

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

<u>Θέμα: Χρήση νανοϋλικών για τη βελτίωση της απόδοσης θερμικών</u> <u>ηλιακών συλλεκτών στο Solidworks.</u>

Επιμέλεια: Κωνσταντίνος Βέργος Επιβλέπων καθηγητής: Χρήστος Τζιβανίδης

Αθήνα 2016

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΛΗΨΗ
Κεφάλαιο 1: Θεωρητικό Μέρος5
1.1 Ηλιακή Ενέργεια5
1.2 Ηλιακός συλλέκτης5
1.2.1 Κατηγορίες ηλιακών συλλεκτών
1.2.2 Επίπεδος ηλιακός συλλέκτης8
1.2.3 Μετάδοση θερμότητας σε επίπεδο ηλιακό συλλέκτη
1.3 Πλάκα απορρόφησης11
Κεφάλαιο 2: Κατασκευή του επίπεδου ηλιακού συλλέκτη μέσω του
Solidworks 12
2.1 Μέρη του ηλιακού συλλέκτη12
2.1.1 Εξωτερικό περίβλημα12
2.1.2 Πλάτη συλλέκτη19
2.1.3 Μόνωση πλάτης20
2.1.4 Πλευρική μόνωση23
2.1.5 Απορροφητής25
2.1.6 Σωληνώσεις απορροφητή (risers)
2.1.7 Συλλέκτες (headers)
2.1.8 Κάλυμμα32
Κεφάλαιο 3: Συναρμολόγηση του ηλιακού συλλέκτη
3.1 Δημιουργία υδροσκελετού34
3.2 Συναρμολόγηση υδροσκελετού-μόνωσης πλάτης
3.3 Εισαγωγή πλευρικής μόνωσης 42
3.4 Εισαγωγή πλάκας απορρόφησης 46
3.5 Εισαγωγή εξωτερικού περιβλήματος (πλαισίου)
3.6 Εισαγωγή πλάτης και καλύμματος51
Κεφάλαιο 4: Προσομοίωση μέσω του Flow Simulation
4.1 Επιλογή δεδομένων και αρχικών συνθηκών του προβλήματος 56
4.2 Ορισμός υπολογιστικού τομέα62

4.3	Προσθήκη υλικών του ηλιακού συλλέκτη			
4.4	Προσθήκη οριακών συνθηκών 68			
4.5	Προσθήκη ακτινοβολούντων επιφανειών			
4.6	Προσθήκη των στόχων του προβλήματος			
4.7	Εισαγωγή πλέγματος 80			
4.8	Τρέξιμο του προγράμματος 82			
Κεφάλαιο 5: Εισαγωγή στα νανοϋλικά85				
5.1	Ιδιότητες των νανορευστών			
5.2	Προσθήκη νέων ρευστών στο Solidworks88			
Κεφάλαιο 6: Αποτελέσματα94				
6.1	Θερμικός βαθμός απόδοσης94			
6.2	Παράγοντες ηλιακού συλλέκτη98			
6.3	Συντελεστής συναγωγής h και αδιάστατοι αριθμοί της ροής του			
ρευ	στού104			
6.4	Κατανομές θερμοκρασίας σε διάφορα σημεία του συλλέκτη 109			
	6.4.1 Θερμοκρασία του ρευστού109			
	6.4.2 Θερμοκρασία στην έξοδο του συλλέκτη			
	6.4.3 Θερμοκρασία πλάκας απορρόφησης			
	6.4.4 Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος 118			
	6.4.5 Θερμοκρασία σε διάφορες τομές του ηλιακού συλλέκτη 120			
6.5	Κατανομές ταχύτητας σε διάφορα σημεία του συλλέκτη			
6.6	Γράφημα μήκους-θερμοκρασίας ρευστού του 5 ^{ου} σωλήνα για			
όλε	ς τις θερμοκρασίες127			
ΣΥΜΠΕΡΑ	ΣΜΑΤΑ131			
ΒΙΒΛΙΟΓΡΑ	ΔΦΙΑ132			
ΠΗΓΕΣ				
ΑΡΘΡΑ				

<u>ΠΕΡΙΛΗΨΗ</u>

Στη συγκεκριμένη διπλωματική εργασία θα μελετηθεί η επίδραση που έχουν τα νανοϋλικά, εάν προστεθούν σε ένα ρευστό, στον θερμικό βαθμό απόδοσης ενός ηλιακού συλλέκτη. Συγκεκριμένα, θα γίνει σύγκριση μεταξύ τριών διαφορετικών εργαζόμενων μέσων, νερού, λαδιού και νανορευστού τα οποία θα προσαχθούν σε έναν τυπικό επίπεδο ηλιακό συλλέκτη, απλού καλύμματος και επιλεκτικής επιφάνειας απορροφητή. Η σχεδίαση θα γίνει μέσω του προγράμματος Solidworks και η προσομοίωση μέσω του Solidworks Flow Simulation.

Στο πρώτο κεφάλαιο θα γίνει εισαγωγή στο αντικείμενο της ηλιακής ενέργειας και στη λειτουργία του ηλιακού συλλέκτη. Στα επόμενα δύο κεφάλαια θα παρουσιασθεί ο τρόπος κατασκευής και συναρμολόγησης του επίπεδου ηλιακού συλλέκτη, πάνω στον οποίο θα γίνει η μελέτη, μέσω του προγράμματος Solidworks. Στη συνέχεια, στο 4° κεφάλαιο θα μελετηθεί η προσομοίωση μέσω του Flow Simulation του Solidworks, ενώ στο 5° κεφάλαιο θα γίνει εισαγωγή στα νανοϋλικά και στις ιδιότητές τους. Τέλος, στο τελευταίο κεφάλαιο της εργασίας θα παρουσιασθούν τα αποτελέσματα της προσομοίωσης, δηλαδή οι θερμοκρασίες των ρευστών και των τμημάτων του ηλιακού συλλέκτη με σκοπό τον υπολογισμό των θερμικών βαθμών απόδοσης και τη σύγκρισή τους. Ακόμα, θα γίνει σύγκριση μεταξύ των τριών διαφορετικών εργαζόμενων μέσων για διάφορα μεγέθη όπως θερμοκρασία και ταχύτητα σε διάφορες χαρακτηριστικές θέσεις του ηλιακού συλλέκτη με σκοπό να τονιστούν οι ιδιαιτερότητες του κάθε μέσου, καθώς και τα πλεονεκτήματα και τα μειονεκτήματα που έχουν.

4

Κεφάλαιο 1: Θεωρητικό Μέρος

1.1 Ηλιακή Ενέργεια

Ο ήλιος εκπέμπει τεράστια ποσότητα ενέργειας, η οποία εμφανίζεται είτε ως φωτεινή ενέργεια (φως), είτε ως θερμότητα είτε ως ενέργεια ακτινοβολίας. Η εκμετάλλευση της ηλιακής ενέργειας χωρίζεται σε τρεις κατηγορίες συστημάτων: τα παθητικά ηλιακά συστήματα, τα ενεργητικά ηλιακά συστήματα και τα φωτοβολταϊκά συστήματα. Τα δύο πρώτα εκμεταλλεύονται τη θερμότητα που εκπέμπεται μέσω της ηλιακής ακτινοβολίας, ενώ τα φωτοβολταϊκά συστήματα μετατρέπουν την ηλιακή ακτινοβολία σε ηλεκτρικό ρεύμα.

1.2 Ηλιακός συλλέκτης

Ο ηλιακός συλλέκτης είναι ένας ειδικής μορφής εναλλάκτης θερμότητας, που μετατρέπει την ηλιακή ακτινοβολία σε θερμότητα (ενεργητικό ηλιακό σύστημα). Πιο αναλυτικά, η ηλιακή ακτινοβολία πέφτει σε μια πλάκα η οποία απορροφά την ακτινοβολία κι έτσι αυξάνει τη θερμοκρασία της. Η πλάκα με τη σειρά της εκπέμπει μεγάλου μήκους κύματος ακτινοβολία (θερμική ακτινοβολία) για την οποία το τζάμι που καλύπτει την πλάκα είναι σχεδόν αδιαφανές. Έτσι, η μεγάλη μήκους κύματος ακτινοβολία παγιδεύεται ανάμεσα στην πλάκα και το τζάμι, με αποτέλεσμα να αυξάνεται η θερμοκρασία του ρευστού που διέρχεται μέσα στους σωλήνες οι οποίοι βρίσκονται σε επαφή με το πίσω μέρος της πλάκας. Η προαναφερθείσα λειτουργία αφορά τους επίπεδους ηλιακούς συλλέκτες.

1.2.1 Κατηγορίες ηλιακών συλλεκτών

Οι ηλιακοί συλλέκτες χωρίζονται στους επίπεδους συλλέκτες, τους πλαστικούς συλλέκτες και τους συλλέκτες σωλήνων κενού. Οι πλαστικοί συλλέκτες διαφέρουν από τους επίπεδους στο ότι αποτελούνται μόνο από τον απορροφητή, ο οποίος αναπτύσσει θερμοκρασίες 5-15°C πάνω από τη θερμοκρασία του περιβάλλοντος και εφαρμόζονται κυρίως για τη θέρμανση πισινών. Οι συλλέκτες κενού διαφοροποιούνται από τους επίπεδους ηλιακούς συλλέκτες στον τρόπο απορρόφησης της ηλιακής ακτινοβολίας. Αποτελούνται από πολλούς γυάλινους σωλήνες, κάθε ένας από τους οποίους περιέχει μια απορροφητική επιφάνεια, από τους οποίους περνάει το θερμοαπαγωγό μέσο. Στον γυάλινο σωλήνα δημιουργείται κενό αέρος, εξού και η ονομασία τους.

Εικόνα 1.2: Επίπεδος ηλιακός συλλέκτης

Εικόνα 1.3: Πλαστικός ηλιακός συλλέκτης

Εικόνα 1.4: Ηλιακός συλλέκτης με σωλήνες κενού

Μια άλλη κατηγοριοποίηση των ηλιακών συλλεκτών είναι σε επίπεδους και συγκεντρωτικούς. Ο επίπεδος ηλιακός συλλέκτης είναι ακίνητος και συλλέγει την μέγιστη ακτινοβολία του ήλιου όταν τον έχει ακριβώς απέναντί του. Όλες τις άλλες φορές βλέπει τον ήλιο υπό γωνία και η ενεργή επιφάνεια είναι μικρότερη από την ολική με αποτέλεσμα το χάσιμο ενέργειας. Από την άλλη, στους συγκεντρωτικούς ηλιακούς συλλέκτες η ηλιακή ακτινοβολία, αφού περάσει από το τζάμι, προσπίπτει σε κοίλη κυλινδρική κατοπτρική επιφάνεια όπου ανακλάται και συγκεντρώνεται σε γραμμική εστία. Στην εστία αυτή είναι τοποθετημένος ο αγωγός του απορροφητήρα που κυκλοφορεί το ρευστό. Στο κάτω μέρος των διάφανων σωλήνων κενού έχει είναι σχετικά μικρότερη έχουμε αφ' ενός περισσότερη προσπίπτουσα ακτινοβολία αλλά και μικρότερες απώλειες προς το περιβάλλον. Αυτό είναι και το πλεονέκτημά τους. Το μειονέκτημά τους όμως είναι ότι συγκεντρώνουν μόνο την άμεση ακτινοβολία και όχι τη διάχυτη. Επίσης, χρειάζονται πολύπλοκοι μηχανισμοί που ανεβάζουν το κόστος.

1.2.2 Επίπεδος ηλιακός συλλέκτης

Συγκεκριμένα, ο επίπεδος ηλιακός συλλέκτης ο οποίος και θα μελετηθεί, διαφέρει από τον συγκεντρωτικό συλλέκτη στα εξής: α) Οι επίπεδοι ηλιακοί συλλέκτες χρησιμοποιούνται σε εφαρμογές που απαιτούν απόδοση ενέργειας σε μέσες θερμοκρασίες δηλαδή μέχρι περίπου 100°C πάνω από τη θερμοκρασία του περιβάλλοντος. β) Εκμεταλλεύονται και την άμεση και τη διάχυτη ακτινοβολία. γ) Δεν απαιτούν μηχανισμό κίνησης για την παρακολούθηση του ηλίου και συνεπώς είναι μηχανικά απλούστεροι των συγκεντρωτικών συλλεκτών και απαιτούν μικρή μόνο συντήρηση. δ) Κύριες εφαρμογές των επίπεδων ηλιακών συλλεκτών είναι η θέρμανση νερού χρήσης και η θέρμανση κτιρίων ενώ στις δυνατές εφαρμογές συμπεριλαμβάνεται ο κλιματισμός και η παραγωγή θερμότητας για βιομηχανική χρήση.

Ο συλλέκτης αυτός περιλαμβάνει μια μαύρη, συνήθως επίπεδη μεταλλική επιφάνεια, η οποία απορροφά την ακτινοβολία και θερμαίνεται (πλάκα απορρόφησης). Πάνω από την απορροφητική επιφάνεια βρίσκεται ένα διαφανές κάλυμμα (συνήθως από γυαλί ή πλαστικό) που παγιδεύει τη θερμότητα (φαινόμενο θερμοκηπίου). Σε επαφή με την απορροφητική επιφάνεια τοποθετούνται λεπτοί σωλήνες μέσα στους οποίους διοχετεύεται κάποιο υγρό, που απάγει την θερμότητα και τη μεταφέρει, με τη βοήθεια μικρών αντλιών (κυκλοφορητές), σε μια μεμονωμένη δεξαμενή αποθήκευσης. Ακόμα, ο συλλέκτης περιέχει μόνωση της πίσω επιφάνειας (πλάτης) και των παράπλευρων επιφανειών, ώστε να μειώνονται οι θερμικές απώλειες, καθώς και πλαίσιο που περιβάλλει τον συλλέκτη. Το πιο απλό και διαδεδομένο σήμερα ενεργητικό ηλιακό σύστημα θέρμανσης νερού είναι ο ηλιακός θερμοσίφωνας.

8

Στην παρακάτω εικόνα φαίνονται αναλυτικά τα μέρη ενός επίπεδου ηλιακού συλλέκτη.

Οι επίπεδοι συλλέκτες τοποθετούνται εστραμμένοι προς τον ισημερινό (γ=0° για το βόρειο ημισφαίριο και γ=180° για το νότιο ημισφαίριο) και με κλίση ως προς το οριζόντιο επίπεδο, β, τέτοια ώστε να μεγιστοποιείται η προσπίπτουσα ακτινοβολία κατά την περίοδο του έτους που ενδιαφέρει η χρησιμοποίηση του συλλέκτη. Συγκεκριμένα, για μέγιστη ετήσια ενέργεια απαιτείται κλίση συλλέκτη ίση με το γεωγραφικό πλάτος, δηλαδή β=φ. Για μέγιστη ενέργεια θέρους απαιτείται κλίση κατά 15° μικρότερη του γεωγραφικού πλάτους, β=φ-15° και για μέγιστη ενέργεια χειμώνος απαιτείται κλίση συλλέκτη κατά 15° μεγαλύτερη του γεωγραφικού πλάτους, β=φ-15°. Τυχόν αποκλίσεις από τις παραπάνω τιμές της κλίσης του συλλέκτη της κλίσης β κατά 15° μειώνει την ενέργεια μόνο κατά 5%.

1.2.3 Μετάδοση θερμότητας σε επίπεδο ηλιακό συλλέκτη

Εικόνα 1.6: Μετάδοση θερμότητας σε επίπεδο ηλιακό συλλέκτη

Για την ανάπτυξη του φαινομένου του θερμοκηπίου στους επίπεδους ηλιακούς συλλέκτες υπάρχουν κάποιες κρίσιμες παράμετροι.

- Η διαπερατότητα της γυάλινης επιφάνειας (καλύμματος) στην ηλιακή ακτινοβολία, η οποία θα πρέπει να είναι όσο το δυνατόν μεγαλύτερη.
- Η απορροφητικότητα της πλάκας στην ηλιακή ακτινοβολία, η οποία θα πρέπει να είναι όσο το δυνατόν μεγαλύτερη.
- Ο συντελεστής εκπομπής της πλάκας απορρόφησης για μεγάλα μήκη κύματος, ο οποίος θα πρέπει να είναι όσο το δυνατόν χαμηλότερος.
- Η διαπερατότητα της γυάλινης επιφάνειας για μεγάλα μήκη κύματος, η οποία θα πρέπει να είναι όσο το δυνατόν χαμηλότερη.

Στη διαπερατότητα του καλύμματος και την απορροφητικότητα της πλάκας θα γίνει ιδιαίτερη αναφορά στην ενότητα 4.5 στην προσθήκη των ακτινοβολούντων επιφανειών.

1.3 Πλάκα απορρόφησης

Η πλάκα απορρόφησης συνδέεται με τις σωληνώσεις κυκλοφορίας του ρευστού είτε με συγκόλληση είτε με μηχανική σύσφιξη. Για τη βελτιστοποίηση του ποσοστού της ακτινοβολίας που απορροφά ο συλλέκτης, η συλλεκτική επιφάνεια βάφεται μαύρη, αφού τα σκούρα χρώματα απορροφούν περισσότερη ενέργεια.

Τα τελευταία χρόνια, αναπτύχθηκε ειδική τεχνολογία βαφής των συλλεκτικών επιφανειών με ειδικές βαφές που απορροφούν πολύ μεγάλο ποσοστό από την εκπίπτουσα ακτινοβολία. Οι βαφές αυτές ονομάζονται επιλεκτικές και οι συλλέκτες που φέρουν συλλεκτική επιφάνεια βαμμένη με επιλεκτική βαφή, ονομάζονται επιλεκτικοί συλλέκτες. Η επιλεκτική βαφή προσφέρει πολύ υψηλό συντελεστή απορρόφησης της ηλιακής ακτινοβολίας (~95%) μειώνοντας αντίστοιχα την ανακλώμενη ενέργεια καθώς και τις θερμικές απώλειες. Ο συντελεστής εκπομπής για μια επιλεκτική επιφάνεια είναι ίσος με 0,1 ενώ για μη επιλεκτική επιφάνεια απορρόφησης είναι ίσος με 0,95. Το χρώμα περιέχει τιτάνιο και εφαρμόζεται στη μεταλλική επιφάνεια με μοριακό βομβαρδισμό. Η επιλεκτική βαφή προσδίδει στον συλλέκτη ένα χαρακτηριστικό γαλαζο-μπλε χρώμα όπως φαίνεται και στην παρακάτω εικόνα.

Εικόνα 1.7: Επιλεκτική βαφή απορροφητή

<u>Κεφάλαιο 2: Κατασκευή του επίπεδου ηλιακού συλλέκτη μέσω του</u> <u>Solidworks</u>

Ο συλλέκτης που θα σχεδιαστεί είναι της εταιρείας SOL και έχει τις ακόλουθες διαστάσεις:

Μήκος=2050mm

Πλάτος=1010mm

Ύψος=90mm

Τα επιμέρους μέρη του ηλιακού συλλέκτη είναι τα εξής:

- Εξωτερικό περίβλημα
- Πλάτη συλλέκτη
- Μόνωση πλάτης
- Πλευρική μόνωση
- Απορροφητής
- Σωληνώσεις απορροφητή
- Συλλέκτες
- Διαφανές κάλυμμα

Το συνολικό βάρος του ηλιακού συλλέκτη είναι 121kg.

2.1 Μέρη του ηλιακού συλλέκτη

2.1.1 Εξωτερικό περίβλημα

- Υλικό: Ανοδιόμενο προφίλ αλουμινίου (1060 Alloy)
- Μήκος=2050mm
- Πλάτος=1010mm
- Ύψος=90mm
- Πάχος=40mm
- Διάμετρος οπών=22mm

Αρχικά, ανοίγεται νέο αρχείο και επιλέγεται το κομμάτι (**Part**). Ύστερα, προσδιορίζεται το υλικό του εξωτερικού περιβλήματος από τον πίνακα υλικών του Solidworks.

Εικόνα 2.1: Δημιουργία νέου κομματιού στο Solidworks

Εικόνα 2.2: Καθορισμός του υλικού του κομματιού

Με την εντολή **Sketch**, αφού πρώτα επιλεχτεί το επίπεδο **Top Plane**, σχεδιάζεται το εξωτερικό περίβλημα με τις αντίστοιχες διαστάσεις, οι οποίες ταυτίζονται με αυτές του ηλιακού συλλέκτη και με την εντολή **Extruded Boss** δίνεται ύψος στο σχέδιο. Για τον σχεδιασμό του εξωτερικού περιβλήματος, λόγω της γεωμετρίας του, χρησιμοποιείται στο Sketch το τετράγωνο (**Rectangle**). Για να ορίσουμε τις διαστάσεις του σχήματος χρησιμοποιούμε την επιλογή **Smart Dimension**.

Εικόνα 2.3: Επιλογή επιφανείας αρχικού σχεδίου

Εικόνα 2.4: Σχεδιασμός και διαστασιολόγηση του εξωτερικού περιβλήματος

<mark>∂S SOLIDWORKS</mark> 🕨 🗋 + 🎉 + 🔚 + 🍇 + 🦃 + 🖁 🖆 🖾 +	Sketch1 of Part3 *	🦻 Search SOLIDWORKS Help 🔎 🔹 🖉 🖾
Q Q V V 00 1 1 1 - 6 - 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 🛱 🖗 🕼 🔞 📎	
Q 目 № 隆 Ⅲ 皂 当 Ⅲ		
Exit Smart O O Exit Image: Convect The convect Image: Convect<	dy yvDelete Repair Sketch Snaps Sketch	
Features Sketch Sheet Metal Weldments Evaluate Render Tools SOLIDWORKS Add-Ins Simulation	n SOLIDWORKS MBD Flow Simulation SOLIDWORKS Pla	astics II D 🛱 🗙
	Q Q % ■ @ - @ - & - ● @ - @ -	
< > *Top		
COUDURON'S Students Edition Andersis Use Only	2217 Annual 222 Onnual Onnual	- Full-Defined Edition Closeds 1 - MMCC - 2

Εικόνα 2.5: Διαστασιολόγηση του εξωτερικού περιβλήματος

Εικόνα 2.6: Δημιουργία ύψους (εξώθηση) του εξωτερικού περιβλήματος

Στη συνέχεια κόβεται το κομμάτι σύμφωνα με τις απαραίτητες διαστάσεις με την εντολή **Extruded Cut**.

Εικόνα 2.7: Δημιουργία απαραίτητων τομών στο κομμάτι

Τέλος, προστίθενται στο εξωτερικό περίβλημα δύο εσοχές στις οποίες θα εφαρμόζει το κάλυμμα του συλλέκτη μέσω της εντολής Extruded Boss.

Εικόνα 2.8: Δημιουργία εσοχών για τη τοποθέτηση του καλύμματος

Παρακάτω φαίνεται ολοκληρωμένο το κομμάτι του εξωτερικού περιβλήματος (πλαισίου).

Εικόνα 2.9: Εικόνα του εξωτερικού περιβλήματος (πλαισίου)

Χάρη συντομίας, στα επόμενα μέρη του ηλιακού συλλέκτη θα παραλείπονται τα προκαταρκτικά βήματα.

2.1.2 Πλάτη συλλέκτη

- Υλικό: Γαλβανισμένη λαμαρίνα (Galvanized Steel)
- Μήκος=2050mm
- Πλάτος=1010mm
- Ύψος=0,6mm

Παρόμοια, με τις εντολές Extruded Boss και Sketch φτιάχνεται η πλάτη του συλλέκτη.

Εικόνα 2.10: Σχεδιασμός της πλάτης του συλλέκτη και εξώθηση του σχεδίου κατά το απαραίτητο ύψος

Εικόνα 2.11: Εικόνα της πλάτης του συλλέκτη

2.1.3 Μόνωση πλάτης

- Υλικό: Πετροβάμβακας (Polyurethane Foam Flexible)
- Μήκος=1970mm
- Πλάτος=930mm
- Ύψος=40mm

Αρχικά, με τις εντολές Extruded Boss και Sketch δίνεται το κατάλληλο σχήμα στην μόνωση πλάτης.

Εικόνα 2.12: Σχεδιασμός της μόνωσης πλάτης και εξώθηση του σχεδίου κατά το απαραίτητο ύψος

Ύστερα, θα δημιουργηθούν οι κατάλληλες αυλακώσεις στις οποίες θα εφαρμόζουν οι σωληνώσεις του απορροφητή και οι συλλέκτες μέσω της εντολής Extruded Cut.

Εικόνα 2.13: Δημιουργία οπών (αυλακώσεων) στις οποίες θα εφαρμόζουν οι συλλέκτες

Αφού έχουν δημιουργηθεί οι οπές για τους δύο συλλέκτες, χρησιμοποιείται η εντολή 3D Sketch για τη δημιουργία των οπών των σωληνώσεων διότι η επιφάνεια που θα κοπεί δεν είναι επίπεδη.

Εικόνα 2.14: Δημιουργία οπών (αυλακώσεων) για την τοποθέτηση των σωληνώσεων του απορροφητή

Το τελικό αποτέλεσμα φαίνεται παρακάτω:

Εικόνα 2.15: Εικόνα της μόνωσης πλάτης του ηλιακού συλλέκτη

Εικόνα 2.16: Εικόνα της μόνωσης πλάτης του συλλέκτη

2.1.4 Πλευρική μόνωση

- Υλικό: Υαλοβάμβακας (Polyurethane Foam Flexible)
- Μήκος=2010mm
- Πλάτος=970mm
- Υψος=80mm
- Πάχος=20mm
- Διάμετρος οπών=22mm

Παρόμοια με το εξωτερικό περίβλημα κατασκευάζεται και η πλευρική μόνωση του ηλιακού συλλέκτη με τις εντολές Sketch, Extruded Boss και Extruded Cut. Τα επιμέρους βήματα φαίνονται στις παρακάτω εικόνες.

Εικόνα 2.17: Σχεδιασμός πλευρικής μόνωσης του ηλιακού συλλέκτη και εξώθηση του σχεδίου κατά το απαραίτητο ύψος

3 SOLIDWORKS → 🗋 - 🖄 - 📓 - 🖏 - 🖏 - 🕴 🖆 🗐 -	Sketch2 of Πλευρική μόνωση1 *	🦻 Search SOLIDWORKS Help 🔎 🕈 👝 📾 💥
Q,Q,V; 00 00 ∰ • ĵ] • 6• • 25 ⊕ & ∞ • 17 🗍 🗊 🗗	1 2 A A A A A A A A A A A A A A A A A A	
9. I & B & B		
Ext Smart Sketch Dimension Convert Conset in Linear S Convert Conset in Linear S Conset in Li	ntities ketch Pattern titties ketch Pattern Relations Sketch Sket	
Features Sketch Sheet Metal Weldments Evaluate Render Tools SOLIDW	ORKS Add-Ins Simulation SOLIDWORKS MBD Flow Simulation SOLIDWORKS Plastics	
	≪्य ४ ॥ ∰ - (∄ - क - ⊕ ≜ - ⊯ -	× 🖬
From Sketch Plane Sketch Plane Direction 1		
Image: Second	× ×	Ē
Image: specific system Image: specific system Image: specific system	· · · ·	
Direction 2 8		
Selected Contours		
*Right	41	
SOLIDWORKS Student Edition - Academic Use Only	-873-28mm 116.8mm 0mm	Fully Defined Editing Sketch2 MMGS - ?

Εικόνα 2.18: Δημιουργία των απαραίτητων τομών από τις οποίες θα περνάνε οι συλλέκτες

Εικόνα 2.19: Εικόνα της πλευρικής μόνωσης του ηλιακού συλλέκτη

2.1.5 Απορροφητής

- Υλικό: Χαλκός (Copper)
- Μήκος=1906mm
- Πλάτος=930mm
- Ύψος=0,2mm
- Επιλεκτική επίστρωση τιτανίου (μπλε) (Titanium)

Με την εντολή Sketch σχεδιάζεται η πλάκα απορρόφησης, η οποία θα έχει τις κατάλληλες αυλακώσεις για την υποδοχή των σωληνώσεων. Παρακάτω, φαίνεται αναλυτικά το σχέδιο του απορροφητή.

Εικόνα 2.20: Σχεδιασμός της πλάκας απορρόφησης και εξώθηση του σχεδίου κατά το απαραίτητο μήκος του απορροφητή

Εικόνα 2.21: Προβολή του σχεδιασμού της ημικυκλικής επιφάνειας του απορροφητή στην οποία θα εφαρμόζει ο κάθε σωλήνας

Οι συγκεκριμένες διαστάσεις εφαρμόζονται και στον υπόλοιπο απορροφητή, απλά παρουσιάζεται ένα μόνο κομμάτι του γιατί φαίνεται πιο ξεκάθαρα. Στη συνέχεια, δίνεται όγκος στο σχέδιο με την εντολή Extruded Boss.

Εικόνα 2.22: Εικόνες του απορροφητή του ηλιακού συλλέκτη

Τέλος, βάφεται το πάνω μέρος της πλάκας απορρόφησης με επιλεκτική επίστρωση τιτανίου χρώματος μπλε.

Εικόνα 2.23: Βαφή της πλάκας απορρόφησης με επιλεκτική επίστρωση τιτανίου

Εικόνα 2.24: Τελική εικόνα της πλάκας απορρόφησης του ηλιακού συλλέκτη

2.1.6 Σωληνώσεις απορροφητή (risers)

- Υλικό: Χαλκός (Copper)
- Μήκος=1912mm
- Εξωτερική διάμετρος=10mm
- Εσωτερική διάμετρος=8mm

Με τις εντολές Sketch και Extruded Boss σχεδιάζονται και δίνεται όγκος στους σωλήνες αντίστοιχα.

Εικόνα 2.25: Σχεδιασμός σωληνώσεων του απορροφητή και εξώθησή τους κατά το απαραίτητο μήκος τους

Εικόνα 2.26: Εικόνα των σωληνώσεων του απορροφητή

<u>2.1.7 Συλλέκτες (headers)</u>

- Υλικό: Χαλκός (Copper)
- Μήκος=1110mm
- Εξωτερική διάμετρος=22mm
- Εσωτερική διάμετρος=20mm
- Διάμετρος οπών=10mm
- Επιλεκτική επίστρωση τιτανίου (μπλε)

Με τις εντολές Sketch και Extruded Boss σχεδιάζονται και δίνεται όγκος στους συλλέκτες αντίστοιχα.

Εικόνα 2.27: Σχεδιασμός συλλεκτών και εξώθηση του σχεδίου κατά το μήκος τους

Στη συνέχεια, με την εντολή 3D Sketch σχεδιάζονται οι 10 οπές στις οποίες θα εφαρμόσουν οι σωλήνες (risers) κατά μήκος των συλλεκτών και με την εντολή Extruded Cut πραγματοποιούνται οι προαναφερθείσες οπές. Παρακάτω φαίνονται αναλυτικά οι διαστάσεις στους συλλέκτες.

Εικόνα 2.28: Σχεδιασμός των κυκλικών οπών στις οποίες θα εφαρμόσουν οι σωληνώσεις του απορροφητή

Τέλος, βάφεται η εξωτερική επιφάνεια των συλλεκτών με επιλεκτική επίστρωση τιτανίου χρώματος μπλε.

Εικόνα 2.29: Εικόνα των συλλεκτών του ηλιακού συλλέκτη

<u>2.1.8 Κάλυμμα</u>

- Υλικό: Γυαλί (Glass)
- Μήκος=2010mm
- Πλάτος=970mm
- Υψος=5mm

Με τις εντολές Sketch και Extruded Boss σχεδιάζεται και δίνεται όγκος στο κάλυμμα του ηλιακού συλλέκτη αντίστοιχα.

Εικόνα 2.30: Σχεδιασμός του καλύμματος και εξώθηση του σχεδίου κατά το απαραίτητο ύψος

Εικόνα 2.31: Εικόνα του καλύμματος (τζαμιού) του ηλιακού συλλέκτη

Κεφάλαιο 3: Συναρμολόγηση του ηλιακού συλλέκτη

Πλέον, αφού έχουν κατασκευαστεί όλα τα επιμέρους κομμάτια, θα συναρμολογηθεί ολόκληρος ο ηλιακός συλλέκτης. Ανοίγεται νέο αρχείο, επιλέγεται το συναρμολογημένο κομμάτι (**Assembly**) και φορτώνονται ένα-ένα τα κομμάτια.

Εικόνα 3.1: Άνοιγμα νέου συναρμολογημένου κομματιού (Assembly)

Εικόνα 3.2: Ανέβασμα των επιμέρους κομματιών του ηλιακού συλλέκτη

Εικόνα 3.3: Όλα τα επιμέρους κομμάτια του ηλιακού συλλέκτη έτοιμα για συναρμολόγηση

Στη συνέχεια θα πρέπει να συναρμολογηθούν ένα-ένα τα επιμέρους κομμάτια, έτσι ώστε να δημιουργηθεί ο ηλιακός συλλέκτης.

3.1 Δημιουργία υδροσκελετού

Αρχικά, επιλέγεται η εντολή **Mate** για το ταίριασμα των επιφανειών ή των ακμών που απαιτούνται για τη συναρμολόγηση των επιθυμητών κομματιών. Έτσι, επιλέγεται η εσωτερική επιφάνεια της οπής του συλλέκτη και η εξωτερική επιφάνεια της μιας σωλήνωσης και θέτονται ομοαξονικές (**Concentric**), όπως φαίνεται παρακάτω.

Εικόνα 3.4: Επιλογή της εσωτερικής επιφάνειας της οπής του συλλέκτη

Εικόνα 3.5: Επιλογή της εξωτερικής επιφάνειας του σωλήνα

Εικόνα 3.6: Μερική σύνδεση του σωλήνα με τον συλλέκτη

Για να κολλήσουν τα δυο κομμάτια μεταξύ τους απαιτείται ένα ακόμα ταίριασμα κι έτσι επιλέγεται πλέον η εξωτερική επιφάνεια του συλλέκτη και η δισκοειδής επιφάνεια της σωλήνωσης που βλέπει προς τον συλλέκτη. Οι δύο αυτές επιφάνειες επιλέγονται να απέχουν μεταξύ τους απόσταση ίση με 3mm. Δηλαδή, η σωλήνωση θα εισχωρήσει 3mm εσωτερικά του συλλέκτη.

Εικόνα 3.7: Επιλογή της δισκοειδής επιφάνειας του σωλήνα

Εικόνα 3.8: Επιλογή της εξωτερικής επιφάνειας του συλλέκτη και τελική σύνδεση του σωλήνα με τον συλλέκτη

Στη συνέχεια, για να μην επαναληφθούν αυτά τα βήματα και για τους 10 σωλήνες, θα γίνει αντιγραφή μέσω της εντολής **Linear Component Pattern.** Για να οριστεί η κατεύθυνση της τοποθέτησης των υπόλοιπων 9 σωλήνων δημιουργείται μια 3D γραμμή που διαπερνά το κέντρο του συλλέκτη σε όλο το μήκος του.

Εικόνα 3.9: Αντιγραφή των υπολοίπων 9 σωληνών μέσω της εντολής Linear Component Pattern

Ύστερα, αντιγράφεται ο συλλέκτης ακριβώς απέναντι με την εντολή **Mirror Components**, έτσι ώστε να ολοκληρωθεί ο υδροσκελετός. Για να γίνει αυτό θα πρέπει πρώτα να ορισθεί μια επιφάνεια η οποία θα αποτελεί τον 'καθρέφτη' μεταξύ των δύο συλλεκτών, δηλαδή θα βρίσκεται στο μέσο της απόστασής τους κι επομένως στο μέσο του μήκους της σωλήνωσης.

S SOLIDWORKS] • 🕫 • 🖩 • 🗞 • 🧐 • 🗞 •	8 🖆 🗷 •		Assem1 *			Search SOLIDWORKS Help 🔎 🔹 👝 📾 🖄
Edit Component	Linear Compone Fasteners	Show Hidden Components	Reference Geometry - Study	Is View Line Sketch	Instant3D Update Speedpak) Take Snapshot	
Assembly Layout Sketch	Evaluate Render Tools SOLIDWO	RKS Add-Ins Simulation	SOLIDWORKS MBD Flow	Simulation			
🤏 😭 😵	E- Second (Default <display s<="" td=""><td></td><td>0,0,1</td><td>i 🔲 🞒 - 🗇 - 🙃</td><td>- * ® 🕾 + 🖺 + 🌔</td><td></td><td></td></display>		0,0,1	i 🔲 🞒 - 🗇 - 🙃	- * ® 🕾 + 🖺 + 🌔		
🔆 Plane 🔅 ?							
✓ X →2							
Message							
First Reference							
Face<1>@Σωλήγες1-							
N Parallel							
Perpendicular							
∠ Coincident	4					_	
90.00deg							9
956.00mm							Û
✓ Flip offset	956=1912/2						
📌 1 😂							
Mid Plane							
Second Reference							
	Y						
Third Reference	L.L						
	1						
0-8							
Select an entity	/iews Motion Study 1					Under Defined	Editing Assembly MMGS + 2

Εικόνα 3.10: Δημιουργία επιφανείας στο μέσο του σωλήνα

S SOLIĐWORKS) • 🔗 • 🔚 • 🗞 • 沟 • 💽 • 🚦 🖆 🗉 •	Assem1 *	🍞 Search SOLIDWORKS Help 🔎 🕈 👝 📾 🖄
Edit Component	Linear Compone Fasteners Componet.	Assembly Reference Features Geometry Motion Materials Study Study Study Study Study State State Study State State State Study State Study State Study State Study State Study State Study State State State Study State St	
Assembly Layout Settch Image: Setter in the sette	Components Linear Component Pattern Curular Component Pattern Stech Driven Component Pattern Curve Driven Component Pattern Chain Component Pattern Mirror Component Pattern	study Stetch	
< > > > > > > > > > > > > > > > > > > >	iews Motion Study 1		

Εικόνα 3.11: Αντιγραφή του συλλέκτη ακριβώς απέναντι μέσω της εντολής Mirror Components

V Wizard B B B C Second B C Secon	
🔁 Cone Project 😨 Settings 🕺 imutation 🔤 🔹 🛐 👘 🖉 🔅 imutation 🖉	
Assembly Layout Sketch Evaluate Render Tools SOLIDWORKS Add-Ins Simulation SOLIDWORKS MBD How Simulation	
😰 🕋 😰 🍋 🖶 🐨 Assemi (Default <display +="" -<="" s="" td="" →="" 🍳="" 💐="" 💮="" 🔍="" 🖏="" 🖓="" 🗿="" 🚱=""><td></td></display>	
H Mirror Components 7/ ?	
	X 🖬
Step 1: Selections *	0
Select face/bane to mixer about and the component to be mixered.	
	- 2
Selections 8	
Mirror plane:	N 7
Components to Mirror:	
Model 30 Views Motion Study 1	

Εικόνα 3.12: Αντιγραφή του συλλέκτη ακριβώς απέναντι μέσω της εντολής Mirror Components

Ολοκληρώνεται λοιπόν ο υδροσκελετός, η εικόνα του οποίου φαίνεται παρακάτω.

Εικόνα 3.13: Ολοκληρωμένος ο υδροσκελετός

3.2 Συναρμολόγηση υδροσκελετού-μόνωσης πλάτης

Για τη συναρμολόγηση του υδροσκελετού με τη μόνωση πλάτης συνδέεται αρχικά η εξωτερική επιφάνεια ενός σωλήνα με την αυλάκωση της μόνωσης στην αντίστοιχη θέση και ύστερα η εξωτερική επιφάνεια ενός συλλέκτη με την αυλάκωση του συγκεκριμένου συλλέκτη.

Εικόνα 3.14: Επιλογή της εξωτερικής επιφάνειας της σωλήνωσης

Εικόνα 3.15: Επιλογή της επιφάνειας της αυλάκωσης του σωλήνα που θα ταιριάξει

Εικόνα 3.16: Επιλογή της επιφάνειας της αυλάκωσης του συλλέκτη που θα ταιριάξει με αυτόν

Εικόνα 3.17: Επιλογή της εξωτερικής επιφάνειας του συλλέκτη

Εικόνα 3.18: Ολοκληρωμένη η σύνδεση του υδροσκελετού με τη μόνωση πλάτης

3.3 Εισαγωγή πλευρικής μόνωσης

Για την εισαγωγή της πλευρικής μόνωσης στο μέχρι στιγμής κομμάτι θα ταιριάξουν δυο πλευρές μεταξύ τους και τέλος η εξωτερική επιφάνεια ενός συλλέκτη με την εσωτερική επιφάνεια της αντίστοιχης οπής της πλευρικής μόνωσης. Αναλυτικότερα φαίνονται στις παρακάτω εικόνες.

Εικόνα 3.19: Επιλογή μιας εξωτερικής πλαϊνής επιφάνειας της μόνωσης πλάτης του συλλέκτη

Εικόνα 3.20: Επιλογή της αντίστοιχης εσωτερικής πλαϊνής επιφάνειας της πλευρικής μόνωσης

Εικόνα 3.21: Επιλογή μιας ακόμη εξωτερικής πλαϊνής επιφάνειας της μόνωσης πλάτης του συλλέκτη

Εικόνα 3.22: Επιλογή της αντίστοιχης εσωτερικής πλαϊνής επιφάνειας της πλευρικής μόνωσης

Εικόνα 3.23: Επιλογή της εξωτερικής επιφάνειας του ενός συλλέκτη

Εικόνα 3.24: Επιλογή της εσωτερικής επιφάνειας της οπής της πλευρικής μόνωσης από την οποία θα περάσει ο συλλέκτης

Εικόνα 3.25: Σύνδεση πλευρικής μόνωσης με το υπόλοιπο κομμάτι

Εικόνα 3.26: Εικόνα του μέχρι στιγμής συναρμολογημένου κομματιού

3.4 Εισαγωγή πλάκας απορρόφησης

Για την εισαγωγή της πλάκας απορρόφησης χρησιμοποιείται ταίριασμα σημείων, δηλαδή για παράδειγμα η δεξιά γωνία του απορροφητή θα πρέπει να ακουμπά στη δεξιά γωνία που σχηματίζεται μεταξύ συλλέκτη, μόνωση πλάτης και πλευρικής μόνωσης. Το ίδιο κάνουμε για δύο ακόμα γωνίες, έτσι ώστε να κολλήσει ο απορροφητής.

Εικόνα 3.27: Επιλογή του σημείου της πάνω δεξιά γωνίας της πλάκας απορρόφησης

Εικόνα 3.28: Επιλογή του αντίστοιχου σημείου που θέλουμε να ταιριάξει το οποίο βρίσκεται στη γωνία της ένωσης συλλέκτη-μόνωσης πλάτης-πλευρικής μόνωσης

Εικόνα 3.29: Εικόνα του μέχρι στιγμής συναρμολογημένου κομματιού

3.5 Εισαγωγή εξωτερικού περιβλήματος (πλαισίου)

Για την εισαγωγή του πλαισίου στο μέχρι στιγμής κομμάτι θα ταιριάξουν δυο πλευρές μεταξύ τους και τέλος μία γωνία, όπως φαίνεται παρακάτω.

Εικόνα 3.30: Επιλογή μιας εξωτερικής πλαϊνής επιφάνειας της πλευρικής μόνωσης του συλλέκτη

Εικόνα 3.31: Επιλογή της αντίστοιχης εσωτερικής πλαϊνής επιφάνειας του εξωτερικού περιβλήματος

Εικόνα 3.32: Επιλογή μιας ακόμη εξωτερικής πλαϊνής επιφάνειας της πλευρικής μόνωσης του συλλέκτη

Εικόνα 3.33: Επιλογή της αντίστοιχης εσωτερικής πλαϊνής επιφάνειας του εξωτερικού περιβλήματος

Εικόνα 3.34: Επιλογή του σημείου της πάνω αριστερής γωνίας της πλευρικής μόνωσης

Εικόνα 3.35: Επιλογή του αντίστοιχου σημείου που θέλουμε να ταιριάξει το οποίο βρίσκεται στην πάνω αριστερή γωνία του εξωτερικού περιβλήματος

Εικόνα 3.36: Εικόνα του μέχρι στιγμής συναρμολογημένου κομματιού

3.6 Εισαγωγή πλάτης και καλύμματος

Για την εισαγωγή της πλάτης και του καλύμματος χρησιμοποιείται ταίριασμα σημείων στις γωνίες κάθε τεμαχίου.

Εικόνα 3.37: Επιλογή του σημείου της κάτω δεξιά γωνίας του εξωτερικού περιβλήματος

🕉 SOLIDWORKS 🕐 🗋 - 🔌 - 🗐 - 😓 - 🗏 🖆 - 📗 -	Assem1 *	🦻 Search SOLIDWORKS Help 🔎 🕈 🥐 🛏 📾 💥
Edit Inset Unear Smart Component Autor Component Component Autor Component C	Reference Geometry Motion Materials View Line Stetch	
Assembly Layout Sketch Evaluate Render Tools SOLIDWORKS Add-Ins Simulation	SOLIDWORKS MBD Flow Simulation	
🔏 📷 🧏 💁 🙂 🐨 Sasem1 (Default <display s<="" td=""><td>이 문 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이</td><td></td></display>	이 문 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	
Mate 2 ?		✓ ■
✓ X ≤ Q		× 🛱
Mates Analysis		
Mate Selections *		2
Vertex<1>@fl/inimo1-1		
Standard Mates		
Coincident		
Parallel	Boss-Extrude1 of []\\\delta\tau1<1>	
L Perpendicular		
→ Tangent		
© Concentric		
Lock		
1.00mm		
30.00deg 😜 Y		
Mate alignment:		
Advanced Mates X		
Model 3D Views Motion Study 1		

Εικόνα 3.38: Επιλογή του αντίστοιχου σημείου που θέλουμε να ταιριάξει το οποίο βρίσκεται στην κάτω δεξιά γωνία της πλάτης του συλλέκτη

Εικόνα 3.39: Εικόνα του μέχρι στιγμής συναρμολογημένου κομματιού

S SOLIDWORKS 🕨 🗋 - 😂 -		As	em1 *	🦻 Search SOLIDWORKS Help 🔎 🕈 🗧 📾 💥
Edit Component	Smart Component Fasteners + Components	Assembly Reference Features Geometry New Motion Study	Explode Line Sketch	
Assembly Layout Sketch Evaluate	Render Tools SOLIDWORKS Add-Ins S	Simulation SOLIDWORKS MBD Flow Simulation		
S 2 2 3	🎙 Assem1 (Default <display s<="" td=""><td>Q Q V 🔳 🎬</td><td>- 🗊 - 6ơ - 🕘 🔔 - 🔯 -</td><td></td></display>	Q Q V 🔳 🎬	- 🗊 - 6ơ - 🕘 🔔 - 🔯 -	
🕲 Mate 😵 😯				A 10
🖌 🗶 🕫 🖉				× 🖬
Nates 🔗 Analysis				
Mate Selections				
Vertex<1>@Πλαίσιο1-1				· · · · · · · · · · · · · · · · · · ·
Standard Mates				
Coincident				
Parallel				
1 Perpendicular				
🔿 Tangent				
O Concentric				
B Lock				
1.00mm				
1 30.00deg	Y			
Mate alignment:	1			
99 \$a				
Advanced Mates × Y				
H A D H Model 3D Views Mo	tion Study 1			

Εικόνα 3.40: Επιλογή του σημείου της πάνω αριστερής γωνίας που βρίσκεται ανάμεσα στις δύο εσοχές του πλαισίου όπου θα εφαρμόσει το κάλυμμα

Εικόνα 3.41: Επιλογή του αντίστοιχου σημείου που θέλουμε να ταιριάξει το οποίο βρίσκεται στην πάνω αριστερή γωνία του καλύμματος του συλλέκτη

Παρακάτω φαίνεται ολοκληρωμένος ο επίπεδος ηλιακός συλλέκτης.

Εικόνα 3.42: Ολοκληρωμένος ο επίπεδος ηλιακός συλλέκτης

Κεφάλαιο 4: Προσομοίωση μέσω του Flow Simulation

Για να ενεργοποιηθεί η καρτέλα του Flow Simulation, επιλέγονται στο πάνω μέρος του παραθύρου τα Add-Ins και τσεκάρεται το Flow Simulation.

Εικόνα 4.1: Ενεργοποίηση του Flow Simulation

💰 solidworks 🕴 🗖 🖬 🖄) • 🚮 • 🗞 • 🗐 • 💽 • 🚦 🛃 •		Assem1	🦻 Search SOLIDWORKS Help 🔎 🕈 👝 📾 🔀
✓ Wizard Ø Image: Section 2 ► New Image: Section 2 General Image: Section 2 Section 2 Assembly Layout Sketch Evaluation 2	Flow imulati • Render Tools SOLIDWORKS Add-Ins S	Flow Simula	×	
Composition of the second	SOLIDWORKS Rew Simulation 2015 Fluid Flow Analysis Simulation program hySoLUWORKS C:\Program File:SOLUWORKS Corp \SOLUWORKS Flow Simulation (2)\binCFWFW03.dll	Active Add.ins SUDWORKS Premium Add-ins Protoview 360 Protoview 360 SolubwORKS Internation	Start Up list Load 	
SOLIDWORKS Student Edition - Academic	Use Only			Under Defined Editing Assembly MMGS - 🕄 🦪

Εικόνα 4.2: Ενεργοποίηση του Flow Simulation

Στη συνέχεια, θα πρέπει να κλείσουν οι ανοιχτές οπές όπου θα διατρέχει το ρευστό, έτσι ώστε να μπορεί να τρέξει το πρόγραμμα. Αυτό γίνεται με την εντολή **Create Lids**. Το πάχος των ταπών επιλέγεται ίσο με 5mm και για τις 4 οπές των συλλεκτών. Στην πραγματικότητα ενδιαφέρουν μόνο οι 2 τάπες, μία της εισόδου του ρευστού και μία της εξόδου.

Εικόνα 4.3: Δημιουργία των ταπών

<u>Εικόνα 4.4</u>: Τοποθέτηση των ταπών

4.1 Επιλογή δεδομένων και αρχικών συνθηκών του προβλήματος

Για να δημιουργηθεί μια εργασία προσομοίωσης επιλέγεται η εντολή **Wizard**. Έπειτα, επιλέγονται τα κατάλληλα δεδομένα και οι επιθυμητές αρχικές συνθήκες για το πρόβλημα που θα επιλυθεί. Πριν παρουσιασθεί ο πίνακας με τα δεδομένα όμως, καλό είναι να δοθεί η ερμηνεία των δεικτών που θα χρησιμοποιηθούν.

Δείκτες	Σημασία
а	περιβάλλον
р	απορροφητής
С	κάλυμμα
b	πλάτη
i	είσοδος ή εσωτερικά
0	έξοδος ή εξωτερικά
Т	κεκλιμένη επιφάνεια

<u>Πίνακας 4.1</u>: Σημασιολογία των δεικτών

Πίνακας 4.2: Ορισμός βασικών μεγεθών

Μεγέθη	Σύμβολο	Τιμή	Μονάδες
Θερμοκρασία του περιβάλλοντος	Ta	10	°C
Θερμοκρασία εισόδου του ρευστού	T _i	30-70	°C
Παροχή μάζας του ρευστού	m	0.04	kg/s
Συντελεστής συναγωγής μεταξύ εξωτερικής επιφάνειας καλύμματος και περιβάλλοντος	h _{co-a}	8	W/m²K
Συντελεστής συναγωγής μεταξύ εξωτερικής επιφάνειας πλάτης και περιβάλλοντος	h _{b-a}	7	W/m²K
Συντελεστής συναγωγής μεταξύ πλάκας απορρόφησης και εσωκλειόμενου αέρα	h _{p-ai}	8	W/m²K
Συντελεστής συναγωγής μεταξύ εσωτερικής επιφάνειας καλύμματος και εσωκλειόμενου αέρα	h _{ai-ci}	8	W/m²K
Ολική στιγμιαία προσπίπτουσα ηλιακή ακτινοβολία κεκλιμένης επιφανείας	Gτ	800	W/m ²

Εικόνα 4.5: Ενεργοποίηση της εντολής Wizard

Εικόνα 4.6: Ονομασία της εργασίας προσομοίωσης

<u>→</u> S SOLIDWORKS → □ · ▷ · □ · ▷ · □ · ▷ · □ · ▷ · □ · □ ·	Assem1 *	🦻 Search SOLIDWORKS Help 🔎 🔹 😑 📾 🔀
Witzard Image: Second se	φ L/ _k φ φ Flow Flow <th></th>	
Assembly Layout Sketch Evaluate Render Tools SOLIDWORKS Add-Ins Sin	ulation SOLIDWORKS MRD Flow Simulation	
S	Wizard - Unit System	
	Unit system: Βοήθεια)	
😵 📽 Assem1 (Default <display state-1=""> m³</display>	System Path Comment (
History	CGS (cm·g·s) Pre-Defined CGS (cm·g·s)	<u>81</u>
Sensors	FPS (It-b-s) Pre-Defined FPS (It-b-s)	
Front Plane	IPS (in-lb-s) Pre-Defined IPS (in-lb-s)	· · · · · · · · · · · · · · · · · · ·
Top Plane	NMM (mm-g-s) Pre-Defined NMM (mm-g-s)	2
Right Plane M/S	USA Pre-Defined USA	
- 🖡 Origin		
🗈 🧐 📽 (f) Απορροφητής1<1> (Defaul	Create new Name: SI (m-kg-s) (modified)	
We Movωση πλάτης1<1> (Default		
mile /h	Parameter Unit Decimals in results 1 SI unit	
🕒 🚱 🕲 Πλευρική μόνωση1<1> (Defau	display equals to	
🕀 📽 Συλλέκτες1<1> (Default <as td="" μα<=""><td>Pressure & stress bar 12 1e-005</td><td></td></as>	Pressure & stress bar 12 1e-005	
😐 🧐 🎕 (-) Σωλήνες1<1> (Default< <de< td=""><td>Velocity m/s .123 1</td><td></td></de<>	Velocity m/s .123 1	
📴 🧐 📽 Τζάμι1<1> (Default< <default></default>	Mass kg .123 1	
In Water	Length m .123 1	
³⁰ / ₂ 3DSketch1	Temperature *C .12 -273.15	
	Physical time s .123 1	
-X PLANE4	< >> >> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
🗄 📲 🎕 MirrorComponent1		
	< Back Next > Cancel Help	
Model 3D Views Motion Study 1		
SOLIDWORKS Student Edition - Academic Use Only	Under Defined	diting Assembly MMGS 🔺 🔋 🥔

Εικόνα 4.7: Επιλογή συστήματος μονάδων μέτρησης

Εικόνα 4.8: Ορισμός αναγκαίων μεγεθών

Εικόνα 4.9: Ορισμός ρευστού και τύπου ροής

Εικόνα 4.10: Ορισμός στερεού υλικού

Εικόνα 4.11: Ορισμός του τύπου συνοριακής συνθήκης

Εικόνα 4.12: Ορισμός αρχικών συνθηκών

Εικόνα 4.13: Ορισμός πλέγματος

Πλέον αναλύονται μία-μία οι ενέργειες στο δέντρο της προσομοίωσης (**Input Data**). Η ενέργεια Fluid Subdomains αφορά τη προσθήκη επιπρόσθετων ρευστών αν χρειάζονται, όμως δε θα χρησιμοποιηθούν στο υπάρχον πρόβλημα κι έτσι δε θα αναλυθεί αυτή η ενέργεια.

4.2 Ορισμός υπολογιστικού τομέα

Εικόνα 4.14: Ορισμός υπολογιστικού τομέα

Εικόνα 4.15: Ορισμός διαστάσεων υπολογιστικού τομέα

Εικόνα 4.16: Απόκρυψη του υπολογιστικού τομέα

4.3 Προσθήκη υλικών του ηλιακού συλλέκτη

<u>Εικόνα 4.17</u>: Προσθήκη στερεών υλικών

Εικόνα 4.18: Υλικό του καλύμματος

Εικόνα 4.19: Ορισμός διαπερατότητας του καλύμματος

Εικόνα 4.20: Υλικό των σωληνώσεων, των συλλεκτών και του απορροφητή

Εικόνα 4.21: Υλικό της μόνωσης πλάτης και της πλευρικής μόνωσης

Εικόνα 4.22: Υλικό του εξωτερικού περιβλήματος (πλαισίου) του συλλέκτη

Εικόνα 4.23: Υλικό της πλάτης του συλλέκτη

4.4 Προσθήκη οριακών συνθηκών

Εικόνα 4.24: Προσθήκη οριακών συνθηκών

Εικόνα 4.25: Συνθήκη εισόδου

<u>Εικόνα 4.26</u>: Συνθήκη εισόδου

<u>Εικόνα 4.27</u>: Συνθήκη εισόδου

<u>Εικόνα 4.28</u>: Συνθήκη εξόδου

Εικόνα 4.29: Συνθήκη μετάδοσης θερμότητας μεταξύ καλύμματος και περιβάλλοντος

Εικόνα 4.30: Συνθήκη μετάδοσης θερμότητας μεταξύ πλάτης του συλλέκτη και περιβάλλοντος

Σε αυτό το σημείο θα πρέπει να τονιστεί πως υπήρχαν δυσκολίες στην εισαγωγή αέρα μεταξύ καλύμματος και απορροφητή, καθώς το πρόγραμμα έκανε υπερβολικό χρόνο για να συγκλίνει στις επιθυμητές λύσεις. Έτσι, ο αέρας θα εισαχθεί με έμμεσο τρόπο. Συγκεκριμένα, η παρουσία του αέρα θα προσομοιωθεί μέσω των απωλειών που υπάρχουν λόγω συναγωγής από την πλάκα απορρόφησης έως το κάλυμμα και αυτό θα γίνει ορίζοντας δύο συντελεστές συναγωγής, έναν μεταξύ του υποτιθέμενου αέρα και του απορροφητή (h_{p-ai}), καθώς και έναν μεταξύ του αέρα και της εσωτερικής επιφάνειας του καλύμματος (h_{ai-ci}).

$$q_{p-ai} = h_{p-ai} \cdot (T_p - T_{ai}) = q_{ai-ci} = h_{ai-ci} \cdot (T_{ai} - T_{ci})$$

Λόγω της μικρής απόστασης πλάκας απορρόφησης-καλύμματος, θα θεωρηθεί ότι οι δύο συντελεστές συναγωγής είναι ίσοι μεταξύ τους ($h_{p-ai} = h_{ai-ci}$). Επίσης, μπορεί να θεωρηθεί ότι τα μεταφερόμενα ποσά θερμότητας δια συναγωγής από την πλάκα στον αέρα και από τον αέρα στο κάλυμμα είναι περίπου ίσα ($q_{p-ai} = q_{ai-ci}$). Έτσι, από την επίλυση της πάνω εξίσωσης προκύπτει ότι η θερμοκρασία του αέρα μεταξύ καλύμματος και απορροφητή είναι ίση με το ημιάθροισμα των θερμοκρασιών της πλάκας απορρόφησης και της εσωτερικής επιφάνειας του καλύμματος.

$$T_{ai} = \frac{T_p + T_{ci}}{2}$$

Η θερμοκρασία του αέρα θα προσδιορίζεται με δοκιμές (για συγκεκριμένη θερμοκρασία εισόδου του ρευστού), μέχρις ότου ικανοποιηθεί η παραπάνω σχέση.

Εικόνα 4.31: Συνθήκη μετάδοσης θερμότητας μεταξύ πλάκας απορρόφησης και καλύμματος

4.5 Προσθήκη ακτινοβολούντων επιφανειών

Το επόμενο βήμα είναι να οριστούν οι ακτινοβολούσες επιφάνειες, θα πρέπει πρώτα όμως να δοθούν κάποιοι ορισμοί. Η ηλιακή ακτινοβολία αφού διαβεί το διαφανές κάλυμμα και φθάσει στην πλάκα απορρόφησης, χωρίζεται, και ένα μέρος της απορροφάται, ενώ ένα άλλο ανακλάται πίσω στο κάλυμμα προκαλώντας μια διαδοχική σειρά ανακλάσεων και απορροφήσεων. Ορίζεται το γινόμενο διάβασηςαπορρόφησης (τα) ως: $(τα) = 1.01 \cdot \tau \cdot \alpha$, όπου τ ο συντελεστής διάβασης (διαπερατότητας) του καλύμματος και α ο συντελεστής απορρόφησης της πλάκας απορρόφησης. Στην πραγματικότητα, το γινόμενο (τα) πρόκειται περί ανηγμένου
συντελεστή που εκφράζει το ποσοστό της ακτινοβολίας που περνάει από το κάλυμμα και απορροφάται από την πλάκα απορρόφησης μετά από τις διαδοχικές ανακλάσεις. Για συμβατικούς λόγους έχει επικρατήσει να ονομάζεται γινόμενο **(τα)**. Θα οριστούν 3 τύποι ακτινοβολούντων επιφανειών, μία για το γυάλινο κάλυμμα και δύο για τον απορροφητή (επιλεκτικός και μη). Στην εργασία θα χρησιμοποιηθούν μόνο οι δύο όμως, αφού έχει επιλεγεί επιλεκτική επιφάνεια της πλάκας απορρόφησης.

Εικόνα 4.32: Εισαγωγή ακτινοβολούντων επιφανειών

Εικόνα 4.33: Εισαγωγή ακτινοβολούντων επιφανειών

Εικόνα 4.34: Εισαγωγή νέου τύπου ακτινοβολούσας επιφάνειας

Εικόνα 4.35: Προσθήκη επιλεκτικής επιφάνειας του απορροφητή

Εικόνα 4.36: Προσθήκη επιφάνειας του καλύμματος

Εικόνα 4.37: Προσθήκη μη επιλεκτικής επιφάνειας του απορροφητή

Εικόνα 4.38: Επιλογή των επιφανειών του καλύμματος που δέχονται ακτινοβολία

Εικόνα 4.39: Επιλογή των επιφανειών της πλάκας απορρόφησης και των συλλεκτών που δέχονται ακτινοβολία

Στη συνέχεια θα οριστούν οι στόχοι που τίθενται προς επίλυση. Συγκεκριμένα, αυτοί είναι: α) η θερμοκρασία εξόδου του ρευστού, β) η θερμοκρασία της πλάκας απορρόφησης, γ) η θερμοκρασία της εσωτερικής επιφάνειας του καλύμματος, δ) η

θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος, ε) η θερμοκρασία της εσωτερικής επιφάνειας των σωληνώσεων και των συλλεκτών.

4.6 Προσθήκη των στόχων του προβλήματος

Εικόνα 4.40: Προσθήκη των στόχων

Εικόνα 4.41: Θερμοκρασία εξόδου του ρευστού

Εικόνα 4.42: Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος

Εικόνα 4.43: Θερμοκρασία της εσωτερικής επιφάνειας του καλύμματος

Εικόνα 4.44: Θερμοκρασία της εξωτερικής επιφάνειας του απορροφητή

Εικόνα 4.45: Θερμοκρασία της εσωτερικής επιφάνειας των σωληνώσεων και των συλλεκτών

4.7 Εισαγωγή πλέγματος

Πλέον απομένει να δημιουργηθεί το κατάλληλο πλέγμα για το πρόβλημα και να τρέξει το πρόγραμμα μέχρι να συγκλίνουν οι στόχοι που έχουν τεθεί.

Εικόνα 4.46: Προσθήκη πλέγματος για την επίλυση του προβλήματος

Εικόνα 4.47: Τροποποίηση του αρχικού πλέγματος

ZS SOLIDWORKS > □ · ▷ · □ · ▷ · □ · ▷	· • • •	Τελικό *		💡 Search SOLIDWORKS Help 🔎 🕈 🖕 📾 💥
Wizard Image: Section 2 Image: Section 2	nload 🔛 😵 🔶 🖾 🖓 🔗 Riow Simula 🕅 🕎 Simulati 💱 -			
Assembly Layout Sketch Evaluate Render Tools SOLIDW		Initial Mesh	? ×	0 D _ # X
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Basic Mesh Solid/Ruid Interface Refining Cells	Narrow Channels		
	Enable narrow channels refinement		OK	<u>a</u>
Input Data Computational Demain	Characteristic number of cells across a narrow chan	nel: 🛐 📮	Help	
Computational contain	Narrow channels refinement level:			2 2
Glass Solid Material 1 Glasswool Solid Material 1 Glasswool Solid Material 1 Copper Solid Material 1	Enable the minimum height of narrow channels	Ŭ		
Steel (Mild) Solid Material 1	The minimum height of narrow channels:	0 m		Y,
Inlet Mass Flow 1	Enable the maximum height of narrow channels			z
Outer Wall 2	The maximum height of narrow channels:	0 m		~*
□\$2 Radiative Surfaces \$2 Radiative Surface 1 \$2 Radiative Surface 2				
	Reset Automatic settings Show	v basic mesh		
Тр Т				
Note: Note: 3D Views Motion Study 1		Total area: 570327.62 millin	neters^2 Under Defined	Editing Assembly MMGS + 2

Εικόνα 4.48: Τροποποίηση του αρχικού πλέγματος

4.8 Τρέξιμο του προγράμματος

Εικόνα 4.49: Τρέξιμο του προγράμματος για την επίλυση του προβλήματος

诸 solidworks 🕨 🗖 🖓 • 🖥	• & • Ø • k • 4 🗉 •	Τελικό *	🦻 Search SOLIDWORKS Help 🔎 🕈 👝 📾 🖄
Wizard Image: second sec	ti ♥ Run ₩ Run ₩ Coad/Unicad ₩ Coad/	∠	
Assembly Layout Sketch Evaluate R	ender Tools SOLIDWORKS Add-Ins Simulation	n SOLIDWORKS MBD Flow Simulation	
Assembly Layout Stetch Evaluate in Projects Projects Projects Computational Domain Computa	ender Tools SOLIDWORKS Add-ins: Simulation Statup () Sta	S SOLDWORKS MBD Flow Simulation Run Run Take previous results Run Dote Heb Tracesting after finiting the calculation recessing after finiting the calculation recessing after finiting the calculation	
Results (Not loaded) Model 3D Views Moti SOLIDWORKS Student Edition - Academic Use C	on Study 1		Under Defined Editing Assembly MMGS • 🛐 🥔

Εικόνα 4.50: Τρέξιμο του προγράμματος για την επίλυση του προβλήματος

Εικόνα 4.51: Πληροφορίες σχετικά με τη διαδικασία επίλυσης του προβλήματος

Εικόνα 4.52: Τρέξιμο του προγράμματος μέχρις ότου συγκλίνουν οι στόχοι που έχουν τεθεί

Στη συνέχεια, αφού επαναληφθεί το τρέξιμο και για 40°C, 50°C, 60°C, 70°C, θα εισαχθούν στο Solidworks δύο νέα ρευστά, ένα θερμικό λάδι κι ένα νανορευστό. Ως θερμικό λάδι επιλέχτηκε το **THERMINOL VP-1**. Το VP-1 είναι ένα εύτηκτο μίγμα το οποίο αποτελείται από 73.5% οξείδιο διφαινυλαιθέρα και 26.5% διφαινυλαιθέρα. Είναι ένα ρευστό υγρής και αέριας φάσης το οποίο χρησιμοποιείται σε εφαρμογές μεταφοράς θερμότητας σε θερμοκρασίες άνω των 400°C. Η αέρια φάση είναι πιθανή για θερμοκρασίες άνω των 257°C οπότε δε θα απασχολήσει την παρούσα εργασία.

Κεφάλαιο 5: Εισαγωγή στα νανοϋλικά

Στην προσπάθεια αύξησης του θερμικού βαθμού απόδοσης των ηλιακών συλλεκτών και με την ανάπτυξη της νανοτεχνολογίας, αναπτύχθηκε ένα νέο είδος ρευστού μεταφοράς θερμότητας, το νανορευστό. Πρόκειται για ρευστό το οποίο αποτελείται από το κατά βάση ρευστό και από νανοϋλικά περιεκτικότητας 1-100nm τα οποία προστίθενται σε αυτό. Από πειραματικές μελέτες προέκυψε ότι η θερμική αγωγιμότητα του ρευστού αυξάνεται σημαντικά με τη χρήση νανοϋλικών.

Τα νανοϋλικά αυτά είναι γενικά μέταλλα ή οξείδια μετάλλων. Τα κυριότερα εξ' αυτών είναι το αλουμίνιο (Al), ο χαλκός (Cu), ο γραφίτης (C), ο άργυρος (Ag), το οξείδιο του αργιλίου (Al₂O₃), το διοξείδιο του τιτανίου (TiO₂), το διοξείδιο του πυριτίου (SiO₂), το καρβίδιο του ζιρκονίου (ZrC) και οι νανοσωλήνες άνθρακα (CNTs). Το αλουμίνιο και το οξείδιο του αλουμινίου είναι αυτά που χρησιμοποιούνται περισσότερο σε μελέτες και εφαρμογές. Στην παρακάτω εικόνα φαίνονται νανοσωματίδια χαλκού με μέση διάμετρο περίπου 25nm.

Εικόνα 5.1: Νανοσωματίδια χαλκού με μέση διάμετρο 25nm

5.1 Ιδιότητες των νανορευστών

Η προσθήκη νανοϋλικών (np) στο βασικό ρευστό (bf) οδηγεί στη βελτίωση των ιδιοτήτων του εξεταζόμενου ρευστού. Οι ιδιότητες του νανορευστού (nf) εξαρτώνται από την κατ' όγκο σύσταση των νανοσωματιδίων στο νανορευστό και αυτή συμβολίζεται με φ (vol %). Συνήθως παίρνει χαμηλές τιμές κοντά στο 1% -2%, αναλόγως βέβαια το είδος του νανοϋλικού, ενώ το εύρος τιμών της είναι από 0.1% έως 4%. Οι 4 βασικές ιδιότητες ενός ρευστού είναι η πυκνότητα (p), το δυναμικό ιξώδες (μ), η θερμική αγωγιμότητα (k) και η ειδική θερμοχωρητικότητα (Cp). Για τον υπολογισμό αυτών των ιδιοτήτων του νανορευστού υπάρχουν αρκετές εμπειρικές σχέσεις, όμως με ελάχιστες διαφορές στα τελικά αποτελέσματα. Αυτές που θα χρησιμοποιηθούν είναι οι εξής:

<u>Πυκνότητα</u>

$$\rho_{nf} = \rho_{bf} \cdot (1 - \varphi) + \rho_{np} \cdot \varphi$$
 (1)

<u>Ιξώδες</u>

$$\mu_{nf} = \mu_{bf} \cdot (1 + 2.5 \cdot \phi + 6.5 \cdot \phi^2)$$
 (2)

<u>Θερμική αγωγιμότητα</u>

$$k_{nf} = \frac{k_{np} + 2 \cdot k_{bf} - 2 \cdot \varphi \cdot \left(\mathbf{k}_{bf} - \mathbf{k}_{np}\right)}{\frac{\mathbf{k}_{np}}{\mathbf{k}_{bf}} + 2 + \frac{k_{bf} - k_{np}}{k_{bf}} \cdot \phi}$$
(3)

<u>Ειδική θερμοχωρητικότητα</u>

$$c_{p,nf} = c_{p,np} \cdot \varphi + c_{p,bf} \cdot (1 - \varphi)$$
(4)

Στη παρούσα διπλωματική εργασία χρησιμοποιήθηκε ως νανορευστό το μίγμα του θερμικού λαδιού που προαναφέρθηκε με οξείδια του αργιλίου (Al₂O₃) περιεκτικότητας 2% κατ' όγκο. Τα νανοσωματίδια είναι σφαιρικού σχήματος με διάμετρο περίπου ίση με 20nm. Στο Solidworks έγινε προσθήκη τόσο του λαδιού όσο και του νανορευστού για θερμοκρασίες από 30°C έως 220°C για καλύτερη ακρίβεια. Παρακάτω φαίνονται οι ιδιότητες διαφόρων νανορευστών για κλάσμα όγκου 1% και 2% στις θερμοκρασίες αυτές.

303 16 K 313 16 K 323 16 K 333 16	,
aua in ala in	
	`
Cp(J/kgK) k(W/mK) p(kg/m ³) µ(Pas) Cp(J/kgK) k(W/mK) p(kg/m ²) µ(Pas) Cp(J/kgK) k(W/mK) p(kg/m ²) µ(Pas) Cp(J/kgK) k(W/mK) p(kg/m ²)	µ(Pas)
AI 900 205 2700 900 205 2700 900 205 2700 900 205 2700 200 205 2700 200 205 2700 20000000000	0
Cu 387 401 8920 387 401 8920 387 401 8920	0
$A_{2}O_{3}$ 773 40 4000 773 40 4000 773 40 4000 773 40 4000 773 40 4000	0
H_2O 4180,1 0.61547 995,6 0.000797 4179,6 0.6306 992,17 0.0006529 4181,6 0.64356 985,16 0.0005467 4185,1 0.65436 983.	6 0,000466
Λαδι 15/5 0.355 1056 0.00328 1604 0.134 1042 2002 1633 0.133 1040 0.00212 1662 0.132 10.	2 0,001/61
AL-h20 (Φ=2/h) 4114,436 (0,052006 10.22) 060 (0,000032 4114,000 (0,000639 102.3,200 (0,0000612 4115,900 (0,0003054 1013,4300 (0,0005150 4113,350 (0,040035 1014,430 40,000012 4115,900 (0,0000512 4115,900 (0,0000510 4113,350 (0,040035 1014,430 40,000012 4115,900 (0,0000512 4115,900 (0,0000510 4113,900 (0,00005104 4113,900 (0,00005104 4113,900 (0,00005104 4113,900 (0,00005104 4113,900 (0,00005104 4113,900 (0,00005104 4113,900 (0,0000510000000000000000000000000000000	0 0,000491
	0 0,001054
	6 0.001854
Cu-Ado (w-2%) 155124 0.143257 1213 28 0.003453 1579.66 0.1421957 1205.44 0.0027368 1608.08 0.1411346 1197.6 0.0022315 1636.5 0.1400735 1189	6 0.001854
Al2O3 H2O (q-2%) 4111,958 0,651432 1055,688 0,000839 4111,468 0,6674036 1052,3266 0,0006872 4113,428 0,6810833 1045,4568 0,0005755 4116,858 0,692482 1043,497	8 0,000491
ALH2O (φ-1%) 4147,299 0.633952 1012,644 0.000818 4146,804 0.6495321 1009,2483 0.0006696 4148,784 0.6628775 1002,3084 0.0005608 4152,249 0.6739985 1000,327	4 0,000478
Al ₂ O ₃ -λάδι (φ=1%) 1566,98 0,139049 1085,44 0,003364 1595,69 0,1380197 1077,52 0,0026667 1624,4 0,13699 1069,6 0,0021744 1653,11 0,1359603 1061,6	8 0,001806
Cu-H2O (φ=1%) 4142,169 0,634034 1074,844 0,000818 4141,674 0,6496183 1071,4483 0,0006696 4143,654 0,6629673 1064,5084 0,0005608 4147,119 0,6740914 1062,527	4 0,000478
AL-λάδι (φ=1%) 1568,25 0,139083 1072,44 0,003364 1596,96 0,1380526 1064,52 0,0026667 1625,67 0,1370224 1056,6 0,0021744 1654,38 0,1359922 1048,6	8 0,001806
Cu-Xd8 (φ=1%) 1563,12 0.139087 1134,64 0.003364 1591,83 0.1380565 1126,72 0.0026667 1620,54 0.1370263 1118,8 0.0021744 1649,25 0.135996 1110,1	8 0,001806
At203-fr20 (0=17a) 4146,029 0,633211 1025,644 0,000818 4145,534 0,6488245 1022,2483 0,0006696 4147,514 0,6621411 1015,3084 0,0005608 4150,979 0,6732311 1013,322	4 0,000478
343,10 M 353,10 M 353,10 M 373,10 M	
$C_{0}U(k_{0}(k_{0}) = 0)U(k_{0}(k_{0}) = 0)U(k_{0$	(Dac)
	11 43/
387 401 8920 387 401 8920 387 401 8920	
773 40 4000 773 40 4000 773 40 4000 773 40 4000	
4190.2 0.6631 977.73 0.0004038 4196.9 0.66999 971.76 0.0004 4205.3 0.67526 965.29 0.0003144 4215.7 0.6791 958.34	0.0002817
1690 0.131 1024 0.001492 1719 0.13 1015 0.0013 1747 0.129 1007 0.001119 1775 0.128 999	0.000985
4124,396 0,70329862 1012,175 0,0004251 4130,962 0,7106021 1006,3248 0,0004 4139,194 0,716188 999,9842 0,0003309 4149,386 0,7202588 993,1732	0,0002965
1671,66 0,13894054 1083,52 0,0015705 1700,08 0,1378805 1074,7 0,0014 1727,52 0,136821 1066,86 0,0011779 1754,96 0,1357605 1059,02	0,0010368
4114.136 0.70349315 1136.575 0.0004251 4120.702 0.7108007 1130.7248 0.0004 4128.934 0.71639 1124.3842 0.0003309 4139.126 0.7204628 1117.5732	0.0002965
1674.2 0.13900474 1057.52 0.0015705 1702.62 0.1379438 1048.7 0.0014 1730.06 0.136883 1040.86 0.0011779 1757.5 0.1358218 1033.02	0.0010368
1663.94 0.13901239 1181.92 0.0015705 1692.36 0.1379513 1173.1 0.0014 1719.8 0.13689 1165.26 0.0011779 1747.24 0.1358291 1157.42	0.0010368
4121.856 0.70170579 1038.175 0.0004251 4128.422 0.7089767 1032.3248 0.0004 4136.654 0.714538 1025.9842 0.0003309 4146.846 0.7185897 1019.1732	0.0002965
4157 298 0 68299827 994 9527 0 0004142 4163 931 0 690993 989 0424 0 0004 4172 247 0 69552 982 6371 0 0003224 4182 543 0 6994736 975 7566	0.0002889
1680 83 0 13493056 1053 76 0 0015303 1709 54 0 1339009 1044 85 0 0013 1737 26 0 132871 1036 93 0 0011477 1764 98 0 1318414 1029 01	0.0010103
4152 168 0 68309359 1057 153 0 0004142 4158 801 0 6901903 1051 2424 0 0004 4157 117 0 695518 1044 8371 0 0003224 4177 413 0 6995736 1037 9566	0.0002889
1682 1 0 13/46202 10/0 75 0 00153 0 1770 81 0 133016 10 1331 85 0 0013 1738 53 0 132902 1023 93 0 0011477 156 55 0 1318715 1015 01	0.0010103
1676 97 0 13496577 1102 96 0.001503 1705 68 0.133955 1094 05 0.0013 1733 4 0.132905 1088 13 0.0011477 1761 12 0.131875 1078 21	0.0010103
4156.028 0.68221739 1007.953 0.0004142 4162.661 0.6892961 1002.0424 0.0004 4170.977 0.69471 995.6371 0.0003224 4181.273 0.6986553 988.75661	0 0002889

Εικόνα 5.2: Ιδιότητες διαφόρων νανορευστών για θερμοκρασίες από 30 °C έως 220 °C

		383,16 K				393,16	к				40)3,16 K				413,16	к
Cp(J/kgK)	k(W/mK)	o(ka/m ³)	u(Pas)	Cp(J/kaK)	k(W/mK)	o(ka/m ³)	u(Pas)	Cpl	(J/kaK)	k(W/mK) o(k	(a/m ³)	u(Pas)	Cp(J/kgK) k(W/mK)	o(kg/m ³)	u(Pas)
900	205	2700	F(*/	900	20	5 270	0		900	2	05	2700	F(/	9(20	5 2700	F(*/
387	401	8920		38	40	1 892	0		387	4	01	8920		38	37 40	1 8920	
773	40	4000		773	3 4	400	0		773		40	4000		7	73 4	0 4000	
4228,3	0,68169	950,94	0,0002547	4243,	0,6813	943,	1 0,000	232	4261,5	0,68	37	934,83	0,0002	13 4282	,6 0,683	3 926,13	0,0001965
1803	0,126	991	0,000875	183	0,12	98	2 0,000	/84	1858	0,1	24	9/4	0,0007	0/ 188	36 0,12	3 965	0,000642
4101,734	0,723004	1051 10	0.0002661	41/0,0	0,722000	2 9/0,23		442 4	4194,27	0,72513	47 :	1024 52	0,0002	42 14,94	10 0,72471 74 0 1204	1 901,007	0,0002069
1/02,4	0,13304	1051,10	0,000921	1003,04		11042,5		442	1030,3	0,13152	15 10	1034,52	0,0007	1003,1 24 4204 69	0,1304	7 1025,7	0,0000750
178/ 9/	0,72321	1025 18	0.0002001	1812 3	0,722031	102,03		252	1838.84	0,72554	78	1008 52	0,0002	4204,00	28 0 13051	7 9997	0,0002003
1774,68	0,133707	1149,58	0.000921	1802.12	0,132645	1140,7	6 0.0008	252	1828,58	0,13158	47	1132,92	0,0007	44 1856.0	02 0,130524	4 1124,1	0,0006758
4159,194	0,721323	1011,9212	0,0002681	4174,09	0,721006	1 1004,23	8 0,00024	442 4	4191,73	0,72344	35 9	996,1334	0,0002	4212,40	0,72302	1 987,607	0,0002069
4195,017	0,702141	968,4306	0,0002612	4210,065	0,701831	6 960,66	9 0,000	238 42	227,885	0,70421	02 9	952,4817	0,0002	18 4248,7	74 0,70379	8 943,869	0,0002016
1792,7	0,129782	1021,09	0,0008974	1820,42	0,128752	2 1012,1	8 0,0008	041	1847,15	0,12772	25	1004,26	0,0007	25 1874,8	37 0,126693	3 995,35	0,0006585
4189,887	0,702241	1030,6306	0,0002612	4204,93	0,701932	2 1022,86	9 0,000	238 42	222,755	0,70431	15 10	014,6817	0,0002	18 4243,64	44 0,703	9 1006,07	0,0002016
1793,97	0,129811	1008,09	0,0008974	1821,69	0,128780	999,1	8 0,0008	041	1848,42	0,12775	07	991,26	0,0007	25 1876,1	14 0,12672	1 982,35	0,0006585
1788,84	0,129815	1070,29	0,0008974	1816,50	0,128784	3 1061,3	8 0,0008	041	1843,29	0,12775	41	1053,46	0,0007	25 1871,0	0,12672	4 1044,55	0,0006585
4193,747	0,701316	981,4306	0,0002612	4208,798	o 0,7010079	973,66	9 0,000	238 43	226,615	0,70338	11 9	965,4817	0,0002	18 4247,50	0,7029	7 956,869	0,0002016
		423,16 K	[433,16 H	<				4	43,16 K	(453,16 k	(
	L(M/m/A)	o(ka/m ³)	u(Dee)	Cp(UkaK)	k(M/m/c)	olkalm ³	u/Do		n/ l/kal()	k/M/m		(kalm ³)	u(Dee)	Collikal	k(M/m/c)	olka/m ³)	u(Doo)
900	205	2700	μ(Γαδ)	900	205	p(kg/m) 2	700	s) C	.p(3/kgK) 900		205	2700	µ(rasj	Cp(3/kgK) 900	205	2700	µ(rasj
387	401	8920		387	401	8	920		387	7	401	8920		387	401	8920	
773	40	4000		773	40	4	000		773	3	40	4000		773	40	4000	
4307,1	0,68204	917	0,00018	4335,4	0,67995	90	7,44 0,0	0017	4367,9	0,67	705	897,44	0,0002	4405	0,67332	886,99	0,00015013
1913	0,121	957	0,00059	1940	0,12		948 0,00	0537	1968	3 0,	118	940	0,0005	1995	0,117	931	0,000457
4238,958	0,7233752	952,66	0,00019	4266,692	0,7211598	943,2	912 0,00	0179	4298,542	2 0,718	086 9	933,4912	0,0002	4334,9	0,714132	923,2502	0,00015803
1890,2	0,12834	1017,86	0,00062	1916,66	0,1272799	100	9,04 0,00	0565	1944,1	1 0,12	516	1001,2	0,0005	1970,56	0,1241	992,38	0,00048104
4228,698	0,7235809	1077,06	0,00019	4256,432	0,7213643	1067,6	912 0,00	0179	4288,282	2 0,718	289 1	1057,891	0,0002	4324,64	0,714333	1047,65	0,00015803
1892,74	0,1283948	991,86	0,00062	1919,2	0,1273338	98:	3,04 0,00	0565	1946,64	4 0,125	212	975,2	0,0005	1973,1	0,124151	966,38	0,00048104
1882,48	0,1284013	1116,26	0,00062	1908,94	0,1273402	110	7,44 0,00	0565	1936,38	3 0,125	218	1099,6	0,0005	1962,84	0,124157	1090,78	0,00048104
4236,418	0,7216919	978,66	0,00019	4264,152	0,7194866	969,2	912 0,00	0179	4296,002	2 0,716	427 9	959,4912	0,0002	4332,36	0,712491	949,2502	0,00015803
4273,029	0,7025009	934,83	0,00019	4301,046	0,7003488	925,3	656 0,00	0175	4333,221	1 0,697	363 9	915,4656	0,0002	4369,95	0,693522	905,1201	0,00015398
1901,6	0,1246333	987,43	0,0006	1928,33	0,1236035	978	3,52 0,00	0551	1956,05	0,121	544	970,6	0,0005	1982,78	0,120514	961,69	0,00046872
4267,899	0,7026017	997,03	0,00019	4295,916	0,700449	987,5	656 0,00	0175	4328,091	1 0,697	462 9	977,6656	0,0002	4364,82	0,69362	967,3201	0,00015398
1902,87	0,1246601	974,43	0,0006	1929,6	0,1236299	96	5,52 0,00	0551	1957,32	2 0,12	157	957,6	0,0005	1984,05	0,120539	948,69	0,00046872
1097,74	0,1240033	047.92	0,0006	1924,47	0,1230331	029.2		0175	1952,15	0,121	5/3 6/0 0	1019,0	0,0005	1970,92	0,120542	019 1201	0,00046672
4211,133	0,1010131	541,05	0,00013	4233,110	0,0333200	550,5	0301 0,00	0113	4551,551	1 0,030	J4J J	20,4030	0,0002	4300,00	0,032111	510,1201	0,00013330
		463,16 K			4	73,16 K				48	3,16	к				493,16 K	
Cp(J/kgK)	k(W/mK)	ρ(kg/m³)	µ(Pas)	Cp(J/kgK)	(W/mK) ρ(kg/m³)	(Pas)	Cp(J/kg	gK) k(W/r	mK) ρ(k	:g/m ³)	µ(Pas)	C	p(J/kgK) k	(W/mK)	ρ(kg/m³)	µ(Pas)
900	205	2700		900	205	2700			900	205	270	0		900	205	2700	
387	401	8920		387	401	8920			387	401	892	20		387	401	8920	
113	0.66875	876.06	0.0001/18	1195.9	0.66331	864.65	0 0001343	455	513 0.6	40	852.7	1 0.0	001276	4614.7	0 6/96/	840.21	0.0001215
2021	0.115	922	0.000424	2048	0.114	913	0.000395	2	2075 (0.112	90	4 0.1	000368	2101	0,04304	895	0.000345
4376,452	0,70928773	912,5388	0,0001492	4423,982	0,7035212	901,357	0,0001414	4478,	274 0,6	9679 8	89,655	8 0,000	134312	4540,406	0,689030537	877,4058	0,0001279
1996,04	0,12197922	983,56	0,0004463	2022,5	0,1209191	974,74	0,0004158	2048	8,96 0,11	8799	965,9	2 0,000	387357	2074,44	0,117738516	957,1	0,0003631
4366,192	0,70948557	1036,9388	0,0001492	4413,722	0,7037159	1025,757	0,0001414	4468,	,014 0,69	6981 1	014,05	6 0,000	134312	4530,146	0,689217282	1001,8058	0,0001279
1998,58	0,12202874	957,56	0,0004463	2025,04	0,1209677	948,74	0,0004158	205	51,5 0,11	8846	939,9	2 0,000	387357	2076,98	0,117784666	931,1	0,0003631
1988,32	0,12203464	1081,96	0,0004463	2014,78	0,1209735	1073,14	0,0004158	2041	724 0,11	8851	1064,3	0,000	38/35/	2066,72	U, 117790163	1055,5	0,0003631
4373,912	0.68881614	936,5388	0.0001492	4421,442	0.6832146	927,357 883.0035	0.0001414	4475,	787 0.69	6676 9	10,055	0,000	130873	4537,660	0,007000479	903,4058	0,0001279
2008.52	0.11845466	952.78	0.0004349	2035.25	0 1174249	943.87	0.0004051	2061	1 98 0 11	5365	93/1.02	6 0,000	377439	2087 72	0 11433561	926.05	0.0003538
4406 796	0.68891308	956 4994	0.0001454	4454 811	0.6833099	945 2035	0 0001378	4509	657 0.67	6769 9	33,382	9 0,000	130873	4572 423	0.669229734	921.0079	0.0001246
2009,79	0,11847893	939.78	0.0004349	2036,52	0,1174487	930,87	0.0004051	2063	3,25 0,11	5388	921,9	6 0,000	377439	2088,99	0,114358123	913.05	0,0003538
2004,66	0,11848182	1001,98	0,0004349	2031,39	0,1174516	993,07	0,0004051	2058	B,12 0,11	5391	984,1	6 0,000	377439	2083,86	0,114360816	975,25	0,0003538
4410,656	0,68802217	907.2994	0.0001454	4458.671	0,6824331	896,0035	0.0001378	4513.	517 0.67	5909 8	84,182	9 0.000	130873	4576.283	0.668388135	871.8079	0.0001246

Εικόνα 5.3: Ιδιότητες διαφόρων νανορευστών για θερμοκρασίες από 30 °C έως 220 °C

5.2 Προσθήκη νέων ρευστών στο Solidworks

Εκτός από το νανορευστό **Λάδι-Al₂O₃ (φ=2%)** δοκιμάστηκαν και τα υπόλοιπα που φαίνονται στους παραπάνω πίνακες, όμως η απόδοση ήταν χαμηλότερη. Επίσης, για κατ' όγκο σύσταση 1% ο θερμικός βαθμός απόδοσης ήταν μικρότερος κι έτσι επιλέχτηκε τελικά φ=2%. Παρακάτω φαίνεται η διαδικασία προσθήκης των νέων ρευστών στο Solidworks.

Εικόνα 5.4: Προσθήκη νέου ρευστού

Εικόνα 5.5: Προσθήκη των βασικών ιδιοτήτων του ρευστού σε πίνακες

Εικόνα 5.6: Πίνακες και καμπύλες των βασικών ιδιοτήτων του θερμικού λαδιού

35 SOLIDWORKS P 🗋 • 🗗 •			Τελικό *		🦻 Search SOLIDWORKS Help 🔎 🔹 🖉 🕊 🔤 🔀
🔨 Wizard 🗒 🛒 🖣		🕅 🚸 🖗 🖗			
🗋 New 🛅 General 💢 Sim		En Ciano de Ciano	ainooring Database		? ×
E Clone Project	Cla Edit Mana Haita Hala	Li	igineering Database		
Assembly Layout Sketch Evaluate	File Edit View Units Help				
		💺 😽 🛅 🔀 🕮 🎙) 🔡 🏭 💭 🔍 🥹 🕗	U 🖳 🖛 🗭 🗶 X 🗈 🖻	
Projects	Database tree:	Items Item Properties Tables an	nd Curves		
Default	p- 🎲 Dities 🔨 🔺	Themal of			
😻 Νερό 30οC	🛛 🄄 Contact Electrical Resista	inclina or			
Input Data	8- 📴 Contact Thermal Resistar	Property:			
	Uustom - Visualization Par	Thermal conductivity	~		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Solid Materials	B	Terra centure Theorem	Lanaduatiska a		
😵 Glass Solid Material 1	Materials	303.46 K 0.135 W	((m*K)	W((m+k) Thermal conductivity	
🧐 Glasswool Solid Material 1	👜 🔥 Compressible Liquids	313.16 K 0.134 W	0.14		
Copper Solid Material 1	👜 📣 Gases	323.16 K 0.133 W	//(m*K) 0.13		
1060 Alloy Solid Material 1	🖨 👌 Liquids	333.16 K 0.132 W	//(m*K)		
Steel (Mild) Solid Material I	🔥 Pre-Defined	343.16 K 0.131 W	//(m*K) 0.13		Υ
Boundary Conditions	🗄 🖓 User Defined	353.16 K 0.13 W/	(m*K)	🔪	•
Total Pressure 1	Non-Newtonian Liquit	363.16 K 0.129 W	//(m*K) 0.12		Z
Outer Wall 1	A Heal bases	373.16 K 0.128 W	//(m*K) 0.12	🔧	
🖬 Outer Wall 2	Shearn	383.16 K 0.126 W	//(m*K)		
Outer Wall 3	Perforated Plates	403 16 K 0.125 W	0.12		
- 🕅 Radiative Surfaces	- S Porous Media	413.16 K 0.123 W	//(m*K)		
Radiative Surface 1	Printed Circuit Boards	423.16 K 0.121 W	0.11 30	3.10 300.49 429.83 493.10	à
Radiative Surface 2	🖬 🏭 Radiation Spectra	433.16 K 0.12 W/	(m*K)	334.83 398.16 461.49	
⊡> Goals	B-100 Radiative Surfaces	443.16 K 0.118 W	//(m*K) ¥	Terriperature	
10 8 Tro	Representation Coolers				
Tri		Poset			
Тр	C S S S S S S S S S S S S S S S S S S S	Thodas			
Ts				1.000	
🗄 😪 Results (Not loaded)		The	armal oil	SI (m-kg-s)	
Model 3D Views Mc	otion Study 1				
SOLIDWORKS Student Edition - Academic Use	e Only			Under Defined	Editing Assembly MMGS 🔺 🕄 🥔

Εικόνα 5.7: Πίνακες και καμπύλες των βασικών ιδιοτήτων του θερμικού λαδιού

S SOLIDWORKS P □ • ₽ •		•		Τελικό *	Search	h SOLIDWORKS Help 🔎 🕈 🐂 📾 🖄
🔨 Wizard 🗒 🛒 🛃	💄 🗒 🕞 🙀 💥	🕅 🚸 🖾 🖗	*			
New E General Sime	1		Engineering Datab	ase	? 🗙	
E Clone Project	File Edit View Units Help					
Assembly Layout Sketch Evaluate) 🕼 🦊 🕮 🐧	📾 👟 🎞 In 📬	a 1. 🗰 🔽 📥 🕅		
S S S S		N 🔊 📶 😪		<u> ~ 4 🖬 🐷 📥 4</u>		_
Projects	Database kee		Telles and O area			
⊡ ⊨• Default		Items Item Properties	Tables and Curves			
Νερό 30οC	Cardenal Electrical Devicts	ΑΙ2Ο3-λάδι 2%				<u> 1</u>
- P Input Data	Contact Themal Resistan					
Computational Domain	Custore Visualization Par	Property:				8
	Fans	Density	v			-
🖕 🧐 Solid Materials	Heat Sinks	Temperature	Density A			1
😵 Glass Solid Material 1	- 🔀 Materials	303.16 K	1114.88 kg/m^3	kg/m^3 Density	у	
🧐 Glasswool Solid Material 1	🛓 👌 Compressible Liquids	313.16 K	1107.04 kg/m^3	1114.88		
Copper Solid Material 1	🝙 🛶 Gases	323.16 K	1099.2 kg/m*3	1088.58		
1060 Alloy Solid Material 1	🖶 👌 Liquids	333.16 K	1091.36 kg/m*3			
Steel (Mild) Solid Material 1	🔥 Pre-Defined	343.16 K	1083.52 kg/m^3	1062.29		Y
Boundary Conditions	🗄 - 🙇 User Defined	353.16 K	1074.7 kg/m*3			+
Inlet Mass Flow I	👜 👌 Non-Newtonian Liquid	363.16 K	1066.86 kg/m*3	1035.99		Z
Total Pressure 1	🕢 📣 Real Gases	373.16 K	1059.02 kg/m*3			
Outer Wall 1	🕀 🍪 Solids	383.16 K	1051.18 kg/m*3	1009.69		Xar
We Outer Wall 2	👜 📣 Steam	393.16 K	1042.36 kg/m^3	983.40		
Badiative Surfaces	Perforated Plates	403.16 K	1034.52 kg/m*3	363.40		
D'A Radiative Surface 1	Porous Media	413.16 K	1025.7 kg/m^3	957,10	ĸ	
D'A Radiative Surface 2	Printed Lincuit Boards	423.16 K	1017.86 kg/m*3	303.10 300.49 334.83 398.1E	429.83 493.10	
Goals	Hadiation Spectra	433.16 K	1009.04 kg/m ⁴ 3	Temperat	ture	
То	- Thermoelectric Coolers	443.16 K	1001.02 kg/m*3 *			
📉 Tco	Tracers					
	Two-Besistor Component: Y	Reset				
РА Тр	< >					
Ts						
in the suits (Not loaded)			ΑΙ2Ο3-Λαδι 2%		SI (m-kg-s)	
Model 3D Views Mc	otion Study 1					
SOLIDWORKS Student Edition - Academic Use	e Only				Under Defined Editing Ass	embly MMGS 🔺 🕄 🥥

Εικόνα 5.8: Πίνακες και καμπύλες των βασικών ιδιοτήτων του νανορευστού

Εικόνα 5.9: Πίνακες και καμπύλες των βασικών ιδιοτήτων του νανορευστού

Κεφάλαιο 6: Αποτελέσματα

Στη συνέχεια τρέχει το πρόγραμμα και για τα δύο νέα ρευστά κι έχουμε τα εξής αποτελέσματα:

Πίνακας 6.1: Αποτελέσματα από το τρέξιμο του Flow Simulation για τα τρία διαφορετικά ρευστά

T _i (°C)	T _{ai} (°C)	T₀(°C)	T _p (°C)	T _{ci} (°C)	T _{co} (°C)	T₅(°C)
30	30	36,23	39,17	20,81	20,32	35,66
40	36	45,73	48,38	23,54	22,91	44,91
50	42	54,78	57,57	26,17	25,39	54,27
60	47,5	64,37	66,77	28,82	27,91	63,62
70	53,7	73,24	75,98	31,50	30,45	73,03

<u>Νερό</u>

<u>Λάδι</u>

T _i (°C)	T _{ai} (°C)	T₀(°C)	T _p (°C)	T _{ci} (°C)	T _{co} (°C)	T₅(°C)
30	38,25	44,60	52,21	24,20	23,51	49,05
40	43	53,00	59,86	26,28	25,48	56,87
50	48	61,44	67,66	28,45	27,53	64,88
60	53	69,87	75,58	30,64	29,58	73
70	58	78,32	83,57	32,84	31,66	81,21

<u>Λάδι-Al₂O₃ (φ=2%)</u>

T _i (°C)	T _{ai} (°C)	T₀(°C)	T _p (°C)	T _{ci} (°C)	T _{co} (°C)	T _s (°C)
30	38,2	44,78	52,06	24,18	23,49	48,89
40	43	53,17	59,73	26,28	25,48	56,72
50	48	61,89	67,57	28,47	27,56	64,73
60	53	70,01	75,47	30,64	29,61	72,85
70	58	78,42	83,47	32,85	31,69	81,06

6.1 Θερμικός βαθμός απόδοσης

Ο θερμικός βαθμός απόδοσης η_i του επίπεδου ηλιακού συλλέκτη ορίζεται ως ο λόγος της αποδιδόμενης ισχύος, Q_u, προς την αντίστοιχη προσπίπτουσα ηλιακή ακτινοβολία, A_cG_T:

$$\eta_{th} = \frac{Q_u}{A_c \cdot G_T} \Longrightarrow \eta_{th} = \frac{\dot{m} \cdot C_p \cdot (T_o - T_i)}{A_c \cdot G_T}$$
(5)

, όπου A_c=1.8321 m² η συλλεκτική επιφάνεια, G_T=800 W/m², m=0.04 kg/s.

<u>Πίνακας 6.2</u>: Τιμές του θερμικού βαθμού απόδοσης για τα τρία ρευστά

	$\sim \sim$
1N 2.	UU
	~ ~

T _i (°C)	η _{th}
30	0,7104
40	0,6541
50	0,5460
60	0,4997
70	0,3705

<u>Λάδι</u>

T _i (°C)	η _{th}
30	0,6275
40	0,5693
50	0,5101
60	0,4477
70	0,3836

<u>Λάδι-Al₂O₃ (φ=2%)</u>

T _i (°C)	η _{th}
30	0,6288
40	0,5707
50	0,5242
60	0,4491
70	0,3840

Διάγραμμα 6.1: Καμπύλη θερμικού βαθμού απόδοσης του νερού

Διάγραμμα 6.2: Καμπύλη θερμικού βαθμού απόδοσης του λαδιού

Διάγραμμα 6.3: Καμπύλη θερμικού βαθμού απόδοσης του νανορευστού

Διάγραμμα 6.4: Καμπύλη σύγκρισης της θερμοκρασίας εξόδου των τριών ρευστών

Διάγραμμα 6.5: Καμπύλη σύγκρισης της αποδιδομένης ισχύος των τριών ρευστών

Διάγραμμα 6.6: Καμπύλη σύγκρισης του θερμικού βαθμού απόδοσης των τριών ρευστών

Παρατηρείται ότι ο βαθμός απόδοσης του νερού είναι υψηλότερος από το λάδι και το νανορευστό μέχρι και τους 60°C. Από εκεί και πέρα ο βαθμός απόδοσης μειώνεται αρκετά και είναι λογικό καθώς το νερό πλησιάζει στη θερμοκρασία βρασμού του. Όσον αφορά το λάδι και το νανορευστό, το δεύτερο έχει ελάχιστα αυξημένο βαθμό απόδοσης, με τη μεγαλύτερη διαφορά να συμβαίνει στους 50°C, όπου το νανορευστό έχει θερμικό βαθμό απόδοσης περίπου 1.5% παραπάνω.

6.2 Παράγοντες ηλιακού συλλέκτη

Ονομάζεται παράγων θερμικής απολαβής του συλλέκτη, **F**_R, ο λόγος της πραγματικής αποδιδομένης θερμικής ισχύος, Q_u, προς την θερμική ισχύ που θα αποδιδόταν αν ολόκληρος ο απορροφητήρας είχε την θερμοκρασία εισόδου του ρευστού, T_i, δηλαδή:

$$F_{R} = \frac{Q_{u}}{A_{c} \cdot [S - U_{L} \cdot (T_{i} - T_{a})]} \Longrightarrow F_{R} = \frac{\dot{m} \cdot C_{p} \cdot (T_{o} - T_{i})}{A_{c} \cdot [S - U_{L} \cdot (T_{i} - T_{a})]}$$
(6)

, όπου S=(τα)G_T η απορροφούμενη ηλιακή ακτινοβολία και U_L ο συντελεστής συνολικών θερμικών απωλειών του συλλέκτη.

Από την εξίσωση ορισμού του F_R, προκύπτει η ΄΄εξίσωση του επίπεδου συλλέκτη΄΄, η οποία δίνει την πραγματικά αποδιδομένη θερμική ισχύ Q_u:

$$Q_u = A_c \cdot F_R \cdot \left[S - U_L \cdot \left(T_i - T_a \right) \right]$$
(7)

Επομένως, ο θερμικός βαθμός απόδοσης μπορεί να γραφτεί και ως:

$$\eta_{\rm i} = F_{\rm R} \cdot (\tau \alpha) - F_{\rm R} \cdot U_L \cdot \frac{T_i - T_{\rm a}}{G_{\rm T}}$$
(8)

Από την τελευταία εξίσωση μπορεί να υποτεθεί ότι ο βαθμός απόδοσης η_i είναι γραμμική συνάρτηση της μεταβλητής (T_i-T_a)/G_T, με κλίση -F_RU_L και τομή με τον άξονα των τεταγμένων στη θέση F_R(τα). Από τις προσεγγίσεις των καμπυλών του βαθμού απόδοσης με τη βοήθεια ευθειών στο Excel, μπορούμε να υπολογίσουμε τα μεγέθη -F_RU_L και F_R(τα). Για το νερό, η καμπύλη του βαθμού απόδοσης προσεγγίστηκε με δευτεροβάθμια εξίσωση λόγω μειωμένης γραμμικότητας, επομένως μπορεί να υπολογιστεί μόνο το F_R(τα).

<u>Νερό</u>: $F_R \cdot (\tau \alpha) = 0.8059 \implies F_R = \frac{0.8059}{0.89}$ $\implies F_R = 0.9055$

$$F_{R} \cdot (\tau \alpha) = 0.7514 \implies F_{R} = \frac{0.7514}{0.89}$$

$$\underline{\Lambda \dot{\alpha} \delta \iota}: \qquad \Rightarrow \frac{F_{R} = 0.8443}{F_{R} \cdot U_{L} = 4.8747}$$

$$\Rightarrow \underline{U_{L} = 5.774}$$

$$F_{R} \cdot (\tau \alpha) = 0.7558 \Longrightarrow F_{R} = \frac{0.7558}{0.89}$$

$$\underline{\Lambda \dot{\alpha} \delta_{1} - Al_{2}O_{3}} : \qquad \Rightarrow \frac{F_{R} = 0.8492}{F_{R} \cdot U_{L} = 4.8895}$$

$$\Rightarrow \underline{U_{L} = 5.7577}$$

Ο συντελεστής συνολικών θερμικών απωλειών του συλλέκτη U_L μπορεί να υπολογιστεί από μία άλλη έκφραση της ωφέλιμης αποδιδόμενης ισχύος, η οποία εκφράζει τον καταμερισμό της προσπίπτουσας ηλιακής ενέργειας σε ωφέλιμη ενέργεια, θερμικές απώλειες και οπτικές απώλειες:

$$Q_{u} = A_{c} \cdot \left[S - U_{L} \cdot \left(T_{p} - T_{a} \right) \right] \Longrightarrow U_{L} = \frac{A_{c} \cdot S - Q_{u}}{A_{c} \cdot \left(T_{p} - T_{a} \right)}$$
(9)

Από τη σχέση (6) υπολογίζεται ο παράγων θερμικής απολαβής του συλλέκτη F_R. Προκύπτουν οι εξής τιμές:

<u>Πίνακας 6.3</u>: Συντελεστής συνολικών θερμικών απωλειών και παράγων θερμικής απολαβής του συλλέκτη για τα τρία ρευστά

<u>Νερό</u>:

T _i (°C)	U _L (W/m ² K)	F _R
30	4,9259	0,9264
40	4,9173	0,9270
50	5,7857	0,9089
60	5,5008	0,9148
70	6,2991	0,8873

<u>Λάδι</u> :	T _i (°C)	U _L (W/m ² K)	F _R
	30	4,9748	0,8196
	40	5,1461	0,8167
	50	5,2711	0,8142
	60	5,3964	0,8099
	70	5,5064	0,8042

<u>Λάδι-Al₂O</u> 3:	T _i (°C)	U _L (W/m²K)	F _R
	30	4,9688	0,8211
	40	5,1371	0,8184
	50	5,0837	0,8244
	60	5,3878	0,8117
	70	5,5102	0,8054

Ο μέσος όρος του παράγοντα θερμικής απολαβής του συλλέκτη για το νερό είναι ίσος με **0.9129**, ο οποίος είναι πολύ κοντά στο 0.9055 που έχει βρεθεί από τη γραμμή τάσης στο Excel. Ο μέσος όρος του παράγοντα θερμικής απολαβής του συλλέκτη για το λάδι είναι ίσος με **0.8129**, ενώ του συντελεστή ολικών θερμικών απωλειών του συλλέκτη είναι ίσος με **5.259**. Τέλος, ο μέσος όρος του παράγοντα θερμικής απολαβής του συλλέκτη για το λάδι είναι ίσος με **0.8162**, ενώ του συντελεστή ολικών θερμικών απωλειών του συλλέκτη είναι ίσος με **5.2175**.

Έχοντας υπολογίσει τον συντελεστή ολικών θερμικών απωλειών, υπολογίζονται οι συνολικές θερμικές απώλειες ανά τετραγωνικό μέτρο Q_L.

$$Q_L = U_L \cdot (T_p - T_a) \tag{10}$$

<u>Πίνακας 6.4</u>: Συνολικές θερμικές απώλειες ανά τετραγωνικό μέτρο του συλλέκτη για τα τρία ρευστά

<u>Νερό</u>:

T _i (°C)	$Q_L(W/m^2)$
30	143,697
40	188,741
50	275,226
60	312,268
70	415,596

<u>Λάδι</u>:

T _i (°C)	$Q_L(W/m^2)$
30	210,009
40	256,570
50	303,952
60	353,871
70	405,091

<u>Λάδι-Al₂O₃:</u>

T _i (°C)	$\overline{Q_{L}(W/m^{2})}$
30	208,999
40	255,450
50	292,676
60	352,737
70	404,833

Όπως είναι λογικό, οι συνολικές θερμικές απώλειες αυξάνονται συνεχώς με την αύξηση της θερμοκρασίας εισόδου του ρευστού και τείνουν να είναι ίσες για τα 3 ρευστά στους 70°C.

Σε αυτό το σημείο μπορεί να αποδειχθεί βάση τύπων πως η αύξηση της ειδικής θερμοχωρητικότητας ενός ρευστού οδηγεί στην αύξηση του θερμικού βαθμού απόδοσης του επίπεδου ηλιακού συλλέκτη.

$$Q_{u} = \dot{m} \cdot C_{p} \cdot \Delta T$$

$$C_{p} \uparrow \Rightarrow \Delta T \downarrow \Rightarrow T_{o} \downarrow \Rightarrow T_{fm} \downarrow \Rightarrow T_{p} \downarrow \Rightarrow Q_{L} \downarrow \Rightarrow \eta_{th} \uparrow$$

Στη συνέχεια ορίζεται ο παράγων απόδοσης του συλλέκτη F', ο οποίος παριστά το λόγο της πραγματικής αποδιδομένης θερμικής ισχύος προς την θερμική ισχύ που θα αποδιδόταν αν κάθε σημείο της πλάκας απορρόφησης είχε την αντίστοιχη θερμοκρασία του ρευστού. Μια άλλη φυσική ερμηνεία του παράγοντα απόδοσης του συλλέκτη είναι ως ο λόγος της θερμικής αντίστασης από την πλάκα απορρόφησης μέχρι το περιβάλλον προς την θερμική αντίσταση από το ρευστό μέχρι το περιβάλλον. Δηλαδή:

$$F' = \frac{\frac{1}{U_{L}}}{\frac{1}{U_{o}}} = \frac{U_{o}}{U_{L}}$$
(11)

Επειδή όμως ο συντελεστής θερμικής αντίστασης από το ρευστό μέχρι το περιβάλλον U_o είναι άγνωστος δε μπορεί να υπολογιστεί ο παράγων απόδοσης του συλλέκτη από αυτόν τον τύπο. Θα χρησιμοποιηθεί μια εναλλακτική έκφραση του παράγοντα θερμικής απολαβής του συλλέκτη:

$$F_{R} = \frac{\dot{m} \cdot C_{p}}{A_{c} \cdot U_{L}} \cdot \left[1 - e^{-(A_{c} \cdot U_{L} \cdot F')/(\dot{m} \cdot C_{p})}\right]$$
(12)

Ο μόνος άγνωστος στην παραπάνω εξίσωση είναι ο παράγων απόδοσης του συλλέκτη F'. Προκύπτουν οι εξής τιμές:

	<u>Νερό</u>	<u>Λάδι</u>	<u>Λάδι-ΑΙ₂Ο</u> ₃
T _i (°C)	F'	F'	F'
30	0,9477	0,8743	0,8759
40	0,9489	0,8666	0,8690
50	0,934	0,8646	0,8747
60	0,9395	0,8604	0,8629
70	0,914	0,8543	0,8564

Πίνακας 6.5: Παράγων απόδοσης του συλλέκτη για τα τρία ρευστά

Ορίζεται τέλος ο παράγων ροής του συλλέκτη F" ως: F

$$F'' = \frac{F_R}{F'}$$
 (13)

	Νερό	<u>Λάδι</u>	<u>Λάδι-Al₂O₃</u>
T _i (°C)	F"	F"	F"
30	0,9775	0,9374	0,9374
40	0,9769	0,9425	0,9418
50	0,9731	0,9418	0,9425
60	0,9737	0,9414	0,9406
70	0,9708	0,9413	0,9405

Πίνακας 6.6: Παράγων ροής του συλλέκτη για τα τρία ρευστά

6.3 Συντελεστής συναγωγής h και αδιάστατοι αριθμοί της ροής του ρευστού

Ο συντελεστής συναγωγής μεταξύ ρευστού και εσωτερικού τοιχώματος του σωλήνα μπορεί να υπολογιστεί μέσω μιας διαφορετικής έκφρασης της αποδιδομένης θερμικής ισχύος:

$$Q_u = A_{in} \cdot h \cdot \left(T_p - T_{fm}\right) \Longrightarrow h = \frac{Q_u}{A_{in} \cdot \left(T_p - T_{fm}\right)}$$
(14)

, όπου $A_{in} = N \cdot \pi \cdot D_{in} \cdot L$ το συνολικό εμβαδόν της εσωτερικής επιφάνειας των σωληνώσεων του συλλέκτη (Ν ο αριθμός των σωλήνων του συλλέκτη) και T_{fm} η μέση θερμοκρασία του ρευστού. Ισχύει ότι:

$$T_{fm} = T_i + \frac{Q_u}{A_c \cdot U_L \cdot F_R} (1 - F'')$$
(15)

<u>Πίνακας 6.7</u>: Μέση θερμοκρασία του ρευστού και συντελεστής συναγωγής μεταξύ ρευστού και εσωτερικού τοιχώματος του σωλήνα για τα τρία ρευστά

<u>Νερό</u>:

T _i (°C)	T _{fm} (°C)	h(W/m ² K)
30	32,80	340,31
40	42,65	348,13
50	52,24	312,16
60	62,09	325,68
70	71,55	255,24

<u>Λάδι</u>:

T _i (°C)	T _{fm} (°C)	h(W/m ² K)
30	37,71	131,96
40	46,23	127,45
50	55,54	128,28
60	64,80	126,77
70	74,07	123,14

Λάδι-ΑΙ2Ο3:			
<u></u>	T _i (°C)	T _{fm} (°C)	h(W/m ² K)
	30	37,72	133,73
	40	46,33	129,89
	50	55,76	135,32
	60	64,88	129,34
	70	74,12	125,25

Συγκριτικά, οι θερμοκρασίες που έχουν υπολογιστεί μέχρι στιγμής για κάθε ρευστό φαίνονται παρακάτω, όπου T_c η μέση θερμοκρασία των T_{ci} και T_{co} .

Διάγραμμα 6.7: Καμπύλες των θερμοκρασιών που έχουν υπολογιστεί μέχρι στιγμής για το νερό

Διάγραμμα 6.8: Καμπύλες των θερμοκρασιών που έχουν υπολογιστεί μέχρι στιγμής για το λάδι

Διάγραμμα 6.9: Καμπύλες των θερμοκρασιών που έχουν υπολογιστεί μέχρι στιγμής για το νανορευστό

Στη συνέχεια μένει να υπολογιστούν οι **αδιάστατοι αριθμοί Reynolds και Nusselt** οι οποίοι ορίζονται ως:

$$\operatorname{Re} = \frac{4 \cdot \dot{m}}{N \cdot \pi \cdot D_{\operatorname{in}} \cdot \mu} \quad (16) \quad , \quad Nu = \frac{h \cdot D_{\operatorname{in}}}{k} \quad (17)$$

, όπου Ν ο αριθμός των σωλήνων του συλλέκτη.

Πίνακας 6.8: Αδιάστατοι αριθμοί Reynolds και Nusselt για τα τρία ρευστά

<u>Νερό</u>:

T _i (°C)	Re	Nu
30	798,58	4,423
40	975,14	4,417
50	1164,39	3,880
60	1365,23	3,982
70	1576,49	3,079

<u>Λάδι</u>:

Re	Nu
194,09	7,820
244,85	7,609
300,29	7,716
361,51	7,683
426,69	7,520
	Re 194,09 244,85 300,29 361,51 426,69

<u>Λάδι-Al₂O₃:</u>

T _i (°C)	Re	Nu
30	184,39	7,472
40	232,62	7,311
50	285,29	7,674
60	343,45	7,391
70	405,37	7,212

Από τον τύπο του αριθμού Reynolds φαίνεται ότι εξαρτάται μόνο από το ιξώδες του ρευστού, καθώς τα υπόλοιπα μεγέθη είναι σταθερά. Έτσι, αφού με την αύξηση της θερμοκρασίας το ιξώδες μειώνεται, ο αριθμός Reynolds συνεχώς αυξάνεται. Η μεγαλύτερη του τιμή είναι για το νερό στους 70°C και είναι ίση με 1576.49. Σε κάθε περίπτωση όμως είναι μικρότερη από 2300, οπότε η **ροή** είναι **στρωτή**.

Ο αριθμός Nusselt μπορεί να υπολογιστεί και από τη σχέση Hausen για στρωτή ροή, με την υπόθεση ότι η θερμοκρασία στην εσωτερική επιφάνεια του σωλήνα T_s είναι σταθερή.

$$Nu = 3.66 + \frac{0.0668 \cdot \frac{D_{in}}{L} \cdot \text{Re Pr}}{1 + 0.04 \cdot \left(\frac{D_{in}}{L} \cdot \text{Re Pr}\right)^{\frac{2}{3}}}$$
(18)

, όπου Pr ο αριθμός Prandtl:
$$Pr = \frac{\mu \cdot C_p}{k}$$
 (19)

Με συνδυασμό των παραπάνω εξισώσεων προκύπτει:

T _i (°C)	Pr	Nu
30	5,414	4,607
40	4,327	4,588
50	3,553	4,572
60	2,982	4,560
70	2,552	4,550

<u>Πίνακας 6.9</u>: Αδιάστατοι αριθμοί Prantdl και Nusselt για τα τρία ρευστά

<u>Λάδι</u>:

<u>Νερό</u>:

T _i (°C)	Pr	Nu
30	38,267	5,148
40	31,122	5,179
50	26,030	5,210
60	22,173	5,242
70	19,248	5,273

<u>Λάδι-Al₂O₃</u>:

T _i (°C)	Pr	Nu
30	37,591	5,066
40	30,568	5,096
50	25,561	5,126
60	21,770	5,156
70	18,895	5,185

Παρατηρείται ότι κυρίως στο νερό, οι αριθμοί Nusselt με τους δύο διαφορετικούς τρόπους υπολογισμού είναι πολύ κοντά μεταξύ τους. Οι τυχόν διαφορές οφείλονται στο γεγονός ότι η T_s δεν είναι ακριβώς σταθερή.
6.4 Κατανομές θερμοκρασίας σε διάφορα σημεία του συλλέκτη

6.4.1 Θερμοκρασία του ρευστού

Για την προβολή της θερμοκρασίας του ρευστού καθ' όλο το μήκος του ηλιακού συλλέκτη θα χρησιμοποιηθούν τα χρωματιστά διαγράμματα (Contours), όπου το κάθε χρώμα συμβολίζει κι ένα διαφορετικό πεδίο τιμών. Στα αποτελέσματα της μελέτης (**Results**), επιλέγεται η εντολή **Surface Plots** και ύστερα επιλέγεται η επιφάνεια και το μέγεθος που ενδιαφέρει.

Εικόνα 5.1: Αποτελέσματα της μελέτης και προσθήκη Surface Plots

Εικόνα 6.2: Επιλογή των χρωματιστών διαγραμμάτων (Contours)

Εικόνα 6.3: Επιλογή της θερμοκρασίας του ρευστού ως το επιθυμητό μέγεθος προς εξέταση

Η λογική σε αυτή τη μελέτη ήταν να φανεί ότι ο θερμικός βαθμός απόδοσης του συλλέκτη μειώνεται με την αύξηση της θερμοκρασίας εισόδου του ρευστού. Αυτό πραγματοποιήθηκε με το να τοποθετηθούν σταθερά όρια στις τιμές της θερμοκρασίας του ρευστού, βάση των οποίων ο συλλέκτης αποκτά το κατάλληλο χρώμα. Ως κατώτατο όριο επιλέχτηκε η θερμοκρασία εισόδου του ρευστού και ως ανώτατο 10°C πάνω από τη θερμοκρασία εισόδου, δηλαδή 10°C παραπάνω από το κατώτατο όριο κάθε φορά. Με αυτό τον τρόπο διαπιστώθηκε ότι τα χρώματα του συλλέκτη, όσο αυξάνεται η θερμοκρασία εισόδου του ρευστού, γίνονται και λιγότερο κόκκινα, δηλαδή η απόδοση του συλλέκτη συνεχώς πέφτει. Παρακάτω

Εικόνα 6.4: Θερμοκρασία του ρευστού στον συλλέκτη για το νερό (T_i=30°C)

Εικόνα 6.5: Θερμοκρασία του ρευστού στον συλλέκτη για το νερό (T_i=40°C)

<u>Εικόνα 6.6</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νερό $(T_i=50^\circ C)$

Εικόνα 6.7: Θερμοκρασία του ρευστού στον συλλέκτη για το νερό (T_i=60°C)

<u>Εικόνα 6.8</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νερό (T_i =70°C)

<u>Εικόνα 6.9</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το λάδι ($T_i=30^\circ$ C)

<u>Εικόνα 6.10</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το λάδι (T_i =40°C)

<u>Εικόνα 6.11</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το λάδι $(T_i=50^\circ C)$

<u>Εικόνα 6.12</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το λάδι ($T_i=60^{\circ}C$)

<u>Εικόνα 6.13</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το λάδι ($T_i=70^\circ$ C)

Εικόνα 6.14: Θερμοκρασία του ρευστού στον συλλέκτη για το νανορευστό (T_i=30°C)

<u>Εικόνα 6.15</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νανορευστό ($T_i=40^{\circ}C$)

<u>Εικόνα 6.16</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νανορευστό $(T_i=50^\circ C)$

<u>Εικόνα 6.17</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νανορευστό $(T_i=60^\circ C)$

<u>Εικόνα 6.18</u>: Θερμοκρασία του ρευστού στον συλλέκτη για το νανορευστό $(T_i=70^\circ C)$

<u>Οι επόμενες μελέτες θα γίνουν αποκλειστικά στους **50°C**</u>, όπου σημειώθηκε και η μεγαλύτερη διαφορά στον θερμικό βαθμό απόδοσης με την προσθήκη νανοϋλικού στο λάδι.

6.4.2 Θερμοκρασία στην έξοδο του συλλέκτη

Για την προβολή της θερμοκρασίας στην έξοδο του συλλέκτη χρησιμοποιείται στα αποτελέσματα η εντολή **Cut Plots**. Έχει παρόμοια λειτουργία με την εντολή Surface Plots, μόνο που εδώ η μελέτη γίνεται στη διατομή που πραγματοποιείται η επιθυμητή τομή. Η τομή γίνεται στο σημείο που βρέχεται η τάπα από το ρευστό. Για να φανεί η διαφορά μεταξύ των τριών ρευστών, τα θερμοκρασιακά όρια είναι τα ίδια και επιλέγονται με τέτοιο τρόπο ώστε να φαίνονται αναλυτικά οι διαφοροποιήσεις στις επιμέρους περιοχές της διατομής εξόδου του σωλήνα.

Εικόνα 6.19: Θερμοκρασία εξόδου του ρευστού για το νερό

Εικόνα 6.20: Θερμοκρασία εξόδου του ρευστού για το λάδι

<u>Λάδι-Al₂O3</u>

Εικόνα 6.21: Θερμοκρασία εξόδου του ρευστού για το νανορευστό

Από τις παραπάνω εικόνες πρέπει να γίνουν οι εξής παρατηρήσεις:

- Το νερό είναι το λιγότερο θερμό ρευστό στην έξοδο του συλλέκτη, ενώ το νανορευστό το θερμότερο. Αυτό είναι λογικό καθώς το νερό έχει την υψηλότερη ειδική θερμοχωρητικότητα, ενώ το νανορευστό τη χαμηλότερη.
- Τα ρευστά είναι θερμότερα προς την πλευρά των σωληνώσεων. Αυτό φαίνεται κυρίως στο νερό και το λάδι.
- Το πάνω και το κάτω μέρος του ρευστού είναι λιγότερο θερμά. Αυτό φαίνεται κυρίως στο νανορευστό όπου είναι οι μόνες περιοχές που έχουν διαφορετικό χρώμα.
- Όσον αφορά το στερεό κομμάτι του σωλήνα, παρατηρείται ότι στο νερό είναι θερμότερο από τα άλλα δύο ρευστά και αυτό είναι λογικό καθώς στο νερό, ο συντελεστής συναγωγής h μεταξύ ρευστού και εσωτερικού τοιχώματος του σωλήνα είναι μεγαλύτερος.

6.4.3 Θερμοκρασία πλάκας απορρόφησης

Εφαρμόζοντας ίδια τακτική με τη θερμοκρασία εξόδου του συλλέκτη, προκύπτει για τη θερμοκρασία της πλάκας απορρόφησης:

Εικόνα 6.22: Θερμοκρασία της πλάκας απορρόφησης για το νερό

Εικόνα 6.24: Θερμοκρασία της πλάκας απορρόφησης για το νανορευστό

Από τις παραπάνω εικόνες πρέπει να γίνουν οι εξής παρατηρήσεις:

- Στο νερό, η θερμοκρασία του απορροφητή είναι χαμηλότερη, ενώ στο λάδι και το νανορευστό είναι παρόμοιες.
- Η θερμοκρασία του απορροφητή είναι μεγαλύτερη στη πλευρά του συλλέκτη εξόδου. Αυτό είναι λογικό καθώς μόλις το ρευστό εισέρχεται στον ηλιακό συλλέκτη δέχεται τη θερμότητα που έχει απορροφηθεί από την πλάκα απορρόφησης, λόγω της ηλιακής ακτινοβολίας, με συνέπεια να αυξάνει συνεχώς τη θερμοκρασία του όσο προχωράει. Έτσι, από τη στιγμή που το ρευστό είναι θερμότερο προς την πλευρά εξόδου του ρευστού, λόγω μεταφοράς θερμότητας, θερμαίνεται και ο απορροφητής περισσότερο προς αυτή την πλευρά.
- Η πλάκα απορρόφησης πάνω από τις μεσαίες σωληνώσεις του απορροφητή είναι θερμότερη, διότι εκεί οι πλευρικές απώλειες είναι μικρότερες.
- Οι 4 γωνίες της πλάκας απορρόφησης είναι οι ψυχρότερες περιοχές, κυρίως λόγω αυξημένων πλευρικών απωλειών.

6.4.4 Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος

Εικόνα 6.25: Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος για το νερό

<u>Λάδι</u>

Εικόνα 6.26: Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος για το λάδι

<u>Λάδι-Al₂O₃</u>

Εικόνα 6.27: Θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος για το νανορευστό

Από τις παραπάνω εικόνες πρέπει να γίνουν οι εξής παρατηρήσεις:

- Η θερμοκρασία της εξωτερικής επιφάνειας του καλύμματος για το νερό είναι χαμηλότερη από τα άλλα δυο ρευστά και αυτό γιατί η θερμοκρασία του αέρα που παγιδεύεται ανάμεσα στον απορροφητή και το κάλυμμα είναι χαμηλότερη στο νερό. Έτσι, από τη μεταφορά της θερμότητας μεταξύ του αέρα και του καλύμματος προκύπτει αυτό το αποτέλεσμα.
- Η περιοχή του καλύμματος που ''κουμπώνει'' στις εσοχές του πλαισίου (δηλαδή το περίγραμμα του καλύμματος) είναι θερμότερη λόγω της μεταφοράς θερμότητας από το πλαίσιο προς το κάλυμμα.
- Όσο απομακρυνόμαστε από το κέντρο του καλύμματος, τόσο αυξάνεται η θερμοκρασία του.

6.4.5 Θερμοκρασία σε διάφορες τομές του ηλιακού συλλέκτη

Αρχικά, πραγματοποιείται τομή κατά το πλάτος του ηλιακού συλλέκτη ακριβώς στο μισό του μήκους του, όπως φαίνεται στις παρακάτω εικόνες.

Εικόνα 6.28: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το πλάτος του για το νερό

Εικόνα 6.29: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το πλάτος του για το λάδι

Εικόνα 6.30: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το πλάτος του για το νανορευστό

Παρατηρείται ότι:

- Στην μόνωση πλάτης σχηματίζονται θερμοκρασιακά πεδία κατά μήκος της λωρίδας, όπου τα πεδία αυτά γίνονται θερμότερα από κάτω προς τα πάνω, πράγμα λογικό.
- Η θερμοκρασία της μόνωσης πλάτης καθώς και του ρευστού είναι μεγαλύτερες για το λάδι και το νανορευστό, για λόγους που ήδη έχουν εξηγηθεί.

Αν γίνει μεγέθυνση σε έναν από τους σωλήνες (π.χ. στον 5° σωλήνα από αριστερά για το λάδι) και μεταβληθεί λίγο το άνω θερμοκρασιακό όριο των χρωμάτων, τότε φαίνεται αναλυτικά αυτή η διακύμανση των θερμοκρασιακών πεδίων. Επίσης, διαπιστώνεται ότι η θερμοκρασία του ρευστού στη μέση του σωλήνα είναι χαμηλότερη από το πάνω και το κάτω μέρος. Αυτό οφείλεται στη μετάδοση θερμότητας από τον απορροφητή στον σωλήνα και από τον σωλήνα στο ρευστό αντίστοιχα.

Εικόνα 6.31: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το πλάτος του για το λάδι (γίνεται επικέντρωση στην περιοχή κοντά στον 5° σωλήνα από αριστερά)

Ύστερα, πραγματοποιείται τομή κατά το μήκος του ηλιακού συλλέκτη περίπου στο μισό του πλάτους του και συγκεκριμένα στη μέση του 5^{ου} σωλήνα, όπως φαίνεται στις παρακάτω εικόνες.

C 60 00 C 22 0 C 23 0 C 24 0 C 25	φορά της ροής	
6000 5713 5713 4865 48555 48555 485555 485555555555		
40		

<u>Νερό</u>

Εικόνα 6.32: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το μήκος του για το νερό

Εικόνα 6.33: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το μήκος του για το λάδι

<u>Λάδι-Al₂O₃</u>

Εικόνα 6.34: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το μήκος του για το νανορευστό

Παρατηρείται ότι:

- Στην μόνωση πλάτης σχηματίζονται θερμοκρασιακά πεδία κατά μήκος της λωρίδας, όπου τα πεδία αυτά γίνονται θερμότερα από κάτω προς τα πάνω, πράγμα λογικό.
- Η θερμοκρασία της μόνωσης πλάτης καθώς και του ρευστού είναι μεγαλύτερες για το λάδι και το νανορευστό, για λόγους που ήδη έχουν εξηγηθεί.
- Το ρευστό θερμαίνεται συνεχώς καθώς προχωράει μέσα στους σωλήνες, δηλαδή από τα αριστερά προς τα δεξιά όπως φαίνονται οι εικόνες.

Ύστερα, πραγματοποιείται τομή κατά το ύψος του ηλιακού συλλέκτη και συγκεκριμένα στη μέση των σωλήνων, όπως φαίνεται στις παρακάτω εικόνες.

Εικόνα 6.35: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το ύψος του για το νερό

Εικόνα 6.36: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το ύψος του για το λάδι

Εικόνα 6.37: Θερμοκρασία του ηλιακού συλλέκτη σε τομή κατά το ύψος του για το νανορευστό

6.5 Κατανομές ταχύτητας σε διάφορα σημεία του συλλέκτη

Ταχύτητα στην έξοδο του συλλέκτη

Εικόνα 6.39: Ταχύτητα στην έξοδο του συλλέκτη για το λάδι

<u>Λάδι-Al₂O₃</u>

Εικόνα 6.40: Ταχύτητα στην έξοδο του συλλέκτη για το νανορευστό

Από τις εικόνες προκύπτουν κάποια σημαντικά συμπεράσματα:

- Το νερό έχει τις μεγαλύτερες ταχύτητες, διότι έχει και το μικρότερο ιξώδες από τα άλλα δύο ρευστά, δηλαδή μικρότερη αντίσταση στη ροή. Αντίθετα, το νανορευστό για τον ίδιο λόγο έχει τις μικρότερες ταχύτητες.
- Επειδή η ροή παραμένει στρωτή και στις 3 περιπτώσεις, η ταχύτητα στο κέντρο του σωλήνα είναι μεγαλύτερη, ενώ όσο πλησιάζει τα δύο άκρα του σωλήνα, μειώνεται μέχρι να μηδενιστεί.
- Στη πλευρά του συλλέκτη που ενώνεται με τις σωληνώσεις (δεξιά στις εικόνες), το ρευστό έχει χαμηλότερες ταχύτητες και αυτό οφείλεται στην αλλαγή της κατεύθυνσης της ροής από τις σωληνώσεις προς τον συλλέκτη εξόδου.

6.6 Γράφημα μήκους-θερμοκρασίας ρευστού του 5^{ου} σωλήνα για όλες τις <u>θερμοκρασίες</u>

<u>Διάγραμμα 6.10</u>: Καμπύλες μήκους-θερμοκρασίας του νερού για τον 5° σωλήνα

<u>Διάγραμμα 6.11</u>: Καμπύλες μήκους-θερμοκρασίας του λαδιού για τον 5° σωλήνα

<u>Διάγραμμα 6.12</u>: Καμπύλες μήκους-θερμοκρασίας του νανορευστού για τον 5° σωλήνα

Φαίνεται ότι καθ' όλο το μήκος των σωληνώσεων, η θερμοκρασία του ρευστού αυξάνεται διαρκώς. Επίσης, οι καμπύλες για το λάδι και το νανορευστό είναι πιο απότομες από το νερό και είναι λογικό λόγω μειωμένης θερμοχωρητικότητας.

Παρακάτω γίνεται σύγκριση των τριών ρευστών σε ένα γράφημα για τους 50°C (δηλαδή ουσιαστικά οι 3 πράσινες καμπύλες των πάνω διαγραμμάτων).

Διάγραμμα 6.13: Καμπύλες της θερμοκρασίας των τριών ρευστών κατά μήκος του 5^{ου} σωλήνα

Τέλος, παρουσιάζεται η θερμοκρασία του ρευστού κατά μήκος του συλλέκτη εξόδου για θερμοκρασία εισόδου 50°C. Παρατηρείται ότι όταν οι σωληνώσεις του ηλιακού συλλέκτη συναντούν τον συλλέκτη εξόδου, η θερμοκρασία στιγμιαία είτε αυξάνεται είτε μειώνεται. Αυτό συμβαίνει διότι ο συλλέκτης εξόδου βρίσκεται κοντά στην άκρη του συλλέκτη, όπου οι απώλειες είναι αυξημένες κι έτσι πραγματοποιείται ψύξη.

Διάγραμμα 6.14: Καμπύλες της θερμοκρασίας των τριών ρευστών κατά μήκος του συλλέκτη

εξόδου

ΣΥΜΠΕΡΑΣΜΑΤΑ

- Η προσθήκη νανοσωματιδίων σε ένα ρευστό έχει ως αποτέλεσμα α) τη μείωση της ειδικής θερμοχωρητικότητάς του, β) την αύξηση της θερμικής αγωγιμότητάς του, γ) την αύξηση της πυκνότητας του και δ) την αύξηση του δυναμικού ιξώδες του.
- Ο θερμικός βαθμός απόδοσης μειώνεται συνεχώς με την αύξηση της θερμοκρασίας εισόδου του ρευστού.
- Η χρήση νανοϋλικών αυξάνει την αποδιδομένη ισχύ του συλλέκτη και επομένως και το θερμικό βαθμό απόδοσής του. Στην παρούσα διπλωματική εργασία σημειώθηκε αύξηση μέχρι περίπου 1.5%, όμως με ένα πιο πυκνό πλέγμα για την προσομοίωση (πράγμα αδύνατο λόγω υπερβολικού υπολογιστικού χρόνου), η αύξηση θα ήταν μεγαλύτερη.
- Από όλο τον ηλιακό συλλέκτη οι μεγαλύτερες θερμοκρασίες εμφανίζονται στην πλάκα απορρόφησης και είναι λογικό καθώς απορροφά μεγάλο μέρος της ηλιακής ακτινοβολίας κι έρχεται συνεχώς σε επαφή με τον θερμό αέρα που εγκλωβίζεται ανάμεσα στο κάλυμμα και στην πλάκα. Οι περιοχές κοντά στο πλαίσιο του ηλιακού συλλέκτη είναι λίγο ψυχρότερες λόγω αυξημένων πλευρικών απωλειών.
- Η θερμοκρασία εξόδου του ρευστού είναι αντιστρόφως ανάλογη της ειδικής θερμοχωρητικότητας. Δηλαδή, το νανορευστό το οποίο έχει τη μικρότερη ειδική θερμοχωρητικότητα, έχει τη μεγαλύτερη θερμοκρασία εξόδου, ενώ το νερό το αντίθετο.
- Τέλος, η χρήση νανοσωματιδίων στο ρευστό το επιβραδύνει καθώς αυξάνει το ιξώδες του. Αντίθετα, το νερό σημειώνει τις μεγαλύτερες ταχύτητες.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- ΚΙΜΩΝΑΣ ΑΝΤΩΝΟΠΟΥΛΟΣ, ΘΕΡΜΙΚΑ-ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΡΟΣ ΠΡΩΤΟ, ΑΘΗΝΑ 2011
- ΚΙΜΩΝΑΣ ΑΝΤΩΝΟΠΟΥΛΟΣ, ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΦΑΙΝΟΜΕΝΩΝ ΜΕΤΑΦΟΡΑΣ ΜΕΡΟΣ ΠΡΩΤΟ, ΑΘΗΝΑ 2008
- ΞΕΝΟΦΩΝ ΚΑΚΑΤΣΙΟΣ, ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΗΣ, ΕΚΔΟΣΕΙΣ ΣΥΜΕΩΝ, ΑΘΗΝΑ 2006

ΠΗΓΕΣ

- 1. https://en.wikipedia.org/wiki/Nanofluids_in_solar_collectors
- 2. http://www.azom.com/properties.aspx?ArticleID=52
- 3. http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf
- 4. http://www.azom.com/properties.aspx?ArticleID=1179
- https://el.wikipedia.org/wiki/%CE%97%CE%BB%CE%B9%CE%B1%CE%BA%CF %8C%CF%82_%CE%B8%CE%B5%CF%81%CE%BC%CE%BF%CF%83%CE%AF%C F%86%CF%89%CE%BD%CE%B1%CF%82
- https://www.solviolaris.com/index.php?route=product/category&path=94_95
- 7. http://www.monachos.gr/forum/content.php/483-iliakoi-thermosifones

ΑΡΘΡΑ

- 1. Qinbo He, Shequan Zeng, Shuangfeng Wang, Experimental investigation on the efficiency of flat-plate solar collectors with Nanofluids
- S.A. Angayarkanni, John Philip, Review on thermal properties of Nanofluids: Recent developments

- 3. Wail Sami Sarsam, S.N. Kazi, A. Badarudin, A review of studies on using nanofluids in flat-plate solar collectors
- 4. Ravishankar Sathyamurthy, Nanofluids for Solar Collector Applications: A Review
- 5. K.Y. Leong, Hwai Chyuan Ong, N.H. Amer, M.J. Norazrina , M.S. Risby, K.Z. Ku Ahmad, An overview on current application of nanofluids in solar thermal collector and its challenges
- 6. Sayantan Mukherjee, Role of temperature on thermal conductivity of nanofluids: a brief literature review
- 7. Siddharth Mehta, K. Prashanth Chauhan, S. Kanagaraj, Modeling of thermal conductivity of nanofluids by modifying Maxwell's equation using cell model approach
- Ali Akbar Alemrajabi, Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3–CuO binary nanofluids) for direct absorption solar thermal energy
- **9.** E. Bellos, C. Tzivanidis, K.A. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube