E

72
__\

5
“%

<
NPOMHOEVS

NVPeopos

| o
2

YT

\U%

t»

EONIKO METXOBIO ITOATTEXNEIO

YXOAH HAEKTPOAOI'QN MHXANIKON & MHXANIKOQN YITOAOT'IETON

TOMEAY. TEXNOAOTI'TAY ITAHPO®OPIKHY. & YIIOAOT'TETON
EPTAYXTHPIO AOT'IKHY & AATOPIOMON

Designing Secure and Fair Protocols

with Bitcoin

AIITAQMATIKH EPTAYIA

TOV

Awpidtov A. ToouPelexdxn

Emprénov: Anurtploc Potdxne, En. Kabnyntic E.M.IL
YuvemPrénov: Ayyehog Kuoyide, En Kobnyntic EKITA

ABrva, OxtedPBeloc 2016

E

72
__\

5
“%

<
NPOMHOEVS

NVPeopos

| o
2

YT

\U%

t»

EONIKO METXOBIO ITOATTEXNEIO

YXOAH HAEKTPOAOI'QN MHXANIKON & MHXANIKOQN YITOAOT'IETON
TOMEAY. TEXNOAOTTAY ITAHPO®OPIKHY & YTTIOAOT'IETOQN

Designing Secure and Fair Protocols

with Bitcoin

AIITAQMATIKH EPTAYITA

TOV

Awpidtov A. ToouPelexdxn

Emprénov: Anurtploc Potdxne, En. Kabnyntic E.M.IL
SuvemPBrénov: Ayyehog Kuryide, En Kofnyntic EKITA

Eyxplfnxe and v teweNr| e€etactiny emtpony) v 111 Oxtofeiou 2016

A. Potdxng A. Kuoryide A. Tloryouvptlic
En. Kabnyntic E.M.IL En. Kofnyntic EKITA Av. Kobnyntic E.M.IL

AB¥va, OxtedPBeloc 2016

Awixoc A. ToouPekexdnne
Awmhwpototyoc Hxextpordyoc Mnyovixde xou Mnyovixde YTrnoloyiotodyv E.M.IL

Copyright © Awihiog A. ToouPerexdxne, 2016
Me empOragn mavtoc dixoumpatog. All rights reserved.

Anoryopeletan 1 avtiypapr, anobrixeuon xan Slavopny| tTng mapoloag epyaciog, €€ oONOXAApou N TR
potog auTrg, Yot Epmopxd oxond. Emtpénetar 1 avatimonon, anofixeuor xou Siovopr yio 6xomo
AEEDOOAOTUNO, EXTAUDEVTIXNG 1} EPEUVNTIXAC QPUOTE, UTO TNV Tpolndbeor va avagpépetar 1 YY) TEo-
EXevong xou Vo datnee(ton To mopdy privupa. EpwtApata mou agopolv T xeron tng spyosiag yia

XEEDOOXOTUXO GXOTO TEENEL VoL ameLBOVOVTOL TTEOC TOV GUYYEUPEA.

Ou anddelc xou Tol GUPTERPAGHATO TOU TEPLEYOVTOL OE AUTH TO €YY EUPO EXPEALOLY TOV GUYYEAUPEN Xal
dev mpénel va eppnveLBel 6Tl avTinpocwrevouy Tic enlonpeg Béoec Tou EBvixod Metaofiou ITolute-

yvelou.

ITepiAndm

To evdiapépov yia to Bitcoin xou tor unoloima Pn@laxd xpuntd-voulopata €xel Tapovaldoel adénom
Ta texeutaio xpovia. To Bitcoin elvan to mpdto amoxevipwuévo Pnplaxd xpdnTto-vououo xaL To To
onuogiNeg ot xenor. To cuvtoxTnd Tou CUGTAUNTOC CUVOANXYGY Tou Bitcoin poag emtpénel vo om-
wovpyoouue €€unva cupforona o To omolo 1) UETAPOEd YeNudTwy utopel vo emteuydel autdpata, agold

emitevyfolv cuyxexpévec tpolnobéaelc.

e auth N Simhwpatixn epyaoio tapoucidletoan To P2P 6ixtuo tou Bitcoin peketdvtag toug xéufouc,
TIC VTONNALYEC UNVURATWY, Tic cuvolharyég, To block xou ta script. Xto undhoino pépog tng epyaaiog,
ETUXEVTIPWVOUAC TE GE TEWTOXONNI ACPUNDY UTONOYLOUMY xai Peloxouue Tpomoue var eavoryxdcouye
N duxanocvn oe mepLBdAhov 2 mauxtodv § N mauxtodv. Ioapouoidlovtoun mewmtédxorka tar onola €xouv
EQUPUOYT) OE NOTTORIES, ACPANELS UTONOYIOHOUS, ENUATOEDCLUOUC UTONOYIOUOUC Xl O NAEXTEOVIXES
npogopiec. Enextelvouue xdmoieg amd Tic mpoavagepbeloeg hertovpyieg mou undpyouv otn Pifio-
yoapio OO TE Vo TETOXOUUE XUAVTERY) TONUTAOXOTNTA GTO TRMTOXOANO NAEXTEOVIXHC Ynpogopiog Tou
€yl NON mpotabel xou mpotelvoupe éva TpwTOXOANO TO oTolo elvon amoxevipwuévo xou de PBacileton o

ETXOWVOVIA TOV YNPOPOEWY HECW LOLWTIXWY XOVINLDV.

To mpdto pYépog elvan évag mpdloyog oe auth TNV cpyooia. To dedtepo Pépog EMXEVTPOVETUL GTO
dixtuo Bitcoin. Apyixd, mapoucialouue Paocixés apyéc xpuntoypaplac Tou xenolonolobvto cto Bit-
coin xot UENETEUE TNV AVTOANSY T} UNVURATOY HETAED TV XOUPV. TN CUVEXELR, ETUXETPOVOUICTE OTLS
Boowxéc Aertoupyleg ol omoleg etvon o cuvaharyég xou ta block. Emimpoctétag, uehetodue ta Bitcoin
Scripts to omola etvon ypriowa yioe TNy xatooxeut| Eunvov cugforaiov. To tplto pépoc elvan agiepw-
UEVO GTOUG AGPANEIC UTONOYLOUOUE XAl G TNV XATACHELY| TETOUWY TEWTOXONN®DY GTO HOVTENO TIwElg.
Avahboupe mpwtdxorka xpuntoypapiog to omolo Ba yenotworomnBolyv apydtepa oTNV epyacio Yo TNV
XATOUOKEUT] TEWTOXONAWY ACPANDY UTONOYIOUDYV. 2To ETOUEVA 2 XEPANLO ECTIALOVUE OE EPUOUOYES
ACPANDY UTONOYLOUWY U€ow Bitcoin. Xto teleutalo xe@dNao UENETAUE TEWTOXONNA NAEXTEOVLXHC
dnpogoplag xou mpoteivoupe to dixd og TewtoxorNo. To tétapto uépog amotehel Tov enihoyo ue Ta

CUUTERACUOTO X0 TPOEXTACELS YIOL LEANOVTLXY| EpYAOaL.
AgEeig-xAedid

Bitcoin, aogokeic utoroyiouol, cupforoua, dixoun cuvarlaryy), N\exTEoVIXES Pnpogoples, WBLLTIXOTNTA,

ATOXEVTPOUEV GUC THUATA, XEUTTOY papia

Abstract

There has been an increasing interest in Bitcoin and other crypto-currencies the past few years.
Bitcoin is the first decentralized crypto-currency that is currently by far the most popular one
in use. The bitcoin transaction syntax is expressive enough to setup smart contracts whose fund

transfer can be enforced automatically, after specified conditions are met.

This thesis studies the Bitcoin Peer to Peer (P2P) network and focuses on nodes, messages exchange,
transactions, blocks and scripts. The rest of the thesis, is focused on secure multiparty computation
and ways to enforce fairness in the two-party or multi-party setting. Several different protocols are
presented which target specific applications like lottery, secure computation, verifiable computation
and e-voting. We extend some of the aforementioned functionalities that exist in bibliography in
order to achieve better complexity for the e-voting protocol already proposed and we propose our

protocol which is decentralized and does not make use of any private channels among the voters.

The first part is a small introduction to this thesis. The second part focuses on the Bitcoin Network.
At first, we present some basic cryptographic primitives that are used in Bitcoin. Then we focus on
the network part of Bitcoin and the messages exchanged between peers. Afterwards, we focus on the
core functionalities of Bitcoin which are transactions and blocks and occupy with Bitcoin Scripts as
which are useful for constructing smart contracts. The third part is devoted to secure computation
and how we can build up protocols for secure computation in the penalty model. We analyze
cryptographic schemes which will be used later in this thesis for constructing securecomputation
protocols. In the next two chapters we focus on applications of secure computation via Bitcoin. In
the last chapter of this part, we study electronic voting protocols and we propose our own protocol.

The fourth and last part of this thesis, is a conclusion and provides directions for future work.
Keywords

Bitcoin, secure computation, contracts, fair exchange, e-voting, privacy, decentralized systems,

cryptography

Euyapiotieg

Me tnv exmévnon authg NG SIMAWUATIXNAG EQYACIAS ONOXANPOVETAL O XOUNOS TWV TEOTTUYLAXWY CTOU-
0V wou oo EOvixd Metobfio ITohuteyveio xan o HBela uéoo and Tic mapaxdto YeoUUES VoL EXPEACH
TNV EVYVOROCUVY oL aToug avBpdmoug mou Peédnxay Simha Lou xota T BIHEXELL AUTHOY TOV ETOV.
Apyxd, Ba ifeda va euyopto Tiow tov emPAEmovTd wou x. Krarytd yio tny eumiotocoivn mou you €6eiie
X0l TO (POVO TOU OV OPLERHCE DO TE VO ONOXANEWOK oUTH TO €py0 xabde xar Toug x. PwTdxn xau

x. ITayovetl7 yioo TNy anodoyy| authc Tne epyaoiag.

Y1 ouvéyeia, Ba RBeNa var ExPEAcH TIC ELYXAPLOTIES WO Yiot TAL OEALX POLTNTIXG XEOVIAL TOUG GUUPOL-
mtég wou Hhlow AXevpd, Nixo Avipouldxrn, Potn HAtonouvlo, Pain Kaldxou, Xdxn
Kopayidvvn, Xden KovioOhn, Iavayiwtn Magwdxr, Magia ITarnouiydin, Nixo
Stapatonovio, EXévn Toaxipdxn, I'iwpyo Pouvctodxo, xou toug ebyouo xdbe emtuyla

YloL TN METETELTA G TadlOdpOoUla TOUC.

Ynuavtixd poro oo autd Tar ypovia énoulay ol moudixol pwou gpidol ITavayiwtne Afuoag, ITava-
Yiotne Aopofivng, I'iwpyog Nixodidg, tou pe avéyxtnxay, ue oThellay aTic apés Xl OTIC

AOTEC o Atory TévTor SlmAa pou.

Ac Qo mpénel var mapoelhw vo euyaplothow TN Xogpio ITamadaxdxrn xou 1o I'idvvn Tovevdxn
v v apéplotn Poribeid Toug téco xata TN Bidpxela Tng topopovic wou oto CERN 600 xou yeténetta,

Yot TG TONOTWES GUUBOUNES TOUC o Yial TO YEOVO Tou pou BLEhecay OTOTE XaL AV TOUS (PELITTNXAL.

TéNog, 0Pel e Vo EUYAPLOTACH TNV OLXOYEVELX HOU YLoL OXXL OCU OV TROCEPERE (GTE VAl PTACK WS

€0 %o Vo ETUTOYW 60 €0 XATAPEQEL.

Adnpa, Iovmog 2016

Extetopevn Ilepidndm

Ewcaywyn

To Bitcoin etvon éva {meLoxd amoxevipwuévo vououa. H mpdtn avagopd oe autd éyve and évav
OVOVUUO BMULoveY o, Blxng var yvopllouue av elvon €va dtopo 1 ula oudda atdpwy, pe dvoua Satoshi
Nakamoto o omnolog dnuocicuce to paper ye titho Bitcoin: A peer-to-peer electronic cash system
xou oy 0 dnuovpyog tou mewtou Bitcoin client. To Bitcoin €yel wg x0plo yopoxtneicTixd tou Tig
CUVONAYEC oL oTtoleg elvan dNudaLeg xan elodyovTal oe block Mote vo BnuLoLEYHoOLY TO Lo TOEKO TV
CUVONAXY®OV. e avtifeon ye To xavovixd yeruo to Bitcoin 8¢ Bacileton oe xdmoia xevpxn opxn
OAN& 6o (Bl To dixTuo WoTte va emfefardoet Tic cuvankayéc. Emmpocbétng, €xel mpoxabopiopévo

TEOTO ELCAYWYHS VOULOUATWY O xUxAoQopla Uéypel Tov TeEAxs aptbud tov 21000000.

2%omog NG OLMAOUATXAC elvo var UENETHOOUUE TN ONULoURYId TEOTOXONNWY AGPINDY UTONOYIOUWY
ue To Bitcoin va €yel To pdNo g xevipuic apxnc. Enedy) to Bitcoin elvon éva anoxevipouévo cb-
oo TEENEL Vo eEATPUNICOVUE OTL GTO TENOG TOU TEWTOXONAOU ONOL Ol GuPUETEYOVTES Bt Adfouy To
anotéreoya. [va to methyoupe autd, eopuoloupe TN Sixatocivn UECK TOU UOVTENOU TNG Tidwpelag
o710 omolo av xdmolog xoxondng xeNone Udbel To amoTENECU KWwElS VO TO BLOHOLPdOEL GTOUG UTO-
Nownoug yerotec N Blaxddel 10 TEOTOXOANO TOTE elvol AvaryXAOUEVOS VO TANPOCEL TOUG UTONOLTOUS
CUUMETEYOVTEG. JUYXEXQUEVO UENETAUE Wial EQUOUOYY| TOV ACPUNDY UTONOYIOUWY, TIC NAEXTROVXES
dngogopiec.

Bitcoin

Ye auth) v evotnta Ba tapousiocouue T Pooixd yapaxtneloTixd tou Bitcoin. To clotnua anote-
Aeltow amo dieuBivoelg xow cuvaharyéc. Kdbe yprotng €xet tn duvatotnta var dnuovpyet éva {eryog
XAEWBLOYV, TO ONUOCLO ot TO WLwTXO XAeWi. To dnudoio xhedl xwdixonoweitan o pia dievBuvon xou
xenowonoteitan yLo va AgBouue ypruato eved To WLoTixd XAeWdl xenotuonotelton yio vo Eodéouye xet-
HoTol amodEVVOVTAS OTL O YXENOTNG Elvon 0 TEaryUoTixdg xdToYoS Twv Xenudtwv. Kdbe yerotng éxet
N SuvatdTnTa var dnpovpyoel dnetpa Celyn XNEWBLOV Tar ontola AVTIGTOL oLV XaL Ot dmelpo apldud

otevblvoewy.

H Boowr| douny Tou dixtvou eivar ot cuvolharyég. Mia cuvohory | ueTapépel xeNuaTo and €va XAToyo
oe €vay dANO. Avamaplo TOVTog TG GUVONAAYES W Yedpo 1 xdfe cuvalhayy) anotehel éva xéufo
Xl €XEL TOUNGYLOTOV Wla ELOEPYOUEVY XaL TOLNG Lo TOV Wia e€epyduevn oxur). H eioepyduevn axun
AVTLTPOCWTEVEL TOL0G E0BEVEL Tal YENUATA Xou 1) EEEEXOUEVN axiy) Tolog Naufdver o yeruata. Kdbe

o) tepINafdver 2 emmAéov oTouxelol TOV WBOXTAHTY TV XENUATOY XA TO TOCO TWV XENUATOV TOU

xii

uetapépetar. OXeg ot cuvalhayég dnuoctedovion xan €xouv T SUVATOTNTA Vo TIC Bouv YPNOTES Ol
onolol 8 ouupeTéyouy cto dixtuo. Kdbe cuvalloryr €xel tn Ouxf tTng povadixy| ToutodtnTo 1 ool
etvan To SHA256(SHA256) tov dedopévov tne ouvaharyrc. T var petagpépouue yefuato cuvdéouue
ulo 1) meplocdTepEC e€epyOUEVES UXPEC OE Wial 1) TEPLOCOTERES EloERYOUEVES axUéS. Ta ypruata ta omola
avixouv oe xdbe yprotn elvar autd to onola Bploxovtan oe alddeuteg e€epyoueves axpéc. To Pruata

mou axoroubel xdmolog xeHoTNe Yo vor Eodédet Ta xeRUoTd Tou elvon Tor eERC:

1. O yprotng mou Bénel va Eodédel Peloxel pla cuvarhoy?| pe agodeuteg e€ep OUEVES OXUES Xl
BeParcdyveton 6Tt lvon 0 WBLOXTHTNG AVTAS TNS AXUNC.

2. Anwovpyel ula xouvolplor cuVaANay Ty cuVBEOVTaG TNV a&OBELTN EEERYOUEVT] OxXUT|, OTNV ELOEQ-
KOUEVN oXUT) TNG XOUVOURLAS CUVOANAYC.

3. Agnver v e€epyduevn o) TG VEAS GUVONAAY i AoUVOET.

4. KabBopilel tnv agio xou tov 8LoxTthTn Tne VEog eEepOUeEVNS axpung.

Mio cuvaharyy) uropel vor €xel TOANES oXUEC G ELGOBOUS Xl TONNES axpéc we e€6douc. To gpdtnua
Tou TpoxVTTEL etvan TL Bar cuuPel av Evag xaxonOng xero tng TeooTaldroet va Eodédel TNy (Bla e€epyduevn
ooy 2 popéc. H mpdhytn cuvahary) Bo ebvon €yxupn eved 1) dedtepn cuvaharyn Ba etvon dxcuen. Av elyoue
wlor xevteu apy 0o ytory €0x0NO var SloywelcoLUE TN CUVOANXYT) Tou TeoNYNONXE GTO YEOVO ETEdN
oUW TO CUCTNUO EVOL ATOXEVTIPOUEVO OEV UTdEYEL auTY 1) duvatdtnTa. AVo cuvahayéc oL omoleg
Eodelouy Ty (Bl e€epyduevn axpn ovoudlovton SItN6 Eddeua. T'io var amogiyoupe autd To TEdBANU
Tpénel Vo BANOVUE TG CUVONNOYEG o piot oelpd. MNuvemae To dixtuo Ba meénel va @tdoel oe uia

oLUPOVIO 6GOV APOEA TNV AXONOLBIAL TWV GUVIANAY V.

It v ety ouue auTh TNV X0 cuppovio palebouUE TIC GUVAANAYES OE XOUTLY To oTtolor OvoUdlouue
block. Kdbfe cuvaiharyy| unopel va mepihapfaveton povo ula gopd oe éva block. To dixtuo geovtilel
va donuloupyeiton éva block xdbe 10 Aentd to onolo mephopPdvel TiC TO TEOCPATES CUVONNXYES TTOU
oev umhpyav oe mponyolpeva block. H tautétnta tou block eivar to SHA256 twv dedouévmv mou

nephopPaver. Kdbe cuaiharyy) mou nepihopPdveton oe €yxupo block éxel emPefouwbet.

I vae umtdpEel ouugwvio oto dixtuo, dnuovpyolue wila okualda aro block émou 1o xdbe block ovo-
pépETal GTO TEONYOUUEVO UEow €VOG Belxtn mou delyvel otov matépa Tou. Luvenne xdfe block dev
umopel vor TepLEyEL xdmoLoL GUVOANAYT) 1) oTtolar xdvel BLTAG E6depa. Me autd Tov TpdTo, EMITUYYEVOUUE
NV X0y cUUPLVid 610 dXTUO GUVETKE N cuvaANay) A mponyeltar Tng cuvoayrc B av n A mepl-
Ao fdveton oe meomnyoluevo block and v B. H diadwasio topaywyrc block ovoudleton e€6puin xou

ONOL OL XPNOTEC €Y0UV TN duvatoTnTa Vo cuupeTéyouy. Ta Bruata tne e€opuéng etvon ta e€ng:

1. Kdbe yprotne mapaxoroubel to dixtuo yia cuvaroryéc xou block.

2. HephauPdvoupe oto urogrglo block dheg Tic quvaharyée Tou Bev €xouv eupavioTtel oe TEOT-
yoluevo block mou yvwpeilovye xou pio avagopd oto Mo npdcato block mou yvweilouvye wg
TOTERXL.

3. Avalntolpe amodelln epyoosiog.

4. Av Beolue anddeiln epyaoiag avouetadidouvue to block oto dixtuo.

5. Av pdboupe 6T xdmolog dANog xenotne Perixe block, netdue v mponyoluevy SOUNELd pog xou

xiii

ouveyilouye vo xdvouyue e€6pLEN Tdve c6To o TpEodcato block.

To dixtuo divel xivntpo otoug yehotec Kote va e€oplgouv ta block mou dlatneolv TNV xowY| cuppwvia

YloL TNV OELEd TwV ouvahayev. To xivntea ta omola €xel €vag xenotne mou Peloxel éva block etvou:

o Mio cuvahayn) 1 onola ovoudletar coinbase eivon 1 Tpw TN cuvaAkayny ato block xou 1 alo Tng
ofpepa ebvan 25 Bitcoin. Auth n o&ia unodimhaoidletan xdbe 210000 block.
o And ta fees Twv cuvaAhory®v mou cuurep o Pdvovton ato block mou elvon 1 Slapopd oTny alla

TV EEEQYOUEVOV OXUOY OTO TG ELCERYOUEVEC.

H anédeiln spyaciag eivon ula dadixacio xatd tnv onolo amodewxviel 6TL E6dede enelepyaotixt| oyl
yior vou Xdvel évay utoloyloud. Ltny nepintwor tou Bitcoin 1 anodelln epyaciac mouv xdbe xerotng
xavel elvon vor utohoyioer To SHA256 twv cuvahaydy, tou deixtn mou Bdelyvel oto block tou matépa
xou plog tuyatag Tiprc nonce. To anotéleoya avThc TNE dladixaciag TEENEL Vo elvon UixpdTepo amd ula
CUYXEXQUIEVT] TIY). DUVETWS, Yo va Ppolue éva tétoto hash mpénel va xdvoupe moANég doxiuég elte

oAN&LovTac TNV T nonce €(te SLIAEYOVTOC TEPLOOOTERES GUVONNALYEC.

HX\extpovixéc ¥noogopiceg

O nextpovixéc Ynpopopleg amoteNolVY i eWdixy) TepInTOON AGPINDY UTONOYLIOUOY. [t var uoTto-
COUYE TPOTOXOANA NAEXTEOVIXN S dmpogoplag xeelalduacte pio xevtpuny apyn 1 onola Bo emPBarAer T
Ouxouocvn. X1 cuyXeEXpWEVN Teplntwomn 1 dixonoclvn e€acponileton and To dixTuo Y€ow TOU HOoVTE-
Mou Twwoplac. "Eoto 6t éxouue v Pnpopdpouc xar 2 utodnploug, To TemTOXOAN TTOU XATAOXEVALOUUE

Ba mpénel va ixavontoloy Tig e€Rg WdTnTES:

o ISwwtixdtntor H Prigog xdbe Inpogpdeou elvan uuotixy| evéd Tautoyeova o (diog umopel va amodeilel
6Tl axoloLBnoe To TEwTOXONNO.
o Enoinbevowotnra: To anotéreopa urnopel va emPeParwbel and dhoug toug ¢npogpdpous xou and

XATOLOV EEWTEPIXO TORUTNENTY.

Kdbe mpotdéxolho nhextpovixrc dnpogoplac Bacileton oe 2 otddlo, 0T0 TE®TO GTAdL0 OL Ynyopdeol
deopcvovtar ot Prigo toug N omola B mopaPEivEL UG TIXY YIa TOUC UTONOLTOUG YENOTEG %o UETA
To amoTéNeoua TS Ynpogoplac. Ye autd To 6Tddlo dev elvan amapaltnTy 1 Xenhor Tou Bitcoin. Yto
0elTERO GTABLO, oL mypopdeol xenoiwonooy To Bitcoin yio vo avoxowmoouy Tic puotixée Yrigoug
xan 0 vixntic unopel v mdpet o Beafeio Tou. Thomololue 2 BLaQopeTIXG GTABLAL YLoL TNV AVOXOVKOOT

TV Phgwv ta onola xou Ba Boldue apydTepa.

To cuyxexplwévo TewTdXoNNO Aettoupyel yia v dnpopoeoug xou 2 urodmeplouc. ot va Blatniooupe tnv
WwtxotnTa e Prgou Ba petatpédoupe tic PRgouc oe Tuyaioug aplBuolc, ol omolotl tep aufdvouy
xou v Phgo, émou to dbpotopa B pog ddoer To vixnTh avandyws av autéd Peloxeta Tévew and v/2
1 xdtw and avtd. Kdbe dngopdpoc éxer uio Prigo V; € {0, 1} xou dnuovpyel v tuyaioug apbuoie to
dbpoiopo Twv onolwy Ba meénel va xdvel 0. Kdbe dmepogpdooc P; otélvel tov aplbud ri; otov P; uéow
evog WL TXoY xavanol. Ou Pngpopodpol €xouv to dixd Toug povadd aplud R;, deopcbovion o€ autd
tov aplud Cj, Snuovpyolv T wuotd dhgo Vi = Vi + R; xou Seoyctovia o oauth tn Ghgo Vi pe

déopevom Cj. 'Oleg ol deopeloels dnpoctebovTtol eved Ta XAEWLE Tou avolyouy T BECUEVOELS XaL Ol

Xiv

ol mapopévouy puotixéc. Kdabe dmpopdpog nelbel toug undloinoug Pngpopdpouc 6t axoloubel to

TR TOXONNO bivovtag anodel€elg undevixrc yvwone. To otddlo déopcuong tng Yrigou diveton Tapoxdto:

To mpwtéxoNNo Tpéyel avdueoa oe v Pnpopdpous 6mou yia xdbe i € [n], o Inpopdpoc éxel uin
wuotl Phgo Vi € {0, 1}. Oewpolpe 6t o xhedid yro tor zk-SNARKSs €youv dnuroupyndel xon
dlapotpachel oe dGhoug toug Ymyogdeouc. Ta xdbe dnpopdeo P; n draduacio etvor 1 e€ng:

L T x80e j € [n] dnuobpynoe v tuyeioug opbpode 6mou 37 ri; = 0 xou deopeboou
(Cij, kij) — Commit(rl-j)

2. Anuotpynoe anodelleic pndevixric yvoong mou delyvouy 6ty i = 0. To xbhopo C diver
1 av ou avouybeloeg Twég éxouv dbpooua 0. Avauetdduoe Tic deopeloelc xou Ti¢ anodelelc
UNBEVIXTC Y VOIS OTOUS UTONOLTOUS YJNpopdeoug.

3. IMopénafe tic Seopevioels xar enonrifevoe T anodel€elc UNBEVIXAS YVOONS Amd TOUS UTONOL-
Toug Ynpopdeoug.

4. T x8Be j € [n] i, otelhe ot0v Pj 10 xNewdi kyj To omolo avoiyer t déopevon. I j €
[n] i, neplueve 1o xXewdi kj; to omolo avolyer tn déopeuon and tov P; xou éxeye av rj; =
Open(cji, kjs).

5. TroNéyoe R; Zj Tjis Vi < R;+V xou deopevoou (Cj, K;) < Commit(R;), (C’Z, KZ) —
Commit(f/i), omou Kj, KZ elvon T XAEWLE 6oL avolyouy Tic deopeloelc. AVoPETAOWOE TG
deopevoec C; xou C; dnuodota.

6. Avouetddnoe Tig anodelEelg undevixng yvomong yio To eEAC:

o RZ' = Ej Tji
e H deopevypévn s C; ueiov v tyh C; ebvon petodd 0 xou 1.

7. IopéXafe xou emadriBevoe tig anodellelc and toug undoltoug Ynpopdeous. To tpwtdXOANO
teppatilet.

Figure 0.0.1: Ytddo Aéopevone Muotinic ¥rgou

To éva and ta 2 otddia avaxolvoong e Prgou Bacileton otnv Aertovpyio Claim or Refund xou
oTo unxoviopd oxdnoc. Ou dngpopopol amoxaNOTTOLY 0 €vag PETE TOV dANO TIC Pripoug Toug PE Tov
TeENeUTAO WNPOPOEO Vo elvor auTdg ToL €xel To anotéreoua. H hertoupylo Claim or Refund amotekeiton

and 3 oTddLon

o Y1ddo Koatdbeone: O anoctoréag dnuovpyel pio cuvohayt xatdbeong 6mou otélver X Bit-
coins oe éva mopoNAmTn. H cuvolhory?| yioe va amoxtnlel mpénel eite va dwbolv oL unoypapéc
TV 2 aTOUOV ETE 0 TUPUAATTNG Vo BAOCEL TNV LUTOYEAPT Tou xaL uio amddelln 6Tl xavomoLel
v analtnon tou anoctoréa. H ocuvelhayy| mopopével yuotixh. O arnoctoréag dnuovpyel uia
cuvohay 1| anolnuinong émou nafpvel tiow to X Bitcoins petd and xdmolo xpovixd didotnua T
X0 GTENVEL TN CUVOANXYY) GTOV TORUAATTH vor TNV unoyeddel. Aol o moporfntng unoypeddet,
UTOYEAPEL XaL 0 AmOGTONENS TN cuvoayn anolnuiwone. To otddio ohoxAnpwvetan UWONC O

ATOG TONENS ONUOGCIEUCEL T1) GUVAANAYY) XaTdleoTg.

XV

e Y1ddo Amaitnong: O mopointng dnuoveyel plo cuvolhayr analtnong 7 onola malpvel ta X
Bitcoins divovtag v unoypa@n Tou xou TNV amodeEn TNV onola Elxe AMUTACEL O ATOGTONENS
TPV TO XEOVIXO DLACTNUA T.

o 1o Anolnuinong: Av o naparrintng dev ndpet oo X Bitcoins yéypet to xobopiopévo dido tnua
T, TOTE O AMOGTONENS YENOWOTOLEL TN cuVOANaYT| amolnuinwong ylot vor TéEeL To XEHUATO TOU

ntiow.

3tddo KatdBeong

e P, dnuoocieber 2 Claim or Refund instances, ta onolo 8ivouv v Bitcoins oto vuxrtn tng
Inpopoplac apol anodellel 6Tl To peyaNlTEEo dbpotopa Prigwy.

ViV
p, Lot 4

N, Tn+1

Vl:'“vvn
-

P; B

n,Tn+1

o Tautdypova yio xd0e i # n, P; enonBedel 6tL 1 cuvaNhayn xotdbeong oo mpornyoluevo
Brua Beloxetar oty alucida twv block xan avouetadider Tnv mapaxdtw g cuvaikoy
xatdbeone oo dixtuo

VeV
P —= P,

277-71,

o Yelploxd yio i and n uéypl 2: Py emonbelel 6t ot cuvanharyég xatdbeong oTo mpornyoLuevo
Brua Beloxetar oty alucida twv block xan avoueTadider Tnv mapoxdtw Ffp ouvaikoy
xatdeong oo dixTuo

3 tddio Arnaitnong

o It i # n, av TEY TO XEOVIXO BLAC TN T;, OXOL ToL TEOTYOUUEVA HUoTIXd Vi, ..., Vi1 €xouv
anoxanuglel, Tote 0 P; amoxo\UTTEL To HUCTIXO Tou Vi Xou XENOWOTOLEL T GUVOANXYT
ama{tnong v vou A&fel ¢ bitcoins and tov Piy.

e Av mpwv 10 Ypovixd B TNUA Ty, ONat Ta puoTixd Vi yia @ # n éxouv amoxolugbel, o P,
ATOXANUTTEL TO HUOTIXG Tou V), xou xenowwonotel tn cuvahhayr anaftnong yio voo Nafet g
bitcoins and xdbe P; pe i # n.

o Av oWy T0 %EOVIXO DIACTNUO Trt1 ONAL TOL UG TLXE €Y 0LV amoxaupbel, o vixnthc xabopileton
X0 YENOWOTOLEL TNV avdAoYYN cuVaANay T amaktnong yia va NdPet v bitcoins and tov P,.

e Y& omolodNToTE YEOViX6 BLdoTNUA, av xdmow Ffp cuvolhayt dev €xel mpayuoatonoindel
uéxel To avtiotouxo timelock, o anocToNéag unopel va mdpel T0 T0G6 TOUL elxe xaTADECEL
mlow péow ulag ouvarkarync anolnuinwong.

Figure 0.0.2: Avoxoivoon Muctuic Urgou uéow Mnyaviouol Xxdhag

xvi

H mpdytn poag ouvelogopd yivetan otny enéxtaor tne Aettovpylog Claim or Refund avdueoa oe éva
AMOG TONEN XAl TONNOUC TOROAATTES, ovTl YLt 1 mopoN ATy, O TapoNATTng UTopel Vo anauthoet auTy| TN
CLUVAANOLYT] apoU AmOBEIEN OTL XEEBLOE Xou BWGEL TNV LTOYEAUPY| TOU, EVE 1) GUVOANIYY) TOU ATOG TONEX
TIOU TOU ETUO TEEPEL TOL VOIOUOTA TOU €YEL UTOYEPEL oo TOV (Bl xou GAOUC TOUS THAVOUE TOPONNTTES.
Me autd TOV TEOTO EMTUYYAVOUUE UEIOOT TNC TOAUTAOXOTNTAS OTO TEKOTO PrUc Tou oTtadlou Tng
xatdbeone xofne o tekeutaioc Pnpopdpoc de Ba mpémel vo dddoer 2N vouiopato adAG N (dpo xou omd

1 ot undroimo) xat de Bt POPTWOOUUE TO BIXTUO UE ETITAEOY CUVOANAYEC.

O Beltepog tpdmOC avaxoivwang tTng puoTxne Prigou, yivetar Tautdypova and GNOUS TOUC TUiXTES XoL
yeetdleton otalepd aplbud yopwv bitcoin. o vo cuppetéyouue 610 TP TOXONNO, xdbE Mpopdeog F;
xatabétel (1+d) Bitcoins, ex tov onolwv to 1 Ba dwbel oo vixnty) utodhpio dv o xdbe Ynpopdeoc
amoxoALPEL TNV HUGTIXY Phpo Tou xou To urtdloino d Bitcoins Ba xenowonomboiv we arolnuiwon oe

nepintwon mov o ¢myopdeog P; dev amoxahier T puo T Prgo.

H déa elvon 611 ou v gngogdeol Ba vrnoyeddouv pia cuvaliayry COMPUTE oro xowol émou Oa
ouvelo@épouy T Prigoug Toug. To mpwTOXOANO ¥XeWwVeEL TN Yo xdbe Pnpopdoou xou 1 TENXN
ouvankayy COMPUTE umopet vo e€opyupnbel av dXot ol dngopdeol cuupwvoiv oudgwva. Avtibeta,
av 10 TEWTOXOANO potannlel xou 1 cuvakayry COMPUTE 8ev €yer dnuloupynbel pe emtuyio tote
ol Inpopodpol Ba tdpouv To THCO TG cLVELSPORAS Tow yenotwonowwviac T REFUND cuvazhory.
Adyo tov malleability problems mou npoxintouv Ba ypnowwonotficoupe (n, n)-threshold signature
scheme. Ou v {npopodpol dnuiovpyolv and xowol o ogadixy dievBuvon étol wote xdbe Pnpopdpog
P; pabBaiver to dmuodclo xkedl tng ouddog pk xou XOUUATL TOU WBIWTIXOV XAELBLOD sk;. Suvende, to
WBLOTIXO XNEWDL TNG OUABUG UTOREL VoL OVOXATUOXEVAO TEL WOVO OVO €4V OL V Pnpopdpol Tapéyouy To

XOUUATL TOU OLOTLXOD XAEWBLOY TOUS k.

Ytddio Khewdopatog Yrgpou Kdbe dnpopdpoc Béler (1+d) Bitcoins otnv apyh tou npw-
Tox6X\ou, onou To 1 Bitcoin yenuatodotel o vixnth, xou toe d Bitcoins yenowonoobvou oe
TEPINTOON BLAXOTAC TOU TEWTOXOANOU

o O P; dnwovpyel pla ouvanhoryf Lock;, e axyr ewoporic (14-d) Bitcoins ta omoio avrixouv
otov P; xou og axyr exponc tn diebbuvorn Tou dNnudclou xAeblo) TNS ouddag pk. O P; on-
povpyel pio amhomoinuévn cuvankaryr) Refund; 6mou YeTtagpépel To (H|UoTol OO T CUVOA-
Novyyy Lock; mlow otov Pj xou dev avoetadidel T cuvohory) oto dixtuo. O P avauetodidet
v Refund; otoug untéloimous Pnpopodeous.

o AauPdvovtac tnv Refund; yw j € [n]\{i}, o P; exéyyel. 6T 1o hash tng dev elvan (Blo ye
autd TNe ouvaharyfic (Lock;).

o T xdbe j € [n], P; oupuetéyel oto threshold signature scheme yio vae unoypdier Re fund,
YENOWOTOLOVTAS TO OlXO TOU UUCTIXO XOUUATL TOU WO TIXOU XNEWLV Sk;.

o Aoufdovtoc Tic cwoTég uToYEAPES YLo T cuvaahay) Re fund;, o P; elvon étodog vo o Tellel
N ouvaahayr) Lock; oto dixtuo.

Figure 0.0.3: Avoxoivoon Muotuc Urigou péow xowvig cuvarkayhic - Xtddo Kiewbmuatog

xvii

Aol ol Pnpogdeol xhewdwaoouy T Prgoug toug Bo unoypddouv TN cuvarkayry COMPUTE yenot-
wonowvtac to (n, n)-threshold signature scheme. H cuvazhoyy COMPUTE éyer v eio6d0uc (14d)
Bitcoins xou v+1 €€680oug, 6mou 1 uia €é€odog eivar to Peoafeio N Bitcoins yio tov vixnt| xou oL uné-
ouneg v €€odol vl o deposit Twv v Yngpogpopwv. To deposit xdbe Yngpopdeou Ou emotpapel oe auTéV
av anoxoxOdel T drigo Tou N av yenowwonoinoel TNy ouyadixt utoyeapn. Enlong xdbe dngpopdoog Ou
mpénel vor dnutoupyrioet wla cuvohayry PAY 1 omolo B yenowwornomnbel poévo av dev avolZer) Prgo

Tou Péoa OE XAmolo ¥povixd ddc tnua. H Swtdnwon tou otadiou untoloyiouol tng Prgou elvou:

3iTdd10 vtoloyioroL hnoyopiag Ocwpolue 4Tl TO TEOTYOUUEVO GTAOLO EXEL ONOXATPWOEL
EMITUXOC xou X80 Pnpopdpog P éxel dnuovpyhoel wla cuvankayr) LOCK;, 6mou to hash etvou
YV0oT6 dNpocing.

o Ou dmyogdeol dnulovpyoly and xowold tn cuvariayh COMPUTE

— "Exel v elo6doug ano i ouvankayéc Lock; pe tood xdbe cuvahayfic (1+d) Bitcoins
— "Eyxel v+1 €€6doug

1. deposit;, i € [n]: x40 cuvohary? éxer ol d Bitcoins xan amontel 1o xAewdi K;
xaL TNV unoyeapr Tou F;’s 1 onolo enmanbelel to dnudcio xhewdi pk; 1) plo Eyxuen
umoypapt N omola efvar emondedouun and 1o dNUOCLo (AeLD pk NG OUADC.

2. prize: éyel o&la N Bitcoins xou amontel dXa o xXewdLd mou avolyouv Tic Pripoug
K;’s xou TNy umoypopy| Tou uToHPLou VIXNTH.

o Ou dmyogdeol umoyedgpouv aro xowol 0 cuvaaiayy COMPUTE yenowonowbdvtog o
threshold signature scheme, o xafévoc pe 0 86 TOL XxOPUATL WBILWTIXOV XAEWWD Sk;.

o Kdbe {mypogpdpoc dnuiovpyel, yioo xdbe i € [n], tnv Bio amhomonuévn cuvanhoyy PAY;
UE YEOVIXO OpL0 Ty OTIOUL 1) ELOEEYOUEVT] axuy) avapépetar out deposit;. H eZepyduevn oxun
Aertopyel wg anolnuiwon d Bitcoins av o mgopdeog P; dev amoxah et 0 Pripo tou uéypl to
YeoVix6 didotnua T2 . I mopddelyua, 6tay to d = 2n, 1 arolnuilwor uropet vo dlapolpas Tel
avdueoa otoug 2 vrodnepioug. Ou v dmpogdeol unoypedpouy and xowol T cuvarkayh PAY;
yenowonowwvtac to threshold signature scheme.

o Kdbe {mypogpdpog P; emarnbéuel 6tu tar mpomnyolueva Briuata éxouv ohoxinewbdel xou dnuo-
otevel ™ cuvaayr) LOCK; oo dixtuo.

o ‘Otav dXec ou ouvankayéc LOCK;’s éxouv eugaviotel 6to blockchain, 1 cuvohoryry COM-
PUTE dnuooiebetan oo blockchain.

e ‘Oco 1 cuvadhayry COMPUTE bev éxet epgaviotel otnv o\ucido cuvahaydyv, péyel To
XEOVIX0 BldoTnua €éoTw T1, xdbe Ynpopdpog P; umopel var TepUatioel T0 TR TOXONNO dNuo-
oonotdvtog T ouvokay) BACK; naipvovtog niow (1 + d) Bitcoins.

Figure 0.0.4: Avoxoivoon Muctufc Uigou uéow xowng cuvarhoyric - Ltédio Trnoroyiopold

‘Otav epgpaviotel 1 ouvonhayry COMPUTE otnv alucida twv cuvararyov xdbe ¢mpopodeoc unopet
va mdpel tiow d Bitcoins dnpociebovtoag pioc cuvahoyr 1 onolo Bivel To xNeWi TOU ATOXANDOTTEL TN
deoueuuévn Prigo tou. Av dXot ol Impopdeol ndpouy mtiow o d Bitcoins toug t6Te 0 VixnTig umopet va

xaboplotel xou var mapodPel to BpaPelo Tou. Av xdmolog xaxoning xeHoTNe SloxdPEL TO TEWTOXOANO

xviii

t61e 10 Ppofelo ydvetan Sung ol urtodhplol Talpvouy TV EYYiNON UETA Amd EOVIXO BACTNUA T.

[Mopoatneoldue 6t o 2 TpwtdXoANa Tou €xouv potabel €xouv Teploploud ¢ TEOg Toug unodnplou,
AOY® TOU TEOTOUL Ue Tov omolo xpVPouUE TNV YHPo AANE xol NOYW TOU UNYAVICUOU OXANG, ETEDN
oVUXATAOXEVELOUUE TO amoTéNETHA amd ONoug Toug urodnplouvs. Eva axdua yelovéxtnuo etvan otu
dlveton 1 BuvaTdTNTA GE Hdmotov xaxonn xeoTn va dlaxddel TNV dmpogopia yweic vo urtopolue vo
e&dryouue amotéreoya. o autd 10 NoYo Ba yenoipomotioouye €va xouvolplo TeoTo Vo xpUhouue TNy
Yo eved yia TNV avoxolvwon g Prigou Ba YeNOLUOTOCOVUE TOV TEOTO TNG XOWAC CUVIANAYNS.
Oewpolye 6Tl oL Ynpopodpol éxouv mpdoPacn oe authenticated public channels 6mou umopolv va
yedhouv pévo autol ywelic v Sarypdhouy ¥ va odNdEouv autd mou €xouv NN yeddet. Autéd unopel va
emteLy el péow TV PNELKdY LTOYEAPOY. 3E AUTO TO TEOTOXOANO BE YENCULOTOLOVVTAL OUTE LOLOTXA

XAVANLOL AVAUECA GTOUG PNpopdpous 0UTE XATOLOS TRITOS WS XEVTEIXT dEX .

Apyix6 Xtddo

e ‘OXot ou dmyogdeol emléyouy éva Tuyaio aplud oto Zg. Kdbe {mepogdpoc P; xpoutd To
a; wotxd xa dnuootelel o h; = h% xou plo Todel&n undevixrg yvwone 6tL to hj éxel
AATACHEVAC TEL CWO T AMOBELXVIOVTAS YVWGT TOU ;.

o Kdbe ¢ngogpdpoc P; eXéyyer v eyxupdTnta Twv omodel€ewy undevixic anddellng xou uro-

, cowi . IIZhhy
AoyiCer Ty i Ay = g

Figure 0.0.5: X160 Anuiovpylag Muotixfc WHgou uéow Decisional Diffie Helmann

3itddo ¥nyogoplog

o Kdfe Pngopdpoc xataoxesudler v dfgo tou we by = A g" bmou Vi € {0,1} xou Bivel
o anddelln yvoone 6w to V; € {0, 1}.

o Kdbe ynpopodpoc avaxowmver v Prgo tou b; yéon tng COMPUTE cuvankayrc. Kdbe
ripoc etvon plor Béoueuom, wag eloepyduevne oxunc otn cuvaaayy COMPUTE, dpo o
teeutatog Pnpopdpog de umopel var utoloyioel To anotéleopa Te Ynoicet.

3tddio Ymoloyiopo\ AnoTENECUATOG

o Av 6lol ou Yngopodpol avolEouy T BEOUEVOELS TOUS, ATOXOAVPOUY T XNEWIE UE ToL omola
avolyouv ot deoueupévee Prigol TOTE To amoTéNeEcUa TNS Ynpoopiag uropel Vo LTONOYLOTEL
wcu = logyV omou V =[], b; = g2i=1vi, 0 UTIONOYLOUOC TOL BLoxpttod Aoyapifuou elvou
éva BUoxoNo TEOPANUA, YVweilouue 6Tl To anotéreoua Peloxetan 1 < v < n xou UTOPOLYE
va pd€oupe yior Ty T Voue Sudpopouc alyopiBuous dnwe tov baby step giant step.

e Av xdmnolol and toug Ynpopodpoug dev avolEouv Tig deoueloelg Toug ToTE Bo YpnotuomoLr
couue TN u€hodo NG EMOUEVNC TOEOYEAPOU YLOL VO UTONOYICOUUE TO AMOTENECUO UOVO UE
TOUC EVTIHOUS Pnpopodpoue.

Figure 0.0.6: Y10 Ungogoplog xou Tnoroyiouol Anoteéopatog

Xix

Urngopopia UE TOLG EVILLOLS YNYopdpoug

Ye auth TNV Toedypapo eVIOYVOUUE TO TEWTOXOANO BAlovTag axdua €va yUPO UTONOYLOUOU OToU
Oa yenowomoijoovue HOVo TOUC EVTLIOUS YENOTES YLl TOV UTONOYIOUO Tou amoTteNéouatos. ‘Eoto
L n oudda tov {ngopdewnv mou dev dvollayv Tic deouedoelc toug yior T cuvoaayry COMPUTE.

INo voo yrogécoupe var utohoyloouye to amoténeoua, xdbe npopodeoc unoloyilel To e€¥c f;jyi =
H je{it+1,..., n} h] ’ ’ / ’ 7Y
—H]jeu,“,iq}hj pall pe plo unoypagh yvoong mou loggh; = log;lj hj .
Me outd ToV UTONOYIOUO EEANEIPOUUE TOUC XPNOTEC TOUG OToloUS BEV AvolEay TG BECUEUOELS TOUC.
Edv 0é\ouye va utohoyicoupe to anotéeoua tne dnpogopiag apxel vo utoloyicouue to u = log,V,

, Yty T Yty
onov V =[Licy by *hi™ xg) =[lic hy " *bi.

Prngopopia we x vrodnpiovg

Oewpolye 6T éxouye v Impopdpoug xa x utodnplovs. Awkéyoupe uio T m €ToL HOTE 0 UiXPOTEROS
oaxépanog vo etvon 2 > n. H tpomonoinon mou xdvouue elvon 6TL 1 xdbe Yrigog elvan xwdixomotiuevn
otV Tapoxdto wopen Vi = {20y, 20k ey, 2k D2, o(k=1)2¢, - o(k=Dime, 1 6oy ¢ elvan 0 opib-
uoc tov YRpwv xdbde Pnpopdpou. o vo utoloyicoupe 1o V' epyalduacte OTWS XU TEOTYOUUEVWS

X0l TOL ¢} UTOPOLY Vo uToNoYLeToOY Ue TN Bordeia Tou akyoplbuou knapsack

ITpoextdosig

3TN oUYXEXPUEVY BITAOUOTIXT HENETHOOUE T1) ONULOVEYLY TPWTOXONA®Y Tou Bacilovton oto bitcoin
(OO TE VoL BLATNENOOVUE TN OLXUOCOVY AVIUESA GTOUG TAXTES TOU TEEYXOLY XADE POPY TO TEOTOXOANO.
Eotudooue ot dnuovpyla TewToxdNAwy o i Aextpovixéc Yngogopleg. IIibavéc mpoextdoeg o

auTh TNV epyaoia etvou:

o Ileprypagy| TEQLOTOTERWV EQUPUOYWY Ol OTOIEC UTOPOLY VA EYUOUOCOUY BIXAUOCUVY] HECW TOU
HOVTENOU Tiuwplag.
o Melworn ToATAOXOTNTOC GTA TPWTOXOANO ToL OTOloL UENETAEL UTY| 1) EpyaaiaL.

o Anddelln ao@drelo TV TEWTOXON\WY 6To universal composable framework.

Contents

Introduction

Introduction

1.1 Problem Statement
1.2 Motivation e e e
1.3 Outline e

The Bitcoin Protocol

Theoretical Background

1.1 Hash Functions e
1.2 Proof of Work e
1.3 Merkle Trees o L o e
1.4 Public Key Cryptography e
1.5 Digital Signatures
1.6 Elliptic Curve Cryptogrphy e
1.7 Private Keys o

1.7.1 Encrypted Private Keys oo

1.7.2 Mini Private Keys
1.8 Generating the Public Key

Bitcoin Network

2.1 Node Types e e
2.1.1 Full Blockchain Nodes
2.1.2 Simple Payment Verification (SPV) Nodes

2.2 Joining the Network o

2.3 Discovering Peers L

2.4 MeSSagES . . . o .o e e e
2.4.1 Version Message

2.4.1.1 Network Address Structure,
2.4.2 Version Acknowledge Message
2.4.3 GetAddr Message
244 Addr Messageo
2.4.5 GetBlocks Message
2.4.6 GetHeaders Message o oo
247 Reject Messageo

2.5 Syncing inside the network
2.5.1 Block Propagation
2.5.2 Transaction Propagation oL oo

2.6 Messages Part 2. L L

Contents xxi

2.6.1 Inventory Message o o 25

2.6.2 GetData Messageo 26

3 Bitcoin Architecture 27
3.1 Transactions L e e e 27
3.1.1 Standard Transactions 28

3.1.2 Coinbase Transactions L 31

3.1.3 Transaction Fees 32

3.2 Blocks e e e e 32
3.2.1 Block Header 33

4 Bitcoin Ownership 35
4.1 Script Language and Script Construction 35
4.2 Standard Transaction Scripts o 36
421 PaytoPubKey 36

422 PaytoPubKey Hash. 37

4.2.3 PaytoScriptHash 38

4.2.4 MultiSig o 39

4.2.5 Nulldata e e 40

4.3 Non Standard Transactions Lo 41
4.3.1 Anyone Can Spend 41

4.3.2 Not Strict DER Encoding o 41

4.4 Signatures e e e e e 41
4.4.1 SIGHASH ALL e 43

4.4.2 SIGHASH_SINGLE 44

4.4.3 SIGHASH_NONE e 45

444 SIGHASH ANYONECANPAY 46

3 Secure Multiparty Computations via Bitcoin 47
1 Preliminaries 49
1.1 Standard Primitives 49
1.1.1 Zero Knowledge Proofs 49

1.1.2 Commitment Schemes 50

1.1.3 Secret Sharing Schemes o 50

1.1.4 Public Verifiable Computation 51

1.2 The Ideal/Real Paradigm 52
1.3 Special Ideal Functionalities 52
1.3.1 Definition of Ideal Functionality Fip 52

1.3.2 Definition of Ideal Functionality F' J’f 53

1.3.3 Definition of Ideal Functionality F,. 55

1.4 Bitcoin Based Timed Commitment Scheme 56
1.5 Simultaneous Bitcoin Based Timed Commitment Scheme 58

2 Designing Fair Protocols 59
2.1 Introduction L 59
2.2 Two Party Lottery e 60
2.2.1 Realizing a Two Party Lottery Protocol 61

2.3 Multiparty Lottery 62

xxii

Contents

2.3.1 Realizing a Multi Party Lottery Protocol
2.4 Secure Two-Party Computation
2.4.1 Realizing a Two Party Secure Computation Protocol
2.5 Multi Party Secure Computation
2.5.1 Non Malleable Secret Sharing
2.5.2 Fair Reconstruction L.
2.5.3 The Ladder Mechanism
2.5.4 Framework for The Ladder Mechanism

2.5.5 Realizing Multi Party Computation with Penalties Protocol

3 Incentivizing Correct Computations

3.1 Introduction
3.2 Verifiable Computation oL
3.2.1 Definition of Ideal Functionality F ,cp - - - -
3.2.2 Incentivizing Public Verifiable Computation
3.3 Fair Computation
3.3.1 Definition of Ideal Functionality Fy,;,
3.3.2 Bitcoin Enhancement Proposal

4 Electronic Voting

4.1 Ballot Commitment via Randomization of Ballots
4.2 Ballot Casting via Ladder Mechanism
4.3 Ballot Casting via MultiLock Transactions
4.4 Ballot Commitment via Decisional Diffie-Hellman
4.5 Ballot Casting via Compute Trasaction
4.6 Robustness e
4.7 Extending to k Candidates

4 Conclusion

1 Conclusion

1.1 Summary e e
1.2 Future Work

Bibliography

List of Figures

0.0.1 Etddo Aéopeuong Muotuadc Whgou oL xiv
0.0.2 Avaxoivoon Muctixic UHgou péow Mnyaviogold ExdNog . . . o o o v v v oo o XV
0.0.3 Avaxoivoon Muctixic UHgou péow xovhc cuvohayhc - Ltado Khewohpatog xvi
0.0.4 Avaxoivoon Muctixic UHgou péow xovhc cuUVoNAay S - tddo YTroloyiopol xvii
0.0.5 Etddo Anurovpyloc Muotinic YHgou péow Decisional Diffie Helmann xviii
0.0.6 Xtddo Ungogopiog xon YTTONOYIOUOD ATOTENEGUATOS © .« v v v v v v v o oo e e xviii
1.3.1 Merkle Tree with even number of Leaves 10
1.3.2 Merkle Tree with odd number of Leaves 10
2.3.1 Initial Connection to The Network 18
2.4.1 Generic Message Structure Lo 18
2.4.2 Version Message Payload o 19
2.4.3 Network Address Structure 21
2.4.4 Addr Message Payload o 22
2.4.5 GetBlocks Message Payload oo 22
2.4.6 Reject Message Payload 23
2.5.1 Block Propagation 24
2.5.2 Transaction Propagation L L o 25
2.6.1 Inventory Message Payload L 25
2.6.2 Inventory Vector Payload o 26
2.6.3 GetData Message Payload 26
3.1.1 Transaction Structure L 28
3.1.2 Transaction Output Reference Computation 29
3.2.1 Block Structure 32
3.2.2 Block Header Structure 33
4.2.1 Pay-to-Pubkey Structure L 36
4.2.2 Pay-to-PublicKey Hash Structure 37
4.2.3 Pay-to-ScriptHash Structure oo 38
4.2.4 Multisig Structure L 39
4.2.5 Nulldata Structure e 40
4.3.1 Anyone Can Spend Structure 41
4.4.1 Signature Computation - SIGHASH ALL 43
4.4.2 Signature Computation - SIGHASH SINGLE 44
4.4.3 Signature Computation - SIGHASH NONE 45
4.4.4 Signature Computation - SIGHASH ALL|SIGHASH ANYONECANPAY 46
1.3.1 Claim or Refund Functionality Definitiion 53
1.3.2 Secure Computation with Penalties Functionality Definition 54

1.3.3 Secure Computation with Penalties Functionality Definition 2 55

XXiv List of Figures

1.3.4 Secure Computation with Penalties Functionality - Reconstruct Definition 55
1.4.1 Bitcoin Based Commitment Scheme 56
1.5.1 Simultaneous Bitcoin Based Timed Commitment Scheme 58
2.2.1 Two Party Lottery in Bitcoin 61
2.3.1 MultiParty Lottery in Bitcoin o o 63
2.4.1 Two Party Secure Computation L 64
2.5.1 Framework for the Ladder Mechanism 66
2.5.2 Realizing F,. in the Fip hybrid model 67
3.2.1 Claim or Refund Functionality Definitiion with Exit Clause 70
3.2.2 Public Verifiable Computation Protocol 71
3.2.3 Public Verifiable Computation Protocol 71
3.3.1 The ideal functionality Fy,;o 72
4.1.1 Ballot Commitment Phase 76
4.2.1 Ballot Casting via Ladder Mechanism 7
4.3.1 Ballot Casting via MultiLock Transaction - Lock Phase 79
4.3.2 Ballot Casting via MultiLock Transaction - Compute Phase 80
4.4.1 Ballot Masking via Decisional Diffie Helmann 81

4.5.1 Ballot Casting via Compute Transaction 82

List of Tables

1.1.1 History of Hash Functions, 8
1.7.1 Private Key Formats 13
2.6.1 Inventory Object Type Values 26
3.1.1 LockTime Values 28
3.1.2 Coinbase Values e 31
4.2.1 Pay-to-Pubkey scriptSig Execution 36
4.2.2 Pay-to-Pubkey scriptPubkey Execution L. 37
4.2.3 Pay-to-PubkeyHash scriptSig Execution 37
4.2.4 Pay-to-PubkeyHash scriptPubkey Execution 38
4.2.5 Pay-to-ScriptHash scriptSig Execution 0oL, 39
4.2.6 Pay-to-ScriptHash scriptPubkey Execution 39
4.2.7 Multisig scriptSig Execution Lo 40
4.2.8 Multisig scriptPubkey Execution oo 40

4.4.1 Signature Hash Types 41

XXVi

Part 1

Introduction

Chapter 1

Introduction

1.1 Problem Statement

One fundamental problem of Cryptography is Secure Multiparty Computations which studies
whether mutually distrusting parties can jointly compute a function over their inputs while keeping
these inputs private. It has been proven in literature that we can compute securely the output of
the function [1] but we cannot guarantee fairness [2]. Therefore, fairness can only be achieved

through a trusted third party or a central authority.

There are many cryptographic tasks which lie into the field of secure multiparty computations and
some of them are lotteries, auctions, secure computation, verifiable computation and electronic
voting. The thesis overviews some of these problems, provides their definitions and studies the

protocols that exist in literature.

The thesis focuses on Electronic Voting which is a subfield of Secure Multiparty Computation. We
study the protocols proposed and then we construct our own protocol based on Decisional Diffie

Hellman and Bitcoin.

1.2 Motivation

The motivation for this thesis rises from the advent of decentralized cryptocurrencies, specifically
Bitcoin. Bitcoin is the first decentralized electronic crypto currency. The design of Bitcoin was
first described in a self published paper by Satoshi Nakamoto [3], which is used as pseudonym
and no real name has been linked as of today, in October 2008. The first blockchain which is
a public ledger containing all transactions broadcasted was created on January 3rd 2009, as the
genesis block which is the first block of the blockchain references the title of an article published
in The Times. Unlike paper cash or electronic cash, Bitcoin does not rely on a central authority.
Instead, it relies on its network to verify and authenticate transactions, which are also made public

for further verification. This new form of currency is also unique in that the number of coins in

4 Introduction

circulation will increase in a pre-determined way until the goal of 21 million coins in circulation is

reached sometime in the year 2140.

Our purpose is to study whether fairness can be provided without central authorities but with
Bitcoin’s decentralized nature. Therefore, users of the network guarantee the fair execution of the

protocols. Specifically, we study the decentralized electronic voting problem.

1.3 Outline

This thesis consists of 4 parts with several chapters. The first part is the introduction which gives

the problem statement, motivation for this work and the outline of this thesis.
The second part of the thesis covers the core functionality of Bitcoin as a system. It includes:

1. Theoretical Background: An introduction to some cryptographic primitives that are used
in Bitcoin and they are going to be useful during this thesis.

2. Bitcoin Network: We evaluate Bitcoin network and we study how peers connect to the
network and the necessary messages that are exchanged for their communication.

3. Bitcoin Architecture: We study the two core concepts of Bitcoin, transactions and blocks,
giving an overview of their structure and how they work inside the network.

4. Bitcoin Ownership: Continuing from the previous chapter we analyze the script function-
ality of Bitcoin transactions which allows us to build more complex senarios with transactions

and are usually referred as complex contracts.

The third part of the thesis discusses secure multiparty computation protocols built via Bitcoin. It

includes:

1. Preliminaries: An introduction to some cryptographic schemes and definitions of some
functionalities useful for building protocols in the next chapters.

2. Designing Fair Protocols: This chapter studies lottery and secure multiprty computation
protocols with the use of Bitcoin.

3. Incentivizing Correct Computations: Continuing from the previous chapter we describe
certain cryptographic tasks and the way we can build protocols to enforce users to provide
the correct result.

4. Electronic Voting: We study the protocols already proposed and then we propose our

protocol based on Decisional Diffie Hellman for ballot masking and Bitcoin for ballot casting.

The fourth part is a summary of the thesis and includes some directions for future work.

Part 2

The Bitcoin Protocol

Chapter 1

Theoretical Background

1.1 Hash Functions

A hash function is a mathematical function which takes an arbitrary finite length data and computes
a fixed-length value based on the data, called a hash or a digest. This function has certain properties

which make it important:

e Input can be a string of any size.

e It produces a fixed-length output. Bitcoin uses SHA-256 as hash function, the result is always
256 bits and does not depend on the length of the input.

o It is easy to compute and verify the hash for any given input. Computing the hash of an

n-bit string should have a running time of O(n).
A cryptographic hash function is considered secure when it has the following three properties:

1. Pre-Image Resistance
2. Second-Image Resistance

3. Collision Resistance
An overview of these properties is provided below:

¢ Pre-Image Resistance: A hash function is pre-image resistant, if given a hash value A in the
output space of the hash function, it is hard to find any message m such that h = hash(m).
This concept is related to that of one-way functions. A one-way function is easy to compute
on every input, but hard to invert given the image of a random input.

¢ Second-Image Resistance: A hash function is second-image resistant, if given a message
my1, it is hard to find a different message mgo such that hash(mi) = hash(mg). The difference
between this property and the collision resistance property is that the adversary is given the
message m; and he should find a message ma where m; # mg and hash(mi) = hash(mz).

¢ Collision Resistance: A hash function is collision resistant, if given two messages m, and
mag, it is hard to find a hash h such that h = hash(k, m1) = hash(k, m2), where k is the hash

8 Theoretical Background

key.

We should note that collisions exist but it is hard to find them. A simple proof for the above
assumption is that the domain space of the hash function contains all strings of all sizes while the
range space contains strings of fixed-length size. As the domain space is infinite, it is bigger than

the range space. Consequently, there must be strings which map to the same output string.

A very simple approach to find collisions in a hash function with an output size of 256 bits is to

2256

choose + 1 distinct values, compute the hashes for each of them and then compare them all

for duplicates. If we start picking strings at random and computing hashes we are going to find

a collision long before trying 22°6

+ 1 values. We can find a collision by only examining roughly
the square root of the number of possible outputs, known as the birthday paradox attack. The
algorithm described above for finding collisions is working in every hash function but since it’s a
bruteforce algorithm it is slow and it depends on the number of tries we have to perform. Below,
there is a table containing several hash functions and the size and year that were broken. We

should note that in 2005 a collision for SHA-1 was found but the hash is not considered broken.
Hash Scheme ‘ Year Constructed Number of Bits Year Broken

MD4 1990 128 1992

MD5 1992 128 1994
SHA-1 1994 160 *
SHA-256 2005 256 ?

Table 1.1.1: History of Hash Functions

It is very easy to construct a function that is not collision resistant. One example can be a function
that takes a random size length string and it returns always the same result. If we want to specify
that result then we can use the function H(msg) = msg mod 22°6. This fuction has an efficient
method to find a collision since it returns only the last 256 bits of the input. We should note
that the hash functions we use we suspect that they are collision resistant but there are no hash

functions proven to be collision resistant.

Hash functions are very useful as they can serve as a message digest. This means that we do not
need to remember the whole package we have but we can check the hash to see if we have seen it

before or if we are provided the same file.

1.2 Proof of Work

A proof of work system is used to ensure that a party has spent a certain amount of work to provide
a solution which can be easily verified by anyone. Producing a proof of work can be a random
process with low probability. Therefore, a lot of attempts are required on average before a valid one
is generated. Specifically, Bitcoin requires each block generated proves that a significant amount of
work was invested during its creation. As a result, the cost to modify a particular block increases
with every new block added to the blockchain. Consequently, dishonest peers who want to modify

past blocks have to spend a bigger computational effort than honest peers who only want to add

Merkle Trees 9

new blocks to the blockchain. Bitcoin’s mining system incorporates a proof of work system based

on Adam Back’s hashcash [4]. The advantages of this system are:

e The party providing the proof of work has invested a predefined amount of effort in order to
create the proof.

e The proof can be verified efficiently.

The proof of work used in Bitcoin takes advantage of the apparently random nature of cryptographic
hashes, which was explained in the previous section. For a party to prove that spent a certain
amount of computational work to create a block, it must create a hash of the block header which
does not exceed a certain value. In Bitcoin the hashing algorithm is double SHA-256 and the
predefined structure is a hash less or equal than a target value T. We call this value threshold
target and the goal is to find a hash that is numerically less than the target. Every time we
want to change the result of the hash we change a variable which is called nonce usually by
incrementing it by 1. The success probability of finding a nonce n for a given message (msg), such
that H = SH A256%(msg||n) is less or equal to the target T is
T
The expected number of trials performed by a party attempting to find a proof of work is, on
average, the following amount of computations
1 2256

TH<TI= 5=~ 71

Finally, it is easily and efficiently verifiable to check whether the nonce accompanied with the

message is indeed a valid proof of work by simply evaluating

SHA2562 (msg||n) <T

1.3 Merkle Trees

Merkle Trees [5] are binary hash trees which allow the efficient verification of large sets of data and
they were named by their inventor Ralph Merkle. Each block in the Bitcoin blockchain contains
a group of transactions and these blocks are leaves in the Merkle tree. The cryptographic hash
algorithm used in Bitcoin’s merkle trees is SHA256 applied twice, also known as double-SHA256. A
Merkle tree is constructed by recursively hashing pairs of nodes until there is only one hash, called
the root, or Merkle root. Furthermore, if an adversary tries to change a data block at the bottom
of the tree, then the hash pointer, one level up, won’t match and even if he continues changing
this block, the change will eventually propagate to the top of the tree where he won’t be able to
manipulate the hash pointer that we have stored. Consequently, any attempt to tamper with any

piece of data will be detected by just referencing to the hash pointer at the Merkle root.

10 Theoretical Background

n=h(ny||n,)
| |
n(]:h(annm) nlzh(nmllnu)
1 5
[| [|
ngo=h(dy) ny,=h(dy,) ny,=h(d,,) n;;=h(d)

A A A A
doo do, dyg dy;

Figure 1.3.1: Merkle Tree with even number of Leaves

An example of a Merkle tree can be seen in the figure above [6]. Leaves are computed directly as
hashes over data blocks, whereas parent nodes further up the tree are computed by concatenating
their respective children. The process continues until there is only one node at the top, the node
known as the Merkle Root. Data blocks in the bitcoin network are the transactions IDs. Merkle
tree is a binary tree, thus it needs an even number of data blocks. If there is an odd number of data
blocks the last one will be duplicated to create an even number of them, also known as a balanced

tree. This is shown in the example below [6]:

n=h(ny||n,)
| |
n(]:h(annm) nlzh(nmllnm)
1 5
[| [|
ng,=h(dy) ny,=h(dy) nyo=h(d,,) o

A A A
doo dy; dyg

Figure 1.3.2: Merkle Tree with odd number of Leaves

The figures above are used as examples for constructing a tree which consists of four transactions,
although the method shown can be generalized to construct trees of any size. In bitcoin it is
common to have several hundread to more than a thousand transactions in a single block, which

are summarized in exactly the same way producing just 32 bytes of data as the single merkle root.

Another advantage that Merkle Tree offers, unlike the blockchain, it allows a concise proof of
membership. If we want to prove that a certain data block is a member of the Merkle Tree while
we have only the root of the tree it is enough to show the path from this data block to the root. We
can ignore the rest of the tree, as these blocks alone, allow us to verify the hashes all the way up to

the root of the tree. Merkle Trees is a very efficient data structure because when N data elements

Public Key Cryptography 11

are hashed and summarized in a Merkle Tree, we can check if any data element is included in the

tree with at most 2logs N calculations.

Merkle trees are used extensively by Simplified Payment Verification nodes. SPV nodes don’t have
all transactions and do not download full blocks, just block headers. In order to verify that a
transaction is included in a block, without having to download all transactions inside that block,
they use an authentication path, or merkle path. More about Simplified Payment Verification

Nodes in chapter 2.

1.4 Public Key Cryptography

Public-key cryptography introduces an absolutely new way of thinking about encryption, decryption
and digital signing since it allows encrypted communication without private key exchange. In order
to encrypt and decrypt messages, we create two different keys, or a key pair: the public key and
the private key. It is computationally hard to deduce the private key from the public key. These
mathematical functions are practically irreversible, meaning that they are easy to calculate in one
direction and impossible to calculate in the reverse direction. Anyone with the public key can
encrypt a message but not decrypt it. Only the person with the private key can decrypt the
message. If we publish our public key, anyone is able to send us messages encrypted with it, and
those messages cannot be read by anyone else than us. The mathematical formula deriving public

key cryptography is the following, let C denote the encrypted message:
C = encrypt(M, Kpub)

M = decrypt(C, Kpri)

There are many public-key algorithms, and RSA algorithm is the most widely used. Bitcoin uses

elliptic curve multiplication as the basis for its public key cryptography.

1.5 Digital Signatures

A digital signature is the second cryptographic primitive after hash functions that we need to build

blocks. It should have two basic properties:

o One person can create his/her own signature and everyone else can verify the validity of the
signature.
e« We want this signature to be tied to a particular message so this signature can be used to

signify the message you signed.

Public-key cryptography is used for digital signing in Bitcoin: we can find the hash of the message
and encrypt it with the private key, thus forming a digital signature. If someone who has the
public key receives the message with the digital signature, it is possible for him/her to verify both

the authenticity and integrity of the message by decrypting the signature with the public key and

12 Theoretical Background

comparing the result to the hash of the message. The signed message also has the property of
non-repudiation, that is, the sender is not able to falsely deny sending the message. The Bitcoin
system must ensure who broadcasts the message so that the system knows that only one party can

broadcast his own message. Steps for sending a message with contents:

1. Get the hash of the message: Hash = SHA256(message)
2. Encrypt hash with the private key to get signature: S = encrypt(Hash, Kpri)

3. Send the signature along with the message.

Steps for verifying a signature for a given message:

1. Take the hash of the message: Hash = SH A256(msg)
2. Decrypt signature with public key: Hash' = decrypt(S, Kpub)
3. Compare Hash with Hash’. If they are equal the message is valid.

The main Digital Signature Schema used by Bitcoin is the Elliptic Curve Digital Signature Al-
gorithm (ECDSA), a variant of Digital Signature Algorithm (DSA) which uses Elliptic Curve
Cryptography (ECC).

1.6 Elliptic Curve Cryptogrphy

Elliptic curve cryptography is a type of asymmetric public key cryptography based on the elliptic
curve discrete logarithm problem. Elliptic curve cryptographic schemes were proposed indepen-
dently in 1985 by Neal Koblitz [7] and Victor Miller [8]. It’s a process that uses an elliptic curve
and a finite field to sign data in such a way that third parties can verify the authenticity of the
signature while the signer retains the exclusive ability to create the signature. Transferring own-
ership of bitcoins from user A to user B is realized by attaching a digital signature (using user A’s
private key) of the hash of the previous transaction and information about the public key of user

B at the end of a new transaction.

This scheme derives from the following equation according to spec 2.4 [9]
y? = (2% + ax + b) mod p
Bitcoin uses a specific elliptic curve and set of mathematical constants, as defined in a standard

called secp256k1, established by the National Institute of Standards and Technology (NIST). The

secp256k1 curve is defined by the following function, which produces an elliptic curve:

y? = (2° + 7) mod p

Private Keys 13

1.7 Private Keys

A private key is a number, generated randomly. The private key provides control over all funds
associated with the corresponding bitcoin address. It is used to create signatures that are required
to spend bitcoins by proving ownership of funds used in a transaction. The private key must remain
secret, as revealing it to a third party is equivalent to giving them control over the bitcoins secured
by that key. The private key should be backed up and protected from accidental loss, since if lost
it cannot be recovered and the funds secured by it are forever lost too. The private key can be
represented in a number of different formats, all of which correspond to the same 256-bit number.

These formats include:

Type Prefix ‘ Description
Hex None 64 hex digits

Baseb8Check encoding: Base-58 with
Wallet Import Format 5 version prefix of 128 and 32-bit check-

sum

As above, with added suffix 0x01 be-

Wallet Import Format Compressed Kor L .
fore encoding

Mini S Less than 30 characters

Table 1.7.1: Private Key Formats

1.7.1 Encrypted Private Keys

BIP0038 [10] proposes a common standard for encrypting private keys with a passphrase and
encoding them with Base58Check so that they can be stored securely on backup media, transported
securely between wallets, or kept in any other condition where the key might be exposed. The
advantage of encrypting your paper wallet’s private key with a password is that if your paper
wallet is stolen or otherwise exposed, the balance on the wallet is safe unless the passphrase used
to encrypt the wallet is guessed. Although this means that the balance in your wallet is as safe as
the passphrase you use. A BIP0038 encryption scheme takes as input a bitcoin private key, usually
encoded in the Wallet Import Format (WIF), as a Base58Check string with a prefix of 75" [11].
Additionally, the BIP0038 encryption scheme takes a passphrase usually composed of several words
or a complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a
Baseb8Check-encoded encrypted private key that begins with the prefix 6P. If you see a key that
starts with 6P, that means it is encrypted and requires a passphrase in order to decrypt it back into
a WIF-formatted private key (prefix 5) that can be used in any wallet. Many wallet applications
now recognize BIP0038-encrypted private keys and will prompt the user for a passphrase to decrypt
and import the key.

14 Theoretical Background

1.7.2 Mini Private Keys

Mini private key format [12] is a method for encoding a private key in under 30 characters, enabling
keys to be embedded in a small physical space, such as physical bitcoin tokens, and more damage-
resistant QR codes. They usually have the prefix ‘S’ In order to derive the full private key, the
user simply takes a single SHA256 hash of the original mini private key. This process is one-way:

it is intractable to compute the mini private key format from the derived key.

1.8 Generating the Public Key

The public key is derived from the private key. We start by creating a random 256-bit private key,
k. We multiply it by a predetermined point on the curve called the generator point G to produce
another point somewhere else on the curve, which is the corresponding public key Q. The generator

point is specified as part of the secp256kl standard and is always the same for all keys in bitcoin.
Q=kxG

Since the generator point is always the same for all bitcoin users, a private key k multiplied with G
will always result in the same public key Q. The relationship between k and Q is fixed, that means
that if the private key is very large it is easy to compute the public key but very difficult for an

attacker to bruteforce.

Chapter 2

Bitcoin Network

The term Bitcoin Network refers to the group of nodes running the bitcoin P2P protocol. Every
user connected to the network through a client is considered to be a Bitcoin node. Although
Bitcoin is the main protocol there are other protocols such as Stratum, which provide functionality

for mining, lightweight clients and mobile wallets.

2.1 Node Types

All Bitcoin nodes are considered equal inside the network although they might support a different
functionality to it. A Bitcoin node has certain functionalities such as routing, blockchain database,
mining and wallet services. All nodes include routing as a basic functionality and they differentiate
in which of the rest functionalities include. Below there is a list of the most common node types

on the extended bitcoin network [11]:

¢ Reference Client: Contains a wallet, miner, database and network routing node on the
bitcoin P2P network.

¢ Full Blockchain Node: Contains a database and network routing node on the bitcoin P2P
network.

e Solo Miner: Contains a mining function with database and network routing node on the
bitcoin P2P network.

o Light-Weight Wallet (SPV): Contains a wallet database and network routing node on the
bitcoin P2P network.

¢ Pool Protocol Servers: Gateway routers connecting the bitcoin P2P network to nodes
running other protocols such as pool mining nodes or Stratum nodes.

¢ Mining Nodes: Contain a mining function without a blockchain, with Stratum protocol or
another pool protocol.

o Light-Weight Stratum Wallet (SPV): Contains a wallet and a network node on the

Stratum protocol, without a blockchain.

16 Bitcoin Network

2.1.1 Full Blockchain Nodes

In the first years of Bitcoin all nodes were full nodes, since the majority of them were using the
reference client. Full Blockchain nodes maintain the most up-to-date copy of the blockchain with
all the transactions. The construction of the blockchain starts with the genesis block and continues
by building up and verifying until the latest known block in the network. This type of node can
verify transactions autonomously without relying on any other node as an external reference. A
full node relies only on the network to receive updates about new blocks of transactions, verifies
them and then migrates them into its local copy of the blockchain. The blockchain nowadays is
around 90 Gb and depending on your internet connection it might require a couple of hours or
days to sync to the bitcoin network. The most known implementation is Bitcoin Core which was

the first client available for Bitcoin originally developed by Satoshi Nakamoto.

2.1.2 Simple Payment Verification (SPV) Nodes

Portability is a huge factor these days. With the uprising of smartphones and tablets and due
to restrictions in hardware storage and limitations in size of mobile applications, new clients have
been introduced which do not maintain a copy of the blockchain and they are considered to be
lightweight clients. This type of clients are called Simplified Payment Verification allow operating
in the network without storing the blockchain. It is possible to build a Bitcoin implementation that
does not verify everything, but instead relies on either connecting to a trusted node, or puts its faith
in high difficulty as a proxy for proof of validity. SPV nodes connect to full nodes and download
only the block headers without the transactions included in each block [11]. SPV nodes verify
transactions using a slightly different methodology that relies on peers to provide partial views of
relevant parts of the blockchain on-demand. Simplified Payment Verification verifies transactions
by reference to their depth in the blockchain instead of their height. Whereas a full-blockchain
node will construct a fully verified chain of thousands of blocks and transactions reaching down
the blockchain all the way to the genesis block, an SPV node will verify the chain of all blocks
and link that chain to the transaction of interest. As a further optimization, block headers that
are buried sufficiently deep can be thrown away after some time. An SPV node cannot be tricked
that a transaction exists when it does not because the SPV node establishes the existence of a
transaction in a block by requesting a merkle path proof and by validating the proof-of-work in the
chain of blocks. On the other hand, a transaction can be hidden from an SPV node due to the fact
that it does not have the ability to verify that a transaction does not exist because it does not have
a ledger of all transactions. To defend against attacks an SPV Node should connect randomly to
several nodes, in order to increase the probability to have at least one honest node in its network.
SPV nodes get only the block headers using a GetHeaders command. The responding peer will
send up to 2000 block headers using a single headers message [11].

Joining the Network 17

2.2 Joining the Network

Bitcoin works as a peer-to-peer network in which the participants jointly emulate the central au-
thority that controls the correctness of transactions. In this section, we will explain how a client can
join the network, which actions are performed on the network and how information is propagated
through it. Before a Bitcoin node exists in the network, it needs to connect to a random peer, but
it should find the first peer. In the past they existed 4 ways of finding the first peer, nowadays
one of them is deprecated. Note that the method of finding peers applies for Bitcoin Core and not

some other bitcoin client implementation [13].

1. The primary mechanism, if the client has ever run on this machine before and its database is
intact, is to look at its database. It tracks every node it has seen on the network, how long
ago it last saw it, and its IP address. Bitcoin Core will spend up to 11 seconds trying to
connect to a peer in its database. If that doesn’t work, it will follow the second mechanism;
it will query a DNS Server.

2. DNS Seeds: The client issues DNS requests to learn the addresses of other peer nodes. The

client includes a list of host names for DNS services that are seeded.

bitseed.xf2.org

¢ dnsseed.bluematt.me

¢ seed.bitcoin.sipa.be

¢ dnsseed.bitcoin.dashjr.org

¢ seed.bitcoinstats.com

Addresses discovered via DNS are initially given a zero timestamp; therefore they are not
advertised in response to a GetAddr request. This is the default seeding mechanism, as
of v0.6.x and later. If that doesn’t work within 60 seconds, it will fall back to one of its
hardcoded addresses.

3. Hard Coded ”Seed” Addresses: Should the DNS Addresses method fail, the client contains
hardcoded IP addresses that represent bitcoin nodes. They are only used for finding other
peers, as to avoid overload, the connection thread will close seed node connections when
the local node has enough addresses. Seed Addresses are initially given a zero timestamp;
therefore they are not advertised in response to a GetAddr request.

4. TRC Addresses: In addition to learning and sharing its own address, the node learned about
other node addresses via an IRC channel. After learning its own address, a node encoded its
own address into a string to be used as a nickname. Then, it randomly joined an IRC channel
named between bitcoin00 and bitcoin99. Then it issued a WHO command. The thread read
the lines as they appeared in the channel and decoded the IP addresses of other nodes in
the channel. It did this in a loop, forever, until the node was shutdown. When the client
discovered an address from IRC, it set the timestamp on the address to the current time,
but it used a "penalty” of 51 minutes, which means it looked like it was actually seen almost
an hour earlier. As of version 0.6.x the Bitcoin client no longer uses IRC bootstrapping by

default, and as of version 0.8.2 support for IRC bootstrapping has been removed completely.

18 Bitcoin Network

2.3 Discovering Peers

Once connected, the joining node learns about other nodes by asking their neighbours for known
addresses and by listening spontaneous advertisements of new addresses. Figure below visualizes

the connection of a user entering the network and connecting to a random peer.

Incoming
User A

Version Verack [Version Verack getaddr addr

Peer B

Figure 2.3.1: Initial Connection to The Network

The incoming user sends a version message containing version number, block count current time
and several other information. The remote peer will send back a version acknowledge message
and its own version message if it accepts connections from this user. User will respond with its
own version acknowledge message if it accepts connections from node’s version message. Right
after connecting to the peer, the incoming user is a new node to the network and needs to learn
about more active peers. Therefore, there is an exchange of GetAddr and Addr messages, storing
all addresses that the new node does not know about. Addr messages usually contain only one
address, but this number can be up to 1000 usually in cases where a new node enters the network.
When a node receives a GetAddr request, it checks how many addresses it has, have a timestamp
in the last 3 hours and it sends those addresses. We should note that the maximum nuber of nodes
that a GetAddr request is 2500.

2.4 Messages

In this section we are going to analyze the stucture of the most used messages for connection. All
messages in the network protocol use the same container format, which consists of two parts a

required multifield header and an optional payload. The generic message structure is the following;:

magic number

command

length

checksum

payload

Figure 2.4.1: Generic Message Structure

Messages 19

Magic Number (Network ID)

Network ID field is indicating the network which broadcasted the message and is used to seek the
next message when stream state is unknown. This number consists of four bytes which start every
message, for the main Bitcoin network is 0xD9B4BEF9. There are 3 more magic values for testnet,

testnet3 and namecoin.

Command

Following the Network ID is a 12 byte field describing the command being sent in the message.
This is usually an ASCII string identifying the packet content that is zero padded if needed to fill
the length.

Length
Length fields contains the size of the payload for this specific packet in bytes.

Checksum

The next 4 bytes are a checksum of the payload. This is created by SHA256 hash of SHA256 hash
of payload and then discarding everything after the first 4 bytes of this 32byte hash. If payload is
empty the checksum is always 0x5df6e0e2 which is the result of double SHA256 of empty string.

Payload
Payload field contains the actual data which is defined according to which message is relayed and
its structure. In case the packet has no payload, then payload length is zero(0x00) bytes. Payload

decoding, depends upon the protocol version and the command.

2.4.1 Version Message

The version message provides information about the transmitting node to the receiving node at
the beginning of a connection. Any other messages will be rejected until both clients peers have
accepted version messages. Version message follows the general message structure, where in payload

field contains the actual data of the version message and has the following structure:

version

services

timestamp

addr_recv

addr_from

nonce

user__agent

start__height

relay

Figure 2.4.2: Version Message Payload

20 Bitcoin Network

Version

Version field identifies the protocol version being used by the node.

Services

Services field is a list of services supported by the node with this connection. The service which is
currently available at this point is NODE_NETWORK. It defines that this node can be asked for
full blocks instead of just headers.

Timestamp
Timestamp field contains the standard UNIX timestamp in seconds since epoch according to the

transmitting node’s clock.

Addr_recv
Addr_ recv field is the network address of the node receiving this message. Network address is a

data structure which will be analyzed in the next subsection.

Addr_from
Addr_ from field is the network address of the node emitting this message. Network address is a

data structure which will be analyzed in the next subsection.

Nonce

Nonce is a randomly generated unsigned integer every time a version packet is sent. This nonce is
used to detect duplicate payloads (connections to it). If the nonce is 0, the nonce field is ignored. If
the nonce is anything else, a node should terminate the connection on receipt of a version message

with a nonce it previously sent.

User__agent

User agent field is a variable length string containing the name of the Node implementation.

Start__height

Start Height field is the last block received by the emitting node, also known as the height of the
latest block in our database. As Bitcoin node adds more blocks to its database, this height grows
as well. When the node finds another node with higher Block start address, it can request newer

blocks from that node to update its database.

Relay
Relay field defines whether the remote peer should announce relayed transactions or not.
2.4.1.1 Network Address Structure

As we have seen above Addr_ recv and Addr_from need a network address. Protocol defines a

network address structure which is the following:

Messages 21

time

services

IPv4/6

port

Figure 2.4.3: Network Address Structure

Services
Services is a field of features which will be enabled with this connection and has the same func-

tionality as in the version structure.

IPv4/v6
IP field has 16 bytes. Till version 0.7.0 the client could only read IPv4 network addresses so it was
reading the last 4 bytes only since the first 12 were 00 00 00 00 00 00 00 00 00 00 FF FF.

Port

The next field is port which is the port number in network byte order.

2.4.2 Version Acknowledge Message

The version acknowledge (verack) message is sent in reply to version message, informing the con-
necting node that it can begin to send other messages. This message consists of only a message
header with the command string ”"verack” and empty payload data. Verack message belongs to a

category of messages in which payload is zero.

2.4.3 GetAddr Message

The GetAddr message requests from the receiving node information about known active peers. The
response to this message is to transmit one or more addr messages with one or more peers from
a database of known active peers. A node is considered active if it has been sending a message
within the last three hours. The structure is the following with payload being zero since no data is

transmitted.

2.4.4 Addr Message

Addr message relays connection information for peers inside the network. Each peer who wants
to accept incoming connections creates an addr message providing its connection information and
then sends that message to its peers unsolicited. Non-advertised nodes should be forgotten after
typically 3 hours. Addr message consists of the message header plus the payload which consists of

2 items, a counter of addresses sent and a list of addresses. Payload structure is shown below:

22 Bitcoin Network

Count

AddrList

Figure 2.4.4: Addr Message Payload

Count

Count is the number of address entries which is maximum 1000 entries.

AddrList
AddrList field gets the addresses of other nodes on the network by calling a structure which is the

same as the structure in the network address.

2.4.5 GetBlocks Message

GetBlocks message is used to request a list of blocks starting after the last known hash in the slice
of block locator hashes. The list is returned via an inventory message and is limited by a specific
hash to stop at or the maximum number of blocks per message, which are currently 500. The
locator hashes are processed by a node in the order as they appear in the message. If a block hash
is found in the node’s main chain, the list of its children is returned back via the inventory message
and the remaining locators are ignored, no matter if the requested limit was reached, or not. To
receive the next blocks hashes, a peer needs to issue GetBlocks again with a new block locator
object [14].

version

hash count

block locator hashes

hash_ stop

Figure 2.4.5: GetBlocks Message Payload

Version

Version field identifies protocol version being used by the node.

Hash Count

Hash count is the number of block locator hash entries.

Block Locator Hashes

Block Locator Hashes is an object which locates the last block we have.

Hash__stop
This field has the hash of the last block which a client should have. Hash stop can bring up to 500

hashes. It is allowed to send in fewer known hashes down to a minimum of just one hash.

Messages 23

2.4.6 GetHeaders Message

The GetHeaders message requests a Headers message that provides block headers starting from
a particular point in the blockchain. It allows a peer which has been disconnected or started for
the first time to get the headers it has not yet sen. The GetHeaders message is nearly identical to
the GetBlocks message, with one minor difference, the inventory message reply to the GetBlocks
message will include no more than 500 block header hashes; the headers reply to the GetHeaders

message will include a maximum of 2000 block headers.

2.4.7 Reject Message

The reject message informs the receiving node that one of its previous messages has been rejected.

message length

message

code

reason length

reason

data

Figure 2.4.6: Reject Message Payload

Message Length
Message Length field indicates the number of bytes in the following message field.

Message
Message field indicates the type of rejected message as ASCII text without zero padding.

Code

Code field indicates the rejected message code.

Reason Length
Reason Length indicates the number of bytes in the following reason field. May be 0x00 if a text

reason isn’t provided.

Reason
Reason field indicates the reason for the rejection in ASCII text. This should not be displayed to

the user; it is only for debugging purposes.

Data
Data field indicates optional additional data provided with the rejection. For example, most re-
jections of tx messages or block messages include the hash of the rejected transaction or block

header.

24 Bitcoin Network

2.5 Syncing inside the network

Transactions and block messages are important for synchronizing and updating the blockchain. In
order to avoid sending transaction and block messages to nodes that have already received them
from other nodes, they are not forwarded directly [11]. The availability of transactions and blocks
is announced to the neighbors by sending them an inventory (inv) message once the transaction or
block has been completely verified. The first thing a full node will do once it connects to peers and
before starting validating unconfirmed transactions and recently-mined blocks, it must download
and validate all blocks from block 1. If it is a brand-new node and has no blockchain at all, then
it only knows one block, genesis block, which is hardcoded in the client software. Starting with
block #0, the genesis block, the new node will have to download blocks up to the current tip of
the best block chain to synchronize with the network and re-establish the full blockchain. The
inventory message contains a set of transaction hashes and block hashes that have been received
by the sender and are now available to be requested. A node, receiving an inventory message for a
transaction or block that it does not yet have locally, will issue a GetData message to the sender
of the inventory message containing the hashes of the information it needs. The actual transfer of

the block or transaction is done via individual block or tx messages.

2.5.1 Block Propagation

Figure 2.5.1 visualizes a single block propagation in the network. Node A receives a block, verifies
it and announces it to its neighbors. Node B receives the inventory message and since it does not
recognise this block, it will issue a GetData message. Upon receiving the GetData message, Node
A will deliver the block to Node B.

block

verification

Node A

Inv getdata block

Node B

Figure 2.5.1: Block Propagation

Messages Part 2 25

2.5.2 'Transaction Propagation

Transaction propagation has the same structure although it presents the reception of a transaction
instead of a block, as Node A will deliver the transaction to Node B. Each block or transaction
which is introduced to the network at one of the nodes, is propagated throughout the network using

the below broadcast mechanism.

tx

verification

Node A

Inv getdata tx

Node B

Figure 2.5.2: Transaction Propagation

2.6 Messages Part 2

2.6.1 Inventory Message

The inventory message allows a node to advertise its knowledge of one or more objects, usually
blocks or transactions. It can be sent unsolicited to announce new transactions or blocks, or it
can be sent in reply to a GetBlocks message or MemPool message. The recipient can compare
the inventories from an inv message against the inventories it has already seen, and then use a
follow-up message to request unseen objects. If the inventory message we receive is for a piece of
data our node does not have, it will respond to that peer with a GetData message request. Once
we have the new piece of data, we will then send out inventory messages to the rest of our peers

letting them know that we have the data and they are welcome to request it from us.

count

inventory

Figure 2.6.1: Inventory Message Payload

Count

The count field is an integer which has the number of inventory vector entries.

26 Bitcoin Network

Inventory
The inventory field is of type inventory vector and is used for notifying other nodes about objects
they have or data which is being requested. Inventory vectors can have up to 50.000 entries and

consist of the following data format:

type
hash

Figure 2.6.2: Inventory Vector Payload

Type
Identifies the type of object hashed, linked to this inventory. Client needs to check type field
to recognize which object is receiving. Object type can be one of the 4 values which are error,

transaction, block and filtered block according to the table below:

Value ‘ Name
0 ERROR
1 MSG TX
2 MSG BLOCK
3 MSG FILTERED BLOCK

Table 2.6.1: Inventory Object Type Values

Hash
SHA256(SHA256()) hash of the object is sent.

2.6.2 GetData Message

GetData is used in response to inventory, to retrieve the content of a specific object, and is usually

sent after receiving an inventory packet, after filtering known elements.

count

inventory

Figure 2.6.3: GetData Message Payload

GetData message follows the same structure as inventory message since it is the actual reply to it
and a request for transactions or blocks. The response to a GetData message can be a tx message,
block message, merkleblock message, or notfound message. This message cannot be used to request
arbitrary data, such as historic transactions no longer in the memory pool or relay set. Full nodes
may not even be able to provide older blocks if they’ve pruned old transactions from their block
database. For this reason, the getdata message should usually only be used to request data from
a node which previously advertised it had that data by sending an inv message. The format and
maximum size limitations of the GetData message are identical to the inv message; only the message
header differs.

Chapter 3

Bitcoin Architecture

Bitcoin is a decentralized digital currency based on a P2P network. Within the network each
node is responsible for processing transactions and maintaining a public ledger of all transactions.
Transactions are processed in a procedure called mining. The ledger, also known as the blockchain,
is a record of all transactions that have ever occurred in the Bitcoin system and is used to track

ownership of Bitcoins.

3.1 Transactions

Transactions are the core of the bitcoin system and let users spend satoshis. Each transaction
consists of several parts which enable both simple direct payments and complex contracts. Bitcoin
is designed to ensure that transactions are created, propagated on the network, validated, and
finally added to the blockchain. A transaction informs the network that the owner has authorized
the transfer of a certain amount of bitcoins to someone else. In principle, there are two types of
transactions, coinbase transactions and regular/standard transactions. Coinbase transactions are
special transactions in which new Bitcoins are introduced into the system for circulation. They are
included in every block as the first transaction and are used as a reward for solving a proof-of-work
problem. Standard transactions, on the other hand, are used to transfer existing Bitcoins amongst
different accounts which may belong to the same user or not. A transaction is a data structure
that encodes a transfer of value from a source of funds, called an input, to a destination, called an
output. Transaction inputs and outputs are not related to accounts oridentities. Transactions are

messages which contain a number of fields and their structure is presented below:

28 Bitcoin Architecture

version number

InputCount

InputsList

OutputCount

OutputsList

locktime

Figure 3.1.1: Transaction Structure

Version Number
The version field, stores the transaction version number and the rules followed by the transaction.

The current transaction version number is 1.

InputCount

This field stores the number of elements in the inputs vector.

InputsList
The InputsList field stores a vector of one or more transaction inputs. This field will be explained

in section of standard transactions and coinbase transactions.

OutputCount

This field stores the number of elements in the output vector.

OutputsList
The OutputsList field stores a vector of one or more transaction outputs. This field will be explained

in section of standard transactions and coinbase transactions.

Locktime

This field stores the locktime which indicates the earliest time a transaction can be added to the
blockchain. Once the lock time has been exceeded, the transaction is locked and becomes immune
to transaction replacement. The locktime is encoded as either a timestamp in UNIX format or as

a block number:

Value Description ‘
0 Always Locked
< 5% 108 Block number at which transaction is locked

> 5% 10° | UNIX timestamp at which transaction is locked

Table 3.1.1: LockTime Values

3.1.1 Standard Transactions

Every bitcoin transaction creates outputs, which are recorded in the blockchain. All of these

outputs, create spendable chunks of bitcoins called unspent transaction outputs, which are then

Transactions 29

recognized by the whole network and available for the owner to spend in a future transaction.
Sending someone bitcoin is creating an unspent transaction output registered to the sender’s address
and available for him/her to spend. Every transaction in Bitcoin has one or more inputs and

outputs. Each input/output contains a function associated which is called a script.

InputsList

The InputsList field, stores a vector of one or more transaction inputs. Each transaction[6] input
is a data structure which is composed of a reference to a previous output (hash, index), the length
of the digital signature script in bytes (scriptSigLen), the digital signature script (scriptSig) itself

and a transaction sequence number (nSequence).

1. (hash, index)
Because a single transaction may include multiple outputs, the previous output structure is
uniquely identified by the tuple (hash, index). Hash, is referred to as the transaction ID (TxId)

and is computed as a double-SHA256 hash of the raw transaction:

Transaction] D = SH A256 (SH A256)

Transactions are identified uniquely by their hash outputs within specific transaction are

identified by their output index.

TxPrev TxNew
nVersion] nVersion
#vin #vin
hash —P —»|hash
n —|n
vin[0] [scriptSigLen /' vin[0] [scriptSigLen
scriptSig scriptSig
nSequence nSequence
hash hash
n Retrieve n
vin[1] [scriptSigLen Index vin[1] [scriptSigLen
scriptSig scriptSig
nSequence nSequence
#vout #vout
nValue / nValue
vout|[0] [scriptPubkeyLen vout[0] |scriptPubkeyLen
scriptPubkey scriptPubkey
nValue nValue
vout[1] |scriptPubkeyLen vout[1] |scriptPubkeyLen
scriptPubkey scriptPubkey
nLockTime nLockTime

Figure 3.1.2: Transaction Output Reference Computation

30

Bitcoin Architecture

2. ScriptSigLen

This field stores the length of the signature script field scriptSig in bytes. Maximum number
of bytes is 10000.

. ScriptSig

The signature script field contains a response script corresponding to the challenge script
(ScriptPubKey) of the referenced transaction output (prevout). Whilst the challenge script
specifies conditions under which the transaction output can be claimed, the response script is

used as a proof that the transaction is allowed to be claimed.

. Sequence Number

This field stores the transaction sequence number. Sequence numbers were meant to allow
multiple signers to agree to update a transaction; when they finished updating the transaction,
they could agree to set every input’s sequence number to the four-byte unsigned maximum
(Ox{tfEfHfE), allowing the transaction to be added to a block even if its time lock had not expired.
Transaction replacement feature is currently unsupported in Bitcoin but it has a huge impact
on complex contracts. If the transaction is locked permanently, then the sequence number is
set to the highest 4-byte integer OxFFFFFFFF. That’s the default number for Bitcoin Core

and almost all other programs.

OutputsList

The OutputsList field stores a vector of one or more transaction outputs. Each transaction output

[6] is composed of an amount of BTC being spent (Value), the length of the public key script

(scriptPubkeyLen) and the public key script (scriptPubkey) itself.

1. Value

The Value field stores the amount of BT C to be spent by the output. The amount is encoded
in Satoshis, that is 1078 BTC, allowing tiny fractions of a Bitcoin to be spent. The sum of all
outputs may not exceed the sum of satoshis previously spent to the previous output provided
in the input section. However, note that in the reference implementation transactions with
outputs less than a certain value, also called “dust”, and are considered non-standard. This
value is currently by default 546 Satoshi and can be defined by each node manually. Dust

transactions are neither relayed nor mined.

. ScriptPubKeyLen

This field stores the length of the public key script (scriptPubkey) in bytes. Maximum number
of bytes is 10000.

. ScriptPubKey

The public key script field contains a challenge script for transaction verification. More pre-
cisely, whilst the challenge script specifies conditions under which the transaction output can

be claimed, the response script defines the conditions which must be satisfied to spend it.

Transactions 31

3.1.2 Coinbase Transactions

Coinbase transactions are included in the block and are generated as a reward for the miner who
will find this block.

InputsList
The InputsList field stores a vector of precisely one transaction input. The input is a data structure
which is composed of a reference to a previous output (hash, index), the length of the coinbase field

in bytes (coinbaseLen), the coinbase field (coinbase) itself and a transaction sequence number.

1. (hash, index)
In a coinbase transaction new coins are introduced into the system and therefore no previous

transaction output is referenced. The (hash, index) tuple stores the following constant values:
hash =0

index = 232 — 1

The hash does not reference any previous transaction output and is therefore set to zero

whereas the output index is set to its maximal value.

2. Coinbase Length
This field stores the length of the coinbase field coinbase in bytes. It is in the range of 2-100
bytes.

3. Coinbase
The coinbase field, also referred to as the coinbase script, stores the block height, the block

number within the blockchain, and arbitrary data.

] Field Name ‘ Size ‘ Description ‘
BlockHeightLen 1 Length of BlockHeight field
BlockHeight BlockHeightLen Block Height Encoding

ArbitraryData | (BlockHeightLen+1) Arbitrary Data Field

Table 3.1.2: Coinbase Values

OutputsList
The transaction output vector is constrained by the maximal sum of Bitcoins that are allowed to

be transacted.

1. Value
In a coinbase transaction the miner is allowed to transfer the current mining subsidy, as well
as transaction fees for all included transactions, as a reward for solving the proof-of-work
problem. The subsidy for finding a valid block is currently 25 BTC and is halved every

210000 blocks. The transaction fee, on the other hand, is computed for each transaction as

32 Bitcoin Architecture

the difference between the sum of input values (referenced output values) and the sum of

output values.

3.1.3 Transaction Fees

Most transactions include transaction fees, which compensate the bitcoin miners for securing the
network. Transaction fees serve as an incentive to include a transaction into the next block and
also as a disincentive against "spam” transactions or any kind of abuse of the system and network,
by imposing a small cost on every transaction. Transaction fees are collected by the miner who

mines the block that records the transaction on the blockchain.

Transaction fees are calculated based on the size of the transaction in kilobytes, not the value of
the transaction in bitcoin. Most miners and mining pools prioritize transactions by fees and then
priority. Transaction fees affect the processing priority, meaning that a transaction with sufficient
fees is likely to be included in the next-most mined block, while a transaction with insufficient
or no fees may be delayed, on a best-effort basis and processed after a few blocks or not at all.
Transaction fees are not mandatory and transactions without fees may be processed eventually;

however, including transaction fees encourages priority processing.

3.2 Blocks

A block is a record of some or all of the most recent Bitcoin transactions that have not yet been
added in any previous blocks. Each block contains all the transactions that have been verified and
added to the blockchain. Each block within the blockchain is identified by a hash, generated using
the SHA256 cryptographic hash algorithm on the header of the block and references a previous
block, known as the parent block through the ”previous block hash” field in the block header. This
sequence of hashes links back to the genesis block. General Block Structure is shown in the figure

below:

Magic Number

Block Size

Block Header

Transaction Count

Transactions

Figure 3.2.1: Block Structure

Magic Number (Network ID)

This field is indicating message origin network, and is used to seek the next message when stream
state is unknown. Four defined bytes which start every message, for the main Bitcoin network is
0xD9B4BEF9.

Blocks 33

Block Size
This field is indicating the number of bytes following up to end of block.

Block Header
The header stores the current block header version, a reference to the previous block, the root of
the Merkle tree, a timestamp, a target value and a nonce. These items will be explained in the

block header section.

Transaction Count

A counter for how many transactions have been included in the block.

Transactions

A vector which has the transactions recorded in this block.

3.2.1 Block Header

The block header consists of three sets of block metadata. First, there is a reference to a previous
block hash, which connects this block to the previous block in the blockchain. The second set of
metadata, namely the difficulty, timestamp and nonce, relate to the mining competition. The third
piece of metadata is the Merkle Tree root, a data structure used to efficiently summarize all the

transactions in the block.

Version

Previous Block Hash

HashMerkleRoot

Time

Bits

Nonce

Figure 3.2.2: Block Header Structure

Version

The version field stores the version number of the block format. The block version number indicates
which set of block validation rules to follow. Ever since BIP34 [15] is in place, the block format
version is 2, until sufficient number of miners move to Bitcoin Core 0.10.0 and higher. Furthermore,
by now the 95% rule is in place, which states that all version 1 blocks should be rejected once 950

of the last 1000 blocks are version 2 or greater.

Previous Block Hash
This field stores a reference to the previous block, computed as a hash over the block header.
It ensures no previous block can be changed without also changing the current block header. A

double-SHA256 hash is calculated over the concatenation of all elements in the previous block

34 Bitcoin Architecture

header:

SH A256(S H A256(V ersion|| Previous Block Hash||Merkle Root||Timestampl|| Bits|| N once))

HashMerkleRoot

This field stores the root of the Merkle hash tree. The merkle root is derived from the hashes of all
transactions included in this block, is used to provide integrity of all transactions included in the
block and is computed according to the scheme described in Merkle Trees section. The parameters

used for computing the tree are double-SHA256 as the hashing algorithm and raw transactions as
data blocks.

Time
The time field stores the timestamp in UNIX format denoting the approximate block creation time,
according to the miner. As the timestamp is a parameter included in the block mining process, it

is recorded at the beginning of it.

Difficulty Target / Bits

The Bits field stores a compact representation of the target value T. The target value is a 256
hex-digit long number, whereas its corresponding compact representation is only 8 hex-digits long
and thus encoded with only 4 bytes [6]. The upper bound for the target is defined as 0x1DOOFFFF
whereas there is no lower bound. The very first block, the genesis block, has been mined using the
maximum target. In order to ensure that blocks are mined at a constant rate of one block per 10
minutes throughout the growing network, the target T is recalculated every 2016 blocks based on

the average time it took to mine, due to an off-by-one error, the last 2015 blocks [14].

Nonce

The nonce field contains arbitrary data and is used as a source of randomness for solving the
proof-of-work problem, as it can vary the output of a cryptographic function. However, since it
is fairly small in size with 4 bytes, it does not necessarily provide sufficient variation for finding a
solution. If all 32-bit values are evaluated then the coinbase field changes which leads to changes

in the merkle root.

Chapter 4

Bitcoin Ownership

Bitcoin clients validate transactions by executing a script, written in a Forth-like scripting language.
Both the locking script placed on a UTXO and the unlocking script that usually contains a signature
are written in this scripting language. When a transaction is validated, the unlocking script in
each input is executed alongside the corresponding locking script to see if it satisfies the spending

condition.

4.1 Script Language and Script Construction

Scripts can contain signatures over simplified forms of the transaction itself. Input scripts spec-
ify who the money is from and generally claim previous outputs (unless the input is a coinbase
transaction), thus using coins received from previous transactions. Output scripts specify who the
money is going to and the conditions that must be met to claim it. A new transaction is valid if
the transaction scripts of its input field and the transaction script of its predeceasing transaction
validates to true. The bitcoin script language, also named Script, is a Forth-like stack-based exe-
cution language designed stateless and not Turing complete. Script is called stack based because
it uses a stack as a basic data structure. A stack allows two operations: push and pop. Push adds
elements to the stack while pop removes elements from the stack. A script is essentially a set of
instructions that are processed left to right. Script is used to encode two components - a challenge

script and a response script [6]:

o A challenge script (scriptPubKey) accompanies a transaction output and specifies the condi-
tions which must be met to claim the output in the future.
o A response script (scriptSig) accompanies a transaction input; usually contains a digital

signature and is used to prove that the referenced output can be rightfully claimed.

Bitcoin clients verify transactions by executing both scripts simultaneously. For each input in the
transaction, the validation process will first retrieve the unspent transaction outputs referenced

by the input. Then scriptSig is evaluated, by copying the resulting stack and finally evaluating

36 Bitcoin Ownership

scriptPubKey of the referenced transaction output for all transaction inputs in it. If during the
evaluation no failure is triggered and the final top stack element yields true, then the ownership has
been successfully verified. The scriptSig is executed using the stack execution engine. If scriptSig
gets executed succesfully, the main stack is copied and the scriptPubKey is executed. If the result
of executing the scriptPubKey with the stack data copied from the scriptSig has evaluated to true
the scriptSig has successfully resolved the conditions imposed by the scriptPubKey. Consequently,
the input is a valid authorization to spend the unspent transaction output. If the result which
remains false after execution of the combined script, the input is invalid as it has failed to satisfy

the spending conditions placed on the unspent transaction output.

4.2 Standard Transaction Scripts

Script allows a party to construct complex conditions under which coins can be redeemed, although
much of its functionality is currently disabled in the reference implementation and only a restricted
set of standard scripts is accepted. In particular, calculating hashes, verifying signatures and
simple arithmetic operations are the only supported operations. These limitations are encoded in
a function called isStandard() which defines five types of ”"standard” transactions in particular,
calculating hashes, verifying signatures and simple arithmetic operations are the only supported
operations. These are Pay-to-Pubkey (P2PK), Pay-to-PubkeyHash (P2PKH), Pay-to-ScriptHash
(P2SH), Multisig and Nulldata.

4.2.1 Pay to PubKey

One of the two more common ScriptPubKey types is Pay to Public Key. In a Pay-to-Pubkey
transaction the sender transfers Bitcoins directly to the owner of a public key. He specifies in the

challenge script the public key and the only requirement that the recipient has to prove:
o Knowledge of the private key corresponding to the public key.

The recipient creates a response script with a signature that will be used to verify the public key
[6].

scriptPubkey: <pubkey> 0OP_CHECKSIG
scriptSig: <signature>

Figure 4.2.1: Pay-to-Pubkey Structure

Stack Remaining Script Description ‘
Empty <signature> The signature is pushed on the stack.
<signature> Empty Final state after evaluating scriptSig.

Table 4.2.1: Pay-to-Pubkey scriptSig Execution

Standard Transaction Scripts 37

’ Stack ‘ Remaining Script ‘ Description

State after copying the stack of the sig-
<signature> <pubkey> OP_CHECKSIG nature script evaluation. The public key
is pushed on the stack.

The signature is verified for the top two

<pubkey> .
<ai OP_CHECKSIG stack elements and the result is pushed
signature>
on the stack.
True Empty Final state after evaluating scriptPub-

key.

Table 4.2.2: Pay-to-Pubkey scriptPubkey Execution

4.2.2 Pay to PubKey Hash

The structure of the challenge and response scripts of a Pay-to-PubkeyHash transaction can be

seen below [6]:

scriptPubkey: OP_DUP OP_HASH160 <pubkeyHash> OP_EQUALVERIFY OP_CHECKSIG
scriptSig: <signatures> <pubkey>

Figure 4.2.2: Pay-to-PublicKey Hash Structure

In a Pay-to-PubkeyHash transaction the sender transfers Bitcoins to the owner of a P2PKH address.
He specifies in the challenge script the public key hash (pubkeyHash) of the Bitcoin address and

two requirements that the redeemer has to prove:

e Knowledge of the public key corresponding to pubkeyHash.
o Knowledge of the private key corresponding to the public key.

To do so, the redeemer creates a response script with a signature, which is created from the private
key and a public key. The scripts are then executed as shown in the figures below. First, it is
verified if the public key (pubkey) provided by the claimant corresponds to the public key hash
(pubkeyHash) provided by the sender and then whether the signature is valid.

’ Stack ‘ Remaining Script Description
i The signature and the public key are
Empt < t > <pubkey>
mpry signatures spubkey pushed on the stack.
<pubkey> Final ¢ luati DtSi
<signature> Empty inal state after evaluating scriptSig.

Table 4.2.3: Pay-to-PubkeyHash scriptSig Execution

38 Bitcoin Ownership

Stack ‘ Remaining Script ‘ Description ‘
State after copying the stack of

<pubkey> OP_DUP OP_HASH160 <pubkeyHash>| the signature script evaluation.

<signature> OP_EQUALVERIFY OP_CHECKSIG The top stack element is dupli-
cated.

<pubkey> .

<p3bk:y> OP_HASH160 <pubkeyHash> gheh td‘)p _SthaCk iement (lis TSt

pubxey OP_EQUALVERIFY OP_CHECKSIG ashed with SHA256 and then

<signature> with RIPEMD160.

<pubkeyHashNew>

ey <pubkeyHash> OP_EQUALVERIFY | The public key hash is pushed on

pubkey OP_CHECKSIG the stack.

<signature>

<pubkeyHash> Equality of the top two stack el-

<pubkeyHashNew> i i

p y OP_EQUALVERIFY OP CHECKSIG ements is checked. I‘f it ‘evalua‘Fes

<pubkey> to true then execution is contin-

<signature> ued. Otherwise it fails.

<pubkey> i i i

p. y 0P CHECKSIG The signature is verified for the

<signature> - top two stack elements.

True Empty Final state after evaluating script-

Pubkey.

Table 4.2.4: Pay-to-PubkeyHash scriptPubkey Execution

4.2.3 Pay to ScriptHash

The structure of the challenge and response scripts of a Pay-to-ScriptHash transaction is shown
below [6]:

scriptPubkey: OP_HASH160 <scriptHash> OP_EQUAL
scriptSig: <signatures> {serializedScript}

Figure 4.2.3: Pay-to-ScriptHash Structure

In a Pay-to-ScriptHash transaction the sender transfers Bitcoins to the owner of a P2SH Bitcoin
address. He specifies in the challenge script the serialized script hash scriptHash of the Bitcoin and

one requirement that the redeemer has to prove:

o Knowledge of the redemption script serializedScript corresponding to scriptHash.

To do so, the redeemer creates a response script with one or more signatures and the serialized
redemption script serializedScript. Note that unlike in any other standard transaction type the
responsibility of supplying the conditions for redeeming the transaction is shifted from the sender
to the redeemer. The redeemer may specify any conditions in the redemption script serializedScript

conforming to standard transaction types.

Standard Transaction Scripts 39

’ Stack ‘ Remaining Script ‘ Description
Emot <signature> The signature and the redemption
Pty {<pubkey> 0OP_CHECKSIG} script are pushed on the stack.
{<pubkey> 0OP_CHECKSIG} Final state after evaluating script-
<signature> Empty St
g.

Table 4.2.5: Pay-to-ScriptHash scriptSig Execution

] Stack ‘ Remaining Script ‘ Description ‘

State after copying the stack of
the signature script evaluation.

{<pubkey> 0OP_CHECKSIG} | OP_HASH160 <scriptHash>
P v - - P The top stack element is first

<signature> OP_EQUAL
& -Ed hashed with SHA256 and then with
RIPEMD160.
<scriptHashNew> The redemption script hash is
. < iptHash> OP_EQUAL
<signature> scripthias -EQ pushed on the stack.
<scriptHash> Equality of the top two stack ele-
<scriptHashNew> OP_EQUAL ments is checked. The result of the
<signature> evaluation is pushed on the stack.
True Final state after evaluating script-
<si Empty
signature> Pubkey.

Table 4.2.6: Pay-to-ScriptHash scriptPubkey Execution

4.2.4 MultiSig

The structure of the challenge and response scripts of a Multi-sig transaction is depicted below [6]:

scriptPubkey: m <pubkey 1> ... <pubkey n> n OP_CHECKMULTISIG
scriptSig: OP_O <signature 1> ... <signature m>

Figure 4.2.4: Multisig Structure

In a Multisig transaction the sender transfers Bitcoins to the owner of m-of-n public keys. He
specifies in the challenge script n public keys (pubkey 1...n) and a requirement that the redeemer

has to prove:

¢ Knowledge of at least m private keys corresponding to the public keys.

To do so, the redeemer creates a response script with at least m signatures in the same order of
appearance as the public keys. Note that due to an off-by-one error OP CHECKMULTISIG pops
one too many elements off the stack and it is therefore required to prepend the response script with
a zero data push OP 0. Note that only 3-of-3 transactions are allowed to the current version 0.9.

Any multi-sig transaction with more than 3 public keys is considered non-standard.

40 Bitcoin Ownership

Stack Remaining Script Description
OP_O <signature 1> ... The signatures are pushed on the
Empty <signature m> stack.

<signature m>
Final state after evaluating script-
<signature 1> Empty Sig.
0P_0

Table 4.2.7: Multisig scriptSig Execution

’ Stack Remaining Script ‘ Description ‘
<si >
signature m State after copying the stack of the
m <pubkey 1> ... <pubkey n> n| . . .
: signature script evaluation. The
<signature 1> OP_CHECKMULTISIG .
0P 0 public keys are pushed on the stack.
n
<pubkey n>
<pubkey 1> The signatures are verified in or-
m OP_CHECKMULTISIG der of appearance and the result is
<signature m> pushed on the stack.
<signature 1>
OP_0
Final state after evaluating script-
True Empty Pubkey.

Table 4.2.8: Multisig scriptPubkey Execution

4.2.5 Nulldata

The structure of Nulldata transaction is presented below [6]:

scriptPubkey: OP_RETURN [ARBITRARY DATA]
scriptSig:

Figure 4.2.5: Nulldata Structure

This transaction cannot be spent and that is the reason why it does not specify a reciepient and
does not have a signature. will always be invalid. Its purpose is let you add a small amount of
arbitrary data to the block chain in exchange for paying a transaction fee. After the OP_ RETURN
opcode you can insert arbitrary data. OP_ RETURN outputs will be added to the blockchain while
they will not be added to the UTXO database of full nodes. Bitcoin core allows currently up to 40

bytes of arbitrary data. The size will increase to 80 bytes in Bitcoin core 0.11.0.

Non Standard Transactions 41

4.3 Non Standard Transactions

When using a standard pubkey script in an output, nodes that use the reference client will not
accept, broadcast and mine your transaction. Creating a response script hashing it and using the
hash in a P2SH output will be accepted as the network can only see the hash. Although, spending
that output will not be possible unless you find a miner who disables the default settings of the
client because these nodes are going to check the response script to see whether it contains a

standard transaction output script or not.

4.3.1 Anyone Can Spend

The structure of Anyone can spend transaction is presented below:

scriptPubkey: <is_empty>
scriptSig: OP_TRUE

Figure 4.3.1: Anyone Can Spend Structure

As the title of the transaction suggests this transaction can be spent by anyone. The output of the
scriptpubkey is empty, so the scriptSig can simply push TRUE on the stack making it valid and

claiming it. Anyone-Can-Spend are currently non-standard, and not broadcasted in the network.

4.3.2 Not Strict DER Encoding

Transactions that do not use strict DER encoding have been nonstandard since Bitcoin Core 0.8.0

4.4 Signatures

Signatures are used to prove ownership of the private key corresponding to a public key or a Bitcoin
address. For a transaction, a signature is included in each of the transaction input scripts (scriptSig)

to prove that the referenced transaction outputs are indeed owned by the redeemer.

Whenever the redeemer computes a signature for a transaction input, he specifies one of four
signature types. The various signature types are listed in the table below. Depending on the

redeemer’s choice different parts of the transaction will be covered by the signature.

’ Name Value
SIGHASH ALL 0x00000001
SIGHASH NONE 0x00000002
SIGHASH SINGLE 0x00000003
SIGHASH ANYONECANPAY | 0x00000080

Table 4.4.1: Signature Hash Types

1. SIGHASH_ALL, the default, signs all the inputs and outputs, protecting everything except

42

Bitcoin Ownership

the scriptSigs against modification.

. SIGHASH__NONE signs all of the inputs but none of the outputs, allowing anyone to change

where the satoshis are going unless other signatures using other signature hash flags protect

the outputs.

. SIGHASH_SINGLE signs only this input and only one corresponding output (the output

with the same output index number as the input), ensuring nobody can change your part
of the transaction but allowing other signers to change their part of the transaction. The

corresponding output must exist or the value “1” will be signed, breaking the security scheme.

In addition to the above base types there is one more hash type
SIGHASH ANYONECANPAY which can be used in combination with all of them:

1. SIGHASH__ALL|SIGHASH_ANYONECANPAY signs all outputs but only this specific in-

put. Everyone is allowed to add or remove other inputs thus anyone can contribute but they

cannot modify the number of satoshis being sent or their destination.

. SIGHASH_NONE|SIGHASH _ANYONECANPAY signs only this specific input. Everyone

is allowed to add or remove other inputs or outputs thus anyone can spend this the way they

want.

. SIGHASH_SINGLE|SIGHASH _ANYONECANPAY signs only this specific input and only

one corresponding output. Everyone is allowed to add or remove other inputs.

Signatures

43

4.4.1 SIGHASH_ALL

The default signature hash type SIGHASH. It signs the entire transaction with the exception of

the signature scripts.

TxzPrev

nVersion

#vin

vin[0]

hash

n

scriptSigLen

scriptSig

nSequence

vin[1]

hash

n

scriptSigLen

Compute

Length

scriptSig

nSequence

Remove all

OP CODESEP's

#vout

vout[0]

nValue

scriptPubkeyLen

scriptPubkey

vout[1]

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

TzNew
nVersion
#vin
hash
vin[0] |n
»-|scriptSigLen
| ¥|scriptSig
nSequence
hash
n
vin[l] |scriptSigLen
scriptSig
nSequence
#vout
nValue
vout[0] |scriptPubkeyLen
scriptPubkey
nValue
vout(1] |scriptPubkeyLen
scriptPubkey
nLockTime

Figure 4.4.1: Signature Computation - SIGHASH ALL

:|Empty Script

Before the signature is computed, several temporary changes are made to the transaction [6]:

o The signature script of the currently signed input is replaced with the public key script,
excluding all occurrences of OP_ CODESEPARATOR in it, of the referenced transaction
output.

e The signature scripts of all other inputs are replaced with empty scripts.

44 Bitcoin Ownership

4.4.2 SIGHASH__SINGLE

In the second signature hash type SIGHASH_SINGLE all transaction inputs and the transaction

output corresponding to the currently signed input is signed.

TxPrev TzNew

nVersion nVersion

#vin #vin
hash hash
= Compute vin{0] n

vin[0] [scriptSigLen Length »|scriptSigLen
scriptSig | ———scriptSig
nSequence nSequence
hash hash
n n
vin[1] scr?ptS?gLen Remove all vin[1] scr?ptS%gLen :| Empty Seript

scriptSig OP CODESEP's scriptSig
nSequence — nSequence :| Zero

#vout #vout :| Input Index+1
nValue nValue

vout[0] |scriptPubkeyLen vout|[0] [scriptPubkeyLen

| scriptPubkey scriptPubkey

nValue nValue

vout[1] [scriptPubkeyLen vout([1] [scriptPubkeyLen
scriptPubkey scriptPubkey

nLockTime nLockTime

Figure 4.4.2: Signature Computation - SIGHASH SINGLE

Before the signature is computed, several temporary changes are made to the transaction [6]:

e The signature script of the currently signed input is replaced with the public key script, ex-
cluding all occurences of OP_ CODESEPARATOR in it, of the referenced transaction output.
o For all the remaining transaction inputs:
1. The signature scripts are replaced with empty scripts.
2. The sequence number is set to zero.
e The number of transaction outputs is set to the currently signed transaction input index plus
one.

o All transaction outputs up to the currently signed one are emptied.

Signatures

45

4.4.3 SIGHASH_NONE

In the third signature hash type SIGHASH NONE all transaction inputs and none of the transaction

outputs are signed.

TxzPrev

nVersion

#vin

vin[0]

hash

n

scriptSigLen

scriptSig

nSequence

vin[1]

hash

n

scriptSiglen

Compute

Length

scriptSig

nSequence

Remove all

OP CODESEP's

F#vout

vout[0]

nValue

scriptPubkeyLen

scriptPubkey

vout[1]

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

TzNew
nVersion
#vin
hash
vin[0] [n
»-|scriptSigLen
| ¥|scriptSig
nSequence
hash
n
vin[l] |scriptSigLen
scriptSig
nSequence
#vout
nValue
vout[0] |scriptPubkeyLen
scriptPubkey
nValue
vout(1] |scriptPubkeyLen
scriptPubkey
nLockTime

Figure 4.4.3: Signature Computation - SIGHASH NONE

:|Empty Script

:| Zero
:| Zero

Before the signature is computed, several temporary changes are made to the transaction:

e The signature script of the currently signed input is replaced with the public key script,
excluding all occurrences of OP CODESEPARATOR in it, of the referenced transaction
output.

o For all the remaining transaction inputs [6]:

1. The signature scripts are replaced with empty scripts.

2. The sequence number is set to zero.

e The number of transaction outputs is set to zero.

¢ All transaction outputs are removed.

46

Bitcoin Ownership

4.4.4 SIGHASH_ ANYONECANPAY

The SIGHASH ANYONECANPAY modifier is used in conjunction with a base type and affects

the signaturecoverage of transaction inputs. It is used to only cover the currently signed input by

the signature.

TxzPrev

nVersion

#vin

vin[0]

hash

n

scriptSigLen

scriptSig

nSequence

vin[1]

hash

n

scriptSigLen

Compute

TxNew

nVersion

#vin

vin|[0]

Length

>
—>»

hash

n

scriptSigLen

scriptSig

nSequence

scriptSig

nSequence

Remove all

OP_CODESEP's

#vout

vout[0]

nValue

scriptPubkeyLen

scriptPubkey

vout[1]

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

vin[1]

hash

n

scriptSigLen

scriptSig

nSequence

#vout

vout[0]

nValue

scriptPubkeyLen

scriptPubkey

vout[1]

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

:| One

Figure 4.4.4: Signature Computation - SIGHASH ALL|SIGHASH ANYONECANPAY

Before the signature is computed, in addition to the changes performed by the base hash type, the

following temporary changes are made [6]:

e The number of transaction inputs is set to one

o All transaction inputs, except for the currently signed one, are removed.

Part 3

Secure Multiparty Computations via

Bitcoin

Chapter 1

Preliminaries

In this chapter we provide some basic cryptographc schemes along with their definitions and prop-
erties that are used for building protocols throughout the second part of this thesis. We define also
ideal functionalities with the most important being the Claim or Refund Functionality that will be

utilized for building our protocols.

1.1 Standard Primitives

1.1.1 Zero Knowledge Proofs

Zero Knowledge Proof is a protocol by which the prover can prove to the verifier that a statement
is true. Non Interactive Zero knowledge proofs are a variant in which no interaction is necessary
between prover and verifier. ZK-Snarks [16] are used to prove a statement without revealing the
corresponding witness while the proofs are short and easy to verify. ZK-Snakrs proof system consists

of three algorithms Gen (key generation), P (proving), and V (verifying):

« Generator G: It takes as input 1¥ (where k is the security parameter) a circuit C and ouputs
a proving key pk and a verification key vk.

e Prover P: Takes as input the proving key pk, a word € L and a NP-witness w for x, and
outputs the proof .

o Verifier V: Takes as input verification key, x and 7, and returns 0 or 1 depending on whether

the verifier accepts the proof that = € L.
The system must satisfy the three following properties:

o Completeness: If x € L and w is a NP-witness for x, then the proof = produced by the prover
on input (x, w) will be accepted by the verifier, with probability 1.

« Soundness: for any polynomial-time adversary running on input (1%, pk) and producing a
pair (x,), the probability that x is not in L and that (x,) is accepted by V is negligible in
k.

50 Preliminaries

e Succinctness: An honestly-generated proof 7 has O(1) bits and Verify runs in polynomial
time.

o Zero-knowledge. There exists a polynomial simulator S, who first generates key pairs (pk,
vk), such that for any € L chosen by a polynomial adversary, S generates a proof for x.
The proof generated by S is computationally indistinguishable from honestly generated ones.

e Proof of knowledge. There exists a polynomial-time extractor E such that if a polynomial-
time prover P convinces the verifier V to accept some x € L with non-negligible probability,
then given oracle access to P, the extractor can produce a witness w such that (z,w) € R

with non-negligible probability.

1.1.2 Commitment Schemes

Commitment schemes [17] emerged out of the need for parties to commit to a chosen value with
the ability to reveal the committed value later to the other parties involved in a way that is fair to
all the parties. Consequently, we do not want the recipient to know the commitment before it is
revealed to him by sender and we do not want sender to be able to change the chosen value that
he committed to. The protocol consists of two phases: the first one, called the commitment phase,
sender commits to some secret message m by interacting with recipient and the second one, called
the opening phase in which sender opens the commitment by interacting again with recipient, which

results in recipient learning the message m.

o Commitment Phase: Sender commits to a secret message m by generating (c, k) < Commit(m)
where c is the commitment and k is the opening key. The commitment c is sent to the recip-
ient, while m and k remain secret.

e Opening Phase: Sender reveals the opening key k to the recipient, who gets the secret message

m < Open(c, k). If the pair (¢, k) is invalid then Open(c, k) returns nothing.
The above scheme needs to have 2 security properties:

e Hiding: Receiving a commitment to a secret message m should give no information to the
recipient about m
o Binding: The sender cannot cheat in the opening phase and send a different key K’ that

causes the commitment to open a different message m’

1.1.3 Secret Sharing Schemes

A secret sharing scheme allows a dealer to split some secret s € F', where F is some publicly known

field, into shares, such that reconstruction of s is possible only if enough shares are known.

Definition A m-out-of-n secret sharing scheme is a pair of polynomial time algorithms (Share,
Rec). On input m, n € N and s € F, Share(m,n,s) outputs shares s, s9,...,s, € F with the

following properties:

e For any S C (s, ..., sp) such that |[S| < m, S reveals nothing abut s information theoritically

Standard Primitives 51

o For any S C (s1, ..., sp) such that |S| > m, Rec(S) = s

Non-malleable secret sharing schemes. A non-malleable secret sharing scheme is a secret
sharing scheme with an additional property, guaranteeing that if any party manipulates their share
in any way, the reconstruction protocol outputs a special failure symbol. For our purposes, a

m-out-of-n scheme will suffice, so we define that.

Definition A m-out-of-n non-malleable secret sharing scheme (NMSS scheme) is defined by a pair

of polynomial-time algorithms (Share,Rec) with the following properties:

o Share(s,r) returns n shares, (s1,...,8,) (where s; is the share of the i-th party) such that a
group of shares reveals no information about s.

o Rec(Share(s,r)) = (s,0) for every s,r. The second output of Rec serves as a flag which is set
to 0 if the secret has been successfully reconstructed.

o Any attempt by a player to modify their share (independently of the remaining share) is
detected with overwhelming probability. Formally, we say that (Share,Rec) is e-non-malleable
if for every secret s, every (computationally unbounded) adversary A can win the following
game with probability at most e:

— A corrupts one of the parties.

— Random shares (s1, s,) from Share(s,r) are given to the n parties.

1.1.4 Public Verifiable Computation

A public verifiable computation scheme [18] pubVC consists of a set of three polynomial-time

algorithms (KeyGen, Compute,Verify) defined as follows:

o (eks,vks) < KeyGen(f,1%): The randomized key generation algorithm takes the function
f to be outsourced and security parameter k; it outputs a public evaluation key eky, and a
public verification key vky.

e (y,1y) = Compute(ekys,u): The deterministic worker algorithm uses the public evaluation
key ek and input u. It outputs y < f(u) and a proof v, of y’s correctness.

o 0,1 < Verify(vkys,u,(y,1y)): Given the verification key vky, the deterministic verification
algorithm outputs 1 if f(u) = y, and 0 otherwise

The scheme pubVC should satisfy the following conditions:

e Correctness: For any function f, it holds that
Pr [(ekf,ka) +— KeyGen(f, 1]‘3), (y,1y) = Compute(ekys,u) : 1 < Verify(vks, u, (y,¢y))
=1

¢ Soundness: For any function f and any PPT A the following is negligible in :
Pr [(u’,y',wz’/) « Compute(eky,vky) : f(u') #y' AN Verify(vks, o', (v, 4y))]

o Efficiency: KeyGen is assumed to be a one-time operation whose cost is amortized over

many calculations, but we require that Verify is cheaper than evaluating f.

592 Preliminaries

1.2 The Ideal/Real Paradigm

A common method in defining protocol security in multiparty computation is the ideal versus
real world model [19]. We consider two separate worlds the real world where the protocol is
implemented, executed and attacked, and the ideal world that contains the specification of the
protocol’s behaviour. When the protocol is properly described and set up in both worlds we can
say that a protocol is secure, if its output in the real world cannot be distinguished from its output
in the ideal world. The ideal world needs an incorruptable party which is modelled through an
ideal functionality F.

For understanding better the paradigm we are going to use a Zero Knowledge protocol where the
verifier has an input and the prover wants to prove to verifier that there exists some witness for that
input, without reveling anything else. In this ideal case, prover could give input and witness to the
trusted third party and then the third party returns true or false to the verifier. Although, in the
real world we do not have such third parties and we have to subsitute them with a cryptographic
protocol. The real/ideal paradigm requires that whatever information an adversary A could retrieve

in the real world, there is a way to retrive the same information in the ideal world.

1.3 Special Ideal Functionalities

Kuramesan and Bentov [20] used the following ideal functionalities to build their protocols. Below
we can find a high level overview of them and ther definitions. We should note that the authors
provide Universally Composable definitions [21] but they work in the standard model of secure com-
putation. Their model is composed of wallets, safes and coins and is defined as Secure Computation
with coins [20].

e Claim-or-Refund Functionality Fj . It is a two party protocol that accepts deposits
from a sender and transfers the deposit to a recipient upon meeting certain conditions set by
sender. If the recipient defaults, then the deposit is returned to the sender after a prespecified
time.

¢ Secure Computation with Penalties F }" . In a n-party setting, a protocol for secure
computation with penalties guarantees that if an adversary aborts after learning the output
but before delivering output to honest parties, then each honest party is compensated by a
prespecified amount.

e Secure Lottery with Penalties F,. In a multiparty setting, a protocol for secure lottery
with penalties guarantees that if an adversary aborts after learning the outcome of the lottery
but before revealing the outcome to honest parties, then each honest party is compensated

by a prespecified amount equal to the lottery prize.

1.3.1 Definition of Ideal Functionality F¢

This is the main and most important functionality as it will be used for realizing more complex

functionalities and protocols. We give a high level overview of Ffp functionality which allows a

Special Ideal Functionalities 53

sender P; to conditionally send coins(q) to a recipient P,.

o It accepts a deposit of coins(q), a boolean circuit ¢ and a time limit 7 from the designated
sender F.

o Waits until time 7 to receive a proof/witness w from a designater recipient P, which satisfies
the following ¢(w) = 1.

o If a witness was received before time 7 exceeds then the deposit of coins(q) is transferred to
the recipient P,.

o If time 7 expires then coins(q) are returned to Ps

We need to give some remarks about the functionallity. The time limit is formalized as a round
number like interacting in a game with rounds. When a witness is provided that satisfies the
condition set the witness is made public. The definition of the functionality is provided verbatim

from the author paper [20]:

F¢p with session identifier sid, running with parties P,...,P,, a parameter 1% and an ideal
adversary S proceeds as follows:

o Deposit Phase. Upon receiving the tuple (deposit, sid, ssid, s, r, ¢s,, 7, coins(x)) from
P, record the message (deposit, sid, ssid, s, r, ¢sr, 7, x) and send it to all parties. Ignore
any future deposit messages with the same ssid from P; to P,.

o Claim Phase. In round 7, upon receiving (claim, sid, ssid, s, r, ¢s,, 7, x, w) from P,
check if

1. a tuple (deposit, sid, ssid, s, r, ¢, 7, x) was recorded
2. if ¢, = 1

If both checks pass, send (claim, sid, ssid, s, r, ¢s,, 7, X, W) to all parties, send (claim,
sid, ssid, s, r, ¢s, T, coins(x)) to P, and delete the record (deposit, sid, ssid, s, r, ¢sr,
T, X)

o Refund Phase. In round 7 + 1, if the record (deposit, sid, ssid, s, r, ¢s,, 7, X) was not
deleted then send (refund, sid, ssid, s, r, ¢, 7, coins(x)) to Py and delete the record
(deposit, sid, ssid, s, 1, ¢gp, T, X)

Figure 1.3.1: Claim or Refund Functionality Definitiion

We should note that there are simpler ways to express I through CHECKLOCKTIMEVERIFY
[22] but this script functionality has not been enabled in Bitcoin yet and it is beyond the scope of
this thesis.

1.3.2 Definition of Ideal Functionality [’}

The definition of the functionality of secure computation with penalties guarantees the 2 following

properties:

54 Preliminaries

e An honest party never has to pay any penalty.
o If a party aborts after learning the output and does not deliver output to honest parties, then

every honest party is compensated.

We give a high level overview of the functionality before its definition. All parties send their input
to the functionality F']’5 . The functionality allows the ideal world adverasry S to deposit some coins
that will be used as a compensation for honest parties in case S aborts the protocol after learning
the output and without delivering the result to the honest parties. Honest parties make a deposit
during their input phase which is returned to them by the functionality during the execution of
the output phase. The adversary S gets the chance to look the output if he deposited sufficient
amount of coins such as x = h x ¢ where h are the honest parties and q is the penalty amount. In
that case S has two options, if he continues the protocol he sends the output to each honest party
and he gets back the coins he deposited or if he aborts the protocol he compensates every honest
party using the penalty deposited during his input phase. Below are presented two versions of this

functionality the second with a slight modification.

F }‘ with session identifier sid, running with parties Pi,...,P,, a parameter 1¥ and an ideal
adversary S that corrupts parties (Ps)sec proceeds as follows: Let H = [n]\C and h = |H|.
Let d be a parameter representing the safety deposit and let q denote the penalty amount.

o Input Phase: Wait to receive a message(input, sid, ssid, r, y,, coins(d)) from P, for all
r € H. Then wait to receive a message (input, sid, ssid, (ys)sec, H', coins(h’q)) from S
where h' = |H'|.

e Output Phase:

— Send (return, sid, ssid, coins(d)) to P, for all r € H.

— Compute (21, ..., 2n) < f(Y1, e, Yn)-
*If ' = 0 then send message (output, sid, ssid, z,) to P, for r € [n] and
terminate.
* If 0 < h' < h, then send (extra, sid, ssid, coins(q)) to P, for each r € H' and
terminate.
* If b’ = h, then send (output, sid, ssid, (zs)sec) to S.
— If S returns (continue, sid, ssid, H”), then send (output, sid, ssid z,.) to P, for all
r € H, and send (return, sid, ssid, coins((h — h")q)) to S, where h” = H” and send
(extrapay, sid, ssid, coins(q)) to P, for all r € H”.

— Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to P, for all
reH.

Figure 1.3.2: Secure Computation with Penalties Functionality Definition

Special Ideal Functionalities 55

F* with session identifier sid, running with parties Pi,...,P,, a parameter 1¥ and an ideal
adversary S that corrupts parties (Ps)sec proceeds as follows: Let H = [n]\C and h = |H|.
Let d be a parameter representing the safety deposit and let q denote the penalty amount.

o Input Phase: Wait to receive a message(input, sid, ssid, r, y,, coins(d)) from P, for all
r € H. Then wait to receive a message (input, sid, ssid, (ys)sec, coins(hq)) from S.

e Output Phase:

— Send (return, sid, ssid, coins(d)) to P, for all r € H.
— Compute (z1, ..., 2n) < f(y1,.-,yn) and send (output, sid, ssid, (zs)sec) to S.

— If S returns (continue, sid, ssid), then send (output, sid, ssid z,.) to P, for all r € H,
and send (return, sid, ssid, coins(h * q)) to S.

— Else if S returns (abort, sid, ssid, coins(t’hq)), send (extra, sid, ssid, coins(q + t'q))
to P for all r € H.

Figure 1.3.3: Secure Computation with Penalties Functionality Definition 2

1.3.3 Definition of Ideal Functionality F7,_.

Fy . with session identifier sid, running with parties Pi,...,F,, a parameter 1¥ and an ideal
adversary S that corrupts parties (Ps)scc proceeds as follows: Let H = [n]\C and h = |H]|.
Let d be a parameter representing the safety deposit and let q denote the penalty amount. We
assume that Fp, . is parameterized by the pubNMSS scheme.

o Input Phase: Wait to receive a message(input, sid, ssid, r, AllTags, Token,, coins(d))
from P, for all r € H. Then wait to receive a message (input, sid, ssid, (T'okens)scc, H’,
coins(h’q)) from S where ' = |H'|.

e Output Phase:

— Send (return, sid, ssid, coins(d)) to P, for all r € H.
— Compute (z) < Rec(AllTags, Tokeny, ..., Tokeny,).
*If i/ = 0 then send message (output, sid, ssid, z) to P, for » € [n] and
terminate.

* If 0 < b/ < h, then send (extra, sid, ssid, coins(q)) to P, for each r € H' and
terminate.

* If b’ = h, then send (output, sid, ssid, (z5)sec) to S.
— If S returns (continue, sid, ssid, H"), then send (output, sid, ssid z,) to P, for all

r € H, and send (return, sid, ssid, coins((h — h")q)) to S, where h” = H" and send
(extrapay, sid, ssid, coins(q)) to P, for all r € H”.

— Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to P, for all
reH.

Figure 1.3.4: Secure Computation with Penalties Functionality - Reconstruct Definition

56 Preliminaries

1.4 Bitcoin Based Timed Commitment Scheme

The commitment scheme is executed between 2 parties the committer and the recipient but it
can be generalized to be used amongst N parties. The committer starts the protocol with some
secret value s. During the commitment phase the Committer commits himself to some string s by
revealing its hash h = H(s). Moreover the parties agree on a moment of time 7 until which the
Committer should open the commitment. The secret s will become known to every recipient after
the opening phase is executed. Informally, we require that, if the committer is honest, then before
the opening phase started, the adversary has no information about s. On the other hand, every
honest recipient can be sure that, no matter how a malicious sender behaves, the commitment
can be open in exactly one way. The standard commitment schemes suffer from the following
problem: there is no way to force the committer to reveal his secret s, and, in particular, if he
aborts before the Open phase starts then s remains secret. Bitcoin offers a solution to this problem
with timelock transactions, since the committer can create transactions which will pay a deposit to
every receipient if he does not open his commitment by a specified time. For this to work the pay
deposit transactions need to have a bigger value than the commit transaction. The Bitcoin Based

timed commitment scheme [23] and consists of 3 phases:

Setup Phase
e The keypair of the Committer is C and each Recipient’s is R;.
e The Committer chooses the secret string s.

e The ledger contains N unredeemed transactions Ulc , ...,Uﬁ which can be redeemed by
the committer’s key and each of them has value of d bitcoins.

Commit Phase

e The committer computes h = H(s) and sends to the Ledger transactions
Commity, ...,Commity where N is the number of recipients. He reveals h, as it is a
part of each Commit;.

o If within time mawjeqger the Commit; transactions do not appear on the Ledger or they
are incorrect then the parties abort.

e The committer creates the bodies PayDeposit; transactions for each recipient, signs them
and sends the signed body to each recipient. If a transaction does not reach a recipient
then he halts.

Open Phase
e Committer sends to the ledger Open; transactions, which reveal the secret s.

o If within time 7 the transaction Open; does not reach the ledger then the recipient signs
and sends to the Ledger the transaction PayDeposit; and earns N Bitcoins.

Figure 1.4.1: Bitcoin Based Commitment Scheme

Bitcoin Based Timed Commitment Scheme 57

The committer will talk independently to each recipient R;. For each of them he will create in the
commitment phase a transaction Commit; with value d that normally will be redeemed by him in
the opening phase with a transaction Open;. The transaction Commit; will be constructed in such
a way that the Open; transaction has to automatically open the commitment. Technically it will be
done by constructing the output script of Commit; in such a way that the redeeming transaction
has to provide s. Of course, this means that the money of the committer is locked until he reveals
s. However, to set a limit on the waiting time of the recipient, we also require the committer to

send to each receipient a transaction PayDeposit; that can redeeem Commit; if time 7 passes.
The properties of the CS protocol are as follows:

1. The Recipients have no information about the secret s before the Committer broadcasts the
transaction PayDeposit;.

2. The Committer cannot open his commitment in a different way than revealing his secret s.

3. The honest Committer will never lose his deposit, he will receive it back not later than at the
time 7.

4. If the Committer does not reveal his secret s before the time (7 + A7) then the Recipients

will receive d Bitcoins of compensation.

58 Preliminaries

1.5 Simultaneous Bitcoin Based Timed Commitment Scheme

The diffrence between the BBCS and the Simultaneous one is that if the protocol is not aborted
during the commitment phase then both parties are committed. Transaction Commit is constructed
by the existing transctions T4 and TB. The transaction Commit has two outputs, one is used to
commit A to s4 and the other one to commit B to sg. The first output can be claimed by A with
revealing her secret or after time 7 by B. The latter option is technically achieved by signing at the
very beginning of the protocol a transaction Fuse,, which redeems Commit, can be claimed only

by B and has a timelock 7. The second output of Commit is analogous.

Setup Phase
e The keypair of the committer is C and recipient is R

e Commiter knows the secret s. and receipent knows the secret s,, both players know the
hashes h, = H(s..) and h, = H(s.) where s, = (s.||rc) and s. = (s;||ry).

r

e There are two unredeemed transactions T, Tr of value d Bitcoins, which can be redeemed
with the keys C and R respectively.

Commit Phase
¢ Both players compute the body of the transaction Commit using T¢, Tg as inputs.

¢ Both players compute the bodies of the transactions F'usec and Fusepr using appropriate
outputs of the Commit transaction. Then, they sign Fusec and Fuser and exchange
the signatures.

e A signs the transaction Commit and sends the signature to B.
e B signs the transaction Commit and broadcasts it.
¢ Both parties wait until the transaction Commit is included in the block chain.

o If the transaction Commit does not appear on the block chain until time 7 — 27" where 7/
is the maximum delay we can have for broadcasting and including it in the Ledger, then
A immediately redeemsthe transaction T and quits the protocol. Analogously, if A did
not send her signature to B until time 7 — 27/, then B redeems the transaction T and
quits the protocol.

Open Phase

o Committer and Recipient broadcast the transactions Openc and Openg respectively,
what reveals the secrets s¢, sg.

o If within time 7 the transaction Openc does not appear on the block chain, then Receip-
ient broadcaststhe transaction F'usec and gets d Bitcoins. Similarly, if within time 7 the
transaction Openg does not appear on the block chain, then Committer broadcasts the
transaction Fuser and gets d Bitcoins.

Figure 1.5.1: Simultaneous Bitcoin Based Timed Commitment Scheme

Chapter 2

Designing Fair Protocols

In this chapter we focus on designing fair protocols with the help of Bitcoin instead of a trusted
third party or a central authority. The protocols presented are lotteries and secure computations.

We examine both protocols in the two party and in the multiparty setting.

2.1 Introduction

Secure multiparty computation (MPC) protocols [24][1] allow a group of parties to compute a joint
function on inputs they privately contribute to the protocol execution. Beyond privacy, a secure
MPC protocol is highly desirable to be fair and robust. By fair, we mean that either all parties
learn the result or none and by robust we mean that the delivery of the output is guaranteed and

the adversary cannot mount a denial of service against the protocol.

With the advent of Bitcoin [3] and other decentralized cryptocurrencies, the works of [25][23][20]
pointed to a new direction considering the fairness property. Fairness could be achieved through
the penalty model. In this model a breach of fairness by the adversary is still possible but in case
of protocol abortion from the adversary then honest parties are getting compensated. At the same
time, in case fairness is not breached, it is guaranteed that no party loses any money (despite the
fact that currency transfers may have taken place between the parties). The rationale here is that
we are inserting the notion of fairness from the penalty model to force the adversary to operate in

the protocol fairly.

While the main idea of fairness with penalties sounds simple enough, its implementation proves to
be quite challenging. The main reason is that due to the decentralized nature of cryptocurrencies,
they do not rely on trusted third party that will collect money from all parties and then either
return it or redistribute it according to the pre-agreed penalty structure. The mechanism used to
solve the problem of third party is the capability of the Bitcoin network to issue transactions that
are timelocked, become valid only after a specific time and prior to that time may be superseded

by other transactions that are posted in the public ledger. Superseded timelocked transactions

60 Designing Fair Protocols

become invalid and remain in the ledger without ever being redeemed.

2.2 Two Party Lottery

Adam Back and Iddo Bentov in 2013 [26] have proposed a protocol for coin flipping based on
Bitcoin that allow us to have a two party lottery which achieves fairness in the penalty model. The
idea has been described in the Bitcoin wiki by G. Maxwell [27] and has been given an informal
Bitcoin script structure by [28]. The reason why it provides fairness between malicious adversaries
who decide to abort after discovering they lost the bet is that Bitcoin scripting language allows us
to have a primitive with which a party locks a certain amount of coins until a specified time in the
future and the other party can claim these coins to another address at any time before the specified
one upon meeting arbitrary conditions which are specified in advance via a Bitcoin script. If the

receiver does not claim the coins then they are returned to the sender.

The primitive is going to be described below: Sender creates a transaction that takes inputs that
he/she owns and can be spent with the following condition, ’(Sender’s signature AND Recipient’s
signature) OR (arbitrary conditions)’ Arbitrary conditions can be a proof required by sender plus
Recipient’s signature. Sender keeps the transaction secret and creates a refund transaction that
sends the money the transaction created to an address he/she owns but has a time lock set in
the future. Sender signs the Refund transaction and sends Recipient a message through a secure
channel with the Refund transaction asking him/her to sign it. Recipient can only see the hash of
the secret transactio and can protect himself by generating a new public key and can ask sender
create the secret transaction with the corresponding public address of this key. Recipient computes
his signature for the Refund transaction and sends it to Sender through a secure channel. Now
Sender can broadcast his/her transaction to the network. Any node coming with a proof that meets
Sender’s conditions will claim the coins otherwise the coins will be returned to the Sender after the

time lock expires.

We see that this primitive is used later inside this thesis as functionality F/p, that allows us to
construct more complex protocols and describe other functionalities. The functionality has been

given a definition in the previous chapter.

Two Party Lottery

2.2.1

Realizing a Two Party Lottery Protocol

Suppose that Alice and Bob wish to do a fair coin toss where each of them inputs X coins and

the winner gets the 2X coins. This can be done by selecting the winner according to the least

significant bit of two committed secrets, with the following protocol [26]:

10.

. Alice picks up a random secret s4 and sends a private message to Bob with the value

A= SHA256(s,).

Bob picks up a random secret sp and sends a private message to Alice with the value
B = SHA256(sp).

Bob creates a bet transaction that takes 2N of his own coins and can be spent by the
following conditions:

o [Alice’s signature AND Bob’s signature] OR

« [SHA256(s4) == A AND SHA256(sp) == B AND
(((sa @ sp) mod 2 == 0 AND Alice’s signature)) OR ((s4 @ sp) mod 2 == 1 AND
Bob’s signature))]

Bob asks Alice to sign a Refundp.; transaction that which spends his 2N coins to an
address that he controls and has locktime of 20 blocks in the future.

Bob broadcasts the bet transaction into the network.

Alice creates a reveal transaction that takes as input N of her own coins and can be spent
by the following condition:

o [Alice’s signature AND Bob’s signature] OR
[SHA256(sp) == B AND Bob’s signature]

Alice asks Bob to sign a Refund,eyeqr transaction which spends her N coins to an address
that she controls and has locktime of 10 blocks in the future.

Alice broadcasts the reveal transaction to the Bitcoin network.
Bob redeems the reveal transaction by revealing sp.

Alice redeems the bet transaction if she won, otherwise she sends s4 to Bob so that he
could redeem the “bet” transaction without waiting for the locktime to expire.

Figure 2.2.1: Two Party Lottery in Bitcoin

61

62 Designing Fair Protocols

2.3 Multiparty Lottery

A multiparty lottery protocol [23] is executed among a group of parties. All parties P, ..., P,
deposit their money to one common place and the winner will claim them. The deposit is set at N

bitcoins so in case of protocol abort we fully compensate each party.

2.3.1 Realizing a Multi Party Lottery Protocol

The general idea behind the secure Multiparty Lottery protocol is that each party first commits to

its inputs using the Bitcoin based commitment scheme.

e Each party executes the commitment phase. Once the phases are executed succesfully the
parties proceed to the next steps

o FEach party posts his transaction PutMoney on the Ledger.

e Once all these transactions appear on the Ledger they create the Computey transaction.
All parties except P; compute their signatures and send them to P;. P puts all received
signatures into inputs of transaction Compute and posts it to the Ledger.

e Once the transaction appears on the Ledger they open the commitments.

Since they used the Bitcoin based commitment scheme, they can now punish the other party that
did not open its commitment by executing PayDeposit after the time 7 passes, and claim its deposit.
Each honest party is always guaranteed to get its deposit back, hence it does not risk anything

investing this money at the beginning of the protocol.

We need to define the time 7 for the execution of the protocol. Supposing that we need 2*maxcqger
time until all the parties put their PutMoney transaction to the Ledger, 1 * maxeqger for Pi to
receive all signatures and post the transaction Computey to the Ledger and 1+ maxcqger for every
party to open its commitment we need totally a time 7 = 7/ + 4 % MaTiedger Where 7' is the time

the protocol started.

The parameter d should be chosen in such a way that it will fully compensate to each party the
fact that a player aborted. The deposit each player has to submit needs to be equal to N(N —1)
Bitcoins which makes the protocol efficient for NV < 5. A realization of the protocol is presented in

the figure below.

Multiparty Lottery 63

Setup Phase
o For each i, player P; holds a pair of keys (P;.sk, P;.pk).

o For each i, the Ledger contains a standard transaction 7" that has value 1B and whose
recipient is P;. The Ledger contains also the transactions U]’ fori,j € (1,...,N)and i # j,
such that each U;f can be redeemed by P’ and has value d = N Bitcoins.

Init Phase

« Each player P; generates a pair of keys (P;.sk, P;.pk) and sends his public key P;.pk to
all other players.

e Each player P; chooses chooses his secret s; from S,iv .
Deposits Phase

e Let 7 be the current time. For each i, the commitment phase CS.Commit(P;, d, 7 + 4 *
MATiedger, Si) 15 executed using the transactions U; as inputs.

o If any two commitments of different players are equal then the players abort the protocol.
Execution Phase

o For each i, player P; puts the transaction PutMoney® to the Ledger. The players halt if
any of those transactions did not appear on the Ledger before time 7 + 2 * mazcqger-

e For each i, i > 2 player P; computes his signature on the transaction Compute”™ and
sends it to the player Pj.

e Player P; puts all signatures and his own as transaction inputs in Compute’¥ and puts
it to the Ledger. If n transaction Compute” does not appear on the Ledger in time
T + 3 * Maxeqger then the players halt.

e During each i, the player P; puts his Open transaction on the Ledger what reveals his
secret and sends back to him the deposits he made during the executions of CS protocol.
If some player did not reveal his secret in time 7 +4 % maxjcqger then all the other players
send the appropriate PayDeposit transactions from that player CS protocols to the Ledger
to get N Bitcoins.

e The player who wins the lottery gets the pot by sending a transaction
ClaimMoneyf1--IN) to the Ledger.

Figure 2.3.1: MultiParty Lottery in Bitcoin

64 Designing Fair Protocols

2.4 Secure Two-Party Computation

A secure two party computation protocol allows two parties to jointly compute an arbitrary function

on their inputs without sharing the value of their inputs with the opposing party.

2.4.1 Realizing a Two Party Secure Computation Protocol

Suppose that we have 2 parties, Alice and Bob and they agree on a deposit of d Bitcoins. If the
protocol terminates successfully, then both parties get their deposits back. However, if one of the
parties interrupts the protocol after she learned the output, the other party takes both deposits
[25].

Setup Phase
e A holds a key pair A and B holds the key pair B.

e The parties agree on a function they want to jointly compute and on a value of deposits
equal d Bitcoins each.

Computation Phase

The parties execute the two-party protocol of Goldreich and Vainish [29][30] additionally se-
cured against an active adversary with ZK proofs, without reconstructing the secret. At the
end of the execution A holds s4 and B holds spg, such that the result of the computation in
equal s4 @ sp.

Commit Phase

o A computes her secret s’y as a concatenation of her share s4 and some random string pa
of length «, where « is a security parameter.

o A sends hy := H(s/;) to B and makes a zero-knowledge proof to B that this value is
indeed equal to H(s||pa) for some string p4.

o Similarly, B computes s’; := sp||pp for some random string pp of length «, sends hp :=
H(s'z) to A and makes an analogous proof.

o The parties execute SCS.Commit(A, B, d, 7) for some moment of time 7 in the future.
Open Phase
o The parties execute SCS.Open(A, B, d, 7) protocol.

o If A reveals sy before time 7, then B computes s4 as a prefix of s/y of an appropriate
length and computes the result of the computation s := s4 @ sp. Otherwise, B earns d
Bitcoins from Fuse? transaction.

o If B reveals sp before time 7, then A computes sp as a prefix of s’z of an appropriate
length and computes the result of the computation s := s4 @ sp. Otherwise, B earns d
Bitcoins from Fuse® transaction.

Figure 2.4.1: Two Party Secure Computation

Multi Party Secure Computation 65

2.5 Multi Party Secure Computation

Secure Multi Party computation allows a set of parties to compute an arbitrary function of their

private inputs. The protocol described turns MPC into Fair Recontruction to achieve that [20].

2.5.1 Non Malleable Secret Sharing

Given a secret s, we generate tag-token pairs in the following way:

e Perform a n-out of n sharing on s to obtain s1, ..., s,
e To generate the i-th “tag-token” pair, compute com; using randomness w; to secret share s;
by applying the sender algorithm of honest-binding commitment and set Tag; = com; and

Token; = (s;,w;).

2.5.2 Fair Reconstruction

The reconstruct algorithm guarantees the following properties:

e An honest party never has to pay a penalty.
o If the adversary reconstructs the secret but an honest party cannot then the honest party is

compensated.

Then the reconstruction algorith takes as input (AllTags, Token;) and as long as a party collects
all the tokes then it can reconstruct the secret. On the other hand, if one token is not revealed
then the secret cannot be reconstructed and remains hidden. A sender Py may use (a set of) tags
to specify a F{ transaction with the guarantee that its deposit can be claimed by a receiver P

only if he provides the corresponding (set of) tokens.

2.5.3 The Ladder Mechanism

The mechanism is composed of a sequence of I deposits made into two phases. In the first phase
parties P, ..., P,_1 make a Ffp deposit of coins(q) to P, that can be claimed only if P, provides
the corresponding set of tokens T, ...,T;,. This phase is called roof deposits. If all roof deposits
are completed, then parties proceed to the second phase, known as the ladder deposits. Then, in
the second phase, for i = n to 2, each P,, makes a deposit of coins((n-1)*q) to P,—1 that can be

claimed only if tokens 77, ..., T,—1 are produced by P, _1.

We handle aborts in the deposit phase in the following way. If a corrupt party aborts the pro-
tocol(does not make his roof deposit), then all parties terminte the protocol immediately and get
their roof deposits back. On the other hand, if a corrupt party P, fails to make the ladder deposit
it is supposed to make, then for all s < r, party Ps does not make its ladder deposit at all, while
for all s > r, party Ps continues to wait until a designated round to see whether its ladder deposit

is claimed.

66 Designing Fair Protocols

The ladder deposits are claimed in reverse order. The tokens required to claim the i-th ladder
deposit consist of tokens possessed by the recipient of the i-th ladder deposit plus the tokens
required to claim the (i + 1)-th ladder deposit. Therefore, if the (i + 1)-th ladder deposit is

claimed, then the i-th ladder deposit can always be claimed.

2.5.4 Framework for The Ladder Mechanism

The ladder mechanism is parameterized by a protocol Init, predicates ¢1, ..., ¢,, and procedures
Extend and Recon.

Initialization: Parties Pj,..., P, run Init with their respective inputs zi,...,x, to obtain
respective outputs i, ..., y,. If there is an abort in this step such that some parties did not
obtain their outputs, then all parties terminate and output

Roof Deposits: For each j € [n — 1] simultaneously:

P, 2, p,

q,Tn

If a party P; does not make an I deposit to P, as above, then each party P; terminates the
protocol and wait to collect refund from T'z,, ;

Ladder Deposits: Fori = n — 1 down to 1:

Handling aborts. If a party P11 does not make an I deposit to P; as above, then

» cach party P; for j < i does not make its ladder deposit and waits to collect refund from
Tacn’j

 cach party P; for j > ¢ continues on to the ladder claim phase.

Claims: P; claims Tx; using witness oy = Fatend(1l, L;y;). Fori =1 ton — 1 (one-by-one),
at time 7;:

o If P; claimed T'z;, then let ; be the witness satisfying ¢;. P;11 computes ;11 < Fxtend(i+
1, 4;9i41). If i+ 1 # n, then Piyq claims Tx;41 using witness ;41. If i + 1 = n, then P,
claims T'x,, ; for all j using witness ,,.

e If P; did not claim Tz;, then P,y; terminates the protocol and waits to collect refund
from T'wy ;41 if i +1 =n.

Output: If T'z, ; was claimed by P, for some j, then let o, be the witness satisfying ¢,. Each
party P; outputs z; = Recon(ay,;y;) and terminates the protocol. If no Tz, ; was claimed, then
each party outputs L

Figure 2.5.1: Framework for the Ladder Mechanism

Multi Party Secure Computation 67

2.5.5 Realizing Multi Party Computation with Penalties Protocol

By applying the previous steps we are reducing the Secure Multi Party Computation problem to a
Fair Reconstruction problem. If a party learns the output and aborts the protocol then the honest

parties are compensated. The formal description of the protocol is presented below [20]:

1. For s € [1,...,n—1], party P, does the following:

 Send (deposit, sid, ssid, s, n, ¢, ¢, 7, coins(q)) to F¢ip

o If there exists r € [n—1] such that the message (deposit, sid, ssid, r, n, ¢,¢, T, q)
was not received from Ffp, then output NULL, and if s # n then wait to receive
message (refund, sid, ssid, s, n, ¢, ¢, 7, Qﬁf. Terminate the protocol.

2. For s =n—1to 1, each Py, sends (deposit, sid, ssid, s+1, s, ¢}, Ts, Qf;jl = coins(s - q))
to Fp only if for each r =n — 1 to s + 1, the message (deposit, sid, ssid, r + 1, 1, ¢},
T, T+ q) was received from Ffip.

3. For each s € 0,...,n—1, party P11 does the following:

o Wait until round taus to receive a message (claim, sid, ssid, s + 1, s, (béad, Ts, 8 Q,
W) from Ffp. If such a message was received by round taus, create Wiy

WsUTokengy1, and if s + 1 # n, send message (claim, sid, ssid, s + 2, s + 1, ¢é‘f1,
Tox1, (5+1) - q, Wsy1) to Fp, and receive back (claim, sid, ssid, s 4+ 2, s + 1, é‘fl,

Tst1, le‘fg) from F{p.
¢ If no such message was received output NULL, and do:

— Wait until round 7541 to receive message (refund, sid, ssid, s + 1, s, qblsad, Ts)
Qlad,) from Fp

— If s + 1 # n, wait until round 7,41 to receive message (refund, sid, ssid, s+1, n,
gi)ls“ﬁl, Tst1, Qi}rl) from F{p, and terminate the protocol.

4. After round 7,_1, for each s € [n—1], party P, sends (claim, sid, ssid, s, n, ¢rf, 7, q, Wp)
to Ffp, following which it waits to receive message (claim, sid, ssid, s, n, ¢,r, Tn, Q7
Finally, P, outputs W,, = Tokeny,...,Token,, reconstructs the secret, and terminates
the protocol.

5. For each s € 1,...,n—1, party Py waits until round 7, to receive a message (claim, sid,
ssid, s, 1, ¢rf, Tn, q, W) from Ff, for some s’ € [n—1]. If such a message is received for
some §' € [n—1], then use W,, = Tokeny, ..., Token,, to reconstruct the secret. If no such
message is received for s’ = s, then P; waits until time 7,41 to receive message (refund,
sid, ssid, s, n, ¢rr, Qyy, Tp) from Ffp.

Figure 2.5.2: Realizing F,. in the F, hybrid model

Trec

68

Designing Fair Protocols

Chapter 3

Incentivizing Correct Computations

3.1 Introduction

In this chapter we are going to describe a model of incentivizing correct computations in certain
cryptographic tasks which are based on the formal definitions of the ideal functionalities described
in Preliminairies chapter. We setup protocols for every cryptographic task described and we analyze

efficiency improvements in the F7p hybrid model.

3.2 Verifiable Computation

Verifiable Computation is enabling a delegator to outsource the computation of a function to a
worker who expects to get paid in return for delivering the correct output. An incentivizable

protocol for verifiable computation between D and W must provide the following guarantee:

o Fast verification: The amortized work performed by delegator for verification is less than the
work required to compute f.
o Pay to learn output: Worker obtains coins(q) from delegator if and only if delegator received

the correct output of the computation from worker.
Designing an incentivized computation protocol in the F{ , hybrid model can be described as:

o Delegator sends (f, u) to worker.
o Delegator creates F, transaction with circuit ¢y, that lets worker redeem coins(q) if worker
reveals a witness w such that ¢y, (w) = 1, where the circuit/script ¢, (w) is satisfied if and

only if f(u) = w.

The above protocol is sufficient but has several drawbacks when implemented in the Bitcoin net-
work. To validate the claim transaction each miner has to verify whether the witness provided was
indeed valid. This means that each miner has to compute f in order to confirm the validity of the

transaction. This is clearly undesirable for the following reasons:

70 Incentivizing Correct Computations

1. It puts a heavy load on the Bitcoin network and corresponds to heavy loss of resources.
2. All nodes in the Bitcoin network need to compute f(u) when validating this script, while only

worker gets paid. Essentially all the other miners are working for free.

3.2.1 Definition of Ideal Functionality £, x

v acr 131] is a modification of Ffp, which allows parties to mutually agree to discard checking

the condition to release payment. We give a high level overview of F7 ., -, functionality:

o The sender P deposits his/her coins(q) while specifying a timebound 7 and a circuit ¢.

o The receiver P, can claim the coins(q) by publicly revealing a proof/witness w that satisfies
p(w) = 1.

o At any point 7’ before time 7 (77 < 7), Ps and P, can agree to release the coins(q) to P,
without revealing w.

o If P, didn’t claim within time 7, coins(q) are refunded to Ps.

The definition of the F ,,~p is presented below:

ET

F ;:cr With session identifier sid, running with parties Pi,...,P,, a parameter 1% and an ideal

adversary S proceeds as follows:

o Deposit Phase. Upon receiving the tuple (deposit, sid, ssid, s, r, ¢s,, 7, coins(x)) from
P, record the message (deposit, sid, ssid, s, r, ¢s,, 7, x) and send it to all parties. Ignore
any future deposit messages with the same ssid from P; to P,.

o Claim Phase. In round 7, upon receiving (claim, sid, ssid, s, r, ¢s,, 7, x, w) from P,
check if

1. a tuple (deposit, sid, ssid, s, r, ¢, 7, x) was recorded
2. if gy =1

If both checks pass, send (claim, sid, ssid, s, r, ¢s,, 7, X, W) to all parties, send (claim,
sid, ssid, s, r, ¢s,, T, coins(x)) to P, and delete the record (deposit, sid, ssid, s, r, ¢sr,
T, X)

o Exit Phase. In round 7/, where 7/ < 7, send (release, sid, ssid, s, r, ¢s,, 7/, x) to all
parties, send (release, sid, ssid, s, r, ¢s,, T, coins(x)) to P, and delete the record (deposit,
sid, ssid, s, 1, ¢sr, T, X)

o Refund Phase. In round 7 + 1, if the record (deposit, sid, ssid, s, r, ¢s,, 7, X) was not
deleted then send (refund, sid, ssid, s, r, ¢, 7, coins(x)) to Py and delete the record
(deposit, sid, ssid, s, r, ¢sr, T, X)

Figure 3.2.1: Claim or Refund Functionality Definitiion with Exit Clause

Verifiable Computation 71

3.2.2 Incentivizing Public Verifiable Computation

We present a high level overview of the Public Verifiable Computation below, informally described
in [31]

1. Delegator and worker engage in secure computation to obtain (eky,vks) <
KeyGen(f,1%).

2. Delegator sends input u to worker.

3. Delegator and worker invoke F . ~p with circuit ¢ = Verify(vkys,u, -) and timebound
7 that lets worker earn delegator’s coins(q) if worker reveals w = (y,1,) such that

Verify(vkys,u, (y,vy)) = 1.

4. Worker executes (y,1y,) < Compute(eks,u) and sends w = (y,1),) to delegator within
time 7 < 7.

5. Delegator verifies (y,1,), then delegator and worker release the coins(q) to worker.

6. If delegator doesn’t release the coins(q) until time 7’ then worker will redeem the F .,
transaction between time 7/ and 7 and claim the coins(q).

Figure 3.2.2: Public Verifiable Computation Protocol

The above protocol minimizes the validation complexity. Current public verification schemes [18§]
still require 288 bytes storage and 9ms to verify. Therefore, each miner has to spend 9ms to execute
the verification algorithm to validate the F, transaction. In case, we have delegator and worker

who are interested in reducing further the validation complexity we can follow the steps below [31]:

1. Execute the steps of the previous protocol until Step 4.
2. Worker executes (y,1y) <— Compute(eks,u) and sends w = (y, 1) to delegator.
3. Delegator runs Verify(vkys,u, (y,vy)) to check if answer is 1.

4. Delegator creates another transaction which pays the worker. If he does not pay worker,
then worker can always claim the F ., - transaction.

5. If delegator pays worker then they use the release condition of F,;, ~ transaction. There-

fore, a malicious worker cannot get paid twice by also claiming coins(q) of F, ;;it,c p trans-

action.

Figure 3.2.3: Public Verifiable Computation Protocol

72 Incentivizing Correct Computations

3.3 Fair Computation

Secure Computation with Penalties has been discussed in the previous chapter. In this section we
describe how to design fair protocols that are more round-efficient than the previous constructed

protocol. The efficiency is gained by a new ideal functionality called F};; [31].

3.3.1 Definition of Ideal Functionality F},;

The multilock functionality allows n parties to lock their coins where each party P; commits to the
following statement: Before round 7, I need to reveal a witness w; that satisfies ¢;(w;) = 1, or else

I will forfeit my security deposit of x coins.

o The design of F};; guarantees that either all the n parties agreed on the circuits ¢;, the
timebound 7, and the security deposit amount x, or else no coins become locked.

 Each corrupt party who aborts after the coins become locked is forced to pay coins(;%7) to
each honest party.

o If P; reveals the w; which satisfies ¢; then the witness w; is made public.

e The limit 7 prevents the possibility that a corrupt party learns the witness of an honest party,

and then waits for an indefinite amount of time before recovering her own coins amount.

Below we can see the definition of the ideal functionality [31]:

F3;; with session identifier sid, running with parties Pi,...,P,, a parameter 1% and an ideal
adversary S proceeds as follows:

o Lock phase. Wait to receive (lock, sid, ssid, i, D; = (z, ¢1, ..., ¢n, T), coins(x)) from each
P; and record (locked, sid, ssid, i, D;). Then if V i,j : D; = D; send message (locked, sid,
ssid) to all parties and proceed to the Redeem phase. Otherwise, for all i, if the message
(locked, sid, ssid, i, D;) was recorded then delete it and send message (abort, sid, ssid, i,
coins(x)) to P; and terminate.

e Redeem phase. In round 7: upon receiving a message (redeem, sid, ssid, i, w;) from P,
if ¢;(w;) = 1 then delete (locked, sid, ssid, i, D;), send (redeem, sid, ssid, coins(x)) to P;
and (redeem, sid, ssid, i, w;) to all parties.

o Payout phase. In round 7 + 1: For all i € [n]: if (locked, sid, ssid, i, D;) was recorded but

T

not yet deleted, then delete it and send the message (payout, sid, ssid, i, j, coins(;%7))
to every party P; # P;.

Figure 3.3.1: The ideal functionality F};,

The protocol proceeds in the following way:

o Parties run an MPC protocol that accepts inputs y; and computes z < f(y1, ..., Yn)
e The output z is splitted into shares shq, ..., shy, with pubNMSS primitive and then for ev-

ery j € [n], computes honest binding commitments Tag; on share with the corresponding

Fair Computation 73

decommitment T'oken;.
o At the end of the protocol each party P; has (Tag;, ..., Tagn,, Token;)
 For the Fair Reconstruction part instead of using the ladder mechanism with F{ , transactions

*
we use Fy; ;.

3.3.2 Bitcoin Enhancement Proposal

F3,; functionality cannot be deployed under the current Bitcoin Protocol. That is the reason why

the authors suggested two modifications in the Bitcoin protocol.

o Reference to tx,g in the transaction tz,e, by using SHA256d(ta:fjglp)

o Using SHA256d(tx,q) as the id of tzyyq.

The second modification was proposed as a solution to transaction malleability which computes the
transaction hash over the body of the transaction without its input scripts. The advantage that
it provides is that it allows a user to commit coins on condition that another transaction would
become valid. The first modification allows us to know which proof a party revealed since the proof
of work computations on the root of the Merkle tree to which SHA256d(tx;4) belongs will commit
to the witness that redeemed tx,;4. In a later section we will present the threshold signature scheme
which allows a valid signature to be produced by all n voters together. In particular, a different
signature cannot be efficiently produced for a previously signed transaction, unless all n voters

agree to re-sign it.

74

Incentivizing Correct Computations

Chapter 4

Electronic Voting

Electronic voting is a special case of secure multiparty computation where it allows a group of
people to jointly make a decision while keeping individual decision private. While MPC can secure
the outcome is received by all parties they cannot guarantee that the outcome is respected. The
e-voting problem can be distinguished in decentralized e-voting systems [32][33][34], where voters
run a multi-party computational protocol without any additional parties and centralized e-voting
systems, where election administrators run the election [35][36]. We study the decentralized e-voting
problem via bitcoin. Suppose that we have N voters and 2 candidates. The winning candidate who
is the one who gets the majority of the votes will claim N Bitcoins. The decentralized e-voting

protocols proposed by Zhao and Chan [37] satisfy the following properties:

e Privacy: Each voter can keep his vote private and each voter can prove that he followed the
protocol.

e Irrevocability: Once the outcome has been revealed nobody can withdraw his funds.

The participants need to participate to the voting protocol as the winner is going to claim the
funds. The voting protocols consists of 2 phases, the first phase is the ballot commitment phase
where the voters commit themselves to their vote and the ballot casting phase where voters cast
their vote. For the ballot commitment phase we propose a protocol based on randomzation of
votes to integers. For the ballot casting we will use again 2 different protools, one is the ladder

mechanism and the other is to lock the votes into one compute transaction.

4.1 Ballot Commitment via Randomization of Ballots

In this stage, each voter P; has a vote V; € {0,1}. The idea is that we are going to convert each
vote to a random number and then check if the sum of the random numbers is bigger than n/2. If it
is bigger then candidate B has won otherwise candidate A has won. Therefore, there is a limitation
on ballot masking method and we cannot extend the protocol to m candidates. For this reason we

propose later another ballot masking protocol with Decisional Diffie Hellman.

76

Electronic Voting

Each voter P; generates n numbers whose sum is 0. For each i and j, voter P; sends the number

ri; to Pj via a secret channel. Every voter has a number R;, makes a commitment Cj, creates his

masked vote by VZ = V; + R; and commits also to Vl with commitment CA’z The commitments are

broadcasted publicly while the opening keys and the votes remain secret. Every voter persuades

the rest of the voters that he follows the protocol by providing zero knowledge proofs. A formal

desciption of this protocol is given below [37]:

1.

This protocol runs among n voters, where for i € [n], party P; has secret vote V; € {0,1}. We
assume the proving and verification keys for zk-SNARKs are already generated and distributed
to all voters. For each i € [n] voter P; the procedure is:

For each j € [n] generate n random numbers whose sum };r;; = 0. For each j € [n],
commit (¢;j, kij) <= Commit(r;;)

. Generate zero knowledge proofs that > . r;; = 0. The circuit C evaluates to 1 if the

opened values sum to 0. Broadcast the commitments and zero-knowledge proofs to all
other voters.

Receive commitments and verifies the zero-knowledge proofs from all other parties.

For all j € [n]\{i}, send to P; the opening key k;;. For j € [n] i, wait for the opening key
kj; from Pj, and check that rj; = Open(cji, kj;).

Compute R; + Zj ;i and V: « R; +V; and commit (Ci, K;) + Commit(R;) and
(C’i, I@) — Commit(vi), where K;, K; are the opening keys. Broadcast the commitment
C; and C; publicly.

Generate and broadcast publicly the zero-knowledge proofs for the following:
(@) Ri=3;mji
(b) The committed value in C; minus that in Cj is either 0 or 1.

Receive and verify all proofs from other parties generated in previous step. The protocol
terminates.

Figure 4.1.1: Ballot Commitment Phase

The ballot masking protocol does not require the use of the Bitcoin. When the execution has ended,

all parties hold a random number, they will open during the ballot casting phase which makes use

of Bitcoin and Claim or Refund functionality to enforce fairness.

Ballot Casting via Ladder Mechanism 7

4.2 Ballot Casting via Ladder Mechanism

Below we give a formal description of the Voting Protocol based on Vote Commitment and Vote

Casting.

Deposit phase

e P, submits 2 instances of the Claim or Refund, which delivers the amount of n bitcoins
to the winner as long as he provides a proof that he has the biggest sum of the votes
between the candidates.

e Simultaneously for each ¢ # n, P; verifies that the deposit transaction broadcasted in
the previous step is on the block chain, and broadcasts the deposit transaction of the
following Fp instance to the bitcoin system:

Vlv-“vvn
e

P P,

2,Tn

e Sequentially for i from n down to 2: P; verifies that all deposit transactions broadcast
previously have appeared in the blockchain, and broadcasts the deposit transaction of the
following Fj, instance to the bitcoin system:

Vi, Vica
P ——— P
(i—1),m-1

Claim phase

e For i # n, if before time 7;, all previous secrets Vi, ..., V;_1 are revealed, then P; reveals
his secret V; and use the claim transaction to receive i Bitcoins from Pjy;.

o If before time 7,, all secrets f/z for i # n are revealed, P, reveals his secret Vn and use
the claim transactions to receive q Bitcoins from each P; for i # n.

o If before time 7,41 all secrets are revealed, the winner is determined and he can use the
corresponding claim transaction to receive n Bitcoins from P,.

e At any time when the locktime of a COR instance has passed, the sender can immediately
use the corresponding refund transaction to get his amount back.

Figure 4.2.1: Ballot Casting via Ladder Mechanism

Our first contribution comes at this point. As we have seen before a I, transaction is a 2 party
protocol and is based on the primitive (Sender’s signature AND Receiver’s signature) OR, (arbitrary
conditions). Before we describe our Ballot Casting Protocol via the Ladder Mechanism we will give

a definition of Claim or Refund transaction between one sender and N possiblw winning candidates.

78 Electronic Voting

The functionality suffices in a way that a party can commit a transaction where a group of parties
may be possible candidates to claim. In our case, the winner of the voting will be able to provide
proof that he won and he will claim the N bitcoins.

We give a high level overview of the functionality which allows a sender P to conditionally send

N bitcoins to a receiver P, who comes from a group of possible winners.

e The sender Ps deposits his/her N Bitcoins into a BET transaction while specifying a time-
bound 7 and a circuit ¢. P; does not brodcast this transaction.

o The sender Ps asks all the possible candidates to sign the REFUN Dppr transaction and
then brodcasts the BET transaction to the blockchain.

o Waits until time 7 to receive a proof/witness w from one of the possible winners P, which
satisfies the following ¢(w) = 1.

o If a witness was received before time 7 exceeds then the deposit of N Bitcoins is transferred
to the winner P,.

o If time 7 expires then P can claim N Bitcoins from the REFUN Dggp transaction.

Consequently we can reduce the complexity of the first step of the deposit phase by making an
instance of the new claim or refund functionality. The last party P, does not have to deposit two
times the money for the winner and every voter(besides the last one) deposits 1 Bitcoin instead
of 2 during the roof deposits phase. Moreover, it exists less overload to the network as we have

reduced the number of transactions that need to be brodcasted to the blockchain.

4.3 Ballot Casting via MultiLock Transactions

To participate each voter P; needs (1 + d)Bitcoins, of which 1 Bitcoin is to be paid to the winning
candidate if everyone reveals his masked vote and the d Bitcoins is for deposit that will be used for

compensation if P; does not reveal his masked vote. The protocol guarantees the following [37]:

o If a voter reveals his masked vote, he can get back the deposit.

o If every voter reveals his masked vote, the sum of the votes determines the winner who receives
N Bitcoins.

o If at least one voter does not reveal his masked vote, the n Bitcoins originally intended for
the winner will be locked. For each voter that does not reveal his masked vote, his deposit

will be used for compensation.

The idea is that the n voters will sign some transaction COMPUTE together by contributing their
inputs. The protocol locks each voter’s contribution which can be redeemed if all voters agree
universally. On the other hand, if the protocol is aborted and the COMPUTE transaction is not
created successfully then the voters get their contribution back using REFUND transaction. Due
to malleability problems we are going to use (n,n)-threshold signature scheme [16]. The n voters
jointly generate a group address such that voter P; learns the group public key pAlc and his share sk;
of the private key. Therefore the group private key can only be reconstructed only if the n voters

provide their s7€i.

Ballot Casting via MultiLock Transactions 79

At the start of the protocol all voters will sign a COMPUTE transaction where they contribute
their inputs. Their contribution is locked until it gets permission from every voter to be claimed.
If the protocol is aborted then we want the voters that contributed until the corrupted voter who

aborted to get their inputs back.

Lock Phase Each voter locks (1+d) Bitcoins into the system, where 1 Bitcoin is to fund the
winner, and d Bitcoins is for deposit in case of protocol abort

e P, creates a transaction Lock;. Its input is (1 4+ d) Bitcoins owned by FP;, and its output
is the address of the group public key pAk. P; also creates a simplified transaction Refund;
that transfers the money from Lock; back to P;. It does not broadcast yet the transaction.
P; broadcasts (simplified) Refund; to all other voters.

o On receiving Refund; for j € [n]\{i}, P; checks that the hash value referred to by its
input is not hash(Lock;). At this point, P; has only contributed coins to pk through the
transaction Lock;, and hence, he can sign anything else using sk; without losing money.

o For each j € [n], P; participates in the threshold signature scheme to sign Refund; using
his secret key share sk;.

e On receiving the correct signature for Re fund;, P; is ready to submit Lock; to the bitcoin
network later.

Figure 4.3.1: Ballot Casting via MultiLock Transaction - Lock Phase

After the lock phase is completed the n voters will sign the JOIN transaction using the threshold
signature scheme. The JOIN transaction has n inputs of (1+d) bitcoins and n+1 outputs where
one is the prize of N Bitcoins for the winner and the rest n handle the deposit d of each voter. The
deposit of each voter can be claimed if he reveals his masked vote with a key associated to P; or
is signed by the group signature. In any case before JOIN appears on the blockchain every party
has to create a PAY transaction which redeems his deposit after some time if he does not reveal

his vote.

80 Electronic Voting

Compute Phase Assume that the MultiLock Protocol has been run, and each P; has created
the transaction LOCK;, whose hash is publicly known.

o Voters generate the simplified transaction JOIN

— JOIN has n inputs coming from Lock; hat contribute 1+d Bitcoins
— JOIN has n+1 outputs

1. deposit;, i € [n]: each has value d Bitcoins, and requires either the opening
key K; and a signature verifiable with P;’s public key pk; or a valid signature
verifiable with the group’s public key pAk

2. prize: has value n Bitcoins, and requires all opening keys K;’s and a signature
from the winning candidate.

e The voters jointly sign JOIN using the threshold signature scheme, each with his private
key share sk;.

o Each voter generates, for each i € [n], the same simplified transaction PAY; with timelock
to whose input refers to out — deposit;. The output handles the compensation dB if voter
P; does not reveal his masked vote by time to . For instance, with d = m % n, the
compensation can be shared between the m candidates. The n voters jointly sign PAY;
using the threshold signature scheme. We should note tht this realization is not very
efficient for m > 5

o Each voter P; verifies that the above steps have been completed, and submit LOCK; to
the bitcoin system.

o After all LOCK;’s have appeared on the blockchain, JOIN is submitted to the blockchain.

¢ As long as JOIN has not appeared on the blockchain, say by time t;, any voter P; can
terminate the whole protocol by submitting BACK; to get back (1 + d) Bitcoins.

Figure 4.3.2: Ballot Casting via MultiLock Transaction - Compute Phase

After JOIN appears on the blockchain each voter can get his deposit back by submitting a transac-
tion which provides the opening key of the commitment for his masked vote. If all voters claim their
deposits the winner is determined and he gets N Bitcoins. If a voter does not submit the opening

key for his masked vote then the N bitcoins are locked and his deposit is used as a compensation.

4.4 Ballot Commitment via Decisional Diffie-Hellman

In this section we are going to present a protocol which is fair, robust and can be extended to

multiple candidates. The above protocols described they two major drawbacks:

e They cannot support m candidates due to the nature of Ballot masking.
e The protocols are not fault tolerant due to the way the ladder protocol is constructed and

due to the nature of Ballot masking.

Ballot Commitment via Decisional Diflie-Hellman 81

We are going to present a protocol which is based on Decisional Diffie-Hellman [32][33][34] for
ballot masking and on joint transaction for Ballot Casting. Therefore, we can achieve elections for
multiple candidates and avoid denial of service attacks as we are going to treat malicious voters as
voters who did not cast a ballot. In bibliography [32][33][34] we have reached a consensus that the

following properties are essential for decentralized voting schemes:

e Perfect Ballot Secrecy: A voter’s vote is private, besides what can be computed from the
published tally.

o Self-tallying: At the end of the protocol, voters and observers can tally the election result
from public information.

e Fuairness: Nobody has access to partial results before before casting their vote.

o Dispute-freeness: A scheme is dispute free if anyone can verify that the protocol was run

correctly and that each voter acted according to the rules of the protocol.
In addition, we will add robustness which was proposed by Khader et al [3§]
e Robustness: A malicious voter cannot prevent the election result from being announced.

We assume the use only of an authenticated brodcast channel to every participant. This assumption
is made also in [32][33][34][38]. There are several ways to realize such a public channel: by physical

means or digital signatures [32][33]. There is no need for private channels or trusted third parties.

Let G denote a finite cyclic group of prime order q in which the Decision Diffie-Hellman (DDH)
problem is computationally hard. Let h be a generator in G. There are n participants, and they

all agree on (G,h).

Setup Phase

o All voters now select at random an element in Zg. Each voter P; keeps z; secret and
publishes to h; = h* and a zero-knowledge proof that g; has been constructed correctly
by proving knowledge of x;.

o Bach voter P; checks the validity of the zero knowledge proofs and computes hY =
T2 by

n .
j=it1

Figure 4.4.1: Ballot Masking via Decisional Diffie Helmann

During setup round, we use Zero Knowledge Proofs to ensure participants follow the protocol
faithfully. The same technique is also used in [32][33][34]. During setup round, each voter needs to
demonstrate his knowledge of the exponent without revealing it. We can use Schnorr’s signature
[39], which is a well-established technique. Let H be a publicly agreed, secure hash function.
To prove the knowledge of the exponent for h* one sends (h%,r = u — x;z) where u € Zq and
z = H(h,h" h* i). This signature can be verified by anyone through checking whether A" and

h"h** are equal.

82 Electronic Voting

During vote round, each participant needs to demonstrate that the encrypted vote is one of {1,0}
without revealing which one. We adapt an efficient technique proposed by Cramer, Damguard and

Schoenmakers in [40] and more about it can be found in [32][34].

We keep the round complexity in 3 rounds while we avoid the drawback which exists in [34] where
the last voter is able to calculate the result before he/she votes. To avoid this problem we use
commitment schemes applied on Bitcoin [23]. This happens during the COMPUTE phase where
voters commit to their masked votes and lock them as an input to the COMPUTE transaction.
After, all voters have locked their votes, every voter has to reveal his/her commitment otherwise

he will pay a fee.

4.5 Ballot Casting via Compute Trasaction

As long as the voters lock their votes into COMPUTE transaction, they have to open their com-
mitments as to calculate the final result of the voting. Since, every transaction is made public,

observers and voters can solve the discrete logarithm problem and get the election result.

Voting Phase

+ The voter constructs b; = hi"’g" where V; € {0,1}. A disjunctive proof of equality
between discrete logarithms log, a; = logy,, b; /g is computed, to prove that V; € {0,1}.

« FBach voter casts his ballot b; via the COMPUTE transaction as in section 3.4.3. Since
his ballot b; is a commitment locked as an input to the COMPUTE transaction the last
candidate cannot exploit the result of the election.

Self-Tallying Phase

o If all voters open their commitments the self-tallying property allows the election result
to be derived by observers and voters. The result can be calculated u = log,V where
V=TIl b= gzzl:l”i. Although the computation of the discrete logarithm is hard in
general, we know that the election result is such that 1 < v < n and, therefore, the search
for the value v is feasible using baby step giant step algorithm.

o If some of the voters are not honest then we use the method described in the next section
to get a subset of honest voters and calculate the result of the election.

Figure 4.5.1: Ballot Casting via Compute Transaction

4.6 Robustness

In the protocol proposed in sections 3.4.4 and 3.4.5 a voter can prevent the election result by
aborting. In this section, we add a recovery round which was proposed in [38] where the election
result will be calculated with honest majority. Let’s assume that L is the group of voters that did

not open their commitment to the COMPUTE transaction. A recovery round can be executed as

Extending to k Candidates 83

Hje{i+1 ,,,,, n} hj

follows to allow the election result to be announced. Each voter computes h?i = N
jef{1,..i— J

together with a signature of knowledge asserting logysh; = log,{,h}yi

J
The outputs of this computation help us to eliminate the need for private keys of voters who did
not open their committed vote. If we want to calculate the result of the election for all voters L,
such that all the signatures of knowledge hold, the result can be calculated as u = logyV where

~ YiZq ~ YiTq

Vi=Tlewy i+ =g = ey b

4.7 Extending to k Candidates

Assuming we have n voters and k candidates [34]. A value m is chosen such that it is the smallest
integer where 2™ > n. The modification we do is tht each vote is encoded in V; = {2°¢, 2=,

o(k=1)2¢) oh=1)2¢, Q(k_l)mck_l} where ¢; is the number of votes for every candidate. The value
v can be efficiently computed by using baby-step giant-step algorithm and values ci,...,ci can
be recovered using the super-increasing nature of the encoding and with the help of knapsack

algorithm.

84

Electronic Voting

Part 4

Conclusion

Chapter 1

Conclusion

1.1 Summary

In this thesis we have studied the Bitcoin system, which is a decentralized cryptocurrency based on
a P2P network. In the first chapter we tried to described the inner workings of the network, starting
with some small introduction on cryptographic primitives, seeing how peers communicate inside
the network. We proceeded further, exploring the core concepts of Bitcoin which are transactions

and blocks while we are giving the basic Script functionality.

In the second part we are focusing on secure multiparty computation protocols. In bibliography, it
is proven that fairness cannot exist without a trusted third party. Our purpose is, to elaborate on
that problem by studying several problems proposed by other authors and we focus on decentralized

e-voting.

Our contribution is twofold, at first we extended Claim or Refund functionality from 2 parties (a
sender and a recipient) to N paarties (a sender and N possible recipients). Therefore, we manage to
reduce the amount of money the parties have to deposit to the protocol and we avoid overloading
the protocol with non-needed transactions. The e-voting protocols proposed consider have two

drawbacks:

1. They consider only 2 possible candidates.
2. They are not designed to avoid a denial of service attack, allowing a malicious party to abort

the protocol which results in aborting the election.

We propose a protocol based on Decisional Diffie Hellman for ballot masking and on Multilock
transactions for ballot casting based on Bitcoin Based Timed Commitments. We present this pro-
tocol in the 2-candidate setting (yes/no voting), then we extend it to m candidates. Furthermore,
we avoid abortion of the protocol, by adding an extra recovery round which calculates the result of
the election only with the honest majority of the voters. The protocol has a complexity of 2 rounds

for voting but needs an additional Bitcoin round, thus the parties can open their commitments and

88 Conclusion

everyone can compute the result of the election.

1.2 Future Work

Our work and the work already proposed in literature can be extended in several ways:

o Define more complex functionalities than F¢.p or Fy,; which can be used to create new and
more complex protocols.

¢ Adapt more cryptographic tasks which belong to the secure multiparty computation theory
to the model proposed by this thesis.

¢ Create protocols that their security belongs to the Universal Composable Framework.

¢ Reduce on-chain and off-chain complexity of the Bitcoin proposed protocols.

Bibliography

M)

A. C.-C. Yao. “How to generate and exchange secrets”. In: FOCS (1986).

Richard Cleve. “Limits on the Security of Coin Flips When Half the Processors are Faulty”.
In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC). 1986,
pp. 364-369.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. URL: http://
bitcoin.org/bitcoin.pdf (visited on 06/09/2015).

Adam Back. Hashcash - a denial of service counter-measure. 2002. URL: www.hashcash.org/
papers/hashcash.pdf (visited on 06/09/2015).

Unknown. Merkle Trees. http://en.wikipedia.org/wiki/Merkle_tree. Accessed: 2015-
03-30.

K. Okupski. Bitcoin Developer Reference. 2014. URL: enetium.com/resources/Bitcoin.pdf
(visited on 10/22/2015).

N. Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of Computation 48.177 (1987),
pp. 203-209.

V. Miller. “Uses of elliptic curves in cryptography”. In: Advances in Cryptology - CRYPTO
85, Lecture Notes in Computer Science (218 1986), pp. 417-426.

D. Brown. Standards for Efficient Cryptography Group. http://www . secg . org/sec2-
v2.pdf. Accessed: 2014-10-12.

Mike Caldwell, Aaron Voisine. Passphrase-protected private key. https://github. com/
bitcoin/bips/blob/master/bip-0038.mediawiki. Accessed: 2015-09-12.

Andreas Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. 1st ed. O’Reilly,
2014.

Unknown. Mini Private Keys. https://en.bitcoin.it/wiki/Mini_private_key_format.
Accessed: 2015-02-03.

N. Odell. Finding other Bitcoin Clients. https://bitcoin.stackexchange.com/questions/
3536/how-do-bitcoin-clients-find-each-other. Accessed: 2014-07-16.

Unknown. Bitcoin Developer Guide. https://bitcoin.org/en/developer-guide. Accessed:
2015-04-21.

Bibliography

[17]

[18]

[19]

[20]

[21]

Gavin Andresen. Block v2, Height in Coinbase. https://github.com/bitcoin/bips/blob/
master/bip-0034.mediawiki. Accessed: 2014-09-23.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “Snarks
for C: verifying program executions succinctly and in zero knowledge”. In: Advances in Cryp-
tology - CRYPTO 2018 - 33rd Annual Cryptology Conference. Santa Barbara, CA, USA,
2013, pp. 1676-1683.

Oded Goldreich. Foundations of Cryptography - vol 1. 1st ed. Cambridge University Press,
2001.

B. Parno, J. Howell, C. Gentry and M. Raykova. Pinocchio. “Nearly practical verifiable com-
putation”. In: Security and Privacy. 2013.

Oded Goldreich. Foundations of Cryptography - vol 2. 1st ed. Cambridge University Press,
2004.

Iddo Bentov and Ranjit Kumaresan. “How to use bitcoin to design fair protocols”. In: ePrint
2014/129 (2014).

Ran Canetti. “Security and Composition of Multiparty Cryptographic Protocols”. In: Journal
of Cryptology 13.1 (2000), pp. 143-202.

Peter Todd. OP CHECKLOCKTIMEVERIFY. https://github.com/bitcoin/bips/blob/
master/bip-0065.mediawiki. Accessed: 2016-06-23.

M. Andrychowicz, S. Dziembowski, D. Malinowski and L.Mazurek. “Secure multiparty com-
putations on bitcoin”. In: IEEE Security and Privacy (2014).

O. Goldreich, S. Micali and A. Wigderson. “How to play any mental game”. In: STOC (1987).

M. Andrychowicz, S. Dziembowski, D. Malinowski and L.Mazurek. “Fair two-party compu-
tations via the bitcoin deposits”. In: First Workshop on Bitcoin Research, FC (2014).

A. Back and I. Bentov. Fair coin toss with no extortion and no need to trust a third party. 2013.
URL: https://bitcointalk.org/index.php?topic=277048.0 (visited on 04/12/2016).

G. Maxwell. Zero Knowledge Contingent Payment. 2011. URL: https://en.bitcoin. it/
wiki/Zero_Knowledge_Contingent_Payment (visited on 05/01/2016).

S. Barber, X. Boyen, E. Shi and E. Uzum. “Bitter to better - how to make bitcoin a better
currency”. In: FC (2012).

Oded Goldreich and Ronen Vainish. “How to solve any protocol problem - an efficiency
improvement”. In: CRYPTO (1987).

Ronald Cramer. “Introduction to secure computation”. In: Lectures on Data Security (1998).

R. Kumaresan and 1. Bentov. “How to use bitcoin to incentivize correct computations” In:
CCS. 2010, pp. 30-41.

A. Kiayias and M. Yung. “Self-tallying elections and perfect ballot secrecy”. In: Public Key
Cryptography °02. LNCS, vol. 2274. 2002, pp. 141-158.

Bibliography 91

[33]

[34]

[35]

[36]

Jens Groth. “Efficient maximal privacy in boardroom votisng and anonymous broadcast”. In:
Financial Cryptography 04. LNCS, vol. 3310. 2004, pp. 90-104.

Fao Hao, Peter Y. A. Ryan and Piotr Zielinski. “Anonymous voting by two-round public
discussion”. In: Journal of Information Security. 2010, 4(2):62-67.

A. Juels, D. Catalano and M. Jakobsson. “Coercion-Resistant Electronic Elections”. In: Proc.
of Workshop on Privacy in the Electronic Society (WPES05). Alexandria, VA, USA, 2005,
pp. 61-70.

Peter Y. A. Ryan and Vanessa Teague. “Pretty Good Democracy”. In: Proc. of the 17th
Security Protocols Workshop. 2009.

Z. Zhao and T.-H. H. Chan. “How to vote privately using bitcoin”. In: ePrint 2015/1007
(2014).

D. Khader, B. Smyth, P. Y. Ryan and F. Hao. “A fair and robust voting system by broadcast”.
In: in EVOTE’12: 5th International Conference on Electronic Voting. 2012.

C.P. Schnor. “Efficient signature generation by smart cards”. In: Journal of Cryptology. vol.
4, mo .8. 1991, pp. 161-174.

R. Cramer, I. Damguard and B. Schoenmakers. “Proofs of partial knowledge and simplified
design of witness hiding protocols”. In: Proceedings of the 1/th Annual International Cryp-
tology Conference on Advances in Cryptology. LNCS, vol.839. 1994, pp. 174-187.

