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AvaAuon Kataokeuwv O YroBoaMduevwy oe loxupeg AvakukAilopeves Qoptioelg pe Opala Kataotatikd Mpooopolwpata

. Elcaywyn

Ol KaTtaoKeVEG amd OmALopévo Ikupodepa (0OX) amoteAolv TN PeYAAn TAsloPndia tou
SolLKOU LOTOU O OELOUOYEVELG TIEPLOXEG. Mia £kpnén oTNV KOTOOKEUN TIOAVWPODWV KTLPLwV
and O ouveéPn tig Sekaetiec Tou 60 Kal 70, CUVEMWC OUTEC OL KOTOOKEUEG £€XOUV AN
Eemepdoel 1) mAnolalouv CUEPO TNV OPXLKNA EKTINON yLa To Xpovo {wng touc. Eival, Aourtody,
ETILTOKTIKY N OVAYKN TNG OELOULKNAG OMOTIKHNONG KAl TNG EVIOXUONC AQUTWY TWV KOTACKEU WV
WOTE VO EVAPUOVLOTOUV LE TIG CUYXPOVEG OMALTHOELG TOU AVTLOELOUIKOU axeblaopol. Mo va
emtevxBel kATl TTOlO, €lval avaykaio n mpooopoiwon Twv Kataokeuwv O He HNn-
YPOUULKEG LEBOSOUG oL omoleg avadelkvuouv TNV TPAYHATIK cuunepldopd tou O ot
emPar\Opeveg ocloIKEG Oleyépoelc. H peaAloTikr OELOPLK amotipnon €xel e€aAlou
ONUOVTLKEC ETIUTTWOELG OTN YEVIKOTEPN OLlKOVOUia TNG Kowwviag, kabwe odnyel atn xpnon
TEXVOAOYLWV ETILOKEUWV KAl EVIOXUOEWV TO KOOTOC Twv omoiwv Ba emiPaplvel ev TEAEL

HUEYAAO HEPOG TOU KOWVWVIKOU GUVOAOU.

Y& autd To MAAIOLO OL CUYXPOVOL KOVOVIOUOL TTapEXOuV 0dnyieg yloo Tov tpocdloplond
TWV YN YPOUMULKWY LOLOTATWY TwV peAwV amd O Kol yla TNV EKTNCN TNG HN-YPOULKAG
OUUTEPLPOPAG TOUC. ITOV TTUPAVA TWV CUYXPOVWY KAVOVIOUWY BplokeTal o oxeSloopdc pe
Baon TNV eMITEAEOTIKOTNTA O omolog amnattel pia SeSopévn Kataokeun va eival oe B€on va
avaAdBel oslopikd doptia SLadOopeETIKWY EVTACEWV HECW TNG eUPAVIONG EAEYXOUEVWV
BAaBwv, xwpl¢ wotdéco va Kwvduveloel Pe OAKN katdppeuon. Elval, ocuvenwg, apeon n
OVAYKN TNC TTPOCOMOLWONG TWV KATACKEUWY OXL LOVO OTA APXLKA OTASLA TNG KN-YPAUMLKNAG
ouuneplpopdg Toug, aANd OE TIEPLOXEC TIOU €eKTElvovTal HEXPL TN Bpalion Kal TNV OALKN

BAGBN TWV EMUEPOUG LEAWV TOUC.

Fevikd oL popdeC aotoxiag UTooTUAwWMATWY O KatnyoplomololvTal oTIC €EAG

katnyopieg (Berry et al. 2004).

e Koumtiki popdn actoxlag
e Alatuntiki popdn actoxiog
e Koaumro-8latuntikn popdn aotoxiag
Eniong, ta £i6n twv PAoPwv oe uMoOCTUAWHATWY amd O efaltiag avAKUKALLOUEVWVY

doptioewv evromnilovral ota €NC:

e JUVOALN mupRva

e Ynuavtikn anodploiwon emkaludng
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e Auylopog Slapnkwv paBdwv
e Opavon dlapnkwv papdwv

o AnwAsla LkavotnTag avaAnng afovikol doptiou

Kata tn Siapkela Twv tedevtaiwv 50 xpovwv mAnbwpa aplOunTIKwY MPOGOUOLWHUATWY
KoL TEXVIKWV Memepaopévwy ZTolxelwv €xouv mpotabel yla tTnv availuon tng cupmnepldopdg
Kataokevwv amno 0. Ta otolxelo S0KOU-UTIOCTUAWMOTOG TIOU €X0UV Tpotabel pnopolv va
KatnyoplomownBolv o€ TPelg KUPLEG KOTNYOPLEG, OTO OUYKEVIPWHEVNG TAACTLKOTNTAG,
KOTOVEUNUEVNG TIAQOTIKOTNTAC KOL OTO AEMTOUEPN TIPOCOUOLWHOTA TIEMEPOOUEVWVY

OTOLXELWV.

TNV MPWTN Kotnyopia n un-ypapptkotnto ekdpdletal oe Spoug EVTATIKWY HeEYEBWY, EVW
nieplopiletal oe mpokaBoplopéveg BEoelg ota Akpa TwV PeAwV, oxnuatilovtag TG Aeyoueveg
TAQLOTIKEG OpOPWOELG. I€ QUTEC TIC TIEPLOXEC XPNOLUOTIOLOUVTAL OTPOdLKA EAATAPLO VIO ThV
ipocopolwon TG UN-YPAUULKAG CUUTTEPLPOPAG G OPOUC POTIWV-KOUTTUAOTATWY. MEVIKA, Ta
dALVOUEVOAOYIKA TIPOCOUOLWHAT TAOCTIKWY apBpwoswv efaptwvtal amd éva TARBog
T(POKAOOPLOUEVWY TIOPOUETPWY OTIWGE N YEWUETPLA TNG SLATOUNG Kol Ol GUVORKEG GOPTLONG
mou emnpealouv alobntd TNV OmoKpLon TNG Kataokeung. EmutAéov, n mapoucia Tng
Safovikng kaupne pe afovikn SUvapun AvVTLETWTIETOL HE TNV €vvola TNG eMLPAVELAS
Slopponc Kal TNG TMAAOTIKAG Porng, Ta omolo £€xouv avamtuxBel ylo tnv mepimtwon
HMETOAAKWY SLOTOPWY, €XOVTaG £T0L TIEPLOPLOUEVN £apUoyr] O OLATOUEG OMALCUEVOU
okupodépatoc. Nap’ 6Ao AUTA TO ONUOVTIKO UELOVEKTNO TOUG Elval OTL Teplopilouv TNV
avelaoTiky oupmeplipopd o€ TipokaBoplopéveg Bfoelg  xwpic va  pmopolv  va

napakoAouBrcouv tnv e€AMAWGON TS OTO ECWTEPLKO TOU oToLXEloU.

H 8eltepn katnyopia adopd oTA TPOCOUOLWHOTO KATAVEUNUEVNG TIAQCTIKOTNTAG Ta
omolo eA€éyxouv TNV QVEAAOTIKA CUUMEPLPOPA O TEPLOCOTEPEC amo Mio B£celg oto
E0WTEPLKO TOU otolxeiou. Ou Slatopég eléyxou emuepilovtol oe (ve¢ oL omoleg
EVOWMOTWVOUV TO HOVOOEOVIKA KOTOOTOTIKA MPOCOUOLWHATO TNG pAaBSou omAlopoy Kal
TWV VWV Tou oKupodépatog. H Slakpitomoinon o€ (veg mopouadldlel To MAEOVEKTNUA TNG
TIPOCAPUOYNG TOU OUSETEPOU AEovVa CUVOPTHOEL TNG KAUMUAOTNTOC Kot agovikng Suvaung,
ovamnapLlotTwvtag dpeoca tnv aAAnAemibpaon tng kapdng pe afovikny Suvaun. O
TPOOSLOPLOUOC TWV EMIKOUPLWY evTaTkwy peyeBwv kot g Sduokoppiog tou pEAOUG
Tpaypatomnoleitol eite pe Bdon tv KAaolkn HEB0So Twv PETAKLVAOEWY, gite pe tn néBodo
Twv duvapewv Paocllopevn oe evepyelakec pebBodoug tou Aoywopol Twv HeTABoAwv

(Hjelmstad and Taciroglu 2003; Taylor et al. 2003; Alemdar and White 2005; Alsafadie et al.
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2011; Correia et al. 2015). H 8eUtepn SLOTUTIWON €XEL TO MAEOVEKTNA TN LKOWVOTIOINONG TNG
LOOPPOTILOG OTO ECWTEPLKO TOU OToLXElOU Kal cuvenwg dev amatteital n lakpilronoinon Tou

HEAOUG OE TIEPLOCOTEPQ OTOLXELL.

To BAOIKO PELOVEKTNUA TWV OTOLXELWV KATAVEUNUEVNG TTAACTIKOTNTOG Eival N aduvapuia
TOUG VO EVOWHATWYOUV GUECO TPLOEOVIKEG KATAOTOTIKEG OXECELC OKUPOSEUATOC WOTE VOl
neplypddouv To pawvouevo tng neplodyéng Adyw tng aAAnAemidpaong e ToUg GUVSETIPEG.
ErutAéov, evw evtdooovtol TEAELO 0TNV KOUMTIKA Bswpia Sokol Euler-Bernoulli, n eméktaon
TOUG WoTte va cupnepAdBouv Stotuntika dpatvopeva dev pmopei va eivol dueon. TéAog,
el6IKN Hetayeiplon amatteital wote va evowpatwBoUv oTo MPOoCopoiwHa oL GUVORKEG
ouvadelog Twy Slembavelwyv Twv pABSwv omMALoHOU Kol Tou TepLBAAAOVTOC OKUPOSELATOG

OTLG B£0ELC TWV KOUBWV SOKOU-UTTOGTUAWATOC Kol UTTOOTUAWHaTog-TteSidov.

AvtiBeta, otn AEMTOUEPH TIPOCOUOLWON TOU PMEAOUG UE TIEMEPACUEVA OTOLXEIQ TO Ywpio
TOU OKUPOSENOTOC SLOKPLTOTIOLE(TAL YE TPploSldoTata oTolxeia, evw oL pafdol omAlopou
TPOCOUOLWVOVTAL UE povoSldotata oTolyeia SIKTUWHATOC w¢ £vBepa ota oTolXEla
okupodépatog (Hartl and Ch 2002; Spiliopoulos and Lykidis 2006). Map’ 6Aa autd, av Kot n
Aemtopepn¢ mpooopoiwon dalvetal va mpoodEpPEL TRV TLOTOTEPN SuvaTtr MPooopoiwaon,
amaLtel TEPAOTIO UTIOAOYLOTIKO XpOVOo Kal mopouctdlel aduvapia aplBuntikng olykAlong
efatiag Twv TOAUTAOKWY TPLAEOVIKWY KATAOTOTIKWY TPpocopolwpdtwy (Markou and

Papadrakakis 2012).

O otoyxo¢ tng SlatplPng eival va mpoteivel £va OToLXElO SOKOU-UTTOOTUAWOTOC VWV
KovoU va TIPOOOUOLWVEL TIAALOLWTEG KATAOKEUEC amd O umoBaAAOpevVwY O LOXUPA
avakukAllopeva doptia. H Bewpnon wwv ocuvdudlel TtV UMOAOYLOTIKA TOXUTNTA KoL
guoTdBelo e TNV LKavomoLlnTik akpifela va meplypddel to duoLkd MPOBANUO HEXPL TO
0Tad1o oTo omoio N Katamovnon yivetol éviova tplodldctatn. To evdladépov tng HEALTNG
ETIKEVTPWVETOL OTNV apLOUNTIKA TTPOCOUOLWON TWV KAUTTKWY Hopdwv actoyiog pehwv O
dnAadn tng ocLVOAWNG upnva, anodAoiwong tng emkaAuUPNg Kot AUyLopoU Twv papdwv

omALlopoU. Mo cuykekpLEVa 0TOXOG TG Slatplpng eivat:

e Na avamtuel éva HovoafovikO avoKUKALIOUEVO Tipocopoiwua YaAuBa mou va
EVOWUOTWVEL HUN-YPAUULIKA KLVNUOTLIKA KOl LOOTPOTIKY KpATuvon Hall e tnv

nieplypadr] Tou MAATO SLappong Katl tou dpatvopévou Bauschinger.
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e Na meplypael to dalwvopevo tou avelaotikol Auylopol twv pafdwv omAlopol

LKOVOTIOLWVTAC TNV LOOPPOTTia oTNV mapapopdwUEVN KATAOTACH.

e Na avamtulel éva povoafovikKO TIPOCOUOIWHA OKUPOSENATOC TTOU va cuVSUALEL TN
Bewpla MAaoTikOTNTAC KoL PNXOVIKNG Twv BAaBwv, £T0l wWoTe va TeplypdPel to
dawvopeva NG ouvBAupng mupnva kal TNG amodAoiwong NG emikaiuvyng. H
arnodAoiwon kabopilel TNV amapxy €vepyomoinong tou Unxaviopol Auylopol Twv

papdwv.

e No avamtUéel éva memepaoUévo otolxelo Sokol Baaol{opevo otnv evepyelakr Bswpla
petaBolwv 800 mediwv. To OTOLEIDO QUTO EVOWHOTWVEL TA KOATOOTOTIKA
TIPOCOUOLWHATA OKUPOSEUOTOC Kol XGAuBa evw n emiluon Twv efloWoEWV
Looppomiag kot oupPlBaoctotntag Ba  mpaypatomoinBel pe ™ pEBodo NG

ypauuLkonoinong.

Il. Mpooopoiwon PaBdwv OnAlopou

O okomog autol tou Kedahaiou eival SITTOC, MPwWTA va AVAMTUEEL TO HOVOAEOVLKO
npooopolwpa tou xaluBa o avakuKALLOUEVEC $OPTIOELG KOl ETTELTA VA TO XPNOLUOTIOLHOEL
otnv neptypadn tou Auylopol twv papdwyv omAlopol. To povtélou Tou AuylopoU Baoiletal
OTIG epyaocie¢ Twv Massone kat Moroder (2009) kat Urmson kot Mander (2012) kat
EMEKTEIVETAL OTNV TEPIMTWON TNG aVAKUKALKKAC ¢optiong. H pafdog omAlouou
TIPOCOUOLWVETOL WG apdimaktn S0KOG avApeca oToug dU0 YEITOVIKOUG CUVOETAPESG KAl TO
aplOunTikd mpoBAnUa tou AuylopoU kataAfyel oe pia emouéntik Stadlkaocia Omou n
KOUTTUAOTNTA OTO PECOV TNG paBdou avavewvetal, €wg 0tou emiteuxBel n woopporia otnv

napapopdwuévn katdotoon.

MapakAtw TMeplypAdeTAl AVOAUTIKA N €aywyr Tou Hova&ovikol TIPOCOUOLWHATOS TOU
XGAuBa. Baolopevol otnv kKAaolky Bewpia mAaoTkOTNTAG, 0 PUBUOC HETABOANC TNG TAONG

ekppaletal cUPPWVA LE TOV KAVOVO TNG amocUleuéng wc:

dzE(s’—é’“) (2.1)

omou o elval n taon, &€ elvat n ouvoAlkn mapauopdwon kat & eival n MAACTIKA
napapopdwon. H ouvdptnon Slappong Bewpwvtag KIVNUATIKA KOL LOOTPOTILKA KPATUVGN

Sdlatunwvetal w¢ Enc:

Vi
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®(o,b,r)=|oc—b|-r<0 (2.2)
omou, b eival n t@on g Kwnuatlkng kpatuvong (back stress) kal r eival to andBeua
(reserve) avapeoa oto b kal tnv tdon Slapporg tou onoiou o pubuog e€EAEnc divetal amno

N oxéon:

F=m-H-4 (2.3)
omou A>0 eivat o MAaoTikdc TOMATMAAGCLAOTAC, 0 OToloC elval TTPAKTIKE To HéyeBOC Tou
pubuol mAaoTikAG Tapauopdwons. H Babupwty petaBAnty m eival To MOCOOTO TNG
LOOTPOTIKNG KPATUVONG, EVW (1-m) €lval TO AMOUEVOV TOCOOTO TNG KIVNLATIKAG KPATUVONG.

Emiong, o vopoc NG TMAAOTIKAG pong Oivel To puBud HeTaBoAnc TNG TAAOTIKAG

napapopdwong &7 wg egAg:

) . 0D
&P =1-—=A-sgn(c-b) (2.4)
oo
YioBetwvtag TO HN-YPAUUIKO VOpO Kpdtuvong twv  Armstrong-Frederick (1966)

Aappavetal n mapakdtw ox£cn yla to pubpod petaBoAng TNC KLVNUATIKNG TAONG KPATUVONG:

b:(l—m)(/—/o-,,é*’—q-\g"’\-b)

. (2.5)
=(1-m)- q-é”-[i—sgn(é”)-b}z (1-m)-H-&° = (1-m)-H-A-sgn(c—b)
q

omou, H ival To UN-YpOoUULKO METPO KPATUVONG TIou e€apTdtTal oo Tth O£TIKY MAPAUETPO g,

LE apXLKA T Ho.

H=H,—q-sgn(¢")-b (2.6)
To UETPO KpATUVONG WIOPEL va ekppaoTel pe BAon tov AOYo TwWV £PONMTOUEVIKWYV HETPWVY

€AAOTIKOTNTAC META KO TipLy Tt Stappon a=E, / E wg €€AG:

E, a

H=——"—=——. 2.7
1-E /E 1-a 27)

ErunpooBeta, edpapudlovrag cuvBnkeg Karush-Kuhn-Tucker (KKT) kataAnyoupe otnv

okoOAouBn oxéon:

A-®(c,b,r)=0 (2.8)

Kata t Slapkela TG MAQOTIKAG Tapapopdpwong (/i>0, ®(o,b,r)=0) n mapaywylon tne

oxéong (2.8) divel Tnv kataotacon tng cuvenelag (consistency condition):

vii
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®(o,b,r)=0=(5-b)-sgn(c—b)—F=0 (2.9)
AvtikoBlotwvtag TG oxéoelg (2.1), (2.3) and (2.5) otnv eficwon (2.9) AauBavetal n

TOPOAKATW €KPpaon TOU MAAOTIKOU TTOAAQTTAQCLAOTH:

E
E+H

A=sgn(c—b)- -&=(1-a)-sgn(c—b)-& (2.10)

Eniong, avtkablotwvtag tn oxéon (2.10) otn (2.4) n é€kdpacn TNG TAAOTIKAG

napapopdwong e€dyetal we e€C:

&’ =(1-a)-¢ (2.11)
OTou, 0 AOYOG TWV METPWV €AOOTIKOTNTAC HUETA Kol Tipwv tn Stappony Sivetal amd tnv
£€kdppaon (2.12) cupudwva e TIg oxEelg (2.6) kal (2.7) :
E H H,—q-sgn(é”)-b

a=—2= = - (2.12)
E E+H E+H,—qg-sgn(e”)-b

H ékdpaon (2.11) adopd tnv MeplmTwon TMAACTIKAC pong povo. MNa va sivat duvatn n
€kppaon OAwv twv otadiwv doéptiong elodyovtal dUo cuvaptioel TUTou Heaviside ot

oroiec pouv W SLAKOMTEG EVEPYOTIOLWVTOC TNV EAQOTIKN/TIAQOTIKA cUpTEpLpOopa:

&P =H,-H,-(1-a)-é (2.13)

H ouvaptnon H; eAéyxel tn Slappor, evw n H, eAéyxel tn dpdaon dpoptiong/anodpoptiong.

0, g\aotiki mapoapdpdwon (5’" :0)
H, = (2.14)
1, m\aotn mapapdpdwon (5’” =H,-(1-a) 6‘)
{o’ artod)c')pnor](é” :0) (2.15)
1, d)(')pnor](g'” =H, ~(1—a)‘5') .

O «8lakomtng» H; mpokUMTeL amd TNV opaAonoinon Tng ouvaptnong Slapporncg we eENG:

n

H:U_bn: O

1

(2.16)

r r

H nmapdpetpog n eAéyxel tn popdn HETABAONG OO TNV EAACTIKY OTNV TTAOCTLKA TEPLOXN, N
omola yilvetal OpOAOTEPA ylo HUIKPEG TIMEC TNG TOPAMETPOU EVW YLOL UEYAAUTEPEG

npooeyyiletal andtopa n Stypappikr cupnepipopd.

viii
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EmunpooBeta, o «Olakoming» H, otoxelel oto va eAéyéel TN ouvONKNn
doptiong/amnodoptiong eAEyXovtag TO TPOONUO Tou pubuol PeTaBoAnG TNG ouvAapPTNONG
Sapporng we e&ng:

do . .
H, =0.5-| 1+sgn| ——-6 =0.5+0.5-sgn((c —b)-¢) (2.17)
o

TéNog, avtikaBlotwvtog TIg ouvapTroelg (2.16) kat (2.17) apxikd otn oxéon (2.13) kat Emetta

otn oxéon (2.1) n TeAK EAACTOMAQOTLKY) KATAOTATLKY €Kbpacn elval n akoAouon:

6=[1-(1-a)-H, -H, | E-& = E,-& (2.18)

orou E, eival to ebamtopevikd pétpo Young tou xdAuBa.

3TN CUVEXELA TO BACLKO KATAOTATIKO TIPOCOMOLWA TPOTIONMOLEITAL WOTE VO EVOWIOTWOEL
To doalvopevo Bauschinger. H apxikrp Stypapuikry cuumepidpopd TG MPWING SLappons
TEPLYPAPETAL UE HLO PEYAAN TWUAC TNC MOPAUETPOU h (n1 28), EVW N UETEMELTA OUOAN
enavadoption otnv avtiBetn dievBuvon meplypAdeTal av N apxLlki TN N PeEWwBeL og pa

HLKPOTEPN VLA TOUG EMOUEVOUG KUKAOUG (N, < 2) .

Mapopoiwg, to MAATO SLAPPONC EVOWMOTWVETOL OTO TIPOTELVOUEVO TPOCOUOLWHA
Betovtag pio Tipn katwdAiov &,, Omou o Adyog a AapPdvel Tnv teAk T tou. Mo
OUYKEKPLUEVA, 0 AOYOG a ratio ap)Lkomoleital o PNSEVIKA TLUN TIOU OVTLOTOLXEL 08 EAAOTLKN
AmoAUTWG MAAOTIKA CUMIEPLPOPA KAL TN OTLYUNA TTOU N TAACTLKN tapapopdwon &° Eemepva

TV TN €, oNpatodoTeital n Evapén tou kKAAdSou KpdTuvong (a > 0).

Mia akopa Tpomomnoinon adopd Tn cUUPATOTNTA TOU HOVIEAOU ME T AflwpATO TNG
mAaotikotntag  twv Drucker kat llyushin  otav  epdaviletar  KAASOG  HEPLKAG

anodoptiong/enavadoptiong. Autd emttuyxavetat av o deiktng H, AdPel tnv mapakdtw

nopdn:

H:=H,-(1-R) (2.19)
omnou R(a,,, g, Gyo) elval o mapdyovtag mou eAEyxeL TNV avaktnon tng duokauiag oto

oT1Adlo NG eMavadopTIonG:

R=0.5.[1+sgn(o, —ar)'sgn(ah)]{ﬁj (2.20)
E —&
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Extevig MepiAnyin

2tn oxéon (2.20) o, €ilvol To VUCTEPNTLIKO MEPOG TNG TAONG (ah =a—b), o, kaL & elvaln
Tdon Kat n mapopopdwon oto onueio amopoptiong kot &, e€ival n Tpomomoinuévn
napapopdwaon otov kAASo amodoptiong yla TO avriotolyo eminedo €vraong NG

UOTEPNTIKAG TAONG O,

O'yo

o,—C
gc :( : - J'gyo +8r 'Sgn(o-h) (221)
KataAnyovtag, To mpoTelvOUEVO Tposopoiwpa Tou XaAuBa mapouolaletal oto IxAua 2.1
omnou emniong mapatiBevral n akoAouBia Twv onueiwv evallayng tng £viacng, To MAATO
Slappong kol TO ALVOUEVO TNC LOOTPOTIKNG Kpdtuvong H  kaumUAn Taoewv-

napapopdwoswv Tou XAAuPBa TPOKUTITEL He TNV eMBOAR TNng Xpovoiotopiag afoVIKAG

napapopdwong tou Mivaka 2.1.

800
_ owsi
- 2 2
B = g0 (€% 0,
oL N €0
400 | | T
. | |
s [Le! ' i
= | |
-------------- | I EEssssssEEEEEEEEEEn sessssssssnnssnnnnnnnnnnnnnnnnnngfoonnns
A 0 g, € tE,
4]
b L |
(%]
—400 - 4
i (%02 1
800 I I I I I
0 0.01 0.02 0.03 0.04 0.05

strain (-)

Ixnua 2.1. NPoTEVOUEVO TIPOCOUOLWMA XAAUBa

Weuboxpovog Napaudpdpwon
(sec) ()

0 0

1 0.03

2 0.025

3 0.05

4 0.01

5 0.05

Mivakog 2.1. Xpovoiotopia enBaAAOUEVWY TTAPAUOPDWOEWV



AvdAuon Kataokeuwv O YroBoaMduevwy oe loxupeg AvakukA{opeves Qoptioelg pe Opald Kataotatikd Mpooopotwpata

H tekunpiwon TOU TPOTEWVOUEVOU TPOCOUOLWHATOC YIVeETalL He Tn oUyKpLon He
nepapotika dedopéva twv Ma et al. (1976). Ta amoteAéopota TNG OUYKPLONG
mapouctalovtal OTo IXAHA 2.2, €VW Ol TAPAMUETPOL TOU XPNOLUomolbnkav oto
T(POTELVOLEVO TIPOCOMOiwpa TtapatiBevtal otov Mivaka 2.2. Eival yevikd gudaveg oOtL o
€€AYOUEVOC KATAOTOTLKOG VOUOG €lval apKeETA LKavOg va eplypaPel OAa Ta oTAdLa TNG
OVEAQOTIKAG oupmepldpopadc, SnA. to MAOTO SLAPPONG, TN KN YPOAUULKA KPATUVON Kal TO

dawodpuevo Bauschinger.

800 T T T T T

600}

400

2001

stress (MPa)

(=]
T

—200f

= = Experiment
_a00} : : == Analysis o

-0.01 0 0.01 0.02 0.03 0.04 0.05
strain (—)

(a)

800 T T T T T T T

600

400

200

stress (MPa)

= =Experiment
= Analysis ]

1 1 1 1 1 1 1 L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
strain (-)

(b)

—200]

~400}-

IxAUa 2.2. JUYKPLON HE TO TIEPAUATIKA arnoteAéopata Twv Ma et al. (a) Aokiuwo 3 (b)

Aokiplo 2
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o, (MPa) a n; n, Eplat m q
460 0.035 10 0.5 4g, 0.03 10

Mivakag 2.2. NopAUETPOL TPOCOUOLWUATOG XAAUBa yLa TN GUYKPLON LE TA TTELPOUOTLKA

arnoteAéopata twv Ma et al.

Ocov adopd T pebBodoloyia UTIOAOYLOHOU TOU AuyloUoU TwV Slopnkwyv papdwv
omAlopoU, autr Baociletal otnv undbeon Twv amapopdpdWIWY CUVSETAPWY, CUVEMWS N

papdog omAlopol Bewpeital apdimaktn umod tnv emPoin afovikol doptiou (ZxAua 2.3).

Jopudwva pe thv ehaotiki Bewpia AuylopoU Euler, n pafdoc napapopdwvetal MAEUPIKA,

ek&NAWVOVTOC TAEUPLKEG LETAKLVAOELG UTIO TNV HOPDAG CUVNLTOVOELSOUC KAUTTUANG:

e 27X
y(X)—E'(l—COSLTJj (222)

Zxnua 2.3. Quotkd Kot UTIOAOYLOTLKO TIPOCsOoUOiwa AUYLOOU Twv paBdwv omAlopol

Emiong, n kapmuAotnTa Katd Hikog tng paBSou mpokUMTeL oo T SUTAR TapaywyLon Tng

e€lowong HETOKIVAOEWV:

2ern’ 27X
¢(x)=——-cos| — (2.23)
L L
Me péyLoTn TLUA OTO HUECOV:
2en’
p(L/2)= B (2.24)
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AvaAuon Kataokeuwv O YroBoaMduevwy oe loxupeg AvakukAilopeves Qoptioelg pe Opala Kataotatikd Mpooopolwpata

H ouvoAlk péon afovikn Mopapopdwaon &, NG papdou pmopel va Bewpnbel wg to
abpolopa ™G TMOPApOpdWONG £, n OMOlL OCUUUETEXEL OTNV ECWTEPLKN EVEPYELD
napapopdwonc tg paBdou kat otn deutepoyev Mapapdpdpwon Avylopol &, n onoia
odelletal otnv emumpocBeTn Bpdxuvon e€attiag Tou auénUEVou UKoug TOEoU o TIPOKOAEL

N MAEUPLKN Ttapapopdwan.

Ey=EyTE, (2.25)

To unkog té€ou g mapapopdwuévng paBdou umoloyiletol avaAlUTIKA LECW TNG OXEONG

mou Tipotevay ot Dhakal kat Maekawa (2002):

(1-¢,)

parey dy \’ ¢ er 27x Y
L= | 1+(—1de=z- | 1+ sin dx (2.26)
dz ° L1-¢,) Ll1-¢,)

0

H oxéon (2.26) avamtuooetal o ospd Taylor apeAwvtag TOuG OpPOUC AVWTEPAC TAENG

Sivovtacg ev TéAeL TNV mapakdatw Ekdpacn tng Seutepoyevoug mapapopdwaong AUYLoUOoU:

gbzf(l—J1—e%ﬁ) (2.27)

2
H Tekunpilwon Tou MPOCOUOLWHATOC AUYLOMOU TPAYLOTOTOLE(TAL LEGW TNEG OUYKPLONG UE
T TEPAPOTIKA omotedéopata twv Monti and Nuti (1992). Ze aut tnv oUykplon
edapuoleTol CUUUETPLKN Xpovoiotopia mapapopdwoswv oto gUpog (-0.03-0.03), evw o
AOyoc pnkoug rpog Stapetpo g e€staldpevng papBdou sival L/D=11. Entiong, oL mapApeTpoL

TIOU XPNOLUOTIOBNKAV yLa To Mpocopoiwpa Tou XaAuBa mapatiBevtat otov Mivaka 2.3

800
600 -
= =Experiment
== Analysis
4001
& 200+
=3
a
v OF
S
=
(%]
—200r
—4001
—600 I I I I I
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

strain (-)

IxAUa 2.4. UYKPLON HE TO TIELPAUATIKA armoteAéopata Twv Monti and Nuti (S series,

L/D=11)
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Oy
(MPa) a n; n; Eplat m q
500 0.035 10 0.3 1.8¢, 0.05 10

Mivakog 2.3. NopaUETPOL TOU TTPOCOUOLWLATOS XAAUBA yLla TNV avAAuaon LE To TIEpA AT

Monti kot Nuti (S series, L/D=11).

H teAevtaia olykplon adopd otnv  emPoAi HUn  CUUHETPKNAG  aAAnlouyiog
TAPAUOPOWOEWV EVW N CUYKPLON HE TA APLOUNTIKA OMOTEAEOUATA TIUPOUCLALETOL OTO

IxNua 2.5. OL MapAUETPOL TNG MPOTEWVOUEVNC LeBodohoyiag mapatiBevtal otov Mivaka 2.4.

600

= =Experiment
400~ |==Analysis

2001

stress (MPa)
o
T

—200]

—400F

1 1 1 1 1
-0.03 -0.02 -0.01 0 ] 0.01 0.02 0.03 0.04
strain (-)

IxAua 2.5. T0yKpLon UE T MEIPAPOTIKA amoTeAéopata Twv Monti and Nuti (C5 specimen,

L/d=11)
o, (MPa) a n; n, €plat m q
430 0.03 10 0.4 3¢, 0.05 10

Mivakag 2.4. MapAUETPOL TOU TTPOCOUOLWUATOC XAAuBa yio TNV avaAuon LE Ta ELPAOTO

Monti kat Nuti (C5 specimen, L/D=11).

Elval mpddnho amod ta omoTEAECUATO TWV CUYKPLOEWV OTL TO TPOCOUOLWHA TwV pABSwv
omAlopoU amodiSel KavomolnNTIKd Toug BPpOXoUg UCTEPNONG KOL ELBLKA TNV TIEPLOXH TOU
£VIOVOU OTEVEHATOC TWV Bpoxwv otn BAuTtkn Tmeployn, omou efattiag tou £vrtovou

AuylopoU mapouaotdletal KAASoG apvnTikAG duokauiag.
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AvaAuon Kataokeuwv O YroBoaMduevwy oe loxupeg AvakukAilopeves Qoptioelg pe Opala Kataotatikd Mpooopolwpata

lll. Npooopoiwon ZKUPOSENATOG

Je autd To KedAAALO avVAMTUOOETAL £va  OPOAO, HOVOOEOVIKO TPOCOUOLWUO
oKUPOSEPATOC TO omoio cuvbualel TNV MAQOTIKOTNTA PE TN HNXaviky twv BAaBwv. To
mpooopoiwpa €ivol kavo vo meplypaldel tnv acUUUETpn BAUTTIKA Kol €hEAKUOTIKN
ouuneplPopd, EVW OVTLUETWITI(EL EMITUXWE OaVAKUKAWOMEVA dawvopeva Omwe¢ N HUNn-

YPOUULKN armodOpTion Kot T GULVOUEVO TOU KAELCLLOTOG/aVOly LOTOG TWV pWYHWV.

To okupOSepa otav umoBaAletal oe xapnAou emumédou €vtaon eudavilel eAaotiki
ouuneplpopd n omolia eEEACOETAL YPYOPO OE LN-YPAUULKI HE TNV ELPAVION TWV TTPWTWV
PWYHWV. H TpIBr avaueoa otig pwyHES EUMOSITEL TO TTEPALTEPW AVOLYHO TWV PWYHWV XWPIE
avtiotaon. Katd tn Stadlkaocia aut avamtUooETal UCTEPNTIKI EVEPYELO KAl WG CUVETEL
eUdaVIlETAL LAKPOOKOTILKA UOTEPNTLKA CUUTEPLPOPA N omola pmopel va meplypadel wg
€A\OOTOMAQOTIKY) CUUTIEPLPOPA E HN-YPOUULKO VOUO LOOTPOTIKNG KPATUVONG. JUVETWG, O
HUN-YPOAUULKOC KOTOOTATIKOC VOMOC TACEWV-Tapapopdwoswy AapPdavel tnv okoAoubBn

Hopdn:
G =E &l =E,-(¢, - &) (3.1)
émou &, elval n tdon tou okupodéuatog xwpic BAABES Kat &,,&° eival n cuvolikn kat

MAQOTIKA Ttapapopdwon avtiotowa. H mAaotiky mapapopdwaon Sivetal os svomolnpévn

pHopdr XPNOLUOTIOLWVTAG TLG CUVOPTACELG TUTOU «Slakomtn» eAaotikig/mAaotikng H,,

doptiong kat poptiong/anodoptiong H,, wg e§Ag:

&' =H,-H, (1-a)& (3.2)
H.,=0.5-[1+sgn(5, -¢,)] (3.3)
Ho= [ (3.4)

O'yc

omou n petaPAnty &, opileL To AOyo NG UETEAAOTIKAG TIPOG TNV EAACTIKA Suokapupia
KOl N TIOPAWETPOG N, EAEYXEL TNV OUAAOTNTA TNG KOUTUANG HETABACNG Ao TNV €AAOTIKA
oTNV TAQOTIKN TIEPLOXN. TNV Ttapoloa SLaTUTIWON TOU TPOCOopoLWHAToS Sev amalteital
elval n tpéxouoa taon Slappong n omola

opaAn petaBaon, omote n, >10. Eniong, o,

efellooetal cupdwva e Tov AKOAOUBO UN-YPOULKO VOO LOOTPOTILKAG KPATUVONC:
d-yc :Hcl 'ch'ac'sgn(gc)'Ec'éc (35)
omou o Adyog o, Sivetal amnod tn oxeon:

XV



Extevig MepiAnyin

_ Ec,pl _ H _ HCD _qC '(o-yc _o-yco)

C

(3.6)

‘ Ec _HC+EC_Ec+Hco_qc.(O-yc_o-yCO)
pe H. xat g, va opifovtal To HETPO KPATUVONG KaL N TIOPAHUETPOG KN-YPOUULKAG KpATUVONG

avtiotolya. TeAkA pe T xpnon twv oxéoswv (3.1), (3.2), (3.5) kat (3.6) kataAnyoupe otnv

£kdpaon TNG Taong Tou okupodEpatog xwpic BAAPN:

o.=(1-(1-a,)-H,H,)E. & (3.7)
Eniong, Stadopetikn apylkn Tdon Stappong Bewpeital o epeAkuopd kal OALPN kabwg ot
£PEAKUOTIKEC pwYUEG eudavilovtal oe TOAU xapnAotepa emnineda évraong amd OtTL ot

OAlYN:

Gyco,i

=(1-H,_) o, +H,; 0 (3.8)

yc0
érmouv o, elvar n oapxwn tdon Sopporg otov ederkuopd, o, eivar n apxkn tdon
Slappong otn BAIYN kaL n cuvaptnon tumou Heaviside H,; opilel Tnv kataotaon ¢optiong

(0: edbeAkuopog, 1: BAIPN) kat AapBavel Tnv akoAouBn popdn:

H.,=0.5(1-sgn(a.)) (3.9)

JUVTOPO UETA TNV €UPAVION TWV OPXLKWV PWYHWV HE TN oUVeXOUevVn emifoAn tou
doptiou n gEEALEN KOL TO AVOLYUA TOUC £XOUV WE CUVETELA TN UELWON TOU OyKou avadopdg
otnv Kkplown meploxn tou péloug O. To dawopevo autod tng PAABNG mpokalel tnv
QITOMELWON KAl TNV apvnTIKA T duokapdiog kot avanapiotatal oTto mapov MPOCoUoiwa
and ™ Bswpla PAAPNg ocuvexol¢ pécou (damage mechanics) (Kachanov 1986). Mo
OUYKEKPLUEVO, YIVETAL Xprion tn¢ €vvolag tng evepyol TAONC Kal n Bswpnon OTL N
napapopdwaon avadopdg eivat n dla oTNV apyLlkA KATACTAGCH KoL 0TNV KATACTACN TIoU £XEL
enéNBeL n BAABN. AvtiBeta, n MPAYUATIKI TAON ElvaL HELWUEVN OTNV Katdotaon Ke BAGBN
KaBwg o0 dykog avadopag exeL auénbel Adyo Twv Kevwv mou odeilovtal otnv e€AmAwon Twy
pWyHwv. Qotdéco, n Bewpla BAaBwv amd povn tng Sev pmopel va meplypdel TIg
TIOPAUEVOUTEG TOPAPOPDWOELG OTO OKUPOSeUa EMELTa amd anodopTion AOYw TOU HEPLKOU
KAELOLHOTOG TWV PWYHWV. ZUVETIWC, Elval avaykaiog 0 cuvSUOoUOC TOGO TNG MAAOTIKOTNTAG

000 Kal TG cupmepLPopag pe evowpdtwon tng BAABNG (Xxnua 3.1)
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stress

(a) (b) (c)

Ixnua 3.1. Zuvbuaoudg Bewplwv MAaoTIKOTNTAC Kot BAaBwv

H mpaypatik tdon tou okupodEpatog umoAoyiletol amd tnv evepyn TAON HECW TNG
napapérpou BAGPNG mou moootikomolel T BAABN og BALPN kal epeAkuopd cUudwva UE TN
oxéon (3.11).

o.=(1-D)-G, (3.10)
(1-D)=(1-H,,D_)-[ 1-(1-H,;)D, | (3.11)

O puBuog petaPolng tng oxéong (3.11) mpokumtel w¢ €€NG:

D=H,,D_[1-(1-H,_)D_]+(1-H,,)D,[1-H,D_] (3.12)
€Vw 0 puBUOC petaBoAng tng (3.10) divetal amd TNV MOPAKATW OXEON:

6,=(1-D)5, -Da. (3.13)

H napdpetpog PAABNG eite oe BN eite o eperkuopd D, =D, (k[ (¢ )) eNéyxetat amd ™

petaBAntni e€€AEng tng BAABNG k; kat Sivetal avaAuTikd amo tnv ékdpaon:

D, =1-e \ ko (3.14)
omou b, kat p; sival mapdueTpoL Tou Povtéhou mou eAéyxouv tnv e€EAEN tng BAGRNG KaL oL
TLUEG TOUC UmOpOoUV va TpoaSloploTtolv amo melpapatikd dedopéva. H petafAntn eEEALENG
¢ BAGBNG k; elval ouvdptnon tng Slakpltrg mapauopdwaong & oe BALPN 1 eperkuouo

evw apyilet va eelicoetat mépa evog opiou K, ; o omolo opileL tnv ekkivnon tng PAABNG.

ki=H.,-H., &, (3.15)
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orou &; elval n Sakptth Tn g napaudpdwong tou okupodépatog o BALPN/eperkuopnd
KaL n ouvaptnon «dlakomtng» H., evepyornolel tnv €€€AEN Tng PAABNG (0: katdotaon xwpig

BAGBN, 1: kataotoon He PAABN):

(3.16)

H mapdpetpo¢ m eAéyxel tnV OPOAN UETABOON amd TNV OpPXLKH KATAOTAGCN OTnV
kataotaon PAABNG mpoteivovtag HeyAAeC TIHEG (M = 10) kaBwg n amotoun petafacn sivat

smBupntn.

Edapudloviag twv kavova aAucldwing mapaywylong yw tnv mopdpetpo D,
Aappavetal n e€EALEN TNC we €€NG:

_dDi ’

D, k. (3.17)

i _d_ki
Enewta avtikablotwvtag tn oxéon (3.15) otn oxéon (3.17) mapayetal n akoloubn efiowon

Tou puBUOU peTafoAng Tng mapapétpou BAGPNC:

. dD. ; dD. .
D =—k=H,-H, —¢, (3.18)
dk, dk, ~
TéAog, n avtikatdotaon Twv oxéoswv (3.7) kat (3.18) otn oxéon (3.13) £xel wg anotéAeoua
TG aKOAOUBEC CUVOTTTIKEC €€LOWOELG OL OTIOLEC TTEPLYPADOUV TO HOVTEAO OKUPOSEUATOC KoL

ouvSualouv mAdotiun kot ¢pBivouoca cupneptdopd Adyw BAABNC:

G'c =Ec,t ‘c‘.‘c (319)

Ec,t :{(1_D)|:1_(1_ac)‘Hcl 'ch _(HM .ch BZJ}EC (320)

dk, E.
EmunpooBeta, eival mpodaveg amd TeElpAPATIKA  dedopéva  avakKUKALLOUEVNG
oupneplpopds Soklpiwv okupodépatog OtL o kKAadog amododptiong otn BAWPN elval pn-

YPOUULKOG. TO GOLVOUEVO QUTO EVOWUATWVETAL OTO TTPocopolwpa cUHdwva e TN oxEon:

1-Hc,
Zc +ch (3.21)
O

C,r

OMou r,, QMOTEAEL TL CUVAPTNON UN-YPAMULKAG arodopTiong Tou opiletal and to onpeio
evaAhayng tng évtaong O, €wg v MARpPN pelwon tng evepyols tdong oto pndév, evw o

ekBétng 1-H_, evepyomolel Tn ouvdptnon Lovo otav aviyveletal anodpoption Kat ¢;, C,
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elval mapdpetpol. TUVENWE TO £PATITOUEVIKO HETPO TOU OKUPOSEUATOC SLapopdWVETAL WG

eénc:

Ec,t :{(l_D)[l_(l_ac)'Hcl 'ch _[HUJ 'ch '%'%j}'run 'Ec (322)

1 c

Eniong, otav cupBaivel anodpoption anod tov epeAkUoTIKO KAASO, epdavilovtal opoiwg
TIOPOUEVOUCEG TTAPOHOPPWOELG OL OToieg odellovtal oTNV ATEAN VEWUETPIA TWV PWYLWV.
Otav n doption cuvexlotel otn BAUTTIKA Tteploxn n emavadopd tng duokappiag yivetal
otadlakad akoAouBwvtog to KAEloWo Twv pwydwv. To GALVOUEVO AUTO EVOWMOTWVETAL

EMIONG OTO TPOTELVOLEVO MPOCOUOIWHA PECW TNG ouvaptnong emavadopdg Suokapiog

rrec (grec ’ 86 ) :

(3.23)

(3.24)

omou E;, elvat n edpamtopeviky edehkuotikiy Suokapdio, & eivar n  BATTTKA
napapdpodwon Kat &, elval n mapapopdwon omnou oL pwypéG KAelvouv evteAwg otav To
dawopevo ayvoeitat. Emiong, n mopAapeTpog n,,. €AEyXEL TNV OMOAOTNTA TOU KAELOIpATOG

ec

TWV PWYHWV telvovtag otnv e€addavion Tou avopEVOU yLa LEYAAEC TIUEG.

Téhog, ouvdlalovtog oAa Ta ¢alvOUEVA, TO GUVOALKO KATOOTATIKO TIPOCOUOIWUA TOU

OKUPOSENOTOG ekDPATETAL LECW TWV TIAPAKATW CXECEWV:

{(1_D)[1_(1_0)H61 'HCZ _[H64 ‘ch .%.&J}'run 'Ec (3'25)
rec E:,t

210 IXNua 3.2 mopouctaletal ypadika n Lovoafovikr cupunepldhopd ToU OKUPOSEUATOC, EVW

OL TLUEC TWV TIOPAUETPWY TTOU Xpnotpormollnkav napatiBevrtal otov Mivaka 3.1.
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residual tensile
strength
0 | .
tension
-5 softening
—10k nonlinear
i unloading
\% -15F
v
wv
g
2 -20f
yielding and
251 onset of damage |
=30
_35 1 1 1 1 1 1
—12 -10 -8 -6 —4 -2 0 2

strain (=) x10"

IxNuo 3.2, IXNUATIKA ovamopAaoTtoon TOU MPOCOUOLWUATOC CKUPOSEUATOG

IEc (GPa) ov (MPa) ac qc kO,i bi Pc C1 C> Nyec
OAipn 25.0 0.5 1000 0.000833 6.5 1.0 3.0 0.2 10
30
EdeAKuouog 5.0 - - 0.000167 0.5 0.5 3.0 0.2 -

Mivakag 3.1. MapAUETPOL TOU TIPOCOUOLWHUATOC OKUPOSEUATOG

H tekunpiwon tng OBAUTTKAG ouumepldopdG TOU TPOTELWVOUEVOU TIPOCOUOLWHOTOG
TIPAYUATOTOLE(TAL YE TN OUYKPLON HE Ta Melpopatikd Sdedopéva twv Sinha et al. (1964),
Bahn and Hsu (1998) kat Muguruma et al. (1983). Ta OMOTEAECUATO TWV CUYKPLOEWV
napouctalovtal ota IxAuota 3.3 £€wg 3.5, evw oL TMAPAUETPOL TIOU Xpholpomol)dnkay

napatibevrtal os adidotatn popdr otov MNivaka 3.2.
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== Analysis

= = Experiment

stress ratio

strain ratio

Ixnua 3.3. TUyKpLon e Ta MEpapaTka dedopéva twv Sinha et al.

= =Experiment | _|
== Analysis

0.8

0.6

stress ratio

0.4

0.2

strain ratio

IxNnua 3.4. Z0yKpLoN HE TA MELPAPATIKA dedopéva Twv Muguruma et al.
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IxAUa 3.5. TUyKpLon HE Ta MElpapatikd Sedopéva Twv Bahn kat Hsu

AdLaoTarteg Sinhaet Muguruma
Bahn-Hsu
TP ALETPOL al. et al.

Oyc/ Oc,max 0.7 0.6 0.75
€yc/€co 0.4 0.29 0.5
o 0.5 0.5 0.7
dc 10 10 12
ko/€o 0.4 0.57 1.0
b, 4.5 2.5 0.9
Pc 1.4 0.75 1.0
() 3.8 4.0 35
() 0.1 0.1 0.1

Mivakag 3.2. OAUTTIKEG TIAPAUETPOL OKUPOSEUATOG.

Mapopoiwg, 6cov adopd tnv epeAkUOTIK cupmepldopd, n CUYKPLON Yivetol HE TO
TMELPOUATIKA amoteAéopata twv Reinhardt kat Cornelissen (1984), o6mou to &okiulo
okupobépato¢ doptiletal otn OAIPN kot €PeAKUCUO KAl CUVETIWG QVOTIOPAYETAL TO
dawvopevo tou kKAeloipatog/avolypotog Twy pwypHwy. Emiong, oL mapAdUeTpoL TOU HOVTEAOU

Tou Xpnaotgomnolnénkayv napouactdlovtol otov MNivaka 3.3.
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= =Experiment | -
=== Analysis

1
0 05 1 15 2 25 3 35
strain (-) %1072

Ixnua 3.6. TUyKpLON HE Ta MEpaPaTka dedopéva twv Reinhardt kat Cornelissen

EC oyt
(GPa) (MPa)

30 3.2 0.6 0 0.00011 3.0 0.7 3.5 0.8 5.0

Olc,t dc,t Ko,t b, Pt C C> Nrec

Mivakog 3.3. EGEAKUOTIKEG TTAPAUETPOL OKUPOSELATOC

Elval yevika gudaveg amod TIC CUYKPLoEL OTL TN Mpotewvopevn pebBodoloyla pmopet va
QVOTTAPAYEL EMITUXWE TO TIELPAATIKA dedopéva toco otn BALPN 6oo kol otov eheAKUCUO

QVATTAPLOTWVTAG PEAALOTLKA KAOE popdr) TwV BpoXwy UCTEPNONC.

IV. Npocopoiwpa §0KOU-UTIOGTUAWHATOG LVWV

Y€ auTO To KeEdDAAALO avaNTUGOETOL N SLATUMWON TOU TIEMEPOCHUEVOU OTOLXElOU SoKoU
0TO TAioLo0 TNG BewpPnong KOTAVEUNUEVNG TTAACTIKOTNTAG. Mevikd, n kaBoAkn Slatumwon

TOU oTolxelou Kal n emiluon oAOKANPNG TNG KOTAOKEUNG PBaoiletal os técoepa emimeda

(ZxAua 4.1).

1. Eminebo ivag, omou pe 6ebopévn TNV afovik TAPAUOpPwWon Kal TWV E0WTEPLKWY
KOTOOTOTIKWY HEeTABANTWY, Tpoadlopilovtal Ol TACEL TOU OKUPOSEUATOC Kol TOU
XaAuBa omALlopoU Kol Ta EGATTOPEVIKA TOUG LETPA.

2. Eminedo Slatoung, Omou oL TACELS KoL Ta £PATITOUEVIKA HETPA TWV VWV abpoilovtal Kat
T(POKUTITOUV TO EVIATLKA HEYEDN KoL To untpwo duokapudiog tng SLOTOUAG.

3. Eninedo otolxeiou, Omou Slevepyeital o MPOCGSLOPLOUOG TWV EMIKOUBLWY E0WTEPLIKWV
Suvapewy tou otolyeiou Kat Tou pntpwou duckapdiog Tou péow tNg oAOKANPWONG Twv

EVTATIKWV HEYEBWV TWV EMPEPOUG SLATOUWY EAEYYXOU.
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4. Eminedo KATAOKEUNG, OTMOU €AEYXETAL N GUVOALKH LOOPPOTIA UECW TNG LOOTNTAG TWV

E0WTEPLKWV Kal EEWTEPLKWV SpACEWV.

rebar behavior control sections

-
[ /777 7%
N L L 774

.
N/

N
FAAV.

core concrete behavior \U_

IxNuo 4.1, IXNUATIKA ovVamopaoTaon Tou otolyelou Sokou vwv

ApXLKA, YIVETOL N KWVNUOTIKY Bewpnon OTL oL SLOTOUEG TIAPAPEVOUV ETUMESEG HETA TNV
mapapopdwaon Kal KABeTeg otov afova tNG EAACTIKNG YPAUUNG. Baowopevol o auth thv

napadoxn n afovikn LeTaKivnon o€ KABe onpeio TNG SLATOUAG ekppAleTal OO TN OXEoN:

ow(x)
ox

u (x,y)=ulx)=-y- (4.1)

omou u(x) kat w(x) eivar n afovikr kot n kABetn petokivnon tng Statopng otov dfova
avadopadg. Eniong, mapopola oxéon LOXVEL KaL yia TV afoviKh tapapopdwon:
g(x,y)=¢,(x)—y-px)=[1 -y]-d(x)=1"-d(x) (4.2)
T
Omou to TMedio Twv MapapuopPWoEWY d(x)z{go(x), gp(x)} arnoteheital and tnv afovikn
napapopdwon &,(x) kat tnv kapmuAotnta ¢@(x) otov dfova avadopds. Emumpdobeta,

Slatunwvovtol ol e€lCWOELS LOOPPOTILAC TNG SLOTOUNG otV TMepimtwaon tng Bewpliag Sokol

Euler-Bernoulli.

N =[olx,y)dA , M(x)=—[y-o(x,y)dA (4.3)

A

Dx)=[[1 -y] -olx,y)dA (4.4)

A

omnou D(X)={N(X),M(X)}T. Emtiong, o puBpdC Tng 0pdAC taong exdpdleTal wc:
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d-(le):Et'é(le) (45)
AvtikaBlotwvrag Tig e€lowoelc (4.5) kat (4.2) otnv e€iowon (4.4) ekdpoaocpévn os pubud

HETABOANG, MOPAYETAL N TOPAKATW KATAOTOTIKNA e€lowon tn¢ Slatoung:

D(x) = k(x)-d(x) (4.6)

pe Suokaupio:

k()= [[1 -y] -, [1 -y]dA

(E-A)  —2(E-A) v, (4.7)
_ i=1 i=1
Sea) v S a) v
i=1 i=1

omou n(x) elval o aplBudc twv wwv o pla Statopr tomoBetnuévn oe “x” amdotacn and
ToV KOUBO apxng Tou otolxeiou. TEAOC, TO uNtpwo sukapiag tng Statoung mpoodlopiletatl

armAd w¢ to avtiotpodo tou untpwou Suokapiag tng.

fx)=k(x)™ (4.8)

Ocov adopd 10 otolxeio dokou SUo Slaotdoewv, Bewpouvtal oL Tumikol €€ Babuotl
eleuBeplag a:{ul,uz,rl,u4,u5,rZ}T KOL OL OXETIKEC TPELG TOPOUOPPWOEL] OTa AKpa
q={6,01,6’2}T SnA. n afovikr) mapapopdpwon O Kal oL SUo otpodEc XopSnE oL omoieg
Sivouv ta Ttpila avefdaptnto eVTOTIKA UEYEDN Q={N,M1,M2}T. H oxéon mou ouveEel TIC

ETUKOUPLEG LETATOTIOELG UE TIC TTAPOUOPPWOELG SLOUOPPWVETAL E TN XPHON TOU UNTPWOU

HETOOXNUATIONOU T TO omolo adalpel TNV Kivnon otepeol owpatog Tt Sokou (ZxNua 4.2).

1 0 0 -1 0 0
13 T-lo 1 _
q=T-u, T=(0 ¥ 1 o0 4 0 (4.9)

01L00—%1
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IxNua 4.2. ETUKOUPLEG LETAKLVAOELG KAl TapaopdWOELS TOU oTolyxeiou Sokol

Eniong, n wwoppomia tou otolxeiou UTO TNV €MBOAR TWV KATAVEUNUEVWV ¢opTiwy

b(x) =[bx (x), by (x)]T otLg SUo Sleubuvoslc x, y ekdppaleTal wg:

62M2(x) b (x)=0

x (4.10)
N ) o

ox *

H Slatunwon tou otolxeiou dokou Baciletal otnv apxn LetaBoAng duo nediwv n onola
Bewpei T000 TO MESIO PETAKIVACEWY OGO KOL TO TTESLO TWV SUVAPEWY OPXLKA WG aveEApTNTA.
JUVenwe, ywa pla mapoapopdwotpun Soko pe opBn évtoaon o, afovikn UETAKivnon u Kal
napapopdwon & oe KabBe onueio TNG, TO ocuvaptnolakd twv Hellinger-Reissner (1950)

ekdpaletal cuvoptioel Twy dVo avedptntwy nediwv wg eENG:

M (0,u)= [{2(w)-0 = z(o)jaV ~T1,,, (u) (4.12)

v
omou y(o) elval n CUMMANPWHATIKA CUVAPTNON TNG TUKVOTNTOG EVEPYELOG HEOW TNG
omnoiag ot mapapopdwoelg mpokuntouv and tg taoetg, I, (u) eival to cuvaptnolakd twv

eEWTEPLKWY SUVANEWV Kal N 0AOKARpwaon yivetal otov anapapdpdwto OYKo ToU OTOLXELOU.
EldIkOTEp, TO cuvaptnolako tTwv Hellinger-Reissner gival éva evepyelokO cUVOPTNOLOKO h

Umapén Tou omoiou TPOUTOBETEL TO UAIKO va elval UTEPEAQOTIKO. AUTO onpailvel OTL
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UTIAPXEL Ula EVEPYELOKN OUVAPTNON TAOEWV y(o) OmMou oL MApapopPWOEL; TTPOKUTITOUV

Omo TG TAOELS WG €ENG:

_xlo)

o (4.12)

To MapaAmAvw CUVAPTNOLOKO UTopel va ekPpaotel, emiong, oe OPOUG EVIATIKWV Kol

QVTIOTOLYWV TTAPAUOPIWOLAKWY HEYEBWV Ao TN oxéon:

1, (D,u) = J.d(u) :D— x(D)} dx ~ 1, (u) (4.13)

H cuUMANPWHOTLKA EVEPYELO EKPPATETAL OE QUTH THV TIEPIMTWON WC:

ox(D)

d(D)= oD

(4.14)

EVW TO CUVOPTNOLAKO TWV EEWTEPLIKWY ETUKOUPBLWY popTiwy F, Kol Katavepnuévwy doptiwv

b(x)=[ b, (x),b,(x) | AanBdveLtn popri:

L
M, =u-F,+[u"-bdx (4.15)

H oopporia Tou otolyxeiou SokoU amaltel tn otacludTnTA ToU cuvaptnolakol Hellinger-
Reissner. AuTO emttuyxdvetal BEtoviag TNV MPWTn HETOPOAR Tou cuvaptnosl Twv dUo
avegaptnTwy petafAnTwy ion Pe To undév.

A, = [(5d(w)" D) dx+j50 d(u)—d(D)) dx—5a" -F, jau bdx =0 (4.16)

HR —

Q.—.l\

Tote yia OAeg TG petafolréc ou(x) kat OD(x) kdBe kotdotaon mou opiletat anod To nedio
TWV HETOKWVACEWY Kal OSUVAUEWY (u(x), D(x)) LKOVOTIOLEL TLG KAQOLKEG €ELOWOELG TNG

Loopporiag (4.17) kot cuppLBaoctotntag (4.18).

L
j Sd(u) D) dx—5u’ -F, j&u bdx = (4.17)
0

[oD7 - (d(u)-d(D)) dx=0 (4.18)

0
3TN ouvéxela ta avefaptnta nedia ekdpalovral W YPOAUULKOS cuvOUAOUOG CUVAPTHOEWV

oXNUATOG Kal oavtiotolywv EemkopuPlwy peyebBwv. Mo ouykekplpéva, yla Tto Tedio
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HETOKWVAOEWY Bewpolvtal Ta KAAOWKA KUPBLKA TOAUWVUMO, €&vw To Tmedlo Twv

TAPALOPDWOEWV TIPOKUTITEL ATIO TNV TAPAYWYLON TOU TESIOU UETOKIVAOEWV:

u(x)=N,(x)-u
_ _ (4.19)
d(u(x))=0(N,(x))-u=N,(x)-q=N,(x)-T-u
To mebio twv Suvapewv ekdpaletal Baolopevo otn Bewpnon TNg LOOPPOTIAC KOTA
LKOG TOu otolxelou. Juvenwg, ot eflowoelc Loopporiog (4.10) ohokAnpwvovtal aneuBeiag

Kol epapuoloviag TIC CUVOPLAKEG CUVONKEC MapAyeTaL N akOAoOUON ox£on mapeUPOARC .

Z-o1

0
D()=Np()-Q+D, , Np)=| = x  x (4.20)
L L

ornou, D, eival oL ECWTEPIKEG EVTACELG TTOU TIPOKUTITOUV OO TOL KATAVEUNUEVA PopTiaL.

AvtikaBlotwvtag TG oxéoelg (4.19) kat (4.20) oto cuvaptnolakd (4.16), TPOKUMTEL N

akOAouBn Sakpltn popdn Tou:

L L
S, =5ET.{TT.deT (N,-@+D,) dx— [N, b dx—Fn}+
L 0 0 (4.21)
+5QT-{INDT-(Nd-T-E—d(D)) dx }:0
0

KaBwg n e€iowon (4.21) woxvel yia kaBes duvartn petoafoln twv dUo avedptnTwy nedlwv
Kol oL SUuo Opol tou aBpoiocuatog AapBavovtal pe Baon To AUUA TOU AOYLOUOU Twv

petaBolwy ool pe to undév. Emunmpdobeta, oL GUVOPTACELS OXAMATOC TToU eTAEXBNKav givot

L
0pBoywvLeg LETALL TOUG KaBwC J.NdT ‘N, dx=1. Zuvenwg, éneta and KAMoleG aAyeBPLKEG
0

MPAEelg TPOKUTITOUV oL 0KOAoUBeG €eflOWOEL TOU TEPLYPAPOUV TNV KOTACTACH TOU

otolxeiov oe emBaAAOpEVO e€WTEPLKO dopTio.
TT-(Q+Q,,)—Pm:0 (4.22)

L
T.a—jlv; -d(D) dx =0 (4.23)
0

OOV TO SLAVUCHA TWV LOOSUVAUWY ETUKOUBLWVY eEWTEPIKWY SpAoewv £XeL TN HopdN:
L
P =F,+ [N -b dx (4.24)
0
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kat Q, eival to SLdvuoua Twy EMKOUPLWY ECWTEPIKWY SUVAHEWY TIOU TIPOKUTITEL QO TG

ETUTAEOV E0WTEPLKEG SPACELG KATA KOG TOU OTOLXEIOU AOYW TWV KATOVEUNUEVWVY POPTIWV:

L
Q,=[N;-D, dx (4.25)
0

H eflowon (4.22) avtumpoowrnelel thv efiowaon woppormiag evw n eflowon (4.23) t™
ouvlnkn oupplBactol Twv mapapopdwoswyv. H OUVEXElD aAVAPECA OTA  OTOLXELA
efaodpaliletal avtiotolyilovrag Tig KOOOAKEG LETAKIVACELG TNG KATAOKEUNG OTLG TOTIKEG,

ETUKOUPBLEG LETAKIVAOELG U TOU EKACTOTE HEAOUGC.

H e€aptnuévn petaBAnth, SnA. to nedio twv napapopdwoewv unopei va mpoklPeL T6oo
amnod tnv mapeUPOAN TWV EMKOUPLWY SpACEWV KATA UAKOG TOU OTOLXELOU, OGO Kal amo TV
OAOKANPWON TWV KATAOTATIKWY OXETEWV OTLC (VEC TNG SLATOUNAG. Mo To Staxwplopd twv dvo

gevvowy, ol mopeUBaAopevec SuvApel cupBoAilovtat pe D(x) evdr ot Suvdpelg mou
TIPOEPXOVTAL OO TIG KOTOOTATIKEG OXECELS oupBoAilovtal pe D(x). H Lootnta Twv dvo

SLATUNWOEWVY OF YPapLKOTIOINUEVN Hopdn Sivel Tnv akolouBn oxéon:
D' =D = Ad' = f' -(D"” —15") (4.26)
JUVENWC, OL TPEXOUCEC TIAPAUOPPWOELS OTN SLATOUN TIPOKUTITOUV WG:
d"=d +f -(D"” —ﬁi) (4.27)

AvtikaBlotwvtac tnv e€iowon (4.27) otnv (4.23) KATAARYOUUE OTLC £E1G YPOAULKOTIOLNUEVEG

€€LlOWOELC TNC LooppoTtiag Kot cupBLBaoctotnTag:
T (@"+qQ)")-P, " =0 (4.28)

—i+1 . . . .
Tu -F-AQ —q'—c' =0 (4.29)
OTOU, TO UNTPWO guKapiag, oL EMKOUPLEG MaPAUOPPWOELG KAL TO TIAPAUEVOV UTTOAOLTTO
TWV MOPAPOPPWOEWY TIPOKUTITOUV aTtd TNV OAOKANPWON KATA UKOC TOU oTolxelou we e€nc:
(Np-f'Ny) dx (4.30)

L
F=[
0

q =jN; -d'(D') dx (4.31)
o]
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c =jN[, f -(D’ -D' +AD;',) dx (4.32)
0

H oAokANpwon TwV MOPpAMAVW OXECEWV YIVETAL HE TNV 0plOUNTIKY oAokAnpwaon Gauss-

Lobatto n omola B£tel SLATOUEG EAEYXOU OTA GKPO. TOU OTOLYEIOU OTIOU OVOUEVETAL KAl N

ONUOVTLKOTEPN UN-YPAUULKY cuuTiEpLDOPA.

Emauéntikéc ox£oelc Bewpolvtal emiong yla T EMIKOUPBLEG SUVAUELG KOl UETAKIVAOELG
Q" =Q +AQ", u™=u'+Au’. N ouvéxela mpaypoTomoleital n amoAowbr TwV
enavénTtikwy SUVAPEWV oTIC ox£oelg (4.28) kal (4.29) kot ol emaUENTIKEG ETULKOUPBLEC
UETAKIVAOELS UMOPOUV VA UTTOAOYLOTOUV amo tn oxéon (4.33) pe thv mpolnobeon OTL T

UNTPWo sukapiag tou péAoug eival avtiotpePuo.

K AT =P, " —Qu (4.33)

Qe =K'-T+T7-[@ ~(F)"-(q'+¢' )+ Q"] (4.34)
V. AplOuntiko NMapadeypa

Y€ 0UTO TO TIAPASELYLO TO APLOUNTIKO TIPOCOUOIWHA EAEYXETAL KOL TEKLNPLWVETOL E TO
TMELPOUATIKA amoTteAéopata Twv Ghannoum kat Moehle (2008, 2012a) os éva tplwpodo
mAaiowo and O TpLwV AVOLYUATWY, OTO OTOL0 TIPAYUOTOTIOONKE TELPAUATIKA SOKLUN 0T
oslopikn tpamnela tou Mavemotnuiouv Berkeley, California. To mMAaiol0 KOTOOKEUAOTNKE OE
KAlpaka 1/3 Kot avamaplotd tov cuvhon oxedlacpo tng dekastiag tou 1960 Loxupng dokou,
a0Bevolc UMOOTUAWUOTOG. Ol SLOCTACEL KOl OL AEMTOUEPELEG OTALONG TNG KATAOKEUNG
napouctalovtal oto IxAua 5.1. Mo OUYKEKPLUEVA, TA UTIOOTUAWHATA TNG OAPLOTEPNS
mAeupag (C1-C3, D1-D3) £xouv oxedlaotel cuUdPwvA Pe olyxpovoug Kavoviopoug (ACI 318-
08), evw Tta umooTtuAwpata tng Se€Ld pLong mheupag (A1-A3, B1-B3) sival oxeSlaopéva wote
Vo aVamaploTAVOUV  TUTKoUG oxedlaopoug tng Oekaetiag tou 1960 pe kUplo

XOPOKTNPLOTLKO TOUC TIOAU 0pailoUG CUVOETH PEG.
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IxAUa 5.1. AlaoTACELG KoL AEMTOUEPELEG OMALONG TOU TPLWPOHOU TTAALGIOU TPLWV

OVOLYUATWY

To mAaiolo and O Sieyeipetal SUVANLKA HE TN OEOULKN Kataypodr mou ouveéRn otig 3
Maptiou, 1985 oto oeswoud tn¢ XWAng (Llolleo Station, Component 100), n omnoia
napouctaletal oto Ixnua 5.2. To apxko emtoyuvoloypadnuo moAamAactaletal pe Tov
enauvéntikd ouvteleotn 4.06 £10l Wote To TMAALCLO vo EeMepAOEL TNV OVTOXH TOU Kal va

enéABouv onuavtikeg PAABEC OTA UTTOOTUAWLATA TOU.
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ground acceleration (g)

0 10 20 30 40 50
time (sec)

Ixnua 5.2. EmPaArlopevn ostoptkn Siéyepon (Chile Valparaio 1985 Llolleo x 4.06)

Ol mapapetpol Tou XaAuPa mou xpnowdomnolndnkav mapatibevral otov Mivaka 5.1. H

taon dwappon eivat o,, =475 MPa kou Sivetal ota melpapatikd Sedopéva.

Oy
(MPa) a n; n; eplat m q
475 0.03 10 0.5 3g, 0.02 20

Mivakag 5.1. MapAUETPOL TOU TIPOCOLOLWUATOC TWV pABSWV OmALGUOU

Mapopoiwg, oL MApAUETpOL TOU okupodéuatog avadépovtal otov Mivaka 5.2 omou
Sloxwpilovtol oL TOPAUETPOL TOU XPNOLUOMOLRONKOV ylo. TNV TPooouoiwon Tou
neplodlypévou mupnva Kat tng anepiodlyxtng emka@Audng. H avtoxng Tou okupoSEuatog

Silvetal ota o, =24.6 MPa kol to pétpo ehaotikotntag oe emninedo évtaong 0.40, Sivetal
ota E,=19GPa. H petafoln tng avtoxng Aoyw mnepilodwyéng éywe pe PBdaon To
npooopoiwpa twv Mander et al. (1988). Suvenwc, o cuvteAeotrg nepiodyéng k Aaupdavel

v T k=19 ywa ta unootulwuata vedTEPOU TUTIOU (acczk~0'w=46.7 MPa) Ko

k=1.1 yia ta toAadtepou tonov (o, =k-o,, =27.1 MPa).
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Ec Oy
(GPa) (MPa)
Neplodlypéva unooctuAwpata (C1-C3,01-D3)

Olc qc ko b P C1 C>

Nupnvag 20 18 09 0 0.0009 5 0.7 2 035

ErntikaAuyn 20 18 0.7 0 0.0009 3 1.2 4 0.1

NoaAalov-tomou vrtoctuAwpata (A1-A3,B1-B3)

Nupnvag 20 18 08 0 0.0009 37 08 2 035

ErukaAvyn 20 18 0.7 0 0.0009 3 1.2 4 041

Beams

Nupnvag 20 18 0.7 0 0.0009 3 1.2 4 01

Mivakag 5.2. Mapdpetpol meplodpLlyéVou Kol amepiodpLytou oKUPOSEUOTOG

K&Be dvowypa avohappavel emiong kotavepnuévo doptio 16.67 KN/m 1o omoio
OUMPETEXEL KOl w¢ Llooduvapn pala. Emiong, n seukappio twv neSihwv evowpatwbnke oto
npocopolwpa pe otpodikd shatipla. H BabBuovounon Toug mpayUatonolfnke pe TEToLo
Tpono wote n Bepehiwdne Slomepiodog (T;=0.34 sec) tou MAOLGIOU VO CUUTIIITEL PE TRV

tSlomepiodo mou mpoadlopilotnke MEPAUATIKA (Kspring=6500 KNm/rad).

H avdAuon xpovoloTopilog TPOYLOTOMOLEITOL XPNOLUOMOLWVTOG TNV  aplBuntiki
olokAnpwon Newmark twv gflowoewv kivnong pe F=0.25 kat y=0.50. Oewpnnke,
eniong, €wdng amdoPeon Rayleigh pe Bdon tg Vo mpwrteg Wlopopdég Kal Adyoug
andofeong OnMwg auvtol UeTpnOnkav melpapotikd. Etol, ywa tnv mpwtn Slomepiodo
(T, =0.34 sec) o Aoéyog amboBeong eivar 1.93, evw yio tn devtepn (T, =0.12 sec) sivau

1.85.

To otolxelo dokoU-umooTuAwpatog Slakpltomnoleital o 4 SLATOUEG EAEYXOU, OL OTOLEG
avTLoTOoLXoUV o€ pia wvn ouykévtpwong tng évtaong (localization zone) elpoug 83 mm oe
kaBe dkpo. H Slakpitomoinon tng Statoung oe Awpideg mepthapBavel 12 Awpildeg yia tnv
ermukaluPn kat 30 Awpideg ywa tov mupAva twv Stotopwv. Télog, amodAoiwon ng
emkaluPng Bewpeital OTL eMEPYETaAL OTAV N TAPAUETPOC PAABNG Eemepdosl Tn cupPatiki

wun D,=0.7.

ApXIKQ, n oUYKpLON ViveTal 0 0poUC KABOAKWY HEYEBWVY OMWG N OXETIKA UETAKIVNON
opodwv Kal n Tépvouaoa Baong. Ito IxNua 5.3 kal IxNua 5.4 mapouclaleTal N cUYKPLON TWV

XPOVOIOTOPLWY TWV OXETIKWV HETAKIVACEWY 0pOdwWV Kol TwV TEUVOUCWV BAong yla Tt

XXXiii



Extevig MepiAnyin

XPOVLKN SLdpkela Tou oelopol and 10 €wg 35 sec Omou mapatTnpeltal n ONUOVIIKY Hn-

YPOUULKN cupnepldopd.

1st storey drift
o
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-0.06 ‘ ‘ ‘
10 15 20 25 30 35

time (sec)

Ixnua 5.3. Z0yKpLON OXETIKNG LETAKIVNONG TPWTOU 0pOdou
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IxAUa 5.4. ZUyKpLON TEUVOUOWV BACEWG

H apxLkn eAaotikr) cupmneplpopd LEXPL TN SLAPPON TOU E0WTEPLIKOU TOAALOTEPOU TUTIOU
UTTOOTUAWHATOC TIEPLIMOU ota 13 sec GUUMIMTEL Kal oTlC SU0 TMEPUTITWOELC. ITN CUVEXEL
napatnpeitat dtappon tou efwteplkol UMOCTUAWHATOG Al Kol omd TO OhnueElo autd
eudavilovtal Peplkeég SLOPOPOTIOINOEL AVAUESA OTO APLOUNTIKO TMPOCOUOIlwHA KOl OTO
neipapa. H amdkAion yivetol svtovotepn UeTd to 22° Seutepolento 6mou ouppaivel
ONUAVTLKA Kal pn-avaotpéPun BAGBN oto unootuAwpa B1l. Katd tn StdpKela Tou Loxupou
TUAMOTOC TNG OELOULKAC SLEyeponG To MAaiolo Sleyeipetal pPe éva LOXUPO KUKAO €vtaong
OTIOU N OXETIKN Ywvia OXETIKAC HETakivnong tou 1°Y opddou dptavel oto 5%. Ocov adopd TG

TEUVOUOEC BAONC, TO OPLOUNTIKO TPOCOMOLWHA TIPOPAETEL LEYOAUTEPEG TEUVOUCES BAoNG
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KaBw¢ n MapapéVouca avIoxr TOU UTIOOTUAWMATOC Bl HETA TNV aoToXlOl UTIEPEKTIUATAL.
Map’ 6Aa AUTA N LKOWVOTIOLNTLKI) CUYKPLON OE OPOUG CXETIKWV UETAKIVAOEWY e€akoAouBel va
LoyVEL. e KaBe mepinmtwaon, ol StadopEC TwV amoTteAecoUATWY odeilovtal og peyalo Babuo
oe ¢oawopeva Tou EemepvolV TO QVTIKELPHEVO autr¢ tng Statplfng, omwg n oAicbnon
OTTALOOU OTNV aykupwaon Tou ota MESIAQ, N epdavion SLoywviwy pWYHWY 0TouC KOpBoug

KOl TO VO.OAKWHO TOU uTtooTuAwpatog D1.

3TN CUVEXELX N oUYKPLON TipOyUaTomoleitol o eminebo HEAOUG KOL TILO CUYKEKPLUEVA
adopd ota vmootuAwpata Al kat B1l. Ito Ixnua 5.5 mapouactdletal n cUYKPLON O OPOUC
TEUVOUOOG WG TIPOG TN OXETIKA Hetakivnon kopudng. To aplBuntikd mpooopolwpa ivat
LKOVO VOl ATTOTUTIWOEL EMOPKWE TOUG ApXLIKA oTaBepoUc UoTEPNTIKOUG PPOXOUG Kal TO EUPOG
TWV OXETIKWV UETAKIVAOEWY Kol ota §Uo unmootuAwpata. H cUykplon elval KaAUtepn otnv
TMEPUTTWON TOU oOKpaiou umootuAwpatog Al, evw amokAwon mapotnpsitat étoav Tto
unootOAwpa Bl gpdavilel onuavtikee BAaBec tplodldotatng katamovnong. Eival, emiong,
evbladépov OtL To UToOTUAWHA Bl ekdNAWVEL CUUUETPLKOUC Bpoxoug, svw avtiBeta n
pEyloTn avrtoxr Tou umootuAwpatog Al sudaviletal pelwpévn otnv apvntiky SlevBuvaon

efaltiog tng avamntuéng ebpeAkuoTikoU ¢opTiou mou pelwvel T BALBOUEVN {wvn Tou.

Test 1 - Column B1 Test 1 - Column A1
10 | | | T T 44
e -- 356
I - 26.7
€ 4 --4--r-o + = = 178
o - - = -
v 2 | 89
2 of - A i e 0
=, (H I
v 2L 4 ' b d - -89
5 ATYM
2 4L AER - 178
175}
-BF + st bee -26.7
8k —Exbenrdegt_ tlac g
—Ana|y5|s
= I 1 1 1
. s 0" & 20 I
Horizontal Drlft Ratlo (%) Horizontal Drift Ratlo (%)

IxNUa 5.5. Z0yKkpLon opl{OVILWY OXETLKWV UETAKLVIOEWY UE TEUVOUOES BAoNG

ErunpdoBeta, clyKkpLon Tpoypatornoleital yia ta SU0 UTTOOTUAWUATO O OPOUC OXETIKAG
LETOKIVNONG KOpUudNG wg pog Tn otpodr xopdng otn PAcn Toug Kal MapoucLaleTal oTo

Ixnua 5.6. Opoiwg to €0UPOG TWV OTPodWV XOPSNG UTOAOYI(ETOL LKAVOTIOLNTIKA Yyla TO
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umootUAwHa Al, EVW UTMOEKTILOUVTAL Yl TO UTIOOTUAwWHA B1, kKaBwg oL mpooBeteg oTpodEg

oTePEOV oWHATOG e€attiag tng oAloBnong otnv aykUpwon dev Aappavovtal ut’ oyn.

5 0057 T ‘ T 1 005
g x/ -
= 0.025] 0.025
9o
-
BL 0r or
5 ‘ 1
g -0.025 i- “Experiment || ¢ |= -Experiment
= —Analysis | g —Analysis
L) | —
-0,005 -0.05L L s 1 I n |
006 004 -0.02 0 002 004 006 -006 -004 -0.02 0 002 004 006
(a) (b)

horizontal drift

Ixnua 5.6. Z0ykplon otpodwv xopdng: (a) Baon unmootuAwpartog Bl, (b) Baon

umootuAwpatog Al

VI. Zupnepaopata kat MeAAovtikn Epsuva

Jtnv Tapovuoca Swatplfy  avamtuxbnkav OMOAQ  KATAOTOTIKA  TIPOCOMUOLWLOTA
TAQOTIKOTNTAG KAl MNXAVIKAG Twv BAaBwv Kal evowpoatwbnkav os otolxeio Sokou vwv
LLKTOU gVeEPYELOKOU TUTIOU. Baolkog okomog eivat n akplPAg mpocopoiwon kataokeuwv 0%
ol onoleg ekdnAwvouv onUavTikeG PAABEG AOYw LoXUPWV aVaKUKALLOUEVWY dopTicEwV. ITO
TAQLOLO OUTO AVATNTTUGOETOL TO UN-YPOUULIKO Tipocopoiwpa Tou XaAuBa to omoio cuvlualel
KLVNUOTIKN KOl LOOTPOTIKI KPATUVON, EVW TEPLYPAPEL EMITUXWG TO MAATO Sloppong, To

dawvoépevo Bauschinger kal toug ouvtopoug kKAadoug anodoptiong-smavadopTLon .

Emiong, avtipetwniletal to Gpavopevo Tou Auylopol Twy Stopnkwyv papdwv omAtopou. H
Slatopn g papdou emipepiletal os Awpideg, kaBepia anod TG onoleg ekdpdleTal LECW TOU
KOTAOTOTLKOU TIPOCOMOLWHATOC ToUu XAAuPa. H TAEUPIKN HETAKIVNON, N KATOVOWUN TWV
KOUTTUAOTATWY Kal N SeUTEPOYEVNC TAPAUOPIWON AUYLOUOU TPOKUTITOUV OVOAUTIKA OTto
Vv Bewpia Avylopol. H peBobdoloyia auth kataAnyet oe plo emavoAnmriky Stadikacio
omou emiBaAlovtal ol PETEG TAPAUOPPWOELS KOl Ol KOAUTTUAOTNTEG OVOVEWVOVTAL HEXPL VO
KavormolnOel n Loopportia oto pEoov t¢ paBdou. H olykplon UE MELPAUATIKA SESOUEV TNG
BBAloypadia TEKUNPLWVEL Kol POAVEPWVEL ThV OKPIBELX KAl TV OomOSOTIKOTNTO TOU

TIPOCOUOLWUATOC.

MapdAAnAa, avantiooeTol TO HOVOAEOVLKO TIPOCOUOLWA TOU OKUPOSEUATOC e Baon T
Bewpla MAOOTIKOTNTAG KAl HNXAVIKNG Twv PAaBwv. To mpooopolwpa elval kavo va

TeplypAP el LAKPOOKOTIKA €KTOC oo T BAUTTIKN cupnepldopad, tnv edpeAkuoTikn Bpavon,
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TN UN-YPAUULKA anodoption Kot ta pavopeva avolypatog/kAeloiparog Twv pwypwv. Etol,
QVOITAPLOTA aPLOUNTLKA TIG HopdEC BAABNG Twy peAwv amo 0, onwg n cuveAwbn mupnva
Kat n amodAoiwon tnNg emk@AuYPng n ormoia evePyomolel £miong KoL TNV €vapén Ttou
AuylopoU twv Slapnkwv paBdwyv. To UTIOAOYLOTIKO TIAEOVEKTNUA TOU TIPOCOUOLWHATOG
odelleTol OTOV AUECO UTIOAOYLOUO TWV TACEWV HECW TOU EPATMTOUEVIKOU LETPOU TO OTOLO
EVOWMOTWVEL TNV TTAAOTIUN Kal ¢Bivouoa cuunepidopd Aoyw PAAPNG. Emiong kal og auth
Vv nepintwon to fayopeva amoTteAECUATA TOU TIPOCOMOLWUATOG gAEyxovtal HeE PBaon

TELPOUATIKA Se60UEVO 0€ OVAKUKALLOUEVES PopTIoELG SOKIUIWY OKUPOSENATOG.

3TN OUVEXElD, Ta EEXWPLOTA TPOooopolwHaTta TG pafdou omAopol Kol Tou
OKUPOBENOTOG ELOAYOVTAL O £va OTOLYEl0 SOKOU VWV LKTOU gVEPYELOKOU TUTIOU OTIOU Kall
aAAnAoemiSpolv. EEayovtal ol €flowoelg TG Looppomiog kol cupPLBactotntog, evw n
YPOUULIKOTIOlNGN TOUG EMITPEMEL TNV ETIAUGCH TOUG UE aplOUNTIKEG ueBOSoug Tumtou Newton-
Raphson. To umoAoyloTIKO TTAEOVEKTNHUO TNG TPOTEWVOUEVNC pHeBodoloyiag €ykeltal oTo
YEYOVOC OTL OL TAOEL( umoloyilovtal pnta Kal Apeco oe KABs Brpa xwplc tnv avaykn

uLoB£TNoN¢ teXxVIKwY PoPAePnc-610pBwonc (predictor-corrector).

TéNOG, TO KOOOAKO TpooOpOlwHA 6G0KOU-UTTOOTUAWUATOC OUYKPILVETAL WE Ta
TELPAPOTIKA SeS0EVA EVOC TPLWPOGOU TTAALGIOU, TPLWV AVOLYHATWY OTO omoio emBAAAeTOL
emtayuvoloypddnua Bdong. H olykplon Twv apBunTikwv HE TA  TIELPOOTIKA
anoteAéopato amodelkvUeL TNV akpiBela Kol amodoTIKOTNTA TOU TIPOTELVOUEVOU LOVIEAOU
va TEPLYPAdEL TNV AVEAOOTIKN, aVaKUKALWLOUEVN cupmepldopd KTplwv amd O péxpt Tou

otadiou avantuéng EVTovwy TPLoSLACTATWY KOTOTIOVHGEWV.

H mapolvoa epyacia avadewkviel evlladépovta BEpata yla HeAAOVTIKA €peuva.

Oplopéva poBARUATA TTOU UTTOPOUV VA AVTLUETWITLOTOUV £ivol Ta €€AG:

e H enéktaon tng Slatunwong tou Auylopol tTwv paBdwyv, 6mou €vag r meplocdtepol
OUVOETAPEC TAPAHOPDWVOVTAL UE CUVUTIOAOYLOWO TNG SLOYKWONG Tou uphAva

e EvowpATwoNn Tou $GalVOUEVOU TNC OALYOKUKALKAG KOTIWGONC OTO TPOCOMOLWHA Tou
XaAuBa.

e Evowpdtwon ¢oawvopévwy pubuol emiBoAng tng £viacng oTo oKUPOSepa yla TV
OVTLUETWTTLON KPOUOTIKWV popTiwv Kot ekpAEewv.

e EméKTacon Tou povoagovikoU TPOCOUOLWHATOC TOU OKUPOSEUATOC WOTE va TEPAGPEL
EUUEDCA TNV EMLPPON TNG SLATUNONG.

e [pooouolwon eVICXUOUEVWVY UTIOOTUAWMATWY O pe pavdueg okupodepatog 1 FRP.
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Abstract

Modeling Reinforced Concrete Structures under Severe Cyclic Loading Incorporating

Plasticity and Damage Models.

By llias A. Gkimousis

National Technical University of Athens
School of Civil Engineering

Institute of Structural Analysis and Aseismic Research

Recent advances in the field of computation technology and increased requirements in
the field of earthquake engineering have led to the development and implementation of
highly efficient beam-column elements capable of tracking the hysteretic behavior of
Reinforced Concrete (RC) structures. The aim of this dissertation is to model beam-column
behavior in a computationally effective manner, reliably revealing the overall response of RC
members subjected to intensive cyclic loading. In this respect, plasticity and damage are
considered in the predominant longitudinal direction allowing for the derivation of a fiber
finite element model which is formulated on the basis of the two-field Hellinger-Reissner

energy principle.

Following this methodology, a uniaxial local stress-strain constitutive relation for steel
rebars is developed, which is based on a combined nonlinear kinematic and isotropic
hardening law. The model also incorporates Bauschinger effect, yield plateau and is capable
of addressing the overshooting problem after short reversals, maintaining full memory of
the loading path. In addition, the effect of inelastic buckling of longitudinal rebars, which
becomes essential at later stages of intensive cyclic loading, is incorporated. The rebar cross-
section is considered discretized into fibers, each one following the derived stress-strain
uniaxial law. The buckling curve is analytically determined while equilibrium is imposed on
the deformed configuration. Finally, the proposed formulation is verified with existing

experimental data of longitudinal rebars under cyclic loading exhibiting inelastic buckling.



In addition, a smooth plasticity-damage model is developed for concrete, accounting for
unilateral compressive and tensile behavior, nonlinear unloading and crack-closure
phenomena. Softening and stiffness degradation phenomena are handled through a scalar
damage-driving variable, which is a function of total strain. Smoothening of the incremental
damage behavior is achieved following similar steps to the steel formulation, thus exploiting
the common mathematical structure of classical plasticity and damage mechanics. Concrete
model is validated in terms of experimental results on concrete specimens under imposed
cyclic strain histories and it can efficiently address core crushing and cover spalling failure

mechanisms.

The uniaxial models for concrete and rebar are employed to derive a fiber beam-column
element which is used to assemble the numerical model of frame structures. Following the
two-field mixed approach the state determination of the proposed element is numerically
investigated following two alternative methods that provide identical results, i.e. a
linearization method and a solution in state-space form. Global solution of the entire system
in the linearization method is established using a standard Newton-Raphson numerical
scheme, which in the inner loop incorporates the evolution equations of all fibers elevated
at section, element and structural level. Also, cover spalling, which triggers the inelastic
buckling of longitudinal reinforcing bars, is detected as soon as the damage variable of the
adjacent concrete fibers exceeds a threshold value. Numerical results that compare well
with existing experimental data on RC structures are presented demonstrating the accuracy

and efficacy of the proposed formulation.
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Modeling Reinforced Concrete Structures under Severe Cyclic Loading Incorporating Plasticity and Damage Models

1.1 Background and motivation

Reinforced Concrete (RC) skeletal structures constitute the vast majority of the built
environment at seismically prone regions. An outburst in the construction of multi-storey
residential and office buildings occurred during the 1960s and 1970s, hence, nowadays these
structures have already exceeded or approached their life expectancy. Consequently, there
is urgency for seismic assessment and retrofitting of these structures in order to adapt to
modern code provisions and contemporary knowledge on seismic-resistant technology.
Linear elastic analysis is still considered adequate for performing structural design of new RC
buildings as increased safety factors, detailing requirements and capacity design procedures
ensure seismic protection. However, in the case of existing buildings, the complete or even
partial knowledge of the geometry and reinforcing details renders the possibility of
estimating seismic response in a highly reliable way. To achieve that, nonlinear modeling
implementing inelastic material behavior is necessary for predicting the true behavior of the
structure under ground motion excitation. Realistic seismic evaluation leads to the proper
retrofitting and strengthening strategies, a decision making procedure which has significant

life-cost and economic consequences.

In this context, modern design codes such as the European Norm for the design of
structures for earthquake resistance (EN 1998), the Greek Code for the Seismic Retrofit of
existing buildings (KAN.EMNE 2013), and the ASCE standard for the Seismic Rehabilitation of
Existing Buildings (ASCE 41-13 2013) offer specific guidelines for the evaluation of the
nonlinear properties of RC members and the estimation of the nonlinear structural
response. The concept of the performance based design, which demands a given structure
to withstand various levels of loading intensity with adequate damage levels, is the basic
core of modern codes (Fardis 2010). One of the performance levels is the requirement to
prevent structural collapse, namely Near Collapse (NC) in Eurocode 8-3 and KAN.EME and
Collapse Prevention (CP) in ASCE 41-13. It is therefore evident that proper modeling of
structural response should include all inelastic phases such as initial crack formation and

expansion until total failure of RC members.

Generally, RC column failure modes are classified into the following three main
categories according to the PEER structural performance database (Berry et al. 2004), which

includes over 400 tests on rectangular and spiral reinforced columns:

e Flexure critical, if no diagonal shear damage is observed
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e Shear critical, if displacement ductility at failure is K <2, or actual maximum load

capacity is less than the 95% of the load capacity calculated analytically at the strain

value of 0.004, F, <0.95F,

eff = 0.004 *

e Flexure-shear critical, if flexure and shear critical criteria are not satisfied

Also, damage observation due to cyclic loading in RC columns is distinguished in the

following categories:

e Concrete crushing

e Significant cover spalling

e Longitudinal bar buckling

e Longitudinal bar or spiral fracture

e Loss of axial load capacity

Therefore, it becomes evident that refined modeling of RC members should be able to
describe all the above features, while at the same time being computationally effective in
the context of the computational power available nowadays for real-life structural
engineering simulations. This need for keeping the computational aspects under control is
intensified by the record to record variability of the seismic action and the uncertainty
regarding live loads and respective masses distribution. Consequently, all codes require at
least three Time History (TH) analyses with varying seismic intensity to account for every of
the 3 performance levels, considering also 4 displaced mass positions due to accidental
eccentricity (i.e. 3x3x4=36 TH analyses). Also, recent advances in the area of uncertainty
guantification like the Incremental Dynamic Analysis (IDA) (Vamvatsikos and Cornell 2004)
and fragility assessment are based on statistical evaluation of large amount of response data
resulting from many nonlinear numerical analyses (Haselton et al. 2008; Gkimousis and

Koumousis 2013).

1.2 Modeling reinforced concrete structures, literature review

During the last fifty years, numerous reinforced concrete models and Finite Element
Method (FEM) techniques have been developed for the analysis of RC structures behavior.
Beam-column finite element models for the nonlinear analysis of RC structures can be
divided in three main categories i.e., the lumped plasticity models, the distributed plasticity

models and the detailed ones.
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1.2.1 Lumped plasticity models

In the first category, nonlinearity is expressed in stress resultant terms and is expected to
develop in predefined regions at the element ends, forming the so called plastic hinges. In
these areas rotational springs are used to model nonlinear behavior in terms of moment-
curvature relationship. The parallel model by Clough et al. (1965) that was later modified by
Takizawa (1976) and the series model by Giberson (1967) are frequently utilized among
others (Figure 1.1). The model of Clough et al. (1965) is subdivided in two parallel elements,
the first one being elastic and the second elastic-perfectly plastic. Hence, the yield point is
defined by the second element, while the first element describes hardening effect. The
advantage of the parallel modeling is that element stiffness is calculated by simply adding
every element stiffness contribution. Next, Takizawa (1976) proposed a general version of
the parallel model where multilinear monotonic constitutive laws are implemented,
describing in such way cracking phenomenon. On the other hand, the first series model
proposed by Giberson (1967) consists of one linear elastic element and two nonlinear
springs placed at both ends, where nonlinear deformations are lumped. The series model is
generally more efficient than the parallel one while it can describe complex hysteretic
responses by implementing the proper moment-curvature relations at the springs. Recent
advances in the field include the hysteretic Euler and Timoshenko beam models by
Triantafyllou and Koumousis (2011a,b) where a Bouc-Wen type model is implemented. The
overal response is decomposed in an elastic and hysteretic part enabling the explicit
numerical solution of the constitutive equations without the need of internal predictor

corrector techniques.
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Figure 1.1. Lumped plasticity models: (a) Clough et al. (1965), (b) Giberson (1967)

Generally, lumped phenomenological models depend on a number of parameters like
cross-sectional geometry and loading conditions that are predefined, influencing
considerably the structure’s response. Also, biaxial bending with axial force is addressed
with the notion of yield surface and flow rule, which are mainly developed for plastic
behavior of metals and have limited application in the case of RC cross sections. In fact, even
modeling concrete on the basis of classical nonassociated plasticity (Hu and Schnobrich
1989), local discontinuities in the distribution of stresses in the section are still not
considered. However, the main drawback of lumped plasticity elements is that they limit
inelastic response in predefined regions and fail to describe the spread of nonlinearity along

the element length.

1.2.2  Distributed plasticity models

The second category corresponds to the distributed plasticity elements that monitor
nonlinearity in more than two selected regions inside the length of the element. These
control sections are described by constitutive relations of classic plasticity in terms of stress
resultants, or they are subdivided in longitudinal fibers representing a uniaxial stress-strain
law (Figure 1.2). Cross-sectional fiber discretization has the advantage of adjusting the
neutral axis location as a function of curvature and axial deformation, offering a direct

representation of the combined axial-flexural interaction.
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Figure 1.2. Distributed plasticity fiber beam element

Generally, the numerical solution procedure in the context of fiber distributed plasticity

elements consists of four levels:

1. Fiber level, where given axial strains and material parameters, concrete and rebar
fiber uniaxial stress and tangent Young modulus are derived.

2. Cross-section level, where fiber stresses and tangent moduli are summed up over the
cross-section and stress resultants (axial force, bending moment), while also cross-
sectional stiffness matrix are derived.

3. Element level, where element state determination takes place, namely the calculation
of nodal internal forces and element tangent stiffness matrix.

4. Structure level, where every element residual is summed up together by applying
continuity at nodes, and global equilibrium is enforced in terms of external and

internal nodal forces.

The state determination problem of the first distributed plasticity elements (Keshavarzian
and Schnobrich 1984) was based on the classical finite elements method (Bathe 2007) where
the displacement field along the element is expressed with cubic polynomials. This
methodology only describes constant axial force and linear curvature, which is not accurate
in the plastic region where curvature is distributed nonlinearly along the element.
Consequently, inner nodes have to be introduced in the element to increase accuracy which
in turn increases the computational cost. To address this problem, force based models that

interpolate nodal forces inside the element maintaining equilibrium have been proposed.
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Mahasuverachai and Powell (1982), Kaba and Mahin (1984) and Zeris and Mahin (1991)
suggested different formulations and identified the advantages of the force method in the
analysis of nonlinear RC frames. The thorough investigation of these models, making them
computationally attractive, was performed by Spacone et al. (1996 a,b). They suggested an
iterative procedure under constant displacements for the element state determination
establishing compatibility. Soon after, Neuenhofer and Filippou (1997) showed that
elemental iterations are not necessary, as the element stresses gradually converge while the
whole structure is in equilibrium. Although these early force based elements have a robust
and efficient numerical procedure, doubts had arisen on their variational consistency. The
issue was raised by Hjelmstad and Taciroglu (2005) who showed that it is possible to provide
non-variationally consistent force-based elements within the "nonlinear flexibility"
framework by enforcing equilibrium directly, proving in such way that not all force-based
elements have a variational base. The same authors had previously (Hjelmstad and Taciroglu
2002) developed mixed beam elements based on two or three field energy principles that
present a variationally consistent structure. Variationally consistent algorithms for the state
determination process were also proposed by Nukala and White (2004) and Saritas and
Soydas (2012). Thereafter, mixed methods seem to dominate the research field of nonlinear
distributed plasticity analysis of RC structures as a lot of research has recently been
produced in the field (Hjelmstad and Taciroglu 2003; Taylor et al. 2003; Alemdar and White
2005; Alsafadie et al. 2011; Correia et al. 2015).

In the general formulation of fiber beam-column elements uniaxial material laws are
implemented for steel rebar and concrete fibers. These models are expressed by analytical
relations and are usually derived by interpreting cyclic experimental results on rebar and
concrete specimens. The Menegotto-Pinto (1973) and Dodd and Restrepo-Posada (1995) are
some of the most frequently used models to describe steel cyclic behavior, while Monti-Nuti
(1992) and Dhakal and Maekawa (2002) models incorporate also rebar inelastic buckling.
Considering uniaxial concrete behavior, the Kent-Scott-Park (1982) and the Mander et al.
(1988) models later improved by Martinez-Rueda and Elnashai (1997) and Chang and
Mander (1994) are frequently encountered among others in academic and commercial
software, while high strength concrete cyclic behavior is also addressed. (Konstantinidis and

Kappos 2007)

The basic drawback of distributed plasticity fiber beam elements is their inefficiency to

explicitly incorporate local 3D interaction effects on transverse rebars and concrete, i.e. the
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confinement effect. In addition, the weak point of the force based elements is that although
they fit perfectly in the Euler-Bernoulli flexural framework, their extension to accommodate
shear effects is not straightforward. However, some authors have provided numerical
models based on various modeling strategies that try to address the axial-shear-flexural
interaction. Martinelli (2000) developed a fiber column element based on Timoshenko beam
theory coupled with a strut and tie truss model that accounts for shear deformations by
considering the transverse reinforcement with the compressive and tensile concrete
diagonals. In such way different shear resistance mechanisms are taken into account as the
arch action, truss mechanism, aggregate interlock, and compressive concrete are all
described. While Martinelli (2000) used the displacement based approach and uniaxial
constitutive laws for concrete, Petrangeli et al. (1999) developed a force based fiber beam
element by introducing a biaxial constitutive law based on a modified microplane approach
(Bazant and Oh 1985) for modeling monotonic and cyclic loading. Later, Bairan and Marie
(2006) proposed a nonlinear fiber sectional model for concrete structures capable of
simulating the total interaction between all six internal forces addressing also flexural-
torsional interaction problem with warping-distortion phenomena included. Also,
Stramandinoli and Rovere (2008) developed a three node and Ceresa et al. (2009) developed
a two node Timoshenko fiber beam element by implementing the Modified Compression
Field Theory (Vecchio 1999) to account for a robust response under cyclic loading. On the
other hand Mazars et al. (2006) and Saritas and Filippou (2009) incorporated general
damage theory models in the context of the multi-fiber modeling to describe the axial-shear-

flexure interaction.

Furthermore, special treatment is required to account for modeling the bonding interface
between longitudinal reinforcing bars and adjacent concrete fibers at beam-column joints
and foundation elements. Bar-slip generates rigid body rotations at the ends of frame
elements that can substantially increase member flexibility (Sezen and Moehle 2006).
Limkatanyu S and Spacone (2002) incorporated the bonding interfaces in the framework of
displacement and force based beam-column elements. Also, Berry (2006) and Zhao and
Sritharan (2007) models use a zero-length fiber section in connection with the standard fiber
beam-column element to account for the bar-slip effect. Later, Ghannoum and Moehle
(2012b) improved these models by avoiding discontinuities in rebar stresses and neutral axis

location between the bar-slip and adjacent beam-column fiber sections.
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Moreover an inherent deficiency of the force-based elements is that they produce
unrealistic behavior in softening-strain cases as they result different elemental responses for
different number of control sections as described by Coleman and Spacone (2001). In the
same work a solution to this problem is proposed by introducing a constant fracture energy
regularization technique. Later, a more robust solution was given by Scott and Fenves (2006)
where a new constant length plastic hinge integration method based on the modified Gauss-
Radau quadrature was developed. Moreover, Almeida and Pinho (2012) tried to expand this
concept showing an adaptive algorithm where the plastic hinge length can be modified

during the analysis depending on the load conditions.

1.2.3 Detailed finite elements

In the detailed approach the concrete domain is discretized with 3D solid elements while
longitudinal rebars are usually modeled with embedded rod elements (Hartl and Ch 2002;
Spiliopoulos and Lykidis 2006; Cervenka and Papanikolaou 2008; Cotsovos 2013). However,
even if this modeling appears to provide the highest possible accuracy, it lacks numerical
consistency and robustness due to the high complexity of triaxial concrete models (Markou
and Papadrakakis 2012), i.e. the smeared crack approach. Another modeling approach for
the 3D concrete behavior is based on the coupled plastic-damage mechanics theory
(Lubliner et al. 1989; Lee and Fenves 1998; Grassl and Jirasec 2006; Richard et al. 2010) that
utilizes the concepts of plastic surface and damage surface interaction able to model
yielding, softening as well as stiffness degradation cyclic phenomena. To address the
numerical instabilities of the complex constitutive models high order finite elements and
integration techniques are utilized. For this reason the application of such models in real-life
structural engineering applications seem to be impractical at the time being, considering
also the large amount of time history analyses needed due to record to record variability.
Towards this direction, efforts have been made to combine the distributed plasticity and
detailed 3D approach in a hybrid simulation where the clear span of RC members is modeled
with beam elements and joints are modeled with solid elements. (Mata et al. 2008; Markou

and Papadrakakis 2015).

1.3 Research objectives

The aim of this thesis is to propose a fiber beam-column element able to model skeletal
RC structures exhibiting severe cyclic loading. Fiber modeling is selected as the appropriate
method to achieve such a purpose, as it combines both computational efficiency and

stability with accuracy to describe the physical problem. The main focus is on the numerical
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modeling of the flexural critical failure mechanisms that RC members undergo during
intensive seismic loading i.e. cover spalling, core crushing and longitudinal rebar buckling. On
the level of material modeling, the thesis makes an effort to develop uniaxial steel and
concrete constitutive laws based on the solid theoretical background of the general
continuum plastic and damage models. On the level of the finite element modeling, the
thesis explores the variational consistency of the two-field mixed fiber beam elements and
offers efficient numerical solution methods by implementing the proposed material models.

More specifically, the dissertation aims to:

e Develop a uniaxial rate steel cyclic model for longitudinal rebars incorporating
nonlinear kinematic and isotropic hardening while it can also simulate yield plateau

and Bauschinger effect.

e Address reinforcing bar local inelastic buckling by iteratively satisfying equilibrium in

the deformed configuration of a single rebar.

e Develop a uniaxial rate coupled plastic-damage concrete model able to simulate core
crushing and cover spalling that triggers rebar buckling mechanism. The concrete
model can describe softening and stiffness degradation behavior, while it is also

enriched with nonlinear unloading and crack closure phenomena.

e Formulate a two-field mixed beam-column finite element that takes advantage of the
rate structure of the material constitutive models and propose two different
numerical solution schemes i.e. solution via linearization of the element equations

and solution in state-space form.

1.4 Dissertation outline

The dissertation is organized as follows:

In Chapter 2 the formulation of the uniaxial steel model solely based on plasticity
considerations is presented. Plasticity rate equations are combined together and are
smoothed following the notions of hysteresis. In addition, some phenomenological
modifications are introduced making the model able to describe yield plateau, Bauschinger
effect, correcting also its incompatibility with Drucker's or Ilyushin's postulates of plasticity

for partial unloading-reloading in the nonlinear path. Then, the model rate equations are

11
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linearized following a simple backward Euler scheme and a solution algorithm is presented.
In addition the inelastic buckling phenomenon of the single rebar is addressed. The rebar is
discretized in layers each one represented by the local uniaxial cyclic steel model developed.
An iterative procedure is implemented where the buckling curve is determined analytically
and equilibrium is imposed on the deformed configuration by updating the curvature field of
the rebar cross-section. The accuracy of the proposed steel model is verified in terms of
experimental data and the advantages in comparison with other existing uniaxial rebar

models are demonstrated.

Chapter 3 deals with the formulation of the uniaxial rate concrete model. The model is
based on the combination of continuum damage theory that describes softening and
stiffness degradation phenomena and plasticity theory necessary for the expression of
permanent inelastic strains. The basic model is also enhanced with the phenomenological
additions of nonlinear unloading and crack closure phenomena. The linearization of the rate
equations leads to the solution algorithm of the model, while its accuracy is validated on the
basis of experimental data and other existing concrete models on both compressive and
tensile behavior. Special emphasis is also laid on the influence of model parameters on the

outcome response, while also the appropriate range of parameters is notified.

Chapter 4 describes the state-determination process of the proposed RC fiber beam-
column element. Cross-sectional internal forces and stiffness are derived from midpoint
fiber integration rule, while two basic procedures are investigated, namely the displacement
based and the two-field mixed principle approach. Detailed state determination algorithms
based on the linearization of the element equilibrium and compatibility equations are
described for both methodologies. In addition, a novel state space approach is developed in
any case by taking into account the rate form of the constitutive equations and solving
theme simultaneously with the global equations of motion. Finally, the superiority of the
mixed formulation over the displacement based approach, is demonstrated through

comparative examples.

In Chapter 5, examples are presented that demonstrate the validity and accuracy of the
proposed formulations. The proposed numerical procedure is compared with experimental
results of cyclic tests on RC structures available in literature. Complexity of the experimental
tests ranges from a single RC column under pseudo-static cyclic response to seismic time

history analysis of a one third scaled 3-storey, 3-bay frame.
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Chapter 6, finally, summarizes the conclusions drawn in this work while highlighting some

important results obtained. At the same time the directions for future research are outlined.
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2.1 Introduction

Stress-strain o, —&, curve for mild steel rebars in tension until failure is well documented

from experiments (Leonhardt 1980). It is typically represented by four regions which are

presented in Figure 2.1 and they are listed below:

-Linear elastic region
-Yield plateau
-Strain-hardening region

-Post-ultimate stress region

800

wield glateau strain hardenihg region 1 ‘ post ultimate &tress region
I T (55:' o) 1
600 -
(€,0)
€.0) ultimate stress failure point i
© Y point
% ubper lower yield
< 400§ “PPE" T point 4
" yield point
wv
(9]
=] 4
(%l
200 N
E, |
O x | | 1 1
0.05 0.1 . 0.15 0.2 0.25
strain (-)

Figure 2.1: Tension monotonic curve for typical steel reinforcing bar (Leonhardt 1980)

The linear elastic region (0S8§ Ssy) is described by Hook’s law o, =E, -¢,, where E_ is
The Young’s modulus of elasticity. Elastic branch ends to the yield point (&,,0,) which is

generally higher that the yield plateau but for engineering purposes lower yield stress and

yield plateau stress are considered the same.

Similarly, Luders or yield plateau (gyﬁgsﬁgsh) is typically assumed to be horizontal,

although this is not actually the case as fluctuations arise.. The point at which the yield
plateau ends and strain hardening begins is not obvious, although generally a dip is
preceded, followed by a steep increase that suddenly changes slope into the relatively

smooth hardening region. Generally, yield stress o, is defined conservatively by the lower

yield point. However, high strength rebars do not exhibit this defined plateau.
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The strain-hardening region (gshsgssgsu) ranges from the idealized coordinates at

which strain hardening begins (Sh,O'y) to the ultimate coordinates(eu,au), which

S

correspond to the point at which the maximum tensile load is resisted and necking begins.

At this point the stress-strain curve has zero slope.

In the post-ultimate region (gsu <g,<é,..), localization of damage is achieved, hence

the softening branch is related to the location and gauge length over which the experiment
is monitored (Marin 1962). This softening behavior of longitudinal rebars is omitted in the
analysis of RC members as it is very unlikely to be manifested due to preceding buckling,

bond-slip, or failure of neighboring concrete.

Measured data on reinforcing bars show some difference in the responses in tension and
compression although it is commonly assumed that the monotonic stress-strain compression
and tension curves are identical. For this reason Spurr and Paulay (1984) propose that the

compressive stress at a given strain can be defined as the corresponding tension stress

multiplied by (1—255). The difference is attributed to the change of the rebar cross-

sectional area during loading and it is revealed if engineering coordinates are used for the
representation of stress-strain curve. Alternatively, if the natural or true coordinate system

is used, then any differences disappear. Natural stress &, is related to engineering stress

with relation o, =0, (1+85)

However, reinforcing bars in reinforced concrete members that undergo high
compressive strains at intense cyclic loading are unlike to exhibit a stable loading path. This
is due to buckling that appears in the form of large lateral deformations between adjacent
stirrups, or into a length including one or more drifted stirrups. Buckling of longitudinal
rebars constitutes a common failure mode of RC columns undergoing cyclic loading along
with significant spalling, concrete crushing and rebar fracture. Due to geometrical
nonlinearity, the average compressive stress carried by reinforcing bars decreases in the
post-buckling range, while point-wise steel stress-strain relations over the rebar’s cross-
section remain the same. This behavior characterizes buckling as a local phenomenon. On
the contrary, the average tensile stress-strain relationship over the specified control volume

remains the same as the point wise stress-strain relationship.

To model the elastoplastic piecewise steel cyclic behavior various models have been

proposed among which the widely used Menegotto-Pinto model (1973). The advantage of
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this model is its explicit formulation enabling the direct derivation of stresses given strains. A
lot of preceding steel models are based on the Menegotto-Pinto equations to describe the
steel cyclic behavior (Chang and Mander 1994; Balan et al. 1998; Hoehler and Stanton 2006;
Kunnath et al. 2009). These models are efficient to capture steel hysteretic loops but
generally fail when short reversals take place (see also §2.2.8). Another very common model
is the Dodd and Restrepo-Posada model (1995) which resolves the issue of short reversals by
keeping in memory only 3 reversal branches, but it is computationally unstable and
inefficient as it requires iterations for the reversal curves. A solution to this drawback has
recently been proposed by Kim and Koutromanos (2016) by using b-splines to describe
reversals. Moreover, high strength steel is addressed experimentally and analytically in Shi

et al. (2012) and Wang et al. (2015).

Considering rebar buckling, the Monti-Nuti model (1992) is commonly used as an
enhancement of the Menegotto-Pinto model, which accounts for four different hardening
rules. Furthermore, a number of average stress-strain relations have been proposed (Gomes
and Appleton 1997; Dhakal and Maekawa 2002b; Bae et al. 2005; Berry and Eberhard 2005;
Kashani et al. 2013; Zong et al. 2014) that point-wise modify steel cyclic behavior in the
compressive region by phenomenologically interpreting extensive experimental and detailed
numerical parametric studies. On the other hand Feng et al. (2014) developed a more
elaborate hybrid finite-element method to accurately predict rebar buckling in RC members.
In this model a fiber model follows the strain history at the local region and a finite element
model with solid elements simulates the potential buckling region of a bar and the boundary

condition from adjacent transverse reinforcement and concrete, i.e. stirrups.

Generally, reinforcing bars buckle following two distinct buckling modes. The first is a
local mode where buckling length is the distance between two adjacent stirrups and is more
common in rectangular columns with closed stirrups. The second is a global mode where
buckling length includes one or more stirrups that are expanded by the lateral deformation
of the rebar and is mostly encountered in circular columns with spiral reinforcement.
Typically global buckling models are an extension of the local models, where hoops or spirals
are simulated with springs to restrain the expansion (Zong et al. 2013; Massone and Lépez

2014; Su et al. 2015; Kashani et al. 2016).

Generally, using the point wise steel stress-strain law, the lateral deformation of
compressed longitudinal reinforcing bars can be addressed provided that the control

volume, over which the average stress-strain relationship is computed, is very small.
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However, in the finite element analysis of structures such small element size is not feasible
because of the enormous computational cost and large memory demand. Hence, for RC
members that are generally not susceptible to large geometrical nonlinear effects, a suitable

formulation is the one that treats rebar buckling locally in the affected RC region.

The aim of this chapter is twofold; first, to develop the uniaxial piece-wise steel cyclic
constitutive law and second to incorporate the proposed model to the inelastic rebar
buckling model. The buckling mechanism used is based on the works of Massone and
Moroder (2009), Urmson and Mander (2012) and Kim and Koutromanos (2016) and is
extended to cyclic inelastic buckling. Steel rebar is simulated as a beam element where
average strains are the problem’s input and average stresses are the problem’s output.
Buckling curve and curvature distribution are derived analytically and the numerical
procedure results in an incremental scheme where mid-length curvature is updated until
equilibrium at the deformed state is achieved. Considering steel model, a combination of
nonlinear and isotropic hardening with yield plateau is incorporated, rendering the proposed
rebar model capable of expressing various cyclic responses. Verification of the proposed
model is performed in terms of comparison with experimental data concerning either the
piece-wise steel cyclic behavior or the global rebar cyclic behavior including inelastic

buckling.

2.2 Uniaxial steel cyclic behavior

2.2.1 1D rate independent plasticity

The purpose of this chapter is to develop a hysteretic model which incorporates the
entire inelastic loading of steel rebar, namely elastic loading, yielding, hardening and
unloading in a single nonlinear differential equation that embodies both the yield surface
and hardening rule. Mathematically this addresses the entire evolution process without the
need of incremental consideration. In this context Sivaselvan and Reinhorn (2003), based on
Bouc-Wen model (Wen 1976) proposed a hysteretic model in stress resultant terms derived
explicitly from classical plasticity theory. The same approach is generalized herein as a
combination of nonlinear kinematic hardening and isotropic hardening is considered.
Indeed, it has been observed in various tests that steel rebars exhibit a nonlinear post-yield
branch after yield plateau that triggers a ratcheting effect under repeated constant stress
reversals with non-zero mean (Dafalias et al. 2008). Also, isotropic hardening has been

notified experimentally at higher loading cycles.
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Following the fundamentals of classical plasticity (Lubliner 2008; Borja 2013), stress-strain

law is expressed according to the strain decomposition rule in rate form as:

G=E(s-£") (2.1)
where ¢ is the rate of normal stress, £ is the rate of total strain and £° is the rate of plastic
strain. This relation indicates that stresses evolve proportionally to the evolution of the

elastic strains. Considering the combination of kinematic and isotropic hardening, yield

function is expressed as follows:

®(o,b,r)=|o—b|-r<0 (2.2)
with b being the back stress and r being the reserve between the back stress and the yield

stress in tension or compression with initial value o, . The rate of the reserve is given as:

F=m-H-A (2.3)
where 4>0 is the plastic multiplier which is actually the magnitude of the strain rate. Scalar
variable m is the percent of isotropic hardening which affects the reserve r, with (1-m)
being the percent of kinematic hardening which affects the back stress b, i.e., m=0

indicates full kinematic hardening while m=1 defines full isotropic hardening.

Also, the flow rule offers the plastic strain rate £° as:

& =2-6i’=i-sgn(a—b) (2.4)
oo

There is no restriction in the selection of the nonlinear hardening model in the proposed
model (see also section 2.2.6). Herein though, Armstrong-Frederick (1966) evolution

equation of the back stress is implemented for the uniaxial stress-strain state:

b:(l—m)(/-lo-ép—q-\g”\-b)
H ) (2.5)
=(1-m)- q-é"-[—”—sgn(é")-b}: (1-m)-H-£€° = (1-m)-H-A-sgn(c—b)
q

where, H is the nonlinear hardening modulus depending on the real positive parameter g,

with initial value H,.

H=H,-q-sgn(¢")-b (2.6)
Hardening modulus can also be expressed in terms of the post to pre-yield hardening

ratioa a=E, /E as:
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E
__ S 9 (2.7)
1-E,/E 1-a

Normal stress and plastic multiplier are restricted by unilateral constrains representing
restrictions that signify whether the material has yielded or not, resulting from Karush-Kuhn-

Tucker (KKT) optimality conditions. These are expressed in the following form:

A-®(o,b,r)=0 (2.8)

During plastic response (A>0, ®(c,b,r)=0) the consistency condition is derived by
differentiating equation (2.8):

®(c,b,r)=0=(5-b)-sgn(c—b)-F=0 (2.9)

Substituting equations (2.1), (2.3) and (2.5) in equation (2.9) plastic multiplier is obtained as:

E
E+H

A=sgn(o—b)- -£=(1-a)-sgn(c—b)-& (2.10)

Then, substituting relation (2.10) into equation (2.4) the following relation is derived:
& =(1-a)-¢ (2.11)

where the current post to pre-yield stiffness ratio a is given according to relations (2.6) and
(2.7) as:
E, H H,-q-sgn(¢”)-b

a:—: = ol (2'12)
E E+H E+H,—q-sgn(”)-b

In Figure 2.2 the evolution of the total stress o, back stress b and the stress due to

isotropic hardening r are presented graphically.
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Figure 2.2: representation of the o-¢, back stress evolution b- and rsgn(o)-€ curve

The reserve r is plotted in terms of the signum value of the stress variable o for better
understanding its role. Indeed, the sum of the back stress and the reserve is the yield

surface, which is the point from where plastic strains start to develop. Hence, during plastic

flow the c—¢ curve coincides with the curve (b+rsgn(o))—¢ .

2.2.2 Smoothening of the constitutive equations

All above equations hold for the case where the material is deformed in the plastic

region. During elastic loading or unloading plastic strain is not considered asA=0. To
include all loading phases in a single relation, equation (2.11) is extended by considering two

Heaviside type functions acting as switches:

& =H,-H,-(1-a)-& (2.13)

Function H; controls yielding while H, controls loading/unloading state.

{01 elastic deformation(é” =0)

H, = (2.14)
1, plasticf/ow(é” =H, '(l—a)-é)
0, un/oading(é” =0)

H, = (2.15)
1, Ioading(é” =H, '(1—a)-é)

Consequently, H; emerges from the smoothening of the yield function. This is accomplished
by raising the absolute value to the n™ power approximating in a smooth way the step

function with discrete values [0,1] as n — « . Consequently, the following relation holds:
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n

o—b
r

n
H = = %

1

(2.16)

r

Parameter n controls the form of transition from the elastic to plastic branch of the

stress-strain law, which is smoother for lower values, approaching a bilinear behavior for

higher ones (n>8). Also the expression (o, =o —b)refers to the hysteretic part of the

normal stress, i.e. the part of the stress without kinematic hardening.

In addition, function H, aims at controlling loading and unloading following the sign of the
yield function rate with positive sign indicating loading while negative sign unloading.
Furthermore, the modification of the Heaviside function to yield zero value when unloading

occurs and unity when loading occurs is handled as follows:

H, =0.5-(1+sgn(dg-dD
do (2.17)
=0.5+0.5-sgn((c —b)-£)

After defining functions H; and H, equation (2.13) is substituted in equation (2.1) and the

final form of the constitutive relation in rate form is obtained:

6=[1-(1-a)-H, -H, | E-& = E,-¢ (2.18)

where E, is the tangent modulus in the stress rate-strain rate relationship.

2.2.3 Moadifications for steel cyclic behavior

Steel stress-strain relation under cyclic loading primarily aims at expressing the linear
elastic and hardening branches in the first excursion together with the Bauschinger effect for

subsequent cycles.

To account for this behavior equation (2.18) along with relations (2.16) and (2.17) for

nonlinear kinematic and isotropic hardening are implemented. The initial bilinear

constitutive behavior is obtained using a high value for the exponent parameter n (”1 > 8).

The bilinear behavior is incorporated just for the initial yield point, while for subsequent
yielding in the opposite direction gradual transition in the plastic regime is manifested. In the

proposed hysteretic model this is accomplished by subsequently reducing parameter n to
lower values n (n2 SZ) . Also, Bate and Wilson (1986) have shown experimentally that the

shape of the Bauschinger effect depends on the carbon context of steel (Figure 2.3).
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Figure 2.3: Experimental data on Bauschinger effect transition curve by Bate and Wilson, (a)

high carbon steel, (b) low carbon steel

Indeed, low carbon steels tend to have stiffer Bauschinger curve than steels with higher

concentrations in carbon. The capability of the proposed model to capture the Bauschinger

effect of different steel grades lies on the smoothening exponent n,. Thus, higher values
(nz >1.5) are more suitable to stiffer branches of Bauschinger effect, while lower values

(O.ZSnz £1.5)simulate a smoother transition. The effect of parameter n, is presented

graphically in Figure 2.4.
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Figure 2.4: Effect of parameter n, in the transition curve of the Bauschinger effect

Alongside, many sophisticated models that are based either on the bounding surface
theory (Dafalias 1992; Shen et al. 1995; Goto et al. 1998; Peil et al. 2001) or the endochronic
theory (Sugiura et al. 1987) are implemented to capture yield plateau. Also, Ucak and
Tsopelas (2011, 2012) used a pseudo memory surface in the deviatoric stress space to
correctly describe the plateau response. However, yield plateau herein is included simply in

the model by setting a plastic strain threshold & . where plastic to elastic modulus ratio a

plat
obtains its defined value. Consequently, a ratio is initialized with zero value that corresponds

to full elastic-plastic behavior and by the time plastic strain &” exceeds threshold ¢, value

the hardening phase begins (a>0).

Another modification accounts for the incompatibility with Drucker's or Ilyushin's
postulates of plasticity for partial unloading-reloading, i.e. short reversals in the nonlinear
path. Generally, hysteretic models have been criticized in the past for their incompatibility
with Drucker's or llyushin's postulates. Based the work of Wang and Foliente (2001) an
accurate solution proposed by Charalampakis and Koumousis (2009) and Kottari et al. (2014)
that eliminates the problem by properly modifying the reloading path of the hysteretic
spring for the Bouc-Wen model or the Sivaselvan-Reinhorn model respectively. In this work

the same approach is utilized, which leads to the modification of the switch function H, in

the following form:

Hz=H,-(1-R) (2.19)
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where R(oh, g, o-yo) is a stiffening factor that controls stiffness recovery in the reloading
branch, which is expressed as:

R=0.5-[1+sgn(o, —0o,)-sgn(c,)] [ﬁ] (2.20)
& —¢

r

In relation (2.20) o, is the hysteretic part of the normal stress (o, =o—b) , 0, and &, are

the stress and strain respectively corresponding to the last observed reversal point and ¢, is

the modified strain in the unloading path that corresponds to the given hysteretic stress o, :

O'yo

gc :(O-h_o-rJ.gyo_Fgr.sgn(o'h) (221)

where also appropriate tracking of the reversal point is needed to accurately handle
different types of short reversals as indicated in Charalampakis and Koumousis (2009) and

Kottari et al. (2014).

Figure 2.5. Treatment of short reversals in the proposed formulation

The influence of the modification considering Drucker's and Ilyushin's postulate during

short reversals is manifested graphically in Figure 2.6.
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Figure 2.6: Original and modified steel model including treatment of reversals

Finally, the proposed steel model with all the additional features is illustrated in Figure
2.7 with imposed strain history the one presented in Table 2.1. In the figure, the sequence of

reversal points while also yield plateau and isotropic hardening effect are marked.
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Figure 2.7: Presentation of the proposed uniaxial steel model
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Pseudo-Time

(sec) Strain (-)
0 0
1 0.03
2 0.025
3 0.05
4 0.01
5 0.05

Table 2.1: Strain history values for steel model presentation

2.2.4  Pseudo-code for the steel model
Summarizing the described uniaxial steel model, one can apply it to the global solution

process as follows:

At any iteration j of an outer nonlinear solution process, given variables are the total

strain ¢&;, strain increment dgj plastic strain &

,;» back stress b, , isotropic hardening

reserve stress r; and reversal point (g,, 0',) . In order to calculate the updated stress o,

and updated elastoplastic tangent modulus E, ; ; the following steps should be calculated:

1. Check if plastic strain is lower than the yield plateau threshold and if this condition

holds set initial hardening ratio to zero (a, =0).

2. Calculate hysteretic part of the stress: (o-h_]. =0, —b].) .

3. Calculate Heaviside functions H, and H,:

g =|Chi
1
iy (2.22)
H] =O.5+0.5-sgn[(aj —bj)~dgj]
4. Update isotropic hardening reserve stress:
I, =r+m-H, -(1—aj)-sgn(ah,j)-H1f” -HIH (2.23)

5. Check if yield point has been exceeded H120.99. If this condition holds then set
parameter n, as the exponent parameter n.

6. Find last reversal point (g,, J,) in the plastic region by checking if unloading occurs.

7. Calculate stiffening factor R for short reversals and correct unloading switch H’

using equations (2.19)-(2.21).
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8. Update current hardening ratio a;,, from equation (2.12)

9. Calculate current plastic strain.

P _sP p
&, =¢] +dg;

o (2.24)
=&} +(1-a,,,)-H; -H;-de;

10. Calculate current back stress.
by, =b, +(1-m)-de? -(H, —q-sgn(d!)-b,) (2.25)
11. Finally, the requested updated normal stress and elastoplastic modulus are given as:
O =0'j+E0-(gj—8;’) (2.26)
28 =[1—(1—a,.+1 )-H! ./-//'].E (2.27)

As presented in the pseudo - code, the smoothing process permits the direct calculation
of the final stress by simply linearizing the rate equations. This feature differentiates the
algorithm from the standard return-mapping algorithm (Simo and Hughes 1998) where first
an elastic trial stress predictor is obtained by freezing plastic flow and then a plastic stress

corrector is applied to the trial stress mapping the trial stress to the actual stress.

2.2.5 \Validation with experimental data

Various experiments for steel rebars under cyclic loading have been reported in the
literature. For instance, experiments on steel rebars under cyclic response can be found in
the work of Thompson and Park (1978). One of these experiments is presented in the
following Figure 2.8 along with the predicted response of the proposed model. Steel grade is
S275, while post to pre-yield ratio is considered as a=0.01. Model parameters are
presented in Table 2.2 to achieve satisfactory agreement with observed experimental

behavior.
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Figure 2.8. Comparison with experiment (Thompson and Park 1978)

o, (MPa) a n; n, Eplat m q
275 0.01 8 0.9 0 0 0

Table 2.2. Model parameters for rebar analysis with Thompson and Park experimental data

In addition, the proposed model is verified with experiments on 19mm rebars performed
by Ma et al. (1976). Both tests were performed on the same specimen but with different
strain histories applied. Model parameters are presented in Table 2.3, while in Figure 2.9 the
comparison between analysis and experimental test results are presented. The proposed
model is proved sufficient enough to capture all phases of inelastic cyclic behavior, namely

yield plateau, nonlinear hardening, isotropic hardening and Bauschinger effect.
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Figure 2.9. Comparison with experimental data of Ma et al. (a) Specimen 3 (b) Specimen 2

o, (MPa) a n, n, €plat m q
460 0.035 10 0.5 4g, 0.03 10

Table 2.3: Model parameters for rebar analysis with Ma Et al. experimental data

2.2.6  Nonlinear hardening investigation

In the standard formulation of the uniaxial steel model the Armstrong-Frederick
nonlinear kinematic hardening model was used. However, Armstrong-Frederick model has a
hidden deficiency as it undershoots the actual stress-plastic strain curve during
unloading/reloading from the plastic region (Dafalias 1984). To address this deficiency
Chaboche et al. (1979) introduced the additive decomposition rule of the back stress as

follows:

M=3
b= ) b, (2.28)

i=1
where, each component b, of the back stress obeys the Armstrong-Frederick model with
individual parameters H,, and g; for the initial hardening ratio and the parameter which

controls the steepness of the post-elastic curve respectively.

. H._ .
b=Hy, & ~q,-|&*|-b=q,-&" -{ﬂ—sgn(é‘”’)-b,} (2.29)
q

The second term in equation (2.29) is known as the dynamic recovery term which

gradually reduces the rate of the evolution of the back stress until it reaches zero values and
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the post yield stress-strain curve becomes horizontal (saturation level). By increasing the
material parameters of the hardening rule, the Chaboche model is able to simulate a more
accurate prediction of ratcheting than the AF model. However, numerical examples indicate
that the model is still not suitable to simulate the partial reverse loading/reloading and
ratcheting effect (Rezaiee-Pajand and Sinaie 2009). For this reason, Chaboche (1991) further
introduced a threshold for the dynamic recovery term, below which it induces a linear
response according to a rate equation for the back stress term that in the uniaxial case is

written as:

b,=q,-&" -[HO"' —sgn(g"”)-sgn(b4)-<|b4|—E> (2.30)

4

where the < > symbol are the Macauley brackets and b is the threshold value for the 4™

back stress term, meaning that when |b4| is smaller than the threshold variable then the 4"

back stress term is evolving linearly, while when it exceeds the threshold an AF rule is
activated. It is shown in Bari and Hassan (2000) that when the threshold value is imposed for
the 4™ term both the partial reverse loading/reloading and the ratcheting improve
considerably in comparison not only with a three component decomposition, but also in
comparison with the standard four back stress decomposition of the AF type without the
concept of the threshold applied to any one of them. The same authors attribute this
beneficial effect of the threshold scheme as a result of the combination of linear (at the
beginning) and nonlinear (afterwards) evolution of the back stress that allows for a stiff
response soon after yield point followed by a smoothly gradual saturation process when the

nonlinear part is activated.

The three aforementioned nonlinear hardening models are incorporated in the proposed
steel model and their contribution is examined with the experimental data of Ma et al.
(1976). The experiment was conducted in terms of imposed strains and consists of an
unloading/reloading loop far in the post-yield region and near the saturation level. As it is
illustrated in Figure 2.10 the correlation with the experimental curve is improved when the
more refined nonlinear hardening models, that treat better the dynamic recovery terms, are

used.
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Figure 2.10: Influence of various nonlinear hardening models in the proposed formulation.

Comparison with experimental data from Ma et al.

In the analysis, yield stress is 0,=480 MPa, n;=20, €,,:=4.2, while no isotropic hardening
was considered. For the Armstrong Frederic model n, parameter was set to 0.3 and initial
hardening ratio and hardening parameter are ay=0.06 and q=70 respectively. For the
Chaboche et al. (1976) three component model n,=0.4 and model parameters are o,;=0.04,
00,,=0.02, 043=0.004, q;=100, q,=30, qs=1. Finally for the Chaboche (1991) model the
respective parameters are 0,;=0.03, a,=0.009, a,3=0.003, a,,=0.0015, q;=100, q,=30, qs=1,

44=50 while threshold parameters is b = 0.1:0,,=48 MPa .

Extending this behavior, even more sophisticated models can be emended in the
proposed model with similar manner. For example, the model by Henshall et al. (1987) is
addressing the dynamic recovery term with a nonlinear power dependence on the back
stress, while model by Ohno and Wang (1993) introduces the nonlinear power dependence
on non-hardening region. Similarly, Dafalias et al. (2008) proposed the multiplicative AF
kinematic hardening rule for the 4™ back stress component, while the one of the other 3

components is set to exhibit almost linear response close to the Prager model.

However, even if the accuracy of the proposed model is increased, this happens on the
expense of more model parameters, i.e. for the Chaboche (1991) model 8 back stress
parameters plus one threshold variable are needed. Not considering the usability of the
rebar model, the main purpose of the sophisticated hardening models is to capture

ratcheting which is not expected to be critical in earthquake engineering applications of RC
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members as other failure phenomena for longitudinal rebars are critical, like inelastic
buckling and low cycle fatigue. For these reasons only the Armstrong Frederic model is

utilized in the proposed model in the following chapters.

2.2.7 Aspecial case: linear kinematic hardening

A common assumption concerning steel cyclic behavior is the adoption of linear
kinematic hardening. This is the case where the stress strain curve becomes bilinear with

constant post to pre-yield stiffness ratio ¢ .

G\ 0 A
oyc .= a-E | b o / b
yO0 a
H=1E
E
£ gp
- -

-Oyvo -Oyvo

(a) (b)

Figure 2.11. Uniaxial bilinear constitutive law in terms of a) total strain and b) plastic strain

In such case internal parameter r becomes constant and equal to o,,. Hence, yield

function is simplified to:

®(o,b,r)=|c-b|-0,,<0 (2.31)

yo —

In addition, the consistency condition is now given as:

A-®(0,b,0,,)=0=>D(0,b,0,,)=0=>F=b (2.32)

meaning, that the rate of the back stress is equal to the rate of the total normal stress.
Taking into account equation (2.32) the following equation is obtained for the evolution of

back stress :

b=H, & =H,-A-sgn(c —b) (2.33)
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Equivalently, the back stress b can be algebraically expressed as the mean of current yield

stress in tension O'; and compression o, :

b=>(0; +0;)=a-(E-5-0,0) (2.34)

Taking into account equations (2.31) and (2.34), the yield function can be expressed as

follows:

<1 (2.35)

Consequently, smoothening Heaviside function H, is expressed as:

Jo—aEe-0,) _|o-akef (2.36)
- RCEARA |

1
O-yo

while loading/unloading smoothening function remains the same with equation (2.17)

The gain of linear kinematic hardening formulation is that the constitutive law is
expressed as a single differential equation which is solved rapidly with a simple backward
Euler technique. However, steel models with linear hardening underestimate initial inelastic
stages while also they may exaggerate significantly strength capacity of RC members near
collapse as large axial strains may develop. For this reason, moderate hardening ratios are

advised to be used.
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0 0.02 0.04 0.06 0.08 0.1
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Figure 2.12: Comparison between linear and nonlinear kinematic hardening
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2.2.8 Comparison with existing well-known models

In this section two well established and commonly used models are briefly described and
their comparison with the proposed formulation is presented. These models are used
nowadays in many structural engineering projects and are incorporated in scientific and

commercial software packages (OpenSees, Seismostruct).

First, comparison is performed in terms of the well-documented and frequently used
Menegotto-Pinto model. Many steel models proposed thereafter are based on the
Menegotto-Pinto equations (Chang and Mander 1994; Balan et al. 1998; Hoehler and
Stanton 2006; Kunnath et al. 2009). Also, another very common steel model is the Monti-
Nuti (1992) which is based on the Menegotto-Pinto model but also incorporates relations to
describe inelastic buckling in the compression range. An important drawback of the
Menegotto-Pinto model is the inherent overshooting in the reloading curve when short
reversals occur. This overshooting originates from its restricted memory as underlined by
Filippou et al. (1983), as it doesn’t keep in memory all preceding cycles. Kunnath et al. (2009)
tried to address this issue by keeping in memory an arbitrary number of reversals,
concluding that 16 reversals need to be stored to obtain adequate results, increasing
significantly the bookkeeping of the problem. Also, Hoehler and Stanton (2006) tried to fix
the overshooting problem by keeping in memory 2 additional points in the stress-strain
curve. However, as explained by the authors this solution results in a relaxation
phenomenon of the model and does not ensure its validity. In the case of the Monti-Nuti
model Fragiadakis et al. (2007) tackled the overshooting problem by adding an additional
memory rule, forcing the stress-strain curve to join tangentially the branch defined during

the previous strain reversal.

On the other hand the proposed model imposes no restriction on memory returning
exactly on the previous loading path. Hence it produces stable loops under short reversals

which occur very often in seismic analysis with real or artificial ground motions.

To illustrate the performance of the proposed model, a direct comparison with the
Menegotto-Pinto model is performed. For both models an external strain history presented
in Table 2.4 is applied and model parameters are selected in such way as to induce similar
outcome. More specifically, material modulus is E=210 GPa, yield stress 0,,=235 MPa, post-
yield to pre-yield ratio a=0.02, while for the proposed model the initial exponent is n;=10
and the final exponent is n,=0.2. The parameters of Menegotto-Pinto model are considered

as: Ry=20, cR;=18.5, cR,=0.1, a3=0, a,=1.
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Figure 2.13. Comparison between the proposed and Menegotto-Pinto model

Pseudo-Time Strain (<)

0 0

1 0.04
2 0.005
3 0.009
4 0.0085
5 0.04

Table 2.4: Strain history for comparison with Menegotto-Pinto model

In Figure 2.13 it is observed that the proposed model overcomes the overshooting of the

Menegotto-Pinto model after the partial unloading branch.

The second well known steel model was proposed by Dodd and Restrepo-Posada (1995)
who tried to address the issue of short reversals by distinguishing reversals as major, minor
and simple. The model approaches Baussinger effect iteratively, hence it is perplexing,
leading to instability issues. Very recently, Kim and Koutromanos (2016) have proposed a
modification in the original model, where a non-iterative description for the reversal
branches using b-splines is added. Another drawback of the original model is its inaccuracy
in describing Bauschinger effect in steel specimens with low carbon context. As it was shown
experimentally by Bate and Wilson (1986) low carbon steel rebars manifest steeper while
high carbon steel rebars manifest smoother reversal branches. However, the Dodd-Restrepo
model doesn’t control the smoothness of the transition Bauschinger curve, hence it fails to

simulate all types of reversals. On the other hand the proposed model, through parameter
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n, controls the shape of the Bauschinger effect and presents no restriction in the steel

grade. In Figure 2.14 it is shown that the proposed model, for the applied strain history of
Table 2.5, is able to capture almost the same post-elastic curve with the Dodd and Restrepo-
Posada model, while it has the capability to adjust the smoothness of the Bauschinger

transition branch.
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Figure 2.14. Comparison between the proposed and Dodd and Restrepo-Posada model

Pseudo-Time

(sec) Strain (-)
0 0
1 0.06
2 0.015
3 0.09

Table 2.5. Strain history for comparison with Dodd and Restrepo-Posada model

2.3 Buckling of longitudinal rebars

2.3.1 Single rebar model

Rebars in RC columns buckle generally with two different modes, local buckling between
two adjacent ties-stirrups and global buckling in a length where one or more ties have
yielded or failed due to the lateral deformation of the longitudinal rebar. In this work, only
local buckling is addressed considering the assumption that transverse ties are practically
rigid and sufficiently anchored in the core. Hence a single longitudinal bar is modeled as
fixed end beam under axial force (Figure 2.15). According to Euler elastic buckling theory,

that bar deflects laterally following a cosine curve:
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(2.37)

Figure 2.15. Local buckling physical and computational model

Curvature along bar’s length go(x) is derived by double differentiation of the

displacement field as:

2en’ 2
o(x)= ejr -Ccos LX) (2.38)
L L
with maximum mid-length value:
2er’
p(L/2)= - (2.39)

Total average axial strain g,, of the bar can be decomposed into the sum of the strain g,
participating at the internal elastic strain energy of the bar and the buckling strain €, caused

by the additional shortening of the bar due to lateral deflection:

Ep =Eg T8, (2.40)

The arc length of the deformed bar can be calculated analytically by the relation

proposed by Dhakal and Maekawa (2002) as:

(1-¢,)
L(1-&,) 2 B 2
1= | 1+[ﬂj de=2 [ |1+ 7 in—27*_| dx (2.41)
dz L{1-¢,) LlI-¢,)

0 0

By expanding the square root term in relation (2.41) in Taylor series about 0 and neglecting

higher order terms, the following relation for secondary buckling strain is derived:
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e, =§(1—\/1—e2n2) (2.42)

2.3.2 Pseudo-code for rebar buckling model

For the numerical analysis of the buckling problem, rebar section is first discretized in
layers, each one represented by the uniaxial steel constitutive law developed is chapter 2.2.
Then, the rebar under cyclic axial load subjected to buckling is analyzed incrementally by
imposing axial average strains. At any computational increment the following steps are

performed:

1. At any given converged step lateral deflection €, curvature ¢', rebar axial force N,
moment M and stiffness K., (2x2) are known. For the new step iterations proceed as

follows:

2. Updated buckling strain 6‘;, which is derived from relation (2.42).

3. Material strain 5[1 is calculated from relation (2.40) and the strain increment is

considered: dg, =¢, —&, "

4. Incremental curvatures at mid-length are calculated from cross-sectional equilibrium

equation:

- dM' =K', . -dé]
d(pl — Kireb,Zl 0 (243)

reb,22

5. Updated mid-length deflection is calculated according to relation (2.39):

i i71+d(0i'L2

e'=et+= (2.44)

6. Total material & and incremental de strains at rebar layers are derived from strain

compatibility and respective stresses are calculated by proposed steel model of

section 2.

i+1 i+1

7. Centerline axial force N*!, moment M and rebar stiffness K., are derived
according to layered section analysis.

8. Equilibrium in the deformed configuration gives the residual moment error:

-M’ (2.45)

9. Steps 1-8 are repeated until equilibrium error is lower than a tolerance value: dMi <

tol
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2.3.3 Comparison with corotational formulation

For the geometrically nonlinear analysis of beam elements the corotational formulation
(De Borst et al. 2012) is typically used. This approach is valid for large displacements small
deformation problems and permits the use of the same material stress-strain laws used for
geometrically linear problems. However, to capture the post-buckling response, rebar
should be discretized in a number of elements, making this method computationally

prohibitively costly for the buckling analysis of the embedded rebars.

For comparison with the proposed formulation a rebar of D=25mm is considered with L/D

ratio L/D=8 and is excited with the imposed displacement history as presented Table 2.6:

Axial displacement
(m)
0

-0.002
0.002
-0.004
0.004
0.006
-0.006
0.008

8 -0.008

Pseudo-time (sec)

N o o b~ wN e O

Table 2.6. Axial displacement history for inelastic rebar analysis

A bilinear stress-strain law is assumed for steel material with yield stress 0,=500 MPa by
setting g, m, €, parameters equals to zero. The hysteretic loops obtained with both

methods are compared in Figure 2.16
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Figure 2.16. Axial force vs axial displacement comparison between the proposed model and

corotational formulation

Generally, the proposed formulation is proved adequate to reproduce the same response
with the more accurate corotational formulation except from the unloading path at the
compressive field. However, the reduction in the computational cost is orders of magnitude
lower. Thus considering also the multiple longitudinal rebars at a cross-section, the proposed

semi-analytical, semi-numerical method is considered appropriate.

Moreover, in Figure 2.17 the comparison between mid-length lateral displacements of
both methods is presented. The difference at the results is attributed to the fact that
displacements calculated from the proposed method are due to material deformation only
excluding the secondary geometrical nonlinear term. This is indeed the basic concept of the
methodology as geometrically nonlinear effects are excluded from total average strain via

the buckling strain €, from relation (2.42).
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Figure 2.17. Mid-length lateral displacement comparison between the proposed model and

corotational formulation

2.3.4  \Verification with experimental data

Verification of the proposed cyclic buckling model is also performed with the experiments
conducted by Monti and Nuti (1992). In this comparison the S-series rebar experiments are
selected, which refer to symmetrical strain histories ranging from (-0.03-0.03). Three
different length to diameter (L/D) ratios are tested with model parameters as presented in
Table 2.7. Results in Figure 2.18 reveal the capability of the proposed model to capture
actual stress-strain behavior at different L/D ratios. It is evident from the results that
buckling causes the contraction of hysteretic loops in compression, which for higher levels of
buckling length, this contraction is so abrupt that softening of the stress-strain curve is

observed.
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Figure 2.18. Comparison with experimental data S-series of Monti and Nuti: (a) L/D=5, (b)
L/D=8, (c) L/D=11

oy(MPa) a ny n; Eplat m q

500 0.035 10 0.3 1.8¢, 0.05 10

Table 2.7. Steel model parameters for Monti and Nuti S-series experimental data

Similarly, the proposed model is verified with the C-series tests of Monti and Nuti (1992)
referring to unsymmetrical loading tests. In these tests, slenderness ratio is kept constant
and equal to L/D=11, while steel material has slightly different properties. First, in Figure

2.19 steel yield stress is 470 MPa and related model parameters are presented in Table 2.8.
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Figure 2.19. Comparison with experimental data of Monti and Nuti (C1, C2 specimens,

L/d=11)
o, (MPa) o n, n, Eplat m q
470 0.035 10 0.4 1.8¢, 0.05 5

Table 2.8. Steel model parameters for Monti and Nuti experimental data (C1, C2 specimens)

Finally, the last comparison between proposed model and experimental results is

presented in Figure 2.20, while material parameters can be found in Table 2.9. In all figures
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there is satisfactory correlation between analysis and experimental results proving the

efficiency of the proposed model.
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Figure 2.20. Comparison with experimental data of Monti and Nuti (C5 specimen, L/d=11)

o, (MPa) a n; n, €plat m q

430 0.03 10 0.4 3g, 0.05 10

Table 2.9. Steel model parameters for Monti and Nuti experimental data (C5 specimens)

Moreover, numerical results of the proposed model capture successfully the so-called
tension-based buckling mechanism of Moyer and Kowalsky (2003). They observed the
influence of tension strains on the eventual buckling of longitudinal bars and described a
tension-based buckling mechanism which is summarized with 3 distinct phases. First,
buckling of reinforcement rebars requires loading reversals with significant tensile strains.
Then, the accumulation of tensile strains over multiple loading cycles impacts longitudinal

bar buckling which eventually occurs under compression.
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2.4 Appendix|

2.4.1 Menegotto-Pinto model

The Menegotto-Pinto model consists of an explicit algebraic equation of the form

azf(g), which holds for the loading phase between two reversal points, while model’s

parameters are updated after each reversal point. The model was originally proposed by
Giuffre and Pinto and implemented later by Menegotto and Pinto (1973). The main
characteristic is its numerical efficiency, while the agreement with experimental results from
cyclic tests on reinforcing steel bars is satisfactory. The model, as presented by Menegotto

and Pinto (1973), takes the form:

. . (1-p)E
o =bg + =L (2.46)
<R
(1+‘g ‘ )
where
* g_grn * O-_G:
& = n+1 n’ o = n+1 n (247)
Ey —&, O'y — 0,

This relation describes a transition between two asymptotes, one with slope E;, and one

n+1 n+1

with E, =bE,, as presented in Figure 2.21. Point (gy , O, ) is the point where the two

lines coincide and point (g,", 0',") refers to the last reversal point. The intersection point is
derived from equations:
0,0—Es-6,-0,+E5y &

s0 _Es (2-48)

n __ n_
o, =0,,+E; (gy gyo)

n

E =
Y E
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Figure 2.21: Menegotto-Pinto steel model

The plastic part of the total strain is given as:

gmax _gn
E= Y (2.49)
£,
The transition curve between the two asymptotes is controlled by the expression:
cR, -
R=R,:| 1-—2 6 (2.50)
cR,+¢&

Where R,, cR,, cR, are model parameters which control the representation of the

Bauschinger effect through the transition curve.

In addition, Menegotto-Pinto model can describe isotropic steel softening according to
the modification proposed be Filippou et al. (1983), where the hardening asymptote is

shifted by the following expression:

n Emax
O-shift :O-y "a; [ n _G4J (251)

where parameters a,, a, are parameters which define the amount of isotropic hardening

and the threshold where the phenomenon commences respectively.

2.4.2 Dodd and Restrepo-Posada model

Dodd and Restrepo-Posada model is expressed in terms of natural space coordinates in

order to have the same envelope curve in tension and compression. The basic relations
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between the natural stress-strain space and the commonly used engineering counterpart
are the following:
e =In(1+¢)
, (2.52)
o =o0(1+¢)
The model distinguishes three regions, elastic loading, yield plateau and strain hardening.
The strain-hardening envelope is based on the power curve suggested by Mander et al.

(1984) and is given from the following relations:

P

S N P A ] | T S ,
o= s[ash +0o, (85u + 55h)— USJ — -0, {sesu —[85 —go(k)]} +s0,,
gsu _gsh

(2.53)
p— |Og O-sh,l + O-su (gsu _gsh,l ) _O-su /lOg gsu _85/-,,1 (2 54)
O-sh + O-su (gsu - gsh )_ Usu gsu - gsh

As it is obvious from equations (2.53) and (2.54) the model includes seven parameters for

the description of the post-yield monotonic stress-strain curve in natural coocrdinates,

namely, the yield stress G;h , the strain at the onset of hardening g;h , the ultimate strength

o. , the ultimate strain ¢

su? su’

and the stress Slsh,l and strain 5;;7,1 for an intermediate point

on the hardening branch of the curve, as shown in Figure 2.22. Also, the term gg(k) is zero

for monotonic loading, while its purpose is to shift the skeleton curve when unloading takes

inside the yield plateau range.
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stress

strain

Figure 2.22: Dodd-Restrepo steel model

The unloading branch under cyclic loading conditions is initially linear elastic up to a point

(8;'0';,) with vertical length of o, with a slope E, which is a percentage of the initial Young

modulus according to the following equation:

E =E, (0.82+ (2.55)

555+¢,,, j

where ¢__ is the maximum natural strain attained. Finally, Bauschinger effect is described

X

by a softening curve extending from point (g;,a;) until target point (gt',at')
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3.1 Introduction

Modeling plain concrete behavior presents greater uncertainty in comparison with
reinforcing steel due to the diversity of its composition. Concrete is a mixture of cement,
water and aggregates of various grading, hence its macroscopic behavior is very sensitive to
the microstructure. Generally, concrete compressive behavior depends on the formation
and propagation of micro cracks inside its volume (Kotsovos and Newman 1977) which
macroscopically is manifested as low ductility, nearly zero tensile strength, asymmetric

hysteretic loops and brittle failure mechanism.

T
) = Uniaxial
(Ultimate stress) .
100% = = — e = —————— — — — — =—Volumetric| |
|
________ - | (Failure stress)
80%(- I 1 7
y I I I
g I I I
Q” 60%\- | | | 7
o | | |
. __/ I | I
40%- | I | 1 y
I_ = 1>
1S % 1% I
20%;(~ < 1 < =3 *
12 1% 13 |5
I I I I
| | | 1
0
€

Figure 3.1 Behavior of concrete in monotonic compression (Chen 1982)

Stress-strain o, —¢&, curve for plain normal weight concrete until failure is typically

represented by four regions which are presented in Figure 3.1 and they are listed below

(Chen 1982):

-Linear elastic region
-Stable fracture propagation
-Unstable fracture propagation

-Softening region until failure

The first initial loading stage reaches a loading level of 30-60% of the ultimate
compressive strength. Macroscopically concrete material behaves linear elastic as micro

cracks that are formed in its volume are not expanding (stationary cracks).
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The second stage reaches a loading level of 70-90% of the ultimate strength. Cracks now
expand and propagate deviating concrete macroscopic behavior from the linear elastic
curve. Hence, a reduction in the material stiffness is observed which causes irrecoverable
deformation in unloading. Void formation causes increase on the rate of tensile strains
normally to the direction of crack propagation with respect to the rate of strains in the
direction of branching (Kotsovos and Newman 1977). The start of such deformation behavior

is called “onset of stable fracture propagation”.

The third stage expands until the ultimate compressive stress. During this stage, the
micro cracks system inside the mortar merges to larger cracks at the surface of the nearby
aggregates and form crack zones causing internal damage in the concrete material. The

onset of this stage is called “onset of unstable fracture propagation”.

A fourth stage defines the region beyond the ultimate strength. In this softening region
which is macroscopically manifested as negative stiffness, the energy released by the
propagation of a crack is greater than the energy needed for propagation. The volume of
voids increases dramatically causing a rapid dilation of the overall volume of concrete
Therefore, the cracks become unstable and self-propagating until complete disruption

where failure occurs.

Similarly, monotonic tensile behavior of plain concrete is presented in Figure 3.2.

Generally, two distinct phases of monotonic tensile loading are distinguished:

-Linear elastic region

-Softening region
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o (MPa)

0 50 100 150
A (um)

Figure 3.2. Behavior of concrete in monotonic tension (Peterson 1981)

In the end of the linear elastic segment, maximum tensile stress is significantly lower in
magnitude than the respective maximum compressive strength. This is due to the
significantly lower tensile strength of the aggregate-matrix interface than the matrix alone.
Also, the tensile state of stress tends to open cracks much easier than the compressive state

of stress, resulting in a more brittle behavior.

Most of the existing concrete numerical models result either from abstractions of well-
designed experimental behavior, or theoretical considerations calibrated with experimental
data. These are based on either continuous or discontinuous gradient damage and plasticity
models (Alessi et al. 2015), as well as multiscale methods (Wu et al. 2014) utilizing also up to
molecular dynamic simulations for special aspects of chemical nature (Buyukozturk et al.
2011). Within the phenomenological and macroscopic continuum theories, plasticity theory,
continuum damage mechanics and fracture mechanics offer a solid background to address
the main features of RC behavior in relatively compact form. The initial consideration of
micro-cracks within the material volume that conglomerate into macro-cracks in a changing
stress field is quantified on the macroscopic level in terms of internal state variables. More
specifically, in isotropic damage mechanics micro-cracks are considered as uniformly
distributed within the material and their density is quantified generally by a damage tensor
(Kachanov 1986). The result of this process is manifested as degradation of material stiffness
with damage mechanics describing the initiation and evolution of cracks growth, while
sliding along the crack edges is usually modeled through plasticity theory (Ragueneau et al.

2000). Consequently, damage and plasticity should be taken into account combined in order
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to accurately describe the behavior of quasi-brittle materials such as concrete (Lubliner et al.

1989).

On the other hand, a large category of models developed for engineering purposes is the
empirical phenomenological category, based solely on analytical expressions developed by
matching experimental data (Karsan and Jirsa 1969; Bahn and Hsu 1998; Aslani and
Jowkarmeimandi 2012) with no explicit reference to the mechanisms that generate the
resulting behavior. Bilinear, trilinear and multilinear models fall in this category, although
from engineering perspective are attractive as they point to a piecewise linear behavior.
Following the same concept also, analytical models for confined concrete behavior have

been introduced (Scott et al. 1982; Mander et al. 1988).

Other models are based on plasticity considerations, mainly adopting nonassociated flow
rule (Han and Chen 1985; Pietruszczaks et al. 1988; Hu and Schnobrich 1989) or
viscoplasticity (Bicanic and Zienkiewicz 1983). These models use failure surfaces and can
describe brittle-ductile transition followed by strain hardening, but generally fail to model
damage and concrete compaction (Mazars and Millard 2009). Simple damage models
developed for isotropic damage (Mazars 1981; Lemaitre and Chaboche 1985) model stiffness
degradation and softening but they cannot describe concrete compaction and sliding. Their
deficiencies led to the development of elastoplastic-damage models (Lubliner et al. 1989;
Lee and Fenves 1998; Ragueneau et al. 2000; Grassl and Jirasec 2006; Jason et al. 2006;
Richard et al. 2010; Ayhan et al. 2013) that utilize the concepts of plastic surface and damage

surface interaction able to model yielding, softening as well as stiffness degradation.

Along these lines, a uniaxial smooth concrete model is developed, expressed in rate form
combining plastic and damage behavior (Andriotis et al. 2015). The proposed model
accounts for the unsymmetrical behavior in tension-compression loading, while addresses
concrete features due to cyclic loading, such as nonlinear unloading and crack closure-
opening phenomena. The main part refers to smooth damage modeling of concrete
behavior developed herein as damage considerations have similar mathematical structure

with classical plasticity.
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3.2 Uniaxial concrete cyclic behavior

3.2.1 Plastic behavior

Concrete under low stress level exhibits linear elastic behavior but soon after the first
cracks appear a nonlinear behavior with irreversible features both in strain and stiffness
terms is established. Friction along crack edge prevents the crack from prolonged opening
without resistance. In this process energy is dissipated and as a consequence hysteretic
behavior is generated. This process is manifested macroscopically as elastoplastic behavior
with a nonlinear isotropic hardening branch. Consequently, stress-strain constitutive relation

in rate form due to plasticity is expressed according to the decomposition rule as:

- .el . .
. =E & =E, -(gc —Sf) (3.1)
where &, is concrete’s uniaxial effective (undamaged) stress &_,&” are total and plastic

axial strain respectively. Plastic strain is given at a compact form combining elastic

loading/unloading and plastic phase (chapter 2.2.2)

E=H_,-H,-(1-a)-& (3.2)
where «; defines post-yield to pre-yield stiffness ratio and H_,, H_,are Heaviside-type
functions acting as switches. More specifically H., controls loading/unloading condition (0:

unloading, 1: loading) and is given as:

H.,=0.5-[1+sgn(d,-¢,)] (3.3)
while H_, controls yielding condition (0: plastic flow, 1: elastic loading), where in the case of
isotropic hardening is expressed as:

O,

(3.4)

Parameter n_ controls the transition rate in the post-elastic regime, although generally
there is no need for gradual transition, so parameter n_>10. Also, o, is the current yield

stress that evolves according to the following nonlinear isotropic hardening relation:

G =Hi-H,-a -s8n(G,)-E. - &, (3.5)
Also, isotropic hardening modulus H_reduces from the initial value H_, in the plastic

regime following relation:
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Hc :HL‘O _qc (Gyc _Gyc,O) (36)
where g, is the nonlinear hardening term and o, , is the initial yield stress. Considering

relation (3.6) the current post to pre yield ratio ¢, is defined as follows

_ Ec,pl _ HC _ HCO _qC '(Gyc _Uyco)

“E, H+E E+H,-q,(c,.-0,,)

c

(3.7)

Finally, the rate of effective stress &, can be calculated with the use of relations (3.1),

(3.2), (3.5) and (3.7) as

O-;c:(1_(1_ac)'Hcl'ch)'Ec"éc (38)

The concrete behavior due to plasticity only is presented in the following Figure 3.3

40 7

stress (MPa)

=20

—40 I I i I I
-2 =1 0 1 2

strain (-) x10°°
Figure 3.3. Plastic component considering nonlinear isotropic hardening

However, as it will be described in the following chapter (§3.2.2) tensile cracks open at
lower stress level in tension. When unloading in tension permanent strains appear at zero
stress level due to misfits at crack edges. Similar to compression, this behavior can be
macroscopically described with plasticity theory, considering as yield point the stress where
crack opening occurs. Moreover, different yield stress levels in tension and compression
result in an asymmetry in hysteretic loop, while distinct yield stress is derived according to

the following relation:

Oyeo,i =(1—Hc3)'0'+ +H,; .O-\;:U (3.9)

yc0
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where o, , is the initial yield stress in tension and o, the initial yield stress in

compression. Heaviside-type term H_, defines the state of tension/compression (0: tension,

1: compression) and is defined as follows:

H.,=0.5(1-sgn(c.)) (3.10)
The asymmetric cyclic behavior is presented in Figure 3.4 where different yield points are

attributed in tension and compression respectively (ay*w =4 MPa, o,,=20 MPa) . It should

be noted that isotropic hardening effect is distinct and independent for every state, i.e.

initial yield stress at compression is not affected from any previous yielding in tension.

stress (MPa)

strain (-) %10~

Figure 3.4. Plastic component considering asymmetric yield stress

3.2.2 Damage behavior

Soon after initial loading, cracks are formed and the effective reference volume is
reduced. However, hysteresis alone cannot express softening and stiffness degradation
phenomena which are attributed to damage due to cracking. The damage concept adopted
herein follows the notions introduced by Kachanov (1986) based on macroscopic
considerations of the damaged state according to the effective stress concept (Figure 3.5).
Following this notion, reference strain is considered the same between the original and the
damaged material, while damage stress is reduced due to the increase in the reference area

with the presence of voids.
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c,e
N 0,¢
N ' N damage ,
I o e parameter .
|
° I / e - R o
R e Se— ’
s 7 =1 /
7N
damaged state effective state

Figure 3.5. Effective stress concept of damage

Subsequent work by Lubliner et al. (1989) and other researchers ( Ragueneau et al. 2000;
Grassl and Jirasec 2006; Jason et al. 2006), aim at combining damage and plasticity allowing
for significant benefits in realistic modeling of brittle materials. Damage theory alone, does
not provide permanent strains as it considers the complete and perfect closure of cracks
after unloading from a damaged state. However, sliding at cracks edges and incomplete
closure of cracks due to misfits at crack lips, result in permanent strains that can be

described macroscopically with plasticity theory (Figure 3.6).

stress

strain

(a) (b) (c)

Figure 3.6. Combination of plasticity and damage theory

Within this approach, the initially undamaged volume of the material, starts degrading
beyond a certain strain limit. The effective skeleton keeps weakening whenever maximum
strain criterion is exceeded, exhibiting in parallel a hysteretic behavior. In this way, cracks,
voids and sliding are manifested and phenomenologically can be taken into account. By
applying the strain equivalent damage theory the true concrete stress is calculated from the

effective undamaged stress with the following relation:

o.=(1-D)-G, (3.11)
where D is the time dependent damage parameter which quantifies damage caused in

tension and compression field according to the following relation:
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(1-D)=(1-H,,D.)[1-(1-H,,)D, | (3.12)
while D and D, describe the damage caused within compression and tension fields

respectively. These two indices do not interact as they are controlled by the Heaviside-type

term H_, of relation (3.10) that prevents a simultaneous activation.
In rate form, relation (3.12) expresses the damage evolution as:

D=H,,D_[1-(1-H_,)D_]+(1-H,_)D, [1-H,,D_] (3.13)
Moreover, differentiating relation (3.11) with respect to time, a rate expression relating

stress with damage parameter and strain is obtained as follows:

6,=(1-D)a, -D&, (3.14)
Generally damage state in tension D, differs from the respective damage state in
compression D_. The appearance of the first tensile cracks in the tension region results in

the immediate loss of strength, while is evolving gradually in the compression field damage.
So to distinguish both distinct phases, all damage model parameters employed are denoted

with subscript i in the following sections.

Damage parameter either in tension or compression D, :D,(ki(g,.)) is controlled herein

by the damage-driving variable k; and is given analytically from the following exponential

relation:

D, =1-e \ Pk (3.15)
where b and p, are model parameter that control damage evolution and are typically
calibrated by experimental data. Damage-driving variable k. is a function of distinct strain ¢,

in compression or tension while it starts evolving from the damage threshold strain value

k,that defines the onset of damage.

k,.(g,.)zmgx(g,(r),koll.) (3.16)

When k; resides within a damage surface it results no damage evolution. The damage

surface for a uniaxial problem that delimits the undamaged region is specified as (Grassl and

Jirasec 2006):
gi(ki'gi):gi_ki(gi) (3.17)
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Damage evolution is controlled by the Kuhn-Tucker optimality conditions associated with
the principle of maximum damage dissipation (Simo and Ju 1987). They are given in the

form:

9,<0,k>0,k-g =0 (3.18)
and designate that if function g, is negative, remains constant and no damage evolution

occurs, whereas if g, is zero, k; >0 and damage develops.

3.2.3 Smoothening of the damage equations

The above relations describing damage have a similar structure as those of classical
plasticity and thus a similar unified smooth expression (§2.2.2) can be also introduced.

Hence, relations (3.17) and (3.18) can be expressed via a Heaviside step function H_, and

the loading-unloading switch function H_, (3.3), as follows:

ki=H.,-H.,"é, (3.19)
0, g<0

He,= (3.20)
1, g=0

where ¢, is the distinct concrete strain in tension/compression and H,, activates damage
evolution (0: undamaged phase, 1: damage evolution), while it can be smoothened as

follows:

m

(3.21)

Parameter m controls the smooth transition of constant damage to damage evolution,
even though for simplicity reasons it is suggested this parameter to obtain large values

m>10 as immediate damage transition is advised.

Applying the chain rule for the damage parameter D,, damage evolution law is given as:

D, :ﬂk, (3.22)
dk,

Substituting relations (3.19), (3.21) and (3.22) in relation (3.13) the following equation is
derived:
dD. . dD

Di =_’ki =H.-H, '_["éci
dk; dk. ~

1

(3.23)
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which embodies the entire damage evolution. Concrete damage model without any plastic
behavior contributing is illustrated in Figure 3.7. Model parameters in tension and

compression are presented in Table 3.1.

Ec (G Pa) kO,c ko,t bc bt pc pt
30 0.000833 0.000167 2.5 0.5 0.9 0.5

Table 3.1. Damage concrete parameters

stress (MPa)

| | |
-15 -10 -5 0 5

strain (—) x10"~

Figure 3.7. Concrete model with damage contribution only.

Finally, substituting relations (3.8) and (3.23) into (3.14) results into the following

compact expressions:

o.=E. ¢, (3.24)

dD, &,
Ec,t = {(1 _D)[l _(1 _ac).Hcl 'ch _(HM 'ch d_kIE_CJ}EC (325)
where, E, is the tangential Young modulus incorporating both plasticity and damage effects.

Concrete model when the combined plastic and damage behavior is attributed is illustrated

in Figure 3.8 with model parameters those of Table 3.2.

E.(GPa) oy (MPa) ac qc ko, b; P

Compression 25000 0.5 1000 0.000833 6.5 1.0
30

Tension 5000 - - 0.000167 0.5 0.5

Table 3.2. Plastic and damage concrete parameters
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stress (MPa)

|
15 ~10 -5 0
strain (<) x10"

Figure 3.8. Plastic-damage concrete model

As it is obvious, while model is in the compression range it unloads with stiffness E,
which is smaller than the elastic stiffness E. and permanent compressive strains evoke.

Also, after the first excursion in the tensile field a small reserve remains, hence in the

subsequent reloading in tension tensile stiffness is non-zero.

When unloading from compressive envelope it is obvious from Figure 3.8 that tension
envelope is shifted at the point where the unloading compressive curve intersects with the
zero stress level axis. This is accomplished by setting in relation (3.21) the tensile part ¢ of

the total strain ¢, , evolving as follows:

& =(1-H,)¢. (3.26)
3.2.4  Nonlinear unloading

It is evident from experiments that concrete exhibits nonlinear unloading, whereas in
reloading it remains linear forming in such way hysteretic loops (Sinha et al. 1964; Karsan
and Jirsa 1969; Okamoto et al. 1976; Bahn and Hsu 1998). To incorporate such a behavior an

appropriate modification is introduced into the relation of tangential modulus as follows:

1-H¢,

_—C +C2 (327)
O

cr

where r, designates the function of the nonlinear unloading branch that depends on

0., which is the effective stress at the reversal point. The exponent 1-H_, activates the
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unloading function only when unloading is detected and c,, c, are model parameters.
Consequently the tangent concrete modulus is modified as:
dD, G,

Ec,t= (l_D)[l_(l_ac)'Hcl'ch _[HM'HCZ'I Ej 'run'Ec (328)

The modified concrete behavior due to nonlinear unloading is illustrated in effective

(undamaged) and total stress terms in Figure 3.9
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30+ e
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(b)
Figure 3.9. Schematic representation of concrete nonlinear unloading
In the beginning of unloading (H62=0, 0'5256',) tangent stiffness obtains value
E..=(1-D)(c,+c,)E., while if complete unloading takes place, the respective value is
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E.. =(1—D)C2EC. Consequently, unloading parameter c, controls the percentage of tangent

stiffness at zero stress level and the sum of parameters (c,+c,) controls the instant value

of tangent stiffness at the reversal point.

3.2.5 Crack closure

When unloading from tensile stresses, at zero stress level, permanent tensile strains
appear due to incomplete closure of cracks as misfits at crack edges exist. If loading at
compression field follows, stiffness gradually obtains its compressive value as cracks close.

This phenomenon is added in the proposed model by the stiffness recover function

rrec (grec ’ ‘C"C )

(3.29)

(3.30)

where E_, is concrete tangent modulus in tension, & is compressive strain and ¢, is the

strain value where cracks close completely when stiffness recovery phenomenon is omitted

(Figure 3.10). Parameter n__ controls the smoothness of the transition with larger values

meaning the instantaneous closure of cracks.

stress

i I

strain

Figure 3.10. Concrete stiffness recovery representation
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Finally, combining all previous effects the stress-strain constitutive relation of concrete
can be written according to equation (3.31). The 1*" part controls loading in either tension or
compression and unloading from compression state, while the second part describes
unloading from a tension state until compressive stiffness attains its actual value due to

stiffness recovery.

o, =E_ €
dD, o
E, = {(I—D).[l—(l—a)-Hcl.ch —[HM-HCZ.d_ki‘.E_j]}.run.Ec (3.31)
rrec'Ech,t

In Figure 3.11 the proposed concrete model considering the parameters of is presented

where all the aforementioned phenomena are illustrated.

5
residual tensile
strength
ol
tension
-5 softening
10k nonlinear i
& unloading
§, —15} i
(%)
(%]
g
5 -20f s
yielding and
-25F onset of damage |
,30 [ .
-35 I I I I I I
=12 -10 -8 -6 -4 -2 0 2

strain (—) x 10

Figure 3.11. Schematic representation of the proposed concrete model.

Ec (G Pa) Gyc (MPa) ac qc kO,i bi Pc C C2 Nrec
Compression 25.0 0.5 1000 0.000833 6.5 1.0 3.0 0.2 10
30
Tension 5.0 - - 0.000167 0.5 0.5 3.0 0.2 -

Table 3.3. Concrete model parameters

3.2.6 Pseudo-code for concrete model

Summarizing the described uniaxial concrete model, one can apply it to the global
solution process as follows. At any iteration j of a global incremental numerical scheme the

following are performed:
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1. Define current tension/compression state by calculating switch function H!, (3.10)
and loading/unloading state by switch function H/, (3.3).
2. Plastic term
i Calculate current post to pre-yield stiffness ratio a’/ from relation (3.7).
ii. Derive yield switch function H/, from relation (3.4).

iii. Calculate current yield stress by linearizing equation (3.5)

Jj+1
O-yc

=o) +H.,-H.,-a -sgn(G))-E, -d&! (3.32)
3. Calculate unloading function r,, from equation (3.27).

4. Calculate current effective stress from linearization of equation (3.8) as:

51" =5 +(1-(1-a!)-H, -H., ) E, -de! (3.33)
5. Damage term.
i Calculate damage threshold function Hj4 from relation (3.21) using equation

(3.26) for tensile damage.

ii. Derive damage-driving variable k; by linearizing equation (3.19) as:
kIt =k! +H.,-H.,-de!, (3.34)

iii. Using analytic relation (3.15), calculate the derivative of the damage parameter

D, interms of k;. The following relation is obtained:

k k p—1 [ kfko,i ]pf
dD i i 1 B K, .
Zip. 0, : e\ Phos (3.35)
dki bikO,i bikO,i

iv. Then, calculate the current value of the damage parameter D, in both tension

and compression from equation (3.23):

. . . - dD. )
=D +H!  -H . —L.dg!. .
D/ =D] +H.,-HLy- S, (3.36)

1

V. Using relation (3.12), calculate damage coefficient (l—D"”) at current distinct

loading state (tension or compression).
6. Finally, calculate true stress o, and tangent Young modulus. In the regular case they

are given as

ol =cl+E!} -de! (3.37)

c
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Ezfs:{(1_Df+l)-[1—<l—a")-f+zl-sz]—[Hz4-Hz4-f,—2-5§:1 j}f (339

7. When unloading from tension envelope and reloading until yield point or damage
threshold in compression, relation (3.37) and (3.38) are replaced by the crack closure
step by calculating the stress recovery function (3.29). Then the updated total stress is

calculated as:

j+1
O-c

=o!+r,. -El, -de] (3.39)

Equations (3.37)-(3.39) trace the full nonlinear concrete path in every time step in a
direct way and stresses are determined explicitly. Hence, the residual error in each iteration
is due to the inherent error of the Euler numerical scheme used to integrate the differential
equations. In the work of Lee and Fenves (2001), as well as in Saritas and Filippou (2009)

calculation of effective stress is performed in advance and the contribution of the damage

variable is added subsequently (general closest point projection (GCPP) algorithm). As a

consequence the consistent tangent stiffness (aj” —aj)/(dgc")that ensures the quadratic

c

convergence of the Newton-Raphson numerical strategy should be calculated after the
stress determination process. However, this is not the case in the proposed formulation, as
tangent stiffness in relation (3.38) is directly used both for stress stiffness and global

stiffness matrix offering a more straightforward numerical formulation.
3.3 Influence of model parameters

3.3.1 Compressive behavior

In this section the influence of the parameters that control the proposed concrete model
in compression is investigated. The reference values for a parametric study concerning the

influence of each parameter variation are presented in Table 3.4:

Ec(GPa) o, (MPa) Oc dc ko,¢ b: Pt C1 C2 Niec

30 25 0.5 1000 0.00083 6.5 1.0 4.0 0.15 100

Table 3.4. Reference compressive parameters

The sensitivity of the response with respect to the parameters of the model is
demonstrated by varying all parameters one at a time while keeping the rest of them as
constant. First, the influence of parameters controlling plastic response is demonstrated in

Figure 3.12.
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Figure 3.12. Influence of plasticity parameters in compression

For higher values of the initial yield stress o, the stress-strain curve rises along the

elastic modulus line as it is depicted in Figure 3.12(a). Parameter a,_ designates the isotropic

hardening modulus in terms of total the strain &_. As shown in Figure 3.12(b) this parameter

directly affects the compressive strength of concrete, as well as the magnitude of plastic and

elastic strain. As a,_ approaches unity, plastic deformations tend to disappear. Also, an

increase of the hardening parameter q. (Figure 3.12(c)) approximates an elastic perfectly

plastic curve for the plastic term diminishes the plastic response. As it is reflected in the

figures plastic parameters affect the initial concrete response after yield point, while post

peak response where damage prevails leads asymptotically to the same loading path.
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Figure 3.13. Influence of damage parameters in compression

Next, the sensitivity of the model to the damage parameters is presented in Figure 3.13.

More specifically, changing the damage threshold k, affects the strain point where damage

initiates, while for larger values a parallel transition of the softening curve is observed

(Figure 3.13(a)). As far as damage parameter b, is concerned, small values lead to a more
rapid softening behavior as depicted in Figure 3.13(b). In addition, parameter p, controls

the slope of the softening curve by affecting the distribution of the released energy in the

post damage regime. As p_ increases, damage develops slower at strains near k,, whereas it

evolves faster for higher values of strains, as shown in Figure 3.13(c).
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Figure 3.14. Influence of unloading-reloading and stiffness recovery parameters in

compression

Finally, the influence of parameters controlling unloading-reloading and crack closure

phenomena is investigated. Parameters ¢, and c, in Figure 3.14(a)-(b) control the slope at
reversal and zero stress point respectively. Thus, during unloading the slope varies between
(1-D)(c, +c,)E, at reversal point and ¢, (1—D)E, at zero stress point. For greater values of
the ratio ¢, /c, the unloading-reloading slope range becomes wider. Also, larger stiffness

recovery values affect the strain range and the smoothness of the transition from tensile to

compressive behavior due to crack closure phenomena (Figure 3.14(c)).

3.3.2 Tensile behavior

Similarly, the influence of parameters in tension is investigated and the parametric

comparison is presented in Figure 3.15 with reference values those listed in Table 3.5.

Ec(GPa) o (MPa) Ko,¢ b: Pt C1 C2

30 5 0.000167 0.5 0.5 3.0 0.3

Table 3.5. Reference tensile parameters
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Figure 3.15. Influence of tensile parameters

Generally, to account for tensile behavior with abrupt loss of strength after peak tensile
strength, parameters b, kaL p, that control softening branch normally take values lower

than 1.0.

3.3.3  Range of model parameters

The full version of the proposed model includes a number of 9 parameters in
compression. However, in the absence of experimental data or even for design purposes the
model can be used in a simplified version as some parameters seem to have a similar effect
in the nonlinear response. Taking a closer look at Figure 3.12 it appears that all three
plasticity parameters affect the initial nonlinear segment with similar manner. For this
reason it could be assumed that parameter g, is redundant and could be excluded from the
model if it is assigned a zero value, excluding nonlinear isotropic hardening effect from the
model. This reduction can be accompanied with setting damage threshold parameter k,
equal to the yield strain ¢_,. This modification considers a coupled damage-plastic behavior
and describes the physical mechanism of cracks formation, as cracks open and slide

simultaneously.

As far as tensile behavior is concerned, damage threshold parameter k, should obtain
the strain value at the peak stress point as damage should evolve rapidly after strength
tensile capacity is exceeded (ko =0, /EC). Generally, tensile strength is usually considered
as the 10% of the compressive strength. Nevertheless, as concrete tensile behavior is of

secondary importance and affects usually the initial loading path of RC members, in the

absence of experimental data the reference values b, =0.50, p, =0.50 are suggested for

use.
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In conclusion, the following model parameter values in table are suggested for use in the

case there is not any experimental data available.

compression tension
parameters

unconfined confined -

Oyc/ Oc,max 0.4-0.8 0.3-0.8 1.0
o, 0.4-0.9 0.4-0.9 -
dc 0 10.0-50.0 -

ko/ €y 1.0 1.0 1.0

b, 1.0-10.0 2.0-20.0 0.5

P. 0.8-1.5 0.4-1.2 0.5

() 3.0-4.0 1.5-2.0 3.0

() 0.1-0.3 0.3-0.5 0.3

Table 3.6. Range of model parameters values

Together with the previous table, maximum compressive strength o tensile strength

c,max /
o, and 40% secant stiffness E_ are given in any design code depending on the concrete

grade.

3.4 Verification with experimental data

The proposed plastic-damage model is verified with various experimental tests that
investigate concrete cyclic behavior. The proposed model parameters presented are
calibrated heuristically in every case to match the experimental behavior. For better
correlation of the numerical with the experimental result proper parameter identification
algorithms can be used, however this exceeds the purpose of this thesis. In every case, the
normalized recorded strain histories are introduced into the proposed model and the stress

outcomes are plotted in conjunction with the actual experimental stresses

3.4.1 Compressive behavior

More specifically, considering compressive behavior, the experimental tests that were
used for the comparison and their results are presented in Sinha et al. (1964), Karsan and

Jirsa (1969), Bahn and Hsu (1998), Okamoto et al. (1976) and Muguruma et al. (1983). The
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results of the comparison are presented in Figure 3.16-Figure 3.20 while normalized model

parameters are listed in Table 3.7.
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Figure 3.16. Comparison with experimental data of Sinha et al.
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Figure 3.17. Comparison with experimental data of Karsan and Jirsa.
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Figure 3.19. Comparison with experimental data of Muguruma et al.
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normalized Sinha et Karsan- Okamoto Muguruma
Bahn-Hsu
parameters al. Jirsa etal. etal.
Oyc/ Oc,max 0.7 0.7 0.7 0.6 0.75
€yc/€co 0.4 0.3 0.4 0.29 0.5
o, 0.5 0.7 0.6 0.5 0.7
dc 10 10 5 10 12
ko/ €0 0.4 0.3 0.4 0.57 1.0
b, 4.5 4.5 5.0 2.5 0.9
Pc 14 1 1.7 0.75 1.0
(o 3.8 4.0 3.5 4.0 3.5
C 0.1 0.12 0.15 0.1 0.1

Table 3.7. Concrete compressive parameters for comparison with experimental data.

It is evident that the proposed concrete model fits satisfactorily the observed concrete
cyclic behavior, demonstrating its flexibility to adapt to a range of different concrete
categories. In the experiments performed by Sinha et al. and Okamoto et al. concrete
exhibits similar response with peak stress presented in the same strain range and mediocre
post-peak envelope stiffness, while in the Karsan and Jirsa experiment post-peak stiffness is
less steep. On the contrary, concrete used in Bahn and Hsu experiment demonstrates a

more brittle behavior with a steeper softening branch and greater strain at peak stress. This
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different concrete cyclic response is reflected in the model parameters. Similar parameter
values are used to capture the response of the first three tests while calibration with the
Bahn and Hsu experiment corresponds to a different range of parameter values. Finally,
Muguruma et al. studied experimentally cyclic behavior of high strength concrete and peak
compressive stress in the normalized Figure 3.19 corresponds to 64MPa. Therefore, it is
evident that the proposed concrete model can simulate successfully not only regular
strength concrete, but also high strength concrete with the proper set of parameters

involved.

3.4.2 Tensile behavior

Similarly, the tensile behavior is verified with cyclic experimental data in the literature. In
the first experiment performed by Gopalaratnam and Shah (1985) strain reversals until zero
stress level are imposed. As presented in Figure 3.21 permanent tensile strains are
manifested and abrupt loss of strength capacity is noticed soon after stress reaches yield
limit. This behavior is satisfactorily obtained from the concrete model where both the
envelope and the stress reversals are simulated. Concrete model parameters that were used

for the analysis comparison can be found in Table 3.8.
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Figure 3.21. Comparison of model’s tensile behavior with experimental data of

Gopalaratnam and Shah.

80



Modeling Reinforced Concrete Structures under Severe Cyclic Loading Incorporating Plasticity and Damage Models

Oyt
Ec Y Oc,t Ac,t Ko, b: Pt C1 C2
(MPa) ’ ’ ’
(GPa)
32 3.7 0.1 0 0.00012 0.6 0.5 2.0 0.2

Table 3.8. Concrete tension model parameters for Gopalaratnam and Shah experiment

analysis.

In the next experiment performed by Reinhardt and Cornelissen (1984) concrete
specimen is loaded both in tension and compression, thus the crack closure phenomenon is
revealed. As it is obvious from Figure 3.22 there is a very good correlation between the
analysis model and the recorded outcome, while used model parameters are listed in Table

3.9

= =Experiment | -
=== Analysis

_4 | | | | | | |
0 0.5 1 1.5 2 2.5 3 35

strain (-) x10~

Figure 3.22. Comparison of model’s tensile behavior with experimental data of Reinhardt

and Cornelissen.

Ec Oyt
(GPa) (MPa)

30 3.2 0.6 0 0.00011 3.0 0.7 3.5 0.8 5.0

Olc,t dc,t Ko,t b, Pt C C> Nrec

Table 3.9. Concrete tension and stress recovery model parameters for Reinhardt and

Cornelissen experiment analysis.

Nonetheless, in the global analysis of RC structures, tensile phenomena are manifested
only at the initial stages of loading as soon after the first cracks appear, tensile strength is
lost completely. However, crack closure phenomenon is still active and affects the

loading/unloading loops of RC members, so it is advised to be implemented in the analysis.
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3.4.3 Confined concrete behavior

Confining pressure offered by the transverse stirrups or hoops increases maximum
concrete compressive strength and ductility. In the model, there is not an explicit method to
incorporate confining effects as it is by definition a 3D phenomenon that reduces volumetric
strain and concrete dilatancy. Nevertheless, Mander et al. (1988) proposed an analytical
procedure to account for confinement in a uniaxial constitutive law by considering constant
pressure throughout the whole stress-strain curve. This procedure can be adopted herein to

derive maximum confined compressive stress and then recalibrate model parameters.

On the other hand experimental data on concrete cylinder specimens confined with
circular stainless steel rings are offered in Choi et al. (2013). The experimental results of the
unconfined and confined specimens are presented in Figure 3.23. Also, the numerical results
of the proposed model under the same imposed strain history are highlighted in the same
figure. The comparison reveals the ability of the model to simulate confined cyclic behavior
apart from the unconfined one. Finally, the modification of model parameters in order to

describe confined behavior is listed in Table 3.10.
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Figure 3.23. Comparison of confined and unconfined behavior with experimental data of

Choi et al.
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Ec Oyc
(GPa) (mpa) % % ko b e “ “
Unconfined g 15 070 O g 40 09 40 02
Confined 20 25  0.25 40 gc 190 09 2.0 04

Table 3.10. Confined and unconfined concrete parameters

3.5 Comparison with existing well-known models

In this section well established and commonly used uniaxial concrete model are briefly
described and they are compared with the proposed formulation. These models are used
nowadays in many structural engineering projects as they are incorporated in scientific and

commercial software packages like OpenSees, Seismostruct and Sap2000.

First, a comparison of the proposed model and the model of Mander et. al (1988) as
modified by Martinez-Rueda and Elnashai (1997) is performed and the result is presented in
Figure 3.24 for the imposed strain history of Table 3.11. Model parameters for both models
where selected in such way as to achieve similar response. More specifically Young modulus

was set to £, =25 GPa, yield stress is 0, , =22 MPa, hardening parameters are a.=0.85,

g, =50, damage parameters are k, =¢

cy?

b.=2.7, p.=1.0 and unloading parameters are

c,=4.0,c,=0.25

L = =Martinez—Rueda and Elnashai model i
=== Proposed model

stress (MPa)

strain (-) x10~°

Figure 3.24. Comparison with Martinez-Rueda and Elnashai concrete model
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Pseudo-Time

(sec) Strain (-)
0 0
1 0.001
2 -0.004
3 0.002
4 -0.008

Table 3.11. Strain history for comparison with Martinez-Rueda and Elnashai concrete model

First, a difference is spotted in the tension envelope where the model of Martinez-Rueda
and Elnashai loses tensile strength instantaneously, while the proposed model describe the
tension softening behavior, degrading gradually to zero tensile strength. Another main
feature of the proposed model is the crack closure phenomenon, something that is missing
from the existing model. On the other hand compressive skeleton appears to be quite similar
for both models, but unloading-reloading curves seem to differ. In the proposed model the
reloading curve end to a point closer to the reversal point than the existing model.
Generally, if nonlinear unloading and crack closure phenomena were excluded from the
model the reloading stiffness is the same with the unloading stiffness, while in the model of
Martinez-Rueda and Elnashai reloading linear curve has smaller slope than the unloading

curve.

In addition, a comparison of the proposed model and the model of Konstantinidis and
Kappos (2007) is performed and the result is presented in Figure 3.25 for the imposed strain
history of Table 3.12. The purpose of this comparison is to reveal the ability of the model to
predict cyclic response of high strength concrete as Konstantinidis and Kappos model results
from statistical analysis of experimental data on high strength concrete specimens under
cyclic loading. Model parameters for both models where selected to be adequate for high
strength concrete feature and to achieve similar response. More specifically Young modulus

was set to £, =40 GPa, yield stress is 0,0 =40 MPa, hardening parameters are a, =0.8,
g.=2000 and damage parameters for k,=-0.002, b.=2.2, p,=1.0 and unloading

parametersare ¢,=2.0, c,=0.2.
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Figure 3.25. Comparison with Konstantinidis and Kappos concrete model

Pseudo-Time Strain (-)
(sec)

0 0

1 0.0005
2 -0.004
3 0.001
4 -0.006
5 0.0015
6 -0.007

Table 3.12. Strain history for comparison with Konstantinidis and Kappos concrete model

Similar to the previous comparison, tension softening behavior is not modeled from the
existing model as it loses tensile strength instantaneously, while the proposed model
simulates concrete response after peak tensile strength. Also crack closure phenomenon is
not included in the existing model perhaps due to lack of experimental data. On the other
hand, compressive skeleton appears to be quite similar in both models, even though
Konstantinidis and Kappos model describes post peak response with a linear segment, while
the proposed model used an exponential law for damage evolution. As expected unloading-
reloading curves present the same deviations with the Martinez-Rueda and Elnashai model,
as both existing models adopt the same analytical rules with the only difference that in
Konstantinidis and Kappos model unloading-reloading loops close completely. Similar closed
hysteretic loops can be modeled using the proposed model by properly selecting unloading

parameters c; and c,.
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Finally, a comparison is performed between the proposed model and the concrete model
of La Borderier et al. (1994) which is based on damage theory considerations; hence both
models share the same structure. As it is illustrated in Figure 3.26 the proposed model can
generate the same stress-strain loop of uniaxial concrete behavior under the imposed strain
history of Table 3.13 with the additional feature of nonlinear unloading in compression.
Another difference lies on the fact that La Borderie model describes the crack
closing/reopening phenomena with a linear segment, while the proposed model uses a
smooth transition approach. Nevertheless, all other features of uniaxial concrete cyclic
behavior like tension softening, damage state in compression and inelastic strains can be
captured from the proposed formulation. To obtain this response the following parameters

were used; Young modulus E =20 GPa, yield stress is o, ,=18 MPa, hardening
parameters are a,=0.6, q,=10 and damage parameters that are selected for both
compression and tension are k, =-0.0013, k,, =—0.00025, b,=4.0, b,=0.7,

p.=1.75, p, =0.6 while unloading parameters are ¢, =c,, =3.0, c¢,, =0.25,¢,. =1.0.

stress (MPa)

= =La Borderier model

== Proposed model

| | | |
-8 -6 -4 -2 0 1
strain (—) «10~°

Figure 3.26. Comparison with the La Borderie concrete model.

Pseudo-Time Strain (-)
(sec)
0 0
1 0.008
2 -0.0062
3 -0.0016
4 -0.008

Table 3.13. Strain history for comparison with La Borderie concrete model.
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3.6 Appendix I.

3.6.1 Modified Mander et al. model

Mander et al. (1988) proposed a uniaxial model to predict cyclic behavior of concrete,
accounting also for the confinement effects. The model distinguishes three distinct phases of
hysteretic response, namely the loading envelope curve, unloading and reloading in
compression and unloading in tension. Later, model was improved by Martinez-Rueda and
Elnashai (1997) to increase numerical stability under large excitations. In another
modification of the original Mander et. al model, Chang and Mander (1994) incorporated
stiffness recovery phenomenon due to the closing/reopening effect of the crack. The
modified Martinez-Rueda and Elnashai model uses the same relations for the envelope

o, —&, curve, but the rules controlling strength and stiffness degradation, inelastic strain

and nonlinear unloading are different. More specifically the magnitude of concrete stress

under monotonic loading is given from the following relations:

kf., j—‘r

O = (3.40)
r—1+ (‘SC]
€CC
E
r=—e— (3.41)
EC cCc
£

e =gc{1+5£?c —1]} (3.42)
c0

where, o, is the compressive maximum strength of the unconfined concrete is, o, is the
maximum strength of the confined concrete resulting from multiplying o, with a scalar

& is the strain at maximum concrete

co0’ cc

parameter k. Strain ¢, is the strain at stress o
stress o, and E_ is the initial modulus of elasticity of concrete. Also model assumes that
confinement effect is constant throughout the whole range of the stress-strain curve. In

tensile loading model behaves elastically o, =E,-¢. until maximum tensile strength is

reached o, <o, and then, instantaneously, it loses total strength (O-C =0, o >Jr),

The unloading curve is described by a second order parabola, starting from the reversal

Gu n

g.,,0
point (8“"' ) and ending up to the point where full stress reversal is attained ( ol )
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(Figure 3.27). The permanent inelastic strain depends on the current strain range and is

given according to the following relations:

GUH
Epy =Eun— E 0<¢g, <&
c (3.43)
& _+¢&
&y =&, -————, &,<¢,<25¢, (3.44)
o, tE.e¢,
Gcrgun _|‘9f|
&, =——, 2.5¢,<¢, (3.45)
O-cr +O—un

where, ¢, is the strain corresponding to 0.350, stress level until where concrete behavior

is assumed elastoplastic. Under high strain level a focal point (Sf,O'f) is defined based on

the upper limit of the moderate strain range and its coordinates are given as:

o_¢&

. erplcr
\gf\ “r (gcrgpll’; = (3.46)
EARIAA (3.47)

where, ¢, =2.5¢, and ¢, , is the inelastic strain corresponding to strain 2.5¢, .

Reloading in compression takes place in two steps, first reloading remains linear until

point (&,,,0,., ), which is given from the following relation:

0.9f. (0 ZC Jr
JE
_ c (3.48)

o-new r
r—1+ o
0.9¢,,

After reversal strain exceeds unloading strain ¢

un?

a second linear segment between

point (&,,,0,,, ) and point (&,,0,,) is considered, where:

un’ > new

g, [1.00273 +1.2651 gj
&
£, = = 3.49
e > (3.49)

The Mander et al. (1988) concrete model with the modifications added from Martinez-

Rueda and Elnashai (1997) is presented graphically in the following Figure 3.27
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Figure 3.27. Martinez-Rueda and Elnashai concrete model

3.6.2 Konstantinidis and Kappos model

In contrary to previous models that were used to address mainly cyclic behavior of
regular strength concrete, Konstantinidis and Kappos (2007) proposed an analytical model to
predict cyclic behavior of high strength concrete. They proposed a three-branch envelope
curve calibrated with experimental data, while for the unloading-reloading branches they
adopted the relations from the Martinez-Rueda and Elnashai model. When strain resides in

the ascending branch of the envelope curve stress is evoked from the following relation:

& E

c c

C E _
o = gCC C O-CC/gCC (3‘50)

¢ E/(Ec=0cc/6cc
E. . ( f2ce)
- ¢ 14| =
Ec _Gcc /‘9cc g

cc

C

When strain exceeds strain value &, at maximum stress the descending branch of the

envelope is defined as:

Eo5 — €

cc

E.—€
o, =0, {1—0.5#}20.30“ (3.51)

Where the strain at 0.50,, value is calculated as:

2

E E 0.70 %%

g, =| —— 1t || — 41| —2 |20 (3.52)
' O-CC /gCC ZGCC /gCC 2000
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The plastic strain ¢, and the loading-unloading rules were adopted from the Martinez-

Rueda and Elnashai model and they were presented in equations (3.43)-(3.49) with the

simplification that the unloading point (8“"’0-””) is considered identical with the point

(¢.,0,) where the reloading curve ends. Due to this simplification the loading-reloading

loops close at the same point. Finally, the model for high strength concrete proposed by

Konstantinidis and Kappos is illustrated in the following Figure 3.28:

(e ,0 )=(€ _,0)

un’~un e’ e’

stress

strain

Figure 3.28. Konstantinidis and Kappos high strength concrete model

3.6.3 La Borderie damage model

One of the most well-known concrete models incorporating damage theory is the one
proposed by La Borderie et al. (1994). The model takes into account crack opening/ closing
phenomena and its general formulation is in the 3D space but only the uniaxial (1D) version

is presented herein.

The total strain is presented as the sum of an elastic and an inelastic part:

e=&%+¢&” (3.53)
e O o
g _E(l—D1)+E(1—Dz) (3.54)
a_ :Bl'DJ ' ﬂz'Dz
& _E(l—Dl)F(6)+E(1—D2) (3.55)

where, E is the Young modulus, £,, B, are model parameters and o', o are the tensile

and compressive stresses respectively, given according to the following relations:
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oc'=ocand c”=0for c>0 (3.56)
oc"=0and c” =0 for c<0 (3.57)
Also, F(o) is the function that controls crack opening/closing phenomena and is expressed

in terms of the relations:

F'(G)zﬁ
oo
o = F(o)=1for >0
(3.58)
(o3 ' o
Flo)=1o|1+— | = F(o)=1+— for 0, <0 <0
ZO'f o;
—0; .
5 = F(o)=0for o<-o;

D,, D, are the damage variables in tension and compression respectively, varying from 0

(no damage) to 1 (complete damage).Each variable D; is driven by Y; as follows:

D=1- I (3.59)
1+|:Ai (Yl _YOi ):' l

where, Y,, is the damage threshold and A, B, are model parameters. More specifically,

damage driving variables in tension and compression are given from the following relations:

) _y Lol (3.60)
2£(1-D,)" E(1-D,)

(
_ (o) _+ b0 . (3.61)
2E(1-D,)" E(1-D,)

.

1

+

2

La Borderie damage model is illustrated graphically in Figure 3.28.
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Figure 3.29. La Borderier concrete model
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4.1 Introduction

The state of a deformable body subjected to body forces, tractions and kinematic
boundary conditions is considered fully defined when the displacements, stresses and
deformations are determined at any point of the body. In particular, for earthquake
engineering and structural analysis of skeletal structures, beam elements usually based on
the Euler-Bernoulli theory assumption that plane sections remain plane and perpendicular to
the deformed axis are typically considered. This facilitates considerably the state

determination problem of such elements.

In the context of distributed plasticity analysis, displacement based beam elements were
initially utilized following the classical stiffness method in which displacements were the only
considered independent field (Bathe 2007). When cubic and linear shape functions are
employed for the transverse and axial displacements respectively, the resulting
displacement field leads to constant axial deformation and linear curvature, which however
is not appropriate when plastic deformations occur. To address this deficiency a structural
member should be discretized in more than one element at the expense of increasing
computational cost. Also, equilibrium equations are only accurate at element nodes, while
within the element they are satisfied in weak form as they are not valid for all possible

displacement fields that satisfy essential boundary conditions.

To resolve this problem, force based models were proposed that interpolate nodal forces
within the element maintaining equilibrium. A thorough investigation on the advantages of
the force based elements over the classic displacement based is presented by Fragiadakis
and Papadrakakis (2008) and Calabrese et al. (2010). These models were implemented in the
framework of the stiffness method of structural analysis and in that respect they are
considered “mixed” as they use both force and displacement fields as independent ones.
Zeris and Mahin (1988; 1991) used equilibrium and variable displacement interpolation
functions in a linearized event to event context for the state determination problem. Later,
one of the first consistent and general force based beam model was proposed by Spacone et
al. (1996 a,b) which required element equations to satisfy element equilibrium and
compatibility by introducing an internal loop in the element level to minimize deformations
unbalance. This methodology was later simplified numerically by Neuenhofer and Filippou
(1997) as they pushed element residual to the structural level, eliminating in such way the
need for element iterations. Although the force based method proved very efficient and is

currently widely used, there were some concerns about its variational consistency that were
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resolved by Hjelmstad and Taciroglu (2002). Moreover, the same authors (Hjelmstad and
Taciroglu 2005) showed that it is possible to provide non-variationally consistent force-based
elements within the "nonlinear flexibility" framework by enforcing equilibrium directly,

proving in such way that not all force-based elements have a variational base.

However, the variational structure of the mixed elements is important as it provides
various local and global solution strategies to address the numerical solution problem as
described by Nukala and White (2004) and Saritas and Soydas (2012). Thereafter, mixed
methods seem to have the leading role in the research field of nonlinear beam problems and
corresponding numerical procedures as they are proved more efficient. A lot of research
work has been produced recently in the field following work of Hjelmstad and Taciroglu
(2003), Taylor et al. (2003), Alemdar and White (2005), Alsafadie et al. (2011), Correia et al.
(2015) and Gkimousis and Koumousis (2016).

Global solution of beam elements relies significantly on the material models used.
Standard concrete and rebar models have an analytical structure, while others, like those
that are developed in this dissertation, rely on the notions of yield and damage surface, flow
rule and internal parameters. These models are incorporated in the state determination
process in linearized form giving rise to the return-mapping algorithm (1985). On the other
hand, cyclic behavior can also be modeled using hysteretic evolution differential equations
as proposed by Simeonov et al. (2000). In their work a force based element was developed
where material constitutive relations are considered in rate form and are solved
simultaneously with the global differential equations of motion in state-space form. Also,
Jafari et al. (2011) extended this formulation in large displacement analysis following a
displacement based formulation. In addition Triantafyllou and Koumousis (2011; 2013)
proposed a finite element procedure where material nonlinearity is treated constitutively at

the element level through proper implementation of the Bouc-Wen hysteretic rule.

In this chapter both numerical methodologies are utilized by incorporating the proposed
concrete and rebar models to a fiber beam-column element. Generally, global solution
procedure in the context of distributed plasticity fiber beam elements consists of the

following four stages (Figure 4.1).

1. Fiber level, where given axial strains and internal parameters, concrete and rebar fiber

uniaxial stress and tangent Young modulus are derived.
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2. Cross-section level, where fiber stresses and tangent moduli are summed up over the
cross-section and stress resultants (axial force, bending moment), while also cross-
sectional stiffness matrix are derived.

3. Element level, where element state determination takes place, namely the calculation of
nodal internal forces and element tangent stiffness matrix through integration of cross-
sectional stress resultants along element length. Different methodologies for the state
determination process arise according to the treatment of element unknown fields,
namely, displacement, stress and deformation field.

4. Structure level, where every element residual is summed up together by applying
continuity at nodes, and global equilibrium is enforced in terms of external and internal

nodal forces.

rebar behavior control sections

-

-

core concrete behavior \U

Figure 4.1. Fiber beam element schematic representation

Fiber level has been described rigorously in the previous chapters 2 and 3 for the distinct
cases of concrete and steel rebar fibers. In this chapter a new small displacement fiber
beam-column element is proposed, which incorporates the uniaxial cyclic concrete and
rebar models developed. Cross-sectional stress resultants are derived by mid-point fiber
integration, while element state determination is implemented in the general framework of
both classical stiffness and mixed two-field Hellinger-Reissner formulation. Element
equilibrium and compatibility equations are derived from variational principles which result
in well-established state determination algorithms. Finally, advantages of the mixed
formulation over the displacement based formulation are revealed both for the hardening

and softening material case.
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4.2 Cross-sectional constitutive relations

Cross-sectional constitutive relations are derived from integration of the local
constitutive equations of all unit length fibers using midpoint integration. Especially for
planar analysis and symmetrical cross-sections, fibers can be treated in layers (Figure 4.2).

Following the Euler-Bernoulli beam theory the normal stress o(x,y), the axial strain &(x,y)

and the axial and transverse displacements u,(x,y), u,(x,y) are considered.

dA=f(y)dy

N LA L P 0 f 7777 7]

Figure 4.2 Cross-sectional local axis and layer definition

By considering the kinematic assumption that plane sections before deformation remain

plane and normal to the elastic line after deformation, the axial displacement u, (x,y) of any
fiber can be expressed in terms of the displacement of the beam reference axis x as:

ow(x)
ox

where u(x) and w(x) are the axial and transverse displacements of the cross-section at the

u (x,y)=ulx)=y- (4.1)

reference axis. Thus the following relation holds for the axial strain:

ex,y)=¢,x)-y-p(x)=[1 —y]-d(x)=1I"-d(x) (4.2)
where the deformation field d(x)={€0(x), (/)(X)}T consists of the axial strain ¢,(x) and

curvature @(x) at the reference axis. Euler-Bernoulli beam theory considers only the effects
of axial stress o,, thus by applying equilibrium conditions within the cross-section, the

stress resultants are evaluated by integration of stresses over the cross-section areas as

follows:
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N =[olxy)da , M(x)=—[y-o(x,y)dA (4.3)

The same relations can be casted in matrix form as:
T
D(x):j[l ~y] -olx,y)dA (4.4)
A
where D(X)={N(X),M(X)}T. Also, the axial stress is given with the following relation in rate
form (see also chapters 2, 3):
o(x,y)=E,-&(x,y) (4.5)

By replacing equation (4.5) along with equation (4.2) in the rate form of equation (4.4)

the “cross-sectional constitutive relation” is derived:

D(x) = k(x)-d(x) (4.6)

with

n(x) n(x)
YE-A), X (EA) (4.7)
_ i=1 i=1
_n(x)(Et A)l y n(x)(Et A)I ylZ
i=1 i=1

where, n(x) is the number of fibers in the cross-section placed at “x” distance from the
element start node. Finally, the flexibility matrix of the cross-section is set as the inverse of

the cross-sectional stiffness.

fx)=kx)" (4.8)

Integrals in relations (4.4) and (4.7) over the cross-section are derived using mid-point
fiber integration. This means that a material fiber area A, over a cross-section is
represented by a point at the centroid of the fiber with normal stress o, and axial strain &.
Fiber integration error reduces rapidly by increasing the number of fibers or layers in the
uniaxial case. Generally 20-30 layers for the concrete confined core while 10-15 layers for
unconfined cover are adequate for 2D problems. Alternatively, Fafitis (2001) used Green’s
theorem to convert area to line integration, while Marmo and Rosati (2012; 2013)
implemented the so called “fiber-free approach” where stress resultants and stiffness matrix

are calculated analytically on a polygonal cross-sectional area.
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4.3 Element state determination

A crucial step during a nonlinear numerical procedure is the determination of every
element nodal internal forces and tangent stiffness. Having the inelastic constitutive
equation for a cross-section via equations (4.6) and (4.7), the next step is to define the
overall nonlinear response of the element. This refers to the displacement, deformation and
stress fields across the beam length and the tangent stiffness matrix at every point of the
nonlinear path during dynamic loading. Moreover, at the boundaries the three fields are

interpreted as nodal values. The standard six nodal displacements and rotations for the 2D
beam-column element in uniaxial bending t_lz{ul,uz,rl,u4,u5,r2}T, are related with
deformations q={5,91,¢92}r i.e. axial deformation & along the reference axis and the chord
rotations at both ends. In addition the stress resultants Q={N,M1,M2}T are introduced as

presented in Figure 4.3.

y N(x), €o(x)
-b,(x), by(x) M(x), d(x)
1 HlHlHlHlHlHlH141H1H1H1H17L12 N, & «
wix) K L
My O, - ) My, 8, :

Figure 4.3. Basic forces, displacements, deformations and distributed loads on the beam

element

The relation between the nodal displacements and member deformations is established

with the transformation matrix T, which removes rigid body motion as follows (
Figure 4.4):

1 0 0 -1 0 o0
. _lo 1 1
Tu, T=0 ¥ 1 0 4 0 (4.9)

01L00—%1

q
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Figure 4.4. Displacements and deformations of beam element i

Also, element equilibrium under distributed applied loads b(x)=[bx(x),by(x)]r in both

directions x, y requires:

GZMZ(X) b (x)=0
Ox (4.10)
ON(x) b (x)=0

In the following sections, two basic methods for the element state determination process
are presented. The first one is the classical stiffness method where the only independent
field is the displacement field, while both forces and deformations are derived from
displacements. The second approach is a mixed formulation where both displacements and

forces are the independent fields.

4.4 Displacement based formulation

4.4.1 Variational derivation

In the displacement based or stiffness based formulation, deformations depend on
displacements as they can be calculated from proper differentiations of the displacement
field and then stresses are functions of deformations o(g) while they are calculated from
the strain driven constitutive laws. In the core of the stiffness method the principle of virtual

displacements exists, which introduces a virtual displacement field that imposes the equality
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between internal and external work. For a fiber Euler-Bernoulli beam the difference of

internal and external works gives the following functional:

M, () = [{&(u)- o(e)}dV ~TT,,, (1) (4.11)

v

Where, I1,,.(u) is the functional of external loading and integration is performed at the
undeformed volume V of the element. If the integration over the beam volume V in
relation (4.11) is decomposed into integration over the beam length L and cross-sectional

area A the following calculations are performed:

I, (u)= j[ [{e)- 0'(8)}dVJ ~11,, (u)

0O\ A

(j -ole) dA]dx 1, (u) (4.12)

dx IT,,, (u)

I
fir 2

Axial strains g(x,y) at any fiber of the cross-section are expressed in terms of centerline

deformations d(x) using relation (4.2). In addition functional II_,(u) for a beam element

with distributed applied loads b(x)=[bx(x),by(x)]T and nodal external loads F, is given as:

u) =q' -F, +Iu (x)-b dx (4.13)

EXt(

Consequently, the functional of relation (4.11) is expressed in stress and deformation

resultants terms as follows:

Hu(ﬂ)zj(dT-D)dx—qT -Fn—jUT-b dx (4.14)

0
Any deformable beam is in equilibrium when the functional of equation (4.14) obtains its
minimum value. This is accomplished by imposing stationarity of the functional by setting its

first variation with respect to the displacement field equal to zero.

A1, jédT dx—ou" -F, — jﬁu bdx =0=
° (4.15)

I(é‘ dx —§_TF+Jéu -b dx

0
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Equation (4.15) is the weak form of the equilibrium equation as equilibrium between
external loads and internal forces is satisfied in an average form, while point-wise

equilibrium at every beam cross-section is not valid.

To proceed with the formulation, the internal displacement field across the element’s
length must be expressed as a function of the nodal displacement values u. This is
accomplished in classical FEM with the linear combination of known polynomial shape

functions N, .

u(x)=N,(x)-u (4.16)

where

N - N, (x) 0 0 N,(x) 0 0
10 N NX) 0 Nyx) N,(x)

X X
N,(x)=1——, N, (x)=— (4.17)
L L
X3 X2 X3 2
N3(X)=2L—3—3L—2+1, N4(X):L—2—2—+X
x> X x> X
N5(X)=—2L—3+3L—2, N6(X)=L——T

Also, deformations d(x) along beam length are expressed as derivatives of displacements

leading to the following interpolation relations:

d(x)=0(N,(x))-u=N,(x)-q=N,(x)-T-u (4.18)
where
% 0 0
N, = 4.19
Tl 6x 4 6x 2 e
r L ot

Shape functions N, and N, account for constant distribution of axial deformation along

the element length and linear distribution of curvature, while they are used for any
representation of the interpolated displacement and deformation field, namely their normal,
virtual or incremental form. This is the source of inaccuracies of the displacement based
formulation as the outcome displacement field loses accuracy in the nonlinear case where
curvature distribution becomes nonlinear. It should be also noted that equilibrium equation

(4.15) is not satisfied for every admissible displacement field that satisfies essential
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boundary conditions, but is only satisfied for the applied displacement field described by the
shape functions. For this reason equilibrium is not satisfied in a strong form but only in an
average sense. By substituting equations (4.6), (4.9), (4.16) and (4.18) in equation (4.15)
and after performing some algebraic calculations, we end to the discrete form of the

equilibrium equation.

L
T.Q=T"-P,+[N]-bdx =

(4.20)
P =(T"K-T)-T
where K is the element’s tangent stiffness matrix and is calculated as:
L
K= j(N k(x)-N,) dx (4.21)
0

P.,: are the end forces due to element loads. Also, the vector of element’s internal nodal

forces is derived through integration of cross-sectional forces over its length as:
L
Q= j (N]-D(x)) d (4.22)
0

Equation (4.20) is nonlinear as the cross-sectional tangent stiffness k(x) is a function of
every fiber’s material tangent modulus. Linearization of this equation leads to the solution of
the problem incrementally by applying for example Newton’s method for the global
equations and a forward Euler method for the solution of the incremental evolution
constitutive equations. Apart from this classic solution process the advantage of expressing
the constitutive equations in rate form is exploited further in order to form a DAE system for

the static or ODE system for the transient problem which then is solved in state space form.

4.4.2 Solution via linearization

As the displacement field is the only independent field, linearization is performed with

respect to displacements. Considering an increment Au’ in the current configuration i with

respect to nodal displacements (E'” =u' +AL7’), deformation field is updated according to

shape functions N, :

d*'=d +Ad =d' +N,Au' (4.23)
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Similarly, internal cross-sectional forces D(x) are linearized with respect to the

deformation increment as follows:

D(x)"* =D(x) +k(x) - Ad(x) (4.24)
where, cross-sectional tangent stiffness k(x)' at current configuration is evaluated from
equation (4.7). By substituting relation (4.24) in equation (4.20) the global incremental
equilibrium equation is derived as:

K .Aai =Pexti+1 _77 'Qi . (4 25)

K-Au =P " —Qpe
The basic steps for the solution of the element state determination are briefly described

as implemented in structural analysis of frame structures.

1. After solving an incremental step for the whole structure’s equilibrium, the vector of

incremental nodal displacements is determined. Mapping the global structure’s

displacements to every element, incremental element’s nodal displacements Aai
have been defined and the element state determination begins.

2. Cross-sectional incremental deformations are evaluated from interpolation
considerations (relation (4.23)) and incremental fiber strains are evaluated from

equations (4.2) and (4.23) as:
Ag'(x,y)=[-1 y]-N,(x)-T-Au’ (4.26)

3. In this step updated tangent material modulus E/** and fiber stress o’*! separately for
concrete and rebar fibers are calculated according paragraphs §2.2.4 and §3.2.6. Also
internal variables for every fiber are stored in memory.

4. Integration over the cross-sectional area using relations (4.4) and (4.7) provides cross-

i+1

sectional tangent stiffness k(x)' and internal forces D(x)** .

5. Integration over the element length using relations (4.21) and (4.22) provides element

i+1

stiffness K’ and nodal forces Q" .
6. By assembling every element’s contribution global structure’s stiffness matrix K; and

nodal internal forces P’** are derived.

int
7. Finally, every element’s residual is raised at the structural level and tolerance is

Pi+1 _Pi+1

ext int

checked: <tol .
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4.4.3 Solution in state space form

The formulation of the constitutive equations in rate form provides the opportunity to
solve element constitutive relations at the control sections simultaneously with the global
equilibrium equations of the structure. Introducing the rate of cross-sectional internal forces

D(x) of equation (4.6) in equation (4.22), the rate of element nodal forces Q are derived as:

azi (N} -B(x) dX:E (N -kx)d) dx:i (Vo kN dex= )

Q=K-u
Then the time derivative of the element’s equilibrium equation (4.20) offers the following

equation:

P =(T"-K-T)-u (4.28)

ext

In the dynamic case the 2" order linear differential equation of motion has the following

standard form:

M -l +C; -us +P,

int

=P_,(t) (4.29)

These equations along with the constitutive evolution equations are solved in state space
form by adding the velocities as additional unknown vector in the system unknowns
{x}={u;, u; o,)". Stress vector o; contains the stresses at all internal points of all

elements where nonlinear material behavior is monitored. In the fiber discretization scheme
the dimension of the stress vector is the number of all fibers of the structure. Consequently,

the following 1* order ODE system is formed.

u, ug
(i =1y =M (Cg g + Py — Py (1)) (4.30)
o E, &, i=1..Npy,

Where, rate constitutive equation for every material has been derived in chapters 2and 3
for steel rebar and concrete fibers respectively. In every time step of the solution process

the global vector of internal forces P,

int

is calculated from every element fiber stresses when

equations (4.4) and (4.22) are used and element nodal forces are assembled to the structural

level. Additionally, fiber strain rates & are derived from interpolation of nodal element

velocities U using the standard interpolation function in rate form:
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Ex,y)=[-1 y]-N,(x)-T-Au (4.31)

4.5 Two field beam element variational formulation

4.5.1 Variational derivation

Classical stiffness analysis of frame structures is based on the continuity of the
displacement field between elements. This is accomplished explicitly as the cubic
interpolation functions satisfy the kinematic boundary conditions at the end nodes. On the
other hand, in the pure force formulation based on the principle of virtual forces, only the
stress field is independent and interpolation functions based on element equilibrium relate
internal and nodal forces. For a single element analysis, force based method is
straightforward as interpolation base functions that satisfy essential boundary conditions
and external applied loading can easily be defined. However, in a redundant structure a set
of redundant forces must be introduced (Hjelmstad and Taciroglu 2002) the selection of
which though is difficult to automate. For these reasons stiffness formulation is usually the
efficient way to express equilibrium at the structural level. In addition the advantages of the
flexibility approach to impose element equilibrium in strong form and derive an exact
stiffness matrix in the nonlinear range are explored at the element level. Hence, flexibility
approach for the element state determination requires the independency of the stress field,
while stiffness based formulation at the structural level suggests the displacement field as
independent. Considering the two fields as independent the Hellinger-Reissner energy
principle is employed, hence the cross-sectional deformations are expressed in two ways; in

terms of displacements dfu) and as functions of stress resultants d(D).

Performance and accuracy of all beam element formulation methods depend primarily
on the aspects of mesh refinement and interpolation order (Hjelmstad and Taciroglu 2005).
However, for the standard cubic shape function interpolation for the transverse
displacements and linear functions for moment distribution, mixed methods appear to
dominate the classical displacement based formulation as they satisfy element equilibrium
piece-wisely. The equilibrium error is of major importance, as internal forces are
overestimated leading to inaccurate structural response. Two or three field methods based
on Hellinger-Reissner or Hu-Washizu principles respectively are able to diminish this error
successfully. Hellinger-Reissner principle considers the displacement and stress fields as
independent and the deformation field expressed in terms of displacements or stresses,

hence the size of the problem can be reduced as compared to a three-field formulation.
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For a fiber beam under uniaxial deformation with stress o and strain & the Hellinger-
Reissner functional (1950) can be stated in terms of the two independent sets of variables

i.e. the normal stress o and axial displacement u as follows:

My (0,u)= [{2(w)-0 - z(o)}aV ~T1,,, (u) (4.32)

v
where y(o) is the complementary energy density function from which strains can be

calculated in terms of stresses, I1_,(u) is the functional of external loading and integration

is performed at the undeformed volume V of the element. More specifically Hellinger-
Reissner functional of equation (4.32) is an energy functional and it exists only under the
condition that material constitutive equation is hyperelastic. This means that there exists a

stress energy function y(o) where strains are derived in terms of stresses such that:

oxlo)
oo

Similarly to the displacement based method the above functional can be written also in

(4.33)

stress resultant and deformation terms omitting for simplicity the argument in the integrals

i.e. (D(x)=D).

11, (D, u) =j{d(u)r :D- 2(D)}dx—I1,,,(u) (4.34)

Complementary energy functional can now be expressed as:

d(D)=w (4.35)

oD

Also, the functional of external loading for nodal loads F, and distributed loads
T
b(X)Z[bX(X),by(X)] obtains the form:
L
M, =u-F,+[u"-bdx (4.36)
0

In order to calculate the state of the element under equilibrium stationarity of the
Hellinger-Reissner functional is imposed. This is accomplished by setting its first variation

with respect to the two independent fields equal to zero.
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ér[:

HR

O ey~

(dd(u)-D) dx+I6DT-(d(u)—d(D)) dx—ﬁT.Fn—jﬁuT.b dx =0 (4.37)

Then for all variations du(x) and 6D(x) the state defined by (u(x), D(x)) satisfies the

classical equilibrium (4.38) and strain-displacement compatibility (4.39) equations.

O G

L
(8d(w)" -D) dx—ou"-F,~[Su” -bdx =0 (4.38)
0

j D" -(d(u)—d(D)) dx=0 (4.39)

0

Then, in the above relation the independent fields are expressed as linear combinations of
shape functions and corresponding nodal values. For the displacement field and the
deformations that depend on displacements d(u) the classical cubic interpolation functions

are considered:

u(x)=N,(x)-u
_ _ (4.40)
d(u(x))=0(N,(x))-U=N,(x)-q=N,(x)-T-u
For the stress field expressed in stress resultant terms, cross-sectional internal forces are
calculated from nodal internal forces based on equilibrium considerations. More specifically,
equilibrium equations (4.10) are directly integrated and by applying as essential boundary

conditions the internal nodal forces, the following interpolation relation is derived.

D(x)=Np(x)-Q+D, , Np=| = x _ (4.41)

L

~|x O

where, D, is the particular solution of the direct integration and can be completely

determined by the applied loads. Also, the interpolation of the variation of the stress field,

since D, is a known function, has the following form:

SD(x)=N,(x)-5Q (4.42)

Substituting equations (4.40), (4.41) and (4.42) into the functional (4.37) the following

discrete form is derived:
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_ L L
S, =ou’ -{TT«deT~(ND~Q+DP) dx—[N,-b dx—Fn}Jr
L o o (4.43)
+5QT.{INDT-(Nd-T-U—d(D)) dx }:o
0

Since equation (4.43) is valid for any arbitrary variation of the two independent fields,

both expressions inside the brackets are set equal to zero. Moreover, the shape functions
L

used are orthogonal i.e. INdT ‘N, dx=1I . Thus, the following Euler-Lagrange equations are
0

deduced that describe the state of the element under external loading incorporating the

nonlinear material behavior.

T(@+Q,)-P, =0 (4.44)

T-u—[N}-d(D)dx=0 (4.45)

0

where the vector of equivalent nodal external actions has the form:

L
Pow =F,+ [N -b dx (4.46)
0

and Q, is the element vector resulting from the additional cross-sectional internal forces

due to distributed loading:

L
Q, =[N} D, dx (4.47)
0

Equation (4.44) stands for the equilibrium equation and (4.45) for the compatibility
equation. Interelement continuity is imposed by mapping the structure’s global nodal
displacements to the element local displacements u . The only source of nonlinearity in the
above equations concerns the derivation of the cross-sectional deformations d(D) as

functions of stress resultants.

In the following section two approaches are presented for the solution of the nonlinear
system of equations. First the classical linearization technique of the nonlinear constitutive
equation is presented accompanied with a standard Newton-Raphson solution procedure.
Alternatively, taking advantage of the constitutive equations in rate form the element’s
equilibrium and compatibility equations are solved simultaneously with the global

structure’s equations as an ODE system in state space form.
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4.5.2 Solution via linearization

Various techniques have been proposed for the linearization of the equations that
describe the nonlinear problem. Nukala and White (2004) have proposed four different
solution procedures investigating all different combinations of linearization. Also, Alemdar
and White (2005) have linearized the constitutive law along with equilibrium and
compatibility equations in terms of the independent variables for both geometric and

material nonlinearity. The four different solution techniques are listed as follows:

e N-N algorithm. It involves solution of the nonlinear equations separately at the
element and at the section levels. This is accomplished by performing separate
iterations at the cross-section and after that separate iterations at the element level
until convergence.

e N-L algorithm. The use of the linearized equations refers to at the section level while
the element nonlinear equations are solved iteratively. Hence, the section level
iterations are eliminated.

e L-N algorithm. The linearized element compatibility equations are employed, but
in which the nonlinear section equations are still utilized.

e L-L algorithm. Both the linearized section and element level equations are employed,

meaning that the linearization error is “pushed” at the structural level.

The proposed scheme in this thesis extends the L-L algorithm presented by Hjelmstad and
Taciroglu (2005) by implementing the rate material equations describing the constitutive

behavior.

Cross-sectional internal forces can result either from nodal internal forces through
interpolation or from integration of cross-sectional stresses. To distinguish both derivations,
interpolated forces are denoted with D(x) while constitutive forces are denoted with D(x).
Since cross-sectional constitutive equation is unique the interpolated forces D(x) should be
equal to the stress resultants D(x) derived from material constitutive laws. This equation is

linearized using relations (4.6) and (4.8) as follows:
D =P = Ad' :fi _(Di+1 _éi) (4.48)

Consequently, updated cross-sectional deformations can be calculated from the following

relation:
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d*'=d +f (D" -D') (4.49)
Substituting equation (4.49) in (4.45) results in the linearized incremental equations:
T (@"+Q")-P, " =0 (4.50)

—i+1 . . . .
Tu —F-AQ-q —c =0 (4.51)
where the element’s flexibility, nodal deformations and element’s deformations residual are

derived integrating over the beam length as:

F =j(N; f' N, ) dx (4.52)
0
q =j.N; -d'(D') dx (4.53)
0
¢ =jN[, f -(D" -D +AD,",) dx (4.54)
0

Considering the incremental expressions for the nodal forces and displacements
Q"' =Q +AQ', U =u’'+Au’ and eliminating the increment of nodal forces AQ', the
increment of nodal displacements alone Au’ can be determined, provided that the element

flexibility matrix F' is invertible.

K -AG' =P, —Qu (4.55)

Qe =K' T +T7 @ ~(F)"-(q'+¢' ) +Q," ] (4.56)
where, K'=T"-(F')"-T is the element’s tangent stiffness matrix. Equation (4.55) has the
same form with the standard incremental equations of the displacement based method with
the difference that internal element forces and stiffness matrix are exact as they satisfy
equilibrium equations in strong form. On the other hand compatibility is satisfied in weak
form as nodal deformations are calculated as the weighted average of the cross-sectional
deformations. Considering the computational aspects of the formulation, cross-sectional

residuals are directed to the element’s residuals and then to structure’s residuals.

Following a Newton-Raphson procedure for the global equilibrium equations, the
procedure of calculating the updated global stiffness matrix and internal nodal forces

proceeds as follows:
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After solving for an incremental step for the whole structure’s equilibrium equation,
the vector of incremental nodal displacements is evaluated and total nodal
displacements are updated. Mapping the global structure’s displacements to every
element, element’s nodal displacements u'*’ are defined and the element state
determination begins.

Element incremental nodal forces AQ' are calculated from equation (4.51) and total

nodal forces are updated (Q’” =qQ +AQ’) )

Cross-sectional forces are calculated from interpolation:
D™ =D'+N,-AQ +AD, (4.57)

where ADpis the increment of cross-sectional stress resultants due to distributed

loads.
Cross-sectional deformations are evaluated from the linearized constitutive equation

(4.49) and updated fiber strains &’ are derived from equation (4.2).

Material constitutive equations for concrete or rebar steel are solved and updated

1

tangent fiber modulus E; and fiber stresses o'*' are evaluated. Then integration over

the cross-section evaluates the updated tangent stiffness k(x)"* which gives the

cross-sectional flexibility f(x)** by its inverse.

Integration over the length using equations (4.52) and (4.53) provides element

i+1

flexibility matrix F** and element’s nodal deformations q'**.

Equation (4.56) determines the nodal internal forces Q! for the next step, while by

assembling every element’s contribution the global structure’s stiffness matrix K;”

and nodal internal forces P*! are derived.

int
Every element’s residual is directed to the structural level and tolerance is checked.

Pi+1 _Pi+1

ext int

<tol .

4.5.3 Solution in state space form

Material constitutive equations in rate form enable the solution of the element

constitutive relations at the control points simultaneously with the global equilibrium

equations of the structure. Following this approach, constitutive rate equations are not

linearized but are stated in their original nonlinear form. Taking the rates of equations (4.44)

and (4.45) the element’s equilibrium and compatibility equations are derived in rate form as:
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T7.(Q+Q,)-P, =0 (4.58)

T-ﬁ—jN;-d(D) dx=0 (4.59)

0

Also, the interpolation equation (4.41) is obtained in rate form as:

D(x)=N,(x)-Q+D, (4.60)
Substituting equation (4.60) with the rate form of the cross-sectional constitutive

equation (d(x):f(x)~D(x)), equation (4.59) is expressed in terms of the rate of internal

nodal forces as:

Q=F'T-u-qQ, (4.61)
In the dynamic case the standard 2" order linear differential equation of motion has the

following standard form:

M, -iig +C, -ug +P,, =P, (t) (4.62)

where M, and C, are the mass and damping stiffness matrices of the structure. Following

this approach, equation (4.62) is solved simultaneously with every element’s constitutive
evolution equations in state-space form. The displacement, stress and strain fields are
considered as the system unknowns as presented in equations (4.58) and (4.59). The

displacement field is expressed in the form of nodal displacements at the element nodes u;

for the whole structure. In relation to the stress field, as cross-sectional forces are calculated
from nodal forces through equilibrium considerations, cross-sectional stresses at all fibers
cannot uniquely be determined, indicating that there is not a unique stress field that satisfies

cross-sectional equilibrium. This leads to the introduction of all fiber stresses o, and strains
€, in the beam element’s unknown vector. Adding also the velocities u; as additional

unknowns for the dynamical case, the following vector of unknowns for the whole structure

(x)={u; u, o, & isdetermined.

For a structure consisting of N, elements each one having N_ control sections and each

control section discretized in N, fibers, stress and strain vectors o, and g respectively

contain all stress and strains at all (Ne,-NCS-Nfb) fibers of all elements where nonlinear

behavior is monitored, i.e. Gauss points. Consequently, the following 1* order ODE system is

formed.
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ug us

P CAN LA G w6
g ’,-T‘f,-'(ND,,-'Q,-+Dp,,-) , 1=1.N,, j=1..N_
g, s , k=1...(N, N, -N,)

where II.T is the position matrix that maps cross-sectional deformations at control section
J to fiber strains (relation (4.2)), f; is the flexibility matrix at every control section j and

the rate vector of element nodal forces Q,. is given from equation (4.61).

In every step of the solution process the global vector of internal nodal forces P, ,, as well

nt /

as the new tangent fiber modulus E,, together with cross-sectional f, and element F,

flexibilities should be evaluated. This is accomplished by the following steps:

1. Given the stress and strain vectors o,and ¢; the updated fiber material modulus E, ,

is evaluated for each material.

2. Calculate cross-sectional flexibility f(x), as the inverse of cross-sectional stiffness

derived from relation (4.7) and cross-sectional stress resultants D(x) using equation
(4.4).

3. Considering piecewise element equilibrium, element internal nodal forces can be
derived directly from cross-sectional stress resultants at both element ends, adding

also the contribution of distributed loading Q,; .

4. Element flexibility matrix F. is calculated integrating along element’s length according

1

to relation (4.52).

5. Finally, assembling every element’s internal forces Q.. at a structural level provides

int

the total vector of internal forces P,

int *

Both proposed methods vyield identical results, with the solution in state-space form
being more compact compared to the linearized one. Its computational efficiency though,
relies heavily on the numerical algorithm used for the integration of the ODE system with
the most computationally expensive part concerning the evaluation of the Jacobian of the
system. For simplicity reasons the numerical examples presented in the following sections

are analyzed using the linearization method.

Based on the above it becomes evident that the inelastic constitutive behavior can be

directly incorporated into a two-field variational formulation offering a compact and physical
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approach to state determination of a fiber beam model. The generic fiber constitutive
behavior properly escalated first at cross-sectional level and then at member and structural
levels establishes the framework for the solution of framed structures following a

linearization scheme or equivalently a state-space approach.

4.6 Numerical integration and localization

The integrals over the element length in both displacement and mixed element
formulation are calculated numerically in this work using Gauss-Lobatto quadrature. The

method integrates a given function f(x) by transforming a definite integral in a finite

sequence as follows:

Jf(x)dx: b;ajf[b;a-§+a;de§

b—a < b—a a+b
e gnftter)

where, [a b] is the integration interval, usually [0 L], w, is the numerical weight of the

(4.64)

quadrature, n is the number of the control points and & is the position of the control
section on x axis in the non-dimensional system [—1 1]. This method is preferred over the

standard Gauss quadrature as it includes both element ends where nonlinear behavior is
usually more pronounced. Alternatively, Newton-Cotes integration scheme places
integration points uniformly along the element including both element ends, while fixed
location integration places control points at any selected beam locations. In this quadrature

weights w, are computed by the method of undetermined coefficients using Vandermonde

matrix (Scott 2011).

ix,“w, =% (j=1,..n) (4.65)
i=1

where, n is again the number of integration points and x; are the defined locations in the

natural system [0,1].

Moreover, the nth order Gauss-Lobatto integration is exact for polynomials up to

(2n—3) degree. Displacement based formulation produces a curvature distribution of 2nd

degree, hence 3 point Gauss Lobatto integration is adequate. However the inherent error in
the displacement based methodology demands more than one element discretization in

order to capture the higher degree of the curvature distribution. For this reason an efficient
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numerical strategy, as far as the stiffness method is concerned, is to keep control points
number at three per element, increasing on the same time the number of elements near the

member ends.

On the other hand increasing the number of control points in a mixed beam element
nonlinear response convergences to a more accurate solution. However, the increase of
accuracy is valid only for the hardening material case. In the softening case, inelastic
response of force-based elements depends to the number of control points due to loss of
objectivity. Damage localizes at the reference volume of the first control point and as a
result denser discretization leads to fictitious steeper softening branches. Consequently
regularization techniques are necessary to obtain an objective response (Coleman and
Spacone 2001; Addessi and Ciampi 2007; Scott and Hamutcuoglu 2008; Almeida et al. 2012).
However, in the absence of a proper regularization technique, the objective response can be
approximated by selecting the first Gauss point length to be equal to the plastic hinge length
(zeris and Mahin 1988; Calabrese et al. 2010). This suggestion lies on the fact that softening
energy is dissipated from the plastic hinge area where damage is profound. A lot of relations
have been proposed to estimate plastic-hinge length like the formula proposed by Paulay

and Priestley (1992):

L, =0.08L+0.022f,D, (KN,mm)=0.19 m (4.66)

4.7 Comparative examples

4.7.1 Cantilever column with hardening response

In this example the proposed element formulation is validated by solving the problem
presented by Saritas and Soydas (2012). In this reference, different numerical procedures
and element discretization schemes of a mixed three-field Hu-Washizu element, first

proposed by Taylor et al. (2003) are compared.

The problem consists of a non-dimensional cantilever column with height of 120 units
and rectangular cross-section of 15x20 units. Material is considered bilinear with elastic
modulus of elasticity £,=29000, yield stress 0,=50 and hardening post-yield to pre-yield ratio
a=0.01. The cross-section is discretized in 5 layers, each one participating in the overall
cross-section response according to mid-point integration. Element behavior is integrated

along its length using Gauss-Lobatto integration with 5 control points.
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The first step is to validate the displacement based formulation, but implementation of
the classical displacement based formulation requires several elements in the discretization
to achieve a satisfactory and objective response. For this reason two different discretization
schemes were tested consisting of one (1DB) and four elements (4DB) respectively. The
results are presented in Figure 4.5 relating base shear and top displacement, with the

proposed formulation proven very efficient in generating the accurate response.

250 T —__\__...u.uuv—-—-—-
-
- -
A
200 b
g 150 === Proposed—1DB 1
reg == Reference—1DB
g === Proposed—4DB
\ == :Reference—4DB
¥ 100 B
©
o
50 b
0 | | | | | |
0 0.5 1 1.5 2 25 3 3.5

displacement (m)

Figure 4.5. Base shear vs top displacement of a cantilever column, comparison with

displacement based formulation.

Next, the proposed two-field mixed element (Proposed-1HR) is compared for the same
example against the three-field force based element of Saritas and Soydas (2012)

(Reference-1FB) and the results are quite satisfactory as presented in Figure 4.6.
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250
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Figure 4.6. Base shear vs top displacement of a cantilever column, comparison with mixed

formulations.

4.7.2  Cantilever column with softening response

After the accuracy of the proposed element formulations is validated, attention is
focused on RC members with softening response. More specifically, in this example
comparison between the mixed and displacement based formulation is performed using a
cantilever RC column under incremental static loading. Column is of rectangular 40x40
cross-section with 4@18 rebars, while its height is 3m. Column initially resists a vertical point
load of 1500KN and is pushed laterally under incremental applied displacements, until tip
displacement reaches 0.12m. Also, column discretization scheme consists of 5 Gauss-Lobatto
control points, while the number of cross-sectional layers selected to be 30/12/2 for core,
cover and reinforcing layers respectively. Figure 4.7 presents the comparison between the
mixed and displacement based elements in terms of base shear vs top displacements. It is
clear that displacement based formulation overestimates significantly column lateral

strength capacity.
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Figure 4.7. Comparison of Base shear vs top displacement for mixed element and

displacement based element

The erroneous behavior of 1 element displacement based formulation is due to the lack

of point-wise element equilibrium and curvature distribution as manifested in Figure 4.8 and

Figure 4.9.
400 T T
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300 q [ 7
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Figure 4.8. Moment curvature diagrams, (a) mixed formulation vs (b) displacement based

formulation
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Figure 4.9. Moment diagrams, (a) mixed formulation vs (b) displacement based formulation

base moment (KNm)

Equilibrium condition demands that moment distribution remains linear under any level

of lateral loading. After column exceeds maximum strength capacity, softening branch starts

as base moment is reduced while curvatures still increase. Equilibrium condition enforces

the rest of the element cross-sections to unload satisfying linearity of moment distribution

(Figure 4.7(a), Figure 4.8(a)). Consequently, all nonlinear behavior localized at the first cross-

section, while all other cross-sections are in an unloading linear state. Localization

phenomenon is presented in Figure 4.10, where an increase on the number of control

sections has an effect on the softening stiffness of the member. According to relation (4.66)

plastic hinge length equals to 0.44 m, hence 3 control sections with L/6=0.50 m 1*" Gauss-

Lobatto length is considered to represent the accurate discretization scheme.

base shear (KN)
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---7 cs
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displacement (m)

Figure 4.10. localization effect at cantilever column
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In displacement based formulation on the other hand, continuous increase of nodal
displacements results in increasing curvatures witch on the same time derive greater
stresses and cross-sectional moments (Figure 4.8(b)). This produces the fictitious moment

diagrams of Figure 4.8(b) where moment value at the free end deviates from zero.

To reduce computational error, denser discretization schemes are tested in Figure 4.11.
As it is obvious eight displacement based elements are necessary to approach the reliable

mixed element response, while further refinement converges to even better solution.
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Figure 4.11. Base shear vs top displacement, convergence of displacement based

formulation

4.7.3 Continuous beam under cyclic vertical load

In this example the proposed element formulations are employed for the solution of a 2-
span continuous beam (Figure 4.12) under a pseudo-static cyclic external loading consisting
of a varying concentrated vertical load at the middle of the first span following a piecewise
linear pattern presented in Figure 4.13 and Table 2. Also, cross-section is an IPE 300
European steel cross-section which is discretized in 50 layers. Every layer is represented by

steel material with yield stress o, =235 MPa and linear kinematic hardening with a=0.015

, While n, value for Bauschinger effectis n,=1.0 .

122



Modeling Reinforced Concrete Structures under Severe Cyclic Loading Incorporating Plasticity and Damage Models

5> A A

15m 15m 20m

[ )
\
)
\

400

200

External Force (KN)
o

-200

—400 PR R ﬁ S S S S

Time (sec)

Figure 4.13. Vertical load input

External Force

Time (sec) (KN)
0 0
0.5 400
1 -300
1.5 200
2 150
2.5 250
3 50
3.5 300
4 0
4.5 350
5 -50
5.5 380

Table 4.1. Vertical load values

In Figure 4.14 the two element formulations are compared. For the displacement based
formulation two different discretization schemes with 3 control sections are utilized, while
for the mixed formulation a single element discretization with 15 control sections is
sufficient to yield accurate results. A dense discretization consisting of 40 equal beam

elements with 3 Gauss-Lobatto points per element for the total length of the continuous
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beam is used to overcome the deficiencies of the classical displacement based stiffness
method and serves as the accurate solution where the other two formulations are compared

with.
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Figure 4.14. Comparison of vertical mid-span displacement vs external loading history

It is evident that the discretization with 3 elements following the stiffness method (DB 3
elements) delivers inaccurate results and is not capable of capturing the real behavior. This
inefficiency is magnified for intensive external loading, as overestimation of the maximum
strength results into more than 2.5 times decreased plastic deformations compared to a
more refined discretization. On the other hand the proposed two-field mixed element (HR 3
elements) satisfies the equilibrium equations in strong form and a single element captures

directly the real cyclic response with no need for further refinement.

4.8 Incorporation of rebar buckling

The individual rebar buckling model as developed in chapter §2.3 is further
incorporated in the RC fiber column element developed by employing a suitable procedure.
Generally, concrete cover between consecutive stirrups prevents longitudinal rebars from
buckling at the initial stages of cyclic loading. However, soon after spalling of concrete cover,
steel rebars are free to buckle outwards between 2 adjacent stirrups. Spalling for the rebar
neighboring concrete fibers (Figure 4.15) is detected by setting a threshold spalling value for
the damage parameter D in the concrete model. Reference threshold value can be

considered in the range of D,,=[0.6-0.8].
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Cover neighboring fibers

Figure 4.15. Concrete fibers for cover spalling identification.

After the onset of rebar buckling, average axial strains at rebar location continue to
evolve obeying the linear distribution due to full bond i.e. compatibility with neighbouring
concrete fibers (Pantazopoulou 1998). Compatibility is enforced at the average strain &,
while buckling strain g, begins to increase significantly with progressive rebar lateral

displacement.

During cross-sectional analysis inside a global numerical increment, stress and stiffness

determination of rebars is performed as follows:

1. Stress determination process is first performed for concrete fibers and damage

parameter D_ in compression is stored for the neighboring cover fibers of any

longitudinal rebar.

2. For the same fibers it is examined whether damage parameter D_ exceeds reference
spalling parameter D,, that defines the onset of rebar buckling. If buckling model is

activated, this is performed in an inner loop as described in section 2.3.1. Average

stain g,, at the rebar location is inserted in the model and local variables are updated
and kept in memory for the next buckling iteration.
3. The output of this procedure is the total average stress ¢’ while tangent axial stiffness
is simply calculated as: £} :(a[ —o )/Aef,v
4. Subsequently, cross-section and element state determination are continued until
convergence at the overall level is achieved.
In a nonlinear force based beam-column element rebar average strain ¢,, and stress ¢

are considered constant between Gauss points. Consequently, to accurately model local
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buckling between two consecutive stirrups Gauss point’s length should be nearly equal to
the distance between the adjacent stirrups. For columns with equally spaced stirrups,
Newton-Cotes integration scheme appears to be suitable as it places integration points
uniformly along the element including both element ends, which may coincide with the
position of stirrups. Alternatively, for columns designed with modern codes, which enforce

denser stirrup distribution at the end critical zones, fixed location integration may be used.

Herein, for simplicity reasons, as local buckling is expected to occur primarily at the
critical zone between the first two stirrups near column base, the commonly used Gauss-
Lobatto quadrature may be used as well, by selecting the number of total Gauss-Lobatto
points in such way, that the 1°' Gauss-Lobatto length is nearly equal to the distance between
the first two stirrups (Figure 4.16). This implies the assumption that due to local buckling and
extensive spalling, plastic-hinge length is nearly equal to the distance between the two

adjacent stirrups.
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Figure 4.16. Numerical discretization of an RC column with local rebar buckling
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5.1 Introduction

The proposed fiber beam-column element implementing uniaxial constitutive models for
steel and concrete cyclic behavior is validated against experimental tests on RC structural
components. The first comparative example is a cantilever column that exhibits pseudostatic
cyclic response under imposed displacement history. The second experimental test describes
a high strength concrete pier-column system under high compressive load. The system is
pushed laterally under imposed displacements until collapse due to concrete spalling and
buckling of reinforcing longitudinal bars. Finally, a 3-storey, 3-bay RC frame is tested with a
real accelerogram time history analysis. The one half side of the frame presents columns
designed with past code provisions, while the other half side columns are designed

according to modern codes.

In all experimental examples the mixed beam-column element is utilized for the
numerical analysis results due to its computational effectiveness and accuracy. Detailed
experimental data for the individual material cyclic behavior are not provided except from
their yield and maximum stress values. Hence, model parameters are selected based on the
analyses with experimental results on concrete and rebar specimens presented in the

previous chapters.

5.2 Cantilever column under pseudo-static cyclic excitation

5.2.1 Experimental setting description and input data

In this section the efficacy of the introduced material models and their incorporation in
nonlinear RC element analysis are investigated in comparison with experimental data
presented by Qiu et al. (2002) for a series of cantilever columns in uniaxial and biaxial
bending. Herein, the uniaxial bending test (specimen label RC-0 in Qiu et al. (2002)) is
utilized for comparison purposes. The cantilever column geometry and loading conditions
are presented in Figure 5.1. More specifically, column has a 20x20 cross-section with 8712
reinforcing bars and clear cover 1.5 cm. Also, concrete maximum strength value is

0.=39.6 MPa.

129



Chapter 5 Numerical Examples

' 350 kN

o
= Displacement ’ ‘
(=]
o 200
2 Longitudinal: 812
Transverse: ®6/50

€ > |

o

(=

@ 1 1

Figure 5.1. Column geometry and cross-section.

The column resists a permanent axial compressive load of N=350 KN and is pushed

laterally by imposing the displacement history presented in Figure 5.2.
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Figure 5.2. Input lateral displacement history

Reinforcing bars vyield stress is o, =460 Mpa with nonlinear kinematic hardening as

presented in Table 5.1.

o, (MPa) a n, n, €plat m q

460 0.03 10 0.5 3g, 0 30

Table 5.1. Rebar model parameters
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Concrete was modeled in terms of its compressive cyclic behavior and its parameters
representing unconfined concrete fibers are presented in Table 5.2. The Mander et al. (1988)
model was used to calculate the maximum confined compressive strength in the case of the

confined fibers. Confinement factor k obtains value k=1.4 for the stirrup setting of Figure

5.1, hence maximum confined strength is (o, =k-o, =55.4 MPa). In this case confined

concrete parameters are modified as presented in Table 5.2. It should be noted that the

whole area inside the transverse hoops was considered as confined.

NoapApeTpoOL OKUPOSENATOG

EC oyc
(GPa) (MPa)

Confined 35 20 0.8 10 0.00057 8 065 2 035

Olc Adc ko b p C1 C2

Unconfined 35 20 0.65 10 0.00057 6.5 1.1 4 0.1

Table 5.2. Confined and unconfined concrete model parameters

Also, the computational model consists of two mixed elements with 4 Gauss-Lobatto
control points each. The first element spans a distance of 0.7m between fixed end and the
node where the displacement history is imposed, while the rest length of 0.2m until the free

end consists the second element.

5.2.2  Numerical analysis and comparison

The global column cyclic analysis is tested against the experimental results in terms of
base shear vs lateral displacement. As depicted in Figure 5.3 the overall numerical behavior
is quite satisfactory while the maximum and residual strength are captured with sufficient
accuracy. Some small discrepancies that can be noticed in the unloading stiffness are

attributed to bond-slip and shear effects which are not considered in the present analysis.
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Figure 5.3. Base shear vs lateral displacement comparison between experimental and

analytical behavior for Qiu et al. experiment

In addition, moment-curvature and moment-chord rotation results as derived from the

analysis are presented in Figure 5.4 to better illustrate the analytical results.

base moment (KNm)

-40
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curvature (1/m) chord rotation (rad)
(a) (b)

Figure 5.4. (a) moment-curvature, (b) moment-chord rotation diagrams at column base for

Qiu et al. experiment.

Finally, the cyclic response of the individual materials is presented in Figure 5.5. In Figure
5.5(a) the stress-strain loops of the top rebars are presented. Also, the stress-strain loops of
the confined and unconfined concrete fibers placed at distances 0.092m 0.082m from cross-

sectional centroid are plotted in Figure 5.5(b).

To sum up, it seems that complete cover spalling along with core crushing is the critical

failure mechanism of the column, while the small distance between stirrups restricts

reinforcing bar buckling.
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Figure 5.5. (a) rebar stress-strain and (b) concrete stress-strain histories for Qiu et al.

experiment
5.3 Column-stub system under pseudo-static cyclic excitation

5.3.1 Experimental setting description and input data

The proposed RC column fiber element is also tested against Bayrack and Sheikh (1996)
experiment AS-2HT on RC rectangular columns. Experimental setting and analysis model are
presented in Figure 5.6. Column length is L=1.473m with rectangular 0.305x0.305m cross-
section and it is connected to a 0.508x0.762x0.813m stub. The column-stub system is
supported with hinges at both ends and a constant axial compressive load is applied.
Concrete strength is . =72 MPa, steel rebars have a diameter of D, =19.5mm with yield
stress o, = 454 MPa, while stirrup distance to rebar diameter ratio is L/D,=4.6. To verify the
local buckling hypothesis, the global buckling length of the rebar calculated according to the
methodology proposed by Su et al (2015). It is found that the global buckling lengths are
equal to local buckling length for the experimental specimen proving that the local buckling
model is applicable. In addition, the reference spalling value for concrete fibers was set to

D, =0.6.

The numerical model is based on the mixed element formulation with 4 Gauss-Lobatto
control sections where the length related to the control points at both ends is L/12= 0.12 m

accounting for the localization effect.
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Hinges A(t) I

0.045

——0.305

0.382 0.382
0.813 1.473

.05

Figure 5.6. Experimental setting of Bayrack and Sheikh

—0.305

Rebar steel and concrete model parameters are presented in Table 5.3 and Table 5.4

respectively. Especially, unconfined concrete parameters were selected considering the

numerical comparison with the Muguruma et al. (1983) experiments on high strength

column specimens, which is presented in chapter 3.4.1. Confining parameter k obtains value

k=1.12, hence maximum confining stress is o..= k-o.= 81 MPa.

o, (MPa) a n; n, Eplat m q

454 0.03 10 0.5 2g, 0.05 10

Table 5.3. Model parameters for longitudinal rebars

EC cyc
(GPa) (MPa) Q¢ qc ko b p C1 (] Nrec
Compression 40 40 05 10 0.0018 27 045 15 05 4
Confined

Tension 40 7 0.5 0 0.00018 0.5 0.5 3 0.2 4

Compression 40 40 0.5 30 0.0018 25 0.75 4 0.1 5

Unconfined

Tension 40 7 0.5 0 0.00018 0.5 0.5 3 0.2 5

Table 5.4. Model parameters for confined and unconfined concrete

5.3.2  Numerical analysis and comparison

The imposed displacement history of Figure 5.7 is inserted in the numerical model and

comparison with the experimental results is presented in Figure 5.8 in terms of column shear

force and displacement history. First, the case where the axial force is set to N=-2400 KN is

tested (specimen AS-2HT). Generally, the proposed model is capable of predicting

satisfactorily initial and post buckling hysteretic loops. Larger discrepancies appear at latter

stages of loading, which are attributed to the assumptions made for the buckling model,
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shear effects, bond-slip of rebars and other reasons that are not accounted in the analysis

model.
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Figure 5.7. Imposed displacement history for specimen AS-2H
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Figure 5.8. Comparison with Bayrak and Sheikh specimen AS-2HT

As reported in the real experiment by Bayrack and Sheikh, cover spalling occurred soon
after specimen reached its maximum strength value and significant buckling could be
noticed at the final cycle. In Figure 5.9 stress-strain histories of both steel and
confined/unconfined concrete fibers at the bottom edge of the cross-section are presented.
Unconfined concrete compressive stress is below 10% of maximum strength at strains larger
than 0.04 indicating the complete spalling of column cover. This enables the inelastic

buckling mechanism of neighboring longitudinal rebars, while their loops are asymmetric
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and loading capacity at compressive strains is diminished. This behavior is reflected at the
overall column cyclic response of Figure 5.8, where final loop loses strength rapidly, which
leads to analysis termination due to convergence errors, while the column specimen

collapses soon after.
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Figure 5.9. (a) Upper steel rebar stress-strain history, (b) Confined and unconfined

concrete stress-strain histories for Bayrak and Sheikh specimen AS-3HT

Finally, the effect of the reinforcing bars inelastic buckling is reflected in Figure 5.10

where both numerical responses with and without rebar buckling are plotted. Incorporation
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of the buckling mechanism affects significantly the last cyclic loop where column-stub
system numerically “collapses” with residual strength of near V=-50 KN. At the same
instance the model without rebar buckling effects is numerically stable with shear strength

value of V=-90 KN.
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Figure 5.10. Comparison between analysis with and without rebar buckling for specimen AS-

2HT

Generally, for regular strength RC columns with high axial loads, concrete usually fails in
compression before the initiation of rebar buckling mechanism. However, in this example
high strength concrete resists large compressive strains, enabling lateral rebar deformations
to evolve which are proved critical for column’s structural integrity. To emphasize more one
the axial load effect on column’s carrying capacity, the same experimental setting is tested
with permanent axial force N=-3340 KN (specimen AS-3HT) under the imposed displacement
history of Figure 5.11. Afterwards, comparison of the hysteretic loops between displacement

and shear force is presented in Figure 5.12.
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Figure 5.11. Imposed displacement history for specimen AS-3HT
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Figure 5.12. Comparison with Bayrak and Sheikh specimen AS-3HT

It is again evident that the analysis model predicts not only the initial stable loops but
also the failure mechanism due to inelastic buckling of longitudinal rebars. Indeed, bottom
rebars start to loose average stress capacity at compressive strains larger than 0.04 as
presented in the stress-strain loops of Figure 5.13(a). At these large strain values cover
concrete loses almost all of its strength capacity, which constitutes a spalling failure mode

(Figure 5.13(b)).
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Figure 5.13. (a) Upper steel rebar stress-strain history, (b) Confined and unconfined concrete

stress-strain histories for Bayrak and Sheikh specimen AS-3HT

Finally, the effect of the reinforcing bars inelastic buckling is reflected in Figure 5.14
where both numerical responses with and without rebar buckling are plotted. However,
influence of rebar buckling is still important, it has smaller effect than the case of the lower
axial load of N=-2400 KN. Hence, in the current case with the high axial load of N=-3340 KN

core crushing is the dominating collapse mechanism of the pier-column system.
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Figure 5.14. Comparison between analysis with and without rebar buckling for specimen AS-

3HT
5.4 3-storey, 3-bay frame under seismic time history ground acceleration

5.4.1 Experimental setting description and input data

In this example the numerical model is tested against a 3-storey, 3-bay frame tested
dynamically by Ghannoum and Moehle (2008, 2012a) on the University of California,
Berkeley shake table. The frame is a one-third scale planar specimen representing a typical
strong beam, weak column design office building of the 1960s. Structure’s geometry and
reinforcing details are presented in Figure 5.15. More specifically, it consists of two different
types of column detailing as half left side columns (C1-C3, D1-D3) are designed according to
modern design provisions (ACI 318-08) for moment resisting frames with high ductility. On
the other hand, the right half side columns (A1-A3, B1-B3) are dimensioned to represent

typical columns of the 1960s with widely spaced ties closed with 90 degrees hoops.

Rebars are mentioned in terms of American sizes, hence the ductile columns have 8#2
(50,8 cm’) longitudinal reinforcement with 4.8 mm wire ties spaced every 32 mm at the
column critical regions. On the contrary, older type columns have 8#3 (76,2 cm?) longitudinal
reinforcement with sparse transverse reinforcement of 3.2 mm ties equally spaced at 100
mm. Finally, beams have the same top and bottom reinforcement consisting of 4#3 (38,1

cm’) rebars and 4.8 mm stirrups equally spaced at 89 mm apart.
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Figure 5.15. 3-storey, 3-bay frame dimensions and reinforcing details

The RC frame is dynamically tested with a record obtained during March 3, 1985, Chile
earthquake (Llolleo Station, Component 100) which is presented in Figure 5.16. The original
ground motion is amplified with a scale factor of 4.06 in order to enforce the frame RC
structure to reach its ultimate strength capacity. The eventual acceleration history recorded
on the shake table is reported to differ slightly from the input ground motion due to the
bounded frequency range of the shake table. However, the numerical analysis is conducted

with the original ground motion data.
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Figure 5.16. Ground motion input (Chile Valparaiso 1985 Llolleo x 4.06)

To obtain a measure of comparison about the intensity of the ground motion, a
comparison with the elastic response spectrum of Eurocode 8-1 is presented. Indeed, the
scaled ground motion corresponds to the elastic spectrum with a,=0.53g and probability of
appearance 1% in 50 years, if the scaling criteria of Eurocode 8-1 are applied, i.e. the ground
motion response spectrum to exceed the 90% of the code’s elastic spectrum in the range of

periods 0.2T,-2T, (Figure 5.17).
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Figure 5.17. Input ground motion and EC8 elastic spectra comparison.

Considering material properties, rebar yield stress is o, =475 MPa as it is offered by the

experimental data, while steel rebar parameters are listed in Table 5.5.
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o, (MPa) o n, n, €plat m q

475 0.03 10 0.5 3g, 0.02 20

Table 5.5. Rebar model parameters

Concrete strength was measured to be o, =24.6 MPa at the day of the experiment,
while secant modulus at the stress level of 0.4c, is E,. =19 GPa . In the case of the confined
concrete fibers, the Mander et al. (1988) model was used to calculate the maximum
confined compressive strength. Confinement factor k obtains value k=1.9for the confined
columns (o, =k-0,=46.7MPa) and k=11 for the older-type columns
(O'CC =k-0,=27.1 MPa). Finally, model parameters for every column type and every beam

are presented in Table 5.6.

Ec oy
(GPa) (MPa)
Confined columns (C1-C3,D1-D3)

Oc (¢ ko b p C C;

Confined 20 18 09 0 0.0009 5 0.7 2 035

Unconfined 20 18 0.7 0 0.0009 3 12 4 01

Old-type columns (A1-A3,B1-B3)

Confined 20 18 08 0 0.0009 37 08 2 035

Unconfined 20 18 0.7 0 0.0009 3 1.2 4 01

Beams

Unconfined 20 18 0.7 0 0.0009 3 1.2 4 0.1

Table 5.6. Confined and unconfined concrete model parameters

Every span of the frame is loaded with a uniformly distributed load of 16.67 KN/m,
considering also its respective mass contribution. The flexibility at the footings was included
in the numerical model with rotational springs. Spring stiffness was selected in such way that
the fundamental elastic eigenperiod of the numerical model to match the fundamental
eigenperiod (T;=0.34 sec) of the frame specimen which was measured experimentally.

Following this procedure, spring stiffness value is Kping=6500 KNm/rad.

5.4.2  Numerical analysis and comparison

Time history analysis is performed using Newmark numerical integration with f=0.25

and y=0.50. Rayleigh viscous damping is also implemented based on the damping ratios
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measured experimentally by interpreting the logarithmic decay of accelerations during low-

amplitude snapback tests. Hence, damping ratio for the first eigenmode (Tl =0.34 sec) is

1.93, while damping ratio for the second eigenmode (Tz =0.12 sec) is 1.85.

The element discretization scheme consists of 4 Gauss-Lobatto integration points for the
columns, resulting in a localization zone of 83 mm at both column ends. Fiber discretization
consists of 12 layers for the sections cover and 30 layers for the section core. Finally,

reference spalling value for concrete fibers was setto D, =0.7 .

Initially, comparison with experimental results performed in terms of global frame
behavior like interstorey drift and base shear. Indeed, in Figure 5.18 and Figure 5.19 1%
storey drift and base shear time histories for both numerical analysis and experiment are
plotted for the time period between 10 sec and 35 sec where the significant nonlinear

response is observed.

o
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N

1st storey drift
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Figure 5.18. 1% storey drift comparison

144



Modeling Reinforced Concrete Structures under Severe Cyclic Loading Incorporating Plasticity and Damage Models

150

100 L ' :

base shear (KN)
o

-
-——

_507 : :

j e i |\ T
? H
-100 - ! H - -Experiment
150 | | | —Analysis
10 15 20 25 30 35

time (sec)
Figure 5.19. Base shear comparison

Initial elastic behavior is matched perfectly by the numerical model until the first nominal
yielding occurs for the interior old-type column B1 at nearly 13 sec, followed soon after by
yielding of the exterior old-type column Al. After yielding of the older-type columns, some
small discrepancies are noticed between the numerical and experimental response.
Differences in the responses become larger after the 22™ second where significant damage
occurs at column B1. During this time segment of the ground motion, frame exhibits an
intense loading cycle where 1°** storey drift ratio reaches the value of 5%. The proposed
modeling predicts larger base shears after failure of column B1 as its residual strength is
overestimated. However, satisfactory correlation in terms of the 1% storey drifts is
maintained. In any case, such severe frame damage reaches the proposed modeling strategy
at its limitations. For instance, frame nodes are rigidly modeled while diagonal shear cracks
are reported by Ghannoum and Moehle (2012a) in the experiment. Also, slip of
reinforcement from adjacent anchorage zones at the footings is noticed, while also column
D1 experiences uplifting. All these features in conjunction with the co-existence of shear-

flexural response exceed the purpose of this dissertation.

After comparison at the global level, the individual column response predicted
numerically is tested. In Figure 5.20 horizontal drift ratio versus shear forces at the base of
the older type columns Al and B1 is presented. Numerical modeling is able to capture initial
stable cycles of shear response and the drift range for both columns. Correlation with the
cyclic loops of column Al is quite satisfactory, however numerical modeling predicts larger
residual shear capacity in the case of column B1 after it is damaged heavily. Nevertheless,
some minor underestimation of maximum strength capacity is mainly attributed to rate

effects that are not addressed in this thesis. It is interesting that column B1 develops a
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symmetric maximum strength in both directions, while column A1l presents reduced shear
force in the negative direction. During reloading half-cycle after both columns reach shear
force of nearly 40 KN, exterior column Al experiences tensile axial loading which reduces its

compression zone, diminishing on the same time its strength capacity.
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Figure 5.20. Horizontal drift vs column shear comparison

In addition, comparison is performed in terms of chord rotations for columns Al and B1
and the results are presented in Figure 5.21. Again, the range of chord rotations is almost
perfectly predicted for exterior column Al. On the other hand, frame specimen exhibits
slightly larger chord rotations at column B1 as additional rigid body rotations due to slippage

of longitudinal reinforcement at the footing anchorage zones are omitted in the analysis.
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Figure 5.21. Chord rotations comparison: (a) column B1 bottom, (b) column Al bottom

To emphasize more on the failure of column B1 during the cyclic experiment, the

sequence of loading phases during time period between 22.38 sec and 25.11 sec are
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presented in Figure 5.22. Photos of column Bl at the base provided by Ghannoum and
Moehle (2012a) are listed in Figure 5.22 in companion with the moment-curvature

numerical results at the same time instances.

Before failure initiation, column exhibits nonlinear response mainly due to rebar yielding
and some small cracks at column cover. At time t,=22.45 sec the first widely open inclined
crack appears and column reaches is maximum ductility at the positive direction. During
reloading in the opposite direction, column B1 develops its maximum ductility capacity at
the opposite direction, where curvature reaches its maximum value of ¢=-0.37 1/m, while a
second visible inclined crack appears, inducing cover spalling initiation. Spalling becomes
significant at the time instance of t,=25.11 sec where inelastic buckling of the longitudinal
reinforcement is obvious. Buckling mechanism still develops along with core crushing until
the end of experiment where large lateral rebar displacements and sever disruption of the

core concrete are easily visible.
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Figure 5.22. Moment-curvature diagrams of column B1 at the base during cyclic failure
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The effect of rebar buckling incorporated in the analysis is reflected in Figure 5.23 where
stress-strain loops of the top rebars at the column base are presented. Before, cover
spalling, cyclic loops are symmetrical in stress, but soon after spalling is detected a

significant reductions in compressive stresses is noticed.
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Figure 5.23. Cyclic loops of column B1 top rebars at the base

Also, failure of column B1 provokes axial load redistribution as it is presented in Figure
5.24. The numerical results of Figure 5.24 are in agreement with the experimental ones
provided in the paper by Ghannoum and Moehle (2012a). Both interior columns B1 and C1
have the same axial compressive load at the beginning of the experiment, but after sever
damage of column B1, it cannot longer sustain its initial axial load, redistributing it in the
neighboring columns C1 and Al. It is very interesting however, that even after failure column

B1 is able to resists great part of the axial gravitational force.
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Figure 5.24. Axial load histories at columns B1, C1

Finally, numerical outcome for columns A1, B1, C1 and D1 in terms of base moment-
chord rotations are plotted in Figure 5.25. At the same, the ultimate capacity ratio

(/I:H/QU) according to Eurocode 8-3 is calculated at every time step and the maximum

values for ever column are listed in Table 5.7. Ultimate chord rotation demand 6, is

calculated in terms of the empirical relation Al of EC8-3 for RC members under cyclic
loading. It is clear that all columns exceed the ultimate capacity limit of Eurocode 8-3 and
older type columns have higher capacity ratios than the newer ones. However, exterior
columns Al and D1 present lower capacity than the interior columns B1 and C1 respectively.
This feature is contradicting with the experimental and analytical results that invoke that
column B1 is the prevalent failing column. A possible explanation is that EC8-3 does not
incorporate in the ultimate chord rotation formula potential rebar buckling and strength

degradation effects during loading cycles.
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Figure 5.25. Base moment-chord rotation loops and EC8-3 capacity limit, (a) column A1, (b)

column B1, (c) column C1, (d) column D1

Column (::::zc(l;))/ 0 0.
Al 1.91 0.025 0.013
B1 1.44 0.023 0.016
c1 1.25 0.037 0.029
D1 1.73 -0.025 -0.014

Table 5.7. Ultimate capacity ratios for columns A1, B1, C1, D1 according to Eurocode 8-3

It is therefore evident from this example, that the proposed methodology is able to
simulate sufficiently cyclic seismic behavior of real RC structures even after failure of some
members has occur. The important factor of the proposed modeling is its computational
efficiency. Actually, frame time history analysis needed about 1 hour to run in a single
processor with 2.20 GHz CPU, while the computer code lacks any optimization techniques

and is implemented in Matlab, which is an interpreted computer language.
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6.1 Summary and concluding remarks

In this dissertation smooth plasticity and damage models based on theoretical
considerations are developed and embedded in a two-field mixed fiber beam-column
element. The main scope is to accurately model RC skeletal structures cyclic behavior near
collapse due to severe cyclic loading. In this context, the nonlinear constitutive model for
steel cyclic behavior is introduced based on plasticity considerations. More specifically, the
model is capable of expressing a combined nonlinear kinematic and isotropic hardening rule,
while it can successfully simulate the yield plateau and the Bauschinger effect while being in

compliance with plasticity postulates after short reversals.

Also, cyclic inelastic buckling effect in stress-strain loops is captured by discretizing rebars
in layers each one expressed by the proposed uniaxial constitutive law. Lateral displacement,
curvature distribution and secondary buckling strain analytically derive from elastic buckling
theory. This methodology leads to a numerical scheme where average strains are
incrementally imposed and curvatures are updated until equilibrium at mid-length is
satisfied. Existing experimental data on steel rebars under cyclic loading validates the
proposed rebar model, thus producing accurate results. In addition, it is compared with well
documented and frequently used existing steel models like the Menegotto-Pinto and the
Dodd Restrepo-Posada model and its efficacy is demonstrated. This stems from the fact that
the proposed formulation avoids overshooting after short reversals and it is eligible to
describe various smoothing types of the Bauschinger transition curve, while being at the

same time computationally effective and low-cost.

Alongside, the proposed uniaxial concrete model incorporates plasticity and damage
considerations including along with compressive behavior, tensile softening, nonlinear
unloading and crack closure phenomena. Hence, it is able to simulate core crushing and
cover spalling that triggers rebar inelastic buckling phenomenon. The smooth damage
approach employed enables a unified treatment of damage similar to plasticity. This
formulation encapsulates the fundamental features attributed to plasticity and damage in a
compact smooth relation that evolves stresses as a function of strains controlled by the
selected yield and damage functions. The model is based on nine parameters that affect the
behavior and need to be adjusted or formally identified using experimental data. Proper
parameter identification enables modeling of a variety of regular and high strength concrete
categories ranging from brittle to confined ones. The computational advantage of the

proposed concrete model emanates from the direct evaluation of the stresses using the
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consistent tangent stiffness incorporating plasticity and damage. This tangent stiffness is
explicitly evaluated in every increment from a single relation and subsequently the stresses
that correspond to the specific strains are determined. The proposed numerical procedure
avoids the separate computation of effective stresses, real stresses and algorithmic tangent
stiffness as it compacts these three steps. The concrete model is validated in terms of both
experimental and analytical results of other well established models like the Mander et al.

model on concrete specimens under cyclic loading.

Furthermore, rebar and concrete models are embedded in a nonlinear two-field RC
beam-column element under the plane sections remain plain hypothesis. The introduction of
the constitutive equations in the general formulation of mixed beam finite elements, results
in two different methods of numerical solution. First, linearization of the differential
constitutive equation leads to the standard incremental equilibrium and compatibility
equations which are solved using a Newton type iterative numerical scheme. Alternatively,
maintaining the constitutive equations in rate form offers the ability of solving them
simultaneously with the global differential equations of motion in state space form.
Irrelevantly of the solution method, the main beneficial feature of the proposed formulation
is that solving the constitutive equation ensures in every time step the explicit and direct
calculation of stresses without the need of predictor-corrector schemes. Also local rebar
buckling between two adjacent stirrups is included in the cross-sectional level. Spalling of
concrete cover that permits the onset of buckling is detected and from that point lateral

rebar displacement and curvature start to develop.

Finally, the global fiber beam-column element is tested against experimental results of RC
RC structures subassemblies and RC frames under cyclic pseudo-static and time history
seismic loading. Numerical results verify the accuracy of the proposed formulation which is
proved adequate for earthquake engineering applications. Analysis outcome predicts not
only the initial stable cyclic loops of RC members but also the loading region where failure
initiates followed by rapid strength deterioration. In conclusion, the proposed scheme can
be used in a computationally efficient manner to address the flexural inelastic behavior of RC

frame structures subjected to intensive cyclic loading.

6.2 Future research

Interesting problems that on can address in a future work are among others:
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Improve rebar buckling formulation by considering stirrup flexibility and global
buckling effect on the model (Kashani et al. 2016). Also, buckling curve has been
derived considering only axial rebar deformation. However core concrete lateral
expansion applies pressure on the longitudinal rebars, amplifying buckling effect.

Hence, incorporating this phenomenon would directly affect model’s accuracy.

Incorporate low cycle fatigue in the uniaxial steel model. Considering the work of
Huang and Mahin (2010) for structural steel members, modeling low cycle fatigue
follows the concept of damage in brittle materials. It is stated that rupture in the steel
material occurs when a scalar damage variable, which depends on the accumulated

plastic strain under tensile stresses, exceeds a critical value.

Include rate effects in concrete model to account for impact and blast loading.

Concrete strength depends on rate phenomena which are accounted according to

Pontiroli et al. (2010) by considering a dynamic threshold value kg which is deduce
from the static value k, through an amplification factor depending on the strain rate

(dg/dt).

Extend the uniaxial concrete model in the triaxial case to allow for shear and torsional
effects. In the context of a Timoshenko beam-column element, shear contribution can
be addressed if fiber axial and shear stresses are rotated in the principle directions
and principle stresses are derived using the 3D concrete constitutive law. Then,

rotation back to the original reference system provides fiber stresses.

Model strengthened RC columns with concrete and FRP jackets. Numerical analysis of
strengthened columns with concrete jackets should not be limited to model only the
different concrete strengths but it should also simulate the contact interface between

the old and new parts (Lampropoulos and Dritsos 2011).
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