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AmayopeleTtor M avtiypa®y, omobrixevoy xol dovoun TG
TOEOVOOS E€QOYAOLOG, EE OAOXANOOL 1 TUNUOTOS CGLTYVG, YLO
epmopxd  oxomd. Emitpémetar v avoatimworn, omobvxevon
%ol OLOVOUY] YL OXOTTO WY KEPOOOXOTILXO, EXTTAULOELTIXNG 1|
EPELYNTLUNG PVOYG, LTLO TNV TTPODTOOEGY] Vo avoEpeTaL 1 TTNYM
TPOEAELONG XAL VO OLATYPELTOL TO TIOPOY unvoupa. Epwtiuoto
TTOL OUPOPOVY TN XOENOM TNG EQYOOLOG YLO. XEPOOOAOTILYO GHOTLO
TEETEL Vo ateLHVvovTaL TEOG TOV GLUYYPAPEX.

Ov amodelg xaL To CUUTEPACUOTH TTOV TEQLEXOVTOL OE QLTO
TO EYYPOQPO EXPEALOLY TOV OLYYQOWPEN XL OEV TPETEL VO
epunvevbel oOTL aviimpoowmevovy T emionuec 0O€oeic ToOL
Efvixod Metodfov TToAvteyveiov.



IepiAndy

H 6poon umoAoYLETHY aTOTEAODGE XVPLWS EVa TTEDLO TNG AXASNULKIKNG EQEVLVOLS XOLTA
™0 OLEPXELA TWY TTPONYOVUEVWY ETWV. LNUEPR, WOGTO0O, Vot OGAO XoL TTLO SNUOPLANG
OE EQPOPUOYES TTEOYUATIXOD XOOUOL. AGYW NG EUPAVLONG TTOAD LOYLEWY, YOUNAOD
%00 TOVG, XOL EVEQYELOXA XTTOSOTIXWY ULXQO - EMEEEPYUOTWY, €XEL XATATTEL dLYATO
vo evowuoatwblody mpoaxtixol aAydptbuol 6paong LTOAOYLOTWY OE EVOWUXTWUEVR
CLOTAUOTO KoL Yo OMULOLEYNOOVY €EVTIVEG GUOXEVEG LUOVES VYOI XOTOVONGOLY TO
TEPLRAANOY TOUG UETW OTTTLXWY UETWV.

ZTNY TAPOVOO SLTTAWUOTLXY] EQYAOLO, LY OAOVUAOTE UE TNV AVATITUEYN TOL aAyopifiov
awviyvevorng onueiwy evdlapépovtog ,twv Harris xaw Stephens, oc pto evowpotwpévy
OUOXELY TOL EXEL OYEOLOOTEL YLOL TNV ETLTAYVYOT EQPOOUOYWY UNYOVIXNG OPOOTS, TN
Myriad 2 améd v Movidius. Meta v aELoAdynon Baotxwy QIATEWY VTTOAOYLOTIXNG
6p0omG, ONULLOLEYNOAUE Evar TANDOG xovovLY pe BAoy Toug omolovg o umopéoovye
Vo ETULTUYOLUE WL OTTOSOTIXY] DAOTTOINOY OE QLT TNY TAXTQOQUO. XTV CUVEXELX,
OL OTTOPOLTNTEG UETATPOTEG EYLVOLY TTPOXELUEVOL va. eTopepbel o aAyoplbuog amd
YEVIXOD GXOTIOV ETMEEEQYATTEG OE (UL EVOWUATWUEVY] CLOXELY]. AxoAoVbHwe, apylooue
ELOAYOVTOG OPXETES BEATLHOOELS e GTOYO0 TNV aElomoinon Tov LALXOV Tn¢ Myriad oto
LPNAGTEPO ETITTESO XL TN LEYLOTN OTTHS00Y. AUTEG OL BEATLOTOTTOLNTELS, TOY QOYLXA
OTOYEVUEVES OTN WUELWOYN TOL €DPOVLG UVAUNG TNG EQAEUOYNGS. Me Tov mepLoptoud
ToL oPLILOL TWY ATTOULTOVUEVWY TTPOOTEAACEWY OTY] UYNWY, Npootoy o Béon vo
emtpédovpe otovg VLIW emeEepyaotéc tng Myriad 2 va exteAéoovy tov adydptbpo
omod0TLXd, YWELG eviLdueoes xabvoTtepnoelg amd peTapopeg dedopévay. EmtmAdoy,
pLtoe cAyoplOuixnn PETOTEOTY] EQOEUOOTNXE TTPOXELLEVOL Vo evbuypopuiosl Tig Lo
OTTOLTNTLXEG GUYOPTNOELS TNG VAOTTOINGNG LE TO Vot emteEepyoaiag Twv SHAVES.
H Myriad 2, og avtificon pe toug mopadootoxode nixpo-eTeEEPYROTES, EXEL OYEOLAOTEL
YLo VO AELTOVPYEL TTOPAAANADL GE LEYAAO YO TTANPOPOPLWY. QG EX TOVTOV, XAVOVTOG
utoe oyeTLxn BeAtiotomolinoy oTig Bactxég cLYUPTNOELS, NuaoTay o BEon vo etitdyovpe
ox6un VPNAdTEPR eTiTtEd XL ALTTHS00YG.

Téhog, N epyaoio avtn omédetEe 6t Myriad 2 pmopel vor emLTayOveEL ONUOVTLXE
VPNAYE TTOALTTAOXOTYTOG OAYoPLBLOLG pMYoVIXNG dpaong, OTwg awTtdg Twyv Harris
xoiL Stephens, xot vaw avtomeEgAbel amoteAeopatind oT0 Borpd LTOAOYLOTIXG POPETLO
AELTOLPYWOVTOG OE €var EEQLPETIXE YAUNAG ETTLTTEDO XKATOVAAWONG LaYVOG.
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Mnyovixy 6poor, Arydptbuog aviyvevong onueiwy evdia@épovtog twyv Harris xoun
Stephens, Myriad 2, Avayvopton I'wvidyy, Evowpatouéva cuotiuoato.



Abstract

Computer vision has mainly been a field of academic research over the past several
decades. Nowadays, however, it is becoming more and more popular in real world
applications. Due to the emergence of very powerful, low-cost, and energy-efficient
processors, it has become possible to incorporate practical computer vision capabilities
into embedded systems and create devices capable of understanding their environ-
ment through visual means.

In this thesis we deal with the development of the Harris & Stephens corner detection
algorithm into an embedded device designed to accelerate machine vision tasks, Myr-
iad 2 by Movidius. After evaluating basic computer vision filters, we created a design
space based on which we could achieve an efficient implementation in this platform.
Subsequently, the necessary transformations were made in order to port the algorithm
from a general purpose CPU into an embedded device. Then, we started introducing
several optimizations with the goal of utilizing Myriad’s hardware at the highest level
and reaching a maximum performance. These optimizations were initially based in
reducing the memory overhead of the application. By limiting the number of required
memory accesses, we were able to allow the VLIW processors of Myriad 2 to run the
algorithm efficiently, without too many stalls. In addition, an algorithmic transforma-
tion was applied in order to align the most demanding functions with the processing
scheme of the SHAVEs. Myriad 2, instead of traditional processors, is designed for
operating in parallel on tons of information that they are all coming through at once.
Therefore, by making a relevant optimization in the basic functions, we were able to
achieve even higher efficiency levels.

Finally, our implementation proved that Myriad 2 can accelerate significantly a high-
complexity Computer Vision algorithm, like Harris corner detection, and deal with the
intensive computational load efficiently and at an ultra low power envelope.

Key words

Computer Vision, Harris & Stephens algorithm, Myriad 2, Corner detection, VLIW,
Embedded Vision, Embedded Architectures.
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‘Opaocy Y'ToAoyLoT®Y

Optopog

H pnyovixn 6poon, vtoroytotiny 6paom 1 TEXVNTY 6pao, elvot Eva ETLOTNULOVLXO Tted(0
TNG TEXVNTNG VOMLOCVYNG TO OTTOLO ETILYELPEL Vo otvaTtapdyet ohyoptOptxd v aiobnon
™G 6paomg, ovvnbwg oe cuoTHUAT BACLOUEVO OE NAEXTEOYLXOVES DTTOAOYLOTES, OTWG
Ta poumdt. H pmyavixn dpoon oyetiletol pe tn Bewplo xo Ty tevoroyior TOL EU-
TAEXOVTOL OTY OYESLNOY XOL XATOOXELY] CUGTNUATWY TOL AcBAYOLY oL OVOIAVOLY
oedopeva amd PneLoxég ewxdves. Ta ev Adyw Sedopévar LTTOPOLY VAL ELVOL PWTOYPO-

@ieg, Bivteo, OPelg amd TOAMATAEG XAUEPES XKoL TTOALOLAOTOTEG ELUOVEG.

Egapp.oyeg
H 6poaon vmoroyiotdy yonotpomoleitol onpepa oe TANH0G EQOEUOYWY, OL OTTOlEG TTE-
othopBavooy :

e ‘EAeyyog Stadixaottdv (mt.y. éva Bropnyovind poumdt A éva auTOVoL.o GYMUoL)
e Aviyvevon ovpfavtwy (.. oty emLThENON)

e OpYB&vwon TANPOPopLHOY (TT.y. ELEETNELOTTOINOY Bdocwy dedopévwy xaL axoAoL-
BLdv etxévmv)

e EEopoiwon aviixetpévwy xor meptforlévtwy (.. Bropnyoviny embedpnon, to-

TELXA VEALOT ELXOVAS N TOTTOYPOPLXY| EEOLOLWOT)

o AMAeTtiSpoon YENOTWY Ue LTOAOYLOTLXE ovoThparta (.. wgeloodog oe pLo

OLOXELT] ETULXOLYWVIOG OVHPWTOL |/ P ovAg).

"Eva amtd Tor To onpovTixd Tedion EQapUoYNg ElVOL M LaTELX 6pOOY N LOTELXN €-
meEgpyaoio exovog. Avty v TEPLOYN Yoo TNELlETOL Tl TNV EEXYWYY TTANPOQOPLLY
oo Tor SEQOUEVRL TNG ELXOVOG YLO TOV OXOTIO TNG TEOYUATOTOLNONG LATOLXNG SLAYYw-
ong evog aobevodc. Xe yevirée Yoo uEég, Tor dedouéva eLxdvag eivorl ae Lop@Y ELXOVwY
ULXPOOXOTTILOG, ELXOVWY OXTIVWY X, OYYELOYQOPLWY, DTIEPTYWY XOL ELXOVKWY TOULOYEO-
ploc. 'Evo mopddetypor Ty TANEOoQopLwy Tov Utopody vo eEoyody amd to ev Adyw
dedopéva ewxdvag elval 1 aviyvevon 6yxwy.h apTEL0oxANP®WoN N GAAES ETTLENULES OlA-
Aayéc. Mmopet emtiong vo elvot LETPNOELS TWY SLUCTATEWY TOL 0PYAVOL, TNG PONW TOL

alpatog, xAT AuTH) 1 TEELOY LTTOOTNPELLEL ETTLONG TNV LATELXYN EQELVAL UE TNY TTOPOYN
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VEWY TTANPOQPOPLOY, TT.Y., YL TN OOUN TOV EYXEQPAAOL, 1] YLO TNV TTOLOTNTO TWV LATOLXWY
Depoamteldv.

"Evog amd toug vedtepoug Topels EQapUoYNg elvol Ta ALTOVOUO OYNULOTA, TO. OTTOLo
repthapfBévouy vrofpdiyta, yepoaia oynudto (UxEd poumdt pe Pddeg, awTtoxivnta 1
QOPTNYA), evadpLo oyfuoto xo P ecovdpwpéva evoépta oyfuatoa (UAV). To eninedo
avtovopiog xvpaivetal ard TARPwS awtdvopa (U eTovdpwpéva) oxnuéto o oyALo-
T OTTOV TO GLUOTHUOTA UNYOVLXNG OPOOTG LTTOGTNPELLOLY ToV 03MYO. IIAPws v TdHVOUOL
oyNato. cLYNHWG YENOLLOTTOLOVY UMNYOVLXT] OPOOY] YL TTAOYNOY, ONAD YLO VO YV~
ptlovv T Béom Tovg, N Yo TY TaPAYWYH VS XGETN TOL TEPLRAAAOVTOG Toug (SLAM)
xo e Ty awviyvevon eprodiwy (Figure 0.1 ). Mmopel entiong va ypnotporoindel yio
NV OIXVELGY] CUYXEXPLUEVWY YEYOVOTWY, TT.Y., Vo UAV Ttou avtyvével ddom yLa Tu oV
mopxoytés. Hopadelypota oLoTNUATWY LTTOOTAPLENS elval cLOTAUATH TTPOELIOTTOLN-
oMG EUTOS{WY GE AVTOXIVNTA, XOL TO CUCTAUATO YLO TYV CUTOVOWUY] TTPOCYELWON TOL
agpooxapovs. H eEgpedvnon tov StaotTuatog €xel MOy YIVEL UE AUVTOVOUO OYNUOTO
TTOL Y ENOLULOTIOLOVY UMYowLxn 6paon, T.Y., To Mars Exploration Rover tng NASA xow
7T0 ExoMars Rover tng ESA.

&) Frocessa oslEcT 0
4k = CAUTIONARY OBJECT
= STATIONARY OBJECT

= MOVING OBJECT
7 = TRIVIAL OBJEGT

Ixquo 0.1: Avtédvopo Oynuar He GOOTNUO UNMYOVIXNG OPOONG YLoL Vo avTtAauBavetol
avtixeipevo 6to mtepLBdAroy tov (ITny7y: Nvidia)
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AANybp0pog Avixvevong I'owviwy twv Harris & Stephens

0 xbpLog oAybpLbpog pe Tov 0TTolo orY0OAOVUAGTE GE OV TY] TN OLTTAWUOTLXY EQYOOLO EL-
vo 0 aAyopLipog aviyvevorng ywvieyy twy Harris & Stephens. H aviyvevon ywvioy eivor
ULO TTPOGEYYLOT TOV YPNOLUOTIOLELTOL OTO TAXLOLO TWY CUCTNUATWY OPAOYS VTTOAOYL-
OTWY YL TNV EEAYWYN OPLOUEVWY YOEOXTNOLOTIXWY ULag ewxévos. Tledio epoppoyng
NG ATTOTEAODY 7 aViXVELGY XLVNOMG, N XATAYPOPN ELXOVWY, 1 TOLOOLAOTOTY] LOVTEAO-
TTOLNOY EVOG YWPEOL XOL 1 YXYYWELOY OVTLXELLEVWY. H évvola tng aviyvevong ywvwy
OLUTUTTTEL LE QLT TOV EVIOTULOUOV OMUELWY EVILOPEPOVTOG.

"Evog amd toug mpwtoug aiyopibuovg aviyvevong ywviwy eivor avtdg tov Moravec,
0 omolog opilel plor Ywvio wg éva onueio pe xopnAn avto-opotdtntoe. O adydplbpog
eEetdler xabe pixel oty etxdva yio vor Sel €dy o Ywvid elvor Topodoo, EAEYXOVTOG
70 eT{TEDO OUOLOTNTOG EVOG UEPOVG TNG ELXOVOG UE ETTLXEVTPO TO pixel xat GAAwWY om-
KElwY O ®xOVTLYY TTOOTOON XAL LE TO OTTOLOL LTTAPYEL OAANAOETTLXGALYY. H opotdTrTor
petpdrton Le T AMPm Tov abpPoiopaTog TwY TETPAYWYLY Ty dLa@opwy (SSD) petaEd
TV avtiotolywy pixels twy dVo xoupotidy. ‘Oco uixpdtepog o apLtbuds awtde, T6c0
UEYOADTEQPY 1 OULOLOTNTOL.

H Twpn mov xabopilet pro ywviow oplletal wg o pixpdtepo SSD UeTaED TOL XOULOTLOD
xoL TV YELTOVWY Tou (optlévtia, xdbeto xow emti Twv 300 dtaywviwy). O Adyog Yt
oTo elval e, €dy avtdc o apLtbudsg eivor LPMNAGG, TETE N SLOAVPLOVOT KOTA PLNHOG
OAWY TWV LETATOTLOEWY elval eite (00¢ elTte PEYAADTEPOS OTtd avTOY, delyvovtog ETol
OTL OAEg oL XOVTLVEG TtePLOYES Dot elvor SLOPOPETLXEG.

O Harris xow Stephens BeAtiwoay tov aiydptbuo tov Moravec Bewpivtog 0 dtago-
pomoinoy ¢ “Badporoyios” pLlag ywviag oe ayéon pe ™y xatedbovan apeoo, ovtl va
XONOLULOTOLOVY PETUTOTLOUEVO TTapafupa.

"Eotw 6Tt N ewdva ovpPoriletar wg 1. Ag Bewpnoovpe 6T malpvovpe €var xOpPATL
g ewxdvag oty mepLoyy (u, v) xow to petatornilovpe xatéd (x , y). To otabuLopévo
GOPOLORA TWY TETPOYOV®Y TwY dLopopwdy (SSD) UeToEd oty Twy dV0 XOUUOTLY,

70 omolo oLPOALeTo S, divetar amd Ty axdAovly eElowon:

E(u,v) = Zw(m,y) X [[(x4+u,y+v)—I(z,9)] (0.1
omov:
e E 7o abpolopa Ty 1ETp0YOYWY TWV SLOPOEEV
e W(xy) 1 ouvdptnon mtapobpou
o I(x,y) M TLuh g évtowomg Tov PTG oTo pixel
o I(x+u,y+v) 1 TLpA NG EVTOONG TOL PWTOG OE YELTOVLX O OMUE

6mou o I(u+x, v+y) pmopel vor TpooeYYLoTel péow evog avarmtiypotog Taylor. Ag

Bewpnoovpe Ix xou Iy Tig pepnég mapaywyovg tou I, étol ote:
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Iu+x,0+y) = I(u,v) + L (u,v)z + L(u,v)y (0.2)

Emopévwg, n auvdptnon tov abpolopatog yivetor:
S(z,y) ~ Z Z w(u,v) x (I(u,v) + Ip(u,v)x + I, (u, v)y)2 (0.3)

H mponyobuevy oyxéon umopel voo Yoopel ae untotxy Lopey wg eEng:

S(z,y) ~ (zy)A < ;’; ) 0.4)
6Tov:
_ LI | | (0D (L)
A=2,2.,wwo) [ L1, I2 ] - [ (L) (I2) ] -5

H pnrpo avtoovoyétiong A mopéyel Evar x&tw Qedypo Yo ™y offeBatdtnTto ot
Beon evdg tarpLdllovtog mopabvpov. Qg ex tovToL, eivol €vag YENOLULOS SEIXTNG e
Bdiom Tov omolo pmopel vou eAeyybel N T)TLON SLOPOPETLNWY XOUULOTLV.

Mo aAAn BeAtiwon os obyxplon pe Tov aiyopLtbpo tov Moravec eivor 6Tl 1 GLVEETY-
on Topobvpov eivor twpo Gaussian, eEac@aiilovtog LooTpomixn amoxplon. H yevixm
rwopen pwog Gaussian ovvdaptnong Topabbpov TapovoldleTor oty axdAovly ewxdvoa:

Y
u{x,}}—Lh[{ = }

Wmnmdow hunchion WX V) _/\

LrnissEn

Tyneo 0.2: Gaussian ocuvvaptnom [5]

Ytov aAyopLbpo Harris, pior yovid Oewpeital 6tL €xel peydAn dtoxbpavon oto S
oe 6Aeg g xortevbvvoelg Tov mivoxo (x y). Xe pobnuotixd Lopey, autd UTopel vou
eEXQEOOTEL LEGW TWVY LOLOTLUWY Tou Tivaxo A. Edv éva onueio evdiapépovtog eivor
LTtO eE€Taiom, TOTE 0 Tivaxog A Oa TpETel vou €xel 3V0 LOLOTLUEG UE HEYAAN TLU. Aop-
Bavovtoag vTéPN Ta PEYEDN TLY LLOTLUWY, pTtopodpe vo. xaoploovpue Tig axdAovbeg

TEQLTTTWOELG:
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e \; =0 and A\ = 0, T6TE OWTH TO ONUELO BV ATOTEAEL ONUELD EVOLOPEPOYTOG
e \; = 0 and A2 €xet peyain Betixn Tiun, ToTE 0TO ONUELO QLT PPloXETOL [LLOL OXUT

e Both A\ , Ay €xovv peydreg Oetinég TLpég, TOTE OTO ONUELD VTO EYOVPE YWV

Qot600, £TELDN O LTTOAOYLOUOS TWY LOLOTLUWY ATTOLTEL LYNAG LTTOAOYLOTLXO POOTO,
ot Harris xow Stephens mpoteivouy v evalhoxtixn ocuvéptnon M. n owolo Tapatibe-
o €36:

M, = My — k(A1 + Xo)? = det(A) — rtrace®(A) (0.6)

o6mov det(M) = Aide, trace(M) = A\ + g xow k elvor piow TLwn mov emtAéyeTton pe
Béon to embuntéd eminmedo evachnoiag oty €E0d0 ToL OAYoPLBUOL. ATTOSEXTES TLUES
ToL oAyoplBuov eivar petoEd 0.04 xow 0.15.
Xe avtifeon pe ™y avGAvon LBLOTLUGY, N TTOCOTNTO OLTY OEV ATTOLTEL TN XENON TWV
TETPOYWILXWY PLLDY eV EEXOAOVOEL Vo LTTOPEDYEL YOPOXTNELOTLXE TTOL Elva GLYTON

oc axpég 6mov Az > Aq. O Triggs [1] mpoteivel ™ ypnotpomoinoy g TooHTNTOG
)\1 — /ﬁ:)\g

N OTolol LELWVEL ETTLOMG TNV OTTOXOLOY] OTLS OXUES, OTIOL UEQPLXES (POPES GQAALOTO
TOEATOLNONG SLOYXWYOLY TN ULXEPOTEEY tdtoTiwy. Aciyvel emiong mwe 1 Paoixy 2x2
Hessian pmopel va emextabel o MOQOUeETOIXES KVNOELS YL TNV OViXVELGY] ONUELWY
oL efvort eTTioNG e oxPIBEL EVTOTILOLLOL OE XALLOXOL KO TTEPLOTPOW].

Axorobbwg tapovotaletol pice YoopLxn oavamopdotooy g ToELYOUNons Twy onuelwy

EUOVOG, COUQWYA LE TLG LOLOTLUES ToL M:

Cassification of 3. [—

image points 2| edge

using eigenvalues A,>> L /@ Comer

of M: Ay and A, are large,

Ay~ by

E increases in all

A, and A, are small;
E is almost constant
in all directions

Iynro 0.3: Kaboplopdg onuelwy evdlopépovtog neéow LOLOTLUGY. [2]
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Ta Briuato evdg Pootxod aviyveut) onueiwy evdlaépovtog Le Baon Ty avTooL-

oxétion auvvoilovton otor oaxdéAovbor akyopLtbuixd otadio:

20

1. YmoAoyiopodg Twy 0ptlovtiwy xon x&betwy matarydywy g ewxovog I, xou I, uéow

OLVENENG TNG 0EYLXNG ELXOVOG UE TTOPOYWYOLS PLATPwY Gauss

2. YTOAOYLOP®Y T®V TELDY ELXOVWY TTOL aVTLaTOLYOVY ot o Tég TG xAioetg (H pitpo

A elval GUPPETELRY, OTIOTE UOWO TPELS EYYPOPES ALTTOLTOOYTOL)

3. ZUVEMNEYN auTWY TV EXXOVLY UE Eva LEYOADTEPO TTLPYVO PiATov Gauss.

4. YmoloyLtopog €vog Bobumtod PETPoL, YENOLLOTIOLWOVTOS EVOY OO TOUG TOTTOUG

7oL oL NTNONKOY TOEATTAVW.

5. Edpean tomix00 ueyiotov move omd xAToL0 GPLO XOL AVOYVWELGY] TOV G ONLELD

EVOLOPEPOVTOG.



IMopovsioocy Tov EVOOUATOUEVOV GUGTNUATOS

To evowaATWUEVO VG TNUA TTOL YENOLULOTOLNONXE YLa TNY EQPOEL.OYY TOL eEETAlOUEVOL
oAyopibuov elvor n Myriad 2 and ™ Movidius, n mpwtn always-on Vision Processing
Unit mov éyet xataoxevaotel. H Myriad2 eivar éva SoC mTOAAGTAWY TTUPNVWY TTOUL
VTTOOTNPELLEL EQAPUOYES VTTOAOYLOTIXNG OPAOYS XOL OTTTLXY OVTIANYNG YLo xLYNTES GL-
OXeLEG, wearable xoL EVOWUATWUEVEG TAATPOPUES. AVTO TO XEQPAANLO TEQLYPAPEL TN
AgtToLEYXOTNTA XOL TN XoNon g Myriad 2. EmimAéoy, eltodyst Aemttopépeteg Tov o-

(POPOVY TNV OPYLTEXTOVLXY] OVTOD TOL TOLT.
AloTa ooV YOUQAXTNOLETIROY

To yopoxtnototixd g Myriad 2 eivor ta axdéAovbo:

e 12 x SHAVE (Streaming Hybrid Access Vector Engine) VLIW vector eneEepyoaotég
(128-bit) , 2 x RISC emeEepyaotéc

e 2 MB on-chip pviung RAM (CMX)

128/512 MB pvfunc DDR

O LEON RISC éyer 256 KB L2 xpoey pvnun

O LEON RT has 32 KB L2 xpue? pviun

TYnAd on-chip edpog Ledvng

SIPP Image Signal Processing emitoyuvtég vAOTTOLNUEVOLG OE ETETIEDO LALXOD

EvVpog mepipepeloxdy ocvoxevwdy etabdov - eEb6dov, dmtwg SPI, 12C, 12S, SDIO,
Ethernet, USB

o Aetopéc ewxdvag, omwe MIPI, CIF, LCD

H owovyévera emekepyootddv tmg Myriad 2 amotedeitor and Tig €Evg exddoels:
e MA2x5x - MA2150 / MA2155 / MA2450 / MA2455

[N Tovg TEOYPOUUATLOTIXODG GXOTTOVG TNG EQYXOLOG QLTNG, XENoLLoTominxe n €x-
doon MA2150, n oot €xer 128 MB DDR pvnuy éva ouyvétnta cvotipotog ota 600

MHz. To dtéypoppor TNG EYLTEXTOVLXNG TNG TTOEOVOLALETOL GTO TUPOXATW YN
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b 4 4 4 4 4 & 1l Lala L1 % &1 1T "1 1 % & 1 |

CMX 2-Mbyte multiported RAM subsystern

PLL and CPM

17 independent power islands
power

Tymuo 0.4: Apyrtextovixn tmg Myriad 2 [3]

Qg VPU SoC, n Myriad 2 €yet éva eAeyYOUEVO amtd AOYLOULXO, TTOAXTTAWY TUENYVWY,
VTTOCVOTNUO UYTUNG KL XOVPES UVTUES TTOL UTTOPOVY Vo PLOULETOVY DOTE Vo ETLTEE-
TTOLY TO YELPLOPO EVOG UEYAAOL @OpTOL gpyaciag. Emiong, eivor Suvaty n emitevEn
VYPNAOD €VPOVLG UETOPOPAS DESOUEVWY XL EVTOAWY YLX TNV aTTodoTixy aELomoinom
Ty 12 eneEepynotwdy, Twv dbo eneEepyoatwdv RISC, xat twv @iAtpwy Tov PaacilovtoL
oc ETUTAYLVTEG LALXOV. ‘Evar TOAMOTA®Y ®xavoAlwy cbotnua ducong mpdofoaong ot
puviung (DMA) petdver 1o @6pT0 LETOPOPES dedopévey PETAED TwV ETEEEQYAOTWY,
TWY ETULTOVYTWY LALXOD Xl TNG PvNUNG. [lopdAAnAa, pior peyaAn yxé.oo mepLpepeto-
XY CUUTEPLAXULBAVOUEVWLY TWY PWTOYEPAPLXWY UnYovey, LCD mével, xow cvotnuétwy
poltxng amofnxevong, emXOLVWYODY ATTOSOTIXA UE TOUG ETMEEEPYROTES XOL TOVG ETTL-

TO(LVVTEG LALXOD.

Emedn n evepystoxy amdd0oy elvol TEWTHOYIXNG ONUXOLOG, 1| CLUOXELY] ElVOL OYE-
JLapéyn WoTe va €xel oLVoAxa 17 power islands, petaEd twv omolwy pla yioo xabe
éva. amd toug 12 SHAVE emeEepyaotéc, emitpémovtog €tol BEATLOTO €AeYy0 LoyVog
oe emimedo Aoyloutxob. H ovoxevun vmootnpiletl 8-, 16-, 32-, xot xdmoLeg Asttovpyieg
64-bit oe axcpaiovg, xabng xan fp16 (Open-EXR) xaw FP32 optbuntixs, eved pmopet
vaw ptéoet ota 1.000 Gflops (fp16). H mpoximtovoa apyltextovixt Tpoo@épe. owEr-
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HEvn amdHd00Y avd watt o€ Evar ELPV PATUR EQPOEUOYWY OO TO TESLO TNG OPUOTG

VTTOAOYLOTOY XD xoL TNG ETOVENUEVNG TTOXYUATIXOTNTOG.

Streaming Hybrid Access Vector Engines

Ov SHAVESs ypnotpomorodytor yio To LEYHADTEQO UEPOG TNG ETMEEEPYAOLOG XUTA TNV
exTéAEON VGG ahyopibuov. Kébe emeEepyaotrg meptéyel evPVG XATAYWENTES OE CLV-
dvaopo pe VLIW mapéyovtog €tot o péhodo yior TopoAAALOUOS o ETILTIESO EVTOAWY.
VLIW moxéto eA€yyovy TOAMATAEG ASLTOVEYLXES LOVADES TTOL €YoLY LxovoTyTar SIMD,
ONAadn va teEepydlovtor ToAAG dedopéva pe €xdoon plog evtoins. ‘Eott, emttuyyd-
veto VPNAN TREOAANALX XOL TN ATTOS00T OE AELTOVPYLYES LOVADES KoL ETEEEQYOOTEG.
Kabe pla amd avtég tig povadeg umopel va Eextvnost TopdAAnAo o€ évar eVioio TTo-

*ETO EVTOAWV.

O SHAVE amoteiel évav emeEepyaot) vBELOLXNG GEYLTEXTOVIXNG TTOL CUVSLALEL T
xoAOTEpOL YopoxTnELotixd Twv GPUs, DSPs xow RISC pe 8-, 16-, xow 32-bit optOpnte-
xN oaxepalwy xor 16- xoaw 32-bit otbutting xyntg LTOSLUCGTOANG, xbG KoL povodtxd
XOPOXTNELOTLUA, OTTWES VALXSO DTTOGTNPELENG pattdY Sop.wy dedopévmy [3]. H apyttexto-
VIXN HEYLOTOTOLEL TNY aTTOd00M avd watt, SLATNEWYTOS THOAAANA TNV ELVXOALGL TOU
TEOYQOUOTLOUOD, LLOLTEQO GO0V OUPOPE TNV LTTOGTNELEY YLOL TO OYESLHOUG %O TN

UETAPOPE EQPAPUOYWY AOYLOULXOV YL TTOAVTTOPNYO CUGTAUTA.

H apyttextovinn twv SHAVESs @aivetor oto Zynuo 0.5.
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128-bit AXI

PEL BRU LSUQ LsuU1 1AL

I

8 parallel SHAVE functional units supplied with VRF and IRF data
Iyqro 0.5: Apyrtextovixn twv eneEgpyaotwy SHAVE [3]

Ta SHAVESs vroompilovy evtorég SIMD yio ToAAoDg TOTTOVG, TTOL TEPLAaLBAVOLY
oMG dev mepropilovtal os: 16 bits axepaiovg, 32 bits axepaiovgs, 16 bits xivitrg
LTTOOLOOTOANG, 32 bits xviTng LTTOSLGTOANG, 8 bits axepaiovg.

Or eoapuoyég pmropovy vo avamtuybody ae Assembly, C xat C ++ ot vor TpéEovy oTtoug
SHAVESs pe 1t yofion twv moviAsm xot moviCompile, epyaieiwy vAomotmuévwy omd
11 Movidius.

Yépyovy dbo ovaotolyieg apyelwy emeEepyaotoy: IRF xar VREF.
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Yoot avaTTuEYg Tov aAyoptdpov twy Harris & Stephens
otn Myriad 2
INoa ™y avartuEn tov adyopibuov PBaototixape os pio C vAomoinon N omoio elye

oXEOLOOTEL YLow ETTEEEPYAOTES YEVLXOU oX0ToD. To SLaypoppor TNG LAOTOLNONG AVTNG

QOLVETOL TTOPOXATW :

YTohoyiopog ¥ TIOAOYIOPOG
LEPIKIV TEIPOYLIYWY ———————* TIOpOyoywy 2ng
1ng TaEnc: Ix, ly TAENC
Ymohoylgpdg e oixto
{ Tomko Méyioto <€—————— amndkpiong Harris «<——  efopaiuvang
Mea R yior kaBE pixel Gauss
Inueiwon me y————>» Emnopsvo pixel +————
BEang Tow pixel
OV EKOVD r Y
Oy
R > kamoio opio Oy
‘ Tehog Emdvag —
Yes
To pixel £xe1 T
1o¥upr T R Kk )
EvOKmTOTKG Iréowac oy
HEYIOTO, apa fpednkoy > 0pio Oyr
OTJUENDVETOI GG YLV
yevia.
| Man
Mo
Tehoe, -

Iyqra 0.6: Avgypoppo povg Tov adydpLbuov twy Harris Algorithm & Stephens
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Y10 mpwTo Brpa, dtafalovial Tar OESOUEVOL TNG ELXOVOG KO TTEQYLOVVTOL WG TTO-
PBULETOOL GTY GLYAPTNOY] TTOL VTTOAOYLLEL TLG LEPLUES TTAPAYWYOLS TPWTNG TaENS (I,
I,). Auté emiTUYAVETOL PE TNV EQOEUOYT EVOG SLowEiotov QIATPo cLVEANEEWS TTOL
oLYOLALEL ToLg axdAovbovg TTLPNVEG:

derivative : [1 -3 0 3 1}

oL
smoothing : [1 6 12 6 1]

H ovvéptnoy mou emitelel oty ™) Aettovpyion avth ovopdletol imgradient_smo()

995k%%

xol SlveTal ToEoxX&Tw o LoPEY PeLSOXWILXK. LNUELWOTE OTL TO VUBOAO vTtO-

ONAWVEL GUYVEALEY], O)L TTOANOTTAAGLOGLO.

int imgradient5_smo (image [width , height ] ,width, height , gradx, grady)
for (i=[0,height—1])
for ( j=[0,width—1])
wrkx[i,j]=image[i,j]*derivative_kernel;
wrky[i,j]=image[i,j]*smoothing kernel;

next_line;

for (i=[0,height—1])
for ( j=[0,width—1])
gradx[i,j]=wrkx[i,j]*smoothing _kernel;
grady[i,jl=wrky[i,j]*derivative_kernel;

next_line;

Ot dbo mprtoL dbo BedyoL emavdindng Twy imgradient5_smo() gival oL optldvTieg
oLVEALEELS xot POAOG TOLG e€lval O LTOAOYLOOG, YL x&be pixel, Twv pepxdy To-
PAYWYWY OAN& %ot NG EEOUAAVYOYG TNG ELXOVOS, OVTLGTOLYO, XQOTWYTAS TOL TOTILXA
abpolopoto TwY TLENVWY 5 OTOLXELWY TTOL SLATEEYOLY TNY exdva. [t To oxoTd AV TH,
XONOLULOTTOLOOVTOL OL TLLES TV dVDO TTRONYOLUEVWY X0 ETTOUEVWY TTLEEA GTN CLYXEXEL-
WEvn ocLpd. Xt ouveyeLa, xabe Ty xavovixomoteltol pe Béomn oYETIROVE TOPAYOVTEG.
H oporomoinoy dev epoppdletar o xdbe ovvteAeot! Yo va petwbel o apLbudg twv
TPAEEWY XLVNTNG VTTOOLOLGTOANG.

Opora, oto devtepo LevydpL emavaiPewy, yivovtor ot xabeteg ouvveiitetc. Téog, Ta
amoteAéopata amobnxedovtal aTovg Tivaxeg gradx xot grady, oL omolol ayTLoTOLYOVY
ot I xou Iy, avtiotolywe.

Ellopéve Prpo amoteAel 0 DTTOAOYLOUOG TWY TETPAYWVOY TWY ULEOLXWY TTOOOYWY WY,
xabg avTég YpnotpomolovyTal oty Baoixn oLYAETNON ToL aAYdELOUOL avalnTNoNg
ywviey tov Harris. O tipée awtée eivon o 12, IS xobwdg xou 11,

"Emteita, Tor Topamtdve TEpVLoVvTOL ©¢ OpLouoe aTY] ouvéptnoy imgblurg(), N omola

26



XOAELTOL TOELG POPES xaL EQaPUOLeEL Evar TLPT Ve eEopdiAvvorg Gauss.
H ovvdptnon avt divetar mopaxdtw. Edw, emtiong, to obpforo *” vmwodnAdvel ou-

VEALEN pneTaE) V0o TLvdixwy.

int imgblurg(gradx, grady, gradxy) {
/* separability: convolve horizontally ... */
for (i=[0,height]){
for (j=[0,width]){
wrkx[i,j]=gradx * gaussian_kernel;
wrky[i,jl=grady * gaussian_kernel;
wrkxy[i,jl=gradxy * gaussian_kernel;

/* ... then convolve vertically */

for (i=[0,height]){
for (j=[0,width]){
gradx2[i,j]=gradx * gaussian_kernel;
grady2[i,j]=grady * gaussian_kernel;

gradxy[i,j]=gradxy * gaussian_kernel;

[TA¢ov, eivor duvatd var Yivel 0 LTTOAOYLOUOG TNG TLUTG ~YwWLdTNTaS” Yo x&be pixel,
OTTWG OV TOG TTEPLYPAPETOL GTO TYETLXO OAYOPLOUO. Ao Ppelidv auTéc oL TLpEg, pxpa-
TOVTOL LOVO 60EG Elvol TTEAVW ATTO XATTOLO VWAL XL €lVaL €TTLONG UEYLOTES OE EVa

ToTxd vupNve. Ot Tedevtaleg, Hewpodvtal onueior ev3LOPEPOVTOG, M AAALWG YWVLIEG.

Emeldn n Tapamdvew vAomoinom eixe oyedtaotel opytxd YLa YEVLXOU 0XOTOL ETteEEQY -
OTEG, N VATTUEN G o TN TNY €pYOOLa OTTaiTNOE SLAPOPN PAULATO LETUOYNUATLOUWY

%o BeATLoTOTTOLNOEWY WOTE Vo eTtitevybel Eva LYNAG eTtiTtedo atddoong ot Myriad 2.

2T TOPOXATH SLOYPOUUOTo. SivovTol To X€PJ0G o amid00Y] XL EVEQYELOL TTOU €-
metedydn Enettar amd xabe Prua Tng vAoToinang. E@doov 1 vAomoinon awTy GToxeVEL
EVal EVOWUOTWOUEVO GOOTNUN, EVEQYELD TTOL XOTOVOUAWVETOL VO EXTEAEOY E(VaL TTOAD

onpovtiny. Axorobbwe, dlvetol avaALTIXT TEQLYPOPT TWY PUATWY OTWY.
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Képdog og amddoon

800 - *

600 - 2

400 - *

200 - *
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Il Ztédia Yromoinong

Képdog og xatavwAwor evépyeLog

400 - *

300 |- *

200 - |

Evépyeia (m])

100 |- .

0 L] —
A B C D E
Il Ztédi Yhomoinong

KatdAAnAn pviun o eweEepyoosio dedopévoy otovg SHAVEs - CMX vs DDR
O mtivaxeg amobnixevorg dedopévwy pLag eopproyng mov Tpéxel otovg SHAVESs mpé-
met yo Totobetodvtor ot pviun CMX. Qotéoo, xatd to TEWTO 0TASLO TOL porting
evog yevixod xwdwxa C ot Myriad 2, to uixpéd péyebog g CMX amortel v Tomobé-
™NON AVTWY TwY TVaxwyY o1 DDR, dedopévou ot elyay opyindt xoxtaoxsvootel yio
UNXAVES YWPELSG TTEPLOPLOLOVS UVNUTNG. LTV CUVEYELN, UETE TNV TEXYUATOTTOLOT OLOLL-
3wV TPOTOTIOLNOEWY GTNY EQUEULOYY, Tat Oedouéva Bploxovtal ot CWoTY UYNUY KoL
N od300Y oL TolPVoLUE opPyLlel vo eivor TTLo evOLYPALULOUEYN UE TLG dLVATOTY-
teg Tov Myriad 2, dmwg pmopel voo @avel pe ™ odyxplon Ty eaoswy A xot B twv

SLoYPOUATWY. Q¢ ex TovTov, 1 DDR pmopel va ypnotpomoinbel yio vor xpotroet ta
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dedopéva LOVO o€ Evar TTOAD QPYEYOVO GTADLO TNG LETOPOPAS XWOLXO OTtO ETEEEQY -
OTEC YeVLXNG YPNong ot Myriad 2.

AptOpog TpoomeAdoewy o1 pynun récw DMA

Meté v emtitevEn pLog ToAD LPNAGTEET atdSoog LETwL TNg ToTobETnog Twy buffers
ot CMX, 1 éupoaon LeTaToTileETOL TPOG TN XENON QVTNG TNG UVIUNG OG0 TO SLYATOV
oamoteleopotixotepa. H xofvotépnon mov epappdletor os pLow eQ@opRoYy amo TLg
TPOOBACELS OTN PV EIVOL EVOL XOLVO YOOOXTNELOTIXO TWY EVOWUATOUEVWY OQYL-
TEXTOVIXWY. ['lor T0 o%0Td awTd, YivovToL TPOTIOTTOLNOELS TTPOXELUEVOL Yo Uetwbel 7
eTLPAELYOT TNG UVIUNG TNG EQAOUOYNG KAL VO EXTEAOVYTOL OGO TO SLYXTOY ALYOTEQO
Aettovpyiec DMA. Avti 1 BeAtiotomoinoy €xel amodwoel 0Ty TEPITMTWOYN LOG EVOL

%x€pd0¢ atd300mG ™G T&ENG Tov 15%.

E@oappoyn TopoaAAniiopod petokd moAlodv SHAVE

To Tponyobueva Bripoto NTay amapolitnTo TEOXELUEVOL Vo eTtitevydel 1 TTLo eTToEUNg
amddoon o pmopodoape va mépovpe e 1 SHAVE. Qotdoo, n mporypotixn ddvoun -
nieEgpyaoiog tng Myriad 2 dev €xet aktomoinbel péypt va yivel yponotpomoinost 6Awy to
dtabéotpwy SHAVE. Pubuilovtag 12 VLIW enckepyaotés va Tp€xouy tov adyopLiud
Kog TAPGAANACL 03 YOV TE O Deaportinn) adENoY TNG OTTOTEAEGUATIXOTNTOG, OTTWG

umopel vou 3el xaveig amd ) Sto@opd LETAED Twy oTtadiwy C xor D twv Staypopprdtmny.

AAyopOuixy BeAtiotoToinoy

Méypt awt6 T0 0TédLo €xovue aELomoLNoel OAd Ta YoEoxXTNELOTIXA Tng Myriad 2 xou
EYOLUE ETLTUYEL ONUAYTLXY ENOY TwV ETLOOCEWY GTNY EQAPUOYY oG QoTd00, KO-
T& TNV oVATTUEN evig ®WHOxar TToL aPYLxd xatooxevdotnxe Yoo CPU yevxng yon-
ong, elvol oNUaVTLXS vor eEETaaTodY BEATLOTOTTOLNOELS Ol LOVO OE ETUTTESO TTAXTPOO-
OGS, OAAG xaL o pLoe ocAyoplOpixnd emtimedo. LTy TEPIMTWON LOG, ETUXEVTOWOMOUE
OTNY EVIOYLON TNG ATTOS00YG TWY AELTOVPYLWY GLYVEALENG, OTLS OTTOLot XUTAVOAWVETOL
TO UEYOAUTEPO WEPOG TG eTteEepyaoiog. AvTd emLTedYONUE pE TNV OVTLXATACTOON
TWY SLOYWELLOUEVWY QIATOWY UE QIATON TETPAYWYOL TTVPVYO TTOV, AXOUO KL OV YOELE-
Covton TEPLOGOTEPES EPYOTLES, Elval TEPLOGOTEPO EVOLYPOUULOUEVEG LE TO GV TNULO
enekepyaoiog Twv SHAVEs. H Myriad 2, oe avtificon pe toug Topadootoxés pixpo-
eTeEEPYUOTEG, EXEL OYESLAOTEL YLOL VO ASLTOVPYEL TTAUPAAANAL GE TOVOLG TTANPOPOPLKIV.
Qg ex TovTov, NTay o HBéomn va emweAniel amd éva peyordtepo péyebog mapabbpov

Aettovpyiog (otddio E).

20VdLALOVTOS OAX TO TTRPATIAVE GTADLAL, Lo TTOAD LxavoToLyTixy) atdédoon otn Myriad
2 yioo pLoe odvhetn eoppoY 6paoNS LTTOAOYLOTWY, OTtwG N avliyvevon Ywvtwy Harris.
To mopoxdtw yYodenuo ametxovilel uto odyxpLton g (dtag epopuoyng os Myriad 2
xor pa ovoxevyy FPGA, to Zynq 7020 (XC7Z020) [4]. H obyxpion Baoiletar oty
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XOTOUVAAWGY] EVEQYELOG TWY CUOXEVWY AVTWY, WG JEIXTN TNG CUVOALXNG ATTOS00TG.

Harris Detector otn Myriad 2 and oto Zynq 7020 SoC
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Myriad 2 FPGA

Aedopévov 6Tl 3ev LTTAPYEL ONUOVTLXY OLAPOPB GTNY ATTOTEAECUATIXOTNTO QVTWY
TWY EVOOUATOUEVWY ETEEEQYAOTOY, N ETLAOYN HETOED oTWY TEETEL vou Paoiletol
oe GAhovg TTapayovtes. o mopddetypa, Tt FPGAs pmopel vo ypnotpomownbdel dtav
OTTOLTELTOL TTEPLOOOTEPT ETEEEQYOOTLXY LOYVG, SESOUEVOL OTL O YPOVOG eTeEEPYXTLOG
TOoug Mty 6 mMs pe xotavoAwon 2 Watt, oe avtifeorn pe ta 21 ms ot Myriad. Awé v
GAAN TAevpa, M Myriad 2 eivor eEatpetiny 070 yeLpLoud xabnxdvtwy dpaong LTOAOYL-
OTWY OE XOTAOTOOY EEALPETIUA YOUNATG LOYVOG, OESOUEVOL OTL XATAVUAWYEL ALYOTEQO
omd 1 Watt. Qg ex To0TOU, ElVOL TTLO XATAAANAY YLO XLYNTEG CUOXEVEG [LE TLEPLOPLOLOVG

LoYV0G, OTTWG ULXOPA POUTIOT, Y] ETAVIPWUEVO AEQOOXAPT 1) Wearables.

TéAog, n LAoTOiNoN Ko amédetEe 6t Myriad 2 pmopel vo emtitoryvetl onuovtixd vdhm-
ANG TOALTTAOXOTN TG aAYOPRLOLOLG PMYoVLXTG OPOOTG, OTTWE N aviyvevon Ywvlwy Harris,
%o Vo ayToTeEEADEL GTO EVTATIXO DTTOAOYLOTIXA (POPTLO ATTOTEAEOUATLXE, OXOUYN KO
XwELg TN XNoN Twy BeAttoTomoinuévey BLBAodnxwy CV mov mapéyet n Movidius.

30



Implementation of Computer Vision
Algorithms on Embedded Architectures

31






Chapter 1

Computer Vision

1.1 Definition

Figure 1.1: The human visual system has no problem interpreting the subtle variations
in translucency and shading in this photograph and correctly segmenting
the object from its background. Figure reproduced from [5]

As humans, we perceive the three-dimensional structure of the world around us
with apparent ease. Think of how vivid the three-dimensional percept is when you
look at a vase of flowers sitting on the table next to you. You can tell the shape and
translucency of each petal through the subtle patterns of light and shading that play
across its surface and effortlessly segment each flower from the background of the scene
(Figure 1.1). Looking at a framed group portrait, you can easily count (and name) all
of the people in the picture and even guess at their emotions from their facial ap-
pearance. Perceptual psychologists have spent decades trying to understand how the

visual system works but a complete solution to this puzzle remains elusive (Marr 1982;

33



Palmer 1999; Livingstone 2008).

(c) (dy

Figure 1.2: Some examples of computer vision algorithms and applications. (a) Struc-
ture from motion algorithms can reconstruct a sparse 3D point model of a
large complex scene from hundreds of partially overlapping photographs
[6]. (b) Stereo matching algorithms can build a detailed 3D model of a
building from hundreds of differently exposed photographs taken from
the Internet [7] (¢) Person tracking algorithms can track a person walking
in front of a cluttered background [8] (d) Face detection algorithms, cou-
pled with color-based clothing and hair detection algorithms, can locate
and recognize the individuals in this image [9]

Researchers in computer vision have been developing, in parallel, mathematical
techniques for recovering the three-dimensional shape and appearance of objects in
imagery. We now have reliable techniques for accurately computing a partial 3D model
of an environment from thousands of partially overlapping photographs (Figure 1.2a).
Given a large enough set of views of a particular object, we can create accurate dense
3D surface models using stereo matching (Figure 1.2b). We can track a person mov-
ing against a complex background (Figure 1.2¢). We can even, with moderate success,
attempt to find and name all of the people in a photograph using a combination of
face, clothing, and hair detection and recognition (Figure 1.2d). However, despite all of
these advances, the dream of having a computer interpret an image at the same level as

a two-year old (for example, counting all of the animals in a picture) remains elusive.
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Why is vision so difficult? In part, it is because vision is an inverse problem, in which
we seek to recover some unknowns given insufficient information to fully specify the
solution. We must therefore resort to physics-based and probabilistic models to disam-
biguate between potential solutions. However, modeling the visual world in all of its
rich complexity is far more difficult than, say, modeling the vocal tract that produces
spoken sounds.

The forward models that we use in computer vision are usually developed in physics
(radiometry, optics, and sensor design) and in computer graphics. Both of these fields
model how objects move and animate, how light reflects off their surfaces, is scattered by
the atmosphere, refracted through camera lenses (or human eyes), and finally projected
onto a flat (or curved) image plane. While computer graphics are not yet perfect (no
fully computer-animated movie with human characters has yet succeeded at crossing
the uncanny valley that separates real humans from android robots and computer-
animated humans), in limited domains, such as rendering a still scene composed of
everyday objects or animating extinct creatures such as dinosaurs, the illusion of reality
is perfect.

In computer vision, we are trying to do the inverse, i.e., to describe the world that we
see in one or more images and to reconstruct its properties, such as shape, illumination,
and color distributions. It is amazing that humans and animals do this so effortlessly,
while computer vision algorithms are so error prone. People who have not worked
in the field often underestimate the difficulty of the problem. This misperception that
vision should be easy dates back to the early days of artificial intelligence, when it was
initially believed that the cognitive (logic proving and planning) parts of intelligence

were intrinsically more difficult than the perceptual components (Boden 2006).
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1.2 Applications

Computer vision is being used today in a wide variety of real-world applications, which
include:

e Optical character recognition (OCR): reading handwritten postal codes on letters

and automatic number plate recognition (ANPR)

e Machine inspection: rapid parts inspection for quality assurance using stereo
vision with specialized illumination to measure tolerances on aircraft wings or

auto body parts or looking for defects in steel castings using X-ray vision;

e 3D model building (photogrammetry): fully automated construction of 3D mod-

els from aerial photographs used in systems such as Bing Maps;

e Medical imaging: registering pre-operative and intra-operative imagery or per-

forming long-term studies of people’s brain morphology as they age;

e Automotive safety: detecting unexpected obstacles such as pedestrians on the
street, under conditions where active vision techniques such as radar or lidar do
not work well.

e Match move: merging computer-generated imagery (CGI) with live action footage
by tracking feature points in the source video to estimate the 3D camera motion
and shape of the environment. Such techniques are widely used in Hollywood
(e.g., in movies such as Jurassic Park); they also require the use of precise matting

to insert new elements between foreground and background elements.

e Surveillance: monitoring for intruders, analyzing highway traffic (Figure 1.4f),

and monitoring pools for drowning victims;

e Fingerprint recognition and biometrics: for automatic access authentication as

well as forensic applications

One of the most prominent application fields is medical computer vision or medical
image processing. This area is characterized by the extraction of information from im-
age data for the purpose of making a medical diagnosis of a patient. Generally, image
data is in the form of microscopy images, X-ray images, angiography images, ultrasonic
images, and tomography images. An example of information which can be extracted
from such image data is detection of tumours, arteriosclerosis or other malign changes.
It can also be measurements of organ dimensions, blood flow, etc. This application area
also supports medical research by providing new information, e.g., about the structure
of the brain, or about the quality of medical treatments. Applications of computer vi-

sion in the medical area also includes enhancement of images that are interpreted by
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humans, for example ultrasonic images or X-ray images, to reduce the influence of
noise.

A second application area in computer vision is in industry, sometimes called machine
vision, where information is extracted for the purpose of supporting a manufactur-
ing process. One example is quality control where details or final products are being
automatically inspected in order to find defects. Another example is measurement of
position and orientation of details to be picked up by a robot arm. Machine vision is
also heavily used in agricultural process to remove undesirable food stuff from bulk
material, a process called optical sorting.

Military applications are probably one of the largest areas for computer vision. The
obvious examples are detection of enemy soldiers or vehicles and missile guidance.
More advanced systems for missile guidance send the missile to an area rather than a
specific target, and target selection is made when the missile reaches the area based on
locally acquired image data. Modern military concepts, such as "battlefield awareness”,
imply that various sensors, including image sensors, provide a rich set of information
about a combat scene which can be used to support strategic decisions. In this case,
automatic processing of the data is used to reduce complexity and to fuse information
from multiple sensors to increase reliability.

One of the newer application areas is autonomous vehicles, which include submersibles,
land-based vehicles (small robots with wheels, cars or trucks), aerial vehicles, and un-
manned aerial vehicles (UAV). The level of autonomy ranges from fully autonomous
(unmanned) vehicles to vehicles where computer vision based systems support a driver
or a pilot in various situations. Fully autonomous vehicles typically use computer vision
for navigation, i.e. for knowing where it is, or for producing a map of its environment
(SLAM) and for detecting obstacles (Figure 1.3). It can also be used for detecting
certain task specific events, e.g., a UAV looking for forest fires. Examples of supporting
systems are obstacle warning systems in cars, and systems for autonomous landing of
aircraft. Several car manufacturers have demonstrated systems for autonomous driv-
ing of cars, but this technology has still not reached a level where it can be put on
the market. There are ample examples of military autonomous vehicles ranging from
advanced missiles, to UAVs for recon missions or missile guidance. Space exploration
is already being made with autonomous vehicles using computer vision, e.g., NASA’s

Mars Exploration Rover and ESA’s ExoMars Rover (Figure 1.4).
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Figure 1.3: An autonomous vehicle that uses computer vision technology to see and
understand nearby objects. Source: Nvidia

Figure 1.4: A prototype of the ExoMars Rover at the 2015 Cambridge Science Festival
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1.3 Convolution Kernels

Convolution is an important operation in signal and image processing [10]. Convolu-
tion operates on two signals (in 1D) or two images (in 2D). A kernel, usually named
convolution matrix or mask, is convolved with the image kernel (I.e. the matrix with
the pixel values of the image) in order to produce the desired effect. Differently sized
kernels containing different patterns of numbers produce different results under con-
volution. So, convolution takes two images as input and produces a third as output.
Convolution is an incredibly important concept in many areas of math and engineer-
ing [5]. They are the building block for more complex computer vision algorithms, so
they are presented first in order to ensure a solid understanding of the applications
examined later in this thesis.

Definition
Beginning with 1D convolution, a 1D "image”, is also known as a signal, and can be

represented by a regular 1D vector. The convolution f * g of f and g is defined as:

m

()@ =D g -1+ 3) (L.0)

J=1

where f is the input vector, g a convolution kernel and we assume that f has length n,
and g has length m.

One way to think of this operation is that we’re sliding the kernel over the input image.
For each position of the kernel, we multiply the overlapping values of the kernel and
image together, and add up the results. This sum of products will be the value of the
output image at the point in the input image where the kernel is centered. Consider
the following example.

Suppose the input 1D image is :

f=]10]50[60]10]20]40]30]

and our kernel is:

g=| 13| 1/3] 13|

If we name the output image h, in order to compute h(3), we slide the kernel so that
it is centered around f(3):

10 | 50 | 60 | 10 | 20 | 40 | 30
1/3 | 1/3 | 1/3

39



It can be assumed that the value of the input image and kernel is O everywhere outside

the boundary, so the above could be rewritten as :

10 | 50 | 60 | 10 | 20 | 40 | 30
O (1313|1300 ] 0

Then we multiply the corresponding (lined-up) values of f and g and add up the
products.
Most of these products will be 0, except for at the three non-zero entries of the kernel.
So the product is :
1 1 1 50 60 10
- - “10="4 — 4+ — =
350+360+30 3+3+3

Thus, h(3) = 40. From the above, it should be clear that what this kernel is doing is

40

computing a windowed average of the image, i.e., replacing each entry with the average
of that entry and its left and right neighbor. Using this intuition, the other values of h

can be computed as well:

g=]20]40]40|30]20] 3023333

For 2D convolution, just as before, the kernel is slid over each pixel of the image,
multiplying the corresponding entries of the input image and kernel, and adding them
up - the result is the new value of the image.

Figure 1.5 illustrates the result convolving an image with a kernel. In particular, a

kernel that applies Gaussian blur in an image is used. The convolution matrix for this

filter is:
1 2 1
i 2 4 2
16
1 21

Figure 1.5: (a) The original image (b) Image blurred with the gaussian matrix.
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1.4 Feature Detection

One of the main targets of the field of Computer Vision is to extract features from im-
ages and supply the results as inputs to systems,in order to make important decisions
(such as triggering an actuator to move a robot hand). This process is called feature
detection and refers to all methods and operations that are necessary to calculate at
every pixel of an image whether or not satisfies the criteria of each feature. The result
is a subset of the image,containing either isolated points,continuous lines or connected
regions. Although there is not a clear definition of the meaning of feature, usually we
refer to feature as an interesting part of an image,which is repeated two or more times

throughout the image.

There have been developed several feature detection algorithms,varying on the desired
feature detected, the computational complexity and repeatability. We could divide them

into the following groups:

e Corners / Points of interest : An interest point is a point in an image which has
a well-defined position and can be robustly detected. This means that an interest
point can be a corner but it can also be, for example, an isolated point of local
intensity maximum or minimum, line endings, or a point on a curve where the
curvature is locally maximal.

In practice, most so-called corner detection methods detect interest points in gen-
eral, and in fact, the term “corner” and ”interest point” are used more or less
interchangeably through the literature [11]. As a consequence, if only corners are
to be detected it is necessary to do a local analysis of detected interest points to

determine which of these are real corners.

e Edges : With the term “edges” we refer to the locations in an image where there
is a border (an edge) between two regions. There is no a predefined shape for an
edge,since it can contain everything. To compute an edge,most algorithms rely on
the fact that edges consist of sets that include pixels on an image that have high
value gradient magnitude.

Hence, edges have one dimensional structure.

e Blobs / Regions of Interest : Blobs provide a complementary description of
image structures in terms of regions, as opposed to corners that are more point-
like. Nevertheless, blob descriptors may often contain a preferred point (a local
maximum of an operator response or a center of gravity) which means that many
blob detectors may also be regarded as interest point operators. Blob detectors can

detect areas in an image which are too smooth to be detected by a corner detector.
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e Ridges : In case we have stretched objects in an image, it is necessary to use
ridges. A ridge could be described as an one-dimensional line that constitutes a
symmetry axis and plus its width depends on the local ridge point. Neverthe-
less, calculating ridge points in gray-scale images is computationally heavier than

detecting edges,corners or blobs.

In this thesis we are going to examine algorithms from the fields of corner and edge
detection. A corner is calculated as an intersection of two edges or as a point where
there are two strong and different edge directions in a local region around the point.
Therefore, the basic steps of these feature detection techniques are similar and in order
for a substantial understanding to be achieved, the following subsection constitutes a

presentation of such algorithms.

1.4.1 Canny edge detection

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm
to detect a wide range of edges in images [12] .

Canny edge detection is a technique to extract useful structural information from dif-
ferent vision objects and dramatically reduce the amount of data to be processed. It
has been widely applied in various computer vision systems. Canny has found that
the requirements for the application of edge detection on diverse vision systems are
relatively similar. Thus, an edge detection solution to address these requirements can
be implemented in a wide range of situations. The general criteria for edge detection

include :

e Detection of edge with low error rate, which means that the detection should

accurately catch as many edges shown in the image as possible.

e The edge point detected from the operator should accurately localize on the center
of the edge.

e A given edge in the image should only be marked once, and where possible, image

noise should not create false edges.

To satisfy these requirements Canny used the calculus of variations - a technique
which finds the function which optimizes a given functional. The optimal function
in Canny’s detector is described by the sum of four exponential terms, but it can be
approximated by the first derivative of a Gaussian.

Among the edge detection methods developed so far, canny edge detection algo-
rithm is one of the most strictly defined methods that provides good and reliable
detection. Owing to its optimality to meet with the three criteria for edge detection
and the simplicity of process for implementation, it became one of the most popular

algorithms for edge detection.
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Figures 1.6 and 1.7 show the result of canny edge detector applied in an image.

ne

s

-

Figure 1.7: Canny edge detector applied on the above image. Source: Wikipedia

The process of Canny edge detection algorithm can be broken down to 5 different

steps:

1.

2.

Apply Gaussian filter to smooth the image in order to remove the noise
Find the intensity gradients of the image

Apply non-maximum suppression to remove spurious response to edge detection

. Apply double threshold to determine potential edges

Track edge by hysteresis: Finalize the detection of edges by suppressing all the

other edges that are weak and not connected to strong edges.

These steps are described below in detail.

Gaussian filter

Since all edge detection results are easily affected by image noise, it is essential to fil-

ter out the noise to prevent false detection caused by noise. To smooth the image, a
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Gaussian filter is applied to convolve with the image. This step will slightly smooth the
image to reduce the effects of obvious noise on the edge detector. The equation for a
Gaussian filter kernel of size (2k + 1) x (2k + 1) is given by:

(i—(k+1))+ (- (k+1))2)

: (
X —
2mo? exp 202

Hij = (1.2)

,where 1 <1i,j < (2k+1) .
Finding the intensity gradient of the image

An edge in an image may point in a variety of directions, so the Canny algorithm
uses four filters to detect horizontal, vertical and diagonal edges in the blurred image.
The edge detection operator returns a value for the first derivative in the horizontal di-

rection (G;) and the vertical direction (G,). From this the edge gradient and direction

G=,/Gi+G?

O = atan2(Gy, Gy)

can be determined:

, where where G can be computed using the hypot function and atan?2 is the arctangent
function with two arguments. The edge direction angle is rounded to one of four angles

representing vertical, horizontal and the two diagonals.
Non-maximum suppression

Non-maximum suppression is an edge thinning technique.

Non-Maximum suppression is applied to “thin” the edge. After applying gradient
calculation, the edge extracted from the gradient value is still quite blurred. With respect
to criterion 3, there should only be one accurate response to the edge. Thus non-
maximum suppression can help to suppress all the gradient values to 0 except the
local maximal, which indicates location with the sharpest change of intensity value.

The algorithm for each pixel in the gradient image is:

1. Compare the edge strength of the current pixel with the edge strength of the pixel

in the positive and negative gradient directions.

2. If the edge strength of the current pixel is the largest compared to the other
pixels in the mask with the same direction (i.e., the pixel that is pointing in the y
direction, it will be compared to the pixel above and below it in the vertical axis),

the value will be preserved. Otherwise, the value will be suppressed.

Double threshold
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After application of non-maximum suppression, the edge pixels are quite accurate to
present the real edge. However, there are still some edge pixels at this point caused
by noise and color variation. In order to get rid of the spurious responses from these
bothering factors, it is essential to filter out the edge pixel with the weak gradient value
and preserve the edge with the high gradient value. Thus two threshold values are set
to clarify the different types of edge pixels, one is called high threshold value and the
other is called the low threshold value. If the edge pixel’s gradient value is higher than
the high threshold value, they are marked as strong edge pixels. If the edge pixel’s
gradient value is smaller than the high threshold value and larger than the low thresh-
old value, they are marked as weak edge pixels. If the pixel value is smaller than the
low threshold value, they will be suppressed. The two threshold values are empirically

determined values, which will need to be defined when applying to different images.
Edge tracking by hysteresis

So far, the strong edge pixels should certainly be involved in the final edge image,
as they are extracted from the true edges in the image. However, there will be some
debate on the weak edge pixels, as these pixels can either be extracted from the true
edge, or the noise/color variations. To achieve an accurate result, the weak edges caused
by the latter reasons should be removed. Usually a weak edge pixel caused from true
edges will be connected to a strong edge pixel while noise responses are unconnected.
To track the edge connection, blob analysis is applied by looking at a weak edge pixel
and its 8-connected neighborhood pixels. As long as there is one strong edge pixel
is involved in the blob, that weak edge point can be identified as one that should be

preserved.

1.4.2 Moravec detector

One of the fist efforts in corner detection was Moravec detection algorithm which deter-
mines a corner as a point of low self-similarity [10]. The algorithm checks whether the
neighborhood of a centered pixel resembles with the other local pixels,by computing the
sum of squared differences between the two sections. If the sum has a low value, then
the algorithm implies more similarity. So, if the pixel has intensity value that is similar
to its neighbors, then the regions will not differ. However, if the pixel belongs to an
edge.then it is obvious that the two regions that are in vertical direction to the edge will
have strong differences in intensity values, whereas in a parallel direction there would
be plenty of similarities. If the pixel belongs in a section that intensity values vary in all
directions, then all of the neighborhood patches will look different. Hence,the corner
strength is defined as the lowest sum of squared differences(SSD) between the region

of the centralized pixel and its neighbors in all directions(horizontal,vertical and the
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two diagonals). If the value of SSD is a local maximum, then that point is considered
to be an point of interest. Nevertheless, the Moravec detector has a strong drawback: it
is not isotropic, meaning that if there is an edge that is in a different direction of its
neighbors, then the smallest SSD will be high and thus the edge will be considered a
corner incorrectly.

The mathematical equation that represents this relationship is the following:

E(u,v) = Zw(:n,y) X [z +u,y+v)—I(z,9)] (1.3)
where:
e E is the computed sum of square differences
e W(xy) is the window function
e I(x,y) is the intensity of the pixel
e I(x+u,y+v) is the shifted intensity

We compute shifted intensity in four directions: (u,v)= { (1,0),(1,1),(0,1),(-1,1) }.
The algorithm searches for the local maximal in min {E(u,v)}. The mathematical for-

mula of the Moravec detector confirms the problems mentioned above:

e because of the binary window function, the response of the algorithm is very

vulnerable to noise.

e The step of the operator is 45 degrees and thus important information is elimi-
nated.

e Only the minimum value of E(u,v) is taken into account
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1.4.3 The Harris & Stephens / Plessey / Shi-Tomasi corner detection
algorithm

/ 'Z_._'"‘\ f/”’ \\ / \
\ g / \ / \ //

a)

Figure 1.8: Aperture problems for different image patches: (a) stable (“corner-like”)
flow; (b) classic aperture problem (barber-pole illusion); (c) textureless
region. The two images I; (yellow) and I, (red) are overlaid. The red
vector u indicates the displacement between the patch centers and the
w(x;) weighting function patch window is shown as a dark circle. Figure
reproduced from [5]

After having seen the problems that can occur in feature detection, it is normal ask
what are good features to track [1, 13]. Patches of an image that have large contrast
changes (gradients) are easier to localize, although straight line segments at a single
orientation suffer from the aperture problem [14] , i.e., it is only possible to align the
patches along the direction normal to the edge direction (Figure 4.4b). Patches with
gradients in at least two (significantly) different orientations are the easiest to localize,
as shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching crite-
rion for comparing two image patches, i.e., their (weighted) summed square difference,
as shown in equation 1.3 .

Harris and Stephens[2] use the same function for this purpose but improved Moravec’s
detector by taking into account the differential value of the corner,regarding the direc-
tion directly and not using shifted regions.

An important development compared with Moravec’s operator is that Harris algorithm
considers all small shifts and not with 45 degree step. Thus.,a Taylor expansion is used
to compute /(u + x,v + y) approximately. Letting I, and I,, be the partial derivatives
of the Intensity of an image, we have:

I(u+z,v+y) =~ I(u,v) + L(u,v)x + I(u,v)y (1.4)
Thus, the sum expression becomes :

T,y) ~ ZZw(u,v) x (I(u,v) + Ip(u,v)z + Iy(u, v)y)2 (1.5)
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The previous relationship can be written in a matrix form as follows :

S(z,y) ~ (xy)A < v ) (1.6)
)

where A is the structure tensor:
2 I (I3) (LI,
A= w(u,v SO v vy 1.7)
2,2, vy [ LI, T ] [ (LI) ()

The auto-correlation matrix A provides a lower bound on the uncertainty in the
location of a matching patch. It is therefore a useful indicator of which patches can be
reliably matched.

Another improvement comparing to Moravec detector is that the window function is
now Gaussian, guaranteeing isotropic response. The general form of a Gaussian window

function is presented below:

{Iz +}':]I
.

Wmndow funchion WX, V) -/\

LinissEn

w(x, y)=exp

Figure 1.9: Gaussian window function

In Harris’ algorithm, a corner is considered to have a large variation of S in all
of the directions of the vector ( x y ) . In mathematical form, this can be expressed
through the eigenvalues of the matrix A. If an interest point is examined,then matrix
A should have two eigenvalues with grand value.

Considering the magnitudes of the eigenvalues, we can determine the following cases:

e \; = 0 and A2 = 0, then this point is not of interest.
e \; = 0 and Ay has a grand positive value,then at this point there is an edge
e Both A\; , Ay have grand positive values,then at this point we have found a corner.

Nevertheless, because computing the eigenvalues requires a big workload, Harris

and Stephens suggested an alternative function ). which is presented below:
M, = My — k(A1 + Xo)? = det(A) — ktrace®(A) (1.8)
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where det(M) = A\ A2, trace(M) = A1 + A2 and k is a values chosen depending on
the required level of sensitivity in the response. Accepted values of k are between 0.04
and 0.15
Unlike eigenvalue analysis, this quantity does not require the use of square roots and yet
is still rotationally invariant and also downweights edge-like features where Ay > A;.
Triggs [1] suggests using the quantity

)\1 — KJ)\Q

which also reduces the response at edges, where aliasing errors sometimes inflate the
smaller eigenvalue. He also shows how the basic 2 x 2 Hessian can be extended to para-

metric motions to detect points that are also accurately localizable in scale and rotation.

A graphical representation of the classification of image points, according to the eigen-
values of M is shown below:

Classification of ; _—

image points 2| edge

using eigenvalues 4,>>4, /@ Comer

of M: A, and A, are large,

Ay~

E increases in all

llmdﬂqaresmal.l;
E is almost constant
in all directions

Figure 1.10: Classification of Image points. [2]
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The steps in the basic auto-correlation-based keypoint detector are summarized in

the following algorithmic stages :
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1.

Compute the horizontal and vertical derivatives of the image I, and I, by con-

volving the original image with derivatives of Gaussians

. Compute the three images corresponding to the outer products of these gradients.

(The matrix A is symmetric, so only three entries are needed)
. Convolve each of these images with a larger Gaussian.
. Compute a scalar interest measure using one of the formulas discussed above

. Find local maxima above a certain threshold and report them as detected feature

point locations.



Chapter 2

Embedded Architecture Presentation

The embedded system used for the implementation of the examined algorithms is
Myriad2 by Movidius, the world’s first Vision Processing Unit. Myriad2 is a multicore,
always-on System on Chip that supports Computational Imaging and Visual Awareness
for mobile, wearable and embedded applications.

This chapter describes the functionality and use of the Myriad 2 multiprocessor SoC.
In addition, it introduces details regarding the architecture of this chip as well as the

programming paradigms it supports.

2.1 Mpyriad 2 Architecture

2.1.1 List of basic features

The Myriad 2 SoC device family offers twelve SHAVE vector processors with two 32-bit
RISC (LEON) to provide performance efficiency and flexibility. A brief overview of the
Myriad 2 common features are presented below. All of the components used for the
implementation of the examined algorithms will be thoroughly explored later in this

chapter.

e 12 x SHAVE (Streaming Hybrid Access Vector Engine) VLIW vector processor
(128-bit) , 2 x RISC processor

e There is 2 MB of on-chip RAM (CMX)

128/512 MB of in-package stacked DDR

LEON RISC has 256 KB L2 cache memory

LEON RT has 32 KB L2 cache memory

e High sustainable on-chip bandwidth

SIPP Image Signal Processing hardware accelerators

Wide range of 10 peripherals interfaces, such as SPI, 12C, 12S, SDIO, Ethernet,
USB

51



e Imaging interfaces, such as MIPI, CIF, LCD

The Myriad 2 family consists of the following socket revisions:
e MA2x5x - MA2150 / MA2155 / MA2450 / MA2455

The one used for the programming purposes of this thesis is the MA2150 revision,
which has 128 MB DDR memory and a system clock of 600 MHz. Its architecture

diagram is presented in the following figure:

b & 4 & 4 2 & lal T ala LL % 31T 1T T 1 % & 1 1

CMX 2-Mbyte multiported RAM subsystemn

17 independent power islands

Figure 2.1: Myriad 2 vision processing unit (VPU) system on chip (SoC) block dia-
gram shows the 12 SHAVE cores and associated Inter-SHAVE Intercon-
nect, located below the multicore memory subsystem (connection matrix or
CMX). Above the CMX are the hardware accelerators for computer vision
and image processing controlled by a first reduced-instruction-set comput-
ing (RISC) processor, and above that again are the I/O peripherals, which
are controlled by a second RISC processor. Finally, all of the processors in
the system share access to the 64-bit DRAM interface. Figure reproduced
from [3].

2.1.2 Mpyriad 2 Block Level Architecture Overview

Application processor systems on chip (SoCs) are typically based on one or more 32-bit

reduced-instruction-set computing (RISC) processor surrounded by hardware acceler-
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ators that share a common multilevel cache and DRAM interface. This shared infras-
tructure is attractive from a cost perspective but creates major bottlenecks in terms
of memory access, where multimedia applications demand real-time performance but
must contend with user applications and a platform OS such as Android. Thus, the
platform often underdelivers in terms of computational video performance or power
efficiency. A more attractive model is to build a software programmable architecture as
a coprocessor to an application processor, rather than using fixed-function or config-
urable hardware. Such a coprocessor can then abstract away a lot of the hard real-time
requirements in dealing with multiple camera sensors and accelerometers from the ap-
plication processor and making the entire ensemble appear as a single super-intelligent
MIPI camera below the Android camera’s hardware abstraction layer. As a result, the
architecture presented in [3] focuses on power-efficient operation, as well as area ef-
ficiency, allowing product derivatives to be implemented entirely in software where
previously hardware and mask costs would have been incurred. The software pro-
grammable model is especially interesting in areas where standards do not exist, such

as body-pose estimation.

As a VPU SoC, Myriad 2 has a software-controlled, multicore, multiported memory
subsystem and caches that can be configured to allow handling of a large range of
workloads and provide high, sustainable on-chip data and instruction bandwidth to
support the 12 processors, two RISC processors, and high-performance video hard-
ware accelerator filters. A multichannel (or multiagent) direct memory access engine
offloads data movement between the processors, hardware accelerators, and memory,
and a large range of peripherals including cameras, LCD panels, and mass storage,
communicate with processors and hardware accelerators. Additional programmable
hardware acceleration helps speed up hard-to-parallelize functions required by video
codecs, such as H.264 CABAC, VP9, and SVC, as well as video processing kernels for
always-on computer-vision applications. Up to 12 independent high-definition cameras
can be connected to 12 programmable MIPI D-PHY lanes supporting CSI-2 organized
in six pairs, each of which can be independently clocked, to provide an aggregate
bandwidth of 18 Gbits per second. The device also contains a USB 3.0 interface and
a gigabit Ethernet media access controller, as well as various interfaces such as Serial
Peripheral Interface (SPI), Inter-Integrated Circuit (12C) , and Universal Asynchronous
Receiver Transmitter (UART), connected to a reduced number of I/O pins using a tree
of software-controlled multiplexers. In this way, these interfaces support a broad range
of use cases in a low-cost plastic ball-grid array package with integrated 2 to 4 Gbit
low-power DDR2/3 synchronous DRAM stacked in package using a combination of
flip-chip bumping for the VPU die and wire bonding for the stacked DRAM.

Because power efficiency is paramount, the device employs a total of 17 power is-
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lands, including one for each of the 12 integrated SHAVE processors, allowing very
fine-grained power control in software. The device supports 8-, 16-, 32-, and some
64-bit integer operations as well as fp16 (Open-EXR) and fp32 arithmetic, and it can
aggregate 1,000 Gflops (fp16). The resulting architecture offers increased performance
per watt across a broad spectrum of computer vision and computational imaging ap-

plications from augmented reality to simultaneous localization and mapping.

As Figure 2.1 shows, there are three major architectural units in the Myriad 2 proces-
sor: The Media Sub System (MSS), the CPU Sub system (CSS) and the Microprocessor
Array (UPA).

The Media Sub System (MSS)

The MSS is designed for two main actions, allowing external connections with imaging
devices as well as allowing use of the HW filters available in Myriad 2. As such it is
comprised by the MIPI, LCD, CIF interfaces, the SIPP HW filters and well as the AMC
block which enables connections between these and CMX (SRAM) memory.

The Leon RT RISC is offered as part of the MSS in order to be used for coordinating
frame input and controlling the pipelines set in place. Leon RT (LRT) is a RISC pro-
cessor with a fair amount of L.2 cache memory (32 KB). Leon RT is only one arbiter
away from any Interface or HW filter register settings so it can efficiently change any
required parameters of the MSS blocks with the minimum amount of delay due to bus

arbitration.
The CPU Sub System (CSS)

The CSS have been designed to be the main communication and control unit with
the outside world via the external communication peripherals: I2C blocks, 12S blocks,
SPI blocks, UART, GPIO, ETH and USB3.0. The control unit of this block is the Leon
0S (LOS) RISC processor, but in this block the Leon owns much bigger L1 (32 KB)
and L2 (256 KB) caches, which allows to put a modern RTOS on it. This block also
offers an AHB DMA engine for more optimal data transfer via the external peripherals.
Beside handling the external interfaces and communication Leon OS could also control

SHAVE processors imaging algorithms.

The Microprocessor Array (UPA)

The UPA is the design unit in Myriad 2 holding the 12 VLIW SHAVE vector pro-
cessors, the 2 MB CMX SRAM memory and a few other blocks from which we list: the
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specialized DMA engine, the 256 KB L2 cache memory available to the SHAVE cores.
This design unit’s main purpose is to provide support for customized code required
by many imaging or computer vision applications as well as any other general compu-
tation intensive algorithms.

Each SHAVE processor has preferential ports into a 128 KB slice of the CMX memory,
which will be detailed in a following subsection. As such, 12x128 KB = 1536 KB are
preferentially used by SHAVE cores but the remaining 512 KB of CMX memory are
generally usable by any other resources. The recommended usage for these 512 KB is
for HW SIPP filters usage or Leon OS timing critical code which would otherwise not
be able to be kept in DDR.

2.1.3 Streaming Hybrid Access Vector Engine

Steaming Hybrid Access Vector Engines, or SHAVESs, are used for the bulk of the pro-
cessing. Each SHAVE contains wide and deep register files coupled with a Very Long
Instruction Word (VLIW) that provides a method for instruction level parallelism to be
achieved. VLIW packets control multiple functional units which have SIMD capability
for high parallelism and throughput at a functional unit and processor level. Each of

these units can be launched in parallel in a single instruction packet.

The SHAVE processor is a hybrid stream processor architecture combining the best
features of GPUs, DSPs, and RISC with both 8-, 16-, and 32-bit integer and 16- and
32-bit floating-point arithmetic as well as unique features such as hardware support
for sparse data structures [3]. The architecture maximizes performance per watt while
maintaining ease of programmability, especially in terms of support for design and
porting of multicore software applications.

As Figure 2.2 shows, VLIW packets control multiple functional units that have SIMD
capability for high parallelism and throughput at a functional unit and processor level.
The functional units are the predicated execution unit (PEU), the branch and repeat
unit, two 64-bit load-store units (LSUO and LSU1), the 128-bit vector arithmetic unit
(VAU), the 32-bit scalar arithmetic unit, the 32-bit integer arithmetic unit, and the
128-bit compare move unit (CMU), each of which is enabled separately by a header
in the variable-length instruction. The functional units are fed with operands from a
128 — bit x 32 — entry vector register file with 12 ports and a 32 — bit x 32 — entry general
register file with 18 ports delivering an aggregate 1,900 Gbytes per second (GBps) of
SHAVE register bandwidth across all 12 SHAVEs at 600 MHz. The additional blocks
in the diagram are the instruction decode and the debug control unit.

A constant instruction fetch width of 128 bits for variable-length instructions - with an
average instruction width of around 80 bits - packed contiguously in memory and the

five-entry instruction prefetch buffer guarantee that at least one instruction is always
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ready while taking account of branches.

2x 64-bit DDR ports

128-bit AXI

ﬁﬁﬁﬁﬁ ax

(12 ports)
(18 ports)

BRU LSuUo LSuUA1 1AL SAU VAL CMU

|

8 parallel SHAVE functional units supplied with VRF and IRF data

Figure 2.2: The Streaming Hybrid Architecture Vector Engine (SHAVE) processor mi-
croarchitecture is an eight-slot very long instruction word processor ca-
pable of performing multiple 128-bit vector operations in parallel with
multiple load/store, scalar floating-point, integer, and control-flow opera-
tions in a single clock cycle. Figure reproduced from [3].

SHAVE supports SIMD instructions on multiple types, including but not limited to: 16
bits integer, 32 bits integer, 16 bits float, 32 bits float, 8 bits integers.

Applications can be developed in Assembly, C and C++ and run at the SHAVE through
the use of moviAsm and moviCompile, both of which are Movidius internally devel-
oped tools.

There are two register file arrays: IRF and VRF which are described shortly below.
The VAU, SAU, IAU, PEU, BRU and LSUs are also detailed.

IRF (Integer Register File)

The IRF consists of 32 registers, each 32 bits in length. These registers are implemented
mainly to support integer operations, but are also used for load and store instructions.
The execution units operating with these registers are the IAU (Integer Arithmetic
Unit), and the SAU (Scalar Arithmetic Unit). There are SIMD operations operating
with 16 bits and 8 bits integer data types performed by the SAU on the IRF.
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VRF (Vector Register File)

The VRF consists of 32 registers, each 128 bits in length. The purpose of these registers
is to provide SIMD operations to the SHAVE.

The arithmetic unit operating with VRF is the VAU (Vector Arithmetic Unit). This sup-
ports both integer and floating point operations directed towards multiple data types:
8, 16, 32-bit data types of integer or floating point.

IAU (Integer Arithmetic Unit)
This unit provides integer operation support on the IRF registers as well as support
for different shifting and logic operations.

SAU (Scalar Arithmetic Unit)

This unit provides floating point operations support on the IRF.

Besides the most common floating point operations, this unit implements a few more
complex functions on 16 bits floating point including: reciprocal, sine, square root, re-
ciprocal of square root, cosine, arctangent, logarithm and exponential.

The unit also provides integer operations on the IRF registers. This feature may be

used to launch more integer operations in parallel on the IRF if found useful.

VAU (Vector Arithmetic Unit)
This unit provides both floating point and integer operations on the VRF registers us-
ing 8, 16, and 32-bit data types of both integer or floating point.

CMU (Compare and Move Unit)

This unit provides functionality to copy (move) data from one register file to the other.
Any combination is possible and multiple bit lengths are supported.

The unit also provides functionality for comparing different data types. Comparison is
done setting a Condition Code register with multiple entries. This allows for compar-

isons to be made on VRF registers too, comparing multiple data at once.

LSU (Load Store Unit)
There are two load store units which provide functionality for loading and storing data
to both register files. The LSU, used in conjunction with other units can also provide

swizzling operations on various data types as described in the SHAVE ISA document.

BRU (Branching Unit)
The BRU provides functionality for branching. The SHAVE has a delay slot of 6 cycles

which may be used to fill in other instructions.
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PEU (Predicated Execution Unit)
The PEU is helpful for implementing conditional branching and also to make condi-

tional stores on LSU or VAU units.

2.1.4 Memory subsystem

Myriad 2 offers an intelligent memory fabric that enables maximum processing with
ultra-low power and minimum data movement [3].

The ability to combine image processing and computer vision processing into pipelines
consisting of hardware and software elements was a key requirement because current
application processors are limited in this respect. Thus, sharing data flexibly between
SHAVE processors and hardware accelerators via the multiported memory subsystem
was a key challenge in the design of the Myriad 2 VPU. In the 28-nm Myriad 2 VPU, 12
SHAVE processors, hardware accelerators, shared data, and SHAVE instructions reside
in a shared 2-Mbyte memory block called Connection Matrix (CMX) memory, which
can be configured to accommodate different instruction and data mixes depending on
the workload.

The CMX block comprises 16 blocks of 128 Kbytes, which in turn comprise four 32-
Kbyte RAM instances organized as 4,096 words of 64 bits each, which are indepen-
dently arbitrated, allowing each RAM block in the memory subsystem to be accessed in-
dependently. The 12 SHAVEs acting together can move (theoretical maximum) 12 x 128
bits of code and 24 x 64 bits of data, for an aggregate CMX memory bandwidth of 3,072
bits per cycle (1,536 bits of data). This software-controlled multicore memory subsys-
tem and caches can be configured to allow many workloads to be handled, providing
high sustainable on-chip bandwidth with a peak bandwidth of 307 GBps (sixty-four
64-bit ports operating at 600 MHz) to sup- port data and instruction supply to the 12
SHAVE processors and hardware accelerators (see Figure 2.1).

Furthermore, the CMX subsystem supports multiple traffic classes from latency-tolerant
hardware accelerators to latency-intolerant SHAVE vector processors, allowing construc-
tion of arbitrary pipelines from a mix of software running on SHAVEs and hardware
accelerators, which can operate at high, sustained rates on multiple streams simultane-
ously without performance loss and at ultra-low-power levels.
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2.1.5 Myriad 2 implementation

Figure 2.3: Myriad 2 VPU SoC die plot and 6 x 6 mm ball-grid array packaging. In
the die plot, the SHAVE processors and hardware accelerators are clustered
around the CMX memory system. On the outer rim of the die, the DRAM
interface and MIPI, USB, and other peripherals as well as phase-locked
loops dominate the periphery of the die, with the remainder of the die
being occupied by the RISC processor and peripheral subsystems. Figure
reproduced from [3].

Figure 2.3 shows a die plot of the 27mm? device, highlighting the major functional

blocks [3]. Because power efficiency is paramount in mobile applications, Myriad 2
provides extensive clock and functional unit gating and support for dynamic clock and
voltage scaling for dynamic power reduction. It also contains 17 power islands - one
for each of the 12 SHAVE processors; one for each of the 12 SHAVE processors; one for
the CMX memory subsystem; one for the media subsystem, including video hardware
accelerators and RISC1; one for RISC2 and peripherals; one for the clock and power
management; and one always-on domain.
This allows fine-grained power control in software with minimal latency to return to
normal operating mode, including mainte nance of the static RAM (SRAM) state that
eliminates the need to reboot from external storage. The device has been designed to
operate at 0.9 V for 600 MHz.
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2.2 Mpyriad 2 Programming Paradigms

There are three different programming paradigms supported by Myriad 2 platform.
Each one offers features suitable for specific applications and is selected based on the

relevant requirements.
Standard Programming Paradigm

The standard programming paradigm for Myriad 2 involves using RTEMS running
on LeonOS and the SIPP scheduler on Leon RT. In this way, it provides parallelization
in an environment that is easily used and configured. The SIPP scheduler is designed
to ensure parallel pipeline configurations for managing the HW filters and exterior in-
terfaces with a low footprint. Hence, LeonRT optimized utilization is guaranteed.

The number of SHAVEs used for SIPP applications is configurable, so those that are
not used for line based pipelines will remain free to be used by the RTEMS operating
system running on Leon OS for various other purposes such as computer vision algo-

rithms.
The One Leon Programming Paradigm

This paradigm is suitable for applications that might not require heavy line based
processing. Such applications might choose to make the Leon RT processor completely
inactive and instead use only the LeonOS with or without RTEMS. HW filters can still
be used in this paradigm. In this programming model, Leon OS would control all of

the applications running on the 12 SHAVE cores.

Bare Metal Programming Paradigm

It is often wanted by developers to write applications which will not be affected by
any operating system overhead. For this reason, a bare metal programming paradigm
is also be supported by Myriad 2. This allows the usage of both LEON cores without
any operating system. Only minimal schedulers are required in order to control the
pipelines application.

Even though this paradigm requires more integration efforts, it offers the developers a

model in which operating systems cost is absent.
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2.3 Streaming Image Processing Pipeline

2.3.1 Introduction to the SIPP framework

The model used by many image processing libraries, such as OpenCV, consists of per-
forming whole frame operations in series. This leads to high usage of DDR memory
since frames need to be read from and written to the main memory between opera-
tions. Even though platforms with large CPU cache sizes can support this model, it
is not suitable for embedded system where memory size as well as power usage are
limiting factors. Therefore, a different approach is followed by Myriad2 which aims to

maximize the usage of available resources.

The model used by SIPP framework consists of a graph of connected filters. Image
data is read from the DDR to the CMX memory via DMA filters and after the pro-
cessing the result is written back to the DDR. The processing is achieved by streaming
data from one filter to the other in a scanline-by-scanline basis. The buffers used to
hold the processed lines are located in the low-latency CMX memory, thus avoiding
the need for DDR accesses except for those in the first and the last stage of the graph.
Hence, benefits are gained by the SIPP framework regarding the performance as well

as the power drain of the developed applications.

2.3.2 Filter Graphs

Processing under the SIPP framework is performed by filters. Applications construct
pipelines consisting of filter nodes linked together in a DAG (Directed Acyclic Graph).
Each filter is coupled with one or more output buffers. The output buffer stores the
processed data output by the filter, and can store zero or more lines of data (zero lines
in the case of a sink filter). When a filter is invoked, it produces at least one new line of
data in its output buffer. For example, a 5x5 convolution filter requires at least 5 lines
to function and outputs 1 line in each iteration. Lines are added to the output buffer
in a circular fashion: the lines are written at increasing addresses, until the end of the

buffer is reached, at which point the output position wraps back to the start of the buffer.

The filters used in the SIPP framework can be either software filters that run on SHAVEs
or hardware filters. The latter are part of the Myriad2 SoC and can be used for com-
putationally expensive ISP and computer vision tasks. A pipeline can be a mixture of
software and hardware filters. Multiple instances of the same software filter can be used

in a pipeline, whereas HW filters may be used only once.

The programmable hardware accelerators implemented in the Myriad 2 VPU include

a poly-phase resizer, lens shading correction, harris corner detector, Histogram of Ori-
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ented Gradients edge operator, convolution filter,sharpening filter, gamma correction,
tone mapping, and luminance and chrominance denoising. Each accelerator has multi-
ple memory ports to support the memory requirements and local decoupling buffers to
minimize instantaneous bandwidth to and from the 2-Mbyte multicore memory sub-
system. A local pipeline controller in each filter manages the read and writeback of
results to the memory subsystem. The filters are connected to the multicore memory
subsystem via a crossbar, and each filter can output one fully computed pixel per cycle
for the input data, resulting in an aggregate throughput of 600 Mpixels per second at
600 MHz. [3]

Even though the bulk of the processing is performed by the SHAVE cores and the

hardware accelerators, the SIPP framework runs on a RISC processor.

Below can be seen some simple pipeline examples :

DMA In Filter

|

White Balance

|

Demosaicing

l

Noise Reduction

|

DMA Qut Filter

Figure 2.4: Basic stages of an sRGB pipeline
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DMA In Filter
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Luma Generate Chroma Generate

Luma Filter

Luma / Chroma
Combine

DMA Out Filter

Figure 2.5: Separate Processing of Luminance and Chrominance of an image
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In these examples DDR memory is used in the DMA transfers. However, it is possible
to construct a pipeline in which data is processed in a streaming fashion, using only
local memory (CMX). This mode of operation, which doesn’t require DDR, is known
as inline processing. In the following example, data coming from a camera is stored
in a local memory buffer by the Mipi Rx filter (in the Mipi Rx filter’s output buffer).
The processed data is then transmitted directly from the Chroma/Luma combine filter’s
output buffer by the Mipi Tx filter. Thus, DDR memory can be completely omitted.

Mipi Rx

1

| |

Luma Generate Chroma Generate

Luma Filter

Luma / Chroma
Combine

Mipi Tx

Figure 2.6: Separate Processing of Luminance and Chrominance without using DDR,
streaming from MIPI sensor
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2.4 Myriad 2 applications

The capabilities that were described previously make this embedded platform ideal for
various computer vision applications, as stated in [3].

The SHAVE DSP supports streaming workloads from the ground up, making decisions
about pixels or groups of pixels as they are processed by the 128-bit VAU. Because
128-bit comparison using the CMU and predication using the PEU can be performed
in parallel with the VAU, higher performance can be achieved compared to a GPU in
which decisions must be made about streaming data because GPUs suffer from perfor-

mance loss due to branch divergence.

For example, the SHAVE processor excels when processing the FAST9 algorithm, where
25 pixels on a Bresenham circle around the center pixel must be evaluated for each
pixel in, for instance, a 1080p frame. The FAST9 algorithm looks for nine contiguous
pixels out of 25 on a Bresenham circle around the center that are above or below
a center-pixel luminance value, meaning hundreds of operations must be computed
for each pixel in a high-definition image. This requires hundreds of instructions on a
scalar processor, and performance optimization requires the use of machine learning
and training to improve detector performance [15].

In general, the application domain of Myriad 2 is Intelligent Machine Vision with some

examples being ( Source: www.movidius.com) :
Robotics

Drones and household robots are increasingly small and affordable enough to be-
come serious consumer product categories. As new types of service, companion and
collaborative robots emerge, these devices are demanding visual intelligence in order
to navigate, understand and proactively assist us in our daily lives. Movidius provides
the platform to create visually intelligent drones and robots without sacrificing size,

battery life or performance.
Augmented & Virtual Reality

Virtual Reality (VR) and Augmented Reality (AR) devices are hitting the market and
technological demands on the hardware are huge: gesture recognition, head tracking
and object recognition are just a few of the necessary technologies to convincingly blend
the real world with the digital. Myriad 2 allows VR and AR devices to crunch huge
amounts of data at low power and ultra-low latency, two absolute musts in compact,

immersive head-worn devices.
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Wearables

Wearables are emerging as a category of devices that can augment our lives in mean-
ingful ways. By passively filtering visual information and acting on cues relevant to
their user, the dream of a truly capable digital assistant is in sight. Ultra-low power,
high performance vision processors mean that even the smallest wearable devices can
benefit from visual intelligence. The Myriad 2 platform allows devices to remain small
and battery efficient, yet provide powerful new applications based on the rich variety
of visual information available as users go about their daily lives.

Smart Security

Security and surveillance technology is getting a huge boost from visual intelligence.
Imagine, a doorbell camera that not only alerts you to a visitor, but has already identi-
fied them as a courier. Visually intelligent cameras can detect fires from heat maps and
alert authorities long before a fire builds up enough smoke to trigger a smoke detector;
and motion detection cameras will be able to differentiate potential burglar from house
pet. By bringing Myriad’s visual intelligence to our security and surveillance, these
new systems can detect and then intelligently act on data in real-time, providing safe

and personalized security to homeowners and businesses alike.
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Chapter 3

Evaluation of basic Computer Vision filters in
Myriad 2

This chapter builds upon the knowledge presented in chapters 1 and 2 and introduces
the techniques that were used in order to achieve efficient implementation of basic

Computer Vision filters in Myriad 2.

In the first stage, an evaluation of basic CV filters was conducted. In particular, we
examined the performance of convolution filters, with various kernel sizes. As detailed
in section 1.2, these filters are very common in every computer vision application since
most of the filters that are applied to images can be considered as a form of convolving
a kernel with the image. Therefore, convolutions affect significantly the overall perfor-
mance of the applications in which they are used.

Subsequently, we examined the performance of Canny edge detection in Myriad 2 as
well as the features that affect it. As stated in section 1.3.1., this filter is useful for
extracting valuable information of an image, as well as an intermediate step of a larger

computer vision application, for example feature recognition.

The filters used in this chapter are part of the mdk that Movidius provides and do
not constitute work of the writer of this thesis. The goal, however, of evaluating these
filters in Myriad 2 is to grasp a deeper understanding of the embedded architecture
and discover the means by which the main algorithm examined in this thesis, Harris

Corner Detection, can be optimally developed.
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3.1 Convolution filters

3.1.1 Software implementation

In this section, we examined two different sizes of convolution kernels, 5x5 and 11x11.
The development is based on the Movidius SIPP framework (see section 2.3).

Figure 3.1 demonstrates the two pipelines that were built.
5x5 1111
é é
1%1 1x1
i i

Figure 3.1: (a) 5x5 Convolution (b) 11x11 Convolution

Note that the ”0” after the name of each filter indicates the index of such filters in
a pipeline. In this example, it is zero since each filter appears only once.
As can be seen, the applications consist of two DMA filters and one convolution filter.
The first DMA is used to bring the image from the DDR to the CMX. The number of
lines that the DMA will transfer to the convolution filter depends on the size of the
kernel. A 5x5 kernel requires at least 5 lines and a 11x11 at least 11.

Then, the filter is applied in a parallel manner, between various shaves. Each shave
is responsible for a portion of the image. The SIPP framework divides the image in
vertical stripes and allocates one to every shave. Then, through DMAs, the lines that
correspond to each shave are brought to its CMX slice for processing. After the output
is ready, the circular input buffers rotate and bring in the next necessary lines. In ad-
dition, the output lines are moved from CMX back to DDR via the DMA out filter.
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The above process, which is presented in more detail in the section 2.3 regarding
the SIPP framework, makes clear two very significant features that are used to gain
increased performance of convolution filters in Myriad 2. Firstly, a pipeline is used in
order to pass the image from DDR to CMX and apply the effect. This ensures high
utilization of the platform’s hardware. For example, if our graph consisted of more
filters, one after the other, and no pipeline was used, the SHAVEs responsible for the
later filters would have to wait for the earlier to finish. This practice would of course
result in poor performance because of the generated stalls. Low performance would
also occur even if all the shaves were used for each level of the graph, but processing
between filters was done again in series. In this case, even though more shaves would
work to apply the filters in the first level of the graph, they would have to complete

the processing before moving to the next level.

However, SIPP ensures that images are processed in a scanline-by-scanline basis thus
assuring another level of parallelism. In addition, task based parallelism is also used in
our application because we deploy more than one shaves. All these VLIW processors
run in parallel, each for a specific portion of the image, as said above.

Having described the way that SIPP uses both data as well as task based parallelism
techniques, the following subsection presents information regarding the performance

of convolution filters in Myriad 2.

Figures 3.2 and 3.3 demonstrate the images used as input in the following tests.
Both of them are greyscale images, which means that the pixel values are in the range
[0,255]. It is also worth noting that for the larger image, an extra configuration is
necessary in order to increase the CMX pool size that is available to the the SIPP

framework.
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Figure 3.2: 512x384 test image.

Figure 3.3: 1584x1290 test image.



C source code compared with optimized assembly filters

As a first step, we compare the performance of convolution filters developed in C
and in optimized assembly. This evaluation of generic C code is important, as a first
stage of working with an embedded platform and before deploying optimized filters,
in order to identify and illustrate the significant differences between general purpose

and embedded processors.
The following chart provides information regarding the comparison of C and assembly

convolution filters. A convolution kernel of size 5 has been used and, in both cases, the

number of shaves has been set to the maximum value of 12.

Comparison of optimized assembly and C filters

50 |- |
92}
e
S
= 40f .
g
A=
S 30f |
=]
o}
(9]
o 20| .
ks
o
)
10 .
N

512x384 |l Optimized assembly 1584x1290
Ih C

From the above data it is made clear that C implementations that are not optimized
cause a tremendous performance drop. This issue is more clearly illustrated in the
larger image, where the optimized assembly implementation is almost 25 times faster
than the C source code.

The reason for this performance gap is that C implementations do not take into con-
sideration the specific features of Myriad 2. In particular, they are generic C imple-
mentations that target any general purpose CPU and not a VLIW processor such as
SHAVEs. Features that make SHAVE processors powerful, such as Single Instruction
Multiple Data Operations (SIMD), are omitted in these C source implementations and
in general there is an inadequate utilization of the platform’s hardware.

On the other hand, the filters developed in assembly exploit the provided hardware as

much as possible. Instruction level parallelism is used for almost every process. Instead
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of using the IAU, optimized filters use the VAU to execute their commands in a SIMD
fashion. For example, C source code processes one pixel at a time, whereas assembly
exploits the fact that SHAVEs are 128-bit VLIW processors and evaluates 16 pixels
in each instruction issue (each pixel has an unsigned char value). Moreover, further
optimizations have been applied in the assembly filters, such as removing unnecessary

9

“nop’s” after instructions and loop parallelization.

Overall, we conclude in the fact that optimized assembly implementations offer an
order of magnitude increase in performance compared to those in C.

Therefore, for the following tests of this chapter only assembly written filters are used
and the focus is shifted on identifying other features that affect the performance, such

as the number of shaves that are deployed or the location of the buffers in memory.

Following is presented a comparison of optimized filters based on the :

e Image size, 512x384 and 1584x1290
e Kernel size, 5x5 and 11x11

e Number of SHAVE processors used

Measurements have been made regarding both the performance ( execution time in
ms) as well as the Energy (Joule) for each implementation.
Myriad 2 provides specific functions and hardware to measure the power usage of an
application. Energy is then calculated by multiplying the time with the power usage (]
= W¥s).

The results are provided in the following charts :
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Convolution filter performance in Myriad 2 - 512x384 image
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As expected, a larger convolution kernel (11x11) requires more processing time for
the same image size. The performance gain achieved with the increase in the number
of SHAVESs is more obvious when we move from just one SHAVE to two, where perfor-
mance is doubled. In addition, significant increase in performance is noticed between
two and eight SHAVEs. However, because the computation that is tested in this case is
not very intensive (just a convolution kernel applied in an image), there is no significant
gain when moving from eight to twelve SHAVE processors.

The above charts illustrate the performance gain that can be achieved when all SHAVE

processors are deployed. However, as more processors are used, there is an increase in
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the power usage of the platform. The Energy required for these operations can be seen

below :
Convolution filter Energy Efficiency in Myriad 2 - 512x384 image
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The power usage of the platform when only one SHAVE is used is at around 0.5 W,
while this number reaches almost 1W when all SHAVEs are deployed. Evan though
the power usage is doubled, the above graphs show that, in general, more SHAVEs
lead to better energy efficiency since the operation time is also significantly decreased.
The only case when this is not valid is when we move from 8 to 12 SHAVEs. In this
case, the performance gain is not enough to negate the extra 100 mW of consumption.
However, this is caused because the application tested is not complex enough to benefit
from the extra SHAVEs. Therefore, we conclude that using more SHAVESs leads not
only to higher efficiency but to lower overall energy consumption as well.

Another feature worth measuring is how the performance scales from the small to
the large image. Hence, we use a chart that compares the time needed for a 5x5 con-
volution with each of the used images. For both cases we use a maximum number of
12 SHAVESs. The results can be seen below :

Impact of image size on the filter’s performance
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This chart shows that the size of the input affects immediately the processing time,
which was normal to happen. However, even though the larger image is 10.39 times
the size of the small, the time needed for each operation did not increase by this factor.

This is again due to the simplicity of the examined kernel.

The explicit impact of the image size to the performance is not caused only by the ex-
tra processing allocated to SHAVESs. It can also be explained by looking at the pipeline
images presented in the start of this chapter, in Figure 3.1. Initially, the images are
placed in DDR memory and are transferred to CMX via DMA operations. Even though

the DMAs are processed by specialized hardware, they pose a limiting factor in terms
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of performance. Image slices need to be in CMX for the SHAVEs to process them ef-
ficiently, so a larger image leads to a higher number of DMA operations. The real
processing stalls between DMAs, thus causing a decrease in the overall performance.
Hence, we conclude that another very significant feature that affects the performance
of image processing and computer vision applications in Myriad 2, is the number of

DMA operations needed to process the whole image.

3.1.2 Hardware accelerators

Movidius, recognizing the importance of convolution in image processing applications,
has added a specialized hardware engine for this filter. This filter is configurable with
two kernel sizes available, 3x3 and 5x5. The performance as well as the Energy con-

sumption of these filers can be seen in the following charts :

Performance of Hardware Convolution Filter
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Energy usage of Hardware Convolution Filter
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Again, the image size affects the performance of the hardware filter. However, a bigger
kernel size leads to more processing time only in the large image, where more compu-
tations take place, because the difference in the number of computations of a 3x3 and
a 5x5 kernel is not so significant.

A valuable measurement is that of the comparison of the Energy, which entails both
time as well as power usage, between the optimized assembly filters and the hardware
kernels.

Comparison of optimized assembly and Hardware accelerators
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The software filters consume just below 1W in order to achieve maximum performance,
while hardware filters consume only 250mW. However, the increased performance of
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software filters leads to a better overall efficiency.

From the above data we can deduce that for small applications such as a convolution of
a kernel with an image, it is preferable to use optimized software filters. Nevertheless,
real computer vision applications can benefit from the usage of hardware filters. For
example, by allocating the work of specific filters to the hardware engines, the SHAVEs
are free to be used for other filters. In this way, the overall performance is increased
by applying another level of parallelism, between SW and HW implementations.

In addition, ultra low power applications can be built in Myriad 2 by using only hard-

ware filters.
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3.2 Edge detection

The convolutions tested in the previous section provided an important insight of the
features of Myriad 2 that affect an application’s performance. In this section, we test
edge detection, as a more complex application, in order to make similar evaluations

under a more computationally demanding algorithm.

3.2.1 Canny edge detection software implementation

Movidius provides an optimized software filter for Canny Edge detection. This filter
performs the steps of the algorithm as described in Chapter 1, section 1.3.1. The kernel’s
size is 9x9.

The output that is generated by applying this filter to the test images is presented in
Figures 3.4 and 3.5.

Figure 3.5: Canny edge detection on 1584x1290 test image.
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Similarly to the previous section, our focus is in how this algorithm is affected by
the number of SHAVESs and the image size (number of DMA operations). For the pre-
sentation of the results we will use the Energy consumption, since it contains both the
performance as well as the power usage measurements (J = W*s), and it can be used
as an index of overall efficiency.

Canny edge detection overall efficiency
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These data, similar to those that we extracted from simple convolution operations
in the previous section, show that the number of SHAVEs affects in a very significant
way the overall efficiency.

However, there are some differences in our observations for this algorithm, compared
to convolutions. In particular, when moving from eight to twelve SHAVESs, there is
now a substantial performance gain because the algorithm is computationally intensive
and can benefit from the extra SHAVEs. That was not the case when we tested simple
convolution filters.

In addition, the image size has a greater effect to the overall performance. As stated
earlier, the ratio between the 1584x1290 and the 512x384 image is 10,39. Even though
the processing time of a convolution kernel did not increase by this factor, it can be
seen now that the larger image consumes ten times more energy than the small.
Since this algorithm is a better representative of complex applications than a basic
convolution filter, we can conclude in the fact that the image size and the performance

of Myriad 2 have a linear relationship.

3.2.2 Hardware accelerator

Myriad 2 offers an Edge Operator hardware filter which implements an extension to
the functionality of the standard 3x3 Sobel filter.
We have evaluated the performance of this filter and compared it with the optimized

software filters. The results are provided below, again in terms of overall Energy con-

sumption:
Comparison of Software and Hardware Edge Operators
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These results are much different than the corresponding comparison we did for con-
volution filters.

However, it is not correct to compare these two filters directly, because they constitute
different implementations. The canny edge detector is a more complex algorithm than
the hardware edge detector that Movidius has implemented as an extension to the So-
bel filter. Actually, the sobel operator is just one out of the four steps that canny edge
detection contains.

Having this in mind, and since both of them can be used for edge detection with similar
results, it is safe to make a general comparison. In particular, we can see that for more
complex applications such as edge detection, this hardware filter is almost as efficient as
the optimized software filters that run on SHAVEs and performs canny edge detection.
Moreover, for large images, there is better energy efficiency in the case of the hardware

accelerator.

In general, the trade - off between hardware and software filters remains the same
in this case also, as with simple convolution filters.

Hardware accelerators can provide the means for ultra low power applications and can
also be used to achieve parallelism by combining software and hardware implementa-

tions.

3.3 Outcome of the evaluation

As stated in the beginning of this chapter, the goal of the evaluation of these filters was
to achieve a better understanding of Myriad 2 and to identify the features that affect
the performance of the developed applications.

These features concern mainly software filters, since hardware accelerators cannot be
altered by the developer. Moreover, the knowledge extracted from this evaluation does
not target only the development of applications with the optimized filters that Movidius
provides. In contrast, it was made in order to generate a design space based on which
the main algorithm developed in this thesis, Harris Corner Detection, can be optimally

deployed in Myriad 2 from a general purpose CPU implementation.

The factors that affect the performance of software filters in Myriad 2 are :

e The location of SHAVE code and data (DDR is much slower than CMX but CMX
is just 2MB)

e The Number of SHAVE processors used

e The number of DMA operations required in any iteration
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e The CMX bandwidth (since it is the memory where SHAVEs keep their working
buffers)
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Chapter 4

Implementation of Harris Corner Detection

In this chapter we introduce the main focus of this thesis, the Harris Corner Detector
algorithm [2]. Two different approaches were developed regarding this algorithm. The
first one consists of using optimized filters that Movidius provides, both software and
hardware. This filters perform the basic functionality of the Harris & Stephens algo-
rithm, which is to calculate a response value for every pixel of the image.

Then, a more complex C-code implementation of the Harris & Stephens algorithm was
employed in Myriad 2 from scratch and the full capabilities of the architecture were
used in order to achieve the best possible performance per Watt.

The results that we obtained as well as the development steps that were taken are

detailed in the following sections.

4.1 SIPP filters implementation

4.1.1 Software Filter

Movidius provides an optimized software filter that performs Harris corner detection,
as part of the CV library. This filter operates on a 8x8 window, containing the borders,
and calculates the Harris Response R for each pixel of the image. It can be used as a part
of a more complex pipeline that performs the complete Harris & Stephens algorithm.
This pipeline would require, except for the Harris response filter, kernels that perform
gaussian blur and non-maximum suppression. The performance of the Harris response
filter is illustrated below in terms of overall energy efficiency for three different image

sizes. The number of used SHAVEs has been set to the maximum value of 12.
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Harris Response Filter
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It is obvious that the filter that Movidius provides achieves very high energy effi-
ciency. Applying an 8x8 kernel on an image and performing several computations is
a quite intensive operation. However, Myriad 2 was able to output the Harris response
for a 512x384 image in only 4ms, consuming less than 1 W. It can also be seen that
the image size and the performance of this filter have a linear relationship, as was the
case for Canny edge detection.

4.1.2 Hardware accelerator

Myriad 2 offers the same filter as a hardware accelerator. This filter is configurable
and except for the k value, the developer can choose between a kernel size of 5x5
or 7x7. We have evaluated the performance of this filter and compared it with the
optimized software filter. The results are provided below, again in terms of overall
energy efficiency:
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Comparison of Software and Hardware Harris Response Filters
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From the above data we deduce that the trade - off between hardware and soft-
ware filters remains the same in this case also, as with the edge detection filters. The
optimized filters running on SHAVEs are more efficient than the HW filters. However,
hardware accelerators can provide the means for ultra low power applications and can
also be used to achieve parallelism by combining software and hardware implemen-
tations. For example, in a pipeline that would perform the complete Harris Corner
Detection algorithm, we could get significant benefit by using the hardware accelerator.
In particular, instead of applying all the processing to the SHAVEs, the harris response
could be offloaded to the hardware filter and the other filters of the pipeline would run
by the SHAVES, leading to better overall efficiency.
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4.2 Porting a generic C implementation in Myriad 2

4.2.1 Description of the used implementation

A significant feature of embedded platforms that concerns developers is the effort as
well as the time that is required to deploy source code that was originally built for
general purpose CPUs into an embedded architecture.

In order to examine this issue in our platform, we ported in Myriad 2 a C-code im-
plementation of Harris & Stephens [2] algorithm, provided by Dr. Manolis Lourakis
(http://users.ics.forth.gr/lourakis ) [16]. Figure 4.1 illustrates the various functions that
constitute this specific implementation. It is obvious that the functionality of this code
is much more complex than the Harris response filter provided by Moividius, which
can be thought of as a part of what Figure 4.1 shows.

In the first step, the image data is read and passed in the function that computes the
first order partial derivatives (I, I,,) . This is accomplished by applying a separable
convolution filter that combines the following kernels :

derivative : [1 -3 0 3 1}

and
smoothing : [1 6 12 6 1]

The function that performs this operation is called imgradient5_smo() and can be
seen below in pseudocode. Note that the symbol *” denotes convolution, not multipli-
cation.

int imgradient5_smo (image[width, height],width, height, gradx, grady)
for (i=[0,height—1])

for ( j=[0,width—1])

wrkx[i,jl=image[i,j]*derivative_kernel;
wrky[i,jl=image[i,j]*smoothing kernel;

next_line;

for (i=[0,height —1])
for ( j=[0,width—1])
gradx|[i,jl=wrkx[i,j]*smoothing _kernel;
grady[i,jl=wrky[i,j]*derivative_kernel;

next_line;
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The first two for loops of imgradient5_smo() are the horizontal convolutions and
consist of computing for each pixel the derivative and the smoothed value respectively
by accumulating the local sum of the 5 value kernel. For this purpose, the values of
the previous two and the next two pixels in the particular row are used. Then, each
value is normalized by the equivalent factors. The normalization is not applied in each
coefficient in order to reduce the number of floating point operations.

In the second pair of for loops, the kernels are interchanged since vertical convolutions
are now applied. The multiplication is done by the previous two and next two pixels
vertically, following the same procedure as before. Finally, the arrays gradx and grady
hold the derivative values computed for each pixel and correspond to I, and I, re-

spectively.

The next step of the algorithm takes the partial derivatives computed above and cal-
culates the squared derivatives I2, 13 as well as the I, 1, for the whole image.

Then, the above are passed as input in the imgblurg() function which applies the Gaus-
sian blur. This operation is performed three times, one for each of the I2, Ig and I.1,.
denotes convolution between two

99599

This function is shown below. Again, the symbol

matrices.

int imgblurg(gradx,grady, gradxy){

/* separability: convolve horizontally ... */
for (i=[0,height]){

for (j=[0,width]){

wrkx[i,j]=gradx * gaussian_kernel;
wrky[i,jl=grady * gaussian_kernel;
wrkxy[i,jl=gradxy * gaussian_kernel;

}

}

/* ... then convolve vertically */
for (i=[0,height]){

for (j=[0,width]){

gradx2[i,jl=gradx * gaussian_kernel;
grady2[i,j]l=grady * gaussian_kernel;
gradxy[i,j]=gradxy * gaussian_kernel;
}

}

}

The horizontal convolution is held by a window that is 7 points wide and takes into
consideration three pixels before and three after the examined. Similarly, the vertical

convolution considers three pixels above and three below the center pixel.
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After the squared derivatives have been calculated, they are used to calculate the harris
score for each pixel. Offsets are used for the height and width in order to avoid pro-
ducing values for pixels in the images edges. It is reminded here that the harris score
R is calculated by the following equation :

R = det — harris_kappa * trace?

, where det = I2 % I§ — (ley)z, trace = I? + Ig and harris_kappa € [0.04,0.15].

for (i=[vertical_offset ,height — height_offset]){
for (j=[horizontal_offset ,width — width_offset]){
det[i,j] = gradx2*grady2 — gradxy*gradxy;
trace[i,j] = gradx2 + grady2;

cornerness|[i,j]= det — harris_kappa*trace*trace;
}

}

The cornerness buffer keeps the harris score for each pixel of the image. Then, if
this score of each pixel is local maximum in a 3x3 window, its position is marked in
a binary buffer that represents locally maximum pixels with the the logical value of 1
and all the others with zero.

In addition, a threshold is set depending on whether the image has more corners than
the user is looking for.
Finally, if the cornerness of each pixel is high enough and if it is also locally maximum,

it is marked as a corner and its coordinates are saved.
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4.2.2 First stage - Initial Porting

After having described the implementation that we will be using, we can move to the
main part of this thesis, which entails the efficient porting of this algorithm in Myriad
2. The images that we used for our tests are the same as in Chapter 3.

This implementation does not use the SIPP framework. This means that the developer
has to program explicitly operations that this framework did automatically, such as the

allocation of image slices in SHAVEs, DMA operations etc.

We have used the One Leon Programming Paradigm. The execution starts from the
LeonOS processor, which runs the RTEMS operationg system. This processor then starts
the SHAVESs and they perform the bulk of the processing by applying the various steps
of the implementation of the Harris algorithm. More details about the development will

be given in each of the steps that we have followed.

In the first stage of the implementation, the main challenge concerned the memory
footprint of the application. Since it was originally developed for general purpose CPUs
where memory is not a limiting factor, there are used big buffers to store the interme-

diate data. In particular, these arrays are :

e ibuff |, which contains integer values for I,.1,, Ia%, Ig and 1.1,

e fbuf[ ], which contains all the R-values with float arithmetic

The bigger demand for memory is caused by the ibuf| ] array that is configured to
hold the first order as well as the squared derivatives for each pixel of the image. Thus,
the size of this buffer is 5« IMAGE WIDTH « IMAGE _HFEIGHT. In addition, this
number must be multiplied by four if we want to calculate its size in bytes, since the
buffer is used to hold integer values (4 bytes each).

By simple calculations, for an image with dimensions 512x384 such as the one that

was used in this stage, only this buffer would require a memory size of :
5% 512 % 384 x4 = 3932160bytes.

This number is almost double than the 2MB CMX memory that is available in
Myriad 2. It is, therefore, immediately apparent that as a first step towards reaching a
working stage of the implementation, the buffers should be placed in the DDR memory,
which size is more than enough, at 128 MB. In addition, since there were other issues
to address before applying optimizations, we have just used one SHAVE for this stage.
The CMX memory is used to hold only the image data. Their size for this image is
512x384 = 196608 bytes and it can easily fit in CMX. The first stage of the code that
runs in the SHAVE is to bring with 1 DMA operation the image data from the DDR to

92



the CMX. The image data is placed, in all Myriad 2 applications, in the higher parts of
the CMX, since the lower are kept for the SHAVE’s code and data.

Subsequently, after making the necessary modifications, we were able to run the appli-
cation and get correct results. Figure 4.2 shows the corners that have been found on
a 512x384 image, marked with white rectangles.

Figure 4.2: Harris corner detector applied on a 512x384 image

The performance results can be seen in the following charts. We compare the per-
formance of this initial porting with an Intel Core i5 2435M CPU that runs at 2.4 GHz
and consumes around 15W for operations such as this. This comparison is used in
order to see where the implementation stands in terms of efficiency and how the de-
sign space in which we have concluded in Chapter 3 can help us reach a more optimal
implementation.

The processing time that is presented below corresponds to the real processing con-
ducted by the SHAVE. The clock started when the SHAVE was initialized by the LEON
processor and the measurements were gathered upon the finish of the SHAVE’s com-

putations.
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Initial Porting Performance
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Except for the 512x384 image, we have also made tests for a 160x120 and a 80x60

version of this image. The results can be seen below:
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As expected, even though for the small image the performance gap is not so great, the
allocation of the working buffers in the DDR as well as the fact that we use only one
SHAVE have lead to very poor performance.

The platform consumes around 530mW for each of these tests, because only one SHAVE
processor is used. The following charts compare the overall energy efficiency of Myriad
2 and the Intel i5 CPU, for the case of the 512x384 image.
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Even though the performance of Myriad 2 at this stage is much worse than the i5 CPU,
its power consumption, as a platform that targets low power embedded applications,
is much lower and it leads to a better overall Energy efficiency.

4.2.3 Second stage - Working buffers in CMX

In this step, the working buffers of the applications are placed in the CMX memory.
As said earlier, the size of the CMX is not sufficient for the large arrays of the 512x384
image. Therefore, we have used the smaller images 160x120 and 80x60. Even though
we want to be able to use images of arbitrary size, in this stage the focus is in measur-

ing the impact that the location of the buffers has in the performance of our applications.

Normally, each SHAVE has 128KB of memory in the CMX, 96KB for data and 32KB
for its code. However, this size is not enough to fit even the buffers of the 80x60 image.
Only the ibuf[] for this image would have a size of 5x80x60x4 = 96000 bytes. There-
fore, we have used a configuration LD script that changes the memory that is available
for each SHAVE. Since, in this stage, there is only one SHAVE used, we can allocate to
it the CMX memory that corresponds to all SHAVEs, with size 12x128KB. Now, there
is enough CMX memory for the buffers of the SHAVE as well as any other variables
that the implementation contains.

Below can be seen part of the ldscript that makes the described configuration. Even
though there is code that defines the memory of all the SHAVESs, only the 1st SHAVE is
allocated space in the CMX since it is the only one that is deployed. Memory addresses
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that start from 0x70000000 point
0x80000000.

MEMORY

{

SHVO_CODE (wx) : ORIGIN =
SHVO DATA (w) : ORIGIN =
SHV1 CODE (wx) : ORIGIN =
SHV1_DATA (w) : ORIGIN =
SHV2_CODE (wx) : ORIGIN =
SHV2 DATA (w) : ORIGIN =
SHV3_CODE (wx) : ORIGIN =
SHV3 DATA (w) : ORIGIN =
SHV4 CODE (wx) : ORIGIN =
SHV4 DATA (w) : ORIGIN =
SHV5_CODE (wx) : ORIGIN =
SHV5 DATA (w) : ORIGIN =
SHV6_CODE (wx) : ORIGIN =
SHV6 DATA (w) : ORIGIN =
SHV7_CODE (wx) : ORIGIN =
SHV7 DATA (w) : ORIGIN =
SHV8 CODE (wx) : ORIGIN =
SHVS8 DATA (w) : ORIGIN =
SHV9_CODE (wx) : ORIGIN =
SHV9 DATA (w) : ORIGIN =
SHV10_CODE (wx) : ORIGIN =
SHV10 DATA (w) : ORIGIN =
SHV11_CODE (wx) : ORIGIN =
SHV11_DATA (w) : ORIGIN =

96

to the CMX, while the DDR addresses start from
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CMX_DMA_DESCRIPTORS (wx) : ORIGIN = 0x78000000 + 12*128K , LENGTH = 3K
CMX OTHER (wx) :ORIGIN = 0x70000000 + 12*128K + 3K, LENGTH = 128K — 3K
DDR DATA (wx) : ORIGIN = 0x80000000, LENGTH = 128M

LOS (wx) : ORIGIN
LRT (wx) : ORIGIN
}

0x80000000 + 100M , LENGTH = 3*128K-10K
0x80000000 + 100M + 3*128K—-10K , LENGTH = 10K

The following charts demonstrate a comparison between having the buffers in the
DDR and the CMX, for the two images :

Iy Buffers in DDR
CMX vs DDR |I§ Buffers in CMX
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It is obvious that after placing the buffers in the correct memory, we have achieved
a significant performance gain. The decrease in processing time is more apparent for
the larger image, where more computations are needed. The memory accesses for reads
and writes are now much faster since the CMX is very close to the SHAVEs and it has a
higher bandwidth than the DDR memory. More details about the benefits of the CMX

have been given in Chapter 2.

4.2.4 Third Stage - Arbitrary image size and buffers in CMX

After making a first test of the performance gain that CMX offers, we have modified the
code in order to be able to process any image size. Previously, only 1 DMA operation
was needed before the SHAVE could initialize its processing. This was possible because

there was enough memory in the CMX to fit the buffers for the whole image.
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However, this is not the case for larger images. As stated in the beginning of this section,
the CMX is too small to fit even the ibuf[ | for a 512x384 image. The solution to this
problem is given by performing more DMA operations. Image data is transferred from
DDR to CMX in slices. After the SHAVE has finished the processing of one slice, the
next can be brought with another DMA operation. In this stage, the image will be
split in horizontal slices only. This is possible because we are using only one SHAVE
and there is enough space in the CMX for dimensions 512xSLICE_HEIGHT, where
SLICE_HEIGHT will be tested with various values, starting from 32.

This concept requires the addition of padding to the slices in order to ensure that
correct results are given as output. As described in Chapter 1, a nxn convolution kernel
calculates the value of the center pixel by examining n/2 pixels in each direction, left ,
right, up and down. So, when our algorithm runs on the horizontal edges of the slice,
it will need to consider some pixels from the previous and some from the next image
slice. The amount of padding that is necessary can be calculated by examining the size
of the kernels that the algorithm applies on the image. In our case, the kernels are the

following :
e 5x5 convolution in imgradient5_smo()
e 7x7 convolution in imgblurg()
e 3x3 kernel for non-maximum suppression

Since these kernels are applied one after the other, the final padding is calculated

as the sum of the padding that is needed by each kernel. Therefore,

Padding =5/2+7/2+3/2=2+3+1=6.

The first and the last slices will have only 6 lines of padding added, while those in the
interim must have double padding, since they need 6 lines from the previous as well

as from the next image slices.

In addition, since the SHAVE will perform the same operation for different slices of
the image, it is essential to save the results of one slice before moving to the next. This
is done by using two arrays in LeonOS that will receive the results after each SHAVE
iteration. In particular, before moving to a next slice, the SHAVE transfers with DMA
from the CMX back to the DDR the cornerness values that it has calculated for each of
the pixels of this slice, as well as the values of the binary array that holds the pixels that
are locally maximum. Finally, after the SHAVE has finished computing these values
for the whole image, the Leon processor takes them and calculates the coordinates of

the corners in the image.
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After the implementation is configured to perform the algorithm on the slices of the
image, the focus is shifted towards measuring the impact that the number of DMA op-
erations has on the performance. This feature was identified in the previous Chapter as
one of the factors that affect significantly the efficiency of software applications in Myr-
iad 2. For our tests we have used the usual 512x384 image as well as a bigger image
with dimensions 1296x972. In order to decrease the number of DMA operations, we

choose image slices with bigger heights. The results can be seen in the following charts :

I8 12 DMA operations
I8 6 DMA operations
4 DMA operations
The impact of DMA operations on performance
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I8 36 DMA operations
I8 27 DMA operations
The impact of DMA operations on performance
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The above charts show that a lower number of DMA operations can increase sig-
nificantly the performance of the implementation. In the case of the 512x384 image,
we achieved a 13% gain in performance when reducing the DMA operations from 12
to 4.

Regarding the larger image, even though the processing was complete almost 100ms
earlier after reducing the number of DMA operations, we have achieved a smaller per-
formance gain of around 5%. The much larger width that this image has does not
allow us to increase the height even further in order to reduce the number of DMAs

in a number that can give as a substantial drop in the processing time.

Therefore, we deduce that in order to reduce the number of necessary DMA oper-
ations, we must decrease the memory footprint of the application. As stated in the
beginning of this section, the main challenge is to reduce the size of the ibuf[ | array,
which holds the gradx, grady, gradx2, grady2 and gradxy values. The equation that
performs the calculation of the Harris score R needs only the 12, Ig and I.I,. After
examining the implementation of Harris Corner Detection, we deduce that it is not
mandatory to hold in this array the values of the first order as well as of the squared
partial derivatives. It was developed this way because it targeted general purpose CPUs
with large amounts of available memory.

Hence, we can reduce the size of the array by removing gradx and grady. The 1st
order partial derivatives can be placed in the same memory address where the squared
derivatives will be calculated. However, before modifying the size of the array, we had
to make some adjustments to the code. The function imgradient5_smo() places the final

results in these buffers, while it also uses gradx2 and grady2 as working buffers, for
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the intermediate results. Our work around was to keep the final results in gradx2 and
grady2 and use gradxy and cornerness as the working buffers. Note that cornerness is
an with float values, so it had to be cast to integer for this modification. in addition, the
function imgblurg() , performs the gaussian blur on the squared derivatives by using
gradx as working memory. Here we have again set cornerness for this use.

After performing this memory optimization, the size of the ibuf[ | has been reduced
from 5 x WIDTH x HEIGHT to 3 x WIDTH x HEIGHT. In the case of the 512x384
image, the data of the SHAVE have been reduced from 541408 bytes to 361184, for
slices with height set to 32. This means that we have achieved a 33% decline in the
memory footprint. Now that more memory is available for the SHAVE in the CMX,
we can increase the slice’s height and have even less DMA operations. Our results are

presented in the below charts :

I8 12 DMA operations
I8 6 DMA operations
4 DMA operations
I8 3 DMA operations
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I8 36 DMA operations
I8 27 DMA operations
i1 18 DMA operations

DMA operations after memory footprint optimization
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The above charts demonstrate that we have achieved substantial performance gain,
especially for the larger image, where the initial 5% is increased to 11.
In general, we can conclude that for each reduce of the number of DMAs to half, we
have a 10% performance gain.
Finally, this decreased memory demand allows us to test a 2Mpixel image, with dimen-
sions 1584x1290, despite the fact that we do not fragment the images vertically until
this stage. The current implementation took 2691 ms to apply Harris corner detection

in this image.

4.2.5 Fourth Stage - Task Based Parallelism

The number of DMA operations can be decreased only until a certain point, which
is determined by the amount of available CMX memory. In addition, the numbers
regarding the performance of the previous stage illustrate that there is still much room
for development. A more significant optimization is to apply task based parallelism to
our implementation, by using the maximum number of available SHAVEs.

Now, each SHAVE is responsible of applying the Harris algorithm in a specific slice of
the image. The height of the slice that is allocated in each SHAVE is determined by the
height of the image and the number of shaves used. For example, in the case of the
512x384 image, we will have slices with height 384/12 = 32.

In addition, since we will be using all the SHAVEs , each one will have only 128KB

of data in the CMX. This has forced us to perform fragmentation of the image not
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only horizontally, but vertically too. This means that, based again on the convolution
operations, we must also add vertical padding in the image slices.

The target here is also on achieving an as high as possible utilization of the CMX
memory available for each save. In this direction, we noticed that the size of our code
is just above 25 KB. Therefore, we have allocated 26KB to the code of each SHAVE and
have increased the data segment from 96 to 102KB. This extra space has allowed us
to reach a 95% CMX utilization, meaning that we will perform the minimum number
of necessary DMA operations.

Since we will be using more SHAVES, there is an increase of the power usage of the
Myriad 2. Particularly, we move from around 550 mW in the case of 1 SHAVE, to
800mW when using all the available SHAVEs. Hence, it is essential to provide results
not only for the time, but for the Energy consumption as well. After making all the

necessary modifications, we can present the following results :
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As expected, despite the increased power drain, the 12 shaves have offered a spectacular
increase in the overall efficiency of the implementation. The results concerning the time

as well as the energy (as an overall efficiency index) are also given for the two larger

images :
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Overall efficiency gain after task based parallelism
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It is obvious that in this stage we have achieved the most significant increase in the
efficiency of the implementation and we have also reached a sufficient performance.
This is due to the fact that we have made all the necessary steps towards transforming
the initial code from a generic C to a Myriad 2 - specific implementation. Now, the code
and the data is placed in the correct memory and we have also achieved the minimum
number of DMA operations. In addition, the algorithm runs in parallel between the

SHAVESs leading to a spectacular increase in processing power.

4.2.6 Fifth stage - Algorithmic optimization

In all the previous stages we have applied, step by step, transformations that were
based on the design space that was built in Chapter 3. After reaching a sufficient level
of performance, we try to examine the implementation from a higher level and see
what transformations could be done in the implementation in order to achieve a more
optimal performance.

The functions that consume the more processing time are imggradient5_smo() and
imgblurg(). The latter, especially, is invoked three times, one for each of the I2, I; and
I,1,, and is responsible for the largest part of the total computations.

As stated in section 4.2.1, these functions apply separable convolutions on the im-
age. The developer of the initial code has chosen to use separable filters because they
offer a reduced number of computations. In particular, if we want to apply a convo-
lution of an image with dimensions NxN and a convolution kernel MxM, the number
of multiplies needed for this operation would be N * N « W « W = N2W?2. However,

in our case, the filters are separable, meaning that we can get the square kernel by
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convolving a single column vector by some row vector. By taking advantage of the

associative property of the convolution, the operation can be described as :
G=H+«+F=(C+xR)«xF=Cx(RxF)

. where G is the operation of convolving a square kernel H with an image F. Since, as
we said, the square kernel H can be replaced by the separable C*R, this operation can
be performed by applying the separable filters on the image, horizontally and vertically.
Now, the number of necessary multiplies is 2 x W x N 2 which can be much smaller
than N2W?, given that W is big enough.

From the above we can see that, in general, it is preferable to use separable con-
volutions when it is possible because they lead to better performance. However, the
knowledge we have achieved regarding Myriad 2 and the architecture of the SHAVEs,
points to the fact that they can benefit by applying square kernels in chunks of the
image. A traditional microprocessor, operates on information that it receives in series.
Myriad 2, instead, is designed for operating in parallel on tons of information that they
are all coming through at once. Contrary to general purpose CPUs, such as the Intel
i5 we have used earlier, the SHAVEs are more powerful when they are given a larger
window to operate in. The former are more aligned with the concept of computational
complexity as we know it. Since they perform computations one - by - one, yielding
in our case the values for each pixel of the image, the reduced number of operations
that separable filters provide leads to a better performance. However, in the case of the
SHAVESs, we got better performance by replacing the separable filters with square ker-
nels that perform more operations but by considering larger windows at each iteration.
The following charts present a comparison between these two approaches, both for
Myriad 2 and for the Intel i5 CPU.
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The above data illustrate that the performance of Myriad 2 has increased signifi-
cantly with the square kernels. Even though the separable kernel has a reduced number
of multiplies, the SHAVEs have performed better with the square because they apply
larger windows of convolution on the image slices. However, the square kernels have
resulted in a substantial performance drop for the Intel i5 CPU, since the number of
required operations is increased. It is also worth noting that in the case of the i5 CPU,
the image is not fragmented. The algorithm is applied gradually on the whole image,
which means that when the function imgblurg() is invoked, it has a very large image
matrix to apply the square kernel on. Therefore, the larger number of multiplies has a

significant impact on its performance.
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Chapter 5

Conclusion

In this thesis, we examined a methodology for developing sophisticated Computer Vi-
sion applications into embedded architectures. As a case study, we worked on efficiently
implementing the Harris & Stephens algorithm in a platform specialized for vision tasks,
Movidius’ Myriad 2. Deploying a complex algorithm such as Harris corner detection
into an embedded architecture is an interesting concept for many scientists and software
engineers who have access to relevant software libraries for general purpose machines
and want to know the effort needed to deploy them into an embedded platform.

As a first stage, we evaluated basic Computer Vision filters in order to build a design
space on which we based the steps of our Harris implementation. The main challenges
of this implementation were posed by the constraints in the memory size, a common
feature of embedded systems. Apart from modifications that reduced the memory over-
head of the application, several optimizations have also been applied in order to reach
high efficiency levels.

The performance gain that we achieved in each step is presented in the following chart,

in terms of time as well as energy efficiency, for an image with dimensions 512x384.
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Development stages and energy efficiency gain
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From the above data we can make the following observations regarding the perfor-

mance gain we have achieved in each stage :

DDR vs CMX

As explained in Chapter 2, the working buffers of an application that runs on the
SHAVE processors should be placed in the CMX memory. However, in the first stage
of porting a generic C code into Myriad 2, the small size of CMX requires placing
those buffers in DDR, since they were originally built for machines with no memory
limitations. Then, after making the essential modifications in the implementation, the
buffers are located in the correct memory and the performance that we get starts to be
more aligned with the capabilities of Myriad 2, as can be seen by comparing stages A
and B of the charts. Therefore, DDR can be used to hold data only at a very primal
stage of porting code from general purpose CPUs into Myriad 2.

Number of DMA operations

After reaching a much higher performance by placing the buffers in CMX, the focus
is shifted towards utilizing this memory as efficiently as possible. The overhead that
is applied in an application by memory accesses is a common feature of embedded
platforms. For this purpose, modifications are used in order to reduce the memory
overhead of the application and perform less DMA operations. This optimization has
yielded in our case a performance gain of around 15%.

Task based parallelism

The previous steps were necessary in order to reach the most sufficient performance
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we could get with 1 SHAVE. However, the real processing power of Myriad 2 is not
exploited until we use all the SHAVE processors available. Having 12 VLIW run our
algorithm in parallel has resulted in spectacular efficiency gain, as can be seen from
the difference between stages C and D of the charts.

Algorithmic Transformations

Until this stage we have exploited all the features of Myriad 2 and have achieved sig-
nificant performance gain in our application. However, when deploying a source code
that was originally built for a general purpose CPU, it is essential to examine optimiza-
tions not only to a platform level but to an algorithmic level as well. In our case, we
focus on enhancing the performance of the convolution operations, which consumed
the largest part of the processing. This was achieved by replacing the separable filters
with square kernel filters that, even if they require more operations, are more aligned
with the processing scheme of the SHAVEs. Myriad 2, instead of traditional processors,
is designed for operating in parallel on tons of information that they are all coming
through at once. Therefore, it was able to benefit from a larger operating window size
(stage E).

Combining all the above stages, we have managed to reach a very solid performance in
Myriad 2 for a complex computer vision application such as Harris corner detection.
The following chart illustrates a comparison of the same implementation in Myriad 2
and an FPGA device, the Zynq 7020 (XC7Z020) [4]. The comparison is based on the
Energy consumption of these devices, as an index of overall efficiency.

Harris Detector in Myriad 2 and in Zynq 7020 SoC
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As can be seen from the above chart, these devices have almost the same energy
efficiency when running the Harris & Stephens algorithm. In particular, the total pro-
cessing time in FPGA is 8ms (1.5 for communication and 6.5 for processing) and its
power consumption is around 2 W. In Myriad 2, we have reached a processing time of
22ms at 740 mW, resulting in a very similar energy efficiency between these devices.
Since there is no significant difference in the efficiency of these embedded platforms,
the choice between them should be based on other factors. For example, FPGAs can
be used when more processing power is wanted, since by porting more devices it can
reach even higher performance levels, at the expense of power consumption and cost.
On the other hand, Myriad 2 is exceptional at handling computer vision tasks at an
ultra low power state, since it consumes less than 1 W. Therefore, it is more suitable

for mobile devices with power limitations, such as small robots, drones or wearables.

Finally, our implementation proved that Myriad 2 can accelerate significantly a high-
complexity Computer Vision algorithm, like Harris corner detection, and deal with the
intensive computational load efficiently, even without using the optimized CV library

that Movidius provides.

112



Chapter 6

Future Work

Nowadays, we are emerging into a new era of personal computing, with a demand for
intelligent devices who are able to understand their environment. In order to be able to
run the complex algorithms needed for such tasks, the traditional ways of performance
improvement on these devices have to be reconsidered. Moore’s law is slowing down
which is causing the power and performance benefits in transitioning to the next process
technology node to decrease. Therefore, designers of embedded platforms have to come
up with more artful ways of creating powerful and at the same time, power efficient
devices.

In this thesis we worked with a device which was designed in this way, based on
the understanding that there is a deep interdependency between algorithms and chip
architecture. Myriad 2 is a device specialized for efficiently performing machine vision
tasks. Therefore, it was used in this thesis to develop a complex computer vision algo-
rithm, the Harris & Stephens Corner detector. However, the basic techniques described
in this thesis can also be used to improve other similar applications. For example, a
very promising scientific area with algorithms that could be accelerated by Myriad 2
is Deep Learning. Even though such algorithms were developed to run mainly on su-
percomputers, they can now be ported into powerful embedded devices and be used
in real world applications.

In addition, an interesting step forward would be to make similar implementations on
other embedded devices that were designed to offer high processing power into mobile
applications. Such a device is Nvidia’s Tegra processors, with applications varying from

mobile gaming platforms to autonomus vehicles and intelligent robots.

It is believed that the next decade will mark the start of a new era of special-purpose
processors focused on decreasing the energy per operation in a new way. Using these
processors to bring complex algorithms, such as the one examined in this thesis, in mo-

bile devices used in everyday life is a very interesting concept with promising results.
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