for any arbitrary € > 0 find the cut-index j,, .. We then split the job set

J into two subsets:
Jp={j €T | j < jme} the large jobs
Js={j €T |j> jme} ,the small jobs

Consider any schedule for the job set J. Let {y1,¥2,...,yn} be the non-decreasing
sequence of the starting and finishing times of the j,, . large jobs. A small job block x
consists of the subset M’ C M of processors that are not used by large jobs in the time
interval [yp,yp+1]. Therefore, the small job blocks in the studied schedules are those
"areas” that small jobs actually run. At any time moment 7 in [y, Yp+1] some small
jobs run, each utilizing a processor subset ();. The collection [Q1,...,Qs] of all the
processor subsets of small jobs that run at time 7 in the small job block x will be called
the type of 7. A layer in x is a maximal interval in [y,,yp+1] such that all moments
have the same type. The type of any moment 7 of a layer is defined as the type of the

layer.

Let L; and Ly be two layers of the same small job block y, with types [Q1, ..., Qs]
and [Ry,..., R] respectively. Ly covers Lg if [Ry,..., R C [Q1,...,Qs]. In particular,
if L1 and Lo are two consecutive layers in x such that Lo starts right after L, finishes
and Lq covers Lo, then Lo is actually a continuation of L with some of the small jobs

finished.

Definition 3.10. A floor ¢ in the small job block x is a sequence of consecutive layers
{L1,Ls,...,L,}. Moreover, all jobs interlacing L; start in L; and all jobs interlacing
L, finish in L,.

An example of a floor follows in Figure 3.3. Note that a small job block may not
have any non-empty floor at all. Furthermore, it is easy to see that any greedy list-
scheduling argument can construct from the jobs 7, of a floor o, another floor ¢/ with

the same height.

Machines floor o

r—’%

L1 L2 L3

FiGURE 3.3: Example of a floor.
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Definition 3.11. Let [Q1, ..., Q] be a partition of M’. We say that we can assign the
type [Q1,...,Qs] to afloor 0 = {Ly, Lo, ..., L.} if the type of layer L; is a subcollection

of {Q1,...,Qs}.

Definition 3.12. A small job block x is a tower if it is constituted by a sequence of

floors each with a unique type.

Note that since each floor corresponds to a different partition of M’, in a tower
inside a small job block we can have at most B,, < m! floors. In our discussion, we will

concentrate only on schedules of the following form.

Definition 3.13. Let J be the job set of an instance to the fixed modes problem. For
fixed m > 2 and € > 0 we divide the jobs into the two sets Jr, Js. A schedule for J is

called (m, €)-canonical if every small job block is a tower.

Concerning the above described class of schedules, the authors of [41] have proved two
very crucial theorems. We are going to present these two results without their proofs,

as they are quite detailed and their analysis goes beyond the scope of our thesis.

Theorem 3.14. Let C(J) be an (m,€)-canonical schedule for the job set J. Let w be
the sequence of large jobs and towers (regarded as a single job) in C(J), ordered in terms
of their starting times. The the classical list-scheduling algorithm based on the order w

constructs a schedule with makespan not larger than that of C(J).

Theorem 3.15. Let J be an instance of the problem with the fized mode assignments,
with optimal solution OPT. For any € > 0, there is an (m,€)-canonical schedule of J

whose makespan is upper bounded by (14 €¢)OPT.

Before we continue with the presentation of the approximation scheme we need an-

other useful definition.

Definition 3.16. Let o be a floor of type [Q1,Qo,...,Qs] and height I. Then subset
Q; plus the height [ is called a room of type (); in o.

3.3.3.2 The Approximation Scheme

Now we come back to the original problem, in which each job j € J may have many
alternative processing modes M; = (Qjx,tjx). The main idea behind this scheme is
that the fixed m allows us to use a quite extensive brute force approach. Initially, we
define min; = minj<x<y; tjx and Tp = Zjej min;j. The value Ty is an obvious upper
bound for the optimal makespan. Furthermore, for the time being let us assume that

we know the partition of large and small jobs in the optimal solution and the order of



Chapter 3. General Multiprocessor Job Scheduling 48

large jobs and towers there. We would then like to place the small jobs inside the known

towers and arrange large jobs and towers in a proper way.

To do so, we are going to use a dynamic program based on an boolean array D.
For each tower x4, where 1 < g < 2j,,  + 1, associated with the processor subset M,
the total number of floors is f; = By, < Bm < ml. Let 041,042,...,047, all the
different floors of tower x,. For each floor o ¢, let v r1,Vk,f,2,- - - s Vo forn g the rp r <m
rooms of that floor. Therefore, the configuration of small jobs in the towers, when we
try to obtain an (m,e)-canonical schedule, is specified by a ((2jm.c + 1)mBy,) tuple
indicating the running time of all possible different rooms. Finally, the needed array
element D[j,t111,..-,tq s+ 12 +1,Bm,m]) has the value TRUE if and only if there
is a schedule of the first j small jobs, such that the running time of room g ¢, is Z4 7,
By assuming that all elements of D have initially the value false we use the following
DP algorithm.

SCHEDULE-SMALL
1: Input: The set Jg of small jobs and the order 7 of large jobs and towers.
2: D[0,0,...,0] + TRUE
3: for j =1tong do
4
5

for each mode @ of small job j do
for each D[j —1,...,tq fr,...] = TRUE such that j can be added to room
Vq,f,» under mode Q) without exceeding Ty do
DJj,... stafor T tiks - - .| + TRUE
: for each D[ng,...,tq ¢r,...] = TRUE do
Call the list scheduling algorithm based on the order .

© %3 D

: Return the schedule with the minimum makespan.

Combining the results of Theorem 3.14, Theorem 3.15 and the fact the the
brute force search described above will eventually find the jobs to rooms assignments
of the near optimal (m, €)-canonical schedule, we get that the result of SCHEDULE-
SMALL will have a makespan bounded by OPT. Moreover, with careful analysis we
can see that its running time is O(n - 2™ - T0(2jm’€+1)mBm - ((2jm,e + 1)mB,y,)), which
is pseudopolynomial due to the factor Tj. Fortunately, that can be corrected via the

standard scaling technique.

The only thing left now is to determine the partition of jobs into Jg and Jr, the
modes of large jobs, the modes of towers and the sequence of towers and large jobs.
Again a brute force approach can guarantee all the above. Furthermore, the processing
times will be scaled down by a factor K, which will be defined later. So the final PT AS

follows.

Obviously, if we forget about the scaling down the above algorithm will indeed find a
schedule with makespan bounded by (14+¢)OPT. However, the authors of [41] prove that

the scaling down and then the expansion procedure actually burden the final makespan
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APPROX-SCHEME

1 K+ o

2: Let J' be the job set obtained by scaling down all processing times by K.

3: for k=0 to L%J do

4 jo < (3mBy, + 1)*

5: for each subset J'f, of jp large jobs in 7’ do

6: for each mode assignment to the jobs in J';, do

7 for each mode assignment to the 2jg + 1 towers do

8: for each possible sequence 7 of towers and large jobs do

9: Call SCHEDULE-SMALL

10: In the schedule with the minimum makespan resulted form step 9, expand the pro-

cessing time of all jobs in order to avoid the effects of the scaling down and return
that schedule.

by a factor nK. Furthermore, it is quite clear that % < OPT. Thus:

C<(14+¢OPT+nK

T
— (1+eoPT+ 0
m

< (14 2€)OPT

To conclude, the running time of the described approximation scheme is proved to be

O( [QJ . njm,s . Qmjm,e . 22mjm,e+m . (Bjm’e + 1)|)
€






Chapter 4

Malleable Job Scheduling In

Uniform Machines

In this chapter, we introduce a new model regarding malleable jobs. Again we have
a set of tasks J, n = |J|, that need to be scheduled using a set of uniform or related
machines M, m = |M|. What makes the difference is that in this case the machines
may have different processing rates, and that is represented by a speed factor. Thus,
each machine ¢ € M has a speed s; > 1. Furthermore, following the malleable paradigm,
each job can run using several machines simultaneously and in unison, as in all previous
models. However, the processing time of a job will now depend on the total speed it
utilizes. To be more precise, suppose that j € J is processed on S C M, with S # 0.

Then its execution time is p;( ;cq 5i)-

To the extent of our knowledge this particular model have never been studied in
the literature, despite its practical significance. From a practical viewpoint, there are
many parallel malleable processing applications, in which the processing units have
different computational capacities. Moreover, since this particular model constitutes
a generalization of Malleable Job Scheduling in identical machines, its study is quite
interesting and thought-provoking from an algorithmic viewpoint as well. Observe also,

that due to that relation all problems regarding our model remain N P-hard.

Finally, in this diploma thesis we are focusing our attention in a restricted version
of the above described setting. Specifically, we study processing time functions with
a predetermined structure, rather than the totally abstract case. This simplification,
which has actually some practical value, helped us comprehend the unique difficulties
and characteristics of the problem at hand, and so produce some approximation results.
In addition, this assumption about the p;(s) functions gave us an insight into how to

deal with the general problem too.

51
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4.1 The Model

We begin by formally presenting the problem we are interested in.

e We have a set J = {1,...,n} of jobs, a set M = {1,...,m} of related processors
and for every machine ¢ € M a speed s; > 1. Every job j € J has a fixed amount
of work w; > 0 and a fixed delay d; > 0. When job j € J runs on S C M, with

wj

S # (), its processing time is p;(S) = d; + S
i€ z

e We want to find a feasible non-preemptive schedule with the minimum makespan.
In any feasible schedule every job j € J will run on a set S C M of machines,

with S # (), and at any point in time every machine must execute only one job.

The general intuition behind the above model is the following. Firstly, every job
requires a fixed amount of processing d;, independent of its machine allocation. In actual
systems, this factor can be interpreted as a predetermined set-up time that the job has
to undergo before its parallelization. Furthermore, the other factor that influences the
execution of a job is its workload, namely the quantity w;. Inspired by the classical
Q||Cmas problem, we suppose that the amount of processing time resulting from w; is
derived by a division with the total speed utilized. To conclude, one may say that the

execution time of a job has two parts. An identical part d;, and a related part ng ot
S z

In order to denote the processing time functions we are also going to use the following
notation. For j € J, p;(s) =d; + %, where s is the variable indicating the total speed

assigned to j.

Observe also, that this particular setting satisfies the monotonic assumptions men-
tioned in Section 2.1. For one thing, the more speed a job utilizes the less its processing
time. Thus, p;(s) is a decreasing function of s. Furthermore, let us define the work func-
tion for a job j as wrk;(s) = s - p;(s) = wj +d; - s. It is then obvious that wrk;(s) is

increasing in s.

Finally, someone may wonder about the necessity of the d; factor in the definition
of the processing time function, claiming that a straight-forward generalization of the
Q||Cinax problem for the malleable case would suggest a function of the following form,

pi(s) = % The thing is that such a model is actually trivial. We prove this right away.

Theorem 4.1. Lijes i < OPT

2icm Si

ZjEJ wj

Proof. Suppose S OPT. Denote by II the last point in time where machine 4
1€ z

is active in the optimal solution. Because of our hypothesis we have:

Zjej wj

Vie M: II; <OPT <
Diem Si
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The total work performed by machine 7 is at most s;II7. Thus, the total work performed

by all the machines is:

Z sEplly < JEJ Z S = ij

keM 2 iem Si keM jeg

Therefore, the total work performed by all the machines is strictly less than the total

work needed for executing all jobs. Contradiction. O

Based on the above result we present a fairly simple optimal algorithm.

An optimal trivial algorithm
1: Let L ={1,...,n} be an arbitrary list of the n jobs.
2: Schedule one job at a time from L using all m processors. Thus, jobs run sequentially.

Theorem 4.2. The above algorithm is optimal for the problem where d; =0, Vj € J.

Proof. Because jobs run sequentially the makespan of the schedule is:

. Wi
C— w1 N Wnp, :ZJEJ JSOPT
D ieM Si dlieMSi Diem Si
where the inequality follows from Theorem 4.1. O

4.2 N P-Hardness

Before we continue with our approximation algorithms, we have to be sure that the
problem at hand is indeed N P-hard. In this section, we present a fairly simple reduction

from the famous Partition problem, which is already known to be N P-hard.

An instance of Partition consists of a set A = {ay,...,an} of m positive integers.
We define S4 = Y a;, and the question is whether there exist two non-empty subsets
Aq, Ay C A such that:

e AiNAy=0and A; U4y = A.

Yo=Y a=

aiEAl aieAQ

The reduction goes as follows. From a given instance of Partition we construct an
instance of our scheduling problem. First, for every item a; € A we have a machine
i € M with speed s; = a;. Regarding the jobs, we are going to have only two of those,

which will also be identical. Their common processing time function is defined to be:

Sa

p(s)=d+d- s
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Let us denote by OPT the optimal solution of the scheduling problem. Observe that
in any case OPT > 2d. If the two jobs are to be sequenced then definitely that holds.

If they are going to run in parallel, then they cannot both have speed allocation strictly

greater than STA, as the total amount of speed is S4. Therefore, at least one of them
will have speed consumption s’ < STA and so:
S S
d+ 22 >d+ 24 =24
25! 9. STA

Finally, observe that if there exists a YFES answer solution to the Partition prob-
lem, then by assigning the machines corresponding to subset A; to the first job, and the
machines corresponding to Ay to the second job, executing them in parallel, we get a
schedule of makespan 2d. Actually, this is the only situation in which the constructed
instance has OPT = 2d. Hence, solving optimally the scheduling problem implies cor-

rectly deciding about Partition.

4.3 The Identical Jobs Case

In this section, we are studying the problem, under the assumption that all jobs
in J are identical. That means that they share a common processing time function
p(s) = d+ . This version of the problem has some practical merit, since many applica-
tions generate at each step a set of identical tasks to be computed on a parallel platform.
Finally, observe that the N P-hardness reduction presented in the previous section, en-
sures that even this special case of the problem is INP-hard, since the reduction only

utilizes identical jobs.

We continue with the analysis of a constant factor approximation algorithm for the
problem. Initially, we partition the machines into two sets. M; = {i € M | 5; > 4},
the set of "fast” machines and M, = {i € M | s; < 4} the set of "slow” machines.
The intuition behind this separation is that a job using a ”fast” machine has always a

processing time of at most 2d, regardless of all the other processors it utilizes.

Suppose now that ny jobs use at least one machine of My in the optimal solution.
We can use exhaustive search (for ny <= 1 to n) to determine ny. The rest of the
jobs, ng = n — ny, use only machines of M in the optimal solution. This brute force
approach, with time complexity O(n), guarantees that at some iteration nys, ns will be
the actual values of the optimal schedule. Given the correct ny, ns, we proceed with the

rest of our scheduling algorithm.

At first we must construct a schedule of ny jobs on M. Suppose that we have the

optimal solution of our initial problem, and we isolate the n; jobs that use at least one
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machine of My. We then assign each of them to only one machine of My, which they
already use in the optimal schedule. By their definition this can always be achieved,
and their processing time becomes at most 2d. The last claim holds because in either
case d > %, where sp is the total speed assigned to each of them. W.l.o.g we may
also assume that their processing time becomes exactly 2d. This newly constructed
schedule obviously has makespan C' < 2-OPT', when restricted only to the ny jobs. But
this schedule, is actually a solution of P|p = 2d|Cp,qe with |P| = |My|, since our last

assumption totally ignores the machine speeds.

Because of all the above, solving P|p = 2d|C),4, can give us an approximation of
the schedule of the ny jobs on M;. But Plp = 2d|Cpa, can be solved optimally in
polynomial time through a greedy algorithm, and by using that we get a schedule with
makespan C* < C' < 2-OPT. Finally, since C* isn’t feasible for our problem (actually is
a solution of P|p = 2d|Cypaz), we simply assign to each of the |My| identical machines a
unique speed from My and the processing time of each job becomes d + 7 < 2d instead

w

of 2d, because x > 7. So we get a schedule for the ny jobs on M; with makespan
Cy<C*<2-0OPT.

Now we are concerned with scheduling the ng jobs, which in the optimal solution use
only machines of Ms. To do so, we must first provide a lower bound on their optimal
makespan. Let us define S =", a1, Si- Also, we denote by q;f the speed allocation of a
job in the optimal schedule and by J; the set of the ng jobs under consideration. Each of
these jobs occupies w+d - q; units of area (work) in the optimal solution. Furthermore,
since all jobs of Js utilize only machines of Mj, the total area provided for them is at
most S - OPT. Thus:

nsW + dz]'ejs
S

q’f
. <OPT (4.1)
Supposing otherwise would mean:

nsw+d» g >S5 OPT
JETs

This is clearly a contradiction, since it implies that the total area occupied by the ng

jobs is greater than the total available area for them.

To construct a schedule for the jobs in Js we are going to use parametrized analysis,
based on an parameter a < 1. In the end, the resulted approximation ratio will be
expressed as a function of a and obviously we are going to minimize this function over
all values of a. Furthermore, we distinguish two cases based on the value of S and give
distinct ways of scheduling in each situation. The first case consists of a straight-forward

algorithm, whilst the second one demands a more thorough and careful approach.
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First of all, if S < 2%, where a < 1, we can serialize the ns jobs by giving all S to

each of them. This schedule has a makespan:

Car = ny(d+ )
<n (H;Jr%)
="t )
<(1+ é)OPT (4.2)

The first inequality results from the assumption about S. For the second inequality

observe that “5* is also a lower bound, as indicated by

Now, if S > =2 we are going to construct disjoint groups of machines in M;, where
each of these groups will act as a new ”virtual” machine. The jobs will no longer see
M as their processing environment, rather they could be only executed on one of these
groups, utilizing simultaneously all machines it contains. The intuition behind this

approach is to make these groups resemble a ”fast” machine, in terms of total speed.

To do so, we are going to use the famous First Fit algorithm for Bin Packing, with
bins of size 5. The bins represent the groups, the items placed in the bins are obviously
the machmes of M and the size of each item is the speed of the corresponding machine.
However, unlike the Bin Packing problem we are not interested in the final number
of used bins. In our case, we take advantage of another special property of First Fit,
namely that given the correct conditions, it always fills at least half of all the bins, except
perhaps the last one. These conditions are satisfied in our case, since Vi € M; : s; < 7,
a<land S > 5. S > 2% implies that there is enough speed to fill at least two bins

and Vi € My : s; < a < 1 ensures that all item sizes are less than the size of the bin.

d7

Construct-Groups Algorithm

1: Consider the machines of My in any arbitrary order.

2: Construct the first group and place in it the first machine regarding that order.

3: Place the next machine in the first group that can fit without violating the total size
-+ If it cannot fit anywhere construct a new group and place it there.

4: Continue with the above until you are out of machines.

It is pretty obvious that at the end of this procedure every group is at least half full.
If this is not the case we could have merged the contents of two groups. However, this
may not hold for the last group. To sum up, this algorithm will build h groups with the

following properties:

® Sg1<832=<...<8gh

o Vic[lh]:s4; <22
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o Vi€ [2,h] : 545 > 5o5. Perhaps, the smallest group will not be at least half full.
But because S > -%, the algorithm cannot construct only one group which will

also be not half full.

After the the above procedure, if s41 < 547 we redistribute (in any possible way) its
speed to the other groups, even if we violate the 7 size. Finally, we obtain a machine

grouping with the following properties:

/ / /
891 S 8g2 S o S Sy
3w

The second property results, since:

w w 3w

Vi€ [2,h]:sq54 <—4—=—

€2 sgit g1 < ad + 2ad  2ad
Now that we have the machine groups, we use the following simple scheduling rule.
Every group gets [%1 jobs. This is an attempt to uniformly distribute work, de-
pending on the group speed. The first thing that needs to be done is to prove that the

aforementioned rule guarantees that all jobs will be scheduled. This is fairly simple.

h' / h / 14
2 : s * Sgi Ms = Sgi _ Ns Z / Ns
Z = — S i = —S = nS
S - S S 4 - 9> S
1=

=1 1=

We begin using the above rule, scheduling the groups in an increasing order of speed.

At some point, when scheduling for group i, we may not have enough jobs to fulfil the

{ns.;g’ﬂ requirement. This actually does not pose any problem, due to the fact the total
machine load, and thus the makespan will not be affected. And that leads us to the next
step of our analysis, namely computing the resulted makespan of this rule. The load of

each group, [;, will be the following:

. / .
=[P @

S Sg.i
s'Slgi w
< (=g +Dd+5-)
972
Ng w
= g(w + 8g4d) + (d + ?)
g7z
Ng 3w w
s bl d+ —
_S( +2oz)+( +5;,i)
ngwWw 3 w
= 1+ — d+ — 4.4
G0+ g ) (4.4)

The last inequality follows directly from
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Let us denote by C, 2 the makespan of such a schedule. Obviously,

nswW 3 w
Cra = e () < (L 50 + ()

, for some group i. Hence, to conclude our proof we need to analyse quantity [£.4] in
terms of relating it to OPT. To do so, we proceed with a case analysis on the optimal
solution, which will result in different lower bounds. Furthermore, observe that the two

cases mentioned below are mutually exclusive.

e Case A) Vj e Js: qj > 5.5- In this case we have the following:

*
nsw+dn5£—d < nSw+deEJ3 qj . nsw
S - S S

(1+ %) < OPT (4.5)

The implication follows from

e Case B) Jj € J; : q}-* < 544+ Because s’g’i > 507 for all groups, we conclude that:

d+—— <d+ = <OPT (4.6)

Sg.i 4;
Suppose that Case A holds. Then:

ngw 3 w
14+ — d+ —
(+ 50+ @+ 30)

S
14 5%
1

2a

3

< <1+?
1+%

OPT + (14 20)d

(14 Qa))OPT

The second inequality results from and from comparing g% (1 + %) with the lower

bound of The third inequality is straight-forward since obviously d < OPT'. Finally,

3
we say that this case results in an approximation ratio pa(«a) = lii‘l + (14 20).
2

1
Now suppose that Case B holds. Then:

Cso <
s2="g 20 Sy

< (1+ i)OPT + OPT
2

The second inequality results by utilizing [{.T] and [£.6] So, we say that this case gives an
approximation ratio pp(a) =2 + 2.

The total approximation ratio, when scheduling with S > 2% is p(a) = maz{pa(a), pp(a)}.
In order to minimize p(a)) we need to find an o, such that pa(am) = pp(am,). By solv-

ing the latter equation we get a,, ~ 0.67965204. The approximation ratio at that
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value is ps = 4.20701. Thus, we constructed a schedule for the ng jobs with makespan
Cs < 4.20701 - OPT. Observe also that pp always dominates (1 + é) from Cs; and so

we don’t need to take it into account at all.

Finally, because My N M, = () the two schedules we have constructed can run in
parallel. So, C' = max{Cs,C¢} < 4.20701 - OPT is the overall schedule makespan. We

also provide a total synopsis of the algorithm.

Identical-Jobs Algorithm
1: forny=1ton do
2: Ng <N — Ny
Schedule n¢ jobs on My using the greedy algorithm for Plp = 2d|Cyqz-
if §< ﬁ then
Schedule all ng jobs sequentially giving all of S to each of them.
else
Use the Construct-Groups algorithm.
If necessary redistribute the speed of the slowest group.

In each group 7 with speed s;ﬂ- schedule VS;QZ-‘ jobs.

10: Return the schedule with the minimum makespan.

Theorem 4.3. The above algorithm is a 4.20701-approximation for our problem.

Theorem 4.4. The running time of the above algorithm is O(n - m?)

Proof. Steps 5 and 8 can actually be implemented in constant time. Step 3 takes time
O(m). Moreover, the algorithm of step 7, which is actually First Fit, has running time
O(m?), while step 9 can be completed in time O(m). Combined with the initial for

iteration we get the final result. O

4.4 Jobs With Different Workloads

In this section, we tackle another special version of the general model. More precisely,
we suppose that again all jobs of J share a common delay d, however each of them has
a workload, wj, of its own. The problem at hand is clearly a general case of the identical
jobs problem, and hence it remains N P-hard. In order to solve this problem, we try
to exploit the results of the previous section. To do so, we need a rather restricting
assumption, namely:
wj

VieM:VjeJ: s < g

(4.7)

What the above hypothesis actually claims, is that all machines are "slow”, as defined

earlier, for every job.
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To begin with, we need again a lower bound on the optimal makespan. Following the

reasoning behind acquiring we can prove that:

. W
ZJESM < OPT (4.8)

where S =3, v si-
Initially, we get rid of the heaviest jobs, that is the ones with sufficiently big w;. So,

we schedule all jobs with S < % sequentially, giving each of them all machines of M.

The resulted schedule has makespan:

_ ]
Ci= > B (d+-2)
{jeg | s<4}
w.
< _J
< > 23
{jeg | s<4}

<2.0PT (4.9)

The first inequality follows from the definition of these jobs, whilst the second from 4.8

Subsequently, we need to deal with the rest of the jobs, J; ={j € J | S > “}. In
order to schedule them, we will take advantage of the identical jobs algorithm. To do
S0, we must partition Js into classes of jobs that have similar workloads. The algorithm

for achieving this follows.

Create-Classes Algorithm
1: Arrange the jobs of J, in order of increasing w;.
2: Take as pivot the first job in the list, with workload w;. Place in the first class, Ji,
all jobs j € J with % < wj; < wi. Remove J; from the list.
3: Continue the above procedure by taking as pivot the first job in the remaining list.
4: In the end, we have [ classes, J1, ..., Je, ..., J;, with their pivoting elements
satisfying wi > wo > ... > w. > ... > wy.

Observe, that for the first class J7, that is the one with the heaviest pivoting element,
we can use the Construct-Groups algorithm based on wi, since S > =} and Vi €
M s; < #L. The parameter a of the previous section is now set to be 1. Therefore,

we create h; machine groups with total speed each:

w1 1 3wy
2d = %91 = Toq (4.10)

Consider now an arbitrary group from the ones that are built specifically for J;. The
machines inside it can be also used in order to construct groups for the second class Jo.
From the way we partition the jobs into classes we know that the relation between the

pivoting elements of the first and the second class is wo < 4. Thus, for the group of
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J1 considered we have:

The first inequality follows from whilst the second is a result of the relation between
wy and we. Furthermore, because the machines of that group are "slow” for ws as well
we can indeed build the groups for [J> inside the initial group for J;. The above
procedure can be extended in every pair of consecutive classes J., Je+1- To sum up, we

have achieved the following:

e For the class J1, with pivoting element w; we have constructed groups of speed

wy 1 3wy
2d <590 S g

e Every group of the class J., can be further partitioned into groups for the class
Jet1, each with speed % < sfﬁl < M, where w.41 the pivoting element of

— 2d
jc+1-

A visual representation of this structure follows.

Groups of Class 3

Groups of Class 2

Groups of Class 1

FIGURE 4.1: The grouping structure.

The only thing left to do now, is to schedule the jobs of Js using the above presented
structure. The algorithm to do this is fairly simple and is based on a classical list

scheduling argument.

Schedule Unequal Workloads Algorithm

1: Consider the job classes in decreasing order of their pivoting element, J1,...,J.

2: Start with the jobs of Ji, scheduling them on the groups corresponding to that class.
Consider on job at a time, and place it in the group such that the resulting total
makespan is as small as possible.

3: Continue with this procedure until you finish with all classes.

Notice that due to the specific structure presented in Figure 4.1, there is no idle time
before the job finishing last starts processing. This is a result of the greedy scheduling
rule and the fact that the groups of class ¢ 4+ 1 are formed within the groups of class c.

A visual example can clarify this property.
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Time Axis

A

FIGURE 4.2: A schedule for unequal workload jobs.

Let us denote by st the starting time of the job finishing last, by sp; the speed
allocated to job j in the schedule and by w.(j) the pivoting element of the class containing

j. Then, because there is no idle time before st we have:

of < Zjejs(wj +d - spj)
- S
< 2jeg(wi+d- Bl
- S
< Djeg, dwj
- S
<4.0PT

)

The second inequality follows, since each job is assigned to a group of its class. The

third results from the relation between w, and wey.

The final makespan of such a schedule is obviously st plus the processing time of the
last job, which is bounded by 3 - OPT. Hence, Cy < 7- OPT. The total schedule is
obtained via sequencing the large jobs and the jobs of J;. Thus, C = C1+Cy < 9-OPT.

4.5 Future Work

Regarding the new model we introduce in this thesis, there are many intriguing future
research directions. First of all, one may try to improve the approximation factor of the
identical jobs case. Since we do not know if this particular problem is N P-hard in the
strong sense, there may even be a F'PT AS for it. Furthermore, the hypothesis about the
machine speeds for the version with the unequal workloads should be removed, in
order to provide a general solution to that problem. Moreover, it would be interesting to
study the model even when the job delays are not identical, namely assuming processing
time functions of the form p;(s) = d; + % Finally, the most interesting direction
to follow, is studying malleable job scheduling with general processing time functions,

without assuming any particular structure for them.
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