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ABSTRACT 

Surface fault ruptures may inflict serious damage to bridges built on or near them. In the 

three notorious earthquakes of Kocaeli, Chi – Chi and Wenchuan a number of bridges were 

crossed by the emerging normal and thrust faults suffering significant damage, 

demonstrating, at the same time, the need to account for tectonic deformation in seismic 

design. Previous research efforts on the subject had been focused on the investigation of 

the decomposed problem, in which the free-field solution of the fault propagation is 

preceding the analysis of the bridge system (subjected to the calculated deformations of the 

free-field step). This paper, attempts a robust investigation of the entire bridge system (soil 

foundation, pier and deck) with the intention to elucidate the significance (or not) of the 

kinematic constraints imposed by the superstructure on the overall bridge response. To this 

end, a typical high-way bridge founded on surface footing is subjected to a dip – slip (normal 

and thrust) faulting. A series of 1-g physical model experiments are conducted in the split-

box of the Soil Mechanics Laboratory of the National Technical University of Athens. In this 

first part of study, Class-A numerical prediction of forthcoming experimental results is 

attempted, validating simultaneously the decoupled methodology by Anastasopoulos et al. 

2008. 2D finite element analyses accounting for soil strain-softening are conducted. The 

position of the footing relative to the surface fault rupture and the imposed kinematic 

constraints on the abutments of bridge are also parametrically investigated, assessing the 

various mechanisms develop and the corresponding stress on bridge. 
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1. Introduction 

In the course of an earthquake, the rupture of the seismogenic fault generates two types of 

ground displacement: permanent quasi-static offsets on the fault itself, and transient 

dynamic oscillations away from the fault [Ambraseys & Jackson, 1984]. The second type of 

displacement is the result of waves originating successively from the fault plane and 

propagating over large distances within the earth crust. Such waves always affect the 

ground surface and are thus of prime significance for the safety of civil engineering 

structures. By contrast, the permanent offset of a fault is only evident, when rupture 

extends all the way to the surface. The latter emerges slowly (as a quasi-static displacement) 

starting from the bedrock, evolving within the soil deposit to the ground surface, subjecting 

any structure on its path to extreme movements and sometimes to collapse. 

Yet survival is not always impossible. Structures, if design appropriately, may even 

withstand major fault offsets, due to the favorable interplay of the fault rupture with the 

structure foundation [Bray JD. 2001, 2009; Fadaee et al. 2013; Gazetas et al. 2008, 2015]. 

The mechanics of such interaction have been thoroughly explored by many researchers 

[Oettle & Bray, 2013; Bray & Seed, 1994; Paolucci & Yilmaz, 2008; Anastasopoulos et al. 

2008, 2009; Loli et al. 2011], suggesting that fault rupture may be deviated, protecting 

structures from unfavorable large tectonic deformations; rigid and continues foundations, 

of high surcharge were found to perform best under surface faulting. 

 

2. Scope of this study 

This paper investigates the response of a bridge system crossed by an emerging fault. 

Previous studies on the subject propose the use of a two-step decoupled methodology 

[Anastasopoulos et al. 2008]. In the first step the response of a single bridge pier subjected 

to fault rupture deformation is analyzed, while in the second the detailed model of the 

superstructure is subjected to the computed, from the previous step, displacements. 

Therefore, it is inherently assumed that the superstructural system doesn’t affect the soil 

deformations and as such the deformations of the bridge footings. The validity of this 

assumption will be checked herein by comparing the response of a coupled soil-fault-
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foundation-bridge system to the response assessed by applying the decoupled methodology 

of Anastasopoulos et al. 2008. 

The problem is studied both experimentally (conducting 1-g experiments at the Fault-

Rupture-Box of the National Technical University of Athens), and numerically. This paper 

presents the results of the numerical investigation. 

The structural system of the bridge (i.e. the pier-deck connections and the boundary 

conditions at the abutments), as well as the fault outcropping position are parametrically 

investigated. For the sake of brevity, results are presented for the most unfavorable case: 

the pier is monolithically connected to the deck, and the fault crosses the foundation of the 

central pier. 

 

3. Problem statement 

The investigated problem refers to a typical two-span highway bridge with total length of 

34.5 m (Fig. 1). The deck is a hollow section made of pre-stressed concrete, with effective 

section area of 4.96 m2 and inertia moment 0.81 m4. The deck supports a rectangular 

concrete pier, with dimensions in plain 0.9 x 3.8 m and 8m height. The central pier of bridge 

is monolithically connected with the bridge deck, while at the two abutments, the deck lies 

on top of two elastomeric bearings. 

The pier is founded through surface footing of prototype dimensions L= 7.5 on top of a 

sandy stratum. 

The bedrock (lying 6 m below the ground surface) is subjected to a 45o dip-slip angle 

tectonic dislocation (normal and reverse faulting). The problem is studied both numerically 

and experimentally and the results are presented in a set of two papers. In this first paper, 

the numerically methodology is briefly outlined and a class-A prediction of the 1-g 

experiments is attempted. The experiments have been conducted in the Fault Rupture Box 

of the NTUA [Gazetas et al. 2015], assuming a model scale of 1:15. The dimensions and 

material properties of the model were scaled down employing appropriate similarity laws 

[Muir Wood. 2004]. 
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4. Bridge subjected to faulting: coupled vs de-coupled analyses 

 

(a) Presentation of the Coupled Methodology 

The finite element (FE) method has been applied successfully by several researchers to 

simulate the fault rupture propagation process in the free-field, as well as the interplay of 

fault–foundation–structure systems [Anastasopoulos et al. 2007, 2009; Loli et al. 2011; Bray 

et al. 1994; Loukidis et al. 2009; Bransby et al. 2008]. 

In this study, the soil–foundation-bridge system is analyzed in plane strain conditions. The 

FE model (Fig. 2) is a numerical replica of the FRB apparatus, and hence its dimensions are 

equal to those of the split-box in the Laboratory of Soil Mechanics of the National Technical 

University of Athens. The depth of the soil stratum is 0.40 m (6 m in prototype), while the 

length is 2.60 m. Note that the length/depth ratio is greater than 4 which minimizes any 

undesired boundary effect. 

Soil and surface footing are simulated with 4-noded plain-strain continuum elements. 

Following the recommendations of Bray et al (1994), in order to properly simulate the 

developed shear band, the FE mesh in the neighborhood of the potential rupture should be 

very refined and a rigorous nonlinear constitutive law for the soil should be assumed. In our 

numerical model the finite element size is as small as dFE = 0.02 m. 

The soil is modelled employing the elastoplastic constitutive model described in 

[Anastasopoulos et al. 2007], and encoded in ABAQUS as a user-defined subroutine. The 

model incorporates elastic pre-yielding soil behavior, assuming a shear modulus GS linearly 

increasing with depth. A Mohr–Coulomb failure criterion is combined with isotropic strain 

softening, reducing the friction 𝜑𝜑 and dilation 𝜓𝜓 angles with octahedral plastic shear strain 

𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝𝑝𝑝  according to the following relationships:  

 

[𝜑𝜑 ;𝜓𝜓] =

⎩
⎪
⎨

⎪
⎧𝜑𝜑𝜌𝜌 −

𝜑𝜑𝜌𝜌−𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟
𝛾𝛾𝑓𝑓
𝑝𝑝𝑝𝑝  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝𝑝𝑝  ;  𝜓𝜓𝜌𝜌 �1 − 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝𝑝𝑝

𝛾𝛾𝑓𝑓
𝑝𝑝𝑝𝑝 �  ,     𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝𝑝𝑝  ≤ 𝛾𝛾𝑓𝑓
𝑝𝑝𝑝𝑝

𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟 ; 0                                                 𝑓𝑓𝑓𝑓𝑓𝑓 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝𝑝𝑝  ≥  𝛾𝛾𝑓𝑓

𝑝𝑝𝑝𝑝

 (1) 
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Where 𝜑𝜑𝜌𝜌 and 𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟 the peak and residual soil friction angles; 𝜓𝜓𝜌𝜌 the peak dilation angle; 

and 𝛾𝛾𝑓𝑓
𝑝𝑝𝑝𝑝 the octahedral plastic shear strain at the end of softening. Constitutive soil 

parameters are calibrated on the basis of direct shear tests, and the model has been 

validated with centrifuge experiments conducted at the University of Dundee, as discussed 

in detail in [Anastasopoulos et al. 2007]. 

For the small stresses of the reduced-scale experiments presented herein, the mobilized 

friction angle depends strongly on the stress level. This problem, (which does not exist 

neither in the centrifuge models, where the stress level is equivalent to the prototype 

thanks to the centrifugal acceleration which multiplies the gravitational force by a factor of 

N (i.e., equal to the scale of the model), nor in reality), is known as scale effects. To account 

scale effects in the numerical modelling, 𝜑𝜑 and 𝜓𝜓 are being iteratively adjusted (according 

to Eq. 1) to be always consistent with 𝛾𝛾𝑓𝑓
𝑝𝑝𝑝𝑝 and σoct (octahedral stress). 

The fault offset is simulated as a monotonically increasing displacement at the model base. 

The bottom boundary is divided into two parts; one part (right) remains stationary 

(representing the footwall), and the other (left) block moves up or down to simulate normal 

or reverse faulting, respectively. After imposing the geostatic stresses and the dead load of 

the superstructure, the fault dislocation is applied in small quasi-static analysis increments. 

The pier and the deck are modeled with 2-noded beam elements, while the bearings of each 

abutment are modelled using special 2-noded elastic spring elements of horizontal stiffness 

KH=3846 kN/m and rotational stiffness KR=22222 kNm/rad. The vertical stiffness of the 

abutments is extremely high and therefore zero vertical displacement has been prescribed. 

The soil-footing interface is modelled using special contact elements that allow sliding, 

uplifting and / or separation (loss of contact). In the experiments, sandpaper are glued on 

the bottom of footing to increase the interface friction to realistic levels. Thus, a friction 

coefficient of μ = 0.7 is an appropriate value for the interface between sand and sandpaper. 

The bridge deck is modeled as a linearly elastic (assuming that the expected bending 

moment would be much lower than the bending capacity of this massive deck). The pier, on 

the other hand is simulated assuming a non- sectional moment (M) -curvature (1/r) (as 
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portrayed in Fig. 3). The ultimate value of pier moment is Mult=6500 kNm, equivalent with 

0.13 kNm in model scale units. 

The backfill consists of dry ‘‘Longstone’’ sand, a very fine uniform quartz sand with  

d50= 0.15 mm and uniformity coefficient Cu = D60/D10 ≈ 1.4, industrially produced with 

adequate quality control. The void ratios at the loosest and densest state were measured as  

emax = 0.995 and emin = 0.614, while Gs = 2.64. Direct shear tests have been carried out to 

obtain the peak and post-peak strength characteristics of the sand. Medium loose  

[Dr = (45 ± 2 %)] and dense [Dr = (80 ± 3 %)] sand specimens were tested at normal stresses 

ranging from 13 kPa (due to the weight of the top cap only) to 300kPa, while the 

correspondent soil data for medium dense sand [Dr = (60 ± 2 %)] was proceeded with linear 

extrapolation. As documented in [Anastasopoulos et al. 2010], the angle of shearing 

resistance depends strongly on the stress level; for stresses higher than 120 kPa, referring to 

loose sand, φ’ = 32ο while for lower stresses φ’ increases up to 45ο. For the dense specimens 

the angle of shearing resistance is 35o for the higher stress levels and 51o at the lowest 

normal stress tested. For the soil of this study [Dr = (60 ± 2 %)], the distribution of φ’ in 

function with specimen vertical stress (σ) is shown in Fig. 4. These values drop after 

displacement of 6 mm to post-peak critical-state. The angle of dilation also depends on the 

effective stress [Bolton. 1986], with a maximum value ψ = 12ο. 
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(b) The Decoupled Methodology 

To rigorously assess the performance of a structure undergoing large tectonic deformation, 

the analysis of the entire soil-fault-structure system is required (Fig. 2). Yet this type of 

analysis (the attributes of which were systematically presented in the previous paragraph) is 

all but simple. To overcome this obstacle Anastasopoulos et al. 2008 proposed a simplified 

methodology to be used in the design of bridges against faulting. 

The problem is decoupled in two subsequent analysis steps. In the first step, the response of 

a single pier and its foundation to fault rupture propagating through the soil is modeled 

(local model), while the superstructure is introduced in a simplified manner. In particular, as 

schematically portrayed in Fig.5 the local model should include: the soil model, the 

foundation, and the bridge-pier of height Hp and stiffness EIp, while the bridge deck is 

replaced by equivalent lateral and rotational springs, Kx and Kθ, respectively. For the case of 

a continuous deck monolithically connected to piers, Kx represents the axial stiffness of the 

deck and Kθ the bending stiffness of the pier-deck connection. Correspondingly, for a 

seismically isolated bridge, Kx and Kθ represent the lateral and rotational stiffness of the 

(elastomeric) bearings. In our study, however, the pier is monolithically connected with deck 

and (elastomeric) bearings are placed on the edges of model. For this reason, the axial 

stiffness of deck Kx is substituted with the horizontal stiffness of bearings, while the 

rotational stiffness Kθ, is equal with the bending stiffness of the pier-deck connection. This 

step provides the horizontal (Δx) and vertical (Δy) displacements and the rotation θ at the 

base of pier that are necessary for the next step.  

In the second Step the detailed model of the superstructure (global model) is analyzed, 

subjected to the support (differential) displacements estimated in the previous step. Since 

this work was part of a research project in Greece, emphasis had placed on normal faulting 

(the dominant mode in Greece), however, in this study is applied both normal and reverse 

faults. 

This paper attempts a forward comparison between the coupled and the de-coupled type of 

analysis for a bridge system experiencing normal or reverse faulting. The comparison will be 

provided in terms of settlement and rotation at bridge-footing, bending stress on the pier 

and the deck of bridge, as well. 
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5. Results: Bridge subjected to Normal Faulting 

The example bridge of Fig. 2 is subjected to normal faulting and its response is assessed 

utilizing both the coupled and the decoupled methodology. Fig. 6(a) compares the bending 

stress for the two bridge piers. Evidently, both analyses results are in a very similar pier 

response. Failure occurs first at the base of the pier, followed by a rapid increase in the 

bending stressing at the top of pier (pier-deck connection). Yet, the decoupled system fails 

first (at δ/δmax = 0.27), compared to the coupled system where failure is expected for a 

higher fault dislocation (i.e. δ/δmax =0.33). 

The paradox in this behavior is that the onset of failure in the two piers is different, although 

the both of them are experiencing identical footing rotations.  

As explained by the sketch of Fig. 6(c), both systems develop positive footing rotations, 

which are inducing positive curvature on the pier-base. Yet, as explained previously, the 

coupled system is further distressed by the imposed displacements at the left bridge 

abutment. The latter are displacing the top of the pier to the left introducing a negative 

curvature on the pier base, practically relieving the pier from the bending stress introduced 

by the foundation rotation. This explains the broader margins of safety introduced by the 

coupled analysis. 

Fig. 7(a) compares the settlement and rotation of the footing of the two types of analyses. 

The results are very close: the footing in both analyses performs in a quite similar manner. 

What is interesting to note is the non-smooth evolution of foundation deformation of the 

decoupled system at δ/δmax = 0.30. A schematic explanation of this peculiar behavior is 

portrayed in Fig. 7(b). Initially (for δ/δmax<0.30), as the hanging wall movement increases, a 

clear gap at the left corner of footing is appearing. This gap rapidly closes at δ/δmax = 0.30 

when a plastic hinge at the base of the pier (δ/δmax = 0.27) has been fully formed. At that 

instant the superstructure is unable to resist to the imposed deformations and abruptly 

(evidenced by the step-like pattern of the plots at that particular instant) follows the soil 

deformations. 

The differences are much more pronounced in terms of drift ratio presented in Fig. 8(a). For 

δ values lower than δ/δmax = 0.27 (i.e. before the plastic hinging of pier), both systems 
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develop positive drift ratios as a result of the left rotation of the footing. Of course, it is no 

surprise that at any point of this stage, the drift accumulated by the coupled system is much 

higher. In the latter, fault dislocations are simultaneously imposed to the bedrock (base of 

model) and to the left abutment of bridge (lying on the hanging wall) dragging the bridge 

pier farther to the left, whilst in the decoupled system the drift is resulted by bedrock 

dislocations only. After the plastification of pier the trend changes completely: the coupled 

system keeps accumulating positive drifts while the decoupled system provokes negative 

drifts. A view of the deformed mesh at time-step δ/δmax = 0.8 is illustrated in Fig. 8(b), to 

assist the interpretation of this behavior. After the plastification of pier (δ/δmax = 0.27) the 

increase of rotation does not affect the horizontal movement of its top, but plasticize more 

its base, as shown schematically in Fig. 8(c) for the case of decoupled system. As a result 

only the base of pier moves to the left, leaving the top back and making the drift negative. 

The difference of coupled system is that fault dislocations are simultaneously imposed to 

the bedrock and to the left abutment of bridge, as previously mentioned, dragging the top 

of the pier farther to the left, remaining the drift positive. 

The distribution of bending moments across the deck of bridge, for imposed fault 

dislocation (δ/δmax = 0.35), is presented in Fig. 9(a). As we can observe, the distribution 

makes a discontinuity in the place of pier. This jump is equal with the bending moment on 

top of the pier, as it is obliged from node equilibrium. For the same dislocation level, a 

comparison between the coupled and decoupled system in terms of bending moments 

across the deck is presented in Fig. 9(b). The evolution of settlement, rotation and 

horizontal displacement of footing (the output of decoupled pier model) is used as input 

fault dislocations on the base of pier of decoupled detailed model. As a result the 

discrepancies between the coupled and decoupled b model, are caused by their 

discrepancies in terms of settlement and rotation of footing. 

  

9



6. Results: Bridge subjected to Reverse Faulting 

In this section two reverse fault scenarios are examined. In the first scenario the free-field 

rupture crosses the bridge footing near to its right corner (s/B=0.11), causing maximum 

displacements on the basis of pier, while in the second one the free-field rupture crosses 

the bridge footing near to its center (s/B=0.46). Both cases are schematically illustrated in 

Fig. 10. 

 

Location 1: s/B = 0.11 

As evidenced by the plots of Fig. 11(a), and contrary to the trends observed in the normal 

faulting scenario, the footing settlement and rotation estimated by the coupled and 

decoupled methodology are quite different. Initially (i.e. for low values of faulting 

dislocations) both systems rotate clockwise, but soon after the decoupled system starts 

rotating backwards, yielding an almost zero rotation at δ/δmax≈0.3. At this point the bridge 

pier fails and the footing is practically enforced to follow the soil deformation (rotation to 

the right). The snapshots of Fig. 11(b) illustratively explain the aforementioned response. 

Observe that the rupture of the decoupled system outcrops just beneath its right corner, 

provoking a counterclockwise rotation. On the other hand, when the coupled problem is 

considered, the main rupture is deviated away from the footing edge to the right, resulting 

in a clockwise rotation of the footing. 

By just observing the footing rotations, it would be reasonable to expect that coupled 

system that experiences much higher rotation, would fail first. Yet, this is not the case. Both 

methodologies predict bending failure at the same level of imposed fault dislocations 

δ/δmax, as shown in Fig. 12(a). Note that at that exact instant the coupled system presents 

negative drift values, caused by ‘to-the-right’ displacement of the deck. The latter induces 

positive curvature at the base of the pier that are partially cancelling the negative curvature 

produced by the footing rotation. A schematic representation of the aforementioned 

argumentation is shown in Fig. 12(c). 

The distribution of bending moments across the deck of bridge, for imposed fault 

dislocation (δ/δmax = 0.10), is presented in Fig. 13(a), while in Fig. 13(b) a comparison 
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between the coupled and decoupled system in terms of bending moments across the deck 

(for the same level of faulting) is presented. The differences of the two systems are very 

pronounced. The simplified decoupled methodology yields significantly higher bending 

moments (i.e. by a factor of 2). The reason why this happens, has already analyzed for the 

case of normal faulting. 

 

Location 2: s/B = 0.46 

For the second investigated faulting scenario the bending stress at the top and base of the 

two piers are portrayed in Fig. 14(a & d). Referring to the moment at the pier-base, the 

decoupled system is again driven first to failure, although the two systems at that exact 

instant are experiencing identical footing rotations. As vividly explained previously, in this 

case also, the kinematic loading applied at the superstructure (i.e. the horizontal movement 

at the left abutment), induces an opposite (favorable) curvature on the pier that prevents 

the ultimate bending failure. 

Interestingly enough, the evolution of bending moment at the pier-base of the coupled 

system follows an abnormal pattern: the moment is peaking for fault level equal to δ/δmax = 

0.24 (Area 1), reduces for bedrock dislocations between δ/δmax = 0.24 - 0.35 (Area 2) and 

continues increasing until reaching the ultimate value of Mmax = 0.13 kNm at δ/δmax = 0.5 

(Area 3). To explain this behavior, we will attempt to separate the effects of the two 

competitive curvature-inducing mechanisms as the bedrock dislocation progresses: the 

footing rotation and the horizontal dislocation of the abutments that provokes pier drift,  

Fig. 14(b & c). Initially (Area 1), the foundation under the action of the main fault-rupture 

rotates considerably, while the top of the pier practically remains still (almost zero drift). 

This footing rotation provokes negative curvature and thus negative bending on the pier. As 

the coupled system enters Area 2, the foundation starts rotating backwards, the curvature 

decreases and so does the Bending Moment (in absolute terms). In Area 3 the pier drift 

attains positive values that in turn generate negative curvature and negative Moment. This 

continues until δ/δmax = 0.55, the instant at which the pier capacity has been reached. 

For this faulting case, an interesting behavior (in terms of footing displacements) may also 

be observed. Up to imposed dislocation level of δ/δmax = 0.3, the two systems (coupled and 
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decoupled) behave in a similar manner: both footings accumulate almost identical 

settlements and rotations. Beyond this point, the system response changes drastically. The 

footing of the coupled system starts rotating backwards - yet maintaining a constant rate of 

settlement accumulation- while the exact opposite holds for the footing of the de-coupled 

system. 

In order to gain insight on this response, Fig. 15(b & c) presents a set of deformed snapshots 

at two distinctive bedrock dislocations (δ/δmax = 0.3 and δ/δmax = 0.6). The readers are 

encouraged to observe the two ruptures interacting with the footing: a main rupture 

appearing near the footing right edge and a secondary rupture just behind the footing 

(evident for δ/δmax = 0.6). 

Clearly, the main rupture dominates the response for bedrock dislocations lower than 

δ/δmax = 0.30. Yet for higher dislocation values the pattern get more complex. On the 

coupled system plastic strains keep accumulating along the main rupture, while in the 

decoupled system the secondary rupture is gaining ground. [Note that the intensity of 

plastic deformations in the main rupture remains practically unchanged from δ/δmax = 0.30 

to 0.60]. The latter forms a graben type deformation beneath the footing (of the coupled 

system) which restrains any additional clockwise foundation rotation (the footing tends to 

rotate towards the opposite side). 

The distribution of bending moments across the deck of bridge for a fault dislocation  

δ/δmax = 0.20 is presented in Fig. 17(a), while in Fig. 17(b) a comparison between the 

coupled and decoupled system in terms of bending moments across the deck (for the same 

level of faulting) is presented. The response of two systems, for the exact fault level, is 

identical. The cause of that is the equal settlement and rotation of decoupled with coupled 

footing, for the exact fault level, that is used as input fault dislocation on basis of decoupled 

detailed bridge model. 
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7. Some Insights on the fault-bridge interaction 

 

Effect of Abutments 

In this part of the study the effect of abutments on the response of bridge is investigated. 

Fig. 18(a) compares the bending stress for the two bridge piers. Evidently, the bending 

response of the two systems is completely different. The bridge with bearings leads the pier 

to failure, while the bending moment on the pier of the simply-supported system reaches a 

maximum value that is lower than the column capacity. Interestingly, this maximum value 

remain constant although the pier keeps rotating under the fault action. Yet this foundation 

rotation does not transmit bending stress on the pier column. 

To elucidate further this peculiar response, in Fig 19 we have de-composed the bridge 

response into two separate mechanism: a deformation mechanism induced by the 

horizontal (to the right) movement of the fault, and a second one provoked by the vertical 

fault movement. Evidently, since the bridge deck is free to move horizontally, the first 

mechanism doesn’t induce any stressing on the bridge. In the second mechanism however, 

the pier of simply-supported system is basically stressed due to the differential vertical 

movements of the left abutment (u,2,FF) and the pier footing (u2). This differential 

movement is translated to deck rotation and constant bending curvature along the pier. For 

the given M-k, the induced curvature of k=0.11 correspond to M=0.1 kNm. As long as the 

ratio of u,2,FF and u2 remains constant the pier does not accumulate further stressing. Note 

that this is the maximum bending moment that may be developed to this bridge system.  

Fig. 20(b) illustrates the distribution of soil stresses at the footing base at the instant of 

maximum moment. Observe the triangular distribution of soil pressures: the soil reaction in 

the right part of the foundation is zeroed, while increased stresses are concentrated on the 

left part. Naturally, the summation of soil pressure results in overturning moment of  

M=0.1 kNm that equals the developed Moment on the pier base. 
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8. Conclusions 

This paper presents a numerical coupled methodology to analyze the response of bridges 

against large tectonic deformation. The numerical results have been systematically 

compared to those produced by applying the decoupled methodology suggested by 

Anastasopoulos et al. 2008 and interesting conclusion have been derived. The conclusion 

derived apply to rigid bridge systems founded on surface are: 

1. The design of bridges against tectonic deformation is quite feasible with proper 

design. The method of analysis presented by Anastasopoulos et al. 2008 may form 

the basis for future Code provisions and requirements on the subject. 

2. This efficiency of the decoupled methodology relies upon the accurate prediction of 

settlements and rotations at the bridge footings. The predictions were found to be 

more accurate for normal than for reverse faulting. 

3. The rupture path is strongly affected by the presence of the superstructure. The 

emerging fault rupture is not only diverted, but may also be subjected to bifurcation 

and diffusion. 

4. The bridge system with simple supports on its abutments, leads to lower pier 

bending stress than original problem. Therefore it is vital to correctly account the 

abutment stiffness in the experimental set-up, in order to correctly simulate the 

bridge-fault interaction problem. 
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Figure 1. Sketch of the studied problem indicating the key parameters and dimensions at prototype 
scale. Dimensions apply to both normal and thrust rupturing faulting.
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Figure 2. View of the 2D Finite Element model, along with key model dimensions and 
boundary conditions. 
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Figure 3. The Non-linear Bending response of the RC bridge pier 
(prototype scale), in terms of curvature (1/r) – moment (M).

normal stress σ (kPa)

φ
’ (

de
g)

Figure 4. Direct shear results for the Longstone sand: mobilized friction angle 
as a function of stress level.
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Figure 5. The decoupled Methodology proposed by Anastasopoulos et al (2008) :  the analysis 
of the soil–structure system subjected to faulting-induced deformation is conducted in two 
steps. In Step 1, we analyze the response of a single bridge pier subjected to fault rupture 
deformation. In Step 2, the detailed model of the superstructure is subjected to the computed 
displacements and rotations of Step 1.
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Figure 6. Bridge subjected to normal faulting (δmax=-0.1m). Results are presented in terms of : (a)
bending moments on the top (Mtop) and bottom (Mbot) of the pier; and (b) rotation of footing (θ) and
drift ratio of pier. (c) View of the deformed coupled system; (d) kinematics responsible fro the bending
stressing on the pier of the coupled system.

(d)

21



w
 : 

m

δ/δmax δ/δmax

θ
:ra

d

(a)

(b)

δ/δmax=0.27 δ/δmax=0.30
δ δ

Figure 7. Bridge subjected to normal faulting (δmax=-0.1m) : (a) settlement (w) and rotation (θ) at the 
footing and (b) snapshots of the deformed decoupled problem at two distinctive instants. 
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differences of drift ratio before and after the development of plastic hinge (at instant δ/δmax =
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δ/δmax = 0.35 (δmax=-0.1m); and (b) bending moment distribution along the bridge deck.
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Figure 10. Bridge subjected to reverse faulting : (a) free-field rupture crosses
the right corner of bridge footing (s/B=0.11) and (b) free-field rupture crosses
the center of bridge footing (s/B=0.46).
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Figure 11. Bridge subjected to reverse faulting at s/B=0.11 (δmax=0.1m): (a) settlement (w) and rotation 
(θ) at the footing and (b) snapshots of two systems at fault dislocation level δ/δmax = 0.25. 
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Figure 12. Bridge subjected to reverse faulting (δmax=0.1m). Results are presented in terms of : (a)
bending moments on the top (Mtop) and bottom (Mbot) of the pier; and (b) rotation of footing (θ) and 
drift ratio of pier; (c) view of the deformed coupled system at δ/δmax=0.45; (d) kinematics responsible 
fro the bending stressing on the pier of the coupled system. 
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Figure 13. (a) Bending Stressing of the bridge (calculated by means of a coupled analysis)
at reverse faulting δ/δmax = 0.10 (δmax=0.1m); (b) bending moments along the bridge
deck for both systems.

28



δ/δmax

M
bo

t: 
kN

m

M
to

p: 
kN

m

(a)

θ
:ra

d

θ < 0

Curvature < 0

δ/δmax

Dr
ift

(b)

Curvature < 0

Drift > 0

Curvature > 0

Drift < 0
(e)

Figure 14. Bridge subjected to reverse faulting at s/B=0.46 (δmax=0.1m). Results are presented in terms
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Figure 15. Bridge subjected to reverse faulting (δmax=0.1m). (a) Footing settlement as derived by
the coupled and the decoupled methodoloigy. Deformation snapshots superimposed with plastic
deformation contours for both systems at (b) δ/δmax= 0.30 and (c) δ/δmax= 0.60.
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Figure 16. Bridge subjected to reverse faulting (δmax=0.1m): (a) foundation rotation (θ) and
(b) snapshots of the coupled system at two distinctive bedrock dislocations δ/δmax = 0.25 and
0.38.
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Figure 17. (a) Bending Stressing of the bridge (calculated by means of a coupled analysis ) at reverse 
faulting of δ/δmax = 0.20 (δmax=0.1m); and (b) bending moments along the bridge deck for both 
systems.
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Figure 18. Bridge subjected to reverse faulting analyzed with bearings and simple supports on its 
abutments: (a) bending moments on the bottom (Mbot) of pier; (b) snapshots of two systems at the 
same fault dislocation level (δ/δmax = 0.20). 
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Figure 19. Simply-supported bridge subjected to reverse faulting: schematic representation of 
the stressing  mechanism.
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Figure 20. Simply supported bridge subjected to reverse faulting : (a) developed bending moments on 
the pier base (Mbot) ; (b) distribution of vertical soil stresses just beneath the footing at fault dislocation 
δ/δmax = 1(i.e. when the bending moment of pier is maximum).
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