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by
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Abstract

The prime movers used for ships today have certain limitations in their load re-
sponse. As a ship accelerates, the diesel engine due to the temporary inability of the
turbocharger to supply a sufficient amount of air to burn completely the fuel quantity
required to meet the increasing load, emits smoke. One way of addressing this issue
is the use of a hybrid diesel-electric configuration. Examples of ships with where a
hybrid system could be useful, are vessels with fast maneuvering requirements with
rapidly changing propeller demand. This Thesis investigates the improvement in per-
formance of a combustion engine with the assistance of an electric motor, with appro-
priate control systems, for transient load uptake, smoke emission reduction, reduced
pollutant emissions and lower fuel consumption. The Hybrid Integrated Propulsion
POwertrain (HIPPO-1) test bed at NTUA/LME consists of a medium-duty 448 kW,
turbocharged marine diesel engine, a water brake and an AC electric motor with fre-
quency inverter rated at 110 kW, coupled to a water brake on the same shaft in a
parallel hybrid configuration. The main purpose of the electric motor in the HIPPO-1
powertrain is to assist the diesel engine at lower speed bands, where the engine pro-
duces low torque, to meet faster the increasing torque demand. For the hybrid diesel
electric powertrain, two energy control management strategies are proposed, that dic-
tate the required torque from the electric motor so as to track a reference air-to-fuel
ratio/stoichiometric (λ-value) in the diesel engine. The reference λ-values are stored
in lookup tables which consider engine parameters, such as produced torque, speed
and intake manifold pressure, derived from experimental data during steady-state
operation. The feasibility and validity of the proposed control strategy was tested
experimentally, using rapid prototyping development tools. The tested loading time
series is based on performance data from ship-board measurements with a multitude
of engine loading conditions. A comparison between the hybrid powertrain and the
standard engine setup (without the assistance from the electric motor), shows the
benefits of a hybrid setup during transient loading conditions.

Thesis Supervisor: Prof. N. Kyrtatos
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Preface

Objectives of this Thesis

The objective of the present work is the optimal operation of hybrid powertrains for

ships, under a multitude of conditions, including transient operation. The impact of

the hybridized ship propulsion powertrain (under closed loop control) on fuel con-

sumption and exhaust gas emissions, compared to a conventional one, is investigated.

Contributions of this Thesis

The main contribution of this Thesis is the development and analysis of two model-

based controller concepts, which track the air ratio of an Internal Combustion En-

gine, while engaging an electric motor in a hybrid propulsion arrangement. These

controllers do not interfere with the fueling of the ICE, which allows their application

also as a retro-fit solution.

At lower speeds, where the diesel engine produces low torque, the electric motor

assists the powertrain to meet up with the torque demand faster. At higher speeds,

where the diesel engine can produce more power than needed and operates at better

efficiency points, the extra available power can be converted into electricity charging

the batteries, in a typical hybrid scheme (although not investigated in this Thesis, as

this work focuses on the transient phenomena).

The full scale multi-prime-mover experimental facility development HIPPO-1 (Hy-

brid Integrated Propulsion POwertrain) was built at LME/NTUA during this Thesis

and was used for detailed experimental investigations to validate the developed mod-

els and test the controllers. The HIPPO-1 testbed setup consists of a high speed
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marine diesel engine, an electric motor and a water dynamometer, capable of pro-

viding detailed experimental data, under finely regulated and repeatable operating

conditions. The water brake can emulate the load of a propeller or waterjet, with

realistic loading scenarios, obtained from full scale ship-board measurements.

The research performed within the framework of this Thesis has yielded the fol-

lowing scientific publications:

• S. Topaloglou, K. Bardis, G. Papalambrou, N. Kyrtatos, "Transient Load Share

Management of a Diesel Electric Hybrid Powertrain for Ship Propulsion", In-

ternational Journal of Powertrains, accepted (September 2016) for publication.

• S. Topaloglou, G. Papalambrou, N. Kyrtatos, "Robust Control of Diesel-Electric

Hybrid Power Split for Marine Propulsion", submitted (July 2016) to IEEE

Transactions on Control Systems Technology.

• S. Samokhin, S. Topaloglou, G. Papalambrou, K. Zenger, N. Kyrtatos, "Adap-

tive power-split control design for marine hybrid diesel powertrain", ASME

Journal of Dynamic Systems, Measurement and Control, February 2017, Vol-

ume 139.

• S. Topaloglou, G. Papalambrou, N. Kyrtatos, "Energy management controller

design for hybrid ship propulsion during transient operation", The 28th CIMAC

Congress, June 2016, Helsinki, Finland.

• S. Topaloglou, G. Papalambrou, N. Kyrtatos, "Controller Design for Hybrid

Diesel Electric Ship Propulsion During Transient Operation", The 26th Inter-

national Ocean and Polar Engineering Conference, June 2016, Rhodes, Greece.

• G. Papalambrou, S. Samokhin, S. Topaloglou, N. Planakis, N. Kyrtatos, K.

Zenger, "Model predictive Control for Hybrid Diesel-Electric Marine Propul-

sion", submitted (November 2016) to IFAC 2017 World Congress, Toulouse,

France.
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• N. Kyrtatos, G. Papalambrou, S. Topaloglou, A. Stamatellos, O. Zogou, "Design

and Experimental Verification of a Variable Path Exhaust Gas Prototype After-

treatment System for Marine Engines", International Marine Design Conference

2015 (IMDC 2015), Tokyo, Japan, May 2015.

• G. Papalambrou, S. Glaros, S. Topaloglou, and N. Kyrtatos "Model Reference

Adaptive Control of a Marine Diesel Engine Combined with Electric PTI/PTO

Motor", in Proceedings of Powertrain Modelling and Control (PMC) Confer-

ence, September 2012, Bradford, UK.

Structure of this Thesis

The Thesis is divided into the following chapters:

Introduction. The introductory chapter provides a survey on the current state of

research and applications on the control of hybrid powertrains, as well as the descrip-

tion of the problem and the principles of operation of the hybrid testbed used for this

Thesis.

Experimental facility. In this chapter, the experimental setup of the hybrid testbed,

including the main sensors, used for this Thesis is described.

System Modeling. This chapter introduces the plant models which were derived ex-

perimentally, includes the design of a λ virtual sensor, and the experimentally derived

engine parameters’ maps.

Robust controller design. In this chapter a robust H∞ controller is synthesized. The

method is investigated in simulation and tested experimentally.

Model predictive controller design. This chapter introduces a model predictive con-

troller. Simulation results and experiments on the hybrid test bed are presented.

Conclusions. The Thesis closes with a summary of the main results and suggestions

for future work.
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Chapter 1

Introduction

The International Convention of Prevention of Pollution from Ships (MARPOL) has

imposed stricter emission requirements for many special areas, called Emission Con-

trol Areas (ECAs) [59]. MARPOL defines certain sea areas as "special areas" in

which, for technical reasons related to their oceanographical and ecological condition

and to their sea traffic, the adoption of special mandatory methods for the prevention

of sea pollution is required. Under the Convention, these special areas are provided

with a higher level of protection than other areas of the sea. The adoption of Annex

VI limits the main air pollutants contained in ships exhaust gas. Annex VI Regula-

tions for the Prevention of Air Pollution from Ships establishes certain ECAs with

more stringent controls on sulfur oxides (SOx) and nitrogen oxides (NOx) emissions.

Moreover, the International Maritime Organization (IMO) is in the process of

tightening the emission limits in the future. The majority of the emissions of marine

diesel engines are regulated with standards already in force (Tier I, II, III), except

for the PM emissions, for which no emission standard has been adopted yet. In view

of these requirements, emission reduction is a key driven factor for the development

of novel technologies in the field of marine propulsion. One promising technology for

emission and fuel consumption reduction is the hybrid diesel-electric propulsion.

Typically in the existing marine technology framework, ships are equipped with

direct-driven propulsion machinery occasionally combined with a shaft generator sys-

tem, known as Power Take Out (PTO), generating power for some of the electrical
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demands of ship. Current trends consider the usage of auxiliary power to assist the

main engine in some load situations, such as high bollard pull, sailing in icy conditions,

harbor maneuvering or "take-home" power, thus using Power Take In (PTI) oper-

ation through powertrain hybridization. In this way, the size of main engine could

be optimized to the propulsion power needed under normal conditions while addi-

tional power boost can be taken from auxiliary generators as required. For relevant

information see [10].

Depending on their architecture, Hybrid Electric Powertrains (HEP) fall into one

of several categories: 1) parallel; 2) series; or 3) power split. In the parallel scheme,

both the engine and the motor are connected to the transmission, and thus, they can

power the vehicle either separately or in combination. In series hybrids, the prime

mover acts only as an electricity generator and the transmission is only connected to

electric motor. In that case an energy storage system of high turnaround efficiency

is required [40]. Finally, the power split scheme can operate either as a parallel or a

series HEP, combining the advantages of both but with increased complexity.

The performance of a hybrid powertrain in terms of reducing both fuel consump-

tion and exhaust emissions critically depends on the energy management strategy

(EMS). An EMS is the supervising control algorithm that determines how the total

power demand is shared between the power sources [30]. One main category of EMSs

with limited however potential for marine power plants due to the requirement of the

exact knowledge of the loading cycle, includes the optimization techniques found in

[58], [49], [31] and [51]. Moreover, heuristic methods such as fuzzy logic and neural

networks have been adopted in [55], [57] and [7] but they achieve neither an optimal

solution, nor robustness with respect to performance.

Of the many advanced control design methodologies, MPC seems to be the most

capable to handle multivariable processes, satisfy constraints, deal with long time

delays and utilize plant response to measured and unmeasured disturbances knowl-

edge [60]. MPC has been used in a broad range of applications, such as diesel engine

control [43] and [2], catalyst control [38], etc.

The above control strategies have dealt mainly with fuel economy without a par-
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ticular emphasis in emissions reduction. The subject of emissions reduction in a

quasi-static framework is discussed in [61], [30], [29] and [25]. However the incor-

porated quasi-static models for emission formation disregard the substantial rise of

pollutant emissions during transient operation of diesel engines (DE) due to the pres-

ence of thermodynamic delays mainly associated with turbocharger.

The formulation of transient emission reduction is presented in [42], where the

optimal EMS for a diesel hybrid electric powertrain is calculated, considering the

transient pollutant particulate matter emissions. In the same direction an EMS is

considered in [26], using a frequency-domain power distribution (FDPD) strategy,

which requires a priori knowledge of the loading profile.

The reduction of NOx emission in both steady state and transient operating con-

ditions has been examined in [19]. The optimal power split in steady state is provided

by an EMS while the reduction of transient NOx emissions is achieved through the

smoothing of the DE torque demand by utilizing the EM torque as torque compen-

sator. However, the dynamic control law is not robust with respect to exogenous

disturbance and unmodeled dynamics that inevitably exist in real-world hybrid elec-

tric powertrains.

The rationale behind the work presented in this Thesis, is to reduce the intensity

of the transient loading phenomenon in the diesel engine (DE) with the aid of an

electric motor (EM). It takes advantage of the rapid conversion between electrical

and mechanical energy in EM to assist the DE that has a limited torque delivery

during acceleration due to thermodynamic limitations. The EM assists the DE at

low-load operation, where the internal combustion engine operates at low efficiency

points and produces low torque.

While closed loop control of emissions in DEs has been an active research field

for more than fifteen years [4], this Thesis aims to present a novel marine applica-

tion, where λ-manipulation is achieved only with the additional degree of freedom

stemming from the hybridization of the powertrain.

The combustion inside cylinders involves a mixture of air and fuel. For complete

combustion, the mixture must be at a precise ratio, known as stoichiometric Air-

25



to-Fuel Ratio (AFRstoich). λ number is defined as the ratio of the actual to the

stoichiometric AFR (AFR/AFRstoich).

In a typical internal combustion engine (ICE) with λ closed loop management,

the control is performed through the fuel injection system. In the framework of this

Thesis the fueling commands of the Engine Control Unit (ECU) are not overridden,

but by applying torque from the EM, the required torque from the DE is reduced,

in order for the total torque demand to be met, and in that way the λ is implicitly

regulated. In addition, in this Thesis a λ "virtual sensor" is implemented and tested

in closed loop, offering the benefit of direct estimation of λ in the cylinder where

combustion takes place and that it discards the need for a physical λ sensor in the

exhaust duct.

1.1 Diesel Engine Response to Load Transients

A short overview of the diesel engine response to a load increase is described below

since it provides useful insights about the physical phenomena that take place in diesel

engines during transient conditions. On an engine which is running at steady state

and a new higher load is applied, a torque deficit appears and the engine speed drops.

The drop in engine speed is sensed by the speed governor which increases the fuel

injected into the cylinder by an appropriate amount specified by the ECU (typically

derived from a map as a function of various physical variables and limitations).

The higher amount of fuel injected into the cylinder combined with the insufficient

air supply, due to thermal and dynamic delays, leads to a drop in the air-to-fuel

ratio inside the cylinder and equivalently in the value of λ. The main reason for

the mismatch between the air supply and the fueling command is caused from the

turbocharger inertia, which results in the compressor operation point moving slowly

from a lower air mass flow to higher boost pressure and mass flow.

26



1.2 Hybrid Testbed Operation During Transients

The rationale behind the approach presented in this Thesis, is to reduce the effect

of the transient loading phenomenon in the DE with the aid of an EM. The con-

cept of the above diesel electric hybrid propulsion response methodology is presented

schematically in Fig. 1-1, in a typical marine propulsion operation. This figure in-

cludes the operating torque envelopes of the DE and EM used in the experimental

facility (Hybrid Integrated Propulsion POwertrain - HIPPO 1) and 5 nominal load

demand curves of a vessel with fixed pitch propeller. Curve 3 represents the propeller

load demand curve that is valid for the design condition; maximum engine power can

be utilized in this condition. Propeller curves 1-2 (light) and 4-5 (heavy) show the

effect of decreased and increased resistance resulting from off-design conditions.

Figure 1-1: Schematic of load acceptance in the Hybrid Integrated Propulsion Pow-
ertrain.

Conditions that can lead to steeper load curves are heavy weather, fouled hull,

towing a load or driving a power take-out. In the HIPPO-1 configuration, the EM
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assists the diesel engine at low-load operation, where the internal combustion en-

gine produces low torque. With this setup the initially small margin between the

torque demand from the propeller curve and the available torque from the DE (i.e.

the available torque that the propulsion system has available for acceleration during

transient operation), can be significantly increased. This can lead to lower emissions

of particulate matter (PM) (lower exhaust gases opacity) and lower fuel consumption.
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Chapter 2

Experimental Facility

The Hybrid Integrated Propulsion Powertrain (HIPPO-1) testbed built for the pur-

poses of this work, as seen in Fig. 2-1, consists of a diesel engine (DE) in parallel

connection to an electric motor (EM). As such, the rotational speeds of DE and EM

are identical, whereas the supplied torques add together. The desired torque demand

is applied through a water brake (WB).

Figure 2-1: The hybrid electric test bed.

The prime mover is a production-type, CATERPILLAR 3176B 6-cyl. 10-liter

high speed marine DE, with a rated power output of 425 kW at 2300 rpm. The DE is
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coupled to an EM which is a standard 3-phase asynchronous induction motor, with a

rated power of 112 kW. The EM is connected to a frequency inverter unit, enabling

the torque output regulation of the EM at a predefined rotational speed. Finally,

the water brake, which has connection flanges at both ends, has a load capacity of

1200 kW, with maximum speed at 4000 rpm and which is regulated by a separate

controller, developed in-house at LME.

2.1 Hardware Implementation

Since the test-bed was a large full-scale facility, with a maximum output capacity of

560 kW, every component of the HIPPO-1 powertrain was designed using 3D CAD

software (Autodesk InventorTM) as seen in Fig. 2-2.

Figure 2-2: Initial 3D drawing of HIPPO-1 testbed.

The first phase included the preparation of the engine room, the manufacturing/

ordering of all the components required for the installation of the DE (i.e. engine

mounts, exhaust and water piping, fuel lines) and finally the assembly of the above

according to the new powertrain specifications. The DE was connected to the one of

the free ends of the WB and the EM to the other. The installation of the sensors and

actuators followed.
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2.1.1 Electric motor integration to HIPPO-1

In order for the hybrid powertrain to be completed, following a parallel hybrid config-

uration (mechanical connection between the diesel engine and the electric motor) an

AC electric motor(model VEM K21R) was directly connected mechanically to the DE

(without a clutch in-between them). The EM is controlled by a frequency inverter.

The frequency inverter can be operated in two modes: speed mode, which regulates

only the rotational speed of the EM, and torque mode that regulates the torque out-

put of the EM while the EM follows the rotational speed of the DE. The latter was

selected due to the architecture of the control scheme of the hybrid testbed, in which

the controller output is the torque command to the frequency inverter. The electrical

power needed to drive the EM is provided from the grid, while any produced electrical

power can be dumped to a pack of installed braking resistors.

The main purpose of the EM in the HIPPO-1 powertrain is to assist the DE at

lower speed bands, where the DE produces low torque. Since the torque profile of the

DE was known, the EM was chosen so as to produce its full torque up to 1500 rpm,

the point at which the CAT engine reaches its maximum torque (Fig. 2-3).

The EM mount was designed in detail as a 3D CAD model, following static stress

analysis (Fig. 2-4 and 2-5). Stress analysis was performed for the calculation of

an optimal design, with the Stress Analysis toolbox of Autodesk InventorTM using

Finite Element Analysis (FEA) [50].

The toolbox requires the mounting points and the expected force applied on the

part. The outcome of this tool is depicted graphically where any flaws in the design

of the part can be easily distinguished. The material used for the fabrication of the

mount was constructional steel type 50-2, according to DIN 17 100.

The EM mount was placed in the engine room, in line with the mount of the water

brake.

For the connection of the EM to the rest of the hybrid powertrain, three connection

flanges and one coupling were designed (Fig. 2-6) and manufactured at the workshop

of the Laboratory. Also, a cardan shaft (i.e. shaft with universal joints at its ends)
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Figure 2-3: Diesel engine (Caterpillar 3176B) and electric motor (VEM K21R) Torque
Curves.

was used. The optimum operating length of the cardan shaft is determined by the

distance between the driving and the driven units, using the spline it incorporates,

within its range. The maximum deflection angle of each joint is 44o, which permits

the driving and driven components to be partially misaligned. The shaft is hollow

offering high strength/weight ratio. On both ends of the shaft suitable DIN120 flanges

are bolted (Fig. 2-7).

2.1.2 Water Brake

The WB, a Zollner 9n38F, is capable of handling 1200 kW and is equipped with a

load cell which monitors the total torque produced by the powertrain, under closed

loop control. The load cell signal is transmitted to a load cell amplifier, and then

to an analog input of the data acquisition card. From the closed loop controller,

a control command is supplied to the outlet analog water valve through an elec-

tronic/pneumatic transducer, which converts the electric signal to proportional air

quantity as supply to membrane of the water valve. The pressure of water inside the
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Figure 2-4: 3D model of the EM mount
Figure 2-5: Stress analysis of EM mount

Figure 2-6: 3D CAD drawing of the elec-
tric motor and drivetrain.

Figure 2-7: Electric motor connected to
the water brake (with connection flanges
and cardan shaft in place

main dynamometer chamber is also measured, through a pressure sensor installed on

the top of dynamometer case.

The WB was modeled via system identification techniques (which are extensively

presented in chapter 3) and a robust controller was derived. The designed WB con-

troller shows good tracking performance around its design point. The dynamometer

controller has to operate as:

• a regulator i.e. maintaining constant torque (load), under various disturbances

like speed changes. This mode simulates an on-board generator which operates

with constant rotational speed.

• a servo for tracking torque changes, usually applied either in steps, e.g. load

change from 0 to 47% or along a propeller curve, with the torque being propor-
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tional to the square of speed.

The propeller loading mode proved to be the most challenging of the above

modes. Unlike automotive industry for example where typical loading cycles exist

(ECE+EUDC, NEDC), propeller test loading cycles are not established. In that

direction measurements on-board ships were taken, as explained in Appendix A. It

should also be noted that in the first stages of commissioning the HIPPO-1 testbed,

some problems with the WB were present. There is a disparity between the high

power capacity of the WB (1200 kW) and the maximum power output of the DE

(CAT 3176B - 450 kW). The WB displayed oscillating behavior above 1000 Nm load,

and thus the DE could not be operated at full power. The WB displayed hunting

behavior in many cases; these problems are presented in detail in Appendix B.

2.2 Testing Facility Measurement System

A schematic representation of the installed sensors and engine parameters is given in

Fig. 2-8. Measurements present in the test bed include: NOx/oxygen (Continental

Uninox 24V), exhaust gas opacity (AVL 439), fuel mass flow (ABB CoriolisMaster

FCM2000). A high precision torque and speed measuring flange, model HBM T10F,

is installed on the powertrain, at the EM side. The intake manifold pressure and

turbocharger speed (µ epsilon) are also measured. The DE embedded ECU, HIPPO-

1 data acquisition system, EM frequency inverter controller, WB water pump and

the NOx/lambda sensor are interconnected with a CAN bus network, designed using

Matlab/SimulinkTM .

2.2.1 Control and Data Acquisition System

The whole test bed is controlled and monitored in real time by a dSpaceTM DS1103

platform with rapid data prototyping capability. The data acquisition system (DAQ)

collects and stores measured data during test runs, which are post-processed after the

end of each run. The platform incorporates its own graphical user interface software
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Figure 2-8: Installed sensors (in circle) and engine parameters in experimental diesel
engine.

(dSpace NextGeneration), programmed under the Matlab/SimulinkTM environment.

The HIPPO-1 DAQ uses a total number of 26 analog input channels, and 12

analog outputs. The analog signals ranges are from -10V to +10V. Another 4 digital

inputs and 2 digital outputs as well as a PWM signal for the DE speed setpoint are

used. For the measurements presented in this thesis, the dSpaceTM system is sampled

at 1 kHz. The dSpace DS1103 DAQ and related hardware can be seen in Fig. 2-9.

2.2.2 Lambda and NOx sensor

The wideband lambda sensor proved to be the most important sensor in the experi-

mental setup used for this Thesis, as it was selected to close the control system loop,

as is described in more detail in the next chapter.

This sensor is designed to measure the proportion of oxygen in the exhaust gases.

It is widely known in the industry as "lambda sensor" (λ sensor), although it provides

as output the oxygen concentration from which lambda in the exhaust gases is further

calculated considering the stoichiometric air-to-fuel ratio. Since no other chemical

process takes place between the combustion in the cylinder and the measurement

point of the installed oxygen sensor, we consider the calculated lambda value in the

exhaust path to be equal to the lambda value in the cylinder.

This sensor also measures the NOx content in the exhaust gases. The installed
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Figure 2-9: HIPPO-1 data acquisition and control module (dSpace DS1103) along
with the power electronics and cabling.

unit is a NGK ZFAS-U type SmartNOx wide range linear λ sensor (Fig. 2-10). Not

only does this type of sensor have an extended window of measurement and can be

used successfully where lean burn strategy is employed, it also provides exceptional

accuracy around the stoichiometric point which is useful in the quest for emission

reduction. This type of sensor can also be used in conjunction with diesel engines as

they operate with an excess air factor.

The temperature of the sensor element is critical, and is regulated by a built-in

controller. When the desired temperature of the element has been achieved, around

2 minutes after each power-up, the measurement begins. Also, this sensor measures
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the NOx content in the exhaust gases.

The NGK SmartNOx sensor is connected to the DAQ via CAN bus and a custom

made Simulink blockset.

In order to minimize the effect of the exhaust gas pressure which adversely affect

its operation (increased time delay constant), the lambda sensor is placed 1 m down-

stream the turbine (Fig. 2-11). Its response time, i.e. the time interval between a

change in the load in the DE and the corresponding lambda change, is measured to

be around 120 ms and with the DE at 1600 rpm. The response time is very sensitive

to the exhaust gas velocity; lower rpm would lead to higher response times and vice

versa. The reason 1600 rpm was chosen as the operating point around which the

hybrid testbed is modeled, is because it is the mean value of the rpm spectrum of the

DE (800-2400 rpm) and also the point where the DE produces its maximum torque

(2500 Nm)

Figure 2-10: The NGK SmartNOx sensor

Figure 2-11: The SmartNOx sensor as
installed at HIPPO-1 testbed

2.2.3 Torque Measuring Flange

The HBM T10F Torque Flange is installed on the powertrain on the EM side of

the water brake. The torque flange consists of two separate parts: the rotor and the

stator. The rotor includes the measuring body and the adapter flange. The measuring

body houses strain gauges and electronics. The top surface of the measuring body

supports the transmitter coils for contactfree transmission of excitation voltage and
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measuring signal. The signals are transmitted and received by a divisible antenna

ring (stator). The antenna ring is mounted on a housing that includes the electronic

system for voltage adaption and signal conditioning. The stator includes connecting

plugs for the torque signal, the power supply and the rotation speed signal with optical

measuring system, by means of an infrared beam and slotted disk. The torque meter

is rated at 10 kNm. The expected accuracy is 0.1% and the measuring frequency is

1 kHz. The measured torque and speed are connected to the dSpace DAQ as analog

inputs. The torque measuring flange can be seen in Fig. 2-12 as installed on HIPPO-1

testbed.

Figure 2-12: Photo of torque measuring meter as installed on HIPPO-1 (HBM T10f).

2.2.4 Opacity sensor

The exhaust gas opacity is measured with an AVL 439 opacimeter. A probe of 1

m length and 10 mm in diameter is mounted in the engine exhaust duct, approx.

1 meter after the exhaust manifold, and draws off sample exhaust gas. The gas is

routed to the opacimeter through a conditioning tube. Heated air is supplied around
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the tube up to the sensing probe, thus ensuring that the gas sample has constant

temperature. The exhaust gas passes through two pumps which maintain a constant

measurement flow from 40 to 49 lt/min, before it exits back to the exhaust line.

A ’zeroing’ procedure is performed every half hour of measurement in order to

evaluate the ’zero intensity value’ E0, required in calculations. The opacimeter is

connected via an analog channel to the dSpace DAQ. The output rate is 50 Hz. The

opacimeter can be seen in Fig. 2-13 as it is installed on the HIPPO-1 testbed.

Figure 2-13: Exhaust gas opacity sensor (AVL 439) as installed on HIPPO-1 testbed.

2.2.5 DE turbocharger speed sensor

The DE turbocharger rotational speed is measured with a Micro-Epsilon Turbospeed

DZ135 sensor. A very fast proximity sensor detects the tips of the turbocharger alu-

minum alloy blades passing by. The Eddy current loss principle effects impedance

changes in a measuring coil (sensor). The electromagnetic field from the coil gener-

ates eddy currents in the turbocharger blade, with every blade generating a pulse.

The controller identifies the speed by considering the number of blades. The non-

contacting single-channel measuring system consists of a sensor, sensor cable and a

controller, installed in a compact aluminum housing.
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Figure 2-14: Turbocharger speed measuring sensor as installed on the DE of the
HIPPO-1 testbed.

2.2.6 Fuel mass flow sensor

In order to evaluate a controller design at the HIPPO-1 diesel electric hybrid setup, an

accurate measurement of fuel consumption is essential. For that purpose, two fuel flow

meters were used (ABB CoriolisMaster FCM2000), one at the DE fuel feed line and

the other on the fuel return line (Fig. 2-15). These sensors use the Coriolis measuring

principle, making them highly accurate (error <1%) and with quick response times.

A Coriolis flowmeter requires a force acting on a tube carrying a flowing fluid. This

force actually deforms tubes through which the fluid flows (Fig. 2-16). The amount

of deformation depends directly on the mass flow rate through the tubes. Signals

from sensors measuring this deformation provide a direct indication of the mass flow

rate.

Each fuel mass measuring device is connected to an analog input in the DAQ,

using a sampling rate of 1 kHz. The data collected from these sensors were used

to populate fuel/speed/torque 3D maps in regions of interest, based on experiments

at steady state (static) loading conditions, which are utilized by some controlling

methods of HIPPO-1. The population of those maps is described in the next chapter.

40



Figure 2-15: ABB fuel mass flow measuring de-
vices as installed at HIPPO-1 testbed Figure 2-16: Coriolis force mea-

suring principle from [1].
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Chapter 3

System Modeling

Modern control engineering practice includes the use of control design strategies for

improving manufacturing processes and the efficiency of energy use, as well as to

maintain various safety measures.

A basic requirement for a successful control is to have a suitable model for control.

The control plants in process industries are mainly non-linear and continuous-time.

The first possibility is to use nonlinear mathematical models of the plants, in the

form of partial differential equations. Usage of these models is usually computation-

ally demanding or even not possible in some controller techniques [39]. Therefore it is

suitable to use robust control methods based on linearized models. Between the com-

plex physical systems under investigation and the models used for the controllers’

synthesis, a design gap exists. The iterative nature of design allows to handle the

design gap effectively while accomplishing necessary trade-offs in complexity, perfor-

mance and cost, in order to meet the design specifications.

A control system is an interconnection of components forming a system configura-

tion that will provide a desired system response [16]. The basis for analysis of a system

is the assumption, provided by linear system theory, that it exists a cause-effect rela-

tionship for the components of the system. Therefore a process to be controlled can

be represented by a single block, as in Fig. 3-1.

In the HIPPO-1 control framework, the aim was to create a controller that would

perform the power split between the DE and EM for a multitude of loading condi-
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Figure 3-1: A typical process to be controlled.

tions, mainly focusing on transient operation, in order to reduce exhaust gas emissions

(NOx, PM) and/or fuel consumption.

The main limitation of the experimental facility was that the ECU of the diesel

engine CAT 3176B was to be independent so the fueling parameters of the DE could

not be directly affected nor measured. Therefore the power output of the DE had to

be regulated indirectly.

The total load demand on the HIPPO-1 testbed at every time step of the process

is

Tload = TDE + TEM (3.1)

where TDE and TEM is the produced torque from the diesel engine and electric motor

respectively. In that way, for any given load demand, if the EM would engage, the

rest of the total torque would be covered by the DE.

The general controlled plant (system) includes both the EM and DE, where the

only input is the EM frequency inverter command. At this point an appropriate

measurable signal had to be found that would be suitable as output of the plant, in

order to proceed with the modeling.

The signal that was chosen as output of the system, and consequently as the signal

that will be used as feedback to the HIPPO-1 controllers, is the value of λ. The main

reasons that justify this choice are

• Even though λ is not a measure of emissions itself, it is still a reliable estimate

of them. As illustrated in Fig. 3-2, there is a strong correlation between the

value of λ and the main emissions formed in diesel engines.

• λ is a suitable signal for control purposes since no significant noise is presented

in this value as it is a digital signal acquired using CAN-bus and the dynamics

of λ are neither very slow nor very fast [20].
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• λ can be quite easily modelled from the air and fuel path dynamics.

Figure 3-2: NOx and PM as a function of λ -Figure obtained from [20].

The block diagram of the open loop HIPPO-1 system, with the input and output

signals is depicted in Fig. 3-3.

Figure 3-3: HIPPO-1 open loop system

The traditional approach towards the problem of AFR estimation is through phe-

nomenological Mean Value Models (MVM) of the individual engine components, e.g.

the intake and exhaust manifolds, the turbocharger, the cylinders etc. Classical first

principle methods are extremely useful for their good insight in the operation of the

systems, but frequently require too much effort and/or do not achieve the required

precision and/or are not suitable for online use [14]. For a turbocharged diesel engine

like the one present in HIPPO-1, it is necessary to model
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1. the compressor and intercooler

2. turbine performance

3. unsteady-flow effects in the induction system

4. flow through the inlet valves

5. air motion within the cylinder

6. dynamics of the injection system

7. fuel jet interaction with the trapped air to form a spray

8. combustion

9. heat flow within the combustion chamber and the cooling media

For the problem in consideration, linear system identification methods were the prefer-

able option, due to the lack of efficiently detailed information about the engine compo-

nents. Various models were obtained around an appropriate engine operating point.

Linear control-oriented models for AFR dynamics in internal combustion engines

based on identification have been used successfully in the past; see [18] and [21].

3.1 Identification Methods

Most methods of system identification rely on iterative, nonlinear optimization to

fit parameters in a pre-selected model structure, so as to best fit the observed data

[33]; these are known as parametric methods. An alternative class of identification

methods is the subspace methods, which are ’one-shot’ rather than iterative and rely on

linear algebra rather on optimization. They are particularly effective for multivariable

systems and can be used with arbitrary input-output-data and not just with pulse

responses. For the case that a non-linear model is required, Hammerstein-Wiener

models are commonly used.

One can use also Instrumental Variables, Maximum Likelihood, Impulse response

analysis (Markov parameters) or others. In the following sections the methods applied

for the identification of models used in this Thesis are presented.
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3.1.1 Parametric Identification

In general, the estimating algorithm performs two major tasks. At first the parameters

for estimation are initialized and then updated. The details of the algorithms used

to perform these tasks vary depending on a variety of factors, including the sampling

of the estimated model and the estimation data [34].

The method for estimating the vector of θ parameters has the general term pre-

diction error method, PEM. Prediction error ϵ is defined as

ϵ(t, θ∗) = y(t)− ŷ(t|θ∗) (3.2)

between the measured output and the predicted output of the model. Norm VN is

used

VN(θ, z
N) =

1

N

N∑
t=1

l(ϵF (t, θ)) (3.3)

Then the estimate θ̂N is defined as the minimization of function VN(θ, z
N). Typical

solution method is least squares.

With parametric estimation, process models were derived for inputs and outputs.

This model type is chosen for its advantages: the model coefficients have a physical

interpretation and it provides delay estimation.

Different model structures were created by the selection of the number of poles,

and zeros and the addition of time delay.

3.1.2 Subspace Identification

The term subspace identification refers to a class of algorithms with main character-

istic the approximation of subspaces generated by the rows or columns of some block

matrices of the input and output data.

Popular subspace identification method is Numerical algorithm for Subspace Sys-

tem IDentification (N4SID), implemented in the Identification toolbox of MATLAB

[35].

A major advantage is that N4SID algorithms are non-iterative with no nonlinear
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optimization part involved [44]. This is why they do not suffer from the typical

disadvantages of iterative algorithms, e.g. no guaranteed convergence local minima

of the objective criterion and sensitivity to initial estimates. For classical identication

an extra parametrization of the initial state is needed when estimating a state space

system from data measured on a plant with an non-zero initial condition. Another

advantage of the N4SID algorithms is that there is no difference between zero and

non-zero initial states.

3.2 Experimental Identification Input Signals

System identification can be defined as the process of obtaining a model for the

behavior of a plant, based on input and output data. A fundamental decision that

has to be made in terms of the identification process concerns the type of signal that

will be used. The requirement is that during system identification in open loop, the

input should be persistently exciting, i.e. it should contain sufficiently many distinct

frequencies. The identification experiment has to distinguish different models in the

set of all possible models used.

Also, for linear system identification, it is desired to achieve a desired input spec-

trum for a signal with as small crest factor as possible. Crest factor (Cr), is a measure

of a waveform, showing the ratio of peak values to the effective value [32]. The desired

property of the waveform used for identification is defined in terms of

C2
r =

max
1≤t≤N

u2(t)

1
N

N∑
t=1

u2(t)

(3.4)

where u is the input signal. A good signal waveform is one that has a small crest

factor. The theoretical lower bound for Cr is 1, which is achieved by binary symmetric

signals.

In this section two choices for input signals are presented.
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3.2.1 White Noise

White noise is a random signal that contains all frequencies uniformly, with a constant

power spectral density. Because white random noise has an inherently flat frequency

spectrum, it can be used to characterize the frequency response of systems such as

filters. Theoretically white noise is a preferable input signal, that provides uniform

fit at all frequencies, but it has a high crest factor.

3.2.2 Pseudo-Random Binary Signal

A Pseudo-Random Binary Signal (PRBS) is a periodic deterministic signal with white

noise-like properties. It has been widely used for system identification as well as for

spread spectrum wireless communications and GPS. PRBS can be easily generated

with a shift register that circulates its output to the input gate, and thereby generates

a periodic, long sequence binary signal. It is generated by the difference equation

u(t) = rem(A(q)u(t), 2) = rem(a1u(t− 1) + ...anu(t− n), 2) (3.5)

Here rem(x, 2) is the remainder as x is divided by 2. Also, u(t) only assumes the

values of 0 and 1. Of course after u is generated, it can be changed to any level. In

our case the maximum input to the frequency inverter is 0.1 V.

PRBS has the lowest crest factor and gives control over the shaping of its spectrum

[47], making it the signal of choice for this Thesis. Its disadvantage is that only a full

period of PRBS signal bears the desired properties.

3.3 Experimental Identification Tests

Based on the crest factor (Cr) criteria, the method employed to measure input and

output data for system identification was to apply several full length PRBS at the

HIPPO-1 testbed. The PBRS signal was chosen to be 9-bit with a full length of

around 450 sec per period.

The design of a PRBS signal involves the determination of its switching time,
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order of excitation, magnitude and clock period. The magnitude of the PRBS signal

can be chosen so that the crest factor obtains its maximum value with consideration

of the physical limitations of the system ([32], p. 415).

The order of PRBS was selected so that the dominant frequencies of the identified

system were covered [11]. The system identification procedure has a natural logical

flow: at first the data are collected, then a set of models is selected and finally the

"best" model in this set is picked, based on the fit percentage of the model versus

the measured data. It is quite likely though, as it happened most of the times during

the identification process described in this Thesis, that a particular model obtained

would not pass the typical model validation tests.

Three separate identification test sets are shown below under open loop operation,

each containing a different excitation signal (EM command, engine speed and WB

load), in order to extract a wide spectrum of models describing the powertrain.

3.3.1 Identification Set 1: Alternating EM Torque

A PRBS signal was imposed at the frequency inverter of the electric motor as torque

command (EMcmd), and the resulting λ values of the diesel engine were measured;

thus [u; y] = [EMcmd;λ].

The identification experiment was carried out with constant torque demand at

Td= 500 Nm, as imposed by the water brake dynamometer, and constant shaft speed

Ne= 1600 rpm. In Fig. 3-4 the PRBS excitation signal on the EM (top) and the

resulting DE λ values (bottom) can be seen. Data was collected with a rate of 1

kHz, low-pass filtered and divided in two sets, one for identification and the other for

validation purposes.

3.3.2 Identification Set 2: Alternating Speed

For this session, a suitable PRBS signal was imposed at speed governor of the

DE (PWM signal), and the measured variable was the resulting λ values; thus

[u; y] = [NE; λ]. The identification experiment was carried out with constant torque
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Figure 3-4: PRBS (top) imposed on the EM command and resulting λ values (bot-
tom), used for identification purposes of HIPPO-1.

demand at Td= 500 Nm, as imposed by the water brake dynamometer, without any

torque coming from the EM Te= 0 Nm (Fig. 3-5). It can be observed that the

measured total torque (third subplot) displays some fluctuations due to the speed

change, whereas the EM command is zero (fourth subplot) for the purposes of this

identification experiment.

3.3.3 Identification Set 3: Alternating WB Load

For the final identification session, the water brake dynamometer was excited with a

suitable PRBS signal, as can be seen in Fig. 3-6. The command affects the position

of the pneumatic water valve, which defines the volume of water inside the WB. As

descibed in the previous chapter, the amount of water dictated the applied torque at

the testbed. Thus [u; y] = [TorqueWB;λ]. The identification experiment was carried

out with constant shaft speed Ne= 1600 rpm, as can be seen in the third subplot of

the same figure, and the EM not producing any torque.
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Figure 3-5: PRBS imposed on the DE speed, used for identification purposes of
HIPPO-1.

3.4 HIPPO-1 Models

In this section, the two basic forms of model structures that are the outcome of the

identification methods are presented. Model 1 uses only one of the identifications

timeseries (alternating EM command) and Model 2 utilizes all three identification

timeseries for a global model.

A wide range of identified models were derived. The dominant models with the

corresponding input-output variables can be seen in Table 3.1. These models are

presented in detail in the following subsections.

3.4.1 Model 1

In the case of a first-order system a process model in continuous time is

G(s) = e−sTd
Kp

1 + sTp

(3.6)
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Figure 3-6: PRBS imposed on the WB valve, changing the load demand of the pow-
ertrain, used for identification purposes of HIPPO-1.

where Kp is the static gain, Tp is the time constant, Td is the time delay.

The poles of a linear system are the roots of the denominator of the transfer

function G. The poles have a direct influence on the dynamic properties of the system.

The zeros are the roots of the denominator of G. Poles are associated with the output

side and zeros are associated with the input side.

The identification of the transfer functions was carried out with the Matlab/System

Identification Toolbox, [35], and more specifically with the toolbox command tfest.

tfest uses the prediction error minimization (PEM) approach to estimate transfer

function coefficients [32], as presented in Section 3.1.1.

In this case, continuous-time transfer functions were estimated, using time-domain

data with a sampling time of 0.001 seconds. The estimation algorithm initializes the

estimable parameters using the method specified by the InitMethod estimation option,

which is used to initialize the values of the numerator and denominator of the output

of tfest. The ’n4sid’ initialization option estimates a discrete-time model, using the
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CONTROL ORIENTED MODELS
NAME TYPE INPUT OUTPUT

EMcmd MAP SPEED ∆SPEED lambda lambda MAP NOx F.O.C.

model 1 LINEAR
MODEL x x

model 2 LINEAR
MODEL x x x

mMAP LINEAR
MODEL x x x

mNOx LINEAR
MODEL x x x

mCons LINEAR
MODEL x x x

SIMULATION ORIENTED MODELS
NAME TYPE INPUT OUTPUT

EMcmd Tdiesel SPEED lambda MAP Telectric
mTel LINEAR MODEL x x

model 3 NARX MODEL x x x x

Table 3.1: The identified models used for controller synthesis and simulation purposes,
with their input-output variables.

N4SID estimation algorithm, which transforms it to continuous-time using function

d2c.

The initialized parameters are updated using a nonlinear least-squares search

method, specified by the SearchMethod estimation option. The objective of the search

method is to minimize the weighted prediction error norm.

The transfer function Gl from identification with input the command to the fre-

quency inverter, u = EMcmd; and output y = λ is presented in Eq. 3.7. Time delay

is in sec.

Gl =
(16.1s4 + 134.2s3 + 376s2 + 1455s+ 1628)

s5 + 4s4 + 25.4s3 + 50.4s2 + 108.7s+ 101.3

−0.79s

(3.7)

Fig. 3-7 shows the nominal model and other similar identified models (i.e. with

variation in number of poles and zeros) compared with actual step response of λ.

For the identification of the transfer function only the first half of the whole

experimental set of data was used. The second half was used to validate the identified

transfer function.The output of the nominal model 1 was compared to the output of

actual λ values from time series data, as shown in Fig. 3-8. Model 1 fit was about 71

%, capturing the dominant dynamics of the process under control.

54



Figure 3-7: Model 1 family step response.

3.4.2 Model 2

With the use of all three engine identification datasets, multiple kinds of models

were identified, according to their input-output attributes. Emphasis was given to

low-order models which give a close description of the oscillating dynamics of the

engine.

From the identification process, state-space models using subspace method (N4SID)

algorithms (as described in Section 3.1.2) and ARX models (Linear AutoRegressive

models with eXogenous input) were derived in order to describe the engine transient

dynamics during step loading.

The SS models in discrete time, have the structure

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.8)

Multi Input Single Output (MISO) models with inputs the EM Frequency Inverter

Command (EMcmd) and the error between the measured engine speed (NE) from
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Figure 3-8: Model 1 output and measured λ comparison (top); The input PRBS
signal.

a reference value (dNE = NE −NERef) as inputs were derived are described in Eq.

(3.9).

λ = f(EMcmd, dNE) (3.9)

The matrices A, B, C and D of the state space form, as were generated from the

system identification are described in Eq. (3.10).

A =

 0.07556 −1.739

3.093 −1.946

 B =

 0.3254 0.001003

−0.7647 0.0005494


C =

[
30 1.166

]
D =

[
0 0

] (3.10)

Engine emissions and fuel consumption models were also modeled at the operating

point of NE = 1600 rpm. Low-order NOx (NOx) and fuel consumption (FOC)

models depending on engine parameter measurements engine speed (NE), engine inlet

manifold pressure (MAP) and λ were extracted from the available measured data, as
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described in Eq. (3.11)-(3.12).

NOx = f(λ,MAP ), (3.11)

FOC = f(MAP,NE) (3.12)

Finally, models of Eq. (3.9) - (3.12) were combined so as to make a MIMO model, as

shown in Eq.(3.13) and used in MPC design in order not only to control λ but also

comply with emission restrictions and fuel consumption limitation. In these models

the Input Attributes are not independent from each other, so a state feedback is

needed in order to predict accurately the engine behavior and get proper values of

the output prediction trajectories.


λ

NOx

F.O.C.

 = f(EMcmd, dNE, NE,MAP, λ) (3.13)

A state feedback signal structure assumes that a system output value is treated also

as input for the system, as shown in Fig. 3-9. The need of the state feedback

manipulation is shown in Fig. 3-10, which shows the controller performance (model

2 as internal model), with and without the use of state feedback.

Figure 3-9: State feedback formulation.

For example λ and MAP are treated as output of EMcmd and also as input for

NOx.
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Figure 3-10: Evaluation of state feedback implementation.

3.4.3 Model 3

For simulation purposes, a non-linear ARX model was derived. An ARX model is

a linear autoregressive model which additionally has exogenous inputs. This means

that the model relates the current value of a time series in a way so that it is possible

to explain or predict current and past values of the driving (exogenous) series.

For a SISO system, the ARX model structure is

y(k) + a1y(k − 1) + ...+ anay(k − na) = b1u(k − nk)+

+...+ bnbu(k − nb − nk + 1) + e(k) (3.14)

where

• y(k) - Output at time t.

• na - Number of Poles.

• nb - Number of zeros plus 1.

• nk - Number of input samples that occur before the input affects the output,

also called the dead time in the system.
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• y(k− 1), ..., y(k− na) - Previous outputs on which the current output depends.

• u(k − nk), ..., u(k − nb − nk + 1) - Previous and delayed inputs on which the

current output depends.

• e(k) - White-noise disturbance value.

The above consideration can be easily extended for MIMO systems.

The nonlinear ARX model computes the output y in two stages as seen also in

Fig. 3-11

1. It Computes regressors from the current and past input values and past output

data. In the simplest case, regressors are delayed inputs and outputs, such as

u(t − 1) and y(t − 3) called standard regressors. Custom regressors can also

be specified, which are nonlinear functions of delayed inputs and outputs. For

example, tan(u(t − 1)) or u(t − 1) ∗ y(t − 3). By default, all regressors are

inputs to both the linear and the nonlinear function blocks of the nonlinearity

estimator. A subset of regressors as inputs to the nonlinear function block can

also be specified.

2. The nonlinearity estimator block maps the regressors to the model output using

a combination of nonlinear and linear functions. Non-linearity estimators, such

as tree-partition networks, wavelet networks, and multilayer neural networks

can also be chosen. Either the linear or the nonlinear function block from the

nonlinearity estimator can be excluded.

The nonlinearity estimator block can include linear and nonlinear blocks in parallel.

The application of the above model is further described in Chapter 4.

3.4.4 Time delay

The physical lambda sensor is installed in the exhaust duct, approximately 1 m after

the exhaust manifold of the diesel engine. Consequently, a deviation/error in λ will

be sensed only after the exhaust gas has arrived at this point. The time that elapses
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Figure 3-11: Non-linear ARX structure from [35].

between the end of the combustion cycle and the measuring of λ for the exhaust

gas of the corresponding cycle is the time interval that the the sensed signal is close

to the reference value while the the value of λ inside the cylinder may be below the

reference value. If the measured λ is used for controller purposes, then the error signal

for the feedback controller is approximately zero during this time interval; thereby,

the command to the electric engine is zero too.

Measured time delay between a change at the command of the frequency inverter

and the corresponding change in λ equal to 0.79 s. at 1600 rpm was directly imported

into the models. This transfer delay is directly affected by the engine speed. The

transfer delay of the physical λ sensor alone is around 0.1 sec.

Controllers used in this Thesis require a linear, finite dimensional system model.

For this purpose, the time delay was replaced with a 20-th order Padé element 1,

adopting the approach where for delays up to 40 ms a first order approximation is

chosen, and for every additional 40 ms, one order is added [53].

The Bode diagram in Fig. 3-12 shows the nominal model and other similar iden-

tified models along with the model with Padé approximation. It can be noted that

the identified models show similar frequency response over a wide frequency region

and with the choice of the nominal model for robust controller design, the whole set

can be stabilized.

1Pade approximation: rational representation of the time delay factor

60



Figure 3-12: Bode diagram from identified model with delay and with Padé element.

3.5 Lambda Virtual Sensor

Quite frequently NOx, PM and virtual lambda (λ) sensors are used in controllers

when either no physical sensors are available or the layout and the installation of

the sensor introduces filtering effects and time delays thus, posing limitations in the

efficiency of feedback control, i.e. the achievable bandwidth.

The process of deriving a virtual PM sensor based on a mean value phenomeno-

logical model is described in [27]. Another alternative is the development of virtual

sensors by "black-box" modeling principles with neural networks or genetic algorithms

as in [22] and [15], respectively. A category that lies in-between is "gray-box" virtual

sensors, see for example [23], [9] and [63].

In HIPPO-1, the physical oxygen sensor is installed in the exhaust duct of the

diesel engine, 1 m after the turbine outlet, which introduces an additional delay to

that of the sensor itself (approx. 120 ms). With the oxygen concentration in the

exhaust gases, the λ is calculated, as is explained in more detail in Chapter 2. Also,
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during fast load reductions, the ECU senses the acceleration and drastically reduces

the injected fuel or even stops fueling, causing large spikes in the measurement of

λ. When such signal is fed to the controller, the command will display undesirable

oscillatory behavior.

In order to eliminate such problems, a λ virtual sensor was developed and used

in the control loop [6]. The main parts of the virtual sensor model consist of the fuel

path, the air path and gas mixing, as shown in the block diagram of Fig. 3-13. The λ

virtual sensor model makes use of the physical variables which are available through

measurements, namely the rotational speed of the engine Ne, the turbocharger speed

Ntc, the pressure at the air cooler inlet pim and through map (look-up table) like the

torque Te produced by ICE. The validation results of the created λ virtual sensor are

presented in Appendix C.

Fuel Path Model

The engine is approximated as a Willans machine [52], where the engine is assumed

to be an energy converter which converts the available fuel chemical energy Win into

output flow ϕout = ωe and effort variables ϵout = Te. Although the energy conversion

is non-linear, an affine relationship between the input power and the output effort

variables is a fair approximation for a specified engine speed.

For each time instant, the following equation holds

Te =
e(ωe) · ṁf ·HLV

ωe

− Tloss(ωe) (3.15)

where ωe is the engine speed in rad/s, HLV is the lowest heating value of the fuel

and e is the thermodynamic efficiency of the thermodynamic cycle.

The injected fuel will affect the torque output of the engine only after the injection

to power cycle [20]. For this reason, a time delay is introduced into Eq. 3.15 which

is transformed to

Te(t) =
e · ṁf (t− tinj→PC)

ωe(t)
·HLV − Tloss (3.16)
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Figure 3-13: Virtual sensor model fundamental components.

Equation 3.16 can be written as

ṁf (t) =
ωe(t+ τinj→PC) · (Te(t+ τinj→PC) + Tloss)

HLV · e
(3.17)

so that the unknown output is the fuel flow.

The rotational speed of the engine at time instant t + τinj→PC is replaced by a

first-order Taylor approximation

ωe(t+ τinj→PC) = ωe(t) +
dωe

dt
(t) · τinj→PC (3.18)

Regarding the torque output at the time instant t+ τinj→PC , the assumption that

the inertial torque J dωe

dt
(t) is converted to torque output within the time interval
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τinj→PC is adopted; thus:

Te(t+ τinj→PC) = Te(t) + Je
dωe

dt
(t) (3.19)

Air Path Model

The air path model is composed of blocks which calculate the volumetric efficiency,

the pressure drop in compressor and air cooler, the compressor performance, the

conditions in the outlet of air cooler as well as the time delays of air through the air

duct, the air cooler and induction in the cylinders. At this part of the model, the

conversion from crank-angle to time also takes place.

The output of this model is the air mass flow aspirated by the engine, ṁe, while

the inputs are the engine speed Ne, the turbocharger speed Ntc and the pressure at

the air cooler inlet pim.

In-cylinder Gas Mixing

At each time instant, the value of λ for the fresh charge mixture of air and fuel is

given by

λ =
AFR

AFRst

=
ṁe/ṁf

AFRst

(3.20)

However, a part of the exhaust gases remains inside the cylinder and is mixed with

the fresh air charge. The final value of λ(t) would be a weighted average of λ(t− τieg)

which is the value of λ for the previous cycle and of λfc(t) which is the value of λ for

the new air that is aspirated inside the cylinder. The derived relationship is

λ(t) =
λ(t− τieg) ·mres(t) + λfc(t) · [me(t) +mf (t)]

me(t) +mf (t) +mres(t)
(3.21)

where the masses that appear in the equation above can be computed from the

corresponding mass flows using the integration formula
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m(t) = ṁ(t− τieg) · τieg (3.22)

The interval of integration is the time between the induction and the exhaust cycle

τieg =
2π · 2
ωe · z

(3.23)

3.6 Diesel Engine Maps

A wide range of look-up tables (maps) were created from experimental data col-

lected from the HIPPO-1 powertrain, under steady state operation [41]. The data

for the maps in this work have been obtained with the conventionally calibrated and

controlled engine. After data processing, two-dimensional (Fig. 3-14) and three-

dimensional maps (Fig. 3-15) were populated, with the DE parameters. These look-

up tables have 2 inputs and 1 output each time. The same method is used by [62]

and [36].

Figure 3-14: 2D map. Figure 3-15: 3D map.

The selection of the data that were used for the population of one of the look-up

tables is depicted in Fig. 3-16. A suitable Matlab algorithm was synthesized that

selected the appropriate recorded samples. The basic requirement for this selection

was the DE to be in steady state operation, so when the reference and recorded torque

values were only 3% apart for a time window of 2 s. which equals to 2000 samples
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on HIPPO-1 DAQ, the next sample was selected by the algorithm.

Figure 3-16: λ value selected samples from experimental data for the population of
the look-up tables.

Separate sets of experimental data were used to evaluate the map output values

(Fig. 3-17), within the same operating region. The data generated from the look-up

tables display good performance, maintaining acceptable deviations from the mea-

sured values in steady state condition. The main contribution of the created maps to

the HIPPO-1 testbed, is the derivation of λ reference values for the controllers.
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Figure 3-17: Comparison of measured (experimental) NOx vs NOx derived from the
created look-up tables.
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Chapter 4

Robust Controller Design

The performance of a hybrid powertrain in terms of reducing both exhaust gas emis-

sions and fuel consumption, critically depends on the performance of the power man-

agement strategy, i.e. the control algorithm that controls how the power demand will

be split between the DE and EM.

In this Thesis the first method applied was H∞ robust control, which was adopted

and investigated with direct application. The H∞ method as introduced by Doyle,

Glover, Khargonekar and Francis (1989) is a model based method for designing robust

linear controllers, based on linear models. In a broad sense this type of control allows

to shape the transfer functions that affect the behavior of the plant under control,

during disturbance rejection and command tracking. In practice, the robust controller

is designed for a particular nominal operating point of the plant and is expected to

behave in an acceptable way in a region around the nominal plant.

The robust controller for λ closed loop control is obtained as an H∞ mixed sensi-

tivity controller, as in [17]. Mixed sensitivity H∞ controllers have been implemented

successfully in diverse diesel engine applications, see for example [3] and [45].

The main control objective is to minimize the infinity norm 1 of the transfer func-

tion between w and z, by designing a controller capable of eliminating the influence

of the exogenous inputs w to the exogenous outputs z, using the sensed outputs

1The infinity norm of a vector x is defined as ∥x∥∞ = max(|xi|). Hence it is the maximum
entries’ magnitude of the vector.
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contained in v to produce the control signal u.

A transfer function-shaping philosophy is adopted, in order to force the shape of

the magnitude and the phase of specific transfer functions in the frequency domain.

The transfer functions that are under examination include

• L: the open loop transfer function

• S: the sensitivity function

• T: the complementary sensitivity function

• KS: the control sensitivity function

These functions, as will be later explained, define greatly the behaviour of the system

which is under control. Being able to directly force the shapes of these functions,

forms a controller that influences the physical system in a way that specific perfor-

mance requirements are fulfilled ”on demand”. By this it is implied that shaping the

magnitude of the sensitivity function, giving to it a specific form in the frequency do-

main, one directly forces a certain behavior of the error signal in the whole frequency

and magnitude spectrum of a possible reference input. In that way, a controller can

be designed, which achieves fast or slow reaction to the reference inputs, or demands

specific range of the steady state error and even limits the amount of energy contained

in the control signal, by taking under consideration all the limitations imposed by the

mathematical interpretations of the physical system to be controlled.

4.1 Plant model

The robust control system considered the case of a linear, time-invariant (LTI) plant.

However, in real applications plants are rarely linear, their parameters vary with

time, measurements are contaminated with noise, the plant model is approximate

representation of the true plant, etc. The model used for this robust controller is

Model 1, as described in Chapter 3.
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4.1.1 Data Scaling

Scaling is very important in practical applications as it makes the model analysis

simpler and helps to avoid numerical errors [54]. The idea is to make input and

output data of similar order, usually less than one in magnitude. A judgment is made

from the start of the design process about the required performance of the control

system. The references and disturbances were divided by their maximum expected

values and the outputs by the maximum allowed change. These values were, for the

EM frequency inverter command FrqInvCmd =0.1 V, for DE torque=600 Nm, and

for λ =10.

4.2 H∞ Controller Design

In this work, the S/KS/T weighting scheme is implemented for the shaping of the fre-

quency response of the closed loop transfer functions, where the performance, stability

and robustness specifications are specified by the appropriate choice of the weighting

parameters.

The H∞ mixed sensitivity is suitable when dealing with modelling uncertainties,

since they can be compensated in the specifications of the complementary sensitivity

T weight. In addition to the sensitivity S and the complementary sensitivity T, the

transfer KS from r to u is incorporated in the scheme, so as to restrict the size and

the behavior of the input signals.

Following the determination of the closed loop response weights, the controller

derivation can be formulated as a solution to a minimization problem. In this stage,

a stabilizing controller K is obtained, so that the H∞ norm of the extended plant

transfer function Tzw between the exogenous inputs to the system (d, r, n) and the

exogenous outputs (z1, z2, z3), where d are the disturbances, r is the reference signal,

n is the noise signal, e is the error and u is the control output, is minimized as in Eq.

4.1.
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Figure 4-1: The S/KS/T weighting scheme.
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∥∥∥∥∥∥∥∥∥
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WUKS

WTT


∥∥∥∥∥∥∥∥∥
∞

≤ γ (4.1)

The shaping of S, KS, T was achieved by defining specific weight bounds WP , WT

and WU , that set for each frequency a specific upper limit that the corresponding

transfer function was not allowed to surpass. These weights determine the frequency

response of S, T , K and are chosen as in Eqs. 4.2-4.4

WP (s) =
s/MP + ω⋆

BP

s+ ω⋆
BP · AP

(4.2)

WT (s) =
s+ ω⋆

BT/AT

s ·MT + ω⋆
BT

(4.3)

WU(s) =
s+ ω⋆

BU/AU

s ·MU + ω⋆
BU

(4.4)

where the parameters Ai and Mi correspond to the asymptotic behavior of the weight-

ing functions Wi for s → 0 and s → ∞, respectively.

Typically γ = 1 so that the closed loop transfer functions are limited by the inverse

of the weighting functions Wi for the entire spectrum of frequencies.

At steady state it is desirable that the plant output closely follows the reference

command and the controller rejects the exogenous disturbances. For this reason AT

72



≃ 1 and AP is chosen as small as possible. Integral action with a value of AP=0 is

avoided due to the numerical instabilities in the H∞ synthesis algorithm.

The requirements for small overshoot and robustness with respect to uncertainty

is lumped into the condition of small weighting parameter WP . Furthermore, the

selected bandwidths ω⋆
BT and ω⋆

BP have to compromise the conflicting requirements

of fast rise time and low noise sensitivity.

The controller weight WU is specified in such way so as to allow tight control at

low frequencies and noise attenuation at high; the physical limitations of the system

are also taken into account. Weight WT is chosen so that complementary sensitivity T

is limited to avoid unnecessarily high bandwidth of the control system. Various cases

were examined in order to evaluate controller performance and robustness (model

order, dead times, un-modelled dynamics, disturbances).

The parameters of controller weights are described in Table 4.1.

Table 4.1: Controller Weight Parameters
Weight/Specification A M ω⋆

B [rad/s]
WP 0.01 1.5 0.07
WT 0.9 0.0014 24
WU 2.1 0.03 11

The H∞ controller was designed using graphical programming, in the Matlab/Simulink

environment. The controller is then compiled in C++ language using the built-in

functions, and then downloaded to the real-time dSpace platform.

Using Robust Control Toolbox of Matlab [5], the mixed sensitivity controller is

obtained with the command mixsyn with a value of γ of 1.06. The controller was

implemented in discrete state-space form, with sampling time of 1 ms, in Simulink.

Due to the Pade approximation of the delay, the order of the controller rises with

increasing delay.

The Bode diagram of the frequency response of S, KS and T of the nominal model

with the selected weights is given in Fig. 4-2.

The Bode diagram of the frequency response of closed loop system T for the

nominal model and various identified plant models is shown in Fig. 4-3. Robustness
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Figure 4-2: Bode diagrams of S/KS/T.

Figure 4-3: Singular values for T, with nominal model (bold) and other identified
models.

with respect to modeling errors can be observed, as the various models show similar

behavior with the nominal model and its controller.
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Figure 4-4: The closed loop system with installed sensors and lambda reference op-
tions.

The block diagram for the closed loop system is shown in Fig. 4-4. The controller

receives the measured λ values and a reference value, which depending on the mode

of operation, is either a constant (static reference) or a dynamic one (from look-up

tables). The main sensors for feedback control are the oxygen sensor, the engine

speed sensor and the intake manifold pressure. With the availability of a λ virtual

sensor, the λ measurement is replaced by λ calculations in closed loop. The resulting

controller command is the input to the frequency inverter of the EM.

4.3 H∞ Experimental Results

Various experiments were conducted on the HIPPO-1 powertrain, in order to evaluate

the performance of the load share strategy.

These are divided in three sections, as follows. At first, the proposed robust

controller was tested and evaluated in closed loop simulation, using the non-linear

DE model as described in Chapter 3. The second set of experiments resembles a

generator-set on-board a ship, where the engine operates at constant speed (1600

rpm) and with alternating electrical load. In this case the controller receives a static

lambda reference value. In the third set of experiments the engine operates in a
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Figure 4-5: Simulink block diagram for simulation purposes of HIPPO-1, using H∞
control.

propulsion arrangement and propeller loading, with simultaneous variations on speed

and torque. In this case a set of look-up tables for the λ reference points was used.

In both loading scenarios, the performance is assessed when the controller receives λ

feedback from the physical sensor or the virtual one.

4.3.1 Closed Loop Simulation

The above methodology for engine modelling and controller design with robustness

measures was at first tested in simulation. For the validation in simulation of the

proposed control scheme, a non-linear ARX model of the plant was derived through

system identification, model 3, as described in more detail in Chapter 3. The Simulink

program used for modeling of HIPPO-1 can be seen in Fig. 4-5.

The λ model was compared with measurement data obtained from the test bed

while operating under closed loop control. Fig. 4-6 shows the λ values and the hybrid

controller command for two load steps, from 100 Nm to 300 Nm and back to 100 Nm,

and from 100 Nm to 500 Nm, at 1600 rpm. The λ values predicted by the model

decrease fast during loading and display almost identical behavior when compared

to the measured values. The corresponding controller command values, depict the

small reaction time of the controller and the slightly oscillating performance when

the command rises.
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Figure 4-6: Measured and simulated data from the hybrid system under closed loop
control.
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4.3.2 Generator mode

An experiment with load steps from 100-300 Nm and 100-500 Nm, at 1600 rpm,

is shown in Fig. 4-7. The static λ reference was set at λref = 3, after repetitive

experiments of the same loading cycle. As can be seen in the second subplot, the

purpose of the proposed controller is to track the imposed λ setpoint by engaging the

EM. The controller output and the resulting torque provided by the EM, can be seen

in the third and fourth subplots of the same figure. The use of the virtual sensor

in the control loop gives less oscillatory command and the EM reaches its maximum

torque faster than the hybrid setup with the physical sensor. Also, the proposed

controller provides good tracking performance during changes in the load, for both

cases of feedback.

The λ set point represents the only parameter needed for tuning the strategy for

a specific loading profile. As soon as there is a rising edge in the applied total torque,

the measured λ drops almost instantly, creating an error between the measured and

static λ values. The controller uses this error as input and engages the EM, produc-

ing torque. It can be observed that the proposed controller provides good tracking

performance during the load change and at steady state. To avoid any performance

deterioration in case of the inverter command saturation, all integrators are imple-

mented with anti-reset-windup. The hybrid setup with the virtual sensor provides

slightly faster command output to the electric motor, compared to the physical sensor,

due to the delays of the installed λ sensor.

In Fig. 4-8, the impact of the hybrid powertrain on the produced NOx, exhaust

gas opacity and measured fuel consumption, as compared to the conventional setup

can be noted. The total torque demand is still met, but the electric motor assists the

ICE while it is accelerating, in order to reduce exhaust opacity, NOx content and fuel

consumption. Both sensor setups show almost the same behavior. It is shown that

during acceleration, the produced exhaust gas opacity values are significantly lower,

by almost 25%. The NOx content is slightly decreased during the first moments

of the load change (first "spike"), but is greatly reduced once the EM engages and

78



contributes to the total load demand. Regarding the fuel consumption, it is around

20% lower with the hybrid setup than the conventional one for the same loading cycle.

4.3.3 Propeller mode

In order to assess the proposed power split methodology against realistic data from

ships, appropriate measurement equipment was installed on-board a high-speed vessel

with waterjets, so as to gather actual engine performance and emissions data during

normal service, as described in Chapter 3. The voyage included high speed cruising,

port approaching at low speed and maneuvering, idling for unloading and loading of

the vessel and immediate departure afterwards, as shown in Fig. 4-9.

There is a common relation between the torque (power) and speed in ship propul-

sion, known as the propeller law [64]. From experience it is known that shaft rotational

speed (np) is almost linearly proportional to the ship’s speed (Vs)

np = c1 · Vs (4.5)

The power required to tow the ship at ship speed Vs with resistance R, is the effective

(towing) power PE (eq. 4.6). Using the assumed proportionality of resistance and

ship speed squared, effective speed is, as a first approximation, proportional to the

cube of speed Vs.

PE = R · Vs (4.6)

PE = c2 · V 3
s (4.7)

For a ship equipped with a fixed pitch propeller or waterjets, the necessary power

requirement, P, is proportional to shaft speed, n, to the power of three (propeller

law), by combining equations 4.5-4.7

P = c3 · n3 (4.8)

where c3 is a constant number. In our case, c3 = 1.56 · 10−4, which was derived from
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the on-board measurements and utilized for the experimental propeller curve.

This data, after appropriate scaling, was utilized as reference for the design and

evaluation of loading profiles during experiments, as in Fig. 4-10. The torque changes

from approx. 120 Nm to 700 Nm and the engine speed from 1100 rpm to 1850 rpm.

The λ set point for these experiments is derived from a set of two static maps,

with the independent variables Ne and Pinlet, as seen in Fig. 4-4. The output of the

first map (Map 1) is the expected NOx value for any given engine speed and inlet

manifold pressure. This NOx value is then multiplied by the desired NOx reduction

percentage (in the form of a gain) and used as input for the second map (Map 2),

which in turn gives the λ set point (reference) value. A delay of 1000 ms is also

imposed at the λ set point, before is enters the controller block.

The induced reduction of NOx values between the two maps, leads to higher

reference λ values. If this reduction was not present, the λ measured and reference

values, would be almost identical and thus the controller would perform no action.

The gain values used in this work come after trial end error, but a future optimiza-

tion work will be able to provide appropriate numbers. The two maps are created

from experimental data collected from the hybrid propulsion powertrain, under steady

state operation (see Fig. 4-11).

The main idea of dynamic λ reference points is to shift the DE to more efficient

operating points only during transient loading, where the measured λ drops rapidly,

by engaging the EM. The EM command is imposed by a positive error between the

reference λ value and the measured one, while in steady state condition, the error

would be minimized and thus the EM would switch off. The designed controller leads

to observable reduction of NOx emissions, exhaust gas opacity and fuel consumption,

with respect to the conventional (non-hybrid) powertrain, during acceleration. The

electric power consumption is not taken into account, as this work focuses only on the

transient loading phenomena. Also, further studies have shown that, in general, more

than 50% of total medium sized diesel engines pollutant emissions can be attributed

to transient effects [42].

The corresponding λ values, controller command and the resulting EM torque
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are depicted in Fig. 4-12. The recorded λ values are higher using the hybrid setup

(leaner combustion) than using the conventional one (i.e. without EM assistance),

as the controller tracks the reference λ values imposed by the look-up tables. As the

virtual sensor is based on the air path of the engine, which is faster than the exhaust

path used by real sensor, the λ value derived by the virtual sensor drops faster than

the physical one, thus creating a bigger error when compared to the reference λ value.

In turn, this leads to faster engagement of the EM by the controller.

Fig. 4-13 shows the measured gas emissions of NOx,exhaust gas opacity and

measured fuel consumption. For the NOx emissions of the hybrid setup with the

physical sensor, a reduction of 16% was recorded during acceleration, while the use

of the virtual sensor saved another 5%. The measured opacity was about 20% less

during transient loading for both sensor setups, when compared to the conventional

powertrain. As for the fuel consumption, both sensor setups show almost the same

behavior. It can be observed that during acceleration, the fuel consumption val-

ues are significantly lower, while in steady state operation (EMcmd=zero) the fuel

consumption is identical.

In steady state operation, the dynamic λ setpoints as imposed by the look-up

tables, and the measured/calculated λ values converge, and the EM switches off.

81



Figure 4-7: Effect of the hybrid powetrain on λ value during generator mode with
static reference point.
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Figure 4-8: Effect of the hybrid powetrain on NOx, exhaust gas opacity and fuel
consumption, during generator mode with static lambda reference point.

Figure 4-9: Measured water-jet power demand curve from on-board data.
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Figure 4-10: Propeller power demand curve on test bed.

Figure 4-11: Reference maps for λ based on NOx, engine speed (top) and for NOx
based on MAP, engine speed.
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Figure 4-12: Lambda values and resulting controller command, with physical and
virtual sensor, during a propeller loading curve.
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Figure 4-13: Effect of the hybrid powetrain on NOx, exhaust gas opacity and fuel
consumption during a propeller loading curve.
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Chapter 5

Model Predictive Controller Design

Predictive control, or model based predictive control (MPC) as it is sometimes known,

is one of the few advanced control techniques to have had a significant and widespread

impact on industrial process control. The main reasons for this success are [37]

• It handles multivariable control problems.

• It can take account of actuators limitations.

• It allows operation of the controlled plant closer to its limitations, which can

prove to be more efficient in many cases.

MPC controllers incorporate constraints present in the plant, and hence react very

differently in the presence of disturbances, when compared to linear optimal control

techniques. It is possible to operate the plant with a setpoint very close to the

constraint, with an acceptable small probability of violating the constraint. An MPC

controller, unlike other controller strategies, usually includes minimum and maximum

values of parameters as constraints, without the need of specifying a setpoint.

The basic idea of MPC is depicted in Fig. 5-1. The time is discrete, with the

current sampling instant labeled as integer k. Then at current time k, the plant

output is y(k) (also it is the latest measurement available), with y(k − 1), y(k − 2),

the previous history of the output trajectory. Also shown is the set-point trajectory,
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which is the trajectory that the output should follow, the values of which are marked

as s(t).

Figure 5-1: The basic idea of predictive control, displaying the prediction horizon,
from [37].

Optionally, there is the reference trajectory, marked as r(t|k). This starts at current

output y(k) and is defined as an ideal trajectory along which the plant should return

to the set-point trajectory, in the case for example that a disturbance occurs. It is fre-

quently assumed that the reference trajectory approaches the set-point exponentially

from the current output value, where the time constant of the exponential defines the

speed of the response.

A predictive controller utilizes an internal model to predict the behavior of the

plant, starting at the current time, over the prediction horizon, Hp. This predicted

behavior depends on the assumed input trajectory û(k+ i|k), with i = 0, 1, ..., Hp−1.

It is assumed that the internal model is linear. The notation û is used instead of u

to denote that at time k there is only prediction of what the input at time k+ i shall
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be; the actual input at that time, u(k+ i), shall probably be different from û(k+ i|k).

The input trajectory is chosen so as to bring the plant output at the end of

prediction horizon k +Hp to the required value r(k +Hp).

The notation (k + i|k) indicates that the future value of a signal is depended on

the conditions at time k. The trajectory ŷ(k + i|k) is the controller prediction of

the output value according to its internal model responding to the future sequence

of the inputs û(k + i|k), i = 1 : Hu of the controller, where Hu ≤ Hp is the control

horizon and defines the acceptable control moves within the prediction horizon. The

indication û means that the estimated value of u(k + i|k) may be different from the

actual input value u(k + i) that will be applied at time interval k + i.

The aim of an MPC is to fit the output trajectory as well as possible to its

reference, according to the conditions at time k.

Once the optimal input trajectory has been selected, the first control move u(k) =

u(k|k) is applied to the plant, until the new measurement y(k + i) of the output is

available in order to devise the new optimal control strategy at time (k + 1) over

the new horizon i = 2 : (Hp + 1). This strategy, where the Hp-length horizon slides

by one sample interval at each step, is called receding horizon strategy [13]. If we

suppose that, according to the internal model of MPC, the free response of the system

is ŷf (k + i|k) and Su is the step input response of the system, then the estimation of

the future output trajectory values at the end of prediction horizon can be expressed

as

ŷ(k +Hp|k) = ŷf (k +Hp|k) +
Hu∑
i=0

Su∆û(k + i|k) (5.1)

Once the future input trajectory has been chosen, only the first element of that

trajectory is applied as input signal to the plant. Then the complete cycle of the

output measurement, prediction, and input trajectory determination is repeated, one

sampling interval later. Since the prediction horizon maintains the same length as

before, but slides along by one sampling interval at each step, the receding horizon

control strategy applies.
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Constraints are the other major characteristic of an MPC. This affects the choice

of future input trajectory û(k + i|k), with i = 0, 1, ..., Hp − 1, in such a way that the

input signals and their rates remain within allowed constraints and such that the

outputs, and possibly inferred variables in the case that these are not measured

directly, also remain within allowed constraints. Assume the following sequence

• Obtain measurements y(k)

• Compute the required plant input u(k)

• Apply u(k) to the plant

Proper choice of prediction and control horizons are crucial for the system perfor-

mance. A common choice of parameters is first to choose the control interval as 20-30

sampling periods, and then choose prediction horizon Hp equal to that number. In

the case of constraints, a long prediction horizon allows the controller to anticipate

the constraint and avoid it or minimize its effects. In the case of non-minimum phase

plants (those with zero at right half plane and initial response to the opposite direc-

tion of the command) a long prediction horizon would allow the controller to move

in longer-term direction.

The output variables are referred to as controlled variables (CV), while the input

variables are called manipulated variables (MV). Measured disturbances are called

disturbance variables (DV).

5.1 Unconstrained MPC

It is standard to assume a linear and time-invariant plant, which after discretisation

of time at a single sampling rate, gives the following state-space system

x(k + 1) = Ax(k) +Bu(k) + Ew(k) (5.2)

y(k) = Cyx(k) + v(k) (5.3)

z(k) = Czx(k) (5.4)
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where x is the state vector, u is the control input vector, y is the measured output

vector, z is the vector of outputs to be controlled and w, v are the vectors of unknown

state disturbances and measurements errors respectively. A,B,Cy, Cz and E are

constant matrices.

For the solution of the optimization problem, quadratic programming (QP) is used

in order to minimize the cost function J(zk) by computing the optimal sequence of

the MV (EMcmd) as it moves over the Control Horizon (HP ) [8]. The cost function

J penalizes deviations of the predicted controlled outputs ẑ(k+ i|k) from a reference

trajectory r(k + i|k). The cost function is defined as

V (k) =

Hp∑
i=Hw

∥z(k + i|k)− r(k + i|k)∥2Q(i) +
Hu−1∑
i=0

∥∆u(k + i|k)∥2R(i) (5.5)

where Hp and Hu are the prediction and control horizons respectively, Hw is the

window parameter, Q and R are weights.

If the plant has a linear model and a quadratic cost function like above, then

the problem that has to be solved is a standard finite-horizon linear quadratic (LQ)

problem [28]. The idea is to pose control problems as problems of constrained op-

timization. The ’classical’ theory of Optimal Control, mainly developed between

1955 and 1970, was driven by problems coming from the needs of aerospace industry,

namely by the problems of launching, guiding and landing space vehicles and also of

needs in flight and missile control [37].

The optimal value of the cost is

J0 = xT
kPxk (5.6)

where P is symmetric positive semi-definite solution of the algebraic Riccati equation

P = ATPA− ATPB(BTPB +R)−1BTPA+Q (5.7)
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The cost equation is rewritten in

V (k) = ∥Z(k + i|k)− T (k + i|k)∥2Q + ∥∆U(k + i|k)∥2R (5.8)

Recall that Z has the form

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) (5.9)

for suitable matrices Ψ,Υ and Θ.

Then the error E can be defined as

E(k) = T (k)−Ψx(k) + Υu(k − 1) (5.10)

5.2 Constrained MPC

Inequality constraints on input and output variables are important characteristics for

MPC applications and formed a motivation during the early developments of MPC.

Input constraints (or manipulated variables) can be considered as a result of physical

limitations of plant equipment, like frequency command limit or rate-of-change in

variables like actuator movement or flow rates. Output constraints are related to the

plant operational strategy.

In constrained MPC, the control action can be computed subject to hard con-

straints on the manipulated variables and/or the outputs.

Manipulated variable constraints

umin(l) ≤ u(k + l) ≤ umax(l) (5.11)

Manipulated variable rate constraints

|∆u(k + l)| ≤ ∆umax(l) (5.12)
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Output variable constraints

ymin(l) ≤ y(k + 1|k) ≤ ymax(l) (5.13)

The cost function is defined as

V (k) =
∑

z(k + i|k)− r(k + i|k)2Q(i) +
∑

∆u(k + i|k)2R(i) (5.14)

which is a standard optimization problem known as the Quadratic Programming (QP)

[12].

A major problem that may occur with constraint optimization is that the problem

may be unfeasible; in which case the solver stops. Various approaches are used in

practice, such as avoiding hard constraints, actively manage constraint definition in

every step k or actively manage horizons in every step k.

Several types of future behaviour of controlled variables (CV) exist [48]. Usually

the CV are set to a fixed set point, and the deviations on both sides are penalized

by the cost function. A drawback of this type is that the control action can be

very aggressive, with large input adjustments; with a possible remedy to detune the

controller.

Another option is the zone control, where upper and lower boundaries are defined

and are usually implemented as upper and lower soft constraints. This is the case

when the objective is to keep CVs within boundaries, neglecting their exact values.

A third option is to define the CV as a reference trajectory. From the current CV to

the setpoint, a curve of first or second order is specified and a quadratic cost function

penalizes deviations. Finally objectives are represented as funnels, which are similar

to zones but become narrower over the prediction horizon.

5.3 MPC Optimization Problem

MPC solves at each control interval an optimization problem [8], with the use of

quadratic programming (QP). QP solver determines the MV moves over the control
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horizon. From the QP decision, only the first move is applied until the next control

interval. The QP problem deals with the following issues

• the cost function, which is a scalar non-negative measurement of controller

performance to be minimized,

• constraints, which are the operational conditions of the plant that the solution

must satisfy, such as te physical bounds of MV and the plant output variables.

Finally, the decision of QP solver includes the MV adjustments that minimize the cost

function over the prediction horizon and, at the same time, satisfy the constraints.

The MPC QP solver converts an MPC optimization problem to the general QP

form.

min
x

(
1

2
xHx+ f c)

such that

Ax ≤ b

where

• x is the solution vector.

• H is the Hessian matrix.

• A is a matrix of linear constraint coefficients.

• b and f are vectors.

H and A matrices are constants. The controller computes these constant matrices

during initialization and retrieves them from computer memory when needed. It

computes the time-varying b and f vectors at the beginning of each control instant.

KWIK (Knows What it Knows) algorithm [56] is used to solve the QP problem,

which requires the Hessian to be positive definite. In the first control step, KWIK

uses as initial guess is the unconstrained solution. If x satisfies the constraints, it is

the optimal QP solution, x*, and the algorithm terminates. Otherwise at least one of
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the linear inequality constraints must be satisfied as an equality. In this case, KWIK

uses an efficient, numerically robust strategy to determine the active constraint set

satisfying the standard optimization conditions.

A KWIK algorithm begins with an input set X and output set Y . The hypothesis

class H consists of aset of functions from X to Y : H ⊆ (X → Y ) [8]. The target

function h∗ ∈ H is unknown to the learner. The hypothesis class H and parameters

ε and δ are known to both the learner and environment. The environment selects a

target function h∗ ∈ H adversarially.

The agent then repeats the following

1. The environment selects an input x ∈ X adversarially and informs the learner

2. The learner predicts an output ŷ ∈ Y ∪ ⊥ where ⊥ means "I don’t know".

3. If ŷ ̸= ⊥, it should be accurate: |ŷ − y| ≤ ε where y = h∗(x). Otherwise the

entire run is considered a failure.

4. If ŷ = ⊥, the learner makes an observation z ∈ Z of the output, where z = y

in the deterministic case, z = 1 with probability y and 0 with probability 1− y

in the Bernoulli case, or z = y + n for the zero-mean random variable n in the

additive noise case.

In the following control steps, the active constraint set determined at the previous

control step becomes the initial guess for the next.

5.4 Design of Model Predictive Controllers

The objective in the present work is the reduction of DE exhaust gas emissions and/or

fuel consumption, by utilizing appropriate control strategies for the hybrid diesel

electric power-split. This chapter describes the development of two different MPCs.

The aim of the controller is to ensure reference tracking of the control object (λ

value) and disturbance rejection during transient loading conditions mainly, but also
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during steady state operation. The application can be used as a retrofit solution to

an existing engine, as the fuel control system is not altered.

The λ value is controlled by changing the EM frequency inverter command value

(EMcmd), so EMcmd is the only manipulated variable (MV). The other system inputs

are treated as measured disturbances (DV) and are used in order to provide a better

output trajectory prediction over the prediction horizon (Hp).

In MPC, an explicit linear model is required to predict expected plant outputs,

within a predefined time horizon. For this purpose, Model 2, as described in Chapter

3, was used. For the solution of the optimization problem, quadratic programming

(QP) is used that aims to minimize the cost function over the prediction horizon by

computing the control horizon (Hu) optimal sequence of the MV. The cost function

[46] of the MPC controller is described in Eq. 5.15

J(zk) =

p∑
i=1

 wλ

sλ

[
λRef (k)− λ̂(k + i|k)

] 
2

︸ ︷︷ ︸
Jy

+

p−1∑
i=0

 wu

su
u(k + i|k)


2

︸ ︷︷ ︸
Ju

+

+

p−1∑
i=0

 w∆u

su
∆u(k + i|k)


2

︸ ︷︷ ︸
J∆u

+ ρϵε
2
k

︸ ︷︷ ︸
Jcst

, (5.15)

where

zk - Optimization process decision, given by

zTk =
[
u(k|k)T u(k + 1|k)T ... u(k + p− 1|k)T k

]
k - Current control interval.
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p - Number of prediction intervals.

λRef (k) - Reference value for λ value at current control interval.

λ̂(k + i|k) - Predicted value of λ at ith prediction horizon step.

u(k + i|k) - Optimal EMcmd value predicted for (k + i)th control interval, given by

zk function.

∆u = u(k+i|k)−u(k+i−1|k) - As control horizon is smaller than prediction horizon,

∆u is constrained to zero for certain steps in the prediction horizon.

wj - Tuning weight of jth variable of the controller

sj - Scale factor for jth variable of the system, in engineering units.

εk - Slack variable at control interval k.

ρϵ - Constraint violation penalty weight.

The first term of the cost function (Jy) includes the error between the λ reference

value and the calculated one, and tries to minimize that. The second term (Ju)

includes the EMcmd with an appropriate weight (Wu). The third term incorporates

the rate of change of EMcmd with the tuning weight (W∆u).

The relative weighting between the reference tracking (wλ), the command value

(wu) and the rate of the command change (w∆u) was selected so that the controller

response is relative to the dynamics of the EM. The problem is hard constrained

by the physical limits of the electric motor system, with the EM command being

constrained as follows

umin

su
≤ u(k + i|k)

su
≤ umax

su
, i = 0 : p− 1 (5.16)

EM frequency inverter command must also remain within [0, 0.1] V, due to hard-

ware restrictions. Two MPC controllers were formulated and tested on the HIPPO-1

testbed as presented in Table 5.1.
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INPUTS /

SCALE FACTOR

DV /

SCALE FACTOR

OUTPUTS /

SCALE FACTOR
CONSTRAINTS

CONTROLLER

NAME
MPC MODEL EMcmd MAP SE dSE lambda NOx FOC lambda

MV

CONSTRAINTS

OUTPUT

CONSTRAINTS

MPC 401 model 2 0.1 - - 300 - - - 10 [0∼0,1] -

MPC 900
model 2, mMAP,

mNOx, mCons
0.1 0.25 300 300 10 20 30 10 [0∼0.1]

NOx:[0∼400]

FOC:[0∼14]

Table 5.1: A summary of the characteristics of the created model predictive con-

trollers.

Both controllers take into account the error between the engine speed setpoint and

the measured rotational speed. This proved to be a good choice as a DV, because

when a load is applied on the DE, the engine speed drops almost instantly.

One of the formulated controllers receives the measured λ values and a reference

value, with the latter depending on the mode of operation. The reference value can

be either a constant (static reference) or a dynamic one (from look-up tables).

The main sensors used for feedback control are the λ sensor, the engine speed

sensor and the intake manifold pressure sensor. The resulting controller command is

the input to the frequency inverter of the EM (EMcmd).

The choices of controller parameters like prediction horizons, weight matrices and

sampling times, have a considerable effect on the performance and stability of the

MPC. For more information regarding tuning of MPCs, see [24].

The controller tuning parameters are selected so that they display the desirable

response characteristics. The sampling time of the MPC controllers’ was set to Ts =

0.1 s. in order to have acceptable computational times. The selected controller timing

is also faster than the controlled plant, which has an experimentally verified response

time of 0.79 s., from a change to the EMcmd to the corresponding measured λ value.

The Prediction Horizon (Hp) was selected as the 20 % of the time duration of the

transient phenomenon; Control Horizon (Hu) was selected between 5-30 % of Hp.

5.4.1 MPC 401 Design

MPC 401, is an un-constrained model predictive controller that utilizes the error of

the measured engine speed against the reference value as a measured disturbance
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(DV). The block diagram for the MPC 401 closed loop system is shown in Fig. 5-2.

Figure 5-2: The closed loop system of the unconstrained MPC 401 scheme, with
installed sensors and lambda reference options.

5.4.2 MPC 900 Design

MPC 900 is a constrained model predictive controller, that tracks the λ reference

value, but also tries to cope with NOx and FOC upper limits.The block diagram for

the MPC 900 closed loop system is shown in Fig. 5-3.

NOx emissions and Fuel Oil Consumption (FOC) are also taken into account and

soft constraints are applied in order to cope with environmental and operational lim-

itations regarding these system outputs. When exceeding these softened limits a cost

is added to the cost function forcing the controller, with the purpose if it is possible,

to restore the system within the limits. Soft constraints’ penalty is described with

”Jcst” term of the cost function and is applied when
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Figure 5-3: Constaint controller MPC 900 closed loop system with installed sensors
and lambda reference options.

yNOx(k + i|k)
syNOx

≤ yNOx,max

syNOx

+ ϵkVNOx,max, (5.17)

yFOC(k + i|k)
syFOC

≤ yFOC,max

syFOC

+ ϵkVFOC,max, (5.18)

i = 1 : p

where

• yj,max - Upper bounds for jth plant output

• ϵk - Scalar QP slack variable used for constraint softening.

• Vj,max - Dimensionless controller constants for jth plant output used for con-

straint softening and expresses the softened limits of the specific system’s vari-

able.

MPC 900 controls the λ value and also tries to cope with NOx and FOC upper

limits. When the output values are within the desired limits, setting wu > 0 forces
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the controller to provide a zero command to the electric motor actuator as a result

of the cost optimization.

5.5 MPC Experimental Results

The performance of the proposed predictive control structures have been tested and

validated with a number of experiments. Performance evaluation of the designed

MPC controllers was firstly conducted through step response simulation against each

controller’s internal model, in order to fine tune its parameters and ensure the system

stability. The control structure is designed for the combined control of exhaust gas

opacity and NOx emissions. Such regions are found in the lower speed and lower load

range of the given DE.

The experiments conducted on the HIPPO-1 powertrain, in order to evaluate the

MPC controllers, are similar to those used for the evaluation of the robust controllers

in Chapter 4. Reduction in exhaust gas emissions and fuel consumption was verified

by comparison of the same parameters achieved when using the HIPPO-1 testbed

with MPCs, to those corresponding to the conventional powertrain (DE only).

5.5.1 Simulation results

The controllers were evaluated through simulation using open-loop experimental data

and the non-linear DE model presented in Chapter 3. During simulation the con-

troller’s performance was evaluated against reference tracking, disturbances rejection

and keeping the system within desired limits in real environment. The Simulink pro-

gram used for modeling of HIPPO-1 can be seen in Fig. 5-4, for two loading scenarios,

a step loading from 100 to 400 Nm and a step loading from 100 to 500 Nm.

The assessment of MPC 401 performance during simulation in relation to exper-

imental results is shown in Fig. 5-5. A disturbance is applied on the load demand

TWB. The torque demand data, as applied on the WB, is collected from experimen-

tal open-loop data. The corresponding lambda values and controller command are

recorded. It can be observed that the simulated curves display similar behavior to the
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Figure 5-4: HIPPO-1 simulation setup using MPC control, as presented in a Simulink
block diagram.

experimental data obtained under closed loop control, thus verifying the successful

design of the simulation models.

5.5.2 Step Loading

The first set of experiments included step loading from 200-500 Nm, with constant

engine speed (NE = 1600 rpm, simulating an on-board generator-set). Two controllers

were tested, MPC 401 and MPC 900. The purpose of the proposed controllers is to

track the imposed λ setpoint by engaging the EM. Results can be seen in the first

subplot of Fig. 5-6. The measured lambda can be seen in the second subplot of the

same figure, both with the conventional and hybrid setups. The reference λ values are

derived from static look-up tables (maps) that utilize the measured intake manifold

pressure and engine speed. These maps were created from experimental data of the

DE, under a wide range of operation, as presented in detail in Chapter 3.

The control can be considered satisfactory. It can be observed that both MPC

controllers display good tracking performance of the reference λ, during load change

and at steady state. The conventional powertrain leads to much lower λ values (richer

combustion) than the proposed hybrid solution.
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Figure 5-5: MPC 401 simulation and experimental data comparison, for two distinct
loads.

As soon as there is a rising edge in the applied total torque, λ value drops rapidly

and an error appears between the measured and reference lambda values. The con-

troller engages and the EM produces torque, which is added to the torque produced

by the DE, in order to meet the total torque demand. The controller command to

the frequency inverter of the EM can be seen in the third subplot of Fig. 5-6. There

is significant difference in the way the proposed two MPC designs behave. MPC 401,

that utilizes the speed error, engages a few ms before lambda drops, because the speed

of the DE drops almost instantly when a load is applied. After the initial command

spike, the controller can predict that a "big" command will lead to an overshoot, and

the command value drops once again. It can also be seen that generally the MPC

900 design produces higher command values than the MPC 401, although the model

of the plant used is the same in both, due to the addition of constraints in MPC 900

for NOx content and fuel consumption.
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Figure 5-6: Measured total torque output, corresponding lambda values and controller

command to the EM.

In Fig. 5-7 the torque output of the EM, the ICE intake manifold pressure and the

powertrain’s rotational speed is presented. In the first subplot it can be seen that the

shape of the EM torque is generally the same for both controller designs, with MPC

900 producing more torque due to the limitations it offers in exhaust emissions and

fuel consumption. In the second subplot, the intake manifold pressure is significantly

higher with the conventional powertrain than with the hybrid, due to the EM taking

part of the total applied torque. Again, MPC 900 leads to lower pressure because

it engages the EM more than MPC 401. In the last subplot of the same figure, the
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engine speed (and consequently of the whole powertrain) can be seen.

Figure 5-7: Hybrid controller command and torque split during step loading.

The λ set point represents the only parameter needed for tuning the strategy for

a specific loading profile. In Fig. 5-8, the impact of the hybrid powertrain on the

produced NOx, measured exhaust gas opacity and fuel consumption, as compared to

the conventional setup can be seen.

It can be noted that with the hybrid powertrain setup, both controllers offer the

same gains in terms of the NOx content, which is around 40 % less during steady state

than the conventional system. The first NOx spike during the load change, cannot be

avoided due to the dynamics of the control system, but it can be observed that MPC
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900, which incorporates the NOx dynamics of the plant and has a soft constraint

over it, manages to reduce the NOx content by about 10 % during transient loading.

During the load change, the NOx content rises rapidly, and the soft constraint of

500 ppm is only violated during the first 1.5 seconds of the new applied load. The

violation of the NOx soft constraint causes the MPC 900 to generate a higher EMcmd.

Regarding the measured exhaust gas opacity, both MPC designs show the same

behavior, with a reduction of 25 % when compared to the conventional powertrain for

the same loading scenario. The third subplot of the same figure depicts the measured

fuel consumption of the ICE. It can be seen that for the conventional powertrain

the fuel consumption is around 20 kg/h, while with MPC 401 and 900 is around 16

kg/h (20% reduction) and 12 kg/h (40% reduction) respectively. The big difference

between the two controller designs is due to the higher engagement that MPC 900

causes to the actuator (i.e. EM frequency inverter), as compared to MPC 401.

5.5.3 Propeller Loading

In the second set of experiments, the engine simulates a propeller loading operation,

with alternating speed and torque. For more information on the loading scheme and

reference λ values, see Chapter 4, experimental results section.

The λ reference points used, come from a set of maps, as a function of engine

speed and inlet manifold pressure. The feedback from the λ virtual sensor was also

used for these sets of experiments, but it displayed similar results to those presented

in Chapter 4, so for illustration purposes are not displayed again in this section.

Figure 5-9 depicts the measured propeller loading curve during these experiments.

The torque changes from approx. 120 Nm to 700 Nm and the engine speed from 1100

rpm to 1850 rpm.

The designed controllers lead to observable reduction of NOx emissions, exhaust

gas opacity and fuel consumption, with respect to the conventional (non-hybrid)

powertrain, during acceleration. The electric power consumption is not taken into

account, as this research focuses only on the transient loading phenomena of the

DE. Also, further studies have shown that, in general, more than 50% of total diesel
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Figure 5-8: Effect of the hybrid powetrain on exhaust NOx, opacity and fuel con-
sumption, during step loading with dynamic λ reference.
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Figure 5-9: Propeller power curve on test bed.

engines pollutant emissions can be attributed to transient effects [42].

The comparison of the power-split on the conventional powertrain and HIPPO-1

and corresponding λ values are depicted in Fig. 5-10. The recorded λ values are

higher using the hybrid setup (leaner combustion) than using the conventional one

(i.e. without EM assistance), as the controller tracks the reference λ values imposed

by the look-up tables. Fig. 5-11 shows the controllers’ command values during the

propeller loading scenario.

Fig. 5-12 shows the measured gas emissions of NOx, exhaust gas opacity and

measured fuel consumption. For the NOx emissions of the hybrid setup a reduction

of 16% was recorded during acceleration.

The measured opacity was about 20% less during transient loading when compared

to the conventional powertrain.

As for the fuel consumption, it can be observed that during acceleration, the fuel

consumption values are significantly lower with the hybrid setup.
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Figure 5-10: Torque power split along a propeller loading curve, with physical λ
sensor.

Figure 5-11: MPC controller command during a propeller loading curve.
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Figure 5-12: Effect of the hybrid powetrain on NOx, exhaust gas opacity and fuel
consumption during a propeller loading curve.

110



Chapter 6

Conclusions and Future Work

In this research work, the aim was to develop a controller that would perform the

power split between the DE and EM of a hybrid diesel electric powertrain for a

multitude of loading conditions, mainly focusing on transient operation, in order to

reduce exhaust gas emissions (NOx, PM) and/or fuel consumption. A full scale test-

bed (HIPPO-1) was built to test the proposed controllers.

Model derivation from experimental data, based on system identification, provided

successful models for the design of the controllers. The models captured the dominant

dynamics of the process under control.

Three different power management controllers (one robust and two model pre-

dictive) for the HIPPO-1 powertrain were investigated, where both a commercial λ

sensor and a λ virtual sensor provided feedback.

Simulations with the model inputs and outputs in closed loop, allowed for appro-

priate choices of tuning parameters for the controllers. The most important variables

tuned were control and prediction horizons, controller weights and sampling times.

The simulations validated the design of the controllers, ensured the safety of the

test-bed operation and decreased the test-bed operation time.

Different sets of experiments were conducted on the hybrid propulsion powertrain.

The first set of experiments used a static λ reference value and the engine operating

at constant speed and with alternating load, which corresponds to the load profile of

a generator on-board a ship.

111



In the second set of experiments the engine was operated with changing speed and

torque, simulating the load demand of a propeller. The proposed controllers provided

good tracking performance, both with static reference points and with dynamic ones,

as imposed by the created look-up tables.

The controllers, tested under the presence of exogenous disturbances, demon-

strated their ability to reduce NOx and particulate matter (PM) that were emitted

by the internal combustion engine in transient loading and verified the choice of λ as

feedback signal.

It was shown that the integration of feedback of λ of a diesel engine in a marine

hybrid setup, during acceleration, via controlling the electric motor, can lead to im-

proved performance and lower exhaust gas emissions during the load transient. The

λ virtual sensor exhibited a performance which was matching that of the commercial

physical sensor, and at some instances was even better, due to the smaller response

time it offered. The virtual sensor utilized only of the turbocharger speed measure-

ment and not the shaft torque measurement. Considering the limited availability of

the shaft torque measurement in marine applications, the potential applicability of

this method in standard-marine plants is widened.

The drawback of such an approach is the needed modeling of the plant, the in-

creased complexity of the resulting controller and the added cost that comes when

hybridizing a powertrain.

6.1 Future Work

• In the particular setup of the present work, envisioned as a possible retro-fit

application for smoke reduction, the fueling parameter of the engine was con-

sidered to be an independent control variable, manipulated by the engine’s ECU.

In a possible alternate setup, the engine speed control could be incorporated in

the controller.

• In this Thesis, the main focus has been the is emission and fuel consumption

change during transient loading operation. One objective was to prove the
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feasibility of the concept of controlling the EM via the DE λ value. In that

regard, the EM current drawn was not taken into account. In a future research

work, the energy balance of the EM and DE could be calculated or actually

measured.

• In this work, various controllers using linear SISO and MIMO internal models

were tested. The use of adaptive models or linear parameter-varying models

can be suggested, in order to deal with the plants’ non-linearities.

• The MPC controllers in this work seem to handle exhaust emission limits better

than the H∞ robust controller. The standard MPC uses an online optimizer

at every control step, which requires a lot of computational power. A possible

turnaround for that could be the use of Explicit-MPC, where the QP problem

is solved off-line and stored in look-up tables.

• In this work, the reference λ values that were utilized in many cases by the de-

signed controllers, were obtained from look-up tables. In a future application of

the method this reference value could be derived by an optimization algorithm,

taking into account exhaust emissions and/or fuel consumption.
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Appendix A: On-board Performance

and Exhaust Emission Measurements

In order to acquire loading curves as realistic as possible that were to be used on

the test-bed, measurements were conducted on-board two fast ferries equipped with

waterjets. In Fig. A-1 the installation procedure of the power measuring equipment

in the engine room of one of the ferries is shown.

Exhaust emissions and performance measurements were conducted concurrently.

LME has undertaken, in cooperation with the shipowner company, the installation

of experimental equipment on-board two of the companys ships and collect data

during normal service. This included a circular route from Piraeus port to three

islands. The entire voyage lasted approximately 9 hours in the Aegean Archipelago

and it included high speed cruising, port approaching at low speed, maneuvering and

immediate departure afterwards. The collected data refer to the composition of the

exhaust gas (CO2, O2, CO,HCs,NOx, SO2), the opacity of the exhaust gas at the

open end of the exhaust gas stack, the torque and speed on the engines shaft and the

in-cylinder pressure.

The use of the on-board performance parameters and exhaust emission measure-

ments (Fig. A-2) conducted within the scope of this Thesis was two-fold: at the first

place they were utilized to show that during the departure from a port (transient

loading) the DE produces visible black smoke at the exhaust (opacity), and secondly

the data were used to produce propeller torque demand curves, used after appropriate

scaling during the experiments on the HIPPO-1 test-bed.
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Figure -1: Installation of the torque measuring device on the shaft of one of the main
engines.

Figure -2: The emission analyzers in the engine room of one of the ferries.
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Appendix B: Water Brake Problems

During the first stages of the HIPPO-1 commissioning, the water brake (WB), both

in open and closed loop operation, i.e. with the water outlet valve operated manually

and under electric command, was hunting, i.e. under constant command in water

valve, oscillating behavior in speed was experienced. Figure B-3 presents the hunting

behavior of the water brake, in open loop control. These speed oscillations rendered

the further conduction of experiments impossible, for the safety of personnel and

equipment. At this point it was decided that some measures had to be taken before

the facility could work at its full potential.

Figure -3: Tests performed for the commissioning of the WB, where the hunting
behavior was recorded.

In order to determine what caused this behavior on the drivetrain, various sensors

were installed as follows

• Diesel engine cooling water temperature sensor
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• Diesel engine exhaust gas temperature sensor

• Turbocharger speed sensor

• Diesel engine fuel pressure

• WB water temperature sensor both on the inlet and the outlet

• Hydraulic dynamometer feed pump pressure sensor

Also, the Caterpillar DE built-in fault detection system was utilized, to make

sure that the oscillations were not engine oriented. Some more tests were conducted

with data being recorded from all the above sensors on the DAQ platform. It was

noted that the WB inlet water pressure was lower than the value recommended by

the manufacturer (Zoellner GmbH) for transient loads. With the above in mind,

and after consulting with the dynamometer’s manufacturer, it was decided to replace

the water brake feed pump. A new water pump with the desired characteristics was

chosen. The installation included design and manufacturing of new mount and piping

and the addition of an inverter connected to the pump, so that the flow and pressure

could be adjusted to meet various loading conditions.

With the new pump installed, the recorded water pressure was now within the

recommended limits, but the oscillating speed behavior remained. At this point it

was decided that a closed loop controller should act on the dynamometer’s water

regulating valve, so that it could maintain the load and consequently the speed at

a fixed point. Various controllers were used including PIDs, but without noticeable

improvement. Next, our attention was turned to the water brake itself. Being more

than 30 years old and with many years of inactivity, all the visible caps were opened

and inspected. This inspection showed that the water flowing from the stator to the

rotor and vise versa, had caused significant accretion of inorganic materials on the

sides of the water brake (Fig. B-4).

The next step was the disassembly of the drivetrain and removing the WB from

the testbed in order for it to be sent to the manufacturer’s headquarters for refur-

bishing. The water brake would there be dismantled and inspected, and any faulty
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Figure -4: WB water outlet opened for inspection.

parts replaced. The part left the Laboratory’s premises in March 2013 and returned

September of the same year after a full rebuilt, when it was re-installed on HIPPO-1.
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Appendix C: λ Virtual Sensor

Validation

In order to verify the accuracy of the λ virtual values, the output of the model was

compared to actual (measured) λ values, as shown in Fig. C-5. A load demand profile

was applied to the engine and the λ values from both sensors were recorded. When

the torque output of the engine rises, the estimated λ values display almost identical

behavior to the measured ones. When load is removed, the virtual sensor λ values

display a small delay before meeting the measured values.

Figure -5: λ comparison between estimated and measured values. Top plot shows the
applied load.
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