ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Δ.Π.Μ.Σ. «ΝΑΥΤΙΚΗ & ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΛΕΤΗ ΤΩΝ ΘΑΛΑΣΣΙΩΝ ΦΑΙΝΟΜΕΝΩΝ ΜΕ ΧΡΗΣΗ ΤΗΛΕΠΙΣΚΟΠΙΚΩΝ ΣΑΡ ΑΠΕΙΚΟΝΙΣΕΩΝ

ΣΤΥΛΙΑΝΗ ΑΡΓΥΡΙΟΥ

ΕΠΙΒΛΕΠΟΥΣΑ: Β. ΚΑΡΑΘΑΝΑΣΗ, ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ Ε.Μ.Π.

Οκτώβριος, 2016

Ευχαριστίες

Με την παρούσα μεταπτυχιακή εργασία ολοκληρώθηκε η φοίτησή μου στο διατμηματικόδιεπιστημονικό πρόγραμμα μεταπτυχιακών σπουδών «Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη» της Σχολής Ναυπηγών Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου.

Θα ήθελα να ευχαριστήσω θερμά τον Καθηγητή της Σχολής Ναυπηγών Μηχανολόγων Μηχανικών κύριο Σπυρίδωνα Μαυράκο για την πολύτιμη βοήθεια και επιστημονική υποστήριξη στην πραγματοποίηση της εργασίας. Επίσης ευχαριστώ πολύ τον Διδάκτορα της Σχολής Ναυπηγών Μηχανολόγων Μηχανικών και διδάσκοντα κύριο Θωμά Μαζαράκο για τη βοήθεια.

Θα ήθελα επίσης να ευχαριστήσω την Αναπληρώτρια Καθηγήτρια της Σχολής Αγρονόμων & Τοπογράφων Μηχανικών κυρία Βασιλεία Καραθανάση για την επίβλεψη της εργασίας, την καθοδήγηση και τις διορθώσεις. Επίσης ευχαριστώ τον Υποψήφιο Διδάκτορα της Σχολής Αγρονόμων & Τοπογράφων Μηχανικών κύριο Κλεάνθη Καραμβάση για τη βοήθεια στην εφαρμογή της εργασίας.

Τέλος ευχαριστώ πολύ όλους τους διδάσκοντες και το διοικητικό προσωπικό του μεταπτυχιακού προγράμματος για τη συνεργασία κατά τη διάρκεια των σπουδών.

Στυλιανή Αργυρίου Οκτώβριος, 2016

Περίληψη

Η μελέτη και παρακολούθηση των θαλάσσιων φαινομένων μπορεί να γίνει με τηλεπισκοπικές μεθόδους. Για αυτό το σκοπό έχει αναπτυχθεί από τον Ευρωπαϊκό Οργανισμό Διαστήματος (European Space Agency ESA) το πρόγραμμα Copernicus κατά το οποίο έχει τεθεί σε τροχιά ο δορυφόρος Sentinel-1. Ο δορυφόρος αυτός μεταφέρει αισθητήρα ραντάρ με σκοπό να παράγει απεικονίσεις Ραντάρ Συνθετικού Ανοίγματος ΣΑΡ (Synthetic Aperture Radar SAR). Στην παρούσα εργασία αρχικά μελετώνται οι μηχανισμοί των θαλάσσιων φαινομένων και συγκεκριμένα των κυμάτων, των ρευμάτων και του ανέμου. Έπειτα γίνεται μία περιγραφή των απεικονίσεων ΣΑΡ αναφερόμενη σε ακίνητο στόχο. Ακολουθεί μία περιγραφή του δορυφόρου Sentinel-1 και συγκεκριμένα του οδηγού χρήστη που δίνει πληροφορίες για τις λειτουργίες απόκτησης των δεδομένων, για τους τύπους των προϊόντων που παράγονται από την επεξεργασία των αρχικών ακατέργαστων δεδομένων καθώς και για τα επίπεδα επεξεργασίας, για τη χωρική διακριτική ικανότητα, για την επάνοδο και την κάλυψη, για τις συμβάσεις ονομασίας και για τις μορφές των δεδομένων. Στη συνέχεια αναφέρονται κάποιες λειτουργίες του λογισμικού SNAP (Sentinel Application Platform) για την ανίχνευση των πλοίων και την εύρεση της διεύθυνσης και της έντασης των ανέμων. Τέλος περιγράφεται η εφαρμογή που υλοποιήθηκε στην εργασία αυτή όπου πραγματοποιήθηκε επεξεργασία εικόνων ΣΑΡ μέσω του λογισμικού SNAP. Οι δορυφορικές εικόνες διατίθεται ελεύθερα σε οποιοδήποτε χρήστη από το πρόγραμμα Sentinels Scientific Data Hub του Copernicus όπως επίσης και το λογισμικό SNAP που διατίθεται από την πλατφόρμα step (science toolbox exploitation platform) της ESA.

Λέξεις κλειδιά

Θαλάσσια φαινόμενα, ραντάρ συνθετικού ανοίγματος, πλατφόρμα εφαρμογής sentinel, ανίχνευση πλοίων, εκτίμηση πεδίου ανέμου

Abstract

The study and monitoring of ocean phenomena can be by remote sensing methods. For this purpose, European Space Agency (ESA) has developed the Copernicus program in which the satellite Sentinel-1 is in orbit. This satellite holds a radar sensor which generates Synthetic Aperture Radar images (Synthetic Aperture Radar SAR). In this work, we firstly study the mechanisms of ocean phenomena, and particularly the waves, the currents and the wind. Then, is providing a description of SAR images referring to a stationary target. Following, is a description of the Sentinel-1 satellite and specifically the user guide that gives information about the data acquisition modes, the types of products produced by the processing of raw data and about the processing levels, the resolutions, the revisit and coverage, the data naming conventions and data formats. Then, there is a reference to some features of SNAP software (Sentinel Application Platform) for how to detect the ships and find the steering and intensity of winds. Finally, the application that was implemented in this work is described, where SAR images had been processed through SNAP software. Satellite images are for free from the Sentinels Scientific Data Hub of Copernicus program to any user as well as the SNAP software is freely available from the steep (science toolbox exploitation platform) platform of ESA.

Keywords

Ocean phenomena, synthetic aperture radar, sentinel application platform, ship detection, wind field estimation

ΠΕΡΙΕΧΟΜΕΝΑ

1.	Θαλάσσια φαινόμενα 6
1.1.	Κύματα6
1.1.1.	Γραμμική θεωρία – Απλά αρμονικά κύματα11
1.1.2.	Μη γραμμική θεωρία κατά Stokes. Κύματα 2 ^{ης} , 3 ^{ης} και 5 ^{ης} τάξης12
1.1.3.	Θραύση κυμάτων
1.1.4.	Περιοχές ισχύος των διαφόρων αναλυτικών θεωριών για τους θαλάσσιους κυματισμούς20
1.1.5.	Απόσβεση κυμάτων βαρύτητας23
1.1.6.	Κύματα επιφανειακής τάσεως24
1.1.7.	Παραμόρφωση αρμονικών κυμάτων στη θαλάσσια περιοχή προ της ακτής
1.1.8.	Υπέρθεση αρμονικού κύματος με σταθερό χρονικά θαλάσσιο ρεύμα
1.1.9. κυματι	Σύνοψη των διδιάστατων γραμμικοποιημένων προβλημάτων οριακών τιμών για περιόδους σμούς40
1.1.10.	Λύση του γραμμικοποιημένου κυματικού προβλήματος οριακών τιμών για τον οριζόντιο πυθμένα.41
1.2.	Άνεμος46
1.3.	Ρεύματα47
2.	Τεχνολογία Ραντάρ Απεικονίσεων49
2.1.	Ενεργητικοί Μικροκυματικοί Δέκτες49
2.2.	Βασικές αρχές λειτουργίας των ραντάρ50
2.3.	Εξίσωση του Radar52
2.4.	Αρχές λειτουργίας του Ραντάρ Συνθετικού Ανοίγματος (ΣΑΡ)55
3.	Οι δορυφόροι
3.1.	Ο δορυφόρος Sentinel-1
3.2.	Οδηγός Χρήστη60
3.2.1.	Εφαρμογές60
3.2.2.	Λειτουργίες απόκτησης δεδομένων (SM, IW, EW, WV)62
3.2.3.	Τύποι προϊόντος και επίπεδα επεξεργασίας67

3.2.3.1.	Επίπεδο-0	67
3.2.3.2.	Επίπεδο-1 (SLC, GRD)	68
3.2.3.3.	Επίπεδο-2 (OWI, OSW, RVL)	69
3.2.4.	Χωρική διακριτική ικανότητα	71
3.2.5	Επάνοδος και Κάλυψη	73
3.2.6.	Συμβάσεις ονομασίας	74
3.2.7.	Μορφές δεδομένων	75
4.	Η πλατφόρμα Sentinel Application Platform ή SNAP	75
5. φαινομ	Διερεύνηση των SENTINEL απεικονίσεων και του λογισμικού SNAP στην ανίχνευση των θαλάα ένων	τσιων 76
5.1.	Απομάκρυνση θερμικού θορύβου	83
5.2.	Απομάκρυνση θορύβου στα όρια	85
5.3.	Διόρθωση της τροχιάς	86
5.4.	Βαθμονόμηση ή τοπογραφική διόρθωση	88
5.5.	Αφαίρεση της κηλίδωσης	90
5.6.	Εξαγόμενη πληροφορία για τα πλοία και το πεδίο του ανέμου	92
5.6.α.	Ανίχνευση αντικειμένων στη θαλάσσια επιφάνεια	92
5.6.β.	Εκτίμηση της ταχύτητας και διεύθυνσης του ανέμου	96
5.7.	Γεωαναφορά	101
6.	Συμπεράσματα	102
7.	Βιβλιογραφία - Αναφορές	103

Παράρτημα105

1.Θαλάσσια φαινόμενα

Στη μελέτη των θαλάσσιων φαινομένων και ιδιαίτερα των κυμάτων, του ανέμου και των ρευμάτων έχει συμβάλει σημαντικά η μικροκυματική τηλεπισκόπηση. Στο κεφάλαιο αυτό της εργασίας περιγράφονται τα παραπάνω θαλάσσια φαινόμενα.

1.1.Κύματα

Οι ιδιοσυχνότητες που εμφανίζει ένα σύστημα από μάζες και ελατήρια είναι τόσες όσοι είναι και οι βαθμοί ελευθερίας του. Η επιφάνεια της θάλασσας είναι ένα συνεχές μέσο με άπειρους βαθμούς ελευθερίας και οι ιδιοσυχνότητες σχηματίζουν συνεχές φάσμα. Κατά συνέπεια πάνω στην επιφάνεια του νερού μπορούμε να βρούμε κυματισμούς οποιασδήποτε συχνότητας (εκτός από την περίπτωση όπου το ρευστό δεν είναι απέρατο, οπότε οι οριακές συνθήκες θέτουν περιορισμούς στη μορφή των κυμάτων). Το ότι παρατηρούμε επιφανειακά κύματα μέσα σε ορισμένο εύρος συχνοτήτων οφείλεται αφ' ενός μεν στο ότι οι δυνάμεις που τα προκαλούν βρίσκονται σ' ορισμένο εύρος αφ' ετέρου δε στο γεγονός ότι η ταχύτητα απορρόφησης ενέργειας λόγω συνεκτικότητας είναι πολύ μεγαλύτερη σε κύματα υψηλών συχνοτήτων από ότι σε αντίστοιχα χαμηλών.

Οι βασικές εξισώσεις κατά την εξέταση της κίνησης ασυμπίεστου ρευστού είναι:

1. Η εξίσωση Navier-Stokes

$$\frac{\partial V}{\partial t} + (\vec{V} \cdot \vec{\nabla}) \cdot \vec{V} = \vec{F} - \frac{1}{\rho} \vec{\nabla} p + \frac{\mu}{\rho} \Delta \vec{V}$$
(1.1.1)

όπου

 \vec{V} : το διάνυσμα της ταχύτητας (u,v,w)

p : η πίεση

 μ : ο συντελεστής δυναμικής συνεκτικότητας

 ρ :η πυκνότητα

 $ec{F}$: οι εξωτερικά επιβεβλημένες δυνάμεις (ανά μονάδα μάζας)

2. Η εξίσωση συνέχειας

$$\vec{\nabla} \cdot \vec{V} = 0 \tag{1.1.2}$$

Υποθέτοντας ημιτονοειδή περιοδική μεταβολή, μπορούμε να μετασχηματίσουμε την εξίσωση Navier-Stokes σε αδιάστατη μορφή κι έτσι να συγκρίνουμε τη σχετική σημασία κάθε όρου της εξίσωσης. Θέτουμε λοιπόν : $t_1 = \omega \cdot t$, $\vec{V} = V_0 V_1 = \omega \cdot a \cdot \vec{\zeta_1}$ και $(x, y, z) = \lambda(x_1, y_1, z_1)$ όπου α το πλάτος της κίνησης, $\vec{\zeta_1}$ η μετατόπιση, λ ένα χαρακτηριστικό μήκος (στην περίπτωσή μας το μήκος κύματος) και ω η συχνότητα της περιοδικής μεταβολής. Στην περίπτωση αυτή οι όροι $\frac{\partial \vec{V}}{\partial t} = 1$, $(\vec{V} \cdot \vec{\nabla}) \cdot \vec{V} = 2$ και $\frac{\mu}{\rho} \cdot \Delta \vec{V} = 5$ της εξίσωσης (1.1.1) θα είναι ανάλογοι με τις ποσότητες

 $\rho\omega^2 \alpha$, $\rho\omega^2 \alpha^2 / \lambda$ και $\mu\omega\alpha / \lambda^2$ έτσι ώστε: $\frac{2}{1} = \frac{a}{\lambda}$ και $\frac{5}{1} = \frac{\mu}{\rho}$ $\frac{1}{\omega\lambda^2} = \frac{v}{\omega\lambda^2}$ όπου v: η

κινηματική συνεκτικότητα.

Η τιμή του v για το νερό είναι πολύ μικρή $(0.11 \times 10^{-5} m^2 / s)$. Έτσι για κύματα βαρύτητας όπου $\omega = 0(1) rad / \sec \kappa a$ $\lambda = 0(30 - 300) m$ συμπεραίνουμε ότι οι δυνάμεις λόγω συνεκτικότητας είναι αμελητέες. Στη συνέχεια θα δούμε ότι και ο δεύτερος όρος παραλείπεται στα πλαίσια της γραμμικής θεωρίας με την προϋπόθεση ότι $a \prec \lambda$ και η παραδοχή αυτή δικαιολογείται από το λόγο $2/1 = \alpha/\lambda$. Σε περίπτωση απουσίας οποιουδήποτε σώματος από το πεδίο ροής τότε δικαιολογείται η παράλειψη των δυνάμεων συνεκτικότητας. Σε παρουσία σώματος η οριακή συνθήκη που θα πρέπει να ικανοποιείται στην επιφάνεια του σώματος εισάγει ιδιόμορφη συμπεριφορά με αποτέλεσμα παρά το γεγονός ότι η συνεκτικότητα είναι πολύ μικρή να δημιουργεί μία μη αμελητέα δύναμη λόγω της συνεκτικής ροής στην επιφάνεια του σώματος.

[Πηγή: Μαυράκος, 1999]

Στη διατύπωση του γενικού οριακού προβλήματος για τα κύματα βαρύτητας παραλήφθησαν οι δυνάμεις επιφανειακής τάσης. Οι δυνάμεις αυτές έχουν ιδιαίτερη σημασία σε δύο περιπτώσεις: (α) κατά τον σχηματισμό των κυμάτων λόγω του ανέμου, δεδομένου ότι τα πρώτα κύματα που εμφανίζονται είναι κύματα επιφανειακής τάσης και (β) κατά την εκτέλεση πειραμάτων. Στην περίπτωση αυτή για κύματα μικρού μήκους τα αποτελέσματα μπορεί να μην ισχύουν λόγω ύπαρξης των δυνάμεων επιφανειακής τάσης, που δεν εμφανίζονται στο φυσικό πρότυπο. [Μαυράκος,1999]

Αν θεωρήσουμε υγρό χωρίς συνεκτικότητα τότε οι εξισώσεις κίνησης του Navier-Stokes (1.1.1) ανάγονται σε αυτές του Euler. Εφόσον δε η κίνηση του ρευστού είναι και αστρόβιλη τότε υπάρχει δυναμικό ροής φ τέτοιο ώστε:

$$\vec{V} = \vec{\nabla} \cdot \phi \tag{1.1.3}$$

Οπότε η εξίσωση συνέχειας (1.1.2) μετασχηματίζεται στην εξ. του Laplace:

$$\Delta \phi = 0 \tag{1.1.4}$$

Στην περίπτωση αυτή η ολοκλήρωση των εξισώσεων του Euler οδηγεί στην εξίσωση του Bernoulli:

$$\frac{\partial \phi}{\partial t} + \frac{1}{2} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] + gz + \frac{p}{\rho} = \sigma \tau \alpha \theta.$$
(1.1.5)

Στη συνέχεια θα πρέπει να θέσουμε τις οριακές συνθήκες που πρέπει να ικανοποιεί το ζητούμενο δυναμικό της ροής φ. Αυτές θα είναι:

Η συνθήκη αυτή εκφράζει το αδιαπέρατο του πυθμένα από τα μόρια του ρευστού.

$$\frac{\partial \phi}{\partial \eta} = \vec{\nabla} \phi \bullet \vec{n} = 0 \tag{1.1.6}$$

Όπου \vec{n} το κάθετο διάνυσμα στο θεωρούμενο σημείο του πυθμένα.

B) <u>Κινηματική συνθήκη στην ελεύθερη επιφάνεια (Κ.Σ.Ε.Ε.)</u>

Aν θεωρήσουμε ότι η άγνωστη μορφή της ελεύθερης επιφάνειας περιγράφεται από τη σχέση $z = \zeta(x, y; t)$ τότε η μαθηματική διατύπωση της Κ.Σ.Ε.Ε. είναι: $\frac{D}{Dt}(z-\zeta) = 0$ (1.1.7)

ή επειδή
$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{V} \cdot \vec{\nabla}$$
 (1.1.8)

προκύπτει:

$$\frac{\partial \zeta}{\partial t} + \frac{\partial \phi}{\partial x} \cdot \frac{\partial \zeta}{\partial x} + \frac{\partial \phi}{\partial y} \cdot \frac{\partial \zeta}{\partial y} - \frac{\partial \phi}{\partial z} = 0 \, \gamma \iota \alpha \, z = \zeta(x, y; t)$$
(1.1.9)

Η συνθήκη αυτή σημαίνει ότι μόριο ρευστού που βρίσκεται στην ελεύθερη επιφάνεια παραμένει σε αυτή καθ' όλη τη διάρκεια της κίνησής της. [Πηγή: Μαυράκος, 1999]

Γ) Δυναμική συνθήκη στην ελεύθερη επιφάνεια (Δ.Σ.Ε.Ε.)

Η συνθήκη αυτή εκφράζει μαθηματικά το γεγονός ότι η πίεση στην ελεύθερη επιφάνεια ισούται με την ατμοσφαιρική.

$$\rho \frac{\partial \phi}{\partial t} + \frac{1}{2} \rho \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] + \rho \cdot g \cdot z = \sigma \tau \alpha \theta. \text{ yi} \alpha \ z = \zeta(x, y, t)$$
(1.1.10)

Και αν εκλέξουμε τη σταθερά ίση με μηδέν (χωρίς να χάσουμε από τη γενικότητα) τότε η (1.1.10) γίνεται:

$$\rho \frac{\partial \phi}{\partial t} + \frac{1}{2} \rho \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] + \rho \cdot g \cdot \zeta = 0 \, \gamma \iota \alpha \, z = \zeta(x, y, t)$$
(1.1.11)

Παρατηρούμε ότι και οι δύο συνθήκες στην ελεύθερη επιφάνεια είναι μη γραμμικές και παράλληλα θα πρέπει να ικανοποιηθούν σε όριο $z = \zeta(x, y, t)$ που είναι άγνωστο. [Μαυράκος, 1999]

Το οριακό πρόβλημα που ορίζεται από την εξίσωση του Laplace (1.1.4) και τις οριακές συνθήκες (1.1.6), (1.1.9) και (1.1.11) στη γενική περίπτωση δεν επιδέχεται κλειστή λύση και κατά συνέπεια θα χρησιμοποιήσουμε προσεγγιστικές μεθόδους με τις οποίες θα γραμμικοποιήσουμε τις

συνθήκες στην ελεύθερη επιφάνεια. Το ύψος του κύματος Η είναι συνήθως μικρό σε σχέση με το μήκος του λ. Κατά συνέπεια και ο λόγος $\frac{H}{2\lambda} = \varepsilon \prec 1$. Η παράμετρος αυτή μπορεί να χρησιμοποιηθεί για την ανάπτυξη σε σειρές διαταραχών όλων των μεγεθών που υπεισέρχονται στο πρόβλημα. Για το δυναμικό και την ανύψωση της ελεύθερης επιφάνειας οι σειρές αυτές έχουν τη μορφή :

$$\phi(x, y, z; t) = \sum_{n=1}^{\infty} \varepsilon^n \phi^{(n)}(x, y, z, t)$$
(1.1.12)

και

$$\zeta(x, y; t) = \sum_{n=1}^{\infty} \varepsilon^n \zeta^{(n)}(x, y; t)$$
(1.1.13)

Όπου $\phi^{(n)}$ και $\zeta^{(n)}$ οι n-οστοί όροι της ανάπτυξης. Ο όρος μηδενικής τάξης για το δυναμικό ισούται με μηδέν, ενώ για την ανύψωση της ελεύθερης επιφάνειας δεν υφίσταται. Θεωρώντας τους n πρώτους όρους των αναπτύξεων αυτών έχουμε τη λύση του προβλήματος n-οστής τάξης. Για να αποφύγουμε τη δυσκολία ικανοποίησης των οριακών συνθηκών (1.1.9) και (1.1.11) στο άγνωστο όριο $z = \zeta(x, y, t)$ αναπτύσσουμε τα εμφανιζόμενα στις συνθήκες αυτές μεγέθη του δυναμικού των παραγώγων του σε σειρές Taylor περί τη θέση z=0 που αντιστοιχεί στην αδιατάρακτη επιφάνεια του νερού, θεωρώντας ότι η ανύψωση της ελεύθερης επιφάνειας $\zeta(x, y; t)$ είναι μικρή σε σχέση με το μήκος κύματος. [Πηγή: Μαυράκος, 1999]

Έτσι έχουμε

$$\phi\Big|_{z=\zeta} = \phi\Big|_{z=0} + \zeta \frac{\partial \phi}{\partial z}\Big|_{z=0} + \frac{\zeta^2}{2} \frac{\partial^2 \phi}{\partial z^2}\Big|_{z=0} + \dots$$
(1.1.14)

$$\frac{\partial \phi}{\partial x}\Big|_{z=0} = \frac{\partial \phi}{\partial x}\Big|_{z=0} + \zeta \frac{\partial^2 \phi}{\partial x \partial z}\Big|_{z=0} + \frac{\zeta^2}{2} \frac{\partial^3 \phi}{\partial x \partial z^2}\Big|_{z=0} + \dots$$
(1.1.15)

$$\frac{\partial \phi}{\partial y}\Big|_{z=\zeta} = \frac{\partial \phi}{\partial y}\Big|_{z=0} + \zeta \frac{\partial^2 \phi}{\partial y \partial z}\Big|_{z=0} + \frac{\zeta^2}{2} \frac{\partial^3 \phi}{\partial y \partial z^2}\Big|_{z=0} + \dots$$
(1.1.16)

$$\frac{\partial \phi}{\partial z}\Big|_{z=\zeta} = \frac{\partial \phi}{\partial z}\Big|_{z=0} + \zeta \frac{\partial^2 \phi}{\partial z^2}\Big|_{z=0} + \frac{\zeta^2}{2} \frac{\partial^3 \phi}{\partial z^3}\Big|_{z=0} + \dots$$
(1.1.17)

Με τον τρόπο αυτό λαμβάνουμε υπόψη μας κατά τη διατύπωση των οριακών συνθηκών τη μη γραμμικότητα, ενώ παράλληλα τα εμφανιζόμενα μεγέθη υπολογίζονται στην αδιατάρακτη επιφάνεια του νερού. Εισάγοντας τις (1.1.12) έως (1.1.17) στις μη γραμμικές οριακές συνθήκες (1.1.9) και (1.1.11) και διατάσσοντας τους εμφανιζόμενους όρους κατά δυνάμεις του ε αντίστοιχα

$$\varepsilon \left[\frac{\partial \phi^{(1)}}{\partial z} - \frac{\partial \zeta^{(1)}}{\partial t} \right] + \varepsilon^2 \left[\frac{\partial \phi^{(2)}}{\partial z} - \frac{\partial \zeta^{(2)}}{\partial t} + \zeta^{(1)} \frac{\partial^2 \phi^{(1)}}{\partial z^2} - \frac{\partial \phi^{(1)}}{\partial x} \frac{\partial \zeta^{(1)}}{\partial x} - \frac{\partial \phi^{(1)}}{\partial y} \frac{\partial \zeta^{(1)}}{\partial y} \right] + 0(\varepsilon^3) = 0$$
(1.1.18)

για z=0 και

$$\varepsilon \left[\frac{\partial \phi^{(1)}}{\partial t} + g\zeta^{(1)} \right] + \varepsilon^2 \left[g\zeta^{(2)} + \frac{\partial \phi^{(2)}}{\partial t} + \zeta^{(1)} \frac{\partial^2 \phi^{(1)}}{\partial t \partial z} + \frac{1}{2} \left\{ \left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial z} \right)^2 \right\} \right] + 0(\varepsilon^3) = 0$$
(1.1.19)

για z=0

Επειδή οι εξισώσεις αυτές θα πρέπει να ισχύουν για όλα τα ε πρέπει όλοι οι συντελεστές των δυνάμεων του ε να ισούται με μηδέν. Με τον τρόπο αυτό προκύπτουν η κινηματική και δυναμική n-τάξης που θα ικανοποιούν οι n-στοί όροι της ανάπτυξης (1.1.12) στην ελεύθερη επιφάνεια. Έτσι από την (1.1.18) προκύπτουν :

Για την 1^η τάξη (n=1)
$$\frac{\partial \phi}{\partial z}^{(1)} - \frac{\partial \zeta}{\partial t}^{(1)} = 0$$
 για z=0 (1.1.20)

$$\Gamma_{\text{I}\alpha} \tau_{\eta} \nu 2^{\eta} \tau_{\alpha} \xi_{\eta} (n=2) \frac{\partial \phi}{\partial z}^{(2)} - \frac{\partial \zeta}{\partial t}^{(2)} = -\zeta^{(1)} \frac{\partial^2 \phi}{\partial z^2}^{(1)} + \frac{\partial \phi}{\partial x}^{(1)} \frac{\partial \zeta}{\partial x}^{(1)} + \frac{\partial \phi}{\partial y}^{(1)} \frac{\partial \zeta}{\partial y}^{(1)} \gamma_{\text{I}\alpha} z=0$$
(1.1.21)

Ενώ από την (1.1.19) προκύπτουν αντίστοιχα για την 1^η τάξη (n=1)

$$\frac{\partial \phi}{\partial t}^{(1)} + g\zeta^{(1)} = 0 \quad \gamma \iota \alpha \neq 0 \tag{1.1.22}$$

και για τη 2^η τάξη (n=2)

$$\frac{\partial \phi}{\partial t}^{(2)} + g\zeta^{(2)} = -\zeta^{(1)} \frac{\partial^2 \phi}{\partial t \partial z}^{(1)} - \frac{1}{2} \left\{ \left(\frac{\partial \phi}{\partial x}^{(1)} \right)^2 + \left(\frac{\partial \phi}{\partial y}^{(1)} \right)^2 + \left(\frac{\partial \phi}{\partial z}^{(1)} \right)^2 \right\} \gamma \iota \alpha z = 0$$
(1.1.23)

Από τη διατύπωση των οριακών συνθηκών (1.1.21) και (1.1.23) είναι προφανές ότι για την εύρεση της προσεγγιστικής λύσης 2^{ης} τάξης απαιτείται η προηγούμενη γνώση εκείνης της 1^{ης} τάξης. Γενικά οι σχέσεις (1.1.21) και (1.1.23) για τη n-οστή τάξη μπορούν να γραφούν στη μορφή : $\frac{\partial \phi}{\partial z}^{(n)} - \frac{\partial \zeta}{\partial t}^{(n)} = G^{(n-1)}$ για z=0 (1.1.24)

και

$$\frac{\partial \phi}{\partial t}^{(n)} + g\zeta^{(n)} = F^{(n-1)} \quad \text{yia z=0}$$
(1.1.25)

όπου οι συναρτήσεις $G^{(n-1)}$ και $F^{(n-1)}$ είναι συνδυασμός των λύσεων 1^{ης}, 2^{ης}, (n-1)^{ης} τάξης. Σημειώνουμε ότι οι συναρτήσεις $\phi^{(n)}$ που χρησιμοποιήθηκαν για την προσέγγιση του ζητούμενου δυναμικού της ροής ϕ με σειρά διαταραχών θα πρέπει να ικανοποιούν εκτός από τις οριακές συνθήκες στην ελεύθερη επιφάνεια (1.1.24) και (1.1.25) τη συνθήκη στον πυθμένα (1.1.6) καθώς και την εξίσωση του Laplace (1.1.4) δηλαδή για τον n-οστό όρο της σειράς (1.1.12) θα πρέπει

$$\Delta \phi^{(n)} = 0$$
 στο πεδίο ροής (1.1.26)

$$\frac{\partial \phi}{\partial n}^{(n)} = \overrightarrow{\nabla \phi}^{(n)} \cdot \vec{n} = 0$$
 στον πυθμένα

(1.1.27)

[Πηγή: Μαυράκος, 1999]

1.1.1. Γραμμική θεωρία – Απλά αρμονικά κύματα

Ο απλός αρμονικός κυματισμός (κύματα Airy) προκύπτει σα λύση του γραμμικοποιημένου προβλήματος 1^{ης} τάξης που περιγράφεται από τις εξισώσεις (1.1.20), (1.1.22), (1.1.26) και (1.1.27) για n=1. Η λύση του προβλήματος δίνεται στη σχετική διεθνή βιβλιογραφία. Παρακάτω αναφέρουμε μόνο τα σχετικά αποτελέσματα για την ανύψωση της ελεύθερης επιφάνειας και το δυναμικό του πεδίου ροής για πεπερασμένο βάθος νερού:

$$\zeta^{(1)}(x,y;t) = \frac{H}{2} \cos[k(x\cos\theta + y\sin\theta) - \omega t)]$$
(1.1.1.1)

και

$$\phi^{(1)}(x, y, z; t) = \frac{H}{2} \frac{g}{\omega} \frac{\cosh[k(z+d)]}{\cosh(kd)} \sin[k(x\cos\theta + y\sin\theta) - \omega t]$$
(1.1.12)

όπου

$$k$$
: ο αριθμός κύματος που ισούται με $k = \frac{2\pi}{\lambda}$

λ: το μήκος κύματος

ω: η κυκλική συχνότητα του κύματος που συνδυάζεται με τον αριθμό κύματος k μέσω της σχέσης $ω^2 = k \cdot g \cdot \tanh(kd)$

d : το βάθος του νερού

Θ : η γωνία που σχηματίζει η διεύθυνση κίνησης του μετώπου του κυματισμού με τον άξονα των
 x. Σε περίπτωση σύμπτωσης των δύο διευθύνσεων οι εξ.(1.1.1.1) και (1.1.1.2) που περιγράφουν
 απλό αρμονικό κυματισμό κινούμενο κατά τη διεύθυνση του θετικού ημιάξονα των x γίνονται:

$$\zeta^{(1)}(x;t) = \frac{H}{2}\cos(kx - \omega t)$$
(1.1.13)

και

$$\phi^{(1)}(x,z;t) = \frac{H}{2} \frac{g}{\omega} \frac{\cosh[k(z+d)]}{\cosh(kd)} \sin(kx - \omega t)$$
(1.1.1.4)

Αναφέρουμε και τη μιγαδική παράσταση των μεγεθών $\zeta^{(1)}$ και $\phi^{(1)}$, που είναι πολύ συνηθισμένη σε προβλήματα ναυτικής υδροδυναμικής:

$$\zeta^{(1)}(x;t) = \operatorname{Re}\left[\frac{H}{2} \cdot e^{i(k(x\cos\theta + y\sin\theta) - \omega t)}\right]$$
(1.1.15)

$$\phi^{(1)}(x,z;t) = \operatorname{Re}\left[-i\frac{H}{2}\frac{g}{\omega}\frac{\cosh[k(z+d)]}{\cosh(kd)}e^{i(k(x\cos\theta+y\sin\theta)-\omega t)}\right]$$
(1.1.1.6)

Υπενθυμίζουμε ότι στην περίπτωση απλού αρμονικού κύματος οι τροχιές των μορίων του ρευστού είναι κλειστές και κατά συνέπεια δεν εμφανίζεται μεταφορά μάζας.[Μαυράκος,1999]

1.1.2. Μη γραμμική θεωρία κατά Stokes. Κύματα 2^{ης}, 3^{ης} και 5^{ης} τάξης

Για να βρεθούν λύσεις ανώτερης τάξης στα πλαίσια της θεωρίας διαταραχών πρέπει να λυθεί το αντίστοιχο πρόβλημα οριακών τιμών που ορίζεται από τις σχέσεις (1.1.21), (1.1.23) και (1.1.26), (1.1.27) για n=2 χρησιμοποιώντας τη λύση $1^{n_{s}}$ τάξης, δηλαδή τον απλό αρμονικό κυματισμό που αναφέρθηκε στην παράγραφο 1.1.1. Έτσι είμαστε σε θέση να υπολογίσουμε τα μεγέθη $\zeta^{(2)}$ και $\phi^{(2)}$ καθώς και το ε. Παρακάτω αναφέρονται τα σχετικά αποτελέσματα για πεπερασμένο βάθος νερού και προοδευτικού κυματισμού κατά τη διεύθυνση του θετικού ημιάξονα x.

$$\zeta = s\zeta^{(1)} + s\zeta^{(2)} = \frac{\mathrm{H}}{2} \cos(kx - \omega t) + \frac{\pi}{8} \frac{\mathrm{H}^2}{\lambda} \frac{[2 + \cosh(2kd)]\cosh(kd)}{\sinh^3(kd)} \cdot \cos[2(kx - \omega t)]$$
(1.1.2.1)

$$\kappa \alpha \iota \ \phi = \mathcal{A}^{(1)} + \mathcal{E}^2 \phi^{(2)} = \frac{\mathrm{H}\lambda}{2\mathrm{T}} \frac{\cosh[k(z+d)]}{\sinh(kd)} \sin(kx - \omega t) + \frac{3\pi \mathrm{H}^2}{16\mathrm{T}} \frac{\cosh[2k(z+d)]}{\sinh^4(kd)} \sin[2(kx - \omega t)]$$
(1.1.2.2)

Στην εξίσωση (1.1.2.1) περιγράφεται η ανύψωση της ελεύθερης επιφάνειας που δεν είναι συμμετρική ως προς την αδιατάρακτη επιφάνεια του νερού. Αυτό το διαπιστώνουμε θέτοντας στην εξίσωση αυτή $\theta = kx - \omega t = 0$ και 180°, τιμές που αντιστοιχούν στην κορυφή και την κοιλάδα του κύματος.

$$\frac{a_{\kappa o \rho \upsilon \phi \eta \varsigma}}{H} = \frac{1}{2} + \frac{\pi}{8} \frac{H}{\lambda} \frac{\left[2 + \cosh(2kd)\right] \cosh(kd)}{\sinh^3(kd)}$$
(1.1.2.3)

$$\frac{a_{\kappa o \iota \lambda \dot{a} \delta \alpha \varsigma}}{H} = \frac{1}{2} - \frac{\pi}{8} \frac{H}{\lambda} \frac{\left[2 + \cosh(2kd)\right] \cosh(kd)}{\sinh^3(kd)}$$
(1.1.2.4)

Για την περίπτωση κυμάτων Stokes 2^{ης} τάξης σε βαθύ νερό $(d > \frac{\lambda}{2})$ με τη βοήθεια των προσεγγιστικών σχέσεων των υπερβολικών τριγωνομετρικών συναρτήσεων έχουμε από τις (1.1.2.3) και (1.1.2.4)

$$\frac{a_{\kappa o \rho \upsilon \phi \eta \varsigma}}{H} = \frac{1}{2} \left(1 + 1.57 \frac{H}{\lambda} \right)$$
(1.1.2.5)

και

$$\frac{\alpha_{\kappa oi\lambda \dot{a}\delta a\varsigma}}{H} = \frac{1}{2} \left(1 - 1.57 \frac{H}{\lambda} \right)$$
(1.1.2.6)

Η ταχύτητα μετατόπισης και το μήκος κύματος είναι τα ίδια με αυτά της πρώτης τάξης δηλαδή:

$$c = \frac{gT}{2\pi} \tanh(kd)$$
 кас $\lambda = \frac{gT^2}{2\pi} \tanh(kd)$

Ενδιαφέρον παρουσιάζουν και τα κύματα 3^{ης} και 5^{ης} τάξης εκτός από τη λύση 2ης τάξης, που όμως λόγω των σύνθετων υπερβολικών τριγωνομετρικών συναρτήσεων που εμφανίζονται στις εκφράσεις τους είναι αρκετά δύσκολη η χρησιμοποίησή τους. Ο Skjelbreia έδωσε την ακόλουθη σχέση για την ανύψωση της ελεύθερης επιφάνειας στο πρόβλημα 3^{ης} τάξης.

$$\frac{\zeta^{(3)}}{\lambda} = A_1 \cos(kx - \omega t) + A_2 \cos\left|2(kx - \omega t)\right| + A_3 \cos\left|3(kx - \omega t)\right|$$
(1.1.2.7)

όπου

$$A_{\rm I} = \frac{a}{\lambda} \tag{1.1.2.8}$$

$$A_2 = \pi A_1^2 \cdot f_2(kd) \tag{1.1.2.9}$$

$$A_3 = \pi^2 A_1^3 \cdot f_3(kd) \tag{1.1.2.10}$$

$$f_2(kd) = \frac{\left[2 + \cosh(2kd)\right]\cosh(kd)}{2\sinh^3(kd)}$$
(1.1.2.11)

$$f_3(kd) = \frac{3}{16} \frac{1 + 8\cosh^6(kd)}{\sinh^3(kd)}$$
(1.1.2.12)

Η σχέση μεταξύ ύψους κύματος Η και α είναι:

$$\frac{H}{d} = \frac{\lambda}{d} \left[2 \left(\frac{a}{\lambda} \right) + 2\pi^2 \left(\frac{\alpha}{\lambda} \right)^3 f_3(kd) \right]$$
(1.1.2.13)

To μήκος κύματος λ δίνεται από τη σχέση:

$$\lambda = \frac{gT^2}{2\pi} \tanh(kd) \left[1 + \left(ka^2\right) \frac{14 + 4\cosh^2(2kd)}{16\sinh^4(kd)} \right]$$
(1.1.2.14)

Aντίθετα με τα κύματα 1^{ης} και 2^{ης} τάξης βλέπουμε ότι στην περίπτωση της 3^{ης} τάξης, το λ να εξαρτάται και από το ύψος του κύματος εκτός από το βάθος του νερού και από την περίοδο του κύματος δεδομένου ότι το μέγεθος α είναι συνάρτηση του Η όπως φαίνεται στην εξίσωση (1.1.2.13). Δηλαδή στα πλαίσια της θεωρίας 3^{ης} τάξης θα πρέπει να πινακοποιηθούν οι διάφορες συναρτήσεις σε σχέση με το H/d και το $2\pi d/gT^2$. Η ταχύτητα του κύματος δίνεται από τη σχέση: $C^2 = \frac{g}{k} \tanh(kd) \left[1 + (ka)^2 \frac{8 + \cosh(4kd)}{8\sinh^4(kd)} \right] = \frac{g}{k} \tanh(kd) \left[1 + (ka)^2 \frac{14 + 4\cosh^4(2kd)}{16\sinh^4(kd)} \right]$ (1.1.2.15)

Η παράσταση στην αγκύλη εκφράζει την επίδραση του πεπερασμένου λόγου ύψους προς μήκος κύματος (Η/λ) στην ταχύτητα μετάδοσής του.

Στην περίπτωση $\frac{d}{\lambda} > 0.5$ (βαθύ νερό) η συνάρτηση $f_2(kd) \rightarrow 1$ και $f_3(kd) \rightarrow 3/2$ αντίστοιχα οπότε η ελεύθερη επιφάνεια στην περίπτωση αυτή περιγράφεται από τη σχέση:

$$\zeta_0 = \alpha \cos(kx - \omega t) + \frac{1}{2}ka^2 \cos[2(kx - \omega t)] + \frac{3}{8}k^2a^3 \cos[3(kx - \omega t)]$$
(1.1.2.16)

$$\mu \varepsilon H_0 = 2a + \frac{3}{4}k^2 a^3 \tag{1.1.2.17}$$

Η ταχύτητα μετάδοσης του κύματος είναι αντίστοιχα:

$$C_0^2 = \frac{g}{k} \left[1 + (ka)^2 \right]$$
(1.1.2.18)

Οι δείκτες μηδέν (0) αντιστοιχούν σε μεγέθη στο βαθύ νερό.

Η παρακάτω σχέση δίνει το δυναμικό ταχύτητας που περιγράφει τα κύματα 3^{ης} τάξης:

$$\Phi^{(3)}(x,z;t) = \frac{\omega}{k^2} [F_1(kd,ka)\cosh[k(z+d)]\sin(kx-\omega t) + \frac{1}{2}F_2(kd,ka)\cosh[2k(z+d)]\sin[2(kx-\omega t)] + \frac{1}{3}F_3(kd,ka)\cosh[3k(z+d)]\sin[3(kx-\omega t)]]$$
(1.1.2.19)

όπου

$$F_{1}(kd,ka) = \frac{ka}{\sinh(kd)} - (ka)^{2} \frac{\left[1 + 5\cosh^{2}(kd)\right]\cosh^{2}(kd)}{8\sinh^{5}(kd)}$$
(1.1.2.20)

$$F_2(kd,ka) = \frac{3}{4} \cdot \frac{(ka)^2}{\sinh^4(kd)}$$
(1.1.2.20a)

$$F_{3}(kd,ka) = \frac{3}{64}(ka)^{3} \frac{\left[11 - 2\cosh(2kd)\right]}{\sinh^{7}(kd)}$$
(1.1.2.21)

Οι συναρτήσεις A_1 , A_2 , A_3 και F_1 , F_2 , F_3 που δίνονται από τις σχέσεις (1.1.2.8)-(1.1.2.10) και (1.1.2.20)-(1.1.2.21) δίνονται υπό μορφή πινάκων με βοηθητικούς συντελεστές. Οι παραπάνω συναρτήσεις μπορούν να υπολογιστούν μετά την εύρεση του d/λ σα συνάρτηση του $\frac{H}{d}$ και του $\frac{2\pi d}{gT^2}$ από τις σχέσεις (1.1.2.13) και (1.1.2.14). Στην περίπτωση των κυμάτων Stokes εμφανίζεται μεταφορά μάζας διότι οι τροχιές των μορίων του ρευστού δεν είναι κλειστές όπως συνέβαινε στα αρμονικά κύματα. Στο υψηλότερο σημείο της τροχιάς τους η ταχύτητα όδευσης των μορίων είναι μεγαλύτερη από την αντίστοιχη ταχύτητα κατά την αντίθετη κατεύθυνση στο κατώτερο σημείο της.

[Πηγή:Μαυράκος,1999]

Στο σχήμα 1 δείχνεται η μορφή της τροχιάς των μορίων για τρεις περιπτώσεις : α) βαθύ νερό, β) ενδιάμεσο βάθος και γ) ρηχό νερό.

Σχήμα 1. Τροχιές μορίων κυμάτων κατά Stokes. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Συμβολίζοντας με $\Delta \xi_{\rm T}$ την οριζόντια μετατόπιση ενός μορίου ρευστού σε μια περίοδο (T), η ταχύτητα μεταφοράς μάζας θα είναι τότε: $U_{_M} = \frac{\Delta \xi_{_{\rm T}}}{{}_{\rm T}}$ (1.1.2.22)

Για τα κύματα Stokes 2^{ης} τάξης ισχύει :

$$U_{M} = \frac{\Delta \xi_{\mathrm{T}}}{\mathrm{T}} = \pi^{2} \left(\frac{\mathrm{H}}{\lambda}\right)^{2} \frac{c}{2} \frac{\mathrm{cosh}[2k(z+d)]}{\mathrm{sinh}^{2}(kd)}$$
(1.1.2.23)

όπου c η ταχύτητα μετάδοσης του κύματος. Η παραπάνω σχέση αποδεικνύεται αν υπολογίσουμε από τη σχέση (1.1.2.2) την οριζόντια ταχύτητα u του μορίου του ρευστού $u = \frac{\partial \phi}{\partial x}$ και στη συνέχεια υπολογίσουμε τη μετατόπιση που υφίσταται με ολοκλήρωση σε μια περίοδο Τ.

Για το βαθύ νερό με τη βοήθεια των προσεγγιστικών τύπων για τις υπερβολικές τριγωνομετρικές συναρτήσεις παίρνουμε από την (1.1.2.23)

$$U_{M0} = \pi^2 \left(\frac{\mathrm{H}}{\lambda}\right)^2 \cdot c_0 \cdot e^{2kz} = \pi \left(\frac{\mathrm{H}}{\lambda}\right)^2 \cdot c_0 \cdot \exp\left(\frac{4\pi z}{\lambda}\right)$$
(1.1.2.24)

που σημαίνει ότι όσο αυξάνεται το βάθος, η μεταφορά μάζας θα ελαττώνεται εκθετικά.

[Πηγή: Μαυράκος,1999]

Επίσης αναπτύχθηκε και μια σειρά θεωριών ανώτερης τάξης, εκτός από τις λύσεις 2ης και 3ης τάξης, από τις οποίες η σπουδαιότερη είναι εκείνη της 5^{ης} που παρουσιάσθηκε από τους Skjelbreia, Hendrickson και De. Το κύριο ερώτημα για τη σύγκλιση των σειρών διαταραχών που χρησιμοποιούνται για την προσέγγιση του δυναμικού (βλέπε εξ.1.1.12) από τον Stokes, ερευνήθηκε από τον Levi-Civita και τον Struik για άπειρο και πεπερασμένο βάθος νερού αντίστοιχα και αποδείχθηκε η σύγκλησή τους. Στη συνέχεια παρουσιάζεται η θεωρία 5^{ης} τάξης. Η μαθηματική διατύπωση του δυναμικού $φ^{(5)}$ και της ανύψωσης της ελεύθερης επιφάνειας ζ⁽⁵⁾ για να δοθεί θα πρέπει να λυθούν διαδοχικά 5 διαφορετικά υδροδυναμικά προβλήματα, δεδομένου ότι η λύση 5^{ης} τάξης προκύπτει γνωρίζοντας εκείνες της 1^{ης}, 2^{ης}, 3^{ης} και 4^{ης} τάξης όπως αναφέρθηκε και στην παράγραφο 1.1. Σύμφωνα με τον Skjelbreia-Hendrickson το δυναμικό $φ^{(5)}$ και η ανύψωση της ελεύθερης επιφάνειας ζ⁽⁵⁾ δίνονται από τις εξής δυναμοσειρές:

$$\phi^{(5)} = \frac{\lambda^2}{2\pi\Gamma} \begin{bmatrix} \left(\varepsilon A_{11} + \varepsilon^3 A_{13} + \varepsilon^5 A_{15}\right) \cosh[k(z+d)] \sin(kx - \omega t) + \\ + \left(\varepsilon^2 A_{22} + \varepsilon^4 A_{24}\right) \cosh[2k(z+d)] \sin[2(kx - \omega t) + \\ + \left(\varepsilon^3 A_{33} + \varepsilon^5 A_{35}\right) \cosh[3k(z+d)] \sin[3(kx - \omega t)] + \\ + \left(\varepsilon^4 A_{44} \cosh[4k(z+d)] \sin[4(kx - \omega t)] + \\ + \varepsilon^5 A_{55} \cosh[5k(z+d)] \sin[5(kx - \omega t)] \end{bmatrix}$$
(1.1.2.25)

και

$$\zeta^{(5)} = \frac{\lambda}{2\pi} [\varepsilon \cos(kx - \omega t) + (\varepsilon^2 B_{22} + \varepsilon^4 B_{24}) \cos[2(kx - \omega t)] + (\varepsilon^3 B_{33} + \varepsilon^5 B_{35}) \cos[3(kx - \omega t)] + \varepsilon^4 B_{44} \cos[4(kx - \omega t)] + \varepsilon^5 B_{55} \cos[5(kx - \omega t)]]$$
(1.1.2.26)

Οι συντελεστές A_{ij} και B_{ij} που υπεισέρχονται στις σχέσεις είναι συναρτήσεις του λόγου $d/_{\lambda}$ (=βάθος νερού/μήκος κύματος).

Από την απαίτηση ικανοποίησης των οριακών συνθηκών ισχύουν οι παρακάτω σχέσεις που συνδέουν τον συντελεστή ε και τα χαρακτηριστικά μεγέθη του κύματος Η, Τ, λ, d:

$$\frac{\pi H}{d} = \frac{1}{d/\lambda} \left[\varepsilon + \varepsilon^3 \mathbf{B}_{33} + \varepsilon^5 (\mathbf{B}_{35} + \mathbf{B}_{55}) \right]$$
(1.1.2.27)

$$\frac{d}{\lambda_0} = \frac{d}{\lambda} [1 + \varepsilon^2 C_1 + \varepsilon^4 C_2] \tanh(kd)$$
(1.1.2.28)

όπου
$$\lambda_0 = \frac{gT^2}{2\pi} = 1,56\text{T}^2$$
 (1.1.2.29)

το μήκος κύματος απλού αρμονικού κυματισμού σε βαθύ νερό ίδιας περιόδου με το εξεταζόμενο και C₁, C₂ συναρτήσεις του d/λ που δίνονται από πίνακες βοηθητικών συντελεστών.

[Πηγή:Μαυράκος,1999]

Για τον προσδιορισμό της παραμέτρου ε μπορούν να χρησιμοποιηθούν οι εξισώσεις (1.1.2.27) και (1.1.2.28) καθώς και ενός από τα τέσσερα μεγέθη (Η,Τ,λ,d) που περιγράφουν το κύμα.

Έτσι για την πρακτική εφαρμογή της θεωρίας 5^{ης} τάξης διακρίνουμε τις εξής περιπτώσεις:

Α) Η,λ,d: γνωστά. Τότε οι συντελεστές A_{ij} , B_{ij} , C₁, C₂ προσδιορίζονται από τους πίνακες των βοηθητικών συντελεστών και οι τιμές του ε μπορούν να βρεθούν σαν πραγματικές ρίζες της εξίσωσης (1.1.2.27). Στη συνέχεια μπορεί να προσδιορισθεί το μέγεθος λ_0 από την εξίσωση (1.1.2.28) και η περίοδος του κύματος από τη σχέση (1.1.2.29). B) Η,Τ,d: γνωστά. Είναι η πιο συνηθισμένη περίπτωση. Επειδή στους μη γραμμικούς κυματισμούς δεν υπάρχει σχέση που να συνδέει απευθείας την περίοδο Τ και το μήκος κύματος λ, θα πρέπει να επιλυθεί το σύστημα των εξισώσεων (1.1.2.27) και (1.1.2.28) για να βρεθούν οι τιμές του λ και του ε. Οι συντελεστές όμως B₃₃, B₅₅, C₁ και C₂ που υπεισέρχονται σε αυτό είναι συναρτήσεις του ζητούμενου λόγου d/λ και έτσι η επίλυση του συστήματος θα πρέπει να γίνει με δοκιμές με τη βοήθεια ηλεκτρονικού υπολογιστή. Το αποτέλεσμα της διαδικασίας αυτής φαίνεται στα σχήματα 2α και 2β όπου για δεδομένες τιμές των λόγων d/λ₀ και Η/λ₀ δίνονται οι αντίστοιχες τιμές του d/λ. Εφόσον το d/λ είναι γνωστό, μπορούν να χρησιμοποιηθούν οι πίνακες των βοηθητικών συντελεστών για τον προσδιορισμό των απαιτούμενων συντελεστών. Στο πρώτο στάδιο της διαδικασίας που αναφέρθηκε και συγκεκριμένα για τη χρήση των σχημάτων 2α και 2β απαιτείται η γνώση του λ₀ που υπολογίζεται από τη σχέση (1.1.2.29) δεδομένου ότι η περίοδος του κύματος υποτέθηκε γνωστή.

Σχήματα 2α και 2β. Κύματα Stokes 5^{ης} τάξης. Τιμές του λόγου d/λ συναρτήσει των Η/λ₀ και d/λ₀. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Αφού προσδιοριστούν οι σταθερές A_{ij} , B_{ij} , από τις σχέσεις (1.1.2.25) και (1.1.2.26) είναι γνωστά το δυναμικό της ροής και το προφίλ του κύματος και κατά συνέπεια μπορούν να προσδιοριστούν το πεδίο των πιέσεων, των ταχυτήτων και των επιταχύνσεων που αντιστοιχούν σε κύματα Stokes 5^{ης} τάξης. Για την περίπτωση κύματος 5^{ης} τάξης, στο σχήμα 3 συγκρίνονται για δεδομένα μεγέθη H,d,T,λ η ανύψωση του κύματος και το πλάτος της οριζόντιας συνιστώσας της ταχύτητας υ κάτω από την κορυφή του.

Σχήμα 3. Σύγκριση θεωριών 1^{ης} και 5^{ης} τάξης. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

1.1.3. Θραύση κυμάτων

Όταν η ταχύτητα των μορίων του ρευστού στην κορυφή του κύματος υπερβεί την ταχύτητα μετάδοσης του κύματος τότε το κύμα γίνεται ασταθές και επέρχεται θραύση του. Σε κάθε βάθος νερού και περίοδο κύματος αντιστοιχεί ένα μέγιστο του ύψους του που προκύπτει από το κριτήριο αυτό αστάθειας.[Μαυράκος,1999]

Σύμφωνα με τον Stokes το κύμα γίνεται ασταθές όταν η γωνία στην κορυφή του γίνει μικρότερη των 120° (σχήμα 4).

Σχήμα 4. Όριο της γωνίας στην κορυφή του κύματος στην κατάσταση θραύσης του. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Στο βαθύ νερό η μέγιστη τιμή του λόγου Η/λ (ύψος κύματος/μήκος κύματος) αντιστοιχεί στην οριακή τιμή της γωνίας και είναι:

$$\left(\frac{H_0}{\lambda_0}\right)_{\max} = \frac{H_{0\Theta}}{\lambda_{0\Theta}} = \frac{1}{7} = 0,142$$
(1.1.3.1)

όπου H₀₀ το μέγιστο ύψος του κύματος και λ₀₀ το μήκος του σε βαθύ νερό τη στιγμή της θραύσης (ο δείκτης Ο συμβολίζει το βαθύ νερό και ο Ο την κατάσταση κατά τη θραύση). (Michell,Havelock). Η τιμή του 1/7 απαντάται στη διεθνή βιβλιογραφία ως όριο κατά Michel-Havelock. Σε απείρου βάθους νερό θα εξετάσουμε κύματα κατά Stokes 3^{ης} τάξης στην κατάσταση θραύσης. Η ταχύτητα μετάδοσης του κύματος δίνεται από τη σχέση (1.1.2.18) που μπορεί να γραφεί:

$$C_{0\Theta}^{2} = \frac{g\lambda_{0\Theta}}{2\pi} \left[1 + \pi^{2} \left(\frac{H_{0\Theta}}{\lambda_{0\Theta}}\right)^{2}\right]$$
(1.1.3.2)

Λόγω της (1.1.3.1) έχουμε:

$$C_{0\Theta}^{2} = \frac{g\lambda_{0\Theta}}{2\pi} (1 + \frac{\pi^{2}}{49}) = 1, 2\frac{g\lambda_{0\Theta}}{2\pi}$$
(1.1.3.3)

Επειδή όμως $C_{O\Theta}^2 = \frac{\lambda_{O\Theta}^2}{T^2}$ από την (1.1.3.3) προκύπτει:

$$\lambda_{\rm O\Theta} = 1.2 \frac{gT^2}{2\pi} = 1.2\lambda_0^{\rm A} \tag{1.1.3.4}$$

όπου λ_0^A το μήκος απλού αρμονικού κύματος σε άπειρο βάθος νερού. Από την (1.1.3.4) συνάγεται επίσης ότι:

$$C_{O\Theta} = 1, 2C_0^A$$
 (1.1.3.5)

όπου C_0^A η ταχύτητα μετάδοσης απλού αρμονικού κύματος της αυτής περιόδου σε βαθύ νερό. Από την (1.1.3.1) συνεπάγεται λόγω της (1.1.3.4) ότι:

$$\frac{H_{0\Theta}}{T^2} = 0.268m/s^2 \tag{1.1.3.6}$$

Τελικά η ανύψωση της κορυφής του κύματος πάνω από την αδιατάρακτη ελεύθερη επιφάνεια στην κατάσταση της θραύσης δίνεται από τη σχέση:

$$a_{\kappa \rho \nu \phi j \kappa \delta \mu \alpha \tau \sigma \varsigma \Theta \Theta} = 0,675 H_{\Theta}$$

$$(1.1.3.7)$$

Για πεπερασμένο βάθος νερού ο Michel έδωσε την παρακάτω σχέση για τη μέγιστη τιμή του λόγου Η/λ.

$$\left(\frac{\mathrm{H}}{\lambda}\right)_{\mathrm{max}} = \frac{\mathrm{H}_{\Theta}}{\lambda_{\Theta}} = 0.142 \tanh(kd) = 0.142 \tanh(2\pi \frac{d}{\lambda})$$
(1.1.3.8)

Σε μικρό σχετικά βάθος θαλάσσιου νερού (d/λ) η θεωρία κυματισμών κατά τον Stokes εμφανίζει ανακριβή αποτελέσματα. Για τις περιπτώσεις όπου d/λ<1/10 θα πρέπει κατά συνέπεια να χρησιμοποιηθούν τα αποτελέσματα της θεωρίας των μακρών κυμάτων, τα κύρια γνωρίσματα των οποίων θα αναφέρουμε χωρίς λεπτομέρειες παρακάτω. [Πηγή:Μαυράκος,1999]

Στα πλαίσια των μακρών κυμάτων οι κυριότερες θεωρίες ανώτερης τάξης είναι αυτές των ελλειπτικών και μεμονωμένων κυματισμών. Στους ελλειπτικούς κυματισμούς εμφανίζονται στη μαθηματική διατύπωση της ανύψωσης της ελεύθερης επιφάνειας ελλειπτικές τριγωνομετρικές συναρτήσεις, από όπου προέρχεται και το όνομά τους. Ικανοποιούν ακριβώς μόνο την οριακή συνθήκη στον πυθμένα και προσεγγιστικά όλες τις υπόλοιπες. Στο μεμονωμένο κύμα (solitary wave, Einzelwelle) ικανοποιούνται ακριβώς όλες οι οριακές συνθήκες πλην της δυναμικής οριακής

συνθήκης στην ελεύθερη επιφάνεια. Το μεμονωμένο κύμα έχει άπειρο μήκος και κείται εξ ολοκλήρου πάνω από την αδιατάρακτη ελεύθερη επιφάνεια για διάφορες περιπτώσεις ελλειπτικών κυμάτων. Σημειώνουμε ότι η περίπτωση $k^2 = 0.0$ αντιστοιχεί σε απλό αρμονικό κυματισμό. Πέρα από τις αναλυτικές θεωρίες ανώτερης τάξης αναπτύχθηκαν και αντίστοιχες αριθμητικές μέθοδοι που απαιτούν για την επεξεργασία τους τη χρήση Η/Υ. Η κυριότερη από τις μεθόδους αυτές είναι η θεωρία που βασίζεται στη χρήση της ροϊκής συνάρτησης για την παράσταση της μορφής του κύματος και που αναπτύχθηκε από τον Dean. Στην περίπτωση αυτή η ανύψωση της ελεύθερης επιφάνειας προσεγγίζεται με υπέρθεση αρμονικού κύματος με άλλα υψηλοτέρων αρμονικών.

1.1.4.Περιοχές ισχύος των διαφόρων αναλυτικών θεωριών για τους θαλάσσιους κυματισμούς

Οι θαλάσσιοι κυματισμοί περιγράφονται με μεγάλη προσέγγιση με τις καθοριστικές λύσεις που αναφέρθηκαν, δεδομένου ότι αφ' ενός μεν αποτελούν μια καθαρά στοχαστική διαδικασία αφ' ετέρου στις περισσότερες περιπτώσεις εμφανίζεται θραύση τους. Παρόλα αυτά όμως και σε συνδυασμό με τον καθορισμό των χαρακτηριστικών του κύματος στα πλαίσια μιας καθοριστικής διαδικασίας σχεδίασης, είναι συχνά σημαντική η γνώση των διαφόρων αναλυτικών θεωριών για τους κυματισμούς. Αναγκαίος στην περίπτωση αυτή είναι ο προσδιορισμός των περιοχών ισχύος κάθε θεωρίας. [Μαυράκος,1999]

Η γραμμική θεωρία κυματισμών (κύματα Airy) έχει σαν βασική υπόθεση τον απειροστό λόγο ύψους προς μήκος του κύματος (Η/λ) για όλα τα βάθη του νερού (d/λ). Για πρακτικές εφαρμογές ο απλός αρμονικός κυματισμός δίνει καλά αποτελέσματα για τιμές του λόγου Η/λ μικρότερες του 1/50. Στις θεωρίες ανώτερης τάξης καθοριστικό ρόλο παίζει η επίδραση της πεπερασμένης τιμής του λόγου Η/λ, αλλά επίσης και των παραμέτρων d/λ και H/d. Στο σχήμα 5 που δόθηκε από τον Keulegan φαίνονται οι περιοχές ισχύος των διαφόρων θεωριών και οι καθοριστικές για κάθε περιοχή παράμετροι.

Σχήμα 5. Περιοχές ισχύος των αναλυτικών θεωριών για τους κυματισμούς. Καθοριστικές παράμετροι. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Παρατηρούμε ότι:

- Για ρευστό απείρου βάθους καθοριστικές παράμετροι είναι οι τιμές του λόγου Η/λ και το μήκος του κύματος λ.
- Για ρηχό νερό καθοριστικές παράμετροι είναι ο λόγος H/d και το βάθος του νερού d.
- Για ενδιάμεσα βάθη καθοριστικό ρόλο παίζουν οι λόγοι Η/λ και Η/d.

Οι παρατηρήσεις αυτές συμβαδίζουν με τα προηγούμενα θεωρητικά αποτελέσματα. Δύο περαιτέρω παράμετροι που μπορεί να χρησιμοποιηθούν για τη δημιουργία κριτηρίων με σκοπό την κατάταξη των διαφόρων τύπων κυμάτων είναι οι αδιάστατοι αριθμοί $\frac{H}{gT^2}$ και $\frac{d}{gT^2}$ που

προκύπτουν με χρήση της θεωρίας μηχανικής ομοιότητας. Στη βιβλιογραφία χρησιμοποιούνται αντί αυτών οι διαστατές παράμετροι $\frac{H}{T^2}$ και $\frac{d}{T^2}$ αντίστοιχα. Στο σχήμα 6 φαίνονται οι περιοχές ισχύος των αναλυτικών θεωριών, που αναφέρθηκαν, συναρτήσει των τιμών Η/λ, d/λ, H/T²,d/T².

Σχήμα 6. Περιοχές ισχύος των αναλυτικών θεωριών για τους κυματισμούς βαρύτητας. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Τέλος υπάρχει και άλλος τρόπος κατάταξης με βάση την παράμετρο Ηλ²/d³ που εισήχθη από τον Ursell αφού έδειξε ότι αυτή παίζει καθοριστικό ρόλο στη μορφή των λύσεων του προβλήματος των κυμάτων βαρύτητας. Οι θεωρίες κυματισμών που αναφέρθηκαν χαρακτηρίζονται από τις ακόλουθες τιμές της παραμέτρου αυτής:

Κύματα Airy $H\lambda^2/d^3 < 1$ Κύματα Stokes $1 < H\lambda^2/d^3 < 48$ Ελλειπτικά κύματα $48 < H\lambda^2/d^3 < 75$ Μεμονωμένο κύμα $75 < H\lambda^2/d^3$

Στο σχήμα 7 δίνεται τέλος η μορφή της ελεύθερης επιφάνειας για αρμονικό, ελλειπτικό και μεμονωμένο κύμα με συγκρίσιμα χαρακτηριστικά. Παρατηρούμε ότι τα θεωρητικά αποτελέσματα για το ελλειπτικό κύμα συμπίπτουν με τα αντίστοιχα πειραματικά.[Πηγή: Μαυράκος,1999]

Σχήμα 7. Αρμονικό, ελλειπτικό και μεμονωμένο κύμα. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

1.1.5.Απόσβεση κυμάτων βαρύτητας

Όπως αναφέρθηκε, λόγω της ύπαρξης συνεκτικότητας, η ταχύτητα απορρόφησης ενέργειας είναι πολύ μεγαλύτερη σε κυματισμούς υψηλών συχνοτήτων σε σχέση με αυτή που εμφανίζεται σε κύματα με χαμηλές συχνότητες. Παρακάτω προσδιορίζεται ποσοτικά η ταχύτητα αυτή της απορρόφησης ενέργειας.

Η κινητική ενέργεια ρευστού λόγω του κυματισμού του μέσα σε ένα χωρίο U₀ δίνεται από τη σχέση:

$$E = \frac{1}{2} \rho \iiint_{U_0} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] dU$$
(1.1.5.1)

Η μεταβολή της ενέργειας είναι:

$$\frac{dE}{dt} = \frac{1}{2}\rho \iiint_{U_0} \frac{\partial}{\partial t} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] dt$$
(1.1.5.2)

$$\begin{aligned} & X \rho \eta \sigma i \mu \rho \pi \sigma i \dot{\omega} \nabla \tau \alpha \varsigma & \tau i \varsigma & \epsilon \xi i \sigma \dot{\omega} \sigma \epsilon i \varsigma & Navier-Stokes & \beta \rho (\sigma \kappa \sigma u \mu \epsilon) \\ & \frac{1}{2} \rho \frac{\partial}{\partial t} \left| \vec{V} \right|^2 = \left\{ -\rho \vec{V} \left(\vec{V} \cdot \vec{\nabla} \right) \vec{V} - \vec{V} \cdot \vec{\nabla} p \right\} - \frac{1}{2} \mu \left[\sum_{i} \sum_{\kappa} \left(\frac{\partial U_i}{\partial x_k} + \frac{\partial U_k}{\partial x_i} \right) \right]^2 \end{aligned}$$
(1.1.5.3)

όπου
$$\vec{V} = \{u_i\}, i = 1, 2, 3 \{x_1, x_2, x_3\} = \{x, y, z\}$$

Ο πρώτος όρος στην εξίσωση (1.1.5.3) εκφράζει τη ροή ενέργειας ενώ ο δεύτερος το απορροφούμενο ποσό της λόγω της ύπαρξης συνεκτικότητας. Έτσι με βάση τις σχέσεις (1.1.5.2) και (1.1.5.3) μπορούμε να γράψουμε ότι ο ρυθμός απορρόφησης ενέργειας \dot{E}_d δίνεται από τη σχέση:

$$\dot{E}_{d} = -\iiint_{U_{0}} \frac{1}{2} \mu \left[\sum_{i} \sum_{\kappa} \left(\frac{\partial U_{i}}{\partial x_{k}} + \frac{\partial U_{k}}{\partial x_{i}} \right) \right]^{2} dU$$
(1.1.5.4)

Βάσει της εξίσωσης (1.1.5.4) θεωρούμε ότι ο όγκος U₀ στον οποίο γίνεται η ολοκλήρωση είναι το χωρίο που περικλείεται σε ένα μήκος κύματος με μοναδιαίο πλάτος και που εκτείνεται καθ΄ ύψος από την ελεύθερη επιφάνεια μέχρι τον πυθμένα. Παίρνοντας τη μέση τιμή σε μια περίοδο, έχουμε:

$$\left\langle \dot{E}_{d} \right\rangle = -\frac{1}{2} \mu \left\langle \iiint_{U_{0}} \left\{ \sum_{i,k} \left(\frac{\partial U_{i}}{\partial x_{k}} + \frac{\partial U_{k}}{\partial x_{i}} \right) \right\}^{2} dU \right\rangle = -8 \mu k^{4} \iiint \overline{\varphi}^{2} dU$$
(1.1.5.5)

Ο συντελεστής απόσβεσης κύματος γ ορίζεται ως ο λόγος της απορροφούμενης προς τη συνολική ενέργεια στον ίδιο όγκο και σχηματίζεται η μέση τιμή στο χρόνο. Καταλήγουμε μετά τις πράξεις στη σχέση: $\gamma = 2\nu k^2$ (1.1.5.6)

Ειδικά για την περίπτωση ρευστού απείρου βάθους όπου κατά τα γνωστά ισχύει:

$$\omega^2 = k \cdot g \tag{1.1.5.7}$$

προκύπτει από την (1.1.5.6) $\gamma = 2\nu \omega^4 / g^2$ (1.1.5.8)

Η τελευταία σχέση αποδεικνύει το γεγονός ότι η ταχύτητα απορρόφησης κυμάτων μεγάλης κυκλικής συχνότητας είναι σημαντικά μεγαλύτερη από εκείνη των κυμάτων με χαμηλές συχνότητες.[Πηγή: Μαυράκος,1999]

1.1.6.Κύματα επιφανειακής τάσεως

Στην παρακάτω μελέτη θεωρούμε αρχικά αμελητέα την επίδραση της βαρύτητας, λαμβάνουμε όμως υπόψη μας την επιφανειακή τάση Τ. Τότε η ελεύθερη επιφάνεια υπόκειται σε ορθή τάση p που προκαλείται από την T και δίνεται από τη σχέση:

$$p = T\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
(1.1.6.1)

όπου R₁ και R₂ οι ακτίνες καμπυλότητας στο θεωρούμενο σημείο της ελεύθερης επιφάνειας. Στην περίπτωση επίπεδου κύματος ($R_2 \rightarrow \infty$) λαμβάνεται υπόψη ότι: $\frac{1}{R_1} = \frac{\partial^2 \zeta}{\partial x^2}$ (1.1.6.2)

Η τιμή αυτή της p θα πρέπει να εισαχθεί στη δυναμική συνθήκη ελεύθερης επιφάνειας (εξίσωση 1.1.10) στην οποία αν παραλείψουμε τους όρους 2ης τάξης και βαρύτητας (gζ), που τους θεωρήσαμε σε πρώτη θεώρηση αμελητέους, θα πάρει τη μορφή:

$$\frac{\partial \phi}{\partial t}\Big|_{z=0} + \frac{T}{\rho} \frac{\partial^2 \zeta}{\partial x^2}\Big|_{z=0} = 0$$
(1.1.6.3)

Για να ικανοποιείται η εξίσωση (1.1.6.3) θεωρούμε ότι το ζητούμενο δυναμικό Φ(x,z,t) και η ανύψωση της ελεύθερης επιφάνειας ζ(x,t) έχουν τη μορφή:

$$\Phi(x,z,t) = \Phi_0(z)\sin(kx - \omega t) \tag{1.1.6.4}$$

$$και \zeta(x,t) = a\cos(kx - \omega t)$$
(1.1.6.5)

όπου
$$Φ_0(z) = A \cosh[k(z+d)]$$
 (1.1.6.6)

και
$$a = \frac{\rho}{T} \frac{\omega}{k^2} \Phi_0(0)$$
(1.1.6.7)

ακόμη θα πρέπει να ικανοποιείται η κινηματική συνθήκη στην ελεύθερη επιφάνεια, που στη γραμμική θεωρία εκφράζεται μαθηματικά από τη σχέση (1.1.20). Χρησιμοποιώντας τις σχέσεις (1.1.6.4) και (1.1.6.6) προκύπτει: $a = A \frac{k}{\omega} \sinh(kd)$ (1.1.6.8)

Τέλος από τις εξισώσεις (1.1.6.7) και (1.1.6.8) εξάγεται η σχέση μεταξύ ω και k που ισχύει στην περίπτωση αυτή: $\omega^2 = \frac{T}{\rho}k^3 \tanh(kd)$ (1.1.6.9)

Συμπεραίνουμε λοιπόν ότι η ταχύτητα μετατόπισης των κυμάτων επιφανειακής τάσης είναι:

$$C^{2} = \frac{\lambda^{2}}{T^{2}} = \frac{\omega^{2}}{k^{2}} = \frac{T}{\rho} k \tanh(kd) \quad \acute{\eta} \quad C = \sqrt{\left(\frac{T}{\rho} \cdot \frac{2\pi}{\lambda} \cdot \tanh(kd)\right)}$$
(1.1.6.10)

Από την τελευταία σχέση παρατηρούμε ότι σε αντίθεση με τα κύματα βαρύτητας η ταχύτητα μετατόπισης των κυμάτων επιφανειακής τάσης αυξάνει μειουμένου του μήκους κύματος λ. [Μαυράκος,1999]

Στο σχήμα 8 ο κλάδος 1 αναπαριστά τη μεταβολή της ταχύτητας μετατόπισης του κύματος επιφανειακής τάσης, συναρτήσει του μήκους κύματος από τη σχέση (1.1.6.10). Ο κλάδος 2 αναπαριστά την αντίστοιχη μεταβολή του κύματος βαρύτητας. Πάντα υπάρχει ένα σημείο τομής, η τετμημένη του οποίου έστω ότι είναι $\lambda=\lambda_0$. Για $\lambda<\lambda_0$ οι τεταγμένες της καμπύλης 1 βρίσκονται πάνω από εκείνες της καμπύλης 2. Για την περιοχή $\lambda>\lambda_0$ στην οποία η επίδραση των δυνάμεων βαρύτητας είναι καθοριστική ισχύει το αντίστροφο. Με τον τρόπο αυτό φαίνεται γιατί η επίδραση της επιφανειακής τάσης έχει ιδιαίτερη σημασία για κύματα μικρού μήκους. Οι σχέσεις (1.1.6.9) και (1.1.6.10) παίρνουν την ακόλουθη μορφή για νερό απείρου βάθους

$$\omega_0^2 = \frac{T}{\rho} k_0^3 \tag{1.1.6.11}$$

και

$$c_0 = \sqrt{\left(\frac{T}{\rho}\frac{2\pi}{\lambda_0}\right)}$$

(1.1.6.12)

[Πηγή: Μαυράκος,1999]

Σχήμα 8. Ταχύτητα μετατόπισης κυμάτων επιφανειακής τάσης. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Στη συνέχεια θα εξετάσουμε τον συνδυασμό της επίδρασης της επιφανειακής τάσης και της βαρύτητας. Στην περίπτωση αυτή η δυναμική συνθήκη ελεύθερης επιφάνειας στα πλαίσια της γραμμικής θεωρίας γίνεται: $\frac{\partial \phi}{\partial t}\Big|_{z=0} + \frac{T}{\rho} \frac{\partial^2 \zeta}{\partial x^2}\Big|_{z=0} + \rho \cdot g \cdot \zeta = 0$ (1.1.6.13)

To δυναμικό φ και η ανύψωση της ελεύθερης επιφάνειας δίνονται πάλι από τις σχέσεις (1.1.6.4), (1.1.6.5) και (1.1.6.6) όπου όμως στην περίπτωση αυτή θα είναι $a = \frac{\omega \phi_0(0)}{\frac{T}{\rho}k^2 + g}$ (1.1.6.14)

Από τις (1.1.6.14) και (1.1.6.8) προκύπτει ότι
$$\omega^2 = \left(\frac{T}{\rho}k^3 + gk\right) \tanh(kd)$$
 (1.1.6.15)

που εκφράζει τη σχέση μεταξύ της κυκλικής συχνότητας ω και του αριθμού κύματος k (εξίσωση διασποράς) στην περίπτωση που εξετάζουμε. Η ταχύτητα μετατόπισης του κύματος θα είναι:

$$C^{2} \frac{\omega^{2}}{k^{2}} = \left(\frac{T}{\rho}k + \frac{g}{k}\right) \tanh(kd) \quad \acute{\eta} \ c = \sqrt{\left(\frac{T}{\rho}k + \frac{g}{k}\right)} \tanh(kd) = \sqrt{C_{1}^{2} + C_{2}^{2}}$$
(1.1.6.16)

όπου C₁ η ταχύτητα των κυμάτων επιφανειακής τάσης σύμφωνα με την εξίσωση (1.1.6.10) και C₂ η αντίστοιχη ταχύτητα των κυμάτων βαρύτητας. Οι δύο αυτές ταχύτητες προστίθενται μη γραμμικά. Για την περίπτωση άπειρου βάθους νερού θέτουμε tanh(kd)=1 έτσι ώστε η σχέση (1.1.6.16) να γίνει:

$$C_0^2 = \frac{T}{\rho} k_0 + \frac{g}{k_0}$$
(1.1.6.17)

Επίσης γνωρίζοντας ότι
$$k_0 = \frac{2\pi}{\lambda_0}$$
 η προηγούμενη σχέση δίνει: $C_0^2 = \frac{2\pi T}{\rho \lambda_0} + \frac{g \lambda_0}{2\pi}$ (1.1.6.18)

Η γραφική παράσταση της σχέσης αυτής δίνεται από την συνεχή καμπύλη στο σχήμα 8. Αρχικά γίνεται υπολογισμός της ελάχιστης τιμής της συνάρτησης C₀ καθώς και της τιμής του μήκους κύματος που αντιστοιχεί σε αυτή. Θα πρέπει να ισχύει: $\frac{dc_0^2}{d\lambda_0} = -\frac{2\pi T}{\rho\lambda_0} + \frac{g}{2\pi} = 0$ (1.1.6.19)

από όπου προκύπτει ότι για $\lambda_{0,\alpha\kappa\rho} = 2\pi \sqrt{\frac{T}{\rho g}}$ θα υπάρχει τοπικό ακρότατο της ταχύτητας C_0^2 .

- Για λ<λ_{0,ακρ} το διαφορικό $\frac{dc_0^2}{d\lambda_0}$ είναι αρνητικό.
- Για $\lambda > \lambda_{0,\alpha\kappa\rho}$ το διαφορικό αντιστοιχεί σε ελάχιστη τιμή της ταχύτητας $C_{0,min}$.

Για λόγους συμβιβαστού συμβολίζουμε την τιμή του μήκους κύματος λ που αντιστοιχεί στη C_{0,min} με λ_{0,min}. Η τιμή αυτή προκύπτει από την (1.1.6.19) ίση με

$$\lambda_{0,\min} = 2\pi \sqrt{\frac{T}{\rho g}}$$
(1.1.6.20)

και η αντίστοιχη ταχύτητα ίση με $C_{0,\min}^2 = 2\sqrt{\frac{Tg}{\rho}}$ (1.1.6.21)

Το λ_{0,min} που βρέθηκε στην (1.1.6.20) αντιστοιχεί ταυτόχρονα στην τετμημένη του σημείου τομής των κλάδων 1 και 2 που έχουν σχεδιασθεί στο σχήμα 8. Πράγματι αυτό αποδεικνύεται θεωρώντας τη συνθήκη ισότητας των ταχυτήτων C_{0,1} και C_{0,2} που θα πρέπει να ισχύει στο σημείο τομής και η οποία δίνει:

$$\sqrt{\frac{T}{\rho}\frac{2\pi}{\lambda_0}} = \sqrt{\frac{g\lambda_0}{2\pi}}$$
(1.1.6.22)

από όπου λαμβάνοντας υπόψη και την (1.1.6.20) προκύπτει: $\lambda_0 = \lambda_{0,\min}$. Εξαιτίας της ισότητας των ταχυτήτων C₁ και C₂ στο σημείο λ= $\lambda_{0,\min}$ αποδεικνύεται εύκολα η ισχύς της σχέσης: $C_{O,\min}^2 = 2C_{0,1}^2 = 2C_{0,2}^2 = \frac{4\pi T}{\rho\lambda_{0,\min}} = \frac{g\lambda_{0,\min}}{\pi}$ (1.1.6.23)

Mε τη βοήθεια της τελευταίας σχέσης η εξ. (1.1.6.18) μπορεί να γραφτεί στη μορφή: $\frac{C_0^2}{C_{0,\min}^2} = \frac{1}{2} \left(\frac{\lambda_{0,\min}}{\lambda_0} + \frac{\lambda_0}{\lambda_{0,\min}} \right)$ (1.1.6.24)

Συγκρίνοντας τις (1.1.6.24) και (1.1.6.18) βλέπουμε ότι ο πρώτος όρος στην (1.1.6.24) περιλαμβάνει την επίδραση της επιφανειακής τάσης ενώ ο δεύτερος όρος την επίδραση της βαρύτητας. Από την τελευταία σχέση συμπεραίνουμε ακόμη ότι:

- Για λ₀ > λ_{0,min} μόνο ο δεύτερος όρος έχει σημαντική συνεισφορά οπότε οι επιδράσεις της επιφανειακής τάσης μπορούν να αγνοηθούν.
 - Για $\lambda_0 < \lambda_{0,min.}$ οι επιδράσεις της επιφανειακής τάσης είναι καθοριστικές.

Το συμπέρασμα είναι ότι η ταχύτητα μετάδοσης των κυμάτων βαρύτητας είναι πάντοτε μεγαλύτερη από μια ελάχιστη τιμή. Η τιμή αυτή μπορεί να υπολογιστεί για την περίπτωση που η ελεύθερη επιφάνεια αποτελεί διαχωριστικό μέσο νερού και αέρα, οπότε και ισχύει: $T = 72 \cdot 10^{-3} \frac{Nt}{m}$, $g = 9,81m/s^2$ και $\rho = 10^3 kg/m^3$

(1.1.6.20)

Από

τις

και

(1.1.6.21)

προκύπτει:

$$\lambda_{0,\min} = 2\pi \sqrt{\frac{72}{9,81}} 10^{-3} m = 0.0173 m \tag{1.1.6.25}$$

και

$$C_{0,\min} = \sqrt{2 \cdot 10^{-3}} \sqrt{72 \cdot 9.81} \ m/s \tag{1.1.6.26}$$

Δεν υπάρχουν κύματα που κινούνται στην ελεύθερη επιφάνεια με μικρότερη ταχύτητα από 23cm/s. Όχι μόνο τα κύματα με μικρότερο μήκος από λ_{0,min} =1.73cm αλλά και εκείνα μεγαλύτερου μήκους. Το όριο αυτό έχει ιδιαίτερη σημασία κατά την εκτέλεση πειραμάτων και αντιστοιχεί στην ελάχιστη ταχύτητα με την οποία πρέπει να ρυμουλκείται το μοντέλο για να δημιουργούνται κύματα επιφάνειας.[Πηγή: Μαυράκος,1999]

1.1.7. Παραμόρφωση αρμονικών κυμάτων στη θαλάσσια περιοχή προ της ακτής

Στη θαλάσσια περιοχή προ της ακτής το βάθος του νερού δεν παραμένει σταθερό, προϋπόθεση που θεωρήθηκε βασική κατά την παρουσίαση των διαφόρων θεωριών (γραμμική και ανώτερων τάξεων) για τους θαλάσσιους κυματισμούς (παρ.1.1.1-1.1.3). Η επίλυση του προβλήματος της μετάδοσης κυματισμών σε μεταβαλλόμενο βάθος νερού αποτελεί ένα αρκετά πολύπλοκο μαθηματικό πρόβλημα. Βασικές παραδοχές που εισήχθησαν αρχικά από τον Rayleigh είναι:

- η έλλειψη απορρόφησης ενέργειας (π.χ. λόγω θραύσης των κυμάτων, συνεκτικότητας ή τριβής με τον πυθμένα)
- η μη εμφάνιση ανακλώμενου κυματισμού

Περιορίζεται κατά συνέπεια η θεώρηση του προβλήματος για τις περιοχές εκείνες όπου τα ύψη του κύματος είναι τέτοια ώστε να μην εμφανίζεται θραύση (βλ. παρ.1.1.3). Για την παραπέρα ανάπτυξη ο δείκτης 0 θα περιγράφει μεγέθη που αναφέρονται σε περιοχές με άπειρο βάθος νερού, ενώ για το ρηχό νερό τα μεγέθη θα εμφανίζονται χωρίς δείκτη. Εξετάζουμε την περίπτωση επίπεδου αρμονικού κυματισμού, το μέτωπο του οποίου κινείται κάθετα στις ισοβαθείς του πυθμένα που θεωρούνται ευθείες γραμμές παράλληλες μεταξύ τους και προς την ακτή. Σε νερό μεγάλου βάθους θεωρούμε ότι η ενέργεια που μεταφέρεται από τους κυματισμούς είναι σταθερή όπως επίσης και στην περιοχή προ της ακτής. Τότε έχουμε:

$$\dot{E} = E_0 \cdot C_{g_0} = E \cdot C_g \tag{1.1.7.1}$$

όπου C_{g_0} και C_g οι ταχύτητες ομάδας για άπειρο και πεπερασμένο βάθος νερού, δεδομένου ότι η ενέργεια ανά μονάδα μήκους κύματος λ δίνεται από τη σχέση:

$$E = \frac{\rho \cdot g \cdot H^2}{8} \tag{1.1.7.2}$$

Προκύπτει από την (1.1.7.1) $\frac{\rho g H_0^2}{8} C_{g_0} = \frac{\rho g H^2}{8} C_g$ (1.1.7.3)

$$\frac{H}{H_0} = \sqrt{\frac{C_{g_0}}{C_g}}$$
(1.1.7.4)

Εξάλλου ισχύει:

$$C_{g_0} = \frac{1}{2}C_0 \tag{1.1.7.5}$$

και
$$C_g = nC$$
, $n = \frac{1}{2} \left\{ 1 + \left[\frac{2kd}{\sinh(2kd)} \right] \right\}$ (1.1.7.6)

οπότε από την (1.1.7.4) προκύπτει:

$$\frac{H}{H_0} = \sqrt{\frac{1}{2n} \frac{C_0}{C}}$$
(1.1.7.7)

Η εξίσωση (1.1.7.7) περιγράφει τη σχέση ανάμεσα στο ύψος κύματος Η σε τυχαίο βάθος νερού και στο ύψος H_0 για την περίπτωση νερού απείρου βάθους. Η επίδραση της μεταβαλλόμενης γαιομορφολογίας του πυθμένα δεν λήφθηκε υπόψη. Για να επεξεργαστούμε περαιτέρω τη σχέση (1.1.7.7) πρέπει να γνωρίζουμε τον λόγο C₀/C. Για να τον προσδιορίσουμε πρέπει να αποδείξουμε τη βασική πρόταση ότι κατά την προσέγγιση του μετώπου του κυματισμού προς την ακτή, κατά την μετάδοσή του δηλαδή σε περιοχές μειούμενου βάθους νερού, η περίοδος ή αντίστοιχα η συχνότητά του παραμένουν αμετάβλητες. [Πηγή:Μαυράκος,1999]

Για την απόδειξη θα μεταχειρισθούμε δύο μεθόδους.

Α. ΜΕΘΟΔΟΣ

Σχήμα 9. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Έστω δύο τομές 1 και 2 παράλληλες προς την ακτή. Ο αριθμός των κυμάτων που διέρχονται από την 1 σε χρόνο Δt είναι Δt/T₁=n₁. Αν θεωρήσουμε ότι κατά τη διέλευση των κυμάτων από την τομή 2 η περίοδος τους έχει μεταβληθεί και ισούται με T₂ συμπεραίνουμε ότι ο αριθμός των κυμάτων που πέρασαν από την τομή 2 σε χρόνο Δt θα είναι: n₂=Δt/T₂. Κατά συνέπεια ο αριθμός των κυμάτων που συσσωρεύθηκαν στο χώρο μεταξύ των τομών 1 και 2 θα δίνεται από τη σχέση:

$$\Delta n = n_1 - n_2 = \Delta t (1/T_1 - 1/T_2)$$
(1.1.7.8)

Η τελευταία εξίσωση θα πρέπει να ισχύει για όλα τα Δt, συνεπώς και για Δt $\rightarrow \infty$. Στην περίπτωση αυτή όμως ο αριθμός των κυμάτων που θα συσσωρευόταν μεταξύ 1 και 2 θα ήταν άπειρος για T₁≠T₂, γεγονός που δεν θα είχε φυσική έννοια. Η μοναδική κατά συνέπεια πραγματική δυνατότητα είναι T₁=T₂=T.

Β. ΜΕΘΟΔΟΣ

Έστω απλός αρμονικός κυματισμός
$$\zeta = \frac{H}{2}\cos\theta = \frac{H}{2}\cos(kx - \omega t)$$
 (1.1.7.9)

Ισχύει τότε:
$$k = \frac{\partial \theta}{\partial x}$$
 και $\omega = -\frac{\partial \theta}{\partial t}$ (1.1.7.10)

Από την (1.1.7.10) προκύπτει:

$$\frac{\partial k}{\partial t} = \frac{\partial^2 \theta}{\partial x \partial t} \quad \text{kat} \quad \frac{\partial \omega}{\partial x} = -\frac{\partial^2 \theta}{\partial x \partial t} \tag{1.1.7.11}$$

$$\dot{\eta} \quad \frac{\partial k}{\partial t} + \frac{\partial \omega}{\partial x} = 0 \tag{1.1.7.12}$$

Εάν το k είναι χρονικά ανεξάρτητο ($\frac{\partial k}{\partial t} = 0$) τότε θα πρέπει $\frac{\partial \omega}{\partial x} = 0$ δηλαδή το ω ή αντίστοιχα η περίοδος Τ να είναι ανεξάρτητη της μεταβλητής x.

Εφόσον κατά συνέπεια η περίοδος ή αντίστοιχα η κυκλική συχνότητα παραμένουν σταθερές κατά τη μετάδοση του κυματισμού σε μειούμενα βάθη θαλάσσιου νερού ισχύει:

$$\frac{C_0}{\lambda_0} = \frac{c}{\lambda} = \frac{1}{\mathrm{T}}$$
(1.1.7.13)

$$\dot{\eta} = \frac{C_0}{C} = \frac{\lambda_0}{\lambda} \tag{1.1.7.14}$$

Επειδή όμως $ω^2 = ω_0^2 = gk_0 = gk \tanh(kd)$ (1.1.7.15)

προκύπτει ότι:
$$\frac{k_0}{k} = \frac{\lambda}{\lambda_0} = \tanh(kd)$$
 (1.1.7.16)

Από τις (1.1.7.14) και (1.1.7.16) προκύπτει τελικά ότι:

$$\frac{C_0}{c} = \frac{\lambda_0}{\lambda} = \frac{1}{\tanh(kd)}$$
(1.1.7.17)

Οπότε από τις (1.1.7.7) και (1.1.7.17) έχουμε:

$$\frac{H}{H_0} = \sqrt{\frac{1}{2\pi} \frac{C_0}{c}} = \sqrt{\frac{1}{\tanh(kd) \left[1 + \frac{2kd}{\sinh(2kd)}\right]}}$$
(1.1.7.18)

Στο σχήμα 10 φαίνεται η εξάρτηση του H/H_0 ή αντίστοιχα του C/C_0 από τον λόγο d/λ_0 όπου λ_0 το μήκος κύματος για την περίπτωση νερού απείρου βάθους.

Σχήμα 10. Μεταβολή των Η/Η₀, C/C₀, λ/λ₀ συναρτήσει του d/λ₀. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Εάν γνωρίζουμε την περίοδο του κύματος, τότε το λ_0 μπορεί να υπολογισθεί από τις σχέσεις:

$$C_0 = \frac{\omega}{k_0} = \left(\frac{g}{k_0}\right)^{1/2} = \left(\frac{g\lambda_0}{2\pi}\right)^{1/2}$$
(1.1.7.19)

και
$$C_0^2 = \frac{\omega^2}{k_0^2}$$
 (1.1.7.20)

Δεδομένου ότι για βαθύ νερό ισχύει: $\omega^2 = k_0 \cdot g$ προκύπτει από την (1.1.7.20)

$$C_{0} = \frac{\omega^{2}}{\omega^{4}/g^{2}} = \frac{g^{2}}{\omega^{2}} \quad \dot{\eta} \qquad C_{0} = \frac{g}{\omega} = \frac{g}{2\pi} \cdot T = 1.56T$$
(1.1.7.21)

Οπότε από την (1.1.7.19) έχουμε: $\left(\frac{g\lambda_0}{2\pi}\right)^{1/2} = \frac{g}{2\pi}T$ ή $\lambda_0 = \frac{g}{2\pi}T^2 = 1,56T^2$ (1.1.7.22)

Από τον συνδυασμό των τελευταίων εξισώσεων μπορούν να βρεθούν σχέσεις που να περιγράφουν τις μεταβολές των χαρακτηριστικών μεγεθών του κυματισμού όταν μειώνεται το βάθος του νερού. Η μεταβολή των χαρακτηριστικών μεγεθών του κυματισμού ερευνήθηκε και πειραματικά για την περίπτωση σχετικά ρηχού νερού σε δεξαμενές με ποικίλες κλίσεις του πυθμένα τους. Στο σχήμα 11 δείχνονται τα πειραματικά αποτελέσματα του Iverse σε σύγκριση με τη γραμμική θεωρία και τα βελτιωμένα αποτελέσματα της τελευταίας όταν ελήφθησαν υπόψη και οι απώλειες τριβής στη δεξαμενή. [Πηγή: Μαυράκος,1999]

Σχήμα 11. Πειραματική επιβεβαίωση της μεταβολής του ύψους κύματος που μεταδίδεται πάνω από κεκλιμένο πυθμένα. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Στη συνέχεια θα εξετάσουμε την περίπτωση κυμάτων, το μέτωπο των οποίων κινείται υπό γωνία σε σχέση με την ακτή. Στην περίπτωση αυτή το πρόσθετο χαρακτηριστικό είναι ότι μεταβάλλεται και η διεύθυνση κίνησης. Αυτό γίνεται εμφανές ιδιαίτερα από αεροφωτογραφίες όπως αυτή του σχήματος 12.

Σχήμα 12. Παραμόρφωση του μετώπου των κυματισμών στη θαλάσσια περιοχή προ της ακτής. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Το φαινόμενο αυτό, που σχετίζεται με τη συνεχή μείωση της ταχύτητας μετάδοσης του κύματος για μειωμένα βάθη του νερού, ονομάζεται διάθλαση κυμάτων (refraction). Ο μηχανισμός αυτής της παραμόρφωσης εξηγείται με το σχήμα 12. Το τμήμα του μετώπου του κυματισμού που βρίσκεται πιο κοντά στην ακτή, έχει μικρότερη ταχύτητα μετάδοσης σε σχέση με το τμήμα που βρίσκεται προς την ανοικτή θάλασσα λόγω του ότι κινείται σε περιοχή με μικρότερο βάθος νερού.

Η διαφορά αυτή στην ταχύτητα μετάδοσης κατά μήκος του μετώπου του κυματισμού δημιουργεί την καμπύλωσή του. Η αλλαγή διεύθυνσης του μετώπου μπορεί να προσδιορισθεί για δεδομένη γαιομορφολογία του πυθμένα ή για δεδομένη κατανομή ταχυτήτων με τη βοήθεια του νόμου του Snell από την οπτική:

$$\frac{c_1}{c_2} = \frac{\sin a_1}{\sin a_2} \tag{1.1.7.23}$$

Στη σχέση (1.1.7.23) α₁ και α₂ είναι οι γωνίες μεταξύ δύο παρακείμενων θέσεων του μετώπου του κυματισμού και των αντίστοιχων παρακειμένων ισοβαθών καμπύλων του πυθμένα. Κατά αντιστοιχία με την οπτική εισάγουμε και εδώ για τη μαθηματική επεξεργασία του θέματος τις κάθετες καμπύλες προς το μέτωπο του κυματισμού που φαίνονται στο σχήμα 12. Δεδομένου ότι :

$$\frac{C_2}{C_1} = \frac{\lambda_2}{\lambda_1}$$
ισχύει επίσης $\frac{\lambda_2}{\lambda_1} = \frac{\sin a_2}{\sin a_1}$ (1.1.7.24)

Εκτός από τα μεγέθη που αναφέρθηκαν μέχρι τώρα μεταβάλλεται επίσης και το ύψος του κύματος.

[Πηγή:Μαυράκος,1999]

Τα διαγράμματα διάθλασης (refraction diagrams) είναι σκόπιμο να υπάρχουν για καθορισμένες θαλάσσιες περιοχές (όπως κόλποι, λιμάνια, περιοχές εγκατάστασης πλωτών ή σταθερών θαλάσσιων κατασκευών κλπ) για τις πρακτικές εφαρμογές. Τα τελευταία χρόνια αναπτύχθηκαν και αριθμητικές μέθοδοι για τη δημιουργία των διαγραμμάτων διάθλασης για διάφορες περιοχές, εκτός από τη γραφική αναπαράσταση αυτών. Για τον προσδιορισμό της επίδρασης του φαινομένου της διάθλασης στη διαμόρφωση του ύψους κύματος θα εισάγουμε τον συντελεστή διάθλασης k_d στον υπολογισμό. Θα εφαρμόσουμε την ενεργειακή σχέση (1.1.7.3) για το πλάτος μεταξύ δύο γειτονικών ορθογωνικών γραμμών προς το μέτωπο του κύματος (βλέπε σχήμα 12). Με την προϋπόθεση ότι δεν εμφανίζεται μεταφορά ενέργειας σε διεύθυνση κάθετη προς τις ορθογωνικές γραμμές, η μεταβολή της μεταξύ τους απόστασης αποτελεί μέτρο για τη μεταβολή του ύψους κύματος. Πράγματι από τη σχέση:

$$\frac{\rho g H_0^2}{8} b_0 c_{g_0} = \frac{\rho g H^2}{8} b c_g \tag{1.1.7.25}$$

προκύπτει:

$$\frac{H}{H_0} = \left(\frac{c_{g_0}}{c_g}\right)^{1/2} \left(\frac{b_0}{b}\right)^{1/2} = D \cdot k_d$$
(1.1.7.26)

Η ποσότητα $\sqrt{b_0/b}$ είναι ο συντελεστής διάθλασης που τον συμβολίσαμε με k_d , ενώ ο λόγος $D = (c_{g_0}/c_g)^{1/2}$ εκφράζει την επίδραση της μεταβολής του βάθους του νερού στο ύψος του κύματος (shoaling coefficient). Χρησιμοποιώντας τις σχέσεις (1.1.7.5), (1.1.7.6), (1.1.7.16), (1.1.7.17) μπορούμε να αποδείξουμε ότι ο συντελεστής D δίνεται από τη σχέση:

$$D = \left(\frac{c_{g_0}}{c_g}\right)^{1/2} = \left(\frac{k}{k_0}\right)^{1/2} \left[1 + \frac{2kd}{\sinh(2kd)}\right]^{1/2}$$

Η σχέση αυτή δίνεται γραφικά στο σχήμα 13.

Ο υπολογισμός του συντελεστή διάθλασης k_d σαν συνάρτηση των ισοβαθών καμπύλων και της κλίσης τους προς την ακτή είναι πολύ δύσκολος. Οι μαθηματικές σχέσεις απλουστεύονται στην περίπτωση ευθείας ακτής και παράλληλων μεταξύ τους και με την ακτή ισοβαθών καμπύλων. Στην περίπτωση αυτή ισχύει (βλέπε σχήμα 14):

Σχήμα 14. Ισοβαθείς και με την ακτή παράλληλες μεταξύ τους ευθείες γραμμές. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

(1.1.7.27)

$$\frac{b_0}{\cos a_0} = b^1 = \frac{b}{\cos a}$$
(1.1.7.28)

Οπότε
$$k_d = \left(\frac{b_0}{b}\right)^{1/2} = \left(\frac{\cos a_0}{\cos a}\right)^{1/2}$$
 (1.1.7.29)

Για την τελευταία αυτή περίπτωση, ο συντελεστής διάθλασης k_d σα συνάρτηση του σχετικού βάθους του νερού d/λ_0 και της γωνίας κλίσης του μετώπου του κύματος σε βαθύ νερό (α_0) δίνεται στο σχήμα 15.

[Πηγή: Μαυράκος,1999]

1.1.8.Υπέρθεση αρμονικού κύματος με σταθερό χρονικά θαλάσσιο ρεύμα

Θα μελετήσουμε το μετασχηματισμό του αρμονικού κύματος

$$\zeta(x,t) = \frac{H}{2}\cos(kx - \omega t) \tag{1.1.8.1}$$

υπό την επίδραση του ρεύματος σταθερής ταχύτητας u, εξετάζοντας την κίνηση του κυματισμού ως προς το σύστημα συντεταγμένων (x_s, y_s) (σχήμα 16) που παρακολουθεί την κίνηση του ρεύματος. Ως προς το κινούμενο αυτό σύστημα ισχύουν:

$$x = (x_s + \mu t)\cos\mu + y_s\sin\mu$$
(1.1.8.2)

$$y_s = y_s \cos \mu - (x_s + ut) \sin \mu$$
 (1.1.8.3)

Σχήμα 16. Συστήματα συντεταγμένων για την εξέταση της υπέρθεσης αρμονικού κύματος με χρονικά σταθερό θαλάσσιο ρεύμα. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Η σχέση (1.1.8.1) μετασχηματίζεται κατά συνέπεια στην:

$$\zeta(x_s, y_s, t) = \frac{H}{2} \cos\{k[(x_s + ut)\cos\mu + y_s\sin\mu] - \omega t\} = \frac{H}{2} \cos\{k(x_s\cos\mu + y_s\sin\mu) - (\omega - ku\cos\mu)t\}$$
(1.1.8.4)

Εμφανίζεται κατά συνέπεια μία περιοδική κίνηση με τη συχνότητα συνάντησης

$$\omega_e = \omega - ku\cos\mu \tag{1.1.8.5}$$

Γνωρίσαμε τον όρο «συχνότητα συνάντησης» και τη σχέση (1.1.8.5) στην περίπτωση σώματος που κινείται με σταθερή ταχύτητα u σε απλό αρμονικό κυματισμό.

Από την εξίσωση (1.1.8.5) προκύπτει ότι:
$$ω = ω_e - ku \cos \mu$$
 (1.1.8.6)

Από την αρχή της διατήρησης της περιόδου ή κατά αντιστοιχία της κυκλικής συχνότητας κατά τη διάρκεια του μετασχηματισμού του κύματος ισχύει:

$$\omega_0 = \omega_e - ku\cos\mu \tag{1.1.8.7}$$

όπου $ω_0$ η συχνότητα του κυματισμού σε βαθύ νερό χωρίς την επίδραση ρεύματος (u=0).

Θεωρώντας για απλοποίηση των σχέσεων, ότι η υπέρθεση λαμβάνει χώρα σε βαθύ νερό, ισχύει:

$$\omega_0^2 = gk_0 \quad \acute{\eta} \quad \frac{\omega_e^2}{\omega_0^2} = \frac{k}{k_0} = \frac{\lambda}{\lambda_0}$$
(1.1.8.8)

$$\omega_e^2 = gk$$

Από την εξίσωση (1.1.8.7) προκύπτει: $\frac{\omega_e}{\omega_0} = 1 - \frac{ku}{\omega_0} \cos \mu$ (1.1.8.9)

που λόγω της (1.1.8.8) και του γεγονότος ότι $c_0 = \frac{\omega_0}{k_0}$ γίνεται: $\left(\frac{\lambda_0}{\lambda}\right)^{1/2} = 1 - \frac{\lambda_0}{\lambda} \frac{u \cos \mu}{c_0}$ (1.1.8.10)

ή αντίστοιχα

$$\left(\frac{\lambda}{\lambda_0}\right)^{1/2} = \frac{\lambda}{\lambda_0} - \frac{u\cos\mu}{c_0}$$
(1.1.8.11)

Από την εξίσωση (1.1.8.11) προκύπτει ότι: $\left(\frac{\lambda}{\lambda_0}\right)^{1/2} = \frac{1}{2} \left\{ 1 \pm \left[1 \pm \frac{4u \cos \mu}{c_0}\right]^{1/2} \right\}$ (1.1.8.12)

Οι ρίζες της εξίσωσης (1.1.8.12) είναι δύο, από τις οποίες αποδεκτή είναι μόνο εκείνη με το θετικό πρόσημο. Η αποδοχή της άλλης ρίζας θα οδηγούσε σε μηδενική τιμή λ=0 του μήκους κύματος για την περίπτωση της μη ύπαρξης ρεύματος (u=0).

Συνεπώς ισχύει :
$$\frac{\lambda}{\lambda_0} = \frac{1}{4} \left[1 + \sqrt{1 + \frac{4u\cos\mu}{c_0}} \right]^2$$
(1.1.8.13)

Από τη σχέση (1.1.8.8) συνάγουμε από την (1.1.8.13):

$$\omega_0^2 = \frac{\omega_e^2}{4} \left[1 + \sqrt{1 + \frac{4u\cos\mu}{c_0}} \right]^2$$
(1.1.8.14)

Λόγω των σχέσεων $\omega_e = gk$ και $c_0 = \frac{\omega_0}{k_0} = \frac{g}{\omega_0}$ η εξίσωση (1.1.8.14) μπορεί να γραφεί ως: $gk = \frac{\omega_0^2}{\frac{1}{4} \left[1 + \left(1 + \frac{4u\omega_0 \cos \mu}{g} \right)^{1/2} \right]^2}$ (1.1.8.15)

Όλες οι παραπάνω σχέσεις ισχύουν για νερό απείρου βάθους. Αντίστοιχοι υπολογισμοί μπορούν να γίνουν και για την περίπτωση πεπερασμένου βάθους νερού, οπότε ισχύει η σχέση:

$$\left(\frac{\lambda_0}{\lambda_e}\right)^{1/2} = \frac{1}{\sqrt{\tanh(kd)}} \left[1 - \frac{u\cos\mu}{c_0} \cdot \frac{\lambda_0}{\lambda}\right]$$
(1.1.8.16)

[Πηγή:Μαυράκος,1999]

Η σχέση (1.1.8.13) μας δίνει τη μεταβολή του μήκους κύματος στην περίπτωση της υπέρθεσης σε άπειρο βάθος νερού. Για τον προσδιορισμό της μεταβολής του ύψους κύματος θα θεωρήσουμε σταθερό το ποσό της μεταφερόμενης ενέργειας, όπως και στην παράγραφο 1.1.7, οπότε προκύπτει: $E \cdot c_g = E_0 c_{g_0}$ (1.1.8.17)

Λόγω της (1.1.7.2) προκύπτει:
$$\frac{1}{8}\rho g H^2 c_g = \frac{1}{8}\rho g H_0^2 c_{g_0}$$
 (1.1.8.18)

Για να εφαρμόσουμε τη σχέση αυτή θα πρέπει να προσδιορίσουμε τις ταχύτητες της ομάδας κυματισμών c_{g_0} και c_g πριν και μετά την υπέρθεση με το ρεύμα σταθερής ταχύτητας u.

Εξ ορισμού ισχύει:
$$c_g = \frac{d\omega}{dk}$$
 (1.1.8.19)

που λόγω της (1.1.8.6) δίνει:
$$c_g = \frac{d\omega_e}{dk} + u\cos\mu$$
 (1.1.8.20)

Για την περίπτωση νερού απείρου βάθους η προηγούμενη σχέση δίνει:

$$c_g = \frac{c}{2} + u\cos\mu$$
(1.1.8.21)

Ισχύει επίσης $c_{g_0} = \frac{c_0}{2}$ (1.1.8.22)

Με αντικατάσταση των (1.1.8.21) και (1.1.8.22) στην (1.1.8.18) προκύπτει:

$$\frac{H}{H_0} = \left(\frac{c_{g_0}}{c_g}\right)^{1/2} = \left[\frac{\frac{c_0}{2}}{\frac{c}{2} + u\cos\mu}\right]^{1/2} \Rightarrow \frac{H}{H_0} = \frac{1}{\left[\frac{c}{c_0} + 2\frac{u\cos\mu}{c_0}\right]^{1/2}}$$
(1.1.8.23)

Αν συμβολίσουμε με:
$$a = \sqrt{1 + \frac{4u\cos\mu}{c_0}}$$
 (1.1.8.24)

και λάβουμε υπόψη μας ότι: $\frac{\lambda}{\lambda_0} = \left(\frac{c}{c_0}\right)^{1/2}$ (1.1.8.25)

η σχέση (1.1.8.23) γράφεται λόγω και της (1.1.8.13)

$$\frac{H}{H_0} = \left[\frac{2}{a(a+1)}\right]^{1/2}$$
(1.1.8.26)

Για να ισχύει η σχέση αυτή θα πρέπει το υπόριζο της εξίσωσης (1.1.8.24) να είναι θετικό δηλαδή $\frac{4u\cos\mu}{2} \ge -1$

$$\frac{1.1.8.27}{c_0}$$

από την οποία προκύπτει η οριακή τιμή της ταχύτητας: $(u \cos \mu)_{o\rho} = -\frac{c_0}{4}$ (1.1.8.28)

Για την τιμή α=0 (σύμφωνα με την εξίσωση (1.1.8.24) και κατά συνέπεια λόγω των (1.1.8.13) και (1.1.8.25)) προκύπτει: c₀=2c οπότε αντίστοιχα και η ταχύτητα ομάδας μετά την υπέρθεση γίνεται μηδέν σύμφωνα με την εξίσωση (1.1.8.21).

Για τιμές της ταχύτητας
$$(u\cos\mu) \prec (u\cos\mu)_{o\rho} = -\frac{c_0}{4} = -c_{g_e}$$
 (1.1.8.29)

δεν μπορεί πλέον να μεταδοθεί η ενέργεια του κύματος μετά την υπέρθεσή του με το εξεταζόμενο ρεύμα. Η οριακή αυτή κατάσταση δεν έχει φυσική σημασία διότι πολύ πριν φθάσουμε σε αυτή έχει επέλθει θραύση του κυματισμού.

Στα σχήματα 17 και 18 δίνεται η γραφική παράσταση των σχέσεων (1.1.8.15) και (1.1.8.26) για την περίπτωση ρεύματος που κινείται στην ίδια ή την αντίθετη διεύθυνση με εκείνη του κύματος (μ= 0° ή μ=180° αντίστοιχα). Η δεύτερη περίπτωση υποδηλώνεται με τα αρνητικά πρόσημα στην ταχύτητα U ή το λόγο U/c₀.

Σχήμα 17. Υπέρθεση αρμονικού κύματος με χρονικά σταθερό θαλάσσιο ρεύμα. Γραφική παράσταση της εξ. 1.1.8.15. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Σχήμα 18. Υπέρθεση αρμονικού κύματος με θαλάσσιο ρεύμα της ίδιας ή αντίθετης διεύθυνσης. Μεταβολή του ύψους του κύματος (εξ.1.1.8.26). ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Όπως φαίνεται και από το σχήμα 18 η υπέρθεση κύματος και ρεύματος κινουμένων στην ίδια κατεύθυνση θα οδηγήσει σε ελάττωση του ύψους κύματος του προκύπτοντος κυματισμού, ενώ αύξησή του θα εμφανισθεί στην περίπτωση αντίθετων φορών κίνησης. Τέλος παρατηρούμε ότι στην οριακή περίπτωση U/c₀ = - ¼ ο λόγος H/H₀ τείνει στο άπειρο όπως προκύπτει και από τη σχέση (1.1.8.26) δεδομένου ότι τότε α \rightarrow 0.

[Πηγή: Μαυράκος, 1999]

1.1.9.Σύνοψη των διδιάστατων γραμμικοποιημένων προβλημάτων οριακών τιμών για περιόδους κυματισμούς

Η διαφορική εξίσωση δεύτερης τάξης που διέπει την κίνηση του ρευστού στην περίπτωση περιοδικής, διδιάστατης κίνησης, είναι η εξίσωση του Laplace, η οποία ισχύει σε όλο το ρευστό που καταλαμβάνει ένα κύμα, όπως φαίνεται στο σχήμα 19.

Σχήμα 19. Προσδιορισμός οριακών συνθηκών για περιοδικούς κυματισμούς. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

$$\nabla^2 \phi = 0 \qquad 0 < x < L \qquad -h < z < \zeta \tag{1}$$

Στον πυθμένα που υποτίθεται οριζόντιος, ισχύει η συνθήκη του αδιαπέρατου ορίου:

$$w = \frac{\partial \phi}{\partial z} = 0, z = -h \tag{2}$$

Στην ελεύθερη επιφάνεια πρέπει να ικανοποιούνται δύο συνθήκες. Η κινηματική και η δυναμική. Οι δύο αυτές συνθήκες, έχουν τη μορφή:

$$\frac{\partial \phi}{\partial z} = \frac{\partial \zeta}{\partial t} \qquad \text{ yia } z = 0 \tag{3}$$

$$\frac{\partial \phi}{\partial t} + g\zeta = 0 \quad \gamma \iota \alpha z = 0 \tag{4}$$

Τέλος πρέπει να ικανοποιείται η συνθήκη περιοδικότητας των λύσεων, στο χώρο και τον χρόνο που υποδηλώνεται από τις σχέσεις:

$$\phi(x,t) = \phi(x+L,t) \tag{5}$$
$$\phi(x,t) = \phi(x,t+T) \tag{6}$$

(6)

[Πηγή: Μαυράκος, 1999]

1.1.10.Λύση του γραμμικοποιημένου κυματικού προβλήματος οριακών τιμών για οριζόντιο πυθμένα

Στην παράγραφο αυτή θα αναπτυχθεί η λύση για το πρόβλημα οριακών τιμών που περιγράφει περιοδικούς κυματισμούς στο χώρο και το χρόνο και κινούνται πάνω από τον οριζόντιο πυθμένα. Αυτό απαιτεί την επίλυση της εξίσωσης του Laplace (εξίσωση 1) με τις οριακές συνθήκες που εκφράζονται μέσω των εξισώσεων (2)-(6). Η μέθοδος επίλυσης που θα χρησιμοποιήσουμε βασίζεται στο χωρισμό των μεταβλητών. Η υπόθεση πάνω στην οποία στηρίζεται η μέθοδος αυτή είναι ότι η λύση του προβλήματος μπορεί να εκφρασθεί ως γινόμενο όρων, έκαστος των οποίων είναι συνάρτηση μιας μόνο ανεξάρτητης μεταβλητής. Στην περίπτωσή μας ισχύει:

$$\phi(x, z, t) = X(x) \cdot Z(z) \cdot T(t) \tag{7}$$

όπου X(x) είναι κάποια συνάρτηση που εξαρτάται μόνο από το x, την οριζόντια συντεταγμένη, Z(z) εξαρτάται μόνο από το z και T(t) μεταβάλλεται μόνο με το χρόνο. Επειδή γνωρίζουμε ότι η φ πρέπει να είναι περιοδική συνάρτηση του χρόνου (εξίσωση 6), μπορούμε να ορίσουμε ότι $T(t) = \sin(\omega t)$. Για να προσδιορίσουμε το ω, την κυκλική συχνότητα του κυματισμού, $\sin(\omega t) = \sin[\omega(t+T)]$ εξίσωση(6): χρησιμοποιούμε ή την $\sin(\omega t) = \sin(\omega t)\cos(\omega T) + \cos(\omega t)\sin(\omega T)$

που είναι αληθή για $\omega T = 2\pi$ ή $\omega = 2\pi/T$. Εξίσου καλά θα μπορούσαμε να είχαμε επιλέξει το $cos(\omega t)$ ή κάποιο συνδυασμό των δύο: $Acos(\omega t) + Bsin(\omega t)$. Επειδή οι εξισώσεις που πρόκειται να επιλυθούν είναι γραμμικές και ισχύει η αρχή της υπέρθεσης των λύσεων, μπορούμε να παραιτηθούμε αυτή τη στιγμή από τη γενική λύση στο χρόνο έως ότου προσδιορισθούν και διερευνηθούν οι διάφορες συνιστώσες της. Το δυναμικό ταχύτητας έχει τώρα τη μορφή :

$$\phi(x, z, t) = X(z) \cdot Z(z) \cdot \sin(\omega t) \tag{8}$$

Αντικαθιστώντας εξίσωση (εξίσωση 1) στην του Laplace έχουμε: $\frac{d^2 X(x)}{dx^2} \cdot Z(z) \cdot \sin(\omega t) + X(x) \cdot \frac{d^2 Z(z)}{dz^2} \cdot \sin(\omega t) = 0$

Διαιρώντας με το φ προκύπτει:

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0$$
(9)

Προφανώς ο πρώτος όρος της εξίσωσης εξαρτάται μόνο από το x, ενώ ο δεύτερος μόνο από το z. Εάν στην εξίσωση 9 υποθέσουμε μια μεταβολή κατά το x, κρατώντας το x σταθερό, ο δεύτερος όρος θα μεταβληθεί, ενώ ο πρώτος όχι. Αυτό θα έδινε μη μηδενικό άθροισμα στην εξίσωση 9 και ως εκ τούτου η εξίσωση δεν θα ικανοποιείται. Ο μόνος τρόπος ώστε να ισχύει η εξίσωση είναι εάν έκαστος όρος ισούται με την ίδια σταθερά, με εξαίρεση τη διαφορά προσήμου, δηλαδή:

$$\frac{1}{X(x)}\frac{d^2 X(x)}{dx^2} = -k^2$$
(10)

$$\frac{1}{Z(z)}\frac{d^2 Z(z)}{dz^2} = +k^2$$
(11)

Ο λόγος για τον οποίο εξισώσαμε τον όρο x με μια αρνητική σταθερά δεν είναι τόσο σημαντικός, καθόσον θα επιτρέψουμε στην σταθερά z να έχει τη δυνατότητα να είναι και φανταστικός ή γενικά μιγαδικός αριθμός.[Πηγή:Μαυράκος,1999]

Οι εξισώσεις (10) και (11) είναι συνήθεις διαφορικές εξισώσεις και μπορούν να επιλυθούν χωριστά. Τρεις δυνατές περιπτώσεις μπορούν να αντιμετωπισθούν, εξαρτώμενες από τη φύση του k. Αυτές είναι:

- για k πραγματικό,
- για k=0
- για k καθαρό φανταστικό αριθμό.

Ο πίνακας 1 κατηγοριοποιεί τις περιπτώσεις αυτές. Σημειώνουμε ότι εάν το k αποτελείται από πραγματικό και φανταστικό μέρος, αυτό θα εισήγαγε μεταβολή του ύψους κύματος με την απόσταση, το οποίο μπορεί να είναι αληθές στις περιπτώσεις προοδευτικών κυματισμών με απόσβεση ή ανεμογενών κυματισμών κατά τη φάση της ανάπτυξής τους.

Τιμές k	Συνήθεις Διαφορικές	Λύσεις
	Εξισώσεις	
Πραγματικές	$\frac{d^2X}{dx^2} + k^2X = 0$	$X(x) = A\cos(kx) + B\sin(kx)$
$k^2 > 0$	$\frac{d^2 Z}{dz^2} - k^2 Z = 0$	$Z(z) = Ce^{kz} + De^{-kz}$
	$\frac{d^2 X}{dx^2} = 0$	X(x) = Ax + B
k = 0	$\frac{d^2 Z}{dz^2} = 0$	Z(z) = Cz + D
Φανταστικές	$\frac{d^2 X}{dx^2} - \left k\right ^2 X = 0$	$X(x) = Ae^{ K x} + Be^{- k x}$
$k^2 < 0, k = i \cdot k , k \mu \varepsilon \tau \rho o k$		$Z(z) = C\cos k z + D\sin k z$

$\frac{d^2 Z}{dz^2} + \left k\right ^2 Z = 0$	

Πίνακας 1. Δυνατές λύσεις της εξίσωσης του Laplace. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Οι οριακές συνθήκες του προβλήματος θα μας επιτρέψουν να επιλέξουμε από τις γενικές λύσεις του πίνακα 1, εκείνες που μπορούν να εφαρμοσθούν στο φυσικό πρόβλημα που εξετάζουμε. Επί πλέον οι οριακές συνθήκες, θα μας επιτρέψουν να προσδιορίσουμε μερικές από τις άγνωστες σταθερές του προβλήματος (π.χ. Α, Β, C και D). Όλες οι λύσεις του πίνακα 1, ικανοποιούν την εξίσωση του Laplace. Μερικές εν τούτοις δεν είναι περιοδικές κατά την κατεύθυνση x, όπως απαιτεί η εξίσωση 5. Στην πραγματικότητα η μόνη λύση που εμφανίζει χωρική περιοδικότητα κατά την x διεύθυνση είναι εκείνη για πραγματικές, μη μηδενικές τιμές του k. Ως εκ τούτου, προκύπτει ως λύση για την εξίσωση του Laplace το ακόλουθο δυναμικό ταχύτητας:

$$\phi(x,z,t) = \left(A\cos(kx) + B\sin(kx)\right)\left(Ce^{kz} + De^{-kz}\right)\sin(\omega t)$$
(12)

Η συνθήκη περιοδικότητας γράφεται αναλυτικά:

$$A\cos(kx) + B\sin(kx) = A\cos[k(x+L)] + B\sin[k(x+L)] = A[\cos(kx)\cos(kL) - \sin(kx)\sin(kL)] + B[\sin(kx)\cos(kL) + \cos(kx)\sin(kL)]$$

που ικανοποιείται για $\cos(kL) = 1$ και $\sin(kL) = 0$. Αυτό σημαίνει ότι $kL = 2\pi$ ή $kL = 2\pi/L$. Το k ονομάζεται αριθμός κύματος. Χρησιμοποιώντας την αρχή της υπέρθεσης, μπορούμε να υποδιαιρέσουμε το φ σε διάφορα τμήματα. Ας κρατήσουμε στο στάδιο αυτό τη λύση $\phi = (A\cos(kx)(Ce^{kz} + De^{-kz})\sin(\omega t) \cdot 0$ όρος με το $B\sin(kx)$ θα προστεθεί αργότερα λόγω υπέρθεσης. Αντικαθιστώντας στην κινηματική συνθήκη του πυθμένα (εξίσωση 2), προκύπτει: $(Ak\cos(kx)(Ce^{kh} - De^{-kz})\sin(\omega t) = 0$ (13)

Για να είναι αληθής η εξίσωση αυτή για οποιαδήποτε τιμή του x και του t, θα πρέπει οι όροι που βρίσκονται μέσα στην παρένθεση να ισούται με μηδέν: $C = De^{2kh}$ (14)

Αντικαθιστώντας τη (14) και θέτοντας $G = 2ADe^{kh}$ προκύπτει:

$$\phi = (G\cos(kx)\cosh[k(z+h)]\sin(\omega t)$$
(15)

Η δυναμική συνθήκη στην ελεύθερη επιφάνεια, (εξ. 4) δίνει:
$$\zeta = -\frac{1}{g} \frac{\partial \phi}{\partial t}\Big|_{z=0}$$
 (16)

Εισάγοντας την (15) στη (16) και θέτοντας $G = -Hg/(2\omega \cosh(kh))$ προκύπτει ότι:

$$\zeta = \frac{H}{2}\cos(kx)\cos(\omega t) \tag{17}$$

ενώ το αντίστοιχο δυναμικό ταχύτητας δίνεται από τον τύπο:

$$\phi = -\frac{H \cdot g \cdot \cosh[k(h+z)]}{2\omega \cosh(kh)} \cos(kx) \sin(\omega t)$$
(18)

Το δυναμικό ταχύτητας περιγράφεται εφόσον είναι γνωστές οι τιμές των Η,ω,h και k. Τα πρώτα τρία από αυτά είναι συνήθως γνωστά. Εναλλακτικά θα μπορούσε να είναι γνωστό το μήκος κύματος και να είναι άγνωστη η κυκλική συχνότητα. Η εναπομένουσα κινηματική οριακή συνθήκη στην ελεύθερη επιφάνεια, εξίσωση (3) θα χρησιμοποιηθεί για να προσδιορισθεί η σχέση μεταξύ των ω και k. Αντικαθιστώντας στη (3) τις τιμές του δυναμικού, εξίσωση (18), και της ανύψωσης της ελεύθερης επιφάνειας z, εξίσωση (17), προκύπτει:

$\omega^2 = gk \tanh(kh)$

(19)

Ξαναγράφοντας την εξίσωση αυτή σαν: $\omega^2 h/(g \cdot h \cdot k) = \tanh(kh)$ και σχεδιάζοντας κάθε έναν όρο της συνάρτησης του kh για μια δεδομένη τιμή του $\omega^2 h/g$ προκύπτει το σχήμα 20. Η λύση προσδιορίζεται από την τομή των δύο καμπυλών. Ως εκ τούτου η εξίσωση έχει μία μόνο λύση ή ισοδύναμα προκύπτει μία τιμή του k για δεδομένες τιμές του ω και h.

Σχήμα 20. Γραφικός προσδιορισμός απλής ρίζας της εξίσωσης διασποράς (με σ συμβολίζεται η κυκλική συχνότητα ω). ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Σημειώνουμε ότι εξ ορισμού ένας προοδευτικός κυματισμός θα μετατοπισθεί κατά μία απόσταση ενός μήκους κύματος L, σε μία περίοδο Τ. Υπενθυμίζοντας ακόμη ότι η ταχύτητα του προοδευτικού κυματισμού είναι C = L/T και ότι $\omega = 2\pi/T$ και $k = 2\pi/L$, προκύπτει ότι η ταχύτητα C μπορεί να εκφρασθεί μέσω της εξίσωσης (19) ως:

$$\left(\frac{2\pi}{T}\right)^2 = g \frac{2\pi}{L} \tanh(kL) \, \dot{\eta} \, C^2 = \frac{L^2}{T^2} = \frac{g}{k} \tanh(kh) \tag{20}$$

Εκτελώντας ανάλογες μαθηματικές πράξεις με την εξίσωση (19) προκύπτει μια σχέση για το μήκος κύματος $L = \frac{g}{2\pi}T^2 \tanh\left(\frac{2\pi h}{L}\right)$ (21) Σε βαθύ νερό, το kh είναι μεγάλο και tanh(2πh/L)=1.0. Για το λόγο αυτό, ο δείκτης Ο χρησιμοποιείται για να υποδηλώσει το βαθύ νερό.

Γενικά ισχύει
$$L = L_0 \tanh(kh)$$
 (22)

Κατά συνέπεια το μήκος κύματος μειώνεται συνεχώς καθώς ο κυματισμός κινείται σε μειούμενα βάθη νερού υποθέτοντας ότι η περίοδος παραμένει σταθερή.

Οι εξισώσεις (19), (20) και (22), που είναι στην πραγματικότητα οι ίδιες εξισώσεις εκφρασμένες ως προς διαφορετικές μεταβλητές, είναι γνωστές στη διεθνή βιβλιογραφία ως εξισώσεις διασποράς (dispersion) επειδή περιγράφουν τον τρόπο με τον οποίο σε ένα πεδίο προοδευτικών κυματισμών που συνίσταται από πολλές συχνότητες, οι επί μέρους συνιστώσες του διαχωρίζονται ή «διασπείρονται» λόγω των διαφορετικών ταχυτήτων των συνιστωσών αυτών κυματισμών.

Η ταχύτητα μετάδοσης του κύματος C ισούται με:

$$C = \frac{L_0}{T} \tanh(kh) \tag{23}$$

 $C = C_0 \tanh(kh) \tag{24}$

Όπως θα αποδείξουμε στη συνέχεια, η περίοδος του κύματος δεν μεταβάλλεται με τη μεταβολή του βάθους. Έτσι από τις προηγούμενες σχέσεις προκύπτει ότι κυματισμοί σταθερής περιόδου επιβραδύνονται όταν εισέρχονται σε ρηχό νερό.

Στο σχήμα 21 παρουσιάζεται σαν συνάρτηση του h/L_0 , ο λόγος $L/L_0 (= L/L_0 = k_0/k)$ καθώς οι υπόλοιπες μεταβλητές εμφανίζονται συνήθως σε υπολογισμούς με κυματισμούς. Το σχήμα 21 παρέχει τη δυνατότητα να προσδιορισθούν οι μεταβλητές αυτές με γραφικό τρόπο σε περιπτώσεις νερού ενδιάμεσου ή ρηχού βάθους. [Πηγή: Μαυράκος, 1999]

Σχήμα 21. Μεταβολή διαφόρων κυματικών παραμέτρων με το βάθος h/L_o. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

1.2.Άνεμος

Στη μελέτη του πεδίου του ανέμου πρέπει να γνωρίζουμε την καθ΄ ύψος κατανομή της μέσης ταχύτητας του ανέμου $\overline{V_{tz}}$. Για τη στιγμιαία τιμή της πνοής του ανέμου γίνεται η ακόλουθη παραδοχή $V = \overline{V_{tz}} + v'$ (1.2.1)

όπου $\overline{V_{tz}}$ είναι η μέση τιμή της ταχύτητας και v' είναι η στατιστική απόκλιση της τυχαίας μεταβλητής V. Το μέγεθος $\overline{V_{tz}}$ είναι συνάρτηση της καθ' ύψος απόστασης του θεωρούμενου σημείου από την επιφάνεια της θάλασσας και του χρονικού διαστήματος που χρησιμοποιήθηκε για το σχηματισμό της μέσης τιμής. Όταν δεν υπάρχουν αξιόπιστες μετρήσεις μπορεί να ακολουθηθεί ο παρακάτω εκθετικός νόμος:

$$\overline{V_{tz}} = a \cdot \overline{V_{1hr10}} \bullet \left(\frac{z}{10}\right)^{\beta}$$
(1.2.2)

όπου

 $\overline{V_{tz}}$ =η μέση τιμή της ταχύτητας του ανέμου σε ύψος z και για χρονικό διάστημα t

 $\overline{V_{hr10}}$ = η μέση τιμή της ταχύτητας του ανέμου σε ύψος 10 m από την επιφάνεια της θάλασσας για χρονικό διάστημα 1hr

α, β= σταθερές που δίνονται στον πίνακα 2 και με τις οποίες λαμβάνονται υπόψη αποκλίσεις που προκύπτουν στη μέση τιμή όταν ο μέσος χρόνος μέτρησης δεν συμπίπτει με αυτόν που χρησιμοποιήθηκε για το σχηματισμό της $\overline{V_{hrl0}}$

Συντελεστής	Μέσος χρόνος μέτρησης					
	1hr	10min	1min	15sec	5sec	3sec
α	1.000	1.060	1.180	1.260	1.310	1.330
β	0.150	0.130	0.113	0.106	0.102	0.100

Πίνακας 2. ΠΗΓΗ: Σ.Α.ΜΑΥΡΑΚΟΣ «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999

Υπό ορισμένες προϋποθέσεις, που ισχύουν και για τους θαλάσσιους κυματισμούς, ο άνεμος μπορεί να θεωρηθεί σαν μια διαδικασία κατά Gauss. Στο πεδίο των συχνοτήτων μια τέτοια διαδικασία περιγράφεται πλήρως όταν είναι γνωστό το φάσμα κατανομής της ενέργειάς της. Σύμφωνα με τις προδιαγραφές του νορβηγικού νηογνώμονα το τελευταίο δίνεται από τη σχέση:

$$f \bullet S(f) = 4k\overline{V_{1hr10}} \cdot \frac{\tilde{f}}{\left(2 + \tilde{f}\right)^{5/6}}$$
(1.2.3)

όπου

 \widetilde{f} : αδιάστατη συχνότητα ($\widetilde{f} = f \cdot L / \overline{V_{1hr10}}$)

S: πυκνότητα φάσματος (m^2/h_z)

f: συχνότητα (hz)

L: μέγεθος κλίμακας (m) (συνήθως λαμβάνουμε L=1800m)

Κ: συντελεστής τριβής που εξαρτάται από την κατάσταση της θάλασσας και ισούται με 0,002 ή0,0015 για κυματώδη ή ταραγμένη κατάστασή της αντίστοιχα

 $\overline{V_{_{1hr10}}}$: όπως ορίστηκε προηγούμενα [Πηγή: Μαυράκος, 1999]

1.3.Ρεύματα

Για τον προσδιορισμό της καθ' ύψος διανομής της ταχύτητας των θαλάσσιων ρευμάτων τα θεωρούμε συνήθως σαν υπέρθεση ρεύματος που δημιουργείται από το πεδίο ανέμου και ρεύματος που προκαλείται από παλίρροιες. Για τα πρώτα, τα ρεύματα αέρα, θεωρούμε γραμμική εξάρτηση της ταχύτητάς τους από το βάθος ενώ για τα δεύτερα, τα ρεύματα παλίρροιας, αποδεχόμαστε αντίστοιχα εκθετική εξάρτηση. Μπορούμε να γράψουμε:

$$V_{\rho \varepsilon \upsilon \mu}(z) = V_{\pi \alpha \lambda}(z) + V_{\alpha \nu \varepsilon \mu}(z)$$
Kai $V_{\pi \alpha \lambda}(z) = V_{\pi \alpha \lambda} \left(\frac{d+z}{d}\right)^{1/7}$ yia $z \le 0$

$$V_{\alpha \nu \varepsilon \mu}(z) = V_{\alpha \nu \varepsilon \mu} \left(\frac{d_0 + z}{d_0}\right)$$
 yia $-d_0 \le z \le 0$

$$V_{\alpha \nu \varepsilon \mu}(z) = 0$$
 gia $z \leq -d_0$

όπου:

 $V_{\rho e \nu \mu}(z)$ = η συνολική ταχύτητα του ρεύματος σε απόσταση z από την ελεύθερη επιφάνεια της θάλασσας

 $V_{_{\!\it m\!x\!\lambda}}$ = η ταχύτητα του ρεύματος παλίρροιας στην ελεύθερη επιφάνεια της θάλασσας

 $V_{{\rm av}{\rm e}\mu}$ = η ταχύτητα ρεύματος προκαλούμενου από τον άνεμο στην ελεύθερη επιφάνεια

d = το βάθος του νερού μέχρι την ελεύθερη επιφάνεια

 d_0 = βάθος αναφοράς για ρεύματα προκαλούμενα από τον άνεμο ($d_0 = 50m$) (κάτω από το βάθος αυτό θεωρείται μηδενική η ταχύτητά τους)

 \mathcal{I} = απόσταση από την ελεύθερη επιφάνεια, θετική με κατεύθυνση προς τα πάνω

Για τις διάφορες περιοχές της Γης υπάρχουν αξιόπιστες μετρήσεις των ταχυτήτων των ρευμάτων που προκαλούνται από παλίρροιες. Αντίθετα σε περίπτωση έλλειψης μετρήσεων για τις ταχύτητες των ρευμάτων που προκαλούνται από τον άνεμο δεχόμαστε ότι στην επιφάνεια ανοικτής θάλασσας ισχύει η σχέση:

 $V_{\alpha\nu\varepsilon\mu} = 0.02 \cdot \overline{V_{1hr10}}$ όπου τα μεγέθη $V_{\alpha\nu\varepsilon\mu}$ και $\overline{V_{1h10}}$ ορίσθηκαν προηγούμενα.

[Πηγή: Μαυράκος, 1999]

2.Τεχνολογία ΡΑΝΤΑΡ απεικονίσεων

2.1. Ενεργητικοί Μικροκυματικοί δέκτες - Radar

Το ραντάρ (Radar - Radio Detection and Ranging, δηλαδή Ραδιο-Ανίχνευση και Αποστασιομέτρηση) είναι μικροκυματικό ενεργητικό σύστημα το οποίο χρησιμοποιείται για την ανίχνευση, εντοπισμό, απεικόνιση και παρακολούθηση αντικειμένων. Τα ραντάρ λειτουργούν στα παρακάτω κανάλια μικροκυματικής ακτινοβολίας:

Κανάλι	Συχνότητα GHz
Р	0.225-0.390
L	0.390-1.550
S	1.550-4.200
С	4.200-5.750
X	5.750-10.90
К	10.9-36.0
Q	36.0-46.0
V	46.0-56.0
W	56.0-100

Πίνακας 3. ΠΗΓΗ: ΒΑΣΙΛΕΙΑ ΚΑΡΑΘΑΝΑΣΗ «ΜΙΚΡΟΚΥΜΑΤΙΚΗ ΤΗΛΕΠΙΣΚΟΠΗΣΗ», 2014

Η αρχή λειτουργίας του ραντάρ στηρίζεται στην εκπομπή ενός ηλεκτρομαγνητικού παλμού (pulse) ως δέσμη ακτίνων (beam) και στη συνέχεια τη λήψη της ανακλώμενης, από τα διάφορα αντικείμενα τα οποία φωτίζονται από το σήμα εκπομπής, ακτινοβολίας. Η κεραία εκπομπής (transmitter) και λήψης των παλμών (receiver) είναι συνήθως η ίδια κεραία (antenna). Η δέσμη χαρακτηρίζεται από τη γεωμετρία της κεραίας και τη συχνότητα των μικροκυμάτων. Ο κάθε παλμός χαρακτηρίζεται από το χρόνο εκπομπής του (reference pulse time). Με τη μέτρηση του χρόνου εκπομπής – επιστροφής του παλμού καθώς επίσης και της ισχύος του είναι δυνατή η ταυτόχρονη μέτρηση: α) της απόστασης του στόχου από τον δέκτη και β) της ανακλώμενης μικροκυματικής ακτινοβολίας από τον στόχο. Η μεγάλη σημασία του ραντάρ έγκειται στη δυνατότητά του να ανιχνεύει αντικείμενα σε μεγάλες αποστάσεις τις οποίες τις μετρά με μεγάλη ακρίβεια και χωρίς να επηρεάζεται από τις συνθήκες φωτισμού και τις καιρικές συνθήκες. Οι αισθητήρες που φέρουν οι τεχνητοί δορυφόροι είναι τα παθητικά ραδιόμετρα, τα σκεδασόμετρα (συνεχής κυματομορφή), οι υψομετρητές ραντάρ ή αλτίμετρα (συνεχής κυματομορφή) και ραντάρ απεικονίσεων (παλμός). Εκτός από τα ραδιόμετρα, οι υπόλοιποι δέκτες είναι ενεργητικοί τηλεπισκοπικοί μικροκυματικοί δέκτες. Τα ραντάρ απεικονίσεων διακρίνονται σε δύο τύπους :

- Πραγματικού Ανοίγματος Ραντάρ (Real Aperture Radar, RAR)
- Συνθετικού Ανοίγματος Ραντάρ (Synthetic Aperture Radar, SAR)

Η διαφορά μεταξύ των δύο τύπων ραντάρ έγκειται στη χωρική διακριτική τους ικανότητα κατά τη διεύθυνση της τροχιάς του δορυφόρου. Στα ραντάρ πραγματικού ανοίγματος αυτή προσδιορίζεται από το εύρος δέσμης της κεραίας και επομένως είναι ανάλογη της απόστασης μεταξύ δέκτη και στόχου. Τα ραντάρ συνθετικού ανοίγματος χρησιμοποιούν επεξεργασία σήματος για να συνθέσουν ένα άνοιγμα κεραίας το οποίο είναι εκατοντάδες φορές μεγαλύτερο από το πραγματικό άνοιγμα της σε λειτουργία κεραίας. Η χωρική διακριτική ικανότητα αυτών των συστημάτων κατά μήκος της γραμμής πτήσης, είναι ανεξάρτητη από την απόσταση στόχου-δέκτη. [Πηγή: Καραθανάση, 2014]

2.2. Βασικές αρχές λειτουργίας των ραντάρ

Η βασική αρχή λειτουργίας των ραντάρ είναι η μετάδοση και λήψη παλμών. Βραχείς (διάρκειας microsecond), μεγάλης ενέργειας παλμοί μικροκυματικής ακτινοβολίας εκπέμπονται, διανύουν πλευρική απόσταση (range) μέχρι το στόχο και στη συνέχεια επιστρέφουν και καταγράφεται το σήμα επιστροφής τους, δηλαδή η ηχώ τους (echoe) όπως φαίνεται στο σχήμα 22.

Από την καταγραφή του σήματος επιστροφής έχουμε πληροφορίες για:

- την ισχύ του επιστρεφόμενου σήματος
- τη φάση
- τη διεύθυνση λήψης

Ειδικότερα ένα διάγραμμα λειτουργιών των τηλεπισκοπικών ραντάρ δίνεται στο σχήμα 23.

Σχήμα 23. Διάγραμμα λειτουργιών των τηλεπισκοπικών radar. ΠΗΓΗ: ΒΑΣΙΛΕΙΑ ΚΑΡΑΘΑΝΑΣΗ «ΜΙΚΡΟΚΥΜΑΤΙΚΗ ΤΗΛΕΠΙΣΚΟΠΗΣΗ», 2014

Η καρδιά ενός ραντάρ είναι το σύστημα ελέγχου του χρόνου και της συχνότητας παλμών (timing and frequency control). H γεννήτρια παλμών (pulse generation) παράγει μια παλμοσειρά I τη χρονική στιγμή t, η οποία συνήθως μεταδίδεται με συγκεκριμένη φάση αναφοράς (reference phase, φ_i). Η φάση αναφοράς φ_i είναι ενδεικτική για κάθε παλμοσειρά i. Η γεννήτρια παλμών παράγει διαδοχικά στο χρόνο παλμοσειρές, με συγκεκριμένη συχνότητα παραγωγής παλμών prf (pulse repetition frequency) η οποία ορίζεται από το σύστημα ελέγχου του χρόνου και της συχνότητας παλμών. Στη συνέχεια ο διαμορφωτής διεγείρεται από την παλμοσειρά και παράγει παλμούς υψηλής ισχύος, με κατάλληλο σχήμα και διάρκεια. Η έξοδος του διαμορφωτή διαμορφώνει τη ραδιοσυχνότητα της παλμοσειράς η οποία πρέπει να παραμένει σταθερή. Αυτό επιτυγχάνεται με τη βοήθεια του ταλαντωτή ο οποίος βρίσκεται στο σύστημα ελέγχου. Οι RF (Radio Frequency) παλμοί ενισχύονται μέσω ενός ενισχυτή (amplifier) στον πομπό (transmitter) και αποστέλλονται στην κεραία μέσω ενός κυκλοφορητή (circ) όπου και ακτινοβολούνται προς τον στόχο. Το λαμβανόμενο από την κεραία σήμα είναι πολύ ασθενές. Επομένως, πρώτη εργασία μετά τη λήψη του σήματος είναι η ενίσχυσή του από έναν ενισχυτή χαμηλού θορύβου (low noise Radio Frequency amplifier). Δυστυχώς ο θόρυβος προστίθεται πάντα στο σήμα. Στην περίπτωση του radar, επειδή το σήμα το οποίο λαμβάνει η κεραία έχει ήδη κάποιο θόρυβο, οι θόρυβοι οι οποίοι προστίθεται σε αυτό στη συνέχεια από τα διάφορα εξαρτήματα του radar, μεταβάλλουν τόσο το λαμβανόμενο σήμα όσο και τον λαμβανόμενο από την κεραία θόρυβο. Το σήμα επιστροφής (ή ηχώ του στόχου) είναι μια παλμοσειρά πανομοιότυπη με την εκπεμπόμενη παλμοσειρά αλλά μετατοπισμένη χρονικά κατά $\tau = 2R/c$. Η πληροφορία την οποία φέρει το σήμα επιστροφής βρίσκεται στη φάση και το πλάτος της παλμοσειράς και όχι στη φέρουσα συχνότητα η οποία προέκυψε από τη διαμόρφωση της παλμοσειράς. Για αυτό το λόγο το σήμα πρέπει να αποδιαμορφωθεί (demodulation). Αυτό επιτυγχάνεται με τον πολλαπλασιασμό του λαμβανομένου σήματος με ένα ημιτονοειδές σήμα. Στην περίπτωση των ραντάρ χρησιμοποιείται η τετραγωνική

(quadrature) αποδιαμόρφωση. Αυτή χρησιμοποιεί ένα ζευγάρι σημάτων τα οποία παράγονται από τον τοπικό ταλαντωτή LO ο οποίος βρίσκεται στη μονάδα ελέγχου. Το ένα σήμα έχει την ίδια φάση με τον τοπικό ταλαντωτή ($<0^{\circ}$) και το άλλο διαφορά 90° ($<90^{\circ}$). Δηλαδή χρησιμοποιείται συγχρόνως ημιτονοειδής και συνημιτονοειδής αποδιαμόρφωση. Έτσι, προκύπτουν δύο συνιστώσες σήματος, η σε φάση συνιστώσα (in phase, I) και η τετραγωνικής φάσης συνιστώσα (quadrature, Q). Δηλαδή το εξαγόμενο σήμα θεωρείται ως διατεταγμένο ζεύγος Ι,Q και αποδίδεται με τον μιγαδικό αριθμό I+jQ. Από την καθυστέρηση τ του σήματος επιστροφής προσδιορίζεται η πλευρική απόσταση (range) του στόχου, και επομένως η απόστασή του κατά τη διεύθυνση την κάθετη στη γραμμή πτήσης. Αυτό δεν συμβαίνει όμως για τα ραντάρ απεικονίσεων, τα οποία μετρούν την καθυστέρηση του σήματος για πολύ λίγους στόχους στο έδαφος (πρώτο και τελευταίο εικονοστοιχείο κάθε τηλεπισκοπικής σκηνής). Ο προσδιορισμός της πλευρικής απόστασης R σε άλλους τύπους ραντάρ, μπορεί να γίνει και από τη διαφορά συχνότητας Δf_R όταν το radar χρησιμοποιεί διαμόρφωση συχνότητας. Στη συνέχεια το σήμα ενισχύεται και ως προς τα δύο του κανάλια Ι και Q και μετατρέπεται σε ψηφιακό (analog/digital conversion). Η δειγματοληψία των δύο καναλιών κατά τη ψηφιοποίηση γίνεται με το θεώρημα του Shannon. Λόγω της ψηφιοποίησης η διάσταση του κάθε εικονοστοιχείου (pixel spacing) είναι η μισή της χωρικής διακριτικής ικανότητας του δέκτη λήψης. Τα δύο ψηφιοποιημένα σήματα μεταφέρονται στο σταθμό λήψης δεδομένων. Εκεί παράγεται η μιγαδική απεικόνιση ραντάρ (εάν πρόκειται για radar απεικονίσεων) της οποίας κάθε εικονοστοιχείο έχει δύο τιμές την Ι και την Q. Από αυτά τα δεδομένα ο χρήστης παράγει την απεικόνιση ισχύος της οποίας το κάθε εικονοστοιχείο έχει τιμή την $(l^2+Q^2)^{1/2}$ και την απεικόνιση φάσης. Από τις σχετικές επεξεργασίες αυτών των απεικονίσεων παίρνουμε πληροφορίες για την οπισθοσκέδαση, ομαλότητα κλπ της γήινης και θαλάσσιας επιφάνειας. [Πηγή: Καραθανάση, 2014]

2.3.Εξίσωση του Radar

Η ισχύς P η οποία μετράται κατά τη λήψη του κάθε παλμού στο ραντάρ, μπορεί να εκφρασθεί ως συνάρτηση της ανακλαστικότητας του στόχου. Στην ενεργητική Τηλεπισκόπηση οι γωνίες πρόσπτωσης και ανάκλασης είναι ίσες γι' αυτόν τον λόγο ο συντελεστής ανακλαστικότητας R ο οποίος χρησιμοποιείται στα ραδιόμετρα $R = L_{\alpha\nu}/L_{\mu\nu\sigma}$ αντικαθίσταται από τον συντελεστή ανακλαστικότητας δύο διευθύνσεων $R_b (\theta_{\alpha\nu} \phi_{\alpha\nu}, \theta_{\mu\nu\sigma\sigma} \phi_{\mu\nu\sigma\sigma})$.

$$\begin{split} R_b & \left(\theta_{\alpha\nu} \phi_{\alpha\nu}, \theta_{\text{pros}} \phi_{\text{pros}} \right) = L_{\alpha\nu} (\theta_{\alpha\nu}, \phi_{\alpha\nu}) / \text{E} \quad \text{fonon} \quad L \text{ to μέγεθος tης ακτινοβολίας } (Wm^{-2} sr^{-1}) \text{ kai} \\ E \text{ to μέγεθος tou φωτισμού } (Wm^{-2}) \text{ nou προέρχεται από tην πηγή.} \end{split}$$

($E = L_{most}$ (θ_{mos} , ϕ_{mos}) cos θ_{mos} dΩ και σε περίπτωση ισότροπης πηγής $E = \pi \cdot L$)

Στην περίπτωση όμως των radar αυτός ο συντελεστής έχει αντικατασταθεί από την έννοια της «ενεργού διατομής» (cross section). Εξ ορισμού, η διαφορική ενεργός διατομή $d\sigma/d\Omega$ είναι η ανακλώμενη ενέργεια ανά μοναδιαία στερεά γωνία, ανά μοναδιαία προσπίπτουσα ενέργεια σε αυτήν την στερεά γωνία. Υπολογίζεται ότι η ενεργός διατομή, $d\sigma(\theta_{av}\phi_{av},\theta_{\pi\sigma\sigma}\phi_{\pi\sigma\sigma})/d\Omega$, συνδέεται

με τον συντελεστή ανακλαστικότητας δύο διευθύνσεων $R_b(\theta_{\alpha\nu}\phi_{\alpha\nu}, \theta_{\pi\nu\sigma}\phi_{\pi\nu\sigma})$ βάσει της σχέσης $d\sigma(\theta_{\alpha\nu}\phi_{\alpha\nu}, \theta_{\pi\nu\sigma}\phi_{\pi\nu\sigma})/d\Omega = R_b(\theta_{\alpha\nu}\phi_{\alpha\nu}, \theta_{\pi\nu\sigma}\phi_{\pi\nu\sigma})\cos^2\theta d\Sigma$

όπου dΣ η μοναδιαία επιφάνεια του στόχου, θ η διεύθυνση της γραμμής όρασης στόχου-δέκτη ως προς την κάθετη στον στόχο και dΩ η στερεά γωνία με την οποία ο στόχος βλέπει την πηγή.

Εξ ορισμού η «ενεργός διατομή radar» του στόχου είναι:

 $\sigma_r(\theta,\phi) = 4\pi \, d\sigma / d\Omega = 4\pi \cdot R_b \left(\theta_{\alpha\nu} \phi_{\alpha\nu}, \theta_{\pi\nu\sigma\sigma} \phi_{\pi\nu\sigma\sigma} \right) \cos^2 \theta \cdot d\Sigma$

Επίσης, βάσει της ενεργούς διατομής radar έχει εισαχθεί μια άλλη έννοια, ο συντελεστής οπισθοσκέδασης ο οποίος ορίζεται ως $\sigma_0 = \sigma_r(\theta, \phi)/d\Sigma = 4\pi \cdot R_b \cos^2 \theta$.

Αυτός είναι καθαρός αριθμός, αλλά επειδή έχει συνήθως μεγάλες τιμές για αυτό εκφράζεται σε dBs.

 $\sigma_{0dB} = 10 \log \sigma_0$

Επίσης ορίζεται και ο συντελεστής γ (θ, φ)

 $\gamma(\theta,\phi) = \sigma_r(\theta,\phi) / d\Sigma \cos\theta = 4\pi \cdot R_b \left(\theta_{\alpha\nu} \phi_{\alpha\nu}, \theta_{\pi\nu\sigma} \phi_{\pi\nu\sigma} \right) \cos\theta$

Για μία επομένως ισότροπη επιφάνεια όπου $R_{\rm b}=R/\pi$

 $σ_0 = 4 \cdot R \cdot \cos^2 \theta$ και $\gamma = 4 \cdot R \cdot \cos \theta$

[Πηγή: Καραθανάση, 2014]

Η κλασική εξίσωση του radar συνδέει την ισχύ P_r η οποία μετράται κατά τη λήψη του κάθε παλμού με την ενεργό διατομή radar του στόχου σ_r όπως φαίνεται και στο παρακάτω σχήμα 24.

Σχήμα 24. Σύνδεση της μετρούμενης ισχύος Ρ_r κατά τη λήψη του κάθε παλμού με την ενεργό διατομή radar του στόχου σ_r. ΠΗΓΗ: ΒΑΣΙΛΕΙΑ ΚΑΡΑΘΑΝΑΣΗ «ΜΙΚΡΟΚΥΜΑΤΙΚΗ ΤΗΛΕΠΙΣΚΟΠΗΣΗ», 2014

$$P_r = P_t \cdot G_0^2 \cdot \lambda^2 \cdot \sigma_r / (4\pi)^3 \cdot R^4 \cdot L$$

όπου :

 P_t η ισχύς του εκπεμπόμενου σήματος

 G_0 το κέρδος της κεραίας

L οι απώλειες του συστήματος

 λ το μήκος κύματος

R η πλευρική απόσταση (range)

Από την παραπάνω εξίσωση παρατηρούμε ότι το λαμβανόμενο σήμα είναι ευαίσθητο στο κέρδος της κεραίας, στο μήκος κύματος και στην πλευρική απόσταση (range). Το radar βλέπει τη γήινη επιφάνεια με πλάγια θέα η οποία ορίζεται από το γωνιακό εύρος της δέσμης της παραγόμενης από το ηλεκτρομαγνητικό κύμα και την πλευρική απόσταση (σχήμα 25).

Τα εικονοστοιχεία κατά μήκος της εγκάρσιας (across track) διεύθυνσης της απεικόνισης (δηλαδή σε κάθε γραμμή μιας απεικόνισης ραντάρ) λαμβάνουν τιμές οι οποίες αντιστοιχούν στην ηχώ του σήματος που λαμβάνεται από μια συγκεκριμένη παλμοσειρά, μέσα σε μια χρονική διάρκεια. Η πρώτη ηχώ του σήματος (δηλαδή η τιμή του πρώτου εικονοστοιχείου) δίνει πληροφορία για στόχους οι οποίοι βρίσκονται στην εγγύτερη πλευρική απόσταση (near range), οι ενδιάμεσες τιμές αντιστοιχούν σε ενδιάμεσους στόχους (slant range), ενώ η τελευταία για στόχους οι οποίοι βρίσκονται στή απόσταση (far range). Σύμφωνα με την εξίσωση του

ραντάρ η πληροφορία αυτή συνδέεται με την «ενεργό διατομή ραντάρ», σ_r, του στόχου και δίνει το βαθμό οπισθοσκέδασης του στόχου. Η απόσταση μεταξύ εγγύτερου και απώτερου στόχου ορίζει το πλάτος της λήψης (swath). Η πλευρική απόσταση εδάφους (ground range) είναι η απόσταση επί του εδάφους οποιουδήποτε στόχου από το σημείο ναδίρ του ραντάρ. Η αζιμουθιακή (along track ή azimuth) διεύθυνση της απεικόνισης είναι αποτέλεσμα της επανάληψης των εκπεμπόμενων παλμών κατά τη διάρκεια της κίνησης του δέκτη (δορυφόρου) κατά μήκος της τροχιάς του. Η διακριτική ικανότητα του ραντάρ στη διεύθυνση την κάθετη στη γραμμή πτήσης (range resolution) είναι η ελάχιστη απόσταση την οποία πρέπει να έχουν δύο γειτονικοί σημειακοί στόχοι στη διεύθυνση των πλευρικών αποστάσεων ώστε να γίνονται διακριτοί, δηλαδή να προσδιορίζονται από τη διαδοχική χρονικά καταγραφή της ηχούς μιας παλμοσειράς. [Πηγή: Καραθανάση, 2014]

2.4.Αρχές λειτουργίας του Ραντάρ Συνθετικού Ανοίγματος (ΣΑΡ)

Σύμφωνα με τη γεωμετρία λήψης των ραντάρ πραγματικού ανοίγματος (SLAR) απεικονίσεων, για την αύξηση της διακριτικής τους ικανότητας (ΔΙ) κατά τη διεύθυνση των αζιμούθιων απαιτείται μεγάλου ανοίγματος κεραία (ΔΙ=Rλ/D). Για ραντάρ παρατήρησης αεροδρομίων όπου η πλευρική απόσταση R των 50 Km είναι ικανοποιητική και για ένα σύνηθες D/λ της τάξης των 100, προκύπτει Διακριτική Ικανότητα των αζιμούθιων ίση με 500 m η οποία κρίνεται ικανοποιητική. Αντίθετα για διαστημικές πλατφόρμες οι οποίες έχουν συνήθως πλευρική απόσταση R=800 Km για να επιτύχουμε Διακριτική Ικανότητα ίση με 1 Km απαιτείται D/λ ίσο με 800 το οποίο πρακτικά είναι αδύνατο.

Για αυτό το λόγο αναπτύχθηκαν τα Ραντάρ Συνθετικού Ανοίγματος (Synthetic Aperture Radars). Αυτοί οι τύποι των ραντάρ πετυχαίνουν υψηλή διακριτική ικανότητα στη διεύθυνση των αζιμούθιων η οποία είναι ανεξάρτητη από την πλευρική απόσταση χρησιμοποιώντας κεραία μικρού μήκους και σχετικά μεγάλο μήκος κύματος. Μια συνθετική κεραία παράγεται από την κίνηση του φορέα του δέκτη. Ο ίδιος στόχος πάνω στη γήινη επιφάνεια εμπίπτει στο εύρος δέσμης του ραντάρ και επομένως δέχεται και σκεδάζει ακτινοβολία, για πολλές γειτονικές, διαδοχικές κατά τον άξονα του αζιμούθιου, θέσεις του ραντάρ. Επομένως για τον ίδιο στόχο έχουμε καταγεγραμμένα πολλά σήματα. Συνδυάζοντας αυτά τα διαφορετικά σήματα, παράγεται μια «συνθετική κεραία» στον υπολογιστή η οποία μας παρέχει μια πολύ υψηλότερη διακριτική ικανότητα κατά τη διεύθυνση του αζιμούθιου. Στο σχήμα 26 παρουσιάζονται οι διαφορετικές θέσεις 1,2,...,Ν του ραντάρ για τις οποίες δέχεται επιστρεφόμενο σήμα από τον στόχο Ρ. Βασικό ρόλο στον υπολογισμό της συνθετικής κεραίας παίζει το γεγονός ότι η συχνότητα των σημάτων τα οποία λαμβάνονται μεταβάλλεται λόγω της μεταβολής της σχετικής θέσης του ραντάρ ως προς τον στόχο. Αυτή η μεταβολή (ολίσθηση) της συχνότητας οφείλεται στο φαινόμενο Doppler.

[Πηγή: Καραθανάση, 2014]

Σχήμα 26. Διαφορετικές θέσεις του ραντάρ για τις οποίες δέχεται επιστρεφόμενο σήμα από τον στόχο Ρ. ΠΗΓΗ: ΒΑΣΙΛΕΙΑ ΚΑΡΑΘΑΝΑΣΗ «ΜΙΚΡΟΚΥΜΑΤΙΚΗ ΤΗΛΕΠΙΣΚΟΠΗΣΗ», 2014

Οι εικόνες ραντάρ μοιάζουν με φωτογραφίες αλλά η ερμηνεία τους είναι πολύ διαφορετική. Οι διαφορές τους είναι οι εξής:

- Τα ραντάρ είναι ενεργά συστήματα. Όταν λαμβάνουν εικόνες από μια περιοχή, στην ουσία την «φωτίζουν», όχι με φως, αλλά με ηλεκτρομαγνητικά κύματα συγκεκριμένου μήκους κύματος.
 Οι εικόνες μικροκυμάτων παρέχουν πληροφορίες σχετικά με τις γεωμετρικές και διηλεκτρικές ιδιότητες της επιφάνειας ή του όγκου που μελετάται. Οι ιδιότητες αυτές εξαρτώνται από τη τραχύτητα της επιφάνειας, το είδος του υλικού και την υγρασία που περιέχει.
- Οι εικόνες που λαμβάνονται από τα ραντάρ είναι ασπρόμαυρες, καθώς για τη λήψη τους απαιτείται η χρήση ηλεκτρομαγνητικής ακτινοβολίας ενός μόνο μήκους κύματος. Οι έγχρωμες εικόνες ραντάρ προκύπτουν από το συνδυασμό τριών απλών εικόνων που λαμβάνονται σε διαφορετικές ημερομηνίες παράγοντας μια χρονικά επάλληλη σύνθεση.
- Το ραντάρ εκπέμπει ένα σήμα μικροκυμάτων και στη συνέχεια μετρά την ισχύ με την οποία ένα αντικείμενο ανακλά το σήμα. Αυτό ονομάζεται οπισθοσκέδαση. Για παράδειγμα όσο πιο αγριεμένη είναι η θάλασσα, τόσο υψηλότερη είναι η οπισθοσκέδαση και επομένως τόσο πιο φωτεινή η εικόνα ενώ η ήρεμη θάλασσα θα έχει μαύρο χρώμα στις ασπρόμαυρες απεικονίσεις.
 Τα πλοία εμφανίζονται ως φωτεινές κουκίδες, καθώς είναι κατασκευασμένα από μέταλλο και έχουν πολλές γωνίες που ανακλούν την ενέργεια των μικροκυμάτων καλύτερα από το νερό.

Σχήμα 27. Οπισθοσκέδαση στην επιφάνεια της θάλασσας^[10]

Το γεγονός ότι ο δορυφόρος εκπέμπει ραδιοπαλμούς, θέτει σοβαρές απαιτήσεις σε ότι αφορά την ηλεκτρική του ισχύ, με αποτέλεσμα να στοιχίζει πολύ αλλά και να γίνεται πολύπλοκος. Οι αισθητήρες ραντάρ χρησιμοποιούν την ενέργεια που εκπέμπεται στα πιο μεγάλα μήκη κύματος (>3cm) και για αυτό το λόγο η ακτινοβολία αυτή μπορεί να διαπεράσει τα σύννεφα, αφού η τυπική διάμετρος των σταγονιδίων στα σύννεφα είναι πολύ μικρότερη, δηλαδή της τάξης του 0.1mm. Ακόμη εάν η ίδια περιοχή παρατηρηθεί από δύο διαφορετικές γωνίες, μπορεί να υπολογιστεί η απόσταση ενός αντικειμένου από το δορυφόρο και επομένως να προσδιοριστεί το υψόμετρό του πάνω από τη στάθμη της θάλασσας (συμβολομετρία).

3. Οι δορυφόροι

Η Τηλεπισκόπηση είναι ένας τρόπος συλλογής πληροφοριών για διάφορα αντικείμενα, χρησιμοποιώντας όργανα που δεν έρχονται σε επαφή με τα αντικείμενα αυτά. Στην τηλεπισκόπηση είναι απαραίτητα τρία στοιχεία: α) μία πλατφόρμα στην οποία συγκρατείται το όργανο μέτρησης, β) ένα αντικείμενο προς παρατήρηση και γ) ένα όργανο μέτρησης ή αισθητήρας με τον οποίο παρατηρείται το αντικείμενο. Το τέταρτο σημαντικό στοιχείο και κύριος σκοπός της τηλεπισκόπησης είναι η πληροφορία που περιέχουν τα δεδομένα και το πώς αυτή επεξεργάζεται και αποθηκεύεται. Ως πλατφόρμα εννοείται κάθε κατασκευή που βρίσκεται σε απόσταση από την επιφάνεια της γης. Στην παρούσα εργασία η πλατφόρμα που χρησιμοποιείται είναι ο δορυφόρος. Το παρατηρούμενο αντικείμενο στην περίπτωσή μας είναι τα θαλάσσια φαινόμενα. Οι αισθητήρες ή όργανα μέτρησης εγκαθίσταται πάνω στις πλατφόρμες και στην περίπτωσή μας είναι τα ραντάρ. Τέλος η πληροφορία που περιέχουν τα δεδομένα είναι αυτή που κατέγραψαν οι αισθητήρες από τον πλανήτη μας.^[7] Τα δεδομένα από τους δορυφόρους που χρησιμοποιούν οι τηλεπισκοπικές ΣΑΡ απεικονίσεις, μας βοηθούν να παρακολουθούμε τα θαλάσσια φαινόμενα όπως τα κύματα, τον άνεμο και τα ρεύματα ανεξάρτητα από τις καιρικές συνθήκες ακόμα και τη νύχτα, κάτι που οι άλλοι δορυφόροι δεν μπορούν. Επομένως οι δορυφόροι μπορούν να μας δώσουν πληροφορίες για: Α) Την παρακολούθηση των πετρελαιοκηλίδων εντοπίζοντάς τις προτού φθάσουν στην ακτή. Β) Την ανίχνευση των θαλάσσιων ρευμάτων στα ρηχά νερά, επιτρέποντας έτσι τη χαρτογράφηση του πυθμένα της θάλασσας και των επικίνδυνων υφάλων. Γ) Τη μελέτη των κυμάτων και κατά συνέπεια την πρόγνωση του καιρού με σκοπό την ασφαλέστερη και οικονομικότερη πλοήγηση των πλοίων. Δ) Τη μελέτη και σχεδίαση πλωτών κατασκευών, προκειμένου να είναι ασφαλείς σε ακραίες συνθήκες φυσικού περιβάλλοντος. Δ) Τον ασφαλέστερο πλου των παγοθραυστικών στις παγωμένες θάλασσες, αποφεύγοντας τις περιοχές όπου το στρώμα του πάγου είναι παχύ με κίνδυνο να παγιδευτούν τη νύχτα ή σε συνθήκες ομίχλης.[42]

Σχήμα 28. Εξέδρα εξόρυξης πετρελαίου ^[10]

3.1.Ο δορυφόρος Sentinel-1

Σχήμα 29. Ο δορυφόρος Sentinel-1^[39]

Τα χαρακτηριστικά του δορυφόρου Sentinel -1 απεικονίζονται στον πίνακα 4.

Launch: Sentinel-1A was launched on 3 April 2014 and Sentinel-1B on 25 April 2016				
Launcher: Soyuz rocket				
Launch site:	: Kourou, French Guiana			
Orbit: Polar	r, Sun-synchronous at an altitude of 693 km			
Revisit time	: Six days (at the equator) from two-satellite constellation			
Life: Minim	um of seven years			
Satellite: 2. radar anten	8 m long, 2.5 m wide, 4 m high with 2×10 m-long solar arrays and a 12 m-long na			
Mass: 2300	kg (including 130 kg fuel)			
Instrument:	C-band synthetic aperture radar (SAR) at 5.405 GHz			
Operational Interferometric wide-swath mode at 250 km and 5×20 m resolution modes:				
	Wave-mode images of 20×20 km and 5×5 m resolution (at 100 km intervals)			
	Strip map mode at 80 km swath and 5×5 m resolution			
	Extra wide-swath mode of 400 km and 20×40 m resolution			
Receiving stations:	SAR data: Svalbard, Norway; Matera, Italy; Maspalomas, Spain; Inuvik Canada; and via laser link through EDRS			
	Telemetry, tracking and command: via Kiruna, Sweden			
Main applications: Monitoring sea ice, oil spills, marine winds, waves & currents, land-use				
change, land deformation among others, and to respond to emergencies such as floods and				

earthquakes

Mission: Developed, operated and managed by various ESA establishments

Funding: ESA Member States and the European Union

Prime contractors: Thales Alenia Space, Italy for the satellite; Airbus Defence and Space, Germany for the SAR instrument

Πίνακας 4. Χαρακτηριστικά του δορυφόρου Sentinel-1^[39]

Σχήμα 30. Περιοχή εκτόξευσης Σογιούζ^[12]

Σχήμα 31. Επίγειος σταθμός link^[40]

3.2. Οδηγός Χρήστη

3.2.1. Εφαρμογές

Ο Sentinel-1 παρέχει υπηρεσίες τροφοδοσίας δεδομένων για τις εφαρμογές του Copernicus στις περιοχές της θαλάσσιας παρακολούθησης, της παρατήρησης του εδάφους και των επιχειρήσεων έκτακτης ανάγκης. Αναλυτικά οι περιοχές της παρακολούθησης της θάλασσας (Maritime Monitoring) περιγράφονται παρακάτω:

Σχήμα 32. Εικόνα δορυφόρου από την Ανταρκτική ^[20]

Παρακολούθηση του πάγου (Ice Monitoring)

Οι υπηρεσίες χαρτογράφησης υψηλής ανάλυσης παρέχουν την ταξινόμηση του πάγου και τα δεδομένα για τα παγόβουνα στις εθνικές ακτοφυλακές, στο πολεμικό ναυτικό και στις ναυτιλιακές εταιρίες για να συνεισφέρουν στην εξασφάλιση της

ασφαλούς όλο το χρόνο πλοήγησης στην

καλυμμένη με πάγο Αρκτική και στις υποαρκτικές ζώνες. Για τον θαλάσσιο πάγο, μπορούν να προσδιοριστούν πληροφορίες σχετικά με τη συγκέντρωση του πάγου, την έκταση, τον τύπο, το πάχος και την ταχύτητα κλίσης. Για τη θέση, το μέγεθος και τη μετατόπιση των παγόβουνων μπορούν επίσης να συλλεχθούν πληροφορίες. Τα δεδομένα της διπλής πόλωσης του Sentinel-1 μπορούν να βελτιώσουν σημαντικά την κατάταξη και τη διάκριση του πάγου. Μέσω της ανίχνευσης των αλλαγών στην έκταση του θαλασσίου πάγου της Αρκτικής, ο SENTINEL-1 μπορεί να χρησιμοποιηθεί για την αξιολόγηση των περιβαλλοντικών επιπτώσεων στις παράκτιες περιοχές και τις μεταφορές.

Παρακολούθηση των πλοίων (Ship Monitoring)

SENTINEL-1 χρησιμοποιεί 0 ευρεία κάλυψη επιφανείας με βελτιωμένους χρόνους επανεξέτασης και είναι σε θέση δυνητικά να ανιχνεύσει μικρότερα πλοία από άλλους δορυφόρους. Την ικανότητα της αποστολής να παρατηρεί σε όλες τις καιρικές συνθήκες και κάθε στιγμή της ημέρας ή νύχτας, το κάνει ιδανικό για το

Σχήμα 33. Εικόνα από το δορυφόρο ASAR που απεικονίζει ακριβή στίγμα και την ακριβή τοποθεσία τα πλοία^[20]

των δραστηριοτήτων των πλοίων στη

θάλασσα. Δεδομένα σχετικά με την ανίχνευση των πλοίων μεταδίδονται από τον δορυφόρο σε πραγματικό χρόνο στους συνεργατικούς επίγειους σταθμούς.

Παρακολούθηση της πετρελαϊκής ρύπανσης (Oil Pollution Monitoring)

Σχήμα 34. Εικόνα από δορυφόρο που απεικονίζει μια πετρελαιοκηλιδα. [20]

Οι εφαρμογές για την ανίχνευση πετρελαίου χρησιμοποιούνται για τn συγκέντρωση αποδεικτικών στοιχείων για τις παράνομες απορρίψεις, αναλύοντας την εξάπλωση των πετρελαιοκηλίδων και την αναζήτηση για τα αποθέματα πετρελαίου. Οι πετρελαιοκηλίδες είναι ευδιάκριτες στις εικόνες ΣΑΡ ως χαρακτηριστικά σκούρα χαρακτηριστικά. Δεδομένα σχετικά με την παρακολούθηση της

πετρελαϊκής ρύπανσης μεταδίδονται από το δορυφόρο σε πραγματικό χρόνο και λαμβάνονται από τοπικούς συνεργατικούς επίγειους σταθμούς υποστήριξης. Ομοίως η ανίχνευση της φυσικής διαρροής πετρελαίου από τον πυθμένα των ωκεανών μπορεί να παρέχει ενδείξεις και για την αναζήτηση πετρελαίου.

Θαλάσσιοι άνεμοι (Marine Winds)

Σχήμα 35. Παρατηρήσεις του ανέμου που προέρχονται από μια εικόνα δορυφόρου.^[20]

Το ΣΑΡ είναι ευαίσθητο σε χωρικά ποικίλα μοντέλα τραχύτητας της επιφάνειας που προκαλούνται από τους ανέμους στην επιφάνεια των ωκεανών. Τα προϊόντα Ocean του Sentinel-1 σε συνδυασμό με τα παγκόσμια μοντέλα ωκεάνιων κυμάτων, βοηθούν στον προσδιορισμό της κατεύθυνσης, του μήκους κύματος και των υψών των κυμάτων στους ανοικτούς ωκεανούς και συμβάλλουν στην

πρόβλεψη του καιρού, στις μεταφορές των πλοίων και στις εφαρμογές της ενέργειας των κυμάτων. Οι εκτιμήσεις στο πεδίο των θαλασσίων ανέμων διαδραματίζουν επίσης σημαντικό ρόλο στην παρακολούθηση των πετρελαιοκηλίδων ώστε να βοηθήσουν στη διάκριση από ομοιότητες από τις πραγματικές διαρροές.

Επιπλέον, ο Sentinel-1 παρέχει δεδομένα για τις αλληλεπιδράσεις μεταξύ των κυμάτων του ωκεανού και των ρευμάτων και επιτρέπει την οπτικοποίηση των μεγάλης κλίμακας ωκεάνιων ρευμάτων, τις ψυχρές/θερμές μάζες νερού, τα ρεύματα των παράκτιων υδάτων και των κυμάτων internal.

3.2.2.Λειτουργίες απόκτησης δεδομένων (SM, IW, EW, WV)

Ο SENTINEL-1 δυνητικά λειτουργεί σε τέσσερις αποκλειστικές λειτουργίες απόκτησης δεδομένων (acquisition modes) που είναι οι εξής: α) Λωρίδα χάρτη (Stripmap SM), β) Ευρύ πλάτος λήψης συμβολομετρίας (Interferometric Wide swath IW), γ) Επιπλέον ευρύ πλάτος λήψης (Extra-Wide swath EW) και δ) Κύμα (Wave WV).

Το ΣΑΡ στο κανάλι C στον SENTINEL-1 υποστηρίζει τn λειτουργία σε μονή πόλωση (ΗΗ ή VV) και διπλή πόλωση (HH+HV ή VV+VH) που υλοποιείται μέσω αλυσίδας μετάδοσης μιας (εναλλαγή σε Η ή V) και δύο παράλληλες αλυσίδες λήψης για Н και V πόλωση. την Οι λειτουργίες SM, IW και EW είναι

Σχήμα 36. Λειτουργίες του προϊόντος του SENTINEL-1 [21]

διαθέσιμες σε μονή (ΗΗ ή VV) ή διπλή (ΗΗ+ΗV ή VV+VH) πόλωση. Η λειτουργία WV είναι μονάχα μονή πόλωση. Οι αρχικές conflict-free λειτουργίες είναι οι ΙW με πόλωση VV+VH επί της γης και WV με VV πόλωση πάνω από ανοικτό ωκεανό. Η λειτουργία EW αρχικά παράκτια παρακολούθηση χρησιμοποιείται για την ευρείας περιοχής συμπεριλαμβανομένου της κυκλοφορίας των πλοίων, της διαρροής πετρελαίου και της παρακολούθησης του θαλασσίου πάγου. Η λειτουργία Interferometric Wide swath (IW) είναι το κύριο λειτουργικό χαρακτηριστικό (operational mode) που ικανοποιεί τις περισσότερο γνωστές απαιτήσεις των υπηρεσιών, αποφεύγοντας τις αστοχίες, διατηρώντας την επανεξεταζόμενη επίδοση, απλοποιώντας το σχεδιασμό της αποστολής, μειώνοντας το λειτουργικό κόστος και δημιουργώντας μια σταθερή και μακροπρόθεσμη αρχειοθέτηση. Για κάθε λειτουργία θα είναι δυνατή η παραγωγή προϊόντων στο ΣΑΡ στο Επίπεδο-0, Επίπεδο-1 SLC, Επίπεδο-1 GRD και Επίπεδο-2 OCN.

<u>Λωρίδα χάρτη (Stripmap (SM)</u>: Η λειτουργία stripmap (SM) αποκτά δεδομένα με ένα πλάτος λήψης 80 km με χωρική ανάλυση 5 m επί 5 m (single look). Το πλάτος λήψης του εδάφους φωτίζεται από μία συνεχή σειρά παλμών ενώ η ακτίνα της κεραίας είναι στραμμένη προς μια σταθερή αζιμουθιακή γωνία και μια σταθερή γωνία off-nadir. Οι εικόνες SM έχουν μια συνεχή ποιότητα εικόνας κατά μήκος της τροχιάς σε μια περίπου σταθερή γωνία πρόσπτωσης. Ο ακόλουθος πίνακας δείχνει τα κύρια χαρακτηριστικά της λειτουργίας Stripmap.

Characteristic	Value
Swath width	80 km
Incidence angle range	18.3° - 46.8°
Elevation beams	6
Azimuth and range looks	Single
Polarisation options	Dual HH+HV, VV+VH Single HH, VV
Maximum Noise Equivalent Sigma Zero (NESZ)	-22 dB
Radiometric stability	0.5 dB (3σ)
Radiometric accuracy	1 dB (3σ)
Phase error	5°
	[22]

Πίνακας 5. Χαρακτηριστικά της λειτουργίας Stripmap

Η λειτουργία της απεικόνισης SM μπορεί να λειτουργήσει με μια από τις έξι προκαθορισμένες ακτίνες υψομέτρου (predefined elevation beams) κάθε μια σε διαφορετική γωνία πρόσπτωσης. Η γωνία πρόσπτωσης είναι η γωνία μεταξύ της προσπίπτουσας δέσμης ΣΑΡ και του κάθετου άξονα στην τοπική γεωδαιτική επιφάνεια του εδάφους. Η γωνία off-nadir είναι η γωνία όψης μεταξύ της θέσης ναδίρ του δορυφόρου και της δέσμης ΣΑΡ. Η λειτουργία Stripmap (SM) χρησιμοποιείται σε εξαιρετικές περιπτώσεις μόνο, για να υποστηρίξει δράσεις διαχείρισης καταστάσεων έκτακτης ανάγκης.

Ευρύ πλάτος λήψης συμβολομετρίας (Interferometric wide swath IW): Η λειτουργία Interferometric wide swath είναι η κύρια λειτουργία απόκτησης πάνω από τη γη και ικανοποιεί την πλειοψηφία των απαιτήσεων των υπηρεσιών. Αποκτά δεδομένα σε μια λωρίδα 250 km σε χωρική ανάλυση 5m επί 20m (single look). Η λειτουργία IW συλλαμβάνει τρία υπό-πλάτη λήψεων χρησιμοποιώντας την τεχνική Terrain Observation with Progressive Scans (TOPSAR). Τα προϊόντα IW SLC περιέχουν μια εικόνα ανά υπό-πλάτος λήψης και ανά κανάλι πόλωσης, για συνολικά τρεις (μονή πόλωση) ή έξι (διπλή πόλωση) εικόνες σε ένα προϊόν ΙW. Κάθε εικόνα υπό-πλάτους λήψεως αποτελείται από μια σειρά από εκλάμψεις, όπου κάθε ριπή έχει υποστεί επεξεργασία ως ξεχωριστή SLC εικόνα. Οι μεμονωμένες εστιασμένες σύνθετες εικόνες εκλάμψεων περιλαμβάνονται, σε ακολουθία του χρόνου στο αζιμούθιο, σε μια ενιαία εικόνα υπό-πλάτους λήψεως, με διαχωριστικό μαύρο γέμισμα στο ενδιάμεσο. Λόγω της μιας φυσικής όψης του αζιμούθιου που είναι συμφυής με τα δεδομένα, η εικονιζόμενη περιοχή του εδάφους των εκλάμψεων, οριακά θα επικαλύπτεται στο αζιμούθιο έτσι ώστε να παρέχει μια συνεχή κάλυψη του εδάφους. Οι εικόνες όλων των εκλάμψεων σε όλα τα υπό-πλάτη λήψεων αποτελούν δειγματοληψία για μία κοινή διάσταση εικονοστοιχείου στην πλευρική απόσταση και στο αζιμούθιο, διατηρώντας παράλληλα την πληροφορία φάσης.

Σχήμα 37. Υπό-πλάτη λήψεων ΙW με ελάχιστη επικάλυψη [23]

Μετά τη διαδικασία de-bursting και τη συγχώνευση των υπό-πλατών λήψεων μπορεί να δημιουργηθεί μια ευρεία περιοχή του προϊόντος. Η τεχνική TOPSAR μειώνει σημαντικά τα αποτελέσματα της κοίλανσης.

Ο πίνακας παρακάτω δείχνει τα κύρια χαρακτηριστικά της λειτουργίας Interferometric Wide swath.

Characteristic	Value
Swath width	250 km
Incidence angle range	29.1° - 46.0°
Sub-swaths	3
Azmiuth steering angle	± 0.6°

Azmiuth and range looks	Single
Polarisation options	Dual HH+HV, VV+VH Single HH, VV
Maximum Noise Equivalent Sigma Zero (NESZ)	-22 dB
Radiometric stability	0.5 dB (3σ)
Radiometric accuracy	1 dB (3σ)
Phase error	5°

Πίνακας 6. Χαρακτηριστικά της λειτουργίας Interferometric Wide swath ^[23]

<u>Επιπλέον ευρύ πλάτος λήψης (Extra Wide Swath EW</u>): Όμοια με τη λειτουργία IW, η λειτουργία Extra Wide Swath χρησιμοποιεί την τεχνική TOPSAR για να αποκτήσει δεδομένα σε μια πιο ευρεία περιοχή χρησιμοποιώντας πέντε υπό-πλάτη λήψεων. Η λειτουργία EW αποκτά δεδομένα σε μια λωρίδα 400 km με χωρική ανάλυση 20 m επί 40 m. Τα προϊόντα EW SLC περιέχουν μια εικόνα για κάθε υπό-πλάτος λήψης και για κάθε κανάλι πόλωσης για ένα σύνολο πέντε (μονή πόλωση) ή δέκα εικόνων (διπλή πόλωση) στη λειτουργία EW. Η λειτουργία EW σκοπεύει αρχικώς στη χρήση για το θαλάσσιο πάγο, τις πολικές ζώνες, την παρακολούθηση της πετρελαϊκής μόλυνσης και των υπηρεσιών ασφαλείας σε θαλάσσιες περιοχές. Όπως η λειτουργία IW, έτσι και η λειτουργία EW μπορεί να χρησιμοποιηθεί για τη συμβολομετρία εφόσον μοιράζονται τα ίδια χαρακτηριστικά για το συγχρονισμό των εκλάμψεων και τη σταθερά Doppler. Ο πίνακας παρακάτω δείχνει τα κύρια χαρακτηριστικά της λειτουργίας Extra Wide swath.

Characteristic	Value
Swath width	400 km
Incidence angle range	18.9° - 47.0°
Sub-swaths	5
Azmiuth steering angle	± 0.8°
Azmiuth and range looks	Single
Polarisation options	Dual HH+HV, VV+VH Single HH, VV
Maximum Noise Equivalent Sigma Zero (NESZ)	-22 dB
Radiometric stability	0.5 dB (3σ)
Radiometric accuracy	1 dΒ (3σ)
Phase error	5°

Πίνακας 7. Χαρακτηριστικά της λειτουργίας Extra Wide swath ^[24]

<u>Κύμα (Wave WV)</u>: Οι αποκτήσεις από τη λειτουργία WV αποτελούνται από ένα πλήθος από χρονογραφήματα –βινιέτες (vignettes) αποκλειστικά στην πόλωση VV ή HH, με την κάθε vignette να επεξεργάζεται ως μια ξεχωριστή εικόνα. Τα προϊόντα της λειτουργίας WV μπορούν να περιέχουν οποιοδήποτε αριθμό από χρονογραφήματα που δυνητικά ανέρχεται σε μια ολόκληρη λήψη δεδομένων. Κάθε βινιέτα θα περιέχεται σε μία ανεξάρτητη εικόνα μέσα στο προϊόν. Η λειτουργία Wave (WV) αποκτά τα δεδομένα σε βινιέτες 20 km επί 20 km, χωρικής ανάλυσης 5 m επί 5 m, κάθε 100 χιλιόμετρα κατά μήκος της τροχιάς, αποκτώντας τα εναλλάξ από δύο διαφορετικές γωνίες πρόσπτωσης. Οι βινιέτες της ίδιας γωνίας πρόσπτωσης χωρίζονται με απόσταση 200 km. Οι εναλλασσόμενες γωνίες πρόσπτωσης των πλατών λήψεων ανάμεσα στην εγγύτερη και απώτερη πλευρική απόσταση είναι 23 ° και 36,5 °, αντίστοιχα.

Η λειτουργία Wave σε πόλωση VV είναι η προεπιλεγμένη λειτουργία για την απόκτηση δεδομένων πάνω από την ανοικτή θάλασσα. Η λειτουργία WV αποκτάται από την ίδια δυαδική ακολουθία όπως η SM, ωστόσο λόγω των μικρών βινιετών, της μονής πόλωσης και της ανίχνευσης σε διαστήματα 100 km, ο όγκος των δεδομένων είναι αρκετά μικρότερος. Ο πίνακας παρακάτω δείχνει τα κύρια χαρακτηριστικά της λειτουργίας Wave.

Σχήμα 38. Εναλλασσόμενες αποκτήσεις για τη λειτουργία WV ^[25]

Characteristic	Value
Vignette ground coverage	20 km
Along track distance between vignettes	100 km
Incidence angle ranges	21.6° - 25.1° 34.8° - 38.0°
Elevation beams	2
Azmiuth and range looks	Single
Polarisation options	Single HH, VV
Maximum Noise Equivalent Sigma Zero (NESZ)	-22 dB
Radiometric stability	0.5 dB (3σ)
Radiometric accuracy	1 dB (3σ)
Phase error	5°

Πίνακας 8. Χαρακτηριστικά της λειτουργίας Wave^[25]

3.2.3.Τύποι προϊόντος και Επίπεδα επεξεργασίας

Τα προϊόντα των δεδομένων του SENTINEL-1 που αποκτήθηκαν με τις μεθόδους SM, IW και EW κατανέμονται λειτουργικά σε τρία επίπεδα επεξεργασίας: α) Επίπεδο-0, β) Επίπεδο-1 και γ) Επίπεδο-2. Τα προϊόντα του Επιπέδου-1 μπορεί να είναι ένα από τους δύο τύπους προϊόντων, είτε SLC είτε GRD. Τα προϊόντα OCN του Επιπέδου-2 μπορεί να έχουν διαφορετικά διαθέσιμα συστατικά που εξαρτώνται από τον τρόπο απόκτησης (acquisition mode). Τα προϊόντα σχεδιάζονται με βάση τον τρόπο απόκτησής τους, τον τύπο του προϊόντος και στην περίπτωση του Επιπέδου-1 GRD από την ανάλυσή τους. Όλα τα προϊόντα επεξεργάζονται απευθείας από το προϊόν του Επιπέδου-0. Κάθε λειτουργία μπορεί δυνητικά να δημιουργήσει προϊόντα Επιπέδου-1 SLC, Επιπέδου-1 GRD και Επιπέδου-2 OCEAN. Για τη λειτουργία WV, τα Επιπέδου-0 και Επιπέδου-1 προϊόντα δεν διανέμονται. Η συνιστώσα Επίπεδο-2 OWS δεν είναι διαθέσιμη από τις λειτουργίες TOPSAR.

Σχήμα 39. Επίπεδα προϊόντος από τις Λειτουργίες [26]

3.2.3.1.Επίπεδο-0

Τα προϊόντα ΣΑΡ του Επιπέδου-Ο αποτελούνται από συμπιεσμένα και μη εστιασμένα ακατέργαστα προϊόντα ΣΑΡ. Τα προϊόντα Επιπέδου-Ο είναι τα βασικά από τα οποία θα παραχθούν όλα τα υπόλοιπα προϊόντα υψηλότερου επιπέδου. Τα δεδομένα του Επιπέδου-Ο συμπιέζονται χρησιμοποιώντας το Flexible Dynamic Block Adaptive Quantization (FDBAQ) το οποίο παρέχει μία ποικίλη σειρά κωδίκων bit η οποία αυξάνει τον αριθμό των bits που διατίθενται για φωτεινούς σκεδαστές. Για να είναι τα δεδομένα χρηστικά είναι απαραίτητο να αποσυμπιεστούν και να επεξεργαστούν χρησιμοποιώντας λογισμικό εστίασης δεδομένων. Τα δεδομένα Επιπέδου-Ο περιέχουν θόρυβο, εσωτερική διαμέτρηση και πακέτα του κώδικα της ηχούς όπως επίσης πληροφορία για την τροχιά και το πλάτος. Τα προϊόντα Επιπέδου-Ο αποθηκεύονται σε μακροπρόθεσμα αρχεία. Μπορούν να επεξεργαστούν για να δημιουργήσουν κάθε τύπο προϊόντος κατά τη διάρκεια της αποστολής και για 25 χρόνια από το τέλος των λειτουργιών του διαστημικού αντικειμένου. Τα προϊόντα Επιπέδου-Ο είναι διαθέσιμα για τους χρήστες των δεδομένων μονάχα για τις λειτουργίες SM, IW και EW.

3.2.3.2.Επίπεδο-1 (SLC,GRD)

Τα εστιασμένα δεδομένα Επιπέδου-1 είναι γενικότερα τα διαθέσιμα προϊόντα που προορίζονται για τους περισσότερους χρήστες των δεδομένων. Το προϊόν Επίπεδο-Ο μετατρέπεται σε ένα προϊόν Επιπέδου-1 με την εφαρμογή των αλγορίθμων και της διαμέτρησης των δεδομένων για να σχηματίσουν ένα βασικό προϊόν από το οποίο να προέρχονται τα υψηλότερα επίπεδα. Για την μετατροπή των ψηφιακών τιμών των εικονοστοιχείων σε ραδιομετρικά βαθμονομημένη οπισθοσκέδαση, όλη η απαιτούμενη πληροφορία μπορεί να βρεθεί στο προϊόν. Ένας παράγοντας διαμέτρησης περιλαμβάνεται ως ένα σχόλιο στο προϊόν επιτρέποντας την απλή μετατροπή των τιμών της έντασης της εικόνας σε τιμές σίγμα ή γάμμα μηδέν. Τα προϊόντα Επιπέδου-1 μπορεί να είναι είτε Μιγαδικά προϊόντα μιας όψης (Single Look Complex SLC) είτε Δεδομένα προβολής της πλάγιας απόστασης στο έδαφος (Ground Range Detected GRD). Κάθε λειτουργία ανάκτησης μπορεί δυνητικά να δημιουργήσει Επιπέδου-1 προϊόντα SLC και GRD. Οι αναλύσεις GRD θα εξαρτώνται από τη λειτουργία και το επίπεδο των πολλαπλών όψεων (multi-looking).

Μιγαδικά δεδομένα μιας όψης (Single Look Complex SLC)

Τα Επιπέδου-1 μιγαδικά δεδομένα μιας όψης που αποτελούνται από εστιασμένα δεδομένα ΣΑΡ, έχουν γεωγραφική αναφορά χρησιμοποιώντας τα δεδομένα της τροχιάς και της θέσης από τον δορυφόρο και παρέχονται στη γεωμετρία της ενδιάμεσης πλευρικής απόστασης. Η ενδιάμεση πλευρική απόσταση (slant range) είναι οι φυσικές συντεταγμένες παρατήρησης της πλάγιας απόστασης του ραντάρ που ορίζεται από τη γραμμή ορατότητας του ραντάρ έως το κάθε ανακλώμενο αντικείμενο. Τα προϊόντα είναι σε προσανατολισμό μηδενικού Doppler όπου κάθε σειρά εικονοστοιχείων αντιπροσωπεύει τα σημεία κατά μήκος μιας γραμμής κάθετης προς την τροχιά του υπό-δορυφόρου. Τα προϊόντα περιλαμβάνουν μία μονή όψη σε κάθε διάσταση χρησιμοποιώντας το πλήρως διαθέσιμο εύρος ζώνης του σήματος και μιγαδικές τιμές (πραγματικές και φανταστικές) διατηρώντας έτσι την πληροφορία φάσης. Τα προϊόντα έχουν υποστεί γεωαναφορά χρησιμοποιώντας τα δεδομένα της τροχιάς και της θέσης από τον δορυφόρο και έχουν διορθωθεί για την αζιμουθιακή διστατική (bi-static) καθυστέρηση, την ανύψωση του προτύπου της κεραίας και το εύρος της απώλειας της διασποράς. Η λειτουργία Stripmap για τα SLC περιλαμβάνει μια εικόνα για το δικό τους μονό πλάτος λήψης ανά κανάλι πόλωσης. Η λειτουργία IW έχοντας τρία πλάτη λήψεων, έχει τρεις εικόνες σε μονή πόλωση και έξι εικόνες για τη διπλή πόλωση. Η λειτουργία EW έχοντας πέντε πλάτη λήψεων, έχει πέντε εικόνες για κάθε μονή πόλωση και δέκα εικόνες για κάθε διπλή πόλωση. Για τις λειτουργίες IW και EW κάθε υπόπλάτος λήψης αποτελείται από σειρές εκλάμψεων. Κάθε λάμψη είναι επεξεργασμένη ως μια ξεχωριστή εικόνα SLC. Οι μεμονωμένες εστιασμένες μιγαδικές εικόνες εκλάμψεων

περιλαμβάνονται, σε χρονική σειρά στο αζιμούθιο, σε μια εικόνα μονού υπό-πλάτους λήψεως, με μαύρο γέμισμα στο ενδιάμεσο για οριοθέτηση. Για τη λειτουργία IW μια εστιασμένη λάμψη έχει διάρκεια περίπου 2,75 δευτερόλεπτα και μια επικάλυψη ριπής περίπου 0,4 δευτερόλεπτα. Για τη λειτουργία EW, μια εστιασμένη λάμψη έχει διάρκεια περίπου 3,19 δευτερόλεπτα με μια επικάλυψη περίπου 0,1 δευτερολέπτων. Η επικάλυψη αυξάνεται ελαφρά στην πλάγια απόσταση μέσα σε ένα υπό-πλάτος λήψης. Για τα προϊόντα SENTINEL-1 TOPSAR, η έκταση της απεικόνισης του εδάφους των γειτονικών ριπών μόνο οριακά επικαλύπτεται στο αζιμούθιο και είναι αρκετή για να παρέχει μια συνεχόμενη κάλυψη του εδάφους. Αυτό οφείλεται στη μία φυσική αζιμουθιακή όψη που ενυπάρχει στα δεδομένα. Οι εικόνες για όλες τις εκλάμψεις σε όλα τα υπό-πλάτη λήψεων ενός προϊόντος IW SLC υποβάλλονται σε αναδειγματοληψία με μία κοινή απόσταση πλέγματος του εικονοστοιχείου στην πλευρική απόσταση και στο αζιμούθιο. Ο συγχρονισμός των εκλάμψεων διασφαλίζεται και για τα δύο IW και EW προϊόντα. Η εγγραφή του συνόλου των δεδομένων Swath Timing στα SLC προϊόντα περιέχει πληροφορίες σχετικά με τις εκλάμψεις που συμπεριλαμβάνει τις διαστάσεις, το χρονοδιάγραμμα και τη θέση που μπορεί να χρησιμοποιηθεί για να συγχωνεύσει τις εκλάμψεις και τα πλάτη λήψεως μαζί.

Δεδομένα προβολής της πλάγιας απόστασης στο έδαφος (Ground Range Detected GRD)

Τα Επιπέδου-1 δεδομένα προβολής της πλάγιας απόστασης στο έδαφος αποτελούνται από εστιασμένα δεδομένα ΣΑΡ που έχουν ανιχνευτεί, είναι πολλαπλών όψεων (multi-looked) και είναι προβαλλόμενα στην πλευρική απόσταση του εδάφους χρησιμοποιώντας ένα μοντέλο ελλειψοειδούς της Γης όπως το WGS84. Η ελλειψοειδής προβολή των προϊόντων GRD διορθώνεται χρησιμοποιώντας το ύψος του εδάφους που διευκρινίζεται στο γενικό σχολιασμό του προϊόντος. Το ύψος του εδάφους που χρησιμοποιείται ποικίλλει στο αζιμούθιο, αλλά είναι σταθερό στην πλευρική απόσταση. Η πλευρική απόσταση του εδάφους (ground range) είναι οι συντεταγμένες της ενδιάμεσης πλευρικής απόστασης (slant range) που προβάλλονται επί του ελλειψοειδούς της Γης. Οι τιμές των εικονοστοιχείων αντιπροσωπεύουν το ανιχνεύσιμο μέγεθος. Η πληροφορία της φάσης χάνεται. Το προϊόν που προκύπτει έχει περίπου τετραγωνικής ανάλυσης εικονοστοιχεία και τετραγωνική διάσταση εικονοστοιχείων με μειωμένη κηλίδωση με κόστος τη μειωμένη γεωμετρική ανάλυση. Για τα προϊόντα GRD IW και EW, οι πολλαπλές όψεις (multi-looking) εφαρμόζονται σε κάθε ριπή ξεχωριστά. Όλες οι εκλάμψεις σε όλα τα υπό-πλάτη στη συνέχεια συγχωνεύτηκαν ομαλά για να σχηματίσουν μια ενιαία, συνεχόμενη, πλευρικής απόστασης εδάφους, ανιχνεύσιμη εικόνα ανά κανάλι πόλωσης.

3.2.3.3.Επίπεδο-2 (OWI, OSW, RVL)

Το Επίπεδο-2 αποτελείται από γεωγραφικά γεωφυσικά προϊόντα που προέρχονται από το Επίπεδο-1. Τα προϊόντα Ocean (OCN) του Επιπέδου-2 που σχετίζονται με τις

εφαρμογές του ανέμου, των κυμάτων και των ρευμάτων μπορεί να περιλαμβάνουν τα ακόλουθα προϊόντα που προέρχονται από τα δεδομένα ΣΑΡ:

- Πεδίο Ανέμου του Ωκεανού (Ocean Wind field OWI)
- Φάσμα Swell του Ωκεανού (Ocean Swell spectra OSW)
- Επιφανειακή Ακτινική Ταχύτητα (Surface Radial Velocity RVL)

Η διαθεσιμότητα των προϊόντων αυτών εξαρτάται από τον τρόπο απόκτησης. Τα μετάδεδομένα που αναφέρονται στο προϊόν OWI προέρχονται από το εσωτερικά επεξεργασμένο προϊόν GRD, τα μετά-δεδομένα που αναφέρονται στο προϊόν RVL (και OSW, για τη SM και WV λειτουργία) προέρχονται από ένα εσωτερικά επεξεργασμένο προϊόν SLC. Το προϊόν OWI είναι μια πλευρικής απόστασης του εδάφους πλεγματική εκτίμηση της ταχύτητας του επιφανειακού ανέμου και της διεύθυνσης σε απόσταση 10 μέτρων από την επιφάνεια που προέρχεται από τις λειτουργίες SM, IW και EW.

Σχήμα 40. Διάγραμμα της ταχύτητας του ανέμου^[29]

```
Σχήμα 41. Φάσμα του OSW<sup>[29]</sup>
```

Η συνιστώσα OSW είναι ένα δισδιάστατο φάσμα αποθάλασσας (swell) της επιφάνειας του ωκεανού και περιλαμβάνει μια εκτίμηση της ταχύτητας και της κατεύθυνσης του ανέμου ανά φάσμα swell. Η συνιστώσα OSW παρέχει συνεχή μέτρηση του φάσματος swell στο ΣΑΡ στο κανάλι C. Το προϊόν OSW παράγεται μονάχα από τις λειτουργίες SM και WV και δεν είναι διαθέσιμο από τις λειτουργίες IW και EW του TOPSAR. Για τη λειτουργία SM, υπάρχουν πολλαπλά φάσματα που προέρχονται από την εικόνα SLC του Επιπέδου-1. Για τη λειτουργία WV, υπάρχει ένα φάσμα ανά βινιέτα. Το προϊόν της επιφανειακής ακτινικής ταχύτητας RVL είναι μία πλευρικής απόστασης του εδάφους πλεγματική διαφορά μεταξύ του μετρούμενου πλέγματος Doppler του Επιπέδου-2 και του υπολογισμένου γεωμετρικά Doppler του Επιπέδου-1. Το προϊόν RVL παρέχει τη συνέχεια του πλέγματος Doppler του ASAR.

3.2.4.Χωρική διακριτική ικανότητα

Η χωρική διακριτική ικανότητα εξαρτάται από τον τρόπο απόκτησης και το επίπεδο της επεξεργασίας. Επίπεδο 1 Μιγαδικά δεδομένα μιας όψης (Level 1 SLC)

Τα προϊόντα SLC έχουν μια χωρική διακριτική ικανότητα που προσδιορίζεται από τη λειτουργία απόκτησης. Για τα προϊόντα SLC SM/IW/EW, η χωρική διακριτική ικανότητα και η διάσταση του εικονοστοιχείου που παρέχεται από τη μικρότερη μέχρι τη μεγαλύτερη γωνία πρόσπτωσης. Για τα προϊόντα SLC WV, η χωρική διακριτική ικανότητα και η διάσταση του εικονοστοιχείου παρέχονται για τις δέσμες WV1 και WV2. Η χωρική διακριτική ικανότητα είναι ένα

Σχήμα 42. Επιφανειακή Ακτινική Ταχύτητα ^[29]

μέτρο της ικανότητας του συστήματος να διακρίνει δύο γειτονικούς στόχους. Η διάσταση του εικονοστοιχείου είναι

η απόσταση μεταξύ γειτονικών εικονοστοιχείων σε μία εικόνα, που μετράται σε μέτρα. Ο ισοδύναμος αριθμός των ανεξάρτητων όψεων (Equivalent Number of Independent Looks ENL) για ένα δεδομένο τύπο προϊόντος προορίζεται να αντιστοιχεί στον αριθμό των ισοδύναμων μεταξύ τους, στατιστικά ανεξάρτητων όψεων που θα παράγουν τις ίδιες στατιστικές κηλίδωσης όσο η επεξεργασία χρησιμοποιείται για την παραγωγή του προϊόντος.

Mode	Resolution rg x az	Pixel spacing rg x az	Number of looks	ENL
SM	1.7x4.3 m to 3.6x4.9 m	1.5x3.6 m to 3.1x4.1 m	1x1	1
IW	2.7x22 m to 3.5x22 m	2.3x17.4 m	1x1	1
EW	7.9x43 m to 15x43 m	5.9x34.7 m	1x1	1
wv	2.0x4.8 m and 3.1x4.8 m	1.7x4.1 m and 2.7x4.1 m	1x1	

Πίνακας 9. Χωρική διακριτική ικανότητα της απόκτησης του Επιπέδου-1 SLC^[31]

Τα προϊόντα SM SLC και WV SLC επιλέγονται δειγματοληπτικά στη φυσική διάσταση του εικονοστοιχείου πράγμα που σημαίνει ότι η διάσταση του εικονοστοιχείου προσδιορίζεται στο αζιμούθιο από τη συχνότητα παραγωγής παλμών Pulse Repetition Frequency (PRF) και στην πλευρική απόσταση από το εύρος της συχνότητας δειγματοληψίας του ραντάρ. Τα
προϊόντα SLC IW και EW SLC έχουν όλα εκλάμψεις σε όλα τα υπό-πλάτη λήψεων με αναδειγματοληψία ενός κοινού πλέγματος διάσταση εικονοστοιχείου στην πλευρική απόσταση και στο αζιμούθιο.

Επίπεδο 1 Δεδομένα προβολής της πλάγιας απόστασης στο έδαφος (Level 1 GRD)

Τα προϊόντα GRD του Επιπέδου-1 μπορούν να βρίσκονται σε μια από τις τρεις χωρικές διακριτικές ικανότητες: α) πλήρη χωρική διακριτική ικανότητα (Full Resolution FR) για τη λειτουργία SM, β) υψηλή χωρική διακριτική ικανότητα (High Resolution HR) για τις λειτουργίες SM, IW και EW και γ) μέτρια χωρική διακριτική ικανότητα (Medium Resolution MR) για τις λειτουργίες SM, IW, EW και WV.

Η χωρική διακριτική ικανότητα εξαρτάται από το ποσοστό της πραγματοποίησης των πολλαπλών όψεων. Τα προϊόντα GRD του Επιπέδου-1 έρχονται σε χωρική διακριτική ικανότητα MR και HR για τις λειτουργίες IW και EW, σε MR για τη λειτουργία WV και σε MR, HR και FR για τη λειτουργία SM. Η χωρική διακριτική ικανότητα για ένα προϊόν GRD αντιστοιχεί στην τιμή της μέσης πλευρικής απόστασης στο υψόμετρο της μέσης τροχιάς, κατά μέσο όρο σε όλα τα πλάτη λήψεων. Ο ισοδύναμος αριθμός όψεων (Equivalent Number of Looks ENL) για τα προϊόντα OW και EW GRD αντιστοιχεί σε ένα μέσο όρο πάνω από όλα τα πλάτη λήψεων. Ακολουθεί πίνακας με τα προϊόντα του Επιπέδου-1.

Acq. Mode	Product Type	Resolution Class	Resolution Rng x Azi [m]	Pixel Spacing Rng x Azi [m]	Num Looks Rng x Azi	ENL
	SLC		1.7x4.3 to 3.6x4.9	1.5x3.6 to 3.1x4.1	1x1	1
SM		FR	9x9	3.5x3.5	2x2	3.7
	GRD	HR	23x23	10x10	6x6	29.7
		MR	84x84	40x40	22x22	398.4
	SLC		2.7x22 to 3.5x22	2.3x14.1	1x1	1
IW	GRD	HR	20x22	10×10	5x1	4.4
		MR	88x87	40x40	22x5	81.8
EW	SLC		7.9x43 to 15x43	5.9x19.9	1x1	1
	GRD	HR	50x50	25x25	3x1	2.8
		MR	93x87	40x40	6x2	10.7
wv	SLC		2.0x4.8 3.1x4.8	1.7x4.1 2.7x4.1	1x1	1
	GRD	MR	52x51	25x25	13x13	123.7

Πίνακας 10. Προϊόντα Επιπέδου-1 [14]

Επίπεδο-2 Θαλάσσια προϊόντα (Level-2 Ocean)

Για τα προϊόντα OCN του Επιπέδου-2, το φάσμα swell (OSW) παρέχεται σε μια χωρική ανάλυση των 20 km επί 20 km. Τα συστατικά των πεδίων του ανέμου (OWI) και της

επιφανειακής ακτινικής ταχύτητας (RVL) έχουν μια χωρική διακριτική ικανότητα του 1 km επί 1 km.

3.2.5.Επάνοδος και Κάλυψη

Κάθε δορυφόρος SENTINEL-1 μπορεί να είναι σε μια κοντινή στους πόλους ηλιοσύγχρονη τροχιά με έναν επαναλαμβανόμενο κύκλο 12 ημερών και 175 περιστροφές ανά κύκλο. Και οι δύο δορυφόροι SENTINEL-1Α και SENTINEL-1Β μοιράζονται το ίδιο επίπεδο της τροχιάς με μια διαφορά φάσης τροχιάς 180°. Ένας μονός δορυφόρος SENTINEL-1 είναι δυνητικά ικανός να χαρτογραφήσει τις παγκόσμιες εκτάσεις γης στη λειτουργία IW μια φορά κάθε 12 ημέρες, με ένα πέρασμα (ανεβαίνοντας ή κατεβαίνοντας). Οι δύο δορυφορικοί σχηματισμοί προσφέρουν έναν ακριβή επαναλαμβανόμενο κύκλο 6 ημερών. Δεδομένου ότι το ίχνος της τροχιακής απόστασης ποικίλει με το πλάτος, το ποσοστό της επανόδου είναι αξιοσημείωτα μεγαλύτερο στα μεγαλύτερα πλάτη από ότι στον ισημερινό.

Two satellites in a 12 day orbit

/ Repeat frequency: 6 days (important for coherence)
/ Revisit frequency: (asc/desc & overlap): 3 days at the equator, <1 day at high</p> latitudes (Europe ~ 2 days)

Σχήμα 43. Συχνότητα Επανόδου για τον S-1A και S-1B σε ημέρες ανά επάνοδο [34]

Σχήμα 44. Κάλυψη πλατών λήψεων του Sentinel-1^[34]

Απρόσκοπτες λειτουργίες ενεργοποιημένες από μια κύρια επιχειρησιακή λειτουργία πάνω από την αξιοποίηση ξηρά, επιτρέπουν την της καθημερινής λήψης δεδομένων και τη δημιουργία ενός συνεκτικού αρχείου μακράς διάρκειας για τις εφαρμογές που απαιτούν σειρές για μεγάλο χρονικό διάστημα. Η λειτουργία EW θα χρησιμοποιηθεί αρχικά πάνω από τις επιλεγμένες ευρωπαϊκές θάλασσες, τις περιοχές του Αρκτικού και Νότιου Ωκεανού, κυρίως για τις υπηρεσίες παρακολούθησης του θαλάσσιου πάγου και της θαλάσσιας εποπτείας, με τη λειτουργία να καλύπτει μια ευρεία περιοχή 400 km σε κάθε

λήψη δεδομένων. Η λειτουργία SM θα χρησιμοποιηθεί κατόπιν αίτησης κυρίως για τη διαχείριση καταστάσεων έκτακτης ανάγκης. Πάνω από την ανοικτή θάλασσα η λειτουργία WV θα είναι η κύρια επιχειρησιακή λειτουργία ανάκτησης που ανακτά vignettes σε τακτά διαστήματα.

3.2.6.Συμβάσεις ονομασίας

Το όνομα του φακέλου του ανώτατου επιπέδου προϊόντος του SENTINEL-1 αποτελείται από κεφαλαία αλφαριθμητικών χαρακτήρων που χωρίζονται από ένα χαρακτήρα υπογράμμισης (_).

Σχήμα 45. Σύμβαση ονομασίας του προϊόντος ^[18]

Το Αναγνωριστικό αποστολής (Mission Identifier MMM) υποδηλώνει το δορυφόρο και θα είναι είτε S1A για τον SENTINEL-1A ή S1B για τον SENTINEL-1B. Η Λειτουργία/Δέσμη (Mode/Beam BB) προσδιορίζει τις S1-S6 δέσμες για τα προϊόντα SM, IW, EW και WV από τις αντίστοιχες λειτουργίες. Ο Τύπος Προϊόντος (Product Type TTT) μπορεί να είναι RAW, SLC, GRD ή OCN. Η Κατηγορία Ανάλυσης (Resolution Class R) μπορεί να είναι F (Full resolution), Η (High resolution), Μ (Medium resolution) or _ (κάτω παύλα: δεν εφαρμόζεται στον τρέχοντα τύπο του προϊόντος). Η κατηγορία ανάλυσης χρησιμοποιείται μονάχα για τα προϊόντα SLC και OCN. Το Επίπεδο Επεξεργασίας (Processing Level L) μπορεί να είναι 0, 1 ή 2. Η Κατηγορία Προϊόντος (Product Class) μπορεί να είναι Πρότυπα (Standard S) ή Σχολιασμού (Annotation A). Τα προϊόντα σχολιασμού χρησιμοποιούνται μονάχα εσωτερικά από το PDGS και δεν διανέμονται. Η Πόλωση (Polarisation PP) μπορεί να είναι: SH (single HH polarisation), SV (single VV polarisation), DH (dual HH+HV polarisation) και DV (dual VV+VH polarisation). Η αρχική και τελική ημερομηνία και οι χρόνοι (Start Date/Time & Stop Date/Time) φαίνονται ως δεκατέσσερα ψηφία που αντιπροσωπεύουν την ημερομηνία και την ώρα, που χωρίζονται από τον χαρακτήρα 'Τ'. Ο απόλυτος αριθμός της τροχιάς (Absolute Orbit Number) κατά το χρόνο εκκίνησης του προϊόντος (ΟΟΟΟΟ) θα είναι στο εύρος 000001-999999. Το αναγνωριστικό της αποστολής (Mission Data Take ID) για τη λήψη των

δεδομένων (DDDDDD) θα είναι στο εύρος 000001-FFFFFF. Το μοναδικό αναγνωριστικό του προϊόντος (CCCC) είναι μια δεκαεξαδική συμβολοσειρά που παράγεται από τον υπολογισμό του CRC-16 στο αρχείο δήλωσης με τη χρήση του CRC-CCITT. Η επέκταση του φακέλου είναι πάντα "SAFE".

3.2.7.Μορφές δεδομένων

Τα προϊόντα-δεδομένα SENTINEL διανέμονται χρησιμοποιώντας μια SENTINEL-ειδική παραλλαγή της προδιαγραφής της Πρότυπης Μορφής Αρχείου για την Ευρώπη (Standard Archive Format for Europe SAFE). Η μορφή SAFE έχει σχεδιαστεί για να λειτουργεί ως κοινή μορφή για την αρχειοθέτηση και τη μεταφορά δεδομένων εντός των τμημάτων αρχειοθέτησης του Ευρωπαϊκού Οργανισμού Διαστήματος για την Παρατήρηση της Γης (ESA Earth Observation). Η SAFE προτάθηκε για την εναρμόνιση των αποστολών GMES από την GMES Product Harmonisation Study. Η μορφή SENTINEL-SAFE περιβάλλει ένα φάκελο που περιέχει τα δεδομένα της εικόνας σε δυαδική μορφή και τα μετά-δεδομένα του προϊόντος σε XML. Αυτή η ευελιξία επιτρέπει τη μορφή να είναι αρκετά επεκτάσιμη ώστε να εκπροσωπεί όλα τα επίπεδα των προϊόντων SENTINEL. Ένα προϊόν SENTINEL αναφέρεται σε ένα φάκελο καταλόγου (directory folder) που περιέχει μια συλλογή πληροφοριών. Περιλαμβάνει: Α) Ένα αρχείο manifest.safe το οποίο κρατάει τη γενική πληροφορία του προϊόντος σε XML. B) Υπό-φακέλους για τα σύνολα των δεδομένων μέτρησης που περιέχουν δεδομένα της εικόνας σε διάφορες μορφές δυαδικού συστήματος. Γ) Ένας φάκελος προεπισκόπησης που περιέχει γρήγορες εμφανίσεις σε μορφή PNG, επικαλύψεις Google Earth σε μορφή KML και HTML αρχεία προεπισκόπησης. Δ) Ένα φάκελο με σχολιασμό που περιέχει τα μετά-δεδομένα του προϊόντος σε XML, καθώς και τα δεδομένα βαθμονόμησης. Ε) Ένα φάκελο υποστήριξης που περιέχει τα σχήματα XML που περιγράφουν το προϊόν XML.

4.Η πλατφόρμα Sentinel Application Platform ή SNAP

Η πλατφόρμα Sentinel Application Platform ή SNAP εν συντομία, είναι μια συλλογή που περιέχει εκτελέσιμα εργαλεία και τις διεπαφές Application Programming Interfaces (APIs) που έχουν αναπτυχθεί για να διευκολύνουν τη χρήση, την προβολή και την επεξεργασία ενός πλήθους τηλεπισκοπικών δεδομένων. Η λειτουργία του SNAP είναι προσπελάσιμη μέσω της Εργαλειοθήκης Sentinel (Sentinel Toolbox). Ο σκοπός της Sentinel Toolbox είναι να συμπληρώσει τα υπάρχοντα εμπορικά πακέτα με περαιτέρω επεξεργασίες των προϊόντων από τους δορυφόρους που παρατηρούν τη Γη.

Η εργαλειοθήκη για τα προϊόντα Sentinel (Sentinel Toolbox) είναι μία φιλική στη χρήση εφαρμογή desktop που χρησιμοποιείται για την οπτικοποίηση, ανάλυση και επεξεργασία των δεδομένων όπου ένα σύνολο από επεξεργαστές των δεδομένων τρέχουν είτε από τη γραμμή εντολών είτε επικαλούνται από την εφαρμογή desktop. Το εργαλείο gpt (graph processing tool) της γραμμής εντολών χρησιμοποιείται για να εκτελέσει γραφήματα επεξεργασίας που αποτελούνται από σημεία διαχείρισης και εμφανίζονται με τη χρήση του SNAP GPF. Είναι διαθέσιμο και το εργαλείο μετατροπής των δεδομένων προϊόντων pconvert που επιτρέπει σε ένα χρήστη να μετατρέψει ακατέργαστα δεδομένα προϊόντων είτε σε πρότυπη μορφή BEAM-DIMAP, είτε σε GeoTIFF, είτε σε HDF-5 είτε σε εικόνες RGB. Επίσης υπάρχει και το περιβάλλον διεπαφής Java API που παρέχει έτοιμα προς χρήση στοιχεία σχετικά με την ανάπτυξη εφαρμογών για την τηλεπισκόπηση και σημεία σύνδεσης για νέες μονάδες επέκτασης του SNAP. Εκτός από έναν αριθμό σημείων επέκτασης όπως είναι ο αναγνώστης και οι συντάκτες των προϊόντων, το SNAP API περιλαμβάνει το Graph Processing Framework (GPF) το οποίο χρησιμοποιείται για να δημιουργήσει ταχέως επεξεργαστές δεδομένων raster. Η πλατφόρμα Rich Client Platform χρησιμοποιείται για να αναπτύξει πλούσιες εφαρμογές GUI για την αλληλεπίδραση με τον χρήστη δομημένη στο SNAP. Σχετικά με τη μορφοποίηση του προτύπου προϊόντος η εργαλειοθήκη Sentinel και οι επεξεργαστές των δεδομένων χρησιμοποιούν μια απλή μορφή δεδομένων εισόδου/εξόδου, η οποία διευκολύνει την εισαγωγή δεδομένων σε άλλες εφαρμογές επεξεργασίας εικόνας. Η μορφή ονομάζεται DIMAP και έχει αναπτυχθεί από τη SPOT-Image στη Γαλλία. Το λογισμικό SNAP χρησιμοποιεί ένα ειδικό προφίλ DIMAP που ονομάζεται BEAM-DIMAP το οποίο έχει τα ακόλουθα χαρακτηριστικά : α) Ένα ενιαίο προϊόν επικεφαλίδας (XML) το οποίο περιέχει τα μετά-δεδομένα του προϊόντος, β) ένα σχετιζόμενο κατάλογο δεδομένων που περιέχει τις σύμφωνες εικόνες ΕΝVΙ για κάθε μπάντα και γ) κάθε εικόνα στον κατάλογο αποτελείται από ένα αρχείο επιγραφών (ASCII text) και ένα αρχείο δεδομένων εικόνας (flat binary).

Το πλήρες λογισμικό SNAP έχει αναπτυχθεί υπό τη δημόσια άδεια του GNU και έρχεται με πλήρη κώδικα (Java). Ο κώδικας είναι διαθέσιμος στο GitHub <u>https://qithub.com/senbox-org</u>. Η πλατφόρμα SNAP έχει προγραμματιστεί σε αμιγώς Java για να επιτρέπει μια μέγιστη φορητότητα. Η πλατφόρμα SNAP έχει εξεταστεί επιτυχώς σε Windows XP,Vista,7,8,10 και ακόμη σε MacOS X καθώς και στα Linux και Solaris λειτουργικά συστήματα.

5.Διερεύνηση των δυνατοτήτων των SENTINEL απεικονίσεων και του λογισμικού SNAP στην ανίχνευση των θαλάσσιων φαινομένων

Σε αυτή την εργασία διερευνούμε τις δυνατότητες των SENTINEL απεικονίσεων και του λογισμικού SNAP για την ανίχνευση των πλοίων καθώς και των θαλάσσιων φαινομένων και ειδικότερα του ανέμου με χρήση απεικονίσεων του βορειοανατολικού Αιγαίου. Για τον σκοπό αυτό αρχικά πραγματοποιούμε την εγκατάσταση του λογισμικού snap στον υπολογιστή. Το λογισμικό παρέχεται από τον σύνδεσμο <u>http://step.esa.int/main/download/</u> επιλέγοντας την εργαλειοθήκη Sentinel Toolboxes σε ένα από τα διαθέσιμα λειτουργικά συστήματα όπως είναι τα Windows 64-bit, Windows 32-bit, Mac OS X και Unix 64-bit. Στην παρούσα εργασία επιλέχθηκε το λειτουργικό σύστημα Windows 64-bit. Η έκδοση που χρησιμοποιήθηκε για την εργασία είναι η ESA SNAP 4.0.0. Στη συνέχεια κατεβάζουμε δορυφορικές εικόνες του Sentinel-1 για την περιοχή του βορειοανατολικού Αιγαίου. Για το σκοπό αυτό επισκεπτόμαστε την ιστοσελίδα <u>https://scihub.copernicus.eu/dhus/#/home</u>.

Σχήμα 46. Η ιστοσελίδα που παρέχει ελεύθερα δορυφορικές εικόνες

Όλα τα δεδομένα του Sentinel-1 είναι διαθέσιμα μέσω του Scientific Data Hub με ποικίλα επίπεδα επεξεργασίας. Τα δεδομένα είναι δωρεάν και με ανοικτή πρόσβαση στον καθένα. Μέχρι στιγμής οι εικόνες από το Sentinel-1 είναι διαθέσιμες μέσα σε 24 ώρες από τη λήψη τους. Πριν να αρχίσουμε να αναζητούμε τις δορυφορικές εικόνες κάνουμε εγγραφή ώστε να μπορούμε να τις κατεβάσουμε.

Scientific Data Hub × ← → C △ ▲ https://science/action	https://scihub.copernicu:	x home	- • × ☆ :
📫 @esa	Opernicus	Sentinels Scientific Data Hub	UP LOGIN ? 🔒
Insert search criteria	2° 0	Paras Pa	Unter Roser Roser Roser Roser Kasactan Kasactan Corbektson Torker Kasactan Corbektson Torker Corbektson Torker Kasactan Corbektson Torker Corbektson Torker Corbektso

Σχήμα 47. Εγγραφή για την αναζήτηση των δορυφορικών εικόνων (α)

Ο οποιοσδήποτε μπορεί να κάνει αίτηση (register) και να λάβει απευθείας πρόσβαση χωρίς να περιμένει για επιβεβαίωση. Η αναζήτηση εικόνων γίνεται απευθείας.

\bigcirc Scientific Data Hub × $\leftarrow \rightarrow C \bigtriangleup $ https://sc	https://scihub.copernicu ×		→ - • ×
📫 @esa	opernicus	Sentinels Scientific Data Hub	GN UP LOGIN 😢 🛧
Insert search criteria	Ø	B Q (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
	a Can Tream	LOGIN Username Password Password	
		LOGIN and	Қазақстан
° .2	Portugal Sabat GOOLE Bijd	España Italia interneta ing deversion España Alger 2 100 uning 2 2 10 uning 2 2 10 uning 2 10 uning	Corportion Tothers A

Σχήμα 48.Εγγραφή για την αναζήτηση δορυφορικών εικόνων (β)

Scientific Data Hub 🛛 🗙	https://scihub.copernicu	×	A -	٥	×
\leftrightarrow \rightarrow C \triangle https://so	:ihub.copernicus.eu/dhus/#/	home		☆	: 🖸
📫 🚺	opernicus	Sentinels Scientific Data Hub	6	?	f
Insert search criteria.	° 0	Landon Nederland Parson Robot Converting to the Superior State Parson Robot Converting to the Superior State Parson Robot Converting to the Superior State Parson Robot Converting to the Superior State Robot Converting to the Superior Sta	RUSH RUSH K Orbeki Saluo LOGIN SI	au Au asaactar asaactar	Acrana Acrana Sheet Ki

Σχήμα 49. Επιτυχής εγγραφή στην ιστοσελίδα

Αφού συνδεθούμε στο Sentinels Scientific Data Hub, ξεκινάμε την αναζήτηση δορυφορικών εικόνων τις οποίες θα επεξεργαστούμε με το λογισμικό ESA SNAP 4.0.0. Η αναζήτηση εικόνων γίνεται απευθείας. Όταν κάνουμε κλικ και σύρουμε τον κέρσορα πάνω στο χάρτη, δημιουργείται ένα κουτί (bounding box) για την περιοχή που ενδιαφερόμαστε.

Σχήμα 50. Εισαγωγή κριτηρίων αναζήτησης των δορυφορικών εικόνων

Έπειτα καθορίζουμε κάποια κριτήρια αναζήτησης στην αριστερή πάνω γωνία κάτω από το εικονίδιο «Menu» όπως το πότε λήφθηκε η εικόνα (Sensing Period,) πότε μπήκε στο αρχείο (Ingestion Period), ποιον δορυφόρο προτιμούμε κτλ. Για την παρούσα εργασία αναζητήσαμε μία εικόνα ΣΑΡ από το δορυφόρο Sentinel-1 με τύπο προϊόντος (Product Type) GRD. Μπορούμε να σώσουμε τα κριτήρια έρευνας με το κουμπί Save.

Σχήμα 51. Εμφάνιση λίστας με τις δορυφορικές εικόνες που αναζητήσαμε βάση των κριτηρίων

Κατά την αναζήτηση, στη λίστα που παίρνουμε πίσω, υπάρχουν εικονίδια που μας επιτρέπουν να κάνουμε zoom στην εικόνα, να λάβουμε περισσότερη πληροφορία για αυτήν, να την προσθέσουμε στο cart ή να κάνουμε download άμεσα. Επίσης μπορούμε με το εικονίδιο View Product Details να λάβουμε περισσότερες λεπτομέρειες για τη δορυφορική εικόνα που επιλέξαμε. Στον πίνακα 11 αναγράφονται οι πληροφορίες σχετικά με τα χαρακτηριστικά της εικόνας που επεξεργαστήκαμε στην παρούσα εργασία.

Σχήμα 52.Απεικόνιση περισσότερων λεπτομερειών για τις δορυφορικές εικόνες (α)

Σχήμα 53. Απεικόνιση περισσότερων λεπτομερειών για τις δορυφορικές εικόνες (β)

Αναλυτικά τα χαρακτηριστικά της δορυφορικής εικόνας που αποθηκεύσαμε στον προσωπικό μας υπολογιστή φαίνονται στον ακόλουθο πίνακα:

Summary
Date: 2016-06-10T16:15:13.850Z
Filename:S1A_IW_GRDH_1SDV_20160610T161513_20160610T161538_011651_011D43_619D.SAFE
Identifier:S1A_IW_GRDH_1SDV_20160610T161513_20160610T161538_011651_011D43_619D
Instrument: SAR-C
Mode: IW
Satellite: Sentinel-1
Size: 1.64 GB
Product
Acquisition Type: NOMINAL
Cycle number: 81
Footprint: <gml:polygon <="" srsname="http://www.opengis.net/gml/srs/epsg.xml#4326" td=""></gml:polygon>
xmlns:gml="http://www.opengis.net/gml"> <gml:outerboundaryis> <gml:linearring></gml:linearring></gml:outerboundaryis>
<pre><gml:coordinates>39.538761,23.797132 39.948589,26.835884 38.447830,27.148394</gml:coordinates></pre>
38.036629,24.173521 39.538761,23.797132
Format: SAFE
Ingestion Date: 2016-06-11T00:03:41.509Z
JTS footprint: POLYGON ((23.797132 39.538761,26.835884 39.948589,27.148394
38.447830,24.173521 38.036629,23.797132 39.538761))
Mission datatake id: 73027
Orbit number (start): 11651
Orbit number (stop): 11651
Pass direction: ASCENDING
Phase identifier: 1
Polarisation: VV VH
Product class: S
Product class description: SAR Standard L1 Product
Product composition: Slice
Product level: L1
Product type: GRD
Relative orbit (start): 29
Relative orbit (stop): 29
Resolution: High
Sensing start: 2016-06-10T16:15:13.850Z

Sensing stop: 2016-06-10T16:15:38.849Z					
Slice number: 6					
Start relative orbit number: 29					
Status: ARCHIVED					
Stop relative orbit number: 29					
Timeliness Category: Fast-24h					
Platform					
Carrier rocket: Soyuz					
Launch date: April 3rd, 2014					
Mission type: Earth observation					
NSSDC identifier: 0000-000A					
Operator: European Space Agency					
Satellite description: https://sentinel.esa.int/web/sentinel/missions/sentinel-1					
Satellite name: Sentinel-1					
Satellite number: A					
Instrument					
Instrument abbreviation: SAR-C SAR					
Instrument description: https://sentinel.esa.int/web/sentinel/missions/sentinel-1					
Instrument mode: IW					
Instrument name: Synthetic Aperture Radar (C-band)					
Instrument swath: IW					

Πίνακας 11. Χαρακτηριστικά της δορυφορικής εικόνας

Εφόσον έχουμε την εργαλειοθήκη Sentinel-1 Toolbox από την εγκατάσταση του λογισμικού SNAP, καθώς επίσης και τα δεδομένα (data) των δορυφορικών εικόνων από τη διεύθυνση <u>https://scihub.copernicus.eu/dhus/#/home</u> ακολουθούμε κάποια βήματα για να δούμε την εικόνα. Αρχικά ανοίγουμε την εργαλειοθήκη SNAP Sentinel-1 Toolbox και εισάγουμε την εικόνα μέσω της διαδρομής File→Import→SAR Sensors→Sentinel-1.

Σχήμα 54. Εισαγωγή των δορυφορικών εικόνων στο snap

Οι εικόνες που κατεβάσαμε είναι αυτόματα αποσυμπιεσμένες (unzipped) όπως φαίνεται και στο παρακάτω σχήμα και πατώντας το κουμπί Import Product εισάγεται η δορυφορική εικόνα στο snap για επεξεργασία. Η εικόνα θα ανοίξει στην πλάγια μπάρα (side bar) στα αριστερά που ονομάζεται Product Explorer.

	<
Pre tal View Analyse Light Vector Kaster Uplical Adat Tools Window Help Control Caster Uplical Adat Tools Window Help Product Explorer * Proce Info SIAAP - Import Product Look n: STAAP - Import Product SIAAP - Import Product SIAP - Import	Roduct Library
Product Explorer × Prod Info Image: SNAP - Import Product X Look rs: 2 Troxida Myunc Image: SNAP - Import Product X Image: SNAP - Import Product X <t< th=""><th>A Product Library</th></t<>	A Product Library
Product Explorer × Pixel Info Import Product X Look nr. 2 Toxxida Myung Import Product X Import Product	A Product Library
Import Product × Look in: ↓ Zroxda Aiyunc ● The	t Library 🛛 🕅
Look in: ↓ Zroyddi Aljung	ary Q
Subset	-
Πρόσφατα σ]] Layer Manage
	_
Navigation × Colour Hani Uncertaint World View Erypopo Arrico uno	🖏 Mask Manager
File name: Import Product	
Alcrue Files of type: SENTINEL-1 Products (*.sefe, *.sp) v Cancel	

Σχήμα 55. Εισαγωγή του προϊόντος στο snap

Στη συνέχεια ακολουθούμε τα βήματα που χρειάζονται για την προ-επεξεργασία και επεξεργασία της δορυφορικής εικόνας που κατεβάσαμε. Για την παρούσα εργασία το διάγραμμα των εργασιών που υλοποιήθηκαν αποτελείται περιληπτικά από τα παρακάτω βήματα:

- Απομάκρυνση θερμικού θορύβου (Thermal Noise Removal)
- Απομάκρυνση θορύβου στα όρια (GRD Border Noise Removal)
- Διόρθωση της τροχιάς (Apply Orbit correction)
- Βαθμονόμηση ή τοπογραφική διόρθωση (Calibration)
- Αφαίρεση της κηλίδωσης (Multi-temporal Speckle Filter)
- Ανίχνευση αντικειμένων στη θαλάσσια επιφάνεια & Εκτίμηση του πεδίου του ανέμου (Ocean Object Detection & Wind Field Estimation)
- Γεωαναφορά (Range Doppler Terrain Correction)

Στα πρώτα τέσσερα στάδια γίνεται η προ-επεξεργασία δηλαδή διορθώνουμε και καθαρίζουμε την εικόνα. Σε αυτά τα στάδια διατηρούνται οι απεικονίσεις έντασης των εικόνων. Στο πέμπτο στάδιο πραγματοποιείται η επεξεργασία. Για να γίνει αυτό κάνουμε «Αφαίρεση της Κηλίδωσης» και τότε η εικόνα έχει δύο συντελεστές οπισθοσκέδασης (Backscattering coefficient σ₀₁ και σ₀₂). Πρέπει να σημειώσουμε ότι οι εικόνες απεικονίζουν την περιοχή μελέτης ανεστραμμένη. Με την επεξεργασία διόρθωσης αναγλύφου μπορεί να γίνει η αναστροφή των εικόνων. Παρακάτω ακολουθεί αναλυτική περιγραφή των σταδίων της προ-επεξεργασίας και επεξεργασίας.

5.1.Απομάκρυνση Θερμικού Θορύβου (S-1 Thermal Noise Removal)

Radar→Radiometric→S1 Thermal Noise Removal

I SNAP File Edit View Analysis Layer Vector Raster Optical Rad	ar Tools Window Help		Q • Search (Ctr	3 ×
	Apply Orbit File			
	Radiometric >			
Product Explorer × Pixel Info	Speckle Filtering >	Radiometric Terrain Elattening		e
	Coregistration >	Parana Asterna Dattern		
	Interferometric >	C 1 Thermal Marine Demonstra		- De
	Polarimetric >	S-1 Inemai Noise Removal		2
	Geometric >	Convert sigmau to Betau		brary
	Sentinel-1 TOPS >	Convert sigmati to Gammat		
	ENVISAT ASAR >	Create Calibration LUT IPG		9
	SAR Applications >			Lay Lay
	SAR Utilities >			목
	SAR Wizards			Deue
	Complex to Detected GR			đ
	Multilooking			<i>(</i> 7)
Navigation - [× Colour Hanipul Uncertainty Vis	World View			Maski Manager

Σχήμα 56. Στιγμιότυπο οθόνης για την επιλογή S-1 Thermal Noise Removal

Η διόρθωση του θερμικού θορύβου μπορεί να εφαρμοστεί στα προϊόντα SLC του Επιπέδου-1 του δορυφόρου Sentinel-1 όπως επίσης και στα προϊόντα GRD του Επιπέδου-1 που δεν έχουν υποστεί διόρθωση. Ο χειριστής μπορεί επίσης να παραλείψει αυτή τη διόρθωση στηριζόμενος στα σχόλια για το προϊόν. Τα σχόλια επί του προϊόντος ενημερώνονται αναλόγως για να καταστεί δυνατή η εκ νέου εφαρμογή της διόρθωσης. Τα Επιπέδου-1 προϊόντα παρέχουν έναν θόρυβο LUT για κάθε μέτρηση του συνόλου δεδομένων. Οι τιμές στο de-noise LUT, που παρέχονται σε γραμμική ισχύ, μπορούν να χρησιμοποιηθούν για να παράγει διαμετρημένο θόρυβο (calibrated noise) σύμφωνα με τα δεδομένα διαμέτρησης των GRD. Η βήτα γραμμική παρεμβολή χρησιμοποιείται για κάθε εικονοστοιχείο που βρίσκεται μεταξύ των σημείων στο LUT.

© S-1 Thermal Noise Removal X
I/O Parameters Processing Parameters Source Product Source product:
[1] S1A_IW_GRDH_1SDV_20160130T161517_20160130T161542_0 v Target Product Name:
Save as: BEAM-DIMAP ↓ Directory: C:\Users\User
Open in SNAP

📀 S-1 Thermal Noise	Removal		
File Help			
I/O Parameters Proce	ssing Parameters		
Polarisations:	VH VV		
Remove Thermal N	oise		
Re-Introduce Then	mal Noise		
		Dura	Chara
		Run	Close

Σχήμα 57α. Πλαίσιο διαλόγου S-1 Thermal Noise Removal

Σχήμα 57β. Πλαίσιο διαλόγου S-1 Thermal Noise Removal

5.2 Απομάκρυνση θορύβου στα όρια (S-1 GRD Border Noise Removal)

📕 S1A_W_GRDH_1SDV_20160130T161517_20160130T161542_009726_00E33E_C0E1_Noise-Cor_Noise_Cor - [C:\Users\UserS1A_W_GRDH_1SDV_20160130T161517_20160130T161542_009726_00E33E_C0E1_Noise-Cor_Noise_Cor.dim] -Q - Search (Ctrl+I) al Ra 🗃 🖣 🚳 🍀 🐻 📽 🕻 Apply Orbit File · → ■ 🥎 🛛 🚵 🚢 🔪 💷 🗏 🖿 Radio [1] S1A IW GRDH 15DV 20 Speckle Filtering 2 [2] Intensity VH x 50130T161517 20160 Coregistration Interferometri Polarimetric Sentinel-1 TOPS SLC to GRD ENVISAT ASAF S-1 Slice Assembly SAR Applications S-1 TOPS Split SAR Utilities S-1 TOPS Deburst SAR Wizards S-1 TOPS Merge Complex to Detected GR 5-1 Remove GRD Border N ooking 1 e A а, : 0 1:31.09 0°

Radar \rightarrow Sentinel-1 TOPS \rightarrow Remove GRD Border Noise

Η επεξεργασία Instrument Processing Facility (IPF) των Sentinel-1 είναι υπεύθυνη για την παραγωγή της οικογένειας των προϊόντων λειτουργίας των Επιπέδων 1 και 2. Η επεξεργασία των ακατέργαστων δεδομένων (RAW) σε προϊόντα Επιπέδου-1 περιλαμβάνει αριθμό βημάτων επεξεργασίας που οδηγούν σε τεχνουργήματα στα όρια της εικόνας. Αυτά τα βήματα επεξεργασίας είναι κυρίως η συμπίεση του αζιμούθιου και της πλευρικής απόστασης και το γεγονός ότι η έναρξη του χρόνου δειγματοληψίας αλλάζει το χειρισμό που είναι αναγκαίος για να αντισταθμίσει τη μεταβολή στην καμπυλότητα της γης. Το τελευταίο παράγει έναν αριθμό από αρχικά και τελικά δείγματα «χωρίς-τιμή» που εξαρτώνται από το μήκος των λαμβανόμενων δεδομένων τα οποία μπορούν να είναι μερικά λεπτά. Το προηγούμενο δημιουργεί ραδιομετρικά τεχνουργήματα που περιπλέκουν την ανίχνευση των δειγμάτων χωρίς τιμή. Αυτά τα εικονοστοιχεία που έχουν την επικάλυψη βασιζόμενη στο κατώφλι. Ο χειριστής υλοποιεί έναν αλγόριθμο που επιτρέπει την απόδοση μηδενικής τιμής στα τεχνουργήματα με τη μέθοδο κατωφλίου.

😨 S-1 Remove GRD Border Noise	X 💿 S-1 Remove GRD Border Noise X
File Help	File Help
I/O Parameters Processing Parameters	I/O Parameters Processing Parameters
Source Product Source product: [2] S1A_IW_GRDH_1SDV_20160130T161517_20160130T161542_0 v	Polarisations: VH VV Border margin limit [pixels]: 500
Target Product Name:	0.3
IT161517_20160130T161542_009726_00E33E_COE1_Noise-Cor_Noise_Cor_Bd Save as: BEAM-DIMAP	
C:\User\User	1
☐ Open in SNAP	
Run Clos	Run Close

Σχήμα 59α. Πλαίσιο διαλόγου S-1 GRD Border Noise Removal

Σχήμα 59β. Πλαίσιο διαλόγου S-1 GRD Border Noise Removal

5.3. Διόρθωση της τροχιάς (Apply Orbit correction)

Radar→Apply Orbit File

Σχήμα 60. Στιγμιότυπο οθόνης για την επιλογή Apply Orbit File

Τα τροχιακά διανύσματα της κατάστασης ενός προϊόντος ΣΑΡ που παρέχονται στα μετά-δεδομένα δεν είναι γενικότερα ακριβή και μπορούν να τελειοποιηθούν με τα ακριβή αρχεία τροχιάς τα οποία είναι διαθέσιμα από μέρες μέχρι εβδομάδες μετά την παραγωγή του προϊόντος. Τα αρχεία της τροχιάς (orbit files) παρέχουν την ακριβή θέση του δορυφόρου και πληροφορία για την ταχύτητα. Με βάση αυτές τις πληροφορίες τα τροχιακά διανύσματα της κατάστασης στα θεωρητικά μετά-δεδομένα του προϊόντος είναι

Ο χρήστης προς το παρόν υποστηρίζει μόνο ASAR και ERS προϊόντα. Για τον Sentinel-1 μπορούν να εφαρμοστούν αρχεία τροχιάς restituted και αρχεία τροχιάς precise. Οι με ακρίβεια τροχιές παράγονται μερικές εβδομάδες μετά την ανάκτηση. Τα αρχεία τροχιάς μπορούν αυτόματα να κατέβουν από τους servers Array. Εάν ένα αρχείο τροχιάς δεν βρεθεί, μπορούμε να το αναζητήσουμε στη διεύθυνση <u>https://qc.sentinel1.eo.esa.int/</u> και να τοποθετήσουμε το αρχείο που κατεβάσαμε στο φάκελο auxdata.

Για να βελτιωθούν τα διανύσματα της κατάστασης της τροχιάς, εκτελούνται τα ακόλουθα βήματα: α) λαμβάνουμε το χρόνο έναρξης των δεδομένων, β) βρίσκουμε το αρχείο τροχιάς με το συγκεκριμένο τύπο και το χρόνο έναρξης του προϊόντος, γ) για κάθε τροχιακό διάνυσμα κατάστασης, λαμβάνουμε το χρόνο Doppler ίσο με το μηδέν, δ) υπολογίζουμε ένα νέο τροχιακό διάνυσμα κατάστασης με 8^η σειρά παρεμβολής Lagrange χρησιμοποιώντας δεδομένα από τις 9 πλησιέστερες τροχιακές θέσεις γύρω από το μηδενικό χρόνο Doppler.

Οι παράμετροι που χρησιμοποιούνται από τον χρήστη είναι: Α) Τύπος τροχιάς όπου ο χρήστης μπορεί να επιλέξει τον τύπο του αρχείου της τροχιάς για την εφαρμογή. Επί του παρόντος υποστηρίζονται οι SENTINEL-1 Restituted και SENTINEL-1 Precise τύποι αρχείων τροχιάς.

C Apply Orbit File ×	C C Apply Orbit File X
File Help	File Help
I/O Parameters Processing Parameters	I/O Parameters Processing Parameters
Source Product source:	Orbit State Vectors: Sentinel Precise (Auto Download) Polynomial Degree: 3
[3] S1A_IW_GRDH_1SDV_201601301161517_201601301161542_0 V	Do not fail if new orbit file is not found
Target Product Name:	
L517_20160130T161542_009726_00E33E_C0E1_Noise-Cor_Noise_Cor_Bdr_Orb	
C: \Users\User	
☑ Open in SNAP	
Run Close	Run Close

Σχήμα 61α. Πλαίσιο διαλόγου του Apply Orbit File

Σχήμα 61β. Πλαίσιο διαλόγου του Apply Orbit File

Κάθε δορυφορική εικόνα λαμβάνεται με ψηφιακούς αριθμούς DN που είναι οι τιμές κάθε εικονοστοιχείου της εικόνας. Αυτοί οι ψηφιακοί αριθμοί δεν σημαίνουν ένα φυσικό μέγεθος, παρόλα αυτά, ο αλγόριθμος «Ship Detection» και «Wind Field Estimation» βασίζονται σε μια συγκεκριμένη ανάλυση των ιδιοτήτων οπισθοσκέδασης της επιφάνειας που απεικονίζει το κάθε εικονοστοιχείο. Άρα το επόμενο στάδιο από τα προηγούμενα είναι να κάνουμε τη διαβάθμιση (Calibration) των εικόνων στο φυσικό μέγεθος της οπισθοσκέδασης.

5.4. Βαθμονόμηση ή τοπογραφική διόρθωση (Calibration)

$Radar \rightarrow Radiometric \rightarrow Calibrate$

Ο σκοπός της διαμέτρησης των ΣΑΡ απεικονίσεων είναι να παρέχει εικόνες στις οποίες οι τιμές των εικονοστοιχείων μπορεί να είναι άμεσα συνδεδεμένες με την οπισθοσκέδαση των εικόνων του ραντάρ. Αν και οι ΣΑΡ εικόνες που δεν έχουν υποβληθεί σε διαμέτρηση είναι επαρκείς για ποιοτική χρήση, οι ΣΑΡ εικόνες με διαμέτρηση είναι απαραίτητες για την ποιοτική χρήση των δεδομένων ΣΑΡ. Η τυπική επεξεργασία των δεδομένων ΣΑΡ, η οποία παράγει εικόνες επιπέδου 1, δεν περιέχουν ραδιομετρικές διορθώσεις και έτσι παραμένει σημαντικό ραδιομετρικό σφάλμα (radiometric bias). Επομένως είναι απαραίτητο να εφαρμοστεί η ραδιομετρική διόρθωση στις εικόνες ΣΑΡ έτσι ώστε οι τιμές των εικονοστοιχείων των εικόνων ΣΑΡ να αντιπροσωπεύουν πραγματικά την οπισθοσκέδαση της επιφάνειας. Η ραδιομετρική διόρθωση είναι επίσης απαραίτητη για τη σύγκριση των ΣΑΡ εικόνων που αποκτήθηκαν με διαφορετικούς αισθητήρες ή αποκτήθηκαν από τον ίδιο αισθητήρα αλλά σε διαφορετικές στιγμές, με διαφορετικούς τρόπους ή επεξεργάστηκαν από διαφορετικούς επεξεργαστές. Ο χρήστης πραγματοποιεί διαφορετικές διαμετρήσεις για τα προϊόντα ASAR, ERS, ALOS και Radarsat-2 και δημιουργεί τις εικόνες σίγμα μηδέν. Προαιρετικά μπορούν επίσης να δημιουργηθούν και εικόνες βήτα μηδέν και γάμμα μηδέν.

Τα προϊόντα Sentinel-1 (IW,EW,SM,SLC & GRD) υποστηρίζονται πλήρως.

Για τη μετατροπή των ψηφιακών τιμών των εικονοστοιχείων σε τιμές οπισθοσκέδασης, όλη η απαιτούμενη πληροφορία βρίσκεται στο προϊόν. Η πληροφορία βαθμονόμησης περιλαμβάνεται ως σχολιασμός στο προϊόν επιτρέποντας την απλή μετατροπή των τιμών της έντασης της εικόνας σε σίγμα ή γάμμα μηδέν τιμές. Ο σκοπός της διαμέτρησης ΣΑΡ είναι να παρέχει εικόνες στις οποίες οι τιμές των εικονοστοιχείων μπορούν απευθείας να σχετίζονται με την οπισθοσκέδαση ραντάρ της σκηνής. Για να γίνει αυτό η εφαρμογή εξόδου της κλίμακας (output scaling) που εφαρμόζεται από τον επεξεργαστή πρέπει να αναιρεθεί και να εφαρμοστεί η επιθυμητή βαθμονόμηση. Τα προϊόντα του Επιπέδου-1 παρέχουν τέσσερις πίνακες βαθμονόμησης (calibration Look Up Tables LUTs) για να παράγουν β°, σ⁰ και γ ή να επιστρέψουν στον Ψηφιακό Αριθμό (Digital Number). Οι πίνακες βαθμονόμησης εφαρμόζουν ένα κέρδος που εξαρτάται από την πλευρική απόσταση που περιλαμβάνει και την απόλυτη σταθερά διαμέτρησης. Για τα προϊόντα GRD εφαρμόζεται από την ακόλουθη εξίσωση $value(i) = \frac{|DN_i|^2}{A^2}$ όπου εξαρτάται

από το επιλεγμένο LUT, value(i) = oneof $\beta_i^0, \sigma_i^0 or \gamma_i^0 or original DN_i$ $A_i = oneofbetaNought(i), sigmaNought(i), gamma(i) ordn(i)$

Η βi γραμμική παρεμβολή χρησιμοποιείται για κάθε εικονοστοιχείο που βρίσκεται μεταξύ των τιμών που αναφέρονται στον πίνακα διαβάθμισης.

Οι παράμετροι που χρησιμοποιούνται είναι οι ακόλουθες: 1) Το αρχικό κανάλι (Source Band) που είναι όλες οι μπάντες (πραγματικές ή εικονικές) του αρχικού προϊόντος. Ο χρήστης μπορεί να συλλέξει μια ή περισσότερες μπάντες για τη διαμέτρηση. Εάν δεν επιλεγεί καμία μπάντα, τότε από προεπιλογή όλα οι μπάντες χρησιμοποιούνται για τη διαμέτρηση. Ο χρήστης μπορεί να ανιχνεύσει την κατάλληλη μπάντα εισόδου. 2) Το βοηθητικό αρχείο (Auxiliary File) όπου ο χρήστης επιλέγει το αρχείο XCA για τη διόρθωση του προτύπου της κεραίας. Είναι διαθέσιμες οι ακόλουθες επιλογές: Latest Auxiliary File, Product Auxiliary File (για ανιχνεύσιμο προϊόν μόνο) και External Auxiliary File. Από προεπιλογή χρησιμοποιείται το Latest Auxiliary File. 3) Η κλίμακα σε dB (Scale in dB) όπου το πλαίσιο ελέγχου υποδεικνύει το βαθμονομημένο προϊόν που είναι αποθηκευμένο στην κλίμακα dB. Εάν δεν είναι τσεκαρισμένο τότε το προϊόν αποθηκεύεται σε γραμμική κλίμακα. 4) Η δημιουργία εικονικής μπάντας γ_0 (Create gamma0 virtual band) όπου το πλαίσιο ελέγχου υποδεικνύει ότι η εικόνα γο δημιουργείται ως εικονικό κανάλι. Εάν δεν είναι τσεκαρισμένο, δεν δημιουργείται καμία εικόνα γ₀. 5) Η δημιουργία εικονικής μπάντας β₀ (Create beta0 virtual band) όπου το πλαίσιο ελέγχου υποδεικνύει ότι η εικόνα βήτα μηδέν δημιουργείται ως μια εικονική μπάντα. Εάν δεν είναι τσεκαρισμένο, καμία βήτα μηδέν εικόνα δεν δημιουργείται.

Calibration	× Calibration ×
File Help	File Help
I/O Parameters Processing Parameters Source Product	I/O Parameters Processing Parameters
source: [4] S1A_IW_GRDH_1SDV_20160130T161517_20160130T161542_0 ~	Polarisauuris: VH VV
Target Product Name: 201601307161542 009726 005335 C051 Noise-Cor Noise Cor Bdr Orb C	
Save as: BEAM-DIMAP V	Save as complex output
Directory:	
☑ Open in SNAP	Output beta0 band
Run Clo	se Run Close

Σχήμα 63α. Πλαίσιο διαλόγου Calibration

Σχήμα 63β. Πλαίσιο διαλόγου Calibration

Μετά τις προ-επεξεργασίες, υλοποιούνται οι επεξεργασίες με πρώτη αυτή της αφαίρεσης της κηλίδωσης.

5.5. Αφαίρεση της κηλίδωσης (Multi-temporal Speckle Filter)

S1A IW GRDH 1SDV 20160130T161517 20160130T161542 009726 00E33E C0E1 Noise-Cor No er\S1A_IW_GRDH_1SDV_20160130T161517_20160130T161542_009726_00E33E_C0E1_Noise-Cor_N Q · Search (Ctrl+I) ile Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help Apply Orbit File Radiometric 🗃 🌗 🖏 🚵 🚟 📥 📽 🖡
 Pixel Info

 IV_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160

 JW_gRDH_1SDV_201601307161517_20160
 sity_VH × Speckle Filtering Single Product Speckle Filte lulti-temporal Spec nterfe r_Bdr r_Bdr_Orb r_Bdr_Orb olarimetri Geometrie Sentinel-1 TOPS NVISAT ASAR SAR Application SAR Utilities SAR Wizard Complex to Detected Gi Multilooking n - [2] Int ity... × Colour Manipulation - [2] I... World View Q e e 1 2 1:31.09 - 1 0° 🔹 🕐

Radar→Speckle Filtering→Multi-temporal Speckle Filter

Σχήμα 64. Στιγμιότυπο οθόνης για την επιλογή Multi-temporal Speckle Filter

Οι εικόνες ΣΑΡ έχουν θόρυβο που μοιάζει με «αλατοπίπερο», που ονομάζεται κηλίδωση. Η κηλίδωση υποβαθμίζει την ποιότητα της εικόνας και κάνει την ερμηνεία των χαρακτηριστικών πιο δύσκολη. Οι κηλίδες προκαλούνται από τυχαία δημιουργική ή καταστρεπτική παρεμβολή της φάσης όταν επιστρεφόμενα κύματα από τους στοιχειώδεις σκεδαστές συμβάλλουν και προκύπτει μία τιμή φάσης για κάθε εικονοστοιχείο. Η μείωση

του θορύβου κηλίδωσης μπορεί να εφαρμοστεί είτε με τη χρήση χωρικού φίλτρου είτε με επεξεργασία πολλών όψεων. Στην επεξεργασία της αφαίρεσης της κηλίδωσης χρησιμοποιήσαμε το φίλτρο Lee Sigma. Για το φίλτρο επιλέχθηκαν οι παρακάτω παράμετροι: 1) Αρχικό κανάλι (Source Band) που είναι όλες οι μπάντες (αληθινές ή εικονικές) από το αρχικό προϊόν. Ο χρήστης μπορεί να επιλέξει μια ή περισσότερες μπάντες για να παράγει φιλτραρισμένες εικόνες. Εάν δεν επιλεγεί καμία μπάντα, τότε από προεπιλογή όλες οι μπάντες θα επιλεχθούν. Για σύνθετο προϊόν, μόνο η μπάντα της έντασης μπορεί να επιλεχθεί. 2) Φίλτρο (Filter) που είναι το φίλτρο της κηλίδωσης. 3) Μέγεθος X (Size X) που είναι το πλάτος του πυρήνα φιλτραρίσματος. 4) Μέγεθος Y (Size Y) που είναι το ύψος του πυρήνα φιλτραρίσματος. 5) Συντελεστής απόσβεσης του πάγου (Frost Damping Factor) που είναι ο συντελεστής απόσβεσης για το φίλτρο του πάγου. 6) Όριο κατωφλίου (Edge Threshold) που είναι ένα κατώφλι για την ανίχνευση των άκρων. Περιοχή με 7x7 εικονοστοιχεία (pixels) με τοπική διακύμανση μικρότερη αυτής του κατωφλίου θεωρείται επίπεδη και ένα τοπικό φίλτρο (Normal Local Statistics Filter) χρησιμοποιείται για το φιλτράρισμα. Εάν η τοπική διακύμανση είναι μεγαλύτερη εκείνης του κατωφλίου, τότε η περιοχή θεωρείται ως οριακή περιοχή και τότε για το φιλτράρισμα χρησιμοποιείται το φίλτρο «Refined Lee». Εναλλακτικά θα μπορούσε να χρησιμοποιηθεί το φιλτράρισμα το οποίο βασίζεται σε πολλές εικόνες (Multi-temporal filtering).

Για μια ακολουθία Ν εγγεγραμμένων εικόνων με ένταση στη θέση (x,y) στην k-ιοστή εικόνα που συμβολίζεται με I_k (x,y), η τιμή μετά την εφαρμογή του φίλτρου δίνεται από τον τύπο: $J_{K}(x,y) = \frac{E[I_{K}]}{N} \sum_{i=1}^{N} \frac{I_{i}(x,y)}{E[I_{i}]} \quad \text{για } k=1,..., \text{N} \quad \text{όπου } E[I_{i}] \quad \text{είναι } \eta \quad \mu \text{έση } \tauιμή \quad \tauων$ εικονοστοιχείων σε ένα παράθυρο με κέντρο τη θέση (x,y) στην εικόνα I.

Τα δύο βήματα της προ-επεξεργασίας είναι: Α) Η διαμέτρηση στην οποία το σ⁰
εξάγεται από τον ψηφιακό αριθμό σε κάθε εικονοστοιχείο. Αυτό εξασφαλίζει ότι οι τιμές
του από διαφορετικούς χρόνους και σε διαφορετικά σημεία της εικόνας είναι συγκρίσιμες.
B) Η καταχώρηση των εικόνων. Εδώ υποτίθεται ότι η προ-επεξεργασία έχει εκτελεστεί πριν
την εφαρμογή του φιλτραρίσματος.

Ο χρήστης ακολουθεί τις ακόλουθες παραμέτρους: 1) Αρχικό κανάλι (Source Band) που είναι όλες οι μπάντες (αληθινές ή εικονικές) του αρχικού προϊόντος. Ο χρήστης μπορεί να επιλέξει μια ή περισσότερες μπάντες για να παράγει τη φιλτραρισμένη εικόνα. Εάν καμία μπάντα δεν έχει επιλεγεί, τότε από προεπιλογή επιλέγονται όλες οι μπάντες. 2) Μέγεθος παραθύρου (Window Size) που είναι η διάσταση του συρόμενου παραθύρου που χρησιμοποιείται στον υπολογισμό του χωρικού μέσου όρου στην κάθε εικόνα της χρονικής ακολουθίας. Τα υποστηριζόμενα μεγέθη παραθύρου είναι 3x3, 5x5, 7x7, 9x9, 11x11. Στην περίπτωσή μας το μέγεθος είναι 7x7.

💿 Multi-temporal Speckle Filter 🛛 🗙 🗙	📀 Multi-temporal Speckle Filter 🛛 🗙
File Help	File Help
I/O Parameters Processing Parameters Source Product source: IFELSIA IN CODM. ISDN: 201601207161517, 201601207161542, 0	I/O Parameters Processing Parameters Sigma0_VH Sigma0_VV
Target Product Name:	Source Bands:
60130T161542_009726_00E33E_C0E1_Noise-Cor_Noise_Cor_Bdr_Orb_Cal_Spk Save as: BEAM-DIMAP Directory: C:\Users\User Open in SNAP	Filter: Lee Sigma ✓ Number of Looks: 1 ✓ Window Size: 7x7 ✓ Sigma: 0.9 ✓ Target Window Size: 3x3 ✓
Run Close Σχήμα 65α. Πλαίσιο διαλόγου του Multi-temporal Speckle Filter	Run Close Σχήμα 65β. Πλαίσιο διαλόγου του Multi-temporal Speckle Filter

5.6.Εξαγόμενη πληροφορία για τα πλοία και το πεδίο ανέμου

_

5.6.α.Ανίχνευση αντικειμένων στη θαλάσσια επιφάνεια

Radar→SAR A	Applications-	→Ocean App	olications→0	cean Object Detection	I	
SNAP					- 0	×
File Edit View Analysis Layer Vector Raster Optical R	adar Tools Window Help				Q · Search (Ctrl+I)	
	Apply Orbit File Radiometric >	x 🖓 🛄 🌒 🖬				
Product Explorer × Pixel Info ⊕ [] [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601 ⊕ [] [] S.L.J.W., GRH., ISOV, 20160 1007 161517, 201601	Speckle Filtering > Coregistration > Interferometric > Polarimetric > Geometric > Sentinel-1 TOPS > ENVISAT ASAR >	Cor_Noise_Cor Cor_Noise_Cor_Bdr Cor_Noise_Cor_Bdr_Orb -Cor_Noise_Cor_Bdr_Orb_Col				🕼 Layer Manager
	SAR Applications >	Ocean Applications >	Ocean Object Detection			
	SAR Utilities >	Urban Areas >	Oil Spill Detection			
	Complex to Detected GR	Change Detection	Wind Field Estimation			
	Multilooking					
	• ··· 1					
terrigation - Cooper Prangulation Oncercainty ve		1 6 6 6				
		0° ‡ Ø				
						2

10 1 Ohia

Σχήμα 66. Στιγμιότυπο οθόνης του Ocean Object Detection

Ο χρήστης ανιχνεύει αντικείμενα όπως είναι τα πλοία στην επιφάνεια της θάλασσας από τις εικόνες ΣΑΡ. Η λειτουργία της ανίχνευσης αντικειμένων αποτελείται από 4 λειτουργίες. Αρχικά πραγματοποιείται η λειτουργία της προ-επεξεργασίας όπου η διαμέτρηση εφαρμόζεται στην αρχική εικόνα για να κάνει την περαιτέρω προ-ανίχνευση ευκολότερη και περισσότερο ακριβής. Έπειτα ακολουθεί η επικάλυψη ξηράς-θάλασσας

όπου παράγεται μια επικάλυψη της ξηράς και θάλασσας για να επιβεβαιώσει ότι η ανίχνευση εστιάζεται μονάχα στην περιοχή ενδιαφέροντος. Στη συνέχεια η λειτουργία της προ-επικάλυψης όπου τα αντικείμενα ανιχνεύονται με έναν ανιχνευτή Constant False Alarm Rate (CFAR) και τέλος η λειτουργία της διάκρισης όπου οι εσφαλμένες ειδοποιήσεις απορρίπτονται με βάση την διάσταση του αντικειμένου. Υποτίθεται ότι το στάδιο της προεπεξεργασίας έχει πραγματοποιηθεί πριν την εφαρμογή του βήματος της ανίχνευσης αντικειμένων.

Ο ανιχνευτής που χρησιμοποιείται στη λειτουργία της προ-επικάλυψης (prescreening) είναι ένας ανιχνευτής δύο παραμέτρων με συνεχή σειρά ειδοποιήσεων σφαλμάτων (CFAR). Η βασική ιδέα είναι να ερευνηθούν εικονοστοιχεία που είναι ασυνήθιστα φωτεινά όταν συγκρίνονται με τα εικονοστοιχεία στη περιβάλλουσα περιοχή. Έστω ότι το x_t είναι το υπό εξέταση εικονοστοιχείο και T είναι ένα ορισμένο όριο, τότε το κριτήριο ανίχνευσης μπορεί να εκφραστεί ως: $x_t > T \Leftrightarrow TARGET$. Έστω ότι f(x) είναι η συνάρτηση πυκνότητας πιθανότητας των τιμών της επιφάνειας της θάλασσας και το x κυμαίνεται μεταξύ των πιθανών τιμών των εικονοστοιχείων, τότε η πιθανότητα ειδοποίησης σφάλματος (probability of false alarm PFA) δίνεται από $PFA = \int_{T}^{\infty} f(x)dx$ και το κριτήριο αυτό της ανίχνευσης είναι ισοδύναμο με το ακόλουθο κριτήριο clutter), το παραπάνω κριτήριο ανίχνευσης μπορεί να ενίχνευσης μπορεί να εκφρασθεί περαιτέρω ως $x_t > \mu_b + \sigma_b t \Leftrightarrow TARGET$ όπου μ_b είναι ο όρος υποβάθρου, σ_b η τυπική

 $x_t > \mu_b + O_b t \iff FARGET$ блов μ_b είναι ο όρος υποβαθρου, O_b η τυπική απόκλιση του υποβάθρου και t είναι μια παράμετρος σχεδιασμού του ανιχνευτή που υπολογίζεται από την πιθανότητα εσφαλμένης ειδοποίησης PFA με την ακόλουθη ισότητα $PFA = \frac{1}{2} - \frac{1}{2} erf\left(\frac{t}{\sqrt{2}}\right)$. Η αποδεκτή τιμή PFA βρίσκεται στο διάστημα [0,1].

Στην πραγματική εφαρμογή του ανιχνευτή CFAR δύο παραμέτρων μια διάταξη που χρησιμοποιείται φαίνεται στο σχήμα 67. Στο παράθυρο του στόχου που περιέχει το υπό εξέταση εικονοστοιχείο, ο «δακτύλιος» στο υπόβαθρο περιέχει εικονοστοιχεία για την εκτίμηση των συναφών στατιστικών του υποβάθρου ενώ ο «δακτύλιος» φρουρός διαχωρίζει το παράθυρο-στόχο από τον δακτύλιο στο υπόβαθρο έτσι ώστε κανένα εικονοστοιχείο ενός διευρεμένου στόχου να μην συμπεριλαμβάνεται στο δακτύλιο του υποβάθρου. Ο μέσος όρος του υποβάθρου μ_b και η τυπική απόκλιση σ_b που χρησιμοποιούνται στο κριτήριο υπολογίζονται από τα εικονοστοιχεία στο δακτύλιο του υποβάθρου. Στην περίπτωση που το παράθυρο-στόχος περιέχει περισσότερα από ένα εικονοστοιχεία, ο χειριστής χρησιμοποιεί το ακόλουθο κριτήριο ανίχνευσης $\mu_t \succ \mu_b + \sigma_b t \Leftrightarrow TARGET$ όπου μ_t είναι η μέση τιμή των εικονοστοιχείων στο

93

παράθυρο-στόχο. Σε αυτήν την περίπτωση το t μπορεί να αντικατασταθεί από το $t\sqrt{n}$ (όπου n είναι ο αριθμός των εικονοστοιχείων στο παράθυρο-στόχο) στον υπολογισμό του PFA. Κανονικά το μέγεθος του παραθύρου του στόχου θα πρέπει να είναι περίπου το μέγεθος του μικρότερου αντικειμένου προς ανίχνευση, το μέγεθος του παράθυρουφρουρού να είναι περίπου το μέγεθος του μεγαλύτερου αντικειμένου που θα ανιχνευτεί και το μέγεθος του παραθύρου-υποβάθρου να είναι αρκετά μεγάλο για να εκτιμηθούν με ακρίβεια τοπικά στατιστικά στοιχεία.

Σχήμα 67.Ρύθμιση παραθύρου για τον προσαρμοσμένο αλγόριθμο κατωφλίου.

Ο χρήστης υπολογίζει την παράμετρο της σχεδίασης ανιχνευτή t από τη συλλεγόμενη PFA του χρησιμοποιώντας την παραπάνω εξίσωση. Έπειτα υπολογίζει τον όρο του υποβάθρου μ_b και την τυπική απόκλιση σ_b χρησιμοποιώντας εικονοστοιχεία στο δακτύλιο του υποβάθρου. Στη συνέχεια υπολογίζει τη μέση τιμή μ, του παραθύρου-στόχου. Εάν ισχύει

 $\mu_t \succ \mu_b + \sigma_b \cdot t$ τότε το κεντρικό εικονοστοιχείο ανιχνεύεται ως μέρος ενός αντικειμένου, διαφορετικά δεν είναι αντικείμενο. Τέλος μετακινεί όλα τα παράθυρα κατά

ένα εικονοστοιχείο για να ανιχνεύσει το επόμενο εικονοστοιχείο. Η λειτουργία της διάκρισης γίνεται από τη λειτουργία «Διάκριση αντικειμένου». Κατά τη διάρκεια αυτής της λειτουργίας, οι λανθασμένες ανιχνεύσεις εξαλείφονται βασιζόμενες σε απλές μετρήσεις του στόχου. Για τη διαδικασία αυτή ο χρήστης αρχικά συλλέγει συνεχή ανιχνεύσιμα εικονοστοιχεία μέσα σε μια απλή συλλογή. Έπειτα εξάγονται οι πληροφορίες για το πλάτος και το μήκος των συλλογών. Βασιζόμενοι σε αυτές τις μετρήσεις και στο κριτήριο της διάκρισης της εισόδου του χρήστη, οι συλλογές που είναι αρκετά μεγάλες ή αρκετά μικρές ελαχιστοποιούνται.

Για τη λειτουργία «Προσαρμοσμένος καθορισμός κατωφλίου» (Adaptive Thresholding), χρησιμοποιούνται οι παρακάτω παράμετροι (βλέπε σχήματα 69): α) Το μέγεθος του παράθυρου στόχου (Target Window Size (m)) που είναι το μέγεθος του παράθυρου-στόχου σε μέτρα και πρέπει να ρυθμιστεί στο μέγεθος του μικρότερου στόχου προς ανίχνευση, β) το μέγεθος του παράθυρου Φρουρού (Guard Window Size (m)) που είναι το μέγεθος του παράθυρου-φρουρού σε μέτρα και θα πρέπει να ρυθμιστεί στο μέγεθος του μεγαλύτερου στόχου προς ανίχνευση, γ) το μέγεθος του παράθυρουυπόβαθρου (Background Window Size (m)) που είναι το μέγεθος του παράθυρουυπόβαθρου σε μέτρα και πρέπει να είναι αρκετά μεγαλύτερο από το μέγεθος του παράθυρου-φρουρού για να διασφαλιστεί ο ακριβής υπολογισμός των στατιστικών του υπόβαθρου, δ) η τιμή PFA (10^(-x)) όπου εδώ ο χρήστης εισάγει έναν θετικό αριθμό για την παράμετρο x και η τιμή PFA υπολογίζεται από το 10^(-x), δηλαδή εάν ο χρήστης εισάγει x=6, τότε PFA=10^(-6) είναι 0.000001.

Για τη λειτουργία «Διάκριση αντικειμένου», χρησιμοποιούνται οι ακόλουθοι παράμετροι: α) το μέγεθος ελάχιστου στόχου (Minimum Target Size (m)) όπου στόχος με διάσταση μικρότερη από αυτό το όριο εξαλείφεται, β) το μέγεθος μέγιστου στόχου (Maximum Target Size (m)) όπου στόχος με διάσταση μεγαλύτερη από αυτό το όριο εξαλείφεται.

Για να φανούν τα αποτελέσματα της ανίχνευσης των αντικειμένων θα πρέπει να ακολουθηθούν τα παρακάτω βήματα: α) επαναφορά της εικόνας και β) πηγαίνουμε στο Layer Manager και προσθέτουμε το layer που ονομάζεται "Object Detection Results".

Μια αναφορά του Object Detection επίσης θα παραχθεί σε XML στο φάκελο

.s1tbx/log.

Σχήμα 68. Εικόνα με τα αποτελέσματα του Object Detection Results

Read 2-Land-Sea-F	Mask 3-AdaptiveThre	sholding 4-Object-	Discrimination 5-	Write		
Source Product						
[2] S1A_IW_GRDH_	1SDV_20160130T1615	17_20160130T1615	42_009726_00E3	3E_COE1_Cal	~	
Data Format: A	iny Format 🗸 🗸					

1-Read 2-Land-Sea-Ma	Sk 3-AdaptiveThresholding 4-Object-Discrimination 5-Write	e
Source Bands:	Sigma0_VH	
	Sgma0_VV	
Mask out the Land		
 Mask out the Sea 		
Use SRTM 3sec		
O Use Vector as Mask		
	Invert Vector	
Bypass		

Σχήμα 69α.Πλαίσιο διαλόγου του Ocean Object Detection Σχήμα 69β. Πλαίσιο διαλόγου του Ocean Object Detection

-Read 2-Land-Sea-Mask	3-AdaptiveThresholding	4-Object-Discrimination	5-Write	
arget Window Size (m):				80
uard Window Size (m):				400.0
ackground Window Size (m):			1000.0
A (10^(-x)):				12.5

1-Read	2-Land-Sea-Mask	3-AdaptiveThresholding	4-Object-Discrimination	5-Write	
Minimum	Target Size (m):				120.
Maximum	Target Size (m):				600.

Σχήμα 69δ. Πλαίσιο διαλόγου του Ocean Object

Detection

Σχήμα 69γ. Πλαίσιο διαλόγου του Ocean Object Detection

© Ocean Object	t Detection	1		
1-Read 2-Land	-Sea-Mask	3-AdaptiveThresholding	4-Object-Discrimination	5-Write
Target Product				
Name:				
shp_detection				
Directory:	CAM-DIMA	~		
C: Users U	lser			
☑ Open in SNJ	AP			
		Ø	Help 🕞 Run	

Σχήμα 69ε. Πλαίσιο διαλόγου του Ocean Object Detection

5.6.β. Εκτίμηση πεδίου ανέμου

Radar \rightarrow SAR Applications \rightarrow Ocean Applications \rightarrow Wind Field Estimation

Σχήμα 70. Στιγμιότυπο οθόνης του Wind Field Estimation

Καθώς ο άνεμος φυσά κατά μήκος της επιφάνειας του ωκεανού, δημιουργείται τραχύτητα στην επιφάνεια που γενικότερα είναι ευθυγραμμισμένη με την κατεύθυνση του ανέμου. Κατά συνέπεια η οπισθοσκέδαση του ραντάρ από αυτή την τραχεία επιφάνεια σχετίζεται με την ταχύτητα και τη διεύθυνση του ανέμου. Ο χρήστης ανακτά την ταχύτητα και τη διεύθυνση C της εικόνας ΣΑΡ.

Στη συνέχεια περιγράφονται τα βασικά βήματα της επεξεργασίας για την ανάκτηση του πεδίου του ανέμου. Αρχικά δημιουργείται μια επικάλυψη της ξηράς και της θάλασσας για να διασφαλιστεί ότι η εκτίμηση εστιάζεται αποκλειστικά στην περιοχή της επιφάνειας της θάλασσας. Έπειτα η εικόνα ΣΑΡ διαιρείται σε πλέγμα χρησιμοποιώντας προκαθορισμένο από το χρήστη μέγεθος παραθύρου. Για κάθε πλέγμα, μια κατεύθυνση του ανέμου (με 180° ασάφεια) εκτιμάται από τα χαρακτηριστικά στην ΣΑΡ εικόνα χρησιμοποιώντας μια μέθοδο του πεδίου συχνοτήτων. Με εκτιμώμενη την κατεύθυνση του ανέμου στο πλέγμα, η ταχύτητα του ανέμου τελικά εκτιμάται χρησιμοποιώντας το μοντέλο CMOD5 για το Normalized Radar Cross Section (NRCS). Σχετικά με τη δημιουργία της επικάλυψης της ξηράς – θάλασσας, ο χρήστης εφαρμόζει τα βήματα της λειτουργίας «Create Land Mask».

Η κατεύθυνση του ανέμου εκτιμάται από τα χαρακτηριστικά στην εικόνα ΣΑΡ. Τα βήματα για την εκτίμησή του περιγράφονται στη συνέχεια. Για κάθε παράθυρο εντός του οποίου θα εκτιμηθεί μια διεύθυνση του ανέμου, ορίζεται ένα τοπικό μέγεθος FFT (Fast Fourier Transformation). Το μέγεθος FFT είναι τα 2/3 του μεγέθους του παραθύρου, επομένως τέσσερα φάσματα μπορούν να υπολογιστούν στο παράθυρο με κάθε φασματική περιοχή να επικαλύπτεται κατά 50% με το γειτονικό φάσμα. Κάθε παράθυρο γίνεται ομαλό εφαρμόζοντας ένα μεγάλο μέσο φίλτρο και έπειτα διαιρώντας με τη φιλτραρισμένη εικόνα. Εφαρμόζεται το μέγεθος FFT και τα τέσσερα φάσματα που προκύπτουν είναι οι μέσοι όροι. Ένας δακτύλιος εφαρμόζεται στο φάσμα για να μηδενίσει κάθε ενέργεια εκτός της περιοχής ενός κυματαριθμού. Τα όρια του δακτυλίου έχουν οριστεί στα μήκη κύματος των 3 km έως 15 km. Ένα διάμεσο φίλτρο 3x3 τότε εφαρμόζεται στο φάσμα για να απομακρύνει το θόρυβο. Ένα πολυώνυμο διδιάστατο είναι κατάλληλο για τα είδη των φασμάτων που προκύπτουν και προσδιορίζεται η διεύθυνση μέσω του αρχικού που έχει και τον μεγαλύτερο τετραγωνικό όρο (π.χ. τη ευρύτερη έκταση). Η κατεύθυνση του ανέμου υποτίθεται ότι είναι 90 μοίρες από αυτήν την κατεύθυνση.

Για την εκτίμηση του ανέμου λαμβάνουμε υπόψη μας ότι : α) Η ταχύτητα του ανέμου εκτιμάται χρησιμοποιώντας το μοντέλο CMOD5 για NRCS που αναπτύχθηκε από τον Hersbach για την VV-polarized C-band scatterometry και β) για το προϊόν πόλωσης HH ENVISAT, όπου το μοντέλο CMOD5 δεν είναι απευθείας εφαρμόσιμο, ο χρήστης αρχικά μετατρέπει το NRCS που βρίσκεται σε πόλωση HH σε ένα αντίστοιχο NRCS με πόλωση VV με την ακόλουθη εξίσωση και έπειτα εφαρμόζει το μοντέλο CMOD5 στο μετασχηματισμένο NRCS.

$$\sigma_{\nu}^{0} = \frac{\left(1 + 2 \cdot \tan^{2}(\theta)\right)^{2}}{\left(1 + \alpha \cdot \tan^{2}(\theta)\right)^{2}} \sigma_{\mathrm{H}}^{0}$$
 όπου θ είναι η γωνία πρόσπτωσης και το α ορίζεται ως 1.

Ο χρήστης τώρα υποστηρίζεται για τα προϊόντα ERS και ENVISAT (VV και ΗΗ πολωμένα). Το αρχικό προϊόν υποτίθεται ότι έχει ήδη υποβληθεί σε διαμέτρηση.

Οι παράμετροι που χρησιμοποιούνται από τον χρήστη είναι οι εξής: Α) Τα αρχικά κανάλια (Source Bands) δηλαδή όλες οι μπάντες (bands) (αληθινές ή εικονικές) του αρχικού προϊόντος. Ο χρήστης μπορεί να συλλέξει μία ή περισσότερες μπάντες για να παράγει εικόνες πολλών όψεων. Αν δεν επιλεγεί καμία μπάντα τότε επιλέγονται όλες οι μπάντες από προεπιλογή. Β) Το μέγεθος του παραθύρου, δηλαδή η διάσταση ενός παραθύρου για το οποίο εκτιμώνται η διεύθυνση και η ταχύτητα του ανέμου.

Για να φανούν οι υπολογισμένες κατευθύνσεις του ανέμου, πρέπει να κάνουμε αναφορά της εικόνας και έπειτα να πάμε στο layer manager και να προσθέσουμε το layer με την ονομασία "Wind Field Estimation Results". Έπειτα θα εμφανιστούν οι κατευθύνεις του ανέμου. Σημειώνουμε ότι η κατεύθυνση του ανέμου δηλώνεται με διπλά βέλη στις κορυφές (double headed arrows) διότι υπάρχει μια 180° απροσδιοριστία στην εκτιμώμενη διεύθυνση του ανέμου. Επίσης για εκείνα τα πλέγματα στα οποία βρίσκονται τα εικονοστοιχεία της ξηράς, οι κατευθύνσεις του ανέμου δεν υπολογίζονται και επομένως δεν εμφανίζονται.

Τα αποτελέσματα της εκτίμησης του πεδίου του ανέμου (Wind Field Retrieval Result Report) αποθηκεύονται σε ένα αρχείο xml που είναι το .s1tbx/log/wind_field_report.xml με τις ακόλουθες πληροφορίες να δίνονται για κάθε παράθυρο για το οποίο έχει φτιαχτεί η εκτίμηση του ανέμου: 1) lat: το γεωγραφικό πλάτος του επικεντρωμένου σημείου στο παράθυρο, 2) lon: το γεωγραφικό μήκος του επικεντρωμένου σημείου στο παράθυρο, 3) speed: η εκτιμώμενη ταχύτητα ανέμου σε m/s, 4) dx: η x-συνιστώσα του εκτιμώμενου διανύσματος του ανέμου, 5) dy: η y-συνιστώσα του εκτιμώμενου διανύσματος του ανέμου, 6) ratio: στην εκτίμηση της κατεύθυνσης του ανέμου, το φάσμα ενός δοθέντος παραθύρου αντιστοιχεί σε ένα πολυώνυμο 2d (όπως το f(x,y)=ax² + bxy + cy² + dx + ey + f) και η αναλογία στην έκθεση είναι η αναλογία των μικρότερων ημιαξόνων προς τους μεγαλύτερους ημιάξονες του διδιάστατου πολυωνύμου. Ισχύει ότι όσο μικρότερη είναι η τιμή της αναλογίας, τόσο περισσότερο αξιόπιστη η εκτίμηση της κατεύθυνσης του ανέμου.

C Wind Field Estimation	Wind Field Estimation	ion
1-Read 2-Land-Sea-Mask 3-Wind-Field-Estimation 4-Write	1-Read 2-Land-Sea-M	lask 3-Wind-Field-Estimation 4-Write
Source Product Name:	Source Bands:	Sigma0_VH Sigma0_VV
[4] S1A_JW_GRDH_ISDV_20160130T161517_20160130T161542_009726_00E33E_C0E1_Noise-Cor_Noise Data Format: Any Format		
	Mask out the Land	
	O Mask out the Sea	
	Use SRTM 3sec	
	O Use Vector as Mask	
		Invert Vector
	Bypass	
🔞 Help 🛛 🕞 Run		Help Pan

Σχήμα 71α. Πλαίσιο διαλόγου Wind Field Estimation

Σχήμα 71β. Πλαίσιο διαλόγου Wind Field Estimation

C Wind Field Estimation	C Wind Field Estimation
1-Read 2-Land-Sea-Mask 3-Wind-Field-Estimation 4-Write Sigme0_VH Sigme0_VV	1-Read 2-Land-Sea-Mask 3-Wind-Field-Estimation 4-Write Target Product
Source Bands:	Name: wind_field_estimation Save as: [BEAM-DIMAP \v Directory: C:\linew\user
Window Size (km): 20.0	G Open in SWAP
🔞 Help 🛛 🕞 Run	💽 Hélp 🛛 🕞 Run

Σχήμα 71γ. Πλαίσιο διαλόγου Wind Field Estimatio

Σχήμα 71δ. Πλαίσιο διαλόγου Wind Field Estimation

Οπτικοποίηση των αποτελεσμάτων

Για να δούμε τα αποτελέσματα από το παράθυρο Product Explorer, ανοίγουμε μια εικόνα με τα αποτελέσματα του ocean object detection (ship detection) ή wind field estimation. Πάμε στο Layer Manager, που είναι μια πλαϊνή μπάρα στα άκρα δεξιά και πατάμε Layer →Layer Manager →+→ Object Detection Results ή Wind Field Estimation.

Σχήμα 72. Αποτελέσματα της επεξεργασίας Wind Field Estimation

Σχήμα 73. Αποτελέσματα της επεξεργασίας Ocean Object Detection (ship detection)

5.7.Γεωαναφορά (Georeferencing)

Radar \rightarrow Geometric \rightarrow Terrain Correction \rightarrow Range Doppler

Σχήμα 74. Στιγμιότυπο οθόνης για την επιλογή Range Doppler Terrain Correction

Οι εικόνες είναι ανεστραμμένες. Για να τις δούμε όπως αυτές εμφανίζονται σε χάρτη θα πρέπει να κάνουμε γεωαναφορά των εικόνων με βάση τη λειτουργία Terrain Correction.

C Range Doppler Terrain Correction	📀 Range Doppler Terrain Correcti	ion >	
File Help	File Help		
I/O Parameters Processing Parameters	I/O Parameters Processing Parameters	ters	
Source Product source: [6] S1A_UW_GRDH_1SDV_20160130T161517_20160130T161542_009726_00E33E v	Source Bands:	Sigma0_VH Sigma0_VV	
Target Product Name: 51517 20160130T161542 009726 00E33E C0E1 Noise-Cor Noise Cor Bdr Orb Cal Sok TC			
	Digital Elevation Model:	SRTM 3Sec (Auto Download) 🗸 🗸	
Directory:	DEM Resampling Method:	BILINEAR_INTERPOLATION ~	
C:\Users\User	Image Resampling Method:	BILINEAR_INTERPOLATION ~	
Open in SNAP	Source GR Pixel Spacings (az x rg): Pixel Spacing (m):	10.0(m) × 10.0(m)	
	Pixel Spacing (deg):	10.0	
	Map Projection:	0.903132041195213E-5	
		WG564(00)	
	Mask out areas without elevation	Output complex data	
	Selected source band	DEM Latitude & Longitude	
	Incidence angle from ellipsoid	Local incidence angle Projected local incidence angle	
	Apply radiometric normalization		
	Save Sigma0 band	Use projected local incidence angle from DEM $~\sim~$	
	Save Gamma0 band	Use projected local incidence angle from DEM $\qquad \bigtriangledown$	
	Save Beta0 band		
	Auxiliary File (ASAR only):	Latest Auxiliary File \sim	
Run Close		Run Close	

Σχήμα 75α. Πλαίσιο διαλόγου του Range Doppler Terrain Correction

Σχήμα 75β. Πλαίσιο διαλόγου του Range Doppler Terrain Correction

6.Συμπεράσματα

Για την εκτίμηση των διανυσμάτων των ανέμων από τις εικόνες Συνθετικού Ανοίγματος Ραντάρ έχουν αναπτυχθεί ποικίλες τεχνικές από τους ερευνητές για να εκτιμήσουν αυτόματα την κατεύθυνση του ανέμου χρησιμοποιώντας προσεγγίσεις που βασίζονται στο φάσμα ή στη βαθμίδα. Για να εκτιμηθούν με ακρίβεια τα διανύσματα του ανέμου στην απεικόνιση ΣΑΡ απαιτείται κάποιο χαρακτηριστικό της επιφάνειας του ανέμου ευθυγραμμισμένο με τον τοπικό άνεμο, ώστε ο αλγόριθμος να μπορεί να το χρησιμοποιήσει προκειμένου να εκτιμήσει τη διεύθυνση. Μια μεγάλη δυσκολία που συναντάται όταν χρησιμοποιείται επιχειρησιακά η εικόνα ΣΑΡ για να εκτιμηθεί η κατεύθυνση του ανέμου, είναι να ξέρουμε πότε να αγνοήσουμε το διάνυσμα (vector) που προέρχεται από τον ΣΑΡ, διότι το υποσύνολο της εικόνας δεν περιέχει καθόλου πληροφορία για την κατεύθυνση του τοπικού ανέμου. Δηλαδή δεν περιέχει τα χαρακτηριστικά της επιφάνειας που είναι ευθυγραμμισμένα με τον τοπικό άνεμο. Η ακρίβεια στη λειτουργία θα μπορούσε θεαματικά να αυξηθεί εάν μονάχα εκείνα τα «καλά» διανύσματα χρησιμοποιούνταν για να δημιουργήσουν ένα ερμηνεύσιμο πεδίο σε όλη την εικόνα. Για να συμβεί αυτό δημιουργείται αλγόριθμος που χρησιμοποιεί μετρήσεις με βάση τα χαρακτηριστικά της εικόνας για να δημιουργήσει ένα μέτρο εμπιστοσύνης για κάθε διάνυσμα του ανέμου που θα μας επιτρέπει να καθορίσουμε εάν ένα διάνυσμα είναι «καλό» ή όχι σύμφωνα με τα προαναφερόμενα.^[3] Η ερμηνεία των αποτελεσμάτων μπορεί να γίνει με τη βοήθεια του αλγόριθμου που μελετήσαμε στο στάδιο wind field estimation της παρούσας εργασίας. Για το σκοπό αυτό χρησιμοποιούμε τις αριθμητικές τιμές των αποτελεσμάτων στο παράρτημα της εργασίας.

Για την ανίχνευση των πλοίων υπάρχει αλγόριθμος όπως περιγράψαμε στην αντίστοιχη παράγραφο. Θέτουμε ένα κατώτατο και ένα ανώτατο όριο στο μέγεθος του ανιχνεύσιμου αντικειμένου καθώς και ένα κριτήριο ανίχνευσης όπου όταν η τιμή του υπό εξέταση εικονοστοιχείου είναι μεγαλύτερη από ένα ορισμένο όριο τότε αυτό είναι στόχος. Οι τιμές των εικόνων γενικότερα είναι άμεσα συνδεδεμένες με την οπισθοσκέδαση των εικόνων του ραντάρ. Το προϊόν παρέχει όλη την απαιτούμενη πληροφορία για τη μετατροπή των ψηφιακών τιμών των εικονοστοιχείων σε τιμές οπισθοσκέδασης. Η τιμή του κάθε εικονοστοιχείου αντιστοιχεί στην ένταση της ακτινοβολίας που ανακλάται από τα παρατηρούμενα αντικείμενα. Το εικονοστοιχείο μπορεί να πάρει τιμές από ένα ελάχιστο που αντιστοιχεί στο μαύρο μέχρι ένα μέγιστο που αντιστοιχεί στο άσπρο. Κατά συνέπεια τα άσπρα σημεία που βλέπουμε στην εικόνα είναι τα εικονοστοιχεία που έχουν υψηλές τιμές και κατά συνέπεια είναι υψηλή και η ποσότητα της ακτινοβολίας που ανιχνεύεται. Το μέταλλο, από το οποίο είναι κατασκευασμένα τα πλοία, έχει υψηλή ανακλαστικότητα και πολλές γωνίες που ανακλούν την ενέργεια των μικροκυμάτων. Παρόλα αυτά επειδή η υψηλή ανακλαστικότητα μπορεί να οφείλεται και σε άλλους παράγοντες δεν μπορούμε να ορίσουμε με σιγουριά ότι τα ανιχνεύσιμα αντικείμενα είναι όντως πλοία.

7. Βιβλιογραφία-Αναφορές

- Σ.Α.ΜΑΥΡΑΚΟΣ, ΚΑΘΗΓΗΤΗΣ ΕΜΠ, «ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ», 1999
- 2. ΒΑΣΙΛΕΙΑ ΚΑΡΑΘΑΝΑΣΗ, ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ, «ΜΙΚΡΟΚΥΜΑΤΙΚΗ ΤΗΛΕΠΙΣΚΟΠΗΣΗ», 2014
- 3. https://ams.confex.com/ams/annual2003/webprogram/Paper58270.html
- 4. http://step.esa.int/main/toolboxes/snap/
- 5. https://scihub.copernicus.eu/
- 6. <u>http://www.esa.int/ESA</u>
- 7. http://www.esa.int/SPECIALS/Eduspace_GR/SEM9G7WO1FG_0.html
- 8. <u>https://sentinels.copernicus.eu/web/sentinel/home</u>
- 9. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/
- 10. http://www.esa.int/SPECIALS/Eduspace_GR/SEM4G05PVFG_1.html
- 11. <u>http://www.esa.int/spaceinimages/Images/2014/02/Sentinel-1_radar_modes</u>
- 12. <u>http://www.esa.int/spaceinimages/Images/2011/05/Soyuz_launch_site</u>
- 13. <u>http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-</u> <u>1/Introducing_Sentinel-1</u>
- 14. <u>https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/products</u>
- 15. <u>https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/overview</u>
- 16. <u>https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/topsar-processing</u>
- 17. <u>https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/products</u>
- 18. <u>https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-product-formatting</u>
- 19. <u>https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-2-algorithms</u>
- 20. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/applications/maritime-monitoring</u>

- 21. https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes
- 22. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/stripmap</u>
- 23. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath</u>
- 24. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath</u>
- 25. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-</u> <u>modes/wave</u>
- 26. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels</u>
- 27. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-0</u>
- 28. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1</u>
- 29. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-2</u>
- 30. https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions
- 31. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex</u>
- 32. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected</u>
- 33. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-2-ocean</u>
- 34. https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/revisit-and-coverage
- 35. https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/naming-conventions
- 36. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification</u>
- 37. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/sar-formats</u>
- 38. https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/definitions

- 39. <u>http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-</u> <u>1/Facts_and_figures</u>
- 40. <u>http://www.esa.int/spaceinimages/Images/2015/03/Matera_ground_station</u>
- 41. <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview</u>
- 42. http://www.esa.int/SPECIALS/Eduspace_GR/SEM4G05PVFG_0.html#subhead2

Παράρτημα

Πίνακες με τα αποτελέσματα της επεξεργασίας wind field estimation και ocean object detection .

bandName	lat	lon	speed	dx	dy	ratio
Sigma0_VV	38,09	24,22	0,1	0	0	0
Sigma0_VV	38,17	24,78	4,1	-84,82	322,02	0,9
Sigma0_VV	38,16	24,67	3,5	-27,68	331,85	0,9
Sigma0_VV	38,14	24,55	0,1	-330,7	39,11	0,89
Sigma0_VV	38,21	25	4,9	-113,51	313,06	0,94
Sigma0_VV	38,19	24,89	3,6	-212,08	-256,73	0,91
Sigma0_VV	38,22	25,12	5,8	-151,37	296,61	0,94
Sigma0_VV	38,24	25,23	4,5	-309,5	122,87	0,96
Sigma0_VV	38,25	25,34	5	-60,47	327,46	0,89
Sigma0_VV	38,27	25,45	4,1	-203,37	-263,69	0,97
Sigma0_VV	38,29	25,57	4,1	-207,55	-260,41	0,95
Sigma0_VV	38,3	25,68	5,6	-123,01	-309,45	0,92
Sigma0_VV	38,32	25,79	6,3	-66,55	-326,28	0,88
Sigma0_VV	38,33	25,9	5,1	-331,34	33,2	0,91
Sigma0_VV	38,38	26,24	4,4	-237,58	-233,33	0,96
Sigma0_VV	38,39	26,35	4,2	-217,95	-251,77	0,96
Sigma0_VV	38,41	26,47	5,8	-316,92	-102,22	0,96
Sigma0_VV	38,44	26,69	2,2	-323,09	-80,65	0,91
Sigma0_VV	38,45	26,81	2,5	-328,53	54,36	0,96
Sigma0_VV	38,47	26,92	4,4	-161,86	-291,01	0,96
Sigma0_VV	38,2	24,31	3,3	-198,63	-267,27	0,76
Sigma0_VV	38,21	24,42	0,4	-142,54	-300,95	0,69
Sigma0_VV	38,23	24,53	3,3	-1,37	333	0,79
Sigma0_VV	38,25	24,64	2,8	-178,36	281,2	0,9
Sigma0_VV	38,26	24,76	4,2	-3,62	332,98	0,85
Sigma0_VV	38,28	24,87	3,6	-159,97	292,06	0,92
Sigma0_VV	38,3	24,98	4	-87,74	-321,23	0,91
Sigma0_VV	38,31	25,09	4,4	-121,82	309,92	0,89
Sigma0_VV	38,33	25,21	4,1	-293,84	-156,68	0,94
Sigma0_VV	38,34	25,32	5	-265,46	-201,05	0,95
Sigma0_VV	38,36	25,43	6,5	-152,4	-296,08	0,91

Sigma0_VV	38,38	25,54	5	-226,74	-243,88	0,91
Sigma0_VV	38,39	25,66	7,9	-137,74	-303,18	0,91
Sigma0_VV	38,41	25,77	6,6	-2,22	-332,99	0,94
Sigma0_VV	38,42	25,88	5,5	-320,49	-90,41	0,95
Sigma0_VV	38,47	26,22	3,5	-280,88	-178,86	0,96
Sigma0_VV	38,48	26,33	7,4	-247,28	-223,03	0,96
Sigma0_VV	38,53	26,67	3,1	-116,57	-311,93	0,94
Sigma0_VV	38,54	26,79	5,7	-103,81	-316,41	0,84
Sigma0_VV	38,29	24,28	0,4	-310,19	-121,13	0,95
Sigma0_VV	38,3	24,4	0,6	-105,8	315,74	0,74
Sigma0_VV	38,32	24,51	2,7	-30,96	331,56	0,62
Sigma0_VV	38,34	24,62	4,2	-52,32	328,86	0,8
Sigma0_VV	38,35	24,73	3,3	-149,4	297,61	0,84
Sigma0_VV	38,37	24,85	4,1	-87,15	-321,39	0,93
Sigma0_VV	38,39	24,96	3,7	-230,35	240,48	0,9
Sigma0_VV	38,4	25,07	5,6	-160,64	-291,69	0,94
Sigma0_VV	38,42	25,18	4,6	-261,26	206,48	0,97
Sigma0_VV	38,43	25,3	6,9	-64,27	326,74	0,94
Sigma0_VV	38,45	25,41	6,2	-237,25	-233,67	0,94
Sigma0_VV	38,47	25,52	5,6	-132,86	-305,35	0,9
Sigma0_VV	38,48	25,64	7,9	-30,77	-331,58	0,83
Sigma0_VV	38,5	25,75	9	-44,55	-330,01	0,95
Sigma0_VV	38,56	26,2	13,2	-91,55	-320,17	0,84
Sigma0_VV	38,57	26,31	11,4	-13,02	-332,75	0,86
Sigma0_VV	38,62	26,65	4,4	-180,66	-279,73	0,73
Sigma0_VV	38,38	24,26	0,7	-313,72	111,67	0,84
Sigma0_VV	38,39	24,38	3,4	-149,32	-297,64	0,82
Sigma0_VV	38,41	24,49	2,4	-276,84	-185,06	0,84
Sigma0_VV	38,43	24,6	4	-20,73	332,35	0,87
Sigma0_VV	38,44	24,71	1,9	-101,03	317,3	0,72
Sigma0_VV	38,46	24,83	3,4	-35,85	331,06	0,82
Sigma0_VV	38,48	24,94	4,3	-99,98	317,64	0,95
Sigma0_VV	38,49	25,05	3,8	-253,72	-215,67	0,96
Sigma0_VV	38,51	25,16	5	-232,85	-238,06	0,94
Sigma0_VV	38,52	25,28	5,5	-136,88	-303,57	0,91
Sigma0_VV	38,54	25,39	8,8	-153,9	-295,3	0,79
Sigma0_VV	38,56	25,5	5	-214,72	-254,53	0,96
Sigma0_VV	38,57	25,62	0,1	-185,58	-276,49	0,96
Sigma0_VV	38,59	25,73	9	-4,12	332,97	0,67
Sigma0_VV	38,6	25,84	6	-24,58	-332,09	0,84
Sigma0_VV	38,62	25,95	3,9	-318,76	-96,34	0,84
Sigma0_VV	38,63	26,07	6,8	-160,7	-291,66	0,82
Sigma0_VV	38,65	26,18	8,5	-207,31	-260,6	0,89
Sigma0_VV	38,66	26,29	7,9	-49,53	-329,3	0,93
Sigma0_VV	38,68	26,41	4,3	-310,74	119,71	0,9

Sigma0_VV	38,69	26,52	6,7	-284,86	-172,46	0,84
Sigma0_VV	38,71	26,63	7,3	-63,32	-326,92	0,9
Sigma0_VV	38,72	26,75	0,1	-76,66	-324,06	0,94
Sigma0_VV	38,47	24,24	2,8	-96,44	318,73	0,62
Sigma0_VV	38,48	24,35	3,9	-77,71	-323,8	0,94
Sigma0_VV	38,5	24,47	4	-141,22	-301,57	0,81
Sigma0_VV	38,52	24,58	6,1	-63,74	326,84	0,79
Sigma0_VV	38,53	24,69	1,4	-52,8	-328,79	0,69
Sigma0_VV	38,55	24,8	3,6	-21,09	332,33	0,81
Sigma0_VV	38,57	24,92	2,8	-102,04	-316,98	0,94
Sigma0_VV	38,58	25,03	5,9	-92,63	319,86	0,83
Sigma0_VV	38,6	25,14	4,2	-288,17	-166,87	0,95
Sigma0_VV	38,61	25,26	7,4	-145,83	-299,37	0,84
Sigma0_VV	38,63	25,37	6,4	-232,55	-238,35	0,9
Sigma0_VV	38,65	25,48	7,2	-195,55	-269,53	0,91
Sigma0_VV	38,66	25,6	8,2	-98,75	-318,02	0,84
Sigma0_VV	38,68	25,71	7,5	-25,17	-332,05	0,77
Sigma0_VV	38,69	25,82	7,3	-71,47	-325,24	0,75
Sigma0_VV	38,71	25,93	7,7	-166,78	-288,23	0,9
Sigma0_VV	38,72	26,05	8	-163,45	-290,13	0,83
Sigma0_VV	38,74	26,16	6,7	-78,83	-323,54	0,59
Sigma0_VV	38,75	26,27	7,4	-122,71	-309,57	0,84
Sigma0_VV	38,77	26,39	6,6	-252,77	-216,79	0,87
Sigma0_VV	38,78	26,5	3,6	-309,08	-123,92	0,86
Sigma0_VV	38,8	26,62	3,8	-54,84	328,45	0,92
Sigma0_VV	38,81	26,73	3,9	-73,96	324,68	0,95
Sigma0_VV	38,83	26,84	4,4	-209,51	-258,83	0,99
Sigma0_VV	38,56	24,22	0,7	-175,23	-283,17	0,91
Sigma0_VV	38,57	24,33	2,7	-167,48	-287,82	0,74
Sigma0_VV	38,59	24,44	2,2	-287,21	-168,53	0,86
Sigma0_VV	38,61	24,56	3,9	-61,68	-327,24	0,85
Sigma0_VV	38,62	24,67	3,4	-259,34	208,89	0,94
Sigma0_VV	38,64	24,78	3,1	-24,45	332,1	0,72
Sigma0_VV	38,66	24,9	4,2	-209,21	-259,08	0,94
Sigma0_VV	38,67	25,01	5,1	-116,19	-312,07	0,91
Sigma0_VV	38,69	25,12	6,3	-202,78	264,14	0,94
Sigma0_VV	38,7	25,24	5,4	-312,5	-115,03	0,98
Sigma0_VV	38,72	25,35	6,3	-215,77	-253,64	0,83
Sigma0_VV	38,74	25,46	7,1	-98,2	-318,19	0,93
Sigma0_VV	38,75	25,57	6,3	-115,01	-312,51	0,87
Sigma0_VV	38,77	25,69	4,9	-196,25	-269,02	0,91
Sigma0_VV	38,78	25,8	8,7	-112	-313,6	0,94
Sigma0_VV	38,8	25,91	9	-97,81	-318,31	0,91
Sigma0_VV	38,81	26,03	8	-122,32	-309,72	0,77
Sigma0_VV	38,83	26,14	8	-222,27	-247,96	0,89
Sigma0_VV	38,84	26,26	6,2	-330,04	44,31	0,95
-----------	-------	-------	-----	---------	---------	------
Sigma0_VV	38,86	26,37	4,9	-327,24	-61,65	0,89
Sigma0_VV	38,87	26,48	3,8	-109,4	-314,52	0,91
Sigma0_VV	38,89	26,6	3,4	-60,49	-327,46	0,9
Sigma0_VV	38,9	26,71	2,8	-246,6	-223,78	0,93
Sigma0_VV	38,92	26,82	4,1	-257,84	-210,73	0,95
Sigma0_VV	38,65	24,2	0,4	-229,2	-241,57	0,98
Sigma0_VV	38,66	24,31	1,2	-21,51	-332,3	0,73
Sigma0_VV	38,68	24,42	0,5	-57,43	-328,01	0,71
Sigma0_VV	38,7	24,54	2,8	-33,33	-331,33	0,92
Sigma0_VV	38,71	24,65	2,2	-330,48	-40,93	0,94
Sigma0_VV	38,73	24,76	2,7	-311,03	118,94	0,95
Sigma0_VV	38,75	24,87	2,8	-37,86	-330,84	0,95
Sigma0_VV	38,76	24,99	3,5	-327,55	60	0,95
Sigma0_VV	38,78	25,1	5,8	-222,72	-247,55	0,92
Sigma0_VV	38,79	25,21	7,9	-173,48	-284,24	0,85
Sigma0_VV	38,81	25,33	7,6	-196,67	-268,72	0,9
Sigma0_VV	38,83	25,44	9,5	-86,71	-321,51	0,68
Sigma0_VV	38,84	25,55	5,5	-180,68	-279,72	0,92
Sigma0_VV	38,86	25,67	6,8	-163,93	-289,85	0,93
Sigma0_VV	38,87	25,78	8,8	-38,79	-330,73	0,78
Sigma0_VV	38,89	25,89	5,3	-217,53	-252,13	0,93
Sigma0_VV	38,9	26,01	9,9	-62,99	-326,99	0,86
Sigma0_VV	38,92	26,12	9,9	-108,91	-314,69	0,94
Sigma0_VV	38,93	26,24	5,4	-145,54	-299,51	0,88
Sigma0_VV	38,95	26,35	3,7	-310,07	-121,44	0,94
Sigma0_VV	38,96	26,46	2,4	-320,21	-91,4	0,93
Sigma0_VV	38,98	26,58	2,7	-306,28	-130,69	0,94
Sigma0_VV	38,99	26,69	3,8	-177,33	-281,86	0,96
Sigma0_VV	38,72	24,06	0,1	0	0	0
Sigma0_VV	38,74	24,17	2	-255,35	-213,74	0,75
Sigma0_VV	38,77	24,4	2,2	-45,27	-329,91	0,79
Sigma0_VV	38,75	24,29	1	-54,33	328,54	0,82
Sigma0_VV	38,79	24,51	2,4	-87,11	-321,4	0,86
Sigma0_VV	38,82	24,74	2,8	-54,02	-328,59	0,9
Sigma0_VV	38,84	24,85	3	-268,12	-197,48	0,93
Sigma0_VV	38,85	24,97	4,1	-235,27	-235,66	0,94
Sigma0_VV	38,87	25,08	5,4	-226,46	-244,14	0,9
Sigma0_VV	38,88	25,19	5,7	-252,78	-216,78	0,9
Sigma0_VV	38,9	25,31	9,1	-33,79	-331,28	0,88
Sigma0_VV	38,92	25,42	7,9	-222,11	-248,11	0,88
Sigma0_VV	38,93	25,53	5,8	-116,71	-311,88	0,87
Sigma0_VV	38,95	25,65	7,3	-141,38	-301,5	0,86
Sigma0_VV	38,96	25,76	6,6	-69,73	-325,62	0,96
Sigma0_VV	38,98	25,87	4,4	-174,01	-283,92	0,88

Sigma0_VV	38,99	25,99	7,7	-165,86	-288,75	0,92
Sigma0_VV	39,01	26,1	6,3	-123,24	-309,35	0,93
Sigma0_VV	39,08	26,67	0,7	-298,19	-148,22	0,77
Sigma0_VV	39,1	26,79	2,4	-277,92	-183,44	0,95
Sigma0_VV	38,81	24,04	0,1	0	0	0
Sigma0_VV	38,83	24,15	0,5	-269,51	195,59	0,86
Sigma0_VV	38,84	24,26	2,2	-245,51	224,98	0,89
Sigma0_VV	38,86	24,38	5,3	-88,76	-320,95	0,93
Sigma0_VV	38,89	24,6	2,5	-217,89	-251,82	0,91
Sigma0_VV	38,91	24,72	3,1	-240,33	-230,5	0,86
Sigma0_VV	38,93	24,83	2,7	-240,19	-230,65	0,92
Sigma0_VV	38,94	24,94	4,4	-209,78	-258,62	0,94
Sigma0_VV	38,96	25,06	6,5	-136,71	-303,64	0,93
Sigma0_VV	38,97	25,17	6,3	-249,04	-221,06	0,91
Sigma0_VV	38,99	25,29	7	-241,01	-229,79	0,86
Sigma0_VV	39,01	25,4	6,4	-245,05	-225,48	0,89
Sigma0_VV	39,02	25,51	6,5	-139,65	-302,3	0,92
Sigma0_VV	39,04	25,63	4,9	-248,75	221,39	0,98
Sigma0_VV	39,05	25,74	8,2	-9,77	-332,86	0,74
Sigma0_VV	39,07	25,85	1,9	-332,83	10,68	0,98
Sigma0_VV	39,08	25,97	5,5	-144	-300,26	0,95
Sigma0_VV	39,16	26,54	0,1	-303,87	-136,21	0,93
Sigma0_VV	39,17	26,65	2,4	-112,17	-313,54	0,87
Sigma0_VV	38,9	24,02	0,1	0	0	0
Sigma0_VV	38,92	24,13	3,4	-250,32	219,61	0,87
Sigma0_VV	38,93	24,24	2,9	-256,7	212,12	0,9
Sigma0_VV	38,95	24,36	3	-207,28	260,63	0,95
Sigma0_VV	38,97	24,47	0,1	-28,63	-331,77	0,93
Sigma0_VV	38,98	24,58	1,6	-214,46	-254,75	0,81
Sigma0_VV	39	24,7	2,5	-144,45	-300,04	0,92
Sigma0_VV	39,02	24,81	3,8	-276,08	-186,19	0,94
Sigma0_VV	39,03	24,92	4,6	-331,35	-33,08	0,97
Sigma0_VV	39,05	25,04	5,8	-243,79	-226,83	0,89
Sigma0_VV	39,06	25,15	6,7	-202,98	-263,98	0,89
Sigma0_VV	39,08	25,26	6,8	-268,55	-196,9	0,78
Sigma0_VV	39,1	25,38	6,1	-178,64	-281,03	0,81
Sigma0_VV	39,11	25,49	5,7	-227,38	-243,28	0,94
Sigma0_VV	39,13	25,61	7,1	-86,08	-321,68	0,93
Sigma0_VV	39,14	25,72	6,3	-129,96	-306,59	0,98
Sigma0_VV	39,16	25,83	5,6	-116,25	-312,05	0,92
Sigma0_VV	39,25	26,52	4,6	-58,91	-327,75	0,87
Sigma0_VV	39,26	26,63	5,2	-326,76	-64,14	0,92
Sigma0_VV	38,99	23,99	0,1	0	0	0
Sigma0_VV	39,01	24,11	3,1	-41,99	330,34	0,9
Sigma0_VV	39,02	24,22	2,3	-312,51	115,01	0,87

Sigma0_VV	39,04	24,33	2,2	-127,94	-307,44	0,91
Sigma0_VV	39,06	24,45	0,9	-43,69	330,12	0,83
Sigma0_VV	39,07	24,56	0,7	-27,48	-331,86	0,57
Sigma0_VV	39,09	24,67	2,6	-122	-309,85	0,88
Sigma0_VV	39,11	24,79	4	-116,6	-311,92	0,91
Sigma0_VV	39,12	24,9	5,5	-198,76	-267,18	0,92
Sigma0_VV	39,14	25,02	6,6	-139,82	-302,22	0,91
Sigma0_VV	39,15	25,13	6,2	-46,2	-329,78	0,86
Sigma0_VV	39,17	25,24	6,5	-282,56	-176,21	0,89
Sigma0_VV	39,19	25,36	6,5	-46,01	329,81	0,94
Sigma0_VV	39,2	25,47	7,4	-91,55	320,17	0,85
Sigma0_VV	39,22	25,59	3,4	-272,26	191,74	0,96
Sigma0_VV	39,23	25,7	3,5	-49,81	329,25	0,98
Sigma0_VV	39,25	25,81	4,3	-40,85	-330,48	0,93
Sigma0_VV	39,34	26,5	9,3	-130,83	-306,22	0,95
Sigma0_VV	39,35	26,61	5	-326,96	-63,14	0,94
Sigma0_VV	39,37	26,73	5,6	-332,99	-2,35	0,91
Sigma0_VV	39,08	23,97	0,1	0	0	0
Sigma0_VV	39,1	24,08	2,9	-306,57	-130,02	0,86
Sigma0_VV	39,11	24,2	1,8	-284,61	172,88	0,88
Sigma0_VV	39,13	24,31	1,9	-193,51	271	0,82
Sigma0_VV	39,15	24,43	0,6	-26,55	-331,94	0,67
Sigma0_VV	39,16	24,54	2,9	-64	-326,79	0,73
Sigma0_VV	39,18	24,65	5	-40,25	-330,56	0,91
Sigma0_VV	39,2	24,77	3,1	-142,49	-300,97	0,9
Sigma0_VV	39,21	24,88	3,3	-225,82	-244,73	0,94
Sigma0_VV	39,23	24,99	6,4	-66,1	-326,37	0,91
Sigma0_VV	39,24	25,11	4,1	-194,72	-270,13	0,89
Sigma0_VV	39,26	25,22	4,7	-328,72	53,21	0,98
Sigma0_VV	39,28	25,34	3,8	-295,94	-152,67	0,89
Sigma0_VV	39,29	25,45	6,6	-84,59	322,08	0,89
Sigma0_VV	39,31	25,57	3,7	-247,29	-223,01	0,92
Sigma0_VV	39,32	25,68	4,1	-270,59	-194,09	0,88
Sigma0_VV	39,34	25,79	5,8	-87,79	-321,22	0,94
Sigma0_VV	39,35	25,91	6,2	-82,08	-322,73	0,9
Sigma0_VV	39,37	26,02	6,6	-117,44	-311,6	0,92
Sigma0_VV	39,38	26,14	4	-77,76	-323,79	0,87
Sigma0_VV	39,4	26,25	8,4	-178,38	-281,19	0,83
Sigma0_VV	39,41	26,37	12,8	-69,32	-325,7	0,96
Sigma0_VV	39,43	26,48	10,5	-112,99	-313,24	0,89
Sigma0_VV	39,44	26,6	4,2	-315,2	-107,4	0,94
Sigma0_VV	39,46	26,71	3,2	-327,05	62,68	0,93
Sigma0_VV	39,47	26,82	0,1	-332,96	-5,14	0,91
Sigma0_VV	39,17	23,95	0,1	0	0	0
Sigma0_VV	39,19	24,06	1,4	-202,02	-264,72	0,72

Sigma0_VV	39,2	24,18	1,3	-3,06	-332,99	0,67
Sigma0_VV	39,22	24,29	0,4	-11,62	332,8	0,88
Sigma0_VV	39,24	24,4	0,3	-330,02	44,45	0,89
Sigma0_VV	39,25	24,52	2,1	-332,87	-9,42	0,88
Sigma0_VV	39,27	24,63	3,7	-59,06	327,72	0,97
Sigma0_VV	39,29	24,75	4,1	-219,15	-250,72	0,92
Sigma0_VV	39,3	24,86	5,6	-77,98	-323,74	0,94
Sigma0_VV	39,32	24,97	5,6	-128,9	-307,04	0,9
Sigma0_VV	39,33	25,09	8	-150,33	-297,14	0,93
Sigma0_VV	39,35	25,2	2,9	-300,27	-143,98	0,95
Sigma0_VV	39,37	25,32	4,3	-158,46	-292,88	0,96
Sigma0_VV	39,38	25,43	6,1	-110,14	314,26	0,96
Sigma0_VV	39,4	25,54	3,1	-214,95	-254,33	0,97
Sigma0_VV	39,41	25,66	4,3	-315,38	-106,9	0,97
Sigma0_VV	39,43	25,77	6,3	-197,57	-268,06	0,94
Sigma0_VV	39,44	25,89	5,3	-148,42	298,09	0,95
Sigma0_VV	39,46	26	6,7	-55,96	-328,26	0,96
Sigma0_VV	39,52	26,46	0,8	-332,99	-2,05	0,94
Sigma0_VV	39,53	26,58	3	-332,96	-5,47	0,91
Sigma0_VV	39,55	26,69	3	-332,46	-18,95	0,89
Sigma0_VV	39,28	24,04	2	-21,08	-332,33	0,76
Sigma0_VV	39,29	24,15	4,1	-1,82	333	0,73
Sigma0_VV	39,31	24,27	0,4	-8,25	-332,9	0,98
Sigma0_VV	39,33	24,38	1,5	-331,77	-28,64	0,94
Sigma0_VV	39,34	24,5	1,5	-318,45	97,35	0,69
Sigma0_VV	39,36	24,61	4,4	-187,43	-275,24	0,8
Sigma0_VV	39,38	24,72	3	-289,85	-163,94	0,94
Sigma0_VV	39,39	24,84	3,6	-101,1	-317,28	0,94
Sigma0_VV	39,41	24,95	4,1	-1,29	-333	0,76
Sigma0_VV	39,42	25,07	5,9	-14,09	-332,7	0,81
Sigma0_VV	39,44	25,18	4,6	-131,52	-305,93	0,94
Sigma0_VV	39,46	25,3	6,1	-187,65	-275,09	0,91
Sigma0_VV	39,47	25,41	7,2	-106,95	315,36	0,99
Sigma0_VV	39,49	25,52	4,3	-15,95	-332,62	0,93
Sigma0_VV	39,5	25,64	6	-46,1	329,79	0,83
Sigma0_VV	39,52	25,75	3	-331,51	-31,41	0,99
Sigma0_VV	39,53	25,87	6,4	-2,01	332,99	0,91
Sigma0_VV	39,55	25,98	5,8	-23,47	332,17	0,95
Sigma0_VV	39,56	26,1	0,1	-6,87	332,93	0,92
Sigma0_VV	39,35	23,9	0,1	0	0	0
Sigma0_VV	39,37	24,02	0,4	-103,69	-316,45	0,85
Sigma0_VV	39,38	24,13	1,4	-0,88	333	0,94
Sigma0_VV	39,4	24,25	1	-39,43	330,66	0,72
Sigma0_VV	39,42	24,36	3,6	-111,71	313,7	0,75
Sigma0_VV	39,43	24,47	3,5	-178,1	281,37	0,71

Sigma0_VV	39,45	24,59	2,2	-241,91	-228,84	0,93
Sigma0_VV	39,47	24,7	2,4	-257,4	-211,26	0,89
Sigma0_VV	39,48	24,82	4,8	-117,32	-311,65	0,86
Sigma0_VV	39,5	24,93	7,6	-19,19	-332,45	0,92
Sigma0_VV	39,51	25,05	0,1	-331,56	30,98	0,91
Sigma0_VV	39,53	25,16	5,8	-183,8	-277,68	0,91
Sigma0_VV	39,55	25,27	5,5	-241,32	-229,46	0,89
Sigma0_VV	39,56	25,39	4,9	-241,11	-229,68	0,99
Sigma0_VV	39,58	25,5	4,3	-42,93	-330,22	0,87
Sigma0_VV	39,59	25,62	2,7	-265,49	-201,01	0,96
Sigma0_VV	39,61	25,73	8,1	-13,03	-332,75	0,75
Sigma0_VV	39,62	25,85	6,1	-137,61	-303,24	0,97
Sigma0_VV	39,64	25,96	4,8	-93,63	-319,57	0,93
Sigma0_VV	39,65	26,08	4,4	-125,92	-308,27	0,9
Sigma0_VV	39,44	23,88	0,1	0	0	0
Sigma0_VV	39,46	24	1,2	-121,22	-310,15	0,71
Sigma0_VV	39,47	24,11	0,4	-221,37	248,76	0,92
Sigma0_VV	39,49	24,22	2,1	-224,39	-246,04	0,91
Sigma0_VV	39,51	24,34	1,3	-78,17	323,69	0,61
Sigma0_VV	39,52	24,45	2,8	-50,2	329,19	0,69
Sigma0_VV	39,54	24,57	3,3	-62,57	327,07	0,84
Sigma0_VV	39,56	24,68	2,9	-184,61	-277,14	0,79
Sigma0_VV	39,57	24,8	3,3	-325,35	-70,98	0,99
Sigma0_VV	39,59	24,91	4	-185,3	-276,68	0,89
Sigma0_VV	39,6	25,02	5,4	-96,21	-318,8	0,87
Sigma0_VV	39,62	25,14	6,3	-200,96	-265,53	0,88
Sigma0_VV	39,64	25,25	6,7	-122,95	-309,47	0,89
Sigma0_VV	39,65	25,37	4,3	-75,4	-324,35	0,64
Sigma0_VV	39,67	25,48	4	-220,18	-249,82	0,97
Sigma0_VV	39,68	25,6	5,1	-21,31	-332,32	0,91
Sigma0_VV	39,7	25,71	6,8	-0,46	-333	0,88
Sigma0_VV	39,71	25,83	5	-45,98	-329,81	0,87
bandName	lat	lon		width le	ngth	intensity

Sigma0_VV	39,73	25,94	5,9	-25,1	332,05	0,86
Sigma0_VV	39,74	26,06	3,2	-308,91	-124,36	0,91

Sigma0_VH	38,1425188	24,62271646	120	230	4,514946005
Sigma0_VH	38,15014195	24,70191446	210	230	45,39117178
Sigma0_VH	38,37981549	26,43893406	110	130	0,401736678
Sigma0_VH	38,39045123	26,42892288	140	190	2,626441318
Sigma0_VH	38,40222096	26,43324543	220	230	1,951860158
Sigma0_VH	38,4073541	26,44452979	80	120	0,206293263
Sigma0_VH	38,40786891	26,76161259	120	130	0,744900558
Sigma0_VH	38,15878881	24,60107871	220	200	3,127773892
Sigma0_VH	38,20556058	24,7743633	160	240	29,90230357
Sigma0_VH	38,20990766	24,81417852	190	230	46,64472096
Sigma0_VH	38,364799	25,94683909	90	90	0,510946599
Sigma0_VH	38,38053779	26,18400326	120	120	0,736471425
Sigma0_VH	38,38768838	26,27335604	190	200	2,37868675
Sigma0_VH	38,40910962	26,388202	160	190	0,488584632
Sigma0_VH	38,40886697	26,43308486	110	130	1,149918454
Sigma0_VH	38,41144441	26,41349149	100	100	0,310861307
Sigma0_VH	38,42359141	26,43593062	190	230	1,499416944
Sigma0_VH	38,43850169	26,44728612	120	130	1,996077458
Sigma0_VH	38,44659232	26,41673088	120	100	0,339728516
Sigma0_VH	38,44464076	26,47690331	90	80	0,321018716
Sigma0_VH	38,44189815	26,61608628	120	120	0,239613791
Sigma0_VH	38,45012556	26,61960277	80	100	0,243669733
Sigma0_VH	38,45826603	26,61744087	120	220	0,751049256
Sigma0_VH	38,39826158	25,61217454	120	150	0,907861711
Sigma0_VH	38,40106338	25,69778877	80	100	0,208253777
Sigma0_VH	38,44436873	26,1823168	120	220	8,750815117
Sigma0_VH	38,46784746	26,35247237	120	130	1,176918526
Sigma0_VH	38,46350097	26,29073067	140	130	3,516746175
Sigma0_VH	38,48814615	26,39671141	90	160	0,388808589
Sigma0_VH	38,49251851	26,37913544	80	180	0,501080423
Sigma0_VH	38,49910004	26,38131681	110	140	0,59443745
Sigma0_VH	38,49505815	26,39078637	240	220	2,641862049
Sigma0_VH	38,53095554	26,69513415	70	150	0,4135231
Sigma0_VH	38,53564392	26,84045994	140	90	0,343429104
Sigma0_VH	38,31847159	24,87394184	180	240	17,35545357
Sigma0_VH	38,35128162	24,96856051	180	180	39,53956187
Sigma0_VH	38,41390526	25,65668982	140	200	1,156257218
Sigma0_VH	38,52332337	26,18356137	110	80	0,421794817
Sigma0_VH	38,52456926	26,18352082	210	130	1,580449772
Sigma0_VH	38,53866415	26,36376401	200	240	1,886981062
Sigma0_VH	38,30992672	24,59859346	80	100	0,432322943
Sigma0_VH	38,49399036	25,72494644	100	110	0,333039959
Sigma0_VH	38,57798783	26,3511036	230	130	8,391483882
Sigma0_VH	38,59224907	26,33665923	120	100	0,30820347
Sigma0_VH	38,42432425	24,94886638	180	250	32,11256221

Sigma0_VH	38,54262354	25,72882672	150	250	14,82297663
Sigma0_VH	38,60552864	26,02840395	130	150	2,512284118
Sigma0_VH	38,60268404	26,33817849	90	110	0,345090265
Sigma0_VH	38,61567577	26,02109096	120	130	2,520564789
Sigma0_VH	38,68807644	26,25216337	250	210	11,76433954
Sigma0_VH	38,73059685	26,57477599	100	120	0,300358312
Sigma0_VH	38,74216741	26,88759104	110	120	15,00385334
Sigma0_VH	38,75233547	26,88616351	230	140	69,45016232
Sigma0_VH	38,76270185	26,86541287	240	190	22,73259861
Sigma0_VH	38,76081329	26,87425586	210	160	13,44774587
Sigma0_VH	38,76344747	26,88746285	250	150	12,09673767
Sigma0_VH	38,76255547	26,86608438	130	140	13,94858077
Sigma0_VH	38,77352543	26,91282352	240	240	61,11456471
Sigma0_VH	38,76816878	26,87103809	240	180	32,89707694
Sigma0_VH	38,64228506	25,84839026	120	170	1,949255862
Sigma0_VH	38,65918348	25,9516833	240	200	11,3485947
Sigma0_VH	38,73981853	26,31043045	220	230	17,02534105
Sigma0_VH	38,78793493	26,87392886	240	200	29,62931126
Sigma0_VH	38,79729313	26,90055524	140	80	1,617956816
Sigma0_VH	38,79675272	26,87682112	210	150	48,01263458
Sigma0_VH	38,80211026	26,89699166	240	120	14,16394256
Sigma0_VH	38,80427541	26,87823381	240	240	66,03859866
Sigma0_VH	38,81368286	26,87773981	190	190	22,30894309
Sigma0_VH	38,7081174	25,69985402	210	230	81,83195019
Sigma0_VH	38,7232538	25,82784991	180	240	35,07974588
Sigma0_VH	38,73296545	26,14305657	130	220	12,14610843
Sigma0_VH	38,78864288	26,2858498	150	130	2,4824998
Sigma0_VH	38,80307984	26,34087549	190	240	9,365331069
Sigma0_VH	38,79416558	26,48096938	210	230	30,19928103
Sigma0_VH	38,79420208	26,48125336	240	230	30,2809527
Sigma0_VH	38,8628143	26,88091007	160	180	2,4396275
Sigma0_VH	38,65643161	25,08885392	200	200	65,24579293
Sigma0_VH	38,68568013	25,08375793	170	240	69,82131932
Sigma0_VH	38,80981077	25,9955075	110	240	9,419245886
Sigma0_VH	38,89000535	26,90953466	90	110	0,573282374
Sigma0_VH	38,60882594	24,23468639	140	240	12,10815443
Sigma0_VH	38,61097054	24,22146681	110	120	1,118990637
Sigma0_VH	38,6862852	25,0466947	150	240	20,61942613
Sigma0_VH	38,69091939	25,06459429	240	250	50,93354325
Sigma0_VH	38,75370047	25,49847046	180	160	5,656379123
Sigma0_VH	38,88949556	26,34764392	240	220	117,1210366
Sigma0_VH	38,89278523	26,4989583	110	110	0,342783623
Sigma0_VH	38,91802746	26,52158147	110	120	0,81194627
Sigma0_VH	38,63035728	24,16227342	190	160	11,53774777
Sigma0_VH	38,61711101	24,20842715	80	90	0,466288902

Sigma0 VH	38,78489817	25,18099962	120	150	1,069224107
Sigma0_VH	38,87058462	25,70286037	110	130	0,584881411
Sigma0_VH	38,86646329	25,72906868	130	200	26,70815403
Sigma0_VH	38,88107142	25,79884437	120	240	8,484376453
Sigma0_VH	38,91624825	26,14524432	150	240	16,89580053
Sigma0_VH	38,94002538	26,33682731	210	180	0,379404887
Sigma0_VH	38,93735693	26,5287681	190	220	16,53778208
Sigma0_VH	38,97032471	26,54133768	210	240	4,407671523
Sigma0_VH	38,67237708	24,14810991	110	110	1,133380581
Sigma0_VH	38,85488721	25,22319087	140	170	11,05030128
Sigma0_VH	38,85908968	25,39333358	190	240	127,587705
Sigma0_VH	39,0512685	26,68112753	150	230	4,878529772
Sigma0_VH	39,02111704	26,78268842	90	80	0,283734817
Sigma0_VH	39,07206447	26,87274141	170	130	6,097423651
Sigma0_VH	38,73782498	24,09261212	150	240	5,786367481
Sigma0_VH	38,74310108	24,20162395	100	110	0,678829757
Sigma0_VH	38,89229507	25,29777063	180	210	37,51694404
Sigma0_VH	38,84888503	24,47422017	190	220	4,256821457
Sigma0_VH	39,10058662	26,57775143	100	110	4,196715109
Sigma0_VH	39,10048805	26,57953077	80	100	1,98897183
Sigma0_VH	39,10058662	26,57775143	100	110	4,196715109
Sigma0_VH	38,86103906	24,47025773	100	130	1,538524855
Sigma0_VH	39,05631521	25,75352239	130	230	15,66456775
Sigma0_VH	39,19485195	26,50343038	120	100	0,620714234
Sigma0_VH	39,19485195	26,50343038	120	100	0,620714234
Sigma0_VH	38,99405737	24,48043007	110	100	1,342628998
Sigma0_VH	39,1231847	25,27548071	80	90	0,224037886
Sigma0_VH	39,12448286	25,27512162	110	120	1,138139991
Sigma0_VH	39,19669466	25,78016275	150	230	19,8690799
Sigma0_VH	39,2711492	26,41087299	170	150	0,782073173
Sigma0_VH	39,09738619	24,95040468	150	240	16,12192089
Sigma0_VH	39,13370668	25,16433118	120	240	22,95829563
Sigma0_VH	39,18347831	25,41468156	150	180	40,38734613
Sigma0_VH	39,19705488	25,78008199	150	150	13,27938945
Sigma0_VH	39,33851246	26,47362984	130	230	11,94278027
Sigma0_VH	39,33672654	26,56054943	210	210	2,820733503
Sigma0_VH	39,35930027	26,72083153	110	110	0,59399385
Sigma0_VH	39,21459908	25,47140856	190	240	52,4145458
Sigma0_VH	39,30009843	26,01962502	140	120	0,511304579
Sigma0_VH	39,36830235	26,37407711	170	130	0,792405339
Sigma0_VH	39,33878253	26,47357199	130	170	8,620986315
Sigma0_VH	39,39127248	26,54081302	130	150	3,724993041
Sigma0_VH	39,35862113	26,59057726	170	130	0,994131762
Sigma0_VH	39,0673098	23,9503709	230	220	3,42659311
Sigma0_VH	39,07450305	23,95569579	100	90	0,932071972

Sigma0_VH	39,08552762	23,98861835	100	120	1,143074787
Sigma0_VH	39,08265942	24,08551092	200	200	6,527244695
Sigma0_VH	39,28846998	25,40095998	170	230	44,22945542
Sigma0_VH	39,27368787	25,45384783	180	240	32,1972327
Sigma0_VH	39,28409975	25,49443483	140	200	28,88959184
Sigma0_VH	39,34192337	25,87933196	110	240	4,087361354
Sigma0_VH	39,20944968	24,59978229	90	80	0,287554368
Sigma0_VH	39,3178438	25,26876754	90	100	0,256785005
Sigma0_VH	39,33073906	25,26590528	90	80	0,218108806
Sigma0_VH	39,46681909	26,53041843	100	80	0,120917266
Sigma0_VH	39,48767742	26,52797558	120	160	1,009785773
Sigma0_VH	39,20470998	24,16446235	90	90	0,420351053
Sigma0_VH	39,37838135	25,25725365	90	90	0,259533233
Sigma0_VH	39,36864694	25,36671828	160	180	17,64276147
Sigma0_VH	39,45261698	25,8945457	150	240	16,60839243
Sigma0_VH	39,48042747	26,05522608	130	240	2,67214383
Sigma0_VH	39,46732568	26,06452932	140	190	2,549891479
Sigma0_VH	39,46759001	25,61710955	170	190	45,13918519
Sigma0_VH	39,48932707	25,93646351	100	120	3,393568136
Sigma0_VH	39,49064769	25,93628914	100	70	0,323124992
Sigma0_VH	39,2733195	23,98912453	50	110	0,447991279
Sigma0_VH	39,2924342	24,08949128	120	150	2,599158588
Sigma0_VH	39,58872982	25,69915323	160	240	30,53870328
Sigma0_VH	39,63226612	26,12864583	140	210	4,852639798
Sigma0_VH	39,6483818	26,12476399	160	220	10,0571632
Sigma0_VH	39,65786557	26,02282183	100	110	0,615564647
Sigma0_VH	39,665651	25,78237738	80	90	14,26342765
Sigma0_VH	39,66661902	25,78269296	90	90	14,92447842
Sigma0_VH	39,68495034	25,7618536	140	200	16,33709373
Sigma0_VH	39,72726455	25,89363761	130	240	11,16888844
Sigma0_VH	39,7114645	26,05087418	140	250	4,524831645
Sigma0_VH	39,73421708	26,10141699	130	220	10,40098849
Sigma0_VH	39,72748952	25,89358767	130	190	8,467447295
Sigma0_VH	39,77751607	25,95341314	230	240	73,74493862
Sigma0_VH	39,79261891	26,03404207	130	220	9,389389596
Sigma0_VH	39,79564124	25,9331796	250	240	140,443727
Sigma0_VH	39,80237702	25,96177929	250	240	90,98669466
Sigma0_VH	39,79840475	25,99274113	230	240	62,78855947
Sigma0_VH	39,81631592	26,09172707	130	240	7,962766224
Sigma0_VH	39,82276123	26,12780913	160	140	2,92220143
Sigma0_VH	39,84138968	26,09471074	200	200	1,896638548
Sigma0_VV	38,14224885	24,62278406	120	150	16,59006245
Sigma0_VV	38,13563842	24,70128806	100	120	8,027861898
Sigma0_VV	38,15030163	24,70204904	240	240	408,8383262
Sigma0_VV	38,37991282	26,43897024	100	130	3,029448692

Sigma0_VV	38,39004647	26,42901414	120	80	3,063314384
Sigma0_VV	38,4021384	26,43332217	210	210	20,07956428
Sigma0_VV	38,15871889	24,6009218	210	190	22,41301113
Sigma0_VV	38,20585503	24,77446474	230	240	424,9464291
Sigma0_VV	38,20971953	24,81416695	200	250	279,6682549
Sigma0_VV	38,38053779	26,18400326	100	100	3,067786723
Sigma0_VV	38,3876434	26,27336628	190	190	10,96508583
Sigma0_VV	38,4086974	26,38823701	150	100	2,408893584
Sigma0_VV	38,40909922	26,43309066	120	200	32,81937765
Sigma0_VV	38,42340413	26,43591466	160	210	9,377509572
Sigma0_VV	38,4384641	26,44735274	110	100	7,823601365
Sigma0_VV	38,4388824	26,41300166	100	100	12,97820532
Sigma0_VV	38,44650304	26,41640199	100	90	3,4963044
Sigma0_VV	38,45045607	26,61929658	80	160	2,30774991
Sigma0_VV	38,45253403	26,62534621	80	140	2,212328388
Sigma0_VV	38,45837059	26,61753389	140	240	4,488902907
Sigma0_VV	38,19865177	24,33769668	100	130	0,984180832
Sigma0_VV	38,39956235	25,69598818	170	150	14,54849046
Sigma0_VV	38,39872876	25,78947938	100	130	5,291642906
Sigma0_VV	38,44427124	26,1822809	130	240	77,25348409
Sigma0_VV	38,46350097	26,29073067	140	130	29,46319072
Sigma0_VV	38,46798239	26,35244185	120	120	9,366727475
Sigma0_VV	38,48843075	26,39676361	70	100	1,722986642
Sigma0_VV	38,4945037	26,39079506	240	240	39,59445541
Sigma0_VV	38,49285616	26,37888456	110	180	5,995158293
Sigma0_VV	38,49897988	26,38146036	130	130	4,880076244
Sigma0_VV	38,53094831	26,69507755	80	170	2,169503513
Sigma0_VV	38,53562439	26,83994049	230	140	6,250936787
Sigma0_VV	38,21498262	24,29791001	80	100	1,211909893
Sigma0_VV	38,24276123	24,31005609	80	100	0,613975457
Sigma0_VV	38,24929323	24,36849261	80	90	0,390908208
Sigma0_VV	38,3181851	24,87389353	200	220	358,327663
Sigma0_VV	38,3515438	24,96844042	170	240	89,68009168
Sigma0_VV	38,41929861	25,67399343	90	90	2,5533198
Sigma0_VV	38,52334583	26,18338192	120	90	5,698588051
Sigma0_VV	38,52462181	26,18356747	220	100	11,36285586
Sigma0_VV	38,50846148	26,37570994	90	140	3,275814936
Sigma0_VV	38,51726971	26,37331331	200	190	20,37585878
Sigma0_VV	38,53873944	26,36363132	240	240	57,96589331
Sigma0_VV	38,31005363	24,59850466	90	130	5,642222226
Sigma0_VV	38,57791999	26,35129294	200	170	238,8398493
Sigma0_VV	38,59202394	26,3367081	220	230	26,67330418
Sigma0_VV	38,42430805	24,94875374	180	250	116,0459911
Sigma0_VV	38,54257077	25,72878038	180	240	358,264764
Sigma0_VV	38,60538595	26,02837726	120	120	11,35433953

Sigma0_VV	38,63816092	26,26354635	100	150	6,08864098
Sigma0_VV	38,61704202	25,96077281	220	170	13,75178119
Sigma0_VV	38,61562315	26,02104435	130	140	26,44594569
Sigma0_VV	38,68803141	26,25217311	250	240	520,4713028
Sigma0_VV	38,76264967	26,86536542	250	220	416,8274004
Sigma0_VV	38,74212956	26,88765723	120	130	116,7133672
Sigma0_VV	38,75236616	26,88604053	230	150	491,4039984
Sigma0_VV	38,76081329	26,87425586	210	180	142,3991519
Sigma0_VV	38,76349964	26,8875103	240	200	381,1176197
Sigma0_VV	38,76251045	26,86609374	130	170	226,7263893
Sigma0_VV	38,77358684	26,91257768	240	240	1793,908985
Sigma0_VV	38,76815447	26,87092449	240	180	370,4290862
Sigma0_VV	38,64229272	25,84844685	130	170	11,98843384
Sigma0_VV	38,65949878	25,95161377	240	250	732,4187722
Sigma0_VV	38,74005114	26,31043866	230	240	626,5044272
Sigma0_VV	38,74323627	26,49216413	130	210	10,15851048
Sigma0_VV	38,74323627	26,49216413	130	210	10,15851048
Sigma0_VV	38,78797995	26,87391951	240	230	339,5283056
Sigma0_VV	38,79730029	26,90061205	130	60	13,33696791
Sigma0_VV	38,79665762	26,87643272	160	140	195,6191336
Sigma0_VV	38,79774844	26,88326135	110	130	241,9637532
Sigma0_VV	38,80217674	26,8971528	250	150	842,5783044
Sigma0_VV	38,80435829	26,8781583	250	240	870,7895142
Sigma0_VV	38,81375144	26,87755063	240	250	397,3300192
Sigma0_VV	38,66571364	25,51700804	100	110	5,528438695
Sigma0_VV	38,708425	25,69972683	180	240	739,3758952
Sigma0_VV	38,72319343	25,82774661	160	250	156,6413544
Sigma0_VV	38,73354343	26,14287242	160	230	130,8816969
Sigma0_VV	38,78859785	26,28585951	170	140	71,16030251
Sigma0_VV	38,80334267	26,34076066	200	200	66,32504341
Sigma0_VV	38,79403779	26,48105494	200	240	1127,403807
Sigma0_VV	38,79406699	26,48128213	240	240	1130,778469
Sigma0_VV	38,86285931	26,88090074	160	170	13,80352134
Sigma0_VV	38,65659887	25,08904861	240	250	422,0191157
Sigma0_VV	38,68592145	25,08381872	210	230	489,1818853
Sigma0_VV	38,81008101	25,99544819	130	240	40,87994359
Sigma0_VV	38,90404059	26,82413203	160	170	6,012343992
Sigma0_VV	38,88919381	26,90783565	50	120	3,195505273
Sigma0_VV	38,89004329	26,90946847	80	160	5,847353347
Sigma0_VV	38,58733437	24,21386333	110	160	0,91283475
Sigma0_VV	38,59841119	24,1979079	110	140	3,46769354
Sigma0_VV	38,60849391	24,23465146	140	190	49,27678176
Sigma0_VV	38,67017006	24,78364799	110	80	3,261856236
Sigma0_VV	38,6865474	25,04657442	160	180	112,9674639
Sigma0_VV	38,69080525	25,06444587	250	230	800,4930589

Sigma0_VV	38,75378273	25,49839314	150	120	23,24878557
Sigma0_VV	38,8895332	26,34757727	250	230	2042,349726
Sigma0_VV	38,91741189	26,52183078	110	240	3,201392662
Sigma0_VV	38,63031224	24,16228459	170	150	45,10221362
Sigma0_VV	38,63853467	24,25583457	90	110	1,11510826
Sigma0_VV	38,65641377	24,24732921	190	250	2,366015772
Sigma0_VV	38,66278466	24,23458142	100	120	0,96880043
Sigma0_VV	38,66465888	24,35908878	80	90	0,994383877
Sigma0_VV	38,86611072	25,72920688	140	240	205,2976474
Sigma0_VV	38,88075623	25,7989153	120	250	68,37086445
Sigma0_VV	38,91656339	26,14517492	170	190	115,5545681
Sigma0_VV	38,94007777	26,33687441	240	230	11,58111682
Sigma0_VV	38,9372219	26,52879712	170	170	70,71373286
Sigma0_VV	38,97025782	26,54117655	200	210	32,92075194
Sigma0_VV	38,97725308	26,78838487	80	90	1,272764755
Sigma0_VV	38,67777534	24,23491917	70	160	0,607911234
Sigma0_VV	38,6869179	24,31693606	90	110	0,676523698
Sigma0_VV	38,6918143	24,30935467	100	160	0,483525016
Sigma0_VV	38,85502231	25,2231594	180	240	180,5163299
Sigma0_VV	38,8592542	25,39317856	170	240	503,212487
Sigma0_VV	38,88401565	25,46446173	100	140	9,234467259
Sigma0_VV	39,05149353	26,68107971	150	240	34,55751986
Sigma0_VV	39,02101061	26,78294496	150	150	2,490248219
Sigma0_VV	39,0721024	26,87267494	180	140	69,07525231
Sigma0_VV	38,73832879	24,09254501	140	130	25,57045531
Sigma0_VV	38,89213635	25,29763183	230	240	721,3443198
Sigma0_VV	38,84893007	24,47420918	170	230	34,99684605
Sigma0_VV	39,10061548	26,57797967	60	110	4,750746032
Sigma0_VV	39,10051691	26,57975901	120	120	23,56013122
Sigma0_VV	39,10061548	26,57797967	60	110	4,750746032
Sigma0_VV	39,12609895	26,58101532	90	100	0,913152091
Sigma0_VV	38,86096931	24,4700988	90	100	6,903600208
Sigma0_VV	39,0561198	25,75344924	150	250	154,2126534
Sigma0_VV	39,1644021	26,69214827	80	90	1,732494537
Sigma0_VV	39,12780882	25,85842069	90	90	1,911653486
Sigma0_VV	39,19490424	26,5034778	150	130	3,242762738
Sigma0_VV	39,19490424	26,5034778	150	130	3,242762738
Sigma0_VV	39,12452789	25,2751112	110	110	9,524720937
Sigma0_VV	39,19673969	25,78015265	150	240	134,0570466
Sigma0_VV	39,27129152	26,41090111	160	120	7,055648274
Sigma0_VV	39,09719802	24,95039031	140	240	90,86495113
Sigma0_VV	39,13366952	25,16439861	210	250	2388,404435
Sigma0_VV	39,18367404	25,41475424	190	240	147,5673694
Sigma0_VV	39,19709991	25,78007189	150	160	80,5924117
Sigma0_VV	39,33901486	26,47358102	160	180	256,0997813

Sigma0_VV	39,33666712	26,56044452	170	180	16,45379058
Sigma0_VV	39,35939027	26,72081257	110	130	4,05386283
Sigma0_VV	39,21446398	25,47143942	230	250	631,3300337
Sigma0_VV	39,30082627	26,02022893	230	240	7,270857003
Sigma0_VV	39,3391499	26,4735521	160	210	257,7167978
Sigma0_VV	39,39122747	26,54082261	130	140	31,7742283
Sigma0_VV	39,06756035	23,95048485	200	210	46,55408975
Sigma0_VV	39,07451997	23,9558093	100	90	7,993654402
Sigma0_VV	39,08265104	24,08545414	210	220	83,01924334
Sigma0_VV	39,2886657	25,40103281	210	250	527,0278079
Sigma0_VV	39,27388344	25,45392082	220	240	680,3382058
Sigma0_VV	39,28386687	25,49442909	210	250	612,2865437
Sigma0_VV	39,34169825	25,87938206	130	210	18,58657962
Sigma0_VV	39,48767742	26,52797558	100	120	4,207930426
Sigma0_VV	39,36857853	25,36655719	190	230	289,2562195
Sigma0_VV	39,45283456	25,89479214	220	240	187,2263768
Sigma0_VV	39,48047249	26,05521619	130	230	25,3233447
Sigma0_VV	39,46725049	26,06466371	120	170	4,677399223
Sigma0_VV	39,54021852	26,61462281	100	100	2,438370902
Sigma0_VV	39,54760486	26,72068869	100	110	1,789486591
Sigma0_VV	39,55451361	26,76749972	90	90	1,55073839
Sigma0_VV	39,4676877	25,61714642	200	250	321,1612631
Sigma0_VV	39,48950716	25,93642365	120	180	8,002782317
Sigma0_VV	39,29247924	24,08948011	100	100	10,67518934
Sigma0_VV	39,36342362	24,34553128	90	90	0,308158288
Sigma0_VV	39,58872225	25,69909585	190	240	371,2134205
Sigma0_VV	39,63225877	26,12858836	150	190	30,90516141
Sigma0_VV	39,64855451	26,1246671	170	220	88,32080255
Sigma0_VV	39,65791059	26,02281191	100	100	3,630776888
Sigma0_VV	39,46712541	24,02735105	70	100	0,668845076
Sigma0_VV	39,46921766	24,04635835	170	230	2,100007237
Sigma0_VV	39,44740746	24,20555805	70	100	0,98625649
Sigma0_VV	39,66623635	25,78260119	220	250	786,0491202
Sigma0_VV	39,68476279	25,76183646	150	220	146,5067004
Sigma0_VV	39,7089895	25,77309532	90	110	3,184103667
Sigma0_VV	39,72718205	25,89371509	140	240	50,43158161
Sigma0_VV	39,71119456	26,05093352	140	190	25,53518905
Sigma0_VV	39,73344491	26,10152695	140	190	55,57158892
Sigma0_VV	39,47301863	24,02268903	150	210	1,651998133
Sigma0_VV	39,47488405	23,98393054	60	110	1,076848598
Sigma0_VV	39,47883758	24,0035437	120	160	1,198669964
Sigma0_VV	39,48379003	24,00994606	190	100	0,836410223
Sigma0_VV	39,50388989	24,0162502	120	150	1,173788395
Sigma0_VV	39,50661166	23,98839464	110	110	1,011534599
Sigma0_VV	39,51435545	23,98362219	110	180	1,972678783

Sigma0_VV	39,49842398	24,04638087	100	130	0,826352868
Sigma0_VV	39,50176497	24,0306917	70	100	0,386989721
Sigma0_VV	39,52488632	24,11831805	120	180	0,69200984
Sigma0_VV	39,72745201	25,89365516	140	180	36,06691343
Sigma0_VV	39,75257024	25,9731308	90	120	2,131789387
Sigma0_VV	39,77776379	25,95318077	240	240	302,728373
Sigma0_VV	39,74902629	26,00379964	100	180	4,328652375
Sigma0_VV	39,77516687	25,9976842	100	200	6,275448704
Sigma0_VV	39,7926639	26,03403218	130	210	92,24138712
Sigma0_VV	39,51435545	23,98362219	110	180	1,972678783
Sigma0_VV	39,57810375	24,37640008	90	120	3,454933116
Sigma0_VV	39,6173614	24,41784876	120	130	0,697754306
Sigma0_VV	39,61914374	24,38382182	110	140	0,390410997
Sigma0_VV	39,60693678	24,45284528	80	100	0,386410867
Sigma0_VV	39,62066505	24,44821358	140	150	1,386398249
Sigma0_VV	39,62917911	24,49651274	80	100	0,79365472
Sigma0_VV	39,7121062	25,31504167	70	110	0,307827632
Sigma0_VV	39,72757508	25,30591489	70	110	0,313821457
Sigma0_VV	39,73699202	25,30451734	140	220	1,235024584
Sigma0_VV	39,79573864	25,93321728	220	240	630,4374643
Sigma0_VV	39,80249717	25,96163431	250	230	1896,681414
Sigma0_VV	39,79856988	25,9925863	250	240	20712,71512
Sigma0_VV	39,81663819	26,09171575	200	230	229,8300932
Sigma0_VV	39,82280622	26,12779931	180	170	65,35768752
Sigma0_VV	39,841487	26,0947487	210	180	13,68010479