
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

DIVISION OF MARINE ENGINEERING

Development of Optimization Software Using

Evolutionary Algorithms. Applications in Optimal

Machine Design.

Diploma Thesis

Nanopoulos Sotiris-Alexandros

Thesis Committee:

Supervisor: Christos I. Papadopoulos, Assistant Professor NTUA

Members: Lambros Kaiktsis, Associate Professor NTUA

Alexandros Gkinis, Associate Professor NTUA

OCTOBER 2016

Development of Optimization Software Using Evolutionary Algorithms i

Acknowledgments

During my five years of studies in the National Technical University of Athens, I have never

encountered a project that was of such challenge and of such interest at the same time as this

thesis. For that, I can only express my sincere and humble appreciation to Assistant Professor

Christos I. Papadopoulos for giving me the opportunity to face such an interesting research

topic. His technical insights, innovative ideas and support not only made this thesis possible

but also shaped my mind as an engineer.

Secondly, I want to thank the entire research community of this university for their help.

During this thesis, I asked for the time and advice of many colleagues of mine from many

different departments that gave me their professional opinion.

I would also want to express my gratitude to my family for supporting throughout my studies.

Last but not least, I would like to thank my friends who motivate me every day to improve

and become a better version of myself.

ii Abstract

ΔΘΝΙΚΟ ΜΔΤΣΟΒΙΟ ΠΟΛΥΤΔΦΝΔΙΟ

ΣΦΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΦΑΝΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ

ΤΟΜΔΑΣ ΝΑΥΤΙΚΗΣ ΜΗΦΑΝΟΛΟΓΙΑΣ

Ανάπηςξη Κώδικα Βεληιζηοποίηζηρ με Χπήζη Εξελικηικών Αλγοπίθμυν.

Εθαπμογή ζηην Βεληιζηοποίηζη Σσεδίαζηρ Σηοισείυν Μησανών.

Γηπισκαηηθή εξγαζία ηνπ

Νανόποςλος Συηήπη-Αλέξανδπος

Δπηβιέπσλ: Φξήζηνο Ι. Παπαδόπνπινο

Δπίθνπξνο Καζεγεηήο ΔΜΠ

Αθήνα, Οκηώβπιορ 2016

Πεπίλητη

Η πεξηγξαθή ηνπ θόζκνπ κε ρξήζε πεξίπινθσλ κνληέισλ θαη πξνζνκνηώζεσλ γελλά ηελ

αλάγθε γηα αλάπηπμε πξνγξακκάησλ βειηηζηνπνίεζεο ηα νπνία ζα κπνξνύλ λα

βειηηζηνπνηήζνπλ ηηο παξακέηξνπο ησλ κνληέισλ απηώλ. Γηα ηε βειηηζηνπνίεζε ηέηνησλ

πνιύπινθσλ κνληέισλ, ε κέζνδνο κε ηελ νπνία πξνθύπηνπλ ηα θαιύηεξα δπλαηά

απνηειέζκαηα είλαη απηή ηεο ρξήζεο ησλ εμειηθηηθώλ αιγνξίζκσλ βειηηζηνπνίεζεο. Οη

εμειηθηηθνί αιγόξηζκνη, παξόηη πξνζθέξνπλ, ελ γέλεη, ηδηαίηεξα ηθαλνπνηεηηθή εμεξεύλεζε

ηνπ πεδίνπ νξηζκνύ ησλ αληηθεηκεληθώλ ζπλαξηήζεσλ, έρνπλ ην κεηνλέθηεκα όηη απαηηνύλ

κεγάιν αξηζκό ππνινγηζκώλ γηα λα θαηαιήμνπλ ζηε βέιηηζηε ιύζε ηνπ πξνβιήκαηνο.Τν

κεηνλέθηεκα απηό είλαη ηόζν ζεκαληηθό πνπ εκπνδίδεη ηελ επξεία ρξήζε ησλ εμειηθηηθώλ

αιγνξίζκσλ ζε βηνκεραληθέο εθαξκνγέο. Έλαο άιινο επηζηεκνληθόο θιάδνο, απηόο ηεο

ηερλεηήο λνεκνζύλεο, παξέρεη εξγαιεία ζηνπο εξεπλεηέο ηεο βειηηζηνπνίεζεο ώζηε λα

κεηώζνπλ ην κεγάιν αξηζκό ησλ ππνινγηζκώλ πνπ απαηηνύληαη από ηνπο εμειηθηηθνύο

αιγνξίζκνπο. Τν ζεκαληηθόηεξν εξγαιείν είλαη απηό ησλ λεπξσληθώλ δηθηύσλ, ηα νπνία

ρξεζηκνπνηνύληαη κε δηάθνξνπο ηξόπνπο γηα λα επηηαρπλζεί ε ζύγθιηζε ησλ εμειηθηηθώλ

αιγνξίζκσλ.

Σηελ παξνύζα εξγαζία πξαγκαηνπνηήζεθε αλάπηπμε ελόο πξνγξάκκαηνο βειηηζηνπνίεζεο ην

νπνίν βαζίδεηαη ζηνπο εμειηθηηθνύο αιγνξίζκνπο. Γηα λα γίλεη ην πξόγξακκα απηό

αληαγσληζηηθό σο πξνο ηα ππόινηπα αθαδεκατθά/εκπνξηθά πξνγξάκκαηα βειηηζηνπνίεζεο,

αλαπηύρζεθε ζην πιαίζην ηεο εξγαζίαο απηήο έλαο αιγόξηζκνο γηα ηελ πξνεθβνιή ελόο

κεηώπνπ Pareto, ν νπνίνο επηηαρύλεη ηελ ζύγθιηζε ησλ εμειηθηηθώλ αιγνξίζκσλ. Ο

αιγόξηζκνο απηόο εθκεηαιιεύεηαη ηα λεπξσληθά δίθηπα θαη ηνπο πξνεγνύκελνπο

ππνινγηζκνύο, κε ζθνπό λα κπνξέζεη λα βξεη θαηλνύξγηα άηνκα ηα νπνία ππεξηζρύνπλ ησλ

πξνεγνπκέλσλ αηόκσλ ηνπ πιεζπζκνύ, κε έλαλ ςεπδν-ληεηεξκηληζηηθό ηξόπν. Οη θιαζηθέο

κέζνδνη εμειηθηηθήο βειηηζηνπνίεζεο θαη ν αιγόξηζκνο πξνεθβνιήο αλαπηύρζεθαλ ζε

πεξηβάιινλ πξνγξακκαηηζκνύ C++. Ταπηόρξνλα, κε ζηόρν ηελ αύμεζε ηεο ρξεζηηθόηεηαο

Development of Optimization Software Using Evolutionary Algorithms iii

ηνπ πξνγξάκκαηνο αλαπηύρζεθε έλα γξαθηθό πεξηβάιινλ ην νπνίν παξέρεη ηε δπλαηόηεηα

ζηνλ ρξήζηε λα παξαθνινπζεί δηαγξακκαηηθά ζε πξαγκαηηθό ρξόλν ηελ πνξεία ηεο

βειηηζηνπνίεζεο.

Η απνηειεζκαηηθόηεηα ηνπ πξνγξάκκαηνο βειηηζηνπόηεζεο θαη ηνπ αιγνξίζκνπ πξνεθβνιήο

πνζνηηθνπνηήζεθε κέζα από έλα ζύλνιν ελλέα πξνβιεκάησλ. Από απηά, ηα πέληε είλαη

πξνβιήκαηα καζεκαηηθήο βειηηζηνπνίεζεο, ηα νπνία έρνπλ ζρεδηαζηεί κε ζθνπό λα

ρξεζηκνπνηνύληαη σο αλαθνξά κεηαμύ ησλ δηαθόξσλ αιγόξηζκσλ βειηηζηνπνίεζεο. Τα

επόκελα ηέζζεξα είλαη πξνβιήκαηα βειηηζηνπνίεζεο πνπ αλήθνπλ ζηνλ ρώξν ηνλ

πξνβιεκάησλ ηεο βέιηηζηεο ζρεδίαζεο ζηνηρείσλ κεραλώλ. Πην ζπγθεθξηκέλα, ηα ηξία

επόκελα πξνβιήκαηα αθνξνύλ ηελ βέιηηζηε ζρεδίαζε πδξνθνβηθήο επηθάλεηαο εδξάλνπ ύπν

από δηαθνξεηηθέο ζπλζήθεο ιεηηνπξγίαο, ελώ ην ηέηαξην πξόβιεκα αθνξά ηελ βέιηηζηε

ζρεδίαζε ηεο γεσκεηξίαο σζηηθνύ κηθξν-εδξάλνπ κε ηερλεηή επηθαλεηαθή ηξαρύηεηα.

iv Abstract

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

DIVISION OF MARINE ENGINEERING

Development of Optimization Software Using Evolutionary Algorithms.

Applications in Optimal Machine Design.

Diploma Thesis by

Nanopoulos Sotiris-Alexandros

Supervisor: Christos I. Papadopoulos

Assistant Professor NTUA

Athens, October 2016

Abstract

Describing real-world phenomena with complicated models and simulations also gave birth

to the need for development of optimization software that would be able to optimize the

parameters of such models. To optimize such complicated models, evolutionary algorithms

have shown to provide the best performance, in terms of exploration of the search space.

However, evolutionary algorithms, in order to solve an optimization problem, generally

require a high number of calculations. This weakness is of such importance that prevents

them from being used widely as industrial optimization tools. Meanwhile, the development of

another scientific field, that of artificial intelligence, provides optimization researchers with

new tools to reduce the computational cost of evolutionary algorithms. An important tool

builds on the concept of artificial neural networks, which can be utilized in various different

ways to accelerate the convergence of evolutionary algorithms.

In the present thesis, a general purpose optimization software using evolutionary algorithms

is developed. To make this software competitive in comparison to the existing

academic/commercial optimization software, an algorithm has been developed to accelerate

the convergence of evolutionary algorithms. This algorithm is based on the notion of

extrapolating a given Pareto front. The extrapolation algorithm utilizes previous calculations

and artificial neural networks to predict in a quasi-deterministic way new individuals that

dominate previously non-dominated solutions. The standard optimization methods and the

extrapolation algorithms have developed within the C++ framework. Meanwhile, to increase

the usability of the software, a user interface that allows the user to graphically monitor (real

time) the optimization procedure has been developed in C++ utilizing the Qt framework.

The efficiency of the developed optimization software and the Pareto extrapolation algorithm

has been quantified with the use of a set of benchmarking optimization problems. The

optimization problems include five mathematical optimization test cases designed to

Development of Optimization Software Using Evolutionary Algorithms v

benchmark the performance of different approaches on evolutionary algorithms. Afterwards,

the performance of the software has been monitored in real world optimization problems that

include the optimal design of the hydrophobic surface of a journal bearing and the optimal

design of the geometry of a textured three-dimensional micro- thrust bearing.

Development of Optimization Software Using Evolutionary Algorithms 1

Table of Contents
Table of figures .. 3

Table of tables .. 5

Nomenclature ... 6

Chapter 1: Introduction .. 7

1.1. Introduction ... 7

1.2. Literature review ... 7

Chapter 2: Optimization Theory .. 10

2.1. Introduction ... 10

2.2. Definitions ... 10

2.3. Genetic Algorithms ... 14

2.3.1Genetic algorithm representation .. 14

2.4. Non dominated sorting Genetic algorithm II (NSGA II) .. 16

Chapter 3: Machine Learning .. 20

3.1. Introduction ... 20

3.2. Artificial Neural Network ... 20

3.2.1. Multilayer Perceptron Feedforward Artificial Neural Network 20

3.2.2. Training algorithm .. 23

3.2.2. Activation Functions... 24

Chapter 4: Optimization for Computationally Expensive Problems 25

4.1. Introduction ... 25

4.2. Surrogate Models .. 25

4.3. Fitness Inheritance... 27

4.3. Pareto Extrapolation Algorithm .. 28

Chapter 5: Optimization Software Overview .. 32

5.1. Introduction ... 32

5.2. Optimizer Core .. 33

5.3. Optimizer GUI... 36

5.3.1. Data visualization ... 38

Chapter 6: Performance Evaluation of the Developed Optimization Software 42

6.1. Introduction ... 42

2 Table of figures

6.2. Performance Metrics ... 42

6.3. Optimization Benchmarking Problems ... 45

6.3.1 Overview ... 45

6.3.2 Optimization Results ... 51

6.3.3 Conclusions ... 76

6.4. Optimal design of hydrophobic bearings .. 79

6.4.1. Hydrophobic bearing overview .. 79

6.4.2. Optimization results .. 81

6.4.3. Conclusions .. 88

6.5. Geometry Optimization of Three-Dimensional Micro-Thrust Bearings....................... 89

6.5.1. Overview .. 89

6.5.2. Optimization Results .. 91

6.5.3. Conclusions .. 92

Chapter 7: Conclusions and Future Work .. 93

Bibliography .. 95

Development of Optimization Software Using Evolutionary Algorithms 3

Table of figures

Figure 1: Pareto dominance graphical representation. Solution A is partially less

than/dominates any other solution inside the grid ... 11

Figure 2: Typical example of a Pareto Front for a two objective minimization problem 13

Figure 3: Single Point Crossover Operator .. 15

Figure 4: Double Point Crossover Operator .. 15

Figure 5: Genetic algorithm flowchart ... 15

Figure 6: Fast non-dominated sorting algorithm (Deb et al., 2002) .. 17

Figure 7: Crowding distance assignment algorithm (Deb et al., 2002) 18

Figure 8: NSGA II algorithm (Deb et al., 2002) .. 19

Figure 9: Neuron representation (Gonzalez 2008)... 21

Figure 10: MLP architecture diagram (Gonzalez, 2008) ... 22

Figure 11: Example of fitness inheritance with clustering .. 28

Figure 12: EA-assisted with Pareto extrapolation algorithm. .. 31

Figure 13: Optimization software flowchart overview .. 32

Figure 14: ParadisEO NSGA-II example .. 33

Figure 15: Problem representation of user-defined fitness function .. 35

Figure 16: Example of training a neural network with Fann library 35

Figure 17: Example of using a neural network to predict values with Fann library 36

Figure 18 Optimizer GUI stating work environment ... 36

Figure 19: Pareto front graph. Proposed solutions are denoted with blue circle 39

Figure 20: Cloud graph. All the calculations made by the evolutionary algorithm 40

Figure 21: Parallel coordinates plot ... 41

Figure 22: Example of the hypervolume indicator for the Pareto front X={X1,X2,X3} 43

Figure 23: Set convergence metric graphical representation. .. 44

Figure 24: ZDT1 true Pareto front ... 45

Figure 25:ZDT2 true Pareto front .. 46

Figure 26: ZDT3 true Pareto front ... 47

Figure 27:ZDT4 true Pareto front .. 48

Figure 28: ZDT 6 true Pareto front .. 49

Figure 29: ZDT1 average set convergence graph .. 53

Figure 30: ZDT1 average hypervolume indicator graph ... 53

Figure 31: ZDT1 set convergence results for 30 independent runs ... 54

Figure 32: ZDT1 hypervolume indicator for 30 independent runs .. 54

Figure 33: Typical Pareto fronts for the ZDT1 problem by the NSGA-II and the PEA NSGA-

II algorithms after 1100 objective calculations .. 55

Figure 34: ZDT1 Pareto front before and after extrapolation (40 generations) 56

Figure 35: ZDT1 Pareto front before and after extrapolation (80 generations) 57

Figure 36: ZDT1 Pareto front before and after extrapolation (120 generations) 57

Figure 37: ZDT1 Pareto front before and after extrapolation (160 generations) 58

Figure 38: ZDT1 Pareto front before and after extrapolation (200 generations) 58

4 Table of figures

Figure 39: ZDT1 Pareto front before and after extrapolation (240 generations) 59

Figure 40: ZDT2 average hypervolume indicator graph ... 61

Figure 41: ZDT2 average set convergence graph .. 61

Figure 42: ZDT2 hypervolume results for 30 independent runs.. 62

Figure 43: ZDT2 set convergence results for 30 independent runs ... 62

Figure 44: Typical Pareto fronts for the ZDT2 problem by the NSGA-II and the PEA NSGA-

II algorithms after 1100 objective calculations .. 63

Figure 45: ZDT3 average hypervolume graph ... 65

Figure 46: ZDT3 average set convergence graph .. 65

Figure 47: ZDT3 hypervolume results for 30 independent runs.. 66

Figure 48: ZDT3 set convergence results for 30 independent runs ... 66

Figure 49: Typical Pareto fronts for the ZDT3 problem by the NSGA-II and the PEA NSGA-

II algorithms after 1100 objective calculations .. 67

Figure 50: ZDT4 set convergence graph ... 69

Figure 51: ZDT4 average hypervolume graph ... 69

Figure 52: ZDT4 set convergence results for 30 independent runs ... 70

Figure 53: ZDT4 hypervolume indicator results for 30 independent runs 70

Figure 54: ZDT4 typical Pareto front after 1100 objective calculations 71

Figure 55: ZDT6 average set convergence graph .. 73

Figure 56: ZDT6 average hypervolume indicator graph ... 73

Figure 57: ZDT6 set convergence results for 30 independent runs ... 74

Figure 58: ZDT6 hypervolume indicator results for 30 independent runs 74

Figure 59: ZDT6 typical Pareto front after 1100 objective calculations 75

Figure 60: ZDT3 Pareto front after 2000 objective calculations ... 77

Figure 61: ZDT6 Pareto front after 600 and 700 objective calculations respectively 78

Figure 62: Geometry of journal bearing: Design variables for defining the hydrophobic part

of the bearing ... 79

Figure 63: “Hydrophobic bearing: case 1” hypervolume indicator for 10 independent runs .. 82

Figure 64: “Hydrophobic bearing: case 1”super-Pareto fronts. ... 83

Figure 65: “Hydrophobic bearing: case 1” Pareto fronts from 5 independent runs with PEA

NSGA-II and standard NSGA-II ... 83

Figure 66: “Hydrophobic bearing: case 2” hypervolume indicator for 10 independent runs .. 84

Figure 67: “Hydrophobic Surface 2” super-Pareto fronts. ... 85

Figure 68: “Hydrophobic bearing: case 2” Pareto fronts from 5 independent runs with PEA

NSGA-II and standard NSGA-II ... 85

Figure 69: “Hydrophobic bearing: Case 3” hypervolume indicator for 10 independent runs . 86

Figure 70: “Hydrophobic bearing: Case 3” super-Pareto fronts .. 87

Figure 71: “Hydrophobic bearing: Case 3” Pareto fronts from 5 independent runs with PEA

NSGA-II and standard NSGA-II ... 87

Figure 72: Micro-thrust bearing geometry. (a) Three-dimensional textured converging slider

geometry .. 89

Figure 73: Optimization of three dimensional micro-thrust bearing Hypervolume indicators 91

Figure 74: Optimization of three dimensional micro-thrust bearing Pareto fronts 92

Development of Optimization Software Using Evolutionary Algorithms 5

Table of tables

Table 1: Relation between two decision vectors based on Pareto dominance 12

Table 2: Table of relations between Pareto Fronts .. 13

Table 3: Table of activation functions ... 24

Table 4: PEA NSGA-II results for the ZDT1 problem .. 52

Table 5: NSGA-II results for the ZDT1 problem .. 52

Table 6: PEA NSGA-II results for the ZDT2 problem .. 60

Table 7: Standard NSGA-II results for the ZDT2 problem ... 60

Table 8: PEA-NSGA II results for the ZDT3 .. 64

Table 9 Standard NSGA-II results for the ZDT3... 64

Table 10: PEA NSGA-II results for the ZDT4 problem .. 68

Table 11: NSGA-II results for the ZDT4 problem .. 68

Table 12: PEA NSGA-II results for the ZDT6 problem .. 72

Table 13: NSGA-II results for the ZDT6 problem .. 72

Table 14: Hydrophobic surface optimal design variable bounds ... 80

Table 15: Journal bearing geometry and operational condition... 80

Table 16: Three dimensional micro-thrust bearing design variables bound 90

6 Nomenclature

Nomenclature

x vector x=[x1,x2,…xn]
T

f(x) vector f(x)=[f1,f2,…fn]
T

EA Evolutionary algorithm

GA Genetic algorithm

HEA Hierarchical evolutionary algorithm

NSGA-II Non Sorting Genetic Algorithm II

SOP Single-objective optimization problem

MOP Multi-objective optimization problem

SPEA-2 Strengthen Pareto evolutionary algorithm 2

MLP Multilayer perceptron

NN Neural network

RBF Radial basis function

PEA Pareto extrapolation algorithm

ev every how many generations extrapolations should occur

ex extrapolation factor

ag aggressiveness of the extrapolation procedure

angle angle of the extrapolation procedure

GUI graphical user interface

k Convergence ratio

luo Non-dimensional non-textured length

s Relative dimple length

Development of Optimization Software Using Evolutionary Algorithms 7

Chapter 1: Introduction

1.1. Introduction

An optimization problem can be defined as a problem with the purpose of finding solutions

that fit certain criteria with the most efficient manner. As a result, the first necessary step

before solving an optimization problem is creating a function that correlates the solutions

with a metric of “how much” a criterion is fitted. The criteria of the optimization problem are

modelled as mathematical functions, called objective functions, bounded by the possible

solutions called decision variables. There are many ways for solving an optimization problem

and it is the responsibility of the solver to pick the right optimization method. Optimization

methods can be cluster in many different ways. They can be cluster as analytical or iterative,

deterministic or stochastic and population-based or individual-based. The optimization

method that is implemented in the present thesis is evolutionary algorithms which belong in

the cluster of stochastic-population optimization algorithms. Although evolutionary

algorithms can adapt and solve almost any kind of optimization problem the high number of

objective calculations required makes them unaffordable for general industrial use.

The outline of this thesis is as follows. In chapter 2, the basic concepts of evolutionary

optimization are presented. In chapter 3, artificial neural networks core principle as well as

the training procedure is presented. In chapter 4, the most successful algorithms and the

algorithm proposed in the present thesis for enhancing the performance of evolutionary

algorithm when facing computationally expensive problems are presented. In chapter 5, an

overview of the optimization software functionalities, architecture and features are presented.

In chapter 6, the optimization software performance tests and the results of those performance

tests are presented. Finally, in chapter 7, main conclusions are drawn and some research

topics are proposed for further work.

1.2. Literature review

Optimization plays an important role in any scientific or engineering field. As a result,

optimization itself as a research field always advances to keep in pace with the scientific

needs of its time. Shortly after calculus was established by Isaac Newton and Gottfried

Leibniz, the first mathematical optimization concepts arise from Pierre de Fermat. Those

concepts are analytical methods for calculating the optima of analytic functions. In particular,

Fermat theorem for stationary points can be considered the first mathematical optimization

theorem. The scientific needs for optimization methods could not be met only with Fermat

theorem, which obviously failed to locate the optima of complex analytical function. The

optimization methods developed to satisfy those needs came from the field of numerical

calculus, with iterative methods for calculating the optima of analytic functions (Gauss and

Newton iterative optimization methods). The next breakthrough in the optimization field was

the linear programming method that calculates the optimal values of a linear function that is

8 Chapter 1: Introduction

linearly constrained. This method was originally proposed by L. V. Kantorovich in his book

“Mathematical Methods in the Organization and Planning of Production” (Thie and Keough,

2008). Although expressing real world problems with linear mathematical models with linear

constrains was successful, it was not enough, as many engineering and science models

describing the world have non-linear components. As a result, optimization had to evolve

once again to be able to cover the scientific needs for optimization of non-linear models.

Many algorithms have been developed for solving non-linear functions, with the most robust

and commonly used is the gradient descent algorithm (Practical mathematical optimization:

an introduction to basic optimization theory and classical and new gradient-based algorithms,

2007).

All the optimization methods described above, although quite successful, share one or more

of the following weaknesses: Firstly, they are suitable for optimizing a single function and

thus are unable to optimize multiple functions simultaneously. Secondly, they require the

objective function(s) and the constrain(s) of the problem to be differentiable. Finally, there

are unable to provide multiple optimal solutions and thus several optimization runs are

needed for finding the entire set of the optimal solutions. Those weaknesses become critical

in complex engineering problem that require the minimization of multiple non-differentiable,

functions that can only be calculated through numerical methods and have a large set of

optimal solutions. A class of optimization methods called evolutionary algorithms was

developed to tackle optimization problems such as the latter. In particular, evolutionary

algorithms suitable for solving optimization problem with multiple goals are called multi-

objective optimization evolutionary algorithms. Although the notion of using evolutionary

algorithms to solve optimization problems with multiple goals existed since mid-20
th

 century,

the first documented multi objective evolutionary algorithm was proposed in 1983 by David

Schaffer (Schaffer 1984). In the next decade, several implementations of multi objective

evolutionary algorithms were published with the most popular being NSGA (Srinivas and

Deb, 1994), NPGA (Horn, Nafpliotis and Goldeberg, 1994) and MOGA (Genetic algorithms

in search, optimization, and machine learning, 1989). Lastly, the evolutionary algorithms

SPEA-II and NSGA-II (Deb et al., 2002) were developed both in 2002. These algorithms are

up to now the core of multi objective evolutionary algorithms.

Multi objective evolutionary algorithms have been one of the most popular optimization

methods for high dimensional, complex engineering problems. Although their ability to

approximate the Pareto front is widely accepted, their weakness, high number of evaluations,

prohibits them from being used as an industrial optimization method. As a result, the

scientific research interest is shifted from finding better optimization algorithms for complex

engineering problems to enhancing the standard evolutionary algorithms (SPEA-II and

NSGA-II). In the recent years, many researchers have focused on finding ways to reduce the

number of evaluations need for solving optimization problems with various manners.

 Island models: The idea of using multiple smaller populations instead of a single

larger population was proposed by Muhlebein in order to increase the diversification

of individuals and avoid premature convergence.

 Metamodel Assisted EA: The notion behind metamodel assisted EA is incorporating

knowledge gained from previous exact fitness evaluations to create a function

Development of Optimization Software Using Evolutionary Algorithms 9

approximating the fitness function of the problem with low computational cost.

 Hierarchical evolutionary algorithm: The core concept of HEA is organizing the

fitness function models hierarchically and using the different models on different

areas of the design space. HEA was initially proposed by Herrera et al. in 1999.

 Nash genetic algorithm: For an optimization problem with n objectives a Nash

strategy is a symmetric game which consists in having n players, each optimizing its

own objective, while respecting the other player criteria. The complement of the

methods is achieved when each player is optimizing his objective using a genetic

algorithm. The method was originally proposed by Sefrioui and Periaoux in 2000.

In the present thesis, a general purpose optimization software using evolutionary algorithms

is developed in order to provide the tools necessary for solving complex optimization

problems that come up frequently in the maritime industry. Taking into consideration the

limitations and the weakness of the EA, a new algorithm is proposed in order to boost the

performance of the standard evolutionary algorithms. This algorithm has been developed and

benchmarked in terms of its performance. Finally, the optimization software has been tested

in both benchmarking and real world optimization problems to evaluate its robustness.

10 Chapter 2: Optimization Theory

Chapter 2: Optimization Theory

2.1. Introduction

According to the oxford dictionary (Oxforddictionaries.com, 2016) optimization is defined as

“the action of making the best or most effective use of a situation or resource”. The notion of

effectively using available resources is as old as civilization itself. But until recently the

approach to that end was based mostly on hunches and trial and error like processes. In

today‟s world a more effective approach was required in order to deal with the various and

very complex problems arising in such areas as engineering, machine design and finance.

That approach had to be a quantifiable mathematical process with strict definitions and exact

algorithms. These definitions are presented in this chapter as they are considered mandatory

for understanding how optimization works. Next, the optimization algorithms used in this

thesis, in particular evolutionary algorithms, are analysed in terms of their core elements and

how they work. Lastly, one of the most popularly used genetic algorithm, NSGA II, is

presented including how its core features enable it to outperform its competitors both in terms

of performance and in terms of robustness for complex problems.

2.2. Definitions

In order to develop an understanding of the optimization algorithms that follow certain non-

ambiguous definitions are required. These definitions provide all the symbols and tools

necessary to understand and analyse the optimization concepts that will follow. Without loss

of generality all definitions will be presented in terms of minimization.

Definition 1 (Coello Coello et al., 2007) Single-objective optimization problem

A general single-objective optimization problem is defined as minimizing f(x) subject to

gi(x) ≤0, i= {1, 2, 3…m} and hj(x) =0, j= {1, 2, 3 … p} x ∈ Ω.

Definition 2 (Coello Coello et al., 2007) Multi-objective optimization problem

A general multi-objective optimization problem is defined as minimizing f(x) subject to

 gi(x) ≤0, i= {1, 2, 3…m} and hj(x) =0, j= {1, 2, 3 … p} x ∈ Ω.

Note that in both definition 1 and definition 2 functions gi, hj represent the constrains of the

problem that must be fulfilled during the minimization of f(x) and f(x) respectively.

Definition 3 (Coello Coello et al., 2007) Convex Function

A function f(x) is called convex over the domain of ℝ if for any two vectors x1, x2 ∈ ℝ,

f(kx1 + (1-k)x2)≤ kf(x1) + (1-k)f(x2) where k is a scalar in the range 0≤k≤1

Development of Optimization Software Using Evolutionary Algorithms 11

In contrast to single-objective optimization problems, where there is a unique solution, in a

non-trivial multi objective optimization problem there is no single solution that

simultaneously minimizes all of the objectives. In that case, the objectives are called

conflicting and there exist a higher number of optimal solutions. As a result, when solving

MOPs, the goal is to find the optimum trade-offs between the objectives.

Definition 4 (Coello Coello et al., 2007) Pareto Optimality

A solution x ∈ Ω is said to be Pareto Optimal with respect to Ω if and only if the is no x’∈ Ω

for which v=F(x’) dominates u=F(x)

Definition 5 (Coello Coello et al., 2007) Pareto Dominance

A vector u is said to dominate another vector v if and only if u is partially less than v

Pareto dominance is graphically illustrated in Figure 1:

Figure 1: Pareto dominance graphical representation. Solution A is partially less than/dominates any

other solution inside the grid

12 Chapter 2: Optimization Theory

Based on the definitions in the frame of a MOP, comparison of two vectors of variables v and

u can be performed following the relations presented on Table 1.

Table 1: Relation between two decision vectors based on Pareto dominance

Relation Symbol Meaning

Strictly Dominates v≺≺u v has less value than u in

every objective

Dominates v≺u v has less value than u in at

least one objective while the

rest are not higher

Weakly Dominates v≼u v is not higher than u in

every objective

Incomparable v||u Neither v≼u nor u≼v

Indifferent v~u Both vectors result in the

same objective values

Definition 6 (Coello Coello et al., 2007): Pareto Optimal Set

For a given MOP, f(x), the Pareto Optimal Set, P* is defined as:

P* :={ x ∈ Ω|−∃ x’∈ Ω f(x’) dominates f(x)}

Definition 7 (Coello Coello et al., 2007): Pareto Front

For a given MOP, f(x) and Pareto Optimal Set, P*, the Pareto Front is defined as:

PF* = {u= f(x) | x ∈P*}

Based on the definitions above it can be concluded that a multi-objective optimization

problem is equivalent to an optimal Pareto front approximation problem and thus any

optimization algorithm is an algorithm that has two goals: to minimize the distance to the

Pareto front and to maximize the diversity of the solutions. These two objectives are the

fundamental goals of any optimization algorithm.

Development of Optimization Software Using Evolutionary Algorithms 13

Figure 2: Typical example of a Pareto Front for a two objective minimization problem

Finally, expanding on the Pareto domination definition and the Pareto front definition given

above, the relations between Pareto fronts A and B shown in Table 2 have been proposed by

Zitzler et al. in 2007. One should note that, since the solution of a multi-objective

optimization problem is a Pareto front, the relations shown in Table 2 allow to prematurely

compare different solutions of a multi-objective optimization problem. These comparisons

are of such necessity that an entire scientific field research focuses on quantifying and

comparing Pareto fronts.

Table 2: Table of relations between Pareto Fronts

Relation Symbol Meaning

Strictly Dominates A≺≺B Every v∈ B is strictly

dominated by at least one u∈

A

Dominates A≺B Every v∈ B is dominated by

at least one u∈ A

Better A⊳B Every v∈ B is weakly

dominated by at least one u∈

A and A is different than B

Weakly Dominates A≼B Every v∈ B is weakly

dominated by at least one u∈

A

Incomparable A||B Neither A≼B nor B≼A

Indifferent A~B A≼B and B≼A

14 Chapter 2: Optimization Theory

2.3. Genetic Algorithms

One genetic biologist once said “Evolution is an optimization process” (Mayr 1988).

Evolution is the nature‟s way to discover high precision solutions to complex problems using

natural selection and mutation and thus slowly optimizing the gene pool in every generation.

The basic concepts of evolution inspired many researchers in the field of computer science

and computational engineering to create adaptive artificial algorithms, which mimic the

evolution, to solve complex problems. The act of creating algorithms that mimic the nature

created an entire new subset of algorithms called evolutionary algorithms that belong to the

field of evolutionary computation. The field of evolutionary computation had huge success in

the optimization field with the development of the evolutionary optimization algorithms.

Although, according to the no-free-lunch (NFL) theorem (Wolpert and Macready 1996),

there cannot exist an optimization algorithm that can solve all optimization problems superior

to any other optimization algorithm, algorithms that mimic the natural selection outperform

their competitors (e.g. gradient descent, Hill climbing , random search algorithm) in complex

engineering problem described by lack of linearity and chaotic components.

2.3.1Genetic algorithm representation

Although there is no generally accepted definition for genetic algorithms one can define them

as adaptive search algorithms inspired by the biological ideas of natural selection and

genetics. As such, they represent an artificial intelligent variation of a random search

algorithm used to solve optimization problems. The primary reason for using such algorithms

is their ability to find a high number of Pareto optimal solutions in one simulation run.

Finally, in order to analyse how an evolutionary algorithms work it is critical to understand

the following core elements of an evolutionary algorithm: population of individuals,

selection, crossover and random mutation of new offspring.

An individual (or chromosome) of the population is a set of values (decision vector) that

define a proposed solution to the optimization problem an evolutionary algorithm strives to

solve. The individual is represented through a variety of ways with the most common being

binary representation, string representation and real code representation. A set of individuals

with size k∈ {2,3,…n} is called the population of the evolutionary algorithm. Generally,

algorithms that use populations are also called population-based algorithms.

The selection operator mimics the natural process of mating. This operator is responsible for

selecting individuals based on their fitness value. The higher the fitness of an individual the

higher the chance it has of reproducing. The fitness value of an individual is calculated by a

specific function called “fitness function”, which maps the individuals with their respective

fitness values.

The crossover operator mimics the natural process of reproducing. Let A and B be two parent

individuals in the population, then the crossover operator creates the offspring of A and B

with a value that arises from how the operator is being implemented. The most common

crossover types are single and two point crossover, which are presented in Figure 3 and

Figure 4.

Development of Optimization Software Using Evolutionary Algorithms 15

Figure 3: Single Point Crossover Operator

Figure 4: Double Point Crossover Operator

The mutation operator is a genetic operator used to maintain genetic diversity from one

generation of population to the next and it is analogous to biological mutation After the

crossover operator the offspring are subjected to the mutation operator which alters one or

more gene values in an individual from their initial state according to a given mutation

probability. The purpose of mutation in an evolutionary algorithm is to preserve and

introduce diversity. Mutation allows the algorithm to avoid local minima by preventing the

population from becoming too similar with each other and thus stopping the evolution. On

the other hand, a high mutation probability has the undesirable effect of transforming the

algorithm into a random search algorithm.

Knowing all the basic elements of genetic algorithm, the genetic algorithm and the genetic

algorithm flowchart is shown below:

Figure 5: Genetic algorithm flowchart

16 Chapter 2: Optimization Theory

2.4. Non dominated sorting Genetic algorithm II (NSGA II)

Given the fact that genetic algorithms outperform their competitor algorithms in optimization

problems, when there is no previous knowledge of the problem, a high number of genetic

algorithms have been suggested. In 2002 , the non-dominated sorting genetic algorithm II

(Deb et al., 2002), NSGA II, was suggested featuring the “fast non dominating sorting

approach” algorithm responsible for reducing the computational complexity of the sorting

and the crowding distance assignment algorithm responsible for keeping high diversity of the

solutions. As a result, NSGA II outperformed its competitors to become one of the most

widely used optimization algorithms up to now, along with the strengthen pareto evolutionary

algorithm 2 (SPEA 2).

NSGA II was proposed to solve the problems his predecessor non dominated sorting genetic

algorithm (NSGA) (Srinivas and Deb, 1994).

The criticism NSGA faces is the following:

1) The use of suboptimal non dominated sorting algorithm. The computational

complexity of NSGA is O(MN
3
) where M is the number of the objectives of the

optimization problem and N is the size of the population used. This complexity makes

the algorithm insufficient for any high complexity problem that involves a large

population, and as a result NSGA met with little commercial success.

2) The absence of elitism during selection. Elitism in genetic algorithms is a feature that

acts in such a way as to retain a number of the best individuals of the population after

each generation. Elitism makes sure that a good proportion of the best individuals will

reproduce and will not be destroyed from the crossover and mutation operators. It has

been shown that elitism is a crucial component for improving the performance of a

genetic algorithm (Zitzler, Deb and Thiele, 2000), since it ensures that good solutions

will not be accidentally destroyed by the algorithm.

3) Lastly, NSGA utilized a subpar algorithm for keeping diverse solutions. As it was

mentioned in the previous chapter, one of the main objectives in any multi-objective

optimization algorithm is to find a highly diverse set of solutions approximating the

Pareto front. NSGA, in order to keep diversity, used a sharing parameter that required

previous knowledge of the optimization problem and there was no way to either know

the parameter value beforehand or adjust its value at runtime.

Before presenting the fast non dominated sorting algorithm, a simpler suboptimal

approach will be presented for the reader to become familiar with the concept and get a

better grasp of the fast sorting algorithm. In order to find the non-dominated solutions in

a population size N, each individual of the population must be compared with every other

individual to examine whether or not it is dominated. This comparison requires each

individual to be compared with another individual a number of times equal to the number

of objectives of the optimization problem. This procedure needs to be iterated a number

of times equal to the size of the population. As a result, the computational cost for each

individual is O(MN) where M is the number of objectives. If this procedure is repeated

Development of Optimization Software Using Evolutionary Algorithms 17

for the entire population it results in a computational cost of O(MN
2
) for finding the non-

dominated solutions in the population. Finally, in the worst case scenario, there exist N

fronts with only one solution in each front, therefore the algorithm described above has a

computational cost of O(MN
3
) and a memory requirement of O(N) (Deb et al., 2002). In

order to achieve lower computational complexity in sorting non-dominated solutions, the

fast non dominated sort algorithm was proposed (Deb et al., 2002) as follows:

Figure 6: Fast non-dominated sorting algorithm (Deb et al., 2002)

The algorithm above offers computational complexity of O(MN
2
), which arises from the

following calculations: The first loop is calculated exactly N times since each individual can

be the member of at most one front while the second nested loop (for each q) is executed at

most (N-1) times for each individual. Therefore the calculated computational complexity of

the algorithm is reduced to O(MN
2
) while the memory requirement is increased to O(N

2
).

In order to keep the solutions diverse NSGA II uses the crowding distance assignment

algorithm. Before presenting the algorithm a definition must be given. Distance is defined as

the absolute normalized difference in the function values of two adjacent solutions for

18 Chapter 2: Optimization Theory

intermediate solutions, while the distance is defined as infinite for the boundary solutions.

The crowding distance assignment algorithm (Deb et al., 2002) is shown in Figure 7:

Figure 7: Crowding distance assignment algorithm (Deb et al., 2002)

In the algorithm above, I[i].m stands for to the m
th

 objective function of the individual i.

The last core element of NSGA II is the crowded comparison operator which is a selection

operator responsible for keeping the Pareto front evenly distributed. The operator can be

defined as:

Let every individual of the population characterized by the two following attributes:

nondomination rank and crowding distance. Then partial order ≺n can be defined as

i ≺n j if (irank < jrank)

or (irank=jrank)

and (idistance>jdistance)

Development of Optimization Software Using Evolutionary Algorithms 19

After all of the above algorithms were discussed, the NSGA II algorithm is presented:

Figure 8: NSGA II algorithm (Deb et al., 2002)

20 Chapter 3: Machine Learning

Chapter 3: Machine Learning

3.1. Introduction

With the advent of the digital era (say early 80's) the amount of data stored has grown

exponentially.

The rise in the amount of data created the need to abandon traditional data

analysis and create new algorithms that have the ability to learn from the available data on the

fly and draw conclusions from them. This phenomenon also occurs when solving an

optimization problem. All the previous calculations made from the optimization algorithm are

a huge amount of data available that can be incorporated using appropriate algorithms to

accelerate the optimization procedure. In order to solve these problems, another cluster of

algorithms that mimic the biological procedures, and more specifically the human brain,

arise. Those algorithms are called artificial neural networks. Artificial neural networks mimic

the way the neural system of the human brain transmits and processes input signals. In this

chapter two of the most commonly machine learning algorithms used in optimization

problems: multilayer perceptron feedforward artificial neural networks, will be presented

3.2. Artificial Neural Network

3.2.1. Multilayer Perceptron Feedforward Artificial Neural Network

One of the most important of all the implementations of the neural networks is the multilayer

perceptron feedforward artificial neural network (MLP). Firstly, a classification of the

problems that machine learning in general is solving will be presented. In short, problems can

be classified as supervised or unsupervised learning problems, based on the type of data

supplied for solving the problem, and as classification or regression problems, based on the

function neural networks are trying to produce. Furthermore, MLPs will be presented both in

terms of their architecture and in terms of their core principle. Finally, the core dilemma of

neural network interpolation will be shown.

Machine learning problems can be classified in two main categories: supervised learning and

unsupervised learning problems. Supervised learning is the task of creating a function that

corresponds x to y based on a dataset that contains m number of examples (also referred as

training examples) of corresponding values of x and y. For example given a dataset of points

(x, y), performing linear regression in the dataset is a prime example of supervised learning

problem. On the other hand, unsupervised learning is the task of clustering the data of a large

dataset. For example, given the news of the day, the act of grouping the news in terms of

their content is an example of an unsupervised learning problem.

It has been already mentioned that supervised learning is the task of learning the mapping

between x and y. Supervised learning problems can be split to two categories: classification

and regression problems. In classification problems, the goal is to create a decision function

based on a data set of x and y where y= {0 or 1} that estimates the probability of a vector x‟

Development of Optimization Software Using Evolutionary Algorithms 21

to result in a vector y‟=1. The most common example of a classification problem is as

follows: Given a set of emails classified as either spam or not spam, to create a decision

function that, given a new email calculates the probability of this mail being a spam. On the

other hand, in regression problems, the objective is to create a function based on a data set of

x and y, that given, a vector x‟, the function corresponds a value of y‟. For example, given

house's size in square meters and the price they were sold, the regression problem is the

problem of creating a function that given a new house's size in square meters to predict the

price it will be sold. In the present thesis, all the problems being solved using machine

learning techniques are supervised learning regression problems.

In order to understand the working principles of MLPs, one must first understand how the

core structural element of MLPs (the neuron) works. An artificial neuron receives a number

of numerical input signals(x) and then, with a set of parameters, transforms the input signal to

an output signal (y). The transformation process is presented both in graphical and analytical

representation. (Figure 9)

Figure 9: Neuron representation (Gonzalez 2008)

Here g is the activation function, w is the weight vector and b is the bias unit.

An MLP is an algorithm for solving supervised learning problems. The structural components

of MLP architecture are: the number of input, the input layer, the number of hidden layers,

the number of neurons in each hidden layer, the number of output and the output layer. An

MLP representation is presented in Figure 10:

22 Chapter 3: Machine Learning

Figure 10: MLP architecture diagram (Gonzalez, 2008)

In Figure 10, n represents the number of input signals, the large black dots represent the input

layer, circles represent neurons, number c represents the number of hidden layers in the MLP

and lastly the number m represents the number of outputs of the neural network. Also, it is

important to observe that (a) MLPs are fully connected, meaning that every neuron from a

layer k connects with every neuron in layer k+1, and (b) MLPs are feed forward neural

networks meaning that no neuron in a layer k can feed a neuron in a previous layer. Summing

up the above, an MLP creates the following network function:

 *∑

 +

where f is the activation function of the output layer and g is the activation function of the

hidden layer.

The last core concept of MLPs is the training of the neural network. Training can be defined

as the minimization of the error between the value of the approximation function created

from the MLP and the actual value for every training example in the dataset with the decision

variables being the weights of the neurons and the bias units. The error function is commonly

known as cost function. The most common error functions are the logistic regression and the

mean square error function. However, minimizing the error function is not a necessary

condition for having a good approximation function. The approximation function might

predict perfectly the examples in the training set, but fails to give good predictions in

examples outside the training set. The problem described above is called overfitting the data.

Development of Optimization Software Using Evolutionary Algorithms 23

3.2.2. Training algorithm

As it was mentioned before, training a neural network is an act of solving the following

optimization problem:

Minimize: [] where C is the cost function to be minimized, error is

the error function and f() is the approximation function produced by the neural network

bounded by the decision variable w

This optimization problem is solved using the backpropagation algorithm to calculate the

values needed to perform the gradient descent optimization algorithm (Practical mathematical

optimization: an introduction to basic optimization theory and classical and new gradient-

based algorithms, 2007).

Backpropagation algorithm is not a single algorithm but a cluster of algorithms used to

perform the training of a neural network. Although various implementations of the

backpropagation algorithm may differ from one another, they all have the same core

concepts. Those concepts are the following:

Any backpropagation algorithm can be divided in to two phases:

(a) The propagation phase, which consists of forward propagating the training examples

in order to calculate the output of all the activation units

(b) The backpropagation phase, where using the calculated values of all the activation

units the difference between the predicted value and the actual value is calculated.

Finally, the weights are updated according to the following. Firstly, the gradient of the error

in terms of the weight is calculated. Then the error and the gradient of error in terms of the

weight are used within a gradient descent optimization algorithm, which updates the gradient

of the weight values by subtracting them a given ration. This procedure is called iteration or

epoch and is repeated until the stopping criterion, most common criterions being the number

of epochs or a desirable error value. The percentage of the gradient of the weight subtracted

is called the learning rate and it expresses how much the algorithm “trusts” each training

example. Thus, the greater the learning rate, the faster the training of the network but with

downside that the predictions function might be less accurate. In most cases the weight values

are randomly initialized between [-1,1] at the beginning of the optimization procedure.

One key limitation of the gradient descent algorithm is that it is not guaranteed to find the

global minimum of the cost function but a local minimum and thus having a limited success

in non-convex cost functions. This limitation arises from the gradient descent algorithm. In

most engineering problems though, local minima are good enough solutions for most

purposes. Lastly, although not mandatory, data normalization increases the performance of

the algorithm.

The other three backpropagation algorithms that will be used in this thesis are batch

backpropagation, quickprop and rprop. Batch backpropagation is the same as the standard

24 Chapter 3: Machine Learning

backpropagation algorithm but the weights are updated after calculating the error of the

whole training set thus resulting in a slower algorithm that calculates more accurately the

error function and as a result offers better results in many applications. The rprop algorithm

(Riedmiller and Heinrich, 1992) is adapting the learning rate based on the partial derivatives

of the weights in every dimension. Lastly the quickprop learning algorithm (Fahlman, 1988)

promises significantly better results than standard backpropagation by modifying the update

rule in such a way that the update takes into consideration the value of the weight at the

previous iteration.

3.2.2. Activation Functions

The different activation functions of the neurons change not only the approximation function

created by the neural network but also the error function used during training. The activation

function itself affects the approximation function model while the derivative of the activation

function is the deciding factor for the convexity of the cost function. In Table 3: Table of

activation functions the activation functions that will be used in this thesis for both the hidden

layer and the output layer are presented.

Table 3: Table of activation functions

Function name Equation

Sigmoid

Sigmoid symmetric

Gaussian

Elliot

Sin

Cos

Development of Optimization Software Using Evolutionary Algorithms 25

Chapter 4: Optimization for Computationally Expensive

Problems

4.1. Introduction

Evolutionary algorithms have been one of the most popular optimization methods for high

dimension, complex engineering problems. Their ability to approximate the Pareto front with

a single run is widely accepted. Their weakness, which is the high number of evaluations

needed to achieve the abovementioned Pareto front approximation, may result in certain

cases in unacceptable computational cost. This computational cost prohibits EA from being

used as an industrial optimization method. The following definition (Tenne et al. 2010) was

given for computationally expensive problems:

 A problem will be considered computationally expensive when it is described by the

following attributes:

1) The objective function is computationally expensive in terms of time or in

terms of CPU usage (i.e. CFD problems may require many hours to be

solved)

2) There can be limited amount of objective calculations (i.e. optimization for

F1 where CFD solvers can be used by the manufacturing companies a

limited number of times due to regulations)

In last years, many researchers focus on finding ways to reduce the number of evaluations

needed for solving optimization problems. The most commonly used methods that will be

described below are surrogate models and fitness inheritance. Lastly, in this thesis a new

approach is proposed where, based on the previous calculations, an artificial neural network

is trained in order to predict solutions that would in a quasi-deterministic way, dominate

previous solutions. All the methods mentioned above although different from one another,

share the same concept of incorporating knowledge gained from previous calculations made

during optimization and using it in either deterministic or stochastic algorithms to accelerate

the converge towards the Pareto front.

4.2. Surrogate Models

In many cases, in real world optimization problems, the fitness function does not come in

analytic form but as a result of a simulation or a finite element solution and is considered a

“black box” for the optimization procedure. These objective functions may take hours to be

solved for a single individual, let alone for the entire population. The surrogate model (or

metamodel) approach is used to create an approximation function which can be solved with

relatively low computational cost. The approximation function of the objective function is

created with machine learning techniques. The objective of this approach is to create a

metamodel of the objective function that can reduce the number of evaluations needed while

26 Chapter 4: Optimization for Computationally Expensive Problems

maintaining the quality of the results.

Metamodels ability to approximate the objective function well with the minimum amount of

training relies heavily on the type of neural network and the training set used. In terms of the

training, metamodel assisted evolutionary algorithms can be separated in to two classes. In

the first class of metamodel assisted evolutionary algorithms, a metamodels is trained in

advance of the optimization procedure when the sufficient data are gathered. This metamodel

is then used during optimization procedure to approximate the objective function. The

metamodel is constantly monitored in terms of its associated error; the metamodel is updated

if the associated error is unacceptable. The second class is based on „on-line training‟

meaning that the metamodel is constantly retrained based on the most recent data available.

In the second class of metamodel assisted optimization although the metamodel might be

more accurate the computational cost of training is getting significantly higher since the

metamodel has to be retrained a high number of times and thus being the determining factor

for choosing the neural network type.

One of the most common approximation methods is using a second order polynomial model

with the following form:

 ∑ ∑

The polynomial model is trained using the previous calculations using the least square cost

function and the gradient descent algorithm. One notable application of polynomial models as

surrogates can be found in (Goel et al., 2007) where polynomial models assisted the standard

NSGA-II to approximate the Pareto front of a liquid-rocket engine design problem

Another commonly used approximation algorithm is Kriging models which is a global model

plus a deviation term:

where g is the global model and Z is the deviation term. The deviation term is modelled as

Gaussian random function with zero mean and non-zero covariance that represent the local

deviation of the global moment. The main advantage of Kriging models is the low

computational cost of the model. However, due to the fact the training for Kriging model is

done with deterministic methods (requiring matrix inversions) rather than optimizing a cost

function with the gradient descent algorithm, the computational cost of the algorithm

increases when the dimensions of the problem become too high.

Another, commonly used approximation model used is Radial Basis function Networks and

their normalized form kernel ridge regression:

RBF Neural Network Function: ∑

 ‖ ‖)

Development of Optimization Software Using Evolutionary Algorithms 27

RBF regularized Neural Network Function (Kernel ridge regression):
∑

 ‖ ‖

∑ ‖ ‖

RBF neural networks either alone or accompanied with self-organizing maps for calculating

the centers have shown good results in assisting evolutionary optimization (Karakassis and

Giannakoglou, 2006).

Finally, MLPs is also a really good approach for approximation model:

 *∑

+

Their ability to approximate generic functions along with their simplicity makes them a

compelling method for approximating complex engineering problems. For example, Poloni et

al., 2000 used MPLs as an approximation model for 3D Navier-Stokes simulation of the fin

keel for the optimization of the design of a sailing yacht.

4.3. Fitness Inheritance

Another approximation method developed for speeding up the optimization procedure is

"fitness inheritance" where, instead of approximating the objective function of the problem,

the fitness value of every individual is assigned to them based on their parents fitness values.

Fitness inheritance was originally proposed at 1995 and had quite a success since then. In

fitness inheritance, all the individuals in the initial population have their fitness value

calculated with the use of the fitness function. Thereafter, only for a limited number of

individuals their fitness value is calculated using the exact functions and for the rest their

fitness value is assigned with the fitness inheritance algorithm.

The classic implementation of fitness inheritance proposed by Smith in 1995 has been

successful in accelerating the convergence of evolutionary algorithms. The classic fitness

inheritance equation is the following:

 ,

Where is the generated individual from and . The equation above describes the

fitness value of an offspring as the weighted average of his parent‟s fitness values. The

similarity function, s, is a metric highly correlating with the Euclidian distance of the

offspring with their parents.

An advanced implementation of this algorithm is clustering individuals into several groups

and for each cluster of solutions only calculating one representative individual and assign

fitness values for the rest based on the classic fitness inheritance equation described above

28 Chapter 4: Optimization for Computationally Expensive Problems

Figure 11: Example of fitness inheritance with clustering where the black circles represent individuals

whose fitness has been assigned with a fitness inheritance equation while the black boxes represent

individuals whose fitness has been exactly calculated. (Fonseca, Barbosa and Lemonge, 2009)

4.3. Pareto Extrapolation Algorithm

In the present thesis, the Pareto extrapolation algorithm is being proposed for accelerating the

optimization procedure. The fundamental idea of this algorithm is to create a procedure that

can seed into the population individuals that would in a quasi-deterministic way dominate

previously non-dominated individuals. The aforementioned idea is implemented through

extrapolating a given Pareto front of an optimization problem. Then based on the knowledge

incorporated from previous calculations estimate individuals that correspond to the

extrapolated points and seed them into the population. The Pareto extrapolation algorithm

will be described below. Finally, in a later chapter the algorithm will be plugged in to the

standard NSGA-II and will be tested against it in terms of performance.

In order to predict the individuals that would result in the extrapolated points the reverse

function of the fitness function has to be approximated using MLPs. The first major problem

that has to be overcome is the limitation of neural networks in general to produce a function

with less neuron in the input layer than the output layer. This problem was solved by

considering as constants all the variables up until the sum of the number of objectives plus

the number of constant variables is at least equal or one more than the number of the rest of

the variables. Finally, in order to reduce the error, only the calculations made during the

previous generation were used. Regarding the training, all the activation functions mentioned

above for the hidden and the output layer and all the training algorithms will be tested for a

limited number of training iterations and the ones resulting in the least error will be used.

That, in order to keep the algorithm as less biased as possible. Afterwards, after a generation

has been completed and following the extrapolation protocol suggested below, the Pareto

front will be extrapolated. The extrapolated points, combined with the constant values

coming from the individuals, will then be used as an input for the neural network function to

Development of Optimization Software Using Evolutionary Algorithms 29

estimate the individuals that correspond to the extrapolated points. Finally, those individuals

will be merged with the original population and will be evaluated in order to replace the

members of the population they dominate.

The algorithm will be shown below in a step-by-step format for clarity:

Step 1[Initialization of a standard optimization problem]: Let the following

optimization problem be solved with NSGA-II

{

 []

With the following user defined parameters for the Pareto extrapolation algorithm:

1) After how many generations the extrapolations occur, denoted: ev

2) The extrapolation factor, denoted: ex

3) The aggressiveness of the extrapolation, denoted: ag

4) The angle of the extrapolation, denoted: angle

Step 2 [Selection of training data]: If the difference between the current generation

number and the generation number where the next Pareto extrapolation algorithm

will occur is 5 or less and the point is not already added to the training database then

add the following vectors as a training example:

 [] , [] where k is select in such manner

that either the size of vector X and vector Y are equal size or the size of vector X is

greater than vector Y size by one

Step 3 [The training procedure]: At the end of every generation where the Pareto

extrapolation algorithm should occur, an MLP is trained in the following manner to

ensure the minimum error in the cost function. Firstly, a neural network with a single

neuron in the hidden layer is being trained with the data created in step 2 with all the

available training algorithms (standard backpropagation, batch backpropagation,

quickprop, rprop) for 2000 epochs and the algorithm that results in the minimum

value for the cost function is selected as the training algorithm. Afterwards, for the

selected training algorithm all possible combination of activation functions for both

hidden layer and output layer are tested again with the same procedure and again the

combination of activation functions resulting in the minimum value for the cost

function are selected.

Step 4 [The extrapolation protocol]: Let the current Pareto front and the individuals

corresponding to that Pareto front after the end of a generations to be the following

matrixes:

30 Chapter 4: Optimization for Computationally Expensive Problems

 [

] [

]

Where F is the Pareto Front matrix, X is the individuals corresponding to the Pareto

Front matrix and g is the number of non-dominated solutions. Then depending on the

size, the following extrapolation sub protocol is followed:

Step 4a: The non-dominated solutions with an index contained in the following set

will be extrapolated:

 {

 (

)

 and

 Where n:={0,1,…g}

Step 4b: The extrapolation factor will be calculated for each objective with the

following equation:

Where i:={1,2,…n}

Finally, for each extrapolated point we create the following vector containing the

extrapolated points and the corresponding individual decision variables:

 []

Step 5 [Reversing the problem]: For every vector Fi mentioned above, using the

MLP function the following vector is calculated:

 []

⇒ []

The set of vectors
 will be combined with the vector, [] to

create a set of individuals X= [
] which will be merged and evaluated with the

original population in terms of their fitness value and thus replace dominated

solutions kept in the population with individuals that correspond to new Pareto

dominant solutions.

Step 6 [Repeat]: If the termination condition hasn‟t been met then go to step 2

Development of Optimization Software Using Evolutionary Algorithms 31

The algorithm flow described above is illustrated in Figure 12 below:

Figure 12: EA-assisted with Pareto extrapolation algorithm. The standard EA is denoted with blue colour

while the Pareto extrapolation algorithm is denoted with black colour

The algorithms shown above although tested as a plug-in to NSGA-II can be incorporated in

any population based optimization approach not only to accelerate the optimization procedure

but also increase its robustness. The Pareto extrapolation algorithm will be tested in terms of

its performance both in analytic optimization functions as well as real world applications in

the following sections.

32 Chapter 5: Optimization Software Overview

Chapter 5: Optimization Software Overview

5.1. Introduction

The optimization software developed in the scope of this thesis consists of two major

components. The first component, “optimizer GUI” is written in C++ in the Qt framework

and its task is the user's interface of the software. “Optimizer GUI” subtasks include setting

up the user defined parameters, creating the optimization database and visualizing the

optimization procedure with proper graphs. The second component of the optimization

software: “optimizer core” is developed in plain C++ for performance reasons. The

optimization procedure is initialized after the user defines a set of parameters necessary to run

the algorithms mentioned above. After the user settings have been defined, a local database is

created in order to store both the parameters and all the calculations made by the “Optimizer

Core”. Simultaneously, while “optimizer core” is implementing the standard NSGA-II and

the Pareto extrapolation algorithm, the database is updated with the calculations and

“optimizer GUI” using the available data graphically represents the optimization progress.

All of the above are shown in Figure 13:

Figure 13: Optimization software flowchart overview

In the following chapters, every box of the flowchart above will be analysed in more depth.

The first block that will be analysed is “Optimizer Core” regarding the structure required to

solve problems with the optimization software, the libraries used and the code architecture.

Finally, “Optimizer GUI” along with his core components, data visualization and data input,

will be presented.

Development of Optimization Software Using Evolutionary Algorithms 33

5.2. Optimizer Core

The “optimization core” component of the optimization software can be further decomposed

in to the following procedures that will be analysed further in this section:

 Database

 Run 1 generation of NSGA-II

 Regularize data

 Evaluate fitness

 Extrapolate population

The existence of a local database plays an important role in the optimization procedure, not

only for keeping the software structure cleaner, but also for enhancing the optimization

procedure. In the database the user defined optimization parameters are stored and fetched

by the “optimizer core” to perform the optimization procedure. All the calculations,

parameters, Pareto fronts and calculations are stored inside the database for further analysis

from the “optimizer GUI”, thus reducing the amount of information lost. Meanwhile, in

order to eliminate unnecessary fitness function evaluations, each individual, before calculated

is examined as to whether it already exists in the database, and consequently there is no need

to calculate again its fitness value. The database selected for this optimization software was

SQLite.

The second core procedure that was developed in the scope of this thesis is the execution of a

single generation of the NSGA-II algorithm. The development of the single generation of the

NSGA-II algorithm was based on ParadisEO library (Cahon, Melab and Talbi, 2004) with a

slight modification due to the fact that ParadisEO was unable to perform a single generation

of NSGA-II algorithm without modifications. Performing the NSGA-II one generation at a

time is critical in order to be able adjust the flow of the program in case of underwhelming

results and also apply the Pareto extrapolation algorithm which needs to be applied at the end

of a generation. The following code snippet (Figure 14) is an example of how to initialize the

NSGA-II algorithm with the modified version of the ParadisEO library.

Figure 14: ParadisEO NSGA-II example

Variable regularization is another component that, although not necessary, improves the

robustness and the performance of an optimization algorithm. For the reasons mentioned

34 Chapter 5: Optimization Software Overview

above, all the values of the individuals are regularized within [-1,1] in the optimization

algorithm scope. The program has the task to reverse the regularization of the values of the

individuals before their fitness is evaluated. This is accomplished with one of the following

functions:

Let an individual X with regularized decision variables values xi ={1,2,..n},where n is the

number of variables, bounded by a lower bound denoted LBi and an upper bound denoted

UBi then the available equations to express their real world values are:

Equation 1:

{

 ⁄

Equation 2:

 {

 ⁄

Where √

⁄ and
 ⁄

The user has the option to select between the equations above to be used by the optimization

software while the default option is equation 1. A subtle detail that should be noticed in the

equations above is that both of them prevent the evolutionary algorithm from sending values

outside the variable bounds to the fitness evaluator. This feature reduces the chance of

encountering non-feasible individuals that may result in a runtime error for the fitness

function.

Probably, the most important aspect of a general purpose optimization software like the one

developed for this thesis is to be able to be used for any optimization problem. In order to

achieve the high usability needed, the optimization software gives the user two problem types

that can be solved with it.

 Any use-defined fitness function that complies with the following requirements:

1) Can be executed under the Microsoft Windows operating system

2) Take as an execution argument the directory of a text file named

“variables.txt”

3) After runtime the fitness function creates in its local directory a text file

named “run.txt”, where the fitness values are output.

Development of Optimization Software Using Evolutionary Algorithms 35

Figure 15: Problem representation of user-defined fitness function

 Integrated ANSYS solver that developed originally by Dr Christos I. Papadopoulos

and was integrated to the optimization software as an industrial optimization solver.

Finally the last core component of the “optimizer core” is the Pareto extrapolation algorithm

that was presented in section 4.3. Pareto Extrapolation Algorithm of this thesis. The

development of the Pareto extrapolation algorithm required the usage of MLP that were

implemented with the FANN library (Nissen, 2003). The following code snippets are

examples of how to initialize and train (Figure 16: Example of training a neural network with

Fann library) a neural network and how to predict values from the neural network

approximation function (Figure 17: Example of using a neural network to predict values with

Fann library) with the FANN library.

Figure 16: Example of training a neural network with Fann library

36 Chapter 5: Optimization Software Overview

Figure 17: Example of using a neural network to predict values with Fann library

5.3. Optimizer GUI

Continuing on the decomposing approach that was used on the “optimizer core” block,

“optimizer GUI” will be decomposed as well to its main components. The user interface was

designed in a manner that would allow both users unfamiliar with optimization theory to use

it without being overwhelmed by the optimization parameters as well as more experienced

users to fine tune the optimization algorithm for their needs. The starting work environment

is shown in Figure 18:

Figure 18 Optimizer GUI stating work environment

In order to create a new optimization problem instance the user has to press:

 Menu->file->New Optimization for generic optimization

Development of Optimization Software Using Evolutionary Algorithms 37

 Menu->file->New ANSYS Optimization to use the integrated ANSYS solver

The user goes through an optimization set up procedure, where he sets up the directory of the

fitness function, the number of objectives, the number of variables and the bounds of the

variables. In case of selecting the ANSYS solver then the optimization software parses the

model files and the user decides if a parameter of the ANSYS model selected is an objective

or a design variable. For selecting the optimization parameters the user has three types of

default choices (standard, passive, aggressive) that will be explained below and the

“advanced” option for more experienced users that want to tune the optimization procedure to

their exact needs.

 Standard option for parameters values

The standard settings involve selecting parameters that would allow the algorithm to

perform well (not optimal) in a high variety of optimization Problems.

i. Generation number: 150

ii. Population size: 60

iii. Crossover probability: 0.9

High crossover probability has shown to accelerate the optimization procedure

when the algorithm is assisted with the Pareto extrapolation algorithm

iv. Mutation probability: 1/n where n is the number of decision variables

The mutation probability rule used is an acknowledged empirical rule commonly used in the

evolutionary optimization bibliography (see e.g. Deb et al. 2002) .

For the Pareto extrapolation algorithm, the parameters have been selected as follows:

i. ev: 20

ii. ex : 1.1

iii. ag : 3

iv. angle: π/4

 Passive option for parameters values

The passive settings involve selecting parameters that would allow the algorithm to

always converge to the Pareto front even if more fitness function evaluations than

necessary are needed.

i. Generation number: 400

ii. The number of generations ensures that the Pareto optimal set will be found and

the evolutionary algorithm will not converge into a local Pareto front.

iii. Population size: 80

iv. Crossover probability: 0.8

High crossover probability has shown to accelerate the optimization procedure

when the algorithm is assisted with the Pareto extrapolation algorithm

v. Mutation probability: 2/n where n is the number of decision variables

38 Chapter 5: Optimization Software Overview

The modified version for mutation probability gives a higher mutation rate thus

the algorithm will explore higher percentage of the design space.

For the Pareto extrapolation algorithm the parameters have been selected as follows:

i. ev: 25

ii. ex : 0.9

iii. ag : 5

iv. angle: π/4

 Aggressive option for parameters values

The aggressive settings involve selecting parameters that would allow the algorithm

to optimize the problem with the least amount of exact fitness function evaluations,

but the algorithm faces the risk of converging in to a local Pareto front.

i. Generation number: 40

The low generation number and as a result the low number of objective

calculations reduces the total computational cost of the algorithm.

ii. Population size: 40

iii. Crossover probability: 0.9

High crossover probability enables the algorithm to repopulate individuals of the

Pareto extrapolation algorithm faster.

iv. Mutation probability: 0.5/n where n is the number of decision variables

The modified version for mutation probability gives a lower mutation rate thus the

algorithm will converge faster but will not be very efficient in escaping local

optima.

For the Pareto extrapolation algorithm the parameters have been selected as follows:

i. ev: 10

ii. ex : 0.9

iii. ag : 10

iv. angle: π/4

5.3.1. Data visualization

Visualizing the optimization process with suitable graphs is an important feature in any

general purpose optimizer. In the optimizer developed for the present thesis various graph

types have been implemented to assist the user during optimization. Every graph offers

different information regarding the optimization process. In this section the graphical

representation implemented will be explained for the reader to understand both why these

graphs have been selected and the information the graphs provide. The graphs implemented

were:

 Pareto front graph

 Cloud graph

Development of Optimization Software Using Evolutionary Algorithms 39

 Parallel coordinate graph

The first and probably the most famous graph that was implemented was the Pareto front

graph. This graph represents the compromises that one has to make in one objective to

achieve a desirable goal in another objective. Simultaneously this graph also provides the

information of optimality since it demonstrates a set of solutions to an optimization problem.

The Pareto front diagram has the same dimension as the number of objectives of the

optimization problem. Thereafter, in case of an optimization problem with more than two

goals the Pareto front cannot be represented in a graph. In that case, the Pareto front is

represented as set of planes intersecting the multidimensional space. The following figure

illustrates a Pareto front graph as shown at the optimization software.

Figure 19: Pareto front graph. Proposed solutions are denoted with blue circle

Another optimization graph that provides a lot of information regarding the optimization

progress is the cloud graph. Cloud graph shares the same principles with the Pareto front

graph regarding its structure but illustrates all the calculation made during the optimization

procedure instead of only the optimal solutions. This difference allows the user to examine

the percentage of the search space examined by the evolutionary algorithm as well as see the

areas of the search space that the objective function is non-feasible.

40 Chapter 5: Optimization Software Overview

Figure 20: Cloud graph. All the calculations made by the evolutionary algorithm

 The last graph implemented in the developed optimization software is the parallel

coordinates plot (Ocagne, 1885). Parallel coordinates plot allows the user to visualize the

optimization as a whole even when the dimension of the problem is higher than 3. The graph

is created with a grid of n lines parallel to the y axis, where n equals the sum of the number of

objectives and the number of variables. Then, every solution in the final Pareto front that has

the following form:

Solutioni:= (objective1,objective2,…,objectiven,variable1,variable2,….variablen)

Every solution is represented as a polyline with vertexes on the parallel axes that denote the

value of the solution in that dimension. Due to the fact that different objectives or variables

might not share the same class size all the objective values used in the parallel coordinates

plot are regularized within [-1-1] to ensure proper visualization. Meanwhile, variable values

that are already regularized within the scope of the “optimizer core” are not regularized for

the second time. As a result, variable values might not belong in [-1,1]. Parallel coordinates

plot is a graphical representation of the trade-offs between the variable and the objective

values of the Pareto front. Parallel coordinates plot is one the few possible ways to

graphically demonstrate the entire Pareto front solutions and their corresponding decision

vectors with a single plot. Its importance is increasing as the dimensions of the problems

increase. In an optimization problem with three objectives for example parallel coordinates

offers a way to present all the Pareto optimal solutions in respect to all three objectives and

all the objectives with a single graph.

A parallel coordinates plot from the optimization software is presented in Figure 21

Development of Optimization Software Using Evolutionary Algorithms 41

Figure 21: Parallel coordinates plot

42 Chapter 6: Performance Evaluation of the Developed Optimization Software

Chapter 6: Performance Evaluation of the Developed

Optimization Software

6.1. Introduction

This chapter focuses on evaluating the optimization software performance when it is used to

solve different optimization problems. In order to measure the performance of the

optimization software the following methods have been applied; the hypervolume indicator

proposed by Zitzler et al. in 2007 and set convergence proposed by Deb et al. in 2002. Then,

a set of benchmarking optimization problems have been defined and solved both with the

standard NSGA-II and with the Pareto Extrapolation algorithm plugged in the standard

NSGA-II and the results have been analysed and compared. The optimization software will

be tested in a set of analytic functions proposed in the evolutionary optimization literature for

benchmarking evolutionary algorithms and two “real-world” applications relevant to the

marine engineering. The mathematical optimization problems have been selected to evaluate

the performance of the optimization algorithms. They have been designed in such a manner

as to challenge an optimization algorithm and to server as benchmarking between

optimization algorithms. The, two sets of optimization problems belonging in the field of

optimal machine design that have been chosen correspond to the different possible solvers of

the optimization software: the generic solver and the integrated ANSYS workbench solver.

The optimization problems that will be used to evaluate the performance are:

1) ZDT problems proposed by Zitzler, Deb and Thiele, 2000 and implemented by the

author of this thesis

2) The problem of optimizing the design of hydrophobic journal bearings under different

operational conditions.

3) The problem of optimizing the geometry of three-dimensional micro-thrust bearings.

6.2. Performance Metrics

Although the relations amongst Pareto fronts described in Chapter 1 give a sense of ordering,

in most cases there is a need to quantify the quality of a Pareto front. For the quantification of

the quality of the Pareto front the first method that will be presented is the Hypervolume

Indicator (IH) which is based on the idea of weak Pareto dominance. The hypervolume

indicator is a metric that expresses the volume of the objective space dominated by a Pareto

front A and it can be defined based on a reference set R (Auger et al., 2009) as

 ()

Here

 the set H(A,R) := {(z1,z2) ∈ ℝ
2
 ;∃ x ∈A , ∃ (r1,r2) ∈ ℝ : ⩝ 1≤i≤2 : Fi(x)≤z≤ri} denotes

the set of objective vectors that are enclosed by the front F(A):={F(x)|x∈A} given by

Development of Optimization Software Using Evolutionary Algorithms 43

A and the reference set R.

 the symbol λ stands for the Lebesgue measure of the set H(A,R).

Analysing further the definition above the following can be concluded:

1) The dimension of the hypervolume indicator dimension is equal to the number of the

objectives. Figure 22 shows an example of a hypervolume for a two objective

optimization problem.

2) Point R is called reference set and in most case it is simplified as a single point called

reference point. This point is dominated by every solution of the Pareto front.

3) The following equivalence describes the relation between the hypervolume indicator

and the Pareto front dominance A≼B ⇔ IH(A) ≥ IH(B).

4) The hypervolume indicator can be expressed equivalently as the hypervolume of

objective space dominated, as the percentage of the objective space dominated and

finally as the percentage of the non-dominated objective space. In this thesis the exact

metric that will be used is the percentage of the objective space dominated. The

percentage of dominated space is calculated through Monte Carlo simulation.

Figure 22: Example of the hypervolume indicator for the Pareto front X={X1,X2,X3}

The second metric to quantify the quality of a Pareto front that will be used in this thesis is

the set convergence (Deb et al. in 2002), a metric that was used to evaluate the NSGA-II

when it was originally proposed. This metric expresses the convergence of Pareto front to a

set of true Pareto optimal solutions. Although this metric expresses the quality of a Pareto

front really well it has a serious downside; it cannot be used for any problem where the true

Pareto-optimal front is not known in advance. Subsequently, this metric will be used as a

performance index only for the first set of problems (analytic functions), where the true

Pareto-optimal front is known. In order to calculate the performance metric, a set of 1000

44 Chapter 6: Performance Evaluation of the Developed Optimization Software

uniformly spaced solution from the true Pareto-optimal front are selected. Then, for each

solution in a Pareto front the minimum Euclidian distance of it from the known set of Pareto-

optimal solutions is calculated. Finally, the set convergence of the Pareto front is the average

of the distances calculated for every individual. When every solution lies exactly in the true

Pareto optimal set then the set convergence metric value is zero. This performance metric is

of higher fidelity than the hypervolume indicator because it takes in to consideration the true

Pareto optimal front. However, set convergence performance metric can only be used in

benchmarking optimization problems where the true Pareto optimal front is known. In real

world applications where the true Pareto optimal front is unknown this metric cannot be used

to evaluate the convergence of an evolutionary algorithm. Figure 23 illustrates the set

convergence metric.

Figure 23: Set convergence metric graphical representation. Points in black colour represent the true

Pareto optimal set while points in blue colour represent a Pareto front calculated with an optimization

algorithm. The length of the lines connecting blue points with black points show is the minimum

Euclidian distance needed to be calculated

Development of Optimization Software Using Evolutionary Algorithms 45

6.3. Optimization Benchmarking Problems

6.3.1 Overview

The first set of optimization problems that will be solved with the optimization software

developed in the scope of this thesis is the Zitzler-Deb-Thiele problems (Zitzler, Deb and

Thiele, 2000). These problems are designed in such manner that each one has different

characteristics that would challenge an optimization algorithm. In every problem the fitness

functions in analytic form, the number of variables, the bounds of the variables, the

characteristics of the Pareto front and the graph of the Pareto front will be presented. Hence,

problem ZDT 5 is a binary optimization problem, it has been omitted. Without further ado the

optimization problems along with characteristics and their true Pareto fronts are presented:

 ZDT 1 Problem

Minimize

{

 [√

 ⁄]

 ∑

 ⁄

bound to ∈ [] i=1,2,…,n

Here the number of decision variables (n) is 30. The Pareto front of this problem is convex.

The true Pareto front of the ZDT1 problem is illustrated in Figure 24:

Figure 24: ZDT1 true Pareto front

46 Chapter 6: Performance Evaluation of the Developed Optimization Software

 ZDT 2 Problem

Minimize

{

 [(

 ⁄)

]

 ∑

 ⁄

bound to ∈ [] i=1,2,…,n

Here the number of decision variables (n) is 30. The Pareto front of this problem is non-

convex.

The true Pareto front of the ZDT2 problem is illustrated in Figure 25:

Figure 25:ZDT2 true Pareto front

Development of Optimization Software Using Evolutionary Algorithms 47

 ZDT 3 Problem

Minimize

{

 [√

 ⁄

]

 ∑

 ⁄

bound to ∈ [] i=1,2,…,n

Here the number of decision variables (n) is 30. The Pareto front of this problem consists of

discontinuous convex parts.

The true Pareto front of the ZDT3 problem is illustrated in Figure 26:

Figure 26: ZDT3 true Pareto front

48 Chapter 6: Performance Evaluation of the Developed Optimization Software

 ZDT 4 Problem

Minimize

{

 [(

 ⁄)

]

 ∑ [
]

bound to ∈ [] and ∈ [] i=2,3,…,n

here the number of decision variables (n) is 30. Although the Pareto front of this problem is

similar to the ZDT1 Pareto front this problem has 21
9
 local Pareto fronts and challenges EA

in the aspect of multimodality.

The true Pareto front of ZDT4 problem is illustrated in Figure 27:

Figure 27:ZDT4 true Pareto front

Development of Optimization Software Using Evolutionary Algorithms 49

 ZDT 6 Problem

Minimize

{

 [√

 ⁄]

 [
 ∑

 ⁄]

bound to ∈ [] i=1,2,…,n

here the number of decision variables (n) is 30. Finding the Pareto front of this function is

rather challenging because the points consisting the Pareto front are nonuniformly distributed

along the front.

The true Pareto front of the ZDT6 problem is illustrated in Figure 28:

Figure 28: ZDT 6 true Pareto front

50 Chapter 6: Performance Evaluation of the Developed Optimization Software

In order to assess the performance of the developed optimization software, the optimization

problems mentioned above have been solved 30 times per problems both with the standard

NSGA-II as well as with the NSGA-II assisted with the Pareto extrapolation algorithm.

The optimization parameters that have been selected to solve the problem are the following:

Both standard NSGA-II and PEA-NSGA-II have been used separately to solve the

optimization problem. The evaluation of the Pareto fronts from both algorithms has resulted

from 30 separate runs of every algorithm. The runs have been limited to 1100 objective

calculations. As this problem is an analytic problem, true Pareto optimal has been used to

evaluate the performance of the algorithms. The NSGA II and the PEA-NSGA II are tuned as

follows:

NSGA-II parameters:

 Population size: 80

 Crossover rate 0.9

 Mutation probability 1-1/n where n is the number of decision variables

PEA parameters:

 Ev 20 (for problems with mutation probability of 0.03) and 8 (for problems with

mutation probability 0.1)

 Ex 1.1

 Ag 3

 Angle 0.785 (⁄)

Reference points for calculating the hypervolume indicator:

 R=[11 11] for ZDT1,ZDT2 and ZDT3

 R= [1.1 160] for ZDT4

 R=[1.1 9] for ZDT6

Development of Optimization Software Using Evolutionary Algorithms 51

6.3.2 Optimization Results

For every problem mentioned in the previous section the optimization results are presented.

Results consist of:

 Table of results which illustrates the average value and the standard deviation of the

performance metrics described in section 6.1. for every Pareto front every 100

objective calculations.

 The averaged hypervolume indicator and set convergence graphs which are the

graphical representation of the abovementioned table.

 Complete hypervolume indicator graph and Complete set convergence graph. For

clarity reasons the graphs with the metrics values for every “run” are presented.

 Finally, the Pareto front graphs with both algorithms are presented.

For the optimization problem ZDT1 the Pareto extrapolation feature will be graphically

represented. The Pareto extrapolation feature is similar in all other optimization problems.

In evolutionary multi-objective optimization Pareto fronts do not appear in fixed number of

objective calculations. In order to solve the problem and be able to compare the quality

metrics of Pareto fronts every 100 objective calculations the following algorithm was

implemented. For every optimization, the performance metrics where calculated for the

Pareto front before and after the comparison points (every 100 objective calculations in this

case). The performance metrics were then calculated for comparison points interpolating the

results before and after. Finally, the average and standard deviation of the performance

metrics are calculated for every comparison point.

52 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT1 Problem

Table 4 and Table 5 demonstrate the values of the performance metrics (set convergence and

hypervolume indicator) for ZDT1 optimization problem every 100 objective calculations.

Table 4: PEA NSGA-II results for the ZDT1 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.76282 0.01348 2.64630 0.16542

200 0.81062 0.02412 1.98042 0.39683

300 0.86152 0.02546 1.31383 0.37311

400 0.89088 0.02568 0.94012 0.28638

500 0.91574 0.02284 0.65821 0.22523

600 0.93203 0.02163 0.42955 0.17802

700 0.94649 0.01511 0.29656 0.13333

800 0.95847 0.01551 0.22967 0.11967

900 0.96660 0.01235 0.17129 0.09129

1000 0.97342 0.00983 0.13560 0.07617

1100 0.97724 0.01019 0.10678 0.06835

Table 5: NSGA-II results for the ZDT1 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.766210 0.016051 2.622257 0.185175

200 0.800967 0.018350 2.145309 0.207267

300 0.831607 0.019340 1.752261 0.215571

400 0.858234 0.016640 1.443577 0.208893

500 0.879759 0.015865 1.215535 0.218559

600 0.897627 0.017876 0.995901 0.242339

700 0.913064 0.018880 0.833318 0.228668

800 0.925017 0.020003 0.712502 0.224479

900 0.939606 0.017831 0.582112 0.193322

1000 0.948501 0.018848 0.479207 0.187592

1100 0.956307 0.017946 0.407935 0.179530

Development of Optimization Software Using Evolutionary Algorithms 53

The results presented in Table 4 and Table 5 are illustrated in Figure 29 and Figure 30

Figure 29: ZDT1 average set convergence graph

Figure 30: ZDT1 average hypervolume indicator graph

54 Chapter 6: Performance Evaluation of the Developed Optimization Software

For clarity reasons, the performance metrics values from every independent optimization run

are presented in Figure 31 and Figure 32

Figure 31: ZDT1 set convergence results for 30 independent runs

Figure 32: ZDT1 hypervolume indicator for 30 independent runs

Development of Optimization Software Using Evolutionary Algorithms 55

Figure 33 illustrates a typical Pareto front at 1100 objective calculations. The Pareto fronts

chosen for graphical representation are the fronts with the absolute minimum difference in

performance metrics values from the average values at 1100 objective calculations. This

allows the reader to understand how different performance metrics values correspond to

different fronts. Also it is clearly demonstrated that PEA NSGA-II outperforms NSGA-II in

terms of Pareto front convergence for a given number of objective calculations.

Figure 33: Typical Pareto fronts for the ZDT1 problem by the NSGA-II and the PEA NSGA-II

algorithms after 1100 objective calculations

56 Chapter 6: Performance Evaluation of the Developed Optimization Software

In Figure 34 to Figure 39 the extrapolation feature of PEA NSGA-II is illustrated graphically.

To achieve the following information is plotted:

a) Black points illustrate the Pareto front before the application of the PEA algorithm

b) Red points illustrate extrapolated points calculated by PEA algorithm

c) Blue circled points illustrate the Pareto front after the application of the PEA

algorithm

Figure 34: ZDT1 Pareto front before and after extrapolation (40 generations)

Development of Optimization Software Using Evolutionary Algorithms 57

Figure 35: ZDT1 Pareto front before and after extrapolation (80 generations)

P

Figure 36: ZDT1 Pareto front before and after extrapolation (120 generations)

58 Chapter 6: Performance Evaluation of the Developed Optimization Software

Figure 37: ZDT1 Pareto front before and after extrapolation (160 generations)

Figure 38: ZDT1 Pareto front before and after extrapolation (200 generations)

Development of Optimization Software Using Evolutionary Algorithms 59

Figure 39: ZDT1 Pareto front before and after extrapolation (240 generations)

60 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT2 Problem

Table 6: and Table 7: Standard NSGA-II results for the ZDT2 problem demonstrate the

values of the performance metrics (set convergence and hypervolume indicator) for ZDT2

optimization problem every 100 objective calculations.

Table 6: PEA NSGA-II results for the ZDT2 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.63447 0.01923 3.44296 0.23661

200 0.72616 0.02978 2.21833 0.38391

300 0.80941 0.03480 1.24735 0.40867

400 0.86002 0.03066 0.69267 0.32409

500 0.89750 0.02558 0.35547 0.25509

600 0.91970 0.02357 0.19703 0.15622

700 0.93808 0.02634 0.13367 0.11949

800 0.95278 0.02234 0.10057 0.09141

900 0.96441 0.02205 0.08946 0.09366

1000 0.97123 0.02156 0.07954 0.09333

1100 0.97672 0.02056 0.07253 0.09222

Table 7: Standard NSGA-II results for the ZDT2 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.64038 0.02138 3.40294 0.23109

200 0.71594 0.01907 2.40874 0.30181

300 0.77725 0.03295 1.71097 0.42722

400 0.82348 0.02733 1.13098 0.37786

500 0.85848 0.02737 0.76469 0.35926

600 0.88823 0.02398 0.49732 0.34478

700 0.90999 0.02726 0.36538 0.30034

800 0.92696 0.02983 0.26674 0.23928

900 0.94199 0.02810 0.19510 0.19333

1000 0.95448 0.03063 0.15059 0.16501

1100 0.96748 0.02514 0.11275 0.13872

Development of Optimization Software Using Evolutionary Algorithms 61

The results presented in Table 6: and Table 7: Standard NSGA-II results for the ZDT2

problem are illustrated in Figure 40 and Figure 41

Figure 40: ZDT2 average hypervolume indicator graph

Figure 41: ZDT2 average set convergence graph

62 Chapter 6: Performance Evaluation of the Developed Optimization Software

For clarity reasons, the performance metrics values from every independent optimization run

are presented in Figure 42 and Figure 43

Figure 42: ZDT2 hypervolume results for 30 independent runs

Figure 43: ZDT2 set convergence results for 30 independent runs

Development of Optimization Software Using Evolutionary Algorithms 63

Figure 44 illustrates a typical Pareto front at 1100 objective calculations. The Pareto fronts

chosen for graphical representation are the fronts with the absolute minimum difference in

performance metrics values from the average values at 1100 objective calculations. This

allows the reader to understand how different performance metrics values correspond to

different fronts. Also it is clearly demonstrated that PEA NSGA-II outperforms NSGA-II in

terms of Pareto front convergence for a given number of objective calculations.

Figure 44: Typical Pareto fronts for the ZDT2 problem by the NSGA-II and the PEA NSGA-II

algorithms after 1100 objective calculations

64 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT3 Problem

Table 6: and Table 7: Standard NSGA-II results for the ZDT2 problem demonstrate the

values of the performance metrics (set convergence and hypervolume indicator) for ZDT3

optimization problem every 100 objective calculations.

Table 8: PEA-NSGA II results for the ZDT3

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.79839 0.02167 2.56208 0.17959

200 0.83005 0.03161 1.97914 0.39179

300 0.86516 0.03600 1.36316 0.45551

400 0.89440 0.03652 0.99240 0.46454

500 0.91226 0.03854 0.71532 0.39052

600 0.92722 0.03445 0.50823 0.34212

700 0.93989 0.03140 0.36676 0.30178

800 0.94846 0.02850 0.28697 0.26191

900 0.95484 0.02873 0.21110 0.22442

1000 0.95949 0.02514 0.15169 0.15849

1100 0.96499 0.01966 0.11878 0.13568

Table 9 Standard NSGA-II results for the ZDT3

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.79619 0.02049 2.49740 0.24179

200 0.81175 0.02136 2.09989 0.22926

300 0.82550 0.02369 1.82303 0.20151

400 0.83316 0.02473 1.62227 0.22711

500 0.84513 0.01837 1.40486 0.21025

600 0.86132 0.02078 1.19597 0.22467

700 0.87600 0.01817 0.97473 0.24001

800 0.89104 0.02296 0.82658 0.26553

900 0.90240 0.02570 0.69314 0.26341

1000 0.91213 0.02405 0.54622 0.22792

1100 0.92186 0.02343 0.45171 0.20129

Development of Optimization Software Using Evolutionary Algorithms 65

The performance metrics values in Table 7and Table 8 are also in illustrated in Figure 45:

ZDT3 average hypervolume graph and Figure 46: ZDT3 average set convergence graph

below:

Figure 45: ZDT3 average hypervolume graph

Figure 46: ZDT3 average set convergence graph

66 Chapter 6: Performance Evaluation of the Developed Optimization Software

For clarity reasons, the performance metrics values from every independent optimization run

are presented in Figure 47 and Figure 48.

Figure 47: ZDT3 hypervolume results for 30 independent runs

Figure 48: ZDT3 set convergence results for 30 independent runs

Development of Optimization Software Using Evolutionary Algorithms 67

Figure 49: illustrates a typical Pareto front at 1100 objective calculations. The Pareto fronts

chosen for graphical representation are the fronts with the absolute minimum difference in

performance metrics values from the average values at 1100 objective calculations. This

allows the reader to understand how different performance metrics values correspond to

different fronts. Also it is clearly demonstrated that PEA NSGA-II outperforms NSGA-II in

terms of Pareto front convergence for a given number of objective calculations.

Figure 49: Typical Pareto fronts for the ZDT3 problem by the NSGA-II and the PEA NSGA-II

algorithms after 1100 objective calculations

68 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT4 Problem

Table 10 and Table 11 demonstrate the values of the performance metrics (set convergence

and hypervolume indicator) for ZDT4 optimization problem every 100 objective calculations.

Table 10: PEA NSGA-II results for the ZDT4 problem

Objective
calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.3548 0.0575 128.2643 71.5093

200 0.5255 0.0695 84.4790 10.5203

300 0.5771 0.0804 73.4152 12.5540

400 0.6078 0.0857 68.4086 11.8265

500 0.6366 0.0738 65.0280 10.0493

600 0.6404 0.0734 62.2351 10.7522

700 0.6525 0.0780 60.4197 10.7980

800 0.6646 0.0883 58.4014 11.8273

900 0.6754 0.0798 56.3030 11.6626

1000 0.6828 0.0771 54.5416 12.1086

1100 0.6863 0.0715 53.7078 11.3185

Table 11: NSGA-II results for the ZDT4 problem

Objective
calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.3566 0.0490 119.0563 43.1288

200 0.5150 0.0812 83.6560 12.0979

300 0.5566 0.0780 76.4200 12.9886

400 0.5982 0.0766 68.9573 14.0872

500 0.6124 0.0744 65.5943 12.2201

600 0.6308 0.0673 62.8785 11.2561

700 0.6399 0.0656 60.8432 10.8661

800 0.6440 0.0630 59.8745 10.5915

900 0.6461 0.0622 59.1446 10.0120

1000 0.6536 0.0611 57.3823 9.8624

1100 0.6618 0.0569 55.8345 9.4049

Development of Optimization Software Using Evolutionary Algorithms 69

The performance metrics values shown in Table 12 and Table 13are also in illustrated

graphically in Figure 50 and Figure 51:

Figure 50: ZDT4 set convergence graph

Figure 51: ZDT4 average hypervolume graph

70 Chapter 6: Performance Evaluation of the Developed Optimization Software

For clarity reasons the performance metrics values from every independent optimization run

are presented in Figure 52 and Figure 53.

Figure 52: ZDT4 set convergence results for 30 independent runs

Figure 53: ZDT4 hypervolume indicator results for 30 independent runs

Development of Optimization Software Using Evolutionary Algorithms 71

Figure 54 illustrates a typical Pareto front at 1100 objective calculations. The Pareto fronts

chosen for graphical representation are the fronts with the absolute minimum difference in

performance metrics values from the average values at 1100 objective calculations. This

allows the reader to understand how different performance metrics values correspond to

different fronts.

Figure 54: ZDT4 typical Pareto front after 1100 objective calculations

72 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT6 Problem

Table 12 and Table 13 demonstrate the values of the performance metrics (set convergence

and hypervolume indicator) for the ZDT6 optimization problem every 100 objective

calculations.

Table 12: PEA NSGA-II results for the ZDT6 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.07772 0.01493 7.00300 0.39293

200 0.14396 0.02494 6.38610 0.27681

300 0.19311 0.03045 5.83616 0.35613

400 0.24098 0.04581 5.34590 0.51163

500 0.30606 0.09102 4.70238 1.00694

600 0.38751 0.11404 3.69299 1.31310

700 0.48562 0.12949 2.53351 1.50129

800 0.56766 0.12189 1.46191 1.41124

900 0.61152 0.10276 0.85772 1.11342

1000 0.63639 0.08170 0.55419 0.84365

1100 0.65443 0.06160 0.43362 0.56534

Table 13: NSGA-II results for the ZDT6 problem

Objective

calculations

Hypervolume indicator Set convergence

Average Standard deviation Average Standard deviation

100 0.08788 0.01790 6.88123 0.40163

200 0.14007 0.02825 6.46413 0.29523

300 0.17462 0.04105 6.12823 0.37282

400 0.21806 0.05444 5.71330 0.49962

500 0.26357 0.06894 5.24007 0.71507

600 0.32906 0.09902 4.68045 0.85242

700 0.41757 0.12311 3.89673 1.22388

800 0.49183 0.14037 3.00375 1.62196

900 0.55484 0.14595 2.19746 1.77949

1000 0.59352 0.12595 1.55263 1.57860

1100 0.61916 0.10646 0.98320 1.10427

Development of Optimization Software Using Evolutionary Algorithms 73

The performance metrics values shown in Table 12 and Table 13are also in illustrated

graphically in Figure 55 and Figure 56:

Figure 55: ZDT6 average set convergence graph

Figure 56: ZDT6 average hypervolume indicator graph

74 Chapter 6: Performance Evaluation of the Developed Optimization Software

For clarity reasons the performance metrics values from every independent optimization run

are presented in Figure 57 and Figure 58.

Figure 57: ZDT6 set convergence results for 30 independent runs

Figure 58: ZDT6 hypervolume indicator results for 30 independent runs

Development of Optimization Software Using Evolutionary Algorithms 75

Figure 59 illustrates a typical Pareto front at 1100 objective calculations. The Pareto fronts

chosen for graphical representation are the fronts with the absolute minimum difference in

performance metrics values from the average values at 1100 objective calculations. This

allows the reader to understand how different performance metrics values correspond to

different fronts. Also it is clearly demonstrated that PEA NSGA-II outperforms NSGA-II in

terms of Pareto front convergence for a given number of objective calculations.

Figure 59: ZDT6 typical Pareto front after 1100 objective calculations

76 Chapter 6: Performance Evaluation of the Developed Optimization Software

6.3.3 Conclusions

Overall, our work on the ZDT problems demonstrated that both the standard NSGA-II and

PEA NSGA-II are performing well in a set of challenging optimization problems.

Furthermore, it can be observed that PEA NSGA-II algorithm outperforms the standard

NSGA-II algorithm in every optimization problem except ZDT4. In the following paragraphs

the performance of the neural network and the optimization algorithms will be further

discussed for every ZDT problem.

Overall it is clear that in every optimization problem the neural network was unable to predict

the inverse objective functions successfully. However, it is not the goal of the PEA algorithm

to predict the exact decision variables that result in the extrapolated points but rather train a

neural network to understand the trends in the decision variables. Based on that, the neural

network was able to predict correctly the trend of the inverse objective function regarding the

decision variables values. As a result, the neural network was able to systematically find new

individuals that would dominate previous non dominated solutions. One should also notice

that, in many cases the solutions of the extrapolation algorithm gives the same objective 2

value. This odd behaviour can be explained by a combination of the following. Objective 2 is

only dependant on the value of the first decision variable. Consequently, if the neural network

predicts for two different extrapolated points the same value for the first decision variable

then both extrapolated points would result in individuals that have the same objective 2 value.

As a result, the extrapolation algorithm instead of predicting new uniformly distributed

Pareto optimal individuals it predicted new individuals that share the same objective 2 value.

In the ZDT1 problem, NSGA-II was outperformed by the PEA NSGA-II algorithm at every

point of the optimization procedure. At 1100 objective calculations the PEA NSGA-II

algorithm dominates on average 2.1% more of the search space and has 4 times lower

average distance from the true Pareto optimal front. PEA NSGA-II standard deviation is also

less than the standard deviation of NSGA-II. As a result, PEA NSGA-II offers a more robust

option for solving ZDT1 problem. The difference of performance can easily be observed in

the typical Pareto fronts, shown in Figure 33 where the typical PEA NSGA-II Pareto front

strictly dominated the typical NSGA-II Pareto front.

In the ZDT2 problem, NSGA-II was outperformed by PEA NSGA-II algorithm after 300

objective calculations objective calculations. At 1100 objective calculations the PEA NSGA-

II algorithm dominates on average 0.1% more of the search space and has 1.57 times lower

average distance from the true Pareto optimal front. The standard deviation of the

performance metrics is also lower for the PEA NSGA-II algorithm. From that it can be

concluded that the PEA algorithm is also improving the stability of the evolutionary

algorithms. The difference of performance can easily be observed in the typical Pareto fronts,

shown in Figure 44: where every solution but one found by the typical PEA NSGA-II Pareto

front strictly dominates the solutions found by the typical NSGA-II.

Development of Optimization Software Using Evolutionary Algorithms 77

In the ZDT3 problem, NSGA-II was again outperformed by PEA NSGA-II algorithm at any

point during the optimization procedure after 200 objective calculations. In particular at 1100

objective calculations PEA NSGA-II dominates 0.43% more of the search space than

standard NSGA II and the average Pareto front resulted from PEA NSGA-II had 4 times

lower average distance than the average Pareto front resulted from NSGA-II. The standard

deviation of the performance metrics is also lower for the PEA NSGA-II algorithm. The

difference of performance can easily be observed in the typical Pareto fronts, shown in Figure

49 where the typical PEA NSGA-II Pareto front strictly dominated the typical NSGA-II

Pareto front. The true Pareto optimal solutions of the problem are located in a set of

discontinuous convex fronts. In order to examine the software ability to locate solutions

across the entire true Pareto optimal front the problem was solved again with a limit of 800

generations (approximately 2000 objective calculations). The Pareto front of the

abovementioned independent run is presented in Figure 60:

Figure 60: ZDT3 Pareto front after 2000 objective calculations

In the ZDT4 problem, NSGA-II was marginally outperformed by PEA NSGA-II. Although,

the average values of the performance were higher for PEA NSGA-II the standard deviation

of the metrics were high enough to show that the performance of both algorithm are

performing similarly. This result is expected since the extrapolation feature is not an

exploration feature. PEA thrives when the evolutionary algorithm can locate a number of

Pareto dominant solutions. In ZDT4 most of the fronts have little amount of non-dominated

solutions and thus PEA does not have sufficient number of points to extrapolate. Also in

78 Chapter 6: Performance Evaluation of the Developed Optimization Software

ZDT4 the neural network has a hard time predicting the reverse function of the problem and

thus adding new solutions with the extrapolation. The fact that both algorithms have similar

performance can be observed from Figure 54 where the typical PEA NSGA-II Pareto front

and the standard NSGA-II Pareto front have no clear relation between them.

In the ZDT6 problem, NSGA-II was again outperformed by PEA NSGA-II at any point of the

optimization procedure after 200 objective calculations. In particular, PEA NSGA-II Pareto

front after 1100 objective calculations dominates 0.04% more of the search space while

having 2.27 times lower distance on average than standard NSGA-II. Simultaneously,

standard deviation of the performance metrics is lower for PEA NSGA-II. As a result, PEA

NSGA-II can achieve the abovementioned results in a more robust manner. It can be

observed in Figure 58 that the hypervolume indicator increases steadily, up until it reaches

68%. This happens when the evolutionary algorithm finds the first solution with an objective

2 value near the minimum optimal value. The density of the solutions along the Pareto front

is not constant and in particular it decreases when objective 1 value is reaching towards the

maximum. Consequently, Pareto optimal solutions that have maximum objective 1 value are

much scarcer and when found by the evolutionary algorithm they increase by a high amount

the hypervolume indicator value. Figure 61 illustrates a Pareto front before and after the

evolutionary algorithms finds a solution with an objective 2 value equal to 0.3 and an

objective 1 value equal to 1.1.

Figure 61: ZDT6 Pareto front after 600 and 700 objective calculations respectively

Development of Optimization Software Using Evolutionary Algorithms 79

6.4. Optimal design of hydrophobic bearings

6.4.1. Hydrophobic bearing overview

The next optimization problems that have been solved with the optimization software

developed within this thesis is the optimal design of the hydrophobic surface of a journal

bearing. The optimization problem consists of minimizing the normalized friction coefficient

and the dimensionless eccentricity ratio by selecting the optimal geometry for the

hydrophobic surface. The design variables selected for the hydrophobic surface are:

1) Slip starting angle. This variable denotes the starting angle of the hydrophobic surface

2) Slip end angle. This variable denotes the ending angle of the hydrophobic surface

3) Yslip start. This variable expresses the non-dimensional value of the bearing length

where the hydrophobic surface starts.

4) Yslip end. This variable expresses the non-dimensional value of the bearing length

where the hydrophobic surface ends.

The decision variables of the optimization problem are also illustrated in Figure 62:

Figure 62: Geometry of journal bearing: Design variables for defining the hydrophobic part of the

bearing

80 Chapter 6: Performance Evaluation of the Developed Optimization Software

The decision variable bounds are shown in Table 14:

Table 14: Hydrophobic surface optimal design variable bounds

Decision variable Lower bound Upper bound

Slip starting angle 10 105

Slip end angle 105 200

Yslip start 0.1 0.4

Yslip end 0.6 0.9

The optimization problem will be solved for a journal bearing with fixed dimensions that is

operating under three different conditions. The geometry and the operational parameters of

the bearing are shown in Table 15

Table 15: Journal bearing geometry and operational condition

Case name: Bearing case 1 Bearing case 2 Bearing case 3

RPM 1000 1000 1000

Applied load

(vert.)[N]

200 500 1000

Bearing length[mm] 30 30 30

Bearing

diameter[mm]

30 30 30

Radial

clearance[mm]

0.05 0.05 0.05

Non-dimensional

slip length[mm]

10 10 10

In this optimization problem the developed optimization software will select the decision

variables and in house developed Bearing solver software will be used to calculate the values

of the objectives. In case of an infeasible solution the optimization software assigns the value

of 10
5
 to both objectives.

The optimization parameters that will be selected to solve the problem are the following:

Both standard NSGA-II and PEA-NSGA-II will be used separately to solve the optimization

problem. The evaluation of the Pareto fronts from both algorithms will result from 5

independent runs of every algorithm. The runs are limited to either 40 generations or 225

objective calculations whichever comes first.

Development of Optimization Software Using Evolutionary Algorithms 81

 NSGA II and PEA-NSGA II are tuned as follows:

NSGA-II parameters:

 Population size: 40

 Crossover rate 0.8

 Mutation probability 0.11

PEA parameters:

 Ev 8

 Ex 1.1

 Ag 3

 Angle 0.785 (⁄)

Reference points for calculating the hypervolume indicator:

 R=[0.489 4.13] for “Bearing case 1”

 R= [0.73 2.25]for “Bearing case 2”

 R=[0.85 1.46]for “Bearing case 3”

6.4.2. Optimization results

Due to the fact that the total selected numbers of independent optimization runs are 10 the

results will not be interpolated and averaged. Instead the results will be presented for every

run. This allows the reader to further understand the results of the optimization procedure and

the comparison between PEA NSGA-II and standard NSGA-II. The present problem is a real

world optimization problem thus no true Pareto optimal set of solutions is known in advance.

As a result, the performance metric “set convergence” used in the ZDT problems will be

omitted. As these sets of problems are “real world” optimization problems, it is expected that

Pareto fronts will have clear relations between them. However, the final Pareto fronts are not

sufficient information for evaluating the performance of an optimization algorithm, especially

in “real world” optimization problems. The hypervolume indicator provides information

about the initial point of the optimization and the optimization convergence rate. Because of

that, the first metric that will be presented in those problems is the hypervolume indicator.

Following the hypervolume indicator, the final Pareto front will be presented in two different

ways. The first form of presenting the Pareto front is by creating a super-font consisting of all

the non-dominated solutions from all the 5 independent runs. The second form is presenting

all the Pareto fronts from every independent run of the problems for clarity reasons.

82 Chapter 6: Performance Evaluation of the Developed Optimization Software

Hydrophobic bearing: Case 1

The first performance metric that will be presented for “Hydrophobic bearing: Case 1” is the

hypervolume indicator.

In Figure 63 the hypervolume indicator for every independent run is presented:

Figure 63: “Hydrophobic bearing: case 1” hypervolume indicator for 10 independent runs

Development of Optimization Software Using Evolutionary Algorithms 83

In Figure 64 the super front of standard NSGA-II and PEA NSGA-II is presented:

Figure 64: “Hydrophobic bearing: case 1”super-Pareto fronts.

The super front of ““Hydrophobic bearing: case 1”” arises from the Pareto fronts shown in

Figure 65

Figure 65: “Hydrophobic bearing: case 1” Pareto fronts from 5 independent runs with PEA NSGA-II and

standard NSGA-II

4.08

4.085

4.09

4.095

4.1

4.105

0.4835 0.484 0.4845 0.485 0.4855 0.486 0.4865 0.487

N
o

rm
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ratio

Standard NSGA-II Super Front

PEA-NSGA II Super Front

4.075

4.08

4.085

4.09

4.095

4.1

4.105

4.11

4.115

4.12

4.125

4.13

0.483 0.484 0.485 0.486 0.487 0.488 0.489 0.49 0.491

N
o

rm
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ration

Plain1 Plain2 Plain3 Plain4 Plain5 NN1 NN2 NN3 NN4 NN5

84 Chapter 6: Performance Evaluation of the Developed Optimization Software

Hydrophobic bearing: Case 2

The first performance metric that will be presented for “Hydrophobic bearing: Case 2” is the

hypervolume indicator.

In Figure 66 the hypervolume indicator for every independent run is presented:

Figure 66: “Hydrophobic bearing: case 2” hypervolume indicator for 10 independent runs

Development of Optimization Software Using Evolutionary Algorithms 85

In Figure 67 the super front of standard NSGA-II and PEA NSGA-II is presented:

Figure 67: “Hydrophobic Surface 2” super-Pareto fronts.

The super front of “Hydrophobic bearing: case 2” arises from the Pareto fronts shown in

Figure 68

Figure 68: “Hydrophobic bearing: case 2” Pareto fronts from 5 independent runs with PEA NSGA-II and

standard NSGA-II

2.16

2.165

2.17

2.175

2.18

2.185

2.19

0.7085 0.709 0.7095 0.71 0.7105 0.711 0.7115 0.712 0.7125 0.713 0.7135

N
o

rn
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ratio

Standard NSGA-II Super Front

PEA NSGA-II Super Front

2.16

2.165

2.17

2.175

2.18

2.185

2.19

2.195

2.2

0.708 0.709 0.71 0.711 0.712 0.713 0.714 0.715

N
o

rm
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ration

Plain1 Plain2 Plain3 Plain4 Plain5 NN1 NN2 NN3 NN4 NN5

86 Chapter 6: Performance Evaluation of the Developed Optimization Software

Hydrophobic bearing: Case 3

The first performance metric that will be presented for “Hydrophobic bearing: Case 3” is the

hypervolume indicator.

In Figure 69 the hypervolume indicator for every independent run is presented:

Figure 69: “Hydrophobic bearing: Case 3” hypervolume indicator for 10 independent runs

Development of Optimization Software Using Evolutionary Algorithms 87

In Figure 70 the super front of standard NSGA-II and PEA NSGA-II is presented:

Figure 70: “Hydrophobic bearing: Case 3” super-Pareto fronts

The super front of “Hydrophobic bearing: Case 3” arises from the Pareto fronts shown in

Figure 71

Figure 71: “Hydrophobic bearing: Case 3” Pareto fronts from 5 independent runs with PEA NSGA-II

and standard NSGA-II

1.3985

1.399

1.3995

1.4

1.4005

1.401

1.4015

1.402

1.4025

0.82485 0.8249 0.82495 0.825 0.82505 0.8251 0.82515 0.8252

N
o

rm
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ratio

Standard NSGA-II Super Front

PEA NSGA-II Super Front

1.39

1.4

1.41

1.42

1.43

1.44

1.45

1.46

0.824 0.825 0.826 0.827 0.828 0.829 0.83 0.831 0.832

N
o

rm
al

iz
e

d
 f

ri
ct

io
n

 c
o

e
ff

ic
ie

n
t

Dimensionless eccentricity ration

Plain1 Plain2 Plain3 Plain4 Plain5 NN1 NN2 NN3 NN4 NN5

88 Chapter 6: Performance Evaluation of the Developed Optimization Software

6.4.3. Conclusions

Overall, optimization results for the hydrophobic bearing shows that both the standard

NSGA-II and PEA NSGA-II are performing well in a set of “real world” optimization

problems. Furthermore, it can be observed that PEA NSGA-II algorithm outperforms the

standard NSGA-II algorithm in every optimization problem.

In problem “Hydrophobic bearing: Case 1” PEA NSGA-II managed to outperform standard

NSGA-II in every independent run. In particular, in Figure 64 it can easily be observed that

PEA NSGA-II super Pareto front clearly dominates the standard NSGA-II super front. The

PEA NSGA-II super Pareto front is both more diverse than the respective NSGA-II front at

similar amount of objective calculations. The findings of the super Pareto fronts are also in

accordance with the independent Pareto fronts shown in Figure 65, where the worst Pareto

front arising from PEA NSGA-II is better than the best Pareto front arising from standard

NSGA-II. Additionally, the hypervolume indicator presented in Figure 63 shows that

optimization runs that start from similar starting points result in better Pareto front for PEA

NSGA-II

Problem “Hydrophobic bearing: Case 2” is the first case where standard NSGA-II and PEA

NSGA-II perform equally. In Figure 67 it can be observed that NSGA-II super Pareto front

strictly dominates PEA NSGA-II super Pareto front. In this problem the initial population is

something that PEA NSGA-II cannot overcome. Without any further knowledge of the

topology of the objective space no conclusions can be drawn on why the initial population

choice is such a critical factor. Quite possibly, a high number of local Pareto front are located

in the objective and given the limited amount of objective calculations NSGA-II is unable to

escape them.

Similar findings with those of “Hydrophobic bearing: Case 3” can be observed at second case

as well. In this case as it can be observed at Figure 70 the super Pareto fronts corresponding

to standard NSGA-II and PEA NSGA-II are incomparable. In this case, as well, the initial

population choice is a parameter that NSGA-II cannot overcome even with the assistance of

the Pareto extrapolation algorithm. However, in this case as it can be observed in Figure 69

there are some cases where successful mutation operation let NSGA-II from the local Pareto

fronts. Those successful mutations are bound to happen in a long enough timeline. However,

with the timeframe that was set for this optimization solution NSGA-II was not able to

perform them.

Development of Optimization Software Using Evolutionary Algorithms 89

6.5. Geometry Optimization of Three-Dimensional Micro-Thrust

Bearings

6.5.1. Overview

The last optimization problem that has been solved in the present thesis is the optimization of

the geometry of textured three-dimensional micro thrust bearings. The optimization problem

has been implemented with the same parameters as it was originally proposed by

Papadopoulos et al. (2011), for validation purposes; for more information on the modelling

and how the optimization problem was defined, the reader should refer to the aforementioned

paper. The optimization consists of minimizing the convergence ratio while maximizing the

non-dimensional loading carrying capacity of the bearing. The geometry of a textured micro-

thrust bearing is presented in Figure 72.

Figure 72: Micro-thrust bearing geometry. (a) Three-dimensional textured converging slider geometry

 (b) Geometry of dimples. (c) Typical thrust bearing application with partial texturing.

Source: (Papadopoulos et al., 2011)

To solve the optimization problem the following decision variables controlling the geometry

are selected:

1. Convergence ratio, denoted as k, which is responsible for controlling the height of the

bearing, and it is defined as .

2. Non-dimensional un-textured length, denoted as luo ,which expresses the portion of the

bearing length that is non-textured, and it is defined as

3. Relative dimple length, denoted as s, which is defined as

The values of the objectives are calculated with the CFD tool ANSYS CFX. The ANSYS

90 Chapter 6: Performance Evaluation of the Developed Optimization Software

model as well as the CAD files of the geometry files was implemented by the authors of the

paper (Papadopoulos et al., 2011).

Decision variables and their respective constrains are presented in Table 16

Table 16: Three dimensional micro-thrust bearing design variables bound

Decision variable Lower bound Upper bound

k -0.4 2

luo 0.2 0.7

s 0.1 2

The optimization software will select the decision variables and, as stated earlier, ANSYS

CFX solver will be used to assign the values of the objectives. In case of an infeasible

solution the optimization software assigns the value of 10
12

 to both objectives.

The optimization parameters that will be selected to solve the problem are the following:

Both standard NSGA-II and PEA-NSGA-II will be used separately to solve the optimization

problem. The evaluation of the Pareto fronts from both algorithms will result from a

representative run of every algorithm. The runs are limited to either 50 generations or 190

objective calculations whichever comes first.

 NSGA II and PEA-NSGA II are tuned as follows:

NSGA-II parameters:

 Population size: 30

 Crossover rate 0.8

 Mutation probability 0.1

PEA parameters:

 Ev 5

 Ex 1.1

 Ag 4

 Angle 0.785 (⁄)

Reference point used for calculating the hypervolume indicator is [10 12].

Development of Optimization Software Using Evolutionary Algorithms 91

6.5.2. Optimization Results

In Figure 73, the hypervolume indicator against the number of objectives are presented.

Figure 73: Optimization of three dimensional micro-thrust bearing Hypervolume indicators

92 Chapter 6: Performance Evaluation of the Developed Optimization Software

The hypervolume indicator after 190 objective calculations corresponds to the Pareto fronts

shown in Figure 74.

Figure 74: Optimization of three dimensional micro-thrust bearing Pareto fronts

6.5.3. Conclusions

The optimization runs at the previous section demonstrate that both standard NSGA-II and

PEA NSGA-II have a robust performance when solving complex CFD problems. The first

conclusion that can be drawn from the results is that the integrated ANSYS solver is able to

connect the optimization software with ANSYS workbench and optimize ANSYS models. In

terms of performance, it can be concluded that the developed optimization software (PEA

NSGA-II) in this run although had a weaker initial selection of starting population, it

managed to catch up with the standard NSGA-II algorithm and eventually surpass it with

respect to convergence. The hypervolume indicator conclusions are easily verified by the

corresponding Pareto fronts (Figure 74) where the PEA NSGA-II Pareto front is not only

dominating in most of the areas but also is out-diversifying the Pareto front of standard

NSGA-II. The Pareto fronts show that after 190 objective calculations NSGA-II almost found

the Pareto front of the problem while PEA NSGA-II had already found it and also had spare

objective calculations to diversify it. The results of this section cannot be considered as hard

proof due to the little amount of independent runs. However, the results show a clear trend

and a great potential for Pareto Extrapolation Algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

N
o

n
 d

im
en

si
o

n
al

 lo
ad

 c
ar

ry
in

g
ca

p
ac

it
y

Convergence Ratio k

PEA NSGA-II Standard NSGA-II

Development of Optimization Software Using Evolutionary Algorithms 93

Chapter 7: Conclusions and Future Work

In this thesis a general purpose optimization software using evolutionary algorithms has been

developed. The software provides a user friendly interface in order to assist user unfamiliar

users, with the concepts of evolutionary optimization to tune the optimization and optimize

their models. Additionally, the interface of the software provides the user with real time

graphical representation of the optimization procedure. The user can at runtime monitor the

latest Pareto front and control the flow of the optimization. The user is also able to plot

multiple Pareto fronts and examine the different Pareto fronts after the optimization process

has been completed.

The other major goal of this thesis was to ensure that the optimization software developed is

competitive in terms of performance, with other commercial or open source optimization

software. This goal although ambitious, was achieved at satisfactory degree, with the

introduction of the Pareto Extrapolation Algorithm (PEA) which is capable of identifying

new non-dominated solutions by inversing and interpolating the objective functions of the

optimization problem.

The evolutionary algorithms implemented for the software were tested in a series of nine

challenging optimization problem with the goal of evaluating their performance and their

robustness. In particular, in the family of ascending difficulty ZDT problems both standard

NSGA-II and Pareto Extrapolation Algorithm (PEA) enhanced NSGA-II (developed in the

course of the present thesis) performance was evaluated. Both algorithms managed to achieve

satisfactory convergence rate with a low number of objective calculations (approximately

1100). Regarding, their compared performance, PEA NSGA-II managed to enhance the

performance of standard NSGA-II in every optimization problem. In particular, PEA NSGA-

II managed to speed up the convergence rate of the standard NSGA-II by 1.6 to 4 times in the

ZDT problems. . The performance of the PEA shows that the algorithm even in a suboptimal

form can improve drastically the optimization convergence rate. An optimization of the

Pareto extrapolation algorithm parameters, although not in the scope of this thesis is expected

to further improve its performance.

Additionally, the present optimization software was used to tackle the problem of design

optimization of a hydrophobic journal bearing under three different operating conditions. In

the first operating condition, (200KN vertical load), PEA NSGA-II managed to outperform

standard NSGA-II in every of the 5 independent runs. In the other two cases the topology of

the objective space limited NSGA-II and consequently PEA NSGA-II ability to converge in

the short timeframe of 40 generations. As a result NSGA-II even when assisted with PEA did

not manage to improve substantially the original Pareto front that was obtained after the

calculations of the original population.

The final optimization problem solved with the present optimization software was the

optimization of the geometry of a textured micro-thrust bearing. In order to solve this

94 Chapter 7: Conclusions and Future Work

optimization problem, the integrated ANSYS solver was utilized. In this optimization

problem PEA NSGA-II managed to outperform standard NSGA-II. Although, the amount of

independent runs is not sufficient to be considered as strong evidence of performance, it

shows a promising trend regarding the Pareto Extrapolation Algorithm performance. PEA

NSGA-II managed to outperform standard NSGA-II in this problem even when starting with

a worse initial population. In particular PEA NSGA-II was about 40 objective calculations

ahead of the standard NSGA-II, and to put this in to perspective, 40 objective calculations

consist of the 21% of the total objective calculations.

Although the optimization software managed to satisfy its two fundamental goals

(competitive performance and user friendly environment) it would be naive to believe that it

does not need further improvements. Some areas that the software can be improved are:

 Optimization of the Pareto extrapolation algorithm parameters

 Development of an algorithm that utilizes surrogate models to improve the

convergence of standard evolutionary optimization algorithms

 Utilize parallel computing models such as OpenMP to parallelize the developed

optimization software

 Implement evolutionary algorithms for solving single objective optimization

problems.

 Development of an auto-tuning algorithm that tunes both PEA NSGA-II and standard

NSGA-II algorithm. This algorithm would allow the software to be used at the highest

level of performance, without any optimization theory knowledge from the user.

Development of Optimization Software Using Evolutionary Algorithms 95

Bibliography

Auger A., J.Bader, D.Brockho,E.Zitzler(2009). Theory of the hypervolume indicator:µ-

distributions and the choice of the reference point. Proceedings of the tenth ACM SIGEVO

workshop on foundations of genetic algorithms, 87-102

Cahon, S., Melab, N. and Talbi, E. (2004). ParadisEO: A Framework for the Reusable Design

of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), pp.357-380.

 Coello Coello, C., Lamont, G. and Van Veldhuisen, D. (2007). Evolutionary algorithms for

solving multi-objective problems. New York: Springer.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp.182-

197.

Fonseca, L., Barbosa, H. and Lemonge, A. (2009). A similarity-based surrogate model for

enhanced performance in genetic algorithms. OPSEARCH, 46(1), pp.89-107.

Genetic algorithms in search, optimization, and machine learning. (1989). Choice Reviews

Online, 27(02), pp.27-0936-27-0936.

Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N. and Tucker, K. (2007).

Response surface approximation of Pareto optimal front in multi-objective optimization.

Computer Methods in Applied Mechanics and Engineering, 196(4-6), pp.879-893.

Gonzalez, R. (2008). Neural Networks for Variational Problems in Engineering. PhD.

Technical University of Catanolia.

Herrera, F., Lozano, M. and Moraga, C. (1999). Hierarchical distributed genetic algorithms.

International Journal of Intelligent Systems, 14(11), pp.1099-1121.

Horn, J., Nafpliotis, N. and Goldeberg, D. (1994). A Niched Pareto Genetic Algorithm for

Multiobjective Optimization. In: First IEEE Conference on Evolutionary Computation, IEEE

World Congress on Computational Intelligence. New Jersey: IEEE Service Center.

Jin, Y. (2003). A comprehensive survey of fitness approximation in evolutionary

computation. Soft Computing, 9(1), pp.3-12.

Karakasis, M. and Giannakoglou, K. (2006). On the use of metamodel-assisted, multi-

objective evolutionary algorithms. Engineering Optimization, 38(8), pp.941-957.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.: MIT Press.

Nissen, S. (2003). Implementation of a Fast Artificial Neural Network Library (fann).

Graduate report. University of Copenhagen Department of Computer Science.

96 Bibliography

Ocagne, M. (1885). x . Paris: Gauthier-Villars.

Oxforddictionaries.com. (2016). optimization - definition of optimization in English from the

Oxford dictionary. [online] Available at:

http://www.oxforddictionaries.com/definition/english/optimization [Accessed 11 Jul. 2016].

Papadopoulos, C., Efstathiou, E., Nikolakopoulos, P. and Kaiktsis, L. (2011). Geometry

Optimization of Textured Three-Dimensional Micro- Thrust Bearings. Journal of Tribology,

133(4), p.041702.

Poloni, C., Giurgevich, A., Onesti, L. and Pediroda, V. (2000). Hybridization of a multi-

objective genetic algorithm, a neural network and a classical optimizer for a complex design

problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering,

186(2-4), pp.403-420.

Practical mathematical optimization: an introduction to basic optimization theory and

classical and new gradient-based algorithms. (2007). Choice Reviews Online, 44(05), pp.44-

2754-44-2754.4

Riedmiller, M. and Heinrich, B. (1992). Rprop - A Fast Adaptive Learning Algorithm.

Proceedings of the International Symposium on Computer and Information Science, VII.

Schaffer J. David.(1984) Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. PhD thesis, Vanderbilt University.

Sefrioui M. and J. Periaux. Nash Genetic Algorithms: examples and applications. In 2000

Congress on Evolutionary Computation, volume 1, pages 509–516, San Diego, California,

July 2000. IEEE Service Center.

Srinivas, N. and Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting

in Genetic Algorithms. Evolutionary Computation, 2(3), pp.221-248.

Tenne, Y., Tenne, Y. and Goh, C. (2010). Computational intelligence in expensive

optimization problems. Berlin: Springer.

Thie, P. and Keough, G. (2008). An introduction to linear programming and game theory.

Hoboken, N.J.: Wiley.

Zitzler E., D. Brockhoff, L. Thiele (2007). The hypervolume indicator revisited: On the

design of pareto–compliant indicators via weighted integration. Evolutionary Multi-Criterion

Optimization, Vol. 44013, pp.862-876

Zitzler, E., Deb, K. and Thiele, L. (2000). Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Evolutionary Computation, 8(2), pp.173-195.

