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Evpwmnaikd Kowuwwvikd Tapeio

Me tn ouyypnpartoddrnon tng EAMadac kai tn¢ Evpwnaikng Evwong

H mapovoa épevva €xel suyypnuatodotndel and v Evponaixn Evoon (Evporaikod
Kowoviké Tapeio - EKT) kot amd €Bvikovg moépovg péow tov Emyeipnoiokov
[Mpoypappatog «Exmaidevon ko At Biov MdéOnon» tov Efvikod Ztpatnyukov
[MAarciov Avagpopdc (EXITA) — Epevvnrikd Xpnuatodotoduevo ‘Epyo: Hpdxietrog 11

Emévdvon oty kowvavia g yvoons péow tov Evponaikov Kowvwvikov Tapeiov.

«H éyxpion g Awoktopikng Awrpifng amd v Avotatn ZyxoAn Xnukov
Mnyavikov tov EBvikod MetooPiov [ToAvteyveiov dev vTodnAmdvel amodoyn Tov

YVoOU®OV ToL cuyypagéa. (N. 5343/1932, ApBpo 202)»
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Evyoprotieg

H mapovoa epyacio ekmovinke oto gpyactnpo Ymoloyiotikng Emotiung kot
Mnyovikng tov YAkov tov topéa I g oyxoing Xnuikdv Mnyovikédv tov EOvikov
Metooprov Iloivteyveiov vmd v emifreyn tov Kabnynm k. Oedowpov N.

Bodmpov.

Alyeg oe1péc 010 gl60ymyIKd onueiopo pog epyaciog dev eival en’ ovdevi apKETES Yia
Vo TEPIKAEIGOVV TOV AMEPAVTO BOVUAGHE KOt TV QUEPLOTT EKTIUNGT TTOL VIOB® Y10 TO
TPOGOTO €VOG eEOPETIKOD EMOTAUOVO KoL €VOG OKOUN MO OTAVIOV KOl EVLYEVOLG
avBpomov, Tov emiPArénovta Kadnynm pov k. @godmdpov. Elya v toym kot v tyun
va ovvepyaoT® pall Tov ota TAAicL TNG OIMAMUOTIKNAG OV EPYOCIOG Kol UETEMELTA,
KOTA TNV EKTOVNON TG O10aKTOPIKNG Hov dtatpiPrg. Olov avtdv tov kapd dev Emaye
TOTE VO amOoTEAEl Yyl guévo TPOTLTO EMIGTHUOVO, EMOYYEAUOTIO, OAAL TTOAD

TEPLGGOTEPO EVYEVOVLS avBpdmov. Tov evyaploT® Yo OAAL.

Xpwot® mapa TOAAG OTY GLVEPYACIO HOVL UE EMUPAVEIS EMGTHUOVES, OEIOAOYOVS
OLVEPYATES, KAAOVG PIAOVG KOl TPOCMOTIKOVS UEVTOPES, Ol OTOI0l KOTA TNV dSldpKELN
TOV VINTWOKOV LoV PnuUdtov oTtov YOpO 1TNnG TPOCOUOI®moNG He pomoav e
aVTATAPYNON, OlY®MG TO TAPOUIKPO {Yvog €mapons, o€ Evav EMGTNUOVIKO KOGHO
EVIEAMC Kovovplo yia guéva. Avaupesd tovg, oe e&éyovca Béom, or Ap. I'edpyrog
Mmroviovyovpng, Ap. Aovkdg Tlepiotepdg kot o Ap. Anuntprog Tooarikng. Oa tovg

glpon yio mhvto vyVoLmv.

Agv Ba pmopovoo vo mopoPAéym vo guyaplotom® Oho To PEAN NG Ooudoag
Ynohoyiotikng Emotmiung kot Mnyovikig tov YAIK®V Yo v dyoyn cuvepyacio Kot
ompiEn. Idwitepa €VYOPIGTO TOLG GLVAOEAPOVS, GLVOJOTOPOLS KOl PIAOVE K.

I'edpylo Boywatdn kon k. Iwdvvn Mabiovddkn pe tovg omoiovg mepdoape apéTpnTeg



wpeg epyaldpevol kot cuvepyalopevor dimha dimha. Tovg vYOPIOTAO KO TOLG EVYOLLOL

amd Kapoldg To KaAvTEPO.

[Tepvdvtag TP GTOVE EKTOG OKOOMUAIKOD YMPOv, Bepd Tmg 0,T1 AOYlH Kol Vo
YPNOoTomow dev Ba lvar apkeTd Yo Vo LTOPECH VAL TEPIKAEIC® TNV EVYVOLOGUVY|
LOV TTPOG TO. HEAN TNG OIKOYEVELAG OV, TOL EVA TOVG TOIdEWO OPKETA, OV Emayav

oTyun| va pe otnpilovv kat va motehovy oe UEVal.

‘Exetr emwbei, xoatd kaipovg, amd TOAAOVG AOYIOVG Kol UE OPKETOVS SLOUPOPETIKOVG
tpomovg: H meprovsio tov avBpdmov givor ot gidot tov. Miydhn, Oavaon, Xdapn,
Anpntpn, Tdvvn, Topyo ko Xpnoto gipor 0 TAovG10TEPOS AVOP®TOG TOV KOGLOVL.

Xag evyoploTo!

Tn peyodvtepn gvyvopochvn ) xpwotd otov Ocd mov NTav 0dNyos, KATaQLYY Kot

oTNPLYLA LoV G€ OAQ Ta Prjnata TG Pl Tdpa (oNg Hov.
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Extetapévn mepiinyn

H mopovca epyocio amockomel otnv HEAETN TOV GYECEMV OOUNG-OLOTATOV TOL
SEMOVV TNV VAT ZUYKEKPIUEVA, GUECOG OTOYOC AMOTEAEL 1 O1EPEVVIOT U0 1O1OHTEPTG
KATNYopilog VLAIKOV, 0TS TOV apdpeov otepedv. H kopua 1duutepodonta twv
ApOPO®V VAIKOV £YKEITOL GTO YEYOVOG MG UTOPOVV Kol EUQOVILOVV YOPOKTNPLGIKY
1060 NG oTePedS, OGO Kol TNG VYPNG PACNG. XVYKEKPUEVO, GTO QLOPPO GTEPEQ
umopel va moapotnpnOet EAlewyn talemg pokpds euPérelnc omn doun TOLG EVA
EUQVILOLV YPOVIKA EQPTMUEVT] TOPAUOPPMOOT MG OMOKPIOT GE UEYOAN £EMTEPIKA
emParropevn tdon (copmepLpopd, avaAloyn LE ALTH TOV VYP®OV). ATO TNV GAAN LEPLA,
UTTOPOLV Vo S10TNPOVV TNV YEMUETPIO TOVE, VO VTOGTNPIEOVY TNV EMPOAN SO TUNTIKAG
TAOMG, KOU VO EMOTPEYOVV OTO OPYIKO TOVG GYNUO KOTOTY KOTAPYNONS WKPNG
eEwtepkd emParidpevng tdong (CVUTEPIPOPE, OVAAOYN UE OVTY TOV OTEPEDV). YTTO
avT TNV £vvola, T AROpPPa VAIKA ERQavifovV YopaKTNPLoTIKE TOCO GTEPENS, OGO Kot

VYPAG PaoMg.

XopaKTNPIoTIKOl AVTITPOGOTOL TOV AUOPP®V DAMK®V £ival 01 VOAOL 1 VOADIN LAKA.
Ta volodn viwkd Bewpovvror dpopeo oteped. Iapd T0 yeyovog OtL Bewpovvron
oteped, epeaviCouv dtapayrévn Kol aKavovioTn dour, Onwg Ta VYPd, VO amd TNV
GAAN, M popwoky kivnon oe autd amoptileTon KupioE amd SOVNOELS YOP® omd
KOTOGTOCELS 100PPOTIOG Kol 1 Obyvon evidg toug eivor eSoupetikd apyn, OmmG

aKpIPOG 610 GTEPEQ.

Elvar gpoavéc mog 1 pekétn tov voA®d®V LMK®OV givol HEYAAOL ETIGTNHOVIKOD
EVOLOPEPOVTOC, KOOMDC UTOPEL VO ATOKAADYEL HEYPL TOPO. AYVMOOTOVG UNYOVIGHOVS —
elte o€ aTOpKO, HOPloKd, i1 0 MEPIGGOTEPO AOPOTOINUEVO EMIMEDO — Ol OTOi0L eV

etvan Tapdvteg oe Kapioo GAAN mepintmon vAk®v. Emmpdcbeta, ot meplopiopoi kot ot



v

TPoVTOOEGEL KAT® ard TOL 0TOIOVG 01 €V AOY® PUGTKOL UNyovicpot dpovv eppavitovv
taitepo evolapépov. Eivar yvootd mwg ot 1010tTeg TV VOA®IOV VAKOV e£0pTdVTOL
Evtova aQevoc amd TNV O10IKOGI0 GYNUATIGLOD TOVS, Kol APETEPOL amd TIC CLVONKEG
o115 onoieg Ppiokovtat. ‘Eva emmpdcoheto yvodpiopo TV VAIK®Y avTod ToV TOTTOL givat
TG 01 110TNTEG TOVG Tapovatdlovy xpovikn e€dptnon. Avti givar pia woyvpn EvoeiEn
OGS oVTA  To LVMKA Pplokovion  ektdg  OeplodVVOUIKNG  1G0pPOTIaG,  EVD
yopoktnpifovior amd pio dopk TPooTabel TPOGEYYIoNG TG AVTO givol kol To
KOPLO YOPAKTNPIOTIKO YVAOPIGUO TOV VOAMOIDOV VAKAOV, £va QOIVOUEVO TOv glval

EVPUTEPA YVIOGTO MG PLGIKT YN|PAVOT.

H xatavonon tov voAmo®dv VAMKOV Kol KOT' ETEKTOON 1) IKOVOTNTO EAEYYOL T®V
010TTOV ToLG gpPavilel e€icov peydro texvoroyikd evolapépov. Ta auoppa oteped
etva mapovta oe KAOBe mTuyn TS onuepvng Cmng Kot 0 pOAOG Toug givatl Katd ToAy mo
ONUOVTIKOG am’ 0Tt KAmowog dwooOntkd Bo vopule. Avtd kvpiog opeihetor o610
YeYOVOG TG M PO TOVG OV TEPLopileTan 6Ta TAPAOOGLOKA OvOPYaVa, YVOAA, OT®S
OUTO TOV WITOLKOMOV Kol TV TCapidV, 0AAA ekteivetonl Kot cvpmeptlopupdvel v
TOAD GNUOVTKY] KOTNYopio TOV opyaviK®V (Kupimg TOAVUEPIKAOV) YVOA®MY. XUEPQ
elval yvootd TG OPKETA TOALUEPIKA YLOAME UEOVIOVY VOADON HETATTMOON OF
Oepuoxpacieg moAD Kovtd 1| kol v amd TN Oeppokpacio dopatiov. YAkd cov Kt
avtd [my. molvotvpévio (PS), molvaibvievotepepbaiikog eotépag  (PET),
nmolvpedoakpoiog pebviectépag (PMMA), Tolv(avOpakikog e6TEPAS THG SIPUVOANG-
A) (PC), mohvwiola] PBpiokovv avapiOunteg €@oppoyés ®¢ SOUIKG VAIKA, VAIKA
HOVAOGE®S, LVAIKE CLOKELAGIOG HE EAEYYOUEVEC 1010TNTEG QPOYNG, MeUPpavec pe
SmePATOHTNTO KO EKAEKTIKOTNTO KOTAAANAES Yl OlY®PIoUOVS aepimv, LAMKA
kataokevng CDS, SIAeKTPIKE GTN UIKPONAEKTPOVIKY|, ETIPAVEINKE EMGTPOUOTO K.GL.
A&iler va avapepbeli mog o moAd mpoécpata epevpedng Ovyoditme (Upsalite),
ovapocHéviag and to mavemotipo s Ovydia, émov cvvhEdnke Yo TpOTN QOPA,
amotedel Eva avopyavo Guop@o oteped (avOpakikdé Mayviolo) pe tn peyoAdTepn

€101k emeaveio (~800 m2/g) Kol EEQPETIKES TPOGPOPNTIKES IKOVOTNTEG.

Ot pyoviég 110N TeG TOV VOAMI®Y VAK®OV eueavifovv pio povadikn e&aptnon ond
™ MUK 60GTaoN Kot TNV Ogprikn 16Topio. GYNUOTIGHOV. ZVYKEKPLUEVA, TO ONUElo
SPPONG UEPIKMDY VOA®ODV ToAvpepdv £xel mapatnpnbel va avdvetar katd v
dwdkacio TG PLGIKNG YNpovong kot avtiotpoea. H televtaio maparipnon Ppioket

BeaUOTIK] €QOPUOYN OTNV «uUNnyoVIKN avaveapomoinon» (mechanical rejuvenation)
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TOV YLOADV, OTOL KAVOVIKOG Yabvupd voimon viwkd (my. PS) yivovior Oikiua
KOTOTLY €VTOVNG UNYXOVIKNG Topapuoppwons (mépacpa and Evav kulvopduviro). H
OAKIUN CLUTEPLPOPA StopKel HEPIKEG DPES, LEXPIS OTOVL LITepKEPACHEl amd TN PLGIKY

YNPOVGT TOL VAIKOV.

Ot HoploKéG TPOCOUOIMGELS OMOTEAOVV V0L BOCIKO Kol OTOTEAEGUATIKO €PYOAEID Yol
TV HEAETN TNG CLUTEPLPOPAS TOV VAK®V, kKaB®O¢ givon oe BEon va ekTiUnoOLY UE
peyaAn oxpifetor Oeproduvapikés, SLVVOUIKEG KO, OV GLVOLOOTOVV KOTAAANAG e
GAAec TEYVIKEC, MUMYOVIKEG Kol poikéc 1010tnteg. Emumpdobeta, ov  poploxég
TPOCOUOIDGELS e TNV PoNOEL TG CTATIOTIKNG UNXOVIKNG UITOPEL VO ATOTEAECOVY TOV
OUVOETIKO KPiKo HeTAED TOL MIKPOOKOTIKOD KOl TOV HOKPOOGKOTIKOD KOGLOL,
TOPEYOVTAG TN GVVOEST], e AYT KOTAAANA®Y GTOTIOTIK®OV HEGHOV TAV® OTIC O1APOPES
LIKPOKOATOOTAGELS, METOED  UIKPOKOGHOU KOU  HOKPOOKOTIKG — TOPOTPOVUEVOV
WOTTOV. ZE VTN TNV EPYOCI0 YPNOUYLOTOIOVUE OLPOPETIKEG TEYVIKES LOPLOKDV
TPOGOLOIDGEMY, EKUETAAALELOUEVOL TN GYETIKA €VPEID TOKIAMO GYNUATOV Yoo TNV
EPOPUOYT] OLTOV TOV TEYVIKOV, HE OMOTEPO OKOTMO VO, TPOGOUOIDGOVUE OVO
(QOVOUEVA: 0) TO (QOIVOUEVO TNG (PULGIKNG YNPOVONS GTO VOAMSN VAKE Kot ) v

ATOKPIOT) QVTMV TWV VAIKOV GE UIYOVIKT TOPAUOPOOON.

Yy10t0¢ OKOMOC 0VTNG NG €pYaciog &ivar vo ouvalaoTohv KATOAANAG T 000
TpoavaPePHEVTO pavopeva kol vo HEAETNOOVY ¢ €va. Avtd pmopei vo emitevydel
HEC® EAEYYOVL TOVL POIVOUEVOL TNG PLGIKNG YNPOVONG Yo, TNV YpoviKn e£EMEN Tov
OLOTNUOTOG, OTO OMOl0 OE TOKTO YPOVIKA Olootnuote emiPdiietor pio SopKMOC
avéovopevn  eEMTEPIKN  MOPAUOPP®CT)  (MCTE TPOOJELTIKA VO  PTACOLUE OF
TOPALOPPDCELS EVIOS TNG TAACTIKNG TEPLoyns. Eva amd ta Pacikdtepa epnddo oty
nmpoonmdbelo ot amoterel  embBouio pog vo mpocopotwbel 1 dadikacioo avTy UE
emPoArOpEVOLS  PpLOUOVG TaPAUOPP®ONG 000 TO OVVOTOV 7O  KOVTO GTOVG
TEPOLOTIKA YPTCYLOTOLOVUEVOVGS, MDOTE VO, EIVOL EPIKTY] KoL 1] GVYKPLOT UE AVTICTOLYES

TEPOATIKA LETPOVUEVES TILEG 1O10THTMV.

Kotd v mpoomdfeld pog vo oyedootel €vag OUTOGVVEMNG, OMOTEAEGHOTIKOG
oAyOplOHOog  KOVOC VO TPOCOUOLDGEL  EMTVYMG TO  TOPOUTAVED  TEIPOLLOL,
OVTILETOTIGTKOV OTOTEAECUOTIKA €va HEYOAO GUVOAO OO EMPEPOVS HIKPOTEPQ
TpoPAnUaTa. ZuyKeKPUEVA, TPOKEWEVOL Vo peketnBet m ypoviky eE€EMEN TOL

LEAETOVEVOL GLGTLLOTOG GTO YPOVO YPNCLUOTOMGAUE TNV HeBodoAOYiN TV EYYEVAOV
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doumv. Xouewvo pe v pebodoroyia avt, M ypoviky €EEMEN TOL VOADOOVG
ocvotnuatog pmopet va Oewpnbel 6t1 cvpPaivel pEcw oToXEIWOOV PETAPACEDV HETOED
Aekovav duvapkng evépyetog (basins). Me v elcaymyn g €vvolog TV GTOYEIMIDV
petafacenv petabh AEKAVAOV GTNV VIEPEMIPAVELL EVEPYELNG KOL TOV VITOAOYICUO TOV
otabepdv poOuod k., YU owtég g petaPdoels, vmobitoviag OTL TO GUGTNHUO
ToPOpEVEL €L OPKETO ¥POVO HEGH Ge KABE AekAvn LETOED Sl0d0(IKOV HeETAPdcE®V,
€101 OOTE Vo KATOvVEUNOEl OTO €0MTEPIKO TNG CUUP®VO HE TIG OTOLTNOELS MI0G
TEPLOPIOUEVIG (EVTOC AeKAVNG) BepUOSLVAIIKNG 100pPOTHOG KOl VO, «EEYACEL MG
akpifodg €onibfe ot Aekdvn, 1 SUVOLIKY TOV GULGTHUOTOS OOPOTOLEITOL OE oL
oToyooTIK ovéEMEN Poisson mave oe éva mTALypo Aekavodv (] «KOTOOTAGEWDVY)
oLVVOESEUEVDV HETAED TOVG HECH TMV GTOWXEIWOMV peTAPdcemy. XTa Ao QVTAG
™m¢ epyociog &ywve ypnomn plog véag pebodoroyiag, Paciopévn oTIC 1O0TNTEG TOV
otoyooTIKOV avelifewv Poisson kol t Bewpio ypovov mpmdtng mpocméracng (First
passage time analysis) yw 1t yopTOYPAENCN OLTOV TOL OIKTVOL KOl TNV
TOPOKOAOVONGN TG KOTOVOUNG TOV OCUCTAUOTOS OVAUESO OTIS KOTOOTAGELS

GLVOPTHGEL TOL YPOVOUL.

To diktvo TV AgkovdV TOL TPOcOOPIleTaL KAVOVTOG YPNON TOL TAPOUTAV®
alyopiBuov pmopel va yiver e€aipetikd peydAo, dvoyEPOIvVOVTAG TNV TOYVTNTA TOV
VTOAOYICUAOV TAVE o€ avTd. AvTtd amotedel Eva emmpocoBeTo TPOPANUA TOV EMpETE VoL
VIEPKEPAGOVLE OTNV  TPOoTAOel HEAETNG TNG OULVOIKNG  GUUTEPLPOPES TOL
OLOTNUOTOG O€ WEYAANG kAMpaxoag ypoévovg. H Adom tov mpoPAnuotog ovtod
emredyOnke péow g oyediaong evoc KatdAAnAov aAdyopiBuov yia v adpomoinon
TOV OPYKOV, HEYOANG dlooTATIKOTNTOS, cvothuatog. H péBodoroyio avthy peldvel
EMAEKTIKA TNV O100TATIKOTNTO €VOG 0GOONTOTE UEYAAOL apylKoL cuotipatog. To
TPOKVTITOV 1600VVOLO GUCTNLO KATAOTACEWV HEWMUEVNG dldoTtaong eivol og BEon va
TEPLYPAYEL TNV OLVOUIKT] TOL OPYLKOV OCLOTNUOTOS KOTOOTAGE®MV GE UEYOAOLG

YPOVOLG, SiYMG CNUOVTIKN OTMAEL GE TANPOPOPLOKO TAOVTO AVAPOPIKE LLE QVTNV.

To diktvo Aekavov, O0mmg mpocdiopiletoan amd ™ péBodo DIMW, amoterel o
AOPOTOMUEVY],  OLOKPITOTOUUEVT]  OVOTOPACTAGT] TOL  YDPOL  OMEIKOVIGEWV.
Ywobetovrag v ewkdvo pog otoyaotikng avéMéng Poisson yia ) ypovikn eEEMEN
NG KOTOVOUNG TOL GLOTNUATOC G’ aVTO TO O1KTLO, Umopel KAveElG vo EMAVCEL

OVOALTIKGA TO GCUGTNUO JPOPIKOV e&lo®oemV Tov J€mel v avéMEn (master
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equation) vmd ovykekpluéveg apyikéc ovvinkes. H mboavotnta kotdinyng kabe
AeKAVNC TPOKLTITEL OC AOpoGHA POIVOVCHV EKOETIKOV GLVOPTNGE®Y TOL YPOVOUL,
OOV Ol YOPAKTNPLOTIKOL ¥POVOL TOV «TpOT®V Yoldpmong» (relaxation modes) mov
eupaviCovtor ota exbetikd oyetilovral Gueca e TIS O10TIHEG TOV Tivake oTabepdv
pLOPOY TV petafdocmv oy e€icmon master. Me Bdon avtiv TV avaALTIKY ADGN,
avartoéape o pebodoroyion ota TAMICIO TG TOPOVGOS EPYACING YL TV YPOPIKN

ATEIKOVIOT] TOL GLGTHLATOG TMV KATOCTAGEWV KOl TNG XPOVIKNG £EEMENG v TOV.

H peBodoroyia avty pmopel o) va Pondioet tov mpoavapepBev  aiyopiBpo
adpomoinong vo. cLyKAivel ypnyopdtepa kot ) moapéyel pio EVOAAUKTIKY YPOQIKN
OTEIKOVIOT] TNG VIEPETIPAVELNG OVVAIIKNG EVEPYELNG Kal TNG EEEMENG TOV GLGTIULATOG
miveo og avtr). Ta mheovekTnpoTo TG v AOY® HeBdoov Evavtt EVOALAKTIK®OV neBodmv
angikovicews eivar dvo. Apykd, n mpotevopevn péBodoc, v omoio amoKOAOVLE
Sdypappo ypovikng amoocvoyétiong (temporal disconnectivity graph), epmepiéyet v
gvvola Tov xpovov Kot divel TV TANpoopia TG XPOVIKNG eEEMENG TOV GLGTIUATOG
TOV® OTNV VTEPEMLPAVELD OVVOUUIKNG EVEPYEWNS, EVO GALEC HEBOdOL amelkdviong
TopéYovV oTiypoTuma. (Snapshots) g vrepempavelag tov cvotuatog. Emiong, n
YPaPIK] ovty HEBOOOC TPOCEEPEL TNV MOPAKOAOVONGT KABE MG KATAGTOONG
Eexwplotd. Me 1oV TpOTO avTd TPOGPEPETAL 1| TANPOPOPio TNG TAVTAHTNTOG TNG KAOE
KOTAGTAONG Kol TOAD onuoavtikdétepa Tov mote Bo amokataotabel pio meplopiopévn
(ota mhaicwo piog Aekdvng) woppomio petalh dedpwv Kataotdoemv. Qg cuvénela,
umopel va mapakorovdndel 1 cuvoeTKOTNTO PETAED KOTAOTAGE®MY MG GLVAPTNOY| TOV
xPOVOL Kol Vo amoKoALPOoUV  pnyoviopoi Otdyvong HeTad Ttev  mAnBvoumv

EMKOWVOVOVUVTOV KOTACTACEMV.

H unyavikh mapapdpemon volmo®v VAKOV amoTelel TO dEVTEPO CKEAOG TOV YEVIKOV
nmpoPAfuatog mpocopoimone. To @awvopevo avtd mpooeyyiletor pe ™ Pondewa
KotdAAnAa oyedoopuévou aAyopiBuov, o omoiog TOPAUOPP®OVEL TO LIO HEAETN
ocvotnpa Pnuotikd. Kot og avtiv v nepintmon, to kupto TpofAanua dwaywpileTor o
TEPLGGOTEPA TOV EVOG EMUEPOVS LITO-TtpoPAN|Lata. ‘Eva peydio pnépog tov akyopibuov
APLEPOVETAL GTNV dLOOIKOGIN TOPALOPP®ONG TV elayiotwv evépyetag Gibbs kot tov
TOPEUPUAAOUEVOV GOYUOTIKAOV CNUEIOV, LEGH TOV OTOIMV SIEPYETOL TO GUGTN LA KOTA
11§ otoreimoels petafdoelg petald elayiotov evépyewag Gibbs. Emmpocbeta, n
OUVOETIKOTNTA HETOED TV  eloyiotov Oo mpémet va  emoavektiunOel Kotodmy

TOPOLOPPAOCEDS. XTT GLVEYELN, TO OMOTEAEGHO ALTNG TG dtodkaciog Bo mpémel va
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ovlevktel pe tov aiyopiBuo ypovikng eEEMENG Tov ovothuatog (DIMW) mote va
e€l00ppomNoEL TO GHOTNUO. TNV EMPEPOUEVT] UETAPOA Ady® moapopoppmcemc. H
Topamave dadikacio eravallappdvetal 66Tov va TEPACOVLE TO oNEio dappong Kot
va gloéABovpe otV mEPLOYN TAACTIKNG Tapopopemong. Oleg ot pébodor mov
avartuyOnkav oto mAaiclo aLTNG TG €pYaciag £YOVV ¢ GUEST TPOTEPOLATNTO VO
GUVEIGPEPOVY GTOV OTMTEPO GKOMO TNG TPOCOUOIMONG TEPAUATOV TOPALOPPOCNS

VOA®ODV VMK®V VO peaAoTIKODS pLuOUOVS TApaUOPPOOTS.

Ymyv gpyacio ooty ektiundnkov ot ghaotikés otabepéc (uétpo Young ko AdYOg
Poisson) tov vOAM®OOVG ATAKTIKOD TOAVGTUPEVIOL UEGEH VTOAOYIGTIKOV TELPOUUATOV
eMPOALOPEVNG HOVOEOVIKNG (EQPEAKLOTIKNG Kol OMATIKNG) TAOMNG OTNV EANCTIKN
MEPLOYN KAvovTog ypnomn NG olovel oppovikng mpoocyyiong (quasi  harmonic
approximation) ywo. v extiunorn g OepUIKAG GLVEIGPOPAES TOV GLOTHUOTOG GTNV
ouvolkn evépyela. Ot extyunBeioeg Tyég Ppédniav mOAD KOVIA GE TEPAUOTIKA
petpovpeveg TipwéG. Emumhéov, n  Oeppoxpaciokn €E£GPTNON TOV  EKTILOUEVOV
ehooTikK®OV otabepav Bpédnke va Exel tnv BewpnTikd avoUEVOIEVT] LOPOT| Ko Eivon G

TANPN COLPOVIO LE TNV TELPOUATIKA TOPATPOVUEVT).

H oykopetpikn copmepipopd Tov DOAMIOVS ATAKTIKOD TOAVGTLPEVION TPOGOUOIDONKE
o) e YPNON TNG O0VEL APLOVIKNG TPOGEYYIoNG Kot B) HECH TPOCOUOIDCEMV LLOPLUKNG
SUVOLIKNG Kot TO ATOTEAEGHOTO BpEnKkay Gg mapa TOAD KaA cupE®Vio LETAED TOVG,
OAAG KO e OVTIOTOUEC TEWPOUOATIKEG UETPNOELS amd TEPAUATO OmdOTOUNG YOENGS
TNYUOTOC OTOKTIKOD TOALGTLPEVIOL. AKOUo, 1 OepLodVVOUIKY) CUVETELD TNG OlOVEl
OPUOVIKNG TPocsyylong eAéyyOnke kot miotomomOnke n opbfotntd e Méow g
KOUTOAOTNTOG TOV KOUTVA®V NG eAdytomg evépyelag Gibbs pe v mopapopemon
voAoyioTnke 10 PETPO Young kot Bpébnke va eivor oe TOAD KOA CLUUPOVIL UE TIG
TPOKVTITOVGES TWES amd TNV KAON TOV KOUTLAGV TACNG-TOPAUOPP®ONG YL TNV
ehaotikn mepoyn. Ta amoteAéopato avtng g epyaciog Ogiyvouv TG 0 GLVOLUGHOG
™G YPNONG EAOYIOTOV GTNV VIEPEMPAVELD JVVOIKNG evEPYELG, pall pe v otovel
OPLOVIKT] TTPOCEYYIOT|, TOPEYEL AKPPEIC EKTIUNCELS TNG OYKOUETPIKNG GUUTEPUPOPAC
KOl TNG UNYOVIKNG OmOKPIGNG TOL GCULUCTHUOTOS GE WUIKPEG TOPAUOPPOCES GTNV
EAAGTIKT] TEPLOYT] Y10 TO VOAMOESG ATAKTIKO TOAVGTUPEVIO. TENOG, mapatnpnOnKe TGN
amOKPIoN TOL TESIOV €vePYElNG O€ EMPOUAAOUEVT) UNYOVIKT KOTATOVNON WUTOPEl Vo

00MNYNOEL OTOV OYNUOTIOHO VEWV EAOYIOTOV EVEPYEWNG N OTNV  KOTACTPOPN
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npovmdpyoviov. H mapatipnon ovty Hoc odnyel ©0T0 GLUTEPACHO TS M

VIEPEMPAVELD EVEPYELNG OAAALEL TO GYNUA TNG e TNV EMPOAN TAONG TAPAUOPPDOTG.

Téhog, onpaviikég mpoondbeleg KatafAnOncav ota mAaicia g Tapovoag ePYOciog
vy Vv PBertioon g amddoong Tov aAyopiBov yio TV TPOPOUOImON TS PUVOIKNG
YNPOVONG KOL TNG UNYOVIKNG TOPOUOPPMOONG. XTO TAMIGIO QVTNG TG TPOooTdoeilag,
Vmo-01epyacieg aVTOL TOL PEYAAOL ahyopiBupov TporomomOnKay KaTdAANA0 OGTE Vo
emrevyfel n mapaiiniomoinor Tovg. Avti 1 Tpomomoino umopel vo 0dNYNoEL G
ONUOVTIKN HEI®ON TOV avayKaiov VTOAOYIGTIKOD ¥pOVOV. AToUTnTIKEG dlEPYsies o€
VIOAOYIOTIKO YpOVO OTWG O VTOAOYIGUOGC KOl 1 EAOYIOTOTOINGT TNG EVEPYELNG, O
VTOAOYIGUOG SVVAUEDV MG TAPAYMYOL TNG OLVOLIKNG EVEPYELNS MG TPOC OAES TIG
KOPTECIAVEG GUVIETAYUEVESG, O DVTOAOYICUOG TNG E0CI0VIG WTPOS KOl 1) S10yMVOTOINGT)
¢ TpomomomOnKay KatdAAnAo ®GTe va gival €PIKTOG 0 TAPAAANAOG VTOAOYIGHOG
tovg. To emdpevo Ppa oty Tpocnddeia mapaiinionoinong Oa eivar n avdbeon evog
enefepyaotn) oe KABe pio amd TIC ovvoAlkd 3N Ol0GTAGES TOVL YMPOL TV

anekovicewv, 6mov N 0 aplOUog TV GUUUETEYOVIMV ATOUMV.



Summary

This work is dedicated to the study of the structure-property-function relationships of
glassy materials by utilizing computational experiments conducted with molecular
simulation techniques that translate to the cutting edge of materials research. Glassy
materials constitute one basic representative of the category of amorphous materials.
Amorphous materials are materials whose properties are a hybrid of solid and liquid
properties. In particular, materials belonging to this category can show lack of long-
range order in their structure and time-dependent deformation in response to the
imposition of large external stresses (as liquids generally do), whereas at the same time
they can retain their geometry, support shear stresses and return to their initial shape
upon removal of small external stresses (as solids generally do). In that sense, glassy
materials have both solid and liquid characteristics. In particular, glasses are
considered to be amorphous solids. On the one hand, they exhibit a disordered
structure, as liquids do, whereas, on the other hand, molecular motion in them consists
mainly of vibrations around equilibrium positions, as in solids, and translational

diffusion is very slow.

Clearly, the study of these amorphous materials is of great scientific importance, as it
can reveal unknown mechanisms — whether at an atomic, molecular, or more coarse-
grained level — which are not applicable to any of the three known states of matter.
Moreover, the constraints under which these physical mechanisms act are also of great
importance, as it is known that the properties of amorphous materials depend strongly
not only on their formation process, but also on the conditions under which they find
themselves. Another unique characteristic of this type of materials is that their
properties change with time. This is a strong indication that these materials are out of

thermodynamic equilibrium and constantly striving to approach it.
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Understanding glasses, and therefore being able to control their properties, is of great
technological significance as well. Amorphous materials are present in every aspect of
our everyday life and their role is far more important and essential than one would
intuitively expect. This happens because their use is not limited to the traditional
inorganic glasses, such as wine bottles and window panes, but includes also the
technologically most important category of organic (usually polymer) glasses. Today,
polymer glasses exhibiting glass transition at temperatures above room temperature
[e.g. polystyrene (PS), polyethylene terephthalate (PET), poly(methyl methacrylate)
(PMMA), polycarbonates (PC) and polyimides] find countless applications as
construction and insulation materials, membranes with specific permeability and
selectivity etc. It’s worth mentioning that recently developed Upsalite, named after the
University of Uppsala where it has been synthesized for the first time, is an inorganic
amorphous solid (magnesium carbonate) with world record breaking surface area

(~800 m?/g) and water adsorption abilities.

The mechanical properties of glassy materials show a unique dependence on their
chemical constitution and their thermal-mechanical history of formation. In particular,
the yield point of some glassy polymers has been seen to increase over natural ageing
and reversely, to decrease when the glassy specimen is subjected to large plastic
deformation. The later observation finds tremendous usage in mechanical rejuvenation
of glasses, where initially brittle glassy materials (e.g. PS) become ductile upon
imposition of plastic deformation. All the above observations make obvious the

necessity for additional research of this type of materials.

Molecular simulations constitute one basic and efficient tool for materials research, as
they can in many cases accurately estimate thermodynamic, dynamic and, if
appropriately coupled to other techniques, mechanical and flow properties. In addition,
molecular simulations with the help of statistical mechanics are able to provide the
missing link between the microscopic world and macroscopically observed properties,
providing insight into mechanisms of phenomena taking place at the microscopic level
whose effect is observed as a change in one or more macroscopic properties of the
system, e.g., increase of the modulus of elasticity. In this work, we make use of
different molecular simulation techniques and we exploit the relatively large variety of

schemes which can be applied to each one of them in order to simulate two phenomena
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observed in glassy materials: a) the physical ageing of glasses and b) their response to

mechanical deformation.

The ultimate objective of this work is to couple the two above mentioned phenomena
and study them as one through monitoring the physical ageing of a glassy material
which is being deformed by gradually increasing deformations that reach deep into the
plastic regime. One of the basic obstacles in realizing this objective is that the rate of
the deformation experiments should be as close as possible to experimentally applied
rates. In order to succeed in providing a self-consistent algorithm able to successfully
simulate the above experiment, several other difficulties encountered during this effort
have to be overcome. According to our approach, initially designed by former
members of our research group, the evolution in time is viewed as a succession of
infrequent events. It proceeds via accessing new states, or basins of the energy in
configuration space, which are connected via transition paths to an already existing
network of states. When new connections between states are explored and the rate of
transitions for those connections is calculated, the system can be allowed to evolve in

time.

Another basic obstacle we have to overcome is that a way has to be found to efficiently
reduce the number of states that have to be considered as the system evolves in time
and therefore the network of accessed states expands. This is accomplished through a
specially designed lumping algorithm which selectively reduces the size of the original
network of states. The resulting lumped system is in a position to fully describe the
long-time dynamics of the original system without severe loss of information.
Moreover, a technique has been developed for visualizing the network, which can (a)
help the lumping algorithm converge to a solution faster and (b) provide an alternative
representation of the time evolution of the system instead of the typical snapshot-
representation. This graphical representation, which we call temporal disconnectivity
graph, reveals new information that is not available through currently available
representation schemes. In particular, each single state can be separately monitored
over time, as its identity is known and can be tracked at different times to see how this
state changes with time. As a consequence, connectivity between given states can also
be monitored over time, revealing diffusion mechanisms between the populations of

communicating states.
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The mechanical deformation of glassy materials, constituting the second part of the
general simulation problem, is treated through specially designed algorithms which
deform the studied system stepwise. Again this particular problem is broken down into
several sub-problems. A large part of the designed algorithm is dedicated to the
deformation of the potential energy minima and the first order saddle points traversed
through transition paths between the minima. In addition, the connectivity between the
distorted minima has to be re-evaluated through a re-scaling methodology applicable to
the already existing connectivity prior to deformation. Then, the result of this process
has to be successfully coupled to the time-evolution mechanism described above in
order to relax the system and let it evolve in time through exploration of new states.
This process repeats itself until the yield point is surpassed and the plastic regime is
reached. All methods developed in the context of this work contribute to the purpose of
simulating glass deformation at realistic strain rates by solving several problems

arising on the way.

In addition, significant efforts in this thesis have been devoted to increasing the
computational efficiency of the algorithm developed for tracking physical ageing and
deformation. To this end, sub-processes of this major-algorithm which cost both in
computation time and in memory space have been appropriately modified in order to
run in parallel. This modification can lead to very significant reduction of
computational time. Computational expensive processes such as potential energy
calculation and minimization, force calculation, Hessian-matrix calculation and
diagonalization have been appropriately designed to run in parallel. The next step of
parallelization would be to dedicate each involved processor in exploring one certain
direction of the 3N-dimensional configuration space, N being the number of

participating atoms.
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Chapter 1

Introduction

This work is focused on the molecular simulation of the response of glass forming
materials to the imposition of different external stimuli and time. Glasses are
characteristic representatives of a more general category of materials; the amorphous
solids. Due to their great technological and fundamental significance, amorphous
solids will constitute the main point of interest of this chapter. In the following
sections, amorphous solids will be sufficiently described and analyzed and it will be

shown that their complexity and unique properties motivated the current work.

1.1 Amorphous solids

Traditionally, when one speaks of solid state it is in most cases understood that the
discussion is about crystalline solids. Solidity and crystallinity are two terms that are
often used interchangeably as being synonymous. Yet, one of the most active fields of
solid-state research in recent years has been the study of solids that are not crystalline.
These are solids in which the arrangement of atoms lacks one fundamental
characteristic of crystalline solids, the long-range order. In other words, the
periodicity that characterizes crystal lattices and allows the formation of the entire
crystal from the equilibrium positions of a small number of atoms constituting the unit
cell is absent in amorphous solids. In particular, the fundamental difference between

crystalline and amorphous solids lies in the basic nature of their microscopic
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structure. In crystals, the equilibrium positions of atoms or ions exhibit long-range
order, whereas in amorphous solids, long-range order is absent; the set of equilibrium

atomic positions is strongly disordered.

Figure 1.1 schematically represents the most notable characteristics of the atomic
arrangements in amorphous solids as opposed to crystalline solids. Additionally, a
drawing of the atomic arrangements in a gas is also included as a point of comparison.
For the sake of simplicity all three parts of Figure 1.1 are drawn in two dimensions,
but the essential points carry over to their actual, three-dimensional counterparts. For
the two sketches representing the ideal crystal (a) and amorphous solid (b), the solid
dots denote the equilibrium positions about which the atoms are expected to oscillate.
For the gas (c), the dots correspond to a snapshot of one atomic configuration — out of

infinite possible ones — of instantaneous atomic positions.

By observing Figure 1.1 it is obvious that for the amorphous solid, the essential aspect
in which its structure differs from that of a crystalline solid is the absence of long-
range order. There is no translational periodicity. On the other hand, the atomic
positions in the amorphous solid are not completely randomly distributed in space.
This is more or less the case with the third part of Figure 1.1, describing the gas,
where atoms are expected to move in a completely uncorrelated and random fashion,
at least in the low-density limit in which the atoms of the gas may be viewed as point

particles.

Direct comparison of Figures 1.1(b) and 1.1(c) makes evident at a glance that in the
case of the amorphous solid there is a high degree of local correlation. Each atom has
a given number of first-neighbors (in the example used here these are three but this
can vary depending on the case) located at nearly the same distance from its center.
Nearest-neighbor atoms are connected through lines in the figure and the “bond
angles” formed where these lines meet at an atomic center are also nearly equal. In the
crystalline case of Figure 1.1, both the number of nearest-neighbor atoms to a given
atom and the nearest-neighbor bond angles are exactly the same, as these are dictated
by the equilibrium positions of the crystal lattice. It is thus obvious that amorphous
solids are characterized by a high degree of short-range order, which is a consequence
of the chemical bonding or physical interactions responsible for holding the solid
together. Hence, while a lack of long-range order in amorphous solids implies
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randomness at large distances, the atomic-scale structure of such a material is highly
nonrandom at a length scale of a few interatomic distances about any given atom.
This restricted symmetry characterizing amorphous materials is responsible for the
fact that one cannot fully reproduce their structure when only a certain subset of

atomic positions is known.

(a) CRYSTAL (b) GLASS (c) GAS
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Figure 1.1: Schematic representation of the atomic arrangements in (a) a crystalline
solid, (b) an amorphous solid, and (c) a gas. *

Many scientists from all over the world characterize the amorphous state as a
kinetically trapped state, meaning that there is some kind of motional entrapment
responsible for the distorted structure of the material compared to the completely
ordered structure of the ideal crystal. This Kkinetic interpretation of the structure and
geometry of amorphous solids is strengthened by the fact that their properties actually
change with time, a phenomenon widely known as physical ageing. From a
thermodynamic point of view, amorphous materials can be considered as being
kinetically trapped in a metastable condition, meaning that they are not in the
thermodynamically favored state. According to thermodynamics, for the given set of
temperature and pressure, a simple glass-forming material should be in the
energetically more stable crystal state, as the chemical potential of the crystalline state

4. 1s smaller than the corresponding chemical potential of the liquid state g, x, <

. There are, however, cases of materials, such as atactic polymers, where a fully
ordered crystalline state in which the molecules can pack may not exist. In any case,
the crystalline state is thermodynamically preferable in comparison to the liquid state.
This means that the equilibrium material should be a crystal, when available. For
reasons that will be clarified as we proceed in this chapter this is not the case, and
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amorphous materials combine — as mentioned above — characteristic properties from

both liquids and solids.

One explanation of this behavior is based on the time needed for the amorphous
material to make the transition from the adopted metastable state to the
thermodynamically stable crystalline state. This time — also known as relaxation time
— is a measure of how fast or slow these materials respond to a certain applied change
— such as rapid cooling — and move towards the new thermodynamical equilibrium.
Hence, for kinetic reasons — originating in the complex structure of the potential
energy landscape of these materials, as we will see in Chapter 3.3 — the transition
towards thermodynamic equilibrium is being hindered and takes place extremely
slowly. That said, amorphous materials are considered to be away from
thermodynamic equilibrium, undergoing a prolonged dynamical transition towards the
equilibrium state (physical ageing). The basic reason why these materials become

kinetically trapped originates largely in the way they are formed.

At this point, a note of terminology is in order. The term amorphous solid is the
general one, applicable to any kind of solid showing a non-periodic atomic lattice as
outlined above. The term glass (a notion that will be further investigated in Chapter
2.1) is sometimes being used to refer to amorphous solids created based on the most
common way of producing amorphous solids, i.e., quenching of a melt. Since there
are other ways of producing amorphous solids than melt-quenching, the term glass is
the more restrictive one, but often used interchangeably to describe the most general
term of amorphous solid. In this work, this ambiguity will not be adhered to and both
terms will be used synonymously. Hence, we have the term “glass” to set in
opposition to “crystal”, or equivalently the term “amorphous solid” versus “crystalline

solid”.

As mentioned above, amorphous solids can be created through a large variety of
techniques. Given the fact that the properties of the formed amorphous material
depend strongly on time, it can be concluded that the production method plays a
significant role for the final properties of the amorphous material, since it undeniably
affects and defines the formation “history” of the material. The dependence of glass
properties on the formation history is so strong that, even when using one and the
same method to create an amorphous solid with only some initial specification details
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changed between two different experiments, the two experiments will lead to a
completely different kind of amorphous material with totally different properties
characterizing it. Nowadays many methods have been developed to create amorphous
solids. These methods can initially be classified under three different categories based
on which is the starting phase: the liquid, the gas or the crystalline phase. In the first
category the amorphous solid is being created by preserving the relative disorder of
the liquid phase, whereas in the second category a gas solidifies directly to an
amorphous material. Finally, in the third category the long-range order characterizing
crystalline solids is being distorted. More specifically, the basic methods to produce

amorphous solids are the following:

1. Abrupt cooling of a liquid-melt (Quenching): This is the oldest and still the
most common method for amorphous solids production. Earlier it was
believed that only a certain group of materials can form amorphous solids
through quenching from the melt. This viewpoint has been abandoned and
now it is believed that nearly all materials can be prepared as amorphous
solids, if cooled fast and far enough (“Fast” and “far” will be further explained
and analyzed in Chapter 2.1). A prominent example supporting this belief is

the formation of metallic glasses, when the melt is quenched with extremely
high cooling rates T ~10° K/s, experimentally achieved with the technique

presented in Figure 1.2:
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Figure 1.2: Experimental device for the production of metallic amorphous solid. *

The technique shown in Figure 1.2, known as melt-spinning, is used for
achieving very high cooling rates to form amorphous solids. A jet of hot
molten metal is ejected against the metallic surface of a rapidly rotating
cylinder, which is used as a heat sink. Since metals have high thermal
conductivity, the liquid cools and solidifies extremely fast. This technique can
be implemented for quenching many materials other than metallic melts. The
characteristic difference is the adopted cooling rate, which may vary
depending on the ease with whch the material can be trapped in the amorphous
state. This “ease” is a measure of how high or low the applied cooling rate
should be. Metallic materials, because of their intrinsic tendency to crystallize,
are considered to be one of the most difficult classes of materials to form an
amorphous solid structure. In this case, the “ease” to crystallize is low and the
cooling rate to be applied should be high. In other words, the tendency of a

given material to form an amorphous solid is related inversely with the applied
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cooling rate. The bigger the cooling rate (as in metallic melts), the more

difficult it is for this material to solidify in an amorphous manner.

2. Thermal evaporation: According to this method, the amorphous material is
produced directly from the gas phase. The principle on which this method is
based is quite simple: The material to be solidified is being evaporated and its
molecules go into the gas phase. These molecules are then brought in contact
with an appropriate substrate of low temperature and solidify on it. The low
temperature of the deposition surface reduces the diffusive motion of the gas
molecules, causing the molecules to preserve their random positions obtained
during their evaporation. The heat necessary for the evaporation is being
delivered either by applying electric voltage (applicable for materials of low
melting point), or by bombarding the material with pulses or beams of high-
energy electrons (used for materials of higher melting point). The described
method has been recently used by Mark Ediger and coworkers for the
preparation of ultra-stable polymeric glasses 2. In addition to that, this process
has been simulated by Juan de Pablo and coworkers * using a simple Lennard-

Jones mixture model.

3. Sputtering: This method is more complex, but also more adjustable than
thermal evaporation. It is based on the bombardment of a target-material via
ions of low pressure plasma, resulting in the ejection of atoms from this target-
material. The removed atoms are then being deposited on a suitable substrate.
The atom deposition upon the cool surface leads to the formation of an
amorphous solid for the same reasons described in the previous method.

4. Chemical vapor deposition (CVD): This method is based on the chemical
decomposition of gas molecules of the desired material to be solidified via
chemical reaction triggered by appropriate reactants leading to the creation of
amorphous films on the surface of the substrate via deposition.

5. Irradiation: Under given conditions the interaction between ionized high-
energy particles and atoms of a crystal lattice can lead to the destruction of the
crystalline state and its transformation to an amorphous state. The produced
amorphous material exhibits completely different properties from the original

crystalline solid, to which it can return via an annealing process. The
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reversibility of this technique is found to be extremely useful in the
semiconductor industry.

6. Pressure-induced amorphization: The application of high pressure to a
crystalline solid can, under certain conditions, lead to its transformation to an
amorphous solid via externally imposed distortion of the equilibrium lattice
positions. It is also believed that some local meltdown due to high pressure
and re-solidification takes place in the inner of the crystal lattice leading to the
amorphous solid.

It should be clear at this point that amorphous materials are of high scientific and
industrial interest. For their creation many techniques have been developed and

applied, depending on the use and properties of the desired amorphous material.

1.2 Motivation and scope of this work

The biggest difference between amorphous solids and other, conventional solids
originates from the fact that they are continuously evolving and change with time, as
they are materials out of thermodynamic equilibrium. While thermodynamics clearly
demonstrates that these materials should be in the crystal state (when available), for
kinetic reasons this never happens, at least over the time scales of observing these
materials. This means that there are certain kinetic drawbacks preventing the material
from going towards its thermodynamically stable condition. This kinetic prevention
doesn’t mean restriction. The metastable material actually evolves towards the
thermodynamically stable state, but it does so at an extremely slow pace. The time
needed for the material to reach the thermodynamic more stable structural states
characterizing equilibrium is known as relaxation time and a “relaxed” material is
considered to be in equilibrium. Sometimes, the material exhibits so long relaxation
times on its way to a stable thermodynamic state that hardly anything changes over
the time window of observation. Under such conditions it may be useful to consider it
as being in local equilibrium within a confined region of its configuration space,

although it still evolves towards thermodynamic equilibrium. The process of
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constantly evolving towards thermodynamic equilibrium is a phenomenon known as

physical ageing.

Physical ageing constitutes a phenomenon of great technological significance, as it
describes the behavior of amorphous solids. Amorphous solids are being formed by a
wide range of different materials of varying chemical constitution and properties and
are present in many applications of our everyday life. Their role in our everyday life is
far more important and essential than one would intuitively expect. This is because
their use is not limited to the traditional inorganic glasses, such as wine bottles and
window panes, but includes also the technologically most important category of
organic (usually polymer) glasses. Today, amorphous polymers with glass-transition

temperature T, (we will explain this notion in detail in Chapter 2.1) far above room

temperature [e.g. polystyrene (PS), polyethylene terephthalate (PET), poly(methyl
methacrylate) (PMMA), polycarbonates (PC) and polyimides] find countless
applications as construction materials, thermal, sound or light insulation materials,
packaging materials with controlled permeability properties, membranes with

selectivity and permeability designed for gas separation techniques, CDs etc.

It is, hence, clear that amorphous materials have both fundamental scientific interest,
as they are materials out of thermodynamic equilibrium, and technological
importance, as they find use in many applications of our everyday life due to their
unique properties. Much of the intellectual fascination about the amorphous solid state
arises from the fact that scientific insight must be achieved without the help of the
mathematical amenities which accompany periodicity, symmetry and long-range
order of the crystalline solid state. The atomic-scale structure of an amorphous solid
still constitutes one of its great mysteries and in most the cases structural information
is won with great effort. On the other hand, the technological significance of these
materials stimulates the scientific community to further analyze and model their
structural behavior in an as general a manner as possible. The basic motivation and
scope of the current work is to shed some light and gain physical insight into the
mechanisms that govern structural evolution of amorphous glassy materials and
through this knowledge to develop, test and apply rigorous simulation methods for

estimating their thermodynamic, mechanical and structural properties.
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In the following chapter glassy materials will be introduced and their method of
preparation by cooling from the melt will be thoroughly described, with emphasis on
the thermodynamics of the glass transition. Several theories describing the glassy state
will be briefly discussed and the basic tools used in this work to model and simulate
the behavior of these materials will be presented. In Chapter 3, some basic notions of
rare event theory will be elaborated and their connection to the model of a Poisson
process will be shown. The notion of basins and metabasins of the potential energy
landscape will be defined and the adopted theoretical kinetic model for transitions
between these regions of configuration space will be developed. Finally, in the last
part of Chapter 3 some simulation results will be shown verifying “cage-breaking”
events in an atomic level for intra-metabasin and inter-metabasin transitions. In
Chapter 4, the lumping algorithm will be presented for reducing the number of states
used in describing the temporal evolution of a glassy system without suffering any
significant loss concerning the long-time dynamics. In Chapter 5, we present an
alternative, temporal representation of the potential energy landscape and show how
this can provide a good first estimate for the lumping algorithm. In Chapter 6, we
present some mechanical properties for our model glass calculated via simulations of
mechanical deformation experiments, whereas in Chapter 7 we summarize all main
conclusions and innovations of this work. Finally, in the last chapter an outlook is
presented for future work concerning time dependent mechanical properties of our

model glass.



Chapter 2

Glassy materials

As already mentioned in the previous chapter, the term “glass” is often used in the
literature to describe amorphous solids in general. This happens mainly because
glassy materials are actually the most prominent representatives of this category of
materials, as evidenced by their countless technological applications in many aspects
of today’s life. Glassy materials are commonly being produced through abrupt cooling
of their melts, a process better known as quenching. The systems investigated in the
context of this work are computer models for amorphous materials that have been
vitrified through quenching from the melt. Since quenching constitutes the basic
method of producing glassy materials in this work, the following section of this
chapter is dedicated to a detailed description of this process, while at the same time

making the competition between crystallization and vitrification mechanisms clearer.

2.1 Crystal, supercooled liquid, and glassy state

It is common practice in most textbooks in the literature dealing with glassy materials
to go through a detailed description of the quenching procedure via a cooling
experiment depicted with the help of a certain graph. We adopt this practice here.
The procedure of quenching a melt can be described with the help of Figure 2.1. In

this figure, the volume of the material is being plotted against temperature V =V (T)

under constant pressure. Alternatively, in the place of the system’s volume one could
depict another thermodynamic property such as the entropy of the system S, the
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enthalpy H, or even the internal energy U . Figure 2.1 should be read from right to

left, since time runs in that direction during the course of the cooling experiment.

VOLUME —»

1 ! 1
TEMPERATURE —>»

Figure 2.1: Representation of a glass formimg system’s volume as a function of
temperature during an isobaric quenching procedure. The two general, competitive
cooling paths that characterize passing from the liquid to the solid state are shown.
Route 1 represents the crystallization path, whereas route 2 describes the vitrification

path due to extremely rapid cooling (high cooling rates). *

Assuming that the gas of the substance to be cooled down is in thermodynamic
equilibrium at a temperature higher than its boiling temperature T,, we begin to lower
the temperature at a constant cooling rate T, observing at the same time the value of

the volume. A sharp break in V(T) indicates a change of phase or a first order phase

transition in the Ehrenfest classification *, involving discontinuities in the first partial
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derivatives of the Gibbs energy G with respect to its natural variables temperature

and pressure, i.e. in the entropy S = —(Z—_CI_;) and volume V = (Z—Gj when plotted
p.n T,n

versus temperature T . As a consequence, at a first-order phase transition the second
derivatives of G with respect to T and p diverge. More specifically, infinite changes

are observed in the thermal expansion coefficient:

=32 1
viaT ),
in the isothermal compressibility:
1(0oV
| 2.2
Kt Y (ap l (2.2)
and in the heat capacity under constant pressure:
(2] +(3)
aT ), ot ),

when plotted versus temperature T . Condensation from the gas phase shown at the
extreme right of Figure 2.1, exhibits these characteristics. The phase change

gas — liquid occurs when with decreasing temperature the gas condenses to the
liquid phase at the boiling temperature T, and is a first-order thermodynamic phase
transition. Continued cooling below T, now decreases the liquid volume in a
continuous fashion, where the slope of the smooth V(T) curve defines the liquid’s

thermal expansion coefficient «, :\%(Z—\_I{j . Eventually, when the temperature is
P

brought to a low enough value, a liquid — solid transition takes place. The transition

mentioned before can be meant in two different ways, depending on the applied

cooling rate during the cooling experiment:

1. Discontinuous solidification of the liquid to a crystalline solid at the freezing
temperature Ty, in the vicinity of the equilibrium melting temperature, or
2. Continuous solidification of the liquid to an amorphous solid (glass) at

temperature Tg.
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These two quite different solidification scenarios are labeled, correspondingly, as
routes 1 and 2 in Figure 2.1 and lead to quite different solids. Route 1 occurs
theoretically (we’ll explain shortly what actually happens) at the equilibrium melting
point. Depending on the applied cooling rate, the system will follow either route 1, or
route 2. In particular, when the cooling rate is sufficiently low, route 1 is followed and
the crystalline solid is formed. The higher the cooling rate, the greater the possibility

of suppressing crystallization (i.e. route 1) and favor vitrification (route 2).

In many cases crystallization does not start exactly at the equilibrium melting point
Tm. The system then enters a metastable condition which is more widely known as
supercooled or undercooled liquid. The supercooled liquid is still undoubtedly liquid
and must not be confused with the glass. The supercooled liquid has temporarily
equilibrated at a metastable state, although it should according to thermodynamics go
over to the solid phase which is more stable (of lower Gibbs energy). As the
temperature is lowered, the strength of this fragile equilibration decays as the
dominance of the thermodynamically stable phase (solid) becomes more pronounced.
Finally, the expected transition occurs and the system goes over to the solid state. The
width of the temperature interval T,,—T; (undercooling) between the equilibrium

melting point T, and the freezing point T,, at which the crystallization transition

actually occurs, depends mainly on the material. In Figure 2.1, for the sake of
simplicity, no distinction is made between T, and T; and the initialization of the
crystallization procedure (route 1) has been drawn as occurring at strictly constant
temperature Tr. Crystallization is a first order thermodynamic transition, as is

evidenced by the change in volume that accompanies it.

On the contrary, the competitive vitrification process (route 2) starts at a lower
temperature, until which the system exists as a metastable supercooled liquid. The
temperature at which the vitrification begins is called the glass transition temperature

T,. From Figure 2.1 it is obvious that: T, <T, <T,.

During the glass transition there is no volume discontinuity; instead, V (T) bends over
to acquire the small slope (similar to that of the crystal) characteristic of the low
thermal expansivity of a solid. Both crystals and glasses are considered to be solids

and share the essential attributes of the solid state. Their fundamental difference lies
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in the nature of their microscopic, atomic-scale structure. As mentioned in Chapter 1,
in crystals the equilibrium positions of the atoms form a periodic lattice and long-
range order is present. In amorphous materials (glasses in particular), long-range
order is absent. The key element in the preparation of an amorphous solid is speed. It
is generally known that crystallization takes time, as small crystalline centers
(embryos) must initially be formed (through a process called nucleation) and then
grow by outward propagation of the crystal/liquid interfaces. As described by
classical nucleation theory, the formation of an embryo entails a free energy cost, due
to the new interface formed. Only embryos larger than a critical size are able to grow,
and the formation of such embryos is an activated process. Small embryos form and

dissolve all the time until an embryo manages to surpass the critical size.

As soon as the temperature of the quenched melt becomes lower than the equilibrium

melting temperature T_ and the crystalline phase becomes the thermodynamically

more stable phase, two simultaneous processes appear: One is crystallization through
the nucleation process outlined above; the other is relaxation of the existing liquid to a
metastable equilibrium at lower and lower temperatures upon imposition of the
temperature change. The characteristic relaxation time of the liquid increases very
strongly as temperature decreases. If the cooling rate imposed is very high, there
comes a point at which the metastable liquid cannot keep up with the rate of change in
temperature, and the liquid falls out of equilibrium, its configuration being trapped
into that of an amorphous solid. This is glass formation. Thus, there are two
competing mechanisms for formation of a solid upon cooling a liquid: cystallization
and glass formation. Which one of the two competitive mechanisms will finally
prevail is a question of how high or low the imposed cooling rate is, i.e., how abrupt

or mild the imposed change is.

When the imposed cooling rate T =% is high, one or more of the following three
possible scenarios are true:

1. Either the temperature change AT (decrease, as we speak of cooling) is big, or
2. the time interval At given to the system to adjust to a fixed temperature

change AT, is extremely small, or
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3. Both the imposed temperature change AT is relative large, and the given time

for adjustment At is small.

The relationship between those two quantities, namely AT and At (i.e., the cooling
rate), is what defines which one out of the two competitive mechanisms
(crystallization or vitrification) will prevail. If the imposed temperature change is
large and the time given to the system to adjust (i.e. equilibrate) to this imposed
change is small (time window of observation) in comparison to the time actually
needed to equilibrate (relaxation time), then the system due to kinetic reasons resides
in the metastable liquid state. If we continue the cooling experiment by further
decreasing the temperature, then the supercooled liquid will continue adjusting to the
new “cooler” state with increasing difficulty, as the relaxation times needed for
equilibration are becoming increasingly higher. These times will never be reached as
the imposed cooling rate grants the system only a small time window At, much
smaller than the relaxation times actually needed to equilibrate. The increase of
relaxation times with decreasing temperature proceeds faster than what an Arrhenius
temperature dependence would imply. At a certain temperature, the relaxation time
becomes so large that the system is no longer in position to relax and “absorb” the
imposed temperature change. This incapability reflects itself by a bend in the smooth

V (T) curve, signifying the onset of the glass transition.

In the case where the cooling rate T is relative small (i.e., small imposed AT, or
large observation time window At, or both) then the more time-demanding
crystallization process will overrule glass formation. At which temperature and
density the system will glassify depens on the cooling rate. This means that the
imposed cooling rate during quenching actually defines the properties of the final
material, i.e., the produced glass depends on its formation history. Figure 2.2 shows
how different cooling rates can lead to different glassy materials. As shown in Figure

2.2, the glass transition temperature T, depends on the cooling rate, as it is a property

of the formed glass and hence depends on its formation history, i.e., the process used
to create it. The smaller the cooling rate (smoother change), the lower the glass
transition temperature, as the time provided to the system through the cooling rate to
adjust is now larger, allowing it to equilibrate more deeply in the supercooled liquid
regime. The higher the cooling rate (more abrupt change), the higher the glass
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transition temperature, as the time given to the system through the imposed cooling

rate is now small and the system immediately goes over to the glassy state.

| | | | |
Ty Tg(z} Tg“] Ta Te

T

Figure 2.2: Volume versus temperature curve for quenching experiments contacted
under varying cooling ratio. Graphical representation of the glass transition
temperature dependence on the cooling rate used. °

In Figure 2.2 the volume is plotted against the temperature. Figure 2.2 is intimately
related to Figure 2.1, since any thermodynamical property can be plotted as ordinate,
the most interesting ones being V, S, H. Both in Figure 2.1 and in Figure 2.2 the
selected property is the volume V. The results exported from both diagrams are

completely analogous. According to Figure 2.2, when performing the quenching of

the melt under the cooling rate T, the system follows the route FABC of Figure 2.2
resulting in a glass (C) with given properties and glass transition temperature T (1).

Point F in Figure 2.1 represents the freezing point and point A represents an arbitrary

point in the supercooled liquid regime. When the same experiment is repeated, using

this time a smaller cooling rate T, <T, (yet, T, should be sufficiently large to bypass
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crystallization), then the followed course is FADE in Figure 2.2 and the resulting
glass (E) has different properties than the previous one (C), obtained using the initial
cooling rate. Since the formation history of glass (E) is different, its properties will
also be different. Hence, the glass transition temperature will be in this case lower

T,(2)<T,(1) due to the reasons mentioned above. Finally, point I in Figure 2.2

represents a glassy material that will be obtained under an even lower cooling rate

T, <T, <T,, exhibiting an even lower glass transition temperature T, <T_(2) <T,(1).

Defining the formation history of a glass-forming material has been proven to be
subtle and not an easy thing to do. Recent studies ® have shown that in the vicinity of
the glass temperature, the history of the glass-forming material cannot be uniquely
defined by the cooling rate. In other words, the observation times dictated by the
imposed cooling rate are not sufficient to fully determine the formation history, and
hence the properties, of the formed glass. It has been shown ° that the length of time
spent at each temperature level during a simulated cooling procedure over a range of
temperatures, where the simulation time is smaller or comparable to the equilibration
(relaxation) time, is significant and plays a key role in defining the quality, and hence
the properties, of the glass to be formed. In other words, AT and At play a role, and
not only their ratio T , when At is comparable to or shorter than the relaxation time
of the glass foming material. All this becomes evident with the help of Figure 2.3, in
which the instantaneous values of potential energy minima visited by a glass-forming
binary Lennard-Jones system under constant pressure are shown, for three

temperatures, in five computational cooling experiments of duration 14.5 ns at each
temperature level, conducted with exactly the same cooling rate 2 x10° K/s.

Whereas in the liquid region the reduced trajectories for the five experiments are

statistically indistinguishable, they differentiate themselves after vitrification.
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Figure 2.3: Representation of the potential energy per atom at the minimum during
the cooling process of a binary Lennard-Jones system — initially proposed by Kob et
al. " — of totally 641 united atoms. The potential energy per atom and time are both
given in reduced units ®’. In the inset diagram, the evolutionary course of stepwise

cooling, involving the three studied temperature levels, is presented. °

Despite the same cooling rate, it is clear that at the lowest temperature (T =9 K)) the
five glasses retrieved are different and depend strongly on the time interval spent at
the intermediate, transition temperature of T = 38 K. The intermediate temperature

of T =38 K is very close to the estimated glass transition temperature T, = 38.4 K 8

and signifies the transition between the supercooled liquid (described in Figure 2.3 by
the highest temperature of T =67 K) and the glass. By observing Figure 2.3, it is
evident that the time spent in the second temperature region, i.e., observation time
during simulation, actually determines the properties of the glass, as the five resulting

glasses diversify from one another exactly at this temperature region.

In the next section of this chapter, the basic theories concerning glass transition will

be introduced and briefly analyzed.
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2.2 General aspects of the glassy state

In the past years there has been a lot of debate whether the glass transition constitutes
a phase transition, and if so, what is the order of this phase transition according to the
Ehrenfest classification (As seen from Figure 2.1, the break in the slope of V and S
resembles what would be expected of a second-order phase transition according to
Ehrenfest). Is the glass transition a bona fide thermodynamic transition? Is there an
underlying thermodynamic transition that is disguised by kinetic effects? Or is glass
formation a purely kinetic phenomenon? Many theories (which will be outlined
further in this section) have been developed during the past years based on the
assumption that the glass transition is a thermodynamic transition. All these theories,
although well defined, suffer from a certain disadvantage: Until today, no order
parameter or characteristic length has been found to appropriately describe (by
becoming infinite at a non-zero temperature) the alleged phase transition. An
additional difficulty in supporting the theories for the existence of a thermodynamic
phase transition has to do with the conditions that have to be fulfilled, as discussed
below.

If we accept that the glass transition actually constitutes a phase transition, then
according to the Ehrenfest classification this phase transition should have a certain
order. If the order of this transition is one (as in the case of the majority of the
common phase changes, e.g. evaporation, condensation, solidification, melting,
sublimation etc) then the first order derivatives of the Gibbs energy G with respect to
temperature and pressure (characteristic variables of G) should change

discontinuously at the transition temperature:

oG
(Ejp =-S (2.4)
and
oG
&)~ &

According to this scheme, the entropy and the volume of the system should change

discontinuously at the transition temperature T . As we have seen from Figures 2.1
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and 2.2, described in the previous section, the volume of the system at the glass
transition temperature changes continuously, exhibiting no discontinuity (as in
crystallization), but only a small change in slope. Thus, the vitrification process is not
a first order phase transition.

If we further examine the behavior of the second partial derivatives of the Gibbs
energy G with respect to temperature and pressure, in order to determine whether the
glass transition is a second order phase transition, we obtain expressions that include

the heat capacity under constant pressure C, the isothermal compressibility «; and

the thermal expansion ¢, as defined in equations (2.3) to (2.1) respectively:

82(3 o (G Eq. 2.4 oS Eq. 2.3 Cp

| === = =2 = -2 (2.6)
or ) oT \ aT ), ar J, T

2 Eq. 2.5 Eq. 2.2
0G| _0[06) P (V) BTy 2.7)
op” ). oplop ), op J;

2 Eq. 2.5 Eq. 2.1
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oTop ) T ap ). ot J,

Thus, in the light of equations (2.6) and (2.7), one has to examine how the
compressibility, the heat capacity under constant pressure and the volumetric therrnal
expansion coefficient change during the glass transition. If that change is
discontinuous, then the glass transition can be characterized as a second order phase
transition. Furthermore, it can be shown that, for a true second order thermodynamic
transition, the following relation between the discontinuities in second derivative

properties should hold:

dT, TV-(a,”-a,") TV-Aq,

9

dp c@-cl AC ©9)
p p

p

where the index (g) corresponds to the value of the relevant property in the glassy
state, and similarly the index (I) describes the value of the considered property in the
liquid phase. In an analogous way followed to extract equation (2.9), the following
equation can be obtained:
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dT,  Ax;

— = 2.10
dp Ag, (210

The properties C_, a,and x; do change discontinuously across the glass transition
(see Figure 2.1 for «,). Through experimental measurements of the values of the
quantities AC_, A, and Ax; during the vitrification of several materials, it has been

observed that equation (2.9) holds in almost every case. This is, however, not the case
for equation (2.10). In particular, the right-hand side of equation (2.10) is found to be
significantly larger than the left-hand side of the same equation. This is a strong
indication that glass transition is not a simple, common second order phase transition.
Moreover, Prigogine and Defay ° have shown, without making any assumption

concerning second order phase transition, that the ratio:

Ak, -AC
RE(Eq.Z.loj_ K7 - AC, (2.11)

Eq.29 ) T.v .(Aap)z

is equal to one, when only one order parameter sufficiently describes in full the
equilibrium state of a system relaxing towards it. On the contrary, when more than
one order parameters are required for the same purpose, ratio R becomes larger than
one. The later observation seems to be the case for the vitrification process. This
conclusion undeniably strengthens the argument that glass transition is a more
complex phenomenon than an ordinary second order phase transition.

Many properties of glassy materials depend strongly on their formation history. One
characteristic example is the glass transition temperature, which, as we have seen
above, depends on the applied cooling rate during quenching. In addition to that, the
exact specification of the glass transition temperature is purely a matter of convention.
In particular, many scientists adopt the following criterion: the glass transition
temperature of a given material is the temperature at which the longest relaxation time
in this material becomes of the order of 10° s. According to another convention, the

glass transition temperature is considered to be the temperature at which the viscosity

of the material equals 10" P (poise). Regardless of the fact that many properties of the

glassy material depend strongly on its formation history and on the nature of the
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material itself, there are certain properties and characteristics of glassy materials that

exhibit similar behavior across wide categories of glass-forming materials.

One example of such universal behavior is the dependence of the relaxation times ¢
on temperature. It is generally accepted, that relaxation times increase dramatically
with decreasing temperature in glassy materials. In addition, the way relaxation times
increase with decreasing temperature is faster than an Arrhenius dependence (
7(T) oc exp(A/T)) would imply. The later assertion becomes clearer with the help of
Figure 2.4. Figure 2.4 is usually called “Angell-diagram” or “Angell plot”, named
after C. Austen Angell, who introduced such a diagram for the first time *°. This plot
shows how the decimal logarithm of viscosity (which can be considered as

proportional to the relaxation time 7 ) changes with the reduced inverse temperature

T% in the range of temperatures T > T,. For the creation of this diagram Angell used

the second of the two above mentioned definitions of the glass transition temperature,

i.e., the temperature at which the viscosity of the system becomes 10“°P .
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Figure 2.4: Temperature dependence of the dynamic viscosity (proportional to
relaxation time) for a series of glass-forming materials as a function of the reduced

inverse temperature T, /T . *°

In this diagram, a linear dependence would correspond to an Arrhenius-type behavior.
As can be seen from the main diagram of Figure 2.4, the change of relaxation time 7
(i.e. logarithm of viscosity) with temperature is of Arrhenius type only for a small
number of materials, while the large majority of glass-forming materials deviate from
this linear behavior. A classification of glassy materials proceeds with the help of the
Angell-diagram. Glass-forming materials showing slight deviations from an
Arrhenius behavior are named “strong” glass formers, whereas materials exhibiting
large deviations from an Arrhenius dependence are named “fragile” glass formers. For
the latter category of materials, the Vogel-Fulcher-Tammann relation is being used to

better describe the temperature dependence of the relaxation time 7 :

7(T)oc eXp(T E;T j (2.12)

0

According to equation (2.12), the relaxation time becomes infinite at a non-zero

temperature T,. This has been interpreted as an indication that at this finite
temperature an actual phase transition may exist. Moreover, the temperature T, seems
to be identical to the so-called Kauzmann temperature T, , at which the entropy of the

supercooled liquid equals the entropy of the crystalline phase. '

As can be seen from the left inset to the diagram of Figure 2.4, “fragile” glass formers

usually exhibit a large change in their heat capacity under constant pressure C at the

glass transition temperature. In the second inset plot are shown the occurring curves
after usage of the Vogel-Fulcher-Tammann relation (Eq. (2.12)) for several values of
the dimensionless “activation energy” D=B/T,. As becomes obvious, the
temperature dependence of “strong” glass-formers corresponds to large values of

energy barriers D, whereas for “fragile” glass-formers to low energy barriers D.
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Apart from the distinction of glass-formers into “strong” and “fragile”, another
distinction proposed by Sciortino * distinguishes glasses into attractive and repulsive.
The molecular origin of attractive glasses lies in the existence of strong (in relation to
temperature) attractive forces. In cases where the range of attractive forces is much
shorter than the particle size, the glassy state can be found at very low densities **. On
the other hand, repulsive glasses result from of hard-core interatomic interactions due
to the short-range repulsion of the electron clouds and are usually observed at high
densities, where repulsive interactions become dominant. At this point it should be
mentioned that, beyond the Vogel-Fulcher-Tammann equation (Eq. (2.12)), other
empirical or semi-empirical relations have been proposed to quantitatively describe
the temperature dependence of the relaxation time 7. One such example is the

following relation °:
B
7(T) cexp (;) (2.13)

which also provides satisfactory fitting to experimental measurements.

2.3 Theories describing the glass transition

During the past years the complex — and still incompletely understood — phenomenon
of the glass transition has attracted the interest of many scientists. In an effort to
address all questions raised about this phenomenon, various theories have been
proposed. The complexity of the glass transition problem is underlined by the fact that
a large number of disparate theoretical proposals have been suggested over the years
to explain it. In this section of Chapter 2, the basic theories for the interpretation of
the glass transition are being presented and briefly analyzed. Each theory has its
advantages and covers well some issues concerning the studied phenomenon, while
none of the theories can describe the glass transition completely and without
constraints. Nevertheless, given the high complexity of this phenomenon, every one
of the theories mentioned below explains relatively well different aspects of the glass

transition.
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2.3.1 Free volume theory

One of the most famous and well established theories for the interpretation of glass
formation is free volume theory. It was initially proposed by Fox and Flory '* in the
early 1950’s and is thus considered to be one of the initial complete theories dealing
with the phenomenon of glass formation. It is based on the correlation between the
ability of atoms to diffuse and the space (or free volume) that is actually available for
this diffusive motion. According to this theory, the relative reduction in the ability of
atoms to freely diffuse, which is observed in the vicinity of the glass transition
temperature, is directly correlated to the reduction of the available free volume for the
diffusion of atoms. For the definition of the notion of “free volume” one simple model
system is used; the model system of hard spheres. According to this model, the atoms
are represented by ideally spherical hard particles of given diameter o . Attractive
interactions are completely absent in this model, whereas infinite repulsion is present
in the case of particles overlapping. In other words, the force field characterizing non-
bonded (a notion to be further analyzed in Chapter 2.4) interactions in this model has

the following functional form:

+00

HS ! rij
rVNB (r”) =

. (2.14)

The graphical representation of the potential energy as a function of the center to

center distance of two atoms i, j, r; = |ri —rj| , is shown in Figure 2.5:
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Vs (rij)

Figure 2.5: Typical graphical representation of a hard sphere potential as a function

of the interatomic distance r; of two given atoms i, j

Figure 2.6 depicts the two-dimensional floor plan of a hard sphere system (actually
Figure 2.6 shows a system of hard discs), where the shaded areas represent the free
volume (free surfaces in 2D) available for diffusion for three different atoms: A, B
and C. Particularly, the free volume of every atom is defined as the locus (set) of
points which are allowed to be visited by the center of this atom without this causing
any overlapping effects with neighboring atoms, given that all neighboring atoms do
not move. The free volume constitutes in other words a measure of atomic motion
ability within a “frozen” environment. At this point a clarification is in order. The free
volume should in no case be confused with the vacant (or void) volume, i.e. the
volume of the system which is not filled with atoms. The vacant volume results
directly from subtraction of the net volume of the atoms from the total volume of the

system.

In general, one can define the accessible volume to a spherical probe of given radius
as the locus of points where the center of the probe can be placed such that it does not
overlap with any of the atoms in the system **. The vacant volume is the accessible
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volume to a probe of zero radius. The free volume of an atom is the cluster of
accessible volume *° to a probe of radius equal to that of the atom in the configuration
obtained by removing the atom in question from the system; by definition, this cluster
contains the original position of the atom. The accessible volume is, in general,
smaller than the vacant volume and its physical meaning is directly connected to the
fraction of vacant volume accessible to atoms during their diffusive motion without

causing any overlapping effects.

Figure 2.6: Graphical representation of the free volume for a 2D system of hard discs.
The shaded areas correspond to the free volume for atoms A, B and C, provided that

all neighboring atoms remain still. *

As can be seen in Figure 2.6, the free volume of atom A is larger than those of atoms
B and C. Thus, molecular mobility — connected with and analogous to the free volume
— iIs expected to be larger for atom A than for atoms B and C, which are more
confined by their first neighbors. But this is not the only difference between atom A
and atoms B and C. A closer look at Figure 2.6 leads to the conclusion that the first

neighbors of atom A are more distant in comparison to the first neighbor-cell of atoms
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B and C. This property allows, as already mentioned, atom A to move more freely. It
could thus diffuse through a free volume bottleneck towards position A’. At this
position, four out of the six initial first neighbors (before the diffusive jump) of atom
A have been changed. An analogous diffusive jump for atoms B and C is impossible,
unless their neighbors move. In other words, the amount of free volume accessible to
an atom is directly connected to its ability of performing diffusive jumps and cage-
breaking events (a notion which will be thoroughly investigated in Chapter 3).
Moreover, the diffusive behavior of atom A in this example points to the general
diffusive behavior in a liquid, where the atomic mobility is relatively higher than the
mobility in a solid and diffusive jumps happen often. On the contrary, the diffusive
behavior of atoms B and C reminds one how atoms move in a solid, i.e. atoms vibrate
around their equilibrium positions. Because glassy materials combine properties of
both liquid and solid (as amorphous materials in general do), the cage-jumping
behavior presented in Figure 2.6 is expected to be although present, not dominant in

such materials.

The above described connection between the microscopic diffusivity of a particle and
the amount of free volume surrounding it led to the development of the free volume
theory. According to this theory, the glass transition phenomenon correlates with the
changes in the free volume distribution of particles. Initially, for as long as the system
is in the liquid (or supercooled liquid) state the particle free volume is large and the
diffusive jumps make the system relax easily in response to the imposed temperature
drop. As temperature decreases, the available free volume decreases as well and
diffusive jumps become sparser. Once the glass transition temperature T, is reached,
the free volume becomes minimal and the fluid becomes kinetically arrested leading
to the known behavior of glassy materials under their glass transition temperature.
The development of free volume theory, initially by Cohen and Turnbull * followed

by Cohen and Grest ', is built upon four different assumptions:

1. To each particle a local volume v of molecular size is assigned.

2. Once the local molecular volume v exceeds a critical value v,, the volume
excess can be viewed as free volume.

3. Molecular movement happens only when, due to free volume redistribution,

larger gaps are being formed than a critical volume value v’.
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4. No free energy is needed for the redistribution of the free volume.

This theory distinguishes between two types of atomic cells around any given atom:
“liquid” cells and “solid” cells. The criterion for this distinction is the value of the free

volume in comparison to the critical volume value v,. In particular, “liquid” cells are

being formed when the accecible volume around them becomes larger than the critical

value v >v,, whereas “solid” atomic cells are present when v <v_. According to the
second assumption of this theory, free volume is built once the critical value v, is

surpassed. Hence, only particles belonging to “liquid” cells have free volume. It is
therefore of great importance to quantify the volume distribution of the different types
of cells being built around any individual particle. This volume distibution plays a
dominant role in the context of this theory, as it defines how free volume changes. It
is to expect that this distribution is temperature dependent. Once the volume

distribution function P(v,) is determined, several properties of the material can be

derived. One example is the Doolittle relation ‘® (named after A. K. Doolittle, who
initially developed it based on the behavior of the liquid phase of many simple

hydrocarbons) to evaluate the fluidity (inverse viscosity):

n*=n;' .[: P(v,)dv, (2.15)

2.3.2 Configurational entropy theory

An alternative approach for describing the glass transition phenomenon constitutes the
configurational entropy theory or cooperative relaxation theory. It was initially
proposed by Gibbs and DiMarzio *° and further developed by Gibbs and Adam *° and
examines the dynamical relaxation of supercooled liquids and glassy materials from a
statistical-mechanical point of view. The initial approach of Gibbs and DiMarzio is

based on the assumption that the glass transition at T, is connected to a
thermodynamic transition at a lower temperature T, <T . The abrupt increase of

relaxation times observed as T, is approached from higher temperatures is attributed
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to a significant reduction of the available microstates of the system, a measure of
which is the system’s “configurational entropy”. The higher the number of available
microstates is, the higher the configurational entropy of the systems and vice versa. In

the context of this theory, T, is the “ideal” temperature at which the configurational

entropy of the system becomes equal to zero and consequently the glass transition is

viewed as a second order phase transition. Under T, the configurational entropy of the

system remains zero, instead of taking negative values, which lack of course any

physical meaning. In the context of this theory, temperature T, is identified to be

identical to the Kauzmann temperature T, (mentioned in Chapter 2.2)

The continuation of this theory, introduced by Gibbs and Adam, is based on the idea
that relaxation of the macroscopic system occurs due to cooperative rearrangement of
molecular clusters. It is obvious that the higher the number of cooperatively
rearranging clusters is, the easier the relaxation (equilibration) of the system will
occur and vice versa. These groups of molecules define the cooperatively rearranging
regions as independent sub-systems of the macroscopic system. In these cooperatively
rearranging regions, it is possible, due to variations of the energy, to observe local
structural rearrangements which, however, leave the surrounding atoms intact. The
rearranging regions are supposed to co-exist within the macroscopic system under
mechanical and thermal equilibrium. Thus, the most appropriate statistical ensemble

for their discription is the isothermal-isobaric ensemble (n, p,T). The corresponding

partition function for this ensemble is given by Eq. (2.16):

Qz,p.T)=> w(z, E,V)-exp[— kETj-exp[— i” (2.16)

where z is the number of atoms in a cooperatively rearranging sub-system and

w(z,E,V) is the multiplicity of every microstate of energy E and volume V . One

can directly calculate the Gibbs energy G with the help of Eq. 2.16:
G(z,p,T)=2-u(p,T)=-ksT-InQ(z, p,T) (2.17)

During the derivation of Eqs. (2.16) and (2.17) it becomes obvious that every
microstate has been considered, regardless of their ability or not to show
rearrangement. If we repeat the above procedure, limiting the calculations to the



32 Chapter 2

microstates that actually show structural rearrangements, then only a fraction of sub-

systems can show structural rearrangements:

p=%=exp£—ek}6] (2.18)

where Q' is the partition function occuring if the sum of Eq. (2.16) is restricted only

to those values of E and V that allow structural rearrangements of the z
participating atoms. G’ symbolizes the corresponding value of the Gibbs energy. The

possibility of actually observing a structural rearrangement event of z atoms W, is

directly proportional to p, as Eq. (2.19) reveals:

W, (T) = Aexp[— Zk' AT“J (2.19)

B

where z-Au=1z(4'-u)=G'-G and the pre-exponential factor A is a constant

considered to be independent of temperature and z .

In order to calculate the total probability of structural rearrangement W(T), the
individual probabilities of rearranging sub-groups consisting of z atoms should be
accumulated. The lower limit of the summation cannot be zero. There should be a
limiting value of the number of atoms constituting each sub-system z", below which
the rearrangement in at least two stable structures is impossible. Hence, the lower
limit of the summation should be equal to the total number of particles z minus the

minimum requirement on atoms for stable structural rearrangements z":

W(T)= iA{exp(—kA—ﬁfﬂ

(2.20)

_ A .exp| - 7 -Au
1-exp(—Au/kT) kyT

The denominator [1—exp(—Ay/kBT)] of Eq. (2.20) is normally very close to unity,

hence, it can considered as temperature independent. Therefore, we can safely

conclude that for every temperature the largest probability of appearance of
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cooperatively structural rearrangements can be observed for clusters of atom-number

very close to the minimal allowed value z”, as Eq. (2.21) shows:

W(I')zA.exp(—z 'A“] (2.21)
kT
With the help of Egs. (2.16) and (2.17) the configurational entropy may be defined by

differentiating of the Gibbs energy with respect to temperature:

oG
S :_(a_ij (2.22)

The configurational entropy of the entire system can be defined with the help of Eq.
(2.22) under the usumption of equivalence and independence between the individual n

microscopic sub-systems comprising the macroscopic system:

S.=n-s (2.23)

c c

The main output of the configurational entropy theory is Eq. (2.24) which expresses

the probability of structural rearrangement W(T). This quantity is reversely

proportional to the system’s relaxation time 7 .

Ap-s C
W(T)=A-exp| — £ I=A-exp| ——
( ) p( T'Sc } p[ T-S j

c

(2.24)

This theory predicts the glass transition temperature slightly higher than the

corresponding experimental value. If T, is the temperature at which the

configurational entropy becomes zero S, (TZ):O, then T, >T, and therefore every

glassy system has a residual of configurational entropy. This residual can be
calculated with thermodynamic measurements close to absolute zero temperature. At
this temperature vibrational contributions influencing the conducted measurements
are absent and hence the observed entropy difference between the glassy system and
the crystalline phase can be entirely attributed to the residual configurational entropy

of the glassy system during the quenching of the melt.
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AS =(Syp =S S (2.25)

glass crystal )T:O =9

Moreover, if AC is the difference of C_ between the glass and the liquid, then the

configurational entropy can be expressed as:

s AC
S, = ?pdT (2.26)

T2
By assuming that AC is constant in the temperature interval [TZ,Tg], Bestul and

T
Chang # estimated S, ~4C, -In[T—g] and by replacing the experimentally measured

2

values of S, and AC, the ratio T /T, has been calculated for a series of glassy

systems T, /T, =1.29+10.9%

If for the temperature dependence of the C, the expression ACp(T)zD/T is
adopted %, then Eq. (2.24) takes the form:

W(T)ZA'eXp(_T_BT ] (2.27)

Equation (2.27) corresponds to the known Vogel-Fulcher-Tammann-equation [cf. Eq.
(2.12)].

2.3.3 Mode coupling theory

Over the last years the phenomenon of glass transition has been approached from a
different point of view. In Particular, many hydrodynamic and kinetic models have
been developed and proposed for describing the dynamical behavior of the
supercooled liquid. According to the philosophy of those theories, glass transition
does not constitute a thermodynamical phase transition, but merely a phenomenon
leading to loss of system’s ergodicity. The independent seminal work of many
researchers, such as Leutheusser 2°, Bengtzelius, Gotze and Sjolander 2* and others %,
has led to a concrete mathematical formalism describing this aspect. In the course of
these efforts, it has been observed that a special case of the mode coupling theory
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(MCT) of liquids can lead to a dynamical abnormality showing characteristics similar
to those of glass transition.

As mentioned above, MCT attempts to describe the dynamic behavior of strongly

supercooled liquids at temperatures above the glass transition temperature T . More

precisely, during the glass transition phenomenon the behavior of the density is of
great interest. In particular, the entrapment of the system during glass transition leads
to a certain loss of its diffusive capability, resulting in a long-term stabilization of the
density fluctuations. An effective way to monitor these density fluctuations is through
the intermediate scattering function, which is given by Eq. (2.28) in a normalized

form:
2,0=(p" @000/ (@0 ) (2.28)

Eq. (2.22) is the autocorrelation function of the spatial Fourier transformation of the

density function and can be directly measured through scattering experiments. p(q,t)

is the spatial Fourier transform of the density function p(r,t) . MCT makes use of the
general equation for relaxing materials that function @, (t) - as defined is Eq. (2.28) -

should fulfill according to the classical hydrodynamic theory:

D, (1) +y,D, (1) + QD (t) + ij m, (t—t)@, (t")dt' =0 (2.29)

satisfying the following initial conditions @, (0) =1, d?q (0)=0. In relation (2.29), the
parameter (2, corresponds to a microscopic frequency, whereas the function m,(t)

represents a “memory” function depending on the “velocities” éq for every time t'

smaller than time t. For a more thorough description of the derivation of Eq. (2.29)
the reader is referred to reference ?°. It is not within the goals of this work to go more
deeply in detail concerning this matter.

MCT is based on the general relationship shown in Eq. (2.29). In its simplest version,

the so-called ideal MCT, the model predicts the existence of a temperature T, at

which the system goes from ergodic to nonergodic behavior. In particular, in the ideal
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MCT the self-consistent assumption is made, that the “memory”-function m(t)

depends parabolically on the autocorrelation function @, :
2
m, (t) oc 4-1- D, (1) (2.30)

where A represents a coupling parameter. With the help of this model (ideal MCT)
many interesting results are obtained. First of all, the prediction for the relaxation of

the function @, (t) changes from simple exponential (for small values of A) to

stretched exponential, as the coupling parameter A increases and approaches the

critical value of 4, =1. As the coupling parameter A increases and approaches the
value of 1, the temperature decreases approaching the critical value T_. At T_ (i.e.
A. =1) the autocorrelation function ceases to relax within a finite time interval of

observation and remains “frozen” at a non-zero value exhibiting a plateau as shown in

Figure 2.7:

* 10
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Figure 2.7: Typical representation of a dynamical slowdown of the relaxation process

of the autocorrelation function @, (t), as the coupling parameter A increases

approaching the critical value of 4_=1.%
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In other words, MCT constitutes a relatively simple model that predicts from a purely
hydrodynamic point of view the existence of a dynamical glass transition which
reflects the incapability of the system to relax within a finite time interval. It is
generally accepted that the mode coupling theory provides results in good agreement
with experimental measurements for temperatures above the glass transition
temperature, whereas as the glass transition temperature is being approached results

tend to deviate from experimental findings.

2.3.4 Other theories

Up to this point it should be clear that all mentioned theories converge to the
fundamental conclusion that structure determines dynamics: e.q. liquids are
disordered and thus flow and relax (in the sense that there is a certain decorrelation
from their initial condition), while crystals are ordered and do not. More precisely,
sudden changes in dynamical behavior follow from similar sudden changes in
structure. A characteristic example of this is the common first order phase transition
from liquid to crystal. The glass transition, however, does not fit within this paradigm
in an obvious way. A supercooled liquid slows down, to the point of complete arrest,
while at the same time maintaining its liquid structure. This leads to what is probably
the fundamental question in the field ?%: Is the glass transition, as observed
experimentally, purely a dynamical phenomenon, where the fluid becomes kinetically
arrested, or is the observed dynamics the consequence of an underlying phase

transition from the fluid to the glassy state?

In this section of Chapter 2 two relatively new theories are being introduced and
briefly described while trying to examine glass transition from both a purely
thermodynamic perspective, and a fundamentally kinetic one. Starting from the
kinetic perspective, it has been found  that there is an undeniable connection
between the glass transition (even before that, during the supercooled liquid state as
described below) and the dynamical heterogeneity of the system **. This phenomenon
is prevalent even before the glass transition temperature and signifies one salient
difference — besides the exceedingly slow dynamics — between a high-temperature

liquid and a supercooled liquid. More precisely, high-temperature liquids are
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homogenous both in space and time: there is no significant difference in the way
particles move in different regions of the liquids, nor is there a difference in the way a
given particle moves now and, say, a fraction of a relaxation time later. Supercooled
liquids (and hence glassy materials) are not like that. They are characterized by spatial
clusters of fast- and slowly-moving particles. Moreover, a given particle can remain
slow for a certain amount of time and then become fast later. This phenomenon,
initially observed in supercooled liquids, was later shown to be also present and

characterize many glass forming materials ..

In order for the notion of dynamic heterogeneity to become clearer, Figure 2.8 can be
of use. In this figure a projection in space of an equilibrium trajectory (a notion which
will be described in the following section of this chapter) of a two-dimensional
supercooled liquid is shown, from reference *%; particles colored according to overlap
with initial positions (displacement by a particle diameter or more is dark red, and no
displacement is dark blue). According to this figure, spatial segregation of dynamics
is evident. By carefully looking at Figure 2.8, another facet of dynamical
heterogeneity can be observed: dynamic facilitation (DF), which is actually the name
of the kinetic-based theory trying to explain the glass transition phenomenon.

Figure 2.8: Graphical two-dimensional projection of an equilibrium trajectory of a
supercooled liquid. Particles colored according to their relative mobility: dark red

corresponds to higher mobility, whereas dark blue to no displacement at all. *
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Dynamic facilitation is the property by which a local region which undergoes
relaxational motion gives rise to — or facilitates — a neighboring local region to
subsequently move and relax. Dynamical facilitation is the key property of kinetically
constrained models of glasses. In other words, a local relaxation has a very high
probability of happening nearby another local relaxation. The basic difficulty within
the context of this theory is that one has to disentangle motion which does not lead to
relaxation (e.g. rattling and local vibrations) from the one that effectively does so. By
applying this discrimination on a large variety of supercooled liquids undergoing

glass transition, it has been shown 323

that facilitation indeed takes place and
accounts for a substantial part of the global relaxation. Hence, DF has shown that
facilitated relaxation is present and becomes increasingly the dominant mechanism for
global relaxation when lowering the temperature and approaching the glass transition.
In that sense, other means of motion, i.e. local relaxations not induced by facilitation,

although present do not play a substantial role in this regime.

On the other hand, there is the so-called random first-order transition theory (RFOT)
% which combines many aspects of the previously mentioned configurational entropy
theory and the mode coupling theory (MCT). In particular, the RFOT theory predicts
a finite temperature T, , at which a thermodynamic transition takes place. During this
transition long-range order sets in, whereas time and length-scales diverge following

an activated dynamic scaling. The typical length-scale diverges as a power law **:

Eoc(T —Tk)%d’s) (2.31)

and the time-scale in an exponential way *°:

£(T) oc exp[(T -T,) /9] (2.32)

One first difficulty that arises within the context of this theory is that the time-scale
increases so dramatically fast that before approaching temperature T, the system falls
out of equilibrium. Thus, this effect makes more difficult the attempt of showing that
there is a phase transition. A possible way to short-circuit this difficulty was proposed
recently *® and can be considered a counterpart of the procedure outlined for the DF
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theory. As a matter of fact, there is an increasing tendency of combing the two
previously mentioned theories to extract results and bypass certain difficulties.
Recently *”, the DF theory has been taken into account within the RFOT theory,
remaining, however, a by-product and not the key ingredient in this context.

The RFOT theory is based on the assumption that there are exponentially many
amorphous glass phases in which a supercooled liquid can freeze. The supercooled
liquid exists and does not freeze precisely because it has too many choices for doing
s0. The tendency to lower the free energy by ordering in a given amorphous phase is
compensated by the gain in energy obtained by disrupting the long-range order and

sampling all the possible different phases. By approaching T, , the configurational

entropy decreases, i.e., the number of available glass phases diminishes, and the

system eventually orders at T =T, . The main idea is that by pinning a fraction ¢ of

particles randomly chosen from an equilibrium configuration at temperature T, one
biases the configurations sampled by the system and decreases the number of
available glass phases: only the ones compatible with the positions of the unpinned

particles survive. In this way, the degrees of freedom of the system are being reduced.

Thus, the configurational entropy decreases when increasing c. It is expected that,
within the RFOT theory, the configurational entropy of the system will eventually

vanish at a certain c, (T), hence inducing a glass transition.

2.4 Molecular simulation techniques for glassy materials

Molecular simulation encompasses all theoretical methods and computational
techniques used to model or mimic the behavior of molecules. Molecular simulation
techniques are evidently very useful, as they can be used to simulate the behavior of a
large variety of materials. One reason why molecular simulation techniques have been
developed is to provide means of predicting macroscopic material properties from
microscopic information (i.e., inter- and intra-molecular interactions, atomic
coordinates and velocities, etc), bridging, in this way, the gap between macroscopic
observations and microscopic phenomena. Beyond that, the role of molecular

simulations is dual and can be depicted with the help of Figure 2.9:
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Figure 2.9: Schematic elucidation of the dual role of computer aided molecular

simulations, conducted — in this example — for liquid materials. Molecular simulation
techniques serve as a bridge between experimental findings and theoretical

predictions. *

Figure 2.9 should be read from left to right, starting by performing experiments on
real materials. One main role of molecular simulation becomes clear by comparing
the outer left and middle branches of the flowchart of Figure 2.9. Once a model to
describe the studied material has been built, its accuracy can be tested by comparing
the results of molecular simulations conducted using the model against corresponding
experimental results from the real material. In this way, the correctness of the
constructed model can be checked. Moreover, once a model appears to be correct by
providing some initial encouraging results, its portability to other materials comes into
question. Furthermore, the model’s effectiveness can be also improved by making it
faster or by reducing the computational power and/or memory requirements needed.

Therefore, there are many levels of improvement of a certain model.
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It is obvious that once a reliable, generally accepted model has been built to simulate
materials, the actual experiment can be completely omitted. Even in cases where
actual experimentation is out of the question, e.g. measuring the temperature of the
surface of the sun, simulations based on concrete and verified models can give an
answer. On the other hand, once a correct, self-consistent model is available, its
simulation results can be compared to corresponding results coming from a theory
under construction. In this way, the investigated theory can be tested for its
correctness and be further improved. This is the second role of molecular simulation
techniques, which is depicted by the middle and the outer right branch of Figure 2.9.
Hence, it should now be clear that molecular simulation techniques aim in reducing

the gap between experimentation and theory.

Three different kinds of molecular simulation techniques were used within the context
of this work: molecular mechanics, molecular dynamics, and Monte Carlo. In the
following paragraphs of this section the three above mentioned kinds of molecular

simulation techniques will be presented.

2.4.1 Force field and initial configuration generation

Molecular mechanics constitutes one aspect of molecular simulations. It refers to the
use of classical/Newtonian mechanics to describe the physical basis behind models of
molecular systems. It makes use of the interactions between atoms to simulate or
mimic the physical behavior of the modeled system under various conditions. Several
models have been designed over the past years and they all aim in finding the
appropriate functional form of the potential energy function % that depicts, as
accurately as possible, the above mentioned interactions between atoms (or structural
units in general). Based on these interactions, the potential energy function of the
system % can be obtained, and therefore, the response of the system to every change
related to the independent variables of the potential energy function ¢, can be
predicted. In particular, we assume that the independent variables of the potential
energy function ¥ are the Cartesian coordinates of every atom of the investigated

system. Thus, for a system consisting of n structural units (atoms, particles etc) the
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potential energy function depends only on the n position vectors r defining the

corresponding Cartesian coordinates of the system’s n structural units:
V=110l ,) (2.33)

Due to the key role of the potential energy function for a comprehensive
understanding of this work, a special section of this paragraph will be dedicated to
analyzing its basic characteristics. For the calculation of the potential energy function,
it is in many cases convenient to divide the total potential energy function ¢ into two
main summands: the part of the potential energy due to bonded interactions and the

part of the total potential energy due to non-bonded interactions:
V=1+Ng (2.34)

Both summands on the right-hand side of Eq. (2.34) are considered to depend only on
the position vectors of the participating structural units. There is a huge variety of
functional forms available in the relevant literature for both bonded and non-bonded
interactions, depending on the investigated system. Nevertheless, considering the non-
bonded interaction term an assumption is invoked in almost all cases, although
sometimes it is tacit. More precisely, the part of the potential energy due to non-
bonded interactions may be further divided into terms depending on the coordinates of
individual atoms, pairs of atoms, triplets of atoms etc.:

e =Z%(n)+ZZ%(n,n)+ZZ 2 %(ri,rj,rk)+ (2.35)

i j>i i j>ik>j>i

The ZZ notation indicates a summation over all distinct pairs i and j without

ij>i
counting any pair twice (i.e. as ij and ji). The same care must be taken for triplets

etc. The first term of Eq. (2.35) represents the effect of an external field on the

system. The remaining terms represent non-bonded particle interactions. In particular,
the second term %, , is considered to be the most important. The pair potential

depends only on the pair separation distance r; :|ri —rj| between the interacting

atoms i and j and may be written as v> (ﬁj) . The third term in Eqg. (2.35), involving

triplets of structural units, is undoubtedly significant at liquid densities. Despite that,
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these terms are only rarely included in the force field functional form, due to the
tremendous increase on computational requirements that these terms bring about. The
pairwise approximation gives a remarkably good description of liquid properties
because the average three-body effects can be partially included by defining an
“effective” pair potential. In our study, the non-bonded part of the potential energy is

completely based on pair interactions:

Ne ~ ZJZ’Vzﬁ (r.r;) (2.36)
The aforementioned pair interactions are considered between minimum image pairs.
Minimum image pairs are being formed by using periodic boundary conditions for our
simulation box. Periodic boundary conditions is a widely used technique in computer
simulations used to simulate large systems by modeling a small representative part of
the system’s bulk; the unit cell. According to this technique, a relatively small unit
cell with given spatial extend is considered. In this way, the entire system is tiled with
adjacent unit cells of the same geometry. Then, we turn our attention to one unit cell.
All pair interactions are summed between atoms which reside in the the same unit
cell. If a part of a molecular chain exits the unit cell, then its exact image enters the
unit cell from the opposite face. One basic advantage of the implementation of
periodic boundary conditions is that bulk properties are being simulated by examing
only a small part of the system, which, however, contains all pairwise interactions

through the use of images.

There are many famous pair potentials commonly used in computer simulations.
Maybe the most common one is the so-called Lennard-Jones potential or 12-6

potential first proposed in 1924 by John Lennard-Jones **:

fuNL;(r)=4{(%jn —(%j] (237)

where the parameters € and o are characteristic constants of the studied material.
The first one (called epsilon) depicts the depth of the potential energy well, as shown
in Figure 2.10, whereas the second one (called sigma) represents the separation

distance between atoms i and j forming the pair ij, at which the potential energy

changes sign.
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Figure 2.10: Graphical representation of a typical Lennard-Jones potential. With r,
is depicted the distance between the atoms i and j, at which the potential energy

exhibits a minimum, whose energy value is —¢ .

The Lennard-Jones potential consists of two different terms, one repulsive and one

12
attractive. The first one, (%) Jis dominant at small interatomic distances, where

6
repulsive forces are prevalent. The second term, (%) , prevails over the previous

term at large distances, where attractive forces are dominant. Beyond the Lennard-
Jones non-bonded potential, other famous potential energy functions have appeared
over the past years. One example of these is the so-called Buckingham pair-potential

0 in which an exponential term is used to describe the existing repulsive interactions:

uc C
Vo' (1) = Aexp(-Br) -5 (2.38)

According to this approach, the repulsion is due to the interpenetration of the closed

electron shells. For the purpose of investigating general properties of liquids, and for
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comparison with theory, highly idealized pair potentials may be of value. These are
relatively simple and, although unrealistic, are extremely convenient and simple to
use. The most important pair potentials in this category are: the hard-sphere potential,
as defined in Eq. (2.14) and represented in Figure 2.5, the square-well potential:

w0, <o

Ne (N)=1"¢. 0,<r<o, (2.39)
0 ,rxo,

and the soft-sphere potential:

f(/,\?g(r)zg-(%) =a-r’ (2.40)

where V is a parameter, often chosen to be an integer. In this work, the Lennard-
Jones potential, as depicted in Eq. (2.37), has been exclusively used to describe inter-

and intra-molecular non-bonded pair interactions.

Concerning bonded interactions, described by the first summand of Eq. (2.34) ¥, it

can be further divided into more terms, each of which accounts for a different kind of

bonded intra-molecular interaction.

(VB = fVBONDS + fVANGLES + (VTORSION + (VIMPROPER + (VELECTRO (241)

At this point it should be mentioned that bonded interactions are only present within
one and the same molecule. There are no bonded interactions between different parts
of different polymer chains existing in a melt. Thus, bonded interaction are only
located between atoms (or structural units) of one and the same molecule (e.g.
polymer chain). In Eq. (2.41), a possible combination of different kinds of bonded
interactions is presented. This is by no means unique. It rather adjusts to the needs of
the system investigated each time. For example, the interaction potential used in all
implemented simulations in this work concerning the united-atom model for atactic

polystyrene is the one proposed by Lyulin et. al. **:
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Figure 2.11: The monomer unit with numbered atoms of the united-atom model for

simulating atactic polystyrene. **

According to the adopted united-atom model, all the hydrogens are being absorbed
into the carbon atoms with which they are connected. In this way, “united-atoms” are
formed (represented in Figure 2.11 as spherical atoms) in place of simple carbon-

hydrogen (CH) groups, methylene groups -(CH,)-, or methyl groups -CHs.

The adopted interaction potential for atactic polystyrene takes into account the
following contributions to the system total potential energy: (i) Lennard-Jones non-
bonded interaction potential between all united atoms that are three or more bonds
apart or belong to different images of the parent chain [Eq. (2.31)], whereas no tail
corrections are used; (ii) harmonic bond stretching potential for every covalent bond,

with | symbolizing the bond length :

1
(VBOND = Z Ekbond(li_li,o)2 (2.42)

LENGTH  all honds i

(iii) bending potential for all bond angles, including those in the phenyl rings:

Veonp = Z K, (eu - ‘9i,0)2 (2.43)

ANGLE  all bond angles i
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VorenyL = Z |2€(éi - éo )2 (2.44)

BOND all aromatic
ANGLE bond angles i

(iv) torsional potential for all rotatable backbone bonds:

VrorsionAL = Z Ky (1-cos34) (2.45)

BACKBONE all torsion
angles i

(v) torsional potential for the torsions of phenyl rings around their stems:

VrorsionaL = Z k, cos? (Z - Zo)
PHENYL all pheny| “ I (2 '46)
torsion angles i

(vi) out-of-plane bending potential to preserve the coplanarity of the phenyl and the

phenyl stem:

VorenvL = z k.//(‘//i_V/o)z (2.47)

COPLANARITY all phenyls i

(vii) torsional potential about all bonds connecting aromatic carbons in the phenyl

ring, to preserve the planarity of the ring:

VToRSIONAL = z R\qﬁ (1 +C0s 2412' ) (2.48)

RING all phenyl
PLANARITY  torsion angles i

(viii) improper torsional potential to preserve the chirality of all carbons bearing a

phenyl substituent:

1 6
fV = _— A m + A m + A m
IMPROPER a“;hirl,al 6k’( 129, 123, 329, ) (2.49)

carbons m

where Ay =€0s6; —€0s6, and &, =109.5° and 6 is the bending angle formed by

the Ci.C; and C, united atoms according to the numbering of Figure 2.11. Hence,

the potential energy functional form for the atactic polystyrene system has the

following form:
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V= Vg + V) =

= Y g [“_]_[“_J b Y el T k(0-0,) +

all nonbonded pairs all bonds i all bond angles i
of atoms ij within rg

) lza(éi—éo)2+ > ky,(1-cos3g)+ > k,cos’(x—x)+

all aromatic all torsion all phenyl

bond angles i angles i torsion angles i
2 ~ A 1 6
+ Z k(// ('//i _V/o) + Z k¢ (1+C032¢|)+ Z 6k,(A129,m +A123,m +A329,m)
all phenyls i all phenyl all chiral
torsion angles i carbons m

(2.50)

A detailed description of every energy term contributing to the total potential energy
is shown in Appendix A along with a table (Table A.1) containing the arithmetic
values of all involved parameters. Returning to molecular mechanics techniques, two
different techniques belonging in this category were widely used in the context of this
work. The first method is the polymer builder and it has been used to build a polymer
chain out of its structural units. The polymer chain has a given stereochemical
structure, tacticity, and molecular weight. Also, the condensed phase of chains being
simulated has a specified temperature and density. Through the help of a polymer
builder software called MAPS *? (Materials Processes and Simulations simulation
platform), developed by Scienomics SARL, one or more parent polymer chains, with
specific desired characteristics, can be built. The polymer chain is being built after
choosing the structural units (or monomer units) from which it will be constructed and
the potential energy force field that defines the interactions between the structural
units of the molecule. By doing so, one is certain that in the constructed molecule
there is no overlap between parts of the polymer chain and their periodic images (a
correctly chosen force field should prevent such phenomena) and the geometry of the
constructed molecule is as expected (e.g. the phenyl-group has the expected

hexagonal planar ring shape).

Once the desired initial configuration has been constructed using an appropriately
chosen force field, its total potential energy is calculated by summing all the energy
contributions presented in Egs. (2.34), (2.36) and (2.41). For the system of atactic
polystyrene, the individual contributions to the total potential energy are given by Eq.
(2.50). It is obvious that, depending on the studied system, some of the above
mentioned summands of the total potential energy may vanish and additional ones
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(e.g. Coulombic interactions between partial charges on the atoms) may arise,
depending on the force field. The calculated total potential energy of the initial
configuration is expected to be high, because repulsive *“excluded volume”
interactions have been taken into account only coarsely during the process of Monte
Carl growth of the chains. To achieve more realistic energies, the potential energy
must be minimized with respect to all microscopic degrees of freedom. This takes

place to the molecular mechanics technique used in this work.

2.4.2 Molecular mechanics

The problem of finding the minimum potential energy and corresponding
configuration of a given molecular system is not new. According to mathematical
terminology, this problem belongs to the general category of optimization problems.

An optimization problem translates in finding the appropriate values for the

independent variables X.:X;,.... X, of the function f(Xl,Xz,---,Xn) to be optimized. In

our case, the function to be optimized is the total potential energy function

V=v(r,r,.1r,) and the optimization problem translates into an energy
minimization problem. We aim, therefore, at finding the appropriate values of the
independent variables of ¥ that lead to a local minimum value of the total potential
energy. To this end, a system of non-linear equations has to be solved. In general, the
solution to the above problem may proceed either analytically or arithmetically. In
many cases, though, the arithmetic approach appears to be the only feasible choice. In
molecular systems the number of the independent variables is typically extremely
high and the dependence of the objective function on the variables is very complex,
making an analytical solution of the above system of non-linear equations very
difficult, or impossible. In these cases, the arithmetic approach for optimizing — in our

case, minimizing— an objective function is the only solution *.

There is a large variety of iterative optimization algorithms, all of which have two
common characteristics: a) the direction of the optimization h(xi ) , towards which the
independent variables will be changed to achieve a new value of the objective

function f(x) that is lower than the previous one f(x;,)< f(x;) and b) the step
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length «, of the attempted step in the chosen direction h(xi). In this way, the new

value of variable x is defined through the following equation:
Xiq =X +a;-h(x) (2.51)

In Eq. (2.51), h(x;) in a n—tuple vector and ¢; is a real scalar number. In each

iteration x; and h(xj) are known and Xxi.; is determined through unidimensional
minimization of the objective function f with respect to the scalar parameter a; The

main difference between all the available optimization algorithms lies basically in the

definition of the optimization direction h(x; ).

Some simple optimization algorithms demand as input only an initial value for the

variable x. Also, a subroutine must be provided that uses x as input and returns as

output the value of f (x) where f is the objective function to be optimized (in our

case, the total potential energy function 7). The algorithms that require only the
above input are called direct search methods. There are, however, many algorithms
that go beyond the above second requirement. An important category of algoritms

require that the user provide subroutines that compute the gradient of the objecive

function, Vf (x), in addition to f itself, given point x. These algorithms are called 1%

order algorithms and converge generally faster than the direct search methods. Thus,
whenever the gradient calculation can proceed without any trouble, 1% order
algorithms are being preferred. The famous Newton optimization algorithm requires

o*f (x)

the calculation of the matrix of second order derivatives O
XOX

and does not belong

to the 1% order algorithms. The second order derivatives calculation is in many cases
extremely time consuming, if not impossible, hence the Newton-method is often not

o*f (x)

o with suitable
XOX

preferred. Algorithms which approximate the Hessian matrix

expressions based on first-derivative information constitute the quasi-Newton
category, which is invoked quite often. They have higher memory requirements (to
store the estimate of the Hessian) and higer demands in central processing unit (CPU)
time per iteration, but may require less iterations than conventional 1% order

algorithms.
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Among the most important 1% order algorithms for optimization problems are the
steepest descent and the conjugate gradients methods, both of which were widely used
to minimize objective functions defined throughout this work. In general, the
conjugate gradients method is faster than the steepest descent method. Its basic

disadvantage is related to the calculation of the step length ¢;. If the accuracy for this

calculation is high enough, then not only is the fast convergence of the method is lost,
but also it is not certain any more that the method will converge at all **. Both the
steepest descent and the conjugate gradients methods applied for the minimization
problem of the total potential energy ¥ constitute prominent examples of molecular

mechanics simulations.

2.4.3 Molecular dynamics

Computer aided molecular simulations generate information at the microscopic level
(atomic and molecular positions, velocities etc.). Converting this very detailed
information into common macroscopic properties (pressure, internal energy, enthalpy
etc.) is the realm of statistical mechanics. Statistical mechanics constitutes, therefore,
a powerful mathematical tool that becomes very handy in molecular simulations. The
microscopic state of a given system may be specified in terms of the positions and
momenta of all particles constituting the system. In classical mechanics the state of a

system of n particles can be fully described through a set of generalized coordinates:

0 =0, 0py e 0y ) = (Giar 0o Ohas Oay s O Oagsoes O Oz Oz ) (2.52)

and a set of generalized momenta:

P=(P.P, Py ) =(Pus Pias Pigs Pots Pazs Pogses Pags Pozs Pra) (2.53)

From Eqg. (2.52) it is evident that, for a system of n particles, the dimensionality of
the domain, from which the generalized coordinates take their values is 3n. This
domain (or set of permissible points) is called the configuration space. In an
analogous way, Eg. (2.47) shows that the domain from which the generalized
momenta take their values is also of dimensionality 3n, called the momentum space.

The superposition of the two above vector spaces defines the so-called phase space T’
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, whose dimensionality is 6n. In classical mechanics, any vector defined within the
phase space X=(q,p)=(q,,d,,.-,d,;P:,P,.--,P,) IS depicted by a single point
within the phase space and corresponds to a certain microstate. As the system evolves
in time, driven by the potential developed due to the inter- and intra-molecular
interactions, the above mentioned point in phase space moves accordingly, tracing a
trajectory X(t). This trajectory is a line, each point of which fully describes the system

at a certain time t.

This is exactly what the knowledge of the system’s Hamiltonian # can provide.
According to quantum mechanics, the Hamiltonian 7 is an operator, the exact
knowledge of which can fully describe a system. In classical mechanics, the

Hamiltonian 7 is the total energy of a system, which can be expressed as a function

of the particle positions and velocities # = 7 (X)=7£(p,q). If the Hamiltonian does

not depend directly on time # # % (p,q,t) — but its time-dependence originates only
from the time-dependence of P and dwhich change with time along a trajectory —,
then the Hamiltonian constitutes a constant of motion. Moreover, if we assume that
the potential energy of the system %’ depends only on the generalized coordinates P,
and the Kinetic energy of the system X depends only on the generalized momenta q,

then the Hamiltonian can be written as:
#(p.q)=(p)+%(q) (2.54)

It has been shown *, that some problems in statistical mechanics are exactly soluble.
By this, we mean that a complete specification of the microscopic properties of a
system leads directly to a set of interesting results for macroscopic properties. To this
end, two steps are necessary. First the Hamiltonian of the studied system has to be
constructed and then, provided that knowledge of the system’s Hamiltonian is
available, the statistical mechanical problem has to be solved. The biggest challenge
of the two is the second one. There are only a handful of non-trivial, exactly soluble
problems in statistical mechanics; the two-dimensional Ising model is a famous
example. This fact constitutes the main difficulty and weakness of statistical

38, 45

mechanics, i.e., although there is a strict formalism available for the prediction of

macroscopic properties through the use of a calculated Hamiltonian, most problems
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are not exactly soluble. While not exactly soluble, they still succumb to analysis based
on a straightforward approximation scheme. Many analytical theories (e.g. integral
equations and operator theories, perturbation theories, Bragg-Williams approximation
for a lattice model etc.) have been developed over the past years in order to produce
solution to this statistical mechanical problem. All those theories are, nevertheless,
bound to constraints and approximations. An alternative strategy to this end is based

on numerical solution of the above statistical mechanical problem.

Molecular dynamics (MD) constitutes a simulation technique for tracking the
temporal evolution of a system. This method is based on numerical solution — i.e.,
integration — of the differential equations of motion, which describe the evolution of
the system’s trajectory over time. The equations of motion describing the temporal
evolution of the system along a trajectory spanned in phase space can be written in
three different ways. According to Newton’s expression for the equation of motion,

they have the following form:
m-r,=F (2.55)

where F=-V 9. Eq. (2.55) describes a system of second order differential

equations, the number of which — for a system consisting of n atoms — is equal to 3n
. Alternatively, if the Hamilton approach is adopted, then the equations of motion
have the following form:

p

0, =—1=-V_7(p,
pi=— <H(p.9)

o 2.56
fi= o= Vo () (259)

The alternative representation of the equations of motion offered by Eq. (2.56) is

completely equivalent to the one shown in Eqg. (2.55). In Eg. (2.55) the Cartesian

coordinates r, have been used to describe the system, whereas in Eq. (2.56) the set of

generalized coordinates p, and momenta ¢, have been used for the same purpose. In

addition, Egs. (2.56) constitute a system of first order differential equations, the
number of which is — for a system consisting of n atoms — equal to 3n+3n=6n.
Hence, if the Newton description is chosen, the motion of the system in time is

described by a system of 3n second order differential equations for a system
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consisting of n atoms, whereas if the Hamilton description is chosen the time
evolution of the system is described through a system of 6n first order differential
equations. Finally, the Lagrange description of the motion of the system in phase
space leads to a similar formalism to Newton’s approach.

Regardless of the description (they are all equivalent) chosen for tracking the
temporal evolution of the system, the system of equations to be solved should fulfill
two conditions. First, the total energy of the system should be preserved and secondly,
time-reversibility of the obtained trajectory must be ensured. In particular, regarding
the first requirement, the Hamiltonian of the system should be a constant of motion,

. da
I.e. it should not depend on time H ET:O . This statement is fulfilled if the forces

acting upon every atom of the system are a function only of the coordinates, but not of
the velocities and/or time. The second requirement related to time reversibility can be
checked very easily. If the signs of all atomic velocities are reversed at time t+dt,
then the atoms should acquire the exact same positions that they had during the

previous time t by following the exact reverse trajectory.

The primary target of an MD algorithm is, as mentioned above, the numerical solution
of the equations of motion describing the temporal and spatial evolution of a studied
system in phase space. To this end, several algorithms have been proposed for the
numerical integration of the differential equations describing the motion. In general,
these methodologies can be divided in two major categories: a) high order integration
methods (or predictor-corrector algorithms) “® and b) the Verlet methods “% 4,
Methods belonging to the first category proceed in a very simple way. The basic idea
is as follows. Given the molecular positions, velocities, and other dynamic
information (such as the potential energy function) at time t, we attempt to obtain the
positions and velocities at a later time t+ ot , to a sufficient degree of accuracy. Given
the fact that the classical trajectory is continuous, an estimate of the positions,

velocities, etc. at time t+ ot may be obtained by Taylor expansion about time t:
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P (t4+0) =1 1)+ (1) 0t ¢ (1) o +%'|‘f’(t)-5t3 b ()0t
VP (t+6t)=v(t)+F(t) ot +%'r'(t)-5t2 +%'f'(t)-5t3 +..

P°(t+ot)

'r'(t)+'r'(t)-5t+%‘r"(t)-5t2 ‘o (2.57)

7 (t+ 1)

PO+ F(E) ot

The superscript “p” on the left hand side of Egs. (2.57) indicates that these are
“predicted” values. Equations like Egs. (2.57) cannot generate correct trajectories as
time advances, because they do not make use of the equations of motion. These enter

through the correction step. According to this step, we may calculate from the new

positions rP (t+4t) at time t+6t, the forces at time t+4t by using the equations of

motion and hence the correct accelerations * (t+5t), indicated by the superscript

“c”. These can be compared with the predicted accelerations from Egs. (2.57) to
estimate the size of the error in the prediction step during the calculation of the

accelerations:
AF(t+6t) =1 (t+5t) P (t+6t) (2.58)

The calculated error and the results of the predictor step, are then fed into the

corrector step:

ré(t+6t)=r’ (t+6t)+c, - AF(t+6t)
Ve (t+6t)= VP (t+5t)+c - AF(t+6t)
Pe(t+6t) =P (t+6t)+c, - AF(t+6t) (2.59)

PO (t+6t)=TP (t+5t)+c,-AF(t+6t)

The idea is that r° (t+5t) and the other terms on the left side of Egs. (2.59) are now
better approximations to the true positions, velocities etc. There are certain proposed
ways to define the coefficients c,,c,,c,,c, in order to allow a faster convergence to

the “true” values “°*“®*_In this way, through this iterative predictor-corrector process,

MD trajectories can be obtained.

The second category of proposed methodologies for the numerical integration of the

equations of motion includes various expressions of the so-called Verlet algorithm %
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7. Among all possible expressions of this algorithm (Verlet’s original method, leap-
frog alternative and velocity-Verlet form), we will briefly describe here the velocity-
Verlet algorithm which is the most efficient of all Verlet-based algorithms and
constitutes the numerical method used in the MD computational experiments
conducted in this work. This algorithm constitutes a direct solution of the second-
order differential equation Eq. (2.55) (Newton’s formulation). The basic advantage of
this version of the Verlet algorithm is that this formulation handles the calculation of
the velocities in a very efficient way, whereas previous versions calculate the
velocities at a different time than the one for positions and accelerations. The
velocity-Verlet formulation stores positions, velocities and accelerations all at the
same time t “®. A schematic representation of the way the velocity-Verlet algorithm
proceeds is shown in Figure 2.12. From the same figure, the superiority of this
formulation (velocity-Verlet, part (c) of Figure 2.12) becomes obvious in relation to
the velocity problem mentioned above over the other two formulations of the general
Verlet algorithm (original algorithm and leap-frog version shown as parts (a) and (b)
of Figure 2.12 respectively):

-0t t  t+dt

(a)r=0t ¢t t+dt f~3t bt

Figure 2.12: Schematic representation of the sequence of calculations for the three
different versions of the Verlet algorithm for numerical integration of the equations of
motion. Part (a) shows Verlet’s original method, part (b) represents the leap-frog form

and part (c) shows the velocity-Verlet formulation.
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By observing and comparing the rightmost element for each one of the three parts of
Figure 2.12, we conclude that the velocity-Verlet formulation (part c) calculates
positions, velocities and accelerations all at the same time t+o6t, whereas the other
two versions do not. The mathematical formalism with the help of which the velocity-

Verlet algorithm calculates MD trajectories in phase space is the following ®:

r(t+5t)=r(t)+v(t)~5t+%a(t)-5t2
. (2.60)
v(t+6t)= v(t)+§[a(t)+a(t +ot)]-ot

Regardless of the method followed for integrating the equations of motion, two types
of input should be available for the initialization of the algorithm. All particle
coordinates and corresponding velocities should be known at a certain time t (which
for simplicity reasons we define as t=0), hence: r;(t=0) and f;(t=0) should be
available for every particle i. The basic scheme according to which a typical MD-

simulation proceeds is shown in Figure 2.13:

Starting point Calculation
Initial coordinates and of ensemble averages
velocities of all atoms i F

y

Force calculation

Information storage
«—— for coordinates and velocities

F = F every N steps
i ij T
-

r

for every atom i

Numerical integration Calculation of coordinates and
of Newton’s equations of velocities
motion [Eq. (2.55)] for every atom i at r+dt
P
d’r. F. r,(2) > r, (1 + 1)
- i ;
dt° m, v, (2) »>v; (2 + 51)

Figure 2.13: Schematic flow chart of a typical molecular dynamics simulation.
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In the recursive procedure described in Figure 2.13, the equations of motion are being
integrated for a small time interval ot, between t and t+ot. The time step ot, over
which the integration ensues, is a user defined quantity. In general, the smaller the
time step is, the bigger the accuracy of the algorithm. This result would probably lead
us to the conclusion that ot should be made as small as possible, so that property
fluctuations may be minimal. The reason for not doing so is because ot also
determines how far in time we evolve at every integration step, depicted as a closed
loop in Fig. 2.13, by solving the equations of motion. If the chosen value for otis
extremely small, in order to minimize losses, then the algorithm will evolve in time

extremely slowly and it will take a tremendously large number of steps to cover a

certain time interval between t, and t,. Thus, the choice of the integration time step

ot should be made cautiously and should express a good compromise between
accuracy in calculations and evolution speed. Clever and extremely useful multiple-
time step modifications have been developed over the past years *° discriminating
between fast and slow processes, i.e., processes that contribute to the total potential
energy and change rapid or slowly with time, and applying to each one of them a
different time step, allowing in this way the integration of the equations of motion to
proceed faster.

MD-simulations are characterized as a deterministic way for exploring the behavior of
a system and calculating macroscopic properties as ensemble averages of microstates.
In particular, molecular dynamics techniques are based on the numerical solution of a
concrete set of equations, i.e, the equations of motion and thus, MD simulation
techniques are characterized as a deterministic approach for tracking the temporal
evolution of a system evolving through a certain trajectory in phase space. MD
simulation methods are, therefore, appropriate for estimating structural and dynamical
properties by recursively solving the equations of motion. Within this approach, time
has a physical meaning and several properties are calculated as a function of time t.
Besides, it should not be forgotten that the numerical integration of the equations of
motion taking place in the context of an MD simulation, is ultimately an integration
over time t. In the next section of this chapter an alternative approach for calculating

macroscopic properties will be presented.
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2.4.4 Monte Carlo simulation techniques

It has been found during the solution of several statistical problems *° that
deterministic mathematical problems can be alternatively treated by finding a
probabilistic analogue which is then solved based on a stochastic sampling
experiment. These sampling computational experiments involve the generation of
random numbers and the execution of a certain experiment a large number of times.
The Monte Carlo (MC) method takes advantage of the above finding. It conclusion
and finds use in the calculation of thermodynamic averages through a stochastic
sampling procedure. The name “Monte Carlo”, alluding to casinos and games of
chance, was chosen by the developers of the algorithm Neumann, Ulam and

Metropolis ** because of the extensive use of random numbers.

The way MC algorithms proceed in the calculation of a certain property can be
initially approached by the following example. Let’s suppose that the following

definite integral needs to be calculated:
b
=] f(x) dx (2.61)

According to the first mean value theorem for integrals, it can be proven that the right

part of Eq. (2.61) is equal to:

f(x)dx=(b-a)-f(c) (2.62)

D ey T

where f (c) denotes the unweighted average of f(x) on [a,b]. In other words, f(c)

is a mean value of f(x) over the interval [a,b] and therefore it can be symbolized as

(f(x)) and the integral | of Eq. (2.61) becomes then equal to:

| =(b-a)-(f(x)) (2.63)

If a MC algorithm is designed appropriately and applied to evaluate f(x) for a large

amount of randomly distributed x values over the interval [a,b], then the average
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value ( f (x)) can be easily calculated and hence the integral value | over [a,b]. Itis

clear that, as the number of sampled values of x approaches infinity, this procedure
should yield the “correct” value for |. The above example constitutes a simple
representation of the usage of a stochastic algorithm. Such an algorithm is confronted
with many kinds of difficulties. One basic difficulty concerns the execution time of a

certain calculation. In particular, assume that in the above example not all points in

the interval [a,b] have the same importance in the calculation of the mean value

<f (x)> i.e. the distribution of x in [a,b] is not uniform.

Assume that the continuous random variable x is distributed according to the

probability density function p(x) in the interval [a,b]. In general, p(x) is a non-
b
negative function satisfying the normalization condition Ip(x)dx =1. Itis highest in

the most probable (or “important”) regions and lowest in the least probable (or “non-
important”) regions of x-space. If one discretizes the space from which the random
variable x takes values into intervals of length dx, then N(x) = p(x) dx is the
probability of finding the random variable within an interval of length dx around the
point x. We will use the term “microstate x” to denote such an interval. These
considerations can be readily generalized to the case where x takes values from a
multidimensional configuration space; in the latter case it is a vectorial quantity,
usually denoted as x. How can a way be found to sample as much as possible the

important points and neglect the non-important points for the given calculation? In

other words, how should we distribute our sampling through the interval [a,b] , SO that

points are chosen according to the probability distribution defined by p(x)?

In statistical mechanics, the probability density p(x) is usually proportional to the
factor exp(—ﬂU), where U, a function of x, is an algebraic quantity and generally
represents the property that defines a point as “important” or “non-important” for a
given calculation, while £ is a positive constant. The factor exp(—ﬁU) is called
Boltzmann factor or Boltzmann weight. We define as “important” those points to be

sampled, whose value of U is low, and “non-important” those points, for which the

value of property U is high. So, “important” points have a large Boltzmann factor
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and “non-important” points have a small Boltzmann factor. In the canonical
ensemble, specifying the probability density in configuration space of a system under
the macroscopic constraints of constant number of molecules N, volume V, and
temperature T, U is the potential energy 7/ and p=1/(ksT) with kg being Boltzmann’s
constant. A tremendous amount of computational time can be saved if — somehow —
we could limit our sampling only to the “important” points of our sampling space.
This is accomplished by the Metropolis scheme of a Monte Carlo stochastic
algorithm, which makes use of the Boltzmann factor for the calculation of
macroscopic properties as average values over many microstates sampled from the

configuration space.

The general scheme according to which every Monte Carlo algorithm proceeds is the
following. At first, an initial state is being defined and denoted with the letter “0” for
“old.” Subsequently, a new trial configuration — denoted by letter “n” for “new” — is
generated by adding a small random displacement to the old configuration “0”. Now,
we must decide whether the new trial configuration will be accepted or rejected
according to an acceptance criterion. The way the acceptance criterion is formed is the
following. We start off from the detailed balance condition (or microscopic

reversibility condition) depicted in equation (2.64):

N(o0)-z(0—>n)=N(n)-z(n—0) (2.64)
The above equation reads as follows: The probability of being in the old configuration
N (0) times the transition probability for going from the old configuration to the new
one z(0—n) should be equal to the product of the probability of being in the new
configuration N (n) times the transition probability of the reverse move, i.e. going
from the new configuration to the old one 7r(n —>0). Many possible forms of the

transition probability 7 (o — n) satisfy equation (2.64). Let us look how 7z (0 —n) is

constructed in practice. A Monte Carlo move consists of two stages. First, we

perform a trial move from state o to state n. Let a(o—>n) be the probability of

attempting this transition. The next stage is the decision to either accept or reject the
attempted trial move. The probability of accepting the trial move from o to n is
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denoted as acc(o — n). Hence, the total probability of the attempted move 7z (0 — n)

can be expressed as:

m(0—>n)=a(o—n)-acc(o—n) (2.65)
In an analogous way, the total probability ﬂ(n - o) for the reverse move is:
m(n—>0)=a(n—o0)-acc(n—0) (2.66)

Therefore, Eq. (2.64) can be rewritten with the help of Egs. (2.65-2.66) in the

following form:
N(0)-a(0o—n)-acc(o —»n)=N(n)-a(n—>0)-acc(n— o) (2.67)

Many choices for acc(o—> n) satisfy the condition depicted in Eq. (2.67) (and also
the obvious condition that the probability acc(o—>n) cannot exceed 1). The final

acceptance criterion whether the attempted trial move (0 — n) will be accepted or not

is formed depending on the MC scheme to be followed. In the conventional

Metropolis scheme of a MC algorithm, the acceptance criterion is as follows:

N(n) a(n—o) ’ N(n)a(n—>o)<l
ac6(0 - 1) = N(o) a(0—>n) ~ N(o)a(o—>n)
L ¢ N(n)a(n—>0)>1 (2.68)
"N aoon)"

Equation (2.68) describes the acceptance criterion for a slight variation of the
conventional Metropolis scheme, called the smart Monte Carlo algorithm. In
conventional Metropolis Monte Carlo the two a’s are equal. The acceptance criterion

of the smart MC scheme shown in Eq. (2.68) is in some textbooks stated as follows:

1) o o)

acc(o—n)= min{l, N
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Eq. (2.69) can be further simplified using Boltzmann factors. In the canonical

ensemble, the probability of being at a state o, N(o) is equal to the probability

density at o times an elementary volume in configuration space:

N(0)= 04V (0)] 41109

~ (2.70)

with f (usually equal to 3 times the number of atoms) symbolizing the number of
configurational degrees of freedom and Z being the configurational integral, which

ensures that the probability density in configuration space is normalized:
Z=[exp[-B-v(r)]-d'r (2.72)

By observing the Boltzmann factor used in Eq. (2.70) and by comparing it with the
general definition provided above, some basic conclusions can be drawn. At first, the
property which defines a state as “important” or “non-important” in the context of the
Metropolis scheme is the potential energy 7/ of the system. The physical meaning of
Eq. (2.70) is the following. The numerator (Boltzmann factor) expresses the number
of microstates with configuration between r®and r® +dr®, whereas the
denominator [Eq. (2.71)] represents the total number of microstates of the system. By
applying Eqg. (2.70) to the general form of the acceptance criterion of Eq. (2.69), the

smart MC acceptance criterion for the trial move 0 — n can be extracted:

(04

—

n—o0)d'r"

acc(0—n) =min| Lexp{-p[(n) -7 (o) ]} a(o—>n)dr®

(2.72)

The ratio of volumes d 'r™ /d "r® amounts to a Jacobian of the transformation of
coordinates involved in going from the old to the new configuration in attempting a

move. It equals 1 in most useful MC schemes. The way to proceed for implementing
Eq. (2.72) is the following. The change in potential energy ¥/(n)—%'(0) in going
from the initial “0” to the new *“n” state is calculated. The Boltzmann factor of this

change in energy is evaluated, the attempt probabilities for the forward a(o - n) and
reverse move «(n— o) are assessed, and the Jacobian d 'r™ /d 'r® is computed, if

different from unity. Thus, the acceptance value acc(o - n) is evaluated according to
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Eq. (2.72). In order to decide whether to accept or reject the trial move, a random real

number is generated in the interval [0,1] from a uniform distribution where all

numbers are equally probable. If the generated number is smaller than the calculated

value of acc(o - n) the attempted move is accepted, otherwise it is rejected.

During process described above, a very important asumption is tacitly made, namely
that every point in the configuration space to be sampled can be reached from any
other point in a finite number of Monte Carlo trial steps. This implies that the
algorithm is ergodic. This is not always the case for arbitrary MC schemes and extra
caution should be taken in this direction *°. One basic difference between MD and
MC simulations (besides the conceptual difference that the first are deterministic and
the second ones are stochastic) is that time is not involved in MC runs. More
precisely, there is no trajectory in the context of an MC run, i.e. there is no sequence
of points, each of which represents a different time t. On the contrary, in MC
simulations one finds stochastically dispersed points in configuration space

resembling shots from a shot gun.

In this thesis, three basic Monte Carlo schemes are used. The first one is the smart
MC scheme described above. The second one is the Wang-Landau scheme, which
will be thoroughly analyzed in Chapter 4. In addition to that, an elaborate algorithm,
part of which involves a kinetic Monte Carlo scheme is used to track the temporal
evolution of a system by simultaneously generating a large number of stochastic
trajectories towards many directions of the configurational space .. In contrast to
Monte Carlo sampling, kinetic Monte Carlo does admit a straightforward dynamic
interpretation. Due to the great importance of this algorithm, a special section in
Chapter 6 is dedicated to describing it in detail.



Chapter 3

Structural rearrangement in transitions between basins and

metabasins

The molecular simulation techniques described in the last section of the previous
chapter, although conceptually correct, suffer from serious drawbacks. In particular,
MD techniques are intrinsically constrained to simulating systems up to relatively
short timescales in comparison to the corresponding relaxation times needed to
achieve equilibration. Especially, when materials with large heterogeneity in
relaxation times (such as glassy systems) are examined, the spectrum of characteristic
times for molecular motion may cover more than 20 orders of magnitude. The breadth
of timescales observed in polymeric materials can become clearer with the help of
Figure 3.1:



3. Structural rearrangement in transitions between basins and metabasins 67

Bond
= vibrations>
1014 s
% — Conformational
“ transitions >
101 s

Longest
relaxation time
>103s

Phase/
microphase
separation
> 1%

Physical ageing
(T<T,200C) =1 yr

e |

|
—_—
|
|

Figure 3.1: Schematic representation of the large width of relaxation times observed

in a typical glass forming material *.

Molecular mechanisms related to physical ageing have been widely studied over the
past years through the use of several relaxation measurements (structural, volumetric,
enthalpy, mechanical and dielectric >*) which have provided results concerning the a-

relaxation of glasses. It has been found that the relaxation times for an a-relaxation

process is of the order of ~100 s in the vicinity of T , whereas only 20° C below T

this characteristic time becomes of the order of years (~10's). It is, therefore,
evident that it is extremely difficult to run a single MD simulation and cover the entire
spectrum of relaxation times, when state of the art MD-methods conducted in high

performance computing centers have barely reached relaxation times up to several
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microseconds (~107°s). It should be noted, however, that millisecond-long MD
simulations on specialized hardware have been reported recently *°. This is,
nevertheless, still too short by many orders of magnitude in comparison to the

experimental time scales of most relaxation phenomena of interest.

Beyond the multiple time step MD strategy previously described, another helpful
approach to get around this problem is the design of highly parallelized MD
algorithms *® or even the use of temperature-accelerated dynamics simulations, as
originally proposed by Voter and collaborators *’. Even in these cases, however, the
desired long-time relaxation processes are still unreachable in the context of
simulation experiments. In the following section an additional, commonly used,

alternative approach to deal with this kind of problems is being described.

3.1 Introduction

In order to overcome or to moderate the problem of long times outlined above, an
alternative simulation approach is followed. This approach is based on coarse-
graining of the (multidimensional) configuration space. More precisely, according to
this approach a simple MD-trajectory evolving in configuration space can be
relatively easily mapped onto a sequence of local minima of the potential energy
landscape (PEL). This mapping proceeds through potential energy minimizations
starting from each configuration-space point visited by the trajectory. The potential
energy of the system at any point of configuration space is calculated via Eq. (2.34) or
Eq. (2.50) and subsequently subjected to minimization with the help of one of the
techniques described in Section 2.4.1. This minimization process will lead — up to a
certain accuracy — to a point of configuration space that constitutes a local minimum

of the potential energy.

Stillinger and Weber *® named the local minima sampled with the above mentioned
procedure inherent structures (ISs); these are stable stationary points of the potential
energy with respect to all degrees of freedom, around which the system is expected to
spend most of its time trapped, at least at low temperatures in the vicinity of and

below the glass transition temperature T,. A potential energy minimum or IS

constitutes the lowest lying point of a potential energy basin on the PEL.
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A basin, which we shall also call “state”, constitutes a region of the configuration
space that contains a single local minimum of the potential energy with respect to the
system’s generalized coordinates. The term *“basin” will be used throughout this work
to denote the set of configuration space points from which a steepest descent
construction in the potential energy leads to a given local minimum. A clarification is
in order at this point. A basin contains a single local energy minimum, but is not an
energy minimum itself. It includes a set of configurations, all of which lead to the
same local minimum (IS) upon steepest descent minimization of the energy. For a
system with two configurational degrees of freedom, the energy as a function of
configuration space within a basin, when plotted in 3D, resembles a funnel, the
bottom of which is located at the inherent structure. Adjacent basins are separated
from one another by dividing multi-dimensional surfaces, i.e., hypersurfaces of
dimensionality by one less than that of the configuration space, which pass through
first-order saddle points and are everywhere tangent to the gradient vector of the
potential energy. In this way, the entire configuration space can be tessellated into
basins as shown in Figure 3.2.

i Conformation Space

e —

Potential
Energy

Figure 3.2: Left: 3D representation of a single basin of the potential energy. The
inherent structure, depicted with blue color, is the configuration corresponding to the
bottom of the funnel-shaped basin. Right: A series of neighboring potential energy
basins separated by dividing lines going through first-order saddle points, providing a

coarse-grained representation of the configuration space.
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In the left-hand side plot of Figure 3.2 the PEL of a single basin is plotted for a
system with two configurational degrees of freedom. As we can see, depending on the
level of accuracy, other smaller basins can be detected on the surface of the major
basin. The resulting coarse-graining of the configuration space can be better

understood with the help of Figure 3.3:
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Figure 3.3: Schematic representation of the coarse-graining procedure of a single
MD-trajectory evolving in configuration space to potential energy space. For
simplicity, a system with one degree of freedom is considered. Left hand side figure:
The trajectory, shown as a succession of points, evolving in time generally (but not
strictly) from left to right. The curve is the PEL, parts corresponding to different
basins being shown in different colors. Simplified 2D mapping of a MD-trajectory
evolving through time to the PEL. Right hand side figure: Depiction of the energy
levels for every one of the four inherent structures of the PEL on the left. Each point
of the trajectory on the left is mapped onto an IS through potential energy
minimization. This leads to a reduced trajectory, consisting of the sequence of ISs

(and corresponding basins) visited by the trajectory as a function of time.

In the example described in the left drawing of Figure 3.3, eleven points of a MD-

trajectory evolving in configuration space are shown. Minimization of the potential
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energy ¥ starting from each one of these points leads to a certain inherent structure
in the PEL. Four inherent structures are shown in Figure 3.3. In this way, the eleven
points of the initial MD-trajectory are being projected to four energy classes
represented by the four inherent structures obtained after minimization of the system’s
potential energy. As can be seen from Figure 3.3, more than one trajectory points may
lead to the same inherent structure. These points are expected to belong to the same
basin of the PEL which is characterized by a certain inherent structure. In the
simplified 2D representation of Figure 3.3, the inherent structures are separated from
one another not by first-order saddle points but by maxima of the potential energy

function.

The dynamics of many physical, chemical, materials and biological systems is slow
because it proceeds as a succession of infrequent transitions between basins (or
states). Representing each state in a coarse-grained sense by a point in configuration
space and connecting all pairs of states between which a transition is possible, one
obtains a graph, or network of connected states. Many phenomena related to dynamics
can be modeled as occurring through a succession of transitions in a network of states
A more efficient strategy than “brute-force” MD is to construct a network of

communicating states i and compute the rate constants k;_,; between them from

atomic-level information. Throughout this work the symbol k .

; represents the rate

constant for the transition between states i and j, starting from state i and ending up

in state. By definition, the rate constant k. is a conditional probability per unit time

d!

that a transition to state j will occur, provided the system is initially in state i. Once

states and interstate rate constants are known, the system evolution at the state level

can be tracked by solving the so-called master equation:

8Pia_£t)zzpj (t)'kj»i —F’i(t)-ka (3.1)

j#i j#i

or equivalently written in vector form:

—_K-P(t) (3.2)
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Equation (3.2) indicates that the probability of being in state i at time t, P.(t), is

only an element of the probability column vector P(t) at time t. Analogously, the

rate constant k;_ . is related to an element of the rate constant matrix K. In particular,

i
in this work the matrix element k; is the element located in the ith-row and the j th-

column of the rate constant matrix K. By comparing Egs. (3.1) and (3.2), one readily

obtains k; =k, for j=i, k; =—> ki

j#i

3.2 Rare event theory

The transition rate constants k; included as elements in the transition rate matrix K

are independent of time, thanks to the time scale separation which makes the
transition an infrequent event °°. Especially when the temperature is low and the
energy barriers between two adjacent basins become high we consider that the system
spends a sufficient amount of time sampling configurations within one and the same
basin before escaping from it through a transitions to a neighboring basin. In that
sense, we assume that a kind of restricted local equilibration has been established
among configurations of one basin. These configurations communicate with one
another via relatively fast transitions compared to the time needed to escape from the

basin to an adjacent one.

Once this restricted equilibrium has been set, it is expected that the basin has been
thoroughly explored and every configuration belonging to it has been sampled. When
sufficient time has elapsed, so that local equilibration within a given basin is
established, i.e., an exhaustive sampling of configurations in the basin has occurred, a
transition to a neighboring basin may occur. In this sense, transitions between basins

are considered to be infrequent — or rare — events. In other words, it is expected that in
glassy systems at temperatures in the vicinity of or below T, the time needed for fully
exploring a basin — with the help of fast intra-basin motions — is short in relation to

the time needed for escaping from this given basin, making this escape transition to a

neighboring basin a rare event.
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Once states have been defined, the transition rate constants k;_,; can be computed by a

variety of methods. Infrequent event analyses based on dynamically corrected
transition-state theory have found widespread use in the computation of rate constants
from simulations. These analyses are based on the theory of Bennett ®* and Chandler
% which was extended to multistate systems by Voter and Doll **. As discussed by

Chandler and Voter and Doll, thanks to the time scale separation making exit from

state i an infrequent event, k_,;

will practically reach a time-independent plateau
value at times sufficiently longer than the time required for internal equilibration

within state i.

Rate constants for transitions between states have been calculated within this work
with the help of transition state theory (TST). Transition state theory rests on an
approximation: It assumes that, whenever the system finds itself on the boundary
surface of state i with momentum directed towards the outside of state i, then a
successful transition out of state i will occur. In reality, this is not necessarily the case

because of fast recrossings events of the boundary surface at short times.

TST
I(i—>j

Mathematically, can be calculated with the help of the partition function Q, of

the system confined in the origin state i and the partition function Qi} of the system

confined in the boundary surface of i that is common with the boundary surface of a

neighboring state j:

0,

i»j

k' = k;T ' (3.3)

O

where the factor kT /h, with h being Planck’s constant, takes care of the different

dimensionalities of the phase spaces to which the two partition functions refer. Eq.
(3.3) is applicable beyond the classical analysis adopted here, in systems where

quantum mechanical effects are important. For a system under constant pressure,

where volume fluctuations are important in effecting transitions out of state i, Q, and

+

; can be interpreted as isothermal-isobaric partition functions. Recalling the

connection between Gibbs energy and isothermal-isobaric partition function, Eq. (3.3)

can be recast in the form:
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Gl -G
kl-rf;: = kB_T . exp — _IJ ! (3'4)
h KT

where G; symbolizes the Gibbs energy at the origin basin i and G”T represents the

Gibbs energy of the system confined to the separating surface between

communicating basins i and j. Eq. (3.4) will be extensively used in this work to

calculate rate constants for transitions between communicating basins. As we will see
in Chapter 7, depending on the studied phenomenon, Eq. (3.4) can be further
simplified after substituting the Gibbs energy of the system with an appropriate
mathematical expression characterizing the studied phenomenon. The TST

approximation is more appropriate in the case of low temperatures, where the energy

barriers between states are high in relation to kT and rate constants are

correspondingly low.

The transitions between states cannot be sampled adequately by straightforward MD,
as these are infrequent events. One way to get around this problem is to resort to
temperature-accelerated dynamics simulations, as originally proposed by Voter and
collaborators °” and effectively combine them with conventional “brute-force” MD

62

simulations to obtain rate constants for transitions in the course of structural

relaxation of a glassy material.

If transitions between basins are, nevertheless, subject to relatively low energy

barriers (say, up to 7 k,T), such that rate constants k;_,; are relatively high (say, up to

ns™'), then rate constants can be estimated by MD simulation. All one needs is a
technique to map every configuration recorded in the course of a MD trajectory onto a
state. Very often, when states are defined as regions around local minima in
configuration space, this mapping is accomplished by direct energy minimization
leading eventually to the closest energy minimum or “inherent structure”. A reduced
trajectory of states visited is thus accumulated in parallel with the MD trajectory. Rate
constants can be computed by statistical analysis of the reduced trajectory. A simple
and efficient method that can be used for this cause is “hazard plot analysis” ®%. Both
of the above mentioned methods for rate constant calculation rely on the validity of
the assumption that the infrequent event transitions between states constitute a

Poisson process **,
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3.2.1 Poisson process

As mentioned before, the transition rate constants k; appearing in the transition rate

matrix K are independent of time, thanks to the time scale separation. This is
because, once the system enters state i which is in a region surrounded by high
energy barriers, it will quickly thermalize, i.e., distribute itself according to the
requirements of a restricted equilibrium within state i and “forget” how it came there
in the first place. One of the main characteristics of a Poisson process, named after the
French mathematician Siméon-Denis Poisson, is that such a process has no memory.
In other words, the fact that there is an occurrence at a particular time says nothing
about the probability of an occurrence at, or around, a later or earlier time.
Equivalently, there seems to be some kind of independence with respect to various
occurrences. In that sense, the next occurrence of a stochastic process cannot be
predicted from current and past information. The fact that something happened in the
past has no effect on the probabilities for future occurrences. The justification of this
assumption in the description of transitions between basins comes from the fact that
the time spent within a given basin suffices for establishing restricted local
equilibration (exhaustive sampling of the basin) and, due to this sufficiently long

residence time, the system “forgets” its past.

The above statement imparts a Markovian character to the process of infrequent
transitions between basins. In particular, in probability theory and statistics a Markov
process, named after the Russian mathematician Andrey Markov, is a stochastic
process satisfying a certain property, called the Markov property. According to this
property, a stochastic system that undergoes transitions from one state to another,
between a finite or countable number of possible states, is characterized as
memoryless, if the next state depends only on the current state and not on the
sequence of events that preceded it. This specific kind of “memorylessness” is called
the Markov property. In this way, the succession of Markovian transitions forms a
sequence of independent states which is called a Markov chain. Markov chains can be
of different order. A Markov chain of order m is a discrete-time chain of states in
which each state depends on the past m states. Therefore, the Poisson process is the

continuous-time counterpart of a Markov chain of first order, in which the choice of


http://en.wikipedia.org/wiki/Sim%C3%A9on-Denis_Poisson
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the following state depends only on the current state at which the system currently

resides.

By virtue of the Poisson process nature of interbasin jumps, hazard plot analysis can
be used to calculate transition rates between slowly communicating basins. For a
more thorough description of ways to calculate rate constants the reader is referred to

reference ®°.

3.2.2 Monomolecular reaction system

We will now diverge somewhat to examine a simple model for a network of chemical
reactions, a problem extensively analyzed by chemical engineers because of its
industrial importance ®. We will show that this problem bears a striking similarity to
the temporal evolution of glassy system on its energy landscape, discussed above,
enabling us to capitalize on methodologies developed for chemical reactions to

address the structural relaxation of glasses.

Among all the conceivable chemical reaction systems, we particularly consider the
monomolecular reaction system. The monomolecular reaction system constitutes a
complex first-order kinetic system such as the one presented in Equation (3.5) for a
system consisting of n states:

%ft):K-A(t) (3.5)
The rationale behind Equation (3.5) is that the temporal dependence of composition
vector A is being modeled through a first order differential equation, which
determines the influx and efflux of property A to a certain state i over time. In other
words, Eg. (3.5) constitutes a balance equation of property A for every one of the n
states of the system. Through transitions from one state to another, defined by the rate

constant matrix K, the concentration of a chemical species i changes with time,

A (t). Within the monomolecular reaction assumption adopted here, we assume that

the kinetics of all time-dependent properties of the system can be well reproduced by

an equation such as the one shown in Eqg. (3.5).
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Our choice to use a relatively simple equation, such as Eg. (3.5), to monitor how
properties change over time because of transitions from one state to another is by all
means rational. All one has to do in order to justify this choice is to compare Eq. (3.5)
with Eg. (3.2). We remind that Eq. (3.2) is the master equation describing how the
distribution of occupancy probabilities changes over time for every state of the
system. The resemblance between Eq. (3.2) and the monomolecular reaction balance
equation (Eq. (3.5)) is obvious. Hence, we choose to investigate monomolecular
reaction systems because by definition their kinetics can be well modeled through a

relative simple equation showing great resemblance to the master equation.
By virtue of Eq. (3.5), the rate constant matrix K has the following characteristics °*:

1. Nonnegative rate constants as elements:
ki >0, i# ] (3.6)

2. Diagonal elements should complete the balance:

Ki :_Zkiaj :_iji (3.7)

j# j=i
and
3. there exists an equilibrium composition vector A*, such that:
K-A*=0 (3.8)
where the elements of the equilibrium column vector A* are positive A™ >0

for 1=1,2,...,n.

The third condition states that, by virtue of Eq. (3.5), there comes a time when

property A has reached a steady state value, after which it doesn’t change over time

any more. For times larger than this, property A preserves its equilibrium value A*
for as long as the system remains unperturbed. For a more thorough description of the
monomolecular reaction systems and their significance the reader is referred to

references %" 7.
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3.3 Topological structure of the potential energy hypersurface:

Basins and metabasins

As described in paragraph 3.1, the idea of projecting configuration space onto a set of
basins by use of the potential energy landscape, and consequently reducing MD-
trajectories evolving in that space into sequences of visited basins, switches between
basins occurring as infrequent transitions, has proven to be an extremely useful tool in
tracking the dynamics of glasses ® ®. Both the problem of the time scale separation

characterizing transition rates between neighboring basins of the PEL of glassy

materials below T,, and the related broad spectrum of relaxation times have been

addressed in the previous sections of this work. In particular, the broad distribution of
characteristic times is intimately related to the broad distribution of barrier heights

seen in the earliest analyses of potential energy landscapes for glassy systems ®.

The idea of mapping the PEL to a set of basins has been applied in the past to a large
variety of systems including water %%, gas clusters "°, proteins "* and glass forming
materials ® ®8. All the above applications constitute clear evidence that a better
understanding of the PEL’s structure can lead to useful physical conclusions,
providing insight into complex mechanisms. The depth, number and overall geometry
of the basins surrounding the potential energy minima play a dominant role when
attempting to describe a PEL in detail "*. Following the pioneering work of Heuer ",
Bouchaud ™ and Kob ", we will refer to a collection of relatively fast communicating
basins as a “metabasin” (MB). In the literature, several definitions have been
proposed for the identification of a MB. Heuer "® proposed an algorithm based on the
IS trajectory, which can be summarized in the following two steps: a) determine the
time regions between the first and the last occurrence for each IS; and b) group into a
MB all basins for which there is an overlap in the corresponding time regions beyond
a predefined time scale set to discard recrossings phenomena. Within this approach,

the whole trajectory can be regarded, a posteriori, as a succession of different MBs.

An alternative definition, independent from a specific trajectory, has been proposed
by Mauro and Loucks ”’. Starting from rates between inherent structures, subsets are
identified based on whether equilibration can be achieved within a prefixed time. As

compared to the previous definitions, this allows one in some limit to perform a
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partitioning of the configuration space into MBs, where the relaxation times within a
MB are short compared to that of an observation (simulation) time scale. However, in
practice, many details of the potential energy landscape have to be discarded in order

to apply this approach.

An efficient way to identify metabasins is based on an “on the fly” method in the
course of a MD simulation, as described in the work of Tsalikis et al. *°. In that work,
based on the rate of identifying new, not already visited, basins, MBs are defined in
the course of a canonical MD run. By definition, a set of basins constitutes a
metabasin if the time required for the system to escape from this particular set of
basins is significantly longer than the time needed for the system to establish a
restricted equilibrium among the basins in the set. In a plot of the number of distinct
basins visited versus time in the course of a MD simulation, this reflects itself as a

plateau, as shown in Figure 3.4:
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Figure 3.4: Number of explored minima as a function of simulation time for a binary
Lennard-Jones glass . When a plateau is observed for a prefixed time interval, the
system configuration circulates within a confined collection of basins which are

considered to belong to the same MB. *°

In this way, we accomplish to group into a MB all the minima that are accessible from

a starting minimum for a specific time window and to discriminate them from all
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other minima, for which sufficient sampling will require more computational effort.
By construction, transitions from one MB toward its neighboring MBs will occur
overat a significantly longer time compared to the inner basin-to-basin transitions and
to the simulation time used to define the MB. Therefore, the efficient sampling of
transitions between MBs is at least an order of magnitude more demanding than
sampling the inner MB. This conclusion makes inter-MB transitions infrequent
events, imparting to these processes a Poisson character. More details regarding MBs

in glass-forming systems can be found in the review article of Heuer .

Through a methodology ®® specially designed for improving dynamical sampling of
atomistic simulations of glassy materials in the vicinity of T_, the idea of projecting

configuration space onto an equivalent space of MBs can be used to fully reproduce

the dynamical behavior of the system, even at temperatures far bellow T, ® ®. In

order for this to happen, one assumes that the overall dynamics of the system can be
decomposed into slow and fast processes, with the slow processes comprising a
Poisson process. This assumption is by no means strange and difficult to be fulfilled,
since by definition MBs are constructed based on infrequent transitions between sets

of basins of the PEL, which in turn are characterized by Poisson statistics. In

particular, approaching T, from below, the number of “relevant” minima and saddle

points increases dramatically. As a consequence, the computational cost for saddle-
point calculations becomes prohibitively high. In order to overcome this obstacle, we
have investigated the role of ISs in the vitrification process of glass-forming materials
using a simple methodology, which is based on a combination of MD and potential
energy minimization and on an extension of hazard plot analysis. This approach °
showed that the dynamical transitions between basins can be described by a first-order
kinetic scheme (monomolecular reaction system). More precisely, it was shown °® that
it is possible to reconstruct completely the dynamics of the atomistic system at a finite

temperature, below T, based on the first-order kinetic network of inter-basin

transitions. This reconstruction corresponds to a “lifting” "

of the coarse-grained
Poisson process model of a succession of inter-basin transitions to the detailed

atomistic level.



3.3 Topological structure of the potential energy hypersurface: Basins and metabasins 81

A necessary step for coarse graining the dynamics into the IS picture is the evaluation
of rate constants for basin-to-basin transitions. This can be done with a variety of
methods *% ®. In the past we have extensively used two distinct approaches for the
rate calculations: (a) a saddle-point search in combination with Fukui’s intrinsic
reaction coordinate (IRC) construction 2! and a harmonic approximation >, and, (b)

6, 68 :

MD simulations ® % in combination with hazard plot analysis ®* ®. The applicability

of each approach depends on its computational demands. For temperatures far below

T,, an approach based on MD would suffer, since the system remains trapped in the

vicinity of a handful of basins and does not escape even for times so long as to be
inaccessible by classical MD, while a saddle-point search/IRC will show a much

weaker dependence on barrier height and, therefore, will be preferable. On the other

hand, for temperatures above T, saddle-point search suffers from the tremendous

multitude of basins (several thousands in the course of nanoseconds for the model
system sizes considered here) that need to be sampled, while brute force MD is
expected to perform more efficiently. For the temperature range that is of primary

interest in this chapter, in the vicinity of T , both methods suffer. The large number of

visited basins makes the saddle-point search method computationally unaffordable,

while classical MD must be pushed to its limits.

Within the context of this work an efficient sampling method for this temperature
range is developed by achieving maximum parallelization *°. With the help of this
self-consistent methodology (results of which will be demonstrated in Section 3.4)
optimal use of MD over a wide range of temperatures is achieved. Here, by the term
“optimal use”, we refer to the ability of the method to automatically tune the length of
MD trajectories used in order to sample inter- and intra-metabasin transitions in an

uncoupled fashion. For short times and low temperatures, the transitions between
individual basins are rare events, while at higher temperatures, close to T, traditional
MD can sample several basin-to-basin transitions, but the rare event is now the

transition between collections of basins. Results obtained via this methodology will be

presented and thoroughly interpreted in the following section of this chapter.
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3.4 Results and discussion

All the above indicate that the usage of MBs in tracking the dynamical evolution of a
system through transitions is of great importance and has proven to be a very useful
tool. Beyond the utility of the notion of MBs in tracking the temporal evolution of a
system with the help of transitions, structural rearrangement mechanisms related with
inter- and intra-metabasin transitions have been revealed and explained. Recently ,
the existence of MBs has been correlated with specific changes in the configuration
space governed by the potential energy landscape of atomic glass-forming systems,
more precisely with the extent of cage-breaking (i.e., the molecular mechanism where

the first neighbors of individual atoms are changing).

All the results presented in this section concern a two-component Lennard-Jones (LJ)

mixture, whose total number of atoms is 641. The selection of the specific system is

based on the existence of extensive prior research results on it. One of its main
advantages is the suppression of the tendency for crystallization present in pure LJ
systems. The binary system, initially proposed by Kob et al. ’, consists of two different
types of atoms, A and B. The mixture has a concentration of 80% in A atoms and 20%
in B atoms, that is 513 A’s and 128 B’s. The parameters of the model have been
selected ’ in such a way that, although the two species have different sizes and
interaction strengths, demixing is suppressed in order to suppress nucleation. Although

A atoms are larger than B atoms, they are assumed to be of equal mass

m, =mg = 6.634 x 10° kg. The LJ interaction parameters for this system are
£, = 165678 x 107 J, Opp = 3.4 x 107 m, £55 = 0.82839 x 107 J,

Op = 2.992 x 10° m, &,,= 248517 x 102 ) and o,5= 2.72 x 10 m. The

unit for reducing time is selected * as [mAa,iA/(48gAA)]]/2 = 3.10 x 10 s, and the
unit for temperature is €., /ks = 120 K. If the above LJ interaction parameters are
reduced * by the values of the A — A interaction parameters, they read £,, = 1.0,
O = 10, £5= 05, 0y = 0.88, £,, = 1.5 and o, = 0.8.

For this system in the supercooled state, Kob 2 and Shell et al. ® have performed

extensive studies, on the basis of which the mode-coupling critical temperature T, is

reported as 0.435 in reduced units (~ 52.2 K) 8 For the same system, the glass
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transition temperature has been predicted ® to be T,=032, that is ~38.4 K. In all

calculations reported here, the molecular density of the system is 1.1908- o .

Through the development and application of an automated self-consistent method
which can operate on the fly within a molecular dynamics simulation °°, the
identification of collections of basins and their characterization as metabasins is
achieved. With the help of this methodology vigorous sampling is accomplished by
distributing the computational cost within the parallel procedure, that demands the
same computational cost as a conventional MD-run, but the results are obtained on a
real-time scale more than two orders of magnitude faster. The proposed approach gives
the ability to calculate the presence of a MB on the fly, the “minute” the system is
trapped in a part of its configuration space. The identification of a MB is followed by a
calculation of the individual rate constants governing transitions between the basins
constituting the MB (intra-metabasin transitions) and transitions toward basins that do

not belong to the current MB (inter-metabasin transitions).

Using the proposed methodology *°

, we have gained very useful insights into the
molecular motion relevant to relaxation in the vicinity of the glass transition, namely
the *“cage-breaking” process. More precisely, the change in the number and identity of
first neighbors accompanying a transition (whether intra- or inter-metabasin) in the
potential energy landscape has been thoroughly examined in the work of Souza and
Wales ®. In our work, we also see cage-breaking events, as depicted in Figure 3.5,
where a “central” atom jumps to a new cage after a single relative fast intra-metabasin

transition.
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Figure 3.5: Schematic representation of a cage-breaking event in a single elementary
jump from one potential energy minimum to a neighboring one belonging to the same
MB. The positions of the atoms that participate in the transition are plotted with
different sizes (initial: big spheres; final: small spheres), and vectors are drawn to
indicate their displacements accompanying the transition. With red color we represent
the atoms that remain first neighbors to the central atom experiencing the cage-
breaking event, which is also shown in red. Cyan represents atoms that used to be first
neighbors of the central atom but cease being so after the transition; their new positions
are shown in yellow. Dark blue represents atoms which were not first neighbors of the
central atom but come into its first coordination shell after the transition; their new
positions are shown in orange. The blue surface depicts the volume accessible to the
central molecule initially and the red finally, illustrating the cage change

accompanying the transition.

The observation of cage-effects in glassy materials in the vicinity of their glass
transition verifies the connection between structural rearrangements, such as structural

entrapment, and dynamical relaxation phenomena, such as the time scale separation. In
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particular, the separation of time scales characterizing relaxation mechanisms for

temperatures below T, seems to have a rational explanation connected with structural

rearrangement due to cage effects, such as the one shown in Figure 3.5. More
precisely, it can be concluded that cage effects describe the underlying mechanism
responsible for the dynamical entrapment of glassy materials. Every particle is trapped
in the cage formed by the neighboring particles that surround it, and a long (relaxation)
time is needed for the particle to escape from its cage and relax through diffusive
motion. Note that the particles forming the cage are, as expected, trapped themselves in
cages as well, and thus, the motion of all particles is slowed down, a phenomenon
which is observed by the time scale separation of relaxation times. With decreasing
temperature, cage effects become more pronounced, and thus, the motion of all
particles is even less, a fact which leads to an increase of the time needed for breaking

these cages.

On the other hand, when we investigate MB-to-MB transitions, we do not only see an
enhancement of the cage effect, but also observe more complex relaxation mechanisms
as shown in Figure 3.6:
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Figure 3.6: Schematic representation of a more complex relaxation event that takes
place in a single jump from one potential energy minimum to a neighboring one,
belonging to a different MB. Coloring is as Figure 3.5. We have additionally drawn
cyan and light-brown spheres representing the first coordination shell, centered at the
initial and final positions of the atom with the largest displacement. In this complex
elementary move, atoms look like they are moving in a concerted way, exchanging

their positions in a dance-like fashion.

According to Figure 3.6, a series of atoms including the “protagonist” of the first
coordination shell shown, take part in a more complex structural rearrangement. More
precisely, a collection of atoms seem to take each other’s positions moving in a, more
or less, stringlike fashion, as if they were “dancing” in accordance with the “stringlike
cooperative motion” demonstrated in the work of Donati et al. ®. According to their
work, by analyzing the van Hove correlation function produced via MD simulation for
the same model system, Donati et al. showed that there is a fraction of mobile particles
that at a characteristic time replace each other, executing a stringlike cooperative
motion, very similar to the one represented in Figure 3.6. Our result suggests that such
a motion can be actually seen as a transition between structures of the PEL intimately
related with the MB-to-MB transitions.

By comparing Figure 3.5 and Figure 3.6 to each other we notice that two different
kinds of atom movements are observed. In one hand (Figure 3.5) a simpler move is
being noticed, wherein a simple atom “escapes” from a cage, within which it was

trapped, formed by its first neighbors. Due to the reduced atomic mobility caused by

the low temperature level (far below or in the vicinity of T ), this motion demands the

contemporaneous motion of first neighbors so that a certain cavity of free volume is
created letting each central atom eventually escape from an initial cage and
consequently be trapped in a new one. Energetically speaking, this kind of motion is
related, due to its relative simplicity, to overcoming low energy barriers between
neighboring basins. On the contrary, the atomic motion described in Figure 3.6
demands a more cooperative motion. The energetic cost the system has to pay in order
for the atoms to acquire the right positions for such a motion, is higher since more

atoms are now involved and it is expected to be “energetically” (but also
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“entropically”) more difficult for this arrangement to occur. Therefore, this kind of
motions are more rare than the cage-break motions, a fact that is related with the
infrequency of MB-to-MB transitions in comparison to the more frequent and faster
intra-metabasin transitions. As a consequence of that, cooperative motions such as the
one described in Figure 3.6 are expected to be related with overcoming relatively

higher energy barriers of the PEL.

The notion of basins and metabasins as structural characteristics of the PEL, as well as
transitions between those structures will be further used in the context of this work to
explain and approach several other mechanisms existing in glassy materials. In the
following chapter, a specially designed methodology is presented which on its basis
can potentially deal with enormous numbers of basins or states by lumping them in
such a way, so that short-time phenomena, accessible through many simulation
techniques, are given small attention and long-time relaxation processes, inaccessible
for almost all simulation techniques, are being favored. The idea of basins and MBs
will be further used in Chapter 5, where an alternative graphical representation of the

PEL will be presented.
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Structural and temporal coarse-graining with respect to

long-time dynamics: Lumping analysis

In this chapter we present, test and implement a methodology that is able to perform, in
an automated manner, “lumping” of a high-dimensional, discrete dynamical system
onto a lower-dimensional space. Our aim is to develop an algorithm which, without
any assumption about the nature of the system’s slow dynamics, is able to accurately
reproduce the long-time dynamics with minimal loss of information. Both the original
and the lumped systems conform to master equations [Egs. (3.1-3.2)], related via the

“lumping” analysis introduced by Wei %

, and have the same limiting equilibrium
probability distribution. The proposed method can be used in a variety of processes
that can be modeled via a first order kinetic reaction scheme (monomolecular reaction
systems). Lumping affords great savings in the computational cost and reveals the

characteristic times governing the slow dynamics of the system.

Our goal is to approach the best lumping scheme with respect to three criteria, in order
for the lumped system to be able to fully describe the long-time dynamics of the
original system. The criteria used are: (a) the lumping error arising from the reduction
process; (b) a measure of the magnitude of singular values associated with long-time
evolution of the lumped system; and (c) the size of the lumped system. The search for
the optimum lumping proceeds via Monte Carlo simulation based on the Wang-Landau
scheme ¥, which enables us to overcome entrapment in local minima in the above
criteria and therefore increases the probability of encountering the global optimum.

The developed algorithm is implemented to reproduce the long-time dynamics of a
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glassy binary Lennard-Jones mixture described in paragraph 3.4 of this work, based on
the idea of “inherent structures”, where the rate constants for transitions between
inherent structures have been evaluated via hazard plot analysis of a properly designed

ensemble of molecular dynamics trajectories.

4.1 Introduction

In this paragraph we propose a lumping strategy designed for the investigation of the
dynamic behavior of systems evolving via rare event transitions between discrete
states. Examples are chemically reacting systems whose composition evolves

according to a reaction network obeying first order kinetics ° %

, or glassy materials,
where physical ageing can be described in terms of transitions between basins on their
potential energy hypersurface ® ®®. Unfortunately, in most applications, problems arise
in simulating the long-time dynamics of such systems due to the extremely large
number of transitions between states that need to be tracked. This often prohibits the
extraction of meaningful conclusions concerning the dynamical behavior of these
systems. Likewise, the considered transitions are not of equal importance for
dynamical evolution over long time scales, which are usually of most interest. The time
scale of observation determines which transitions are the most important ones. In
practice, for example, elementary transitions governing the volumetric, mechanical and
thermal properties of a glassy material cover a range of rates, spreading over 10 to 20
orders of magnitude on the time scale. Eventually, this results in a full dynamical
simulation being practically impossible. To alleviate this problem, one needs to
“coarse-grain” the network of transitions by “eliminating” or replacing transitions that
do not affect the system dynamics at long times.

The approach presented in this chapter is designed to systematically reduce the
dimensionality of model discrete stochastic systems whose evolution is governed by a
first order master equation. It can also be applied to continuous systems, once they
have been mapped to a discrete network of states. How this mapping can be performed
has been shown for atomistic models of glass formers ®* %. The idea behind the
mapping is to tessellate the continuous configuration space into discrete states,

transitions between the states being rare events. States in glassy systems can be defined
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as “basins” in configuration space surrounding “inherent structures”, i.e., local minima
of the potential energy with respect to all microscopic degrees of freedom. The system
evolves in time via a succession of transitions between basins. Each basin contains one
local minimum of the potential energy. The term “metabasin” describes a cluster of
connected basins. Every single basin included in a specific metabasin communicates
with its surrounding neighboring basins through fast transitions. By definition, the time
needed for the system in order to explore basins belonging to the same metabasin is
significantly shorter in comparison to the time needed for the system to escape from
the considered metabasin. In essence, a set of basins communicating through fast
transitions, relative to the residence time in the set, are grouped into the same

metabasin.

Finding a mathematical transformation capable of simplifying the computational
estimation of the dynamical behavior of systems which evolve in time through a
succession of transitions between states obeying a first order kinetic model, into a
network of fewer discrete states, without loss of important information, is one of the
main accomplishments described in this chapter. The strategy is based on the idea of
coarse-graining the original network of states via a grouping, or “lumping” procedure
86b. 86 Two or more original states are lumped together beyond a specific time after

which internal equilibration between the states lumped is expected to be established.

According to Wei and Kuo *®, lumping of a dynamical system can be divided into two
categories: exact lumping and approximate lumping. The first category fulfils the
necessary and sufficient conditions under which the kinetics of the lumped states can
be exactly described by a complex first-order reaction scheme, i.e., the lumped system
is assumed to constitute a monomolecular reaction system. In approximate lumping the
kinetics of the lumped system cannot be exactly described by a first-order reaction
scheme; hence, one needs to establish the magnitude of the errors that accompany
lumping. Lumping, whether exact or approximate, can be further distinguished into
three subclasses: proper, semi-proper, and improper lumping. In proper lumping each
original state (chemical species) is by definition assigned to only one lumped state
(cluster). In semi-proper and improper lumping, each chemical species is not
necessarily assigned to a unique cluster. The difference between semi-proper and
improper lumping is that the lumped system resulting from semi-proper lumping

follows a monomolecular reaction scheme, whereas that resulting from improper
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lumping does not. Further to the work of Wei and Kuo, a general analysis of exact and

approximate lumping in chemical kinetics has been presented by Li and Rabitz %.

Lumping is a widely used technique in many fields. Characteristic applications may be
found, for example, in the oil catalytic cracking industry **. Lumping can also be
implemented to describe reaction networks which obey nonlinear kinetics *2. For such

systems one speaks of constrained and unconstrained lumping .

In constrained
lumping some variables of the system are left unlumped, whereas unconstrained,
nonlinear lumping gives a reduced system of differential equations cast in terms of new
variables, which are nonlinear functions of the original ones. In addition to that,
different lumping schemes have been proposed in the past based upon both potential
energy and free energy landscape data in order to extract or validate information about
the system’s structural topology, connectivity and equilibration times ®*. Moreover,
coarse-graining of minima has been implemented by using an empirically chosen
threshold rate constant to determine how the minima group together both for model
polyalanines * and for glassy binary Lennard-Jones systems °°. Moreover, a different
approach to lumping, cast in terms of the invariant response principle, has been

proposed by Coxson and Bischoff .

In the context of this work we investigate both exactly and approximately, properly
lumpable, systems whose dynamics can be fully described via first-order differential
equations. More precisely, part of this work is dedicated to calculating the quality of
lumping, in the sense of how close to exact lumpability the implemented lumping is.

The mathematical formalism employed in our work incorporates in essence a
transformation from an initial n-tuple space (n describes the number of initial states)
to another space of lumped states, or meta-states, of smaller dimensionality A<n.
Besides the introduction of such a mathematical transformation, it is also essential to
control the amount of information loss by tracking the system’s dynamical behavior,
which results from application of this methodology. The proposed methodology can be
easily linked to common spectral clustering methods used for dimensionality reduction
and depiction of complex, high dimensional landscapes. These methods constitute a
class of techniques, which rely on the eigenstructure of a similarity matrix to partition
points into clusters. In particular, spectral clustering goes back to Donath and Hoffman

% who first suggested to construct graph partitions based on eigenvectors of the
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adjacency matrix. Since then, spectral clustering has been widely used and extended *.
Unlike spectral clustering methods, the proposed algorithm enables lumping of
datasets, and therefore the study of long-time dynamics without postulating the
diagonalization of the studied system. This fact becomes of greater importance as the

system size grows.

All simulations and corresponding calculations concerning glass relaxation were
carried out on the two-component Lennard-Jones system described in Section 3.4. In
Tsalikis et al. *® four different neighboring metabasins have been explored with the
help of an automated self-consistent method operating on-the-fly. The applied method
offers the ability to calculate the presence of a metabasin as soon as the system is
temporarily trapped in a region of its configuration space. The designation of those
four metabasins proceeds using as a criterion the rate of exploration of new local
minima of the potential energy landscape during the progression of a molecular
dynamics (MD) simulation in the canonical (NVT ) ensemble. Every one of the
metabasins contains a certain number of neighboring basins, which — by definition —
communicate with each other via fast transitions in comparison to the time needed to
escape from the metabasin to another neighboring metabasin. The identification of the
four metabasins was followed by a calculation of the individual rate constants
governing transitions between the basins constituting the metabasin and transitions

towards basins that are parts of other metabasins, different from the current one.

For further analysis we consider our LJ system — having the aforementioned
characteristics - encompassing n explored discrete states. We assume that the
dynamical behavior of the system is described through transitions which obey a first
order kinetic model described in Egs. (3.1-3.2) and thus the system is considered as a

monomolecular reaction system. With P.(t) we denote the probability of finding the
system in state i with (1<i<n). Collecting all state probabilities, we form an n-
dimensional vector P(t). Equations (3.1-3.2) are equivalent and are better known as

the master equation, since they describe the evolution of the system with given initial
distribution among states P(0) . With K we denote the n x n rate constant matrix of
the full system. This is the matrix which contains as elements the rate constants for
every transition that takes place in the initial system ® '®. The specific characteristics

of this matrix have been thoroughly elucidated in paragraph 3.2.2 of this
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thesis, as well as in the seminal work of Wei and Kuo ®®® ¢ Provided that the rate
constant matrix K for the system is known, the developed lumping methodology can

be applied straightforwardly.

4.2 The lumping algorithm

The developed algorithm is based on the Monte Carlo stochastic sampling method, i.e.
a stochastic simulation is implemented over all possible lumping combinations. The
acceptance, or rejection, of every lumping combination is weighted according to our
three lumping criteria (which will be thoroughly analyzed in Section 4.2.3).
Microscopic reversibility is fulfilled and taken into consideration in the developed
algorithm. The different lumping combinations are being implemented by the
transformation matrix M, which is actually the quantity that characterizes the outcome

of lumping. At every trial MC-step a small change in the matrix M is being realized.

4.2.1 The transformation matrix M

The transformation matrix M is the most important quantity of the lumping
methodology. It reflects the essence of lumping, since it is the transformation matrix
that operates on the original system and induces lumping. Thus, lumping is nothing

else but a linear transformation of a n-tuple probability (or composition) vector, P(t),

into a fi-tuple vector, |5(t), of smaller dimension (A < n) by means of the A x n

transformation matrix M, as illustrated in Figure 4.1:

o
I

M

Figure 4.1: Schematic representation of lumping under application of the

transformation matrix M on the a priori probability vector P °%.
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A detailed description of the basic characteristics of the structure of the transformation

matrix M, as well as the way this matrix acts upon any initial, non-lumped matrix of
dimensionality n x N, where integer N e [l,n) can be found in the seminal work of
Wei and Kuo °®® ®° In particular, here we emphasize those properties of matrix M
which play an important role in better understanding the proposed methodology. In

order to avoid confusion, the states of the system occurring after lumping will be called

clusters. The most important characteristics of matrix M are:
1.  Theelements of the M matrix are either “0” or “1”.

2. Every column of the M matrix contains exactly one “1”. The physical meaning
behind this constraint is that every state of the initial system (i.e., every column

of M) belongs to one cluster only (i.e. to exactly one row of M).

3. The position of “1” in every column of M describes to which lumped state
(row of M) the state of the initial system it is being lumped.

In order to further clarify the characteristics of the transformation matrix, a simple

example of asmall 3 x 5 M matrix is illustrated in Figure. 4.2:
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Figure 4.2: Characteristic example of an arbitrary 3 x 5 transformation matrix M for
the interpretation of its structure. According to the above matrix, three clusters are
being formed after lumping. The first cluster (first row) consists of states 1 and 2
(columns 1 and 2 respectively) of the initial system, the second cluster (2nd row)
emerges after lumping states 3 and 5 (3" and 5™ columns, respectively) of the initial
system and finally the third cluster (3™ row) consists of only one state, namely state 4

of the initial system (4™ column).

4.2.2 Monte Carlo moves on the transformation matrix

In the Monte Carlo algorithm we have designed for sampling different lumping
schemes (see below), three different kinds of changes (trial moves) in matrix M are
considered to be possible. In order to ensure microscopic reversibility, the forward and
back transition probabilities are calculated for every kind of trial move.

In the first type of move (“shift” move), matrix M preserves its dimensionality, i.e., its

number of rows, meaning that the number of clusters generated via lumping is held
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constant. The only change that is being implemented is the shifting of a “1” from an
arbitrarily chosen row to a different row of matrix M. The moved “1” remains in the
same column, as it corresponds to a certain state, which, as a result of the considered
change, is being lumped to a different cluster. In order to move a “1”, a row has to be
selected out of a total of A rows. Every row of matrix M is assigned the same
probability, so the probability to choose a specific row is equal to P™ =1/fA. In a
similar way, the probability to choose a second row from the remaining rows is

P =1/(fi—1). The probability for attempting a specific shift of a “1” is thus

1
o — patpat _ 4.1
forw 1 2 ﬁ(ﬁ _1) ( )
Similarly, the probability for attempting the reverse move is
a _ patpat _ 1 (4 2)
back 1 2 ﬁ(ﬁ —l) '

In the second type of trial move (“merger” move), the number of rows of matrix M is
being reduced by one. This change refers to the number of clusters produced after
lumping. The number of columns of matrix M is fixed and remains constant, as it
equals the number of states in the original system. The reduction in number of rows
that is being realized here takes place by merging two different rows. Thus, after a
MC-move of this type, the dimensionality of matrix M is reduced by one. The first

row to be merged is chosen from a uniform discrete distribution with probability

P*=1/A and the second is chosen randomly from the remaining rows, with

probability P;" =1/(fi—1). The second row is added into the first row, i.e. the position

of the merged row is the same as that of the first row chosen to be merged. The
forward move for merging of two rows is attempted according to the following

probability

1
A(R-1)

_ pattpatt _
aforw - F;. I:)2 -

(4.3)

In the inverse of the merger move (“split” move), a certain row of matrix M, initially

containing (ﬁ—l) rows, is split into two different rows. Note that the row of M to be
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split in two should be chosen with caution. A basic prerequisite for a row to be split is

that the row contain more than one “1”, so that each of the two emerging rows includes

at least one “1”. The choice of the row to be split is made with probability P"** =1/,
where A, <fA-1 is the number of splittable rows (rows containing two or more “1”
elements each) fulfilling the above prerequisite. If A, =0, the split move and its inverse

merger move are impossible. Following the choice of the row to be split, we consider
the possible populations (numbers of “1” elements) of the two rows resulting from the
split of the chosen row. In general, if the chosen row contains nun elements equal to

“1”, then it can be split in (nun—1) different ways into two rows containing nunl and

nun2 elements equal to “1”, with nun = nunl+nun2. For example, if the chosen row
has nun=5 elements equal to “1”, then the possible combinations of populations of

the two rows obtained by splitting this row are (nun-1)=(5-1)=4:
1+4,2+3,3+2,4+1. Each of these combinations of populations is attempted with

equal probability during the split. The probability to choose the specific populations
that characterized the two rows of matrix M that were merged in the merger move

which constitutes the reverse of the considered split move is thus P,* =1/(nun—1).

The number of ways in which nunl elements equal to “1”, out of a total of nun, will be

nun
retained in the first of the two rows resulting from the split is (n nlj . The probability
u

of generating, through the chosen split, the specific configuration that the two rows had

before the merger that constitutes the inverse move of the split is thus

I — I I I
pet — 1 :nunl.(nun nunl).:nunl.nunz. (4.4)

nun nun! nun!
nunl

The first row resulting from the split replaces the parent row that was split in matrix M.

The second row resulting from the split is inserted with equal probability before, in-
between, or after the pre-existing rows of M. The probability that the second row is
assigned the index that it had before the merger move which constitutes the inverse of
the considered split move is thus P/ =1/A. The attempt probability for the split
move to lead to the specific form that M had before the inverse merger move is thus

equal to



98 Chapter 4

nunl!nun2!

tt tt tt tt

G = PP PP = — (45)
N, (nun—1) nun! n

The third possible trial move employed in our MC algorithm is a “split” move, in
which the dimensionality of matrix M increases by one. This move has already been
described above as the reverse of the merger move. According to the arguments
presented in the previous paragraphs, the attempt probability for a split move to occur
in a specific way is equal to

nunl!nun2!

a. . = 4.6
™A, (nun-1) nun! (i+1) (4.6)

where A and A, respectively, are the total number of rows and the number of

splittable rows of M before the move, nun is the number of “1” elements in the row
chosen for splitting and nunl, nun2 are the numbers of “1” elements in the rows
resulting from the split. On the other hand, the attempt probability for the inverse

merger move is

1

ok = W (4.7)

=

The change in dimensionality of matrix M will have a significant effect on the other
two lumping criteria, the lumping error E and the long-time dynamics parameter W ,

discussed extensively in the following section.

4.2.3 The lumping criteria

In every trial step of the developed lumping algorithm, three different quantities need
to be calculated. These are the three different lumping criteria, which determine
whether each stochastic trial move will be rejected or accepted. In other words, the
lumping criteria are required to follow a prescribed probability distribution. The
calculation of two out of the three lumping criteria is based on the Frobenius norm.
The Frobenius norm is calculated for an arbitrary non-square m x n matrix B,

through the following equations:
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m n 2 — min{m,n}2

Bl =,/ 22 lbs| =+trace(®"-B) =, >0 (4.8)
i=1 j=1 i1

where B” denotes the conjugate transpose of matrix B, and o, are the singular values

of matrix B. The Frobenius norm, among other matrix norms (e.g., the maximum
absolute value of the elements of matrix B), is better, because it takes into account not
only one element, but the entire matrix B and thus constitutes a more characteristic
measure for the quality of lumping. A detailed description of the significance of the
three implemented lumping criteria, and all necessary information for the calculation

of the parameters by which they are expressed, is provided in the following paragraphs.

1. The first and most important lumping criterion, the lumping error, describes the
quality of lumping — with respect to the original system Kkinetics. The
calculation of this quantity is based on the work of Kuo and Wei ®® % The

lumping error is calculated with the help of an error matrix E, according to:
E=M-K-K-M (4.9)

K stands for the i x fi rate constant matrix of the lumped system. Calculation
of this matrix proceeds in a straightforward manner, see Eqgs. (4.10-4.12),
having as a minimum requirement the knowledge of the transformation matrix

M , the rate constant matrix K and the n x n concentration matrix A:

K=M-K-A-M"-A" (4.10)
where

A=M-A-M" (4.11)
and hence

Al=(M-A-M")™* (4.12)

For a given transformation matrix M, matrix E shows how close to perfect
lumping the realized lumping is. For a system that is exactly lumpable by
matrix M, matrix E is unique and is a null matrix. For a system approximately

lumpable by matrix M, matrix E is neither a null matrix, nor unique. This is
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because matrix E depends on the choice of matrix M. Matrix E does not
depend on time. It is a measure of how close to exact lumpability the imposed
lumping is. If a relevant time-dependent measure is needed, the eigenvalues and
eigenvectors of the initial system need to be known, which is exactly what the

lumping methodology aims to avoid.

The concentration matrix A is, by definition, a diagonal matrix, whose
diagonal elements equal the elements of the equilibrium probability vector

P(«). The equilibrium probability vector P(«) is an n-long column vector,

which is equal to the real part of the right eigenvector corresponding to the zero

eigenvalue of the rate constant matrix K. P(«) can be calculated via one of

the two options described below. Specifically, upon diagonalization of a square,
real, stochastic matrix that is similar to a symmetric matrix (see below), the
resulting eigenvalues should be real, of similar (in the case of K, negative) sign
and one of them should be equal to zero '°*. The eigenvector corresponding to

the zero eigenvalue of K is the equilibrium vector P(o0). Of course, this

method requires the diagonalization of matrix K, which can be laborious and of
questionable accuracy for big systems. Another possibility for calculating the
equilibrium vector without diagonalizing matrix K is to adopt an iterative
process, i.e., apply an iterative scheme to solve the master equation at
equilibrium [Eq. (3.1)]:

Z Pj(m) (t)- kj—)i
P@t)-> k. =>P )k _,=P™(t)= ji
JZ#; J JZ#: | J zkiaj

j#i

(4.13)

For a given system, under the assumption that its rate constant matrix is known,
every single transformation matrix M leads to a certain lumping scheme. In the
present work, the lumping error, emerging from the implementation of a
specific matrix M, is taken as the Frobenius norm of the resulting non-
symmetric nx A error matrix E:

= =g, - (414




4.2 The lumping algorithm
4.2.3 The lumping criteria 101

Obviously, successful lumping is described by a small lumping error E . Small
E means that there is only small difference between the corresponding
eigenvalues of the original and the lumped system. Of course, the lumped
system has only a fraction of the eigenvalues of the initial system, but E makes
sure that the small system has, although less, similar eigenvalues to the ones of

the initial system.

2. The second lumping criterion used is a measure of the efficiency of the applied
lumping in describing accurately the dynamics of the system at long times. A

quantity which captures this ability well is the sum of the squares of the

absolute values of the real parts of all eigenvalues of the rate matrix K of the

lumped system:

SR
- SReter | (4.15)

where o, are the singular values of matrix K . Realization of such a calculation

requires the investigated rate constant matrix K to be diagonalized, so that its
singular values are obtained. Therefore all eigenvalues and the corresponding
(right) eigenvectors need to be calculated. This calculation is in most cases —
especially for matrices of large dimensionality — costly, in terms of both time
and computational power. Therefore, an alternative route has to be found,
without reducing the accuracy of the calculation. In order to overcome this

obstacle, we again use the Frobenius norm. By application of Eq. (4.8) for the

rate constant matrix K , which is a square fix A stochastic matrix that is similar
to a symmetric matrix '°* and therefore has real eigenvalues, the following

relationship is obtained:

= JJtrace(K”-K) /Za (4.16)

Direct comparison between the quantities defined in Egs. (4.15) and (4.16),
informs us that the quantity Q we wish to calculate is exactly the same as W

given by Eq. (4.16). In order to describe more accurately the slow processes of

the original system by the kinetics of the lumped system, the value of the
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Frobenius norm should be as small as possible. Although the lumping error E
is the criterion ensuring that the difference in eigenvalues between initial and
lumped system is minimal, there is no guarantee that the surviving eigenvalues
will be in a position to describe long characteristic times. Associated with long

time dynamics are the eigenvalues with small absolute value. The second

lumping criterion forces K to include those eigenvalues of small absolute
values and hence the lumped system to adhere to the long-time dynamics of the
original system. The simultaneous minimization of the two mentioned lumping
criteria offers a good lumping, since E makes sure that the difference in
eigenvalues between the two systems is as small as possible, while W ensures
that, among the eigenvalues of the lumped system, are maintained the small
eigenvalues of the original system, being able to describe long-time dynamics.
By minimizing W, while at the same time minimizing E, we force the lumping

to focus on reproducing the long time behavior of the original system. By

requiring both E and W to be small, we are telling K to sacrifice short time (fast
process) information in trying to match K, and rather focus on long-time

information. Moreover, despite the fact that the value of W can be dominated by

the largest eigenvalues of K (the fastest processes described by K), the
applied algorithm for finding the optimal transformation matrix is extremely
sensitive in tracking even the slightest changes in the objective function to be
minimized (see Eq. (4.25) below), caused by differences in E and W. Hence,
even a minor change in W favors a matrix M which corresponds to a smaller
value of the objective function, provided that the remaining two parameters E

and A are identical.

. The third lumping criterion describes the size of the system that results after

lumping. To be precise, this quantity defines the number of the lumped species
(clusters of states) n. Once the number of the lumped species is defined, the
dimensionality of the transformation matrix M is also defined. It is obvious
that the higher the number of the lumped species A, the more difficult all
calculations will be at the lumped level. The dimensionality of the lumped

system should be small for lumping to be characterized as “successful”.
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The ideal lumping procedure depends a lot on the problem investigated. In our
case, ideal lumping demands that each one of the above three quantities become
as small as possible. Minimizing the three mentioned lumping criteria is not
equally important for every occasion. Most important of all is to minimize the
emerging lumping error E. Next in significance is the minimization of the
second lumping criterion, i.e. the square root of the sum of squares of the
singular values of the lumped system’s rate matrix. This requirement will
ensure that the lumped system is in a position to describe the slow processes of
the original system sufficiently accurately, mostly because these processes
define to a large degree the system’s long time dynamics. We wish to reproduce
the full dynamics of the original system for long times. Finally, the demand for
an as small as possible system dimensionality, which corresponds to the third of
our lumping criteria A, is important for cutting computational cost in
calculations conducted at the lumped level, once lumping has been
accomplished. Of course it is a priori expected that, the smaller the lumped
system, the greater the lumping error, since more original states are lumped into
new states (clusters), and this contributes to information loss with respect to
the original system dynamics. Fig. 4.3 shows a typical interdependence among

the three lumping criteria.
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Figure 4.3: Characteristic examples of the behavior of the lumping criteria when
plotted against each other. The displayed results are obtained after a Wang-Landau
MC-simulation run (see Section 4.3) of 2x10" steps for an initial system of 290 states.
(a) Relation between the size of the lumped system A and the measure of the ability of
the lumped system to describe long-time dynamics, W . (b) Relation between the
lumping error E and the dimension fi of the lumped system. (c) Relation between the
lumping error and the long-time dynamics parameter W. Parts (a) and (b) have the

same vertical axis, the title of which is omitted in part (b). Each point corresponds to a

state encountered in Wang-Landau sampling with probability higher than 1x107".

Figure 4.3(a) shows that the long-time dynamics parameter W grows as the lumped

system becomes larger. This is expected, because, by increasing the lumped system

size, the number of singular values of the lumped rate matrix K, Eqg. (4.16), also

50
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increases. There are more summations to be accumulated on the right-hand side of Eq.

(4.16), leading to a larger value of W . Note that the order of magnitude of W is

determined by the elements of the rate constant matrix K . An increase in the lumped
system size leads to a decrease of the lumping error (Fig. 4.3(b)). This is because, as
the lumped system approaches the size of the original system, the loss of information
due to lumping is reduced, leading to a decrease in the corresponding lumping error.
By comparing Figs. 4.3(a) and 4.3(b), one notices that the lumping error E changes
inversely with the parameter W (Fig. 3(c)). From Figure 4.3 we conclude that the
minimization of all three lumping criteria is not straightforward, as two of them vary
inversely with the third. This means that perfect lumping is defined as the best
compromise of those criteria with respect to a certain level of accuracy. In our work we

consider the lumping error E to be the most important of all three.

4.3 Structure of simulations

The procedure for finding the best lumping scheme with respect to the three adopted
lumping criteria includes two sets of MC simulation runs. Before going into details of
the two different sets of simulations, a clarification is essential. In the context of our
optimization work, we consider a three-dimensional space spanned by the three
coordinates E, W,A. Any lumping scheme (choice of lumped system size i and
lumping matrix M) is mapped onto a point X in this three-dimensional space. A given
value of n and transformation matrix M defines a “microstate” in the space of all
possible lumpings. Each microstate is characterized by three “energy functions”,
namely the three parameters or lumping criteria we wish to minimize. We denote these

three functions collectively by X:
X =X(h,M) = (E(7, M),W (1, M), 1) (4.17)

Any simple change in the lumped system size A and/or in matrix M yields a different
microstate, generally characterized by different values of X, i.e., of the parameters
E,W,n. The number of microstates g(X)=g( E,W,n) with error between E and E+dE,
long-time dynamics parameter between W and W+dW, and lumped system size n, per

unit volume dE dW , defines a density of states in the three-dimensional space (E,W,n).
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The first set of simulations involves MC runs based on the Wang-Landau density of
states method ®’. A set of eight consecutive Wang-Landau MC runs is undertaken to
estimate the density of states g(X). Microstates are sampled with a probability density
inversely proportional to the current estimate of g(X) which is continuously updated,
until convergence to a flat histogram in (E,W,n) space is obtained. The maximum
values of E, W, A are calculated with the help of an initial, large MC run, which
simulates an exhaustive random walk over possible microstates. The minimum values
of all three parameters E, W, A are set to zero, since all three parameters are positive,

real numbers.

The second set of simulations consists of a single MC-run. It capitalizes on the
knowledge of the density of states gained through the first set, in order to access
preferentially microstates characterized by small values of lumping error E, long-time
dynamics parameter W, and lumped system dimensionality . The flat histogram in (
E,W,n) space obtained from the previous set is now tilted through appropriate design
of the MC selection criterion, causing the MC run to preferentially access microstates
near the origin. During this second set of MC simulation, microstates which are

characterized by small values for all three lumping criteria are sampled preferentially.

During the first set of MC simulations we aim to obtain an, as much as possible, flat

histogram in (E,W,n) space. The Wang-Landau algorithm used here estimates the
density of states g(X) by carrying out a random walk in the space spanned by all

microstates (all lumped system sizes A and transformation matrices M) with

probability density proportional to }/g(X) instead of the usual Boltzmann weight used

in conventional Metropolis MC simulation . As a consequence, the frequency of

visiting each point X in (E,W,n) space converges to an almost constant value. The
basic reason for using the Wang-Landau scheme instead of the conventional
Metropolis scheme based, e.g., on a probability density proportional to e”%, >0, is

that we wish to sample the space of microstates as boldly as possible and avoid being
trapped in local minima of X. With a probability density decaying exponentially with
E,W,n there may only be a minute probability of visiting high X microstates and
thereby escaping from local minima of X. The Wang-Landau scheme is more

appropriate for exploring a wide variety of microstates evenly **. This is shown
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characteristically in Figures B.1-B.5 of Appendix B, in which the performance of the
Wang-Landau scheme is quantitatively compared to that of a conventional Metropolis

Monte Carlo algorithm for sampling the configuration space of the lumping problem.

The simulations of the first set are performed such that, if g(X,) = g(X(A,,M,)) is the
density of states of the current microstate and g(X,) = g(X(A,,M,)) is the density of

states of a possible trial microstate, the acceptance probability of the move is given by:

P_.(M, —>M,) =min @Ml =min{M-M,l} (4.18)
}/g(xl) aforw g(XZ) aforw

with a,,, and ¢, being the attempt probabilities for forward and backward shift,
merger, and split moves in M discussed in Section 4.2.2. For each accepted
configuration we accumulate an “energy” histogram H (X) . Since the density of states
is not known a priori, Wang and Landau proposed to set initially g(X)=1 and
H(X) =0, for all microstates ®". In view of Eq. (4.17), Eq.(4.18) can be written more

explicitly as:

g(Ellwl’ ﬁl) A Apack 1

P..(M;, > M,)=min - ,
g(EZ’WZ’n2) aforw

(4.19)

X-space is divided into three-dimensional bins and the random walk in M is classified
in these bins, as it evolves during the MC simulation. As the random walk in

microstate space is performed, whenever a move to a trial microstate with parameters
X, is accepted, the density of states g(X,) is updated by multiplying it by a
"modification factor" f >1 that accelerates the diffusion of the random walk, and a

unit is added to the corresponding histogram H(X,):

9(X;) = g(X,)- f (4.20)

and

H(X,)>H(CX,) +1 (4.21)
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An interpretation of the physical meaning of the modification factor f is to consider it
as a “punishment” which a certain trial microstate receives if it is accepted. As a result,
it becomes more and more difficult for this microstate to be accepted again, and
therefore to further increase its frequency of occurrence in the MC sampling. Thus, less
favorable microstates, which eventually are being selected, are ultimately visited with
equal frequency as those which were more probable at the beginning of the run. The
density of states is multiplied by f until the accumulated histogram H (X) becomes
as flat as possible within the given number of MC steps. The density of states obtained
after completion of each one of the totally eight simulation runs of the first set is set
equal to the initial density of states for the next run, which is undertaken with a new,

reduced value of f according to the following empirical rule:

fa=yf, i=12..7 (4.22)

In the beginning of each run, the histogram H (X) is resetto H(X) =0 for all X. In the

simulations implemented in this work, in order to obtain a good estimation of the

density of states, the initial choice of f was setto f =4. The simulation converges to
a good estimate of the true density of states g(X) when f is approximately equal to 1.

After a sequence of eight successive simulation runs, the modification factor was
reduced to a value of 1.01, which indicates that the outcome of the simulation is

practically independent of f [EQ. (4.20)]. At that point, we consider the calculated

density of states as a good estimate of the density of states of the system. In Table 4.1

the values of f and the length of each of the eight Wang-Landau MC runs realized in

the context of the first set of simulations are listed.

Table 4.1: Information about the length and the modification factor f for each one of

the totally eight, successive Wang-Landau MC simulation runs for the achievement of

a flat probability distribution of the sampled microstates.

run 1 2 3 4 5 6 7 8

MC

steps

2x10’ 2x10’ 2x10’ 2x10’ 2x10’ 2x10’ 2x10’ 2x10’

f[-] 4 2 141 1.19 1.09 1.04 1.02 1.01
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In fact, H(X) can never reach perfect flatness, so some criterion must be used. In our

simulations the criterion of flatness was taken as each value of the histogram deviating
from the mean value by less than 10% of the difference between the maximum and the
minimum value of H(X). In Figure 4.4 is shown the behavior of the histogram in X-
space of the sampled microstates after the completion of the first set of simulation

runs:

o f=4.00 o f=4.00
4 f=2.00 4 f=2.00
v f=1.41 v f=1.41
¥ f=1.19
o f=1.09
¢ f=1.04
A f=1.02
P f=1.01

H(WW)

0 f=4.00
4 =2.00
v f=1.41
*f=1.19
B f=1.09
¢ f=1.04
Af=1.02
B f=1.01

100 150 200 250
n

Figure 4.4: Schematic representation of the histogram of sampled states with respect

to (@) E, (b) W and (c) A for every one of the totally eight Wang-Landau MC runs of

the first simulation set.
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According to Eq. (4.17), every microstate is characterized by three parametersg, W
and . Hence, if one wished to plot the histogram H(X) or H(E,W,RA), a four-
dimensioned plot would be required. Figure 4.4 shows the projections of the
hypersurface H(E,W,n) (marginal distributions) on each one of the following three
planes: (E,H(E)), (W,H(W)) and (n,H(n)). A clearer and more detailed view of the
histogram is given in the three-dimensional plots of Figure 4.5. Each one of these three
plots presents a two-dimensional projection of the histogram, each time as a function

of two of the three independent variables E,W,n:

-3
107y , 10 7y - {=4.00
.00

H(E, W)

n)

H(W,

09 - «+ f=1.09
01 f=1.01
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=
E.n)
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- f=4.00
- f=1.41
+ f=1.09

f=1.01
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Figure 4.5: Projections of the three-dimensional histogram H(E,W,n) on the two
dimensional spaces spanned by two of the three independent variables E ,W ,f. (a)

H(E,W) projection, (b) H(E,n) projection, (c) H(W,n) projection.
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As soon as the first set of simulation runs is completed, a reasonably flat histogram is
obtained. In that histogram, microstates (i.e., transformation matrices M) are sampled
such that the corresponding combinations of E,W ,n parameters are equally probable.
This sampling can easily be manipulated to yield higher probability for certain
combinations of E,W ,f. In other words, one can transform the flat histogram to make
certain microstates more probable. The microstates we wish to favor are those which
are characterized by small lumping error E, small long-time dynamics parameter W

and as small as possible lumped system dimensionality f.

To accomplish this, an additional MC run is implemented, using as initial density of
states the one obtained from the last Wang-Landau MC run of the previous set of
simulations. The acceptance criterion in this run is designed such that microstates with
small values of the lumping criteria become more probable. This is realized by
inserting an appropriate weighting function h(X) which decays with E,W ,A and thus
tilts the flat histogram of the Wang-Landau method to one in which microstates with
small lumping criteria are visited more frequently. The acceptance criterion for this

MC run is now the following:

h(X
P (M, > M,) = min| 9 1(X:) s (4.23)
g(xz) h(xl) aforw

In Eq. (4.23) g(X) is known and equal to the density of states resulting from the first
set of simulations. The functional form of h(X) is arbitrarily chosen. The only

constraint it should fulfill is that it should tilt the flat probability distribution (Fig. 4.4)

such that microstates characterized by small values of lumping criteria become more

probable. In our work the adopted functional form of h(X) is the following:
h(X)=h(E.W,A)=a-E + b-W + c-A + d (4.24)

where the parameters a,b,c and d are constants defined before the simulation.
Parameters a,b,c should have a negative sign, so that the resulting histogram in E ,W

,A has a negative slope. Parameter d should be positive and sufficiently large to
ensure nonnegativity of h(X) over the considered E,W ,A domain; it corresponds to

the intercept of the histogram at the origin of X-space. Results from this additional MC
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simulation run are shown in Figure 4.6. The values of the above parameters used in our

simulations are a=-2x10"°ps, b= —4x10°ps, c=-7x10° and d =107.
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Figure 4.6: Schematic representation of the histogram of sampled M-microstates in X-
space, projected onto the E (a), W (b), and A (c) axes. In this figure is being
represented the last run ( f =1.01, cf. Fig. 4.4) of the first set (a-set) of Wang-Landau

runs, as well as the additional MC run constituting the second set (b-set) of simulation

runs of the lumping methodology.

Figure 4.6 shows that, after the additional MC simulation of the b-set of runs,

microstates (i.e. M -matrices) with small values of all three lumping criteria become

more probable and thus easier to select via realization of the lumping algorithm.

Among all M matrices sampled by the MC-algorithm one has to be chosen to perform

lumping. This matrix corresponds to the one that exhibits the smallest value of a

defined objective function z(X). In our work we define this function as follows:
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z(h,M) =z(E,W,A) =z,E+ W + z,A (4.25)

The n value and M matrix corresponding to the minimum value of this objective

function is the most appropriate to perform lumping. Parameters z,, z,,z, weight our

need to approach exact lumping (minimal lumping error E ), to describe long-time
dynamics (small W) and to keep the dimensionality of the lumped system as small as

possible (n ). Hence, z, should have the biggest influence on the value of the
objective function z(X), whereas z, should follow, letting z, have the smallest
influence on z(X). For the needs of our work the parameters z,, z,,z, have the values

listed in Table 4.2:

Table 4.2: Values of the parameters of the objective function z(X) (Eq. (4.27)),

specifying the importance of each one of the three lumping criteria for the final result.

2, [ps] Z, [ps] z,[]

0.5 0.3 0.2

From the above, one can conclude that the developed algorithm performs a stochastic,

discrete optimization in respect to the three lumping criteria E,W and n . The

“continuum” alternative of this formulation would be m'iwn (zzW+ 2, E+ 23 n), with E
n,

given by Egs. (4.14) and (4.9-4.12), W given by Egs. (4.16) and (4.10-4.12), and z;, 2,
z3 being pre-defined constants. The objective function is minimized with respect to the
dimensionality n of the lumped system and with respect to the structure of the M
matrix, which can only be defined once fi has a specific value. Given that K and,
therefore, A are fixed, the objective function z;W + z, E + z3 fi is indeed a function of
A and M. The minimization has to take place subject to the constraints on the
structure of M spelt out in Section 4.2.1. One has to determine an optimal value for the
integer N and also decide which elements of M should be ones, subject to the

constraints on M.
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4.4 Implementation of the lumping algorithm

The methodology was initially tested on small, predefined networks of chemical
reactions ®%” % %1 for which the optimum lumping result, with respect to specific
factors, is known. The results obtained from lumping were in full agreement with those
reported in the literature. Afterwards, the lumping algorithm was applied to a much
bigger network of transitions of the glassy binary Lennard-Jones system described in
Section 3.4. The network consists of 1503 states (i.e. basins of the potential energy
hypersurface in configuration space, each basin constructed around an individual
inherent structure, i.e. local minimum of the potential energy with respect to all
configurational degrees of freedom). These states have been found to belong to four
different metabasins of the potential energy landscape *°. The algorithm produced the
best, with respect to our specific criteria, lumped system size i and transformation
matrix M which lumps the initial system to an equivalent one of lower dimensionality,
taking into account the dynamics at long times. The ability of the lumped system to
fully describe the dynamical behavior of the initial system at long time scales was
confirmed by applying the lumping methodology in two different ways. More
specifically, Fig. 4.7 shows the two different routes followed in order to approach the

same point which describes the lumped system at time t (point Q):

A
ﬂ time evolution PW) _ K-P(t)
0 ot T
A -space I
|
|
lumping | lumping
|
|
~ e \ 4
A -space - >
R time evolution PO _ K-P(t) Q
ot
time

Figure 4.7: Schematic representation of two different routes followed to lump the
initial system at time 0 (point O) into a system of smaller dimensionality at time t
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(point Q). The system of smaller dimensionality should be able to describe the
dynamics of the original system at long times. The two displayed routes differ in the
order in which time evolution and lumping are realized. In route O-T-Q we first let the
system evolve in time (OT) and then we lump (TQ), while in route O-R-Q we first

lump and then let the lumped system evolve in time.

In Fig. 4.7 the vertical axis gives a measure of the dimensionality of the system,
whereas the horizontal axis represents time evolution, obtained through analytical

solution of the master equation, Eq. (3.1).

The state space of the original system is called the A -space and has, for our system, a

dimensionality n=1503; the state space after lumping is called A-space and has a

dimensionality N=600. If our methodology is correct, the probability distribution
among lumped states at Q obtained via route O-T-Q and via route O-R-Q should be

the same.

Instead of comparing the two aforementioned routes, one can alternatively follow two
different routes, e.g. routes OT and ORQT. The comparison this time would take place
at point T. Along route OT we let the original system evolve in time, whereas along
route ORQT the system is lumped, let to evolve in time, and then returned to its
original dimensionality. Matrix M is responsible for lumping (sub-path OR) and maps

the A-space into the A-space. In order to implement route QT we need to
redistribute the occupancy probabilities of lumped states among the original states
according to the requirements of local equilibrium within the lumped states. There
exists a reverse mapping procedure %® which makes use of matrix A-MT A, where,
as mentioned in Section 4.2.3, A = diag(P1(), ..., Pn(0)) and A=M-A-M" [Eq.
(4.11)]. This matrix will map the A-space back into the A-space. The use of both

matrices M and A-MT-A, ie. the premultiplication by matrix A-MT-A™-M,

66b

creates an endomorphism " of the A -space.
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4.4.1 Time evolution of the system

Consider a system consisting of n states. For this system the square matrix K, whose
elements are formed from the rate constants for transitions from state to state, is
known. It is preferable to work with the symmetric rate constant matrix %2 K,. The
symmetrization of the rate constant matrix K is straightforward when the equilibrium
vector P* = P(w0) for this matrix is known. The equilibrium vector is calculated with
help of an iterative process [Eq. (4.13)]. If the equilibrium vector is known, the

symmetric matrix K, can be calculated as a weighted — by the equilibrium vector —
average of the two rate constants for the forward and backward transition:
e e }/ e el }/
(PP b (P )

sij 2 — (4-26)

Note that the two terms being averaged in Eg. (4.26) should be equal, if the condition
of microscopic reversibility k; - B () =k; -P;(e0) is strictly obeyed. With the

symmetric rate constant matrix K, known, the time evolution of the system is

calculated by solving the corresponding master equation (see also Eq. (3.1)):

PO _ kB (4.27)
ot
with the reduced probabilities being defined as P.(t) = P (t)/ /P, () (see Ref. 29b). The

diagonalization of the symmetric matrix K lets this matrix to be expressed as a

product of three different matrices:

K,=V-D-V! (4.28)

where matrix V is of dimension nxn and has as columns the eigenvectors of matrix

K., whereas matrix D is a nxn diagonal matrix with diagonal elements the (non-
positive) eigenvalues of matrix K, appearing in the same sequence as the eigenvectors

in matrix V. According to the above, the solution of Eq. (4.27) is written as:

P(t) = P(0)-exp(K, -t) = P(0)-exp[(V-D-V™)-t] (4.29)
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The exponential of a matrix can be calculated as follows:

exp(K,-t) = zi K,-t)" .
x| 1 -1

x=0 = exp(K,-t) = Z—I (V-D-V7)*-t* (4.30)
K,=V-D-V* w0 X:
However:
(V-D-VHY*=(V-D* V™) (4.31)
and hence Eq. (4.30) gives:
exp(K, ) =3 2. (V-D* - V).t (4.32)

x=0 Xl

Matrix V and therefore matrix V™' do not depend on x. Hence Eq. (4.32) can be

written as:

®© 1 )
exp(K,t)=V-> = (D-t)*-V
|
w0 X° — exp(K,-t) = V-exp(D-t)- V" (4.33)

ii (D-t)* =exp(D-t)
o X!

According to Eq. (4.33), Eq. (4.29) gives:

P(t)=P(0)-V-exp(D-t)-V™* (4.34)

Eq. (4.34) describes the time evolution of the probability of the various states adopted
by the system. However, Eq. (4.34) gives rise to a serious computational problem.
Specifically, the inverse of the eigenvector matrix V™ is — for large systems — very
difficult to calculate correctly. This justifies our choice to work with the symmetric
rate constant matrix K., instead of K. For a real, symmetric matrix, the matrix of
eigenvectors resulting by its diagonalization is orthogonal ***. Therefore, matrix is V

is orthogonal. An important property is that the inverse of an orthogonal matrix is

equal to its transpose, i.e.:

VizVT (4.35)
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This makes the calculation of V™ trivial. Eq. (4.34) takes the final form:

P(t) = P(0)- V-exp(D-t)- V' (4.36)

It is worth mentioning that the calculation of the exponential of the matrix of
eigenvalues D is straightforward if the following property, which applies for diagonal

matrices, is taken into consideration:

et 0 0 0
0 e 0 0

exp(Dt)=|0 0 > 0 (4.37)
0 0 0 .. e>

In equation (4.36) all parameters are either known, or directly calculable. With the help

of equation (4.37) the reduced probabilities I5(t) are calculated for different,
successive times t. With the help of equation P (t) = P(t)//P () it is straightforward

to calculate the corresponding probability distribution P(t) among all states for the

initial system for different times t. The methodology as described above refers to the
initial, non-lumped system and describes the route OT in Fig. 4.7. In a similar way it is
applied to the lumped system, a process which corresponds to route RQ in Fig. 4.7.
Here the role of K is played by the rate matrix of the lumped system K , which is
known. This matrix results from the rate constant matrix of the initial system K

through lumping.

4.4.2 Lumping

Unlike the calculation of the time evolution of the system, for which the structure is
similar for both routes of Fig. 4.7 (OT and RQ), the process of lumping is applied
differently for each of the two routes of Fig. 4.7 (OR and TQ). Specifically, for the
route OTQ of Fig. 4.7, lumping is implemented upon the already calculated probability

distribution of the initial system P(t):

P(t)=M-P(t) (4.38)
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Here the probability density P(t) is calculated during the previous step of time

evolution of the original system (path OT), as described in Section 4.4.1. Matrix M
has to be known for the implementation of lumping, Eq. (4.38). For the route ORQ of
Fig. 4.7, lumping takes place first (path OR). The initial rate constant matrix K is

lumped to the corresponding matrix of the lumped system K:
}:K:M-K-A-MT-(M-A-MT)l (4.39)

With the known matrix M, the diagonal matrix A, whose diagonal elements are the

elements of the equilibrium vector of matrix K, is calculated via Eq. (4.13). As soon

as matrix K is calculated, the time evolution of the lumped system is followed as
described in Section 4.4.1.

After executing all of the above, the time evolution of the probability distribution for
every lumped state is obtained for both routes (OT-TQ and OR-RQ in Fig. 4.7). The

result of this calculation is shown in Fig. 4.8:
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Figure 4.8: Representation of the probability distribution P;(t) as a function of time t
for every cluster i of the lumped system (i=1, 2,..., A with A=600), computed along
(@) path OTQ in Fig. 4.7 (evolving and then lumping) and (b) detail of the same path
OTQ, focusing on low probability values (c) path ORQ (lumping and then evolving),
and (d) detail of the same path ORQ, focusing on low probability values. Each colored

line corresponds to a different cluster (lumped state) in all plots.

In the calculation of Fig. 4.8 we give an arbitrarily chosen cluster of states an initial
occupancy probability of 1 at t=0, while all other clusters are empty (delta function
initial condition). Thereafter we let the system evolve in time and monitor the
probability distribution among lumped states. A direct comparison between Figs. 4.8(a)
and 4.8(c) (or, in more detail, Figs. 4.8(b) and 4.8(d)) shows that the two different
routes to calculate the probability distribution (Fig. 4.7) converge to similar results at
all time scales. This becomes evident in Fig. 4.9(a), where the absolute difference
between Fig. 4.8(a) and 4.8(c) is plotted. Figs. 4.8(a) and 4.8(c) do not make evident
the details of the evolution over intermediate times. In fact, one has the impression

that, for intermediate times, the probability distribution decays to zero for all clusters.
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This, of course, cannot be true, since the probability plotted in Fig. 4.8 is normalized
and hence the total probability equals unity at all times. In fact, Figs. 4.8(b) and 4.8(d)
show that, at intermediate times, every cluster has a small, non-zero probability. The
initial, dominant probability which a cluster had at small times is being distributed via
infrequent transitions to every other cluster of the system, and this “diffusive” process
remains active over a wide range of time scales. For long times, a dominant cluster (the
same one between routes OTQ and ORQ of Fig.4.7) absorbs all the probability, while
the occupancy probability of all the other clusters decays to practically zero. Of course,

at long times compared to the negative inverse of the largest nonzero eigenvalue of K,
one expects the probability of every cluster to become constant and equal to the

equilibrium probability for the considered set of states.
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Figure 4.9: Absolute difference of the time-dependent probabilities for every cluster of
the lumped system between routes OTQ and ORQ of Fig. 4.7 for (a) all time scales and
(b) long time scales. Each colored line corresponds to a different cluster (lumped state)

in all plots.

Fig. 4.9(b) shows that there is no important difference introduced by lumping with
respect to the system’s long-time dynamics. This means that the two routes depicted in
Fig. 4.7 converge to the same dynamical result. This provides a strong indication that
the lumping algorithm has successfully calculated the appropriate transformation

matrix M to perform lumping. This conclusion is strengthened by the similarity

between the histogram of the logarithm of the negative inverse eigenvalues - % for

both the initial (matrix K) and the lumped (matrix K) system (Fig. 4.10). According
to Fig. 4.10, the dynamical behavior for both initial and lumped system is similar,
since the distributions of the highest nonzero eigenvalues for these two systems are

nearly identical. This is clear evidence that the lumped system, although of smaller
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dimensionality, is in a position to describe well the long-time dynamics of the original

system.
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Figure 4.10: Histogram of the negative inverse eigenvalues for (a) the initial system
and (b) the lumped system. The abscissa represents the characteristic times, in seconds,
calculated by inverting the negative eigenvalues of the two systems. The ordinate
describes the probability density of the corresponding eigenvalues. There are n = 1503

eigenvalues in (a) and A=600 eigenvalues in (b).

Fig. 4.10 clearly shows the wide spectrum of characteristic times which governs

dynamics in our model glassy system. There are characteristic times which differ from
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each other by more than twenty orders of magnitude. The longest times have been
accessed thanks to the specially designed infrequent event techniques described in Ref.
*® By comparing Fig. 4.10(a) and (b) we see that the very tails of the two distributions
are identical. This can also be seen in Table 4.3, which compares the 10 largest

nonzero eigenvalues of the two systems:

Table 4.3: Comparison of the ten largest nonzero eigenvalues between the initial and
the lumped system.

Initial system A, [s™] Lumped system A, [s™]
-1.396x10° -1.399x10°®
-7.812x10” -7.724x107
-0.0001597 -0.0001613

-0.01076 -0.01076
-0.02142 -0.02120
-0.1136 -0.1138
-0.8497 -0.8557
-0.9960 -1.004
-65.35 -144.65
-144.6 -252.2

The remaining 590 eigenvalues of K are supposed to mimic what the remaining 1493
eigenvalues of K do. A quantitative comparison is difficult, but the overall shapes of
the distributions of eigenvalues shown in Figure 4.10 compare favorably between
original and lumped descriptions. Important differences between the distributions of

eigenvalues of Fig. 4.10 arise in the region 10™° to 107 s. This can also be seen in
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Figures 4.8(b) and 4.8(d), and also in Fig. 4.9(a), where the absolute difference
between the time evolutions of the original and the lumped systems is plotted. We see
that the biggest differences appear in this region of time. This is logical, since lumping
always causes a certain information loss. The biggest gain of this methodology is that
we manage to constrain this information loss in a time-region which is not important to
long-time dynamics. The developed methodology provides a way to accurately

reproduce long-time dynamics of the initial system.

4.5 Conclusions

In this Chapter we have described a lumping algorithm for dynamical systems that are
capable of adopting discrete states. The evolution of the system is assumed to occur
through elementary transitions between the states obeying a first order kinetic scheme,
governed by rate constants that are known, e.g., from atomic-level infrequent event
analysis. Through lumping, the network of states and the corresponding master
equation are mapped onto a network of clusters and a master equation of reduced
dimensionality. Each cluster consists of a set of states of the original system among
which transitions are relatively facile, such that local equilibration within the cluster is
achieved over times short relative to the escape time from the cluster. A basic

requirement is that original and lumped systems exhibit similar long-time dynamics.

Our algorithm is fully automated, requiring as sole input the rate constant matrix of the
original system. It approximates the best lumping scheme with respect to three
different lumping criteria: the lumping error E, which indicates how close to exact
lumpability the implemented lumping is; the long-time dynamics parameter W , which
places emphasis on the long-time dynamics of the lumped system; and the size
(number of clusters) of the lumped system n. The dimensionality of the network of
lumped states can be a priori controlled. Conventional molecular simulation
techniques are very limited in their ability to reach realistic experimental time scales
and therefore record corresponding structural relaxation phenomena. In contrast to
these, the lumping scheme proposed here enables monitoring long-time relaxation
phenomena of glassy materials by tracking the dynamical response of a network of

substantially smaller dimensionality than the full network of basins. This rigorous
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treatment of the lumping problem differentiates our work from previous lumping work

on energy landscapes.

The transformation matrix M implementing the lumping is optimized through a
stochastic scheme. This scheme is based on two successive sets of Monte Carlo (MC)
simulations inspired by the Wang-Landau density of states algorithm. The first set of
MC simulations aims at determining the density of M-“microstates” in the three-
dimensional space spanned by E, W, and . The second set of MC simulations utilizes
this density of microstates to induce preferential sampling of M that yield low values
of E, W, and n.

After verifying the developed algorithm for a number of chemical reaction networks of
small dimensionality found in the literature, for which the M-matrix for exact lumping
is known, we have implemented our lumping methodology to a glassy binary Lennard-

Jones system of 641 particles at temperature T =0.308¢,, / k; =37K and molecular
density 1.1908 o, =3.03x10% m™, slightly below its glass temperature T, =38.4K

and about 15K below its critical mode-coupling temperature T, =52.2 K. A network

of n=1503 states was considered for this system, each state corresponding to a basin
surrounding a local minimum of the potential energy (inherent structure) in 1920-
dimensional configuration space. The connectivity and rate constants between states in
this network have been determined through atomistic infrequent-event analysis, hence

the rate constant matrix of the original system is known.

The lumped system obtained through application of our method is of smaller
dimensionality, n=600, and could be further lumped to an even smaller one by
attributing different weights to the three lumping criteria. By monitoring the temporal
evolution of the probability of occupancy for all states in the lumped system, we
concluded that the calculated transformation matrix M is in a position to capture the
long-time dynamics of the original system very well. Evolving the dynamics of the
lumped system yielded a very similar distribution among lumped states as evolving the
dynamics of the original system followed by lumping. The importance of the algorithm
developed lies in the fact that every network of states, in which evolution is described
through a master equation with rate constants conforming to first-order kinetics, as one

typically obtains from detailed infrequent event analysis of interstate transitions, can be
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reduced to an equivalent network of considerably smaller dimensionality, which is still
capable of describing the long-time dynamics of the initial system. Furthermore, as
pointed out in Section 4.4, the evolution of the lumped system can be mapped back to

the original system description, if desired.
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Temporal evolution on the potential energy landscape

In the previous chapter a self-consistent algorithm has been presented, thoroughly
tested and applied for coarse-graining the dynamics of a system evolving in time
through a succession of infrequent transitions in configuration space. The system starts
off within a confined region of phase space (e.g., a basin of the PEL in which it has
been trapped by glass formation). As time elapses, its probability distribution among
basins of the PEL expands according to rate constants for interbasin transitions
computed from detailed atomistic information. At long times, neighboring basins
communicating through relatively fast transitions are lumped into metabasins, allowing
a drastic reduction in the number of states that need to be considered. One way to
graphically represent the PEL has been introduced in Figure 3.2, but is clearly not

applicable for systems whose configuration space has a dimensionality higher than 2.

In this chapter, an alternative graphical representation of the PEL is developed and
applied to a binary Lennard-Jones glassy system, providing insight into the unique
topology of the system’s potential energy hypersurface. With the help of this
representation one is able to monitor the different explored basins of the PEL, as well
as how — and mainly when — subsets of basins communicate with each other via
transitions in such a way that details of the prior temporal history have been erased,
i.e., local equilibration between the basins in each subset has been achieved and the
hopping process can be safely enough assumed to obey Poisson statistics. In this way,
apart from detailed information about the structure of the PEL already provided by

conventional PEL representations such as the one shown in Figure 3.2, the system’s
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temporal evolution on the PEL is described. In order to gather all necessary
information about the identities of two or more basins that are connected with each
other, we consider two different approaches. The first one is based on consideration of
the time needed for two basins to mutually equilibrate their populations according to
the transition rate between them, in the absence of any effect induced by the rest of the
landscape. The second approach is based on an analytical solution of the master
equation (as described through Egs. (4.27) to (4.37) for the lumped system) that
explicitly takes into account the entire explored landscape. We see that both
approaches lead to the same result concerning the topology of the PEL and dynamical
evolution on it. Following this approach for graphically representing the PEL, a
“temporal disconnectivity graph” is introduced to represent a lumped system stemming
from the initial one. The lumped system is obtained via the specially designed
algorithm described in Chapter 4. The temporal disconnectivity graph provides useful
information about both the lumped and the initial systems, including the definition of
“metabasins” as collections of basins that communicate with each other via transitions
that are fast relative to the observation time. Finally, the two examined approaches are
compared to an “on the fly” molecular dynamics-based algorithm for the definition of

metabasins on the PEL °°.

5.1 Introduction

A better understanding of the structural details of the PEL of molecular systems is of
great importance, not only because the PEL is undeniably connected to the calculation
of both thermodynamic and dynamical behavior *®, but principally because a visual
representation of the topology and geometry of the PEL can provide insight into
physical phenomena that shape dynamical and equilibrium properties ®. The
emergence of seminal ideas '°” concerning the study of the PEL and the possibility of

using its characteristics to extract conclusions about physical properties >% 1%

, along
with the pioneering work of Stillinger and Weber on describing, using molecular
dynamics (MD) simulation with the help of a mapping procedure, the multiminimum
PEL of large systems >®*, set the stage for a wide range of applications in a large

variety of systems > 1%,
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The PEL is a multi-dimensional surface, on which the dependence of the system’s
potential energy on the coordinates of the atoms or molecules is depicted ® .
Because of the complexity of this hypersurface, associated with the large number of
degrees of freedom it entails, some basic characteristics are used in order to describe it.
The most commonly used notions are basins, potential energy minima, and saddle
points, through which minima are connected. These terms will be used throughout this

chapter and have the physical meaning given to them in chapter 3

The exploration of an ever expanding network of basins (or inherent structures)
communicating via transitions provides a “mapping” of the PEL. For most materials or
biomolecular systems, this exploration out to experimentally relevant times is a
formidable problem. Tsalikis et al. ®® have calculated the rate constants of transitions
sampled via their temperature accelerated dynamics/histogram reweighting scheme in a
Lennard-Jones mixture. They have correlated these rate constants with the distance
traversed in configuration space and with the cooperativity of the transitions.
Following this methodology, the rate constant matrix for the transitions between the
explored ISs can be calculated. The connectivity between explored 1Ss and the rate
constants of transitions between them suffice for a description of the temporal
evolution of the system towards equilibrium by use of the master equation approach
1% This description is greatly helped by the fact that infrequent transitions in the

network of basins constitute a Poisson process.

Via application of the DIMW methodology (a process which will be thoroughly

52

described in Chapter 6), Boulougouris and Theodorou used multidimensional

transition state theory within the harmonic approximation combined with the dimer

d & in order to evaluate rate constants for transitions out of

saddle-point search metho
ISs of a glassy system being explored on the fly. As already mentioned in Section 3.3,
the rugged potential energy landscape of glass-forming systems gives rise to a very
broad distribution of characteristic times for elementary transitions and a complex
connectivity among basins. This broad distribution of characteristic times is intimately
related to the broad distribution of barrier heights observed in PELs of glassy
materials. This observation makes clear that it is impossible to build a complete map of
all basins and transitions between them in the rugged potential energy landscape of a

glassy system even of modest size n.
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A way out of this difficulty is provided by the fact that, when one studies structural
relaxation, one typically starts from an initial distribution among states that is highly
localized (e.g. from a single basin in the potential energy landscape, where the system
was trapped via the glass formation history that was followed to obtain it). The region
of configuration space where the system resides is thus initially very confined, and
expands gradually as transitions between basins take place. Despite the facilitation
provided by the above methodology, an additional difficulty with PEL-exploring
approaches may arise. In particular, the number n of states to be tracked becomes
prohibitively large at long times. A way to tackle this problem is to group, or “lump,”
states communicating via transitions that are fast in relation to the observation time
into single clusters of states. If performed judiciously, this lumping does not result in
loss of essential information, as evidently shown in Chapter 4. At long observation
times, the system distributes itself among fast-communicating states according to the
requirements of a restricted equilibrium, so clusters of such states behave as single

“meta-states,” for all practical purposes.

Given the complexity and high dimensionality of the PEL, simplified graphical
representations of it have proven to be a constructive tool. A major step in this

105b

direction, inspired by graph theory, was undertaken by Becker and Karplus =", who

introduced the disconnectivity graph. This graph has been developed and applied
extensively to a wide variety of problems by Wales and collaborators %°¢ & 1% The
general shape and form of disconnectivity graphs have been reviewed % 10 111,
Nevertheless, it is wise to address here some basic characteristics of this kind of

graphs. In Figure 5.1 the basic form of a disconnectivity graph is represented.

The interpretation of a disconnectivity graph is the following: All branches of the
“inverted tree” in a disconnectivity graph correspond to kinetic transitions and
terminate at local minima of the energy (inherent structure) described in Figure 1 as the

lowest lying open symbols (at the level E, or T,). Relative energies (or temperature
levels) can be read off on the vertical axis. All the tips of branches above the first level
(E>E, or T>T,) of the “inverted tree” describe sets of basins, grouped with each

other based on the relatively fast transitions between them. The energy (or
temperature) level shown in the graph, describing the energy level of the entire group
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of basins, corresponds to the lowest lying saddle point that must be traversed to

establish communication among all basins being grouped.

1

EorT EsorTs

—O

states, basins,
metabasins

Figure 5.1: Schematic representation of a typical disconnectivity graph. The y-axis can
represent either energy or temperature levels. The x-axis describes the several fast
communicating basins connected by low barriers grouped into metabasins of a higher
energy or temperature level, which in turn merge into meta-metabasins at an even

higher energy or temperature level.

In Figure 5.1, for clarity, nodes in each generation are depicted as belonging to the
same energy level (nodes lying on the same horizontal line). This is, of course, a
simplification, since energy levels of different basins and of the saddle points between
them are generally different. In respect to the participating basins (x-axis), each node
depicts a group of relatively fast- communicating basins. In other words, a node (e.g. at

energy level E,) created from two nodes of a lower energy level (e.g. E,) corresponds

to a meta-structure (metabasin) containing all basins of the two united nodes. In this
way, at every energy level (except the lowest one) one has “metabasins” consisting of
basins. In turn, metabasins are connected to form meta-metabasins and so on. From

108a

the “willow tree” appearance of the graph it is clear if there are sets of basins

(“metabasins”) communicating through relatively fast transitions, sets of metabasins
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communicating through slower transitions etc., i.e., the potential energy landscape

exhibits a hierarchical structure.

In order to represent a certain PEL, knowledge of a certain network of states (ISs,

basins or metabasins) is a prerequisite.

In the present chapter we attempt a synthesis between the master equation solution-
based description of the dynamics of systems evolving on rugged potential energy
hypersurfaces, lumping, the definition of metabasins, and disconnectivity graphs. We
develop and present a “temporal” disconnectivity graph, in which rate constant-based
local equilibration times between “states” (basins and metabasins) are used in place of
energies. We examine several ways in which these times can be computed, each way
entailing a different computational cost, and find internal consistency among them.
Furthermore, we will show that the grouping into metabasins achieved by the
disconnectivity graph presented here arises naturally from the systematic procedure of
lumping mentioned in Chapter 4. The system whose PEL we explore is a binary
Lennard-Jones mixture extensively described in Section 3.4 of this work that has
constituted the “drosophila” of computational studies of glass-forming systems. All
results presented in this chapter have been obtained by post-processing the network of
states acquired through temperature accelerated dynamics/histogram reweighting by
Tsalikis et al. ®2.

Paragraph 5.2 of this chapter reviews some theoretical concepts associated with the
master equation and its solution and explains our computational methodology. Some
computational details are elaborated in Section 5.3. Results are presented, validated

and discussed in Section 5.4 and conclusions summarized in Section 5.5.

5.2 Graphical representation of the PEL: A new approach

As already mentioned in Section 3.1, the master equation is a system of differential
equations describing the temporal evolution of the probabilities of occupying states in

a Markovian system. The time-dependent observed value of any property 4 that is

only a function of the state can be expressed as an ensemble average < ﬂ> using the

solution of that differential equation under given initial conditions on the state
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occupancy probabilities. According to Egs. (3.1) and (3.2), the master equation can be

written in terms of the conditional probabilities P,_g; for the system to be in a

— 7=t,]j
certain state (in our case, basin or metabasin) j at time r=t, provided it was in a
different state i at time 7 =0. In terms of these probabilities and the above formalism a

more general form of master equation occurs:

apz':O,' — 7=t,]j
I—ttj - Z PT:O,i — r=t,m’ km—>j - PT:O,i - 7=t,j Z kj_’m (5.1)

0 m# j m# j

The rate constant knHj is the probability per unit time that a transition from state m to

state j will occur. This is independent of time by virtue of the time scale separation that
makes exiting state m an infrequent event and imparts a Markovian character to the

process. Summing over i on both sides of Eq. (5.1), one obtains a simpler master

for the system to be in

7=0,i > 7=t,]j

equation in terms of the probabilities Pj(t)= ZP
i

state j at time t, regardless of its original state:

oP.
E’:ZPm-km_”- =P Kim (5.2)

ms j ms j

or, in matrix form,

oP
—=K-P (5.3)
ot

where K is the rate constant matrix. Egs. (5.2) and (5.3) are exactly identical to Egs.
(3.1) and (3.2) correspondingly. The above master equation is solved in our approach
for a given set of initial conditions for the state occupancy probabilities leading to all

results presented in this work.

There are several ways to solve Eq. (5.2) for given initial probability distribution P(0)
provided that a) a network of states (basins or ISs of the PEL) for the given system has
been explored, i.e., a network is known, b) all relevant transitions connecting the
explored states with each other have been located, that is the connectivity between

states has been defined, and c) the rate constant for every transition between connected
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states is known. A numerical solution of Eq. (5.2) is possible ¢, however subject to
errors. An analytical solution of the master equation is, on the other hand, also feasible
as demonstrated in paragraph 4.4.1 of this work and can lead to accurate results. In
order to proceed with the analytical solution of Eq. (5.2), the rate constant matrix K

for all transitions, as well as a given initial probability vector P(0) should be known.
The rate constant matrix K is created based on the work of Tsalikis et al. 2 and the
master equation is then solved for a given set of arbitrarily chosen initial conditions
P(0). Because, by construction, our results do not have detailed balance built-in and
numerical noise is expected to lead to deviations from it, we have imposed the detailed

balance condition in the solution of the master equation.

According to Eq. (4.34), the analytical solution of the master equation provides the
probability distribution of all involved states at all times:

P(t)=P(0)-V-exp(D-1)-V*! (5.4)

where D is a diagonal matrix having as non-zero elements the eigenvalues of the

symmetrized rate constant matrix K and V describes the matrix of eigenvectors of

K.

As described in paragraph 4.4.1 Eq. (5.4) refers to the symmetrized probability vector
P(t) which can be easily transformed to the conventional probability vector P(t)

described in Egs. (5.1) to (5.3) according to the linear transformation elaborated by

102

Boulougouris and Theodorou —“. One reason for preferring to work with the

symmetrized probability vector P(t) instead of the conventional one P(t) is that the

corresponding symmetrized rate constant matrix K exhibits a better behavior during
diagonalization. Secondly and more importantly, is that the Euclidean space spanned
by the eigenvectors of the transformed matrix is the same as the one in which the time-
dependent ensemble averaged value of any observable 4 evolves, as shown by the
EROPHILE representation %2,

One should note that deterministic graph transformation procedures have been

developed in the past 108c, 112

, Which allow large databases to be analyzed without loss
of precision. These algorithms could potentially be — depending on the system —

significantly faster than direct diagonalization of the rate constant matrix and therefore
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overcome problems that may arise in networks of higher dimensionality than the ones
studied here. Of course, at long times the system is expected to adopt its equilibrium

probability distribution among states, P(o0), which is the steady-state solution of the

master equation for the considered set of states.

Having calculated, by the analytical solution of the master equation, the probability
distribution for every state of the system P/(t) at all times t, the temporal
disconnectivity graph can be created. In particular, if the occupancy probability P, (t)
for every state i is known, then the necessary time for internal equilibration between
two given states i and j can be found simply by examining when the following
relation holds:

R _ R(0)
P; (1) P; (o0)

(5.5)

Eq. (5.5) ensures that, from a dynamical point of view, states (minima, basins,

metabasins) i and j behave in the same manner. By checking the validity of Eq. (5.5)
for states i and j one is able to calculate the time which signifies that, from that point

on, internal equilibration between these states holds. From that time on these states,
being in pairwise equilibrium can be grouped into a cluster of states (“meta-state™). By
checking the validity of Eq. (5.5) for every pair of states of the system one is able to
calculate how basins merge to metabasins, metabasins to meta-metabasins and so on.
This knowledge provides, beyond any doubt, a concrete description of the temporal
evolution of connectivity and thermodynamic irreversibility as the system evolves on
its PEL, since, once a set of states have reached local equilibration, information on the
prior state of the system has been lost and the free energy of the system has been

reduced 2,

One practical question is how one decides that Eq. (5.5) is satisfied. Although there
are concrete and rigorous criteria that examine the equality of the two parts of Eq. (5.5)
108 i this work we consider the two sides of Eq. (5.5) to be equal when the absolute
difference between them becomes smaller than a certain tolerance ¢. The adopted
tolerance is set to be close to the arithmetic error incurred in calculations with double

precision real numbers, i.e., &= 1x10™",
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The heart of the proposed temporal disconnectivity graph lies in the creation of a graph
that analyzes the progress of local equilibration as a function of the observation time,

660 transition

which of course is equivalent to the condition of perfectly lumpable
matrices. In Figure 5.2(a) we summarize all the necessary steps for the extraction of

the temporal disconnectivity graph according to the master-equation-based approach.

The calculation of the probability distribution by analytically solving Eq. (5.3) is one
way to create the temporal disconnectivity graph. In the context of this work we
examine a second, alternative way to obtain such a temporal disconnectivity graph,
however this time without having to solve the corresponding master equation. This
alternative approach is based on the assumption that, for any pair of connected states,
the presence of any transition other than the forward and backward transitions between
the two states does not affect their mutual local equilibration. This method again
requires as input the three basic parameters describing a system as they have been
stated above, that is the network (set of potential energy minima), connectivity
(transitions between minima) and rates (the rate constants characterizing the transitions

between minima).
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Figure 5.2: Schematic representation of the two implemented approaches for the
creation of the temporal disconnectivity graph based on (a) the analytical solution of
the master-equation under a given set of initial conditions and (b) the pair-connectivity

assumption.



140 Chapter 5

The idea is based on the hypothesis that the time needed for local equilibration

between two given states i and j depends only on the two considered states. Thus,

according to this approach, pairs of states are formed until every state of the system has
been taken into consideration. It is relatively easy to prove that, for a pair of states, the

non-zero eigenvalue of the two-state system will be equal to:

A =k, ki, (5.6)

1) 1—>] 1!

The contribution to the state probabilities corresponding to this eigenvalue behaves

proportionally to the following quantity:

Xijoce ™ (5.7)

This means that for times roughly t>%_ the corresponding contribution to the
]

probabilities Xj; will vanish, since it will be proportional to e°~248-107, and the

system of two states will adopt its equilibrium probability distribution, as described by
the eigenvector corresponding to the zero eigenvalue. Based on this assumption about
the pair connectivity of all states, one can calculate the necessary time t after which
the two investigated states are in local equilibrium. Thus, in order to proceed with this
algorithm, all states of the system have to be considered in pairs, so that the above

described approach is valid. If two states i and j are found to be in equilibrium at

time t , a cluster containing those two states is formed. If a third state m is then found

to be in equilibrium with one of the previous states (say j) , then it will also be in

equilibrium with state i (according to the pair connectivity assumption), with which

state j was found to be in local equilibrium in the first place. This means that now a
new cluster of states has to be formed containing all three individual states i, j and m.
If, at a later time t, >t , another state g is found to be in local equilibrium with state
m, then state q will be assumed to be in local equilibrium with all states with which
state. m was in equilibrium by that time (in our example states i and j).
Consequently, a new cluster will be build at time t, containing all four states (i, j,m
and g) which are in local equilibrium with each other. The flow chart followed to

create the temporal disconnectivity graph according to the above described assumption
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is depicted in Figure 5.2(b). Note that the pair connectivity assumption used to create
such temporal disconnectivity graphs is similar to the energy criteria in respect to the
height of a barrier in the original disconnectivity graph applications °® and to the

construction of equilibration trees **3

mapping out how the system moves towards
equilibration. In contrast to this earlier work, both our approaches have no limitation
concerning the connectivity of minima in terms of transition paths and the height of the

barrier separating two minima or two sets of minima.

A comparison of the direct solution of the master equation and the pair connectivity
approximation (cf. Fig. 5.2(a) and 5.2(b)) shows that, within the second approach (Fig.
5.2(b)) for the extraction of the system’s connectivity as a function of time, two
important and usually time-consuming steps are omitted. In particular, the
diagonalization of the rate constant matrix, which for systems of large dimensionality
can be slow, inaccurate and problematic, as well as the analytical solution of the master
equation can be skipped. On the other hand, the pair connectivity approach is based on
an assumption and not on an analytical solution of the master equation. This means that
this approach (Fig. 2(b)) can be used as a “quick and dirty” alternative, whereas a more

detailed and thorough representation is offered by the master-equation-based approach
(Fig. 2(a)).

In the “Results and discussion” section of this chapter the temporal disconnectivity
graphs are created based on the two methods described above (analytical solution of
the master equation and clustering algorithm based on the pair connectivity
assumption). The graphs obtained will be compared to each other and thus provide
information on the validity of our assumptions. Additionally, as will be explained in
Section 5.3, the results from the above approaches will be compared to a molecular
dynamics (MD) method for the “on the fly” definition of metabasins, as well as to a
lumping algorithm implemented on the initial system of states. The behavior of the
lumped system will be depicted in a corresponding temporal disconnectivity graph,
providing useful details about the dynamical characteristics of the lumped system and
the efficiency of the implemented lumping algorithm.
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5.3 Methodological and computational details

All results within this chapter have been obtained for a binary Lennard-Jones system,
initially proposed by Kob and Andersen " ®. All details concerning this physical
system have been sufficiently explained in Chapter 3.4 of this work. The data needed
for the representation of the PEL by a temporal disconnectivity graph were provided
with the help of a highly parallelizable sampling scheme designed for atomistic
simulations of glassy materials *°. In order to ensure efficient dynamical sampling at

temperatures about T, , an “on the fly” definition of metabasins has been adopted. In

order to calculate the necessary rate constant matrix for transitions between basins of
the PEL, a swarm of microcanonical molecular dynamics trajectories has been initiated
at phase-space points sampled with the help of a canonical molecular dynamics run
that was artificially trapped within a metabasin, so as to make the sampling as

extensive as possible.

Moreover, a lumping procedure has been implemented on the provided initial system,
in a similar way as described in Chapter 4 of this work, in order to graphically
represent, with the help of a temporal disconnectivity graph, the lumped system. The
lumping methodology, as applied in this work, placed emphasis on the minimization of

the lumping error E, as well as of the Frobenius norm W of the lumped rate constant

matrix K, used as a measure of the efficiency of the applied lumping in describing
accurately the dynamics of the system at long times. The dimensionality of the lumped
system A has been attributed a zero weight in comparison to the other two lumping

criteria. More precisely, we keep f fixed at a value of A1=43 . letting the algorithm

find the optimal solution by minimizing an objective function only by varying the other
two criteria (i.e., E and W). The adopted objective function for the optimization

problem involved in lumping has form of equation (4.25).
z(E\W,n)=z-E+z,-W+z,-n (5.8)
where the parameters z,,z, and z,, specifying the importance of each one of the three

corresponding lumping criteria (E,W,n) in the final result, have the values listed in

Table 5.1.
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Table 5.1: Values of the parameters of the objective function z(E,W,n) [Eq. (5.8)].

2,(ps) Z,(ps) Z5(-)

0.5 0.5 0

The search for the optimum lumping proceeded via Monte Carlo simulation based on
the Wang-Landau scheme, which enables us to overcome entrapment in local minima
in the space of the above mentioned lumping criteria E and W. The final outcome of
the lumping algorithm is the Axn transformation matrix M, which in our case
transforms the initial system of dimensionality n=1504 states to a lumped system of
reduced dimensionality N=43 lumped states. Matrix M corresponds to the one

yielding the smallest value for the defined objective function z [Eq. (5.8)].

5.4 Results and discussion

Based on the pair-connectivity of states and following the calculation steps described
in Fig. 5.2(b), a typical temporal disconnectivity graph for the initial system consisting
of n=1504 minima of the PEL can be created (Fig. 5.3(a)):
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Figure 5.3: Temporal disconnectivity graph for a system of 1504 minima (states) of
the potential energy. The graph, shown in (a), is produced according to the assumption
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of pair-connectivity. At small times (t=1x107"* s) the graph also provides color-
coded information about the metabasin to which every single state belongs according
to the “on the fly" definition of metabasins introduced by Tsalikis et al. *°. With blue
color we represent metabasin 1, with cyan metabasin 2, with green metabasin 3 and
with red we depict metabasin 4. In (b) one can see the floor plan of the temporal
disconnectivity graph for a better understanding of the temporal evolution of states,
basins and metabasins. Each colored line of the graph corresponds to a different state

in all plots.

Figure 5.3(a) illustrates a typical temporal disconnectivity graph. The temporal
disconnectivity graph is a 3D-plot with the following basic characteristics. The x-axis
represents the number of states (basins, 1Ss, minima of the PEL) of the system. Each
state is assigned a different number. The y-axis represents time in seconds, whereas the
vertical axis shows the number of states included in each meta-state (metabasin) that is
identified as time evolves. By observing this plot it can be concluded that at short times
every state of the system has not been clustered with any other state. This means that
for short times the system has not yet found time to establish internal equilibrium
between individual states and so every state of the system finds itself on its own. This
can be seen by observing the z-axis value for every state in Figure 5.3(a) at short times.

This value is equal to one, since every state of the system is separate.

At short times, all branches of the inverted tree terminate at a local minimum of the
energy (inherent structure). From Figure 5.3(b) it can be easily concluded that not all
states start off at the same time. The reason for this is that the rate constant matrix, on
which the generation of the temporal disconnectivity graph is based, has been created
in the course of a dynamical trajectory sampled via a MD simulation. The start-off time
for each state varies between t=1x10"s and t=1x10""s and corresponds to the
longest time that a state has been observed alone, i.e. not as part of a “locally
equilibrated” cluster. The longer the start-off time of the state, the longer it takes to
achieve local equilibration. These time scales are characteristic of the common

relaxation processes taking place in glassy materials.
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As time grows, local equilibration is established between some states (according to the
pair-connectivity assumption) and a cluster containing these states is formed. This is
schematically depicted by the intersection of two neighboring branches and the
formation of a node (branch point) in the inverted tree. The longer the time needed for
the branches to collapse, the more it takes to reach “local equilibration”. In addition,
the z-coordinate increases, showing the number of original states contained in the
formed cluster. In this sense, as time evolves and longer and longer time scales are
accessed, more and more states reach internal equilibration with each other and merge
to new or to already existing meta-states (metabasins). The time at which two or more
states unite to form a cluster of states corresponds to the time needed for these states to

equilibrate mutually via transitions.

At long times Figure 5.3(a) shows that enough time has been given to the system to
reach internal equilibration among all states accessed and thus one single branch
(cluster) is observed, containing all 1504 states. Note that roughly 10° s are required
for this. The physical meaning behind this observation is that, for those long time
scales, all states of the system communicate with each other through transitions which
are faster (shorter time) than the time required to escape from the formed cluster which
contains all accessed states. In other words, at long time scales enough time has been
given to the system for smaller basins to merge and form larger and wider metabasins,
which, in turn, achieve internal equilibration with neighboring metabasins giving rise

to even wider and bigger metabasins.

Moreover, Fig. 5.3(a) shows the connection between the temporal disconnectivity
graph obtained via the pairwise connectivity assumption and a molecular dynamics-
based method for an “on the fly” definition of metabasins >°. This extra information
derived from the metabasin definition is drawn in front of the preexisting temporal
disconnectivity graph. In particular, at an arbitrarily chosen short time (here
t=1x10"% s), at which all branches of the disconnectivity graph have been terminated
since they contain only one state (i.e. there are no clusters of states anymore), four
different colored blocks have been drawn. These blocks have been created as sets of
linear segments, where each linear segment corresponds to one of the n=1504 states
of the system and is colored according to the metabasin where it was found to belong

based on the “on the fly” metabasin definition.
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By observing the structure of the temporal disconnectivity graph, one can see that for

short times (t <1x107™° s), where almost every branch corresponds to one single state,
four different structures resembling small “rooftops” arise. These four structures
correspond to four different metabasins in the considered system; clearly, they are
strongly correlated to the metabasins identified “on the fly” via MD in the work of
Tsalikis et al. *°, which are the four colored blocks. As time grows, the four different
metabasins start to consolidate into bigger structures (meta-metabasins) until all four
metabasins have been united into a single branch containing all 1504 states of the
system. Hence, Figure 5.3(a) shows that the temporal disconnectivity graph describes
well not only the existence and sampling of metabasins, but also the temporal
evolution of these structures as they coalesce with time to form even larger meta-

metabasins.

An additional advantage of this new representation approach is that from the temporal
disconnectivity graph one can read off the times at which states merge to clusters and
clusters into larger clusters, e.g., the time frames between which specific groupings
into metabasins are useful. Furthermore, the graph also addresses the important
question of which states merge with which states. Thus, the temporal disconnectivity
graph reveals both the identity of the states to be merged and the time of the juncture.
Furthermore, temporal disconnectivity graphs can provide a very good initial estimate
of the lumping matrix M, thus helping the lumping algorithm described in Chapter 4
to converge faster. This is relatively straightforward, since every line drawn on the xy-
plane parallel to the x-axis, describing in the temporal disconnectivity graph the cluster
connectivity at a certain time t, corresponds to a certain M matrix. In particular, the
number of clusters at time t defines the number of rows fiof matrix M. Additionally,
the identity of the states of the initial system, which are about to be lumped into one
certain cluster, defines the position of the “1” in the row of M corresponding to the

formed cluster.

In Figure 5.3(b) one can see the floor plan (states versus time) of the disconnectivity
graph, along with the four colored blocks at small times depicting the four verified

metabasins.

We now turn to the master equation approach and construct the temporal

disconnectivity graph according to the procedure outlined in Figure 5.2(a). Analytical
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solution of the master equation under a given set of initial conditions leads to the

temporal disconnectivity graph presented in Figure 5.4:
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Figure 5.4: Temporal disconnectivity graph for a system of 1504 minima (states) of
the potential energy. The graph, shown in (a), is derived from the analytical solution of

the master equation [Eq. (5.3)] in the set of states considered. At small times (

t=1x10"% s) the graph also provides information concerning the metabasin to which
every single state belongs according to the "on the fly" definition of metabasins

introduced by Tsalikis et al. *°

. With blue, cyan, green, and red are represented states
belonging to metabasins 1, 2, 3, 4, respectively. In (b) one can see the floor plan of the
temporal disconnectivity graph, offering a clearer explanation of the temporal
evolution of states, basins and metabasins. Each colored line of the graph corresponds

to a different state in all plots.

Figure 5.4 represents, in an analogous way to Figure 5.3, the temporal disconnectivity
graph for the considered system of n=1504 states, created, however, based on the
probability distribution among states as it results from the analytical solution of the
master equation and on determining the times when the internal equilibration condition
between states [Eq. (5.5)] is fulfilled. A direct comparison between Figures 5.3(a) and
5.4(a) shows very good agreement between the two plots. This agreement is seen not
only in the general shape of the disconnectivity graphs, but also in the similarity of the
time scales. Additionally, the correlation between the disconnectivity graph created via
the master equation solution and the definition of metabasins “on the fly”, in the course
of a 3 ns-long MD simulation is excellent, better than in Figure 5.3. Clearly, there is
good agreement between the “brute force” MD algorithm for defining metabasins in
the studied system and the dynamical information contained in the master equation and
visualized in the temporal disconnectivity graph of the PEL (Fig. 5.4(b)). By
comparing Figures 5.3 and 5.4 we conclude that both approaches implemented in this
work for constructing the temporal disconnectivity graph, as outlined in Figure 5.2,
conserve the topology of connections between states and the corresponding rate
information very well. Results from the master equation-based approach seem to be a
bit more accurate (in better agreement with “brute force” MD), but are obtained at
considerably higher (approximately by a factor of 3 in respect to CPU time)
computational cost.
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By lumping the initial system of n=1504 states following the specifications described
in paragraph 5.3, we obtain a system of smaller dimensionality A=43 capable of
describing long-time dynamics of the initial system. The temporal disconnectivity
graph of this lumped system, constructed on the basis of its master equation solved

under a given set of initial conditions, can be seen in Figure 5.5(a) and 5.5(c):
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Figure 5.5: Temporal disconnectivity graph for the lumped system consisting of 43
metastates (lumped states). The lumped system is produced according to the lumping
specifications described in paragraph 5.3, whereas the graph shown in (a) is created
based on the analytical solution of its master equation under a given set of initial
conditions [Eq. (5.3)]. For comparison, in (b) is shown the temporal disconnectivity
graph of the initial system (presented in Figure 5.4(a)) for times greater than
t=1x10" s . The floor plan of (a) is shown in (c). In addition to (c), in (d) one can see
the floor plan of the temporal disconnectivity graph of the initial system (as presented
in Figure 5.4(b)) having omitted nonetheless times smaller than t =1x10"" s in order
to facilitate direct comparison with (c). Each colored line of the graph corresponds to a
different state in all plots. At small times (t=1x10"s) (a) and (c) provide the
information concerning the metabasin to which every single initial state (clustered in
one of the 43 lumped clusters) belongs to, whereas (b) and (d) provide the same
information according to the "on the fly" definition of metabasins introduced by

56
l.

Tsalikis et al. °°. With blue, cyan, green, and red we represent metabasins 1, 2, 3, and

4, respectively.
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At this point a clarification is in order. The lumped system consists of A =43 lumped
states. Every lumped state can consist of more than one states of the initial system.
This means that every state out of the 1504 initial states belongs now to a lumped state.
The way the initial states are being distributed among the new lumped states is defined
by the outcome of the lumping algorithm, which is the lumping matrix M. A lumped
state may have resulted from combination of a green and a red initial state. The color
attributed to the lumped state in the temporal disconnectivity graph of figure 5.5 is then
the one that corresponds to the last overlapping initial state. Figures 5.5(a) and 5.5(c)
show that lumped states, each containing more than one states of the initial system,
merge with each other as time evolves to form metabasins. A direct comparison
between Figure 5.5(a) and 5.5(b), as well as between Figure 5.5(c) and 5.5(d), shows a
quite good resemblance between the temporal disconnectivity graphs of the lumped
and the initial system. Figure 5.5(d), which is the floor plan of Figure 5.4(a) plotted

only for times longer than t =1x107" s, shows, in a clearer way, how well the lumped
system can describe the long-time dynamics of the initial system. Moreover, Figure
5.5(c) offers a measure of how “pure” the formed 43 lumped states are in respect of the
four metabasins defining the initial system (cf. Fig. 5.3(b) and Fig. 5.4(b)). In
particular, Figure 5.5(c) at small times (t =1x10""® s) describes how the initial states
of the four metabasins are distributed among the lumped states. We can see that every
one of the 43 lumped states contains initial states originating from the same metabasin.
This is depicted in the four colored blocks in front of the disconnectivity graph. As
Figure 5.5(c) shows, every line segment of these four blocks has a unique color and is
no mixture of colors, indicating that initial states of the same metabasin have been
merged to one lumped state. Moreover, there is no overlap between blocks of different
color. Hence, each lumped state contains initial states of the same metabasin of the
initial system and thus no mixing of metabasins is observed during lumping. In this

sense, lumped states can be characterized as “pure”.

If we try to compare the initial and lumped networks (cf. Figures 5.4 and 5.5) with
respect to their time evolution, it is obvious that, for small times, where fast transitions
take place, both networks seem to behave similarly. For both networks fast transitions
take place for times 1x10°s > t >1x10™"* s. Moreover, both networks gather all

their states (states and lumped states) into one main branch at relatively long times

t >1x10% s. The same piece of information is drawn with the help of the temporal
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disconnectivity graph of the lumped system for relatively longer time scales

t>1x10" s (cf. Figures 5.5(c) and 5.5(d)), whereas the lumped system seems to

accurately reproduce the basic connectivity and dynamics dictated by the PEL.

5.5 Conclusions

In this chapter a new, alternative representation of the potential energy landscape has
been developed and presented for a binary Lennard-Jones glassy system. This
representation is based on the disconnectivity graph theory already known from the
literature. The innovative characteristics of the proposed graphical representation are
firstly that, in contrast to the conventional disconnectivity graphs, the temporal
disconnectivity graph replaces the energy (or temperature) axis with a time axis and
secondly adds an extra dimension, making temporal disconnectivity graphs three-
dimensional plots. These features allow monitoring all changes in the population of the
PEL as time elapses and uncovering the underlying topology and communication rates
between different parts of the landscape. Our temporal disconnectivity graphs,
accumulated by processing the results of extensive temperature-accelerated MD
simulations in two different ways, provide clear evidence that the PEL exhibits a
hierarchical structure. Results from the pairwise-connectivity strategy for identifying
local equilibration among states are in very good agreement with those from the more
exact master equation solution strategy and thus provide a less computationally
demanding alternative to the exact strategy. The identity of merging (locally
equilibrating) states and the times where mergers take place can readily be extracted

from temporal disconnectivity graphs.

The proposed graphical representation has also been applied to lumped systems, which
provide a coarse-grained description of the dynamics in a landscape of greatly reduced
dimensionality. In the context of this work it is schematically shown that lumped states
contain states of the initial system belonging to the same metabasin, which are states
communicating with each other through transitions that are faster than those required
to access the rest of configuration space. Additionally, it is being schematically
verified that the lumping algorithm predicts accurately the dynamic behavior of the

initial system — in terms of connectivity between metabasins and resulting temporal
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evolution — at long times. Beyond the visual advantages offered by temporal
disconnectivity graphs, they can serve to provide a very good initial estimate of the
lumping matrix M, thus helping the lumping algorithm described in Chapter 4 to

converge faster.

Our conclusions indicate that the proposed clustering based on pair local equilibration
is an accurate approximation of the temporal evolution of the system. In case one is
interested in achieving quantitative agreement with the temporal disconnectivity graph
that results from the analytical solution of the master equation, it is proposed to re-
evaluate the rate constants connecting clusters of states based on a local equilibration

59d, 108a-d | Giher words, the

estimation of the conditional flux out of each cluster
effective rate constant out of each cluster is estimated as a product of the conditional
probability of being in the state that leads out of the cluster (provided one is in the

cluster) and the rate constant of the inter-cluster transition out of that state.



Chapter 6

Mechanical deformation computational experiments on

glassy atactic polystyrene

The previous two chapters describe techniques (lumping and temporal disconnectivity
graph, respectively) that are dedicated to better understanding the PEL, making use of
its characteristics to extract useful information about properties and molecular
mechanisms, and overcoming simulation-time related limitations appearing when one
tries to track physical ageing in glassy materials. With the help of these specially
designed, self-consistent methods combined with appropriately developed MD and MC
techniques, a large variety of dynamical properties can be estimated even at time scales
unreachable under use of conventional simulation techniques °% 2. All this effort is
related to the time evolution of the configuration of a glassy system and aims at
explaining relaxation phenomena characterizing glassy materials. This chapter is, on
the contrary, dedicated to revealing what happens to a glassy material, when an
external perturbation is applied to it. More precisely, it is of great interest to investigate
via computer simulation techniques the response of a glassy system during mechanical

deformation.

In this chapter, the response to deformation of a detailed computer model of glassy
atactic polystyrene, represented as a collection of basins on its potential energy
landscape, is investigated. The volumetric behavior of the polymer is calculated via
“brute force” molecular dynamics quenching simulations. Results are compared with
corresponding estimates obtained by invoking the quasi-harmonic approximation

(QHA) for a variety of temperatures below the glass temperature and with
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experimental data. The stress-controlled uniaxial deformations fall in the linear elastic
regime and the resulting strains are calculated as ensemble averages of QHA estimates
over 200 uncorrelated inherent structures of the potential energy landscape. It will be
demonstrated that the estimated elastic constants (Young’s modulus and Poisson ratio)
and their temperature dependence are found to be in very good agreement with
experiments for glassy atactic polystyrene. Additionally, a classification of the
deformed inherent structures in respect to the geometry and general shape of their
energy minima is undertaken. A distortion of the potential energy basins upon

mechanical deformation in the elastic regime is observed in all cases.

6.1 Introduction

Analyzing and predicting the mechanical response of a glassy polymer upon
deformation is the primary goal of this chapter. This study builds upon early work on

computing mechanical properties of glassy polymers 4

. In that work, quasi-static
molecular mechanics simulations of deformation were used together with realistic
atomistic models, in order to predict the experimentally measured response in the
elastic regime followed by yielding, intrinsic strain softening and strain hardening **°.
Later modeling work focused on elucidating the complex and still partially explained
phenomena of strain softening and strain hardening, as well as on investigating general
yield and plastic deformation phenomena *“* ¢, From a macroscopic point of view,
those phenomena have been captured quantitatively in finite element based methods by

using suitable constitutive relations for the intrinsic material response '

. Early
molecular mechanics experiments did not incorporate time or temperature explicitly.
They have been taken further in recent studies for the exploration of ageing and
mechanical rejuvenation of simple model glasses **® and generic models of rugged
landscapes **°.

114¢ showed that there is a direct correlation between the

Parrinello and coworkers
elastic strain fluctuations and the elastic constants for a general anisotropic material
and proposed a fluctuation formula for calculating elastic constants from the thermal
strain fluctuations. This equation has been further evolved and appropriately modified

120
l.

from Gusev et a , providing an equation for the elastic constants of the classical

first-nearest-neighbor Lennard-Jones fcc crystal, which, although having the same
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validity as the Parrinello-Rahman fluctuation formula, has superior convergence
properties as it takes into account the fact that in thermal fluctuations the instantaneous
stresses and strains are correlated. The calculation of elastic constants can also proceed
from corresponding fluctuation formulas based on simulations in the Thn and Ehn
ensembles, where T is the temperature, E is the energy, n is the number of particles,

and h is a scaling matrix h =(a,b,c) made up of the vectors a,b and ¢ forming the

simulation cell *?

. It is, of course, a significant question whether one can apply a
fluctuation formula for a glass, which is an intrinsically non-equilibrium material
exhibiting time-dependent mechanical properties. In practice, estimates of the elastic
constants extracted from fluctuation formulae are in reasonable agreement with
estimates based on external imposition of stress or strain, indicating that, for the time
scales observed in the simulations, the model system achieves local equilibrium within
a confined region of its configuration space.

In the case of polymeric nanocomposites, both molecular dynamics and Monte Carlo
simulations have been conducted based on the Parrinello-Rahman approach for the

122 Furthermore, in the case of

calculation of corresponding stress-strain curves
inhomogeneous systems, local elastic constants have been calculated based on a
method of planes '?%. In regard to copolymers with chemically connected glass and
rubbery phases, a triblock copolymer has been studied using mixed finite element
approaches to deliver elastic properties ***. Moreover, the temperature dependence of
mechanical and structural properties of polymeric crystals has been simulated and
thoroughly investigated by implementing a variety of techniques **. Additionally,
plastic deformation of glasses has been investigated by combining constant-stress MD
simulations and fixed-cell energy minimizations showing that the plastic transition can
be interpreted as a crossing between and a collapse onto each other of “ideal
(thermodynamic) structures™ %

Although considerable progress has been made in developing mathematical
frameworks and models for both the small strain regime under a specific narrow
spectrum of strain rates and temperatures ¥, as well as for the regime of relatively

larger deformations beyond the yield point 2

, Where strain hardening phenomena due
to entanglements seem to play a dominant role, there are still unanswered questions
regarding the structural mechanisms that govern the typical response of glassy

polymers to deformation. This work is part of an effort to understand ageing and
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deformation phenomena in polymer glasses based on the potential energy landscape
picture. It is related to a simulation approach we have designed for tracking the
temporal evolution of a glass as a succession of transitions between basins in its PEL
°2_ At long times, when the number of explored basins (states) becomes prohibitively
large, the lumping scheme described in Chapter 4 can be used to effectively reduce the
dimensionality of the network of states without severe loss of information **°. A
system’s dynamical course on its PEL can be visualized with the help of temporal

disconnectivity graphs **

as shown in Chapter 5.

The purpose of this work is to investigate the mechanical response of a typical polymer
glass (glassy atactic polystyrene) in the elastic regime, assuming that, upon imposition
of stress, its configuration does not leave the basin within which it is confined. Similar
to the tactic adopted in the previous chapters, we represent the polymer glass as a set of
uncorrelated potential energy minima obtained via a combination of MD simulations
and our technique for tracking the dynamical evolution on a network of discrete states
>2 We test how well a quasiharmonic approximation around the local energy minima
(inherent structures) of the basins captures the volumetric and elastic response as a
function of temperature. We also explore how the characteristics of the basins are

modified upon imposition of mechanical deformation.

This chapter is organized as follows. In Section 6.2 we describe the model system,
defining the basic theoretical framework on which our investigation was based, and
present details of the procedure we have developed for generating configurations
representative of the glassy state of atactic polystyrene. In Section 6.3 we provide
computational details of our deformation experiments, whereas in section 6.4 we
present and interpret the results obtained and finally in the last section 6.5 we

summarize the conclusions and innovations of this work.

6.2 Model System and Methods

Atactic polystyrene was chosen as the model system, as it is one of the most widely
used and most extensively studied polymer glasses *** *31. The atactic form, typically
obtained by free radical polymerization, has the additional advantage of not being able

to exhibit large-scale crystallization upon cooling, which would complicate our
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computational approach. The suppression of crystallization imparts the amorphous
character to the investigated material. The simulated polymeric system is formed from
a single chain of atactic polystyrene containing 80 monomer units, generated as a
Bernoullian sequence of meso- and racemic dyads ***. Each monomer unit consists of
8 united atoms, hydrogens being absorbed into the carbon atoms with which they are
connected. Our polymeric chain, of chemical constitution CH3-[CH(CsHs)-CH,]7o-
CH(CgHs)CHg, thus consists of 641 united atoms.

The interaction potential used in all implemented simulations in this work is the one
proposed by Lyulin et. al. **. It takes into account the following contributions to the
system potential energy: (i) Lennard-Jones non-bonded interaction potential between
all united atoms that are three or more bonds apart or belong to different images of the
parent chain; (ii) bond stretching potential for every covalent bond; (iii) bending
potential for all bond angles, including those in the phenyl rings; (iv) torsional
potential for all rotatable backbone bonds; (v) torsional potential for the torsions of
phenyl rings around their stems; (vi) out-of-plane bending potential to preserve the
coplanarity of the phenyl and the phenyl stem; (vii) torsional potential about all bonds
connecting aromatic carbons in the phenyl ring, to preserve the planarity of the ring;
(viii) improper torsional potential to preserve the chirality of all carbons bearing a
phenyl substituent. No tail corrections are used for the nonbonded interaction potential.
This is because the original Lyulin et al. potential **, which was tailored to match
volumetric properties in the melt state, does not incorporate tail corrections.

Although of relatively small size, it has been noted that the model system under
investigation can be simulated best during the molecular dynamics quenching
procedure (see below) when no long range corrections are taken into account. In
particular, the system adopts density values close to those measured experimentally
upon quenching into the glassy state; presumably, nonbonded interactions between

united atoms at distances below the applied cut-off distance r, are sufficient for

capturing a reasonable volumetric response and system size effects are weak. The latter
statement is supported by the fact that the system’s radial distribution function g(r) in
the starting melt configurations and after quenching into the glassy state is found to be

approximately 1 for r>r..
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6.2.1 Generation of glassy configurations

Two hundred independent, completely uncorrelated initial configurations were
generated by chain growth and subsequent energy minimization in a cubic box with
periodic boundary conditions at a density of 0.97 g/cm® **¢. The above procedure was
realized by using MAPS (Materials Process and Simulations) simulation platform
developed by Scienomics “2. All these configurations were kept for use in the
computational deformation experiments which will be described in detail in Section
6.3. For the purpose of studying the orthobaric volumetric behavior of the model as a
function of temperature, however, only a subset of these configurations were
employed, to keep the computing time reasonable. Five arbitrarily chosen

configurations out of the 200 were subjected to isothermal-isobaric ( NpT ) molecular

dynamics (MD) simulation under melt conditions p=1 bar, T = 460 K for 40 ns. The

velocity Verlet algorithm was used for all MD simulations, with a time step of 1 fs.

Glassy configurations were obtained from the melt by cooling down to a temperature
far below the experimentally measured glass temperature of long-chain atactic

polystyrene **? of T, ~ 373 K. To this end, the final configuration from each one of the

melt NpT MD runs was subjected to further NpT simulation with the set temperature

T lowered by 20 K every 40 ns (effective cooling rate 0.5 K/ns) down to a final
temperature of 200 K. In this way, each one of the 5 initial liquid-state configurations

provided a corresponding glassy configuration for our polymeric system.

6.2.2 Quasiharmonic approximation

From our cooling MD runs, we can track the average volume of our five polystyrene
“specimens” as a function of temperature under p = 1 bar. For temperatures in the

vicinity of and far below the glass transition temperature T, we have calculated the

volumetric behavior as a function of temperature by following an alternative approach,
based on the idea that the configuration of each specimen executes vibrations around
the local energy minimum of the basin where it is trapped. In particular, we have
adopted the quasi-harmonic approximation *** (QHA) for the calculation of the

system’s Gibbs energy.
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According to the QHA, the Helmholtz energy A of a specimen of given spatial extent,
defined by the edge vectors of our periodic simulation box, which fluctuates in the
vicinity of a minimum energy configuration at temperature T, is composed of two

contributions: a) the potential energy 7/, of the minimum energy configuration
(Stillinger and Weber’s “inherent structure” **%); and b) the contribution A, from
vibrational motion about the inherent structure:

A=V + Aip (6.1)
At given spatial extent of the system, the inherent structure, hence 1/ . , can be

computed by potential energy minimization with respect to the Cartesian coordinates
of all atoms, starting from any configuration in the basin. A steepest descent algorithm
should be used for this; conjugate-gradient minimization yields the same results for the

systems of interest here.

Within the QHA the motion of the model system, comprised of N united atoms, can
be described in terms of 3N —3 uncoupled, uncorrelated harmonic oscillators, whose

frequencies are solutions to the following eigenvalue problem ***:
H-a=0"a (6.2)

where H' is the Hessian matrix of second derivatives of the potential energy with
respect to the mass-weighted coordinates of the atoms ***. Three of the eigenvalues
defined by Equation (6.2) are zero, as the system energy is invariant to translation
along the edge vectors of the periodic simulation box. The remaining eigenvalues are

the squared angular frequencies of the vibrational modes of the system residing in its
basin. They are all positive (hence can be written as @” for the i-th mode), as the

diagonalization takes place at a minimum of the energy, where the Hessian with
respect to the 3N —3 independent configurational degrees of freedom of the system is
positive definite. Once these vibrational frequencies are known, the partition function
for the vibrational motion of the system can be calculated (see below). Having
calculated the partition function, the vibrational part of the Helmholtz energy, for the

considered edge vectors of the simulation box, is obtained as:

Aip = —kgT InQvib (6.3)
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We make use of the QHA for the calculation of the vibrational part of the Helmholtz
free energy. In the context of the QHA the system is envisioned as a set of 3N —3
uncorrelated harmonic oscillators around the energy minimum, vibrating with
frequencies obtained by diagonalizing the Hessian matrix at fixed spatial extent of the
simulation box (edge vectors). According to this approach the thermal motion is
attributed only to harmonic motions, hence any anharmonicities are being neglected.

For low temperatures (T <T,) this seems to be reasonable. As temperature rises,

anharmonic contributions to the thermal motion become more pronounced and the
QHA would be expected to fail. The basic advantage of using QHA to describe thermal
motion at low temperatures, instead of classical MD techniques, is that it couples very
well to an approach we have designed for tracking the temporal evolution of the

system as a succession of infrequent transitions between basins in configuration space.

“Dynamic Integration of a Markovian Web,” or DIMW, starts off from a highly
localized initial distribution, and proceeds to create a network of basins based on
stochastic dynamical importance sampling. Within this approach, one is not obliged to
follow a single trajectory (as in the case of MD), but can rather use reaction path

52 to

construction, transition state theory and Kkinetic Monte-Carlo techniques
simultaneously explore many directions in the 3N —3 dimensional configuration
space. In that sense, a better sampling of configuration space is achieved in
significantly reduced computational time. This can be a huge advantage in cases where
Kinetically trapped systems (such as glassy systems) are investigated and access to long

time scales is problematic.

In this chapter we present a way to calculate the vibrational partition function Q

vib

within the context of QHA through both a quantum mechanical and a classical

formalism. According to the quantum mechanical formalism, Q,;, is equal to **:
he,
oo 4)
o= 2 (6.4)

with kg being the Boltzmann constant and 7 =h/(2x), h being Planck’s constant. If a
classical formalism is adopted for the vibrational partition function, one obtains
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ia \ha,

Qi = SlN_f( o j (6.5)

Clearly, QS is the limit of Q% when %«1 for all i.

B
For small deformations (changes in the edge vectors of the simulation box) around a
reference state of volume V, in the elastic regime, the elements of the stress tensor o

are related to the Helmholtz energy by **°

qei ) ioh) Ltk ©9
TV, 0g; T Vo 0z T i Vo 05 T4y

+4Tii]

where g, with elements &jj, is the strain tensor and the symbolism ¢, indicates that all

elements of € except &; are held constant .

Let us now consider our specimen confined in its basin under a given externally
imposed stress tensor, o. In our calculations we use the Gibbs energy because we are

considering stress-controlled experiments °

. We define a Gibbs energy for the
specimen as the Legendre transform of A with respect to all elements of &, plus an

isotropic pressure-volume term *3':

G=A+pV, _Vozo-ijgij = rVinh + Ay + PV, _Vozaijgij (6.7)
i i

where p'=-1/3Tr(c). By substituting Equation (6.4) or (6.5) in Equation (6.3) and
using the result in Equation (6.7) one can obtain the Gibbs energy of a glassy specimen
according to a quantum mechanical or a classical formalism for the vibrations, for

given edge vectors of a periodic simulation box. It is important to realize that 4/ and

A,, In Eq. (6.7) are both functions of the spatial extent of the system. Under given

externally imposed stress o, the system will adopt that spatial extent (edge vectors of
the periodic simulation box) which minimizes G. We shall call G, the value of G at
that minimum. This is our estimate of the Gibbs energy of the specimen under stress o,
confined to a given basin in configuration space. As ¢ changes, the spatial extent of the
system changes. The potential energy hypersurface is distorted and the inherent
structure configuration shifts. The system, however, remains in the same (deformed)
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basin. This is the essence of the quasiharmonic approximation, which retains full

anharmonicity in the dependence of 7/ on the atomic coordinates, but assumes that

thermal motion can be represented as a set of harmonic vibrations around the inherent

structure.

The fundamental equation of thermodynamics for our specimen confined in its basin,

in differential form, in the Gibbs energy representation, becomes

dG,;, = —SdT +V,dp' -V, > &,do; (6.8)
ij

with S being the entropy.

In order to generate undeformed specimens of glassy atactic polystyrene according to
the QHA at each temperature at pressure p=1 bar, we take the last configuration from

our NpT MD run at that temperature and minimize its energy with respect to all

atomic coordinates, under fixed spatial extent of the simulation box. Then we vary
systematically the spatial extent (boundaries) of the simulation box, minimizing the
potential energy of its contents and calculating the normal mode frequencies and
vibrational free energy A.i, for each new set of boundaries, until we reach a minimum

of ,+ A, +PpV with respect to these boundaries. The minimum energy

configuration and the vibrational frequencies at this minimum define our undeformed
state, and its volume is taken as V, for that temperature. Clearly, this state point is a
minimum of G defined by Eq. (6.7) with o=diag(—p, —p, —p), p'=p = 1 bar and £=0. In
these calculations the simulation box shape is kept cubic at all times, so the spatial
extent of the system is uniquely defined by the edge length of the periodic simulation
box, I, the volume being given by V=I°. The edge length is varied in steps of Al=0.001
A. The procedure is entirely analogous to that developed in Ref. *** for a Lennard-
Jones glass.

Figure 6.1 depicts the comparison between the estimated volumetric behavior of the

studied system obtained via our MD cooling runs in the NpT ensemble and

corresponding results based on the QHA. Points correspond to averages over the 5
specimens generated. QHA results are shown based on both the quantum mechanical
(Eq. (6.4)) and the classical (Eg. (6.5)) partition function. In addition, experimental

volumetric data for long-chain atactic polystyrene are shown in the figure .
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Figure 6.1: Schematic representation of the volumetric behavior of atactic polystyrene

at 1 bar, as calculated via a) MD computational cooling experiments in the NpT

statistical ensemble b) QHA with a quantum mechanical vibrational partition function,
¢) QHA with a classical partition function. Experimental volumetric data measured for
high-molar mass atactic polystyrene from Ref. ** are also shown.

At this point the reader is reminded that all simulation results plotted in Figure 6.1
constitute ensemble average values over 5 different specimens, obtained from 5
completely uncorrelated initial configurations. Error bars in the figure represent
standard deviations over these specimens. For the sake of clarity, only error bars
corresponding to the MD cooling runs have been included in Figure 6.1. Use of all 200
configurations would certainly lead to lower statistical error, yet increase the
computational load. Error bars from the QHA approaches are commensurate with those
shown for MD.

Figure 6.1 can serve as a basis for a number of interesting observations. First of all,
results from the quantum mechanical and from the classical QHA do not differ
substantially. This is because temperatures in the considered range are high relative to

the Debye temperature of glassy atactic polystyrene @, ~100 K **, so the classical
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vibrational partition function constitutes a reasonable approximation for the quantum
mechanical one. Secondly, volumes from QHA in the glassy region are in good
agreement with corresponding MD volumes. This indicates that the effect of
anharmonicities on the volumetric behavior is weak, making the quasiharmonic
approximation a reasonable one over the considered temperature range. Thirdly, there

is good agreement between simulation estimates and experimental specific volumes.

In the melt range this reflects that the force field ** has been developed so as to provide
a reasonable representation of real atactic polystyrene. In the glassy range the
agreement is partly fortuitous. The cooling rate employed in MD (0.5 K/ns) is many
orders of magnitude higher than typical experimental cooling rates, and should cause
Ty to appear higher in the simulated system than in experiment. In addition to that, it

has been seen #4°

that the diffusion of polymer chains in computer simulations of finite
systems with periodic boundary conditions is slower (higher Tg) as the volume of the
simulation box and the number of chains become smaller. On the other hand, the molar
mass of the polystyrene simulated is small relative to that studied experimentally,
causing a decrease in T4 compensating the above phenomena. As a consequence, the

estimated glass temperature from simulation, T, ~ 380 K, appears slightly higher than
the experimental value T, ~373 K *** ! Note that the simulated glass transition is

quite broad, as is typical of simulations **2. The overall behavior of volumetric
predictions in Figure 6.1 convinces us that the QHA yields reasonable results and that

our model is satisfactory. Thus, we proceed to study its mechanical properties.

6.3 Computational deformation experiments

As described in Section 6.2.1, two hundred independent, completely uncorrelated
initial configurations were generated by chain growth and subsequent energy
minimization in a cubic box with periodic boundary conditions at a density of 0.97
g/lcm®. Each one of those spatial configurations of the polymer chain was then made a
starting point in the Dynamic Integration of a Markovian Web (DIMW) algorithm for
tracking the dynamical evolution of a system evolving through infrequent transitions
on a network of discrete states 2, in order to monitor a single elementary transition

from the starting potential energy minimum to an adjacent one at temperature T and
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pressure p = 1 bar. To do this, we have invoked an appropriately modified version of
the dimer method 2 for locating first order saddle points around a given minimum,
and constructed transition paths to new minima according to Fukui’s intrinsic reaction
coordinate method 1. In this way, the glassy system is envisioned as fluctuating in the
vicinity of a local potential energy minimum, going over a first order saddle point and

ending up in a neighboring minimum.

According to this, every minimum out of the 200 initial ones, led to a corresponding
adjacent minimum via an elementary transition over a first order saddle point. Thus,
200 completely uncorrelated potential energy minima of glassy atactic polystyrene,
close to the original ones, were obtained. The later 200 minima were used as initial
configurations of our stress controlled deformation experiments. Unless stated
otherwise, all results shown from this point on are ensemble averages over those 200
uncorrelated inherent structures. We note that the procedure of using structures
obtained from the initial ones after an elementary transition over a saddle point is not
essential to the calculations reported here; it was adopted as a test of our algorithm for
effective elementary transitions in configuration space. Working with the initial 200
minima produces practically indistinguishable results.

The deformation experiments proceed in the following way: We start from a potential
energy minimum, obtained as described in the previous paragraph. Each such
minimum constitutes a specimen of minimal Gibbs energy with respect to the spatial
extent of the system under temperature T and stress tensor o=diag(—p, —p, —p) with p =
1 bar and defines the zero-strain state €=0 for the deformations. We then perform
uniaxial deformation experiments (both in tension and in compression) by imposing
normal stresses acting on two opposing faces of our simulation box. All other faces of
the simulation box are under atmospheric pressure. In other words, the stress tensor
imposed is of the type o=diag(ox, —p, —p), p =1 bar. Both oy > —p (tension) and o
< —p (compression) were used. All deformation simulations were realized at a

temperature of T =200 K and lateral pressure of p=21bar. The tensile stress oy is

varied in steps of Aoy=15 MPa from 0 to +30 MPa. At each level of the imposed
stress, using an affine transformation of the undeformed specimen configuration as an
initial guess, we systematically vary the spatial extent of our system (edge vectors of

the periodic simulation box). At each spatial extent we minimize the potential energy,
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compute the vibrational free energy, and add a stress-strain contribution to obtain the
Gibbs energy G of the system in its (deformed) basin via Eq. (6.7). Through these
simulations we locate the spatial dimensions under which G attains a minimal value,
Gmin. The minimum energy configuration and associated vibrational frequencies at
Gmin define our model for the specimen under stress o and the spatial dimensions of the
system at G, define our strain tensor relative to the initial undeformed state. Having
obtained the deformed state at the current level of stress, we increment the imposed

stress by Aoy and repeat the whole procedure.

In the course of the variational computations in model system dimensions to determine
Gmin, the geometry of the simulation box is kept orthogonal and the cross-section
normal to the direction of deformation is kept square. The minimization of the Gibbs
energy thus proceeds with respect to two box edge lengths, I and Iy=I,. Edge lengths
are varied in steps of Al=0.001 A. For every trial set of box edge lengths the elements

of the strain tensor and the Poisson ratio are calculated according to the following

equations:
I

&y =INZ (6.9)
x,0
I, |

ey=In——=¢, =In—+ (6.10)
y,0 2,0

and

v=-to o fa (6.11)

8XX 8XX

where |, is the box edge length in the « -direction in the undeformed state and 1, is

the corresponding box edge length after the imposed deformation step. Note that in
Egs. (6.10) and (6.11) the Hencky definition of strains is employed *%. For the small
deformation regime examined here, this gives results that are practically

X 'x,0

etc. Our stress-

indistinguishable from the conventional definition ¢, =
x,0

controlled procedure for simulating deformation based on the QHA is outlined in
Figure 6.2.
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In the following section we will demonstrate and analyze the results obtained from the
uniaxial tension and compression deformation experiments for the glassy atactic

polystyrene system.

6.4 Results and discussion

We apply the deformation algorithm outlined in Figure 6.2 for all 200 initial,
uncorrelated configurations, sampled in the way described in Section 6.2, for a series
of imposed normal stresses in the x-direction shown in Table 6.1. We remind the
reader that every deformation experiment is initialized from the undeformed state,
where the simulation box is cubic and a normal stress of —p = —latm is acting upon
each one of its lateral faces. Alternatively, we could initialize every deformation
experiment from the previous immediately lower stress level and keep the stress steps
constant and equal to Aow=t5 MPa. The result of this alternative deformation
procedure is expected and was confirmed to be the same to the adopted deformation
course for the linear elastic regime investigated.

Table 6.1. Imposed normal stresses in the x-direction for a series of deformation

experiments.

Experiment | 1 2 3 4 5 6 7 8 9 10 | 11 | 12

o [MPa] | 5 | 10 | 156 | 20 | 25 [ 30 | 5 |-10 | -15 | -20 | -25 | -30

The above described deformation experiments were realized at four different
temperatures, 200 K, 250 K, 300 K, and 350 K, all of which lie below the glass
transition temperature of the model system and of real atactic polystyrene. The stress-

strain curves obtained are shown in Figure 6.3.
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Figure 6.3: Stress-strain curves obtained via stress-controlled uniaxial deformation
computer experiments in tension and compression under atmospheric pressure at four
different temperatures below the glass temperature of atactic polystyrene. The points
represent averages over 200 different “specimens” subjected to deformation. For each
temperature, a linear fit through the simulation points is shown. The arrow indicates

the direction of increasing temperature.

In Figure 6.3 we plot the ensemble average of the calculated strain for 200 inherent
structures for every imposed stress listed in Table 6.1. Error bars have been omitted for
clarity. They are on the order of +1x 107 in the strain. Over the explored regime of
stresses (up to £30 MPa) and strains (up to £1%) the relationship between oy, and & is
linear, to an excellent approximation. Deformation, as probed through our QHA
computer experiments on the assumption that each specimen remains confined in its
basin, is elastic. The slope of the fitted straight lines yields the Young’s modulus E.
For the temperature of 300 K the slope equals E =3.55 GPa, a value which is in very
132a

good agreement with experimental data reported in the literature

E.., =3.2—3.4 GPa. Other, more recent experimental sources report somewhat higher

measured values of the Young’s modulus *** for glassy atactic polystyrene at room
temperature (~300K): E,,=35-3.7GPa. The calculated Young’s modulus

€

E =3.55 GPa is in good accordance with all these measurements.
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The temperature dependence of the Young’s modulus extracted from Figure 6.3 has
also been tested and found to be in accordance with experimental measurements for

polystyrene 132 145

, as well as for other polymers, such as poly(butylene terephthalate),
for temperatures below the glass temperature **°. The Young’s modulus of glassy
polymers is known to increase as temperature drops, i.e., with decreasing temperature
the material becomes stiffer. Experimental measurements *** have vyielded a
temperature dependence of the Young’s modulus of glassy atactic polystyrene that is

described by the following equation:

3—5 =448 MPa-K™ (6.12)

According to Equation (6.12), a temperature increase of AT=50 K (equal to the
temperature step used in Figure 6.3), should lead to a decrease of the Young’s modulus
by AE =-224 MPa =-0.224 GPa. Table 6.2 shows the calculated Young’s moduli,

based on the slopes of the curves shown in Figure 6.3:

Table 6.2. Calculated Young’s modulus of atactic polystyrene for the four investigated

sub-T, temperatures of Figure 6.3.

Temperature [K] Young’s modulus E [GPa]
200 4.17
250 3.87
300 3.55
350 3.26

According to Table 6.2, the average Young’s modulus change for a temperature

increase of AT=50 K (AT =50K) is equal to (AE)=-0.3 GPa. This result is in

reasonable agreement with the experimental value of AE =-0.224 GPa extracted
with the help of Eq. (6.12), a fact indicating that the temperature dependence of the
elastic response predicted by our QHA approach to small-strain deformation of the

polymer glass is basically correct.
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Another observable obtainable directly from our computer deformation experiments is
the Poisson ratio (Eg. (6.11)). For the temperature of 300 K this was found to be

v=0.35, very close to the experimentally measured value *** ** of v, =0.33. In

addition to that, the temperature dependence of the Poisson ratio is found to be in

M e, the

qualitative agreement with the experimentally observed behavior
Poisson ratio increases slightly with increasing temperature. In particular, the change

of Poisson ratio with temperature for temperatures close to or below the glass transition

temperature is measured to be (dvdT) ~0.00015 K. Both the behavior of the

exp
Poisson ratio with increasing temperature is described qualitatively correctly based on
our simulations, i.e., we predict a Poisson ratio increase with increasing temperature,

and the corresponding value obtained from our simulation lies very close to the

experimental one, (dvdT) ~0.00022 K™. One possible explanation for this small

sim
deviation is that the QHA simulations presented here do not allow the glassy polymer
configuration to depart from its original basin, while such departures do take place at
high temperatures, close to T4. Calculations are underway which relax this assumption.
As temperature increases and goes above the transition temperature Tg, experimental

measurements show that the Poisson ratio approaches the elastomeric value of v ~ 0.5
143

Another important matter which needs to be clarified within this work is the effect of
the chain length on the simulated mechanical properties (i.e. Young modulus and
Poisson ratio). Previous studies have shown that the molecular mass dependence of the
Young modulus, although small, is of great importance from both a fundamental and

practical perspective. It has been demonstrated **

that low molecular mass polystyrene
films exhibit a decreased Young modulus in comparison to systems of larger molecular
weight. The dependence of the elastic constants on molar mass, or on nanoscopic
confinement, has not been investigated in this work, although the methodology

developed and adopted herein could be used for this purpose.

Examining the results obtained from the deformation of each one of our 200 glassy
computer specimens allows some interesting observations to be made on how
individual basins on the energy landscape respond to deformation in the elastic regime.

We have found that the way in which the general shape and geometry of basins change
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upon deformation can be categorized in three major types. Characteristic
representatives of each one of these types are shown in Figures 6.4-6.6:
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Figure 6.4: Graphical representation of the first type of an inherent structure’s
response to mechanical deformation for (a) compression, (b) tension and (c) both
tension and compression. In all three diagrams data points for G—p "V, as a function of
&« are shown for every imposed stress level, along with polynomial fits (colored lines)

through these data points. All deformation simulations were realized at a temperature

of T =1/(kyf) =200 K and external pressure of p=1bar.
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Figure 6.5: Graphical representation of the second type of an inherent structure’s
response upon mechanical deformation for (a) compression, (b) tension and (c) both
tension and compression. In all three diagrams for G—p’Vy as a function of g, data

points for every imposed stress level are shown, along with polynomial fits (colored



178 Chapter 6

lines) through these data points. All deformation simulations were realized at a

temperature of T =200 K and external pressure of p=1bar.
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Figure 6.6: Graphical representation of the third type of an inherent structure’s
response upon mechanical deformation for (a) compression, (b) tension and (c) both
tension and compression. In all three diagrams data points for G—p "V, as a function of

&« are shown for every imposed stress level, along with polynomial fits (colored lines)
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through these data points. All deformation simulations were realized at a temperature

of T =200 K and hydrostatic pressure of p=1bar.

Each one of the figures 6.4-6.6 refers to a particular specimen (inherent structure) and
shows the system’s response to both compression and tension . The (a) part of each
figure shows the response of the specimen to uniaxial compression, whereas the (b)
part shows the response to uniaxial tension. Part (c) depicts the total behavior for both
compression and tension. In part (c), it becomes clear that the response of the PEL’s
basin to imposed deformation is symmetric. This response is displayed as a set of
curves for G—p”Vy as a function of gy, each curve corresponding to a different stress
level (outer loop in the flow chart of Figure 6.2). Each curve is a set of points which
resulted from a calculation of the Gibbs energy as a function of the spatial extent of the
model system according to Equation (6.7) (inner loop in the flow chart of Figure 6.2).
Each such point is a minimum of G — p”Vy under the considered &y with respect to
&y=&z. The value of g,=g, at that minimum is not shown. Each curve for G-p’Vp as a
function of g« exhibits a well-defined minimum. The ordinate corresponding to this
minimum is Gmin —p” Vo , While the abscissa marks the value of strain g« with which

the specimen responds to the stress level considered.

The strain values at which each curve for G— p’ Vy as a function of gy attains its
minimum can be seen to be in good agreement with the ensemble averaged strain

values corresponding to the imposed stress, shown in Figure 6.3.

From Figure 6.4(c) it can be easily seen that upon deformation the initial, undeformed
inherent structure (brown curve) changes its general shape and geometry in a

symmetric way if compressed or extended.

By observing figure 6.5(c) we can conclude that in this case the shape of the G—p’Vj
Versus & curve changes only little with the imposed stress level. Gy, does become
deeper upon both compression and tension relative to the undeformed state, but by less
than in Figure 6.4(c). In this case the basin is broad and is not distorted significantly
upon imposition of the deformation. The response is again symmetric around the
undeformed state (brown curve in Figure 6.5(c)).
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A third, and perhaps most interesting type of response is shown in Figure 6.6. Here the
basin tilts upon imposition of deformation, either tensile or compressive changing as a
result completely its shape. The minimum in G—p "V, as a function of & seems about

to disappear at the highest stress levels considered.

As in Figures 6.4(c) and 6.5(c), also in the case of Figure 6.6(c) the deformed basin
seems to behave symmetrically around the initial, undeformed basin, depicted in the
figure with a brown curve. In contrast to Figures 6.4(c) and 6.5(c), we now observe a
significant change in the shape of the basin, which seems prone to merge with a
neighboring basin. For this type of response we suspect that inherent structures
existing in the undeformed state may be totally eliminated upon subjecting the system
to sufficiently high deformation or, conversely, new basins may be generated upon

d 119, 125a

imposition of deformation. Such events have been observe and mark the onset

of plastic response.

Figures 6.4-6.6 provide clear evidence that the energy landscape of a glassy polymer
changes its geometrical shape upon deformation. This conclusion has extremely
important consequences. Changes in the geometry of the potential energy landscape
imply that the dynamical behavior of a system evolving upon this landscape will also
change 2. This means that initially rare transitions between minima separated by high
energy barriers could become more frequent, or adjacent minima of the potential
energy landscape may merge with increasing deformation, forming a joint minimum

and thus any former transitions between them will vanish.

The minimum values of G—p "V, for the curves depicted in the (c) part of Figures 6.4-

6.6 have been isolated and plotted against ¢, . The resulting plots derived from these

figures are shown in Figure 6.7. All plots derived from Figures 6.4 to 6.6 exhibit

similar behavior.
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Figure 6.7: Graphical representation of Gnin— p” Vo as a function of gy for the basin
response to mechanical deformation depicted in a) Figure 6.4(c), b) Figure 6.5(c) and
c) Figure 6.6(c). A parabolic fit through the simulation points is also shown as a
broken line. The curvature of the parabolae is directly related to the Young’s moduli
of the corresponding specimens as explained in main text. All results are for glassy
atactic polystyrene at a temperature of T =200 K and hydrostatic pressure of

p=1bar.

As shown in all parts of Figure 6.7, the plot of Gmin—p” Vo as a function of gy has a
parabolic shape, exhibiting a maximum at zero strain (or stress). In Table 6.3 we have
collected the coefficients of the second order polynomial equations describing the
response of the three specimens studied in figures 6.4(c), 6.5(c), and 6.6(c). As a
measure of how well the simulation points can be described by the fitted parabolae, we
use the coefficient of determination of the fit (R?), which is also shown in Table 6.3
for all three specimens.

Table 6.3. Coefficient values of the second order polynomial equation
y=a-x*+b-x+c used to fit the simulation points obtained by plotting the minimum

values of (G—p”Vo)/(ksT) against the strain & for each one of the curves depicted in
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the (c) part of Figures 6.4-6.6. The coefficients of determination R? are also shown as
measures of the agreement between simulation points and fitting equation. The
standard deviation between simulated and fitted points is about 0.02. The simulation
points derived from the (c) part of Figures 6.4 — 6.6, along with the fitted parabola, are

shown in Figure 6.7.

Specimen a b C R?
1 -18772 -16.714 1186.3 0.982
2 -19513 -0.9929 1184.8 0.987
3 -19128 -10.558 1186 0.984

What is the thermodynamic meaning of the slope and curvature of the Gnin— p’ Vo
Versus &y curves? To answer this, we start from the definition of the Gibbs energy,
Equation (6.7). At the point where G exhibits a minimum with respect to the spatial
extent of a specimen, for the stress state 6=(ox,—p,—P) applied in our simulations and
under the shape constraints (sy=&:=—Vv &x) imposed on our model system, this

becomes:

G

n = r(/inh + A/ib + pIVO _VO (O-xx + ZV p)gxx (613)

with p’'=(-o, +2p)/3. On the other hand, from Eq. (6.7) and the condition that G at

the considered point must be at a minimum with respect to the spatial extent of the
system under the prevailing ¢ and T, assuming a deformation-independent v, one

obtains:
dG =d(V), + Ay, + PVo) ~Vo (0, +2vP)d e, =d (V) + A) V(o +2vp)de,, =0

or

(Vi + Aiy) ~V, (o, +2vp)=0 (6.14)

a(‘;XX T.p

Differentiating Equation (6.13) with respect to &y under constant T and p, assuming a

deformation-independent v, yields
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a(Gmm -Pp Vo)| _ a(q/inh + A\/ib)| _Vo (O-xx +2v p) _Vogxx % =0 (6,15)

XX T,p

XX |T P a‘gxx |T b

Combining Equations (6.14) and (6.15) gives

a(Gmin B p’V0)| = Ve %
o€ B

XX |-|— P XX

(6.16)

T.p

Equation (6.16) is actually a special form of the fundamental equation, (Eg. (6.8)), for
the isothermal elastic uniaxial deformation considered here.

On the right hand side of Eq. (6.16) we recognize the derivative of stress with respect
to strain as the Young’s modulus E:

£ %% (6.17)
a(C"XX T,p
From Egs. (6.16) and (6.17) one obtains:
o(G. —pV,
( min p 0)| :_VogxxE (618)
68)0( |T,p

Differentiating Eq. (6.18) once more with respect to &x and assuming a strain-

independent E, we obtain

62 (Gmin - p’VO )|

_V,E (6.19)

b
The physical meaning of the Gmin— p” Vo Vversus & curve for a specific specimen
becomes clear in the light of Eqgs. (6.18) and (6.19). The slope of Guin — p” Vo with
respect to &« is the undeformed system’s volume times the strain times the Young’s
modulus of the specimen. It is positive in the compressive, negative in the tensile part
of the curve, and zero at &y =0. All these characteristics are confirmed by the three

curves of Figure 6.7. The curvature of Gpin—p”Vo with respect to & equals minus the

undeformed system volume times the Young’s modulus.
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In Table 6.4, values of E for the three specimens considered in Figures 6.4-6.6 and
Table 6.3 extracted from parabolic fits to the Guin— p” Vo Vversus &y curve are
compared to values of E extracted directly from the slopes of stress-strain curves of
these specimens (cf. Figure 6.3 and Table 6.2) for the temperature of T=200 K. The
agreement is excellent, confirming the thermodynamic consistency of our QHA

approach to deformation.

Table 6.4. Calculated Young’s moduli E of atactic polystyrene at T=200 K via

Equation (6.19) using the curvature of ,B(G — p’Vo) Versus &x as shown in Figure

min

6.7 and through the corresponding slopes of the individual stress-strain curves

(compare Figure 6.3) for the three specimens.

y E calculated
_ kB% ICurvature| E= B%-|Curvature| from o (s,,)
Specimen 0 0 e
[MPa] [-] [GPa] slope [GPa]

1 0.21241 18772 3.99 4.15

2 0.21241 19513 414 419

3 0.21241 19128 4.06 414

6.5 Conclusions

In this chapter the mechanical properties of glassy atactic polystyrene have been
studied in the elastic regime, using a thermodynamic formulation based on the
quasiharmonic approximation (QHA). Model glassy polystyrene specimens
characterized by periodic boundary conditions have been obtained via isobaric
molecular dynamics quenching, at a very high cooling-rate, of 5 completely
uncorrelated equilibrium liquid configurations. We have predicted the specific volume

as a function of temperature at 1 bar based on the “brute force” MD trajectories.
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Moreover, we have computed the same specific volume through the QHA at
temperatures lying in the vicinity of and below the glass temperature of the model,
using both a quantum mechanical and a classical expression for the vibrational
partition function. Results from the QHA have been found to be in very good

agreement with MD results and with available experimental measurements **.

Additionally, a set of 200 uncorrelated specimens of glassy atactic polystyrene, each
trapped in a basin of its potential energy landscape, have been generated using the
QHA and subjected to uniaxial stress-controlled mechanical deformation computer
experiments at four different sub-glass transition temperatures in isothermal uniaxial
tension and compression under stresses up to 30 MPa. A formulation based on the
QHA for extracting the Young’s modulus E and Poisson ratio v as averages over all
specimens from these computer experiments has been developed and implemented.
The deformation has been found to be elastic under the considered range of stresses,
which brought about deformations less than 1%. Predicted values of E and v and their
temperature dependence are in good agreement with available experimental values,
indicating that the QHA approach adopted here can successfully capture the elastic

response of a polymer glass *.

The Gibbs energy versus strain curves generated in the course of the QHA-based
deformation simulations have been analyzed in detail to quantify how the geometric
characteristics of basins and changes in these characteristics upon elastic deformation
vary from specimen to specimen. Three general types of response to deformation have
been identified, which differ in terms of changes in the value of Gibbs energy and in
the shapes of the basins with strain. In the third type of response identified, strong
tilting of the basins is observed, indicating that disappearance of the basins (emptying
of the basins into nearby basins) may be imminent at strain levels higher than those
considered here. Moreover, a method has been developed for extracting the Young’s
modulus from the curvature of the QHA Gibbs energy with respect to strain in the
uniaxial deformations considered and used to show the thermodynamic consistency of

our calculations **°.

Work reported in this chapter indicates that invoking the concept of basins in the
energy landscape, along with the QHA, yields sound estimates for the volumetric

properties and small-strain mechanical response of a polymer glass.
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Main conclusions and innovations

In this work, through the use of appropriately designed molecular simulation
techniques, four main accomplishments have been brought to completion. First, by
projecting the multidimentional configuration space onto a relatively simpler set, that
of basins constructed around local minima of the potential energy function, and by
analyzing transitions between adjacent basins as infrequent events, we were able to
record structural rearrangements at an atomic level of the simulated system. In
particular, in an atomic glass, cage-breaking events are observed to take place when
relatively fast and frequent basin-to-basin transitions occur. On the other hand, a more
complex structural rearrangement of atoms is observed to happen at larger time scales,
when relatively infrequent and sparse metabasin-to-metabasin transitions are realized.
The last kind of structural rearrangement demands a coordinated move of several
atoms, moving in a more cooperative fashion, than in a cage-breaking event. Both
kinds of movement are related to the particularly slow diffusive motion of atoms in the
glassy state. The second kind of move is, however, more infrequent and influenses a
relatively larger area of the molecule since it prerequires the coordinated participation

of a usually larger amount of structural units.

The second innovation developed in the context of this thesis constitutes the
development, implementation and validation of the lumping algorithm, a mathematical
tool constructed to deal with systems evolving through uncorrelated transitions in a
network of discrete states according to a master equation. In our applications, the states

are basins defined through the PEL of a glass. With the help of our lumping algorithm
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one is able to selectively track the long-time dynamics of an arbitrarily large system of
states, being described as a set of discrete basins of the PEL among which transitions
take place, and completely ignoring the irrelevant short-time relaxation phenomena
which can be monitored by almost any one of the known conventional simulation
techniques. This is accomplished through the construction of an appropriate, equivalent
in terms of long-time dynamics, consisting of substantially fewer lumped states. The
number of states in the lumped system can be fixed a priori, in order to match the
computational resources available for addressing the time scales of interest. The only
prerequisite for this algorithm to work is that the initial system’s dynamics should

comply with a first order kinetic scheme.

Thirdly, a new graphical representation of the PEL has been proposed. This alternative
methodoly is based on graph theory and provides a rough but good first estimate for
the lumping transformation matrix. Beyond this use, the temporal disconnectivity
graph can be applied to visually verify and validate lumping results. Most importantly,
it provides a visualization of the temporal evolution of a system on its PEL. In other
words, it reveals how the connectivity of accessed states and the motion of the system
among them change over time as the system evolves. This representation is unique,
since all other pre-existing used visualization techniques are static, in the sence that
they do not provide any kind of information related to how characteristics of the
accessed part of the PEL, such as connectivity, diffusivity, rates of transition between
basins etc. change with time.

All the above mentioned techniques aim at making the monitoring of long-time
relaxation phenomena present in glassy materials feasible. In this sense, these
techniques are focusing on time, since ageing is actually the phenomenon of gradual
change in the properties of glassy materials as they slowly tend towards
thermodynamic equilibrium. The characteristic times of the ageing phenomenon 20°C
below Ty are at least 10 orders of magnitude longer than the longest times that can be
simulated nowadays with “brute-force” molecular dynamics techniques with special-
purpose hardware and software. Nevertheless, they can become accessible via the
potential energy landscape-based approach in the context of which this thesis was
carried out, thanks to its use of infrequent event techniques to compute rate constants

for arbitrarily rate transitions from atomistic information.
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A fourth new contribution of this thesis is mechanical deformation experiments have
been successfully simulated and the response of a polymer glass to imposition of
deformation in the elastic regime has been quantitatively estimated and validated by
invoking a quasi-harmonic approximation for the thermal motion of the atomistic
configurations within the energy basins where it is trapped. Moreover, uniaxial, stress-
controlled deformation experiments showed that the PEL is distorted upon imposition
of deformation and its geometry can significantly change, even for relatively small
deformations in the elastic regime. This fact has as an undeniable consequence that the
entire time-evolution of the system on its PEL, and thus ageing, is affected through
deformation, since connectivity, transitions and rates between basins change with the

imposed deformation.
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Research outlook

All of the methods developed and described within the context of this work make use
of the features and special characteristics of the PEL to explain phenomena and
estimate properties related either to the time evolution of the studied system or to its
response to mechanical deformation. In other words, every result presented in this
work is either time- or deformation-related. The ultimate goal of the research effort of
which this thesis constitutes a part is to combine these two parameters and simulate the
response of a glassy system evolving in time, while at certain times a given
deformation is imposed to it. Towards this end, the QHA will be coupled with the
DIMW method °* **° for tracking temporal evolution as a succession of transitions
between basins in a landscape that is progressively distorted by deformation, in order
to compute temperature and deformation rate-dependent stress-strain curves for our
glassy specimens over a larger range of strains, extending into the plastic deformation
and yield regimes.

The DIMW method will be responsible for the time evolution and expansion of the
network of states. Next to this method a deformation method should be developed and
coupled to DIMW, which will be responsible for stepwise deforming the already
explored via DIMW potential enery minima and relevant saddle points. The ultimate
goal is to create a self-consistent mechanism which deforms the system with realistic

deformation rates similar to the ones experimentally used (<é~10‘3—10‘l [3‘1]). In

addition, each time a deformation step is imposed, the rate constants for interbasin
transitions in the network of basins accessed up to that point should be re-evaluated to
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reflect the new system boundaries.

As we have seen mechanical deformation can change the form and shape of the PEL
and thus the connectivity between states should be recalculated after every realized
deformation step. After each deformation step Ae¢, the distorted network of states will
be left to evolve in time and relax its probability distribution among basins for a time
interval dictated by the adopted constant deformation rate At =Ag /&, whereas the re-
scaled rate constant matrix for the new connectivity of the expanding network will be
evaluated. Moreover, the system will be allowed to access additional basins according
to the DIMW approach. After the time step At has expired, a new deformation step will

be implemented and the process will repeat itself.

The big challenge with this procedure is to reach the yield point and enter the plastic
regime at a reasonable &. At long times, the number of explored minima and saddle
points can become enormous and lumping should be applied to reduce the dimension
of the rate constant matrix without harming transitions between basins or metabasins
that strongly affect long-time dynamics. The whole venture may be visualized with the
help of a temporal disconnectivity graph. According to this procedure the evaluation of

long-time relaxation processes (such as the g— and « —relaxation) can commence,

whereas at the same time macroscopically observed phenomena beyond the yield point
(such as strain-hardening and strain-softening) can be examined from a microscopic,
atomistic perspective and potentionaly related to relaxation atomic mechanisms. The
logical diagram presented in Figure 8.1 describes in bulk the step succession of the

above described algorithm.
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Figure 8.1: Logical diagram describing the time relaxation-deformation algorithm for

simulationing mechanical deformation experiments under realistic deformation rates.
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List of typical symbols

In the following list the most commonly used symbols of this work are explained. This
list is not exhaustive and acts as a supplementary aid for a better understanding. The

meaning of all symbols used in this work is explicitly stated in the main text.

Scalars and functions

a,b,c,d = constants of the weighting function h for tilting the flat probability

distribution

acc(o—n) = probability of accepting the trial move

A = the system’s Helmholtz energy

A = state space of the original (unlumped) system

B = constant in VVogel-Fulcher-Tammann equation

B’ = constant

o = fraction of particles randomly chosen

C, = heat capacity under constant pressure

D = activation energy in the VVogel-Fulcher-Tammann equation
D’ = constant in Arrhenius-like equation

E = Frobenius norm of the error matrix or Young modulus
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f = modification factor of the Wang-Landau method
g = density of states

g(r) = radial distribution function

G = the system’s Gibbs energy

h = weighting function

H = the system’s Hamiltonian

H = Histogram or system’s enthalpy

K = the system’s kinetic energy

Ki,; = rate constant for the transition i — j

| = the edge length of the periodic qubic simulation box

m, = mass of the i particle

m, = memory function

n = dimension (number of states) of the considered system
N = number of particles (atoms) in system

N(0) = propability of being in the old configuration

N (n) = propability of being in the new (trial) configuration

p = pressure

p' = fraction of sub-systems

P = ith element of the probability column vector

Q = the sum of the squares of the absolute values of the real parts of all

eigenvalues of the rate matrix K or partition function
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R = ratio

i = distance between atoms i and j

I, = cut-off distance

S = the system’s entropy

t =time

T = Temperature

T, = boiling temperature

T, = mode coupling critical temperature
T = freezing temperature

T, = glass transition temperature

T, = melting temperature

T,, T, = Kauzmann temperature

T = cooling rate

U = the system’s internal energy

v = the system’s potential energy

\Y = the system’s volume

W = Frobenius norm of the rate constant matrix of the lumped system K.

Measure of the ability of the lumped system to reproduce long-time
dynamics of the initial system or possibility of observing a structural

rearrangement event

z = objective function or number of atoms in a cooperatively rearranging sub-

system

z,,2,,z, = parameters of the objective function z
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Vectors and Matrices
a = the column vector of particle accelerations

a,b,c  =the edge vectors forming the simulation box

A = a diagonal matrix of the equilibrium concentrations or a column

composition vector
B = arbitrary non-square matrix

D = a diagonal matrix with diagonal elements the real parts of the eigenvalues

of the symmetric rate constant matrix K, of the initial system

E = the non-square error matrix

F = force acting on particle i

h = scaling matrix

K = a square matrix containing the rate constant coefficients for transitions
M = the transformation matrix inducing lumping

p = generanlized momenta

P(t) = column vector of the occupancy probabilities at time t

q = generanlized coordinates

I, = position vector of atom i

Y, = the column vector of particle velocities

X = a point in the three dimensional space, defined by the values of E,W,n
\ = a square matrix containing as columns the eigenvectors of the symmetric

rate constant matrix K of the initial system

€ = strain tensor
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(4 = stress tensor

Greek letters
a = thermal expansion

aforw = attempt probability of a forward trial move

apack = attempt probability of a reverse trial move

Jij = the thermodynamic beta, equal to 1/(kgT) or isothermal compressibility
A6 = change of any changeable quantity

& = the depth of the potential well of a binary Lennard-Jones system consisting

of atoms of type i and |

& = the strain tensor element located at i-th row and j-th column

n = dynamic viscosity

0 = bond angle

A = coupling parameter

A = the ith eigenvalue of the rate constant matrix

M, = chemical potential of the crystalline state

4 = chemical potential of the liquid state

v = molecular volume and Poisson ratio

v = critical molecular volume value for molecular movement

Y = critical molecular volume value for distinction between atomic cells

& = typical length-scale
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7r(o — n) = transition probability for going from the old to the new configuration
P = density function
o = the Van der Waals radius of a binary Lennard-Jones system consisting of

atoms of type i and |

O = the stress tensor element located at i-th row and j-th column

= the i-th singular value of the rate constant matrix

T = relaxation time

@ = torsional angle

Q, = normalized form of the intermediate scattering function
X = torsional angle of phenyl-rings around their stems

74 = out-of-plane angle

, = angular frequency of the i-th vibrational mode

Symbols

\Y = nabla differential operator denoting standard derivation

= any property related to the lumped system

= conjugate transpose of a matrix

= any property characterizing the symmetrized rate constant matrix

|| ||F = the Frobenius norm

= the transpose of a matrix

S = a symmetric matrix
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0 = equilibrium values
= first order derivative in respect to time
= second order derivative in respect to time
= third order derivative in respect to time

= fourth order derivative in respect to time

< > = mean value
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Appendix A

Force field description and contributions to the total
potential energy function for the united atom model of

atactic polystyrene.

In this Appendix, a detailed schematic explanation is given of all bonded energy
contributions [Egs. (2.42)-(2.49)] to the total potential energy [Eq. (2.50)] introduced in
Section 2.4.1, as well as a table containing all force field parameters. The basic
parameters involved in every bonded energy contribution will be represented with the
help of a small atactic polystyrene chain consisting of three monomers.

1 2
e Bond stretching potential for every covalent bond: Voo = Z Ekbond(li_lin)

LENGTH  all bonds i

with | symbolizing the bond length:
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Figure A.1: Graphical depiction of the parameters of the harmonic bond stretching

potential energy term.

e Bending potential for all bond angles, both in the backbone chain () and in the

, A A A
. ) = k,(6 -6 VorenvL = Z ke(ei_eo)
phenyl rings (&): “Bonp. lbordmges 0( i .,o) » BOND " il sromatc
bond angles i
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Figure A.2: Graphical representation of the parameters of the bending potential energy

term for backbone and phenyl ring angles.

Concerning torsional angles an explanation is in order. In a chain of atoms A-B-C-D, the
dihedral angle between the plane containing the atoms A,B,C and that containing B,C,D.
In a Newman projection the torsion angle is the angle (having an absolute value between
0° and 180°) between bonds to two specified groups, one from the atom nearer
(proximal) to the observer and the other from the further (distal) atom. The torsion angle
between groups A and D is then considered to be positive if the bond A-B is rotated in a
clockwise direction through less than 180° in order that it may eclipse the bond C-D: a

negative torsion angle requires rotation in the opposite sense.

Stereochemical arrangements corresponding to torsion angles between 0° and £90° are
called syn (s), those corresponding to torsion angles between £90° and 180° anti (a).
Similarly, arrangements corresponding to torsion angles between 30° and 150° or
between -30° and -150° are called clinal (c) and those between 0° and 30° or 150° and
180° are called periplanar (p). The two types of terms can be combined so as to define
four ranges of torsion angle; 0° to 30° synperiplanar (sp); 30° to 90° and -30° to -90°
synclinal (sc); 90° to 150° and -90° to -150° anticlinal (ac); +150° to 180°

antiperiplanar (ap). The above definitions are depicted in the following figure:

synperiplanar

Du

-30° +30°

- synclinal
-5 C

+ synclinal

+5¢C
-90°

- anticlina

+90°
+ anticlinal

—dc +ac

=iy +150°

antiperiplanar

Figure A.3: Adopted convention for the definition of positive torsion angles
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e Torsional potential for all rotatable backbone bonds:

VrorsionaL = Z k¢ (1 —C0s 3¢, )

BACKBONE all torsion
angles i

Figure A.4: Backbone torsional angle ¢ around bond B-C corresponding to the angle
between the plane formed by the atoms A,B,C and the one formed by backbone atoms
B,C.D

e Torsional potential for the torsions of phenyl rings around their stems:

_ 2
VrorsionaL = Z k;( cos (Zi - Zo)
PHENYL all phenyl
torsion angles i
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Figure A.5: Torsional angle y around bond B-C corresponding to the angle between

the plane formed by the atoms A,B,C and the one formed by atoms B,C,D

e OQut-of-plane bending potential to preserve the coplanarity of the phenyl and the

2
phenyl stem: Yerenve = >k (wi-w)

COPLANARITY all phenyls i
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Figure A.6: Torsional angle w preserving coplanarity of the phenyl and the phenyl

stem. The blue plane accounts for the planarity of the phenyl ring. Every atom of the

phynyl ring is on that plane. The angle between the pink plane and the blue one is v .
The equilibrium value for this angle, v, is zero, since the phenyl stem and the phenyl
ring should be on the same plane. Through the imposition of a large constant value kw

we make sure that the deviation from this equilibrium value is very small.

e Torsional angle ¢ about all bonds connecting aromatic carbons in the phenyl ring,

i - = K, (1+cos24
to preserve the planarity of the ring: (Vg?hﬁ*g'ONAL a”phgf ¢( +C0S ¢.)

PLANARITY torsion angles i
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Figure A.7: Torsional angle ¢3 preserving planarity of the phenyl ring. Again in this
case, as in the previous one, the equilibrium value for this angle, ¢?0, is zero, since all

aromatic atoms should be coplanar. Through the imposition of a large constant value k¢

we make sure that the deviation from this equilibrium value is very small.

e Improper torsional potential to preserve the tacticity of every phenyl unit in respect

1 6
to the skeletal chain: (VIMPROPER = z W(Am,m + A123,m + Aszg,m)

all chiral
carbons m

For the definition of this kind of torsional angle, three different planes need to be
defined for every monomer unit. The enumeration of the atoms is according to Figure
2.11:
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Figure A.8: Graphical representation of the improper torsional potential angles Qijk to

preserve the chirality of all carbons bearing a phenyl substituent.

Followingly, Table A.1 gives the values for all parameters involved in every one of the

above mentioned energy terms:
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Table A.1: Parameter values for non-bonded and bonded potential energy contributions

expressed through Eq. (2.50)

Vay= el(ro/r)2—
€=10.12 kcal mol™!
€ = 0.09 keal mol—*
€ =10.12 keal mol-!
cutoff distance =9 &

=kl — L

fa =317 keal mol~! A-2
k=317 keal mol~! A2
Iy = 525 keal mol—? A-2

Va= kgl — 8)2

kg = 60 kcal mol~? rad—
ko= 63 kcal mol~! rad~
ks = 60 kecal mol-1! rad-
ks = 70 kcal mol~! rad—
ke = 72 kcal mol~! rad?

== =

3_(r.;;'r}‘]: € = (g6

1. Nonbonded Interactions

ry = (rg1 122

ro = 4.321 A for CH,

n =4.153 A for aliphatic CH

7y = 4.133 A for aromatic C and CH

2. Bond Lengths

lo=1.53 A for aliphatic CH,—CH
i’u = 1.51 A for CH(aliph)-C(arom)
o= 1.40 A for CH(arom)—CHf(arom)

3. Bond Angles

9;_1 = 109.5° for aliphatic CH,— CH—CH,
= 109.5° for aliphatic CH—CH:—CH

Gg 109.5° for CH;(aliph)—CH(aliph)-C{arom)
= 1207 for CH(ahph)-C(arom)—CH(arom)

90 = 120° for CH(arom)—CH(arom)—CH(arom)

4. Backbone Torsion (X—CH(aliph)—CH,(aliph)—X)
Vg = kgl — cos 3¢q)
kz= 1.4 keal mol-!
(trans taken as ¢ =0)

5. Torsion CHz{aliph)— CH:(aliph) —CH(arom)—CHf{arom)

(Phenyl Ring Torsion Around CH(aliph)—C(arom))
Vo = kp (1 + cos2g)
ke =1kecal mol~!
(trans taken as @ =0)

6. Torsion CH(arom)— CH(arom)—CH{arom)—CH(arom)

Ve=1kz (1 + cos zr)
ko= I’chalmo]'
(t!a.ns takenas ¢ =0)

7. Improver torsion (To Maintam Chirality)

4

= (1I6K)(Aypg + Appa + Agzg)

imp —

Asik = cos B — cos O with 8p = 109.5°

k’ — ]JUkB

37 355 kJ.“mol
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Appendix B

Assessment of the efficiency of the Wang-Landau Algorithm

in sampling the configuration space of the lumping problem

As explained in Section 4.3 of the main text, the lumping problem can be formulated as

an equivalent minimization process:

rrﬁmn z (B.1)
withz=ziW+ 2, E +z3 i (B.2)

where the objective function z is a linear combination of the long-time dynamics
parameter W defined via Eq. (4.16), the lumping error E defined via Egs. (4.9 - 4.12) and
(4.14), and the size A of the lumped system. In our calculations concerning the network
of basins of a glassy Lennard-Jones mixture, the coefficients z;, z,, and z3 are set to 0.5
ps, 0.3 ps, and 0.2, respectively. The minimization takes place with respect to the size n
of the lumped system and with respect to the structure (choice of “0” or “1” as elements)
of the Ax n lumping matrix M, subject to the constraint that every column of M
contains exactly one “1” and that every row contains at least one “1” (see also Section
4.2.1 of the main text).

In the main text we have described a Wang-Landau type algorithm for exploring the
configuration space (A, M), accumulating the density of states associated with various

values of z, and identifying configurations of minimal z. In this Appendix we present
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evidence that this algorithm is more efficient than alternative, more conventional,

algorithms for exploring the same configuration space.

In particular, the assessment of the overall efficiency of the proposed Wang-Landau
algorithm is sampling the configuration space of the lumping problem is implemented
through a set of supplementary simulations. To address the efficiency of our algorithm,
we have focused on a smaller network of basins than the one treated in Section 4.4 of
this text. This smaller network encompasses 290 basins. We have employed our Wang-
Landau scheme to explore the (A,M) space for lumping this network. In parallel, we
have sampled the same space with Metropolis Monte Carlo simulations, using the
objective function z (Eq. B.(2)) as the equivalent of an energy function and setting the

“thermal energy” k,T equal to 1. Simulation results from both the Wang-Landau and

Metropolis Monte Carlo runs are shown in Figures B.1 to B.4, where it becomes evident
that the applied Wang-Landau MC scheme is indeed more efficient than alternative,

more conventional algorithms for exploring the same configuration space.

In particular, in Figures B.1 to B.3 we plot the lumping error E, the long-time dynamics
parameter W, and the lumped size A for sampled (1, M) configurations of the 290-basin
test system, as functions of the CPU time. These quantities are given for both Wang-
Landau and for Metropolis sampling. The full objective functionz =z/W + , E + 23 fA

as a function of CPU time is shown in Figure B.4 for both sampling schemes.



Appendix B 223

d4.5e+13 T T T T T T

des 13

358413 |

Je+13

25e+13

Els

2e+13 |

15813

1e+13 =
WEH'IQ-LEH‘II:IEU B
Resi? hmp?ﬂﬁ ] 1 1 1 1
0 10000 20000 30000 40000 0000 OO Ta00a

CPU-tme [s]

Figure B.1: Lumping error E as a function of CPU time for Wang-Landau sampling and
for Metropolis sampling of the (A, M) configuration space considered for lumping a
network of 290 basins of the glassy Lennard-Jones mixture described in the main text.
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Figure B.2: Long-time dynamics parameter W as a function of CPU time for Wang-
Landau sampling and for Metropolis sampling of the (A, M) configuration space
considered for lumping a network of 290 basins of glassy Lennard-Jones mixture.
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Figure B.3: Size n of lumped system as a function of CPU time for Wang-Landau
sampling and for Metropolis sampling of the (A, M) configuration space considered for
lumping a network of 290 basins of the glassy Lennard-Jones mixture.
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Figure B.4: Objective function z = zW + z, E + z3 i as a function of CPU time for
Wang-Landau sampling and for Metropolis sampling of the (i, M) configuration space

considered for lumping a network of 290 basins of glassy Lennard-Jones mixture.

Clearly, the Wang-Landau scheme visits a wide range of configurations characterized by
a much broader range of E, W, A, and z values than the Metropolis Monte Carlo scheme.
In the latter, fluctuations are much smaller; for the whole duration of the simulation, the
Metropolis Monte Carlo run appears trapped in the vicinity of a small set of local
minima of z. In Figure B.5 is shown the minimum value of the objective function z

sampled by either one of the two schemes as a function of CPU time.
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Figure B.5: Minimum value of the objective function among all visited configurations

as a function of CPU time for Wang-Landau sampling and for Metropolis sampling of

the (1, M) configuration space considered for lumping a network of 290 basins of the

glassy Lennard-Jones mixture.

Clearly, the Wang-Landau scheme is much more effective in accessing configurations of

low z. Therefore, it provides a much more satisfactory solution to problem of

minimizing z than the Metropolis Monte Carlo scheme. The comparative advantage of

the proposed Wang-Landau scheme in optimizing the lumping is evident from Figure

B.5.
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