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Περίληψη

Στην παρούσα διπλωματική εξετάζεται ένα δικτυωμένο πολυπρακτορικό σύστημα

ρομπότ, αρχιτεκτονικής οδηγού-ακολούθου, ευρισκόμενο σε έναν επίπεδο χώρο

εργασίας παρουσία εμποδίων. Προτείνεται μία αποκεντρωμένη στρατηγική αναδι-

άταξης των προδιαγραφών συνδεσιμότητας και σχηματισμών η οποία εγγυάται τη

σύγκλιση του συστήματος στο επιθυμητό σημείο. Πιο συγκεκριμένα, διαμορφώνε-

ται ένας ελεγκτής βασισμένος στην φιλοσοφία των Αποκεντρωμένων Συναρτήσεων

Πλοήγησης ο οποίος περιγράφει επαρκώς τους περιορισμούς ασφαλείας καθώς και

τους στόχους του συστήματος. Ωστόσο, η εμφάνιση ανεπιθύμητων σημείων ισορ-

ροπίας δεν μπορεί να αποκλειστεί. Σε τέτοιες περιπτώσεις χρησιμοποιείται ένας

διανεμημένος διακριτός ελεγκτής ο οποίος επιχειρεί να λύσει ένα πρόβλημα Δια-

νεμημένης Ικανοποίησης Περιορισμών σε μία τοπική διαμέριση Voronoi. Η πλη-
ροφορία που προκύπτει χρησιμοποιείται για την απαραίτητη αναδιάταξη ώστε το

σύστημα να προχωρήσει περαιτέρω προς τον στόχο του. Τελικά, το σύστημα είτε

συγκλίνει στο επιθυμητό σημείο, είτε αποκτά τοπολογία δένδρου. Στην δεύτερη

περίπτωση το σύστημα χρησιμοποιώντας έναν άλλο ελεγκτή βασιζόμενο στην τε-

χνική της Προδιαγεγραμμένης Απόδοσης συγκλίνει αποδεδειγμένα. Τα θεωρητικά

ευρήματα επιβεβαιώνονται μέσω προσομοιώσεων.

3





National Technical University of
Athens

School of Mechanical Engineering

Control Systems Lab

A decentralized hybrid control
scheme for networked multi-agent
systems with guaranteed collision

avoidance and connectivity
maintenance

Author:
Constantinos Vrohidis

Supervisor:
Professor Kostas J.
Kyriakopoulos

October 2016





Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Kostas J.
Kyriakopoulos for giving me the opportunity to be a member of his lab and for
providing me with his deep insight.

Dr. Charalampos Bechlioulis had an immense contribution to the present
thesis. I deeply thank him for that, but foremost for always being willing to
share his knowledge and expertise in addition to the odd... riddle.

I am also indebted to Panagiotis Vlantis for the numerous interesting and en-
lightening conversations he shared with me. His scientific integrity is something
I look up to.

As a member of the Control Systems Lab, I have had the pleasure of inter-
acting with a number of remarkable individuals.

Chris Mavridis, whom by now I consider a friend, was always helpful. For
that I thank him.

I also want to thank Dr. George Karras and Dr. Panos Marantos for creating
a positive atmosphere.

Michael, George, Giorgos, Nikos, Shahab, Aris, Zisis, Babis and Chris.
Thank you all guys. It’s been a pleasure.

To all my friends; I will make it up to you.
Finally, I would like to express my deepest gratitude to my family for always

standing by me, reminding me who I want to be.

3





Abstract

In the present thesis, we consider a networked multi-robot system operating in
an obstacle populated planar workspace under a single leader-multiple followers
architecture. We propose a decentralized reconfiguration strategy of the set of
connectivity and formation specifications that assures convergence to the de-
sired point, while guaranteeing global connectivity. In particular, we construct
a low-level Decentralized Navigation Functions based controller that encodes
the goals and safety requirements of the system. However, owing to topological
obstructions, stable critical points other than the desired one may appear. In
such case, we employ a high-level distributed discrete procedure which attempts
to solve a Distributed Constraint Satisfaction Problem on a local Voronoi parti-
tion, providing the necessary reconfiguration for the system to progress towards
its goal. Eventually, we show that the system either converges to the desired
point or attains a tree configuration with respect to the formation topology, in
which case the system switches to a novel controller based on the Prescribed
Performance technique, that eventually guarantees convergence. Finally, simu-
lation studies verify the efficacy of the approach.
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1 Introduction

Multi-agent systems have recently emerged as an inexpensive and robust way of
addressing a wide variety of tasks, ranging from exploration, surveillance, and
reconnaissance to cooperative construction and manipulation. The success of
these systems relies on efficient information exchange and coordination between
the members of the team. More specifically, their intriguing feature consists on
the fact that each agent makes decisions solely on the basis of its local perception
of the environment, which has also been observed in many biological systems
[1]. Thus, a challenging task is to design the decentralized control approach
for certain global goals in the presence of limited information exchanges. In
this direction, drawing some enlightenments from biological observations, dis-
tributed cooperative control of multi-agent systems has received considerable
attention during the last two decades (see the seminal works [2, 3, 4, 5, 6, 7]
for example). In particular, the leader-follower scheme, according to which the
following agents aim at reaching a consensus with the leader’s state, employing
only locally available information, has become very popular, since in the ab-
sence of any central control system and without global coordinate information,
following a leader is an accountable motivation.

1.1 Literature Review

In [8] the authors address the formation stabilization problem in the presence of
point obstacles with connectivity maintenance for acyclic communication graphs
using decentralized navigation functions. In [9] flocking with obstacle avoid-
ance is examined using a graph theoretic approach that allows modelling of
split/rejoin manoeuvres. Split and join manoeuvres based o a Receding Horizon
Approach and a switching law are also discussed in [10]. In [11] a navigation-like
function controller is utilize in conjunction with constrained-based programming
to prioritize between formation specifications satisfaction and convergence to the
destinations in the presence of obstacles. In [12, 13] Prescribed Performance
Control methods are used to address the connectivity maintenance and forma-
tion problem, respectively. In [14] consensus and formation with connectivity
maintenance and bounded control inputs is addressed. Finally, the authors of
[15] derive a navigation functions inspired controller that preserves line-of-sight
constraints.
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2 Problem Formulation

2.1 System Description

We consider a networked system of n ∈ N robotic agents, indexed by the set
V , N≤n. The first agent is the leader while the remaining n − 1 agents are
followers. The agents are moving in a subset W of R2, governed by the following
kinematics:

ẋi(t) = ui(t), i ∈ V, (2.1)

where xi(t) ∈ W and ui(t) ∈ R2 denote the position and control input vectors
of agent i at time t ∈ R≥0, respectively. The overall system state x ∈ R2n is the
concatenation of the individual states of the agents. Accordingly, we define the
overall system state x as:

x ,
[
xT1 . . . xTn

]T ∈ R2n. (2.2)

For every i ∈ V we define,

x̄i , [xT1 . . . x
T
i−1 x

T
i+1 . . . x

T
n ]. (2.3)

Every agent i ∈ V is a robot and thus possesses a physical substance which, in
the context of this thesis, will be identified with a disk of radius ραi centered at
xi. We now make the following assumption:

Assumption 1 All the agents have the same radius henceforth denoted by ρα,
i.e., ρai = ρa, ∀i ∈ V.

Then, at each time t ∈ R≥0, agent i occupies the set B(xi, ρα) , {z ∈ R2 :
‖z − xi‖ ≤ ρα}.

2.1.1 Sensing Model

All agents are assumed to possess the ability to sense the environment. In
particular, every agent is able to sense other entities that are sufficiently close.
To make the previous statement mathematically precise, let us identify each
entity e with some subset E of W.

Definition 2.1 The sensing distance of an agent i ∈ V from a subset E of W,
denoted by d(xi, E) is given by the equation:

d(xi, E) , inf
z∈E
‖z − xi‖. (2.4)

By sensing an entity e, we define the act of acquiring all the necessary
information for fully determining the structure of the corresponding set E. For
our purposes, we will consider that every agent i ∈ V can sense any entity e if
d(xi, E) ≤ ρs. Then, ρs is called the sensing radius, with a common value for
all agents.

10
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Figure 2.1: A spatial instance of a system comprising of 4 agents and the induced
communication graph.

Finally, two entities will be considered separate and will be identified as
such, as long as no inclusion on the corresponding set holds. This is a reason-
able model since we will only be working with entities that are disk-shaped.
Consequently, each entity can be fully described by its center and radius and
separate identification of intersecting entities is trivial.

2.1.2 Communication Model

As already mentioned, the multi-agent system under consideration is addition-
ally a networked system. This means that agents are equipped with communi-
cation capabilities. Inter-agent communication is considered bidirectional and
is governed by one simple rule, namely:

For every pair of agents i, j ∈ V, with i 6= j, direct communication between
the agents at time t is possible if and only if ‖xi(t)− xj(t)‖ ≤ ρc

The parameter ρc is called the communication radius. The induced commu-
nication network can be mathematically abstracted as a communication graph.

Definition 2.2 The communication graph Gc (x (t)) = (V, Ec(x(t))) is a prox-
imity graph[16], where the set of edges at each time instant t is defined as:

Ec(x(t)) = {(i, j) ∈ V × V : i 6= j, ‖xi(t)− xj(t)‖ ≤ ρc}.

Let us now present a simple example illustrating the aforementioned ideas.
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Example 2.1. Consider a system consisting of n = 4 agents, in a spatial con-
figuration presented in Figure 2.1. The opaque disks have a radius equal to half
the communication radius. Thus, two agents can establish direct bidirectional
communication as long as the corresponding disks intersect. The communica-
tion graph Gc(x) corresponding to the spatial configuration is illustrated on the
right. In particular, the set of vertices is V = {1, 2, 3, 4} and the set of edges
denoting direct communication is Ec(x) = {(1, 2), (1, 4), (2, 3), (2, 4)}.

As in [17], we make the following assumption regarding the values of the
communication radius ρc and the sensing radius ρs.

Assumption 2 The values of the communication radius ρc and of the sensing
radius ρs coincide, i.e., ρc = ρs.

2.2 Workspace Description

2.2.1 Definitions

We will now proceed with giving a short description of the workspace set W
where the agents are operating. In particular the workspace is defined as the
closed disk of radius ρw − ρα, i.e.,

W , {q ∈ R2 : ‖q‖2 ≤ ρw − ρα}. (2.5)

Additionally, the workspace is filled by m ∈ N disk-shaped obstacles indexed
by the set Io , N≤m. Each, obstacle k ∈ Io is completely determined by its
position xk ∈ W, and radius ρk ∈ R>0. Thus we will consider that each obstacle
k ∈ Io occupies an open set B(xk, ρk + ρα).

Note that the subtraction and addition of the agent radius ρα in the various
definitions, allows us to perceive an agent as a point lying in its center when
considering a situation from its point of view, without altering the Euclidean
distance of the actual entities.

Remark 2.1. Having defined the notion of obstacles, the only entities involved
in the present thesis are either agents or obstacles.

We can now define the free space F as

F , W \
⋃
k∈Io

B(xk, ρk + ρα), (2.6)

which is essentially the workspace with the obstacles removed, and the free space
of each agent i ∈ V which is a function of the states of the agents V \ {i} as

Fi(x̄i) , F \
⋃

j∈V\{i}

B(xj , 2ρα). (2.7)
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W W

Figure 2.2: Two workspace scenarios. On the left the free space F is a discon-
nected set whereas on the right it is connected.

2.2.2 Overlapping Obstacles

The definitions given in the prequel do not prohibit the existence of obstacles
that are overlapping. This fact in turns allows for the set F to become discon-
nected (see Figure 2.2). This situation can be problematic since it implies that
certain tasks on F are infeasible. Thus we make the following assumption:

Assumption 3 The free space set F is connected.

We make also the following assumption:

Assumption 4 At the initial time the convex closure of the positions of the
agents, co

(⋃
i∈V x(0)i

)
⊂ F and for every t′ such that x1(t′) = xd1, co

(⋃
i∈V xi(t

′)
)
⊂

F as well.

In essence Assumption 4 declares that the initial and final configurations are
sufficiently away from obstacles.

2.3 Safety Specifications

We now discuss the safety specifications that the system under discussion should
respect. As safety specifications we define certain conditions that should not
be violated during the operation of the system. For our purposes, the following
events should not occur any time t:

1) Collisions,

2) Loss of global connectivity of the communication graph Gc.

Thus, two safety specifications corresponding, one for each of the two events, are
defined. Note that the first specification is restricted to a specific portion of the
system,i.e., a subset of the agents’ states, whereas the second is a global system
specification, in the sense that it describes a property which is determined by
the full system state x. The preceding notions are now properly developed.

13



2.4 Collision Avoidance

The collision avoidance specification applies to each agent i ∈ V and is thus an
atomic specification. In particular, every agent must avoid colliding with any
other entity, i.e., any obstacle in Io and every agent in V \ {i}.

Inter-agent collision avoidance Given a pair of distinct agent i, j ∈ V,
the inter-agent collision avoidance specification is formulated as the following
condition:

∀t ≥ 0, ‖xi(t)− xj(t)‖2 > 2ρα. (2.8)

Note that the condition encoding an inter-agent collision avoidance specifica-
tion is symmetric with respect to the agents involved, due to the positive ho-
mogeneity of the norm operator. The construction of controller abiding to this
specification is greatly facilitated by the preceding fact.

Obstacle avoidance For an agent i ∈ V and an obstacle k ∈ Io, the obstacle
avoidance specification is given by the following inequality:

∀t ≥ 0, ‖xi(t)− xk(t)‖2 > ρk + ρα. (2.9)

Considering (2.8) and (2.9), the collision avoidance specification for our system
is summarized as:

∀t ≥ 0, ∀i ∈ V, xi ∈ Fi(x̄i). (2.10)

2.5 Global Connectivity Maintenance

In order to accomplish almost any cooperative tasks, multi-robot systems are
required to communicate among each other. Thus, preserving the connectivity
of the communication graph is a crucial issue. Mathematically this is equivalent
to requiring that:

∀t ≥ 0, Gc (x( t)) is connected. (2.11)

2.6 System Objectives

As already mentioned in subsection 2.1, the agents constituting the multi-agent
system under investigation are separated into a single leader and followers.
This classification is reflected on the nature of objectives an agent is expected to
complete, depending on whether it belongs to one class or the other. Specifically,
every agent is expected to maintain a certain formation with respect to some
subset of the set of agents.

The leader is burdened with the additional task of navigating from an initial
position x1(0) to a fixed, known desired position in the free space, denoted by
xd1. These objectives are now developed more extensively.
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2.6.1 Formation Specifications

A formation specification is essentially a constraint on the states of two distinct
agents. Given two agents i, j ∈ V and a vector cij(t) ∈ R2, agent i is in formation
with agent j at time t if and only if:

xi(t)− xj(t) = cij(t) (2.12)

The formation objective is formally captured as a formation graph.

Definition 2.3 A formation graph Gf (t) = (V, Ef (t), Cf (t)) is a time-varying
graph, where Cf (t) = {cij(t)}(i,j)∈Ef (t) is a finite set of formation specifications,
indexed by the set Ef (t). For each (i, j) ∈ Ef (t), cij(t) ∈ R2 denotes the desired
relative position of agent i with respect to agent j at time t.

Additionally, we require that the formation specification are not conflicting,
in the sense that:

∀(i, j) ∈ Ef (t), cij(t) = −cji(t). (2.13)

Again, as in the case of inter-agent collision avoidance, formation specification is
symmetric with respect to the agents involved. A very important consequence of
this fact, is that agents can successfully attain a formation specification without
knowing the position of others with respect to some absolute frame of reference.

The system at state x(t) models a formation graph Gf (t), denoted by x(t) |=
Gf (t), if xi(t)− xj(t) = cij(t), ∀(i, j) ∈ Ef (t).

Remark 2.2. It is reasonable to require that two agents sharing a formation
specification should also communicate. Thus, Ef (t) ⊆ Ec(x(t)), ∀t ≥ 0 which in
turns implies that ‖xi(t)− xj(t)‖ , ‖cij(t)‖ < ρc, ∀(i, j) ∈ Ef (t), ∀t ≥ 0. It then
follows that maintaining a connected formation graph guarantees the connect-
edness of the communication graph as well.

2.6.2 Leader Objectives

Apart from the task of forming a formation with some subset of the set of agents,
the leader must in addition navigate from an initial position x1(0) to a desired
position xd1 in the free space F. Thus, we make the following assumption:

Assumption 5 It is assumed that there exists a collision-free trajectory from
x1(0) to xd1, which the leader knows or can generate.

In the context of this thesis the aforementioned trajectory will be generated
through a Navigation Function [18] controller. Although, certain workspace
properties, namely the potential overlap of static obstacles, hinder the con-
struction of an almost globally asymptotically stable controller for the afore-
mentioned task, yet for our purposes pairs of initial and final positions will be
chosen so that the initial conditions will not be in the region of attraction of
the spurious local minima.

15



2.6.3 Mathematical Problem Statement

We are now in position to formally state the main problem addressed.

Problem 2.1 Given an initial connected formation graph G0
f , with x(0) |= G0

f

synthesize:

1) a continuous control input ui, based solely on local information, for each
agent i ∈ V, and

2) a decentralized controller of the formation graph Gf (t),

such that no safety specification is violated, and for some time tf , x1(t) = xd1,
Gf (t) = G0

f and x(t) |= Gf (t),∀t > tf .

Note that in the absence of static obstacles, Problem 2.1 is trivial and the
formation graph could be maintained constant and equal to the initial one.
However, in the presence of static obstacles reconfiguration of the formation
specifications might become necessary in order for the system to complete all of
the objectives.

16



3 Algebraic Topology and Path Homotopy

We now make a digression into algebraic topology, to develop some notions that
will prove useful for providing a solution to the problem in hand. The reader
who is not interested in the theoretical foundations can skip to subsection 3.4.

3.1 Introduction

Consider the motion planning problem for a single robotic agent operating in a
cluttered environment. For our purposes the workspace W is a compact subspace
of the two-dimensional Euclidean space and the free space F is some closed
subset of W. Given an initial point and a final point in the free space, denoted
by x0 and x1, respectively, the motion planning problem consists of finding a
path in F from x0 to x1. A path is mathematically defined as:

Definition 3.1 The continuous map γ : I → X with γ(0) = x0 and γ(1) = x1

is a path from x0 to x1 in X. We say that x0 is the initial point, and x1 the
final point. The image of γ, γ(I) ⊂ X is a curve in X, where I , [0, 1].

Definition 3.2 A space X is path-connected if every pair of points in X can
be joined by a path in X.

Additionally, if γ is a path from x0 to x1, there is an inverse path, denoted
by γ̄, from x1 to x0 defined by the equation:

γ̄(s) , γ(1− s), s ∈ I,

and for every point x ∈ X, let εx be the constant path at x, i.e.,

εx(s) = x. s ∈ I.

Assuming the free space is path-connected[Munkres] a solution to the motion
planning problem exists for every pair of initial and final points in F. The
solution to every such problem, apart from pathological cases, is however not
unique. Consider the collection of paths

ΓF(x0;x1) , {γ : I → F : γ(0) = x0, γ(1) = x1}, (3.1)

which constitutes the set of solutions of the motion planning problem. The
number of elements of ΓF(x0;x1) is clearly infinite.

Illustrated in Figure 3.1 is a trivial instance of the motion planning problem
involving a single robot and one obstacle, with the free space F being a compact,
connected subset of the Euclidean plane. Six members of the set ΓF(x0;x1) are
depicted, i.e., six solutions of the motion planning problem. It is immediately
evident that a natural way to categorize the solutions into two different cate-
gories is in accordance with the adopted coloring. In particular, three solutions,
drawn in green, are said to belong to the set {γr}, whereas the remaining three,
drawn in red, belong to the set {γl}. Roughly, the first set is the subset of
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Figure 3.1: A simple instance of the single-robot motion planning problem in
the presence of a single obstacle. Three elements of each of the two solution
families {γr} and {γl} are depicted.

solutions that ”have the obstacle on their right hand side”, whereas the latter
set is the subset of solutions that ”have the obstacle on their left hand side”.

We are now going to present the necessary mathematical machinery in order
to: (1) Provide a formal definition of the aforementioned rule for categorizing
solution paths and (2) Determine the number of different categories that exist
for each instance of the motion planning problem.

3.2 Equivalence Relations

What we are essentially trying to achieve is partition the set of paths ΓF(x0;x1)
into a finite number of disjoint sets. In doing so, we borrow some basic notions
from Set Theory.

Definition 3.3 A binary relation on a set X is a subset R of the Cartesian
product X ×X.

If R is a relation on X, we use the notation x ∼R y to denote the fact
(x, y) ∈ R. The relation concept is too general for our purpose, thus we limit
ourselves to a subset which possesses a number of accommodating properties.

Definition 3.4 An equivalence relation on a set X is a binary relation R on
X having the following three properties:

1o (Reflexivity) x ∼R x, for every x ∈ X,

2o (Symmetry) x ∼R y ⇔ y ∼R x,
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3o (Transitivity) If x ∼R y and y ∼R z, then x ∼R z.

For notational thrift, as long as the relation R is unambiguous we use the
”∼” symbol to denote the relation ∼R. Given an equivalence relation ∼ on a set
X and an element x ∈ X, we can define a subset [x] of X, called the equivalence
class determined by X, as

[x] , {z ∈ X : z ∼ x}. (3.2)

Evidently, by the reflexivity property of ∼, x ∈ [x]. Additionally, equivalence
classes possess the following important property:

Lemma 3.1 Two equivalent classes [x], [y] are either disjoint or equal.

Proof. Please refer to proof of Lemma 3.1 in [19].

Since every element of A belongs to some equivalence class, induced by an
equivalence relation, and different classes are disjoint, it follows that equivalence
classes constitute a partition of the set A into disjoint sets.

The set of all equivalence classes in X induced by the equivalence relation ∼
is denoted as X/ ∼ and is called the quotient set of X by ∼. A simple example
is given to clarify the preceding concept:

Example 3.1. Consider the set A = R \ {0} and take the equivalence relation
∼= {(x, y) ∈ A× A : xy > 0}. Under this equivalence relation two equivalence
classes are induced, namely [x>0] = {x ∈ A : x > 0} and [x<0] = {x ∈ A :
x < 0}, that is the classes of positive and negative real numbers, respectively.
It follows that the quotient set has two elements, X/ ∼= {[x>0], [x<0]} and
consequently the set A can be written as the union of two disjoints sets, i.e.,
A = (−∞, 0) ∪ (0,∞).

Note that equivalence classes allow us to partition sets which are infinite,
and even uncountable as in Example 3.1, into a number of finite disjoint sets.
We are now ready to expand this concept into sets of paths in order to perform
a similar partitioning.

3.3 Path Homotopy

The intuitive concept illustrated in Figure 3.1 that allowed use to categorize
the paths that constituted solutions to the motion planning problem can be
mathematically formalized using the notion of path homotopy.

Definition 3.5 Two paths γ, γ′, mapping the interval I into X are said to be
path homotopic if they have the same initial point x0 and final point x1, and if
there exists a continuous map H : I × I → X such that

H(s, 0) = γ(s) and H(s, 1) = γ′(s), (p1)

H(0, t) = x0 and H(1, t) = x1, (p2)

for each s ∈ I and each t ∈ I. We call H a path homotopy between γ and γ′. If
γ is path homotopic to γ′, we write f 'p g.
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The first property (p1) suggests that H is a continuous way of ”deforming”
path γ into γ′, whereas the second property (p2) says that the endpoints of the
path remain fixed during deformation.

Proposition 3.1 The relation 'p is an equivalence relation.

Proof. We verify that the three properties of an equivalence relation, namely
reflexivity, symmetry and transitivity, hold.

Proving reflexivity is trivial, i.e., γ 'p γ, since H(s, t) = γ(s) is a valid path
homotopy for that case.

To prove symmetry, i.e., γ 'p γ′ ⇔ γ′ 'p γ, consider a path-homotopy H
between γ and γ′, then H ′ = H(s, (1− t)) is a path-homotopy between γ′ and
γ.

Finally, given γ1 'p γ2, γ2 'p γ3 and corresponding path homotopies
H1, H2, we define H3 : I × I → X as

H3(s, t) =

{
H1(s, 2t), t ∈

[
0, 1

2

]
H2(s, 2t− 1), t ∈

[
1
2 , 1
] . (3.3)

The map H3 is well defined, since for t = 1
2 , H1(s, 2t) = g(s) = H2(s, 2t − 1).

H3 is continuous on the two closed subsets I × [0, 1
2 ] and I × [ 1

2 , 1], and thus by
the pasting lemma, it is also continuous on all of I × I. Consequently, H3 is the
required path homotopy between H1 and H2 and transitivity is verified.

Since path homotopy is an equivalence relation, the set of paths in a space
X can be partitioned into equivalence classes. Thus, given a path γ, we denote
the class of paths that are homotopic equivalent to γ by [γ].

Example 3.2. Let γ1, γ2 : I → X be two paths in in X = R2 with the same
endpoints x0 and x1. It is easy to see that γ1 and γ2 are path-homotopic; the
map

Hl(s, t) , (1− t)γ1(s) + tγ2(s) (3.4)

is a path homotopy between them called the straight-line homotopy since it
moves every point γ1(s) to the corresponding point γ2(s) along the straight-line
segment joining them. In Figure 3.2, the two paths, γ1 and γ2, are illustrated
as well as the straight-line path homotopies at three points. The red path is the
straight-line homotopic path for t = 1

2 .

More generally, for any convex subspace A of Rn, any two paths γ, γ′ in
A from x0 to x1 are path homotopic in A, for the straight-line homotopy Hl

between them has image contained in A, as a direct consequence of the convexity
of A.

Example 3.3. Let X = R2 \ {(0, 0)}, i.e., the punctured plane. The following
paths in X,

γ1(s) = (cos (πs) , sin (πs)) ,

γ2(s) = (cos (πs) , 1.5 sin (πs)) ,
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Figure 3.2: Two straight-line homotopic paths γ1 and γ2.

x0x1

γ1

γ2

γ3

X = R2 \ {(0, 0)}

Figure 3.3

are path homotopic, since the straight-line homotopy between them is an ac-
ceptable path homotopy. However, the straight-line homotopy between γ1 and
the path

γ3(s) = (cos (πs) , − sin (πs)) ,

is not acceptable for its image is not a subset of X (see Figure 3.3).

It turns out that there exists no path homotopy in X between paths γ1 and
γ3. It is intuitively quite evident that ”deforming” γ1 into γ3 without passing
through the point (0, 0) is impossible without introducing a discontinuity. The
formal proof is however more involved.

An important observation extracted from the preceding example is that
one cannot assert whether two paths are path homotopic without knowing the
codomain set of the paths, X. In Example 3.3, paths γ1 and γ3 would be path
homotopic if X = R2.

We now introduce an operation on paths called the product.
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Definition 3.6 If γ1 is a path in X from x0 to x1, and if γ2 is a path in X
from x1 to x2, we define the product γ1 ·γ2 of γ1 and γ2 to be the path γ3 given
by the equation

γ3(s) ,

{
γ1(2s), s ∈ [0, 1

2 ]

γ2(2s− 1), s ∈ [ 1
2 , 1]

. (3.5)

The function γ3 is well-defined and continuous, by the pasting lemma, and
defines a path in X from x0 to x2.

It is worth noting that the path product operation on paths induces a well-
defined operation on path-homotopy classes, defined by the equation

[γ1] · [γ2] , [γ1 · γ2]. (3.6)

The class of paths [γ1 · γ2] is determined by the path homotopy defined as

H3(s, t) =

{
H1(2s, t), s ∈ [0, 1

2 ]

H2(2s− 1, t), s ∈ [ 1
2 , 1]

, (3.7)

where H1, H2 are path homotopies of the [γ1] and [γ2] classes, respectively. One
can regard [γ1 · γ2] as the equivalence class of all paths in X that start at x0,
pass through x1 and end at x2.

Theorem 3.1 (Properties of product operation on paths)

At this point, it is important to remind that the product operation on path-
homotopy classes is only defined for pairs of path homotopy classes [γ1], [γ2]
satisfying γ1(1) = γ2(0).

3.3.1 The Fundamental Group

The fact that the product operation (3.6), is only defined for pairs of paths
γ1, γ2 with γ1(1) = γ2(0), leads us to restrict are attention to paths that begin
and end at the same point. In this, setting the product operation can always
be well-defined. Such paths are called loops.

Definition 3.7 Let X be a space. A loop in X based at x0 is a path l : I → X
such that l(0) = l(1) = x0.

It turns out [20] that the set of path homotopy classes of loops based at some
point x0 ∈ X forms a group under the path product operation. This group is
called the fundamental group of X.

Definition 3.8 A group is a set G together with an operation · that combines
any two elements a and b to form another element, denoted by a · b. To qualify
as a group, the set and operation (G, ·), must satisfy four requirements known
as the group axioms:

1o (Closure) For all a, b ∈ G, a · b ∈ G,
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2o (Associativity) For all a, b, c ∈ G, (a · b) · c = a · (b · c),

3o (Identity element) There exists an element e, such that for every element
a ∈ G, the equation a · e = e · a = a holds. Such an element is unique and
is called the identity element.

4o (Inverse element) For each a ∈ G, there exists an element b ∈ G, denoted
by a−1, such that a · b = b · a = e, where e is the identity element.

A trivial group is a group consisting of a single element which by definition
is the identity element, e.

Definition 3.9 The fundamental group of a space X relative to the base point
x0, denoted by π1(X,x0), is the set of path homotopy classes of loops based at
x0.

If follows from Theorem 3.1, that the product operation, when restricted to
the subset of path homotopy classes of loops based at some point x0, satisfies
the group axioms. Given two loops l1, l2 in X, based at x0, the product l1 · l2
is always defined and is a loop based at x0, validating the closure axiom. Note
that the identity element of the fundamental group π1(X,x0) is [εx0

] and the
inverse element of [l] is [l̄].

Example 3.4. Let X be a convex subset of Rn, and l be a loop based at x0.
Then the straight-line homotopy is a path homotopy between l and the constant
path at x0. Thus, l 'p εx0

and [l] = [εx0
], i.e., the fundamental group π1(X,x0)

is the trivial group.

Another interesting question is to what extend does the fundamental group
depend on the choice of the base point.

Theorem 3.2 (Change of Base Point) Suppose X is path-connected, x0, x1 ∈ X
and γ is a path from x0 to x1. The map Φγ : π1(X,x0)→ π1(X,x1) defined by

Φγ([l]) , [γ̄] · [l] · [γ],

is an isomorphism.

Proof. The mapping Φg is well defined since the corresponding product opera-
tions are always well-defined. We now show that Φg is a group homomorphism:

Φγ([l1]) · Φγ([l1]) =

= [γ̄] · [l1] · [γ] · [γ̄] · [l2] · [γ]

= [γ̄] · [l1] · [l2] · [γ]

= Φγ([l1] · [l2]).

Being a homomorphism, Φg is also an isomorphism, since it has an inverse given
by Φg−1 : π1(X,x1)→ π1(X,x0).
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Corollary 3.1 If X is path-connected and x0, x1 ∈ X, then π1(X,x0) is iso-
morphic to π1(X,x1).

Although the fundamental groups of a path-connected space X based at any
two points are isomorphic, different paths between two points may give rise
to different isomorphisms between the corresponding fundamental groups. In
particular, the isomorphism of π1(X,x0) with π1(X,x1) is independent of the
path if and only if the fundamental group is abelian, i.e., the group operation
commutes.

Definition 3.10 A space X is said to be simply connected if it is a path-
connected space and if π1(X,x0) is the trivial group for some x0, and hence, by
Corollary 3.1, for every x0 ∈ X.

The following lemma follows:

Lemma 3.2 In a simply connected space X, any two paths having the same
initial and final points are path homotopic.

Proof. Let γ1, γ2 be two paths in X from x0 to x1. Then the product γ1 ·γ−1
2 is

defined and is a loop on X based at x0. Since X is simply connected, this loop
is path homotopic to the constant loop at x0, i.e., [γ1 · γ−1

2 ] = [εx0
]. Then,

[γ1 · γ−1
2 ] · γ2 = [εx0

] · [γ2]
(3.6)⇐==⇒

[γ1] · [γ−1
2 · γ2] = γ2 ⇐==⇒

[γ1] · [εx0 ] = γ2 ⇐==⇒
[γ1] = [γ2],

completing the proof.

3.4 Multi-agent Path Homotopy

In the problem under investigation, the leader’s role is to implicitly guide the
system towards the desired configuration. The followers, attempting to maintain
their formation specifications follow along. However, the very fact that obstacles
are not disjoint can lead to the entrapment of a number of followers to some
subset of the free space from where no further progress of the system is possible
unless some sort of backtracking is performed. It is obvious that this kind
of behaviour is problematic and should be avoided. The higher the number
of agents the more difficult the accomplishment of the aforementioned task
becomes.

In these lines, we will utilize the notion of path homotopy to ensure that
all agents negotiate every obstacle from the ”same side”. Note that since all
agents have the same radius, the fact that the leader can get to its desired point
implies that this is also the case for the followers.
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The trajectories of different agents, define paths that do not have the same
initial and final points. Thus, applying the notion of path homotopy as already
defined is not possible.

To overcome this difficulty, we take a slightly different approach. We impose
an additional restriction to be fulfilled by the trajectory of the system. First,
let us define the set

Fh , W \
⋃
k∈Io

xk (3.8)

i.e, the workspace with the centers of the obstacles removed. In this respect, we
require that:

co({xi(t), xj(t)}) ⊂ Fh, ∀(i, j, k) ∈ Ef (t)× Io, ∀t ≥ 0, (3.9)

where co(·) denotes the convex closure operator.
which is equivalent to:

x̂ik︷ ︸︸ ︷
xi(t)− xk
‖xi(t)− xk‖

·

x̂jk︷ ︸︸ ︷
xj(t)− xk
‖xj(t)− xk‖

+1 > 0,∀(i, j, k) ∈ Ef (t)× Io,∀t ≥ 0 (3.10)

where |Ef (t)| is a non-increasing function of time (see Figure 3.5).
This property also implies that the set F∩

⋃
i∈V B(xi,

ρc
2 ) is path connected

at all times. Additionally, for each agent there exists a feasible direction of
movement that decreases its distance with respect to some of its formation
neighbors. If we allow |Ef (t)| to increase this might not hold.

We will refer to this property as path homotopy. A system trajectory that
satisfies (3.10) possesses the property that all agents will eventually overcome
every obstacle from the same ”side” as the leader.
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xj

xi

xk

Figure 3.5: Illustration of the definition of (3.10). If xi, xj , xk are aligned, path
homotopy is violated.

This property is of exceptional importance, in the present setting, since the
fact that the obstacles are not disjoint may lead to some number of followers
getting ”trapped” to a subset of the workspace, that would require the leader
to backtrack for the system to be able to reach the desired configuration. Even
though by the Assumption 5, the leader can always find its way around the
obstacles towards its desired position, this is not in general true for the followers.
Thus, imposing path homotopy constitutes an implicit method of propagating
this information to the followers. Finally note that by Assumption 4 the initial
condition of the system, x(0), satisfies (3.10).
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4 Decentralized Navigation Functions-based Con-
troller

4.1 Introduction

The Navigation Functions method introduced in the seminal work of Koditschek
and Rimon [18] enabled the guaranteed convergence of a single agent in an envi-
ronment with disjoint disk shaped obstacles. In [21] the results were extended to
the case of multiple agents. In the present thesis, we adopt a similar formulation
for the problem in hand. We prove certain properties of the controller indicating
that it is partially suitable for this particular problem. Yet, certain limitations,
due to the coexistence of static obstacles and connectivity maintenance appear,
rendering the task of proving (almost) global asymptotic stability impossible.
Nevertheless, the proposed controller can be used as a low-level controller in a
multi-layered control scheme.

4.2 Potential Functions Design

Consider a DNFs based potential φi : Fi → [0, 1]

ϕi ,
γi

(γκi + βi)
1
κ

, i ∈ V, (4.1)

where κ ∈ R>0 is a gain parameter, while γi : R2 → R and βi : R2 → R
are functions that encode the desired behaviour1 and safety/path homotopy
specifications of agent i, respectively. We now explicitly define each term in
(4.2).

4.2.1 Encoding Objectives

For each agent i ∈ V, the γi term in (4.2) encodes the agent’s objectives. In
particular,

γi ,


∥∥xi − xdi ∥∥2

+
∑

j∈Ni(Gf )

‖xi − xj − cij‖2 , i = 1∑
j∈Ni(Gf )

‖xi − xj − cij‖2 , i 6= 1
.s (4.2)

For all agents, γi involves a sum of terms corresponding to their respective
formation specifications. The leader has an additional term that corresponds to
the desired final position it must attain.

1The formation graph Gf is considered piecewise constant.
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4.2.2 Safety Maintenance

Safety conditions for each individual agent are encoded into the βi term which
is defined as:

βi , BW
i

∏
k∈Ni(Gc),k∈Io

Bik
∏

j∈Ni(Gf )

bij
∏

(j,k)∈Ni(Gf )×Io

bijk. (4.3)

The first term BW
i , σ1

ε1(ρw − ‖xi‖2) is responsible for retaining the agent

inside the workspace, whereas the terms Bik , σ1
ε2(‖xi − xk‖2 − (ρk + ρi))

are responsible for collision avoidance with other agents and static obstacles.
Additionally, connectivity and path homotopy maintenance is enforced by bij ,
σ2
ε3,R

(‖xi − xj‖2) and bijk , σ1
ε4 (1 + x̂ik · x̂jk) respectively.

The functions σ1
ε : R → R≥0 and σ2

ε,R : R → [0, 1] are switches that are
used to normalize the constraint functions to the corresponding codomains and
preserve smoothness in the context of limited sensing, by providing a buffer
region determined by the positive parameter ε. The aforementioned functions
are defined by:

σ1
ε (z) ,

{
− 1
ε2 z

2 + 2
ε z, z < ε

1, z ≥ ε
, (4.4)

and

σ2
ε,R(z) ,


1, z ≤ R− ε
− 1
ε2 (z + 2ε−R)2 + 2

ε (z + 2ε−R), R− ε < z < R

0, z ≥ R
, (4.5)

respectively.
The graphs of both switches are depicted in Figure 4.1. In both cases, the

parameter ε controls the width of the buffer, i.e., how quickly the switch changes
its value from 0 to 1. In the case of σ2

ε,R, the positive parameter R is actually

equal to inf(σ2
ε,R)−1({0}), i.e., the smallest value for which the switch attains a

zero value.

4.3 Controller

We now define a decentralized controller for each agent i ∈ V which is derived
from the negated gradient of the corresponding potential function. We then
prove certain properties of this controller.

4.3.1 Definition

The control input for each agent is given by:

ui(t) = −∇iϕi, i ∈ V, (4.6)

where ∇iϕi denotes the gradient of ϕi with respect to xi.
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Figure 4.1: The graphs of the σ1
ε and σ2

ε,R switches, on the left and right,
respectively.

Remark 4.1. The above defined controller is decentralized in the sense that,
the calculation of the control input ui at each time instant t depends only on
values that are readily available to agent i, either through measurement or direct
communication.

4.3.2 Properties

The controller defined in (4.6) possesses certain properties which we now state
and prove.

Safety It is of paramount importance that every controller guarantees certain
safety specifications. In our case, those have been implicitly encoded through
the βi terms of the potential functions in (4.2). Safety specifications as well as
the path homotopy property have have been encoded as (virtual) obstacles, with
their boundaries being the pre-images of the zero levels set of the βi functions,
i.e., β−1({0}). Then, the establishment of the safety properties for controller
(4.6) reduces to the following proposition:

Proposition 4.1 The set {x ∈ R2n : βi > 0,∀i ∈ V} is invariant for the trajec-
tories of (2.1) under the control law (4.6).

Proof. The proof is similar to that of Lemma 2 in [14].

Proposition 4.1 establishes the maintenance of the safety specifications and
the path homotopy property.

Convergence Although the velocity of each agent is the negated gradient of
its corresponding potential φi, the overall system is not a gradient system [22],
as in the case of single-agents Navigation Functions. Thus convergence to the
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Agent 1 (L)

Agent 2

Agent 3

Agent 4

Agent 5

Desired

Figure 4.2: A case with n = 5 agents where the DNFs based controller success-
fully stabilizes the system to the desired configuration. The configuration of the
system at 3 time instants is depicted.

set {x ∈ R2n : ‖∇iϕi‖2 = 0}, i.e., the set of equilibria is not a priori guaranteed.
In fact, we prove the following weaker proposition:

Proposition 4.2 Given any ε ∈ R>0, there exists κ̄(ε) ∈ R>0 such that for
κ > κ̄ system (2.1) under the control law (4.6) converges to the set Cφ , {x ∈
R2n : ‖∇iϕi‖ ≤ ε, ∀i ∈ V}.

Proof. For the proof please refer to [23].

Remark 4.2. The condition of Proposition 4.2 is sufficient. In practice, con-
vergence to some equilibrium occurs irrespectively of the value of κ.

By Proposition 4.2, convergence to some arbitrarily small neighborhood of
the set of critical points is established for a sufficiently large value of the pa-
rameter κ. Note that this is a sufficient condition, meaning that in practice
It is easy to see that the desired configuration belongs to the set Cϕ since
γi = ∇iγi = 0, ∀i ∈ V, implying that ui = 0, ∀i ∈ V. However, despite
the previous fact, ensuring that the system will converge to this point is not
straightforward. The reasons for this fact are now analysed.

4.4 The Need for Reconfiguration

The DNFs based controller proposed in this section can in some cases stabilize
the system to the desired configuration. However, there exist cases where this
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(a) Infeasible task.

xd1

(b) Feasible task.

Figure 4.3: A case illustrating the need for reconfiguration of the set of forma-
tion/connectivity specifications.

cannot be achieved seldom by using the aforementioned controller. The reasons
for inadequacy are twofold.

On the one hand, the existence of static obstacles in conjunction with connec-
tivity maintenance specifications can render the task of navigating the system
from the initial to the desired configuration infeasible. On the other hand, even
if the later is not the case, it turns that, for certain instances of the problem un-
der investigation, the appearance of unwanted local minima cannot be avoided.
Thus, (almost) global asymptotic stability cannot be claimed.

4.4.1 Task Infeasibility

As already mentioned, the coexistence of static obstacles and connectivity main-
tenance specifications can render the task of navigating from an initial to a
desired configuration infeasible. In such cases, reconfiguration of the set of
formation, and consequently connectivity, specifications is necessary for the ini-
tially the leader, and eventually the followers, to be able to progress towards
the desired configuration.

As an example, consider the case illustrated in Figure 4.3. Given a formation
graph as the one depicted in 4.3a, it is impossible for the system to reach the
desired configuration, without either a collision or a violation of some connec-
tivity maintenance occurring. Then, since the desired configuration does not
belong to the forward invariant set of system (2.1) under (4.6), by the Extreme
Value Theorem, the restriction of every φi in the closure of that invariant set
must attain some other minimum value, thus establishing the existence of some
other configuration with a dense region of attraction. However, for a different
formation graph and consequently different connectivity constraints, this is no
longer the case (see 4.3b).
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Figure 4.4: A simple example with two agents and one obstacle illustrating the
persistence of an unwanted local minimum. The diameter of the obstacle equals
the communication radius. The opaque disks represent the connectivity region
for each agent.

4.4.2 Persistence of Local Minima

On the other hand, proving convergence is still elusive, even though it might
not be impossible for the system to reach the desired configuration. Notice that
the existence of unwanted critical points is a topological inevitability [24]; thus
the best one can hope for is global asymptotic stability except for a set of initial
conditions of zero measure. Proving that would require, some upper bound on
the value of the parameter κ that would ensure that unwanted critical points
are saddles. However, it turns out that such a bound may not exist even for
some simple examples.

For instance, considering the almost trivial case illustrated in Figure 4.4, it
can be easily noticed that as the value of κ increases, the agents will negotiate
the obstacle from opposite sides. Hence, as they reach diametrically opposite po-
sitions with respect to the obstacle, both connectivity and collision constraints
tend to be violated simultaneously for both agents, i.e., the boundary of the
obstacle tends to coincide with the boundary of the connectivity region. Conse-
quently, a local minimum appears, as there exists no direction of movement for
the system that can further reduce either ϕi. The system actually converges to
the same local minimum for a continuum of initial conditions.

4.5 Discussion

The controller proposed in this section can solve certain instances of the problem
in hand. However, as we’ve seen in the previous subsection this is not always the
case. Thus, the construction of a reconfiguration algorithm is deemed necessary,
in order to address the whole range of problems. Additionally, it will prove useful
to develop a control algorithm that guarantees convergence for some subclass
of problems, such as the one illustrated in Figure 4.4. Those steps will lead
towards a provably correct integrated algorithm.

32



Contents

5 Reconfiguration Strategy

As we have seen in the prequel, the DNFs based controller cannot always success-
fully stabilize the system in the desire configuration. In those cases, a distributed
discrete algorithm is employed aiming at reconfiguring the set of formation spec-
ifications so that progress towards the desired configuration can be made. This
is achieved through the exploitation of information generated during the solv-
ing process of an appropriately formulated Distributed Constraint Satisfaction
Problem.

5.1 Constraint Satisfaction Problem

5.1.1 Preliminaries

A Constraint Satisfaction Problem (CSP) is a problem involving a finite set
of variables, a finite set of domains and a finite set of constraints. Variables
are allowed to take values that belong to their respective domains and each
constraint restricts the combination of values that the set of variables it involves
can attain.

Definition 5.1 A Constraint Satisfaction Problem is defined by a 3-tuple (X ,D, C),
where:

• Q = {q1, q2, . . . , qn} is a set of n variables;

• D = {D1, D2, . . . , Dn} is a set of n domains, where D(xi) is a finite set
of possible values variable xi may attain;

• C = {C1, C2, . . . , Ce} is a set of e constraints that describe the combi-
nations of values allowed for the variables they involve. The variables
involved in a constraint Ci ∈ C are a called its scope(scope(qi) ⊆ Q).

Mathematically, every constraint is a subset of the Cartesian product of the
domains of its scope, i.e., Ci ⊆

∏
k∈scope(Ci)Dk. The number of elements of the

scope of a constraint Ci ∈ C is called the arity of the constraint Ci.
The class of constraints involving two variables is called binary. For our

purposes, binary constraints are sufficient, nonetheless a constraint of any arity
can be expressed as a set of binary constraints [25]. We will denote a binary
constraint in C between variables qi and qj by cij , with cij ⊆ Di × Dj . A
CSP where all constraints are binary is called a Binary Constraint Satisfaction
Problem, and can be represented by a graph.

Proposition 5.1 A Binary Constraint Satisfaction Problem can be represented
by a constraint graph GC = (V(GC), E(GC)), where the vertices correspond to
the variables of the problem (V(GC) = X ) and the edges E(GC) represent the
constraints, i.e., (qi, qj) ∈ E(GC)⇔ Cij ∈ C.
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The fact that a CSP has an equivalent representation as a graph allows us
to borrow notions from graph theory and use them in the context of the original
problem.

Definition 5.2 Two variables are adjacent iff they share a constraint, i.e.,
Cij ∈ C. If qi and qj are adjacent we say that qi and qj are neighbors.The set
of neighbors of a variable qi, denoted by Γ(qi), is defined as

Γ(qi) , {qj ∈ X : Cij ∈ C}.

Solving a CSP is equivalent to finding a combination of assignments of values
to each variable such that all constraints are satisfied.

We now present some examples of problems that can be formulated as con-
straint satisfaction problems.

5.1.2 Example of CSP

The n-queens problem is a well known combinatorial problem that can be for-
mulated as a CSP. The n-queens problem is essentially the problem of placing n
queens on an n×n chessboard in such a way that no queen can capture another
queen. Specifically, two queens can capture each other if they are located on
the same row, column or diagonal on the chessboard. As an example, let us
formulate the 4-queens problem as a binary CSP:

• Q = {q1, q2, q3, q4}, where each variable qi is the row placement of each
queen that corresponds to every row.

• D = {D1, D2, D3, D4}, where Di = {1, 2, 3, 4}, ∀i ∈ {1, 2, 3, 4}. The
elements of Di are essentially the different possible rows that the queen
corresponding to each column can be placed.

• C = {Cij : (qi 6= qj) ∧ (|qi − qj | 6= |i− j|), ∀i, j ∈ {1, 2, 3, 4}, i 6= j}

5.2 Distributed Constraint Satisfaction Problem

5.2.1 Preliminaries

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP where vari-
ables and constraints are distributed among multiple automated agents [26].

Definition 5.3 A Distributed Constraint Satisfaction Problem is defined by a
4-tuple (V,X ,D, C), where:

• V = {A1, A2, . . . , An} is a set of m agents;

• Q = {q1, q2, . . . , qn} is a set of n variables, with each variable controlled
by a single agent in A;

• D = {D1, D2, . . . , Dn} is a set of n domains, where D(xi) is a finite set
of possible values variable xi may attain;
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• C = {C1, C2, . . . , Ce} is a set of e constraints that describe the combina-
tions of values allowed for the variables they involve.

In the present work, we shall make the following assumptions regarding the
nature of the problem:

(i) Each agent controls a single variable, i.e., n = m.

(ii) Constraints are binary.

(iii) Each agent knows every constraint associated with its variable and conse-
quently all of its neighbors.

In the present thesis and in the context of a DisCSP agents communicate under
the model proposed in [27] where it is assumed that:

(i) Agents communicate by exchanging messages;

(ii) The delay in delivering a message is random but finite.

Agents’ Ordering We are now going to equip the set of agents with a strict
total order [28] induced by the relation ≺ . We assume that this strict total
order is the lexicographic order of the set of agents, [A1, A2, . . . , An]. Then,

(∀i)(∀j 6= i) (Ai ≺ Aj ⇔ i < j).

Then for each agent Ai ∈ A, an agent Aj ∈ A has a higher priority than Ai
iff Aj ≺ Ai. Conversely, Aj has lower priority than Ai iff Ai ≺ Aj . Using this
relation, the set of neighbors of an agent Ai ∈ A, Γ(Ai), can be partitioned
in two disjoint sets, the set of higher-priority neighbors, and the set of lower
priority neighbors, denoted by Γ−(Ai) and Γ

+
(Ai) respectively. Formally,

Γ−(Ai) , {Aj ∈ Γ(Ai) : Aj ≺ Ai} and Γ
+

(Ai) , {Aj ∈ Γ(Ai) : Ai ≺ Aj}.

Since communication between agents is not assumed to be necessarily FIFO,
each agent maintains a counter that is incremented whenever the agent’s value
is changed. Thus, the current value of the counter tags each value assignment.

Definition 5.4 An assignment for an agent Ai ∈ A is a 3-tuple (qi, vi, ti),
where vi ∈ Di and ti is the tag value. When two assignments of the same
variable are compared, the most up to date is the one that has the highest tag.
Two sets of assignments,

{(qi1 , vi1 , ti1), . . . , (qin , vin , tin)}

and
{(qj1 , vj1 , tj1), . . . , (qjm , vjm , tjm)},

are compatible if and only if every variable that appears in both sets is assigned
the same value, i.e.,

(∀k, k ∈ N≤n) [(∃!l, l ∈ N≤m, ik = jl)⇒ (vik = vjl)].
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Definition 5.5 A set of asignments {(qi1 , vi1 , ti1), . . . , (qik , vik , tik)} is consis-
tent if the combination of values of the variables involved satisfy every constraint
involving those variables, i.e.,

(∀in, in ∈ N≤k)(∀im, im ∈ N≤k \ {in}) (Cinim ∈ C ⇒ (vin , vim) ∈ Cinim)

Now we can define the notion of nogood which will prove useful in the de-
velopment of the algorithm used for solving DisCSPs.

Definition 5.6 A nogood is a logical conjunction of individual assignments
which has been found inconsistent.

Example 5.1. The following expression is a nogood: ¬[(qi1 = vi1)∧ . . .∧(qin =
vin)] which implies that the set of assignments that compose it is not consistent,
meaning that the variables involved cannot attain these values without violating
a constraint.

Definition 5.7 A directed nogood excluding a value qk ∈ Dk as an assignment
for qk is an implication of the form [(qi1 = vi1)∧ . . .∧ (qin = vin)]→ (qk 6= vk),
suggesting that the assignment qk = vk is inconsistent with the assignments
(qi1 = vi1), . . . , (qin = vin). For a nogood (ng) given in this form, we denote the
left-hand side and right-hand side of the implication with respect to the position
of →, by lhs(ng) and rhs(ng) respectively.

In order to solve a DisCSP, agents exchange their assignments with other
agents.

Definition 5.8 The AgentView of an agent Ai ∈ A is an array containing the
most up to date assignments received from other agents.

Remark 5.1. Usually, an agent is not aware of the assignments of every other
agent.In such cases, the corresponding elements of AgentView are set to empty.

5.2.2 The Asynchronous Backtracking (ABT) family

There exist multiple algorithms that can be utilized for solving DisCSPs. For our
purposes, we restrict our attention to the Asynchronous Backtracking (ABT)
family [29] introduced in [30] and extended in [31]. Further algorithms as well as
an in-depth analysis of DisCSPs can be found in [32]. This family of algorithms
owns a set of desirable properties, namely,

(i) Agents act concurrently, yet asynchronously, based on local knowledge;

(ii) Information diffusion is limited resulting in increased privacy ;

(iii) ABT algorithms are sound and complete.

In the ABT context, concurrency means that each agent can decide on the value
of its variable without waiting for the decisions of others. However, agents are
subject to a total order, that induces a notion of priority, as already described.
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In particular, each agent tries to find an assignment satisfying its respective con-
straints with whatever knowledge it has acquired from higher-priority neighbors.
Accordingly, as soon as an agent assigns a value to its variable, it communicates
this assignment to lower priority neighbors. When no consistent assignment
is possible for a given agent, the inconsistency is communicated other higher-
priority neighbors as a (directed) nogood (Algorithm 1).

The aforementioned total ordering, and the subsequently induced partition-
ing of each agent’s set of neighbors, corresponds to a directed flow of assignments
from agents of higher priority to those of lower priority, in a relative sense. ABT
family algorithms converge to a solution or detect that no solution exist in finite
time.

In ABT algorithms, each agent retains some amount of information related to
the problem at hand, in the form of two data structures, namely an AgentV iew
(5.8) and a NoGoodStore. The AgentV iew consists of the most up to date as-
signments of higher-priority agents available, while NoGoodStore is a collection
of nogoods that describe inconsistencies caused by assignments of higher-priority
neighbors and assignments of the agent’s variable.

Handling of nogoods ABT algorithms handle nogoods using the following
two principles:

• Each agent maintains at most one nogood for every value of its domain. If
there exist more than one possible nogoods for a particular element of the
domain set, the best nogood is selected according to the highest possible
lowest variable heuristic [33]. As a result, an agent Ai stores at most |Di|
nogoods;

• When every element of the domain set is ruled out by some nogoods, a new
nogood is generated in the following manner. Let Ai be the agent under
consideration and let qj be the closest variable(in the total order sense)
present in the left-hand side of some of the nogoods, with an assigned value
of vj . Then the new nogood has on its left-hand side the conjunction of
all the assignments present in the the left-hand sides of nogoods where the
assignment qj = vj is present. The right-hand side is simply qj 6= vj .

Example 5.2. A simple example of the aforementioned procedure is il-
lustrated in Figure 5.1b - 5.1c.

The ABT family consists of multiple different algorithms. In the context of
this work however, we will discuss only one, namely, adopting the nomenclature
of [29], the ABT algorithm.

The ABT Algorithm Agents running the ABT algorithm use the following
data structures to exchange data:

ok?: An agent sends its assignment to a lower priority agent;
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ngd: An agent informs a higher-priority agent of a new nogood;

adl: An agent requests a lower-priority agent to set up a communication link;

stp: The problem is infeasible.

The algorithm executed by each agent Ai ∈ A is presented in Algorithm 1 in
the form of pseudo-code.

Initially, agent Ai assigns a value vi ∈ Di to its variable, and communicates
this assignment to every lower priority neighbor. Then, a loop is executed that
receives and processes messages according to their type. Once a new assign-
ment is received, as an ok? message, the ProcessInfo() (line 22) procedure is
executed, which updates the agent’s AgentV iew and subsequently performs a
consistency check to determine whether the currently assigned value vi violates
any constraints (checkAgentView(), line 24). If vi is inconsistent with the as-
signments of higher priority agents, Ai attempts to find a consistent assignment
for its variable. During this process, some elements of Di may be deemed in-
consistent. Such inconsistencies are recorded in the form of nogoods which are
stored in the agent’s NoGoodStore. If a consistent value exists, it is assigned
to qi. Then, Ai sends ok? messages containing the new assignment to every
agent in Γ

+
(Ai). Otherwise, agent Ai backtracks (line 31).

It is worth elaborating a bit further on the UpdateAgentView() procedure
(line 25), which is called as soon as new information concerning the status of a
variable becomes available. Specifically, in order to compensate for the fact that
messages are not received in the order they were sent, the perceived value for a
variable is seldom updated with the newly acquired value, if the the tag of the
received assignment is greater than the tag of the currently adopted assignment
(line 26). If the value is indeed updated, all nogoods that contained the previous
assignment on their left-hand side are rendered incompatible with the current
AgentV iew; hence they are removed from the NoGoodStore (line 30).

Whenever every value in Di is forbidden by some nogood in NoGoodStore,
procedure Backtrack() is called (line 21). In order to backtrack, an agent
initially resolves its NoGoodStore, creating a new nogood (line 32), following
the procedure described in ”Handling of nogoods”. If the new nogood is empty
the problem is infeasible, and an stp message is sent to every agent (line 33). In
any other case, the newly generated nogood is sent as a ng message to the agent
appearing in its right-hand side (line 35). Then, the assignment corresponding
to the recipient of the ng message is removed from the AgentV iew (line 36)
and the agent selects a new, consistent value for its variable (line 37).

Whenever Ai receives a ng message, the ResolveConflict() (line 38) pro-
cedure is called. The nogood attached to the ngd message is accepted only if its
left-hand side is compatible with the assignments (see 5.4) on the AgentV iew
of agent Ai (line 39). Next, the CheckAddLink() procedure (line 45) is called.
This procedure adds the assignments of agents, that are not directly linked with
agent Ai, and are present in the left-hand side of the received nogood, to the
AgentV iew of Ai (line 47), and requests the establishment of a communication
link with those agents by sending then an adl message (line 49). Naturally, the
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received nogood is stored, justifying thus the exclusion of the value on its right-
hand side (line 41). A new consistent value for Ai is then searched (line 42), if
the current value was removed by the received nogood. If the received nogood
is not compatible with the AgentV iew it is discarded. However, if the value of
qi in the right-hand aside assignment is consistent with the actual value of qi,
Ai sends an ok? message to the sender of the ng message containing the same
assignment (line 44).

When an adl message is received, procedure AddLink() is called (line 50).
Then, the sender is added in Γ+(Ai) (line 51). Afterwards, Ai sends its assign-
ment through an ok? message to the sender if its value is different than the one
included in the received adl message (line 52).

Example We now present a step-by-step execution of the ABT algorithm for
the simple DisCSP problem illustrated in Figure 5.1. The problem includes 3
agents, i.e., A = {A1, A2, A3}, each controlling one variable—q1, q2, q3 respec-
tively—with their respective domains being D1 = {1, 2}, D2 = {2} and D3 =
{1, 2}. The constraints of the problem are q1 6= q3 and q2 6= q3.

Initially, higher-priority agents, A1 and A2, send ok? messages conveying
their assignments to agent A3. Thus, the AgentV iew of A3 is [(q1 = 1), (q2 =
2)]. These assignments are conflicting with the values 1 and 2 of D3. As a result
two nogoods are generated and stored, namely [q1 = 1] → (q3 6= 1) and [q2 =
2]→ (q3 6= 2)(ref). Since all possible assignments for q3 are inconsistent, agent
A3 resolves its NoGoodStore by generating a new nogood [q1 = 1 → q2 6= 2].
This nogood is then send to agent A2 as a ng message. Upon receiving this
ng message, agent A2 records this nogood. The assignment contained in the
left-hand side of this nogood, concerns agent A1 which is not a neighbor of agent
A2. Accordingly, agent A2 sends an adl message to agent A1, requesting the
establishment of a communication link (ref). This is followed by a consistency
check of its assignment with its AgentV iew. Agent A2 must now check the
consistency of its assignment. Its AgentV iew(q1 = 1) and its NoGoodStore,
consisting of the single nogood received by agent A3, result in no valid assign-
ment, so agent A2 resolves its NoGoodStore, creating the nogood [] → q1 = 1.
Agent A2 sends this nogood to agent A1. In turn, agent A1 change its assign-
ment to the value 2 and sends ok? messages to agents A2 and A3. In the same
manner, agent A2 assigns a value to its variable and sends an ok? message to
agent A3. Finally, agents A3 can now make a valid assignment.
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Algorithm 1 ABT algorithm

1: procedure ABT()

2: vi ← empty; ti ← 0; end← false;
3: CheckAgentView();

4: while ( ¬end ) do
5: msg ← getMsg();
6: switch ( msg.type ) do
7: case ok?
8: ProcessInfo(msg);

9: case ngd
10: ResolveConflict(msg);

11: case adl
12: AddLink(msg);

13: case stp
14: end← true;

15: procedure CheckAgentView(msg)
16: if ( ¬consistent(vi, AgentV iew) ) then
17: vi ← ChooseValue();
18: if ( vi 6= empty ) then
19: foreach ( child ∈ Γ+(Ai) ) do
20: sendMsg : ok?(myAssig〈xi, vi, ti〉) to child;

21: else Backtrack();

22: procedure ProcessInfo(msg)
23: UpdateAgentView(AgentV iew,msg.assig);
24: CheckAgentView();

25: procedure UpdateAgentView(newAssig)
26: if ( newAssig.tag > AgentV iew[j].tag ) then % xj ∈

newAssig %
27: AgentV iew[j]← newAssig.value;
28: foreach ( nogood ∈ NoGoodStore ) do
29: if ( ¬Compatible(lhs(nogood), AgentV iew) ) then
30: remove(nogood,NoGoodStore);

31: procedure Backtrack()

32: newNoGood← solve(NoGoodStore);
33: if newNoGood = empty then end← true; sendMsg: stp(system);

34: else
35: sendMsg: ngd(newNogood) to Aj; % xj is the variable on

rhs(newNogood) %
36: UpdateAgentView(xj ← empty);
37: CheckAgentView();
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Algorithm 1 ABT algorithm (cont’d)

38: procedure ResolveConflict(msg)
39: if ( Compatible(lhs(msg.nogood), AgentV iew) ) then
40: CheckAddLink(msg.nogood);
41: add(msg.nogood, NogoodStore);
42: CheckAgentView();

43: else if ( rhs(msg.nogood).value = vi ) then
44: sendMsg : ok?(myAssig〈xi, vi, ti〉) to msg.sender;

45: procedure CheckAddLink(nogood)
46: foreach (xj ∈ lhs(nogood) \ Γ−(Ai) ) do
47: add(xj = vj AgentV iew);
48: Γ−(Ai)← Γ−(Ai) ∪ {xj};
49: sendMsg:adl(xj = vj) to Aj;

50: procedure AddLink(msg)
51: add(msg.sender, Γ

+
(Ai));

52: if (vi 6= msg.assig.value ) then sendMsg : ok?(myAssig〈xi, vi, ti〉)
to msg.sender;

53: function ChooseValue(msg)
54: foreach (v ∈ D(xi) ) do
55: if ( isConsistent(v, AgentV iew) ) then return v;
56: else store the best nogood for v;

return empty;

41



x
3

x
1

x
2

D1 = {1, 2}

D3 = {1, 2}

D2 = {2}

6= 6=

0

0

(a)

D1 = {1, 2}

D3 = {1, 2}
AgentV iew : [(q1 = 1), (q2 = 2)]

[q1 = 1]→ (q3 6= 1)

[q2 = 2]→ (q3 6= 2)

D2 = {2}

q
3

q
1

q
2

ok?(q1 = 1) ok?(q2 = 2)

6= 6=

(b)

q3

q1 q2

6= 6=

D1 = {1, 2}

D3 = {1, 2}

D2 = {2}

ngd([q1 = 1]→ q2 6= 2)

AgentV iew : [q1 = 1]

[q1 = 1]→ (q3 6= 1)

0

(c)

q3

q1 q2

6= 6=

adl(q1 = 1)

D1 = {1, 2}

D3 = {1, 2}

D2 = {2}

AgentV iew : [q1 = 1]

[q1 = 1]→ (q3 6= 1)

AgentV iew : [q1 = 1]

[q1 = 1]→ (q2 6= 2)

(d)

q
3

q
1

q
2

6= 6=

D1 = {1, 2}

D3 = {1, 2}

D2 = {2}

AgentV iew : [q1 = 1]

[q1 = 1]→ (q3 6= 1)

ngd([] → q1 6= 1)

0

(e)

q
3

q
1

q
2

6= 6=

D1 = {1, 2}

D3 = {1, 2}

D2 = {2}

AgentV iew : [(q1 = 2), (q2 = 2)]

ok?(q2 = 2)ok?(q1 = 2)

ok(q1 = 2)

AgentV iew : [q1 = 2]

[]→ q1 6= 1

0

(f)

Figure 5.1: Execution example of a DisCSP.
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5.3 Limited-range Delaunay Graph

We now give the necessary definitions of the notions of the r-limited Voronoi
partition and its dual notion the r-limited Delaunay graph.

Definition 5.9 Let P = {xi}i∈V be a set of n ∈ N distinct points in R2 indexed
by V. The Voronoi partition [16], generated by P with respect to some ‖·‖ norm
is the collection of sets:

{Vi(P)}i∈V ,

where,
Vi(P) , {z ∈ R2 : ‖z − xi‖ ≤ ‖z − xj‖ ,∀j ∈ V \ {i}}.

Similarly,

Definition 5.10 Let P = {xi}i∈V be a set of n ∈ N distinct points in R2

indexed by V. The r-limited Voronoi partition [34] is the collection of sets

Vri (P) , Vi(P) ∩ B
(
xi,

r

2

)
.

Accordingly, the dual notion of r-limited Delaunay graph is defined.

Definition 5.11 The r-limited Delaunay graph is a proximity graph

GLD(P, r) , (V, ELD),

where the set ELD consists of edges (i, j) ∈ V × V with the property that,

Vri (P) ∩ Vrj(P) 6= ∅.

5.4 Reconfiguration Algorithm

Once system (2.1) under the controller (4.6) reaches a stable configuration at
some time τ , a check is performed to determine whether the equilibrium is the
desired configuration2. Initially, the ρc-limited Delaunay graph is generated in
a decentralized fashion, i.e., each agent i builds the set Ni(GLD(x(τ), ρc)) solely
using locally available information. The aforementioned DisCSP,

P = (V,Q,D (x (τ)) , C (x (τ) ,Gf (τ))) ,

is completely determined by its sets of domains and constraints. In particular,
the set of domains is constructed according to Algorithm 3 which is executed in
a sequential manner by each agent.

Notice that, the domain of each follower is taken as a subset of the positions
of its neighbors at time τ with respect to the ρc-limited Delaunay graph. If
the region between two agents is obstructed by obstacles and the edge corre-
sponding to these agents in the ρc-limited Delaunay graph is not critical, the
corresponding points are not included in the respective domains. The domain
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Algorithm 3

1: Gt ← GLD(x(τ), ρc)
2: for each i ∈ V do
3: for each j ∈ Ni(Gt), j > i do
4: if Vρci (x) ∩ Vρcj (x) ∩ F = ∅ then
5: if (i, j) is not a critical edge of Gt then
6: Et ← Et \ {(i, j)}
7: if i = 1 then

8: Di ← ρc
2

(
xd1−x1(τ)

‖xd1−x1(τ)‖

)
9: else

10: Di ← {xj(τ) : j ∈ Ni(Gt)}

of the leader is the singleton set of the point that is ρc away from the position
of the leader towards its corresponding desired point.

The constraints Cij are selected as:

– {(qi, qj) : ρc > ‖qi − qj‖ > 2ρα}, for j ∈ Ni(Gf (τ));

– {(qi, qj) : ‖qi − qj‖ > 2ρα}, for j ∈ Ni(Gt);

– {(qi, qj) : ‖qi − qj‖ > 2ρα}, for j ∈
⋃

k∈Ni(Gt)
Nk(Gt);

– Di ×Dj , otherwise.

Notice that the imposed constraints reflect the requirements for collision
avoidance and connectivity maintenance for a pair of agents possessing a for-
mation specification.

Therefore, Problem P can be regarded as the discrete problem of assigning
positions to the followers, as the leader moves closer to its desired configura-
tion, so that agents do not overlap and agents with formation constraints are
sufficiently close.

By construction and definition, it holds that

Gt ⊆ GLD(x(τ), ρc)

and
GLD(x(τ), ρc) ⊆ Gc(x(τ)),

respectively. Thus, the maximum distance in the communication graph of agents
sharing some constraint is two, a fact that substantially reduces the amount of
multi-hop communication required for solving the DisCSP.

2Agents can agree that the system has reached an equilibrium through a consensus proce-
dure [6].
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The reconfiguration algorithm is presented in Algorithm 4. Initially, the
ABT algorithm is used to solve problem P. During this procedure agents shar-
ing constraints exchange their assignments and check whether those assignments
violate some corresponding constraint. In case a solution is found, the relative
formation specifications are updated accordingly. In case no solution exists for
problem P, the system still acquires some useful information, i.e., how many
times each constraint corresponding to a connectivity maintenance specification
(i, j) ∈ Ef (τ) was violated during the solving procedure, denoted by Cij . It
can then use this information to relax some formation specification. Through
a Max-Consensus procedure [35], the specification with the highest cij is cho-
sen. Then a check is performed to determine whether the corresponding edge
in the formation graph is not critical. In such case, the formation specification
is removed from the graph and the system continues its motion with the recon-
figured formation graph Gf (τ ′). Alternatively, if the edge is critical, the same
procedure is repeated until some non-critical edge is removed.

Algorithm 4 Reconfiguration Procedure

1: (Q, {Cij}(i,j)∈Ef (τ))← ABT(P)
2: if P has a solution then
3: Ef (τ ′)← Ef (τ)
4: for each (i, j) ∈ Ef (τ ′) do
5: cij(τ

′)← (qi − qj)
6: Cf (τ ′)←

⋃
(i,j)∈Ef (τ ′) cij(τ

′)

7: Gf (τ ′)← (V, Ef (τ ′) , Cf (τ ′))
8: return Gf (τ ′)
9: else

10: If ← Ef (τ)
11: while {Cij}(i,j)∈If 6= {∅} do
12: e← argmax

(i,j)∈If
Cij

13: if e is not a critical edge of Gf (τ) then
14: Ef (τ ′)← Ef (τ) \ {e}
15: Cf (τ ′)←

⋃
(i,j)∈Ef (τ ′) cij(τ)

16: Gf (τ ′)← (V, Ef (τ ′), Cf (τ ′))
17: return Gf (τ ′)
18: else
19: If ← If \ {e}

Note that, after a finite number of reconfigurations the leader will either
reach its desired position or the formation graph will become a tree, permitting
no further removal of formation specifications.
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6 Line Graph Prescribed Performance Controller

6.1 Introduction

Although the reconfiguration procedure developed previously used in conjunc-
tion with the DNFs controller may lead to the desired configuration, no formal
proof of convergence can be acquired. Thus, in search of a provably correct
algorithm, we introduce a novel controller based on the Prescribed Performance
Control (PPC) methodology [36] that can handle a subset of Problem 2.1 and
specifically the case where the formation graph is a line graph, with the system’s
leader at the one end. It is reminded that following exhaustive reconfiguration,
the formation graph may not be a line rather some tree. However, a line for-
mation graph can be acquired by utilizing the DNFs controller, to increase the
connectedness of the communication graph, resulting in the appearance of a line
subgraph.

6.2 Prescribed Performance Control

The prescribed performance notion was originally employed to design neuroad-
aptive controllers, for various classes of nonlinear systems, namely feedback
linearizable [36], strict feedback [37] and general MIMO affine in the control
[38], capable of guaranteeing output tracking with prescribed performance. In
this work, by prescribed performance, it is meant that the output tracking error
converges to a predefined arbitrarily small residual set with convergence rate no
less than a certain predefined value.

In that respect, consider a generic scalar tracking error e(t). Prescribed
performance is achieved if e(t) evolves strictly within a predefined region that
is bounded by certain functions of time. The mathematical expression of pre-
scribed performance is given, ∀t ≥ 0, by the following inequalities:

%l(t) < e(t) < %u(t)

where %l(t), %u(t), are smooth and bounded functions of time satisfying

lim
t→∞

%l(t) < lim
t→∞

%u(t)

, called performance functions. The aforementioned statements are clearly il-
lustrated in Figure 6.1 for exponential performance functions

%i(t) = (%i,0 − %∞i )e−kst + %∞i (6.1)

with %i,0, %
∞
i , ks, i ∈ {l, u} appropriately chosen constants.

The constants %l,0 = %l(0), %l,0 = %l(0) are selected such that

%l,0 < e(0) < %u,0.

The constants %∞l = limt→∞ %l(t), %
∞
u = limt→∞ %u(t) represent the maximum

allowable size of the tracking error e(t). Moreover, the decreasing rate of %l(t),
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%l,0

%∞l
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%∞u

e(0)

%u,0

%l(t)

%u(t)
e(t)

Time

Figure 6.1: A graph illustrating the Prescribed Performance Control methodol-
ogy.

%l(t) which is affected by the constant ks in this case, introduces a lower bound
on the required speed of convergence of e(t). Therefore, the appropriate selection
of the performance functions %l(t), %u(t) imposes performance characteristics on
the tracking error e(t).

Instead of choosing performance functions that are functions of time, we will
utilize dynamic performance functions that are governed by differential equa-
tions driven by state-dependent terms. This approach, under certain prevailing
assumptions will allow us to derive a convergent and safe controller for forma-
tions graphs that are line graphs with the leader at one end.

6.3 Modelling

For each agent i ∈ V, we define the distance from the leader as the bijection,

dist1 : V → N<n, i 7→ dist(i, 1).

Each follower i ∈ Vf , V \ {1}, is assigned the desired relative formation
specification

ci , cij ,

where

j = dist−1
1 (dist1(i)− 1).

Equivalently, the configuration of j with respect to i can be expressed in polar
form as, di , ‖xj − xi‖ and θi , atan2(xj−xi). The equivalent formulation for

the desired formation configuration is then set as ddi , ‖ci‖ and θdi , atan2(ci).
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xj

xi

r̂i
t̂i

x̂i

ŷ
i

dixki

xli

Figure 6.2: The (x̂i, ŷi) frame results from translating the global frame to the
center of agent i. The orthonormal frame (r̂i, t̂i) is fixed at xi with the first
coordinate pointing towards agent j at all times. In this example, k ∈ iIo,l and
l ∈ iIo,r. Informally, the two classes separate the obstacles to those on the left
of and those on the right of r̂i.

By the path homotopy property, the set of obstacles Io can be partitioned
into two classes with respect to each follower i ∈ Vf , namely

iIo,l , {k ∈ Io : xki × xkj > 0},

and
iIo,r , {k ∈ Io : xki × xkj < 0},

where the ”×” operator is the 2-dimensional cross product and xki , xk − xi
(see Figure 6.2). We are now ready to proceed with the formulation of the
Prescribed Performance based controller.

6.4 Controller Design

We will apply the Prescribed Performance Approach separately for the errors
of the distance di and angle θi from the desired value. Accordingly, we define
four performance functions governed by the following set of linear differential
equations:

%̇θi,u = −ks(%θi,u − %∞θi − θ
d
i ) + fθi , (6.2a)

%̇θi,l = −ks(%θi,l + %∞θi − θ
d
i ) + fθi , (6.2b)

%̇di,u = ProjΠ(−ks(%di,u − %∞di − d
d
i ) + fdi ; %di,u), (6.2c)

%̇di,l = ProjΠ(−ks(%di,l + %∞di − d
d
i ) + fdi ; %di,l), (6.2d)
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where %∞θi , %
∞
di
∈ R>0 are the ultimate steady state error bounds for θi and

di respectively, and ks ∈ R>0 is the convergence rate. Moreover, ProjΠ(· ; ·)
denotes a projection operator [39] which ensures that the corresponding state
variables remain in the convex set Π , R>2ρα , thus guaranteeing inter-agent
collision avoidance.

Remark 6.1. The homogeneous solution of (6.2a) - (6.2d), i.e., for f = 0, is
identical to the exponential decaying performance function defined in (6.1).

The input terms are defined as:

fθi , fi,l − fi,r, (6.3a)

fdi ,

(
σ2
ε5,rp

1− σ2
ε5,rp

)
(max {fi,l, fi,r}) , (6.3b)

where,

fi,l , max
k∈iIo,l

{
1− bijk
bijk

,
1− bik
bik

}
, (6.4a)

fi,r , max
k∈iIo,r

{
1− bijk
bijk

,
1− bik
bik

}
, (6.4b)

where bijk and bik have been assigned in [].
The role of those terms is to adequately temporarily alter the performance

functions so that agent i can follow the leader without colliding with an obstacle
or violating path homotopy.

Following the design procedure of Prescribed Performance Control, the nor-
malized errors of θi and di are defined as:

ζθi ,
θi −

%θi,u+%θi,l
2

%θi,u−%θi,l
2

, (6.5)

and

ζdi ,
di −

%di,u+%di,l
2

%di,u−%di,l
2

, (6.6)

respectively. the control input for each follower is then formulated as:

ui(t) = R(θi)

[
vr̂i
vt̂i

]
, i ∈ Vf , (6.7)

where,

vr̂i , krln

(
1 + ζdi
1− ζdi

)
− ζdi + 1

2
ρ̇di,u +

ζdi − 1

2
ρ̇d,l, (6.8)

and,

vt̂i , di

(
ktln

(
1 + ζθi
1− ζθi

)
− ζθi + 1

2
ρ̇θ,u +

ζθi − 1

2
ρ̇θ,l

)
, (6.9)
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are the control inputs expressed in the (r̂i, t̂i) frame, kr, kt ∈ R>0 are control
gains. R(θi) ∈ SO(2) is the rotation matrix from the (r̂i, t̂i) frame to the
inertial frame (x̂i, ŷi). Finally, the control input for the leader is provided by
some controller (e.g., a Navigation Function).

6.5 Analysis

The proposed control scheme guarantees that both θi and di will be invariably
upper and lower bounded by their respective performance functions, assuming
this statement is initially true3. Then, by appropriate manipulation of the
aforementioned performance functions (6.2a)-(6.2d), agent i can follow agent j
maintaining path homotopy and avoiding the obstacles while at the same time
preserving connectivity.

The principle of operation of the controller is based on the observation that
in the proximity of obstacles belonging to the same class (i.e., either iIo,l or
iIo,r), all terms bijk and bik are increased by changing the angle θi towards
the opposite direction, thus moving away from the obstacles. This is achieved
through the term fθi in (6.2a) and (6.2b) which induces the appropriate con-
trol command in the direction of t̂i (6.9). In the proximity of obstacles that
belong to both classes, the aforementioned action may not suffice. Based on the
fact that reducing the distance di leads to an increase of every bijk, additional
control command in the r̂i direction (6.8), is induced by the fdi term in (6.2c)
and (6.2d). An indicative case is presented in Figure 6.2, where while changing
the angle θi in an attempt to avoid violation of path homotopy with respect to
obstacle k, agent i risks collision with obstacle l. Then reducing the distance
di, obstacle k is bypassed and the angle action can be utilized for avoiding
collision with obstacle l. Away from obstacles, the terms fθi and fdi are zero
and thus, the homogeneous terms of (6.2a)-(6.2d) bound agent i towards the
desired configuration, as the performance functions asymptotically converge to-
wards an arbitrarily small neighborhood (dictated by %∞θi and %∞di ) of the desired
configuration.

This is summarized in the following theorem:

Theorem 6.1 Given a constant line formation graph, and an initial configu-
ration that respects path homotopy (3.10), system (2.1) under the control law
(6.7) will converge to an arbitrarily small neighborhood of the desired configura-
tion, without collisions or loss of connectivity as long as the leader has bounded
velocity.

Proof. The analysis can be performed for a system of one leader and one fol-
lower and then applied recursively to the rest of the followers. Collisions are
handled by the projection operator and since the di is non-increasing connec-
tivity cannot be jeopardized. Terms (6.3a), (6.3b) tend to infinity as some bijk
or bik tends to zero. By the path homotopy assumption, simultaneous violation

3This a valid assumption given that both θi and di are initially known, rendering thus
proper initialization trivial.
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of path homotopy specifications that belong to different classes cannot occur
since that would lead to a contradiction, i.e., a path homotopy violation would
have previously occurred. Thus, performance functions can be altered in such a
way, that the agent can follow its leader. Since the leader has bounded velocity,
the agent can always develop a sufficiently high, yet bounded velocity to remain
within the bounds dictated by the performance functions. Away from obstacles,
the values of the performance functions return close to the desired.
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Figure 7.1: Flow chart of the integrated scheme.

7 Integrated Scheme

The flow diagram describing the integrated scheme is presented in Figure 7.1
Finally, note that the system can successfully attain the initial formation graph,
once the leader has reached its desired point, by reversing the reconfiguration
process. This is achieved using the DNFs controller with guaranteed conver-
gence, since, by Assumption 4, obstacles are sufficiently away and the analysis
reduces to [23].
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8 Simulation Results

We now present some simulation results that validate our approach. The con-
tinuous controllers were programmed using the C programming language, while
the reconfiguration algorithm and the integration was implemented in MAT-
LAB running on an Intel Core i7 2630QM with 4 GB RAM. The execution time
for the whole simulation was in the order of a few seconds.

Three cases scenarios are presented. The first requires no reconfiguration,
the second converges after one reconfiguration and the third converges using the
PPC based controller.

The numerical values that follow were common in all 3 cases.

System properties

• ρα = 1 (agents radius)

• ρc = 10 (communication and sensing radius)

DNFs based controller parameters

• κ = 1000 (DNF parameter)

• ε1 = 0.1 (Workspace containment buffer parameter)

• ε2 = 0.1 (Collision avoidance buffer parameter)

• ε3 = 0.1 (Connectivity maintenance buffer parameter)

• R =
√
ρ2
c − (2ρα)2 (Maximum allowed distance between formation graph

neighbors)

• ε4 = 0.1 (Path homotopy maintenance buffer parameter)

Line graph PPC contoller

• %∞θi = 0.1 (θi ultimate steady state error bound)

• %∞di = 0.1 (di ultimate steady state error bound)

• ks = 1 (Error convergence rate)

• ε5 = 0.1 (Switch transition zone width)

• rp = 10 (Switch threshold)

• kr = 4 (Radial direction control gain)

• kt = 4 (Tangential direction control gain)
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8.1 Case 1

The first case involves four agents and is resolved without reconfiguration through
the DNFs based controller. Details are now provided.

Setup

• Number of agents: 4

• Number of obstacles: 6

• ρw = 60

• x1(0) = [−17, −36]T

• xd1 = [17, 20]T

Formation Specifications

• c12 = [3.5355, 3.5355]T

• c13 = [−3.5355, 3.5355]T

• c14 = [0, 7.0711]T

• c23 = [−7.0711, 0]T

• c24 = [−3.5355, 3.5355]T

• c25 = [0, 7.0711]T

• c34 = [3.5355, 3.5355]T

• c36 = [0, 7.0711]T

• c45 = [3.5355, 3.5355]T

• c46 = [−3.5355, 3.5355]T

• c56 = [−7.0711, 0]T

• c57 = [0, 7.0711]T

• c68 = [0, 7.0711]T

• c78 = [−7.0711, 0]T

Obstacles

k xk ρk

1 [−24.5, −30]T 3

2 [−16, −30]T 3

3 [−14, −15]T 6

4 [5, −17]T 9

5 [−14, 0]T 6

6 [5, 4]T 9
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8.2 Case 2

In this scenario the system consists of eight agents. The system gets stuck at
a local minimum configuration. However, following the removal of a formation
specification, the system successfully converges to the desired configuration.

Setup

• Number of agents: 8

• Number of obstacles: 12

• ρw = 60

• x1(0) = [−17, −36]T

• xd1 = [15.7, 32]T

Formation Specifications

• c12 = [3.5355, 3.5355]T

• c13 = [−3.5355, 3.5355]T

• c14 = [0, 7.0711]T

• c23 = [−7.0711, 0]T

• c24 = [−3.5355, 3.5355]T

• c25 = [0, 7.0711]T

• c34 = [3.5355, 3.5355]T

• c36 = [0, 7.0711]T

• c45 = [3.5355, 3.5355]T

• c46 = [−3.5355, 3.5355]T

• c56 = [−7.0711, 0]T

• c57 = [0, 7.0711]T

• c68 = [0, 7.0711]T

• c78 = [−7.0711, 0]T

Obstacles

k xk ρk

1 [−16, −30]T 3

2 [−14, −15]T 6

3 [5, −17]T 9

4 [14, −3]T 7

5 [5, 1]T 9.5

6 [−23, −15]T 6

k xk ρk

7 [−33, −15]T 6

8 [−43, −15]T 6

9 [−51, −15]T 6

10 [20, −17]T 9

11 [35, −17]T 9

12 [46, −17]T 9
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8.3 Case 3

In the third scenario the system consists again of eight agents. The workspace is
more cluttered than in the previous case. Thus, after a series of reconfigurations
the formation graphs ends up being a line graph. The system then switches to
the PPC controller and successfully converges to the desired configuration.

Setup

• Number of agents: 8

• Number of obstacles: 30

• ρw = 62

• x1(0) = [−17, −36]T

• xd1 = [26.2, 44.4]T

Formation Specifications

– c12 = [3.5355, 3.5355]T

• c13 = [−3.5355, 3.5355]T

• c14 = [0, 7.0711]T

• c23 = [−7.0711, 0]T

• c24 = [−3.5355, 3.5355]T

• c25 = [0, 7.0711]T

• c34 = [3.5355, 3.5355]T

• c36 = [0, 7.0711]T

• c45 = [3.5355, 3.5355]T

• c46 = [−3.5355, 3.5355]T

• c56 = [−7.0711, 0]T

• c57 = [0, 7.0711]T

• c68 = [0, 7.0711]T

• c78 = [−7.0711, 0]T

Obstacles
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k xk ρk

1 [−16, −30]T 3

2 [−14, −17]T 6

3 [−24, −17]T 6

4 [−34, −17]T 6

5 [−44, −17]T 6

6 [−52, −17]T 6

7 [5, −17]T 9

8 [15, −17]T 9

9 [25, −17]T 9

10 [35, −17]T 9

k xk ρk

11 [48, −17]T 9

12 [5, 1]T 9.5

13 [−7.5, −8]T 2

14 [−7.5, −5.2]T 0.4

15 [−7.5, −2.4]T 0.4

16 [−7.5, 0.4]T 0.4

17 [−7.5, −3.2]T 0.4

18 [−7.5, 5.6]T 0.4

19 [−7.5, 8.8]T 0.4

20 [−7.5, 11.6]T 0.4

k xk ρk

21 [−7.5, 14.4]T 0.4

22 [−10.3, 14.4]T 0.4

23 [−13.1, 14.4]T 0.4

24 [−15.9, 14.4]T 0.4

25 [−18.7, 14.4]T 0.4

26 [−21.5, 14.4]T 0.4

27 [−24.3, 14.4]T 0.4

28 [−27.1, 14.4]T 0.4

29 [−29.9, 14.4]T 0.4

30 [−32.7, 14.4]T 0.4
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Figure 8.1: At the initial configuration the system starts operating with the
DNFs controller.
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Figure 8.2: System encounters the first unwanted local minimum.
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Figure 8.3: The system makes substantial progress towards the desired config-
uration.
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Figure 8.4: Additional reconfiguration result in a line formation graph and
controller switch is performed.
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Figure 8.5: All obstacles are successfully negotiated, and the leader reaches its
desired point.
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Figure 8.6: Using the DNFs based controller desired formation is attained as
well.

63



9 Future Research

In the following, we propose some directions for further research that are related
to the problem we addressed and the notions we utilized.

Adaptive DNFs based controller The DNFs based controller developed
in subsection 4.1 suffered from persistent local minima. It would be interesting
to see whether some inner control loop of the relative formation specifications,
i.e., cij ’s, could alleviate those issues. In this task, the path homotopy notion
could prove useful, similarly to the case of the controller presented in section 6.

Extension of the PPC controller to tree graphs The PPC controller
proposed in can at the moment handle seldom line formation graphs. However,
it is our belief that the aforementioned controller could be extended to handle
general tree graphs. This could perhaps be achieved with the aid of a supervisory
discrete controller that would swap edges, i.e., add one formation specification
and subsequently remove another. Note that in this case no criticality check is
necessary.

Predict In our approach the system had to reach a halt, i.e., a local min-
ima before the reconfiguration procedure was initiated. Perhaps some adaptive
control scheme, such as the ones proposed above, combined with a less sophis-
ticated discrete decision algorithm would deliver better results. In those lines,
a distributed edge criticality detection would prove extremely useful.
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A Graph Theory Notions

A graph G∗ = (V, E∗) consists of a finite set of vertices V and a finite set of
edges E∗ ⊂ V × V. We restrict our attention to simple undirected graphs, i.e.,
(i, i) /∈ E∗ and (i, j) ∈ E∗ ⇔ (j, i) ∈ E∗. A graph Gs = (V, Es) is a subgraph of
G∗, denoted by Gs ⊆ G∗ , if Es ⊆ E∗. For each vertex i ∈ V we define the set
of neighbors Ni(G∗) , {j ∈ V : (i, j) ∈ E∗}. The degree degi(G∗)of a vertex i is
the cardinality of the corresponding set of neighbors, i.e., degi(G∗) , |Ni(G∗)|.
A (simple) path on G∗ is a finite sequence of unique elements of V such that
every two consecutive elements are adjacent. The length of the path is defined
as the number of vertices minus one. We say that a graph is connected if and
only if for each pair of distinct vertices there exists a path that contains both
vertices. The distance of two vertices u, v of a connected graph, denoted by
dist(u, v) is equal to the length of the shortest path in the graph that contains
both vertices. An edge e ∈ E∗ of a connected graph G∗ is called a critical edge if
the graph (V, E∗ \ {e}) is not connected. A tree is a graph with all of its edges
being critical. A line graph is a tree with maxi∈V{degi(G∗)} = 2.

The task of determining whether an edge e = (i, j) is critical is of global
nature, meaning that it cannot in general be determined locally. In the context
of this work, this is achieved using a Distributed Breadth-First Search algorithm,
which searches for another path that contains vertices i and j other than (i, j).
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