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ABSTRACT 
 

The present thesis deals with the numerical formulation, programming and validation 
of a method for solving the viscous flow problem around the appendages on 
conventional vessels. The proposed method is based on the overlapping blocks 
approach, part of the Finite Volume family of methods. 

The proposed method is based upon and expands the LSMH method for solving the 
resistance and propulsion “bare” hull problem at model and full scale. The LSMH 
method solves the Reynold’s Averaged Navier-Stokes (RANS) in conjunction with 
the two equations k-ε or k-ω-SST turbulence models. Introduced in this thesis is the 
use of Total Variation Diminishing differencing scheme with Minmod limiter 
function. The use of this higher-order scheme aims at increasing the accuracy of the 
method. 

The coupled momentum and mass continuity equations are solved in a staggered grid 
arrangement, by means of the SIMPLE algorithm. The propeller action is modeled via 
the classical actuator disk method, taking into account both axial and tangential body 
forces. 

The flow around the hull is modeled using structured body fitted grids, comprising 
orthogonal curvilinear 2-D O-type grids, generated by means of the conformal 
mapping technique. The method is now expanded so that up to three grid blocks may 
be employed, namely a C-O-type around the bow, an H-O-type around the mid and 
stern of the ship and finally an H-H-type abaft the transom stern of ships. Using the 
new arrangement, the method can more accurately predict the resistance of ships with 
“full” lines near the bow and also predict the effect of a “wetted” transom stern. 

In the original LSMH software, the free surface is calculated either via a surface 
tracking RANS based method or via a surface tracking potential flow method. A 
novel hybrid method is proposed in this thesis. In this new method, the free surface 
calculated by means of the potential solver is corrected via a surface tracking RANS 
method. The correction is applied only at the aft half and the wake of the ship while 
boundary conditions on the free surface are specially treated, in order to avoid 
convergence problems. The proposed method is validated by comparing the 
calculated free surface for two ship designs with experimental data. 

A new method for solving the flow problem around the appendages is then proposed. 
The method is based on the Overlapping Grid Block approach, where the flow around 
each component of the ship appendages is solved using a separate grid block. The 
blocks overlap and information is passed-on from one block to the other through the 
boundary conditions of the later. A method for the parametric representation of ship 
appendages is presented in this thesis. Then, the method for generating the individual 
grid blocks is presented in detail along with the proposed method for the exchange of 
flow variables between blocks. 
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ABSTRACT   
 

The LSMH RANS solver is modified to handle the new blocks and the exchange of 
flow variables according to the overlapping block approach. The ability of the method 
to solve the flow past individual blocks is then demonstrated through a number of 
numerical tests for each of the individual blocks. 

The new software, the result of the research carried out in this thesis, is used to solve 
the resistance and propulsion problem for the “Dyne” tanker. Calculations are 
performed at both model and full scale and for both the “bare” hull and the case of the 
ship with the rudder. The model scale calculations include symmetric and asymmetric 
flow calculations, as well as calculations with wall functions and near wall treatment 
instead. 

The rudder of the “Dyne” tanker is modeled using a separate grid block. A grid 
independence test is performed, in order to determine the required grid size for the 
rudder block. Also a series of tests is presented, to evaluate the effectiveness of the 
overlapping block setup. Finally resistance and propulsion calculations are performed 
for the ship with the rudder, at model and full scale. All numerical results are 
compared with the available experimental data 

 

Key words: Computational Fluid Dynamics, Marine Hydrodynamics, Numerical 
Towing Tank, Ship Propulsion, Ship Appendages, Total Variation Diminishing, 
Surface Tracking, Overlapping Blocks. 
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1. INTRODUCTION   

1 Introduction 
The development of high performance computer systems and of powerful 
computational methods have allowed researchers and engineering to attempt to 
numerically solve quite complex flow problems. The quest for more accurate 
solutions on more complex problems is an ongoing one and there are many problems 
yet to be solved. Furthermore several schools of thoughts have appeared, with regard 
to the method of solving a particular problem. Consequently, several numerical 
methods have been developed, approaching similar problems in different ways, each 
having its distinct advantages and disadvantages. 

In this quest for greater accuracy, the Total Variation Diminishing schemes for the 
convection terms were examined and an implementation using the Minmod limiter 
fiction is introduced to the LSMH RANS solver. 

A unique problem in the marine hydrodynamics is the presence of the free surface. 
Anyone body in motion, near the interface of two fluids of different density, called the 
free surface, generates a system of gravity waves on the interface of the two fluids. 
This wave system, travels at the same speed as the body and in order to be sustained, 
an amount of energy is required. That energy forms the wave making portion of the 
total resistance that the body has to overcome. The shape of the wave system depends 
on the speed of the body and the geometry of the problem, i.e. the shape of the body, 
its distance from the fluid interface etc. The shape of the wave system dictates the 
amount of the wave making resistance; hence the accurate calculation of the free 
surface is crucial for the prediction of the resistance characteristics of ships. Moreover 
in a computational approach to the resistance problem, the free surface is one of the 
boundaries of the computational domain, hence affecting the numerical solution. 

Most commercial CFD software employ some sort of Surface Capturing method, for 
the calculation of the free surface. In that approach two fluids are considered, water 
and air, and a separate system of differential equations is solved in order to calculate 
the fraction of each finite volume that is occupied by each fluid. Consequently the 
numerical grid extends up to the main deck, or even above and very fine meshed are 
required near the free surface. On the other hand, the grid does not have to be 
modified as the free surface is calculated. 

A more traditional approach is that of Surface Tracking. In these methods the free 
surface is considered as a boundary surface. During an iterative procedure, this 
boundary is free to deform until the kinematic and dynamic conditions are both 
satisfied. The main drawback of the Surface Tracking methods is that during this 
iterative procedure, the numerical grid has to be modified, at least partially, in order to 
conform to the free surface. Also these methods cannot simulate wave breaking, spray 
or deck wetting. On the other hand the Surface Tracking methods can more accurately 
predict the free surface and consequently they are more suited for resistance or 
propulsion calculations. 

The LSMH software follows the Surface Tracking approach. In an attempt to increase 
the efficiency of the LSMH method, a novel hybrid method is introduced in this 
thesis. The free surface is initially calculated by considering the flow inviscid and 
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1. INTRODUCTION   

irrotational, a potential flow. Then the free surface is corrected at the aft half of the 
ship and at the wake, using a RANS surface tracking method. The new hybrid method 
combines the accuracy of the RANS approach with the efficiency of the potential. 

The CFD methods that are based on the finite volume approach require the use of a 
numerical grid. This grid divides the computational domain into the finite volumes. 
There are two main categories of numerical grids, the structured and the unstructured 
grids. A structured grid comprises hexahedral volumes, arranged in rows and 
columns. Each volume is fully defined by its numbering, i.e. the values of its I,J,K 
indexes. The neighboring volumes can be identified immediately by adding or 
subtracting one to the respective index. The matrix of the resulting system of linear 
equations is banded and only the non-zero bands need to be calculated and stored onto 
the computer memory. Furthermore by applying the appropriate method the grid lines 
can be made perpendicular at their intersection, at least in one plane. When that is 
achieved, a local curvilinear coordinate system is devised for each volume and the 
speed components are always parallel to the local axis. As a result the corresponding 
equations are simplified, leading to faster convergence of the problem. 

When structured grids are employed, complex shapes are very difficult if not 
impossible to model. To overcome this, two methods have been developed. The first 
uses blocks of structured grids that in pairs have common boundaries. The main 
drawback of this method is that generating grids with predefined boundaries is usually 
difficult. Furthermore in the case of a geometrical alteration, for example when testing 
various angles of attack for the rudder, it is possible that more than one block has to 
be modified. 

A second method is to use overlapping blocks of structured grids. In this case a 
separate grid block is generated for each component and the momentum and 
turbulence model equations are solved independently for each block. In the case of a 
ship with appendages, there may be one or more blocks for the hull and one or more 
blocks for each appendage. The transfer of information between blocks is 
accompliced by using part of the solution of one block as the boundary condition for 
those boundaries of other blocks that lie within the first one. This implies that the grid 
blocks must overlap. 

In the overlapping grid method each block is easier to generate, since there is no need 
of sharing boundaries. The only extra effort required is in the bookkeeping of which 
volume lends boundary conditions to whom. In the case of boundaries moving 
relative to each other, the grid blocks remain unaltered and only the tables that 
prescribe the transfer of information have to be recalculated. The above scheme is has 
successfully been employed in various complex problems of aerodynamics and 
hydrodynamics. 

The second category of numerical grids is the unstructured grids. An unstructured grid 
comprises volumes of arbitrary shape. Consequently indexing is also arbitrary. As a 
result the matrix of the system of linear equations is scarce but not banded. 
Consequently a larger portion of it has to be stored, resulting in greater memory 
usage. Unstructured grid methods are considered more versatile and easier to adapt 
for complex shapes and are employed for various problems of fluid mechanics, 
though numerical efficiency and computer memory requirements have been reported 
to be compromised. 
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After an extensive bibliographic research, it was decided that the overlapping blocks 
approach would be adopted in an effort to solve the flow problem around the 
appendages of ships. In order to realize this approach, first the software for generating 
the appropriate grid blocks should be created. Furthermore the existing LSMH RANS 
solver would have to be modified, to handle the overlapping blocks. Each block 
should be orthogonal curvilinear in the uv-directions. 

1.1 Literature Survey 

1.1.1 Total Variation Diminishing Schemes 
In order to increase the accuracy of the Finite Volume method, it is necessary to use a 
higher-order differencing scheme, in terms of the Taylor series truncation error. 
Higher-order schemes can cause instability of the convergence though. 

Through the study of gas-dynamics problems it was concluded that a desirable 
characteristic for a stable higher-order scheme is the preserving of monotonicity. A 
scheme is preserving monotonicity when (i) it does not create new local extremes, (ii) 
it does not lower the value of a local minimum and (iii) it does not increase the value 
of a local maximum, in other words when a scheme does not generate new 
oscillations of the solution. 

The property of preserving the monotonicity affects the Total Variation (TV) of the 
discrete solution, specifically, in order for a scheme to preserve monotonicity, the 
total variation must not increase (Lien & Leschziner, 1994). Consequently a 
differencing scheme that is monotonicity preserving, causes the reduction of the total 
variation as the algorithm progresses, hence the name Total Variation Diminishing. 

The main idea is to combine the the upwind, linear-upwind and central differencing 
schemes, in such a way that the resulting scheme is TVD and second-order in 
accuracy. To achieve that, a function that limits the convection flux is introduced, 
called a Flux Limiter Function. Several limiter functions have been proposed are and 
TVD schemes in their current form are the result of the contributions of many 
researchers (Van Leer, 1974, 1977a, 1977b & 1979, Sweby, 1984 and Roe, 1985). 

1.1.2 Free Surface Calculation Methods 
Regarding the problem of the free surface calculation, most commercial CFD 
software nowadays employ some sort of Surface Capturing method. These methods, 
now more than 10 years old, solve a separate system of differential equations in order 
to calculate the fraction of each finite volume that is occupied by water (Carrica et al., 
2006 and Queutey & Visonneau, 2007) 

These methods can give answers to complex multi-phase problems (Albadawia et al., 
2014). They are also quite efficient for maneuvering and sea-keeping calculations 
(Carrica et al., 2006, Carrica et al., 2007, Araki et al., 2012, Shi et al., 2012, Stern et 
al., 2015, Irkal et al., 2016). 
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The more traditional Surface Tracking methods consider the free surface as a 
boundary surface that during an iterative procedure is free to deform, until the 
kinematic and dynamic conditions are both satisfied (Tzabiras & Ventikos, 1991, 
Tzabiras, 1997c, Tzabiras, 1997d, Tzabiras, 1995f). 

The Surface Tracking methods have proven very accurate, in calculating the free 
surface and thus are more suited for resistance or propulsion calculations 
(Papakonstantinou &  Tzabiras, 2002, Wilson et al., 2006). On the other hand, since 
the numerical grid needs to adapt to the changing free surface, they are rarely used for 
maneuvering or sea-keeping calculations (Wilson et al., 2006) 

A different approach to a Surface Tracking method is to consider the flow inviscid 
and irrotational. Then, the potential flow problem can be solved using the classical 
formulation of Hess & Smith (1966) and the free surface can be calculated at a 
fraction of the computational cost of the previous methods. The potential approach is 
very effective in predicting the wave pattern around ships (Tzabiras, 2008) except 
near the stern and at the wake of the ship where the effect of viscosity becomes very 
important. 

1.1.3 Methods for Solving the Flow around Ship Appendages 
The hydrodynamic resistance of ship appendages can be quite significant, especially 
in the case of fast vessels with multiple propeller, such as passenger ferries, cruise 
ship or naval vessels. Various empirical (Lewis, 1988.) or experimental (Jang et al., 
2009) methods have been proposed but as the hydrodynamic efficiency becomes more 
important, the need for a computational method that accurately calculate the 
resistance of appendages becomes greater. The invention of hydrodynamic devices 
that aim at improving the efficiency of ships, further increases the need for such 
numerical tools (Rhee & Kim, 2008, Park et al., 2015)  

Most commercial CFD software nowadays, adopt an unstructured grid approach. One 
of the earliest attempts at solving the appendages problem was the PhD thesis of Pinar 
(1997). In his thesis, Pinard employed an unstructured grid in order to solve the 
problem of a twin screw vessel. In his work the propeller shafts and the V-brackets 
were modeled but not the rudder. 

Three year later, Simonsen in his PhD thesis (2000) attempted to solve the hull, 
propeller and rudder interaction problem using a multi-block approach. In his work, 
the free surface was not calculated and propeller was modeled using an actuator disk. 

Since then, there have been many publications on the subject of ship appendages, 
mainly using unstructured grids (Deng et al., 2006, Visonneau et al., 2006a, 
Visonneau et al., 2006b, Zorn et al., 2009). 

The multi-block or overset grids approach was also further developed with the 
introduction of dynamic overset grids and sliding grids. These methods attempt to 
solve even the more complex problem of the propeller operation (Shen et al., 2015). 

Though widely used, the unstructured grid approach has been reported to be 
compromising in terms of numerical efficiency and computer memory requirements 
(Steger, 1991). 
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1.1.4 Methods for Overlapping Grid Blocks 
Another approach to the problem of ship appendages is that of the overlapping 
structured grid blocks. In this method, a separate grid block is generated for each 
component and the momentum and turbulence model equations are solved 
independently for each block. This approach was first introduced for aerodynamic 
problems (Dougherty et al., 1985, Steger & Benek, 1987). 

Since the momentum and turbulence model equations are solved independently for 
each block, special care is required in order to ensure the continuity of mass. In that 
front many methods have been published (Steger, 1991, Wang, 1995, Lilek et al., 
1997, Brezzi et al., 2001, Djomehri & Biswas, 2003, Zhang et al., 2008, Brounswig et 
al., 2009). 

Nowadays the overlapping block approach is widely used in the field of 
aerodynamics, for airplane wings (Badcock et al., 2000, Tarhan & Oktay, 2002, 
Desquesnes et al., 2006, Jinsheng et al., 2006, Chicheportiche & Gloerfelt, 2012), 
wind turbines (Lia et al., 2012, Nini et al., 2014, Li et al., 2015) or even for the flow 
past helicopter rotors (Chan, 2009). 

The overlapping block approach is also in use in the field of marine hydrodynamics 
both for resistance and propulsion problems (Lin et al., 1995, Campana et al., 2006, 
Regnstrom & Bathfield, 2006, Kim et al., 2007, Carrica et al., 2010, Zaghia et al., 
2015) and for maneuvering and seakeeping problems (Simonsen & Stern, 2005, 
Carrica et al., 2007, Panahi & Shafieefar, 2010, Stern et al., 2015). 

In most cases, a Cartesian coordinate system is employed on each of the grid blocks. 
The use of a curvilinear coordinate system though, in conjunction with an orthogonal 
curvilinear grid, is known to increase the accuracy of the numerical solution (Tzabiras 
et al., 1986, Tzabiras, et al., 1989). There are examples of use of orthogonal 
curvilinear grids blocks in an overlapping block arrangement (Salcudean, et al., 1996, 
Talukdar, et al., 2005, Anwera, et al., 2009, Borazjani, et al., 2013) but there is no 
reference in the literature of such a setup for marine hydrodynamics and especially for 
the problem of ship appendages. 

1.2 The LSMH Method for Solving the Flow around Ships 
Since 1983 (Tzabiras & Loukakis, 1983), Computational Fluid Dynamic methods 
have been in development at the Laboratory for Ship and Marine Hydrodynamics of 
the National Technical University of Athens, with the main focus point being the 
Numerical Towing Tank. In that front, several software have been developed in-
house, to solve the resistance and propulsion problems of ships, in model and full 
scale. 

The LSMH software solves the Reynold’s Averaged Navier-Stokes (RANS) 
equations by employing a Finite Volume method. Turbulence is modeled by 
employing several models with k-ε and k-ω-SST being more commonly used. The 
coupled momentum and mass continuity equations are solved in a staggered grid 
arrangement, by means of the almost universally adopted SIMPLE (Semi-Implicit 
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Method for Pressure Linked Equations) algorithm devised by Patankar & Spalding 
(Patankar, 1980). 

For the propulsion calculations, the propeller is modeled by employing the classical 
actuator disk method (Tzabiras, 1996a, 1997a and 2004). The effect of the propeller 
operation on the flow is simulated by means of body forces, introduced in the source 
term of momentum equations. These forces act both in the axial and the tangential 
direction, the later causing the flow to swirl. 

The employed numerical grid is a structured body fitted arrangement, comprising 2-D 
sections normal to the ship longitudinal axis. On each section an orthogonal 
curvilinear O-type grid is generated by means of the conformal mapping technique 
(Tzabiras et al. 1986, Tzabiras, 2004), that also conforms to the free surface. In the 
third direction, the grid is non-orthogonal Cartesian, hence the 3-D grid is partially 
orthogonal, H-O-type, presenting significant advantages in terms of accuracy and 
convergence (Tzabiras et al., 1986). Conformal mapping is also used for the 
geometrical representation of the hull (Tzabiras, 1998). 

The free surface can be calculated either via a surface tracking RANS based method 
(Tzabiras, 2004) or via a surface tracking potential flow method (Tzabiras, 1997b, 
2004). The later being significantly faster and also providing the boundary conditions 
at the external boundary of the ship grid block required by the RANS solver. The 
drawback of the potential flow approach is the reduced accuracy of the method near 
the stern of ship, especially in the case of ships with a transom stern. 

The present PhD thesis is based upon and expands the CFD software developed at 
LSMH. The main targets of this thesis are to: 

• Increase the accuracy of the employed finite volume method, through the 
implementation of stable higher order differencing schemes. In that front, the 
Total Variation Diminishing scheme in conjunction with the Minmod Limiter 
function is introduced. 

• Increase the accuracy of the resistance predictions for ships characterized by full 
lines at the bow area and also ships with a “wetted” transom stern. The above are 
achieved through the implementation of a three grid blocks arrangement, a C-O-
type around the bow, an H-O-type around the mid and stern of the ship and 
finally an H-H-type abaft the transom stern. 

• Increase the efficiency of the method for the calculation of the free-surface. A 
novel hybrid method is introduced, where a potential solver provides the initial 
free surface that is then corrected using a RANS based surface tracking method. 
The correction is applied only at the aft half and the wake of the ship while 
boundary conditions on the free surface are specially treated, to avoid 
convergence problems. 

• Develop a method for the parametric representation of ship appendages and 
create the software for the generation of the grid blocks around the components 
of the appendages. The grid blocks are orthogonal curvilinear in the uv-directions 
thus increasing the accuracy of the method. 
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• Modify the LSMH RANS solver to handle the new blocks and the exchange of 
flow variables according to the overlapping block approach. 

• Develop the method for the exchange of flow variables between the blocks. Fast 
and accurate exchange of flow variables is key in an overlapping block method. 

• Validate the overlapping grid method, by comparing available experimental data 
with numerical calculations, in the case of a ship with rudder. The validation 
should concern both the resistance and the propulsion problem, at model and full 
scale. 

1.3 Thesis Outline 
The present thesis includes seven chapters, including the introduction and the 
conclusions. The contents of each chapter are summarized below. 

In Chapter 1, the introductory chapter of this thesis, an overview of the scientific 
literature is presented, concerning CFD methods for solving the viscous flow problem 
around ships as well as methods for overlapping grid blocks. Then the features of the 
CFD software developed in LSMH-NTUA are outlined, along with new components 
proposed in this thesis. 

In Chapter 2, an overview of the Finite Volume method is presented. Included in this 
overview are the governing equations in Cartesian and Curvilinear coordinates along 
with the modeling of turbulence. Regarding turbulence, the two equations k-ε and k-
ω-SST models are presented. Then, the finite volume formulation is explained 
including the pressure correction algorithm, the boundary conditions and the Total 
Variation Diminishing differencing scheme with Minmod limiter function, introduced 
in the LSMH software as part of this thesis. The method for the geometrical 
representation of the hull is also presented in Chapter 2, along with the method for 
generating the numerical grid. Introduced in this thesis is the use of up to three grid 
blocks around the hull, including a C-O-type around the bow, a classical H-O-type 
around the mid and stern of the ship and finally an H-H-type abaft the transom stern 
of ships. Finally in Chapter 2, the actuator disk method is presented along with the 
method for solving the ship self-propulsion problem. 

In Chapter 3, three alternative methods for calculating the free surface are presented. 
First the direct method is explained where only the RANS equations are solved and 
the free surface is calculated using a surface tracking iterative procedure. An 
alternative surface tracking method is then explained, where the flow is considered 
inviscid and irrotational and the potential flow problem is solved. Finally in Chapter 3 
a new hybrid method is proposed.  In this new method the free surface calculated by 
means of the potential solver is corrected via a surface tracking RANS method. The 
correction is applied only at the aft half and the wake of the ship. Boundary conditions 
on the free surface are specially treated, in order to avoid convergence problems near 
the area where the method of calculation changes. In order to validate the new 
method, numerical tests are performed for two ship designs and the results are 
compared with experimental data. 
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In Chapter 4, the proposed method for solving the flow problem around the 
appendages of ships is presented. The method is based on the Overlapping Grid Block 
approach, where the flow around each component of the ship appendages is solved 
using a separate grid block. In order to obtain the solution for the overall flow 
problem, the blocks overlap and information is passed-on from one block to the other 
through the boundary conditions of the later. In Chapter 4 the proposed method is 
explained in detail. Also presented are the methods for generating the individual 
blocks along with a general method for 2-D orthogonal curvilinear grid sections. All 
grid blocks are orthogonal curvilinear in the uv-directions whine in the w-direction, 
they are non-orthogonal Cartesian. Finally in this chapter the proposed method for the 
exchange of flow variables between blocks is detailed. 

In Chapter 5, the ability of the method to solve the flow past individual blocks is 
demonstrated. Specifically, for each of the ship appendages components, the results of 
a number of numerical tests are presented. These results also demonstrate the required 
total number of grid nodes in cases of ships with complex appendages. 

In Chapter 6, results of the proposed method are presented for the “Dyne” tanker, a 
model extensively tested both in the towing tank and the wind tunnel, in order to 
provide a comprehensive data set for the validation of CFD methods. Using the 
proposed hybrid method the free surface was calculated in model scale and compared 
with available experimental data. Then, resistance and propulsion calculations were 
performed in model and full scale, for the “bare” hull. The model scale calculations 
include symmetric and asymmetric flow calculations, as well as calculations with wall 
functions and near wall treatment. 

The “Dyne” tanker rudder was modeled using a separate grid block. In Chapter 6, a 
grid independence test for the rudder block is presented. Also presented is a series of 
tests to evaluate the effectiveness of the overlapping block setup. Finally resistance 
and propulsion calculations were performed for the ship with the rudder, in model and 
full scale. All numerical results are compared with the available experimental data. 

In Chapter 7, the methods and results presented herein are discussed and the 
conclusions drawn are summarized. Also presented are the journal publications and 
conference papers that have, thus far, resulted from the research carried out in this 
thesis. Finally several suggestions are made with regard to future research based upon 
this thesis. 

All software presented in this thesis are realized in Fortran programming language. 
The new software is based upon and incorporates software created at the Laboratory 
for Ship and Marine Hydrodynamics of the National Technical University of Athens.  
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2.1. THE GOVERNING EQUATIONS   

2.1 The Governing Equations 

2.1.1 The Navier-Stokes Equations 
In the case of the flow of water past the appendages of a conventional ship, the flow 
field is described by the well-known Navier-Stokes equations (N-S equations, in sort). 
The N-S equations arise from the application of the Newton’s second law to fluid 
motion and assume that the fluid is a continuum, i.e. it is infinitively divisible, 
isotropic and that the stress in the fluid is the sum of a diffusing viscous term and a 
pressure term. In 3-D Cartesian coordinates the N-S equations may be expressed as: 

ρ �
∂u1
∂t

+ u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

� = −
∂(p + ρgz)

∂x1
+ μ�

∂2u1
∂x12

+
∂2u1
∂x22

+
∂2u1
∂x32

� 

ρ �
∂u2
∂t

+ u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

� = −
∂(p + ρgz)

∂x2
+ μ�

∂2u2
∂x12

+
∂2u2
∂x22

+
∂2u2
∂x32

� 

ρ �
∂u3
∂t

+ u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

� = −
∂(p + ρgz)

∂x3
+ μ�

∂2u3
∂x12

+
∂2u3
∂x22

+
∂2u3
∂x32

� 

(2.1.1) 
where (u1, u2, u3) the three velocity components, parallel to the (x1, x2, x3) axis, p the 
pressure, ρ the density and μ the dynamic viscosity. In conservation form the N-S 
equations are: 

∂ρ∙Φ
∂t

+ div(ρ ∙ Φ ∙ 𝐔) = μ ∙ ∇2Φ + SΦ (2.1.2) 

where U is the velocity vector and Φ one of the three velocity components (u1, u2, 
u3). The N-S equations are a statement of the balance of momentum and for the flow 
to be fully described, more information is needed in the form of boundary conditions, 
conservation of mass, balance of energy and an equation of state. In the case of 
Marine Hydrodynamics and when cavitation is ignored, only the boundary conditions 
and an equation expressing the conservation of mass are required. In 3-D Cartesian 
coordinates the conservation of mass may be expressed through the continuity 
equation as: 

∂ρ
∂t

+ ∂ρu1
∂x1

+ ∂ρu2
∂x2

+ ∂ρu3
∂x3

= 0 (2.1.3) 

Or in conservation form: 

∂ρ
∂t

+ ∇ ∙ (ρ ∙ 𝐔) = 0 (2.1.4) 

The N-S equations may be further simplified by the fact that water is incompressible 
hence all time and space derivatives of density are equal to zero: 

∂u1
∂t

+ u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

= −
1
ρ
∂(p + ρgz)

∂x1
+ ν �

∂2u1
∂x12

+
∂2u1
∂x22

+
∂2u1
∂x32

� 
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∂u2
∂t

+ u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

= −
1
ρ
∂(p + ρgz)

∂x2
+ ν �

∂2u2
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∂x32
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∂u3
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+ u1
∂u3
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+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

= −
1
ρ
∂(p + ρgz)

∂x3
+ ν �

∂2u3
∂x12
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∂2u3
∂x22
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∂2u3
∂x32

� 

(2.1.5) 
where ν=μ/ρ the kinematic viscosity. Ιn conservation form: 

∂Φ
∂t

+ div(Φ ∙ 𝐔) = ν ∙ ∇2Φ + SΦ (2.1.6) 

The equation for the conservation of mass becomes: 

∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

= 0 (2.1.7) 

Or in conservation form: 

∇ ∙ 𝐔 = 0 (2.1.8) 
The N-S equations along with the continuity equation form a system of four equations 
with four unknown quantities, the velocity components and pressure. Using the 
appropriate boundary conditions this system can be solved numerically. 

2.1.2 Curvilinear Coordinates 
When numerically solving the strongly coupled momentum and continuity equations 
for a flow around bodies of arbitrary geometry, the use of a Cartesian coordinate 
system can lead to significant accuracy and convergence problems. On the other hand 
the use of a local curvilinear coordinate system in conjunction with a curvilinear 
orthogonal grid, i.e. a grid where the grid lines are perpendicular at their intersection, 
is beneficial both in terms of accuracy and convergence (Tzabiras, 1986).  

The generation of a 3-D orthogonal curvilinear grid is quite difficult though. Similar 
accuracy can be achieved, through the use of successive 2-D orthogonal curvilinear 
grids that when combined, form a partially orthogonal 3-D grid. Then at every point 
of the grid, a local curvilinear coordinate system is devised with the two curvilinear 
directions laying on the 2-D section, while in the third direction the grid is non-
orthogonal and a Cartesian coordinate system is employed. In such a hybrid 
curvilinear (x1, x2-directions) and Cartesian (x3-direction) coordinate system, the 
Reynolds averaged Navier-Stokes equations can be written as (Tzabiras, 1996): 

C(u1) = −
1
h1
∂p∗

∂x1
+ ρu22k21 − ρu1u2k12 + (σ11 − σ22)k21 + 2σ12k12 

+
1
h1
∂σ11
∂x1

+
1

h2
∂σ12
∂x2

+
1

h3
∂σ13
∂x3

 

C(u2) = −
1
h2
∂p∗

∂x2
+ ρu12k12 − ρu1u2k21 + (σ22 − σ21)k12 + 2σ21k21 

+
1
h2
∂σ22
∂x2

+
1
h1
∂σ12
∂x1

+
1

h3
∂σ23
∂x3
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C(u3) = −
1
h3
∂p∗

∂x3
+ (σ13 − σ23)k12 +

1
h3
∂σ33
∂x3

+
1

h2
∂σ23
∂x2

+
1
h1
∂σ13
∂x1

 

(2.1.09) 

where C(ui) is the convection term: 

C(ui) = ρ
h1h2

�∂h2u1ui
∂x1

+ ∂h1u2ui
∂x2

+ ∂u3ui
∂x3

� (2.1.10) 

In the above equations, h1, h2 and h3=1 are the grid metrics and k12, k21 the 
curvatures. The stress tensor σij includes the viscous stresses and the double velocity 
correlations and can is expressed as: 

σ11 = 2μe �
1
h1
∂u1
∂x1

+ u2k12� = 2μee11 

σ22 = 2μe �
1

h2
∂u2
∂x2

+ u1k21� = 2μee22 

σ33 = 2μe
∂u3
∂x3

= 2μee33 

σ12 = μe �
1
h1
∂u2
∂x1

+
1

h2
∂u1
∂x2

− u2k21 − u1k12� = μee12 

σ13 = μe �
1
h1
∂u3
∂x2

+
∂u1
∂x3

� = μee13 

σ23 = μe �
1

h2
∂u3
∂x2

+
∂u2
∂x3

� = μee23 

(2.1.11) 
On (2.1.09) p* is equal to p+ρgh, where h the vertical distance from a reference level.  
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2.2 Turbulence Modeling 

2.2.1 The Reynolds Averaged Navier-Stokes Equations 
The flow past a ship is usually characterized by a high Reynold’s number, in the order 
of 109 while for scaled down experiments the Reynold’s number is in the region of 
106. Consequently the flow in both cases is turbulent. Turbulence is the time-
dependent chaotic behavior of a flow, were both velocity and pressure fluctuate 
intensely in terms of time and in terms of space. Although the N-S equations are 
believed to accurately describe the turbulent behavior of fluid flows, in practice the 
direct solution of the time-dependent N-S in the case of a turbulent flow is extremely 
difficult. The problem arises from the very small time-step required to capture the 
time fluctuation of the flow in conjunction with the very fine space discretization 
required to capture the smallest flow structures. Several attempts have been made in 
the past to numerically solve the N-S equations in turbulent flow cases but even with 
modern super-computers this approach has been proven impractical. Instead in most 
practical applications the Reynolds-averaged Navier-Stokes (RANS, in sort) method 
is employed in conjunction with a turbulence model. 

The idea behind the RANS equations is that of the Reynolds decomposition, where 
each flow characteristic Φ at a given time, may be decomposed into its time-averaged 
portion Φ�  and a fluctuating quantity Φ’: 

Φ(𝐱, t) = Φ�(𝐱) + Φ′(𝐱, t) (2.2.1) 
where x = (x1, x2, x3) the position vector. The time-averaged portion is defined as: 

Φ�(𝐱) = 1
t2−t1

∫ Φ(𝐱, t)t2
t1

dt (2.2.2) 

where the time interval for the integration δt = t2–t1, is significantly larger than the 
time scale of turbulence. Expression (2.2.1) is introduced to the N-S equations that are 
then integrated in time. It is important to note that the time-average of the fluctuating 
quantity of Φ is equal to zero. Consequently the Reynolds-averaged Navier-Stokes, in 
Cartesian coordinates, become: 

u1���
∂u1���
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The equation for the conservation of mass becomes: 

�∂u1����
∂x1

+ ∂u2����
∂x2

+ ∂u3����
∂x3
� = 0  (2.2.4) 

Or in conservation form:  

∂Φ
∂t

+ div(Φ ∙ U�) = ν ∙ ∇2Φ − � ∂
∂xi

(uı′φ′�������)� + SΦ (2.2.5)  

div(𝐔�) = 0 (2.2.6) 
The resulting system of equations resembles the original N-S plus continuity 
equations where instead of the pressure and the velocity components, the new 
unknown quantities are the respective mean values. Rather inconveniently a total of 
six new unknown quantities appear at the right hand side of the RANS equations, 
called Reynolds stresses. The new quantities require a further six equations in order 
for the problem to be solved. The new equations can be obtained by multiplying the 
N-S equations with one of the fluctuating quantity and then by calculating the time 
average of the product (Tzabiras, 1998). Unfortunately in doing so, we obtain six new 
equations in which twenty-two new unknown quantities appear. The above is the 
well-known closure problem. 

Many different models attempting to circumvent the closure problem have been 
proposed in the literature. A large class of turbulence models is based upon the 
Boussinesq approximation where the Reynolds stresses can be expressed as: 

−uı′uȷ′������� = νt �
∂uı���
∂xj

+ ∂uȷ���
∂xi
� − 1

ρ
2
3

kδij (2.2.7) 

where νt the eddy viscosity, δij the Kronecker delta and k the turbulent kinetic energy: 

k = 1
2
�u1′2����� + u2′2����� + u3′2������ (2.2.8) 

The eddy viscosity νt, is a scalar object, dependent of the flow field and in the general 
case, different for each of the Reynolds stresses. Boussinesq introduced the 
approximation that eddy viscosity is isotropic and consequently is a function of the 
position vector only. 

In the curvilinear coordinates of paragraph 2.1, the RANS equations become: 

C(ui) = −
1
hi
∂p
∂xi

+ ρuj2Kji + ρul2Kli − ρuiujKij − ρuiulKil 

+�σii − σjj�Kji + (σii − σll)Kli + σij�2Kij + Klj� + σil�2Kil + Kjl� 

+ 1
hi

∂σii
∂xi

+ 1
hj

∂σij
∂xj

+ 1
hl

∂σil
∂xl

 (2.2.9) 

where ui, uj, ul, stand for the mean values of the velocity components, and C(Φ) is the 
sum of the convective terms: 

C(Φ) = ρ
hihjhl

�∂(hjhluiΦ)
∂xi

+ ∂(hihlujΦ)
∂xj

+ ∂(hihjulΦ)
∂xl

� (2.2.10) 

In the above equations, hi, hj, hl are the grid metrics and Kmn the curvatures: 
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Kmn = 1
hmhn

∂hm
∂xn

, m ≠ n (2.2.11) 

The stress tensor σij is related linearly to the deformation tensor eij according to: 

σii = 2μeeii = 2μe �
1
hi

∂ui
∂xi

+ ujKij + ulKil� (2.2.12a) 

σij = μeeij = μe �
hj
hi

∂
∂xi
�uj
hj
� + hi

hj

∂
∂xj
�ui
hi
�� (2.2.12b) 

Where the effective viscosity μe is calculated as the sum of the dynamic viscosity μ 
and the eddy viscosity μt: 

μe = μ + μt = μ + ρ ∙ νt (2.2.13) 

 

2.2.2 The Two-Equation k-ε Model 
One of the most commonly used turbulence models is the classical k-ε (kappa-
epsilon) model (Launder and Spalding, 1974). The k-ε model is based upon the 
Boussinesq approximation, meaning that eddy viscosity is isotropic. According to the 
k-ε model, eddy viscosity is calculated by the following equation: 

νt = fµCµ
k2

ε
 (2.2.14) 

where ε the turbulent dissipation: 

ε = ν �∂ui
′

∂xj
�∂ui

′

∂xj
+ ∂uj′

∂xi
�� (2.2.15) 

Turbulent kinetic energy and turbulent dissipation are calculated by solving the 
corresponding transport equations: 

Dk
Dt

= ∂
∂xj
�νt

∂k
∂xj
� + G − (ε + D)  (2.2.16) 

Dε
Dt

= ∂
∂xj
�νt
σε

∂ε
∂xj
� + C1f1G ε

k
− C2f2

ε2

k
+ E (2.2.17) 

where G is the source of turbulent kinetic energy: 

G = νt ��
∂u1����
∂x2

+ ∂u2����
∂x1
�
2

+ �∂u2����
∂x3

+ ∂u3����
∂x2
�
2

+ �∂u1����
∂x3

+ ∂u3����
∂x1
�
2

+ �∂u1����
∂x1
�
2

+ �∂u2����
∂x2
�
2

+ �∂u3����
∂x3
�
2
�

 (2.2.18) 
The rest of the values appearing in equations (2.2.16) and (2.2.17) are adjustable 
constants, deriving from experimental studies according to the various flavors of the 
model proposed in the literature (table 2.2.1). 

The RANS equations along with the time-averaged continuity equation and the k and 
ε transport equations, form a system of six equations with six unknown quantities. 
This system replaces the original four-equation system. 

 
[18] 

 



2.2. TURBULENCE MODELING   

Table 2.2.1. Flavors of the k-ε model. 
 Turbulence Model 

 Standard Launder-Sharma Lam-Bremhorst 

Cμ 0.09 

C1 1.44 

C2 1.92 

σε 2.20 

fµ 1. exp �−3.4 �1 +
RT

50
�
2

� � �1.−exp�−0.0165 ∙ Ry��
2 ∙ �1. + 20.5

RT
� � 

f1 1. 1 1. +�0.05 fµ⁄ �3 

f2 1. 1.−0.3 ∙ exp�−RT
2� 1.−exp�−RT

2� 

D 0. 2.∙ ν ∙ �∂√k ∂x2� �
2

 0. 

E 0. 2.∙ ν ∙ νt ∙ (∂2U ∂x22⁄ )2 0. 

In the curvilinear coordinates of paragraph 2.1, using the Standard model, the 
transport equations (2.2.16) and (2.2.17) become: 

C(k) = 1
hihjhl

� ∂
∂xi
�μt

hjhl
hi

∂k
∂xi
� + ∂

∂xj
�μt

hihl
hj

∂k
∂xj
� + ∂

∂xl
�μt

hihj
hl

∂k
∂xl
�� + G − ρε (2.2.19) 

C(ε) = 1
hihjhl

� ∂
∂xi
�µt
σε

hjhl
hi

∂ε
∂xi
� + ∂

∂xj
�µt
σε

hihl
hj

∂ε
∂xj
� + ∂

∂x3
�µt
σε

hihj
hl

∂ε
∂xl
�� + C1G ε

k
− C2ρ

ε2

k

 (2.2.20) 
where hi, hj, hl are the grid metrics, μt the eddy viscosity and the source of turbulent 
kinetic energy is: 

G = 2μt �eii2 + ejj2 + ell2 + 1
2

(eij2 + ejl2 + eil2)� (2.2.21) 

The RANS equations along with the continuity equation and the k and ε equations, 
form a system of six equations with six unknown quantities, the three velocity 
components, the pressure and the turbulent kinetic energy and its dissipation rate. 

2.2.3 The Two-Equation k-ω-SST Model 
The k-ω-SST (Shear stress transport) model is another widely used two-equation 
model also based upon the Boussinesq approximation. This model divides the domain 
into two regions, the outer where the k-ε model is applied and the inner where the k-ω 
model is applied. The expression for the effective viscosity μe is the same as in the k-ε 
model (equation 2.2.13) only this time eddy viscosity is a function of k and ω, the 
latter being the specific rate of dissipation of the turbulence kinetic energy k. The 
transport equations for k and ω can be written in the general form: 

C(Φ) = 1
hihjhl

� ∂
∂xi
�σΦμt

hjhl
hi

∂Φ
∂xi
� + ∂

∂xj
�σΦμt

hihl
hj

∂Φ
∂xj
� + ∂

∂xl
�σΦμt

hihj
hl

∂Φ
∂xl
�� + SΦ

 (2.2.22) 
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where 

Φ = k or ω 

Sk = G − β∗ ∙ ρ ∙ ω ∙ k 

Sω =
γ
νt

G − β ∙ ρ ∙ ω2 + 2 ∙ ρ ∙ (1 − Fl)
σω2
ω

1
hj
2
∂k
∂xj

∂ω
∂xj

 

 (2.2.23) 
The constants of the model are: 

α1 = 0.31,β∗ = 0.09, κ = 0.41 

Internal k-ω model (φ1) σk1 = 0.5,σω1 = 0.500,β1 = 0.075 

γ1 =
β1
β∗
−
σω1κ2

�β∗
= 0.553 

Internal k-ε model (φ2) σk2 = 0.85,σω2 = 0.500,β2 = 0.0828 

γ2 =
β2
β∗
−
σω2κ2

�β∗
= 0.44 

The constants σk, σω, β, γ in the unified transport equations (2.2.22) are linear 
combinations of the internal and external regions: 

φ = Fl ∙ φl + (1 − Fl) ∙ φ2 (2.2.24) 
In (2.2.24) F1 is a blending function given through: 

F1 = tanh (arg14), arg1 = min �max �2 √k
0.09∙y∙ω

; 500v
y2ω

� ; 4∙ρ∙σω2∙k
CDkωy2

� 

where y is the distance from the solid boundary and 

CDkω = max �2 ∙ ρ ∙ σω2
1
ω

1
hj
2
∂k
∂xj

∂ω
∂xj

; 10−20� 

The eddy viscosity is calculated from the following expression: 

νt = al ∙ k max[al ∙ ω; |rot(c⃗)|F2]⁄  (2.2.25) 
where the function F2 is calculated as: 

F2 = tanh (arg22), arg2 = max �2 √k
0.09∙y∙ω

; 500v
y2ω

� (2.2.26) 

The above formulation is adopted near the solid boundaries. In the wake or the 
regions far from the solid boundary, turbulence is modeled using only the k-ε model, 
i.e. F1 = F2 = 0. The source of turbulent kinetic energy is calculated through the eddy 
viscosity and the deformation tensor, in the same way as in the k-ε model: 

G = 2μt �eii2 + ejj2 + ell2 + 1
2

(eij2 + ejl2 + eil2)� (2.2.27) 
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2.3 The Finite Volume Method 

2.3.1 Introduction 
The Navier-Stokes equations, or indeed the RANS equations, are non-linear partial 
differential equations that cannot be solved directly; rather a numerical method is 
required. Amongst the many methods that are capable of solving such equations, the 
Finite Volume method is the most widely used in the area of Computational 
Hydrodynamics. In the Finite Volume method, the computational domain is divided 
via a grid mesh, into a number of discrete finite volumes, also known as Control 
Volumes. Each volume is characterized by a single point, usually its center. Then, the 
equations governing the flow are integrated over each volume and by employing the 
divergence theorem, the integrals that contain a divergence term are converted to 
surface integrals. These terms are evaluated as fluxes on the boundary surface of each 
volume. The fluxes are themselves evaluated from the values on the center points of 
the neighboring volumes by adopting a differencing scheme. In figure 2.3.1 a finite 
volume is presented (shaded area) along with the coordinates system (x1, x2, x3), the 
center of the finite volume (P), the centers of the neighboring volumes (West - W, 
East - E, North - N, South - S, Upstream - U, Downstream - D) and the center of the 
faces (w, e, n, s, u, d). 

 
Figure 2.3.1 Definition of a 3-D finite volume 

As an example of the method, let us consider the simpler problem of the 2-D steady-
state laminar flow of an incompressible fluid. Let’s also consider the numerical grid 
as an orthogonal grid with grid spacing Δx and Δy in the x1 and x2 directions 
respectively (figure 2.3.2).  

 
Figure 2.3.2 Definition of a 2-D finite volume 
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The Navier-Stokes equations as well as the continuity equation can be written in 
Cartesian coordinates as: 

div(𝐮��⃗ ) = 0 ⇒ ∂u1
∂x1

+ ∂u2
∂x2

= 0  (2.3.1) 

div(𝐮��⃗ ∙ Φ) = div[ν ∙ 𝐠𝐫𝐚𝐝(Φ)] + SΦ  (2.3.2) 
where Φ is scalar representing one of the two velocity components u1, u2.The left 
hand side of (2.3.2) is the convection term; while on the right hand side, the first term 
is the diffusion term and the last term is the source term: 

SΦ =  − 1
ρ

∙ ∂p∗

∂xΦ
+ ∂

∂x1
�ν ∙ ∂u1

∂xΦ
� + ∂

∂x2
�ν ∙ ∂u2

∂xΦ
�  (2.3.3) 

We first integrate the equations over each volume and then apply the divergence 
theorem: 

∫ div(𝐚�⃗ )dVCV = ∫ 𝐧��⃗ ∙ 𝐚�⃗  dAA   (2.3.4) 

In the case of the 2-D orthogonal grid the faces of each volume are always parallel to 
one of the axis of the Cartesian coordinate system and as a result the continuity 
equation becomes: 

∫ div(𝐮��⃗ )dVCV = ∫ 𝐧��⃗ ∙ 𝐮��⃗  dΑΑ = 0  (2.3.5) 

� �⃗� ∙ 𝐮��⃗  dy
e

+ � (−�⃗�) ∙ 𝐮��⃗  dy
w

+ � �⃗� ∙ 𝐮��⃗  dx
n

+ � (−�⃗�) ∙ 𝐮��⃗  dx
s

= 0 ⇒ 

� u1 dy
e

− � u1 dy
w

+ � u2 dx
n

− � u2 dx
s

= 0 ⇒ 

�u1���|e ∙ � dy
e

� − �u1���|w ∙ � dy
w

� + �u2���|n ∙ � dx
n

� − �u2���|s ∙ � dx
s

� = 0 ⇒ 

u1e����  ∙ Ae − u1w�����  ∙ Aw + u2n�����  ∙ An − u2s����  ∙ As = 0 ⇒ 
Ce − Cw + Cn − Cs = 0   (2.3.6) 

where e, w, n, s, denote the four faces of the finite volume, i, j are the unit vectors 
parallel to the x1 and x2 axes respectively, A* is the area of the (*) face (where (*) is e, 
w, n or s) and C* is the flux through the (*) face. Similarly the Navier-Stokes equation 
becomes: 

� div(Φ ∙ 𝐮��⃗ )dV
CV

= � ν ∙ div(𝐠𝐫𝐚𝐝Φ)dV
CV

+ � SΦdV
CV

 

∫ 𝐧��⃗ ∙ 𝐮��⃗ ∙ Φ dΑΑ = ∫ ν ∙ 𝐧��⃗ ∙ 𝐠𝐫𝐚𝐝(Φ) dΑΑ + ∫ SΦdVCV  ⇒  I1 = I2 + I3  (2.3.7) 

Regarding the convection term: 

I1 = � div(Φ ∙ 𝐮��⃗ ) dV
CV

= � 𝐧��⃗ ∙ 𝐮��⃗ ∙ Φ dΑ
Α

⇒ 
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I1 = � �⃗� ∙ 𝐮��⃗ ∙ Φ dy
e

+ � (−�⃗�) ∙ 𝐮��⃗  ∙ Φ dy
w

+ � �⃗� ∙ 𝐮��⃗  ∙ Φ dx
n

+ � (−�⃗�) ∙ 𝐮��⃗  ∙ Φ dx
s

⇒ 

I1 = � u1 ∙ Φ dy
e

− � u1 ∙ Φ dy
w

+ � u2 ∙ Φ dx
n

− � u2 ∙ Φ dx
s

⇒ 

I1 = �u1 ∙ Φ��������|e ∙ � dy
e

� − �u1 ∙ Φ��������|w ∙ � dy
w

� 

+ �u2 ∙ Φ��������|n ∙ � dx
n

� − �u2 ∙ Φ��������|s ∙ � dx
s

� ⇒ 

I1 ≈ u1e ∙ Φe ∙ Ae − u1w ∙ Φw ∙ Aw + u2n ∙ Φn ∙ An − u2s ∙ Φs ∙ As ⇒ 

I1 = Φe ∙ Ce − Φw ∙ Cw + Φn ∙ Cn − Φs ∙ Cs  (2.3.8) 
where Φ* is the mean value of the scalar Φ on the (*) face.  

The diffusion term becomes: 

I2 = � div[ν ∙ grad(Φ)] dV
CV

= � ν ∙ 𝐧��⃗ ∙ grad(Φ) dΑ
Α

⇒ 

I2 = � ν ∙ �⃗� ∙ 𝐠𝐫𝐚𝐝(Φ) dy
e

+ � ν ∙ (−�⃗�) ∙ 𝐠𝐫𝐚𝐝(Φ) dy
w

 

+ ∫ ν ∙ �⃗� ∙ 𝐠𝐫𝐚𝐝(Φ) dxn + ∫ ν ∙ (−�⃗�) ∙ 𝐠𝐫𝐚𝐝(Φ) dxs  ⇒ 

I2 = � ν ∙
∂Φ
∂x

 dy
e

− � ν ∙
∂Φ
∂x

 dy
w

+ � ν ∙
∂Φ
∂y

 dx
n

− � ν ∙
∂Φ
∂y

 dx
s

⇒ 

I2 = �ν ∙
∂Φ
∂x
����

�
e

∙ �  dy
e

� − �ν ∙
∂Φ
∂x
����

�
w

∙ �  dy
w

� 

+ �ν ∙
∂Φ
∂y
����

�
n

∙ �  dx
n

� − �ν ∙
∂Φ
∂y
����

�
s

∙ �  dx
s

� ⇒ 

I2 ≈ ν ∙
ΦE − ΦP

δxPE
∙ Ae − ν ∙

ΦP − ΦW

δxWP
∙ Aw + ν ∙

ΦN − ΦP

δyPN
∙ An − ν ∙

ΦP − ΦS

δySP
∙ As ⇒ 

I2 = ν ∙
ΦE − ΦP

δxPE
∙ δyns − ν ∙

ΦP − ΦW

δxWP
∙ δyns 

+ν ∙
ΦN − ΦP

δyPN
∙ δxew − ν ∙

ΦP − ΦS

δySP
∙ δxew ⇒ 

I2 = ΦE ∙
ν ∙ δyns

δxPE
+ ΦW ∙

ν ∙ δyns

δxWP
+ ΦN ∙

ν ∙ δxew

δyPN
+ ΦS ∙

ν ∙ δxew

δySP
 

−ΦP ∙ �ν∙δyns
δxPE

+ ν∙δyns
δxWP

+ ν∙δxew
δyPN

+ ν∙δxew
δySP

�  (2.3.9) 

where ΦP is the mean value of the scalar over the finite volume, Φ* with (*) equal to 
E, W, N, S the mean value of the scalar Φ over the (*) neighboring finite volume. Also 
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δxew and δyns are the finite volume length and height and δxPE, δyWP, δyPN and δySP 
the distance of the P node from the E, W, N, S, neighboring nodes respectively. 

The source term for the u1 velocity becomes: 

I3 = � �−
1
ρ

∙
∂p∗

∂xΦ
+  

∂
∂x

�ν ∙
∂u1

∂xΦ
� +  

∂
∂y

�ν ∙
∂u2

∂xΦ
��  dV

CV
⇒ 

I3 = � �−
1
ρ

∙
∂p∗

∂x
+  

∂
∂x

�ν ∙
∂u1

∂x
� +  

∂
∂y

�ν ∙
∂u2

∂x
��  dV = I31 + I32

CV
 

I31 = ∫ − 1
ρ

∙ ∂p∗

∂x
 dVCV = − 1

ρ
∙ �∂p

∂x
������

∫  dVCV ≈ − 1
ρ

∙ Pe−Pw
δxew

∙ δxew ∙ δyns = Pw−Pe
ρ

∙ δyns

  (2.3.10) 
where pe and pw are the mean values of pressure p over the e, w faces. 

I32 = � �
∂

∂x
�ν ∙

∂u1

∂x
� +  

∂
∂y

�ν ∙
∂u2

∂x
��  dV

CV
⇒ 

I32 = � ν ∙
∂u1

∂x
 dy

e
− � ν ∙

∂u1

∂x
 dy

w
+ � ν ∙

∂u2

∂x
dx

n
− � ν ∙

∂u2

∂x
 dx

s
⇒ 

I32 = �ν ∙
∂u1

∂x
�����

�
e

∙ �  dy
e

� − �ν ∙
∂u1

∂x
�����

�
w

∙ �  dy
w

� 

+ �ν ∙
∂u2

∂x
�����

�
n

∙ �  dx
n

� − �ν ∙
∂u2

∂x
�����

�
s

∙ �  dx
s

� 

I32 ≈ ν ∙
u1E − u1P

δxPE
∙ Ae − ν ∙

u1P − u1W

δxWP
∙ Aw 

+ν ∙
u2ne − u2nw

δxew
∙ An − ν ∙

u2se − u2sw

δxew
∙ As ⇒ 

I32 = ν ∙
u1E − u1P

δxPE
∙ δyns − ν ∙

u1P − u1W

δxWP
∙ δyns 

+ν ∙
u2ne − u2nw

δxew
∙ δxew − ν ∙

u2se − u2sw

δxew
∙ δxew ⇒ 

I32 = ΦE ∙
ν ∙ δyns

δxPE
+ ΦW ∙

ν ∙ δyns

δxWP
− ΦP ∙ �

ν ∙ δyns

δxPE
+

ν ∙ δyns

δxWP
� 

+ν ∙ (u2ne − u2nw − u2se + u2sw)  (2.3.11) 

where u2ne , u2nw , u2se , and u2sw are the values of u2 velocity at the north-east (ne), 
north-west (nw), south-east (se) and south-west (sw) corners of the finite volume. A 
similar formulation can be obtained for the source term for the u2 velocity. 

The above analysis results in an expression for the N-S equation that contains the 
values of the unknown scalar quantity Φ on the center of each finite volume. Also 
appearing are the mean values of the scalar Φ on the volume faces. In order to 
calculate the values on the faces, some differencing scheme is applied and yet again 
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the values on the faces are expressed through the values of Φ on the center of the 
finite volumes. 

Finally, by subtracting the continuity equation from the convection term and then 
properly arranging the terms so that only ΦP appears on the left-hand side and all 
other terms are on the right-hand side, one can arrive at the typical formulation for a 
system of linear equations: 

AP*ΦP = AE*ΦE + AW*ΦW + AN*ΦN + AS*ΦS + SΦ  (2.3.12) 

where 

AP = AE + AW + AN + AS 

2.3.2 The Differencing Scheme 
In the previous paragraph the formulation for the convection term, equation 2.3.8, 
contains the mean values of the scalar Φ on each face of the finite volume yet the 
values for the scalar Φ are calculated on the center of each volume. Consequently a 
differencing scheme must be employed in order to calculate the values on the volume 
faces from the values at the volume centers. Theoretically if one could use an infinite 
number of grid nodes, the solution obtained by the finite volume method would be the 
exact solution, regardless of the differencing scheme. In practice, only a relatively 
small number of nodes can be used, a fact that can lead to numerical instabilities that 
in turn can hamper the convergence of the method. The differencing scheme plays a 
very important role in the convergence of the method and in order to ensure the 
convergence, the differencing scheme must be characterized by (Demirdzic et al., 
1987): 

 Conservativeness 
 Boundedness 
 Transportiveness 

A scheme is conservative when it ensures the continuity of Φ throughout the 
computational domain. That can be achieved if the flux of Φ exiting one finite volume 
through one of its faces, is always equal to the flux of Φ entering the neighboring 
volume through their common face. 

A condition that is sufficient for the convergence of an iterative method for solving 
partial differential equations in the form of equation 2.3.12, is that: 

∑|Ai|
�AP

′ �
� ≤ 1 , on all nodes 
< 1 , on at least one node , i = E, W, N, S, U, D  (2.3.13) 

where 

AP
′ = AP − SΦ 

If the above is true then it is said that the matrix of the linear system has a strong main 
diagonal. A differencing scheme that results in a matrix with a strong main diagonal is 
characterized by boundedness. 
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For a convection-diffusion flow one can define the non-dimensional Péclet number: 

Pe =
convection transport rate
diffusion transport rate

 

Péclet number is a measure of the relative importance of convection and diffusion in a 
flow. When Pe → 0, there is pure diffusion while Pe → ∞ corresponds to pure 
convection. A differencing scheme that relates the direction of transport of a flow 
characteristic, to the direction of the flow and to the Péclet number, is characterized 
by transportiveness. 

Another important characteristic of a differencing scheme is its accuracy measured 
through the Taylor series truncation error. A scheme characterized by higher accuracy 
is desirable, since for a given grid size the results will be more accurate, or else, for a 
desired level of accuracy, a coarser grid is required. 

Many differencing schemes have been proposed in the literature with different 
accuracy levels and not all of them being characterized by conservativeness, 
boundedness and transportiveness. In the following a brief overview of the most 
common schemes will be presented. 

The simplest scheme one can devise is to use at a face the value calculated on the 
center of one of the finite volumes that are either side of the face, depending on the 
sign of the flux through that face. This scheme is called the Upwind Differencing 
Scheme (UD). In the case of a 1-D flow (figure 2.3.3) and for the east face of a finite 
volume the UD scheme can be written as: 

Φe = ΦP , Ce > 0
Φe = ΦE , Ce < 0� (2.3.14) 

The Upwind Differencing scheme is conservative since Φe for the finite volume P is 
always equal to Φw for the neighboring E node. Also this scheme is characterized by 
boundedness since its contribution to AP is always positive and is also characterized 
by transportiveness since the sign of the flux is affecting the transport of Φ. 

 
Figure 2.3.3 Definition of the Upwind Differencing Scheme 

In terms of the Taylor series truncation error, the Upwind Differencing scheme is a 
zero-order scheme. Another disadvantage of the Upwind Differencing scheme is that 
it reduces the variation of the transported value resulting in a form of artificial 
diffusion. On the other hand, in flows with a strong mean flow such as the flow past a 
ship, the use of the Upwind Differencing scheme in the direction parallel to the mean 
flow, results in adequate accuracy with the minimum computational cost. 
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A first order, in accuracy, scheme that can be considered an expansion of the previous 
is the Linear Upwind Scheme (LUD). In this scheme the value of Φ on a face is 
effectively the linear extrapolation of the values on two successive grid nodes that are 
either on one side of the face or the other, depending on the sign of the flux through 
that face. In the case of a 1-D flow (figure 2.3.4) and for the east face of a finite 
volume the LUD scheme can be written as: 

Φe = ΦP + ΦP−ΦW
2

 , Ce > 0

Φe = ΦE − ΦEE−ΦE
2

 , Ce < 0
� (2.3.15) 

The Linear Upwind Differencing scheme is conservative and is characterized by 
transportiveness just as the zero-order Upwind Scheme. On the other hand it is not 
always characterized by boundedness and can cause instabilities to the iterative 
solution. 

 
Figure 2.3.4 Definition of the Linear Upwind Differencing Scheme 

Another simple scheme and perhaps the one that immediately springs into mind, is the 
Central Differencing scheme (CD). In this scheme the value of Φ on a face is 
calculated as effectively the linear interpolation amongst the values on the two grid 
nodes that are on either side of the face. In the case of a 1-D flow (figure 2.3.5) and 
for the east face of a finite volume the CD scheme can be written as: 

Φe = ΦP + ΦE−ΦP
2

 (2.3.16) 

The Central Differencing scheme is second order in terms of the Taylor series 
truncation error. It is also conservative but is not always characterized by 
boundedness. Furthermore it is not characterized by transportiveness so it is 
unsuitable to model convection flows. 

  
Figure 2.3.5 Definition of the Central Differencing Scheme 
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2.3.3 Total Variation Diminishing Schemes 
From the above paragraph it is concluded that all three simple differencing schemes 
have considerable drawbacks that in many cases makes their use impractical. Many 
other differencing schemes have been proposed in the literature, some of them of third 
or higher order of accuracy. Due to their particular characteristics and drawbacks, no 
single scheme has been widely adopted. The main concern with the higher-order 
schemes is the stability of convergence. To combine the accuracy of the higher-order 
schemes with the stability of lower-order ones, bounded schemes called Total 
Variation Diminishing (TVD) schemes were developed. TVD schemes are second or 
higher –order and to avoid instabilities, they introduce artificial diffusion or they 
increase the contribution of the upstream flow characteristics. Initially, the TVD 
schemes were developed for solving gas-dynamics problems and were called Flux 
Corrected Transport (FCT) schemes. The TVD schemes in their current form are the 
result of the contributions of many researchers (Van Leer, 1974, 1977a, 1977b & 
1979, Sweby, 1984 and Roe, 1985) 

Based on the analysis of the previous paragraph for a 1-D flow, the value of Φ at the 
east face and for a positive flux can be calculated as: 

Upwind Differencing (UD): 

Φe = ΦP 
Linear Upwind Differencing (LUD): 

Φe = ΦP +
ΦP − ΦW

2
 

Central Differencing (CD): 

Φe = ΦP +
1
2

(ΦE − ΦP) 

Let us consider the general scheme: 

Φe = ΦP + 1
2

ψ(r)(ΦE − ΦP) (2.3.17) 

r = �ΦP−ΦW
ΦE−ΦP

� (2.3.18) 

where r is effectively the ratio of the derivatives of Φ on either side of the e-face. It 
can be easily deducted that depending on the form of ψ(r), the general scheme of 
equation 2.3.17 becomes one of the three simple schemes: 

ψ(r) = 0 → Upwind Differencing. 

ψ(r) = 1 → Central Differencing. 

ψ(r) = r → Linear Upwind Differencing. 
In figure 2.3.6 the form of ψ(r) is presented for the three schemes. The flux through 
the e-face is considered positive. 
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Figure 2.3.6 r – ψ diagram. 

Through the study of gas-dynamics problems it was concluded that a desirable 
characteristic for a stable higher-order scheme is the preserving of monotonicity. A 
scheme is preserving monotonicity when (i) it does not create new local extremes, (ii) 
it does not lower the value of a local minimum and (iii) it does not increase the value 
of a local maximum, in other words when a scheme does not generate new 
oscillations of the solution. 

The property of preserving the monotonicity affects the Total Variation (TV) of the 
discrete solution. For example, the Total Variation of the solution of figure 2.3.7 is 
defined as (Lien & Leschziner, 1994): 

TV(Φ) = |Φ2 − Φ1| + |Φ3 − Φ2| + |Φ4 − Φ3| + |Φ5 − Φ4| 

TV(Φ) = |Φ3 − Φ1| + |Φ5 − Φ3| (2.3.19) 

Figure 2.3.7 An example of a discrete solution. 

In order for a scheme to preserve monotonicity, the total variation must not increase. 
Consequently a differencing scheme that is monotonicity preserving, causes the 
reduction of the total variation as the algorithm progresses, hence the name Total 
Variation Diminishing. 

Sweby (1984) was able to proove that the necessary and sufficient conditions for a 
differencing scheme to be TVD are: 

ψ(r) ≤ 2r , for 0 < r < 1 and 

ψ(r) ≤ 2 , for r ≥ 1. 
In figure 2.3.8 the TVD region of the r – ψ diagram is presented. 
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Figure 2.3.8 r – ψ diagram, the TVD region (shaded). 

Regarding the differencing schemes of the previous paragraph, we can notice that: 

 The Upwind Differencing scheme is always TVD, 
 The Linear Upwind Differencing scheme is TVD for r ≤ 2 and that  
 The Central Differencing scheme TVD for r ≥ 0.5. 

The main idea now is to modify one of the above schemes in order for the ψ(r) 
function to remain in the TVD region. The ψ(r) function has to limit the convection 
flux. For that reason such a ψ(r) function is called a Flux Limiter Function. 

Sweby introduced a further condition for a TVD scheme to also be second-order in 
accuracy: The limiter function of a second-order scheme must cross the (1,1) point of 
the r – ψ diagram. 

On figure 2.3.7 we can observe that the ψ(r) functions for the central and the linear 
upwind differencing schemes, do indeed cross the (1,1) point.  

Sweby was also able to prove that the range of the second-order TVD schemes is 
bounded by the central and the linear upwind differencing schemes: 

r ≤ ψ(r) ≤ 1, for 0 < r < 1 and 

1 ≤ ψ(r) ≤ r, for r ≥ 1 . 
Consequently every weighted average of the central and the linear upwind 
differencing scheme, that remains within the TVD region of the r – ψ diagram is a 
second-order scheme. 

Finally Sweby proposed the notion of symmetry of a limiter function: 

ψ(r)
r

= ψ�1 r� � (2.3.20) 

He was able to prove that a function that is symmetrical in the above sense ensures 
that the flux is calculated in a uniform way, both in the upstream and the downstream 
direction. 

On table 2.3.1, some of the many limiter functions that have been proposed, are 
presented while the same functions are graphically presented on figure 2.3.9. 

 
[30] 

 



2.3. THE FINITE VOLUME METHOD   

Table 2.3.1 Second-order limiter functions. 

 Limiter function ψ(r) 

Van Leer (1974) ψ(r) =
r + |r|
1 + r

 

Min-Mod 
(Roe, 1985) 

ψ(r) = � min(r; 1)  , r > 0
       0            , r ≤ 0 

SUPERBEE  
(Roe, 1985) 

ψ(r) = max [0; min(2r; 1) , min (r; 2)] 

Sweby (1984) ψ(r) = max [0; min(β ∙ r; 1) ; min (r; β)] 

QUICK ψ(r) = max [0; min(2r; (3 + r)/4; 2)] 

 
Figure 2.3.9. r – ψ diagram, second-order TVD region (shaded) and limiter functions. 

After an extensive bibliographical research, the Min-mod limiter function was 
selected for implementation with the existing RANS finite volume solver developed 
at LSMH. The Min-mod limiter function follows the lower limit of the TVD region 
for second-order schemes. The main advantage of this function is the fact for a given 
value of r, the TVD scheme becomes one of the three schemes presented in the 
previous paragraph. Consequently this method has virtually the same computational 
cost as each of the three schemes. The above characteristic is depicted in figure 
2.3.10. 

  
Figure 2.3.10. Calculation of Φe using the Min-Mod limiter function, r < 0: upwind 

differencing; 0 < r < 1: linear upwind differencing; r ≥ 1: central differencing. 
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As part of the present study, the TVD scheme in conjunction with the Min-mod 
limiter function was expanded for use in 3-D non-uniform curvilinear grids and was 
successfully applied for calculating the convection term in two (Tzabiras et al. 2009b) 
and three dimensions (Tzabiras et al. 2009a),(Tzabiras & Kontogiannis, 2009). 

2.3.4 Boundary Conditions 
In order to solve the transport equations, due to their elliptic nature, boundary 
conditions are required throughout the boundary of the computational domain. For an 
external flow problem, characterized by a velocity vector U∞, we can define four 
sections of the boundary (figure 2.3.11), namely: 

• West (W), the upstream, or inlet boundary 
• North (N), the external boundary 
• East (E), the downstream or outlet boundary and 
• South (S), the solid boundary or the surface of the body (or bodies) 

 
Figure 2.3.11 Definition of the computational domain boundary. 

On each section of the boundaries, a condition for each flow variable Φ (u1, u2, u3, p, 
k, ε) must be provided. These boundary conditions can be of two types: 

Dirichlet: Φ = f 

Neumann: ∂Φ
∂n� = f (2.3.21) 

where n is the direction perpendicular to the boundary. 

Each section of the boundary is handled in a deferent manner. The inlet and external 
boundaries are placed far enough from the body, so that the flow is laminar and the 
conditions may be calculated by means of simplified models. A first approach is to 
consider the boundaries so far from the body, that the flow is almost undisturbed. In 
that case, the boundary conditions are: 

u1 = 𝐔∞ ∙ ı ̅

u2 = 𝐔∞ ∙ ȷ ̅

u3 = 𝐔∞ ∙ k� 

p = pstatic 

k ≪, ε ≪ (2.3.22) 
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Though far from the body, flow is considered laminar, the boundary condition for the 
turbulent kinetic energy k and the turbulent dissipation ε is a very small but non-zero 
value. This is done to avoid the possibility of divisions by zero. 

The drawback of the above approach is that the boundary must be quite far from the 
body, thus increasing the computational cost. Another approach is to consider the two 
boundaries closer to the body but still well outside of the boundary layer. Outside the 
boundary layer, the effect of viscosity is negligible and the behavior of the flow 
resembles that of an inviscid flow. If we also consider the flow outside the boundary 
layer as irrotational, an assumption that is also in good agreement with the actual 
behavior of the flow, then we can obtain the boundary conditions by means of the 
potential theory. Using a surface panel methodology based on the classical method of 
Hess & Smith (1968) we can obtain the values for the velocity components and the 
pressure on every point of the computational domain. The boundary conditions then 
become: 

u1 = u1,potential 

u2 = u2,potential 

u3 = u3,potential 

p = ppotential 

k ≪, ε ≪ (2.3.23) 
The situation with the outlet boundary is rather more complicated since it contains 
part of the wake. Inside the wake the flow is significantly affected by viscosity, 
consequently the potential theory does not apply. The adopted solution is to assume 
that at a distance from the body, the flow has “stabilized” and that the values of each 
flow variable, bar pressure, remain the same, or in other words the derivatives of all 
variables normal to the outlet boundary are equal to zero: 

∂u1
∂n� = ∂u2

∂n� = ∂u3
∂n� = ∂k

∂n� = ∂ε
∂n� = 0 (2.3.24) 

Regarding pressure, the value on the boundary is calculated by a linear extrapolation 
of the corresponding values on the two finite volumes nearest to the boundary, as 
calculated in the previous iteration. 

On a solid boundary, that in the external flow case is considered stationary, the no-
penetration condition applies: 

un = 0 (2.3.25) 
Furthermore for a viscous flow, the no-slip condition also applies: 

ut = 0 (2.3.26) 
where un the velocity normal to the solid boundary and ut the tangential velocity. As a 
result the boundary conditions on the solid boundary are: 

u1 = u2 = u3 = k = 0, ∂p
∂n� = 0 (2.3.27) 
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Regarding the turbulent dissipation ε, the boundary conditions depend on the 
turbulence model. When the k-ω-SST model is used, the boundary conditions for ε 
derive from a mixing length approximation. 

This approach has two significant drawbacks, namely the k-ε model fails to predict 
the logarithmic velocity profile near the solid boundary and in any case, in order to 
model the flow within the viscous sub-layer, a very fine discretization is required. To 
circumvent both problems, the wall functions method (Launder and Spalding, 1974) 
was introduced. The wall functions consider the near-wall flow, a steady Couette 
flow. They then use empirical laws to model the near-wall region so that it is possible 
to express the mean velocity parallel to the wall u and turbulence quantities outside 
the viscous sub-layer in terms of the distance from the wall yR and wall conditions 
such as the wall shear stress τw. Hence, the wall functions can be used to provide 
near-wall boundary conditions for the momentum and turbulence transport equations, 
rather than conditions at the wall itself, so that the flow inside the viscous sub-layer 
does not have to be solved. Experimental and dimensional analysis shows that the 
wall shear stress τw is related to the mean velocity parallel to the wall u, through the 
so-called logarithmic law of the wall: 

u+ = 1
κ

ln (E ∙ y+) (2.3.28) 

where the wall-coordinate y+ is given by: 

y+ = yR
ν

�τw
ρ

�
1/2

 (2.3.29) 

and 

u+ = u
(τw ρ⁄ )1/2 (2.3.30) 

also κ=0.42 is the von Kármán constant and E=9.79 is a roughness parameter. The 
turbulent kinetic energy k is then: 

k = Cµ
−1/2 �τw

ρ
� (2.3.31) 

where Cμ=0.09, while the turbulent dissipation ε is: 

ε = (τw ρ⁄ )3/2/(κ ∙ yR) (2.3.32) 
finally: 

τw
ρ

= νt
∂u

∂yR
, ∂u

∂yR
= (τw ρ⁄ )1/2

κ∙yR
 (2.3.33) 

The logarithmic law is valid in the region 40<y+<200. By setting the first 
computational node inside the above region and by employing the wall functions 
method, one can obtain a full set of boundary condition for the near-wall region. 

A special case of boundary conditions appears when one of the boundaries is a 
symmetry plane. Then the flux normal to the symmetry plane must be zero and the 
derivatives of all other variables normal to the symmetry plane must also be zero: 

un = 0 
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∂ut
∂n� = ∂p

∂n� = ∂k
∂n� = ∂ε

∂n� = 0 (2.3.34) 

As mentioned in previous paragraphs, in the finite volume method, the values for the 
flow variables are calculated and stored on the center point of each finite volume. In 
order for the boundary conditions to be applied at the center points of the boundary 
volumes, it is necessary that the dimension normal to the boundary of these volumes 
is zero. In doing so, the center points are on the boundary itself. As an example, let us 
consider the 2-D case of an orthogonal NIxNJ grid where equi-J-lines are horizontal, 
parallel to the x1 axis and equi-I-lines are vertical, parallel to the x2 axis (figure 
2.3.12). Let’s also say that the value of the variable Φ(I,J) is stored at the center of the 
finite volume defined by the four grid nodes (I,J), (I+1,J) (I,J+1) and (I+1,J+1). 
Then the above formulation results in the I=1 and J=1 grid lines coinciding with the 
I=2 and J=2 lines respectively. 

 
Figure 2.3.12 Definition of the boundary nodes on a 2-D H-type grid. 

Another special case is that of o-type grids. As an example, let us consider the 2-D 
case of a cylindrical NIxNJ grid where equi-J-lines are circular, parallel to the θ-axis 
and equi-I-lines are radial, parallel to the r-axis (figure 2.3.13). In order to apply the 
boundary conditions correctly, the I=NI-1 line must coincide with the I=1 line while 
the I=NI line coincides with the I=2 line. In doing so, Φ(NI-1,J) = Φ(1,J) and Φ(NI,J) 
= 0.5*[Φ(1,J) + Φ(2,J)]. 

 
Figure 2.3.13 Definition of the boundary nodes on a 2-D o-type grid. 

The above formulations refer to the boundary conditions for an external flow 
problem. In the case of the overlapping grid blocks, a special treatment of the 
boundary conditions is required in order to transfer the flow variables from one block 
to the next while ensuring the conservation of mass. This special treatment will be 
discussed in a following paragraph. 

 
[35] 
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2.3.5 Pressure Correction Algorithm 
The Navier-Stokes equations along with the continuity equation, form a system of 
four (in the 3-D case) non-linear partial differential equations with four unknown 
quantities, u1, u2, u3 and p. Although the direct numerical solution of such a system is 
possible, this direct approach is used rarely and for special types of flow such as 
compressible flows. Regarding the Marine Hydrodynamics problems the SIMPLE 
(Semi-Implicit Method for Pressure Linked Equations) algorithm devised by Patankar 
& Spalding (Spalding, 1980) is almost universally adopted.  

The SIMPLE algorithm is an iterative procedure where the transport equation for each 
of the velocity components is solved separately and then an equation for the 
correction of the pressure is solved in such a way that the corrected pressure satisfies 
continuity. More specifically, at an intermediate iteration, the distribution of pressure 
and the velocity components is considered known (from the previous iteration) and 
the transport equations for each velocity component are solved separately. The 
resulting new velocity distributions do not satisfy continuity since the pressure field 
used in the calculations is not exact. As an example let us consider the 2-D problem 
where at an intermediate step k of the iterative procedure, the linearized transport 
equations can be written as: 

uP = AE
AP

uE + AW
AP

uW + AN
AP

uN + AS
AP

uS + SP (2.3.35) 

where the source SP incorporates the integrated pressure terms: 

Duδp = δs
AP

δp (2.3.36) 

where the term δs is a geometrical dimension. A change of uP, due to a change in the 
pressure field δp, can be approximated as: 

δuP ≈ Duδp (2.3.37) 

That is the sum of the Ai*ui terms is neglected. The new velocity field (u1*, u2*) that 
results from the above change in the pressure field, can be written as: 

u1
∗ = u1 + δu1 ≈ u1 + Du1δp1 

u2
∗ = u2 + δu2 ≈ u2 + Du2δp2 (2.3.38) 

where δp1 and δp2 correspond to the pressure change along the x1 and x2 directions 
respectively. We then demand that the new velocity field satisfies the continuity 
equation: 

u1e
∗ ∙ δx2e − u1w

∗ ∙ δx2w + u2n
∗ ∙ δx1n − u2s

∗ ∙ δx1s = 0 (2.3.39) 
From equations (2.3.38) and (2.3.39) we obtain a new equation for the pressure 
correction: 

Du1e ∙ δx2e ∙ (δpP − δpE) − Du1w ∙ δx2w ∙ (δpW − δpP) + 

Du2n ∙ δx1n ∙ (δpP − δpN) − Du2s ∙ δx1s ∙ (δpS − δpP) = −Sm (2.3.39) 

or else: 
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APδpP = AEδpE + AWδpW + ANδpN + ASδpS − Sm 

AP = AE + AW + AN + AS (2.3.40) 

The term Sm in (2.3.39) and (2.3.40) is the integral over the finite volume, of the 
divergence of the original velocity field: 

Sm = u1e ∙ δx2e − u1w ∙ δx2w + u2n ∙ δx1n − u2s ∙ δx1s (2.3.39) 
By applying the above procedure for every finite volume, we arrive at a system of 
linear equations of the (2.3.40) form. The solution of this system is a correction field 
for the pressure δp and the corrected pressure field is: 

pk = pk−1 + δp (2.3.40) 
where pk-1 is the original pressure field and pk the corrected pressure field. The 
corrected pressure field will not satisfy the transport equations but it is used in the 
next iteration. The algorithm converges when the pressure correction becomes very 
small. The flow chart of the SIMPLE algorithm is presented in figure 2.3.14. 

 
Figure 2.3.14 The SIMPLE algorithm flow chart. 

The SIMPLE algorithm is usually combined with the staggered grid concept where 
the finite volumes for the pressure and the velocity components are different. Let us 
consider as an example the case of a 2-D orthogonal grid defined by (NIxNJ) grid 
nodes, where the equi-J-lines are parallel to the x1-direction and the equi-I-lines 
parallel to the x2-direction (figure 2.3.15). The pressure finite volume is defined by 
the grid nodes (I,J), (I+1,J), (I,J+1) and (I+1,J+1) (denoted by the crosses-hatch in 
the figure) and the pressure is calculated at the center of the volume. The u1-velocity 
is stored at the mid-point of the (I,J), (I,J+1) grid nodes, while the u2-velocity is 
stored at the mid-point of the (I,J), (I+1,J) grid nodes. The respective finite volumes 
differ from the pressure volume and are denoted in figure 2.3.15 with +45 degrees and 
-45 degrees line hatches respectively. 
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Figure 2.3.15 Definition of staggered grid arrangement. 

Another concept used in order to increase the chance of convergence of the SIMPLE 
algorithm, is that of under-relaxation. The main idea of under-relaxation is that during 
an iterative solution, the renewed values of a variable result from a linear combination 
of the calculated value of the present step Φk and the value of the previous step Φk-1: 

Φk′ = r ∙ Φk + (1 − r) ∙ Φk−1 (2.3.41) 
where Φk’ is the new value and r is the under-relaxation factor with 0≤r≤1. If r=1 
then Φk’=Φk while if r=0 then Φk’=Φk-1 consequently the smaller the value of r, the 
slowest the convergence. On the other hand the higher the value of r, the higher is 
also the chance that the iterative procedure will not converge. 

The under-relaxation can be incorporated into the generation of the matrix of the 
system of linear equations: 

AP′ = AP r�  

SΦ′ = SΦ + (1 − r) ∙ AP′ ∙ Φk−1 (2.3.42) 
The first of the two equations has the effect of making the main diagonal stronger, 
thus improving convergence. The value for the under-relaxation factor is different for 
each flow variable. 

The use of the staggered grid arrangement is very important for the accuracy and 
convergence of the SIMPLE algorithm. Even so there are types of flow where for the 
convergence of the SIMPLE algorithm, very small values for the under-relaxation 
factors are required. Such flows are detached flows or flows characterized by high 
pressure gradients. The weakness of the SIMPLE algorithm is the simplification of 
the equation 2.3.37 where the effect of the sum of the Ai*ui terms is neglected. In 
order to remedy the shortcomings of the SIMPLE algorithm, many variations have 
been proposed in the literature where the terms Ai*ui are taken into account either 
directly or indirectly.  
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2.4 Geometrical Representation of the Hull 

2.4.1 Introduction 
In order to generate the numerical grids required by the finite volume method, the hull 
geometry needs to be represented. In the present work, the hull geometry is 
analytically represented through the coefficients of the conformal mapping of 2-D 
sections onto a unit circle. The conformal mapping is also employed to generate the 2-
D orthogonal curvilinear grids. Also the conformal mapping method is employed in 
the generation of the appendages grid blocks, in order to locate the intersections of the 
appendages with the hull surface and to calculate the locations of the grid nodes that 
lay on the hull. Finally the conformal mapping can be used to generate the 2-D grids 
on sections of the rudder grid block. 

2.4.2 The Conformal Mapping Method 
In the present work, the hull surface is represented by employing the well-known 
conformal mapping method, adopted by many of the CFD software developed at 
LSMH. In this method, the hull surface is described by a number of 2-D transverse 
sections. Each section is analytically represented by means of its conformal mapping 
onto the complex plane of the unit circle (Tzabiras & Kontogiannis, 2009). 

The general conformal transformation that maps a ship-like section reads (Kerczek, 
1969): 

z = c0 + c−1ζ + ∑ cnζ−nN
n=1   (2.4.1) 

where ζ is the complex plane of the unit circle and z the section plane. If the curve is 
symmetric with respect to the y-axis, figure 2.4.1, coefficients cn reduce to the real αn 
and the real and imaginary parts of z in equation (2.4.1) are expanded as: 

x = α−1cosφ + � αncos(−nφ)
N

n=1

 

y = α0 + α−1sinφ + � αnsin(−nφ)N
n=1   (2.4.2) 

  
Figure 2.4.1 Transformation of a ship section on the unit circle (Tzabiras & 

Kontogiannis, 2009). 
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In equation 2.4.2, φ stands for the argument of point (x, y) on the circle plane, while 
the coefficients αn can be calculated (Tzabiras, Dimas & Loukakis, 1986), either 
through the integrals: 

a0
(1) =

1
2π

� x(φ)dφ
2π

0
 

a−1
(1) + a1

(1) =
1
π

� x(φ)cos(φ)dφ
2π

0
 

an
(1) = 1

π ∫ x(φ)cos(φ)dφ2π
0 , n > 2 (2.4.3a) 

or the integrals: 

a0
(2) =

1
2π

� y(φ)dφ
2π

0
 

a−1
(2) + a1

(2) =
1
π

� y(φ)sin(φ)dφ
2π

0
 

an
(2) = 1

π ∫ y(φ)sin(φ)dφ2π
0 , n > 2  (2.4.3b) 

Equations 2.4.3a and 2.4.3b show that coefficients α-1, α0, … , αn can be calculated 
analytically in two ways, both resulting in equal values for N→∞. However, since a 
finite number N is used, the calculation of integrals (2.4.3a) and (2.4.3b) results in 
different values for αn(1) and αn(2) and the effectiveness of each approach depends on 
the section shape. In order to find an optimum representation of an arbitrary 2-D 
section, a linear relation between the two approximations is assumed to hold: 

an = ran
(1) + (1 − r)an

(2), n = −1, … , N  (2.4.4) 

The weight factor r is defined by minimizing the total error:  

Et = ∑ [(xP − xaP)2 + (yP − yaP)2]P   (2.4.5) 
Where P is the number of (xP, yP) data points that describe the section contour and 
(xaP,yaP) the corresponding analytical expressions through equation 2.4.2. By 
introducing r, the above expressions become:  

xaP = �ra−1
(1) + (1 − r)a−1

(2)�cosφP + �[ran
(1) + (1 − r)an

(2)]cos (−nφP)
N

n=1

 

yaP = �ra0
(1) + (1 − r)a0

(2)� + �ra−1
(1) + (1 − r)a−1

(2)�sinφP 

+ �[ran
(1) + (1 − r)an

(2)]sin (−nφP)
N

n=1

 

(2.4.6) 
Then, r is defined by solving the linear equation:  

∂Et
∂r

= 0  (2.4.7) 
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It should be noted that the coefficients α1 and α-1 are uniquely defined from the linear 
system which is derived by evaluating the second integral of (2.4.3a) and (2.4.3b). As 
the number of coefficients increases, the weight factor r changes. The general trend is 
that for H >> B, r→0 while for B >> H, r →1, where B is the beam and H the draft of 
the section. 

For a particular section, the iterative procedure proposed by von Kerczek (1969) is 
followed, i.e. calculations start with four coefficients and proceed by increasing their 
number up to a user-defined value N or until the total error becomes smaller than a 
certain limit. Anyhow, the evaluation of integrals (2.4.3a) and (2.4.3b) requires the 
calculation of angles φP, i.e. the arguments of points P on the circle plane. In the 
original work of von Kerczek and Tuck (1969) the angle φP was defined by finding 
the minimum distance between the particular point and the analytical representation, 
by increasing φ monotonically. However, this procedure fails when applied in 
complex sections and results to irregular representations (Kerczek, 1969, Tzabiras et 
al., 1995). To overcome the problem, an improvement has been introduced, where φP 
is calculated via a two-step procedure. In the first step, φP is assumed to be a function 
of SP where S is the contour integral of the section, calculated by:  

SP = SP−1 + �(xP − xP−1)2 + (yP − yP−1)2  (2.4.8) 

Next, introducing a set of known angles φi, the values of Si are computed analytically 
through the conformal representation. Then, the angles φP are defined by linear or 
cubic-spline interpolation of the corresponding length (equation 2.4.8) with respect to 
Si, (Tzabiras, 1996b). The distribution of φi depends on the variation of curvature 
along the section, i.e. points are concentrated in concave regions. This method has 
proven to be stable and quite fast but, since it is based on the approximation of SP 
through the data points, it may produce inaccurate representations in regions of high 
curvature. Therefore, it is applied only in the intermediate steps, while in the last 
iteration (maximum N) a second procedure is followed where φP is calculated by 
finding the minimum distance of P from the analytic representation of the section in 
the range [φP-δφ, φP+δφ] i.e. not monotonically, where δφ ≈ 0.1π (figure 2.4.1). 

The above procedure is followed for both bulbous bow sections and general sections 
which may be symmetrical only in y-axis (including asymmetric sterns, Tzabiras, 
1996b). For normal ship sections that are also symmetrical in x, the general 
transformation (eq. 2.4.3) becomes: 

z = � anζ3−2nN
n=1   (2.4.9) 

However, in normal ship sections the section contour cuts usually the x-axis at non-
orthogonal angles. This problem has been raised in (Kerczek, 1983) by applying first 
a Karman-Trefftz transformation. Consequently a two-step transformation has to be 
applied. Although this method has been used successfully (Tzabiras, 1997a) it may 
produce irregularities when sections are interpolated because it is very sensitive on the 
calculation of the intersection angle. This is why the original approximation is 
employed, taking also into account that any probable deviations are restricted locally 
at the upper part of the ship, located above the free surface. Besides, substantial 
improvement can be achieved by using an adequate number of data points in this 
region. 

 
[41] 

 



2.4. GEOMETRICAL REPRESENTATION OF THE HULL   

A typical example showing the effectiveness of the proposed approach is presented in 
figure 2.4.2 for a ship hull with a bulbous bow and a stern skeg. The bulb was 
approximated with 20 coefficients, the hull just after the bulb with 150, while 60 
coefficients were used in the remaining part. The input points were 100 in each 
section while the calculated values of r ranged between 0.7 and 0.9 along the hull's 
normal sections. 

  
Figure 2.4.2 Conformal Mapping Representation of ship sections. (Tzabiras & 

Kontogiannis, 2009). 

2.4.3 Interpolation of Sections 
The representation of the hull geometry is achieved through a relative small number 
of sections, the data stations (figure 2.4.2). On the other hand, for the finite volume 
method, quite fine grids are required. Moreover, the plane of a 2-D grid section may 
not even be parallel to the data stations. It is essential therefore, to be able to 
accurately and efficiently generate intermediate transverse sections. In all relevant 
methods, the general approach is to calculate the coefficients of any desired section by 
interpolating among those obtained for the original data. The first attempt (Kerczek, 
& Tuck, 1969) was based on a polynomial interpolation. However, the developed 
procedure was unsuccessful and the use of cubic splines was found to be very 
accurate (Kerczek, 1983). For complex ship hulls exhibiting rapid longitudinal 
variation of geometry, an effective alternative is to apply a simple cubic interpolation 
on subsequent stations (Tzabiras, 1997a). An example is shown in figure 2.4.3 where 
a stern section with skeg is produced by interpolating the coefficients among the four 
neighboring sections. The resulting section fits very well the real offsets. However, 
the aforementioned methods have been unsuccessful at bulbous bows or sterns, where 
any interpolation among the data sections produces quite irregular representations, as 
shown in figure 2.4.4. In this figure, seven sections were used initially at the bow part 
and 150 mapping coefficients were adopted. 

Obviously, both the cubic and the spline interpolations fail to generate the 
intermediate section. To address the problem, a new procedure has been developed 
which, first, generates data points on the required transverse plane by using cubic 
interpolation among the points at four neighboring stations. The latter are calculated 
by the transformation of points defined introducing an equal angle spacing on the unit 
cycle. Then, the resulting contour is transformed according to the conformal mapping 
technique described above and the coefficients are stored. The corresponding 
representation of the intermediate station is adequately close to the real offsets (figure 
2.4.4). 
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Figure 2.4.3 Interpolation of sterns 

sections, through interpolation of the 
coefficients (Tzabiras & Kontogiannis, 

2009). 

  
Figure 2.4.4 Comparison of four 

interpolation methods (Tzabiras & 
Kontogiannis, 2009).

2.4.3 The Conformal Mapping of Doubly Connected Regions 
The conformal mapping method described above cannot handle sections, where part 
of it is a line segment laying on y-axis, such as the bulbous bow or the stern with a 
hub. For such a doubly connected region, a sequence of transformations has to be 
applied in order to obtain a set of conformal mapping coefficients, describing the hole 
of the section. Initially, the sections on the hull and the bulb are transformed 
independently and the mapping coefficients are calculated. Then, the following steps 
are performed, (figure 2.4.5): 

1. (TR1) Using the inverse transformation ζ-1, the section is transformed onto the unit 
circle (AB). 

2. (TR2) Applying w = z + 1/z, the unit circle is transformed to the line-segment 
(AB). 

3. (TR3) The bulb section is transformed to the unit circle (CD) on plane z’ by 
applying the general transformation (2.4.2), while the bow section remains a line-
segment (AB). 

4. (TR4) Under the mapping w” = z” + 1/z" the unit circle is transformed onto the 
line-segment (CD). 

5. (TR5) With the final inverse mapping (z” + 1/z”)-1 = w’ onto the final unit circle 
on z”, the mapping of the original end-points A, B, C, D are defined. 

Then, a continuous grid on the ship transverse plane may be generated by adopting 
the mapping of the original section, including the vertical line segments, onto the final 
unit circle. 

  
Figure 2.4.5 Transformation procedure for doubly connected domains (Tzabiras & 

Kontogiannis, 2009). 
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2.5 The Numerical Grid 

2.5.1 Introduction 
The Finite Volume method requires the subdivision of the computational domain into 
small volumes, the finite volumes. This subdivision is achieved by means of a 
numerical grid. When a curvilinear orthogonal grid is employed and the transport 
equations are expressed in a local curvilinear coordinate system, there are significant 
advantages in terms of accuracy and convergence (Tzabiras, 1986). The generation of 
a 3-D orthogonal curvilinear grid is quite difficult but similar accuracy can be 
achieved through the use of successive 2-D orthogonal curvilinear grids that 
combined form a partially orthogonal 3-D grid. Then at every point of the grid, a local 
curvilinear coordinate system is devised with the two curvilinear directions laying on 
the 2-D section, while in the third direction the grid is non-orthogonal and a Cartesian 
coordinate system is employed (figure 2.5.1). 

  
Figure 2.5.1 Typical partially orthogonal curvilinear H-O-type grid, around a ship 
hull, comprising 2-D orthogonal grids, normal to the longitudinal axis (Tzabiras, 

2004). 

The use of a single grid presents some limitations with regards to modeling bulbous 
bows or ships with a “wet” transom stern. In the present work, three grid blocks are 
generated around the hull of the ship. If the examined hull has a bulbous bow, a C-O-
type grid is generated and Block (I) is defined. Block (I) covers the bow of the ship 
and extends up to around midship. The mid and stern parts of the ship are covered by 
an H-O-type grid block (II). If there is a transom stern, an H-H-type grid block (III) is 
introduced, covering the wake part of the computational domain. If there exists no 
bulbous bow, Block (I) is deleted and Block (II) covers the length of the ship and 
extends upstream the bow, in order for the inflow boundary conditions to be applied. 
If the stern of the ship is of cruiser type, or the transom is always considered to be 
“dry”, grid Block (III) is deleted. In that case, Block (II) extends downstream the 
stern, in order for the outflow conditions to be applied. In any case, the mesh 
generation is based on the conformal mapping of simple or doubly connected regions 
as described by Tzabiras & Kontogiannis (2011), with each block comprising planar 
sections and on each section a 2-D grid is generated as described in the following.  
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2.5.2 The Conformal Mapping Method for 2-D Grids 
On a planar section of the hull, a 2-D grid is generated by employing the conformal 
mapping approach. Fist, the section is analytically represented in terms of the 
coefficients of the conformal mapping to a unit circle (paragraph 2.4.2). Then a, 
orthogonal curvilinear grid is generated around the unit circle, on ζ-plane, comprising 
homocentric circles and radii. Since the employed mapping is conformal, the inverse 
mapping is also conformal. Consequently, the grid nodes that result from the inverse 
mapping of the ζ-plane nodes form an orthogonal curvilinear grid on the original z-
plane (figure 2.5.2). The distribution of nodes on both radial and peripheral directions 
is variable. When the distribution is prescribed on the z-plane, the corresponding radii 
and angles are calculated through the direct mapping. 

  
Figure 2.5.2 2-D partially orthogonal O-type grid, around a ship section, using the 

conformal mapping technique (Tzabiras, 2004). 

In the presented method, the grid is generated having as input only the South edge 
(figure 2.5.2). In the case of a ship moving through water, the grid must also conform 
to shape of the free-surface. In order to achieve that, the 2-D domain is subdivided 
into two regions, separated by the line (n) (figure 2.5.2). The grid covering the lower 
region is generated according to the above paragraph. The grid covering the other 
region, the one between the free-surface and line (n) is generated as follows. The grid 
lines parallel to the x3-direction are generated as before while the other set of lines is 
deformed, in order to follow the shape of the free-surface. 

Consequently to upper part of the grid is non-orthogonal but the grid preserves two 
advantageous properties that are associated to the local orthogonal curvilinear 
reference-system on the transverse section, whose x3 lines coincide always with the 
respective grid lines. The first property refers to the simplified expressions that link 
the u3-velocity components with the corresponding pressure gradients (rapidly 
varying girth-wise), as well as to the diffusion terms in x3-direction. The second is 
associated with the same advantages in both x2 and x3-directions of the orthogonal 
part of the grid that covers regions of high curvature, where intense flow changes 
occur. 

It is worthy to note here that this type of grid generation is quite fast and requires 
negligible CPU time with respect to the time required to solve the Navier-Stokes 
equations under a specified free-surface. The time-consuming work is to perform an 
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initial transformation of specified sections, required to calculate and tabulate the 
corresponding conformal mapping coefficients. 

Since the distribution of grid nodes can be prescribed, in the case of a doubly 
connected region, the grid lines may intersect the original section on the corner points 
A, B, C, D (figure 1.4.5). An example of a 2-D grid generated around a doubly 
connected stern section is shown in figure 2.5.3. 

  
Figure 2.5.3 2-D partially orthogonal O-type grid, around a doubly connected section, 

using the conformal mapping technique (Tzabiras & Kontogiannis, 2009). 

The above method can also be employed to generate 2-D orthogonal curvilinear grids 
around other objects, such as hydrofoil sections. The procedure is the same, with the 
section contour being mapped into a unit circle and then the 2-D grid being generated 
by the inverse mapping of a cylindrical grid around the unit circle. In figure 2.5.4, the 
conformal mapping of such a section is presented, while in figure 2.5.5, the resulting 
2-D grid is presented. 

 
Figure 2.5.4 Conformal mapping of a 

hydrofoil section (Tzabiras, 1998). 

 
Figure 2.5.5 2-D partially orthogonal C-

type grid, around a hydrofoil section, 
using the conformal mapping technique 

(Tzabiras, 1998). 
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2.5.3 The Bow Grid Block 
In the case of a ship with a bulbous bow, a C-O-type grid block is generated around 
the bow and part of the midship. The 3-D grid comprises planar 2-D grids. The planes 
are arranged in a fan-type fashion around the bow, while they become normal to the 
longitudinal axis throughout the rest of the block’s length (figures 2.5.6, 2.5.7). On 
each section a 2-D partially orthogonal curvilinear grid is generated, according to the 
method of paragraph 2.5.2. Near the free-surface, the lines of the 2-D grids deform, in 
order to follow the free-surface geometry. 

 
Figure 2.5.6 C-O-type grid, around a 
ship bow (Tzabiras & Psaras, 2014). 

 
Figure 2.5.7 C-O-type grid, around a 
ship bow (Tzabiras & Polyzos, 2016). 

2.5.4 The Grid Block around the Midship and Stern 
The midship and stern regions of the ship are covered by an H-O-type grid block 
comprising planar 2-D grids normal to the longitudinal axis (figures 2.5.8, 2.5.9). On 
each section a 2-D partially orthogonal curvilinear grid is generated, according to the 
method of paragraph 2.5.2. Near the free-surface, the lines of the 2-D grids deform, in 
order to follow the free-surface geometry. 

 
Figure 2.5.8 Combination of an H-O-
type grid around the midship and stern 

and an H-H-type grid at the wake 
(Tzabiras & Psaras, 2014). 

 
Figure 2.5.9 Combination of an H-O-
type grid around the midship and stern 

and an H-H-type grid at the wake 
(Tzabiras & Polyzos, 2016). 
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2.5.5 The Wake Grid Block 
In the case of a ship with a transom stern, an H-H-type grid block is generated at the 
wake. The 3-D grid comprises planar 2-D grids normal to the longitudinal axis (figure 
2.5.10). On each section a 2-D non- orthogonal grid is generated, conforming to the 
free-surface (figure 2.5.11). The grid block extends upstream the stern by a number of 
sections, in order for the flow information to be transferred bfrpm the stern grid block. 

  
Figure 2.5.10 Combination of an H-O-type grid around the midship and stern and an 

H-H-type grid at the wake (Tzabiras & Polyzos, 2016). 

  
Figure 2.5.11 Comparison of an O-type orthogonal curvilinear grid on a stern section 

and an H-type non-orthogonal grid at the wake (Tzabiras & Kontogiannis, 2009). 
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2.6 The Actuator Disk Method 
In the present, the propeller is modeled by employing the classical actuator disk 
method, where the propeller is considered as having an infinite number of blades, 
effectively becoming a disk. The effect of the propeller operation on the flow is 
simulated by means of a body force FB, introduced in the source term of momentum 
equations for the control volumes which, lie within or intersect the sweep outline of 
the propeller. Consequently, the geometry of the propeller is taken into account.  

According to the classical lifting line theory, the thrust T, generated by a propeller 
with an infinite number of blades, is: 

T = C1 ∙ ∫ Γ(r) ∙ r ∙ drrt
rh

 (2.6.1) 

where r is the radius, rt and rh are the propeller tip and hub radii respectively and Γ(r) 
is the circulation distribution along radius r of the blade. The torque Q required by the 
propeller is equal to: 

Q = CQ ∙ ∫ Γ(r) ∙ r ∙ drrt
rh

 (2.6.2) 

The constants C1 and CQ are related to the propeller geometry. 

According to the above formulation, the body forces acting in the axial direction, on a 
finite volume can be calculated as (Tzabiras, 2004): 

FB,1 = C1 ∙ EP ∙ Γ(r) (2.6.3) 

where EP is the area of intersection of the finite volume with the propeller sweep 
outline. The C1 constant can be calculated from the equation: 

C1 = FL( x
c(r) , δx

c(r)
) ∙ T

2∙π∙∫ Γ(r)∙r∙drrt
rh

 (2.6.4) 

where δx is the length of the affected volume and c(r) is the projection of the 
propeller chord, at a radius r, to the longitudinal plane (figure 2.6.1). The parameter 
FL is a function of the non-dimensional quantities x/c(r) and δx/c(r) that distributes 
the body force along x1 according to a 2-D hydrofoil pressure distribution, resulting to 
a transfer of the major part of the thrust close to the leading edge (Tzabiras, 1997d).  

  
Figure 2.6.1 Definition of the Actuator Disk geometry. 
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The body forces acting in the other two directions, are: 

FB,2 = C2 ∙ EP ∙
Γ(r)

r�  (2.6.5a) 

FB,3 = C3 ∙ EP ∙
Γ(r)

r�  (2.6.6b) 

where the constants C2 and C3 are proportional to the propeller torque Q and take into 
account the orientation of the examined velocity component with respect to the local 
curvilinear coordinate system. 

The circulation distribution depends on the exact propeller geometry, and may be 
calculated by means of analytical models, such as lifting surface model. In the present 
work, a simplified circulation distribution is adopted, namely there are two options, 
circulation of constant amplitude, or a sinusoidal distribution with a maximum value 
at (rt + rh)/2 and zero values at rt and rh. The above approximation has been proven 
very effective in predicting the effect of the propeller operation on the flow around a 
ship (Tzabiras, 1996). 

Given the thrust, torque and the shape of the circulation distribution, though not the 
actual values of the distribution, the constants C1, C2 and C3 can be calculated and 
therefore, the body forces FB,1, FB,2 and FB,3. In the case of a self-propelled ship 
though, i.e. a ship propelled under the action of the propeller thrust, without any other 
external force, the required thrust is not a priori known, since it is different to the calm 
water resistance. Also the torque is related to the efficiency of the propeller and can 
only be measured experimentally or calculated by means of advanced propeller 
models. 

With regards to the thrust, an iterative procedure is adopted. Initially, the resistance 
problem is solved. Then, thrust is considered equal to the resistance and the body 
forces are calculated for given propeller geometry (tip and hub diameter, sweep 
outline), shape of circulation distribution and propeller efficiency. Then the flow 
problem is solved again, this time taking into account the body forces. The new flow 
field is different from the original and a new value for the resistance is calculated. The 
thrust is set equal to the new value for the resistance, the new body forces are 
calculated and the flow problem is solved once more. This procedure is repeated until 
the problem converges, i.e. the resistance and thrust become equal. 

The effective wake fraction 1-wE is estimated by solving the inverse problem: given 
the propeller thrust and the calculated propeller inflow at the ship’s stern, the velocity 
at infinite is calculated by performing a numerical open water test (Tzabiras, 1996). 
Then, since the non-dimensional parameter KT/J2 is defined, the optimum propeller 
revolutions RPM and the required horsepower DHP are calculated using the 
polynomial expressions of the Wageningen B-Series. This procedure holds for both 
model and full scale computations and, therefore, no extrapolation assumptions are 
made. 
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3.1 RANS Free Surface Calculations 
A unique problem in the marine hydrodynamics is the calculation of the free surface. 
Anyone body in motion, near the interface of two fluids of different density, called the 
free surface, generates a system of gravity waves on the interface of the two fluids. 
This wave system, travels at the same speed as the body and in order to be sustained, 
an amount of energy is required. That energy forms the wave making portion of the 
total resistance that the body has to overcome. The shape of the wave system depends 
on the speed of the body and the geometry of the problem, i.e. the shape of the body, 
its distance from the fluid interface etc. The shape of the wave system dictates the 
amount of the wave making resistance; hence the accurate calculation of the free 
surface is crucial for the prediction of the resistance characteristics of ships. Moreover 
in a computational approach to the resistance problem, the free surface is one of the 
boundaries of the computational domain, hence affecting the numerical solution. 

On the free-surface two conditions hold true. The Dynamic condition states that the 
total pressure p* on the free surface is equal to the sum of the ambient pressure, i.e. 
the atmospheric pressure in the case of the air to water interface, plus the hydrostatic 
pressure. The Kinematic condition states that the free surface should be a sharp 
boundary separating the two fluids and there should be no flux through this boundary. 
Consequently the velocity normal to the free surface is equal to zero.  

Since the free surface is not a priori known, a surface tracking iterative procedure has 
been adopted (Tzabiras, 2004). The iterative procedure is based on successive steady-
state steps, under constant ship speed. In this procedure, the dynamic boundary 
condition is always fulfilled in terms of the known total pressure on the free surface, 
p* = pS + ρgh, where pS is the ambient pressure (pS = 0) and (ρgh) the hydrostatic 
pressure. The kinematic condition is satisfied when convergence is achieved. 

On an intermediate step, the free surface obtained in the previous step, is considered 
as a fixed boundary. The transport equations are solved by enforcing the dynamic 
condition on the free surface and the SIMPLE algorithm is allowed to converge, thus 
the velocity components on the free surface are obtained and the curvilinear velocity 
components are transformed on the Cartesian system (x, y, z), (figure 3.1.1). Then, the 
free surface is updated according to a Lagrangian-Eulerian approach, in two steps. 

First, the free surface is updated following the local flow lines, in the Lagrangian 
sense. This is done in two alternative ways. The first way is to transfer a fluid particle 
α on the transverse plane K, to a new location b on plane K+1 (figure 3.1.1). Point b 
is calculated as follows. First the line that passes through points α and P’ and is 
parallel to the local velocity vector passing through P, is defined. Point P is the center 
of the pressure finite volume, located on plane K+1/2 and P’ is a point on the same 
vertical line as P. Point b is defined as the intersection of the α-P’ line with the K+1 
plane. Points b form a new transverse cut of the free surface on plane K+1. Then, the 
new grid nodes on K+1, corresponding to the constant coordinate x3-lines, are found 
by means of interpolation among points b. 

Alternatively, the free surface is updated as follows. Following the local flow lines, a 
fluid particle P on the center of a pressure finite volume, on the transverse plane 
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K+1/2, is transferred to P’ in the Lagrangian sense, with the translation being equal to 
the product of the local velocity vector U and a time step δt (figure 3.1.2). The 
location of points P’ does not coincide with the transverse cuts of the original surface. 
Consequently the new grid nodes are the calculated by interpolations amongst points 
P’. 

 
Figure 3.1.1 First correction of free 

surface. 

 
Figure 3.1.2 First correction of free 

surface using a time step δt. 

The second correction is applied to all the finite volume faces that lay on the free 
surface, in order to satisfy locally the kinematic condition. In an integrated form, this 
condition is satisfied when the flux through the examined face becomes equal to zero. 
Approximately, this can be achieved moving the corner point C of face (ABCD) 
vertically by δz (C to C’), (figure 3.1.3). To be compatible with the convergence of the 
continuity equation, (ABCD) coincides with the north face of the free surface pressure 
control volume. The distance δz is calculated from the following equation: 

ux ∙ Ax + uy ∙ Ay + uz ∙ Az = 0 (3.1.1) 

where Ax, Ay and Az are the projections of (AB’C’D) in the respective axes. The 
location of the B’ point is considered the result of the same translation for the 
neighboring face to the right of (ABCD). 

  
Figure 3.1.3 Second correction of free surface (Kinematic condition). 

After the free surface is updated, the RANS problem is solved and the whole 
procedure is repeated until the kinematic boundary condition converges. The 
satisfaction of the kinematic boundary condition is tested through the mean value of 
the correction obtained from equation (3.1.1) |δz|�����. Owing to the approximation of the 
free surface with quadrilateral panels, this value decreases as the problem converges 
but exhibits a limiting behavior. Therefore, convergence with respect to |δz|����� is 
satisfied, when it becomes lower than a suitable value depending on both the Froude 
number and the scale. By definition, the smaller the limiting value of |δz|�����, the more 
accurate the solution. 
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3.2 Potential Flow Free Surface Calculations 
The method of the previous paragraph can accurately predict the shape of the free 
surface. On the other hand is very expensive in terms of computational cost. A 
common approach when tackling complex problems in computational fluid dynamics 
is to attempt to simplify the physical modeling, whenever it can be done without 
compromising the accuracy of the method. In terms of the free surface, the flow can 
be approximated as inviscid and irrotational. In the following a numerical method for 
the calculation of the free surface, based on the classical formulation of Hess & Smith 
(1966) will be presented. The method adopts an iterative surface tracking procedure, 
similar to that of paragraph 3.1. The method can also calculate the wave making 
component of the ship resistance as well as the running sinkage and trim.  

Once the free surface is calculated, it can be input to the RANS solver and the flow 
problem is solved under the surface, know considered a fixed boundary. Finally, since 
the flow field around the ship is solved, the method can provide the RANS solver with 
boundary conditions for the inflow and external boundaries. 

3.2.1 The Potential Flow Problem 
In this investigation, the fluid is considered incompressible, inviscid and irrotational. 
Let U denote the fluid velocity at any point, p the fluid pressure, ρ the fluid density, μ 
the dynamic and ν the kinematic viscosity. In the following, symbols in bold denote 
vectors. For an incompressible and inviscid fluid ρ is constant and μ = ν = 0, hence 
the general Navier-Stokes equations (3.2.1) reduce to the Eulerian equation of motion 
(3.2.2).  

∂ρux
∂t

+ div(ρux𝐔) = −∂p
∂x

+ div(μ gradux) + SMx

∂ρuy
∂t

+ div�ρuy𝐔� = −∂p
∂y

+ div�μ graduy� + SMy

∂ρuz
∂t

+ div(ρuz𝐔) = −∂p
∂z

+ div(μ graduz) + SMz ⎭
⎪
⎬

⎪
⎫

 (3.2.1) 

∂ux
∂t

+ div(ux𝐔) = −1
ρ
∂p
∂x

∂uy
∂t

+ div�uy𝐔� = −1
ρ
∂p
∂y

∂uz
∂t

+ div(uz𝐔) = −1
ρ
∂p
∂z⎭
⎪
⎬

⎪
⎫

 (3.2.2a)  

∂𝐔
∂t

+ (𝐔 ∙ grad)𝐔 = −1
ρ

gradp (3.2.2b) 

The equation of continuity (3.2.4) simplifies to (3.2.5). 

∂ρ
∂t

+ div(ρ𝐔) = 0 (3.2.4) 

div(𝐔) = 0 (3.2.5) 
In equations (3.2.1) and (3.2.2) all body forces (such as gravity) have been assumed to 
be conservative, and their potentials have been absorbed in the pressure. Equations 
(3.2.2) and (3.2.5) hold in the field of flow, that is, the region exterior to the boundary 
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surfaces, in our case, the immersed portion of the two hulls and the surrounding water 
surface.  

In order to solve the above equations, certain boundary conditions must be added. The 
method adopted (Hess, 1966) can solve the direct problem of fluid dynamics. That is, 
the locations of all boundary surfaces are assumed known, possibly as functions of 
time, and the normal component of fluid velocity is prescribed on these boundaries. In 
our case though the boundaries are not a priori known, since neither the shape of the 
free surface, nor the attitude of the ship (running sinkage and trim) are known in 
advance. In order to overcome this problem, an iterative procedure is adopted where 
the shape of the free surface is assumed, then the potential flow field is calculated and 
the free surface is updated (see 3.2.4) (Tzabiras, 2008).  

The boundary condition will be written for the entire boundary S as 

𝐔 ∙ 𝐧|𝐒 = 𝐅 (3.2.6) 
where n is the unit outward normal vector at a point of S, and F=F(x,t) is a known 
function of position on S and possibly also a known function of time. In our problem 
the boundaries at every step of the iterative procedure are considered static, hence  

𝐔 ∙ 𝐧|𝐒 = 0 (3.2.7) 
Furthermore a regularity condition at infinity must be imposed. 

The above equations define an incompressible and inviscid flow, but not a potential 
flow. In a potential flow the velocity vector is equal to the negative gradient of a 
scalar potential function, the velocity potential φ. 

𝐔 = −∇φ (3.2.8) 
From vector calculus it is known that the curl of a gradient is equal to zero: 

∇ × ∇φ = 0 (3.2.8) 
Subsequently the vorticity of a potential flow field is zero: 

∇ × 𝐔 = 0 (3.2.9) 
This implies that a potential flow is an irrotational flow. 

Here, a slightly more general class of flows will be considered, according to the 
formulation of Hess (1966). The velocity field U is expressed as the sum of two 
velocities: 

𝐔 = 𝐔∞ + 𝐮 (3.2.10) 
The vector U∞ is the velocity of the onset flow, which is defined as the velocity field 
that would exist in the fluid if all boundaries ceased to exist, here is equal to the 
negative of the ship’s speed. The vector u is the disturbance velocity field due to the 
presence of boundaries. The velocity u is assumed to be irrotational, but U∞ is not so 
restricted. Accordingly, u may be expressed as the negative gradient of a potential 
function φ, that is, 
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𝐮 = −gradφ (3.2.11) 
Since U∞ is the velocity of an incompressible flow, it satisfies the continuity equation 
(3.2.5), and thus u does also; that is, 

div(𝐮) = 0 (3.2.12) 
Using u from (3.2.11) in (3.2.12) we derive to the expected result: the potential φ 
satisfies Laplace equation: 

∇2φ = 0 (3.2.13) 
The boundary conditions on φ arise from (3.2.7), (3.2.10) and (3.2.11) in the form: 

gradφ ∙ 𝐧|𝐒 = ∂φ
∂𝐧
�
𝐒

= 𝐔∞ ∙ 𝐧|𝐒 (3.2.14) 

The regularity condition at infinity is: 

|gradφ| → 0 (3.2.15) 
Equations (3.2.13), (3.2.14), and (3.2.15) comprise a well-set problem for the 
potential φ, and it is this problem that the present method is designed to solve. 

The onset flow U∞ must be such that the disturbance velocity u is a potential flow. In 
our case U∞ is also a potential flow and the above condition is obviously satisfied. 

The essential simplicity of potential flow derives from the fact that the velocity field 
is determined by the equation of continuity (3.2.12) and the condition of 
irrotationality (3.2.11). Thus the equation of motion (3.2.2) is not used, and the 
velocity may be determined independently of the pressure. 

Also time, t, enters only as a parameter in (3.2.14); therefore the instantaneous 
velocity is obtained from the instantaneous boundary condition; that is, all problems 
are essentially steady with respect to determination of the velocity. In our case, the 
equation of motion (3.2.2) can be integrated to give the Bernoulli’s equation: 

p − p∞ = 1
2
ρ(|𝐔∞|2 − |𝐔|2) (3.2.16) 

(3.2.16) can be written in terms of the pressure coefficient CP as 

CP = p−p∞
1
2ρ|𝐔|2

= 1 − |𝐔|2

|𝐔∞|2 (3.2.17) 

where p∞ (=0) is the pressure at infinity. 

The potential theory can describe a variety of flow fields, although the neglect of 
viscosity, vorticity and compressibility must not invalidate the results. 

The neglect of viscosity is justified except in regions of rapid variations of speed, 
such as boundary layers and at points in or very near regions of catastrophic 
separation, for example wakes. In those regions, vorticity is also known to be 
important; hence the potential flow theory fails to provide reasonable predictions of 
the flow. Obviously, drag forces are never predicted correctly. 
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The neglect of compressibility is justified for all flows where the local Mach number 
does not exceed a value of approximately one-half. In the case of flow around ships, 
the Mach number is sufficiently low. 

In our case, the aim is firstly to calculate the pattern of the free surface around ships, 
secondly the wave component of the ships resistance and finally the running sinkage 
and trim. As for the free surface the potential theory is expected to provide good 
results except in areas were viscocity becomes very important such as the stern and 
wake of the ship. The wave resistance is considered to be equal to the calculated 
pressure resistance, since no other form of resistance (viscous pressure or frictional) 
can be predicted by means of the potential theory. Finally the sinakge and trim can be 
calculated by integrating the pressure on the hull.  

3.2.2 The Hess & Smith Method for Potential Flows 
The exact solution of the direct problem of potential flow can be approached in a 
variety of ways, all of which must finally become numerical in order to be solved on a 
computing machine. The present method is based on an integral equation for a source-
density distribution on the surface of the hulls and water, about which the flow is 
being computed. 

The problem considered is that defined by (3.2.13), (3.2.14), and (3.2.15). Consider a 
unit point source located at a point q whose Cartesian coordinates are xq, yq, zq. At a 
point P whose coordinates are x, y, z the potential due to this source is 

φ = 1
r(P,q)

 (3.2.18) 

where r(P, q) is the distance between P and q, namely, 

r(P, q) = �(x − xq)2 + (y − yq)2 + (z − zq)2 (3.2.19) 

The designation “source” is employed in accordance with customary fluid dynamics 
usage. The potential (3.2.18) gives rise to a velocity radially outward in all directions 
from the point q, and thus the point q may be thought of as the location of a “source” 
of fluid. 

According to the present method, the solution is built up of elementary potentials of 
the form (3.2.18). Each potential satisfies (3.2.13) and (3.2.15) at all points except the 
point q. Because of the linearity of the problem, the potential due to any ensemble of 
such sources or any continuous distribution of them that lies upon the boundary 
surface S satisfies equations (3.2.13) and (3.2.15) in the region exterior to S. 

Consider a continuous source distribution on the surface S. If the local intensity of the 
distribution is σ(q), where the source point q is a general point of the surface S, then 
the potential of the distribution is 

φ = ∯ σ(q)
r(P,q)S dS (3.2.20) 

It is shown (Kellogg, 1929), that under very general conditions the disturbance 
potential of a body in potential flow can indeed be represented in the form (3.2.20). 
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Regardless of the nature of the function σ(q), the disturbance potential as given by 
(3.2.20) satisfies two of the three equations of the direct problem of potential flow. 
The σ(q) function is then determined from the requirement that the potential must 
also satisfy the third equation, (3.2.14), which expresses the normal-velocity boundary 
condition on the surface S.  

The disturbance potential as given by (3.2.20) is differentiated, and the boundary 
condition (3.2.14) applied to it by allowing the point P to approach a point p on the 
surface S. The result is the following integral equation for the source-density 
distribution σ(p): 

2πσ(p) −∯ ∂
∂n

1
r(p,q)

σ(q)S dS = 𝐧(p) ∙ 𝐔∞ (3.2.21) 

In this equation, ∂/∂n denotes differentiation in the direction of the outward normal to 
the surface S at the point p, and the unit outward normal vector has been written n(p) 
to show explicitly its dependence on location. The solution of (3.2.21) is the central 
problem of the present method. 

Equation (3.2.21) is a Fredholm integral equation of the second kind over the 
boundary surface S. The term 2πσ(p) arises from the delta function that is brought in 
by the limiting process of approaching the boundary surface. The kernel of the 
integral equation is the outward normal velocity at the point p due to a unit point 
source at the point q. This kernel depends only on the geometry of the surface S. The 
specific boundary conditions, that is, onset flow, enters (3.2.21) only on the right side. 

The theory of the solution of (3.2.21) and fundamental existence and uniqueness 
theorems are beyond the scope of the present work and can be found in the potential 
flow literature. 

The conditions under which a solution can be obtained are very general. For the 
problem of flow exterior to a given surface, S may consist of several disjoint surfaces. 
The right side is likewise practically unrestricted. Since only U∞ enters (3.2.21), it is 
not essential that this velocity field be derivable from a potential function, although of 
course the disturbance velocity field must be a potential flow. Furthermore U∞ may 
vary with position. 

There is one restriction on (3.2.21). The existence proof requires that the prescribed 
boundary value, that is, the right side of (3.2.21), be a continuous function of position 
on the surface. Because of the presence of n(p), this means that the surface S must 
have a continuous normal vector, thus boundaries with corners are excluded from the 
existence proof. In practice, however, it has been found that the present method does 
give correct results near convex corners. For concave corners the method has 
difficulty, but concave corners are rarely encountered on ship hulls. 

For a known boundary surface S, the kernel of (3.2.21) can be calculated in a 
straightforward manner, and the equation is a linear one for the unknown function σ. 

Furthermore, for three-dimensional bodies, (3.2.21) is a two-dimensional integral 
equation. This feature accounts for the efficiency of the integral-equation methods 
since the dimensionality of the problem is reduced by one. 
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Equation (3.2.21) is an integral equation of the second kind, for which the unknown 
function appears outside the integral as well as inside. Numerically, integral equations 
of the second kind are rather easily tractable since the integral equation is 
approximated by a set of linear algebraic equations, and the presence of the term 
outside the integral insures that in general the diagonal entries of the resulting 
coefficient matrix will be much larger than any off-diagonal entries. This feature is 
very important numerically, since it ensures the stability of iterative matrix-solution 
methods. 

The two terms on the left side of (3.2.21) have a simple interpretation. The term 
2πσ(p) is the contribution to the outward normal velocity at a point p on the 
boundary of the source density in the immediate neighborhood of p. The integral term 
represents the contribution of the source density on the remainder of the boundary 
surface to the outward normal velocity at p. 

3.2.3 The Numerical Method of Solution 
The approach adopted consists of approximating (3.2.21) by a set of linear algebraic 
equations. This is accomplished in the following manner. The boundary surface S 
(hull and water surface) about which the flow is to be computed, is approximated by a 
number of surface elements or panels, whose characteristic dimensions are small 
compared to those of S. Obviously the water surface should extent to infinity. Since 
that is impossible in the present method, only a portion of the free surface, around the 
hulls, is modeled (figure 3.2.1). It should also be mentioned that since the problem is 
symmetric about x-axis, only one hull and one half of the water surface is modeled. 
Over each surface element the value of the surface source density is assumed 
constant. This reduces the problem of determining the continuous source density 
function σ to that of determining a finite number of values of σ, one for each of the 
surface elements. 

 
Figure 3.2.1 The computational domain. 

The contribution of each element to the integral in (3.2.21) can be obtained by taking 
the constant but unknown value of σ on that element out of the integral and then 
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performing the indicated integration of known geometric quantities over the element. 
Requiring (3.2.21) to hold at one point of the approximate body surface, that is, 
requiring the normal velocity to take on its prescribed value at one point, gives a 
linear relation between the values of σ on the elements. On each element a control 
point is selected where (3.2.21) is required to hold. This gives a number of linear 
equations equal to the number of unknown values of σ. The coefficient matrix 
consists of the normal velocities induced by the elements at each other’s control 
points for unit values of source density. Once the linear equations have been solved, 
flow velocities and potential may be calculated at any point by summing the 
contributions of the surface elements and that of the onset flow.  

Usually, velocities and pressures on the body surface are of greatest interest. Because 
of the manner in which the solution has been formulated, these must be evaluated at 
the control points, that is, at the same points where the normal velocity was made to 
take its prescribed value. 

The basic input to the computer program consists of the specification of the hull 
surface about which the flow is to be computed, the free water surface around the hull 
and the onset flow (a uniform stream). The hull and water surface are specified by 
means of the coordinates of a set of points distributed over both of them (see 2.3). 
Because the input points are used to form the approximating surface elements, their 
distribution and total number determine the accuracy of the resulting calculations.  

The input points are associated in groups of four and used to form plane quadrilateral 
surface elements or elements. The plane of the element is equidistant from the four 
input points used to form it, and its unit normal vector n is the normalized cross-
product of two “tangential” vectors each of which is obtained by subtracting the 
coordinates of two of the four input points. The corners of the quadrilateral are 
projections of the four input points into the plane of the element. In order to model 
surfaces that end at a single point (bow, bulb, stern hub or stern without transom), the 
program can use triangular elements, by simply joining two of the four corner points. 
This is only necessary for the last row of elements. figures 3.2.2 and 3.2.3 present the 
surface elements used on the hull and water surface for a low CB and a high CB ship 
respectively.  

 
Figure 3.2.2 Panels on the hull and the 

water surface, for a high CB ship. 

 
Figure 3.2.3 Panels on the water surface, 

for a low CB ship. 

On each element a control point is selected at which the normal velocity boundary 
condition is to be satisfied. The proper choice of the control point is not at all obvious. 
In this investigation, the location of the control point coincides with the location of 
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the point, where the tangential to the element speed becomes zero. The later point is 
called a Null point (Hess, 1966). 

It should be emphasized that for all body geometries the surface elements are simply 
devices for effecting the numerical solution of the integral equation (3.2.21). They 
essentially define integration increments and normal directions at points of the surface 
and have no direct physical significance. It is only at the control points that the normal 
velocity assumes its prescribed value. For example, if the normal velocity is 
prescribed as zero, it is in general nonzero at all points of the element except the 
control point; that is, the element “leaks”. At the edges of the elements the velocity 
approaches infinity because of the discontinuity of the source density and/or the 
discontinuity in slope. The computed flow has significance only at the control points 
themselves and at points off the body surface. 

The accuracy of the calculation is determined by the number and distribution of the 
elements. In order to achieve a reasonable level of accuracy a total number of 
elements in the order of 5,000 would be sufficient. The present method though 
requires a significantly larger amount of elements on the free surface, in order to 
calculate its shape (see 3.2). In practice a total number of elements in the order of 
20,000, is found to yield results of adequate accuracy. 

In order to reduce the computational effort, the solution may start with a coarse grid 
which is successively refined to the maximum number of panels according to a sequel 
defined in the input data. Apart from the necessary geometrical interpolations, there is 
no difficulty to pass from the one grid resolution to another due to the steady-state 
decomposition which is followed.  

Once the hull and water surfaces have been approximated by elements of the 
appropriate type, the elements are ordered sequentially and numbered from 1 to N, 
where N is the total number of elements. The exact order of the sequence is 
immaterial. It is simply a logical device for keeping track of the elements during the 
computational procedure. Reference will accordingly be made to the ith and the jth 
element, where the integers i and j denote the positions of the elements in the 
sequence. 

Assume for the moment that the surface source density on the jth element has the 
constant value of unity. Denote by Φij and Uij the potential and velocity, respectively, 
that are induced at the control point of the ith element by a unit source density on the 
jth element. The formulas for the induced potential and velocity form the basis of the 
present method of flow calculation. They are obtained by integrating over the element 
in question the formulas for the potential and velocity induced by a unit point source 
and thus depend on the location of the point at which the potential and velocity are 
being evaluated and also on the geometry of the element. Since there is no restriction 
on the location of the control point of the ith element with respect to the jth element, 
the formulas for Φij and Uij are those for the potential and velocity induced by an 
element at an arbitrary point in space. 

For the plane quadrilateral elements used, the unit-point-source formulas for potential 
and velocity can be integrated analytically over an element. This is most conveniently 
done by using a coordinate system in which the element itself lies in a coordinate 
plane, and thus coordinates of points and components of vectors must be transformed 
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between the reference coordinate system in which the body surface is input and an 
“element coordinate system” based on the element in question. The analytic 
integration over the element produces rather lengthy formulas, whose evaluation is 
time consuming. To conserve computing time, the effect of an element at points 
sufficiently far from the element is calculated approximately. This is accomplished by 
means of a multiple expansion. In fact, if the point in question is farther from the 
centroid of the element than four times the maximum dimension of the element, the 
quadrilateral source element may be replaced by a point source of the same total 
strength located at its centroid. With the accuracy criteria adopted, errors due to the 
use of the multiple expansion or point-source formulas are apparently small compared 
with those arising from the basic approximation of the body surface by plane elements 
having constant values of source density. The use of these alternative formulas 
therefore involves no loss of accuracy at all in the overall calculation.  

When this phase of the calculation has been completed, the result consists of the NxN 
matrices Φij and Uij that give the potentials and velocities induced by the elements at 
each other’s control points for a unit source density. The vector matrix Uij is 

𝐔𝐢𝐣 = Xij ∙ ı⃗ + Yij ∙ ȷ⃗ + Zij ∙ k�⃗  (3.2.22) 

where i, j, k are the unit vectors along the axes of the reference coordinate system in 
which the body surface is input, and the scalar matrices Xij, Yij, Zij are simply the 
components of Uij. The normal velocity induced at the control point of the ith element 
by a unit source density on the jth element is  

Aij = 𝐧i ∙ Uij (3.2.23) 

where ni is the unit normal vector to the ith element. The five matrices Φij, Xij, Yij, Zij, 
and Aij do not necessarily have any zero entries. As mentioned above, the number of 
elements used is large enough for the handling of the amount of numerical data 
represented by these matrices to be a considerable problem. 

It should be mentioned that the i=j case does not require special handling. Because 
the integration over an element is done analytically, problems of infinite integrands or 
principal-value integrals, fail to materialize. The velocity induced by an element at its 
own control point has a magnitude of 2π and is directed along the element’s normal 
vector. 

Above we calculated the matrix Aij, whose entries are the normal velocities induced 
by the elements at each other’s control points for unit values of source density. To 
obtain actual normal velocities, the entries of Aij must be multiplied by the proper 
values of the source density σ. In particular, the quantity 

∑ Aij ∙ σjΝ
j=1  (3.2.24) 

is the normal velocity at the control point of the ith element due to the complete set of 
surface elements. Clearly, (3.2.24) is the approximation of the normal velocity 
associated with the disturbance potential of the body surface. To obtain the prescribed 
normal velocities at the control points of all elements, (3.2.24) must be set equal to the 
proper value as given by (3.2.14) for every value of i. The result is 
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∑ Aij ∙ σjΝ
j=1 = −𝐧𝐢 ∙ 𝐔∞,𝐢 i = 1,2, … , N (3.2.25) 

Equation (3.2.25) is a set of linear algebraic equations for the values of source density 
on the surface elements. This set of linear algebraic equations is the desired 
approximation of the integral equation (3.2.21). The method adopted for solving 
(3.2.21) is the iterative Gauss-Seidel. 

Once the values of the source density σj have been obtained as the solution of 
(3.2.25), all other flow quantities of interest can be obtained by relatively rapid direct 
calculation. Flow quantities on the hull and water surfaces are computed only at the 
control points of the elements. Specifically, the potential and velocity at a control 
point on the surface are calculated from 

φi = ∑ Φij ∙ σjΝ
j=1  

𝐔i = ∑ 𝐕ij ∙ σjΝ
j=1 + 𝐔∞,𝐢

 � i = 1,2, … , N (3.2.26) 

The velocity Ui at each control point is given in terms of its components along the 
axes of the reference coordinate system in which the body is input. 

ux,i = ∑ 𝐗ij ∙ σjΝ
j=1 + u∞,x,i

uy,i = ∑ 𝐘ij ∙ σjΝ
j=1 + u∞,y,i

uz,i = ∑ 𝐙ij ∙ σjΝ
j=1 + u∞,z,i

� i = 1,2, … , N (3.2.27) 

Notice that σ is the perturbation potential due to the body surface, and Ui, is the total 
velocity, including the effects of the onset flow. The components of Ui are used to 
compute velocity magnitude and then pressure coefficient from (3.2.17). Flow 
quantities may also be computed at points off the body surface. 

The pressure at each control point may then be calculated from the Bernoulli’s 
equation (3.2.16) while the local value of the pressure coefficient CP can be calculated 
from (3.2.17). 

3.2.4 The Free Surface Calculation 
As mentioned in the previous paragraph, the potential solver used here, can attack 
only the direct problem of fluid dynamics, that is, the locations of all boundary 
surfaces are assumed known. In our case though the boundaries are not a priori known 
since neither the shape of the free surface nor the attitude of the ship (running sinkage 
and trim) are known in advance. In order to overcome this problem, an iterative 
procedure is adopted (Tzabiras, 2008).  

Assuming that at an intermediate step the free-surface geometry is known, the panels 
on the hull and water surface are directly constructed by finding analytically the 
intersection of the free-surface and the transverse sections. The points on a transverse 
cut of the free surface are found by interpolation (spline or linear) following an 
exponential arrangement. Then, the potential problem is solved by setting the normal 
velocity on the control point of each panel equal to zero (kinematic condition, see 
2.1). After the calculation of the panel sources, the velocity components ux, uy, uz, are 
calculated on the control points of the surface panels and the total pressure p* is 
derived from the Bernoulli’s equation (3.2.16). 
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In any intermediate step, the dynamic condition is not satisfied, that is the pressure p* 
is different than the sum of the ambient pS (=0) plus the hydrostatic pressure ρgz. This 
difference is introduced as a source term to calculate the correct vertical velocity uZ* 
on the free surface by solving the corresponding inviscid transport equation: 

ρ �∂uxuz
∗

∂x
+ ∂uyuz∗

∂y
+ ∂uzuz∗

∂z
� = −∂p∗

∂z
 (3.2.28a) 

ρdiv(uz∗𝐔) = −∂p∗

∂z
 (3.2.28b) 

Equation (3.2.28) is solved numerically by applying the finite volume method. The 
finite volumes are defined by the panel surface (1234) and a suitably selected height 
δz* (figure 3.2.4). Equation (3.2.28) is then integrated in the finite volume, after 
applying Gauss’ divergence theorem. 

  
Figure 3.2.4 Finite volume for the calculation of the free surface. 

∫ div(a)dVCV = ∫ n ∙ a dAA  (3.2.29) 

� ρdiv(uz∗𝐔)dV
CV

= −�
∂p∗

∂z
dV

CV
⇒ 

ρ ∫ 𝐧 ∙ (uz∗𝐔)dAA = −∫ ∂p∗

∂z
dVCV ⇒  I = II (3.2.40) 

where A is the surface of the finite volume CV and n is the unit outward normal vector 
at a point of A. 

I = ρ� 𝐧 ∙ (uz∗𝐔)dA =
A

 

= ρ� 𝐧 ∙ (uz∗𝐔)dA
(e)

+ ρ� 𝐧 ∙ (uz∗𝐔)dA
(w)

+ ρ� 𝐧 ∙ (uz∗𝐔)dA
(n)

+ 

+ρ� 𝐧 ∙ (uz∗𝐔)dA
(s)

+ ρ� 𝐧 ∙ (uz∗𝐔)dA
(u)

+ ρ� 𝐧 ∙ (uz∗𝐔)dA
(d)

⇒ 

I = Ie + Iw + In + Is + Iu + Id   (3.2.41) 
where e, w, n, s, u, d are the east, west, north, south, upstream and downstream faces 
of A respectively.  

By considering U, n and uz* constant over each face, eq. (3.2.41) is approximated: 
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Id = ρ ∫ ux,d ∙ uz,d
∗ dA(d) = (23)pr ∙ δz∗ ∙ ρ ∙ ux,d ∙ uz,d

∗

Iu = ρ ∫ −ux,u ∙ uz,u
∗ dA(u) = −(14)pr ∙ δz∗ ∙ ρ ∙ ux,u ∙ uz,u

∗

Ie = ρ ∫ uy,e ∙ uz,e
∗ dA(e) = (34)pr ∙ δz∗ ∙ ρ ∙ uy,e ∙ uz,e

∗

Iw = ρ ∫ −uy,w ∙ uz,w
∗ dA(w) = −(12)pr ∙ δz∗ ∙ ρ ∙ uy,w ∙ uz,w

∗

In = ρ ∫ uz,P ∙ uz,P
∗ dA(n) = (E1234) ∙ ρ ∙ uz,P ∙ uz,P

∗

Is = ρ∫ uz,P ∙ uz,P
∗ dA(s) = −(E1234) ∙ ρ ∙ uz,P ∙ uz,P

∗ = −In ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

   (3.2.42) 

Furthermore II is approximated: 

II = −∫ ∂p∗

∂z
dVCV = −(E1234) ∙ (pP∗ − ρgzP)   (3.2.43) 

In equations (3.2.42) and (3.2.43) the subscript P denotes values at the control point 
of the panel, while subscripts e, w, n, s, u, d denote values at the middle of the 
corresponding face of the panel. Furthermore (E1234) is the area of the projection 
(1234)pr of the panel (1234) on the xy-plane (horizontal). Finally (12)pr, (34)pr, (23)pr, 
(14)pr, are the lengths of the projections of the corresponding faces of (1234)pr on x 
and y-axis respectively. 

In equation (3.2.42) ux,d, ux,u, uy,e, uy,w, are the exact velocity components at the 
middle of the corresponding face of the panel, as calculated by the potential theory 
and uz,P, is the exact vertical velocity component at the control point of the panel, as 
calculated by the potential theory. Finally, uz,d*, uz,u*, uz,e*, uz,w* are the unknown 
values of uz* at the middle of the corresponding face of the panel and are 
approximated by the first order upstream difference scheme: 

uz,d
∗ = uz,P

∗

uz,u
∗ = uz,U

∗

uy,e > 0, uz,e
∗ = uz,P

∗

uy,e < 0, uz,e
∗ = uz,E

∗

uy,w > 0, uz,w
∗ = uz,W

∗

uy,w < 0, uz,w
∗ = uz,P

∗ ⎭
⎪⎪
⎬

⎪⎪
⎫

   (3.2.44) 

where the subscripts E, W, U, D denote values at the neighboring control points.  

Due to the nature of the problem, ux,d, ux,u, are always positive, hence there is no need 
to check the values of ux,d, ux,u. Equations (3.2.42) and (3.26) after applying (3.2.44) 
are cast in the common form: 

APuz,P
∗ = AEuz,E

∗ + AWuz,W
∗ + AUuz,U

∗ + ADuz,D
∗ + (E1234)(pP∗ − ρgzP) (3.2.45) 

As was mentioned before, δz* is the height of the finite volume and acts as an 
arbitrary parameter that controls the convergence of the procedure. It is involved in 
the convective terms Ai of (3.2.45), but essentially determines the influence of the 
pressure gradient. 
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Since the convective coefficients are approximated by the first order upstream 
difference scheme, only one sweep of the computational domain is needed to solve for 
the vertical velocity component. Although the corresponding solution is related only 
to the free-surface renewal, the disadvantage of the first order approximation is that 
necessitates fine discretization to obtain satisfactory results. 

The calculated vertical velocity components are then used to calculate a new surface 
by introducing two corrective steps similar to those of paragraph 3.1 (Tzabiras, 2004). 
First, the free surface is updated following the local flow lines, in the Lagrangian 
sense. This is done in two alternative ways. The first way is to transfer a fluid particle 
α on the transverse plane K, to a new location b on plane K+1 (figure 3.2.5). Point b 
is calculated as follows. First the line that passes through points α and P’ and is 
parallel to the local velocity vector passing through P, is defined. Point P is the center 
of a surface panel, located on plane K+1/2 and P’ is a point on the same vertical line 
as P. Point b is defined as the intersection of the α-P’ line with the K+1 plane. Points 
b form a new transverse cut of the free surface on plane K+1. Then, the new nodes on 
K+1, corresponding to the constant coordinate x3-lines, are found by means of 
interpolation among points b. 

 
Figure 3.2.5 First correction of free 

surface. 

 
Figure 3.2.6 First correction of free 

surface using a time step δt. 

Alternatively, the free surface is updated as follows. Following the local flow lines, a 
fluid particle P on the center of a panel, on the transverse plane K+1/2, is transferred 
to P’ in the Lagrangian sense, with the translation being equal to the product of the 
local velocity vector U and a time step δt (figure 3.2.6). The location of points P’ does 
not coincide with the transverse cuts of the original surface. Consequently the new 
nodes are the calculated by interpolations amongst points P’. 

Next, the new cut is corrected by δz in order to satisfy locally the kinematic 
condition. In an integrated form, this condition is satisfied when the flux through the 
examined panel becomes equal to zero. Approximately, this can be achieved moving 
the corner point C of panel (ABCD) vertically by δz (C to C’), (figure 3.2.7). The 
location of the B’ point is considered the result of a similar translation for the 
neighboring panel to the right of (ABCD). 

To accelerate convergence, the method may be applied over a number on surface 
panels in the longitudinal direction (Tzabiras, 1997). Anyhow, to avoid convergence 
problems the surface renewal is restricted by an external parameter which stabilizes 
the whole procedure but decelerates convergence. 
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Figure 3.2.7 Second correction of free surface (Kinematic condition). 

After the water surface is updated, the potential problem is solved and the whole 
procedure is repeated until the dynamic boundary condition converges. The 
satisfaction of the dynamic boundary condition is tested through |δz|����� which is the 
mean value of the absolute difference between the calculated and the ideal hydrostatic 
pressure at the control points of all surface panels, transformed in [m]. Owing to the 
free-surface approximation with quadrilateral panels, this value decreases as the 
problem converges but exhibits a limiting behavior. Therefore, convergence with 
respect to |δz|����� is satisfied, when it becomes lower than a suitable value depending on 
both the Froude number and the scale. By definition, the smaller the limiting value of 
|δz|�����, the more accurate the solution. An example of the convergence history is 
presented in figure 3.2.8. 

Since the free-surface is updated on every step, the wave resistance and the value of 
the respective coefficient CW also change. An example of the convergence history of 
CW, is presented in figure 3.2.9. 

 
Figure 3.2.8 Convergence of the 

dynamic boundary condition. 

 
Figure 3.2.9 Convergence of the wave 

resistance coefficient. 

The method can also be applied to ships with both “dry” and “wet” transom sterns. In 
the above cases a further domain of panels is introduced on the water surface, astern 
the transom (figures 3.2.10, 3.2.11). The method is applied without any special 
difficulty, by simply overlapping one line at the boundary of the two domains in order 
to compute the new free surface. The condition of the transom (wetted or dry) is 
prescribed by the user. When the transom is declared “dry” then the first row panels 
of the stern domain are bound to the transom edge. In the case were the transom is 
declared “wet”, extra panels are added on the transom surface and the height of the 
first row panels of the stern domain is calculated using the method of this paragraph. 
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Figure 3.2.10 Panels in the case of a 

“dry” transom stern. 

 
Figure 3.2.11 Panels in the case of a 

“wet” transom stern. 

3.2.5 Wave Making Resistance, Sinkage and Trim Calculations 
The wave making resistance as well as the vertical forces and moments are calculated 
by integrating the pressure on the hull panels. As wave making resistance RW in this 
work, we define the pressure resistance, since the potential theory is unable to predict 
any other resistance component (viscous pressure and frictional). Hence the wave 
making resistance is defined as the integral on the surface of the hull of the projection 
of the dynamic pressure (the total pressure minus the hydrostatic pressure) on x-axis 
(longitudinal): 

 RW = ∬ (p∗ − ρgh)WS ∙ (𝐧 ∙ 𝐢) ds (3.2.46) 

where n is the unit vector normal to the body surface and i the one parallel to the x-
axis. The wave resistance coefficient CW is then defined as: 

CW = − RW
1
2∙ρ∙WS∙VS2

 (3.2.47) 

where ρ is the water density, WS is the actual wetted surface, as calculated by the 
present method and VS is the ship’s speed.  

The integration on the surface of the hull, of the projection of the total pressure on z-
axis (vertical), gives the vertical force and moment that cause the ship to change its 
attitude. 

RZ = ∬ p∗WS ∙ (𝐧 ∙ 𝐤) ds (3.2.48) 

where k is the unit vector, parallel to the z-axis.  

This force is used to calculate the running sinkage (equation 3.2.49) and trim 
(equation 3.2.50), whenever this is required and the longitudinal position of the centre 
of gravity (c.g.), xg is known. Trim is the total (hydrostatic + hydrodynamic) trim and 
is defined as positive by stern while sinkage is defined as the increase of draft at x=0 
with respect to the ship’s reference system (figure 3.2.12). 
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sinkage = Δ−RZ
ρgAWL

 (3.2.49) 

tan(trim) = Δ∙xg−RZ∙xp
ρgIyy

 (3.2.50) 

where g is the gravitational acceleration, AWL is the water plane area, xp is the 
longitudinal position of the center of pressure, Δ is the displacement and Iyy is the 
second moment of the water plane area, about y-axis. 

 
Figure 3.2.12 Definition of the ship reference and the absolute coordinates’ system. 

The procedure of changing the ship attitude starts after a user defined number of 
iterations. In between two consecutive calculations of sinkage and trim, a number of 
iterations, defined by the user, are performed, to allow for a degree of convergence for 
the free-surface. This procedure is followed until convergence for free-surface, wave 
making resistance, sinkage and trim is achieved. 

The convergence rates for sinkage and trim, are presented in figures 3.2.13 & 3.2.14 
respectively. The calculations for the sinkage and trim start after 200 steps and then 
are carried out every 50 steps. Ultimately it is the convergence of the dynamic 
boundary condition on the free surface after 1800 iterations (figure 3.2.8) that dictates 
the overall convergence in this case, since all other values converge after about 800 
iterations. 

 
Figure 3.2.13 Convergence of running 

sinkage. 

 
Figure 3.2.14 Convergence of trim. 
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3.3 A Hybrid RANS-Potential Method for Free Surface 
Calculations 

As mentioned in the previous paragraphs, the direct calculation of the free surface, 
using the RANS solver, yields rather accurate results but is very expensive in terms of 
computational cost. On the other hand, the potential approach is significantly cheaper 
and the resulting wave pattern is mostly in good accordance with experimental data. 
There are areas of the flow through, where viscosity cannot be neglected, namely near 
the stern o the ship. In those areas, the potential method tends to over-predict the 
height of the waves. 

The problem is greatly exaggerated in cases of ships with a “wet” transom stern. The 
flow at the transom stern of a ship is detached and depending on the ship speed, may 
reattach on the transom itself and a zone of circulating fluid is formed. The potential 
theory fails completely to model the above behavior since it is mostly affected by 
viscosity. In such a case, the potential method results in an extremely high stern wave, 
so much so that the wave making resistance may even become negative.  

The above problems need to be addressed and to achieve that, a Hybrid RANS-
potential method for calculating the free surface was developed at LSMH-NTUA. The 
starting point of the new method is the previously used method, where the free-
surface is calculated by means of the potential solver and is then used as a fixed 
boundary for the solution of the viscous flow. The numerical grid for the RANS 
calculations conforms to the potential free surface (figure 3.3.1) and the transport and 
equations are solved by employing Dirichlet conditions on the surface, for the 
velocity components (Kinematic condition) and for the pressure (Dynamic condition). 

 
Figure 3.3.1 Computational domain for the potential method (P) and the RANS 

solver (V). 

In the new hybrid method, the free surface is considered a fixed boundary, up to a 
predetermined point along the ship. Downstream that point the surface is free to 
deform. Special treatment of the boundary conditions is required, in order to avoid 
convergence problems near the area where the method of calculation of the water 
surface changes, In figures 3.3.2 and 3.3.3, longitudinal sections of the wave patter, at 
a fixed distance from the side of the ship are presented for the Nawigator model 
(Bugalski, 2004), at a Froude number of Fn=0.219. The lines correspond to 
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numerical solutions with three deferent approaches for the boundary conditions while 
the x-marks are data measured experimentally. 

In the following figures, the solid lines correspond to a numerical solution where 
along the fixed part of the surface, the dynamic boundary condition is applied for the 
transport equations while the kinematic condition is applied during the pressure 
correction. The dashed lines correspond to a numerical solution where along the fixed 
part of the surface, the kinematic boundary condition is applied for the transport 
equations and the pressure also satisfies the dynamic condition. Finally the dotted 
lines correspond to a numerical solution where along the fixed part of the surface, the 
kinematic boundary condition is applied for the transport equations and the pressure is 
determined through the Neumann condition normal to the water surface. 

In all cases a surface tracking procedure is employed along the free to deform portion 
of the surface, where the free surface is corrected in a number of steps, until both 
kinematic and dynamic boundary conditions are satisfied. The transition point is 
located at a distance of 45 m from the bow of the ship or at 81.8% of the waterline 
length. The grid size in all numerical tests was NIxNJxNK=81x141x481 where NK is 
the number of planar 2-D section perpendicular to the ship longitudinal axis, NI is the 
number of grid nodes in the circumferential direction of each planar section and NJ is 
the number of grid nodes in the radial direction of each planar section. 

 
Figure 3.3.2 Wave pattern at a distance of 0.1108 m from side of the Nawigator 

model, Froude number Fn=0.219. 

 
Figure 3.3.3 Detail near the stern, of the wave pattern at a distance of 0.1108 m from 

side of the Nawigator model, Froude number Fn=0.219. 
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Another application of the new hybrid method is presented in figures 3.3.4 and 3.3.5. 
Specifically the wave pattern on the hull of a CB=0.60 Series-60 model is presented, 
at a Froude number Fn=0.316 (Tzabiras & Polyzos, 2015). The continuous line is the 
wave patterns as calculated directly by means of the RANS solver, the dashed line 
corresponds to the potential method and the x-marks are data measured 
experimentally. 

 
Figure 3.3.4 Wave pattern on the hull of a CB=0.60 Series-60 model, Froude number 

Fn=0.316 (Tzabiras & Polyzos, 2015). 

 
Figure 3.3.5 Detail near the stern, of the wave pattern on the hull of a CB=0.60 Series-

60 model, Froude number Fn=0.316 (Tzabiras & Polyzos, 2015). 

With the new hybrid method a significant reduction in computing time is achieved. 
Specifically when employing directly the RANS solver, starting from a flat water 
surface, a total of about 1000 steps are required for the convergence of the free 
surface, for a conventional ship. When staring with the surface as calculated by the 
potential solver, around 100-200 steps are required for the correction of the free 
surface around the stern. Even when taking into account the time required for the 
convergence of the potential solver, the total time gain is in the order of 75% 
(Tzabiras & Polyzos, 2015). 

The presented hybrid method combines the accuracy and efficiency of the potential 
flow solution at the bow of ships, with the accuracy of the RANS based solution at the 
stern of ships, where the effect of viscosity cannot be neglected. When combined with 
the three block setup of paragraph 2.5, the method is able to predict the wave pattern 
at a “wetted” transom stern. 
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4.1 The Overlapping Grid Block Method 
The use of structured grids presents several advantages, over the use of unstructured 
grids, as discussed in previous paragraphs. On the other hand, when structured grids 
are employed, complex geometries are very difficult if not impossible to model. To 
circumvent this obstacle, two methods have been developed. The first uses blocks of 
structured grids that in pairs have common boundaries. The main drawback of this 
method is that generating grids with predefined boundaries is usually difficult. 
Furthermore in the case of a geometrical alteration, for example when altering the 
rudder angle of attack, at least one block, if not more, has to be modified. 

A second method is to use overlapping blocks of structured grids. In this case a 
separate grid block is generated for each component and the transport equations are 
solved independently for each block. In the case of a ship with appendages, there may 
be one or more blocks for the hull and one or more blocks for each appendage. The 
transfer of information between blocks is accompliced by using part of the solution of 
one block as the boundary condition for those boundaries of other blocks that lie 
within the first one. Each block is now easier to generate since there is no need for 
common boundaries. The only extra effort required is in the bookkeeping of which 
volume lends boundary conditions to whom. In the case of boundaries moving 
relative to each other, the grid blocks remain unaltered and only the tables that 
prescribe the transfer of information have to be recalculated. The above scheme is 
called the Overlapping Grid Block method or Chimera and has been successfully 
employed in various complex problems of aerodynamics and hydrodynamics (Brezzi, 
2001, Chan, 2009, Dougherty, 1985, Steger, 1987 & 1991, Tarhan, 2002, Tu, 1992) as 
well as for Navier-Stokes calculations about appended ships (Carrica, 2007 & 2010, 
Kim, 2007, Lin, 1995, Regnstrom, 2006, Simonsen, 2005). 

The two key points with regard to the implementation of the Overlapping Grid Block 
method are: 

• The accurate and efficient exchange of information between the blocks and 
• The conservation of mass throughout the computational domain 

In order to explore the two points, let us consider the 2-D problem of a hydrofoil at an 
angle of attack where the far field is modeled via a Cartesian Orthogonal grid, while 
the area near the hydrofoil is modeled via a C-type curvilinear grid (figure 4.1.1). In 
the following, the far field grid will be called the Master grid, while the near field 
grid, the Slave grid, since the solution on the Slave grid is dependent of the Master 
grid solution. 

In the Overlapping Grid Block method, the flow on the Master grid is solved first, 
without taking into consideration the presence of the hydrofoil. Then the flow near the 
hydrofoil is solved. In order to do so, appropriate conditions must be imposed on the 
boundaries of the C-type grid. According to the nomenclature of figure 4.1.2, the four 
boundaries of the slave grid are: the North (N) or external boundary, the South (S) 
that comprises the solid boundary and the double line abaft the trailing edge and 
finally the West (W) and East (E) boundaries that form the outlet boundary. In this 
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example, the South boundary is internal and the boundary conditions are not related to 
the overlapping grid block method. 

 
Figure 4.1.1 A 2-D orthogonal 

curvilinear grid block (slave) around a 
hydrofoil inside a 2-D Cartesian grid 

(master) 

 
Figure 4.1.2 Definition of the 

boundaries of a 2-D slave grid block 

The boundary conditions on the North boundary are as follows: 

u1,N = u1,Master 

u2,N = u2,Master 

kN = kMaster 

εN = εMaster 
∂p

∂n� = 0 (4.1.1) 

That is, for all flow variables bar pressure, the conditions derive from the solution of 
the Master grid, while for the pressure, Neumann conditions are applied. 

For the outlet boundaries E, W, we apply the Open Boundary conditions for the 
velocity components, i.e. we solve up to the last finite volume, while for the pressure 
and turbulence variables the conditions derive from the solution of the Master grid: 

kE,W = kMaster 

εE,W = εMaster 

pE,W = pMaster (4.1.2) 

The above method is adopted so that by employing the pressure correction algorithm 
for the slave block, the continuity of mass is ensured. 

In order to calculate the value of a flow variable at the center of a slave finite volume, 
first we have to determine the master grid finite volume inside whom lies the center of 
said slave volume. Then the required flow variable at the center of the slave volume, 
is considered equal to that at the center of the master volume. This procedure is 
followed for every finite volume on the external boundaries of the slave grid (figure 
4.1.3). 
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Figure 4.1.3 Donor finite volumes for 
the boundary conditions of the slave 

block 

 
Figure 4.1.4 Donor finite volumes for 
the boundary conditions of the Master 

block 

Depending on the problem, the procedure could be terminated after the above first 
step. In general this is not the case though. For most of the problems an iterative 
procedure is necessary, where after the first solution of the slave grid block, it 
assumes the role of the donor for the Master block. This time the conditions are not 
imposed on the boundaries of the Master block but on internal finite volumes. The 
procedure starts with a set of slave finite volumes that are internal and at a set distance 
from the external boundaries. 

As an example, let us consider that the North boundary on figure 4.1.2 is 
characterized by a value of the J-index, J=NJ, the West boundary is I=1 and the East 
boundary I=NI, where NIxNJ the number of slave grid nodes. We find the master 
finite volumes that contain the slave volumes characterized by J=NJ-3, I=3 and I=NI-
3 (figure 4.1.4). These volumes form a closed loop. After ensuring that the set of 
master volumes that we selected above, are not amongst the original donor master 
volumes, we consider the values for the flow variables on those nodes, equal to those 
of the slave block. 

Then the master grid block is solved, by enforcing the slave derived conditions on the 
closed loop and by leaving the volumes that are inside of the loop, blank, i.e. we only 
solve on the outside of the loop. In figure 4.1.4, the centers of the volumes on which 
we impose the conditions are denoted by the blacked-out circles, the centers of the 
blank volumes by circles and centers of the rest of the finite volumes by gray circles. 
The new solution contains information derived from the slave block but is still not the 
“correct” solution since the slave solution was based on the original master solution, 
thus creating the need for an iterative procedure. This iterative procedure though 
requires only a few steps to converge, in the order of ten. A final note on the method 
of the overlapping grid blocks, is that the accuracy of the method is affected by 
differences in the finite volume size of the two grid blocks. 

 
[79] 

 



4.2. THE GEOMETRICAL PROBLEM, THE APPENDAGES OF A SHIP  

4.2 The Geometrical Problem, the Appendages of a Ship 
Since fuel efficiency and the corresponding reduction in the powering demand of as 
ship is one of the primary objectives of the design process, the surface of a ship hull 
tends to be streamlined with smooth transitions and hardly any step or other 
geometrical discontinuity. Consequently generating a structured numerical grid 
around a hull can be achieved using a single grid block, usually comprising a number 
of successive 2-D grids that when combined in the third direction, form a 3-D grid 
block. The generation of such grids is described in the literature (Tzabiras, 2009) and 
their use has proven to be quite successful in calculating the resistance and propulsion 
characteristics of ships (Tzabiras, 2004). 

The above methodology is applied in the case of a ship without appendages or else in 
the case of a “bare” hull. The bare hull is what provides the ship with buoyancy but in 
order for the ship to function several other object are needed. In order to propel the 
ship, a propeller is usually needed. A shaft is required to transmit the torque from the 
engine and drive the propeller. In many ships, especially in ships with more than one 
propeller, the propeller shaft needs to be quite long requiring some form of support 
such as one or more struts in the form of single struts (I-type bracket) or pairs of struts 
(V-type bracket). Then, for a propeller driven ship to steer, one or more rudders are 
required. Furthermore in order to increase directional stability, a skeg is used and in 
order to reduce the ship’s motions in waves, a number of stabilizing fins are 
employed. 

 
Figure 4.2.1 Appendages on a twin propeller ship 

 
Figure 4.2.2 I-type bracket and V-type 

bracket on the shaft of a twin propeller ship 

 
Figure 4.2.3 Stabilizing fin on ship 

Stabilizing fin 

Skeg 
Shaft 

Shaft bossing 

Rudder 

Strut bossing 

Strut 
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Every object that extrudes from the bare hull will in the present be referred to as an 
appendage. Such objects are the skeg, the rudder, the propeller shaft, the propeller 
shaft bossing, the propeller shaft struts and their bossing, the stabilizer fins etc. 
Modeling of the skeg can usually be incorporated into the bare hull grid. For the rest 
of the appendages it is almost always impossible to incorporate them into a single 
structured grid block, and as a result a separate grid block has to be devised for each 
object or even in some cases each component part of an object has to be modeled 
separately. 

The first step in modeling the appendages of a ship is to identify the separate objects, 
i.e. the objects that can be modeled by a single grid block. The rudder or rudders can 
in most cases be modeled by a single grid block. Stabilizing fins can be considered as 
almost horizontal rudders with a high length to chord ratio. Consequently the 
stabilizing fin may not be considered independently but where applicable, the rudder 
grid block generator may be employed. 

Regarding the propeller shaft with its components the following subdivision has been 
adopted. The shaft bossing, i.e. the section of the shaft just as it exits the hull will be 
modeled as one grid block. Each strut will be modeled as a separate grid block. That 
is for a V-type bracket two blocks will be generated. Each strut bossing will be 
modeled as one grid block. In the V-type bracket case since both struts are connected 
to one bossing, there will be one grid block for both. 

The propeller shaft will be modeled by a number of blocks. Specifically each part of 
the shaft in-between two objects will be modeled as a cylindrical block. If we 
consider the case of a twin propeller ship with a shaft supported by a single V-type 
bracket, then there will be one grid block for the shaft bossing, another for the portion 
of the shaft between the shaft bossing and the V-type bracket bossing, two blocks for 
the two struts, one block for the struts bossing and finally a further cylindrical block 
for the portion of the shaft, abaft the struts bossing. In the case of a ship with one I-
type bracket and a further V-type bracket, the grid blocks would be those of the 
previous example, plus one block for the strut of the I-type bracket, one block for the 
I-type bracket bossing and a third cylindrical block for the portion of the shaft in-
between the two brackets. 

 
Figure 4.2.4 The proposed propeller 

shaft grid block arrangement 

 
Figure 4.2.5 The proposed propeller 
shaft bossing grid block arrangement 
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Figure 4.2.6 The proposed propeller 
shaft struts’ grid block arrangement 

 
Figure 4.2.8 The proposed rudder grid 

block arrangement 

 
Figure 4.2.7 The proposed strut 

bossings’ grid block arrangement 

 
Figure 4.2.9 The proposed stabilizing 

fin grid block arrangement 

By adopting the above subdivision most cases of the complex appendages found on 
ships can be modeled using a small number of types of grid blocks. Each block can be 
parameterized in order to cover most foreseeable designs. The overall method despite 
using only five component types, rudder, shaft, shaft bossing, strut and strut bossing, 
can be employed for most cases of ships with one or more propellers, one or more 
rudders and combinations of struts in the form of I-type brackets or V-type brackets. 

   
Figure 4.2.10 View of the proposed shaft (blue), the shaft bossing (green), the struts 

(yellow) and the strut bossings’ (green) grid blocks 
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Figure 4.2.10 View of the proposed shaft (blue), the shaft bossing (green), the struts 

(yellow), the strut bossings’ (green) and the rudder (purple) grid blocks 
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4.3 Geometrical Representation of the Appendages 
In the present work, the geometry of the appendages is described in a semi-parametric 
way. That is, a number of hydrofoil sections are used to define the thickness 
distribution on the rudder and the shaft struts, while a parametric approach is adopted 
for all other geometrical characteristics. The location of the propeller shaft is defined 
by the vector of the shaft datum point with respect to the ship coordinate system, 
where the shaft end is considered as the datum. The shaft orientation is defined 
through the angle between the shaft axis and a longitudinal vertical plane and the 
angle between the shaft axis and a horizontal plane (figure 4.3.1). At the location 
where the shaft penetrates the hull surface, the shaft bossing is located. Also the shaft 
may be supported by up to two brackets, each equipped with a bossing. Finally at the 
end of the shaft, there may be a propeller hub. The geometry of the above objects is 
parametrically defined through a set of form parameters and dimensions (figure 4.3.2) 

  
Figure 4.3.1. Definition of the shaft and the shaft bossing strut orientation. 

 
Figure 4.3.2. Definition of the shaft. shaft bossing and strut bossings’ dimensions. 

The shaft bossing may be of three types (figure 4.3.3a-c). Type-A (ISTUBE=1) is a 
shaft bossing of constant radius, greater that the shaft radius consequently at the aft 
end of a type-A shaft bossing there is a discontinuity (step) in the radius. Type-B 
(ISTUBE=2) is a shaft bossing of constant radius with a tapered end. Type-C 
(ISTUBE=3) is a shaft bossing of constant radius with a smoothly varying radius at its 
end. The radius at the end section is described by a second degree curve defined by 
the start and the end radius, with a horizontal tangent at the start. The end radius of a 
type-B or type –C shaft bossing may or may not be equal to the shaft radius and as a 
result there may or may not exist a discontinuity in the radius. 
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Figure 4.3.3a. Type-A 

shaft bossing of constant 
diameter. 

 
Figure 4.3.3b. Type-B 

shaft bossing with tapered 
end. 

 
Figure 4.3.3c. Type-C shaft 

bossing with varying 
diameter end. 

The shaft bossing may also feature a reinforcing strut. The end of the strut is at some 
distance from the bossing end while the thickness of the strut is constant (figure 
4.3.4). The reinforcing strut may also be at an angle with respect to the vertical (figure 
4.3.5). 

 
Figure 4.3.4. Definition of the shaft 

bossing, strut geometry. 

  
Figure 4.3.5. Definition of the shaft 

bossing strut orientation. 

The propeller hub may also be modeled as one of three types (figure 4.3.6a, b). Type-
0 (IPHUB=0) corresponds to no propeller hub and the shaft ends abruptly. Type-A 
(IPHUB=1) is a propeller hub with its profile defined by a 3rd degree curve that fits 
through three points and has zero tangency at its fore end. Type-B (IPHUB=2) 
corresponds to a propeller hub with end cup. The diameter of the hub is defined as 
before, by a 3rd degree curve that fits through three points and has zero tangency at its 
fore end, while the diameter of the hub cup is defined by a 2nd degree curve that fits 
through two points and has the same tangency at its fore end as the propeller hub. 

At the fore end of the propeller hub, the diameter may equal to that of the aftmost 
strut bossing. In the case where there is no strut bossing or the diameter of the bossing 
is different to that of the hub, there is a discontinuity (step) in the radius. The hub cup 
may end at a point or at a vertical cylindrical surface of some diameter. In the latter 
case, as well as in the case without a hub cup, there is a discontinuity in the radius. 

 
Figure 4.3.6a. Type-A propeller hub.   

Figure 4.3.6b. Type-B propeller hub 
with end cup. 

The shaft may be supported by up to two brackets, through their respective bossings. 
Each bossing may be of one of six types (figures 4.3.7a-f). Type-A (IBOSS(KB)=1), 
is a bossing with constant diameter. Type-B (IBOSS(KB)=2), is a bossing of constant 
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diameter with a tapered fore end. Type-C (IBOSS(KB)=3), is a bossing of constant 
diameter with a tapered fore end and a tapered aft end. Type-D (IBOSS(KB)=4), is a 
bossing of constant diameter with a fore end with varying radius described by a 
second degree curve having zero tangency at its aft end. Type-E (IBOSS(KB)=5), is a 
bossing of constant diameter with a varying diameter fore end described by a second 
degree curve having zero tangency at its aft end and a varying diameter aft end 
described by a second degree curve having zero tangency at its fore end. Finally type-
F (IBOSS(KB)=6), is a bossing of varying radius described by a second degree curve 
that fits through three points. Types C, E and F apply only to a fore strut bossing, i.e. 
a bossing not abutting the propeller hub. The radius ate either end of a bossing may or 
may not be equal to the shaft radius and as a result there may or may not exist a 
discontinuity.  

 
Figure 4.3.7a. Type-A strut bossing of 

constant radius. 

 
Figure 4.3.7c. Type-C strut bossing 

with both ends tapered. 

 
Figure 4.3.7e. Type-E strut bossing 

with varying radius at both ends. 

 
Figure 4.3.7b. Type-B strut bossing 

with tapered fore end. 

 
Figure 4.3.7d. Type-D strut bossing 

with varying fore end radius 

 
Figure 4.3.7f. Type-F strut bossing of 

varying radius. 

Each bracket may be of I-type or V-type. In the former the bracket comprises one 
strut while in the later the bracket comprises two struts. Each strut is parametrically 
defined (figure 4.3.8). Initially the location and orientation of a reference line is 
defined for each strut (figure 4.3.9). Then the chord and twist for two sections are 
provided by the user. The overall strut twist is defined as the sum of two angles. The 
first angle is calculated as the linear interpolation of the angles of the two input 
sections. The second angle follows a sinusoidal distribution where the number of half-
periods and the amplitude are input. This second angle is always zero at the 
intersection of the strut axis with the hull and the strut’s bossing. The hydrofoil profile 
on each of the two input sections is defined by means of a number of points. In order 
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to calculate the offset at a desired location, a spline interpolation is employed while 
enforcing a tangent at the leading edge, normal to the chord line. 

  
Figure 4.3.8. Definition of the struts dimensions 

  
Figure 4.3.9. Definition of the struts orientation 

The rudder may be of two types (figures 4.3.10a, b). Type-A (IRUDDER =1) is a 
hanging rudder with exposed shaft, while type-B (IRUDDER =2) is also a hanging 
rudder but with a hydrodynamic fairing around the shaft. In the latter, the fairing has 
to be of constant section along its height.  

Initially the location and orientation of a reference line is defined for the rudder 
(figure 4.3.11). The profile of the rudder is considered a trapezoid with either straight 
or curved legs. In the first case, the shape of the ruder is defined by means of two 
sections, one at the tip and one at the base. In the second case, a third section must 
also be defined and the shape of the two legs is that of a second degree curve that 
interpolates the leading and trailing edges of the three sections. For each section, the 
location, chord length and angle of attack are defined. The hydrofoil profile on each 
section is defined by mean of a number points and a spline is fitted for interpolation 
purposes, where the tangent at the leading edge is always normal to the chord line. 
The user also provides the overall angle of incidence ALPHARUDDER, while the 
angle of attack on an arbitrary section of the rudder is calculated as the sum of the 
angle of incidence, a linear interpolation of the angles of the tip and base sections and 
a sinusoidal distribution prescribed through the number of half-periods IARUDDER 
and the amplitude AMAXRUDDER. 
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Figure 4.3.10a. Type-A rudder. 

  
Figure 4.3.10b. Type-B rudder. 

 
Figure 4.3.11. Definition of the rudder orientation 

 
Figure 4.3.12. Definition of the rudder dimensions  
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4.4 Generation of a General 2-D Orthogonal 
Curvilinear Grid 

As the explained in paragraph 2.1.2, the use of a local orthogonal curvilinear system 
in conjunction with a curvilinear orthogonal grid, is beneficial both in terms of 
accuracy and convergence, when numerically solving the strongly coupled 
momentum and continuity equations for a flow around bodies with arbitrary 
geometries. The generation of an orthogonal curvilinear grid in not a trivial task 
though especially in the 3-D case. An efficient way of generating a 3-D grid with 
most of the advantages of a fully orthogonal curvilinear 3-D grid is the generation of a 
partially orthogonal 3-D grid consisting of successive 2-D orthogonal curvilinear 
grids. The resulting grid is orthogonal curvilinear on each of the successive sections, 
while in the third direction it is non-orthogonal. The successive 2-D grids are actually 
not required to be planar; they can lay on an arbitrary surface thus enabling the grid to 
conform to specified geometries such as the hull of a ship. In the present work it was 
decided that all grid blocks should be partially orthogonal curvilinear. 

A method for generating 2-D orthogonal curvilinear grids, based on the conformal 
mapping of an arbitrary shape to a unit circle, was presented in paragraph 2.5.2. This 
method is employed for the generation of the 2-D sections for the rudder grid block. A 
disadvantage of the conformal mapping method is that only the shape of the solid 
boundary (South edge-S) (figure 2.5.2) can be prescribed. The West (W) and East (E) 
boundaries are always straight line segments, normal to the South boundary. Finally 
the shape of the North (N) boundary cannot be defined by the user, rather the distance 
from the South edge can only by prescribed. In the overlapping grid method being 
able to pre-determine the shape of the boundaries is rather useful. 

In light of the above, it was decided that for the generation of the 2-D orthogonal 
curvilinear grids, the method presented by Tzabiras et al. (1986) would be adopted for 
the shaft bossing, the strut and the strut bossing blocks. The method can also be 
employed for the rudder 2-D sections. The method uses singularity distributions on 
the boundaries to solve the potential flow problem. Then the grid nodes are calculated 
as the intersection points of stream and equi-potential lines. The method is based on 
the classical Hess & Smith (1968) method for solving the 2-D incompressible 
potential flow problem with two solid boundaries. In figure 4.4.1 the definition of the 
computational domain is presented, where N, S are the two solid boundaries, treated as 
stream lines. The E, W boundaries are treated as equi-potential lines and U∞ is the 
velocity vector of the onset flow. 

  
Figure 4.4.1 Definition of the calculation domain boundaries 
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For the solution of the above potential flow problem, a singularity distribution is 
considered on each of the four boundaries. Then the velocity vector U at any point of 
the flow field is: 

𝐔 = 𝐔∞ + 𝐮 (4.4.1) 
where u is the velocity induced by the singularities. If we consider the static problem 
and the flow field inviscid (μ = ν = 0) and incompressible (ρ=constant), the Navier-
Stokes equations reduce to the Eulerian equation of motion (in 2-D):  

div(ux𝐔) = − 1
ρ

∂p
∂x

div�uy𝐔� = − 1
ρ

∂p
∂y

� (4.4.2)  

The equation of continuity also is simplified: 

div(𝐔) = 0 (4.4.3) 
The above equations define an incompressible and inviscid flow, but not a potential 
flow. In a potential flow, the velocity vector is equal to the negative gradient of a 
scalar potential function, the velocity potential Φ: 

𝐔 = −∇Φ (4.4.4) 
From vector calculus it is known that the curl of a gradient is equal to zero: 

∇ × ∇Φ = 0 (4.4.5) 
Subsequently the vorticity of a potential flow field is zero: 

∇ × 𝐔 = 0 (4.4.6) 
This implies that a potential flow is also an irrotational flow. Since the velocity vector 
satisfies the continuity equation (4.4.3), by replacing (4.4.4) into (4.4.3) we arrive at 
the conclusion that the potential Φ satisfies Laplace equation: 

∇2Φ = 0 (4.4.7) 
Since N, S are stream lines and E, W equi-potential lines, the boundary conditions are: 

∂Φ
∂n

�
N,S

= 0 (4.4.8a) 

∂Φ
∂s

�
𝐄,𝐖

= 0 (4.4.8b) 

where n is the direction normal to the boundary and s the tangential direction. 
Equations (4.4.7) and (4.4.8) comprise a well-set problem for the potential Φ. In order 
to solve this problem, a source or sink distribution is assumed on N, S boundaries, 
whereas an eddy distribution is assumed on E and W boundaries. Then each boundary 
is covered by a number of rectilinear elements (panels) and on each element, the 
distribution of source or eddy is assumed constant. By applying the boundary 
condition on each element, we arrive at the following system of linear equations: 

∑ Aij ∙ σj + Fi
N
j=1 = 0, i = 1, … , N (4.4.9) 
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where N is the total number of elements, σj is the singularity density on the j-element, 
Aij is the induced normal or tangential (according to the nature of the singularity) 
velocity on the i-element from the j-element and Fi is the induced velocity on the i-
element from the external singular points. 

The system of linear equations (4.4.9) is solved iteratively by employing a Gauss-
Seidel algorithm thus determining the unknown singularity densities σj. Then the 
singularities are used to calculate the velocities, the potential and the stream function 
on every point of the computational domain. Let us consider one of the rectilinear 
elements with a constant source distribution 4π. The velocity components (US, VS) at a 
point with (x0, y0) coordinates with respect to the local element coordinate system (x, 
y) (figure 4.4.2) are: 

Us = ln �(x0+a)2+y0
2

(x0−a)2+y02� (4.4.10a) Vs = 2 ∙ tan−1 � 2∙y0∙a
x02+y02−a2� (4.4.10b) 

The Potential is: 

Φ = −�−𝑥0 ∙ U − 𝑦0 ∙ V − a ∙ ln[{(x0 + a)2 + y0
2}{(x0 − a)2 + y0

2}]� (4.4.11) 

While the Stream Function depends on the relative location of the point with respect 
to the element: 

I = a �tan−1 �
y0

a − x0
� + tan−1 �

y0

−a − x0
�� 

+x0 �tan−1 �
y0

−a − x0
� + tan−1 �

y0

a − x0
�� +

y0

2
ln �

(a − x0)2 + y0
2

(−a − x0)2 + y0
2� 

⎩
⎪
⎨

⎪
⎧

x0 > a, y0 > 0,  Ψ = Ι
−a < x0, y0 > 0, Ψ = Ι − 2π(a − x0)
x0 < −a,  y0 > 0, Ψ = Ι − 4aπ
x0 < −a, y0 < 0, Ψ = Ι + 4aπ
−a < x0, y0 < 0,   Ψ = Ι − 2π(a − x0) + 4aπ
x0 > a,  y0 < 0, Ψ = Ι

 (4.4.12) 

In the above formulation, special care is required in the calculation of the arctangents, 
when the relative angle becomes 180 degrees. 

The corresponding expressions for an eddy distribution are: 

Ue = Vs, Ve = −Us (4.4.13a) 

Φe = −Ψs, Ψe = Φs (4.4.13b) 
where the s indicator stands for a source and e for an eddy distribution. 

 
Figure 4.4.2 Definition of the reference coordinate system 
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The software that implements the above methodology requires as input the geometry 
of the four boundaries, each boundary described by the coordinates if a number of 
points, NI for S, N and NJ for E, W. As an example in figure 4.4.3, the input points for 
a C-type grid around a symmetrical hydrofoil are presented. Since the hydrofoil is 
symmetric, only one-half of the grid needs to be generated. The software then covers 
the four boundaries with a user-determined number of rectilinear elements and solves 
the potential flow problem for a given onset velocity and / or for a given number of 
external singularity points. In the example of figure 4.4.3, a single eddy is placed on 
point A. 

  
Figure 4.4.3 Input nodes for the calculation of a 2-D orthogonal curvilinear grid 

around a hydrofoil 

Using as starting point the nodes on the S and W-edges, where the S-edge is 
considered the J=1 grid line and the W-edge the I=1 grid line, the software generates 
the grid as follows. First, given three grid nodes P(I,J), P(I+1,J) and P(I,J+1), the 
center point P’ of the P(I+1,J)-P(I,J+1) line segment is calculated (figure 4.4.4). The 
length of the P(I,J)-P’ line segment is doubled and P0” is calculated as the end point of 
the new line. The velocity vectors are then calculated at the mid points of the 
P(I+1,J)- P0” and P(I,J+1)- P0” lines. 

 
Figure 4.4.4 The procedure for 

calculating the grid nodes, first step 

 
Figure 4.4.5 The procedure for 

calculating the grid nodes, second step 

 
Figure 4.4.6 The procedure for calculating the grid nodes, final step 
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Then the line segments passing through P(I,J+1) and P(I+1,J), being parallel and 
normal to the respective velocity vectors are generated and the location of P1” is 
found as the intersection of the above lines (figure 4.4.5). The velocity vectors are 
then calculated at the mid points of the P(I+1,J)- P1” and P(I,J+1)- P1” lines. 

The above procedure is repeated until the P(I+1,J)-Pn” line is normal to the velocity 
vector at its midpoint and the P(I,J+1)-Pn” line is parallel to the corresponding 
velocity vector. Then the location of the P(I+1,J+1) grid node is considered that of 
Pn”. Once the P(I+1,J+1) grid node is calculated, the procedure is repeated for the 
P(I+2,J+1) grid node and once all (J+1) nodes are calculated, the procedure is 
repeated for the J+2 nodes. 

Following the above algorithm, the iso-I grid lines are always normal to the local 
velocity vectors while the iso-J grid lines are always parallel to the local velocity 
vectors, thus the resulting grid is orthogonal. 

In figure 4.4.7, the 2-D C-type orthogonal curvilinear grid for a symmetrical hydrofoil 
is presented, where the input nodes where those of figure 4.4.4. Since the hydrofoil is 
symmetrical, half of the grid was generated by means of the above methodology and 
the final grid is generated by mirroring the top half. 

 
Figure 4.4.7 A 2-D orthogonal curvilinear grid around a hydrofoil 

Since the input nodes on two of the boundaries are used as the respective grid nodes, 
the user can arrange the input nodes so that the grid becomes finer in areas of 
significant variations of flow. In the presented example the grid is finer along the I-
direction, near the leading and trailing edges and also near the hydrofoil surface, 
along the J-direction. A detail of the grid, near the leading edge is presented in figure 
4.4.8 

 
Figure 4.4.8 Detail of a 2-D orthogonal curvilinear grid around a hydrofoil, near the 

leading edge 
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4.5 Propeller Shaft Grid Block Generation 
In the selected grid block arrangement, the propeller shaft is modeled by up to three 
cylindrical blocks. Specifically the first block covers the area from the shaft bossing 
and up to the foremost strut bossing, the second block covers the section abaft the 
foremost strut bossing and up to the second strut bossing and the third block covers 
the section abaft the second bossing, the propeller hub where applicable and the wake 
of the shaft. If only one strut bossing exists, then the second block is absent. In the 
case of an unsupported shaft, only one block is used. 

Each shaft grid block comprises successive 2-D cylindrical planar grids (xy-planes, I, 
J-indexes), normal to the shaft axis (z-direction). The planar grids vary along the 
longitudinal direction (K-index) hence the 3-D grid is only partially orthogonal. The 
grid is actually constructed by first generating a Cartesian non-orthogonal planar K,J-
grid on the vertical plane (I=1, zy-plane). Then the 3-D grid is generated by rotating 
the above parent grid by NI-1 angles, ranging for 0 to 360o, and by joining the nodes 
in the peripheral direction (x-direction, I-index) with circle arcs. 

All shaft block share the same coordinate system where the z-axis is parallel to the 
shaft axis, x-axis is horizontal, i.e. parallel to the ship’s base plane and y-axis 
completes the right-hand orthogonal system. The datum of the system coincides with 
the aft end of the shaft bossing.  

In order to achieve the transfer of information with the neighboring grid block, the 
shaft block extends uprstream (K=1) and downstream (K=NK) onto the neighboring 
objects. The last block extends downstream into the shaft wake by some distance. The 
North boundary (J=NJ) is the external boundary while the South boundary (J=1) 
covers the shaft surface. The East boundary (I=NI) is vertical, while the West 
boundary (I=1) coincides with the I=NI-1 planar grid in order to apply the cylindrical 
conditions (paragraph 2.3.4). The radial extend of the block is defined by the user, as 
is also the upstream and downstream extend. 

The method also takes into account discontinuities in the solid boundary, i.e. steps in 
the shaft and or bossing radius, by introducing additional grid lines that form a sub-
block. Grid resolution is variable, both in the longitudinal and the radial direction to 
enhance accuracy. In the longitudinal direction, grid resolution is finer near 
discontinuities of diameter while in the radial direction grid is finer near the solid 
boundaries.  

The generation of the parent grid begins by calculating the distribution of grid nodes 
along the shaft axis. The distribution is not uniform and near discontinuities of the 
diameter, the grid becomes finer. Then, four characteristic radii are calculated for 
each node. R0 follows the shape of the shaft, the shaft bossing and the strut bossing, 
R1 is the shaft diameter, R2 is the line formed by the struts’ bossing and RN is the 
maximum radius. The maximum radius is user defined but may be smaller than that 
so that the block does not penetrate the hull surface (figure 4.5.1). 
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Figure 4.5.1. Characteristic radii, R0: continuous line, R1: dashed line, R2: dash-dot 

line, RN: dotted line. 

The radial distribution is then calculated so that the grid is finer near solid boundaries. 
In the case were there are discontinuities in the diameter, extra grid points are added 
in the radial direction, between R0 and R3, to form a sub-grid. This sub grid runs the 
length of the main grid, has common indexing as the main grid and some of its cells 
remain inactive during the solution of the problem (figures 4.5.2, 4.5.3). In the 
peripheral direction, the distribution of nodes is uniform (figure 4.5.4). 

 
Figure 4.5.2. Detail of a 2-D grid featuring a sub-grid due to the discontinuities of the 

diameter. 

 
Figure 4.5.4. Detail of a 2-D grid near the end of a propeller hub with end cap, 

featuring a sub-grid due to the discontinuity of the diameter at the tip of the propeller 
hub end cap. 
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Figure 4.5.4. Distribution of the rotation angles, looking fwd. 

The computational steps for the generation of a shaft grid block, are as follows: 

1. Find block origin and orientation; calculate the translation vector and the rotation 
matrix with respect to the global (ship) coordinate system. 

2. Transfer shaft geometry to the block coordinate system. 
3. Read the number of grid K-nodes on the shaft section, fore of the shaft and aft of 

the shaft section. 
4. If the grid block is the third block, read the number of K-nodes abaft the shaft, in 

the wake. 
5. Read the number of J-nodes as well as the number of J-nodes for the sub-grid, 

were applicable. 
6. Read the number of I-nodes. 
7. Calculate the longitudinal distribution on the fore and aft section, i.e. on the 

bossing. The nodes fore and aft of the shaft section are distributed in such a way 
that the planes of the 2-D I,J-grids coincide with the planes of the respective grid 
block. For example, the distribution on the shaft bossing, fore section of shaft 
block 1, is the same as the distribution of the shaft bossing grid block. This is 
done to facilitate the transfer of information amongst the grid blocks. 

8. Calculate the longitudinal distribution on the shaft section. The distribution is 
finer near the two ends of the section and in between the node spacing varies 
exponentially. The number of nodes and the node spacing at both ends of the grid 
is defined by the user. 

9. If the grid block is the third block, calculate the longitudinal distribution on the 
wake. The number of nodes, as well as the spacing of the first two nodes are 
defined by the user. The software then calculates the node distribution so that the 
nod spacing varies exponentially. 

10. Calculate at the location of each K-node the minimum radiusR0 that conforms to 
the shaft and the fore and aft sections. 

11. In the case of discontinuities in R0, calculate the intermediate radii R1, R2. 
12. Calculate RN. The maximum radius is defined by the user but is reduced 

automatically, to avoid penetration of the hull by the block. A minimum distance 
is defined by the user and the software adjusts RN so that the minimum distance 
between the shaft block and the hull is always maintained. 

13. Calculate the radial distribution of nodes. On each one of the R0-R1, R1-R2 and 
R2-RN sections, the radial distribution is variable. The user defines the number of 
nodes and the grid spacing in the solid boundary and the software adjusts the 
radial distribution so that node spacing varies exponentially. 

14. Generate the 2-D J,K-parent grid. 
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15. Calculate the peripheral distribution. In the I-direction the nodes are uniformly 
distributed. 

16. Generate the 3-D grid. 

In figures 4.5.5-4.5.15, examples of 2-D J-K-grids are presented for various shaft 
arrangements. In figure 4.5.16 an example of a 3-D grid block around the fore part of 
the shaft is presented, while in figure 4.5.17 an example of a 3-D grid block around 
the aft part of the shaft and the shaft wake is presented 

  
Figure 4.5.5. 2-D grid about a shaft with Type-A shaft bossing, one Type-A strut 

bossing, no propeller hub. 

  
Figure 4.5.6. 2-D grid about a shaft with Type-A shaft bossing, two Type-A strut 

bossings, no propeller hub. 

  
Figure 4.5.7. 2-D grid about a shaft with Type-A shaft bossing, two Type-A strut 

bossings and a propeller hub and hub cap. 

  
Figure 4.5.8. 2-D grid about a shaft with Type-B shaft bossing, one Type-B strut 

bossing, no propeller hub.  
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Figure 4.5.9. 2-D grid about a shaft with Type-B shaft bossing, one Type-C strut 

bossing, no propeller hub. 

  
Figure 4.5.10. 2-D grid about a shaft with Type-B shaft bossing, two strut bossings 

(Type-B and Type-C), no propeller hub. 

  
Figure 4.5.11. 2-D grid about a shaft with Type-C shaft bossing, one Type-C strut 

bossing, no propeller hub. 

  
Figure 4.5.12. 2-D grid about a shaft with Type-C shaft bossing, one Type-D strut 

bossing, no propeller hub.  

  
Figure 4.5.14. 2-D grid about a shaft with Type-C shaft bossing, two strut bossings 

(Type-C and Type-D), no propeller hub. 
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Figure 4.5.14. 2-D grid about a shaft with Type-C shaft bossing, two strut bossings 

(Type-C and Type-D) and a propeller hub and hub cap.  

  
Figure 4.5.15. 2-D grid about a shaft with Type-C shaft bossing, two strut bossings 

(Type-C and Type-D) and a propeller hub and hub cap ending at a point. 

 
Figure 4.5.16. 3-D grid (NIxNJxNK=41x24x120) about the fore part of a shaft, for 
clarity only the grid nodes on the solid surface, plus three 2-D cylindrical grids at the 

upstream end, the downstream end and at the middle. 

 
Figure 4.5.17. 3-D grid (NIxNJxNK=41x28x120) about the aft part of a shaft, for 

clarity only the grid nodes on the solid surface, plus three 2-D cylindrical grids at the 
upstream end, the downstream end and at the end of the shaft. 
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4.6 Propeller Shaft Bossing Grid Block Generation 
The propeller shaft bossing is model by a single grid block comprising 2-D 
curvilinear orthogonal C-type grids, normal to the shaft axis. Each orthogonal 
curvilinear grid is generated by employing the singularity distribution method 
presented in paragraph 4.4. Since both the hull and the bossing geometry vary along 
the shaft axis, the 2-D grids differ and the resulting 3-D grid is partially orthogonal. 

The system of coordinates for the shaft bossing grid block is the same as for the shaft 
grid block, i.e. the z-axis is parallel to the shaft axis, x-axis is horizontal, i.e. parallel 
to the ship’s base plane while y-axis completes the right-hand orthogonal system. The 
datum of the system coincides with the aft end of the shaft bossing.  

The grid block extends upstream (K=1) the point where the shaft bossing emerges 
from the hull in order for the conditions from the ship block to be applied as boundary 
conditions. The location of the downstream end of the grid (K=NK) is at the end of 
the shaft bossing. In order to exchange the conditions with the shaft block, the latter 
extends upstream onto the shaft bossing. The West (I=1) and East (I=NI) boundaries 
lay on the hull and as a result they are treated as solid boundaries. The North 
boundary (J=NJ) is the external boundary while the South boundary (J=1) covers the 
bossing surface and the symmetry plane. The radial extend of the block is defined by 
the user, as is also the upstream extend. 

In order to generate the shaft bossing grid, the distribution of 2-D planar grids along 
the shaft axis is calculated. The distribution is not uniform and near discontinuities 
such as the bossing end and the strut end, the grid becomes finer (figure 4.6.1a). 

Due to the complex geometry of the computational domain, the grid is considered to 
comprise of 3 parts Part-A extends from the upstream boundary, up to the point where 
the shaft bossing emerges from the hull. Part-B continues until the point where the 
strut has emerged fully. The last part, part-C, covers the remaining portion of the 
bossing (figure 4.6.1a). 

 
Figure 4.6.1a. Distribution of 2-D planar grids along the length of the shaft bossing, 

grid block 
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Figure 4.6.1b. Distribution of 2-D planar 
grids along the length of the shaft bossing 

 
Figure 4.6.1c. Distribution of 2-D planar 
grids along the length of the shaft bossing 

On part-A the South boundary (J=1) is a single point while the North boundary 
(J=NJ) is a circular arc (figure 4.6.2). On part-B, the South boundary lays on the 
portion of the bossing that has emerged from the hull and where applicable, the 
reinforcing strut. The North boundary, depending on the shape of the hull, is a circular 
arc or a semi-circle plus two vertical line segments (figures 4.6.3 and 4.6.4). On part-
C, the South boundary lays on the bossing surface and on the symmetry plane. The 
North boundary comprises a semi-circle and two line segments (figure 4.6.5). On all 
parts, the East (I=NI) and West (I=1) boundaries conform to the hull surface. 

 
Figure 4.6.2. The boundaries of a2-D 

grid on part-A. 

 
Figure 4.6.4. The boundaries of a 2-D 
grid on part-B, where the bossing has 

partially emerged from the hull. 

 
Figure 4.6.4. The boundaries of a 2-D 
grid on part-B, where the bossing has 

emerged fully from the hull and there is a 
reinforcing strut of non-zero thickness. 

 
Figure 4.6.5. The boundaries of a 2-D 

grid on part-C. 
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Then a 2-D orthogonal curvilinear grid is generated on each plane (xy-plane, I, J-
indexes), about the shaft bossing. This orthogonal curvilinear grid is generated by 
employing the singularity method for the given boundaries (Tzabiras, 1986), where 
one set of grid lines, the equi-I lines, is calculated as streamlines while the other set, 
equi-J lines, consists of equi-potential lines (figures 4.6.6-4.6.9). The generation of the 
2-D grids will be discussed in further detail, in paragraph 4.6.1. 

 
Figure 4.6.6. 2-D grid (NIxNJ=121x20) about a shaft bossing, part-A. 

 
Figure 4.6.7. 2-D grid (NIxNJ=121x20) about a shaft bossing, part- B, where the 

bossing has partially emerged from the hull. 

 
Figure 4.6.8. 2-D grid (NIxNJ=121x20) about a shaft bossing, part- B, where the 
bossing has emerged fully from the hull and there is a reinforcing strut of non-zero 

thickness. 
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Figure 4.6.9. 2-D grid (NIxNJ=121x20) about a shaft bossing, part-C. 

In the case of a shaft bossing supported by a strut whose end is not faired, rather ends 
with a non-zero thickness, this geometrical discontinuity needs to be addressed. In 
order for this discontinuity to be modeled, extra grid nodes (extra equi-J lines) are 
added to form a sub-grid (figure 4.6.10). This sub grid runs the length of the block, 
has common indexing as the main grid and some of its sells remain inactive during 
the solution of the problem. 

 
Figure 4.6.10. 2-D inner grid for strut thickness discontinuity. The shaded portion  

In the longitudinal direction (z-direction, K-index), the nodes of subsequent 2-D grids 
are joined to form the partially orthogonal 3-D grid (figure 4.6.11). 

 
Figure 4.6.11. 3-D grid (NIxNJxNK=121x20x120) about a shaft bossing, for clarity 
only the grid nodes on the solid boundaries (South, East, West) plus the 2-D grids on 

the end of each part are presented and a further 2-D grids inside part-B. 
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The computational steps for the generation of a shaft bossing grid block, are as 
follows: 

1. Find block origin and orientation; calculate the translation vector and the rotation 
matrix with respect to the global (ship) coordinate system. 

2. Read the number of grid K-nodes on the bossing and the upstream part-A. 
3. Read the number of J-nodes as well as the number of J-nodes for the sub-grid, 

were applicable. 
4. Read the number of I-nodes. 
5. Read the block radius. 
6. Calculate the longitudinal distribution on the upstream part-A.  
7. Calculate the longitudinal distribution on the bossing, parts B and C. The 

distribution is finer near the ends of the parts and in between the node spacing 
varies exponentially. The number of nodes and the node spacing at the ends of 
both parts is defined by the user. 

8. Generate the 2-D I,J outer grids. 
9. Generate the 2-D I,J inner grids, where applicable. 
10. Generate the 3-D grid. 

4.6.1 2-D Propeller Shaft Bossing Grid Generation 
The shaft bossing grid comprises 2-D curvilinear orthogonal C-type grids, normal to 
the shaft axis. The 2-D grids are generated by employing the method presented in 
paragraph 4.4. This method uses singularity distributions on the boundaries to solve 
the potential flow problem. Then the grid nodes are calculated as the intersection 
points of stream and equi-potential lines. The method requires the node distribution 
on four edges that form the calculations domain. The nodes on the South and East 
edges are also the J=1 and I=NI nodes of the grid. 

Two important characteristics of the method are that the edges must be arranged in a 
count-clockwise direction and that the edges cannot fold. Those two characteristic 
necessitate the subdivision of each 2-D grid into two sub-grids, the right-hand and the 
left-hand, where the mirror image of the left hand-side sub-grid has to be calculated 
(figure 4.6.12). 

 
Figure 4.6.12. Definition of the right-hand and the left-hand domains. The North and 
South edges are treated as solid boundaries, while the East and West edges are treated 

as equi-potential lines. 
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In order to define the four edges for each sub grid, the locations of 12 characteristic 
points are calculated (figure 4.6.13). Then, the distribution on the South and East 
edges is calculated. The distribution is finer near the solid boundaries and the 
geometrical discontinuities. The distribution on the East edge of both sub-domains is 
obviously the same, so that the resulting grids have that particular line common. The 
distribution on the other two edges is uniform (figure 4.6.14) 

 
Figure 4.6.14. Definition of the characteristic points.  

 
Figure 4.6.14. Distribution of nodes on the four edges.  

Then, by introducing an eddy at x=0, y=0, the potential flow problem is solved 
cording to paragraph 4.4 and the two sub-grids are generated (figure 4.6.15). Then the 
left-hand grid is mirrored and the final grid is generated by merging the two sub-grids. 

 
Figure 4.6.15. The two halves of the 2-D grid.  
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The computational steps for the generation of a 2-D bossing outer grid are as follows: 

1. Calculate the bossing radius at the location of the section. 
2. Calculate the strut thickness 
3. Calculate the initial locations of the characteristic points. 
4. Correct the location of the characteristic points, taking into account the hull 

geometry. 
5. Split the domain into the left-hand and right-hand sub-domains 
6. Calculate the number if I-nodes on the strut.  
7. Calculate the distribution of nodes on the four edges of the right-hand sub-

domain. 
8. Generate the right-hand sub-grid  
9. Mirror the left-hand sub-domain. 
10. Calculate the distribution of nodes on the four edges of the mirrored left-hand 

sub-domain.  
11. Generate the mirrored left-hand sub-grid  
12. Mirror the generated grid into the left-hand sub-grid. 
13. Merge grids 
14. Generate the inner grid. 
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4.7 Strut Bossing Grid Block Generation 
The bossing of each shaft bracket is modeled by an O-type grid block, comprising 2-
D curvilinear orthogonal O-type grids. Each orthogonal curvilinear grid is generated 
by employing the singularity distribution method presented in paragraph 4.4. Since 
the bossing profile and the strut thickness vary along the shaft axis, the 2-D grids 
differ and the resulting 3-D grid is partially orthogonal. The grid also has to conform 
to the strut geometry and as a result, the sections are not planar. Nevertheless when 
projected on a plane normal to the shaft axis, each grid becomes orthogonal 
curvilinear. 

The bossing grid block is divided into three parts along its length. The first part, part-
A, extends from foremost end of the bossing up to the strut leading edge. Part-B 
covers the chord of the strut, while part–C extends from the strut trailing edge up to 
the aft end of the bossing. 

The block has its own coordinate system with the z-axis coinciding with the shaft axis 
and with a aft direction, y-axis is normal to the shaft axis pointing upwards and finally 
the x-axis is horizontal and completes the right-hand orthogonal system. The datum of 
the system is located at the intersection of strut reference lines with the shaft axis. The 
bossing block coordinate system is presented in figure 4.7.1. 

The upstream (K=1) boundary of the block is normal to the shaft axis, is located at 
the foremost end of the bossing and is treated as an inflow boundary. The downstream 
(K=NK) boundary is normal to the shaft axis, is located at the aftmost end of the 
bossing and is treated as an outflow boundary. The South boundary (J=1) lays on the 
bossing surface and is treated as a solid boundary. The North boundary (J=NJ) is the 
external boundary with its location defined by the user. Finally the East boundary 
(I=NI) lays on the vertical plane facing downwards, while the West boundary (I=1) 
coincides with the I=NI-1 grid section in order to apply the cylindrical conditions 
(paragraph 2.3.4). 

  
Figure 4.7.1. Definition of the strut bossing grid block coordinate system. 

The distribution of 2-D sections along the z-axis (K-index) is not uniform; the grid is 
finer near the strut leading and trailing edges. The distribution of nodes on each 
section is also variable. In the radial direction (J-index), grid resolution is finer near 
the bossing surface (J=1), while in the peripheral direction (I-index), grid resolution, 
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with respect to the arc length of the section, is finer near the strut surfaces. In all 
directions, the number of grid nodes and the grid resolution for the first two nodes is 
defined by the user. Then the software arranges the nodes so that the node spacing 
follows an exponential distribution. In the K-direction, the grid resolution is defined 
by the user at both the leading and trailing edges. 

The generation of a 3-D grid around a strut bossing, that can account for various struts 
and bossing geometries is a complex task. If the 3-D grid has to be, at least partially, 
orthogonal curvilinear, then the task becomes even more complex. In the presented 
method, the 3-D grid comprises non-planar 2-D orthogonal curvilinear grids. Each 2-
D grid comprises at least two and up to six 2-D sub-grids, the domains for each sub-
grid are presented in figures 4.7.2-4.7.5. Sub-grids A1, A6 are always present. Sub-
grids A3, A4 are present in the case of a V-type bracket, i.e. a bracket with two struts. 
Sub-grid A2 is present in the case of a single strut with a non-zero trailing edge 
thickness, while sub-grids A2 and A5 are present in the case of two struts with a non-
zero trailing edge thickness. Upstream the strut leading edge, Sub-grids A2 and A5 
are reduced in a single J-line each. 

  
Figure 4.7.2. Sections A1, A6, in the case 

if and I- type bracket with zero trailing 
edge thickness. 

  
Figure 4.7.4. Sections A1, A2, A6, in the 
case if and I- type bracket with non-zero 

trailing edge thickness. 

  
Figure 4.7.4. Sections A1, A3, A4, A6, in 
the case if and V- type bracket with zero 

trailing edge thickness. 

  
Figure 4.7.5. Sections A1, A2, A3, A4, 

A5, A6, in the case if and V- type bracket 
with non-zero trailing edge thickness.

Each of the A1, A3, A4, A6 sub-grids is generated by employing the singularity 
distribution method presented in paragraph 4.4 requiring the definition of four edges. 
Of the four edges of each sub-grid, one lays on the bossing and another lays on the 
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grid block North boundary. Of the other two edges, one lays on the strut surface and 
the other is vertical. Consequently, in order to calculate the sub-grids of each 2-D 
section, six J,K-grids plus two I,K-grids are required. 

In order to calculate the J,K-grids, the radial distribution of nodes is first calculated. 
Then, the equi-J lines are drawn on the planes of the six sections. The distribution of 
nodes along the chord of the struts, as well as upstream the leading edges and 
downstream the trailing edge, are calculated and the equi-K lines are drawn (figure 
4.7.6). Having the nodes of the J=1 and J=NJ lines for each of the six J,K-grids, the 
nodes of the J=1 (south) and J=NJ (north) I,K-grids can be calculated by means of 
linear interpolation in cylindrical coordinates (figures 4.7.7 and 4.7.8). Finally the 2-D 
orthogonal curvilinear grid is generated on each I, J-section by employing the 
singularity method for the given boundaries (Tzabiras, 1986) (figures 4.7.9 to 4.7.11). 
The A2 and A5 sub-grids are non-orthogonal, generated by means of linear 
interpolations in cylindrical coordinates. The generation of the 2-D grids will be 
discussed in further detail, in paragraph 4.7.1. 

  
Figure 4.7.6. I=I1, I=I2, I=I3, I=I4, I=I5 and I=I6, J,K-grids (NJxNK=10x18) for a V- 

type bracket with zero trailing edge thickness. 

  
Figure 4.7.7. J=1, I,K-grid 

(NIxNK=62x18) for a V-type bracket 
with zero trailing edge thickness. 

  
Figure 4.7.8. J=NJ, I,K-grid 

(NIxNK=62x18) for a V- type bracket 
with zero trailing edge thickness. 
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Figure 4.7.9. 2-D grid (NIxNJ=62x10) 

about a V- type bracket bossing, upstream 
the strut leading edge. 

 
Figure 4.7.10. 2-D grid (NIxNJ=62x10) 
about a V- type bracket bossing, at the 

location of the strut maximum thickness, 
the shaded portion of the grid remains 
inactive along the chord of the strut. 

 
Figure 4.7.11. 2-D grid (NIxNJ=62x10) about a V- type bracket bossing, 

downstream the strut trailing edge. 

In the longitudinal direction (z-direction, K-index), the homologue grid nodes of 
subsequent planes are joined to form the partially orthogonal 3-D grid (figure 4.7.12). 

The computational steps for the generation of a strut bossing grid block, are as 
follows: 

1. Find block orientation. 
2. Find block origin; calculate the translation vector and the rotation matrix with 

respect to the global (ship) coordinate system. 
3. Calculate the strut(s) angles of reference 
4. Read the block dimensions. 
5. Read the number of grid K-nodes, calculate the section distribution. 
6. Read the number of J-nodes. 
7. Read the number of I-nodes as well as the number of I-nodes for the sub-grids, 

were applicable. 
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8. Generate the 2-D J,K grids on the strut(s) planes, the vertical plane (φ=0o) and 
the inverted plane (φ=180o). 

9. Generate the 2-D I,K South (J=1) and North (J=NJ) grids. 
10. Generate the 2-D planar I,J grids. 
11. Project the 2-D planar I,J grids. 
12. Generate the 3-D grid. 

  
Figure 4.7.12. 3-D grid (NIxNJxNK=62x10x18) about a V- type bracket bossing, for 
clarity the grid nodes on the solid boundaries are presented along with the 2-D grids at 
the block upstream boundary, the strut leading edge, the strut trailing edge, the block 

downstream boundary and near the maximum strut thickness. Also for clarity, the grid 
is scaled along z-axis by a factor of two. 

4.7.1 2-D Strut Bossing Grid Generation 
The strut bossing grid comprises 2-D O-type grids. Each 2-D grid comprises up to six 
sub-grid, of which four are curvilinear orthogonal, generated by means of the method 
presented in paragraph 4.4. This method uses singularity distributions on the 
boundaries to solve the potential flow problem. Then the grid nodes are calculated as 
the intersection points of stream and equi-potential lines. The method requires the 
node distribution on four edges that form the calculations domain. The nodes on the 
South and West edges are also the J=1 and I=1 nodes of the grid. Since the rudder is 
symmetrical, only one-half of the grid has to be calculated. 

The distribution on the South and West edges is calculated. The distribution is finer 
near the bossing and the strut surface. The distribution on the other two edges is 
uniform (figure 4.7.14). 
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Figure 4.7.14. Definition of the 

computational domains. The North and 
South edges are treated as solid 

boundaries, while the East and West 
edges are treated as equi-potential lines. 

  
Figure 4.7.14. Distribution of nodes on 

the four edges of each sub-grid.  

Then, by introducing an eddy at x=0, y=0, the potential flow problem is solved 
according to the method of paragraph 4.4 and the sub-grids are generated (figure 
4.7.15). Then the sub grids are merged, to form the 2-D grid. 

  
Figure 4.7.15. The 2-D sub-grids.  

The computational steps for the generation of a 2-D rudder outer grid are as follows: 

1. Calculate distribution on the edges. 
2. Generate the 2-D sub-grids.  
3. Interpolate the grid nodes on lines I=I2 and I=I5. 
4. Project the sub-grids 
5. Merge the sub-grids into the final 2-D grid. 
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4.8 Strut Grid Block Generation 
Each shaft bracket is modeled by up to two grid blocks, depending on its type. An I-
type bracket, i.e. a bracket with a single strut is modeled through one block while a V-
type bracket, i.e. a bracket with a pair of struts, is modeled using two blocks, one for 
each strut. The strut blocks comprise 2-D curvilinear orthogonal C-type grids, normal 
to the strut reference line. Each orthogonal curvilinear grid is generated by employing 
the singularity distribution method presented in paragraph 4.4. Since the hydrofoil 
section, the chord and the twist may vary along the reference line, the 2-D grids differ 
and the resulting 3-D grid is partially orthogonal. Also near the hull, the grid 
conforms to the hull surface and as a result, the sections are not planar. 

The coordinate system is different for each block: the z-axis lays on the same plane as 
the strut reference line and is perpendicular to the ship’s longitudinal axis. The z-axis 
direction is downwards. The x-axis is parallel to a characteristic chord towards the 
trailing edge. Finally the y-axis completes the right-hand orthogonal system. The 
datum of the system is at the intersection of the strut reference line with the hull 
surface. The strut block coordinate system is presented in figure 4.8.1. 

  
Figure 4.8.1. Definition of the strut grid block coordinate system. 

The upstream (K=1) boundary of the block lays on the hull surface and is treated as a 
solid boundary. The location of the downstream (K=NK) boundary is defined by the 
user. The West (I=1) and East (I=NI) boundaries are the outflow boundaries and their 
distance from the strut trailing edge is user defined. The South boundary (J=1) covers 
the strut surface and the symmetry plane abaft the trailing edge. Finally the North 
boundary (J=NJ) is the external boundary. The extend of the block ahead of the strut 
leading edge and to the side, is defined by the user. The block longitudinal extent may 
be automatically reduced by the software, to avoid intersection of the block with the 
strut’s bossing, while the transverse extent may also be reduced, to avoid intersection 
of the two blocks around a V-type bracket. 

The strut grid block is divided into two parts along its length. The first part, part-A, 
extends from the hull up to a user defined distance, while part-B covers the rest of the 
block. The grid sections of part-B are always planar and normal to the z-axis. The 
sections of part-A are non-planar, in order to conform the hull contours. Nevertheless 
when projected on a plane normal to the z-axis, each grid becomes orthogonal 
curvilinear. 
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The distribution of 2-D sections along the z-axis (K-index) is not uniform; the grid is 
finer near the hull. The distribution of nodes on each section is also variable. In the 
radial direction (J-index), grid resolution is finer near the solid boundary (J=1), while 
in the peripheral direction (I-index), grid resolution, with respect to the arc length of 
the section, is finer near the leading and trailing edges. In all directions, the number of 
grid nodes and the grid resolution for the first two nodes is defined by the user. Then 
the software arranges the nodes so that the node spacing follows an exponential 
distribution. In the peripheral direction, the grid resolution is defined by the user at the 
leading and trailing edges. 

In order to generate the grid block, the software initially calculates the distribution of 
sections. The intersection of the strut with the hull surface is calculated, forming the 
strut profile for the upstream section (K=1). Then the strut profile for each section of 
part-A is calculated, taking into account the strut geometry and the fact that section 
K=1 is not planar. The profile for each section of part-B is also calculated. The 
sections of part-B are planar but still, the strut geometry must be taken into account. 

Then the strut profile on each section is projected on a plane normal to the z-axis and 
the 2-D orthogonal curvilinear grid is generated (xy-plane, I, J-indexes) by employing 
the singularity method for the given boundaries (Tzabiras, 1986) (figure 4.8.2). The 
initially planar sections of part-A of the grid block are then projected in such a way as 
to conform the hull contours. The generation of the 2-D grids will be discussed in 
further detail, in paragraph 4.8.1. 

 
Figure 4.8.2. 2-D grid (NIxNJ=147x20) about a strut section. 

 
Figure 4.8.4. Detail of a 2-D grid (NIxNJ=147x20) near the leading edge of a strut 

section. 
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In the case of the struts’ grid blocks there may be one type of geometrical 
discontinuity that needs to be addressed, that of a trailing edge of a non-zero 
thickness. In order for this discontinuity to be modeled, extra grid nodes (extra equi-J 
lines) are added to form a sub-grid. This sub grid runs the length of the main grid, has 
common indexing as the main grid and the finite volumes that are inside the strut, 
remain inactive during the solution of the problem (figure 4.8.4a). Abaft the trailing 
edge, the grid is a simple orthogonal grid (figure 4.8.4b) while inside the strut the grid 
is generated by linear interpolation forming a non-orthogonal grid. 

 

 
Figure 4.8.4a, b. 2-D inner grid for non-zero strut trailing edge thickness. The shaded 

portion of the grid remains inactive. 

In the longitudinal direction (z-direction, K-index), the homologue grid nodes of 
subsequent planes are joined to form the partially orthogonal 3-D grid (figures 4.8.5, 
4.8.6). 

The computational steps for the generation of a shaft bossing grid block, are as 
follows: 

1. Find block origin and orientation; calculate the translation vector and the rotation 
matrix with respect to the global (ship) coordinate system. 

2. Calculate the offsets on two reference sections. These sections are normal to the 
strut z-axis, one at the root of the strut (upstream edge) and one at the 
downstream edge of the grid. The offsets are generated by the offsets of the two 
input sections. 

3. Read the block dimensions and if necessary correct to avoid intersections with the 
bossing or the other strut block. 

4. Read the number of grid K-nodes, calculate the section distribution. 

 
[115] 



4.8. STRUT GRID BLOCK GENERATION   

5. Read the number of J-nodes as well as the number of J-nodes for the sub-grid, 
were applicable. 

6. Read the number of I-nodes. 
7. Calculate the node distribution on the strut, for the two reference sections. 
8. Calculate the z-coordinate of all the nodes laying on the strut, for the upstream 

section. 
9. Calculate the coordinates of all nodes laying on the strut, for all sections. 
10. Generate the 2-D planar I,J outer grids. 
11. Generate the 2-D planar I,J inner grids, where applicable. 
12. Project the 2-D planar I,J grids of part-A sections so as to conform to the hull. 
13. Generate the 3-D grid. 

 
Figure 4.8.5. Grid nodes on the solid boundaries about the struts of V-type bracket. 

NIxNJxNK=57x7x14 

 
Figure 4.8.6. 3-D grid (NIxNJxNK=147x20x20) about a strut, for clarity only the 
grid nodes on the solid boundaries (Upstream and South) plus two 2-D grids are 

presented. 

4.8.1 2-D Strut Grid Generation 
The strut grid comprises 2-D curvilinear orthogonal C-type grids, normal to the z-
axis. The 2-D grids are generated by employing the method presented in paragraph 
4.4. This method uses singularity distributions on the boundaries to solve the potential 
flow problem. Then the grid nodes are calculated as the intersection points of stream 
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and equi-potential lines. The method requires the node distribution on four edges that 
form the calculations domain. The nodes on the South and West edges are also the 
J=1 and I=1 nodes of the grid. 

Two important characteristics of the method are that the edges must be arranged in a 
count-clockwise direction and that the edges cannot fold. Those two characteristic 
necessitate the subdivision of each 2-D grid into two sub-grids, the top and the 
bottom-one, where the mirror image of the bottom side sub-grid has to be calculated 
(figure 4.8.7). 

 
Figure 4.8.7. Definition of the top and the bottom domains. The North and South 
edges are treated as solid boundaries, while the East and West edges are treated as 

equi-potential lines. 

In order to define the four edges, the locations of 6 characteristic points are calculated 
for each sub grid (figure 4.8.8). Then, the distribution on the South and West edges is 
calculated. The distribution is finer near the solid boundary, the leading edge and the 
trailing edge. The distribution on the West edge of both sub-domains is obviously the 
same, so that the resulting grids have that particular line common. The distribution on 
the other two edges is uniform (figure 4.8.9). 

 
Figure 4.8.8. Definition of the characteristic points.  

 
Figure 4.8.9. Distribution of nodes on the four edges.  
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Then, by introducing an eddy at x=0, y=0, the potential flow problem is solved 
according to the method of paragraph 4.4 and the two sub-grids are generated (figure 
4.8.10). Then the left-hand grid is mirrored and the final grid is generated by merging 
the two sub-grids. 

 
Figure 4.8.10. The two halves of the 2-D grid.  

The computational steps for the generation of a 2-D bossing outer grid are as follows: 

1. Calculate the nodes that lay on the strut section, taking into account the fact that 
the sections of part-A are not planar. 

2. Split the domain into the left-hand and right-hand sub-domains 
3. Calculate the locations of the characteristic points for each sub-domain. 
4. Calculate the number if I-nodes on the strut.  
5. Calculate the distribution of nodes on the four edges of the top sub-domain. 
6. Generate the top sub-grid  
7. Mirror the bottom sub-domain. 
8. Calculate the distribution of nodes on the four edges of the mirrored bottom sub-

domain.  
9. Generate the mirrored bottom sub-grid  
10. Mirror the generated grid into the bottom sub-grid. 
11. Merge grids 
12. Generate the inner grid. 
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4.9 Rudder Grid Block Generation 
The rudder is modeled by a single grid block, comprising 2-D curvilinear orthogonal 
C-type grids, normal to the rudder axis. Each orthogonal curvilinear grid is generated 
by employing either the singularity distribution method presented in paragraph 4.4 or 
the conformal mapping method of paragraph 2.4.2. Since the hydrofoil section, the 
chord and the twist may vary along the rudder axis, the 2-D grids differ and the 
resulting 3-D grid is partially orthogonal. Also near the hull, the grid conforms to the 
hull surface and as a result, the sections are not planar (figure 4.9.1). 

 
Figure 4.9.1. 2-D grid sections along the rudder axis. 

The rudder grid block is divided into three parts along its length. The first part, part-
A, extends from the hull up to the root of the rudder (H1 in figure 4.9.2). Part-B 
covers the length of the rudder, while part–C extends underneath the rudder tip up to a 
user defined distance (H2 and H3 in figure 4.9.2). 

The grid sections of part-B and part-C are always planar and normal to the rudder 
axis. The sections of part-A are non-planar, in order to conform the hull contours. 
Nevertheless when projected on a plane normal to the z-axis, each grid becomes 
orthogonal curvilinear. 

The block has its own coordinate system with the z-axis coinciding with the rudder 
axis and with a downwards direction, x-axis parallel the root chord towards the 
trailing edge and finally the y-axis completing the right-hand orthogonal system. The 
datum of the system is located on the root of the rudder. The rudder block coordinate 
system is presented in figure 4.9.2. 

The upstream (K=1) boundary of the block lays on the hull surface and is treated as a 
solid boundary. The location of the downstream (K=NK) boundary is defined by the 
user. The West (I=1) and East (I=NI) boundaries are the outflow boundaries and their 
distance from the strut trailing edge is also user defined. The South boundary (J=1) 
covers the rudder surface and the symmetry plane abaft the trailing edge. Finally the 
North boundary (J=NJ) is the external boundary. The extend of the block ahead of the 
strut leading edge and to the side, is defined by the user. 
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Figure 4.9.2. Definition of the rudder grid block coordinate system and dimensions. 

The distribution of 2-D sections along the z-axis (K-index) is not uniform; the grid is 
finer near the hull, the rudder root and tip. The distribution of nodes on each section is 
also variable. In the radial direction (J-index), grid resolution is finer near the rudder 
surface (J=1), while in the peripheral direction (I-index), grid resolution, with respect 
to the arc length of the section, is finer near the leading and trailing edges. In all 
directions, the number of grid nodes and the grid resolution for the first two nodes is 
defined by the user. Then the software arranges the nodes so that the node spacing 
follows an exponential distribution. In the peripheral direction, the grid resolution is 
defined by the user at both the leading and trailing edges. 

In order to generate the grid block, the software initially calculates the distribution of 
sections along the z-axis. Then the profile of each section of part-B is calculated, 
taking into account the rudder geometry and possibly the twist. Then a 2-D orthogonal 
curvilinear grid is generated on each section (xy-plane, I, J-indexes) (figure 4.9.3). 

 
Figure 4.9.4. 2-D grid (NIxNJ=147x20) about a rudder section. 

 
Figure 4.9.4. Detail of a 2-D grid (NIxNJ=147x20) near the leading edge of a rudder 

section. 
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All sections of part-C are considered the same as the section at the tip of the rudder, 
consequently al 2-D grids of part-C are the same as the 2-D grid on the rudder tip. 
Part-A of the rudder is also considered prismatic and as a result the 2-D grids of part-
A are the same as the 2-D grid on the root of the rudder. In order for the grid to 
conform to the hull contours, the upstream section (K=1) is projected on the hull. The 
rest of the 2-D grids of part-A are also deformed by an amount varying linearly 
between zero at the rudder root and one at section K=1. The generation of the 2-D 
grids will be discussed in further detail, in paragraph 4.9.1. 

In the case of the rudder grid block there may be three types of geometrical 
discontinuity that need to be addressed. In the case of a rudder with an exposed shaft, 
there is a step at the rudder root. Also the rudder tip may not be faired but end at a 
step. Finally the rudder thickness at the trailing edge may be non-zero. In order to 
model all three discontinuities, extra grid nodes (extra equi-J lines) are added to form 
a sub-grid. This sub grid runs the length of the main grid, has common indexing as the 
main grid and the finite volumes that are inside the rudder, remain inactive during the 
solution of the problem. 

The shape of the inner grid depends on the discontinuity. In the case of the exposed 
shaft, the inner grid is itself a 2-D orthogonal curvilinear grid in-between the rudder 
surface and the shaft (figure 4.9.5). Beneath the rudder tip, the inner grid is also itself 
a 2-D orthogonal curvilinear grid in-between the rudder surface and the center line 
(figure 4.9.6). In both of the above cases, the 2-D grids are generated by employing 
the singularity distribution method presented in paragraph 4.4. Abaft the trailing edge, 
the grid is a simple orthogonal grid (figure 4.9.7). The generation of the 2-D inner 
grids will be discussed in further detail, in paragraph 4.9.2. 

In the vertical direction (z-direction, K-index), the homologue grid nodes of 
subsequent planes are joined to form the partially orthogonal 3-D grid (figures 4.9.8- 
4.9.13). 

The computational steps for the generation of a rudder grid block, are as follows: 

1. Find block origin and orientation; calculate the translation vector and the rotation 
matrix with respect to the global (ship) coordinate system. 

2. Read the block dimensions. 
3. Read the number of grid K-nodes, calculate the section distribution. 
4. Read the number of J-nodes as well as the number of J-nodes for the sub-grid, 

were applicable. 
5. Read the number of I-nodes. 
6. Calculate the node distribution on the input sections of the rudder. 
7. Calculate the node distribution on all part-B sections of the rudder. 
8. Generate the 2-D planar I,J outer grids for part-B sections. 
9. Generate the 2-D planar I,J inner grids for part-B sections, where applicable. 
10. All part-A, 2-D planar I,J outer and inner grids are the same as the corresponding 

grids on the rudder root. 
11. All part-C, 2-D planar I,J outer and inner grids are the same as the corresponding 

grids on the rudder tip. 
12. Project the 2-D planar I,J grids of part-A sections so as to conform to the hull. 
13. Generate the 3-D grid. 
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Figure 4.9.5. 2-D inner grid (NIxNJ=147x10) in the case of an exposed rudder shaft 

(Type-A). 

 
Figure 4.9.6. 2-D inner grid (NIxNJ=147x10) in the case of a hydrodynamic fairing 
covering the rudder shaft (Type-B). The shaded portion of the grid remains inactive 

along the length of the rudder. 

 
Figure 4.9.7. Detail of 2-D inner grid (NIxNJ=147x10) for non-zero strut trailing 

edge thickness. 
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Figure 4.9.8. Grid nodes on the solid 

boundaries of a Type-B rudder grid block 
(NIxNJxNK =117x14x81). 

 
Figure 4.9.9 Grid nodes on the solid 

boundaries of a Type-A rudder grid block 
(NIxNJxNK =117x14x79). 

 
Figure 4.9.10. Grid nodes on the solid 

boundaries of a Type-A rudder grid block. 
The rudders are canted inwards by 10 
degrees (NIxNJxNK =117x14x79). 

 
Figure 4.9.11. Grid nodes on the solid 

boundaries of a Type-A rudder grid block. 
The rudders present an angle of attack of 
10 degrees (NIxNJxNK =117x14x81). 

 
Figure 4.9.12. Grid nodes on the solid boundaries of a r Type-A rudder grid block. 
The rudders feature a periodic twist of maximum angle of 10 degrees (NIxNJxNK 

=117x14x81). 
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Figure 4.9.14. 3-D grid (NIxNJxNK=147x29x33) about a Type-B rudder, for clarity 
the grid nodes on the solid boundaries are presented along with four 2-D grids, one at 
the end of part-A, one at the tip of the rudder, one at the downstream boundary of the 

block and a further one at the mid of part-B . 

4.9.1 2-D Outer Rudder Grid Generation 
The outer rudder grid comprises 2-D curvilinear orthogonal C-type grids, normal to 
the z-axis. The 2-D grids are generated by employing either the conformal mapping 
method (paragraph 2.4.2) or the method of paragraph 4.4. The later uses singularity 
distributions on the boundaries to solve the potential flow problem. Then the grid 
nodes are calculated as the intersection points of stream and equi-potential lines. The 
method requires the node distribution on four edges that form the calculations 
domain. The nodes on the South and West edges are also the J=1 and I=1 nodes of 
the grid. Since the rudder is symmetrical, only one-half of the grid has to be 
calculated. 

 
Figure 4.9.14. Definition of the computational domain, for the outer grid. The North 
and South edges are treated as solid boundaries, while the East and West edges are 

treated as equi-potential lines. 
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In order to define the four edges, the locations of 6 characteristic points are calculated 
(figure 4.9.15). Then, the distribution on the South and West edges is calculated. The 
distribution is finer near the solid boundary, the leading edge and the trailing edge. 
The distribution on the other two edges is uniform (figure 4.9.16). 

 
Figure 4.9.15. Definition of the characteristic points of the outer grid.  

 
Figure 4.9.16. Distribution of nodes on the four edges of the outer grid.  

Then, by introducing an eddy at x=0, y=0, the potential flow problem is solved 
according to the method of paragraph 4.4 and one-half of the grid are generated 
(figure 4.9.17). Then the grid is mirrored and the two grids are merged, to form the 
outer 2-D grid. 

 
Figure 4.9.17. One halve of the 2-D outer grid.  

The computational steps for the generation of a 2-D rudder outer grid are as follows: 

1. Calculate the locations of the characteristic points. 
2. Calculate the number if I-nodes on the rudder.  
3. Calculate the distribution of nodes on the four edges of the domain. 
4. Generate the grid  
5. Mirror the generated grid. 
6. Merge the two grids. 

4.9.2 2-D Inner Rudder Grid Generation 
The inner rudder grid comprises 2-D curvilinear orthogonal C-type grids, normal to 
the z-axis. The 2-D grids are generated by employing the same method as that for the 
outer grid. The inner and outer grids must share the grid nodes on the rudder surface. 
Also according to the method, the nodes on the South and East edges are also the J=1 

 
[125] 



4.9. RUDDER GRID BLOCK GENERATION   

and I=NI nodes of the grid and the four edges must be arranges in a counter-
clockwise direction. As a result the hydrofoil section has to be rotated by 180 degrees 
(figures 4.9.18 and 4.9.19). 

 
Figure 4.9.18. Definition of the computational domain, for an inner grid, with a 

rudder shaft. The North and South edges are treated as solid boundaries, while the 
East and West edges are treated as equi-potential lines. For clarity, the figure is scaled 

in the y-direction by a factor of 2.5. 

 
Figure 4.9.19. Definition of the computational domain, for an inner grid, without a 
rudder shaft. The North and South edges are treated as solid boundaries, while the 

East and West edges are treated as equi-potential lines. For clarity, the figure is scaled 
in the y-direction by a factor of 2.5. 

In the case of the inner grid without a rudder shaft, the datum is relocated nearer to the 
leading edge and the East edge is the line segment between the datum and the leading 
edge (figure 4.9.19) 

Then the locations of the characteristic points are calculated (figures 4.9.20 and 
4.9.21). The distribution on the West edge is calculated, while the distribution on the 
south edge is the same as on the south edge of the outer grid. The distribution on the 
other two edges is uniform. (figures 4.9.22 and 4.9.23). 

 
Figure 4.9.20. Definition of the characteristic points of an inner grid, with a rudder 

shaft. For clarity, the figure is scaled in the y-direction by a factor of 2.5. 

 
Figure 4.9.21. Definition of the characteristic points of an inner grid, without a rudder 

shaft. For clarity, the figure is scaled in the y-direction by a factor of 2.5. 
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Figure 4.9.22. Distribution of nodes on the four edges of an inner grid, with a rudder 

shaft. For clarity, the figure is scaled in the y-direction by a factor of 2.5. 

 
Figure 4.9.24. Distribution of nodes on the four edges of an inner grid, without a 
rudder shaft. For clarity, the figure is scaled in the y-direction by a factor of 2.5. 

Then, by introducing an eddy at x=0, y=0, the potential flow problem is solved 
according to the method of paragraph 4.4 and one-half of the grid are generated 
(figures 4.9.24 and 4.9.25). Then the grid is rotated by 180 degrees, then mirrored and 
the two grids are merged, to form the inner 2-D grid. 

The computational steps for the generation of a rudder 2-D inner grid are as follows: 

1. Calculate the locations of the characteristic points. 
2. Translate the datum, where necessary 
3. Calculate the distribution of nodes on the four edges of the domain. 
4. Rotate the edge nodes by 180 degrees. 
5. Generate the grid  
6. Rotate the grid by 180 degrees. 
7. Mirror the generated grid. 
8. Translate the datum to its original position, where necessary 
9. Merge the two grids. 

 
Figure 4.9.24. One halve of the 2-D inner grid, with a rudder shaft. For clarity, the 

figure is scaled in the y-direction by a factor of 2.5. 

 
Figure 4.9.25. One halve of the 2-D inner grid, without a rudder shaft. For clarity, the 

figure is scaled in the y-direction by a factor of 2.5. 
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4.10 Exchange of Flow Variables between Grid Blocks 
One of the key components of the Overlapping Grid Block method, as presented in 
paragraph 4.1, is the accurate and efficient exchange of information between the grid 
blocks. At any given step of the method, flow variables (velocity components, 
pressure, turbulent kinetic energy, turbulent kinetic energy dissipation rate and 
turbulent viscosity) as calculated on one grid block, the Master or donor grid block, 
need to be passed on to another grid block, the Slave block, in order for the flow to be 
solved on the later. When the slave block is one of the appendage blocks, the flow 
variables are transferred as conditions on its boundaries, where the master block is 
either the ship block or another appendage block. When the ship block is the slave, 
the flow variables are transferred as fixed values on a closed loop of internal finite 
volumes. In the following, the methodology for the first case, i.e. where one of the 
appendage blocks is the slave block, will be presented in detail. The method for 
handling the second case is very similar and will be briefly discussed at the end of this 
paragraph. 

The method begins by obtaining the required data for the master block: 

• dimensions: NIM, NJM, NKM 
• coordinates of the grid nodes, XM(NIM,NJM,NKM), YM(NIM,NJM,NKM), 

ZM(NIM,NJM,NKM)  
• translation vector SM and rotation matrix RM, that relates the coordinate 

system of the master grid block to the global (ship) coordinate system 
• distribution of flow variables, u1-velocity component UM(NIM,NJM,NKM), 

u2-velocity component VM(NIM,NJM,NKM), u3-velocity component 
WM(NIM,NJM,NKM), pressure PM(NIM,NJM,NKM), turbulent kinetic energy 
TEM(NIM,NJM,NKM), turbulent kinetic energy dissipation rate 
EDM(NIM,NJM,NKM) and turbulent viscosity VISM(NIM,NJM,NKM) 

Then, the required data for the slave block are gathered: 

• dimensions: NIS, NJS, NKS 
• coordinates of the grid nodes, XS(NIS,NJS,NKS), YS(NIS,NJS,NKS), 

ZS(NIS,NJS,NKS)  
• translation vector SS and rotation matrix RS, that relates the coordinate system 

of the master grid block to the global coordinate system 

In the above, the coordinates of the grid nodes are expressed at respective coordinate 
system of each block, while the u1, u2-velocity components are expressed at the local 
curvilinear coordinate system. The I=1 and J=1 grid lines are duplicated, as explained 
in paragraph 2.3.4. 

For each of the external boundaries of the slave block, the following procedure if 
applied on all external finite volumes: 

1. The center XCSL of the slave volume is calculated, in the slave coordinate 
system. 
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2. The coordinates of the center of the slave volume are calculated in the global 
coordinate system, XCSP. 

3. The coordinates of the center of the slave volume are calculated in the master 
block coordinate system, XCMR. 

4. The finite volume of the master block that contains the center of the slave 
volume is located. 

5. The flow variables at the center of the slave boundary volume, UMC, VMC, 
WMC, PMC, TEMC, EDMC and VISMC are calculated through zero-order or 
linear interpolations. 

6. The velocity components are projected to the global coordinate system, USP, 
VSP, WSP. 

7. The velocity components are projected to the slave coordinate system, USC, 
VSC, WSC. 

8. The u1, u2-velocity components are projected to the local curvilinear 
coordinate system. 

9. Finally, where required, the flow variables are calculated at the faces of the 
boundary volume, through linear interpolation amongst the corresponding 
values at the centers of the neighboring boundary volumes. 

Steps 4, 5 and 8 will be discussed in detail, in the following paragraphs. Step 9 is 
performed when a staggered grid arrangement is employed. Depending on the 
boundary, the variables the require relocation are: 

• for the East and West boundaries (I=NI and I=1, respectively) the u2-velocity 
component has to be relocated 

• for the North and South boundaries (J=NJ and J=1, respectively) the u1-
velocity component has to be relocated and 

• for the Upstream and Downstream boundaries (K=1 and K=NK, respectively) 
both u1 and u2-velocity component have to be relocated 

When the ship block is the slave block, the flow variables are transferred as fixed 
values on a closed loop of internal finite volumes. The values derive from a closed 
loop of master finite volumes. This loop has to be at a certain distance from the outer 
boundaries of the master block. That is important since the conditions on the master 
boundary came from the ship block itself. The methodology in this case is similar to 
the one described above with the only difference being that the main sweep is not for 
the slave grid nodes on the boundary but for the master grid nodes on the closed loop 
mentioned above. 

4.10.1 Inclusion Test 
The method for locating amongst a grid of finite volumes the one that contains a 
specified point in space is called Inclusion Test. Many algorithms performing the test, 
have been proposed in the literature. The algorithm adopted in the present work is 
perhaps the simplest and as a result quite inexpensive in terms of computational cost. 
On the other hand the presented method fails for complex volume geometries, a 
problem of no importance in our case since the numerical grids comprise simple 
hexahedral volumes. 
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In order to explain the method, let us consider the case of a cylindrical slave block 
overlapped by an orthogonal Cartesian grid (master). Let us also consider that both 
master and slave blocks comprise planar cylindrical and orthogonal 2-D grids 
respectively, with all planar grids being perpendicular to a common axis, say the x3-
axis. Finally the planes of the slave 2-D grids do not in general coincide with the 
planes of the master 2-D grids, i.e. the plane of a 2-D slave grid is in-between the 
planes of two successive master 2-D grids. In figure 4.10.1 such a 2-D cylindrical grid 
overlapped by an orthogonal Cartesian grid is presented. 

  
Figure 4.10.1 A 2-D cylindrical grid (Slave) overlapped by an orthogonal Cartesian 

grid (Master)  

In the present method, a face A(I,J,K) is defined by four grid nodes, (I,J,K), (I+1,J,K), 
(I,J+1,K), (I+1,J+1,K). Respectively a volume V(I,J,K) is defined by eight grid nodes, 
four on each one of two successive planes, (I,J,K), (I+1,J,K), (I,J+1,K), (I+1,J+1,K) 
and (I,J,K+1), (I+1,J,K+1), (I,J+1,K+1), (I+1,J+1,K+1). 

The coordinates of the center of a face is considered equal to the mean values of the 
corresponding coordinates of the four nodes that define that face: 

𝐱𝐜𝐚(I, J, K) = 𝐱(I, J, K) + 𝐱(I + 1, J, K) + 𝐱(I, J + 1, K) + 𝐱(I + 1, J + 1, K) (4.10.1) 
Also the coordinates of the center of a volume is considered equal to the mean values 
of the corresponding coordinates of the eight nodes that define that volume: 

𝐱𝐜𝐯(I, J, K) = 𝐱(I, J, K) + 𝐱(I + 1, J, K) + 𝐱(I, J + 1, K) + 𝐱(I + 1, J + 1, K) 

+𝐱(I, J, K + 1) + 𝐱(I + 1, J, K + 1) + 𝐱(I, J + 1, K + 1) + 𝐱(I + 1, J + 1, K + 1)
 (4.10.2) 

Given the coordinates of a point p, say the center of a slave grid volume, a triple 
sweep along the K,I,J directions of the master grid is performed. On a (I,J,K) step of 
the sweep, the A=A(I,J,K) and B=A(I,J,K+1) faces are defined along with the V(I,J,K) 
volume (figure 4.10.2). The centers of the faces are also defined, a= xca(I,J,K) and 
b=xca(I,J,K+1). Then the line segment [ab] that joins the two face centers is defined 
and its length SAB is calculated. Then the intersection point c, of the [ab] line 
segment and the line that is normal to [ab] and passes through p is located. Finally the 
line segment lengths SAC and SCP are calculated. Once the sweep is completed, point 
p is considered to be included in the V(I,J,K) master volume from whom SCP is 
minimum. During the sweep the K-direction weight factor is also calculated: 
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WFK = SAC/SAB (4.10.3) 

   
Figure 4.10.2 Definition of the Inclusion test parameters 

In figure 4.10.3, an application of the above method is presented, for the North 
boundary of the slave grid of figure 4.10.1. The North boundary finite volumes are 
denoted by a +45 degree line hatch, while the donor master volumes are denoted by a 
crosses hatch. 

  
Figure 4.10.3 Application of the inclusion test for the North-boundary of a 2-D 

cylindrical grid (Slave) overlapped by an orthogonal Cartesian grid (Master) 

4.10.2 Interpolation of Flow Variables 
On step 4 of the algorithm for the calculation of boundary conditions for the slave 
block, the finite volume of the master block that contains the center of the slave 
boundary volume is located by means of the inclusion method presented in the 
previous paragraph. On the next step, the flow variables at the center of the slave 
boundary volume need to be calculated from the respective values for the master grid. 

The simplest and computationally cheapest way is to consider that a flow variable at 
the center of a slave volume PS, has the same value as that at the center PM of the 
master volume that contains the center of the former volume. 

ΦS = ΦM (4.10.4) 
In equation (4.10.4) Φ stands for each of the three velocity components, the pressure, 
the turbulent kinetic energy, the turbulent kinetic energy dissipation rate and the 
turbulent viscosity. Also by the subscript S, the slave block is denoted, while the 
master block is denoted by the subscript M.  
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Since all variables are stored on the successive K-planes and in the general case the 
plane of the slave grid does not coincide with a plane of the master grid, we apply a 
linear interpolation in the K-direction. Let’s say that PS is located between two 
sections of the master grid, sections K and K+1. From the inclusion test of the 
previous paragraph we obtained the K-direction weight factor WFK. The value of a 
flow variable at the center of the slave volume can be calculated from the respective 
values at the centers of the K-faces of the master volume: 

ΦS = (1 − WFK) ∙ ΦM,K + WFK ∙ ΦM,K+1 (4.10.5) 

where ΦM,K is the value of the variable at the K-face of the volume and ΦM,K+1 the 
value at the K+1-face of the volume. This approach, presented in figure 4.10.4, is 
zero-order in terms of accuracy and should only be applied when very fine messes are 
used. 

  
Figure 4.10.4 Zero-order interpolation of the flow variables 

A more accurate method is that of bi-linear interpolation amongst four values. The bi-
linear method begins by locating the master volume that contains the center of the 
slave volume PS. The master volume is surrounded by eight volumes: 

• East, VE=V(I+1,J,K) 
• West, VW=V(I-1,J,K) 
• North, VE=V(I,J+1,K) 
• South, VE=V(I,J+1,K) 
• North-East, VE=V(I+1,J+1,K) 
• South-East, VE=V(I+1,J-1,K) 
• North-West, VE=V(I-1,J+1,K) 
• South-West, VE=V(I-1,J-1,K) 

The centers of the K, K+1 faces of four neighboring volumes, form a new volume, in 
total four new volumes (figure 4.10.5). By applying the inclusion test on the new 
volumes we can determine the one volume that contains the center point of the slave 
volume PS as well as the K-direction weight factor WFK. 
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Figure 4.10.5 Bi-Linear interpolation of the flow variables 

Then on each of the K, K+1 faces of the new volume we can calculate the weight 
factors for the bi-linear interpolation: 

WFIK = �PE4,K�/[�PE4,K� + �PE2,K�] 

WFJK = �PE1,K�/[�PE1,K� + �PE3,K�] 

WFAK = (1 − WFIK) ∙ (1 − WFJK) 

WFBK = WFIK ∙ (1 − WFJK) 

WFCK = WFIK ∙ WFJK 
WFDK = (1 − WFIK) ∙ WFJK (4.10.6) 

where all dimensions are defined in figure 4.10.6. 

  
Figure 4.10.6 Definition of the dimensions for the calculation of the bi-linear 

interpolation weight factors 

Then on each of the K, K+1 section and for each of the variables, we calculate 
corresponding value at the projection on the K-section PS,K, of the slave volume center 
point PS,: 

ΦS,K = WFAK ∙ ΦA,K + WFBK ∙ ΦB,K + WFCK ∙ ΦC,K + WFDK ∙ ΦD,K (4.10.7) 

The value for each variable is finally calculated by means of linear interpolation along 
the K-direction: 

ΦS = (1 − WFK) ∙ ΦS,K + WFK ∙ ΦS,K+1 (4.10.8) 
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4.10.3 Rotation of U, V Velocity Components 
When the flow problem is expressed in a curvilinear coordinate system (paragraph 
2.1.2) the velocity components at every point of the computational domain, refer to a 
local coordinate system with axis parallel to the grid lines. In the case of a partially 
orthogonal curvilinear grid, curvilinear orthogonal in the I,J-directions and non-
orthogonal along the K-direction, the above statement is true for the u1, u2-velocity 
components while the u3-componenets are always parallel (figure 4.10.7). It is 
important thus to be able to express the u1, u2-velocity components in a global 
Cartesian coordinate system. With reference to figure 4.10.8 the rotation of the two 
velocity components from the local to the global system is: 

u = u1 ∙ cos(φ) + u2 ∙ sin(φ) , v = −u1 ∙ sin (φ) + u2 ∙ cos (φ) (4.10.9) 
where u1, u2 the velocity components in the local system, u, v the velocity 
components in the Cartesian system and: 

xw = 0.5 ∙ [X(I, J) + X(I, J + 1)], yw = 0.5 ∙ [Y(I, J) + Y(I, J + 1)] 

xe = 0.5 ∙ [X(I + 1, J) + X(I + 1, J + 1)], ye = 0.5 ∙ [Y(I + 1, J) + Y(I + 1, J + 1)] 
tan(φ) ≈ (ye − yw)/(xe − xw)  (4.10.10) 

The above formulations refer to an internal finite volume. For finite volumes of the 
boundaries, the formulations may need alterations to avoid divisions with zero. 

 
Figure 4.10.7 Definition of the local 
curvilinear and the global Cartesian 

coordinate system 

 
Figure 4.10.8 Rotation of the velocity 

components to the Cartesian coordinate 
system 
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4.11 The Proposed Solution Procedure 
In the overlapping grid block method, a separate grid block is generated for each 
component and the transport equations are solved independently. The transfer of 
information between blocks is accompliced by using part of the solution of one block, 
the Master block, as boundary conditions for those boundaries of other blocks, Slave 
blocks, that lie within the Master block. In the presented method, the propeller shaft is 
modeled by up to three cylindrical blocks. The shaft bossing, the struts, the struts’ 
bossings and the rudder are modeled by one block each. As an example let us consider 
the case of a ship with two propellers, where each propeller shaft is supported by a 
single I-type bracket, that is there is only one strut. The grid blocks for the above 
appendage arrangement are presented in figure 4.11.1. 

  
Figure 4.11.1. The arrangement of the overlapping blocks for a ship with single shaft 

bracket and bossing. 

The solution procedure begins by solving the resistance problem for the “bare” hull, 
i.e. the hull without the appendages. The flow around the shaft bossing is solved next. 
In order to do so, the conditions on the inflow (K=1, Upstream), external (J=NJ, 
North) and outflow (K=NK, Downstream) boundaries of the bossing block (figure 
4.11.1) derive from the solution of the ship block. More specifically on the inflow and 
external boundaries, Dirichlet conditions are applied to all flow variables except for 
pressure (u1, u2, u3, k, ε) for which a Newmann condition is applied. On the outflow 
boundary, Dirichlet conditions are applied to the pressure and the turbulence model 
variables, while for the velocity components, the Open Boundary conditions are 
applied, i.e. the problem is solved up to the last finite volume. The West (I=1) and 
East (I=NI) boundaries of the shaft bossing block, lay on the hull surface and are 
treated as solid boundaries. The South (J=1) boundary covers the bossing surface and 
is also treated as a solid boundary. 

  
Figure 4.11.2. Definition of the external boundaries of the shaft bossing grid block. 
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Next, the fore shaft block is solved (Figure 4.11.3), where the boundary conditions for 
the inflow (K=1, upstream) boundary derive from the solution of the shaft bossing 
block. The outflow (K=NK, Downstream) boundary is treated as an open boundary. 
The North boundary (J=NJ), is treated as an external boundary and the conditions are 
taken from the ship block while the South boundary (J=1) covers the shaft surface 
and is treated as a solid boundary. Finally on the West (I=1) and East (I=NI) 
boundaries, the conditions for O-type grids are employed. 

  
Figure 4.11.3 Definition of the external boundaries of the fore shaft grid block.  

The strut bossing block is then solved (Figure 4.11.4). The boundary conditions for 
the inflow (K=1, upstream) boundary derive from the solution of the fore shaft block 
and the outflow (K=NK, Downstream ) boundary is treated as an open boundary. The 
North boundary (J=NJ), is treated as an external boundary and the conditions are 
taken from the ship block while the South boundary (J=1) covers the bossing surface 
and is treated as a solid boundary. Finally on the West (I=1) and East (I=NI) 
boundaries, the conditions for O-type grids are employed. 

  
Figure 4.11.4. Definition of the external boundaries of the strut bossing grid block. 

The boundary conditions for the aft shaft block are similar to the respective conditions 
for the fore shaft block, except for the inflow (K=1, upstream) boundary where the 
conditions are taken from the from the solution of the strut bossing block (Figure 
4.11.5). 

  
Figure 4.11.5. Definition of the external boundaries of the aft shaft grid block. 
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For the strut grid block, the upstream boundary (K=1) lays on the hull surface and is 
treated as a solid boundary. The Downstream boundary (K=NK) is treated as an 
external boundary with conditions been taken form the solution of the strut bossing 
block and possibly the shaft block that follows. The North boundary (J=NJ) is also 
treated as an external boundary with conditions taken form the ship block, as well as 
the strut bossing block and the shaft block. The South boundary (J=1) covers the strut 
surface as well as the symmetry plane downstream the trailing edge. Finally the West 
(I=1) and East (I=NI) boundaries are treated as outflow boundaries. 

  
Figure 4.11.6. Definition of the external boundaries of the strut grid block. 

The shaft bossing, shaft, strut and strut bossing blocks form a continuous volume of 
fluid and can be solved consecutively. In order then to transfer the obtained 
information to the ship block, the following procedure is adopted. A closed surface is 
defined, inside the volume covered by the combination of blocks. This surface passes 
through the centers of the finite volumes that are at a set distance from the external 
boundary of the volume (figure 2.3.7). Then the flow variables on that surface are 
calculated and passed on, as fixed values for the solution of the ship block. Finally the 
ship block is solved taking into account the information of the appendage blocks and 
the whole procedure can be repeated. 

  
Figure 4.11.7. Definition of boundary surface for the transfer of the flow variables 

from the appendages blocks to the ship block.  

The rudder grid block is solved independently (figure 2.3.8). The upstream boundary 
(K=1) lays on the hull surface and is treated as a solid boundary. The Downstream 
(K=NK) and North (J=NJ) boundaries are treated as an external boundaries with 
conditions been taken form the solution of the ship block. The South boundary (J=1) 
covers the rudder surface as well as the symmetry plane downstream the trailing edge. 
Finally the West (I=1) and East (I=NI) boundaries are treated as outflow boundaries. 
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Figure 4.11.8. Definition of the external boundaries of the rudder grid block. 

The computational steps for the solution of flow around the appendages are as 
follows: 

1. Solve the flow problem around the “bare” hull. 
2. Solve the shaft bossing flow, taking boundary conditions from the ship block.  
3. Solve the shaft flow, taking boundary conditions from the ship and shaft bossing 

blocks.  
4. Solve the strut bossing flow, taking boundary conditions from the ship and shaft 

blocks. 
5. Solve the shaft flow, taking boundary conditions from the ship and strut bossing 

blocks.  
6. Repeat steps 4 and five, in the case of more than one strut bossings. 
7. Solve the strut flow, taking boundary conditions from the ship, the strut bossing 

and the shaft blocks.  
8. Repeat step 7 for all struts. 
9. Solve the flow around the ship, taking into account the information derived from 

the appendages blocks. 
10. Solve the flow problem around the rudder, taking boundary conditions from the 

ship block. 
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5.1. INTRODUCTION, THE 200/08 LSMH MODEL  

5.1 Introduction, the 200/08 LSMH model 
In order demonstrate the ability of the new software, to solve the viscous flow 
problem around the appendages of a ship; a number of numerical tests were 
conducted. In these tests each grid block was solved independently, using uniform 
flow external boundary conditions. Consequently the derived results do not 
correspond to the actual flow around the appendages. 

Table 5.1.1 Main Particulars of Model 200/08. 
 Ship Model 

Scale Factor, λ  1/8.75 
Waterline Length, LWL  [m] 26.900 3.074 
Waterline Beam, ΒWL [m] 6.740 0.770 
Mead Draft, ΤΜ  [m] 1.890 0.216 
Displacement, Δ  [mt] 130.00 0.1893 
Longitudinal Position of Center of 
Buoyancy (from AFT end), LCB [m] 12.619 1.442 

Wetted Surface, WS  [m2] 182.910 2.389 

  
Figure 5.1.1 Lines plan of LSMH model 200/08. 

For these tests the LSMH model 200/08 was selected. The main particulars of the 
model and the corresponding ship are presented in table 5.1.1 (Triperinas et al., 2008) 
while in figure 5.1.1, the lines plan of this model is presented. The model features a 
twin-screw configuration with each shaft suspended from the hull by a single 90 
degree V-bracket. The shaft bossing and the strut bossing are cylindrical. The shaft 
arrangement and the corresponding dimensions in full scale are presented in figures 
5.1.2 and 5.1.3. The hydrofoil section of the struts has a thickness to chord ratio of 
20% (figure 5.1.4). The ship also features two trapezoidal rudders the dimensions of 
whom are presented in figure 5.1.5. The hydrofoil section of the rudder has a 17% 
thickness to chord ratio (figures 5.1.5 and 5.1.6). 

The overlapping block setup employed in the test, follows the method of paragraph 
4.2, that is there are two cylindrical blocks for the two parts of the shaft, one 
cylindrical block for the strut bossing and C-H-type blocks for the shaft bossing, each 
of the struts and the rudder. The numerical grids as well as the results from the 
calculations are presented in the following paragraphs. 
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Figure 5.1.2 Shaft, shaft bossing and strut bossing arrangement. 

   
Figure 5.1.3 Strut layout. 

   
Figure 5.1.4 Strut hydrofoil section. 

  
Figure 5.1.5 Rudder profile. 

  
Figure 5.1.6 Rudder hydrofoil section. 
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5.2 Flow Calculations about the Propeller Shaft 
In order to solve the viscous flow around the propeller shaft of the LSMH 200/08 
model, two cylindrical O-H-type blocks were generated by employing the method 
described in paragraph 4.5. The first block, the one nearest to the shaft bossing, 
extended upwind onto the shaft bossing and downwind onto the strut bossing. The 
second block extended upwind onto the strut bossing and downwind up to a 
predetermined distance from the shaft end. In these tests, the external flow is 
considered undisturbed and at the inlet and external boundaries of each block the 
velocity is set equal to the free stream velocity U∞ which in these tests is parallel to 
the shaft axis. The flow variables for both tests are presented in table 5.2.1. The 
calculations for the two shaft blocks are presented in the two following paragraphs. 

 

Table 5.2.1 Flow variables for the propeller shaft test, forward section 
Free Stream Velocity, U∞ 1.000 m/s 

Fluid Viscosity, ν 1.030E-06 m2/s 
Reynolds’s Number, ReD 1.282E+05  

Shaft diameter, D 0.132 m 

5.2.1 Propeller Shaft Calculations, Forward Section 
For the first shaft block, the one nearest to the shaft bossing, two numerical tests were 
conducted using different grid sizes. The grid variables for both tests are presented in 
table 5.2.2, where NI is the number of nodes in the circumferential direction, NJ is the 
number of nodes in the radial direction and NK is the number of sections 
perpendicular to the shaft axis. NJ1 is the number of nodes in the radial direction, at 
each of the shaft steps, NKL is the number of sections along the shaft length and NKU 
and NKD, the number of sections on the propeller bossing (upstream end) and the strut 
bossing (downstream end) respectively. The maximum radial extend of the grid is set 
equal to 10 times the shaft radius but is variable along the shaft axis so that the grid 
does not intersect the hull. In figures 5.2.1 to 5.2.3, several sections of the two blocks 
are presented. 

Table 5.2.2 Main grid variables for the propeller shaft test, forward section 
 A B 

NI 41 81 
NJ 30 50 

NJ1 11 11 
NK 44 84 

NKU 3 3 
NKL 40 80 
NKD 3 3 

NIxNJxNK 54,120 340,200 
Radial extend 10.0xRShaft 
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Figure 5.2.1 Perspective view of the numerical grid, test A (on the left) and B (on the 

right). 

 
Figure 5.2.2 Side view of the numerical grid, section I=1, test A (on the left) and B 

(on the right). 

  
Figure 5.2.3 Section K=NK, test A (on the left) and B (on the right). 

The viscous flow problem was then solved for each of the two blocks. In figure 5.2.4, 
the convergence history is presented. More specifically, the mass residual is depicted 
as a function of the pressure correction algorithm steps. 

In figures 5.2.5 (a) and (b) the distribution of the pressure coefficient cp is presented 
on the solid boundary. The pressure coefficient is calculated as: 

cP = p
0.5 ∙ρ∙ U∞2 

 (5.2.1) 

Where p is the pressure and ρ is the fluid density. 

In figures 5.2.6 to 5.2.8 the stream traces are presented on one longitudinal section of 
the flow field. In the same figures, the contours correspond to the intensity of the 
planar velocity, divided by the far field velocity. The peripheral velocity component is 
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ignored in the following figures, since the domain is symmetrical and the far field 
velocity is parallel to the shaft axis.  

 
Figure 5.2.4 Mass residual convergence history, tests A and B. 

 
Figure 5.2.5 Pressure coefficient (cP) contours on the shaft surface. From top right to 

bottom left, tests A and B. 

 
Figure 5.2.6 Cross flow envelopes and planar velocity contours. From top right to 

bottom left, tests A and B. 

 
Figure 5.2.7 Detail of the cross flow envelopes and planar velocity contours, near the 

first step. From top right to bottom left, tests A and B. 
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Figure 5.2.8 Detail of the cross flow envelopes and planar velocity contours, near the 

second step. From top right to bottom left, tests A and B. 

5.2.2 Propeller Shaft Calculations, After Section 
Two numerical tests were also conducted for the second shaft block The grid 
variables for both tests are presented in table 5.2.3, where NI is the number of nodes 
in the circumferential direction, NJ is the number of nodes in the radial direction and 
NK is the number of sections perpendicular to the shaft axis. NJ1 is the number of 
nodes in the radial direction at the strut bossing-shaft step, while NJ2 is the number of 
nodes in the radial direction at the shaft end. NKL is the number of sections along the 
shaft length and NKU and NKD, the number of sections on the strut bossing (upstream 
end) and abaft the shaft end respectively. The maximum radial extend of the grid is 
set equal to 10 times the shaft radius. In figures 5.2.9 to 5.2.11, several sections of the 
two blocks are presented. 

Table 5.2.3 Main grid variables for the propeller shaft test, after section 
 A B 

NI 41 81 
NJ 39 59 

NJ1 11 11 
NJ2 10 10 
NK 80 118 

NKU 3 3 
NKL 39 58 
NKD 40 59 

NIxNJxNK 127,920 563,922 
Radial extend 10.0xRShaft 

Downstream extend 5.0xRShaft 

The viscous flow problem was then solved for each of the two blocks. In figure 
5.2.12, the convergence history is presented. More specifically, the mass residual is 
depicted as a function of the pressure correction algorithm steps. In figures 5.2.13 (a) 
and (b) the distribution of the pressure coefficient cp (eq. 5.2.1) is presented on the 
solid boundary. In figures 5.2.14 and 5.2.15 the stream traces are presented on one 
longitudinal section of the flow field. In the same figures, the contours correspond to 
the intensity of the planar velocity, divided by the far field velocity. The peripheral 
velocity component is ignored in the following figures, since the domain is 
symmetrical and the far field velocity is parallel to the shaft axis.  
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Figure 5.2.9 Perspective view of the numerical grid, test A (on the left) and B (on the 

right). 

   
Figure 5.2.10 Side view of the numerical grid, section I=1, test A (on the left) and B 

(on the right). 

   
Figure 5.2.11 Section K=NK. From top right to bottom left, tests A and B. 

 
Figure 5.2.12 Mass residual convergence history, tests A and B. 

 
[147] 

 



5.2. FLOW CALCULATIONS ABOUT THE PROPELLER SHAFT  

 
Figure 5.2.13 Pressure coefficient (cP) contours on the shaft surface. From top right to 

bottom left, tests A and B. 

 
Figure 5.2.14 Cross flow envelopes and planar velocity contours. From top right to 

bottom left, tests A and B. 

  
Figure 5.2.15 Detail of the cross flow envelopes and planar velocity contours, near 

the end of the shaft. From top right to bottom left, tests A and B. 

The presented method can generate numerical grids around various configurations of 
a ship propeller shaft, taking into account possible steps in the shaft diameter. The 
modified RANS solver can now handle the o-type shaft block with the 
aforementioned steps. Also it is demonstrated that the solver can produce realistic 
results in terms of the flow characteristics and the pressure distribution on the shaft 
surface. Farther examination is required though, in order to determine the required 
grid density and to validate the produced integrated values, such as the shaft drag. 
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5.3 Flow Calculations about the Propeller Shaft Bossing 
In order to solve the viscous flow around the shaft bossing of the LSMH 200/08 
model, a C-H-type block was generated by employing the method described in 
paragraph 4.6. The block consists of planar orthogonal curvilinear grid sections, 
normal to the shaft axis. Three tests were conducted, using different grid densities. 
The values for the main grid variables are presented in table 5.3.1, for each of the 
three tests. 

Table 5.3.1 Main grid variables for the shaft bossing test, forward section 

 A B C 

NI 160 200 242 

NJ 40 50 61 

NK 80 100 120 

NIxNJxNK 512,000 1,000,000 1,771,440 

Radial extend 10.0xRShaft 

Upstream extend 10.0xRShaft 

In the above table, NK is the number of planar sections normal to the shaft axis, NI is 
the number of nodes in the circumferential direction and NJ is the number of nodes in 
the radial direction. The maximum radial extend of the grid is set equal to 10 times the 
shaft radius. The upstream extend of the block, i.e. the distance of the first section 
from the point along the shaft where the bossing penetrates the hull, is also 10 times 
the shaft radius. In figures 5.3.1 to 5.3.12, several sections of the three blocks are 
presented. 

One numerical test was performed with each of the grids. In all tests, the external flow 
is considered undisturbed and at the inlet and external boundaries of the block, the 
velocity is set equal to the free stream velocity U∞ which in these tests is parallel to 
the shaft axis. The flow variables for all tests are presented in table 5.3.2.  

Table 5.3.2 Flow variables for the shaft bossing test, forward section 
Free Stream Velocity, U∞ 1.000 m/s 

Fluid Viscosity, ν 1.030E-06 m2/s 

Reynolds’s Number, ReD 2.136E+06  
Reference Length, L 0.220 m 

The viscous flow problem was then solved. In figure 5.3.13, the convergence history 
is presented. More specifically, the mass residual is depicted as a function of the 
pressure correction algorithm steps. 
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Figure 5.3.1 Perspective view of the numerical grid, test A. 

 
Figure 5.3.2 Numerical grid on the 

hull, I=1, I=NI, test A. 

 
Figure 5.3.3 Numerical grid on the 

symmetry plane, I=NIM, test A. 

 
Figure 5.3.4 Numerical grid, test A, from top left to bottom right, sections K=1, 

K=42, K=51 and K=NK. 
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Figure 5.3.5 Perspective view of the numerical grid, test B. 

 
Figure 5.3.6 Numerical grid on the 

hull, I=1, I=NI, test B. 

 
Figure 5.3.7 Numerical grid on the 

symmetry plane, I=NIM, test B. 

 
Figure 5.3.8 Numerical grid, test B, from top left to bottom right, sections K=1, 

K=52, K=65 and K=NK. 
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Figure 5.3.9 Perspective view of the numerical grid, test C. 

 
Figure 5.3.10 Numerical grid on the 

hull, I=1, I=NI, test C. 

 
Figure 5.3.11 Numerical grid on the 

symmetry plane, I=NIM, test C. 

 
Figure 5.3.12 Numerical grid, test C, from top left to bottom right, sections K=1, 

K=62, K=80 and K=NK. 
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Figure 5.3.13 Mass residual convergence history, tests A, B and C. 

In the presented numerical tests, the convergence level for the mass residual is quite 
high. This is the primarily the result of the unrealistic boundary conditions (uniform 
flow) especially on the outflow (downstream, K=NK) boundary. 

In figures 5.3.14 to 5.3.16 the distribution of the pressure coefficient cp is presented 
on the solid boundary. The pressure coefficient is calculated as: 

cP = p
0.5 ∙ρ∙ U∞2 

 (5.3.1) 

Where p is the pressure and ρ is the fluid density. 

In figures 5.3.17 to 5.3.20, the iso-wake contours are presented for the three tests. 
More specifically the contours for the w-velocity component, the one parallel to the 
shaft axis, divided by the free-stream velocity U∞ are presented at for location along 
the shaft axis. The four locations are presented in figure 5.3.17, while in figures 5.3.18 
to 5.3.20, the iso-wake contours are presented for the three tests. 

The presented method can generate the numerical grid around various configurations 
of what is a rather difficult geometry, around a propeller shaft bossing. The modified 
RANS solver can now handle the C-H-type block with the East, West and South 
boundaries being handled as solid boundaries. In this paragraph it is demonstrated that 
the solver can produce realistic results in terms of the flow characteristics and the 
pressure distribution on the bossing surface. Farther examination is required though, 
in order to determine the required grid density and extends. Also the method requires 
validating in terms of the produced integrated values, such as the increase in the ship 
resistance. 
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Figure 5.3.14 Pressure coefficient (cP) contours on the solid boundary, test A. 

 
Figure 5.3.15 Pressure coefficient (cP) contours on the solid boundary, test B. 

 
Figure 5.3.16 Pressure coefficient (cP) contours on the solid boundary, test C. 
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Figure 5.3.17 Iso-wake (w/ U∞) contour locations, from top left to 

bottom right, x1=-2.0, x2=-1.0, x3=-0.5 and x4=-0.05, test A. 

 
Figure 5.3.18 Iso-wake (w/ U∞) contours, from top left to bottom right, 

x1=-2.0, x2=-1.0, x3=-0.5 and x4=-0.05, test A. 
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Figure 5.3.19 Iso-wake (w/ U∞) contours, from top left to bottom right, 

x1=-2.0, x2=-1.0, x3=-0.5 and x4=-0.05, test B. 

 
Figure 5.3.20 Iso-wake (w/ U∞) contours, from top left to bottom right, 

x1=-2.0, x2=-1.0, x3=-0.5 and x4=-0.05, test C. 
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5.4 Flow Calculations about a Strut 
In order to solve the viscous flow around a strut of the LSMH 200/08 model, a C-H-
type block was generated by employing the method described in paragraph 4.8. The 
block consists of initially planar orthogonal curvilinear grid sections, normal to the 
strut axis. Near the hull, the first section is projected on the hull while a set number of 
sections are also deformed. Two tests were conducted, using different grid densities 
for the outer strut of the shaft V-bracket. The values for the main grid variables are 
presented in table 5.4.1, for each of the tests.  

Table 5.4.1 Main grid variables for the strut tests 

 A B 

NI 198 298 

NIS 158 238 

NJ 31 46 

NK 30 45 

NIxNJxNK 184,140 616,860 

Upstream extend 0.5xC 

Side extend 1.0xC 

Downstream extend 1.0xC 

In the above table, NK is the number of planar sections normal to the strut axis, NI is 
the number of nodes in the circumferential direction and NJ is the number of nodes in 
the radial direction. NIS is the number of nodes in the circumferential direction that 
lay on the strut surface.  

The upstream extend (ahead of the strut leading edge) of the grid is set equal to half a 
chord while the side and downstream (abaft the strut trailing edge) extends are set 
equal to one chord length. In figures 5.4.1 and 5.4.2, the arrangement for the strut 
block is presented. In figures 5.4.3 to 5.4.5 several sections of the two blocks are 
presented. 

One numerical test was performed with each of the grids. In both tests, the external 
flow is considered undisturbed and at the inlet and external boundaries of the block, 
the velocity is set equal to the free stream velocity U∞ which in these tests is normal 
to the strut axis. On the hull, solid boundary conditions are employed. The flow 
variables for the tests are presented in table 5.4.2. The viscous flow problem was then 
solved. In figure 5.4.6, the convergence history is presented. More specifically, the 
mass residual is depicted as a function of the pressure correction algorithm steps. 

Table 5.4.2 Flow variables for the strut tests 
Free Stream Velocity, U∞ 10.000 m/s 

Fluid Viscosity, ν 1.030E-06 m2/s 

Reynolds’s Number, Re 2.913+06  
Reference Chord, C 0.300 m 
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Figure 5.4.1 Perspective view of the strut grid arrangement. 

  
Figure 5.4.2 Side view of the strut grid arrangement. 

 
Figure 5.4.3 2-D grid section at the strut root, test A, NTot=184,140 nodes. 

  
Figure 5.4.4 2-D grid section at the strut root, test B, NTot=616,860 nodes. 

 
[158] 

 



5.4. FLOW CALCULATIONS ABOUT A STRUT  

 
Figure 5.4.5 Detail of the 2-D grid section near the leading edge, on the left test A, 

NTot=184,140 nodes, and on the right test B, NTot=616,860 nodes,. 

   
Figure 5.4.6 Mass residual convergence history, tests A, and B. 

In the presented numerical tests, the convergence level for the mass residual is quite 
high. This is the primarily the result of the unrealistic boundary conditions (uniform 
flow) in conjunction with the narrow width of the strut block. 

The test cases are compared in terms of the total Drag which is calculated as the sum 
of the skin friction RF and the pressure drag RP: 

Drag = RP + RF (5.4.1) 

RP = ∬ p ∙ 𝐧 ∙ 𝐢  dsAS
 (5.4.1) 

RF = ∬ τwAS
∙ 𝐬 ∙ 𝐢 ds (5.4.2) 

Where AS is the strut surface, p is the pressure on the strut surface, n is the unit vector 
normal to the strut surface, i the unit vector parallel to the strut chord, τw is the wall 
shear stress and s is the tangential unit vector to the strut surface. 

The drag components are expressed in their respective non-dimensional form: 

CP = RP
0.5 ∙ρ∙ AS∙U∞2 

 (5.4.4) 

CF = RF
0.5 ∙ρ∙ AS∙U∞2 

 (5.4.5) 

CD = CP + CF = Drag
0.5 ∙ρ∙ AS∙U∞2 

 (5.4.6) 
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In table 5.4.3, the results of the two tests are presented, in terms of the non-
dimensional drag coefficients. 

Table 5.4.3 Strut tests, Drag coefficients 

 A B 

NIxNJxNK 184,140 616,860 

CD 5.411E-03 5.284E-03 

CF 5.013E-03 5.263E-03 

CP 1.398E-03 1.021E-03 

In figure 5.4.7, the convergence history for the drag coefficient (CD) is presented, as a 
function of the pressure correction algorithm steps. 

   
Figure 5.4.7 Drag coefficient (CD) convergence history, tests A, and B. 

The tests are also compared in terms of the values of the localized coefficients for the 
pressure cp and the skin friction cf: 

cP = p
0.5 ∙ρ∙ U∞2 

 (5.4.7) 

cf = τw
0.5 ∙ρ∙ U∞2 

 (5.4.8) 

In figures 5.4.8 and 5.4.9, the pressure coefficient contours are presented on the two 
sides of the strut. In figures 5.4.10 and 5.4.11, the pressure cp and the skin friction cf 
coefficients are presented on a section half-way along the length of the strut. 

The presented method can generate the numerical grid around a propeller strut. The 
strut may have a varying chord length and twist along its length. The modified RANS 
solver can now handle the C-H-type block with the Upstream boundary being handled 
as a solid boundary, while the South boundary is handled partially as a solid boundary 
and partially as a symmetry line. In this paragraph it is demonstrated that the solver 
can produce realistic results in terms of the flow characteristics and the pressure and 
skin friction distribution on the strut surface. Farther examination is required though, 
in order to determine the required grid density and extends. Also the method requires 
validating in terms of the produced integrated values, such as the increase in the ship 
resistance. 
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Figure 5.4.8 Pressure coefficient (cP) contours on the outer side of the strut surface, 

tests A (on the left) and B (on the right). 

   
Figure 5.4.9 Pressure coefficient (cP) contours on the inner side of the strut surface, 

tests A (on the left) and B (on the right). 

   
Figure 5.4.10 Pressure Drag coefficient (cP) distribution, tests A and B, strut root (on 

the left) and half way along the strut length (on the right). 

   
Figure 5.4.11 Skin Friction coefficient (cf) distribution, tests A and B, strut root (on 

the left) and half way along the strut length. 
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5.5 Flow Calculations about the Rudder 
In order to solve the viscous flow around one of the twin rudders of the LSMH 200/08 
model, a C-H-type block was generated by employing the method described in 
paragraph 4.9. The block consists of initially planar orthogonal curvilinear grid 
sections, normal to the rudder axis. Near the hull, the first section is projected on the 
hull while a set number of sections are also deformed. In table 5.5.1, the values for the 
main grid variables are presented for two tests that were conducted.  

Table 5.5.1 Main grid variables for the rudder tests 
 A B 

NI 198 298 
NIS 158 238 
NJO 30 45 
NJI 11 11 
NK 58 78 

NKU 20 20 
NKL 30 45 
NKD 10 15 

NIxNJxNK 459,360 1,278,420 
Upstream extend 0.5xC 

Side extend 1.0xC 
Downstream extend 1.0xC 

Extend under the tip 0.5xC 

In the above table, NKL is the number of planar sections normal to the rudder axis, NI 
is the number of nodes in the circumferential direction and NJO is the number of 
nodes in the radial direction. NIS is the number of nodes in the circumferential 
direction that lay on the rudder surface. NJI is the number of nodes in the radial 
direction that form the inner sub-grid for solving the flow below the rudder tip. 
Finally NKU and NKD correspond to the number of section above the rudder kink (see 
figure 5.5.1) and below the rudder tip respectively. 

The extend of the block below the rudder tip is set equal to half a chord. The upstream 
extend of the grid (ahead of the rudder leading edge) is set equal to half a chord while 
the side and downstream (abaft the rudder trailing edge) extends are set equal to one 
chord length. In figures 5.5.1 (a) and (b), the arrangement for the rudder block is 
presented. In figures 5.5.2 and 5.5.3 two sections of the rudder block, A, are 
presented, at the rudder root and at the tip respectively. In figures 5.5.4 and 5.5.5 the 
corresponding sections are presented for block B. In figures 5.5.6 and 5.5.7, a detail of 
the above grids is presented, near the leading edge. 

For each of the two grids, one numerical test was performed. The external flow was 
considered undisturbed and at the inlet and external boundaries of the block, the 
velocity was set equal to the free stream velocity U∞ which in these tests is normal to 
the rudder axis. On the hull and the rudder surface, solid boundary conditions are 
employed. The flow variables for the tests are presented in table 5.5.2. The viscous 
flow problem was then solved. In figure 5.5.8, the convergence history is presented. 
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More specifically, the mass residual is depicted as a function of the pressure 
correction algorithm steps. 

Table 5.5.2 Flow variables for the rudder tests 
Free Stream Velocity, U∞ 10.000 m/s 

Fluid Viscosity, ν 1.030E-06 m2/s 
Reynolds’s Number, Re 7.087E+06  

Reference Chord, C 0.730 m 

  
Figure 5.5.1 Perspective view of the numerical grid arrangement. 

 
Figure 5.5.2 2-D grid section at the rudder root, test A, NTot=459,360 nodes. 

  
Figure 5.5.3 2-D grid section at the rudder tip, test A, NTot=459,360 nodes. 
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Figure 5.5.5 2-D grid section at the rudder root, test B, NTot=1,278,420 nodes. 

  
Figure 5.5.5 2-D grid section at the rudder tip, test B, NTot=1,278,420 nodes. 

 
Figure 5.5.6 Detail of the 2-D grid section near the leading edge, test A, 
NTot=459,360 nodes, rudder root on the left and rudder tip on the right. 

  
Figure 5.5.7 Detail of the 2-D grid section near the leading edge, test B, 

NTot=1,278,420 nodes, rudder root on the left and rudder tip on the right. 
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Figure 5.5.8 Mass residual convergence history, tests A, and B. 

In the presented numerical tests, the convergence level for the mass residual is quite 
high. This is the primarily the result of the unrealistic boundary conditions (uniform 
flow) in conjunction with the narrow the narrow width of the rudder block. 

The test cases are compared in terms of the total Drag which is calculated as the sum 
of the skin friction RF and the pressure drag RP: 

Drag = RP + RF (5.5.1) 

RP = ∬ p ∙ 𝐧 ∙ 𝐢  dsAR
 (5.5.1) 

RF = ∬ τwAR
∙ 𝐬 ∙ 𝐢 ds (5.5.2) 

Where AR is the rudder surface, p is the pressure on the rudder surface, n is the unit 
vector normal to the rudder surface, i the unit vector parallel to the rudder chord, τw is 
the wall shear stress and s is the tangential unit vector to the rudder surface. 

The drag components are expressed in their respective non-dimensional form: 

CP = RP
0.5 ∙ρ∙ AR∙U∞2 

 (5.5.4) 

CF = RF
0.5 ∙ρ∙ AR∙U∞2 

 (5.5.5) 

CD = CP + CF = Drag
0.5 ∙ρ∙ AR∙U∞2 

 (5.5.6) 

In table 5.5.3, the results of the two tests are presented, in terms of the non-
dimensional drag coefficients. 

Table 5.5.3 Rudder tests, Drag coefficients 
 A B 

NIxNJxNK 459,360 1,278,420 
CD 5.708E-03 5.530E-03 

CF 3.045E-03 3.013E-03 

CP 2.663E-03 1.517E-03 

In figure 5.5.9, the convergence history for the drag coefficient (CD) is presented,  as a 
function of the pressure correction algorithm steps. 
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Figure 5.5.9 Drag coefficient (CD) convergence history, tests A, and B. 

The tests are also compared in terms of the values of the localized coefficients for the 
pressure cp and the skin friction cf: 

cP = p
0.5 ∙ρ∙ U∞2 

 (5.5.7) 

cf = τw
0.5 ∙ρ∙ U∞2 

 (5.5.8) 

In figures 5.5.10 (a) and (b), the pressure coefficient contours are presented on the 
rudder surface. In figures 5.5.11 and 5.5.12, the pressure cp and the skin friction cf 
coefficients are presented on a section at the kink of the rudder. 

 
Figure 5.5.10 Pressure coefficient (cP) contours on the rudder surface, tests A (on the 

left) and B (on the right). 
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Figure 5.5.11 Pressure Drag coefficient (cP) distribution, tests A and B, rudder kink 

(on the left) and rudder tip (on the right). 

 
Figure 5.5.12 Skin Friction coefficient (cf) distribution, tests A and B, rudder kink 

(on the left) and rudder tip (on the right). 

The presented method can generate the numerical grid around a ship rudder. The 
rudder may have a varying chord length and twist along its length. The rudder tip may 
have a finite cross section, in which case a step is created in the geometry. The 
modified RANS solver can now handle the C-H-type block with the Upstream 
boundary being handled as a solid boundary, while the South boundary is handled 
partially as a solid boundary and partially as a symmetry line. The solver can now 
handle the step at the rudder tip.In this paragraph it is demonstrated that the solver can 
produce realistic results in terms of the flow characteristics and the pressure and skin 
friction distribution on the rudder surface. Farther examination is required though, in 
order to determine the required grid density and extends. Also the method requires 
validating in terms of the produced integrated values, such as the rudder drag. Such an 
examination is presented in the case of the “Dyne” tanker, in Chapter 6. 
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CHAPTER 6 FLOW CALCULATIONS ABOUT A SHIP 
WITH RUDDER 
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6.1. INTRODUCTION, THE “DYNE” TEST CASE 

6.1 Introduction, the “Dyne” Test Case 
In order to validate the new method for solving the flow around a ship with 
appendages, the case of a single propeller tanker with rudder was selected. More 
specifically the “Dyne” tanker model was selected (Dyne, 1995), since it was 
extensively tested both in the towing tank and the wind tunnel in order to provide a 
comprehensive data set for the validation of CFD methods. The main particulars of 
the “Dyne” tanker are presented in table 6.1.1, while in figure 6.1.1, the lines plan is 
provided. 

Table 6.1.1 Main particulars of the “Dyne” model and ship 
 Model Ship  
Scale factor, λ 36   
Length between 
perpendiculars, LPP 7.028 253.008 m 

Breadth, B 1.065 38.340 m 
Draught, T 0.396 14.256 m 
Displacement, V 2.523 117713 m3 
Wetted surface, WS 11.450 14839.2 m2 
L/B 6.6  
B/T 2.7  
CB 0.85  
Velocity, V 1.370  m/s 
  16.000 kn 
Froude number, Fn 0.165  
Reynolds number, 
Re 9.628x106 2.082x109  

  
Figure 6.1.1 Lines plan for the “Dyne” model 

The towing tank measurements were carried out in the SSPA towing tank, comprising 
resistance and self-propulsion tests, nominal wake measurements using Prandtl tubes 
and five-hole Pitot tubes, Prandtl tube measurements in a plane ahead of the propeller 
with and without working propeller (Figure 6.1.2), static pressure measurements in 
the propeller plane and hull pressure measurements with and without working 
propeller. The SSPA towing tank has a length of 260 m, a breadth of 10 m and a water 
depth of 5 m. A different model was tested at the HSVA windtunnel (Denker et al. 
1992) having an LPP=2.664 m and a scale factor λ=96. During one series of resistance 
measurements and throughout the self-propulsion experiments, the model was 
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equipped with a ruder having a NACA 18 profile. The planform of the rudder is 
shown in figure 6.1.2. 

 
Figure 6.1.2 Wake measurement planes and Rudder planform 

For the self-propulsion tests, the model was equipped with a propeller model, located 
at X/LPP=0.989, measuring from the Fore Perpendicular. The propeller model, Ρ1171, 
belongs to the SSPA standard propeller family SSPA 6.60 Its main data are: 

Table 6.1.2 Main data of the P1171 propeller model 
Number of blades, z 5  
Diameter, D 0.195 m 
Pitch ratio, P/D 0.650  
Blade area ratio, AD/A0 0.600  

The open water characteristics of the Ρ1171 propeller were measured experimentally 
and in the calculations can be replaced by following polynomials: 

10 × KT = 3.0764 − 2.3236 × J − 4.4347 × J2 + 4.5852 × J3 − 2.9248 × J4 

100 × KQ = 3.088 − 1.490 × J − 3.319 × J2 + 1.837 × J3 − 1.340 × J4 

(6.1.1) 
The above polynomials represent the propeller characteristics with an error of less 
than 1%. In figure 6.1.3, the propeller characteristics are graphically presented. 

  
Figure 6.1.3 Open water characteristics of the Ρ1171 propeller model 
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6.2 Free Surface Calculations 
The free surface was calculated using the new hybrid potential-viscous method of 
paragraph 3.3. All calculations were performed at model scale and at a Froude 
number of Fn=0.165 corresponding to a full-scale velocity of 16.00 kn. The flow 
variables for the free surface calculations are presented in table 6.2.1.  

Table 6.2.1 Flow variables for the free surface calculations. 
Scale Factor, λ 36  

Ship Speed, VS 16.0 kn 

Model Speed, Vm 1.371 m/s 

Fluid Viscosity, ν 1.161E-06 m2/s 

Froude Number, Fn 0.165  

Reynolds’s Number, Re 8.474E+06  

For the potential calculations, a total of 45,214 panels were employed.The free 
surface was then corrected using the hybrid method. The transition point was located 
at 44.1% of the waterline length, measuring from the bow of the ship. A single C-O-
type block was employed with a grid size NIxNJxNK=81x180x861 where NK is the 
number of planar 2-D, NI is the number of grid nodes in the circumferential direction 
of each planar section and NJ is the number of grid nodes in the radial direction of 
each planar section. The total grid size was 12,553,380 nodes. In figure 6.2.1 the grid 
on the free surface (I=1) is presented, near the bow of the ship. 

In figures 6.2.2 and 6.2.3, a perspective view of the water elevation contours are 
presented, as calculated by the potential solver and as corrected by means of the 
RANS solver respectively. 

In figures 6.2.4 and 6.2.5, a top view of the water elevation contours are presented, as 
calculated by the potential solver and as corrected by means of the RANS solver 
respectively. 

The water elevation contours for the potential solver free surface and the RANS 
corrected free surface are compared in figure 6.2.6.  

 
Figure 6.2.1 Numerical grid on the free-surface. 
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Figure 6.2.2 Perspective view of the 

water elevation contours, potential free 
surface, Froude number Fn=0.165 

 
Figure 6.2.3 Perspective view of the 

water elevation contours, corrected free 
surface, Froude number Fn=0.165 

 
Figure 6.2.4 Top view of the water 
elevation contours, potential free 
surface, Froude number Fn=0.165 

 
Figure 6.2.5 Top view of the water 
elevation contours, corrected free 
surface, Froude number Fn=0.165 

 
Figure 6.2.6 Top view of the water elevation contours, top: corrected free surface, 

bottom: potential free surface. Froude number Fn=0.165 

In figures 6.2.7 to 6.2.10, longitudinal sections of the wave patter, at a fixed distance 
from the side of the ship are presented. The solid lines correspond to the corrected 
free surface, the dashed lines correspond to the potential free surface and finally the 
the x-marks are data measured experimentally (Lundgren & Åhman, 1994). 
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Figure 6.2.7 Wave pattern at a distance 
of 0.1 m from side of the model, Froude 

number Fn=0.166. 

 
Figure 6.2.9 Wave pattern at a distance 
of 0.3 m from side of the model, Froude 

number Fn=0.166. 

 
Figure 6.2.8 Wave pattern at a distance 
of 0.2 m from side of the model, Froude 

number Fn=0.166. 

 
Figure 6.2.10 Wave pattern at a distance 
of 0.4 m from side of the model, Froude 

number Fn=0.166. 

The calculated free-surface, using the new hybrid method, is in good agreement with 
the experimental data and the over-prediction of wave height near the stern of the 
ship, presented in the potential calculations is corrected. The differences that appear 
between the potential and the viscous solutions upstream the transition point should 
be attributed to the interpolations needed, in order to calculate the wave elevation on 
the viscous grid nodes, from the respective values on the panels of the potential 
solver. 
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6.3 “Bare” Hull Calculations 
In order to validate the method for solving the viscous flow around a ship, a series of 
numerical experiments was conducted for the “Dyne” model, without the rudder. 
Simulations were performed at model scale and full scale, at a constant Froude 
number, Fn=0.165 corresponding to a full-scale velocity of 16.00 kn. The flow 
variables for the “bare” hull calculations are presented in table 6.3.1.  

Table 6.3.1 Flow variables for the “bare” hull calculations. 
 Model Ship  

Scale Factor, λ 36   

Speed, V 
- 16.0 kn 

1.371 8.226 m/s 
Fluid Viscosity, ν 1.161E-06 1.431E-06 m2/s 

Froude Number, Fn 0.165  
Reynolds’s Number, Re 8.474E+06 1.484E+09  

The free surface was calculated at model scale, using the new hybrid method, as 
described in paragraph 6.2. In the following numerical experiments the free surface 
was treated as a fixed boundary. 

The viscous flow was then solved by employing two grid blocks, one C-O-type 
around the bow and fore half of the ship and an H-O-type block around the aft half of 
the ship as well as the wake. The method for solving the viscous flow problem with 
multiple grid blocks is described in paragraph 2.5. In table 6.3.2, the dimensions of 
the grids used in the various tests are presented. The grids used for the propulsion 
tests were the same as in the resistance tests. For the full scale tests and the test 
without the use of wall functions, the grid dimensions were the same as in the other 
tests but the node distribution in the radial (J) direction differed. Specifically it was 
made finer near the solid boundary. In table 6.3.2, the average value for the y+ 
parameter is included for each test. 

Table 6.3.2 Grid dimensions for the “bare” hull tests 
 Model Scale Full Scale 
 Symmetric Asymmetric Asymmetric 

 Wall fun’s Near wall Wall fun’s Wall fun’s 

B
ow

 G
rid

 
B

lo
ck

 

NI 81 81 81 81 
NJ 180 180 180 180 
NK 511 511 511 511 

NTOT,bow 7,450,380 7,450,380 7,450,380 7,450,380 

St
er

n 
G

rid
 

B
lo

ck
 

NI 81 81 160 160 
NJ 180 195 180 180 
NK 571 571 411 411 

NTOT,stern 8,325,180 9,018,945 11,836,800 11,836,800 
NTOT 15,775,560 16,469,325 19,287,180 19,287,180 
y+ 60 0.5 30 260 
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For each numerical test, the resistance components were then calculated (Tzabiras, 
2009): 

RP = ∬ (p∗ − ρgh)WS ∙ (𝐧 ∙ 𝐢) ds (6.3.1)  

RF = ∬ τwWS ∙ (𝐬 ∙ 𝐢) ds (6.3.2) 

Where RP is the pressure resistance, RF is the frictional resistance, WS is the actual 
wetted surface, p* is the pressure on the hull, ρgh is the hydrostatic term, ρ is the 
water density, g is the gravitational acceleration, h is the height from a reference 
level, n is the unit vector normal to the hull, i is the unit vector parallel to the ship 
longitudinal axis, τw is the wall shear stress and s is the tangential unit vector to the 
hull. The total resistance is then considered equal to the sum of the pressure and 
frictional resistance: 

RT = RP + RF (6.3.3) 
The resistance components are expressed in their respective non-dimensional form: 

CP = RP
0.5 ∙ρ∙ WS∙V2 

 (6.3.4)  

CF = RF
0.5 ∙ρ∙ WS∙V2 

 (6.3.5) 

CT = CP + CF = RT
0.5 ∙ρ∙ WS∙V2 

 (6.3.6) 

Where V is the ship or model speed. 

Apart from the integrated values, flow variables are also presented on four sections of 
the ship near the stern (figure 6.3.1). The first, Section A, is located upstream the 
propeller plane, at a distance of 0.979LBP from the bow. The second section, Section 
B, coincides with the propeller plane, at a distance of 0.989LBP from the bow. The 
other two sections, Sections C and D, are located abaft the propeller plane, at a 
distance of 0.992LBP and 0.996LBP from the bow respectively. 

  
Figure 6.3.1 Location of measurement planes 

On each of the four sections, three figures are presented. The first corresponds to the 
iso-wake contours for the longitudinal velocity components w, on the non-
dimensional form w/V. In the second figure, cross flow envelop are presented on that 
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section, taking into account the two planar velocity components u, v but ignoring w. 
Finally in the third figure, the iso-bar contours are presented for the local pressure 
coefficient: 

cP = p∗−ρgh
0.5 ∙ρ∙ V2 

 (6.3.7) 

In the self-propulsion numerical tests, the propeller is modeled via the actuator disk 
method (paragraph 2.6) and the propeller characteristics are those of the “Dyne” 
model as presented in paragraph 6.1. The self-propulsion algorithm is presented in 
figure 6.3.2. Initially the resistance problem is solved. Then, the propeller thrust is set 
equal to the resistance, the body forces are calculated inside the propeller disk and 30 
iterations of the SIMPLE algorithm are performed and by that stage, the algorithm has 
only partially converged. Then the new resistance is calculated, the thrust is set equal 
to the new resistance and the procedure is repeated until convergence is achieved, in 
terms of thrust being equal to the calculated resistance. Approximately 60 iterations of 
the above procedure are necessary. 

  
Figure 6.3.2 “Bare” hull, flow chart of the self-propulsion procedure. 

In the propulsion tests the hull-propeller interaction coefficients are calculated: 

1 − w = VA
V 

 (6.3.8)  

1 − t = T
RT 

 (6.3.9) 

Where w is the wake fraction, t is the augment of resistance coefficient, VA is the 
wake speed, i.e. the mean velocity on the propeller disk and T is the propeller thrust. 
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6.3.1 Model Scale Resistance Calculations, Symmetric Flow 
In the first series of tests, the problem was considered symmetric and only one-half of 
the computational domain was modeled. First the resistance problem was solved at 
model scale, using a C-O-type bow grid block measuring NIxNJxNK=81x180x511 
nodes, where NK is the number of planar 2-D, NI is the number of grid nodes in the 
circumferential direction of each planar section and NJ is the number of grid nodes in 
the radial direction of each planar section. The total grid size for the bow grid was 
7,450,380 nodes. The stern was modeled using an H-O-type grid measuring 
NIxNJxNK=81x180x571 nodes for a total of 8,325,180 nodes. The total grid size 
was 15,775,560 nodes. The calculated values for the resistance characteristics are 
presented collectively in table 6.3.1 of paragraph 6.3.8. 

  
Figure 6.3.3 Isowake (w/V) contours, model scale, symmetric flow, resistance. From 

top right to bottom left, sections A, B, C and D. 
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Figure 6.3.4 Cross flow envelopes, model scale, symmetric flow, resistance. From 

top right to bottom left, sections A, B, C and D. 

  

    
Figure 6.3.5 Isobar (cP) contours, model scale, symmetric flow, resistance. From top 

right to bottom left, sections A, B, C and D. 
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6.3.2 Model Scale, Near Wall Treatment Resistance Calculations, 
Symmetric Flow 

In order to evaluate the accuracy of the wall functions approach (paragraph 1.4.4) 
used in the previous test, the same problem was solved using this time the near-wall 
treatment approach. In this approach the south boundary of the numerical grid 
coincides with the hull surface and the no-slip condition is applied. This approach 
requires finer grids near the solid boundary and as a result was employed only on the 
stern block. The bow grid block was the same as in the case of paragraph 6.3.1, 
measuring NIxNJxNK=81x180x511 nodes, a total of 7,450,380 nodes. For the stern 
block, extra nodes were added in the J-direction: NIxNJxNK=81x195x571 nodes for 
a total of 9,018,945 nodes. The total grid size was 16,469,325 nodes. 

  
Figure 6.3.6 Isowake (w/V) contours, model scale, symmetric flow, resistance, near 

wall treatment. From top right to bottom left, sections A, B, C and D. 
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Figure 6.3.7 Cross flow envelopes, model scale, symmetric flow, resistance, near 

wall treatment. From top right to bottom left, sections A, B, C and D. 

   
Figure 6.3.8 Isobar (cP) contours, model scale, symmetric flow, resistance, near wall 

treatment. From top right to bottom left, sections A, B, C and D. 
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6.3.3 Model Scale Propulsion Calculations, Symmetric Flow 
The propulsion problem was then solved, considering the flow symmetric. The 
propeller was modeled using the actuator disk method. Since the problem is 
considered symmetric, the actuator disk induces body forces to the flow, only in the 
axial direction. The wall functions were employed for the conditions on the solid 
boundary and the bow and stern grid blocks were the same as in the test of paragraph 
6.3.1.  

  
Figure 6.3.9 Isowake (w/V) contours, model scale, symmetric flow, propulsion. 

From top right to bottom left, sections A, B, C and D. 
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Figure 6.3.10 Cross flow envelopes, model scale, symmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 

   
Figure 6.3.11 Isobar (cP) contours, model scale, symmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 
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6.3.4 Model Scale Resistance Calculations, Asymmetric Flow 
The propulsion problem is inherently asymmetrical, since the flow interacts with the 
rotating propeller. In order to solve an asymmetric flow problem, all of the 
computational has to be modeled and consequently a grid of twice the size is required. 
In order to reduce computational cost and since the flow becomes asymmetric near 
the propeller, the bow grid block covered one-half of the domain, measuring 
NIxNJxNK=81x180x511 nodes, a total of 7,450,380 nodes, the same as in all other 
tests. The H-O-type stern grid block covered all of the domain, having 
NIxNJxNK=160x180x371 nodes for a total of 10,684,800 nodes. The total grid size 
was 18,135,180 nodes. For the solid boundary conditions, the wall functions were 
employed. 

  
Figure 6.3.12 Isowake (w/V) contours, model scale, asymmetric flow, resistance. 

From top right to bottom left, sections A, B, C and D. 
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Figure 6.3.13 Cross flow envelopes, model scale, asymmetric flow, resistance. From 

top right to bottom left, sections A, B, C and D. 

   
Figure 6.3.14 Isobar (cP) contours, model scale, asymmetric flow, resistance. From 

top right to bottom left, sections A, B, C and D. 
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6.3.5 Model Scale Propulsion Calculations, Asymmetric Flow 
The asymmetric propulsion problem at model scale was solved, by employing the set-
up of paragraph 6.3.4. Specifically, the bow C-O-type grid block measuring 
NIxNJxNK=81x180x511 nodes, a total of 7,450,380 nodes, covered one half of the 
respective computational domain. The H-O-type stern grid block covered all of the 
domain, having NIxNJxNK=160x180x371 nodes for a total of 10,684,800 nodes. 
The total grid size was 18,135,180 nodes. The propeller action was modeled using the 
actuator disk method, this time incorporating the tangential and radial components of 
the body forces. 

  
Figure 6.3.15 Isowake (w/V) contours, model scale, asymmetric flow, propulsion. 

From top right to bottom left, sections A, B, C and D. 
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Figure 6.3.16 Cross flow envelopes, model scale, asymmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 

 
Figure 6.3.17 Isobar (cP) contours, model scale, asymmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 
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6.3.6 Full Scale Resistance Calculations 
For the full scale resistance problem, the problem was considered asymmetric and the 
set-up of paragraph 6.3.4 was employed. Specifically, the bow C-O-type grid block 
measuring NIxNJxNK=81x180x511 nodes, a total of 7,450,380 nodes, covered one 
half of the respective computational domain. The H-O-type stern grid block covered 
all of the domain, having NIxNJxNK=160x180x371 nodes for a total of 10,684,800 
nodes. The total grid size was 18,135,180 nodes. For the solid boundary conditions, 
the wall functions were employed. 

  
Figure 6.3.18 Isowake (w/V) contours, full scale, asymmetric flow, resistance. From 

top right to bottom left, sections A, B, C and D. 
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Figure 6.3.19 Cross flow envelopes, full scale, asymmetric flow, resistance. From top 

right to bottom left, sections A, B, C and D. 

  

    
Figure 6.3.20 Isobar (cP) contours, full scale, asymmetric flow, resistance. From top 

right to bottom left, sections A, B, C and D. 
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6.3.7 Full Scale Propulsion Calculations 
The full scale propulsion problem was considered asymmetric and the set-up of 
paragraph 6.3.4 was employed. Specifically, the bow C-O-type grid block measuring 
NIxNJxNK=81x180x511 nodes, a total of 7,450,380 nodes, covered one half of the 
respective computational domain. The H-O-type stern grid block covered all of the 
domain, having NIxNJxNK=160x180x371 nodes for a total of 10,684,800 nodes. 
The total grid size was 18,135,180 nodes. The propeller action was modeled using the 
actuator disk method, this time incorporating the tangential and radial components of 
the body forces. 

  
Figure 6.3.21 Isowake (w/V) contours, full scale, asymmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 
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Figure 6.3.22 Cross flow envelopes, full scale, asymmetric flow, propulsion. From 

top right to bottom left, sections A, B, C and D. 

 
Figure 6.3.23 Isobar (cP) contours, full scale, asymmetric flow, propulsion. From top 

right to bottom left, sections A, B, C and D. 
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6.3.8 “Bare” Hull Results Comparison 
Resistance and propulsion data, obtained through the numerical tests of the previous 
paragraphs, are presented in tables 6.3.3 and 6.3.4. Also presented in those tables are 
data measured experimentally (Dyne, 1995). In figure 6.3.24, the iso-wake contours 
for the longitudinal velocity components are presented and compared with 
experimental data. 

Table 6.3.5 Resistance Characteristics, “bare” hull calculations 
 

Experimental 
Model Scale Full Scale 

 Symmetric Asymmetric Asymmetric 
 Wall fun’s Near wall Wall fun’s Wall fun’s 

WS [m2] 11.552 11.548 11.548 11.548 14,966 
RT [Nt] 46.255 47.521 47.160 46.674 1.274E+06 

EHP [kW] 6.342E-02 6.515E-02 6.466E-02 6.399E-02 1.048E+04 
CT 4.293E-03 4.383E-03 4.349E-03 4.305E-03 2.455E-03 
CF 3.008E-03 3.085E-03 3.111E-03 3.046E-03 1.520E-03 
CP 1.285E-03 1.299E-03 1.238E-03 1.259E-03 9.349E-04 

Table 6.3.4 Propulsion Characteristics, “bare” hull calculations 
 Model Scale Full Scale 
 Symmetric Asymmetric Asymmetric 

1-w (nom) 0.394 0.366 0.561 
1-w (eff) 0.555 0.573 0.651 

1-t 0.859 0.835 0.834 
n [rpm] 807 806 115 
T [Nt] 56.009 55.665 1.527E+06 

DHP [kW] 1.040E-01 1.040E-01 1.593E+04 
CT 5.113E-03 5.134E-03 2.943E-03 
CF 3.086E-03 3.059E-03 1.523E-03 
CP 2.027E-03 2.075E-03 1.419E-03 

In the asymmetric flow case, the difference between the calculated and measured RT 
is 0.91%. In the symmetric flow case with wall functions, the corresponding 
difference is 2.74%, while in the symmetric case without wall functions, the 
difference is 1.96%. The effect of the wall functions, as expressed in the difference 
between the two symmetric flow cases, is 0.76%. When considering the fact that the 
uncertainty of the experimental measurement is in the region of 2% (Dyne, 1995), the 
numerically calculated values for the total resistance at model scale are in very 
satisfactory agreement with the experimental data. 

By examining the wake patterns, the numerical method is able to approximate the 
flow structures, such as the vortex that appears in the experimental data, on either side 
of the shaft bossing. Regarding the intensity and extend of the vortex, the numerical 
results appear quite inaccurate but it should be taken into consideration the fact that 
even experimental data gathered using the two technics, Padtl tubes or Pitot tubes, 
differ significantly. 
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Figure 6.3.24 Comparison of isowake (w/V) contours, resistance, section B 

(propeller plane). From top right to bottom left, experimental Pradtl tube 
measurements, experimental pitot tube measurements, model scale symmetric flow, 
model scale symmetric flow with near wall treatment, model scale asymmetric flow, 

full scale. 
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6.4 The Overlapping Block Setup for the Rudder 

6.4.1 Overview of the Overlapping Block Setup 
For the flow calculations at the stern of the ship with a rudder, the overlapping grid 
block method is employed, as explained in Chapter 4. The planform of the rudder is 
presented in figure 6.1.2 while the cross section profile was that of NACA 18, i.e. the 
maximum thickness was equal to 0.20xC, where C is the chord length. The NACA 18 
hydrofoil profile is presented in figure 6.4.1. 

 
Figure 6.4.1 Profile of the NACA18 hydrofoil section 

The rudder grid block was generated by employing the method presented in Paragraph 
4.9. The grid comprises 2-D curvilinear orthogonal C-type grids, normal to the rudder 
axis. Since the chord length of each section varies along the rudder axis, the 2-D grids 
differ and the resulting 3-D grid is partially orthogonal. Also near the hull, the grid 
conforms to the hull and the water surface and as a result, the sections are not planar. 
In figure 6.4.2 two perspective views of the rudder block are presented, while in 
figure 6.4.3, a side view of the rudder block is presented. 

 
Figure 6.4.2 Perspective view of the rudder, the upstream (top) and downstream 

(bottom) boundaries, as well as three K-sections at the root of the rudder, the kink and 
the tip 
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Figure 6.4.3 Side view of the rudder and the grid on the rudder surface, the upstream 
(top) and downstream (bottom) boundaries, as well as three K-sections at the root of 

the rudder, the kink and the tip 

In this application, the orthogonal curvilinear 2-D grids are generated by employing 
both the singularity distribution method presented on paragraph 3.4 and the conformal 
mapping method of paragraph 1.4.3. More specifically, near the hydrofoil, the grid is 
generated using the conformal mapping method. Then in order for the grid to conform 
with the user defined boundaries, the rest of the grid is generated using the singularity 
distribution method. 

In figure 6.4.4 the 2-D grid on section K=45, at the kink of the rudder profile, is 
presented. The number of grid nodes in this grid is NIxNJ=298x78, with NI the 
number of nodes in the circumferential direction and NJ the number of nodes in the 
radial direction. Out of the NI nodes, NIC=239 nodes lay on the rudder surface and 
NID=60 nodes are abaft the ruder trailing edge. In figure 6.4.5 a detail near the 
leading edge of the above grid is presented. 

 
Figure 6.4.4 2-D, K=45 section (at the kink of the rudder), NIxNJ=298x78 with 

NIC=239 nodes on the rudder surface and NJ1=10 grid lines inside the rudder volume 
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Figure 6.4.5 Detail near the leading edge of the 2-D, K=45 section (at the kink of the 
rudder), NIxNJ=298x78 with NIC=239 nodes on the rudder surface and NJ1=10 grid 

lines inside the rudder volume 

Since the rudder thickness is non-zero at the rudder root and tip, the resulting 
geometrical discontinuity is modeled using extra grid nodes (extra iso-J lines) that 
form an inner sub-grid. The finite volumes that are inside the rudder, remain inactive 
during the solution of the problem, while those above the root and below the tip are 
part of the solution procedure. In the first area, where the volumes are inactive, the 
shape of the grid is trivial and consequently consists of one set of lines, normal to the 
chord and another set that is calculated through linear interpolation between the chord 
and the profile (Figure 6.4.6) 

Above the rudder root and beneath the tip, the inner grid is solved and in order to be 
orthogonal curvilinear, it is generated using the singularity distribution method 
presented on paragraph 3.4. In figure 6.4.6, the inner grid is presented for section 
K=NK, having NJ1=10 grid lines inside the rudder volume. 

 
Figure 6.4.6 Inner grid of section, K=45 (at the kink of the rudder), with 

NICxNJ1=239x10 nodes 

 
Figure 6.4.7 Inner grid of section K=NK (the downstream boundary), with 

NICxNJ1=239x10 nodes 
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In order for the grid to conform to the hull contours, the upstream section (K=1) is 
projected on the hull. The rest of the 2-D grids of part-A, above the rudder root, are 
also deformed by an amount varying linearly between zero at the rudder root and one 
at section K=1. In this application, the rudder block extends abaft the ship stern. In 
order for the rudder block to be able to use data from the ship block as boundary 
conditions, the location of the K=1 section is selected in such a way that it is always 
underneath the water surface. Then, the portion of the K=1 section that intersects the 
hull is deformed while the rest of the grid remains planar. In figures 6.4.8 and 6.4.9, 
the upstream, K=1 section is presented. 

 
Figure 6.4.8 Perspective view of the rudder and the grid on the rudder surface, the 

upstream (top) K=1 grid and the downstream (bottom) K=NK grid 

 

Figure 6.4.9 Detail of the upstream (top) K=1 grid and the grid on the rudder surface 

The rudder block, uses the solution of the ship block as boundary condition for the 
upstream (K=1), the downstream (K=NK), the north (J=NJ), the west (I=1) and east 
(I=NI) boundaries. In figures 6.4.10 and 6.4.12 the north (J=NJ) rudder block 
boundary is presented in yellow. 

During the solution procedure, as described in paragraph 3.11, the ship block also 
takes information from the rudder block solution. The transfer of information, from 
rudder to ship block is performed at four sections of the ship block, forming a closed 
volume. Two of the sections are part of iso-K planar grids, just upstream the ruder 
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leading edge and downstream the trailing edge. Another section is an iso-J grid 
section selected as close as possible to the rudder without intersection it at any point. 
This iso-J grid section is presented in figures 6.4.10 and 6.4.12 in red color. 

In this application, the final section cannot be an iso-I grid section, rather a continuous 
surface described by varying values of the I-index. This final section is presented in 
figures 6.4.10 and 6.4.12 in green color. 

 
Figure 6.4.10 Perspective view of the Overlapping block setup. The North (external) 

boundary of the rudder block is presented in yellow. In red is the iso-J line and in 
green is the I-line of the ship grid block where boundary conditions are taken from the 

rudder block 

  
Figure 6.4.11 Side and rear view of the Overlapping block setup. The North 

(external) boundary of the rudder block is presented in yellow. In red is the iso-J line 
and in green is the I-line of the ship grid block where boundary conditions are taken 

from the rudder block 
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6.4.2 Grid Independence Tests for the Rudder Grid Block 
The grid size greatly affects the numerical solution and consequently numerical tests 
are required in order to determine the minimum grid size in order to obtain an 
accurate solution. In this paragraph, the results of such a grid independence test are 
presented. 

The tests were performed for the “Dyne” rudder at model scale. The presence of the 
ship was ignored and the rudder at a free flow problem was solved. The free stream 
fluid velocity was 1.371 m/s, corresponding to a Reynold’s number Re=1.141E+05. 
The main flow variables are presented in table 6.4.1. 

Table 6.4.1 Flow variables for the grid independence tests 
Free Stream Velocity, U∞ 1.371 m/s 

Fluid Viscosity, ν 1.161E-06 m2/s 

Reynolds’s Number, Re 1.141E+05  
Reference Chord Length, C 0.097 m 

The required grid size for a solution independent of the grid, was roughly estimated 
based on past experience and the tests were performed using relatively fine grids. The 
main grid variables are presented in table 6.4.2. In the following table, NI is the total 
number of nodes in the circumferential direction, NIC is the number of nodes in the 
circumferential direction, that lay on the rudder surface, NID is the number of nodes 
in the circumferential direction abaft the ruder trailing edge, NJ is the number of nodes 
in the radial direction, NK is the total number of nodes along the rudder axis, NKU is 
the number of nodes along the rudder axis, above the rudder root, NKL is the number 
of nodes along the rudder axis, along the rudder span and NKD is the number of nodes 
along the rudder axis, beneath the rudder tip. The tests were performed for different 
grid sizes along all three directions, but in all test, the y+ parameter was in the region 
of 100. 

Table 6.4.2 Main grid variables for the grid independence tests 

 
Coarse Medium Fine 

 
c1 c2 c3 m1 m2 m3 f1 f2 

NI 698 298 698 698 498 698 698 698 

NIC 599 239 599 599 419 599 599 599 

NID 104 64 104 104 84 104 104 104 

NJ 48 78 78 63 78 78 78 78 

NK 95 95 50 95 95 72 95 95 

NKU 20 20 20 20 20 20 20 10 

NKL 30 62 27 62 62 44 62 77 

NKD 15 15 5 15 15 10 15 10 

NIxNJxNK 3,182,880 2,208,180 2,722,200 4,177,530 3,690,180 3,919,968 5,172,180 5,172,180 
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In figure 6.4.12 perspective views of two rudder blocks are presented, for the coarse-
c2 (NIxNJxNK=298x78x95) (on the left) and the fine-f1 (NIxNJxNK=698x78x95) 
(on the right) test cases. 

In figure 6.4.13 the 2-D grid on section K=NK, the downstream edge, is presented for 
the coarse-c2 (NIxNJxNK=298x78x95) (on the left) and the fine-f1 
(NIxNJxNK=698x78x95) (on the right) test cases. The number of nodes on the rudder 
surface NIC, are respectively 239 and 599. In both case the inner grid comprises 
NJ1=10 lines. In figure 6.4.14 a detail near the leading edge of the above grids is 
presented. 

 
Figure 6.4.12 Perspective view of the rudder, the upstream (top) and downstream 

(bottom) boundaries, as well as three K-sections at the root of the rudder, the kink and 
the tip for the coarse-c2 (on the left) and the fine-f1 (on the right) tests 

 
Figure 6.4.13 2-D, K=NK section (the downstream boundary), for the coarse-c2 (on 

the left) and the fine-f1 (on the right) tests. The coarse grid size is 
NIxNJxNK=298x78x95 with NIC=239 nodes on the rudder surface and NJ1=10 grid 

lines inside the rudder volume. The fine grid size is NIxNJxNK=698x78x95 with 
NIC=599 nodes on the rudder surface and NJ1=10 grid lines inside the rudder volume 
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Figure 6.4.14 Detail near the leading edge of the 2-D, K=NK section (the downstream 
boundary), for the coarse-c2 (on the left left) and the fine-f1 (on the right) tests. The 

coarse grid size is NIxNJxNK=298x78x95 with NIC=239 nodes on the rudder 
surface and NJ1=10 grid lines inside the rudder volume. The fine grid size is 

NIxNJxNK=698x78x95 with NIC=599 nodes on the rudder surface and NJ1=10 grid 
lines inside the rudder volume 

The test cases are compared in terms of the total Drag which is calculated as the sum 
of the skin friction RF and the pressure drag RP: 

Drag = RP + RF (6.4.1) 

RP = ∬ p∗ ∙ 𝐧 ∙ 𝐢  dsAR
 (6.4.1) 

RF = ∬ τwAR
∙ 𝐬 ∙ 𝐢 ds (6.4.2) 

Where AR is the rudder surface, p* is the pressure on the rudder surface, n is the unit 
vector normal to the rudder surface, i is the unit vector parallel to the rudder chord, τw 
is the wall shear stress and s is the tangential unit vector to the rudder surface. 

The drag components are expressed in their respective non-dimensional form: 

CP = RP
0.5 ∙ρ∙ AR∙U∞2 

 (6.4.4) 

CF = RF
0.5 ∙ρ∙ AR∙U∞2 

 (6.4.5) 

CD = CP + CF = Drag
0.5 ∙ρ∙ AR∙U∞2 

 (6.4.6) 

Where U∞ is the free stream fluid velocity. 

In table 6.4.3, the results of the numerical tests are presented, in terms of the non-
dimensional drag coefficients. In table 6.4.4, the same results are presented, in terms 
of the per cent variation between each test and the f1 test that is characterized by the 
highest number of nodes. 
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Table 6.4.3 Results of the grid independence tests 

 
Coarse Medium Fine 

 
c1 c2 c3 m1 m2 m3 f1 f2 

NIxNJxNK 3,182,880 2,208,180 2,722,200 4,177,530 3,690,180 3,919,968 5,172,180 5,172,180 

CD 1.503E-02 1.621E-02 1.562E-02 1.563E-02 1.574E-02 1.541E-02 1.564E-02 1.574E-02 

CF 8.019E-03 8.204E-03 8.155E-03 8.137E-03 8.187E-03 8.163E-03 8.180E-03 8.189E-03 

CP 7.006E-03 8.009E-03 7.469E-03 7.488E-03 7.552E-03 7.245E-03 7.459E-03 7.549E-03 

Table 6.4.4 Comparison of the grid independence test results 

 
Coarse Medium Fine 

 
c1 c2 c3 m1 m2 m3 f1 f2 

NIxNJxNK 3,182,880 2,208,180 2,722,200 4,177,530 3,690,180 3,919,968 5,172,180 5,172,180 

CD -3.93% 3.67% -0.10% -0.09% 0.64% -1.48% - 0.63% 

CF -1.97% 0.29% -0.31% -0.53% 0.09% -0.21% - 0.10% 

CP -6.07% 7.37% 0.13% 0.39% 1.24% -2.87% - 1.20% 

The results are very close with a maximum deviation of 4% for the Drag. Also the 
deviation tends to decrease as the number of nodes increases. This is more easily 
understood through the graphical presentation of the results. In figures 6.4.15-6.4.17, 
the per cent variation of the drag coefficient, the skin friction coefficient and the 
pressure drag coefficient is presented respectively. The base line is the f1 test, 
characterized by the highest number of nodes. 

 
Figure 6.4.15 Per cent variation of the 
Drag Coefficient CD with respect to the 

total number of grid nodes 

 
Figure 6.4.16 Per cent variation of the 

Skin Friction Coefficient CF with respect 
to the total number of grid nodes 

 
Figure 6.4.17 Per cent variation of the Pressure Drag Coefficient CP with respect to 

the total number of grid nodes 
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Apart from the integrated quantities, the numerical solution is very similar for all 
tests, also in terms of the values of the localized coefficients for the pressure drag cp 
and the skin friction cf: 

cP = p
0.5 ∙ρ∙ U∞2 

 (6.4.7) 

cf = τw
0.5 ∙ρ∙ U∞2 

 (6.4.8) 

In figures 6.4.18 and 6.4.19, the distribution of the pressure drag cp and the skin 
friction cf coefficients is presented on section K=62, for four of the test cases. In 
figure 6.4.20, the pressure drag coefficient contour on the rudder surface is 
presented, for the same test cases 

 
Figure 6.4.18 Pressure Drag coefficient 

cp, distribution on section K=62 

 
Figure 6.4.19 Skin Friction cf, 

coefficient distribution on section K=62 

 
Figure 6.4.20 Pressure Drag coefficient cp, contours on the rudder surface, test cases 

c1, c2, m1 and f1, from top left to bottom right,  
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The distributions of pressure and skin friction coefficients appear to be very similar in 
all tests. This indicates that the finer grid size is sufficient. A final comment on the 
grid independence tests is that the convergence history is also very similar. In figure 
6.4.21 the convergence history of the drag coefficient CD is presented for four of the 
test cases. All test cases appear to have converged after less than 1,000 iterations. 

 
Figure 6.4.21 Convergence history for the Drag Coefficient CD for the c1, c2, m2 and 

f1 tests 

6.4.3 2-D Tests for the Overlapping Block Setup 
Since the boundary conditions affect the numerical solution, the external boundaries 
of a grid need be at a distance from the solid boundary. In the case of the external 
flow past a hydrofoil, the grid typically extends one chord length upstream the leading 
edge, two chord lengths downstream the trailing edge, and one chord length to the 
side. In this application, the rudder grid block is significantly narrower, especial 
upstream, due to the presence of the propeller disk. 

In order to evaluate the possible effect of the narrow block on the accuracy of the 
solution, a numerical comparison was conducted between two alternative setups for 
the solution of the 2-D flow problem past a NACA 18 hydrofoil. In the first test, a 
single large C-type block was generated around the hydrofoil and boundary 
conditions are those of undisturbed flow. In the second test a small C-type block was 
generated around the hydrofoil. The boundary conditions for this smaller block are 
provided by the solution of an external H-type block.  

The extend of the inner C-type block is similar to those used in the rudder block, 
while the extends of the outer H-type block are similar to those of the single C-type 
block. In figure 6.4.22, the setup for the two test is presented with the extend of the 
single C-type block in blue color, the extends of the outer H-type block in green and 
the inner C-type block in red color. 

The main variables of the grids are presented in table 6.4.5 where for the C-type grids 
NI is the total number of nodes in the circumferential direction, NIC is the number of 
nodes in the circumferential direction, that lay on the hydrofoil, NID is the number of 
nodes in the circumferential direction downstream the trailing edge and NJ is the 
number of nodes in the radial direction. 

For the H-type grid, NI is the total number of nodes in the longitudinal direction, NIU 
is the number of nodes in the longitudinal direction upstream the leading edge, NIC is 
the number of nodes in the longitudinal direction, along the hydrofoil chord, NID is 
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the number of nodes in the longitudinal direction downstream the trailing edge and NJ 
is the number of nodes in the transverse direction. 

 
Figure 6.4.22 Overlapping block setup, with the outer and inner boundaries of the 

external H-type block in green, the outer boundary of the internal C-type block in red. 
The blue lines correspond to the boundaries of the single C-type block 

Table 6.4.5 Main grid variables for the 2-D overlapping block setup tests 

 
Single 
C-type 

External 
H-type 

Internal 
C-type 

NI 550 400 350 

NIU - 100 - 

NIC 300 250 300 

NID 250 50 50 

NJ 350 400 80 

NIxNJ 385,000 320,000 56,000 

Upstream extend 1.5xC 1.5xC 0.07xC 

Downstream extend 2.0xC 3.5xC 0.5xC 

Side extend 2.0xC 2.0xC 0.5xC 

NIxNJTot 385,000 376,000 

In figure 6.4.23 the single C-type grid is presented. In figure 6.4.24, the inner C-type 
grid is presented. A comparison of the two C-type grids, near the hydrofoil leading 
edge, is presented in figure 6.4.25. Finally in figure 6.4.26 the external H-type grid is 
presented. In the last figure, the area missing from the H-type grid is the area that 
remains inactive during the numerical solution. 
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Figure 6.4.23 Single C-type block with NIxNJ=550x350 with NIC=300 nodes along 

the chord of the hydrofoil and NIA=250 nodes downstream the trailing edge 

 
Figure 6.4.24 Internal C-type block with NIxNJ=350x80 with NIC=300 nodes along 

the chord of the hydrofoil and NIA=50 nodes downstream the trailing edge 

  
Figure 6.4.25 Detail near the leading edge of the internal (on the left left) and the 
single (on the right) C-type blocks with NIxNJ=350x80, NIC=300, NIA=50 and 

NIxNJ=550x350, NIC=300, NIA=250 nodes respectively. 
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Figure 6.4.26 External H-type block with NIxNJ=400x400 with NIC=250 nodes 
along the chord of the hydrofoil, NIU=100 nodes upstream the leading edge and 

NID=50 nodes downstream the trailing edge 

Both tests were performed for a free stream fluid velocity corresponding to a 
Reynold’s number Re=1.0E+06. The main flow variables are presented in table 6.4.6. 

Table 6.4.6 Flow variables for the 2-D overlapping block setup tests 
Free Stream Velocity, U∞ 1.000 m/s 

Fluid Viscosity, ν 1.000E-06 m2/s 

Reynolds’s Number, Re 1.000E+06  
Reference Chord Length, C 1.000 m 

The two cases are compared in terms of the total Drag per unit length, which is 
calculated as the sum of the skin friction RF and the pressure drag RP: 

Drag = RP + RF (6.4.9) 

RP = ∫ p ∙ 𝐧 ∙ 𝐢 dsS  (6.4.10) RF = ∫ τw ∙ 𝐬 ∙ 𝐢 dsS  (6.4.11) 

Where RP is the pressure drag, RF is the skin friction, S is the hydrofoil curve length of 
the hydrofoil, p is the pressure, n is the unit vector normal to the hydrofoil, i is the 
unit vector parallel to the chord line, τw is the wall shear stress and s is the tangential 
unit vector to the hydrofoil. The drag components are expressed in their respective 
non-dimensional form: 

CP = RP
0.5 ∙ρ∙ C∙U∞2 

 (6.4.12) CF = RF
0.5 ∙ρ∙ C∙U∞2 

 (6.4.13) 

CD = CP + CF = Drag
0.5 ∙ρ∙ C∙U∞2 

 (6.4.14) 

Where U∞ is the free stream velocity. 
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In table 6.4.7, the results of the numerical tests are presented, in terms of the non-
dimensional drag coefficients. The difference between the two tests is quite small, 
around 3.5%. Consequently, despite the very narrow internal C-type grid, this setup 
produces acceptable results. 

Table 6.4.7 Results of the 2-D overlapping block setup tests 

 C-type H+C-type  
IT1 2071 3  
IT2 - 70  
CD 1.394E-02 1.343E-02 -3.66% 

CF 1.056E-02 1.050E-02 -0.57% 

CP 3.383E-03 2.928E-03 -13.45% 

Also presented in the above table are the iterations required for convergence of the 
solution. IT1 corresponds to the number of steps required for the convergence of the 
pressure correction algorithm, while IT2 corresponds to the number of steps required 
for the convergence of the overlapping block method. The latter is also presented in 
graphical form, in figure 6.4.27.  

 
Figure 6.4.27 Convergence history of the overlapping block method, for the Drag, 
Pressure Drag and Skin Friction Coefficients, CD, CP and CF, for the H+C-type case. 

Apart from the integrated quantities, the numerical solutions should yield similar 
results in terms of the values of the localized coefficients for the pressure drag cp and 
the skin friction cf. In figures 6.4.28 and 6.4.29, the distribution of the pressure cp and 
the skin friction cf coefficients is presented for the two cases. 

 
Figure 6.4.28 Comparison of the 

Pressure coefficient cp, distribution on 
the hydrofoil 

 
Figure 6.4.29 Comparison of the Skin 

Friction cf, coefficient distribution on the 
hydrofoi
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6.5 Hull and Rudder Calculations 
The resistance and propulsion problems were solved for the “Dyne” tanker. 
Simulations were performed at model scale and full scale, at a constant Froude 
number, Fn=0.165 corresponding to a full-scale velocity of 16.00 kn. The flow 
variables for the hull and rudder calculations are presented in table 6.5.1.  

Table 6.5.1 Flow variables for the hull and rudder calculations. 
 Model Scale Full Scale  

Scale Factor, λ 36 -  

Speed, V 
- 16.0 kn 

1.371 8.226 m/s 
Fluid Viscosity, ν 1.161E-06 1.431E-06 m2/s 

Froude Number, Fn 0.165  
Reynolds’s Number, Re 8.474E+06 1.485E+09  

Rudder Reynolds’s Number, ReC 2.2744E+05 1.998E+07  

The free surface was calculated at model scale, using the new hybrid method, as 
described in paragraph 6.2. In the following numerical experiments the free surface 
was treated as a fixed boundary. The viscous flow around the ship was then solved by 
employing two grid blocks, one C-O-type around the bow and fore half of the ship 
and an H-O-type block around the aft half of the ship as well as the wake. The method 
for solving the viscous flow problem with multiple grid blocks is described in 
paragraph 2.5. The flow around the rudder was solved using a separate C-H-type grid 
block, as described in paragraph 6.4. The grid dimensions and solution procedures 
were according to the findings of paragraphs 6.3 and 6.4. The main grid variables for 
each block are presented in table 6.5.2. 

Table 6.5.2 Grid block dimensions for the calculations for the “Dyne” tanker with 
rudder 

B
ow

 G
rid

 
B

lo
ck

 

NI 81 
NJ 180 
NK 511 

NTOT,bow 7,450,380 

St
er

n 
G

rid
 B

lo
ck

 NI 160 
NJ 180 
NK 411 

NTOT,stern 11,836,800 
y+ (model/full 

scale) 30/260 

R
ud

de
r B

lo
ck

 NI 698 
NJ 78 
NK 95 

NTOT,rudder 5,172,180 
y+ (model/full 

scale) 50/100 

NTOT 24,459,360 
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The flow problem for the hull with the rudder is solved using the overlapping block 
methhod where boundary conditions are exchaned between the ship and rudder blocks 
until convergence is achieved for both blocks (paragraph 4.11). The solution 
algorithm is presented in figure 6.5.1. Initially the flow problem is solved for the hull 
without the rudder. Then, the solution of the ship block is used as boundary conditions 
for the rudder block. Specifically on the North (J=NJ), Upstream (K=1) and 
Downstream (K=NK) boundaries of the rudder block, the velcoity components are 
specified as Dirichlet conditions. On the East (I=NI) and West (I=1) boundaries (the 
outflow boundaries), the pressure is specifyied as Dirichlet condition. Then the 
SIMPLE algorithm is followed for the rudder block, ensuring the mass conservation. 
In this first step, 2750 iterations of the SIMPLE algorithm are performed ensuring a 
high degree of convergence. 

Then, the ship block is solved again, incorporating the rudder solution. Specifically, 
the velocity components, as calculated in the rudder block, are imposed as fixed 
conditions on a closed surface, inside the rudder block, but not intersecting the rudder. 
On one face of this close surface, the one characterised by the maximum K-index, 
toward the rudder outflow boundary, the velocity components are uniformelly scaled. 
The scale factor is chowsen in  such a way as to ensure the mass continuity through 
the boundary surface. 

Then, 300 iterations of the SIMPLE algorithm are performed for the ship block. 
Another 300 iterations of the SIMPLE algorithm are then performed for the rudder 
block, using the new ship solution for the boundary conditions. The two above steps 
are repeated until the solution of the two blocks converges. Approximately 6 
iterations are enough. 

 
Figure 6.5.1 Hull and rudder, flow chart of the resistance calculation procedure.  

In figures 6.5.2 and 6.5.3, the convergence history is presented for the first solution of 
the rudder block at model scale. In terms of the mass residual, approximately 2500 
iterations are required for convergence. On the other hand the Drag appears to have 
converged after about 700 iterations. Thus, 2750 iterations for the first step and 300 
iterations for the partial convergence of the following steps were selected. The level 
of convergence for the mass residual (4x10-3) is approximately one order higher than 
the desired level of convergence for the mass residual for the ship (10-4). This is the 
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result of the selected boundary conditions and the narrow extend of the rudder block. 
In any case it does not appear to affect the convergence of the drag. 

 
Figure 6.5.2 Mass residual convergence 

history.  

 
Figure 6.5.3 Drag convergence history 

rudder. 

In the self-propulsion numerical tests, the propeller is modeled via the actuator disk 
method (paragraph 2.6) and the propeller characteristics are those of the “Dyne” 
model as presented in paragraph 6.1. The self-propulsion algorithm in the case of the 
ship with the rudder is presented in figure 6.5.4. Initially the flow problem is solved 
for the hull without the rudder. Then, the solution of the ship block is used as 
boundary conditions for the rudder block as described above and 2750 iterations of 
the SIMPLE algorithm are performed for the rudder block. 

Then, the propeller thrust is set equal to the resistance of the hull, plus the rudder 
drag, the body forces are calculated inside the propeller disk and 30 iterations of the 
SIMPLE algorithm are performed for the ship block incorporating the rudder solution. 
The above step is repeated another nine times, each time setting the thrust equal to the 
new resistance. Then, 300 iterations of the SIMPLE algorithm are performed for the 
rudder block, using the new ship solution for the boundary conditions.  

The above procedure is repeated until the problem converges, with approximately 12 
iterations being enough.  

 
Figure 6.5.4 Hull and rudder, flow chart of the self-propulsion procedure. 
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Following the above procedures, the resistance and self-propulsion problems are 
solved, at model and at full scale, for the “Dyne” tanker with rudder. In figure 6.5.5, 
the Total Resistance RT and the rudder Drag convergence histories are presented at 
model scale. In figure 6.5.6, the Thrust and the rudder Drag convergence histories are 
presented, at full scale. 

 
Figure 6.5.5 Convergence history for the total resistance RT (on the left) and the 

rudder drag (on the right), model scale.  

 
Figure 6.5.6 Convergence history for the Thrust T (on the left) and the rudder drag 

(on the right), full scale.  

For each numerical test, the resistance components were then calculated (Tzabiras, 
2009): 

RP = ∬ (p∗ − ρgh)WS ∙ (𝐧 ∙ 𝐢) ds  (6.5.1) 

RF = ∬ τwWS ∙ (𝐬 ∙ 𝐢) ds  (6.5.2) 

Where RP is the pressure resistance, RF is the frictional resistance, WS is the actual 
wetted surface, p* is the pressure on the hull, ρgh is the hydrostatic term, ρ is the 
water density, g is the gravitational acceleration, h is the height from a reference 
level, n is the unit vector normal to the hull, i is the unit vector parallel to the ship 
longitudinal axis, τw is the wall shear stress and s is the tangential unit vector to the 
hull. 

The total resistance is then considered equal to the sum of the pressure and frictional 
resistance: 

RT = RP + RF (6.5.3) 
The resistance components are expressed in their respective non-dimensional form: 
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CP = RP
0.5 ∙ρ∙ WS∙V2 

 (6.5.4)  

CF = RF
0.5 ∙ρ∙ WS∙V2 

 (6.5.5) 

CT = CP + CF = RT
0.5 ∙ρ∙ WS∙V2 

 (6.5.6) 

Where V is the ship or model speed. 

In the propulsion tests the hull-propeller interaction coefficients are calculated as: 

1 − w = VA
V 

 (6.5.7)  

1 − t = T
RT 

 (6.5.8) 

Where w is the wake fraction, t is the augment of resistance coefficient, VA is the 
wake speed, i.e. the mean velocity on the propeller disk and T is the propeller thrust. 

The rudder Drag is calculated as the sum of the skin friction RF,R and the pressure drag 
RP,R: 

Drag = RP,R + RF,R  (6.5.9) 

RP,R = ∬ p∗ ∙ 𝐧 ∙ 𝐢  dsAR
 (6.5.10) 

RF,R = ∬ τwAR
∙ 𝐬 ∙ 𝐢 ds (6.5.7) 

Where AR is the rudder surface, p* is the pressure on the rudder surface, n is the unit 
vector normal to the rudder surface, i is the unit vector parallel to the rudder chord, τw 
is the wall shear stress and s is the tangential unit vector to the rudder surface. 

The drag components are expressed in their respective non-dimensional form: 

CP,R = RP,R
0.5 ∙ρ∙ AR∙V2 

  (6.5.8) 

CF,R = RF,R
0.5 ∙ρ∙ AR∙V2 

  (6.5.9) 

CD = CP,R + CF,R = Drag
0.5 ∙ρ∙ AR∙V2 

 (6.5.10) 

Also presented are the distributed values for the pressure drag cp and the skin friction 
cf coefficients: 

cp,D = p∗

0.5 ∙ρ∙ V2 
   (6.5.7) 

cf,D = τw
0.5 ∙ρ∙ V2 

   (6.5.8) 

In table 6.5.3, the calculated resistance characteristics, rudder drag included, are 
presented along with the corresponding experimental measurements (Dyne, 1995). In 
the same table, the rudder drag and the corresponding coefficients are also presented. 

In table 6.5.4, the calculated propulsion characteristics are presented along with the 
corresponding experimental measurements. The experimental data refer to the self-
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propelled model with rudder; that is the case were the external force exerted to the 
model by the tank carriage, is equal to zero. In the same table, the rudder drag and the 
corresponding coefficients are also presented. 

Table 6.5.3 Resistance and rudder drag characteristics, 
hull and rudder calculations 

  Experimental Model Scale Full Scale 
R

es
is

ta
nc

e 
C

ha
ra

ct
er

is
tic

s WS [m2] 11.450 11.548 14966 

RT [Nt] 45.716 48.158 1.347E+06 

EHP [kW] 6.268E-02 6.603E-02 1.108E+04 

CT 4.243E-03 4.344E-03 2.478E-03 

CF 3.008E-03 3.048E-03 1.521E-03 

CP 1.235E-03 1.297E-03 9.563E-04 

R
ud

de
r D

ra
g 

C
ha

ra
ct

er
is

tic
s 

AR [m2] - 1.029E-01 1.334E+02 

Drag [Nt] - 1.057E+00 6.095E+04 

CD - 1.100E-02 1.321E-02 

CF - 1.762E-03 9.850E-04 

CP - 9.234E-03 1.222E-02 

Table 6.5.4 Propulsion and rudder drag characteristics, 
hull and rudder calculations 

  Experimental Model Scale Full Scale 

R
ud

de
r D

ra
g 

C
ha

ra
ct

er
is

tic
s 

AR [m2] - 1.029E-01 1.334E+02 

Drag [Nt] - 2.466 8.688E+04 

CD - 2.557E-02 1.878E-02 

CF - 4.037E-03 3.243E-03 

CP - 2.153E-02 1.554E-02 

Pr
op

ul
si

on
 C

ha
ra

ct
er

is
tic

s 

1-w (nom) 0.411 0.404 0.519 

1-w (eff) 0.543 0.511 0.568 

1-t 0.800 0.800 0.837 

n [rpm] - 805 111 

T [Nt] 57.145 58.121 1.577E+06 

DHP [kW] 1.051E-01 1.069E-01 1.541E+04 

CT - 4.942E-03 2.871E-03 

CF - 3.057E-03 1.523E-03 

CP - 1.886E-03 1.349E-03 
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In the following figures, the results of the foure numerical tests are presented ( model 
scale resistance, model scale propulsion, full scale resistance and full scale 
propulsion). The presure and skin fricktion coefficient distributions refer to four 
sections normal to the rudder axis. These sections are presented in figure 6.5.7. The 
axial wake contours and cross-flow refer to six sections along the ship length, 
presented in figure 6.5.8. Section “A” is a section ahead of the propeller plane, at the 
same location as section “A” of figure 6.1.2. Section “B” coincides with the propeller 
plane, also section “B” of figure 6.1.2. Finally sections “C” and “F” are located ahead 
of the rudder leading edge and abaft the trailing edge respectivelly, while sections “D” 
and “E” intersect the rudder. 

 
Figure 6.5.7 Locations of cp, cf, measurement planes. 

 
Figure 6.5.8 Location of cross-flow sections. 

In figures 6.5.9 to 6.5.12 the pressure Drag coefficient (cp) contours are presented on 
the rudder surface. In figures 6.5.13 to 6.5.16 the pressure coefficient (cp) distribution 
on each of the sections of figure 6.5.5 is compared amongst the four test cases. In 
figures 6.5.17 to 6.5.20 the skin friction coefficient (cf) distribution on each of the 
sections of figure 6.5.5 is compared amongst the four test cases. In figures 6.5.21 to 
6.5.24, stream traces passing through the propeller disk, at a circle having a diameter 
equal to the mean of the propeller and propeller hub diameters. In figures 6.5.25 to 
6.5.28 the cross-flow and axial velocity (w/V) contours are presented on each of the 
sections of figure 6.5.6. 

A B C D E F 
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Figure 6.5.9 Pressure Drag coefficient cp, contours on the rudder surface, model 

scale, resistance, starboard side on the left and port side on the right.  

   
Figure 6.5.10 Pressure Drag coefficient cp, contours on the rudder surface, model 

scale, starboard side on the left and port side on the right.  

   
Figure 6.5.11 Pressure Drag coefficient cp, contours on the rudder surface, full scale, 

resistance, starboard side on the left and port side on the right.  

   
Figure 6.5.12 Pressure Drag coefficient cp, contours on the rudder surface, full scale, 

propulsion, starboard side on the left and port side on the right.  
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Figure 6.5.13 Comparison of the Pressure coefficient cp, distribution on section 

K=33, port side on the left and starboard side on the right. 

  
Figure 6.5.14 Comparison of the Pressure coefficient cp, distribution on section 

K=45, port side on the left and starboard side on the right. 

  
Figure 6.5.15 Comparison of the Pressure coefficient cp, distribution on section 

K=57, port side on the left and starboard side on the right. 

 
Figure 6.5.16 Comparison of the Pressure coefficient cp, distribution on section 

K=69, port side on the left and starboard side on the right. 

 
[218] 

 



6.5. HULL AND RUDDER CALCULATIONS   

 
Figure 6.5.17 Comparison of the Skin Friction cf, coefficient distribution on section 

K=33, port side on the left and starboard side on the right. 

 
Figure 6.5.18 Comparison of the Skin Friction cf, coefficient distribution on section 

K=45, port side on the left and starboard side on the right. 

 
Figure 6.5.19 Comparison of the Skin Friction cf, coefficient distribution on section 

K=57, port side on the left and starboard side on the right. 

 
Figure 6.5.20 Comparison of the Skin Friction cf, coefficient distribution on section 

K=69, port side on the left and starboard side on the right. 
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Figure 6.5.21 Stream traces at the propeller disk, model scale resistance, starboard 

side on the left and port side on the right. 

  
Figure 6.5.22 Stream traces at the propeller disk, model scale propulsion, starboard 

side on the left and port side on the right. 

  
Figure 6.5.23 Stream traces at the propeller disk, full scale resistance, starboard side 

on the left and port side on the right. 

  
Figure 6.5.24 Stream traces at the propeller disk, full scale propulsion, starboard side 

on the left and port side on the right. 
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Figure 6.5.25 Cross-flow and axial velocity (w/V) contours, model scale resistance, 

from top left to bottom right sections A-F. 
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Figure 6.5.26 Cross-flow and axial velocity (w/V) contours, model scale propulsion, 

from top left to bottom right sections A-F. 
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Figure 6.5.27 Cross-flow and axial velocity (w/V) contours, full scale resistance, 

from top left to bottom right sections A-F. 
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Figure 6.5.28 Cross-flow and axial velocity (w/V) contours, full scale propulsion, 

from top left to bottom right sections A-F. 
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6.6 Discussion on the “Dyne” Test Case 
The data gathered in paragraphs 6.3 and 6.5, regarding the “bare” hull and the ship 
with the rudder are presented in the following tables and compared with experimental 
data. 

In table 6.6.1, the total resistance RT and the nominal wake fraction at the propeller 
disk are presented at model scale and compared with experimental data (EFD) for the 
“bare” hull case. 

In table 6.6.2, the total resistance RT, the propeller thrust T, the effective wake 
fraction and the thrust deduction fraction are presented at model scale and compared 
with experimental data, for the ship with the rudder. 

Table 6.6.1 Comparison between Experimental (EFD) and Numerical (CFD) 
resistance data, “bare hull” 

 EFD CFD Diff 

RT [Nt] 46.674 46.255 -0.90% 

1-w (nom) 0.411 0.404 -1.72% 

Table 6.6.2 Comparison between Experimental (EFD) and Numerical (CFD) 
resistance and propulsion data, hull with rudder 

 EFD CFD Diff 

RT [Nt] 45.716 48.158 5.34% 

T [Nt] 57.145 58.121 1.71% 

1-w (eff) 0.543 0.511 -5.89% 

1-t 0.800 0.829 3.57% 

The numerical results are in good agreement with the experimental data, in terms of 
the resistance predictions (1%) for the “bare” hull, especially when considering the 
fact that the uncertainty of the experimental measurements is in the region of 2% for 
the resistance and 3% for the thrust (Dyne, 1995). In very good agreement are also the 
results for the nominal wake fraction (1.7%). 

In the ship with the rudder case, the numerical results are also in good agreement with 
the experimental data, in terms of the thrust (2%) wake fraction (6%) and thrust 
deduction (3.5%). In terms of the total resistance with the rudder, the experimental 
and numerical results appear to differ significantly (5%). A closer look though, 
reveals something unexpected in the experimental data. The total resistance with the 
rudder is smaller than the resistance without it. This is clearly demonstrated in table 
6.6.3, where the effect of the rudder on the resistance is presented at model scale, 
experimentally and numerically, as well as at full scale. In table 6.6.4, the 
corresponding data for the thrust are presented. 

Indeed the measured resistance with the rudder is more than 1% lower than without. 
The numerical method predicts a more reasonable increase in the total resistance with 
the rudder, 3% at model and 5.7% at full scale. The latter is rather higher than 
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expected. For the self-propulsion case, an increase in thrust of 4% is calculated at 
model scale, while an increase of 3% is calculated at full scale. In any case, an 
uncertainty in the region of 3% is not unreasonable for RANS calculations. 

Table 6.6.3 Resistance RT [Nt], with and without rudder 

  
Without 
Rudder 

With 
Rudder δ 

EFD 46.255 45.716 -1.16% 

CFD 
Model Scale 46.674 48.158 3.18% 

Full Scale 1.274E+06 1.347E+06 5.75% 

Table 6.6.4 Thrust T [Nt], with and without rudder 

  
Without 
Rudder 

With 
Rudder δ 

CFD 
Model Scale 55.665 58.121 4.41% 

Full Scale 1.527E+06 1.577E+06 3.27% 

Table 6.6.5 Rudder effect on the propulsion characteristics, model scale 

 
Without 
Rudder 

With 
Rudder Diff 

1-w (eff) 0.582 0.511 -12.20% 

1-t 0.814 0.829 -1.84% 

In table 6.6.5, the effect of the rudder on the propulsion characteristics is presented in 
model scale. The results without rudder refer to a case without rudder, were the thrust 
was set equal to the thrust of the self-propelled model with the rudder (48.158 Nt). 
The significant difference observed, especially in the effective wake fraction (12%) is 
solely due to the presence of the rudder. 
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7. Discussion and Conclusions 
The present thesis aims at the formulation, programming and validation of a method 
for solving the viscous flow problem around the appendages on conventional vessels. 
The proposed method is based on the overlapping blocks approach, part of the Finite 
Volume family of methods. The programming and development of software was 
carried out using the Fortran programming language. The components of the new 
method were validated using available experimental data, either from past research 
performed at LSMH, or data taken from the scientific literature. In the next 
paragraphs, the new developments are presented and the conclusions drawn in each 
chapter are summarized. 

In Chapter 2, the Total Variation Diminishing differencing scheme with the Minmod 
limiter function is presented. Referring to published research, the new scheme is 
validated by comparing the numerical results in the case of a 2-D wave tank, with 
corresponding experimental data. 

In Chapter 3, a novel hybrid method for the calculation of the free surface is 
presented. The new method combines the accuracy and efficiency of a potential flow 
solution at the bow of ships, with the accuracy of a RANS based solution at the stern 
of ships. With the new method a significant reduction in computing time is achieved, 
when compared with RANS based methods, in the order of 75%. The method is 
validated by comparing the calculated wave patterns, with respective experimental 
measurements for two ship models. The results of the presented method are in very 
good agreement with the experimental data. 

In Chapter 4, a method for solving the flow problem around the appendages of ships 
is presented. The method is based on the Overlapping Grid Block approach, where the 
flow around each component of the ship appendages is solved using a separate grid 
block. In order to obtain the solution for the overall flow problem, the blocks overlap 
and information is passed-on from one block to the other through the boundary 
conditions of the later. In the same chapter, a method is also proposed for the 
exchange of flow variables between blocks is detailed. 

In Chapter 4, the method for generating the individual grid blocks is presented. Each 
block is curvilinear orthogonal in the uv-directions and non-orthogonal Cartesian in 
the w-direction. The method can generate the blocks around the propeller shaft, the 
shaft bossing, the struts, the struts’ bossing and the rudder. The shaft and struts’ 
bossing blocks are cylindrical, comprising 2-D O-type sections normal to the shaft 
axis. The shaft block can model steps in the shaft diameter, such at each end of a 
bossing or the end of the shaft itself. The sections of the struts’ bossing block are not 
planar and are made to conform to the struts geometry as well as the bossing 
geometry. Despite that, the grid on each section is orthogonal curvilinear, when 
projected on a plane normal to the shaft axis. 

The blocks around the shaft bossing, struts and rudder are C-H-type, comprising 2-D 
sections normal to the shaft axis, the strut axis and the rudder axis respectively. On 
each section an orthogonal curvilinear C-type grid is generated. The struts may have a 
varying chord length and twist along its length. The rudder may have a varying chord 
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length and twist along its length. The rudder root or tip, may have a finite cross 
section, in which case a step is created in the geometry. 

In Chapter 5, the ability of the modified LSMH RANS solver to handle the flow past 
individual blocks is demonstrated. Specifically, for each of the ship appendages 
components, the results of a number of numerical tests are presented. The modified 
RANS solver can now handle the o-type shaft block with the aforementioned steps. 
Also it is demonstrated that the solver can produce realistic results in terms of the 
flow characteristics and the pressure distribution on the shaft surface. 

Regarding the shaft bossing, the solver can now handle the C-H-type block with the 
East, West and South boundaries being handled as solid boundaries. In chapter 5 it is 
demonstrated that the solver can produce realistic results in terms of the flow 
characteristics and the pressure distribution on the bossing surface.  

Also in Chapter 5, the ability of the solver to handle the C-H-type strut block, with the 
Upstream boundary being treated as a solid boundary, while the South boundary is 
handled partially as a solid boundary and partially as a symmetry line. It is 
demonstrated that the solver can produce realistic results in terms of the flow 
characteristics and the pressure and skin friction distribution on the strut surface.  

Finally in Chapter 5, it is demonstrated that the modified RANS solver can handle the 
C-H-type rudder block, with the Upstream boundary being handled as a solid 
boundary, while the South boundary is treated partially as a solid boundary and 
partially as a symmetry line. The solver can now also handle the step at the rudder 
root or tip. It is demonstrated that the solver can produce realistic results in terms of 
the flow characteristics and the pressure and skin friction distribution on the rudder 
surface. 

The method presented in this thesis, is validated in Chapter 6 through comparison of 
numerical results with available experimental data for the “Dyne” tanker. Using the 
proposed hybrid method the free surface was calculated in model scale and was found 
to be in good agreement with the experimental data. The over-prediction of wave 
height near the stern of the ship, presented in the potential calculations is corrected. 

Then, resistance and propulsion calculations were performed for the “bare” hull, in 
model and full scale. The model scale calculations include symmetric and asymmetric 
flow calculations, as well as calculations with wall functions and near wall treatment. 
In the asymmetric flow case, the difference between the calculated and measured 
values for the Total Resistance, RT is 0.91%. In the symmetric flow case with wall 
functions, the corresponding difference is 2.74%, while in the symmetric case without 
wall functions, the difference is 1.96%. The effect of the wall functions, as expressed 
in the difference between the two symmetric flow cases, is 0.76%. The above results 
are satisfactory in light of the fact that the uncertainty of the experimental 
measurements is in the region of 2%. In very good agreement are also the results for 
the nominal wake fraction, the difference being 1.7%. By examining the wake 
patterns, the numerical calculations are able to approximate the flow patterns, such as 
the vortex that appears in the experimental data, on either side of the shaft bossing. 

The rudder of the “Dyne” tanker was modeled using a separate grid block. In Chapter 
6, a series of tests to evaluate the effectiveness of the overlapping block setup are 
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presented. Firstly a grid independence test showed that the results are very close with 
a maximum deviation of 4% for the Drag. Also the deviation tends to decrease as the 
number of nodes increases. In order to evaluate the effect of the rudder block extends 
on the accuracy of the solution, a numerical comparison was conducted between two 
alternative setups for the 2-D flow problem past a NACA 18 hydrofoil. In the first 
test, a single large C-type block was generated around the hydrofoil and boundary 
conditions are those of undisturbed flow. In the second test a small C-type block was 
generated around the hydrofoil with extends similar to those of the 3-D block around 
the “Dyne” rudder. The boundary conditions for this smaller block are provided by 
the solution of an external H-type block standing for the 3-D ship block. The 
difference between the two tests, in terms of drag, is quite small, around 3.5%. 
Consequently, despite the narrow internal C-type grid, this setup produces acceptable 
results. 

Finally in Chapter 6, the resistance and propulsion problems are solved for the ship 
with the rudder, in model and full scale.  The numerical results are in good agreement 
with the experimental data, especially when considering that the uncertainty of the 
experimental measurements is in the region of 2% for the resistance and 3% for the 
thrust. The difference between the measured and the calculated resistance is 5.34%, 
while for the thrust, the increase is 1.71%. The difference in the resistance is quite 
high but it should be attributed, at least partially, ton an error in the experimental 
measurements. We suspect such an error exists because the measured resistance with 
the rudder is lower, than the measured resistance of the “bare” hull. In terms of the 
wake fraction and thrust deduction, the difference between the numerical results and 
the measured values is 5.89% and 3.57% respectively. 

When comparing the “bare” hull with the ship with the rudder, the numerical method 
predicts a significant increase in the total resistance with the rudder, 3.18% at model 
and 5.75% at full scale. The latter is rather higher than expected. For the self-
propulsion case, an increase in thrust of 4.41% is calculated at model scale, while at 
full scale the increase is 3.27%. In any case, an uncertainty in the region of 3% is not 
unreasonable for RANS calculations. 

Another interesting result is the effect of the rudder presence, on the propulsion 
characteristics. When comparing the self-propelled model with the rudder with a 
model without rudder and with the propeller providing a thrust equal to that of self-
propelled model, the difference in the wake fraction is 12% while the thrust deduction 
is less affected, with the difference being 1.8%. 

As a conclusion, the presented method can generate the numerical grid around various 
setups for the appendages of a ship. The method yields good results in the case of a 
ship with rudder, both in model and full scale. All calculations are in good agreement 
with the available experimental data. Furthermore the new hybrid method for the 
calculation of the free surface, combines the efficiency of a potential surface tracking 
method, with the accuracy of a RANS based method. 
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7.1 Novel Contributions and Relevant Publications 
The novel contributions of this PhD thesis are summarized below: 

• The Total Variation Diminishing differencing scheme in conjunction with the 
Minmod Limiter function is introduced to the LSMH RANS solver. 

• A three grid block setup is introduced to the LSMH RANS solver. The new 
setup comprises a C-O-type around the bow, an H-O-type around the mid and 
stern of the ship and finally an H-H-type abaft the transom stern. With this 
configuration, an increase in the accuracy of the resistance predictions is 
achieved, for ships with full lines at the bow area and ships with a “wetted” 
transom stern. 

• A novel hybrid method is introduced for the calculation of the free surface. 
The new method combines the advantages of the existing surface tracking 
methods, that consider the flow either inviscid and irrotational (potential 
flow), or solve the RANS equations. In this new method, the free surface is 
initially calculated using the potential flow solver and is then corrected, using 
a RANS surface tracking method. The correction is applied only at the aft half 
and the wake of the ship, while boundary conditions on the free surface are 
specially treated, to avoid convergence problems 

• A method is introduced, for the parametric representation of ship appendages 
and the generation of grid blocks around the components of the appendages. 
The grid blocks are orthogonal curvilinear in the uv-directions, thus increasing 
the accuracy. 

• The LSMH RANS solver is modified, in order to handle the new blocks and 
the exchange of flow variables according to the overlapping block approach. 

• A method is developed for the exchange of flow variables between the 
overlapping blocks. The new method is characterized by fast and accurate 
exchange of flow variables.  

• The new overlapping grid method is validated by comparing available 
experimental data with numerical calculations, in the case of a ship with 
rudder. The validation concerns both the resistance and the propulsion 
problem, at model and full scale. 

Journal publications and conference papers, thus far, from the research carried out in 
this thesis are listed below: 

Journal Publications: 

• Tzabiras, G.D., Polyzos, S.P., Sfakianaki, K., Diafas, V., Villiotis, A.D., 
Chrisikopoulos K., Kaloupsis S., 2010. Experimental and Numerical Study of 
the Flow past Olympic Class K-1 Flat Water Racing Kayak at Steady Speed. 
The Sport Journal, 4 (13). 

 
[232] 

 



7. DISCUSSION AND CONCLUSIONS   

• Polyzos, S.P., Tzabiras, G.D., 2016. Generation of Overlapping Structured 
Grid Blocks about a Ship’s Appendages. Progress in Computational Fluid 
Dynamics, An International Journal (PCFD), Under Review 

Conference Papers: 

• Tzabiras, G.D., Polyzos, S.P., Papakonstantinoy, V.K., 2009. On a numerical 
method for generating harmonic waves in a finite 2D tank. 13th Congress of 
Int. Maritime Assoc. of Mediterranean, Istanbul 2009 (ΙΜΑΜ 2009). 

• Tzabiras, G.D., Zarafonitis, G.N., Polyzos, S.P., 2011. Numerical prediction of 
the resistance characteristics of catamaran cargo ships. 14th Congress of Int. 
Maritime Assoc. of Mediterranean, Genoa 2011 (IMAM 2011). 

• Pallas, G., Nikas, K., Polyzos, S.P., Tzabiras, G.D., Zarafonitis, G.N., 2013. 
Investigation of various parameters affecting the resistance characteristics of 
two catamaran cargo ships. 15th Congress of Int. Maritime Assoc. of 
Mediterranean, A Coruna 2013 (IMAM 2013). 

• Tzabiras, G.D., Polyzos, S.P., 2015. A Hybrid Numerical Method for 
Calculating Self-Propulsion Characteristics of Ships. 16th Congress of Int. 
Maritime Assoc. of Mediterranean, Pula 2015 (IMAM 2015). 

• Τζαμπίρας, Γ, Πολύζος, Σ., 2016. Εφαρμογή μεθόδου CFD για τον 
υπολογισμό των χαρακτηριστικών πρόωσης ενός tanker. Ετήσιο Συνέδριο 
Ελληνικού Ινστιτούτου Ναυτικής Τεχνολογίας, Αθήνα 2016 (ΕΛΙΝΤ 2016). 

7.2 Future Work 

• Incorporate in the method other types of ship appendages such as turning 
vanes ahead of the propeller or other energy saving devices such as Mewis 
ducts etc. 

• Currently the strut grid generator can handle strut whose reference line is 
strait. A useful addition to the software is be the ability to handle curved struts 
or struts with one or more kinks. 

• The rudder currently can be modeled using a single block. The use of two 
rudder blocks, one for the fixed portion of the rudder and another for the 
rotating part, will allow the solution of problems with non-zero rudder angle of 
attack. 

• Making the software run in parallel, on multiple processors requires extensive 
modifications but will allow for faster convergence and increased grid sizes. 
The later will allow for the solution of more complex appendages 
arrangements.  
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