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Abstract

To building model is consisted of damped harmonic oscillation equations which are second order

ordinary differential equation. The study and model reduction of building models is important

because buildings is the most popular structure and their accurate simulation of their response

requires dense discretization and leads to large-scale systems. Here, the fast/slow dynamics of the

building models will be analysed, by employing the Computational Singular Perturbation (CSP)

algorithm to an 8 floor building. Given a multi-scale (stiff) N -dimension system of ordinary differ-

ential equations which exhibits M fast time scales, the solution is attracted quickly on a N −M
Slow Invariant Manifold (SIM). On the SIM the building response is governed by a system, which is

free of the fast time scales, so that the flow there is characterized by the slow time scales. The CSP

algorithm provides an approximation of the SIM and of the slow system. A number of CSP -related

diagnostic tools are employed for the analysis of the building model, which provide all the relevant

physical understanding for the different phenomena that appear during building vibrations. The

purpose of the present analysis of the building model under various external loadings and excita-

tions is to identify (i) the natural eigenmodes of the buildings that stimulated, (ii) the contribution

of each natural eigenmode to the building vibration, (iii) the natural eigenmodes that correspond to

the time scales at each instant, (iv) the evolution of the SIM under significant changes of the load-

ing case. Finally, the results of the CSP method are compared to other model reduction methods

mentioned by Antoulas et al..
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Chapter 1

Introduction

The dynamical behaviours of the buildings are very complex. The last decades, these behaviours

have been extensively studied. [8–10, 19, 20, 35, 48]. There are many phenomena that have been

observed. Because of the complexity of the dynamical behaviours there is the need to create more

accurate models. That led to the increase the number of the degrees of freedom(DoFs). This results

to very large systems. It was essential to acquire a reduced system that can give results that

simulate the dynamical behaviour sufficiently with respect to an error. The results produced with

this approach can be very useful since:

• it is possible to identify the useful eigenmodes of the building,

• the reduced system can be significantly smaller than the ones with the whole Dofs,

• the slow and fast behaviours of the physical phenomenon can be identified,

• the reduction of the order of the system can led to dramatic decrease of the computational

power and the computer memory

• it enables to identify the changes in the dynamical behaviour with respect to the changes in

the value of the parameters of the physical problem.

There are many difficulties in the simulation of the building dynamical response. One of them is

how to determine the values of the damping coefficients. This process is quite hard and ambiguous

because the building materials do not have only elastic behaviour. Also the forces that are produced

from the deformed shape of a building under maximum loads. That forces are called second

order forces [19]. Another one is the inelastic and plastic properties of the materials that are

used at building construction. Luckily all the above phenomenons and much more don’t have a

huge impact except from the case of applying extreme loads in the structure. Structural engineers

can calculate the appropriate dimensions of the structural elements such that the structure don’t

get in inelastic and plastic behaviour. This is not an assumption that is applied on the building

codes [20] on the most cases for the sake of safety. In the case study of the building of Los

Angeles hospital found in the [3, 4, 15, 16] was selected. This is a building with elastic behaviour
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and damping. More information about the theory of the response of buildings under static loads

and vibration excitations found in the chapter (3) and in [1, 29,30].

Building vibrations are modelled with the use of Ordinal Differential Equation (ODE) systems

[8, 17, 19, 31, 35]. The most common method to construct and solve these Differential Equations is

the Finite Element Method(FEM). [7, 37, 48]. Many software had been developed the last decades

which solve building vibration problems like Ansys,Abaqus, e.t.c. [7]. These systems are (i) easy to

handle due to their well understood mathematical framework, (ii) very fast, because the matrices

of these systems are quite sparse and most of the non zero values are close to the diagonal(the

matrices have small bandwidth) with a good numbering of the DoFs, (iii) the systems are quite

robust. Although in many cases the systems are quite big and there is the need to find systems

with significant lower number of unknowns that simulate efficiently the dynamical behaviour of the

system. In the next chapters of this dissertation it is shown that exceptional order reduction of the

starting systems can be achieved due to the nature of the problem. Therefore, there will be no

need of absurd computational power or computer memory to achieve the solution.

Here, the building’s dynamical response will be modelled with a system of harmonic damping

oscillation ODEs. As a next step an algorithmic method will be applied that performs asymptotic

analysis. In this way it will be achieved a better physical understanding of the physical phenomenon

and the fast and slow time-scales that co-exist. With the usage of this method called Computational

Singular Perturbation (CSP) method a reduction in the order of the system can be achieved as

well.
The harmonic damping oscillation is a second order elliptic differential equation that describes

the motion of objects (in this case buildings) that is reduced by the time due to damping. This

happens mainly due to frictional forces that decrease the velocity in proportion to the acting

frictional force. This ODE is the foundation of the mechanics of vibrations [31, 35] and this ODE

will be mentioned with greater detail in the chapter 3 of the dissertation.

During this study of the building vibrations, it would be clear that the verification of the results

is not possible due to the lack of quantitative experimental data. The only way that it could be

checked that the model is efficient is that the results are of similar order as of some experimental data

from other buildings [1,20,30] and identify deformation patterns that are similar to the deformation

patterns that are known for other buildings. In this case, the numerical results that are produced

have been checked and they are normal in every loading case. Also in this dissertation it would be

analysed extensively for different loadings and frequency of loadings and it would be observed that

the system is robust which is expected.

One of the most important challenges regarding this study is to identify the eigenmodes that

are responsible for the deformation of the building during the loading. One goal is to connect the

value and the frequency of loading to the response of the building. Another goal is to incorporate

in this investigation the determination of the eigenmodes that are activated mostly in each loading
case.

The traditional tool for the identification of the fast components of a multi-scale system and

of the reduced model that drives its slow evolution is the emphSingular Perturbation Analy-

sis(SPA). SPA is a tool that identifies (i) the fast components that participate in the various

equilibrations that develop and (ii) the slow components that finally drive the system [17,21,22,34,

44–46]. The disadvantage of the paper/pencil SPA is that it can handle relative simple models be-

cause it requires (i) the governing equations of the system to be cast in the proper non-dimensional
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form, (ii) the identification of the fast and the slow variables and (iii) the identification of the

small parameter ε, which is indicative of the gap between the fast and slow time scales. Given the

complexity of the systems that are produced to investigate the behaviour of buildings to vibrations,

the application of the SPA faces significant obstacles, mainly due to the complexity and size of the

models that are currently of interest.

The fast/slow dynamics of the Los Angeles hospital [3, 16] to different loading cases will be

examined in the chapter (5), by employing the Computational Singular Perturbation (CSP) algo-

rithm. CSP reproduces the results of the classical SPA in an algorithmic fashion. The methodology

is not hindered by the size and complexity of the mathematical model and does not require the

system to be cast in a dimensionless form. CSP identifies (i) the fast and slow variables, (ii) the

way that the fast time scales lead the system to equilibria, (iii) the reduced model that governs the

slow evolution under the constraints (i.e., equilibria) generated by the fast time scales, and (iv) the

components that contribute to the equilibria and the slow evolution [11, 14, 26, 28, 42]. Also with

CSP the different types of equilibria with respect the loading cases that are applied in this physical

problem can be identified.

To evaluate the CSP method a search of model reduction methods in the bibliography [3, 6,

16, 33, 36] was conducted and the basic categories of all these methods were presented in chapter

(4). For each category a characteristic method was presented with further details. Furthermore,

there are some methods of model reduction that works specifically for the systems that simulate the

dynamic behaviour of the buildings due to some specific properties that are related to the nature

of the problem.

First, the CSP methodology will be briefly presented and the CSP tools will be discussed. Next,

the harmonic damping oscillation equation will be introduced and some phenomenon that are

observed in buildings during vibrations will be discussed. It follows a bibliographic research of

model reduction methods and the further discussion of some important methods. The detailed

model of Los Angeles hospital will be then presented, along with its parameters, initial conditions

and loading cases that are applied. The results of the CSP analysis will be finally presented and

discussed in chapter (5).

Finally, i would like to thank professor D.Goussis and Ph.D. student D.Maris for the help and

guidance that provide during the completion of this dissertation.
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Chapter 2

The CSP algorithm

Usually in order to formulate a physical problem there is the need of mathematical models that

are approximations of the real problems. In mechanics, in physics, in biology, in computer science

e.t.c. there are usually mathematical model of multiple time scales. These models simulate physical

problems in which slow and fast time scales are developed.

A system of ordinary differential equations in which slow and fast time scales are developed is

called stiff when :

• the fast time scales are dissipative

• the area of the vector field of the solution where the slow time scales are superior is much

bigger than the are where the fast time scales are superior

Therefore, the fast time scales characterize the solution of the stiff dynamical systems only for

a small time period. Later the slow time scales will dominate the fast ones and the effect of the

fast time scales is not important. Although, the existence of fast time scales in time periods where

slow time scales characterized the solution, it creates arithmetic difficulties that characterize the

stiff problems and led to the use of implicit calculating algorithms. The subspace in which the slow

time scales are responsible for the development of the solution and the solution is determined by a

non-stiff system is called exponentially attracting Slow Invariant Manifold (SIM). [17,44–46]

The phase space of the SIM is called tangent space and can also describes by fast and slow

subspaces, in which fast or slow time scales are dominant, respectively. For an ordinary differential

equation during the movement of the solution inside SIM the two subspaces are rotating. [44]

The SIM is defined by linear independent equations that are determined by the projection of

the vector field in the principal directions of the fast subspace of the tangent space. The non-stiff

system that simulates the movement of the solution on the SIM is determined by the projection of

the vector field to the principal direction of the slow subspace of the tangent space. [44]

The existence of the SIM allows the creation of simplified and non-stiff models with reduced

order. In this way the solution of large-scale stiff problems becomes easy. Also, it is possible to

identify the contribution of different physical phenomenon to the creation of the SIM. There are

many asymptotic methods from the Singular Perturbation Analysis (SPA) that can derive the SIM

and the non-stiff model with reduced order. As mentioned in chapter (1) these methods cannot
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handle complex and large-scale system. For that reason algorithmic methods have developed that

have no limitation for the size and complexity of the mathematical models that can handle. One

such method is the Computational Singular Perturbation (CSP) and the mathematical background

of this methods is presented in [11,14,26,28,32]. In this chapter the algorithm and various important

tools of the CSP method were presented.

The success of CSP in the analysis of multi-scale systems is based on the existence of a time

scale gap among the fastest time scales in the dynamics of the system and the time scale that

is characteristic of the system’s evolution. When these, say M, fast time scales are of dissipative

nature (i.e., they are generated by processes that tend to drive the system to equilibrium) they

become quickly exhausted, so that the fastest time scale of the slow ones becomes the characteristic

time scale for the system’s evolution. The gap between the slowest of the fast (τM ) and the fastest

of the slow (τM+1) time scales measures the time scale gap that is indicative of the fast/slow

separation. This gap is approximated by the ratio:

ε = τM/τM+1 (2.1)

which by definition satisfies ε < 1.

Consider a physical process which is governed by the N-dimensional system of (ODE ’s):

dy

dt
= g(y) (2.2)

where y and g(y) are the N -dimensional column state vector and vector field, respectively and

g is an algebraic function of y. Let the dynamics of this system exhibit M dissipative time scales,

which are much faster than the time scale that characterizes the evolution of the system. Such

a system is known as a stiff one [2]. According to the CSP algorithm, the vector field g can be

decomposed in a fast and a slow part, as:

dy

dt
= arf

r + asf
s (2.3)

where arf
r and asf

s are the components of the vector field g(y) in the M -dimensional fast

subspace and N −M dimensional slow subspace, respectively. The fast subspace, where the fast

time scales act, is spanned by the M ai (i = 1, ...,M) column vectors which form the (N ×M)

matrix ar:

ar =
[
a1 a2 ... aM

]
(2.4)

The slow subspace, where the slow time scales act, is spanned by the N−M aj (j = M+1, ..., N)

column vectors, which form the N × (N −M) matrix as:

as =
[
aM+1 aM+2 ... aN

]
(2.5)
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The CSP amplitudes f r and f s are the projections of the vector field g(y) along the M fast and

N −M slow directions, respectively, and are defined by the relations:

f r = brg f s = bsg (2.6)

where

br =


b1

b2

:

bM

 bs =


bM+1

bM+2

:

bN

 (2.7)

The N -dimensional row vectors bi (i = 1, ..., N) are dual to the N -dimensional column vectors

ai (i = 1, ..., N) and due to orthogonality they satisfy relations (2.8):

brar = Irr bras = 0rs bsar = 0sr bsas = Iss arb
r + asb

s = INN (2.8)

where INN and 0Mk are the unit (N ×N) and zero (M × k) matrices respectively.

When the trajectory evolves on the (N −M)-dimension Slow Invariant Manifold (SIM ) the M

fast dissipative time scales τi (i = 1, . . . ,M) are exhausted, so that the flow is characterized by the

slow time scale τM+1. On the SIM the vector field g(y) has no component in the fast subspace;

i.e., the amplitudes (2.9) attain negligible values:

f r = br • g ≈ 0rN (2.9)

so that the flow on the SIM is approximated by the system:

dy

dt
≈ asf

s (2.10)

The Eq. (2.10) results from the full system in Eq. (2.3), after neglecting the fast component.

Therefore, the reduced system in Eq. (2.10) is non-stiff.

Note that since asb
s = INN − arb

r, Eqs. (2.9, 2.10) show that for the construction of both the

algebraic equation approximating the manifold and the slow system, it is sufficient to have available

the fast basis vectors ar and br only.

The CSP basis vectors ar and as, and their duals bs and br are approximated with the CSP

algorithm by two iterative procedures, the “br” and the “ar” CSP refinements. The br-refinement

alters br and as, leaving bs and ar unaffected, and it is related to the accuracy in the description

of the manifold [11,25–28,40,47]. The ar-refinement alters ar and bs, leaving as and br unaffected,

and it is related to the non-stiffness of the simplified model [11,25,26,28,47].
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• Assuming that “k1” br-refinements and “m1” ar-refinements have already being made, an

additional br-refinement that improves the accuracy of as and br vectors is provided by the

following relations:

br(k1 + 1,m1) = τ rr (k1,m1)

[
dbr(k1,m1)

dt
+ br(k1,m1)J

]
(2.11)

ar(k1 + 1,m1) = ar(k1,m1) (2.12)

bs(k1 + 1,m1) = bs(k1,m1) (2.13)

as(k1 + 1,m1) = [I− ar(k1 + 1,m1)b
r(k1 + 1,m1)] as(k1,m1) (2.14)

where

τ rr (k1,m1) = (λrr(k1,m1))
−1 =

[(
dbr(k1,m1)

dt
+ br(k1,m1)J

)
ar(k1 + 1,m1)

]−1
(2.15)

• Assuming that “k2” br-refinements and “m2” ar-refinements have already being made, an

additional ar-refinement that improves the accuracy of ar and bs vectors is provided by the

following relations:

ar(k2,m2 + 1) =

[
−dar(k2,m2)

dt
+ Jar(k2,m2)

]
τ rr (k2,m2) (2.16)

br(k2,m2 + 1) = br(k2,m2) (2.17)

bs(k2,m2 + 1) = bs(k2,m2) [I− ar(k2,m2 + 1)br(k2,m2 + 1)] (2.18)

as(k2,m2 + 1) = as(k2,m2) (2.19)

where

τ rr (k2,m2) = (λrr(k2,m2))
−1 =

[(
dbr(k2,m2)

dt
+ br(k2,m2)J

)
ar(k2 + 1,m2)

]−1
(2.20)
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2.1 Implementation of the CSP refinements

The implementation of the CSP-refinements starts by assuming an initial guess for the basis vectors

ai and bi, i = 1, . . . , N . If these basis vectors are constants, the time derivative terms are ignored

in the first implementation of the refinements, which in the following will be referred as “Phase

(1)”. The time derivative terms will be retained in the following implementations of the refinements,

which in the following will be referred as “Phase (2)”. Since in the general case of a non linear system

the time derivatives contribute to higher order accuracy, the “Phase (1)” of the CSP refinements

involves only one set of br and ar-refinements. On the other hand, “Phase (2)” can involve more than

one set of refinements [41]. The only limitation in this case is set by the increasing computational

cost, as it will be shown explicitly next.

The goal of the iterative process of br and ar refinements is that the brand ar to converge to their

real values at each time step. In can be proved that after infinite number of refinements the brand

ar vectors are equal to the first M vectors of the (fast) right and left eigenvectors respectively. So

actually the br and ar vectors shows which are the primal directions of the problem where the

solution moves fast. A clever selection of the initial guess can lead to significant lower number of

iterations in order to achieve a sufficient convergence of the br and ar vectors. In detail the way of

creating the vectors for the initial guess will be mentioned in the following chapters.

Differentiating Eq.(2.9) with respect to time, along a solution of a trajectory y(t), yields:

df i

dt
=

N∑
j=1

λijf
j (2.21)

where i=1,..., N and

λij ≡
(
dbi

dt
+ bi • J

)
• aj (2.22)

where i,j = 1,..., N. In vector form Eq.(2.21) yields:

d

dt

f r

f s

 =

λrr λrs

λsr λss

f r

f s

 (2.23)

where r=1, ... , M and s=M+1, ... , N. The br-refinements tend to reduce the order of λrs,

while the ar-refinements tend to reduce the order of λsr. Evidently, these features result to (i) the

decoupling of the fast time scales from the slow ones, when λrs → 0rs and (ii) the decoupling of the

slow time scales from the fast ones, when λsr → 0sr) [41].
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2.1.1 Phase (1) of the CSP refinements

Consider the case where the first guess for the CSP vectors is the constant vectors br(0, 0) and

ar(0, 0), so:

dbr(0, 0)

dt
= 0,

dar(0, 0)

dt
= 0 (2.24)

In this case, the CSP algorithm for the first br-refinement yields:

br(1, 0) = λrr(0, 0)br(0, 0)J (2.25)

ar(1, 0) = ar(0, 0) (2.26)

bs(1, 0) = bs(0, 0) (2.27)

as(1, 0) = [I− ar(1, 0)br(1, 0)]as(0, 0) = [I− ar(0, 0)br(1, 0)]as(0, 0) (2.28)

where:

λrr(0, 0) = br(0, 0)Jar(0, 0) τ rr (0, 0) = [λrr(0, 0)]−1 (2.29)

The effect of the br-refinement is to lower the norm of λrs (where (dbr(1, 0)/dt)•as(1, 0) = 0rs):

λrs(1, 0) = br(1, 0)Jas(1, 0) = O(ελrs(0, 0)) (2.30)

by an order of ε = |τM/τM+1| < 1, making the fast modes “purer”, by decoupling them from

the slow modes, while the decoupling level of the slow time scales with the fast time scales is left

unchanged:

λsr(1, 0) = bs(1, 0)Jar(1, 0) = bs(0, 0)Jar(0, 0) = λsr(0, 0) (2.31)

Given the CSP vectors after one br-refinement, the algorithm of the ar-refinement yields:

ar(1, 1) = Jar(0, 0)τ rr (1, 0) (2.32)

br(1, 1) = br(1, 0) (2.33)

as(1, 1) = as(1, 0) (2.34)

bs(1, 1) = bs(1, 0)[I− ar(1, 1)br(1, 1)] = bs(0, 0)[I− ar(1, 1)br(1, 0)] (2.35)

where:

λrr(1, 0) = br(1, 0)Jar(0, 0) τ rr (1, 0) = [λrr(1, 0)]−1 (2.36)
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The result of the ar-refinement is to lower the norm of λsr:

λsr(1, 1) =

[
dbs(1, 1)

dt
+ bs(1, 1)J

]
ar(1, 1) = O(ελsr(1, 0)) = O(ελsr(0, 0)) (2.37)

by an order of ε = |τM/τM+1| < 1, making the slow modes “purer”, by decoupling them from

the fast modes, while the decoupling level of the fast time scales with the slow time scales is left

unchanged:

λrs(1, 1) =

[
dbr(1, 1)

dt
+ br(1, 1)J

]
as(1, 1) =

[
dbr(1, 0)

dt
+ br(1, 0)J

]
as(1, 0)

= λrs(1, 0) = O(ελrs(0, 0))

(2.38)

2.1.2 Phase (2) of the CSP refinements

The CSP vectors are now considered functions of the stated vector y, so they are time depen-

dent. The time derivatives of the basis vectors are taken into account, so that high-order terms

are retained which result to a better decoupling between fast and slow modes [41]. Given the CSP

basis vectors from Phase (1), one additional br-refinement yields:

br(2, 1) = τ rr (1, 1)

[
dbr(1, 1)

dt
+ br(1, 1)J

]
= τ rr (1, 1)

[
dbr(1, 0)

dt
+ br(1, 0)J

]
(2.39)

ar(2, 1) = ar(1, 1) (2.40)

bs(2, 1) = bs(1, 1) (2.41)

as(2, 1) = [I− ar(2, 1)br(2, 1)] as(1, 1) = [I− ar(1, 1)br(2, 1)] as(1, 0) (2.42)

where:

λrr(1, 1) =

[
dbr(1, 1)

dt
+ br(1, 1)J

]
ar(1, 1) τ rr (1, 1) = [λrr(1, 1)]−1 (2.43)

The result of the br-refinement is to lower even more the norm of λrs:

λrs(2, 1) =

[
dbr(2, 1)

dt
+ br(2, 1)J

]
as(2, 1) = O(ελrs(1, 1)) = O(ελrs(1, 0))

= O(ε2λrs(0, 0))

(2.44)
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by an additional order of ε = |τM/τM+1| < 1, making the fast time scales “purer”, by decoupling

them from the slow ones, while the decoupling level of the slow time scales with the fast ones is

left unchanged:

λsr(2, 1) =

[
dbs(2, 1)

dt
+ bs(2, 1)J

]
ar(2, 1) =

[
dbs(1, 1)

dt
+ bs(1, 1)J

]
ar(1, 1)

= λsr(1, 1) = O(ελsr(1, 0)) = O(ελsr(0, 0))

(2.45)

Given the CSP basis vectors after the second br-refinement, an additional ar-refinement yields:

ar(2, 2) =

[
dar(2, 1)

dt
+ br(2, 1)J

]
τ rr (2, 1) =

[
dar(1, 1)

dt
+ Jar(1, 1)

]
τ rr (2, 1) (2.46)

br(2, 2) = br(2, 1) (2.47)

as(2, 2) = as(2, 1) (2.48)

bs(2, 2) = bs(2, 1)[I− ar(2, 2)br(2, 2)] = bs(1, 1)[I− ar(2, 2)br(2, 1)] (2.49)

where:

λrr(2, 1) =

[
dbr(2, 1)

dt
+ br(2, 1)J

]
ar(2, 1) τ rr (2, 1) = [λrr(2, 1)]−1 (2.50)

The result of the second ar-refinement is to lower even more the norm of λsr:

λrs(2, 2) =

[
dbs(2, 2)

dt
+ bs(2, 2)J

]
ar(2, 2) = O(ελsr(2, 1)) = O(ε2λsr(1, 0)) = O(ε2λsr(0, 0)) (2.51)

by an additional order of ε = |τM/τM+1| < 1, making the slow modes “purer”, by decoupling

them from the fast modes, while the decoupling of the fast modes from the slow ones is left

unchanged:

λrs(2, 2) =

[
dbr(2, 2)

dt
+ br(2, 2)J

]
as(2, 2) =

[
dbr(2, 1)

dt
+ br(2, 1)J

]
as(2, 1)

= λrs(2, 1) = O(ελrs(1, 1)) = O(ελrs(1, 0)) = O(ε2λrs(0, 0))

(2.52)
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2.1.3 Time derivatives of the Jacobian

In order to calculate the CSP basis vectors in Phase (2), a number of time derivatives of the CSP

vectors must be computed [41]. The main expressions used for this purpose are:

dbr(1, 1)

dt
=
dbr(1, 0)

dt
= τ rr (0, 0)br(0, 0)

dJ

dt
[I− ar(0, 0)br(1, 0)] (2.53)

dar(2, 1)

dt
=
dar(1, 1)

dt
=[I− ar(1, 1)br(1, 0)]

dJ

dt
ar(0, 0)τ rr (1, 0)

− ar(1, 1)
dbr(1, 0)

dt
ar(1, 1)

(2.54)

dbr(2, 1)

dt
= τ rr (1, 1)

[
dbr(1, 0)

dt
J + br(1, 0)

dJ

dt
+
d2br(1, 0)

dt2

]
[I− ar(1, 1)br(2, 1)]

− br(2, 1)
dar(1, 1)

dt
br(2, 1)

(2.55)

where

d2br(1, 0)

dt2
=

[
dτ rr (0, 0)

dt
br(0, 0)

dJ

dt
+ τ rr (0, 0)br(0, 0)

d2J

dt

]
[I− ar(0, 0)ar(1, 0)]

− τ rr (0, 0)br(0, 0)
dJ

dt
ar(0, 0)

dbr(1, 0)

dt

(2.56)

The time derivatives involve the evaluation of the time rate change of the Jacobian matrix dJ/dt

and the high order rates d2J/dt2 as well:

dJ

dt
=
∑
i=1,Ns

∂J

∂yi
dyi

dt
=
∑
i=1,Ns

∂J

∂yi
gi (2.57)

d2J

dt2
=

∑
i,j=1,Ns

[
∂2J

∂yi∂yj
gi +

∂J

∂yi
J

]
gj (2.58)

The fact that the time derivatives of the Jacobian are required for the description of the SIM

and of the slow system only in Phase (2) suggests that the curvature of the SIM contributes in

high order accuracy terms only [41].
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2.2 The Criteria to identify the M number of the exhausted modes

The number M of the fast exhausted time scales of the system and the dimensions of the SIM

N −M , might change as a the solution evolves with time. The identification of the number of the

exhausted time scales depends on the order of accuracy that is sought. Here, the criteria for leading

(first) and second order accuracy will be stated. The measure for the order of accuracy will be the

fast/slow time scale ratio ε = τM/τM+1.

2.2.1 First order accuracy

Demanding leading order accuracy, the criterion for declaring the M fast time scales exhausted is:

τM+1 |ar(1, 1)f r(1, 1)| < τM
τM+1

|y|+ AbsErr (2.59)

where ar(1, 1) is the (N×M)-dim. matrix containing theM fast CSP basis vectors (see Eq. (2.4))

computed after performing one br- and one ar-refinements and f r(1, 1) (see Eq. (2.9)) is the M -

dim. vector with the M amplitudes of the M fast CSP modes computed after performing one br-

and one ar-refinements. The first term in the RHS of Eq. (2.59) indicates the relative error allowed

when integrating the slow system, while the second term denotes the equivalent absolute error. The

results that will be reported next were computed by setting AbsErri = 10−16 for all i = 1, . . . , N .

2.2.2 Second order accuracy

Seeking second order accuracy, the criterion for declaring the M fast time scales exhausted is:

τM+1 |ar(2, 1)f r(2, 1)| <
(

τM
τM+1

)2

|y|+ AbsErr (2.60)

where the ar(2, 1) (N ×M)-dim. matrix contains the M fast CSP basis vectors (see Eq. (2.4))

computed after performing two br- and one ar-refinements and f r(2, 1) (see Eq. (2.9)) is the M -

dim. vector with the M amplitudes of the M fast CSP modes computed after performing two

br- and one ar-refinements. As when seeking leading order accuracy, the first term in the RHS of

Eq. (2.60) indicates the relative error allowed when integrating the slow system, while the second

term denotes the equivalent absolute error. The results that will be reported next were computed

by setting AbsErri = 10−16 for all i = 1, . . . , N .

20



2.3 The CSP diagnostic tools

CSP allows for the development of a number of computational tools by which the meaningful

physical understanding for the evolution of the system under examination can be acquired.

It is assumed that the vector field g(y) can be represented as the sum of the products SkR
k

(k = 1, ..., 2K):

g(y) = S1R
1(y) + S2R

2(y) + . . .S2KR
2K(y) (2.61)

where Sk in the case of building models is the is kth eigenmode-eigenvector and process and

Rk(y) is the corresponding eigenvector-eigenfrequency. Therefore, the amplitude of the ith CSP

mode f i (i = 1, . . . , N ; see Eq. (2.6)), can be expressed as:

f i = f i1 + ...+ f i2K (2.62)

where f ik(y) = (bi • Sk)R
k(y). When fm represents an exhausted mode (m = 1, . . . ,M ; see

Eq. (2.9)), Eq. (2.62) yields:

fm = fm1 + ...+ fm2K ≈ 0 (2.63)

2.3.1 The CSP Pointer

The variables that are affected the most by the mth fast time scale and exhibit a significant influence

on the terms participating in the occurring cancelations in the vanishing amplitude of the mth mode,

see Eq. (2.63), can be identified by the the CSP Pointer for the mth mode:

Dm = diag[ambm] = [a1mb
m
1 , ..., a

N
mb

m
N ]T (2.64)

where due to the orthogonality bm·am = 1, it follows that a1mb
m
1 +...+aNmb

m
N = 1, (m = 1, . . . ,M)

[11, 13, 23–25, 28]. A value of ajmbmj (j = 1, ..., N) close to unity denotes the association of the jth

variable with the mth CSP mode amf
m and the related time scale τm.
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2.3.2 The Participation Index

Eq.(2.63) indicates that the decay to negligible values of the exhausted fast amplitudes is the

result of equilibrations emerging among various components in the model. These components are

identified with the use of the Participation Index :

Pmk =
fmk (y)∑2K

j=1 |fmj (y)|
(2.65)

where m denotes the fast CSP mode (m = 1, . . . ,M), k denotes the kth component (k =

1, ..., 2K) and by definition |Pm1 | + ... + |Pmk | = 1 [11, 13, 25, 28]. Since only exchausted modes are

considered, for which fm ≈ 0, the following relation also holds: Pm1 + ... + Pmk ≈ 0. As a result,

a relatively large value of Pmk indicates a large contribution of the kth term of Eq. (2.61) to the

constraint developed along the mth CSP basis vector am, imposed by the mth fast time scale, when

becomes exhausted.

2.3.3 The Importance Index

The flow on the SIM is governed by the slow system in Eq. (2.10):

dy

dt
≈ asf

s = gslow (2.66)

The contribution of the kth term of Eq. (2.61) to the evolution on the SIM of the nth variable

in y, according to the slow system, can be evaluated with the CSP Importance Index, which is

defined as follows. Each element of gslow(y) can be expressed with 2K terms as:

gnslow(y) = gn,1slow(y) + gn,2slow(y) + ...+ gn,2Kslow (y) (2.67)

where gn,2Kslow (y) =
∑N

j=M+1 a
n
j (bj •Sk)Rk(y), (k = 1, ..., 2K) and anj denoted the nth-th element

of the column vector aj (j = M + 1, . . . , N) in as; see Eq.(2.5). The Importance Index is defined

as:

Ink =
gn,kslow(y)∑2K

j=1 |g
n,j
slow(y)|

(2.68)

where by definition |In1 | + |In2 | + ... + |In2K | = 1 [11, 13, 25]. A relatively large value of |Ink |

indicates that the kth term of Eq. (2.61) provides a significant contribution to the evolution of yn

on the SIM, while a relatively small value of |Ink | indicates a negligible contribution.
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2.3.4 The Eigenvalue Participation Index

In general, all terms represented in the vector field g(y), see Eq. (2.61), contribute to the emergence

of the M -fast dissipative time scales. The exact contribution of each term can be identified by the

Eigenvalue Participation Index (EPI), which provides the contibution of the kth term of Eq. (2.61)

to the development of the mth eigenvalue λm. For a real eigenvalue λm it holds that:

λm = qmJpm (2.69)

where qm and pm are the corresponding left (row) and right (column) eigenvectors of the

Jacobian J. Substituting from Eq. (2.61) yields the following partition of the eigenvalue λm with

respect to the 2K processes:

λm = λ1m + λ2m + ...+ λ2Km (2.70)

where

λkm = qmSk∇Rkpm, (k = 1, ..., 2K) (2.71)

The EPI is defined as:

Λmk =
λkm∑2K

j=1 |λ
j
m|

(2.72)

By definition |Λn1 |+ |Λn2 |+ ...+ |Λn2K | = 1 and the value of Λnk provides a measure of the influence

of the kth term of Eq. (2.61) to the value of the nth eigenvalue λn. [12–14] Negative values of Λnk
indicate a trend to of the kth term of Eq. (2.61) to move the nth CSP mode towards equilibrium,

i.e., fn(y) → 0. These terms will be called dissipative ones. On the other hand, positive values

of Λnk indicate a trend away from equilibrium. Naturally, such terms will be declared as explosive

ones. Regarding the exhausted time scales τm(m = 1, ...,M), in which the dissipative processes

dominate, a non-negligible negative Λmk indicates that the rate of the kth term of Eq. (2.61) will

act appropriately in order to restore, within a period of O(τm), the equilibration denoted by the

mth CSP mode fm(y) ≈ 0. A positive Λmk will oppose such action.
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Chapter 3

The harmonic damping Oscillation

The damped harmonic oscillation is a second order differential equation that is used to calculate

the response of an object (building in this case) under structural loads. Before analysing the

complex case, the theory for the simple case will be analysed to get a better grasp of the problem

before achieving the general system of equations. A great book that presents the theory of building

vibrations in an easy and understanding way is the [8]. Many figures in this chapter are taken

from there so the readers will understand better the mathematical background of the dynamical

response of the buildings under various external forces and excitations.

3.1 Dynamical problem in simple case

In the first part of this chapter a simple structure such as a single storey building will be modelled

as a system with concentrated mass with weightless columns. The dynamical response of those

structures under static loads and earthquake excitations will be observed. Furthermore, the differ-

ential equations for some simple structures will be shown. Afterwards those differential equation

will be solved analytically for the simple cases.

3.1.1 Simple Structures

The main focus of this dissertation is the understanding of the oscillation of those structures under a

horizontal force applied on the concentrated mass or a ground movement caused by an earthquake.

Those cases are similar and it was proved that in the section (3.1.6).

Those structures are called simple because they could be modeled by using a concentrated

mass m which is supported on weightless columns with stiffness k in the horizontal direction. This

assumption can be valid only in structures that one part of the structure is a lot stiffer than the

other and can be modelled as a concentrated mass. This system can be shown in Fig. (3.1 a,b).

The mass m equals to the total mass of the structure and the stiffness k is equal to the sum of all

the lateral stiffness of the structural elements. So the one storey structures have only one unknown,

the displacement u in the horizontal direction.
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Figure 3.1: (a) idealized pergola, (b) idealized water tank, (c) free vibration due to initial displacement,
adopted from [8]

The differential equation that describes the dynamical behaviour of such structures [8, 10, 19]

with mass m, damping c and stiffness k is the following :

mü+ cu̇+ ku = p (3.1)

where u is the horizontal displacement if the mass, u̇ is the velocity, ü is the acceleration and p

is the external forces. The specific case when the system is moved from its initial equilibrium and

it left alone to oscillate freely without any external loads or earthquake excitations and with an

initial displacement u(0) and initial velocity u̇(0) is given by :

mü+ cu̇+ ku = 0 (3.2)

This motion is called free vibration. When the damping is ignored the movement of the mass is

similar to the Fig. (3.1 c). Then the object will oscillate for ever. This is not a realistic assumption.

Denote the amplitude as the maximum displacement reached in every oscillation cycle. In reality

the amplitude of the oscillation is decreased over time due to the damping. In Fig. (3.2) two

different experiments conducted by the university of Berkeley are presented. [8]

There are numerous mechanisms that are responsible for the decrease of the amplitude over

time. All those mechanisms consume energy during the movement of the system. The effect of

those damping mechanisms is shown in the Fig. (3.2). Consequently, the damping is related to

material and the damping of plexiglass is much greater than the one of the aluminium. Damping

is a very complex phenomenon that is analysed in section (3.1.4) and in [1, 29,30].
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Figure 3.2: (a) free vibration of aluminum model, (b) free vibration of plexiglass model, adopted from [8]

3.1.2 Single degree of freedom systems

The system that is studied in this section is shown in Fig. (3.3 a). This system consisting of a

concentrated mass m in the ceiling, a weightless supporting structure with stiffness k and a viscous

damper c. The axial deformation of the beam and the columns are neglected.

These assumptions are reasonable for a single-storey building. In real constructions every part

(beam,column,wall,etc.) contribute to the inertia (mass), elastic forces (stiffness) and damping. In

the idealised system every characteristic is concentrated in the separate elements: mass , stiffness

and damping.

The number of independent displacements that are required to define the movement of all the

masses in respect with their initial position is called the number of degrees of freedom(DOFs). In

this particular case the system has only one degree of freedom which is the horizontal displacement

of the mass. Accordingly, this system has a single degree of freedom (SDF).

Figure 3.3: (a) single storey frame structure and its deformed state, (b) single storey frame structure
and its deformed state when ground motion ug is applied to the structure, (c) free body diagram, adopted
from [8]
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3.1.3 Force-Displacement relation

In the single degree of freedom system shown in Fig. (3.3 a) a static force p(t) is applied in the

direction of the degree of freedom u. The internal force fs that resists the displacement u and is

equal and opposite from the force p(t). The goal is to determine the relation between the force fs

and the relative deformation u = ut − ug. This relation will be linear for small deformations but it

will become non linear for larger deformations as shown in the Fig. (3.4 a,b).

3.1.3.1 Linear elastic systems

For a linear elastic system the relation between the horizontal force fs and the deformation u is

linear:

fs = ku (3.3)

where k is the resistance of the system to the horizontal force (stiffness in the case of the bending

deformation). In the Eq. (3.3) it is claimed that the hypothesis of the linear equation between fs
and u which is destined for the small deformations of the structure is also valid for large deformation

too. A system like this is called elastic.

For the structure in Fig. (3.3 a) denote the height h, Young’s modulus E and moment of

inertia (in the direction of the deformation) I. The stiffness of the whole system is the sum of the

stiffness of every column. For the case where the slab is rigid (its deformation is very small and it

is considered zero) the stiffness is given by :

k =
∑

columns

12EIc
h3

= 24
EIc
h3

(3.4)

For all the different cases where the slab can be deformed the formulas are given in [7, 10,19].

Figure 3.4: (a) force-displacements relation for linear systems, (b) force-displacements relation for non
linear systems, (c) damping forces - velocities diagram, adopted from [8]
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3.1.3.2 Inelastic systems

The procedure to calculate the relation between the horizontal force fs and the deformation u is

more complicated. It involves periods of applying and removal of forces in a cycle manner.

fs = fs(u, u̇) (3.5)

The force-displacement diagram produced is not linear and the behaviour of the material is

different every time the forces are applied. This behaviour is shown in Fig. (3.4 b). This is a more

realistic assumption but it requires actual information about the material to form the system of

the differential equations. The focus of this dissertation is the linear case. More information can

be found in [7, 9, 20].

3.1.4 Damping Forces

As mentioned earlier, the mechanisms that are responsible for the reduction of the the amplitude

during an oscillation is called damping. The energy of an oscillated system is consumed through

different mechanisms that may work simultaneously on the structure. Such mechanisms in a simple

case can be the thermal effects through repeated elastic staining of the material and from the

internal friction when a solid is deformed. Although, in real buildings the mechanisms are much

more complex. During an oscillation in a building there is friction in the metal connections, opening

and closing of micro cracks in the concrete and the friction between structural and non structural

elements like the brick walls. The detailed calculation of all this mechanisms is nearly impossible

and for that reason in most cases the damping is simulated in a very simplified way. [1,8,20,29,30]

The real damping in a single degree system can be simulated with a linear viscous damper. The

damping coefficient is selected such as the vibrational energy to be equal with the energy consumed

by all the damping mechanisms. This idealization is called equivalent viscous damping and more

information can be found in [1, 8, 20,29,30].

In the Fig. (3.3 a) there is a construction with a linear viscous damper. In this case a force p(t)

is applied in the direction of the degree of freedom u. The internal force of the damper fD is equal

to the external force p(t). The relation between the damping force fD and the velocity u̇ is linear

is shown in Fig. (3.4 c) and is given by the equation :

fD = cu̇ (3.6)

where the constant c is the coefficient of the viscous damping.

In contrast with the stiffness, the coefficient of the viscous damping cannot be calculated by

the dimensions of the structural elements. This is not surprising because the damping mechanisms

are very complex in real structures.

For that reason the equivalent viscous damper is used in order to simulate the loss of the energy

for values of deformation inside the width of linear elastic behaviour. Outside of this width the
damping coefficient can vary due to inelastic behaviour. [8, 20] The non linearity of the damping

behaviour is usually neglected. When it is included there is a change in the selection of the value

of the damping coefficient suitable for the width of the deformation, similar to the relation of the

deformation to the relation of the linear elastic limit of the structure in Eq. (3.5).
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3.1.5 Equation of motion: External force

In the simple case of the idealized single storey building that mentioned before an external force p(t)

is applied dynamically in the direction of the degree of freedom (see Fig. (3.3 a)). This symbolism

shows that the force p can change over time t. Also the displacement of the mass changes over time

t so the symbol u(t) is used for every instant there is a differential equation (see Eq. (3.8)).

3.1.5.1 Application of Newton’s second law

The forces that are applied in the mass at each instant presented in the Fig. (3.3 c). Those include

the external force p(t), the elastic (or inelastic) force of resistance fs and the the damping force

fD. The resulted force in the direction of the degree of freedom is p − fs − fD and the Newton’s

second law gives:

p− fs − fD = mü ⇔ mü+ fD + fs = p(t) (3.7)

With substitution of the Eq. (3.3) and Eq. (3.6) this equation becomes:

mü+ cu̇+ ku = p(t) (3.8)

That is the proof of the general equation of motion for linear systems that describes the de-

formation or the displacement u(t) of the idealized structure shown in Fig. (3.3 a), in which an

external dynamical force p(t) is applied. In similar way by substituting the Eq. (3.5) and Eq. (3.6)

to the Eq. (3.7) the equation of motion for inelastic systems becomes:

mü+ cu̇+ fs(u, u̇) = p(t) (3.9)

3.1.6 Equation of motion: Earthquake excitation

In earthquake-prone areas, the main problem of structural dynamics that concern the structural

engineers is the behaviour of structures subjected to earthquake induced motion of the base of the

structure. The displacement of the ground is denoted by ug, the total displacement of the mass

with ut and the relative displacement of the mass to the ground with u (see Fig. (3.3 b)). At each

instance these deformation are related to:

ut(t) = u(t) + ug(t) (3.10)

The ut and ug are referred to the same system and their positive directions are the same as

shown in Fig. (3.3 b).

The equation of motion for the idealized one storey building in Fig. (3.3 b) when it is subjected

to earthquake excitation can be derived with the dynamic equilibrium. From the free-body diagram

shown in Fig. (3.3 c), that contains the inertia force fI , the dynamical equillibrium equation is:
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fI + fD + fs = 0 (3.11)

Only the relative displacement u between the mass and the base produces elastic and damping

forces due to structural deformation. The rigid-body component of the displacement ug of the

structure produces no internal forces. Thus for a linear system the Eq. (3.3) and Eq. (3.6) are still

valid. The inertia force fI is related to the acceleration üt of the mass by :

fI = müt (3.12)

Substituting the Eq. (3.3), Eq. (3.6) and Eq. (3.12) to Eq. (3.11) and using the Eq. (3.10)

gives :

mü+ cu̇+ ku = −müg(t) (3.13)

This is the equation of motion with respect the relative displacement or deformation u(t) of the

linear system of the picture that is subjected to ground acceleration üg(t).

In a similar way the equation for the inelastic systems can be derived by using the Eq. (3.11),

but replace the Eq. (3.3) with the Eq. (3.5):

mü+ cu̇+ fs(u, u̇) = −müg(t) (3.14)

The equation of motion of the structure is the same in two different excitations by comparing

the Eq. (3.8) and the Eq. (3.13) or the (3.9) and the Eq. (3.14). These two are the ground

acceleration üg(t) and the external force = −müg(t). So the displacement u(t) of the structure will

be the same in those two cases as shown in Fig. (3.5). In that manner, the effective force peff
that can be applied to a structure with stationary base in order to simulate the ground acceleration

üg(t) is :

peff (t) = −müg(t) (3.15)

The force peff (t) is called effective earthquake force in [8, 10, 20]. One important conclusion is

that the relation between the effective earthquake force and the mass of the structure is linear. So

if the structural designer increases the mass of the structure it increases the effective earthquake

force .

Figure 3.5: Effective earthquake force: horizontal ground motion, adopted from [8]
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3.1.7 Methods of solving the differential equation

The equation of motion for a linear single degree of freedom system which is subjected to external

force p(t) is the second order differential equation from earlier on this chapter:

mü+ cu̇+ ku = p(t) (3.16)

The goal is to determine the solution for the initial displacement u(0) and the initial velocity

u̇(0). Usually the structure is in equilibrium state so u(0) = u̇(0) = 0

3.1.7.1 Classic Solution

The total solution of the linear differential equation consisted of the complementary solution uc(t)

and the particular solution up(t) so u(t) = uc(t) + up(t). So in the solution there will be two

constants that will be determined by the initial values of the problem.

For the idealized building shown in Fig. (3.3 a) without damping an analytic expression of the

solution can be derived using the following method.

Lets consider the static force p(t) = p0, t ≥ 0. The Eq. (3.16) with no damping (c = 0) is :

mü+ ku = p0 (3.17)

The particular solution of the Eq. (3.17) is :

up(t) =
p0
k

(3.18)

and the complementary solution is :

uc(t) = A cosωnt+B sinωnt (3.19)

where A and B are constants of integration and ωn =
√

k
m

The complete solution is the sum of the Eq. (3.18) and the Eq. (3.19) :

u(t) = A cosωnt+B sinωnt+
p0
k

(3.20)

If the system is initially at equilibrium state, u(0) = u̇ = 0 at t = 0. For these initial conditions

the constants A and B are :

A = −p0
k

B = 0 (3.21)

The complete solution is given by substituting Eq. (3.21) in Eq. (3.20) :

u(t) =
p0
k

(1− cosωnt) (3.22)
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The classic solution is the basic method that is used to derive analytic solutions for this problem.

Similarly,the analytic solutions can be derived when damping is included, for free vibration and for

excitations that can be described analytically, such as harmonic, step and pulse forces.

3.1.7.2 Other analytic methods

There are two more methods in [8] to derive analytic solution of this differential equation :

• Duhamel’s Integral

• Frequency-Domain Method

The above methods won’t be described in this dissertation. The method that was presented

before can derive all the analytic solution needed to get a better grasp of the problem and the shape

of the solutions. This way the reader can judge better the solution of the systems with multiple

DOFs that are derived with computational ways in the following chapters of this dissertation.

3.2 Free Vibration

A structure is said to be undergoing free vibration when it is disturbed from its static equilibrium

position and then allowed to vibrate without any external dynamic excitation. The free vibration

problem is described by the notions of natural vibration frequency and damping ration of an SDF

system. It will be shown that the rate at which the motion decays in free vibration is controlled

by the damping ratio. Thus the Fig. (3.7) will be better explained. Even if the damping in real

structures is complex as mentioned in section (3.1.4),it is shown in [1, 8, 20, 29, 30] that a practical

mathematical approach is to idealize it with equivalent viscous damping.

3.2.1 Undamped free vibration

The motion of linear SDF systems is described by the Eq. (3.16). In the case of the undamped

free vibration the p(t) = 0 and c = 0 and the Eq. (3.16) becomes :

mü+ ku = 0 (3.23)

The free vibration starts when the system is disturbed from its static equilibrium position by

changing the initial displacement u(0) and initial velocity u̇(0) at time zero, which is defined as the

instant the motion is initiated :

u = u(0) u̇ = u̇(0) (3.24)

The solution of the differential equation has already been obtained in the Eq. (3.20) and by

finding A and B suitable to fulfil the initial conditions the solution becomes :
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u(t) = u(0) cosωnt+
u̇(0)

ωn
sinωnt (3.25)

where :

ωn =

√
k

m
(3.26)

The Eq. (3.25) is shown in the Fig. (3.6). It is obvious that the motion is periodic. The time

required for the undamped system to complete one cycle of free vibration is the natural period of

vibration of the system, which is denoted as Tn. It is related to the natural circular frequency of

vibration ωn with the formula :

Tn =
2π

ωn
(3.27)

The system executes 1
Tn

cycles in 1 sec. This natural cyclic frequency of vibration is denoted by

fn =
1

Tn
(3.28)

The units of fn are hertz (Hz) and fn is related to ωn with :

fn =
ωn
2π

(3.29)

The term natural frequency of vibration applies to both ωn and fn.

Figure 3.6: Free vibration of a system without damping, adopted from [8]

The natural vibration properties of an undamped system ωn, Tn, and fn depend only on the

mass and stiffness of the structure from Eq. (3.26), Eq. (3.27) and Eq. (3.28). Even for the cases

where the damping is not neglected, the stiffer of two SDF systems having the same mass will have

the higher natural frequency and the shorter natural period [8,10,19]. The qualifier natural is used

in defining Tn,ωn and fn to emphasize the fact that these are natural properties of the system when
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it is allowed to vibrate freely without any external excitation. Because the system is linear, these

vibrations are independent of the initial displacement and velocity.

The amplitude of the undamped free vibration system is denoted by u0 and is denoted by the

formula :

u0 =

√
[u(0)]2 +

[
u̇(0)

ωn

]2
(3.30)

It was shown in Fig. (3.6) that in the undamped case the amplitude u0 stay constant and it

depends only to the initial displacement and velocity.

3.2.2 Damped free vibration

By setting p(t) = 0 in the Eq. (3.16) the differential equation of free vibration SDF systems with

damping becomes:

mü+ cu̇+ ku = 0 (3.31)

Lets denote the critical damping coefficient ccr and the damping ratio ζ as follows:

ccr = 2mωn = 2
√
km =

2k

ωn
(3.32)

ζ =
c

2mωn
=

c

ccr
(3.33)

By dividing the Eq. (3.31) with m :

ü+ 2ζωnu̇+ ω2
nu = 0 (3.34)

3.2.2.1 Types of motion

In the Fig. (3.7) the displacement u(t) due to the initial displacement u(0) is shown for three cases:

• c = ccr (ζ = 1) where the system returns to the equilibrium position without oscillation,

• c > ccr (ζ > 1) where the system returns to the equilibrium position without oscillation as

with the case where ζ but at a slower rate,

• c < ccr (ζ < 1) where the system oscillates about its equilibrium position with a progressively

decreasing amplitude.
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Figure 3.7: Free vibration of underdamped, critically damped, and overdamped systems, adopted from [8]

The damping coefficient ccr is called critical damping coefficient due to is the limit of c that

divides the systems that to those which are oscillate and not.

All of the structures falls in the third category and specifically where the damping ratio ζ < 0.10.

[8, 20, 29, 30] In this dissertation it was assumed that ζ = 0.05 or 5% which is the most common

case for building shown in [8,20,29,30],ghali2003structural, filiatrault2013elements. The other cases

are analysed deeper at [30].

3.2.2.2 Underdamped Systems

In this chapter the Eq. (3.31) will be solved with the initial conditions of the Eq. (3.24) for a

system with c < ccr and ζ < 1. The solution of the Eq. (3.34) is of the form of :

u = est (3.35)

Substituting to the Eq. (3.34) :

(s2 + 2ζωns+ ω2
n)est = 0 (3.36)

which is true for every value of t so :

s2 + 2ζωns+ ω2
n = 0 (3.37)

The Eq. (3.37) is known as the characteristic equation of this differential equation and it has

two solutions :

s1,2 = ωn(−ζ ± i
√

1− ζ2) (3.38)

So the general solution could be written :

u(t) = A1e
s1t +A2e

s2t (3.39)
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By substituting the Eq. (3.38) to the Eq. (3.39) the displacement is given by the following

formula :

u(t) = e−ζωnt(A1e
iωDt +A2e

−iωDt) (3.40)

where :

ωD = ωn
√

1− ζ2 (3.41)

The parenthesis term of the Eq. (3.40) can be written using trigonometric functions and calcu-

late the integration constants A and B to fulfil the initial conditions.

u(t) = e−ζωnt(A cosωDt+B sinωDt) (3.42)

A = 0 B =
u̇(0) + ζωnu(0)

ωD
(3.43)

By substituting the Eq. (3.43) to the Eq. (3.42) the final solution is obtained :

u(t) = e−ζωnt

[
u(0) cosωDt+

u̇(0) + ζωnu(0)

ωD
sinωDt)

]
(3.44)

Figure 3.8: Effects of damping on free vibration, adopted from [8]

The above solution can be shown in the Fig. (3.8) and the natural period of the damped

vibration TD = 2π
ωD

is related to the natural period without damping with:

TD =
Tn√

1− ζ2
(3.45)
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It was shown in the Fig. (3.8) that the amplitude decays exponentially over time. The envelope

curves are ±ρe−ζωnt, where

ρ =

√
[u(0)]2 +

[
u̇(0) + ζωnu(0)

ωD

]2
(3.46)

By observing the Fig. (3.9) from [8] it could be concluded that the most important effect of the

damping is the rate at which the amplitude decays. For ζ = 5% the oscillations after 10-15 natural

periods Tn become insignificant.

Figure 3.9: Free vibration of systems with damping level ζ = 5%, adopted from [8]

3.2.3 Harmonic vibration with viscous damping

In the problem that the CSP method is applied there are external harmonic forces. Harmonic or

cosine forces is an alternative approach to simulate earthquake excitation. The differential equation

of an SDF system with these type of forces are :

mü+ cu̇+ ku = p0 sinωt (3.47)

mü+ cu̇+ ku = p0 cosωt (3.48)

For both Eq. (3.47) and Eq. (3.48) the particular solution is given by the form :

up(t) = C sinωt+D cosωt (3.49)

where the formulas of the constants C and D are given in [8, 30] for both cases.

The complementary solution of the Eq. (3.47) and Eq. (3.48) is given by the Eq. (3.47). So

the complete solution of the Eq. (3.47) and Eq. (3.48) is :

u(t) = e−ζωnt(A cosωDt+B sinωDt)︸ ︷︷ ︸
transient

+C sinωt+D cosωt︸ ︷︷ ︸
steady state

(3.50)
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Figure 3.10: Response of damped system to harmonic force; ω
ωn

= 0.2, ζ = 0.05, u(0) = 0, and u(0) = ωnp0

k ,

adopted from [8]

The integral constants A and B can be calculated from the initial conditions u = u(0) and

u̇ = u̇(0). For the case of the harmonic force the Fig. (3.10) from [8] shows how the transient part

of the solution steadily tends to 0.

3.3 Multiple Degree of Freedom systems

In this section, the general method of creating the system of equations to simulate a whole building

will be described. The method is similar with the case of the SDF system. By using the same

approach of the equillibrium between external forces and three types of internal forces the Eq.

(3.11) can be written as :

fI + fD + fs = p(t) (3.51)

where the forces are :

• fI are the inertia forces related to the displacements u

• fD are the damping forces related to the velocities u̇

• fs are the elastic forces related to the accelerations ü

• p(t) are the external forces

Because the system is linear the effect of those forces can be added as shown in the Fig. (3.11).

The only difference in the case of multiple degrees of freedom(DOF) is that the fI , fD, fs and p(t)

are vectors of length equal to the number of DOFs. In the following pages of this chapter the

method to calculate all the internal forces is presented. Before defining the forces the structure

needs to be discretized and the DOFs to be defined.
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Figure 3.11: (a) System, (b) stiffness component, (c) damping components, (d) inertia components, adopted
from [8]

3.3.1 Discretization

A frame structure can be simulated as an assemblage of beams and columns connected at nodes. The

displacements of the nodes are the degrees of freedom. In general, a node in a planar two dimensional

frame has three DOFs (two translation and one rotation) as shown in the Fig. (3.12 a). The two

storey frame structure of the Fig. (3.12 a) has 6 nodes and 18 DOFs. One reasonable assumption

that can reduce the number of DOFs in the frame structure is that the axial deformations can be

neglected. So the two storey has finally 8 DOFs shown in the Fig. (3.12 b). The external dynamical

loads that are applied shown in the Fig. (3.13). Usually the external moments p3(t) to p8(t) are

equal to zero.

Figure 3.12: Degrees of freedom (a) axial deformation included: 18 DOFs, (b) axial deformation neglected:
8 DOFs, adopted from [8]
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Figure 3.13: External dynamic forces, p(t), adopted from [8]

3.3.2 Elastic Forces

The external forces fsj will be related on the stiffness component of the structure to the resulting

displacements uj in the Fig. (3.14 a). For linear systems this relationship can be obtained by the

method of superposition and the concept of stiffness influence coefficients.

A unit displacements along DOF j is applied, holding all other DOFs equal to zero as shown

in the Fig. (3.14 b,c). The stiffness influence coefficient kij is the force along DOF i due to the

unit displacement at DOF j when all the other DOFs are equal to 0. In the Fig. (3.14 b,c) there

are the schemes from which the ki1 and ki4 can be calculated for (i = 1, 2, ..., 8). The calculation

of these forces is a structural problem that won’t be analysed here. To calculate the elastic force

fsj at DOF i the formula is used:

fsi =
N∑
j=1

kijuj (3.52)

where N is the number of the DOFs.
The Eq. (3.52) exists for every i = 1 to N . The systems of those N equations can be written

in matrix form :


fs1

fs2
...

fsN

 =


k11 k12 . . . k1N

k21 k22 . . . k2N
...

...
. . .

...

kN1 kN2 . . . kNN





u1

u2
...

uN


(3.53)

or

fs = ku (3.54)

where k is the stiffness matrix of the building and is a symmetric matrix (kij = kji) [8].
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Figure 3.14: (a) Stiffness component of frame, (b) stiffness influence coefficients for u1 = 1, (c) stiffness
coefficients for u4 = 1, adopted from [8]

The stiffness matrix k for a discretized system is a structural problem and can be solved by

many methods. [7,10,19,35] The most commonly used method is the direct stiffness method wherein

the stiffness matrices of individual elements are assembled to obtain the structural stiffness matrix.
Therefore, this method will not be developed in this dissertation but can be found in [7,10,19,35].

3.3.3 Damping Forces

As mentioned in the section (3.1.4) there are mechanics that consume the system energy and can

be simulated with equivalent viscous damping. With this assumption the external forces fDj acting

on the damping components of the structure are related to the velocities u̇j in Fig. (3.15). A

unit velocity along DOF j is applied while the velocities on all the other DOFs are kept zero. The

damping influence coefficient cij is the external force in DOF i due to unit velocity in DOF j. In

similar way as the elastic forces were calculated, here the damping forces fDi that resist to those

velocities can be calculated using the following formula :

fDi =

N∑
j=1

cij u̇j (3.55)

where N is the number of the DOFs.
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Figure 3.15: Damping component of frame structure, adopted from [8]

The Eq. (3.55) exists for every i = 1 to N . The systems of those N equations can be written

in matrix form :


fD1

fD2

...

fDN

 =


c11 c12 . . . c1N

c21 c22 . . . c2N
...

...
. . .

...

cN1 cN2 . . . cNN





u̇1

u̇2
...

u̇N


(3.56)

or

fD = cu̇ (3.57)

where c is the damping matrix of the building.

The damping matrix c is impractical to calculate for systems with multiple degrees of freedom

(MDF). Therefore, damping for MDF systems is generally specified by numerical values for the

damping rations, as for SDF systems. There are methods in [8,29,30] that are trying to construct

the damping matrix from known damping ratios.

3.3.4 Inertia Forces

The external forces fIj acting on the mass component of the structure are related to the acceler-

ations üj . A unit acceleration along DOF j is applied, while the accelerations in all other DOFs

are kept zero. According to D’Alembert’s principle [7, 10, 19, 35], inertia forces oppose these accel-

erations. The mass influence coefficient mij is the external force in DOF i due to unit acceleration

in DOF j. In similar way as the elastic forces and the damping forces were calculated, here the

inertia forces fIi that resist to those accelerations can be calculated using the following formula :

fIi =
N∑
j=1

mij üj (3.58)

where N is the number of the DOFs.
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The Eq. (3.58) exists for every i = 1 to N . The systems of those N equations can be written

in matrix form :


fI1

fI2
...

fIN

 =


m11 m12 . . . m1N

m21 m22 . . . m2N

...
...

. . .
...

mN1 mN2 . . . mNN





ü1

ü2
...

üN


(3.59)

or

fI = mü (3.60)

where m is the mass matrix of the building and is a symmetric matrix (mij = mji) [7,8,10,19,35].

Figure 3.16: (a) Mass component of frame, (b) mass influence coefficients for ü1 = 1, (c) mass influence
coefficients for ü4 = 1, adopted from [8]
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The mass is distributed throughout actual stuctures but it can be simulated with conscentrated

masses on the nodes of the discretized structure. As shown in the Fig. (3.16 a) in a frame structure

the masses of each structural element are divided to the closest nodes. In this frame structure the
masses of the nodes don’t interact with each other for the 8 DOFs of the structure. Also the unit
accelerations ü1 = 1 and ü2 = 1 activate the masses a, b, c and d, e, f respectively. But the unit

accelerations üj = 1 for j = 3, 4, ..., 8 don’t activate any mass movements as shown in the Fig.

(3.16 c) for ü4 = 1. All the above can be written as :

m11 = ma +mb +mc m22 = md +me +mf mjj = 0 for j = 3, 4, ..., 8 (3.61)

mij = 0 i 6= j (3.62)

By using the Eq. (3.51), Eq. (3.54), Eq. (3.57) and the Eq. (3.60) the system of equations for

the MDF system was derived :

mü + cu̇ + ku = p(t) (3.63)

Figure 3.17: Building frame, adopted from [8]

3.3.5 Equation of motion:Earthquake excitation

Many building have slabs that are very stiff with respect to the other structural elements. In

this case a valid assumption can be that the mass is concentrated in every slab as shown in the

Fig. (3.17). Then the dynamical equation before the earthquake excitation is the Eq. (3.63) with

p(t) = 0 :

mü + cu̇ + ku = 0 (3.64)
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By using the same method from the section (3.1.6) a vector of effective earthquake forces

peff (t) [8, 10, 19, 20] can be created that is consisted from the forces shown in the Fig. (3.18). By

creating a vector meff that is equal to the masses of each slab in the DOFs that correspond to the

horizontal DOFs of theses masses and is equal to 0 for all other DOFs :

peff (t) = −meff üg(t) (3.65)

mü + cu̇ + ku = −meff üg(t) (3.66)

The above equation is the generalization of the Eq. (3.13) for MDF system like the one in the

Fig. (3.18).

Figure 3.18: Effective earthquake forces, adopted from [8]
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Chapter 4

Model reduction methods of

large-scale systems

From the theory of the problem that presented in chapter (3) it was shown that the system of

differential equations that simulate the behaviour of a structure is :

mü + cu̇ + ku = p(t) (4.1)

This equation is a system of second order elliptic differential equation that are extensively

studied in [7, 8, 19, 20, 35]. There are numerous methods to solve the system of the Eq. (4.1). The

problem that appears in many applications, is the number of equations n can get quite large. Direct

numerical simulations can be difficult due to :

• memory

• time limitation

• ill-conditioning

In [38, 39] there are techniques to moderate the above problems (e.g. like skyline storage

integration, clever new algorithms that require less time, preconditioning e.t.c.). Although those

techniques can be very efficient, for really large-scale problems they are still not enough. This is

the reason model reduction methods are needed.

This dissertation will focus on the Computational Singular Perturbation (CSP) method that is

a multi time scale method. As mentioned in chapter (2) this method can decouple the fast time

scales from the slow ones. In this way a system that is much smaller than the starting one is

achieved. Therefore the time needed to get a solution can drastically decreased. Alongside with

that much less computational power and computer memory are needed.
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In this chapter some methods that achieve model reduction will be mentioned. By searching

the bibliography many different methods were found and most of them can be distinguished in the

following categories [4, 16] :

• Singural value decomposition (SVD) gramian based methods

• Krylov moment matching based methods

• SVD gramian - Krylov moment matching based methods

Specifically, for solving a large-scale system that describes the behaviour of a building there are

methods that can use useful information about this type of systems to achieve model reduction,

such as the building slabs work as rigid diaphragms and the seismic forces are applied horizontally

in every slab of the structure as shown in Fig (3.18). Those methods are based on the modal

analysis of the general system. They can reduce the number of DOFs and use and calculate only

the important natural frequencies and natural nodes and approximate the others. One such method

is Rayleigh-Ritz method.

4.1 State space form

In [16] in order to study those systems they rewrite them in the state space form. The state space

form of single-input-single-output(SISO) systems that are linear time invariant (LTI) is :

Σ :

σx(t) = Ax(t) + bu(t)

y(t) = cx(t) + du(t)
⇔ Σ :=

 A b

c d

 (4.2)

where A ∈ Rn×n, b ∈ Rn, cT ∈ Rn, d ∈ R and σ denotes the derivative operator for the

continuous time systems. In Eq. (4.2) the x(t) ∈ Rn is the state, u(t) ∈ R is the input and

y(t) ∈ R is the output of the system Σ. The above formulation can be easily generalised for

multiple inputs of outputs. These problems can be named as single-input-multi-output (SIMO) or

multi-input-multi-output (MIMO) in [43]. Below there are some important properties about LTI
systems.

The transfer function G(s) of Σ is given by :

G(s) = c(sI−A)−1b + d (4.3)

The transfer function G(s) can be derived by applying a Laplace transform to the first part of

the Eq. (4.2):

ẋ(t) = Ax(t) + bu(t) (4.4)
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which yields :

sx(s)− x(0) = Ax(s) + bu(s) (4.5)

Then by solving the Eq. (4.5) for x(s) follows :

x(s) = (sI−A)−1x(0) + (sI−A)−1bu(s) (4.6)

By substituting the Eq. (4.5) with assuming with the initial condition x(0) = 0 to the second

part of the Eq. (4.2):

y(s) = cx(s) + du(s) = c(sI−A)−1bu(s) + du(s) = (c(sI−A)−1b + d)u(s) = G(s)u(s) (4.7)

The Eq. (4.7) shows that there is a map from u to y with the transfer function G(s) of the Eq.

(4.3). For the system Σ in the Eq. (4.2) there are tests for controllability and observability in [43].

4.1.1 Controllability

Controllability is an important property of a control system, and the controllability property plays

a crucial role in many control problems, such as stabilization of unstable systems by feedback, or

optimal control.

State controllability condition implies that it is possible by admissible inputs to steer the

states from any initial value to any final value within some finite time window [43]. A continuous

time-invariant linear state-space model Eq. (4.2) is controllable if and only if :

rank
[
b Ab . . . An−1b

]
= n (4.8)

4.1.2 Observability

Observability is a measure for how well internal states of a system can be inferred by knowledge of

its external outputs. The observability and controllability of a system are mathematical duals [43]

(i.e., as controllability provides that an input is available that brings any initial state to any desired

final state, observability provides that knowing an output trajectory provides enough information

to predict the initial state of the system) [43].

A continuous time-invariant linear state-space model Eq. (4.2) is observable if and only if :

rank


c

cA
...

cAn−1

 = n (4.9)
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4.1.3 Reduced order models

The goal of model reduction is to produce a lower dimensional system , with reduced storage

requirements and evaluation time. The reduced system will be used instead of the original one

for the simulations or even help to develop a low dimensional controller suitable for real time

applications.

The reduced order system Σr of the LTI dynamical system Σ is given by :

Σr :

ẋr(t) = Arxr(t) + bru(t)

yr(t) = crxr(t) + dru(t)
⇔ Σr :=

 Ar br

cr dr

 (4.10)

where Ar ∈ Rr×r, br ∈ Rr, cTr ∈ Rr, dr ∈ R where the order of the reduced system is r � n

such the following properties are satisfied [4, 16] :

• The approximation error ‖y − yr‖ is small, and the global error is bounded

• Stability and other system properties are preserved

• The procedure is computationally stable and efficient

The system Σr is constructed by oblique projection. The method include the construction of

the matrices V ∈ Rn×r and Z ∈ Rn×r with ZTV = Ir

Σr : Ar = ZTAV, br = ZTb, cr = cV, dr = d (4.11)

By proving that (VZT )2 = VZT shows that VZT is an oblique projector due to the definition

in [4, 16,43] :

(VZT )2 = VZTVZT = VIrZ
T = VZT (4.12)
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4.1.4 Dynamical equations in state-space form

The dynamical equation shown in the Eq. (3.63) can be written as follows :

ü(t) = m−1p(t)−m−1cu̇(t)−m−1ku(t) (4.13)

This system of equation can be written in the form of the LTI system Σ of the Eq. (4.2) in the

following manner :

ẋ1(t)

ẋ2(t)

 =

 0n,n In,n

−m−1k −m−1c

x1(t)

x2(t)

+

0n,n

m−1

u(t) (4.14)

y(t) =
[
In,n 0n,n

]x1(t)

x2(t)

 (4.15)

where the x1(t) is the displacement vector, the x2(t) is the velocities vector and y(t) is a vector

that contains the n displacements of x1(t) and n zeros. This is a SIMO system. The SISO case

of the problem can be found in [16]. Below it was proved that the above system is observable and

controllable.

The observability test for the above system :

rank
[
b Ab

]
= rank

0n,n

m−1

  0n,n In,n

−m−1k −m−1c

0n,n

m−1

 = rank

0n,n m−1

m−1 −m−2c

 (4.16)

which is full rank for all c and all m that are damping and mass matrices respectively.

The controllability test for the above system :

rank

 c

cA

 = rank


[
In,n 0n,n

]
[
In,n 0n,n

] 0n,n In,n

−m−1k −m−1c


 = rank

0n,n In,n

In,n 0n,n

 (4.17)

which is full rank for all c and all m that are damping and mass matrices respectively.
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4.2 SVD gramians based methods

The SVD gramians based methods are using the following mathematical knowledge to achieve order

reduction of the system Σ in Eq. (4.2):

• Singular Value Decomposition (SVD)

• Hankel singular values

• Gramians of Lyapunov equations

One common SVD methods in [3,4,16] is Balanced Model Reduction. Other methods are Hankel

Norm Approximation and Balanced Singular Perturbation Approximation [3, 4, 16]. The Balanced

Model Reduction methods diagonalises the system gramians that correspond to some particular

Lyapunov equations and then transforms the system to a basis [3, 4,16,43]. Afterwards, the states

that are difficult to reach are truncated. This is the reason why the method maintains system

stability and provides approximation error bounds. The disadvantage of the SVD gramians based

methods is that for large-scale problems requires high computer power and memory because the

SVD factorization creates dense matrices. Applications of the balancing model reduction appear

in [3, 4, 16].

4.2.1 Singular Value Decomposition (SVD)

Singular value decomposition takes a rectangular matrix A (A is a n×p matrix) and can decompose

it in the following way [33,43]:

An×p = Un×nSn×pV
T
p×p (4.18)

where U and V are orthogonal matrices such that UTU = In×n and VTV = Ip×p
The columns of U are the left singular vectors, the S contains the singular values and is a

diagonal matrix and the rows of VT are the right singular vectors.

Calculating the SVD of a matrix A consists of finding the eigenvalues and eigenvectors of AAT

and ATA. The eigenvectors of ATA make up the columns of V and the eigenvectors of AAT make

up the columns of U. Also, the singular values in S are square roots of eigenvalues from AAT or

ATA . The singular values are the diagonal entries of the S matrix and are arranged in descending

order. The singular values are always real and nonegative numbers because the matrices AAT and

ATA are Hermitian and positive semidefinite . If the matrix A is a real matrix, then U and V are

also real.
The proof of the SVD is :

A = USVT

AT = VSUT

⇔ ATA = VSUTUSVT = VS2VT ⇔ ATAV = VS2 (4.19)
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The Singular Value Decomposition of a matrix A helps by simplifying various equations because

the transpose AT and inverse A−1 matrices can be described by :

AT = VSUT and A−1 = VS−1UT (4.20)

where ST = S and S−1 can be calculated easily because S is diagonal and V−T = V and

U−1 = UT because U and V are orthogonal matrices.

4.2.2 Gramians and Hankel singular values

For the LTI continuous time system Σ in Eq. (4.2) there are the corresponding continuous time

Lyapunov Equations [3, 4, 15,16,33,43] :

AP + PAT + bbT = 0 and ATL + LA + cT c = 0 (4.21)

where P ,L ∈ Rn×n. If the system Σ in Eq. (4.2) is asymptotically stable and minimal it

is known from [3, 4, 15, 16, 33, 43] that the solutions to the Eqs. (4.21) give the reachability and

observability gramians respectively, and are unique symmetric positive definite.

The Hankel singular values σi(Σ) that correspond to the system Σ are the square roots of the

eigenvalues of the product PL :

σi(Σ) =
√
λi(PL) (4.22)

4.2.3 Balanced Reduction method

The minimal and asymptotically stable system Σ is balanced when the reachability and observability
gramians are :

P = L = Σ = diag(σ1Im1 , σ2Im2 , . . . , σqImq) (4.23)

where q is the number of distinct Hankel singular values that are putted in descending order

and the mi are the multiplicities of σi and obviously
q∑
i=1

mi = n. The gramians P and L are

positive definite matrices so by diagonalizing them the Eq. (4.23) can be achieved. By truncating

from the system the states that correspond to the smaller Hanker values, the parts that are less

reachable and observable are removed since the system is balanced [16]. But this method can be

computationally demanding for large-scale systems and can be unsuccessful due to ill -condition.

The solution to those problems is actually balancing the reduced order system instead of the initial
one.

The gramians P and L are symmetric positive definite matrices. For every symmetric positive

definite matrix A it is true that A = AT and using the eigen decomposition method it can be written

as A = QΛQT where Q is orthogonal and Λ is a diagonal matrix contains all the eigenvalues which

are real. By letting B = QΛ
1
2 its easy to see that the matrix A can be written as A = BBT . Let
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U and L such as P = UUT and L = LLT . In [16] is shown that the SVD repsesentation of UTL

is UTL = XΣYT where Σ is given in the Eq. (4.23). By selecting the first r important states such

that r =
k∑
i=1

mi the matrix Σ1 is defined as follows :

Σ1 = diag(σ1Im1 , σ2Im2 , . . . , σkImk
) (4.24)

Similarly, the X1 and Y1 are defined the matrices with the first r columns of X and Y respec-

tively. The reduced order system Σr of the Eq. (4.11) is derived by the use of two suitable matrices

V ∈ Rn×r and Z ∈ Rn×r with ZTV = Ir and they are defined as follows:

V = UX1Σ
− 1

2
1 and Z = LY1Σ

− 1
2

1 (4.25)

The resulted system Σr is shown in [3, 16] that is balanced and asymptotically stable with the

use of the Lyapunov equations shown in Eq. (4.21).

4.3 Krylov moment matching based methods

The key ingredient of those methods are the moments of the transfer function G(s) of the system

Σ shown in the Eq. (4.3). Below the transfer function G(s) is expanded around a point σ ∈ C.

The kth moment of the system is the kth derivative of the transfer function G(s). One method

that is based on the moments [3, 4, 16] is rational Krylov method. The expansion of G(s) around a

point σ ∈ C which is not a pole of the system Σ is:

G(s) = c(σI−A− (σ − s)I)−1b + d

= c(I− σI−A)−1(σ − s))−1(σI−A)−1b + d

= η(0)σ + η(1)σ (σ − s) + η(2)σ (σ − s)2 + . . .

=
∞∑
j=0

η(j)σ (σ − s)j

(4.26)

where η
(j)
σ is the jth moment of system Σ about σ for j ≥ 0 and is given by the following

formulas [3, 4, 16,33,43] :

η(0)σ = c(σI−A)−1b + d and η(j)σ = c(σI−A)−(j+1)b (4.27)

for j = 1, 2, . . . if σ 6=∞.

η(0) = d and η(j) = c(A)j−1b (4.28)

for j = 1, 2, . . . if σ =∞.
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The goal in this method is to find a reduced order system Σr with transfer function Gr(s) :

Gr(s) = η̂(0)σ + η̂(1)σ (σ − s) + η̂(2)σ (σ − s)2 + . . . (4.29)

such that for an appropriate k,the first k moments of the reduced system Σr are matching the

first k moments of the system Σ :

η(j)σ = η̂(j)σ for j = 0, 1, 2, . . . , k (4.30)

For the special case where σ =∞ the moments are called Markov parameters and the moment

matching problem is called partial realization [3,4,16]. The general moment matching problem can

be solved in a recursive and numerical stable way, by the Lanczos or Arnoldi procedures [38, 39].

If the σ ∈ C is an arbitary frequency then the problem becomes the rational interpolation problem

[3,4,16] . There are numerous methods to solve the moment matching problems and some of them

try to get interpolation for many σ [3,4,16]. Although there is no guarantee of a bound of the local

and the global error. The advantage of the methods is that they are numerically reliable close to

σ because it is an iterative method and it requires much less memory and computational power

that the SVD gramians based methods because they don’t require the factorization and storage of

dense matrices.

4.4 SVD gramians - Krylov moment matching based methods

There are methods in [3,4,16] that use a combination of a SVD gramian based method and a Krylov

moment matching based methods to achieve model reduction. In this way these hybrid methods

try to exploit the advantages of each method while trying to minimize the disadvantages. Such

methods exist in [3, 4, 16] and some of them are least squares method and Prony method. Both of

these methods are analysed in [16]. Here, the least squares method will be mentioned briefly.

4.4.1 Continuous time least squares method

To achieve model reduction for the continuous time case with the least squares method there must

be a transition to the discrete time case, where a solution is possible and then transition back to the

continuous time case. This transformation happen via Bilinear Transformation and is explained

below. The general method can be described better as an algorithm :

• Transition from the system Σ in Eq. (4.2) to the discrete time system Σd

• Apply the rational least squares method shown in section (4.4.2)to the discrete time system

Σd at the interpolation points ζk = 1+σk
1−σk with the multiplicities βk for k = 1, . . . , L. The

reduced model from the rational least squares method is denoted as ΣRL

• Apply an inverse bilinear transformation to the system ΣRL to obtain the desired continuous

time reduced model Σr
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One big disadvantage of the SVD gramians based method is that they have higher computational

complexity. This can be avoided by avoiding the explicit computation of the matrices Ad,bd, cd, dd.

Afterwards triangular solvers or LU decomposition will be used when they are needed. Since A is

sparse in many real life problems one can deal with the problem with a sparse direct factorization.

Another difficulty that have high computational complexity is the calculation of the gramian L
which could be surpassed by applying Smith iteration [3,16]. In order not to increase the numerical

complexity all the calculation have to be done implicitly during the application of the bilinear

transformation.

One more issue is the selection of the interpolation points. As shown in [16] an appropriate

selection of the interpolation points can lead to low errors that are actually comparable to the SVD

gramians based methods. One such approach is selecting the interpolation points as the mirror

images of the poles of the system Σ.

By following the above recommendations the hybrid methods satisfy all three qualities that

mentioned is section (4.1.3). Global information is related to the usage of the system gramians P
and L. A significant characteristic of the SVD gramian based methods is the high quality global

information. Also, the local information can be extracted through moment matching around the

chosen interpolation points which is a characteristic of the Krylov moment matching based methods.

Finally, at the cost of reducing the number of moments matched by half and global information

missing due to the removing of gramian P , the result is between the other two approaches.

4.4.2 Discrete time rational least squares method

First some matrices are denoted. The Hankel matrix H, the infinite reachability matrix R and the

infinite observability matrix O that correspond to the system Σ in Eq. (4.2) are :

H :=


η1 η2 η3 . . .

η2 η3 η4 . . .

η3 η4 η5 . . .
...

...
...

. . .


R :=

[
b Ab . . . Ar−1b . . .

]
O :=

[
cT AT cT . . . (AT )r−1cT . . .

]T (4.31)

where ηi = cAi−1b is the ith Markov parameter. It is easy to see that :

H = OR (4.32)

This method matches the first r Markov parameters exactly and all the remaining ones approx-

imately in a (weighted) least square way. So a good match is expected for the higher order Markov

parameters.

Let Hr and hr+1 be the first r columns and the (r + 1)th column of Hankel matrix H respec-

tively :
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Hr =



η1 η2 η3 ηr

η1 η2 η3 ηr+1

...
...

. . .
...

ηr ηr+1 . . . η2r−1
...

...
...

...


hr+1 =



ηr+1

ηr+2

...

η2r
...


(4.33)

The reachability matrix Rr is denoted by leaving the first r terms of R as follow :

Rr :=
[
b Ab . . . Ar−1b

]
(4.34)

It follows that :

Hr = H

Ir

0

 = OR

Ir

0

⇔Hr = ORr (4.35)

and

hr+1 = Her+1 = ORer+1 ⇔ hr+1 = OArb (4.36)

where er+1 is the unit vector so that the above equation will be true. Then by computing the

least squares fit of the (r + 1)th column hr+1 of H to the columns of Hr follows :

HrxLS = hr+1 + eLS (4.37)

where eLS is the least squares error.

For the discrete time case, the gramian L is given by the Stein equation in the following way :

ATLA + cT c = L where L = OTO (4.38)

The Stein equation is the equivalent of the Lyapunov equation in Eq.(4.21) for the discrete time

case. Then by using the Eq.(4.36),Eq.(4.37) and Eq.(4.38) follows :

xLS =H−1r hr+1=(HT
r Hr)

−1HT
r hr+1 =(RT

r LRr)
−1RT

r OThr+1=(RT
r LRr)

−1RT
r LArb (4.39)

By seeing the reduced order system Σr of the Eq. (4.11) it is derived by the use of two suitable

matrices V ∈ Rn×r and Z ∈ Rn×r with ZTV = Ir which are defined :

V = Rr and Z = (RT
r LRr)

−1RT
r L (4.40)

The resulted system Σr is shown in [3, 16] that is minimal and asymptotically stable. The

moment matching around the L interpolation points ζk = 1+σk
1−σk with the multiplicities βk for

k = 1, . . . , L is shown by noticing that the Im(V) = Kr(A,b) is the rth Krylov subspace of A and

b [3, 16].
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4.4.3 Bilinear transformation between continuous and discrete time systems

The bilinear transformation below is a spectral transformation w : C→ C that maps the continuous

time case to the discrete time case :

w : s 7→ z =
1 + s

1− s
(4.41)

which maps the open left half plane onto the open unit disc because :

if R(s) < 0 ⇒ |z| =
∣∣∣∣1 + s

1− s

∣∣∣∣ < 1 (4.42)

The inverse bilinear transformation of the Eq. (4.41) maps the discrete time case to the con-

tinuous time case :

w−1 : z 7→ s =
z − 1

z + 1
(4.43)

Both the bilinear transformation and the inverse one preserve the stability of the system.

The transition between the discrete time system Σd =

 Ad bd

cd dd

 and the continuous time

system Σc =

 Ac bc

cc dc

 can be done with the above bilinear transformations with the following

formulas [16] :

Ac,bc, cc, dc
z= 1+s

1−s−−−−→



Ad = (I + Ac)(I−Ac)
−1

bd =
√

2(I−Ac)
−1bc

cd =
√

2cc(I−Ac)
−1

dd = dc + cc(I−Ac)
−1bc

(4.44)

Ad,bd, cd, dd
s= z−1

z+1−−−−→



Ac = (I + Ac)(I−Ac)
−1

bc =
√

2(I−Ac)
−1bc

cc =
√

2cc(I−Ac)
−1

dc = dc + cc(I−Ac)
−1bc

(4.45)
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4.5 CSP method

The CSP method that is a multi time scale method of stiff Ordinary Differential Equations (ODEs)

where both fast and slow time scales are encountered.The mathematical background has been

analysed in chapter (2). The fast time scales are responsible for the development of low-dimensional

manifolds on which the solution moves according to the slow time scales. As mentioned in chapter

(2) this method can decouple the fast time scales from the slow ones.

For small systems the method can produce even analytic expressions of the solution. For

large-scale systems the method can reduce the order to only the dimension of the Slow Invariance

Manifold (SIM). Also, there are indexes that shows the participation of every time scale (see section

(2.3)). The method has a lot more tools that can provide many more useful information about the

solution. This way deeper results can be extracted from the resulting solution as it will be shown

in chapter (5). The CSP method mathematical background has been extensively presented and

applied in chapters (2, 5). Also in chapter (5) there is the comparison of the CSP method with the

methods that are presented in this chapter.

4.6 Modal analysis

Modal analysis is the study of the dynamic properties of structures under vibrational excitation. In

structural engineering, modal analysis uses the overall mass and stiffness of a structure to find the

various periods at which it will naturally resonate. These periods of vibration are very important

to note in earthquake engineering, as it is imperative that a building’s natural frequency does

not match the frequency of expected earthquakes in the region in which the building is to be

constructed [5, 9, 20,29,31].

Although modal analysis is usually carried out by computers, it is possible to hand-calculate

the period of vibration of any high-rise building through idealization as a fixed-ended cantilever

with concentrated masses which is equivalent with the system shown in the Fig. (3.17). For a more

detailed explanation see [10] as it provides an easy-to-follow approach to idealizing and solving

complex structures by hand.

First the case without damping and external excitations will be examined. In this case the

system of equations that describe the model that in the Eq. (4.1) becomes :

mü + ku = 0 (4.46)

This problem is equivalent to the eigenvalue problem of this system. As mentioned in [8,10,19]

the natural frequency ωn and the natural node mode φn which consists of the elements φjn that

correspond to the DOF j. The natural frequencies of the problem are the square roots of the

eigenvalues of the problem and the modals correspond to the eigenvectors. The modal matrix Φ

and the spectral matrix Ω2 are :
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Φ =
[
φjn

]
=


φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N
...

...
. . .

...

φN1 φN2 . . . φNN

 Ω2 =


ω2
1

ω2
2

. . .

ω2
N

 (4.47)

Each eigenvalue and eigenvector of the Eq. (4.46) can be written as follows:

kφn = mφnω
2
n (4.48)

Then by assembling the Eqs. (4.48) for n = 1, 2, . . . , n the following matrix relation can be

created :

kΦ = mΦΩ2 (4.49)

It is proved in [8] that the following orthogonality relations are true for the eigenvectors φi and

φj

φTi kφj = 0 and φTi mφj = 0 ∀ i 6= j (4.50)

The orthogonality of the natural nodes implies that the following square matrices are diagonal
:

K = ΦTkΦT and M = ΦTmΦT (4.51)

Also the displacements u can be expressed using the eigenvectors:

u =

N∑
i=1

φiqi = Φq (4.52)

then the velocities u̇ and accelerations ü can be written in the following way:

u̇ = Φq̇ and ü = Φq̈ (4.53)

The Eq. (4.1) with respect to the basis q is :

mΦq̈ + cΦq̇ + kΦq = p(t) (4.54)

Then by multiplying with the matrix ΦT from the left and using the Eq. (4.51), an alternative

expression of the Eq. (4.1) to the basis q is obtained :

ΦTmΦq̈ + ΦT cΦq̇ + ΦTkΦq = ΦTp(t) ⇔ Mq̈ + Cq̇ + Kq = P(t) (4.55)

where M = ΦTmΦ and K = ΦTkΦ are diagonal and C = ΦT cΦ and P = ΦTp. In the

special case where C is diagonal the equations can decouple [8,19]. For all the other cases there are

methods to solve the system [8, 19]. One method that reduce the system is Rayleigh-Ritz method

and it is based to the technique of modal analysis.
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4.7 Rayleigh-Ritz method

In this method the displacements u are expressed with the help of the Ritz vectors ψi where
i = 1, 2, . . . , r:

u(t) =
r∑
i=1

zi(t)ψi = Ψz(t) ⇔ u̇(t) = Ψż(t) ⇔ ü(t) = Ψz̈(t) (4.56)

then similar to modal analysis the reduced system can be formed. The Eq. (4.1) with use the

Eq. (4.56) is written to the basis that is created by the Ritz vectors ψi :

mΨz̈ + cΨż + kΨz = p(t) (4.57)

By multiplying with the matrix ΨT from the left the Eq. (4.57) becomes :

ΨTmΨz̈ + ΨT cΨż + ΨTkΨz = ΨTp(t) ⇔ m̃z̈ + c̃ż + k̃z = p̃(t) (4.58)

where m̃ = ΨTmΨ,c̃ = ΨT cΨ,k̃ = ΨTkΨ and p̃ = ΨTp. The resulting system in the Eq.

(4.58) is consisted of r differential equations. This way model reduction is achieved.

The Ritz vectors are like eigenvectors. The goal is to approximate the eigenmodes of the

oscillation of the system with the Ritz vectors. So it is very important to choose appropriate Ritz

vectors. In [8] there are many methods and two of them are:

• Physical insight natural mode shapes method

• Force dependent Ritz vectors

In building systems which are symmetrical and don’t have complex geometries the important

eigenmodes are very few (e.g 3-6) and they have expected shape [8, 37]. Then the model reduc-

tion is very successful because the method can approximate the eigenmodes that stimulate the

system the most. The disadvantage though is when the building has a strange geometry then the

method cannot predict the shape of the eigenmodes very good and the error of the method becomes

unacceptable [8, 37].
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Chapter 5

CSP analysis on a building model

with damping

Buildings are the most common structures in the planet. It is very important to study their

behaviour extensively for a wide variety of reasons. Accurate calculation of the buildings behaviour

and response to different types of excitations and forces is crucial for safety, functionality, cost

efficiency e.t.c. To achieve high accuracy models it requires the increase of the number of nodes

and elements that describe the building. As we have seen in section (3.3) and in Fig. (3.12 a)

for planar modelling each node has 3 DOFs (two translations and one rotation). Similarly, in 3D

models each node has 6 DOFs (three translations and three rotations). In most cases there is the

need of 3D modeling to create high accuracy models. For both cases it is shown below that for very

dense modelling (high number of nodes) the number of degrees of freedom could get very high :

number of DOFs = (number of nodes)× 3 for 2D models (5.1)

number of DOFs = (number of nodes)× 6 for 3D models (5.2)

Consequently, high number of DOFs lead to large-scale systems. Many examples of large-scale

systems are given in [7, 19, 37]. Due to the limitations of computer memory and computer power

the solution of the above systems can be impossible or very time consuming. Also, direct numerical

calculation of the solution creates big errors when the order of the system is large. In chapter (4)

some techniques that can moderate the above problems were mentioned (e.g. like skyline storage

integration, clever new algorithms that require less time, preconditioning e.t.c) [38, 39]. Although,

those techniques can be very efficient , for really large-scale problems they are still not enough. For

all the above reasons to reduce the order of the system is of crucial importance.
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The dynamical equation of a building is given by the Eq. (3.63) for the linear - elastic building

and by the Eq. (3.9) for the non linear - inelastic buildings. For the linear case the equation is :

mü + cu̇ + ku = p(t) (5.3)

The mass matrix m, the damping matrix c, the stiffness matrix k and the force vector p(t) are

required at each instant to calculate the solution of a building.

The discretization of a building and the calculation of m, c,k matrices and p(t) vector is not

an easy task. The method for the proper discretization of a building is mentioned in section (3.3.1)

and further information can be found in [8, 10, 19]. The easiest matrix to calculate is the mass

matrix m and is described in section (3.3.4) and in [8, 10, 19]. The stiffness matrix k for systems

with elastic behaviour is constant at every instant and in the inelastic case it changes every instant

due to the deformation of the structure and material inelasticity and plasticity. For the linear

case the method is described in section (3.3.2) and more information for both cases can be found

in [8, 10, 19]. The damping matrix c is very difficult and nearly infeasible to calculate it exactly.

The difficulties and methods to calculate an equivalent damping are explained in sections (3.1.4,

3.3.3) and more details in [1,20,29]. The difficulty in calculating the force vector p(t) is to identify

values that represent critical real life loads or identify critical effective forces that are produced by

various excitations (like earthquakes). This procedure is presented in sections (3.1.6, 3.3.5, 5.3)

and analysed extensively in [5, 9, 20].

In this dissertation the CSP method will be applied to solve a building model of Los Angeles

University Hospital found in [16]. This building model is solved in [16] by using : (i) Balanced

reduction method, (ii) Rational Krylov method and (iii) Least squares method.

The following were achieved by solving this building model with CSP method :

• Find a reduced order system of the building model

• Understand building mechanisms and various phenomena appeared during building vibration

• Identify deformation pattern of buildings under different external loads and excitations

• Identify the contribution of every natural eigenmode at each instant

• Understand the evolution of the SIM under significant changes of external loadings and

excitations

• Compare CSP method to other methods shown in chapter (4) and in [3, 16,37]

In this chapter, the system in Eq. (5.3) will be transformed to an appropriate form to apply

CSP method and determine the parameters of the model. Afterwards, the solutions for various

loadings and excitations will be presented. Finally, there will be a comparison between the CSP

method with the other model reduction methods analysed in chapter (4) and in [3, 16,37].
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5.1 Dynamical equations in CSP form

The equation that represent the physical problem of building vibrations is the harmonic damping

oscillations equation. The system of these second order differential equations that gives the building

model is given by Eq. (5.3). The system need to be transformed into an appropriate form in order

to apply the CSP method. As it was shown in chapter (2) the CSP method can handle systems of

the following form :

dy

dt
= g(y) (5.4)

where y and g(y) are the N -dimensional column state vector and vector field, respectively and

g is an algebraic function of y.

The system of dynamical equations shown in the Eq. (5.3) can be written as follows :

ü(t) = m−1p(t)−m−1cu̇(t)−m−1ku(t) (5.5)

This system of equation can be written in the form of the Eq. (5.4) in the following manner :

ẏ1(t)

ẏ2(t)

 =

 0n,n In,n

−m−1k −m−1c

y1(t)

y2(t)

+

0n,n

m−1

p(t) (5.6)

y(t) =

y1(t)

y2(t)

 (5.7)

where the y1(t) is the displacement vector which is the same as u(t), the y2(t) is the velocities

vector which is the same as u̇(t)and y(t) is a vector that contains the n displacements of y1(t) and

n velocities of y2(t) where n is the number of DOFs of the system in Eq. (5.5). In Eq. (5.4) the

time t is not included. This obstacle can be skipped by adding the equation ṫ = 1 in the Eqs. (5.6,

5.7) in the following way :


ẏ1(t)

ẏ2(t)

ṫ

 =


0n,n In,n 0n,1

−m−1k −m−1c 0n,1

01,n 01,n 0




y1(t)

y2(t)

t

+


0n,n 0n,1

m−1 0n,1

01,n 1


p(t)

1

 (5.8)

ỹ(t) =


y1(t)

y2(t)

t

 (5.9)
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So the transformation of the system of dynamical equations shown in Eqs. (5.3, 5.5) to an

appropriate CSP form was achieved. This form in shown in Eqs. (5.8, 5.9). Such a system is

known to be a stiff one [2]. Also similar to the chapter (4.1.4) it can be shown that the system is

observable and controllable.
The same trick is used to achieve state-space form or a suitable CSP form. To achieve the

CSP form it was needed just one more simple change. All the methods (except when damping is

neglected) use this trick to solve the system of second order differential equations in Eq. (5.3).

Actually a system of n second order differential equations is transformed to a system of 2n first

order differential equations. So the system of equations that actually has to be solved has 2n

equations and 2n+ 1 when time was added. For simplicity the following matrices are denoted :

A =


0n,n In,n 0n,1

−m−1k −m−1c 0n,1

01,n 01,n 0

 B =


0n,n 0n,1

m−1 0n,1

01,n 1

 p̃(t) =

p(t)

1

 (5.10)

so by substituting the Eq. (5.10) and the Eq. (5.9) to the Eq. (5.8) it follows :

dỹ

dt
= Aỹ(t) + Bp̃(t) (5.11)

so ỹ is a 2n+ 1 dimensional state vector and the RHS of the Eq. (5.11) is a 2n+ 1 dimensional

vector field according to the form of Eq. (5.4).

5.2 Steps of CSP algorithm

In the previous section the Eq. (5.3) has been transformed into the appropriate CSP form shown

in the Eqs. (5.10, 5.11). The mathematical background of the CSP method is already extensively

described in chapter (2). In this section the CSP algorithm will be described in steps.

Step 1: Set the initial values of y which are the initial displacements and initial velocities. Set t0
the initial time, ttotal the total time and the time step dt.

Step 2: Calculate ẏ and the Jacobian matrix J for t = 0.

Step 3: Solve the whole system for one time step dt.

Step 4: Set the basis vectors ai and bi for i = 1, . . . , N where N is the number of equations of the

initial system ẏ(t) = g(y).

Step 5: Set the number of fast time scales M = k. Then the slow time scales are N −M = N − k.

Step 6: Calculate Jacobian matrix J and its first m derivatives diJ
dti

for i = 1, . . . ,m
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Step 7: Apply CSP refinements (“k1” br-refinements and “m1” ar-refinements). In step 6 the first

m = max(k1,m1)− 1 derivatives of Jacobian matrix J need to be calculated.

Step 8: Repeat steps 5 - 8, till find a value k such that for M = k fast time scales an error criterion

is satisfied. Such error criteria can be found in section (2.2).

Step 9: Find the reduced order system for N −M slow time scales . This is given by the equation

ẏ(t) = asf
s.

Step 10: Solve the reduced system of step 9 for time t.

Step 11: Repeat steps 4 - 11, till t ≥ ttotal .

The above steps is the core of the CSP method. The above algorithm can be modified in

various ways. Next the changes that have been done in different steps of the CSP algorithm will

be described.

At step 4 the basis vectors ai and bi are selected. For the first time this can be at random.

But because the system describes the dynamical behaviour of a building a better guess would be

an approximation of the eigenmodes of the building. This can be done by calculating the natural

eigenmodes of a cantilever with the same mass m and the effective stiffness keff which is a crude

approximation of the actual stiffness of the building. This cantilever can be easily calculated and

are shown in section (5.3). The formulas for the natural eigenmodes of the cantilever are given

in [8,10]. After each iteration the CSP basis vectors ar and as, and their duals bs and br that are

produced after the CSP refinements at step 7 can be used. In this way, after some iterations the

selection of the basis vectors ai and bi will be a very accurate approximation of the directions of

the fast and slow time scales.
At step 8 the method checks if the selection of the number of fast time scales in step 5 is correct.

But this selection might not be optimal. The step 8 can be modified such that the iteration process

of steps 5-8 will continue until it finds M fast time scales that satisfy the error criterion and the

M + 1 fast time scales that don’t satisfy the error criterion. The Moptimal can change if the value

of AbsErr in the error criterion change as well.

At step 5 the number of fast time scales was selected. It is known that the solution is attracted

to an exponentially attracting Slow Invariance Manifold (SIM). This implies that if there are M

fast time scales at time t then there will be at least M fast time scales at time t+ dt unless there
is a dramatic change in the SIM. So after the first iteration the value of Moptimal at time t will be

a good approximation of Moptimal at time t+ dt. In section (5.4) this is verified except from cases

where there are significant changes to the external loads or excitations and the SIM differs.

Steps 3 and 10 can be done with the use of iterative methods to minimize the time and com-

putations needed to acquire the solution.

At step 11 the criterion can be modified. After some time the solution approaches equilibrium

state. When the solution is near equilibrium state it changes less after a time step dt. A criterion

like ‖yt+dt − yt‖ < ε can be added and if that is satisfied the time step dt can be increased. In

that way the number of iterations and computations needed to achieve an accurate solution are

drastically decreased.

By following the above recommendations, the modified CSP algorithm can extract more infor-

mation of the problem and get the whole trajectory of the solution y in less time.
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5.3 Determine problem parameters

The building model of Los Angeles Hospital shown in [16] is studied here. This building has 8

floors with 3 degrees of freedom for every floor. The idealized model of this building is shown in

Fig (5.1). It easy to see that the number of DOFs are 24 by using the Eq. (5.1). To solve the

system of 24 second order equations shown in Eq. (5.3) with the CSP method, the system need to

be transformed to 49 = 2× 24 + 1 first order equations shown in Eqs. (5.8-5.11).

Figure 5.1: (a) Idealized 8 floor building (b) Degrees of freedom

The mass matrix m, the damping matrix c and the stiffness matrix k of the Los Angeles Hospital

was given by professor Antoulas. It is important to mention that the mass matrix m is diagonal.

That is not surprising as it is a common phenomenon as it was shown in section (3.3.4). The other

two matrices are dense. It is easy to calculate the matrices A and B with the use of the above

matrices as the inverse of the mass matrix m can be easily calculated since m is diagonal.

The total mass of the building is m ' tr(m), where trace of a matrix is the sum of the elements

in the diagonal of the matrix. For guessing better the CSP basis vectors ai and bi in section (5.2),

it is required to find a cantilever with m and k that can simulate the dynamical behaviour of the

building. To achieve that a crude approximation of the effective stiffness of the building is required.

In this case there is no information about the height of each floor or the material to calculate the

Young’s module. A crude approximation is keff = 1
8(k1,1 + k4,4 + · · ·+ k22,22) which is a weighted

sum of the stiffness terms correspond to the horizontal displacements of each mass. By using the

total mass m and an approximation of the effective stiffness keff the step 4 of CSP method that is

presented in section (5.2) can be modified.

68



In this dissertation the building model will be studied for various external forces and building

excitations. The problem was solved for the following loading cases :

• free vibration with no external loads and an initial displacement and velocity

• static loading

• equally distributed effective earthquake forces

• triangular distributed effective earthquake forces

First the free vibration case will be examined. In free vibration, the system is moved from its

equilibrium position and then oscillate. In this case the building is moved in the horizontal axis as

shown in Fig. (5.2 a). The initial vertical displacements and rotations are set equal to zero. Also

the initial velocities are set equal to zero. Obviously the initial time is equal to zero. The summary

of the above is given below :

y(0) =
[
u1(0) 0 0 u4(0) 0 0 . . . u22(0) 0 0 024,1 0

]T
(5.12)

p̃(t) = 025,1 (5.13)

at each instant t.

Figure 5.2: (a) Initial displacements for free vibration case (b) Static loading case
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For the second case a static loading is applied at each mass in the horizontal direction. These

loads that are applied, they will stay constant. The loads are shown in Fig. (5.2 b). The goal is to

set an appropriate value to F such that the static loading is critical for the structure. The solution

for F = 10kN is presented in section (5.4.2). The solution for other values of F are similar due to

the linearity of the problem. For this case the solution is studied until ttotal = 50sec.

For the following two cases the goal is to find a loading case that represent critical earthquake ex-

citations. Two important characteristics for an earthquake are the peak ground acceleration(PGA)

and spectral acceleration(Sa) as shown in [9,20]. PGA is the most common instrumental measure of

ground motion. It is a measure of ground motion amplitude, and represents the highest acceleration

of the ground motion. PGA is measured relative to the acceleration of gravity. Spectral Acceler-

ation is a relatively new instrumental measure of ground motion that includes building response.

Sa differentiates the response of structures by building height and structural type, both of which

help to classify the buildings natural period, or its natural tendency to respond to wave motions of

differing frequencies.

By searching the above characteristics and acceleration records for various earthquakes, it was

found a range of values for most critical earthquakes in [9, 20]. The value range of spectral is

Sa = 0.2g − 0.4g, of the frequency is f = 0.1Hz − 1Hz and of the time t = 10s − 30s. For

the following loading cases it was assumed that the ground motion is üg(t) = 0.3 × cos(20t) for

t = 0s− 20s and üg(t) = 0 for t > 20s.

For the third case of effective earthquake forces, the formulas found in sections (3.1.6, 3.3.5)

will be used. The forces that are applied in this case are shown in the Figs. (3.18, 5.3 a). For the

ground motion the assumption that have been done above will be used.

Figure 5.3: Effective earthquake forces (a) Equally distributed (b) Triangular distibuted
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The assumption of concentrated masses in each floor was used to simulate the building response.

That led to the third loading case. Instead of using this assumption for the effective earthquake

forces they can be applied as in the Fig. (5.3 b). The triangular distribution is a more realistic

approach and it is used in [9,20] and in various construction codes since the buildings are continuous

structures. Actually the total horizontal force is the same as the one in the third case but its

distribution is different. Because there is no information about the height of each floor it was

assumed that all are equal and the force on the second floor is double the force of the first floor
e.t.c.

5.4 Case study

In this section the solutions of the Los Angeles Hospital using the CSP method for the loadings

described in section (5.3) will be presented. The solutions for other similar load cases can be

obtained easily and with high accuracy. That is possible due to the linearity of the harmonic

damping oscillation equations of the system.

5.4.1 Free vibration

The solution for the free vibration problem for SDF systems is given in Fig. (3.8). Here the

diagrams of u1(t) and u̇1(t) are presented.

Figure 5.4: Displacement of the first DOF u1(t) over time
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The Fig. (5.4) is showing the horizontal displacement u1(t) of the highest floor of the building

and is similar to the Fig. (3.8). All the other horizontal movements are similar to this one but

smaller in value. The building starts to oscillate and it reaches equilibrium state after 10-15 periods.

This is expected as shown from the Fig. (3.9). That shows that the assumption for the effective

damping level ζ = 5% is accurate.

Figure 5.5: Velocity of the first DOF u̇1(t) over time

The Fig. (5.5) is showing the velocity u̇1(t) of the highest floor in the horizontal direction. All

the other velocities on the horizontal direction are similar but smaller in value. The building starts

to oscillate quickly, and the velocity decreases as the building starts to converge to the equilibrium

state. After 10-15 oscillations as shown for the displacements the system reaches equilibrium state

and the velocities become zero.
The eigenvalues of the problem are the eigenvalues of the matrix A shown in the Eq. (5.10).

The eigenvalues are the same for each loading case since for the linear problems the matrices m, c

and k are constant at each instant and so the matrix A. This is correct since they represent the

natural eigenmodes of the structure and they don’t depend on the loading. The eigenvalues are all

complex with negative real part. This can be explained using the following found in [18]:

y

dt
= Ay(t) ⇔ y(t) = eAty0 (5.14)

where A is a N ×N constant matrix.
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Using the Sylvester formula:

y(t) = eAty0 =
N∑
k=1

eλitAiy0 (5.15)

where Ai are the Frobenious covariant of A.

As time t passes the solution y(t) has to converge to zero and that is true only for complex

eigenvalues with negative real parts λi = −p±qi where p, q > 0. In a similar way it is shown in [18]

that the eigenvalues are complex with negative real parts for the case dy
dt = Ay(t) + Bu(t).

The eigenvalues are equal for all the cases and are independent of the loadings. They are given

in the table (5.1).

There is relation between the absolute value of the complex eigenvalues and the time scales that

correspond is inversely proportional. In Fig. (5.6) there are shown the terms 1
|λi| that represent

the time scales over time. Because the eigenvalues are in conjugate pairs each value 1
|λi| shown in

the Fig. (5.6) corresponds to two eigenvalues. Each pair of complex eigenvalues correspond to a

natural eigenmode of the starting system.

Figure 5.6: Time scales τi for i = 1, 2, . . . , 48 over time

It is easy to observe from the Fig. (5.6) that the first 3-6 values are far greater than the

other values. That values correspond to the first 3-6 natural eigenmodes. Because the eigenvalues

are independent of the loading so the relation of the time scales that correspond to each pair of

eigenvalues. The first 12 time scales are presented in the table (5.1). It is well known that the

first 3-6 eigenmodes are mainly responsible for the building response under external loadings or

excitations [8, 9, 19,20].
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Table 5.1: Eigenvalues, timescales and corresponding natural eigenmodes.

Eigenvalues Eigenvalues value λi Timescales Timescales value τi Natural eigenmodes

1st & 2nd λ1, λ2 = −0.2618± 5.2299i 1st & 2nd τ1, τ2 = 0.1910 1st

3rd & 4th λ3, λ4 = −0.2657± 5.8923i 3rd & 4th τ3, τ4 = 0.1694 2nd

5th & 6th λ5, λ6 = −0.2781± 7.6369i 5th & 6th τ5, τ6 = 0.1309 3rd

7th & 8th λ7, λ8 = −0.3431± 13.479i 7th & 8th τ7, τ8 = 0.0742 4th

9th & 10th λ9, λ10 = −0.3541± 14.232i 9th & 10th τ9, τ10 = 0.0702 5th

11th & 12th λ11, λ12 = −0.4098± 17.558i 11th & 12th τ11, τ12 = 0.0569 6th

37th & 38th λ37, λ38 = −2.2094± 60.993i 37th & 38th τ37, τ38 = 0.0164 19th

39th & 40th λ39, λ40 = −2.4591± 64.753i 39th & 40th τ39, τ0 = 0.0154 20th

41th & 42th λ41, λ42 = −2.7662± 69.096i 41th & 42th τ41, τ42 = 0.0147 21th

43th & 44th λ43, λ44 = −2.9995± 72.222i 43th & 44th τ43, τ44 = 0.0138 22th

45th & 46th λ45, λ46 = −3.2102± 74.936i 45th & 46th τ45, τ46 = 0.0133 23th

47th & 48th λ47, λ48 = −4.4849± 89.582i 47th & 48th τ47, τ48 = 0.0115 24th

As mentioned in chapter (2) when the trajectory evolves on the (N − M)-dimension Slow

Invariant Manifold (SIM ) the M fast dissipative time scales τi (i = 1, . . . ,M) are exhausted, so

that the flow is characterized by the slow time scales τM+1, . . . , τN . On the SIM the vector field

g(y) has no component in the fast subspace; i.e., the amplitudes in Eq. (2.9) attain negligible

values.

Figure 5.7: Number of slow time scales N −M over time
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The number of the slow time scales N −M are shown in the Fig. (5.7). The system can be

reduced to N −M slow time scales and as it was mentioned before correspond to the first N−M
2

natural eigenmodes of the structure. It was shown in the Fig. (5.7) that the system is approaching

the SIM quickly.

In the Fig. (5.7) it was shown that after t ' 8sec there are 14,12,10,8,6 time scales. The

eigenmodes that are stimulated are 7,6,5,4,3 respectively. The method manages to decrease the

order of the system even further than other methods. In [16] the methods reduce the system to 12.

One more variable that can give important insight about the solution is the CSP amplitude f s

which is a projection of the vector field g(y) along the N−M slow directions. The figure that shows

the decrease of the principal slow time scales is shown in the Fig. (5.8). The rest CSP amplitudes

are similar but they converge faster to zero. If a CSP amplitude f s < ε then is considered that this

time scale becomes fast. It is known from Eq. (2.6) and Eq. (2.10) that the CSP amplitude f s

converge to zero as the system reaches equilibrium state.

(a) (b)

Figure 5.8: The CSP amplitudes over time t: (a) the two slowest CSP amplitudes fs, (b) the two fastest
CSP amplitudes fr

5.4.2 Static loading

The solution for the static loading problem is shown in the diagrams of u1(t) and u̇1(t).

The Fig. (5.9) is showing the horizontal displacement u1(t) of the highest floor of the building.

All the other horizontal movements are similar to this one but smaller in value. The building starts

to move until it reaches its new equilibrium state. The oscillations of the system until reaching

the new equillibrium state are similar to the Fig. (3.9) and are achieved after 10-15 periods. That

shows that the assumption for the effective damping level ζ = 5% is accurate.

75



Figure 5.9: Displacement of the first DOF u1(t) over time

Figure 5.10: Velocity of the first DOF u̇1(t) over time

Similar to the first case in section (5.4.1) the building starts to oscillate quickly and then the

velocity decreases at a steady rate until reaching a new equilibrium state and the solution is shown

in Fig. (5.10).

As mentioned in section (5.4.1) the eigenvalues of the matrix A and the time scales are the

same and independent of the loading case and are shown in table (5.1) and in Fig. (5.6).
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In the Fig. (5.11) it was shown that after t ' 4sec there are 8,6,4 time scales. The eigenmodes

that are stimulated are 4,3,2 respectively. It was observed that the system reaches SIM slower in

the case of free vibration by comparing the Figs. (5.7, 5.11).

Figure 5.11: Number of slow time scales N −M over time

In this case the CSP amplitudes f s is shown in the Fig. (5.12). Similarly to the slow time scales

the CSP amplitudes f s have higher values for the case of free vibration.

(a) (b)

Figure 5.12: The CSP amplitudes over time t: (a) the two slowest CSP amplitudes fs, (b) the two fastest
CSP amplitudes fr
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5.4.3 Equally distributed effective earthquake forces

The solution for the equally distributed effective earthquake forces problem which is described in

section (5.3) is shown in the diagrams of u1(t) and u̇1(t).

Figure 5.13: Displacement of the first DOF u1(t) over time

The Fig. (5.13) is showing the horizontal displacement u1(t) of the highest floor of the building.

All the other horizontal movements are similar to this one but smaller in value. The building starts

to oscillating according to earthquake excitation reaching a periodic state of movement and then

after t = 20s it steadily oscillates with reduced amplitude until reaching equillibrium state similar

to the free vibration case. The oscillations of the system after t = 20s until reaching the new

equillibrium state are similar to the Fig. (3.9) and are achieved after 10-15 periods. That shows

that the assumption for the effective damping level ζ = 5% is accurate.

Figure 5.14: Velocity of the first DOF u̇1(t) over time
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Similar to the first case in section (5.4.1) the building starts to oscillate quickly and then the

velocity decreases at a steady rate until reaching a new periodic state and then decreases even

further until reaching the equilibrium state and the solution is shown in Fig. (5.14).

As mentioned in section (5.4.1) the eigenvalues of the matrix A and the time scales are the

same and independent of the loading case and are shown in table (5.1) and in Fig. (5.6).

In the Fig. (5.15) it was shown that after t ' 4sec there are 10 time scales until t = 20sec.

After the significant change in the loading the equilibrium state changes and some fast time scales

can’t be neglected for some iterations. Afterwards, the trajectory of the system is attracted to the

new equilibrium state and after t ' 24 there are 8 time scales. The eigenmodes that are stimulated

are 5 and 4 respectively.

Figure 5.15: Number of slow time scales N −M over time

In this case the CSP amplitudes f s is shown in the Fig. (5.16). Similarly to the slow time scales

the CSP amplitudes f s have periodic behaviour when the system moves periodically and then they

decreased similar to the free vibration case in Fig. (5.8).

(a) (b)

Figure 5.16: The CSP amplitudes over time t: (a) the two slowest CSP amplitudes fs, (b) the two fastest
CSP amplitudes fr
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5.4.4 Triangular distributed effective earthquake forces

The solution for the triangular distributed effective earthquake forces problem which is described

in section (5.3) is shown in the diagrams of u1(t) and u̇1(t). It is shown that this case is more

critical than the case in section (5.4.3). This is the reason why the construction codes use this

approach. The logic behind this is that the assumptions about the modelling of the structure have

to be made only when there are huge benefits. A more complex loading case doesn’t affect the time

of the calculations.

Figure 5.17: Displacement of the first DOF u1(t) over time

The Fig. (5.17) is showing the horizontal displacement u1(t) of the highest floor of the building.

All the other horizontal movements are similar to this one but smaller in value. The building starts

to oscillating according to earthquake excitation reaching a periodic state of movement and then

after t = 20s it steadily oscillates with reduced amplitude until reaching equillibrium state similar

to the free vibration case. The oscillations of the system after t = 20s until reaching the new

equillibrium state are similar to the Fig. (3.9) and are achived after 10-15 periods. That shows

that the assumption for the effective damping level ζ = 5% is accurate. Also the result in this case

is a little above acceptable limits on elastic buildings which is 3 cm per floor. In this case there are

8 floors and the safety threshold has been passed for a small time interval. It is worth mentioning

that these are critical loading cases and the building has also plastic mechanisms in which it can

absorb much more energy.

Similar to the first case in section (5.4.1) the building starts to oscillate quickly and then the

velocity decreases at a steady rate until reaching a new periodic state and then decreases even

further until reaching the equilibrium state and the solution is shown in Fig. (5.18).
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As mentioned in section (5.4.1) the eigenvalues of the matrix A and the time scales are the

same and independent of the loading case and are shown in table (5.1) and in Fig. (5.6).

Figure 5.18: Velocity of the first DOF u̇1(t) over time

In the Fig. (5.19) it was shown that after t ' 3sec there are 10 time scales until t = 20sec.

After the significant change in the loading the equilibrium state changes and some fast time scales

can’t be neglected for some iterations. Afterwards, the trajectory of the system is attracted to the

new equilibrium state and after t ' 23 there are 8 time scales. The eigenmodes that are stimulated

are 5 and 4 respectively.

Figure 5.19: Number of slow time scales N −M over time
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In this case the CSP amplitudes f s is shown in the Fig. (5.20). Similarly to the slow time scales

the CSP amplitudes f s have periodic behaviour when the system moves periodically and then they

decreased similar to the free vibration case in Fig. (5.20).

(a) (b)

Figure 5.20: The CSP amplitudes over time t: (a) the two slowest CSP amplitudes fs, (b) the two fastest
CSP amplitudes fr

5.5 Comparison between CSP method and other model reduction

methods

As it was shown in this chapter the CSP method can provide various tools and variables that gives

the reader a better insight of the problem. Also, it was shown that the CSP method can decrease

the order of the system much more than the other methods. In [16] there exist the results of the

Balanced model reduction method, the rational Krylov method and the least squares based method.

All the methods in [16] result when analysing the building model of Los Angeles Hospital to a

reduced system of order r = 12. The CSP method reduced the order of the system even further

and the resulting r = N −M = 8 or 6 as shown in the Figs. (5.7, 5.11, 5.15, 5.19). In some cases

shown in sections (5.4.3, 5.4.4), the method needs some more time to approach again the SIM after

drastic changes in loadings.

The disadvantage is that the method has to solve once the system for the whole problem and

then solve for some more iterations a system with higher order than r=12. This is the disadvantage

comparing to other methods. It is worth mentioning that the error criteria mentioned in section

2.2 that are applied in the CSP algorithm for this dissertation use absolute error AbsErri = 10−16

for all i = 1, . . . , N . That is a serious threshold. If this threshold is relaxed then the system order

can be reduced even further and faster but with less accuracy. The disadvantage though that can
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be surpassed is that this method requires the solution of the starting system for the first iteration

as shown in section (5.2).

The methods presented in the chapter (4) are compared with the CSP method. The advantages

and disadvantages of each method are mentioned here using the informations presented in the

chapters (2, 4, 5)

The Balanced reduction method has the following characteristics :

• High computational complexity due to the SVD factorization creates dense matrices and it

requires calculations with those matrices

• Very accurate method

• Global and local error bounds

• The reduced order system is stable.

The rational Krylov method has the following characteristics :

• Low computational complexity

• Numerical reliable methods close to the interpolation points σ

• Require good selection of interpolation points σ to have acceptable errors

• No local and globar error bounds

The least squares method has the following characteristics :

• Average computational complexity , by avoiding the explicit calculation of the matrices of

the SVD factorization by using elements of the rational Krylov method

• Accurate method which uses global information from the system gramian and local informa-

tion near the interpolation points σ

• Global and local error bounds but higher than the Balanced reduction method

• The reduced order system is minimal and computational stable

The Rayleigh-Ritz method has the following characteristics :

• The fastest model reduction method because it is based on the known fact that the buildings

have 3-6 major eigenmodes that stimulate the system the most

• Can only be applied on building models without complex geometry

• Relied on the selection of the Ritz vector

• Higher error than the other methods

• Errors become unacceptable for buildings with strange and non symmetric geometry when

the prediction of the shape of principal eigenmodes is not accurate
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The CSP method has the following characteristics :

• Very fast method

• Gives great insight of the solution and the importance of different values because it has many

tools to extract various important information.

• Could find a system with the optimal reduced order with respect to an desirable error bound

• Can identify the participation of different eigenmodes to the solution at each instant

• Very accurate method due to the error criteria that are set in each iteration and the most

accurate for strict error bounds on the error criteria

• Requires the solution of the starting system at the first iteration

• Reduced system is non-stiff

By observing the following advantages and disadvantages it could be concluded that the CSP

method is very fast and accurate at the same time and is computational reliable. Along with that

it gives greater insight for the solution of the problem and the significance of the different variables

and natural eigenmodes. Faster methods are the rational Krylov method and Rayleigh-Ritz method

but they are not accurate and there don’t have error bounds. The Balanced reduction method is

very accurate but it has high computational complexity. The least squares method is a hybrid

method that is both accurate, preserve stability and create a reduced model of order r = 12 with

an average speed. This is comparable to the CSP method which is both accurate create reduced

order models of order less than 12 for the most period of time but it requires the solution of the

whole starting system in the first iteration.
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Chapter 6

Conclusions

The building model of Los Angeles Hospital that is mentioned in [16] was considered here. The

tools employed in this work to perform mode reduction were tools from Computational Singular

Perturbation (CSP) analysis. The resulting reduced systems have smaller order than the systems

that are produced with the methods in [16].

A description of how the building models are formed and solved is presented in chapter (3). The

theory shows that for single degree of freedom (SDF) systems it is shown in sections (3.1, 3.2) that

the solution has shape similar to a damped sinusoidal function. The same is true for every degree

of freedom (DOF) for the multiple degree of freedom (MDF) system . The general picture that

so far has emerged for the solution is as follows. The building starts to oscillate around the new

equilibrium state. The amplitude of the oscillations is decreased according to the damping ratio ζ

as shown in Figs. (5.4, 5.9, 5.13, 5.17). The velocity of each DOF of the system is decreased in the

same manner and converge to zero as shown in the Figs. (5.5, 5.10, 5.14, 5.18). The diagrams of

the displacements and the velocities have similar shape to the damped sinusoidal functions.

In order to get a better understanding of the building model of Los Angeles Hospital that is

mentioned in [16], it was analysed further, on the basis of the multi-scale character of the model

and for various external loadings and excitations as well. In [16] the model is reduced to a system

of order r = 12. In this dissertation the order of the system was reduced even further as shown in

Figs. (5.7, 5.11, 5.15, 5.19). The dynamics of the modified system were analysed in the present

and it demonstrated that there are significant gaps among its time scales. This feature is validated

with the use of the algorithmic singular perturbation analysis with the CSP method. Also it was

observed that the Slow Invariance Manifold (SIM) can differ for different loadings and excitations

that were applied in the structure. So extreme changes in loadings can differ the SIM such the

trajectory of the solution will be further away and it will require some time to reach the new SIM

as shown in Figs. (5.7, 5.11, 5.15, 5.19). During this phenomenon until the solution reaches the

new SIM the number of slow time scales can get higher than before.

The building was analysed with the CSP algorithm for four different loading cases analysed

in section (5.3) throughout the computational domain. At various points in time, the algorithm

identified (i) the number of fast time scales, (ii) the eigenmodes that are stimulated by the building

dynamical response, (iii) the contribution of each eigenmode to the vibration of the building, (v)
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the eigenmodes that generate the exhausted fast time scales and (vi) the phenomena that drive the

system to equilibrium.

It was shown that in the linear case building models the matrix A in Eqs. (5.10, 5.11) is constant

at each instant and obviously its eigenvalues and eigenvectors are constant at each instant. Because

the eigenvalues are the same, the time scales are the same as shown in section (5.4).

It was observed and proved in chapter (5) the dissipative nature of all time scales since matrix

A correspond to a physical problem the solution can’t go to infinity for every instant. In order that

to be satisfied the eigenvalues have to complex and with a negative real part. That is also shown

in Fig. (5.6) and Table (5.1).

It was found that the first 3-6 natural eigenmodes of the building are stimulated the most and

dictate the trajectory of the solution. That is a generally true for most of the buildings and is

mentioned in [8,10,19,20]. It was shown that each pair of complex eigenvalues (for each eigenvalue

its conjugate is also an eigenvalue shown in section (5.4)) correspond to a natural eigenmode of the

building. The SIM consisted of the time scales that correspond to the 3-6 principal eigenmodes of

the structure. This is shown in Figs. (5.7, 5.11, 5.15, 5.19). The separation between fast and time

scales is happened with the error criterion shown in section (2.2). All the results in this work are

used error criteria with AbsErri = 10−16 for all i = 1, . . . , N . The number of fast time scales M

can be even bigger for a less strict selection of the AbsErr. But the number of fast time scales M

is optimal with respect the accuracy that was selected.

Studying the problem with multi time scale analysis it was found that the Slow Invariance

Manifold can change dramatically due to extreme changes in loadings. The trajectory of solution

that have been approaching the first SIM can be even further away from the new SIM and timescales

and eigenmodes that are exhausted are stimulated again. But due to the dissipative nature of each

time scale the trajectory of the solution is always attracted to the new SIM. That type of behaviour

is shown if Figs. (5.7, 5.11, 5.15, 5.19).

Another tools of the CSP method that provides the crucial information about the solution is

the CSP amplitudes. The CSP amplitudes f r and f s are the projections of the vector field g(y)

along the M fast and N −M slow directions as mentioned in chapter (2). When the trajectory

evolves on the (N −M)-dimension Slow Invariant Manifold (SIM ) the M fast dissipative time

scales τi (i = 1, . . . ,M) are exhausted, so that the flow is characterized by the slow time scales. For

the systems that describe the dynamical response of the structures it was proved in section (5.4)

that all the time scales are dissipative and they get exhausted over time. It was shown in Figs.(5.8,

5.12, 5.16, 5.20) the f s are exhausted after some time. When the f s is exhausted the slow time

scale that corresponds to it, it becomes fast time scale. The system is reduced to 3-6 slow time

scales due to the absolute error AbsErri = 10−16 for all i = 1, . . . , N that was mentioned before.

Through searching the bibliography it was found a basic categorization of model reduction

methods in [3, 4, 16]. The CSP method is belonging to another category of methods that are

based in asymptotic perturbation analysis [11, 28, 45]. One more category that is found is the

ones that are based in modal analysis of buildings and can only be applied on building equations.

For each category a characteristic method is presented in chapter (4). The methods that are

presented are the Balanced reduction method, rational Krylov method, least squares method, CSP

method and Rayleigh-Ritz method that correspond to the categories SVD gramians based methods,

86



Krylov moment matching methods, SVD gramians - Krylov moment matching methods, asymptotic

perturbation analysis methods and modal analysis methods respectively.

Table 6.1: Categories of models reduction methods, a method of each category and the advantages and
disadvantages of these methods.

Model reduction methods

Categories Methods Advantages Disadvantages

SVD gramians based methods Balanced model reduction

• Very accurate method

• Global and local error bounds

• Reduced system is computationally
stable

• High computational complexity

• High memory requirements

Krylov moment matching based
methods Rational Krylov method

• Low computational complexity

• Numerical reliable only close to the
interpolation points σ

• Require good selection of interpola-
tion points σ to have acceptable er-
rors

• No local and global error bounds

SVD gramians - Krylov moment
matching based methods Least squares method

• Accurate method which uses both
global and local information

• The reduced order system is mini-
mal and computational stable

• Average computational complexity

• Global and local error bounds but
higher than the balanced reduction
method

Modal analysis based methods Rayleigh-Ritz method
• Lowest computational complexity

• Can only be applied on building
models

• Relied on the selection of the Ritz
vector

• Higher error than the other methods

• Errors are unacceptable for build-
ings with complex geometry

Asymptotic perturbation analysis
based methods CSP method

• Low computational complexity

• Provide great insight of the solution

• Could find a system with the opti-
mal reduced order with respect to a
desirable error bound

• Can identify the participation of dif-
ferent eigenmodes to the solution at
each instant

• Very accurate method

• Requires the solution of the starting
system at the first iteration

In the table (6.1) there is a summary of the advantages and disadvantages of each method as

shown in section (5.5). The CSP method gives the solution both fast and accurate. Studying

the table (6.1), it is obviously that the CSP method has the best balance between accuracy and

computational complexity. Furthermore, it provides various tools that give important information

about the solution and the participation of different phenomena to the final solution of the system.

The building models have been studied extensively in [7–10, 19, 20]. Model reduction methods

applied on buildings can be found in [3, 16, 37]. Model reduction in this work is achieved by

applying CSP method. The multi scale analysis of the eigenmodes of the structure, could provide
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the required insights on the significance of each behaviour and loading case to the solution of the
system.

As a summary, it can be mentioned that this dissertation contains a bibliographic research of

the model reduction methods that can be applied in a structure, the detailed application of the

CSP method to simulate the damping response of a structure under various loadings and excitations

with a reduced system. Further analysis of the dynamical problem with the CSP tools provide a

deeper physical understanding about the damping oscillations in multi-storey structures.
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