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Preface 

Our contact with the sea offers a strange feeling of mystery and charm at the same time. The 

picturesque and relaxing view of the calm water of a beautiful beach can be easily followed, in 

our mind, by the terrifying image of giant waves in deep oceans. They are two sides of the 

same coin. This power of the sea water to influence and visualize our feelings is very 

impressive and magical. It is this mystery that has been calling the sailors offshore to cross the 

oceans and investigate their secrets. And it is also the same charm that sometimes dresses with 

the simplicity of our carefree playing at the beach or the complexity of the physical processes 

that coastal scientists struggle with. Even from ancient times, the populations that have settled 

in coastal areas have recognized the importance of sea for their civilization and thus have 

dedicated divine figures and creatures for placating it. 

One of the most attractive aspects of the sea environment is the impressive diversity of shore 

types and shapes. From the Scandinavian fjords to the indented coastlines of Greek islands, 

and from the mudflats of the Wadden Sea to the coral Pacific islands, a variety of coastal 

geomorphological processes are revealed. These processes, along with associated sediment 

transport mechanisms, hide the highest degree of uncertainty among the coastal phenomena. 

My personal curiosity to discover and understand these complex morphological processes in 

coastal zones was, by far, the major motivation for pursuing the present dissertation. Of course, 

my additional intention was to try to offer some original contribution to engineering solutions 

to the problem of coastal erosion and it would be flattering if this objective has been achieved. 

However, notwithstanding the extreme technocracy of present times, I have also tried to justify 

the philosophical point of view that a Ph.D. thesis, by definition, implies. This is something 

that I have tried to keep in mind throughout this four-year endeavour.  

Upon the completion of this journey to uncharted for me seas, I would like to deeply thank 

my supervisor, Professor Emeritus Constantine Memos, for assigning this very interesting and 

challenging thesis, as well as for his invaluable support and guidance. I feel that I rarely meet 

people that can truly inspire me, and he is definitely one of the very few. I immensely enjoyed 

our collaboration and apart from being a great teacher, I also feel that I have made a good 

friend. I will be grateful for the rest of my life. 

I would also like to sincerely thank Professor Theophanis Karambas for serving on my 

Advisory Committee. His contribution in choosing the topic of the dissertation is greatly 

appreciated. I have enjoyed our fruitful discussions during the course of my research and his 

comments and recommendations were invaluable.   
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I also profoundly thank Dr. Rolf Deigaard for serving on my Advisory Committee. Working 

with him was very helpful and instructive for me due to his experience and expertise in 

sediment transport processes. His guidance, support and comments were invaluable. I am 

doubly grateful to him for offering to me the opportunity to work for one year in DHI in 

Denmark. It was a great experience that I will always remember. 

Special thanks are also due to Nils Drønen for his assistance and suggestions on modeling 

issues during my stay in DHI. I would also like to thank Ida Brøker, head of CED Department 

in DHI, for approving my stay there and for her interest for my progress. Many thanks also go 

to my close friends Maziar, Asger, Kevin, Michele and Rubén for their continuous support. 

I would also like to thank Professor Athanassios Dimas for kindly providing the facilities of 

the Hydraulic Engineering Laboratory of the Civil Engineering Department at University of 

Patras and for his continuous assistance and guidance during the performance of the 

experiments. In addition, I thank him for serving on the defense committee of my dissertation. 

I am also grateful to Ph.D. candidate Nantia Galani for her invaluable help during this 

procedure and to Giannis Dimou for his technical support. Many thanks are also due to Dr. 

Fivos Sargentis and Associate Professor Dionissios Kalivas for their help in measuring the 

percentage of clay and organic matter of the soil material used in these experiments. 

Special thanks are also due to Professor Yannis Krestenitis, Associate Professor Vicky 

Tsoukala and Lecturer Samson Azorakos for serving on the defense committee of my 

dissertation. 

My sincere gratitude goes to my colleague and good friend Tasos for his comments, help and 

continuous support during our common course. The assistance and useful comments of the rest 

members of the research group, Michalis, Franka, and Maria-Eirini, are also acknowledged. 

I would also like to thank K.A. Rakha and M.F. Gobbi for kindly providing the results of 

their models. In addition, many thanks go to S. Beji, M.B. Gravens, L. Hamm, J.T. Kirby, C. 

Makris and V. Roeber for kindly providing full experimental datasets. Useful comments and 

suggestions made by O.R. Sørensen and P.A. Madsen are also appreciated. 

This work was accomplished through a scholarship provided by the “Onassis Foundation” 

which is gratefully acknowledged. In addition, financial support was also provided by the 

Danish Council for Strategic Research (DSF) under the project: Danish Coasts and Climate 

Adaptation - flooding risk and coastal protection (COADAPT), project no. 09-066869. This 

support is also acknowledged.   

Most of all, I would like to thank my parents, Chrysa and Thodoros, and my sister, Vasiliki, 

for their continuous encouragement and support at all levels for accomplishing this work. It 

would not have been possible without them. Conducting a doctoral thesis is a lonely trip hiding 

many mind traps. I would have never made it without my very special Elena. I am grateful for 
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her support and patience. There were many instances in which I was close to quitting, but she 

was there to carry me. I feel that a part of this work was made by her. 

The research effort began in October 2012 and its greatest part was conducted at the 

Laboratory of Harbour Works in National Technical University of Athens. From March 2013 

to March 2014 a part of the work was carried out at DHI in Hørsholm in Denmark. Finally, the 

experiments were performed at the Hydraulic Engineering Laboratory of University of Patras 

from May to September 2015. 

Athens, September 2016 

Georgios Klonaris 
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Εκτενής Περίληψη  

(Extended Abstract) 

Μορφοδυναμική ακτής με ύφαλους κυματοθραύστες 

του Γεώργιου Θ. Κλωνάρη 

Εθνικό Μετσόβιο Πολυτεχνείο 

Σχολή Πολιτικών Μηχανικών 

Τομέας Υδατικών Πόρων και Περιβάλλοντος 

Εργαστήριο Λιμενικών Έργων 

1.  Εισαγωγή 

Η παράκτια ζώνη αποτελεί ελκυστικό περιβάλλον για τον άνθρωπο από τα αρχαία χρόνια. 

Τα παράκτια ύδατα προσέφεραν πάντοτε ποιοτική τροφή, δυνατότητες ανάπτυξης του 

εμπορίου και της ναυτιλίας, στρατιωτικό πλεονέκτημα και, πιο πρόσφατα, τη δυνατότητα 

βιομηχανικής ανάπτυξης και δραστηριοτήτων αναψυχής. Σήμερα, πάνω από το 40% του 

παγκόσμιου πληθυσμού κατοικεί σε παράκτιες περιοχές, όπου συγκεντρώνεται και η 

πλειοψηφία των μεγαλουπόλεων.  Η υπερσυγκέντρωση πληθυσμών στις ευαίσθητες αυτές 

ζώνες συνεπάγεται υπερβολικές πιέσεις τόσο στη στεριά, όσο και στη θάλασσα. Οι πιο 

κρίσιμες ανάμεσά τους αφορούν στην υπερεκμετάλλευση της γης, όσο το δυνατόν εγγύτερα 

στη θάλασσα, για λόγους στέγασης και βιομηχανικής ή τουριστικής ανάπτυξης. Συνεπώς, οι 

πιέσεις αυτές μεταφράζονται, κατ’ ουσίαν, στην ανάγκη για διατήρηση μιας σταθερής 

ακτογραμμής.  

Αυτή η απαίτηση βρίσκεται συχνά σε σύγκρουση με τις φυσικές διεργασίες που λαμβάνουν 

χώρα στις παράκτιες περιοχές και μεταβάλλουν διαρκώς την ακτογραμμή. Το αποτέλεσμα 

αυτής της διαμάχης πολύ συχνά είναι η εκτεταμένη διάβρωση των ακτών. Το πρόβλημα 

εντείνεται από την κλιματική αλλαγή με τη σχετιζόμενη άνοδο της στάθμης της θάλασσας 

και τις συχνές καταστροφικές πλημμύρες. Μάλιστα, οι επιστημονικές προβλέψεις 

εμφανίζονται δυσοίωνες, καθώς το πρόβλημα αναμένεται να ενταθεί τα προσεχή χρόνια, 

αυξάνοντας την επικινδυνότητα στις παραθαλάσσιες περιοχές.  

Μέχρι πρόσφατα, η απουσία βιώσιμου σχεδιασμού στις παράκτιες ζώνες επέφερε ραγδαία 

αύξηση της διάβρωσης των ακτών παγκοσμίως. Σήμερα, τα περισσότερα κράτη εφαρμόζουν 

νομοθεσία για την προστασία του περιβάλλοντος που επιβάλλει περιορισμούς στις 
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κατασκευές πλησίον της ακτογραμμής, καθώς και την εκπόνηση ακτομηχανικών μελετών και 

μελετών περιβαλλοντικών επιπτώσεων. Παρόλα αυτά, για πολλά χρόνια, τα παράκτια έργα 

βασίζονταν στη λογική της λεγόμενης «σκληρής» προστασίας η οποία περιλαμβάνει την 

κατασκευή ογκωδών έργων από σκυρόδεμα ή φυσικούς ογκόλιθους, παρόμοια με τους 

κυματοθραύστες των λιμένων.  Επιπλέον, η επίδραση της κατασκευής τέτοιων έργων, σε 

ακτομηχανικό επίπεδο, αντιμετωπιζόταν ημι-εμπειρικά και αποσπασματικά. Έτσι, σε πολλές 

περιπτώσεις, ο σχεδιασμός οδηγούσε στο ακριβώς αντίθετο από το επιθυμητό αποτέλεσμα, 

ενώ οι περιβαλλοντικές επιπτώσεις αγνοούνταν, π.χ. δραστική διατάραξη των πληθυσμών 

χλωρίδας και πανίδας, μειωμένη ανανέωση των υδάτων και αισθητική υποβάθμιση της 

περιοχής.  

Πλέον, έχει γίνει ευρέως κατανοητό ότι η ευαίσθητη παράκτια ζώνη απαιτεί ένα 

ολοκληρωμένο σχέδιο διαχείρισης και όχι αποσπασματικές λύσεις. Στο πλαίσιο αυτό, μία 

ηπιότερη προσέγγιση για την προστασία των ακτών έχει προταθεί και εφαρμοστεί, η οποία 

περιλαμβάνει έργα όπως η τεχνητή αναπλήρωση, η αποστράγγιση των παραλιών (beach 

drainage), η διαχείριση των αμμόλοφων (sand dune management), κ.α. Ανάμεσα στις ήπιες 

αυτές μεθόδους, τη «σκληρότερη» όλων αποτελεί η κατασκευή των ύφαλων 

κυματοθραυστών.  

Κατά τη διάρκεια των τελευταίων ετών, οι ύφαλοι κυματοθραύστες έχουν κινήσει το 

επιστημονικό ενδιαφέρον ως μία εναλλακτική λύση έναντι των συμβατικών για την παράκτια 

προστασία. Αποτελούν ηπιότερη μέθοδο προστασίας και συνεπώς είναι γενικά λιγότερο 

αποτελεσματικά, από άποψη παράκτιας μηχανικής, σε σχέση με τις έξαλες κατασκευές. 

Ωστόσο, σε περιπτώσεις ήπιου υδροδυναμικού καθεστώτος τα ύφαλα έργα μπορεί να είναι 

πιο ελκυστικά από τα συμβατικά, καθότι είναι περισσότερο φιλικά προς το περιβάλλον, 

υπερτερούν αισθητικά και είναι συνήθως χαμηλότερου κόστους.  

Η επιστημονική έρευνα γύρω από τους ύφαλους κυματοθραύστες ξεκίνησε σχετικά 

πρόσφατα και περιλαμβάνει τρεις μεθόδους για τη μελέτη της συμπεριφοράς τους: 

παρατηρήσεις πεδίου, εργαστηριακά πειράματα σε φυσικά μοντέλα και αριθμητική 

προσομοίωση. Ένας σημαντικός αριθμός εργαστηριακών πειραμάτων έχει εκτελεστεί από τη 

δεκαετία του ’70 με στόχο τη διερεύνηση, κυρίως, της υδροδυναμικής συμπεριφοράς των 

ύφαλων κυματοθραυστών. Το πιο ολοκληρωμένο σετ εργαστηριακών μετρήσεων 

περιλαμβάνεται στο ευρωπαϊκό ερευνητικό πρόγραμμα DELOS (Kramer et al., 2005). 

Αντιθέτως, ελάχιστες πειραματικές εργασίες εξετάζουν την εξέλιξη της μορφολογίας στα 

κατάντη ύφαλων κυματοθραυστών (Groenewoud et al., 1996; van der Biezen et al., 1997; 

Turner et al., 2001). 

Επιπλέον, αρκετά αριθμητικά μοντέλα έχουν αναπτυχθεί για την περιγραφή της κυματικής 

διάδοσης και των κυματογενών ρευμάτων πάνω και γύρω από ύφαλους κυματοθραύστες. Τα 

περισσότερα εξ αυτών αντιμετωπίζουν τους τελευταίους ως αδιαπέρατες κατασκευές και 
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μόνο λίγα λαμβάνουν υπόψη τη διαπερατότητά τους (Cruz et al., 1997; Hsiao et al., 2002; 

Avgeris et al., 2004; Chen, 2006). Αντιθέτως, ελάχιστα αριθμητικά μοντέλα έχουν 

παρουσιαστεί για την περιγραφή της μορφολογίας στα κατάντη ύφαλων κυματοθραυστών 

(Zyserman et al., 1999; Lesser et al., 2003; Koutsouvela et al., 2007; Ranasinghe et al., 2010; 

Karambas and Samaras, 2014). Ωστόσο, ελάχιστα εξ αυτών έχουν επαληθευτεί με μετρήσεις 

που αναφέρονται σε δύο οριζόντιες διαστάσεις.  

Η παρούσα Διδακτορική Διατριβή εντάσσεται στο πλαίσιο της έρευνας σχετικά με τη 

συμπεριφορά των ύφαλων κυματοθραυστών ως έργων προστασίας των ακτών. Οι βασικοί 

στόχοι της συγκεκριμένης ερευνητικής εργασίας είναι οι εξής: 

 Να συνεισφέρει στην κατανόηση των σύνθετων υδροδυναμικών και μορφοδυναμικών 

διεργασιών που λαμβάνουν χώρα σε παράκτιες ζώνες οι οποίες προστατεύονται από 

απλούς ή συστήματα ύφαλων κυματοθραυστών. 

 Να αναπτυχθεί ένα ολοκληρωμένο αριθμητικό μοντέλο για την προσομοίωση της 

κυματικής διάδοσης, του πεδίου των κυματογενών ρευμάτων, της παράκτιας 

στερεομεταφοράς, της διάβρωσης και απόθεσης και τελικά να περιγράφει την εξέλιξη 

του κάθετου στην ακτή προφίλ του πυθμένα, καθώς και της ακτογραμμής, στα κατάντη 

ενός συστήματος ύφαλων διαπερατών κυματοθραυστών. 

 Να εκτελεστούν εργαστηριακά πειράματα σε δύο οριζόντιες διαστάσεις που αφορούν 

στην εξέλιξη της μορφολογίας αμμώδους πυθμένα στα κατάντη ύφαλου διαπερατού 

κυματοθραύστη. Ο στόχος των πειραμάτων ήταν διπλός. Πρώτον, να εξαχθούν κάποια 

συμπεράσματα για τη συμπεριφορά των έργων αυτών, απευθείας από τις παρατηρήσεις. 

Δεύτερον, να εξαχθεί ένα σετ μετρήσεων για την επαλήθευση του αριθμητικού 

μοντέλου.  

 Να εκτελεστεί μία σειρά αριθμητικών πειραμάτων, ώστε να μελετηθεί η απόκριση της 

ακτογραμμής σε ένα σύστημα ύφαλων κυματοθραυστών. Σκοπός ήταν η εξαγωγή 

κάποιων γενικών κατευθυντήριων γραμμών σχετικά με το σχεδιασμό των έργων αυτών 

από ακτομηχανική άποψη.   

2. Μεθοδολογία προσέγγισης 

Όπως αναφέρθηκε παραπάνω, αντικείμενο της Διατριβής αποτελεί η μελέτη της εξέλιξης 

της μορφολογίας του πυθμένα κατάντη ύφαλων κυματοθραυστών. Οι μορφολογικές αυτές 

αλλαγές εξετάστηκαν τόσο αριθμητικά, όσο και πειραματικά σε δεξαμενή κυμάτων. 

Συγκεκριμένα, αναπτύχθηκε ένα σύνθετο αριθμητικό μοντέλο που συνδυάζει τέσσερα υπο-

μοντέλα σε μία ενιαία μορφή. Το σύνθετο αυτό εργαλείο περιλαμβάνει: κυματικό μοντέλο, 
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υδροδυναμικό μοντέλο για την προσομοίωση των κυματογενών ρευμάτων, μοντέλο 

παράκτιας στερεομεταφοράς και μοντέλο μορφοδυναμικής. Τα υπο-μοντέλα εφαρμόζονται 

διαδοχικά, το ένα μετά το άλλο, σε μία αυτοματοποιημένη και ενοποιημένη διαδικασία, με 

τελικό αποτέλεσμα την προσομοίωση βραχυπρόθεσμων μεταβολών της μορφολογίας του 

πυθμένα. Μάλιστα, το σύνθετο μοντέλο επεκτάθηκε σε πορώδεις πυθμένες, ώστε να 

εφαρμόζεται και για διαπερατούς ύφαλους κυματοθραύστες. Η ακρίβεια και αξιοπιστία 

καθενός από τα υπομοντέλα ελέγχθηκε μέσω εκτενούς επαλήθευσης με πειραματικά 

δεδομένα της διεθνούς βιβλιογραφίας. 

Επιπλέον, εκτελέστηκαν εργαστηριακά πειράματα δύο οριζόντιων διαστάσεων, κατά τη 

διάρκεια των οποίων μετρήθηκε η εξέλιξη της τοπογραφίας αμμώδους πυθμένα κατάντη 

διαπερατού ύφαλου κυματοθραύστη. Οι μετρήσεις αυτές χρησίμευσαν και για την 

επαλήθευση του σύνθετου αριθμητικού μοντέλου.  

Τέλος, εκτελέστηκε μια σειρά από αριθμητικά πειράματα σε διατάξεις που περιλάμβαναν 

συστήματα ύφαλων κυματοθραυστών. Συγκεκριμένα, εξετάστηκε η απόκριση της 

ακτογραμμής στις μεταβολές κάποιων βασικών παραμέτρων σχεδιασμού των ύφαλων 

κυματοθραυστών. Έτσι, εξήχθησαν κάποια συμπεράσματα και γενικές κατευθυντήριες 

γραμμές για το σχεδιασμό των έργων αυτών. 

Η μεγάλη πλειοψηφία των μοντέλων στερεομεταφοράς και μορφολογίας που έχουν 

παρουσιαστεί λαμβάνουν ως δεδομένα εισόδου τα αποτελέσματα ολοκληρωμένων στην 

περίοδο κυματικών μοντέλων (phase-averaged models). Επιπλέον, τα επιμέρους υπο-μοντέλα 

εφαρμόζονται από το χρήστη ξεχωριστά το ένα από το άλλο, σε μία επαναληπτική διαδικασία 

που ολοκληρώνεται όταν παρατηρηθεί ότι η αλλαγή της μορφολογίας είναι πλέον ασήμαντη. 

Μάλιστα, επειδή η διαδικασία αυτή είναι επίπονη και χρονοβόρα, στην πράξη πολλές φορές 

εφαρμόζεται περιορισμένος αριθμός επαναλήψεων, με στόχο τον υπολογισμό μόνο των 

αρχικών ρυθμών διάβρωσης και απόθεσης.   

Αντιθέτως, στην παρούσα διατριβή επιλέχθηκε ως βάση του σύνθετου μοντέλου ένα μη 

ολοκληρωμένο στην περίοδο κυματικό μοντέλο (phase-resolving model) και συγκεκριμένα 

ένα μοντέλο τύπου Boussinesq. Ο συνδυασμός ενός τέτοιου κυματικού μοντέλου με ένα 

μοντέλο στερεομεταφοράς αποτελεί αντικείμενο σύγχρονης έρευνας λόγω των 

πλεονεκτημάτων του. Συγκεκριμένα, τα μοντέλα τύπου Boussinesq μπορούν να υπολογίσουν 

τη μη γραμμικότητα και την ασυμμετρία των κυμάτων, καθώς και τις μη γραμμικές 

αλληλεπιδράσεις τους. Η συμπερίληψη των διεργασιών αυτών είναι πολύ σημαντική για τον 

ορθό υπολογισμό της στερεομεταφοράς καθώς, εκτός των άλλων, λαμβάνεται υπόψη η 

αλληλουχία των κυμάτων και τα φαινόμενα υστέρησης της απόκρισης του ιζήματος στις 

μεταβολές του υδροδυναμικού πεδίου. Επιπλέον, η αυτόματη σύζευξη των υπο-μοντέλων σε 

μία ενιαία διαδικασία διευκολύνει την προσομοίωση της αλλαγής της μορφολογίας για ένα 

προδιαγεγραμμένο χρονικό διάστημα ή μέχρι την εγκαθίδρυση μιας κατάστασης ισορροπίας. 
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Τέλος, η εφαρμογή της αποτελεσματικής μεθόδου που βασίζεται στον ‘morphological 

acceleration factor’ (Morfac), fMOR, επιτρέπει την προσομοίωση μορφολογικών μεταβολών σε 

μεγαλύτερες παράκτιες περιοχές και χρονικές κλίμακες (Lesser et al., 2004; Roelvink, 2006). 

Οι μορφολογικές διεργασίες εξελίσσονται με αρκετά πιο αργό ρυθμό σε σχέση με τις 

μεταβολές του υδροδυναμικού πεδίου. Η προαναφερθείσα τεχνική επιτρέπει το συνδυασμό 

των δύο αυτών χρονικών κλιμάκων, ώστε να καθίσταται δυνατή η πρόβλεψη της εξέλιξης της 

μορφολογίας του πυθμένα σε πρακτικές εφαρμογές. Εν προκειμένω, λόγω του αυξημένου 

υπολογιστικού κόστους ενός phase-resolving μοντέλου, εξετάστηκαν μόνο βραχυχρόνιες 

μορφολογικές μεταβολές, της τάξης ωρών ή λίγων ημερών. Η υπολογιστική πορεία που 

ακολουθείται φαίνεται στο Σχ. 1. 

 

Σχ. 1. Διάγραμμα υπολογιστικής πορείας που συνδυάζει τα εξής μοντέλα: κυματικό, υδροδυναμικό, 

στερεομεταφοράς και γεωμορφολογίας. 

Η ερευνητική εργασία διακρίνεται σε τέσσερα στάδια, τα οποία περιγράφονται στη 

συνέχεια. Το πρώτο βήμα αφορά στην επιλογή του κατάλληλου κυματικού μοντέλου που 

αποτελεί τη βάση της Διατριβής. Η επιλογή έγινε μέσα από μια διαδικασία μαθηματικής 

ανάλυσης και σύγκρισης διάφορων μοντέλων. Το δεύτερο στάδιο αφορά στην πλήρη 

ανάπτυξη και επέκταση του σύνθετου αριθμητικού μοντέλου. Το τρίτο βήμα περιλαμβάνει 

την εκτέλεση εργαστηριακών πειραμάτων και την επαλήθευση του μοντέλου με τις μετρήσεις 

αυτών. Το τελευταίο στάδιο αναφέρεται σε αριθμητικά πειράματα που εκτελέστηκαν, ώστε 

να μελετηθεί η απόκριση της ακτογραμμής σε ένα σύστημα ύφαλων κυματοθραυστών και να 

εξαχθούν κάποια πρακτικά συμπεράσματα για το σχεδιασμό τους. 

3. Ανάλυση μη γραμμικών μοντέλων τύπου Boussinesq ανώτερης τάξης 

Το κυματικά μοντέλα τύπου Boussinesq αποτελούν μία επέκταση των μη γραμμικών 

εξισώσεων μακρών κυματισμών (NSWE), ώστε να ληφθεί υπόψη και η διασπορά των 

κυμάτων. Για τη μελέτη των χαρακτηριστικών τους είναι χρήσιμο να οριστούν δύο 

αδιάστατες παράμετροι, ε = H΄/ do
΄
 και σ

2
 = (do

΄
/ L΄)

2
, όπου do

΄
,  L΄ και H΄ είναι, αντίστοιχα, 

ένα βάθος, μήκος και ύψος κύματος αναφοράς. Η πρώτη παράμετρος εκφράζει τα 

χαρακτηριστικά μη γραμμικότητας των εξισώσεων, ενώ η δεύτερη τα χαρακτηριστικά 

διασποράς. Στις μη γραμμικές εξισώσεις ρηχών νερών η διασπορά των κυμάτων θεωρείται 
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αμελητέα, O(σ
2
) << 1. Ωστόσο, στην αρχική θεωρία του Boussinesq (1872) και στις 

μετέπειτα «κλασικές» εξισώσεις του Peregrine (1967), ο περιορισμός αυτός χαλαρώνει ώστε 

να επιτρέπεται ελαφρά μη γραμμικότητα και διασπορά των κυμάτων, ήτοι: 

 𝑂(ε) = 𝛰(σ2) < 1   (1) 

Στα επόμενα χρόνια, ο αρχικός αυτός περιορισμός άρθηκε σε μεγάλο βαθμό με αποτέλεσμα 

την επέκταση της ισχύος των μοντέλων τύπου Boussinesq σε ολόκληρο το εύρος βαθών, από 

τα ρηχά έως τα βαθιά νερά. Τα μοντέλα αυτά περιλαμβάνουν εξισώσεις ανώτερης τάξης ως 

προς τη μη γραμμικότητα και τη διασπορά, οι οποίες συνήθως εξάγονται μέσω 

αναπτυγμάτων σε σειρές των αρχικών εξισώσεων ορμής ως προς την παράμετρο ε. 

Μέσα από μία εκτενή βιβλιογραφική ανασκόπηση των διάφορων μοντέλων τύπου 

Boussinesq που έχουν παρουσιαστεί, τελικώς επιλέχθηκαν δύο μοντέλα. Το πρώτο είναι  το 

μοντέλο των Karambas and Koutitas (2002), το οποίο είναι βελτιωμένης διασποράς και μη 

γραμμικότητας, περιλαμβάνει όρους O(1, ε, σ
2
, εσ

2
) και στο εξής θα αναφέρεται ως KK02. Το 

δεύτερο είναι το μοντέλο των Karambas and Memos (2009), το οποίο είναι πλήρους 

γραμμικής διασποράς και ήπιας μη γραμμικότητας, περιλαμβάνει όρους O(1, ε, σ
2
) και στο 

εξής θα αναφέρεται ως KΜ09. 

Στη συνέχεια, εξήχθη μία βελτιωμένη έκδοση του μοντέλου KK02 ως προς τη μη 

γραμμικότητα. Η μαθηματική διαδικασία που ακολουθήθηκε είναι παρόμοια με αυτή των 

Karambas and Koutitas (2002), όπου η ταχύτητα των μορίων του νερού θεωρείται 

ομοιόμορφη κατά βάθος. Η διαφορά είναι ότι στην προκειμένη περίπτωση διατηρήθηκαν οι 

επιπλέον όροι O(ε
2
σ

2
) στην τελική εξίσωση ορμής, γεγονός που αναβαθμίζει τα μη γραμμικά 

χαρακτηριστικά  των εξισώσεων τύπου Boussinesq. Οι μονοδιάστατες εξισώσεις του νέου 

αυτού μοντέλου, το οποίο στο εξής θα αναφέρεται ως KK02e, είναι σε αδιάστατη μορφή: 

 
𝜕𝜁

𝜕𝑡
+

𝜕[(𝑑+𝜀𝜁)𝑈]

𝜕𝑥
= 0   (2) 

𝜕𝑈

𝜕𝑡
+ 𝜀𝑈

𝜕𝑈

𝜕𝑥
+

𝜕𝜁

𝜕𝑥
= 𝜎2 𝑑2+2𝜀𝑑𝜁

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 𝜎2(𝑑 + 𝜀𝜁)

𝜕𝑑

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ 𝜀𝜎2 𝑑2

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  

 +𝜀𝜎2 (𝑑
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ 𝑑

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 +
𝜕𝑑

𝜕𝑥

𝜕𝜁

𝜕𝑥

𝜕𝑈

𝜕𝑡
)   

 +𝜀2𝜎2 (
𝜁2

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 𝜁

𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
) + 𝜀2𝜎2 2𝑑𝜁

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  

 +𝜀2𝜎2 (𝑈𝑑
𝜕2𝑈

𝜕𝑥2

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕𝑈

𝜕𝑥

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 𝜁) − 𝜀2𝜎2𝑑
𝜕𝜁

𝜕𝑥
(
𝜕𝑈

𝜕𝑥
)
2
   

 +𝜎2B𝑑2 (
𝜕3𝑈

𝜕𝑥2𝜕𝑡
+

𝜕3𝜁

𝜕𝑥3 + 𝜀
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 ) + 𝜎22B2𝑑
𝜕𝑑

𝜕𝑥
(

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

𝜕2𝜁

𝜕𝑥2 + 𝜀
𝜕(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥
)  (3) 
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όπου 𝜁 είναι η ανύψωση της ελεύθερης επιφάνειας, 𝑈 είναι η μέση κατά βάθος οριζόντια 

ταχύτητα των μορίων του νερού, 𝑑 είναι το βάθος ηρεμίας, B και B2 είναι ελεύθερες 

παράμετροι, 𝑥 είναι η οριζόντια διάσταση και 𝑡 ο χρόνος. 

Μία επιπρόσθετη διαφορά με το μοντέλο KK02 είναι η ύπαρξη στην εξ. (3) της επιπλέον 

παραμέτρου B2, πέραν της B. Η πρώτη εισήχθη για τη βελτίωση της περιγραφής της 

γραμμικής ρήχωσης, ενώ η δεύτερη ελέγχει τη γραμμική διασπορά. 

Επιπλέον, εξήχθησαν δύο εκδόσεις ανώτερης τάξης μη γραμμικότητας του μοντέλου 

KM09. Στις περιπτώσεις αυτές, η πορεία που ακολουθήθηκε δεν ήταν η ίδια με αυτή στο 

πρωταρχικό μοντέλο, καθώς η εφαρμογή ενός μετασχηματισμού Fast Fourier σε όρους 

ανώτερης τάξης οδηγεί σε πολύ σύνθετους υπολογισμούς, οι οποίοι, πιθανότατα, δεν 

επιδέχονται αναλυτική λύση. Αντιθέτως, η σημειακή οριζόντια ταχύτητα εκφράστηκε ως 

συνάρτηση της μέσης κατά βάθος τιμής της και προέκυψε η αδιάστατη εξίσωση ορμής κατά 

𝑥: 

𝜕𝑈

𝜕𝑡
+ 𝜀𝑈

𝜕𝑈

𝜕𝑥
= −

𝜕𝜁

𝜕𝑥
+

1

𝑘2
[

𝜎𝑘𝑑

tanh(𝜎𝑘𝑑)
− 1]

𝜕3𝑈

𝜕𝑥2𝜕𝑡
  

+𝜀 [
𝜎𝑑

sinh(𝜎𝑘𝑑)
]

2

(
3

4
cosh(2𝜎𝑘𝑑) +

1

8

sinh(2𝜎𝑘𝑑)

𝜎𝑘𝑑
− 1)

𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2
  

 +𝜀 [
𝜎𝑑

sinh(𝜎𝑘𝑑)
]

2

(
1

4
cosh(2𝜎𝑘𝑑) −

1

8

sinh(2𝜎𝑘𝑑)

𝜎𝑘𝑑
)𝑈

𝜕3𝑈

𝜕𝑥3
      (4) 

όπου 𝑘 είναι ο κυματαριθμός. 

Το μοντέλο που περιλαμβάνει τις εξισώσεις συνέχειας (2) και ορμής (4) αποτελεί μία 

αναβάθμιση του KM09 ως προς τη μη γραμμικότητα, καθώς εμπεριέχει τους επιπλέον όρους 

O(εσ
2
) και στο εξής θα αναφέρεται ως KM09em. Αξίζει να σημειωθεί ότι η διαδικασία που 

περιγράφηκε παραπάνω οδηγεί αυστηρά σε μία ελαφρώς διαφορετική εκδοχή της εξ. (4), 

όπου ο συντελεστής του όρου μετάθεσης, 𝑈
𝜕𝑈

𝜕𝑥
, δεν είναι μονάδα, αλλά [

𝜎𝑘𝑑

sinh(𝜎𝑘𝑑)
]
2

[1 +

sinh(2𝜎𝑘𝑑)

2𝜎𝑘𝑑
]. Το μοντέλο που περιλαμβάνει την εκδοχή αυτή της εξίσωσης ορμής και την 

εξίσωση συνέχειας (2) αναφέρεται ως KM09e και περιλαμβάνει επίσης όρους O(1, ε, σ
2
, εσ

2
). 

Το θεωρητικό υπόβαθρο του KM09e βασίζεται σε μία ακριβή λύση πρώτης τάξης της 

εξίσωσης συνέχειας. Η υπόθεση αυτή δεν είναι ιδιαίτερα ακριβής στα ρηχά νερά και έτσι το 

μοντέλο KM09e δεν τείνει στις μη γραμμικές εξισώσεις μακρών κυματισμών για kd  0. Η 

ασυνέπεια αυτή οδήγησε στη θεώρηση του τροποποιημένου μοντέλου KM09em.  

Εν συνεχεία, έγινε μία μαθηματική διερεύνηση και σύγκριση των γραμμικών και μη 

γραμμικών χαρακτηριστικών των πέντε προαναφερθέντων μοντέλων, καθώς και αυτού των 

Madsen and Schäffer (1998), το οποίο περιλαμβάνει όρους έως O(εσ
4
) και στο εξής θα 

αναφέρεται ως MS98. Καταρχάς, εφαρμόστηκε μία ανάλυση Fourier 1
ης

, 2
ης

 και 3
ης

 τάξης σε 
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οριζόντιο πυθμένα. Στην ανάλυση 1
ης

 τάξης, ως λύση αναφοράς θεωρήθηκε η γνωστή σχέση 

διασποράς του Airy. Τα μοντέλα KK02 και KK02e δίνουν την ίδια λύση πρώτης τάξης, 

καθώς συμπίπτουν αν διατηρηθούν μόνο οι γραμμικοί όροι O(1, σ
2
). Το ίδιο ισχύει και για τα 

μοντέλα KM09, KM09e και KM09em. Τα αποτελέσματα συνοψίζονται συγκριτικά στο Σχ. 2, 

όπου 𝜅 = 𝑘𝑑 είναι το αδιάστατο βάθος. 

 

Σχ. 2. Αδιάστατη ταχύτητα φάσης, 𝑐/𝑐Stokes, για τα μοντέλα KK02, KM09 και MS98, όπου η ταχύτητα 

𝑐Stokes δίνεται από τη γραμμική θεωρία. 

Από το παραπάνω σχήμα προκύπτει ότι τα μοντέλα KK02 και ΚΚ02e περιγράφουν με 

μεγάλη ακρίβεια τη γραμμική διασπορά έως το όριο των βαθειών νερών, 𝜅 ≈ 3, ενώ το 

μοντέλο MS98 δίνει άριστα αποτελέσματα μέχρι 𝜅 = 6. Η ελαχιστοποίηση του σφάλματος 

για τα δύο πρώτα μοντέλα προκύπτει για την τιμή B = 1/15. Τα μοντέλα KM09, KM09e και 

KM09em είναι πλήρους γραμμικής διασποράς, οπότε δεν έχουν κανέναν περιορισμό βάθους 

ως προς το χαρακτηριστικό αυτό.  

Συνεχίζοντας την ανάλυση σε 2
η
 τάξη προκύπτουν οι λύσεις των Σχημάτων 3 και 4. Όπως 

παραπάνω, οι λύσεις για τα μοντέλα KK02 και ΚΚ02e ταυτίζονται και σε 2
η
 τάξη. 

Αποδεχόμενοι ένα σφάλμα έως 10%, η δεύτερη αρμονική υπολογίζεται με ακρίβεια μέχρι 

𝜅 ≈ 1.19. Το ίδιο όριο για το μοντέλο MS98 είναι 𝜅 ≈ 1.83. Αντιθέτως, τα μοντέλα KM09, 

KM09e και KM09em υπερεκτιμάνε τη 2
η
 αρμονική στα ρηχά και ενδιάμεσου βάθους νερά. 

Τα KM09e και KM09em προσφέρουν μία βελτίωση στα βαθειά νερά σε σχέση με το KM09 

λόγω της συμπερίληψης των επιπλέον όρων O(εσ
2
). Ωστόσο, παρότι και τα τρία μοντέλα 

είναι πλήρους γραμμικής διασποράς, τα μη γραμμικά χαρακτηριστικά τους είναι σαφώς 

κατώτερα από αυτά των KK02 και KK02e. 
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Σχ. 3. Αδιάστατο εύρος της 2
ης

 αρμονικής, a2/a2
Stokes, για τα μοντέλα KK02 και MS98, όπου το εύρος 

a2
Stokes προκύπτει από τη λύση των Skjelbreia and Hendrickson (1960). 

 

Σχ. 4. Αδιάστατο εύρος της 2
ης

 αρμονικής, a2/a2
Stokes, για τα μοντέλα KM09, KM09e και KM09em, 

όπου το εύρος a2
Stokes προκύπτει από τη λύση των Skjelbreia and Hendrickson (1960). 

Η ανάλυση συνεχίστηκε στην 3
η
 τάξη και στο Σχ. 5 φαίνεται ενδεικτικά η λύση για τη μη 

γραμμική διασπορά των μοντέλων KK02, KK0e και MS98. Παρατηρείται ότι το μοντέλο 

KK02e προσφέρει μία βελτίωση σε σχέση με τον προκάτοχό του, KK02. 
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Σχ. 5. Αδιάστατη μη γραμμική διασπορά ύψους κύματος, 𝜔13/𝜔13
Stokes, για τα μοντέλα KK02, KK02e 

και MS98, όπου o όρος 𝜔13
Stokes προκύπτει από τη λύση των Skjelbreia and Hendrickson (1960). 

Εκτός των παραπάνω, εφαρμόστηκε και γραμμική ανάλυση ρήχωσης. Λύση αναφοράς 

θεωρήθηκε αυτή των Madsen and Sørensen (1992) για το γραμμικό τελεστή ρήχωσης, 

𝛾0
𝑆𝑡𝑜𝑘𝑒𝑠. Τα μοντέλα KM09, KM09e και KM09em έχουν θεωρητικά εξαχθεί για οριζόντιους 

πυθμένες (παρότι μπορούν να εφαρμοστούν και σε ήπιες κλίσεις) και για το λόγο αυτό η 

ανάλυση ρήχωσης δεν ήταν δυνατό να εφαρμοστεί. Οι λύσεις για το μοντέλα KK02 (όμοια 

για το KK02e) και MS98 φαίνονται στο Σχ. 6. Τα αποτελέσματα του μοντέλου MS98 είναι 

άριστα μέχρι το αδιάστατο βάθος 𝜅 = 6. Αντίθετα, το μοντέλο KK02 δίνει πολύ ακριβή 

αποτελέσματα έως 𝜅 ≈ 1.50  και γενικά αποδεκτά έως 𝜅 = 3. Για την παράμετρο B2 

επιλέχθηκε η τιμή 0.0653 για την οποία ελαχιστοποιείται το σφάλμα στον υπολογισμό του 

συντελεστή ρήχωσης (Schäffer and Madsen, 1995).  

 

Σχ. 6. Γραμμικός τελεστής ρήχωσης 𝛾0 όπως υπολογίζεται από τη θεωρία Stokes και τα μοντέλα 

MS98 και KK02. 

Επιπλέον, εξετάστηκαν οι συναρτήσεις μεταφοράς ενέργειας (transfer functions) 2
ης

 τάξης, 

όπως αυτές υπολογίζονται από τα διάφορα μοντέλα. Τα μοντέλα KK02 και KK02e 

(ταυτίζονται οι λύσεις τους σε 2
η
 τάξη) εκτιμούν τις συναρτήσεις αυτές μέχρι το βάθος 

𝜅 ≈ 1.16, με ένα σφάλμα έως 10%. Το ίδιο όριο για το μοντέλο MS98 είναι 𝜅 ≈ 1.80. 

Αντιθέτως, όπως τονίστηκε παραπάνω, τα μη γραμμικά χαρακτηριστικά των μοντέλων KM09 

και KM09em είναι φτωχά, καθώς το αντίστοιχο όριο είναι και για τα δύο μοντέλα  𝜅 ≈ 0.3. 
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Σχ. 7. Αδιάστατες συναρτήσεις μεταφοράς ενέργειας (transfer functions) 2
ης

 τάξης, 𝐺𝜁/𝐺𝜁
Stokes, για το 

μοντέλο KK02. Τα αποτελέσματα για τις υπερ-αρμονικές (super-harmonics) εμφανίζονται πάνω από 

τη διαγώνιο, ενώ για τις υπο-αρμονικές (sub-harmonics) κάτω από αυτή. Το τετράγωνο με τη 

διακεκομμένη γραμμή δηλώνει σφάλμα 10%. Η λύση αναφοράς, 𝐺𝜁
Stokes, προκύπτει από τους Sand and 

Mansard (1986) για τις υπερ-αρμονικές και τους Ottesen-Hansen (1978) για τις υπο-αρμονικές.  

Από την ανάλυση και σύγκριση των έξι μοντέλων τύπου Boussinesq, επιλέχθηκε τελικά το 

KK02e να αποτελέσει τη βάση του σύνθετου μοντέλου. Τα μαθηματικά χαρακτηριστικά του 

μοντέλου MS98 είναι ανώτερα. Ωστόσο, το μοντέλο αυτό περιλαμβάνει μεγάλο αριθμό όρων 

με παραγώγους ανώτερης τάξης, γεγονός που δυσχεραίνει την αριθμητική επίλυση και 

αυξάνει τον κίνδυνο των αριθμητικών ασταθειών. Επειδή λοιπόν το βασικό αντικείμενο της 

Διατριβής είναι η μελέτη της στερεομεταφοράς και μορφολογίας, προτιμήθηκε το κυματικό 

μοντέλο KK02e που είναι απλούστερο του MS98 και ταυτόχρονα αρκετά ακριβές και 

βελτιωμένο σε σχέση με τον προκάτοχο του, KK02.   

4. Περιγραφή του σύνθετου αριθμητικού μοντέλου 

Μετά την επιλογή των βασικών εξισώσεων τύπου Boussinesq, ακολουθεί η πλήρης 

ανάπτυξη του σύνθετου αριθμητικού μοντέλου. Όπως αναφέρθηκε παραπάνω, το μοντέλο 

αυτό περιλαμβάνει τέσσερα υπο-μοντέλα, τα οποία περιγράφονται στη συνέχεια. 

4.1 Ολοκληρωμένο κυματικό μοντέλο τύπου Boussinesq 

Παραπάνω παρουσιάστηκαν οι βασικές εξισώσεις του επιλεγμένου μοντέλου τύπου 

Boussinesq, στη μονοδιάστατη εκδοχή τους. Στη συνέχεια, εξήχθησαν οι αντίστοιχες 

εξισώσεις για δύο οριζόντιες διαστάσεις. Επιπλέον, το μοντέλο επεκτάθηκε ώστε να 
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εφαρμόζεται στις ζώνες θραύσης και διαβροχής, ενώ ενσωματώθηκε και η περιγραφή της 

τριβής πυθμένα και των τυρβωδών διεργασιών ανάμιξης σε υποπλεγματική κλίμακα (subgrid 

turbulent mixing). Τέλος, το μοντέλο επεκτάθηκε και σε πορώδεις πυθμένες, ώστε να μπορεί 

να προσομοιωθεί η κυματική διάδοση πάνω από διαπερατούς ύφαλους κυματοθραύστες. Η 

επέκταση αυτή περιλαμβάνει την εισαγωγή μίας επιπλέον εξίσωσης Darcy-Forchheimer για 

την προσομοίωση της ροής εντός πορώδους μέσου, καθώς και επιπρόσθετων όρων στις 

εξισώσεις συνέχειας και ορμής. Η τελική μορφή των εξισώσεων στις οποίες βασίζεται το 

μοντέλο Boussinesq είναι η εξής: 

 𝛽
𝜕𝜁

𝜕𝑡
+ ∇ ∙ (𝛬�⃗⃗� ) + λ∇ ∙ (ℎ𝑠�⃗⃗� 𝑠) = 0     (5) 

�⃗⃗� 𝑡 + (�⃗⃗� ∙ ∇)�⃗⃗� + g∇𝜁 = �⃗� 𝛪 + �⃗� 𝛪𝐼 + �⃗� 𝛪𝐼𝐼 + 
λ

2
𝑑∇[∇ ∙ (ℎ𝑠�⃗⃗� 𝑠𝑡)] + 𝐹 𝑏𝑟 −

�⃗� 𝑏

𝑑+ζ
+ 𝐹 eddy + 𝐹 sp  (6) 

 cr[�⃗⃗� 𝑠𝑡 + (�⃗⃗� 𝑠 ∙ ∇)�⃗⃗� 𝑠] + g∇𝜁 +  𝛼1�⃗⃗� 𝑠 + 𝛼2|�⃗⃗� 𝑠|�⃗⃗� 𝑠 + �⃗� 𝐼
(𝑠)

= 0⃗       (7) 

όπου ∇ = (
∂

∂x
,

∂

∂y
) είναι ο οριζόντιος τελεστής κλίσης, 𝜁 η ανύψωση της ελεύθερης 

επιφάνειας, �⃗⃗� = (𝑈, 𝑉) η μέση κατά βάθος οριζόντια ταχύτητα των μοριών στη στήλη νερού, 

�⃗⃗� 𝑠 η μέση κατά βάθος οριζόντια ταχύτητα των μοριών εντός του πορώδους μέσου πάχους ℎ𝑠, 

λ το πορώδες, 𝑑 το βάθος νερού, g η επιτάχυνση της βαρύτητας, 𝐹 𝑏𝑟 ο όρος θραύσης, 𝜏 𝑏 η 

τριβή πυθμένα, 𝐹 eddy ο όρος της τυρβώδους ανάμιξης, 𝐹 sp όρος απόσβεσης για τα 

απορροφητικά όρια του πεδίου, cr ένας συντελεστής αδράνειας,  𝛼1 και 𝛼2 υποδηλώνουν τη 

συνεισφορά στη συνολική αντίσταση της στρωτής και τυρβώδους ροής, αντίστοιχα. 

Επιπλέον, �⃗� 𝛪, �⃗� 𝛪𝐼 και �⃗� 𝛪𝐼𝐼 συμβολίζουν τους όρους Boussinesq στην εξίσωση ορμής, οι 

οποίοι είναι O(σ
2
), O(εσ

2
) και O(ε

2
σ

2
), αντίστοιχα. Επίσης, ο όρος �⃗� 𝐼

(𝑠)
 στην εξίσωση Darcy-

Forchheimer είναι O(σ
2
). Τέλος, οι μεταβλητές 𝛽 και 𝛬 προκύπτουν από την εφαρμογή της 

μεθόδου των «σχισμών» για την προσομοίωση της αναρρίχησης και καταρρίχησης των 

κυματισμών και περιγράφονται στη συνέχεια. Αν οι «σχισμές» αυτές απουσιάζουν, τίθεται 

𝛽 = 1 και 𝛬 = 𝑑 + 𝜁. 

Η επέκταση στη ζώνη θραύσης επιτυγχάνεται με την εφαρμογή του μοντέλου τυρβώδους 

συνεκτικότητας των Kennedy et al. (2000) και Chen et al. (2000). Η μέθοδος αυτή εισάγει 

επιπρόσθετους όρους θραύσης, 𝐹 𝑏𝑟 = (𝐹𝑏𝑟, 𝐺𝑏𝑟), στις εξισώσεις ορμής κατά 𝑥 και y, 

αντίστοιχα: 

 𝐹𝑏𝑟 =
1

𝑑+𝜁
{{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑥}𝑥 +

1

2
{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑦 + 𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑥}𝑦}    (8) 

 𝐺𝑏𝑟 =
1

𝑑+𝜁
{{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑦}𝑦 +

1

2
{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑥 + 𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑦}𝑥}   (9) 
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όπου 𝑣𝑏𝑟 είναι ο συντελεστής συνεκτικότητας, ο οποίος μεταβάλλεται στο χώρο και στο 

χρόνο σύμφωνα με τη σχέση 

 𝑣𝑏𝑟 = 𝐵𝑏𝑟δb
2(𝑑 + 𝜁)𝜁𝑡     (10) 

όπου δb είναι ένα εμπειρικός συντελεστής που συνδέεται με το μήκος ανάμιξης και τίθεται 

ίσος με 1.2, ενώ 𝐵𝑏𝑟 είναι μία ομαλά μεταβαλλόμενη συνάρτηση που παίρνει τιμές μεταξύ 0 

και 1 και εξαρτάται από την τιμή της χρονικής παραγώγου της ανύψωσης της ελεύθερης 

επιφάνειας, 𝜁𝑡 και μία κρίσιμη τιμή αυτής, 𝜁𝑡
∗. Η τελευταία καθορίζει την έναρξη, συνέχιση 

και ολοκλήρωση της θραύσης ενός κυματισμού. Η κρίσιμη αυτή τιμή είναι μεταβαλλόμενη 

στο χρόνο και το φαινόμενο της θραύσης εκκινεί και συνεχίζεται όσο η 𝜁𝑡 είναι μεγαλύτερη 

της στιγμιαίας τιμής του 𝜁𝑡
∗. Η χρονική μεταβολή του 𝜁𝑡

∗ ακολουθεί ένα γραμμικό νόμο από 

μία αρχική τιμή, 𝜁𝑡
(𝐼)

, σε μία τελική, 𝜁𝑡
(𝐹)

, οι οποίες συνήθως τίθενται (0.35÷0.65)√g𝑑 και 

0.15√g𝑑, αντίστοιχα. 

Η επέκταση στη ζώνη διαβροχής έγινε βάσει της διαδικασίας που πρότειναν οι Kennedy et 

al. (2000) και Chen et al. (2000), η οποία αποτελεί μία τροποποίηση της αρχικής μεθόδου 

των «σχισμών» της Tao (1983). Η κεντρική ιδέα είναι ότι το μοντέλο δεν «ακολουθεί» τη 

χρονικά μεταβαλλόμενη ακτογραμμή αλλά, αντιθέτως, ολόκληρο το υπολογιστικό πεδίο 

θεωρείται ενεργό, ενώ όπου υπάρχει ελάχιστο ή καθόλου νερό, η εξίσωση συνέχειας 

τροποποιείται. Η βασική υπόθεση είναι ότι ο πυθμένας δε θεωρείται αδιαπέρατος, αλλά 

περιλαμβάνει στενές «σχισμές» τις οποίες πρέπει να γεμίζει το νερό, με αποτέλεσμα να είναι 

δυνατό η ελεύθερη επιφάνεια να βρίσκεται κάτω από την επιφάνεια του πυθμένα. Έτσι, η 

ακτογραμμή προσδιορίζεται σε κάθε χρονική στιγμή από την τομή της ελεύθερης επιφάνειας 

του νερού με την επιφάνεια του πυθμένα. Η τροποποίηση των Kennedy et al. (2000) 

διασφαλίζει ότι δεν υπάρχει απώλεια νερού όταν η επιφάνεια του βρίσκεται πάνω από την 

κορυφή της «σχισμής», κάτι που δεν ισχύει στην αρχική μέθοδο (Madsen et al., 1997). Στο 

Σχ. 8 φαίνεται η εφαρμογή της μεθόδου. 

 

Σχ. 8. Σκαρίφημα διώρυγας όπου ο πυθμένας περιλαμβάνει στενές «σχισμές» (πηγή: Kennedy et al., 

2000). 

Το πλάτος του καναλιού δίνεται από τη σχέση: 
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 𝑏(𝜁) = {
1,                                         𝜁 > 𝑧∗

δ + (1 − δ)𝑒λ
′(𝜁−𝑧∗) hο⁄ ,    𝜁 ≤ 𝑧∗

     (11) 

 όπου λ
′
 είναι παράμετρος η οποία τίθεται ίση με 80, hο είναι το βάθος αναφοράς, δ είναι το 

σχετικό πλάτος της «σχισμής» ως προς το μοναδιαίο πλάτος παραλίας, το οποίο παίρνει τιμές 

στο διάστημα (0.001 ÷ 0.01). Η στάθμη του πυθμένα στην οποία είναι 𝑏 = 1 ισούται με 

𝑧∗ = −𝑑/(1 − δ) + hο[δ/(1-δ) + 1/λ], ενώ η επιφάνεια μιας κάθετης διατομής δίνεται από 

τη σχέση: 

 𝐴(𝜁) = {
(𝜁 − 𝑧∗) + δ(𝑧∗ + hο) +

(1−δ)hο

λ
′ [1 − 𝑒−λ

′(1+𝑧∗ hο⁄ )] ,      𝜁 > 𝑧∗

δ(𝜁 + hο) +
(1−δ)hο

λ
′ 𝑒λ

′(𝜁−𝑧∗) hο⁄ [1 − 𝑒−λ
′(1+𝜁 hο⁄ )] ,           𝜁 ≤ 𝑧∗

     (12) 

Στην Εξ. (5) είναι 𝛽 = 𝑏(𝜁) και 𝛬 = 𝐴(𝜁), ενώ στα τμήματα στα οποία ο πυθμένας θεωρείται 

αδιαπέρατος είναι 𝛽 = 1 και 𝛬 = 𝑑 + 𝜁. 

Για την τριβή πυθμένα το μοντέλο προσφέρει δύο εναλλακτικές. Η πρώτη βασίζεται στο 

συνήθη τετραγωνικό νόμο για τις στιγμιαίες διατμητικές τάσεις: 

 𝜏 𝑏 = (𝜏𝑏𝑥,𝜏𝑏𝑦) =
1

2
𝑓𝑐𝑤�⃗⃗� |�⃗⃗� |    (13) 

όπου ο συντελεστής τριβής, 𝑓𝑐𝑤, λαμβάνει υπόψη την αλληλεπίδραση ρεύματος και κυμάτων 

(Jonsson, 1966; Ribberink, 1998). Η δεύτερη εναλλακτική βασίζεται στην πιθανοτική 

ανάλυση των Kobayashi et al. (2007), η οποία προϋποθέτει την ισοδυναμία μεταξύ της μέσης 

χρονικά ταχύτητας και της μέσης τιμής της πιθανοτικής κατανομής αυτής. Επιπλέον, γίνεται 

η υπόθεση ότι το εύρος της ταχύτητας λόγω κύματος ακολουθεί κατανομή Gauss. 

Μία μέθοδος ανάλογη αυτής των μεγάλων δινών (Large Eddy Simulation – LES) 

εφαρμόστηκε στο οριζόντιο επίπεδο για την παραμετροποίηση των μη υπολογιζόμενων 

κινήσεων μικρής κλίμακας. Συγκεκριμένα, η επίδραση των τυρβωδών διεργασιών ανάμιξης 

σε υποπλεγματική κλίμακα (subgrid turbulent mixing) ελήφθη υπόψη μέσω της εφαρμογής 

ενός μοντέλου τύπου Smagorinsky (Chen et al., 1999; Zhan et al., 2003). 

Η επέκταση σε πορώδεις πυθμένες έγινε ακολουθώντας την εργασία των Cruz et al. (1997) 

και απαιτεί την επίλυση μίας επιπλέον εξίσωσης Darcy-Forchheimer, καθώς και την 

εισαγωγή επιπρόσθετων όρων πορώδους στις εξισώσεις συνέχειας (5) και ποσότητας κίνησης 

(6). Μία επιπλέον βελτίωση του παρόντος μοντέλου σε σχέση με προκατόχους του 

χαμηλότερης τάξης είναι η εισαγωγή των όρων O(σ
2
) στην Εξ. (7), �⃗� 𝐼

(𝑠)
, οι οποίοι είχαν 

αμεληθεί (Avgeris et al., 2004; Metallinos et al., 2014). Οι όροι αυτοί αποδεικνύονται 

σημαντικοί όταν προσομοιώνεται η διάδοση βραχέων κυματισμών ή ο πορώδης πυθμένας 

βρίσκεται σε βαθειά ή ενδιάμεσου βάθους νερά. Σύμφωνα με τους Sollitt και Cross (1972), οι 

συντελεστές αντίστασης δίνονται από τις σχέσεις 
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  𝛼1 =
𝑣λ

𝐾
    και  𝛼2 =

Cfλ
2

√𝐾
 (14) 

όπου Cf είναι ένας τυρβώδης συντελεστής τριβής (van Gent, 1995) και 𝐾 μία μεταβλητή 

διαπερατότητας που δίνεται από τη σχέση 

 K =
𝑑50

2
λ

3

ξ(1 − λ)2
   (15) 

όπου 𝑑50 η μέση διάμετρος του υλικού του πυθμένα και ξ μία εμπειρική παράμετρος με 

τυπική τιμή 1000. 

Η διακριτοποίηση των εξισώσεων γίνεται με τη χρήση πεπερασμένων διαφορών σε 

κεντρικό κάναβο, κεντρικών ως προς το χώρο και εμπρόσθιων ως προς το χρόνο. 

Συγκεκριμένα, για τις πρώτες χωρικές παραγώγους χρησιμοποιούνται πεπερασμένες 

διαφορές 4
ης

 τάξης, ενώ για τις χωρικές παραγώγους ανώτερης τάξης χρησιμοποιούνται 

πεπερασμένες διαφορές 2
ης

 τάξης. Το αριθμητικό σχήμα επίλυσης είναι ένα γενικευμένο 

σχήμα πρόβλεψης-διόρθωσης πολλαπλών βημάτων (generalized multi-step predictor-

corrector), το οποίο προτάθηκε από τους Zlatev et al. (1984). Το στάδιο πρόβλεψης είναι 3
ης

 

τάξης, ενώ η διόρθωση 4
ης

 τάξης. Το συγκεκριμένο σχήμα αποτελεί μία γενίκευση του 

σχήματος Adams-Bashforth-Moulton (ABM) που εισήχθη από τους Wei and Kirby (1995) 

στα αριθμητικά μοντέλα τύπου Boussinesq και που έκτοτε χρησιμοποιείται ευρέως. Το 

χρησιμοποιούμενο εδώ σχήμα προσφέρει βελτιωμένη ακρίβεια και ευστάθεια σε σχέση με το 

σχήμα ABM. 

Η γένεση των κυματισμών επιτυγχάνεται με την εφαρμογή της μεθόδου της συνάρτησης 

πηγής (Memos et al., 2005; Klonaris et al., 2016). Στα ανακλαστικά όρια του υπολογιστικού 

πεδίου εφαρμόζονται οι οριακές συνθήκες: 

 �⃗⃗� ∙ �⃗� = 0  ,  ∇ζ ∙ �⃗� = 0  ,  
𝜕�⃗⃗� 𝑇

𝜕�⃗� 
= 0  ,  ∀ 𝑥 ∈ 𝜕Ω  (16)  

όπου �⃗�  το μοναδιαίο κάθετο διάνυσμα στο όριο 𝜕Ω, Ω το υπολογιστικό πεδίο, �⃗⃗� 𝑇 είναι η 

παράλληλη στο όριο συνιστώσα της ταχύτητας και 𝑥  τυχαία θέση στο πεδίο. 

Στα απορροφητικά όρια του πεδίου ενεργοποιείται ο όρος απόσβεσης 𝐹 sp. Συγκεκριμένα: 

 𝐹 sp = −𝑤1(𝑥, 𝑦)�⃗⃗� − 𝑤2(𝑥, 𝑦)∇2�⃗⃗�    (17) 

όπου 𝑤1(𝑥, 𝑦) και 𝑤2(𝑥, 𝑦) είναι συναρτήσεις απόσβεσης σύμφωνα με τους Wei and Kirby 

(1995). 
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Το κυματικό μοντέλο επαληθεύτηκε με μία σειρά πειραματικών μετρήσεων σε μία και δύο 

οριζόντιες διαστάσεις. Τα τεστ περιλάμβαναν τόσο απλούς, όσο και τυχαίους κυματισμούς 

που διαδίδονται σε παραλίες και πάνω από ύφαλα εμπόδια. Μερικά αυτά ήταν ιδιαίτερα 

απαιτητικά, καθώς συνδύαζαν έναν αριθμό φυσικών διεργασιών, όπως ρήχωση, διάθλαση, 

περίθλαση, θραύση, αναρρίχηση, υπερπήδηση εμποδίου και μη γραμμικές κυματικές 

αλληλεπιδράσεις.  

Καταρχάς, προσομοιώθηκε η μονοδιάστατη διάδοση θραυόμενων μονοχρωματικών 

κυματισμών σε επίπεδο πυθμένα κλίσης 1:34.26, σύμφωνα με το πείραμα των Hansen and 

Svendsen (1979). Παρουσιάζεται, ενδεικτικά, η περίπτωση της θραύσης τύπου spilling 

κυματισμών με περίοδο T = 2.0 s και ύψος Ho = 0.036 m στην περιοχή σταθερού βάθους 0.36 

m ανάντη του κεκλιμένου πυθμένα. Στα σχήματα 9 και 10 φαίνεται το ύψος κύματος και η 

ανύψωση της μέσης στάθμης κυματισμών (wave setup), αντίστοιχα. Τα αποτελέσματα του 

μοντέλου είναι ιδιαίτερα ακριβή, εκτός από μία μικρή υπερεκτίμηση των δύο μεγεθών στην 

εσωτερική ζώνη θραύσης. 

 

Σχ. 9. Σύγκριση μετρήσεων και αποτελεσμάτων μοντέλου για το ύψος κύματος στο σενάριο No. 

051041 που περιλαμβάνει θραύση τύπου spilling. 

   

Σχ. 10. Σύγκριση μετρήσεων και αποτελεσμάτων μοντέλου για τη μέση στάθμη κυματισμών στο 

σενάριο No. 051041 που περιλαμβάνει θραύση τύπου spilling. 

Επίσης, ελέγχθηκε η ικανότητα του μοντέλου να αναπαράγει την αναρρίχηση και 

καταρρίχηση των κυματισμών, μέσω σύγκρισης με τις μετρήσεις του Synolakis (1987). Το 
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συγκεκριμένο πείραμα αναφέρεται στη διάδοση και θραύση μοναχικού κύματος σε πυθμένα 

κλίσης 1:19.85. Ανάντη της κλίσης, σε περιοχή με σταθερό βάθος d = 0.2 m, το ύψος 

κύματος ήταν H = 0.056 m. Στο Σχ. 11 φαίνονται στιγμιότυπα της αδιάστατης ελεύθερης 

επιφάνειας, ζ/d, για διάφορες τιμές του αδιάστατου χρόνου t' = t√g/d. Τα αποτελέσματα είναι 

αρκετά ακριβή, εκτός από μία ελαφρώς λεπτότερη υπολογιζόμενη φλέβα νερού κατά την 

φάση της καταρρίχησης. 

  

  

Σχ. 11. Στιγμιότυπων της ελεύθερης επιφάνειας με βάση τις μετρήσεις του Synolakis (1987) και τα 

αποτελέσματα του μοντέλου. 

Επιπλέον, ελέγχθηκε η διάδοση και θραύση σύνθετων κυματισμών πάνω από μονοδιάστατο 

ύφαλο εμπόδιο τραπεζοειδούς διατομής, σύμφωνα με το πείραμα των Beji and Battjes (1994). 

Οι προσπίπτοντες κυματισμοί αντιστοιχούν σε φάσμα Jonswap με περίοδο αιχμής Tp = 2 s. 

Στο Σχ. 12 φαίνεται η πειραματική διάταξη και στο Σχ. 13 η σύγκριση των φασμάτων στους 

σταθμούς 4 και 6 με βάση τις μετρήσεις και τα αποτελέσματα του μοντέλου. 

 

Σχ. 12. Πειραματική διάταξη των Beji and Battjes's (1994). 
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Σχ. 13. Ενεργειακά φάσματα όπως υπολογίζονται από τις μετρήσεις των Beji and Battjes (1994) και τα 

αποτελέσματα του μοντέλου. 

Η ακρίβεια στον υπολογισμό των φασμάτων από το μοντέλο είναι αποδεκτή, όπως και της 

απώλειας ενέργειας λόγω θραύσης. Παρόλα αυτά εμφανίζεται μια υπερεκτίμηση της 

δευτερεύουσας κορυφής και μια υποεκτίμηση της μεταφοράς ενέργειας στις ανώτερες 

αρμονικές. 

Στη συνέχεια, προσομοιώθηκαν πειράματα που αναφέρονται σε δύο οριζόντιες διαστάσεις. 

Ένα τέτοιο παράδειγμα είναι το πείραμα των Berkhoff et al. (1982), που αναφέρεται στην 

πλάγια πρόσπτωση μη θραυόμενων απλών κυματισμών σε επίπεδο πυθμένα κλίσης 1:50 με 

εμπόδιο ελλειπτικής διατομής. Οι κυματισμοί έχουν περίοδο T = 1.0 s και ύψος Ho = 0.0464 

m στην περιοχή σταθερού βάθους d = 0.45 m. Στο Σχ. 14 φαίνεται η πειραματική διάταξη και 

ένα στιγμιότυπο της υπολογιζόμενης ελεύθερης επιφάνειας. 

  

Σχ. 14. Αριστερά: Πειραματική διάταξη των Berkhoff et al.’s (1982) (ισοβαθείς σε m). Δεξιά: 

Στιγμιότυπο της ελεύθερης επιφάνειας σε κάτοψη. 

Στο Σχ. 15 φαίνεται η σύγκριση των αποτελεσμάτων του μοντέλου και των μετρήσεων για 

το αδιάστατο ύψος κύματος Η/Ho. Η ακρίβεια των αποτελεσμάτων είναι ικανοποιητική, 

καθώς ο συνδυασμός της διάθλασης και περίθλασης αναπαράγεται επαρκώς. 
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Σχ. 15. Σύγκριση μετρήσεων των Berkhoff et al.’s (1982) και αποτελεσμάτων μοντέλου για το 

αδιάστατο ύψος κύματος, Η/Ho. 

4.2 Υδροδυναμικό μοντέλο για τα κυματογενή ρεύματα 

Η παραδοσιακή αντιμετώπιση των υδροδυναμικών διεργασιών στην παράκτια ζώνη απαιτεί 

το διαχωρισμό του πεδίου ροής σε δύο επιμέρους τμήματα, ένα λόγω ρεύματος και ένα λόγω 

κυμάτων. Η μέθοδος των τάσεων ακτινοβολίας των Longuet-Higgins and Stewart (1961) 

είναι αυτή που συνήθως εφαρμόζεται για τον υπολογισμό της παράκτιας κυκλοφορίας. 

Συγκεκριμένα, εφαρμόζεται, συνήθως, αρχικά ένα ολοκληρωμένο στην περίοδο κυματικό 

μοντέλο (phase-averaged) και από τα αποτελέσματά του προκύπτουν οι τάσεις ακτινοβολίας. 

Στη συνέχεια, οι παράγωγοι αυτών εισάγονται σε ένα μοντέλο που περιλαμβάνει τις μη 

γραμμικές εξισώσεις ρηχών νερών και τελικά προκύπτει η κυματογενής κυκλοφορία. Η 

μέθοδος αυτή αποδεικνύεται ιδιαίτερα αξιόπιστη, αλλά αμελεί φαινόμενα όπως η 

αλληλεπίδραση ρευμάτων-κυμάτων, οι μη γραμμικές κυματικές αλληλεπιδράσεις και η 

κυματική αναρρίχηση.  

Αντιθέτως, μια τέτοια τμηματική αντιμετώπιση δεν απαιτείται για ένα μη γραμμικό μοντέλο 

τύπου Boussinesq που έχει επεκταθεί στις ζώνες θραύσης και διαβροχής (Basco, 1983). Τα 

μοντέλα αυτού του τύπου συμπεριλαμβάνουν τις προαναφερθείσες αλληλεπιδράσεις 

αυτόματα, χωρίς την ανάγκη για ένα ρητό υπολογισμό των τάσεων ακτινοβολίας. 

Συγκεκριμένα, η στιγμιαία οριζόντια ταχύτητα, �⃗� , εκφράζεται ως το άθροισμα μίας 

ομοιόμορφης στο βάθος μέσης χρονικά συνιστώσας, �⃗⃗̅� = (�̅�, �̅�) και μιας συνιστώσας λόγω 

κύματος, �⃗� 𝑤. Εν συνεχεία, η �⃗⃗̅�  ορίζεται με τρόπο ώστε πολλαπλασιαζόμενη με το μέσο 

βάθος να δίνει τη μέση χρονικά ροή μάζας. Δηλαδή, αν το σύμβολο ( )̅̅ ̅ δηλώνει μέση χρονικά 

τιμή, τότε: 
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 �⃗⃗̅� =
1

𝑑+ζ̅
∫ �⃗�  d𝑧

𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
     (18) 

Έτσι, προκύπτει ότι ∫ �⃗� 𝑤  d𝑧
𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0 και συνεπώς η �⃗⃗̅�  περιλαμβάνει τόσο την ταχύτητα του 

κυματογενούς ρεύματος, όσο και τη μεταφορά μάζας λόγω του κύματος. Οι μέσες χρονικά 

ταχύτητες υπολογίζονται με τη μέθοδο των Rakha et al. (1997). 

Μέσα στη ζώνη θραύσης εμφανίζεται μία ροή προς την ακτή λόγω δύο μηχανισμών, του 

wave drift και των επιφανειακών «κυλίνδρων» που σχηματίζονται λόγω θραύσης (breaking 

surface rollers) και μεταφέρουν νερό. Για να διατηρείται το ισοζύγιο μάζας σε μία διατομή 

νερού, οι δύο αυτοί μηχανισμοί εξισορροπούνται από το σχηματισμό ενός ρεύματος 

(undertow) με φορά προς τα ανοιχτά (Fredsøe and Deigaard, 1992). 

Το παρόν μοντέλο λαμβάνει υπόψη προσεγγιστικά το μηχανισμό του undertow. 

Συγκεκριμένα, εφαρμόζεται ένας συνδυασμός των μοντέλων θραύσης της τυρβώδους 

συνεκτικότητας (eddy viscosity) και του επιφανειακού κυλίνδρου (surface roller) και 

υιοθετώντας το προφίλ της ταχύτητας των Schäffer et al. (1992) και Madsen et al. (1997), το 

οποίο απεικονίζεται στο Σχ. 16, προκύπτει μία προσέγγιση του μέσου κατά βάθος undertow, 

�⃗⃗̅� 𝑜, όπου: 

 �⃗⃗� 𝑜 = (𝑈𝑜, 𝑉𝑜) =
(𝑑+𝜁)�⃗⃗� −𝑐 δroller

𝑑+𝜁−δroller
      (19) 

όπου δroller το πάχος του επιφανειακού κυλίνδρου και 𝑐 = (𝑐(𝑥), 𝑐(𝑦)) η ταχύτητά του 

σύμφωνα με τους Sørensen et al. (2004). 

 

Σχ. 16. Διατομή ενός θραυόμενου κυματισμού και κατακόρυφο προφίλ της οριζόντιας ταχύτητας των 

μορίων του νερού (πηγή: Madsen et al., 1997, τροποποιημένο). 

Τέλος, η τιμή του undertow κοντά στον πυθμένα υπολογίζεται από το μοντέλο σύμφωνα με 

τη μέθοδο των Putrevu and Svendsen (1993). 

Το πείραμα του Hamm (1992) που περιλαμβάνει ένα κανάλι στο οποίο σχηματίζεται ρεύμα 

επαναφοράς (rip current) είναι ένα απαιτητικό τεστ για την επαλήθευση τόσο του κυματικού, 

όσο και του υδροδυναμικού μοντέλου. Μία κάτοψη της βυθομετρίας της πειραματικής 
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διάταξης φαίνεται στο Σχ. 17. Απλοί κυματισμοί περιόδου 1.25 s και ύψους 0.07 m 

προσπίπτουν κάθετα από αριστερά προς τα δεξιά. 

 

Σχ. 17. Βυθομετρία στο πείραμα του Hamm (1992). 

Στο Σχ. 18 απεικονίζεται το πεδίο των κυματογενών ρευμάτων όπως υπολογίζεται από το 

μοντέλο στο μισό, λόγω συμμετρίας, υπολογιστικό πεδίο. Διακρίνεται ο σχηματισμός του 

κ.μ.α. ρεύματος, του ρεύματος επαναφοράς κοντά στον άξονα συμμετρίας, καθώς και 

στροβίλων μέσα στη ζώνη θραύσης. 

 

Σχ. 18. Το πεδίο των κυματογενών ρευμάτων, όπως υπολογίζεται από το μοντέλο. 

4.3 Μοντέλο παράκτιας στερεομεταφοράς 

Τα αποτελέσματα του κυματικού και υδροδυναμικού μοντέλου εισάγονται στη συνέχεια 

στο μοντέλο παράκτιας στερεομεταφοράς. Στα ανοιχτά και στη ζώνη θραύσης, η κίνηση του 
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ιζήματος, συνήθως, χωρίζεται στο φορτίο πυθμένα και στο φορτίο σε αιώρηση. Η αύξηση της 

ταχύτητας των μορίων του νερού λόγω κύματος, καθώς αυτό διαδίδεται προς τα ρηχά, θέτει 

σε κίνηση το υλικό του πυθμένα σε μία ζώνη με βάθος μικρότερο μιας κρίσιμης τιμής. Ένα 

μέρος του υλικού αυτού τίθεται σε αιώρηση καθώς αποσπάται από την άκρη των 

αμμοκυμάτιων του πυθμένα. Καθώς οι κυματισμοί προσεγγίζουν τη γραμμή θραύσης, 

ευνοείται η κίνηση των φερτών σε ένα λεπτό στρώμα κοντά στον πυθμένα (sheet flow). 

Αντιθέτως, εντός της ζώνης θραύσης, λόγω της έντονης ανάδευσης προκαλείται αυξημένη 

αιώρηση του ιζήματος, το οποίο μεταφέρεται κυρίως από τα κυματογενή ρεύματα. Στη ζώνη 

διαβροχής, η μεταφορά των φερτών γίνεται και πάλι σε ένα λεπτό «φιλμ» κοντά στον 

πυθμένα, κατά την αναρρίχηση και καταρρίχηση. Οι μηχανισμοί αυτοί έχουν ενσωματωθεί 

στο μοντέλο στερεομεταφοράς. 

Στα ανοιχτά και στη ζώνη θραύσης 

(i) Φορτίο πυθμένα 

Για τον υπολογισμό του φορτίου πυθμένα ανά μονάδα πλάτους, 𝑞 𝑠𝑏, εφαρμόζονται οι ημι-

εμπειρικές σχέσεις των Camenen and Larson (2005, 2006, 2007) που ισχύουν για συνδυασμό 

κυμάτων και ρεύματος. Συγκεκριμένα: 

 

𝑞𝑠𝑏,𝑤

√(𝑠 − 1)g𝑑50
3

= αw

𝜃cw,net

√|𝜃cw,net|

𝜃cw,mexp (−b
𝜃cr

𝜃cw

) 
(20α) 

 

𝑞𝑠𝑏,𝑛

√(𝑠 − 1)g𝑑50
3

= αn

𝜃cn

√|𝜃cn|
𝜃cw,mexp (−b

𝜃cr

𝜃cw

) 
(20β) 

όπου οι δείκτες 𝑤 και 𝑛 αναφέρονται, αντίστοιχα, στη διεύθυνση του κύματος και στην 

κάθετη σε αυτή διεύθυνση, αw, αn και b είναι εμπειρικοί συντελεστές και 𝑠 είναι ο λόγος της 

πυκνότητας του ιζήματος, ρ
s
, προς την πυκνότητα του νερού, ρ. Στη γενική περίπτωση, η 

διεύθυνση διάδοσης των κυματισμών σχηματίζει μία τυχαία γωνία, 𝜑, με τη διεύθυνση του 

ρεύματος (βλ. Σχ. 19). Έτσι, οι στιγμιαίες παράμετροι Shields λόγω κύματος και ρεύματος, 

αντίστοιχα, δίνονται από τις σχέσεις: 

 θ⃗ w(t) =
1

2
fw|U⃗⃗ w(t)|U⃗⃗ w(t)

(s−1)gd50
   και   θ⃗ c =

1

2
fc|U⃗⃗ c|U⃗⃗ c

(s−1)gd50
 (21) 
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όπου �⃗⃗� w(𝑡) και �⃗⃗� c είναι οι στιγμιαίες ταχύτητες κοντά στον πυθμένα λόγω κύματος και 

ρεύματος, αντίστοιχα, ενώ 𝑓w και 𝑓c είναι οι συντελεστές τριβής πυθμένα λόγω κύματος και 

ρεύματος, αντίστοιχα. 

 

Σχ. 19. Αριστερά: Αλληλεπίδραση κύματος και ρεύματος. Δεξιά: Τυπική μεταβολή της ταχύτητας σε 

μία περίοδο στη διεύθυνση διάδοσης του κυματισμού, περιλαμβάνοντας την επίδραση του κύματος 

(πηγή: Camenen and Larson, 2007, τροποποιημένο). 

Στις Εξ. (20α,β) 𝜃cw,m και 𝜃cw είναι, αντίστοιχα, η μέση χρονικά κατά απόλυτη τιμή και η 

μέγιστη παράμετρος Shields για το συνδυασμό ρεύματος και κύματος. Η παράμετρος Shields 

στην κάθετη στον κυματισμό διεύθυνση, 𝜃cn, οφείλεται μόνο στο ρεύμα. Ο τελευταίος 

εκθετικός όρος στις εξισώσεις αυτές έχει εισαχθεί ώστε να επιτρέπεται μικρή μεταφορά 

ιζημάτων ακόμη κι αν η στιγμιαία παράμετρος Shields είναι μικρότερη από την κρίσιμη τιμή. 

𝜃cr. Μία τέτοια συμπεριφορά έχει παρατηρηθεί και πειραματικά.  

Οι χρησιμοποιούμενες εξισώσεις έχουν το πλεονέκτημα ότι λαμβάνουν υπόψη τα μη μόνιμα 

φαινόμενα υστέρησης κατά την κίνηση του ιζήματος. Στη φύση, η μεταβολή της 

συγκέντρωσης των φερτών δεν ανταποκρίνεται ακαριαία στη μεταβολή του πεδίου των 

ταχυτήτων του νερού. Έτσι, αν χωριστεί η περίοδος του κύματος σε δύο φάσεις, μία με 

θετική και μία με αρνητική ταχύτητα των μορίων, ένα τμήμα του αιωρούμενου ιζήματος δεν 

προλαβαίνει να επικαθίσει μέχρι την ολοκλήρωση της πρώτης φάσης και αντιθέτως, 

παραμένει σε αιώρηση κατά τη μετάβαση στην επόμενη φάση που περιλαμβάνει αντίθετης 

φοράς ταχύτητα. Το φαινόμενο αυτό επιδρά στον υπολογισμό του καθαρού ρυθμού 

στερεομεταφοράς κατά τη διάρκεια μίας κυματικής περιόδου. Το παρόν μοντέλο λαμβάνει 

υπόψη αυτή την επίδραση μέσω της θεώρησης της «καθαρής» (net) παραμέτρου Shields: 

 𝜃cw,net = (1 − αpl,b)𝜃cw,onshore + (1 + αpl,b)𝜃cw,offshore    (22) 

όπου 𝜃cw,onshore και 𝜃cw,offshore είναι οι μέσες χρονικά παράμετροι Shields κατά τη διάρκεια 

των τμημάτων της περιόδου στα οποία η κίνηση των μορίων του νερού είναι προς την ακτή 

και προς τα ανοιχτά, αντίστοιχα, ενώ αpl,b είναι ένας συντελεστής που λαμβάνει υπόψη τα 

φαινόμενα υστέρησης (phase-lag effects). 
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(ii) Φορτίο σε αιώρηση 

Για τον υπολογισμό του φορτίου σε αιώρηση το μοντέλο προσφέρει δύο εναλλακτικές. Η 

πρώτη βασίζεται στην επίλυση της ολοκληρωμένης στο βάθος εξίσωσης μετάθεσης-διάχυσης 

για τη μέση κατά βάθος συγκέντρωση φερτών στη στήλη νερού, Cave: 

 
𝜕(Caveℎ)

𝜕𝑡
+

𝜕(Caveℎ𝑈)

𝜕𝑥
+

𝜕(Caveℎ𝑉)

𝜕𝑦
=

𝜕

𝜕𝑥
(𝐾𝑥ℎ

𝜕Cave

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦ℎ

𝜕Cave

𝜕𝑦
) + 𝑃𝑟 − 𝐷𝑟     (23) 

όπου ℎ = 𝑑 + 𝜁 είναι το στιγμιαίο βάθος νερού, 𝐾𝑥 = 𝐾𝑦 = 5.93𝑢∗,cℎ είναι οι συντελεστές 

διασποράς του ιζήματος, 𝑢∗,c είναι η ταχύτητα τριβής λόγω ρεύματος, 𝑃𝑟 και 𝐷𝑟 είναι ο 

ρυθμός αιώρησης και εναπόθεσης του ιζήματος, αντίστοιχα, που ισούνται με: 

 𝑃𝑟 = 𝑐𝑅𝑊𝑠   και  𝐷𝑟 =
Cave

𝛽𝑑
𝑊𝑠       (24) 

όπου 𝑊𝑠 είναι η ταχύτητα καθίζησης του ιζήματος, 𝛽𝑑 ένας συντελεστής (Camenen and 

Larson, 2008) και 𝑐𝑅 η συγκέντρωση αναφοράς του ιζήματος κοντά στον πυθμένα, η οποία 

δίνεται από τη σχέση: 

 𝑐𝑅 = 𝐴cr𝜃cw,mexp (−b
𝜃cr

𝜃cw
)      (25) 

όπου 𝐴cr είναι συντελεστής που λαμβάνει υπόψη το μέγεθος των κόκκων του ιζήματος 

(Camenen and Larson, 2007). 

Ο ρυθμός στερεομεταφοράς είναι συνήθως ιδιαίτερα υψηλός κοντά στην ακτογραμμή λόγω 

των δυναμικών διεργασιών στη ζώνη διαβροχής. Τα περισσότερα μοντέλα τείνουν να 

προβλέπουν μία απότομη και μη ρεαλιστική μεταβολή του ρυθμού στερεομεταφοράς από τη 

ζώνη διαβροχής προς τα ανοιχτά. Αντιθέτως, ένα επιπλέον πλεονέκτημα του παρόντος 

μοντέλου είναι ότι ενσωματώνει την τροποποίηση των Nam et al. (2009) για τον υπολογισμό 

των ρυθμών αιώρησης και εναπόθεσης του ιζήματος. Έτσι, χρησιμοποιώντας το ρυθμό 

στερεομεταφοράς που προκύπτει από τους υπολογισμούς για τη ζώνη διαβροχής ως οριακή 

συνθήκη για την επίλυση της Εξ. (23), προκύπτει μία ρεαλιστική αλληλεπίδραση μεταξύ της 

ζώνης αυτής και της εσωτερικής ζώνης θραύσης. 

Τελικά, από την επίλυση της Εξ. (23) προκύπτει το μέσο χρονικά φορτίο σε αιώρηση ανά 

μονάδα πλάτους: 

 𝑞 𝑠𝑠 = (Caveℎ − 𝐾𝑥ℎ
𝜕Cave

𝜕𝑥
 , Caveℎ − 𝐾𝑦ℎ

𝜕Cave

𝜕𝑦
)   (26) 

Η δεύτερη εναλλακτική που προσφέρει το μοντέλο για τον υπολογισμό του φορτίου σε 

αιώρηση βασίζεται στο εκθετικό προφίλ της συγκέντρωσης του ιζήματος των Camenen and 

Larson (2008): 
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 𝑞𝑠𝑠,𝑤 = (𝑈cw,onshore − 𝑈cw,offshore)𝑐𝑅
𝜀

𝑊𝑠
[1 − exp (−

𝑊𝑠ℎ

𝜀
)]     (27α) 

 𝑞𝑠𝑠,𝑛 = |�⃗⃗� 𝑐| sin𝜑 𝑐𝑅
𝜀

𝑊𝑠
[1 − exp (−

𝑊𝑠ℎ

𝜀
)]     (27β) 

όπου 𝑈cw,onshore και 𝑈cw,offshore είναι οι rms τιμές της ταχύτητας λόγω συνδυασμού ρεύματος 

και κυμάτων κατά τη διάρκεια των τμημάτων της περιόδου στα οποία η κίνηση των μορίων 

του νερού είναι προς την ακτή και προς τα ανοιχτά, αντίστοιχα. Ο συντελεστής διάχυσης του 

ιζήματος, 𝜀, θεωρείται ομοιόμορφος στο βάθος και λαμβάνεται ως: 

 𝜀 = (
𝑘b

3𝐷+𝑘c
3𝐷c+𝑘w

3 𝐷w

ρ
)

1/3

ℎ     (28) 

όπου 𝐷, 𝐷c και 𝐷w η απώλειας ενέργειας ανά μονάδα επιφάνειας εξαιτίας της θραύσης, της 

τριβής πυθμένα λόγω ρεύματος και λόγω κύματος, αντίστοιχα, ενώ 𝑘b, 𝑘c και 𝑘w είναι 

συντελεστές. 

Στη ζώνη διαβροχής 

Ο υπολογισμός της στερεομεταφοράς στη ζώνη διαβροχής βασίζεται στους τύπους των 

Larson and Wamsley (2007) για τη διεύθυνση κάθετα στην ακτή και παράλληλα σε αυτή: 

 
𝑞𝑏𝑐,net = 𝐾𝑐

tan𝜑𝑚

tan2𝜑𝑚 − (
𝑑𝑑
𝑑𝑥

)
2

𝑢𝑜
3

g
(
𝑑𝑑

𝑑𝑥
− tan𝛽𝑒)

𝑡𝑜
𝑇

 
(29) 

 𝑞𝑏𝑙,net = 𝐾𝑙

tan𝜑𝑚

tan2𝜑𝑚 − (
𝑑𝑑
𝑑𝑥

)
2

𝑢𝑜
2𝑣0

g

𝑡𝑜
𝑇

 (30) 

όπου 𝜑𝑚 είναι η γωνία εσωτερικής τριβής ( ≈ 30º), 𝑢0, 𝑣0 και 𝑡𝑜 είναι ταχύτητες και χρόνος 

αναφοράς, αντίστοιχα, tan 𝛽𝑒 είναι η κλίση ισορροπίας της ακτής, 𝑇 είναι η διάρκεια του 

κύκλου αναρρίχησης-καταρρίχησης (προϋποτίθεται ίση με την περίοδο του κύματος) και 𝐾𝑐 

και 𝐾𝑙 είναι εμπειρικοί συντελεστές, για τους οποίους οι Nam et al. (2009) πρότειναν την 

τιμή 0.0008. Η τοπική κλίση ισορροπίας υπολογίζεται σύμφωνα με τους Larson et al. (1999): 

 tan𝛽𝑒 =
𝐼𝑈 − 𝐼𝐵
𝐼𝑈 + 𝐼𝐵

tan𝜑𝑚 (31) 

όπου 
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 𝐼𝑈 =
1

𝑇
∫ [

|𝜏 𝑏(𝑡)|

(𝑠 − 1)ρg𝑑50

]

3/2

𝑑𝑡
𝑡𝑚

𝑡𝑠

 (32α) 

 𝐼𝐵 =
1

𝑇
∫ [

|𝜏 𝑏(𝑡)|

(𝑠 − 1)ρg𝑑50

]

3/2

𝑑𝑡
𝑡𝑒

𝑡𝑚

 (32β) 

με 𝜏 𝑏(𝑡) τη διατμητική τάση πυθμένα λόγω τριβής, 𝑡𝑠 και 𝑡𝑒 τις χρονικές στιγμές της έναρξης 

και λήξης του κύκλου αναρρίχησης-καταρρίχησης του κύματος, αντίστοιχα και 𝑡𝑚 τη 

χρονική στιγμή στην οποία το μέτωπο του αναρριχώμενου κυματισμού αλλάζει φορά και 

πλέον κινείται προς τα ανοιχτά. 

Συνοπτικά, ο συνολικός «καθαρός» (net) ρυθμός στερεομεταφοράς ανά μονάδα πλάτους, 

𝑞 𝑡𝑜𝑡 = (𝑞𝑥,𝑡𝑜𝑡, 𝑞𝑦,𝑡𝑜𝑡), ισούται με το άθροισμα των φορτίων πυθμένα και σε αιώρηση, 

𝑞 𝑠𝑏 + 𝑞 𝑠𝑠, στη ζώνη θραύσης και στα ανοιχτά. Στη ζώνη διαβροχής ισούται με το φορτίο 𝑞 𝑠𝑧, 

το οποίο έχει συνιστώσες κάθετα στην ακτή και παράλληλα σε αυτή που δίνονται από τις Εξ. 

(29) και (30), αντίστοιχα. 

4.4 Μοντέλο γεωμορφολογίας 

Το μοντέλο γεωμορφολογίας προσομοιώνει την εξέλιξη της τοπογραφίας του πυθμένα μέσω 

της επίλυσης της εξίσωσης ισοζυγίου των φερτών: 

 
𝜕𝑑

𝜕𝑡
=

1

1 − 𝑛𝑝
∇ ∙ 𝑞 𝑡𝑜𝑡

′  (33) 

όπου 𝑛𝑝 είναι το πορώδες του ιζήματος ( ≈  0.4). Σύμφωνα με τον Watanabe (1988), η 

επίδραση της κλίσης του πυθμένα λαμβάνεται υπόψη για τον υπολογισμό του ισοδύναμου 

συνολικού ρυθμού στερεομεταφοράς στις διευθύνσεις x και y: 

 𝑞𝑥,𝑡𝑜𝑡
′ = 𝑞𝑥,𝑡𝑜𝑡 + 𝜀𝑥𝑥|𝑞𝑥,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑥
+ 𝜀𝑥𝑦|𝑞𝑥,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑦
       (34α) 

 𝑞𝑦,𝑡𝑜𝑡
′ = 𝑞𝑦,𝑡𝑜𝑡 + 𝜀𝑦𝑥|𝑞𝑦,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑥
+ 𝜀𝑦𝑦|𝑞𝑦,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑦
       (34β) 

όπου 𝜀𝑥𝑥, 𝜀𝑥𝑦 = 𝜀𝑦𝑥 και 𝜀𝑦𝑦 είναι εμπειρικοί συντελεστές, ο οποίοι συνεισφέρουν και στην 

ευστάθεια του αριθμητικού σχήματος επίλυσης της Εξ. (33). Το μοντέλο προσφέρει δύο 

επιλογές για την επίλυση αυτή. Η πρώτη βασίζεται σε ένα σχήμα upwind 2
ης

 τάξης και η 

δεύτερη σε ένα τροποποιημένο σχήμα Lax-Wendroff 2
ης

 τάξης. 
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Όπως αναφέρθηκε, η εφαρμογή της μεθόδου που βασίζεται στο ‘morphological acceleration 

factor’ επιτρέπει την προσομοίωση μορφολογικών μεταβολών για χρονικά διαστήματα που 

απαιτούνται σε πρακτικές εφαρμογές μηχανικών. Συγκεκριμένα, το μορφολογικό χρονικό 

βήμα επίλυσης της Εξ. (33), Δtmor, είναι διαφορετικό από το βήμα επίλυσης του κυματικού 

μοντέλου, Δt και συνδέονται με τη σχέση: 

 Δtmor = fMOR ∙ Δt (35) 

Ωστόσο, πρέπει να δίνεται ιδιαίτερη προσοχή στην επιλογή της τιμής του παράγοντα fMOR, 

καθώς μία ιδιαίτερα υψηλή τιμή του οδηγεί σε μη ρεαλιστική αλληλεπίδραση του κυματικού, 

υδροδυναμικού και γεωμορφολογικού μοντέλου. Στην παρούσα Διατριβή ο παράγοντας 

αυτός έπαιρνε τιμές μεταξύ 1-20 χωρίς να έχει μη ρεαλιστική επίδραση στα αποτελέσματα 

του κυματικού μοντέλου. Έτσι, προσομοιώθηκαν βραχυχρόνιες μορφολογικές μεταβολές, της 

τάξης κάποιων ωρών ή λίγων ημερών. 

Το σύνθετο μοντέλο επαληθεύτηκε με μία σειρά πειραμάτων που περιλαμβάνουν αλλαγή 

της τοπογραφίας του πυθμένα σε μία ή δύο οριζόντιες διαστάσεις. Για παράδειγμα, 

προσομοιώθηκε το πείραμα LIP 11D Delta Flume ’93 και συγκεκριμένα το σενάριο που 

αναφέρεται σε τυχαίους κυματισμούς περιόδου Tp = 8 s και ύψους κύματος Hmo
= 0.60 m 

(Roelvink and Reniers, 1995). Η μέση διάμετρος των κόκκων άμμου ήταν 𝑑50= 0.20 mm και 

η διάρκεια του τεστ 13 hrs. Στο Σχ. 20 φαίνεται η σύγκριση μεταξύ των μετρήσεων και των 

αποτελεσμάτων του παρόντος μοντέλου και αυτού των Rakha et al. (1997). Το μονοδιάστατο 

αυτό μοντέλο βασίζεται επίσης στο συνδυασμό ενός μοντέλου τύπου Boussinesq και ενός 

μοντέλου στερεομεταφοράς και μορφολογίας. 
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Σχ. 20. Σύγκριση μετρήσεων και αποτελεσμάτων παρόντος μοντέλου και μοντέλου των Rakha et al. 

(1997) για το πείραμα LIP 11D. Η σύγκριση αναφέρεται στο ύψος κύματος, την ταχύτητα του 

undertow κοντά στον πυθμένα, το ρυθμό στερεομεταφοράς και στην τελική μορφολογία του πυθμένα. 

Τα αποτελέσματα του μοντέλου είναι ικανοποιητικά και σε γενικές γραμμές ελαφρώς 

καλύτερα από αυτά των Rakha et al. (1997). Αυτό οφείλεται στη χαμηλότερη τάξη του 

μοντέλου τύπου Boussinesq που χρησιμοποιούν, O(εσ
2
), καθώς και στις διαφορετικές σχέσεις 

για τον υπολογισμό της στερεομεταφοράς (Engelund and Fredsøe, 1976). 

Με βάση το συγκεκριμένο πείραμα, έγινε και μια σύγκριση διαφόρων σχέσεων για τον 

υπολογισμό της στερεοεμεταφοράς, όπως φαίνεται στο Σχ. 21. Από τη σύγκριση προκύπτει 

ότι οι σχέσεις που χρησιμοποιούνται στο μοντέλο δίνουν τα καλύτερα αποτελέσματα, ενώ 

αρκετά ακριβής είναι και η εξίσωση των Dibajnia et al. (2001). Οι δύο αυτές σχέσεις είναι οι 

μόνες, από αυτές που εξετάστηκαν, που λαμβάνουν υπόψη τα μη μόνιμα φαινόμενα 

υστέρησης. 

   

 

Σχ. 21. Σύγκριση διάφορων σχέσεων για τον υπολογισμό του ολικού φορτίου στερεομεταφοράς για το 

πείραμα LIP 11D. 
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Επίσης, το μοντέλο ελέγχθηκε και με πειραματικές μετρήσεις σε δύο οριζόντιες διαστάσεις. 

Ένα από τα πειράματα που χρησιμοποιήθηκαν είναι αυτό των Gravens and Wang (2007) που 

αναφέρεται σε πλάγια πρόσπτωση σύνθετων κυματισμών φάσματος TMA. Οι κυματισμοί 

έχουν περίοδο αιχμής Tp = 1.468 s και σημαντικό ύψος κύματος Hmo
= 0.225 m, ενώ 

προσπίπτουν υπό γωνία 10°. Με ένα σύστημα αντλιών στο κατάντη πλευρικό άκρο της 

δεξαμενής επιτυγχάνεται η επανακυκλοφορία του κ.μ.α. κυματογενούς ρεύματος και έτσι 

εγκαθίστανται μόνιμες συνθήκες. Η διάρκεια του τεστ ήταν 165 min και στο Σχ. 22 φαίνεται 

η πειραματική διάταξη. 

 

Σχ. 22. Πειραματική διάταξη των Gravens and Wang (2007) (πηγή: Nam et al., 2009, τροποποιημένο). 

Στο Σχ. 23 φαίνεται η σύγκριση των μετρήσεων και των αποτελεσμάτων του μοντέλου κατά 

μήκος της διατομής Υ24 (βλ. Σχ. 22). Η σύγκριση αφορά στο σημαντικό ύψος κύματος, στο 

wave setup, στο κατά μήκος της ακτής κυματογενές ρεύμα και στη στερεομεταφορά κατά 

μήκος της ακτής. Η ακρίβεια του μοντέλου είναι αρκετά καλή, εκτός από μία υπο-εκτίμηση 

του ελάχιστου set-down και του παράκτιου ρεύματος στην εσωτερική ζώνη θραύσης. 
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Σχ. 23. Σύγκριση μετρήσεων των Gravens and Wang (2007) και αποτελεσμάτων του μοντέλου για το 

σημαντικό ύψος κύματος, το wave setup, το κ.μ.α. κυματογενές ρεύμα και την κ.μ.α. στερεομεταφορά. 

Στο Σχ. 24 φαίνεται η τελική μορφολογία του πυθμένα, όπως μετρήθηκε στο εργαστήριο 

και όπως υπολογίζεται από το μοντέλο.  

 

Σχ. 24. Σύγκριση τελικής βυθομετρίας, όπως μετρήθηκε από τους Gravens and Wang (2007) και όπως 

υπολογίζεται από το μοντέλο (ισοβαθείς σε m). 

Η συμφωνία είναι γενικά ικανοποιητική, εκτός από κάποιες ανακρίβειες στην εξωτερική 

ζώνη θραύσης με x ≈ 10 m. 

5. Εργαστηριακά πειράματα με ύφαλους κυματοθραύστες 

Στα πλαίσια της Διατριβής πραγματοποιήθηκαν και εργαστηριακά πειράματα με σκοπό τη 

μελέτη της εξέλιξης της μορφολογίας αμμώδους πυθμένα στα κατάντη διαπερατού ύφαλου 

κυματοθραύστη. Τα πειράματα εκτελέστηκαν στο Εργαστήριο Υδραυλικής Μηχανικής του 

Τμήματος Πολιτικών Μηχανικών του Πανεπιστημίου Πατρών, σε δεξαμενή κυμάτων 

ορθογωνικής διατομής με οριζόντιες διαστάσεις 12 m x 7 m και μέγιστο βάθος 1.05 m. Τα 

τοιχώματα και ο πυθμένας της δεξαμενής ήταν κατασκευασμένα από σκυρόδεμα με σχετικά 

λεία επιφάνεια. 
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Στο ένα άκρο της δεξαμενής, παράλληλα με τη μικρή πλευρά της μήκους 7 m, ήταν 

τοποθετημένη μία κυματογεννήτρια τύπου αναδευτήρα με άρθρωση (paddle) που 

περιλάμβανε σύστημα ελέγχου ενεργητικής απόσβεσης της ανάκλασης κυμάτων. Η 

κυματογεννήτρια μπορούσε να δημιουργήσει μόνο κάθετα προσπίπτοντες κυματισμούς, τόσο 

μονοχρωματικούς, όσο και σύνθετους. 

Προκειμένου να προσομοιωθεί η ρήχωση κυματισμών, κατασκευάστηκε μία ράμπα από 

λεία πάνελ αλουμινίου, συνολικού πλάτους 4 m και μήκους 9 m. Η ράμπα τοποθετήθηκε υπό 

ήπια κλίση, περίπου 1:14.97, συμμετρικά ως προς τον άξονα συμμετρίας της δεξαμενής που 

είναι παράλληλος στη μεγάλη πλευρά της. Στη θέση της πηγής το βάθος ήταν σταθερό 1.05 

m, ενώ στην ανάντη ακμή της ράμπας, σε απόσταση 1.73 m από την κυματογεννήτρια, 0.45 

m. Μπροστά από την κύρια ράμπα τοποθετήθηκε επιπλέον φύλλο λαμαρίνας κλίσης 1:2. 

Εκατέρωθεν της κεκλιμένης ακτής τοποθετήθηκαν κατακόρυφα φύλλα αλουμινίου, ώστε να 

λειτουργούν ως πλευρικοί τοίχοι-οδηγοί για τη διάδοση των κυματισμών. Στο κατάντη άκρο 

της δεξαμενής, εκατέρωθεν της κεκλιμένης ακτής, τοποθετήθηκαν κεκλιμένα απορροφητικά 

όρια από λιθορριπή. Η γενική διάταξη της εγκατάστασης φαίνεται στο Σχ. 25.  

Στη συνέχεια κατασκευάστηκε διαπερατός ύφαλος κυματοθραύστης από λιθορριπή μέσης 

διαμέτρου d50 = 0.05 m. Το μήκος του κυματοθραύστη ήταν 3 m, δημιουργώντας δύο κενά 

πλάτους 0.50 m το καθένα εκατέρωθεν αυτού. Το ελεύθερο ύψος (free board) του ύφαλου 

ήταν 0.05 m και το πορώδες του μετρήθηκε λ = 0.52. 

Στα κατάντη του ύφαλου διαστρώθηκε σχετικά λεπτόκοκκη άμμος  μέσης διαμέτρου d50 = 

0.21 mm, διαμορφώνοντας ένα στρώμα μέσου πάχους 4 cm. Πριν από κάθε σενάριο γινόταν 

προσεκτική διάστρωση της άμμου, ώστε ο πυθμένας να είναι επίπεδος με κλίση περίπου 1:15. 

Στο Σχ. 26 φαίνεται σε σκαρίφημα η διάταξη των έργων και στο Σχ. 27 μία όψη αυτών κατά 

τη φάση της κατασκευής του φυσικού μοντέλου. 

 

Σχ. 25. Γενική όψη της πειραματικής διάταξης πριν την κατασκευή του κυματοθραύστη και την 

τοποθέτηση της άμμου. 
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Σχ. 26. Γενική όψη της πειραματικής διάταξης πριν την κατασκευή του κυματοθραύστη και την 

τοποθέτηση της άμμου. 

 

Σχ. 27. Όψη του κυματοθραύστη και της αμμώδους ακτής κατά τη φάση κατασκευής. 

Εξετάστηκαν 8 σενάρια, τα οποία περιλάμβαναν θραυόμενους και μη-θραυόμενους, απλούς 

μονοχρωματικούς και σύνθετους κυματισμούς. Τα χαρακτηριστικά των διαφορετικών 

σεναρίων συνοψίζονται στον πίνακα 1. Σε κάθε σενάριο μετρήθηκε η αρχική και τελική 

βυθομετρία. Επίσης, καταγράφηκαν χρονοσειρές της ανύψωσης της ελεύθερης επιφάνειας με 

τη χρήση 7 κυματομετρητών, η θέση των οποίων αποτυπώνεται στο Σχ. 28. Κάθε σενάριο 
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ολοκληρωνόταν όταν πλέον δεν παρατηρούταν σημαντική αλλαγή της τοπογραφίας του 

πυθμένα. 

 

Σχ. 28. Θέση των 7 κυματομετρητών. 

Στο Σχ. 29 φαίνεται η αρχική και τελική ακτογραμμή για το σενάριο No. 3. Πίσω από τον 

κυματοθραύστη σχηματίστηκε ένα salient. Αντίθετα, η απόθεση εξασθενεί προς τους 

πλευρικούς τοίχους, με αποτέλεσμα να εμφανίζεται ήπια διάβρωση πίσω από τα ανοίγματα, 

εκατέρωθεν του ύφαλου. 

       

Σχ. 29. Όψη της αρχικής (στα αριστερά) και τελικής (μετά από 5 ώρες κυματικής δράσης, στα δεξιά) 

ακτογραμμής στο σενάριο No. 3. 
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6. Επαλήθευση του σύνθετου μοντέλου 

Τα εργαστηριακά πειράματα προσέφεραν τη δυνατότητα απευθείας εξαγωγής κάποιων 

συμπερασμάτων σχετικά με τις μορφοδυναμικές διεργασίες πίσω από ύφαλους 

κυματοθραύστες. Παράλληλα, όμως, παρείχαν και ένα σύνολο δεδομένων για την 

επαλήθευση του σύνθετου αριθμητικού μοντέλου. 

Η απόκριση του μοντέλου διερευνήθηκε και για τα 8 σενάρια των πειραμάτων. Στο Σχ. 30 

φαίνεται η σύγκριση των μετρήσεων και του μοντέλου για τις χρονοσειρές της ανύψωσης της 

ελεύθερης επιφάνειας του σεναρίου No. 4. Το συγκεκριμένο σενάριο αναφέρεται σε απλούς 

μονοχρωματικούς κυματισμούς με περίοδο T = 2.0 s και Ho = 0.08 m στη θέση της πηγής. 

Στον πόδα της κεκλιμένης ακτής, όπου το βάθος είναι 0.45 m, είναι d/L ≈ 0.12 και ε =

H/d ~ 0.18. Κατά τη διέλευση των κυματισμών πάνω από τον ύφαλο εμφανίζεται θραύση 

τύπου spilling. Τα χωρικά βήματα διακριτοποίησης επιλέχθηκαν Δx = Δy = 0.04 m και το 

χρονικό Δt = 0.008 s. Προσομοιώθηκε η εξέλιξη της μορφολογίας για 4.3 hrs, όπως και στο 

πείραμα. 
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Σχ. 30. Χρονοσειρές της ανύψωσης της ελεύθερης επιφάνειας, όπως προκύπτουν από τις μετρήσεις και 

τα αποτελέσματα του μοντέλου για το σενάριο No. 4. 

Η ακρίβεια είναι, σε γενικές γραμμές, αποδεκτή εκτός από κάποια υπερεκτίμηση της 

δευτερεύουσας κορυφής στο σταθμό 3 και του ύψους κύματος στο σταθμό 7, ο οποίος 

βρίσκεται και στο κενό μεταξύ ακρομωλίου και πλευρικού τοίχου. Στο Σχ. 31 φαίνεται η 

σύγκριση αρχικής και τελικής βυθομετρίας όπως μετρήθηκε και υπολογίζεται από το 

μοντέλο. 

  

Σχ. 31. Αρχική και τελική μετρημένη βυθομετρία (αριστερά) και σύγκριση μεταξύ μετρήσεων και 

αποτελεσμάτων μοντέλου για την τελική βυθομετρία (δεξιά) για το σενάριο No. 4 (ισοβαθείς σε cm). 

Η απόκριση του μοντέλου είναι γενικά αποδεκτή. Το πλάτος του σχηματιζόμενου salient 

προβλέπεται με ικανοποιητική ακρίβεια, ενώ η απόθεση κοντά στην ακτογραμμή μειώνεται 

προς τους πλευρικούς τοίχους. Βέβαια, η απόθεση στο κέντρο, κατά την έννοια του πλάτους, 

γύρω από την ισοβαθή των 10 cm υποεκτιμάται από το μοντέλο, ενώ αντιθέτως προβλέπεται 

μία ήπια διάβρωση. Επίσης, το μοντέλο περιγράφει το σχηματισμό του ύφαλου (bar) λόγω 

θραύσης στο κέντρο, πίσω από τον κυματοθραύστη. 

Το σενάριο No. 5 αναφέρεται στη διάδοση σύνθετων κυματισμών φάσματος Jonswap με 

περίοδο αιχμής Tp = 1.25 s και σημαντικό ύψος κύματος Hso = 0.045 m στη θέση της πηγής. 

Πρόκειται για σχετικά βραχείς κυματισμούς με μικρό ποσοστό θραυόμενων πάνω από το 

ύφαλο. Στο Σχ. 32 φαίνεται η σύγκριση των φασμάτων όπως προκύπτουν από τις μετρημένες 

και τις υπολογισμένες από το μοντέλο χρονοσειρές της ανύψωσης της ελεύθερης επιφάνειας. 
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Σχ. 32. Σύγκριση φασμάτων, όπως υπολογίζονται από τις μετρημένες και τις υπολογισμένες από το 

μοντέλο χρονοσειρές της ανύψωσης της ελεύθερης επιφάνειας για το σενάριο No. 5. 

Το σχήμα των φασμάτων περιγράφεται ικανοποιητικά, όπως και οι μέγιστες τιμές της 

πυκνότητας ενέργειας στους διάφορους σταθμούς. Επίσης, το μοντέλο υπολογίζει τη 

μεταφορά ενέργειας στις ανώτερες αρμονικές στα κατάντη του ύφαλου, αλλά με μία 

υπερεκτίμηση στο σταθμό 3 γύρω στο 𝑘𝑑 ~ 1.50. Από τη μη γραμμική ανάλυση που 

προηγήθηκε θα αναμενόταν μία υποεκτίμηση των transfer functions στους αδιάστατους 

αυτούς αριθμούς. Παρόλα αυτά, η ανάλυση αυτή αναφερόταν σε αδιαπέρατους πυθμένες, 

ενώ το πορώδες μπορεί να έχει σημαντική επίδραση στις κυματικές ιδιότητες. Επίσης, 

επίδραση ασκούν και τα φαινόμενα της διάθλασης και περίθλασης. 

Στο Σχ. 33 φαίνεται η σύγκριση αρχικής και τελικής βυθομετρίας όπως μετρήθηκε και 

υπολογίζεται από το μοντέλο. 
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Σχ. 33. Αρχική και τελική μετρημένη βυθομετρία (αριστερά) και σύγκριση μεταξύ μετρήσεων και 

αποτελεσμάτων μοντέλου για την τελική βυθομετρία (δεξιά) για το σενάριο No. 5 (ισοβαθείς σε cm).  

Η εξέλιξη της ακτογραμμής υπολογίζεται και στην περίπτωση αυτή με λογική ακρίβεια. 

Εδώ το σχηματιζόμενο salient είναι περισσότερο πεπλατυσμένο και η εξέλιξη των ισοβαθών 

ακολουθεί περισσότερο μία παράλληλη μετατόπιση προς την ακτή και τα ανοιχτά, 

αντίστοιχα. Σε γενικές γραμμές, η απόκριση του μοντέλου ως προς τη μορφολογική εξέλιξη 

κρίνεται επαρκής.  

7. Αριθμητική διερεύνηση της απόκριση της ακτογραμμής σε σύστημα ύφαλων 

κυματοθραυστών 

Η απόκριση της ακτογραμμής στην κατασκευή παράκτιων τεχνικών έργων είναι μείζον 

ζήτημα για τους μηχανικούς. Συγκεκριμένα, στην περίπτωση των έξαλων κυματοθραυστών 

έχουν προταθεί κάποιες εμπειρικές σχέσεις και κριτήρια που προβλέπουν το σχηματισμό 

salient ή tombolo βάσει των γεωμετρικών χαρακτηριστικών των έργων και των 

υδροδυναμικών συνθηκών (Dally and Pope, 1986). 

Παρόμοιες εμπειρικές παρατηρήσεις έχουν παρουσιαστεί, κυρίως για φυσικούς ύφαλους 

(Black and Andrews, 2001). Ωστόσο, η επαλήθευσή τους κρίνεται ανεπαρκής, ενώ και η 

αξιοπιστία τους τίθεται υπό αμφισβήτηση (Ranasinghe et al., 2001). Ο Pilarczyk (2003) 

ενσωμάτωσε την επίδραση του συντελεστή διάδοσης στα εμπειρικά κριτήρια των 

συμβατικών κυματοθραυστών ώστε να εφαρμόζονται και για ύφαλους. Παρόλα αυτά και 

στην περίπτωση αυτή δεν έχει παρουσιαστεί επαρκής επαλήθευση των σχέσεων. Επιπλεόν, 
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κάποια αποτελέσματά του, π.χ. η δυνατότητα σχηματισμού tombolo πίσω από διαπερατούς 

ύφαλους κυματοθραύστες, έχουν αμφισβητηθεί (Karambas et al., 2016). 

Επομένως, υπάρχει ένα κενό στη διεθνή βιβλιογραφία σχετικά με την πρόβλεψη της 

απόκρισης της ακτογραμμής στην κατασκεύη ύφαλων κυματοθραυστών. Η υδροδυναμική 

συμπεριφορά των έργων αυτών είναι πιο σύνθετη από αυτή των συμβατικών 

κυματοθραυστών. Συνεπώς, η ακτομηχανική συμπεριφορά τους είναι φαινόμενο που 

εξαρτάται από πλήθος παραμέτρων και είναι δύσκολο να συστηματοποιηθεί. Άρα, είναι 

πιθανό να μη δύναται να εξαχθούν εμπειρικές σχέσεις και κριτήρια με γενική ισχύ για την 

περίπτωση των ύφαλων. 

Στην κατεύθυνση αυτή, στην παρούσα Διατριβή, διερευνήθηκε αριθμητικά η απόκριση της 

ακτογραμμής σε ένα σύστημα ύφαλων κυματοθραυστών, ώστε να εξαχθούν κάποια 

συμπεράσματα σχετικά με την εξάρτησή της από κάποιες βασικές παραμέτρους σχεδιασμού 

των έργων. Συγκεκριμένα, εκτελέστηκε ένα σετ αριθμητικών πειραμάτων που αναφέρονταν 

σε ένα σύστημα πέντε ύφαλων κυματοθραυστών σε ευθεία και παράλληλα στην ακτογραμμή. 

Διερευνήθηκε η επίδραση του μήκους των κυματοθραυστών, 𝐵, της απόστασής τους από την 

αρχική ακτογραμμή, 𝑆, του κενού ανάμεσά τους, 𝐺, του πορώδους τους, λ, της περιόδου του 

κύματος, T και της γωνίας πρόσπτωσης των κυματισμών, 𝜃. Ως σενάριο αναφοράς 

επιλέχθηκε το No. 4 των εργαστηριακών πειραμάτων που αναφερόταν σε απλούς 

κυματισμούς με T = 2.0 s και Ho = 0.08 m. Η αρχική βυθομετρία ήταν αυτή του πειράματος, 

επαναλαμβανόμενη συμμετρικά για τους πέντε κυματοθραύστες. 

Αρχικά, εξετάστηκαν 10 διαφορετικές τιμές του λόγου 𝐵/𝑆 από 0.3 έως 3.0. Ενδεικτικά στο 

Σχ. 34 φαίνεται η τελική ακτογραμμή για τέσσερις διαφορετικές γωνίες πρόσπτωσης στην 

περίπτωση με 𝐵/𝑆 = 0.90. Από τις περιπτώσεις που εξετάστηκαν προέκυψε το Σχ. 35, όπου 

𝑋 είναι το πλάτος του πλατύτερου από τα salient που σχηματίστηκαν. 

 

Σχ. 34. Τελική υπολογιζόμενη ακτογραμμή για μήκος κυματοθραυστών 𝐵 = 3.11 m και λόγο 𝐵/𝑆 =

0.90. 
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Σχ. 35. Το αδιάστατο πλάτος του salient 𝑋/𝑆 συναρτήσει του λόγου 𝐵/𝑆, μεταβάλλοντας το μήκος 𝐵. 

Καταρχάς, σε καμία των περιπτώσεων δε σχηματίστηκε tombolo. Επίσης, φαίνεται ότι η 

συμπεριφορά των καμπυλών δεν είναι μονότονη. Το πλάτος των salient αυξάνει με το μήκος 

των κυματοθραυστών μέχρι 𝐵/𝑆 ≈ 0.90. Στη συνέχεια παρατηρείται μία μείωση, μέχρι 

περίπου το λόγο 𝐵/𝑆 ≈ 2.0. Για μεγαλύτερους λόγους 𝐵/𝑆 ξαναπαρατηρείται αύξηση του 

𝑋/𝑆. Ωστόσο, αυτή η ταλαντευόμενη συμπεριφορά φαίνεται να συνεχίζεται περεταίρω. Μία 

πιθανή εξήγηση για τη μη μονότονη αύξηση του 𝑋/𝑆 είναι ότι καθώς το μήκος των 

κυματοθραυστών αυξάνει πέραν ενός ορίου, η αλληλεπίδραση των δύο σχηματιζόμενων 

στροβίλων στα κατάντη τους μειώνεται και τελικώς δημιουργείται μία ουδέτερη ζώνη με 

αμελητέα κυκλοφορία. Πάντως, σε όλες τις περιπτώσεις ο λόγος 𝑋/𝑆 κυμαίνεται στο εύρος 

0.05 ÷ 0.30, που είναι τιμές αρκετά μικρότερες από τις αναμενόμενες για ένα αντίστοιχο 

σύστημα έξαλων κυματοθραυστών.  

Αντίστοιχα, το διάγραμμα του Σχ. 36 προέκυψε για τη μεταβολή της απόστασης των 

κυματοθραυστών από την ακτογραμμή. Παρόμοια με παραπάνω, παρατηρείται μία μη 

μονότονη συμπεριφορά, καθώς για ένα εύρος τιμών του λόγου 𝐵/𝑆, το πλησίασμα των 

κυματοθραυστών στην ακτογραμμή δεν οδηγεί απαραίτητα σε μεγαλύτερα salient. Αυτό 

οφείλεται στο γεγονός ότι οι δύο σχηματιζόμενοι στρόβιλοι συμπιέζονται και τελικώς 

συγχωνεύονται με τα ρεύματα επαναφοράς, με αποτέλεσμα να παρατηρείται ακόμη και ήπια 

διάβρωση πίσω από κάποιους κυματοθραύστες. Αυτή είναι μία βασική διαφορά με τους 

συμβατικούς κυματοθραύστες, πίσω από τους οποίους δεν παρατηρείται ποτέ διάβρωση. 

Αντίστοιχα διαγράμματα παρήχθησαν και για τις υπόλοιπες παραμέτρους που εξετάστηκαν. 

Όσον αφορά στη διάβρωση, αυτή συνήθως παρατηρήθηκε πίσω από τα κενά μεταξύ των 

κυματοθραυστών και το εύρος της κυμαινόταν μεταξύ του 20% και 60% του πλάτους του 

salient. Παρόλα αυτά, σε πολλές περιπτώσεις το πλάτος των ζωνών διάβρωσης ήταν 

μεγαλύτερο από το πλάτος των ζωνών απόθεσης. 
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Σχ. 36. Το αδιάστατο πλάτος του salient 𝑋/𝑆 συναρτήσει του λόγου 𝐵/𝑆, μεταβάλλοντας το μήκος 𝑆. 

8. Συμπεράσματα 

Η διάβρωση των ακτών είναι ένα παγκόσμιο πρόβλημα που προκαλείται από διάφορες 

φυσικές διεργασίες, αλλά και ανθρώπινες δραστηριότητες. Σε πολλές περιπτώσεις, η 

ανθρώπινη παρέμβαση εντείνει και επιταχύνει ραγδαία το πρόβλημα. Τις τελευταίες 

δεκαετίες, η λεγόμενη «ήπια» προσέγγιση για την προστασία των ακτών κερδίζει διαρκώς 

έδαφος. Η κατασκευή των ύφαλων κυματοθραυστών θα μπορούσε να ενταχθεί σε αυτό το 

πλαίσιο. Από τη βιβλιογραφική ανασκόπηση που διενεργήθηκε στα πλαίσια της Διατριβής 

προέκυψαν κάποια συμπεράσματα για τα έργα αυτά. 

Καταρχάς, από τεχνική άποψη, οι ύφαλοι κυματοθραύστες είναι λιγότερο αποτελεσματικοί 

από τους έξαλους, ιδιαίτερα σε περιβάλλον σημαντικής παλίρροιας. Ωστόσο, υπερτερούν 

περιβαλλοντικά καθώς επιτρέπουν αυξημένη ανανέωση των υδάτων, ενώ ασκούν μικρότερη 

επίδραση στους βιοτικούς και αβιοτικούς παράγοντες της περιοχής. Επιπλέον, υπερτερούν 

αισθητικά και σε γενικές γραμμές είναι χαμηλότερου κόστους. Παρότι έχει κατασκευαστεί 

ένας αριθμός ύφαλων κυματοθραυστών παγκοσμίως, η αποτελεσματικότητά τους, από 

ακτομηχανική άποψη, ποικίλει σημαντικά. Για παράδειγμα, σε κάποιες περιπτώσεις 

εμφανίστηκε διάβρωση εκεί που αναμενόταν απόθεση, με αποτέλεσμα ο σχεδιασμός των 

συγκεκριμένων έργων να κρίνεται αποτυχημένος. Συμπεραίνεται, λοιπόν, ότι η συμπεριφορά 

των έργων αυτών και η επίδρασή τους στη μορφολογία της περιοχής δεν έχουν γίνει πλήρως 

κατανοητές. 

Όσον αφορά στους βασικούς στόχους της Διατριβής, εξήχθησαν τα παρακάτω 

συμπεράσματα: 

 Αναπτύχθηκε ένα ολοκληρωμένο διδιάστατο αριθμητικό μοντέλο για την πρόβλεψη της 

εξέλιξης της βυθομετρίας στα κατάντη ενός συστήματος ύφαλων κυματοθραυστών. Η 

επαλήθευσή του με τις πειραματικές μετρήσεις έδειξε ικανοποιητική ακρίβεια. Επειδή τα 

τεστ αυτά αναφέρονταν σε ένα πλήθος διαφορετικών κυματικών συνθηκών, μπορεί να 
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στηριχθεί το συμπέρασμα ότι το εν λόγω μοντέλο είναι ένα αξιόπιστο εργαλείο για τη 

μελέτη σύνθετων υδροδυναμικών και μορφοδυναμικών διεργασιών. 

 Το μοντέλο είναι σύνθετο και αποτελείται από τέσσερα υπομοντέλα, το κυματικό, το 

υδροδυναμικό, στερεομεταφοράς και το γεωμορφολογικό. Καθένα από αυτά τα 

επιμέρους μοντέλα επαληθεύτηκε επαρκώς και συνεπώς μπορούν να χρησιμοποιηθούν 

για την προσομοίωση υδροδυναμικών και μορφολογικών διεργασιών στην παράκτια 

ζώνη, ανεξαρτήτως από την παρουσία των ύφαλων κατασκευών. 

 Η εφαρμογή της τεχνικής που βασίζεται στον ‘morphological acceleration factor’, σε 

συνδυασμό με την αυξανόμενη ισχύ των υπολογιστών επιτρέπουν την εφαρμογή 

γεωμορφολογικών μοντέλων που βασίζονται σε κυματικά μοντέλα του χώρου των 

φάσεων (phase-resolving models). Πρακτικά, το παρόν μοντέλο μπορεί να εφαρμοστεί 

για την προσομοίωση της βραχυχρόνιας εξέλιξης της μορφολογίας, της τάξης ωρών ή 

μερικών ημερών. 

 Διενεργήθηκαν τριδιάστατα εργαστηριακά πειράματα σε δεξαμενή κυμάτων, τα οποία 

περιελάμβαναν αμμώδη πυθμένα στα κατάντη ενός διαπερατού ύφαλου κυματοθραύστη. 

Η εξέλιξη της βυθομετρίας και της ακτογραμμής δεν απείχε πολύ από αυτή που 

αναμενόταν θεωρητικά, παρότι το πλάτος των σχηματιζόμενων salient ήταν, σε γενικές 

γραμμές, μικρότερο του προβλεπόμενου (Ahrens and Cox, 1990; Black and Andrews, 

2001). Επομένως, συμπεραίνεται ότι οι σχετιζόμενες με τους ύφαλους μορφολογικές 

διεργασίες μπορούν να εξεταστούν σε φυσικά ομοιώματα με κινητό πυθμένα, εφόσον 

επιλεχθούν με προσοχή οι χωροχρονικές κλίμακες.  

 Τόσο τα εργαστηριακά πειράματα, όσο και η εφαρμογή του αριθμητικού μοντέλου 

οδήγησε σε όλες τις περιπτώσεις στο σχηματισμό salient στα κατάντη του διαπερατού 

ύφαλου κυματοθραύστη. Το μήκος και το πλάτος του salient εξαρτάται από τα κυματικά 

χαρακτηριστικά. Για παράδειγμα, οι πιο βραχείς κυματισμοί με μεγαλύτερο ύψος 

οδηγούν σε πιο «αιχμηρά» salient από ότι οι μακρύτεροι κυματισμοί. Επίσης, οι απλοί 

μονοχρωματικοί κυματισμοί συνδέονται με το σχηματισμό μεγαλύτερων salient από ότι 

οι αντίστοιχοι σύνθετοι κυματισμοί με ίδιο σημαντικό ύψος κύματος και περίοδο αιχμής. 

Τέλος, σε αντίθεση με τις προβλέψεις του Pilarczyk (2003), σε καμία από τις 

περιπτώσεις που εξετάστηκαν δεν παρατηρήθηκε ο σχηματισμός tombolo. 

 Από τα αριθμητικά πειράματα που διενεργήθηκαν συμπεραίνεται ότι η απόκριση της 

ακτογραμμής σε ένα σύστημα ύφαλων κυματοθραυστών εξαρτάται από κάποιες βασικές 

γεωμετρικές παραμέτρους σχεδιασμού: το μήκος των κυματοθραυστών, την απόστασή 

τους από την αρχική ακτογραμμή, το κενό ανάμεσά τους και το πορώδες τους. Επιπλέον, 
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η εξέλιξη της ακτογραμμής εξαρτάται και από τα κυματικά χαρακτηριστικά: την 

περίοδο, το ύψος και τη γωνία πρόσπτωσης των κυμάτων. Επίσης, μια κρίσιμη 

παράμετρος είναι ο συντελεστής διάδοσης πάνω από τον ύφαλο. Ωστόσο, σε αντίθεση 

με τους συμβατικούς κυματοθραύστες, αυτή η εξάρτηση δεν είναι μονότονη. Για 

παράδειγμα, η τοποθέτηση ύφαλων κυματοθραυστών όλο και πιο κοντά στην 

ακτογραμμή δεν οδηγεί σε μονότονη αύξηση του πλάτους του σχηματιζόμενου salient. 

Αντίθετα, μπορεί να παρατηρηθεί ακόμη και διάβρωση αντί απόθεσης. Επομένως, οι 

διεργασίες που σχετίζονται με την εξέλιξη της ακτογραμμής είναι διαφοροποιημένες 

στην περίπτωση των ύφαλων σε σχέση με αυτές στους έξαλους κυματοθραύστες. 

Μάλιστα, λόγω της αυξημένης πολυπλοκότητας των διεργασιών αυτών, είναι δύσκολο 

να εξαχθούν γενικοί κανόνες σχεδιασμού των ύφαλων έργων ή εμπειρικών κριτηρίων, 

παρόμοιων με αυτών των συμβατικών κυματοθραυστών. Από την αριθμητική 

διερεύνηση που διενεργήθηκε παρήχθησαν διαγράμματα που παρέχουν κάποια ποσοτικά 

αποτελέσματα για την εξάρτηση της εξέλιξης της ακτογραμμής από βασικές 

παραμέτρους σχεδιασμού. Ωστόσο, θα πρέπει να λογίζονται ως προσεγγιστικά, καθώς 

απαιτείται περεταίρω επαλήθευσή τους με μετρήσεις, κυρίως στο πεδίο. 

Παραπάνω συνοψίστηκαν τα κεντρικά συμπεράσματα της Διατριβής. Κατά την εξέλιξή της 

εξήχθησαν αρκετά επιπλέον συμπεράσματα που αναφέρονται στα επιμέρους τμήματα της 

έρευνας. 
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Abstract 

Morphodynamics in a beach with submerged breakwaters 

by Georgios Th. Klonaris 

National Technical University of Athens 

School of Civil Engineering 

Department of Water Resources and Environmental Engineering 

Laboratory of Harbour Works 

Coastal zone has been an attractive environment for man since ancient times. However, the 

extreme accumulation of human activities has resulted to undue pressure to these vulnerable 

areas with adverse social, environmental and economic effects. A significant problem that the 

humanity faces is the accelerating number of conflicts between development on the coast and 

coastal erosion. In addition, the so-called greenhouse effect and other, not of human origin, 

long-scale climate variations are predicted to intensify the global erosion problem.  

Nowadays, most countries have legislations for nature protection, which enforces 

restrictions on construction activities near the coastline and force the performance of impact 

assessment studies. Nevertheless, until recently, the great majority of coastal interventions 

relied on the “hard” protection concept which includes the construction of large structures 

made of concrete or stones, similar to harbour works. However, conventional hard protection 

projects can cause severe transformation of the coastal processes that may occasionally lead 

to a total inverse of the desired result. In the light of this discussion, ‘soft’ protection projects 

become more and more popular among coastal engineers.  

During the last years submerged breakwaters have stimulated the scientific interest as an 

alternative solution to conventional ones for coastal defense. They form a somehow soft 

protection project and consequently they are generally less effective, in coastal engineering 

terms, than emerging structures. However, in cases of weak wave and tidal regimes 

submerged structures can be more attractive than conventional ones since they are friendlier 

to the environment, aesthetically superior and usually of lower cost. The present research 

effort intends to contribute to this direction as it tackles coastal numerical modelling in 

combination to the existence of submerged breakwaters. 

In particular, two were the main objectives of the present Ph.D. thesis. At first, to contribute 

in the understanding of the complex hydrodynamic and morphodynamic processes that take 
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place in coastal zones protected by a single or arrays of submerged breakwaters. Secondly, to 

develop an integrated numerical model that simulates the wave propagation, the wave-

induced currents, the coastal sediment transport, the bed erosion and accretion, and finally 

describe the cross-shore profile and the coastline evolution in the lee of a system of permeable 

submerged breakwaters. 

The first step was to choose the wave model that forms the basis of the integrated numerical 

model. In most of the existing sediment transport models, the required wave input is taken 

from the results of phase-averaged wave models. However, in the present dissertation a more 

sophisticated sediment transport modelling was required. Thus, a phase-resolving wave model 

was developed. Wave resolving models have the advantage that they can inherently predict 

the wave skewness and asymmetry which are very important for an accurate estimation of the 

intra-wave sediment transport rates. In addition, Boussinesq-type models take into account the 

effect of wave irregularity, bound and free long waves, wave groups, and the nonlinear wave-

wave interactions. These features are also very important for the accurate calculation of 

sediment loads. For these reasons, the wave model was decided to be of Boussinesq-type. 

Hence, enhanced nonlinear versions of two existing Boussinesq-type models were derived. 

Then, through a mathematical analysis and comparison of the characteristics of dispersion and 

nonlinearity of the aforementioned models, the most suitable for the scope of the present 

thesis was chosen. The specific model can simulate wave propagation from deep to shallow 

water and it is of enhanced nonlinearity compared to its predecessor. In addition, both 1DH 

and 2DH model versions were derived. 

The second step was to extend the basic Boussinesq solver to account for the entire 

nearshore zone. In particular, it was extended to the surf and swash zones in order to simulate 

wave breaking and wave runup and run-down. Bottom friction and subgrid turbulent mixing 

were also incorporated. Due to its nonlinear character the model can also offer an estimation 

of the wave-induced current field, including the depth-averaged and the near-bed undertow. 

Furthermore, an improved numerical scheme was presented compared to Adams-Bashforth-

Moulton scheme, which was widely used by other model predecessors. An investigation of 

the numerical properties of the model is also presented. Finally, an extensive validation of the 

wave model was performed including a number of physical processes, such as shoaling, depth 

refraction, diffraction, breaking, wave run-up, overtopping, nonlinear energy transfer, and 

interactions with the wave-induced current field.  

After testing the wave and hydrodynamic modules, the non-cohesive sediment transport 

module was developed. The bed load in the surf zone is computed from a sophisticated semi-

empirical formula, while the suspended load can be calculated through the solution of the 

advection-diffusion equation for the sediment or alternatively from a simplified formula. The 

estimation of the sediment transport in the swash zone is based on the ballistic theory. The 
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unified sediment transport module is valid under combined waves and currents including the 

wave asymmetry and phase-lag effects. Then, the geomorphological module was developed. 

In particular, the bathymetry is updated through the sediment conservation equation and the 

morphological accelerator factor technique accounts for extended simulation periods allowing 

practical applications of the model. The compound model was validated against a number of 

short-term tests both in one and two horizontal dimensions and its response was generally 

good, with most of the morphological features being reproduced both in the cross-shore and 

longshore directions. A sensitivity analysis was also performed illustrating the significance of 

the accurate estimation of some parameters and the need for inclusion of the unsteady effects. 

The following step was the execution of a set of laboratory experiments in a wave tank with 

horizontal dimensions 12 m x 7 m and maximum water depth 1.05 m. The layout included a 

permeable submerged breakwater with a length of 3 m, placed on a sloping ramp made of 

aluminum which had a width of 4 m. Down-wave of the submerged breakwater fine sand was 

placed representing a sandy beach. Eight test cases were studied referring to normal incidence 

of both regular and irregular waves. Before the initiation of each test the sandy bed was 

carefully reshaped to a plane beach. After some hours of wave incidence, a steady state was 

established and the final bed elevation was measured. Throughout the international literature 

there is a lack of measurements referring to morphology evolution in the lee of submerged 

breakwaters. From this point of view, the specific experiments themselves may offer some 

original contribution, both by providing a dataset for model validation, but also by helping in 

drawing some conclusions for the behaviour of submerged breakwaters straight from 

laboratory observations.  

The compound model was then extended to account for porous beds. This task required the 

modification of the basic solver in order to include an additional flow equation for the porous 

medium. The mathematical properties of the extended equations were also investigated and 

improved compared to some previously presented models. Finally, the aforementioned eight 

experimental scenarios were simulated by the model in order to check its efficiency to 

reproduce the complex hydrodynamic and morphological processes associated with the 

presence of submerged breakwaters.  

The last step included the performance of a number of numerical experiments in order to 

investigate the shoreline response to an array of permeable submerged breakwaters. In 

particular, the effect of a number of design parameters on the shoreline evolution was studied, 

i.e. breakwaters’ length, distance from the initial shoreline, gap length between adjacent 

breakwaters, porosity, wave period. A number of empirical design rules and criteria have 

been proposed in the past for emergent breakwaters based on these design parameters. 

However, this is not the case for submerged breakwaters. There is a gap in the international 

literature about reliable guidelines for the design of submerged breakwaters. From the present 
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investigation, a number of figures connecting the shoreline response to various design 

parameters were produced. Although, these figures may contribute to the understanding of 

this very complex behaviour, a further investigation is needed before concluding whether 

general design rules for submerged breakwaters are feasible. Nevertheless, judging from the 

results of the present research and other similar works, the processes governing the shoreline 

response to submerged and emergent structures seem to be quite different. 

In brief, the main objective of the dissertation to develop an integrated numerical tool for 

studying the morphodynamics associated with permeable submerged breakwaters was 

adequately reached. On the way to fulfill this objective the development and validation of the 

various modules offered some individual conclusions for the wave propagation, wave-induced 

currents, sediment transport processes, and coastal geomorphology. Also, the laboratory 

experiments offered useful information and datasets for model validation. Finally, some 

practical conclusions were drawn for the shoreline evolution in the lee of systems of 

submerged breakwaters. However, a number of issues require further investigation and 

suggestions for future research have been also included. 
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Chiew (2000). 

Fig. 4.34.  Comparison of various sediment transport formulae for the total load for test 1c in LIP 

11D. 

Fig. 4.35.  Comparison between irregular and corresponding regular wave tests for LIP 11D 

experiment. 

Fig. 4.36.  Effect of the morphological factor on the final bed elevation for test 1c in LIP 11D. 

Fig. 4.37.  Impact of the phase-lag effects on the sediment total load and the bed elevation for test 1c 

in LIP 11D. 

Fig. 4.38.  Comparison between an exponential profile and the solution of the AD-equation for test 1c 

in LIP 11D. 

Fig. 4.39.  Comparison between two different numerical schemes used in the geomorphological 

model for test 1c in LIP 11D. 

Fig. 4.40.  Impact of Boussinesq terms of various order on sediment transport and morphological 

evolution for test 1c in LIP 11D. 

Fig. 4.41.  Effect of the local equilibrium slope on the morphological evolution for test 1c in LIP 11D. 

Chapter 5. Laboratory experiments with submerged breakwaters  

Fig. 5.1.  Aerial view of the V-shaped artificial reef at the Gold Coast, Australia (at left) and the 

corresponding physical model at the Water Research Laboratory of University of New 

South Wales, Australia (at right, from Ranasinghe and Turner, 2006). 

Fig. 5.2.  Sketch of a typical section of a submerged breakwater and relevant parameters (from 

Sharif Ahmadian, 2016, modified).  

Fig. 5.3.  View of a composite coastal protection project including submerged breakwaters in 

Pallestrina island in Venice, Italy (photo: DELOS project, www.delos.unibo.it). 

Fig. 5.4.  Typical section of a submerged breakwater and mechanisms of energy dissipation (from 

Karambas et al., 2016, modified). 

Fig. 5.5.  Schematic depiction of the different expected nearshore circulation patterns in the vicinity 

of emerged (pattern ‘A’) and submerged (pattern ‘B’) breakwaters (from Loveless and 

MacLeod, 1999). 

http://www.delos.unibo.it/
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Fig. 5.6.  General view of the wave tank before the construction of the sloping bottom. 

Fig. 5.7.  General view of the experimental layout before building the submerged breakwater and 

placing the sand. 

Fig. 5.8.  A close view of the experimental layout from upwave. 

Fig. 5.9.  View of the absorbing layer at the down-wave boundary of the wave tank. 

Fig. 5.10.  View of the paddle-type wavemaker at the upwave boundary of the wave tank. 

Fig. 5.11.  Side view of the wave maker and the electric actuator. 

Fig. 5.12.  Plan view and central profile of the experimental layout (above) and typical section of the 

submerged breakwater (below). All dimensions in m. 

Fig. 5.13.  View of the submerged breakwater. 

Fig. 5.14.  View of the submerged breakwater and the sandy beach. 

Fig. 5.15.  Oven for drying the sediment samples (at left) and sieve vibrator (at right). 

Fig. 5.16.  Sediment grading curve.  

Fig. 5.17.  Snapshot of wave propagation (at left) and bed wave ripples close to the gap (at right). 

Fig. 5.18.  Location of the wave gauges. 

Fig. 5.19.  View of the layout including the wave gauges. 

Chapter 6. Model extension to porous beds 

Fig. 6.1.  Definition of variables (from Cruz et al., 1997, modified). 

Fig. 6.2.  Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. 

(6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 0.2. 

Fig. 6.3.  Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖  is determined from Eq. (6.22), 

𝑘𝑖
theor from Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 0.2. 

Fig. 6.4.  Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. 

(6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

Fig. 6.5.  Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖  is determined from Eq. (6.22), 

𝑘𝑖
theor from Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

Fig. 6.6.  Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. 

(6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 5.0. 

Fig. 6.7.  Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖  is determined from Eq. (6.22), 

𝑘𝑖
theor from Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 5.0. 

Fig. 6.8.  Ratio of phase celerity, 𝑐/𝑐theor, for different order of Darcy-Forchheimer Eq. (6.18), i.e. 

O(ε) and O(ε,σ
2
), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

Fig. 6.9.  Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, for different order of Darcy-Forchheimer Eq. 

(6.18), i.e. O(ε) and O(ε,σ
2
), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

Fig. 6.10.  Measured and computed by the model timeseries of free surface elevation for test case 1. 

Fig. 6.11.  Comparison between the measured free surface elevation and the ones computed by the 

2DH and 1DH model versions at wave gauges 3 and 4. 
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Fig. 6.12.  Comparison between the measured free surface elevation and the ones computed by the 

model when terms of O(ε,σ
2
) and O(ε) are retained in Eq. (6.32). 

Fig. 6.13.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 1. 

Fig. 6.14.  Computed by the model wave-induced current field around and above the submerged 

breakwater (at left) and inside the breakwater (at right) for test case 1.  

Fig. 6.15.  View of the initial (at left) and final (after 4 hrs of wave action, at right) shoreline for test 

case 1. 

Fig. 6.16.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 1 (depths in cm). 

Fig. 6.17.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 1. 

Fig. 6.18.  Measured and computed by the model timeseries of free surface elevation for test case 2. 

Fig. 6.19.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 2. 

Fig. 6.20.  Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 2. 

Fig. 6.21.  View of the initial (at left) and final (after 3 hrs of wave action, at right) shoreline for test 

case 2. 

Fig. 6.22.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 2 (depths in cm). 

Fig. 6.23.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 2. 

Fig. 6.24.  Measured and computed by the model timeseries of free surface elevation for test case 3. 

Fig. 6.25.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 3. 

Fig. 6.26.  Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 3. 

Fig. 6.27.  View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 3. 

Fig. 6.28.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 3 (depths in cm). 

Fig. 6.29.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 3. 

Fig. 6.30.  Measured and computed by the model timeseries of free surface elevation for test case 4. 

Fig. 6.31.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 4. 

Fig. 6.32.  Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 4. 
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Fig. 6.33.  View of the initial (at left) and final (after 4.3 hrs of wave action, at right) shoreline for test 

case 4. 

Fig. 6.34.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 4 (depths in cm). 

Fig. 6.35.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 4. 

Fig. 6.36.  Final computed bathymetry with and without the submerged breakwater for test case 4 

(depths in cm). 

Fig. 6.37.  Comparison between the final measured shoreline and the ones computed by the model 

when using various values of the morphological factor for test case 4. 

Fig. 6.38.  Comparison between the final bathymetry as computed from the scaled-up results of 

simulation of test case 4 and from a corresponding prototype-scaled layout (depths in m). 

Fig. 6.39.  Measured and computed by the model timeseries of free surface elevation for test case 5. 

Fig. 6.40.  Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 5. 

Fig. 6.41.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 5. 

Fig. 6.42.  Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 5. 

Fig. 6.43.  View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 5. 

Fig. 6.44.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 5 (depths in cm). 

Fig. 6.45.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 5. 

Fig. 6.46.  Measured and computed by the model timeseries of free surface elevation for test case 6. 

Fig. 6.47.  Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 6. 

Fig. 6.48.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 6. 

Fig. 6.49.  Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 6. 

Fig. 6.50.  View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 6. 

Fig. 6.51.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 6 (depths in cm). 

Fig. 6.52.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 6. 

Fig. 6.53.  Measured and computed by the model timeseries of free surface elevation for test case 7. 
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Fig. 6.54.  Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 7. 

Fig. 6.55.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 7. 

Fig. 6.56.  Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 7. 

Fig. 6.57.  View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 7. 

Fig. 6.58.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 7 (depths in cm). 

Fig. 6.59.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 7. 

Fig. 6.60.  Measured and computed by the model timeseries of free surface elevation for test case 8. 

Fig. 6.61.  Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 8. 

Fig. 6.62.  Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 8. 

Fig. 6.63.  Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 8. 

Fig. 6.64.  View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 8. 

Fig. 6.65.  Initial and final measured bathymetries (above) and comparison between final measured 

and computed bathymetries (below) for test case 8 (depths in cm). 

Fig. 6.66.  Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 8. 

Fig. 6.67.  Flow regimes in porous media after Basak (1997) (from Amao, 2007, modified). 

Fig. 6.68.  Definition sketch for various geometric parameters. 

Chapter 7. Shoreline response to an array of submerged breakwaters 

Fig. 7.1.  (a) Tombolo behind a system of emergent breakwaters in Norfolk, England, 2015 (photo: 

Jonathan Webb) and (b) salient behind an array of emergent breakwaters in Presque Isle, 

Pennsylvania, U.S.A. (from Mohr, 1994). 

Fig. 7.2.  Definition of variables related to shoreline response behind an array of breakwaters (from 

U.S. Army Corps of Engineers, 2006, modified). 

Fig. 7.3.  Predictive relationships for salient width behind emergent breakwaters and natural reefs. 

Fig. 7.4.  Schematic description of nearshore circulation patterns and associated shoreline 

erosion/accretion patterns for (a) shore-normal wave incidence and (b) oblique wave 

incidence (from Ranasinghe and Turner, 2006). 
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Fig. 7.5.  Dependence of the mode of shoreline response from various design parameters for a single 

shore parallel submerged breakwater (from Ranasinghe et al., 2010, modified). 

Fig. 7.6.  Final computed shoreline for various angles of wave incidence, 𝐵 = 1.04 m and ratio 

𝐵/𝑆 = 0.30.  

Fig. 7.7.  Final computed shoreline for various angles of wave incidence, 𝐵 = 2.07 m and ratio 

𝐵/𝑆 = 0.60. 

Fig. 7.8.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.11 m and ratio 

𝐵/𝑆 = 0.90. 

Fig. 7.9.  Final computed shoreline for various angles of wave incidence, 𝐵 = 4.14 m and ratio 

𝐵/𝑆 = 1.20. 

Fig. 7.10.  Final computed shoreline for various angles of wave incidence, 𝐵 = 5.18 m and ratio 

𝐵/𝑆 = 1.50. 

Fig. 7.11.  Final computed shoreline for various angles of wave incidence, 𝐵 = 6.21 m and ratio 

𝐵/𝑆 = 1.80. 

Fig. 7.12.  Final computed shoreline for various angles of wave incidence, 𝐵 = 7.25 m and ratio 

𝐵/𝑆 = 2.10. 

Fig. 7.13 Final computed shoreline for various angles of wave incidence, 𝐵 = 8.28 m and ratio 

𝐵/𝑆 = 2.40. 

Fig. 7.14.Final computed shoreline for various angles of wave incidence, 𝐵 = 9.32 m and ratio 

𝐵/𝑆 = 2.70. 

Fig. 7.15.  Final computed shoreline for various angles of wave incidence, 𝐵 = 10.35 m and ratio 

𝐵/𝑆 = 3.00. 

Fig. 7.16.  Snapshots of the free surface elevation for various angles of wave incidence, 𝐵 = 10.35 m 

and ratio 𝐵/𝑆 = 3.00. 

Fig. 7.17.  Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐵/𝑆 by modifying 𝐵. 

Fig. 7.18.  Final computed shoreline for various angles of wave incidence, 𝑆 = 5.0 m and ratio 

𝐵/𝑆 = 0.60. 

Fig. 7.19.  Final computed shoreline for various angles of wave incidence, 𝑆 = 3.45 m and ratio 

𝐵/𝑆 = 0.87. 

Fig. 7.20.  Final computed shoreline for various angles of wave incidence, 𝑆 = 2.5 m and ratio 

𝐵/𝑆 = 1.20. 

Fig. 7.21.  Final computed shoreline for various angles of wave incidence, 𝑆 = 1.67 m and ratio 

𝐵/𝑆 = 1.80. 

Fig. 7.22.  Final computed shoreline for various angles of wave incidence, 𝑆 = 1.50 m and ratio 

𝐵/𝑆 = 2.00. 

Fig. 7.23.  Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐵/𝑆 by modifying 𝑆. 

Fig. 7.24.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m 

and ratio 𝐺/𝐵 = 0.20.  

Fig. 7.25.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m 

and ratio 𝐺/𝐵 = 0.30.  
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Fig. 7.26.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m 

and ratio 𝐺/𝐵 = 0.40. 

Fig. 7.27.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m 

and ratio 𝐺/𝐵 = 0.50. 

Fig. 7.28.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m 

and ratio 𝐺/𝐵 = 0.60. 

Fig. 7.29.  Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐺/𝐵 by modifying 𝐺. 

Fig. 7.30.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.0. 

Fig. 7.31.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.30. 

Fig. 7.32.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.35. 

Fig. 7.33.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.40. 

Fig. 7.34.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.45. 

Fig. 7.35.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.50. 

Fig. 7.36.  Variation of computed non-dimensional salient width 𝑋/𝑆 with the porosity λ of the 

submerged breakwaters. 

Fig. 7.37.  Wave-induced current field for shore-normal wave incidence and (a) λ = 0 and (b) λ = 

0.50. 

Fig. 7.38.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.0 s. 

Fig. 7.39.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.25 s. 

Fig. 7.40.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.50 s. 

Fig. 7.41.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 2.0 s. 

Fig. 7.42.  Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 2.50 s. 

Fig. 7.43.  Variation of computed non-dimensional salient width 𝑋/𝐿 with the ratio 𝐵/𝐿 for varying 

wavelength. 

Fig. 7.44.  Variation of computed non-dimensional salient width 𝑋/𝐿 with the ratio 𝐺/𝐿 for varying 

wavelength. 

Fig. 7.45.  Variation of computed non-dimensional salient width 𝑋/𝑆 with (a) the wave slope in deep 

water and (b) the Ursell number at the toe of the sloping beach where 𝑑 = 0.45 m. 
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Fig. 7.46.  Variation of computed non-dimensional erosion width 𝑋𝑔/𝑆 with the ratio 𝐺/𝐵 for varying 

gap length. 

Fig. 7.47.  Variation of computed non-dimensional erosion width 𝑋𝑔/𝑋 with the ratio 𝐺/𝐵 for 

varying gap length. 

Fig. 7.48.  Variation of computed non-dimensional erosion width 𝑋𝑔/𝐿 with the ratio 𝐺/𝐿 for varying 

wavelength. 

Fig. 7.49.  Non-dimensional final shoreline as predicted by Black and Andrews (2001) and computed 

by the model for various test cases. 

Fig. 7.50.  Computational time for three different processors for 771x1105 grid points. 

Chapter 8. Conclusions and future research 

Fig. 8.1.  Array of submerged breakwaters in Katerini beach, Greece (from Google, 2014). 
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List of Symbols 

 
The symbols used are listed below. Due to the large number of parameters, it has been 

decided to use some double symbols. In most cases their use is restricted to a single chapter or 

subsection, as stated in the following list. In any case, it should be easy to distinguish between 

these parameters from the context they are used in. 

𝐴 (chapter 2)  wave amplitude 

𝐴 (subsection 3.2.2)  cross-sectional area in the slot technique 

𝐴 (subsection 3.3.3)  Amplification matrix 

𝐴 (chapter 4)  parameter associated with Einstein’s (1950) integrals 

A  parameter in Dean’s (1991) equilibrium profile 

𝐴𝑏  water particle amplitude of the near-bottom horizontal oscillation 

𝐴𝑠𝑏, 𝐴𝑠𝑠  auxiliary variables in Soulsby’s (1997) formula 

a1, a2, a3  wave amplitude of first-, second- and third-order Stokes waves 

𝐵  breakwater length 

B, B1, B2  free parameters 

B´  constant 

𝐵𝑏𝑟, δb, 휁𝑡
∗ 

 휁𝑡
(𝐹)

, 휁𝑡
(𝐼)

, 𝑡0, 𝑇∗ 
 parameters related to wave breaking 

𝑏  width of the equivalent wave flume in the slot technique 

𝑏𝑑, 𝑏  parameters in Bailard’s (1981) formula 

C(𝑧)  sediment concentration vertical profile 

𝑐  phase celerity 

c  sediment’s volume concentration in Soulsby’s (1997) formula 

Ca, 𝑐𝑅  sediment reference concentration at the height 𝑧a  

Cave  depth-averaged sediment concentration 

C𝑏, 𝜇c, ξ
B

  parameters in Bijker’s (1968) formulae 

𝐶𝑐  Chezy friction coefficient 

Cc  coefficient of curvature 

CD  drag coefficient 

Cf  turbulent friction coefficient 

cm  added mass coefficient 

CPU  computational time 

Cr  Courant number 

cr  inertial coefficient 

cs  mixing coefficient 

Cu  coefficient of uniformity 

𝑐(𝑥), 𝑐(𝑦)  wave celerity in the x and y directions, respectively 

𝑐0  parameter in the original Boussinesq equations 
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𝐷  wave energy dissipation per unit area due to breaking 

𝐷(𝑥), 𝛹(𝑥), 𝜑(𝑥)  functions 

d, h0  still water depth 

𝐷b  dissipation of turbulent kinetic energy 

db  still water depth at the breaking line 

𝐷c  energy dissipation per unit area from the bed friction due to current 

do
΄
  reference still water depth 

𝐷𝑟  sediment deposition rate 

�̃�𝑟  modified sediment deposition rate 

Ds  magnitude of the source function 

𝑑𝑠  average depth at the breakwater 

𝐷w  energy dissipation per unit area from the bed friction due to waves 

d10, d30, d60, d84  Characteristic diameters of sediments 

𝑑50  median grain diameter 

𝑑∗  dimensionless grain size 

𝐸, 𝐸′ 

𝐹, 𝐹′, 𝐹1, 𝐹2 

𝐺, 𝐺′, 𝐺1, 𝐺2 

 auxiliary functions 

𝐸𝑟  relative error of water volume 

f  wave frequency 

F´  dimensional velocity potential 

𝐹𝑏𝑟, 𝐺𝑏𝑟  wave breaking terms in the x and y directions, respectively 

𝐹eddy, 𝐺eddy  Smagorinsky-type terms in the x and y directions, respectively 

Fr  Froude number 

𝐹𝑠𝑝, 𝐺𝑠𝑝  Sponge layer terms in the x and y directions, respectively 

𝐹𝑈, 𝐹𝛼, 𝐹𝑉, 𝑓  functions 

fc (chapter 2)  cutoff frequency 

𝑓𝑐 (chapter 3)  bed friction coefficient due to current 

𝑓ct  total friction coefficient 

fcw, cf  bed friction coefficient for combined wave and current 

𝑓cw
′   wave-current skin friction factor 

fMOR, MF  morphological accelerator factor 

𝐹𝑜  Dean’s (1973) parameter 

fp  Peak frequency 

𝑓𝑟, 𝑓, 𝑓∗  auxiliary variables 

𝐹𝑠  auxiliary function related to the wave source 

𝑓𝑠  source function term 

𝑓𝑤  bed friction coefficient due to waves 

𝑓wt  total friction coefficient due to waves 

F∗  densimetric Froude number 

𝑓2.5  wave friction factor based on an equivalent roughness 𝐾𝑁
′ = 2.5𝑑50 
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G  gap length between two adjacent breakwaters 

𝐺𝑏𝑥, 𝐺𝑏𝑦  improper integrals 

𝐺𝜁
±, 𝐺𝑈

±  second-order transfer functions 

g  gravitational accelerate 

H΄  reference wave height 

Hb  wave height at the breaking line 

ℎ𝑏 (chapter 6)  vertical distance from the SWL to the impermeable bottom 

ℎ𝑏 (chapter 7)  total depth at the center of the breakwater 

hc  water depth at crest of the structure 

Hdeep  wave height in deep water 

𝐻𝑖  incident wave height at submerged breakwater 

Hmo
  significant wave height as computed by the spectrum 

𝐻rms  root-mean-square wave height 

Hs  significant wave height 

ℎ𝑠  porous layer thickness 

𝐻𝑡  transmitted wave height over submerged breakwater 

𝐻w  wave height in Bijker’s (1968) formula 

h  instantaneous total water depth 

𝐼  auxiliary variable related to the source function 

𝐼𝑠  beach response index according to Ahrens and Cox (1990) 

𝐼𝑈, 𝐼𝐵  auxiliary variables related to the foreshore equilibrium slope 

𝐼1, 𝐼2  Einstein integrals 

𝐾  intrinsic permeability 

KC  Keulegan-Carpenter number 

𝐾𝑐, 𝐾𝑙 

𝑢0, 𝑣0, 𝑡𝑜, 𝑧𝑜 

𝑡𝑠, 𝑡𝑒, 𝑡𝑚 

 

 parameters related to Larson and Wamsley’s (2007) formula 

𝐾𝑑  wave diffraction coefficient 

𝐾𝑑,𝑡  global transmission coefficient combining 𝐾𝑑 and 𝐾𝑡 

𝐾𝑁  bed roughness 

𝐾𝑁
′  equivalent bed roughness equal to 2.5𝑑50 

k (chapter 2)  wavenumber 

𝑘 (chapter 4)  turbulent kinetic energy 

�̅�  depth- and time-averaged turbulent kinetic energy 

𝑘𝑟, 𝑘𝑖  real and imaginary parts of the wavenumber 

ko΄  reference wavenumber 

𝑘sct, 𝑘swt  total bed roughness due to current and waves, respectively 

𝐾𝑡  transmission coefficient 

𝐾𝑥, 𝐾𝑦  diffusion coefficients in the AD-equation for suspended sediment  

L΄  reference wavelength 

𝐿𝐵1
, 𝐿𝐵2

, 𝐿γ  linear operators 
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Ldeep  Wavelength in deep water 

Lloc´  wavelength of a regular wave 

𝑙𝑠  non-dimensional length in physical model 

𝐿𝑥, 𝐿𝑦  wavelength in the x and y directions, respectively 

M  solid fraction of the gross sediment volume 

𝑚11
(1)

, 𝑚12
(1)

  

𝑚21
(1)

, 𝑚22
(1)

 
 auxiliary variables related to first-order solution in Fourier analysis 

𝑚11
(2)

, 𝑚12
(2)

 , 𝐹1 

𝑚21
(2)

, 𝑚22
(2)

 , 𝐹2 
 

auxiliary variables related to second-order solution in Fourier 

analysis 

𝑚11
(3)

, 𝑚12
(3)

 , 𝐹1 

𝑚21
(3)

, 𝑚22
(3)

 , 𝐹2 
 auxiliary variables related to third-order solution in Fourier analysis 

𝑁𝐿  geometrical scale factor 

𝑁q  sediment transport scale 

𝑛𝑝  sediment porosity 

NT  time scale factor 

𝑁t,mor  morphological time scale factor 

N𝑣  kinematic viscosity scale factor 

𝑁𝑧  vertical length scale 

Nω  settling velocity scale 

𝑁(1−p)  material porosity scale 

p  water pressure 

𝑝  
fraction of sediment particles transported near the bed in Engelund 

and Fredsøe’s (1976) formula 

𝑃𝑟  sediment pick-up rate 

�̃�𝑟  modified sediment pick-up rate 

𝑝s  pore pressure 

𝑞𝑏𝑐,net  net cross-shore sediment transport rate in the swash zone 

𝑞𝑏𝑙,net  net longshore sediment transport rate in the swash zone 

Q
meas

  
integral volume of sediment transport computed from measured bed 

elevation 

𝑞𝑠𝑏  dimensional volumetric bed load rate per unit width 

𝑞𝑠𝑏,𝑤  dimensional bed load rate per unit width in the wave direction 

𝑞𝑠𝑏,𝑛  
dimensional bed load rate per unit width in the direction normal to 

waves 

𝑞𝑠𝑠  dimensional suspended load rate per unit width 

𝑞𝑠𝑠,𝑤  
dimensional suspended load rate per unit width in the wave 

direction 

𝑞𝑠𝑠,𝑛  
dimensional suspended load rate per unit width in the direction 

normal to waves 

𝑞𝑡𝑜𝑡  total sediment transport load per unit width 



lxxxvii 

 

𝑞𝑥,𝑡𝑜𝑡, 𝑞𝑦,𝑡𝑜𝑡  
total sediment transport rate per unit width in the x and y directions, 

respectively 

𝑞𝑥,𝑡𝑜𝑡
′ , 𝑞𝑦,𝑡𝑜𝑡

′   
modified total sediment transport rate per unit width in the x and y 

directions, respectively 

𝑅 (chapter 4)  wave run-up height 

𝑅 (chapter 6)  Non-dimensional permeability 

𝑅∗  response function 

R∗  grain size Reynolds number 

R∗
′ , mb, 𝑙𝑠

′ , 𝑉𝜔
′   

dimensionless numbers associated with suspension-dominated 

movable-bed physical models 

𝑟w  wave asymmetry coefficient 

𝑆  distance from breakwater to the initial shoreline 

𝑠 (chapter 2)  auxiliary variable 

𝑠, 𝑆𝑠  

(chapters 3, 5) 
 relative density of sediments 

𝑠𝑏  free board 

T, Tw  regular wave period 

t  time 

Tmax, Tmin  cut-off periods in irregular wave generation  

tan 𝛽  bed slope 

tan 𝛽𝑒  foreshore equilibrium slope 

Tp  peak wave period 

Twc, Twt  
duration of the onshore and offshore portions of the wave period in 

Camenen and Larson’s (2006, 2007) formula 

𝑈  depth-averaged horizontal fluid velocity in the x direction 

�̂�  maximum velocity in the porous medium 

𝑈𝑏  near bottom undertow velocity 

𝑈𝑐  current velocity 

�̅�cr  threshold current velocity 

𝑈cw,onshore  

𝑈cw,offshore 
 

root-mean-square value of the near bed velocity over the onshore 

and offshore portions of the wave period, respectively 

𝑈𝑓
′   bed shear velocity related to skin friction 

𝑈𝑜, 𝑉𝑜  
uniform velocities below the surface roller in the x and y directions, 

respectively 

Ur  Ursell number 

𝑈rms  root-mean-square wave orbital velocity 

𝑈𝑇   
depth-averaged oscillatory horizontal velocity with zero mean in the 

wave propagation direction 

𝑈1, 𝑈2, 𝑈3  velocity amplitude of first-, second- and third-order Stokes waves 

𝑈13  third-order correction to the first-order velocity amplitude solution 
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𝑢  horizontal water particle velocity in the x direction  

𝑢𝑜, 𝑣𝑜  near-bottom velocities in the x and y directions, respectively 

𝑢𝑜𝑤  oscillatory component of near-bottom velocity 

𝑢𝑜𝑤−𝑚𝑎𝑥  amplitude of the oscillatory component of the near-bottom velocity 

𝑢𝑠 (chapter 4)  speed of the wave front at the start of the uprush 

𝑢𝑠, 𝑣𝑠 (chapter 6)  
seepage horizontal velocity in the porous layer in the x and y 

directions, respectively 

 𝑈𝑠1  
velocity amplitude of first-order Stokes waves inside the porous 

layer 

𝑈w  
peak value of the wave orbital velocity at the bottom in Bijker’s 

(1968) formula 

𝑈w(𝑡)  instantaneous near bed velocity in the wave direction 

𝑈w,crsf  critical velocity for the inception of sheet flow 

𝑈w,max  maximum value of the instantaneous near bed wave velocity 

𝑢∗, v∗  bed friction velocity 

𝑢∗,c  bed friction velocity due to current only 

𝑢∗,w  bed friction velocity due to waves only 

𝑢∗,cr  critical bed friction velocity 

𝑉  depth-averaged horizontal fluid velocity in the y direction 

𝑉 (subsection 3.3.3)  water volume in the wave tank in the ring test 

𝑣 (chapter 2)  horizontal water particle velocity in the y direction 

𝑣 (chapter 3)  kinematic viscosity 

𝑣𝑏𝑟  eddy viscosity coefficient 

𝑣𝑒  eddy viscosity coefficient due to the subgrid turbulence 

𝑉long  average longshore current across the surf zone 

𝑣T  vertical eddy viscosity 

𝑣𝑡𝑔  eddy viscosity coefficient inside the bottom boundary layer 

𝑣𝑡𝑧  eddy viscosity coefficient outside the bottom boundary layer 

𝑉𝜔  relative fall speed 

W  crest width of submerged breakwaters 

w  vertical water particle velocity 

𝑊𝑠, 𝜔  settling velocity 

 𝑤𝑠  seepage vertical velocity in the porous layer  

𝑤1, 𝑤2, 𝑓  functions related to the sponge layers 

𝑋  maximum length of salient 

x, y  horizontal co-ordinates 

𝑋𝑏  width of the surf zone 

𝑋𝑔  maximum erosion behind the gap between adjacent breakwaters 

𝑌  distance from the salient apex to breakwater 

z  vertical co-ordinate 
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𝑧a  reference level for bed reference sediment concentration 

𝑧∗  reference elevation in the slot technique 

𝛼, 𝛼∗ 

𝑝1,  𝑝2, 𝑝3 

𝑐1, 𝑐2, 𝑐3, 𝑐4 

 parameters related to the numerical scheme 

𝛼cw  coefficient in van Rijn’s (1989) formula 

𝛼𝑑𝑤  coefficient in Dibajnia et al.’s (2001) formula 

αpl,b, αon, αoff  
phase-lag parameters in Camenen and Larson’s (2006, 2007) bed 

load formulation 

𝛼𝑠  
angle between the direction of the wave front at the start of the 

uprush and the still shoreline 

αw, αn, b  
parameters related to Camenen and Larson’s (2006, 2007) bed load 

formula 

𝛼1, 𝛼2, 𝛽1, 𝛽2 

(chapter 2) 
 free parameters 

𝛼1, 𝛽1 (chapter 3)  parameters related to the undertow velocity 

𝛼1, 𝛼2, 𝛼  

(chapter 6) 
 coefficients related to drag resistance in the porous layer 

α1, α2, vsp  Parameters related to the sponge layers 

𝛽, 𝛬  auxiliary parameters in the slot technique 

𝛽𝐷  function of the angle of inclination of the roller 

𝛽𝑑, 𝑘b, 𝑘w, 𝑘c 

𝐴cr, 휃̃, �̃� 
 parameters related to suspended sediment transport 

𝛽𝑠  Shape coefficient related to the source function 

𝛾  parameter in KdV equation 

γ (chapter 3)  enhancement factor in Jonswap spectrum 

γ (chapter 6)  free parameter 

𝛾𝑖  submerged sediment specific weight 

𝛾0  Shoaling gradient 

𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5  auxiliary variables 

δroller  surface roller thickness 

δs  parameter related to the source function 

𝛿𝑤  wave boundary layer thickness 

Δf  Relative error 

Δ𝑡  time step 

Δtmor  morphological time step 

𝛥𝑡 ′  time difference between measurement intervals 

Δx, d𝑥  spatial grid step in the x direction 

Δy, d𝑦  spatial grid step in the y direction 

𝛥𝑧𝑏  difference in bed elevation between measurement intervals 

δ  slot width 
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𝛿  parameter 

𝛿c  dimensionless thickness of the bed load layer 

ε  nonlinearity parameter 

ε (subsection 3.3.2)  random phase 

휀 (subsection 4.11)  instantaneous eddy diffusivity of sediments 

εB, εs  parameters in Bailard’s (1981) formula 

휀h  horizontal eddy diffusivity of sediments 

εscw  sediment mixing coefficient for combined waves-current  

휀v  vertical eddy diffusivity of sediments 

휀𝑥𝑥, 휀𝑥𝑦, 휀𝑦𝑥, 휀𝑦𝑦  empirical coefficients associated with the morphological module 

ζ  free surface elevation 

휂𝑟  bed ripple height 

휂𝑜  initial free surface elevation of a Gaussian hump 

휃 (chapter 2)  wave phase 

휃 (chapter 3)  wave incidence angle 

휃 (chapter 4)  Shields parameter 

휃cn  Shields parameter in the direction normal to the wave direction 

휃cr, 휃c  critical Shields parameter 

휃cw  maximum Shields parameter for combined waves-current 

휃cw,m  mean absolute Shields parameter for combined waves-current 

휃cw,net  net Shields parameter for combined waves-current 

휃cw,onshore  mean Shields parameter of the onshore movement of sediment 

휃cw,offshore  mean Shields parameter of the offshore movement of sediment 

휃2.5  Shields parameter based on an equivalent roughness 𝐾𝑁
′ = 2.5𝑑50 

휃′  Shields parameter due to skin friction only 

κ  Von Karman constant 

λ (chapter 3)  shape parameter in the slot technique 

λ (chapter 6)  porosity of the permeable bottom 

𝜆𝑖  eigenvalues 

𝜆𝑟  bed ripple length 

μ, σ  dispersion parameter 

μ, ξ, q  empirical coefficients 

𝜇𝑑, 𝜆  parameter in Engelund and Fredsøe’s (1976) formula 

𝜉, A′, 𝜅, 𝜎∗, 𝑟, 𝑈΄ 
𝑍, 𝑍𝑖

∗, 𝛾, 𝑤, 𝑦, 𝜅𝑠 

𝜑, 𝜅𝑟, 𝜅𝑖 

 auxiliary variables 

ρ  water density 

ρs  sediment density 

σ  Schmidt number 

𝜎𝑈, 𝜎𝑉, 𝜎𝑇, 𝜎𝜁  standard deviations of 𝑈, 𝑉, 𝑈𝑇, 휁, respectively 
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𝜏𝑏  
bed shear stress due to a uniform steady current in Meyer-Peter and 

Müller’s (1948) formula 

𝜏b,cr, 𝜏cr  threshold bed-shear stress 

𝜏𝑏𝑥, 𝜏𝑏𝑦  bed shear stresses in the x and y directions, respectively 

𝑇𝑐,  𝑇𝑡  
duration of the positive and negative portions of the total velocity 

profile in Dibajnia et al.’s (2001) formula 

𝜏c  bed shear stress due to current only  

𝜏cw  bed shear stress for combined waves and current 

𝜏𝑠𝑏  steady bottom streaming term 

φ (chapter 3)  Angle between the wave propagation direction and the x axis 

𝜑 (subsection 4.3)  phi-parameter related to sediment grain size 

𝜑 (subsection 4.8.1)  angle between waves and current in the sediment transport module 

𝛷𝑏  non-dimensional bed load transport rate 

𝜑𝑑  dynamic friction angle for the bed load sediment 

𝜑𝑚  angle of repose or angle of internal friction 

𝜓  mobility number 

𝜓𝛪
(𝑥)

, 𝜓𝛪𝐼
(𝑥)

, 𝜓𝐼𝐼𝛪
(𝑥)

 

𝜓𝛪
(𝑦)

, 𝜓𝛪𝐼
(𝑦)

, 𝜓𝛪𝐼𝐼
(𝑦)

 
 dimensional higher order Boussinesq terms 

𝛺  Non-dimensional angular frequency 

Ω  Fluid computational domain 

ω  angular frequency  

Ω𝑐, Ω𝑐
′ , Ω𝑡, Ω𝑡

′  

𝑡0, 𝜔, 𝜔cr, 𝛾 

𝛹sheet, 𝛹cr, 𝛹 

𝛽∗, 𝛽′, 𝛽′′, 𝛬 

 

 

 

 parameters in Dibajnia et al.’s (2001) formula 

𝜔1  angular frequency of a first-order Stokes wave 

𝜔13  third-order correction to the first-order angular frequency solution 

𝑐  wave celerity 

�⃗�𝑏𝑟  wave breaking term 

�⃗�eddy  Smagorinsky-type term 

�⃗�𝑖  inertial resistance term 

�⃗�𝑟  drag resistance term 

�⃗�sp  sponge layer term 

�⃗⃗⃗�1, �⃗⃗⃗�2  
vector functions representing non-dimensional higher order 

Boussinesq terms 

�⃗⃗�  outward unit normal vector 

�⃗⃗�  horizontal volume flux 

�⃗�𝑠  
volumetric sediment transport rate from Dibajnia et al.’s (2001) 

formula 

�⃗�𝑠𝑏  time-averaged bed sediment transport load 
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�⃗�𝑠𝑠  time-averaged depth-integrated suspended sediment transport load 

�⃗�𝑠𝑧  net sediment transport rate per unit width in the swash zone 

�⃗�𝑡𝑜𝑡  total sediment transport rate per unit width 

�⃗�𝑡𝑜𝑡
′   modified total sediment transport rate per unit width  

�⃗⃗⃗�  depth-averaged horizontal fluid velocity  

�⃗⃗�  horizontal water particle velocity 

�⃗⃗⃗�𝑠  depth-averaged horizontal fluid velocity inside the porous layer 

�⃗⃗⃗�w(𝑡)  near bed instantaneous oscillatory velocity 

�⃗⃗�𝑏(𝑡)  
instantaneous near-bottom total velocity for combined waves-

current 

�⃗⃗⃗�c  near bed current velocity 

�⃗⃗�𝑐, �⃗⃗�𝑡  

representative velocity amplitudes for the positive and negative 

portions of the total velocity profile in Dibajnia et al.’s (2001) 

formula 

�⃗⃗⃗�𝑜  uniform velocity below the surface roller 

�⃗⃗�𝑜  near-bottom velocity 

�⃗⃗�𝑜𝑤  oscillatory component of near-bottom velocity 

�⃗⃗�𝑠  horizontal seepage velocity inside the porous medium 

�⃗⃗�𝑠,3  seepage velocity inside the porous medium 

�⃗⃗⃗�𝑇   velocity component tangent to a reflective boundary 

�⃗⃗�𝑤  oscillatory component of water particle velocity 

�⃗⃗�3  water particle velocity in the free water body 

𝑥  horizontal co-ordinates 

θ⃗⃗c  Shields parameter due to current 

휃⃗w  maximum absolute wave Shields parameter 

θ⃗⃗w(t)  instantaneous Shields parameter due to waves 

휃⃗w,m  mean wave Shields parameter 

휃⃗′(𝑡)  instantaneous skin Shields parameter in Ribberink’s (1998) formula 

𝜏𝑏  bed shear stress 

𝜏𝑏
′ (𝑡)  instantaneous bed skin shear stress in Ribberink’s (1998) formula 

�⃗⃗�  vorticity vector 

∇  horizontal gradient operator 

∇3  three-dimensional gradient operator 

΄  denotes dimensional variables 

(… )̅̅ ̅̅ ̅, 〈(… )〉  denote time-averaging 
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Chapter 1 

Introduction 

1.1 Background and research objectives  

Man has been attracted to the coast since ancient times. Coastal waters offered quality food, 

potential for commerce development and seafaring, advantage in military naval power, and, 

more recently, opportunities for industrial and pleasure activities. Nowadays, over 40 percent 

of the global population lives in coastal areas. In addition, most of the largest cities in the 

world are located by the coast. With more people crowding in these vulnerable zones undue 

pressures are imposed by human activities over both land and sea. The most critical of them 

are associated with land acquisition as close as possible to the sea, housing, development of 

industries or touristic installations. These pressures are in essence translated into requirement 

for a stable shoreline. 

However, this requirement is not always in line with the natural processes present in the 

coastal zone. Thus, a conflict emerges: man requires a stable coastline whereas nature 

transposes the latter, invariably with time, landwards or seawards. The net result of this 

conflict is often increased erosion and loss of beaches. The problem is intensified by climate 

change that can trigger environmental disruptions, such as sea level rise, catastrophic floods, 

disappearance of species, etc. Recent studies have shown that more than 20% of the European 

coastline erodes irreversibly (Eurosion Reports, European Commission, 2004). The situation 

is expected to be intensified in the foreseeable future and consequently coastal risks of any 

kind be increased. Particularly, in Greece, 1/3 of the population lives in coastal communities 

within a 10 km wide band. Thus, coastal erosion is a great problem threatening tourism, 

commerce and industrial activity.  

Hence a problem that humans face is the accelerating number of conflicts between coastal 

development and erosion. Lack of sustainable planning has, in many cases, permitted 

urbanization and infrastructures too close to eroding coastlines, aggravating the consequences 

of ongoing erosion (Mangor, 2004). In addition, the so-called greenhouse effect and other, not 
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of human origin, long-scale climate variations will predictably intensify the global erosion 

problem. Fig. 1.1 shows the extend of the problem at European level. This particular map was 

produced in the context of Eurosion, a research project by European Commission (2004). It 

shows that a great part of the European coasts, also in Greece, faces a grave problem of 

coastal erosion.  

 

Fig. 1.1. Map of European coasts facing erosion problems (from Eurosion, European Commission, 

2004, modified). 

Nowadays, most countries have legislations for nature protection, that enforces restrictions 

on construction activities near the coastline and force the execution of impact assessment 

studies. However, for many years now no serious environmental protection measures were 

taken during human interventions since the coastal zone was, generally, considered as an 

environment which is, more or less, stable. Until recently, the great majority of coastal 

interventions to enhance coastline stability relied on the “hard” protection concept which 

includes the construction of large structures made of concrete or natural stones, similar to 

harbour breakwaters. In particular such coastal defense projects refer to conventional groynes 

and detached breakwaters, seawalls, revetments, etc. However, in the past decades, the impact 

of these conventional structures upon the coastal environment was generally treated semi-

empirically and fragmentarily. In many cases, their negative effect on the sea environment 

was ignored, such as drastic impact on flora and fauna populations, creation of closed basins 

with reduced water renewal, aesthetic degradation. In addition, the fragmentary knowledge 
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about their behaviour has often caused severe modification of the coastal processes that may 

occasionally lead to a total inverse of the desired result.     

An example of erosion induced by the construction of a coastal defense system in Adelaide 

is shown in Fig. 1.2. Fig. 1.3 shows a map of the European coasts that continue to erode 

despite the construction of coastal protection works. In general, the absence of a long-term 

sustainable design and an effective legislation, in addition to the lack of an in-depth 

understanding of coastal processes, have resulted to a negative until recently situation. 

 

Fig. 1.2. Erosion downdrift of a coastal defense system in a beach with undue human pressure in 

Glenelg, Adelaide, Australia (photo: Web-Based Geohazards Project, University of Adelaide, 

www.coastalerosionsa.wordpress.com). 

Nowadays, it is being widely understood that the vulnerable coastal zones require an 

integrated management, rather than fragmentary solutions. In this context, shoreline 

management guidelines are being proposed so that coastal engineers, planners, administrators, 

private landowners and politicians have a common basis to plan sustainable activities along 

the shores. This is a hard task due to the multiple aspects, i.e. social, environmental, economic 

and geomorphological, that should be considered and combined. In the light of such an 

integrated approach, ‘soft’ protection projects become more and more popular among coastal 

engineers. Soft or mild interventions include beach nourishment, beach drainage, sand dune 

management and to a lesser degree submerged coastal structures, or combination of the 

above, e.g. beach replenishment combined with submerged breakwaters, etc. Due to the 

superiority of soft interventions with regard to beach amenity and aesthetics, there is an 

increased community pressure on coastal management authorities and government agencies to 

consider them for beach protection.  

http://www.coastalerosionsa.wordpress.com/
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Fig. 1.3. Map of European coasts facing erosion despite being protected (from Eurosion, European 

Commission, 2004). 

In particular, submerged breakwaters have stimulated the scientific interest as an alternative 

solution to conventional emergent ones for coastal defense. They form a somehow less 

aggressive quasi-hard project and consequently they are generally less effective, in 

engineering terms, than emerging structures. However, in cases of weak hydrodynamic 

regimes submerged structures can be more attractive than conventional ones since they are 

friendlier to the environment, aesthetically superior and usually of lower cost. An example of 

a submerged breakwater in Niigata Beach in Japan is depicted in Fig. 1.4. 

Scientific research concerning submerged breakwaters is relatively new. In order to study 

the associated physical processes, three methods are mainly used: field observations, 

laboratory experiments using physical models and numerical modelling. Each of them has 

advantages and disadvantages and in many cases a combination of them is applied. A large 

number of laboratory experiments have been performed since the ‘70s in order to mainly 

investigate hydrodynamic parameters related to submerged breakwaters, e.g. wave 

transmission coefficient, wave setup, wave-induced currents, etc. A detailed literature review 

of these works is presented in chapter 5. Among them, the most complete database is the one 

included in DELOS project (Kramer et al., 2005). The project was oriented to the 

hydrodynamic behaviour of submerged breakwaters and led to the derivation of some 

empirical formulae and general guidelines. On the other hand, very few laboratory 
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experiments concerning the morphological response of submerged breakwaters have been 

reported in the international literature (Groenewoud et al., 1996; van der Biezen et al., 1997). 

Turner et al. (2001) and Ranasinghe et al. (2006) studied in a physical model the 

morphological bed evolution in the lee of the V-shaped artificial reef at the Gold Coast in 

Australia. 

 

Fig. 1.4. Aerial view of a submerged breakwater (in yellow ellipse) in Niigata beach, Japan (from 

Google, 2016). 

Numerical models are the most popular tool for studying the hydrodynamic and 

morphological response of submerged breakwaters. This is true due to their, in general, lower 

cost and also because they offer the possibility to study an increased number of scenarios 

compared to physical models. However, in order to be efficient, they should be at first 

accurately calibrated. Hence, due to the restricted number of available measured datasets that 

refer to submerged breakwaters, the models’ validation is usually incomplete. Thus, their 

results include in many cases an increased level of uncertainty.  

A number of numerical models have been developed to simulate the wave propagation and 

the wave-induced current field around submerged breakwaters (Beji and Battjes, 1994; van 

Gent, 1994; Losada et al., 1996; Chen, 1999; Garcia et al., 2004; Johnson et al., 2005; 

Cáceres et al., 2005; Kobayashi et al., 2007). The equations that these models involve are of 

various types, i.e. Reynolds-averaged Navier-Stokes equations (RANS), mild-slope equations, 

Nonlinear Shallow Water equations (NSWE), Boussinesq-type equations or 3D Navier-

Stokes. Most of them treat the involved submerged breakwaters as impermeable structures 

and only a few take into account their permeability (Cruz et al., 1997; Hsiao et al., 2002; 
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Avgeris et al., 2004; Chen, 2006). On the other hand, only a small number of numerical 

models have been presented to simulate morphodynamics related to submerged structures 

(Hanson and Kraus, 1990; Zyserman et al., 1999; van der Biezen et al., 1998; Lesser et al., 

2003; Koutsouvela et al., 2007; Ranasinghe et al., 2010; Karambas and Samaras, 2014). 

Among them, very few have been validated against 2DH measurements of bed elevation. A 

comprehensive literature review of these research works is presented in chapter 6.  

In the context of behaviour of submerged breakwaters, the main objectives of the present 

Ph.D. thesis are the following: 

 To contribute to the understanding of the complex hydrodynamic and morphodynamic 

processes that take place in coastal zones protected by single or multiple submerged 

breakwaters. 

 To develop an integrated numerical model that simulates the wave propagation, the 

wave-induced currents, the coastal sediment transport, the bed erosion and accretion, and 

finally describe the cross-shore profile and the coastline evolution in the lee of a system 

of permeable submerged breakwaters. The behaviour of such a system has not been 

described so far in a general and quantitatively consistent manner and so the thesis could 

offer original contribution in this subject. 

 To perform 2DH laboratory experiments in order to also study experimentally the 

hydrodynamic and morphological response of permeable submerged breakwaters. In the 

context of the conducted experiments, the evolution of the bed elevation and the 

shoreline response were measured and analysed. 

 To provide to the scientific community a set of experimental data referring to the 2DH 

morphological change down-wave of permeable submerged breakwaters. This dataset 

will contribute to covering a gap that exists in the international literature on this issue. 

 To validate the aforementioned compound numerical model with the aforementioned 

measurements. 

 To perform numerical experiments in order to investigate the shoreline response to an 

array of submerged breakwaters. The effect of some significant geometric and wave 

parameters was studied in order to draw some guidelines for the optimal design of these 

structures with respect to their positioning and geometric layout. 

The basic tool for this research is the compound numerical model that was developed and is 

presented herein. The integrated model consists of four parts: the wave, the hydrodynamic, 
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the sediment transport and the geomorphological modules. The development of these four 

modules defined some additional objectives for the dissertation. 

The basis of the numerical model is a 2DH Boussinesq-type wave solver of enhanced 

nonlinearity and dispersion, while a 1DH version has been also developed. Boussinesq-type 

models form an extension of the NSWE to account for dispersive waves. Their characteristics 

are expressed through two non-dimensional parameters, ε = H΄/ do
΄
 and σ

2
 = (do

΄
/ L΄)

2
, where 

do
΄
, L΄ and H΄ are a reference water depth, the wavelength and wave height, respectively. The 

former parameter controls the nonlinear characteristics and the latter the dispersive 

characteristics of the equations. The original assumption behind this type of equations is that 

these two parameters are of the same order of magnitude. Peregrine (1967) derived the 

‘classical’ form of Boussinesq equations for water waves assuming weak dispersion and weak 

nonlinearity and he practically extended their range of applicability to kd < 0.75, where k is 

the wave number and d the still water depth. Since then, the main scope of the research 

concerning Boussinesq-type models has been the enhancement of their dispersive and 

nonlinear character in order to be applicable to more and more deep water and finally face no 

limitation with respect to depth. A significant step in this direction was made by Witting 

(1984) who introduced Padé approximations for studying the linear characteristics of the 

various Boussinesq equations. Based on this method, Madsen et al. (1991) and Madsen and 

Sørensen (1992) extended the classical Boussinesq equations, expressed in terms of the 

volume flux, to deeper water. In particular, by introducing extra terms and an adjustable 

coefficient, they optimized the linear characteristics of the model up to the deep water limit. 

In parallel, Nwogu (1993) achieved the same dispersion equation by using the velocity at an 

arbitrary level zα as dependent variable in the derived equations and got a new form of 

Boussinesq-type equations. Nwogu’s (1993) equations embedded weak nonlinearity since 

only terms of O(1, ε, μ
2
) where retained, with μ

2
 = (ko΄do΄)

2
 and ko΄ a reference wavenumber. 

Wei et al. (1995) enhanced the nonlinearity of the previous model by retaining additional 

terms of O(εμ
2
). Gobbi et al. (2000) further enhanced the nonlinearity of the aforementioned 

models by deriving a formulation of O(εμ
2
, μ

4
) based on a linear combination of the velocities 

at two arbitrary z-levels. The velocity profile obtained from their method is applicable up to 

kd = 4, while their dispersion relation is applicable up to kd = 6. 

Madsen and Schäffer (1998) by taking more terms in the Taylor series obtained a number of 

models with dispersion characteristics of up to O(μ
4
). Their accuracy appears to be very good 

for kd < 6. In addition, Karambas and Koutitas (2002) derived a model of enhanced 

nonlinearity by retaining terms of O(εσ
2
) and, by following the method by Madsen et al. 

(1991), they extended the linear dispersion characteristics up to the limit of deep waters. 
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Madsen et al. (2002, 2003) derived a formulation with very accurate linear dispersion and 

nonlinear characteristics up to kd = 40. Their idea was to replace the infinite series operators 

of the exact Laplace equation solution by finite series approximations. Lynett and Liu (2004) 

proposed a multi-layer formulation which significantly improves the linear dispersion 

characteristics up to very deep water. Karambas and Memos (2009) derived a fully linear 

dispersive and weakly nonlinear Boussinesq-type model. Their formulation offers significant 

advantages due to the small number of terms involved in both the mass and the momentum 

equations. A detailed literature review about Boussinesq-type models is presented in chapter 

2. 

In most of the sediment transport models, the required wave input is taken from the results 

of phase-averaged wave models. However, in the present dissertation a more sophisticated 

sediment transport modelling was sought after. Thus, a phase-resolving wave model was 

developed to form the basis of the compound numerical model. Wave resolving models have 

the advantage that they can inherently predict the wave skewness and asymmetry which are 

very important for an accurate estimation of the intra-wave sediment transport rates. A correct 

description of these two parameters also allows the inclusion of phase-lag effects in the 

computation of sediment transport if suitable formulae are employed. In addition, Boussinesq-

type models take into account the effect of wave irregularity, bound and free long waves, 

wave groups, and the nonlinear wave-wave interactions. These features are also very 

important for the accurate calculation of sediment loads. For these reasons, a Boussinesq-type 

wave model was chosen, that in contrast to NSWE, embeds the wave dispersivity and thus 

accounts for deeper water, too. On the other hand, a wave model solving the full 3D Navier-

Stokes equations would not justify the very high computational cost required. In the light of 

this discussion, the development of the Boussinesq-type model defined some additional 

objectives for the present Ph.D. thesis: 

 To derive enhanced nonlinear versions of two existing Boussinesq-type models, i.e. the 

ones by Karambas and Memos (2009) and Karambas and Koutitas (2002). 

 To study and compare the linear and nonlinear characteristics of the aforementioned 

models in order to choose the one that will be the wave module of the compound model. 

 To extend the wave module in order to account for porous beds. This objective should be 

fulfilled so that the model be able to simulate the wave propagation over permeable 

submerged breakwaters. 

 To extend the wave model to the surf and swash zones. 
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 To develop a hydrodynamic module in order to compute the wave-induced currents 

which are required for the calculation of the sediment transport.  

 To thoroughly validate the Boussinesq-type model against a number of experimental data 

which are available in the international literature. These measurements should refer to 

the most important physical processes present in the coastal zone in order to check the 

wave and hydrodynamic modules’ reliability.  

Only a few examples of coupling a Boussinesq-type model with a sediment transport and a 

morphological model have been reported (Rakha et al., 1997; Rakha, 1998; Long and Kirby, 

2003; Karambas and Karathanassi, 2004; Wenneker et al., 2011; Rahman et al., 2013; 

Karambas and Samaras, 2014). Most of these models refer to 1DH applications while 2DH 

validation tests including morphological evolution have been rarely documented.  

To accurately estimate coastal sediment transport is a very hard task due to the complexity 

of the environmental processes at play and their dependence on a large number of factors, 

which are difficult to be predicted. In the early years, the application of some sediment 

transport formulae that were developed for inland waters was extended to coastal zones 

(Meyer-Peter and Müller, 1948; Frijlink, 1952). However, the sediment's motion in the sea 

environment is much different due to the major role of water acceleration there, the multi-

directionality and the combined action of waves and currents. Thus, a number of new 

formulae have been proposed for the estimation of the coastal sediment transport rates in 

terms of bed, suspended or total loads. 

The pioneer work by Bagnold (1963, 1966) introduced the energetics model which relies on 

considerations of energy balance and mechanical equilibrium. Some years later, Bailard 

(1981) derived a formula for the total load directly from Bagnold's approach. Roelvink and 

Stive (1989) modified this latter formula to take into account the additional stirring of 

sediment by the surface breaking-induced turbulence. 

A commonly used formulation in engineering applications was proposed by Bijker (1968) 

for wave-current interaction. Engelund and Fredsøe (1976) derived a semi-empirical law for 

the total load assuming that only a certain fraction of the particles in a single bed layer is 

transported. Van Rijn (1989) and Soulsby (1997) also proposed wave-current formulations for 

the total sediment load. Ribberink (1998) proposed a quasi-steady model for bed load 

transport under the combined wave-current action. Dibajnia and Watanabe (1992) and 

Dibajnia et al. (2001) derived a formulation for sheet flow conditions and bed ripples that 

takes into account unsteady effects. These effects are also taken into account by Camenen and 

Larson’s (2007) unified sediment transport model for combined waves and currents. 
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Prediction of the coastal morphological evolution is the final and probably the most 

important issue in coastal engineering problems. Predicting detailed morphological changes in 

coastal areas of complex topography requires the application of advanced process-based 

morphodynamic models. However, as already mentioned, it is mainly cross-shore cases that 

have been studied where phase-resolving wave models were employed. In this context, some 

additional objectives for the present dissertation were set: 

 To develop a sediment transport model based on advanced formulae that are valid 

offshore but also inside the surf and swash zones.  

 To develop a geomorphological module that computes the evolution of the bed level 

using the results of the sediment transport module as input. 

 To develop the final compound model by coupling all four modules together, i.e. wave, 

hydrodynamic, sediment transport and geomorphological modules. An acceleration 

technique was also applied in order to achieve longer simulation periods with regard to 

morphology evolution. 

 To thoroughly validate the compound model against a number of experimental data 

which are available in the international literature. 

 To investigate the effect of various parameters in order to contribute in the understanding 

of the complex sediment transport processes.  

The above discussion described the background and the objectives of the present Ph.D. 

thesis. It also set the frame of the associated research so that the effort stayed within its limits. 

The scientific methods applied included the observation in laboratory scale, mathematical 

computations referring to numerical modelling and simulation, and finally validation and 

verification. One next step could be the performance of field measurements and the further 

model validation with these data referring to natural scale. 

1.2 Innovative points and highlights  

In the previous subsection the framework of the basic research of the present dissertation 

was defined. Beach erosion and accretion are technically the most interesting processes for 

the coastal engineer. In addition, submerged structures are a modern solution for coastal 

defense. The combination of these two aspects forms an attractive research field to which this 

thesis offers both theoretical and practical results. The main motivation of the specific work 

was that the hydrodynamic and morphodynamic behavior of arrays of submerged breakwaters 
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has not been described so far in a thorough and quantitatively consistent manner. Thus, the 

thesis could offer contribution to this scope. During this effort, some original results that 

deserve mentioning have been achieved: 

 Modification and upgrade of two existing Boussinesq-type wave models, i.e. the ones by 

Karambas and Koutitas (2002) and Karambas and Memos (2009), which resulted to the 

derivation of two new enhanced models. 

 A thorough analysis of the linear and nonlinear characteristics of the aforementioned 

models, in addition to two more models. This analysis revealed the properties of the 

various Boussinesq-type models, so that one can select the most appropriate for the 

purpose of his work. It also led to the choice of the wave model used in the present 

research. 

 Extension of this basic Boussinesq solver into the surf and swash zones. Thus, a 1DH 

and 2DH robust tool was developed for studying integrated nearshore dynamics. Only a 

restricted number of such integrated phase-resolving models have been presented, and 

most of them either embed lower-order wave characteristics or/and lack a thorough 2DH 

validation. In addition, the present model offers an inherent estimation of the wave-

induced current field without the need to de-couple the wave and the current motions. 

This aspect has been investigated only in a small number of Boussinesq models of the 

international literature. 

 Compared to its weakly nonlinear counterparts (Karambas and Koutitas, 2002; Karambas 

and Karathanassi, 2004; Memos et al., 2005) an improved numerical scheme was 

employed which offers better stability properties. 

 Sediment transport and geomorphological models were developed and coupled with the 

wave and hydrodynamic modules in order to form a compound model for studying 

coastal morphodynamics. In this process, advanced sediment transport formulae were 

used which take into account the associated unsteady effects. Both 1DH and 2DH model 

validation has been performed. Very few sediment transport models coupled with 

Boussinesq-type wave models have been presented in the international literature. Almost 

all of them either refer to only 1DH applications (Rakha et al., 1997; Karambas and 

Koutitas, 2002; Long and Kirby, 2003; van Dongeren et al., 2006) or a validation of the 

morphological evolution in 2DH tests is not presented (Rakha, 1998; Karambas and 

Karathanassi, 2004; Wenneker et al., 2011). The exceptions of works including 2DH 

tests either rely on less sophisticated sediment transport formulae (Drønen and Deigaard, 
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2011; Rahman et al., 2013) or lower-order nonlinear Boussinesq equations (Karambas 

and Samaras, 2014). 

 The compound model was extended to account for porous beds by including the solution 

of the additional Darcy-Forchheimer equation for the flow inside the porous medium. In 

previous similar efforts based on Karambas and Koutitas’s (2002) Boussinesq-type 

equations terms of O(1, ε) were only retained in the Darcy-Forchheimer equation 

(Avgeris et al., 2004; Metallinos et al., 2014). In contrary, in the presented model 

additional terms of O(σ
2
) were also retained in this latter equation. From the validation 

tests performed, these terms proved to be significant when short wave propagation over 

permeable submerged breakwaters is simulated. In particular, their inclusion improved 

the model results when these structures were located in intermediate water depth. 

  The development of a 2DH numerical model that simulates the morphological evolution 

in the lee of an array of permeable submerged breakwaters is another point of originality 

of the present thesis. There have been some other works simulating 2DH 

morphodynamics related to submerged breakwaters. However, either they employed 

phase-averaged wave models (Ranasinghe et al., 2006, 2010) or NSWE (van der Biezen 

et al., 1998; Lesser et al., 2003). Koutsouvela (2010) also studied the morphological 

evolution behind submerged breakwaters using a Boussinesq-type model but no 

comparison with measurements was provided. In addition, only normal incidence of 

regular waves was considered in this latter work. Finally, in all the previous works, the 

submerged structures were considered to be impermeable, in contrary to the present 

dissertation where the permeability of the breakwaters is also taken into account. 

 The performance of 3D laboratory experiments referring to the morphological evolution 

of a sandy beach in the lee of permeable submerged breakwaters is another point of 

innovation of this research. The tests included both regular and irregular waves. To the 

best of the author’s knowledge, only Groenewoud et al. (1996) have performed similar 

experiments involving a movable bed behind submerged breakwaters. However, only 

regular wave cases were considered and also, according to the researchers, an 

equilibrium state was not reached during their experiments. Thus, their measurements are 

of limited practical value. Consequently, the present measurements can contribute to 

covering a gap that exists in the international literature in terms of beach evolution 

behind submerged breakwaters. The experiments can both offer some direct conclusions 

for the behavior of submerged breakwater and also provide a dataset for the validation of 

numerical models. 
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 The shoreline response to an array of permeable submerged breakwaters was studied 

numerically. The effect of various important design parameters was investigated and 

some figures were produced showing relevant tendencies. In contrary to emergent 

breakwaters, only fragmentary and, in many cases, inconsistent with each other results 

have been reported in the international literature on this issue. It cannot be claimed that 

functional design rules were derived but some practical conclusions and guidelines, both 

qualitative and quantitative, were drawn in this direction.  

1.3 Organization of the dissertation 

Further to this introductive chapter 1, the dissertation is organized as follows. Chapter 2 

starts with the basics of the original Boussinesq wave theory and the extension that it offered 

to the NSWE. In addition, a detailed literature review of the various Boussinesq-type models 

is offered. In the next section, the derivation of enhanced nonlinear versions of two existing 

Boussinesq-type models is presented. In the following, a mathematical analysis and 

comparison of the characteristics of dispersion and nonlinearity of a number of models is 

performed in order to choose the most suitable for the scope of the present thesis. The chapter 

ends with a discussion on relevant issues. 

Chapter 3 presents an extension of the basic 2DH Boussinesq solver to account for the entire 

nearshore zone. At first the model is extended to the surf and swash zones, as the 

mathematical background of the wave breaking and run-up techniques that were adopted is 

presented. The hydrodynamic module is then described since the model can estimate the 

wave-induced currents, including the depth-averaged undertow. Furthermore, numerical 

aspects referring to the numerical scheme and the boundary conditions are discussed. The 

chapter also includes an extensive validation involving both 1DH and 2DH tests. Chapter 3 

closes with a discussion on the integrated Boussinesq model. 

Chapter 4 concerns sediment transport. It begins with a detailed literature review of the 

various formulae and numerical models for coastal sediment transport and geomorphology. In 

the following sections, physical properties of coastal sediments and related processes are 

described. Some selected widely used formulae are also presented. In addition, the sediment 

transport and the morphology modules of the compound model are described in detail. Both 

1DH and 2DH validation tests are also included, followed by a sensitivity analysis section for 

studying the effect of various parameters and the efficiency of different sediment transport 

formulae. The chapter ends with a discussion on the sediment transport model. 

Chapter 5 is dedicated to the laboratory experiments performed in the context of the Ph.D. 

thesis. At first, an introduction mentions other experimental works including submerged 
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breakwaters. Then, some general features of these structures and relevant coastal processes 

are described. In the next sections a detailed description of the laboratory facilities, the 

experimental layout and the scenarios studied is presented. Furthermore, a section about scale 

effects is also included. The chapter ends with a general discussion on the experiments 

performed. 

Chapter 6 begins with a literature review about numerical models simulating wave 

propagation over submerged breakwaters. The mathematical extension of the compound 

model to porous beds follows. In the next section the model is validated against the 

measurements from the laboratory experiments described in the previous chapter. Chapter 6 

ends with a discussion about the model extension to porous beds and the wave propagation 

over permeable submerged breakwaters. 

Chapter 7 refers to a numerical investigation of the shoreline response to an array of 

submerged breakwaters. The chapter begins with some results and design rules from the 

international literature concerning, mainly, emergent breakwaters, although some discussion 

about submerged breakwaters is also included. In the next section, a number of numerical 

experiments are presented in order to study the effect of various design parameters on the 

shoreline response. Chapter 7 closes with a discussion and some conclusions of practical 

interest for this issue. 

In chapter 8, the conclusions drawn from this work are summarized. Some important results 

are highlighted, while issues requiring further investigation and fields for future research are 

mentioned.  

References 

Avgeris, I., Karambas, Th. V., and Prinos, P. (2004). “Boussinesq modeling of wave interaction with 

porous submerged breakwaters.” Proc. 29
th

 Int. Conf. on Coastal Eng., J. M. Smith, ed., Lisbon, 

Portugal, 604-616.  

Bagnold, R. (1963). “An approach of marine sedimentation.” In: The Sea: Ideas and Observations on 

Progress in the Study of the Seas, M. N. Hill, ed., Interscience, New York, vol. 3, pp. 507-528. 

Bagnold, R. (1966). “An approach of sediment transport model from general physics.” Prof. Paper 

422-I, U. S. Geol. Surv., 37 pp. 

Bailard, J. (1981). “An energetics total load sediment transport model for a plane sloping beach.” J. 

Geophys. Res., 86 (C11), 10938–10954. 

Beji, S., and Battjes, J. A. (1994). “Numerical simulation of nonlinear wave propagation over a bar.” 

Coast. Eng., 23(1-2), 1-16. 



Chapter 1.  Introduction 

 

 

15 

 

Bijker, E. W. (1968). “Littoral drift as function of waves and current.” Proc. 11
th

 Int. Conf. on Coastal 

Engineering, ASCE, London, United Kingdom, vol. I, chapter 26, pp. 415-435. 

Cáceres, I., Sánchez-Arcilla, A., Alsina, J.-M., González-Marco, D., and Sierra, J. P. (2005). “Coastal 

dynamics around a submerged barrier.” Proc. Coastal Dyn. ’05, A. Sanchez-Arcilla, ed., ASCE, 

Barcelona, Spain, pp. 1-14.  

Camenen, B., and Larson, M. (2007). “A unified sediment transport formulation for coastal inlet 

application.” Tech. rep. ERDC/CHL CR-07-1, U.S. Army Engineer Research and Development 

Center, Vicksburg, MS, U.S.A., 231 pp. 

Chen, Q. (2006). "Fully nonlinear Boussinesq-type equations for waves and currents over porous 

beds." J. Eng. Mech., 132 (2), 220-230. 

Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B., and Haller, M. C. (1999). "Boussinesq 

modeling of a rip current system." J. Geophys. Res., 104 (C9), 20617-20637. 

Cruz, E. C., Isobe, M., and Watanabe, A. (1997). “Boussinesq equations for wave transformation on 

porous beds.” Coast. Eng., 30 (1-2), 125-156. 

Dibajnia, M., Moriya, T., and Watanabe, A. (2001). “A representative wave model for estimation of 

nearshore local transport rate.” Coast. Eng. J., 43 (1), 1-38. 

Dibajnia, M., and Watanabe, A. (1992). “Sheet flow under nonlinear waves and currents.” Proc. 23
rd

 

Int. Conf. on Coastal Engineering, B. L. Edge, ed., Venice, Italy, part V, chapter 155, pp. 2015-

2028.  

Drønen, N., and Deigaard, R. (2011). “A model for wave induced erosion of sandy barriers.” Proc. 7
th

 

IAHR Symp. River, Coastal and Estuarine Morphodynamics (RCEM), Beijing, China. 

Engelund, F., and Fredsøe, J. (1976). “A sediment transport model for straight alluvial channels.” 

Nord. Hydrol., 7, 293-306.  

European Commission (2004). "Living with coastal erosion in Europe: sediment and space for 

sustainability. Part II - Maps and statistics." Eurosion, Directorate General Environment, 25 pp. 

Frijlink, H. C. (1952). “Discussion des formulas de debit solide de Kalinske, Einstein et Meyer-Peter et 

Müller compte tenue des measures récentes de transport dans les rivières néerlandaises.” 2ième 

Journal Hydr., Soc. Hydrotechn. de France, Grenoble, France, 98–103 (in french). 

Garcia, N., Lara, J. L., and Losada, I. J. (2004). “2-D numerical analysis of near-field flow at low-

crested permeable breakwaters.” Coast. Eng., 51 (10), 991–1020. 

Gobbi, M. F., Kirby, J. T., and Wei, G. (2000). “A fully nonlinear Boussinesq model for surface waves. 

Part 2. Extension to O(kh)
4
.” J. Fluid Mech., 405, 181-210. 



Chapter 1.  Introduction 

 

 

16 

 

Groenewoud, M., Van der Graaff, J., Claessen, E., and Van der Beizen, S. (1996). “Effect of 

submerged breakwater on profile development.” Proc. 25th Int. Conf. on Coastal Eng., B. L. Edge, 

ed., Orlando, Florida, U.S.A., pp. 2428–2441. 

Hsiao, S., Liu, P. L.-F., and Chen, Y., (2002). “Nonlinear water waves propagating over a permeable 

bed.” Proc. R. Soc. London, Ser. A, 458, 1291–1322. 

Johnson, H. K., Karambas, Th. V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D., and Caceres, I. 

(2005). “Modelling of waves and currents around submerged breakwaters.” Coast. Eng., 52 (10-

11), 949–969.  

Hanson, H., and Kraus, N. C. (1990). "Shoreline response to a single transmissive breakwater." Proc. 

22
nd

 Int. Conf. on Coastal Engineering, B. L. Edge, ed., Delft, The Netherlands, part V, chapter 

154, pp. 2034-2046. 

Karambas, Th. V., and Karathanassi, E. K. (2004). “Longshore sediment transport by nonlinear waves 

and currents.” J. Waterw. Port Coast. Ocean Eng., 130 (6), 277-286. 

Karambas, Th. V., and Koutitas, C. (2002). “Surf and swash zone morphology evolution induced by 

nonlinear waves.” J. Waterway, Port, Coastal, Ocean Eng., 10.1061/(ASCE)0733-

950X(2002)128:3(102), 102-113. 

Karambas, Th. V., and Memos, C. D. (2009). “Boussinesq model for weakly nonlinear fully dispersive 

water waves.” J. Waterway, Port, Coastal, Ocean Eng., 10.1061/(ASCE)0733-

950X(2009)135:5(187), 187-199. 

Karambas, Th. V., and Samaras, A. G. (2014). “Soft shore protection methods: The use of advanced 

numerical models in the evaluation of beach nourishment.” Ocean Eng., 92, 129-136. 

Kobayashi, N., Meigs, L., Ota, T., and Melby, J. (2007). “Irregular breaking wave transmission over 

submerged porous breakwater.” J. Waterw. Port Coast. Ocean Eng., 133 (2), 104-116. 

Koutsouvela, D., Karambas, Th. V., Avgeris, I., and Karathanassi, E. (2007). "Functional design of 

submerged breakwaters for coastal protection using two wave/morphological models." Proc. 

Coastal Structures ’07, Venice, Italy, pp. 1205-1216. 

Kramer, M., Zanuttigh, B., Baoxing, W., Van der Meer, J., Vidal, C., Gironella, F. (2005). “Laboratory 

experiments on low-crested breakwaters.” Coast. Eng., 52 (10-11), 867-885. 

Lesser, G. R., Vroeg, J. H., Roelvink, J. A., de Gerloni, M., and Ardone, V. (2003). “Modelling the 

morphological impact of submerged offshore breakwaters.” Proc. Coastal Sediments ’03, World 

Scientific Publishing Co, Clearwater Beach, Florida, USA, May 18-23, on CD-ROM. 

http://dx.doi.org/10.1061/(ASCE)0733-950X(2009)135:5(187)
http://dx.doi.org/10.1061/(ASCE)0733-950X(2009)135:5(187)


Chapter 1.  Introduction 

 

 

17 

 

Long, W., and Kirby, J. T. (2003). “Cross-shore sediment transport model based on the Boussinesq 

equations and an improved Bagnold formula.” Proc. Coastal Sediments ’03, Clearwater Beach, 

Florida, U.S.A., May 18-23. 

Losada, I. J., Silva, R., and Losada, M. A. (1996). “3-D non-breaking regular wave interaction with 

submerged breakwaters.” Coast. Eng., 28 (1-4), 229–248. 

Lynett, P., and Liu, P. L.-F. (2004a). “A two-layer approach to wave modelling.” Proc. R. Soc. Lond. 

A, 460(2049), 2637-2669. 

Madsen, P. A., Bingham, H. B., and Liu, H. (2002). “A new Boussinesq method for fully nonlinear 

waves from shallow to deep water.” J. Fluid Mech., 462, 1-30. 

Madsen, P. A., Bingham, H. B., and Schäffer, H. A. (2003). “Boussinesq-type formulations for fully 

nonlinear and extremely dispersive water waves: derivation and analysis.” Proc. R. Soc. Lond. A, 

459(2033), 1075– 1104. 

Madsen, P. A., Murray, R., and Sørensen, O. R. (1991). “A new form of the Boussinesq equations with 

improved linear dispersion characteristics.” Coast. Eng., 15(4), 371-388. 

Madsen, P. A., and Schäffer, H. A. (1998). “Higher-order Boussinesq-type equations for surface 

gravity waves: derivation and analysis.” Phil. Trans. R. Soc. Lond. A, 356(1749), 3123-3184. 

Madsen, P. A., and Sørensen, O. R. (1992). “A new form of the Boussinesq equations with improved 

linear dispersion characteristics. Part 2. A slowly-varying bathymetry.” Coast. Eng., 18(3-4), 183-

204. 

Mangor, K. (2004). Shoreline management guidelines. DHI Water & Environment, 294 pp. 

Memos, C. D., Karambas, Th. V., and Avgeris, I. (2005). “Irregular wave transformation in the 

nearshore zone: experimental investigations and comparison with a higher order Boussinesq 

model.” Ocean Eng., 32 (11-12), 1465-1485. 

Metallinos, A. S., Emmanouilidou, M.-E. A., and Memos, C. D. (2014). “Wave-induced pore pressures 

in submerged rubble mound breakwaters simulated by a compound Boussinesq model.” J. Hydraul. 

Res., 52 (1), 24–35. 

Meyer-Peter, E., and Müller, R. (1948). “Formulas for bed-load transport.” Rep. 2
nd

 Meet. Int. Assoc. 

Hydraul. Struc. Res., Stockholm, Sweden, pp. 39–64. 

Nwogu, O. (1993). “Alternative form of Boussinesq equations for nearshore wave propagation.” J. 

Waterway, Port, Coastal, Ocean Eng., 10.1061/(ASCE)0733-950X(1993)119:6(618), 618-638. 

Peregrine, D. H. (1967). “Long waves on a beach.” J. Fluid Mech., 27 (4), 815-827. 

http://dx.doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)


Chapter 1.  Introduction 

 

 

18 

 

Rahman, S., Mano, A., and Udo, K. (2013). “Quasi-2D sediment transport model combined with 

Bagnold-type bed load transport.” Proc. 12
th 

International Coastal Symposium, Plymouth, United 

Kingdom, vol. 1, pp. 368-373. 

Rakha, K. A. (1998). “A Quasi-3D phase-resolving hydrodynamic and sediment transport model.” 

Coast. Eng., 34 (3-4), 277–311. 

Rakha, K. A., Deigaard, R., and Brøker, I. (1997). “A phase-resolving cross-shore transport model for 

beach evolution.” Coast. Eng., 31 (1-4), 231-261. 

Ranasinghe, R., Larson, M., and Savioli, J. (2010). “Shoreline response to a single shore-parallel 

submerged breakwater.” Coast. Eng., 57 (11-12), 1006–1017. 

Ranasinghe, R., Turner, I. L., and Symonds, G. (2006). “Shoreline response to multi-functional 

artificial surfing reefs: A numerical and physical modelling study.” Coast. Eng., 53 (7), 589–611. 

Ribberink, J. S. (1998). “Bed-load transport for steady flows and unsteady oscillatory flows.” Coast. 

Eng., 34 (1-2), 59–82. 

Roelvink, J. A., and Stive, M. J. F. (1989). “Bar-generating cross-shore flow mechanics on a beach.” J. 

Geophys. Res., 94 (C4), 4785–4800. 

Soulsby, R. (1997). Dynamics of marine sands, a manual for practical applications. Thomas Telford, 

H.R. Wallingford, England, 249 pp. 

Turner, I. L., Leyden, V. M., Cox, R. J., Jackson, L. A., and McGrath, J. (2001). “Physical model study 

of the gold coast artificial reef.” J. Coast. Res., Special Issue 29, 131–146. 

Van der Biezen, S. C, Roelvink, J. A., van de Graaff, J., Schaap, J., and Torrini, L. (1998). "2DH 

morphological modelling of submerged breakwaters." Proc. 26
th

 Int. Conf. on Coastal Eng., B. L. 

Edge, ed., Copenhagen, Denmark, vol. 2, pp. 2028–2041. 

Van der Biezen, S. C., Van der Graaff, J., Schaap., J., Torrini, L. (1997). “Small scale tests and 

numerical modeling of the hydrodynamic and morphological effects of submerged breakwaters.” 

Proc. Combined Australian Coastal Engineering and Ports Conf., 219-224. 

Van Dongeren, A. R., Wenneker, I., Roelvink, D., and Rusdin, A. (2006). “A Boussinesq-type wave 

driver for a morphodynamical model.” Proc. 30
th

 Int. Conf. on Coastal Engineering, J. M. Smith, 

ed., San Diego, U.S.A., vol. 3, pp. 3207-3219. 

Van Gent, M. R. A. (1994). “The modelling of wave action on and in coastal structures.” Coast. Eng., 

22 (3-4), 311–339.  

Van Rijn, L. (1989). “Handbook Sediment Transport by Currents and Waves.” Rep. No. H 461, Delft 

Hydraulics, Delft, The Netherlands. 



Chapter 1.  Introduction 

 

 

19 

 

Wei, G., Kirby, J. T., Grilli, S. T., and Subramanya, R. (1995). “A fully nonlinear Boussinesq model 

for surface waves. Part 1. Highly nonlinear unsteady waves.” J. Fluid Mech., 294, 71-92. 

Wenneker, I., van Dongeren, A., Lescinski, J., Roelvink, D., and Borsboom, M. (2011). “A 

Boussinesq-type wave driver for a morphodynamical model to predict short-term morphology.” 

Coast. Eng., 58 (1), 66–84. 

Witting, J. M. (1984). “A unified model for the evolution of nonlinear water waves.” J. Comput. Phys., 

56(2), 203-236. 

Zyserman, J. A., Jorgensen, K., and Christensen, E. D. (1999). "Sediment transport and morphology in 

the vicinity of shore parallel breakwaters." Proc. Coastal Structures ’99, ASCE, Santander, Spain, 

pp. 857-863. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1.  Introduction 

 

 

20 

 

 



21 

 

 

Chapter 2 

Nonlinear analysis of higher order Boussinesq-type 

wave models 

2.1 Introduction 

In order to describe more accurately the propagation of water waves it is necessary to use 

three-dimensional numerical models. These models are based on the solution of the fully 

three-dimensional Navier-Stokes equations including the turbulent effects through application 

of various methods, such as RANS (Reynolds Averaged Navier-Stokes), LES (Large Eddy 

Simulation), SPH (Smoothed Particle Hydrodynamics) etc. However, 3D models are 

generally quite complex and require very powerful computers in order to obtain numerical 

results. Thus, despite the more and more increasing efficiency of computers during the last 

decades, these approaches still remain a non-attractive choice for most coastal engineering 

applications.  

On the other hand, two-horizontal dimensional (2DH) models offer reasonably good 

approximations to 3D models by eliminating the vertical dependency with a much lower 

computational cost. Therefore, great effort has been spent by coastal engineers and scientists 

on developing 2DH numerical models. The existing models include, among others, the ray 

tracing model, the mild-slope model (Berkhoff, 1972), the nonlinear shallow water model 

(Airy, 1845; Lamb, 1932), the Boussinesq models, the Serre models, the Hamiltonian 

formulation models, and the Green-Naghdi models. The first two types of models are based 

on the linear wave approximation, while the rest, at least originally, rely on the long wave 

approximation. 

Τhe study of shallow water regions has gained scientific interest due to their importance in 

the design of coastal structures and in studying estuaries and lagoons. Hence, long wave 

models have been a very popular solution for various coastal engineering problems in the 

nearshore zone. In order to study the mathematical properties of different nonlinear long wave 

models, it is convenient to define three length scales, which involve a reference water depth 
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do
΄
, a reference wavelength L΄, and a reference wave height H΄. On the basis of these three 

scales two independent dimensionless parameters are defined. The first one is the nonlinearity 

parameter ε = H΄/ do
΄
, while the other is the dispersion parameter σ

2
 = ( do

΄
/ L΄ )

2
. The former 

determines the magnitude of nonlinearity, which is a property related to any effects of real 

wave motion that cannot be reproduced by linear analysis, i.e. by neglecting products of the 

disturbances. On the other hand, the dispersion parameter determines the dispersive effect and 

can be also met as μ
2
 = (ko΄do΄)

2
 in the international literature, where ko΄ is a reference 

wavenumber. Depending on the relative magnitude of these two parameters different 

mathematical models can be derived. 

Airy’s (1845) theory was the basis of the nonlinear shallow water (NSW) equations. He 

basically assumed the dispersion effect to be negligible, i.e. O(μ
2
) << 1, but imposed no 

restriction for the nonlinearity, i.e. O(ε) = 1. Moreover, the horizontal velocity was assumed 

uniform over depth and the pressure of the fluid was hydrostatic. However, the shallow water 

approximation works quite well if the ratio of water depth to wavelength is small, i.e. kd << 1, 

k wavenumber and d still water depth, or equivalently for simulating tidal waves, tsunami, 

and infra-gravity waves whose wavelengths are quite large. Due to the assumed non-

dispersion, the resulting linear phase speed is only a function of the water depth and is 

independent of the wave frequency which is a rather poor approximation of the exact linear 

dispersion relation if the water depth is not extremely small. Consequently, since there are no 

dispersion terms to balance the nonlinear terms, the front face of a propagating wave will 

steepen continuously even when the propagation is over a horizontal bed. Therefore, in 

intermediate water depths, the NSW equations offer no permanent wave solution and 

Boussinesq or other wave models have to be applied instead. 

2.2 Review of Boussinesq-type wave models 

In practice the threshold above which the waves are regarded as long waves in shallow 

waters is taken L/d = 20, where L wavelength. In such depths the waves tend to lose their 

frequency dispersion characteristics. If the above constraint be relaxed, i.e. for ratios L/d in 

the range between 10, say, and 20, the waves become weakly dispersive and the long waves 

approximation should be modified. For such “fairly long” waves of weak nonlinearity a 

theory by Boussinesq (1871, 1872) was developed. 

In the original Boussinesq theory both nonlinearity and dispersion were considered small, 

but not negligible. This assumption was expressed formally by 

 𝑂(휀) = 𝛰(𝜇2) < 1    (2.1) 
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and the original equations attributed to Boussinesq read (Whitham, 1974) 

 ℎ𝑡 + (𝑈ℎ)𝑥 = 0   (2.2)    

 𝑈𝑡 + 𝑈𝑈𝑥 + 𝑔ℎ𝑥 +
1

3
ℎ0ℎ𝑥𝑡𝑡 = 0  (2.3) 

where h = h0+ζ is the total water depth, h0 is the still water depth, ζ is the free surface 

elevation, U is the depth-averaged fluid velocity, g is the gravitational acceleration and the 

subscripts x and t denote differentiation with respect to space and time respectively. By 

combining (2.2) and (2.3) and linearising one gets 

 휁𝑡𝑡 − 𝑐0
2휁𝑥𝑥 −

1

3
ℎ0

2휁𝑥𝑥𝑡𝑡 = 0    (2.4) 

where 𝑐0 = √gℎ0 . 

The associated dispersion relation reads 

 𝜔2 =
𝑐0

2𝑘2

(1+
1

3
𝑘2ℎ0

2)
    (2.5) 

where ω is the angular frequency.  

The Boussinesq equations were restricted to horizontal bottom and one horizontal 

dimension (1DH), the vertical velocity was simply assumed to vary linearly from zero at the 

bottom to a maximum at the free surface, and the non-hydrostatic pressure was a consequence 

of the local acceleration of this velocity. The horizontal velocity had a quadratic variation 

with depth instead of being uniform. 

At the end of the 19
th
 century Korteweg and de Vries (1895) developed a similar wave 

theory for the same as previously range of applicability but for waves moving to only one 

direction, rather than two as in Boussinesq theory. The surface elevation is the only dependent 

variable in the KdV equation: 

 휁𝑡 + 𝑐0 (1 +
3

2

𝜁

ℎ0
) 휁𝑥 + 𝛾휁𝑥𝑥𝑥 = 0   (2.6) 

with 𝛾 =
1

6
𝑐0ℎ0

2
. 

The significance of the balance between the nonlinearity and dispersion effects depends on 

the parameter 𝐻𝐿2/𝑑3, H the wave height, as was firstly clarified by Ursell (1953), who 

stated that this parameter plays a central role in deciding the approximations to be applied and 

the associated physics in each particular case of wave propagation considered. Lighthill 

(1978) showed that when the value of this parameter is less than about 16, ε and μ
2
 are of the 

same order, along with the assumption for moderately long waves, i.e. kd < 0.6. For this range 
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of kd a balance between waveform steepening and dispersion turns out to be possible and, 

therefore, periodic waves of unchanging form can propagate over a horizontal bottom. In 

particular, the KdV equation admits permanent wave solutions such as solitary waves and 

cnoidal waves. 

Based on perturbation theory, Mei and Le Méhauté (1966) and Peregrine (1967) derived 

Boussinesq equations that are valid for variable water depth and two horizontal dimensions. 

Peregrine’s (1967) equations used the depth-averaged velocity as the dependent variable and 

are considered to be the “classical” Boussinesq equations for water waves incorporating weak 

dispersion and weak nonlinearity. In practice he extended their range of applicability up to kd 

< 0.75. Soon this range was expanded in practice up to kd = 1 with equally stable results 

(Infeld and Rowlands, 1990). The early Boussinesq models have proven to be quite accurate, 

especially when applied to relatively shallow waters. Therefore, recent developments in 

computing technology were tempting researchers to expand further the applicability range of 

the theory that, under its original constraint O(ε) = O(μ
2
), safeguarded the balance between 

dispersion and nonlinearity and produced stable solutions to the equation of motion. In 

practice it was desirable to derive a general wave model for the entire coastal zone from 

shallow (kd = 0.31) to deep water (kd = 3.14). In the critical range between kd = 1 and kd = 

3.14 it is obvious that μ
2
 is no longer less than 1 and more over dispersion cannot be balanced 

by nonlinearity since ε cannot get values higher than roughly 0.8 anywhere and much less for 

μ
2
 > 1. Furthermore, for values kd > 1 instabilities can inherently be present, as it is the case at 

kd = 1.363, where the lowest-order class I instability may be at play (Benjamin-Feir, 1967; 

McLean et al., 1981). 

Extension of the Boussinesq theory to higher order is normally obtained through power 

series expansions of the governing equations based on ε rather than on μ
2
, since the former is 

always less than one and the series can eventually converge. Conversely, when μ
2
 is allowed 

to take values larger than one in order to simulate fully dispersive conditions, mathematical 

manipulations should be employed to overcome this difficulty of not meeting conditions 

(2.1). Since these conditions of the original Boussinesq model are violated by such enhanced 

models, the latter are usually called Boussinesq-type wave models.  

Dingemans (1973) was the first to derive higher-order Boussinesq-type equations of O(μ
4
) 

by retaining more  terms in the polynomial velocity expansion. However, his equations were 

shown by Madsen and Schäffer (1998) to include singularities both in linear and nonlinear 

properties. Benjamin et al. (1972) pointed out how leading order terms could be used to 

manipulate higher order dispersive terms and improve the linear dispersive characteristics of 

KdV equations. Following this idea Mei (1989) proposed various forms of the dispersive 

KdV equations. 



Chapter 2.  Nonlinear analysis of higher order Boussinesq-type wave models 

 

 

25 

 

In applied mathematics, a Padé approximant is a better representation of an analytical 

function than a Taylor series expansion of the same order. Witting (1984) was the first to 

introduce rational functions in studying the characteristics of Boussinesq equations with 

respect to the linear dispersion equation. His results suggested that modified Boussinesq-type 

equations could embed improved linear characteristics compared to the standard equations. 

Madsen et al. (1991) and Madsen and Sørensen (1992) introduced additional third-order 

terms with adjustable coefficients into the momentum equation of Abbott et al.’s (1984) 

model. This model relies on the classical Boussinesq equations expressed in terms of the 

volume flux instead of the depth-averaged velocity. The additional terms come from the long 

wave equations and reduce to zero in shallow water. However, the adjustable coefficients 

offered an optimization of the linear characteristics of the model up to the deep water limit. 

The same dispersion relation of the previous formulation was achieved by Nwogu (1993) by 

using the velocity at an arbitrary level zα as dependent variable in the derived equations and 

got a new form of Boussinesq-type equations. The dispersion property of the latter can be 

optimized by choosing the velocity variable at a specific level. An alternative form of 

Nwogu’s (1993) equations was derived by Chen and Liu (1995). However, they used the 

velocity potential, instead of the horizontal velocity, at a certain depth and produced a 

parabolic model for water wave propagation. Schröter et al. (1994) used the definition of 

velocity as introduced by Witting (1984) combined with the approach by Madsen et al. 

(1991), and achieved an error smaller than 1% in the celerity for kd < 6, with terms of only 

third order derivatives; the shoaling gradient was also optimized.    

Schäffer and Madsen (1995) added third order terms to the momentum and continuity 

equations and the linear frequency dispersion and shoaling of equations were very accurately 

reproduced by choosing appropriate values for the free parameters that appear in the 

derivation process. 

Madsen and Sørensen (1993) analyzed the nonlinear properties of Madsen et al.’s (1991) 

equations. They found that for increasing wavenumbers the bound second harmonics tend to 

be underestimated as compared to Stokes second order theory. Improvement of the nonlinear 

characteristics and the description of the wave interactions can be obtained by the inclusion of 

higher-order terms that combine the effects of nonlinearity and dispersion. Wei et al. (1995) 

developed a fully nonlinear Boussinesq model accurate to O(μ
2
) based on Nwogu’s (1993) 

formulation. Since no assumption of small nonlinearity was made, the equations were fully 

nonlinear and could provide significantly improved predictions of wave heights and internal 

kinematics for the wave motion prior to wave breaking. 

Beji and Nadaoka (1996) gave a set of Boussinesq equations similar to the one by Madsen 

and Sørensen (1992) by adding and subtracting a dispersive term in the momentum equation. 
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Their formulation ensured the exact energy conservation. Madsen and Schäffer (1998) by 

taking more terms in the Taylor series obtained a number of models with dispersion 

characteristics of up to O(μ
4
). Their accuracy appears to be very good for kd < 6. Zou (1999, 

2000) also extended the limit of applicable water depths up to kd ≈ 3. Through the insertion of 

an extra free parameter he also improved the nonlinear properties of his higher order 

equations of O(εμ
2
).   

Moreover, Gobbi et al. (2000a) and Chen et al. (2003) extended Wei et al.’s (1995) 

equations to account for rotational flows and ensured that the vertical vorticity was consistent 

with the order of approximation for the wave motion. On the other hand, Boussinesq-type 

equations including the horizontal vorticity were reported by Rego and Neves (1997) and 

Veeramony and Svendsen (2000) in the vertical plane, and by Shen (2001) for the general 

three-dimensional case. 

More recent efforts offered a wider range for Boussinesq models providing accurate linear 

dispersion and shoaling characteristics from shallow water to deep water of kd > 3. However, 

regarding nonlinearity most of these models incorporate weak far better than strong nonlinear 

characteristics. 

Karambas (1999) offered an extension of the classical Boussinesq equations in deeper water 

for nonlinear monochromatic waves. By using hyperbolic functions he derived new equations 

that are exact at any depth with respect to linear dispersion if infinite terms are retained in the 

Taylor series that appear in his formulation. Agnon et al. (1999) presented a new procedure 

by which it is possible to achieve the same accuracy in nonlinear properties as in the linear 

ones. Their procedure is based on an exact formulation of the boundary conditions at the free 

surface and at the sea bottom combined with an approximate solution to the Laplace equation 

given in terms of truncated series expansions. Gobbi and Kirby (1999) and Gobbi et al. 

(2000b) applied a generalization of Nwogu’s (1993) method and derived a formulation of 

O(μ
4
) based on a linear combination of the velocities at two arbitrary z-levels. The velocity 

profile obtained from their method is applicable up to kd = 4, while their dispersion relation is 

applicable up to kd = 6. Another generalization of Wei et al.’s (1995) equations was presented 

by Kennedy et al. (2001) who considered the reference level zα to be time-varying and offered 

an improvement of the nonlinear properties of the original model. 

Karambas and Koutitas (2002) enhanced their model with extra nonlinearity by including 

terms Ο(εσ
2
) and, by following the method by Madsen et al. (1991), they extended the linear 

dispersion characteristics up to the limit of deep waters. 

Madsen et al. (2002, 2003) presented a model having as a starting point the exact solution to 

the Laplace equation and replaced the infinite series operators by finite series approximations 

involving up to fifth-order derivative operators. By manipulating the finite series to 
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incorporate Padé approximants the linear dispersion and nonlinear characteristics became 

very accurate up to kd = 40. This model was initially valid for mildly sloping beds but later it 

was also extended for rapidly varying bathymetries by Madsen et al. (2006). Linear shoaling 

could also be accurately optimized up to kd = 30. In parallel, Wu (1999, 2001) also derived 

fully dispersive and nonlinear formulations by using the exact surface conditions.  

Lynett and Liu (2004a, b) divided the domain in multiple horizontal layers. Instead of 

employing a high-order polynomial for the vertical distribution of the flow field, they used a 

quadratic polynomial in each layer, and matched them at the interfaces. This gives an extra 

equation for each added layer, but the order of the derivatives is limited to three. For a four 

layer model, errors in the celerity are limited to 1% for kd < 30. 

Bingham and Agnon (2005) derived also a Boussinesq-type model valid for fully dispersive 

waves, in the sense that the error of approximation is acceptably small for all kd < ∞. This 

was made possible by introducing the generalized two-dimensional Hilbert transform, 

evaluated by fast Fourier transform. Using a higher order approximation, very good 

dispersion characteristics could be achieved over the entire range of kd. Their model was also 

valid for a mildly sloping bottom. Li (2008) used a hyperbolic cosine function of the Stokes 

first-order solution instead of the bottom velocity potential function, as a first approximation, 

deriving thus a fully linear dispersive model. Karambas and Memos (2009) based on the 

works of Chester (1968) and Tsutsui et al. (1998) derived a model that offers significant 

advantages due to small number of terms involved in both the mass and the momentum 

equations and works for propagation of fully linear dispersive and weakly nonlinear water 

waves. In this model the Boussinesq-type dispersive terms are expressed through convolution 

integrals, which are estimated using appropriate impulse functions. Karambas and Memos’ 

(2009) model was formally derived for horizontal bottoms. Schäffer (2004a) proposed a 

similar one-dimensional nonlinear post-Boussinesq model which is also exact with respect to 

the linear dispersion equation but has been extended to mild sloping beds. His model is 

expressed in terms of the surface elevation and the horizontal particle velocity at still water 

level, while the internal kinematics were treated as convolutions in space. A similar procedure 

was also used by Schäffer (2004b) for computing the velocity field from the kinematics at the 

still water level as provided by a numerical model. This convolution method was then 

extended to two horizontal dimensions (Schäffer, 2006), modified by Schäffer (2009) and 

further extended to complex-shaped domains (Schäffer, 2012). 

Zou and Fang (2008) derived an alternative form of Boussinesq-type equations that are fully 

nonlinear up to O(μ
4
) by applying an σ-transformation and imposing no limitation for the 

bottom slope. Their model was extended by Zou et al. (2009) for rapidly varying 

topographies with multiple sand bars by improving the prediction of the Bragg reflection. 
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Fang and Zou (2010) extended Zou’s (2000) model to be fully nonlinear up to O(μ
2
) and, by 

introducing two extra nonlinear terms, they offered and improvement of the amplitude 

dispersion and second- and third-order transfer functions. Another improvement of the 

nonlinear properties of Madsen and Schäffer’s (1998) equations of O(μ
2
) was also presented 

by Fang et al. (2013). 

Chen (2006) derived a new set of Boussinesq-type equations for permeable and 

impermeable beds which retain the conservation of vertical potential vorticity to higher order 

than the previous correction of Wei et al.’s (1995) equations by Chen et al. (2003).  Shi et al. 

(2001) expressed Wei et al.’s (1995) equations in generalized curvilinear co-ordinates in 

order to adapt computations to irregularly shaped fields and make them more efficient in large 

nearshore regions. A similar co-ordinate system was also adopted by Shi et al. (2012) for 

solving Chen’s (2006) equations, extended to incorporate a moving reference level as in 

Kennedy et al. (2001). The numerical scheme of this model was also adopted by Kirby et al. 

(2013) who derived a nonlinear dispersive Boussinesq-type model which is expressed in 

spherical co-ordinates and includes the Coriolis effects in order to simulate tsunami 

propagation. Tsunami generation and propagation by a Boussinesq-type model was also 

studied by Fuhrman and Madsen (2009) by adding an extra term in the kinematic bottom 

condition of Madsen et al.’s (2006) model. 

Galan et al. (2012) presented an optimization approach to improve the performance of 

Boussinesq-type equations. They included terms of O(εμ
4
) and by using an explicit fourth-

order numerical scheme they obtained acceptable errors (~2%) for kd < 10. Chondros and 

Memos (2014) proposed a modified version of Madsen and Schäffer’s (1998) equations of 

O(εμ
4
). They defined new coefficients in order to improve the linear and nonlinear 

characteristics of the equations. These coefficients, that govern the linear and nonlinear 

dispersion and shoaling, were allowed to be time and space dependent in contrast with 

previous studies, where they were assumed constants. This approach led to an improvement 

of linear dispersion, linear shoaling and nonlinearity at second order analysis at any depth. 

The possibility to use variable coefficients depending on water depth has also been exploited 

by Simarro et al. (2013). Liu and Fang (2015) derived also a two-layer model that describes 

very accurately the linear and second-order nonlinear wave characteristics up to kd ≈ 6. 

Besides the more or less standard procedure of series expansion applied in most of the 

models described above, there have been also proposed other groups of models with similar 

properties to Boussinesq-type wave models over the last decades. Serre (1953) derived a set 

of equations for long waves travelling over a constant depth by assuming the horizontal 

velocity to be uniform over depth and the vertical velocity to vary linearly. However, the flow 

was not assumed irrotational despite the assumption of an inviscid and incompressible fluid. 
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An interesting fact is that Serre’s (1953) equations are equivalent to Mei’s (1989) fully 

nonlinear standard Boussinesq equations (based on depth-averaged velocity) despite the 

different assumptions made during the derivation process. Seabra-Santos et al. (1987) 

extended the Serre equations to two horizontal dimensions and variable depth.  

A similar, but much more general, family of models was derived by Green et al. (1974) and 

Green and Naghdi (1976). The only assumption behind the derivation was that the vertical 

and horizontal velocities were polynomials of order N and (N-1), respectively. The Green-

Naghdi equations reduce to Serre’s equations if N = 1. The original GN equations have been 

extended by using a combination of certain basis functions, rather than the original 

polynomial formulations. Boussinesq-type equations have been also derived using a 

Hamiltonian formulation (Broer, 1974; Broer, 1975; Broer et al., 1976). Although the linear 

characteristics of the original Hamiltonian-based models have been improved, they still 

remain weakly nonlinear due to their computational complexity. Comparative results of 

different models based on the various aforementioned formulations can be found in 

Dingemans (1994a,b). 

A number of quite comprehensive reviews of Boussinesq-type models have been presented 

during the last twenty years (Kirby, 1997; Madsen and Schäffer, 1999; Kirby, 2003; Madsen 

and Fuhrman, 2010; Brocchini, 2013; Kirby, 2016). Recently, research concerning 

Boussinesq-type modelling has been trying to extend its traditional area of interest to different 

aspects such as rotationality, the turbulent structure of the flow field (Kim et al., 2009; Kim 

and Lynett, 2011; Zhang et al., 2014) or a more detailed description of the vertical 

dependency of the flow. Thus, a number of modern post-Boussinesq and non-hydrostatic 

models, which rather step towards the three-dimensional Navier-Stokes equations, have been 

developed, e.g. Ma et al. (2012); Antuono and Brocchini (2013) etc. 

In this chapter, two existing Boussinesq models were enhanced in terms mainly of 

nonlinearity and tested against experimental data in order to select the one that fitted best the 

needs of the specific research in the framework of the present Ph.D. thesis. A key element in 

this selection was to distinguish how dominant is the role of extra terms of higher order in 

linear and nonlinear characteristics, considering always the computational time and the 

complexity of the numerical computations. 
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2.3 Derivation of model equations 

2.3.1 Nonlinear enhancement of Karambas and Koutitas’s (2002) model 

Karambas and Koutitas (2002) –KK02 in the following– included in their 1DH model 

equations terms of O(1, ε, σ
2
, εσ

2
). In order to enhance the nonlinearity of the above model a 

similar procedure is followed as the one used by Veeramony and Svendsen (2000) whereby 

terms of order O(1, ε, σ
2
, εσ

2
, ε

2
σ

2
) are included. The 2DH derivation is presented in the 

following. The independent variables are scaled as (Madsen and Schäffer, 1998) 

 𝑥 =
𝑥′

𝐿′  , 𝑦 =
𝑦′

𝐿′  , 𝑧 =
𝑧′

𝑑𝑜
′  , 𝑡 =

√g𝑑𝑜´

𝐿´
𝑡´       (2.7) 

where �⃗� = (𝑥, 𝑦) denotes the horizontal dimensions, z the upward co-ordinate with zero on 

the still water surface, and t the time. The prime denotes dimensional variables whereas the 

non-dimensional ones stand without primes. The non-dimensional water depth (d), surface 

elevation (ζ), horizontal velocity (�⃗⃗� = (𝑢, 𝑣)), vertical velocity (w) and pressure (p) are scaled 

as 

 𝑑 =
𝑑′

𝑑𝑜
′  , 휁 =

𝜁′

𝐻′  ,  �⃗⃗�′ = �⃗⃗�ε√g𝑑𝑜´ , 𝑤´ = 𝑤εσ√g𝑑𝑜´ , p´ = ερg𝑑𝑜´p       (2.8) 

where ρ is the water density. 

Following this non-dimensionalization, the continuity equation, the momentum equations 

and the kinematic free-surface boundary and varying bottom conditions are written 

 ∇ ∙ �⃗⃗� +
𝜕𝑤

𝜕𝑧
= 0 (2.9a) 

 
𝜕�⃗⃗⃗�

𝜕𝑡
+ ε(�⃗⃗� ∙ ∇)�⃗⃗� + ε𝑤

𝜕�⃗⃗⃗�

𝜕𝑧
= −∇p    (2.9b) 

 σ2 [
𝜕𝑤

𝜕𝑡
+ ε(�⃗⃗� ∙ ∇)𝑤 + ε𝑤

𝜕𝑤

𝜕𝑧
] = −

𝜕𝑝

𝜕𝑧
−

1

ε
       (2.9c) 

 𝑤 =
𝜕𝜁

𝜕𝑡
+ ε�⃗⃗� ∙ ∇휁   at 𝑧 = ε휁           (2.9d) 

 𝑤 = −�⃗⃗� ∙ ∇𝑑   at 𝑧 = −𝑑         (2.9e) 

where ∇ = (
∂

∂x
,

∂

∂y
) is the horizontal gradient operator and the symbol · denotes the dot 

product of two vectors. 
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By integrating the continuity Eq. (2.9a) over depth and using the free surface and bottom 

boundary conditions Eqs (2.9d) and (2.9e), the well-known depth-integrated version of 

continuity equation is obtained, after using the Leibnitz integration rule 

 
𝜕𝜁

𝜕𝑡
+ ∇ ∙ �⃗⃗� = 0   (2.10) 

where �⃗⃗� is the volume flux �⃗⃗� = �⃗⃗⃗�(𝑑 + ε휁) and �⃗⃗⃗� = (𝑈, 𝑉) is the non-dimensional depth-

averaged velocity defined by �⃗⃗⃗� =
1

𝑑+ε𝜁
∫ �⃗⃗� d𝑧

ε𝜁

−𝑑
 . 

The depth-integrated horizontal and vertical momentum equations are written 

 
𝜕[𝑈(𝑑+𝜀𝜁)]

𝜕𝑡
+ 휀 [

𝜕

𝜕𝑥
(∫ 𝑢2𝜀𝜁

−𝑑
d𝑧) +

𝜕

𝜕𝑦
(∫ 𝑢𝑣

𝜀𝜁

−𝑑
d𝑧)] = 𝑝|𝑧=−𝑑

𝜕𝑑

𝜕𝑥
−

𝜕

𝜕𝑥
(∫ 𝑝

𝜀𝜁

−𝑑
d𝑧)  (2.11a) 

 
𝜕[𝑉(𝑑+𝜀𝜁)]

𝜕𝑡
+ 휀 [

𝜕

𝜕𝑥
(∫ 𝑢𝑣

𝜀𝜁

−𝑑
d𝑧) +

𝜕

𝜕𝑦
(∫ 𝑣2𝜀𝜁

−𝑑
d𝑧)] = 𝑝|𝑧=−𝑑

𝜕𝑑

𝜕𝑦
−

𝜕

𝜕𝑦
(∫ 𝑝

𝜀𝜁

−𝑑
d𝑧)  (2.11b) 

 𝑝(𝑧) = (휁 −
𝑧

𝜀
) +𝜎2 𝜕

𝜕𝑡
(∫ 𝑤

𝜀𝜁

𝑧
d𝑧) − 휀𝜎2𝑤2+휀𝜎2∇ ∙ (∫ 𝑤�⃗⃗�

𝜀𝜁

𝑧
d𝑧)   (2.12) 

Integration of the local continuity equation (2.9a), with respect to z, yields 

 𝑤 = −∇ ∙ (∫ �⃗⃗�
𝑧

−𝑑
d𝑧)   (2.13) 

The pressure p from Eq. (2.12) and the vertical velocity w from Eq. (2.13) are substituted 

into Eqs (2.11a,b). By extending to two horizontal dimensions the assumption by Karambas 

and Koutitas (2002) for non-breaking waves, a uniform velocity profile over depth is adopted, 

i.e. �⃗⃗� = �⃗⃗⃗� for –d ≤ z ≤ εζ. This assumption was also made by Serre (1953) and Schäffer et al. 

(1993). Applying this profile and neglecting terms that include spatial derivatives of water 

depth of order higher than first, the depth-averaged horizontal momentum equation is 

obtained 

�⃗⃗⃗�𝑡 + 휀(�⃗⃗⃗� ∙ ∇)�⃗⃗⃗� + ∇휁 = 𝜎2 {
1

2
𝑑∇[∇ ∙ (𝑑�⃗⃗⃗�𝑡)] −

1

6
𝑑2∇(∇ ∙ �⃗⃗⃗�𝑡)} + 휀𝜎2�⃗⃗⃗�1(휁, 𝑈, 𝑉, 𝑑) 

 +휀2𝜎2�⃗⃗⃗�2(휁, 𝑈, 𝑉, 𝑑) + 𝑂(휀3𝜎2)         (2.14) 

where �⃗⃗⃗�1, �⃗⃗⃗�2 are vector functions of {ζ, U, V, d} and of their spatial and temporal derivatives. 

Their lengthy expressions coincide with (𝜓𝛪𝐼
(𝑥)

, 𝜓𝛪𝐼
(𝑦)

) and (𝜓𝛪𝐼𝐼
(𝑥)

, 𝜓𝛪𝐼𝐼
(𝑦)

) in Eqs (2.20), (2.23) 

and (2.21), (2.24), respectively, if the parameters B and B2, which are described in the 

following, are set equal to 0.  
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The dispersion and shoaling characteristics of the model based on Eqs (2.10) and (2.14) are 

very poor for intermediate and deep-water waves because of the uniform profile assumption. 

Thus, following Madsen and Schäffer (1998) who adopted an enhancement technique for 

these characteristics, the following linear operators were applied 

 𝐿𝐵1
= 1 + B1𝜎2𝑑2∇(∇ ∙)   and   𝐿𝐵2

= 1 + B2𝜎2𝑑𝛻[𝛻 ∙ (𝑑 ∙)]            (2.15) 

where B1 and B2 are parameters to be defined. 

By setting B = B1+B2, reverting to dimensional variables and omitting primes, the continuity 

and momentum equations of the model are written: 

 
𝜕𝜁

𝜕𝑡
+

∂[𝑈(d+𝜁)]

∂x
+

∂[𝑉(d+𝜁)]

∂y
= 0   (2.16) 

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+ g

𝜕𝜁

𝜕𝑥
= 𝜓𝛪

(𝑥)
+ 𝜓𝛪𝐼

(𝑥)
+ 𝜓𝛪𝐼𝐼

(𝑥)
      (2.17) 

 
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
+ g

𝜕𝜁

𝜕𝑦
= 𝜓𝛪

(𝑦)
+ 𝜓𝛪𝐼

(𝑦)
+ 𝜓𝛪𝐼𝐼

(𝑦)
      (2.18) 

where 𝜓𝛪
(𝑥)

, 𝜓𝛪𝐼
(𝑥)

, 𝜓𝐼𝐼𝛪
(𝑥)

, 𝜓𝛪
(𝑦)

, 𝜓𝛪𝐼
(𝑦)

, 𝜓𝛪𝐼𝐼
(𝑦)

 are the Boussinesq terms given by 

𝜓𝛪
(𝑥)

=  (B +
1

3
) 𝑑2(𝑈𝑥𝑥𝑡 + 𝑉𝑥𝑦𝑡) + (2B2 + 1)𝑑𝑑𝑥𝑈𝑥𝑡 + (B2 +

1

2
) 𝑑𝑑𝑥𝑉𝑦𝑡 + (B2 +

1

2
) 𝑑𝑑𝑦𝑉𝑥𝑡 + Bg𝑑2(휁𝑥𝑥𝑥 + 휁𝑥𝑦𝑦) + B2g(2𝑑𝑑𝑥휁𝑥𝑥 + 𝑑𝑑𝑦휁𝑥𝑦 + 𝑑𝑑𝑥휁𝑦𝑦)      (2.19) 

𝜓𝛪𝐼
(𝑥)

=  
2𝑑𝜁

3
(𝑈𝑥𝑥𝑡 + 𝑉𝑥𝑦𝑡) + (𝑑휁𝑥 + 휁𝑑𝑥)𝑈𝑥𝑡 +

1

2
(𝑑휁𝑥 + 휁𝑑𝑥)𝑉𝑦𝑡 +

1

2
휁𝑑𝑦𝑉𝑥𝑡 +

(B +
1

3
) 𝑑2(𝑈𝑈𝑥𝑥𝑥 + 𝑈𝑉𝑥𝑥𝑦 + 𝑉𝑈𝑥𝑥𝑦 + 𝑉𝑉𝑥𝑦𝑦 + 𝑉𝑥𝑉𝑦𝑦) + (3B −

1

3
) 𝑑2𝑈𝑥𝑈𝑥𝑥 +

(3B +
1

3
) 𝑑2𝑉𝑥𝑈𝑥𝑦 + (2B −

2

3
) 𝑑2𝑉𝑦𝑉𝑥𝑦 + (B −

1

3
) 𝑑2𝑈𝑥𝑉𝑥𝑦 + 2B𝑑2𝑈𝑦𝑉𝑥𝑥 −

2𝑑2

3
𝑉𝑦𝑈𝑥𝑥 +

(B2 +
1

2
) 𝑑𝑑𝑥(𝑉𝑉𝑦𝑦 + 𝑈𝑉𝑥𝑦 + 2𝑈𝑈𝑥𝑥 + 2𝑉𝑈𝑥𝑦) + (3B2 +

1

2
) 𝑑𝑑𝑥𝑈𝑦𝑉𝑥 + (B2 −

1

2
) 𝑑𝑑𝑥𝑉𝑦

2 − 𝑑𝑑𝑥𝑉𝑦𝑈𝑥 + 2B2𝑑𝑥𝑈𝑥
2 + (B2 +

1

2
) 𝑑𝑑𝑦(𝑉𝑥𝑉𝑦 + 𝑈𝑥𝑉𝑥 + 𝑈𝑉𝑥𝑥 + 𝑉𝑉𝑥𝑦) +

휁𝑥(𝑑𝑥𝑈𝑡 + 𝑑𝑦𝑉𝑡)        (2.20) 

𝜓𝛪𝐼𝐼
(𝑥)

=  
𝜁2

3
(𝑈𝑥𝑥𝑡 + 𝑉𝑥𝑦𝑡) + 휁휁𝑥(𝑈𝑥𝑡 + 𝑉𝑦𝑡) + 𝑑휁𝑥(−𝑈𝑥

2 − 2𝑉𝑦𝑈𝑥 + 𝑉𝑉𝑦𝑦 + 𝑉𝑈𝑥𝑦 + 𝑈𝑉𝑥𝑦 +

𝑈𝑈𝑥𝑥 − 𝑉𝑦
2) +

2𝑑𝜁

3
(𝑈𝑈𝑥𝑥𝑥 + 𝑈𝑉𝑥𝑥𝑦 + 𝑉𝑈𝑥𝑥𝑦 + 𝑉𝑉𝑥𝑦𝑦 + 𝑉𝑥𝑉𝑦𝑦 + 𝑉𝑥𝑈𝑥𝑦 − 𝑈𝑥𝑈𝑥𝑥 −
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2𝑉𝑦𝑈𝑥𝑥 − 𝑈𝑥𝑉𝑥𝑦 − 2𝑉𝑦𝑉𝑥𝑦) + 휁𝑑𝑥 (𝑉𝑈𝑥𝑦 + 𝑈𝑈𝑥𝑥 +
1

2
𝑈𝑉𝑥𝑦 +

1

2
𝑈𝑦𝑉𝑥 +

1

2
𝑉𝑉𝑦𝑦 −

1

2
𝑉𝑦

2 −

𝑉𝑦𝑈𝑥) +
1

2
휁𝑑𝑦(𝑉𝑥𝑉𝑦 + 𝑈𝑥𝑉𝑥 + 𝑈𝑉𝑥𝑥 + 𝑉𝑉𝑥𝑦) + 휁𝑥𝑑𝑥(𝑉𝑈𝑦 + 𝑈𝑈𝑥) + 휁𝑥𝑑𝑦(𝑉𝑉𝑦 + 𝑈𝑉𝑥)(2.21) 

𝜓𝛪
(𝑦)

=  (B +
1

3
) 𝑑2(𝑉𝑦𝑦𝑡 + 𝑈𝑥𝑦𝑡) + (2B2 + 1)𝑑𝑑𝑦𝑉𝑦𝑡 + (B2 +

1

2
) 𝑑𝑑𝑦𝑈𝑥𝑡 + (B2 +

1

2
) 𝑑𝑑𝑥𝑈𝑦𝑡 + Bg𝑑2(휁𝑦𝑦𝑦 + 휁𝑥𝑥𝑦) + B2g(2𝑑𝑑𝑦휁𝑦𝑦 + 𝑑𝑑𝑥휁𝑥𝑦 + 𝑑𝑑𝑦휁𝑥𝑥)      (2.22) 

𝜓𝛪𝐼
(𝑦)

=  
2𝑑𝜁

3
(𝑉𝑦𝑦𝑡 + 𝑈𝑥𝑦𝑡) + (𝑑휁𝑦 + 휁𝑑𝑦)𝑉𝑦𝑡 +

1

2
(𝑑휁𝑦 + 휁𝑑𝑦)𝑈𝑥𝑡 +

1

2
휁𝑑𝑥𝑈𝑦𝑡 +

(B +
1

3
) 𝑑2(𝑉𝑉𝑦𝑦𝑦 + 𝑈𝑉𝑥𝑦𝑦 + 𝑉𝑈𝑥𝑦𝑦 + 𝑈𝑈𝑥𝑥𝑦 + 𝑈𝑦𝑈𝑥𝑥) + (3B −

1

3
) 𝑑2𝑉𝑦𝑉𝑦𝑦 +

(3B +
1

3
) 𝑑2𝑈𝑦𝑉𝑥𝑦 + (2B −

2

3
) 𝑑2𝑈𝑥𝑈𝑥𝑦 + (B −

1

3
) 𝑑2𝑉𝑦𝑈𝑥𝑦 + 2B𝑑2𝑉𝑥𝑈𝑦𝑦 −

2𝑑2

3
𝑈𝑥𝑉𝑦𝑦 +

(B2 +
1

2
) 𝑑𝑑𝑦(𝑈𝑈𝑥𝑥 + 𝑉𝑈𝑥𝑦 + 2𝑉𝑉𝑦𝑦 + 2𝑈𝑉𝑥𝑦) + (3B2 +

1

2
) 𝑑𝑑𝑦𝑈𝑦𝑉𝑥 + (B2 −

1

2
) 𝑑𝑑𝑦𝑈𝑥

2 − 𝑑𝑑𝑦𝑉𝑦𝑈𝑥 + 2B2𝑑𝑦𝑉𝑦
2 + (B2 +

1

2
) 𝑑𝑑𝑥(𝑈𝑥𝑈𝑦 + 𝑈𝑦𝑉𝑦 + 𝑈𝑈𝑥𝑦 + 𝑉𝑈𝑦𝑦) +

휁𝑦(𝑑𝑥𝑈𝑡 + 𝑑𝑦𝑉𝑡)        (2.23) 

𝜓𝛪𝐼𝐼
(𝑦)

=  
𝜁2

3
(𝑉𝑦𝑦𝑡 + 𝑈𝑥𝑦𝑡) + 휁휁𝑦(𝑉𝑦𝑡 + 𝑈𝑥𝑡) + 𝑑휁𝑦(−𝑉𝑦

2 − 2𝑈𝑥𝑉𝑦 + 𝑈𝑈𝑥𝑥 + 𝑈𝑉𝑥𝑦 +

𝑉𝑈𝑥𝑦 + 𝑉𝑉𝑦𝑦 − 𝑈𝑥
2) +

2𝑑𝜁

3
(𝑉𝑉𝑦𝑦𝑦 + 𝑉𝑈𝑥𝑦𝑦 + 𝑈𝑉𝑥𝑦𝑦 + 𝑈𝑈𝑥𝑥𝑦 + 𝑈𝑦𝑈𝑥𝑥 + 𝑈𝑦𝑉𝑥𝑦 −

𝑉𝑦𝑉𝑦𝑦 − 2𝑈𝑥𝑉𝑦𝑦 − 𝑉𝑦𝑈𝑥𝑦 − 2𝑈𝑥𝑈𝑥𝑦) + 휁𝑑𝑦 (𝑈𝑉𝑥𝑦 + 𝑉𝑉𝑦𝑦 +
1

2
𝑉𝑈𝑥𝑦 +

1

2
𝑉𝑥𝑈𝑦 +

1

2
𝑈𝑈𝑥𝑥 −

1

2
𝑈𝑥

2 − 𝑈𝑥𝑉𝑦) +
1

2
휁𝑑𝑥(𝑈𝑥𝑈𝑦 + 𝑉𝑦𝑈𝑦 + 𝑉𝑈𝑦𝑦 + 𝑈𝑈𝑥𝑦) + 휁𝑦𝑑𝑦(𝑈𝑉𝑥 + 𝑉𝑉𝑦) +

휁𝑦𝑑𝑥(𝑈𝑈𝑥 + 𝑉𝑈𝑦)        (2.24) 

The terms 𝜓𝛪
(𝑥)

, 𝜓𝛪
(𝑦)

 are of O(σ
2
), 𝜓𝛪𝐼

(𝑥)
, 𝜓𝛪𝐼

(𝑦)
 are of O(εσ

2
) and 𝜓𝛪𝐼𝐼

(𝑥)
, 𝜓𝛪𝐼𝐼

(𝑦)
 are of O(ε

2
σ

2
). It 

should be mentioned that the dispersion characteristics of the model are controlled by the free 

parameter B, which is the sum of B1 and B2, while the linear shoaling characteristics are 

controlled by the free parameter B2. 

The 1DH model version includes in non-dimensional form the equations 

 
𝜕𝜁

𝜕𝑡
+

𝜕[(𝑑+𝜀𝜁)𝑈]

𝜕𝑥
= 0    (2.25) 

 
𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
+

𝜕𝜁

𝜕𝑥
= 𝜎2 𝑑2+2𝜀𝑑𝜁

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 𝜎2(𝑑 + 휀휁)

𝜕𝑑

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ 휀𝜎2 𝑑2

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  

 +휀𝜎2 (𝑑
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ 𝑑

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 +
𝜕𝑑

𝜕𝑥

𝜕𝜁

𝜕𝑥

𝜕𝑈

𝜕𝑡
)   

 +휀2𝜎2 (
𝜁2

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 휁

𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
) + 휀2𝜎2 2𝑑𝜁

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  



Chapter 2.  Nonlinear analysis of higher order Boussinesq-type wave models 

 

 

34 

 

 +휀2𝜎2 (𝑈𝑑
𝜕2𝑈

𝜕𝑥2

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕𝑈

𝜕𝑥

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 휁) − 휀2𝜎2𝑑
𝜕𝜁

𝜕𝑥
(

𝜕𝑈

𝜕𝑥
)

2
   

 +𝜎2B𝑑2 (
𝜕3𝑈

𝜕𝑥2𝜕𝑡
+

𝜕3𝜁

𝜕𝑥3 + 휀
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 ) + 𝜎22B2𝑑
𝜕𝑑

𝜕𝑥
(

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

𝜕2𝜁

𝜕𝑥2 + 휀
𝜕(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥
)      (2.26) 

By reverting to dimensional variables and omitting primes, Eqs (2.25) and (2.26) are written 

 
𝜕𝜁

𝜕𝑡
+

𝜕[(𝑑+𝜁)𝑈]

𝜕𝑥
= 0    (2.27)                   (22) 

and 

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ g

𝜕𝜁

𝜕𝑥
=

𝑑2+2𝑑𝜁

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ (𝑑 + 휁)

𝜕𝑑

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

𝑑2

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  

 + (𝑑
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ 𝑑

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 +
𝜕𝑑

𝜕𝑥

𝜕𝜁

𝜕𝑥

𝜕𝑈

𝜕𝑡
)  + B𝑑2 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ g

𝜕3𝜁

𝜕𝑥3 +
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 )  

 +2B2𝑑
𝜕𝑑

𝜕𝑥
(

𝜕2𝑈

𝜕𝑥𝜕𝑡
+ g

𝜕2𝜁

𝜕𝑥2 +
𝜕(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥
) + (

𝜁2

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 휁

𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
)  

 +
2𝑑𝜁

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2)  + (𝑑𝑈
𝜕2𝑈

𝜕𝑥2

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕𝑈

𝜕𝑥

𝜕𝜁

𝜕𝑥
+

𝜕𝑑

𝜕𝑥
𝑈

𝜕2𝑈

𝜕𝑥2 휁) − 𝑑
𝜕𝜁

𝜕𝑥
(

𝜕𝑈

𝜕𝑥
)

2
 (2.28) 

By retaining terms of order O(1, ε, σ
2
, εσ

2
) in the one-dimensional version, Eq. (2.26) is 

reduced to the one of Karambas and Koutitas's (2002) model with the only difference being 

the free parameter B2. In KK02 model one single free parameter was included to control 

linear dispersion and shoaling at the same time, while herein two parameters were introduced 

in order to optimize these two linear characteristics separately. Thus the model based on Eqs 

(2.27) and (2.28) is called in the following extended KK02 model (KK02e) and displays 

stronger nonlinear characteristics of O(ε
2
σ

2
) than its original counterpart (KK02) of weaker 

nonlinearity of O(εσ
2
). In addition, in the 2DH case, keeping terms of order O(1, ε, σ

2
, εσ

2
) 

leads to models almost identical to Memos et al. (2005); Zou (1999); Karambas and 

Karathanassi (2004). Hence, Eqs (2.17) and (2.18) offer an extension of these models up to 

O(ε
2
σ

2
). 

2.3.2 Nonlinear enhancement of Karambas and Memos’s (2009) model 

Karambas and Memos (2009) derived a fully linear dispersive Boussinesq-type model. Their 

model is weakly nonlinear since the momentum equation includes terms of order O(1, ε, σ
2
). 

Here the nonlinear characteristics of these fully dispersive equations shall be enhanced by 

including terms of order O(εσ
2
). 

Inviscid, incompressible fluid and irrotational flow are considered. The independent 

variables are scaled as given in Eq. (2.7). Irrotational flow implies the existence of a velocity 
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potential F´(x´, z´, t´) that describes the flow field. By definition the fluid velocities can be 

expressed by 𝑢´ = 𝜕𝐹´ 𝜕𝑥´⁄ , 𝑤´ = 𝜕𝐹´ 𝜕𝑧´⁄ . 

The non-dimensional water depth (d), surface elevation (ζ), and horizontal velocity (u) are 

scaled as given in Eq. (2.8). The non-dimensional vertical velocity (w) and pressure (p) are 

scaled as follows: 

 𝑤´ = 𝑤
𝜀

𝜎
√g𝑑𝑜´ , 𝑝´ = ρg𝑑𝑜´𝑝   (2.29) 

A reference wave number ko´=1/L´ is defined in addition to the local dimensional wave 

number k´=2π/Lloc´, where Lloc´ is the wavelength at depth d´ for a regular wave. Hence we 

can define the non-dimensional wavenumber as 

 𝑘 =
𝑘´

𝑘0
′   (2.30) 

Following this non-dimensionalization, the continuity equation, the momentum equations 

and the kinematic free-surface boundary, and the varying bottom conditions are written  

 𝜎2 𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0           (2.31) 

 
𝜕𝑢

𝜕𝑡
+ 휀𝑢

𝜕𝑢

𝜕𝑥
+

𝜀

𝜎2 𝑤
𝜕𝑢

𝜕𝑧
= −

1

𝜀

𝜕𝑝

𝜕𝑥
                       (2.32) 

 
𝜕𝑤

𝜕𝑡
+ 휀𝑢

𝜕𝑤

𝜕𝑥
+

𝜀

𝜎2 𝑤
𝜕𝑤

𝜕𝑧
= −

1

𝜀

𝜕𝑝

𝜕𝑧
−

1

𝜀
           (2.33) 

 𝑤 = 𝜎2 (
𝜕𝜁

𝜕𝑡
+ 휀𝑢

𝜕𝜁

𝜕𝑥
)    at 𝑧 = 휀휁          (2.34) 

 𝑤 = −𝜎2𝑢
𝜕𝑑

𝜕𝑥
     at 𝑧 = −𝑑   (2.35) 

By integrating the continuity Eq. (2.31) over depth and using the free-surface and bottom 

boundary conditions along with the Leibnitz integration rule, the depth integrated continuity 

equation is obtained as given in Eq. (2.25). The depth-integrated horizontal and vertical 

momentum equations are written 

 
𝜕

𝜕𝑡
[𝑈(𝑑 + 휀휁)] + 휀

𝜕

𝜕𝑥
∫ 𝑢2𝜀𝜁

−𝑑
d𝑧 = −

𝜕

𝜕𝑥
∫ (

𝑝

𝜀
)

𝜀𝜁

−𝑑
d𝑧 +

𝑝

𝜀
|

𝑧=−𝑑

𝜕𝑑

𝜕𝑥
  (2.36) 

and 

 𝑝(𝑥, 𝑧, 𝑡) = (휀휁 − 𝑧) + 휀
𝜕

𝜕𝑡
∫ 𝑤

𝜀𝜁

𝑧
d𝑧 −

𝜀2

𝜎2 𝑤2 + 휀2 𝜕

𝜕𝑥
∫ 𝑢𝑤

𝜀𝜁

𝑧
d𝑧  (2.37) 
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Integration of the local continuity equation (2.31) with respect to z, yields  

 𝑤 = −𝜎2 𝜕

𝜕𝑥
∫ 𝑢

𝑧

−𝑑
d𝑧  (2.38) 

Substitution of the pressure p from Eq. (2.37) and the vertical velocity w from Eq. (2.38) 

into Eq. (2.36), gives  

 
𝜕

𝜕𝑡
[𝑈(𝑑 + 휀휁)] + 휀

𝜕

𝜕𝑥
(∫ 𝑢2𝜀𝜁

−𝑑
d𝑧) = −(𝑑 + 휀휁)

𝜕𝜁

𝜕𝑥
+𝜎2 ∫

𝜕2

𝜕𝑥𝜕𝑡
∫

𝜕

𝜕𝑥
∫ 𝑢

𝑧

−𝑑
d𝑧d𝑧d𝑧

𝜀𝜁

𝑧

𝜀𝜁

−𝑑
 

 +휀𝜎2 ∫
𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
∫ 𝑢

𝑧

−𝑑
d𝑧)

2
d𝑧+휀𝜎2 ∫

𝜕2

𝜕𝑥2 ∫ 𝑢
𝜕

𝜕𝑥
∫ 𝑢

𝑧

−𝑑
d𝑧d𝑧d𝑧

𝜀𝜁

𝑧

𝜀𝜁

−𝑑

𝜀𝜁

−𝑑
   (2.39) 

Karambas and Memos (2009) retained only terms of order O(1, ε, σ
2
). Hence, for this level 

of approximation the upper limit of the first integral term of the right-hand side of Eq. (2.39) 

is approximated by εζ ≈ 0. Thus they derived the equation: 

 
𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
= −

𝜕𝜁

𝜕𝑥
+ 𝜎2 1

𝑑
∫ (

𝜕2

𝜕𝑥𝜕𝑡
∫

𝜕

𝜕𝑥

0

𝑧 ∫ 𝑢d𝑧d𝑧
𝑧

−𝑑
) d𝑧 +

0

−𝑑
𝑂(휀𝜎2, 휀2, … )  (2.40) 

The left hand side of Eq. (2.39) is written, by using the continuity equation (2.25) 

 
𝜕

𝜕𝑡
[𝑈(𝑑 + 휀휁)] + 휀

𝜕

𝜕𝑥
∫ 𝑢2𝜀𝜁

−𝑑
d𝑧 = (𝑑 + 휀휁) [

𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
+

𝜀

𝑑+𝜀𝜁

𝜕

𝜕𝑥
∫ (𝑢2 − 𝑈2)d𝑧

𝜀𝜁

−𝑑
]          

 = (𝑑 + 휀휁) [
𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
+

𝜀

𝑑+𝜀𝜁

𝜕

𝜕𝑥
∫ (𝑢 − 𝑈)2d𝑧

𝜀𝜁

−𝑑
]  (2.41) 

Tsutsui et al. (1998) followed a similar derivation. They mention that for waves in which 

the horizontal component of water particle velocity has properties that satisfy |𝑢 − 𝑈| <

𝑂(휀1 2⁄ ) and/or is of O(σ), the third term of the right-hand side of Eq. (2.41) is of O(ε
2
) and/or 

O(εσ
2
), respectively, and thus can be neglected compared to the terms of O(1, ε, σ

2
). Adopting 

these assumptions, Eq. (2.40) is obtained for this level of approximation of O(1, ε, σ
2
). 

Following a Fourier-type analysis, Karambas and Memos (2009) expressed the integral term 

on the right-hand side of Eq. (2.40) through a convolution integral and derived the following 

momentum equation: 

 
𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
= −

𝜕𝜁

𝜕𝑥
+

1

𝜎π𝑑
∫

𝜕

𝜕𝑥
[휁(𝑥 − 𝜉, 𝑡) − 휁(𝑥, 𝑡)]ln [tanh (

π|𝜉|

4𝜎𝑑
)] d𝜉

+∞

−∞
  (2.42) 

and in dimensional variables (omitting primes): 

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ g

𝜕𝜁

𝜕𝑥
=

g

π𝑑
∫

𝜕

𝜕𝑥
[휁(𝑥 − 𝜉, 𝑡) − 휁(𝑥, 𝑡)]ln [tanh (

π|𝜉|

4𝑑
)] d𝜉

+∞

−∞
  (2.43) 

The model KM09 is, therefore, based on Eqs (2.27) and (2.43). It has the advantage of 

satisfying exactly the linear dispersion equation, as will be shown in the next section. 
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However, since only terms up to the first-order of the nonlinearity parameter are retained, the 

model should be treated as weakly nonlinear. Subsequently, the nonlinear characteristics of 

the model would not be quite representative in deeper water conditions, where εσ
2
 ~ ε. For the 

derivation of their model, KM09 assumed a constant water depth. However, they extended the 

model’s application to mildly sloping bottom since the structure of the kernel of the 

convolution integral in Eq. (2.43) is such that it dies off with x quicker than any mild variation 

of d(x). Formally their model is applicable wherever d(x) can be assumed constant inside the 

influence domain of the associated kernel. This domain is relatively small, i.e. up to four 

water depths as shown in Fig. 2.1 (see also Tsutsui et al., 1998; Schäffer, 2004a). 

 

Fig 2.1. The 1DH kernel of Eq. (2.43) as function of x/d with x = 0 at an arbitrary reference point of the 

wave field. 

These dimensions are less than usual codes suggest for their computational grids. Thus 

KM09 model can be applied also to mildly sloping bathymetries, especially in shallow waters, 

where its nonlinear characteristics are improved considerably. This extension of weakly 

nonlinear model’s applicability to mildly sloping bed was followed also by Tsutsui et al. 

(1998) and Radder (1992). By making this assumption, the value of d in Eq. (2.43) can be 

considered as a mean value of the slowly varying depth within the domain x-ξ, between the 

points x and ξ. Quantitatively and to the lowest order of 𝜕𝑑 𝜕𝑥⁄ , the modification of Eq. 

(2.43) due to a mildly sloping bottom can be approximated by taking as a starting point the 

said momentum equation. Such an exercise yields an additional term to the r.h.s. of Eq. (2.43) 

reading – g
𝜁

𝑑

𝜕𝑑

𝜕𝑥

1

cosh(𝑘𝑑)
[

1

cosh(𝑘𝑑)
− 1]. 

In the following, a fully linear dispersive model of higher order of nonlinearity than the one 

by KM09 shall be derived since terms of order O(1, ε, σ
2
, εσ

2
) will be retained. Applying the 

same as previously Fourier-transform approach on the O(εσ
2
) terms, similar to those of Eq. 

(2.39), proved quite tedious and ineffective. Hence, a different simpler approach was 
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followed. By replacing the expressions of the fluid velocities 𝑢´ = 𝜕𝐹´ 𝜕𝑥´⁄ , 𝑤´ = 𝜕𝐹´ 𝜕𝑧´⁄  

into the continuity equation the dimensional Laplace equation is obtained: 

 
𝜕2𝐹´

𝜕𝑥´2 +
𝜕2𝐹´

𝜕𝑧´2 = 0     (2.44) 

Applying the separation of variables, we look for periodic in space and time solutions of Eq. 

(2.44). In order to get an analytical solution a constant depth has to be assumed as done by 

KM09 for their weakly nonlinear model as well. Hence the application of the bottom 

boundary condition leads to the solution  

 𝐹´(𝑥´, 𝑧´, 𝑡´) = B´cosh[𝑘´(𝑑´ + 𝑧´)]sin(𝑘´𝑥´ − 𝜔´𝑡´)        (2.45) 

 𝑢´ =
𝜕𝐹´

𝜕𝑥´
= 𝑘´B´cosh[𝑘´(𝑑´ + 𝑧´)]cos(𝑘´𝑥´ − 𝜔´𝑡´)        (2.46) 

where B΄ a constant and ω΄ is the angular frequency 𝜔´ = 2𝜋/𝛵´ with T΄ the regular wave 

period. By reverting to non-dimensional variables 

 𝑢 = 𝑘B´cosh[𝜎𝑘(𝑑 + 𝑧)]cos(𝑘𝑥 − 𝜔𝑡)      (2.47) 

where ω is the non-dimensional angular frequency, 𝜔 = 2𝜋/𝛵 with T the non-dimensional 

regular wave period, following the same scaling as in Eq. (2.7). 

Hence the depth-averaged horizontal velocity is written: 

 𝑈 =
1

𝑑+𝜀𝜁
∫ 𝑢d𝑧 =

𝐵´

𝜎(𝑑+𝜀𝜁)

𝜀𝜁

−𝑑
sinh[𝜎𝑘(𝑑 + 휀휁)]cos(𝑘𝑥 − 𝜔𝑡)         (2.48) 

and therefore  

 𝑢(𝑥, 𝑧, 𝑡) =
𝜎𝑘(𝑑+𝜀𝜁)

sinh[𝜎𝑘(𝑑+𝜀𝜁)]
𝑈(𝑥, 𝑡)cosh[𝜎𝑘(𝑑 + 𝑧)]        (2.49) 

By assuming εζ ≈ 0 for consistency with the KM09 weakly nonlinear model and setting 

A′ =
𝜎𝑘𝑑

sinh(𝜎𝑘𝑑)
 , one gets 

 𝑢 = A′𝑈cosh[𝜎𝑘(𝑑 + 𝑧)]  (2.50) 

where Α΄ is invariant with respect to both 𝑥 and 𝑡. Substitution of the horizontal velocity u 

from Eq. (2.50) into Eq. (2.39), equivalent to Eq. (2.40), gives 

 
𝜕𝑈

𝜕𝑡
+ 휀 [

𝜎𝑘𝑑

sinh(𝜎𝑘𝑑)
]

2
[1 +

sinh(2𝜎𝑘𝑑)

2𝜎𝑘𝑑
] 𝑈

𝜕𝑈

𝜕𝑥
= −

𝜕𝜁

𝜕𝑥
+

1

𝑘2 [
𝜎𝑘𝑑

tanh(𝜎𝑘𝑑)
− 1]

𝜕3𝑈

𝜕𝑥2𝜕𝑡
  

 +휀 [
𝜎𝑑

sinh(𝜎𝑘𝑑)
]

2
(

3

4
cosh(2𝜎𝑘𝑑) +

1

8

sinh(2𝜎𝑘𝑑)

𝜎𝑘𝑑
− 1)

𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2  
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 +휀 [
𝜎𝑑

sinh(𝜎𝑘𝑑)
]

2
(

1

4
cosh(2𝜎𝑘𝑑) −

1

8

sinh(2𝜎𝑘𝑑)

𝜎𝑘𝑑
) 𝑈

𝜕3𝑈

𝜕𝑥3               (2.51) 

Reverting to dimensional variables and dropping primes 

 
𝜕𝑈

𝜕𝑡
+ [

𝑘𝑑

sinh(𝑘𝑑)
]

2
[1 +

sinh(2𝑘𝑑)

2𝑘𝑑
] 𝑈

𝜕𝑈

𝜕𝑥
= −g

𝜕𝜁

𝜕𝑥
+

1

𝑘2 [
𝑘𝑑

tanh(𝑘𝑑)
− 1]

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+  

 +
𝑑2

sinh2(𝑘𝑑)
(

3

4
cosh(2𝑘𝑑) +

1

8

sinh(2𝑘𝑑)

𝑘𝑑
− 1)

𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2 +  

 +
𝑑2

sinh2(𝑘𝑑)
(

1

4
cosh(2𝑘𝑑) −

1

8

sinh(2𝑘𝑑)

𝑘𝑑
) 𝑈

𝜕3𝑈

𝜕𝑥3      (2.52) 

By comparing Eqs (2.51) and (2.42) three remarks can be made. First of all the two last 

terms on the right-hand side of Eq. (2.51) refer to the last two integral terms of O(εσ
2
) on the 

right-hand side of Eq. (2.39). These terms have been neglected in KM09 derivation. Hence 

Eq. (2.51) yields an enhancement of nonlinearity of their weakly nonlinear model of O(1, ε, 

σ
2
). Secondly, the convolution integral in Eq. (2.42) that stands for the O(σ

2
) term of Eq. 

(2.39) is now replaced by a third order derivative of depth-averaged velocity. The latter 

affords a somehow more efficient numerical treatment. Thirdly, a difference between the 

coefficients of the term of O(ε) on the left-hand side of Eqs (2.42) and (2.51) is observed. 

This relies on the approximation made by Tsutsui et al. (1998) and followed by KM09. In the 

present level of approximation where terms of O(εσ
2
) are retained, the last integral terms on 

the right-hand side of Eq. (2.41) cannot be neglected. This leads to a coefficient of that term 

that is not unity as in Eq. (2.42) but includes a hyperbolic function of water depth. 

This extended model, to be denoted by KM09e, incorporates thus Eqs (2.27) and (2.52). It 

includes terms of O(1, ε, σ
2
, εσ

2
), hence it is of higher nonlinearity than the weakly nonlinear 

one KM09, and it is fully linear dispersive too. However, the Eqs (2.25) and (2.51) do not 

reduce to the nonlinear shallow water equations in shallow water (kd  0) as they are 

expected to. This result can be explained by the fact that the derivation relies on an exact first-

order solution of the local continuity equation which is not a very accurate assumption in 

shallow water. A similar assumption is also made in KM09 model. However, due to its 

weakly nonlinear character the aforementioned approximation by Tsutsui et al. (1998) is 

applicable in this case and thus Eqs (2.25) and (2.42) reduce to the NSW equations in shallow 

water. Because of this somehow invalid assumption, no thorough analysis of the KM09e 

model will be applied in the following. Only a Fourier analysis up to second order will be 

presented to further pronounce the described inaccuracy. 

Additionally, since in shallow water, the main application area of Boussinesq models, the 

horizontal velocity distribution tends to be uniform, it is appealing to also follow the 

previously said approximation. Thus the dimensional momentum equation can be written: 
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𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
= −g

𝜕𝜁

𝜕𝑥
+

1

𝑘2 [
𝑘𝑑

tanh(𝑘𝑑)
− 1]

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+  

 +
𝑑2

sinh2(𝑘𝑑)
(

3

4
cosh(2𝑘𝑑) +

1

8

sinh(2𝑘𝑑)

𝑘𝑑
− 1)

𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2 +  

 +
𝑑2

sinh2(𝑘𝑑)
(

1

4
cosh(2𝑘𝑑) −

1

8

sinh(2𝑘𝑑)

𝑘𝑑
) 𝑈

𝜕3𝑈

𝜕𝑥3      (2.53) 

More formally this modified equation can be obtained by applying the approximation used 

by Tsutsui et al. (1998) that neglects the third term in the r.h.s. of Eq. (2.41). The model based 

on Eqs (2.27) and (2.53) is, therefore, a modified version of KM09e and is denoted by 

KM09em. The specific model embeds the wavenumber 𝑘 as a free parameter in the 

momentum equation, similarly to Li's (2008) model. In the case of regular waves 𝑘 can be 

obtained from linear dispersion equation since the model is fully linear dispersive. However, 

sometimes even in the case of regular waves higher free harmonics are present, e.g. during 

propagation over and behind a submerged bar. Also in this case, the corresponding wave 

number to the main frequency of the regular wave through the linear dispersion equation is 

used. On the other hand, for irregular waves a representative value for the wavenumber 

should be adopted. In particular, in the validation tests for irregular waves presented in 

section 2.5, 𝑘 was considered to be the wavenumber corresponding through the linear 

dispersion equation to the peak frequency. In any case, a numerical investigation of the 

models' behaviour showed a very weak sensitivity on this parameter. 

In the present section two new Boussinesq-type models were derived that enhance the 

nonlinear characteristics of an existing model. The achieved enhancement of nonlinearity 

goes from O(ε, σ
2
) in KM09 to O(εσ

2
) in KM09e or KM09em. It should be noted that all 

KK02 and KM09e or KM09em models include terms of O(1, ε, σ
2
, εσ

2
). However, they are 

regarded as weakly and strongly nonlinear, respectively, due to their counterparts KK02e 

strongly nonlinear and KM09 weakly nonlinear models. 

2.4 Nonlinearity and dispersion characteristics of models 

In this section an analysis and comparison of the embedded characteristics of nonlinearity 

and dispersion of the aforementioned models shall be presented. The aim of this analysis 

would be to examine the enhancement of these properties in the derived extended nonlinear 

versions of the models.  

In addition to the models presented in section 2.3, that by Madsen and Schäffer (1998) –

MS98 in the following– will be also included in this analysis. Among the different versions of 

this latter model, the one expressed in terms of the depth-averaged velocity U will be 
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examined. This is a Boussinesq-type model of higher order of nonlinearity and dispersion that 

contains terms of order O(1, ε, σ
2
, εσ

2
, ε

2
σ

2
, ε

3
σ

2
, σ

4
, εσ

4
). Its nonlinear characteristics were 

enhanced through the application of a combination of linear operators similar to the one 

applied subsequently in KK02. 

2.4.1 Fourier analysis of equations on a horizontal bottom 

In this subsection the aforementioned models shall be analyzed to quantify the embedded 

characteristics with respect to dispersion and nonlinearity. Adopting the assumption of O(ε)<1 

(i.e. weakly nonlinear solutions) and arbitrary σ, a Stokes-type Fourier analysis for a 

horizontal bottom will be followed in order to examine the capability of various models to 

approximate the linear dispersion and the higher order harmonics. Following MS98 we shall 

look for first-, second- and third-order solutions of the form, 

 휁 = a1𝑐𝑜𝑠𝜃 + 휀a2𝑐𝑜𝑠2𝜃 + 휀2a3𝑐𝑜𝑠3𝜃    (2.54a) 

and 

  𝑈 = 𝑈1𝑐𝑜𝑠𝜃 + 휀𝑈2𝑐𝑜𝑠2𝜃 + 휀2𝑈3𝑐𝑜𝑠3𝜃           (2.54b) 

where 𝜃 = 𝜔𝑡 − 𝑘𝑥. In the following analysis, which is performed directly in non-

dimensional variables, it is convenient to introduce the definition 

 𝜅 = 𝜎𝑘𝑑     (2.55) 

and κ is actually identical to 𝑘′𝑑′, which is the product of the dimensional wave number and 

water depth, as defined in section 2.3. 

Equation (2.26) is written for a horizontal bottom 

𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
+

𝜕𝜁

𝜕𝑥
= 𝜎2 𝑑2+2𝜀𝑑𝜁

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 휀𝜎2 𝑑2

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2) + 휀𝜎2𝑑
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

휀2𝜎2 (
𝜁2

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 휁

𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
) + 휀2𝜎2 2𝑑𝜁

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2) + 휀2𝜎2𝑑𝑈
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥2 −

휀2𝜎2𝑑
𝜕𝜁

𝜕𝑥
(

𝜕𝑈

𝜕𝑥
)

2
+ 𝜎2B𝑑2 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+

𝜕3𝜁

𝜕𝑥3 + 휀
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 )        (2.56) 

where B a parameter to be determined. 

Neglecting terms of O(ε
2
σ

2
) in Eq. (2.56) leads to the momentum equation of KK02 weakly 

nonlinear model for a horizontal bottom 
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𝜕𝑈

𝜕𝑡
+ 휀𝑈

𝜕𝑈

𝜕𝑥
+

𝜕𝜁

𝜕𝑥
= 𝜎2 𝑑2+2𝜀𝑑𝜁

3

𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 휀𝜎2 𝑑2

3
(𝑈

𝜕3𝑈

𝜕𝑥3 −
𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2) + 휀𝜎2𝑑
𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

𝜎2B𝑑2 (
𝜕3𝑈

𝜕𝑥2𝜕𝑡
+

𝜕3𝜁

𝜕𝑥3 + 휀
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 )       (2.57) 

(i) First-order solution 

Following the notation by Madsen and Schäffer (1998), Eqs (2.54a,b) are substituted into Eqs 

(2.25) and (2.57). The following linear algebraic system is obtained at the O(ε
0
):  

 (
𝑚11

(1)
𝑚12

(1)

𝑚21
(1)

𝑚22
(1)

) (a1
𝑈1

) = (0
0
)  (2.58) 

where 

 
𝑚11

(1)
= 𝜔,  𝑚12

(1)
= −𝑘𝑑,

 𝑚21
(1)

= −𝑘(1 + B𝜅2),  𝑚22
(1)

= 𝜔 [1 + (Β +
1

3
) 𝜅2] 

}  (2.59) 

Hence, at first order one gets 

 𝑈1 =
𝜔a1

𝑘𝑑
  (2.60) 

and the dispersion relation 

 
𝜔2

𝑘2𝑑
=

1+B𝜅2

1+(B+
1

3
)𝜅2

  (2.61) 

In this context the reference solution is the linear dispersion equation by Stokes 

 (
𝜔2

𝑘2𝑑
)

Stokes

=
𝑡𝑎𝑛ℎ(𝜅)

𝜅
  (2.62) 

Equation (2.61) has the form of a Padé [2,2] expansion in κ of Eq. (2.62). The exact 

expansion is obtained by assuming B = 
1

15
 . This value gives the closest approximation to 

linear dispersion and was also adopted by Madsen et al. (1991) and Schäffer and Madsen 

(1995).  

Exactly the same dispersion relation is obtained at the O(ε
0
) for strongly nonlinear model 

KK02e based on Eqs (2.25) and (2.56). This was expected since the difference between Eqs 

(2.56) and (2.57) are only terms of O(ε
2
σ

2
). 

The same analysis was also applied for Madsen and Schäffer’s (1998) higher order model. 

Since this Stokes-type Fourier analysis goes up to third order, terms including powers of ε 
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higher than two do not appear in the following momentum equation, Eq. (2.63), valid on a 

horizontal bottom. 

𝜕𝑈

𝜕𝑡
+

𝜕𝜁

𝜕𝑥
− 𝜎2 [(𝛼1 +

1

3
) 𝑑2 𝜕3𝑈

𝜕𝑥2𝜕𝑡
+ 𝛼1𝑑2 𝜕3𝜁

𝜕𝑥3] + 𝜎4 [(𝛽1 +
1

3
𝛼1 −

1

45
) 𝑑4 𝜕5𝑈

𝜕𝑥4𝜕𝑡
+ 𝛽1𝑑4 𝜕5𝜁

𝜕𝑥5] +

휀𝑈
𝜕𝑈

𝜕𝑥
+ 휀𝜎2 [−

2

3
𝑑휁

𝜕3𝑈

𝜕𝑥2𝜕𝑡
− 𝑑

𝜕𝜁

𝜕𝑥

𝜕2𝑈

𝜕𝑥𝜕𝑡
+

1

3
𝑑2 𝜕𝑈

𝜕𝑥

𝜕2𝑈

𝜕𝑥2 −
1

3
𝑑2𝑈

𝜕3𝑈

𝜕𝑥3 − 𝛼1𝑑2
𝜕2(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥2 ] +

휀𝜎4 [
1

45
𝑑3휁

𝜕5𝑈

𝜕𝑥4𝜕𝑡
+ 𝛼1𝑑3

𝜕2(
𝜕𝜁

𝜕𝑥
 
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝜕𝑥2 + (
2

3
𝛼1 −

1

9
) 𝑑3

𝜕2(𝜁
𝜕3𝑈

𝜕𝑥2𝜕𝑡
)

𝜕𝑥2 + (
1

9
−

2

3
𝛼1) 𝑑4

𝜕2(
𝜕𝑈

𝜕𝑥
 
𝜕2𝑈

𝜕𝑥2  )

𝜕𝑥2 −

1

45
𝑑4 𝜕𝑈

𝜕𝑥

𝜕4𝑈

𝜕𝑥4 +
1

9
𝑑4 𝜕2𝑈

𝜕𝑥2

𝜕3𝑈

𝜕𝑥3 −
1

45
𝑑4

𝜕(𝑈
𝜕4𝑈

𝜕𝑥4 )

𝜕𝑥
+

1

3
𝛼1𝑑4

𝜕3(𝑈
𝜕2𝑈

𝜕𝑥2 )

𝜕𝑥3 + 𝛽1𝑑4
𝜕4(𝑈

𝜕𝑈

𝜕𝑥
)

𝜕𝑥4 ] +

휀2𝜎2 [
1

6
휁2 𝜕3𝑈

𝜕𝑥2𝜕𝑡
−

1

3
휁𝑑

𝜕𝑈

𝜕𝑥
 
𝜕2𝑈

𝜕𝑥2 −
1

3
𝑑

𝜕2𝑈

𝜕𝑥2

𝜕(𝜁𝑈)

𝜕𝑥
+ 𝑑

𝜕[𝜁(
𝜕𝑈

𝜕𝑥
)

2
]

𝜕𝑥
−

1

2

𝜕(𝜁2 𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝜕𝑥
−

2

3
𝑑

𝜕(𝜁𝑈
𝜕2𝑈

𝜕𝑥2 )

𝜕𝑥
] =

𝑂(휀3𝜎2, 휀2𝜎4, 𝜎6)   (2.63) 

where 𝛼1, 𝛽1 parameters to be determined. The resulting dispersion relation is 

 
𝜔2

𝑘2𝑑
=

1+𝛼1𝜅2+𝛽1𝜅4

1+(𝛼1+
1

3
)𝜅2+(𝛽1+

1

3
𝛼1−

1

45
)𝜅4

  (2.64) 

Equation (2.64) has the form of a Padé [4,4] expansion in κ of Eq. (2.62), which is matched 

identically by choosing parameters 𝛼1 =
1

9
 and 𝛽1 =

1

945
 . The application of the enhancement 

technique by Madsen and Schäffer (1998), apart from improving the accuracy of their 

equations with respect to linear dispersion equation, it also removed a singularity occurring at 

𝜅 ≈ 4.2 that limited any practical use of them. It should be also mentioned that setting 

𝛼1 =
1

15
 and 𝛽1 = 0 leads to the Padé [2,2] expansion given by Eq. (2.61) with B =

1

15
 . 

Fourier analysis was also applied for KM09 weakly, extended and modified nonlinear 

models. At O(ε
0
), all three of them give exactly the same dispersion relation since their 

differences refer to higher order terms. In this case the linear system of equations includes the 

coefficients 

 
𝑚11

(1)
= 𝜔,  𝑚12

(1)
= −𝑘𝑑,

 𝑚21
(1)

= −𝑘,  𝑚22
(1)

= 𝜔𝜅 coth(κ) 
}  (2.65) 

Solving the system of Eqs (2.58) one gets Eq. (2.60) and the dispersion equation 

 
𝜔2

𝑘2𝑑
=

𝑡𝑎𝑛ℎ(𝜅)

𝜅
  (2.66) 
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which is identical to the linear dispersion relation of Stokes waves. Hence, all three versions 

of KM09 model are fully linear dispersive at any water depth. Therefore, they face no 

practical limitation of their application field as far as linear dispersive characteristics are 

concerned.  

Figure 2.2 shows the ratio of phase celerities 𝑐/𝑐Stokes as a function of 𝜅, where c is 

determined from Eqs (2.61), (2.64) and (2.66) respectively, and 𝑐Stokes from Eq. (2.62). Both 

versions of KK02 model give the same results at first order. The same is true for all three 

versions of KM09 model. Hence, they are referred in Fig. 2.2 as ‘Karambas-Koutitas (2002)’ 

and ‘Karambas-Memos (2009)’, respectively.  

 

Fig. 2.2. Ratio of phase celerity, 𝑐/𝑐Stokes, where c is determined from Eqs (2.61), (2.64), and (2.66) for 

KK02, MS98 and KM09 models respectively, and cStokes 
 from Eq. (2.62). 

It is observed that KK02 model gives very good results up to the traditional deep-water limit 

𝜅 ≈ 3 where the error is about 2%. However, in deeper water this error increases 

significantly. MS98 model is seen to be excellent even for 𝜅 as large as 6. Finally, KM09 

model reproduces exactly the Stokes wave celerity to the first order over the entire depth 

range, proving thus its advantage of being fully linear dispersive. 

(ii) Second-order solution 

Continuing the present analysis to second order firstly for KK02 weakly nonlinear model, 

Eqs (2.54a,b) are substituted into Eqs (2.25) and (2.57) and terms of O(ε) are collected. The 

only difference between Eqs (2.56) and (2.57) is the presence of extra terms of O(ε
2
σ

2
) in Eq. 

(2.56). Therefore, the results of the two nonlinear versions of the model are identical at 

second order. Hence, they will both be referred to as KK02 model in this analysis of O(ε). 

The following linear algebraic system is obtained: 
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 (
𝑚11

(2)
𝑚12

(2)

𝑚21
(2)

𝑚22
(2)

) (a2
𝑈2

) =
a1

2

𝑑
(𝐹1

𝐹2
)    (2.67) 

where 

 
𝑚11

(2)
= 2𝜔,  𝑚12

(2)
= −2𝑘𝑑,

  𝑚21
(2)

= −2𝑘(1 + 4B𝜅2),   𝑚22
(2)

= 2𝜔 [1 + 4 (B +
1

3
) 𝜅2] 

}   (2.68a) 

 𝐹1 = 𝜔, 𝐹2 =
𝜔2

2𝑘𝑑
[1 + (4B −

5

3
) 𝜅2]    (2.68b) 

Hence at second order one gets the solution for a2: 

 a2 =
3

4

a1
2

𝑑

1

𝜅2 (1 +
2

3
𝜅2 +

1

25
𝜅4)          (2.69) 

The reference in this context is the Stokes second-order solution by Skjelbreia and 

Hendrickson (1960) as proposed by Madsen and Schäffer (1998): 

 a2
Stokes =

1

4

a1
2

𝑑
𝜅 coth(𝜅)[3coth2(𝜅) − 1]          (2.70) 

of which an expansion around 𝜅 = 0 yields 

 𝑎2
Stokes =

3

4

𝑎1
2

𝑑

1

𝜅2 (1 +
2

3
𝜅2 +

7

45
𝜅4 +

2

315
𝜅6 + 𝑂(𝜅8))              (2.71) 

Application of second-order analysis for MS98 higher order model leads to the solution 

 𝑎2 =
3

4

𝑎1
2

𝑑

1

𝜅2 (1 +
2

3
𝜅2 +

7

45
𝜅4 + 𝛰(𝜅6))             (2.72) 

where the values (𝛼1, 𝛽1) = (
1

9
,

1

945
) determined above have been used. As mentioned by 

Madsen and Schäffer (1998), if terms of O(σ
4
, εσ

2
) are only retained, the coefficients of 𝜅2 

and 𝜅4 in Eq. (2.72) take the values 
2

3
 and 

88

945
 respectively. By neglecting all σ

4
 terms and 

retaining only terms of O(σ
2
, εσ

2
) with 𝛼1 =

1

15
 , the solution applicable to MS98 reduces to 

the one given by Eq. (2.69) for KK02 model.  

Figure 2.3 shows the deviation of second harmonic from the target value, a2/a2
Stokes, for 

KK02 models (weakly and strongly nonlinear) and MS98 model. Observing Eqs (2.69) and 

(2.71) we notice that the constant term and the 𝜅2-term are matched while there is a 

difference in the coefficient of 𝜅4-term. On the other hand Eq. (2.72) matches Eq. (2.71) even 

at fourth order. 
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Fig. 2.3. Ratio of second harmonic, a2/a2
Stokes, where a2 is determined from Eqs (2.69) and (2.72) for 

KK02 and MS98 respectively, and
 
 a2

Stokes from Eq. (2.70). 

Madsen and Schäffer (1998) explained that the linear enhancement technique allows to 

waive the requirement of including higher order terms for a desired accuracy. For example, 

matching the coefficient of 𝜅4-term in Eq. (2.71) would normally require O(σ
6
, εσ

4
) 

formulations of Boussinesq equations. However, the insertion of (𝛼1, 𝛽1) reduces this 

requirement to O(σ
4
, εσ

4
) as presented above. In addition, the enhancement method removes a 

singularity occurring for 𝜅 = √3. In the same manner, KK02 model succeeds in matching the 

𝜅2-term coefficient through the insertion of B coefficient even though terms of order O(σ
4
, 

εσ
2
) would be normally required. However, Madsen and Schäffer (1998) add that the potential 

of the linear improvement is fully utilized with regard to the second-order transfer only if a 

sufficient order of dispersion is retained also in the nonlinear terms. 

It can be noticed from Fig. 2.3 that MS98 model is superior to KK02 model for the practical 

range of depths 𝜅 < 5.5, as expected due to its higher order formulation. In deeper water the 

higher order terms of Eq. (2.71) become significant, hence the mismatch of the relevant 

coefficients in both models leads to significant errors. Therefore, the apparent superiority of 

KK02 model in this range of depths has no physical meaning. In shallower water MS98 

model is almost perfect for 𝜅 < 1, while the second harmonic is gradually underestimated for 

larger values of 𝜅 reaching a 50% of the Stokes target value for 𝜅 = 6. On the other hand, the 

error for KK02 model increases more abruptly, reaching 7% for 𝜅 = 1 and approximately 

50% for 𝜅 = 4.5.  

Second-order analysis was also applied to the three versions of KM09 model. Here the 

results are different in each version due to O(εσ
2
) terms. For KM09 weakly nonlinear model 

the linear system to be solved contains the coefficients 

 
𝑚11

(2)
= 2𝜔,  𝑚12

(2)
= −2𝑘𝑑,

  𝑚21
(2)

= −𝑘
 tanh(2𝜅)

𝜅
,   𝑚22

(2)
= 2𝜔 

}            (2.73a) 
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 𝐹1 = 𝜔, 𝐹2 =
𝜔2

2𝑘𝑑
                                 (2.73b) 

Hence at second order one gets the solution for a2:  

 a2 =
3

2

a1
2

𝑑

tanh(𝜅)

[2 tanh(𝜅)−tanh(2𝜅)]
                                 (2.74) 

of which an expansion at 𝜅 = 0 yields 

 a2 =
3

4

a1
2

𝑑

1

𝜅2 (1 +
5

3
𝜅2 +

1

15
𝜅4 + 𝛰(𝜅6))         (2.75) 

KM09 extended nonlinear model leads to the linear system containing the coefficients 

 
𝑚11

(2)
= 2𝜔,  𝑚12

(2)
= −2𝑘𝑑,

  𝑚21
(2)

= −2𝑘,   𝑚22
(2)

= −2𝜔[3 − 4𝜅 coth(𝜅)] 
}        (2.76a) 

 𝐹1 = 𝜔, 𝐹2 =
𝜔2

2𝑘𝑑
[𝜅 coth(𝜅) + 𝜅2 cosh(2𝜅)csch2(𝜅)]         (2.76b) 

Hence at second order one gets the solution for a2:  

 a2 =
a1

2

𝑑

{𝜅[9+2𝜅 coth(2𝜅)]−6 tanh(𝜅)}

12[𝜅−tanh(𝜅)]
                (2.77) 

of which an expansion at 𝜅 = 0 gives 

 a2=
3

4

a1
2

d

1

κ2 (
4

3
+

74

45
κ2+

268

4725
κ4+Ο(κ6))            (2.78) 

The leading term of the series in Eq. (2.78) is not unity contrary to the aforementioned 

models. In particular the limit of a2/a2
Stokes as 𝜅 → 0 is 

4

3
 rather than unity. Hence, the model 

does not converge to Stokes solution at second-order. This was the reason for considering a 

modified momentum equation (Eq. (2.53)), slightly different from the one of KM09e. This 

approximation, used also by Tsutsui et al. (1998), yields KM09em model that includes terms 

of order O(1, ε, σ
2
, εσ

2
) similarly to KM09e model. The second-order analysis of KM09em 

leads to the linear system with coefficients 

 
𝑚11

(2)
= 2𝜔,  𝑚12

(2)
= −2𝑘𝑑,

  𝑚21
(2)

= −2𝑘,   𝑚22
(2)

= −2𝜔[3 − 4𝜅 coth(𝜅)] 
}         (2.79a) 

 𝐹1 = 𝜔, 𝐹2 =
𝜔2

2𝑘𝑑
[1 − 𝜅2csch

2(𝜅) +𝜅2 cosh(2𝜅)csch
2(𝜅)]  (2.79b) 
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and finally to the solution 

 a2 =
a1

2

𝑑

[8𝜅+(2𝜅2−5) tanh(𝜅)]

12[𝜅−tanh(𝜅)]
                     (2.80) 

of which an expansion at 𝜅 = 0 gives 

 a2 =
3

4

a1
2

𝑑

1

𝜅2 (1 +
73

45
𝜅2 +

67

1575
𝜅4 + 𝛰(𝜅6))          (2.81) 

It can be observed that this solution converges to the one given by Stokes theory as 𝜅 → 0, 

similarly to KM09 weakly nonlinear model. Fig. 2.4 shows the ratio of second harmonic, 

a2/a2
Stokes for the three versions of KM09 model. 

 

Fig. 2.4. Ratio of second harmonic, a2/a2
Stokes, where a2 is determined from Eqs (2.74), (2.77) and 

(2.80) for KM09, KM09e and KM09em models respectively, and
 
 a2

𝑆𝑡𝑜𝑘𝑒𝑠  from Eq. (2.70). 

Figure 2.4 shows that the results for the second harmonic are poorer than those of KK02 

models. All three versions overestimate the second harmonic in shallow and intermediate 

water. This result was expected since their derivation relies on an exact first-order solution of 

the local continuity equation. The omission of higher order terms of the vertical profile of the 

horizontal particle velocity leads to discrepancies when compared to higher order Stokes 

solutions. In deep water, where 𝜅 > 3, an improvement of KM09e and KM09em is observed 

as compared to the weakly nonlinear model since the extra terms of order O(εσ
2
) become 

significant. Nevertheless, despite the fact that the three versions of KM09 model have the 

advantage of being fully linear dispersive, their nonlinear characteristics are poorer in shallow 

and intermediate water than the ones given by models derived following the usual Taylor 

expansion (e.g. Karambas and Koutitas, 2002; Madsen and Schäffer, 1998).   
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(iii) Third-order solution 

The Stokes-type Fourier analysis is extended to third order for the aforementioned models. 

The terms proportional to sin(3𝜃) lead directly to a matrix problem of the form 

 (
𝑚11

(3)
𝑚12

(3)

𝑚21
(3)

𝑚22
(3)

) (a3
𝑈3

) =
a1

3

𝑑2 (𝐹1
𝐹2

)         (2.82) 

which results in third-order solutions for a3 and 𝑈3. Following Madsen and Schäffer (1998), 

it should be mentioned that terms proportional to sin(𝜃) need to be removed to avoid secular 

unbounded solutions. In order to solve this problem 𝜔 and 𝑈1 are expanded as 

 𝜔 = 𝜔1(1 + 휀2𝜔13)    and   𝑈1 = (
𝜔a1

𝑘𝑑
) (1 + 휀2𝑈13)               (2.83) 

where 𝜔1 refers to the first-order solution, 𝜔13 represents the amplitude dispersion and 𝑈13 

the third-order correction to the first-order velocity amplitude. The reference in this context is 

the Stokes third-order solution by Skjelbreia and Hendrickson (1960) 

   a3
Stokes =

3

64

a1
3

𝑑2 𝜅2 1+8cosh6(𝜅)

sinh6(𝜅)
   and   𝜔13

Stokes =
1

16

a1
2

𝑑2 𝜅2 9tanh4(𝜅)−10tanh2(𝜅)+9

tanh4(𝜅)
  (2.84) 

of which an expansion at 𝜅 = 0 gives 

 
a3

Stokes=
27

64

a1
3

𝑑2
1

𝜅4(1+
5

3
𝜅2+

64

45
𝜅4+

85

189
𝜅6+𝛰(𝜅8))

𝜔13
Stokes=

9

16

a1
2

𝑑2
1

𝜅2(1+
2

9
𝜅2+

113

135
𝜅4−

2

315
𝜅6+𝛰(𝜅8))

}      (2.85) 

As noted elsewhere in this paper, accepting as targets the Stokes wave solutions may be 

questionable since each order of the Stokes wave is associated with a particular area of 

applicability. However, it appears that there exist no better options given the general nature of 

the comparisons at hand, where the wave conditions are not specified. Additionally, the 

Stokes wave of any order of nonlinearity covers a comparatively wide area of conditions in 

terms of wave height and water depth. 

Third-order analysis for KK02, KK02e and MS98 models leads to the solutions shown in 

Figs 2.5 and 2.6. It turns out that MS98 model is accurate in shallow water with respect to 

Stokes theory but in deep and intermediate water the third harmonic and the amplitude 

dispersion are significantly underestimated. Application of the enhancement technique with 

coefficients (𝛼1, 𝛽1) = (
1

9
,

1

945
), as proposed by Madsen and Schäffer (1998), eliminates the 

singularities occurring at 𝜅 = √3 and 𝜅 = √
3

2
  for a3 and 𝜔13 respectively; the lengthy 

expressions of these variables are not given here.  
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The extra nonlinear terms of order O(ε
2
σ

2
) in KK02e model improve obviously the 

amplitude dispersion characteristics when compared to KK02 weakly nonlinear model. 

However, they remain quite poor, especially in deep water. On the other hand, both models’ 

solutions for the third harmonic match the 𝜅2-term coefficient of the series in the parenthesis 

of Eq. (2.85) but not the coefficients of higher order. The deviation of the coefficients of 

higher order terms is less for the weakly nonlinear model KK02 than the extended nonlinear 

one KK02e and this leads a slightly better result with respect to the third harmonic. The extra 

nonlinear terms of MS98 model are of order O(σ
4
, εσ

4
), i.e. of higher order with respect to σ. 

Hence, its third-order solution is more accurate than that of KK02 models.  

 

Fig. 2.5. Ratio of third harmonic, a3/a3
Stokes for KK02, KK02e and MS98,

 a3
Stokes from Eq. (2.84). 

 

Fig. 2.6. Ratio of amplitude dispersion, 𝜔13/𝜔13
Stokes for KK02, KK02e and MS98 models, 𝜔13

Stokes from 

Eq. (2.84). 

Third-order solutions for KM09 weakly nonlinear and extended modified models are shown 

in Figs 2.7 and 2.8. KM09em model converges to Stokes solutions in shallow water, while 

KM09 significantly underestimates them. 
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Fig. 2.7. Ratio of third harmonic, a3/a3
Stokes for KM09 and KM09em models, a3

Stokes from Eq. (2.84). 

 

Fig. 2.8. Ratio of amplitude dispersion, 𝜔13/𝜔13
Stokes for KM09 and KM09em models, 𝜔13

Stokes from Eq. 

(2.84). 

The modified model shows quite improved behaviour in deeper water with regard to the 3
rd

 

harmonic amplitude, when compared to the weakly nonlinear one due to the extra terms of 

𝑂(εσ2). Despite being fully linear dispersive, both versions of KM09 model show quite poor 

characteristics of nonlinear amplitude dispersion in intermediate and deep water.  

2.4.2 Linear shoaling analysis 

Madsen and Sørensen (1992) introduced the linear shoaling gradient 𝛾0 in order to check the 

applicability of their Boussinesq equations under shoaling water conditions. This quantity was 

defined by 

 
𝐴𝑥

𝐴
= −

𝑑𝑥

𝑑
𝛾0   (2.86) 
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where 𝐴 is the local wave amplitude and index 𝑥 denotes partial derivative with respect to 𝑥. 

The shoaling gradient 𝛾0 is a function of the local variable 𝜅. Madsen and Sørensen (1992) 

combined Stokes's linear theory with conservation of energy flux and derived the reference 

gradient 

 𝛾0
𝑆𝑡𝑜𝑘𝑒𝑠 =

2𝜅 sinh(2𝜅)+2𝜅2[1−cosh(2𝜅)]

[2𝜅+sinh(2𝜅)]2                (2.87) 

of which a Taylor expansion at 𝜅 = 0 yields 

 𝛾0
Stokes =

1

4
−

1

4
𝜅2 +

1

18
𝜅4 +

1

540
𝜅6 −

11

3150
𝜅8 + 𝑂(𝜅10)              (2.88) 

The analysis by Madsen and Schäffer (1998) will be followed. Hence, their argument about 

the applicability of the linear shoaling gradient will be adopted. Chen and Liu (1995) rejected 

this gradient as being a reliable measure of the linear shoaling effect, since they claimed that a 

deviation from the target gradient produces a reduced effect as the relative depth increases 

and errors occurring in intermediate and deep water exaggerate the actual difference of the 

resulting shoaling amplitude. However, the shoaling gradient is the most obvious analytical 

measure of the linear shoaling characteristics of Boussinesq equations. In addition, the 

insertion of just two tuning parameters (𝛼2, 𝛽2) was enough for MS98 model to achieve 

easily a high accuracy in this respect. Hence, the linear shoaling gradient analysis will be 

followed as proposed by Madsen and Schäffer (1998). 

KM09 weakly nonlinear and modified models were derived on the assumption of a 

horizontal bottom. However, their applicability can be extended to mildly varying depth as 

discussed in subsection 2.3.2. Nevertheless, the momentum equation of these models does not 

include terms of the spatial derivative of depth. Additionally, the approximation mentioned in 

subsection 2.3.2 that quantifies the depth variation effect by adding an extra term in the 

momentum equation does not contribute to the 𝑂(σ2) at which the linear shoaling analysis is 

performed. Therefore, the following analysis is not applicable to these models.  

The aforementioned gradient refers to linear shoaling. Hence, all nonlinear terms have to be 

neglected. Consequently, all terms of order 𝑂(휀, 휀𝜎2, 휀2𝜎2) will be removed from KK02 

weakly and strongly nonlinear models. In this way the two models coincide and thus they will 

be both referred to as KK02 model in this section. The non-dimensional continuity equation 

for KK02 and MS98 models is reduced to 

 휁𝑡 + 𝑑𝑈𝑥 + 𝑑𝑥𝑈 = 𝑂(휀)              (2.89) 

while the momentum equation of KK02 model is reduced to 
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𝑈𝑡 + 휁𝑥 − 𝜎2 𝑑2

3
𝑈𝑥𝑥𝑡 − 𝜎2𝑑𝑑𝑥𝑈𝑥𝑡 − 𝜎2B𝑑2(𝑈𝑥𝑥𝑡 + 휁𝑥𝑥𝑥) − 𝜎22B2𝑑𝑑𝑥(𝑈𝑥𝑡 + 휁𝑥𝑥) = 𝑂(휀)       

      (2.90) 

At this point, it should be mentioned once again, that the original Karambas and Koutitas’s 

(2002) model includes one single free parameter for controlling both the linear dispersion and 

linear shoaling characteristics and thus the coefficient of the last term on the l.h.s of Eq. 

(2.90) is B instead of 2B2. A similar linear shoaling analysis for the original Karambas and 

Koutitas’s (2002) model can be found in Memos et al. (2016). 

Following Schäffer and Madsen (1995), we look for solutions of the form 

 휁(𝑥, 𝑡) = 𝐴(𝑥)𝑒𝑖[𝜔𝑡−𝛹(𝑥)]        (2.91a) 

 𝑈(𝑥, 𝑡) = 𝐷(𝑥)[1 + 𝑖𝜑(𝑥)𝑑𝑥]𝑒𝑖[𝜔𝑡−𝛹(𝑥)]        (2.91b) 

where 

 
𝜕𝛹

𝜕𝑥
= 𝑘(𝑥)     (2.92) 

and 𝐴, 𝐷 and 𝜑 are real slowly varying functions of 𝑥. Introduction of the 𝜑 term permits a 

small phase shift for a mildly sloping bed, while in constant depth 𝑈 is in phase with 휁. First 

derivatives of 𝐴, 𝐷, 𝜑, 𝑘 and 𝑑 are assumed to be small, and thus products of derivatives as 

well as higher derivatives of these quantities are neglected in the analysis. 

Applying the procedure by Madsen and Schäffer (1998), Eqs (2.91a) and (2.91b) are 

substituted into the continuity equation (2.89) and real and imaginary terms are collected. 

Thus two equations are derived: 

 𝐷 =
𝜔𝐴

𝑘𝑑
         (2.93) 

 
𝐷𝑥

𝐷
+ (1 + 𝜑𝑘𝑑)

𝑑𝑥

𝑑
= 0                          (2.94) 

Differentiating Eq. (2.93) with respect to 𝑥 leads to 

 
𝐷𝑥

𝐷
=

𝐴𝑥

𝐴
−

𝑘𝑥

𝑘
−

𝑑𝑥

𝑑
                      (2.95) 

which in combination with Eq. (2.94) yields 

 𝜑𝑘𝑑
𝑑𝑥

𝑑
=

𝑘𝑥

𝑘
−

𝐴𝑥

𝐴
             (2.96) 
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Equations (2.91a) and (2.91b) are then substituted into the momentum equation (2.90). 

Combining the imaginary part with Eq. (2.93), the dispersion relation (2.61) is obtained. The 

real part, after using Eqs (2.93), (2.95) and (2.96), can be expressed as 

 𝛾1
𝐴𝑥

𝐴
+ 𝛾2

𝑘𝑥

𝑘
+ 𝛾3

𝑑𝑥

𝑑
= 0       (2.97) 

where 

 𝛾1 = 1 + 𝑠2 + 𝜅2 [3B − (B +
1

3
) 𝑠2]                     (2.98a) 

 𝛾2 = −𝑠2 + 3B𝜅2                               (2.98b) 

 𝛾3 = 𝜅2 [2B2 + 𝑠2 (2B − 2B2 −
1

3
)]                (2.98c) 

and where 𝑠 is defined by 

 𝑠 =
𝜔

𝑘√𝑑
=

𝑐′

√𝑔𝑑′
                 (2.99) 

where c΄ and d΄ the dimensional wave celerity and still water depth, respectively. 

The first spatial derivative of the wavenumber 𝑘 can be expressed in terms of the first 

spatial derivative of 𝑑 by differentiating the dispersion relation (2.61) with respect to 𝑥, and 

this leads to 

 𝛾4
𝑘𝑥

𝑘
+ 𝛾5

𝑑𝑥

𝑑
= 0               (2.100) 

where 

 𝛾4 = 2 {1 + 𝜅2 [2B − 𝑠2 (B +
1

3
)]}             (2.101a) 

 𝛾5 = 1 + 𝜅2 [3B − 2𝑠2 (B +
1

3
)]                  (2.101b) 

The linear shoaling gradient γ0 is obtained by substituting Eq. (2.100) into Eq. (2.97). It is 

found 

 𝛾0 =
𝛾3𝛾4−𝛾2𝛾5

𝛾1𝛾4
  (2.102) 

Adopting the value B =
1

15
 which optimizes the linear dispersion characteristics as discussed 

above, the expansion of Eq. (2.102) at 𝜅 = 0 gives 
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 𝛾0 =
1

4
−

1

4
𝜅2 + (

1

45
+

1

3
B2) 𝜅4 + (

13

1350
−

2

45
B2) 𝜅6 + (−

11

3375
−

2

675
B2) 𝜅8 + 𝑂(𝜅10)              

   (2.103) 

By setting B2 = B1 =
1

30
 , the corresponding solution for the original Karambas and Koutitas 

(2002) model appears, which after expansion gives 

 𝛾0 =
1

4
−

1

4
𝜅2 +

1

30
𝜅4 +

11

1350
𝜅6 −

34

10125
𝜅8 + 𝑂(𝜅10)                (2.104) 

Matching up to κ
4
-terms between Eqs (2.103) and (2.88) yields B2 =

1

10
 . This value gives 

the best fit for the shoaling gradient for 𝑘𝑑 < 1.2, but since much higher-order terms in γ0 are 

inevitable, a good fit for a larger range of 𝑘𝑑-values is required. A minimization of the error 

compared to Stokes’s target solution up to the traditional limit of deep water, 𝑘𝑑 = 3, yields 

B2 = 0.0653, which is only marginally different from Madsen and Sørensen’s (1992) result 

corresponding to B2 =
1

15
≈ 0.0667 (see also Schäffer and Madsen, 1995). 

Madsen and Schäffer (1998) applied the aforementioned linear shoaling analysis to their 

model too. Their momentum equation is thus reduced to 

𝑈𝑡 + 휁𝑥 − 𝜎2 [(𝛼1 +
1

3
) 𝑑2𝑈𝑥𝑥𝑡 + 𝛼1𝑑2휁𝑥𝑥𝑥] − 𝜎2𝑑𝑥[(1 + 2𝛼2)𝑑𝑈𝑥𝑡 + 2𝛼2𝑑휁𝑥𝑥] +

𝜎4 [(𝛽1 +
1

3
𝛼1 −

1

45
) 𝑑4𝑈𝑥𝑥𝑥𝑥𝑡 + 𝛽1𝑑4휁𝑥𝑥𝑥𝑥𝑥] + 𝜎4𝑑𝑥 [(𝛽2 +

7

3
𝛼1 +

2

3
𝛼2 −

2

9
) 𝑑3𝑈𝑥𝑥𝑥𝑡 +

𝛽2𝑑3휁𝑥𝑥𝑥𝑥] = 𝑂(휀)            (2.105) 

Equations (2.91a) and (2.91b) are substituted into Eqs (2.89) and (2.105) and after applying 

the values (𝛼1, 𝛽1) = (
1

9
,

1

945
)  as above, the linear shoaling gradient is obtained for MS98 

(for more details see Madsen and Schäffer, 1998). By expanding their solution at 𝜅 = 0 one 

gets 

𝛾0 =
1

4
−

1

4
𝜅2 +

1

18
𝜅4 +

1

540
(

43

21
− 12𝛼2 + 90𝛽2) 𝜅6 +

1

3150
(−

1006

81
+

130

9
𝛼2 −

280

3
𝛽2) 𝜅8 +

𝑂(𝜅10)                  (2.106) 

As stated in MS98, the most attractive technique for the determination of (𝛼2, 𝛽2) is the one 

proposed by Schäffer and Madsen (1995). This relies on the minimization of the integral error 

1

𝜅0
∫ (𝛾0

Stokes − 𝛾0)
2
𝑑𝜅

𝜅0

0
. Setting 𝜅0 = 6, Eqs (2.88) and (2.106) give (𝛼2, 𝛽2) = 

(0.146488, 0.00798359). Fig. 2.9 shows the linear shoaling gradient as computed by Stokes 

theory, KK02, and MS98 models. Madsen and Schäffer's (1998) model behaviour is excellent 



Chapter 2.  Nonlinear analysis of higher order Boussinesq-type wave models 

 

 

56 

 

up to 𝜅 = 6 which is twice the traditional deep water limit. This was expected since this 

model embeds two free parameters to be optimized over linear shoaling. It can be noticed on 

this that Eq. (2.106) matches Eq. (2.88) up to fourth order terms. By setting (𝛼2, 𝛽2) =

(
1

6
,

2

189
) leads to a matching up to 𝜅8 terms but the aforementioned integral error technique 

gives some deviation in deep water (κ > 6) where higher order terms become significant too. 

KK02 gives very good results up to approximately 𝜅 = 1.5, and in general acceptable results 

up to 𝜅 = 3, since the value B2 = 0.0653 has been used to minimize the total error over this 

depth range, as already discussed above.  

 

Fig. 2.9. Linear shoaling gradient 𝛾0 computed by Stokes theory, MS98, and KK02 models. 

2.4.3 Transfer functions for sub- and super-harmonics 

In this subsection the transfer functions for second-order bound sub- and super-harmonics 

are derived for the aforementioned Boussinesq-type models. It should be mentioned that the 

accuracy of second-order energy transfer is by far more important in shallow water where this 

transfer is high. 

The procedure presented by Madsen and Schäffer (1998) shall be applied. A first-order 

wave group made up of just two frequencies 𝜔𝑛 and 𝜔𝑚 can be described as follows 

 휁(𝑥, 𝑡) = 휁𝑛 + 휁𝑚          (2.107a) 
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 휁𝑛 = 𝑎𝑛 cos(𝜔𝑛𝑡 − 𝑘𝑛𝑥) + 𝑏𝑛 sin(𝜔𝑛𝑡 − 𝑘𝑛𝑥)          (2.107b) 

 휁𝑚 = 𝑎𝑚 cos(𝜔𝑚𝑡 − 𝑘𝑚𝑥) + 𝑏𝑚 sin(𝜔𝑚𝑡 − 𝑘𝑚𝑥)           (2.107c) 

Each of the two wave components is considered to be solution to the relevant linearized 

Boussinesq equations. Thus both sets (𝜔𝑛, 𝑘𝑛) and (𝜔𝑚, 𝑘𝑚) should satisfy the corresponding 

linear dispersion relation.  

Through the nonlinear terms of 𝑂(휀), a first-order bichromatic wave train forces a second-

order wave train consisting of four contributors, one sub-harmonic, 𝜔𝑝 = 𝜔𝑛 − 𝜔𝑚 and three 

super-harmonics, 𝜔𝑝 = 𝜔𝑛 + 𝜔𝑚, 𝜔𝑝 = 2𝜔𝑛 and 𝜔𝑝 = 2𝜔𝑚 with corresponding wave 

numbers determined by 𝑘𝑝 = 𝑘𝑛 − 𝑘𝑚, 𝑘𝑝 = 𝑘𝑛 + 𝑘𝑚, 𝑘𝑝 = 2𝑘𝑛 and 𝑘𝑝 = 2𝑘𝑚 

respectively. These waves are bound or phase-locked to the first-order wave train and pair 

(𝜔𝑝, 𝑘𝑝) does not satisfy the linear dispersion equation. Super-harmonics contribute in wave 

profile vertical asymmetry, i.e. wave crests get higher and sharper, wave troughs get flattened, 

while sub-harmonics may induce long waves over the coast that may resonate when they 

penetrate into harbours and cause the large motion of moored ships (Zou, 1999). The second-

order wave train is expressed by 

 휁(2)(𝑥, 𝑡) = 휁𝑛𝑚
− + 휁𝑛𝑚

+ + 휁𝑛𝑛
+ + 휁𝑚𝑚

+          (2.108) 

where 

 휁𝑛𝑚
± = 휀𝛿𝐺𝜁

±[𝑎𝑝 cos(𝜔𝑝𝑡 − 𝑘𝑝𝑥) + 𝑏𝑝 sin(𝜔𝑝𝑡 − 𝑘𝑝𝑥)]             (2.109a) 

and 

 𝑎𝑝 =
1

𝑑
(𝑎𝑛𝑎𝑚 ∓ 𝑏𝑛𝑏𝑚)   and   𝑏𝑝 =

1

𝑑
(𝑎𝑚𝑏𝑛 ± 𝑎𝑛𝑏𝑚)          (2.109b) 

 𝜔𝑝 = 𝜔𝑛 ± 𝜔𝑚   and   𝑘𝑝 = 𝑘𝑛 ± 𝑘𝑚                (2.109c) 

 𝛿 = {
1

2
  for n=m              

1  for  n≠m            
              (2.109d) 

The sub/super-harmonic contributors of Eq. (2.108) are determined by using the 

lower/upper signs in Eqs (2.109a) to (2.109c). Functions 𝐺𝜁
− and 𝐺𝜁

+ are the second-order 

surface elevation transfer functions to be determined. Expressions for the second-order 

velocity can be obtained in a similar manner by using 𝐺𝑈
± instead of 𝐺𝜁

± in Eq. (2.109a).  
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Following Madsen and Schäffer (1998), the reference solutions here are the one given by 

Ottesen-Hansen (1978) for the sub-harmonics and the one by Sand and Mansard (1986) for 

the super-harmonics. Their solutions are determined directly from the nonlinear boundary 

value problem for the Laplace equation. 

Figure 2.10 shows the target second order transfer 𝐺𝜁
± as a function of 𝛺𝑛 and 𝛺𝑚 defined by 

 𝛺𝑛 =
𝜔𝑛

′

2𝜋
√

𝑑′

𝑔
     and   𝛺𝑚 =

𝜔𝑚
′

2𝜋
√

𝑑′

𝑔
           (2.110) 

where primes denote dimensional quantities as before. 

 

Fig. 2.10. Second-order transfer function 𝐺𝜁
Stokes for Stokes theory. Results for super-harmonics, 𝐺𝜁

+ , 

are shown above the diagonal; results for sub-harmonics, −𝐺𝜁
− , are shown below it. 

A corresponding axis in terms of 𝜅 is also shown, where the wavelength is computed from 

the linear wave theory. The upper triangular represents the super-harmonic transfer from 𝜔𝑛 

and 𝜔𝑚 to 𝜔𝑝 = 𝜔𝑛 + 𝜔𝑚, while the lower triangle represents the sub-harmonic transfer 

from 𝜔𝑛 and 𝜔𝑚 to 𝜔𝑝 = 𝜔𝑛 − 𝜔𝑚. The diagonal line on which 𝜔𝑛 equals 𝜔𝑚 represents the 

second-harmonic transfer discussed in subsection 2.4.1. 

As mentioned by Madsen and Schäffer (1998), the super-harmonic transfer function has a 

local minimum in intermediate water depth, while the sub-harmonic is gradually reduced 

from shallow to deep water. Both functions tend to infinity in the shallow water limit, where 

the difference between bound and free wavenumbers vanishes. As presented in detail by 



Chapter 2.  Nonlinear analysis of higher order Boussinesq-type wave models 

 

 

59 

 

Madsen and Sørensen (1993), when approaching this limit the generated bound waves are no 

longer small compared to the primary waves and near-resonant energy exchange takes place. 

In the following the second-order transfer functions 𝐺𝜁
± will be derived for the 

aforementioned Boussinesq-type models. The analysis will be performed over a horizontal 

bottom, thus the Boussinesq equations for the various models are the reduced ones used in 

subsection 2.4.1.  

Since Eqs (2.107) provide a solution to the linearized equations, (𝜔𝑛 , 𝑘𝑛) and (𝜔𝑚, 𝑘𝑚) will 

satisfy the relevant to each model linear dispersion equation. Hence, the first-order velocity 

can be expressed as 

 𝑈(1)(𝑥, 𝑡) =
𝜔𝑛

𝑘𝑛𝑑
휁𝑛 +

𝜔𝑚

𝑘𝑚𝑑
휁𝑚          (2.111) 

while the second-order velocity 𝑈(2) can be obtained by Eq. (2.109a) by using 𝐺𝑈
± instead of 

𝐺𝜁
±.  

Eqs (2.107), (2.108), (2.109) and (2.111) are substituted into momentum and continuity 

equations of the various Boussinesq models and collecting terms of 𝑂(휀), we obtain algebraic 

systems of the form 

 (
𝑚11

(2)
𝑚12

(2)

𝑚21
(2)

𝑚22
(2)

) (
𝐺𝜁

±

𝐺𝑈
±) = (

𝐹1
±

𝐹2
±)     (2.112) 

leading to solutions reading 

 𝐺𝜁
± =

𝐹1
±𝑚22

(2)
−𝐹2

±𝑚12
(2)

𝑚11
(2)

𝑚22
(2)

−𝑚21
(2)

𝑚12
(2)                   (2.113) 

In this subsection a second-order analysis is presented. Consequently, KK02 weakly and 

strongly nonlinear models give the same results at the 𝑂(휀) since they differ only with respect 

to terms of 𝑂(휀2𝜎2). Thus the analysis is common for both models and will be both referred 

to as KK02 model in the present subsection. 

For KK02 model the coefficients of the linear system for the case of super-harmonic 

𝜔𝑝 = 𝜔𝑛 + 𝜔𝑚 are 

 
𝑚11

(2)
= 𝜔𝑝,  𝑚12

(2)
= −𝑘𝑝𝑑,

  𝑚21
(2)

= −𝑘𝑝(1 + B𝜅𝑝
2),   𝑚22

(2)
= 𝜔𝑝 [1 + (

1

3
+ B) 𝜅𝑝

2] 
}  (2.114a) 

 𝐹1
+ =

1

2
𝑘𝑝 (

𝜔𝑛

𝑘𝑛
+

𝜔𝑚

𝑘𝑚
)        (2.114b) 
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𝐹2
+ =

1

2
𝑘𝑝

𝜔𝑛𝜔𝑚

𝑑𝑘𝑛𝑘𝑚
{1 +

1

3
[(𝜅𝑛 − 𝜅𝑚)2 + 3B(𝜅𝑛 + 𝜅𝑚)2 − 𝜅𝑛

2 𝑠𝑛

𝑠𝑚
(

2𝜅𝑛+3𝜅𝑚

𝜅𝑛+𝜅𝑚
) − 𝜅𝑚

2 𝑠𝑚

𝑠𝑛
(

2𝜅𝑚+3𝜅𝑛

𝜅𝑛+𝜅𝑚
)]}        

  (2.114c) 

where 𝑠 is defined by Eq. (2.99), 𝜅 is defined by Eq. (2.55), 𝑘𝑝 = 𝑘𝑛 + 𝑘𝑚 and 𝜅𝑝 = 𝜅𝑛 +

𝜅𝑚. The sub-harmonic transfer function is obtained simply by changing the sign of the 

quantities (𝜔𝑚, 𝑘𝑚, 𝜅𝑚) in Eqs (2.114a), (2.114b) and (2.114c). For the case of 𝜔𝑛 = 𝜔𝑚, the 

problem is reduced to the second-harmonic transfer presented in subsection 2.4.1.  

Figure 2.11 shows the ratio between the transfer function given by Eqs (2.113), (2.114) for 

KK02 model and the target transfer function shown in Fig. 2.10. The graph includes also a 

10% error square. This square has its lower left vertex at (𝛺𝑛, 𝛺𝑚) = (0,0) and the maximum 

side length for which the error is less than 10% for anyone set (𝛺𝑛 , 𝛺𝑚). This option was 

favoured against the one adopted by Madsen and Schäffer (1998) who defined an error circle 

instead. Although their argument about superiority of a circle instead of a square with 

𝛺𝑅 = max(𝛺𝑛, 𝛺𝑚) is appreciated, their method leads to an overestimation of the accepted κ-

values range. On the other hand, by using the error square defined herein it is ensured that the 

associated range of κ leads always to accepted errors for every pair (𝛺𝑛, 𝛺𝑚). The side length 

of the error square for KK02 model is 𝛺𝑆 = 0.155 which corresponds to 𝜅 ≈ 1.16.      

 

Fig. 2.11. Ratio of second-order transfer functions, 𝐺𝜁/𝐺𝜁
Stokes, where 𝐺𝜁  is given by Eq. (2.113) for 

KK02 model. Results for super-harmonics are shown above the diagonal; results for sub-harmonics are 

shown below it. The dashed square indicates a 10% error. 
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The same analysis was applied for the MS98 model too. The coefficients of the linear 

system (2.112) for the case of super-harmonic are written 

 𝑚11
(2)

= 𝜔𝑝,  𝑚12
(2)

= −𝑘𝑝𝑑,  

 𝑚21
(2)

= −𝑘𝑝(1 + 𝛼1𝜅𝑝
2 + 𝛽1𝜅𝑝

4),  

 
  
𝑚22

(2)
= 𝜔𝑝 [1 + (

1

3
+ 𝛼1) 𝜅𝑝

2 + (𝛽1 +
1

3
𝛼1 −

1

45
) 𝜅𝑝

4]       (2.115a) 

 𝐹1
+ =

1

2
𝑘𝑝 (

𝜔𝑛

𝑘𝑛
+

𝜔𝑚

𝑘𝑚
)              (2.115b) 

𝐹2
+ =

1

2
𝑘𝑝

𝜔𝑛𝜔𝑚

𝑑𝑘𝑛𝑘𝑚
{1 +

1

3
[(𝜅𝑛 − 𝜅𝑚)2 + 3𝑎1(𝜅𝑛 + 𝜅𝑚)2 − 𝜅𝑛

2 𝑠𝑛

𝑠𝑚
(

2𝜅𝑛+3𝜅𝑚

𝜅𝑛+𝜅𝑚
) − 𝜅𝑚

2 𝑠𝑚

𝑠𝑛
(

2𝜅𝑚+3𝜅𝑛

𝜅𝑛+𝜅𝑚
)] +

1

45
[22𝜅𝑛

2𝜅𝑚
2 − (𝜅𝑛 − 𝜅𝑚)4 + 𝜅𝑛

3 𝑠𝑛

𝑠𝑚
(

4𝜅𝑛
2 +10𝜅𝑛𝜅𝑚+5𝜅𝑚

2

𝜅𝑛+𝜅𝑚
) + 𝜅𝑚

3 𝑠𝑚

𝑠𝑛
(

4𝜅𝑚
2 +10𝜅𝑛𝜅𝑚+5𝜅𝑛

2

𝜅𝑛+𝜅𝑚
)] +

1

3
𝑎1(𝜅𝑛 + 𝜅𝑚) [𝜅𝑛

3 (1 − 2
𝑠𝑛

𝑠𝑚
) + 𝜅𝑚

3 (1 − 2
𝑠𝑚

𝑠𝑛
) − 𝜅𝑛

2𝜅𝑚 (1 + 3
𝑠𝑛

𝑠𝑚
) − 𝜅𝑚

2 𝜅𝑛 (1 + 3
𝑠𝑚

𝑠𝑛
)] +

𝛽1(𝜅𝑛 + 𝜅𝑚)4}                 (2.116c) 

The sub-harmonic transfer function is again obtained simply by changing the sign of the 

quantities (𝜔𝑚, 𝑘𝑚, 𝜅𝑚) in Eqs (2.115a), (2.115b) and (2.115c). Fig. 2.12 shows the ratio 

between the transfer function given by Eq. (2.113) for MS98 model and the target transfer 

function shown in Fig. 2.10 by adopting the values (𝛼1, 𝛽1) = (
1

9
,

1

945
) in Eqs (2.116) as 

presented above. This figure also includes a 10% error square for which the side length is 

𝛺𝑆 = 0.208 corresponding to 𝜅 ≈ 1.80. Madsen and Schäffer (1998) presented similar 

solutions for the traditional Boussinesq equations of order 𝑂(σ2, ε) enhanced to Padé [2,2] 

dispersion characteristics and the lower order model by Madsen and Sørensen (1993) 

expressed in terms of the depth-integrated velocity. These solutions lead to side lengths 

𝛺𝑆 = 0.078 and 𝛺𝑆 = 0.071 for the 10% error squares respectively. 
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Fig. 2.12. Ratio of second-order transfer functions, 𝐺𝜁/𝐺𝜁
𝑆𝑡𝑜𝑘𝑒𝑠, where 𝐺𝜁  is given by Eq. (2.113) for 

MS98 model. Results for super-harmonics are shown above the diagonal; results for sub-harmonics are 

shown below it. The dashed square indicates a 10% error. 

The transfer function analysis was also applied to KM09 and KM09em models. The 

coefficients of the linear system (2.112) for the weakly nonlinear model are written for the 

case of super-harmonic 

 
𝑚11

(2)
= 𝜔𝑝,  𝑚12

(2)
= −𝑘𝑝𝑑,

  𝑚21
(2)

= −𝑘𝑝
tanh(𝜅𝑝)

𝜅𝑝
,   𝑚22

(2)
= 𝜔𝑝 

}        (2.117a) 

 𝐹1
+ =

1

2
𝑘𝑝 (

𝜔𝑛

𝑘𝑛
+

𝜔𝑚

𝑘𝑚
)           (2.117b) 

 𝐹2
+ =

1

2
𝑘𝑝

𝜔𝑛𝜔𝑚

𝑑𝑘𝑛𝑘𝑚
             (2.117c) 

The sub-harmonic transfer function is again obtained simply by changing the sign of the 

quantities (𝜔𝑚, 𝑘𝑚, 𝜅𝑚) in Eqs (2.117a), (2.117b) and (2.117c). Fig. 2.13 shows the ratio 

between the transfer function given by Eq. (2.113) for KM09 weakly nonlinear model and the 

target transfer function shown in Fig. 2.10. The figure also includes a 10% error square for 

which the side length is 𝛺𝑆 = 0.051 corresponding to 𝜅 ≈ 0.33 which is slightly greater than 

the limit between shallow and intermediate water. Thus the results of KM09 for the second-

order transfer function are very poor, similarly to the weakly nonlinear model of 𝑂(σ2, ε) 
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presented by Madsen and Schäffer (1998) as well as to the lower order model by Madsen and 

Sørensen (1993). The super-harmonic transfer for KM09 weakly nonlinear model is too large 

and this leads to too peaky wave profiles for shoaling waves.  

 

Fig. 2.13. Ratio of second-order transfer functions, 𝐺𝜁/𝐺𝜁
𝑆𝑡𝑜𝑘𝑒𝑠, where 𝐺𝜁  is given by Eq. (2.113) for 

KM09 model. Results for super-harmonics are shown above the diagonal; results for sub-harmonics are 

shown below it. The dashed square indicates a 10% error. 

The coefficients of the linear system (2.112) for KM09em model are written for the case of 

super-harmonic 

 𝑚11
(2)

= 𝜔𝑝,  𝑚12
(2)

= −𝑘𝑝𝑑,   𝑚21
(2)

= −1 

  𝑚22
(2)

=
1

𝑘2𝑘𝑝
 {𝑘2 + [−1 + 𝜅 coth(𝜅)]𝑘𝑚

2 + 2[−1 + 𝜅 coth(𝜅)]𝑘𝑚𝑘𝑛 + [−1 +

𝜅 coth(𝜅)]𝑘𝑛
2}𝜔𝑝     (2.118a) 

 𝐹1
+ =

1

2
𝑘𝑝 (

𝜔𝑛

𝑘𝑛
+

𝜔𝑚

𝑘𝑚
)                         (2.118b) 

𝐹2
+ =

1

16

𝜔𝑛𝜔𝑚

𝑑𝑘𝑘𝑛𝑘𝑚
csch2(𝜅){8𝑘sinh2(𝜅) + (𝜅𝑚

2 + 𝜅𝑛
2)[2𝜅 cosh(𝜅) − sinh(2𝜅)] +

2𝑘𝑚𝜅𝑛[−4𝜅 + 2𝜅 cosh(𝜅) + sinh(2𝜅)]}                                (2.118c) 

Again simple change of the sign of the quantities (𝜔𝑚, 𝑘𝑚, 𝜅𝑚) in Eqs (2.118a), (2.118b) and 

(2.118c) leads to the sub-harmonic transfer function solution. Fig. 2.14 shows the ratio 
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between the transfer function given by Eq. (2.113) for KM09em model and the target transfer 

function shown in Fig. 2.10. The specific model embeds the wavenumber 𝑘 as a free 

parameter in the momentum equation similarly to Li's (2008) model. In the case of regular 

waves 𝑘 can be obtained from linear dispersion equation since the model is fully linear 

dispersive. However, for irregular waves a representative value for the wavenumber should be 

adopted. A numerical investigation of the model’s behaviour showed a very weak sensitivity 

on this parameter. For the bichromatic wave of the present transfer function analysis, 𝑘 is 

considered to be the wavenumber corresponding through the linear dispersion equation to 

frequencies 𝜔𝑚 + 𝜔𝑛 and 𝜔𝑛 − 𝜔𝑚 for the super-harmonic and sub-harmonic, respectively. 

This is not a quite accurate assumption since these sub- and super-harmonics are bound waves 

that do not satisfy the linear dispersion equation. The sub-harmonic transfer function is 

significantly underestimated for high values of both 𝛺𝑛 and 𝛺𝑚 and even a difference of sign 

occurs between the model's results and the target solution. In addition, the blank domain in 

the graph is due to a singularity that refers to sub-harmonic transfer function for simultaneous 

high and low values of 𝛺𝑛 and 𝛺𝑚, respectively. 

Figure 2.14 also includes a 10% error square with side length 𝛺𝑆 = 0.05 corresponding to 

𝜅 ≈ 0.32 which is approximately the limit between shallow and intermediate water. These 

values are slightly lower than the ones for KM09 weakly nonlinear model. However, in 

intermediate and deep water where the extra terms of order 𝑂(휀𝜎2) become significant, the 

KM09em model behaves more accurately than the weakly nonlinear version. Nevertheless the 

nonlinear response of KM09 models is quite poor as deduced from both the Stokes-type 

Fourier analysis and the sub- and super-harmonic analysis. 
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Fig. 2.14. Ratio of second-order transfer functions, 𝐺𝜁/𝐺𝜁
𝑆𝑡𝑜𝑘𝑒𝑠, where 𝐺𝜁  is given by Eq. (2.113) for 

KM09em model. Results for super-harmonics are shown above the diagonal; results for sub-harmonics 

are shown below it. The dashed square indicates a 10% error. 

2.5 Validation and inter-comparison of Boussinesq-type models  

To verify KK02, KK02e, KM09, and KM09em, the 1DH version of each model was applied 

to simulate the propagation of regular and irregular waves over a submerged trapezoidal bar. 

For all the models the differential equations were solved numerically using a finite difference 

scheme on a non-staggered grid. As described in chapter 3, the numerical scheme adopted in 

the presented thesis relies on a generalization of the Adams-Bashforth-Moulton predictor-

corrector scheme proposed by Wei and Kirby (1995). However, in these preliminary tests 

described in the present chapter the original ABM scheme was employed. In this scheme the 

field evolution in time was accomplished by an Adams-Bashforth third order predictor, 

followed by an Adams-Moulton fourth order corrector arrangement. Terms involving first-

order spatial derivatives were differenced to O(Δx
4
), while second and higher-order spatial 

derivatives were differenced to O(Δx
2
). This was chosen in order to reduce the truncation 

errors to a small size relative to all the retained terms in the equations. In all the test cases 

studied in the following a fairly dense grid of about 75 – 100 points per wavelength in the 

offshore was chosen. Thus no grid size impact was observed and good numerical stability was 

ensured. 
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The models were first applied to a submerged trapezoidal bar for non-breaking 

monochromatic waves (T = 2.02 s and H = 2.00 cm). The experiments, as described in 

Dingemans (1994a,b), were carried out in the wave flume of the Department of Civil 

Engineering, Delft University of Technology, with an overall length of 37.7 m, width 0.8 m 

and height 0.75 m. The bottom profile, as described in Beji and Battjes (1993, 1994) (see also 

Battjes and Beji, 1991), is shown in Fig. 2.15. The water depth in the horizontal bottom 

region was 0.4 m and reduced to 0.1 m in the shallowest region above the horizontal part of 

the bar. The upward slope of the submerged mound was 1:20 and the downward 1:10. 

 

Fig. 2.15. Definition sketch of wave flume and location of wave gauges in Beji and Battjes’s 

experiment. 

Figure 2.16 shows time domain comparisons of the measured and computed surface 

displacement for regular waves at gauges 1 to 7. It can be seen that in general the tested 

models behave adequately in this experiment. For a more comprehensive analysis a 

comparison with Gobbi and Kirby’s (1999) model, referred to as GK99, is also shown. The 

latter is a Boussinesq-type model of order O((kd)
4
), i.e. of the same level of nonlinearity with 

MS98. All KK02, KK02e and GK99 models behave quite accurately over the submerged bar. 

KK02 and KK02e show almost identical performance. They represent well the nonlinear 

steepening on the upwave slope of the bar and the enhancement and decomposition into 

higher free harmonics over the crest and the downslope as well. The same comparison is 

shown in Fig. 2.17 for KM09 and KM09em models. KM09em model gives more accurate 

results than the basic (weakly nonlinear) version of KM09 model.  
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Fig. 2.16. Measured and computed by KK02, KK02e and GK99 models time series of surface 

elevation. 
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Fig. 2.17. Measured and computed by KM09 and KM09em models time series of surface elevation. 

The second test involves irregular non-breaking incident JONSWAP waves with peak 

frequency fp = 0.5 Hz and significant wave height Hs = 1.8 cm. Experimental results are 

presented in Beji and Battjes (1994) who used the same setup shown in Fig. 2.15. Fig. 2.18 

provides time series of measured and computed by KK02, KK02e, KM09 and KM09em 

models surface elevation at six stations. The time series shown extend over a time span of 20 

s, i.e. 40 s-60 s from start. Here an improved behaviour of model KM09 over the other models 

is observed, especially at the most demanding locations, those of Stations 5, 6 and 7, where 

nonlinearities are more pronounced. The nonlinear wave interactions are quite well 

represented by KK02 and KK02e models too, which again show almost identical response. 
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Fig. 2.18. Time series of irregular surface elevation. 

In addition to the time series comparisons, wave spectra were also computed from the 

experimental and the studied models' data. Results are shown in Fig. 2.19 for stations 2 to 7. 

The computational procedure is the one followed by Beji and Nadaoka (1999). Each record 

contained 21000 data points but only its part after approximately 10 wave peak periods was 

used in order to avoid possible contamination of the data due to transients (Ohyama et al., 

1994). The remaining 20480 data were divided into 10 segments of 2048 points each as 

proposed by Beji and Nadaoka (1999). Then each segment was transformed through a Fast 

Fourier Transform. No tapering technique was applied since the spectral leakage was not 

significant. The final spectra were obtained after ensemble averaging all the realizations and 
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frequency smoothing over five neighbouring components. Each spectrum then had 100 

degrees of freedom and the statistical error was 14.1%.  
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Fig. 2.19. Spectra from measured and computed time series of surface elevation. 

The overestimation of the second and higher order transfer functions in shallow water for 

both versions of KM09 model, along with some spurious low-frequency oscillations produced 

an overestimation of the spectral density at low frequencies. For this reason a Butterworth 

third-order high-pass filter was applied considering a half-power point cutoff frequency of fc = 

0.25 Hz. It can be said that in general the computations simulate well the spectral density 

capturing its transformations along the wave propagation over the obstacle and the nonlinear 

wave interactions are quite well represented. 

2.6 Discussion on higher order models 

In traditional Boussinesq equations the nonlinearity is considered weak under the 

assumption 휀 = 𝑂(𝜎2). With this assumption, higher order terms, e.g. of 𝑂(휀2𝜎2), are 

comparable to 𝑂(𝜎6) and are thus neglected. Madsen and Schäffer (1998) allowed the 

nonlinearity to be stronger and specifically 휀 ~ 𝑂(𝜎). Their derivation relies on a Taylor 

expansion of velocity potential with respect to the dispersion parameter 𝜎2. Since high order 

terms, up to 𝑂(휀𝜎4), are retained, the resulting nonlinear characteristics of the equations are 

very accurate as shown in the above analysis. On the other hand Karambas and Koutitas 

(2002) followed a similar derivation but terms only up to 𝑂(휀𝜎2) were retained. Thus 

inclusion of terms of 𝑂(휀2𝜎2) in the extended model KK02e does not increase the order of 

the resulting higher harmonics solutions with respect to 𝜅 = 𝜎𝑘𝑑. Hence, the application field 

of KK02e equations with regard to higher harmonics is not extended further to deeper water. 
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On the other hand, these enhanced equations offer an obvious improvement on the nonlinear 

amplitude dispersion. 

The above were verified further in the previous section 2.5, where an almost identical 

response was found for KK02 weakly and strongly nonlinear models for the simulation of 

regular wave propagation over a bar. In order to have a clear insight in the level of nonlinear 

enhancement of KK02e as compared to KK02, an analysis of the various terms of different 

order in Eq. (2.26) (in dimensional form) was performed. In particular a profile of the 

maximum absolute value of each term was obtained and is depicted in Fig. 2.20. It is noted 

that O(1) refers to the term g
𝜕𝜁

𝜕𝑥
. 

 

Fig. 2.20. Weight of various terms of different order in KK02e momentum equation in Beji and 

Battjes’s (1994) test. 

The lowest-order linear term of O(1) is, as expected, by far the most significant one, about 

three times the term of O(σ
2
) and forty times the terms of O(ε

2
σ

2
). The nonlinear terms are 

pronounced over the crest and the downslope of the bar, as expected. The contribution of the 

extra terms of KK02e model of O(ε
2
σ

2
) is about 14% of the term of O(εσ

2
) and 1.5% of the 

sum of all terms that already exist in the original model version, KK02. 

A similar analysis was also performed for KM09em model and is presented in Fig. 2.21. 

Here the term of O(1) is about two times the term of O(σ
2
) and thirty times the terms of 

O(εσ
2
). The contribution of the extra terms of KM09em model of O(εσ

2
) is about 7% of the 

term of O(σ
2
) and 2% of the sum of all terms that already exist in the weakly nonlinear model 

version, KM09. 
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Fig. 2.21. Weight of various terms of different order in KM09em momentum equation in Beji and 

Battjes’s (1994) test. 

Despite the previous analysis, it should be mentioned that, in general, the relative height of 

the various terms may vary in different test cases, e.g. deep water, highly nonlinear waves, 

etc. In particular, the specific experimental setup refers to a depth range k΄d΄ from 0.32 to 

0.67, which corresponds to depths close -from the offshore- to the boundary between 

intermediate and shallow water, and to a nonlinearity parameter 휀 = 0.05. However, strongly 

nonlinear waves can easily be present in intermediate and deep water, that is why such 

conditions were checked numerically. In these cases the parameters 휀 and 𝜎2 have both high 

values leading to significant terms of 𝑂(휀2𝜎2), comparable to those of 𝑂(휀𝜎2) or even of 

𝑂(𝜎2). Zou (1999) examined such a case of near-breaking highly nonlinear waves. 

Nevertheless, the waves studied herein propagate in deeper water where no breaking due to 

depth limitation occurs. 

In order to further examine the impact of the extra nonlinear terms of order 𝑂(휀2𝜎2), three 

different cases were simulated through KK02 weakly and strongly nonlinear models. All three 

cases refer to regular waves of period 𝑇 = 8 s propagating over a mildly sloping bed in deep 

and intermediate water. Fig. 2.22 shows a snapshot of surface elevation for almost linear 

waves of height 𝐻0 = 2.0 m in deep water with nonlinearity parameter 휀 = 0.04. Due to the 

low value of 휀, terms of order 𝑂(휀2𝜎2) are negligible as compared to 𝑂(휀𝜎2) terms. Hence 

the results for KK02 weakly and strongly nonlinear models are almost identical. 
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Fig. 2.22. Free surface elevation for KK02 weakly and strongly nonlinear models with nonlinearity 

parameter 휀 = 0.04. 

Figure 2.23 shows a snapshot for waves of height 𝐻0 = 7.5 m. The nonlinearity in this case 

is higher, 휀 = 0.15, leading to a slight difference in the results of the two models. The most 

obvious difference refers to the nonlinear dispersion reported in subsection 2.4.1 too, that 

produces an increasing shift between the two profiles as shown in this figure. 

 

Fig. 2.23. Free surface elevation for KK02 weakly and strongly nonlinear models with nonlinearity 

parameter 휀 = 0.15. 

Figure 2.24 refers to strongly nonlinear waves with nonlinearity parameter 휀 = 0.24. In this 

case the terms of 𝑂(휀2𝜎2) are comparable to those of 𝑂(휀𝜎2), leading to more significant 

differences between the two versions. Here the shift between the two profiles is more obvious 

and the differences due to nonlinear dispersion appear to even deeper water than in the 

previous cases. 



Chapter 2.  Nonlinear analysis of higher order Boussinesq-type wave models 

 

 

75 

 

 

Fig. 2.24. Free surface elevation for KK02 weakly and strongly nonlinear models with nonlinearity 

parameter 휀 = 0.24. 

On the other hand, terms of 𝑂(휀𝜎2) are comparable to the ones of 𝑂(𝜎2) in intermediate 

and deep water for any value of the nonlinearity parameter 휀. Hence, the nonlinear 

characteristics of Karambas and Memos's (2009) original model are not quite representative 

in deeper water conditions where 휀𝜎2~𝜎2. Consequently, the results of the modified 

enhanced nonlinear version of KM09 model differ significantly from the ones of the weakly 

nonlinear version as presented in the previous analysis and also shown in the verification 

section. Despite this fact, the nonlinear characteristics of both versions of KM09 model 

remain quite poor and this is due to the adoption of a linear solution of the Laplace equation. 

Nevertheless, the validity of Stokes theory as being a target solution for indicating the 

nonlinearity impact could be a matter of discussion, bearing in mind that, depending on wave 

parameters, Stokes waves may not be suitable for application in small water depths. Such a 

reservation would equally apply to the target dispersion relation, since this is a Stokes theory 

result. 

Apart from accuracy, the required computational time is a serious issue when evaluating 

wave models. Fig. 2.25 shows the ratio of the computational time of KK02 strongly and 

weakly nonlinear models as a function of the number of time steps. In the same figure the 

ratio of the computational time of KM09 modified enhanced nonlinear model version to the 

weakly nonlinear version is also depicted. The models’ applications were performed on a 

quad-core Intel Core i5 processor at 3.33 GHz without parallel computing and the compiler 

was Microsoft FORTRAN PowerStation 4.0. It is deduced that the extra nonlinear terms of 

KK02 model increase the computational time by approximately 19%, while the modified 

enhanced nonlinear version of KM09 requires less than 7% more computational time than its 

weakly nonlinear counterpart. It should be noted that the curves of Fig. 2.25 are not directly 

comparable since either weakly or strongly nonlinear models are not of the same degree of 

nonlinearity. Moreover, for most practical one-dimensional applications, e.g. for a 10 min 
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simulation, the deviations between the various models correspond to an insignificant 

difference of only a few seconds in absolute time. On the other hand, in the two-dimensional 

version of KM09 model the evaluation of the convolution integral increases significantly the 

computational cost compared to KK02 model, despite the latter’s mathematical complexity 

(see Karambas and Memos, 2009). In brief, the computational time of the aforementioned 

models is expected somewhat increased compared to lower order models that employ similar 

numerical schemes (Nwogu, 1993; Wei and Kirby, 1995). 

 

Fig. 2.25. Comparison of computational time for KK02, KK02e, KM09, and KM09em models. 

In the light of the discussion about the nonlinear response of the presented models an 

important aspect refers to their behaviour in conjunction to a wave breaking model. Although 

wave breaking due to depth limitation takes place in shallower water, thus the dispersion 

parameter σ has locally low values, close to incipient wave breaking the conditions are highly 

nonlinear. Hence the nonlinear parameter ε may take values close to unity or even higher. 

Consequently, the nonlinear terms of O(ε, εσ
2
, ε

2
σ

2
) or higher have an important impact on the 

models’ accuracy. In the absence of these terms the breaking initiation may be erroneously 

estimated. Extension to the surf zone has been accomplished for KM09 model relying on 

either the surface roller or the eddy viscosity concept and both approaches gave similar results 

(Chondros et al., 2011; Klonaris et al. 2013). Additionally, wave breaking has been 

incorporated in KK02 model by Karambas and Koutitas (2002) based on the surface roller 

concept. All these models have shown fairly good response.  

The original range of applicability of Boussinesq equations provides for mild nonlinearity. 

However, several enhancements of the nonlinear characteristics were achieved during the past 

couple of decades. These modifications proved to work well, although they were actually 

violating the underlying assumptions of the original equations. Nevertheless, extension of the 

nonlinear features of the said equations is not a straightforward procedure. Through the 
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presented investigation it can be concluded that there is no clear-cut answer whether nonlinear 

upgrading offers notable enhancements affording a wider range of applicability. Thus, it can 

be reasonably argued that not any strengthening of nonlinearity is bound to pay off the extra 

time and effort required, induced mainly by the many complications introduced by the, 

sometimes very many, extra terms included in the formulation of the model equations. Also, it 

should be underlined that the details of the numerical treatment may play a significant role in 

the quality of the associated results. However, in general, it can be said that each one of the 

presented nonlinear enhancements offers its potential over a specific range of conditions. 

From the nonlinear analysis presented in this chapter, it can be argued that KK02e model 

offers an improvement over KK02 with respect to nonlinear dispersion and under highly 

nonlinear conditions, e.g. close to the surf zone. This result is further confirmed in chapter 3. 

However, there is a wide range of conditions under which KK02e does not show any 

significant improvement over KK02 model. On the other hand, KM09em does not represent 

appreciable advances over its counterpart of weak nonlinearity. In some of the cases studied 

herein even the opposite result was true. In addition, in the two-dimensional version of KM09 

model the evaluation of the convolution integral increases significantly the computational cost 

compared to KK02e model, despite the latter’s mathematical complexity, as mentioned 

above. Moreover, retaining terms of higher order than the ones in KK02e model would go 

beyond the objective of the present thesis, in addition to the increase of the computational 

complexity and the possibility of numerical instabilities. Thus, KK02e model and its two-

dimensional counterpart were chosen to form the basis of the compound model developed in 

the present thesis.  
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Chapter 3 

Integrating nearshore dynamics with the Boussinesq-

type wave model 

3.1 Introduction 

Since Peregrine (1967) derived the "classical" Boussinesq equations for water waves 

assuming weak dispersion and weak nonlinearity, many models of this type have been 

presented to extend the range of applicability further offshore. This was achieved by 

introducing different kinds of modifications to the original assumptions, and these models are 

hence loosely referred to as Boussinesq-type models. A thorough review of existing 

Boussinesq-type wave models was presented in chapter 2. 

 The main scope of the research concerning Boussinesq-type models has been the 

enhancement of their dispersive and nonlinear character in order to be applicable to more and 

more deep water and finally face no limitation with respect to depth. Aiming at upgrading the 

linear and nonlinear properties, different formulations have been proposed based on the 

depth-integrated velocities (Abbott et al., 1984; Madsen et al., 1991), the depth-averaged 

velocities (Beji and Nadaoka, 1996; Zou, 1999; Memos et al., 2005) or the velocities at an 

arbitrary level (Nwogu, 1993, Wei and Kirby, 1995). Further on, even more upgraded 

equations have been derived by retaining higher order terms or applying linear enhancement 

techniques (Wei et al., 1995; Schäffer and Madsen, 1995; Madsen and Schäffer, 1998; Gobbi 

et al., 2000a).  More recently, some advanced post-Boussinesq models have been presented to 

achieve high accuracy in both dispersion and nonlinear characteristics (Madsen et al., 2002; 

Lynett and Liu, 2004; Karambas and Memos, 2009). 

Modelling satisfactorily the combined physical processes present throughout the entire 

coastal zone, from offshore to the shoreline, is a crucial point for a variety of applications 

ranging from sedimentation studies to the design of coastal defences. Hence, extending the 

applicability inshore has been another challenge for the Boussinesq modelling community, 
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maybe even harder than extending offshore, since complex phenomena such as surf and 

swash zone dynamics have to be adequately reproduced. 

Boussinesq-type models have been extended into the surf zone by mainly three different 

techniques to simulate wave breaking. The first one relies on the eddy viscosity concept that 

introduces extra dissipative terms (Zelt, 1991; Karambas and Koutitas, 1992; Kennedy et al., 

2000). The second one is based on the surface roller approach (Svendsen, 1984; Deigaard, 

1989; Brocchini et al., 1991, 1992; Schäffer et al., 1992, 1993). Both techniques have been 

proven to give similar results in most of the cases (Chondros et al., 2011). A combination of 

the two techniques was applied by Karambas and Tozer (2003). Also, Cienfuegos et al. 

(2010) and Klonaris et al. (2013) combined the two methods by introducing an extra 

dissipative term into the mass equation. The last approach employs the vorticity transport 

model (Veeramony and Svendsen, 2000; Briganti et al., 2004; Musumeci et al., 2005; Kim et 

al., 2009). More recently, another approach turns off the dispersive terms in the vicinity of the 

breaking roller and allows the dissipative nature of shallow water bores to remove energy 

from waves while conserving momentum (Tonelli and Petti, 2009; Roeber et al., 2010; Shi et 

al., 2012; Tissier et al., 2012; Gallerano et al., 2014). This shallow water bore concept 

requires shock-capturing numerical schemes to ensure stability at the bore front but is 

relatively simple to implement. 

Simulating the complete nearshore wave transformation requires treatment of the moving 

shoreline. Extending Boussinesq-type models to the swash zone is a quite hard numerical 

task. Three major groups of computational procedures have been developed. The first one is 

based on coordinate transformation techniques following the water edge (Pedersen and 

Gjevik, 1983; Özkan and Kirby, 1995). The second approach relies on the grid draining and 

filling (Liu et al., 1995; Militello et al., 2004). A direct comparison between coordinate-

transformation techniques and the more common wetting and drying method can be found in 

Brocchini et al. (2002). The third approach includes techniques that treat the entire 

computational field as active fluid domain. An example in this category is the slot method 

(Tao, 1983; Madsen et al., 1997). Also, the pioneering work by Bellotti and Brocchini (2001) 

provides shoreline boundary conditions by means of techniques valid for hyperbolic systems. 

Some other moving boundary techniques have been also proposed such as Lynett et al.'s 

(2002) linear extrapolation method. Finally, the Finite Volume approach has been also 

successfully applied to define the wet/dry interface through the implementation of suitable 

Riemann solvers. Examples of different types of FV techniques in combination with 

Boussinesq equations can be found in Roeber et al. (2010), Roeber and Cheung (2012), Shi et 

al. (2012), and Kazolea et al. (2012). 
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An important factor in coastal modelling is the wave-induced current field. The classical 

procedure for describing wave-driven depth-averaged currents relies on a decoupled 

approach. Firstly, the wave field is determined by a linear wave model and then the currents 

are computed from the depth-integrated flow equations including radiation stresses, bottom 

friction and viscosity. However, one of the advantages of nonlinear Boussinesq-type models 

is that they can estimate the wave-induced depth-averaged current field without the need to 

decouple the wave and current motion. This capability was firstly stated by Basco (1983) and 

is of great importance, not only because the application of a single numerical model is 

required only, but also because the wave-current interaction is “internally” taken into account. 

However, besides the correct parameterization of the energy dissipation due to breaking and 

bottom friction, the correct Doppler shift for wave-current interaction needs to be enforced 

(Yoon and Liu, 1989; Chen et al., 1998). The interaction between wave groups and low-

frequency motions can also be described by nonlinear Boussinesq-type models in addition to 

the steady circulation. Pure hydrostatic models based on the nonlinear shallow water 

equations (NSWE) can also partly describe the wave-induced currents but they are unable to 

describe the wave dispersion. Thus, the combined effects of wave-wave and wave-current 

interaction are insufficiently reproduced in intermediate water, resulting to inaccuracies in the 

computation of the underlying current field. Non-hydrostatic models based on NSWE 

overcome this problem by introducing vertical velocity terms to account for weakly 

dispersive waves (Stelling and Zijlema, 2003; Yamazaki et al., 2011). Although, higher-order 

Boussinesq-type models embed enhanced nonlinear characteristics, the performance of non-

hydrostatic NSWE models with regard to wave-induced currents is in many cases 

comparable.  In recent years a number of applications of Boussinesq wave models computing 

the associated current field are reported in the international literature (Sørensen et al., 1998, 

2004; Chen et al., 1999, 2003; Shi et al., 2012; Geiman and Kirby, 2013; Feddersen, 2014; 

Choi et al., 2015). 

Apart from the different mathematical formulations, the efficiency and special features of 

the various Boussinesq-type models originate also from their numerical implementation. A 

variety of discretization methods employing finite differences, finite elements, finite volumes 

or hybrid methods have been proposed on cartesian or curvilinear coordinate systems. Each of 

them is accompanied by a specific solution algorithm. These range diversely, including 

explicit forward marching solutions, Alternating Direction Implicit (ADI) algorithms and 

predictor-corrector-iteration schemes. It is of general acceptance that numerics are at least of 

the same importance for the efficiency of Boussinesq models as the mathematical background 

itself, especially in terms of computational effort, time and stability. 
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In this chapter the Boussinesq-type wave model used in this study is extended to the surf 

and swash zones, including the description of the wave-induced current field. In addition, the 

adopted numerical scheme is described in detail. Finally, a number of validation tests, both in 

one and two horizontal dimensions, are presented to check the wave model’s performance. 

3.2 Theoretical background and mathematical formulation  

As concluded in chapter 2, the adopted Boussinesq model in the present thesis relies on the 

basic Eqs (2.27) and (2.28) in the 1DH case and Eqs (2.16), (2.17) and (2.18) in the 2DH 

case, respectively. The model is of O(ε
2
σ

2
) and the parameters B and B2 are set equal to 

1

15
 and 

0.0653, respectively, in order to optimize linear dispersion and linear shoaling, as already 

discussed in chapter 2. 

However, in order to simulate the wave propagation in the entire nearshore zone a number 

of physical processes have also to be modelled and included in the main model. First of all, 

the range of applicability is extended into the surf zone by incorporating wave breaking 

following the eddy viscosity concept. Extension to the swash zone requires a method to 

simulate the moving shoreline. This is achieved here through the application of an improved 

version of the permeable-seabed or slot technique, originally proposed by Tao (1983, 1984). 

Inclusion of bottom friction is based on either the conventional quadratic law or a 

probabilistic analysis (Kobayashi et al., 2007). A Smagorinsky-type subgrid model is also 

applied to account for the unresolved small-scale motions (Chen et al., 1999; Zhan et al., 

2003). 

The higher order of nonlinearity of the wave model allows for an internal computation of 

the wave-induced current field: longshore, cross-shore and rip currents. However, due to the 

use of depth-averaged velocities, the estimation of the undertow (defined herein in the 

potential part of the water column) requires a computation of the surface roller area where 

water is carried shoreward in the surf zone. Hence, a geometrical determination of the surface 

roller is applied although the wave breaking model itself is based on the eddy viscosity 

concept. A part of the work described herein can be also found in Klonaris et al. (2015, 2016) 

and Klonaris and Memos (2015). 

3.2.1 Wave breaking 

Surf zone dynamics is of great interest for coastal engineers since description of currents, 

sedimentation and erosion requires an accurate analysis of breaking waves. Thus the wave 

model has to be extended to account for breaking waves too.  
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Wave breaking in Boussinesq models has been modelled using a variety of techniques. The 

two major of them are the eddy viscosity formulation and the surface roller concept. The 

former was originally introduced by Heitner and Housner (1970) to capture the shock across a 

tsunami bore. Tao (1983) and Abbott et al. (1983) expressed the eddy viscosity in terms of a 

mixing length related to the water depth, and a velocity scale related to the instantaneous level 

of turbulent kinetic energy. The variation of this energy was determined by solving a time-

domain transport equation for it, but no prediction or criteria for the start of breaking was 

included. A similar, but more sophisticated, approach was used by Karambas et al. (1990), 

Zelt (1991), and Karambas and Koutitas (1992). The surface roller approach attributed to 

Deigaard (1989), Brocchini et al. (1991, 1992) and Schäffer et al. (1992, 1993) is based on 

the roller concept introduced by Svendsen (1984). The roller approach was further developed 

by Madsen et al. (1997a) and was even applied to irregular wave propagation (Madsen et al., 

1997b; Ozanne et al., 2000). 

Both techniques have some advantages and drawbacks. The surface roller approach relies on 

a more realistic physical background than the eddy viscosity technique that assumes the 

breaking terms to be of the diffusive form. However, the surface roller technique may cause 

numerical instabilities in the two-dimensional case as the toe of the roller becomes a curve, 

hence its geometrical determination more complex. Instabilities may also be caused when the 

roller direction is determined interactively from the instantaneous wave field. Herein the eddy 

viscosity model presented by Kennedy et al. (2000) and Chen et al. (2000a) is used to 

simulate wave breaking. The method yields extra diffusive terms, �⃗�𝑏𝑟 = (𝐹𝑏𝑟,𝐺𝑏𝑟), in the x- 

and y-momentum equations, respectively: 

 𝐹𝑏𝑟 =
1

𝑑+𝜁
{{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑥}𝑥 +

1

2
{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑦 + 𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑥}

𝑦
}    (3.1) 

 𝐺𝑏𝑟 =
1

𝑑+𝜁
{{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑦}

𝑦
+

1

2
{𝑣𝑏𝑟[(𝑑 + 𝜁)𝑉]𝑥 + 𝑣𝑏𝑟[(𝑑 + 𝜁)𝑈]𝑦}

𝑥
}    (3.2) 

where 𝑣𝑏𝑟 is the eddy viscosity, which is a function of both space and time given by 

 𝑣𝑏𝑟 = 𝐵𝑏𝑟δb
2(𝑑 + 𝜁)𝜁𝑡 (3.3) 

where δb is a mixing length coefficient with an empirical value of δb = 1.2 and the quantity 

𝐵𝑏𝑟 varies smoothly from 0 to 1 in order to avoid an impulsive start of breaking and 

consequently a possible instability. It is given by 

 𝐵𝑏𝑟 = {

1,                    𝜁𝑡 ≥ 2𝜁𝑡
∗

𝜁𝑡

𝜁𝑡
∗ − 1,    𝜁𝑡

∗ < 𝜁𝑡 < 2𝜁𝑡
∗ 

0,                     𝜁𝑡 ≤ 𝜁𝑡
∗

   (3.4) 
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A similar expression to Eq. (3.3) for the eddy viscosity coefficient was initially proposed by 

Zelt (1991) based on the observation that a bore width is generally several times the local 

water depth (Rajaratnam, 1976). 

The parameter 𝜁𝑡
∗ determines the onset and cessation of breaking. Use of 𝜁𝑡 as a breaking 

initiation variable ensures that the dissipation is concentrated on the front face of the breaking 

wave. A breaking event begins when 𝜁𝑡 exceeds some initial threshold value, but, as breaking 

evolves, the wave may continue breaking even if 𝜁𝑡 drops below this value. The magnitude of 

𝜁𝑡
∗ therefore, decreases in time from some initial value 𝜁𝑡

(𝐼)
 to a terminal one 𝜁𝑡

(𝐹)
. This 

decrease is assumed to follow a linear relation: 

 𝜁𝑡
∗ = {

𝜁𝑡
(𝐹)

,                                      𝑡 − 𝑡0 ≥ 𝑇∗

𝜁𝑡
(𝐼)

+
𝑡−𝑡0

𝑇∗ (𝜁𝑡
(𝐹)

− 𝜁𝑡
(𝐼)

) , 0 ≤ 𝑡 − 𝑡0 < 𝑇∗
   (3.5) 

where 𝑇∗ = 5√𝑑 g⁄  is the transition time from breaking initiation to a fully developed bore 

and 𝑡0 is the time that breaking was initiated. The typical value of 𝜁𝑡
(𝐹)

is 0.15√g𝑑 and the 

parameter 𝜁𝑡
(𝐼)

 varies between (0.35÷0.65)√g𝑑. The lower limit of the coefficient 𝜁𝑡
(𝐼)

 is more 

suitable for simulating wave breaking over bar/trough beaches while the upper for monotonic 

sloping beaches. In order to compute the value of the parameter 𝜁𝑡
∗, the age, 𝑡0 − 𝑡, of each 

breaking event has to be estimated. This requires the calculation of the wave incidence angle, 

𝜃, in order to track the breaking history along the wave ray. By applying the Sommerfeld 

condition for a progressive wave field on a locally constant water depth (𝜁𝑡 + 𝑐 ∙ ∇𝜁 = 0, 𝑐 

the wave celerity), the model can make an intrinsic estimation for the angle 𝜃 (Chen et al., 

2000a; Sørensen et al., 2004): 

 𝜃 = tan-1 (
𝜁𝑦

𝜁𝑥
)  (3.6) 

3.2.2 Wave run-up 

In order to extend the model’s application into the swash zone the land-water interface has 

to be represented realistically. The present wave model simulates the wave motion in the 

swash zone following the procedure described by Kennedy et al. (2000) and Chen et al. 

(2000a). This is basically a modification of the slot method originally proposed by Tao (1983, 

1984). The main idea is that, instead of tracking the moving boundary, the entire 

computational domain is considered active, but wherever there is very little or no water 

covering the land, modified equations are solved. These equations assume that, instead of 

being solid, the beach contains narrow ‘slots’, so it is possible for the water level to be below 
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the beach elevation. Hence the shoreline is at any instant determined by the intersection of the 

water surface and the sea bed. 

Madsen et al. (1997a,b) applied a similar technique assuming a porous beach. However, a 

comparison with the analytical solution of wave run-up on a solid beach (Carrier and 

Greenspan, 1958) indicated about 10% under-prediction of the maximum run-up. This was 

because water has to fill at first the slot before covering a previously dry area, leading to a 

decrease of the overall water volume available for run-up. 

This motivated Kirby et al. (1998) and Kennedy et al. (2000) to propose a slight 

modification, adopted here, in order to conserve mass. Their formulation ensures that, there is 

no net fluid loss at a specific location when water is above the top of the slot. However, some 

small, but much reduced, mass loss still exists when water level is below the top of the slot. 

Figure 3.1 (reproduced from Kennedy et al., 2000) shows a schematic of a wave flume with 

a sloping bottom in the presence of a narrow slot. 

 

Fig. 3.1. Schematic of wave flume with presence of narrow slot (from Kennedy et al., 2000). 

The width of the wave flume is defined by: 

 𝑏(𝜁) = {
1,                                         𝜁 > 𝑧∗

δ + (1 − δ)𝑒λ(𝜁−𝑧∗) hο⁄ ,    𝜁 ≤ 𝑧∗        (3.7) 

where δ is the slot width relative to a unit width of the beach, λ is the shape parameter that 

controls the smooth transition of the cross-sectional area from a unit width to a narrow slot, 𝑧∗ 

denotes the elevation of the sea bed where b = 1 and ho is a reference water depth that must be 

deeper than the water depth at the lowest limit of the swash zone. In the applications 

presented herein ho was defined at the toe of the slope. Thus the cross-sectional area can be 

expressed as: 

 𝐴(𝜁) = {
(𝜁 − 𝑧∗) + δ(𝑧∗ + hο) +

(1−δ)hο

λ
[1 − 𝑒−λ(1+𝑧∗ hο⁄ )],      𝜁 > 𝑧∗

δ(𝜁 + hο) +
(1−δ)hο

λ
𝑒λ(𝜁−𝑧∗) hο⁄ [1 − 𝑒−λ(1+𝜁 hο⁄ )],           𝜁 ≤ 𝑧∗

      (3.8)  

Omitting the effect of a narrow slot on the vertical distribution of the fluid particle velocity, 

the two-dimensional mass equation for a permeable sea bed is written:  
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 𝛽
𝜕𝜁

𝜕𝑡
+ ∇ ∙ (𝛬�⃗⃗⃗�) = 0   (3.9) 

where 𝛽 = 𝑏(𝜁) and 𝛬 = 𝐴(𝜁). In the absence of the slot scheme, 𝛽 = 1, and 𝛬 = 𝑑 + 𝜁, 

where 𝑑 the still water depth, and Eq. (3.9) reduces to Eq. (2.16). On the other hand, the 

presence of the slots does not alter the momentum Eqs (2.17) and (2.18). 

In Tao’s (1984) and Madsen et al.’s (1997a) formulations, it was chosen 𝑧∗ = −𝑑 leading to 

an effective loss of mass during run-up. In the formulation by Kennedy et al. (2000), adopted 

here, 𝑧∗ is defined so that, when the water level is above the top of the slot, the overall 

volume will be identical to the one without the existence of the slot. Taking into account that 

δ << 1 and λ >> 1, the resulting 𝑧∗ is: 

    𝑧∗ =
−𝑑

1−δ
+ hο (

δ

1-δ
+

1

λ
)   (3.10) 

In any case the slot width should be as small as possible in order to avoid a distortion of the 

mass balance. On the other hand, too small values lead to numerical instabilities. The opposite 

is true for the shape parameter λ. In all the applications presented in the following it was 

chosen λ = 80 and δ = 0.001-0.01. 

3.2.3 Bottom friction 

Bottom friction is not very significant for most shore-normal applications concerning short 

waves, while it may be important for modelling long wave transformation. However, in the 

two-dimensional case a steady current field can only be generated if the radiation stress’s 

forcing is balanced by bottom friction and mixing processes. Thus, an accurate modelling of 

the bed friction is of high importance.  

The model offers two options for computing the bed shear stresses. The first one is using a 

quadratic resistance law for the instantaneous stresses: 

 𝜏𝑏 = (𝜏𝑏𝑥,𝜏𝑏𝑦) =
1

2
𝑓𝑐𝑤 �⃗⃗⃗�|�⃗⃗⃗�|         (3.11) 

where fcw is the bed friction coefficient which is typically a function of both the wave and the 

current fields. In order to represent the effect of turbulent interaction of the oscillatory 

boundary layer and the mean flow Ribberink’s (1998) wave-current bottom friction factor is 

employed: 

 𝑓𝑐𝑤 = (
|�⃗⃗⃗̅�|

|�⃗⃗⃗̅�|+𝑢𝑜𝑤−𝑚𝑎𝑥

) 𝑓𝑐 + (1 −
|�⃗⃗⃗̅�|

|�⃗⃗⃗̅�|+𝑢𝑜𝑤−𝑚𝑎𝑥

) 𝑓𝑤         (3.12) 
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where �⃗⃗⃗̅� = (�̅�, �̅�) is the depth-averaged current velocity field described in subsection 3.2.5, fc 

is the current friction factor and fw is the wave friction factor. The model’s equations rely on 

the assumption of a uniform velocity profile over depth. Thus the near-bottom velocity, 

�⃗⃗�𝑜 = (𝑢𝑜, 𝑣𝑜), is taken equal to �⃗⃗⃗� and 𝑢𝑜𝑤−𝑚𝑎𝑥 is the amplitude of its oscillatory component, 

�⃗⃗�𝑜𝑤 = �⃗⃗�𝑜 − �⃗⃗⃗̅�. This amplitude is obtained by taking the mean value of the amplitudes of the 

oscillatory components of the near-bottom velocities of the previous waves. A typical range 

of values for the bed friction factor is fcw ≈ 0.001-0.01 and besides the aforementioned 

analysis, a constant value lying in this range could also be employed for simplicity leading to 

acceptable results. 

Based on an implicit relation derived by Jonsson (1966), Swart (1974) proposed the 

following formula for the wave friction factor: 

 𝑓𝑤 = {
exp[-5.977+5.213(𝐾𝑁/𝐴𝑏)0.194]        for     𝐾𝑁/𝐴𝑏 < 0.63

          0.3                                                    for     𝐾𝑁/𝐴𝑏 ≥ 0.63
    (3.13) 

where 𝐴𝑏 is the water particle amplitude of the near-bottom oscillation (𝐴𝑏 = 𝑢𝑜𝑤−𝑚𝑎𝑥/𝜔, 

where 𝜔 is the angular frequency, corresponding to the peak of the spectrum in the case of 

irregular waves) and 𝐾𝑁 is the bed roughness given from Eq. (3.14a) for regular waves and 

Eq. (3.14b) for irregular waves (Nielsen, 1992). Eq. (3.13) was employed although it refers to 

the near-bed oscillatory motion, while the model equations are expressed in terms of the 

depth-averaged horizontal velocities.  

 𝐾𝑁 = 170√𝜃2.5 − 0.05𝑑50 + 8𝜂𝑟
2/𝜆𝑟     (3.14a) 

 𝐾𝑁 = 73√𝜃2.5 − 0.05𝑑50 + 3.5𝜂𝑟
2/𝜆𝑟     (3.14b) 

where 𝜃2.5 is the Shields parameter based on an equivalent roughness 𝐾𝑁
′ = 2.5𝑑50 given by 

 𝜃2.5 =
1

2
𝑓2.5𝜓     (3.15) 

where 𝑓2.5 is given from Eq. (3.13) for 𝐾𝑁 = 𝐾𝑁
′ and the mobility number 

 𝜓 =
𝑢𝑜𝑤−𝑚𝑎𝑥

2

(𝑠−1)g𝑑50
     (3.16) 

where 𝑑50 is the median grain diameter and 𝑠 = ρ
s
/ρ is the relative density of sediments (ρs is 

the sediment’s density and ρ the water density). 

The bed ripple height, 𝜂𝑟, and the ripple steepness, 𝜂𝑟/𝜆𝑟 (with 𝜆𝑟 the ripple length), are 

given from the following formulae proposed by Nielsen (1992) for regular waves: 
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 𝜂𝑟 = (0.275 − 0.022𝜓0.5)𝐴𝑏    for    𝜓 < 156  (3.17a) 

 𝜂𝑟/𝜆𝑟 = 0.182 − 0.24𝜃2.5
1.5

    (3.17b) 

For irregular waves the following formulae were used (Nielsen, 1992): 

 𝜂𝑟 = 21𝐴𝑏𝜓-1.85    for    𝜓 > 10  (3.18a) 

 𝜂𝑟/𝜆𝑟 = 0.342 − 0.34√𝜃2.5
4

    (3.18b) 

The current friction factor is calculated following Ribberink (1998) from 

 𝑓𝑐 =
2g

𝐶𝑐
2    (3.19) 

where 𝐶𝑐 is the Chezy friction coefficient given by 

 𝐶𝑐 = 18log [
12(𝑑+ζ̅)

𝐾𝑁
]   (3.20) 

where ζ̅ is the mean value of the free surface elevation. 

The alternative formulation relies on the more sophisticated probabilistic analysis by 

Kobayashi et al. (2007). The instantaneous depth-averaged velocities can be expressed as 

 (𝑈,𝑉) = (�̅� + 𝑈𝑇 cos 𝜃 ,�̅� + 𝑈𝑇 sin 𝜃)   (3.21) 

where 𝑈𝑇 is the depth-averaged oscillatory horizontal velocity with zero mean in the wave 

propagation direction approximated by 

 𝑈𝑇 = [g/(𝑑 + ζ̅)]0.5(𝜁 − ζ̅)   (3.22) 

Equations (3.21) and (3.22) rely on the assumption of linear shallow water theory and they 

yield 

 𝜎𝑈 = 𝜎𝑇 cos 𝜃 , 𝜎𝑉 = 𝜎𝑇 sin 𝜃 , 𝜎𝑇 = [g(𝑑 + ζ̅)]0.5𝜎∗, 𝜎∗ =
𝜎𝜁

𝑑+ζ̅
    (3.23) 

where 𝜎𝑈, 𝜎𝑉, 𝜎𝑇 and 𝜎𝜁 are the standard deviations of 𝑈, 𝑉, 𝑈𝑇  and 𝜁, respectively. 

Assuming the equivalency of time and probabilistic averaging, as well as the Gaussian 

distribution of 𝑈𝑇, the bed stresses can be approximated as: 

 𝜏𝑏 = (𝜏𝑏𝑥,𝜏𝑏𝑦) =
1

2
𝑓𝑐𝑤𝜎𝛵

2(𝐺𝑏𝑥,𝐺𝑏𝑦)         (3.24) 

where 𝑓𝑐𝑤 is the same as in Eq. (3.11) and (𝐺𝑏𝑥,𝐺𝑏𝑦) are given by the improper integrals  
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 𝐺𝑏𝑥 = ∫ 𝐹𝑈𝐹𝛼𝑓(𝑟)𝑑𝑟   and   𝐺𝑏𝑦 = ∫ 𝐹𝑉𝐹𝛼𝑓(𝑟)𝑑𝑟
∞

−∞

∞

−∞
   (3.25) 

and 

 𝐹𝑈 =
�̅�

𝜎𝑇
+ 𝑟 cos 𝜃, 𝐹𝑉 =

�̅�

𝜎𝑇
+ 𝑟 sin 𝜃   and  𝐹𝛼 = √𝐹𝑈

2 + 𝐹𝑉
2     (3.26) 

with 

 𝑓(𝑟) =
1

√2π
exp (−

𝑟2

2
)     (3.27) 

where the mean and the standard deviation of the Gaussian variable 𝑟 = 𝑈𝑇/𝜎𝑇 are zero and 

unity, respectively. 

However, the simplified expressions by Feddersen et al. (2000) are used here leading to 

acceptable deviations, as also discussed by Kobayashi et al. (2007): 

 𝐺𝑏𝑥 =
�̅�

𝜎𝑇
[1.162 + (

�̅�

𝜎𝑇
)

2

]
0.5

 and   𝐺𝑏𝑦 =
�̅�

𝜎𝑇
[1.162 + (

�̅�

𝜎𝑇
)

2

]
0.5

      (3.28) 

For the applications presented here both the quadratic and the probabilistic formulations led 

to quite similar results. Hence no clear evidence occurred proving the superiority of either 

approach. 

3.2.4 Subgrid turbulent mixing 

Wave breaking typically generates eddies and turbulent flow in the surf zone. Due to the 

complex three-dimensional nature of the turbulence an approximation was made. In 

particular, as this Boussinesq model is based on vertically integrated mass and momentum 

equations and the grid size is usually smaller than the typical depth, the effects of unresolved 

small-scale motions are parameterized using the approach of the large eddy simulation on the 

horizontal plane. The wave breaking terms account for the energy dissipation due to breaking 

and are usually strongly localized on the front face of the breaking wave. Additionally, the 

subgrid turbulent processes causing the Reynolds-like stresses have also to be taken into 

account. In the absence of such a subgrid model for the turbulence contribution from the 

mean flow, the underlying wave-induced current field may become chaotic. A Smagorinsky-

type subgrid model (Smagorinsky, 1963) was adopted which yields extra terms in the 

momentum equations (Chen et al., 1999; Zhan et al., 2003). The extra eddy viscosity terms, 

�⃗�eddy = (𝐹eddy,𝐺eddy), in the x- and y-momentum equations, respectively, are     
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 𝐹eddy =
1

𝑑+𝜁
{{𝑣𝑒[(𝑑 + 𝜁)𝑈]𝑥}𝑥 +

1

2
{𝑣𝑒[(𝑑 + 𝜁)𝑈]𝑦 + 𝑣𝑒[(𝑑 + 𝜁)𝑉]𝑥}

𝑦
}   (3.29) 

 𝐺eddy =
1

𝑑+𝜁
{{𝑣𝑒[(𝑑 + 𝜁)𝑉]𝑦}

𝑦
+

1

2
{𝑣𝑒[(𝑑 + 𝜁)𝑉]𝑥 + 𝑣𝑒[(𝑑 + 𝜁)𝑈]𝑦}

𝑥
}   (3.30) 

where 𝑣𝑒 is the eddy viscosity coefficient due to the subgrid turbulence estimated by 

 𝑣𝑒 = cs d𝑥 d𝑦 [�̅�𝑥
2

+ �̅�𝑦
2

+
1

2
(�̅�𝑦 + �̅�𝑥)

2
]
1 2⁄

      (3.31) 

in which cs is the mixing coefficient with a default value of 0.25 and d𝑥 and d𝑦 are the grid 

spacing in the x and y directions, respectively. 

3.2.5 Wave-induced currents 

The traditional treatment of nearshore dynamics requires splitting of the total flow field into 

a current and a wave problem. The concept of the radiation stresses introduced by Longuet-

Higgins and Stewart (1961) and the pioneering work by Bowen (1969a,b) and Longuet-

Higgins (1970a,b) offer some robust tools for the understanding of nearshore circulation. The 

decoupled and phase-averaged approach includes the computation of the radiation stresses 

from a wave model and the solution of the nonlinear shallow water equations for the mean 

flow driven by gradients in the radiation stress field. This practice constitutes a quite reliable 

method for calculating current patterns and long waves in the surf zone, but is limited with 

respect to the resolution of phenomena happening at the wave-by-wave level, i.e. wave-wave 

interaction, run-up, etc.  

Hence, the decoupled procedure is not needed for a nonlinear Boussinesq-type model when 

it has been extended to the surf and swash zones (Basco, 1983). These models can 

automatically include the combined effects of wave-wave and wave-current interactions, 

inherently, without the need of explicit formulation for the radiation stresses. In this study, the 

presented nonlinear wave model is applied to calculate the integrated system of wave-induced 

longshore, cross-shore and rip currents. 

The total horizontal velocity can be written as the sum of a mean velocity, �⃗⃗⃗̅� = (�̅�, �̅�), 

assumed uniform over depth, and an oscillatory component, �⃗⃗�𝑤: 

 �⃗⃗� = �⃗⃗⃗̅� + �⃗⃗�𝑤 (3.32) 

The depth-averaged mean horizontal velocity is introduced in such a way that multiplied by 

the mean water depth gives the mean mass flux (Mei, 1983; Dingemans, 1994). In particular, 

if ( )̅̅ ̅ denotes the time-average, one gets 
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 �⃗⃗⃗̅� =
1

𝑑+ζ̅
∫ �⃗⃗� d𝑧

𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (3.33) 

It follows from Eq. (3.32) that ∫ �⃗⃗� d𝑧
𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= (𝑑 + ζ̅)�⃗⃗⃗̅� + ∫ �⃗⃗�𝑤 d𝑧

𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. It should be mentioned 

that the mean quantities vary also in time following slow temporal scales. This dependence is 

ignored here (see also Dingemans, 1994). Thus with the definition of Eq. (3.33) it follows that 

 ∫ �⃗⃗�𝑤 d𝑧
𝜁

−𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0     (3.34) 

It is stressed that the horizontal mean velocity, �⃗⃗⃗̅�, so defined has actually two components, 

the wave-induced current field plus the effect of the mass flux due to the wave motion.  

All the time-averaged quantities in the aforementioned analysis are computed following a 

procedure similar to the one by Rakha et al. (1997). For regular wave propagation the 

quantities involved were time-averaged over each wave period and the results were averaged 

over the number of periods. For irregular wave trains, all the time series were divided into Nc 

time cycles each consisting of N time steps. The variables were time-averaged over the N 

steps of each cycle and then the results were averaged over the number of cycles. Typically, 

each cycle had a length of 20-30 times the mean wave period. 

The aforementioned analysis focuses on the depth-averaged wave-driven currents. However, 

in order to estimate sediment transport a detailed three-dimensional velocity structure is 

needed up to the shoreline. This concerns both the primary wave-induced longshore currents 

and the secondary cross-shore currents.  

In the surf zone there is an onshore directed flow due to two mechanisms, the wave drift and 

the breaking surface rollers carrying water shorewards. This shoreward discharge caused by 

the waves must be compensated by a current in the offshore direction, the so-called undertow 

(Fredsøe and Deigaard, 1992). The undertow has its maximum in the lower part of the water 

column and is confined within the surf zone, because outside the surf zone there are no 

surface rollers to transport water, and also because the energy dissipation in the near-bed 

wave boundary layer is too weak to cause shear stresses outside that layer. 

Although in the present model wave breaking is simulated using the eddy viscosity concept, 

an estimation for the surface roller is required in order to compute the near-bed return flow 

under a breaking waveform. In order to do so, the vertical profile of the horizontal velocity 

proposed by Schäffer et al. (1992) and Madsen et al. (1997a) is employed. The main idea is 

that the surface roller is considered as a volume of water being carried with the wave celerity, 

𝑐 = (𝑐(𝑥), 𝑐(𝑦)). Below the surface roller the velocity profile is considered uniform with a 

value of �⃗⃗⃗�𝑜 = (𝑈𝑜, 𝑉𝑜) as shown in Fig. 3.2. Outside the surf zone the surface rollers are not 

present and �⃗⃗⃗�𝑜 is equal to �⃗⃗⃗�. 
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Fig. 3.2. Cross-section of a breaking wave and vertical profile of the horizontal particle velocity 

components (from Madsen et al., 1997a, modified). 

Since the surface roller concept is not used inherently in the model equations, the wave 

breaking nodes are determined using the eddy viscosity concept and by assuming an 

equivalency between the two breaking models, the surface roller thickness, δroller, can be 

estimated at each node. The celerity of the surface roller is estimated following Sørensen et 

al. (2004) as: 

 𝑐 = (𝑐(𝑥), 𝑐(𝑦)) = 1.3√g𝑑(cos 𝜃 , sin 𝜃)     (3.35) 

This result is in agreement with the experiments presented by Stive (1980) showing that a 

characteristic point at the front of a broken wave (such as the crest or the trough) moves with 

a celerity which is 20-30% higher than the linear shallow water celerity. 

Once the roller thickness has been determined, the depth-averaged undertow, �⃗⃗⃗̅�𝑜 = (�̅�𝑜, �̅�𝑜), 

can be estimated, where �⃗⃗⃗�𝑜 is defined by 

 �⃗⃗⃗�𝑜 = (𝑈𝑜, 𝑉𝑜) =
(𝑑+𝜁)�⃗⃗⃗�−𝑐δroller

𝑑+𝜁−δroller
      (3.36) 

This is a rather crude approximation for the undertow but has proved to give quite accurate 

results (see Madsen et al., 1997a), definitely better when compared to the procedure ignoring 

altogether the roller effect. 

The near bottom undertow velocity, 𝑈𝑏, is computed from the 1DH (the 2DH extension is 

straightforward) analytical expression proposed by Putrevu and Svendsen (1993), which is 

valid both inside and outside the surf zone: 

 
𝑈𝑏

√g(𝑑+ζ̅)
= [

�̅�𝑜

√g(𝑑+ζ̅)
−

𝐴

6
+

𝜏𝑠𝑏(𝑑+ζ̅)

2ρ𝑣𝑡𝑧√g(𝑑+ζ̅)
] (1 + 𝑅1)-1      (3.37) 

where ρ is the water density, 𝜏𝑠𝑏 is a steady streaming term, 𝑣𝑡𝑧 is the eddy viscosity 

coefficient outside the bottom boundary layer, and 𝐴 and 𝑅1 are coefficients. Effectively: 
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 𝜏𝑠𝑏 =
1

2
ρ𝑣𝑡𝑔𝛽1

𝑢𝑜𝑤−𝑚𝑎𝑥
2

𝑐(𝑥)    with   𝛽1 = √
𝜔

2𝑣𝑡𝑔
      (3.38) 

 𝐴 =
𝛼1(𝑑+ζ̅)2

𝑣𝑡𝑧√g(𝑑+ζ̅)
    with  𝛼1 = g

𝜕ζ̅

𝜕𝑥
+

1

2

𝜕𝑢𝑜𝑤
2

𝜕𝑥
      (3.39) 

 𝑅1 =
𝑓𝑤𝑢𝑜𝑤−𝑚𝑎𝑥(𝑑+ζ̅)

π𝑣𝑡𝑧
     (3.40) 

where 𝑣𝑡𝑔 is the eddy viscosity coefficient inside the bottom boundary layer, 𝑢𝑜𝑤−𝑚𝑎𝑥 is the 

amplitude of the oscillatory component of the near bottom velocity 𝑢𝑜𝑤, defined above as 

𝑢𝑜𝑤 = 𝑈𝑜 − �̅�𝑜, 𝜔 is the wave angular frequency and 𝑓𝑤 is the bed friction coefficient due to 

waves. 

Following de Vriend and Stive (1987) the eddy viscosity coefficient outside the bottom 

boundary layer is given by 

 𝑣𝑡𝑧 = 0.025(𝑑 + ζ̅) (
𝐷

ρ
)

1/3

  (3.41) 

where 𝐷 is the wave energy dissipation per unit area due to breaking derived by 𝐷 =

ρg𝑐(𝑥)δroller𝛽𝐷, with 𝛽𝐷 a function of the angle of inclination of the roller taken here equal to 

0.1 (Deigaard et al., 1991; Dally and Brown, 1995; Madsen et al., 1997a). Outside the surf 

zone 𝑣𝑡𝑧 is taken equal to 20% of its value at the breaking point. 

Inside the bottom boundary layer the relation by Staub et al. (1996) was adopted for the 

eddy viscosity coefficient: 

 𝑣𝑡𝑔 =
1

6
κ𝑢∗𝛿𝑤  (3.42) 

where κ is the von Karman constant (κ = 0.4), 𝑢∗ is the friction velocity (Staub et al., 1996) 

and 𝛿𝑤 is the wave boundary layer thickness, which was taken equal to √𝑣T/π with 𝑣 the 

kinematic viscosity of the water and T the wave period. 

3.3 Numerical aspects 

3.3.1 Numerical scheme 

It is convenient for the numerical calculations to rewrite the model’s Eqs (3.9), (2.17), 

(2.18) as follows: 

 ζ𝑡 = 𝐸(ζ, 𝑈, 𝑉) + 𝑓𝑠(𝑥, 𝑦, 𝑡)   (3.43)    
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 𝑈′
𝑡 = 𝐹(ζ, 𝑈, 𝑉) + [𝐹1(𝑉)]𝑡 + 𝐹2(ζ, 𝑈, 𝑉) + 𝐹𝑏𝑟 −

𝜏𝑏𝑥

𝑑+ζ
+ 𝐹eddy + 𝐹sp   (3.44) 

 𝑉′
𝑡 = 𝐺(ζ, 𝑈, 𝑉) + [𝐺1(𝑈)]𝑡 + 𝐺2(ζ, 𝑈, 𝑉) + 𝐺𝑏𝑟 −

𝜏𝑏𝑦

𝑑+ζ
+ 𝐺eddy + 𝐺sp   (3.45) 

where: 

 𝐸 = −
1

𝛽
[(𝛬𝑈)𝑥 + (𝛬𝑉)𝑦]  (3.46) 

 𝑈′ = 𝑈 − (B +
1

3
) 𝑑2𝑈𝑥𝑥 − (2B2 + 1)𝑑𝑑𝑥𝑈𝑥  (3.47) 

 𝑉′ = 𝑉 − (B +
1

3
) 𝑑2𝑉𝑦𝑦 − (2B2 + 1)𝑑𝑑𝑦𝑉𝑦  (3.48) 

 𝐹 = −gζ𝑥 − (𝑈𝑈𝑥 + 𝑉𝑈𝑦)  (3.49) 

 𝐺 = −gζ𝑦 − (𝑈𝑉𝑥 + 𝑉𝑉𝑦)  (3.50) 

 𝐹1(𝑉) = (B +
1

3
) 𝑑2𝑉𝑥𝑦 + (B2 +

1

2
) 𝑑𝑑𝑥𝑉𝑦 + (B2 +

1

2
) 𝑑𝑑𝑦𝑉𝑥  (3.51) 

 𝐺1(𝑈) = (B +
1

3
) 𝑑2𝑈𝑥𝑦 + (B2 +

1

2
) 𝑑𝑑𝑦𝑈𝑥 + (B2 +

1

2
) 𝑑𝑑𝑥𝑈𝑦  (3.52) 

and 𝐹2, 𝐺2 include all the remaining terms of 𝜓𝛪
(𝑥)

, 𝜓𝛪𝐼
(𝑥)

, 𝜓𝐼𝐼𝛪
(𝑥)

  and 𝜓𝛪
(𝑦)

, 𝜓𝛪𝐼
(𝑦)

, 𝜓𝛪𝐼𝐼
(𝑦)

, 

respectively, that are functions of ζ, 𝑈, 𝑉 and their spatial and temporal derivatives. The term 

𝑓𝑠(𝑥, 𝑦, 𝑡) is the source function for wave generation and 𝐹sp, 𝐺sp provide for wave absorption 

at the model boundaries. These terms are described in the subsection 3.3.2. 

The differential Eqs (3.43), (3.44), (3.45) are solved numerically using a finite difference 

scheme on a non-staggered cartesian Arakawa A-grid (Arakawa and Lamb, 1977). Since a 

consistent numerical scheme was employed the truncation error would be eliminated in the 

limit as Δx  0, Δy  0, and Δt  0. However, if a low-order discretization was employed, 

the error terms may have the same magnitude as the actual dispersive terms of the model 

using typical grid resolutions. In this case a back substitution of the truncation terms should 

be performed in order to obtain an accurate performance. For this reason, terms involving 

first-order spatial derivatives were differenced to O(Δx
4
), while second and third-order spatial 

derivatives were differenced to O(Δx
2
). This was chosen in order to reduce the truncation 

errors to a small size relative to all the retained terms in the equations. The spatial finite 
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differences were central in the interior of the computational domain and forward/backward at 

the boundary nodes.  

Time integration is performed using a generalized multi-step predictor-corrector scheme 

proposed by Zlatev et al. (1984). The predictor formula is of third order, followed by a fourth-

order corrector arrangement. In the following, level (n+1) refers to the new time step at which 

values of ζ, U and V are to be obtained.  Level (n) refers to the present time step at which 

information is known. Levels (n-1) and (n-2) are the last past time steps at which all 

information is also known. Using the explicit predictor formula, new values for the three 

variables at the node (i,j) are obtained by:  

 ζ𝑖,𝑗
(𝑛+1)

= 𝛼ζ𝑖,𝑗
(𝑛)

+ (1 − 𝛼)ζ𝑖,𝑗
(𝑛−1)

+ Δt [𝑝1(𝐸′)𝑖,𝑗
(𝑛)

+ 𝑝2(𝐸′)𝑖,𝑗
(𝑛−1)

+ 𝑝3(𝐸′)𝑖,𝑗
(𝑛−2)

]  (3.53) 

[𝑈′]
𝑖,𝑗
(𝑛+1)

= 𝛼[𝑈′]
𝑖,𝑗
(𝑛)

+ (1 − 𝛼)[𝑈′]
𝑖,𝑗
(𝑛−1)

+ Δt [𝑝1(𝐹′)𝑖,𝑗
(𝑛)

+ 𝑝2(𝐹′)𝑖,𝑗
(𝑛−1)

+ 𝑝3(𝐹′)𝑖,𝑗
(𝑛−2)

] +

Δt [𝑝1[(𝐹1)𝑡]
𝑖,𝑗
(𝑛)

+ 𝑝2[(𝐹1)𝑡]
𝑖,𝑗
(𝑛−1)

+ 𝑝3[(𝐹1)𝑡]
𝑖,𝑗
(𝑛−2)

]    (3.54) 

[𝑉′]
𝑖,𝑗
(𝑛+1)

= 𝛼[𝑉′]
𝑖,𝑗
(𝑛)

+ (1 − 𝛼)[𝑉′]
𝑖,𝑗
(𝑛−1)

+ Δt [𝑝1(𝐺′)𝑖,𝑗
(𝑛)

+ 𝑝2(𝐺′)𝑖,𝑗
(𝑛−1)

+ 𝑝3(𝐺′)𝑖,𝑗
(𝑛−2)

] +

Δt [𝑝1[(𝐺1)𝑡]
𝑖,𝑗
(𝑛)

+ 𝑝2[(𝐺1)𝑡]
𝑖,𝑗
(𝑛−1)

+ 𝑝3[(𝐺1)𝑡]
𝑖,𝑗
(𝑛−2)

]   (3.55) 

where: 

 𝐸′ = 𝐸 + 𝑓𝑠(𝑥, 𝑦, 𝑡)     (3.56) 

 𝐹′ = 𝐹 + 𝐹2 + 𝐹𝑏𝑟 −
𝜏𝑏𝑥

𝑑+ζ
+ 𝐹eddy + 𝐹sp      (3.57) 

 𝐺′ = 𝐺 + 𝐺2 + 𝐺𝑏𝑟 −
𝜏𝑏𝑦

𝑑+ζ
+ 𝐺eddy + 𝐺sp       (3.58) 

Δt is the time step, 𝛼 is a real free parameter and the coefficients 𝑝1(𝛼), 𝑝2(𝛼), 𝑝3(𝛼) were 

chosen based on 𝛼 to obtain a third order relation. 

In order to obtain the predicted values for 𝑈𝑖,𝑗
(𝑛+1)

 and 𝑉𝑖,𝑗
(𝑛+1)

 two tridiagonal linear systems 

have to be solved. Hence, the algorithm is really semi-implicit in terms of 𝑈 and 𝑉. The two 

linear systems are solved through the application of Thomas (1949) algorithm in x and y 

directions consecutively. After the predicted values are evaluated, the following implicit 

corrector formulation is applied: 



Chapter 3.  Integrating nearshore dynamics with the Boussinesq-type wave model 

 

 

102 

 

ζ𝑖,𝑗
(𝑛+1)

= 𝛼∗ζ𝑖,𝑗
(𝑛)

+ (1 − 𝛼∗)ζ𝑖,𝑗
(𝑛−1)

+ Δt [𝑐1(𝐸′)𝑖,𝑗
(𝑛+1)

+ 𝑐2(𝐸′)𝑖,𝑗
(𝑛)

+ 𝑐3(𝐸′)𝑖,𝑗
(𝑛−1)

+

𝑐4(𝐸′)𝑖,𝑗
(𝑛−2)

]   (3.59) 

[𝑈′]
𝑖,𝑗
(𝑛+1)

= 𝛼∗[𝑈′]
𝑖,𝑗
(𝑛)

+ (1 − 𝛼∗)[𝑈′]
𝑖,𝑗
(𝑛−1)

+ Δt [𝑐1(𝐹′)𝑖,𝑗
(𝑛+1)

+ 𝑐2(𝐹′)𝑖,𝑗
(𝑛)

+ 𝑐3(𝐹′)𝑖,𝑗
(𝑛−1)

+

𝑐4(𝐹′)𝑖,𝑗
(𝑛−2)

] + Δt [𝑐1[(𝐹1)𝑡]
𝑖,𝑗
(𝑛+1)

+ 𝑐2[(𝐹1)𝑡]
𝑖,𝑗
(𝑛)

+ 𝑐3[(𝐹1)𝑡]
𝑖,𝑗
(𝑛−1)

+ 𝑐4[(𝐹1)𝑡]
𝑖,𝑗
(𝑛−2)

]    (3.60) 

[𝑉′]
𝑖,𝑗
(𝑛+1)

= 𝛼∗[𝑉′]
𝑖,𝑗
(𝑛)

+ (1 − 𝛼∗)[𝑉′]
𝑖,𝑗
(𝑛−1)

+ Δt [𝑐1(𝐺′)𝑖,𝑗
(𝑛+1)

+ 𝑐2(𝐺′)𝑖,𝑗
(𝑛)

+ 𝑐3(𝐺′)𝑖,𝑗
(𝑛−1)

+

𝑐4(𝐺′)𝑖,𝑗
(𝑛−2)

] + Δt [𝑐1[(𝐺1)𝑡]
𝑖,𝑗
(𝑛+1)

+ 𝑐2[(𝐺1)𝑡]
𝑖,𝑗
(𝑛)

+ 𝑐3[(𝐺1)𝑡]
𝑖,𝑗
(𝑛−1)

+ 𝑐4[(𝐺1)𝑡]
𝑖,𝑗
(𝑛−2)

]    (3.61) 

with 𝛼∗ ∈ [0,2)  and the coefficients 𝑐1(𝛼∗), 𝑐2(𝛼∗), 𝑐3(𝛼∗), 𝑐4(𝛼∗) were chosen based on 𝛼∗ 

to obtain a fourth-order relation. After solving Eqs (3.59), (3.60) and (3.61) the values of ζ, U 

and V at the time level (n+1) are obtained.  

It should be mentioned that the time derivatives of the quantities 𝑈, 𝑉, 𝐹1 and 𝐺1that appear 

in the right-hand side of Eqs (3.54), (3.55), (3.60) and (3.61) are approximated following Wei 

et al. (1995) and Wei and Kirby (1998). In particular, for the predictor stage, the 

corresponding time derivatives are evaluated as: 

 (𝑤𝑡)𝑖,𝑗
(𝑛)

=
1

2Δt
(3𝑤𝑖,𝑗

𝑛 − 4𝑤𝑖,𝑗
𝑛−1 + 𝑤𝑖,𝑗

𝑛−2) + 𝑂(Δt2)    (3.62a) 

 (𝑤𝑡)𝑖,𝑗
(𝑛−1)

=
1

2Δt
(𝑤𝑖,𝑗

𝑛 − 𝑤𝑖,𝑗
𝑛−2) + 𝑂(Δt2)    (3.62b) 

 (𝑤𝑡)𝑖,𝑗
(𝑛−2)

= −
1

2Δt
(𝑤𝑖,𝑗

𝑛 − 4𝑤𝑖,𝑗
𝑛−1 + 3𝑤𝑖,𝑗

𝑛−2) + 𝑂(Δt2)    (3.62c) 

For the corrector stage: 

 (𝑤𝑡)𝑖,𝑗
(𝑛+1)

=
1

6Δt
(11𝑤𝑖,𝑗

𝑛+1 − 18𝑤𝑖,𝑗
𝑛 + 9𝑤𝑖,𝑗

𝑛−1 − 2𝑤𝑖,𝑗
𝑛−2) + 𝑂(Δt3)    (3.63a) 

 (𝑤𝑡)𝑖,𝑗
(𝑛)

=
1

6Δt
(2𝑤𝑖,𝑗

𝑛+1 + 3𝑤𝑖,𝑗
𝑛 − 6𝑤𝑖,𝑗

𝑛−1 + 𝑤𝑖,𝑗
𝑛−2) + 𝑂(Δt3)    (3.63b) 

 (𝑤𝑡)𝑖,𝑗
(𝑛−1)

= −
1

6Δt
(𝑤𝑖,𝑗

𝑛+1 − 6𝑤𝑖,𝑗
𝑛 + 3𝑤𝑖,𝑗

𝑛−1 + 2𝑤𝑖,𝑗
𝑛−2) + 𝑂(Δt3)    (3.63c) 

 (𝑤𝑡)𝑖,𝑗
(𝑛−2)

= −
1

6Δt
(-2𝑤𝑖,𝑗

𝑛+1 + 9𝑤𝑖,𝑗
𝑛 − 18𝑤𝑖,𝑗

𝑛−1 + 11𝑤𝑖,𝑗
𝑛−2) + 𝑂(Δt3)    (3.63d) 
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The corrector step was iterated until the relative error, Δf, between two successive results 

reached an acceptable limit. The relative error is defined as (Long and Kirby, 2006): 

 Δf = max {
∑ |ζ𝑖,𝑗

(𝑛+1)
− ζ𝑖,𝑗

(𝑛+1)∗
|𝑖,𝑗

∑ |ζ𝑖,𝑗
(𝑛+1)

|𝑖,𝑗

, 
∑ (|𝑈𝑖,𝑗

(𝑛+1)
− 𝑈𝑖,𝑗

(𝑛+1)∗
|+|𝑉𝑖,𝑗

(𝑛+1)
− 𝑉𝑖,𝑗

(𝑛+1)∗
|)𝑖,𝑗

∑ (|𝑈
𝑖,𝑗
(𝑛+1)

|+|𝑉
𝑖,𝑗
(𝑛+1)

|)𝑖,𝑗

}     (3.64) 

where ( )
*
 denotes the preceding estimate. The corrector step was iterated if Δf exceeded 

0.001. For weakly nonlinear cases the scheme required typically no iterations, unless 

problems arose from boundaries. However, for strong nonlinear cases, more iterations were 

required. Moreover, the iterated results appeared to oscillate around the desired solution. In 

order to increase the convergence rate, a relaxation technique was applied at the corrector 

stage. The adjusted relaxed value, 𝑓𝑖,𝑗
𝑟 , was: 

 𝑓𝑖,𝑗
𝑟 = R𝑓𝑖,𝑗 + (1 - R)𝑓𝑖,𝑗

∗      (3.65) 

where R is the relaxation coefficient in the interval (0,1), 𝑓𝑖,𝑗 and 𝑓𝑖,𝑗
∗  are the current and the 

preceding iterated values, respectively. In all the computational cases a value of R=0.7-0.8 

gave satisfactory results.  

By assuming (𝛼, 𝛼∗) = (1,1) the predictor and corrector stages reduce to the Adams-

Bashforth third-order and Adams-Moulton fourth-order formulae, respectively. This ABM 

fourth-order scheme was initially proposed by Wei and Kirby (1995) for a weakly nonlinear 

Boussinesq-type model based on Nwogu’s (1993) equations and was later extended to the 

higher order models by Wei et al. (1995) and Gobbi and Kirby (1999). The numerical scheme 

adopted here is a generalization of ABM scheme, offering better numerical stability properties 

(Zlatev et al., 1984; Banijamali, 1998). 

3.3.2 Boundary conditions 

Source function 

The desired waves are generated inside the computational domain by introducing a source 

term, 𝑓𝑠(𝑥, 𝑦, 𝑡), in the continuity equation. An analytical expression for this source function 

was obtained following the work by Wei et al. (1999). The basic idea behind this method is 

the distribution of the source function over a certain neighborhood of the source in order to 

avoid the generation of spurious noise around the source point. 

The source's neighborhood is assumed to be a 2D region of constant depth and, without 

losing generality the source itself is considered parallel to the y-axis, with 𝑥𝑠 its central 
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location in the 𝑥 direction. A smooth Gaussian distribution is considered and the source 

function can be written: 

 𝑓𝑠(𝑥, 𝑦, 𝑡) = 𝐹𝑠(𝑦, 𝑡) exp[−𝛽𝑠(𝑥 − 𝑥𝑠)2]     (3.66) 

where 𝛽𝑠 is the shape coefficient. The time series for a wave train, along the y-axis, composed 

by Ns frequencies and Ms directional components is given by: 

 

𝐹𝑠(𝑦, 𝑡) = ∑ ∑ Dsi,j
cos (ωit − kiy sin φ

j
+ εi,j)

𝑀𝑠

𝑗=1

𝑁𝑠

𝑖=1

 (3.67) 

where ωi and ki are the angular frequency and the wavenumber of the i-th frequency 

component, respectively, φ
j 

is the angle between the wave propagation direction and the x-

axis for the j-th directional component and εi,j is a random phase within the range of [0, 2π). 

Following Wei et al’s. (1999) method applied to the linearized version of the present model, 

the magnitude of the source function, Ds, for a monochromatic wave or a single wave 

component of a random wave train with wave amplitude ζo is determined by: 

 Ds=
2ζo(ω2+Bgk

4
d

3) cos φ

ωIk[1+(B+
1

3
)(kd)2]

  (3.68) 

with 𝐼 defined by 

 𝐼 = √
π

𝛽𝑠
exp [−

(k cos φ)2

4𝛽𝑠
]  (3.69) 

As far as the shape coefficient is concerned, large 𝛽𝑠 values are generally preferred since 

then the source region is narrower. However, a too narrow source region may lead to a poor 

finite difference representation. In most of the computations here a value of βs = 80/(δs𝐿)2 

was adopted, with 𝐿 the target wavelength and δs = 0.3. 

It is stressed that the source function method is theoretically derived for the linear version of 

the Boussinesq-type model. Thus, some discrepancies from the target solution may occur due 

to the nonlinear terms. In most of the cases these deviations are insignificant (Wei and Kirby, 

1998). However, for very strongly nonlinear waves the source function theory fails to 

generate the desired wave forms. 

Reflective boundaries 

For a reflective boundary with an outward normal vector �⃗⃗�, three conditions were imposed : 
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 �⃗⃗⃗� ∙ �⃗⃗� = 0  ,  ∇ζ ∙ �⃗⃗� = 0  ,  
𝜕�⃗⃗⃗�𝑇

𝜕�⃗⃗�
= 0  ,  ∀ �⃗� ∈ 𝜕Ω    (3.70) 

where Ω is the fluid computational domain, 𝜕Ω is the associated domain reflective boundary, 

�⃗� is a position in the domain and �⃗⃗⃗�𝑇 is the velocity component tangent to the boundary. 

It should be mentioned that the first two relations of Eq. (3.70) specify completely the 

kinematic boundary condition. The third one, though not inconsistent with the inviscid flow 

assumed, is actually not required by the kinematic constraints (Wei and Kirby, 1995).  

Absorbing boundaries 

At the upwave and downwave limits of the computational domain, absorbing boundary 

conditions were imposed. In particular, in order to avoid wave reflection at the boundaries 

damping layers were applied to absorb the energy of the outgoing waves. The energy 

damping is achieved by adding the artificial damping terms 𝐹sp and 𝐺sp to the right-hand side 

of the x and y-momentum equations, respectively. These terms are defined by (Israeli and 

Orszag, 1981; Wei and Kirby, 1995): 

 𝐹𝑠𝑝 = −𝑤1(𝑥, 𝑦)𝑈 − 𝑤2(𝑥, 𝑦)(𝑈𝑥𝑥 + 𝑈𝑦𝑦)     (3.71a) 

 𝐺𝑠𝑝 = −𝑤1(𝑥, 𝑦)𝑉 − 𝑤2(𝑥, 𝑦)(𝑉𝑥𝑥 + 𝑉𝑦𝑦)     (3.71b) 

where 𝑤1 and 𝑤2 are functions of two different kinds of damping mechanisms, Newtonian 

cooling and viscous damping, respectively. Assuming one sponge layer, i.e., from 𝑥 = 𝑥sp to 

𝑥 = 𝑥L (computational domain from 𝑥 = 0 to 𝑥 = 𝑥L), then: 

 𝑤1(𝑥) = {
0,                   𝑥 < 𝑥sp

α1ω𝑓(𝑥),     𝑥 ≥ 𝑥sp
     (3.72a) 

 𝑤2(𝑥) = {
0,                      𝑥 < 𝑥sp

α2vsp𝑓(𝑥),      𝑥 ≥ 𝑥sp
     (3.72b) 

where α1 and α2 are constants to be determined for each specific run, vsp is the viscous 

coefficient and ω is the frequency of the wave to be damped. The relaxation function is given 

by 

 𝑓(𝑥) =
exp[(

𝑥−𝑥s

𝑥L−𝑥s
)

2

]−1

exp(1)−1
     (3.73) 

The width of the damping layers was taken to be three times the corresponding wavelength.   
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3.3.3 Numerical investigation 

Compared to backward-differencing formulae, the ABM formulae are more accurate but 

less stable for the same order of accuracy in Δt. Increasing the order of ABM formulae 

corresponds to a reduction of the stable range of Courant numbers resulting in most ABM 

formulae being weakly unstable. The numerical scheme to discretize the enhanced nonlinear 

equations is quite complex. To gain some insight into the model, von Neumann’s linear 

stability analysis was applied, for the case of constant water depth and one-dimensional flow 

only. A similar analysis was also performed by Wei and Kirby (1998) for Nwogu’s (1993) 

equations. Under the aforementioned simplifications, the linearized version of the basic 

equations reads 

 ζ𝑡 = 𝐸= − 𝑑𝑈𝑥   (3.74a)   

 𝑈′
𝑡 = 𝐹= − gζ𝑥 + Bg𝑑2𝜁𝑥𝑥𝑥    (3.74b) 

The stability ranges for the predictor stage alone and the corrector stage alone are not the 

same. It also varies according to the number of the iterations used in each time step. For 

simplicity, the following stability analysis will be performed for the case which corresponds 

to using only one iteration in the corrector stage for each time step. This is the most common 

case when applying the linear model version on a horizontal bottom.  

By applying von Neumann’s analysis, ζ and 𝑈 can be written at the 𝑗-node and 𝑛th 
time step 

by their Fourier components as: 

 𝜁𝑗
𝑛 = 𝜁𝑜exp[𝑖(𝑘𝑗Δ𝑥 − 𝜔𝑛Δ𝑡)]   (3.75a)   

 𝑈𝑗
𝑛 = 𝑈𝑜exp[𝑖(𝑘𝑗Δ𝑥 − 𝜔𝑛Δ𝑡)]   (3.75b)   

where 𝑖 = √−1 is the imaginary unit, 𝑘 and 𝜔 are the corresponding wavenumber and 

angular frequency. Thus, the discretization results to 

 (𝑈΄)𝑗
𝑛 = 𝑈𝑗

𝑛 − (B +
1

3
) 𝑑2 𝑈𝑗+1

𝑛 −2𝑈𝑗
𝑛+𝑈𝑗−1

𝑛

Δ𝑥2    (3.76a)  

 (𝑈𝑥)𝑗
𝑛 =

𝑈𝑗−2
𝑛 −8𝑈𝑗−1

𝑛 +8𝑈𝑗+1
𝑛 −𝑈𝑗+2

𝑛

12Δ𝑥
   (3.76b)   

 (𝜁𝑥)𝑗
𝑛 =

𝜁𝑗−2
𝑛 −8𝜁𝑗−1

𝑛 +8𝜁𝑗+1
𝑛 −𝜁𝑗+2

𝑛

12Δ𝑥
   (3.76c)   
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 (𝜁𝑥𝑥𝑥)𝑗
𝑛 =

−𝜁𝑗−2
𝑛 +2𝜁𝑗−1

𝑛 −2𝜁𝑗+1
𝑛 +𝜁𝑗+2

𝑛

2Δ𝑥3
   (3.76d)   

Since only one iteration is considered here for each time step, the discretized values are 

inserted into the linearized one-dimensional version of Eqs (3.53) and (3.54) and the resulting 

predicted values 𝜁𝑗
(𝑛+1)∗

 and 𝑈𝑗
(𝑛+1)∗

 are inserted into the linearized one-dimensional version 

of Eqs (3.59) and (3.60) to directly obtain the desired values 𝜁𝑗
(𝑛+1)

 and 𝑈𝑗
(𝑛+1)

. By applying 

Twizell’s (1984) method for multiple time step schemes, the resulting discretized equations 

for the corrector step can be combined into a single matrix equation as 

 𝑍𝑛+1 = 𝐴𝑍𝑛   (3.77) 

where 𝑍𝑛+1 and 𝑍𝑛 are six element vectors defined as 

 𝑍𝑛+1 = {𝜁𝑗
𝑛+1, 𝑈𝑗

𝑛+1, 𝜁𝑗
𝑛, 𝑈𝑗

𝑛, 𝜁𝑗
𝑛−1, 𝑈𝑗

𝑛−1}
𝑇
   (3.78a) 

 𝑍𝑛 = {𝜁𝑗
𝑛, 𝑈𝑗

𝑛, 𝜁𝑗
𝑛−1, 𝑈𝑗

𝑛−1, 𝜁𝑗
𝑛−2, 𝑈𝑗

𝑛−2}
𝑇
   (3.78b) 

and 𝐴 is the 6x6 amplification matrix. The stability range can be determined by the condition 

that the modulus of all the six eigenvalues of 𝐴, 𝜆𝑖 (𝑖 = 1, 2,.., 6), should not be greater than 

1. These eigenvalues are a function of the ratio of water depth to the grid size 𝑑/Δ𝑥, the 

Courant number Cr = √g𝑑Δ𝑡/Δ𝑥, and the dimensionless wavenumber 𝑘Δ𝑥. The lengthy 

analytical expressions of |𝜆𝑖| are not given here. Instead of this, the variation of |𝜆𝑖| for 

𝑑/Δ𝑥 = 1, Cr ∈ [0, 2], and 𝑘Δ𝑥 ∈ [0, π] is depicted in Fig. 3.3. The specific figure refers to 

the standard ABM formulae proposed by Wei and Kirby (1995), and thus (𝛼, 𝛼∗) = (1,1). It 

can be observed that only the first two of the eigenvalues have moduli that can exceed one for 

certain values of 𝑑/Δ𝑥, Cr, and 𝑘Δ𝑥. These two eigenvalues are complex conjugate and 

therefore their moduli are exactly the same. Thus, it is sufficient to study the variation of |𝜆1| 

for different values of 𝑑/Δ𝑥, Cr, and 𝑘Δ𝑥 in greater detail. 
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Fig. 3.3. Variation of the six eigenvalues’ moduli |𝜆𝑖| (𝑖 = 1, 2, 3, 4, 5, 6) with Courant number, Cr, 

and dimensionless wavenumber, 𝑘Δ𝑥, for a fixed value of 𝑑/Δ𝑥 = 1. 

For a more detailed analysis of the stability range, five cross sections corresponding to 

𝑘Δ𝑥 = 𝜈
π

10
 (𝜈 = 1, 2, 3, 4, 5) were chosen from Fig. 3.3 to plot the diagrams in Figs 3.4 and 

3.5. From Fig. 3.4 it can be concluded that for fixed values of Cr and 𝑑/Δ𝑥, the maximum 

value of |𝜆1| is reached at 𝑘Δ𝑥 =
π

2
 . Therefore, the numerical scheme will be linearly stable if 

|𝜆1| ≤ 1 at 𝑘Δ𝑥 =
π

2
 . Fig. 3.5 shows the variation of |𝜆1| with Cr for a fixed value 𝑘Δ𝑥 =

π

2
  

and several values of 𝑑/Δ𝑥. It seems that |𝜆1| is a decreasing function of the ratio 𝑑/Δ𝑥. 

However, further analysis showed that the value of the eigenvalue’s modulus for 𝑑/Δ𝑥 =

0.01 is very close to the corresponding one for 𝑑/Δ𝑥 = 0.1. Therefore, it can be concluded 

from the aforementioned analysis and the relevant figures that the numerical scheme using 

one predictor and one corrector stage is linearly stable if Cr ≤ 0.88, regardless the values of 

𝑑/Δ𝑥 and 𝑘Δ𝑥.  
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Fig. 3.4. Variation of the eigenvalue’s modulus |𝜆1| with Courant number, Cr, for various values of the 

dimensionless wavenumber, 𝑘Δ𝑥, and for a fixed value of 𝑑/Δ𝑥 = 1 [Wei and Kirby’s (1995) scheme 

with (𝛼, 𝛼∗) = (1,1)].  

  

Fig. 3.5. Variation of the eigenvalue’s modulus |𝜆1| with Courant number, Cr, for various values of the 

ratio 𝑑/Δ𝑥, and for a fixed value of 𝑘Δ𝑥 =
π

2
 [Wei and Kirby’s (1995) scheme with (𝛼, 𝛼∗) = (1,1)].  

The generalized multistep predictor-corrector formula introduced by Zlatev et al. (1983, 

1984) extends the linear stability range of the standard ABM formula through the insertion of 

the free parameters (𝛼, 𝛼∗) (Banijamali, 1998). Application of the values (𝛼, 𝛼∗) =

(-0.85, 1.80) derived by Zlatev et al. (1983) for a third-order predictor followed by a fourth-

order corrector step results to Figs 3.6 and 3.7. These values offer an extension of the linear 

stable region to Cr ≤ 1.28, regardless the values of 𝑑/Δ𝑥 and 𝑘Δ𝑥.  
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Fig. 3.6. Variation of the eigenvalue’s modulus |𝜆1| with Courant number, Cr, for various values of the 

dimensionless wavenumber, 𝑘Δ𝑥, and for a fixed value of 𝑑/Δ𝑥 = 1 [generalized multistep predictor-

corrector scheme with (𝛼, 𝛼∗) = (-0.85, 1.80)]. 

 

Fig. 3.7. Variation of the eigenvalue’s modulus |𝜆1| with Courant number, Cr, for various values of the 

ratio 𝑑/Δ𝑥, and for a fixed value of 𝑘Δ𝑥 =
π

2
 [generalized multistep predictor-corrector scheme with 

(𝛼, 𝛼∗) = (-0.85, 1.80)]. 

It should be mentioned that the stability properties described above refer to only one 

iteration at the corrector stage. If more than one iterations are executed, the stability range is 

modified. In addition, the aforementioned analysis refers to linear stability over a horizontal 

bottom which is a strong simplification. However, most of the numerical instabilities, even of 

the linear type, occur on a sloping bottom where the sloping terms amplify the spurious 

forms. Moreover, in most of the real model applications the nonlinear effects are not 

negligible, and the criterions for linear stability evaluated above do not guarantee the overall 

numerical stability of the scheme.  

In most of the cases studied in the present thesis a very low, and even more negative, value 

of the free parameter 𝛼 resulted to a low rate of convergence of the numerical scheme. Hence, 
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in all the computations the parameters 𝛼 and 𝛼∗ were considered in the range 0.8-1.2 and 

linear stability was ensured, even for very long runs, by keeping the Courant number around 

0.30-0.35. However, in some cases nonlinear instability occurred under strongly nonlinear 

conditions or close to the boundaries. In these cases short spurious waves were generated by 

higher order nonlinear terms, infected the solutions and led shortly to unstable results. In most 

of these computations the application of a low-pass fourth-order Shapiro (1970) numerical 

filter was enough to remove the spurious noise. The analytical expression for this one-

dimensional 9-point filter is given by 

 𝑍𝑖
∗ =

1

256
[186𝑍𝑖 + 56(𝑍𝑖+1 + 𝑍𝑖−1) − 28(𝑍𝑖+2 + 𝑍𝑖−2) + 8(𝑍𝑖+3 + 𝑍𝑖−3) − (𝑍𝑖+4 + 𝑍𝑖−4)]    

   (3.79) 

where 𝑍𝑖 = {𝜁𝑖, 𝑈𝑖} represents the original values which consists of both long and short 

waves, and 𝑍𝑖
∗ represent the new values with short waves being filtered out. It is 

straightforward to obtain an expression for the corresponding two-dimensional filter. 

However, this would be a very complex formula involving 9 x 9 = 81 neighboring points for 

each filtered point. Instead of this, the 1-D formula was applied twice, firstly in the x direction 

and subsequently in the y direction to account for the two dimensional case. This simplified 

approach is very convenient although it introduces some inaccuracies concerning artificial 

numerical anisotropy in the wave propagation. The response function, 𝑅∗, is expressed by the 

ratio of the smoothed to unsmoothed amplitudes: 

 𝑅∗ = [1 − sin
8 (

πΔ𝑥

𝐿𝑥
)] [1 − sin

8 (
πΔ𝑦

𝐿𝑦
)]    (3.80) 

where 𝐿𝑥 and 𝐿𝑦 denote the wavelengths in the x and y directions, respectively. Fig. 3.8 

depicts the variation of the response function with respect to the ratio of the wavelength to the 

grid size for both the one- and two-dimensional cases. The 1-D diagram also shows the 

variation of the response function with respect to the order N of the Shapiro (1970) filter used. 

Waves with wavelength twice of the grid size are completely filtered out. As the wave length 

increases, the value of 𝑅∗ also increases. Thus, the effect of filtering decreases for longer 

waves.  
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Fig. 3.8. Response function for various orders of the 1-D numerical filter (at left) and 2-D filter (at 

right).  

Every time the low-pass filter is applied, a fraction of the long wave energy is also 

undesirably damped. Moreover, it is apparent from Fig. 3.8 that the efficiency of the filter 

increases as the order increases, leading, though, to larger inaccuracies. The fourth-order filter 

appears as a good option since it is a quite light filter, almost imperceptible for wavelengths 

longer than 5-6 times the grid size. Nevertheless in some runs the application of an extra 

localized numerical filter was required in order to completely remove the instabilities in areas 

of intense nonlinearity, such as close to breaking initiation or in the swash zone. 

For wave propagation simulations, the accuracy can often pose more stringent requirements 

than stability, and thus Courant numbers near the stability limit are not generally encouraged. 

The accuracy with the respect to the order of discretization has been commented above. In 

addition, a grid sensitivity analysis is also performed for the cnoidal wave test presented in 

subsection 3.4.1. In general, the linear properties of a propagating wave are adequately 

reproduced if 10 grid points are used per wavelength (Banijamali, 1998). However, in order to 

describe the characteristics of highly nonlinear waves, 40-80 points per wavelength are 

required. The spatial discretization errors are more often the dominant source of errors in 

comparison to time discretization errors. This is further pronounced due to the presence of 

higher-order spatial derivatives compared to only first-order time-derivatives. 

Another issue with regard to accuracy refers to numerical refraction in two horizontal 

dimensions. Finite resolution causes preferred directions of propagation (anisotropy). The 

numerical isotropy of wave propagation is checked herein through a benchmark ring test. A 

Gaussian symmetrical hump was generated in the center of a square tank 10 x 10 m. The tank 

had a uniform depth of 0.5 m and was surrounded by fully reflective vertical walls. The initial 

Gaussian-shaped free surface elevation was given by 

 𝜂𝑜(𝑥, 𝑦) = 0.1exp{-0.4[(𝑥 − 5)2 + (𝑦 − 5)2]}    (3.81) 

Due to gravitational forcing, the wave was generated and propagated out of the center and 

then it was reflected back in the domain by the four side walls. Since no sponge layers were 
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used and there was no wave breaking and bottom friction, there should be no energy loss. Fig. 

3.9 shows contour plots of surface elevation at various times. 

(a) (b)  (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
Fig. 3.9. Contour plots of free surface elevation at time (a) 𝑡 = 0; (b) 𝑡 = 1; (c) 𝑡 = 2; (d) 𝑡 = 3; (e) 

𝑡 = 4; (f) 𝑡 = 5; (g) 𝑡 = 6; (h) 𝑡 = 7; (i) 𝑡 = 8; (j) 𝑡 = 9; (k) 𝑡 = 10; (l) 𝑡 = 11; 
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The grid size was Δ𝑥 = Δ𝑦 = 0.1 m and the time step Δ𝑡 = 0.02 sec. It can be observed that 

the symmetric characteristics of the tank and initial conditions result to almost perfectly 

symmetric wave patterns. Thus, the spurious numerical anisotropy introduced by the 

numerical scheme is negligible. Since a source function is not applied here to generate waves 

and the four wall boundaries around the basin are fully reflective, the water volume should 

remain constant. Fig. 3.10 depicts the timeseries of the relative error of the water volume in 

the entire tank defined by 

 𝐸𝑟(𝑡) =
𝑉(𝑡)−𝑉(0)

𝑉(0)
     (3.82) 

where 𝑉(𝑡) is the total water volume with respect to the still water level ( 𝑉(𝑡) = 0 when the 

water is calm) and 𝑉(0) is the initial volume of the Gaussian hump. As shown in Fig. 3.10, 

the relative error of the water volume is less than 1% and hence the numerical scheme 

conserves the mass and the boundary conditions are well posed.  

 

 

Fig. 3.10. Timeseries of the relative error E of the water volume in the tank. 

Apart from accuracy, the required computational time is a serious issue when evaluating 

wave models. Boussinesq-type wave models imply reduced computational time compared to 

fully 3-D models but they are more time-consuming compared to phase-averaged wave 

models, especially when dealing with two-horizontal dimensional applications. The numerical 

solution of Boussinesq equations involves large matrices, e.g. 500x500, 1000x1000, etc. and 

thus have computations. Hence, the PC used for the simulations should have some 

requirements of high standards, i.e. high processor frequency, low ratio of processor 

frequency to FSB (Front Side Bus), Large L2 Cache memory, and a minimum of available 

RAM, say 1GB.  

In order to check the Boussinesq model’s computational cost, it was run on four different 

PCs to simulate the ring test described above. All of them included multi-cored processors 

and parallel computing was used to accelerate the computations. The technical characteristics 
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of the processors are given in table 3.1. The compiler used in all the computations was Intel 

Visual Fortran 11.1.051. 

Table 3.1. Technical characteristics of the PCs used in simulations. 

Processors Cores Frequency RAM 

Intel Core 2 Duo T9600 2 2.80 GHz 6 GB 

Intel Core i7-2670QM 4 2.20 GHz 4 GB 

Intel Core i7-4770 8 3.40 GHz 16 GB 

Intel Xeon E5-2620v2 12 2.10 GHz 8 GB 

 

A comparison of the variation of the computational time with the number of time steps for 

the various processors is depicted in Fig. 3.11. The diagram at left refers to the test described 

above which includes 301x301 grid points. It can be seen that, in general, the increase of the 

number of cores offers significant acceleration of the computations when parallel computing 

is used. However, the 8-cored processor appears to be faster than the 12-cored. This is 

explained by the higher frequency of the former’s (3.40 GHz) compared to latter’s (2.10 

GHz). In addition, parallel computing implies some time consumption because of the 

communication of the different cores. It should be also mentioned that some delay in 

computations also appears because the 12-cored processor consists actually of two 6-cored 

processors and thus their inter-processor communication requires some extra time. However, 

if the ring test is applied on a much larger domain including 1001x1001 grid points, then the 

12-cored processor is faster, though slightly, than the 8-cored, since the computational strain 

corresponding to each core is much increased. Consequently, the superiority of the one over 

the other processor depends on their frequency, the number if cores when parallelization is 

used, and also the size of the computational domain.  

 

Fig. 3.11. Computational time for four different processors for 301x301 grid points (at left) and two 

different processors for 1001x1001 grid points (at right). 

The significance of the parallelization in computations is pronounced in Fig. 3.12 where the 

ratio of the computational time required without using parallel computing to the 

corresponding time when using parallelization is depicted for the 8- and 12-cored processors. 
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It can be observed that for the domain including 301x301 points the parallelization offers a 

speed-up of about 2.5 times for the 8-cored processor and about 2 times for the 12-cored. The 

reasons for this limited gain of time were explained above and they are attributed to inter-

procedural delays during the communication of the different cores. However, if the large 

domain of the 1001x1001 points is considered, the speed-up for the 8-cored processor is still 

2.5 times, while for the 12-cored it is increased to 4 times. 

   

Fig. 3.12. Speed-up due to parallelization for 301x301 grid points (at left) and 1001x1001 grid points 

(at right) for 8-cored and 12-cored processors. 

As a practical conclusion, it can be said that simulation of 20 min of wave propagation in a 

domain of a coastal zone with dimensions 1 km x 1 km would require about 1 day of 

computational time on an 8-cored PC similar to the one described above. These 

computational times are not prohibitive anymore with the more and more increased power of 

computers. Moreover, the recently introduced GPU technology offers a powerful and 

promising tool for the application of two-dimensional phase-resolving wave models in larger 

computational domains even on personal PCs. 

3.4 Model validation 

In order to check the model's ability to simulate nearshore dynamics, both its 1DH and 2DH 

versions were validated through a number of experimental tests. Both regular and irregular 

wave propagation over plane beaches, submerged shoals and a rip channel were studied. The 

results were compared to laboratory measurements involving time domain data, wave spectra, 

phase-averaged wave parameters and current fields. Some of the tests are very demanding 

since they combine a number of physical processes such as shoaling, depth refraction, 

diffraction, breaking, wave run-up, overtopping, nonlinear energy transfer and interactions 

with the wave-induced current field.  
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3.4.1 1DH validation 

Regular breaking waves on a planar beach 

The first set of comparisons refers to the data by Hansen and Svendsen (1979). Their 

experiments were conducted in a wave flume involving shoaling and breaking regular waves. 

The waves were generated on a horizontal bottom at a depth of 0.36 m, followed by a planar 

beach of slope 1:34.26. Measurements of the surface elevation were taken at a large number 

of stations using an automated, continuously moving trolley. Due to a considerable scatter of 

the measured values the measurements were smoothed somewhat following Kennedy et al. 

(2000). 

The entire data set covers a variety of different breaking conditions. In the present study two 

cases were chosen to be checked. The first one, case No. 051041, involved spilling breaking 

waves with a period of T = 2.0 s and incoming wave height Ho = 0.036 m. The second one, 

case No. 031041, referred to plunging breaking waves with T = 3.33 s and Ho = 0.043 m. The 

breaker types were distinguished based on a surf similarity analysis. A comparison between 

the measured and the computed wave height and wave setup for the two cases is shown in 

Figs 3.13, 3.14, 3.15 and 3.16. The grid step and the time step were 0.02 m and 0.004 s, and 

0.03 m and 0.006 s for test cases No. 051041 and No. 031041, respectively. Both for the 

spilling and plunging cases the parameters for breaking initiation and cessation were set to 

𝜁𝑡
(𝐼)

= 0.65√g𝑑  and 𝜁𝑡
(𝐹)

= 0.15√g𝑑, respectively. A sensitivity analysis showed that both 

the wave height and wave setup are sensitive to the value of 𝜁𝑡
(𝐼)

, while no significant 

sensitivity to the value of 𝜁𝑡
(𝐹)

 was observed. However, the default values described in 

subsection 3.2.1 for breaking on a plane beach were applied. The mixing length coefficient δb 

was set after calibration to 1.0 and 1.2 for the spilling and plunging tests, respectively. 

 

Fig. 3.13. Computed and measured wave height for spilling breaker case No. 051041. 
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Fig. 3.14. Computed and measured wave setup for spilling breaker case No. 051041. 

 

Fig. 3.15. Computed and measured wave height for plunging breaker case No. 031041. 

 

Fig. 3.16. Computed and measured wave setup for plunging breaker case No. 031041. 

The dimensionless wavenumbers in the source region for the spilling and the plunging 

breaking tests were kd = 0.64 and 0.37, respectively. Thus both cases lie in the range of 

applicability of the present model. The comparison for the spilling case is very good. Both the 

breaking height and the initiation of breaking are well-predicted. There is only a slight over-

prediction of wave height and setup in the inner surf zone. This has been also observed in 
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other Boussinesq-type models simulating wave breaking by using the eddy viscosity concept 

(Kennedy et al., 2000). Simulating plunging breaking is a difficult task due to the intense and 

rapid energy dissipation. However, the comparison herein is quite reasonable. The position of 

breaking initiation is predicted accurately but the maximum wave height is underestimated, 

with an error of about 7.5%. In this test, the over-prediction of the wave height in the inner 

surf zone is more pronounced.  

For the spilling breaking test case the mass balance was studied in order to evaluate the 

efficiency of the slot technique. For a long wave surging up a gentle slope, where numerical 

diffusion is small, the moving boundary is important for the conservation of the total mass. A 

reference water volume was considered extended from the toe of the sloping beach to 1 m 

downwave of the still shoreline. The ratio of error introduced in the mass balance equation to 

the initial water volume inside the frame of reference was computed and is presented in Fig. 

3.17. This relative error is very small, proving the efficiency of the model to conserve the 

total mass. 

 

Fig. 3.17. Time evolution of relative error in mass balance. 

Apart from the two cases described above, an extra test concerning regular wave breaking 

was also employed to check the model's ability to estimate the depth-averaged undertow. This 

test is reported by Hansen and Svendsen (1984) and was performed using the same 

experimental layout as the one described above. It involves waves of period T = 2.0 s and 

incoming wave height Ho = 0.12 m. This is a strongly nonlinear waveform since ε = 0.33 and 

the dimensionless wave number at the horizontal bed is kd = 0.64. The breaker is of spilling 

type. The spatial step was Δ𝑥 = 0.02 m and the time step Δ𝑡 = 0.004 s. Figs 3.18, 3.19, and 

3.20 depict the wave height, the wave setup and the depth-averaged undertow variation 

respectively, with 𝑥 = 0 at 2.7 m offshore of the toe of the slope (15 m from the still water 

shoreline). 
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Fig. 3.18. Computed and measured wave height in Hansen and Svendsen's (1984) test. 

 

Fig. 3.19. Computed and measured wave setup in Hansen and Svendsen's (1984) test. 

 

Fig. 3.20. Computed and measured depth-averaged undertow in Hansen and Svendsen's (1984) test. 

Despite the strongly nonlinear conditions, all three variables tested are well-predicted, 

proving the significance of the enhanced nonlinear character of the model. The tendency and 

the position of the extremes are acceptably predicted. Thus, it can be said, in general, that the 

flow properties in the surf zone can be modelled with reasonable accuracy. 

Another, more demanding, test for checking the model’s response to regular wave breaking 

of weak plunging type was the one corresponding to Stansby and Feng’s (2005) experiment. 

Shorenormal waves with height Ho = 0.105 m and period T = 2.42 s were generated at a 

constant depth region of 𝑑 = 0.34 m and then propagated on a constant slope 1:20. A spatial 

step of 0.04 m and a time step of 0.005 s were chosen. A comparison between the measured 

and computed by the model wave height and wave setup are shown in Fig. 3.21. 
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Fig. 3.21. Measured and computed wave height (left) and wave setup (right) for Stansby and Feng’s 

(2005) experiment. 

Wave breaking initiation was observed at about x = 4.95 m. The model over-estimates the 

wave height in the inner surf zone. However, it should be noted that the specific experimental 

test hardly lies in the range of applicability of the specific Boussinesq-type model due to the 

high Ursell number, Ur = 48.19, much higher than 32 which is approximately a typical limit 

for the original Boussinesq theory. In addition, plunging breaking is difficult to be simulated 

by a Boussinesq model because total flow disruption and intense foaming take place. Thus, 

despite the discrepancies observed in Fig. 3.22 the overall response of the Boussinesq-type 

model to this demanding test was acceptable. A comparison with the results of an SPH model 

(Makris et al., 2015, 2016) for the specific test case can be found in Klonaris et al. (2015). 

Cnoidal breaking waves 

The one-dimensional model version was further validated against the benchmark test by 

Ting and Kirby (1994). The experiments were conducted in the 40 m long wave tank of the 

Ocean Engineering Laboratory at the University of Delaware. The experimental layout is 

shown in Fig. 3.22. Both spilling and plunging cnoidal waves were examined. The waves 

were generated by a bulkhead wave generator over a constant depth of 0.4 m and were then 

shoaled on a plywood false bottom creating a uniform slope of 1:35. The test case chosen here 

involves spilling breaking of cnoidal waves of period T = 2.0 s and incoming wave height Ho 

= 0.125 m. 

 
Fig. 3.22. Layout of Ting and Kirby's (1994) experiment (from Ting and Kirby, 1994, modified). 
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Periodic waves were generated for a minimum of 20 minutes before data were taken. Thus a 

steady-state condition was established. The still water depth at the twenty one measurement 

stations is given in Table 3.2. The grid spacing was Δ𝑥 = 0.04 m and the time step Δ𝑡 =

0.004 s. 

Table 3.2. Still water depth at the locations of measurements.   

Stations 1 2 3 4 5 6 7 

Still water depth (m) 0.400 0.400 0.367 0.338 0.314 0.290 0.247 

        

Stations 8 9 10 11 12 13 14 

Still water depth (m) 0.221 0.207 0.196 0.193 0.177 0.163 0.150 

        

Stations 15 16 17 18 19 20 21 

Still water depth (m) 0.138 0.124 0.106 0.089 0.077 0.063 0.049 

 

A comparison between the measured and the computed time series of the free surface 

elevation at various stations is shown in Fig. 3.23. Results for both the present model and its 

weakly nonlinear counterpart of O(εσ
2
) are depicted. The model’s response is quite accurate, 

succeeding in describing the wave form steepening due to shoaling. The breaking point was 

measured at depth db = 0.196 m (station 10) and the breaking height Hb = 0.1625 m. Both the 

present model and its weakly nonlinear counterpart embed similar linear characteristics since 

they differ only by the terms of O(ε
2
σ

2
). Thus, they can both describe linear dispersion very 

accurately up to kd = 3. A slight superiority of the enhanced nonlinear model over the weakly 

nonlinear one is confirmed by the presented comparison. This concerns mainly the nonlinear 

dispersion, as already discussed in chapter 2. Although the target solution for the amplitude 

dispersion relation in Fig. 2.6 is the one given for Stokes theory, still the phase error was 

found larger for the weakly nonlinear model version applied to cnoidal waves. 
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Fig. 3.23. Time series of free surface elevation at various stations in Ting and Kirby’s (1994) 

experiment. 

In order to get a more clear insight of the model’s nonlinearity, a grid sensitivity analysis 

was applied in the specific test case. Both the enhanced and the weakly nonlinear model 

versions were run for four different grid sizes, Δx = 0.02, 0.03, 0.04 and 0.08 m and an inter-

comparison at station 9 is depicted in Fig. 3.24. The specific station is located slightly upwave 

of the breaking point where the conditions are highly nonlinear with ε ≈ 0.80. 

   

   

Fig. 3.24. Time series of free surface elevation at station 9 in Ting and Kirby’s (1994) experiment for 

various grid sizes. 

The discrepancies between the two model versions seem independent of the grid size as the 

present model is more accurate with respect to nonlinear dispersion in all cases. Moreover, for 

such highly nonlinear conditions the applied discretization with Δx = 0.04 m, leading to 

approximately 70 grid points per wavelength close to the breaking point, is adequate. A 
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similar result was observed for the rest of the test cases studied in the present thesis. A very 

fine resolution of Δx = 0.02 m seems to produce an over-pronounced asymmetry of the wave 

form, while even finer resolutions led to numerical instabilities. On the other hand, a coarser 

resolution of Δx = 0.08 m tends to flatten the wave forms. Nevertheless, for the range of 

values studied here the results did not show a strong sensitivity on the grid size. Thus, for 

such highly nonlinear waves 40-80 points per wavelength adequately reproduce the wave’s 

nonlinearity. 

Fig. 3.25 shows the comparison between the measured and computed distribution of wave 

amplitudes and mean water level. The distance x is measured positive shoreward from the toe 

of the slope. The mean surface elevation is denoted by ζmean and the maximum and minimum 

surface elevation by ζmax and ζmin, respectively. Breaking point is captured well by the model, 

along with the wave height decay in the surf zone. The quite accurate computation of both 

positive and negative amplitudes supports the model’s capability to describe the nonlinear 

crest-trough asymmetry. Wave set-down and setup are also acceptably predicted but for a 

slight underestimation in the outer surf zone. However, the general tendency and the decrease 

of the setup slope in the inner surf zone are correctly reproduced.  

 
Fig. 3.25. Distribution of wave amplitudes and mean water level. 

In general the results presented here are satisfactory and indicative of the model’s ability to 

simulate accurately the nearshore conditions, where cnoidal waves are typically present. 

Solitary wave breaking and run-up 

In order to further check the model’s response in the surf and swash zones the experiment 

by Synolakis (1987) was simulated. This corresponds to the propagation and breaking of a 

solitary wave on a laboratory beach of constant slope 1:19.85. The experiment was performed 

in the W. M. Keck Laboratories of the California Institute of Technology. The wave tank had 
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glass sidewalls and dimensions 37.73 m × 0.61 m × 0.39 m. Waves were generated at a 

distance 14.68 m offshore from the toe of the slope. The beach consisted of a ramp made out 

of anodized aluminium panels with a hydrodynamically smooth surface. Thus, in the 

numerical simulations a low friction coefficient of 0.005 was assigned. A similar range of 

friction coefficients was adopted in the National Tsunami Hazard Mitigation Program 

(NTHMP) report (2012). The still water depth in the constant depth region was d = 0.2 m and 

the wave height H = 0.056 m giving a ratio H/d=0.28. The profile of the solitary wave centred 

at x = X1 is given by: 

 𝜁(𝑥, 0) = 𝐻sech
2[𝛾(𝑥 − X1)]    (3.83) 

where 𝛾 = (3𝐻/4𝑑3)1/2.   

The grid size was Δx = 0.01 m and the time step Δt = 0.001 s. In Fig. 3.26 a comparison is 

shown between experimental data and snapshots of the non-dimensional surface elevation ζ/d 

as computed from the model at different non-dimensional times t' = t√g/d. 
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Fig. 3.26. Measured and computed snapshots of the solitary wave propagation in Synolakis’s (1987) 

experiment. 

The specific test was simulated in order to mainly check the moving shoreline concept 

described above, along with the wave breaking module. The model’s performance to this 

demanding test was fairly good both in the surf and swash zones. The nonlinear steepening is 

well-reproduced until the inception of breaking, i.e. around t΄=20. The almost vertical wave 

front is very accurately described, and so is the breaking wave form in the surf zone. In 

addition, the moving shoreline concept is fairly well activated, except for a slightly thinner 

wave tongue during the downwash as expected (see disscusion in subsection 3.2.2). Also, the 

maximum run-up is well predicted. Without the inclusion of the bottom friction an over-

estimation of about 8% of the maximum run-up was observed. In general, the simulation of 

run-up and run-down stages are acceptable. 

Irregular wave breaking on a plane beach  

The 1DH version was further validated for random wave propagation and breaking on a 

gentle slope of 1:20. The experiment was performed by Mase and Kirby (1992) and the 

experimental setup is depicted in Fig. 3.27. Waves were generated on a constant depth of 0.47 

m from a Pierson-Moskowitz spectrum with a peak frequency of 1.0 Hz. 

 

Fig. 3.27. Layout of Mase and Kirby's (1992) experiment (Wei and Kirby, 1995). 
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Time series of surface elevation were obtained at twelve wave gauges at depths d = 47, 35, 

30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5 and 2.5 cm. The value of kd for the peak wave frequency 

was about 2.0, representing a severe test for a Boussinesq-type model to simulate deeper 

water conditions. The dominant breaking type was spilling and most waves started breaking 

at about d = 0.15m. The model was run for about 12 minutes. The spatial step was 0.02 m and 

the time step 0.004 s. Fig. 3.28 shows a comparison between measured and computed surface 

elevation time series at six gauges for an interval of 20 s. Some discrepancies concerning 

small phase and height errors are observed. However, the agreement is quite good and wave 

shoaling, breaking and nonlinear interaction are described well. 

   

   

   

Fig. 3.28. Measured and computed free surface elevation time series at various wave gauges for Mase 

and Kirby’s (1992) experiment. 

A comparison between wave spectra computed from the model’s and the measured surface 

elevation time series was also performed. The results at the same wave stations are shown in 

Fig. 3.29. In order to compute the wave spectra each time record containing 10240 data was 

split into 10 segments of 1024 points each with time interval 0.05 s. The energy spectrum of 

each segment, computed through a Fast Fourier Transform (FFT), was summed up and 
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averaged. The ensemble averaged spectrum was smoothed by averaging three points. Thus 

the degree of freedom was 60, and the resolution frequency 0.02 Hz. 

   

   

   

Fig. 3.29. Measured and computed wave spectra at various wave gauges for Mase and Kirby’s (1992) 

experiment. 

The agreement is fairly good, especially for the main part of the spectra around the peak 

frequency. Some deviations in the low-frequency domain are observed and can be attributed 

to an inaccurate computation of bound sub-harmonics, discrepancies in modelling the surf 

beat mechanism and reflections of the released long waves to the shoreline. Inaccuracies of 

bound sub-harmonics appear both because of not applying a second order incidence boundary 

condition and due to the nonlinear properties of the Boussinesq equations themselves. On the 

other hand, some discrepancies at the high frequencies can be attributed to a poor finite 

difference representation of very short waves and to inherent limitations of the Boussinesq 

equations (see discussion in chapter 2). For example, linear dispersion is accurate for the 

present model up to kd =3. Hence an accurate representation of free waves at 2.0 Hz (two 

times the peak frequency) requires the water depth to be less than 0.2 m. Finally, some energy 
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is also damped due to the low-pass numerical filter, though weak, applied to ensure the 

numerical stability, as discussed in the subsection on the numerical scheme. 

Fig. 3.30 shows the variation of the significant wave height, Hmo
, as calculated from the 

wave spectra, and the wave setup. The significant wave height is well-predicted both outside 

and inside the surf zone. The agreement for mean water level is reasonably good, but for a 

slight over-estimation of the maximum set-down. However, the tendency of the setup is 

described quite accurately. 

   

Fig. 3.30. Measured and computed significant wave height (left) and wave setup (right) for Mase and 

Kirby’s (1992) experiment. 

Wave propagation over a fringing reef 

Wave transformation in fringing reef environments has recently received a lot of attention. 

Two series of flume experiments were conducted at Oregon State University in 2007 and 

2009. The experiments were described by Roeber (2010) and referred to solitary wave 

propagation over different reef configurations. Among the 198 test cases in total, the one 

simulated here is the one presented also in Roeber and Cheung (2012). This is a very 

challenging test since it reveals whether the numerical model is capable of handling 

nonlinearity, dispersion, wave breaking, overtopping, bore propagation, and sheet flow. The 

effective length of the flume was 83.7 m and the water depth was 𝑑 = 2.5 m submerging the 

reef flat by 0.14 m. The reef slope was 1:12 with a crest 0.065 m above the water level. The 

generated solitary wave had a height of 0.75 m, giving a dimensionless wave height of H/d = 

0.30. The grid spacing was Δx = 0.05 m and the time step Δt = 0.005 s. A comparison 

between experimental data and snapshots of the non-dimensional free surface in different 

non-dimensional times is shown in Fig. 3.31. 
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Fig. 3.31. Snapshots of the solitary wave propagation in the fringing reef test. 

The solitary wave shoals over the slope, develops into a plunging breaker and splashes-up 

around  t√g/d = 69. The comparison shows a good agreement for the shoaling solitary wave 

as the steepened front face is quite accurately described. Also, the computed overturning of 

the free surface due to breaking seems reasonable. The phenomenon resembles a hydraulic 

jump and transition from subcritical flow, upwave of the sloping reef, to supercritical flow 

with a turbulent bore propagating in the initially calm water of the lagoon. The overtopping 

and the propagation of the bore are adequately reproduced. A comparison between the 

measured and computed time series of the non-dimensional free surface at various gauges is 

shown in Fig. 3.32. The axis origin is located at the position of the wave maker, 25.9 m 

upwave of the sloping beach toe. Some discrepancies are observed at the wave gauges 13 and 

14 since the formation of the second peak is underestimated as the bore travels in longer 

distances. 
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Fig. 3.32. Measured and computed non-dimensional free surface elevation time series at various wave 

gauges for the fringing reef test. 
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It should be mentioned that the governing equations are formulated based on physical 

variables, i.e. U and V. This formulation holds for subcritical flows but is not generally 

adequate for supercritical flow regimes. The introduction of the breaking eddy viscosity terms 

improves numerical stability but also ensures correct propagation speed and height of the 

broken wave. Roeber et al. (2010) have addressed this issue and suggested the use of 

variables (𝑑 + 𝜁)�⃗⃗⃗�, which are conservative for both sub- and supercritical flow. 

Irregular wave breaking over a submerged bar 

The last test for the verification of the one-dimensional model corresponds to irregular 

waves propagating and breaking over a submerged trapezoidal bar. The experiment was 

carried out in the wave-flume of the Department of Civil Engineering, Delft University of 

Technology. The flume had a length of 37.7 m and width of 0.8 m. The experimental layout 

was the one presented by Beji and Battjes (1994) and is depicted in Fig. 3.33. The specific 

test simulated here corresponds to random waves of a Jonswap spectrum, generated on a 

horizontal bottom of depth 0.4 m. The peak period was Tp = 2 s and the dominant breaker 

over the bar was of the spilling type. The critical value for breaking initiation was reduced to 

0.35√g𝑑 due to the presence of the bar, as already discussed in subsection 3.2.1. 

 

Fig. 3.33. Layout of Beji and Battjes's (1994) experiment. 

The dimensionless wavenumber corresponding to the peak frequency was kd = 0.68 on the 

horizontal bottom and kd = 0.32 on the top of the shoal, where the free board was 0.10 m. As 

mentioned above, the linear dispersion is well-represented by the model up to kd = 3. This 

leads to the conclusion that only the wave components with frequencies up to 1.36 Hz and 

2.72 Hz, on the horizontal bed and the top of the bar respectively, can be described very 

accurately. In addition, a nonlinear transfer function analysis (see subsection 2.4.3) showed 

that for the present Boussinesq-type wave model, the limit for an accurate estimation of the 

second-order energy transfer (error up to 10%) is kd = 1.16. This means that nonlinear wave 

interactions can be adequately reproduced only for frequencies less than 0.77 Hz and 1.54 Hz, 

on the horizontal bed and the top of the bar respectively. The grid size was chosen Δx = 0.05 
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m, leading to 73 points per wavelength for the peak frequency on the horizontal bed and 38 

on the top of the shoal, and the time step was Δt = 0.0025 s. The model was run for about 14 

minutes. 

Wave spectra were computed from both the measured and the model’s surface elevation 

time series. A comparison between the two is shown in Fig. 3.34 at the seven wave gauges. 

The computational procedure is briefly described in the following. Each record contained 

21000 data points but only its part after approximately 10 wave peak periods was used in 

order to avoid possible contamination of the data due to transients (Ohyama et al., 1994). The 

remaining 20480 data were divided into 10 segments of 2048 points each. Then each segment 

was transformed through a Fast Fourier Transform. No tapering technique was applied since 

the spectral leakage was not significant. The final spectra were obtained after ensemble 

averaging of all the realizations and frequency smoothing over five neighboring components. 

Each spectrum then had 100 degrees of freedom and the statistical error was 14.1%. 
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Fig. 3.34. Measured and computed wave spectra at various wave gauges for Beji and Battjes’s (1994) 

experiment. 

Although this is a quite demanding test, the model’s response is reasonably good. Spectral 

transformation due to shoaling is very accurately reproduced for the main part of the spectrum 

around the peak frequency. The bound super-harmonics generation is slightly under-estimated 

at the up-wave slope, as already discussed. The energy dissipation due to breaking seems 

reasonably predicted as the spectrum shape is described correctly and a secondary peak is 

formed. However, both the primary and the secondary peaks are over-estimated at stations 5 

and 6. On the other hand, the spectral density is under-predicted at the high-frequency 

domain. On the contrary, both the bound sub-harmonics and the released long waves due to 

the surf beat mechanism are computed quite accurately. Thus it can be said in general that 

irregular wave group propagation and breaking over the bar is adequately simulated.  

3.4.2 2DH validation  

Regular wave propagation over an elliptic shoal 

The first test for checking the validity of the two-dimensional model is the benchmark test 

by Berkhoff et al. (1982). Their experiment referred to monochromatic wave propagation 

over an elliptic shoal and combined a number of physical processes, like shoaling, refraction, 

diffraction and nonlinear dispersion. Nonbreaking regular waves of period T = 1.0 s and wave 

height Ho = 0.0464 m are generated in a constant depth region of d = 0.45 m and propagate 

over an uneven bottom. The experimental layout and the bathymetry are shown in Fig. 3.35 

(at left). The bathymetry displays an elliptic shoal resting on a 1:50 plane sloping seabed. The 

entire slope is turned at an angle of -20° with respect to the wave paddles. 

The computational domain was the same as in Fig. 3.35, except for two sponge layers sitting 

behind the wave-maker and at the end of the beach. Since only nonbreaking waves were 

considered, instead of shoreline boundary, a minimum depth of 0.07 m was used in the model. 

The two vertical side walls at x = ±10 m were treated numerically as fully reflective 
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boundaries. The grid steps were Δx = Δy = 0.05 m and the time step 0.01 s. The computed 

wave field reached a stable state after t = 30 s. 

  

Fig. 3.35. Left: Experimental layout and bathymetry of Berkhoff et al.’s (1982) experiment (contours 

in meters). Right: Snapshot of the free surface elevation, viewed in plan. 

A snapshot of the free surface elevation at t = 40 s is also depicted in Fig. 3.35 (at right) 

from a plan view. The light and dark shade regions correspond to positive and negative values 

of ζ, respectively, while the solid lines denote the bottom topography. Strong energy focus is 

observed behind the shoal, pronouncing the large effect of wave diffraction.  

The wave height along eight transects (S1-S8) near the shoal was measured in the 

experiment. Fig. 3.36 shows the comparison between the measured and computed by the 

model wave heights along these sections. 
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Fig. 3.36. Computed and measured relative wave heights along Section S1 to Section S8 in Berkhoff et 

al.’s (1982) experiment. 

The computed results for the wave height agree quite well with the measured ones along 

both directions, parallel and normal to wave incidence. The combined effects of refraction 

and diffraction are described adequately and wave focusing behind the shoal produces a 

maximum wave height of approximately 2.2 times the incident one. The quite large values of 

the dimensionless wavenumber (kd ≈ 1.9 close to the wavemaker) prove the model’s ability to 

reproduce fairly good the nonlinear dispersion effect. 

Regular breaking waves over a circular shoal 

Another test case for checking the model’s ability to reproduce the combined effects of 

refraction, diffraction and breaking is the one by Chawla et al. (1996). The experiments were 

conducted in the wave basin at the Center for Applied Coastal Research in the University of 

Delaware. The basin’s dimensions were 18.2 m × 20 m and a circular shoal with radius of 

2.57 m was built on a flat bottom. A schematic view of the experimental set-up is shown in 

Fig. 3.37. (reproduced, modified from Kirby et al., 1998). The center of the shoal was located 

at x = 5 m and y = 8.98 m. Thus, there was some small asymmetry in the y-direction. The 

water depth of the horizontal bottom was d = 0.395 m and the one on the submerged shoal 

was given by 

 𝑑 = 9.125 − √82.81 − (𝑥 − 5)2 − (𝑦 − 8.98)2     (3.84) 
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Fig. 3.37. Schematic view of the set-up in Chawla et al.’s (1996) experiment (from Kirby et al., 1998, 

modified). 

Near the eastern wall (the wall on the right in Fig. 3.37) of the numerical wave basin, a 4.4 

m wide sponge layer was used to represent a sloping stone beach in the physical experiment. 

The test case simulated here refers to breaking monochromatic waves of period T = 1 s and 

wave height Ho = 0.02 m. The grid size in the x direction was 0.025 m in order to resolve the 

very steep breaking front face. Thus, a number of about 20 grid points per wavelength was 

considered on the top of the shoal. On the other hand, the grid size in the y direction was 

taken Δy = 0.05 m. The different grid size for the two directions may insert some artificial 

anisotropy and an error in simulating accurately the wave refraction. However, it is worth 

allowing a small inaccuracy when considering the decrease of the computational time when 

applying such a coarser numerical domain. Fig. 3.38 shows a comparison between the 

measured and the computed relative wave heights at six transects. 
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Fig. 3.38. Computed and measured relative wave heights at various transects in Chawla et al.’s (1996) 

experiment. 

The experiment showed that the wave height does not reach the maximum on top of the 

shoal but on the downward slope instead. This is attributed to the energy focusing due to 

wave refraction on the shoal. The focusing effect is well-predicted by the Boussinesq model 

(transect E-E). Behind the shoal some discrepancies are observed. However, one can say that 

the defocusing and the diffraction of the broken waves are reasonably described. 

A snapshot of the numerical wave field is shown in Fig. 3.39 (at left). The gray areas 

represent the wave crests, while the dark areas are the wave troughs. Wave crests become 

very peaky on the top of the shoal due to nonlinear shoaling effects. Wave refraction and 

diffraction are clearly shown by the bending of the wave crests and their variation in the 

transverse direction respectively. Secondary crests are generated behind the shoal due to the 

release of the super-harmonics. 

   

Fig. 3.39. Left: Snapshot of the free surface elevation, viewed in plan. Right: modelled underlying 

current field. Dashed lines represent contours of water depth. 

The underlying wave-induced current field estimated by the Boussinesq model is also 

depicted in Fig. 3.39 (at right). Although there were no measurement of breaking-induced 

circulation in Chawla et al.’s (1996) experiment, a strong jet associated with wave breaking 

on the top of the shoal was visually observed (Kirby et al., 1998; Chen et al., 2000a). In the 
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simulation of the wave-induced currents, a constant bottom friction coefficient of fcw = 0.001 

and a subgrid mixing model were used. It should be mentioned that the asymmetry in the y 

axis of the wave height distribution due to the slightly off-centered shoal position and the 

reflective walls assumed is well-represented by the model. This asymmetry has also some 

small effect on the jet-like current field. 

A rip channel 

A very demanding test is the laboratory experiment reported by Hamm (1992a,b). It was 

conducted at the Laboratoire d’ Hydraulique de France in Grenoble and the wave tank 

measured 30 m × 30 m. The bathymetry was a plane sloping beach of 1:30 with a rip channel 

excavated along the centerline as shown in Fig. 3.40. 

 

 

Fig. 3.40. Model topography for the rip channel test. Above: contour plot of the bathymetry. Below: 

bathymetry profiles along a plane beach section (solid line) and along the rip channel (dashed line). 

The test aims at validating the model’s efficiency to describe the wave-induced current field. 

The test case studied here refers to normal incidence of regular waves with a period of 1.25 s 

and a wave height of 0.07 m offshore, where the horizontal bed is approximately 0.50 m deep. 

Due to symmetry, a reflective boundary condition was considered at the centerline of the rip 

channel and only half of the physical wave tank was employed in the numerical computations. 

The grid step was taken 0.05 m, the time step 0.01 s and the simulation period was 600 s 
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corresponding to 480 wave periods. The bottom friction coefficient was taken fcw = 0.012 

(after calibration) and the Smagorinsky coefficient cs = 0.25. A varying fcw was also examined 

but the results were quite similar (see subsection 3.2.3). 

Due to increased depth and refraction by the rip channel, the inception of breaking along the 

centerline occurred quite closer to the shoreline as compared to the plane beach away from 

the channel. Thus a significant variation of the wave setup appeared along the y direction. 

This alongshore gradient of the mean water elevation drove a current towards the centerline 

and due to symmetry the flow from both sides joined there to form a rip current. A steady 

state for the wave-induced current field was reached after about 150 s. A contour plot of the 

wave setup as computed by the model is shown in Fig. 3.41. 

 

Fig. 3.41. Contour plot of the computed setup. 

A comparison between the computed and the measured wave height along a plane beach and 

the rip channel is depicted in Fig. 3.42. The agreement is fairly good and the refraction due to 

the opposing current along the rip channel leads to an increase of the wave height. This 

mechanism along with the shoaling counteract the decrease of the wave height due to depth 

refraction and their balance defines the breaking point, which is accurately predicted. 

   

Fig. 3.42. Comparison between computed and measured wave height along a plane beach section (left) 

and along the rip channel (right). 

A vector plot of the underlying current field is shown in Fig. 3.43 after steady state is 

reached. The represented velocities are the mean values of depth-averaged velocities below 
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the surface roller, �̅⃗⃗⃗�𝑜. Thus the effect of the depth-averaged undertow is also taken into 

account and at the plane beach the current field is directed seawards in the surf zone. A 

pronounced rip current is observed along the centerline of the channel and some small eddies 

can also be identified. 

 

Fig. 3.43. Vector plot of the wave-induced current field. 

A comparison between the computed and the measured rip current velocity is depicted in 

Fig. 3.44. By imposing the reflective boundary condition along the centerline, the computed 

rip current was bound to be directed strictly parallel to the channel’s axis. However, in the 

experiment significant deviations from this direction were observed. Thus for consistency 

reasons, the current’s velocity component parallel to the channel’s centerline is shown and 

compared to the computed one. The agreement between the measured, 0.17 m/s, and 

computed, 0.19 m/s, maximum values is acceptable while for the total near bottom current 

velocity a maximum value of 0.25 m/s was measured (Hamm, 1992b). However, a 

discrepancy in the position of this maximum value is observed. This could be attributed to 

instabilities of the rip current, also noted by Hamm (1992b) in his report, and possible 

imperfections in the experimental layout that was supposed to be symmetrical but unexpected 

lateral asymmetries were actually measured. Similar to the present model's results for the rip 

current were given by other Boussinesq-type models (Sørensen et al., 1998). The uniformity 

of the experimental measurements of the monochromatic wave tests was commented by 

Hamm (1992b) as rather poor. A similar test case with the same significant wave height, Hs = 

0.07 m, and peak period, Tp =1.25 s, but referring to normal, unidirectional irregular waves of 
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a Jonswap spectrum, was also checked in the laboratory. This test's results were more 

uniform. For comparison reasons, the measured rip current velocity in this latter test is also 

included in Fig. 3.44. 

 

Fig. 3.44. Measured and computed rip current velocity along the rip channel. 

Despite the application of the eddy viscosity breaking model, the flow is still modelled as 

being potential. However, in reality, strong vorticity is produced by the breaking process. This 

aspect has been included in some Boussinesq-type wave models accounting for partially 

rotational flow (Veeramony and Svendsen, 2000; Shen, 2001; Chen, 2006; Kim et al., 2009). 

Herein, the generation and transportation of the vortices observed in Fig. 3.43 inside the surf 

zone can be explained by the vorticity equation derived from the momentum Eqs (3.44) and 

(3.45). Taking the curl of these equations leads to:   

 �⃗⃗�𝑡 + (�⃗⃗⃗� ∙ ∇)�⃗⃗� = −�⃗⃗�(∇ ∙ �⃗⃗⃗�) + ∇ × �⃗�𝑏𝑟 + ∇ × �⃗�eddy − ∇ × (
�⃗⃗�𝑏

𝑑+𝜁
) + 𝑂(𝜎2) (3.85) 

where �⃗⃗� = ∇ × �⃗⃗⃗� = (0, 0, 𝑉𝑥 − 𝑈𝑦) is the vorticity vector. Vector ∇ × �⃗�𝑏𝑟 is the source of 

vorticity caused by the longshore variation of wave breaking, while the bottom friction and 

the subgrid mixing are dissipation agents (Chen et al., 1999). The first term on the right-hand 

side of Eq. (3.85) results in the vortex stretching, while the second on the left-hand side in the 

vortex advection. 

A snapshot of a subdomain of the wave pattern after the establishment of the steady state is 

shown in Fig. 3.45. 
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Fig. 3.45. Snapshot of the surface elevation from a bird's-eye view (at left) and from a plan view (at 

right). 

The wave-induced current field and especially the rip current affect and modify the wave 

field. Apart from the increase of the wave height described above, the opposing rip current 

also causes a small local bend in the wave crests, as it can be seen in Fig. 3.45. 

The subgrid turbulent processes may become an important factor influencing the flow 

pattern of the wave-induced current field. The Smagorinksy-type mixing terms aim at 

parameterizing these effects based on the wave-induced current field that extends both inside 

and outside the surf zone. On the other hand, the breaking terms are of similar type but their 

role is different, since they are strictly localized on the front face of a broken wave to account 

for energy dissipation due to the breaking process. The model’s sensitivity to the eddy 

coefficient due to subgrid turbulence, cs, was studied for the specific test. 

 

Fig. 3.46. Computed rip current velocity along the rip channel for various Smagorinsky coefficients. 

A comparison of the rip current velocity along the centerline of the channel for different 

values of the mixing coefficient is depicted in Fig. 3.46. Some dependency on that coefficient 

is identified, especially in the zone of the strongest current. However, in general, the 

sensitivity was rather weak for the typical value range 0.25-1.0 of the Smagorinsky 

coefficient. A similar behavior was also observed in the other two-dimensional tests. 
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Oblique long-crested irregular waves 

The last validation test refers to the laboratory experiments performed in the U.K. Coastal 

Research Facility at HR Wallingford (Memos, 2002; Memos et al., 2005), aimed at studying 

various aspects of random wave propagation in shallow water. The basin of the facility, with 

overall dimensions 27 m × 54 m (Fig. 3.47), contained a narrow strip of horizontal bed and a 

rigid beach sloping uniformly at 5%. The water depth over the horizontal bed was 0.80 m. 

The bed was constructed rough, everywhere but for the part of the horizontal bottom between 

the left lateral wall and the dashed line in Fig. 3.47, where the bed was considered smooth. 

 

Fig. 3.47. Plan of the experimental setup at HR Wallingford. 

The test case simulated herein corresponds to oblique long-crested irregular waves of a 

Jonswap spectrum with enhancement factor γ = 3.3, peak period Tp = 1.2 s and significant 

wave height at the wave paddles Hs = 0.09 m. The angle of incidence was 15
º
 to the shore. 

Time series of the surface elevation were measured at the eleven wave gauges indicated in 

Fig. 3.47 with a sampling rate of 25 Hz. 

In order to avoid in the numerical model undesired disturbance due to reflection from the 

side wall in the source region, instead of generating waves at the target angle, the oblique 

incidence was reproduced by rotating the entire topography at an angle of -15
º
 and then 

considering normal incidence of the desired waves. This is a rather simpler computational 

procedure since the lateral boundaries were used as guiding walls for the long-crested waves 

on the horizontal bottom. The grid size was taken 0.03 m and the time step 0.005 s. Since no 

data were available at the wave paddles' location, the experimental surface elevation time 

series at the probe 2 was used as an input. The bed friction coefficient on the rough parts of 

the bottom was taken constant fcw = 0.01. 
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The model was run for approximately 6.5 minutes which corresponds to 325 peak periods. 

The energy spectra were estimated from the computed time series at the eleven probes. A 

number of 48640 points, corresponding to a time length of 389.12 s, was employed for this 

calculation. Then an interpolation technique was applied to obtain 9728 data points with a 

time step of 0.04 s, identical to the experimental one. This set of data was divided into 19 

segments of 512 points each. Then each segment was transformed through a Fast Fourier 

Transform. The final spectra were obtained after ensemble averaging all the realizations and 

no smoothing over neighboring components was applied. Each spectrum then had 38 degrees 

of freedom. 

A comparison between the wave spectra estimated from the measured and the computed 

surface elevation time series is depicted in Fig. 3.48. 
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Fig. 3.48. Measured and computed wave spectra at various wave gauges of the experiment at HR 

Wallingford. 

The agreement seems adequately good over a wide depth range since the corresponding to 

the peak frequency dimensionless wavenumber at the source area is kd ≈ 2.3 whereas at 

station 11 kd ≈ 1.1. The main part of the spectra around the peak is quite accurately predicted 

and so is the spectrum shape all over the wave tank. The effect of energy transfer to higher 

frequencies is evident and it is simulated reasonably well by the present Boussinesq-type 

model. Despite some discrepancies, the 2DH model seems, in general, able to simulate a 

long-crested irregular wave field under oblique incidence, incorporating nearshore physical 

processes such as shoaling, refraction, breaking and nonlinear interactions. 

3.5 Discussion on Boussinesq-type wave model 

In the previous chapter different Boussinesq-type equations for the description of wave 

propagation were derived. A nonlinear analysis and an inter-comparison of these Boussinesq-

type models led to the choice of the most suitable one for the present study. Regarding the 

basic equations , apart from the linear dispersion, which is correctly modelled up to the limit 

of deep water, kd = 3, the nonlinear amplitude dispersion can be also computed more 

accurately to deeper water compared to their counterparts of weaker nonlinearity. 

Keeping always in mind that the final scope is to compute the coastal sediment transport, the 

wave model itself should integrate correctly the nearshore dynamics. In order to make it 

suitable for practical applications the major coastal physical processes had to be modelled 

realistically and extend the model’s applicability all the way from offshore to the swash zone. 
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This integration was presented in detail in this chapter. However, a thorough approach to this 

integration should also include a fair criticism to the adopted computational procedures.   

At first, extension to the surf zone relies on the applied eddy viscosity concept. This is a 

very simple approach that is easily calibrated. On the other hand, both the surface roller 

technique and the vorticity model rely on a more realistic physical background. The former’s 

application in 2DH cases is more complex and often imports numerical instabilities, while the 

latter requires the solution of an extra equation for the vorticity transport which encumbers 

the numerical solution. As noted by Kennedy et al. (2000), the largest disadvantage of the 

eddy viscosity breaking concept is that, in some special cases, such as stationary hydraulic 

jumps, the criterion may be Doppler-shifted to the point where breaking initiation is not 

recognized. In addition, it was shown that the specific breaking module sometimes over-

estimates the wave height in the inner surf zone. In essence, even the form of the breaking 

initiation criterion is somewhat arbitrary. A criterion based on a critical slope of the free 

surface would be closer to the underlying physics for waves breaking when crests overturn 

but it has been proven in practice that both criteria are equivalent. Despite the aforementioned 

disadvantages, the eddy viscosity concept was finally chosen due to its simplicity and its good 

stability properties.  

Recently, shock-capturing techniques have been proposed for simulating wave breaking by 

a Boussinesq-type model (Roeber et al., 2010; Shi et al., 2012). These techniques are usually 

associated with Godunov-type schemes based on Riemann solvers. They describe breaking 

waves as bores and conserve flow volume and momentum across discontinuities. The 

efficiency of such a scheme was confirmed by Roeber and Cheung (2012) for the fringing 

reef test where the propagation of the bore is very accurately described all over the 

supercritical flow domain, even at the most downwave gauges far from the reef. However, 

these techniques rely on Finite Volume approaches which may be more efficient for complex 

geometries but they are more cumbersome when dealing with higher-order derivatives that 

are present in nonlinear equations, especially when the latter are expressed in their non-

conservative form. Consequently, in the present thesis the more classical finite difference 

approach was chosen to deal with higher-order equations. Hence, the eddy viscosity breaking 

module was a realistic choice for the model’s extension to the surf zone. 

Extension to the swash zone relies on a modified slot technique. The first application of the 

permeable-seabed technique yielded run-up errors (Madsen et al., 1997). However, herein the 

modified version proposed by Kennedy et al. (2000) and Chen et al. (2000a) was applied. 

This modification ensures the water mass conservation when water is above the top of the 

slot. Nevertheless, some small mass loss still exists when water level is below the top of the 

slot. In subsection 3.4.1 the mass balance was examined and was found to be adequately 
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fulfilled. Another, disadvantage of the slot technique is the induction of numerical noise, 

especially if too narrow slots are employed. On the other hand, too wide slots result to an 

increased mass loss because 𝑧∗ deviates from the value given by Eq. (3.10). Thus, the values 

of the empirical coefficients that govern this technique arise from a case-sensitive 

compromise. However, the range of values applied here was found to work quite well, in 

agreement with other researchers.  

Another alternative for simulating wave run-up and run-down could be the wetting and 

drying techniques. These techniques are, generally, easy to implement but they are known to 

be related to violation of mass conservation and numerical instabilities (Leendertse, 1987; 

Balzano, 1998). The aforementioned Finite Volume approach has been also successfully 

applied to define the wet/dry interface through implementation of suitable Riemann solvers. 

However, the modified slot technique associated with the adopted finite difference scheme on 

a fixed grid was favoured as a choice. 

Apart from the wave phenomena, the nonlinear model estimates quite successfully the 

wave-induced current field by applying a suitable time-averaging of the total velocities. In 

addition, the wave-current field interaction seems to be well-reproduced. This is a significant 

result since the traditional decoupled process of running consecutively the wave and the 

hydrodynamic models, apart from being time-consuming, ignores also the aforementioned 

interaction. However, it is worth mentioning that not all of the nonlinear Boussinesq-type 

models are able to model wave-induced currents. Apart from accurate parameterizing the 

energy dissipation due to wave breaking and bottom friction, the correct Doppler shift for 

wave-current interaction needs to be enforced (Yoon and Liu, 1989; Chen et al. 1998). This 

property is connected with the current refraction, a phenomenon that most Boussinesq-type 

equations fail to model. The present model is capable of reproducing the correct Doppler shift 

as it can be derived following the analysis by Madsen and Schäffer (1998). In particular, the 

linear version of the model over a horizontal bottom coincides with the corresponding one of 

their equations at O(σ
2
). Following their analysis, the total depth-averaged velocity is 

considered to consist of two parts, a wave orbital velocity and a current velocity assumed 

uniform over depth and allowed to be as strong as the phase celerity of the wave. The 

temporal variation of the current is typically orders of magnitude slower than that of the 

waves, while the spatial variation is closely related to the variation of the bottom bathymetry. 

Thus, following a similar Fourier analysis as the one in chapter 2 for a constant depth, the 

resulting dispersion relation in non-dimensional form reads 

 
(𝜔−𝑘𝑈𝑐)2

𝑘2𝑑
=

1+B𝜅2

1+(B+
1

3
)𝜅2

  (3.86) 
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where 𝑈𝑐 = 𝑈𝑐
′/√g𝑑𝑜´ is the non-dimensional current velocity, 𝑈𝑐

′ the dimensional current 

velocity, and the non-dimensional variables 𝜔, 𝑘, 𝑑 and 𝜅 are given in section 2.3. 

Eq. (3.86) is the Padé [2,2] expansion of the Stokes linear solution for the combined wave-

current action. Consequently, the model provides the correct form of the Doppler shift. 

Another issue concerning the correct description of the wave-current interaction refers to the 

transport of the vertical vorticity associated with surf zone currents (Chen et al., 2000b, 2003; 

Gobbi et al., 2000b; Chen, 2006). Similarly to most Boussinesq-type models, the presented 

model was originally derived under the assumption of potential flow. However, Eq. (3.85) 

gives a quite accurate description of the generation and transport of the vertical vorticity, 

including its advection and stretching. Moreover, the terms of O(σ
2
, εσ

2
, ε

2
σ

2
) enhance the 

representation of the vertical component of vorticity compared to lower order models. 

However, formally, the order of the computed vertical vorticity is not exactly consistent with 

the order of the wave motion itself described by the Boussinesq equations. This slight 

inconsistency is present in almost all Boussinesq-type wave models derived for potential 

flows. Shen (2001) was the first to retain both the vertical and horizontal components of 

vorticity in his Boussinesq-type equations for weakly non-hydrostatic stratified flows and 

surface waves over an impermeable bottom. Chen (2006) proposed a methodology of 

consistently recovering the vertical vorticity at the leading order of accuracy of the 

Boussinesq equations by extending them to describe quasi-rotational wave-current motions in 

the nearshore. This issue is open for further investigation in the future.  

The undertow effect was also taken into account by combining the eddy viscosity and the 

surface roller breaking concepts. It should be mentioned though that a rather crude 

approximation of the depth-averaged undertow is made by the model. On the other hand, a 

fully three-dimensional sediment transport calculation would require the variation of the 

undertow velocity over depth and consequently the solution of an extra equation, as the one in 

the models by Rakha et al. (1997) and Rakha (1998). In this case, two boundary condition are 

required, one at the surface associating the shear stress with the instantaneous energy 

dissipation due to breaking (Deigaard, 1993), and one at the bottom requiring an iterative 

procedure for the streaming at the boundary layer (Brøker and Fredsøe, 1984; Deigaard and 

Fredsøe, 1989). Moreover, the undertow’s profile depends also on the variation of the eddy 

viscosity whose computation requires another iterative procedure and the solution of an extra 

equation for the turbulent kinetic energy (Deigaard et al., 1986). Nevertheless, as will be 

shown in chapter 4, a depth-integrated advection-diffusion equation will be solved for the 

suspended sediment and thus such a detailed description of the variation of the undertow 

velocity is not necessary. Hence, in order to avoid the above iterative processes and the 

solution of the extra equations, the aforementioned approximation was made for the depth-



Chapter 3.  Integrating nearshore dynamics with the Boussinesq-type wave model 

 

 

150 

 

averaged undertow and the formula by Putrevu and Svendsen (1993) was employed to obtain 

an estimation of the near bottom undertow. However, it should be mentioned that by doing 

this simplification the effect of the wave-current boundary layer is not taken into account by 

the presented model. The near bottom wave-current interaction is only, partly, taken into 

account in the estimation of the compound friction factor.  

The numerical model relies on a generalized multi-step predictor-corrector scheme which 

offers fourth-order accuracy. As analyzed above, this scheme embeds improved numerical 

stability properties compared to the Adams-Bashforth-Moulton predictor-corrector scheme. 

However, compared to other recently used techniques in Boussinesq-type models, such as 

high-order Runge-Kutta time-stepping, hybrid TVD-type schemes and shock-capturing 

methods (Roeber et al., 2010; Shi et al., 2012; Kirby et al., 2013), the high nonlinearity and 

the slot technique introduce in some cases increased grid-based noise which is removed 

through the application of high-order filters. Some numerical noise is also introduced due to 

the use of the non-staggered Arakawa A-grid. The use of a staggered Arakawa C-grid, which 

is probably the most common in CFD modelling, would offer better stability and higher 

accuracy. However, staggered grids increase the computational complexity when higher order 

nonlinear terms are involved. Another convenient alternative could be the use of depth-

integrated velocities instead of the depth-averaged ones (Abbott et al., 1978; Madsen et al., 

1997a). This flux-formulation offers similar linear properties but it is more convenient for 

solving the equations in their conservative form (Madsen et al., 1991; Madsen and Sørensen, 

1992). An analysis of the nonlinear properties of that formulation would be required for final 

assessment in conjunction with other issues involved.  

For weakly nonlinear cases the numerical scheme requires typically no iterations, unless 

problems arose from boundaries. For strong nonlinear cases, more iterations may be required. 

The convergence rate is associated with the residue of the iterations. In practice, this residue 

depends on the basic predictor-corrector arrangement, the special treatment of the cross-

terms, especially the ones involving time-derivatives, treated differently than the rest of the 

terms, and the relative magnitude of the nonlinear terms. The model’s convergence depends 

also on the adopted criterion for the cessation of iterations. A number of different criteria 

have been proposed ranging from milder (Wei and Kirby, 1995; Wei et al., 1995) to more 

stringent (Gobbi et al., 2000a; Long and Kirby, 2006). It should be also mentioned that the 

adopted criterion influences the stability properties of the numerical scheme too. In any case, 

the applied relaxation technique described above increases the convergence rate to acceptable 

levels.  

Until recently, the high computational time when dealing with 2DH applications, along with 

the associated numerical instabilities, have been the main disadvantages of Boussinesq-type 
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models as compared to phase-averaged wave models. However, the more and more increased 

power of computers can now suppress significantly the CPU time required for common 

applications. Moreover, as discussed above, computer parallelization reduces significantly the 

computational time and makes 2DH applications of Boussinesq models workable, even on 

personal PCs. For example, as already discussed the simulation of 20 min of wave 

propagation in a domain of a coastal zone with dimensions 1 km x 1 km would require about 

1 day of computational time, or a 300 m x 300 m domain would take about 2 hours of 

simulation. It should be also mentioned that the recently developed GPU (Graphics 

Processing Unit) technology is expected to further reduce very impressively the CPU time 

when introduced to Boussinesq modelling. Indicatively, it is mentioned that speed-up of more 

than 100 times has been reported when applying the GPU computing in other 2DH models.  

Waves are generated by applying the efficient source function technique, adapted to the 

specific Boussinesq-type equations and the outgoing energy is absorbed by suitable damping 

layers. The source function has been derived on the basis of linear equations. In weakly 

nonlinear cases, the generation of first-order waves will unintentionally introduce spurious 

free second- and higher-order waves in addition to bound second-order waves, which are 

phase-locked to the first order waves. To avoid the release of such spurious waves, a second- 

or higher-order correction should be applied based on the transfer functions derived in chapter 

2 (see also Madsen and Sørensen, 1993). This aspect is open for further research. However, 

under strongly nonlinear conditions, the source function technique fails to generate the 

desired waves. 

Both the one and two-dimensional versions of the model were validated by using a variety 

of different experimental tests. Both regular and irregular wave propagation and breaking 

over plane beaches and submerged shoals were quite successfully simulated. The 1DH model 

was applied for a cnoidal wave test and the model’s performance was very accurate even at 

the inner surf zone. The superiority of the present model over its weaker nonlinear counterpart 

was evidenced. Breaking and run-up of a solitary wave was also simulated fairly well, 

proving the efficiency of the moving shoreline treatment. Run-up and overtopping were also 

simulated for a solitary wave propagating over a fringing reef. This simulation tested the 

model’s efficiency to describe the transition from sub- to super-critical flow and the 

propagation of the bore. A very demanding two-dimensional test including a rip channel was 

employed to check the model’s ability to reproduce combined coastal processes. The results 

were reasonably good. Finally, long-crested irregular waves of oblique incidence were 

simulated. Despite some discrepancies, the agreement between the computed and the 

measured data was acceptable.     
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Some of the validation tests combined a number of physical processes such as shoaling, 

depth and current refraction, diffraction, breaking, wave run-up, overtopping, nonlinear 

energy transfer and interactions with the wave-induced current field. Reasonable agreement 

has been found between the measurements and the computed results in these stringent tests. 

Hence it can be claimed that the presented compound model is a quite robust tool for studying 

wave-induced nearshore phenomena and a reliable basis for proceeding to the sediment 

transport computations presented in the next chapter. 
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Chapter 4 

Sediment transport model 

4.1 Introduction 

Understanding the nearshore hydrodynamic and morphodynamic processes is of great 

importance for solving coastal engineering problems. In particular, the vast diversity of nature 

and human activity throughout the coastal zone leads to the challenging, but also urgent, need 

for accurate and reliable predictions of the above physical processes. However, the interaction 

of waves and nearshore currents, the corresponding sediment transport and, eventually, the 

beach morphology evolution form a very complicated system, difficult to be modelled. This 

dynamic system becomes even more complex under the presence of coastal structures 

interacting with the natural environment. Thus, proper design of such man-made structures 

and activities (detached emerged and submerged breakwaters, groynes, seawalls, dredging, 

beach nourishment) requires the use of advanced mathematical models. In addition, the more 

and more increasing computational efficiency of computers offers nowadays the possibility of 

developing such efficient numerical tools. 

The beach profile evolution is a complex problem influenced by a number of factors and can 

be studied in a large range of time and space scales. Roelvink and Brøker (1993) classified 

broadly the available cross-shore profile models into four classes depending on their 

theoretical background. The newest class of the "process-based" or "deterministic" profile 

models take explicitly into account the different processes contributing to profile 

development. However, most of the available sediment transport and morphological models 

use phase-averaged wave models and thus the effects of long waves and wave asymmetry can 

only be included in an approximate manner (Roelvink, 1991). On the other hand, models 

relying on the "energetic approach" may calculate the intra-wave variation of the sediment 

transport but neglect any lag effects in the development of the sediment concentration profile.   

A number of detailed intra-wave sediment transport models has been developed assuming a 

wave theory to describe the intra-wave water motion (Fredsøe et al., 1985; Brøker Hedegaard 
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et al., 1991). Moreover, only a restricted number of phase-resolving wave models combined 

with detailed intra-wave sediment transport models have been reported in the international 

literature. Watanabe (1994) combined such a wave model based on the Boussinesq equations 

with an energetics sediment transport model. Boussinesq-type models have the advantage of 

being able to incorporate the nonlinear and dispersive wave characteristics from deep to 

shallow water and the swash zone. Thus, they can provide to the sediment transport models 

all the required information such as, wave breaking induced turbulence, wave asymmetry, 

bound long waves, wave-induced currents and swash zone hydraulic modelling. Nevertheless, 

not many examples of coupling either one horizontal dimensional (1DH) (Rakha et al., 1997; 

Karambas and Koutitas, 2002; Long and Kirby, 2003; Long et al., 2006; van Dongeren et al., 

2006) or two horizontal dimensional (2DH) (Rakha, 1998; Karambas and Karathanassi, 2004; 

Drønen and Deigaard, 2011; Wenneker et al., 2011; Karambas, 2012; Rahman et al., 2013; 

Karambas and Samaras, 2014) Boussinesq-type wave models with a sediment transport and a 

morphological model have been presented.  

Accurately estimating coastal sediment transport is a very hard task due to the complexity of 

the environment and the dependence of the result on a large number of factors. Most of these 

factors are difficult to be predicted in a robust way. The scientific interest was focused in 

computing the sediment transport rates along rivers and uniform flows much earlier than 

drawing attention to the coastal zone. Hence, a number of simple sediment transport formulae 

were developed for inland waters (du Boys, 1879; Schoklitsch, 1934; Kalinske, 1947; Meyer-

Peter and Müller, 1948; Einstein, 1950). In the early years, the application of some of these 

formulae was extended to coastal water. However, the sediment's motion in the sea 

environment is much different due to reversing directionality and the combined action of 

waves and currents. 

Since then a large variety of simplified mathematical formulae has been proposed for 

computing the coastal sediment transport rates in terms of bed, suspended or total loads. At 

first, the bed load under the action of a uniform current was studied (Yalin, 1963; Ashida and 

Michiue, 1972; Wilson, 1966; Madsen, 1991; Nielsen, 1992; Parker and Kovacs, 1993; 

Cheng, 2002). Among these the pioneer work by Bagnold (1963, 1966) introduced the 

energetics model in which the main idea is that the transport rate for steady flows is a function 

of the stream power. His approach relies on considerations of energy balance and mechanical 

equilibrium.  

 Within the coastal environment the stirring up of the sediment is caused mainly by the wave 

action. Thus, research focused on estimating the bed load under the wave action itself or the 

combination of waves and currents (Swart, 1974; Madsen and Grant, 1976; Fernandez Luque 

and van Beek, 1976; Sleath, 1978; Willis, 1978; van de Graaff and van Overeem, 1979; 
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Hallermeier, 1982; Nielsen, 2002; Hoefel and Elgar, 2003; Nielsen and Callaghan, 2003; 

Gonzalez-Rodriguez and Madsen, 2007). Ribberink (1998) proposed a quasi-steady model for 

bed load transport under the combined wave-current action. Regarding the suspended 

sediment, a number of models and empirical formulae have been developed (Bakker, 1974; 

Deigaard et al., 1986a; Briand and Kamphuis, 1993; Huynh-Thanh and Temperville, 1991; 

O’Connor and Nicholson, 1995; Ribberink and Al-Salem, 1995). 

Mathematical formulae have been also proposed for the total sediment loads under current 

(Engelund and Hansen, 1972; Ackers and White, 1973), wave (Sato and Horikawa, 1986; 

Sawamoto and Yamashita, 1986; Ahilan and Sleath, 1987; Trowbridge and Young, 1989) or 

combined wave-current effect (Grass, 1981; van Rijn, 1989; Soulsby, 1997; van Rijn 

2007a,b). A commonly used formulation in engineering applications was proposed by Bijker 

(1968) and forms a wave-current extension of Frijlink's (1952) formula. Engelund and 

Fredsøe (1976) derived a semi-empirical law for the total load assuming that only a certain 

fraction of the particles in a single bed layer is transported. Bailard (1981) derived a formula 

for the total load directly from Bagnold's approach. It takes into account the wave-current 

instantaneous velocity profiles. Roelvink and Stive (1989) modified Bailard's (1981) formula 

to take into account the additional stirring of sediment by the surface breaking-induced 

turbulence. 

An interesting formulation was proposed by Dibajnia and Watanabe (1992, 1998) and 

Dibajnia et al. (2001) for sheet flow conditions and bed ripples. This model takes into account 

the unsteady aspects of sediment transport by incorporating the phase-lag effect of the 

suspended particles. Thus, it can adequately describe the sediment transport under nonlinear 

and irregular waves. Camenen and Larson (2005, 2006, 2007) proposed a sophisticated 

unified model for the total load which takes into account the phase-lag effects under 

combined waves and currents. 

The longshore sediment transport is closely associated to the wave-driven currents and 

several longshore sediment transport formulae have been based on arguments that the 

sediment is stirred up by the waves and then transported along the coast by the wave-driven 

longshore current (Longuet-Higgins, 1972; Inman and Bagnold, 1963). Bijker (1971) 

developed a detailed longshore sediment transport model for combined waves and currents on 

a beach with constant slope. Moreover, a number of models for longshore transport have been 

proposed based on the energetics approach (Komar, 1971, 1977; Thornton, 1972; Bowen, 

1981; Bailard and Inman, 1981) or a traction approach (Swart, 1976; Madsen and Grant, 

1976). Komar and Inman (1970) also performed a number of filed measurements concerning 

the longshore sediment transport to evaluate Inman and Bagnold’s (1963) formula. Deigaard 

et al. (1986b) developed a model which includes a longshore current model for arbitrary 
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coastal profiles. The flow resistance in their current model is calculated from the combined 

wave-current boundary layer and is consistent with the sediment transport description. Their 

model was further extended by Deigaard et al. (1988) to include the effects of irregular 

waves, wind shear stress and coastal currents. 

With regard to longshore sediment transport, the CERC (1984) formula is the most widely 

used method to estimate the total transport rate across the width of the surf zone. The CERC-

formula was originally derived for sandy beaches and it has only the characteristics of the 

incoming waves as input. This is not realistic, as the sediment transport must be expected to 

depend also on the sediment and on the coastal profile. Dean et al. (1982) showed the 

dependence of the longshore sediment transport on the grain size by calibrating the leading 

coefficient in the CERC-formula. Ozasa and Brampton (1980), Kamphuis et al. (1986), and 

Kamphuis (1991) proposed modifications to the CERC-formula by taking into account the 

grain size of the sediment, the beach slope, higher-order wave theories, and the along-shore 

variation of wave height. Damgaard and Soulsby (1996) derived a physics-based formula for 

bed load longshore sediment transport for both shingle and sandy beaches. More recently, a 

number of 2DH sediment transport models have been developed which include the 

computation of the longshore transport rate (Karambas and Karathanassi, 2004; Kobayashi et 

al., 2007; Karambas and Samaras, 2014).  

Prediction of the coastal morphological evolution is the final and probably the most 

important issue in coastal engineering problems. Gradients in the transport rates cause 

deposition or erosion of sediment leading to topography changes. Thus, the accurate 

estimation of the sediment transport load plays a key role in the correct prediction of 

bathymetry. Also, the theoretical background of the geomorphological model itself is also 

crucial. The descriptive models rely on the classification of various beaches and the transition 

from one beach state to another (Sonu, 1973; Short, 1978; Lippmann and Holman, 1990). On 

the other hand, equilibrium profile models rely on the concept that beach profiles tend 

towards an equilibrium (Bruun, 1954; Dean, 1977; Vellinga, 1982). Empirical profile models 

describe in an empirical way the evolution towards equilibrium (N-line models, Bakker, 

1968). 

Predicting detailed morphological changes in coastal areas of complex topography requires 

rather the application of advanced process-based morphodynamic models. Such models have 

been developed over the last decades (Dally and Dean, 1984; Stive and Battjes, 1984; Stive, 

1986; Watanabe and Dibajnia, 1988; Nairn, 1990; Steetzel, 1990; Brøker Hedegaard et al., 

1991; Sato and Mitsunobu, 1991). Comparisons between various cross-shore profile models 

can be found in Roelvink and Brøker (1993) and Brøker Hedegaard et al. (1992). The 

process-based models rely on a more realistic background since their applicability is governed 
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by processes rather than by geography. In particular, phase-resolving wave models can 

incorporate intra-wave sediment transport processes and, thus, offer more accurate 

estimations of the instantaneous sediment loads compared to phase-averaged models. On the 

other hand, the former models require much higher computational effort compared to other 

simpler models. Consequently, at least regarding the phase-resolving wave models, it is 

mainly cross-shore cases that have been studied, even for short-term simulations referring to 

individual storms with duration of some hours. However, morphological processes in nature 

are much more complex, involving significant variability in the longshore direction of large 

coastal cells. The application of some recent morphodynamic techniques (Roelvink, 2006), in 

combination with the increased power of modern computers allow longer-term simulations 

for larger coastal areas, up to the order of some days for phase-resolving models and months 

or years when phase-averaged wave models are at play. In this way, the gap between the 

different time scales of hydrodynamic and morphodynamic processes is bridged.  

In this chapter a sediment transport and a corresponding geomorphological model are 

developed and combined with the presented Boussinesq-type wave model. The significance 

of this work is that it introduces a 2DH integrated model combining a phase-resolving wave 

model with a sediment transport model and a geomorphological model, relying on advanced 

sediment transport formulae in both the surf and swash zones. In addition, extensive one and 

two-dimensional validation has been performed. A restricted number of other Boussinesq 

models combined with sediment transport computations have been presented in the past but 

they are based on cruder sediment formulae, while extensive verification has not been 

presented, especially against two horizontal dimensional tests. A sensitivity analysis for the 

main parameters of the sediment transport and morphological models is also performed.  

4.2 Mechanisms of sediment transport 

The two major agents of coastal sediment transport are the breaking and run-up of waves 

and the wave-induced currents. The dynamics at the grain scale is very difficult to be studied 

due to the small scale and the high level of uncertainty. The various components acting on the 

surface of the grains consist of the normal and shear stresses due to the water motion, the 

ground reaction from neighboring grains, the hydrodynamic subpressure due to infiltration, 

and the collision with other grains. This force balance decides the initiation of a sediment 

grain’s movement. For very fine sediments, clays or mud, molecular cohesive forces also act 

making the moving initiation harder, especially when advanced solidification is at play. 

However, in the present thesis only non-cohesive sediments have been studied. 



Chapter 4.  Sediment transport model 

 

 

168 

 

Usually, the wave action is the main factor of the grains’ agitation and then the various 

currents are responsible for their transport in great horizontal distances. The turbulence due to 

the combined wave-current action contributes, along with the orbital velocities, to the vertical 

diffusion of the suspended sediments. Thus, a part of the wave energy is consumed for the 

bed material’s agitation and its vertical diffusion, while the turbulent kinetic energy of the 

current also contributes to this diffusion and the horizontal advection. From a hydrodynamic 

point of view the main mechanisms of sediment transport can be classified as (Sorensen, 

2006; Karambas et al., 2016): 

 The longshore current generated by the oblique incidence and wave breaking transports 

sediments parallel to the shore. Also, variations in the alongshore distribution of wave 

breaker heights will cause alongshore variations in the surf zone wave setup and the 

generation of currents from areas of high waves to area of low waves. The balance of 

these two mechanisms establishes a longshore current. In most cases, the former 

mechanism predominates. In addition, in some parts of a coast where longshore currents 

have been established, they may be often interrupted by seaward flows, known as rip 

currents, which move the sediment in the offshore direction. The system of the nearshore 

currents is schematically shown in Fig. 4.1. Sediment transport due to longshore and rip 

currents in a sandy beach are shown in Fig. 4.2. 

 

Fig. 4.1. Typical wave-generated nearshore circulation (from Sorensen, 2006). 
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Fig. 4.2. Sand transport due to longshore and rip currents in Newport 

Beach, California, 2009 (photo: Tom Cozad). 

 As a wave propagates shoreward in the nearshore zone there is an asymmetry in the 

horizontal water particle velocities at the sea bed. According to nonlinear wave theories 

(Stokes, Cnoidal, Stream Function, etc.), the orbital velocities under the wave crests 

directed onshore are higher and despite having shorter duration than the ones below the 

wave troughs, directed offshore, induce a net inshore effect. This is due to the fact that 

the shear stress exerted on a bottom sand grain depends on the water particle velocity 

squared. Thus, a larger onshore bed stress is followed by a significantly lower offshore 

stress. Consequently, the net sediment transport due to this mechanism is directed 

onshore. This onshore transport further increases due to the fact that a certain threshold 

stress must be exceeded for a bottom particle to move.  

 Gravity is a major agent for sediment transport, acting downslope and in a generally 

seaward direction for a monotonic profile. However, for the case of a barred profile, 

gravity can act in the shoreward direction over portions of the profile. Gravity tends to 

smooth any irregularities that occur in the profile. However, it can also serve as a 

stabilizing force, since sediment particles cannot be mobilized from the bed, unless: (a) 

upward-directed forces associated with fluid turbulence can exceed the submerged 

weight of the sediment, and/or (b) slope-parallel fluid shear forces can exceed the 

frictional resistance of sediment. 

 Sediment transport also takes place due to secondary currents. As described in chapter 3, 

the three-dimensional undertow counteracts close to the shoreline the onshore mass 

transport and causes an offshore directed sediment transport.  

 Another agent for sediment transport is the current generated in the wave bottom 

boundary layer. Due to the viscous shear stresses inside this layer the water velocities are 

lower than the ones over the rest over the water column. The aforementioned secondary 

current is parallel to the wave propagation direction. 



Chapter 4.  Sediment transport model 

 

 

170 

 

 The turbulence due to wave breaking results in the suspension of the sediment grains, 

which are transported by the three-dimensional wave-induced current. The net transport 

of sand will be controlled by the net time-integrated horizontal flow velocity during the 

interval of sediment suspension. This mechanism may transport sediment in either the 

onshore or offshore direction.  

 Onshore winds exert an onshore stress on the water surface and a consequent return flow 

at the bottom. On the other hand, seaward winds result in an onshore near bottom flow. 

This wind-induced near bed flow forms another mechanism of sediment transport. 

The above description pronounces the complexity of the mechanism driving coastal 

sediment transport and littoral geomorphology. It should be also mentioned that the relative 

effect of these processes varies with the wave climate, water depth and the morphology of the 

coastal area. 

Once the sediment is mobilized, it is very common to split the study of its transport into 

three modes: 

 Bed load 

 Suspended load 

 Wash load 

The wash load consists of imported very fine particles that are transported by water and are 

normally not represented in the bed. Thus, it is difficult to predict the wash load rate from the 

properties of the bed material. Consequently, this part of the sediment transport is neglected 

when the total sediment load is estimated. 

The total load is divided into the bed load and the suspended load. No precise definition for 

these two terms has been given so far and their distinction is not always clear and meaningful. 

However, this splitting up relies on the different mechanisms that are effective during the two 

transport modes.  

The bed load is the part of the total load that is in more or less continuous contact with the 

bed during transport. The grain movements include rolling, sliding or jumping along the bed. 

The intergranular collision forces and the effective bed shear stresses acting directly on the 

sand surface are the main physical mechanisms for this type of sediment transport that takes 

place in a layer with thickness less than, say, 10 times the median grain diameter d50. On the 

other hand, the suspended load is the part of the total load that is moving all over the water 

column without continuous contact with the bed. In this case, the main mechanism for the 

sediment’s movement is the agitation of fluid turbulence that is produced close to the bottom 

due to bed friction or/and close to the water surface due to wave breaking. 
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Sheet flow is another, intermediate transport mode referring to a layer with thickness 

(10÷100) d50 and large sediment concentrations ( > 5-10 vol. %) which is transported along 

the bed (Ribberink, 1998). In this high-concentration layer the grains do not only roll or slide, 

but intergranular and extra pressure forces due to grain-water interactions also play a key role. 

This mode appears quite often in storm surges and under high waves, over flat beds when the 

bed ripples have already disappeared.  

4.3 Sediment properties   

The natural beaches usually consist of inorganic material with various physical properties 

which affect the sediment transport processes. The sediments are primarily formed by the 

physical and chemical disintegration of rocks from the earth’s crust. According to their 

mineral composition, the predominant materials are quartz mineral and clay minerals. Based 

on their genetic origin they can be classified as lithogeneous, biogeneous, and hydrogeneous.  

The sediment transported in the coastal zone usually contains particles ranging from gravels 

down to clays or even colloidal size fragments. These terms refer to the size of the sediment 

particle. Table 4.1 represents the grain size scale of the American Geophysical Union. This 

scale is based on powers of 2 mm by using the phi-parameter defined as 𝜑 = −log
2
𝑑 (with 𝑑 

the particle’s diameter in mm). 

Table 4.1. Grain size scale according to the American Geophysical Union (from van Rijn, 1993, 

modified). 

Class name Millimeters Micrometers 𝝋 - values 

Boulders > 256  <  -8 

Cobbles 256 - 64  -8  to  -6 

Gravel 64 - 2  -6  to  -1 

Very coarse sand 2.0 – 1.0 2000 – 1000 -1  to  0 

Coarse sand  1.0 – 0.5 1000 – 500 0  to  +1 

Medium sand 0.5 – 0.25 500 - 250 +1 to  +2 

Fine sand 0.25 – 0.125 250 - 125 +2  to  +3 

Very fine sand 0.125 – 0.062 125 - 62 +3  to  +4 

Coarse silt 0.062 – 0.031 62 - 31 +4  to  +5 

Medium silt 0.031 – 0.016 31 - 16 +5  to  +6 

Fine silt  0.016 – 0.008 16 - 8 +6  to  +7 

Very fine silt 0.008 – 0.004 8 - 4 +7  to  +8 

Coarse clay 0.004 – 0.0020 4 - 2 +8  to  +9 

Medium clay 0.0020 – 0.0010 2 - 1 +9  to  +10 

Fine clay 0.0010 – 0.0005 1 – 0.5 +10  to  +11 

Very fine clay 0.0005 – 0.00024 0.5 – 0.25 +11  to  +12 

Colloids < 0.00024 < 0.24 >  +12 
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In the present thesis only non-cohesive sediments have been studied. This covers usually the 

particles in the range from sand (0.06 mm to 2 mm) to gravel (2mm to 20 mm). Based on 

their mineral and chemical composition, the sands can be distinguished in: 

 silicate sands 

 carbonate sands 

 gypsum sands 

Silicate sands mainly consist of quartz and feldspar minerals, which are extremely insoluble 

in the water. On the other hand, carbonate sands are much more soluble in the water. They 

originate from shells and corals and consist of calcium-carbonite (CaCO3). Gypsum sands 

consist of crystal forms of gypsum (CaSO4.2H2O), which is a moderately soluble mineral. 

From a hydraulic point of view, the most important sediment properties are related to the 

size, shape and specific gravity. The most usual and convenient method for the analysis of the 

particle size distribution is the sieve analysis, which is applicable for particle sizes not smaller 

than 0.06 mm. An adequate number of representative sediment samples is analyzed, and the 

result is presented as a frequency curve or a cumulative frequency curve. The most 

representative measure of the grain size is the median particle diameter, d50, which 

corresponds to the median of the distribution curve, i.e. 50% by weight being finer.  

Most of the sand particles on the face of the earth are more or less rounded because their 

edges and corners are smoothed by abrasion as running water or wind moves the sand 

particles from their origin to their resting place. In coastal zones, where sand moves in and 

out with each wave, sand particles are more or less rounded. The shape of particles is 

generally represented by the (modified) Corey (1949) shape factor and the rollability 

parameter (Winkelmolen, 1971). 

The density of quartz and clay minerals is approximately ρ
s
= 2650 kg/m3 and the relative 

density is defined as the ratio of the sediment density (or specific gravity) to the water 

density: 

 s = ρ
s
/ρ   (4.1) 

For natural sediments, s is usually very close to 2.65. 

The porosity, 𝑛𝑝, of the sediment is often related to the deposition history of the bed’s 

sediment. Random packing of the grains yields porosity ranges from 0.36 to 0.40. Natural 

sediments with particles of various sizes have relatively small porosity values because the 

smaller particles can occupy the large void spaces. A poorly sorted coarse sand has a porosity 

of about 0.40, while a well sorted fine sand has a porosity of about 0.45. Mud deposits 

containing clay, silt, sand and organic material can have a large porosity factor, up to 0.80. 
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The settling or fall velocity, 𝑊𝑠, of a grain is defined as the terminal velocity attained when 

the grain is settling in an extended fluid under the action of gravity. It depends on several 

parameters, the most important of which are the grain size, the specific gravity, the grain 

shape, and the dynamic viscosity of the fluid. Considering the settling of a single spherical 

particle of diameter 𝑑, the terminal fall velocity is the fall velocity when the fluid drag force 

on the particle is in equilibrium with the gravity force, giving 

 𝑊𝑠 = [
4(s−1)g𝑑

3CD
]

0.5

   (4.2) 

where CD is the drag coefficient, which is a function of the Reynolds number Re = 𝑊𝑠𝑑/𝑣, 

with 𝑣 the kinematic viscosity of the fluid, and the shape factor (Albertson, 1952). For low 

values of the Reynolds number (Re < 1) the Stokes’ (1851) law is applied and the drag 

coefficient is given by CD = 24/Re, yielding 

 𝑊𝑠 =
(s−1)g𝑑2

18𝑣
   (4.3) 

Outside the Stokes region there is no simple expression for the drag coefficient. The value 

of CD decreases rapidly and becomes nearly constant for 10
3
 < Re <10

5
. This constant value is 

approximately 0.39 for spherical particles and varies from 1 to 1.3 for natural sediment 

particles.  

Many semi-empirical formulae have been developed to estimate the settling velocity for 

weak concentrations based on these two asymptotic behaviors (Hallermeier, 1981; van Rijn, 

1993; Koutitas, 1994; Julien, 1995; Cheng, 1997; Ahrens, 2000; Kamphuis, 2000; Guo, 2002; 

Jimenez and Madsen, 2003; Camenen, 2007). Soulsby (1997) proposed a simple relationship: 

 𝑊𝑠 =
𝑣

𝑑50

(√10.362 + 1.049𝑑∗
3 − 10.36)    (4.4) 

where 𝑑∗ = [
(s−1)g𝑑50

3

𝑣2
]

1/3

is the dimensionless grain size. 

If the suspended concentration of sediment increases, the settling velocity of individual 

particles decreases because of the return flow induced by neighboring particles. Based on 

experimental data, Richardson and Zaki (1954) included the effect of high concentrations in 

the estimation of the settling velocity. Soulsby (1997) modified his own formula to include 

the effect of concentration: 

 𝑊𝑠 =
𝑣

𝑑50

[√10.362 + 1.049(1− c)4.7𝑑∗
3 − 10.36]    (4.5) 
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where c is the sediment’s volume concentration.  

The shape of the grains and the temperature also influence the fall velocity. The effect of the 

temperature is taken into account by the kinematic viscosity coefficient. The settling velocity 

is usually defined in still water. However, various researchers have investigated the effect of 

an oscillatory flow (Ho, 1964; Hwang, 1985; Nielsen, 1979, 1984). The major mechanism 

governing the fall velocity reduction in an oscillating flow is the drag-nonlinearity effect. 

Such effects are also associated with turbulence. Moreover, the intensive eddy production 

close to the bed induce upward motions which may reduce the fall velocity until the eddies 

dissolve at higher levels. These lift-up motions compete with downward velocities and the 

overall asymmetric fluid motion in the vertical direction may finally result in a slight increase 

of the settling velocity (Jobson and Sayre, 1970). 

The angle of repose, also referred to as the angle of internal friction, 𝜑𝑚, is a characteristic 

angle related to the particle stability on a horizontal or sloping bed. This parameter is a 

function of size, shape and porosity. It increases with decreasing roundness and it usually lies 

in the range 30° to 40° for sandy materials.  

4.4 Threshold of motion 

Particle movement will initiate when the instantaneous fluid force on a particle is larger than 

the instantaneous resting force related to the submerged particle weight and the friction 

coefficient. The driving forces are strongly related to the local near-bed velocities. However, 

the turbulent fluctuations, along with the randomness of particle size, shape and position, 

make the initiation of grain’s movement a rather stochastic process. 

Early works on the initiation of movement were done by Brahms (1753), who proposed a 

sixth power relationship between the flow and the required weight of a stone to be stable, and 

by Dubuat (1786) who introduced the concept of the critical bed-shear stress. These early 

works refer to the incipient motion under a current’s action. Sternberg (1875) and Hjulström 

(1935) derived some well-known relationships between the critical depth-averaged current 

velocity and the particle diameter. More recently, van Rijn (1984a,b,c) and Soulsby (1997) 

proposed also some formulae for the critical depth-averaged current speed based on the 

critical bed-shear stress concept. 

The critical bed-shear stress give a precise measure of the threshold of motion. This concept 

relies on the mobility (Shields) parameter, the critical value of which for the initiation of 

movement of a single particle with diamater 𝑑 is given by 

 𝜃cr =
𝜏b,cr

g(ρs−ρ)𝑑
   (4.6) 
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where 𝜏b,cr is the threshold bed-shear stress. 

The critical mobility parameter depends on the hydraulic conditions near the bed, the 

particle shape and particle position relative to other particles. The hydraulic conditions near 

the bed can be expressed by the grain Reynolds number Re∗ = 𝑢∗,cr𝑑/𝑣, where 𝑢∗,cr is the 

critical bed friction velocity defined by 𝑢∗,cr = √𝜏b,cr/ρ. Shields (1936) conducted a number 

of experiments on a flat bottom and presented graphically the dependence of 𝜃cr from Re∗ in 

the case of a steady current. This diagram is depicted in Fig. 4.3. 

 

Fig. 4.3. 𝜃cr as a function of Re∗ for a current over a plane bed (from van Rijn, 1993). 

Using the median particle diameter 𝑑50 as a characteristic particle diameter, van Rijn (1993) 

expressed the Shields curve as 

 𝜃cr =

{
  
 

  
 0.24𝑑∗

-1
       for      1 < 𝑑∗ ≤ 4  

0.14𝑑∗
-0.64

   for      4 < 𝑑∗ ≤ 10

0.04𝑑∗
-0.1 

    for    10 < 𝑑∗ ≤ 20

0.013𝑑∗
0.29   for  20 < 𝑑∗ ≤ 150

0.055        for         𝑑∗ > 150

   (4.7) 

Under waves, a number of formulae have been proposed for the initiation of motion on a 

plane bed but none of them is generally accepted (Bagnold, 1947; Manohar, 1955; Vincent, 

1957; Goddet (1960); Eagleson and Dean, 1961; Ishihara and Sawaragi, 1962; Bonnefille and 

Pernecker, 1965; Carstens et al., 1967; Rance and Warren, 1968). Among these formulae, the 

one by Komar and Miller (1975) is probably the most widely used for the critical bottom 

orbital velocity. An increase of this critical velocity with the wave period is indicated by the 

theoretical relationships, although the various experimental data only weakly support this 

conclusion. Shields’ (1936) original work referred to steady unidirectional currents. However, 

it has been shown that it can be reasonably extended for waves or combined waves and 

currents (van Rijn, 1993; Soulsby, 1997; Soulsby and Whitehouse, 1997). The critical Shields 
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parameter by a number of factors, such as the shape, gradation and size of the grains, the 

presence of bed forms, the presence of cohesive material, and the transverse and longitudinal 

bed slope (Fredsøe and Deigaard, 1992; van Rijn, 1993; Soulsby, 1997). 

4.5 Bed features  

A universal characteristic of erodible seabeds is their tendency not to remain stable but form 

a variety of bed features. This broad topic shall not be discussed in great extend because it 

would go beyond the objective of the present thesis. However, these bed waves will be 

presented briefly since they have a significant influence on the flow and sediment patterns. 

Figure 4.4 shows the most important bed forms formed by a steady current. When the 

tractive form is increased to the point where sediment transport starts, the bed will be 

unstable. In the case of fine sediment, ripples are formed, while coarse sediments will usually 

form dunes. Ripples are small triangular sand waves that are usually not longer than about 0.6 

m, and not higher than about 60 mm. Under hydraulically smooth conditions a viscous 

sublayer is formed, which is thicker than the sediment size. Under these conditions bed 

ripples are formed if the critical tractive force just is surpassed. On the other hand, dunes are 

formed if the bed is hydraulically rough. The ripple length depends on a number of factors, 

such as the sediment size, but is essentially independent of the water depth. Three-

dimensional ripples have been discussed by Raudkivi (1976) and Sleath (1984). 

 

Fig. 4.4. Typical bed forms in order of increased stream power of a steady current (from Simons and 

Richardson, 1961). 



Chapter 4.  Sediment transport model 

 

 

177 

 

Dunes are large, irregular sand waves usually formed in natural streams. The longitudinal 

profile is roughly triangular, with a mildly curved upstream surface and a downstream slope 

approximately equal to the angle of repose. Flow separation occurs at the crest and 

reattachment in the trough. At the upper part of the dune violent free turbulence is formed, 

which moves the sediment particles near the zone of reattachment, even when the local shear 

stress is below its critical value (Raudkivi, 1963). For increased stream power the dunes tend 

to wash out and this means a rather drastic reduction of both hydraulic resistance and water 

depth. Further increase of the stream power leads from the plane bed to the so-called 

antidunes whose longitudinal profile is nearly sinusoidal. The above transition from the 

initially plane bed to the various bed forms is depicted in Fig. 4.5.  

In the case of wave action, the shape of the bed forms is quite different from those found in 

unidirectional flows. Because of changes in the strength and direction of the flow the shape of 

the bed is also unsteady and will change during the wave period. For short periodic waves, the 

volume of the sediment moved back and forth during one wave period is usually small 

compared to the volume of sand in a bed wave. Thus, the shape can be considered nearly 

steady, with only small fluctuations during the wave period. This is not the case for long 

periodic waves or very fine sediment. In this case, the mean bed profile is more elongated. 

Bagnold (1946) defined two types of wave ripples: two-dimensional ripples related to 

rolling grains and three-dimensional vortex ripples related to eddy motions. The former are 

formed at low Shields numbers, not much larger than two times the critical value, while the 

latter are higher ripples formed at higher Shields numbers. The vortices formed in this latter 

case move considerable amount of sediment away from the bed which results to an increased 

suspended sediment transport.  

 

Fig. 4.5. Relation between total bed shear stress and flow velocity of a steady current for different bed 

forms (from Fredsøe and Deigaard, 1992). 

In the case of upper flow regime, the wave ripples are washed out and sheet flow on a plane 

bed takes place (Dingler and Inman, 1976; Horikawa et al., 1982). According to Wilson 
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(1989), sheet flow regime is present for Shields parameters greater than 0.8. Generally, these 

conditions are assumed to be present in the surf zone where breaking waves are dominant. 

Another bed form related to wave action consists of surf zone bars or longshore bars. These 

bars have their orientation parallel to the coastline and our found near the breaker line. The 

basic mechanism behind their formation is the net onshore-directed velocities seaward of the 

breaker line, and the net offshore-directed velocities (undertow) in the surf zone. In the case 

of high-energy coasts consisting of fine material (0.2-0.3 mm) two or more parallel bars are 

generated, while no bars are generated in the case of low-energy coasts of relatively coarse 

sediment ( > 0.5 mm). Longshore variation in the bar shape and dimensions may be affected 

by the interaction of swell and edge waves.  

For combined waves and currents various bed features may be formed (symmetrical and 

asymmetrical ripples, large sand waves, furrows, ribbons, ridges, banks, etc.) depending on 

the relative strength of currents and waves. A detailed discussion on this issue can be found in 

van Rijn (1993). 

4.6 Suspended sediment 

With regard to sand suspension, the settling of the grains towards the bed is counterbalanced 

by diffusion of sand upwards due to the turbulent water motions near the bed. The vertical 

eddy diffusivity of sediments, 휀v, depends on the turbulence in the flow and on the height 

above the bed. However, the mixing of sediment is not completely analogous to the mixing of 

water. The vertical eddy diffusivity of sediments is related to the vertical eddy viscosity, 𝑣T, 

through the Schmidt number σ: 

 휀v = σ𝑣T   (4.8) 

In principle, σ should be constant and equal to unity. However, deviations from this value 

have been observed and they can be attributed to three different processes. At first Sumer and 

Deigaard (1981) and van Rijn (1984b) explained that the centrifugal force in a fluid eddy 

causes sediment grains to be thrown outside of the eddy, which increases σ. Secondly, 

Fredsøe and Deigaard (1992) explained that the sediment’s settling out of the surrounding 

water may take place before the water loses its earlier composition by mixing. Thirdly, Rose 

and Thorne (2001) argued that the value of σ may be affected by the settling velocity, which 

varies because of the presence of turbulence. Based on measurements by Coleman (1981), 

van Rijn (1984b) proposed the expression:  

 σ = 1+ 2 (
𝑊𝑠

𝑢∗
)

2

    with    0.1 < 
𝑊𝑠

𝑢∗
< 1   (4.9) 
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where 𝑢∗ is the bottom friction velocity.  

In the case of a steady current, different assumptions about the eddy diffusivity lead to 

different expressions for the concentration profile. If the eddy diffusivity is assumed to 

increase linearly with height above the bed, 𝑧, the corresponding concentration profile is the 

power-law profile: 

 C(𝑧) = Ca (
𝑧

𝑧a
)
−
𝑊𝑠
κ𝑢∗   (4.10) 

where κ (= 0.40) is the von Karman constant, 𝑧a is a reference height near the seabed, usually 

taken equal to 2𝑑50, and  Ca is a sediment reference concentration at the height 𝑧a. The ratio 

𝑊𝑠/κ𝑢∗is referred to as the Rouse parameter and determines the shape of the suspended 

sediment profile.  

If the eddy diffusivity is assumed to vary parabolically with height above the bed, the 

Vanoni-distribution is obtained: 

 C(𝑧) = Ca (
ℎ−𝑧

𝑧

𝑧a

ℎ−𝑧a
)

𝑊𝑠
κ𝑢∗    (4.11) 

where ℎ is the water depth.  

Van Rijn (1984b) assumed the eddy diffusivity to vary parabolically with height in the 

lower half, and be constant with height in the upper half, of the water column. His profile 

probably corresponds better to currents alone in the sea (Soulsby, 1997). 

The reference concentration is an important parameter for the accurate estimation of 

suspended sediment load. Thus, a number of formulae have been proposed for its calculation 

in the case of a steady current (Engelund and Fredsøe, 1976; Smith and McLean, 1977; 

Itakura and Kishi, 1980; Celik and Rodi, 1984; van Rijn, 1984b; Akiyama and Fukushima, 

1986; Nielsen, 1992; Briand and Kamphuis, 1993; Zyserman and Fredsøe, 1994). 

In a pure oscillatory flow, the turbulence is restricted to the thin wave boundary layer. The 

flow in this case is unsteady and thus it is necessary to apply the complete continuity equation 

for the suspended sediment: 

  
𝑑C

𝑑𝑡
= 𝑊𝑠

𝜕C

𝜕𝑧
+

𝜕

𝜕𝑧
(휀v

𝜕C

𝜕𝑧
) + ∇(휀h∇C)   (4.12) 

where 휀h is the horizontal eddy diffusivity of sediments. 

The last term on the r.h.s. of Eq. (4.12) can usually be neglected, because the vertical 

gradient of C is much larger than the horizontal one. Furthermore, the convective terms on the 

l.h.s. of Eq. (4.12) are higher order terms which can normally be neglected. By applying these 

simplifications, and assuming the vertical eddy diffusivity to be time-invariant and having a 
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known vertical variation, an analytical solution for the time-averaged (in one wave period) 

sediment concentration, C̅, can be obtained. This solution usually consists of an exponential 

profile of C̅ over depth. 

However, the assumption that 휀v is time-invariant is usually an oversimplification. 

Moreover, for unsteady flows, the suspended sediment does not react instantaneously to the 

velocity field. In particular, the instantaneous amount of sediment in suspension is not 

determined by the instantaneous value of the bed shear stress, because the sediment takes 

some time to settle after being picked-up from the bed. This means that the time-averaged 

sediment transport must be determined from the instantaneous quantities by:  

 �⃗�𝑠𝑠 =
1

𝑇
∫∫ �⃗⃗�C

ℎ

0

𝑇

0

𝑑𝑧𝑑𝑡 (4.13) 

with 𝑇 the wave period and �⃗⃗� = (𝑢 , 𝑣) the instantaneous horizontal velocity. 

Due to the aforementioned unsteady effects, the correct approach for solving the vertical 

distribution of suspended sediment in unsteady flows is to solve the complete version of Eq. 

(4.12). The numerical solution of this equation requires the application of three boundary 

conditions . The first one is that C must be periodic in time, the second implies that there must 

be no vertical flux at the water surface, and the third one is related to the bed concentration of 

suspended sediment. The latter one, still does not have a completely satisfactory solution. 

Some researchers are in favour of relating the bed concentration to the Shields parameter 

(Engelund and Fredsøe, 1976; Zyserman and Fredsøe, 1994), while others prefer the use of a 

so-called 'pick-up function'. This latter method relies on the idea that the vertical flux of 

sediment just above the bed must be equal to the amount of sediment eroded from the bed into 

the fluid, minus the amount of sediment deposited from the fluid into the bed. 

Fredsøe et al. (1985) and Fredsøe and Deigaard (1992) studied the variation of the 

sediment's concentration within the wave period. Just above the bed, the maximum 

concentration occurs at the same time as the maximum bed shear stress, with a phase-lag 

compared to the maximum wave velocity outside the boundary layer. However, as the 

distance from the bed increases, the maximum concentration lags more and more behind the 

maximum bed shear stress. This happens because it takes some time for the sediment to settle 

after it has been picked up from the bed. Moreover, the time variation of C is asymmetric. 

This pattern is attributed both to the asymmetry of the near bed velocity and to the fact that 

the rise in the concentration is very rapid when the sediment is brought into suspension and 

pushed away from the bed during periods of large bed shear stresses, while the fall is simply 

due to the settling velocity, with almost no turbulence present. 
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For combined waves and currents, the turbulence is present over the whole flow depth. In 

this case, the unsteady advection-diffusion Eq. (4.12) should be solved. However, the 

variation of the eddy diffusivity should be similar to the current alone case in the outer region, 

and time-dependent and similar to the wave alone case within the boundary layer. The 

expression for the bed reference concentration by Zyserman and Fredsøe (1994) can be 

extended for combined waves and currents, while van Rijn (1993) extended his current-only 

concentration profile to include the effect of waves.  

Downwave of the breaker line, the turbulence generated due to wave breaking results in 

much higher level of turbulent kinetic energy. This leads to a significant increase of the 

amount of suspended sediment. The breaking-induced turbulence must be taken into account 

by modifying the eddy diffusivity parameter (Battjes, 1983; de Vriend and Stive, 1987; Kraus 

and Larson, 2001; Camenen and Larson, 2007). The transition region from the breaking to 

fully developed broken waves has not been satisfactorily described. However, in the inner 

part of the surf zone, the broken waves are more or less transformed to hydraulic bores and 

the eddy viscosity can be related to the turbulent kinetic energy which can be calculated by an 

one-equation turbulence model. Such models, combined with sediment transport models, 

form the most advanced methods for calculating suspended sediment concentrations. They 

describe the wave-current boundary layer combined with some form of turbulent energy 

closure. Such models have been presented by Huynh Thanh et al. (1994), Ribberink and Al-

Salem (1995), and Li and Davies (1996).  

Perhaps the most well-established model of this class is the Danish 'STP' model. This model 

consists of two parts: a hydrodynamic module and a sediment transport module. The former 

describes the turbulent boundary layer under combined waves and current, using Fredsøe's 

(1984) theory. The sediment transport module is based on the work by Engelund and Fredsøe 

(1976) and Fredsøe et al. (1985). Deigaard et al. (1986a) extended the model to include the 

effect of wave breaking. The sediment transport module calculates the time-varying bed load 

and sediment concentration profile from the time-varying bed shear-stress and the eddy-

diffusivity profile obtained by the hydrodynamic module. The resulting loads are found as the 

time average of their instantaneous values. The model applies for both plane and rippled beds 

and it has been updated periodically to include new processes and features. The STP model 

has been also combined with morphological models to describe the coastal profile (Deigaard 

et al., 1988; Brøker Hedegaard et al., 1991). These compound models relied on empirical 

relations for the variation of wave height across the profile (Andersen and Fredsøe, 1983; 

Deigaard et al., 1986b). Some years later, Rakha et al. (1996, 1997) incorporated the STP 

method into a 1DH Boussinesq-type model to combine the advantages of a phase-resolving 

model and an intra-wave sediment transport approach. The model could also describe the bed 
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morphological changes through an iterative process. Rakha (1998) extended this model to two 

horizontal dimensions offering both good hydrodynamic and sediment transport results. 

However, no morphological module was included in this later model version. Recently, 

Drønen and Deigaard (2007) and Drønen et al. (2011) combined the STP method with a 

spectral wave model for achieving quasi-3D modelling of longshore bars and the description 

of the long term response of a shoreline to the presence of coastal structures. Similar hybrid 

quasi-2DH shoreline models were also developed by Kaergaard and Fredsøe (2013a,b) and 

Kristensen et al. (2013) by combining a spectral wave model with the STP method for 

sediment transport. 

4.7 Sediment transport formulae 

As already discussed in subsection 4.1, a large number of formulae have been proposed for 

estimating the coastal sediment transport. These formulae refer to the bed load, the suspended 

load or the total load for currents, waves or combined currents and waves. Some commonly 

used among them are described in the following. The one-dimensional version of the 

formulae is only presented, while the two-dimensional extension is straightforward. 

4.7.1 Meyer-Peter and Müller’s formula 

Meyer-Peter and Müller (1948) conducted a number of experiments in a laboratory flume 

involving both uniform and mix-sized particle grains. Based on their measurements and the 

critical shear stress concept, they proposed the following formula for the bed load under 

currents only: 

 𝛷𝑏 = 8(𝜃 − 𝜃cr)
1.5   (4.14) 

where  

 𝛷𝑏 =
𝑞𝑠𝑏

√(s−1)g𝑑50
3

     (4.15) 

is the non-dimensional bed load transport rate and 𝑞𝑠𝑏 is the dimensional volumetric bed load 

rate per unit width. The Shields parameter 𝜃 = 𝜏𝑏/[(s− 1)ρg𝑑50] is constant over time since 

the bed shear stress, 𝜏𝑏, is only due to a steady current.  

Their experiments included relatively coarse material and they estimated the critical 

mobility parameter as 𝜃cr = 0.047. Obviously, if 𝜃 < 𝜃cr no sediment transport takes place. 
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4.7.2 Bijker’s formula 

Based on Frijlink's (1952) formula for a current only, Bijker (1968) derived a sediment 

transport formulation for both the bed load and suspended load under combined waves and 

currents. The bed load, 𝑞𝑠𝑏, and the suspended load, 𝑞𝑠𝑠, are given by the following formulae: 

 𝑞𝑠𝑏 = C𝑏𝑑50√
𝜇c𝜏c

ρ
exp [−0.27

g(ρ
s
− ρ)𝑑50

𝜇c𝜏cw
] (4.16a) 

 𝑞𝑠𝑠 = 1.83𝑞𝑠𝑏 [𝐼1ln (
33ℎ

𝛿c

) + 𝐼2] (4.16b) 

where ℎ is the water depth; 𝜇c is the ripple parameter given by 𝜇c = (𝑓ct/𝑓c)
3/2, with 𝑓ct the 

total friction coefficient and 𝑓c the skin friction coefficient due to current; 𝜏c is the shear stress 

due to current only; 𝜏cw is the shear stress due to wave-current interaction; 𝐼1 and 𝐼2 are the 

Einstein (1950) integrals for the suspended load; 𝛿c=100𝑑50/ℎ is the dimensionless thickness 

of the bed load layer; and C𝑏 is a breaking wave parameter defined by: 

 C𝑏 = {

 2                                       if      𝐻w/ℎ < 0.05

2+ 3(𝐻w/ℎ − 0.05)    if      0.05 ≤ 𝐻w/ℎ < 0.4

5                                        if      0.4 ≤ 𝐻w/ℎ
     (4.17) 

with 𝐻w the wave height. 

The shear stress due to wave-current interaction is computed following the method proposed 

by Bijker (1967) introducing a suspension factor: 

 𝜏cw = [1+ 0.5 (ξ
B

𝑈w

𝑈c
)

2

] 𝜇c𝜏c   (4.18) 

where ξ
B
= √𝑓wt/𝑓ct is a parameter due to the wave-current interaction; 𝑓wt is the total 

friction coefficient due to waves; 𝑈w is the peak value of the wave orbital velocity at the 

bottom; and 𝑈c is the mean current velocity. 

The Einstein (1950) integrals for the suspended load are given by: 

 𝐼1 = ∫(
1− 𝑦

𝑦
)
𝐴

𝑑𝑦

1

𝛿c

   and   𝐼2 = ∫(
1− 𝑦

𝑦
)
𝐴

ln𝑦𝑑𝑦

1

𝛿c

 (4.19) 

where 𝐴 = 𝑊𝑠/[κ(𝜏cw/ρ)0.5] , with κ the von Karman constant as above. 
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4.7.3 Engelund and Fredsøe’s formula 

Fernandez Luque (1974) and Fernandez Luque and Beek (1976) have argued against some 

of Bagnold’s (1963, 1966) ideas and they developed a consistent theory for the transport of 

bed load on a plane bed considering the motion of individual particles. His theory was 

supported by a series of careful experimental observations. A basic idea of his theory is that 

close to incipient particle motion only the topmost grains will be eroded, and the bed load will 

not effectively reduce the fluid part of the turbulent shear stress. Relying on this approach, 

Engelund and Fredsøe (1976) developed a bed load formula containing time-averaged 

quantities rather than an exact description of the forces, which have a fluctuating character. 

The main assumption that was made was that the bed load is the transport of a certain fraction 

𝑝 (probability) of the particles that may be in one single layer. 

 𝛷𝑏 = 5𝑝(√𝜃′ − 0.7√𝜃c)  (4.20) 

where 𝛷𝑏 is given by Eq. (4.15), 𝜃′ is the Shields parameter due to skin friction only and it is 

given by 

 𝜃′ = 𝜃c +
π

6
𝜇𝑑𝑝  (4.21) 

where 𝜇𝑑 = tan𝜑𝑑 represents the dynamic friction, with 𝜑𝑑 the dynamic friction angle for the 

bed load sediment. The fraction 𝑝 is given by the expression 

 𝑝 = [1+ (

π
6
𝜇𝑑

𝜃′ − 𝜃c

)

4

]

−
1
4

 (4.22) 

The critical value 𝜃c usually lies in the range 0.04 ÷ 0.06. In their original work, Engelund and 

Fredsøe (1976) used the value 𝜃c = 0.05.  

Following Einstein’s (1950) ideas, the suspended load, 𝑞𝑠𝑠, is evaluated as  

 𝑞𝑠𝑠 = 11.6𝑈𝑓
′Ca𝑧a [𝐼1ln(

30ℎ

𝐾𝑁
′
) + 𝐼2] (4.23) 

where ℎ is the water depth, 𝑈𝑓
′  is the shear velocity related to skin friction, 𝐾𝑁

′ = 2.5𝑑50 is 

Nikuradse’s equivalent roughness, 𝑧a = 2𝑑50 is the bed reference level, 𝐼1 and 𝐼2 are given by 

Eq. (4.19), and the bed reference concentration is given by 
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Ca =

0.65

(1 + 1/𝜆)3
 

(4.24) 

where 

 𝜆 = √
𝜃′ − 𝜃c −

π
6
𝑝𝜇𝑑

0.027s𝜃′
     if     𝜃′ > 𝜃c +

π

6
𝑝𝜇𝑑 (4.25) 

Engelund and Fredsøe (1982) studied the bed material’s motion also in the case of a 

transverse slope. The original work by Engelund and Fredsøe (1976) referred to a current. 

Fredsøe (1984) presented a hydrodynamic module describing the turbulent boundary layer 

under combined waves and current. Based on this work, Fredsøe et al. (1985) developed a 

sediment transport module describing the distribution of suspended sediment under combined 

wave-current motion. Deigaard et al. (1986a) introduced the effect of wave breaking in the 

computation of suspended sediment load. As described above, the combination of the 

aforementioned works forms the Danish STP model, which has been updated with new 

feature since then. Based on experimental data sets, Zyserman and Fredsøe (1994) proposed a 

different formulation for the reference concentration: 

 Ca =
0.331(𝜃′ − 𝜃c)

1.75

1+0.72(𝜃′ − 𝜃c)
1.75

   if  𝜃′ > 𝜃c  (4.26) 

with 𝜃c = 0.045. 

4.7.4 Bailard’s formula  

Based on Bagnold’s (1963) energetics approach for sediment transport in streams, Bailard 

(1981) developed a total load model for time varying sediment transport over a plane sloping 

bed. In both the bed load and the suspended load, the transport rate vectors are composed by a 

velocity-induced component directed parallel to the instantaneous velocity vector and a 

gravity-induced component directed down slope. Bagnold (1963) also developed a related 

sediment transport equation for oscillatory flows. In this case, the wave motion acted to move 

the sediment back and forth in an amount proportional to the local rate of energy dissipation. 

Although no net transport results from this linear wave motion, a steady current of arbitrary 

strength, when superimposed on the wave motion, is free to transport the sediment in the 

steady current’s direction. Relying on this concept Bailard (1981) proposed the following 

formula for the time-averaged total load under combined waves-current, although better 

agreement has been reported for wave-dominated conditions (Soulsby, 1997): 
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 �⃗�𝑠𝑏 =
cfεB

(s− 1)g tan𝜑𝑚
(〈|�⃗⃗�|2�⃗⃗�〉 −

tan𝛽

tan𝜑𝑚
〈|�⃗⃗�|3〉) (4.27a) 

 �⃗�𝑠𝑠 =
cfεs

(s− 1)g𝑊𝑠
(〈|�⃗⃗�|3�⃗⃗�〉 −

εs tan𝛽

𝑊𝑠
〈|�⃗⃗�|5〉) (4.27b) 

where cf is the bed friction coefficient such as 𝜏𝑏 = ρc
f
|�⃗⃗�|�⃗⃗� ; �⃗⃗� is the instantaneous near-

bottom velocity due to combined waves and currents; tan𝛽 is the bed slope; 𝜑𝑚 is the internal 

friction angle; εB = 0.10 and εs = 0.02 (Bailard, 1982); and <·> denotes averaging over the 

wave period. 

Bailard’s (1981) formulation obviously ignores the effect of the additional stirring of 

sediment by the surface breaking-induced turbulence which penetrates towards the bottom. 

Roelvink and Stive (1989) included this additional effect and modified Bailard’s (1981) 

formula for the suspended load as: 

 �⃗�𝑠𝑠 =
cfεs

(s− 1)g𝑊𝑠
(〈|�⃗⃗�|3�⃗⃗�〉 −

εs tan𝛽

𝑊𝑠
〈|�⃗⃗�|5〉) +

εs〈|�⃗⃗�|〉𝑏𝐷b

(s− 1)g𝑊𝑠
 (4.28) 

 

where 𝐷b is the dissipation of turbulent kinetic energy, 𝐷b = ρ𝑏𝑑�̅�
3/2, with 𝑏𝑑 ≈ 1 and �̅� is 

the depth- and time-averaged turbulent kinetic energy; 𝑏 = [exp(ℎ̅/𝐻rms) − 1]
−3/2

, with ℎ̅ the 

mean water depth. 

4.7.5 Soulsby and van Rijn’s formula 

Van Rijn (1984a,b,c) derived a theory for sediment transport in rivers combining 

fundamental physics and empirical results. Van Rijn (1989) adapted this initial current-alone 

formula to account for combined waves and currents. The bed load is given by 

 𝑞𝑠𝑏 = 0.25𝑑50𝑑∗
−0.3√

𝜇c𝛼cw𝜏c

ρ
(
𝜏cw − 𝜏cr

𝜏cr
)

1.5

 (4.29) 

where 𝛼cw is a coefficient due to the presence of waves (which can affect the mean shear 

stress), 𝜏cr is the critical shear stress, 𝜏cw is the bed shear stress due to combined waves and 

current, and 𝜇c is a shape factor related to ripples. 

The suspended load is obtained by solving the following equation for the mean 

concentration C̅: 
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𝑑C̅

𝑑𝑧
= −

(1 − C̅)5C̅𝑊𝑠
εscw

 (4.30) 

where εscw is the mixing coefficient for the case of wave-current interaction, and then 

evaluating the flux: 

 𝑞𝑠𝑠 = ∫𝑢(𝑧)C̅(𝑧)𝑑𝑧

ℎ

𝑧a

 (4.31) 

where 𝑢(𝑧) is the mean velocity at level 𝑧, and 𝑧a = max{𝑘sct, 𝑘swt} is the reference level, 

with 𝑘sct and 𝑘swt the total roughness due to current and waves, respectively. The 

aforementioned analysis forms the basis of the computer program TRANSPOR and it is 

described in detail by van Rijn (1993). 

Soulsby (1997) proposed another modification of the original van Rijn’s (1984a,b,c) 

formula to account for combined waves and current. The total load is given by 

 𝑞𝑡𝑜𝑡 = (𝐴𝑠𝑏 + 𝐴𝑠𝑠) [(�̅�
2 +

0.018

CD

𝑈rms
2 )

1/2

− �̅�cr]

2.4

(1− 1.6tan𝛽) (4.32) 

where �̅� is the depth-averaged current velocity; 𝑈rms is the root-mean-square wave orbital 

velocity; �̅�cr is the threshold current velocity given by van Rijn (1984a); tan𝛽 is the bed slope; 

CD is the drag coefficient due to current alone; and 𝐴𝑠𝑏 and 𝐴𝑠𝑠 account for the bed load and 

the suspended load, respectively. They are given by the expressions: 

 𝐴𝑠𝑏 =
0.005ℎ(𝑑50/ℎ)

1.2

[(s− 1)g𝑑50]1.2
 (4.33a) 

 𝐴𝑠𝑠 =
0.012𝑑50𝑑∗

−0.6

[(s− 1)g𝑑50]1.2
 (4.33b) 

with ℎ the water depth. 

4.7.6 Dibajnia and Watanabe’s formula 

A very interesting sediment transport formula is the one proposed by Dibajnia and 

Watanabe (1992) and Dibajnia (1995). The formula was initially derived for sheet flow 

conditions but was later extended to cover suspended load over ripples, as well as bed load 

transport (Dibajnia et al., 1994). It was further extended to handle mixed-size sands (Dibajnia 

and Watanabe, 1996) and also to irregular sheet flow conditions (Dibajnia and Watanabe, 
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1998; Dibajnia et al., 2001). The specific formulation breaks down the sediment transport into 

two half-cycles due to the presence of waves. During the first half-cycle the sediment moves 

in the direction of the wave and during the second half-cycle in the opposite direction. An 

important aspect of this approach is that it takes into account a possible quantity of sand still 

in suspension after each half-cycle, and hence moving in the opposite direction. This phase-

lag phenomenon was firstly described by Dohmen-Janssen (1999). Thus, the formula can 

estimate the sediment transport under nonlinear waves. The volumetric transport rate is given 

by 

 �⃗�𝑠 = 𝛼𝑑𝑤𝑊𝑠𝑑50

�⃗⃗�𝑐𝑇𝑐(Ω𝑐 +Ω𝑡
′ ) + �⃗⃗�𝑡𝑇𝑡(Ω𝑡 +Ω𝑐

′ )

(𝑇𝑐 + 𝑇𝑡)√(s− 1)g𝑑50

  (4.34) 

where �⃗⃗�𝑐 and �⃗⃗�𝑡  are representative velocity amplitudes for the positive and negative portions 

of the total velocity profile including wave-current interaction, �⃗⃗� = 𝑢𝑖 (see Fig. 4.6), with 𝑇𝑐  

and  𝑇𝑡  being their corresponding duration, respectively, 𝑖 the unity vector, and 𝛼𝑑𝑤 = 0.0019. 

 |�⃗⃗�𝑐|
2 =

2

𝑇𝑐
∫ |�⃗⃗�|2𝑑𝑡

𝑡0+𝑇𝑐

𝑡0

  and   |�⃗⃗�𝑡|
2 =

2

𝑇𝑡
∫ |�⃗⃗�|2𝑑𝑡

𝑡0+𝑇

𝑡0+𝑇𝑐

 (4.35) 

It should be mentioned that Eq. (4.34) is the latest update of the described formulation and 

was presented by Dibajnia et al. (2001). It is slightly different than the previous versions to 

better account for irregular waves involving low frequency components and strong steady 

currents. 

 

Fig. 4.6. Time evolution of total velocity 𝑢 and definition of parameters (from Dibajnia et al., 2001). 

Values of Ω are obtained as: 
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{
 
 
 
 
 

 
 
 
 
 

if 𝜔𝑗 ≤ 𝜔cr        

{
 
 

 
 

Ω𝑗 = 𝜔𝑗𝑇𝑗√
(s− 1)g

𝑑50

                                                           

Ω𝑗
′ = 0                                                                                   

  

if 𝜔𝑗 > 𝜔cr      

{
 
 

 
 

Ω𝑗 = [𝜔cr + (1− 𝛾𝑗)(𝜔𝑗 −𝜔cr)]𝑇𝑗√
(s− 1)g

𝑑50

     

Ω𝑗
′ = 𝛾𝑗(𝜔𝑗 −𝜔cr)𝑇𝑗√

(s− 1)g

𝑑50

                               

         

 (4.36) 

 

with the condition for Ω𝑗 (and not for Ω𝑗
′ ) that 

 if  𝛹𝑗 < 𝛹sheet ∶  Ω𝑗 = (
𝛹𝑗 −𝛹cr

𝛹sheet −𝛹cr

)
3

Ω𝑗     (4.37) 

 

where 𝛹𝑗 = (1/2)𝑓w𝑢𝑗
2/[(s− 1)g𝑑50]   and  

 𝜔𝑗 = (𝜃𝑗 − 𝜃cr)
𝑑50

𝑊𝑠𝑇𝑗
   and   𝜃𝑗 = 𝛹𝑗/𝑓w  (4.38) 

where 𝑓w is the wave friction factor and the subscript 𝑗 should be replaced by either 𝑐 or 𝑡, i.e. 

crest or trough. The parameter 𝛾𝑗is given by 𝛾𝑗 = 𝛽𝑗
∗𝛽𝑗

′𝛽𝑗
′′, where the three factors account for 

the wave asymmetry, whether the velocity in the next half-cycle is high enough to carry the 

suspended sand delivered by the current half-cycle or not, and additional sediment exchange 

between the two half-cycles due to possibly different angles of vectors �⃗⃗�𝑐  and �⃗⃗�𝑡 (see 

Dibajnia et al., 2001; Karambas and Karathanassi, 2004). 

The critical values for the mobility numbers were set: 𝛹cr = 0.05 and 𝜃cr ≈ 5. 𝛹sheet is the 

critical Shields number for initiation of sheet flow. Eq. (4.37) indicates that over a flat bed 

when 𝛹𝑗 < 𝛹sheet, the bed load motion may not be as intensive as that under fully developed 

sheet flow conditions. Comparison with Dibajnia and Watanabe’s (1992) and Ribberink and 

Al-Salem’s (1995) sheet flow data showed that 𝛹sheet = 0.8 and 𝜔cr = 1.2− 1.17√𝛬, with 𝛬 

a parameter taking into account the presence of bed ripples (Dibajnia, 1995). 

4.7.7 Ribberink’s formula 

Based on Meyer-Peter and Müller’s (1948) bed-shear concept, Ribberink (1998) proposed a 

quasi-steady formula for bed load transport under combined waves and currents. His 

formulation assumes that the instantaneous solid flux is proportional to a function of the 
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difference between the actual time-dependent bed shear stress and the critical bed shear stress. 

The specific formula was calibrated against a large set of experimental data including wave-

current interactions in plane regime (suspended load negligible) and field measurements. The 

bed load rate is given by 

 �⃗�𝑠𝑏 = 11 ⟨(|𝜃′(𝑡)| − 𝜃cr)
1.65 𝜃′(𝑡)

|𝜃′(𝑡)|
⟩ (4.39) 

where  

 𝜃′(𝑡) =
𝜏𝑏
΄′(𝑡)

g(ρ
s
− ρ)𝑑50

=

1
2

ρ𝑓cw
′ |�⃗⃗�𝑏(𝑡)|�⃗⃗�𝑏(𝑡)

g(ρ
s
− ρ)𝑑50

 (4.40) 

with 𝑓cw
′  the wave-current skin friction factor, computed following Madsen and Grant (1976), 

and �⃗⃗�𝑏(𝑡) is the instantaneous near-bottom total (wave + current) velocity. The critical 

Shields parameter is given from Eq. (4.7).  

Ribberink’s (1998) formula was not validated in the regime of fully developed vortex 

ripples. In this case significant time-dependent suspended transport occurs, which cannot be 

modelled in a quasi-steady way. Even the validity of the bed load formula has not been 

examined under such conditions. 

4.8 Model description 

The morphological changes vary at a much slower rate as compared to the short-term 

variations of hydrodynamics. One key issue for practical engineering applications is to bridge 

the gap between these two different time scales and consequently allow longer simulation 

periods. Lesser et al. (2004) and Roelvink (2006) introduced the powerful concept of the 

morphological acceleration factor (Morfac), fMOR, which enables researchers to simulate the 

morphological evolution in coastal areas at longer time scales. 

This efficient concept was adopted in the present model. The main idea behind this 

approach is that the speed of the changes in the morphology is scaled up to a rate that has not 

a significant impact on the waves and other hydrodynamic processes. The implementation of 

the Morfac is achieved by simply multiplying the bed level changes by a non-unity factor 

(Morfac) after each time step, Δt, of the wave model. Thus, the computation of the sediment 

transport and morphological changes is performed simultaneously with the hydrodynamics.  

In particular, the morphology is updated over the morphological time step, Δtmor, and for 

each update simulations by four modules are performed: a wave module, a hydrodynamic 
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module, a sediment transport module, and a bathymetry updating module. This process is 

repeated as many times is required to reach a preset final time period. The relevant flow chart 

is depicted in Fig. 4.7. 

 

Fig. 4.7. Flow chart of wave-current, sediment transport and morphology models. 

The wave module is the Boussinesq-type model that was presented in detail in chapter 3. It 

is a phase-resolving model that can simulate the wave propagation from deep to shallow 

water, including surf and swash zones. The Boussinesq-type model due to its nonlinear 

character offers an inherent estimation of the wave-induced depth-averaged current field, as 

also presented in chapter 3. However, the associated hydrodynamic module cannot predict the 

near bed steady streaming generated by the phase shift in orbital motions caused by bottom 

boundary layer mechanisms, such as the viscosity effects. This drift motion is more frequently 

shoreward in the offshore regions. Nevertheless, inside the surf zone, where sediment 

transport is more intense, the above mechanism is suppressed by both the turbulence and the 

undertow acting in the middle layer. Thus, the wave drift should be directed offshore. These 

latter two mechanisms have been incorporated in the hydrodynamic module by calculating the 

near bottom undertow velocity. The hydrodynamic module was described in detail in 

subsection 3.2.5. 

 The sediment transport rates are calculated as the sum of the bed and suspended loads for 

non-cohesive sediment in the offshore region and inside the surf zone. On the other hand, 

inside the swash zone, Larson and Wamsley's (2007) formula is applied, relying on the 

ballistic theory. The instantaneous intra-wave sediment transport rates are time-averaged to 

obtain the final transport rates.   

Finally, the bathymetry is updated by solving the equation for conservation of sediment 

based on the time-averaged sediment transport rates. However, the morphological time step is 

different from the time step Δt of the Boussinesq wave model due to the application of the 

morphological acceleration factor technique. Thus: 

 Δtmor = fMOR ∙ Δt      (4.41) 

while the spatial step, Δx, is common for all models. 
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4.8.1 Sediment transport module 

The output from the wave and hydrodynamic modules is used as input in the sediment 

transport module for the computation of the time-averaged sediment transport loads. Offshore 

and inside the surf zone, the sediment movement is usually divided into bed load and 

suspended load. The increasing magnitude of the wave orbital velocity starts mobilizing the 

bed sediment and then a part of it is suspended in the vicinity of the bed ripples. Then, 

typically, as waves approach the breaker line the sheet-flow movement is favored. Inside the 

surf zone, the strong stirring up due to the wave breaking causes intense suspension of the 

sediment which is mainly transported by the wave-induced currents. In the swash zone, 

sediment moves mainly as sheet flow during the up-rush and down-rush. These mechanisms 

have been included in the sediment transport module, similarly to the work by Nam et al. 

(2009, 2010) which, however, is based on a spectral phase-averaged wave model. 

Offshore and surf zone 

(i) Bed load 

For the computation of the bed load per unit width, �⃗�𝑠𝑏, the semi-empirical formulation by 

Camenen and Larson (2005, 2006, 2007) was applied. This sophisticated formula is based on 

Meyer-Peter and Müller's (1948) bed-shear stress concept and is valid under the combined 

action of asymmetric waves and currents. Effectively: 

 

𝑞𝑠𝑏,𝑤

√(𝑠 − 1)g𝑑50
3

= αw

𝜃cw,net

√|𝜃cw,net|

𝜃cw,mexp (−b
𝜃cr

𝜃cw

) 
(4.42a) 

 

𝑞𝑠𝑏,𝑛

√(𝑠 − 1)g𝑑50
3

= αn

𝜃cn

√|𝜃cn|
𝜃cw,mexp (−b

𝜃cr

𝜃cw

) 
(4.42b) 

where the subscripts 𝑤 and 𝑛 correspond, respectively, to the wave direction and the direction 

normal to the waves, αw, αn and b are empirical coefficients to be given in the following. In 

the general case of combined waves and currents at an arbitrary angle, 𝜑, between them (see 

Fig. 4.8) the instantaneous Shields parameter due to wave and current, respectively, are 

defined as: 

 θ⃗⃗w(t) =
1

2
fw|U⃗⃗⃗w(t)|U⃗⃗⃗w(t)

(s−1)gd50
   and   θ⃗⃗c =

1

2
fc|U⃗⃗⃗c|U⃗⃗⃗c

(s−1)gd50
 (4.43) 
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with �⃗⃗⃗�w(𝑡) and �⃗⃗⃗�c the near bed instantaneous oscillatory and current velocities, respectively, 

and 𝑓w and 𝑓c the bed friction coefficients due to waves and current, respectively. However, it 

should be reminded that the orbital velocity is assumed uniform over depth. In Eqs (4.42a,b) 

the mean absolute Shields parameter, 𝜃cw,m, and the maximum Shields parameter, 𝜃cw, due to 

wave-current interaction are obtained by vector addition: 

  𝜃cw,m = (|𝜃c|
2
+ |𝜃w,m|

2
+ 2|𝜃w,m||𝜃c| cos𝜑)

1/2

     (4.44) 

 𝜃cw = (|𝜃c|
2
+ |𝜃w|

2
+ 2|𝜃w||𝜃c| cos𝜑)

1/2

     (4.45) 

with 𝜃w,m and 𝜃w the mean wave and maximum wave Shields numbers, respectively. The 

Shields parameter in the direction normal to the wave direction is only due to current and is 

defined by: 

 𝜃cn =

1
2
𝑓c|�⃗⃗⃗�c|

2
|sin𝜑| sin𝜑

(𝑠 − 1)g𝑑50

 (4.46) 

The last exponential term in Eqs (4.42a,b) was introduced in order to account for the effect 

of the critical Shields parameter, 𝜃cr, which, similarly to experimental observations, allows 

low sediment transport even when  the instantaneous Shields parameter is slightly lower than 

the critical value (Camenen and Larson, 2005). The critical Shields value corresponds to the 

critical velocity for the inception of sheet flow, 𝑈w,crsf. Thus, the exponential term also allows 

a possible error on the estimation of 𝑈w,crsf given by: 

 𝑈w,crsf = 8.35√(𝑠 − 1)g√𝑑50𝛿w(1 + 𝑟w)    (4.47) 

where 𝑟w is the wave symmetry coefficient, 𝑟w = 𝑈w,max 𝑈w − 1⁄ , with 𝑈w,max being the 

maximum value of the instantaneous near bed wave velocity, 𝑈w(𝑡), as shown in Fig. 4.8.  
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Fig. 4.8. Left: Wave and current interaction. Right: Typical velocity variation over wave period in the 

direction of wave propagation including current effect (from Camenen and Larson, 2007, modified). 

The parameters αw, αn and b were set equal to αw = 6+ 6|𝜃c|/(|𝜃c| + |𝜃w|), αn = 12 and 

b = 4.5 (Camenen and Larson, 2007). 

Similarly to the formula by Dibajnia and Watanabe (1992), and in order to take into account 

the unsteady effects of the sediment’s movement a typical wave cycle is divided in two half 

periods, one with onshore movement, Twc, and one with offshore movement, Twt (see Fig. 4.8). 

These unsteady effects are caused by a time lag between velocity and sediment concentration, 

resulting in negative wave-related transport rates and thus smaller total net rates than without 

these effects. The mean Shields parameters during the onshore ( > 0) and the offshore ( < 0) 

half periods are defined as: 

 𝜃cw,onshore =
1

Twc
∫

1
2
𝑓cw(𝑈w(𝑡) + |�⃗⃗⃗�c| cos𝜑)

2

(𝑠 − 1)g𝑑50

𝑑𝑡
Twc

0

 (4.48) 

 𝜃cw,offshore =
1

Twt
∫

1
2
𝑓cw(𝑈w(𝑡) + |�⃗⃗⃗�c| cos𝜑)

2

(𝑠 − 1)g𝑑50

𝑑𝑡
Tw

Twc

 (4.49) 

The phase-lag is introduced through the coefficient αpl,b = αon - αoff, with: 

 αj =
𝑣0.25𝑈cw,j

0.5

𝑊𝑠𝑇𝑤𝑗
0.75 exp [− (

𝑈w,crsf

𝑈cw,j
)

2

]    (4.50) 

where 𝑊𝑠 is the settling velocity according to Camenen and Larson (2007) and the subscript j 

refers to either the onshore or offshore movement. 𝑈cw,j is the root-mean-square value of the 

velocity over the half period 𝑇𝑤𝑗. The characteristic values of the Shields parameter are 

modified due to the lag effects for both half periods. Thus, the net Shields parameter involved 

in Eq. (4.42a) is expressed as: 

 𝜃cw,net = (1− αpl,b)𝜃cw,onshore + (1 + αpl,b)𝜃cw,offshore    (4.51) 

The presented formula for the bed load is one of the few formulae that take into account the 

aforementioned unsteady effects. A comparison with several existing popular formulations 

against a large set of available experimental data showed the overall best performance of the 

above relation (Camenen and Larson, 2005; 2006) and thus it was selected herein. 
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(ii) Suspended load 

If the bed shear stress is sufficiently large, the particles can be lifted, put in suspension, and 

transported mainly by the current. In the marine environment, the process of sediment 

transport is complex due to the interaction between steady and oscillatory flows. In the 

general case, the wave-related part of the suspended load includes unsteady effects both due 

to the wave asymmetry and a possible phase-lag between the pulses of the instantaneous 

velocity and concentration. Due to this non-coincident reaction of the sediment to the velocity 

field, the sediment transport module solves the advection-diffusion equation (AD-equation) 

for the depth-averaged sediment concentration, Cave:  

 
𝜕(Caveℎ)

𝜕𝑡
+
𝜕(Caveℎ𝑈)

𝜕𝑥
+
𝜕(Caveℎ𝑉)

𝜕𝑦
=

𝜕

𝜕𝑥
(𝐾𝑥ℎ

𝜕Cave

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦ℎ

𝜕Cave

𝜕𝑦
) + 𝑃𝑟 − 𝐷𝑟  (4.52) 

where ℎ = 𝑑 + 휁 is the total instantaneous depth, 𝐾𝑥 = 𝐾𝑦 = 5.93𝑢∗,cℎ are the diffusion 

coefficients with 𝑢∗,c the friction velocity due to current only, 𝑃𝑟 and 𝐷𝑟 are the sediment 

pick-up and deposition rates, respectively, equal to: 

 𝑃𝑟 = 𝑐𝑅𝑊𝑠   and  𝐷𝑟 =
Cave

𝛽𝑑
𝑊𝑠  (4.53) 

where 𝑐𝑅 is the near-bottom sediment reference concentration and 𝛽𝑑 is a coefficient 

calculated from (Camenen and Larson, 2008): 

 𝛽𝑑 = 𝑊𝑠ℎ
[1− exp (−

𝑊𝑠ℎ)]     (4.54) 

where 휀 is the sediment diffusivity given by: 

 휀 = (
𝑘b

3𝐷+𝑘c
3𝐷c+𝑘w

3𝐷w

ρ
)

1/3

ℎ     (4.55) 

where 𝐷 is the energy dissipation per unit area due to wave breaking, 𝐷c and 𝐷w are the 

energy dissipation per unit area from the bed friction due to current and wave, respectively, 

and 𝑘b, 𝑘c and 𝑘w are coefficients. Typically, 𝐷 > 𝐷w > 𝐷c , and, in many cases, only the 

largest dissipation needs to be considered. The parameter 𝑘b was considered constant and 

equal to 0.01, although its value depends on the breaker type. The other two parameters were 

estimated according to Camenen and Larson (2007): 

 𝑘w =
κ

3π
{

0.15+ 1.5 sin
2 (

π

2

𝑊𝑠

𝑢∗,w
)   if   

𝑊𝑠

𝑢∗,w
≤ 1

1.0+ 0.65 sin
2 (

π

2

𝑢∗,w

𝑊𝑠
)   if   

𝑊𝑠

𝑢∗,w
> 1

  (4.56) 



Chapter 4.  Sediment transport model 

 

 

196 

 

 𝑘c =
κ

6
{

0.4+ 3.5 sin
2 (

π

2

𝑊𝑠

𝑢∗,c
)   if   

𝑊𝑠

𝑢∗,c
≤ 1

1.0+ 2.9 sin
2 (

π

2

𝑢∗,c

𝑊𝑠
)   if   

𝑊𝑠

𝑢∗,c
> 1

  (4.57) 

where 𝑢∗,w is the friction velocity due to waves only and κ (= 0.40) is, as above, the von 

Karman constant. 

The near-bottom reference concentration is a very important parameter for the correct 

estimation of the suspended load, as discussed in subsection 4.6. Herein Camenen and 

Larson's (2007) formula was adopted: 

 𝑐𝑅 = 𝐴cr𝜃cw,mexp (−b
𝜃cr

𝜃cw
)       (4.58) 

Based on the analysis of a large data set Camenen and Larson (2007) proposed the default 

value:  

 𝐴cr = 3.5∙10-3exp(−0.3𝑑∗)       (4.59) 

However, analysis of the available data that yield the numerical factors of Eq. (4.59) gives a 

significant variability of 𝐴cr. 

The sediment transport rate is often large near the shoreline because of swash uprush and 

backwash processes. On the other hand, most of the available formulae tend to yield sediment 

transport that decreases too rapidly from the swash zone towards the offshore and thus the 

interaction between the swash zone and the inner surf zone is not accurately described. In 

order to deal with this difficulty the modification by Nam et al. (2009) was adopted. In 

particular, the sediment transport at the still-water shoreline obtained from the swash 

computations and described in the following was used as a boundary condition for Eq. (4.52). 

In addition, the pick-up and deposition rates were modified as following: 

 �̃�𝑟 = 𝑃𝑟 [1 + �̃�
𝑉long

𝑣𝑜
exp (−�̃�

ℎ

𝑅
)] (4.60) 

 
�̃�𝑟 =

𝐷𝑟

1 + �̃�
𝑉long

𝑣𝑜
exp (−�̃�

ℎ
𝑅
)

 
(4.61) 

 

where 𝑉long is the average longshore current across the surf zone, 𝑅 is the run-up height as 

computed by the model, 𝑣𝑜 is a scaling velocity which is obtained from swash zone 

computations and is described in the following, and �̃� and �̃� are non-negative coefficients 

with values 9.3 and 2.4, respectively (Nam et al., 2009). 
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From the solution of Eq. (4.52) and after time-averaging, the net suspended load per unit 

width can be computed: 

 �⃗�𝑠𝑠 = (Caveℎ − 𝐾𝑥ℎ
𝜕Cave

𝜕𝑥
 ,Caveℎ − 𝐾𝑦ℎ

𝜕Cave

𝜕𝑦
)    (4.62) 

Besides the AD-equation, the sediment transport module offers a simple alternative for the 

estimation of the suspended load following Camenen and Larson (2008). Assuming a steady 

state, an exponential profile of the sediment concentration over depth is obtained and thus the 

suspended load under the combined action of waves and current is computed as: 

 𝑞𝑠𝑠,𝑤 = (𝑈cw,onshore − 𝑈cw,offshore)𝑐𝑅 𝑊𝑠
[1− exp (−

𝑊𝑠ℎ)]    (4.63a) 

 𝑞𝑠𝑠,𝑛 = |�⃗⃗⃗�𝑐| sin𝜑 𝑐𝑅 𝑊𝑠
[1− exp (−

𝑊𝑠ℎ)]    (4.63b) 

Equations (4.63a,b) give the suspended load above the bed reference level and assume no 

significant vertical variation of the velocity above this level. For the applications studied 

herein both formulations for the suspended load led to quite similar results, as also shown in 

the sensitivity analysis section. 

Swash zone 

The mechanisms of sediment transport in the swash zone have received in the past less 

attention than those in the surf zone. This can be attributed partly to the very complex 

processes taking place in the swash zone and partly to the difficulties in performing reliable 

field and laboratory measurements. However, due to the high engineering interest, significant 

progress has been made during the last years concerning the hydrodynamics and sediment 

transport in the swash zone (Butt and Russell, 2000; Elfrink and Baldock, 2002; Larson et al., 

2004). 

A number of formulae and techniques have been proposed for calculating the sediment 

transport rates in the swash zone (Larson, 1996; Leont’yev , 1996; Larson et al., 2001). Most 

of them mainly deal with aspects of cross-shore transport. Only little attention has been paid 

to the longshore direction although longshore sediment transport in the swash zone may 

account for up to the half of the total longshore transport (Kamphuis, 1991). Herein the 

formulae by Larson and Wamsley (2007) have been adopted for the computation of the net 

transport rates in the cross-shore and longshore directions. Effectively: 
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𝑞𝑏𝑐,net = 𝐾𝑐

tan𝜑𝑚

tan2𝜑𝑚 − (
𝑑𝑑
𝑑𝑥
)

2

𝑢𝑜
3

g
(
𝑑𝑑

𝑑𝑥
− tan𝛽𝑒)

𝑡𝑜
𝑇

 
(4.64) 

 𝑞𝑏𝑙,net = 𝐾𝑙
tan𝜑𝑚

tan2𝜑𝑚 − (
𝑑𝑑
𝑑𝑥
)

2

𝑢𝑜
2𝑣0
g

𝑡𝑜
𝑇

 (4.65) 

where 𝜑𝑚 is the internal friction angle ( ≈ 30º), 𝑢0, 𝑣0 and 𝑡𝑜 are scaling velocities and time, 

respectively, 𝑇 is the swash duration (assumed equal to the incidence wave period), 𝑑 is the 

still water depth, tan𝛽𝑒 is the foreshore equilibrium slope, and 𝐾𝑐 and 𝐾𝑙 are empirical 

coefficients. Based on field measurements, Larson et al. (2004) proposed 𝐾𝑐 = 0.001 and 

Larson and Wamsley (2009) assumed that 𝐾𝑙 ≈ 𝐾𝑐. Nam et al. (2009) used the value 0.0008 

for both coefficients in their model. However, in the present thesis a significant variability of 

the values of these two coefficients was observed through calibration with laboratory 

measurements. Further investigation on this issue is required since the computed sediment 

transport loads in the swash zone are sensitive to the value of these parameters. The required 

swash zone hydrodynamics were derived based on the ballistic theory. For more details 

concerning the derivation see Larson and Wamsley (2007) and Larson et al. (2004).  

The transformation of the waves as they travel up and down the foreshore is quite complex. 

However, it has been shown that the speed of the wave front as it propagates up the foreshore 

may be reasonably well described using simple theory in which the front is regarded as a slug 

of water moving under the action of gravity and friction. By applying this analogy with the 

ballistic theory, the scaling time is given by: 

 
𝑡𝑜
𝑇
= √1−

𝑧𝑜
𝑅

 (4.66) 

where 𝑧𝑜 is the vertical distance from the reference level. 

Assuming that the wave front has a speed of 𝑢𝑠 at the start of the uprush and that it is 

oriented at an angle 𝛼𝑠 with respect to the y-axis which is assumed to be parallel to the 

shoreline, the scaling velocities are given by 

 𝑢𝑜 = 𝑢𝑠cos𝛼𝑠 √1−
𝑧𝑜
𝑅
   𝑎𝑛𝑑  𝑣𝑜 = 𝑢𝑠sin𝛼𝑠 (4.67) 

The local equilibrium slope is given by (Larson et al., 1999): 
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 tan𝛽𝑒 =
𝐼𝑈 − 𝐼𝐵
𝐼𝑈 + 𝐼𝐵

tan𝜑𝑚 (4.68) 

where 

 𝐼𝑈 =
1

𝑇
∫ [

|𝜏𝑏(𝑡)|

(𝑠 − 1)ρg𝑑50

]

3/2

𝑑𝑡
𝑡𝑚

𝑡𝑠

 (4.69a) 

 𝐼𝐵 =
1

𝑇
∫ [

|𝜏𝑏(𝑡)|

(𝑠 − 1)ρg𝑑50

]

3/2

𝑑𝑡
𝑡𝑒

𝑡𝑚

 (4.69b) 

with 𝜏𝑏(𝑡) the bed shear stress, 𝑡𝑠 and 𝑡𝑒 the start and end time of the swash, respectively, and 

𝑡𝑚 the time when uprush changes to backwash.  

Overall, the total net sediment transport load per unit width, �⃗�𝑡𝑜𝑡 = (𝑞𝑥,𝑡𝑜𝑡 , 𝑞𝑦,𝑡𝑜𝑡), equals 

the sum of the bed load and suspended load, �⃗�𝑠𝑏 + �⃗�𝑠𝑠, in the surf zone and offshore, while it 

is reduced to the swash zone net transport load, �⃗�𝑠𝑧, further onshore. The components of �⃗�𝑠𝑧 

along the cross-shore and longshore directions are given by Eqs (4.64) and (4.65), 

respectively.   

4.8.2 Morphology module 

The morphology module yields the bathymetry update by solving the sediment mass 

conservation equation: 

 
𝜕𝑑

𝜕𝑡
=

1

1− 𝑛𝑝
∇ ∙ �⃗�𝑡𝑜𝑡

′  (4.70) 

where 𝑛𝑝 is the sediment porosity ( ≈ 0.4). Following Watanabe (1988) and Johnson and 

Zyserman (2002), the effect of the bed slope has been included resulting in the effective total 

loads: 

 𝑞𝑥,𝑡𝑜𝑡
′ = 𝑞𝑥,𝑡𝑜𝑡 + 휀𝑥𝑥|𝑞𝑥,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑥
+ 휀𝑥𝑦|𝑞𝑥,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑦
       (4.71a) 

 𝑞𝑦,𝑡𝑜𝑡
′ = 𝑞𝑦,𝑡𝑜𝑡 + 휀𝑦𝑥|𝑞𝑦,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑥
+ 휀𝑦𝑦|𝑞𝑦,𝑡𝑜𝑡|

𝜕𝑑

𝜕𝑦
       (4.71b) 

where 휀𝑥𝑥, 휀𝑥𝑦 = 휀𝑦𝑥, and 휀𝑦𝑦 are empirical coefficients, introducing diffusion and cross-

terms to the bed level evolution equation. They help to dampen the spurious short waves 
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generated from the numerical solution of Eq. (4.70). These diffusivity parameters have not 

been studied in depth and typically they can be used as tuning parameters (Watanabe, 1988). 

However, too high values may lead to unrealistic over-damping of the bed features, while too 

low values may lead to numerical instabilities. In the applications presented herein, a typical 

range 2-5 was considered for 휀𝑥𝑥 and 휀𝑦𝑦, while 휀𝑥𝑦 was set around unity. 

For the numerical solution of Eq. (4.70) the model offers two options. The first one is the 

second order Warming-Beam upwind scheme (Long and Kirby, 2006). The second one is a 

modified second order Lax-Wendroff scheme (Deigaard et al., 1988; Rakha et al., 1997). 

Both schemes are conditionally stable but require the estimation of the celerity of bed 

disturbances, 
1

1−𝑛𝑝

𝜕�⃗⃗�𝑡𝑜𝑡
′

𝜕𝑑
, that its expression cannot be soundly treated numerically.  

An important aspect in the morphological model is the smoothing of the calculated 

transport. As described by Fredsøe and Deigaard (1992), in the case of regular waves the 

calculated sediment transport may have a discontinuity at the point of wave-breaking. This is 

unrealistic, as the undertow profile needs some distance before it becomes fully developed. In 

order to solve this inconsistency, the calculated sediment transport load is slightly smoothed 

using a three-point running average filter before it is inserted in Eq. (4.70). When studying the 

evolution of coastal profiles, this smoothing causes the maximum of the offshore-directed 

transport to be shifted shoreward of the breaking point and thus influences the formation of a 

trough inshore of the resulting bar. Moreover, the offshore-directed transport starts slightly 

offshore of the breaking point which smooths out the front face of the formed bar. Brøker 

Hedegaard et al. (1991) studied the effect of different filters on the resulting coastal profiles. 

As described above, the morphological acceleration factor technique was applied in order to 

have longer simulations and thus practical applications of the model. The simulations are time 

consuming compared to typical Boussinesq wave model applications with no morphology 

update. However, by an appropriate choice of fMOR reliable short-term morphological 

simulations (of the order of several hours) can be performed with no prohibitive 

computational effort. Nevertheless, care must be taken not to exaggerate with the value of the 

morphological factor in order to be able to describe realistically the interaction of the wave, 

hydrodynamic and morphology modules. In addition, large morphological time steps, Δtmor, 

may lead to instabilities in the solution of Eq. (4.70). In the present thesis fMOR was varied in 

the range 1-20 with no significant impact on the wave model's results. 

4.9 Model validation 

In order to check the compound model's ability to simulate nearshore dynamics, sediment 

transport and morphology evolution, both its 1DH and 2DH versions were validated through a 
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number of experimental tests. Both regular and irregular wave propagation over initially plane 

beaches, complex bathymetries and a detached breakwater were studied. The results were 

compared to laboratory measurements involving hydrodynamic parameters, sediment 

transport loads and short-term bathymetry changes. 

4.9.1 1DH validation 

In all the 1DH laboratory experiments presented here the net time-averaged sediment 

transport rate distributions, Qmeas(x), were calculated from successive beach profile 

measurements using the sediment conservation law and a known boundary condition (Qmeas(x) 

= 0) at the landward or seaward end of the profile. Thus: 

 Q
meas

(xi) = Q
meas

(xi-1) − ∫ M
𝛥𝑧𝑏

𝛥𝑡′
xi

x
i-1

𝑑𝑥      (4.72) 

where Q
meas

(xi) is the integral volume of sediment transport at position i, 𝛥𝑧𝑏 is the 

difference in bed elevation between measurement intervals, 𝛥𝑡 ′ is the time difference between 

measurement intervals and M is the solid fraction of the gross sediment volume, 

approximately 0.6 for the laboratory sand as described in Baldock et al. (2011). 

CRIEPI Test - Initially plane beach 

The first set of comparisons refers to the data by Kajima et al. (1982) and Shimizu et al. 

(1985). Their experiments were conducted in CRIEPI's Large Wave Flume in Japan. The 

flume was 205 m long, 3.4 m wide and 6 m deep and cross-shore hydrodynamics, sediment 

transport and beach change processes were investigated. The case studied here is Test 3-2 

including sand of median diameter 𝑑50= 0.27 mm. The initial bathymetry consisted of a 

horizontal bottom of 4.5 m depth followed by a uniform slope of 1:20. Regular waves were 

generated at the uniform depth section with period T = 6.0 s and wave height Ho = 1.00 m. 

The overall duration of the experiment was 98.1 hrs. 

A spatial grid spacing of Δx = 0.3 m and a time step of Δt = 0.02 s were used in the 

Boussinesq model, while a morphological factor fMOR = 20 was employed leading to a 

morphological step of Δtmor = 0.4 s. A comparison between the measured and the computed 

by the model wave height, total sediment transport load and beach profile is depicted in Figs 

4.9, 4.10 and 4.11, respectively. The sediment loads were measured and computed, 

respectively, after two hours of wave incidence while the morphology profiles after 7 hours. 

The sloping beach starts at x = 40 m. 
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Fig. 4.9. Computed and measured wave height for test case 3-2 (CRIEPI).  

 

Fig. 4.10. Computed and measured total sediment transport rate after 2 hrs of wave incidence for test 

case 3-2 (CRIEPI). 

  

Fig. 4.11. Computed and measured beach profile after 7 hrs of wave incidence for test case 3-2 

(CRIEPI). 

The specific test case refers to erosive conditions close to the shoreline. This was also 

expected since Dean's (1973) expression gives 𝐹𝑜 = 𝐻𝑜/(𝑊𝑠𝑇) ~ 4.3. Dean (1973) claimed 

that 𝐹𝑜 > 1 corresponds to erosive conditions, while 𝐹𝑜 < 1 to accretive. However, in recent 

literature higher values are proposed based on field measurements, e.g. Hanson and Kraus 

(2011) proposed 𝐹𝑜 > 4.0 for erosion and 𝐹𝑜 < 2.40 for accretion. 

Good results were obtained for the main bar formation. However, an under-prediction of the 

down-wave part of the bar is observed. This can be attributed to the computed secondary peak 
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of the sediment load at the outer surf zone which is more abrupt than the measured one. 

Nevertheless, the inner secondary bar is fairly accurately predicted, as well as the slight 

erosion further onshore. Two consecutive breaking events take place just after x = 100 m 

leading to the formation of the inner bar. This double incidence of breaking results to a steep 

offshore-directed suspended load distribution and, consequently, to the sharp dip in the 

modelled total load rate just after x = 100 m. The diffusivity parameter 휀𝑥𝑥 was set equal to 5 

and no significant sensitivity to this value was observed for the specific test case. 

The above figures also include a comparison with the results from the model by Rakha et al. 

(1997). The present model computes more accurately the wave height due to its higher order 

of nonlinearity. In addition, it reproduces adequately the secondary peak of the sediment load 

distribution, proving the capability of the applied sediment transport formulae to satisfactorily 

capture the effect of the wave asymmetry. Finally, both models describe reasonably well the 

formation of the main bar but this is valid only for the present model when the secondary 

inner bar is concerned. 

Irregular bathymetry – Erosive conditions 

The second test refers to the experiments performed in the CIEM large wave flume at UPC 

in Barcelona as part of the SUSCO experiment (Baldock et al., 2011). The flume was 100 m 

long, 3 m wide and 5 m high. The experimental layout consisted of a horizontal bottom of 2.5 

m depth followed by an irregular beach profile of an overall mean gradient of approximately 

1:15. The beach was covered by a medium sand of 𝑑50= 0.25 mm.  

A set of fourteen different tests was conducted involving regular, bichromatic and irregular 

waves. The beach evolution along the centre-line of the wave flume was measured with a 

semi-automatic mechanical bed profiler with an overall vertical profile accuracy of ±10 mm. 

Between each test manual reshaping of the beach was performed in order to return to the 

initial profile. For the erosive tests, this reshaping was performed over the part of the profile 

between the seaward flank of the breaker bar and the run-up limit. 

The case studied here is test M_E referring to the generation and propagation of 

monochromatic waves with period T = 3.7 s and wave height Ho = 0.41 m over the horizontal 

bottom. This is an erosive test case and the profile measurements were made after 2 hrs of 

wave generation.  

The model was also run to simulate the test. A spatial grid spacing of Δx = 0.1 m and a time 

step of Δt = 0.01 s were used in the Boussinesq model, while a morphological factor fMOR = 2 

was employed leading to a morphological step of Δtmor = 0.02 s. Figs 4.12, 4.13 and 4.14 

show a comparison between the measured and the computed by the model wave height, total 
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sediment transport load and beach profile after two hours of wave action. It is mentioned that 

the toe of the sloping bed is at x = 42.5 m. 

 

Fig. 4.12. Computed and measured wave height for test case M_E in Baldock et al. (2011). 

 

Fig. 4.13. Computed and measured total sediment transport rate after 2 hrs of wave generation for test 

case M_E in Baldock et al. (2011). 

 

Fig. 4.14. Computed and measured beach profile after 2 hrs of wave generation for test case M_E in 

Baldock et al. (2011). 
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In overall, the agreement seems reasonable despite an overestimation of the wave height 

near the breaking point. The initiation of the sediment's movement is quite accurately 

predicted as well as the overall magnitude of the sediment transport load. In general, the 

results are acceptable since the main morphological features are described by the model. The 

position and height of the bar is acceptably predicted, as well as the erosion in the inner surf 

zone and close to the shoreline. 

Irregular bathymetry - Accretive conditions 

Another test case of the SUSCO experiment was also simulated by the present model. This 

is test M_A which refers to accretive conditions. In this case regular waves with period T =4.9 

s and wave height Ho = 0.15 m over the horizontal bed of 2.5 m depth were generated. The 

beach profile was measured after two hours of wave generation similarly to the erosive test. 

The spatial step for the model simulation was set Δx = 0.2 m so that the long waves were 

adequately resolved inside the surf zone, with about 50 points per wavelength near the 

breaking point. The time step was chosen Δt = 0.02 s and fMOR = 2 yielding a morphological 

step of Δtmor = 0.04 s. A comparison between the measured and the computed by the model 

wave height, total sediment transport load and beach profile after two hours of wave action is 

shown in Figs 4.15, 4.16 and 4.17, respectively. 

 

Fig. 4.15. Computed and measured wave height for test case M_A in Baldock et al. (2011). 
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Fig. 4.16. Computed and measured total sediment transport rate after 2 hrs of wave generation for test 

case M_A in Baldock et al. (2011). 

 

Fig. 4.17. Computed and measured beach profile after 2 hrs of wave generation for test case M_A in 

Baldock et al. (2011). 

The agreement for the wave height is very good. Also, the computation of the total sediment 

transport load is fairly accurate. The inception of the sediment's movement is well captured as 

well as the shape of the curve of the transport rate with only onshore movement being 

predicted in accordance with the measured load. However, a deeper tongue is predicted than 

measured for the transport rate around x = 75 m and this leads to the formation of a slightly 

more pronounced bar there than actually measured. Moreover, the model computes a milder 

reduction of the sediment load in the inner surf and swash zones. Thus, although accretion is 

predicted by the model near the shoreline, it is under-estimated compared to the well-defined 

swash berm which was observed in the laboratory experiment. Nevertheless, it should be 

noted that accretive conditions are known to be more demanding tests for numerical models 

than the erosive ones. 
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Large Wave Flume experiment 

A number of experiments were performed at the Grosser Wellenkanal in Hannover under 

the EU SAFE project. The flume was 324 m long, 5 m wide and 7 m deep. The purpose of the 

tests was to study aspects of beach nourishment and offer a benchmark data set for numerical 

models' validation. Among the tests described in Dette et al. (2002), case B2 is reproduced 

herein. The initial bathymetry consisted of a horizontal bed of 5 m depth followed by the 

theoretical Bruun equilibrium profile below the water level. Above the water level the beach 

had a uniform slope of 1:10. The used sand had a median diameter of 𝑑50= 0.30 mm. Random 

waves of a TMA spectrum were generated over the constant depth with peak period Tp = 5.5 s 

and significant wave height Hmo
= 1.20 m. The duration of the test was about 23 hrs and a 

morphological factor equal to 20 was used in the model simulation. 

In Figs 4.18, 4.19 and 4.20 the measured and computed wave height, sediment transport rate 

and bed elevation are depicted, respectively. The bar formation and the swash zone erosion 

are reasonably well predicted, although the latter is under-estimated. 

 

Fig. 4.18. Computed and measured significant wave height for test case B2 in Dette et al. (2002). 
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Fig. 4.19. Computed and measured total sediment transport rate at various times for test case B2 in 

Dette et al. (2002). 

 

Fig. 4.20. At left: computed final sediment transport rate. At right: computed and measured initial and 

final beach profiles for test case B2 in Dette et al. (2002). 

LIP 11D Delta Flume Experiment 

The Delta Flume ’93 tests were performed at the Delft Hydraulics large-scale wave flume 

under the EU “Large Installations Plan” in order to provide high-quality data for validating 

numerical models. The experiments involved hydrodynamics and sediment transport on a 

beach. The case studied here is Test 1c (Arcilla et al., 1994; Roelvink and Reniers, 1995). The 

initial bathymetry consisted of a horizontal bottom of 4.1 m depth, where waves were 

generated, followed by an irregular beach profile which was the result of an initially Dean-

type beach exposed to preceding erosive wave conditions. Test 1c represented strongly 

accretive wave conditions including the generation of narrow-banded, random waves with Tp 

= 8 s and Hmo
= 0.60 m. The mean grain size was 𝑑50= 0.20 mm and the overall test duration 

13 hrs. 

The test was reproduced by the model with Δx = 0.5 m and Δt = 0.02 s. A morphological 

factor fMOR = 20 and thus a morphological step Δtmor = 0.4 s were employed. Figs 4.21 and 

4.22 show a comparison between the measured and the computed significant wave height and 

near bottom undertow velocity, 𝑈𝑏. A comparison with Rakha et al.’s (1997) model is also 

presented. The agreement for both variables is very good for the present model and superior 

than the previous one’s. 
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Fig. 4.21. Computed and measured significant wave height for test 1c in LIP 11D. 

 

Fig. 4.22. Computed and measured near bottom undertow velocity for test 1c in LIP 11D. 

The cross-shore sediment transport rate was calculated from the measured profile change over 

the first 7 hrs. This rate was compared to the computed by the model and this comparison is 

depicted in Fig. 4.23. A comparison between the measured and the computed final bed 

elevation is shown in Fig. 4.24. The results from Rakha et al.’s (1997) model are also 

included in these figures. 
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Fig. 4.23. Computed and measured total sediment transport rate after 7 hrs for test 1c in LIP 11D. 

  

Fig. 4.24. Computed and measured initial and final beach profiles for test 1c in LIP 11D. 

The agreement is quite adequate for the present model. The peak of the transport load is 

only slightly under-predicted and the sediment load in the inner surf and swash zones is quite 

well described. However, an under-estimation of the sediment transport offshore of the bars is 

apparent. In general, the computation of the beach morphology evolution is accurate. The 

main bar height is more accurately computed than in Rakha et al. (1997). On the other hand a 

slightly more peaky berm close to the shoreline is computed by the present model compared 

to the measurements and Rakha et al.’s (1997) results. 

4.9.2 2DH validation 

Large-Scale Sediment Transport Facility (LSTF) experiment – Oblique waves  

The first test for checking the validity of the two-dimensional model refers to the 

experiments conducted at the Coastal and Hydraulics Laboratory of the U.S. Army Engineer 

Research and Development Center in Vicksburg (Gravens and Wang, 2007). The dimensions 

of the basin were 50 m × 30 m × 1.4 m and the experimental layout is depicted in Fig. 4.25. A 
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movable-bed beach made of quartz sand with 𝑑50= 0.15 mm, constructed on top of a concrete 

fixed bed beach, was located in the central region of the facility. The test reproduced herein is 

BC1 referring to the oblique incidence of long-crested irregular waves of a TMA spectrum. 

The wave characteristics over the horizontal bottom of 0.706 m depth were Tp = 1.468 s and 

Hmo
= 0.225 m and the angle of incidence was 10°. The duration of the test was 165 min. The 

wave-induced longshore current and the sediments were transported towards the 20 flow 

channels at the downstream end of the facility and then the current through a pumping system 

was externally re-circulated to the upstream end of the facility. 

 

Fig. 4.25. Layout in LSTF experiment (from Nam et al., 2009, modified). 

In order to avoid in the numerical model undesired disturbance due to reflection from the 

side wall and artificial diffraction in the source region, instead of generating waves at the 

target angle, the oblique incidence was reproduced by rotating the entire topography at an 

angle of -10º and then considering normal incidence of the desired waves. This modified 

layout requires a rather simpler computational procedure since the lateral boundaries can be 

used as guiding walls for the long-crested waves on the horizontal bottom. The spatial steps 

were chosen Δx = Δy = 0.08 m, the time step Δt = 0.01 s and the morphological factor fMOR = 

20. The re-circulation of the longshore current was treated computationally by adding in the 

momentum equations appropriate sink and source terms across the down-wave and up-wave 

lateral boundaries, respectively.  

The beach topography is fairly uniform in the alongshore direction. In addition, the 

significant wave height and longshore current did not vary significantly in this direction. 

Therefore, the comparisons between calculations and measurements are only presented along 

the Y24 profile which is exactly in the middle of Y26 and Y22 profiles (see Fig. 4.25). Fig. 

4.26 depicts a comparison between the measured and computed significant wave height, wave 

setup, longshore current and longshore sediment transport load, respectively. 
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Fig. 4.26. Computed and measured significant wave height, wave setup, longshore current and 

longshore sediment flux along Y24 profile for Gravens and Wang's (2007) test BC1. 

The computed significant wave height agrees quite well with the measured data along the 

entire beach profile. The results for the mean surface elevation are acceptable as well. 

However, the minimum set-down is slightly under-estimated and also some cross-shore 

variations of the setup are not followed by the model, whose results are smoother than the 

measured ones. The agreement for the longshore current is reasonable despite some under-

prediction in the inner surf zone. Finally, the results for the longshore sediment flux are quite 

accurate apart of a pronounced hump computed at about 20 cm depth. 

A snapshot of a subdomain of the wave pattern is shown in Fig. 4.27 and a vector plot of the 

underlying wave-induced current field appears in Fig. 4.28. 

 

Fig. 4.27. Snapshot of the surface elevation from a bird's-eye view (at left) and on a plan view (at right) 

for Gravens and Wang's (2007) test BC1. 
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Fig. 4.28. Vector plot of the computed wave-induced current field in Gravens and Wang's (2007) test 

BC1. 

A comparison between the measured and the computed final bed topography is depicted in 

Fig. 4.29. The initial bathymetry has been also included in the figure. The overall agreement 

is satisfactory despite some discrepancies mainly appearing at the outer surf zone. However, it 

should be said that both the measured and the modelled morphological changes are not 

intense in this test case. 

 

Fig. 4.29. Measured and computed final bathymetry and initial bathymetry in Gravens and Wang's 

(2007) test BC1. 
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LSTF experiment – Oblique waves plus external current 

Regarding the LSTF experiment, another test case was also simulated by the model. This is 

test BC2 which involves exactly the same wave conditions as those in case BC1. However, an 

external longshore current, in addition to the waves and wave-driven longshore current, was 

imposed across the model beach by re-circulating two times the wave-generated longshore 

flux of water. In this way, a varying between 5 and 10 cm/s longshore current was imposed 

across the surf zone. The duration of BC2 test was 150 min and the initially bathymetry was 

the final bed morphology of test BC1. The numerics for this case were similar to the 

aforementioned ones. Fig. 4.30 shows a comparison between the measured and computed 

significant wave height, wave setup, longshore current and longshore sediment transport load 

along the Y24 profile, respectively. 

   

   

Fig. 4.30. Computed and measured significant wave height, wave setup, longshore current and 

longshore sediment flux along Y24 profile for Gravens and Wang's (2007) test BC2. 

The agreement for the significant wave height and the longshore current is good. The 

longshore sediment flux is also accurately predicted despite some slight under-estimation in 

the inner surf zone. Regarding, the mean surface elevation, discrepancies are observed along 

the profile. Finally, the measured and the computed final bed topography are shown in Fig. 

4.31. The overall agreement is reasonable apart from some discrepancies and secondary bars 

that are computed at around x = 10 m. 
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Fig. 4.31. Measured and computed final bathymetry and initial bathymetry in Gravens and Wang's 

(2007) test BC2. 

A detached breakwater – Tombolo 

The last test case refers to the shoreline changes behind a detached breakwater. The 

experiments were conducted in a wave basin that was 10 m long, 5 m wide and 0.7 m high. 

The experimental layout consisted of a horizontal bottom of 0.335 m depth followed by a 

uniform sloping bed of about 1:13.71. Eighteen test cases were studied by Ming and Chiew 

(2000), all involving normal wave incidence. The case simulated herein by the model is test 3 

which includes the generation and propagation of regular waves with period T = 0.85 s and 

wave height Ho = 0.047 m. The beach consisted of sand with median grain size of 𝑑50= 0.25 

mm. A shore-parallel detached breakwater of 1.50 m length was placed symmetrically to the 

centerline of the tank at a distance of 0.6 m from the initially straight shoreline. The sediment 

transport rate in the lee of the breakwater decreases due to the attenuated wave field in the 

area sheltered by the breakwater. This causes the trapping of sand behind the breakwater and 

the formation of a tombolo after 18 hours of wave action. The test was reproduced by the 

model with spatial steps Δx = Δy = 0.02 m and time step Δt = 0.005 s and snapshots of the 

tombolo evolution are depicted in Fig. 4.32. 
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Fig. 4.32. Snapshots of the computed tombolo evolution for test case 3 in Ming and Chiew (2000). 

Figure 4.33 shows a comparison between the measured and the computed final shoreline 

after the tombolo formation. The agreement seems reasonable both concerning the accretion 

near the centerline of the wave tank and the corresponding erosion at both sides. 

 

Fig. 4.33. Measured and computed final shoreline and initial shoreline for test case 3 in Ming and 

Chiew (2000). 

4.10 Sensitivity analysis 

A number of parameters and coefficients were introduced in the various components of the 

presented compound model. Some aspects concerning the Boussinesq model and the 

corresponding hydrodynamics were presented in chapter 3. In this section, aspects referring to 
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sediment transport and morphology were studied. The analysis was performed for the LID 

11D test. 

At first, six different sediment transport formulae presented above were compared for their 

efficiency in calculating the total sediment load. These are the formulae by Bijker (1968), 

Bailard (1981) as modified by Roelvink and Stive (1989), van Rijn (1993) as modified by 

Soulsby (1997), Ribberink (1998), Dibajnia et al. (2001) and the present model which 

includes Camenen and Larson’s (2007) and Larson and Wamsley’s (2007) formulae for the 

surf and swash zones, respectively. It should be mentioned that Ribberink’s (1998) relation is 

only a bed-load formula and thus the suspended load was calculated by the exponential 

profile described previously. The comparison is depicted in Fig. 4.34. The formulae by 

Dibajnia et al. (2001) and Camenen and Larson (2007) showed the overall better response. 

These are the only two formulae, among the ones studied herein, that incorporate the phase-

lag effects, proving the significance of this aspect. 

  

 

Fig. 4.34. Comparison of various sediment transport formulae for the total load for test 1c in LIP 11D. 

The effect of the wave train irregularity was also studied. The model’s results for the 

original test case involving irregular waves were at first compared to the corresponding ones 

of a regular wave test with H = Hs and secondly to the ones of a regular wave test with 

H = Hrms. In both cases the wave period was considered equal to the peak period of the 

original test. The comparison is shown in Fig. 4.35. From the analysis it turned out that 
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between the two cases studied a regular wave with H = Hrms offers a better representation of 

the mean sediment load, although both cases overestimate the transport rates. 

  

Fig. 4.35. Comparison between irregular and corresponding regular wave tests for LIP 11D 

experiment. 

The effect of the morphological accelerator factor was also studied. A comparison regarding 

the final bed level is depicted in Fig. 4.36. For the specific test, the model results do not seem 

very sensitive to this factor, but only up to a limit value, say fMOR = 20. If the value of fMOR 

becomes large its effect in the hydrodynamics becomes significant and in particular a 

secondary bar tends to be created offshore of the main one. 

  

 

Fig. 4.36. Effect of the morphological factor on the final bed elevation for test 1c in LIP 11D. 

The significance of the inclusion of the phase-lag effects in the estimation of the sediment 

transport rates and the bed morphology can be observed in Fig. 4.37. It appears that exclusion 

of these unsteady effects may lead to inaccurate, and sometimes even grossly erroneous, 
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calculation of the sediment transport. Thus, in this particular case, exclusion of these effects 

leads finally to an inaccurate prediction of the bar. 

  

Fig. 4.37. Impact of the phase-lag effects on the sediment total load and the bed elevation for test 1c in 

LIP 11D. 

As presented above, the model offers two options for computing the suspended sediment 

load. The first one is based on the solution of the AD-equation, while the second one relies on 

an exponential profile of the suspended sediment. Both techniques were applied in the present 

analysis and the results are compared in Fig. 4.38. Apparently they show very similar 

response and only close to the swash zone limit the AD-equation yields better results due to 

the application of the aforementioned boundary condition. Hence, the nearshore berm is less 

peaky and more accurately reproduced. 

  

Fig. 4.38. Comparison between an exponential profile and the solution of the AD-equation for test 1c 

in LIP 11D. 

Sensitivity analysis was also performed for some other parameters. The model proved to be 

sensitive to the value of the reference concentration, 𝑐𝑅. If the leading numerical factor of Eq. 

(4.59) differs from its default value, 3.5·10
-3

, say by up to one order of magnitude greater, 

then the bed load is dominant and the total load is mostly defined by it. Thus, the sensitivity 

of the total load is restricted. However, if a greater value is employed, then the suspended 

load starts dominating over the bed load and thus the model results become sensitive to the 

reference concentration. 
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Moreover, the morphological model showed a restricted sensitivity to the value of the 

sediment porosity, 𝑛𝑝, within the range 0.3-0.5. In addition, it proved to be rather non-

sensitive to the value of the internal friction angle for the specific test case. Also, the impact 

of the median grain size 𝑑50 was found to be significant only for low values ( ≤ 0.1 mm) 

where the suspended sediment load becomes more significant. 

As already mentioned, the compound model offers two options for solving the Eq. (4.70). 

These are a modified second order Lax-Wendroff scheme and a second order upwind scheme. 

A comparison between these two schemes is depicted in Fig. 4.39. Both schemes give similar 

results downwave of the bar. However, in the region of the bar, the second order upwind 

scheme seems more accurate. This could be explained by the fact that the Lax-Wendroff 

scheme suffers from numerical dispersion resulting in spurious oscillations occurring in the 

numerical results near shocks or steep fronts. Johnson and Zyserman (2002) proposed some 

filtering techniques to damp these higher harmonics. However, in many cases, the spurious 

oscillations cannot be eliminated, they are amplified and finally dominate on the numerical 

results for long computational times (Damgaard and Chesher, 1997; Damgaard, 1998). On the 

other hand, the upwind schemes are known to be more stable due to their inherent dissipation 

effects. Moreover, the Warming-Beam scheme employed herein offers a second order 

accuracy. 

 

Fig. 4.39. Comparison between two different numerical schemes used in the geomorphological model 

for test 1c in LIP 11D. 

Another interesting aspect was to inspection of the nonlinearity effect on the resulting 

sediment transport. For this reason, the contribution of the various Boussinesq terms to the 

computed sediment loads was examined. In particular, the LIP 11D test was simulated by 

successively retaining terms of O(1, ε), O(1, ε, σ
2
), O(1, ε, σ

2
, εσ

2
), O(1, ε, σ

2
, εσ

2
, ε

2
σ

2
) in the 

Boussinesq-type wave model. The results are depicted in Fig. 4.40. 
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Fig. 4.40. Impact of Boussinesq terms of various order on sediment transport and morphological 

evolution for test 1c in LIP 11D. 

It can be observed that the dispersive terms of O(σ
2
) notably improve the computed 

sediment transport load compared to the nonlinear shallow water equations. In particular, 

these terms seem to have the most significant impact on sediment transport. It is remarkable 

that inclusion of terms of O(εσ
2
) results to similar, or even less accurate, predictions compared 

to the case of equations of O(σ
2
). However, as expected, the higher order Boussinesq 

equations of O(ε
2
σ

2
) lead to the most accurate overall predictions.  

Finally, with regard to the sediment transport in the swash zone the effect of local 

equilibrium slope was also studied. In particular, the LIP 11D test was simulated both with 

including the local equilibrium slope given from Eq. (4.68) and also excluding this term. The 

results are shown in Fig. 4.41 focusing on the swash zone. 
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Fig. 4.41. Effect of the local equilibrium slope on the morphological evolution for test 1c in LIP 11D. 

The importance of including the local equilibrium slope in the computation of the sediment 

transport is apparent in the land part of the initial profile (downwave of the initial shoreline). 

However, in the lower part of the swash zone inclusion of this term results to less accurate 

predictions since a berm is predicted where erosion actually takes place.  

4.11 Discussion on sediment transport model 

As already discussed in previous chapters, the main scope of the present thesis is to develop 

a reliable tool for computing the coastal sediment transport and the corresponding 

geomorphology. This is a very tough task due to the high level of uncertainty that is inherent 

in these processes and also due to the lack of an in-depth knowledge of the relative 

phenomena that take place over a wide range of scales, from large coastal areas and littoral 

cells down to grain’s scale. The complexity and uncertainty of the various processes is so 

intense that predictions of sediment loads within a factor of 2, or even 5, are generally 

considered as satisfactory, especially for field measurements. However, nowadays, integrated 

coastal zone management is practically synonymous to shoreline and sediment management 

and thus sediment loads have to be estimated realistically, despite the level of uncertainty.  

In chapter 3 the Boussinesq-type solver that forms the basis of the developed compound 

model was presented in detail. Scientific research about wave and hydrodynamic modelling 

has notably advanced during the last decades. Thus, accurate simulating coastal 

hydrodynamics is the sine qua non of the correct modelling of coastal sediment transport and 

geomorphology. However, numerical models for coastal sediment movement have not 

reached yet a similar level of efficiency. In the light of this effort, Roelvink and Reniers 

(2012) discuss the philosophy behind coastal sediment transport models. They conclude that 

for such models with high degree of uncertainty there is no clear-cut answer whether a 

developer should try to create a ‘virtual reality’ or a ‘realistic analogue’ with which one can 
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investigate processes and effects in relative isolation. Moreover, process-based modelling 

may be able to explain a variety of short- or medium-term morphological processes, but this 

is not guaranteed for long-term predictions, for which a data-driven approach may be more 

suitable. In general, adding more physics to a coastal sediment transport and morphology 

model improves the ability to represent certain processes but the overall model performance 

does not necessarily have to improve. This is true because more and more adjustable 

coefficients may be introduced, for which there is no clear guidance and thus the degree of 

uncertainty increases. On the other hand, a simpler model with fewer coefficients with a 

predictable effect on the outcome may be preferable. This idea is also supported in subsection 

4.10 where simpler formulae, e.g. Bailard’s (1981), gave results of comparable accuracy with 

other more sophisticated formulae. 

Keeping in mind these considerations, three types of coastal morphological models have 

been developed during the last few decades: coastal profile models, where the focus is on 

cross-shore processes and the longshore variability is neglected, coastline models, where the 

cross-shore profiles are assumed to retain their shape even when the coast advances or 

retreats, and coastal area models. Τhe herein developed model is included in the latter class, 

where variations in both horizontal dimensions are resolved and a separation between 

longshore and cross-shore is not employed. The area models are applicable at a range of 

scales, from small-scale coastal engineering problems to macro-scale evolution of tidal 

basins. 

Coastal morphological area models have been developed since the early ‘80s (de Vriend et 

al., 1993; Nicholson et al., 1997). However, it was only in the late ‘80s and early ‘90s that the 

large European institutes combined in the EU Mast-G6M and G8M projects carried out major 

developments to their models that are still leading today, such as Delft3D (Deltares, The 

Netherlands), Mike21 (DHI, Denmark), Telemac (Laboratoire National d' Hydraulique et 

Environnement, France), PISCES (HR Wallingford, U.K.), University of Liverpool model, 

STC model (Service Central Technique des Ports Maritimes et des Voies Navigables, 

France), along with some more alternatives: ADCIRC (U.S. Army Corps of Engineers), 

ECOMSED (HydroQual, U.S.A.), ROMS-SED (NOPP, U.S.A.), XBeach (Roelvink et al., 

2009), Wai et al. (2004). 

Most of the aforementioned models rely on wave-averaged models and hence they cannot 

predict skewness, asymmetry or bound long waves directly and have to rely on local 

approximations for these features. On the other hand, as already mentioned in subsection 4.1, 

only a restricted number of phase-resolving wave models combined with detailed intra-wave 

sediment transport models have been reported in the international literature, and almost all of 

them have been checked only with 1DH tests. From this point of view the present compound 
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model offers original contribution to coastal modelling. Nevertheless, despite this promising 

approach, similarly to the wave and hydrodynamic modules presented in chapter 3, some 

criticism should be done on the adopted modelling techniques related to sediment transport in 

order to illustrate the limitations and potential inaccuracies of the compound model. 

The computation of the bed load adopts Meyer-Peter and Müller’s (1948) bed shear concept 

and relies on a semi-empirical formulation. The relationship between the bed load transport 

and the total Shields parameter to the power 1.5 was first confirmed for steady flows. That 

formulation was generalized to take into account the combined action of waves and currents. 

Nevertheless, it should be mentioned that the time-dependent bed load transport is actually 

treated in a quasi-steady manner using the quadratic value of the instantaneous Shields 

parameter for the two half-periods of the wave. Despite this simplification, very good 

agreement with both laboratory and field measurements was observed, better compared to 

other formulae (Camenen and Larson, 2005). This advantage of the adopted formulation was 

also verified in subsection 4.10, at least for the test case studied. 

An important feature of the bed load formula used is that it takes into account the phase-lag 

effects. Very few existing formulae, e.g. Dibajnia and Watanabe (1992), embed these 

unsteady effects which are important in cases of nonlinear waves. This fact was also 

discussed in the sensitivity analysis section. These phenomena, most probably, explain the 

different values of the leading coefficients αw and αn in the direction of wave propagation and 

normal to it. Camenen and Larson (2005) calibrated the formula for wave alone and current 

alone test cases, but the modification of αw for combined waves-current is rather ad-hoc. 

However, the data sets were quite extensive and the agreement fairly accurate, despite some 

scattering.  

Another advantage of the adopted formulation is the criterion for the inception of sheet flow 

which is more accurate than other criteria widely used (Camenen and Larson, 2006). Also, the 

exponential factor included in the bed load formula offers an accurate estimation of the 

transport rate near the threshold of movement. Most of other formulae, predict no sediment 

transport when the Shields parameter is near its critical value, although low transport is often 

observed. The prediction of the critical Shields parameter incorporates high uncertainty, and 

the exponential modification somewhat restricts related errors. 

It should be mentioned that the presented model cannot predict the near bed steady 

streaming caused by bottom boundary layer mechanisms, such as the viscosity effects. Thus 

the wave-current bottom boundary layer is not analytically resolved as in other sediment 

transport models (Fredsøe et al., 1985). Nevertheless, inside the surf zone, where sediment 

transport is more intense, the aforementioned mechanisms are suppressed by both the 

turbulence and the undertow acting in the middle layer. These two mechanisms have been 
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incorporated in the hydrodynamic module by calculating the near bottom undertow velocity. 

In addition, the energy dissipation due to bottom friction is also taken into account in the 

computation of eddy diffusivity of sediments.  

The suspended load is obtained either from the solution of the depth-integrated AD-equation 

for the sediment concentration or by applying a simplified formula relying on an exponential 

profile of the concentration. When applying the exponential profile two simplifications are 

applied. The first one and more important is that the unsteady part of the suspended sediment 

is, at first approximation, neglected. In particular, the r.h.s. of Eq. (4.13) differs from 

1

𝑇
∫ ∫ �⃗⃗̅�C

ℎ

0

𝑇

0
𝑑𝑧𝑑𝑡, where �⃗⃗̅� = �⃗⃗̅�(𝑧) is the time-averaged (in the wave period) velocity profile. 

However, this simplification is made when applying the exponential profile approach. 

Camenen and Larson (2008) observed some underestimation of the computed suspended load 

for experimental data referring to combined waves and current and in some cases a power law 

fitted better to the data. Indeed, in some cases, e.g. phase-lag effects over ripples, the unsteady 

part of the suspended load is also significant (van der Werf and Ribberink, 2004). However, a 

correction is made in order to take into account the wave-current interaction and the phase-lag 

effects by dividing the wave-cycle into an onshore and an offshore semi-cycle, see Eq. 

(4.63a).  

The second simplification refers to the use of a uniform profile of the current velocity, i.e. 

�⃗⃗̅� = �⃗⃗⃗̅�, instead of the actual profile. Although the model accounts for the depth-averaged and 

the near bottom undertow (see subsection 3.2.5), it would be more accurate to compute the 

actual current velocity profile over depth. Other sediment transport models (Deigaard et al., 

1988; Rakha et al., 1997; Rakha, 1998) resolve the vertical current profile by computing the 

vertical variation of shear stress and the near bed streaming. This is a feature that could be 

added to the model in the future. However, Camenen and Larson’s (2008) validation against 

data showed that the use of �⃗⃗⃗̅� does not introduce significant errors when the measured 

profiles of sediment’s concentration were employed. Thus, the most important assumption is 

that of the exponential form of the concentration profile. 

In any case, the solution of the depth-integrated AD-equation is more theoretically robust. 

The pick-up and deposition functions are, however, an issue for discussion (see subsection 

4.6). Moreover, the formulation adopted for the eddy diffusivity of sediments takes into 

account the energy dissipation due to wave breaking and wave-current bottom friction. There 

are other more sophisticated approaches though that relate the eddy diffusivity to the turbulent 

kinetic energy, 𝑘, by implementing (𝑘 - 휀) models (Deigaard et al., 1986a; Rakha et al., 1997; 

Rakha, 1998). Such an approach is left for future investigation that could add another 

advanced feature to the model.  
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It is stressed that higher order convective terms are retained in Eq. (4.52) and thus the 

contribution of the Lagrangian drift to sediment transport is automatically included. 

Moreover, the Boussinesq wave model, due to its nonlinear character, inherently reproduces 

the low-frequency oscillations forced by wave groups. However, horizontal advection of 

sediment clouds due to these long-period oscillations are not accounted for due to the local 

character of the sediment transport model. Finally, as already mentioned, a very important 

parameter for the correct calculation of suspended loads is the bed reference concentration. 

Unfortunately, a high degree of uncertainty is related to the estimation of the value of this 

parameter, depending also on the reference level used each time. This uncertainty shows once 

again the difficulty of a strict distinction between suspended and bed loads. A too high value 

of the bed reference concentration may enhance unrealistically the domination of the 

suspension as the main transport mechanism. On the other hand, too low a value may lead to 

the under-estimation of this mechanism. 

Another advantage of the present model is the good description it affords of the interaction 

of inner surf and swash zones with respect to sediment transport loads. The net transport loads 

in the swash zone are computed based on an analogy to ballistic theory. This concept seems 

realistic as the wave front can be regarded as a slug of water moving under the action of 

gravity and friction. A very first formulation of this type was given by Madsen (1991, 1993) 

for calculating the instantaneous bed load. However, three important issues should be 

discussed regarding the formulation in the present model. At first, Larson and Wamsley 

(2007) gave an analytical solution considering both gravity and bottom friction as acting 

forces. However, the simplified version neglecting bed friction was applied herein both for 

simplicity and to avoid extra uncertainties due to the more parameters involved. In any case, 

the important agent of friction is taken into account by the formula through the inherent 

computation of the wave run-up. Secondly, in the present thesis a significant variability of the 

values of the leading coefficients 𝐾𝑐 and 𝐾𝑙  was observed through calibration with laboratory 

measurements. Thus, further investigation on this issue is required since the computed 

sediment transport loads in the swash zone are sensitive to the value of these parameters. The 

third issue refers to the correct estimation of the local equilibrium slope given by Eq. (4.68). 

The computed sediment transport is sensitive to the value of this parameter whose estimation 

includes high uncertainty.  

With regard to the geomorphological model, it is not straightforward selecting the numerical 

scheme for the solution of the sediment mass conservation Eq. (4.70). A variety of shock-

capturing schemes have been proposed to this effect for simulating the bed level evolution. 

Johnson and Zyserman (2002) apply a second-order modified Lax-Wendroff scheme. 

Roelvink and van Banning (1994) and Roelvink et al. (1994) use a FTCS explicit scheme 
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with corrections of the transport rate to compensate negative numerical diffusion. Chesher et 

al. (1993) and Tanguy et al. (1993) implement one-step and two-step Lax-Wendroff schemes, 

respectively. O’ Connor and Nicholson (1989, 1995) also use a modified Lax-Wendroff 

scheme with effects of gravity on the sediment transport rate, while Long and Kirby (2006) 

use an Euler-WENO scheme. A modified second order Lax-Wendroff scheme is also 

implemented by the present model. This scheme suffers from spurious oscillations generated 

near shocks or steep fronts and are related to high wavenumbers. These oscillations grow after 

long simulation time, degenerate into noise, and finally mask the large-scale morphological 

features. The inclusion of the bed slope effect in Eqs (4.71a,b) suppresses somewhat these 

spurious oscillations. On the other hand, the first-order upwind schemes are generally more 

stable than FTCS schemes due to inherent dissipation effects. However, they have the 

disadvantage of widening the shock region excessively.  Nevertheless, the Warming-Beam 

scheme that is used by the model offers a second order accuracy. As shown in subsection 

4.10, the upwind scheme appears to be a more reliable choice than the Lax-Wendroff scheme, 

although in most of the rest applications both schemes led to comparable results. 

The morphological changes vary at a much slower rate as compared to the short-term 

variations of hydrodynamics. Thus, for practical engineering applications accelerating 

methods have to be applied to simulate morphological changes. A number of such strategies 

have been proposed (tide-averaging, continuity correction, RAM approach, morphological 

factor approach, parallel online approach) and they are discussed in detail in Roelvink (2006) 

and Roelvink and Reniers (2012). In the present thesis, the application of the morphological 

factor technique was proven to be very efficient for the short-term simulations conducted. 

However, the value of the accelerator factor should be chosen carefully. A very small value is 

computationally inefficient and not practical for the long time scales involved in the 

morphological processes, while a very high value affects unrealistically the related 

hydrodynamics.  

The model is tailored for both 1DH and 2DH applications. Due to the high computational 

effort required for long-term simulations, it is only short-term simulations that have been 

studied here, up to the order of some hours. For such applications the required computational 

effort and time are not prohibitive, say about 3 hours for simulating 1 hour of real time with a 

common computer. However, in order to extend the application of the present compound 

model based on the Boussinesq equations to long-term simulations powerful computers are 

required for achieving practical computational times. 

 In the cross-shore direction the importance of the phase-lag effects has been iterated 

throughout this study. If this unsteady phenomenon is excluded from the computation of the 

sediment load then unrealistic rates may be predicted and sometimes even sediment transport 
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to the reverse direction when compared to the measured one. This inaccuracy affects the 

correct description of the main morphological features across the beach profile, such as the 

formation of the wave breaking bar, the trough down-wave of it, the swash berm or the 

foreshore erosion. However, the sophisticated sediment transport formulae incorporated in 

this model allow a reasonable prediction of these complex features. It was also shown that in 

the case of irregular waves, a representative regular wave could be used as input leading to 

acceptable results. However, for the two representative values of the wave height studied 

herein, Hs and Hrms, an over-prediction of the sediment load was observed proving some 

dependence on the actual wave-train.  

The longshore sediment transport under combined waves and currents was also found to be 

adequately predicted by the model and a smooth reduction from the swash to the inner surf 

zone was ensured. Hence, the alongshore variation of the morphology evolution can be 

reasonably described by the model. This was further supported by a validation test 

reproducing fairly good the shoreline's response in the lee of a detached breakwater. The 

tombolo formation due to the trapped sand was described satisfactorily by the model. 

The one-dimensional version of the model was also compared to the model by Rakha et al. 

(1997) which likewise combined a Boussinesq-type wave model with a sediment transport 

and a morphological model. In general, the performance of the former was proved to be 

superior to the latter. This can be partly attributed to the higher order of nonlinearity of the 

Boussinesq wave module of the present model compared to the corresponding one in Rakha 

et al. (1997), and partly to the different bed load formulae adopted herein and in Rakha et 

al.’s (1997) model where the formula by Engelund and Fredsøe (1976) was applied. 

Combining an intra-wave model, as the one used here, with a sediment transport and a 

morphological model is a very tough task. Also, the integrated character of the model 

including both the surf and swash zone sediment computations enhances the reliability of the 

model, offering thus a robust tool for studying the complex processes of coastal morphology 

evolution. The next step is to extend the compound model to porous beds in order to study the 

morphodynamics in the lee of submerged breakwaters, which is the main scope of the present 

Ph.D. thesis. This extension is presented in chapter 6.  
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Chapter 5 

Laboratory experiments with submerged breakwaters 

5.1 Introduction 

Shorelines are naturally dynamic and continuously changing because of the ever-going 

interaction among sea-level changes, tides, currents, wind, waves, storms, and extreme 

events. The combined action of these agents results to morphological changes involving 

accretion or erosion on a continuous basis along the coasts. In addition to natural processes, 

coastal erosion is intensified by human interventions along the coasts, within river catchments 

and offshore, raising social, environmental and economic concerns in the long term. This 

variety of erosion drivers, especially in areas with rapidly rising coastal land value, have led 

to uncertainties on how to treat the shoreline evolution (Prasetya, 2007; Sharif Ahmadian, 

2016). 

The engineering interventions to prevent erosion vary from a ‘do nothing’ approach to 

‘hard’ protection projects. Traditionally, this latter approach has been the most popular 

including conventional coastal structures to control longshore currents or absorb wave energy 

and trap the moving sediments. These structures include groynes, breakwaters, seawalls, 

revetments, dikes, artificial headlands, etc. 

In the last decades, alternative ‘soft’ protection solutions are becoming more and more 

popular due to the adverse impact of hard works on the beach environmental value, amenity 

and aesthetics. Such milder interventions include beach nourishment, submerged groynes, 

submerged breakwaters, beach drainage, sand dune management, or combination of 

protection measures, e.g. beach replenishment combined with submerged breakwaters, etc. In 

particular, submerged breakwaters are environmental friendlier and aesthetically superior to 

conventional emerged breakwaters and, as a result, there is an increased community pressure 

on coastal management authorities and government agencies to consider the former for beach 

protection (Evans and Ranasinghe, 2001). 
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The use of emerged breakwaters is very common in U.S.A. and Europe (Dean and 

Dalrymple, 2001), and even more in Japan (Seiji et al., 1987). In contrast, fully submerged 

structures have only rarely been adopted for coastal protection. Although natural submerged 

reefs have been observed to be associated with shoreline salients, and thus provide beach 

protection (Black and Andrews, 2001), the reported investigations of shoreline response to 

submerged breakwaters are few in number and many times inconsistent with each other. It 

should be mentioned that some investigations have shown that submerged breakwaters may 

result in shoreline erosion in the lee of the structure, which is something that has almost never 

been reported for emerged breakwaters. Therefore, it is likely that the processes that govern 

the shoreline response to submerged and emerged breakwaters are different, and thus the well 

established methods used for the latter may not be accurate for the former (empirical 

relationships, one-line models). However, until recently, the design of submerged breakwaters 

(structure length, distance from shoreline, gaps in an array, free board) was rather empirical 

(Lesser et al., 2003) and it was mainly based on the experience with conventional breakwaters 

(Pilarczyk, 2003). Consequently, in some cases the design was very efficient, while in others 

it was rather not successful and increased erosion was observed in the lee of the structures. A 

quite extensive review regarding projects involving submerged breakwaters was presented by 

Ranasinghe and Turner (2006). A number of such projects are summarized in table 5.1. 

Table 5.1. Features of various projects including submerged structures (B: length of structure, S: 

distance from undisturbed shoreline, W: crest width, h: water depth at structure, hc: water depth at crest 

of the structure, tanβ: bed slope in the vicinity of the structure, MLW: mean low water, MWL: mean 

water level, MSL: mean sea level, MLLW: mean lower low water, from Ranasinghe and Turner, 2006, 

modified). 

Location Reference 
Structure 

type  

Shoreline 

response 

to 

structures 

Nourishment 

Longshore 

transport 

rate 

(m3/year) 

B (m) 
S 

(m) 
W (m) 

h 

(m) 
hc (m) tanβ 

Delaware 

Bay, 

USA 

Douglass and 

Weggel 

(1987) 

Single 

breakwater 

+2 end 

groynes 

Erosion Yes Negligible 300 75 
Not 

reported 
1 

At 

MLW 

Not 

reported 

Keino-

Matsubara 

Beach, 

Japan 

Deguchi and 

Sawaragi 

(1986) 

Single 

breakwater 
Erosion Yes 

Not 

reported 
80 85 20 4 

2 m 

below 

MLW 

0.1 

nearshore 

and 0.03 

offshore 

Niigata, 

Japan 

Funakoshi 

et al. (1994) 

Single 

breakwater 

+2 groynes 

Erosion No 

Exists, 

but not 

quantified 

540 400 20 8.5 

1.5 m 

below 

MWL 

0.02 

Lido di 

Ostia, 

Italy (#1) 

Tomassicchio 

(1996) 

Single 

breakwater 
Erosion Yes 50000 3000 100 15 4 

1.5 m 

below 

MSL 

0.05 

Lido di 

Ostia, 

Italy (#2) 

Tomassicchio 

(1996) 

Single 

breakwater 
Accretion No 50000 700 50 15 3-4 

0.5 m 

below 

MSL 

0.1 

Lido di 

Dante, 

Italy 

Lamberti and 

Mancinelli 

(1996) 

Single 

breakwater 
Accretion Yes Negligible 770 150 12 3 

0.5 m 

below 

MSL 

0.02 
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Marche, 

Italy 

Lamberti and 

Mancinelli 

(1996) 

Multiple 

segmented 

breakwaters 

Erosion No Negligible 
Not 

reported 

100-

200 
10-12 3 

0.5 m 

below 

MSL 

Not 

reported 

Palm 

Beach, 

FL, USA 

Dean et al. 

(1997) 

Single 

breakwater 
Erosion No 100000 1260 70 4.6 3 

0.7 m 

below 

MLLW 

0.04 

Vero 

Beach, 

FL, USA 

Stauble et al. 

(2000) 

Segmented 

breakwater 
Erosion No 30000 915 85 4.6 

2.1-

2.7 

0.25 –

0.35 m 

below 

MLW 

0.03 

Gold 

Coast, 

Australia 

Jackson et al. 

(2002) 

Multi-

function 

surf reef 

Accretion Yes 500000 350 
100-

600 
2 

2-

10 

1 m 

below 

MLW 

0.02 

 

It is of particular note that, of the 10 submerged structures presented in table 5.1, net erosion 

was reported at seven of the sites. In most of these cases structures were accompanied by 

beach nourishment and no comparisons with previous to construction shoreline response were 

reported. It was only Tomassicchio (1996), Dean et al. (1997) and Stauble et al. (2000) that 

referred to such comparisons. With regard to the larger submerged breakwater in Lido di 

Ostia, analysis of aerial photographs before and after construction indicated that no detectable 

benefit was provided, and that erosion rates in the vicinity of the structure remained 

unchanged. In Palm Beach monitoring indicated that the erosion which occurred in the lee of 

the structure was twice as much as the background erosion in the area. This was attributed to 

insufficient wave attenuation over the structure due to the low crest level. Similarly, in Vero 

Beach the resulting erosion from the construction of the breakwater was greater than at 

adjacent beaches over the 3-year monitoring period (1996-1999). 

Research regarding submerged breakwaters started in recent years and focused on 

laboratory experiments, numerical models and field measurements in order to investigate their 

hydrodynamic and morphodynamic impact on coastal zone. The present chapter refers to the 

laboratory experiments that have been performed during the thesis and thus focuses on the 

physical modelling of the behaviour of permeable submerged breakwaters. The greatest part 

of the related research refers to two-dimensional (2D or 1DH) phenomena and mostly to wave 

transmission, wave reflection and wave setup. In particular, wave transmission is a very 

important criterion in the design of submerged breakwaters, especially in preliminary stages 

of design. Although very encouraging 2D design tools have been developed for both 

impermeable and permeable submerged breakwaters, very few studies have focused on the 

fully 3D effects. This is an important issue since it has been shown that formulae for 2D wave 

transmission tend to underestimate the 3D data (Vicinanza et al., 2009). In addition, the 

impact of submerged breakwaters on the sea bed and shoreline evolution has not been yet 

understood in depth. 

The first reported physical experiment on wave transmission behind submerged breakwaters 

was performed by Stucky and Bonnard (1937) who used a 2D (1DH)  trapezoidal section, 
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while Morison (1949) and Johnson et al. (1951) examined rectangular breakwaters. In this 

latter experiment, steeper waves tended to result in greater energy dissipation as the bar crest 

became wider, while longer waves were generally less affected. Laboratory experiments with 

impermeable breakwaters by Goda et al. (1967) and Goda (1969) showed that the 

transmission coefficient 𝐾𝑡  is mostly governed by the ratio of the free board (water depth 

above the bar crest) to the incidence wave height and that generated higher harmonics are 

present in the transmitted waves. 

Since then a number of laboratory experimental studies have been performed to obtain 

useful results and empirical formulae for various parameters related to both impermeable and 

permeable, low-crested and submerged breakwaters (Diskin et al., 1970; Seelig, 1980; Abdul 

Khader and Rai, 1980; Allsop, 1983; Powell and Allsop, 1985; Ahrens, 1987; van der Meer, 

1988; Davies and Kriebel, 1992; Seabrook and Hall, 1997; Hayakawa et al., 1998; Bleck and 

Oumeraci, 2001; Vidal et al., 2002; Lamberti et al., 2003; Zanuttigh et al., 2003; Zanuttigh 

and Lamberti, 2006; Tajziehchi and Cox, 2006; Kobayashi et al., 2007; Lykke Andersen and 

Burcharth, 2008). Gourlay (1993; 1996a,b) conducted 2D and 3D laboratory experiments to 

measure wave transformation, wave-induced setup and current over reefs. They found that 

both current and setup increase with incident wave height, while submergence depth has 

respectively direct and inverse effects on current and setup. 2D and 3D laboratory tests were 

also conducted by Debski and Loveless (1997) and Loveless et al. (1998) in a wave flume and 

a wave basin, respectively, and they observed that the wave-induced setup is significantly 

smaller in 3D tests as the water level gradient behind the breakwater generates longshore 

flow. Drei and Lamberti (1999) carried out laboratory experiments under regular and irregular 

wave attack in a wave flume in the presence of narrow-crested impermeable submerged 

breakwaters. They demonstrated that wave setup at submerged breakwaters is higher than 

provided by the setup theory for beaches.  

Kriezi and Karambas (2010) studied the wave transmission and reflection in presence of 

monolithic rectangular submerged breakwaters both experimentally and numerically under 

breaking and nonbreaking regular and irregular waves. The experiments were conducted in 

the large-scale facilities of the Universitat Politècnica de Catalunya, Barcelona, Spain. 

Vanlishout et al. (2010) studied the interaction of oblique waves with impermeable rubble-

mound submerged breakwaters experimentally and they showed that the permeability has no 

significant impact on the wave transmission for oblique wave incidence. Del Jesus (2011) 

carried out 3D laboratory measurements to study the performance of an existing submerged 

breakwater in Santa Monica (see also Lara et al., 2012). Metallinos and Memos (2012) and 

Metallinos et al. (2014, 2016) performed a number of 1DH laboratory experiments in a wave 

flume in order to study the wave-induced kinematics and porous pressures inside a permeable 
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submerged breakwater under regular wave action. Based on these measurements Samlidis 

(2014) calculated the wave transmission coefficient. 

Perhaps the most complete database referring to low-crested and submerged breakwaters is 

the one produced in DELOS project. This database consists of more than 2300 tests (Kramer 

et al., 2005). The data were applied and analyzed to provide new empirical formulae for the 

wave transmission, the interaction of low-crested structures and oblique wave action, 

reflection, and 3D effects (van der Meer et al., 2005). As part of this project Kramer et al. 

(2003, 2005) conducted a series of 3D experiments in the wave basin at Aalborg University, 

Denmark, including two submerged breakwaters. They studied the effect of the crest width, 

the free board and the wave irregularity.  

Apart from laboratory experiments, a small number of datasets referring to field 

measurements around submerged breakwaters have been also reported. Browder and Dean 

(1996) showed that the erosion of the beach behind a 594 m shoreline-parallel precast 

concrete submerged breakwater in Palm Beach, Florida, U.S.A., was 2.3 times higher than 

before the construction of the breakwater. Tomasicchio (1996) investigated the long rubble-

mound submerged breakwater at Ostia, Roma, Italy. Apart from the low construction cost, the 

environmental impact was evaluated as low, and the energy dissipation, sediment transport 

and shoreline protection were satisfactory. Turner (2006) presented field measurements with 

regard to the shoreline evolution in the lee of the artificial reef at the norther Gold Coast, 

Queensland, Australia. 

Although a number of laboratory experiments about wave propagation over submerged 

breakwaters have been conducted, the same is not true for the morphodynamics in the lee of 

these structures. Such an example is the 3D experiments conducted by Groenewoud et al. 

(1996) in a wave basin which illustrated the effect of the gap length between the segmented 

submerged breakwaters on the shoreline response. In addition, an analysis of extensive series 

of laboratory measurements by van der Biezen et al. (1997) showed significant sediment loss 

through the aforementioned gaps. The performance of the artificial reef at Gold Coast was 

also investigated using a physical model in a wave basin by Turner et al. (2001). A view of 

the artificial reef and Turner et al.’s (2001) physical model is depicted in Fig. 5.1 where the 

formation of a salient in the lee of the structure is apparent. The shape of the reef resembles 

letter V from a plan view (V-shaped). The 3D morphodynamic effects were also studied 

experimentally in a wave basin by Ranasinghe et al. (2006). An empirical formula for the 

shoreline response was proposed and the results illustrated the importance of the predominant 

wave incidence angle, the submergence depth and the distance of the submerged breakwaters 

from the beach on the resulting erosion or accretion. 
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Fig. 5.1. Aerial view of the V-shaped artificial reef at the Gold Coast, Australia (at left) and the 

corresponding physical model at the Water Research Laboratory of University of New South Wales, 

Australia (at right, from Ranasinghe and Turner, 2006). 

The present Ph.D. dissertation included also laboratory experiments referring to 

morphodynamics in the lee of a permeable submerged breakwater. Hence, this work 

contributes also to filling a gap in physical modelling projects related to submerged 

breakwaters, especially with regard to geomorphology. The experiments were performed at 

the facilities of the Hydraulic Engineering Laboratory of the Civil Engineering Department at 

the University of Patras, Greece. The present chapter is dedicated to the presentation of the 

experimental process which is described in detail after some short discussion on general 

features of submerged breakwaters in subsection 5.2.  

5.2 Submerged breakwaters for coastal protection 

5.2.1 General features of submerged breakwaters 

Recently, submerged breakwaters have become an attractive alternative of soft coastal 

protection for recreational and residential coastal areas. They form a special case of low-

crested breakwaters as their crest is constructed below the mean water level. They are usually 

made of rock armoured rubble-mound or concrete, similarly to the conventional emerged 

breakwaters. In some cases concrete blocks of special shape may be used, such as tripods, 

tetrapods, dolos, reef-balls or geotubes and geocontainers to reduce the danger for swimmers 

and boats. 

During the last years, there is an increasing social reaction against hard engineering 

structures both along and at a distance from the shoreline. Submerged breakwaters serve as a 

viable alternative, provided that they are efficiently designed. A single or an array of 

breakwaters may be constructed. In the latter case the gaps between the structures are of 

specific length as a result of optimization. Submerged breakwaters can be also constructed in 

combination with beach fill projects to better retain the nourished sediment. They can be also 
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used in more complex systems combined with groynes (submerged or not) or/and seawalls in 

coastal areas of increased erosion. Finally, they can be used as a first defense line to extreme 

energy regimes before waves approach the main protection structures (Cornett et al., 1994).  

Submerged breakwaters are permanently underwater, in contrary to sub-aerial low-crested 

breakwaters whose crest is built close to the high tide level. On the other hand, artificial reefs 

are usually structures that are built in much deeper water for environmental and fishing 

purposes, rather than effective energy dissipation. Due to their underwater crest, submerged 

breakwaters reduce the intensity of the wave action but permit some wave transmission, 

allowing water circulation in the nearshore zone. This sufficient water exchange results in a 

nature-friendly beach, providing a calm, sheltered area behind the structure. They are usually 

placed at depths at least 3-4 m in areas with low tide variation. On the other hand, their 

effectiveness in coastal areas with large tidal range or intense storm surges is questionable. In 

these cases they are constructed with a larger crest width resulting in a significant increase of 

the cost (Pilarczyk, 2003) and they are rather classified as artificial reefs. A sketch of a typical 

section of a submerged breakwater is shown in Fig. 5.2. A view of a composite coastal 

intervention in Pallestrina island in Venice, Italy is shown in Fig. 5.3. This project includes 

nourishment, both emerged and submerged groynes, and submerged breakwaters.  

 

Fig. 5.2. Sketch of a typical section of a submerged breakwater and relevant parameters (from Sharif 

Ahmadian, 2016, modified).  

The advantages of submerged breakwaters over the conventional ones are summarized as 

follows: 

 They are more environmentally friendly since they are less bulky works and thus they 

imply lower level of nuisance upon the sea bed flora and fauna both during the 

construction period and after that. 

 They allow the circulation and renewal of the water both above their crest and through the 

gaps between the breakwaters in an array. 
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 They are superior with respect to aesthetics since they do not interrupt the clear view of 

the sea from the beach. Consequently they contribute in retaining the touristic value of the 

coastal area. 

 They are generally of lower cost. 

 They allow the passage of vessels through the gaps between them. 

 Permeable submerged breakwaters support marine life by providing potential habitats to 

species. 

On the other hand, disadvantages are: 

 Very low crests may not imply adequate wave energy dissipation and consequently 

provide ineffective protection against beach erosion, especially in high energy regimes or 

in areas with high tide levels. 

 They may hamper sediment transport under hydrodynamic conditions that would 

physically result to accretion in the absence of the structures. 

 They may imply dangers with regard to the passage of vessels and boats since they are not 

visible and also due to the high water velocities above their crest. For these reasons the 

presence of submerged breakwaters should be signed adequately. 

 Their construction may result to an abrupt change of the hydrodynamic conditions and 

possibly to the generation of currents that enhance bed erosion, instead of preventing it. In 

addition, submerged breakwaters may induce high velocities, especially near the 

breakwater heads and at the gaps, which may result to scour around the structures or 

enhanced bed erosion. 

 The rip currents through the gaps between the submerged breakwaters are very dangerous 

for swimmers since they can drift them offshore. 

 The inspection of submerged breakwaters is difficult because the entire structures are 

below the sea water level. 

 Although submerged breakwaters are generally of lower cost, in some cases the 

construction may be costly due to the firm requirement of using barges or other floating 

equipment.   
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Fig. 5.3. View of a composite coastal protection project including submerged breakwaters in 

Pallestrina island in Venice, Italy (photo: DELOS project, www.delos.unibo.it). 

Although research concerning submerged breakwaters has significantly advanced during the 

past years, there are still many issues to be clarified to improve our understanding of the flow 

around them and thereby produce more effective design methods and tools. 

5.2.2 Coastal processes and submerged breakwaters 

There are numerous physical processes involved in the wave transformation in the presence 

of submerged breakwaters, including shoaling, refraction, diffraction, reflection, wave 

breaking, overtopping, and generation of higher harmonics. A functional design of submerged 

breakwaters requires accurate prediction of the wave transmission and the wave setup in the 

sheltered areas. Therefore, the combination and interaction of the aforementioned phenomena 

have to be taken into account. 

As already known from wave theory, shoaling takes place due to both the sloping sea bed 

and also over the upslope of the submerged breakwater. However, the structure is permeable 

and thus using the freeboard along its perimeter as water depth for the computation of 

shoaling is not in principle accurate. Moreover, if the wave incidence is oblique then depth 

refraction also takes place. In parallel, generation of higher harmonics also occurs (Beji and 

Battjes, 1993, 1994). This is a process mostly related to long incident waves. As the waves 

travel upslope, gradually lose their vertical symmetry and obtain a saw-toothed shape. In this 

phase bound harmonics -primarily of second order- are generated by self-interactions. Over 

the breakwater crest the waves are virtually non-dispersive, the triplet resonance conditions 

are nearly satisfied and very rapid energy flow takes place from the primary waves to higher 

harmonics. This energy transfer coupled with the nonlinear amplitude dispersion results in the 

formation of dispersive tail waves travelling at nearly the same celerity as the primary waves. 
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However, their celerity is not exactly the same as the one of the primary waves since it also 

depends on the wave amplitude which is still larger for the latter components. This explains 

an increasing phase-lag between the primary and the secondary waves over the crest of the 

structure. As the wave train moves downslope and de-shoaling takes place, the wave train is 

decomposed into several smaller amplitude waves of nearly harmonic frequency. This 

exchange of energy continues at a high rate for several wavelengths down-wave before an 

equilibrium is reached. This result can be also observed in the simulation of Beji and Battjes’s 

(1994) tests in chapter 2. Again, the permeability of the breakwaters weakens the 

aforementioned phenomenon. 

When the incident waves meet a submerged breakwater a part of the wave energy is 

reflected offshore, another part is dissipated and a third one is transmitted onshore. The 

amount of reflection depends mainly on the forward face slope and the submergence depth of 

the breakwater (Dattari et al., 1978; Ahrens, 1987, 1988; van der Meer, 1991) but, in general, 

it is of the order of 20% for usual structure slopes (Karambas et al., 2016). It should be 

mentioned that reflection may also alter the direction of the incoming waves. Energy 

dissipation takes place due to mainly three mechanisms shown in Fig. 5.4: wave breaking, 

friction at the outer surface of the breakwater and flow through the porous medium. When 

low-crested breakwaters are used the transmitted part of the energy is related also to the 

overtopping of the structure, while for submerged breakwaters transmission refers to the 

waves propagating behind the obstacle. Due to the combined aforementioned processes, the 

transmission coefficient, 𝐾𝑡 = 𝐻𝑡/𝐻𝑖, where 𝐻𝑡 is the wave height of the transmitted wave 

and 𝐻𝑖 the wave height of the incident wave, depends on a number of factors related to energy 

dissipation. A number of empirical formulae have been proposed for the estimation of the 

transmission coefficient relying on geometrical characteristics (free board, crest width, slopes 

of the breakwater) and wave characteristics (Ahrens, 1987; d’ Angremond et al., 1996; 

Calabrese et al., 2002; Briganti et al., 2003; van der Meer et al., 2005). A typical value of the 

transmission coefficient falls within the range 𝐾𝑡 = 0.3 ÷ 0.6, while for conventional 

emerged breakwaters it is less than 0.10. 

 

Fig. 5.4. Typical section of a submerged breakwater and mechanisms of energy dissipation (from 

Karambas et al., 2016, modified). 
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Diffraction also takes place around the heads of the submerged breakwaters. The waves 

encounter a sudden change in bathymetry and consequently some of their energy will be 

forced to move along the wave crest. In reality, shoaling, refraction and diffraction all occur 

simultaneously. Vicinanza et al. (2009) studied the wave disturbance behind low-crested 

breakwaters. The crest of these structures is slightly above the mean water level and, thus, 

their hydrodynamic behaviour is close to that of submerged breakwaters (Karambas et al., 

2016). When waves meet a low-crested structure, water may pass over it. This phenomenon is 

called overtopping and it is often followed by wave transmission at the lee side of the 

structure. If the breakwaters are permeable, percolation also takes place through their pores. 

The significance of the effect of three-dimensionality increases with the importance of 

diffraction and with the reduction of overtopping or permeability of the breakwater or the 

length of the structure compared to the incident wavelength. 

 Vicinanza et al. (2009) estimated a global transmission coefficient for low-crested 

breakwaters by summing up the energy contributions due to diffraction and 2D (1DH) 

overtopping. They ignored the permeability effects because there are indications that these 

significantly correlate with wave diffraction and overtopping. When permeability increases, 

the diffracted waves are expected to reduce (Penney and Price, 1952). In particular, the 

diffraction effect reduces in intensity, thus the diffracted waves become blurred with the main 

wave field. These considerations were made for low-crested breakwaters, while 3D effects 

have not yet been studied in depth for submerged breakwaters. However, the aforementioned 

conclusion was also supported by numerical experiments that were carried out in the present 

thesis. On the other hand, diffraction and 2D wave transmission were assumed to be 

uncorrelated and the total transmission coefficient is given by 

 𝐾𝑑,𝑡 = √𝐾𝑑
2 + 𝐾𝑡

2   (5.1) 

where 𝐾𝑑 is the wave diffraction coefficient and 𝐾𝑡 is the 2D (or 1DH) transmission 

coefficient. 

A decrease in the mean water level upwave of the breaking line appears as a result of 

shoaling. Down-wave of the breaking point, the wave energy flux and the radiation stresses 

decrease due to energy dissipation and consequently an increase of the mean water level takes 

place. The gradient of the wave-induced setup behind a submerged breakwater causes water 

to flow along the shoreline resulting to the formation of two vortices of opposite direction. 

This wave-induced circulation differs from the one behind an emerged breakwater because in 

the former case the vortices are closer to the shoreline. This difference results from the 

breaking-induced mass flux that takes place over a submerged breakwater. This mechanism 

tends to increase the mean water elevation behind the structure resulting to the generation of 
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offshore-directed rip currents through the gaps of an array of submerged breakwaters. A 

schematic view of the different expected nearshore circulation patterns behind a system of 

submerged and emerged breakwaters is depicted in Fig. 5.5. It should be noted that in the case 

of the submerged breakwaters the shown vortices refer only to the principal circulation due to 

the onshore mass flux above the bar and the resulting rip currents. 

 

Fig. 5.5. Schematic depiction of the different expected nearshore circulation patterns in the vicinity of 

emerged (pattern ‘A’) and submerged (pattern ‘B’) breakwaters (from Loveless and MacLeod, 1999). 

The main scope of submerged breakwaters is to prevent erosion and stabilize the sediments 

close to the shoreline. Morphodynamic predictions in the lee of submerged breakwaters is a 

great challenge for coastal engineers due to the high level of uncertainties involved in all the 

aforementioned complex hydrodynamic processes and also to the lack of systematic 

knowledge on the related morphological processes. In general, the above described vortices 

due to the alongshore variation of wave height, along with the waves, tend to transport the 

sand from the edges of the field towards the center of the shadow of a submerged breakwater 

creating a salient, but also causing erosion at the side. On the other hand, the rip currents 

erode the sea bed, especially near the gaps between the breakwaters.   

Widely accepted design rules have not been proposed for submerged breakwaters with 

respect to morphodynamics. In practice, similar guidelines as the ones for emerged 

breakwaters are followed but also including the transmission coefficient (Pilarczyk, 2003; 

Burcharth et al., 2007; Koutsouvela et al., 2007; Karambas et al., 2016). Pilarczyk (2003) 

mentions that a tombolo is formed if a submerged breakwater is constructed very much close 

to the shoreline. However, in the present thesis, neither the laboratory experiments, nor the 

numerical ones ever led to such a morphological feature. Thus, reservations are expressed 

about this issue. A similar skepticism was also presented by Karambas et al. (2016). They 

describe that in this case the mass flux and the rip currents are generated too close to the 

shoreline, not allowing the formation of the two aforementioned vortices. Consequently, the 

opposite rip currents transport the sand from the shadow of the breakwater towards the gaps, 

where it is accreted. This is the inverse process compared to the one formatting the salient. 

With regard to their environmental impact, submerged breakwaters are definitely milder 

interventions compared to the conventional ones. The water quality is not significantly 
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degraded since they allow the renewal of the water both above their body but also through the 

gaps. Moreover, the wave breaking on their crest results to an increased oxygenation of the 

water. However, despite their advantages, submerged breakwaters still are human 

interventions in the natural ecosystem, imposing an obstacle which interrupts the physical 

flow from deep to shallow water. This fact has unavoidable environmental impact on the sea-

bed flora and fauna. The physical and chemical properties of the water and sediments are 

modified. The water becomes more hypoxic and hypertrophic resulting to increased 

concentrations of seaweeds. Also, new species may appear and others disappear because of 

the ‘harder’ environment of a breakwater compared to the natural sandy bed. More details 

about the environmental impact of submerged breakwaters can be found in Kontaxi and 

Memos (2005) and Koutsouvela (2009).  The aforementioned negative effects are generally 

related to the construction of breakwaters. However, they are mostly attributed to the more 

bulky emerged breakwaters. In contrary, they are reduced when submerged breakwaters are 

built and thus these structures are general accepted as being environmentally more friendly 

than their emergent counterparts. 

5.3 Description of laboratory experiments 

5.3.1 General description of the facility 

In the context of the present Ph.D. thesis laboratory experiments were also performed to 

study the morphological evolution of a sandy beach in the lee of a permeable submerged 

breakwater. The objective of the measurements was twofold. Firstly, to better understand the 

morphological impact of the construction of submerged breakwaters since, to the writer’s 

knowledge, there are no others similar 3D experiments involving this type of structures, and 

not reefs, in the international literature. Secondly, to offer a validation dataset for the 

compound numerical model presented in the thesis. In parallel to the described procedure, the 

vertical profile of the water velocity inside the porous breakwater was also measured. These 

parallel measurements aimed to validate a different numerical model and they are presented in 

detail in Metallinos (2016). 

The experiments were performed at the facilities of the Hydraulic Engineering Laboratory 

of the Department of Civil Engineering at University of Patras, in Patras, Greece from May to 

September 2015. In particular, a rectangular wave basin was used. The basin had a surface 

area 12 m x 7 m enclosed by vertical walls with height 1.45 m. The walls were made of 

concrete and had a relatively smooth surface. The maximum workable depth in the wave tank 

was 1.05 m. The bottom of the tank was horizontal made of concrete. In order to remove 
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undesired salts the water was softened at the pumping station before filling the basin. Coarse 

salt was used as softener during this regeneration process. The total water volume in the wave 

tank during the experiments was approximately 85 m
3
. Two long wooden crossbeams were 

used to move across the wave tank over the water surface. A gantry crane moving on ceiling 

tracks was used to move these beams and other heavy materials, i.e. bags with sand, stones, 

etc. A view of the wave tank is shown in Fig. 5.6. 

 

Fig. 5.6. General view of the wave tank before the construction of the sloping bottom. 

Close and parallel to the one of the short sides of the rectangular wave tank a 7 m wide 

wavemaker was placed. It will be described in the following. In all the experiments performed 

the water depth at the region of the wave source was constant 1.05 m. In order to model 

shoaling waves a sloping beach was constructed. It consisted of a ramp made out of anodized 

aluminum panels with a hydrodynamically smooth surface. The ramp was 4 m wide, centered 

with respect to the width of the wave tank. It was restricted by two lateral vertical plates 

which acted as driving walls. The plates were also made of hydrodynamically smooth 

aluminum panels. Consequently, the active area of measurements was actually 4 m wide. The 

uniform slope of the ramp was measured approximately 1:14.97 and its horizontal length was 

9 m. The upwave edge of the ramp had a depth of 0.45 m and it lay at a distance of 1.73 m 

from the wavemaker. In front of the main ramp, a smaller aluminum ramp with slope 1:2 was 

also placed for a smooth transition from the region of constant depth 1.05 m to the depth of 

0.45 m where the mild sloping bed begins. This smaller ramp, along with the vertical lateral 

plates contributed also to the stabilization of the main ramp by preventing its oscillations. 

Views of the described layout before building the submerged breakwater and placing the sand 

can be seen in Figs 5.7 and 5.8. 

 



Chapter 5.  Laboratory experiments with submerged breakwaters 

 

 

259 

 

 

Fig. 5.7. General view of the experimental layout before building the submerged breakwater and 

placing the sand. 

 

Fig. 5.8. A close view of the experimental layout from upwave. 

In order to avoid undesired reflection from the down-wave boundary of the wave basin 

absorbing layers were placed at both sides of the sloping ramp to absorb the outgoing energy. 

A view of these layers is shown in Fig. 5.9. They consist of a wire mesh filled with stones of 

median diameter d50 = 0.05 m. The horizontal length of the absorbers was 3.20 m and their 

slope 1:2.5.  
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Fig. 5.9. View of the absorbing layer at the down-wave boundary of the wave tank. 

5.3.2 Wave generation 

The wave tank was equipped with a DHI paddle wavemaker. The paddle was 7 m long and 

1 m high and it was installed parallel and next to one of the short sides of the rectangular 

basin. The installation also included an Active Wave Absorption Control System (AWACS) 

for wave generation with concurrent absorption of reflected waves approaching the wave 

paddle. The wavemaker is shown in Fig. 5.10. 

 

Fig. 5.10. View of the paddle-type wavemaker at the upwave boundary of the wave tank. 

An electric actuator moved the wave paddle to produce the desired surface elevations. A 

side view of the actuator and the edge of the lateral vertical plates are depicted in Fig. 5.11. 

The plates were extended close to the wave maker to ensure better stability of the sloping 

ramp by preventing its oscillations. Moreover, the undesired diffraction around their edges 
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was practically eliminated and thus significant infection of the incoming waves was 

prevented.  

 

Fig. 5.11. Side view of the wave maker and the electric actuator.  

Only normal incidence of the waves was studied because oblique incidence would require 

much larger basin dimensions for the full wave propagation up to the shoreline. Moreover, 

larger dimensions would be also required for the full establishment of the wave-induced 

longshore current and a corresponding recirculation system (Visser, 1991). The movement of 

the actuator was driven from the control room using the DHI Wave Synthesizer software 

package. The software accounts for the generation of 1
st
 and 2

nd
 order Stokes waves, irregular 

waves of a specified wave spectrum and the reproduction of specific timeseries of surface 

elevation. The maximum frequency permitted by the wavemaker system was 2.5 Hz. In 

addition, during irregular wave generation the proposed cut-off frequencies were Tmax = 2Tp 

and Tmin = 0.2Tp, with Tp being the peak period. Limitations of the produced wave train also 

existed due to position and speed limitations of the actuator. In practice, the workable range 

of wave periods was about 0.75 ÷ 2.50 s and the maximum allowed wave height was 0.12 m. 

Wave generation relied on the application of Biésel (1951) transfer functions between 

wavemaker displacement and wave amplitude. Second-order wave generation was also 

possible based on Schäffer (1993). However, second-order wave generation could not be used 

together with active wave absorption. In addition, irregular wave trains could be generated 

basing on a number of different spectrum types (Jonswap, Pierson-Moskowitz, Bretschneider, 

ISSC, Darbyshire, Scott, TMA). In this case an inverse FFT method with the assignment of 

random phases for each individual wave component were used for deriving the corresponding 

time series of surface elevations. 
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5.3.3 Submerged breakwater and sandy beach  

The experiments were conducted to study the evolution of a sandy beach in the lee of 

submerged breakwaters. Hence, a permeable submerged breakwater was constructed. It 

consisted of stones of d50 = 0.05 m and its porosity was measured approximately 𝜆 = 0.52. In 

order to measure the porosity the following procedure was applied. A container with specified 

volume was filled with some stones from the breakwater. Then water was poured into the 

container in order to completely fill the voids. After that all the stones were removed from the 

container and the volume of the water was measured. Thus, porosity was given from the ratio 

of the water volume to the total volume of the container. 

The length of the submerged breakwater was 3 m and the gaps between its heads and the left 

and right vertical plates were 0.5 m each. The lateral plates can be treated computationally as 

fully reflective boundaries and thus as axes of symmetry. Consequently, the experimental 

layout was actually representing an array of submerged breakwaters, rather than a single one. 

The slopes of the breakwater were 1:2, the crest width was 0.5 m and the free board 0.05 m. 

The toe of the upslope of the breakwater was located 2.25 m down-wave of the toe of ramp of 

slope 1:15, at a depth of 0.30 m. A sketch of the experimental layout is depicted in Fig. 5.12, 

while a view of the submerged breakwater is shown in Fig. 5.13. Two holes can be observed, 

one at the body and one at the head of the breakwater. They were made in order to allow 

parallel measurements of the velocity profiles inside the porous breakwater. The 

measurements were related to a different project. They were taken using a ADV equipment 

and they are described in detail in Metallinos (2016).  
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Fig. 5.12. Plan view and central profile of the experimental layout (above) and typical section of the 

submerged breakwater (below). All dimensions in m. 
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Fig. 5.13. View of the submerged breakwater. 

In the lee of the submerged breakwater sand was placed in order to study the morphology 

evolution under the wave action. It can be observed in Fig. 5.13 that a piece of naylon was 

placed below and down-wave of the submerged breakwater and then it was covered with 

sand. This naylon was used for two reasons. At first, it was rubbed to make its surface 

rougher and ensure an increased friction force with the sand compared to a direct placement 

on the smooth surface of the aluminum ramp. Secondly, the piece of naylon helped to collect 

the sand and remove it at the end of the experiments. The sand was carefully placed and 

formed a layer with a mean thickness of approximately 4 cm down-wave of the submerged 

breakwater. The surface of the sandy area was then scratched and flattened to form a plane 

beach with a uniform slope of about 1:15. A view of the sandy beach during the installation of 

the layout is shown in Fig. 5.14. 

 

Fig. 5.14. View of the submerged breakwater and the sandy beach. 

The total amount of sand in the layout was about 0.8 m
3
 and before usage it was kept in 11 

bags. In order to examine the properties of the used sand a sieve analysis was performed. 
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Three independent samples with wet weight of about 0.7 kg each were taken from different 

bags. The samples were then oven dried for one day at a temperature slightly higher than 60° 

C. After this, the dry weight of the samples was measured and the sediment was sieved using 

a sieve vibrator as shown in Fig. 5.15. A sieve analysis was then performed resulting to the 

sediment grading curve in Fig. 5.16. Some characteristic measures of the sand are shown in 

table 5.2. 

  

Fig. 5.15. Oven for drying the sediment samples (at left) and sieve vibrator (at right). 

 

Fig. 5.16. Sediment grading curve.  

Table 5.2. Characteristic measures of sediment’s distribution. 

d10 (mm) 0.110 

d30 (mm) 0.156 

d50 (mm) 0.210 

d60 (mm) 0.241 

d84 (mm) 0.397 

Coefficient of uniformity (Cu) 2.19 

Coefficient of curvature (Cc) 0.92 
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The median diameter was d50 = 0.21 mm and thus according to the American Geophysical 

Union the material is classified as fine sand (see table 4.1). The coefficient of uniformity and 

curvature were Cu = 2.19 < 6 and Cc = 0.92 < 1, respectively. Thus, the material was well-

sorted (SP) according to ASTM D-2487. Practically, it consisted of uniform sands with a 

moisture of about 7 %. A sedimentation test was also performed and showed that silt and clay 

were contained at a percentage of 7-8 % each. Walkley and Black's (1934) procedure was also 

applied to estimate the total organic matter included in the soil material. It was found to be 

very poor in organic matter with a percentage about 0.08 %. As it will be shown in subsection 

5.3.4, during the experimental process, especially during the earlier tests, increased foaming 

and flocculation were observed and colloidal emulsified compounds of ochre color were 

formed and transported near the water surface throughout the entire basin. Although the 

content in clay was found to be low, this referred to a particle-size point of view, while the 

aforementioned foams were, most probably, created by the presence of aluminate compounds 

in the soil material. In order to prevent this undesired effect, the sediment should have been 

washed before it was used. However, no suitable facility for this purpose was available. 

Nevertheless, after the earlier tests and hours of wave propagation, the foaming and 

flocculation were significantly reduced.  

5.3.4 Test cases and data acquisition  

The measured data included free surface elevation timeseries at selected locations in the 

wave tank and initial and final bed elevations of the sandy beach in order to study the 

morphological evolution. Eight different test cases were studied including regular and 

irregular (Jonswap spectrum), breaking and non-breaking, long and short waves. It should be 

noted that the duration of each test depended on the required time for establishing a steady 

state and a morphological equilibrium. Each test case was finished when no significant 

morphological evolution was observed anymore. These durations were of the order of some 

hours. The test cases are summarized in table 5.3. 

Table 5.3. Experimental test cases. 

Test No. Wave type Hs,o (m) Tp (s) Ld=0.45 (m) LSB (m) 
Wave 

breaking 

Duration 

(hrs) 

(1) Regular 0.045 1.25 2.122 1.867 non-breaking 4.0 

(2) Regular 0.045 2.00 3.884 3.258 non-breaking 3.0 

(3) Regular 0.08 1.25 2.122 1.867 breaking 5.0 

(4) Regular 0.08 2.00 3.884 3.258 breaking 4.3 

(5) Irregular 0.045 1.25 2.122 1.867 non-breaking 5.0 

(6) Irregular 0.045 2.00 3.884 3.258 non-breaking 5.0 

(7) Irregular 0.08 1.25 2.122 1.867 breaking 5.0 

(8) Irregular 0.08 2.00 3.884 3.258 breaking 5.0 
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Four of the tests referred to regular waves and four to irregular waves of a Jonswap 

spectrum. The third column refers to the wave height at the source line where the depth was 

1.05 m, the fourth column is the wave period, the fifth includes the wavelength at the two of 

the 1:15 sloping bed where the depth was 0.45 m and the sixth column is the wavelength at 

the toe of the upslope of the submerged breakwater. For the irregular waves the corresponding 

characteristics are the significant wave height, the peak period and the wavelength that 

corresponds to the peak period. The seventh column refers to whether wave breaking occurs 

at the crest of the breakwater or not. A snapshot of the wave propagation during the test No. 3 

is depicted at the left in Fig. 5.17, while at the right bed wave ripples close to the gap are 

shown. 

  

Fig. 5.17. Snapshot of wave propagation (at left) and bed wave ripples close to the gap (at right). 

The free surface elevation was measured at seven positions by DHI wave gauges. The 

timeseries of the surface elevation was also recorded at wave source in order to check if the 

desired incident wave train was generated. The wave gauges were calibrated before used in 

the experiments. Measurements were taken for 10 min with a sampling rate of 100 Hz. The 

location of the wave gauges and a view of the layout are depicted in Figs 5.18 and 5.19, 

respectively. The coordinates of the wave gauges with respect to the coordinate system shown 

in Fig. 5.18 are summarized in table 5.4. It is noted that the depth at the stations 2 and 3 is 

defined as the free water depth above the surface of the submerged breakwater. 

Table 5.4. Coordinates and water depth of the wave gauges. 

Wave gauges x (m) y (m) depth (m) 

1 6.00 2.00 0.420 

2 3.30 2.00 0.050 

3 3.04 2.00 0.130 

4 2.08 2.00 0.124 

5 2.48 3.10 0.155 

6 2.28 0.90 0.140 

7 3.45 0.25 0.250 
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Fig. 5.18. Location of the wave gauges. 

 

Fig. 5.19. View of the layout including the wave gauges. 

Before the initiation of each test the sandy bed was carefully reshaped to a plane beach with 

a uniform slope of about 1:14. After the end of each test the new bathymetry was measured. 

The measurements were performed manually using a ruler. A regular grid with a space of 
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0.10 m was labeled on a rod that could be moved on the lateral vertical plates. Thus, it was 

placed succesively above and in parallel to each depth contour line and the water depth was 

measured point by point. In this way, the new bathymetry was recorded all over the distance 

from the still shoreline to the submerged breakwater. It should be mentioned that 

measurements were taken over a width of 2 m symetrically to the center line. The measured 

data both for surface elevations and morphology are presented in chapetr 6, along with the 

model validation. 

5.4 Scale effects 

Ideally, a properly designed laboratory model should behave in all respects like a controlled 

version of the prototype. In a fluid flow model this similar behaviour includes the velocity, 

acceleration, mass transport of the fluid, and the resultant forces. Similitude is achieved when 

all major factors influencing reactions are in proportion between prototype and model, while 

those factors that are not in proportion throughout the model domain are so small as to be 

insignificant to the process. 

A prerequisite for complete similarity is geometric similarity. The prototype-to-model 

length scale ratio, NL, is defined as the ratio of a characteristic length in the protype to the 

corresponding one in the model. Geometric similarity is fulfilled if the length scale ratio is 

uniform for all geometric dimensions. However, there are distorted models where the 

horizontal length scale and the vertical length scales are different. Kinematic similarity is also 

important. It is achieved when the ratio between the components of all vectorial motions, NV, 

for the prototype and model is the same for all particles at all times. Kinematic similarity for 

gravity waves implies the time scale factor: 

 NT = √NL   (5.2) 

Dynamic similarity between two geometrically and kinematically similar systems requires 

that the ratio of all vectorial forces (inertial force, gravitational force, viscous force, surface 

tension force, elastic compression force, pressure force) in the two systems be the same 

(Warnock, 1950). Dynamic similarity requires the equality of the Froude number, Fr = 
𝑉

√g𝐿
 , 

and the Reynolds number, Re = 
𝑉𝐿

𝑣
 , between the prototype and the model with 𝑉, 𝐿, and 𝑣 a 

characteristic velocity, length, and the fluid kinematic viscosity respectively. 

 Fr𝑚 = Fr𝑝 →
NV

√NL

= 1  and  Re𝑚 = Re𝑝 →
NVNL

N𝑣
= 1    (5.3) 
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where N𝑣 is the ratio of the kinematic viscosities between the prototype and the model. Eq. 

(5.3) shows that the fluid viscosity in the model should be significantly lower than the 

viscosity in the prototype. This requirement is very difficult to be fulfilled and consequently 

the two relations in Eq. (5.3) are inconsistent with each other. Fulfilling the Froude criterion 

implies a reduced Reynolds number in the model and thus increased scale effects, i.e. laminar 

flow instead of the fully developed turbulence in the prototype. In order to avoid this 

undesired effect in Froude-type physical models an increased bed roughness is applied to 

result in turbulent flow. A very detailed description of scale effects in physical models is 

presented by Hughes (1993). The experiments performed in the present thesis do not 

represent a physical model of a predefined prototype. However, they could be seen as a 

representation of an actual coastal defense project including a submerged breakwater with a 

geometric scale factor of about NL = 10 ÷ 15. Thus, the layout represents a submerged 

breakwater constructed at a depth of about 2.5 – 3.75 m with armor stones with a mean 

diameter 0.5 – 0.75 m. Hence, the time scale factor could be estimated as NT ≈ √10 ≈ 3.2. 

Movable-bed physical model investigations of coastal erosion and sediment transport are 

probably the most difficult hydraulic models to conduct (Hudson et al., 1979). Dean (1985) 

listed two major requirements for proper physical modeling of sand transport processes: the 

knowledge of the character of the dominant forces and an understanding of the dominant 

response mechanisms of the sediment. An important difficulty with respect to movable-bed 

physical models is that different mechanisms may be governing the sediment transport inside 

and outside the surf zone. However, Bijker (1967) mentioned that scale laws should be 

derived with a main requirement of invariability of the scale for the material transport over 

the entire area of the model concerned. 

Physical parameters of the sediment can be combined with some physical properties of the 

fluid to form a set of dimensionless numbers commonly used for unidirectional flow. 

According to Kamphuis (1985) these numbers are: the grain size Reynolds number, R∗, the 

densimetric Froude number, F∗, the relative density, 𝑆𝑠, the relative length, 𝑙𝑠, and the relative 

fall speed, 𝑉𝜔. They are given by:  

 R∗ =
v∗d50

𝑣
, F∗=

ρv∗
2

𝛾𝑖d50
, 𝑆𝑠=

ρs

ρ
, 𝑙𝑠=

λ

d50
 and 𝑉𝜔=

𝜔

v∗
    (5.4) 

where v∗ = √𝜏𝑏/ρ is the shear velocity, 𝛾𝑖 is the submerged sediment specific weight, ρ
s
 is 

the sediment density, ρ is the fluid density, λ is a characteristic depth, and 𝜔 is the sediment 

fall speed. For complete similitude in sediment transport, values of all five parameters in Eq. 

(5.4) must be the same in the model as in the prototype. Generally, this is not possible at 
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scales other than prototype. However, it has been proven that several useful ‘incomplete’ 

similitudes can be formulated. 

There are several general similitude difficulties that are common to most proposed scaling 

criteria. However, practical considerations more often than not limit the modeling choices. 

For example, the prototype-to-model ratio of fluid density could be manipulated by selection 

of a model fluid different than water. However, coastal models usually require a large amount 

of fluid, and water is virtually the only choice (Kamphuis, 1985). Another important aspect 

refers to the sediment grain size. If the selected scaling criteria requires that grain size be 

scaled the same as the geometric length scale, there is the possibility that non-cohesive 

prototype sediments may be scaled to grain diameters that would put the sediment into the 

cohesive sediment range in the model. If this were to happen, different fundamental sediment 

transport processes would occur in the model. Despite the difficulties in attaining perfect 

similitude, Le Méhauté (1976) mentioned that since the only requirement of a movable-bed 

model is a reproduction of bottom evolution, it is not necessary that this be achieved through 

exact similitude of water motion.  

An important distinction of movable-bed physical models is made between bed load- 

dominated and suspension-dominated models. Bottom shear stress is an important parameter 

in bed load-dominated sediment transport and thus physical models must attempt to provide 

similarity for it. Perfect similitude with respect to all the five dimensionless numbers in Eq. 

(5.4) is not possible. Kamphuis (1974, 1975) proposed several imperfect similitudes in which 

two or more of the scale ratios are not maintained. The characteristics of these physical 

models are summarized in table 5.5. Kamphuis (1975) mentioned two more model types, a 

model using prototype-sized sand and a 'nothing model' that satisfies none of the criteria. 

Table 5.5. Classification of bed load-dominated movable-bed physical models (from Hughes, 1993, 

modified). 

Model Class R∗ F∗ 𝑺𝒔 𝒍𝒔 𝑽𝝎 

Best Model x       x 

Lightweight Model     x1 x x 

Densimetric Froude Model x   x1 x x 

Sand Model x x   x x 

 Satisfied 

x    Not satisfied  

x1   Not satisfied but limited to 1.05 < ρs/ρ < 2.65 

In steady-flow movable-bed models, similitude of the Shields parameter is considered 

important if incipient sediment motion is a critical aspect of the modeling effort. On the other 

hand, researchers disagree on whether the Shields parameter should be conserved in unsteady 

coastal flows because the processes are much more complex (Oumeraci, 1984; Dean, 1985; 
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Motta, 1986; Dalrymple, 1989). Similitude of bed forms is also an important issue since it 

influences the bottom friction. This aspect was studied by Yalin (1972) and Mogridge (1974) 

who pronounced the importance of matching the grain size Reynolds and the densimetric 

Froude numbers. Finally, a very important aspect concerning movable-bed physical models is 

the determination of the morphological time scale. This factor is very subjective and the time 

scales are best determined by comparing model response time to known prototype response 

(Kamphuis, 1975). According to Hughes (1993), once the prototype-to-model transport rate 

scale has been empirically determined, the morphological time scale can be estimated as:   

 Nt,mor =
𝑁𝐿𝑁𝑧𝑁(1−p)

𝑁q

 

 

(5.5) 

where 𝑁𝑧 is the vertical length scale, 𝑁(1−p) is the material porosity scale and 𝑁q is the 

sediment transport scale (per unit width). 

In other coastal regimes suspension is the dominant sediment transport mode. In these cases 

high levels of turbulent water motions lift the sediment grains up into the water column where 

they are moved by water currents. Suspension-dominated movable-bed physical models 

require consideration of different physical parameters of the processes. Similarly to the bed 

load-dominated models, five dimensionless numbers should be retained between the 

prototype and the model to ensure similitude. These are:  

 R∗
′ =

√g𝐻𝑏d50

𝑣
, mb=

ρg𝐻𝑏

𝛾𝑖d50
, 𝑆𝑠=

ρs

ρ
, 𝑙𝑠

′ =
𝐻𝑏

d50
 and 𝑉𝜔

′=
𝜔

√g𝐻𝑏
    (5.6) 

where 𝐻𝑏 is the breaking wave height. 

Retaining all the aforementioned numbers is again impossible and historical development of 

scaling criteria for suspension-dominated models primarily aims to satisfy similarity 

conditions, such as similar beach slopes or particle fall trajectories. A usual distinction of this 

type of models relies on whether the scale criteria depend on the settling velocity (Valembois, 

1960; Le Méhauté, 1970; Dalrymple and Thompson, 1976) or not (Noda, 1971, 1972; Ito and 

Tsuchiya, 1984; Hallermeier, 1985). As already mentioned in chapter 4, the dimensionless 

fall speed parameter H/(ωT), with H the wave height, T the wave period and ω the vertical 

fall speed of the sediment in the fluid, plays an important role in turbulence-dominated cases 

(Dean, 1973). Maintaining similarity of the fall speed parameter, and assuming a unity 

gravitational scale, leads to the similitude condition: 

 Nω = √Nz   (5.7) 

with Nω the settling velocity scale. 
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In general, preserving the fall speed parameter and fulfilling the Froude criterion for the 

hydrodynamics results to an accurate reproduction of the surf zone profile in a suspension-

dominated model. According to Dean (1985) such a model preserves similarity in wave form, 

sediment fall path, wave-induced velocities, breaking point, breaker type, and wave decay. 

However, the bottom shear stress is not correctly scaled because the bottom boundary layer 

and the ripple formation are not reproduced. This will result in noticeable scale effects when 

wave breaking turbulence is not the dominant mechanism of sediment transport. 

Past experience of suspension-dominated movable-bed models has shown that selecting the 

sediment size to preserve the Froude number and the settling velocity parameter is more 

effective in processes that are chiefly erosional in nature, with the erosion occurring inside a 

turbulence-dominated region such as the surf zone. However, in general, scale effects related 

to turbulence-dominated models are not as well understood as those arising in bed load-

dominated physical models. Outside the surf zone, a higher percentage of sediment transport 

occurs as bed load and thus the scale effects are more severe for a suspension-dominated 

physical model that does not typically preserve the Shields parameter. Moreover, the 

geometric distortion required by some models introduces greater wave reflection from the 

beach and the longshore bars are not accurately reproduced, influencing also the incoming 

waves. Finally, the selected initial beach slope and the seafloor permeability have also proved 

to introduce undesired scale effects. Nevertheless, experience has shown that a beach will still 

reach the same equilibrium shape inside the surf zone irrespective of the initial slope. 

In all the presented experiments the dominant mechanism of sediment transport near the 

shoreline appeared to be the bed load. This transport mode essentially controlled the 

shoreline’s response to the wave action. On the other hand, in tests 3,4,7 and 8, where 

breaking occurred above the bar crest, significant sediment suspension appeared down-wave 

of the submerged breakwater. This mechanism was mainly responsible for the bar formation 

in the lee of the structure. These morphological features will be further discussed in chapter 6 

where the measurements are presented and compared with the model’s results. The selected 

grain diameter was d50 = 0.21 mm which is similar to the ones used in other 2DH laboratory 

experiments under similar geometries and wave conditions (Ming and Chiew, 2000; Turner et 

al., 2001; Wang et al., 2002; Gravens and Wang, 2007). As already mentioned, since our 

understanding about scale effects related to movable-bed physical models is not cleared up, 

the cumulative international experience offers some practical guidelines.  
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5.5 Discussion on laboratory experiments 

The main scope of the present Ph.D. thesis is to study the bed morphodynamics in the lee of 

submerged breakwaters. This was done both numerically, as it will be shown in chapters 6 

and 7, but also experimentally. These laboratory experiments fill a gap in the international 

literature. Very few cases of morphodynamic experiments related to submerged breakwaters 

have been reported and almost all of them refer to either 1DH layouts or, even less, to 2DH 

physical modelling of artificial reefs. To the best of the author’s knowledge there has been no 

other 3D experimental work including bed evolution behind permeable submerged 

breakwaters similar and scaled-down to the ones that are constructed in the field by engineers. 

This is a serious issue, since submerged breakwaters become a popular soft engineering 

alternative in coastal projects. Thus, besides their interaction with the hydrodynamic and 

wave fields, whose studying has advanced in the recent years, the related morphodynamics 

should be also understood. From this point of view, the presented experimental work offers 

originality in coastal engineering but, similarly to the previous chapters, some weak points 

should be also addressed to better ground the conclusions that will be drawn. 

At first, the active area was 4 m wide, the breakwater was placed at a distance of 3.45 m 

from the still shoreline and its length was 3 m. Hence, due to the limited horizontal 

dimensions of the wave tank, lateral spending layers could not be placed. Consequently, 

oblique incidence of unidirectional waves was not possible since reflection from the lateral 

plates would significantly infect the wave field. Moreover, the oblique wave generation 

would require a rotation of the wave paddle resulting to an additional reduction of the active 

area. Finally, the oblique incidence would generate a longshore current which should be re-

circulated in order to establish a steady pattern. The wave tank was not equipped with such a 

re-circulation system. For all the aforementioned reasons, only normal wave incidence was 

studied. This is a deficiency of the specific experimental sets and it is left for future research, 

probably at a larger wave tank. However, this lack of measurements was partly covered by the 

numerical experiments presented in chapter 7 which include oblique wave incidence.  

Despite the normal wave incidence, refraction and diffraction at the heads of the breakwater 

resulted to some reflection from the lateral plates. However, the infection of the wave field, 

especially near the shoreline, was not significant. Moreover, the undesired diffraction at the 

edges of the plates close to the wave generator was also negligible. Due to the basin’s limited 

dimensions the wave paddle had to be placed quite close to the toe of the mild sloping ramp, 

at a distance of 1.73 m. Hence, a shorter steep ramp had to be placed with a slope of 1:2. This 

unavoidably led to some reflection of the incoming waves, which was, however, absorbed by 

the paddle’s absorption system. 
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With regard to the sand, the mean diameter was d50 = 0.21 mm. If a geometrical scale factor 

NL = 10 is assumed, this would mean that the selected sediment material corresponds to very 

coarse sand, according to table 4.1. However, the discussion in subsection 5.4 showed that the 

similitude with respect to sediment transport in a movable-bed model is not well-established 

and that in most cases a similar to prototype sediment is used. In addition, the grain size used 

is similar to the one used in the majority of other 2DH experimental works including similar 

wave conditions and geometries. Moreover, the sediment’s bahaviour inside the wave tank 

(inception of movement, agitation, suspension) corresponded to its actual size of a fine sand. 

Also, it was not easy to find sediment material finer than the one used in an adequate quantity. 

From a particle-size point of view, the sediment’s content in clay was found to be low. 

Despite this, as already discussed, intense emulsification and foaming were observed. They 

were, most probably, created by the presence of aluminate compounds in the soil material. 

What should have been done was to wash the sediment before use. However, no suitable 

facility for this purpose was available. It should be also mentioned that this chemical 

composition of the material had no serious impact on the sediment transport processes and it 

was essentially just blurring the water body. In addition, after the earlier tests and hours of 

wave propagation, the foaming and flocculation were significantly reduced.   

Some discussion should be also done on the measuring process. The surface elevations were 

very accurately measured by the wave gauges. However, the bed morphology was measured 

manually using a ruler on a regular grid. This fact unavoidably introduces an increased error 

compared to using a suitable equipment and software, e.g. underwater laser scanner, etc. 

However, such equipment was not available. An underwater camera was available combined 

with a Particle Image Velocimetry (PVI) system, but the presence of the suspended sand was 

blurring the water column and it was reducing dramatically their efficiency. Thus, considering 

the simplicity and efficiency of manual measurements, this solution was favored, keeping 

always in mind to get the measurements carefully and accurately. Moreover, before each run 

the sandy beach was also manually reshaped carefully in order to form a plane bed. 

Nevertheless, as already discussed, the equilibrium profiles, after hours of wave propagation, 

were not significantly affected by this. 

It should be also mentioned that despite the placement of the piece of naylon under the 

sandy bed, some loss of sand was taking place through the joints of panels of the lateral 

vertical plates. Moreover, despite the initial placement of the sand down-wave of the 

breakwater, the rip currents formed through the two gaps were transporting some sediment to 

the offshore area.  

The submerged breakwater was effectively designed since the wave energy was 

significantly reduced in most cases. It will be shown in chapter 6 that the shorter waves were 
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more influenced by its presence rather than the longer ones. Some reflection from the upwave 

face of the breakwater was observed but it was not high. The mean armor size was 0.05 m, the 

free board was 0.05 m and the structure height was 0.20 m at its center. The breakwater’s 

porosity was approximately 𝜆 = 0.52, which is a high value, but it should be kept in mind that 

no core was constructed. According to van der Meer and Daemen (1994) these geometrical 

characteristics lead to an expected transmission coefficient of about 𝐾𝑡 = 0.5. However, their 

analysis refers to breakwaters on a horizontal bottom rather than on a sloping beach.  

Although a single submerged breakwater was constructed in the laboratory experiment, the 

application of the lateral fully reflective plates acted as defining axes of symmetry and thus 

the experimental layout actually represented an array of submerged breakwaters. This will be 

also confirmed by the numerical experiments in chapter 7. The ratio of the breakwater’s 

length to its distance from the still shoreline was approximately B/S ≈ 0.90 and the ratio of the 

gap length (twice the distance of the head of the breakwater from the vertical plate due to 

symmetry) to the breakwater’s length was G/B = 1/3. Hence, from a morphodynamic point of 

view, salients were formed as expected. However, the morphological response of submerged 

breakwaters is not yet a well-understood field and this was essentially the motivation for the 

present Ph.D. thesis. This point will be further discussed in chapter 7. 

One last remark is made about the morphological time scale of the experiments. This is a 

difficult issue to be clarified in movable-bed physical models. Since, there was no prototype 

for the specific experiments to offer some measurements, it is difficult to decide the accurate 

times to which the experimental times in table 5.3 would correspond in a real scaled-up case 

in nature. However, by assuming a reasonable geometrical scale factor of NL = 10 both in 

horizontal and vertical dimensions (undistorted model) and simplifying Eq. (5.5) gives a 

morphological time scale 𝑁t,mor ≈ √10 ≈ 3.2. This means practically that bed morphology in 

the field prototype is expected to reach an equilibrium after a period whose duration is 

approximately three times its corresponding value in the physical model. 

The measured data from the laboratory experiments will be presented in chapter 6 and they 

will be compared with the results of the compound numerical model after this has been 

extended to account for porous beds.  
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Chapter 6 

Model extension to porous beds 

6.1 Introduction 

In the previous chapter the behavior of submerged breakwaters was studied through 

laboratory experiments performed in the context of the present Ph.D. thesis. In addition, a 

literature review of other experimental research works including submerged structures was 

presented. However, the technical difficulties in building 3D physical models including arrays 

of submerged breakwaters, especially when studying geomorphological issues, along with the 

inherent uncertainty and complexity of the relevant physical processes have resulted to only a 

restricted number of such experimental works. On the other hand, it is more convenient to 

study the behavior of submerged structures numerically because it is, generally, less costly 

and much faster to make a large number of numerical experiments required for studying the 

effect of various parameters on the hydrodynamics and morphodynamics, such as the 

breakwater’s length, crest width, slopes, porosity, etc. Thus, a significant number of 

numerical models and methods have been developed, mainly for studying the hydrodynamic 

behavior of submerged breakwaters. Very few models have been developed though for their 

geomorphological response. It should be mentioned that submerged breakwaters are 

permeable structures along their perimeter and consequently they can be studied as special 

cases by models simulating wave propagation over porous beds.  

Longuet-Higgins (1967) presented an analytical formula to calculate the wave setup for 

submerged breakwaters exposed to non-breaking waves. The mean sea level difference 

between the two sides of the breakwater was calculated based on the wave height, the water 

depth and the wavenumber of incident, reflected and transmitted waves. Sollitt and Cross 

(1972) in their pioneering work presented an analytical approach having as starting point the 

unsteady equations for flow in the pores of a coarse granular media. Liu (1973) and Liu and 

Dalrymple (1984) developed a numerical tool for calculating the damping rates for linear 

dispersive waves on horizontal permeable beds. Madsen (1977) included inertia and 
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resistance forces, due to the presence of a rectangular porous structure, in his linear wave 

model. 

Massel and Butowski (1980) developed a model for prediction of two-dimensional (1DH) 

wave transmission and reflection in the presence of porous breakwaters. Numerical models 

based on the nonlinear shallow water equations and porous flow equations have been used to 

study the swash motion of nondispersive, long waves on porous beaches and coastal 

structures by Packwood (1983), Wurjanto and Kobayashi (1993), and Clarke et al. (2004). 

Powell and Allsop (1985) provided empirical curves as design guidelines for the prediction of 

wave transmission coefficient over low-crested permeable breakwaters with 40% porosity. 

Kobayashi and Wurjanto (1988) presented a 2D (1DH) numerical model based on the finite 

amplitude shallow water equations to predict monochromatic wave transmission over an 

impermeable submerged breakwater. Ahrens (1989) presented a model for predicting the 

stability of reef breakwaters in terms of reduction in crest height due to wave attack. 

Based on the mild-slope equation, Rojanakmthorn et al. (1990) developed an elliptic-type 

numerical model for wave transformation by permeable submerged breakwaters but it 

underestimated the results in comparison with laboratory measurements. Linear wave 

propagation over porous seabeds was also investigated theoretically and experimentally by 

Gu and Wang (1991), extending the analysis by Sollitt and Cross (1972). 

Battjes (1994) and Beji and Battjes (1994) developed a weakly nonlinear Boussinesq-type 

model with improved dispersion characteristics and its application over impermeable 

submerged breakwaters gave good results. Flaten and Rygg (1991) were the first to employ 

the Boussinesq approach together with Darcy’s law to model weakly dispersive and weakly 

nonlinear waves over an uneven permeable seabed. Using a perturbation method, Isobe et al. 

(1991) and Cruz et al. (1992) derived a set of weakly nonlinear time-dependent equations for 

1DH wave transformation over permeable beds. However, due to the inherent weak 

dispersivity, the frequency-dependent decomposition phenomenon beyond submerged 

breakwaters cannot be reproduced. Cruz et al. (1997) treated this problem by enhancing the 

dispersion characteristics of the Boussinesq-type equations of the model which were also 

extended to two horizontal dimensions. Liu and Wen (1997) also incorporated porous flow 

equations into a 2DH Boussinesq-type model of O(εσ
2
). Kioka et al. (1994) derived a 1DH 

model for porous structures based on the shallow water equations. However, it was only 

accounting for horizontal solid beds. 

Van Gent (1994, 1995) simulated wave interaction with permeable and impermeable coastal 

structures by developing a 1DH model based on the nonlinear shallow water equations 

(NSWE) and a two vertical dimensional (2DV) model based on the Reynolds-averaged 

Navier-Stokes equations (RANS). As part of his work porous media flow was studied both 
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theoretically and experimentally with emphasis on the resistance of porous media to 

oscillatory wave motion. Losada et al. (1996) developed a model for the prediction of wave 

transformation of regular waves with oblique incidence over porous submerged breakwaters. 

Symonds (1994) and Symonds et al. (1995) solved the momentum and continuity equations 

analytically, assuming linear friction with respect to depth-integrated velocity, and presented 

an equation for current velocity over the reef top. 

A number of predictive equations and models for various variables related to submerged 

breakwaters (transmission coefficient, wave setup, current velocities) have been also 

proposed (Loveless and Debski, 1997; Seabrook and Hall, 1998; Gironella and Sanchez-

Arcilla, 1999; Drei and Lamberti, 1999; Hearn, 1999; González et al., 1999; Muñóz-Pérez et 

al., 1999; Mendez et al., 2001; Roul and Faedo, 2002; Calabrese et al., 2002, 2003; Melito 

and Melby, 2002; Friebel and Harris, 2004; Roul et al., 2004; van der Meer et al., 2004, 2005; 

Gourlay and Colleter, 2005; Buccino and Calabrese, 2007; Christou et al., 2008; Goda and 

Ahrens, 2008; Zanuttigh et al., 2008, Soldini et al., 2009). 

Lin and Liu (1998) developed a RANS model based on the work by Kothe et al. (1991). 

This model was capable of simulating wave-porous structure interactions considering 

turbulence generation and dissipation mechanisms. However, it was very much time-

consuming. Lynett et al. (2000) presented a numerical model based on Boussinesq-type 

equations to simulate solitary wave interaction with porous breakwaters. Lee et al. (2002) also 

studied numerically the linear wave propagation over horizontal permeable seabeds of finite 

thickness. 

Unlike the use of linearized flow resistance inside the porous layer by Flaten and Rygg 

(1991) and Cruz et al. (1997), Hsiao et al. (2002) developed a fully nonlinear 2DH 

Boussinesq-type model for wave propagating over a permeable bed and compared the model 

results with experimental data for the case of regular waves passing over a submerged 

breakwater. However, their model is limited to wave motions with rather weak vertical 

vorticity, or to nearly irrotational flows over a permeable bed. Chen (2006) presented also a 

fully nonlinear Boussinesq-type model for waves and currents over porous beds. His model 

was also valid in areas with strong vorticity generated by spatial variations of wave breaking 

and flow resistance inside the porous beds, including rubble mound coastal structures. 

Avgeris et al. (2004) presented a 2DH Boussinesq-type model for simulating wave 

propagation over permeable submerged breakwaters based on Karambas and Koutitas (2002) 

model. 

Shen et al. (2004) simulated the propagation of cnoidal waves over a submerged breakwater 

using a two-equation k-ε turbulence model based on the volume of fluid (VOF) method. 

Garcia et al. (2004) developed a 2DV RANS model (COBRAS) based on the decomposition 
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of the instant velocity and pressure fields into mean and turbulent components in order to 

calculate the water surface elevation and flow in the presence of permeable low-crested 

breakwaters for regular breaking waves. The model was extended by Lara et al. (2006) for 

random waves. Johnson et al. (2005) and Cáceres et al. (2005) applied numerical models to 

simulate wave and current fields around submerged breakwaters. Van Oosten and Peixó 

Marco (2005), van Oosten et al. (2006), and Panizzo and Briganti (2007) developed artificial 

neural network models for the prediction of the wave transmission coefficient behind 2D 

(1DH) submerged structures. Kobayashi et al. (2007) developed a time-averaged model to 

predict the mean and standard deviation of the free surface elevation and horizontal fluid 

velocities above and inside a porous submerged breakwater. Lin (2006) extended Lin and Li’s 

(2003) model to account for submerged rectangular breakwaters with sudden topography 

changes. His model is a 3D multiple-layer σ-coordinate model which solves the Navier-

Stokes equations for the interaction of water waves with submerged and emerged structures. 

Liu et al. (2013) developed a 2DV model based on Incompressible Smoothed Particle 

Hydrodynamics (ISPH) to simulate free surface flow in presence of various impermeable 

coastal structures and its application for predicting wave transmission showed good 

agreement with experimental data. Sharif Ahmadian and Simons (2014) presented a 

numerical method to calculate the spatial transmission coefficient and the regular wave field 

around and behind 3D detached submerged breakwaters. A very detailed review of existing 

numerical models related to submerged breakwaters can be found in Sharif Ahmadian (2016). 

On the other hand, only a restricted number of studies involving numerical models 

simulating the bed morphology evolution in the lee of submerged breakwaters have been 

presented. Some of them refer to the shoreline response to the submerged structures 

(Watanabe et al., 1986; Hanson and Kraus, 1990; O’Connor and Nicholson, 1995). Zyserman 

et al. (1999) and Jiménez and Sánchez-Arcilla (2002) analyzed the morphodynamic effects of 

a detached breakwater considering its geometry and location at the beach in short and long 

term, respectively.  

Van der Biezen et al. (1998) presented the results of 2DH numerical modelling of the 

morphological evolution behind an array of submerged breakwaters. The model used was 

Delft3D which is based on the nonlinear shallow water equations. The results were compared 

with experimental measurements (de Later, 1996; van der Biezen et al., 1996) referring to 

normal regular wave incidence. The submerged breakwaters were rubble mound with an 

impermeable core. The morphodynamic effects of submerged breakwaters were also 

investigated numerically by Lesser et al. (2003) who indicated that an inappropriate design 

may result to significant erosion at the shoreline. 
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The hydrodynamic and morphodynamic effects of artificial reefs were studied both 

experimentally and numerically by Ranasinghe et al. (2006). The applied numerical model 

was MIKE21. In addition, Ranasinghe and Sato (2007) and Ranasinghe et al. (2010) 

simulated the beach morphological evolution behind a single shore-parallel submerged 

breakwater under normal or oblique wave incidence. 

Koutsouvela et al. (2007) simulated the bed morphology evolution in the lee of a system of 

submerged breakwaters based on a mild-slope equation model. Although the results seemed 

reasonable, no comparison with measurements was given. The bed load was computed from 

Ribberink’s (1998) formula, while the suspended load by assuming an exponential profile for 

the sediment concentration. Koutsouvela (2010) presented a 2DH compound numerical model 

for simulating wave propagation, sediment transport and morphological evolution. The wave 

model relied on enhanced nonlinear Boussinesq-type equations (Beji and Nadaoka, 1996; 

Karambas and Karathanassi, 2004). Her model was also applied to simulate the bed evolution 

behind a system of impermeable submerged breakwaters. However, no validation with 

measurements was presented. Karambas (2012) also presented a model combining the 

Boussinesq-type wave model by Karambas and Karathanassi (2004) with a sediment transport 

and a morphological model. The compound model was applied to simulate the cross-shore 

morphology evolution with and without an artificial reef. This model was also applied by 

Karambas and Samaras (2014) to simulate in 1DH the bed profile evolution behind a 

submerged breakwater. The agreement with the measurements by Di Risio et al. (2010) was 

fairly good.  

In this chapter the compound numerical model that was presented in chapter 4 is extended to 

account for porous beds. Then, this final version of the model is validated against the 

measurements of the laboratory experiments presented in chapter 5 in order to check the 

model’s efficiency to simulate the wave propagation over submerged breakwaters and the bed 

morphology evolution in the lee of such structures.  

6.2 Derivation of model equations for porous beds 

In order to simulate the wave propagation over permeable submerged breakwaters and the 

corresponding bed morphology evolution, the compound model described in chapters 3 and 4 

has to be extended to porous beds. The model equations will be derived following Cruz et al. 

(1997). The presented 2DH Boussinesq-type wave model for an impermeable bed consists of 

Eqs (3.9), (2.17) and (2.18). Herein a porous layer of thickness ℎ𝑠(𝑥, 𝑦) is considered below 

the free water which has a thickness of 𝑑(𝑥, 𝑦). Below the porous layer an impermeable 
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bottom at 𝑧 = −ℎ𝑏(𝑥, 𝑦) is considered. The rest of the variables involved were defined in 

chapter 2. The variables and domain of interest are shown in Fig. 6.1. 

 

Fig. 6.1. Definition of variables (from Cruz et al., 1997, modified). 

The flow is assumed incompressible and irrotational in both layers. The equations of motion 

inside the porous medium is given by the extended Darcy-Forchheimer equation (Darcy, 

1856; Forchheimer, 1901; Polubarinova-Kochina, 1952; van Gent, 1995; Cruz et al., 1997): 

 λ [
𝜕�⃗� 𝑠,3
𝜕𝑡

+ (�⃗� 𝑠,3 ∙ ∇3)�⃗� 𝑠,3] +
1

ρ
∇3(𝑝s + ρg𝑧) + 𝐹 𝑟 + 𝐹 𝑖 = 0⃗  (6.1) 

where λ is the porosity, �⃗� 𝑠,3 = (𝑢𝑠, 𝑣𝑠, 𝑤𝑠) is the seepage velocity vector, ρ is the fluid 

density, 𝑝s is the pore pressure, ∇3= (
𝜕

𝜕𝑥
, 
𝜕

𝜕𝑦
, 
𝜕

𝜕𝑧
) is the three-dimensional gradient operator, 

𝐹 𝑟 is the drag resistance term, and 𝐹 𝑖 is the inertial resistance term. The nonlinear resistance 

term is given by 

 𝐹 𝑟 = 𝛼1�⃗� 𝑠,3 + 𝛼2|�⃗� 𝑠,3|�⃗� 𝑠,3   (6.2) 

where the coefficients 𝛼1 and 𝛼2 represent the laminar and turbulent contributions to the flow 

resistance, respectively. In general, these coefficients depend on the medium and the fluid and 

their expressions are given in the following. In unsteady flows, an inertial resistance term 𝐹 𝑖 is 

necessary to account for the divergence and convergence of streamlines in the presence of the 

solid surfaces. 𝐹 𝑖  is the product of the displaced fluid mass, the virtual mass coefficient and 

the 1ocal acceleration in the flow direction. Per unit volume of water, this is expressed as 

 𝐹 𝑖 = (1− λ)(1+ cm)
𝑑�⃗� 𝑠,3
𝑑𝑡

 (6.3) 
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where cm is the added mass coefficient which can be evaluated for individual regular shapes 

but is genereally unknown for randomnly packed granular solids. From Eqs (6.1), (6.2) and 

(6.3) one gets 

 cr
𝑑�⃗� 𝑠,3
𝑑𝑡

+
1

ρ
∇3(𝑝s + ρg𝑧) + 𝛼1�⃗� 𝑠,3 + 𝛼2|�⃗� 𝑠,3|�⃗� 𝑠,3 = 0⃗  (6.4) 

where cr is the inertial coefficient: 

 cr = λ+(1− λ)(1+ cm)   (6.5) 

Assuming a uniform porosity the mass conservation equation for the porous layer is written: 

 ∇3 ∙ �⃗� 𝑠,3 = 0   (6.6) 

In the overlying water the equations of motion and mass conservation apply: 

 
𝜕�⃗� 3
𝜕𝑡

+ (�⃗� 3 ∙ ∇3)�⃗� 3 +
1

ρ
∇3(𝑝 + ρg𝑧) = 0⃗  (6.7) 

 ∇3 ∙ �⃗� 3 = 0   (6.8) 

with �⃗� 3 = (𝑢, 𝑣, 𝑤) the water particle velocity and 𝑝 the pressure. At the free surface the 

dynamic and kinematic conditions are: 

 𝑝 = 0  at   𝑧 = 𝜁(𝑥, 𝑦, 𝑡)  (6.9) 

 𝑤 =
𝜕𝜁

𝜕𝑡
+ �⃗� ∙ ∇𝜁  at   𝑧 = 𝜁(𝑥, 𝑦, 𝑡)  (6.10) 

where �⃗� = (𝑢, 𝑣) is the horizontal velocity vector and ∇ = (
𝜕

𝜕𝑥
, 
𝜕

𝜕𝑦
) is the horizontal gradient 

operator. At the impermeable bottom, the normal velocity vanishes: 

 𝑤𝑠 = −�⃗� 𝑠 ∙ ∇ℎ𝑏  at   𝑧 = −ℎ𝑏(𝑥, 𝑦)  (6.11) 

where �⃗� 𝑠 = (𝑢𝑠, 𝑣𝑠) is the horizontal seepage velocity vector. 

Due to the incompressibility assumption, the conservation of the normal mass flux at the 

interface of the two layers gives: 

 �⃗� ∙ ∇𝑑 + 𝑤 = λ(�⃗� 𝑠 ∙ ∇𝑑 + 𝑤𝑠)  at   𝑧 = −𝑑(𝑥, 𝑦)  (6.12) 

Ιn addition, there must be equal pressures on both sides of the interface: 

 𝑝 = 𝑝s  at   𝑧 = −𝑑(𝑥, 𝑦)  (6.13) 
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The shear stress on water-porous layer interface and porous layer-bottom interface will set-

up boundary layers whose thickness may be comparable to the granule size. However, 

Sawaragi and Deguchi (1992) have shown that even for the highly nonlinear waves or for the 

highly porous media, the interface shear stress is small compared to the other terms in Eq. 

(6.1) or Eq. (6.4). The interface conditions (6.12) and (6.13) do not ensure the continuity of 

tangential velocities on both sides of the interface. Thus, an additional assumption made is 

that there is a boundary layer, thick enough to equalize the tangential velocities, but also thin 

enough not to affect the flows above or below it.   

The aforementioned equations refer to dimensional variables, although the primes have been 

dropped until now. However, in the following the primes denote dimensional variables, while 

the non-dimensional ones are denoted without primes. Following a similar derivation as the 

one applied in the subsection 2.3.1 for impermeable beds, the model equations for permeable 

beds are obtained. The non-dimensionalization applied is the one given in subsection 2.3.1 

plus the following scaling for the variables in the porous layer: 

 ℎ𝑠 =
ℎ𝑠
′

𝑑𝑜
′  ,  ℎ𝑏 =

ℎ𝑏
′

𝑑𝑜
′  ,  �⃗� 𝑠

′
= �⃗� 𝑠ε√g𝑑𝑜´ , 𝑤𝑠´ = 𝑤𝑠εσ√g𝑑𝑜´ , 𝑝s´ = ερg𝑑𝑜´𝑝s      (6.14) 

By integrating the continuity Eqs (6.6) and (6.8) and the momentum Eqs (6.4) and (6.7) over 

depth and applying the boundary conditions (6.9), (6.10), (6.11), (6.12), (6.13), the depth-

integrated equations are obtained in terms of the depth-averaged velocity in the free water 

body, �⃗⃗� = (𝑈, 𝑉), and the depth-averaged velocity in the porous layer, �⃗⃗� 𝑠 = (𝑈𝑠, 𝑉𝑠). In 

particular, these velocities are defined by �⃗⃗� =
1

𝑑+ε𝜁
∫ �⃗�  d𝑧

ε𝜁

−𝑑
 and �⃗⃗� 𝑠 =

1

ℎ𝑠
∫ �⃗� 𝑠d𝑧

-d

−ℎ𝑏
. 

Similarly to chapter 2, the two linear operators given by Eq. (2.15) are applied to the 

resulting momentum equations in the free water body in order to enhance the linear dispersion 

and shoaling characteristics. In addition, following Cruz et al. (1997), the following linear 

operator was applied to the momentum equations inside the porous layer: 

 𝐿γ = 1 + γ𝜎2𝛻[𝑑𝛻 ∙ (ℎ𝑠 ∙)]     (6.15) 

where γ is parameter to be defined. 

The resulting equations in non-dimensional form are: 

 
𝜕𝜁

𝜕𝑡
+ ∇ ∙ [�⃗⃗� (𝑑 + ε𝜁)] + λ∇ ∙ (ℎ𝑠�⃗⃗� 𝑠) = 0   (6.16) 

 �⃗⃗� 𝑡 + 𝜀(�⃗⃗� ∙ ∇)�⃗⃗� + ∇𝜁 = 𝜎
2�⃗� 𝛪 + 𝜀𝜎

2�⃗� 𝛪𝐼 + 𝜀
2𝜎2�⃗� 𝛪𝐼𝐼 + 𝜎

2  
λ

2
𝑑∇[∇ ∙ (ℎ𝑠�⃗⃗� 𝑠𝑡)]     (6.17) 
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cr[�⃗⃗� 𝑠𝑡 + 𝜀(�⃗⃗� 𝑠 ∙ ∇)�⃗⃗� 𝑠] + ∇𝜁 + 𝛼�⃗⃗� 𝑠

+ 𝜎2 {
1

2
 (𝑐r

∂

∂𝑡
+ 𝑎) [−

2

3
ℎ𝑠
2∇(∇ ∙ �⃗⃗� 𝑠) − ℎ𝑠∇(∇ℎ𝑏 ∙ �⃗⃗� 𝑠)

+ ℎ𝑠∇(𝑑 − ℎ𝑠)∇ ∙ �⃗⃗� 𝑠 + 2∇𝑑∇ℎ𝑏 ∙ �⃗⃗� 𝑠] −
1

2
 ∇[∇ ∙ (𝑑2�⃗⃗� 𝑡)]

− (1+ γ)λ∇[𝑑∇ ∙ (ℎ𝑠�⃗⃗� 𝑠)] −
γ

cr
λ∇[𝑑∇ ∙ (ℎ𝑠∇𝜁)]

−
γα

cr
λ∇[𝑑∇ ∙ (ℎ𝑠�⃗⃗� 𝑠)]} = 0⃗  

 

 

 

(6.18) 

with 𝛼 = 𝛼1 + 𝛼2|�⃗⃗� 𝑠| and �⃗� 𝛪 = (𝜓𝛪
(𝑥)

, 𝜓𝛪
(𝑦)
), �⃗� 𝛪𝐼 = (𝜓𝛪𝐼

(𝑥)
, 𝜓𝛪𝐼

(𝑦)
), and �⃗� 𝛪𝐼𝐼 = (𝜓𝛪𝐼𝐼

(𝑥)
, 𝜓𝛪𝐼𝐼

(𝑦)
) 

where 𝜓𝛪
(𝑥)

, 𝜓𝛪
(𝑦)

, 𝜓𝛪𝐼
(𝑥)

, 𝜓𝛪𝐼
(𝑦)

, 𝜓𝛪𝐼𝐼
(𝑥)

, 𝜓𝛪𝐼𝐼
(𝑦)

 are given from the non-dimensional version of Eqs 

(2.19), (2.20), (2.21), (2.22), (2.23) and (2.24), respectively. 

Equations (6.16), (6.17) and (6.18) are the model's basic equations. It should be mentioned 

that terms of O(ε
2
σ

2
) are retained in the momentum Eq. (6.17) in the free water layer, while 

terms of O(ε,σ
2
) are retained in the momentum Eq. (6.18) in the porous medium. This is a 

difference from other Boussinesq-type models for porous beds which only consider a 

nonlinear shallow water equation of O(ε) for the porous medium (Avgeris et al., 2004). It will 

be shown in subsection 6.3 that the additional terms of O(σ
2
) may be important when 

simulating short wave propagation. In the absence of the porous layer Eqs (6.16) and (6.17) 

reduce to Eqs (2.16) and (2.17) - (2.18), respectively.   

It was discussed in chapter 2 that the free parameters B and B2 were set equal to B = 
1

15
 and 

B2 = 0.0653 in order to optimize the linear dispersion and linear shoaling characteristics of 

the equations. However, this is valid only for simulating wave propagation over impermeable 

beds. For a permeable bottom these values, along with the free parameter γ, have to be re-

adjusted. In order to compute the new optimal values of these parameters, a Fourier-type 

analysis is applied, similarly to the one in chapter 2. 

The 1DH linearized version of Eqs (6.16), (6.17) and (6.18) is considered over a horizontal 

bottom overlain by a uniform porous layer. A linear wave over the porous bed is described by 

 (𝜁, 𝑈, 𝑈𝑠) = (a1, 𝑈1, 𝑈𝑠1)𝑒
i(𝑘𝑥−𝜔𝑡)  (6.19) 
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where 𝜔 is the angular frequency, 𝑘 is the complex wavenumber, and a1, 𝑈1, 𝑈𝑠1 are the 

relevant amplitudes. Substitution of Eq. (6.19) into the 1DH linearized horizontal version of 

Eqs (6.16), (6.17), (6.18) leads to the system of equations: 

 

(

 
 

−𝜔 𝑘𝑑 λ𝑘ℎ𝑠

𝑘(1+ B𝜅2) −𝜔 [1+(
1

3
+ B) 𝜅2] −

1

2
λ𝜔𝜅𝜅𝑠

𝑘 (1+
γ

cr
λ𝜅𝜅𝑠) −

1

2
𝜔𝜅2 −𝜔𝜑

)

 
 
(

a1

𝑈1

 𝑈𝑠1
) = (

0

0

0

)  (6.20) 

where 

 𝜑 = (𝑐r + i
𝛼

𝜔
) (1+

1

3
𝜅𝑠

2) + λ𝜅𝜅𝑠 (1+ γ+ i
γ𝛼

𝜔𝑐r
)    (6.21) 

with 𝜅 = 𝜎𝑘𝑑 and 𝜅𝑠 = 𝜎𝑘ℎ𝑠 .  

A non-trivial solution exists only if the determinant of the matrix vanishes, leading to: 

 

𝜔2

𝑘2𝑑
=

1 + B𝜅2

1 + (B +
1
3
) 𝜅2

+
λℎ𝑠
𝜑𝑑

(1 +
γ

cr
λ𝜅𝜅𝑠)

−

λ𝜅𝜅𝑠
2𝜑 [(1 +

γ
cr

λ𝜅𝜅𝑠) − 𝜅
2 𝜔2

2𝑘2𝑑
+ (1 + B𝜅2)]

1 + (B +
1
3
) 𝜅2

 

 

 

(6.22) 

If ℎ𝑠 = 0 or λ = 0 the dispersion relation Eq. (6.22) reduces to Eq. (2.61) which accounts for 

impermeable beds. The non-dimensional analytical solution of the linearized problem for 

porous beds is (Gu and Wang, 1991; Cruz, 1994): 

 
𝜔2

𝑘2𝑑
−
𝑡𝑎𝑛ℎ(𝜅)

𝜅
= −i𝑅𝑡𝑎𝑛ℎ(𝜅𝑠) [

1

𝜅
−
𝜔2

𝑘2𝑑
𝑡𝑎𝑛ℎ(𝜅)] (6.23) 

where 𝑅 is the non-dimensional permeability given by 

 𝑅 =
λ𝜔

 𝛼1

 (6.24) 

Since linear analysis has been applied, only the linear part,  𝛼1, of 𝛼 is retained. According to 

Sollitt and Cross (1972): 
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  𝛼1 =
𝑣λ

𝐾
    and  𝛼2 =

Cfλ
2

√𝐾
 (6.25) 

where 𝑣 is the kinematic viscosity of the fluid and Cf is a turbulent friction coefficient, which 

according to Ward (1964) is constant and equal to 0.55. However, van Gent (1995) proposed 

the following expression: 

 Cf = μ
1− λ

λ

√𝐾

𝑑50

  (6.26) 

where μ is an empirical coefficient with a typical value μ = 1.1 (van Gent, 1995; Avgeris et 

al., 2004). 

In the equations above, 𝐾 is the intrinsic permeability which may be calculated from the 

following expressions (Engelund, 1953; van Gent, 1995; Burcharth and Andersen, 1995): 

 K =
𝑑50

2
λ

3

ξ(1− λ)2
  and  K =

𝑑50
2
λ
2

ξ(1− λ)3
 (6.27) 

where ξ is an empirical coefficient. The former expression was adopted in the presented 

model with a typical value ξ = 1000 (van Gent, 1995; Avgeris et al., 2004). 

An alternative expression for 𝛼2 was proposed by van Gent (1995) based on a Keulegan-

Carpenter number for porous media flow, KC=�̂�𝑇/(𝑑50 ∙ λ), with �̂� the maximum velocity in 

the porous medium and 𝑇 the wave period. In particular: 

  𝛼2 = μ (1 +
7.5

KC
)

1− λ

𝑑50λ
3
 (6.28) 

However, in the present Ph.D. thesis the expression given in Eq. (6.25) was applied for  𝛼2. 

From Eqs (6.24) and (6.25) one gets 𝑅 = 𝜔𝐾/𝑣, which is the non-dimensional permeability 

of O(10
-6

) ÷ O(10
-2

) for sands and O(10
-1

) at most for gravels, within the usual range of 

frequencies (Cruz et al., 1997). For consistency between Eqs (6.22) and (6.23) the values 

𝛼 =  𝛼1 and cr = 1.0 are used. The real part of the wavenumber, 𝑘𝑟, governs the phase 

celerity, while the imaginary part, 𝑘𝑖, corresponds to the spatial damping rate. In particular, 

one may writes: 𝑘 = 𝑘𝑟 + i𝑘𝑖 and 𝜅 = 𝜅𝑟 + i𝜅𝑖. Figs 6.2, 6.4 and 6.6 show the ratio of phase 

celerities 𝑐/𝑐theor as a function of 𝜅𝑟 for given values of the porosity λ = 0.50 and the 

permeability 𝑅 = 0.1 and for various values of the relative thickness 𝑑/ℎ𝑠. Following Cruz 

(1994) and Cruz et al. (1997) who performed an optimization process, γ was set equal to 0 
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and 1/15, while three different values, 0, 1/15 and 1/18, were studied for the parameter B. A 

similar comparison for the ratio 𝑘𝑖/𝑘𝑖
theor

 which corresponds to the spatial damping rates is 

depicted in Figs 6.3, 6.5 and 6.7. It is mentioned that 𝑐 and 𝑘𝑖 are obtained from Eq. (6.22), 

while 𝑐theor and 𝑘𝑖
theor

 from Eq. (6.23). 

 

Fig. 6.2. Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. (6.23), 

and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 0.2. 

 

Fig. 6.3. Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖 is determined from Eq. (6.22), 𝑘𝑖
theor from 

Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 0.2. 
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Fig. 6.4. Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. (6.23), 

and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

 

Fig. 6.5. Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖 is determined from Eq. (6.22), 𝑘𝑖
theor from 

Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

 

Fig. 6.6. Ratio of phase celerity, 𝑐/𝑐theor, where c is determined from Eq. (6.22), 𝑐theor from Eq. (6.23), 

and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 5.0. 
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Fig. 6.7. Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, where 𝑘𝑖 is determined from Eq. (6.22), 𝑘𝑖
theor from 

Eq. (6.23), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 5.0. 

A similar comparison is depicted in Figs 6.8 and 6.9 in order to highlight the importance of 

including the terms of O(σ
2
) in Darcy-Forchheimer Eq. (6.18). 

 

Fig. 6.8. Ratio of phase celerity, 𝑐/𝑐theor, for different order of Darcy-Forchheimer Eq. (6.18), i.e. O(ε) 

and O(ε,σ
2
), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 
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Fig. 6.9. Ratio of porous damping rate, 𝑘𝑖/𝑘𝑖
theor

, for different order of Darcy-Forchheimer Eq. (6.18), 

i.e. O(ε) and O(ε,σ
2
), and λ = 0.5, 𝑅 = 0.1 and ℎ𝑠/𝑑 = 1.0. 

From Figs (6.2) to (6.9) it can be observed that adopting the values (B, γ) = (
1

18
, 

1

15
) results 

to an improved model behavior with respect to both the linear dispersion and the linear spatial 

damping rate compared to the values (B, γ) = (
1

15
, 

1

15
) and (B, γ) = (0, 0). However, the 

prediction of the damping rate remains quite poor in the intermediate and deep water. In 

addition, the inclusion of terms of O(σ
2
) in the Darcy-Forchheimer Eq. (6.18) also improves 

the prediction of the wave celerity compared to the case that only terms of O(ε) are retained. 

Although, for the same value of B in both cases, this improvement is not very significant, Fig. 

6.9 shows that the nonlinear shallow water equations fail to predict the spatial damping rate in 

water deeper than approximately 𝑘𝑑 ≈ 0.5, which is close to the limit between shallow and 

intermediate water. Thus, terms of O(σ
2
) should be retained when simulating wave 

propagation over permeable submerged breakwaters located in intermediate water. The 

inclusion of these terms and the modified value of parameter B are two points of novelty of 

the present model compared to previous counterparts based on Karambas and Koutitas (2002) 

Boussinesq-type equations (Avgeris et al., 2004; Metallinos et al., 2014). 

It was mentioned above that the added mass coefficient, cm, is generally unknown. In the 

present model van Gent's (1995) expression was adopted: 

 cm = q
1− λ

λ
  (6.29) 

with q an empirical coefficient with a typical value of 0.34 (van Gent, 1995; Avgeris et al., 

2004). 

Based on section 3.2 the final dimensional version of the wave model equations for porous 

beds are written as: 

 𝛽
𝜕𝜁

𝜕𝑡
+ ∇ ∙ (𝛬�⃗⃗� ) + λ∇ ∙ (ℎ𝑠�⃗⃗� 𝑠) = 0   (6.30) 

�⃗⃗� 𝑡 + (�⃗⃗� ∙ ∇)�⃗⃗� + g∇𝜁 = �⃗� 𝛪 + �⃗� 𝛪𝐼 + �⃗� 𝛪𝐼𝐼 + 
λ

2
𝑑∇[∇ ∙ (ℎ𝑠�⃗⃗� 𝑠𝑡)] + 𝐹 𝑏𝑟 −

�⃗� 𝑏

𝑑+ζ
+ 𝐹 eddy + 𝐹 sp  (6.31) 
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cr[�⃗⃗� 𝑠𝑡 + (�⃗⃗� 𝑠 ∙ ∇)�⃗⃗� 𝑠] + g∇𝜁 + 𝛼�⃗⃗� 𝑠

+
1

2
 (𝑐r

∂

∂𝑡
+ 𝑎) [−

2

3
ℎ𝑠
2∇(∇ ∙ �⃗⃗� 𝑠) − ℎ𝑠∇(∇ℎ𝑏 ∙ �⃗⃗� 𝑠)

+ ℎ𝑠∇(𝑑 − ℎ𝑠)∇ ∙ �⃗⃗� 𝑠 + 2∇𝑑∇ℎ𝑏 ∙ �⃗⃗� 𝑠] −
1

2
 ∇[∇ ∙ (𝑑2�⃗⃗� 𝑡)]

− (1+ γ)λ∇[𝑑∇ ∙ (ℎ𝑠�⃗⃗� 𝑠)] −
γg

cr
λ∇[𝑑∇ ∙ (ℎ𝑠∇𝜁)]

−
γα

cr
λ∇[𝑑∇ ∙ (ℎ𝑠�⃗⃗� 𝑠)] = 0⃗  

 

 

 

(6.32) 

where �⃗� 𝛪 = (𝜓𝛪
(𝑥)

, 𝜓𝛪
(𝑦)
), �⃗� 𝛪𝐼 = (𝜓𝛪𝐼

(𝑥)
, 𝜓𝛪𝐼

(𝑦)
), and �⃗� 𝛪𝐼𝐼 = (𝜓𝛪𝐼𝐼

(𝑥)
, 𝜓𝛪𝐼𝐼

(𝑦)
) are terms of O(σ

2
), 

O(εσ
2
), and O(ε

2
σ

2
), respectively, which are given from Eqs (2.19) - (2.24). 𝐹 𝑏𝑟 are the 

breaking terms, 𝜏 𝑏 is the bottom friction, 𝐹 eddy are the Smagorinsky-type terms and 𝐹 sp are the 

sponge layer terms. The free parameter B is set equal to 
1

18
 and 

1

15
 for permeable and 

impermeable beds, respectively. For impermeable beds Eq. (6.32) vanishes and the model Eqs 

(6.30) and (6.31) reduce to Eqs (3.9) and (3.44) - (3.45), respectively. 

The numerical scheme is the generalized multi-step predictor-corrector scheme described in 

chapter 3 (Zlatev et al., 1984). At the predictor step, Eq. (6.32) is solved similarly to the 

momentum Eqs (3.54) and (3.55), while at the corrector similarly to Eqs (3.60) and (3.61). 

The time derivatives �⃗⃗� 𝑠𝑡  in Eq. (6.31) and �⃗⃗� 𝑡 in Eq. (6.32) are computed according to Eqs 

(3.62a,b,c) and (3.63a,b,c,d) at the predictor and corrector stages, respectively. If terms of 

O(σ
2
) are retained in Eq. (6.32), two tridiagonal linear systems have to be solved in order to 

obtain the predicted values for 𝑈𝑠𝑖,𝑗
(𝑛+1)

 and 𝑉𝑠𝑖,𝑗
(𝑛+1)

. These systems are solved through the 

application of Thomas (1949) algorithm in x and y directions consecutively. The relative error 

at the corrector step is generalized to 

 

Δf = max 

{
 
 

 
 

∑ |ζ𝑖,𝑗
(𝑛+1)

− ζ𝑖,𝑗
(𝑛+1)∗

|𝑖,𝑗

∑ |ζ𝑖,𝑗
(𝑛+1)

|𝑖,𝑗

, 

∑ (|𝑈𝑖,𝑗
(𝑛+1)

− 𝑈𝑖,𝑗
(𝑛+1)∗

|+|𝑉𝑖,𝑗
(𝑛+1)

− 𝑉𝑖,𝑗
(𝑛+1)∗

|)𝑖,𝑗

∑ (|𝑈
𝑖,𝑗
(𝑛+1)

|+|𝑉
𝑖,𝑗
(𝑛+1)

|)𝑖,𝑗

, 
∑ (|𝑈𝑠𝑖,𝑗

(𝑛+1)
− 𝑈𝑠𝑖,𝑗

(𝑛+1)∗
|+|𝑉𝑠𝑖,𝑗

(𝑛+1)
− 𝑉𝑠𝑖,𝑗

(𝑛+1)∗
|)𝑖,𝑗

∑ (|𝑈𝑠𝑖,𝑗
(𝑛+1)

|+|𝑉𝑠𝑖,𝑗
(𝑛+1)

|)𝑖,𝑗 }
 
 

 
 

   

           (6.33) 



Chapter 6.  Model extension to porous beds 

 

 

303 

 

 

where ( )
*
 denotes the preceding estimate. The corrector step was iterated if Δf exceeded 

0.001. 

6.3 Model validation 

In the previous section the numerical model was extended to account for porous beds. Thus, 

simulation of wave propagation over permeable submerged breakwaters lies in its range of 

applicability. In the present section the model is validated against the laboratory 

measurements described in chapter 5. The validation includes four regular test cases (1 to 4) 

and four irregular test cases (5 to 8). Their details are summarized in table 5.3 and the position 

of the 7 wave gauges is shown in Fig. 5.18. All tests refer to normal wave incidence. 

6.3.1 Test case No. 1 

The first test case refers to relatively short regular waves (strictly speaking intermediate 

water depth) with period T = 1.25 s and wave height Ho = 0.045 m at the wave source where 

the depth was constant 1.05 m. Thus, at this depth the wavelength was Lo = 2.419 m leading 

to a ratio do/Lo ≈ 0.43. At the toe of the sloping ramp of 1:15, where the depth was 0.45 m, the 

wavelength was 2.122 m and the aforementioned ratio was d/L ≈ 0.21. The nonlinearity 

parameter was ε = H/d ~ 0.1 and the corresponding Ursell number was approximately Ur ≈ 

2.27. The spatial steps were chosen Δx = Δy = 0.04 m and the time step Δt = 0.008 s. Thus, at 

the toe of sloping ramp 53 grid points per wavelength were considered, while at the center of 

the bar crest 21-43 points, since the wavelength lies between 0.857 and 1.747 m, depending 

on whether the free water depth or the total depth is considered, respectively. In any case, the 

grid resolution was adequate for reproducing the wave characteristics. The specific test refers 

to non-breaking waves over the submerged breakwater. Both the wave propagation and the 

morphological evolution of the bed in the lee of the structure were simulated by the 

compound model. The simulation period was 4 hrs, similarly to the laboratory experiment. 

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.10. 
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Fig. 6.10. Measured and computed by the model timeseries of free surface elevation for test case 1. 

The agreement is generally reasonable. There is an overestimation of the wave height at the 

station 2 which is located at the bar crest. The free water depth at this point was 𝑑 = 0.05 m 

and the corresponding non-dimensional wavenumber from linear theory was 𝑘𝑑 ≈ 0.37. In 

addition, the ratio of depths was ℎ𝑠/𝑑 ≈ 3.8 and by assuming 𝑅 = 0.1 then from Figs 6.5 and 

6.7 the damping rate over the permeable structure is underestimated at approximately 80% of 

its real value. Of course the aforementioned figures have been derived under the assumption 

of horizontal bed and porous layer which is not the case here. However, the overestimation of 

wave height at station 2 can be mainly attributed to this inaccuracy. On the other hand, the 
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surface elevation at the most down-wave gauge 4 is very accurately predicted, proving the 

model’s efficiency to describe the combined phenomena of diffraction and wave transmission 

over and through the submerged breakwater. The importance of three-dimensionality and, in 

particular, the diffraction effects are highlighted in Figs 6.11 where the 2DH model results are 

compared with results of the 1DH model version applied on the central bathymetry profile of 

the 2D layout. Obviously, the 1DH model underestimates the wave height at station 4. 

  

Fig. 6.11. Comparison between the measured free surface elevation and the ones computed by the 2DH 

and 1DH model versions at wave gauges 3 and 4. 

The importance of including terms of O(σ
2
) in Eq. (6.32) is depicted in Fig. (6.12). It can be 

observed that retaining only terms of O(ε) fails to predict the wave height above and down-

wave of the breakwater. The under-prediction of the wave height at stations 2 and 3 can be 

partly explained by the significantly overestimated damping rate by nonlinear shallow water 

equations in porous layers, as denoted in Fig. 6.9. This figure refers to ℎ𝑠/𝑑 = 1, but a similar 

behavior is valid for a ratio of 3.8. The specific test refers to relatively short waves and the 

presence of terms of O(σ
2
) also significantly improves the description of wave diffraction at 

the head of the breakwater where 𝑘𝑑 ≈ 0.90. However, in the case of long waves the 

significance of terms of O(σ
2
) is much reduced and retaining only terms of O(1,ε) led to a 

similar level of accuracy.  
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Fig. 6.12. Comparison between the measured free surface elevation and the ones computed by the 

model when terms of O(ε,σ
2
) and O(ε) are retained in Eq. (6.32). 

A snapshot of the computed free surface elevation is depicted in Fig. 6.13. The wave 

diffraction at the heads of the submerged breakwater is apparent. 

 
Fig. 6.13. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 1. 

Figure 6.14 shows the computed wave-induced current fields both around and inside the 

submerged breakwater. One can observe the formation of two eddies down-wave of the 

breakwater and weak rip currents close to the lateral boundaries and across the two symmetric 

gaps. The velocities in the permeable breakwater appear to be one order of magnitude lower 

than the currents in the free water body. 
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Fig. 6.14. Computed by the model wave-induced current field around and above the submerged 

breakwater (at left) and inside the breakwater (at right) for test case 1.  

The evolution of the sandy bed was also simulated by the compound model for 4 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.15. 

   

Fig. 6.15. View of the initial (at left) and final (after 4 hrs of wave action, at right) shoreline for test 

case 1. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.16. 
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Fig. 6.16. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 1 (depths in cm). 
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The sediment transport load was not measured during the laboratory experiments. However, 

an estimation of its magnitude was made along three sections, A, B and C, which are denoted 

in Fig. 6.16. These sections are located at 𝑦 = 1.44, 2 and 2.56, respectively. The estimation 

refers only to the cross-shore sediment transport loads and it neglects the longshore transport. 

Thus, the assumption made is that the sediment transport along every cross-shore profile is 

independent from the other ones. A similar assumption is made in one-line models and it is 

very crude but offers an approximation of sediment transport loads in order to have a 

comparative sense between the model results and the measurements. The estimation relies on 

the initial and final bathymetries and the solution of Eq. (4.70). In particular, the application 

of Eq. (4.72) offers the desired loads. A comparison between the estimated from the 

measurements and the model results sediment transport load is depicted in Fig. 6.17. 
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Fig. 6.17. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 1. 

The agreement between the sediment transport loads as estimated from the measurements 

and the model results is reasonable as both the tendency for erosion and accretion are 

described. However, the simplifying assumptions behind this estimation should be always 

kept in mind. With regard to bed morphology, the agreement between the model results and 

the measurements is also reasonable. The formation of the weak salient is described by the 

model. However, its width is under-estimated compared to the measured one, 20 and 30 cm, 

respectively, and it is also less flattened than in reality. Near the lateral boundaries the 

accretion is less intense. However, erosion was not present at the shoreline, neither in the 

laboratory nor in the model results. Moreover, it was observed during the experiment that 

sand was transported onshore both along the centerline of the wave tank but also from deeper 

areas near the lateral walls. At these latter areas and also near the axis of symmetry in the 

middle of the distance between the breakwater and the shoreline bed erosion was both 

observed and computed. Finally, it should be mentioned that in all the experimental tests the 

bed elevation was measured only from 𝑦 = 1 to 3. 

6.3.2 Test case No. 2 

The second test case refers to relatively longer regular waves (strictly speaking intermediate 

water depth) with period T = 2.0 s and wave height Ho = 0.045 m at the wave source where 

the depth was constant 1.05 m. Thus, at this depth the wavelength was Lo = 5.292 m leading 

to a ratio do/Lo ≈ 0.20. At the toe of the sloping ramp of 1:15, where the depth was 0.45 m, the 

wavelength was 3.884 m and the aforementioned ratio was d/L ≈ 0.12. The nonlinearity 

parameter was ε = H/d ~ 0.1 and the corresponding Ursell number was approximately Ur ≈ 

6.94. The spatial steps were chosen Δx = Δy = 0.04 m and the time step Δt = 0.008 s. Thus, at 

the toe of sloping ramp 97 grid points per wavelength were considered, while at the center of 
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the bar crest 34-75 points, since the wavelength lies between 1.389 and 3.0 m, depending on 

whether the free water depth or the total depth is considered, respectively. Thus, the grid 

resolution was adequately fine for reproducing the wave characteristics. The specific test 

refers to non-breaking waves over the submerged breakwater. Both the wave propagation and 

the morphological evolution of the bed in the lee of the structure were simulated by the 

compound model. The simulation period was 3 hrs, similarly to the laboratory experiment. 

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.18. 

  

  

  

 

Fig. 6.18. Measured and computed by the model timeseries of free surface elevation for test case 2. 
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The agreement is generally reasonable, except from an underestimation of the wave height 

at station 3. The generation of higher harmonics is described by the model but the secondary 

peaks are more flattened than in reality. The generation and release of higher harmonics is 

more intense in this test compared to the shorter waves in test case 1 (see also Beji and 

Battjes, 1993). In order to further explain the discrepancies at this station the nonlinear 

properties of the model should be studied for porous beds. This issue has been left for future 

research. In addition, the wave height at station 7, which is located at the gap between the 

breakwater and one of the two the lateral walls, is over-predicted. On the other hand, the 

agreement in the lee of the breakwater, at stations 4,5 and 6, is fairly good. A snapshot of the 

computed free surface elevation is depicted in Fig. 6.19.  

 

Fig. 6.19. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 2. 

Figure 6.20 shows the computed wave-induced current field above and around the 

submerged breakwater. Two eddies down-wave of the breakwater are observed but they are 

less pronounced than in test case 1.  



Chapter 6.  Model extension to porous beds 

 

 

313 

 

 

Fig. 6.20. Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 2. 

The evolution of the sandy bed was also simulated by the compound model for 3 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.21. 

   

Fig. 6.21. View of the initial (at left) and final (after 3 hrs of wave action, at right) shoreline for test 

case 2. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.22. 
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Fig. 6.22. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 2 (depths in cm). 
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Similarly to test case 1, an estimation of the cross-shore sediment transport rates along 

sections A, B and C was made from the measured and the computed bathymetry changes. 

Their comparison is depicted in Fig. 6.23. 

 

 

 

Fig. 6.23. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 2. 

The agreement between the sediment transport loads as estimated from the measurements 

and the model results is quite good along sections B and C. For section A the agreement is 

reasonable inside the surf zone but there is a discrepancy in deeper water. With regard to bed 

morphology, the agreement between the model results and the measurements is also 
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reasonable. The formation of the salient is described by the model and its maximum width of 

about 30 cm is accurately predicted. However, similarly to test case 1, it is less flattened than 

in reality. It should be mentioned that during the laboratory performance of test case 2, the 

wave crests seemed to ‘feel’ at a lower level the presence of the submerged breakwater than 

in test case 1. Thus, waves tended to remain long-crested down-wave of the structure 

compared to the ones in test case 1 where diffraction tended to curve their crests. 

Consequently, the depth contour lines close to the shoreline had a tendency to move parallel 

to their initial position, rather than formatting a peaky salient, as it was the case in test No. 1. 

This behavior resembled mostly to 2D wave propagation, rather than a clear 3D motion and 

morphology evolution. 

6.3.3 Test case No. 3 

The first two scenarios referred to waves of the same small wave height, 0.045 m, but 

different periods in order to get a comparative view of the effect of them on the corresponding 

morphology evolution.  The third test case refers to relatively short regular waves with period 

T = 1.25 s and wave height Ho = 0.08 m at the wave source where the depth was constant 1.05 

m. Thus, similarly to test case 1, the wavelength at the toe of the sloping ramp of 1:15 was 

2.122 m and the corresponding depth to wavelength ratio was d/L ≈ 0.21. However, the 

nonlinearity parameter was higher, ε = H/d ~ 0.18 and the corresponding Ursell number was 

approximately Ur ≈ 4.08. The spatial steps were again chosen Δx = Δy = 0.04 m and the time 

step Δt = 0.008 s. The specific test refers to breaking waves of spilling type over the 

submerged breakwater. Both the wave propagation and the morphological evolution of the 

bed in the lee of the structure were simulated by the compound model. The simulation period 

was 5 hrs, similarly to the laboratory experiment. A comparison between the measured and 

the computed by the model timeseries of the free surface elevation at the seven wave gauges 

is depicted in Fig. 6.24. 
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Fig. 6.24. Measured and computed by the model timeseries of free surface elevation for test case 3. 

The agreement is fairly good, except form some underestimation of the wave height at the 

most down-wave station 4. A snapshot of the computed free surface elevation is depicted in 

Fig. 6.25. The effect of diffraction is apparent on the wave crests. In addition, wave breaking 

was taking place above the submerged breakwater resulting to a variation of wave height 

along the wave crests passing over the obstacle. Consequently, the hydraulic gradients 

resulted to additional curving of the wave crests in the lee of the breakwater. Of course, a surf 

zone was also formed near the shoreline as waves were breaking again due to depth 

limitation. The aforementioned complex processes made the accurate prediction of the wave 

forms at station 4 more difficult compared to test cases 1 and 2. 
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Fig. 6.25. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 3. 

The computed wave-induced current field above and around the submerged breakwater is 

depicted in Fig. 6.26. The two vortices down-wave of the breakwater are more pronounced 

than in the previous cases. In addition, strong rip currents with a maximum velocity of about 

0.23 m/s are formed across the two gaps. Moreover, two eddies of opposite direction are also 

formed near the shoreline (see also discussion in subsection 5.2.2).  

 

Fig. 6.26. Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 3. 

The evolution of the sandy bed was also simulated by the compound model for 5 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.27. 
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Fig. 6.27. View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 3. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.28. 
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Fig. 6.28. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 3 (depths in cm). 

Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.29. 
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Fig. 6.29. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 3. 

The agreement between the sediment transport loads as estimated from the measurements 

and the model results is reasonable, especially along sections B and C. In contrary, the 

sediment load along section A is underestimated. However, the correct direction of sediment 

transport is predicted, as well the tendency for accretion-erosion is, in general, correctly 

reproduced. Nevertheless, it should be mentioned that test case 3 is clearly dominated by 

three-dimensional processes and thus the longshore sediment transport is expected to be 

comparable to the cross-shore. Hence, this estimation is of questionable practical value due to 

the simplifying assumption behind it. 

With regard to the shoreline response, a pronounced salient was both measured and 

computed. Its maximum width of 0.52 m was accurately computed, although the salient was 

predicted by the model to be more peaky than in reality. In addition, weak erosion was 

observed during the experiment behind the two gaps near the shoreline. This tendency was 

also described by the model. Furthermore, down-wave of the breakwater and near the center 

of the tank accretion took place and a bar was formed due to wave breaking over the 

structure. This feature was also described by the compound model. 
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6.3.4 Test case No. 4 

The fourth test case refers to relatively long regular waves with period T = 2.0 s and wave 

height Ho = 0.08 m at the wave source where the depth was constant 1.05 m. Thus, similarly 

to test case 2, the wavelength at the toe of the sloping ramp of 1:15 was 3.884 m and the 

corresponding depth to wavelength ratio was d/L ≈ 0.12. However, the nonlinearity parameter 

was higher, ε = H/d ~ 0.18 and the corresponding Ursell number was approximately Ur ≈ 

12.5. The spatial steps were again chosen Δx = Δy = 0.04 m and the time step Δt = 0.008 s. 

The specific test refers to breaking waves of spilling type over the submerged breakwater. 

Both the wave propagation and the morphological evolution of the bed in the lee of the 

structure were simulated by the compound model. The simulation period was 4.3 hrs, 

similarly to the laboratory experiment. A comparison between the measured and the 

computed by the model timeseries of the free surface elevation at the seven wave gauges is 

depicted in Fig. 6.30. 
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Fig. 6.30. Measured and computed by the model timeseries of free surface elevation for test case 4. 

The agreement is fairly good, even at station 3 where there was an under-prediction of the 

wave height in case 2 which referred to waves of the same period. However, at the specific 

station the secondary peaks are again over-pronounced. Moreover, the prediction of the wave 

height at the most down-wave station 4 is accurate, contrary to test case 3 which referred to 

short waves with similar wave height offshore. Finally, similarly to case 2, a slight 

overestimation of the wave height is observed at station 7 which is located at the gap between 

the breakwater and the lateral vertical plate.    

A snapshot of the computed free surface elevation is depicted in Fig. 6.31. The wave 

diffraction is less intense compared to case 3 but wave breaking over the submerged 

breakwater induced a pronounced variation of wave height along the wave crests. As the 

waves were propagating in the lee of the breakwater they underwent a second a breaking near 

the shoreline.  

 

Fig. 6.31. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 4. 
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The computed wave-induced current field above and around the submerged breakwater is 

depicted in Fig. 6.32. Similarly to the previous tests, the two vortices down-wave of the 

breakwater are also formed. The rip currents across the two symmetric gaps are weaker than 

in test 3, having a maximum velocity of approximately 0.12 m/s. 

 

Fig. 6.32. Computed by the model wave-induced current field around and above the submerged 

breakwater for test case 4. 

The evolution of the sandy bed was also simulated by the compound model for 4.3 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.33. 

 

  

Fig. 6.33. View of the initial (at left) and final (after 4.3 hrs of wave action, at right) shoreline for test 

case 4. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.34. 
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Fig. 6.34. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 4 (depths in cm). 
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Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.35. 

 

 

 

Fig. 6.35. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 4. 

The sediment transport rates are reasonably predicted despite some overestimation in the 

area between the breakwater and the middle point of its distance from the shoreline. The 

salient is fairly good described, more flattened than in the previous cases. Only the erosion 

around the middle of the distance of the breakwater from the shoreline is overestimated. 
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In order to get a clear image of the efficiency of the submerged breakwater, the same test 

case was simulated by the model without the presence of the submerged breakwater. A 

comparison of the final bed morphology with and without the structure is depicted in Fig. 

6.36. It can be observed that the specific wave conditions would result to weak erosion at the 

shoreline if the breakwater was not constructed, while its presence leads to accretion and 

stabilization of an additional dry part of the land. 

 

Fig. 6.36. Final computed bathymetry with and without the submerged breakwater for test case 4 

(depths in cm). 

The sediment transport modelling is associated with a considerable uncertainty. In order to 

get a better insight of the model results, their sensitivity to the morphological factor was also 

investigated. The results presented above refered to a morphological factor MF = 50. 

However, this value was increased and decreased by factors 1.5, 2.0 and 3.0 and an inter-

comparison of the computed shorelines is shown in Fig. 6.37. The results were also compared 

with the measured ones. All the simualtions were performed for the same number of time 

steps and thus each run corresponded to a different duration. Since no significant 

morphological change was observed after a specific time when using MF = 50, it comes out 

that the sandy bed reached its equilibrium. Consequently, the differences appearing when 

using larger values of the morphological factor are not attributed to a non-equilibrium state 

but to these large values that have an unrealistic impact on the associated hydrodynamics. 
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Fig. 6.37. Comparison between the final measured shoreline and the ones computed by the model when 

using various values of the morphological factor for test case 4. 

A thorough discussion about the scale effects in movable-bed physical models was 

presented in chapter 5. The model validation in the present chapter refers to laboratory scaled 

measurements and thus a similar discussion can be made concerning the model’s ability to 

simulate morphodynamics at the prototype scale of nature. Due to the absence of field 

measurements, a first answer, though not thorough, is given by the following procedure. It has 

been already mentioned that the specific laboratory experiments corresponded to a geometric 

scale factor of about 𝑁𝐿 ≈ 10 and according to subsection 5.4 this results to a time scale of 

about NT ≈ √10. Although serious considerations have been expressed for the morphological 

time scale (see subsections 5.4 and 5.5), it was also assumed to be 𝑁t,mor ≈ √10. The final 

computed bathymetry of the aforementioned simulation was scaled-up by a 𝑁𝐿  - factor and 

the results are shown in Fig. 6.38 as ‘scaled-up’ curves. In addition, another model run was 

also performed referring to a scaled-up layout with a factor of 𝑁𝐿 for geometric dimensions 

and NT for temporal variations. This model layout is mentioned as ‘prototype’, although no 

specific prototype actually existed for the laboratory experiments. The results of this run are 

also depicted in Fig. 6.38. The agreement is impressively good. It should be mentioned that in 

order to achieve an accurate agreement all length-related quantities had to be scaled-up. For 

example the mean sand diameter, the diameter of the breakwater stones and the fluid viscosity 
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are some of them. This is a convenient possibility when working with numerical models, in 

contrary to physical models where it is difficult to retain the scaling for some parameters, e.g. 

fluid viscosity, etc. Based on this discussion, there is strong evidence that validating the 

numerical model with laboratory-scaled measurements can guarantee valid results for field 

applications too. The validity of this statement is very important for the results presented in 

chapter 7. Nevertheless, a more in-depth investigation of this issue is required. 

 

Fig. 6.38. Comparison between the final bathymetry as computed from the scaled-up results of 

simulation of test case 4 and from a corresponding prototype-scaled layout (depths in m). 

6.3.5 Test case No. 5 

The first 4 tests referred to regular waves, while tests 5-8 to referred to random waves. In 

particular, test case 5 involved irregular waves of a Jonswap spectrum with peak period Tp = 

1.25 s and significant wave height Hso = 0.045 m at the wave source. Hence, this scenario 

corresponded to test case 1 but for irregular wave propagation. The spatial steps were chosen 

Δx = Δy = 0.04 m and the time step Δt = 0.01 s. A negligible percentage of the waves were 

observed to break over the submerged breakwater. Thus, this was a non-breaking scenario. 

Both the wave propagation and the morphological evolution of the bed in the lee of the 
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structure were simulated by the compound model. The simulation period was 5 hrs, similarly 

to the laboratory experiment.  

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.39. The corresponding 

comparison for the wave spectra is depicted in Fig. 6.40, while a snapshot of the computed 

free surface elevation is shown in Fig. 6.41. 

  

  

  

 

Fig. 6.39. Measured and computed by the model timeseries of free surface elevation for test case 5. 
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Fig. 6.40. Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 5. 
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Fig. 6.41. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 5. 

The agreement is generally good. Some errors, mainly concerning the wave phases are 

observed in the timeseries. However, based on Fig. 6.40, it can be claimed that the energy 

transfer to higher harmonics is adequately described. An underestimation of the energy at the 

peak frequency and an overestimation at around 𝑘𝑑 ~ 1.50 is observed at station 3. According 

to the nonlinear analysis performed in chapter 2, an underestimation of the energy density at 

this nondimensional wavenumber would be expected. However, that analysis referred to 

impermable beds, while the bottom permeability may have a significant impact, as also shown 

in subsection 6.2 for the linear properties. In addition, the effect of diffraction should be also 

kept in mind, although it appears to be less intense than in the corresponding regular test case 

1. 

Figure 6.42 shows the computed time-averaged velocities both around and inside the 

submerged breakwater. The velocities are much lower than the ones in the corresponding 

regular wave test 1 and generally the vector field seems much more irregular. The two 

vortices down-wave of the breakwater are less pronounced and two additional symmetric 

eddies are also present upwave of the structure. 
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Fig. 6.42. Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 5. 

The evolution of the sandy bed was also simulated by the compound model for 5 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.43. 

     

Fig. 6.43. View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 5. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.44. 
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Fig. 6.44. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 5 (depths in cm). 
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Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.45. 

 

 

 

Fig. 6.45. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 5. 

The model describes adequately the sediment transport along the three sections, especially 

in the most onshore area. The bathymetry evolution appears to be milder than in the 

corresponding regular wave test No. 1. The bathymetry contours seem to be shifted onshore 

and offshore parallel to their initial position, rather than generating peaky formations. This 
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behavior resembles of 2D, and not so much 3D, wave propagation. The model, in general, 

describes these cross-shore bathymetry changes. 

6.3.6 Test case No. 6 

Test No. 6 involved irregular waves of a Jonswap spectrum with peak period Tp = 2.0 s and 

significant wave height Hso = 0.045 m at the wave source. Hence, this non-breaking scenario 

corresponded to test case 2 but for irregular wave propagation. The spatial steps were chosen 

Δx = Δy = 0.04 m and the time step Δt = 0.01 s. Both the wave propagation and the 

morphological evolution of the bed in the lee of the structure were simulated by the 

compound model. The simulation period was 5 hrs, similarly to the laboratory experiment.  

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.46. The corresponding 

comparison for the wave spectra is depicted in Fig. 6.47, while a snapshot of the computed 

free surface elevation is shown in Fig. 6.48. 
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Fig. 6.46. Measured and computed by the model timeseries of free surface elevation for test case 6. 
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Fig. 6.47. Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 6. 

 

Fig. 6.48. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 6. 

The comparison both at the time and the frequency domains show an underestimation of the 

wave forms and the peak wave energy at stations 3 and 4. However, the spectral shape is 

reasonably reproduced and the energy transfer to higher harmonics is predicted with 

acceptable accuracy. 

The computed time-averaged velocities both around and inside the submerged breakwater 

are shown in Fig. 6.49. The two vortices down-wave of the breakwater are more clearly 

formed than in test case 5 which referred to shorter waves with similar wave height offshore. 

The velocities are of similar magnitude with the ones in the corresponding regular wave test 

2. However, the vortices are more stretched in the present case. Two smaller eddies are also 

present upwave of the structure and close to its heads. 
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Fig. 6.49. Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 6. 

The evolution of the sandy bed was also simulated by the compound model for 5 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.50. 

   

Fig. 6.50. View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 6. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.51. 
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Fig. 6.51. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 6 (depths in cm). 



Chapter 6.  Model extension to porous beds 

 

 

341 

 

Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.52. 

 

 

 

Fig. 6.52. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 6. 

The sediment transport is fairly good estimated in the inner zone. In the middle of the wave tank and 

offshore the model tends to underestimate the transport rates behind the breakwater and towards its 

heads, while near the centerline the sediment load is over-predicted. However, the evolution of the 
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shoreline is reasonably predicted and the areas of accretion and erosion are, in generally, correctly 

described. 

6.3.7 Test case No. 7 

Test No. 7 included irregular waves of a Jonswap spectrum with peak period Tp = 1.25 s and 

significant wave height Hso = 0.08 m at the wave source. Hence, this scenario corresponded to 

test case 3 but for irregular wave propagation. This test included breaking waves and the 

dominant breaking type was spilling. The spatial steps were chosen Δx = Δy = 0.04 m and the 

time step Δt = 0.01 s. Both the wave propagation and the morphological evolution of the bed 

in the lee of the structure were simulated by the compound model. The simulation period was 

5 hrs, similarly to the laboratory experiment.  

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.53. The corresponding 

comparison for the wave spectra is depicted in Fig. 6.54, while a snapshot of the computed 

free surface elevation is shown in Fig. 6.55. 
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Fig. 6.53. Measured and computed by the model timeseries of free surface elevation for test case 7. 
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Fig. 6.54. Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 7. 

 

Fig. 6.55. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 7. 

The spectral agreement at station 2, which is located at the bar crest is fairly good. Although 

the generation of higher harmonics is quite well described over the bar crest,  at the down-

slope of the breakwater the energy transfer to superharmonics is apparently underestimated. 

Thus, a secondary spectral peak formed around f = 1.5 Hz is not captured by the model. 

Furthermore, at the most down-wave station 4, the spectrum is significantly under-predicted. 

This may be attributed to two reasons. At first, an over-pronounced wave breaking by the 

model over the submerged bar and down-wave of it. Secondly, both visual observations 

during the laboratory experiments and the model runs revealed significant diffraction, as also 

shown in Fig. 6.55. The diffracted and refracted waves at the submerged breakwater resulted 

to significant reflection at the side walls which contaminated the propagating wave field. The 

combination of these processes is more intense than in the other irregular tests and despite 

using fully lateral reflective boundaries at the numerical model, the wave forms at station 4 

are not very accurately reproduced. 

The computed time-averaged velocities both around and inside the submerged breakwater 

are shown in Fig. 6.56. Compared to the corresponding regular wave test 3, the rip currents 

and the velocities, in general, are weaker. The two vortices down-wave of the breakwater are 

also formed but the secondary eddies are not formed here in the inner zone, contrary to test 

case 3. 
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Fig. 6.56. Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 7. 

The evolution of the sandy bed was also simulated by the compound model for 5 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.57. 

   

Fig. 6.57. View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 7. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.58. 
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Fig. 6.58. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 7 (depths in cm). 
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Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.59. 

 

 

 

Fig. 6.59. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 7. 

The shoreline's response is reasonably predicted, and so is the accretion close to it. 

However, the erosion in the middle of the distance between the breakwater and the shoreline 

is significantly underestimated, especially when moving from the centerline towards the 

heads of the breakwater. This fact is also highlighted in Fig. 6.59 for the sediment transport 
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rates. Nevertheless, it should be reminded once again that the specific figure refers only to the 

cross-shore sediment transport by making the assumption that the longshore part is negligible.  

6.3.8 Test case No. 8 

The last test No. 8 referred to irregular waves of a Jonswap spectrum with peak period Tp = 

2.0 s and significant wave height Hso = 0.08 m at the wave source. Hence, this scenario 

corresponded to test case 4, but for irregular wave propagation. This test included breaking 

waves and the dominant breaking type was spilling. The spatial steps were chosen Δx = Δy = 

0.04 m and the time step Δt = 0.01 s. Both the wave propagation and the morphological 

evolution of the bed in the lee of the structure were simulated by the compound model. The 

simulation period was 5 hrs, similarly to the laboratory experiment.  

A comparison between the measured and the computed by the model timeseries of the free 

surface elevation at the seven wave gauges is depicted in Fig. 6.60. The corresponding 

comparison for the wave spectra is depicted in Fig. 6.61, while a snapshot of the computed 

free surface elevation is shown in Fig. 6.62. 

  

  



Chapter 6.  Model extension to porous beds 

 

 

349 

 

  

 

Fig. 6.60. Measured and computed by the model timeseries of free surface elevation for test case 8. 
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Fig. 6.61. Comparison of wave spectra computed by the measured and simulated by the model 

timeseries of free surface elevation for test case 8. 

 

Fig. 6.62. Snapshot of the computed surface elevation from a bird's-eye view (at left) and from a plan 

view (at right) for test case 8. 

The agreement between the measurements and the computed results is better for the specific 

test than for test No. 8. The peak energy at all wave gauges is accurately described and so is 

the spectrum shape. Thus, the wave breaking over the permeable structure is also adequately 

reproduced. An underestimation of the energy transfer to superharmonics is also present, 

however it is much reduced compared to test No. 7. This was expected, since this latter test 

referred to shorter waves and the nonlinear properties of the Boussinesq model are more 

accurate in shallower water (see chapter 2). It should be also mentioned that the diffraction 

and refraction at the heads of the breakwater are less intense than in test 7 and consequently 

the reflection from the side walls is also reduced.  

The computed time-averaged velocities both around and inside the submerged breakwater 

are shown in Fig. 6.63. The two eddies down-wave of the breakwater are again present but 
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they are weaker than in the corresponding regular test case 4. In general, the velocities are 

lower than in this latter test. 

 

Fig. 6.63. Computed by the model time-averaged velocities around and above the submerged 

breakwater for test case 8. 

The evolution of the sandy bed was also simulated by the compound model for 5 hrs of 

wave action. A view of the initial and the final shoreline at laboratory is shown in Fig. 6.64. 

   

Fig. 6.64. View of the initial (at left) and final (after 5 hrs of wave action, at right) shoreline for test 

case 8. 

A comparison between the measured and the computed by the model final bed elevation is 

depicted in Fig. 6.65. 
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Fig. 6.65. Initial and final measured bathymetries (above) and comparison between final measured and 

computed bathymetries (below) for test case 8 (depths in cm). 
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Similarly to the previous test cases, an estimation of the cross-shore sediment transport rates 

along sections A, B and C was made from the measured and the computed bathymetry 

changes. Their comparison is depicted in Fig. 6.66. 

 

 

 

Fig. 6.66. Cross-shore total sediment transport loads as estimated from the measured and computed 

bathymetry change along 3 sections for test case 8. 

The shoreline's response and the formation of the salient are fairly good described by the 

model. However, the erosion in the middle of the wave tank is underestimated and also a 

breaking bar that was formed in the laboratory down-wave of the structure is not predicted. 
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6.4 Discussion on model extension to porous beds 

In the present chapter, the compound numerical model described in chapters 3 and 4 was 

extended to account for porous beds. This extension yielded some extra porosity terms in the 

continuity and momentum equations and also introduced an additional vectorial Darcy-

Forchheimer equation for the flow inside the porous medium. Thus, the final version of the 

wave module includes five differential equations: the continuity equation, the two momentum 

equations in x- and y-directions, and the two Darcy-Forchheimer equations in the x- and y-

directions, too. For impermeable beds the wave module reduces to that described in chapter 3. 

The sediment transport and the morphological modules are the ones presented in chapter 4. 

The presented extension modifies the linear and nonlinear mathematical properties of the 

model equations for wave propagation over permeable bottoms. The derivation is based on 

Cruz et al. (1997) and terms of O(1, ε, σ
2
) were retained in the Darcy-Forchheimer equation. 

An enhancement linear operator was also applied in this latter equation, introducing a free 

parameter γ in addition to the free parameters B and B2 which were used to optimize the 

model’s linear properties for impermeable beds. A linear analysis was applied for porous 

bottoms referring to the wave celerity and the damping rate. According to this analysis the 

optimal value of B is 1/18, instead of 1/15 which was obtained for impermeable beds. Hence, 

the former value was used herein for porous seafloors. This is an improvement of the 

presented model compared to its predecessors, which relied on similar, but lower-order 

Boussinesq-type equations (Avgeris et al., 2004; Metallinos et al., 2014). A similar analysis 

can be performed for the linear shoaling characteristics over permeable beds and this may 

propose a modified optimal value for B2, different than 0.0653 which was derived for 

impermeable beds. However, such a linear shoaling analysis was not performed in the present 

thesis and it is left for future research. 

A second improvement of the presented model over its corresponding predecessors is the 

presence of the additional terms of O(σ
2
) in the Darcy-Forchheimer equation. According to 

the linear analysis that was performed, these extra terms improve the result for the wave 

celerity up to approximately 𝑘𝑑 ≈ 1.65. However, with respect to the spatial damping rate, if 

a 10% error is accepted, the equations of O(1, ε, σ
2
) are valid up to 𝑘𝑑 ≈ 1.0, while the ones 

of O(1, ε) only up to 𝑘𝑑 ≈ 0.45, which is only slightly higher than the limit of shallow water. 

Beyond that limit, the error induced by the nonlinear shallow water equations for a porous 

medium increases drastically. Thus, this is a significant improvement, especially when 

simulating wave propagation over permeable submerged breakwaters that are located in 

intermediate water depths. This conclusion was further supported by the results of the 

scenarios simulated in the present chapter. In particular, for the test cases including short 
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waves, the permeable structure lied in the non-dimensional depth range 𝑘𝑑 = (0.37÷1.00). 

Hence, inclusion of the additional terms of O(σ
2
) improved the model results. The 

aforementioned depth range in the long wave test cases was 𝑘𝑑 = (0.23÷0.58) and these 

terms did not have a significant effect on the results. It should be also mentioned, that the 

theoretical analysis performed was a linear one, while a non-linear analysis, similar to the one 

applied in chapter 2 for impermeable beds, is left for future research. Such an analysis is 

important for better understanding and explaining the energy transfer to super- and sub-

harmonics that takes place over permeable submerged bars. 

Some discussion should be also made on the validity of the Darcy-Forchheimer equation 

inside the porous medium. Several researchers have tried to distinguish flow regimes in 

porous media and define the limits between each other. Typically, the Reynolds number 

controls the transition from one zone to the other. However, for porous media there is no clear 

limit for this transition. For example, the nonlinearity experience in non-Darcy flows is not 

always a result of turbulence but it could be due to the inertial effects, as stated above. Thus, 

non-Darcy flow is known to occur in porous media also at low Reynolds numbers. According 

to Dybbs and Edwards (1984) four major regimes can be distinguished: 

 Darcy or laminar flow where the flow is dominated by viscous forces and the pressure 

gradient varies linearly with the flow velocity. 

 At increasing Reynolds numbers, a transition zone is observed leading to flow dominated 

by inertia effects. 

 Further increase of the Reynolds numbers results to an unsteady laminar flow with wake 

oscillations and vortices. 

 For high Reynolds numbers, a highly unsteady and chaotic turbulent flow regime appears 

that is dominated by eddies.  

A diagrammatic representation of the flow regimes in a porous medium is depicted in Fig. 

6.67 after Basak (1977).  

Another issue concerning the correct description of the wave-current interaction refers to the 

transport of the vertical vorticity associated with surf zone currents. This issue has been 

discussed in subsection 3.5 for impermeable beds. In addition to this discussion, it should be 

mentioned that it is also important to retain the vertical vorticity inside the porous medium 

when simulating breaking waves over a porous bed or a permeable submerged breakwater. 

However, formally in the present model, the order of the computed vertical vorticity is not 

exactly consistent with the order of the wave motion itself described by the Boussinesq 

equations. This slight inconsistency is present in almost all Boussinesq-type wave models for 
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impermeable beds and it was also present in Hsiao et al.’s (2002) model for porous beds. The 

methodology introduced by Chen (2006) corrected this inconsistency in the latter model.   

 

Fig. 6.67. Flow regimes in porous media after Basak (1997) (from Amao, 2007, modified). 

The laboratory experiments performed in the context of the present Ph.D. thesis were 

described in chapter 5. They referred to studying the morphological evolution in the lee of a 

submerged breakwater. In parallel, the wave characteristics over and around the permeable 

structure were also studied. The wave transmission coefficients for the eight scenarios are 

presented in table 6.1. The submerged breakwater was placed on a sloping bed. Thus, the 

transmission coefficient should be adjusted since the wave height would also change due to 

shoaling, even in the absence of the structure. Nevertheless, the bed slope was mild, 

approximately 1:15, and thus the transmission coefficient presented in the table is defined as 

the ratio of the wave height at the toe of down-slope of the bar to the wave height at the toe of 

upslope of the bar, defined along the centerline of the wave tank. For completeness, the same 

ratio for a theoretical situation with no breakwater is also mentioned based on linear theory.  

Table 6.1. Wave characteristics and salient width in the various tests. 

Test No. Wave type Hs,o (m) Tp (s) 
𝑲𝒕 = 𝑯2/𝑯1 

(with SB) 

𝑯2/𝑯1 

(without SB) 
     X / S  

(*)
 

(1) Regular 0.045 1.25 0.39 1.03 0.09 

(2) Regular 0.045 2.00 0.61 1.07 0.10 

(3) Regular 0.08 1.25 0.60 1.03 0.15 

(4) Regular 0.08 2.00 0.66 1.07 0.11 

(5) Irregular 0.045 1.25 0.39 1.03 0.07 

(6) Irregular 0.045 2.00 0.65 1.07 0.04 

(7) Irregular 0.08 1.25 0.48 1.03 0.06 

(8) Irregular 0.08 2.00 0.54 1.07 0.07 

(*) See Fig. 6.68 for the definition of symbols. 
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For the irregular test cases, the related wave heights are the significant wave heights. The 

transmission coefficient varies approximately within the range 0.39 ÷ 0.65. It should be kept 

in mind that the porosity was measured approximately λ = 0.52, which is a high value. 

Nevertheless, the efficiency of the breakwater was satisfactory, since the transmitted wave 

height was averagely about 50% reduced compared to the incident one, while in the absence 

of the breakwater the former would be 3-7% increased compared to the latter. In addition, it 

can be deduced that the transmission coefficient is lower for short waves than for longer ones. 

It was also observed during the laboratory experiments that the longer waves tended to be 

influenced less by the presence of the submerged obstacle than the shorter ones. Thus, the 

wave crests of the former remained almost straight during their passing over the bar, while for 

the latter the diffraction effect was increased resulting to an apparent curving of the wave 

crests. This result was also expected from the diffraction coefficients given by Wiegel (1962). 

Consequently, the wave field down-wave of the breakwater was clearly 3D (2DH) for the 

short wave cases, while for the longer ones the corresponding image resembled 2D (1DH) 

wave propagation.  

With respect to bed morphology evolution, in all the scenarios performed a salient was 

formed behind the breakwater and its nondimensional width is depicted in table 6.1. In none 

of them a tombolo was formed. General reservations have been already expressed in chapter 5 

for the possibility or not of a tombolo formation behind a submerged breakwater. Besides, the 

specific geometrical layout with a ratio 𝐵/𝑆 = 0.87 is not expected to result to a tombolo 

even in the case of an impermeable emerged breakwater, so more for permeable submerged 

breakwaters. The definition of the various geometrical parameters is given in Fig. 6.68. In the 

specific layout, the length of the submerged breakwater was 𝐵 = 3.0 m and its distance from 

the initial shoreline was 𝑆 = 3.45 m. It has been already discussed that the side vertical walls 

acted as axes of symmetry and thus the layout corresponded to an array of submerged 

breakwaters. Thus, the distance of the head of the breakwater from the side wall corresponded 

to half the gap length between two consecutive breakwaters, G = 1.0 m.  

In the short wave tests, more peaky salients were formed, while the long wave scenarios led 

to more flattened salients, which seemed like a parallel displacement of the initial almost 

straight shoreline. Furthermore, wave breaking over the submerged bar resulted to hydraulic 

gradients along the wave crests and, consequently, to a flow towards the centerline. This fact 

resulted to an increased peakedness of the corresponding salients in the breaking scenarios. 

The accretion at the shoreline was increased near the centerline and much reduced near the 

side walls. Although the bed elevation was not measured close to the vertical plates, shoreline 

erosion was seldom observed at these areas. Only in test case 3, weak shoreline erosion was 

observed there. Finally, in the breaking scenarios a bar was always formed just behind the 
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breakwater near the centerline. Down-wave of the bar bed erosion was present. The required 

material for the formation of the salient was partly transported from this eroded area, in 

addition to the one agitated at a second breaking zone closer to the shoreline. A third 

contribution was from sand moving towards the centerline from onshore areas close to the 

side walls. 

 

Fig. 6.68. Definition sketch for various geometric parameters. 

The compound model was validated against laboratory tests. These tests were very 

demanding due to the number of complex processes that they combine: wave propagation 

over and through a permeable breakwater, shoaling, refraction, diffraction, breaking, runup 

and also the corresponding bed morphological evolution. Thus, given the complexity of the 

processes, the model behaved, in general, satisfactorily. With regard to wave propagation, two 

types of inaccuracies mainly appeared. Both of them were mostly related to the short wave 

tests. The first one appears at the most down-wave station 4 for tests No. 3 and 7. These tests 

refer to wave breaking of relatively short waves over the submerged breakwater. In these 

scenarios the most intense diffraction effect is observed resulting to significant reflection 

from the side walls. It seems that the model fails to accurately predict this reflection, perhaps 

in addition to some over-estimation of the energy dissipation due to breaking. This result can 

be attributed both to the non-perfectly smooth surface of the experimental lateral plates and 

also to the fact that Eq. (3.70) has been derived assuming a linearized version of water 

equations and, thus, inaccuracies appear for highly nonlinear wave conditions. Consequently, 

the model under-predicts the wave height at station 4 where the waves have become short-

crested. 
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The second type of discrepancies referred to the energy transfer to higher harmonics over 

the bar crest and its down-slope. This inaccuracy is also mainly pronounced in test case 7. As 

already mentioned, the model nonlinear properties have not been studied in detail for 

permeable beds. However, they are expected to be poorer for higher values of the non-

dimensional depth 𝑘𝑑 which are related to short wave tests. This fact, combined with the 

increased side reflection due to the significant diffraction, results to the model’s inefficiency 

to reproduce the secondary spectral peak at higher frequencies in test case 7. Most probably, 

the additional inclusion of terms of O(εσ
2
) in Eq. (6.18) will result in an enhancement of the 

nonlinear properties of the model for porous beds. This is also left for future research. 

With regard to morphodynamics, the model successfully predicted the width of the formed 

salient at the various test cases. However, the computed salients were in most of the cases less 

flattened than the measured ones. On the other hand, the erosion around the middle of the 

distance of the breakwater from the shoreline was in many cases underestimated. The bar 

created down-wave of the submerged breakwater was predicted by the model in the regular 

breaking test cases 3 and 4, but not in the irregular tests 7 and 8. It appears that in these latter 

tests the sediment movement is significantly under-predicted offshore, near the breakwater. 

This fact may be attributed to the above mentioned underestimation of energy transfer to 

higher harmonics in these two cases, which results to some components of the wave train not 

exceeding the critical velocity for sediment movement. 

Another point that should be stressed is the significance of the morphological time scale. 

The usage of a morphological factor with a value up to 50 proved to give accurate results with 

respect to the shoreline response. Values higher than 50 gave unrealistic growth of the created 

salient. This issue requires further investigation. Thus, one should be cautious with the 

selection of the value of the morphological factor, especially when measurements are not 

available in order to calibrate the model. 

In the present chapter the model was extended to account for porous beds and it was 

validated against the laboratory data obtained from experiments including a permeable 

submerged breakwater. In chapter 7, the shoreline’s response to an array of submerged 

breakwater is investigated through a number of numerical experiments with the application of 

the presented compound model. 
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Chapter 7 

Shoreline response to an array of submerged 

breakwaters  

7.1 Introduction 

In chapter 6 the compound model was validated against the laboratory measurements 

performed in the context of the present Ph.D. thesis. The experiments included the 

morphological evolution of a sandy beach behind a permeable submerged breakwater. In all 

the test cases studied the shoreline response led to the formation of a salient. The accurate 

prediction of the shoreline response is of great importance for a shore protection project. 

However, the scientific knowledge and understanding of the related complex processes still 

remain mainly empirical. In particular, a number of practical design rules have been 

proposed, referring to a single or a system of emergent breakwaters. On the other hand, 

similar guidelines for the case of submerged breakwaters are almost entirely absent from the 

international literature. This gap of knowledge was the main motivation for the research 

conducted in the present chapter. This work is far from offering a comprehensive detailed set 

of design rules for submerged breakwaters. However, it presents an investigation of the 

impact of the most important design parameters on the related geomorphological features and 

can give some general guidelines to the practicing engineer.  

Nearshore breakwaters are detached, generally shore-parallel structures that reduce the 

amount of wave energy reaching a protected area. This reduction of wave energy slows the 

littoral drift, produces sediment deposition and a shoreline bulge, so-called salient, behind the 

breakwater. Some longshore sediment transport may continue along the coast behind the 

breakwater. Tombolo is an extreme form of salient, appearing when the shoreline touches the 

breakwater. Examples of tombolos and salients are depicted in Fig. 7.1. 
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(a) 

 

(b) 

 

Fig. 7.1. (a) Tombolo behind a system of emergent breakwaters in Norfolk, England, 2015 (photo: 

Jonathan Webb) and (b) salient behind an array of emergent breakwaters in Presque Isle, Pennsylvania, 

U.S.A. (from Mohr, 1994). 

A salient is the preferred shoreline response for a variety of coastal projects. It allows 

longshore sediment transport to continue through the project area to downdrift beaches. 

Moreover, it provides a recreational swimming environment but limits access for breakwater 

maintenance compared to a tombolo. Salients are likely to predominate when the breakwaters 

are sufficiently far from the shore, short relative to incident wavelength, and relatively 

permeable to waves (low-crested or large gaps with low sediment input). Wave action and 

longshore currents tend to prevent salients from evolving into tombolos. 

Tombolos are likely to form when the breakwaters are close to the shore, long relative to 

incident wavelength, and relatively impermeable (high crest and small gaps with large 

sediment input). Tombolos block longshore transport and promote sediment movement 

offshore by the rip currents formed across the gaps. Although some longshore sediment 
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transport may occur seaward of the breakwater, the aforementioned interruption may result to 

starving downdrift beaches of their normal sediment supply, causing erosion.  

A number of empirical relationships have been proposed for the design of detached 

emergent breakwaters in connection to the formation of salients and tombolos. The key 

variables for this design are: the distance of breakwater from the still shoreline, 𝑆, the length 

of the breakwater structure, 𝐵, the gap distance between adjacent breakwater segments, 𝐺, 

and the average depth at the breakwater structure below the mean water level, 𝑑𝑠. The 

definition of the related key variables is depicted in Fig. 7.2. 

 

Fig. 7.2. Definition of variables related to shoreline response behind an array of breakwaters (from 

U.S. Army Corps of Engineers, 2006, modified). 

For tombolo formation Dally and Pope (1986) recommended: 

 
 𝐵

𝑆
= 1.5 to 2.0 

 
single breakwater (7.1) 

 
 𝐵

𝑆
= 1.5 

 
𝐿 ≤ 𝐺 ≤ 𝐵 segmented breakwater (7.2) 

where 𝐿 is the wavelength at the structure. 

Short breakwaters at greater distance from the shoreline favor salient formation. A wide 

range of conditions with, generally, 𝐵/𝑆 < 1 is believed to result to a salient behind emergent 

breakwaters. In particular, Dally and Pope (1986) recommended: 

 𝐵

𝑆
= 0.5 to 0.67 (7.3) 
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for both single and segmented breakwaters. However, for very long shoreline distances, the 

recommended ratio for a segmented system in order to ensure that tombolos do not form is 

(Dally and Pope, 1986): 

 
 𝐵

𝑆
= 0.125 

 
for long segmented systems (7.4) 

Permeable structures (partly submerged, large gaps) allow sufficient wave energy to 

minimize the chance for tombolo formation. According to Coastal Engineering Manual (U.S. 

Army Corps of Engineers, 2006), a minimal shoreline response results from a ratio 𝐵/𝑆 <

(0.125 ÷ 0.33). Ahrens and Cox (1990) defined a beach response index for emergent 

detached breakwaters: 

 𝐼𝑠 = exp(1.72 − 0.41𝐵/𝑆)   (7.5) 

where the five types of beach response according to Pope and Dean (1986) give values: 

 Permanent tombolo formation: 𝐼𝑠 = 1 ⇒ 𝐵/𝑆 ≈ 4.20 

 Periodic tombolos: 𝐼𝑠 = 2 ⇒ 𝐵/𝑆 ≈ 2.50 

 Well-developed salients: 𝐼𝑠 = 3 ⇒ 𝐵/𝑆 ≈ 1.52 

 Subdued salients: 𝐼𝑠 = 4 ⇒ 𝐵/𝑆 ≈ 0.81 

 No sinuosity: 𝐼𝑠 = 5 ⇒ 𝐵/𝑆 ≈ 0.27 

These results are preliminary and require verification. The various conditions and the 

corresponding shoreline features related to emergent breakwaters are summarized in table 7.1. 

Table 7.1. Conditions for shoreline response behind emergent breakwaters (from Chasten et al., 1993). 

Conditions for the formation of tombolos 

Condition Comments Reference 

𝐵/𝑆 > 2.0  
SPM, U.S. Army Corps of 

Engineers (1984) 

𝐵/𝑆 > 2.0 Double tombolo Gourlay (1981) 

𝐵/𝑆 > 0.67 to 1.0 Tombolo (shallow water) Gourlay (1981) 

𝐵/𝑆 > 2.5 Periodic tombolo Ahrens and Cox (1990) 

𝐵/𝑆 > 1.5 to 2.0 Tombolo Dally and Pope (1986) 
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𝐵/𝑆 > 1.5 Tombolo (multiple breakwaters) Dally and Pope (1986) 

𝐵/𝑆 > 1.0 Tombolo (single breakwater) Suh and Dalrymple (1987) 

𝐵/𝑆 > 2𝐺/𝐵 Tombolo (multiple breakwaters) Suh and Dalrymple (1987) 

Conditions for the formation of salients 

𝐵/𝑆 < 1.0 No tombolo  
SPM, U.S. Army Corps of 

Engineers (1984) 

𝐵/𝑆 < 0.4 to 0.5 Salient Gourlay (1981) 

𝐵/𝑆 = 0.67 to 1.0 Salient Dally and Pope (1986) 

𝐵/𝑆 < 1.0 No tombolo (single breakwater) Suh and Dalrymple (1987) 

𝐵/𝑆 < 2𝐺/𝐵 No tombolo (multiple breakwaters) Suh and Dalrymple (1987) 

𝐵/𝑆 < 1.5 Well-developed salient Ahrens and Cox (1990) 

𝐵/𝑆 < 0.8 to 1.5 Subdued salient Ahrens and Cox (1990) 

Conditions for minimal shoreline response 

𝐵/𝑆 ≤ 0.17 to 0.33 No response Inman and Frautschy (1965) 

𝐵/𝑆 ≤ 0.27 No sinuosity Ahrens and Cox (1990) 

𝐵/𝑆 ≤ 0.5 No deposition Nir (1982) 

𝐵/𝑆 ≤ 0.125 Uniform protection Dally and Pope (1986) 

𝐵/𝑆 ≤ 0.17 Minimal impact Noble (1978) 

 

The ratio 𝐺/𝐵 is also important for salient or tombolo formation. Large gaps allow more 

wave energy to reach the shore to promote salient formation. For a given ratio 𝐺/𝐵, larger 

values of 𝑆/𝑑𝑠 (or 𝑆/𝑋𝑏) mean that the breakwater is located further offshore to support 

salient formation. Obviously, breakwaters located far offshore will have reduced effect on the 

shoreline. Seiji et al. (1987) gave conditions on the 𝐺/𝑆 ratio for no, possible and certain 

erosion, 𝑋𝑔, opposite of the gap. The magnitude of 𝑋𝑔 was not determined, but erosion 

occurred for 𝐺/𝑆 > 0.8.  

Other design factors that influence the functional performance of breakwaters are the crest 

elevation and width, permeability, slope of front face, and type of construction. Nevertheless, 

no general guidelines presently exist. In general, low crests allow more energy to penetrate 
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into the lee of the breakwater to prevent tombolo formation or remove a tombolo by storm 

waves. On the other hand, wide crests on low structures enhance breaking and the energy 

reduction encourages tombolo formation. Permeability is also a preventing factor against the 

formation of tombolos. 

All the aforementioned design rules have been proposed for the case of single or systems of 

emergent detached breakwaters. In contrary, the shoreline response to arrays of submerged 

breakwaters has not been studied systematically and in depth. Thus, similar functional rules 

are rather fragmentary and empirical, with almost no field verification at all. Pilarczyk (2003) 

claimed that the design rules for submerged breakwaters are similar to those of the 

conventional ones with the additional inclusion of the transmission coefficient, 𝐾𝑡 (see also 

Koutsouvela et al., 2007; Burcharth et al., 2007; Karambas et al., 2016). Effectively: 

 For salient formation, the ratio of 𝐵 to 𝑆 should be 𝐵/𝑆 > (1.0 ÷ 1.5)/(1.0 − 𝐾𝑡). In 

particular, the value of the ratio should be close to (1.0 ÷ 1.5)/(1.0 − 𝐾𝑡). 

 For an array of submerged breakwaters, it should be 𝐺𝑆/𝐵2 > 0.5(1.0 − 𝐾𝑡) for salients 

to form. 

 Also, in an array of submerged breakwaters, the formation of a salient requires the 

validity of the double inequality 𝐿 ≤ 𝐺 ≤ 0.8𝐵, with 𝐿 the wavelength at the structure. 

 The transmission coefficient should be approximately 𝐾𝑡 = 0.4 ÷ 0.5.  

The above design rules refer to the formation of salients behind single or systems of 

submerged breakwaters. Pilarczyk (2003) mentions that a tombolo may be formed behind a 

submerged breakwater if this is placed very close to the shoreline. However, reservations are 

expressed about this issue, since in the present thesis, neither the laboratory experiments, nor 

the numerical ones ever led to such a morphological feature. The justification of this 

skepticism was presented in subsection 5.2.2 (see also Karambas et al., 2016). In overall, it is 

difficult to derive general design rules without taking into account the morphological 

processes that take place without the construction of the works, i.e. sediment balance, erosion 

and accretion.  

The very limited number of studies related to the shoreline response to submerged bars 

mainly refer to natural reefs, rather than submerged structures. Although these reefs are often 

associated with shoreline salients, the relative few reported investigations are inconsistent. 

While some investigations suggest that submerged breakwaters may result in larger salients 

than those that would result from an emergent breakwater of similar size, other investigations 

indicate that submerged breakwaters may result in shoreline erosion in the lee of the structure. 

In contrast, erosion is almost never reported in the lee of emergent breakwaters. Therefore, it 
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is likely that the processes governing shoreline response to submerged and emergent 

structures are quite different. 

Black and Andrews (2001) attempted to quantify the shape and dimensions of salients and 

tombolos formed in the lee of natural reefs by visual inspection of aerial photographs of 149 

coastlines in New Zealand and Australia. Tombolos were observed to form when  

𝐵/𝑆 > 0.6, and salients when 𝐵/𝑆 < 2.0. The researchers further extended their analysis to 

present expressions to predict the salient amplitude (the offshore position of the salient apex) 

and the geometric shape of the salient. In particular, they proposed the expression 

 𝑌

𝐵
= 0.5 (

𝐵

𝑆
)

−1.27

 (7.6) 

where 𝑌 = 𝑆 − 𝑋 (see Fig. 7.2 for definitions). 

Hsu and Silvester (1990) presented a corresponding expression for single emergent 

breakwaters: 

 𝑌

𝐵
= 0.68 (

𝐵

𝑆
)

−1.22

 (7.7) 

 

The two curves are depicted in Fig. 7.3. At first sight a submerged reef seems to result to 

larger salients than an emergent breakwater of equal size located in exactly the same offshore 

location. Therefore, one may conclude that engineered submerged structures must similarly 

cause enhanced shoreline accretion. However, such a conclusion is counterintuitive, as one 

would expect a higher degree of wave sheltering in the lee of an emergent breakwater, and 

therefore less energetic wave conditions, leading to more favourable conditions for salient 

growth in its lee. Indeed, Ranasinghe et al. (2001) critisized on the methodology followed by 

Black and Andrews (2001) to assess the critical length scales of natural reefs. Their analysis 

includes several shortcomings that may affect accuarcy. Thus, the results should be treated 

with increased reservation.   



Chapter 7.  Shoreline response to an array of submerged breakwaters 

 

 

376 

 

 

Fig. 7.3. Predictive relationships for salient width behind emergent breakwaters and natural reefs. 

A major limitation of the empirical relationship proposed by Black and Andrews (2001) is 

its inefficiency to clearly differentiate between erosive and accretive shoreline response. 

However, as described by Ranasinghe and Turner (2006), it is difficult to develop a simple 

predictive formula which distinguishes between expected erosion or accretion based on 

geometric and wave characteristics. In particular, field observations have revealed both 

erosion and accretion behind long as well as short submerged structures. The same is true for 

submerged structures with small and large freeboard, both narrow- and broad-crested. The 

shoreline mode (erosion or accretion) also appears to be independent of the magnitude of the 

longshore sediment transport. 

Despite this significant variability of field observations, more consistent results have been 

reported for laboratory experiments and 2DH numerical models. Ranasinghe and Turner 

(2006) described that normal wave incidence over submerged structures may lead to both 

erosion or accretion due to the onshore flow over the structure and the two resulting divergent 

alongshore currents in its lee. On the other hand, under oblique wave incidence, gradients of 

the longshore currents due to the presence of the submerged structure favor shoreline 

accretion. These two different mechanisms are schematically shown in Fig. 7.4. 
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(a)      (b) 

  

Fig. 7.4. Schematic description of nearshore circulation patterns and associated shoreline 

erosion/accretion patterns for (a) shore-normal wave incidence and (b) oblique wave incidence (from 

Ranasinghe and Turner, 2006). 

Ranasinghe et al. (2006) studied both numerically and experimentally the shoreline response 

to multi-functional, V-shaped artificial surfing reefs (the shape of the reef resembles letter V 

from a plan view). Their results indicated that shoreline accretion can be expected when 

𝑆/𝑋𝑏 > 1.5, where 𝑋𝑏 is the surf zone width, while erosion can be expected when 𝑆/𝑋𝑏 <

1.0. In addition, Ranasinghe et al. (2010) studied numerically the mode of shoreline response, 

i.e. shoreline erosion vs shoreline accretion, to a single shore-parallel submerged breakwater. 

They assumed that the beach follows Dean’s (1991) equilibrium profile: 

 ℎ = A𝑥2/3   (7.8) 

where A is a shape parameter governed by 𝑑50 . They also included in their analysis the free 

board, 𝑠𝑏, the total depth at the center of the submerged breakwater, ℎ𝑏, and the deep water 

wave height, 𝐻o. The results of their numerical tests with MIKE 21 are shown in Fig. 7.5 

using a semi-logarithmic scale. They considered both normal and oblique incidence and a 

separation between erosive and accretive shoreline response existed. They also examined the 

effect of the crest width and came to the conclusion that for large free boards it does not affect 

the mode of shoreline response. In contrary, for small free boards, a wider crest width reduces 

the risk of shoreline erosion compared to a narrower one. Intuitively, this result makes sense 

since increased energy dissipation due to wave breaking over the bar is expected in the former 

case. 
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Fig. 7.5. Dependence of the mode of shoreline response from various design parameters for a single 

shore parallel submerged breakwater (from Ranasinghe et al., 2010, modified). 

Koutsouvela et al. (2007) and Koutsouvela (2010) performed a number of numerical 

experiments to study the shoreline response to an array of submerged breakwaters. In the 

former case the wave module was based on the hyperbolic-type mild slope equations, while in 

the latter on Beji and Nadaoka’s (1996) Boussinesq-type equations. They studied the impact 

of a number of design parameters on the morphology evolution, only for normal wave 

incidence and impermeable structures. 

From the above review, it is evident that a systematic and consistent analysis of the 

shoreline response to submerged breakwaters has not been yet reported. In the present 

chapter, a number of numerical experiments is presented in order to study the effect of 

various design parameters on the shoreline evolution. As already mentioned, this analysis 

offers an investigation of the morphological response to the change of important related 

geometrical and wave parameters and not a full set of strict design rules of submerged 

breakwaters.  

7.2 Numerical investigation of shoreline response 

A number of numerical experiments were performed in order to study the impact of some 

important design parameters on the shoreline evolution. An array of five inline, identical 

permeable submerged breakwaters was considered in all the simulations. Among the 

validation tests presented in chapter 6, test case 4 was considered as base scenario for the 

numerical runs performed herein. Thus, the initial bathymetry of test case No. 4 was mirrored 
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along the axis of symmetry at the center of each gap between two adjacent breakwaters. 

Consequently, the compound model was already calibrated for the selected wave conditions 

and the specific initial bathymetry. In addition, it was also validated with respect to the 

shoreline evolution for one of the geometric layouts of the breakwaters, the one also used in 

test case No. 4. The effect of the following six different parameters was examined: 

 The submerged breakwaters’ length – 𝐵 

 The distance of the breakwaters from the initial shoreline - 𝑆 

 The length of the gap between two adjacent breakwaters – 𝐺 

 The porosity of the breakwaters – λ 

 The wave period – T 

 The angle of wave incidence - 𝜃 

In particular, the effect of the first three geometric parameters was studied through 

modification of the ratios 𝐵/𝑆 and 𝐺/𝐵 that are associated with the shoreline response. Five 

sets of numerical experiments were performed, each one modifying 𝐵, 𝑆, 𝐺, λ, T, respectively. 

Each test was repeated for 4 different angles of wave incidence, 𝜃 = 0°, 15°, 30° and 45°, in 

order to also study the effect of this wave parameter. 

7.2.1 Effect of submerged breakwaters’ length 

In test case 4 of the laboratory experiments the breakwater length was 3.0 m and its distance 

from the initial shoreline was 3.45 m, leading to a ratio 𝐵/𝑆 = 0.87. In order to study the 

effect of the structures’ length on the shoreline evolution, 10 different values of the ratio 𝐵/𝑆 

were considered. In particular, the distance 𝑆 = 3.45 m was retained constant and 𝐵 was 

modified in each run giving ratios 𝐵/𝑆 = 0.30, 0.60, 0.90, 1.20, 1.50, 1.80, 2.10, 2.40, 

2.70, 3.00, respectively. The ratio 𝐺/𝐵 was kept constant equal to 1/3 and the wave 

conditions were those of the laboratory test No. 4, i.e. T = 2.0 s, Ho = 0.08 m and the 

simulation period 4.3 hrs. The final shoreline for the 10 test cases is depicted in Figs 7.6 to 

7.15. 
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Fig. 7.6. Final computed shoreline for various angles of wave incidence, 𝐵 = 1.04 m and ratio 

𝐵/𝑆 = 0.30.  

 

Fig. 7.7. Final computed shoreline for various angles of wave incidence, 𝐵 = 2.07 m and ratio 

𝐵/𝑆 = 0.60. 
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Fig. 7.8. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.11 m and ratio 

𝐵/𝑆 = 0.90. 

 

Fig. 7.9. Final computed shoreline for various angles of wave incidence, 𝐵 = 4.14 m and ratio 

𝐵/𝑆 = 1.20. 



Chapter 7.  Shoreline response to an array of submerged breakwaters 

 

 

382 

 

 

Fig. 7.10. Final computed shoreline for various angles of wave incidence, 𝐵 = 5.18 m and ratio 

𝐵/𝑆 = 1.50. 

 

Fig. 7.11. Final computed shoreline for various angles of wave incidence, 𝐵 = 6.21 m and ratio 

𝐵/𝑆 = 1.80. 
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Fig. 7.12. Final computed shoreline for various angles of wave incidence, 𝐵 = 7.25 m and ratio 

𝐵/𝑆 = 2.10. 

 

Fig. 7.13. Final computed shoreline for various angles of wave incidence, 𝐵 = 8.28 m and ratio 

𝐵/𝑆 = 2.40. 
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Fig. 7.14. Final computed shoreline for various angles of wave incidence, 𝐵 = 9.32 m and ratio 

𝐵/𝑆 = 2.70. 

 

Fig. 7.15. Final computed shoreline for various angles of wave incidence, 𝐵 = 10.35 m and ratio 

𝐵/𝑆 = 3.00. 

A snapshot of the free surface elevation for various angles of incidence is depicted in Fig. 

7.16 for the test case with a ratio 𝐵/𝑆 = 3.00. The above results are summarized in Fig. 7.17, 

which represents the variation of the non-dimensional salient width, 𝑋/𝑆, with the ratio 𝐵/𝑆. 
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Fig. 7.16. Snapshots of the free surface elevation for various angles of wave incidence, 𝐵 = 10.35 m 

and ratio 𝐵/𝑆 = 3.00. 

 

Fig. 7.17. Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐵/𝑆 by modifying 𝐵. 

From the analysis performed, it can be seen that the salient width is not a monotonically 

increasing function of the breakwaters length. One may expect longer structures to result to 

longer salients, and eventually to a tombolo formation. However, this appears not be true. In 

particular, a tombolo was never formed in the test cases studied, but also longer breakwaters 

generated longer salients only up to specific limit, approximately 𝐵/𝑆 ≈ 0.90. Beyond this 

limit, increase of 𝐵/𝑆 results to a reduction of 𝑋/𝑆, which is more pronounced for normal 

wave incidence. This behavior is observed up to about 𝐵/𝑆 ≈ 2.0. Further increase of 𝐵/𝑆 

results to a further increase of 𝑋/𝑆, but again this oscillating behavior seems to continue 

beyond 𝐵/𝑆 ≈ 3.0, which was the limit studied in the present Ph.D. thesis. The described 
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shoreline’s behavior is observed, more or less, for all the 4 wave angles studied herein. 

However, as already described in subsection 7.1, the salient width is smaller for shore-normal 

wave incidence, and the larger ones are observed for 𝜃 = 15° − 30°. Nevertheless, in all the 

test cases the non-dimensional salient width lay in the range 𝑋/𝑆 = (0.05 ÷ 0.30), which are 

reduced values compared to their corresponding ones that would be expected for an array of 

emergent breakwaters with similar ratios 𝐵/𝑆. It is noted that 𝑋/𝑆~1 corresponds to a 

tombolo. A similar non-monotonic behavior of the salient width was also observed 

numerically by Koutsouvela (2010). One partial explanation is that as the structure’s length 

increases beyond a limit, the interaction of the two vortices generated in its lee starts to 

become negligible, resulting to a neutral zone behind the center of the structure were no 

significant circulation takes place. However, the phenomenon is more complex since the 

varying length of the permeable breakwaters alters the relative significance of diffraction, 

refraction, breaking, overtopping and flow through the pores. Thus, it is much more difficult 

for a monotonic behavior to be established compared to impermeable, emergent breakwaters. 

The shapes of salients observed are not all similar (see also Black and Andrews, 2001) and in 

most cases, also erosion took place near them. It can be observed both behind the gaps, e.g. 

𝐵/𝑆 ≈ 0.90, as well as behind the structures, e.g. 𝐵/𝑆 ≈ 0.60. Thus, a specific pattern is 

difficult to be recognized. In all the cases, the maximum erosion of the shoreline (onshore 

movement) is less than 30-50% of the maximum width of the nearby salient. However, the 

erosion areas are generally wider than the accretive ones, especially for small ratios 𝐵/𝑆. 

7.2.2 Effect of submerged breakwaters’ distance from shoreline   

The second geometric design parameter that was studied was the distance from the initial 

shoreline to the submerged breakwaters, 𝑆. In particular, 5 different values of the ratio 𝐵/𝑆 

were considered. The breakwaters’ length 𝐵 = 3.0 m was retained constant and 𝑆 was 

modified in each run giving ratios 𝐵/𝑆 = 0.60, 0.87, 1.20, 1.80, 2.00, respectively. The ratio 

𝐺/𝐵 was kept constant equal to 1/3 and the wave conditions were those of the laboratory test 

No. 4, i.e. T = 2.0 s, Ho = 0.08 m and the simulation period 4.3 hrs. The final shoreline for the 

5 test cases is depicted in Figs 7.18 to 7.22.  
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Fig. 7.18. Final computed shoreline for various angles of wave incidence, 𝑆 = 5.0 m and ratio 𝐵/𝑆 =

0.60. 

 

Fig. 7.19. Final computed shoreline for various angles of wave incidence, 𝑆 = 3.45 m and ratio 

𝐵/𝑆 = 0.87. 
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Fig. 7.20. Final computed shoreline for various angles of wave incidence, 𝑆 = 2.5 m and ratio 𝐵/𝑆 =

1.20. 

 

Fig. 7.21. Final computed shoreline for various angles of wave incidence, 𝑆 = 1.67 m and ratio 

𝐵/𝑆 = 1.80. 
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Fig. 7.22. Final computed shoreline for various angles of wave incidence, 𝑆 = 1.50 m and ratio 

𝐵/𝑆 = 2.00. 

The above results are summarized in Fig. 7.23, which represents the variation of the non-

dimensional salient width, 𝑋/𝑆, with the ratio 𝐵/𝑆. 

 

Fig. 7.23. Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐵/𝑆 by modifying 𝑆. 

Figure 7.23 shows that as the submerged breakwaters are placed closer to the shoreline, the 

non-dimensional salient width, 𝑋/𝑆, increases. However, this is true only up to a specific 

limit, i.e. approximately 𝐵/𝑆 ≈ 0.90. Beyond this limit, a further onshore movement of the 

structures results to a reduction of the non-dimensional salient width. As the breakwaters are 

moved onshore and closer or inside the surf zone, the two eddies behind each of them are 

suppressed and merge with the formed rip currents across the gaps. This procedure may even 

result to weak erosion behind some of the breakwaters (see Fig. 7.20). For shore-normal wave 

incidence the ratio 𝑋/𝑆 remains practically independent from 𝐵/𝑆 for a further increase of the 
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latter. In particular, the circulation very close to the shoreline is very weak leading to an 

insignificant evolution of the shoreline. However, when oblique incidence is at play, the non-

dimensional salient width 𝑋/𝑆 increases again with 𝐵/𝑆 for values of the latter greater than 

about 𝐵/𝑆 ≈ 1.20. This distinction was also commented by Ranasinghe and Turner (2006) 

(see also Fig. 7.4). It should be mentioned that in all the cases the free board was 0.05 m, 

regardless of the position of the breakwaters. Similarly to subsection 7.2.1, it is observed that 

the non-dimensional salient widths are again low, within the range 𝑋/𝑆 = (0.05 ÷ 0.35), 

compared the expected corresponding ones behind a similar array of emergent breakwaters.  

7.2.3 Effect of the gap length 

The impact of the length of the gap, 𝐺, between two adjacent submerged breakwaters was 

also studied in the present thesis. In this subsection, the breakwaters’ length and distance from 

the initial shoreline were those of the laboratory test case 4, i.e. 𝐵 = 3.0 m and 𝑆 = 3.45 m, 

respectively, giving a ratio 𝐵/𝑆 = 0.87. Five different values of the ratio 𝐺/𝐵 were 

considered, 𝐺/𝐵 = 0.20, 0.30, 0.40, 0.50 and 0.60. The generated waves had period T = 2.0 s 

and wave height Ho = 0.08 m. Hence, at the region of the structure the wavelength was 

approximately 𝐿 = 3.0 m. Thus, the gap length lay in the range (0.2 ÷ 0.6)𝐿, while for a 

system of emergent breakwaters the formation of a tombolo is only expected if 𝐺 ≥ 𝐿, 

according to Eq. (7.2). However, for an expected salient, such a requirement does not exist. 

The final shoreline for the 5 test cases is depicted in Figs 7.24 to 7.28.  

 

Fig. 7.24. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m and 

ratio 𝐺/𝐵 = 0.20.  
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Fig. 7.25. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m and 

ratio 𝐺/𝐵 = 0.30.  

 

Fig. 7.26. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m and 

ratio 𝐺/𝐵 = 0.40. 
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Fig. 7.27. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m and 

ratio 𝐺/𝐵 = 0.50. 

 

Fig. 7.28. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m and 

ratio 𝐺/𝐵 = 0.60. 

The above results are summarized in Fig. 7.29, which represents the variation of the non-

dimensional salient width, 𝑋/𝑆, with the ratio 𝐵/𝑆. 
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Fig. 7.29. Variation of computed non-dimensional salient width 𝑋/𝑆 with ratio 𝐺/𝐵 by modifying 𝐺. 

Figure 7.29 shows that for shore-normal wave incidence, increase of the gap length results 

to reduction of the salient width. This is true for gap lengths less than, say, 𝐺/𝐵 ≈ 0.45. 

Beyond this limit the ratio 𝑋/𝑆 appears to converge to a low value ~ 0.06. In addition, from 

Figs 7.24 to 7.28, it is concluded that as the gap length reduces, the erosion behind them 

increases. This fact was also commented by Zyserman et al. (2005) and Koutsouvela (2010) 

and it can be attributed to the increase of the rip current velocities. On the other hand, the 

behavior of the shoreline for oblique wave incidence reveals an increase of the salient width 

up to about 𝐺/𝐵 ≈ 0.30, followed by a decrease up to 𝐺/𝐵 ≈ 0.40 ÷ 0.45, and then a further, 

weaker, increase. It also appears that the maximum created salient behind the array of the 

breakwaters has a more or less similar width, regardless of the wave angle. 

7.2.4 Effect of the porosity of submerged breakwaters 

Another parameter that was studied and it is associated with the efficiency of an array of 

submerged breakwaters is their porosity. The permeability of the structure, along with the 

overtopping and the diffraction, are related to the wave transmission coefficient, which is 

associated with morphological response and the shoreline evolution in the lee of the low-

crested breakwaters (Hanson and Kraus, 1991; Pilarczyk, 2003; Cáceres et al., 2005). In the 

present subsection, six different values of the porosity were considered, λ = 0.0, 0.30, 0.35, 

0.40, 0.45 and 0.50, respectively. The case λ = 0.0 refers to impermeable submerged 

breakwaters. The layout considered referred to 𝐵 = 3.0 m, 𝑆 = 3.45 m and 𝐺 = 1.0 m, 

leading to ratios 𝐵/𝑆 = 0.87 and 𝐺/𝐵 = 1/3. The generated waves had a period of T = 2.0 s 

and a wave height of Ho = 0.08 m. The final shoreline for the 6 test cases is depicted in Figs 

7.30 to 7.35. 
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Fig. 7.30. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.0. 

 

Fig. 7.31. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.30. 
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Fig. 7.32. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.35. 

 

Fig. 7.33. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.40. 
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Fig. 7.34. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.45. 

 

Fig. 7.35. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and λ = 0.50. 

Τhe variation of the non-dimensional salient width, 𝑋/𝑆, with the porosity of the submerged 

breakwaters, λ, is depicted in Fig. 7.36 for 𝐵/𝑆 = 0.87 and 𝐺/𝐵 = 1/3. 
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Fig. 7.36. Variation of computed non-dimensional salient width 𝑋/𝑆 with the porosity λ of the 

submerged breakwaters. 

Figure 7.36 shows that increase of the porosity of the submerged breakwaters also results to 

an increase of the salient width. This is true up to λ ≈ (0.35 ÷ 0.40), for all the wave 

directions considered. For shore-normal wave incidence, the ratio  𝑋/𝑆 appears to converge to 

a value of about 0.20 for porosities greater than 0.40. A similar behavior is also observed for 

oblique wave incidence, but for some oscillations around this point. In overall, λ = 0.40 seems 

to be the optimal value for the design of submerged breakwaters, with respect to beach 

accretion. In addition, Figs 7.30 to 7.35 show that increase of porosity also results to 

enhanced erosion behind the gaps between the breakwaters. This conclusion is further 

supported by Fig. 7.37 which shows the wave-induced currents field above and around the 

system of breakwaters for λ = 0.0 and λ = 0.50. In the former case, the breakwaters are 

impermeable and the entire wave energy ‘passes’ over the structures, resulting to a 

pronounced onshore current along the axis of symmetry and two pronounced vortices behind 

the heads. On the other hand, in the case of λ = 0.50, the velocities over the structures are 

much lower and the two eddies weaker, since a portion of the energy goes through the pores. 

Nevertheless, the formed rip currents close to the shoreline are more intense, leading to 

increased erosion behind the gaps. However, these velocities are weakened over a narrow 

zone, and thus the rip currents close to the gaps are more significant in the case of 

impermeable breakwaters. 
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(a) 

 

(b) 

 

Fig. 7.37. Wave-induced current field for shore-normal wave incidence and (a) λ = 0 and (b) λ = 0.50. 
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7.2.5 Effect of wave conditions 

Apart from the geometrical design parameters studied in the previous subsections, the wave 

characteristics are also crucial for the mode of the shoreline response. In order to study their 

effect, a fifth set of numerical experiments was performed. The layout referred to an array of 

5 identical permeable submerged breakwaters with 𝐵 = 3.0 m, 𝑆 = 3.45 m and 𝐺 = 1.0 m, 

leading to ratios 𝐵/𝑆 = 0.87 and 𝐺/𝐵 = 1/3. The effect of the wave period was studied 

through a set of five regular test cases whose characteristics are summarized in table 7.2. The 

second and third columns refer to the wave height at depth 𝑑 = 0.45 m and the wave period, 

respectively. The fourth column refers to the wavelength at the same depth, while LSB is the 

wavelength at 𝑑 = 0.25 m, where the breakwaters were placed. The last two columns include 

the wave slope in deep water and the Ursell number at 𝑑 = 0.45 m, respectively. The final 

shoreline for the 5 test cases is depicted in Figs 7.38 to 7.42. 

Table 7.2. Wave characteristics of the various numerical experiments performed.  

Test No. Ho (m) T (s) Ld=0.45 (m) LSB (m) Hdeep/Ldeep (%) Ur 

S5.1 0.08 1.00 1.492 1.304 13.09 1.96 

S5.2 0.08 1.25 2.122 1.747 5.87 3.95 

S5.3 0.08 1.50 2.728 2.173 3.41 6.53 

S5.4 0.08 2.00 3.884 3.000 1.56 13.24 

S5.5 0.08 2.50 4.998 3.810 0.88 21.93 

 

Fig. 7.38. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.0 s. 
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Fig. 7.39. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.25 s. 

 

Fig. 7.40. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 1.50 s. 
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Fig. 7.41. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 2.0 s. 

 

Fig. 7.42. Final computed shoreline for various angles of wave incidence, 𝐵 = 3.0 m, 𝑆 = 3.45 m, 

𝐺 = 1.0 m, and wave period T = 2.50 s. 

Τhe variation of the non-dimensional salient width, 𝑋/𝐿, with 𝐵/𝐿 and 𝐺/𝐿 is depicted in 

Figs 7.43 and 7.44, respectively. The employed wavelength, 𝐿, refers to the water depth at the 

breakwaters (𝑑 = 0.25 m). 
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Fig. 7.43. Variation of computed non-dimensional salient width 𝑋/𝐿 with the ratio 𝐵/𝐿 for varying 

wavelength. 

 

Fig. 7.44. Variation of computed non-dimensional salient width 𝑋/𝐿 with the ratio 𝐺/𝐿 for varying 

wavelength. 

The above figures show that for shore-normal wave incidence the non-dimensional salient 

width increases with the non-dimensional structures' length up to approximately 𝐵/𝐿 = 1.70. 

Beyond that limit a weak reduction takes place. A similar variation of 𝑋/𝐿 is observed with 

respect to 𝐺/𝐿 and the corresponding maximum occurs at 𝐺/𝐿 = 0.57. On the other hand, for 

oblique wave incidence, a decrease of 𝑋/𝐿 is observed for 𝐵/𝐿 between 1.0 and 1.4 and then 

an increase up to again 𝐵/𝐿 = 1.70. Beyond that limit a weak decrease takes place, which is 

more intense for 𝜃 = 45°.  

The variation of the non-dimensional salient width 𝑋/𝑆 with the wave slope in deep water 

and the Ursell number is depicted in Fig. 7.45. The latter refers to water depth 𝑑 = 0.45 m 

which is located at the toe of the sloping beach. It can be said that, in general, longer waves 
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tend to favor enhanced accretion. Furthermore, the salient width increases for Ursell numbers 

less than 4.0 and then presents insignificant variations.  

(a) (b) 

   

Fig. 7.45. Variation of computed non-dimensional salient width 𝑋/𝑆 with (a) the wave slope in deep 

water and (b) the Ursell number at the toe of the sloping beach where 𝑑 = 0.45 m. 

7.3 Discussion on shoreline response 

In chapter 6, the model was validated against laboratory experiments performed in the 

context of this Ph.D. thesis. The experiment included one single permeable submerged 

breakwater. However, the lateral fully reflective boundaries acted as axes of symmetry in the 

case of shore-normal wave incidence. Thus, practically, the layout represented an array of 

submerged breakwaters. Nevertheless, the restricted number of tests could not offer a detailed 

investigation of the shoreline response to such a system of breakwaters. Numerical models 

have the advantage of simulating a larger number of test cases compared to physical models 

in the same time. Hence, in the present chapter five different sets of numerical experiments 

were performed in order to investigate the effect of some significant design parameters on the 

shoreline response. The simulations included an array of five inline, permeable submerged 

breakwaters and the geometrical and hydrodynamic characteristics of each run are 

summarized in table 7.3. Each test was performed for 

𝜃 = 0° (normal incidence), 15°, 30° and 45°.  

Table 7.3. Characteristics of the various test cases. 

Sets Test No. 𝑯𝒐 (m) T (s) 𝑩 (m) 𝑺 (m) 𝑮 (m) λ 𝑩/𝑺 𝑮/𝑩 

1
st
 s

et
 

(m
o

d
if

y
in

g
 𝑩

) 

S1.1 0.08 2.0 1.04 3.45 0.35 0.52 0.30 0.33 

S1.2 0.08 2.0 2.07 3.45 0.69 0.52 0.60 0.33 

S1.3 0.08 2.0 3.11 3.45 1.04 0.52 0.90 0.33 

S1.4 0.08 2.0 4.14 3.45 1.38 0.52 1.20 0.33 

S1.5 0.08 2.0 5.18 3.45 1.73 0.52 1.50 0.33 

S1.6 0.08 2.0 6.21 3.45 2.07 0.52 1.80 0.33 

S1.7 0.08 2.0 7.25 3.45 2.42 0.52 2.10 0.33 



Chapter 7.  Shoreline response to an array of submerged breakwaters 

 

 

404 

 

S1.8 0.08 2.0 8.28 3.45 2.76 0.52 2.40 0.33 

S1.9 0.08 2.0 9.32 3.45 3.11 0.52 2.70 0.33 

S1.10 0.08 2.0 10.35 3.45 3.45 0.52 3.00 0.33 

 

Sets Test No. 𝑯𝒐 (m) T (s) 𝑩 (m) 𝑺 (m) 𝑮 (m) λ 𝑩/𝑺 𝑮/𝑩 

2
n

d
 se

t 

(m
o

d
if

y
in

g
 𝑺

) 

S2.1 0.08 2.0 3.0 5.00 1.0 0.52 0.60 0.33 

S2.2 0.08 2.0 3.0 3.45 1.0 0.52 0.87 0.33 

S2.3 0.08 2.0 3.0 2.50 1.0 0.52 1.20 0.33 

S2.4 0.08 2.0 3.0 1.67 1.0 0.52 1.80 0.33 

S2.5 0.08 2.0 3.0 1.50 1.0 0.52 2.00 0.33 

3
rd

 se
t 

(m
o

d
if

y
in

g
 𝑮

) S3.1 0.08 2.0 3.0 3.45 0.6 0.52 0.87 0.20 

S3.2 0.08 2.0 3.0 3.45 0.9 0.52 0.87 0.30 

S3.3 0.08 2.0 3.0 3.45 1.2 0.52 0.87 0.40 

S3.4 0.08 2.0 3.0 3.45 1.5 0.52 0.87 0.50 

S3.5 0.08 2.0 3.0 3.45 1.8 0.52 0.87 0.60 

4
th

 se
t 

(m
o

d
if

y
in

g
 λ

) 

S4.1 0.08 2.0 3.0 3.45 1.0 0.00 0.87 0.33 

S4.2 0.08 2.0 3.0 3.45 1.0 0.30 0.87 0.33 

S4.3 0.08 2.0 3.0 3.45 1.0 0.35 0.87 0.33 

S4.4 0.08 2.0 3.0 3.45 1.0 0.40 0.87 0.33 

S4.5 0.08 2.0 3.0 3.45 1.0 0.45 0.87 0.33 

S4.6 0.08 2.0 3.0 3.45 1.0 0.50 0.87 0.33 

5
th

 se
t 

(m
o

d
if

y
in

g
 Τ

) 

S5.1 0.08 1.00 3.0 3.45 1.0 0.52 0.87 0.33 

S5.2 0.08 1.25 3.0 3.45 1.0 0.52 0.87 0.33 

S5.3 0.08 1.50 3.0 3.45 1.0 0.52 0.87 0.33 

S5.4 0.08 2.00 3.0 3.45 1.0 0.52 0.87 0.33 

S5.5 0.08 2.50 3.0 3.45 1.0 0.52 0.87 0.33 

 

It should be stressed that in all the numerical simulations performed sponge layers were 

considered at both lateral boundaries of the domain. The width of both the absorbing 

boundaries was 5.28 m and they were placed to absorb the outgoing wave energy, both due to 

oblique incidence of the generated waves and to wave diffraction. In all figures in the 

previous subsection, the right and left lateral boundaries represented the inner boundaries of 

the sponge layers, and thus only the clear computational domain was presented. However, 

despite the application of the absorbing boundaries, some side reflection always existed, 

causing an artificial numerical diffraction. This fact slightly infected the computational 

domain and hence the narrow areas near the lateral boundaries should be considered as buffer 

zones to establish the desired conditions. 

   In the analysis presented in subsection 7.2 the initial bathymetry was that of test case No. 

4 of the laboratory experiments, mirrored symmetrically along the centerline of each gap 
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between adjacent breakwaters. Thus, the initial shoreline was straight and the maximum 

salient width, 𝑋, was explored as a function of various design parameters. This maximum 

apex was not always formed behind the same one of the 5 breakwaters. In addition to the 

created salients, the shoreline erosion, in general induced behind the gaps, is also a significant 

issue when designing submerged breakwaters as a coastal defense system. This aspect has 

drawn less attention to engineers compared to salients and tombolos. In Fig. 7.46 the variation 

of the non-dimensional maximum erosion width, 𝑋𝑔/𝑆,  is depicted as a function of the non-

dimensional gap length, 𝐺/𝐵 (see Fig. 7.2). The variation of 𝑋𝑔/𝑋 as a function of 𝐺/𝐵 is 

shown in Fig. 7.47. It appears that the maximum erosion of the shoreline lies within the range 

of 20-60 % of its maximum accretion. However, in many cases, the length of the erosion 

zones is larger than the peaky salients. Furthermore, for shore-normal wave incidence, after 

some weak increase, a decrease of the non-dimensional shoreline retreat 𝑋𝑔/𝑆 is observed 

with 𝐺/𝐵. A similar behavior is observed for oblique wave incidence with 𝜃 = (30°-45°). 

However, for 𝜃 ~ 15°, an oscillating response is obtained. 

 

Fig. 7.46. Variation of computed non-dimensional erosion width 𝑋𝑔/𝑆 with the ratio 𝐺/𝐵 (for varying 

gap length). 
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Fig. 7.47. Variation of computed non-dimensional erosion width 𝑋𝑔/𝑋 with the ratio 𝐺/𝐵 (for varying 

gap length). 

The shoreline erosion was also related to the wave conditions in the context of the set of 

numerical experiments described in subsection 7.2.5. The geometrical characteristics of the 

layout in these runs are summarized in table 7.4. The variation of 𝑋𝑔/𝐿 with 𝐺/𝐿 is presented 

in Fig. 7.48 with 𝐿 the wavelength at 𝑑 = 0.25 m, where the breakwaters were placed. It 

appears that an optimal design of an array of submerged breakwaters implies that the gap 

between two adjacent breakwaters is 40-50% of the wavelength. However, this only refers to 

the induced erosion, while the desired accretion should be also taken into account. In addition, 

as already mentioned, only layouts with 𝐺 ≤ 0.8𝐿 have been considered, while larger gap 

lengths up to even (1.0 ÷ 2.0)𝐿 should be studied. This is left as a future research. 

Table 7.4. Characteristics of the layout in the numerical experiments for studying the shoreline erosion. 

Parameter Value 

Breakwaters length - 𝐵 3.0 m 

Distance from initial shoreline - 𝑆  3.45 m 

Gaps length - 𝐺 1.0 m 

Porosity of breakwaters - λ 0.52 

Ratio 𝐵/𝑆 0.87 

Ratio 𝐺/𝐵 0.33 

 

 

Fig. 7.48. Variation of computed non-dimensional erosion width 𝑋𝑔/𝐿 with the ratio 𝐺/𝐿 (for varying 

wavelength). 

Black and Andrews (2001) studied a large number of data sets referring to the shoreline 

response to natural reefs and islands. They applied a calibration analysis and fitted a sigmoid 

curve to the data. This curve gave the non-dimensional cross-shore position of the shoreline, 

𝑦/𝑋, as a function of the non-dimensional longshore coordinate, 𝑥/𝑋 (𝑥 = 0 at the position of 

the salient apex, 𝑦 > 0 in the offshore direction and 𝑋 the salient width as above). This curve 
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is given in Fig. 7.49. The corresponding non-dimensional model results are also shown for 

three selected cases, S1.1, S1.3 and S1.9. The comparison shows that the Black and 

Andrews’s (2001) formula does not describe accurately the shoreline response behind the 

system of submerged breakwaters. However, it should be stressed that the specific formula 

has been proposed based on measurements for natural reefs and islands and not submerged 

coastal structures. In any case, it is difficult to derive a single mathematical formula for 

describing the shoreline response under the combined action of such complex physical 

processes, as the morphological evolution behind arrays of permeable submerged 

breakwaters, in particular when no provision is made for the initial conditions with regard to 

sediment transport rates in the studied area. 

 

Fig. 7.49. Non-dimensional final shoreline as predicted by Black and Andrews (2001) and computed 

by the model for various test cases. 

In chapter 3, a discussion on the computational time of the model was made. It only referred 

to the Boussinesq-type wave module and not to the compound model including the flow 

through the porous media, the sediment transport and the geomorphological modules. Herein, 

a similar investigation was made for the final version of the compound model. Test S1.5 was 

chosen as a case study and it was simulated in three different PCs. The characteristics of three 

processors are shown in table 3.1 from where the 2, 8 and 12-cored processors were 

employed. In all the computations parallel computing was used. The computational domain 

included 771x1105 grid points. The variation of the computational time with the number of 

time steps for the various processors is depicted in Fig. 7.50. 
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Fig. 7.50. Computational time for three different processors for 771x1105 grid points. 

It can be observed that the increase of the number of cores leads to a significant decrease of 

the required computational time. This is mainly true for low number of cores, but as this 

number increases the gain in CPU time is reduced significantly. As a practical conclusion, it 

can be said that simulation of 5 hrs of morphological evolution in a domain of a coastal zone 

with dimensions 1 km x 1 km would require about 1.5-2 days of computational time on an 8-

cored PC similar to the one employed herein. 

In this chapter a numerical investigation of the shoreline response behind arrays of 

permeable submerged breakwaters was performed. The results are far from offering a detailed 

and well-established set of functional design rules for these coastal structures. However, some 

practical conclusions referring to basic design parameters have been derived for their effect 

on shoreline evolution. Nevertheless, a more extensive investigation, both experimental and 

numerical, is definitely required in order to get a deeper insight into the behavior of such 

coastal structures and their efficient multi-parametrical design.  
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Chapter 8 

Conclusions and future research  

8.1 Concluding remarks 

The core aim of the present dissertation was to develop a numerical model that describes the 

morphodynamics in a sandy beach protected by an array of submerged breakwaters. In this 

context, laboratory experiments including a permeable submerged breakwater were also 

performed at the scale of a physical model. The model validation with these measurements 

revealed that the main scope of the thesis was achieved at a satisfactory level. In order to 

fulfill this overarching objective, additional intermediate objectives were also set, as 

described in chapter 1. Thus, the conclusions reached on way to all these objectives are 

presented in the following. 

Coastal erosion is a global problem caused by both natural processes and human activities. 

However, it is also true that, in most cases, it is greatly intensified and accelerated by the 

latter. Thus, humanity and, in particular, coastal engineers are called to find global, as well as 

site-specific solutions in order to protect the vulnerable coastal zones. Coastal defense is a 

dynamic issue raising extensive discussions throughout the international literature. In recent 

years, the scientific and engineering interest has turned to the so-called "mild" protection 

concept, which also include the use of submerged breakwaters. Hence, the present Ph.D. 

thesis can be considered as part of this research field. From the literature review that was 

performed in the context of the thesis, as well as from some examples of submerged 

breakwaters that have been already constructed and monitored, a number o general 

conclusions can be stated: 

 Submerged breakwaters are generally less effective, in technical engineering terms, than 

the emergent ones. 

 They enable increased water renewal compared to conventional breakwaters. 
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 They are environmentally friendlier due to their reduced impact on the biotic and a-biotic 

factors of the coastal area. 

 They are superior by means of aesthetics. 

 They are usually of lower cost. 

The efficiency of the different submerged breakwaters that have been constructed 

worldwide varies greatly. There have been reported cases that erosion was observed in their 

lee. It is true that, until nowadays, their design has been rather empirical, based on experience 

with conventional breakwaters (Pilarczyk, 2003). However, the significant variation of the 

effectiveness of the aforementioned coastal defense projects proves that the physical 

processes associated with submerged and emergent breakwaters can be quite different. Until 

now, no general, consistent and well-established set of design rules has been proposed for 

submerged breakwaters, with regard to the induced bed morphology evolution in their lee. 

Perhaps, due to the increased complexity of such a system and the multiple interacting factors 

at the same time, it is not even possible to derive mathematical formulations that are of broad 

validity. However, our understanding of the mechanisms causing erosion or accretion in the 

lee of a system of permeable submerged breakwaters is not yet cleared up to a level that 

would allow a reliable answer to the aforementioned question (Ranasinghe and Turner, 2006).  

 
Fig. 8.1. Array of submerged breakwaters in Katerini beach, Greece (from Google, 2014). 

The Greek coasts, having a total shoreline length of more than 15000 km, face significant 

erosion problems and the discussion about milder interventions, in terms of coastal defense 

projects, is on-going (Avgeris et al., 2004; Kontaxi and Memos, 2005; Makris et al., 2007; 

Koutsouvela, 2010; Karambas et al., 2012; Metallinos and Memos, 2012; Memos, 2013; 
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Ziros et al., 2014; Koftis et al., 2015). In this context, the first system of submerged 

breakwaters in Greece was constructed in Katerini beach, as shown in Fig. 8.1. Soon after the 

construction, accretion was observed in the leeward side of the works, followed though by 

intense shoreline erosion behind the gaps (Kombiadou et al., 2012). This behavior is another 

proof of the complexity of the morphological processes associated to such works and the 

multiple factors that have to be taken into account in their design. It is also concluded that 

long-term monitoring and field measurements are a necessity for supporting such mild 

protection projects. 

With regard to the main objective of the present Ph.D. thesis the following conclusions can 

be drawn: 

 An integrated 2DH numerical model was developed for predicting the evolution of bed 

morphology in the lee of a system of permeable submerged breakwaters. The model 

embeds enhanced nonlinearity compared to its weakly nonlinear counterparts and the 

sediment transport formulae that are employed are more advanced compared to other 

compound models relying on Boussinesq-type equations. The validation with the 

laboratory measurements performed in the context of the thesis showed satisfactory 

accuracy. The tests referred to various wave conditions, including both regular and 

irregular waves. Thus, it can be claimed that the presented model forms a robust tool for 

studying the complex hydrodynamic and morphodynamic processes related to arrays of 

submerged breakwaters.  

 The presented tool is a compound numerical model incorporating four individual parts, 

namely the wave, the hydrodynamic, the sediment transport and the geomorphological 

modules. On the way to develop the final compound model, each of these parts was 

extensively validated. Thus, the model is generally capable of describing the 

hydrodynamic and morphological processes in coastal zones, regardless of the presence 

of submerged breakwaters. 

 The application of the morphological acceleration factor technique, in combination with 

the increased power of modern computers allows practical applications of compound 

geomorphological models based on phase-resolving wave models. Thus, the present 

model can be practically applied for simulations referring to short-term morphological 

evolution, to the order of hours or a few days. Nevertheless, care must be taken not to 

exaggerate with the value of the morphological factor in order to be able to describe 

realistically the interaction of the wave, hydrodynamic and morphology modules. 
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 3D laboratory experiments including a sandy bed in the lee of a permeable submerged 

breakwater were also conducted in the context of the dissertation. The morphological 

evolution in the entire coastal area and the shoreline response were not far from the ones 

theoretically expected. However, these theoretical predictions did not rely on widely 

accepted criteria since the latter have not been adequately verified. In all the eight 

scenarios considered the ratio of the structure length to its distance from the initial 

shoreline was about 0.87 and in all cases a salient was formed behind the breakwater. 

This is in accordance with Black and Andrew’s (2001) general observation that the 

formation of a salient requires a ratio 𝐵/𝑆 < 2.0. In addition, the beach response index 

defined by Ahrens and Cox (1990) had a value of 𝐼𝑠 ≈ 3.9 which theoretically 

correspond to subdued salients (see subsection 7.1). This result was also verified by the 

present measurements. Black and Andrew’s (2001) analytical expression would predict a 

salient with a non-dimensional width of approximately 𝑋/𝑆 ≈ 0.48, while the maximum 

value observed in these experiments was 0.15. However, it should be mentioned that the 

analytical expression was derived based on measurements referring to natural reefs and 

not man-made rubble mound submerged breakwaters. In addition, Ranasinghe et al. 

(2001) doubted about the validity of Black and Andrew’s (2001) methodology. Briefly, it 

can be concluded that the morphological behavior of submerged breakwaters, including 

the shoreline response, can be also studied in a movable-bed physical model, if care is 

taken for respecting the spatial and time scale laws. In particular, the morphological time 

scale is one of the most difficult parameters to be determined and the availability of field 

observations on this issue is of great importance. 

 Both the laboratory experiments and their simulation by the model showed the formation 

of a salient in the lee of the permeable submerged breakwater. The length and width of 

the salient varied with the wave characteristics.  Shorter waves with larger wave height 

resulted to more peaky salients than longer ones. In addition, regular waves led to wider 

salients (in the cross-shore direction) compared to the corresponding irregular test cases 

with the same significant wave height and peak period. In the present work, neither the 

laboratory nor the numerical experiments ever led to the formation of a tombolo. 

Pilarczyk (2003) mentioned that a tombolo may be formed behind a submerged 

breakwater if this is placed very close to the shoreline. However, reservations are 

expressed about this issue since the mass flux and the rip currents are generated too close 

to the shoreline transporting the sand towards the gaps (see subsection 5.2.2). 

 From the numerical experiments performed it is concluded that the shoreline response to 

an array of submerged breakwaters depends on some core geometrical parameters of the 



Chapter 8.  Conclusions and future research 

 

 

415 

 

layout, namely the length of the structures, 𝐵, their distance from the initial shoreline, 𝑆, 

the gap length, 𝐺, and the porosity of the breakwaters, λ. In addition, the shoreline 

evolution also depends on the wave characteristics, i.e. wave height, period, angle of 

incidence. It can be also said that a critical design parameter is the wave transmission 

coefficient. However, in contrary to emergent breakwaters, these dependencies are not 

generally monotonic. For example, placing the breakwaters more and more close to the 

shoreline does not necessarily lead to an increase of the resulting salient. If the works are 

placed too close to the shoreline, it is possible that erosion occurs instead of accretion. 

Similar considerations are at play for the increase of the structure length. Therefore, it 

can be argued that the morphological processes governing the shoreline response to 

submerged and emergent structures are different because the hydrodynamic behavior of 

these two types of breakwaters is not the same. Due to the increased complexity of the 

associated processes, it is difficult to derive general design rules or simple criteria for 

submerged breakwaters similar to those for emergent ones (see subsection 7.1). A 

numerical investigation on this issue was performed in the present thesis and some 

diagrams were produced quantifying the shoreline evolution as a function of various 

design parameters. Some of the results also referred to the erosion induced behind the 

gaps between adjacent breakwaters. However, these results should be treated as a first 

indication of the effect of the various parameters and further verification with 

measurements, especially in the field, should follow. 

On the way to fulfill the principle objectives of the specific research, some intermediate 

aims were set and achieved. During this procedure additional conclusions were drawn from 

the individual parts of the thesis. The first step was to decide the Boussinesq wave module 

that would form the basis of the compound model. In this context: 

 The 1DH Boussinesq-type model by Karambas and Koutitas (2002) was enhanced with 

respect to nonlinearity. In particular, enhanced equations were derived by retaining 

additional terms of O(ε
2
σ

2
) to the already existing of O(1, ε, σ

2
, εσ

2
) in the original model. 

Following a similar derivation a 2DH version of the equations was derived. From both 

mathematical analysis and numerical applications it was proven that the new model 

offers an improvement over its previous counterpart with respect to nonlinear dispersion 

under highly nonlinear conditions, e.g. close to the surf zone. The linear dispersion and 

shoaling characteristics of the model are very accurate up the limit of deep water, i.e. 

𝑘𝑑 = 3, while the second-order transfer functions are predicted with a maximum error of 

10% up to 𝑘𝑑 ≈ 1.16. Briefly, it can be concluded that the derived basic Boussinesq 

solver forms an upgraded version of its predecessor (Karambas and Koutitas, 2002). In 
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addition, it was considered that the adoption of an even more highly nonlinear model, 

e.g. Madsen and Schäffer (1998), would go beyond the objective of the present thesis 

with its very complex numerical implementation. 

 The basic Boussinesq-type solver was also extended to account for wave propagation 

over permeable beds. This implied the inclusion of an additional Darcy-Forchheimer 

equation for describing the flow through the porous medium. A similar extension was 

presented by Avgeris et al. (2004) based on Karambas and Koutitas (2002) Boussinesq 

model. However, in the present work additional terms of O(σ
2
) were retained in the 

aforementioned equation compared to the ones of O(1, ε) that existed in the latter model. 

From the theoretical analysis performed, it was found that these extra terms are 

significant in intermediate water. In particular, the NSWE for porous media can estimate 

the spatial damping rate up to 𝑘𝑑 ≈ 0.5 within a 10% error. In contrary, if terms of O(σ
2
) 

are also included, the aforementioned limit increases to 𝑘𝑑 ≈ 1.0. Thus, this contribution 

is significant when simulating wave propagation over permeable submerged breakwaters 

located in intermediate waters. This theoretical result was further supported by the 

validation tests referring to short wave propagation (see subsection 6.3).   

The next step was to incorporate a number of additional features to the basic Boussinesq 

solver in order to account for integrated nearshore dynamics. Some important points should 

be highlighted from this task: 

 The wave module was extended to the surf zone by applying the eddy viscosity concept 

(Kennedy et al., 2000; Chen et al., 2000). This formulation was easily incorporated to 

the basic solver and offered good numerical stability properties. The breaking module 

was tested for both spilling and plunging breakers and gave results of reasonable 

accuracy. However, in some cases, an over-estimation of the wave height in the inner 

surf zone was observed. 

 Extension to the swash zone was achieved by applying a modified slot technique 

(Madsen et al., 1997; Kennedy et al., 2000). The applied modification ensured the water 

mass conservation when water is above the top of the slot. Nevertheless, some small 

mass loss still exists when water level is below the top of the slot. In addition, bed 

friction and subgrid turbulent mixing were also incorporated to the model. 

 Due to its nonlinear character, the Boussinesq-type model can offer an inherent 

estimation of the wave-induced current field, while the wave-current interaction is well-

reproduced. This is a significant result since the traditional decoupled process of running 
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consecutively the wave and the hydrodynamic models, apart from being time-

consuming, it also ignores the aforementioned interaction.  

 The hydrodynamic module includes the effect of the undertow. However, it only offers 

estimation of its depth-averaged and near-bed values, rather than its detailed three-

dimensional variation. The latter requires an extra sophisticated module for computing 

the turbulent mechanisms in the wave-current bottom boundary layer. 

 The numerical model relies on a generalized multi-step predictor-corrector scheme. It 

embeds improved numerical stability properties as compared to the Adams-Bashforth-

Moulton predictor-corrector scheme applied in some predecessors of the present model 

(Karambas and Koutitas, 2002; Karambas and Karathanassi, 2004; Memos et al., 2005). 

 The model showed good response to an extensive validation including a number of 

physical wave processes such as shoaling, depth and current refraction, diffraction, 

breaking, run-up, overtopping, nonlinear energy transfer and interactions with the wave-

induced current field. Thus, it can be argued that it forms a quite robust tool for studying 

the most important wave-induced nearshore phenomena. 

 The computational time required for the wave model to run is not prohibitive. 

Indicatively, it can be said that simulation of 20 min of wave propagation in a domain of 

a coastal zone with dimensions 1 km x 1 km would require about 1 day of computational 

time. 

As soon as the wave and hydrodynamic modules were developed and validated, a reliable 

basis was obtained for building the sediment transport and morphology modules. This process 

also offered some important conclusions: 

o The sediment transport module uses as input the results from the Boussinesq-type wave 

model which is phase-resolving. Thus, significant aspects such as the wave skewness and 

asymmetry, wave irregularity, bound and free long waves, wave groups and nonlinear 

interactions are directly taken into account from the intra-wave sediment transport 

formulation. These features are usually excluded when combining sediment transport 

with phase-averaged wave models. 

o The adopted sediment transport formula for the bed load incorporates quite significant 

phase-lag effects (Camenen and Larson, 2006, 2007). The exclusion of these unsteady 

effects may lead to inaccuracies in the magnitude and direction of the computed 

sediment transport rates. This theoretical result was also supported by a sensitivity 

analysis performed for the sediment transport module.  
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o The sediment transport module successfully describes the inception of sediment’s 

movement. This is also due to the accurate associated criterion used which allows the 

estimation of the sediment transport rates even close to the threshold of movement 

(Camenen and Larson, 2006). 

o A critical parameter for the accurate estimation of the sediment transport load was found 

to be the near-bottom reference concentration which affects the calculation of the 

suspended load. This parameter has a high degree of uncertainty, depending also on the 

actual reference level used each time. The model proved to be sensitive to the value of 

this concentration. A too high value may enhance unrealistically the domination of the 

suspension as the main transport mechanism. On the other hand, too low a value may 

lead to the under-estimation of this mechanism. 

o The compound model was validated with a number of 1DH and 2DH tests involving 

sediment transport and bed morphology evolution. In general, it responded with 

reasonable accuracy with respect to the main morphological features, i.e. formation of a 

breaking bar, trough down-wave of the latter, swash berm, foreshore erosion, creation of 

a salient or tombolo. Thus, the presented model forms a reliable tool for studying the 

complex processes of coastal morphology evolution. 

o As already mentioned, the morphological accelerator factor technique proved to be an 

effective method for studying 2DH short-term changes of bed morphology. Indicatively, 

it can be said that simulation of 1hour of real time morphological evolution in a domain 

of a coastal zone with dimensions 1 km x 1 km would require about 3 hours of 

computational time.  

The compound model was also extended to account for porous beds. The last step of the 

dissertation included a number of numerical experiments referring to the shoreline response to 

an array of permeable submerged breakwaters. In particular, the effect of various important 

design parameters on the shoreline evolution was investigated. As mentioned above, a 

number of diagrams were produced to express some features of the shoreline as a function of 

the aforementioned parameters. Therefore, some additional conclusions can be reached: 

 The salient width, 𝑋, was found to be a function of the breakwater length, 𝐵. However, 

in contrary to emergent breakwaters, this function is not monotonically increasing. In 

particular, assuming a constant distance from the breakwaters to the initial shoreline, 𝑆, 

the non-dimensional width 𝑋/𝑆 increased with the ratio 𝐵/𝑆 up to approximately the 

value 0.90 of the latter. Beyond this limit, a weak decrease was observed, up to 

approximately 𝐵/𝑆 ≈ 2.0. Further increase of 𝐵/𝑆 results to a further increase of 𝑋/𝑆, 



Chapter 8.  Conclusions and future research 

 

 

419 

 

but again the oscillating behavior seemed to continue beyond 𝐵/𝑆 ≈ 3.0. A similar 

behavior was observed, more or less, for all the wave angles considered. An explanation 

of this behavior is presented in subsection 7.2.1. 

 The salient width was also found to be a function of the distance from the breakwaters to 

the initial shoreline. In particular, assuming a constant breakwaters’ length, the non-

dimensional width 𝑋/𝑆 increased with the ratio 𝐵/𝑆 up to approximately 𝐵/𝑆 ≈ 0.90. 

Beyond this limit, a further onshore movement of the structures resulted to a reduction of 

the non-dimensional salient width. This behaviour may be attributed to the suppression 

of the two vortices behind the structures and their merging with the formed rip currents, 

a mechanism which counteracts the creation of a salient. This procedure may even result 

to weak erosion behind the breakwaters. For shore-normal wave incidence the ratio 𝑋/𝑆 

remained practically independent of 𝐵/𝑆 for a further increase of the latter. However, 

under oblique wave incidence, the former ratio increased for values of the latter greater 

than 𝐵/𝑆 ≈ 1.20. Comparison between Figs 7.17 and 7.23 reveals that 𝑋/𝑆 is also a 

function of the individual values of 𝐵 and 𝑆 and not only of their ratio. 

 Assuming constant values for 𝐵 and 𝑆 and shore-normal wave incidence, the non-

dimensional salient width, 𝑋/𝑆, was found to be a decreasing function of the non-

dimensional gap length, 𝐺/𝐵, up to a value approximately 0.45 of the latter. Beyond this 

limit, the ratio 𝑋/𝑆 seemed independent of  𝐺/𝐵. On the other hand, under oblique wave 

incidence, an increase of the salient width was observed up to 𝐺/𝐵 ≈ 0.30, followed by 

a decrease up to 𝐺/𝐵 ≈ 0.40÷0.45, and then a further, weaker, increase. 

 Increase of the porosity of the breakwaters, λ, up to a value of about 0.40, resulted to an 

increase of the salient width. Beyond this value, the ratio 𝑋/𝑆 appeared to be 

independent of the porosity for shore-normal waves. On the other hand, for oblique 

incidence, an oscillating behavior was observed around this value. In overall, λ = 0.40 

seemed to be the optimal value for the design of submerged breakwaters, with respect to 

beach accretion. In addition, the increase of porosity resulted to enhanced erosion behind 

the gaps between the breakwaters. 

 The effect of the wave characteristics was also investigated. In overall, the non-

dimensional salient width 𝑋/𝐿 was found to be an increasing function of the non-

dimensional length, 𝐵/𝐿, where 𝐿 is the wavelength at the position of the works, up to 

approximately a value of 1.70 of the latter. This behavior was monotonic for normal 

incidence, but not for oblique one. Beyond this limit, the ratio 𝑋/𝐿 appeared to be 

practically invariant for normal, or almost normal, wave incidence, but decreasing for 
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increased wave angles. Furthermore, it was concluded that lower deep water wave 

steepness favors the shoreline accretion. The same is true for the wave nonlinearity. 

 In general, the observed values of the non-dimensional salient width 𝑋/𝑆 were lower 

compared to the expected ones for a corresponding layout including emergent 

breakwaters. Indeed, some of the considered geometric layouts would be expected to 

even result to the formation of tombolos (𝑋/𝑆 = 1.0), if emergent breakwaters replaced 

the submerged ones. In addition, the shoreline erosion behind the gaps was investigated. 

It appeared that an optimal design of an array of submerged breakwaters implies that the 

gap between two adjacent breakwaters is 40-50% of the wavelength, 𝐿. However, this 

only refers to the induced erosion at the shore facing the gaps, while the desired accretion 

behind the breakwaters should be also taken into account (see 3
rd

 bullet). In addition, as 

already mentioned, only layouts with 𝐺 ≤ 0.8𝐿 have been considered. 

The present subsection summarizes the main conclusions reached during this research. 

Some additional conclusions, of lower importance, can be found in the last subsections of 

each chapter which include the associated discussions.  

8.2 Future research 

This dissertation ends with some suggestions for future research related to the topic 

discussed herein. At first, the performance of additional 3D laboratory experiments involving 

submerged breakwaters on movable beds would be of great value. Efforts have focused on 

developing numerical tools for studying the behavior of such a coastal defense system with 

respect to the morphodynamics. However, there is a significant lack of measurements 

referring to the bed morphology evolution. In the context of the present thesis, some original 

experiments have been performed, but much more are needed. Similar experiments would 

both help in deriving some direct conclusions from the observations, and also obtaining 

datasets for more reliable validation of numerical models. However, the experiments should 

be performed in large wave tanks in order to restrict the associated scale effects. In addition, 

modelling of oblique wave incidence is also important. In this case, large wave tank 

dimensions are required so that there is enough space for the wave-induced longshore current 

to be established. Moreover, a recirculation system for the latter is essential for establishing a 

steady state (Visser, 1991).   

The performance of field measurements is of even greater importance. There is not a great 

number of coastal defense projects worldwide which include submerged breakwaters. Thus, 

there are restricted options for performing in situ measurements referring to bed morphology. 
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However, monitoring of the performance of some of them has been reported (Funakoshi et 

al., 1994; Dean et al., 1997; Jackson et al., 2002), also in Greece (Kombiadou et al., 2012). 

Similar measurements referring to the bed elevation in the lee of submerged breakwaters or 

the shoreline evolution can offer valuable information for a direct evaluation of the efficiency 

of the design and also the validation of numerical models with data in natural scale. 

In addition to the requirement for extra measurements, the research effort could also focus 

on a number of issues related to improving the presented numerical model. At first, the basic 

Boussinesq equations can be extended to include additional terms of O(σ
4
, εσ

4
), similarly to 

other higher-order models (Madsen and Schäffer, 1998; Gobbi et al., 2000). This extension is 

expected to significantly improve the internal kinematics of the model (Gobbi et al., 2000), as 

well as its nonlinear properties. However, this modification will alter the basic solver of the 

wave module since a pentadiagonal algebraic system will have to be solved. A generalized 

Thomas algorithm (Fletcher, 1991) can be employed for accomplishing the solution. 

Furthermore, including higher order nonlinear terms will add to the mathematical complexity 

of the equations and, most probably, it will also intensify the problems related to the nonlinear 

numerical stability. An additional issue that needs some investigation refers to the nonlinear 

shoaling properties of the equations. A Fourier analysis, similar to the one performed herein 

for linear shoaling, can be applied to examine this issue, which can be of importance in the 

near breaking zone.  

Another issue that future research could focus on is the vertical vorticity transport. As 

already mentioned in chapter 3, the order of the embedded vertical vorticity is not exactly 

consistent with the order of the wave motion as described by the Boussinesq equations. This 

inconsistency could be treated by retaining higher-order terms in the series expansion of the 

water particle velocity during the derivation procedure (Chen, 2006). The additional terms 

that will be introduced following this method are usually small in the surf zone, because the 

values of σ
2
 are typically small there. However, they could be significant for the accurate 

computation of the breaking-induced nearshore circulation, as vertical vorticity generated by 

wave breaking can be transported outside the surf zone to deeper water.  

The source function technique for the generation of the waves is another issue that is open 

for improvements. It has been formally derived for the linearized model version. However, 

due to the nonlinearity of the wave equations, spurious free higher-order waves will be 

unintentionally introduced. Thus, higher-order corrections should be used based on the 

theoretical transfer functions associated to Boussinesq equations (see also Madsen and 

Sørensen, 1993). 

With regard to the undertow velocity, the present model accounts for its depth-averaged and 

near bottom values. However, future efforts could focus on incorporating in the model a 
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detailed computation of the variation of the undertow velocity over depth. This would further 

improve the sediment transport estimations. This feature could be added by computing the 

vertical variation of shear stress and the near bed streaming (Deigaard et al., 1988; Rakha et 

al., 1997; Rakha, 1998). The latter, requires an additional module for describing the 

mechanisms in the turbulent wave-current bottom boundary layer (Brøker and Fredsøe, 1984; 

Fredsøe, 1984; Fredsøe et al., 1985). 

Research may also be orientated to numerical issues. For example a staggered Arakawa C-

grid would offer better stability and higher accuracy. In addition, a flux-formulation instead of 

depth-averaged velocities would be more convenient for solving the Boussinesq equations in 

their conservative form (Abbott et al., 1978; Madsen et al., 1997). Furthermore, in order to 

resolve the highly nonlinear phenomena in the surf zone a much finer grid is required 

compared to deep water. This onshore refinement of the grid makes the finite difference 

formulations less attractive, in terms of computational time. Thus, it would be of interest to 

also examine finite element or finite volume formulations using unstructured meshes or 

curvilinear coordinate systems (Shi et al., 2001; Sørensen et al., 2004; Roeber and Cheung, 

2012; Kirby et al., 2013). These unstructured meshes can offer higher degree of flexibility 

when handling computational domains with complex boundaries. Finally, a comparison 

between different modelling techniques for the simulation of wave runup and run-down could 

optimize the associated choice (Brocchini et al., 2002; Militello et al., 2004).   

Another point of interest for future investigation refers to the vertical eddy diffusivity of 

sediments, 𝜀v. In the present thesis, a constant value over depth was considered for this 

coefficient, although the energy dissipation due to wave breaking and wave-current bottom 

friction were taken into account. Thus, it would be interesting to apply a more sophisticated 

approach that relates the eddy diffusivity to the turbulent kinetic energy by implementing a 

(𝑘 - 𝜀) model (Deigaard et al., 1986; Rakha et al., 1997; Rakha, 1998). 

The developed model refers only to non-cohesive material. However, it could be extended 

to also account for cohesive sediments. In order to achieve this, the sediment transport 

module should be considered as consisting of a “water-column” and an “in-the-bed” module. 

The former is related to the solution of an AD-equation which takes into account the organic 

matter. In the latter, the bed is considered to be consisting of multiple layers of different 

levels of density and consolidation (Mehta et al., 1989). The two modules are connected 

through empirical source/sink terms depending on whether the local hydrodynamic conditions 

cause the bed to become eroded or allow deposition to occur. 

With regard to the model’s extension to porous beds, some additional issues require further 

investigation. At first, it would be useful to apply a linear shoaling and a nonlinear analysis of 

the extended equations for permeable bottoms. This procedure will be similar to the Fourier 
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analysis performed in chapter 2 for impermeable beds. In addition, in order to further enhance 

the dispersive and nonlinear characteristics of the wave module, terms of O(εσ
2
) or higher can 

be retained in Darcy-Forchheimer equation. Also, by extending to porous beds the above 

discussion for the conservation of the vertical vorticity, additional terms should be also 

included in this latter equation, following Chen (2006). 

It would be also of interest to investigate the effect of additional design parameters, i.e. free 

board, crest width, slopes, etc., on the shoreline response to submerged breakwaters. This can 

be studied by conducting more numerical experiments. In addition, as already mentioned, 

only gaps with length 𝐺 ≤ 0.8𝐿 were considered in the present dissertation. However, for a 

system of emergent breakwaters, a tombolo may be expected only if  𝐺 ≥ 𝐿 (Dally and Pope, 

1986). Hence, larger gaps with lengths up to (1.0 ÷ 2.0)𝐿 should be also studied. 

Finally, future research should focus on exploiting the powerful recently developed GPU 

(Graphics Processing Unit) technology. This process requires modifications of the algorithm 

and the source code of the presented model. However, it is well worth the effort, since the 

GPU technique may reduce impressively the CPU time when introduced to Boussinesq 

modelling. Indicatively, speed-up factors even higher than 100 have been reported for similar 

2DH models in the international literature as compared to 4-6 for a 12-cored computer using 

the conventional technology. 

References 

Abbott, M. B., Petersen, H. M., and Skovgaard, O. (1978). “On the numerical modelling of short waves 

in shallow water.” J. Hydraul. Res., 16 (3), 173-203. 

Ahrens, J. P., and Cox, J. (1990). “Design and performance of reef breakwaters.” J. Coast. Res., 6 (1), 

61-75. 

Avgeris, I., Karambas, Th. V., and Prinos, P. (2004). “Boussinesq modeling of wave interaction with 

porous submerged breakwaters.” Proc. 29
th

 Int. Conf. on Coastal Eng., J. M. Smith, ed., Lisbon, 

Portugal, 604-616.  

Black, K., and Andrews, C. (2001). “Sandy shoreline response to offshore obstacles: Part 1. Salient and 

tombolo geometry and shape.” J. Coast. Res., Special Issue 29 Natural and Artificial Reefs for 

Surfing and Coastal Protection, pp. 82– 93. 

Brocchini, M., Svendsen, I. A., Prasad, R. S., and Belloti, G. (2002). "A comparison of two different 

types of shoreline boundary conditions." Comput. Methods Appl. Mech. Engrg., 191 (39-40), 4475-

4496). 



Chapter 8.  Conclusions and future research 

 

 

424 

 

Brøker, I., and Fredsøe, J. (1984). “Resulting sediment transport due to non-linear effects in waves.” 

Progr. Rep., 61, ISVA (Inst. Hydrodyn. Hydraul. Eng.), Technical University, Lyngby, Denmark, 

pp. 55-66.   

Camenen, B., and Larson, M. (2006). “Phase-lag effects in sheet flow transport.” Coast. Eng., 53 (5-6), 

531–542. 

Camenen, B., and Larson, M. (2007). “A unified sediment transport formulation for coastal inlet 

application.” Tech. rep. ERDC/CHL CR-07-1, U.S. Army Engineer Research and Development 

Center, Vicksburg, MS, U.S.A., 231 pp. 

Chen, Q. (2006). "Fully nonlinear Boussinesq-type equations for waves and currents over porous 

beds." J. Eng. Mech., 132 (2), 220-230. 

Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., and Chawla, A. (2000). "Boussinesq 

modeling of wave transformation, breaking and runup. II: 2D." J. Waterw. Port Coast. Ocean Eng., 

126 (1), 48-56. 

Dally, W. R., and Pope, J. (1986). “Detached breakwaters for shore protection.” Tech. Rep., CERC-86-

1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, U.S.A. 

Dean, R. G., Chen, R., and Browder, A. E. (1997). “Full scale monitoring study of a submerged 

breakwater.” Coast. Eng., 29 (3-4), pp. 291– 315. 

Deigaard, R., Fredsøe, J., and Brøker Hedegaard, I. (1986). “Suspended sediment in the surf zone.” J. 

Waterw. Port Coast. Ocean Eng., 112 (1), 115-128. 

Deigaard, R., Fredsøe, J., Brøker Hedegaard, I., Zyserman, J., and Andersen, O. H. (1988). “Littoral 

drift model for natural environments.” Proc. 21
st
 Int. Conf. on Coastal Engineering, ASCE, Malaga, 

Spain, pp. 1603-1617.   

Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics. Volume 1: Fundamental and 

general techniques. 2
nd

 edition, Springer Series in Computational Physics, Springer, xiv+401 pp. 

Fredsøe, J. (1984). "Turbulent boundary layer in wave-current motion." J. Hydraul. Eng., 110 (8), 

1103-1120.  

Fredsøe, J., Andersen, O. H., and Silberg, S. (1985). “Distribution of suspended sediment in large 

waves.” J. Waterw. Port Coast. Ocean Eng., 111 (6), 1041-1059. 

Funakoshi, H., Shiozawa, T., Tadokoro, T., and Tsuda, S. (1994). “Drifting characteristics of littoral 

sand around submerged breakwater.” Proc. Int. Conf. on Hydro-technical Eng. for Port and Harbor 

Construction, Yokosuka, Japan, pp. 1157–1178. 



Chapter 8.  Conclusions and future research 

 

 

425 

 

Gobbi, M. F., Kirby, J. T., and Wei, G. (2000). “A fully nonlinear Boussinesq model for surface waves. 

Part 2. Extension to O(kh)
4
.” J. Fluid Mech., 405, 181-210. 

Karambas, Th. V., and Karathanassi, E. K. (2004). “Longshore sediment transport by nonlinear waves 

and currents.” J. Waterw. Port Coast. Ocean Eng., 130(6), 277-286. 

Karambas, Th., Koftis, Ch., Koutandos, E., and Prinos, P. (2012). “Innovative submerged 

structures/vegetation effects on coastal erosion: numerical modeling of hydro-morphological 

processes.” Proc. 22
nd

 Int. Offshore and Polar Eng. Conf., Rhodes, Greece, June 17-22, PP. 1328-

1334. 

Karambas, Th. V., and Koutitas, C. (2002). “Surf and swash zone morphology evolution induced by 

nonlinear waves.” J. Waterway, Port, Coastal, Ocean Eng., 10.1061/(ASCE)0733-

950X(2002)128:3(102), 102-113. 

Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A. (2000). "Boussinesq modeling of wave 

transformation, breaking and runup. I: 1D." J. Waterw. Port Coast. Ocean Eng., 126 (1), 39-47. 

Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., and Grilli, S. T. (2013). "Dispersive tsunami waves in 

the ocean: Model equations and sensitivity to dispersion and Coriolis effects." Ocean Model., 62, 

39-55. 

Koftis, Th., Prinos, P., Galiatsatou, P., and Karambas, Th. (2015). “An integrated methodological 

approach for the upgrading of coastal structures due to climate change effects.” E-proceedings of 

the 36
th

 IAHR World Congress, The Hague, the Netherlands, 28 June - 3 July, 2015.  

Kombiadou K., Krestenitis Y. N., Baltikas V., and Kalantzi G. (2012). “Coastal Erosion Problems in 

Katerini: Methods and Measures.” Protection and Restoration of the Environment XI, Thessaloniki, 

Greece, July 3-6, pp. 758-767. 

Kontaxi, Ch., and Memos, C. (2005). “Submerged breakwaters as artificial habitats.” Proc. XXXI IAHR 

Cong., Seoul, South Korea, pp. 3967-3975. 

Koutsouvela, D. (2010). "Soft shore protection methods against coastal erosion: submerged 

breakwaters." Ph.D. thesis, University of the Aegean, Greece (in greek). 

Madsen, P. A., and Schäffer, H. A. (1998). “Higher-order Boussinesq-type equations for surface 

gravity waves: derivation and analysis.” Phil. Trans. R. Soc. Lond. A, 356(1749), 3123-3184. 

Madsen, P. A., and Sørensen, O. R. (1993). “Bound waves and triad interactions in shallow water.” 

Ocean Eng., 20(4), 359-388. 

Madsen, P. A., Sørensen, O. R., and Schäffer, H. A. (1997). "Surf zone dynamics simulated by a 

Boussinesq type model. Part I. Model description and cross-shore motion of regular waves." Coast. 

Eng., 32 (4), 255-287. 



Chapter 8.  Conclusions and future research 

 

 

426 

 

Makris, Ch., Avgeris, I., and Memos, C. “Hydraulic Behaviour of Submerged Breakwaters: a Case 

Study.” Proc. 4
th

 PDCE Conference, Black Sea Coastal Association (BSCA), Varna, Bulgaria. 

Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B., and Teeter, A. M. (1989). “Cohesive Sediment 

Transport. I: Process Description.” J. Hydraul. Eng., 115 (8), 1076-1093. 

Memos, C. (2013). “Submerged Coastal Structures: Overview of Some Recent Results.” 35
th

 IAHR 

World Congress, 8-13 September, Chengdu, China (Invited Lecture). 

Memos, C. D., Karambas, Th. V., and Avgeris, I. (2005). “Irregular wave transformation in the 

nearshore zone: experimental investigations and comparison with a higher order Boussinesq 

model.” Ocean Eng., 32 (11-12), 1465-1485. 

Metallinos, A. S., and Memos, C. D. (2012). “Wave-induced kinematics inside submerged porous 

structures.” J. Hydraul. Res., 50 (4), 388-394. 

Militello, A., Reed, C. W., Zundel, A. K., and Kraus., N. C. (2004). "Two-Dimensional Depth-

Averaged circulation model M2D: version 2.0, Report 1, technical documentation and user’s 

guide." US Army Corps of Engineers, ERDC/CHL TR-04-2. 

Pilarczyk, K. W. (2003). “Design of low-crested (submerged) structures – an overview –.” 6
th

 

International Conference on Coastal and Port Engineering in Developing Countries, Colombo, Sri 

Lanka. 

Rakha, K. A. (1998). “A Quasi-3D phase-resolving hydrodynamic and sediment transport model.” 

Coast. Eng., 34 (3-4), 277–311. 

Rakha, K. A., Deigaard, R., and Brøker, I. (1997). “A phase-resolving cross-shore transport model for 

beach evolution.” Coast. Eng., 31 (1-4), 231-261. 

Ranasinghe, R., Hacking, N., and Evans, P. (2001). “Multi-functional artificial surf breaks: a review.” 

Rep., No. CNR 2001.015, NSW Dept. of Land and Water Conservation, Parramatta, Australia. 

Ranasinghe, R., and Turner, I. L. (2006). “Shoreline response to submerged structures: A review.” 

Coast. Eng., 53 (1), 65-79. 

Roeber, V., and Cheung, K. F. (2012). “Boussinesq-type model for energetic breaking waves in 

fringing reef environments.” Coast. Eng., 70, 1-20. 

Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q., and Kennedy, A. B. (2001). “A fully nonlinear 

Boussinesq model in generalized curvilinear coordinates.” Coast. Eng., 42(4), 337–358. 

Sørensen, O. R., Schäffer, H. A., and Sørensen, L. S. (2004). “Boussinesq-type modelling using an 

unstructured finite element technique.” Coast. Eng., 50 (4), 181-198. 



Chapter 8.  Conclusions and future research 

 

 

427 

 

Visser, P. J. (1991). "Laboratory measurements of uniform longshore currents." Coast. Eng., 15 (5-6), 

563-593. 

Ziros, A., Mandelou, M., and Memos, C. (2014). “Velocity measurements over a submerged natural 

breakwater at Sounion area.” Proc. 6
th
 National Conference of Management and Improvement of 

Coastal Zone, Athens, Greece, 24-27 November, pp. 33-42 (in greek). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8.  Conclusions and future research 

 

 

428 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



429 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



430 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Εξώφυλλο.pdf
	Εσώφυλλο+copyright.pdf
	Quotes page.pdf
	Preface.pdf
	Εκτενής Περίληψη.pdf
	Abstract.pdf
	Contents.pdf
	List of Figures.pdf
	List of Tables.pdf
	List of Symbols.pdf
	Chapter 1.pdf
	Chapter 2.pdf
	Chapter 3.pdf
	Chapter 4.pdf
	Chapter 5.pdf
	Chapter 6.pdf
	Chapter 7.pdf
	Chapter 8.pdf

