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S0vodm

Argpelvnon TV ETMAOY®OYV TV ENPATOV XU TV ATOXPICEWY TV
QEEOTOPLXMY ETOULEELMYV OE AYORAXEVIPIXA TEPLBAANOVTIXNE KETEA UE T
e e e Yop e e e

XeNomn neoTONwY drtaxelths enthoyhc xot Jewplag motyviwy

Iwdvvoe II. ITaywvn

EnBrénovoa Kadnyhrewa: Hopaoxeuh Yopdun-Karountoidr, Avarh. Koadnytewe EMIL

YNOVYH

Yy mopoloo  dwoxtopixry diateldn  Blepeuvdton 7 EmBpacn  EVOC  AYORUXEVTEXOU
TEQIBUAAOVTIXNO) PETPOU GTNY OVTAYWVIOTIXY aYopd TwV oEpOYETapopnv. Me tnv epapuoyh
TOU UETEOU Ol OEpOTOPEC ETALREEC TANEMVOLY €Vol EMTAEOY XOOTOC EXTOUTMY TO OMOio
exppdleton cuvVapThoEL TNC ToohTNTaC dlodediou tou dvdpaxa (CO2) Tou exTéUnouY Xxat TOU
wovadiatou xbotouc (avd tévo CO2) nou xadopileton oto mhalow e mepBarhoviicAc
rolhtixfic. H enldpaon Ttou pétpou otic Twéc twv cloitnplwy, oto uepldlor ayop®y Twv
OEPOTIOPIXMV  ETAUEEWDY Xat OTIC oLVoAxée exmounéc Bloewiov tou dvlpaxo oe €va
oEpOTopinG BixTuo BlepeuvdTal Yéow Tng avdnTuing wog yevodoloylac 1 onola tepthopfBdvel
éva TpOTUTO detapopxfic {ATNONG, €va TEOTUTO GUUTEPLPORES TWVY JELOTOPIXMY ETOUPELLY
o e p€dodo uToAoYLoUOD TOU XOOTOUG EXTOUTMVY Yl XAUe agpomopinr] etonpelor xon

dLadpoun.

H oacponopixry {Atnon  avaideton  Pe T YeNHon  TEOTOMWY  OLXELTWV  ETAOYMV
(xenowonouwdvtae adpolotixd dedopéva) evtde g ayopds, mou oplletan we to Lebyoc
nOAewy mpoéievonc-tpoopopol. Tlo ocuyxexpéva, yenolonoleltor To Epapy X0 TEOTUTO
logit (nested logit model). H ypnowdtnta tou enBdtn and tny emhoyh QoG AEpoTopeAc
oUVBEoNS EXPEELETOL (S CUVERTNOY TWV YURAXTNPLOTIXGY NS GUVOEONS, TWV AEEOdPOUiLY
TPOEAEUCTIC-TPOOELOHOY ol NS agpontopxic etaupeiac mou exterel To dpopoidyro. H
CUUTERLPORE Ty eTaupely Baolletan otny undldeon 6T oL etaupeles, Tou SpaoTNELOTOLOUYTAL
o Wt oyopd, OLHopOOVOLY TIC TWES TLV elottnelnv utd cuvINXEC OAYOTWAAXOU
VTAYWVIOUOY UE YVOUOVA TN UEYLoToRolnon tev xepdhv toug. Kdlde etoupeio Sioapoppmvet
T TWéS TV eoltnelov Tne Tautdypova ye T dhhec eTaipeleg Tov BpaoTnEloToLlVINL GTHY
Bl ayopd, ovamtdoocoviac éva un ouvepyoatixd malywio. Metd Tnv  egapuoyn Tng
TEQIBUAAOVTIXAC  TOMTIXAC, TO TEOTUTO OCUUTREQIQORAS TWY  HEQOTOPIXWY  ETULOELDY
VAP0 UpUOLETOL HOTE 0TO 0plond *O0TOC XA¥E AEPOTORIXAC ETAUPELNS VO EVowUatwIEel To
xnbotog exnopnyv. o tov unoloyioud twv exnouneyv CO2 o Tou avTloTolyou XOGTOUC,
%&Ue BLadpopy] XATATACOETOL OE HOVODIXOUC CUVBLACHONS KAEROGKAPOUC, ATOCTUCTC TTHONC
xon  mpooavatohouol wthone». Do xdde ocuvBuaoud extiwdTor To TUTIXG  HOVOTATL
XATOXOPLUPNC TOPELUC TOU AERPOOKAPOUS XU UE TN Yeron tou Jovtélou Base of Aircraft
Data tou EUROCONTROL vroroyilovror ot exnournéc CO2.

H epopuoyh tou ayopoxevipixod nepBouiloviinod puétpou efetdletol 0T0 AEpOTOPIXG BIXTUO
v Hvopévov Toktewdv yia to étog 2012, Ta arnoteréopata delyvouv dtl 1 adinon otig

TWES TV elottnpley xou 1 Yelwon tne acpomopxtic {Rtnone unopel va elvon onuavTixr ov 1




Shvodn

A tou dvdpoxa elvon uhn. Tia to younhd cevdpio twv $10 avéd tévo CO2 mou elvan
XOVTd 6TNV Teéyouca TR dvpaxa 1 Lelworn twv cuvolxoy extounmy CO2 (Aoyw peivong
e acponophc Lhtnone) extuhdnxe lon pe 1,88%. AopBdvovtac unddrn tov otdyxo tne
acponopxnc Bropnyavice yia Uelworn Ty extopndy CO2 6V AEpOTOPIXDY UETAPOPLY KAUTA
50% péypt to 2050 (o€ oyéon pe ta eninedo Tou 2005), N nopoloo diotelfr delyvel 6Tl elvon
avdyxn oL acpomopixéc eToupeleg xou ov dhhol wopelc tng Pounyaviag vo oTpagpoly ot
evahhoxTxée  mpooeyyioeic vl va Dlogallatel 1 owovomxn) xon  TEQUBoAAOVTIXH
BuwowotnTa TV agpopetapoptyv. H avéiluoh tne SwtpPrc Belyver 6ti n Tipoldynon twv
exnopndyvy CO2 cupfdiher oty pelworn twv exnounov CO2. Ilap’ dho autd, Tor Younid
enineda e TN Tou dvipaxoa BeV AVUUEVETAL VO GONYHOOUY O ONUOVTIXES OANIYEC OTOV
TOUEN TWV OEPOTORIXWY HETAPOLWY AMO TNV EQUPUOYT UOVO EVOC TEPLBUANOVTIXNOD UETEOU.
Téhoc, 1 e@aguoY) NS TOMTIXAC OEV AVUUEVETOL VO ERNEEACEL TOV OVTAYOVIOUS TV

OEPOTIOPLXMV ETUUPELDY TOU BEAaTNRLOTOOUVTOL TNV (BLol ayopd.

Aéleic-Khedid:  ayopaxevteixd mepiarroviixd  uétea, acpomopixri (ntnon, mpdTuma
OLaXPLTAIY ETAOYY, EVOOYEVELR, YEVIXEUUEVY) UEV000OC TWV pOmdY, XELOOC AEPOTOPLXWDY
ETAUPELDY, UN) CUVERYATIXO TalyVio, TUTIXY) XATUXOQUEN ToOXLd qEpooXdpous, evduyeduulon
TWV XAUTUAWY UE Baon To onuela, ToCTUTO TEOooUoiwons AstTovpylas acpooxdpous.
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Passenger travel choices and airline responses under market-based

environmental policies using discrete choice modeling and game theory

Ioanna P. Pagoni

Supervisor: Paraskevi Psaraki-Kalouptsidi, Associate Professor NTUA

ABSTRACT

In this dissertation, the implementation of a market-based environmental policy on
aviation industry is studied. Under this policy, each airline pays a carbon fee, as a
function of the carbon dioxide emissions (CO2) it generates and the pre-defined unit
carbon price (per ton CO2). The impact on ticket prices, airlines’ market shares and
resulting network-wide carbon emissions is investigated via a methodology which includes
an air travel demand model, an airlines’ behavior model and a method for estimating
carbon emissions costs by airline and itinerary.

The aggregate air travel demand model relies on discrete choice analysis of different
airline connections in origin-destination markets. In particular, the Nested Logit model is
used. The passengers’ utility for each airline connection is expressed as a function of
various flight attributes that are specific to the itinerary, the airline and the airport. The
airline's behavior model is based on the hypothesis that active airlines set their ticket
prices in an origin-destination market under oligopolistic competition with the aim to
maximize own profits. Ticket prices are simultaneously set by each airline in the market,
which means that airlines play a non-cooperative game. After the implementation of the
environmental policy, the airline’s behavior model is adjusted so as to incorporate the
carbon fee in the airline’s marginal cost. For the computation of airline connection’s CO2
emissions and corresponding emissions cost, connections are organized in unique
combinations of “aircraft type, flight distance, flight direction”. For every combination,
the typical altitude profile is estimated and the CO2 emissions are computed by using the
fuel flow coefficients given in the EUROCONTROL’s Base of Aircraft Data.

The market-based environmental policy is implemented at the U.S. domestic aviation
network for the study year 2012. The simulation analysis revealed that the
implementation of the environmental market-based policy in the U.S. aviation could have
some significant effects on ticket prices, air travel demand and resulting COz2 emissions
for high ranges of carbon unit price. For the low scenario of $10 per ton CO2, which is
close to the prevailing carbon price, the network-wide CO2 emissions are expected to
decrease by 1.88% (due to air travel demand decrease). Taking into account the aviation
industry ambitious goal to reduce net aviation CO2 emissions by 50% until 2050 (relative
to 2005 levels), this dissertation suggests that airlines and policy makers may need to
turn to alternative approaches to ensure economic and environmental sustainability.
Although carbon pricing may contribute to COz2 emissions reduction, it seems that the
low levels of carbon price would not trigger more significant changes in the air transport
sector so as to act as a stand-alone measure. A combination of different policies (e.g.
technological improvements, operational changes etc) could be needed to effectively work




Abstract

towards the environmental target. Finally, our simulation results indicate that airline
competition distortions are expected to be rather low.

Keywords: market-based environmental policy, air travel demand, discrete choice model,
endogeneity, generalized method of moments, airline profits, non-cooperative game,
typical altitude profile, landmark registration, BADA performance model.



EKTETAMENH IIEPIAHYH XTA
EAAHNIKA

1. Ewcaywyn

O 0epomopinég UETAUPORES ANOTEAODY OUCLAGTIXNT CUVIOTOON GTNY XOVWVIXY) KO OLXOVOULXY),
avdmtuEn evoe tonou. To teheutaior YpOVIL Ol HECOTOPIXES UETAUPOREC EYOUY ETNPEACTEL ATO
Biedvelc peTaBoréc OTWC Ol OUYYWVEVCELS TWV UELOTOPLXMY ETHUEELOV XU 1 Onuloupyla
UEYEAWY OEQOTOPIXMV GUULIYLOVY, 1) AVETTUET TGV XOUBIXMY dELODPOUILY TOU ETLTEETOLY TN
wolxt) yetaxivnon emBatdy Ye BLaPOETIXOUE TEAMXOUS TEo0poUolE TRoC €val XOLVO xouBind
aep0BEOWLO XL ELCOBOC TWV ETAUPELOV YoUNAol XO60Toug, o1 onoleg €youv odnyfoel ot
alénomn Tou aviaywviouol. Enlong, tic teheutaieg dexoetiec 0 TOUENC TWV OEPOUETOPOPEY
yopoxtnetleton and abénon e acponopuxic xivnone. And to 2000 €we to 2013, n emBotiny
sepomopnt) xivion (o€ yovddee emBatoyihopétewy) otnv Eupdnn éyxer auindel xatd 26,8%
(European Commission, 2015). Avéhoyn ouintxf tdon nopatnehdnxe xa otic Hvewpévec
TMoltetee Apepwnhc (H.ILLAL), 6nou ta emPoatoyihopeteo aulhtnxay xatd nepirouv 17,9%
and to 2000 éwc to 2014 (BTS, 2016a). Lipvwva ue npoliédec tne etoupeioc Boeing
(2015), n emPotind; xivnon avopévetar va éyel uéoo etfioto pudpd avémtuing 4,9% wéyer to
2034. H avintxn tdon tne xivnone éyel coav anotéhecuo TV alinom TwV EXTOUTOV
dtoZewdiou tou dvidpoaxa (CO2). Enl tou mapdvtoc, oi exnounéc CO2 nou ogethovion otic
agpopeTapopéc xupalvovioan oto 1,3% twv ocuvolxdv exnounoyv CO2 nayxoopiwe (ITF,
2016). Mpdogatee perétee unootneilouv twg av dev Aneloly pétea aVIETOTIONS TGV
TEQBOUAAOVIIXOV ETUNTMOOEWY ATO TS UEPOUETAUPORES, TO Tocootd awtd Vo avinldel xatd
mohd ta endpeva yeovia (ICAO, 2016a). Xto Xyhuoa 1 napovoidleton n auavouevn eZéhin
e acpomopxic xivnone ot Twv extounty CO2 otnv Eupdnn, tic HILA. xou toyxoouine.

H adénon TtV exnoun@v and Ti¢ GEpOTOpEC UETUXIVACELS EYEL oONYHoeL oTtny UoVétnon
AYOPOUXEVTPIXGDY  TERIBOANOVTIXGDY  UETEOWY ME OTOYO TN UElWOoN TNe TEPBOANOVTIXAC
enBdpuvone. Boupnva pe to dedpo twv Kossoy et al. (2015), uéyer to 2015 oe 6ho tov
x6oupo elyav egappootel mepinou 60 uétpa TwoléYnone Tou dvipaxa (oe Bidwopeg
Brounyaviec), dhha o dvixd (nepinou 40) xou dhha o tomxd eninedo. Ltov topéa TwV
OEQOTIOPIKMV  UETHUPORGY, Topddelyya amoterel 1o Xootnua Eurmoplac  Awonwpdtov
Exnoprav (XEAE) tnc Evpwnoixhc Evoong, to omolo té0nxe apyxd oc oyd to 2012.
Bdost Eupwnainfc odnyioac tou 2014, to ZEAE nhéov epapudleton pévo og TTACELS EVTOC
tou  Evpwnoixol  Owovouixod Xdpou (EOX)  (dnradh uévo petalld  Eupomndixdv
0epodEOUILY). Alhar pétpa agopoly mepBolloviicole/d pbpouc/téln o acpodpdular o




pétpa avtlotalulone tne nepBulhoviixhc emiBdpuvong. Elva gavepd mwe or moMTinég auTég

empépouy éva emmAéov X00TOC, TO 0Tolo XUAelTal €€ «XOOTOC EXTOUTOVY .

‘Etog 1990=100 (extéc and to delxtn emPoutoyihogétewy tnc EE-28 émou Etog 1995=100)
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Exhpa 1. EEEMET tng acponopixhc xivrong xou Twv exnown®dy CO2 (ue otouyelo and
EC, 2015; BTS, 2016a and IEA, 2015)!

O xdploc otdyoc e mapoloog Baxtopxnc SwtpBhc elvan 1 avdmtun wag pedodohoyixnc
TpOGEYYIoNS Yot TN TEOBAEYN NG OCUUTERLPORHS TV ETBATAY, WS TEOC TNV ETMAOYT
BLIBEOPNG, XL TNG CUUTERLPORES TWV JEQOTOPIXMY ETURELMY, WS TEOSC TN DLUOLPKOCT TV
TWAOV, UETE TNV EQopdoyn evoc ayopaxevipixol mepiBolhovtixol uétpou. H SwutpBn
goTdleton o TEPPBUAAOVTIXG HETPO TOL «YPEWVELY TIC GEPOTOPEC eTonpeiec e Bdon Tic
exnounéc Oo&ewlov tou dvipaxa. H upedodoloyla mou oaxohroudelton Booiletow oty
ECWTERIMEVOT, TOU XOOTOUG EXTOUTWYV GTO 0plxd XOOTOC TWV UEQOTORKY eTanpewdv. H
enidpoon Tou ayopaxevipxol) mepBulAioviixol uétpou BlepeuvdTal HE TR Yerion Evog
GUVONOU TEYVIXGV oL oTolec Tepthapfdvouy éval TpdTuTo YeTaopxic {ATnong, éva TpdTuURo
OUUTEQLPORES TWV GEROTOPUGY  EToEELdY ot Wit ué¥obo umoAoylopol Tou XO0TOUG

EXTOUTAOV Yo xdde agpomopixt etonpeio xon Slobpoun.

Yto odvoho tng, 1 mopoloo SwtelBr) €popuolel OXOVOUETEXE TEOTUTA PE OTOYO VA
amavthoel oty e€nc epeuvnTiny) epodtnon: Ilow Ga elvon 1 enidpoon e epapuoync evoc
ALY OPUXEVTEIXOD TEPIBUANOVTIXO) YETEOU OTIC TLUES TOV Eoltnpiwy, ota pepldlo ayopdc TeV
OEPOTIOPIXMV ETAPEIRY %ot OTlC cuvoAés exmopynéc CO2; T va emteuydel o avertéew

616Y0¢, N TEOTEWVOUEVY uedobohoyio anotelelton and ta e€nc:

o Toawobunon twv wTHOEWY O UOVOBIXOUC OUVBLAOUOUS «amOoTIoNS TTHONG,
QEPOOUAMOUC XL TPOCUVATOAGHOD TTHONG» XoL avdAUCY TN TUTIXAC EVOERLOC
AHATOHOPUONE TEOYLAC TOL aEpooudpouc Yol x&de cuvduaousd. Xefon AoTtdAANAGY
goyoheiwv vl Tov mpoodloplond Twv ExXmoUTOV  Oofediou tou dvlpoxo avd

BLadpou.

L O Broxexoppévee Ypoppéc mpoxUTTouy and ypopuxh TopepBohf Aoye ENeudne mpaypotinedy
ototyelov.
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Extetapevn Heplhndn oto Exinvixd

o Avantuln owovopeTewol TEOTUTOU TOU EVOWUATWVEL €val TpdTUTO UETAPOPXAC
Chtnone dtaxptthc EMAOYAC, Xl TEOTUTO CUUTERLYOPUC TWYV HEQOTOPIXMY ETOUOELDY
TOU BpACTNPLOTOOUVTAL O ULol OALYOTALOXY) Ay opd.

o IlpocBloploudc v xlpwy TOpUYOVIWY NS OUVERTNONG  YENOWOTNTIC TWV
EMPBATOV XAl TNG CLVAETNONG XOCTOUC TWV JEPOTORM®Y £Taipeldy. Extlunon twv
nopopétewy (ATNOMG xal xO0TOUC UE TN YPNON XATIAANAWY  OLXOVOUETEXOV
HEVOBWV.

o Avampocopuoyh Tou TEOTITOU CUUTERLPOREC TWV JEPOTOPIUDY ETHUEELDY (OTE OTO
optaxd x66T0C x&e acponopixfic etanpeiag va evoupatwiel To ®xO0TOC EXTOUTOV
dLo&edlou Tou dvipoxa.

o Ilpocbloplouds twv pepiny ayopds ot TV TWOV Eloltneiwy ot 1ooppotia avd
acpomopx) oOVDEST PETA TNV EQAPUOYY TOU ayOpoXeVTEoU TEEBUANOVTIXNOD
uétpou. Erione, npoobiopiletan 1 enldpaon otic cuvolixée exnopnéc CO2.

H epyaoctio mepihauBdvel egapuoyn oto acponopd dixtuo twv Hvewpévev Ilohteidv yio o
onolo umdpyel Onpocia dwdéown [Bdon Bedopévewv. To Bedopéva mapéyouv otouyela
AVOPOPLXE [IE TOL YUPUXTNELOTING XAUE 0epoTopXNC oUVDEONC, T  OEPODEOULY TEOEAEUOTC-
TEOOELOIOY oL TNV 0EPOTOPXY) ETAUPELX Tou exTEAEL TO Spouohdyio. Ta napandves dedopéva
acponopxic xivnone ouvdudlovton pe dedopéva AWy Pdocwy  amapaitntov Yy T
EQUPUOYT TNG HEAETNG %o XPNOOTOI00VTOL UETE amd xatdhhnin enedepyaoio.

Yy epyaota avokdovial ol mapdyoviee mou emnpedlouv Tic exmouméc OtoZewdiou Tou
Gvipoxa TV AELOCHAPOY X oVIRTOGCETOL PEV0DOC EXTIUNONG TWV GYETIXWY EXTOUTOV.
T t0 oxond autd avantiocovion dlo mpooeyyioeic: (1) ewapuoyR TpOTITOL TPOCOUOIKONC
e Aertoupylag evic acpooxdpouc xau (i) uTohoylouds TNe TUTIKAC EVagpLac TPOYLEC TOU
aEpOoHAPOUE HETA amd evduypduplon xaTdAANAoU delypatog loTopxwy cTolyelwy ye Bdon
ta onuelo (landmark registration). o v egopuoyh twv d0o npooeyyioewy omonteiton
EXTEVH) OUNAOYT OTOLEIY Tng evadplag Tpoylde Twv agpooxapdyv. Enlong, oty cpyaoia
DLEPEUVAOVTOL TO TEOTUTA DLaXPLTAC ETAOYAC ToU UEypl ONUEPa EYOUV EQPUOUOCTEL oTNHV
emhoyh  acponopixfic oOvdeone. To iepapyixd mpodTuno logit (nested logit model)
yenowornoteiton yio Tnv neptypapy) tne agponopixfic {htnone. H ouuneppopd twv etoupeiddyv
Baotletoaw otny unddeon OTL oL ETAEElEC TOY BEACTNELOTOLOUVTAL OE Lol AY0pd BLULOPELVOUY
T TWESC TV Eoltneleoy UTd cLVIAKES oAyoTwAloxod avtaywviopol xou xadoplleton and
éva un ouvepyatixd moiyvio. TENoC, TEOCOUOUOVETOL 1] EQUQUOYT  AYOPOXEVTEIXOU
nepBorhoviixod uétpou xa mpoodlopilovton to pepldior ayopdc xan o TéS eloltnplwy oF
looppoTior avd ocpomopixry oUVOEST), xal®e xou 1 ENINTWON TOU UETEOU OTIC CUVOMXES
exnounéc OtoZewiou tou dvlpaxa. H uvlomolnon tne pedodoloyiac mpayyatomoirinxe
ahyoetduxd oe meptBdihov MATLAB. To yedodoroyxd nhaioo tne didoxtopnnc StatelBnc
rapovctdleton oto LyAua 2 xou npocdlopilel T doun Tne Topodoug exteTtopévne nepihndng.
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BipAoypoapixn

AVACHOTINCT

4

MeSodoloyia

MeBoboAoyia extiunong
exnounwy CO2

i

Av3aAuomn aepoToplXNG
gntnonc

=

TTpdtumo cuuneplYopds
OEPOTOP. ETUUPELWYV

=

Extiunon npotdnwy xou
Tpocouoiwon
TEPBAANOVTINNG, TTOALTIX NG,

o Trndpyovoec TEPIPOANOVTIXEC TOALTIXEC

o TTdpyoVOEC TPOTEYYIOELS Y10l TNV EXTIMNON NG ETIBpaong
TWV TEPPAANOVTIN®Y TOMTIXWY

o TTdpyovoeg TPOCEYYIOELS YioL TNY avdAuon e {RTnong

o Trdpyovoeg TPOoEYYIOELS yiaL TNV exTiunon exmounsy CO2

e AVEAUGT TNG TUTUXNG EVAEPLAC XATAXOPUPNEC TPOXLEC TOU
AEPOTHAPOUE

e ITpocdloplopde Twy exmouney Sloetdlov tou dvipoxa avd
Sadpoun

e [TpooBloptopde Twy X0pLwy TopAYOVIWY TNG CUVEPTNONG
XPNOWOTNTAC TV ETPATHY

e [IpOTUTO CUPTEPLPOPAC TWY HEPOTIOPIXMY ETAULPELWY
o ITpooBloptopde oploxol xO6GTouE

e OXOVOUETPIXN OVEAUCTC TOU TPOTUTIOU TIPOTPOPAE Hal
{hitnone
o [Tpocouoiwan Tou ayopaxevteixol TEPIROIANOYTIXOU UETPOL

=

e Extiunon twv nopopéteeny {ATone xow x6GToue

Amoteréopata e AmoTeEAéopATa ANS TNV EQUPUOYT TOU HETPOV

=

® JUUTEPAOUOT

Yuunepdouota o Ilepoutépwm €peuva

Syhe 2. Medodohoyind ntAxiolo tng didaxtopixhg dtaTtelBnAc

2. B oypagpixry Avaoxonnon
2.1. Trdpyovoes TEPBAANOVTIXES TOALTIXES

To ayopoxevipnd TepBUANOVTIXNG UETEN ATOTEAOOVTOL ONO ULo OELPd TOMTIXOV Ol OTOlEC
Baotlovtaw otnv eowtepixcuon tou eEmtepixol mepBallovTixod xbcoTouc ota mAalola NG
OpYAC €O PUTOIVLV TATEMVEL Xul TN BnUioupYlol OXOVOUIXGY XVATEKY Yot TN Budoiun

avdmtuEn e agponopnc Blounyaviae.

To mo yvwotd pétpo evar to Lotnua Eunoplac Awawwpdtov Exnoundv (SEAE) g
Evpwndixfic Evowone (E.E.), 1o onolo anotekel obotnua «emBolic avdtatou opiou xou
eunoplocy. Me odnyla tou Eupwmdixot KowoBourou (EU, 2008), to XEAE eiye
oyedotel wote va mepthauBdvel aspomopxéc BpaoTneldTNTES TOCO Amd EVOOXOWOTIXES
nthoelc g B.E. 600 xou and ntioec (extéc E.E.) pe v npobnddeon ot avayweodv 1
@Udvouv o eupwTUIXd agPOdEOUL. AUTO OAUNIVE OTL, Yot TOPADELYMO, ML OMEEIXAVIXY
aeponopiny) etanpela mou exteAel ntnom and Néa Yooxn npoc Aovdivo Yo énpene vo evtaydet
oto YEAE. Adyw toyupov avudedoswv ond ur-Evpwndixéc yopeec, omwe Hvouévee
IMohtelee, Kiva, Pwolo, Ivdla xtA. to 2014, n odnyla YEAE tpononofdnxe wote vo

gpapuoletor Wovo o mthoelc uetald  aepodpopiwv mov PBploxovioar otov  Eupwmnoind
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Owovouxd Xopo (EU, 2014). Exlone, auth n tpononolnon Aoy oUVEREL TNC avaévoucug
EQUPUOYNHC TOU ayOpaxevipwo) TEQBUAAOVIXOY péTpou ot mayxéouo eninedo omd To
Awedvhy Opyavioud Tlohtuxic Aegpomoploc petd to 2016 (International Civil Aviation
Organization-ICAO).

H Bedtepn peyolitepn npwtofouviia eivan 1o XEAE tne Kogéac, 1o onolo té0nxe oe 1oy
7o 2015 xou elvon o mp®To edvind mEoOYeouUa sTBOANC aveTaTtou oplou o europiag oTNY
Avatolny Acla. Koahlnter Tic agpontopixéc UeTapopéc (NTACEC 0wTepol) xaddc xou
dhoug 22 topelc (ICAP, 2016a). Evo yopoxtnpiotxd yvopiopa tou SEAE e Kopéag
elvon 1 BuvatdTTa Te XUPEpVNoNe Vo aERGEL TNV TEOGHOES TLWV BIXAMWUETOY, TEOXEWEVOU
vor otadeporoteitar 1 Tih Tou Sandpatoc otic 10.000 povidec KRW (repinou €7,9 4 $9).

To YEAE vy tic agpoyetopogéc tne Loavyxdnce omotehel éva amd Tor entd mAoTIXd
npoyedupata tne Kivae mou egapudlovtan oe didgpopoug topete. TEédnxe oe oyl to 2013
xou elva To wovo mpdypauua oty Kiva, tou xahdntel tic exnopnéc agpiwyv Tou Yepuoxnmiou

o TS VEPOTOPIKES PETUPORES (UOVO TTHOELS EOWTERIXOD).

Ao mepBoddovtind uyétpo elval 1 emBolr TEPUBUANOVTIXGY YPEWMCEWY YLl TNV TOCOTNTA
TV EXTOURGV Tou Tapdyoviol lte o éval agpoBEOUI0 XATd TN QAon NG TEOCYEIONS Xou
aroyeiwone (airport charge) elte xatd 0 Sdpxeia tne xVpac nthone (en-route charge).
Yy Eupdnn, undpyouv apxetd mopadelypata TETOWWY EQUOUOYOV, XUPIG OF YOPES OTWC
n ExBetlo, n 'eppavia, To Hvwuévo Baciielo, tn Aavio xTh.

Eriong, ta mpoypdupata avtiotdiuions tou dvipoxa elvon TEpIBaAAOVTING TEOYEAUUAT TOU
cpopuolovian, oc edehovid eninedo uéypl oTiYPnC, and OLAPORES OEPOTOPIXES ETARE(EC.
‘Etor, av o emfdtne to emidupel pmopel va mwhnpdost €val emmAéov xO0TOC OOTE Vi
avTioTaduloel Tic apynTKée emmTdoeg Tou Taddtol Tou. Ta €ooba autd ouAAEYovTIL Yo TN
YenuatodoTnon neptBuilovixady €ovwy. Méyet to 2014, ndvw and 35 aeponopinéc etoupeleg
elyov 101 epopudoet To dixd Touc Tedypapua avtiotdduone dvipoxa (IATA, 2014b).

Téhoc, o ICAO otn 39" odvodo tov OxtwBelo tou 2016, anogdoice v avdntuin evog
AYOPUXEVTEIXOD TEQBUAAOVTIXNOY UETPOU OF TAYXOOMULO ETINEDD, ¢ WEPOC Wiag ELPUTERNC
ogde uétpwv (ICAO, 2013a). O ICAO erméhele éva mpdypoppa avilotdlulong Twv
EXTOUTOY vlpoxa HE 0TOYO0 TN otadeponolnon TwV EXTOUTOV TOU TUpAYOVTOL OTo TLC
diedvelc aepopetagopéc (Carbon Offsetting and Reduction Scheme for International
Aviation-CORSIA).

2.2. Yrndpyovoeg npoceyyiocelg yvia TNV extipunomn ng enidpacng TV

TEELBAAANOVIIX DV TOALTIXDYV CTNV AEpOToELXY Brownyavic

H egappoyy cvotnudtwy eunoplac eEXTOUTOV 1 GAADY UETPWY TWOAIYNONC TWY EXTOUTOV
auEdVEL TO %60TOC TWV 0EPOTOPIXMY eTotpeldy. O Badude otov omolo 10 x60TOC AUTO
UTopel Vo EMNEEACEL TIC OTPATNYIXES TWVY AEQOTOPIXMY ETAUOEUIV OYETXE UE TNV TLOAOYNOT
TV elortnplev, TNV acpomopxr) {ATNoT xat To YEVIXO TAa(olo TOU BIXTUOU EROUETAPOREMY
Exel egetaotel and Bidwopee cpyaoiec oto moperddv. Kdénowee epyaoiec eletdlouv Tov
AVTIXTUTO OTNY EVOEYOUEVT AVUTPOGUPUOYTH TOU BIXTO0L TKV agponopixmv etapeldv (Derigs
and Illing, 2013; Hsu and Lin, 2005), otov touptopd (Blanc and Winchester, 2012; Peeters
and Dubois, 2010; Pentelow and Scott, 2011; Tol, 2007) xow otov avtaywviopd (Barbot et

al., 2014). Alec epyaoiec eotidlovion oty enidpaon TwWV TOMTIXOY AUTOV OTIC TES TWV
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gottnelwy o T LATNOT, UE TIC MEPLOCOTEREC omd AUTEC YO OPOPOUY OTNY EQURUOYT TOU
YEAE nc E.E. (Albers et al., 2009; Anger, 2010; Mayor and Tol, 2010; Meleo et al.,
2016; Miyoshi, 2014; Scheelhaase and Grimme, 2007; Scheelhaase et al., 2010). Alkec
gpyaoiec apopolv TNV EQUEUOYYH TOAMTIXGOV CE YWOEEC OTOU QUTH TRy OoTYUr Oev
cpoppolovton mepiBurhovtinéc TohTinée yia Tl acpopeTapopéc. o topddelypa oo Malina et
al. (2012) xou ou Hofer et al. (2010) eZétacay Ti¢ EMNTOOE TS EQUPUOYNC EVHC TETOLOU
wétpou otc H.ILA., evd 1 epyooia twv Gonzalez and Hosoda (2016) agopoloe tnv

Torovia.

H cemoxémnon tov  avetépw  BBAMOYeapx@y  avapop®y  O0AYNOE  OTO  TApaxXdte

cuunepdopata 6oov apopd tn uedodohoyia xan Tic UTOVECELS TOU YENCULOTOLONYV:

o Kot’ apyde, n mhewodnola twv epyacioy otnplletar oe Undpyouces TYWES EAACTIXOTNTOC
Chtnone. Me dhha Aoyw, 8e ypnowomoiolv mpdtuna acpomopxnc L{htnone ohAd
axohoudolv Ty g€ mpoctyyion: unohoyiopdg exnoundy CO2 avd diadpour 1 etoupela
— unohoylopoe adinone Twhc eoutnplou — unddeorn ehaoctixdtnrac Lhtnone (and
Tponyoluevee epyaciec) — extiunon petaforic tne {hTnone.

o Enlong, v tov vnoloyioud e addnone e twhc elottnplou noAlée epyaoiec xdvouv
anhonolntxés Uno¥EoElS W TPOC TO TOGOGTH UETAXVALGTC TOU XOGTOUC EXTOUTMYV GTOV
e,

o Teltov, xdroec gpyaociec dev meEpABAVOUY UTOAOYLONO TOV EXTOUTOV ovd SLabpoun
ATA aAAG yenoLonowoly yeoeg Tiweg extounmy CO2.

o Téhog, éva 1060616 TV EpyaoUdY TEpLOpIlETAUL OE AVAAUGT CUYXEXPUEVKDY BLaBPOUMY 1
UXEOY OEPOTOPIX®Y O TUwY. Me outdv tov tedmo Bev elvar e@ixTh) 1 avdiuon oc

HAXPOOXOTIXS ETUREDO.

2.3. TYTrdpyovoeg npooeyyioslg Yl TNV AVAALOY, TNG OCEPOTORLXNAS
ShTnons

H avéduon tne {Atnone evdc petagopixol ouothuatoc omotehel Booixd yvouova yio T
AN amogdoswy oyeTxd pe TN Asttoupyla Tou, MV avdmTuln TOu, TNV EMEVOUOT VEWV
TEYVOAOYIOV Xot TNV €Qapuoyr Tohitixwyv ot autd. Ta mpdtuma petagophc {htnone
UTO0pOUY Vol xatnyoptonondolv: 1) ot eZatopixeuuéva xot adpoloTtind, GTou avdhoya YE TN
AETTOUEPELX TV DEBOUEVLV AApPBAVETOL UTOPT 1 WKEOOXOTUXN 1) HoxpooxoTxy) Yempnor Tou
TEOPBAAUATOC Xon W) OF ypouuixd mpdtuna i o mpdtuta Btaxpltdv emhoyov (Hsiao and
Hansen, 2011; Ortuzar and Willumsen, 2011; Postorino, 2010). Avdhoya pe to dedopéva
TOU YenowwonolotvTal o adpoloTixd mpdTuta Umopel Vo a@opolv BlacTpmuaTd oTolyEld,
yeovooeée xou dedouéva panel. Oocov agpopd Tic ogpomopixéc UeTapopés, 1 avdiuon
YEOVOOEROY €yel ouyvd yenowonomndel v v medBiedn tne (Atnone (Carsona et al.,
2011; Kopsch, 2012). Ot teyvixéc avdhuong ypovooeipmy dev ntapéyouy TAnpopopio yio Ty
OUTLOXEATIXY CUGYETION Xot TOCOTXOTOINoN TNne eLopTNUévne we mpog Tic aveldpTnTes
MeTUBANTES non dpa Bev pmopel var npoliédel tnv eE€hEn tne cuptnuévne PETORBANTAC HETA
and  ohhoyy e aveEdptnng  petofintic. o to oxomd  autd  yenowomololvtol
OMOVOUETPIXE  POVTEAX Tot omola EMTPENOUV  TOV  TEOCDLOPIOUS TV oVESHETNTOY
HETOBANTOY, Oeuxpvilouy Tov Teoémo ue Ttov onolo mpayupatomoleiton 1 enidpoorn  xow

nocotixonototy TNy enidpact auth (Abed et al., 2001).
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Toa adporotixd povtéro avahdouvy To YopaXTnEloTixd oto oUvoio Tou mAnluouol mou
e€etdleton, eved To cEUTOUMEUPEVA UOVTEND Yenowlomololy dedopéval vy tov  x8de
petavolpevo. Ta e€atopxevuéva mpdTuna Yopaxtnellovion amd XMoo YELOVEXTHUATA
omwe elvon 1 duoxohia edgeone avVTINPOCWNELTIKOY BelypaTos, TO X00TO¢ ANOHTNONG
0edouévwy, xadOC xou OF UEPIXEC TEEIMTMOOELS, 1) aduvoula GUANOYTC ECUTOUXEVUEVLY
dedouévmv oo x&e emBdtn (Garrow, 2010). Avtileta, n nopoyh adpoloTixdv dedouévemv
agponopxnc xivnone and didpopous opyaviopole, otwe elvar to Trovpyelo Metagopmy ey
Hvouévov IMohtewdy Aucpixc (BTS, n.d.) diver t Buvatdtnta oTtoug gpeuvntéc va
avartifouv adpoiotixd uovtéha (ftnone. H mopoloa SuatpBr agopd otnv  avdmtun
TpOTUTOU aEpoTophc {ATNONG YenoonouwvTac adpoloTixd dlaotpwpatind otolyeio. o to
rOYO auTO, T BiBAOYRUPIXT] AVAOXOTNGCT ETXEVIPOVETH OTNV  aveAuon adpoloTixdy
TEOTUTWY, W Teoc Ti¢ pedodoloyiee xou T aveddptnTtee UETUBANTEC TOU YENOLLOTOLOOV.
Me Bdon tnv urdpyovca Bhioypapia, ot xUplol Toedyovies Tou ennpedlouy TNV GEROTOPIXY)
{ftnon elvon 1 T Tov eottneiou, 1 ouyVOTNTA TTHOEMY, To PEYEVOC TOU AEEOOXAPOUC,
HOWVOYIXO-0LXOVOUXE, YopoxTneloTixd (6nwe o eloddnua, o Thnduopdc xTh.), 1 arndotaor

XL 0 Yeovoc tThone, To eninedo edunneétnong xTh.

Ané v emoxomnon tne BiBhoypaplac napatneinxe o6t ta adpoioTind povtéra {Htnong
Baotlovton, oe ueydho Bodud, ot TEOTUTA YEUMUIXTC TOALYOEOUNoNG Ywele var AauBdvouy
untodn TRV avlp®OTLVY CUUTERLPORE Kot GEO YMPIC VO EVOWUATOVOUY HOVTEND BLOXELTAHS
enthoyhic otn yedodoroyia Toug (Bhadra & Kee, 2008; Mumbower et al., 2014; Sivrikaya
& Tung, 2013). Xe autd n eZoptnuévn petoBinth exgedletor ¢ o aptdude twv emBatdy
0 aprdude Ty emPatoythiopétwy avd {ebyog TOREwY, avd diadpoun, avd etoupeio xTh. Adyw
evdoyévelag xdrotag aveldptnTng uetaPAnthc (cuvidwe tne Twhc crottnpiou) TohhéC and Tic
epyaoiec epopudlouy pedodoue Bondnuxdy petafBAntdv (800 A tewdv otadinv) yio thy
extiunon Twv meotinwv. Kdnowee epyoaoiec apopodv v xoatavopd e {htnone oe
evolhoxtixéc Sodpouéc, etoupiec o dhha (Barnhart et al., 2014; Coldren et al. 2003,
Coldren and Koppelman, 2005; Hsiao and Hansen, 2011; Wei and Hansen, 2005). Autéc oL
EpYUOIEC EVOWUATOVOUY TN OLUTERLPORd TV ETPATOV UEOW NG YEHONS TEOTOTGY
BLopLTdY EMAOYOV. XE oUYXELON HE TIC ENLYEIEC UETUPOPES, 1) YENOT TETOUDY TPOTUTMY YLo
TNV AVEAUCT, TNG CUUTERPLPOEAC TMV ETPATOV TWY 0EPOTOPOY UETAUDOEMOY ELVOL OEXETH
replopiopévn. H yenon towv npotinwv ot adpoiotind dedouéva odnyel otny extiunon twv
pepdlwy ayopdc uéoo o €va OUVOAO OLUPOpETXY Dladpoudy, dpopoioyimy xth. Ot
gounveuTIMES UETAUPANTEC oUVDWEC TEQLAUBAVOUY  XOLVWVIXO-OLXOVOULXE Y OROUXTNELOTIXG,
adpototind dedopéva Tou "uéoou emPBdn", dedoudva oyeTind ue To eninedo eunneétnong
e drdpouic (6mwe 1 ouyvoTnta nThoEwv), N TWh Tou cottnpiou xAt. Ta dedoyéva tou
yenotwonoohvtar cuvilee culhéyoviol and BAoelc BEBOUEVWV TV TEOYLOUUITWY TTACEWY

) TGV CUCTNUATEV NAEXTPOVIXOY XPATACEWY.

H enitevin woopporniac yetalt npocgopds o {tnone elvar Yepehddne yio to oyedoud
evoc petapopxol cuothuatoc. Eldwdtepa, v tny avédluon mohtixdyv, eivan ovoryxolo 1
yvoon t6co e dophc e CATNOMC Ao TNC TROCQOPHSC GC0 KoL TOU  UNYOVIOHOU
alnhenidpoone Touc. Xe yevée yeoupés, N xehon meotinwy {ATNong Yo TV aviAucT) Uiog
TohTixAc umopel va e€dyel xavomonTxd amoteléopato Lmd TV mpolUnbddeon Ot oL
Tapdyovies mou ennpedlouy NV mpooopd mapauévouy otadepol. ‘Ouwe, oto mepBdAlov

TOV  OEPOTORPIXAMV  PETAPOPWY, ULRAEYEL €viovn alnienidooon uetald mnpocwopdc  xou
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Uhtnone. Kotd tn BBhioypapixry avaoxonnon eviomloTnxe 6Tt URdpyEl avdyun Tepattépw
DlEEEGVNONC TNG CUUTERLPOPAS TOV KEPOTOPIXMV ETUUEELDY, ¢ TPOS TN OLHOPPLCY TwVY
WAV, X0l TV TEOBAEYN TNC OCUUTEPLPOPAC TWY EMPBATOY METE omd TNV EQOOUOYT
TERBOUAAOVTIXGV PETEWY, UTO To Tploua evog Bouixol npotinou {ftnone xo tpocpopdc. I
auté To AOYOo 1 mapoVoo dwteBr emextelvel v epyaocia tou Berry (1994), n onola
Baotleton oty avdntuln mEoTiNWY SLaMELTOY ETAOYWY UE Yphorn adeoloTixdY BeBoUEvLY,
EVE 1) TPOCQPOPA UVIADETOL UE TNV TopadoyT OTL Ol eTalpelec PEYIOTOTOWOY To XE€pPdT TOUC
EVTOC UG OALYOTWALIXAS OVTAYWVIGTIXAC oyopdc. Auth 1 Tpoctyylon €yel yenolorotmiel
EUPEWC GTOV TOUEN TNG PLOUNYAVIXAC OPYAVKOTC, EVE MEPXES TPOOTAVELEC €X0OUV ONUeLUEL
OTOV TOPEN TWY UEPOTOPMY UETAPOEMY UENETOVTAC (1) Tar duethol XoUBKOY dEPOdEOUinY
(Aguirregabiria and Ho, 2012; Berry et al., 2006; Israel et al., 2013), (ii) tn ouyywveuon
TV aeponopxey etonperdv (Chen and Gayle, 2013; Doi and Ohashi, 2015; Lee, 2013a), xou
(iii) tic aeponopxéc ouppaylec (Gayle and Brown, 2014), eved dev Beédnxe xdmoo oyeTixh
gpyooia Tou BIEPELVE PECHL AUTON TOU TEOTOTOY TNV EQAUPUOYY EVOC TEPIBAANOVTIXO) UETEOU
(7). TWONOYNON TV EXTOUTOV) 6T0 BiXTUO TwY depopeTapopmY. Onwe LTodewxvieTou and
T0 xePdAouo Tng uedodoloyilugc 1 yehon authC TS TEOCEYYLONS EYEL TOANS TAEOVEXTHUOTO

Tou €youv evowuoatwidel otny napoloo Blatelfn.

3. M€9odog vnohoyiopol exnounmy CO2 and Ta acpooxdyn

O agponopinéc petagopéc enneedlouv TNy atuodogupa U Toharholg teoTove. H extoury
Boediou Tou dvipaxa amd To XAVOWA TWV  AEPOOXAPMY EYEL dueoT enidpaocy o©TO
nepBdrrov. Erione, ta acpoouden exméumouvv udpatpolc ot omolot cupBdihouv otnv
unepUépuavor Tou Thavitn otav exméunovial o€ peydha upoduetea. Téhog, exhbouv ofeldua
Tou al®tou (Tou TEOXahoUV TO oyNUATIoUd Tou GLOVTOC OTNY AVETERY ATHOCHOLEO) Xol
owuatidlor Tou 0dNYolY 610 GYNUATIONS YVEOMV, EVIoYDOVTAC TO QULVOUEVO TOu Veproxnriou.
Ot pOTOL TV GEPOOHAPHOY EXTEUTOVIOL XOVTE OTO €000 XAUTA TNV TEOCYEWWoN Xau TNy
anoyeiwon N oe peydha vpdueTeo xatd TNV AUl YAoT TS TTHONS o OTOTE ENNEEGLOUY
TNV TOLOTNTOL TOU TOTUXOU G€Qa XOVTA OTo 0gpodpouLle | cUUPBIARoUY TNy XAater ahhoy
avtiotolya. Xe oavtiotoylor e Tic umdpyouces mepalhoviixéc molTiés, N moapolod
Olatpy) eotidleton otic exmounéc Slogewiou Tou dvdpaxa mou Vewpelton TO oNUAVTIXOTERO

aéplo tou Jepuoxnmiov (Aoye tng peyding didpxelag Tou xixhou Lwhc Tov).

H avnouyio yia tnv exnidpoon twv agpomop@®Y UETAPOp®Y o010 ReEpBdiloy €yel wifoel
gtoupelee, diedvelc opyaviopolc xadme xar gpeuyntéc va avantdZouy tednouc xon Uedodouc
UTOAOYLOUO) TV EXTOUTOV TWV JELOCXAUQPOY. XTNV TUPOUCOH £pyodcio ovonTtlioosTol Uid
pedodboroyia yio tov unohoyioud Twv exmounev CO2 1600 Y T @don oamoyelwone-
npooyelwone (Landing and Take-oft-LTO) 600 xou v To xUpto pépoc tng nthiong (Climb-
Cruise-Descent-CCD).

Audpopec epyacies €xouy BNUOCLEUTEL OYETIXG UE TNV EXTIUNOT EXTOUTOV TWYV AECOCKAPEDY.
T tn @don e anoyeivone-npooyelwone (LTO), n niewodnelo twv  epyooidvy
ETUXEVTIPMOVETAL GTOV UTOAOYIOUS agpiny pUmwy Tou enneedlouv TRV TOOTNTA TOU TOTXOU
abpa 6mwe HC, CO, NOx. Alkec gpyaoicc aoyorodvial eniong YE TOV UTONOYLOUS TGV
exmopneyv CO2 xatd n @don LTO (Alonso et al., 2014; Chao, 2014; Cokorilo, 2016;
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Miyoshi and Mason, 2009; Song and Shon, 2012; Symeonidis et al., 2004; Tsilingiridis,
2009; Turgut and Rosen, 2010). I toug unoloywopolc xatd tn @don LTO ouvAdec
yenotuonoieiton 1 Bdon dedoyévwv Engine Emissions Databank tou ICAQO, 1 onola 8ivel o
pulpd  xaTAVIAWONE XOUCIHOU YLt T TECOEPR DlapopeTixd otddier Tou xOxhou LTO:
TROGEYYIOT], TEOY0dEOUNOY, ATOYEwaN o dvodoc ato LPOUETEO TTAONG. LNV ToEoloo
dotel3r), vy iy egoppoyh tne wevodoloyiac ypnowonoteitan 1 Bdon dedopévev Engine
Emissions Databank touv ICAO, e anortodueva otolyeion Tov TOTO TOU 0EEOGKAPOUS Kol
e unyavic xou To ypedvo xdde wdone (BA. enlone Eyfua 3). Ou ypdvor twv dpdpwy
otdiwy  tou LTO xodopilovion w¢ e€ng: vy TouC  YpOVOUS  TPOYOBROUNCEWY
xenouwonototvtan otolyelo and tn Bdor dedouévev Airline On-Time Performance Data nou
napéyeton  and to Trmoupyelo petagopty tov HILA. eve vy to dAho otdd
xenorwornoteitar o tumide xUxhog anoyelwone-npooyelwone pe Bdon tov ICAO (1993).
Enedr, n Bdon Oedopévewv Engine Emissions Databank tou ICAO mapéyer pudpoic
xatoavdhwone  xavolpou  pévo  y  agpuwdoluevo  agpooxdyrn  (jet), o  mepinTwon
otpofthoehxopbpwy (turboprop) yenowornoeitow 1 Bdon dedopévewvy EMEP/CORINAIR
(EEA, 2013).

It tov urohoyloud twv extouney CO2 xatd ) @don e xdploc nthone (Climb-Cruise-
Descent/CCD), n napoloa epyaocia yenowornolel tn Bdon dedouévey Base of Aircraft Data
(BADA) tou EUROCONTROL yio tov 1pocdiopiond 1ou puduol xatavdhemone xauoiyou.
H ouyxexpuyévrn Bdon €yl ypnoworowniel supéwe otn oyxetixh BBhoypapla (Albers et al.,
2009; Kim et al., 2007; Schaefer, 2012; Scheelhaase et al., 2010; Wasiuk et al., 2015). '
v egappoYn tne Bdone dedouévwyv BADA elvon amapaltntn n yvaorn e evoéelag
AATOHORUONE TEOYLEC TOU ogpooxdpouc ot OAn tn Budexew tne odone CCD. Metd and
avdiuon totopixey otowyeiwy damot@dnxe 6Tt oToug mopdyoviee mou xadopilouv TNy
EVAERLOL XATOXOPUYPT, TEOYLE TOU aEROOXIQoUC TeplhafBdvovior 0 TOTOC OEpOOKAPOUS, N
OmOCTUOY TTACHC XA O TEOGUVUTOMOUOS NS TTHoMS. AMNOL TopdyOVTES €lvan Ol XoLpIXéQ
ouvixec, meploplouol tou eréyyou evadpiag wuxhogoplag xTA. To vo extundolv ol
exmopnég CO2 yia éva €upd ogpoTopxd BIXTUO PE oYeTXd oxph ot Yeryopo TeoTO,
Yewpninue oxdmuo vo extundel ) TUTXY EVIEPLL XATAXORLET] TPOYLE TOU JAELOOAAPOUS YL
%QUE GUVBUACUG KIEPOOUAPOC, ATAOTAOY), TEOCAUVATOAGHOCH . TN BiBAtoypapla, 1 extiunon
EVOEQLIS  XOTUXOPLUYPNC TEOYLAC Tou agpooxdpoue €yel mpooeyylotel Bdoel dUo xlplwv
TpooeyyioEwv: YeNon UOVIEAWY TPOCOUOIWONE TNG TEOYLIC UELOOAAPOUC Xl HEVODWY
unyavixne wéinong.

H Béomn dedopévwy Base of Aircraft Data (BADA) tou EUROCONTROL nepihoufBdver éva
olvolo apyelnv ASCII ta onola Tep€youy TWES TWVY TUPURETEMY ETBOONE BLapOp®Y TUTWY
OELOCHAPOV UE GXOTO VoL YENoWoToidoly Yl TNV TEocopolwan Tng Teoylds Twy ue Bdon
Tlg Tunonolnueves dadixaoies mouv cuvhlwe axohoulodvtol and Tic acponopxéc etoupelec.
Ov nopduetpor  autéc ewdyovior To  UOVIEAO Tpooouolwone Tne  Asttoupylag  Tou
acpooxdpouc (Total Energy Model) to omolo diver tn oyéorn petald Tpidv Poondv
Topopétpwy: v Odnor (thrust), tny mpoypotixd toydtnta (true airspeed) xou to pudud
avédou/xad6dou (rate of climb/descent). H mpocéyyion auth éyer yenowonowmdel ond
Oldpopouc epeuvntéc elte yior v dnwoupyla e evaéplag TPoYLES EVOC GEPOOXAYOUS
(Wasiuk et al., 2015; Schaefer; 2012; Simone et al.; 2013) eite yix tov uTohoyloud Tne

HATAVEIAWDONE HAVGIUWY TRV AEROOKAUPHOY OTaV oL EVagptee Tpoytéc elvor diadéoes and dAAa
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otoyela (Kim et al., 2007; Pham et al., 2010; Sheng et al., 2015; Turgut et al., 2014;
Williams xou Noland, 2005).

Yty mapoloa Batelly yenowonoweiton 1 Bdorn dedouevey BADA tou EUROCONTROL
xO¢ xou To povIENO mpooouoiwone tne hertoupylac tou acpooxdwouc (Total Energy
Model) w¢ eZhc: Apyxd, n @don CCD dupeiton o uxpd Swoxprtd Bhuata, yia xadéva ond
ta onolo apyxd unohoyilovtan 1 ToydTnTa TOU vEpooXdPoUs, TO (tpéyov) LbduETpo, N
OUnon Tou vnTARY, 1 AEEOBUVAUIXT aVTIOTAOT o JAAEC TUPAUETEOL TN CUVEYELW,
gpapuoletal 1 €€lowon TOU HOVTEAOU TROCOUOIWOTC TOU AEROCXAPOUC (GTE VoL UTOAOYLOTEL
0 pudubde avddou/xatdBou we cuvdeTnon Tne GINoNe Tou xVTHER XoL TS Ty UTNTIC TOU
aepoaxndgpous. Ilpoyuatonolelton pior enavodnmuxf dadxacia émou to TEéyov LPoUETEO
(xdde enavéindne) mpocoudvetar xotd to unohoylbuevo pudud avddou/xadédou. Qc
onueto évapine tne emavahnmTixrc Swdiacioc elvon o umohoylouds TNe Uéonc Bldpxeldg
mheVone (cruise duration) xa tou péoou uopétpou mhevone (cruise altitude) avd
ouvduaoud  «aepooxdwoe, andotacy, xatebduvony (mou TEOXUTTOUV amd TNV avVEAUOT
ueYdhou elpouc woTopxdv nthoewv). Ernlong, Baowd anutoluevo otouyelo anotelel To
opy6 Bdpoc tou agpooxdpous mewv TNy évapin tne vdone CCD, to onolo unoloyileton
ouvapTAoEL TOU WEEMPoL Bdpouc (Mpayload), TO Bdpouc xauoiuou (mfuel) xou t0 Bdpouc

&delou acpooxdpouc (MoE).

H rnopandves npocéyyion Poaociletor oe tumixée Owdiwoaoiec xou dpat EVOEYETUL VO UNV
QTOTUTIOVEL TNV EVOERLXL TEOYLE TOU agpooxdpous und mpayuatixéc ouvdixee. T avtd o
rOYO, 1 meoocpatn PBBAoypaple ETIXEVICOVETOL O YEHOT OTATICTIXGY HEVOBWY YL TNV
AVEAUOT IOTORWMY EVUERIWY TEOYIWY HE OGXOTMO TNV EUPECT) TNG TUTXNG EVAEQLIS TEOYLAC
(Hamed, et al., 2013; Hrastovec xou Solina, 2014; Nicol, 2013; Tastambekov et al., 2014).
To anoteréopato aUTOV TGV EpYAOLOY delyvouv OTL T o@dipate TEOBAedne autdy twv
HEVOBWY Elval WXEOTERN OF OYECT AUTMY TOU TROXVTTOUY OTO TNV EQUOUOYY TOU LOVTEAOU

Tpooouolwoe Aettoupylag aepooxd@ous P yehor Twy napayétewy tne BADA.

D awtd to Adyo, oty rmapoloo Olateldh ovantlooetol emlong po pédodog yioo TNy
extiunon NS TUTIXAC TEOXLEC aepooxdpouc Ue Bdon T oTaTIoTXY) oavIAUCT) LOTOPIXMOY
TPOYWOY UETA and xatdhhnhn evduypdupion (landmark registration). Tio xdde ouvduaoud
KUEPOOAHAPOS, ATOCTACY], TEOCAVUTOMOUOCY, Ol XOUTUAEC (TPOYIEC CEPOOXUPHOY) TOU
SUMEYOVTOL TEPLEYOUV TANEOGORIEC OYETXS YE TO LPOUETEO TOU OEPOOXAPOUS o€ XdUe
yeovixry otiyur e nmthone. ‘Etol ta 8edouéva mou ocuMéyovtan avtipetenillovial o
HOUTOAES o Oyt w¢ dloxprtd dedouéva. Eva Baoixd mpdBinua nou tapatneeital o€ TETOL0U
eldouc dedouéva (functional data) elvon 1 Umapdn Swawpopdc @done (phase variation). H
extiunon Tng VTG TeoXLEC dEPOOUGVOUC HEGL TNC XEPRONS TOU YEGOU HEOU TV TEOYLOY
Ja €0tve wlor «un peahtotixny tpoyld. Lo vo avtiyetwniotel To meolAnuo autd, oL TpoyLEc
(xaunhec) o xdde cUVBLAOUS KAEPOOXAPOC, ATOOTAUCTY), TEOCAVITOMOUOCY UTOBAAROVTOL
oe evduypduuiorn (registration) uetd omd avTioTOlYION TWV YUPUXTNEICTIXOY  onueiny
avagopdc f opbonuev  (landmarks) Tewv  xopmulov. H  uédodoc auth  ovopdleton
suduypdpuion TV xounuioy pe Bdon ta onpelo (landmark registration) xon Boocileton otov
EVTOTIOUO YUPOXTNEIOTIXOY ONPElV ovapopdc X 0pbonumy Twv Xaunuhey/tpoyidyv. Ta
opbomnua elvar oUEla TOU PTOROGY Vo EVTIOTIGTONY antd TOV ¥pRoTN UE AUTOUATO TEOTO YOl

To onolal AVTIOTOLY OOV OE EUPAVY| YEWUETPIXA YOPOXTHPLOTING ONUEL 0TS TOTIXA axpdTUTY,
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ywviee xin. H euduypdupion yiveton UE yenomn AAtdAANAWY CUVHPTHAOEWY UETACYNULATIOHOD
(warping functions). Tekwxd, oi euvduypoppiouyévec tpoyiéc (registered profiles)
TEAYUATOTOIOUVTOL OE XOWVN XALLoXa YpOVou MoTe va glvar duvath 1 otatiotixy| eneéepyooia
TOUC xou 7 EUPECY TG TUTIXAC EVOEpLaC Teoyldc ava ouvduaopd. To BApata mou

axoAoUBolVTAL YIot TOV UTOAOYLOUO TwV extouney CO2 galvovtal oto Xynua 3.

1. ®don LTO (h<3,000 ft)

Arnotolueva otouyela - Bdoeic Seouévav
v ] Troloyiouog P 1CAO
- TOrnog aepooxdpoug , < -
¢ oep Pove LTO exnouncyv CO2

1 1
1 1
1 1
I |- Aedopéva aepodpopiov (ypdvor) - EMEP CORINAIR :
1

1 1
1 1

| LTO exnopnég CO:

Arnotolueva otolyeia

| Ouobonoinon |
Iotopxd otouyeia TpoYLwY 7

E&aydueva otolyelo
Ouddec nthoewy v xédde cuvduaoud
KAEPOOHAPOC-AUTOCTAGT-TPOTAVATOMOUACH

MéSobocg 2
MéSodoc 1 > ,
Arnotolueva cTolyeia

A 4

- Iotopid otovyela tpoyLdv|
- AcBouéva agpooxapny x| i
agpodpoulny :

1

1

1

1

I

1

1

1

1

1

1

Anoatolueva ctolyeta :
1

. . Al
- Tnohoyiwoudc xavoiuou |
1

I

1

1

1

1

1

1

1

1

1

1

I

1

Iotopxd otouyela TpoyLLv EZaydueva ctouyelo

Tumxh evagpla xotaxdeuen /
TPOYLE 0EPOOUBPOUC avdL

anoyelwong

SuVBUAGUO ; ,

Evduypduuion dedoudvev T - Yuveheotée TANPGTNTOC |

1 ]

&, , | Movtého mpocouoiwong Trg|

Tramotu avihuon 1 hertovpylog sepooxdmoug | i

1 ]
e ;

1 ]
1 : Troloyioude > Bdor dedouévov:
: B. Yroloyiopodg i CCD exmoundv CO2 D BADA: Tapductpot
| xALoiLLY xou | v xoTovdhwong xowotuou| i
: exmopndy COy i CCD exrounég CO2

LTO exnounég COz + CCD exnopnég COz; = Exnopnég CO; avd dpopordyio

Ewodyetan oty eélowon Tou x60TOUS TWY ETAUPEELDY

Exhpo 3. Medodohoylia vtohoyiopol exropnmdy CO;

Ov avortépw npooeyyioeic eqoapudlovton e évo Yeydho £0poc TTHOEWY, Yot SLopopeTXO0C

CUVBUACUOUEC TUTLY HEQOCKAPMY, UTOOTACEMY X dleudivoswy nthcewy. H obyxpion twyv

EXTWOUEVOY YORUUTNPLOTIXMY UE TI¢ Tpooeyyioele autée Belyvouv 6T ov Tumixée Tpoyiéc

Tou mpoxUTTouv and TNy cuduypduuion pe Bdon to onpeio (registration-based method)

TOE&YEL TLO oXE3Y) ATOTEAECUNTA WC TIEOC T1) OLIEXELL TWV dLUpOpwY PAGEMY TS TTHONC Kol
4 4 4 4 2 2 2,

0 pulud avédou xow xododou. llupd TiIC ONUAVTIXEC BLIQOPEC OTA  EXTUUOUEVY

YAUEUXTNELOTIXG TTAONE HETAED TV TUTIXOY TEOYLOY Tou e€dyovtar and T 800 uedddoug, 1
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Bapopd otnv extiunon twv exnoundv CO2 elvar Aydtepo évtovn. Ou tumxéc Tpoyléc
yenotwomoiinxay vy TNy extiunon Twv guvolxdy extoundv CO2 o670 agpomopixd dixtuo
v HILA. Me Bdon tic extihoeic tne nopoloac epyaciag ywr to 2012, ov 4,01 exar.
nthoelc mou avohOdnxay elyav cav anotéhecpa 68,4 exat. tovor CO2 mou onualver 17,1
tovor CO2 avd mthon ( 5,41 tdvor xouoipou). Auth 1 extiunon eivow mold xovid o€

UTHPY OUCES EXTUUNOELS OF DLAPORES YEWYRUPKES TEPLOYES.

4. Medodohoyia avdhuong Tng acponopixng LHTnong

H ouvdptnon {htmone ouvdéer tnv eloptnuévn petaBintd (uetagopxy {htnom) pe xdmoleg
EPUNVELTIXES UETABANTES, Ot oTolec amotelody mapdyovieg mou ennpealouv T {Atnon. H

acponopxn) {ftnon Yo unopolce vo exppacTel and Tov Tapaxdte YEVIXO TOTOo:

q=f®xe¢) EZ. 1

6rov q elvan 1 e€aptnuévn petalinth (acponopwh {htnon), p elvan 1 TWh tou ewottnplon, x
elvan ov enednynuatixéc (R aveldptntec) petafintéc mou emnpedlouv Tt {htnom, 6mee 1
amooTaot Sldpoune, to eninedo eEunneétnone xal dAA yapaxTtneloTxd tou oyetilovtal ue

TO GUYXEXPIEVO BpouoldYLo, Tov emBATn xou € elval To o@dhua tne e&lowone.

Yy napotioa datelBh) N petagopxty {Atnon yio xdle evolhoxTixr) oavaAlETOL YE TEOTUTA
dlaxpltdv emthoyoy evtdc Leuydv torewny Tpoéheuonc-Tlpoopiopot (II-I1). Ye éva dedouévo
Bixtuo, undpyel eva obvoho mohewv II-II, ota onmola x&de emiPdtne unopel va emhééel va
Tad0édel acpomopdde, vo Taglédel ue dhho péoo peTAQORdC N Vo uny Tallédel. Av o
emBdtne emAé€el va unv todédel agpomopxte (OnA. vo Tawédel ue dAho uéoo 1 vor unv
Taléder xoddhou), tote Vewpolue Ot eméhele N pn-acponopixty emhoyh. Opilouvpe Ta
e&hc:

o  «Ayopd» mpoodiopiletor we To Ledyoc nohewy Mpoéhevonc-Tlpoopiouol (TI-1T). e plo
ayopd oL aepomopwéc  eTawpEleC  TEOOQEpOUV  JEQOTOPXEC  CUVDECEL  TIOU
BLIPOROTOLOUVTOL (E TEOG To YOUPUXTNPLOTIXE TOUC.

o Kdlde «acponopnr; olvbeon» mpoodiopileton g 0 Yovadinde cuvduaouods «Aepodpduio
Ipoéheuong, Agpodpouio Avtandxpiong, Aegpodpdwo Ilpoopiouots, Agporopinny etoupela,
Iepiodoc emhoyhey. Kdde emPdine emhéyer va elunnpetnlel and tn odvdeon mou
peyiotomoiel T yenowdtnta tou. Enedy) to Swwdéowa otowyeln  agpopodv tewunvialo
otowyelor TEAMd ¢ ogpomopixy) odvbeon Vewpolue To ouVduaoud  «Aepodpoulo
[Tpoéhevone, Aegpodpduio Avtandxpione, Aepodpduio Ilpoogiouol, Acponopiny| etapelo,
Telunvo emhoyncy.

H TAtnon wpoc agponopxiic oOvdeone (qim) wéoo oe éva Lelyoc ndhewv (ayopd) m
(exppacuévn ot aprdpd emBotov) diveton and tny EE. 2.
qjm = Qm * MSjm EEZ. 2

O 6p0¢ Qum avtinpooonedel Tov duvnTxd apdud Ty eniButdy peTold twv torewy TI-11 xou
unopel va mpoobloptotel Ye TN Yprion povTEAwY BaplTNnToc CUVHETHOEL DNUOYEAPIXEY XL

HOLVWVIXOOWOVOULXDY  YOPAXTNEIOTIXWY NG oyopds. Mo xowd mpocéyyion mou
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yenowonoteitor elvar vor mpoodoplleton pe Bdon tov mAnduoud Ttwv dUo morewv. Xe
avtioTolyla e thv umdpyouca BiBAoypapia, oty dtatefr auth Aoufdvetar 6t 0 6poc Qm
elvon (00 Ye 10 yewueTpd UEco 6po twv mAnduouny twv mokewv II-II. O époc MSjm
anotehel To pepldlo ayopdc mou exel xale acpomopx) cOVOEST EVTOC TNC AYopds o
npocdlopileton e T yeron meotinwy Sxeltdv emhoyov. Me Bdon autd to mpdTuRd O
uetovoluevoe  oflohoyel Tig evolloxtixée Ouxpitée emhoyée mou €yel e Bdon
HEYLOTOTOINGT TNE XPNOWOTNTAS TOU CUVOEETAL [E HADE EMAOYT.

To mo Buwdedouévo mEOTUTO BLaXELTOY ERAOYWV elvol To ToAuwvuuid medTuno logit
(Multinomial Logit model). H avelaptnoio xou tautoonulo TeV Xatavouoy TV cQIALETLY
e xenowotntac VETEL TOV TEPLOPOUS  OTL Ol EVOAAUXTIXEC ETLAOYEC TOU EXEL O
wetovodpevoe mpénel vo elvon aveZdptntee. Otav Bev woyler autd (dnhadh undpyouv
ouddec mou TEPLEYOLY EMAOYEC TOU PETAED Touc elvan o duolec amd OTL HE GANES, OIS Yia
TopddeLyUa OAEC OL OEPOTOPIXEC OUVDESELC OF OYEOT NE TN PN-OEpOTopXh EMAOYR), TOTE
EQAENOYT TOU TOAUWVULILXOU TeoTliTou logit Yo odnyYoel oe pn admioteg EXTIUACELS TWY

OUVTEAECTOV TWV CUVIPTACEWY XpNOUOTNTOC.

To epapyixd npbdTumo logit (nested logit model) dewpel 6Tt 0 ppetoxivoluevoe yweilel tny
peTaxivnomn Tou of Bldgopa oTAdla Xl 0TV ouvéyela axoroudel ma diadoyuxr) Siodacia
Midng anogdoewy, 6twe gaiveton oto LyhAua 4. 'Etol o1 Bipopenée evarhaxTixeég emhoYES
nou ouvoyetilovtar, ouadomolotvtow xou oavonoplotavTor pe e oOvdetrn petafSAnTH Tou
ouvdéetor e ot oUVIETR ouvdpTNoY woEAElg. XTo  Lynuo 4, golvetar OTL oL
HETAXIVOUHEVOL dpyixd EMAEYOUY TO U€00 UETAPOREC (UEpOTORIXMOS K UN) o OTNV CUVEYEL
av emAéEoLy 10 agpoTopixd PECO, €youv BLAPORES EvalluxTIXéC acpontopinés auvdéoels. Ou
agponopixéc oLvdéoelc opadorolovvton o éva olvoro (XOvoho 1) evéd 1 un-agponopixh

4 z 4 7
gmaoyn elvon 1 povadixy| tou ouvolou 0.

Zguyoc morewv TI-11

Acponopirée Mrn-aepomopixt| enthoyh

Yuvdéoelg

(Evin. T Evedd. 2 Evaoon. 3 .. v k1 Bvaic K T
0 0 0 0 0 | I Evaad. 0
| 1 1 J1 e n n I 1
I D1 Cl CQ ..... Chfl Ch I I
Ay D1 D . Dy Da | | I
I Ay Al Ay A I |
! I
N e e e e e === .,I ~—_—
30voro Emhoydv 1: Asponopixég Luvdéoerg 30Vvoro Emthoyoy 0

..h: Agpodpduio Avtandxpione, Di,..n: Agpodpduio

ExAne 4: Aévteo Sroywetopol emthoydy tou emiPBdtn Ue Bdon To tepapyixd
nedturo logit (Nested Logit model)
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H yenowdmnTa evéde emPdrn i nou emhéyel tnyv agporopixny) odvdeon j o wia ayopd (Ledyoc
nohewy 1I-II) Biveton and v mopaxdte eZiowon (yio euxohio napodelnetar o delxtne m tng

AY0pdc):

Uu=x],8—0(p]+fj+£” E€3

6mov pj elvon n ugon TR ewoltnelou e agpomopxnc oLVBEONEC xau Xj Elvan TG AOLTA
TUPOTNEOUMEVO  YUPUXTNRLOTIXG  TNne  ogpomopixnic  oLvdeone.  Ta  mapatnpolueve
YOopoXTNEloTiXd xdle acpomopxic olvdeone umopel va oyetilovion YE TNV oEPOTORLXN
etanpelar xou TN Owdpopr, mihone  (amboTaom, oLYVOTNTO  TTIACEWY, YWENTXOTNTA
dpouoroyiou, Ty ewoitnelov), pe ta acpodpdutor mou edumnpetolvtal (xaduoTtephoels,
Umopln  ocuVTOVIoPEVLY  aEpodpoplny  6TO  BpouoAdYIo) xou pE  dnuoypapwxd  oTouyela

(e106dnua). Ou tapdueTtpol o xou B elvon THpEUETEOL TOU HOVTENOU TOU TEETEL Vo EXTULYOUV.

O 6pog & mepthoBAVEL ToL YOPUXTNELOTIXG TNG AEPOTOPIXNE GUVOEOTC TOU BEV ToEATNPOUVTOL
and touc epeuvnTéc (AOYw e @lome Twv oTolyelwy Tou unelopyovior ot adpoloTixd
wovTtéha) xou dpo 8ev umopodv va mepthnglolyv oto dldvuopo xj, ahhd AouPdvovton unddn
and toug emiBdTeg xatd TN Stadixacia ETAOYHC TNG aEpoTopXAc oOVOESTC. ENUEdvETHL OTL
o 6po¢ &j duapoponoeiton Yo x&le cOVOEST j ahAd Oyl yia x&e emBdtn. [ awtd prnopel va
Jewpniel 6T avTinpoownelerl TN Y€or T TV ATOTWACEMY TWV ETBATOV W TEOS TA U1
TopoTNEOlHEV YopaxTneloTixd xdle olvdeone (Berry, 1994). Tétown yopaxtnetotind unopet
va glvan 1 axpiBic e avaywenone, 1 Utopén wifi oto agpomhdvo, 1 towdThTa TOU PAYNTOY

€V TTACEL XTA.

To eij elvar éva Sidvuopa dpwv cedhdatoc tne yenowodtntae tou emfdtn. Me Bdon tov
Nevo (2011), o dpog €ij drawoponolel Touc ETBATES S TPOC TIC ETLAOYEC TOU XEVOUV OXOUAL
X0 oV €pYOVTAL OVTWETWTOL UE EVaRhaxTIXéS Tou elvan (Bieg (Snhadh dhat ol yopaxTneloTixd
j elvar ). T to wepapyxd mpdtuno logit o tuyaioc bpoc i €yel v axdhouldn

adeoLo TN XAUTAVOUT:

K Ak
exp —Z (Z e‘gif/’lk) EZ. 4
k=1 JEB

Me Bdon tov Berry (1994), o otoyaotinic dpoc €ij unopel vo exppactel we eii=vi(A)+Aej. H
napduetpoc A exgppaler to pétpo tou PBaduod aveloptnoiog WeTHEl TWV AEPOTOPIUOV
EVOANIXTIXOY ETMAOYOV 0T0 cUvoro emhoymy 1. Tlaipver twéc and 0 éwe 1 xou dnidteen
T Tou A onuolvel peyahdtepn avelaptnota xor Ayotepn ouoyétion. Otav A=1, téte 7
CUCYETION TWV OEQOTOPXMOYV ETAOYWOV TNYUVEL OTO UNDEV Xal TO LEQUEYIXO TEOTUTO
logit«icoduvagely pe to mohuvwvuuxé mpotuno logit. O dpoc vi(d) elvon o Tuyaio
ueTafBAnth ntou efvon otadeph oe Ghec TiC depoTopixéc ouVdEseLC (UEoa 6TO GUVONO ETNOYGYV
1) xou T Swgopornoel and to cOvoro emhoydv 0. O bdpoc ejj elvon pro aveldptnTn xon
opota xatovepnpévn toyoda petaBintd (independent and identically distributed-iid) e
mpoc touc emBdrec. Me Bdon touc Berry (1994) xouw Cardell (1991), av n eij éxer tnv
aveTépw xotavour, TOTe 1 UeTaBANTA Vi(A) axohouldel wia xotavour TéTow OOTE Ejj=Vi

(A)+Aeij elvan o Tuyador peTafAnth axpaiewy Twov (extreme value random variable)

XenoworomvTog T eElonoelc Twv TIaVoTATLVY ETAOYAC Yia To epapynd medTuno logit

xou PETE and Swdoyxéc ohyeBpxéc mpdec mou mapoucidlovtan oto Iopdptnue A (yehon
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TOU HEPWIOL AYOPdC TWV OEPOTORIXMY CUVOECEWY XL TNC WUNMFOEPOTOPIXAC ETAOYAC Xo
XATEAANAO Aoyaplduind UETaoY NUaTIons) TpoxinTel 1) topaxdte &lowon, 1 onola anotelel

v ey e€lowon e {NTnomne Tpog eXTIUNoT TV TUEoUETOWY o, B Xt A.
InMS; — InMSy = x; — ap; + (1 = 2) - InMS; ;4 + & EZ. 5

O 6poc InMS; — InMS, anotehel tny e€optnuévn uetainth tne eglowong, énov MSj elvon o
uepldlo ayopdc tne aeponopxhic oOvieone j (T0c0oTéd TV emBATOY TOU ETAEYOUV TO j) Xou
MSo elvon T0 T0600TH TV eMPBatdyv Tou dev TadlBelouy aepotopxde (ite emhéyouv dhho
ueTawopxd uéoo elte dev taldebouy xaddrou). Me tn yeron tne EE. 5 xou tev dudéoipwy
otoyelov (pepldlo oyopdc xou TWEC TWV YopaXTNRLOTIXMOV) UTopoly va extiundoldv ol

ouvteheoTéc B, o xou A.

H Swpodppwon tne EE. 5 dnou o dpog & elvan o Satapaxtinde dpoc tne e€lowone {htnone
onulovpyel to mEdBAnua e evboyévewc. Autd to medBinua unopel vo mpoxleEl pe T
xeron adpoioTin®Y UOVTEAWY ol amoppeést oamd To YEYOVOC OTL ula 1) TEQLOGOTERECS
ave€dptntee peTaBANTéC Tou Wovtéhou umopel va cuoyetilovtor PE TO DlATapUXTIXO OpO.
Autéc ol aveldptntec peTofBANTéC A€yovTal eVBOYEVEIC XoL OTO CUYXEXEWEVO LovTEho elvar 1
TR Tou ewoitneiou pj xau To eEapTnuevo Yepldio ayopdc MSj/e. Autd oupfoiver yati otov
dlatapoxtixd opo & tne e&lowone evdéyetan Vo mepthauBAvovTal ToedyovTeES TOUC Omoioug
hopBdvouv  umodn o emBdrec btav xdvouv Tic Bloxpttéc emhoyéc Touc (xan  dpo
dalopmdvouy Ta pepldla ayopdc) alhd dev mapatnpoivTon and touc epeuvntéc. To npdBinua
e evboyévelog avTpeTonileton Ye Ty extiunon g e€lowong pe pedodoug Bonintixdv
uetafAntov (Instrumental Variables methods). H extiuynon tnc EE. 5 pe tnv wédodo twv
ehaylotwv tetpaydvwy (Ordinary Least Squares-OLS) Qo édwve pn ouvenelc extyfoeic.
Yy SwreBh auth yenowonoelton 1 Tevixevyévn MéGodoc twv Pondv (Generalized
Method of Moments-GMM) vy v extiunon twv nopopétewy {htnong, onwe avahdeTton
oto Kepdhoro 6 tne moapoloog mepiindne. O petaAntéc xj mou ypnowonoinxay e
gounveuTinée ueToAntéc otnv ouvdptnon (Rtnone avohlovior oto Kepdhowo 8 e
nepiindne.

5. MeBodoloyia avaALONG TNG CLUUTERLPORAS TWV
AEEOTIOPLX WY ETUUEELMV

Ye xdlde ayopd (Levyoc mONEWV TPOENEUOTIC-TEOORIOROL), O opldUlS TWY UEPOTOPXEY
gToupELWY Elvol oyeTxd pixpodc. Trodétoupe 6Tt xdde etoupeior SLOPPOVEL TIC TWHMEC TWV
EoLTNEleVY TNG TowTOYEOVA UE TiC GAAEC eTaupelec mou BpaoTnelonololvIl oty (Bl ayopd
(tautdypovo malyvio). Omdte ov Téc mou duuop@ovovion eEaptdvial Oyl povo and Tic
anogdoels tne (Blog eToupelog aARd X0 TIC ATOPAGELS TWY AVTAYWILGTOVY Tne. Yo cuvinxec
OMYOTWALOHOD AVTUYOVLOW0D, UTOVETOURE OTL Ol TWEC TLV ELOLTNEIOY SLOPEHOYOVTOL UE

Bdomn to unddetyuo Bertrand.

Ye xdde ayopd (Lebyoc méhewv II-II), umdpyouv Bidgopec acpomopixéc etoupeiec mou
dpaotnpronololvio.  AUTEC Ol GEPOTOPXES  ETAUPE(EC  TPOCEEPOUY  BLaPopOTONUEVES
0EpOTOpIXES oLVOEaE o avtoywvilovTar YETaZ) TOUS, TEOXEWEVOU VO TEOGEAXUGOUY

neplocdtepouc ePBaTEC Xou Vo €xouy Teptoabtepa €ooda xan xEpdN. To tedixd dpehog ulog
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acponopixic etouplac efoptdton Oyt pévo and Tic dwéc Tng amo@docle, oAANd xon TS
ATOPYCELS TWV AVTAYOVIOTOY TNe. AvEAoya Ye tn Soph tne ayopdc, oL ayopés Pnopoly v
Otaxprody o UOVOTALY, OMYOTWALYL, OYOPEC UE TEAEIO OVTUYWVIOUG XL ayopésc UE
povonwiloxd avtaywviopd. H Budxpion auth yivetow ye Bdon tov aptdud TV TauxtoOv oty
ayopd, TNy oy xdde maixtn, To Badud dapoporoinong Twv TEOOVIKOY X.AT. YTV ayopd Ue
TEAELO OVTUYWVIOUO UTHPYEL €Voc UeYdhog aptluds EmyEpAoE®Y TOU TApdyouy To (Blo
Tpotov (ovopdleton enlone TUTOTOWMUEVO H OUOLOYEVEC TROIOV). LTO POVOTMALO UTHPYEL
Hovo plor etanpela xon mopdyer Eval Hovadixd Tpoldy mou dev €yel dueoa umoxatdotata. O
HOVOTWALOXOS avTaywviode elvon éva €lBoc ateholc avitaywvioyol, 6mou URdpyel €voc
HEYIAOC dptdudC EMYEWPNOEWY TOU TAPAYOUV BLOPOPOTONUEVD TPOLOVTO XAl WE EX TOUTOU
dev elvan téhelar unoxatdotata. Téhog, oe éva OAMyomWAO UTdpy oLV AlYEC ETLYEIPOEIS TTOU
mapdyouv elte éva tumomoinuévo Teoldy 1 diagopomoinuéva mpotovta. Kdlde emyelpnon
ennpedlel Ty ayopd (o avtideon ye Tov Téheo aviaywvioud), ahhd ennpedleton enlone and

TIC EVEPYELEC TWV GAAWY ETUYEWHOEWY 0Ty ayopd (og avtileon pe Ta HOVOTOAL).

H oeponopixhy PBrounyavie, Wwdtepor auth tewv HILA., axoloulel 1t BSouh wpog
ohlyomwhlaxhc oyopds vl toug e€fic Adyouc. llpdtov, to ueyolltepo uepldlo ayopdc
AATEYETOL OO Uial Uixpr) ouddo depomopxy eTtanpelwdy. Me Bdorn otouyelo tou 2015, evvéa
ueydhec ocpomopwéc etapeiec xateiyav 1o 83,5% ond To olvoho TwV €06dwv Tou
mpoépyovion and nthoec cowtepxol (MIT, 2016a). Acltepov, ov agponopixéc etoupeieg
npoopépouy dlaoporotnuéva teotovta. Ilopd To yeyovog OTL oL EpOTOEINEC GUVDECELS
umopel va gaivovtol 6TL €YOUV OUOLL YORUXTNPIOTXG, Ol NEQOTOPES ETAUEElEC OF Wi
Tpoondielo Vo TeOcEAXUGOUY UEYOADTERO UERIBLO aYORdE BLUPOROTOLOUY To «TEOLOVTU» TOUG
¢ mpog 1o eninedo egurnpétnone (m.y. ouyvoTnTa TTHoE®Y, uRnpeoiec Tpoc emBATES XTA).
Teltov, 1 eloodog plag véag etoupelog otny agponopxny Brounyavia elvon oyetxd 80ox0AN
rovYw udnhod xootoug exxivnong, vopwée Owadixaoiec xth. To Boaowd yvoptouo piog
ohlyomwhiaxhc ayopdc elvor To yeyovde 6Tl oL amogdoel pac etaipelac e€apTtdvTan dueca ye

TLC UTOPACELS TWY AVTAYWVIOTGY TNC.

To mEdOTUTO CUUTERLOOEAC TMV JEQOTORIXMY ETOUEELOY TOU OVARTUCOSTOL OF oUTH TN
Bty otnplleton oty unddeorn OTL 0L ETUEEIEC TOU BpUOTNRLOTOWUYVTUL EVTOC WULIC
OMYOTWAOXAC oYopde OAANAOETIOPOUY UYE GANOUC OVTAYWVIOTEC WEOCK WUN-CUVERYOTINGDY
mouyviwv. Kodeplo ond tic etaupelec xadopillouv tic tpée eortnplwv toug (undderyua
avtaywviopol Bertrand) pe otéyo va ueyiotomoioouv ta xépdn touc. Adyw Tou
AVTAYWVIOUOY, Ol TWES TOU OLop®OVoVTAUL EEMPTOVINL Oyl MOVO and TIC AROQACELC TNC
O etoupelog OAAG X0t T OMOOACEL TWV AVIAYWVIOTOV TS, LOU@LVE YE To Booxd
undderypa Bertrand, av ou agponopiéc ouvbéoeic tay ouotoyeveic toéte 1 T Yo Atay To
povadixd xplthplo emhoyne twv emBatov. Ondte, o etanpeieg Vo diapdppmvay Ty (Bl Tiun
eowtnelow, n onola Yo fray {on e to oplaxd x6oTog e eEumneéTnong evog axduo emBdn
xou dpo tor %éedn Toug Yo Moy undevixd. Autd ovopdletan to moapddoio tou Bertrand. To
rapddolo anotéheopa tou Bertrand eoptdton and tic unodéosic tou urodelyuoatoc. H dpon
nqmotag  and  tic  unoléoelc  Tou  umodelydoatog, OmKC vl Topddelypo  unddeon
OLLPOROTOMNUEVKDY  Xal OYL OUOLOYEVWV TEOlOVTwY, OUVETdyeTow 6Tl To Topddoio Tou
Bertrand nadel va woydel. ‘Onwe npoavapéplnue, o€ Ylo GEQOTORIXTY OYORE Ol HEQOTOPIXES

ouvbEaelc elval Blagoponoinuéves, ol ETBATES BEV EVOLUQECOVTOL UOVO YLl TNV TWT ahAd o
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YIOL TO QARG YOpOUXTNELOTIXG TOoUE, OMOTE Ol etalpeleg Umopolv va Béoouv Tiéc clottnplmy

TAVR Amd TO 0pLIXd XOCTOC.

To xépdn woc etawpeiac f mou mpooeéeer v agpomopixf) clVOEST j €Vviog TN ayopdc

TPOXVTTOUY WS OLVAPTNON TV £06dwY xou Tou xbéotoug (EE. 6).

T = Z(pj-M-Msj—cj-M-Msj)—FCf=>
JEJf

JE€Jf

EZ. 6

6ToOY ¢ Elvol To oplaxd xOaTOC TNC agponopxic olvdeone j, F'Or elvan to otadepd xdotoc.
To yepldo ayopds MSj npoodlopiotnxe oto yovtého tne {Rtnong eved o dpoc M elvon to
uéyetoc tne ayopds Mote o ywduevo M-MSj va urodniwvel Tov aptdud Ty enBatoy mou
emAEYOLY T oUvdeEoT .

TN va Bpolpe v woopponiar Nash oto undderypo Bertrand yenowonoiolue tn cuvirxn
TedNe TdEne oty EZ. 6 w¢ mpog v T tou elovtnplou. Io xdde olvdeon j, n etaupeion £
eMAEYEL TNV TWY Dj OOTE Vo UEYIOTOTOWoEL T0 %€pdog tne Tt . ‘Onwe gaiveton oty EE. 7
oL agpOToPES EToupEleg ETAEYOUY TIWY Elottnpiou YeyahlTERn and TO 0ptaxd xOOTOC XATd

2 ’ z ' 2
éva Too6 ou TRoodlopilel To TeEpLdmpLlo xEEBoUC TouC.

on d oMS aMs JdFC

9p; K€ op; pj op; op;
EE. 7
_ -1 .
S~ .
meplOwpLo képSovg 0pLaKo KOOTOS

O 6pog Dys,p, aviimpoowneter 1ov tivaxa Siaotdoewy JEXJF TV UepeY Topaydywy ToU

uepdlou ayopde MSj we npoc Ty T we axolodwe (EZ. 8):

[OMS,  aMs)]
ap, ap,
DMS ’ = : ., : Ei. 8
TP laMs,  aMs|
l dp, dpy J

H napandve npocéyyion Baolleton o uia otatixt| woopponior Nash otic tywée xan, emouévoc,
otnpileton oe pepwée anrononuxéc unodéosic. [edtov, unodétouye 6TL oL Talxteg €youv
hAen Thnpopdenon (Snhady yvopellouv o yopaxtnelotind tou touyvidiol). Acltepov, otny
TEUYUATIXOTNTO Ol AEPOTOPIXEC ETOURElES BEV €xouv wbVo Wi HETOBANTA amdgouone (tny TuA
elovtnpiov). T napddetypor dhhn uetafBhnth andgoaone unopel v elvon 1 ouyvétnto Twv
dpoporoylwy Toug. Xtny moapoloa datdnworn Tou moyviou Vewpolue O6TL ol Aomég
aropdose (extéc amd Ty ) elvon efwyevelc xou dev AopBdvovion umddn xatd T
dodixaoio andpaone tne etapelac. Emnimiéov, otny mpayuatixdtnta ol TWEC Twv Elottnpiny
0EV DLLOPPUVOVTAL (C CUVIRTNOT TOU XO0TOUC OAAd TpoxONTOuY YEcw Olayelplone Twv

eo6dwv  (revenue management) Ue 7o TONITAOXEC  TEYVIXEC  TEOXEWEVOU v
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HEYIOTOTOACOUY TO AVOEVOUEVA £00DN Xat VoL avTETwRioouy Ty ofefordtnta tne LAtnorng
(Donovan, 2005). H evowpdtnon tétoiwv TEYVKAOY 6T0 Topandve nedtuno anoutel mo
hemtopept Bedopéva, OTwe oToLElL IOTOPMY XPATACEWY AVA TTHOT Aot XATNYoRla VOUAOU
v xdde nuepounvia avaymenons, £Tol OOTE Vo AapBavouy TAheme UTOPN TOUC TEQLOPIGHOUS
Tou etottnelou (m.y. nuepounvia xpdtnone tou eottneiou, axupwoels elottneiny). EZétoaon
TOV SUVIRIXOY TTUYOVY Tre dlayelplone Twv eaédwy elvar tépa and To medlo £QapUOYASC TS
rapoloog datpPric xon mpotelvetan Yo mepantépwy £peuva. Emlong, oe avtioTtowylo ue Tig
napadoyéc tou PBaowol umodelypotoc Bertrand xow tic mapaboyéc Tng umdpyoucac
BiBhoypoaglac, 1 napoloo Slotinwon UnodETel 6Tl BEV UTAPYEL TEQLOPIOHOS YWPNTIXOTNTAC.
Y& TpayPaTixd GEQOTOpXE OIXTUN, 1| TEQLOPICUEVT] YWENTXOTATA XATOWY JpouoAoY WY
uropel vo elvan (oe oployévec ayopéc) BECUEUTIXH Ylo XATOWES KEpOTOPXEC ETAPE(ES, UE
ATMOTEAECUN TO AMOTEAECUATO VO DLPOROTOLOUVIOL GE OYEOT UE TO TURATAVE UTODELYUL.
Qotoc0, ta alpootnd Bedoueva mou yenowonowl 1 mapodoa SiateBn eV TapEyouv
TANpogoplo o auTd TO ETUTEDO TWV YEUOVOUEVLY TTACEWY OF Uit CUYXEXPLUEVT NUEED ol
Opa, X, WG eX ToUTou, dev pnopel va Angdel urnddn o neploplondc ywenTtxotnTag. Télog,
T0 UTOYN Tolyvio aopd ot évo un-cuvepyatxd malyvio (non-cooperative) ToaUTHYEOVGV
xwhoewv (one-shot). YTrmodétouue 6T oL agponopixéc etawpeies (maixteg) anogacilouy

TOUTOYEOVA X0l DEV HOPPEOVOLY CUVAOTILOWOVS.

To opiaxd xb6ot0g %8e acpomopinhc olvdeone dev elvar dSwdéowo and ta adpoloTind
Bedopéva Tou ypnowornolodvtal oty mopodoa gpyaocio. e To Aoyo autd elvar avoryxoaio 1
extiunon toug Ue TN YeNom EVOC OLXOVOUETELXOU TEOTUTOU. MUYXEXQWEVY, 1) ExTUnon Tou
oplaxol x6oTouC Yivetaw Ye TN Yenon Yeouuxhic Takivdpounone onwe gatveton oty EE. 9

G =Wy + wj Be. 9

Me avtixatdotaon e EE 9 oy EE 7 mpoximtel n tehixy) eloworn e TWrC TOU

ELOLTNEIOU CUVUPTACEL TWV UETABANTMY TOU 0plaxol X00ToUS Xl Tou Teptdwplou xépdouc.

_ -1 . .
Pj =\ ~Dus;p; MSj |+ wj-v+w; EE. 10
— I3 I3
TePLOnpLo kEpSovg 0pPLAKO KOOTOG

omou wj elvor Tl yoporTneloTixd mou eTNEEdlouy TO 0ploxd XOOTOC HLIIC NEPOTOPIXAC
olvdeone xot i elvar o BlatapoxTixde 6poC NG TUALVOPOUNoNC xot TEpLAaRBavel Ta
YOLOXTNPLOTIXG XOOTOUC TWY CUVIECEWY TOU OeV TapatneolvTal arnd toug gpeuvntéc. O
ouvieheotic ¥ elvan mpog extipnon. O uetaBAntéc Wi mou  YPNOWOTOLOVIUL  &C
cpunveLTXES UETABANTEC oy ouvdptnon xodctouc avohbovtal oto Kegpdhao 8 1ng
napodoog TeEplAnbng.

6. Extiunon ToVv olxovVopeETeiX®Y TEoTUT®Y

Anéd T Swwbpoowon tne ellowone (Atnone xou tne €Elomonc TWAC TV JELOTORLMMY
1 ] ]

ETOLPELWY, TEOXVTTEL T0 oVoTnua Tou aroteheltar and Ti¢ eélotoelg EE. 5 xow EE. 10, pe tnyv

extiunon tev onolwy Yo TeoxGPouUY oL EXTILOUEVES TWES TOV GUVTEAEGTOV a, 3, A Xou Y.

7 14 7 4 4 4 ’ z '
Toelo onpavtind onuelo npénel vo Anedodv unddrn xatd tnv extiunon twyv edlo®oewy:
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o Tautdypovn extiunon mpocygopdc xou {Atnong: Mia npocéyyion eiven vo extiunlel

apyd 1 ellowon tne {ATNoNe xo oTN CUVEYELL Vo YenoWonotdoly ol EXTIMMPEVES
nopduetpor e {htnone (o, B xan A) otn ouvdptnon e Twhc eottneioy (uéow Ttou
OpOU DMSf,pf), npoxewévou va extiunlel 1 mopduetpoc y. Eneldr ov mupduetpol tne
Thtnone umeoépyovton xou otic 0Vo elwomoeic (EE 5 xoa EZ. 10) mpotwdtan 1

TowTOYEOVn exTiunon Twv eEloGoEwY.

o Mn yeouuxdtnte tou cuothuatog: Treviupiletor 6t 0 6pog DMSf,pf (E€. 8)
OVTITPOOWTEVEL TOV TivaXo TWV HEPWAV Togay®dywyv Tou MSj ¢ mpoc v Th
clottnplon. Omdte, ov mapduetpol o xan A eloépyovion otny e&lowon e TuAC TOV
etoupetdv (EZ. 10) pe un ypopuxd tedmo. ‘Etol, n uédodoc unohoyiopod Vo tpénet va
hoBéver unddn o ThTnue auTo.

o Evdoyévew: H evBoyévewn elvor €va onuovtind omovoueteixd medBinua, to onoio Yo
meénel vor Aopfdvetan uROPn XoTd TNV EXTIUNCT TWV OLXOVOHPETEIXMY TeoTOTWY. XTa
OLXOVOUETEIXY TEOTUTA TNE Topooos EpYaolag, N EVOOYEVELY TEOoXITTEL Yiot 800 Adyouc.
Kat’ apyde, o dwtapantixde 6poc & tne ouvdptnone {itnone (to omolo exgpdlet
Ddpopa TOLOTIXG YUPAXTNELOTIXE TV UEPOTOPIXMY CUVDECEWY) uTopel var ouoyetiletou
ue Ty Th tou ewottnelov pj xon o (Seoueupévo) wepidlo ayopdc MSj/g. T mopddetypa
otov 0po & Umopel Vo TEQLAOMBAVOVTOL  YUEoXTNEloTXd  Omwe 7 oxp3ic  Opo
avaywenone, n dwdeowotnta wi-fi xotd Ty TTHoT, TEPLopLopol XUTd TNY XedTNoN TwV
clortnplwy. Eneldh autd to yopaxtnelotind AopBdvovton unddn and toug emBdrec (xotd
™ M andgaone tne dradpopnc) enneedlouy TNV TEAXH TOUS ATOPAOCT XoL YLo dLTO
ouurepthapPBavovtar otny eéiowon {htnong. And tny dAAn TAEURE, To YoEUXTNELOTIXG
autd cuoyetilovton PE THY T Tou etoltneiou xou deo ue to pepidio ayopds MSj/g. T
TopddetyUa, €lolThplr UE TOMOUC TEpLoptopolc xotd TV xpdtnon touc (my. N
ETLOTEEPLUOTATA TWV YENUATOVY) avopéveTon Vo Eyouv younhotepn tiuh oe oyéon ue
Ghha ewortthpla. Aedtepov, 0 6poC j TEQIAUBAVEL YAUpUXTNEIOTIXE TNG OEROTOPIXAC
oOvdeone  mou  Pmopel  va  emneedlouv Ty TR ewoltnplou  oAAd vo PNy
ouurepthopBavovtor otny EE. 10, Aoy éMewdng towv aviiotoiymy dedouévmv. Adyw tne
CUCYETIONG TNe TWhHC cwoittnplow e to pepldl ayopds, O BlaTapaxTixdc 0p0¢ Wj
evdéyeTon o auToC Vo cuoyetiletan ue To pepldio ayopdc. Apa to pepidio ayopdc MS;
Yewpeltaw evioyevric uetafintrh otnv EE. 10.

To rapoamdve Inthuate xodiotody avayxoie Ty extipnon tou ocuotipatoc {ATnong xou
npooopdc ue wa pédodo 1 omola Vo avtuetoniler T InTARATE EVOOYEVEWNS XoL UN
yoouuoTnTag. LTy mapoloa epyacia To oclotnua extwdton pe T Ievixeuuévn Médodo
twv Pondv oe 800 BAuata (Two-step Generalized method of moments-GMM) (Hansen,
1982). 'Etol ye tn xphon éyxupwy Bondntixdv UETOBANTAY oL EXTUNTEC TOU HOVTENOU Elvou

UEROANTTOL XoUl CUVETELS.

Tl v enfluon tou mpoBhiuatoc tne evdoyévelag Teénel va ypnotworoinoly Bondntinég
uetafBAntéc  (instrumental variables) ywr xdde «umodfglay  evdoyevh petafinth. Ou
Bondnuxéc yetofintéc elvon elwyevele petafintéc nmou Bev mepthauBdvoviar oTo apyixd
wovtého xou mpémel va elvon €yxupec, Onhadh va éyouv Tic e&fic Widtntec: (1) v unv
ouoyetilovtal ye To datopoxtind Opo tou povtédou xon (i) va cuvoyetilovton pe Tig

eVOOYEVELS HETABANTEC OV AVTLRPOCKTEVOLY. LTy Topoloa epyaoia e@upudlovar dLdpopol
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ototioTinol Eheyyor wote vo Befawwdel 1 yehon éyxupny Bonintixdv wetaBAnToy. Apyixd,
o. Boninuixéc peTalAnTéc ehéyyovTor ¢ TEOC TN CUOYETION TOUC ME T EVOOYEVE(C
petafantéc. Ta To AOYO autd, dpyind XUTUCTEMVETOL KO YEUUMIXT) ToAVOpoUncn 6mou 1
eaptnuévn  peToffAnTh elvon m evdoyevhc petofAnth. €l aveldptnrec  petofnTéc
nepauBdvovtar Ohec ol eZmyevelc petofintéc Tou mpotimou (aveldpTnTeC EpUNVEUTIXEC
HETUBANTEC Tou amd TNV opyh mepthopBdvovtay otny elloworn xan mpodcletee Pondntiég
UETOPANTES). XN cuvEyEl ENEYYOVTOL 0 cUVIEAESTAC Tpocdlopolol R? xou to otatiotind
puévedoc F  tne maAwvdpounonc oote va Swmiotwdel av o Bondntixéc  petofintéc
ouoyetilovtan Ye T evdoyevelc petoBAntéc mou aviimpoownebouy. Liugwva pe tov Baum
et al. (2003) oe nepintwon dnupine Topamdve: ord wac evBoYEVOUC METABANTAC 1) avKTEPW
dladixaocio dev elvon xatdAAnin yio va aviyvedoel «acdeveicy Bonintixée petalAintég. Xe
TETOLEG TMEQINTWAOELS, O OTATIOTIXGC EAsYy0¢ acVevivy Bondntxey uetofintedv tov Stock
and Yogo (2005) elvon xatdhhnhoc xou egopudleton otny moapoloo diatp3h. Acltepoyv, 1
g€wyéveor twv Bondntixdyv UeTafSANTOV  aviyveleTtor YE Tov J-€heyyo €heyyo umép-
TauTtonolnone Twv neploplopoy (J-test of overidentifying restrictions). T tov éheyyo J o
TEETMEL  aPYE VO XUTUOXEUACTOUY To XOTGAOINA OmO T EXTWNACELS TWV  dpyIXOV
urodetypdtwy (Ue Tic evboyevelc petaBhntéc we aveldptntec petoPAntéc). Ytn cuvéyEw
TAALVOPOROOVTOL ToL XAUTHAOLTA 68 OAEC TIC EPUNVELTIXEC Xou TG PonInTixéc UeTUBANTEC TOU
unodelypatog xor eAéyyetor 1 undevixy) undleon nou ooduvopel e v unddeon OTL oL
Bonintiée petafAntéc dev oyetilovtan and xowvold PE Ta xaTtdhotno Tou UTodelypaTog Xou
doa elvan éyxupo Gpyova eAéyyou. Av amoppupiel 1 undevixr unddeon (Snh. m.y. tO p-
value<0,05 % 0,10), t6te oL Ponintixéc yetaBintéc ouoyetilovtan e TO BlaTopaxTtixd 6po,
Gpa Sev etvan e€wyevelc. Téhog, epoapudleton o €heyyoc twv Durbin-Wu-Hausman &ote va
eheyyVel 1 evdoyévela Ty YeTafAnTdy tou Yewpoivion (and Tov gpeuvnTh) we evioyevels,
OTWC Yl Topddeyo 1 T clottnplou xou to uepidlo ayopde. H undevixd unddeon tou
ehéyyou Durbin-Wu-Hausman elvow 6t oto umddetypo undpye. elwyéveta, dnhadh ol
cpunveutxée uetofAntéc dev ouoyetilovion e Tov OBatopoaxtind 6po. Ambdppuln Tng
undevixic urddeone (dnh. m.y. to p-value<0,05 ¥ 0,10), onuaiver 6Tt oto LREderypa UTdEYEL

EVOOYEVELDL.

T v eoapuoyn tne Devixeupévne Medddou twv Pondv eivon anopaltntn 1 Siapdppnon
TWV POV 0oL oTolec TPOXUTTOUY and TNV TEolnoUesT) OTL Ol EQUNVEUTIXEC UETUBANTES TOU
TEOTUTOU (N  CUUTECNOUBAVOUEVKY TV  EVOOYEVOY UPETABANTGV) xou ol mpbdoletee
Bonintixéc petointéc eV cLoYETILOVTOL PE TA XUTAAOLTO TV TROTUTWY. Aniadn 6Tl vy

o TeOTUTA (HTNOTG Kol TPOCPOREE Loy IoUY:
~ ) _ Z1’E] _
m(04,7)=E [Zz,w =0 EE. 11

6mou pe B, onueidvovtan oL mapdueteot Tou teotinou Chtnone (a, B xon A), z1 xou z2 eivan To
oOVONO TV  ELWYEVOV  PETABANTOV  (EpunveuTXOY  UETOBANTOY  TOU  TPOTUTOU-UT
oUUTEPAUBAVOUEVLY TV EVOOYEVOV UETOBANTOV- xou BondnTxdv UETUBANTOV) Y To
mpotuno e {Rtnone xaw tng mpoogopds avtiotolyo. Me tnv egapuoyh tne Tevixeupévne
Meb6dou v Ponedyv, extiumvton ot nagduetpol o, B, v xou A €101 OOTE Vo EAIYLGTOTOE T

1) TOPAUXATE AVTIXELUEVIXY GUVERTNOT,.

I1-20



Extetapevn Heplhndn oto Exinvixd

J0a,7) = m(04,7) Wopem(84,7)

) | EE. 12
=uzWypezu

‘Orou u elvor T0 ddvuoua Twv xotoholnwy u = [f] xon Wopt elvon €vog CUUPETEHOS Xon
w
Vetwnd oplopévoc nivaxog otddutone (weight matrix), 6nwe e€nyeiton topoxdte.

Tehxd, n uédodoc GMM emilel To nopondte TedBinua Bektiotonolnong:

rg{l m(Hd,y) Woptm(ed,y) EE. 13
bay Ixk | kxk

H pédoboc GMM uvlonoteitan og 600 BrAuata. Apyixd urnoloyilovtar ta xatdhoina tewv EE. 5
xor EE. 10, w¢ axoroidoc.

InMS; — InMS, — x; + 1—1)-MS;
u_[f] [n nMS, — x;8 + ap; — ( ) MSj/g EE. 14

pj—wj- y+DM5fpf MS;
3TN ouvéyEl YeNoWoTolobvToL ol BordnTixéc UETUBANTEG Z1 XL 22 TWV UTOBELYUATOY %ol
oynuotiCovtar o ponée tne EEZ. 11. Avutéc eioépyovran otnv EE. 13 ye apyxd mivoxo
otdduone tov W = (z'z)"1. 'Etol extipdvion oL mopduetpol Tou mpdTou BhAuatoc e
pevédou GMM: 9d,1step xU Vistep-

Yto delbtepo Prua e pedodou GMM, enavaunohoyilovtan tar xatdhoina ﬁ%,...,ﬁjz,... 03,
TV TpotuTwY We T Bondew twv omolwv umohoyiletow o TeEAOg mivaxag oTtdiuong

Wopt = (Z’ﬁz)_1 6mou ) = diag(@?, ..., 0 Uj, ... U3y). Tehxd, amd v eloyiotornolnon e
avTeevixic ouvdptnone GMM (EZ. 13) mpoximtouv ob tedwol extiuntéc 9d,23tep Ol
Vastep. Emedn) ou mopduetpor o xon A €L0€py0ovIon 01N CUVARTNON TNG TWWAS UE W1 YPUUULXO
TEOTO, T AVAXTNOT TWV EXTWNTOV YivETol PE TN epapuoyh xatdhiniov oiyoplduou oc

nepBdihov MATLAB.

7. Ilpocopolwon tng neplBAANOVTIXAS TOALTIXAS

Yny mapodoa SwotplBh eEeTdleTon N EQUPHOYT EVOC QY ORUXEVTRLXOU TEPBUANOVTIXO) UETEOL
o onolo emPdiAer €va emmALoV x60TOC, TOU  OvVOUAlETol XOOTOC EXTOUTAY, OTIC
aeponopinéc etaupeiec mou Spaotrelonototvtal 6to dixtuo twv HILA. To xdéotog autd elvan
ouvdptnorn e rocdTnTog exmouney CO2 amd Ti¢ RTNoEC ECWTERIXOD XAl TOU UovVodlaiou

xboTouc avd tovo CO2.

e g OAYOTOAMAXY) ayopd, oL aEpOTOPMES eTaupElec EVBEYETOL va avtanoxpidoly oTny
EQUPUOYT TOU TEPBUANOVTINOU UETEOU YENOUWOTOLOVTOSC OIUPOPETIXES OTEUTNYIXES. TNV
epyaoio autr, eZetdleton ov xon xatd OGO Ol AEPOTOPIXEC ETALRElEC Vol avampooapUdGOUY
e Tée ewottnplnv unodétovtac 6tL awtéc xodopllouv Tic TWES TOUC (OEC PE TIC TUEC
wopponiog xatd Nash xatd to unddeiypa Bertrand. Metd tnv egapuoyh tou uétpou, 10
optand x60To¢ XAE eToupelag Cjpre dLEAVETAL X0TE TO XO0TOC TV exTouney. ‘Etol to véo

optand x6otoc divetan and v EE. 15.

Es,j .
Cjpost = Cjpre T F - Zm,where §=1{234},j€] EE. 15
s
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6mou Esj etvow  tocdtnyta CO2 (in tn CO2) tne etonpeioc yio xdde tuAuo s Tne AEPOTOPAC
obvdeone j xan To Ywouevo LFsj- SEATsj elvou o apdpdc tov eniBatdv nou petagpépovton
and v etapela oto TPRPe s e obvdeone j. To cuvolind %x66ToC ExTOUT®Y ovd emiBdTn
TEOXUNTEL WS TO YWOHEVO TOou dovaddou xbéotouc exmouncv F enl 1o olvoro twv

exnopnodv CO2 (avéd emBdtn) yio Oha T TUALATA TNE AEpOTOPIXC oUVBESTC.

H t#h wopponiog Peloxeton ye emovahnmtind tpdn0, péow uiug Bladixaciog TeocupuoYng
TRV TWOV Uéyer va ixavorowndel éva xadoplouévo xpitheto alyxhong. Me dhha Aoy, ou
Tiée ewottnplwy e xdde aeponopixfic etoupeiog avanpooapudlovtan Aopfdvovtoac utodn Tig
TWES TV AWV ETARELDY Tou Bpaotnglonololviol otny Bl ayopd. O Twée woopponiog
Beloxovtow otav n Twn xdle etaupeioc elvon Bértiotn xou xopio etoupeia Bev 9€her va
amoxhivel and outh v Tuh. Agol Beedolv ol twée wopponiog (UeTd TtV emPBolr Tou

%x60TOUC EXTOUTKV) uTohoyilovtar T véa uepidia ayopdc (amé to mpdtuno (htnone).

Baowr) undleon v tnv cgoppoyh) authg tne moAtxrc elvon 1o eninedo Tou povodiaiou
xbotoug exnopnev CO2. T v mapoloa epyacia, €yive enoxdmnon twv oy CO2 and
Bdwopar  pE€tpar TWOAOYNoNG Gvipaxa avd Ttov xoopo. Adyvw e offefoudtnroc mou
rapatneinxe otic Twée tou dvdpaxa 1 Tapoloa cpyaocia otnpiletoun oc tpla oevdpla: i)
Xaunhéd oevépio: $10 avd tévo COz2, (ii) Meoaio oevdpro, $20 avd tévo CO2 (iil) Tdnho
oevéplo, $50 xor $100 avd tévo CO2.

8. AVAAUGCT) OECOUEVELV XAl ATTOTEAECUATA

8.1. AvdAvor dedSopévwy

o v extiunon towv tpotinev (Atnone xo teocpoedc xadde xoL TNV TEocouoiwoy Tou
TEQBUAAOVTINO) HETPOU  YENOWOTOlO0VTOL Mol Otlpd BAoewy OEDOUEVLV HE OTUTIOTIXG
otowyeia xlvnone v to agporopxd dixtuo twv H.ILA. H emhoydh tou ocuyxexpuylévou
Buthou éywve v ddpopoug Aoyoug. Ilpdtov, anotedel éva peydho pépog twv BEVVOY
QEPOUETAPOPMYV, apot) Yot To 2012 Ta emBatoyihduetpa otic HILA. anotéhecay to 27% tng
rayxoouae acporopxhc xivrone (ICAO, 2013c¢). Ta nepioodtepa Ledyn noiewv II-I1
(aryopéc) tou dixtuo twv HILA. egunneetodvtan and neplocdtepo and 800 etapelee, npdyua
TOU E€pYETOL OE CUMOMVIo UE To UROBELYpa Tne mopolooc epyaociog mou PBaoileton o€
ohyomwhioxés ayopéc. Téhog, o H.ILLA. elvor and tic Alyec ydpec yio tic onoleg eivon
Sdéoipa oto xowd adpolotind otoyein Tpayuatonooluevey dpodoroyiwy. Ta otouyela
autd  xatoptilovtan ond to Yrmoupyeio Metagopdv twv HILA. (BTS, n.d.) xo
dnuooiebovtor oTny toTooERBA TOU TUAUAUTOC OTATICTIXOVY Yl Tic Uetapopéc (Bureau of
Transportation Statistics). Tpewc Bdocic deopévwy pe otatiotivd otouyela acponopixic
xivnone  yenoworowotvtow:  Airline Origin  and Destination Survey (DBI1B), T-100
Domestic Segment for U.S. Carriers (T-100) xouw On-Time Performance (OTP). H Bdon
dedopévwyv DBI1B yenowonominxe v tnv dnuiovpylo Twv dpogoioyiwy xou twv Uepldiny
ayopde. Enlone, mepihauBdver otowyela 6mwe elvar n twuh swoitnelou, ol etoupelec mou
egumneetodv 1o Bpopordylo xTh. Ta otoiyelo autd dlvovtan oe tpwnviaio Bdon. Ov Bdoeic
dedopévewy T-100 xou OTP ypnowonogdnxoay vy vo cupninpwiel to delypa ue dhAa

YOPOXTNELOTIXG  TWV  OUVOECEWY, OTw¢ ouyvotnta nThoewy, xaduotephoelg, ToToL
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acpooxapay. Mo va drpoppwdolv ol avwtépn Bdoelc dedouévwy oe Ui xowy PBdor,

oxohoudOnxe xatdAAnAn enedepyaoio n onola tepiypdpeton oto Hapdptnuoa C-1.

D wn SwteBh yenowwonoudnxoy dedouéva yia to 2012, To tehixd Belyuya elye 89667
agponopixéc ouvdéoele, 13432 ayopéc (Ledyn nérewyv II-IT), 67 nohewc, 91 acpodpduta xon 11
acponopinéc  etanpeiec. O IHivoxac 1 mnopoucidler g petafAntée TtV  mpotinwy
urodemviovtag ue D A C 1o poviého (htnone (D) A npooyopde (C), énou unewcépyeton
nade petaBAnTh.

ITivaxag 1. ITepiypopixd CTATLOTIXR TOV RETABANTOV

Metafinth TpéTuno? (;\jiogﬁzi;]) [Ehory., Méy.| Iy mpoéheuonc
Tw, etovtnpiou [oe $100] D 4,573 (1,35) [1,16, 13] DBIB
Aprdude otdoewv D 1,556 (0,77) [0, 2] DBIB
Anéotacn Spouoroyiou uet’ emotpopric C 3,146 (1,49) (0,17 , 10,43] DBIB
[oe 1000 sm]
Suyvétnta (nthoeie/ tplunvo) D 279,89 (191,4)  [12, 1992 T-100
%o TEOLVY Vo eHoEWY D 0,245 (0,17) [0, 1] OoTP
Méyedoc acpooxdpoug C 0,269 (0,44) [0, 1] T-100
Yo cUVTOVIGUEVOU aEROBPOUioy D 0,130 (0,36) [0, 3] DB1B
Kaduotepfoeig D 0,176 (0,07) [0, 1] OoTP
"Yropgn evohhaxtixol agpodpopiou D 0,604 (0,49) [0, 1] Troloyioude
"YroapEn xouPxod acpodpouiou C 0,630 (0,48) [0, 1] DBI1B
Andbotaon yetall néhewv [oe 1000 sm] D 1,572 (0,74)  [0,09, 5,22] DB1B
Jet Blue Airways D xo C 0,021 (0,14) [0,1] DBIB
Delta Air Lines Dx C 0,208 (0,41) [0,1] DB1B
American Airlines D »ou C 0,128 (0,33) [0,1] DB1B
Southwest Airlines DxuC 0,311 (0,46) [0,1] DBI1B
Adhec «mapadoatoxnécy etanpelee (legacy) D xow C 0,133 (0,34) [0,1] DB1B
ANhec etoupeieg younhot x6oToug D xo C 0,074 (0,26) [0,1] DB1B
Zelyn nohewy TI-T: 13432
Aepomopixéc ouvdéoeic (ropaTnproels): 89667

"Etoc peuvag: 2012

Xnuewdoetg: * D: MetafBint {hmong, C: Metaf3inth xdotoug

Metafintéc Zitnonc:

o Tw? eottnplou: Aré v mhevpd e {Atnong, 1 adénon oty Ty evdc ayadol xotd
xavova odnyel og pelwon tng {Intoduevng nocdtnrac. Autd woylel eniong xou yio TiC
QEPOTORXEC UETAUPORES, OTOU 1) TWH Tou elottnelou elvan évag xadoploTinde TapdyovTog
e {Atnone. e auth v gpyaoia 1 péon TR Tou ewottnplou (otadplouévn ue Ttov
aptdpd Twv emBatdv) éyel utohoyiotel Y xdlde agponopiny olvdeon o xdde Tplunvo
Tou 2012. Evtdc tou 2012, 1 yéor iy ewottnplov fray $457,3.

o Apwpédc otdoewv: H petofinth outh mepthopBdvetor mpoxeyévou vo eEnyRoel tny

Otalotnon 6t wa anculdelag acpomopix? oLvdesT elvan Tpotiwdteen and Ut cUVBEOT UE
evlidueoee otdoelc. O «apudc v otdocwvy unohoyiletar ¢ o optdudc Twv
14 e 4 b 4 7 4 2
petemBiBdoewy o xdde SpopordYlo PET  EMOTEOGNC xou umopel va Adfet tpeic Tiwés: 0
av oL TThoelc hetdfBaong xou entotpornic elvon anevldeioc, 1 edv elte n ntion wetdBoonc 7
N TTAON ETOTEOPAC €YOUV [ia EVOLAUEST oTdon, xou 2 ov xor ot dlo mTAoelc dev sivon

anevdeiac. To 2012, xdde obvdeon elye xatd uéco 6po 1,56 otdoeic.
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o Andotaocn: H andotaon twv nérewv 1I-11 avauéveton vo ennpedoet tn {Atnon we ehc.
And tn o Thevpd, 600 augdveton 1 AmdoTAOY TOCO UROEEL Vo UELOVETAL 1) Tpovuula
Twv emPatody v Taéido. And Ty G, 660 avédvetal 1 aTOGTACY) TOTE TO AEQOTOPLXO
HECO YIVETOL ORO X0 TLO OVTAYWWIGTIXG GE OYEON UE To Ghha Y€oo petapopdc, ondte
avopéveton adZnon tne aeponophc (htnone. H péon andotaon néhewv mou Savidnxe
agponopx®e To 2012 froav 1572 ulhio

o Xuyvotnta: H cuyvémnta elvan évag onpoavtixde mopdyovtag ot M oano@doswy tou
EMBATN, AQOU 1 XENOWOTNTH TWY EMBATOY avouéveTon va elvon augnuévn yiol TTHCELS e
ueyohitepn ouyvotrra (apol audvovior oL EMAOYEC TV EMBATOV WC TEOC THY Opa
avaydenong). Ltnyv topolon epyacia, 1 ouyvéTnTa ElcépyeTon 0To TEdTUTO {ATNONG OF
hoyoprduwnd wopey, (Ben-Akiva xon Lerman, 1985; Hansen, 1990).

o Troapln cuvtovicpévou aepodpoulov: H uetainth auth yenowonoleitar oTo PHovTéAo

e CATNone, TEOXEWEVOLU VoL DLPOPOTIOLACEL T CUVTOVIOHEVA  aEpOdpOUaL  (TOU
evdéyetan vau €youv PEYUAITEPY ouuedenon) and ta undhoina acpodpbpia. H uetafSinth
hapPaveton lon pe Tov optdUd TGV CUVTOVIGUEVLY GEPOBROUIY OTO UET’ ETMOTROPNC
BPOUOAOYLO.

o Koalduoteprioewg: Me v eloaywyh avth e peTaBAnthAc avopéveton vo Beiyldel
enidpaom TwV xouduotepHoewy dPENG 0TO JEPOBEOULO TEOORLOHOY GTNY YENOLOTATA TOU
emfBdtn. o ocuyxexpuéva, 7 UetaANTy apopd otic xawdLoTERHOES TOU BpOoUOAOYIOU
Yoo T0 mEONYoUUEVo Telunvo amd autd tne Afne andwaonc. To 2012, 17,6% Twv
ocLVBEoELY elyav xoduotépnon dping UeyaAlTER TwV 15 AeTTdV.

o WeubopetofAntéc  twv  acpomopedyv  etarpewdv:  Ou  deudopetafintéc  autéc

repthauBdvovtan oto mpdtuno {Htnone étol wote vo edetaotel 1 enidpoon Tng pRung
wlag etoupelag otic TpoTWhoelc Twv enBatmyv. T tny extiunomn we etopeia Bdone (base
airline) AowBdveton 1 US Airways.

o Yropln evolhaxtixol aepodpouiou: ‘Evac napdyovtac nou motebetar nwe xadopllet
Chtnon yio évar ouYXEXEEVO SpoUoloYLo elval 1) Tapoucior EVAAAIXTIXGY dEE0BpOoUitY
XOVT& 010 agpodpdulo Tpoéheuone i mpooptonod tou emlBdtn. Do mopdderypo, ov
UTAEYEL AEpOdEOLIO TO OTolo Vo elvon XOVTE 0TOoV TEooplold Tou emPBdTy, %o, enlong,
TPOOQEPEL BPORONOYLO amd TO AEPOdEOULO TpoEAeuone, TOTE evdEyETaL O ETBATNG va
TEOTINGEL Vo TPOOYEWWVEL 0TO EVVOAAXTING 0EPODEOULO v OOl ToL GAASL YUPUXTNELO TS
elvon (O H petofintn elvon {on ye 0 wovdda ov UTdpYEL EVOALOXTIXG AEQODROULO OF
axtiva 60 A 100 wihiov and 10 %xevTpoedés e noAng npoéhevong 1 npooptopot (TT1/11).
H oxtiva tov 100 piniov hopféveton v Spouohdyo  UECHLY /LoXpLVOY dnocTdGEWY
(>750 phua), eved n oxtiva twv 60 whiov v Spogohdyl  XOVTVGOVY  amooTACEWY
(<750 pina).

o Qoo avayoenone: H ev Aéyw uyetaflinthy yenowomoweltaw vyl vo  extundel 1

EAXUCTIXOTNHTO oG 0EpoToplxTic advdeong e Bdon tny wea avaywenone. Me Bdon
Bhoypapie (Barnhart et al, 2014; Koppelman et al, 2008), Spopordyia to omola
npoopépovia elte mpnl elte apyd To andyeuua teoTwmvToL teplocdTeEpo. H petofinty
yivetow {on ye tn govdda, av 1 olvdeon eEunnpeteltol and SEOROASYIL XATE TIC TEWLVES

opeee (amd Tic 8 T fwc 12 my.).
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MezofAntéc xdoTouc

o

O

Andotaon pet’ entotpoghc dpoudoroyiov: Mo ad€non oty andotacy tne nthone unopel

vo 0dnyhoer oe adénomn oe BLQOPES GUVIOTMOES TOU METUBANTOU %OOGTOUS, OTWS TO
x6ot0C TV xowolpwy. Emmiéov, pa ueyoahltepn Swadpoun umopel Vo CUVERAYETOL
TEPLOOOTEPEC TPOCYEIDOELS Xl ATMOYEIWOELS, 0ONYOVTAS o€ alZnoT Tou XO0TOUSC TGV
AOWGIHWY AL TRV AEPOAUEVIXWV TEAQV. TN oUVEETNOTN Tou oploxod XO60TOUC, 1|
andoTUOT) TOU PET EMOTPOPRC dpopoloyiou yenowonoeitoan we epunveuTixy) HETUBANTY.
H péon andotaon yet’ emotpopric Tou diaviidnxe acpornopintde to 2012 Atay 3146 piiw.
Mévyedoc agpooxdgouc: To ueyedoc tou aepooxdpouc ennpedale. DIAPOPES CUVGTOCES

TOU AELTOLPYIXOU XOGTOUC TWV JEROCXNPLY, OTKS TO XGGTOC TWV XoUciuwY, To E€oda
ouvthenone xth. Alkeg dandveg mou unopel va oyetilovtan ye 1o wéyedog aepooxdpoug
neplhopBdvouy Ta TéAn mpoayeinong dedouévou bt utoroyilovton ue Bdon To péyloto
Bdpoc anoyeiwone. Luvdvactixd, to peyvedog Tou agpooxdooue wall Ue TNV andoTaoT)
Tou dpopoloyiou propel va yenoworonlolv we LETABANTES (OOTE VoL EXPRACOUV EUNESH
T0 XO0TOC TV XAWGUwY, To onolo elval oNUAVTIXOC THEEYOVTAC TOU 0plaX0) XOGTOUG
woc odvdeone. H yetofinty) hopPBdveton lon ye éva av TOUAdyloTov éva TUANA TNG
dradpounc mpaypatonoeiton and agpooxden eupeioc atpdxtou. To 2012 o 26,9% twv
oUVdéoEwY  TpaypatonowdvTay  (é0Tw xot ot éva TUAPR Tou dpopohoyiov) omd
AEQOOAAYOC EVPELOC ATEAATOU.

KoufBwd acpodpduio: Lippwva e tnv epyacio tou SSamula (2008), petald tov

TAEOVEXTNUATLY  TwV  xouBixwv  aepodpouiwy  elvon ot owxovouleg  xAlyonxag, oL
LNAOTERES GUYVOTNTEC TTNOEWY Xl TO YUUNAOTERO X60To¢ Tou Talldtol. Q¢ ex
T00UTOU, N €V AOY® UETOBANTH YeNOWMOTOLELTHL Yiol Vo EENYAOEL €AV 1 CUYXEVTELOT TN
xuxhopoplac oe xouPd agpodpodpia etneedlet to optoxd xoctoc. H petaBAnty eivon ion
e 1 av 1o aepodpdutlo mpoélevone/evdidueonc otdone/npooplouol elvar xouBxéd yio

v etanpelo Tng alvBeone.

WeudoPETUBANTES TLV AEQOTOPINMV ETAUPELGY: XpnoonotobvTal €Tol Bote va e&nyniel
N EVOEYOUEVY]) CUCYETION TNC AEPOTOEIMAC etanpelag ME To xboTOC Trg olvdeone. Kot
avTioToyia pe To mpdTumo {hTnong, we etoupela Bdone (base airline) AowBdveton 1 US
Airways.

Bondnuixéc petafintéc mou yenoworowinxav otnv mopoloa gpyaoio  palvovton

nopoxdte (Ilivoxac 2), pall ta teptypapxd otatiotixd Touc.
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ITivaxag 2. ITepiypagpixd oTATIOTIXE TV BonOnTixdy LeTABANTOV

Méon Tur.
Borndnmxé nté IIpd 2 Ehory. Mey.
ondnuxéc yetainTéc poTUTO u i oy ey
Evo " dpouiou (=1 Op6
voelEn xc?pB/LXOJ AEEO ?Op.LOU (=1 av o ota/po pO}J.L,O D 0.103 0.304 0 ]
TpoopLopol elvon xouBd Yl TRy agporopixt etatpeior)
Evd ’ dpouiou (=1 Bpd
\Y SLEYZ‘ xopﬁm?u AEQEO pog/uou (=1 av To cxspo/ eOULO , D 0.476 0,499 0 1
vetemBiBoong elvar xouPixd yio Ty agponopxt etoupela)
ApBude asponopiddy cuVBEGERY TNV aYopd S 17,720 18,778 1 124
ApBude etanpeldv oty ayopd Dand S 4,833 2,024 1 10

[Mocootd ancudeiag TTACEWY TWV AVTAYWILGTOY GTO
GUVORO TV TTTACEWY TN Ay 0pdc
Méooc aptlude emPBatov nou egunnpetobvion and Toug

D and S 0,259 0,290 0 1

. . S 100,2 171,89 0 4037
AVTAYWVLGTES GTNV AYOpd.

Aprdude moiewv tou cuvdéovtal pe ameudeioc TThoEC ond
TO AEEODPOULD TIPOENEUGTIC UE TNV CUYXEXPWEVT eTonpela
Méyedoc ayopds avd acponopinf| cUvdeoT (oe exatouudpla) S 0,384 0,407 0,02 9,29

Dand S 12,376 13,070 0 60

Méyedog ayopde avd aeponopixf etaupela (o€ exatoupdpla) S 0,790 0,476 0,20 9,29

Yruewoeic: @) D: Tpdtuno {htnore, S: TlpdTuno npocpopdc

8.2. AnoTteAéopata EXTIUNONC TWV OLXOVOUETEIX®Y TEOTUTWY

Ta npétune CATnone xot meocpopdc exXTWAUNXAY UE TO GUVOUOOUO  OLOPOPETIXMY
epunveLTY petofintdv. To odvoho twv TeAwmdv petofBAntdyv emiéyovtan ue Bdon ta
ATOTEAECPATO EXTIUNONE, XATIAANAOUG OTATIOTIXOVUC EAEYYOUC Xt UE Bdom TNV LOLOTAUEN
BiBhoypanio. Metd tnv extiunomn Slapopetixdv Lopedy tou tpotinou {htnone (ue extiunon
wovo tn ouvdetnone {htnone) xou e dlapopetixée uedodouc o mopoxdtey cuUTERdoUOTA

umopoLy va e€aydoiv.

YOyxoon extwuntov ue tn uédodo Ehayictwv Tetooydvwy (OLS) xou ue ™ uédodo

0V Eraylotwy Tetpaydvwy o Ao Ytdda (2SLS)

Y7o npdTURo e {ATRoNg, 1 T Tou elottnelou xat To pepidlo ayopdc MSj/g elvon tdavd va
ovoyetiletar pe To OSwrtapaxtixd 6po. H extiunon tou owovopetpxol mpotimou ye 1
wévodo Edaylotwv Tetpaydvwy (OLS) ayvoel tnv Unopdn evboyévelas xot, ETOUEVLS, O
exTiuntéc dev elvan auepoinmrol. To anoteréopata ond tn uédodo OLS Belyvouv apvntn
enidpaon tne Twwhc Tou elottnpiou (-0,175) otn yenowbdtnTa tou enBdtn. Ouwe, 1 extiunon
ue tn wédodo 2SLS extyud cuvieheot| ye peyohitepn andhutn Ty (-0,481) and 6tu pe v
OLS. Auté unodnhavel 6t 1 evioyéveia odnyel o pepoindia tne extiunonc tou cuvteleoth
TS edv dev ypnowonololvton Bondntixée pyetafintéc yia tny extiunon tou npotinou.

Y Oyxoion extuntoOyv ue 1o Holvwvuuxd Hedturo Logit (MNL) xon to Iepooywd Ilpdtumo
Logit (NL)

7 7 4 4 7 7 M
O extdpevoe ouvieheotic e Thc Tou eottneiouv vy to Ilohuvwvuuixd Ipdturno Logit

(MNL) ctvon {cog we -0,032 evey v to Iepopyixd Ipbtuno Logit (NL) elvor -0,175. O
exTIUNOEC TouU mpoxUnTouv elvol mopduoles yio Ta 800 TEOTUTAL Yl TS TEPLOCOTEREC
uetaBintéc tne {htnone. Ouwe, ta mpdonua Yepxodv UetofAntody Sev elvar oe cuvénela Ue
T avouevopeva pe Bdon v Jewpla tne (Atnone (Omec v mopddelypo o apyNnToS
OUVTEAECTAC YO TN UETOPANTY TWV TPOLVOY VoYWeRoEWY, 0 JETMOC EXTWNTAC YLX TN

peTePAnT e xaduotépnone dpiEng).

I1-26



Extetapevn Heplhndn oto Exinvixd

Telxd medtuno: ZAtnon pe Bdon 1o Iepapywd Iledtumo logit (NL) xon extiunon ue

uédodo GMM

O ITivoxoc 3 nepthouBdver Tic EXTIUACELS TOV TUPAUETPWY TOU TEAXOU TpoTiTou aTo onolo
n {htnon axohoudel 1o Tepopyixd Tlpdtuno logit (NL) xou yiveton tautdypovn extiunomn tne
ouvdptnone {ATnong xou mpocopds ue T yerion e uevddou GMM.

Onwe elvon avopevoyevo, 1 tiwh tou eottnpiou éyel apvntinr enldpaon otn {hnon ylag
agponopinic olvdeone (-0,46). H extwduevn wuh tou (1-1) onualver 6TL 1 cuoyétion oTic
TPOTWNAOELS TWV ETBATOV Yo TIC AEROTOPIXES oLVOEaels eivan 0,347, AEilel va onuewwdel ot
o TeolOVTA EVTOC Tou (Blow oUVOAOU, OTWC Elvar GTNY TERITTWON HAC OL UEQOTOPIXEC
ouvdéoeie, elvon téheto unoxatdotoata dtav to (1-A) elvon (oo pe ™ povddo. H tn 0,347
UTOBEXVOEL UETEIL DUVATOTNTA UTOXATACTACONE HETOED TWV AEPOTOPAOY ouLVOEcEwy. O
ouvTteleoThc TN ouyvotntag elvon 0,473 mou onualvel 6Tl 660 QUEAVETUL 1) CLYVOTHTA TWV
nthoewy augdvetan xou N {Atnon. O ocuviekeothc e xaduotéenone dpiEne molpvel Tig
avopevopeves téc. H ypnowdtnra evog emBdtn pewdvetar 6co auéaveton 1 xaduotépnon
Gone. Ov extpnoeg delyvouv 6Tl ou emPdtec mpotwolv vo taddedouy e ameuldelog
nthoelc  (Bappse otdosav=-0,991), ev& 1N ypnowdtnra Touc uewdvETUL GTav 1 oOVOEST
eCunneeteitan and ouvtoviouéva agpodpdula (Bt contro=-0,278). Ol EXTIUWOUEVES TOPAUETEOL
TWV ETOUPELDV OELYVOUV TIC TEOTWNOELC TWV ETBATOY OYETIXE UE TNV agporopxr] etopeio. H
TopAUETRPOC TOU «evaAdaxTixol acpodpoulouy (-0,196) dnidver 6Tl 1 Umoapdn evahhaxTixoy
aep0BEOWIOL UELOVEL TN YPNOWOTNTA TOV ETPATN Yiot TN oLYXEXEWEVY aUVdEST apol UTopEl
vo egunnpetniel xou ond dhho Bpopordyio uetaBdihovtac étol ta uepidia ayopds. Téhog, N
Umopgn Spouoloylwy oe mpwivég wpeg €yl Yetxr enlbpaocn oty yenodTnTa Tou emBATN
(Bam_ daytime=0,158).

‘Ooov agopd t0 xbéoT0c TN etanpelog, 600 avddveton 1 andotaon (0,48) tdéoo auidveton to
nbotog efunnpétnone evog oxopa emiBdtn. H extipnon auth avixatontpiler oe xdmnoto
Badud o o0 %x60T0C xAUCUWY EVOC aEpooXdPouC, To onolo auidveton oo avidvetol 1|
onbotoon e mThone. Amo v dAha yepld, to uéyedoc Tou acpooxdpouc Oelyver va
oLpBdiher ot pelwon tou optaxo’ xdotoug (-0,148), pe tov mbavdtepo Adyo va elvon oL
owovoulee xhiuoxac mou mpoogépel. H detnn mopduetpoc vy T peTaBAnTh  «xouPixd
aepoBpoulo» Belyvel 6tL N exidpaon tne mbavihc ocupedenone oe xouPxd agpodpduia elvol
loyupdTEEN and TIC OWOVOUlES XAlUoXaS TOU TEOCHEPOUY O HEQOTORIXEC CUVDEDELS HEOW
xouBixyv agpodpouinv. Téhoc, n nopduetpoc tne etoupeiog JetBlue (-0,837) delyvel 611 n
gtonpelon EYEL YOUNAOTERO Oplaxd XOOTOC OE OYEon UE GANEC EToUPEleC TOU MUmopel va

e€nynlel and to yeyovde 6T glvon etoupelor Yo nhol x60TouG.
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IMivaxacg 3. Extiunon 1oV napauéTony TV TEAXOY OLXOVOUETEIXMY TEOTOT®Y

EZaptnuévn pnetaBAntyd: InMS; - InMSo

Eoptnuévn pnetafAnt?: p; (fare)

Meto3hnth {hmone (ri}.t?;g;\?ia) t-value MetoSinth x60T0UC (_Ui}.ﬁ;t;g;\?m) t-value
Ytadepde bpog -7,687* (0,065) -117,742 Sradepde Gpog 1,651* (0,024) 68,913
Twh ewoitnelou -0,460* (0,013)  -34,179  Andotoon yeteniotpogfc  0,480* (0,004) 136,798
In(MS;j/q) (1-A) 0,347* (0,005) 74,228  Méyebog agpooxdpouc -0,148%* (0,014) -10,36
Apude otdoewv -0,991* (0,006) -163,194  KouBwé acpodpbulo 0,053* (0,020) 2,673
Anbotoon uetald tohewy 0,360* (0,014) 24909  Jet Blue Airways -0,837* (0,027) -29,89
In(Buyvétnta) 0,473* (0,006) 76,687  Delta Air Lines -0,095* (0,018) -5,405
% TEWVOY avor KERCEWY 0,158* (0,021) 7,537  American Airlines -0,162* (0,017) -9,314
Yuvtoviopévo agpodpduo  -0,278* (0,011)  -25,170 Southwest Airlines -0,360* (0,023) -15,820
Kaduoteprioeic -0,246* (0,057) -4,289 Adhec etanpeiec LCC -1,082* (0,016) -66,630
Evalhaxtixd caepodpbulo -0,196* (0,009) -22,762 A)\)\eg/ (magaBootanEey 0,085* (0,020) 4,315
etaupelee (legacy)

Jet Blue Airways 0,178* (0,029) 6,176
Delta Air Lines -0,077* (0,013) -6,133
American Airlines -0,156* (0,016) -9,717
Southwest Airlines -0,246* (0,012) 20,528
Adhee etanpeiee LCC -0,183* (0,022) -8,244
Alhee «mopadooianécy
etoupelee (legacy) -0,092* (0,016) 5,746
Sratonxol éheyyol:
Twh ewoitnelon: R2adjusted 15 stage 0,415

F-stat. 15 stage (p-value) 2305,2 (0.00)
In(MSj/g):  RPZadjusted 1t stage 0,665

F-stat. 15 stage (p-value) 6565,3 (0.00)
Tw avtixe. Xuvdptnone GMM 1020,9
‘EAeyyoc Cragg-Donald F-statistic 806,4 (>Stock-Yogoo,05=19,45)
Overid. test p-value (10% enin. onuovtix.) 0,00
‘EXeyyoc Durbin-Wu-Hausman p-value 0,00

Aprdude magotnefioewy: 89667

Notes: O Tlivaxoag 2 nopousidalet tic fonintée yetafhntéc nou ewsépyovtal oTny extiunon
*: otatioTixd onuavtixd ot eninedo onuavikdTnTog 1%
US Airways: etoupeio avapopdc yioe Ty extiunon
LCC: etoupeiec yaunhot xdéotoug (Low cost airlines)

Erione, o Ilivaxac 3 mopoucidlel Touc otamiotnolc eAEYYOUC TOU TRAYHATOTOLOUVTOL YLo
v emlpwor Tov teotinwy. Ilio cuyxexpwéva, ol otatioTixol éreyyor delyvouv 6TL ol
Bondntuxéc yetafintéc mou yenowonotiinxay ota tpdTuna elvar éyxupec (ouoyetilovTon ye
Tic evdoyevele petafhntéc xon dev cuoyetilovton Ue Ta xaTdAolna TV TEoTUTKY), xaddg
xou OTL N TN ewoLtnelou xow To wepidlo ayopdc elvon evdoyevelc petaBintéc.

Téhog, 1 emxlpwon TwV TEOTOMWV OAOXANPWVETIL UE TN OOYXPLOTN TOV EXTULWUEVHY oL
TV ToeATNEOdUEVEY HEYEDOY, €Tal ote va eheyy el 1 mpocupuoYh TV TEOTLTWY OTIC

Mo ovyxexpwéva oto Yyfuo 5

TEAYHATIXEC  TWEC TV eZapTNUéVeV  UETOBANTOV.
TapoUcLAlOVTOL To OYETIXG ATOTEAESUATA YL TOV EAEYYO XOAAC TPOCULUOYHC TOU TRPOTUTOU
mpoopopde (tiwée eovtnpiou) xon LAtnone (uepidio ayopdc). Xto olvoho OAwV  Twv
VEPOTOPINMV CUVBECEMY, Tol EXTIUOUEVY Uepidia ayopds elvan udhic 1,86% udmidtepa and o
TOPUTNEOUUEVE DEBOUEVA, EVE Ol EXTWMUEVES Téc Twv clottneinv elvan pévo 0,72%
YOUNAGTEREC anb TIC mopotnpolueves. Emiong, to WETpo xohC TEOCUQUOYTC, TOu EYEL
mpotadel and Toug Gugler xon Yurtoglu (2004), Pesaran xow Smith (1994), Windmeijer
(1995) vy TpbTuTa TOU EXTIOVTOL e LeVdBoue Bondntixdy yetaBintdy, etvon (oo ye 0,76
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yiot Tar pepidia ayopde xon 0,45 yio tic TiwéC Twv elottnelov. To pétpo autd uroloyiletar we
TO TETPAYWVO TOU GUVTEAESTH GUGYETIONG UETOED TWV EXTIUOUEVLV X0l TURATNEOVUEVELV
TV xor xudolveton and 0 éwe 1. To gupAuata autd UTOBNAGVOUY YEVIXE OTL TO UOVTEARO
elvon tavd va meprypddel Ty agporopinh {ATnom xon TIC TWES EoLTnpiev.

600 563.7  575.6
=500 4573 4540 4659 462.5 185.8 479.1
- ] 4124 4148 [ 400.0 394.4
3 400 356.7 362.5
o
§300
@)
% 200
<
= 100
=
0
‘O)ec oL Aneudelac  Xuvdéoeic 1-  0-620 sm 620-1250 sm 1250-2500 sm  >2500 sm
CUVOETELC GUVOETELC otdong
(0,45) O HopotneoUueyn, B Extipduevn
(a)
1.4E-03
0.0014 — 1.3E-03
4 0.0012 1.1E-0:
S 1_03
g 0.001 8.9E-04
a
g_ 0.0008
o 0.0006 3 8F.04
€ 0.0004 2.8E-04 2.9F-04 : 3.75-04
51 1.6E-04
= 0.0002 HI 6.6E-05 T.TE-05 HI 1.4E-04 0.7E-05 1-2E-04
0 ] | |_|. ] |
‘Ohec o1 Areudeioc Yuvdéoeic 1-  0-620 sm  620-1250 sm  1250-2500  >2500 sm
CUVOEOELC  OUVOEDELC otdong sm
(0,76)

OIlogatnpotueva M Extipdueva
(b)

ExAre 5. LOYXELOY EXTILOUEVEOV X0l TASATNEOVUEVEY TILdV elowtreiou(a) xou
peptdinv ayopdc (b)

8.3. AnoteAéopata Npocoloiwong Tou ayopaxeviptxol nepltBailiovTixo)

wETeou

Ta armotedéopata petd v mpocopoiworn e mepBurloviinic TOMTIXASC TapouctdlovTon
otov mopaxdtey wivaxa (Mivaxac 4). Koatd wéoco dpo 1 adinon tne wwhc cloitnplou
xupadveton and 1,07% éoc 10,73% avédhoya ye 1o Udoc tng twhc dvipoxa. Tio tn younih
Ty dvdpaxa (F=$10), T0 x6070¢ exTOUROY oL EMBIAAETOUL O ULol AEPOTOPXH ETonpEl v
emBdTn elvon xatd yéoo 6po $4,75, evdd autd audveton oe $23,77 v to oevdplo uPnihc
Tiwhc Tou dvdpoxa twv $50 avd tévo CO2. H Biaudppwon tou povtéhou {Atnone xou
TPOGPopdc EMTEENEL TN YETUBOM T600 Tne acpomopixiic LAtnone oto ovvoho e (UETHBOM
tou MSj) 600 xou Tou decpsupévou upepdlou ayopdc (uetaolh tou MSjg). Metd tnv
EQAPUOYT TNEC TEPPIUANOVTIXAC TOATIXNASC, XaTd Yoo Gpo Eval BpoUoAdYLo UTOEEL VoL YAOoEL
and 0,22% (v Twh dvdpaxa $10) éoc 2,23% (yie Twh dvdpoxa twv $100) and <o
OEoUEVUEVO UER(BLO TOU EVTOC TG aY0pdc TwY aEPOTORXWY cuVOEcewy. Autd onuolvel OTL 1)

4 4 4 7. 4 2 2 7,
EQUPUOYH EVOC TETOLOU TEPUBUAAOVTIXOU UETEOU BEV OVOUEVETOL VO TPOXUAECEL GTEEBAWOELS
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wou aviayoviopol. To arotéheoya autd épyetol ot ovgewvia PE T gupHuoTo SAALY
EPYUOUOY TOL £YOUV OLEpEUVACEL TIC TEPWBUAAOVTINES TOMTIXEC OF EUpWTOlég 1) SAAEQ
ayopéc (Anger, 2010; Malina et al., 2012; Miyoshi, 2014; Scheelhaase et al., 2010). Exi{onc,
Ta anoteréopatd delyvouv 6T xatd wéoo 6po to 2,91% twv emPatdv propel va emiéEouy
VoL UNY TETEE0UY, e anoTéAECP TNE adENoNS TWV TWOVY Yo T0 péoo oevipto (520 avd tévo
CO2). Xuvohwd, to anotehéouato e mpooopolwone delyvouv 6Tt 1 cuvoknh emiBotixy
xivinon Vo pewwdel xatd 1,47% vy 1o oevdplo younhic TWhc dvipoxa, VO o oyxeTxd
vhnAf pelwon tne Lhtnone (13,5%) uropel va tpoxier yio To udmid oevdplo twv $100 avd
w6vo COa.

ITivaxag 4. ENITTOOELS TOL oy opaxevTpixol TEPBAANOVIIXO) LETEOU OTO
acpomopixd dixTtuo Twyv H.ILLA.

Yevépio Thic dvdpoaxa (avéd tévo CO2)
F=$10 F=$20 F=$50 F=$100

Meéon enintwon ava acponopixr) cOVOeoT

Méco x6ot0¢ exnopnmv avd civdeor [ Acost 4.75 9.51 23.77 47.53
Méon adénon twhc avé civdeor [%] %Aprice 1.07% 2.15% 5.36% 10.73%
Msr}sn pelwon (/Seopsu‘usvou) ‘uElp,LOL()U wopde g AN, 20.99% 0.45%  -1.13%  -2.93%
evtde TOLU oLVOAOU aEPOT. cLUVBEsEWY %]
Yuvolixr) eninTwon oTo agponopixd SixTLO

Meiwon e ouvolxhc (Htnone [%] %Apassengers  -1.47%  -2.91%  -7.07%  -13.50%
Meiwon twv extopndv CO2 (%] S ACO:2 -1.88%  -3.713%  -9.02%  -17.05%

H uelwon tne aeponopinnic {hitnone do obnyrioet o peiwpéva eninedo exnoundy dlogedlou
Tou dvdpaxa oto edetalduevo dixtuo. o vo unohoyiotel ye axp(Belo n ev Aoyw uelwon,
elvon amopoitnTn 1 yvoon tou apidpod emBatdv nou «EEdYouv» and TO JEPOTORXO UECO
royw ne alénone e Twig eoltnelou v x&d0e UEUOVOUEVY TTAOYN NG OEPOTORIXNG
etonpeloc. T mopadelypa, n audnuévn T etottnelou uropel vo odnyhoet o tétota alhay
e {ATnong MoTE 0L JEPOTOPIKES ETAUEEIEC VO AAGEOLY T CUYVOTNTA TWV TTHOEWY TOUC 1)
VoL OTEOMOLY GE UEYANITERA 1) UXPOTERN OEPOOKANT O GUYXEXPWEVES dladpouéc. 20T600,
To Bwdéoa adpoloTind Bedopéva mou yenowonoel 1 mapoloa diatel3h dev elvar 1600
AeTTOUERT WOTE Vo Yvwellovye TN Uelwon Tmv emBatody of eninedo YUEHOVOUEVKOY TTHOEWY
avd dSiadpopr, xan deo Vo UTopoUME Vo TeoBAEDoUNE EVBEYOUEVESC dAAAYEC OTN CUYVOTRTA
nthoewy xTh. Qotdoo, yivetou n anhouoteutiny) nopadoyr) 6Tt ol exnounéc CO2 tou dixtlou
uewdvovtal Aoyw tne delwong e {ftnone xatd v axdroudn mocodTnTor apidude Twv
emBaTOV TOU «PELYOLV» amd TO agponopixd Yéoo x exmounéc CO2 avd emfBdrn. A&ilel va
onuelwdel OTL 1) TPOCEYYLOT AUTH AVAUEVETOL Vol OONYNAOEL OE UTEREXTIUNON TNg UEIWONC TV
exmopncdyv CO2. Me Bdon ta mapandve, to anoteAéopata delyvouv ot ot exmounéc CO2
evdéyetan vo pewwdoly xoatd -1,88% €we -17,05%, avédhoyo pe v Twh dvlpoxa ANoyw
uelwone tne aeponopixiic {Rtnone.

To mnepiBarhoviind xb6ctoc amotehel Yépogc Tne BoURc TOU %OCTOUC TWV CELOTORIXAY
ETOLPELWY X0 XATE CUVETELY ETNEESLEL TNV xepdoropla Toug. e auth TV epyacia yiveto 1
undieorn 6TL, TOUAEYLOTOV €va UEpoC TOW, UETUXUADETOL oToug ETPATEC, UE ATOTENEOHUA
petwon tng aeporopxic LATnong. LNy mpoyHatidTnTo oL AEpOTopnéS etonpeieg evoéyeton
Vo avTidpdoouy o Tpoc Ghhec xatewdlVoElS €TOL (OTE VA MEQLOPIOOUV TNV OTWAEL

Z 7 4 4 4 7 4 7
xépdouc. [iveton 1 amhovoteutiny topadoyr 6t N uelwon e {Rtnone Yo avtixatontpelotel

Bpayuypdvia 6To CUVIEAEOTH TANROTRTAC TwV TTRoEWY. Av unodéooupe dtL n pelwon tng
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{ftnone omodideTon oUotOUope Ot UElwoN TOU CUVIEAESTH TANROTNTOC, To Lyfuo 6
mopovoldlel TV adpOloTIX]  XOTAVOUY,  TWV  CUVTEAESTOV  TANEOTNTUC UETE TNV
nepBodhovTixy ToATXY Yo To BLdpopa oevapla T The dvipaxa. [a Adyouc olyxpeiong,
anewxovileton enlone N avtioTolyn XUUTOAT TWV CUVTEAESTAOV TANPOTATIC TELY TNV EQAUPUOY
¢ nohtixfc. Me Bdon ta anotehéoyata, TEW And TRV SQUPUOYT TNEC TECBUANOVTIXNG
TOMTIXAC 0 YECOG oUVTEAESTAC TANEOTNTag Htay 0,84, evd o uioée asponopnés ouvdéasig
elyov ouvteheoth goptiou peyohitepn and 0,83. Xty tiph tou dvdpoxa twv $20 avd tévo
CO2, o pgooc cuvieheotrc ThnpotnTac Yrav 0,78, Ou ahhayéc yivovtouw Wiaitepa €vroves

otnv TR Tev $100 avd tévo CO2, 610U o Yéoog ouvteheoThc TAnedTnTac négtel oto 0,66.
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ExAua 6. Metafforég 0TV aBpoloTixf CUYVOTNTA TOU CUVTEAECTY TANEOTNTAG

Enione, e€etdleton 1 enldpoocn Tou mepiBUAROVTIXO) PETEOU OF AEQOTOPXEC OUVOECELS UE
drapopeTind yopoxtnplotixd (yio mapdderypo aneudeioc ouvbéoelc n ouvdéoels Ue eviidueon
0Té01, CUVOECELC BLUPORETIXGDY ANOOTIoEWY). Xt0 Lylua 7 oL ogponopixéc OCUVDECELS
OUadOTOODVTOL OE TECOERLS ouddec He Bdon tny andotaoh Twv norewv 1I-II: cuvdéoel ue
andotaon Aydtepn and 620 pihe (21000 km), 620-1250 piio (21000-2000 km), 1250-2500
pidta (=2000-4000 km) kot peyodOtepn amd 2500 pidta (24000 km). I to yeoaio oevdplo
(820/tn COg2), ou xovuvdtepee nthoelc yivovton xatd yéoo 6po 1,3% mo axpiBée, eved ot
HoXpVOTERES TTHoELS €youv alinomn Twhc xatd mepinou 2,83%. H petofold tne {Atnone
xouobveton and -1,509% éwc -6,58% vy Tic %OVTLVOTEPEC o TIC HOXPLVOTEPEC TTAHOELC
avtioTowya (v To oevdpto twv $20/tn CO2). Zuvohixd, OTOC AVIUEVOTAY, OL TLO UIUXPLVES
TTACELC OVOUEVETAL VO LUTOOTOUV UEYOAITEPEC ETURTOOELC AOY® TOU aENUEVOU XOGTOUSG

Gviponca.
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Eyxnpe 7. MetaBold tng Tipng stottnelou xal Tng acponopixfis {RTnong vio
SpOoUONOYLA BLAPOPETINWY ATOCTACEWY

To ancudeiog SpOUOAOYLO AVUUEVETAL VO EYOUV DLUPORETIXEC ETUTTWOELS A0 TA DPOUOAOYLYL
ue evbdueon otdorn. Tao aroteréopata anewovilovior oto Nyhua 8, 6Tou Tapoucidletar OTL
évac emfBdtne Yo avtetwniost pyeyohlteen adénon tne TS Eloltnpiou oTic TTAOELS UE
evbidueon otdon. Autd elvar anotéleoua Twv VPnAoTepwy exnoundyv CO2 ot olyxplon ue
o avtiotoya aneudeiog Spopohdyia. §2¢ ex TOOTOL, axdun XU EVIOS TNE BLIC AYoRdS, OL
emPdrtec mou emhiéyouv va to€edouv ameudelog petald twv acpodpoplwv II-II Vo
weeAnioly TeptocdTeERo and exclvoug Tou Tadldelouy e evbidueon otdor. Do Ty udnig
Ty dvdpoxa Twv $50 avd tn COz2, oL nthAoelc pe avtandxplon avietownilouy xoutd uéoo

bpo abinom 5,7% otnv T ewottneiou oe olyxpeion pe 3,9% v ta ameudeiac Spogoldyia.
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Eyxnue 8. MetaBold tng Tiwng soltneiov xau Tng acponopixns {NTnong avd tiTo
dpoporoyiov
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H avdivon oc eninedo ayopdc €8eile 6TL 1 mepBodhoviue) moMTXY ovopéveTal vo EYEL
DPOPETIHEG  ERINTWOEL,  OF  AYOPEC HE  OLpopeTixd  eminedo  avtaywwouol. Ilo
ouyxexpéva, otny egpyacia efetdletor av 0 opIUOC TWV OVTOYWVIOTMV GE Wa ayopd
umopel va ennpedoet To Y€yetoc tne alénong tne TWAC Tou ElotTnplou UETd TV e@aploY
e mEpBaAAovIE ROMTAG. Metd and olyxelon ayop®V UE TUEOUOLN Y UpaXTHEICTIXG
dlamioT@vET TS 1 avdnon e TWAC Elottnelou €xel TTWTIXY TAoT), OTAV XWVOUUACTE O
ueyohitepo aptdud nuxtov (deponopixéc etoupelec) oty ayopd. Anhady, 660 ueYaIITEROS
glvaw 0 apriudc TV TouxTOV oe pla ayopd, TOc0 Wixpdteer elvon 1 aldnorn TS TWAS TOU

gwottnelou.

H avdhuon oe eninedo aeponopnnc etanpelog €deie 6Tl 1o mepBolhoviind pétpo avopuéveTon
vor €ycl OLPORETIXEC EMMTWOELS avdhoya Pe Tov T0mo tng agponopxfc etoupeiac. Ou
ETUNTWOELS TOU PETEOU oty Tiwh elottneiou yio Twh tou dvlipoxo (on ye F=3$20 avd tdvo
CO2 gaivovtar oto Lyfua 9. Ot emntdoeic oTic «nopadoctaxécy etoupeiec ancwovilovtal Ye
YXEL, EVE VIO TIC 0EPOTIORIKES ETAUEEC YouNnAoU xboToUC Ue avoyto xape. Tapatnpolue ot
ot agponopxéc eTaupeiec younhol xdotoug avtetwnilouv N ueyoAltepn adinon TV,
extog ond T Southwest Airlines. Me 3don ta anoteréoyoata tne ovdAuong, ol TWES NS
Virgin America eivar mdovd va auindoiv xatd 3,4%, axohoudoluevn and tpelic GAheg
gtowplec LCC: JetBlue, AirTran xou Frontier. H evrovétepn adinon vy tic etoupeleg
younhol xo6ctoug propel va e€nyniel and Tic enxpatolosg TWES TV EWGLTNRY TELY TNV
emBory Tou Yétpou xadne xa and To emPaAiduevo xbotog dvipaxa. [Na mopddeiyuo, ye
Bdon to amoteréoupata tne moapodous epyactag, ol etoupeiec Frontier xou AirTran €youv
oYETWE Younhé xootoc dvipoxa oc olyxplon Ue dAReC agpomopwéc etoupeieg. 20td00,
AOY® TOWV YUUNAGY TWEOV Eoltnelwy Ty TEplodo Telv TNV eQoproYTh Tou TERBIAAOVTIXOU
wétpou (ov Frontier xou AirTran éyouv xatd péoo 6po T younhotepee Téc, $365,6 xou
$347,6 avtiotoya), n nococtiada adénon twv Twov (2,4% xou 2,5% avtiotoya), petd Ty
nepBorhovtixy mohitixn elvon ubmiotepn and 6,71 oe dhhec acpomopxéc etonpelec. T tig
mepintooelc tne Virgin America xou tne Southwest Airlines, o udmiéc xan youniéc
emntooeg aviiotowya umopel va e€nyndolv téoo and 1o ubnAd/yaunhéd xbdotoc dvipoxa
600 oL ATO T APYIXES TWES TV ElotTnpley.

2012 péon abinom
TLAg sottneioy 2.15%

Alaska Airlines Inc. 1.8%
Southwest Airlines [N
US Airways 2.1%
United Airlines 2.1%
Hawaiian Airlines 2.2%
Delta Air Lines 2.2%;
American Airlines 2.4%

Frontier Airlines
AirTran Airways
Jetblue Airways

Virgin America

0

X

0 1% 2% 3% 4%
Méon ab&non i sottnplou

EyxApa 9. Metaforég tne TipAc sottnelou avd asponopixh etoupeia (Yo To TN
dvOpaxa on pe F=$20 avd tévo COs3)
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9. Yuunepdouata

H rapoloo dWbaxtopixn dlatpfny avaidel BlapopeTiés TTuyéc Tng ocponopixnc Pounyaviag,
CUUTECIAOUBOVOUEVWY TV ETAOYOV TGOV EMBUTOV, TWV ONOPICERY TWV OEPOTOPIXGOY
ETOUPELY, TOU OVTAYWVIOHOD GTNY ayopd, Xol TV EXTOUTOV Slogeldiov tou dvipaxa twv
OEPOCHAPEY XAl TOU OULVETAYOUEVOLU xb6oToug dvlpaxa oc éva puduiotixd mepiBdilov
YOpnAoy  extouney. Ewdtepa, delyver modc ov acpomopixéc etanpelec evhEyeTon  val
AVATEOCUPUOCOUY TRy TWH clottnelou o moe ot emfBdtec evdéyeton vo oAAGEOUY TiC
acpomopée ETAOYEC TOUC HETE TNV egoppoyn woc nepBauiloviinic mohtixhe. T to
oxomo auUTO, Ui pedodohoyinh Tpoctyyion, mou yernowonoeitar xuplwg ot Brounyoavixy
0pYAVLOY), EMEXTELVETOL OTO TOPEXL TOU OUYXOVWVIOAOYOU MNYavixol, €TI0l OOTE Vi
neplypdbel  UE  XUTEAANAO  TROTO TNV EQOPUOYH TOU  TEPBAAAOVTIXOD UETEOU  OTIC
OEQOUETAUPOPESC Mo TS  EVOEYOUEVES  ohAayec mou Yo emgpépel.  Eva  onuovtixo
YU TNELOTXG aUTAC TNS Blatelfric elvan OTL, UETA TOV UTOAOYIOUO TWV EXTOUTOV DLOZEdioy
ToU Gvipoxa Yiol TIC «XUAUTTOUEVES Ao TO TEPUBUANOVTING UETPO» EQOTORXES ETAEELES, TO
VTIOTOLY O X60TOC AvUpoXa ELOAYETU OC TUAUA TOU 0plaxol XOCTOUG TNS GEPOTOPIXNC
gtonpeloc. Eva turuo autold Tou x060TOUC UTOPEl VO UETAXUAACEL OTOUC ETPATES, ME
arotéheopo v adinon e Tiwhc ewottnplov. H véa tuh eotnplou (og andvinomn Tou
emnpbodetou xbotouc dvipoaxa) Swpoppmvetar and tny etoupela we 1 loopponia Nash ye
Bdon to umddelyuo Bertrand. Téhog, evbeydueveg oArayEéC OTIC OEPOTOPIXEC EMAOYES TWV

eTBATOV AVAADOVTOL HE TN YEHON TROTUTWY SLaXELTMV ETAOYOV.

Yyetnd pe tn pevodoloyw) mpooéyyion mou yenoulonouidnxe otnv mopoloo Blateln
uropolv va e€aydolv didpopa cupnepacuata. Kat’ apyde, oc avtiveon e tnv mheiodnepia
TOV UTHPYOUCKY ERYAOLOY UE adpoloTixd Bedouéva, ol omoleg xuplwe eQoupuolouy Yeaduxd
povTého ToAVOpOUNoTNE, 1 Tapoloa spyaoion avaAUEL Tol UEpiDl aY0pds TV HEQOTOPIXWV
oUVOECEMY pE €val lepapyixd TpdTuTo logit Sraxprthc emhoyhc (Nested Logit model). H
CUUTEOLPORE TWV JEPOTORIUDY ETHUPELDY DLOPOOVETIL and To TROBANUL UeyloTonolinong
AEPBOUC OE ML AVTAYOVIOTIXY ayopd HE apxeTolc maixtec. ‘Etol, npoodiopilovtar ot xligto
TUPAYOVTIEC TNG CLVARTNONG XPNOWOTNTAC TV ETBUTOVY XoL TNS UVAPTNOTNE XOCGTOUC TV
OEQOTOPIXWY  ETOUEELDY.  Aldpopec paxpooxomxés petofAntéc mou evtomlotnxay o
BiBMoypagia tpocapublovion 1 TeOTOTOLUVTUL OOTE Vo GUUTERANPUOUY 6TO WOVTEAD TN
{ftnong, 6Twe N T tou gottnelou, N ouyvotnta olvdeong, oL xaduotephoels dpiEng, v
emnAéov ypnoulonotolvtal epUNVEUTIXES HETUBANTEC Tou Bev €youv yenoworoinlel oTo
TapeAIOV e alpoloTind YovTéRa, OTwe 1 Topousior EVOAAIXTIXO) AEQOBEOULOU GE XOVTLV
ambéoTaon, and TNV TEOEAEUCT] 1| TOV TPOOEIOUO TOU ETBATN XU 1) OVAYMENOT XATd TS
Tpwivée wpec. To oxovoueteind TEdTURA TOU AvATTUCCOVTOL EXTWOVTOL UE TN Devixeupévn
Médobo twv Porndv dote va Anedel urddn to mpdfBinpa evdoyévewng. KatdAiniol

otaToTinol EAEYYOL EQapuolovToL Yol TN Yehon EYxupwy BoniInTixdy UeTaBANTOY.

[l tov unohoytopd Twv exmouncdyv CO2 avd ogpomopuxry oUVOEST YpnowoToldnx oy
OeBOUEVE TNS EVOERLIC XUTAXOELUYNG TEOYLAC Y €va eupl QAoUd TTHOEWY EOWTEQIXO) TWV
H.ILA. Metd and extev) avdAuon autdy TV Se80UEveY EYLVE TaElVOUNoT TV TTHOEWY OE
HOVOBIXOUEC GUYBUNOUONC AUTOCTAUCNEC RTAONC, UEPOOAAPOUEC XUl TPOCUVAUTOANOUOYU TTHONC
wo avoADUMXE 1 TuTIR Evaépla xatombpuEn TeoYd Tou agpooxdpous Yo xdde cuvduaoud

UE TNV EQoppoYT 800 SLpopeTXGY TpooeYYioewv: 1) epupuoyh TpoTiTou Tpocouoiwone Tne
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Aettovpylog evée acpooxrdooue xon (i) umoloyloudc Trg Tumhc evaplac TpoYdC TOu
aEPOOHAPOUEC UETA amd euduypduuion xatdAAniou Belypatog totopdV oToyElwy. 3TN
ouvéyela Ye Bdon Tic TUTIXES XaTaxdpUYES TpoyLES Tou eEdyovian 1 Bdorn dedouévey Base of
Aircraft Data (BADA) tou  EUROCONTROL ypnowonoidnxe v Tov utoloyiopd tne

AHATAVEIAWONS XAVGILOU X0 TV extouney CO2.

H cgoppoyry TV mopamdve TEOCEYYICEWY Yl TV TUTIXH  TEOYWE  HEPOCXAPOUG
cQopuoaTXAY 6T0 aepomoplxs dixtuo twv H.ILA. H alyxpion twv 800 uedddov édeile 6t
n pédodoc nou Baoiletor otnv euduypduuion tou delypatoc twv otolyelwy (registration-
based method) napdyer mo oxpB3h anoteréopata we TEOS TN SLdpxEw TWY daYdpnV PAGEWY
e mTRone o To pudud avodou xan xadodou. llapd Ti¢ onuavtixég Bupopéc oTa
EXTWOUEVOL YURUXTNRLOTXE TTHOTE UETOEY TWY TUTIXOY TEOYIWY Tou e€dyovTar and Tig 800

pedodoue, n dlapopd oty extiunoyn Twv exntounoy CO2 elvar Atydtepo évtovn.

To aroteréopata and TNV €QPUEHOYH TOU TEPBAUANOVTIXOU YETpou delyvouv OTL avdAoya UE
v TR dvdpoxa Tou EQapUOlETUL Ol EMTTMOOELS OTIC TUWES TWV ELOLTNEIIV, OTNV KECOTOPIXY
Chtnon xou otig ouvenayoueves exmopnée CO2 umopel va elvon onuovtixéc. Xe auth v
dratplBr, Oupopetixd ocevdplo Twhc Gvlpoxa ($10, $20, $50, $100 avéd toévo CO2)
yenowonowiinxov €Tol (OCTE Vo OMEWOVIOOUV OLIQORETIXEC XUTACTUCEL, TNG OYOPdC
Gvdpaxa. Me Bdon tnv mapoloa avdhuo, Yo T0 oevdplo younhhc Tuwhc dvipoaxa ($10), mou
glvaw xovtd oty Ty dvipoxa mou emixpatel oNuepd, oL TWEC TV Elottnply Uropel va
auEndoly xatd péoo bpo xotd 1,07%. Autd Yo pewdoer tn cuvohixd ceporopxh CTATNOT

%ot 1,47% xan tic ouvohirée exropnéc CO2 xotd 1,88%.

It to oevdeto udnifc Twhc dvdpoxa ($ 100), ot Twée Twv eortnplwy uropel vo augndoly
xatd nepimou 10,7%, evéd n agponopxh Brounyovior eVOEYETOL VAL AVTIHETOTIOEL ONUOVTIXES
anoieiec Thtnone (amoiewo mepinou 13,5%). Exl tou nopdvtoc oL emxpatolosc TWéc
Gvipoxa etvon oA yauniéc oe dudpopec ayopéc (Myo xdte and to 108 avd tévo CO2),
omwe ota XEAE e EE xov tne Zoyxdne. Iopd tn onupovtixy Swxduavon mou
nopatneinxe ta teheutalor yedvia oty T tou dvipaxa, 1 uodétnon Twv UPNAGY
oevapinv Tov $50 xou $100 avd tévo CO2 dev gaiveton mdavh e Bdorn tic tpéyouoes Tdoelg

ot TR dvipaxoa.

AapBdvovtoc urddn Ta AmOTEAECUNTO TNC TPOCOUOIWONG YL TO YAUNnAO oevdplo TWNAC
Gvipoxo § 10 avéd tévo CO2 (mou elvon xovtd otny onuepvh Ty dvdpaxa) xoi tov oTé)0
e agponopixfic Brounyaviae (ICAO, 2016a) vy pelwon twv exnoundv CO2 Twv
UEPOTOPIXMV PETAWOPGY xotd H0% uéypt To 2050 (o oyéon pe Ta enineda Tou 2005), 7
napooo SlotplBr) Selyvel OTL Elvol avdyxn Ol ECOTOPIXES ETOUUPEIEC o oL GhAoL popeic Tne
Brounyavioc vo otpapoly o€ evoaxTIXéC TPOoEYYIOELC YLt VoL DLUCQUALOTEL 1 OXOVOUIXT
non mepBarloviny PuodtnTa Ty acpoustagopmy. H avdiuoh tne dwteBric Selyvel 6T 1
Torbynon Twv extouney CO2 cuuBdiiel otn pelwon tov exntopnedy CO2. Ilag’ dha avutd,
To younid eninedo tne TwAC Tou dvlpoxa Bev avauévetal va 0dNYHOOUV OE ONUAVTIXECS
OMAAYEC  OTOV  TOpER TV GEEOTOPXMY  pETOopmv. O ouvdudouog  BLappmv
mepBodhoviixdy mohTixody (my. Behtiwon tng teyvoloyiag xouw Tou EAEyYOL EVUéplag

xuxhogoplog, ayopaxevtexd TepBahhovTiXd Yétpo) UTOpel Vo ATa TLO ATOTENEOUATIXOC.
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1 Introduction

1.1 Problem Statement

Years after the deregulation of the airline industry?, the aviation environment has been
affected by several changes: i) the formulation of airline mergers, which may lead to
increased efficiency, reduced cost and increased airline revenues (Flores-Fillol, 2009;
Merkert and Morrell, 2012), ii) the development of hub-and-spoke networks, which gives
the passengers the opportunity to reach more destinations from a single origin and allows
airlines to serve high traffic demand while reducing operating cost due to economies of
scale (Berry et al., 2006; Nero, 1999; Ryerson and Kim, 2014), iii) the introduction of
low-cost carriers (LCC), which has reportedly increased network competition which

resulted in lower ticket prices and lower market power of full service carriers.

Over the last years, the aviation industry faces further challenges which come from the
increased air traffic worldwide. In Europe, air traffic in terms of passenger kilometers
increased by 26.8% between 2000 and 2013 (European Commission, 2015). In the United
States, passengers miles increased by 17.9% between 2000 and 2014 (BTS, 2016a). Air
traffic growth is expected to continue in the years to come. Boeing (2015) suggests that
global passenger traffic will increase by an annual factor of 4.9% until 2034. The highest
rates will be experienced in South and Southeast Asia where the annual growth rates will
reach 9.9% and 8.9% respectively. Within Europe, the annual growth rate is estimated at
3.3% and within the North America at 2.4% (Boeing, 2015).

These levels of growth raise significant concern on the environmental impact of aviation.
Currently, international aviation is responsible for around 1.3% of global carbon dioxide
(CO2) emissions, or approximately 450 million tons annually based on 2014 data (ITF,
2016). Recent statistics indicate that, if no mitigation action is taken, these rates may
increase given the increasing trend of air traffic. Given the projections for air traffic
growth in the coming decades, by 2040 fuel consumption and CO2 emissions from
international aviation are projected to increase 2.8 to 3.9 times the 2010 values (ICAO,
2016a).

Figure 1.1 presents the evolution of air traffic and aircraft CO2 emissions since 1990 for

Europe, the United States and worldwide. Air traffic has significantly increased in both

2 Airline deregulation was first put in effect in the United States in 1978. In Europe, airline deregulation
was the result of the Single European Act which the E.U. member states agreed to in 1986.
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regions. In Europe, the passenger kilometers went up by 67.5% since 1995, while in the
U.S. the corresponding increase is equal to 50.5% (since 1990). CO2 emissions from
international and domestic aviation in Europe increased by 79.2% between 1990 and
2012, while world COz2 emissions from international aviation increased by 89.5 from 1990
to 2013.

Index 1990=100 (except EU-28 passenger-kilometers where 1995=100)
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Figure 1.1. Evolution of air traffic and aviation CO2 emissions (own elaboration with data
from EC, 2015; BTS, 2016a and IEA, 2015)3
In recent years, in response to the increasing evolution of aviation greenhouse gas (GHG)
emissions, market-based environmental policies have received significant attention around
the world. Although at the last major United Nations Framework on Climate Change
conference, in 2009 in Copenhagen, the EU Emissions Trading System (EU ETS) was the
only major market-based measure in place, several carbon markets have been
implemented the intervening years around the world. According to Kossoy et al. (2015),
until 2015 about 40 national jurisdictions and over 20 cities, states, and regions had
implemented a carbon pricing scheme. In aviation, the EU ETS was initially introduced
in 2012. Then, due to strong objections from several countries and stakeholders, at the
end of 2012, the EU ETS was suspended for one year and now it is applicable to all
flights between airports in the European Economic Area region until 2016. Besides, in
October 2016 the International Civil Aviation Organization (ICAO) Assembly decided to
implement a global market-based measure (MBM) scheme in the form of the Carbon
Offsetting and Reduction Scheme for International Aviation to come into force in 2020.
In the meantime, two other ETS were introduced for domestic aviation: Shanghai’s ETS
was introduced in 2013, while the Korean Emissions Trading Scheme entered into force in
2015. Along with other carbon pricing initiatives (emissions charges in airports, voluntary
carbon offset schemes etc), the above facts indicate that there is continuing trend towards

the introduction of carbon pricing schemes in aviation on a global scale.

3 Dotted lines are constructed by using linear interpolation as there were no available data.
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The aviation sector is a complex and competitive system with several actors, e.g. airlines,
passengers, airports, aircraft manufacturers, fuel suppliers etc. The introduction of a
market-based measure is likely to affect the actors of the airline industry in different
ways. First, airlines are impacted by the extra cost of carbon allowances or carbon
charges/taxes/levies/fees in general (hereinafter referred to as carbon cost). Airlines’
objective is to maximize profits. The introduction of the carbon cost will increase airline
operating cost which, in the long run, may be passed on to passengers as higher fares
(Forsyth, 2008). This, in turn, may affect passenger demand, as air travel is price elastic.
Passengers may choose not to travel as a result of the price increase or may shift to other
transport modes especially in short-haul markets (i.e., train, automobile, etc.) if
comparative advantages are significant enough. Apart from ticket price, comparative
advantages may include the difference in the level of service, reliability between the two
modes etc. The extent to which an airline and its market share is affected by the
implementation of a MBM may also depend on the market structure of competition. The
air transport demand changes may, in turn, affect airports, aircraft manufacturers, fuel
suppliers and other actors. However, these interactions are beyond the scope of this

dissertation.

1.2 Research objectives

The main objective of this dissertation is to develop a modeling framework that
assesses the impact of environmental policies on aviation industry, focusing on
a market-based environmental measure that puts a price on airlines’ carbon dioxide
emissions. The assessment of the impact of such a policy necessitates the investigation of
the interaction between the two main actors, passengers (demand side) and airlines
(supply side). Therefore, the impact on airline ticket prices and market shares is assessed
by integrating a game theoretic model with passenger’s travel choice behavior as follows:
we simultaneously model (i) the airline pricing decision in origin-destination city pairs
with oligopolistic competition of airlines on ticket prices and (ii) the passengers’ travel
behavior changes after the policy implementation through a discrete choice analysis.
Overall this dissertation uses empirical analysis to answer the following question: To what
extent does the implementation of a market-based measure affect ticket prices, airline
market shares and network-wide carbon emissions from air travel? Effects of the policy
implementation on airlines’ cost are additionally assessed, while a market- and airline-
level analysis reveals the extent to which market structure and airline type affect the

research outcomes.
To fulfil the above objective, five sub-objectives are defined and described as follows:

O1.To develop an aggregate air travel demand model, which relies on discrete choice
analysis of different airline connections in origin-destination markets.

02.To formulate and model the airlines’ behavior in a competitive market, where a non-
cooperative game between the competing airlines is developed.

03.To develop an appropriate equation system estimation approach so as to account for

the interaction between demand and supply.
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0O4.To compute the amount of carbon dioxide of every airline connection in the study
network in a relatively quick and accurate way.

05.To apply the developed methodologies and simulate the ticket prices and market
share changes under the scenario of a market-based measure implementation in a

large airline network.

In order to achieve the above research objectives, a methodology is developed which

consists of the following steps:

1. First, an extensive literature review covering the different domains of the overall

research field is conducted.

2. Second, demand and supply econometric models, which explain air travel demand and

the airlines” behavior respectively are specified, simultaneously estimated and

validated. Air travel demand modelling is done by developing a discrete choice
framework which models the airline connections’ market share as a function of airline-
route, market, airline and airport characteristics. The exploration of the factors that
affect passengers’ choice on airline connections is, thus, a significant part of this step.
On the airlines’ side, a game is assumed to be developed where airlines set their ticket
prices with the aim to maximize profits. This setting enables to link passenger
demand with the supply side and simultaneously estimate demand and supply
models. The developed estimation procedure also accounts for the endogeneity issues
caused by the correlation of some independent variables with the error terms.
Validation of the two econometric models, by evaluating the estimated demand and
supply model parameters and by conducting relevant statistical diagnostics is also
conducted. The models are additionally validated by comparing the predicted
passenger flows and ticket prices with the values actually observed.

3. The third step considers the development of an innovative methodology which is

capable of calculating itinerary CO2 emissions based on path profile estimation by

clustering and registration methods. This step gives insight into understanding the
key features that determine the aircraft altitude profile. This step additionally enables
the computation of the carbon emissions cost per itinerary.

4. Step 2 and 3 are integrated so as to simulate a market-based environmental measure,
by introducing the corresponding carbon emissions cost as a shifter in the airline's
marginal cost function. In this way, resulting investigate effects on aviation industry

are investigated.

The above steps are analyzed in the dissertation’s chapters as described next.

1.3 Dissertation Organization

The dissertation is organized in nine chapters as shown in Figure 1.2.

Following the current chapter (Chapter 1), Chapter 2 constitutes the major part of the
literature review and consists of several parts. In the first part, the current situation in
the airline industry is presented, focusing on the evolution of air traffic and associated
COz2 emissions. Second, the environmental measures implemented on the aviation sector
with a focus on the market-based measures are presented, along with their characteristics

and geographic area of applicability. The next part reviews state-of-the-art studies which
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assess the impact of market-based environmental policies on aviation, focusing on their
key parameters, assumptions and main findings. A state-of-the-art review on air travel
demand models is then provided. The review examines the existing studies in terms of the
nature of the approach, the factors chosen to explain air travel demand, the kind of data
used and the methods of estimation. The final part of the review discusses state-of-the-art
approaches to modelling landing/take-off and climb-cruise-descent fuel burn and carbon
emissions. The above review findings are used to identify research needs and the chapter

concludes with discussing how this dissertation builds on previous research.

Chapter 3 describes the development of a tool to compute aircraft fuel burn and carbon
dioxide emissions for any given itinerary. The landing/take-off (airport-based) and climb-
cruise-descent (route-based) phases are methodologically treated differently. The airport-
based computations are built on the basis of the relevant review of Chapter 2. A route-
based emissions model incorporates the consideration of actual flight performance of the
aircraft between the origin and destination airports. Thus, additional review on the
simulation of actual flight performance and construction of a typical altitude profile is
carried out. Finally, modelling assumptions, main results and the evaluation of our

emissions model are presented.

Chapter 4 concerns the air travel demand analysis. First a general formula for the air
transport demand function is given. The developed demand model is based on discrete
choice analysis. Thus, an introduction on discrete choice models is first provided, starting
with an overview on random utility theory and focusing later on the developed aggregate
model for air travel demand in an O-D city pair. The explanatory variables are grouped
in four categories based on the airline-route characteristics, the airline, and the airports

and the market served.

Chapter 5 describes the airline’s behavior in the competitive O-D city pairs. First, the
different market structures in terms of firm competition are described. Based on the
characteristics of the airline industry, it is pointed out that airline markets are oligopolies
and crucially rely on the strategic interactions between the competing players. Then, the
oligopoly game developed by the airlines in each O-D market is described, along with the
game’s components and the associated mathematical expressions. Because the marginal
costs that enter the airline’s optimization functions are not observed, the chapter closes
with the description of the marginal cost formulation and the associated cost explanatory

variables.

In Chapter 6, the simultaneous econometric analysis of the demand model (Chapter 4)
and the airline’s behavior model (Chapter 5) is presented. The endogeneity issues raised
by the correlation of some independent variables with the residuals are discussed, by
identifying the sources of endogeneity and by specifying the instrumental variables used
to address the problem. Then the Generalized Method of Moments (GMM), which is the
selected method to cope with the endogeneity issues and the non-linearity of the equation
system, is described. Finally, the assumed market-based environmental policy is specified,
while the developed approach to simulate the assumed policy and examine its potential

effects on airline ticket prices and market shares is presented.
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Data sources used in this dissertation are provided in Chapter 7. First, the adopted
filtering process is described while the resulting sample data is presented along with

associated summary tables and statistics.

Chapter 8 presents the main results of the dissertation and is divided in two parts; the
first part presents the results derived from the estimation of the air travel demand model
and the airline’s behavior model. Parameter estimates, validation of the models and
estimates of the airlines’ marginal cost are provided. In the second part, the findings
obtained by the implementation of the market-based environmental policy are presented.
Several elements such as the estimated post-policy equilibrium ticket prices and market
shares, the network-wide environmental benefits and the estimated pass-through rates are

discussed.

The major findings and overall conclusions are presented in Chapter 9. Recommendations

for further research are also discussed.
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2 Background

2.1 Current mitigation policy for aviation emissions

In response to the increasing evolution of aviation greenhouse gas emissions, attempts to
reduce the aviation’s greenhouse gases have followed a number of directions. These
measures are related to technological improvements, operational efficiency improvements,
use of alternative fuels and economic instruments and are further discussed below. This
section provides an overall review of the environmental measures implemented on the
aviation sector with a focus on the market-based measures for air transport, their
characteristics and geographic area of applicability.

2.1.1 Four-pillar approach for sustainable aviation

Most aviation organizations, aiming to achieve aviation environmental goals, rely their
initiatives on a four-pillar approach (FAA, 2015; IATA, 2013a; Sgouridis et al., 2011)
that encompass technological improvements, operational efficiency improvements, use of

alternative fuels and deployment of market-based instruments (see Figure 2.1).

(1 N )

. Technological Improvements II. Operational efficiency
New composite lightweight materials improvements
New aircraft designs (improved Operational weight reduction
aerodynamics and reduced drag) Fuel optimized flight path
Wing configuration Continuous descent approach
KNewer and more fuel-efficient engmeSJ K Efficient air traffic management )
( . )
ITI. Alternative fuels IV. Market-based measures
Fuel made from plant oil, animal fat or Cap-and-trade programs
waste organic material such as Camelina, Environmental levies (emission
Jatropha, Algae, Halophytes etc. taxes/charges)
\_ ) \Emissions offsetting (voluntary or not) )

Figure 2.1. Four-pillar approach for sustainable aviation

Technological improvements: Technological improvements are expected to significantly
contribute to fuel burn and emissions reduction. The initiatives for improving aircraft fuel
efficiency focus on reducing aircraft weight, improving aircraft aerodynamics to reduce
drag and improving engine efficiency, and on reducing fuel burn per unit thrust (Grote et

al., 2014). The development of newer and more fuel-efficient airframes and engines, the
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use of new composite lightweight materials, the introduction of new aircraft designs are
some of the future and emerging technologies considered by aircraft, engine and
equipment manufacturers. According to TATA (2013b) the most promising airframe
technology is the deployment of “Hybrid-Wing-Body aircraft” which may offer 10% to
25% fuel reduction benefits and is estimated to be market available after 2026. Among
engine technologies, the introduction of “New engine core concepts” is estimated to
provide the greatest emission reduction of around 25-30% (IATA, 2013b). However, the
success of such technologies strongly depends on uncertain factors such as development
status, benefits, risk and research and development costs. For example, some
technologies, such as advanced airframes which are expected to have large potential on
emissions reduction, may be years away from being available, and developing and

adopting them is likely to face high development costs.

Operational efficiency improvements: Achieving more efficient aircraft operations is

another pillar for reducing emissions from aviation. These improvements can be achieved
through optimized airline operations, such as aircraft operational weight reductions by
removing unnecessary onboard equipment, or optimized air traffic management
operations, such as fuel optimized flight path, continuous descent approach and reduced
flight delays. Both the United States and the European Union have taken important
steps towards developing modernized air traffic management systems. In the United
States, Federal Aviation Administration (FAA) is leading a multiagency effort to
transform current U.S. air traffic control system to the Next Generation Air
Transportation System (NextGen). NextGen is believed to increase the safety, capacity
and efficiency of the U.S. airspace system (FAA, 2014). In Europe, the European Union
launched the Single European Sky initiative which de-fragments the European airspace in
order to provide air traffic conditions with lower delays, greater safety standards, lower
aircraft emissions and lower costs related to service provision (Commission of the
European Communities, 2008). According to IATA (2013b), CO2 emissions from
commercial flights could be reduced by 28 million tons in 2020 through airline operational

measures.

Alternative fuels: Sustainable alternative fuels will play a critical role in the effort of

achieving environmentally-friendly aircraft operations. Four drivers for the development
of alternative jet fuel are recognized by Hileman and Stratton (2014): economic
sustainability, environmental sustainability, energy supply diversity and competition for
energy resources. Alternative fuels have lower lifecycle carbon dioxide (CO2) emissions
than conventional kerosene and thus offer the opportunity to reduce aviation's
contribution to climate change and to air quality. However, the widespread production
and development of alternative fuels may raise several concerns with the most important
being the requirements on land and water usage (Hileman and Stratton, 2014; Rojo et al.,
2015). Since the approval for commercial use of biofuels, various airlines have
experimented with the wuse of biofuels on commercial flights demonstrating that
alternative fuels can be safe and technically sound (IATA, 2014a).

Market-based instruments: Technology, operations and alternative fuel measures are the

long-term solution for aviation’s sustainable growth. However, due to the time required
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for their implementation, market-based measures are viewed as a short-term promising
option for reducing aviation emissions. Lee et al. (2013) examined the mitigation
potential of these measures and concluded that the non market-based measures will be
important in the long-term, but they will not be sufficient to bridge the emission gap to
achieve aviation’s environmental goals. Instead, the extension of current market-based
measures offers the greatest mitigation potential. Generally, market-based measures can
achieve emissions reductions at less cost than other policies because they would give
airlines the flexibility to decide when and how to reduce their emissions. For example, the
development of low-emissions technologies (such as open rotor engines and blended wing-
body aircraft) may be adopted by airlines (GAO, 2009). Market-based instruments may
take the form of a cap-and-trade program with allowance auctions, an environmental levy
(emissions tax or charge) or a voluntary emissions offsetting (Carlsson and Hammar,
2002; IMF, 2011; GAO, 2009). The aim of such policies is to establish a price per unit of
emitted CO2 and motivate airlines to adopt low-emissions technologies on their aircraft
fleet in order to reduce their emissions.

Under a cap-and-trade program the amount of total emissions is capped to a predefined

target and a market for carbon is established, allowing the participants to buy and sell
emission permits. Cap-and-trade programs are also known as emissions trading schemes.
The airlines are issued emission permits up to the established cap. If they exceed the cap,
they are allowed to buy additional emission allowances to cover the excess between what
they emit and the cap. If an airline emits less CO2 than the cap, they sell the emission
allowances. Under an open emissions trading system, aviation would be free to trade with
other sectors that are included within the scheme. However, a closed trading system is

limited to the aviation sector. Environmental levies aim to create an economic incentive

to reduce emissions and can fall into one of two categories: taxes and charges. In general,
a “tax” raises revenue from an activity and this revenue is then polled into general
revenue, while a “charge” raises revenue from an activity for the purpose of paying the
costs of providing services relating to the activity itself. Examples of such charges in the
aviation context include airport charges and route charges. Under such a scheme in
aviation, a fee for every amount of emission (such as carbon dioxide) emitted is levied to
each polluter (airline). It can be implemented on any aircraft operation within a given
airline network or an airport. Most known examples of emissions charges include the
charges imposed by airports to airlines for their landing and take-off operations at the
airports. En-route emissions charges are another option of environmental levy. According
to the economic theory, an optimal emissions charge should be set at a level that
represents the marginal damage cost of emissions (GAO, 2009). Carbon offset schemes

are based on the concept of reducing emissions in another sector or location, rather than
reducing an emitter’s own emissions. In such a scheme, individuals or companies invest in
environmental and carbon-offset projects around the world in order to compensate
directly for their emissions. In the field of air transport, carbon offset programs are
mainly voluntary. A carbon offset facility can either be run by the airline itself or by an
independent service provider. If it is run by the airline, at the time of ticket purchase,
passengers are encouraged to pay for the amount of CO2 emissions resulting from their
travel by making charitable contributions to several environmental projects such as forest

conservation and renewable energy (TATA, 2008b). Since offsetting is basically a
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voluntary activity undertaken by passengers in a largely unregulated environment, its

success is not guaranteed.
2.1.2 Existing or planned market-based measures for air transport

Market-based measures (MBM) encompass a range of policy tools that allow
internalization of the environmental external costs in the context of the principle “the
polluter pays” and create economic incentives for the sustainable development of the
considered industry. To stabilize net aviation CO2 emissions through carbon-neutral
growth, several market-based instruments have been implemented or are planned for air

transport.

There is continuing trend towards the introduction of carbon pricing schemes in several
industries and on a global scale. According to Kossoy et al. (2015), until 2015 about 40
national jurisdictions and over 20 cities, states, and regions had implemented a carbon
pricing scheme. It is interesting to note that current pricing schemes (as in 2016) cover
more than 12% of global emissions, while in 2011 the coverage was less than 5%. These
policy instruments are diverse incorporating carbon taxes, emissions trading schemes and

carbon offset programs and are implemented in various industries.

European Emissions Trading Scheme (EU ETS)

The most known cap-and-trade policy is the European Union Emissions Trading Scheme
(EU ETS). In the context of the Kyoto Protocol’s requirements, EU implemented the EU
ETS in 2005 which included several sectors, such as power and heat generation and
mineral industries (EU, 2003). In 2008, the EU ETS was expanded so that, from 2012, it
would include air traffic operations, by EU and non-EU airlines that depart from or
arrive at European airports, i.e. both intra-EU flights and between EU and non-EU
airports (EU, 2008). This meant that, for example, an American airline operating a flight
from New York to London would still have to comply with the EU ETS. Within the EU
ETS, a cap is set on the carbon dioxide emissions from all covered flights by aircraft
operators and, then, allowances are allocated, bought or sold among the airlines though
auctioning. For phase 3 (2013-2020) the provisional cap on aviation emissions* has been
set at a constant level, which is equivalent to 95% of the historical aviation emissions
(average aviation emissions over 2004-2006). The European Energy Exchange AG (EEX)
is the transitional common auction platform for 25 Member States, while another auction
platform includes ICE Futures Europe (ICE).

The inclusion of non-EU airlines in the EU ETS prompted strong objections from several
countries and stakeholders in the United States, China, Russia, and India. In light of
these disagreements, in 2014, the EU ETS directive was amended in order to apply to
flights between airports in the European Economic Area (EU, 2014). Thus, from 2014 to
2016 flights to and from countries outside the EU would benefit from a general
exemption. All CO2 emissions from flights between airports in the EU would continue to

be covered, while all overflights are exempt. The rationale behind this amendment was

4 The aviation sector has a separate emissions cap within the EU ETS. This cap is different from
the declining annual cap provided for other economic sectors in the EU ETS.
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the fact that, by the end of 2016, the International Civil Aviation Organization would
have a decision to implement a global Market-Based Mechanism (MBM).

According to the revised EU ETS Directive (EU, 2014), the auctioning revenues should
be used by Member States for climate and energy related purposes and for funding
research and development for mitigation and adaptation. Thus, from 2014 onwards,
Member States are requested to report annually on the amounts and use of the revenues

generated.

Korean Emissions Trading Scheme

The Korean Emissions Trading Scheme (KETS) is the second largest market after the EU
ETS in terms of emissions covered among the different entities and it is expected to play
a leading role in spreading emissions trading to developing countries. It entered into force
in 2015 and it is the first nationwide cap-and-trade program in operation in East Asia. It
covers domestic aviation and other 22 sectors, including steel, cement, power, buildings,
waste etc (ICAP, 2016a). During its first phase (2015-2017), aviation is allocated free
allowances based on previous activity data from the base year (2011-2013). In the next
phases, a small percentage of the allowance will be auctioned.

A unique aspect of KETS is the ability of the government to increase the supply of
allowances in order to stabilize prices around KRW 10,000 (around €7.9 or $9.0).
However, this is believed to result in weakening the incentive for emission reductions for
participating entities (Kim and Kim, 2015). Korean Allowance Units traded in 2015 at
around €7.9 per ton (7$9.0), which was very close to the prevailing European Union
Allowance price (Kossoy et al., 2015).

Shanghai Emissions Trading Scheme

Shanghai emissions trading scheme is one of the seven Chinese pilot ETS which were
launched in different regions of China in order to mitigate greenhouse gases from several
entities. These pilot programs are planned to be replaced by the China’s national ETS
which is scheduled for 2017.

Shanghai’s ETS was introduced in 2013 and is the only program in China which covers
GHG emissions from aviation (domestic only). Other covered sectors include shipping,
railways, chemicals, electricity etc (ICAP, 2016b). Emission allowances are allocated

according to the 2009-2011 emission levels, considering company growth and benchmarks.

One allowance in Shanghai’s ETS is called Shanghai Emissions Allowance (SHEA),
meaning to allow releasing 1 ton of CO2. Trading takes place in the designated trading
platform at the Shanghai Environment Energy Exchange. Similar to Korean ETS, price
stabilization measures may take place if needed (in this ETS by the Shanghai
Environment and Energy Exchange). SHEA prices show erratic behavior; SHEA average
price between January '15 and April 15 was $4.85/ton, while SHEA average price was
$3.25/ton between April and August 2015 (PMR, 2015).
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Emission Charges

Emission charges represent any charge imposed to an airline for the amount of emissions
generated either at an airport during the Landing and Take-Off (LTO) phase (emission
airport charge) or during cruise (en-route charge). In other studies, emission charges are
referred to as “emission fees” or “emission taxes”. There are several examples of airport
emission charges being applied in Europe, with Swiss and Swedish airports having the
longest history. In 1997, Zurich airport became the first airport worldwide to introduce a
nitrogen oxides (NOx) emission-based charge in order to address air quality problems
caused by air traffic. Later, Geneva airport followed this measure in 1998, Bern airport in
2001, Basel airport in 2003 and Lugano airport in 2007 (Zurich Airport, n.d.). Other
airports in Germany and United Kingdom have already implemented such a policy by
imposing extra landing charges on airlines, based on their amount of emissions generated
at the vicinity of the airports. Emission charges have not been introduced at any airport
in the United States. Boston Logan International Airport considered implementing such
fees for NOx emissions. Nevertheless, the airport operator conducted a study to assess the
efficiency of the emission fees and concluded that, since these fees would be a small
portion of airlines’ operating expenses, the policy would be ineffective (GAO, 2003).

Table 2.1 presents the emission charges applied to European airports.

Table 2.1. Airport emission charges in several European countries

NOx charge
) per landing or take-off Start
Country Airport (for 2015 or else as year Source
indicated)
Zurich 2.50 CHF per kg NOx 1997
. Geneva 1.40 CHF per kg NOx 1998 .
Switzerland Berne 3.30 CHF per ki NOx 2001 FOCA (2016)
Lugano 3.40 CHF per kg NOx 2007
Stockholm Arlanda,
Bromma Stockholm,
Goteborg
Sweden Lanf:&te%rlr\ﬂmo 50 SEK per kg NOx 1998 Swedavia (2015)
Kiruna, Are
Ostersund, Visby,
Ronneby
United Heathrow £8.57 per kg NOx 2004 Heathrow Airport Limited (2015)
Kingdom Gatwick £2.80 per kg NOx 2005 Gatwick Airport Ltd (2015)
Frankfurt 3.08€ per kg NOx 2008 Fraport (2015)
Munich 3.00€ per kg NOx (year 2016) 2008 Munich Airport (2016)
Germany Cologne Bonn 3.00€ per kg NOx (year 2016) 2008 Cologne Bonn (2016)
Hamburg 3.00€ per kg NOx 2010  Flughafen Hamburg GmbH (2015)
Dusseldorf 3.00€ per kg NOx 2011 Dusseldorf Airport (2015)
Denmark Copenhagen DKK 16.60 per kg NOx 2010 Kgbenhavns Lufthavne (2015)

Airport emission charges reflect cost externalities and aim to compensate society for the
consequences of relevant emissions. The charge at Zurich airport was introduced to
encourage airlines to use less polluting aircraft when using the airport. At the same time,
the weight-based landing fee was reduced to ensure that the charge remained revenue-

neutral for the airport (Zurich Airport, n.d.).
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An example of a CO2 emission charge applied to the entire part of flight (and not only to
the LTO phase at the vicinity of airports) is the Norwegian CO2 tax on aviation fuel. It
was implemented in 1999 for all domestic and international flights, although it later
withdrew the tax relating to international flights due to violation of many bilateral
aviation agreements which Norway had with other countries (OECD, 2005). Along with
the introduction of ETS for aviation 1st of January 2012, the CO2 tax has been reduced
in Norway (ICAO, 2012b).

Voluntary Carbon Offset Programs by airlines

Carbon offset programs give the passengers the option to “neutralize” their proportion of
aircraft emissions on a particular journey. Passengers willing to offset their emissions, pay
an extra fee to the ticket price in order to be invested in environmental projects. These
projects are usually based in developing countries and most commonly designed to reduce
future emissions. Various airlines have already implemented voluntary carbon offset
programs. Until 2014, over 35 airlines had launched their own voluntary carbon offset
schemes (IATA, 2014b); some of them are:

U.S. airlines: Delta, JetBlue, United, Virgin Atlantic
Canadian airlines: Air Canada

o European airlines: Austrian Airlines, Air France, British Airways, Brussels
Airlines, Easyjet, Lufthansa, SAS, Swiss, TAP Portugal

o Australian airlines: Cathay Pacific, Jetstar, Qantas Airways, Virgin Australia
Asian airlines: Japan Airlines, Qatar Airlines, Thai Airways

African airlines: Kenya Airways, South African Airways

Given that the above carbon offset schemes are not mandatory, their success, in terms of
passengers participating, is uncertain. Reports by various airlines demonstrate a relatively
satisfactory uptake of voluntary carbon offsets. For example, Jetstar and Virgin Australia
indicate that 10% of their domestic aviation passengers choose to offset their flights
(Australian Government, 2012).

ICAOQO global market-based measure

In October 2013, during its 38th session the International Civil Aviation Organization
Assembly supported the development of a global market-based measure (GMBM) for
international aviation as part of a broader package of measures including new technology,
more efficient operations and better use of infrastructure (ICAO, 2013a). The aviation
industry itself has expressed its interest for such a measure, stating that a global
initiative is more preferable in comparison to a complex combination of different national

or regional schemes (Kossoy et al., 2015).

The ICAO GMBM was scheduled to be adopted in 2016 and come into force in 2020.
Initially three different options for a GMBM were discussed (ICAO, 2013b):

1. Global mandatory offsetting;
2. Global mandatory offsetting complemented by a revenue generation mechanism;

3. Global emissions trading using a cap and trade approach.
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Since 2013, significant work was undertaken by ICAQO and its Member States, in
cooperation with the aviation industry and other stakeholders, in order to develop a
global MBM for international aviation. Furthermore, both political and technical design
elements were analyzed and discussed by representatives of governments, industry and
civil society (Kossoy et al., 2015).

During its 39th session (October of 2016), the ICAO Assembly decided to implement a
global MBM scheme in the form of the Carbon Offsetting and Reduction Scheme for
International Aviation (CORSIA) to address any annual increase in total CO2 emissions
from international civil aviation above the 2020 levels (ICAO, 2016b). CORSIA will be
implemented in phases, starting with participation of States on a voluntary basis,

followed by participation of all States except the exempted States, as follows:

e Pilot phase (2021-2023) and 1%' phase (2024-2026) would apply to States that
have volunteered to participate in the scheme; and
e Second phase (2027-2035) would apply to all covered® States

Concerning the coverage of the scheme, a route will be covered if both States connecting
the route are participating in the scheme; similarly, a route will not be covered by the
scheme if one or both of States connecting the route are not participating in the scheme.
Through the ICAQO’s scheme, emissions from international aviation will be offset through
the reduction of emissions elsewhere (outside of the international aviation sector),
involving the concept of “emissions units”. One “emissions unit” represents one tonne of

COao.

The above stand for different approaches on emissions pricing (mainly carbon pricing) for
aviation®. Figure 2.2 shows the geographical spread of existing market-based measures for
air transport (excluding ICAO’s GMBM).

In essence, the implementation of ETS or other emission pricing schemes raise airlines
costs. The extent to which these costs may influence the airlines’ strategies on ticket
pricing, the air transport demand and the general framework of the aviation network has
been examined by various studies in the past. The next section provides a review of the
existing approaches to modelling the impact of emissions pricing schemes on air

transport.

5 Based on ICAO (2016b), covered States are those whose individual share of international aviation
activities in Revenue tonne kilometres (RTKs) in year 2018 is above 0.5% of total RTKs or whose
cumulative share in the list of States from the highest to the lowest amount of RTKs reaches 90%
of total RTKs, except Least Developed Countries, Small Island Developing States and Landlocked
Developing Countries unless they volunteer to participate in this phase.

6 New Zealand’s ETS is not mentioned as an aviation-related ETS. Transport and particularly
domestic aviation has been indirectly covered by New Zealand’s ETS by the coverage of liquid
fossil fuels sector. Fuel used for international aviation is not included in the scheme, consistent
with the Kyoto Protocol. Furthermore, in 2014 a per-passenger CO2 levy was proposed in Portugal
for domestic flights and for flights departing from Portugal to an airport outside of the European
Economic Area (IATA, 2014c). However, the above proposal was not supported by the Portuguese
Government and thus was not implemented.
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Figure 2.2. Overview of emissions pricing instruments for aviation

2.2 Existing assessment models of market-based environmental

aviation policies

Existing studies that have analyzed the impact of market-based policies on air transport

are based on various assumptions, different policy scenarios and modelling parameters.

A number of studies examined the impact of EU ETS on airlines network reconfiguration
(Derigs and Illing, 2013; Hsu and Lin, 2005), tourism (Blanc and Winchester, 2012;
Peeters and Dubois, 2010; Pentelow and Scott, 2011; Tol, 2007), airline operational
characteristics (Brueckner and Zhang, 2010) and airline competition (Barbot et al., 2014).
Most of these studies concluded that until high carbon costs are implemented in a
market-based policy, there will be limited impact on the tourism sector, airlines network
reconfiguration and airline competition. Furthermore, the results of Brueckner and Zhang
(2010) indicated that emission charges will raise fares, reduce flight frequency, increase

load factors and raise aircraft fuel efficiency.

Other studies investigated the impact of market-based measures on ticket prices and
demand change. Albers et al. (2009) examined the effect of EU ETS on airfares and
passenger demand at individual route level. Assuming a carbon price of €20/tn, they
found that additional costs may range from €1.5 to €26.8 per passenger. Under two
scenarios of cost pass-through rate (35% and 100%) and using existing values of price
elasticity, their results showed moderate price increase which could not initiate major
route configuration. EU ETS has also been studied by Scheelhaase and Grimme (2007)
and Scheelhaase et al. (2010) in terms of its economic impact on EU and non-EU airlines.
The results indicated that EU airlines’ environmental costs are higher, due to a wider
coverage of operations within the EU region, weakening the competitive advantage as
compared to the non-EU airlines. Anger (2010) used a dynamic simulation model to

investigate the impact of EU ETS on macroeconomic activity and COz2 emissions. Under
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three allowance price scenarios and 100% cost pass-through rate, the author concluded
that EU-ETS may result in an increase of annual CO2 emissions at low allowance prices
but a fall of 0.30% at an allowance price of €40 in 2020 compared with no action
scenarios. Lu (2009) examined the impact of environmental charges on air passenger
demand using six intra-European short-haul routes in two city pairs. The potential
demand reduction is higher for the low-cost carrier Easyjet compared to that of full
service carriers, because of lower fares. Mayor and Tol (2010) used the Hamburg Tourism
Model to investigate the effect of three climate policy instruments in Europe on tourist
arrivals and emissions for the countries concerned; the EU ETS, the Netherlands’ flight
tax” and the UK’s boarding tax (in this case, the authors refer to the increase of the UK’s
air passenger duty in February 2007) were considered. Overall, the results indicated that
the tourist flows decrease within Europe and grows elsewhere, as tourists substitute
towards destinations is not affected by the price increase. In addition, a redistribution
occurs within Europe, while emissions are only reduced by a very small amount. Miyoshi
(2014) investigated the changes in passenger demand and consumer welfare after the
implementation of EU ETS on Annex I and non-Annex I airlines. The author constructed
a logit model to estimate the impact of travel costs increase on market shares for the
route “London Heathrow to Johannesburg”. The results demonstrated that the EU ETS
could be an effective instrument except for very low carbon prices. Derigs and Illing
(2013) explored the impact of EU ETS on air cargo network configuration, with specific
focus on how airlines can optimize their profits by adapting their network and schedules.
Their results show that EU ETS (as ruled for the next years) will result in no or only
marginal impacts towards reducing CO2 emissions. The reason is that cost increases are
either negligible for airlines or can be limited by small changes in schedule. Only if cost
per allowance is raised significantly will a reduction of CO2 emissions be achieved. Meleo
et al. (2016) estimated the direct costs linked to the implementation of the EU ETS in
the Italian aviation sector. Three different hypotheses on emission permit price are used
by the authors to forecast the EU ETS direct costs for the years 2015-2016. The results
highlight that EU ETS costs and their impact on both companies and passengers are
currently quite limited. However, the authors state that these costs are expected to

slightly increase starting from 2016, due to the increase of carbon price.

The majority of the above-mentioned studies consider the EU ETS to show the impact of
a market-based measure on ticket prices, demand change, networks and emissions
reductions. A U.S. study by Malina et al. (2012) estimated the economic impact of EU
ETS on U.S. airlines. They used price elasticity values derived in other studies and
assumed that fuel efficiency, fuel price and carbon price are annually increased. The
authors found that under full cost pass-through, the CO2 emissions from US airlines may
increase by 32% between 2011 and 2020 in comparison to 35% for the reference scenario.
Hofer et al. (2010) examined the effects of an air travel carbon emissions tax on travel-
related carbon emissions in the US. The authors concluded that the emissions tax
increases ticket prices under an own-price elasticity value of -1.15. They also considered
the air-automobile substitution effect, since some air travelers may divert to automobiles,

assuming a cross-elasticity of 0.041. Finally, they showed that emission taxes may cause

" This tax was introduced on July 1st 2008 and abolished exactly one year later.
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significant air-to-automobile diversion effects. Sgouridis et al. (2011) examined five
emissions mitigation policies for commercial aviation. One of them included carbon
pricing and it was used as a mechanism to increase the effective price of fuel and reduce
demand through the price-demand elasticity relationship. The authors concluded that
under a price of $50 per ton CO2 the impact on both global demand and emissions would
be minimal (less than 3% in emissions reduction). They also suggested that carbon
pricing schemes would need to maintain high price levels, while the combined use of
carbon pricing and biofuels would provide a significant contribution to the overall goal of
mitigating CO2 emissions by 7-17% by 2024. Fukui and Miyoshi (2017) examined
whether an increase in aviation fuel tax would decrease fuel burn and carbon emissions in
the U.S. aviation. For this purpose, the authors used unbalanced annual panel data from
1995 to 2013. Their results suggested that an increase in aviation fuel tax of 4.3 cents
may have negligible impact on CO2 emissions. The reduction would be higher in the short
run (1 year after the tax increase, CO2 emissions may be reduced by 0.14-0.18%) in
comparison to the long run (3 years later, the reduction would be about 0.008-0.01%).
Gonzalez and Hosoda (2016) reviewed the effects of the Japanese Aviation Fuel Tax
which has been levied in Japan since 1972 for domestic flights. In particular, they
investigated the impact of the 30% reduction of the tax (implemented in April 2011) on
aviation-related COg2 emissions. The authors compared the amount of CO2 emissions
before and after the tax adjustment and found that, after the tax adjustment, CO2
emissions were 8.89% higher in comparison with a “business as usual” scenario had the
tax not been modified. Girardet and Spinler (2013) developed a dynamic optimization
model which includes fluctuating prices for kerosene and CO2 emissions. The authors
assume a single airline network with no direct competition. Their analysis is conducted
for multiple periods of time and for different routes, in terms of route length and trip
purpose (business vs vacation). The results indicate that short-haul routes with low
marginal costs and low pass through rates show quite stable demands, while for longer

routes, demand reactions are more pronounced.

Table 2.2 provides a list of the reviewed studies focusing on those which considered the

impact of market-based policies on ticket prices and air transport demand.
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Table 2.2. Key parameters and assumptions used in the state of the art review (in chronological order)

Tlling (2013) coverage region

airlines

Market- Geographical Carbon price Cost pass-
Reference based area (per ton through Other assumptions Main findings
scheme CO2) rate
Scheelh EU ETS A d price elasticity:
chee .aase area €15, €20 and ssutned price € a.s Y The financial impact of EU ETS will be significantly greater for low
and Grimme EU ETS for 3 European 100% -0.5 t0 -0.9 (business) . . . .
. €30 . cost carriers and regional airlines than for network carriers.
(2007) airlines -1.1 to -1.5 (leisure)
Ticket price increase: 0.94-3.79% (for 100% pass-through rate) and
. . Assumed price elasticity: 0.33-1.33% (for 35% pass-through rate)
Al 1. I al fligl 5%
tz?()SOf)t) * BUETS ndwﬁsj:es ight €20 301{;)05;1(1 -1.13 for short-haul and Demand reduction: 1.18-2.96% (for 100% pass-through rate) and 0.41-
¢ -0.78 for long-haul flights 1.03% (for 35% pass-through rate)
No major route reconfigurations among European airlines.
6 intra-
LTO E n 1ah ¢ Average elasticity Demand reduction: 0.9% to 1.9 for business passengers and 4.5% to
r n short-
Lu (2009) tropeatt sto €20 100% -1.52 (leisure) and 7.8% for leisure passengers. Higher potential demand reduction (in %)
charge  haul routes in 2 . )
. . -0.7 (business) for EasyJet’s markets (due to lower fares).
city pairs
EU ETS may lead to increased CO2 emissions in the EU, if the
EU ETS €5, €20 and ‘ T%le author does not' auctioning revenues are used t? increase government spending and
Anger (2010) EU ETS coverage area €40 100% specify the assumed price thereby generate more economic activity.
© elasticities. Annual change of CO2 emissions: +0.09% (at €5/ton), +0.24% (at
€20), -0.30% (at €40) in 2020 compared with no action scenarios.
Airfare elasticitv: -1.15 Estimated demand decrease for U.S. domestic air travel: 2.3%.
Hofer et al.  Air travel U.S. domestic 2% of the air 100% Cross-elasticit }',.O 0;11 Short-haul markets: high air-to-auto substitution may result to the
(2010) CO2 tax air travel fare ° v increase of total carbon emissions. Long-haul markets: substantial
emissions reductions due to little to no air-to-auto substitution.
€23 (EU ETS
) EU ETS, Europe, ( . ) Various assumptions  Tourist flows decrease in the EU and grows elsewhere, as tourists
Mayor and fixed flight ) . L . .
Dutch and Netherlands, - defined by the Hamburg substitute towards destinations is not affected by the price increase.
Tol (2010) ; costs for Dutch . ..
UK’s tax UK Tourism Model Emissions are only reduced by a very small amount
and UK’s tax
Input parameters used to
Sgouridis et Ca.rl.aon Global air $50 and $200 100% calibr.ate t.he m.odel ba.sed CO2 emissions reduction: 3% for the price of $50 per ton and 8% for
al. (2011) pricing travel on historical time series $200 per ton
data
Malina et al U.S. carriers 3 scenarios Average elasticity If cost pass-through rate=0%: no changes on CO2 emissions under EU
(2012) " EUETS within the EU €15 (2010)®  from 0 to -0.72 (passenger) and ~ ETS. When some CO2 costs are passed on to consumers, there are
ETS area 100% -0.99 (freight) small reduction in emissions.
Derigs and EU ETS EU ETS €15 and €70 ) The study considers cargo ETS rules planned for the first years will have no or only marginal

impacts towards reducing CO2 emission.
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Fuel and 8 routes Different price elasticities In a single airline network with no direct competition, short-haul
Girardet and CO2 (with different €8 raneing used for different route routes with low marginal costs and low pass through rates show quite
Spinler (2013) emissions length and trip ging length and trip purpose stable demands, while for longer routes, demand reactions are more
surcharge purpose) (business vs vacation)  pronounced.
London A multinomial logit model Route’s ticket price increase: €3.9-5.5 (for €7/ton), €8.3-11.7 (for
Miyoshi Heathrow to €7, €15 and & . €15/ton) and €16.7-23.4 (for €30/ton).
EU ETS 100% for the route demand is . e .
(2014) Johannesburg €30 The results are different if airlines change aircraft type to more fuel-
constructed. . .
route efficient aircraft.
Japanese Adjustment Investigated the 30% reduction of the fuel tax on aviation-related CO2
Gonzalez and A\Ir)iation Japan from 26,000 to A Bayesian structural  emissions. After the tax adjustment, CO2 emissions were 8.89% higher
Hosoda (2016) P 18,000 ¥/1t time series model is used in comparison with a “business as usual” scenario had the tax not been
Fuel Tax .
fuel modified.
Meleo e al. €71, €15 and 0%, 50% E@issions data are' The.) impact on both companies and passengers are currently quite
EU ETS Ttaly obtained from an official limited due to the vast surplus allowances and to a very low carbon
(2016) €25 and 100% o .
authority in Italy price.
4. 10- i i
Fukui and U.S. ?;nagjasg icsnt dzegefciilotnvl:roi:ge\fvltt}i‘ A 4.3-cent increase in aviation fuel tax may result in COz2 emissions
Miyoshi Aviation  U.S. airlines .. - P s © .7 reduction by 0.14-0.18% in the short run and by about 0.008-0.01% in
aviation fuel US carrier’s annual jet
(2017) Fuel Tax . the long run.
tax fuel consumption

Notes: () Increasing by 4% annually until 2020
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2.3 A review on air travel demand
2.3.1 Classification of demand models

Demand models are classified into different types according to the level of aggregation
(disaggregate or aggregate approaches) and the type of the model (linear regression or
random utility models) (Hsiao and Hansen, 2011; Ortuzar and Willumsen, 2011; Postorino,
2010). Aggregate studies can be further classified into three main categories according to
the type of the data analyzed: (i) cross sectional data (ii) time series data and (iii) panel
data. Another classification (Carson et al., 2011) is based on the distinction between
macroscopic and microscopic models and the choice of the dependent variable.
Macroscopic models are used to estimate the development of air transportation in a certain
country or region, while microscopic models estimate air transportation demand between
two airports, cities or regions. Postorino (2010) also mention the distinction of demand
models in multi-mode and uni-mode, which depends on whether they allow estimating

market shares for alternative transport modes or for only one transport mode.

Disaggregate models in air transport demand analysis have attracted considerable interest
over the recent years. Disaggregate models analyze air travel behavior at the level of the
passenger using (i) stated and (ii) revealed preference data or (iii) a combination of both.
An important proportion of studies on air travel choice behavior make use of revealed
preference data, generally in the form of survey data collected from departing passengers
or booking data (Carrier and Weatherford, 2014; Proussaloglou and Koppelman, 1995).
Stated preference surveys allow for the analysis of hypothetical travel situations and have
been used for airport and airline choice by De Luca (2012), De Luca and Di Pace (2012),
Hensher et al. (2001), Hess et al. (2007), Hess (2008), Jung and Yoo (2014), Loo (2008). A
combination of stated preference and revealed preference data were used by Ortuzar and
Simonetti (2008) to model intercity choice between train, coach and air for medium

distance trips.

Aggregate models aim at representing the behavior of more than one individual, i.e. a
group of passengers travelling within a specific zone (route, airport, network etc). The
distinction of aggregate models into cross-sectional, time series and panel data models is
related to the scope of the study and data availability. To take account variations across
countries, across cities or across routes, cross sectional data should be used. Time series
analysis may accommodate the investigation of air transport demand variation over time.
Panel data analysis can be conducted when both the time series and the cross sectional
nature of the data are present. Time series analysis has been widely used for air travel
demand forecasting by Carson et al. (2011), Kopsch (2012) and Marazzo et al. (2010).
However, when the researcher needs to investigate the causal effect of an independent
variable on the dependent variable, the use of econometric models on cross-sectional data

is more appropriate.

Demand generation and assignment models have both been studied. Demand generation
models consider the total demand at a specific unit of observation (such as airport, region,
airline, city pairs, airport pairs, country pairs etc) and usually make use of regression
models (either on cross sectional or time series data). These studies mainly use

socioeconomic and supply-side characteristics as independent variables (Hsiao and Hansen,
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2011). Demand assignment models explain the allocation of air traffic among alternative
routes, airlines and other dimensions and estimate the market shares of routes serving the
same O-D airport or city pair. Random utility models are employed for estimation,

ranging from multinomial logit to nested logit and mixed multinomial logit models.

Disaggregate models can simulate with greater accuracy a transportation system, since the
detailed information obtained from surveys can better explain passenger behavior. On the
other hand, its disadvantages include the time and cost to construct and conduct the
questionnaire survey and the limited generalizability. In addition, from an airline
perspective, it would be computationally difficult to model the choice of every individual
passenger (Garrow, 2010). Therefore, aggregate models play a significant role in air

transport demand analysis.

One common problem for aggregate models in the airline industry is the absence of origin-
destination data. Passenger traffic statistics typically made available provide the origin
and destination airports of an individual flight, which are not identical with the “true”
origin and destination of the passenger, because many passengers use connecting services.
However, in the United States market-level itinerary traffic data are compiled by the U.S.
Department of Transportation (BTS, n.d.) and cover the full itinerary of U.S. domestic
passengers which means that one can determine the full composition of traffic in each
route area. This kind of data are used in this dissertation for developing the aggregate air
travel demand model; their usefulness and applicability are explicitly discussed in Chapter
7.

2.3.2 Existing approaches to modelling air travel demand

Numerous methodologies have been developed in the past to model air travel demand,
which cannot be fully covered in this dissertation. Thus, the aim of this section is to
review some studies linked to the pre-mentioned categories, focusing on the aggregate

demand models and their most frequently used independent variables.

Gravity models are the earliest models developed for air travel demand modelling
(Doganis, 2004; Grosche et al., 2007; ICAO, 2006). According to Doganis (2004), the first
recorded use of gravity model on air transport was in 1951, when D’Arcy Harvey
developed the gravity concept to evaluate the air traffic flow between two communities. In
the field of transportation, gravity models have been used within the trip distribution
analysis. Gravity models use Newton's law of universal gravity to explain the correlations
between two regions. Various studies have used gravity models for air travel modelling
(Bhadra and Kee, 2008; Evans and Schéfer, 2013; Grosche et al., 2007). In these studies,
demand is a function of population and income (as measures of attractiveness) and
distance or travel rime (as a measure of resistance). Gravity models have also been
extended to include variables related to the offered level of service. Ticket price, flight
delay and frequency have been used by Bhadra and Kee (2008) and Evans and Schéfer
(2013) in their gravity models. A detailed review of gravity models for air passenger
demand estimation can be found in Grosche et al. (2007). Gravity models are very useful
when trying to model air travel on new routes, where no historical data are available or on

routes where traffic records are inadequate or non-existent (Doganis, 2004).
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For the estimation of air traffic demand at an aggregate level, the multiplicative (log-log)
model is considered by other studies. Bhadra (2003) and Wei and Hansen (2006)
developed demand generation models as functions of socioeconomic and supply
characteristics and used cross-sectional data to estimate demand parameters. Common
variables among these models included ticket prices and flight distance. Bhadra (2003) also
included airlines’ market power, hub presence and seasonal dummies as explanatory
variables, while Wei and Hansen (2006) used flight frequency, aircraft size, income and
other variables. More recently, Mumbower et al. (2014) predicted demand for JetBlue
flights in four transcontinental markets and used a database of online prices and seat map
displays to estimate parameters. Scotti and Dresner (2015) developed a demand model on
carrier-route level in order to assess the impact of baggage fees on passenger demand and
airline fares. The last two studies assumed that ticket price is endogenous and thus used
instrumental variables methods to estimate their models. In Mumbower et al. (2014)
demand model was estimated with two-stage least squares (2SLS), while in Scotti and
Dresner (2015) three-stage least squares (3SLS) was used to address price endogeneity.

Panel data have been used by other studies. Valdes (2015) developed static and dynamic
panel data models to calculate the effects of air travel demand determinants in Middle
Income Countries. Both the dependent and independent variables were inserted in the
model in logarithmic form. Abate (2016) developed a linear regression on panel data to
empirically measure the economic effects of air transport liberalization. To account for
ticket price and frequency endogeneity, the demand model was estimated using 2SLS
random effects method. Finally, Rolim et al. (2016) performed an econometric analysis of
pre-privatization and post-privatization patterns of demand developing a fixed effects
model. Explanatory variables included GDP per capita, population, a proxy for ticket
price, privatization stage and a dummy for the presence of low cost airlines. Price
endogeneity was addressed by employing the two-step generalized method of moments

estimator.

All the above models fall into at least one of the following categories: (i) demand
generation models in the sense that they focus on the total demand at a specific level, i.e.
city-pair, airport-pair, carrier-route level etc, and (ii) gravity models (demand assignment)
which distribute trips among origins and destinations (based on their attractiveness and a
measure of resistance). Most of these studies cannot deal with the competitive effects of
alternatives within the analyzed market (i.e. city pair or airport pair). For example, within
the same city pair, different routes are very likely to compete with each other.
Furthermore, transport mode competition may also exist. To account for these issues,
demand assignment models that explain the distribution of traffic among alternative
airports, routes, airlines or other dimensions have been developed (Barnhart et al., 2014;
Coldren et al. 2003; Coldren and Koppelman, 2005; Hsiao and Hansen, 2011; Wei and
Hansen, 2005). These studies incorporate travelers’ behavior through the use of discrete
choice models. In general, discrete choice models are usually derived in a random utility
model framework in which decision makers are assumed to be utility maximizers.
Compared to public and land transportation, the use of discrete choice models to represent
air passenger behavior is fairly limited. However, several papers developing discrete choice

models to simulate air travel behavior have been published in the last years. Most of these
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studies frequently use data collected by surveys (stated or revealed preferences surveys).
Due to the disadvantages of survey data some researchers have employed discrete choice
models on aggregate data. These studies aim at estimating the share of passenger demand
that will utilize each of a set of available itinerary choices within a market (i.e. from an
origin to a destination city or airport). The explanatory variables include socio-economic
aggregated data about the profile and behavior of the “average passenger”, data on the
level of service (frequency, connection quality, departure time etc) of the itinerary,
itinerary fare data etc. The collected data are usually obtained from flight schedule
databases (including the Official Airline Guide-OAG), computer reservation systems

databases and other O-D itinerary datasets.

Potential application areas for discrete choice models are airport choice modelling and air
itinerary choice modelling, or combinations of both. In consistency with the aim of this
dissertation, the following review focuses on itinerary choice modelling. Itinerary share
models can complement airlines’ decision making process as they provide carriers with an
understanding of the relative importance of different service factors. In the context of an
airline hub competition model, Hansen (1990) developed a multinomial logit model and
applied it to the United States air transportation system. The passenger utility for an
itinerary was formed as a function of ticket prices, service frequency and a constant
reflecting consumer preference for non-stop service. Passenger itinerary and fare data were
obtained from the U.S. DOT and airline frequency data were derived from the Official
Airline Guide. Coldren et al. (2003) developed aggregate itinerary share models for air
transport estimated at city-pair level in the United States. For this purpose, multinomial
logit models were employed. The independent variables include various itinerary service
characteristics such as level-of-service, connection quality, carrier market presence, fares,
aircraft size and type, and time of day. Later, Coldren and Koppelman (2005) assumed
that the underlying competition among air-travel itineraries within the city-pair is not
uniform. Thus, they re-estimated the aggregate itinerary share models by using generalized
extreme value models in order to allow for the possibility of correlation between error
terms for groups of alternatives. Both studies used computer reservation systems data
from a commercial source. Wei and Hansen (2005) built a nested logit model to study the
role of service related attributes in airlines’ market share in non-stop duopoly markets.
The variables considered were aircraft size, service frequency, seat availability and fare.
Aggregate O-D data was used to estimate the demand model. Barnhart et al. (2014)
developed a multinomial logit model for estimating passenger travel demand using
aggregate data. Demand parameters concerned the time and day of departure, connection

time, seating capacity and flight cancellation.

Table 2.3 summarizes the reviewed studies on aggregate air travel demand, along with

their assumptions, model parameters and methods of estimation.
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Table 2.3. Key parameters and assumptions used in the state of the art review on air transport demand (in chronological order)

Region (Time Dependent Model or
Stud Ind dent iabl C ts(©)
ney period(®) Variable naependent vanables Method of estimation(b) OTMENEs
Hansen (1990) Domestic U.S. Itinerary Ticket price, Service frequency, Constant Discrete choice models: Passenger itinerary and fare
(1985) passengers reflecting consumer preference for non-stop Multinomial logit model data: U.S. DOT/BTS.

Bhadra (2003)

Coldren et al.

(2003)

Coldren and

Koppelman
(2005)

Wei and Hansen

(2005)

Wei and Hansen

(2006)

Grosche et al.

(2007)

Domestic U.S.
(1999-2000)

Domestic U.S. city-
pair routes (January
2000)

East West markets
in U.S. and Canada
(May 2001)

Domestic non-stop
duopoly U.S.
markets (1989-1998)
Domestic flights
between U.S. hub
airports

(Q2 of 2000)

German airports

(Jan.-Aug. 2004)

O-D passenger
traffic

Itinerary
passengers

Itinerary
passengers

Itinerary
passengers

Airline-route
specific passengers

City-pair
passenger volume

service.

Ticket price, Population density, Intensity of
economic activities, O-D distance, Market Power
of dominant and non-dominant airlines,
Dummies for presence of Southwest, for hub
airport, Seasonal dummy

Level-of-service, Connection quality, Carrier,
Carrier market presence, Fares, Aircraft size and
Type, Time of day

Distance, Best connection time difference, Fare
ratio Carrier, Departure time, Dummy variables
for indicating 1) direct itineraries, 2) Code
sharing, 3) That the itinerary is not the best
connection, 4) Use of regional jet, 5) Use of
propeller aircraft

Alircraft size, service frequency, seat availability
and fare.

Ticket price, Frequency, Aircraft size, Number
of spokes served by the airline, Flight distance,
Number of local passengers, Number of initiated
passenger trips originating from spoke, Income,
Alrcraft arrival capacity

Population, Buying power index, Gross domestic
product, Distance, Travel time

Semi-logarithmic regression
model

Discrete choice models:
Multinomial Logit

Discrete choice models:
Multinomial Logit and
Nested Logit models

Discrete choice models:
Nested Logit model

Log-linear regression model
on cross-sectional data

Gravity model

Alirline frequency data:
Official Airline Guide
Demand generation model
O-D data from U.S.
DOT/BTS

Data (market size and fare
data) obtained from the
‘Superset’ data source
(generated from O-D data by
U.S. DOT/BTS)

Official and comprehensive
schedule and bookings data

Obtained O-D data from
U.S. DOT/BTS

Demand generation model in
a hub-and-spoke network
0O-D data from U.S.
DOT/BTS

Booking data of flights
between Germany and 28
Buropean countries
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(Table 2.3 continued)

Bhadra and Kee

(2008)

Evans and
Schéfer (2013)

Barnhart et al.

(2014)

Mumbower et
al. (2014)

Scotti and

Dresner (2015

Valdes (2015)

Abate (2016)

Rolim et al.
(2016)

Domestic U.S.
(1995-2006)

Domestic flights
between 22 busiest
U.S. airports (2005)

Domestic U.S.
(2007)

JetBlue flights in 4
transcontinental
markets (21 days in
Sep. 2010)
Domestic airport-to-
airport routes (Q1
of 2007-2010)

32 Middle Income
Countries (2002-
2008)

20 African city-pair
routes (2000-2005)

Domestic routes in
Brazil (2003-2013)

O-D passenger
traffic

O-D city pair
passengers

Itinerary
passengers
Number of

bookings

Number of
passengers on

carrier-route level

Country's total

passengers carried

Round-trip route
passengers carried

Airport-pair
revenue
passengers

Ticket price, Income, Population, O-D distance

Income, Population, Fare, Travel time, Flight
delay, Flight frequency

Time of departure, Day of week, Connection
time, Flight cancellations, Seating capacities.

Ticket price, Date of promotional sales,
Departure time, Number of days prior to
departure, Departure day, Booking day, Market
dummy

Fare, Baggage fee, Population, Income,
Distance, Dummies for tourist origin/destination
and for multiple airports, Airline dummy

GDP per capita, Net flows of foreign direct
investment (proxy of the income), Consumer
price Index (proxy for airfare), Jet fuel price,
Total number of seats offered by LCCs
Roundtrip economy fare, Departure frequency,
Income, Population, Distance of the route

Yield (proxy for ticket price), Population, GDP
per capita, Distance, Flight time, Intermodal
competition, Presence of LCC competition
Privatization stage

Regression analysis of panel
data

Gravity-type model
estimated by OLS and
2SLS (due to frequency
endogeneity)

Discrete choice models:
Multinomial Logit

Regression model estimated
by OLS and 2SLS (due to
price endogeneity)

Semi logarithmic regression
demand model estimated
by 3SLS method

Static model (fixed effect
model) and Dynamic
models (Arellano Bond
estimator with the GMM)
Log-linear regression on
panel data estimated by
2SLS random effects

Semi logarithmic regression
model on panel data (fixed
effects); estimated by 2-
step GMM

Demand generation model
(using a gravity model
framework). O-D data from
U.S. DOT/BTS

Airline behavior model
included.

O-D data from U.S.
DOT/BTS

Publicly available aggregate
data derived from the U.S.
DOT/BTS

Booking data (flight, fare,
and seat map information)
were collected by automated
web client robots

Demand model estimated
simultaneously with the fare
model (system equations)
Aggregate data from World
Bank, the countries' official
websites and the Official
Alirline Guide.

Fare and frequency variables
are endogenous

Used publicly available
aggregate data
Considered price endogeneity

Notes: ) Q1=1%t Quarter, Q2=21d Quarter, .... of the year

() 2SLS: Two-stage Least Squares, 3SLS: Three-stage Least Squares, OLS: Ordinary least squares, GMM: Generalized Method of Moments

©U.S. DOT/BTS is the abbreviation of the U.S. Department of Transportation/Bureau of Transportation Statistics
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2.4 Existing approaches to modelling aircraft emissions

Aviation, being an energy intensive sector, is an emitter of Greenhouse Gases which
contribute to climate change and of air pollutants that affect the local air quality in the
vicinity of airports. The main GHG emissions of aircraft include carbon dioxide (COz2) and
water vapor (H20), which can cause global warming, with CO2 being the most important
anthropogenic GHG (IPCC, 2007). Air pollutants include hydrocarbons (HC), carbon
monoxide (CO) and nitrogen oxides (NOx) that affect air quality around airports.

FEmissions modelling has attracted a wide interest internationally. In the middle 1990s,
emission inventories were developed by the National Aeronautics and Space
Administration (NASA) (Baughcum et al., 1996) and the Abatement of Nuisance Caused
by Air Traffic/European Commission working group (Gardner et al., 1997). These studies
collected and analyzed data of global fuel burned and emissions of NOx from aircraft. In
addition, the NASA inventory provided distributions of CO and HC emissions. Since then,
further studies have been published which estimate fuel burn and emissions on a global,
national, route, airport or airline level. When estimating aircraft emissions, researchers
typically distinguish flight into the Landing and Take-off (LTO) phase and the Climb-
Cruise-Descent (CCD) phase, since LTO and CCD phases feature different operational
conditions and call for different modeling assumptions and approaches.

The computation of emissions generated during the LTO cycle is mainly based on the use
of the ICAO Engine Emissions Databank. This databank is developed and maintained by
the International Civil Aviation Organization and gives fuel flow rate and emissions data
on specific engine types. Although this databank has been used by studies focusing on the
computation of air pollutants (HC, CO, NOx etc) that affect air quality around airports
(Kesgin, 2006; Mazaheri et al., 2011; Yilmaz, 2017), there are a number of studies
incorporating LTO CO2 emissions in their computations. Turgut and Rosen (2010)
estimated LTO COz2 emissions and other pollutants at eight busy international airports.
The results indicated that Chicago, Los Angeles, Frankfurt and Tokyo were relatively
clean airports compared with London and Beijing. Nikoleris et al. (2011) presented a
method of detailed estimation of fuel consumption and emissions during taxi operations
using aircraft position data from actual operations at Dallas/Fort Worth International
Airport. As part of a study which assessed the carbon emission costs for air cargo, Chao
(2014) computed LTO and CCD?® COz2 emissions for six routes and six types of aircraft.
The author pointed out that when CO2 emissions are allocated to ton-kilometers, the
emissions by aircraft type and by flight are greater for small aircrafts than for their larger
counterparts. Cokorilo (2016), initiated by the rapid increase of Serbia’s flag carrier
aircraft operations, compared the distribution of five pollutants (including CO2) by aircraft
type at the airport “Nikola Tesla” Belgrade. The results indicated that A319 aircraft were
the largest source of CO2 emissions, due to high level of LTO emission factor for COz2 and
due to large number of LTO cycles. Other databases used for LTO emissions computations
include the EMEP CORINAIR published by the European Environment Agency and the
Emission and the Dispersion Modeling System (EDMS) developed by the Federal Aviation
Administration (EDMS has been replaced by the Aviation Environmental Design Tool as

8 CCD COz emissions in Chao (2014) were computed with the use of BADA database.
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of May 2015). The latter uses the latest aircraft engine emission factors from the ICAO
engine Emissions Databank and EUROCONTROL Base of Aircraft Data for aircraft
performance modeling. EDMS was used by Song and Shon (2012) to calculate the
emissions of GHGs and air pollutants at four major international airports in Korea. LTO
CO2 emissions have been computed by the use of EMEP CORINAIR in Alonso et al
(2014), Miyoshi and Mason (2009), Symeonidis et al. (2004), Tsilingiridis (2009). A
comparison of methodologies estimating emissions of aircraft pollutants around airports is

presented in Kurniawan and Khardi (2011).

Regarding the CCD emissions?, the most widely used tool is the Base of Aircraft Data
(BADA), developed and maintained by the Eurocontrol Experimental Centre (Nuic, 2013).
Kim et al. (2007), Wasiuk et al. (2015), Schaefer (2012) and Simone et al. (2013) have
used BADA database to assess global aviation fuel burn and emissions. The respective
results of these studies were compared with other literature findings and showed noticeable
variations in the overall results, despite similar trends. Furthermore, some of them
presented the distribution of fuel burn and emissions by region and by altitude. Other
researchers have used BADA to compute fuel burn and emissions in specific regions,
airlines or routes. Pham et al. (2010) estimated fuel flow and aircraft emissions for
Australian airspace, while Turgut et al. (2014) developed empirical equations for the cruise
phase fuel flow for domestic flights of the national flag carrier airline of Turkey, Turkish
Airlines. Sheng et al. (2015) analyzed stratospheric fuel burn by civil commercial flights to,
from, or within the United States. Finally, other studies used BADA’s fuel flow rates in
the context of projects that assess the impact of operational mitigations or market-based
environmental policies on aircraft-related fuel burn and emissions. Williams et al. (2002)
examined the impact of restricting cruise altitude on fuel burn, while Malwitz et al. (2007)
investigated the impact of reduced vertical separation on aircraft-related fuel burn and
emissions for the domestic United States. Scheelhaase et al. (2010) estimated the impact of
EU ETS on the competition between European and non-European airlines, while Albers et
al. (2009) examined the effect of the same environmental policy on airfares and passenger
demand at individual route level.

A common feature of some of the above studies is the collection of flight profile data in
order to use the BADA performance model. Past flight track data or cruise altitude data
as a function of aircraft type and distance have been used by Kim et al. (2007),
Scheelhaase et al. (2010), Wasiuk et al. (2015) and Schaefer (2012), while the rest studies
either do not use past profile data or do not clarify this information in their research
papers. For example, Sheng et al. (2015) assigned notional cruise altitudes to each flight
without considering altitude deviations among different aircraft types and distances.
Albers et al. (2009) assumed that the assignment of flight cycle pattern and flight altitude
depends on flight distance, ignoring aircraft type’s potential deviations. Apart from BADA
model, other tools previously employed for the CCD fuel burn and emissions include the
EMEP CORINAIR database (Alonso et al., 2014; Park and O’Kelly, 2014) and the

9 Most of the studies mentioned in this paragraph have used the ICAO Engine Emissions Databank
to compute LTO emissions. Then these emissions are summed up with CCD emissions to derive
emissions of the entire flight.
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PIANO (Project Interactive Analysis and Optimization) performance model (Eyers et al.,
2004; Lee et al., 2005).

Based on the above literature, this dissertation obtains fuel flow rates from the ICAO
engine Emissions Databank for L'TO emissions modelling and from the BADA performance
model for the CCD phase. In few cases where these databases cannot be applied, the fuel
burn data derived from the EMEP CORINAIR database are used. The methodology for
the LTO COz2 emissions is developed with reference to two of my journal papers: Pagoni
and Psaraki (2014) and Loo et al. (2014). For the CCD CO2 emissions modelling, our
methodology is divided in two parts: the first considers the estimation of typical altitude
profiles based on historical data and then emissions are computed by the use of BADA’s

fuel flow coefficients.

2.5 Research needs and dissertation’s contribution

The above literature review enabled the identification of the research needs and potential

open research questions in the research domain of this dissertation.

With regard to the assessment models of the market-based environmental policies for
aviation, the state-of-the-art review indicates that there are numerous efforts that have
investigated the effects of such policies on aviation. However, most of these studies rely on

some simplifying overly restrictive assumptions listed below.

e First of all, a wide range of the existing studies (as revealed by the column “Other

assumptions” of Table 2.2) rely on existing price elasticities of demand. These

studies do not consider the development of air travel demand models. Instead, the
impact of the studied policy is approached via: computing the resulting CO2
emissions by route or airline, computing ticket price increase, assuming a price
elasticity of demand and deriving the demand decrease due to airfare increase.

e Second, a set of fixed percentages of cost pass-through rate is often assumed to

estimate the level of price increase after the implementation of the market-based
policy (see column “Other assumptions” of Table 2.2).
e Third, some studies do not incorporate CO2 emissions calculations but instead

derive average values of CO2 emissions by route/airline.

e Finally, some studies are limited to specific routes or small networks. However,

there are some efforts that examine the impact of environmental policies on large-
scale networks, most of which focus on the European ETS (as it is the largest cap-
and-trade policy implemented on aviation). There is limited research on the impact
of aviation emissions pricing in other regions: in the United States these include
Hofer et al. (2010), Sgouridis et al. (2011) Malina et al. (2012) and Fukui and
Miyoshi (2017), while Gonzales and Hosoda (2016) focused on the Japanese

aviation fuel tax and Sgouridis et al. (2011) considered global air travel.

For policy analysis, the knowledge of the demand and supply structure and the mechanism
of their interaction are necessitated. The review identifies a gap in the literature in the
domain of simulating airline pricing strategies and assessing travel demand changes due to
the implementation of environmental measures, through the use of demand and supply

models. In general, the demand models work reasonably well provided the supply-side
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factors remain stable. But in the air transport environment, complex interaction may
occur between supply and demand. To represent simultaneous causality, researchers have
developed supply and demand equations models. Some of them are comprised of a discrete
choice model to simulate air demand model and a profit maximization model which
simulates airlines’ behavior (Pels et al., 2000; Adler, 2005), while other studies use
different approaches to model air travel demand (for example in Hsu and Wen (2003)
route market shares are determined by the minimization of passengers’ generalized travel
cost). This dissertation builds on the work of Berry (1994), which is based on using market
level data and estimate discrete choice models on the demand side while running a profit
maximization problem on the supply side. This approach has been widely used in the
industrial organization economics literature, while some efforts have been noted in the air
transport industry considering the effects of (i) hub networks (Aguirregabiria and Ho,
2012; Berry et al., 2006; Israel et al., 2013), (ii) airlines’ merger (Chen and Gayle, 2013;
Doi and Ohashi, 2015; Lee, 2013a), (iii) airline code sharing (Shen, 2012) and (iv) airline
alliances (Gayle and Brown, 2014) on ticket prices and passenger demand, while no study
was found on the implementation of an emissions pricing scheme on aviation network. The
use of this approach has several advantages which have been incorporated in the current
dissertation. First, in most existing air travel demand studies, demand generation and
demand assignment are considered separately. In real circumstances, the sequential
method may not be consistent with the passenger’s decision-making process, since
decisions of whether to make a trip, the destination, and the travel mode are seldom
undertaken by the passenger in stages. Thus, some studies have adopted the simultaneous
estimation of two or more stages of the overall transportation process (Orttazar and
Willumsen, 2011). This dissertation simultaneously models the demand generated within a
city pair and distributes it into routes. For this purpose, discrete choice models are
employed for the representation of passenger behavior. Within an origin-destination city
pair, the choice set includes the alternative of travelling by an airline connection or the
non-air alternative. By the inclusion of the non-air alternative, potential passengers are not
forced to choose an airline connection (if it has become less attractive). To avoid the
independence assumption within the Multinomial Logit model, a Nested Logit model, with
mode choice as the upper level and the connection choice as the lower level is developed.
Moreover, aggregate data are used for the estimation. The model accounts for the fact that
not all connections’ characteristics are observed by the researcher and, thus, a single term
capturing unobserved (to the analyst) characteristics is included. Instrumental variables
methods are used to address the potential endogeneity of some independent variables in
the demand and the supply functions. Finally, airline’s behavior is modelled by assuming
the airline is participating in an oligopoly game within the origin-destination city pair,
where the objective is to maximize profits. This facilitates the demand and supply
interaction by including the market share function in the first order condition of each

airline’s profit.

Overall, in this dissertation, a model of the U.S. airline industry is presented, representing
passenger travel behavior and airlines’ pricing decisions for the full line of airline
connections operated in a year (study year=2012). The proposed methodology integrating
the simulation of a market-based environmental policy with the combination of a

methodology for carbon emissions modelling and econometric analyses of demand and
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supply produces five major contributions. First, the integrated model allows for policy
analysis of the large-scale airline industry of the United States considering potential
interaction between the demand and the supply and facilitates ticket price and travel
demand changes in the presence of a market-based environmental policy. This is achieved
by altering the airline’s cost function so as to introduce a mnew cost shifter which
corresponds to the carbon emissions cost resulting from the environmental policy. Second,
contrary to existing studies, the impact of the market-based policy on ticket prices and air
travel demand is not based on given values of cost pass-through rate and price elasticity of
demand. Posterior policy ticket prices are determined from the computation of the new
equilibrium in demand and supply. Carbon cost pass-through rate is determined by the
demand and supply model and, thus, depends on a number of factors, including prevailing
ticket prices, carbon costs, airline type etc. Third, this research extends earlier work by
explicitly introducing additional air travel demand attributes not formerly used in
aggregate models. These include the presence of alternative airport, which may explain
passenger’s preference on an airport nearby his origin or destination city, and departure
time, which is regarded to play a significant role during the air traveler’s decision process.
Fourth, a CO2 emissions model is developed which enables the estimation of the amount
of carbon dioxide of every airline connection in a given network in a relatively quick and
accurate way. Last, the above models are applied to the large-scale airline network of the

United States, contributing to the very limited research on the field for this specific region.

To summarize, the proposed methodology significantly improves on existing approaches to
simulate airline pricing responses and air passenger choices under an environmental policy.
On the one hand, it extends a sound methodology so as to accommodate a market-based
environmental measure, while, on the other hand, it corresponds to an integrated research
which internally computes all the required research components, without relying on

existing values from past studies (e.g. existing elasticities, average emission values etc).
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3.1 Introduction

The aim of this chapter is to develop a tool capable to compute aircraft fuel burn and
carbon dioxide (COz2) emissions for any given itinerary within a given airspace. Then, CO2
estimates are used as input in Chapter 6, where the impact of a market-based
environmental policy on air transport industry is assessed. Aircraft fuel consumption is
related to various factors including the actual aircraft type, the flight distance and time,
the flight mode, the time consumed in each mode, the flight level etc. Given the aircraft
fuel consumption, CO2 emissions can be calculated by using the appropriate emission
index. In this chapter, a tool is developed to calculate fuel burn and CO2 emissions for the
entire flight. The Landing and Take-off (L'TO) phase is separated from the Climb-Cruise-
Descent (CCD) phase since different operational conditions result in significant deviations
in terms of fuel burn and CO2 emissions and different modeling assumptions and
approaches should be adopted. A description of flight phases and their characteristics is

given in Section 3.2.

The overall structure of this chapter and the underlying computational models and
databases are depicted in Figure 3.1. The tool combines data from external databases with
a number of sub-models in order to determine fuel burn and CO2 emissions separately for
the LTO and the CCD cycles. Fuel and emissions computations during the LTO cycle are
based on the ICAO Engine Exhaust Emissions Databank (ICAO, 2016¢) and the EMEP
CORINAIR database (EEA, 2013) and are described in Section 3.3. Data on aircraft and
engine types and time spent in each LTO sub-phase (approach, taxi-in, taxi-out, take-off
and climb-out) are required to derive fuel burn and CO2 emissions during LTO. The
computation of fuel burn and CO2 emissions during the CCD cycle is strongly related to
the actual flight performance of the aircraft between the origin and destination airports.
Variation in the aircraft performance (route, altitude, speed) may result in substantial
differences in flight distance and time, air traffic flow, imbalances between demand and
capacity and fuel burn. Accurate estimation of the aircraft altitude profile is important in
order to obtain accurate estimations of aircraft fuel burn and CO2 emissions during the
CCD cycle. The construction of aircraft altitude profile, also referred to as vertical flight
profile, represents a popular indicator of the relationship between flight distance or time
and altitude and constitutes a significant part of this chapter. Typical flight paths are

computed using a rich set of historical flight profile data and by employing a combination
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of clustering and landmark registration techniques. This method exploits the flight track
information of the entire trajectory of historical flights. The paths estimated by the above
method are compared to those obtained by the point mass Base of Aircraft Data (BADA)
model. Noticeable deviations in the resulting estimates of the operational characteristics
are found. The typical altitude profiles obtained by the two methods are then used to
determine fuel burn and CO2 emissions by applying aircraft-specific fuel flow coefficients
derived by BADA tables. The difference in the resulting CO2 emissions estimates are less
stark.
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Figure 3.1. Illustration of the fuel burn and CO; emissions model

The final output of this chapter is the determination of CO2 emissions for every itinerary
in the study airspace. Thus, this chapter is strongly interlinked with Section 6.4 since CO2
emissions cost is introduced in airlines’ marginal cost function after the implementation of
the market-based environmental policy. In this dissertation, the proposed tool and

resulting outputs are illustrated in the case of domestic commercial aviation in the United
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States and the results are validated by comparing our emissions values with existing

studies (see Section 3.7).

3.2 Flight description

Operations of aircraft are usually divided into two main parts: the Landing/Take-off
(LTO) and the Climb-Cruise-Descent (CCD) cycles. The LTO cycle includes all activities
near the airport that take place below 3,000 feet and include taxi-in and out, take-off,
climb-out, and approach. CCD phase is defined as all activities that take place at altitudes
above 3,000 feet. No upper limit of altitude is given. CCD includes climb from the end of
climb-out to cruise altitude, cruise, and descent from cruise altitudes to the start of LTO
operations. Figure 3.2 shows the sequence of the flight phases and the databases employed

in this work to compute fuel burn and emissions in each cycle.

Cruise Fuel burn & Emissions

Cruise Level
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Figure 3.2. Illustration of flight phases

This chapter adopts a three-level approach to estimate CO2 emissions: airport-based,
route-based and itinerary-based. Airport-based CO2 emissions include those generated
during the LTO cycle. Route-based CO2 emissions include those generated at altitudes
above 3,000 feet during the CCD cycle. Then these airport- and route-based emissions are

summed to generate itinerary-based emissions.

3.3 Airport-based CO2 emissions

Airport-based fuel burn and CO2 emissions include those generated at the vicinity of
airports, i.e. at altitudes lower than 3,000 feet. The actual trajectory of the aircraft may
not be available at altitudes below 3,000 feet and, thus, we use the typical LTO cycle
defined by ICAO (1993) and its five sub-phases: taxi-out, take-off, climb-out, approach
and taxi-in. Each of these is associated with a specific engine thrust setting; the take-off
phase requires full engine thrust (100%), and thus more fuel (EEA, 2013). For climb-out
thrust setting is 85%, for approach it is 30% and for idle phases (taxi-in and out) it is 7%.
As the aircraft ascends to higher altitudes, the rate of fuel burn decreases. Each LTO sub-

phase is also associated with a specific time-in mode as depicted in Figure 3.2.

Fuel flow for each LTO phase is obtained from the ICAO Engine Exhaust Emissions
databank (ICAQO, 2016¢). The input variables include the engine type, the number of
engines per aircraft and the time spent in each LTO segment. The ICAO databank does
not provide fuel flow data for turboprop aircraft. Fuel flow data for turboprops are
obtained from the EMEP CORINAIR database (EEA, 2013). The input variables include
the aircraft type, the flight distance and the time spent in each LTO phase. As mentioned
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in Chapter 2, both databases have been widely used for emissions modeling. It is noted
that this work does not consider emissions from startup of engines because there is
currently little information available for estimation. On the basis of the above, the formula

for the calculation of LTO COz2 emissions (Ecozrto) [in tn| is given in Eq. 3.1:

5

1073 Elco, Mg Z ffiroep -ty  forjets
p=1

ECOZ,LTO =

5
1073 - Elgo, z feiroaap  for turboprops

=] Eq. 3.1

where Elcoz is the emission index of COz2 (which is equal to 3.157 kg COz2/kg fuel), nea
denotes the number of engines for aircraft type a, ffiToep is the fuel flow [kg/min| of
engine type e for sub-phase p (p=1,...5 for taxi-out, take-off, climb-out, approach and taxi-
in) of the LTO, tpis the time spent in sub-phase p of the LTO [in minutes| and fcL10,d,a,p
is the fuel consumption [in kg| of aircraft type a for flight distance d during p LTO sub-

phase.

Time spent in each LTO sub-phase (tp) is treated in the following way: taxi times (taxi-in
and taxi-out times) are defined as airport-specific parameters, while times for climb-out,
approach landing and take-off are specified using the typical LTO cycle defined by ICAO
(ICAO, 1993). Thus, take-off lasts 0.7 min, climb-out 2.2 min and approach landing 4 min.
Airport-specific taxi in/out times are based on our analysis of the Airline On-Time
Performance Data (hereinafter referred to as OTP) available by the U.S. Department of
Transportation (BTS, n.d.). This database provides taxi-in and taxi-out times for non-stop
domestic flights by major U.S. air carriers. Data for the study year (2012) are collected
and are aggregated so as to represent taxi-in and taxi-out times for the considered airports
aggregated by quarter (of 2012). The quantity ffiTo.ep is derived by the ICAO Engine
Exhaust Emissions databank, while fcrro,dap is obtained by the EMEP CORINAIR
database. The EMEP CORINAIR’s fcLT0,d,ap for the idle modes are given under the
assumption of typical taxi time (equal to 26 minutes for both taxi in and out). In this
work, this value is properly adjusted so as to account for the airport-specific taxi in/out

times, by using linear interpolation methods.

Eq. 3.1 requires the operating aircraft and engine type. Both databanks provide fuel burn
rates for a specific list of aircraft and engine types. In case, the operating aircraft or engine
type is not included in this list, the tool combines the input data with two external
databases (aircraft and engine databases) and maps the actual aircraft type to a
representative aircraft type and engine type. This level of computation essentially entails
clustering techniques whereby the set of all potential engines and types are represented by
a smaller yet appropriate set of representatives. Representative aircraft and engine types
are built upon the analysis of their technical specifications obtained from aircraft
manufacturers and other sources (EEA, 2013; ICAO, 2016¢). In a few cases where
information on equivalent aircraft types is not available, the aircraft is substituted with an
aircraft type of similar characteristics, that is, maximum take-off weight, size, cruise speed
and range. A detailed table with the actual aircraft and engine operating type and their

equivalent type is given in Appendix B-4.
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3.3.1 Network-wide application and validation analysis

Network-wide CO2 emissions correspond to those generated in a given aviation network for
the entire flight cycle, i.e. both the LTO and CCD phases. Following Section 3.3, LTO
CO2 emissions are computed by the ICAO Engine Exhaust Emissions Databank.
Regarding the CCD cycle, once CO2 emissions for the typical profiles are calculated, the
associated emission values for every flight in a given aviation network can be obtained by
applying linear interpolation. For example, the CCD fuel burn and CO2 emissions of a 850
sm flight operated by a Boeing 737-700 are obtained by using the CCD fuel and emissions
known values of the distance clusters 750 sm and 1000 sm and applying linear
interpolation. The methods are applied to the U.S. domestic aviation network for 2012
using air traffic data from the T-100 Domestic Segment database for U.S. Carriers.
Aggregated CO2 emissions results by distance cluster for the U.S. domestic aviation

network are given in Table 3.1.

Table 3.1. Network-wide CQO2 emissions by distance cluster

Distance Annual (2012) Annual CO; emissions for ~ Annual CO2 emissions for
departures BADA-based profiles Registration-based profiles
cluster s . -
(million) (million tn) (million tn)
400 sm 0.35 2.3 2.5
500 sm 0.99 7.9 8.9
750 sm 1.00 11.1 12.1
1000 sm 0.85 14.9 15.9
1500 sm 0.43 11.4 11.8
2000 sm 0.19 6.6 6.9
2500 sm 0.19 9.5 9.7
>2500 sm 0.01 0.6 0.5
Total 4.01 64.1 68.4

Note: The above CO3 values correspond to the entire flight, i.e. both LTO and CCD phases.

The above table indicates that the CO2 emissions are under estimated by BADA-based
typical profiles across all aircraft types and flight distances in comparison to registration-
based profiles. On network-wide level, BADA-based typical profiles are estimated to
consume 6.3% less fuel in comparison to registration-based profiles. In particular, the total
CO2 emissions of the flights in the sample are 64.1 tn and 68.4 tn for the BADA-based and

registration-based profiles respectively.

The validity and reliability of our methods and results at CCD- and network- wide level
can be assessed by the above findings. First, a different fuel consumption database is
employed in order to derive CCD CO2 emissions. Comparisons are presented in Figure
3.20 and Figure 3.3. In particular, the fuel consumption database EMEP CORINAIR
(EEA, 2013) is used, which provides aircraft fuel consumption as a function of flight
distance per aircraft type and flight phase. The data are given for a generic aircraft type
and for a number of standard flight distances. Interpolation methods are used to obtain
fuel burn data for flight distances other than standard. The EMEP CORINAIR database
has been used by several researchers and several European Member States in their official
reporting of national emission inventories. In its previous versions (EMEP/EEA air
pollutant emission inventory guidebook 2009), EMEP CORINAIR used modelled data
derived from the aircraft performance model PTIANO. In its current version (EMEP/EEA

air pollutant emission inventory guidebook 2013), fuel burn data are based on real 4D

37



Chapter 3

trajectories and EUROCONTROL’s BADA database (EEA, 2013). Figure 3.20 depicts the
COz2 emissions computations for different distance clusters and four aircraft types for both
EMEP CORINAIR versions. It can be seen that the calculations for the BADA- and
registration-based typical profiles are closer to the 2013 EMEP CORINAIR results for the
majority of aircraft. We note that EMEP CORINAIR does not distinguish eastbound and
westbound flights. A more detailed look at our data indicates that A321’s and B738’s
registration-based typical profiles produce on average the same amount of CO2 emissions
with those documented in the 2013 EMEP CORINAIR database. For B737 and B752 the
deviations are on average 7% and 9% respectively, where the 2013 EMEP CORINAIR
database reports higher emissions than our estimates. CO2 emissions results based on 2009
EMEP CORINAIR are for most cases lower than our estimates for the registration-based
typical profiles and higher than our estimates for the BADA-based typical profiles.
Although these differences are explained by the underlying modeling process of the EMEP
CORINAIR database, no general conclusion can be drawn from the comparison of our
methods with the 2009 version of the database.

Figure 3.3 provides for a comparison of CO2 emissions for the entire set of studied
“aircraft-distance-direction” combinations. We use three approaches: (i) registration-based
typical profiles, (ii) BADA-based typical profiles and (iii) 2013 EMEP CORINAIR
database. The x-axis corresponds to the estimated CO2 emissions for the registration-based
typical profiles. These values are compared to the CO2 emissions of the y-axis: the BADA-
based typical profiles (blue dots) and those derived from the 2013 EMEP CORINAIR
database (green dots). Despite the large discrepancy of flight characteristics between
BADA-based and registration-based approaches, the CO2 emissions estimates are close to
each other. This result is consistent with the findings of Table 3.1. Figure 3.3 shows that
our estimates for the registration-based typical profiles are also close to the emission values
derived by the 2013 EMEP CORINAIR database. Averaged on the analyzed flight profiles,
the estimates of CO2 emissions differ by 2.5%, where the 2013 EMEP CORINAIR
database reports higher emissions than our estimates.
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Figure 3.3. Validation of CO2 emissions results

Next, our estimates are compared to existing fuel and emissions statistics for the U.S.
airspace. The sample considered in this chapter includes 4.01 million departures. Given the

aggregate figures of CO2 emissions in Table 3.1, we infer that each departure consumes

38



Fuel Burn and Carbon Emissions Model

5.07 tn fuel and 16 tn COg2, if BADA-based estimation is used and 5.41 tn fuel and 17.1 tn
COg, if registration-based typical profiles are considered. Wilkerson et al. (2010) report
31.3 million departures and 188.2 million tons of fuel, or 6.01 tn fuel per departure.
Similarly the estimate given in Wasiuk et al. (2015) amounts to 5.27 tn fuel per departure
for the study year 2006, while Wasiuk et al. (2016) reported a value of 5.44 tn fuel per
departure for 2011. Finally, the emission inventory of Pham et al. (2010) in Australia
estimated a value of 5.14 fuel tn per departure for 2008. Overall, it is concluded that our
estimates generally agree with other published estimates. Differences may stem from the
different mix of air traffic considered in these studies (other aircraft types and flight
distance), the assumptions made about aircraft weight estimation etc. Table 3.2 compares
the fuel burn estimates of previous studies with our estimates. Despite the small
differences, the proximity of estimates provides a good indication of the validity and

reliability of our methods and results at network wide level.

Table 3.2. Comparison with other studies

Study Departures Fuel Fuel per Study Region
(millions) (million tn) departure (tn)  year

Kim et al. (2007) 32.4 203 6.27 2005 Global
Wilkerson et al. (2010) 31.3 188.2 6.01 2006 Global
Wasiuk et al. (2015) 28.9 152.2 5.27 2006 Global
Pham et al. (2010) 0.49 2.52 5.14 2008*%  Australia
Wasiuk et al. (2016) 31.8 173.2 5.44 2011 Global
This dissertation** 4.01 21.7 5.41 2012 U.S.

Note: * for a six month period
** based on the registration-based typical profiles

3.4 Route-based CO2 emissions

Route-based CO2 emissions include those generated during the Climb-Cruise-Descent
(CCD) cycle. Similar to the LTO phase, CO2 emissions are computed as a function of
aircraft fuel burn. CCD fuel consumption is strongly related to the actual flight
performance of the aircraft between the origin and destination airports. Variation in the
aircraft performance (route, altitude, speed) may result in substantial differences in flight
distance and time, air traffic flow, imbalances between demand and capacity and, thus,
fuel consumption. Thus, accurate estimation of the aircraft altitude profile is important in
order to obtain accurate estimations of aircraft fuel burn and CO2 emissions during the
CCD cycle.

3.4.1 Motivation for the computation of typical altitude profiles

The aircraft altitude profile, also referred to as vertical flight profile, represents a popular
indicator of the relationship between flight distance or time and altitude. The aircraft
altitude profile during the CCD cycle consists of three stages: climb, cruise and descent.
The aircraft performance in each flight stage depends on a number of flight characteristics
including aircraft type, flight distance and direction of flight (for instance Eastbound or
Westbound). Furthermore the altitude profile exhibits random fluctuations caused by
atmospheric conditions, airline or pilot planning and operational or traffic control random
events. For example, bad weather conditions may force pilots to fly on lower or higher
altitude or reroute aircraft for safety and comfort reasons. Due to these random variations,

altitude profiles cannot be identical even for the same flight on a different day. Figure 3.4
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presents the vertical profiles of nine flights between the JFK and TPA airports operated
by Boeing 717-200 (B712) for a distance of 1,007 sm. The illustrated flights were operated
between 9 and 20 October 2016. It is observed that the flight profiles are differentiated in
terms of their cruise level, duration and rate of climb and descent.
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Figure 3.4. Different vertical profiles for the airport pair JFK-TPA

To achieve the ultimate goal of this chapter, which is to compute COz2 emissions for any
given itinerary within our study flight network, vertical flight profiles of each itinerary are
required. Counsidering the profile deviations shown in Figure 3.4 and the large number of
flights in our traffic sample (thousands of itineraries which consist of tens of thousands of
non-stop flights during the entire year of 2012), the construction of vertical profiles for
each itinerary would require high computational effort with uncertain representation of
reality. In this work, this issue is addressed by developing a method to compute typicall?
flight profiles for groups of flights with similar characteristics by using a repository of prior
flight profile information. Given the generated typical flight profiles, fuel flow rate is
calculated as a function of calibrated and true airspeed, flight altitude, engine thrust,
aerodynamic drag, aircraft weight etc. Then, flight fuel burn and CO2 emissions can be

computed for every itinerary in our traffic sample by applying interpolation methods.

In our work, preliminary data analysis and clustering arguments are employed to extract
flight characteristics and organize altitude profiles. The key features found are the flight
distance, the aircraft type and the flight direction. These are of mixed type, numeric
(flight distance) and categorical (aircraft type, flight direction). Thus the flight distance is
represented by a finite set of values which are determined by the distribution of the flight
distance. This distribution in turn is estimated from flight data. Flight altitude profiles are

then estimated within each cluster possessing the same features.
3.4.2 Clustering

Extraction of flight profile characteristics and clustering of path profiles are considered in
this section. Our focus is on the Climb-Cruise-Descent (CCD) cycle where the aircraft is
located at altitudes above 3,000 ft. In this context, profiles are regarded as trajectories
composed of one Cruise stage connected by the Climb and Descent stages. An example of
flight altitude profile is given in Figure 3.5. As shown, the key elements that shape the
CCD path and explain its variation are the duration of the three stages (climb, cruise,

descent) and the cruise altitude. Other important features such as the rate of climb and

10 Typical flight profiles may be sometimes referred to as representative profiles.
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descent can be derived from the above. Hence we focus on cruise altitude and duration of
phases. The characteristics affecting altitude and duration are split into those related to
the aircraft and those related to the route. The first group of characteristics is adequately
represented by a single factor, the aircraft type. The second group is described by the
flight direction and the flight distance. We demonstrate that the above are genuine shifters
of altitude and duration by considering a rich sample from the T-100 Domestic Segment
for US carriers (hereinafter referred to as T-100) (BTS, n.d.).

4 :
5000 Start of cruise (t End of cruise (t,)
40000 -
Cruise duration: At=t,t;
35000 } ( N > |
30000 } 1
—_— 1 1
E 25000 |
5 4 e
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Figure 3.5. An example of flight altitude profile

To reveal the differentiation of flight altitude profile with respect to aircraft type, flight
distance and direction, a preliminary data analysis follows. Actual flicht track data are
used for the following analysis. More details on the data sources are given in Section 3.4.3.

Flight distance

The impact of flight distance on altitude and duration are depicted in Figure 3.6 and
Figure 3.7. The altitude variability is evident; shorter flights fly in lower altitudes, while
most of the flights longer than 400-500 statute miles generally fly above 25,000 feet. Cruise
altitude has an increasing slope for flight distances up to 750 sm, while for the majority of
flights longer than 750 sm, it falls within the range of 30,000 and 40,000 ft. We also

observe that cruise duration is linearly related with flight distance.
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Figure 3.6. Flight altitude in relationship with flight distance
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Figure 3.7. Cruise time in relationship with flight distance

To allow for a harmonized treatment of the impact factors, flight distance is represented
by a finite set of values. These values are not evenly spaced; instead they are chosen to
provide sufficient group separation and manageable complexity. A small distance
resolution creates a large number of typical flight profiles of limited variability and
increased computational load. In contrast, a large distance resolution results in within-
combination deviations which could give rise to abnormal typical profiles. Lee et al. (2005)
divided their sample in distance increments of 500 km (=310 sm) to derive average cruise
altitudes, while other studies used longer distance bands of 500 nm (about 575 sm) (Kim
et al. 2007; Rustenburg et al., 2008).

In our work, we employ clustering arguments for the construction of typical profiles. Based

on the literature review, we adopt a 250sm distance increments for flight distances
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between 450 and 825 miles. For longer flights we adopt a higher distance increment of 500
sm. The resulting clusters of the flight distances based on the above assumptions are
shown in Figure 3.6 and Figure 3.7. It is noted that the initial selection of these clusters do
not rely on the employment of a clustering method. However, the hierarchical clustering
method was used to check whether the number of clusters were reasonable based on the
data collected. In particular, it was important to check if the number of the initially
adopted clusters should be higher. For every pair of aircraft type and flight direction,
hierarchical clustering was applied and the Elbow criterion was used to check the number
of clusters. The elbow criterion involves observing (in x-y plot) the set of possible numbers
of clusters relative to how they minimize the within-cluster sum of squares. The number of
clusters is equal to the largest K that has positive marginal gain. In few pairs of aircraft
type and flight direction, less clusters were indicated by the hierarchical clustering in
comparison with the number of clusters initially defined. However, to maintain a constant
set of clusters among the different pairs, the number of clusters set by the initial analysis
were finally chosen. Flights shorter than (or equal to) 300 sm are treated in a different
way in order to compute their fuel consumption and COz2 emissions during the CCD cycle,
as explained in Section 3.5, because our analysis showed that the altitude estimation
methods presented in Section 3.4.4 failed to construct reliable typical profiles for flights.
Thus, in the following text, clusters of flights longer than 300 sm are only considered
(distance clusters 4 to 11).

Flight direction

Data plots in Figure 3.6 and Figure 3.7 are separately given for eastbound (West—FEast)
and westbound (East—West) flights. To improve separation during the cruising phase,
flight levels are assigned according to the aircraft’s magnetic cruising track. The standard
rule is that westbound flights fly on even flight levels and eastbound traffic follow the odd
flight levels. In this way, the risk of head-on collisions is avoided. Figure 3.7 shows that
eastbound flights are faster than westbound (red points are below blue points). This is due
to the prevailing jet-stream winds which cause eastbound flights to be significantly shorter
than westbound flights even for the same flight distance. We conclude that the direction of

flight affects flight performance and the two directions are analyzed separately.

Aircraft type

The differences in cruise altitude or duration that appear in Figure 3.6 and Figure 3.7 for
the same distance clusters are largely due to the different aircraft types. For example, at
the distance cluster of 750 sm, the higher altitudes from 36,000 to 40,000 ft correspond to
the B737-700 while the low altitudes of 29,000-33,000 ft correspond to the regional jet
CRJ200. In addition, within our sample profiles, flying with different aircraft types result,
in some cases, in different cruise duration even for the same flight distance. To assess if
there is an overall effect of the aircraft type on cruise altitude and cruise duration, we
performed a one-way analysis of variance (ANOVA). The one-way ANOVA is a
parametric test that compares the means of two or more independent groups in order to
determine whether there is statistical evidence that the associated population means are
significantly different. In this work, ANOVA is used to determine whether there are
significant differences between the means of cruise altitude and duration of independent

groups of aircraft types and is run for the studied distance clusters (4 to 11). First we
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checked for normality and tested equal variance assumptions statistically. Both cruise
altitude and duration were found normally distributed based on their normal Q-Q plots.
The test results indicated that there are statistical differences in cruise altitudes and cruise
duration across the different aircraft types, since for all distance clusters and directions the
significance levels were p<0.05. Table 3.3 suggests that the aircraft type affects the

resulting flight performance and each aircraft type should be analyzed separately.

Table 3.3. One-way ANOVA analysis

Cruise altitude Cruise duration
Distance cluster [sm] Direction Fltatistic p-value Fatatistic p-value

400 E-W 23.56 0.00 3.69 0.01
W-E 65.41 0.00 7.48 0.00
500 E-W 22.63 0.00 5.36 0.00
W-E 36.14 0.00 4.52 0.00
250 E-W 17.01 0.00 19.35 0.00
W-E 38.17 0.00 20.45 0.00
E-W 38.97 0.00 5.71 0.00

1000
W-E 49.01 0.00 16.54 0.00
E-W 95.32 0.00 16.81 0.00

1500
W-E 45.59 0.00 14.45 0.00
E-W 17.74 0.00 14.75 0.00

2000
W-E 25.55 0.00 34.08 0.00
E-W 16.99 0.00 9.55 0.00

2500
W-E 30.50 0.00 24.15 0.00
E-W 55.56 0.00 14.46 0.00

>2500
W-E 77.63 0.00 17.93 0.00

Overall the above analysis demonstrates that flight distance, aircraft type and flight
direction are key features which affect aircraft flight performance and, thus, aircraft
altitude profile. Typical altitude profiles are constructed for each unique combination of
“aircraft type, flight distance and direction”, which is hereinafter referred to “aircraft-
distance-direction” combination. For example, the combination “A321-1500-EW” refers to
flights within the distance cluster of 1500 sm, directed from East to West and operated by
the aircraft type A321. This combination may include flights longer than 1250 sm and
shorter (or equal to) 1750 sm operated by A321 from East to West.

3.4.3 Data sources and Pre-processing

The estimation procedure developed in this chapter relies on the combination of two
datasets: (1) commercial air traffic data within the U.S. airspace for the year 2012 and (ii)
flight track data. These datasets are combined to obtain a multi-dimensional database
that stands for an accumulated knowledge on how aircraft perform in realistic
circumstances and is used to (i) conduct the clustering analysis and define the relationship
between the different combinations of “aircraft-distance-direction” and flight performance
and (i) derive representative aircraft altitude profiles for the combinations under

consideration.
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Air traffic data are obtained from three databases: the Airline Origin and Destination
Survey (DB1B), the T-100 Domestic Segment for U.S. Carriers (T-100) and the On-Time
Performance (OTP) database!!l. These databases are available from the U.S. Department
of Transportation and published in the website of the Bureau of Transportation Statistics
(BTS, n.d.). DBIB is used to extract the different airport pairs of our analysis, i.e. for
which carbon emissions estimates need to be obtained for the simulation of the market-
based environmental measure considered in this dissertation. T-100 is used to derive the
representative aircraft types by airport pair. As already explained, aircraft type is an input
in the estimation method of LTO and CCD carbon emissions. OTP is used to obtain the
taxi-in and taxi-out times by airport (useful input for the LTO estimations). Based on

these, the different combinations of “aircraft-distance-direction” are defined.

The original flight data are supplemented by historical fight track information obtained
from the FlightAware website (FlightAware, n.d.). FlightAware provides flight track data
for flights within several countries around the world and has been used by several
researchers in the past (Alcabin et al., 2009; Felix patron et al., 2014; O’Kelly, 2014;
Serafino et al., 2012; Sheng et al. 2015). Each record includes date, time, aircraft location,
orientation (course, direction), ground speed and altitude, given at approximately one
minute intervals from takeoff “wheels up” to landing “wheels down”. Flight Aware compiles,
aggregates and processes data from various sources including airlines, commercial data
providers, its own Automatic Dependent Surveillance-Broadcast flight tracking network
and the FAA Aircraft Situation Display to Industry real time data feed. Flight track
information is collected for a variety of aircraft types, routes and days of operations.
Flights are randomly selected with respect to day of the week, time of day, airline, and
weather conditions. Then these datasets are collectively employed to carry out the

clustering tasks and to obtain the representative aircraft altitude profiles.

During the flight track data collection process, several altitude data issues were

encountered and dealt with the following filtering process.

e Flights with missing profile data were disregarded.

o Some flight profiles were found with large gaps of data. If these data gaps occurred
during cruise flight (where the altitude level before and after the gap is the same),
the solution was to substitute the missing values with the constant cruise level, as
shown in Figure 3.8. The dot points represent the original profile while the red line
represents the correction of the data gaps. In circumstances where the data gaps
could not be corrected, the flight profile was omitted from the analysis.

' See Appendix C-1 for more information on the databases.
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Figure 3.8. Altitude profile with large gaps of altitude data
In some profiles, the altitude had a “wrong” value, e.g. a sharp fall was observed
during the climb or cruise phases, the altitude became zero etc. In these cases the
“wrong” points were viewed as ‘missing values” and a similar approach to the
previous one was followed, as shown in Figure 3.9.
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Figure 3.9. Altitude profile with “wrong” altitude value

Abnormal flight profiles were excluded from the analysis. An example is shown in
Figure 3.10, where the profile of a diverted flight is illustrated. A diverted flight is
one that has been routed from its scheduled destination to a new temporary
destination. Based on the track information the flight of Figure 3.10 travelling
from DCA airport was diverted to PHL airport at 8:53. The flown distance was
716 sm, which amounts to 604% of the planned distance (119 sm). Another poorly
predictable flight is shown in Figure 3.11. This profile corresponds to a flight of
405 miles operated by Boeing 737-700. Based on Section 3.4.2, this flight belongs
to the cluster “B737-400-WE”. In this cluster most flights flew on 33,000-35,000
feet for about 18 minutes. However, this flight had a different altitude pattern,
climbing on 40,000 feet for a short time and then descending for a long time. Such
flights cannot be viewed as regular and are not considered in the construction of

representative flight profiles.
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Figure 3.11. Altitude profile for a poorly predictable flight

e Finally, two data checks were applied following FAA (2005). First, track points
were checked so that their altitude is not less than 0 feet and greater than 45,000
feet. If these checks fail, the profile is not included in the final profile database.
The second check is related to the Rate of Climb (ROC) and Descent (ROD).
Based on experience from analyzing trajectory data, FAA (2005) adopted a limit
of 18 m/s for ROC and -18m/s for ROD to check the profile data (18m/s=3,543
feet/min). If two consecutive points result in higher ROC than 18m/s (and lower

ROD than 18m/s accordingly), the spike is smoothed by replacing the “wrong’
point’s altitude by the value calculated from the ROC of the previous chord.

3.4.4 Estimation of typical flight profiles

In the literature, the estimation of the flight altitude profile has been approached by two
main ways, point mass models and machine learning methods. The EUROCONTROL’s
Base of Aircraft Data (BADA) is an aircraft performance model which is based on the
total energy model of the aircraft and can be considered as a reduced point-mass model
(Nuic, 2013). Wasiuk et al. (2015) used the BADA model along with a database of global
commercial aircraft movements to calculate global aviation fuel burn and NOx emissions
during the time period 2005-2011. BADA was also used by Schaefer (2012) to simulate
flight trajectories and predict the corresponding aircraft fuel consumption and emissions.
In his work, typical aircraft- and distance-specific cruise altitudes were derived by a
statistical analysis of historical radar data in the Aero2k inventory of global aviation (Lee
et al., 2005). Simone et al. (2013) developed a BADA based methodology for the
calculation of aircraft performance and resulting emissions on a global scale. This study

did not use radar track information and thus made simplifying assumptions for aircraft
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takeoff weight and cruise altitude. In particular, a fixed factor of 60.9% of maximum
payload capacity was used for all flights and cruise altitude was set to 7,000 feet below the
maximum cruise altitude of the aircraft, as specified by BADA. Scheelhaase et al. (2010)
used the BADA model to derive average CO2 emissions for different mission types
(regional, short-haul, medium-haul and long-haul) and estimate the impact of EU-ETS on
the competition between European and non-FEuropean airlines. BADA has been also used
to model en-route aircraft performance in the context of projects that assessed the impact
of operational mitigations on aircraft-related fuel burn and emissions (Lovegren and
Hansman, 2011; Malwitz et al., 2007; Williams et al., 2002). Finally, BADA has been
widely used to compute aircraft fuel burn when actual flight data records are available or
a flight profile has been specified otherwise (Kim et al., 2007; Pham et al., 2010; Sheng et
al., 2015; Turgut et al., 2014; Williams and Noland, 2005).

The BADA modeling framework is based on aircraft-specific parameters which are used to
define standard airline procedures. Thus, it does not incorporate actual aircraft operations
in real circumstances. Furthermore, to simulate the real local conditions under which an
aircraft operates, more detailed information on atmospheric conditions and winds are
required which are not readily available. For these reasons, attention was recently turned
into regression and machine learning methods for the estimation of the flight altitude
profile. Nicol (2013) applied functional principal component analysis to analyze aircraft
trajectories. The author used a set of track data and estimated the registered profiles for
flights between two specific airports. Tastambekov et al. (2014) developed an approach for
short to mid-term aircraft trajectory prediction based on local linear functional regression.
Their method considered past radar tracks for a given airport pair and estimated the
aircraft position over a 10-30 min time horizon. Hamed et al. (2013) used a combination of
a point-mass model and regression to predict the altitude of the aircraft during climb
phase. They studied flights departing from two airports using a single aircraft type and
they concluded that regression models were more predictive than the point-mass model.
Hrastovec and Solina (2014) used the nearest neighbor's algorithm to simulate aircraft
flight performance. Their machine learning model searched for similar flights in a database
and predicted aircraft performances based on similar flights performed in the past. Their
results suggest that machine learning provided lower prediction errors than the BADA

performance model.

In this section, typical flight paths are computed using a rich set of historic data and two
estimation approaches. The first approach employs a combination of clustering and
landmark registration techniques and exploits the flight track information of the entire
trajectory of historical flights. The paths estimated by the above method are compared to
those obtained by the point mass Base of Aircraft Data (BADA) model, in terms of the
extracted flight operational characteristics. Noticeable deviations in the resulting estimates
are found. On a fleet-wide level, the prediction errors produced by BADA-based estimation

are much higher than those obtained by clustering and landmark registration.

3.4.4.1 Landmark registration
This estimation approach uses real altitude data from a large flight dataset so as to
construct representative altitude profiles. The recording of past vertical profile data results

in a sample of numerous functional observations (curves) of aircraft altitude h(t) with
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respect to time t. Aircraft profile data can be regarded as functional data, with the basic
unit of information being the entire observed function (curve) rather than a vector of
numbers. The statistical techniques for analyzing curves or functional data are included in
the field of Functional data analysis (FDA) (Ramsay and Silverman, 2005). The main
steps of the landmark registration method are illustrated in Figure 3.12 and are
summarized below:
- Step 1: Conversion from discrete to functional data
- Step 2: Landmark registration

Define landmarks

Obtain warping functions

o Compute registered altitude profiles

- Step 3: Statistical Analysis of the registered profiles
Following the collection of raw data (indicated in colored lines in the upper left panel of
Figure 3.12), which includes altitude data recorded at short discrete time intervals (Step
0), the aim of the Step 1 is to represent data recorded at discrete times as a continuous
function xi with values xi(t) for any desired time value t. Based on Ramsay and Silverman
(2005), we use interpolation methods for the discrete to functional data conversion process
as the discrete values in our dataset are closely spaced. In case there was evidence of
observational errors so that the initial discrete values would need removing, the conversion
from discrete data to functions could involve smoothing. Step 2 deals with eliminating a
common problem of functional data which is called phase variation. In general, altitude
curves present common shape features, as they consist of three distinct flight stages, those
of climb, cruise and descent. However, the timings of these stages vary from curve to
curve. The FDA literature refers to these lateral displacements in curve features as phase
variation. This implies that different functions should not be compared at the same time ¢t
because the occurrence of similar features is not synchronized. An important tool for
analyzing phase variation is curve registration. There are several types of curve
registration including shift registration, landmark registration and continuous registration
(Ramsay and Silverman, 2005). In this dissertation, we apply landmark registration, which
involves transforming the domain of each curve so that points specifying the locations of
shape features are aligned across curves. The other methods, shift and continuous
registration, are mainly applied in cases where landmarks are not clearly identifiable in all
curves (Kneip and Ramsay, 2008). A landmark of a curve is a characteristic that one can
associate with a specific argument value t. In flight profiles, landmarks may include the
transition points from one stage to another and can be identified by the change of the
curve’s slope. In our work, three landmarks are defined: two points that match the
maximum flight level (top of climb and top of descent) and one point that matches the
end of flight.

Suppose that after the conversion process (from discrete to functional data), we have a
sample of K functions xi(t), where i=1,2,... K and t€[0,Ti|]. Each curve is defined over an
interval [0, Ti|] where Ti can be different from curve to curve. The aim of the registration is
to estimate a transformation of time for each curve so that qualitative shape features
become better aligned. To start the registration step, in each curve we define f (where

f=1,...,F) landmark time points ti, t2, ..., tr where t1<t2<...<tr as explained in the previous
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paragraph. Then we construct time warping functions wi(t) for each curve i based on the
following properties:

e Boundary conditions are defined by: wi(0)=0 and wi( Ti)=Ti

e Landmarks have the form: wi(tof)=tir for all f=1,..,F. The target point tor is
constructed from the data as the sample mean of the landmarks.

e Monotonicity requires that each wi(t) is strictly increasing: if t1<t2 then wi(t1)<wi(t2).
This strict monotonicity condition ensures that the function wi is invertible, so that for
each y in the interval [0, Ti| there is a unique t for which w(t)=y.

We first estimate the inverse warping function w; (t) such that w; I(Wi(t)) =t and get
the values of this inverse function at equally spaced values of t. The inverse function
w; 1(t) is computed by interpolating the relationship between wi(t) and t plotted on x-y
axis. We then use simple interpolation to get the values of this inverse function at an
equally spaced set of values of t. The registered curves X;(t) are computed as X;(t) =
x;(w;(t)). We first interpolate the relationship between w; (t) plotted on the x-axis and
x(t) plotted on the y-axis and by re-inverting we obtain the values of the registered
function X;(t) at a set of values of t. After the registration process we obtain the registered
flight profiles and estimate the desired statistics (average and standard deviation) for each

“aircraft-distance-direction” combination.
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Figure 3.12. Steps of the Registration-based estimation on flight profile
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Figure 3.13 displays the registered and unregistered flight profiles for the “B737-1000-WE”
combination. The left figure includes the unregistered flight profiles in black while the
unregistered mean curve is depicted in red. The figure shows that the pattern of the
unregistered mean curve is distorted due to the phase variation, especially on the two
regions indicated by the blue circles (end of cruise and last minutes of the flight). On the
contrary, aggregating the registered curves (illustrated in black on the right side of the
figure) provides a more reliable mean curve (depicted in light blue on the right side of the

figure).
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Figure 3.13. Typical profile for registered and unregistered sample profiles

3.4.4.2 Point mass BADA model

The Base of Aircraft Data (BADA) is an aircraft performance database maintained by
EUROCONTROL (Nuic, 2013). It includes a mathematical model for the aircraft
performance and the associated databases of the operating parameters for a wide range of
aircraft and can be considered as a reduced point-mass model. The BADA performance
model is based on the Total-Energy Model (Nuic, 2013) which describes the relationship
between three performance-related parameters: thrust (Thr), true airspeed (V1as) and rate
of climb/descent (dh/dt) as given in Eq. 3.2.
AVras

dh
(Thr =D) - Vpps =m-go ==+ m-Vygs - ——

Eq. 3.2
dt dt 4

Given two of these variables, the third one can be obtained. Rearranging Eq. 3.2, we can
get the rate of climb/descent by Eq. 3.3 if thrust and speed are known.

@ _ (Thr = D) - Vrys ) [1 N (VTAS) ] (dVTAS>]
dt m-go Jo dh
f{m}

where D is the aerodynamic drag [Nt|, m is the aircraft mass [kg|, h is the altitude [m)],

Eq. 3.3

and go is the gravitational acceleration (9.80665 m/sec?). The last part of Eq. 3.3 is

defined as an energy share factor f{M} which specifies how much of the available power is
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allocated to the vertical evolution as opposed to acceleration while following a selected
speed profile during climb or descent. In real operations, the choice of ffM} during speed

changes can be handled by either the flight management system or the pilot.

In this estimation procedure we divide the CCD phase in small discrete steps which are
referred to as chords. Figure 3.5 illustrates the flight chords in an example of recorded
flight. Within each chord, a number of performance equations derived by the BADA model
are employed in order to calculate aircraft speed, altitude, engine thrust and aerodynamic
drag. Then Eq. 3.3 is used to compute the Rate of Climb or Descent (ROCD). To create
more realistic profiles, the reduced climb power rather than the maximum climb power is
adopted during the climb phase, where aircraft use a reduced setting during climb in order
to extend engine life and save cost (Nuic, 2013). For the cruise phase, ROCD is set equal
to zero. Figure 3.14 illustrates the procedure and the variables computed in each chord in
order to simulate a flight profile and calculate the resulting fuel consumption. Based on
historical flight profile data, the average cruise level and the average cruise duration are
calculated for each “aircraft-distance-direction” combination. The initial conditions which
include the initial aircraft altitude and mass are set next. Since flight profiles are created
only for the CCD cycle, the initial flight level is set equal to 3,000 feet and the initial
aircraft mass corresponds to the aircraft mass at the beginning of the CCD phase (after
completing the take-off cycle). Finally BADA coefficients are obtained from the BADA

database for each aircraft type.

Next an iterative approach is applied to compute the required performance variables at
every flight chord. The variables computed at different flight levels are shown in Figure
3.14, while the parameters used in each computation are presented in Table 3.4.
Atmospheric variables are determined as a function of aircraft altitude assuming
International Standard Atmosphere (ISA) conditions, due to lack of real atmospheric data.
As fuel is burnt during the flight, aircraft mass is recalculated at every iteration, by
subtracting the fuel consumed in the current chord from the aircraft mass of the previous
flight chord (fuel flow over each flight chord is calculated based on the model presented in
Section 3.4.5). Based on these information and the current aircraft altitude, aircraft speeds
are calculated (calibrated airspeed-CAS, true airspeed-TAS and Mach number). The
desired output of each iteration is the ROCD (computed according to Eq. 3.3) which is
used to determine the flight level of the next iteration. Starting from the end of the take-
off cycle, the aircraft altitude raises until reaching the average cruise flight level (estimated
from the historical flight profiles). When aircraft reaches cruise flight level, the ROCD is
set equal to zero. Then, the duration of the cruise phase (of the typical profile) is set equal
to the average cruise duration (estimated from the historical flight profiles). When the
construction of the flight profile has been completed, the fuel burnt during the CCD cycle

is computed as the sum of the fuel flow over the flight chords.
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Figure 3.14. BADA-based estimation steps on flight profile and fuel burn

Two BADA data files are used to calculate the performance coefficients of the supported
aircraft types: (i) the Airlines Procedure File (APF) which includes recommended speed
procedures for climb, cruise and descent conditions (i.e. speed Veii, Ver2, Verg etc and
mach number Mecl, Mer, Mdes) and (ii) the Operations Performance File (OPF), which
specifies the operations performance parameters for each aircraft type (i.e. stall speed
Vistall, drag coefficients CDp and CD2, parameters for thrust specific fuel consumption Ct,
Cp, Cr etc). Our computations are cross-checked with another BADA file, the
Performance Table File which specifies cruise, climb and descent performance at different
flight levels assuming three aircraft mass levels (low, nominal and high). Table 3.4
presents the parameters derived by BADA data files to conduct the aircraft performance

computations.
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Table 3.4. Aircraft performance parameters derived by BADA data files

Input variables Equation in BADA
Variable Symbol BADA coefficients [BADA file] Inp.uts from user manual
previous steps (Nuic, 2013)
Atmosphere Conditions
1 Temperature T - h 3.1-13 to 3.1-16
2 Air Pressure p - T, h 3.1-18 to 3.1-20
3 Air Density e - p, T 3.1-21
4 Speed of Sound a - T 3.1-22
Aircraft Performance Variables
5 Transition altitude  Hp, trans Vﬁ XL,Z A‘;:“[ @2?] - 3.1-27 to 3.1-29
. Vias Vitai,To [OPF]
6 Aircraft speed Veus Ve, Ver,1, Vdes,1 [APF] o, T, tho, a 4.1-1 to 4.1-8
M V2, Ver,2, Vies,2 [APF] T ’ 3.1-23 to 3.1-26
Met, Mer, Maes [APF]
CDo.LpG, CDo.arpg, CD2rpa [OPF]
7 Aerodynamic Drag D CDo,ap, CD2 4p [OPF] o, Vras, m 3.6-1 to 3.6-5
CDy,cr, CD2.cr [OPF], S [OPF]
8 Engine Thrust Thr
) Cl.lmb (maximum  Thtumax Cre1, C1e2, Cre3 [OPF] H, Vras 3.7-1 to 3.7-3
climb thl’llSt) climb
- Cruise Threruise equals to drag (use drag equations for cruise)
- Descent Thres CT{I"-*?MPJJéiﬁi‘(}ﬂf“g}; FC]YT(I(MPP’ Thrmax climb 3.7-9 to 3.7-12
9 Energy share factor f{M} - M, T 3.2-8 to 3.2-11
10 Rate of Climb or dh/dt Based on the Total-Energy Model (inputs: Thr, D, Vras, m, f{M})
Descent (ROCD) ’ See Eq. 3.3 above
Fuel Consumption
11 Fuel flow bid Ctr, Cr1, Cp, Crz, Cy [OPF] Thr, Vras 3.9-1 to 3.9-9

Abbreviations: h: altitude, CD: drag coefficient, C: general coefficient, S: reference wing surface area, m: aircraft
mass, Vras: True airspeed, Veas : Calibrated airspeed, M: Mach number

The average cruise duration and altitude and the initial aircraft mass are two essential
determinants of aircraft performance. They are determined at the initial step of processing

initial flight data (upper panel of Figure 3.14).

Average cruise duration and altitude: The recorded flight profiles are initially decomposed

into different flight phases: LTO, climb, cruise and descent. The start and end points of
the cruise segment are identified manually, by observing each flight profile. An example is
given in Figure 3.5, where the cruise phase extends between the indicated start (t1) and
end (t2) points. For each “aircraft-distance-direction” combination, cruise durations and
altitudes of the individual flights are averaged to derive the average cruise duration and
altitude.

Initial aircraft mass: The initial aircraft mass is an essential determinant of aircraft

performance which affects climb and descent rates, as well as fuel burn. It depends on a
number of factors; operating empty weight, fuel required for the trip, reserve fuel and
passenger/cargo payload and requires load factor data, aircraft, airport and flight data and
take-off fuel. Most of these factors are not available and need to be estimated. Eyers et al.
(2004) assumed a global average figure of 60.9% in order to estimate take-off aircraft mass
as a function of maximum payload capacity. In other studies (Zou, 2012; Félix Patron et
al., 2014) the reference aircraft mass given by aircraft performance models was used to

derive the initial mass, while Ansberry (2015) assumed that initial aircraft mass is equal to
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the maximum take-off mass. Lee et al. (2007) used aircraft take-off weight data based on

their stage length in order to account for the increased fuel requirement for longer flights.

The determination of aircraft mass factors for every individual flight requires an iterative
approach which increases the computational effort and thus has been adopted by few
researchers (Wasiuk et al., 2015; Schaefer, 2012; Sherry and Neyshabouri, 2014). Eq. 3.4
expresses the aircraft initial mass (minitial) as the sum of the operating empty weight
(moE), the passenger and cargo payload (mpayload) and a sufficient amount of fuel (mifuel)

based on the fuel requirements explained below
Minitial = Moe + Mpayload + Mruel Eq. 3.4

The operating empty weight (moE) is an aircraft-specific parameter which is derived from

BADA OPF files, where it is referred to as the minimum mass.

Aircraft payload (mpayload) is a product of passengers carried and passenger weight.
Passengers carried are given by the aircraft seat capacity times the aircraft load factor.
Based on the aircraft type, seat capacity is determined by aircraft manufacturer tables.
Appendix B-4 presents the seating capacity of the studied aircraft types. Load factors are
averaged by airline and distance combination for each quarter in 2012 based on the T-100
database. The passenger weight may vary by airline, mission distance and type of
passenger (business and leisure). An average passenger weight of 90 kg (including cabin
luggage) is assumed based on ICAO (2009).

The pre-flight calculation of usable fuel required (mfuel) may include: trip fuel, contingency
fuel, destination alternate fuel and final reserve fuel (ICAO, 2012a). Trip fuel (fiip)
includes the fuel burnt during the CCD phase and the landing and taxi-in fuel at the
destination airport. Landing and taxi-in fuel calculations are based on ICAO Engine
Exhaust Emissions databank (ICAO, 2016¢) as explained in Section 3.3. Contingency fuel
(feont) is the amount of fuel required to compensate for unexpected factors, such as
meteorological conditions, extended holding procedures, deviation from planned horizontal
or vertical profile and it is set 5% of the planned trip fuel (ICAO, 2012a). Destination
alternate fuel (fur) is the amount of fuel required to fly from the original to the alternate
destination, while final reserve fuel (fies) is the amount of fuel required to fly above the
alternate airport under standard conditions. Based on Wasiuk et al. (2015) and ICAO
(2012a), destination alternate and final reserve fuel are in total equal to the amount of fuel
used cruising for 60 min (jet) or 45 min (turboprop) at the cruise altitude. The estimation

uses the cruise fuel burn rate for the aircraft weight at the end of cruise.

Based on the aircraft type, mor is directly obtained from BADA tables, while mpayload can
be calculated by combining seat capacity data and load factor data. On the contrary, mfuel
cannot be directly computed and an iterative algorithm is applied. In the first iteration,
j=1, the initial aircraft mass is assumed to be equal to the nominal aircraft mass (mref)
minus the fuel burnt during departure (taxi and take-off) at the origin airport (fiep), i.e.

M} =MoL, Taxi and take-off fuel burn rates are obtained from the ICAO Engine

Exhaust Emissions databank (ICAO, 2016¢c). Based on m] flight profile is generated

nitials

and the trip fuel consumption ffl.ip is calculated. Contingency fi(m, destination alternate ffm

and reserve fuel 1‘,1.0S are then calculated as described in the previous paragraph. The total
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fuel load is calculated as Illélt?]:fij'jpT/fi“uJﬁfi]t"Ffi,br. In the second iteration, j=2, the initial
aircraft mass is calculated based on Eq. 3.4, where mgyq = m}uel. Then the first iteration

is repeated (re-calculate the trip fuel consumption, re-calculate contingency, destination

alternate and final reserve fuel etc). The iterative algorithm stops when the updated initial

mass converges to that of the last iteration, such that |m{:l-1ial — m{m-“-al| < 0.001. Initial
aircraft mass is shown as a function of iterations in Figure 3.15 for four aircraft types
operating a flight of 1000 sm distance. It is observed that in most profiles, convergence
occurs after 4 to 5 iterations. The iteration of convergence is indicated with the black
arrow. To start the iterations, the initial aircraft mass is set equal to the nominal aircraft

mass minus the fuel burnt during departure at the origin airport.
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Figure 3.15. Convergence of initial aircraft mass estimates

3.4.5 CCD fuel burn and CO2 emissions model

Aircraft fuel burn and COs2 emissions are influenced by various factors including aircraft
type, flight distance, flight mode, time consumed in each mode and aircraft performance.
Given the generated typical flight profiles, instantaneous fuel flow of an aircraft can be
calculated at any point of the typical profile. Each chord’s fuel burn is determined by
multiplying fuel flow (ffs) and time spent within the chord (dts), while CCD fuel and
resulting COz2 emissions Ecoz,ccp [in tn] are subsequently calculated by summing up the

corresponding fuel and emission values of all flight chords as expressed in Eq. 3.5.
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s
Eco,ccp = 1073 - Elgo, 'Zdts ffs =

s=1

s
Z dts-nsThrs: Ceor  for Cruise
== 10_3 - EIC02 - S§1
dts - ng - Thr for Climb/Descent
1

s=

Eq. 3.5

where Elcoz is the emission index of COz2 (equal to 3.157 kg CO2/kg fuel (ICAO, 2014), ns
[in kg/(min-kN)| is the thrust specific fuel consumption of segment s, Thrs [in kN]| is the
engine thrust within segment s and Ctr is a cruise fuel flow factor derived by OPF BADA
tables based on the aircraft type. The thrust specific fuel consumption is calculated based
on Eq. 3.6 depending on the engine type (jet or turboprop).

V.
Crq - (1 + ﬂ) for jet
n= ‘2
Vras Vras
(o (1 - —) . (—) for turboprop
Cr2 ) \1000 Eq. 3.6

where VrTas [in kt] is the true airspeed and Cr and Cp are aircraft-specific fuel flow
coefficients derived by OPF BADA tables. When the aircraft switches to the approach and
landing configuration (during descent phase) the calculation of fuel flow is based on the
second expression of Eq. 3.5 but should be limited by a minimum fuel flow given in Nuic
(2013).

The resulting output consists of two nxmxp matrices where n is the number of aircraft
types, m is the distance clusters and p=2 gives the number of different directions (west-
east/WE or east-west/EW). These matrices contain the fuel burnt and the carbon dioxide
emitted for each combination of “aircraft-distance-direction”. Once the fuel burn and CO2
emissions for all typical flight profiles are known, the corresponding fuel and emission
values for every itinerary of our traffic sample can be obtained by applying linear

interpolation.

3.5 Modeling assumptions

The methodology for calculating aircraft fuel burn and CO2 emissions during LTO and
CCD phases presented in this chapter rely on a number of simplifying assumptions that
are common among studies modeling fuel burn and emissions for large geographical regions
(Eyers et al., 2004; Kim et al., 2007; Schaefer, 2012; Wasiuk et al., 2015).

e Use of representative aircraft or engine types: CCD COg2 emissions are computed
using aircraft-specific coefficients derived by BADA tables, while LTO CO2

emissions depend on engine-specific fuel flow rates derived by ICAO Engine

Exhaust Emissions databank for jet aircraft and aircraft-specific fuel flow obtained
from EMEP/EEA database for turboprops. When the actual aircraft is not
included in the above databases, a proper proxy is used instead (see Appendix B-4
for the equivalent aircraft and engine types used in this dissertation). The use of

representative aircraft and engine types is a standard approach when computing
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aircraft COz2 emissions of large-scale networks, while the mapping is based on the
review of reliable sources (EEA, 2013; ICAO, 2016¢).

No counsideration of wind and actual atmospheric conditions: In BADA-based

profile estimation, the International Standard Atmosphere (ISA) conditions and no
winds are assumed, since this kind of data is not available on the desired level of
analysis. This information is indirectly considered in the estimation through their
impact on flights’ cruise level and cruise duration. Flying into a headwind
decreases aircraft ground speed and thus increases flight time and fuel burn. On
the contrary, flying with a tailwind will have a positive effect on fuel consumption.
Zou (2012) reported an A320 flying in tailwind consumes around 3.9% less fuel
compared to the no wind condition for a 1280 nm trip. Baughcum et al. (1996)
concluded that headwinds may have a +1.1% effect in fuel burn for North-Atlantic
round-trip flights and a +0.4% effect for North-south round trips, based on
analyses for a Boeing 747-400. This difference is due to the difference in wind
speed between the two regions.

Use of standardized flight trajectories: The profiles are simulated under the

assumptions of continuous climb out to cruise altitude, constant cruise altitude
during the entire cruise phase and a continuous descent. Non constant trajectories
along the entire cruise phase can be dealt with additional carefully chosen
landmarks and suitable warping functions.

No consideration of local conditions: Typical profiles are estimated for

combinations of distances, aircraft types and direction of flight; thus, special air
traffic conditions or differences in the air traffic management that are related to a
specific airport pair are not considered. The analysis could be augmented to
incorporate local conditions at the origin and destination airports. However, the
additional burden to collect and analyze flight profile data for every airport pair of
our traffic sample, is not believed to contribute more to our current approach.

Aircraft mass assumptions: Aircraft mass assumptions are based on pre-flight

assumptions with respect to average load factor, average passenger weight and fuel
required. Although the estimated initial aircraft mass may deviate from the actual
one, it is believed that the proposed weight calculation is satisfactory.

Typical LTO times: Typical LTO times based on ICAO are used to derive time

consumed during take-off, climb-out and approach landing, since such data are not

available. For the idle phases (taxi-in/out), airport-specific times are used.
Altitude profiles for short flights: Very short flights (shorter than 200 sm) often
lack significant cruise leg or do not reach cruise level. In these cases, CCD stages

(climb, cruise and descent) could not be distinguished and, thus, the proposed
profile estimation methods could not applied. Furthermore, in the clusters of
distance less than 300 sm, the flights followed different altitude patterns and thus
both registration- and BADA-based estimation failed to construct a reliable typical
profile. Therefore, for flights shorter than 300 sm, CCD CO2 emissions were
computed by the use of the EMEP CORINAIR database based on the following

formula.
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Eco,ccp =107+ Elgo, * fCcepaa Eq. 3.7
where Elcoz is the emission index of CO2 (equal to 3.157 kg COz/kg fuel) and
fecep,da is the fuel consumption [in kg| of aircraft type a for flight distance d
during CCD phase obtained by the EMEP CORINAIR database (version 2013).
This database provides fuel consumption data for a number of standard flight
distances. Interpolation methods are used to obtain fuel burn data for flight

distances other than standard.

e Other assumptions: Delays, cancellations, or reroutings are not modeled.

3.6 Evaluation of the CCD profile estimation approaches

The paths estimated by the registration-based estimation approach are compared to those
obtained by the BADA-based approach in terms of flight characteristics. In particular, the
time consumed in each stage of the CCD cycle and the rate of climb and descent of the
actual profiles are compared with the corresponding values of the typical profiles. Two
metrics are used to evaluate the predictability power of the methods: the Mean Absolute
Percentage Error (MAPE) and the Root Mean Square Error (RMSE).

Let n stand for the number of analyzed profiles of each “aircraft-distance-direction”
combination and Xobsi and Xmodeli be the observed and modeled values of a given
characteristic. Then MAPE and RMSE are computed by Eq. 3.8 and Eq. 3.9.

n
MAPE % — 100% Z obst_ modell
= Xobs,i Eq. 3.8
RMSE = Z?=1(Xobs,i - model,i)
n Eqg. 3.9

We use X for the climb, cruise and descent duration or the rate of climb or descent. The
MAPE and RMSE metrics are computed for every “aircraft-distance-direction”
combination and all evaluated flight characteristics. The results can be further aggregated
by aircraft type or distance group or flight direction. As stated in Section 3.5, altitude
profiles were disregarded for flights shorter than 300 sm. Thus, the evaluation process has
been conducted for every combination of “aircraft-distance-direction”, with distance longer

than 300 sm.

Each distance cluster may be served by several aircraft types. Figure 3.16 presents the
most frequent aircraft types by distance cluster, along with passengers’ share in 2012,
based on the T-100 Domestic Segment for US carriers for 2012. Airbus 321 (A321), Boeing
737-700 (B737), 737-800 (B738) and 757-200 (B752) demonstrate high percentages in
almost every distance cluster. Regional jets such as the Canadair Regional Jet 900 (CRJ9)
and 200 (CRJ2) and the Embraer 145 (E145) mainly serve short- to medium-haul flights
(400 to 1000 miles). Larger aircraft, such as Airbus 330-200 (A332) and Boeing 767-300
(B763), 767-400 (B764), 777-200 (B772) mainly serve longer flights (longer than 2500

miles). For clarity reasons, small percentages are not given in Figure 3.16 for some aircraft

types.
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Figure 3.16. Share of passengers carried in 2012 by aircraft type

The predictive performance of the two methods in terms of climb, cruise, descent duration
and the duration of the entire CCD is evaluated by the Mean Absolute Percentage Error
and is aggregated by distance cluster in Table 3.5. Flights longer than 2500 sm are
grouped in one category, since they only share the 2.3% of 2012 total passenger miles.

Table 3.5. Mean Absolute Percentage Error by distance group

Mean Absolute Percentage Error [%)]

BADA-based estimation Registration-based estimation
Distance Climb Cruise  Descent CCD Climb Cruise  Descent CCD
cluster duration duration duration duration |duration duration duration duration
400 sm 25.5 10.0 33.4 17.8 13.7 16.4 17.6 5.2
500 sm 27.1 12.1 39.3 19.5 13.2 14.7 19.9 6.3
750 sm 26.3 8.8 41.3 15.4 12.2 9.3 18.6 5.0
1000 sm 23.4 7.7 41.7 12.4 11.2 8.2 19.0 4.8
1500 sm 19.5 4.2 38.8 7.4 10.2 4.6 18.3 3.4
2000 sm 22.2 4.3 44.8 6.8 13.0 4.5 21.2 3.8
2500 sm 24.0 3.3 38.9 5.3 9.4 4.3 18.1 3.9
> 2500 sm 28.1 2.4 38.3 4.9 10.1 2.8 12.1 2.4

As expected, the above results indicate that the registration-based estimation performs
significantly better than the BADA-based model in the prediction of all flight
characteristics under consideration. Climb phase is predicted by the registration-based
method with average errors of 9.4-13.7%, while BADA estimation errors range from 19.5
to 28.1%. The accuracy of BADA falls notably in the case of descent. For example, in the
case of shorter flights (400 sm), the simulated descent duration computed by the BADA
model differs, on average, from the actual values by 33.4%. In contrast, registration-based
estimation fails to predict descent duration by a percentage of 17.6% in these flights.
Regarding CCD duration, the BADA based MAPE decreases with distance. For long
flights (longer than 2500 sm), MAPEccp is equal to 4.9%. Our results suggest that
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BADA'’s accuracy on descent duration deteriorates due to a higher rate of descent (ROD)
than the actual. BADA typical profiles have an average ROD equal to 2230 feet/minute,
while the corresponding value is equal to 1283 feet/minute for the registration-based
typical profile estimation. Analogous deviations appear in the case of the rate of climb
(ROC), where BADA-based typical value is 2157 feet/minute and registration-based is
equal to 1588 feet/minute. The actual climb and descent rates vary in practice due to air
traffic control constraints, variations in the wind profile and other local conditions.
However, BADA parameters are global and cannot take into account the particular factors
which influence aircraft operation characteristics. To account for the local aircraft
operation characteristics and improve the modelling accuracy of the BADA-based flight
profile, BADA enables the users to modify the BADA default values. This requires more
detailed information on aircraft performance and local conditions which are usually not
widely available. Finally, Table 3.5 indicates that although cruise and CCD prediction
errors decrease with distance, this is not true for climb and descent prediction errors. This
behavior is explained by the share of the cruise part within the climb-cruise-descent phase.
Analysis of the data shows that the cruise phase holds 38-51% of the CCD cycle for short
flights (500 sm) depending on the aircraft type and the profile estimation method, while
this proportion increases to 84-89% for longer flights (2500 sm). Thus, although descent
and climb prediction errors are still high for long flights, they are eliminated when the

CCD prediction error is considered.

The prediction accuracy of the two methods is further clarified in the following figures.
Figure 3.17 plots the MAPE prediction errors of the CCD duration and Figure 3.18
illustrates the RMSE of the rate of descent by aircraft type. Based on Figure 3.16 a
variety of frequently employed aircraft types in the different distance clusters are
considered: Airbus 321 (A321), Boeing 737-700 (B737), Boeing 737-800 (B738) and Boeing
757-200 (B752). Both figures show that BADA errors are generally higher than those of
the registration-based estimation for all aircraft types and distance clusters. B738 is more
accurately predicted in terms of CCD duration and rate of descent by both methods in
comparison to the other aircraft types. Figure 3.17 also indicates that the percentage
errors have a decreasing trend in relationship with flight distance in approximately all
circumstances. In contrast, the RMSE of the rate of descent does not decrease with

distance, while in some cases the error increases with distance.
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Figure 3.18. Root Mean Square Errors of the rate of descent by aircraft type
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Figure 3.19 presents the climb and descent rates averaged by aircraft type. These values
correspond to average values for all distance clusters. As already stated, it can be seen
that BADA-based estimation result in higher rates of climb and descent than the actual.
However, the actual climb and descent rates are lower and vary due to air traffic control
constraints, variations in the wind profile and other local conditions. BADA parameters
are global and cannot take into account the particular factors which influence aircraft

operation characteristics.

The results demonstrate that there is a large discrepancy of flight characteristics between
BADA-based and registration-based approaches. Similar results are reported in Hrastovec
and Solina (2014), who compare the BADA performance model with a machine learning
model. Based on their results, on average BADA failed to predict descent by 40.75% and
climb by 27.31%. These values are close to our results presented in Table 3.5. The extent
to which these deviations in flight characteristics affect CCD fuel consumption is

addressed in the next section.

3000 Average Rate of Climb [feet/min] Average Rate of Descent [feet/min]
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Figure 3.19. Average Rates of Climb and Descent by aircraft type

3.7 Carbon emissions results
3.7.1 CCD-level CO2 emissions results

Regarding the CCD cycle, the fuel burn and CO2 emissions for all combinations of
“aircraft-distance-direction” is calculated by the methods described in Section 3.3.1. The

results are grouped by the studied distance clusters in Table 3.6.
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Table 3.6. CCD CO; emissions aggregated by distance cluster

BADA-based estimation Registration-based estimation
Distance Average CCD  Average cruise Average CCD  Average cruise Aco2 CCD [%]
cluster  COz emissions COs2 emissions rate CO2 emissions COsz emissions rate (BADA /registration)

[tn] [kg/min] [tn] |kg/min]
400 sm 5.90 115.9 6.72 116.2 -12.2%
500 sm 6.76 108.3 7.89 108.5 -14.4 %
750 sm 9.79 105.9 11.02 106.0 -11.2 %
1000 sm 14.08 117.0 15.41 117.1 -8.6 %
1500 sm 24.94 138.1 26.20 138.2 -4.8 %
2000 sm 35.26 151.2 36.78 151.3 -4.1 %
2500 sm 50.04 171.9 51.36 171.9 -2.6 %
>2500 sm 69.36 207.6 71.14 207.7 -2.5%

It is observed that CO2 emission calculations do not vary significantly between the two
altitude estimation methods, especially for longer flights. The last column indicates that
the difference in COz2 values between the two typical profiles decreases with distance while
the BADA-based estimates are lower than the registration-based results. For example, the
COz2 emissions computed for long-haul flights (longer than 2500 sm) by the two methods
differs by 2.5%. For shorter flights, the difference is sharper, 14.4% and 11.2% for
distances of 500 sm and 1000 sm respectively. Overall, the typical profiles calculated by
BADA underestimate fuel burns and COz2 emissions in comparison to registration-based
profiles, while the discrepancies are attenuated with distance. A closer look at Table 3.5
reveals that the share of climb and descent phases in the overall flight explains the above
observed pattern. Climb and descent phases are responsible for the large differences in the
two estimation procedures as shown in Table 3.5. In long flights, the climb and descent
phases form a relatively small part of the entire CCD cycle and the cruise phase plays the
most important role on fuel and CO2 emissions computations. As indicated in Table 3.6,
the cruise CO2 emissions rate difference resulting from the two methods ranges from 0.25%
for short flights (400 sm) to 0.05% for longer flights (>2500 sm). Therefore the CCD fuel
burn and CO2 emissions estimates of the two typical profiles are close and practically

identical over long flights.

For specific aircraft types, the above deviations of fuel estimates may significantly differ
from average values. Figure 3.20 illustrates the amount of CO2 emitted during the CCD
cycle by distance group for four aircraft types. Calculations are based on the typical
profiles extracted by the two methods and on the use of the BADA fuel flow coefficients
for the determination of fuel flow rates. The carbon emissions of the registration-based
typical profiles are illustrated in blue. In red, we depict the emissions of the BADA-based
typical profiles. In all cases, registration-based typical profiles lead to slightly higher
carbon emissions than the BADA-based profiles. In some cases emission levels are almost
indistinguishable. B752 exhibits the most notable difference in emission estimates. The
impact of orientation is also considered; different plots are given for westbound
(continuous line) and eastbound (dotted line) flights. COs2 emissions are higher for
westbound flights due to their higher flight duration (see Figure 3.7). Figure 3.20 indicates

the difference in emissions levels between various aircraft types. Heavier aircraft such as
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B752 produce approximately 1.5-2 times more CO2 emissions compared to the lighter
aircraft B737.
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Figure 3.20. CO2 emissions calculations by aircraft type

3.7.2 Uncertainty on the initial aircraft mass estimation

The construction of BADA-based typical profiles depends on estimates of the aircraft
weight at the start of the CCD cycle. Any uncertainty in the computation of the initial
aircraft weight is translated into uncertainty in the fuel burn and emissions estimates. To
explore the effect of this aircraft weight uncertainty on our estimates, we conduct
sensitivity analysis. Figure 3.21 shows the sensitivity results for six aircraft types (A319,
A321, B737, B738, B752 and MD82). The x-axis represents the percentage change in the
estimated aircraft mass (where aircraft mass is estimated based on Section 0). The upper
and lower values of the aircraft mass used in the analysis are bounded by the minimum
and maximum weight respectively for each aircraft type. The lower bound refers to

operating empty weight while the upper bound is the maximum aircraft payload. Both
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values are available from BADA performance tables. The y-axis represents the percentage
change in the CCD aircraft fuel.

The slope of the curves suggest that one percent increase in the initial aircraft mass has a
larger impact on CCD fuel than an equivalent decrease in aircraft mass. In particular we
observe that an increase of 10% in aircraft mass results in 7-9% increase in CCD fuel burn,
while a similar decrease in aircraft mass may lead to a 5.8-8% decrease in CCD fuel burn
depending on the aircraft type. The sensitivity analysis shows that the fuel burn and CO2
emissions estimates of BADA-based typical profiles are sensitive to the initial aircraft mass

estimation.

-40% 10% 20% 30% 40%

Change in CCD fuel

-30%
Change in estimated initial aircraft mass

OB752 =A319 WA321 ABT737 XB738 XMD82

Figure 3.21. Sensitivity analysis of CCD fuel with respect to aircraft mass

3.8 Conclusions

In this chapter a tool is developed to compute aircraft fuel burn and carbon dioxide (COz2)
emissions for any given itinerary within the U.S. airspace. For the CCD cycle, typical
altitude profiles are estimated using two estimation approaches and a wide range of flight

distances and aircraft types.

The first estimation method uses a novel combination of clustering and landmark
registration techniques. This method exploits the information of the entire trajectory of
historic flights. The second estimation method relies on the point mass BADA model,
which has been used by several researchers in the past. With this method, the aircraft
altitude profile is constructed based on standard airline procedures described by aircraft-

specific operating parameters.

The operational characteristics of the typical altitude profiles obtained by the above
methods are compared. The registration-based method performs significantly better than
the BADA-based estimation. This is explained by the fact that the registration-based
method fundamentally relies on operational data and can capture actual flight performance
more reliably. Subsequently, the aircraft profiles were used to compute fuel consumption
and COz2 emissions across three hierarchical layers: aircraft-specific, distance-specific and
network-wide. Big datasets of air traffic and flight track information over a wide range of

U.S. domestic flights were employed in the above analysis.
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It was found that despite the substantial difference in the calculation of the flight
characteristics among the two profile estimation methods, the difference in the estimates of
fuel consumed over the CCD phase is less pronounced. In a nutshell, BADA typical
profiles burn less fuel than registration-based profiles, while the discrepancies fade with
flight distance. The two latest versions of EMEP CORINAIR, an aircraft fuel consumption
database, were also used for comparison and it was found that its last version (EMEP
CORINAIR 2013) gives similar results with our methods, especially for the registration-
based profiles.

Overall, our comparisons with past emission studies and the widely-used EMEP
CORINAIR database suggest that our method, which combines (i) the use of ICAO
Engine Exhaust Emissions databank for the LTO CO2 emissions and (ii) the
implementation of BADA fuel flow coefficients on the registration-based typical profiles,
provides reliable CO2 emission estimates for large scale networks, similar to our study U.S.
airline network. The estimated CO2 emissions act as input in Chapter 6, where the

market-based environmental policy on air transport industry is simulated.

67






4 Passenger demand for air transport

Travel demand analysis constitutes an important part of airport planning. Demand
analysis is also a necessary condition for efficient decision making when pricing policies or
other regulatory measures are under consideration, since it can demonstrate how the
change of certain key factors after the implementation of a policy, may affect travel
demand. Aggregate data (either time-series or cross-sectional) are publicly available and
form a rich resource for demand analysis. In this dissertation, aggregate market-level data
is assumed to be observed by the researcher. This chapter presents the passenger demand
model for air transport. First a general formula for the air transport demand function is
presented and, then, the air travel demand model based on discrete choice analysis is
described.

4.1 Air travel demand function

A demand function connects the dependent variable (transport demand) to some
explanatory variables, which constitute the factors considered to affect demand. A general

formula of air travel demand function is given by:

q=f({xe) Eq. 4.1

where ¢ is the dependent variable (level of demand), p is the ticket price, x are
explanatory (or independent) variables affecting travel demand such as trip distance, level
of service and other characteristics related to the specific itinerary, the passenger and so
on. ¢ is the random term of demand. The dependent variable q may be represented by
various indicators such as the number of passengers, the number of passenger kilometers or

the itinerary market share depending on the type of the demand model used.

This dissertation models city-pair air passenger demand. In a given network, there is a set
of Origin-Destination (O-D) cities. In an O-D city pair, potential passengers may have
several travel choices; a passenger may choose to travel by air, travel by another transport
mode or not travel. If the passenger chooses not to travel by air or not to travel at all, we
say that the non-air alternative is picked. If the passenger decides to travel by air, he/she
may choose among several route alternatives. Within the air alternative, they may choose
from different routes (different O-D airports and direct or non-direct links) offered by
different airlines. Therefore, air travel demand is modelled in route-airline level, simply

differentiating routes by airlines.
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Figure 4.1 illustrates the definition of route-airline alternatives in an O-D city pair. For
example, the city pair of Chicago and Pittsburgh (O-D city pair in green) is served by four
different route-airline alternatives, including one non-direct and three direct links, as
presented in the attached table of Figure 4.1. These air alternatives serve the same O-D
cities but can employ different connecting airports or can be offered by different airlines.
For example, Alternative 2 differs from Alternative 3 in the fact that the ticketing airlines

are not the same.

LEGEND
i [] O-D cities
Chicago 77 City of ting airport
Metropolitan Area 1ty ol connecting airpor
ORD — Alternative 1
‘; """""""""" Alternatives 2 & 3
MW |~ == = e, = - Alternative 4
Route-airline alternatives I "‘—~- ......

(0] C D |Airline

1 |ORD|DTW| PIT | DL .

2 |ORD| - PIT | UA Pittsburgh -

3 |ORD - PIT | AA Metropolitan Area
4 |MDW| - PIT | WN

Figure 4.1. Definition of route-airline alternatives in an O-D city pair
Figure notes: O: Origin airport, C: connecting airport, D: destination airport, see Appendices B-1

and B-3 for the airport and airline abbreviations respectively.
The following terminology is used in this dissertation:

e Market: A market is defined as a directional O-D city pair. This means that the
market “Chicago-Pittsburgh” illustrated in Figure 4.1 is different from the market
“Pittsburgh-Chicago”. This definition helps to capture potential effects on demand
due to different characteristics of the origin city than those of the destination city.
In a market there are airline connections, itineraries and segments.

e Airline connection: Airline connections represent the potential route-airline
alternatives the passengers may choose if the decide to travel by air. A connection
is a unique combination of Origin-Connecting-Destination airports and ticketing
airline.

e Segment: A segment is defined as the non-stop flight between two airports.

e [Itinerary: An itinerary is a sequence of flights from a passenger’s origin to his/her
destination. An itinerary may contain only one segment (i.e. a direct itinerary) or

more than one segment (i.e. a connecting itinerary).

Our basic unit of observation is the unique combination of “Origin-Connecting-Destination
airports and ticketing airline” which is referred to as “airline connection”. The air traffic of
an airline connection j (gjm) within a city-pair (market) m is equal to the total potential
demand of the city-pair (Qm) times the market share of this airline connection (MSjm), as

given in Eq. 4.2.
Gjm = Qm *MSjm Eq. 4.2

The total potential demand (Qm) represents the potential number of travelers between the

O-D cities and can be modelled by gravity-type models as a function of demographics and

70



Passenger demand for air transport

socioeconomic characteristics of the market. A common approach adopted in the empirical
literature is to estimate Qm on the basis of a socioeconomic variable, i.e. Qm=k-Mm, where
k is a proportionality factor and Mm is the socioeconomic variable, such as population.
This approach provides reportedly reasonable estimates of potential demand if k is set
large enough (Hsiao and Hansen, 2011). Based on Berry and Jia (2010), this dissertation
uses O-D cities’ populations as the market-specific socioeconomic variable and assumes
that k is equal to 1. To model the connection’s market share, discrete choice models are

employed as described next.

4.2 Discrete choice analysis

Discrete choice models describe decision makers’ preferences amongst alternatives. Discrete
choice analysis relates to demand modeling in the sense that the demand for a specific
alternative is represented as the collection of choices made by the decision makers
(Garrow, 2010). In this section, an introduction on discrete choice models is presented. We
start with an overview on random utility theory and, then, focus on the model which will
be used in this dissertation to predict how the air travel pattern may be affected by the

implementation of a carbon emission fee.

Discrete choice models estimate the probability of a decision maker to select a good from a
finite set of alternatives, based on the attributes of the alternatives and on his preferences
(Ben-Akiva and Bierlaire, 2003). According to Domencich and McFadden (1975), the
choice process is characterized by four elements: a decision-maker, the alternatives
available to the decision-maker, attributes of these alternatives and a decision rule. A
decision maker may represent either an individual or a group of individuals. In this
dissertation, decision makers are the passengers who aim to travel on an O-D city pair
(market). Alternatives represent the competing airline connections over which choices
must be made. Each decision-maker is faced with a set of alternatives which exhibit three
characteristics (Train, 2003):

o Mutually exclusive alternatives: Passengers (decision makers) make “discrete
choices’, which means that they choose only one alternative from the choice set.
o Exhaustive choice set: All possible alternatives are included.

o The number of alternatives must be finite.

Attributes are characteristics of the alternatives that decision makers take into account
during the choice process. Finally, the decision rule is the process used by the decision
maker to value the attributes of the alternatives in the choice set and determine his/her
choice. In travel behavior analysis, the decision rule of the traveler is usually based on
utility theory, where the decision maker’s choice lies on the assumption of traveler’s

utility-maximizing behavior (Ben-Akiva and Bierlaire, 2003; Train, 2003).

In a discrete choice experiment, a passenger i faces a choice among .J alternatives and
would obtain a certain level of utility from each of them. Each alternative j=I,...,J is
characterized by a utility Uijj, which is specific to passenger i and alternative j. According
to utility maximization theory, the passenger chooses the alternative that provides the

greatest utility. Passenger i may choose alternative j over k if and only if:

Uij > Uik ,VJ * k Eq. 4.3
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This utility is based on the attributes of the alternative and the passenger and is assumed
to be known to the passengers. However, the researcher does not observe all attributes or
the decisions of passengers. To capture this uncertainty, utility is decomposed in a
deterministic part (Vi) and a random component (eij): Uij=Vij+eij. Vij is the systematic
component of the utility that is known by the researcher up to some parameters; ¢jj
captures the factors that affect utility but are not included in Vij, and is the sum of errors
from various sources such as imperfect information, measurement errors, omission of
attributes, but also omission of the characteristics of the traveler that influence his choice.
Since the researchers do not know ejj, they treat these terms as random. Thus, the
alternative that the decision maker chooses is random, from the researcher’s point of view;
this model is known as the Random Utility Model.

Considering the above, Eq. 4.3 can be written in probability terms as shown in Eq. 4.4
where the probability that passenger i chooses alternative j over k is equal to:

Pij = PTOb(Uij > Uik VJ * k)
= PTOb(VU + &ij > Vik + &ix Vj * k) Eq. 4.4
=Pr0b(€ik_gij<Vij_Vik VJ#:k)

This probability is a cumulative distribution. If the density of the random vector

ei={¢€il,..., €is} is denoted as f(ei), this cumulative probability can be rewritten as:

Py = f I(ep — &5 <Vij = Vi Vj # k)f(&)dg; Eq. 4.5
&

Where I(-) is the indicator function, which is equal to 1 if the expression in the parenthesis

is true and 0 otherwise!?2. We assume there is a continuum of passengers in each market,

so that this probability is equal to the aggregate market share of product j in market m

among the subpopulation with characteristics i.

Different discrete choice models can be derived under different specifications about the
density of the stochastic part of the utility. The most widely used discrete choice model is
the Multinomial Logit model (MNL), where it is assumed that the stochastic term is
Independent Identically Distributed (iid) with a type I extreme value distribution (also
known as the property of Independence of Irrelevant Alternatives-IIA). This independence
means that, across passengers and airline connections, the random term of utility (ei) for
one alternative is independent of (uncorrelated to) the random term of utility for another
alternative. This assumption may be inappropriate in some cases since the random terms
of the alternatives may be mutually correlated. Consider the nesting structure of the MNL
model in Figure 4.2(a). Assume that alternatives 0 to k (which include one non-air
alternative and k airline connections) equally share the market (they have the same
market shares). The assumption of independence in MNL models implies equal
competition between all alternatives and thus a change in characteristic of one of these
competing alternatives (from 0 to k) will have the same impact on the market shares of
the other alternatives. In other words, MNL models assume ITA and imply proportional

substitution across alternatives. However, in the case of Figure 4.2(a) airline connections

12 More details on the mathematical framework of discrete choice models can be found in Ben-Akiva
and Bierlaire (2003), Ben-Akiva and Lerman (1985), Garrow (2010), Ortuzar and Willumsen (2011),
Train (2003).
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are likely to be more similar to each other than they are to the non-air alternative due to
shared attributes which may be included in the stochastic term of the utility function.
This may lead to correlation between the errors associated with airline connections, a
violation of the assumptions which underlie the derivation of the MNL. If IIA property

does not hold, then the coefficients estimated by a MNL model will be inconsistent.

To avoid the independence assumption within MNL, Generalized Extreme-Value (GEV)
models may be developed (Train, 2003) based on a generalization of the extreme-value
distribution. The most widely used model within the GEV family is the Nested Logit (NL)
model. According to Train (2003), a Nested Logit model is appropriate when the set of
alternatives can be grouped into subsets, called nests, in such a way that the following

properties hold:

o IIA property holds within each nest: For any two alternatives in the same nest, the

ratio of their probabilities is independent of the attributes or existence of all other
alternatives. The premise is that other alternatives are irrelevant to the decision of

choosing between the two alternatives in the pair.

o IIA does not hold for alternatives in different nests: For any two alternatives in
different nests, the ratio of probabilities can depend on the attributes of other

alternatives in the two nests.

Following these properties the substitution patterns of the alternatives become more
flexible. An improvement in the attributes of one alternative draws proportionately from
other alternatives in the nest, but disproportionately from alternatives outside the nest. In
the nesting structure shown of Figure 4.2(b), airline connections are grouped in one nest
(Nest 1). The non-air alternative (Alter. 0) is separated from the airline connections and is
assumed to be the only member of Nest 0. With this nesting structure, the ITA property
holds among the airline connections in an O-D city-pair (market), but does not hold
between the non-air alternative and each of the airline connections. Potential travelers are
more likely to switch from one airline connection to another, than from one airline

connection to the non-air alternative.

O-D city pair (market) O-D city pair (market)

Non-Air,

Alter. 0 Alter. 1 Alter. 2 ... Alter. k-1 Alter. k
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(a) Multinomial Logit Model (MNL) (b) Two-Level Nested Logit Model (NL)

Figure 4.2 Nesting structures: MNL and NL models
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(Figure Notes: Oy, ..., Ou: Origin airport, Ci, ..., Cp: Connecting Airport, Dy, ..., Du: Destination airport,
Az, ..., Ay: Ticketing airline, Alter.1,...,Alter. k: Airline alternatives)

4.3 Specification of the air travel demand model

As discussed earlier, this chapter estimates an aggregate demand model for air travel in an
O-D city pair, where air travel is served by various airline connections (the definition of
airline connections in an O-D city pair is depicted in Figure 4.1). A passenger who wants
to travel within a market (a pair of O-D cities) may choose to travel by air, travel by
another transport mode or not travel. If the passenger decides to travel by air, he/she
chooses among several airline connections j (j=1, 2,...,J). If the passenger chooses not to
travel by air, we say that the non-air alternative is picked (j=0). This choice formulation
suggests the use of a Nested Logit model, to model the market share function. The choice
set of a passenger is partitioned into two nests: (i) air and (ii) non-air. The air nest
includes all airline connections. The non-air nest includes travelling by other
transportation modes (such as car, train etc) or not travelling at all. The nesting structure
is shown in Figure 4.2(b)'3.

The utility Uij that passenger i obtains when choosing alternative j is given by:
Uij = xB —ap; +§; + &; Eq. 4.6

where pj is the ticket price of connection j and xj is a vector encompassing all observable
characteristics; it includes features associated with the itinerary, the airline and the airport
namely connection-specific, airline-specific and airport-specific variables; a detailed
description is given in Section 4.3.2. Parameters 8 and « are to be estimated and represent
the preference for the different attributes of the airline connections and the marginal

disutility of price increase respectively.

An important part of this specification is the term &j. This term is used to capture the
characteristics of the airline connection that are unobserved to the analyst (recognizing
that publicly available aggregate data may omit some of the connections’ attributes), but
are observed by the potential passenger during his travel decision process. Note that & is
different for each airline connection j but is the same across passengers and so it may be
thought as the mean of passengers’ valuations of the connection’s unobserved
characteristics (Berry, 1994). All else equal, travelers are more willing to choose the
connections for which & is high. & may include exact departure time, in-flight food
quality, wi-fi equipment, while other attributes may be related to ticket restrictions, in-
advance ticket purchase, frequent-flyer tickets etc. For estimation, the existence of &j
implies that ticket prices, as well as other choice variables, could be endogenous (e.g. &j
may be correlated with ticket price). In Eq. 4.6, the part x;f — ap; + §; is common across
all passengers (it is only depending on the connection’s attributes) and in consistency with

Berry (1994) it is called the “mean utility” for airline connection j.

The last part of the utility is the random error term ejj. Based on Nevo (2011), this term is
essential to explaining the fact that passengers who face the same choice set (and prices)
may make different choices. The stochastic term represents the distribution of passenger

preferences about the mean & (Berry, 1994). As already mentioned in Section 4.2, different

13 A Multinomial Logit demand model is also developed for comparison purposes (see Figure 4.2(a)).
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discrete choice models can be derived under different specifications about the density of
the stochastic part of the utility. Multinomial logit is derived under the assumption that e
is iid extreme value across passengers and airline connections. The Nested Logit model is
obtained by assuming that the random term of utility ei={ei1,..., €is} has the following

cumulative distribution:

K Ak
exp| — Z (Z e‘gif/’lk) Eq. 4.7
k=1 JEB

Based on Berry (1994), the stochastic term eij can be expressed as eij=vi(A)+Aeij. The
parameter A is a measure of the degree of independence within airline alternatives in air
nest g. In accordance, (1-A) is a measure of correlation in unobserved factors within each
nest. Higher value of A means greater independence and less correlation. To be consistent
with utility-maximizing behavior for all possible values of the explanatory variables, the
value of A must be between 0 and 1. When A=1 within airline market correlation goes to
zero and the nested logit reduces to the standard logit model. Values of A=0 and A=0.5
indicate perfect and moderate correlation respectively among the airline alternatives in air
nest g. vi(A) is a random variable that is constant across airline connections (within the air
nest) and differentiates them from the non-air nest. ejj is an independent and identically
distributed (iid) random variable across passengers and airline connections following the
extreme value distribution. According to Berry (1994) and Cardell (1991), if ejj is an iid
extreme value random variable, the variable vi(A) follows a distribution such that

eij=Vi(A)+Aeij is an extreme value random variable.

The cumulative distribution of the random term of utility eij gives rise to the following

market share function of alternative j € J; (Train, 2003).

A-1
o (xjB=apj+&)/2 (Zne " e(xnﬁ—apn+fn)/z)
MS] = P y Eq. 4.8
vk (Zne " e(xnﬁ—apn+fn)/z)

where x;f —apj+¢; denote the mean utility of alternative j, Jg is the set of airline

connections in the air nest (nest g), K are the number of nests in the passengers’ choice set

(in our case it is equal to 2, i.e. the non-air and air nest).
If we set Dg = Zjejg e*iB-apj*+3)/A then Eq. 4.8 is equal to:

exjB—apj+&j/A
MS; = ———— Eq. 4.9
j 1-1 2 q. 4.

Dy~ Xg (Dg)
The NL model can be decomposed in two logit models so that the NL aggregate market
share MS; of connection j in market m can be expressed as the product of two logit
probabilities: the product of the marginal share of air transport MSg (upper level involving
nest choice) and the conditional share of a specific connection j MSj/, given that air

transport is chosen (lower level).
MS; = MS, - MS;,, Eq. 4.10

The conditional share of a specific connection j, given that the air nest Jg is chosen is

given by a logit probability as follows:
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eXxjB—apj+&j/a

MS;,, =
j/g Zjejge(xjﬁ—apj+fj)//1

Eq. 4.11

Since we work with aggregate market shares, at true parameter values we should have:
MS; = 1\713'] (x,p,&,a,B,1), where 1\73] and MS;j denote the predicted and true market shares
respectively. In the data MSj is observed and thus model parameters may be defined by
matching predicted and actual market shares. However, &j, which enters market shares, is
unknown to the researcher, while it enters in a non-linear fashion and is potentially
correlated with some explanatory variables. Berry (1994) proposes an estimation procedure

which transforms Eq. 4.8 so that parameters enter linearly and exploits the market share
MSo.

Consider that for each market we have a set of J+1 market share equations (J airline
connections and the unique non-air alternative) in the J+1 unknowns &o,&1, ..,&5. In other
words, the system is: MS, = mO(VO, ...,V]), MS, = IV7§1(VO, ...,V]),...., MS; = MS‘,(VO, ,V])
Since 1 = Z§=0 MS; by construction, the equations are linearly dependent and we need to
make some normalizations. As the characteristics of the non-air alternative are not
identified, the standard practice (Berry, 1994, Nevo, 2011) is to normalize the systematic
utility of non-air alternative to zero (Vo=0— Uir=eio) and take the difference between the
natural logarithms of the market shares of the airline connections minus the non-air
alternative. The zero utility normalization for the non-air alternative does not mask the
systematic quality differences across the airline connections but we should keep in mind
that the utilities from the various alternatives are now actually the differences in utility
between the choice of the particular airline connection and the non-air alternative. The use
of the non-air alternative in the demand model also plays a significant role because it
allows travelers to avoid flying if all airline connections become less attractive. For
example, if ticket prices increase at a level where passengers do not prefer to travel by air,
the market share of the non-air alternative will increase. Given that Vo=0—Do=1 (as Dy =

e¥o/2 = ¢0 = 1), the market share MSp of the non-air alternative is given by Eq. 4.12.

_ 1

T o N4
% (Dg)

Given the utility function in Eq. 4.9 and the market share of the non-air alternative in Eq.

So Eq. 4.12

4.12, the resulting demand equation gets the linear regression form of Eq. 4.13. The full
computational process to obtain Eq. 4.13 is presented in Appendix A.

InMS; — InMSy = x; — ap; + (1 = 2) - InMS; ;4 + & Eq. 4.13

The dependent variable is formed by the log difference of market shares minus the non-air
option. The explanatory variables include the vector of observed characteristics xj, the
price of flight pj and the conditional market share MSj/. Observed characteristics xj may
include frequency, distance, airline dummies and other factor affecting travel demand.
Aggregate data on the connections’ prices and attributes are obtained from publicly
available datasets. The estimation of discrete choice models using aggregate data from the
U.S. Department of Transportation is widely spread in the airline industry. The
unobserved characteristic & acts as the disturbance term. 3, « and A are the unknown

parameters that need to be estimated. A critical issue when estimating econometric models

76



Passenger demand for air transport

is endogeneity. This occurs when one or more independent variables are correlated to the
disturbance term of the model. In these cases, standard Ordinary Least Squares (OLS)
procedures are not directly applicable. In our model, ticket- or flight-level unobserved
attributes that are captured by the term & may be correlated with ticket price pj and
within-group (conditional) market share MSj/. Thus Eq. 4.13 suffers from endogeneity
since two explanatory variables are correlated with the disturbance. This issue is addressed

by the use of Instrumental Variables methods as explained in Section 6.2.

In this research, the NL model is assumed to express the decision process of travelers
within markets. However, results are also presented for the Multinomial Logit model for
comparison purposes, where the demand equation takes the form of Eq. 4.14. The full

computational process followed to obtain Eq. 4.14 is presented in Appendix A.
InMS; — InMS, = x; — apj + &; Eq. 4.14
4.3.1 Dependent variable and Market size

The dependent variable is formed by the log difference of market shares minus the non-air
option. The market share of an airline connection MS; is calculated by dividing the
number of passengers choosing the specific connection by the market size. In each market,
the market share of the non-air alternative MSp is computed as 1 —ZleMSj (for all J
products in the market). The number of passengers choosing the specific connection is
obtained from publicly available air traffic databases (see Chapter 7). With regard to
market size, an accepted approach adopted in the empirical literature is to assume a
“market potential” on the basis of a socioeconomic variable, so this dissertation uses O-D
cities’ populations as the market-specific socioeconomic variable. In particular, market size

Qm is defined as the geometric mean of O-D cities’ populations.

Qm = +/POPy - POPy Eq. 4.15

where POPo and POPp are the population of the Origin and Destination city respectively.
Each Origin and Destination city is linked to one Metropolitan Statistical Area (MSA). A
detailed list of the airports and cities included in our sample along with the associated
MSAs is presented in Appendix B-2. MSA populations for the study year 2012 are
obtained from U.S. Census Bureau (2012).

4.3.2 Determinants of air travel demand

The primary criterion when selecting air travel demand variables is that they represent
important determinants of demand. Selecting suitable explanatory variables is one of the
key elements to a successful causal model. First, a review on previous air travel demand
studies was conducted, which identified the most frequently used explanatory variables
(see Table 2.3). Considering that this dissertation addresses air travel demand on
aggregate level, macro variables were mainly investigated. Explanatory variables found in
the literature are adjusted or modified to the research needs of this study, while new

variables are also specified.

Following the above approach, this study considers demand variables which are related to
the airline-route characteristics, the airports and the market served and the airlines. The

demand variables are grouped in four categories as shown in Figure 4.3. Furthermore, the
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considered explanatory variables are chosen so that they are available from reliable data
sources. In particular, our data sources provide demand information on the number of
passengers transported between O-D pairs, itinerary information (ticketing airline, number

of stops etc), and price information (quarterly fare charged by each airline for an O-D

pair).

! - Ticket price \ /

- Number of stops ! - Slot control

\
1 1
1 1
- Frequency Airline-route Airport - Delays '
| - Morning & late- specific specific - Alternative !
1 afternoon AR . airport |
1 .
\ departures ,

N e e e 3 I -’

“ ___________ Airline ..., i Market __________ \
: - Airline ifi i - Market :
1 dummies specllic specilic distance |
\ 7

Figure 4.3. Drivers of air travel demand
o Ticket price

On the demand side an increase in the price of a good will typically lead to a reduction in
the quantity demanded, ceteris paribus. This is also applicable to air travel where ticket
price is an important determinant of demand. Thus ticket price has been widely used in
itinerary choice models. In some cases where ticket prices are unavailable, other cost
shifters, such as jet fuel price, are used as a proxy for airfare. In this work, the price of the
sold tickets for round-trip itineraries is derived from publicly available data sources and
thus the passenger-weighted average ticket price for each airline connection (unique
combination of Origin-Connecting-Destination airports and ticketing airline) is calculated.

Price discrimination techniques may lead to different ticket prices even for the same
itinerary offered by the same airline. Airfare deviation may be justified by the ticket class
(business or economy class), the number of days the ticket was purchased before the flight
and other ticket or travel restrictions (such as non-refundability, minimum stay
requirements and Saturday-night stayover). However, our dataset does mnot contain
information on ticket restrictions and does not provide ticket prices separately for business
and economy classes. In the absence of more precise data, passenger-weighted average

ticket price for each airline connection may account well for O-D travel price.

Such ticket restrictions or unobserved information are captured by the introduction of the
term &j in the demand model (Eq. 4.13) as already explained in previous sections. This
assumption implies that ticket price is endogenous since it is correlated with the
unobserved demand characteristics &j. Since this endogeneity issue may lead to biased
parameter estimates if OLS is used, Instrumental Variables methods are employed to cope

with endogeneity (see Sections 6.2 and 6.3).
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o Number of Stops

The variable “number of stops” is included in order to explain the intuition that, all else
being equal, a direct air travel connection is more preferable than a connection with
intermediate stops. The variable “number of stops”is calculated as the number of layovers
within the round-trip itinerary and may take three values: 0 if both outbound and return
flights are direct, 1 if either the outbound or the return flight is one-stop, and 2 if both
inbound and outbound flights are one-stop.

o Distance

Distance is assumed to have both direct and substitution effects on air travel demand
(Bhadra, 2003). Direct effects are related to the propensity to travel and accounts for the
fact that travel demand may be negatively affected by distance for very long-distance trips
where passengers' willingness to travel is decreasing. From this point of view, a negative
coefficient of distance could be expected. On the other hand, distance is considered as an
important factor when a passenger chooses travel mode. For example, for short-distance
trips both airplanes and ground transportation are competing, while for longer trips air
transportation is becoming more competitive. From this point of view, distance is expected
to have a substitution effect on air travel demand; thus a positive impact of distance on
air travel demand is expected in this case. The latter effect is essential for our model which
takes into account the non-air alternative. In this study, distance is introduced in the
demand model as the O-D market distance. We should note that market distance is the
same for all airline connections competing in a given market. In this way, market distance
does not influence demand assignment within the airline market, i.e. the allocation of total
O-D city pair demand to the available airline connections. However, it affects demand

generation by influencing the market share of airline connections versus the non-air

alternative.
o Frequency

Frequency is an important factor in passenger's travel decision-making process, since
passenger's utility is expected to increase with higher flight frequency. Since flight
frequency is a segment characteristic, a non-direct itinerary includes several frequency
variables. For non-direct itineraries, frequency could be calculated as the average number
of segment departures. However, the minimum frequency is assumed to be more critical
than the averagel4 and thus the frequency variable is here calculated as the minimum of
segment frequencies. For direct (non-stop) itineraries, itinerary frequency is equal to
segment frequency. Following Ben-Akiva and Lerman (1985) and Hansen (1990), the
frequency is introduced in logarithmic form for two reasons. First, the effects of adding an
additional flight on passenger’s utility (i.e. marginal benefit of frequency) are expected to
decrease for increasing frequencies. Second, itinerary frequency is an attribute reflecting
the “size” of an alternative and the logarithmic form is most suitable for representing such

variables.

14 Tt is assumed that adding one more flight on the segment with lower frequency would attract
more passengers (higher increase of utility) than adding one more flight on the segment with higher
frequency.
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o Slot control

Congestion is expected to decrease passenger’s utility and, thus, airline connections which
pass via congested airports may be less preferred. The variable slot-control is used in the

demand model in order to differentiate a more congested airport from the rest airports.

To manage congestion, slot controls are implemented by limiting the number of scheduled
flight operations per hour at some airports. TATA's Worldwide Slot Guidelines (IATA,
2015) group airports in three levels according to their degree of congestion: Level 1 (Non-
coordinated airport, where capacity adequately meets demand), Level 2 (Schedule
facilitated airport, where there is potential for congestion during some periods of the day,
week, or season), or Level 3 (Fully coordinated airport, where demand exceeds capacity).
All airlines operating at a Level-3 airport must have allocated slots (IATA, 2015). In the
United States four airports are slot-controlled: Newark Liberty International Airport!®
(EWR), John F. Kennedy International Airport (JFK), LaGuardia airport (LGA) and
Ronald Reagan Washington National Airport (DCA) (GAO, 2012).

By including the slot-control variable in the demand model, we capture the potential
negative effect of congestion in slot controlled airports on air travel demand. The variable

is equal to the number of slot-controlled airports in the round-trip itinerary.

o Delays

On-time performance is another important factor which influences passenger itinerary
choices. There are several metrics for on-time performance of a route. The U.S.
Department of Transportation (BTS, n.d.) publishes the database “Airline On-Time
Performance Data” (OTP) which contains on-time performance data for non-stop domestic
flights by major airlines (more details on OTP database are given in Appendix C-1). In
this database, departure/arrival delays are given for each reported flight as the difference
(in minutes) between scheduled and actual departure/arrival time. Positive and negative
delays are used in order to differentiate flights that depart/arrive after (late
departures/arrivals) and before (early departures/arrivals) their scheduled time
respectively. In other words, negative arrival delay values indicate early arrivals. Another
delay indicator in OTP is determined by setting up a delay threshold of 15 minutes: if a
flight departure/arrival delay is greater than 15 minutes, it is considered as a delayed
flight. In this way, the percentage of flights whose delay is less or more than 15 minutes

can be calculated.

As in the case of frequency, delay is a segment indicator and, thus, a non-direct itinerary
includes several delay variables as shown in Figure 4.4. For each non-direct airline
connection, the following delay indicators may be obtained: (1) departure delay at the
origin airport, (2) arrival delay at the connecting airport, (3) departure delay at the
connecting airport and (4) arrival delay at the destination airport. For a direct airline
connection, only the first (1) and the last (4) indicators are observed. In Pagoni and
Psaraki (2015), we experimented with using some of these delay indicators in the demand
function. The results suggested that a one-minute arrival delay increase has a larger

impact on demand than an equivalent change in departure delay. This is because

15 The FAA was about to designate EWR as a Level 2 (from October 2016) airport under the
TIATA’s Worldwide Slot Guidelines (FAA, 2016).
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passengers prefer arriving on-time to their destination. Besides, as described below, during
the online booking process, passengers are informed only for the arrival and not for the

departure on-time performance. Thus the arrival delay is included in the demand model.
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Figure 4.4. Delay indicators in a non-direct itinerary

Suzuki (2000) notes that market shares may be influenced by passengers’ delay experience.
Besides, potential passengers may be informed on airline past delays when they book their
tickets on the Internet. In particular, most U.S. airlines report the percentage of flights
that arrived on-time or late at the destination airport of a selected itinerary. This
information is usually given for a past month during the previous quarter as shown in the
case of American Airlines in Figure 4.5. The example in Figure 4.5 corresponds to a one-
stop flight from Seattle (SEA) to Honolulu (HNL) through the Los Angeles airport (LAX)
in September 2016. The information indicate that during July 2016 this flight arrived on
time (less than 15 minutes delay) with probability 76% and arrived late (more than 30
minutes delay) with probability 7%. For the flight LAX to HNL, these percentages are
71% and 19% respectively.

Seattle to Honolulu

Flight 1 Tuesday, 13. September 2016
Departure: 1200 Seattle, United States Of America - Seattle Tacoma International
Aurrival: 14:40 Los Angeles, Uniled Slales Of America - Los Angeles Inlernalional, lerminal 8
Alrline American Airines AA 7018 Alrcraft: Boeing 737 All Series Passenger
Opetated by ALASKA AIRLINES.
Flight History o

n-

Jime Lata Cancaled
76 7 0

Change of plane required, Time between flights: 2h25min.

Flight 2 Tuesday, 13. September 2016

Departure: 17.058 Los Angeles, United States Of America - Los Angeles International, terminal 0

Amvival: 20:03 Honolulu, United States OF America - Honalulu International, terminal M

Airline American Airines AA 207 Aircraft: Airbus Industrie A321 Sharklets
Flight Histery o

n-
Time Late  Canceled

Il 19 0

Figure 4.5. Delay information for the one-way itinerary SEA-LAX-HNL by American
Airlines

Our hypothesis is that potential travelers make decisions based on information similar to

those indicated in Figure 4.5, i.e. delay information for the past quarter. As a proxy to this
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information, the delay variable of this work takes into account the connection’s on-time

performance at the quarter prior to decision.

For round-trip itineraries, we observe two arrival delays: that of the outbound flight and
that of the return flight. In other words, passengers who book round-trip tickets observe
the information in Figure 4.5 and the corresponding information for the return flight (e.g.
HNL-connecting airport, if existing-SEA). Using OTP data, we compute the percentage of
delayed (using the delay threshold of 15 minutes) arrivals (by airline) for each flight at the
quarter prior to passenger’s decision. To account for both arrival delays but have a single
explanatory variable for delays, the delay variable is constructed as the geometric mean of
the percentages for the outbound and the return flights, as shown in Figure 4.4. This value

approximates the passengers’ perception on round-trip itinerary arrival delays.

o Airline dummies

The airline dummy variables are included in order to capture whether the reputation of an
airline affects the travelers’ choice. When including dummy variables in a regression
model, attention should be paid to the dummy variable trap. This is defined as the
situation where two or more variables are highly correlated, i.e. one variable can be
predicted from the others. The solution is to drop one of the categorical variables (airlines)
and consider it as the base (reference) airline against which the other airlines are
compared. In this research, all major airlines are included: Delta (DL), United Airlines
(UA), American Airlines (AA), US Airways (US), Southwest (WN) and JetBlue (B6). The
rest airlines are represented by two other group variables which contain other legacy and

low cost airlines. The US Airways is used as the base airline in the estimation.

A negative coefficient of the dummy variable for a given airline indicates a negative effect
on utility associated with that specific airline (in comparison to the reference airline, i.e.
the US Airways). If an airline dummy is found to be not statistically significant, it means

that travelers are not affected by an airline brand when making a travel decision.

In this dissertation, the above variables are augmented with some additional attributes not

formerly used in aggregate models.

o Presence of alternative airport

Another factor that stands out as helping to explain itinerary choice in an O-D city-pair is
the presence of alternative airports nearby the passenger’s origin or destination city. This
effect is strongly evident in multi-airport regions, where the airports compete with each
other. Passengers’ airport choice (which in turn affects itinerary choice) is not only
influenced by airport proximity but also by low ticket prices and other service-related
factors (de Neufville and Odoni, 2009). Our aim is to create a variable to control for the
possibility that passengers may leave the market and fly from/to other nearby airports.
This phenomenon is generally referred to as “airport leakage” to explain that travelers may
avoid using the airports in their origin/destination cities, and use other (out-of-region)

airports to potentially take advantage of lower fares or more convenient airline services.

Several factors may influence airport choice (Malina, 2010). Since some of them have

already been considered for inclusion in the demand function (airport-specific variables),
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we now control for access distance to the airport and flight availability. When passengers
choose among alternative airports, airport proximity is one decision factor. It is assumed
that passengers will choose to drive to reach another airport to fly from/to only if it is in
close proximity with their travel origin/destination (and other factors are justified, i.e. low
price, convenient service). We assume that the distance a traveler is willing to drive to
reach an alternative airport is different for short- and medium/long-haul trips!6. This
distance is taken as 60 miles for short-haul flights (which corresponds to about 1 hour
driving) and 100 miles for medium/long-haul flights. These values are consistent with
existing evidence on airport leakage and are within the distance range given in the booking
system of various U.S. airlines. Traditionally the distance a traveler is willing to drive to
reach an alternative airport is believed to be 75 miles or less (Dresner et al., 1996,
Fuellhart, 2007, Morrison, 2001). Other empirical studies (Suzuki et al., 2004, Leon, 2011)

argue that this distance can exceed 150 miles in some circumstances.

Our approach differs from existing studies (Ciliberto and Tamer, 2009) in two points: first,
access distance is measured from the Metropolitan Statistical Area (MSA) centroid to the
candidate airport, since the traveler is assumed to originate his/her trip from this point.
Second, a candidate airport is considered as alternative only if it serves the desired
destination. The “alternative airport” variable is set equal to one if passengers have the
opportunity to choose alternative airports either at their origin or destination based on the

following conditions:

1. The alternative airport is within a 60- or 100-mile radius (depending on short- or
medium /long-haul flight respectively) from the population-weighted centroid of the
origin/destination city and

2. Tt serves the desired destination/origin in the sample period.

For a better understanding of the above process, an example is given in Table 4.1. For the
medium/long-haul flight ALB—BUR, there are two potential alternative destination
airports: LGB and LAX. Although LGB is closer to Los Angeles centroid, it does not have
a connection to ALB in the sample period and thus cannot be considered as alternative
destination airport of BUR. LAX is the alternative destination airport since it is within
100-mile radius from the Los Angeles centroid and serves a flight from ALB. For the origin
airport, BDL airport satisfies the condition of available connection with the destination
airport (BUR) but does not satisfy the proximity condition (distance is greater than 100
miles). In Table 4.1 we also present the itinerary ABQ-ALB which satisfies neither of the
two conditions and thus the variable “alternative airport” is set equal to zero.

16 Tt is difficult to assess what stage length characterizes a short- or medium/long-haul trip. In this
thesis, it is assumed that any flight of less than 750 miles flown (one-way) between O-D airports is a
short-haul flight. This corresponds to less than 2 hours flight (for direct and one-stop flights).
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Table 4.1 Alternative airport

choice definition

Itinerary under consideration Origin airport Destination airport Py
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The computation of “alternative airport”

population-weighted centroid of each MSA within our sample, since it is assumed that
passengers begin and finish their travel at these points. Geographical Information Systems
are employed in order to compute population-weighted MSA-centroids using population

data from U.S. Census Bureau (2012).

Figure 4.6 illustrates the proximity of MSA (indicated by their population-weighted
centroids) to alternative airports within 60- and 100-mile radius. It can be seen that
passengers at the Northeast and Southwest regions of U.S. have the greatest opportunity
to choose alternative airports. This is explained by the existence of many multi-airport

variable requires the calculation of the

regions, such as New York City, Washington/Baltimore, Boston Area, Los Angeles.

LEGEND

— 60-mile circle
--------- 100-mile circle

4 Airport

% Population-weighted MSA-centroid

Figure 4.6. Proximity of MSA to alternative airports within 60- and 100-mile radius
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Figure 4.7 focuses on the presence of alternative airports for BUR airport, for the case of
ALB-BUR itinerary. The value of 100-mile radius is taken as the ALB-BUR itinerary is a
long-haul flight. The passenger may choose to fly from LAX airport and then drive to the
population-weighted centroid of the Los Angeles MSA.
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Y Population-weighted MSA3

centroid ..'l D SN — —_ %
iroor : \ |
4 Airport : ‘\Los Angeles MSA
....... p Way from (original) : : l
: )
destination airport BUR ; sl gJR‘ ,
om alternative i Lim i 4 IR
...... » Way from alternative -1 g %X‘. Q
B GB b
destination airport LAX = S -
B =~ NS
¢
N

Figure 4.7. Alternative destination airport selection for the ALB-BUR itinerary

The current variable does not directly account for the case of choosing an alternative
airport because of very low ticket prices offered by a competing airline even when the
alternative airport is far away from the population-weighted MSA centroid. This impact is

directly considered by the inclusion of air fare variable in the demand function.

Such cases may occur when low cost airlines serve the market where the air fares may be
much lower than those of the full-service airlines. The following discussion is motivated by
a characteristic example from the FEuropean market and the case of Ryanair. Ryanair is a
low cost airline based in Dublin, Ireland, but operating from a variety of UK airports,
especially London Stansted. Pitfield (2007) examined several routes from TLondon to
European airports and studied the impact of Ryanair’s start-up from Stansted on the
traffic of full-service airlines operating from Heathrow and Gatwick. The author stated
that Ryanair became the dominant carrier at the expense of the full-service airlines, e.g. of
British Airways and Lufthansa in the route London-Hamburg, where Hamburg airport was
served by British Airways and Lufthansa from London Heathrow (27 miles from the center
of London) and Hamburg Luebeck (an airport 40 miles north-east of Hamburg) by
Ryanair from London Stansted (45 miles from the center of London). The author
concluded that Ryanair expanded the market and took volume of traffic from its
competitors.

In our traffic sample, four low cost airlines are active: Southwest (WN), JetBlue (B6),
Frontier Airlines (F9) and Virgin America (VX). In the following we focus on Southwest
Airlines which is the most active low-cost airline across U.S. markets (it is active in 63% of
all markets in the sample; the other LCCs have much lower presence in the sample
markets). Figure 4.8 illustrates the differences (expressed in ratios) of ticket prices between
Southwest airlines and other active airlines (both full-service and low-cost airlines) in the

markets in common. In most cases, within-market average ticket price is 1-1.5 higher than
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average Southwest’s ticket price. In addition, in a notable number of markets Southwest is
not the “cheapest” airline, which is indicated by the fact that red points are below the
value of 1. This figure shows that for the case of Southwest airlines, the price differences in
most markets are not so high in order to have similar effects with the Ryanair’s case
described above. For the other LCC airlines, for which the price differences (with other
active airlines in the market) are higher, our definition of the alternative airport may be
less suitable. However, since the other LCC airlines are not active in a large percentage of
the U.S. markets, overall it is believed that our definition of the alternative airport is

satisfied for the system-wide analysis of the U.S. airline network.

® o Ratio (Within-market average ticket price/WN average ticket price)

° o Ratio (Within-market minimum ticket price/ WN minimum ticket price)

0 200 400 600 800 1000 1200 1400
Market id

Figure 4.8. Ticket price deviations between Southwest Airlines and other airlines

o Departure time

Common experience suggests that the flight departure time plays a significant role during
the air traveler’s decision process. From the passengers’ perspective, intuitively an
itinerary is more attractive if it is offered in the morning, as the travelers will be able to
participate in activities at their trip destination. From the airline point of view, it is
important to be aware of passengers’ preferences on departure time so as to decide
appropriate flight schedules to attract more traffic and revenue. Past studies used booking
data from computer reservation systems and found that late-evening itineraries are not
preferred (Barnhart et al., 2014; Koppelman et al., 2008) while Koppelman et al. (2008)
found that mid-morning and late-afternoon itineraries are most preferred. Based on these
observational findings, we construct two variables to assess the attractiveness of an airline
connection based on the time of departure: morning and late-afternoon departures, that
indicate the percentage of connections offered in the morning period (from 8 a.m. to 12
a.m.) and in the late-afternoon period (from 3 p.m. to 7 p.m.) respectively.

Other factors that might impact an airline connection’s travel demand within an O-D city
pair were examined. Income and airline hubs were candidate variables. Income was
considered as an important factor for air travel demand, not only because people with
higher incomes travel more, but also because income affects travelers’ choices about which
transport modes they use. Existing literature indicates that as people get more prosperous,

they are likely to devote an increasing share of their incomes to air travel (IATA, 2008a).
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Our candidate income variable was constructed as the geometric mean of the per capita
income of Origin and Destination cities, but was not found to be statistically significant
and was excluded from the demand model. An “airline hub” variable was also examined for
the demand function since it was assumed that concentration of traffic in hubs may
positively affect demand since airlines can offer more frequent flights. On the other hand,
travel time in a hub network increases and may decrease passengers' utility (SSamula,
2008). The definition of airline hub was based on whether a ticketing airline uses an
airport as hub. However, it was found that it does not affect air travel demand and was

omitted from the demand model.

More details on the demand variables are given in Chapter 7 (Data).
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5 Airline behavior

To model airline’s behavior we must first define the form of airline’s profit function, which
is dependent on the airline market demand and the airline-level costs. Given the definition
of airline demand (in Chapter 4), Section 5.1 describes the mathematical formulation of
the airline’s pricing strategy and introduces the assumptions about how airlines interact in
each O-D market. Because the marginal costs that enter the airline’s optimization
functions are not observed, we need to estimate them. In Section 5.2, the marginal cost is

determined up to a vector of several cost shifters by using a linear econometric model.

5.1 Airline’s Profit Maximization
5.1.1 The market structure of airline industry

As explained in the previous chapter and depicted in Figure 4.1, there are several airlines
that serve the same O-D market. These airlines offer differentiated connections and
compete with each other in order to attract more passengers. The final payoff of an airline
is dependent not only on its own decisions but also on its competitors’ decisions.
Depending on the market structure, markets can be distinguished in monopolies,
oligopolies and markets with perfect competition and markets with monopolistic
competition, as indicated in Table 5.1. These structures differ in terms of the number of
players in the market, the firm’s market power, the degree of differentiation in products
etc. In the perfect or pure competition market, there are a large number of firms each
producing the same product (also called a standardized or homogeneous product). On the
opposite end, a monopoly has only one firm and produces a unique product that has no
close substitutes. In the middle are oligopolistic and monopolistic competition.
Monopolistic competition is a type of imperfect competition where there are a large
number of firms each producing differentiated products and hence are not perfect
substitutes. In an oligopoly, there are few firms which produce either a standardized
product or a differentiated product. Each firm affects the market (unlike perfect
competition) but is also affected by the actions of other firms in the market (unlike
monopolies). There are limited entry opportunities of new firms in the market; this is often

due to the cost structure of the industry.
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Table 5.1. Properties of different market structures

M listic Perfec
Monopoly Oligopoly OHOpO. I.Stlc ertect (.p}lre)
competition competition
- Number of firms One Few Many Many
. . Similar but
Type of product Unique product (no Standardized or dif{ftlrleiia;led Homogeneous
P b close substitutes) differentiated products &
products
i - Relatively eas o
- Entry conditions No entry Limited entry catvery (.sdsy Easy entry/exit
entry/exit

Lz t of market
ATge ariount ot marke Limited market No market power

- Market power Complete market
power (price taker)

. . ower (price setter-but
(control over price) power (price setter) D (p

interdependent behavior)

Airline industry, especially the domestic airline industry in the United States, follows an
oligopoly-type structure with the features of oligopoly shown in Table 5.1. First, the U.S.
domestic airline market is controlled by a small group of airlines. Table 5.2 presents the
market share of the nine largest airlines in the United States based on domestic revenue
passenger miles from 2012 to 2015, ranked by the highest market share in 2015. In 2015,
American Airlines had the largest market share with 20% after its merger with U.S.
Airways. As of 2015, nine major airlines earn 83.5% of U.S. domestic industry revenues.
The traffic data are derived from the MIT Airline Data Project (MIT, 2016a).

Table 5.2. Market share of the largest U.S. airlines
(based on domestic revenue passenger miles)

Airlines 2012 2013 2014 2015
1 American 13.0% 12.8% 12.5% 20.0%
2 Southwest 17.5% 17.4% 17.4% 17.9%
3  Delta 16.0% 16.0% 16.6% 16.8%
4 United 16.2% 15.8% 15.2% 14.8%
5 JetBlue 4.9% 5.1% 5.0% 5.2%
6  Alaska Airlines 3.9% 4.1% 4.2% 4.4%
7  Frontier Airlines 1.6% 1.5% 1.6% 1.9%
8  Spirit 1.4% 1.8% 2.1% 2.5%
9 US Airways!” 8.0% 8.4% 8.2% -

Cumulative market share 82.4% 82.7% 82.9% 83.5%

Second, airlines offer differentiated products, i.e. flight connections to a traveler’s
destination of choice. Although flight connections may externally seem identical, airlines in
an attempt to attract higher market share differentiate their connections in terms of

product or service quality (e.g. flight frequency, seating accommodations, high quality food
etc).

Third, entry into the airline industry is relatively difficult due to various barriers such as
high set up costs, legal requirements and brand loyalty. Set up costs include aircraft
acquisition costs, marketing costs, terminal rental fees, as well as pilot and crew salaries.
These barriers have been significant enough to discourage potential competitors from
entering airline industry. Although there may be many “small players” who share a small

portion of airline market, they do not affect the major airline players.

17 Merged with American Airlines in 2015.
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The key element of an oligopoly is interdependence, which means that a firm’s decisions
cannot be made independently of its competitor’s decisions. Indeed, airlines are mutually
interdependent with each other, since the actions of each airline in the market influences
its competitors and the market as a whole. For example, in the attempt to raise revenues,
if an airline lowers ticket prices (e.g. by offering discounts on specific itineraries or groups
of passengers), other airlines will notice this change immediately. The competing airlines
will in turn reduce their airfares, to ensure they remain competitive and they do not loose

passengers.

Airline markets, as oligopolies, rely crucially on the strategic interactions between
competing players: each airline’s actions affect the profits of its rivals and vice versa. The
appropriate method to analyze an oligopoly setting, where each player’s strategies depend
critically upon the behavior of the other players, is game theory. Several papers have used
game theory to analyze the interaction of competing airlines (players) in a given O-D trip
or a network. Hansen (1990) applied a game-theoretic model to study airlines’ frequency
competition in a hub-and-spoke network. Pels et al. (2000) used game theory to
investigate airport and airline competition in a metropolitan area with multiple departure
airports. Adler (2005) developed a two-stage Nash best-response game to analyze the hub-
spoke network design issue within a competitive framework. Zito et al. (2011) developed a
game approach to model the airlines’ choices in a duopolistic short-haul market, where
aviation is in competition with ground transportation. The authors focused on pure
strategies and estimated a Nash equilibrium on ticket prices and frequencies.
Aguirregabiria and Ho (2012) studied the adoption of hub-and-spoke networks by U.S.
airlines by assuming that airlines compete in prices. To do this, the authors estimate the
Nash-Bertrand equilibrium. Evans and Schéfer (2013) simulated a Nash best-response
game to investigate the impact of lower airline operating costs on the resulting flight
frequency after introducing lower fuel burn technology into the air transport system. As
part of demand and supply models, other studies have employed game theory to examine
airline mergers (Doi and Ohashi, 2015; Lee, 2013a), hub-and-spoke networks (Berry et al.,
2006), airline code sharing (Shen, 2012) and airline alliances (Gayle and Brown, 2014).
The next section introduces the assumptions about how airlines interact in each O-D

market and presents the associated mathematical expressions.
5.1.2 Airlines’ oligopoly game theoretic model

To describe the oligopoly game developed by the airlines in each O-D market we first
specify the game’s components:

e The active airlines in each O-D market are the players, i.e. the decision makers in
the game. It is noted that players are treated as if they are rational decision
makers (they rationally act so as to maximize their payoffs).

e Each player has a specified plan of action (such as setting a price or quantity) for
every contingency played by other players, which is called strategy. Generally, a
strategy is different from an action in game theory. A strategy of a player can
provide for a full description of his/her actions in every feasible situation in the
game. In one-stage games, a strategy is simply the player’s action taken on that

single occasion. However, in multiple-stage games, a player’s strategy is a complete
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plan of actions and includes, in each stage, all player’s possible choices of action
conditioning on last stage’s results.

e Qutcome is the consequence for a player of a specific combination of all players'
strategies.

* Payoff is the number attached to an outcome. In this dissertation, the player’s
payoff corresponds to airline’s profit, i.e. each player’s (airline) objective is to
maximize its profit. It is noted that each airline’s profit depends on both its
strategies and those of its competitors.

In modelling the airlines’ behavior in a competitive airline O-D market, airlines are
considered as firms that offer one or more connections in an oligopolistic market. Airlines
are modelled as profit maximizing players. The profit rr of airline f which offers a subset Jr
of the J total within-market connections in an O-D market is formed by the difference in

revenues and cost as given in Eq. 5.1.

nf=Z(pj-M-Msj—cj-M-Msj)—FCf=>
JEIf

nf=2(pj—cj)-M-Msj—Fcf
JEJf

Eqg. 5.1

where ¢j is the (constant) marginal cost of connection j and FCris fixed cost of the airline
for the different airline connections. Fixed cost could be omitted for simplicity since it is
shown in Eq. 5.2 that they drop out of the first order conditions. The terms pj, M and MS;
were described in Section 4.3 as follows: pj is the ticket price of connection j, M is the
market size, i.e. the potential number of travelers between the O-D cities and MS;j is the
market share of alternative j. The marginal cost ¢jis not directly provided by the available

aggregate data and thus needs to be estimated, as explained in Section 5.2.

As already mentioned above, the objective of each player (airline) in the game is to
maximize its profit. In oligopolistic game theory, the competitive behavior between players
can be modeled by three competition approaches: (i) Bertrand, (ii) Cournot and (iii)
Stackelberg. In Cournot competition, firms compete on quantity, and choose quantities
simultaneously. Then price is usually determined by the total output of all firms in the
market such that supply equals demand. The Stackelberg model is a strategic game in
which firms compete on quantities, but they enter the market sequentially; there is a
leader firm, which moves first and then the follower firms move sequentially. In Bertrand
competition, firms compete on prices and let the market determine the quantity sold. The

most basic and fundamental competition pertains to pricing choices.

In this dissertation, we assume that airlines compete under Bertrand competition and we
investigate the game where airlines set ticket prices. In other words, each player has one
decision (strategic) variable, the airfare and the objective of the player is to maximize own
profit. We assume that flight frequency chosen by each airline is exogenous to their

decisions, i.e. flight frequency is not a strategic decision variables in the game.

Assumptions of the basic Bertrand model

e There are a small number of competing firms in the market.
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e Firms set prices simultaneously (before observing the price of the rival).
e Firms produce homogeneous products at the same constant marginal cost.
e There are no capacity constraints.

e Firms do not cooperate, i.e. non-cooperative games are developed.

Based on the above assumptions, customers choose the product solely on the basis of price.
Bertrand’s equilibrium occurs when pricei=price2=marginal cost. This results in zero
profit for both firms. In a duopoly game, neither Player 1 nor Player 2 will set a higher
price than the other, since this would yield the entire market to their rival. The result of
the model creates a paradox, known as Bertrand’s paradox, because if the number of firms
goes from one to two, the price decreases from the monopoly price to the competitive
price, but does not change as the number of firms become more than two. This is beyond
reality, where markets with a small number of firms typically charge a price in excess of
marginal cost. The solution to avoid Bertrand’s paradox is to relax the assumptions:
introduce repeated interaction (which may sustain collusive behavior by the threat of

future losses), product differentiation or capacity constraints.

In many real cases, firms produce products that at the least, their consumers perceive as
different from a rival’s. In this dissertation, we consider that airline connections are
differentiated i.e. they differ on a number of characteristics associated with the itinerary,
the airline and the airport. In such markets where the products (airline connections) are
differentiated the equilibrium is reached for prices above marginal cost and firms are able
to make profits (it will be shown in Eq. 5.4).

A fundamental concept of game theory is the equilibrium property of the game. The most
widely used equilibrium is the non-cooperative equilibrium of Nash. A Nash equilibrium is
the set of strategies from which no single player has an incentive to unilaterally deviate.
Under Bertrand competition, the Nash equilibrium may be referred to as Bertrand-Nash
equilibrium or a Nash equilibrium in prices. In our airline oligopoly game, each airline
(player) chooses a ticket price to maximize its profits given its opponent’s pricing (selects
its best response given its beliefs about its rivals' pricing strategy). In a Bertrand-Nash
equilibrium no airline has incentive to change its pricing strategy, since it cannot improve

its profit (holding the prices of all other airlines constant).

In our formulated non-cooperative one-stage game, within each O-D market!® airlines set
their ticket prices under Bertrand competition and product differentiation, taking into
account the prices set by competitors. To compute a Bertrand-Nash equilibrium for
differentiated airline connections in each O-D market we follow the process shown in
Figure 5.1. We construct the profit function of the object airline as given in Eq. 5.1. It is
noted that the parameters of the Nested Logit demand model are incorporated (due to the
presence of MS;j in the profit function rr). Also, it is noted that each airline is assumed to
behave rationally assuming that its rival behaves rationally; that is each airline’s objective
is to maximize own profits, believing that all other airlines also maximize their profits.

Mathematically this means that we derive object airline’s first order conditions of profit

18 Following Berry and Jia (2010), Gayle and Brown (2014) and Lee (2013) we assume that ticket

prices are determined independently across markets.
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function with respect to its own price for given rivals’ prices (Eq. 5.2) and find the best-
response function for the object airline. The market shares for all connections on the object
airline network are then estimated by applying the market-share function. Other
competing airlines use a similar approach to estimate their ticket prices (by maximizing
their profits simultaneously against the airfares of the object airline). In other words, we
derive a system of best-response equations, where the vector of optimal price of each
airline is obtained by solving the best-response functions of all airlines simultaneously. The
optimal price vector is given in Eq. 5.4. Each airline’s first-order conditions and optimal
price vector depends on both own and its rivals’ derivatives with respect to price. The
aforementioned steps conclude the first round of interaction; this process is repeated for

many more rounds. The process continues until the demand—supply interaction converges.

Result
Step 1 Step 2 Solve the best-response
Construct t1 G te the first function of each airline
onstruct the ompute the firs (Eq. 5.4)
profit function of I:> order conditions of I:> 1
each airline each airline’s Obtain the Bertrand-
(Eq. 5.1) profit function Nash equilibrium:
(Eq. 5.2) a vector of prices that
satisfies Eq. 5.2

Figure 5.1. Steps followed to obtain the Bertrand-Nash equilibrium

The first order condition of each airline’s profit (of Eq. 5.1) yields:

an d aMs aMS J0FC
—f=0=>z<ﬂ-M-MSk+pk-M- k—ck-M' k)+ f 0=
j dp; dp; op;

Eq. 5.2

Eq. 5.2 forms a linear system of equations which incorporates ticket prices and marginal
cost of all Jr connections of a given airline fin a given market (fixed costs are dropped out

of the first order conditions). Let DMSf,p ; represent the JrxJr matrix of partial derivatives

of MS; with respect to price such that:

[6M51 OMS]]
| P |
DMSf.pf = H . H Eq. 5.3
aMs, oMs,;
ap,; op;

A pure strategy Bertrand-Nash equilibrium requires that the vector of equilibrium prices
satisfy the Jr first order conditions of Eq. 5.2. The existence of such an equilibrium for the
case of a nested logit demand model with multiproduct firms has been proven by Anderson
and de Palma (1992). Note that the ticket prices of competitors are contained in the
market share marginal effects dMSy /dp;. In vector notation the Bertrand-Nash equilibrium

prices are given by Eq. 5.4.

br= _Dﬂjl%flpf'MSf + ff Eq. 5.4
markup marginal cost
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!

where vectors py = [pl, ...,p]f],, MS; = [MSl, ...,MS]f],, ¢ = [Cl, ...,C]f] represent ticket

prices, market shares and marginal costs for each j=I,2,...Jr airline connection of airline f
within a market. Note that price is split in two terms: the airline markup and the marginal
cost. This specification confirms the general pricing rule of economic theory which states
that firms charge a relative markup on marginal costs, due to consumers’ different

willingness to pay for that product in that specific market. Dy +py Lepresents the JrxJr

matrix of partial derivatives of MS; with respect to price. The elements of the derivative

matrix are given by:
_a - .
T-Ms,--(1—(1—/1)-M5j,g—,1M5j), ifj=k

D= Eq. 5.5

a
Z-Msk-(m—/l)-Msj/g+;t-M5j), ifj#k

Detailed computation of the derivative matrix is presented in Appendix A.

The above approach relies on a static Nash equilibrium in prices and thus rests upon some
simplifying assumptions. First, we assume that information is complete (i.e. the payoffs
and the characteristics of the game are common knowledge). Second, real airline decisions
are not confined to price setting but include other important variables such as flight
frequencies and hub choice locations. In our formulated game, we assume that these
factors are exogenous to airline’s decisions, i.e. flight frequency or hub choice location are
not strategic decision variables in the studied game. Moreover, under real conditions ticket
prices are set using revenue management techniques, which seek to allocate seats across
different passenger categories in order to maximize expected revenue and address uncertain
demand (Donovan, 2005). Our dataset includes aggregate airline- and route-specific data
recorded on a quarterly basis. The inclusion of yield management techniques in the above
model requires more detailed data, such as historical bookings by flight and fare class for
each departure date in order to fully account for ticket restrictions (e.g. advance ticket
purchase, Saturday-night stay, different “willingness to pay” for air travel, cancellations, no
shows etc). Consideration of the dynamic aspects of revenue management is beyond the
scope of this dissertation and is left for future work. In addition, in consistency with the
assumptions of the basic Bertrand model and the assumptions of existing literature, the
current formulation assumes that there no capacity constraints. In real networks, capacity
constraints may be (in some markets) binding for some airlines, resulting in different
effects. However, our data provides us with no information at that level of individual
flights at a particular day and time, and, thus, we cannot identify potential capacity
constrained flights. Finally, the presented game corresponds to a non-cooperative one-shot
game. We assume that the airlines are not colluding which is a plausible assumption since

collusion is more likely in multi-period games rather than in single-period games.
5.2 Airline cost structure

5.2.1 Airline’s marginal cost definition

Marginal cost (or incremental cost) is the change in total costs by adding one more unit of
output, which in airline terms concerns the addition of one more passenger. Each airline
has a per-passenger marginal cost for each offered connection j, drawn from airline-type

and service-type attributes. As already mentioned, this marginal cost for each airline
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connection j is not directly provided by the available aggregate data and thus needs to be
estimated. In general, airline marginal costs are understood as the sum of costs of carrying
an additional passenger for a given capacity (which is expected to be constant) plus the
costs of providing additional capacity (Brander and Zhang, 1990). In particular, if an extra
passenger could be accommodated without adding a flight, then the marginal cost could be
constant and equal to the cost of serving a passenger. But if the extra passenger resulted
in an extra flight, the marginal cost would be equal to that constant value plus the cost of
the extra flight.

Because airline-route marginal costs are not observed, the common approach in the
empirical literature is to derive them by the estimation of an econometric model. Three
approaches are applicable: (i) marginal cost is derived as a function of route distance and
airline-specific average cost and flight length (Brander and Zhang, 1990; Zhang et al.,
2014), (ii) the effect of segment density on connection’s marginal cost is accounted and the
latter is assumed to be derived by a functional form in distance and airline’s total
passenger flow (Berry et al., 2006; Fageda, 2006), and (iii) marginal costs are assumed to
be constant regardless of the level of route traffic density and a marginal cost function
consisting of observable cost shifters and unobservable factors is assumed (Berry et al.,
1995; Berry and Jia, 2010). To allow for a simple specification of marginal costs, we follow
the third approach and assume that marginal cost is given by a linear function of observed
cost shifters (wj) and an unobserved cost error (wj) as given in Eq. 5.6. We account for
distance, density and other factors’ effect through the direct inclusion of relevant variables

in the marginal cost empirical specification as explained in Section 5.2.2.
Cji = WjY + wj Eq. 5.6

The term y is the vector of coefficients of the connection-specific cost shifters wj and will
be estimated. The vector of cost shifters includes connection, airline and airport specific
variables. Under this specification, we allow for different marginal-cost levels for different
airlines; i.e. an airline may have some advantages in marginal cost because, for instance, it

has invested a fixed cost that helps reduce fuel consumption.

Substituting the marginal cost from Eq. 5.6, the pricing equation for each airline

connection in an O-D market is written as:

— -1 . .

Pj =\ ~Dwmspp, " MSj |+ Wiy + o Eq. 5.7
N~— ~———
mark-up marginal cost

In the above equation it is shown that the unobserved cost characteristics w; affect ticket
prices. But, since ticket prices are correlated with market shares, we conclude that w; may
be correlated with MS;. Thus market share is considered as endogenous in the pricing
equation. Details on the endogeneity issue and the way it is addressed in this thesis are

given in Section 6.2.
5.2.2 Determinants of airline connection’s marginal cost

Eq. 5.6 along with Eq. 5.7 recovers the marginal cost of each airline connection. Before
introducing the marginal cost’s explanatory factors the following explanations are in order.

The marginal cost of a multi-segment airline connection is the sum of marginal costs of
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each segment. On an aircraft already in service, the marginal cost of transporting one
more passenger is very low-essentially the cost of an additional meal, of the incremental
fuel and of the extra passenger fee. But, when an additional flight is required to
accommodate the extra passenger, the marginal cost becomes too high. In other words,
there are two different units of cost: the traffic cost, which is the marginal cost of carrying
one additional passenger and the capacity cost, which includes the costs of accommodating
one more flight (Holloway, 2008). Furthermore, marginal cost is primarily a function of
variable cost because fixed costs are largely unaffected by changes in passenger traffic
(output). Since marginal cost is difficult to measure and cannot be determined from
conventional accounting methods, average variable cost has been reported to be used as a
proxy for short-run marginal cost (even though it is known that the magnitudes of the two
costs may differ substantially) (Macario et al., 2003; Olive, 2002). Although the marginal
cost is not equivalent to the average variable cost, we presume the existence of some
common cost drivers. Considering the above, this dissertation uses marginal cost variables

which are related to connection, airline and airport characteristics.

o Round-trip distance

The distance flown is often acknowledged as an important cost driver. An increase in
distance flown may lead to an increase in some variable costs such as fuel costs.
Furthermore, a longer route may imply more landings and takeoffs, i.e. longer itineraries
are more possible to be non-direct, which may lead to higher fuel costs and airport
charges. In the marginal cost function, round-trip itinerary distance is used as explanatory

variable.
o Alircraft size

Aircraft size determines a variety of aircraft operating costs, such as fuel and maintenance
costs. Other size-related costs include landing fees since they are computed on the basis of
the maximum take-off aircraft weight. What drives us to include aircraft size in the
marginal cost function is its relationship with fuel costs. Overall, aircraft size along with
distance flown can be used as cost variables so as to indirectly capture aircraft fuel cost,
which is accounted as a significant factor of a connection’s marginal costs. From this point
of view we expect a positive coefficient of this variable (increase in the aircraft size may
lead to increase of the marginal costs), as indicated in Figure 5.2. The dashed line
separates aircraft in two different types: wide-body and narrow-body. It is obvious that
wide-body aircraft consume higher amounts of fuel than narrow-body. However, the plot of
per seat fuel consumption does not provide so clear conclusions. In Figure 5.3 , apart from
wide-body aircraft, the operation of regional aircraft (such as E190, CRJ9, E170 and E145)

result in high amounts of per seat fuel.
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Another reason for including the aircraft size in the marginal cost function is to account
for the impact of traffic density. Larger aircraft can provide more capacity and transfer
more passengers and may be used on routes with denser traffic. From this perspective,
itineraries with larger aircraft may have lower per passenger marginal cost. Cost economies

of larger aircraft are documented in (Wei and Hansen, 2003; Ryerson and Hansen, 2013).

Therefore, in our model, aircraft size variable is determined by whether the aircraft type is
narrow-body or wide-body. Aircraft type is a segment characteristic and, thus, for a non-
direct airline connection, several aircraft types may be used. Aircraft size is captured by a
dummy variable which is equal to 1 if at least one segment of the itinerary is operated by
a wide-body aircraft. The coefficient of this variable will indicate the net effect of the

above countervailing forces (fuel cost vs economies of scale) on marginal cost.

19 The computations of fuel burn have been conducted with the use of EMEP CORINAIR
database (2013 version) (EEA, 2013). Seat capacity per aircraft type is given in Appendix B-4.
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o Airline hubs

According to SSamula (2008), among the advantages of airline hubs are: i) economies of
scale, which are realized through transporting higher traffic densities, thus lowering the
per passenger costs, ii) higher flight frequencies, explicitly shown for O-D pairs with low
passenger demand, which would otherwise be served by low flight frequencies in a direct
flight option and iii) lower cost of travel. Therefore, a variable indicating transfer via hub
airports is used to explain if concentration of traffic in hubs affects marginal cost. A
dummy variable is constructed which is equal to 1 if the connection departs/connects/
arrives from/to an airport which is a hub for the ticketing airline. A list of the considered
airline hubs is provided in Table 5.3 (Appendix B-1 lists corresponding airport codes) and
are derived by airlines’ official websites. It is noted that Southwest is not included in
Table 5.3 since it does not use the hub and spoke system of other airlines, preferring point-

to-point routes.

Table 5.3 List of the considered airline hubs

Airline Airline hubs

American Airlines ORD, DFW, JFK, MIA, LAX

Alaska Airlines ANC, LAX, PDX, SEA

Jetblue JFK

Delta Air Lines CVG, DTW, ATL, JFK, LGA, MSP, SL.C
AirTran Airways ATL, BWI, MKE, MCO

Frontier Airlines DEN

Hawaiian Airlines HNL, OGG

United Airlines BOS, ORD, CLE, DEN, GUM, IAH, LAX, EWR, SFO, IAD
US Airways CLT, PHL, DCA, PHX

Virgin America SFO

o Airline dummies

The airline dummy variables are included in order to capture airline-specific cost effects.
All major airlines are included: Delta (DL), United Airlines (UA), American Airlines (AA),
US Airways (US), Southwest (WN) and JetBlue (B6). US Airways is used as the base
airline in the estimation against which the other airlines are compared. A negative
coefficient of the dummy variable for a given airline indicates lower marginal costs in
comparison with the base carrier (US Airways). Furthermore, this variable may be used to
compare marginal costs between airlines. Figure 5.4 shows the cost per available seat-mile
(CASM) for our sample airlines, derived by MIT (2016b). American Airlines stands out as
the highest-cost U.S. domestic airline, with its CASM equal to 14.26¢. Also, Delta and

United are also among the industry’s highest-cost producers.
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6 Model estimation and policy simulation

To simulate the implementation of a market-based environmental measure in the U.S.
airline network, we need to estimate the supply and demand system. Then the estimated
equations are used in order to incorporate emissions costs in the airlines’ cost functions.
Sections 6.1 to 6.3 describe the methodology followed to estimate the system of demand
and supply equations, while Section 6.4 presents the approach for simulating the assumed

market-based environmental policy.

6.1 System of demand and supply equations

The resulting demand equation for each airline connection j in an O-D market derived
from Chapter 4 is:

For the Nested Logit model
InMS; — InMSy = x; — ap; + (1 = 2) - InMS; ;4 + & Eq. 6.1
For the Multinomial Logit model:

InMS; — InMS, = x; — ap; +§; Eq. 6.2

On the supply side, the pricing equation which gives the best price response function for
the ticketing airline serving the connection j (to the airfares of other competing airlines) is
derived from Chapter 5 as:

p; = —D&§f,pf "MS; +wjy + w; Eq. 6.3

Our first task is to estimate the parameters o, 8, A and y. The system of demand and
supply equations (Eq. 6.1 to Eq. 6.3) forms the basis for estimation. Three important

issues are discussed below:

o Joint estimation of demand and supply equations: One approach is to estimate the

demand equation in isolation (thus estimate the parameters o, 8 and A) and then
substitute the estimated demand parameters into the price function in order to
recover parameter y. Since demand parameters enter both equations, joint
estimation improves efficiency of estimation.

o Non-linearity of parameters: Recall that Dy 0f (see Eq. 5.5) represents the matrix

of partial derivatives of MS; with respect to price. Thus, parameters « and A enter
the pricing function nonlinearly, while 8 enters both equations linearly. Thus, the

estimation method should address this non-linearity issue.
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o Endogeneity: The endogeneity of prices and market shares is a critical econometric
issue. As already explained in Chapter 4, the term &j may be correlated with ticket
price pj and within-group (conditional) market share MSj/ (demand equation).
Similarly, market shares in the pricing equation are endogenous. The above
endogeneity issues may lead to biased parameter estimates if Ordinary Least
Square estimation method is used. In contrast, Instrumental Variables methods

can cope with endogeneity under suitable conditions.

Overall, an estimation method, which addresses both nonlinearity and endogeneity issues,
should be wused. Instrumental variables methods require the existence of proper
instruments, i.e. auxiliary variables that are correlated with the explanatory variables but
are uncorrelated with the disturbance for both the supply and demand sides. Details are
given in Section 6.2. Moreover handling the inherent presence of nonlinearities, requires
the use of generalized moments in connection with instruments. As explained in Section
6.3, in this work, the two-step Generalized Method of Moments estimator is used (Hansen,
1982; Hall, 2005).

6.2 Endogeneity and Instrumental Variables
6.2.1 Sources of endogeneity

A fundamental property in regression analysis is that the independent variables are
uncorrelated with the error term. If this property is violated, estimation by Ordinary Least
Squares (OLS) methods may lead to biased and inconsistent estimates. In demand models,
price endogeneity results in (in absolute terms) under-estimated price coefficients
(Mumbower et al., 2014). Endogeneity is said to occur in a regression model if E[£|Xj] * 0,
for one or more explanatory variables j (where Xj denotes the explanatory variable(s) and
¢ the error term of the regression). Endogeneity may arise as a result of (i) Omitted
Variables, which occurs when one or more explanatory factors are not included in the
regression (e.g. due to data constraints). In this case, these omitted variables are
attributed to the error term e. If these omitted variables are correlated with Xj, then
endogeneity arises (because in this way Xj may be correlated with €). (ii) Measurement
Error, which happens when one or more independent variables are not measured perfectly.
(iil) Simultaneity, which arises in the context of a simultaneous equations model such as a
supply-demand system in economics, in which price influences demand, and demand

influences price.

In our model endogeneity arises for two reasons. First, ticket price p; and within-group
(conditional) market share MSj/s may be correlated with the term &; (which acts as the
error term of the demand equation) as the latter commonly reflects quality features. &j
may include exact departure time, in-flight food quality, wi-fi equipment, ticket
restrictions, in-advance ticket purchase, frequent-flyer tickets and other factors which may
affect an airline connection’s quality and, thus, its ticket price and market share. For
example, due to data unavailability we do not observe ticket restrictions of the itineraries,
but passengers observe them during the booking process. Tickets with more travel or
refundability restrictions are more likely to have lower prices than unrestricted tickets

(Puller et al., 2012). If we do not consider this potential endogeneity, the estimated price
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coefficient and the estimated price elasticity will be biased. Second, the pricing equation
indicates that the unobserved cost characteristics w; affect ticket prices. But, since ticket
prices are correlated with market shares, w; may be correlated with MS;. Thus market
share is considered as endogenous in the pricing equation. Figure 6.1(a) illustrates a path
diagram highlighting the endogeneity problem in the demand equation. Similar illustration
may stand for the pricing equation as well.

Independent variables  Dependent variable Independent variables  Dependent variabl
T InMS-InMSo | | > oD InMS-InMS ;
Instruments b
Error term (a) Error term (b)

Figure 6.1. Illustration of endogeneity and its solution in the demand equation

The standard practice when right-hand variables are correlated with the error term is to
estimate the equation using Instrumental Variable (IV) methods. As shown in Figure
6.1(b), the idea is to find a set of exogenous variables, called instruments, which are (i)
correlated with the endogenous variables (instrument relevance) and (ii) uncorrelated with
the error term (instrument exogeneity). The satisfaction of these conditions determines
that the selected instruments are valid (Stock and Watson, 2010). The selection of valid
instruments is not easy and is often controversial. According to Stock and Watson (2010),
valid instruments may come from the use of economic theory or the knowledge of the topic
being studied and careful attention to the details off the data. Below the selected

instruments for the demand and supply equations are discussed.
6.2.2 Instrumental variables

On the demand side, we need to instrument for p; and MSj/s. Therefore, we need to find
variables that are correlated with price and within-group market share but are not
correlated with the unobserved connection characteristics (demand error term). Following
the standard practice, we treat the remaining connection’s characteristics xj as being
exogenous; they are assumed to be uncorrelated with &j, and thus can be used as valid
instruments. We also use additional exogenous variables that are believed to affect ticket
prices and within group share but are uncorrelated with &. On the supply side, we need to
instrument for MS;j, since it may be correlated with the error term w; of the pricing
equation. In accordance with the demand-side instruments, we treat the cost-shifting
characteristics wj as being exogenous. We use them as instruments along with additional

exogenous variables that are believed to affect MS;j but are uncorrelated with ;.

There are several instrumental variables that have been used in the literature, a summary
of which is presented in Table 6.1. We have grouped instruments in six categories:
demand-side instruments are derived from the first five categories, including cost shifters,
market-level and rivals’ characteristics and airline’s size of operation. Motivated by
Mumbower et al. (2014) we also present another type of instruments, the Hausman-type
price instruments, which have limited application in the airline industry. Some supply-side

instruments are common with demand-side instruments, but other purely supply-side
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instruments are used as well, described in the sixth category of Table 6.1. The above
categories have an intuitive explanation. Cost-shifting instruments are used as demand-
side instruments and include variables that have an impact an airline connection cost but
are not directly related to the demand error term. Based on this idea, itinerary distance
and unit fuel costs have been previously used as instruments. Furthermore, an indicator of
whether the origin, destination or connecting airport is a hub for the ticketing carrier has
been previously used. In this dissertation, we include an instrument of whether the
destination or the connecting airports are hubs for the ticketing airline. The intuition is
that airline costs may be affected by hub operation, which may in turn influence ticket

prices set by the ticketing airline and corresponding within-group market shares.

According to the supply theory, a product’s price is affected by the degree of market
competition and market power. As a consequence, market shares are influenced by the
overall level of ticket prices. We have grouped market-competition instruments in three
sub-categories: market-level characteristics, rival connections’ characteristics and airline’s
size of operation. Market-level characteristics focus on the number of offered connections,
the number of active airlines and the number of competitors. This information indicates
the degree of within-market competition a connection or its airline is facing, which in turn
may affect its ticket price and its market share. In this work, the number of offered
connections and the number of airlines in the market are used as demand-side and supply-
side instruments. Rival connections’ attributes has been also reported as valid instrument
for prices and market shares, as they are considered to affect the pricing decision of an
airline through within-market competition, but do not enter the utility function and the
pricing equation directly. Our instruments along this line include the percentage of
nonstop rivals’ routes and the average number of passengers carried by rivals within the
given market. Both variables capture within-market competitiveness and thus overall price
level, while the latter additionally predicts within-group market shares. In addition, we
include the number of destination cities served by direct flights in order to reflect the
airline’s size of operation at the origin airport which may be related to its price level at the
airport. The above market-competition variables are largely determined by the size of a
market and are unlikely to respond to the same errors that affect prices and demand.
Thus, it is reasonable to assume that they are uncorrelated with the unobserved

connection characteristics &j and the unobserved cost shifters w;.

Hausman-type price instruments have also been considered in other studies. For example,
Mumbower et al. (2014) used the mean ticket prices of the same airline in other markets.
Hotle et al. (2015) used the square of the coefficient of variation across the offered fares
across different geographic contexts. The idea is that the price of a product in a market
will be correlated with the price of a similar product in other market due to common

marginal costs (Hausman, 1996).

Finally, purely supply-side instruments include two variables which are indicative of the
potential passenger traffic of each connection and each airline. They are defined by the
market size divided by the number of connections and by the number of airlines in the
market respectively. By this definition, we assume that the potential passenger traffic of
each connection and each airline can predict potential market share of each connection and

airline (MS;j), but it will be independent of the unobserved cost error term wj. Table 6.1
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presents various instruments used in previous studies. After a detailed consideration of the
above list, we focused on the use of those indicated in the last two columns of Table 6.1.
The proposed instruments are selected so as to give reasonable parameter estimates after
being tested with the IV diagnostics described in the next section. In Chapter 7, summary

statistics of the selected instruments within our traffic sample data are presented.

Table 6.1. Review and selection of instrumental variables

Used in
Type of .
. Examples of instruments our
instruments
model
D | S
Unit costs of fuel
(Hsiao and Hansen, 2011%0; Israel et al., 2013; Rolim et al., 2016)
Itinerary distance
(Bhattacharjee, 2016; Chen and Gayle, 2013; Gayle and Brown, 2014;
Hotle et al., 2015)
1. Cost-shifting Other unit costs (maintenance, insurance, leasing) (Rolim et al., 2016)
instruments Fuel price and Aircraft characteristics (the number of seats, operating

weight and engine compression ratio of the aircraft) and Airport charges
(in per-passenger rate) (Doi and Ohashi, 2015)

Hub indicator (whether the origin/destination/connecting airport is hub
for the airline) (Berry and Jia, 2010; Israel et al., 2013; Ivaldi et al., .
2015; Shen, 2012)

The number of products/routes within a market (Lee, 2013a; Lee, 2013b;
Chen and Gayle, 2013)

Number of all airlines (Berry and Jia, 2010) . .
2. Market-level

. Number of low cost carriers and the number of seats offered in the
characteristics

market (Hotle et al., 2015)
Number of competitors, Number of products offered by the airline
(Bhattacharjee, 2016; Chen and Gayle, 2013; Gayle and Brown, 2014)

Number of rivals’ products (Berry and Jia, 2010; Bhattacharjee, 2016;
Chen and Gayle, 2013; Gayle and Brown, 2014; Israel et al., 2013)

Percentage of nonstop routes that rivals operate in the same market
) (Aguirregabiria and Ho, 2012; Berry and Jia, 2010; Israel et al., 2013; ) )
3. Rival Mumbower et al., 2014; Shen, 2012)

connections Number of rival airlines (Israel et al., 2013; Ivaldi et al., 2015)

characteristics ] ] )
Average distance of rival routes (Berry and Jia, 2010)

Degree of within-market competition

Average flight frequency of rivals in the market (Ivaldi et al., 2015)

Average number of passengers carried by rivals in the market (Ivaldi et
al., 2015)

4. Airline’s size of Number of cities that the airline serves from the airport (Aguirregabiria
operation and Ho, 2012; Berry and Jia, 2010; Lee, 2013a; Shen, 2012)

Mean ticket prices of the same airline in other markets (Mumbower et
5. Hausman-type  al., 2014)
instruments Square of the coefficient of variation across the offered fares across
different geographic contexts (Hotle et al., 2015)

By-connection market size (computed as market size divided by the
6. Other U

. number of connections)
supply-side . . . ..
o By-airline market size (computed as market size divided by the number
instruments o .
of airlines)

Note: D: Demand-side instruments, S: Supply-side instruments

20 Hsiao and Hansen (2011) defined the instrument as the product of the route distance and unit jet
fuel cost.
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6.2.3 Instrumental Variables diagnostics

To justify the appropriateness of the selected instruments, econometrics’ literature (Baum
et al., 2003; EViews, 2014) identifies several IV diagnostics which are applied in this work

as follows.

The first condition (Instrument Relevance) may be tested by examining the fit of the first
stage regressions. Let Z1 and Z2 denote the vectors of instruments for the demand and cost
equation respectively. These vectors include both the explanatory variables of our system
and additional auxiliary variables. The first stage regressions are reduced form regressions
of the endogenous variables, i.e. pj and MSj/; for the demand and MS; for the pricing
equation, on the full set of instruments Z; and Z2 respectively. Two statistics commonly
used include the coefficient of determination R? and the F-statistic of the first-stage
regression. However, for models with multiple endogenous variables, these indicators may
not be sufficiently informative. Baum et al. (2003) present an example of a regression with
two endogenous variables and two instruments. It is stated that if one of the two
instruments is highly correlated with the two endogenous variables, but the other
instrument is just noise, then F-statistic and R2? measures from the two first-stage
regressions may not reveal this weakness. In regressions with multiple endogenous
variables, the Stock and Yogo (2005)%! weak instrument test has been proposed. Hence,

this test is used to assess the strength of instruments in our model.

The Instrument Exogeneity may be checked via the J-test of overidentifying restrictions,
which evaluates the othogonality condition the instruments. This test is applied in the
following steps: we estimate the IV regression with the selected instruments and calculate
the residuals. Then we regress these residuals on the instrumental variables z and the
explanatory variables x. The resulting F of this regression is used to compute the value
my-F, where m; is the number of instruments. The null hypothesis is that the instruments
are exogenous. This test statistic is Chi-squared distributed with degrees of freedom equal

to the number of instruments minus the number of endogenous variables.

A Durbin-Wu-Hausman Test is also implemented in order to verify the endogeneity of one
or more regressors, e.g. in this thesis, prices and market shares. The statistic is calculated
by running a secondary estimation where the test variables (price and market shares) are
treated as exogenous rather than endogenous, and then comparing the J-statistic between
this secondary estimation and the original estimation. The test is run is Eviews and the
null hypothesis Ho claims that there are no differences between the model in which “the
test variables” are treated as endogenous and the model where they are treated as
exogenous. The test statistic is distributed as a Chi-squared random variable with degrees
of freedom equal to the number of regressors tested for endogeneity. Table 6.2 summarizes

the discussed IV diagnostics and the way of evaluation.

2l The overall strength of the instruments is evaluated through the Stock and Yogo (2005) tabulated
critical values of the minimum eigenvalue of the Cragg-Donald statistic.

106



Model estimation and policy simulation

Table 6.2. Instrumental Variables Diagnostics

IV tests Evaluation Potential conclusion

1 Weak instruments diagnostics Compare Cragg-Donald F-statistic
H,: Instruments are weak with Stock-Yogo critical values (e.g. Instruments are not weak

at 95% confidence level)

2 Instrument Exogeneity Compare test statistic with Chi- Instruments are exogenous
H,: Instruments are exogenous squared values

3 Endogeneity test Compare Durbin-Wu-Hausman Ticket price and market
(Durbin-Wu-Hausman) statistic with Chi-squared values shares are endogenous

6.3 Estimation
6.3.1 Generalized Method of Moments

To improve the efficiency of demand and supply estimates, the two equations should be
estimated jointly. Since some demand parameters (o and A) enter the supply equation in a
nonlinear way, we additionally need a nonlinear system estimation technique.
Furthermore, the number of instruments exceeds the number of explanatory variables both

in the demand and the supply equation, which means that our model is over identified.

Following the relevant literature, the two-stage nonlinear Generalized Methods of
Moments (GMM) estimator is applied for the joint estimation of the demand and supply
parameters. GMM estimation was formalized by Hansen (1982). The method requires that
a number of moment conditions are specified for the model. For our model, two sets of
moment conditions are used: the demand- and the supply-side moments. These moment
conditions are functions of the model parameters and the data, such that their expectation
is zero at the true values of the parameters. Then a specific objective function represented
by the quadratic product of the moment conditions with a symmetric and positive definite
weight matrix is minimized to estimate the model parameters. The description of the

GMM method relies on the following notation.

e x: exogenous demand variables, x is a nXp1 matrix

e w: exogenous cost variables, w is a nxp2 matrix

e ¢&:error term in the demand equation, & is a nx1 vector

e :error term in the pricing equation, w is a nx1 vector

e z1: demand-side instruments, z1 is a nxki matrix (where k1> p1)

e 72 supply-side instruments, z2 is a nxk2 matrix (where k2> p2)

o U= [f] : augmented error, u is a 2nx1 vector
)

0
o 7= [%1 2 ] : demand- and supply-side instruments, z is a 2nxk matrix (k=ki+k2)
2

e 0=1[0; v]: vector of unknown demand (94) and supply (y) parameters

where n is the number of observations, p1 and p2 are the number of the demand and cost
exogenous variables respectively, ki and k2 are the number of the demand and cost
instruments respectively.

The exogeneity of the instruments means that there are ki and k2 moment conditions (or
orthogonality conditions) for the demand and the supply equations respectively, that
should be satisfied at the true value of the parameters. The ki moment conditions for the

demand are given by m,; = E[z,&] = 0, while the k2 moment conditions for the supply are
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given by mg = E[z,w] = 0. To jointly estimate the demand and the supply model, we
stack together the above moment conditions as follows:
— my lef
9 ) = [ ] = E[ = O . .
m(8a,7) = |, 2o Eq. 6.4
The intuition behind the GMM procedure is to estimate the coefficients 8; and 7 that

minimize the GMM objective function, i.e. the quadratic product of the moment

conditions as shown in Eq. 6.5 (Hansen, 1982).

J@a0,7) = m(84,7) Wopem (84, 7)

Eq. 6.5
= u'zWppez'u

where Wopt is a symmetric and positive definite weight matrix, as explained later. Thus

GMM estimation solves the following GMM optimization problem.

min m(éd,)?),Woptm(éd,)?) Eq. 6.6
Oa¥ Tk kxk  kx1

Overall, the two-step GMM estimation method can be described by four stages, as shown
in Figure 6.2. First, as explained in Section 6.3.2, the residuals £ and  are recovered from
the demand and supply equations. Second, we interact the residuals with the instruments
in order to get the sample moments of Eq. 6.4 and the objective function of Eq. 6.6. Third,
an initial weight matrix is assumed and the first-step GMM estimators éd_lstep and Pistep
are obtained from Eq. 6.6 (by substituting the initial weight matrix). Next, by using the
first-step GMM estimators obtained before, the optimal weight matrix Wopt is calculated
as explained in Section 6.3.3. Finally, given Wopt, an iterative approach analogous to the
third stage is applied in order to minimize the GMM objective function (by substituting
the optimal weight matrix in Eq. 6.6). In this final stage, the optimal GMM estimators
9d,25tep and Ppstep are obtained. Since demand parameters o and A enter the pricing
function nonlinearly, we need to do a nonlinear search to recover the coefficients that
minimize our objective function over the moments restrictions. An algorithm in the
MATLAB environment has been developed for this purpose, where the stopping criterion

is set equal to 10,
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Stage 1
Recover residuals £ and o from the demand and supply equations

Stage 2
Interact the residuals with the instruments so as to get the sample moments

Assume initial weight matrix W = (z'z)!

Minimize J to obtain the first-step GMM estimators éd,lstep and Pigeep

Obtain the estimates of residuals @i = [i]
@

Set Wy, = Inverse of the variance of the moment conditions
~ \—1
W,pr =St = (2/02)

Stage 4
Minimize J to obtain the optimal GMM estimators

Bd,ZStep and y25tep

Figure 6.2. Implementation of the two-step GMM estimation

6.3.2 The residuals

This section aims to clarify the way the parameter coefficients enter the moment
conditions and the GMM objective function via the residuals £ and w. Based on the
demand (for the Nested Logit formulation) and supply equations, the vector of residuals

(error terms) of the system is given by Eq. 6.7.

InMS; — InMS, — x; 3 + 1—21)-MS;
u—[f] [n niMoo x]ﬁ “pJ ( ) MSj/qg Eq. 6.7

Where Dy¢ D is defined in Eq. 5.3 and Eq. 5.5 as a JrxJr matrix of partial derivatives of
MS; with respect to price, which is non-linearly dependent on the estimated demand
parameters o and A. The vector of residuals is initially interacted with the instruments in

order to get the sample moments.

6.3.3 Optimal weight matrix and GMM estimators

The optimal GMM estimators @dlstev and V,step are derived by utilizing optimal weight
matrix Wopt. In practice, we employ the two step procedure to derive optimal GMM

estimators, as shown in Figure 6.2.

In the first step, an initial positive definite weight matrix is assumed. Typically, the Two-
Stage Least Squares (2SLS) estimator is used to produce éd,lstep and ¥ystep- This amounts

to using a weight matrix equal to W = (z'z)"! assuming that all error terms are
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homoscedastic?2. After estimating the 15 step parameter estimates, we obtain the

estimates of residuals @I = [i]
o

Given the 15 step residuals, we now proceed to the computation of the optimal weight
matrix. Based on Hansen (1982), the optimal weight matrix is the inverse of the
covariance of the moment conditions (let denote it as S). Let £ be the covariance matrix
of the disturbance terms. To get an efficient GMM estimator we need to estimate S, and
to do this, assumptions about Q are needed. The most commonly encountered cases in
cross—section analysis is heteroskedasticity of residuals. To estimate a heteroscedasticity-
consistent estimator of S, the diagonal matrix of squared residuals is taken as (Baum,
2003): 2 = diag (@2, ...,ﬁjz, ... U5,). Then, the optimal weight matrix Wopt is given by Eq.
6.8.
Wope = (202) " Eq. 6.8

Finally, we substitute Wopt in Eq. 6.5 and solve the minimization problem to obtain the

final GMM parameters 925tep = [@d_ZStep,;?ZStep] (final parameter estimates).

The standard error of the parameter estimates and the statistics to test for statistical
significance of estimated coefficients (t-statistic and p-value) are next calculated. For
standard errors the asymptotic variance matrix of the GMM estimator is first computed as

follows:
V(éZStep) = {X,Z(Z,ﬁz)_lzlx}_l Eq. 6.9

where X denotes the vector of demand and supply regressors (including the endogenous
and exogenous variables). The coefficients’ standard errors are obtained by computing the

square root of the diagonal elements of the asymptotic variance matrix, ie. SE =

diag (ngep). Then, the t-statistic of each coefficient is calculated as: tg, = 6;/SEy,.

6.4 Assessment of a market-based environmental policy
6.4.1 Specification of the market-based measure

As described in Section 2.1, different approaches on emissions pricing may be applied in
order to reduce aviation emissions. Cap-and-trade programs and emissions levies would
provide commercial airlines with an incentive to reduce their emissions in the most cost-
effective way. Carbon offsetting is another measure which is currently implemented in
aviation only on a voluntary basis and, thus, its success is not guaranteed. However, the
ICAO’s GMBM concerns a Carbon Offsetting and Reduction Scheme for International

Aviation to start on 2021 voluntarily, but continue on a mandatory basis after 2027.

The above measures differ in how they perform under uncertainty about the costs and
benefits of reducing emissions. On the one hand, a cap-and-trade policy provides certainty
about the quantity of emissions, since the emission cap is set by the scheme a priori.

However, allowance prices are determined by the market supply and demand and, thus,

22 Homoscedasticity describes a situation in which all error terms have the same variance. Under
conditional homoscedasticity GMM estimator becomes 2SLS.
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can be volatile. So, there may be cases where the allowance prices become too low to
create incentives for the airlines to reduce their emissions. In addition, the effectiveness of
a cap-and-trade policy depends on other factors, such as the baseline used to project future
emissions. Conversely, an emission levy can give a clear price signal that would provide
airlines with incentives to adopt sustainable practices. According to economic theory, the
emission fee should be set by the scheme at a level that represents the social cost of the
emissions. However, an emission levy does not provide any guarantee regarding the desired
emissions reduction because the reductions depend on the level of the fee and how firms

and consumers respond to the fee.

Overall, the above measures generate an additional cost that becomes part of airline’s cost
structure. This cost is directly linked to emissions and can be referred to as “emission
cost”. Despite potential differences, a cap-and-trade system can be viewed as equivalent to
a carbon levy scheme applied to aviation, which would explicitly raise airline’s marginal
costs. This approach is consistent with other studies (Brueckner and Zhang, 2010; Hofer et
al., 2010) which state that the imposition of airline emission fees can be viewed as
increasing the price of fuel. As a result, regardless of whether the mitigation policies follow
a cap-and-trade approach or rely on emission levies, they can all be represented by an
economic measure that directly increase the operating costs of the regulated airlines.

Combustion of kerosene (most used fuel by civil aircraft) produces various emissions
including carbon dioxide, water vapor, nitrogen oxides, carbon monoxide, hydrocarbons
and soot (Brasseur et al., 1998; IPCC, 2007; Lee et al., 2010). Of these, carbon dioxide and
water vapor are greenhouse gases and directly affect the climate. Carbon monoxide,
hydrocarbons and nitrogen oxides are called air pollutants and affect air quality around
airports as they are mainly produced when aircraft engines are operating at their lowest
combustion efficiency, while the latter also has indirect effect on climate change.
Greenhouse gas emissions differ from air pollutants in the fact that the impact of air
pollutants is limited to a regional level, while the impact of greenhouse gases expand to
global scale due to their long lifetime. In particular, the atmospheric lifetime of COz2 is on
the order of one hundred years, which means that its impact on climate change is long
lasting (Schafer et al., 2009). Although water vapor and nitrogen oxides have significant
effect on climate, their precise impact is yet uncertain and it depends on several factors,
including the prevailing ambient atmospheric conditions and the amount and types of
particles formed in the engine exhaust (Schafer et al., 2009). In addition, water vapor
emissions at low altitudes have no climate effect. While CO2 effects are understood, there
are important uncertainties regarding some of the non-CO2 impacts and the underlying
physical processes which require further investigation (ICAO, 2016a). CO2 which has been
widely documented as the dominant greenhouse gas emitted by aircraft (IPCC, 2007,
Gudmundsson and Anger, 2012; Scheelhaase et al., 2010) is included in the majority of

existing policy measures and, thus, will be the focus of this work.

Considering the above, this dissertation analyzes the implementation of a market-based
environmental policy, where airlines pay an extra fee/cost, referred to as “carbon fee/cost”,
based on their CO2 emissions. Furthermore, following Gonzalez and Hosoda (2016), we
consider carbon fee implementation only on domestic flights and do not account for

potential issues of inter-country negotiation. If an aviation carbon fee is not equally
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applied among countries, airlines may change their operational behavior to remain
competitive (e.g., changing airports of choice and/or relocating to “low-fee” countries).
Such a problem would not arise if the emission fee is imposed on domestic flights. The

study area of this work is the United States.
6.4.2 The rationale of the airline carbon fee

The implementation of the carbon fee will raise the marginal cost of each regulated airline.
In the short term, it is believed that the carbon cost will lead airlines to adjust ticket
prices so as to reduce profit loss. The strategies of each airline with respect to the ticket
price adjustments depend on the airline market structure, i.e. monopoly, oligopoly or
perfect competition. Based on Forsyth (2008), in a competitive market, in the short run, a
tax increase will impose a loss on airlines in the market. However, in the long run the
imposition of a carbon fee may lead the airlines to fully pass through the carbon fee onto
the passengers. Then, travel demand will fall depending on the elasticity of demand for
flights. The exact amount of price increase depends on the demand elasticity and on the
form of the marginal cost function. In this way the airline will face an unambiguous

reduction in profit.

In the oligopoly case, airlines will respond to the carbon fee implementation by employing
different strategies, such as Bertrand or Cournot strategies, and these will affect outcomes.
In this work, we assume that airlines act under Bertrand competition. In order to calculate
the changes of ticket prices after the introduction of the carbon fee, we conduct a
simulation analysis, where the pre-policy airline’s marginal cost ((:,',pz-u) is increased by the
emission cost. Suppose that a carbon emission unit fee/cost F (in $/tn COz2) is introduced

for every tonne of CO2 emitted. The post-policy marginal cost (cjpost) is given by:

S

Es,j .

Cjpost = Cjpre T F - Zm,where §=1{234},j€] Eq. 6.10
s=

Esj is the amount of COz2 (in tn CO2) emitted by the airline in each segment s of
connection j and the product LFsj-SEATs;j gives the number of passengers carried by the
regulated airline in each segment s of the examined connection j. The resulting emission
cost is computed for every connection by summing the per passenger CO2 emissions for all

segments and multiplying with the carbon emissions unit cost.

It is assumed that ticket prices will be adjusted as a response to the carbon emission fee,
based on the profit maximization behavior of airlines. The change in ticket prices will
affect passenger choice and, thus, market shares of a given flight connection may also
change. The change in airfares depends on airlines’ decision to change their markups or
not. If an airline decides not to adjust its markups, the carbon cost will be fully passed
onto the passenger. On the other hand, if an airline decides to change its markups the
carbon cost pass-through will be different than 100%. The precise value of the adjustment

is determined from the new equilibrium associated with the post-policy marginal cost.

The market-based environmental policy is assumed to affect the configuration of airline’s
marginal cost function as given in Eq. 6.10. We substitute c¢jpost in Eq. 6.3 and apply a

convergent simulation algorithm to obtain a solution to the system pricing equations. The
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basic elements of the simulation analysis include: (i) the parameter estimates of
passenger’s utility and marginal cost function, (ii) a market equilibrium assumption
(Bertrand-Nash equilibrium) and (iii) the post-policy vector of each airline connection’s
marginal cost. The equilibrium price vector is found iteratively via a price adjustment
process that starts with the benchmark pre-policy equilibrium prices and continues until
convergence. This process can be viewed as iterating over airlines’ best responses to price
changes by all other airlines, until no airline has an incentive to deviate. The new market
equilibrium is given by the new vector of ticket prices and the resulting market shares (by
substituting post-policy ticket prices in Eq. 4.8). The market share for the non-air
alternative is also updated and for an overall ticket price increase it will translate into
higher market shares. It should be noted that the formulated model assumes that air
travel demand and airlines’ price behavior are static, abstracting from any capacity
constraints faced by the airlines. This type of demand and pricing dynamic corresponds to
the level of individual flights but our data provides us with no information at that level of
individual flights at a particular day and time. As a consequence, we cannot identify which
flights might be capacity constrained and, thus, we cannot model any changes in network
configuration due to the introduction of the considered policy. For example, the market-
based environmental policy may result in such air travel demand changes that could
encourage the airlines to change their flight frequency or shift to larger or smaller aircraft
on specific routes. Also, we cannot account for airlines’ entry and exit behavior due to
ticket price changes. If these constraints are binding for some airlines, the simulated

outcomes will be different from reality.
6.4.3 Carbon price

As already mentioned, one key element is the level of uncertainty associated with the
carbon price. For example, an environmental levy guarantees the carbon price in the
economic system. In general, price certainty is desirable and a sufficiently high, long-term
carbon price will maintain the incentives to invest in low-carbon technology. On the other
hand, the price set under an ETS is flexible and depends on the quantity of emission
allowances traded in the market (Kossoy et al., 2015). In this way, instabilities in the
economic system may be harmful for the carbon market and may distort the ETS’s
functioning, one of the issues currently being tackled in the EU ETS. The evolution of
allowance prices for five national or regional carbon pricing schemes is presented in Figure
6.3. It is noted that a carbon allowance refers to the amount of carbon emitted by the
regulated companies (i.e. airlines) and is commonly denominated as one ton of carbon
dioxide or its equivalent. Data are derived from various sources including the emission
exchanges in Europe, the United States and China. In particular, price data for EU ETS
were obtained from the SendeCO2 market (SENDECO2, 2016), California Carbon
Allowance (CCA) prices were derived from California Carbon Dashboard (2016), allowance
prices at the carbon market of the Chicago Climate Exchange (CCX) were collected from
the Intercontinental Exchange (ICE, 2016), allowance prices under the Regional
Greenhouse Gas Initiative (RGGI) were obtained from RGGI (2016) and Shanghai carbon
prices were derived from the Hong Kong Emission Exchange (2016). From these measures
only the EU and the Shanghai ETS mandatory cover aviation emissions. As this

dissertation investigates the impact of market-based measures on air transport through the
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analysis of U.S. aviation industry, it is important to mention the prevailing prices in other
non-aviation carbon schemes in the United States. The Chicago Climate Exchange (CCX)
was the North America’s voluntary trading system for emission sources and offset projects
in North America and Brazil. CCX included six greenhouse gases, and traded GHG
allowances from 2003 to 2010. CCX ceased trading carbon credits at the end of 2010 due
to inactivity in the U.S. carbon markets. In 2013, California launched its cap-and-trade
program to lower its greenhouse gas emissions. It included carbon dioxide and other GHG
emissions, such as methane, nitrous oxide etc. Initially, the program applied to emissions
from electricity and industrial sources, while in 2015 it expanded to fuel distributors,
including those of ground transportation and heating fuels. The Regional Greenhouse Gas
Initiative (RGGI) is the first mandatory, market-based CO2 emissions reduction program
in the United States. It started in 2009 with the participation of 9 U.S. states
(Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York,
Rhode Island and Vermont). RGGI is composed of individual CO2 Budget Trading
Programs in each participating state where each state's trading program limits emissions

of COz2 from electricity and issues carbon allowances.

Figure 6.3 illustrates the trend in the carbon price in the different carbon pricing systems.
Prices of these schemes are not necessarily comparable because of the schemes’ differences
in terms of the type and the number of sectors covered, the allocation methods etc.
However, Figure 6.3 provides for a general view of the prevailing carbon prices. Among the
schemes, EU ETS is the most long lasting program and has witnessed the most dramatic
plunge. At the beginning of the second trading period (around 2008), the allowance prices
reached their peaks with an average of $32.7/ton CO2. Following the global and European
economic crisis, the EU carbon prices fell significantly. The output and emissions of the
covered entities were sharply reduced, which led to a large surplus of permits in the EU
ETS. The lowest average EU allowance price was observed in 2013 at $5.9 per ton COa.
Since then, the EU allowance price shows an increasing trend, reaching the price of $8.5
per ton COz2 in 201523, It should be noted that aviation entered the scheme in 2012 and
the directive for aviation was amended in 2014. Carbon allowance were traded in
Shanghai’s ETS at even lower prices; prices were on average $6 and $4 per ton in 2014 and

2015 (from January to June 2015) respectively.

With respect to non-aviation schemes, California’s market has slightly higher allowance
prices of around $12 to $16 since 2013. In its first year, the average price was $13.6 per
ton, while in 2015 carbon was traded at around $12.8. On the other hand, RGGI’s prices
are very low; for a long period (until the middle of 2014), carbon allowances were
auctioned at prices less than $5 per ton (around $2 to $3). Since then, the prices were a
bit higher; at the end of 2015 the prices were around $7.5.

Economic theory suggests that emission levies should be set at a level that represents the
social cost of emissions (Carlsson & Hammar, 2002). Nonetheless, estimates of the social
costs associated with greenhouse gas emissions vary. According to IPCC (2007), the social
costs of carbon had an average value of $12 per tonne of COz2 (in 2005 dollars) with a

range of $3 to $95 per tonne (in 2005 dollars). The report also states that the social costs

23 As of December 2016, EU allowance price level was on average around 5.2€ (which is around
$5.5, assuming an average exchange rate of 1€=$1.0567)
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of carbon are projected to be significant and to increase over time. In Europe, carbon
prices on non-aviation sectors are much higher in comparison to the ETS allowance prices
reported earlier. Some examples are given below for 2015 (per ton COz2); Sweden carbon
tax: $130, Finland carbon tax: $64 (for transport fuels), Switzerland carbon tax: $62,

Denmark carbon tax: $25, Ireland carbon tax: $22, France carbon tax: $16 (Kossoy et al.,
2015).

Based on the above analysis and to account for the uncertainties related to carbon price,
this dissertation considers three different scenarios for the carbon price: (i) low scenario,

$10 per ton, (ii) medium scenario, $20 per ton and (iii) high scenario, $50 and $100 per
ton of CO2. More details are given in Section 8.2.
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: EU Allowance spot price, California: California Carbon Allowance futures, Chicago:
Chicago Climate Fxchange Carbon spot prices, RGGI: auction prices, Shanghai: Shanghai Emissions
Allowance spot price. Exchange rates for the desired time
http://www.usforex.com/forex-tools

periods were obtained from:
/historical-rate-tools/historical-exchange-rates (access on 21.07.16)

Figure 6.3. Allowance prices in implemented carbon pricing instruments
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7 Data

Estimation of the supply and demand model and simulation of the market-based
environmental policy require a rich dataset with information on airline connection, flight
passengers, ticket prices and other explanatory attributes that affect passenger demand
and airline marginal cost. In addition, aircraft and airport data is needed for the
computation of COz2 emissions (see also Section 3.4.3 for some data sources used in the

COz2 emissions modelling).

Our study area is the domestic air transport network of the United States, while our study
period is the year 2012. This network is selected for several reasons. First, it serves a large
part of global passenger traffic, accounting for 27% of global scheduled traffic in terms of
revenue passenger kilometers (RPK) in 2012. Also, 2012 U.S. domestic RPKs accounted
for 49% of total domestic market (ICAO, 2013c). Second, the U.S. airline network is
considered to be a stable competitive market, as it has been deregulated since 1978. Most
U.S. markets are served by more than two airlines, thus, providing a suitable ground for
applying an oligopoly game between competing airlines. In our traffic sample, in each
market there are on average 4.8 airlines. Finally, U.S. is one of the few countries that
provides publicly available itinerary traffic data (Garrow, 2010). In particular, the U.S.
market-level itinerary traffic data are compiled by the U.S. Department of Transportation
(BTS, n.d.) and cover the full itinerary of U.S. domestic passengers which means that one

can determine the full composition of traffic in each route area.

This chapter describes the data sources used in this dissertation (Section 7.1). A filtering
process is adopted and described in Section 7.2, while the resulting sample data is
presented in Section 7.3 along with associated summary tables and statistics.

7.1 Data Sources

Data available by the U.S. Department of Transportation published in the website of the
Bureau of Transportation Statistics is used. In particular, three databases are employed:
(i) the Airline Origin and Destination Survey (DB1B), (ii) the T-100 Domestic Segment
for U.S. Carriers (T-100) and (iii) the On-Time Performance (OTP) database. In addition,
2012 population data from the U.S. Census Bureau (2015) are obtained.

The Airline Origin and Destination Survey (DB1B) reports a 10% sample of domestic
airline tickets sold by U.S. airlines. It is the key database of this dissertation and is used

to create the flight itineraries and to generate airline connections’ market shares, ticket

117



Chapter 7

prices and other itinerary attributes presented in Table 7.4. DB1B consists of three sub-
components (Market, Coupon and Ticket data) which are properly merged to create the
final DB1B dataset as described in Appendix C-1.

The above dataset is merged with three additional databases: the T-100 Domestic Segment
for U.S. Carriers, the Airline On-Time Performance database and the U.S. Census Bureau.
The T-100 Domestic Segment for U.S. Carriers (T-100) contains monthly domestic non-
stop segment data reported by U.S. air carriers. The variables constructed by T-100
include frequency and representative aircraft types. Airline On-Time Performance (OTP)
contains on-time arrival data for non-stop domestic flights in the U.S. and it is used to
create delay and other time-related variables. The U.S. Census Bureau provides us with
population data used to construct the market size, as the geometric mean of the
populations of origin and destination cities. Each airport in our sample is assigned to their
corresponding Metropolitan Statistical Area (MSA). Appendix B-2 presents the MSAs and

airports selected and associated population data.

7.2 Cleaning raw data

The DBIB raw data for 2012 included about 36.7 million non-stop segments (DB1B
Coupon), 22.7 million directional markets (DB1B Market) and 13.1 million tickets (DB1B
Ticket). Figure 7.1 illustrates the data included in the three data tables for an itinerary
between the ABE and ATL airports. In this example, the origin airport is ABE and the
destination airport is ATL. The ABE-ATL flight is a one-stop flight (connecting airport is
CLT) while the return flight is direct. The DB1B Coupon table provides segment-specific
information for each domestic itinerary, such as operating airline, origin and destination
airports, number of passengers and distance. The DB1B Market table contains directional
market characteristics of each itinerary, such as the reporting airline, origin and
destination airport, market fare, number of market coupons, market miles flown, and
carrier change indicators. Finally, the DB1B Ticket table contains summary characteristics
of the entire itinerary, including the reporting airline, itinerary fare, number of passengers,

originating airport, roundtrip indicator and miles flown.

DBlBﬁoupon DB1B Coupon
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DB1B Market

DB1B Ticket
2 Markets: (1) ABE—ATL, (2) ATL—ABE

3 Coupons: (1) ABE—CLT, (2) CLT—ATL
(3) ATL>ABE

1 Ticket:  Round-trip ticket ABE-ATL

Figure 7.1. Illustration of DB1B data tables
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The data used for estimating the model is filtered to ensure relevant and reliable data set.

The construction of the final sample follows a well-established procedure (Berry and Jia,
2010; Chi and Koo, 2009; Lee, 2013a; Hsiao and Hansen, 2011) consisting of the following
steps. First the DB1B database is filtered based on the following criteria:

1.

Round-trip domestic itineraries (68.6% of total tickets) with at most two segments
per direction are considered.

Tickets with multiple ticketing carriers in the market are omitted, which are about
3.4% of all domestic tickets.

Tickets whose fares are indicated as incredible are excluded (around 0.7%).
Open-jaw?* trips are eliminated (around 2.6%), because they are known to be
subject to different pricing scheme relative to the ordinary round-trip tickets.
Tickets with no data on the ticketing or operating or reporting carrier in a
segment of the market are omitted (around 1.3% of all domestic tickets).

Tickets with very low and very high air fares are eliminated. Tickets in the fare
range of $25 and $3000 for a round-trip are retained. These account for 94.6% of
all domestic tickets in 2012. The aim is to omit tickets purchased using frequent
flyer miles (lower bound) and to restrict the sample to coach-class travel (higher
bound).

Even after the application of the above filtering process, tickets with low fare and
long distance were observed in the sample. Longer trips tend to have lower fare per
mile because the fixed costs associated with each flight can be spread over a larger
number of miles (as shown in Figure 7.2). However, tickets (i) in the bottom and
top 5% of the fare per mile distribution and (ii) whose fare is less than 3 cents per

mile were excluded from the sample since their fare were unreasonable low /high.
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Figure 7.2. Ticket price per mile in relationship with miles flown?>

24 An open-jaw ticket is a round-trip ticket in which the traveler does not arrive the same city of
departure and/or does not depart from the same city where first landed. A sample open-jaw
itinerary might be a flight from SRQ to SLC on the way out and from SLC to MCO on the way

back.

%5 Tt is noted that itinerary distance corresponds to the total miles flown in the round-trip route.
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In the second step, we process T-100 and OTP data to be compatible with the DB1B
database. Since T-100 and OTP are reported in a monthly basis, and DB1B data are
quarterly, we need to aggregate T-100 and OTP in a quarterly basis. Once this is done,
edited T-100 and OTP tables include frequency, aircraft and time-related quarterly data.
T-100 data tables are filtered as follows:

o Freight traffic data is eliminated from the data. In 2012, these accounted to 13% of
all domestic flights and were excluded.
o Records with no data on passengers travelled and departures performed are

eliminated.

In OTP tables, some records were excluded from the sample as they were considered as
outliers. Flights with unavailable departure/arrival delays and airborne time are discarded.
Flights with airborne time shorter than 15 minutes or with departure/arrival delay longer

than five hours are also eliminated.

In the third step, we merge the three databases by flight segment and airline. DB1B and
T-100 segments are merged by operating airline while DB1B and OTP by reporting airline
(details on the merging process of DB1B, T-100 and OTP are given in Appendix C-1).
Next, we supplement the DB1B-T100-OTP merged data with population data. Finally we
filter airline connections so as to include regular scheduled flights (a minimum of 12 flights
per quarter and more than fifty passengers in the quarter are chosen as thresholds) and
medium to large Metropolitan Statistical Areas (with population greater than 800,000
people). The population threshold results in the top 67 MSAs in 2012.

The resulting database had over 3.3 million observations. The data are rearranged to
create the final data table which includes unique combinations of a round-trip between
Origin (Oj), Connecting (Cj), Destination (Dj) airports by Ticketing airline (A;j) during a
specific Quarter (Qj), i.e. “O-Ci-Dj/Aj,Q;”. In this data table, passengers are aggregated

over a given itinerary-airline-quarter combination. Thus, for each combination of “O;-Cj-

Dj/Aj,Qi” we know the total number of passengers travelled. The average ticket price is
then computed along with other demand and cost variables, and the final sample data is
created.

7.3 Resulting Sample Data

The final sample data has 89,667 airline connections, 13,432 markets?6 (O-D city pairs), 67
origin and destination cities, 91 airports and 11 ticketing airlines. On average, each O-D
city pair offered 6.7 flight connections and served 6,446 passengers in 2012, as shown in
Table 7.1.

26 A market is a directional origin and destination city during a specific quarter. Thus, the same

itineraries in different quarters are considered as different airline connections in different markets.
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Table 7.1. Summary statistics of the traffic sample

Sample data for 2012

Number of airline connections 89,667

Number of markets (O-D city pairs) 13,432

Number of different cities 66

Number of different ticketing airlines 11

Number of different airports 91

Passengers (in 1000) 86,578

Within market (O-D city pair) Mean Std Min Max
Number of connections 6.7 8.7 1 124
Number of passengers (in 1000) 6.45 16.65 0.05 337.1

DBI1B data tables are compiled in a quarterly basis. Table 7.2 presents summary statistics
of the resulting traffic sample by quarter during 2012. Based on our traffic sample, air
passenger flows are spread during the year, while the second and third quarters receive the
majority of passengers (about 51.9% of annual passenger traffic). This is in consistency
with the official U.S. Air Carrier Traffic Statistics for 2012 (24 and 31 quarter traffic
accounts for 52.2% of annual passengers) published on the website of the Bureau of
Transportation Statistics (BTS, 2016b).

Table 7.2. Quarterly-based statistics of the traffic sample

Quarter 1 Quarter 2 Quarter 3  Quarter 4 Total
Number of observations 19,228 23,631 23,296 23,512 89,667
% of observations 21.4% 26.4% 26.0% 26.2% 100%
Number of passengers (in million) 19.1 23.0 21.9 22.6 86.6
% of passengers 22.0% 26.6% 25.3% 26.1% 100%
Distance (sm) 5.8E+07 7.5E+07 7.5E+07 74E+07  2.8E+08
% of distance 20.6% 26.7% 26.5% 26.2% 100%
Passenger-miles 1.11E+15 1.73E+15  1.64E+15 1.67TE+15 6.15E+15
% of passenger-miles 18.0% 28.1% 26.7% 27.2% 100%

The assessment of the market-based environmental policy relies on an oligopoly game
developed by the airlines in each O-D market. As shown in Table 7.3, the sample markets
consist of 21.5% monopolies, 21.6% duopolies and 56.9% oligopolies.

Table 7.3. Summary statistics by market structure

-~ - 3 or more Total or
1 airline 2 airlines o
airlines average
O-D pairs 2,890 2,912 7,630 13,432
Share of O-D pairs 21.5% 21.6% 56.9% 100%
Number of passengers (in million) 1.65 6.05 78.9 86.6
Average ticket price (US$) 520.16 473.35 453.80 458.33

The above table also indicates that ticket price decreases with more active airlines in the
market. In particular, in the markets of three or more competitors (which represents the
majority of city pairs studied), average ticket prices are 14.6% and 4.3% lower than those
associated with 1 and 2 competitors respectively, indicating a high degree of fare

competition.

Figure 7.3 presents ticket price and passenger traffic data for the eleven airlines of our

traffic sample. On the x-axis, the airlines are grouped in legacy and low cost airlines.

Furthermore, “n” indicates the number of airline connections served by each airline (e.g.
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Virgin America (VX) ranks last with 327 airline connections). Based on our traffic sample,
in 2012, more than half of the passengers flew by legacy airlines (about 54.6%). The low
cost airline Southwest (WN) ranks first in passenger traffic with 24.8 million passengers,
and Delta Airlines (DL) follows with 14.6 million passengers. Furthermore, Southwest
(WN) served about 28 thousand airline connections, while Delta Airlines (DL) follows with
about 19 thousand connections. With regard to the average ticket prices by airline, we
observe that the average fares of the low cost airlines (WN, B6, FL, F9 and VX) are not
much lower that the legacy’s fares. This has also been reported in past studies where it is
found that the price premium charged by legacy airlines over low cost airlines has eroded.
In particular, Borenstein (2011) estimated that the fare premium has decreased from over
90 percent in the early 1990s to over 30 percent in 2009. In our sample, the low cost airline
AirTran Airways (FL) had the lowest average ticket price (equal to $348.3). Furthermore,
this airline served the shorter round-trip itineraries on average. In our traffic sample,
AirTran Airways flew on average 2,689 miles per round-trip itinerary. It is expected that
shorter itineraries are cheaper than longer. On the contrary, Hawaiian Airlines had the
longest round-trips on average (5,186 miles per round-trip itinerary) and had the highest
ticket price.

Legacy airlines Low cost airlines

Number of passengers (in million)
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Figure 7.3. Ticket price and passenger traffic data by airline

Table 7.4 summarizes the selected demand and cost variables with descriptive statistics
and data source. As already explained, several test runs of the demand and supply models

were conducted to choose these variables.
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Table 7.4. Summary statistics of demand and cost variables

Demand/ Mean

Variable Clost (std.dev) [Min, Max] Source
- Airline-route specific
Ticket price [in $100] D 4.573 (1.35)  [1.16, 13] DBIB
Number of stops D 1.556 (0.77) [0, 2] DBIB
Round trip distance [in 1000 sm] C 3.146 (1.49) [0.17, 10.43] DBIB
Minimum frequency (flights/quarter) D 279.89 (191.4) [12, 1992] T-100
% of morning departures D 0.245 (0.17) [0, 1] OTP
Alircraft size C 0.269 (0.44) [0, 1] T-100
Per passenger fuel [tn fuel /pax] C 0.151 (0.06)  [0.01,0.57]  Own-computation”
- Airport-specific
Slot control D 0.130 (0.36) [0, 3] DBI1B
Delays D 0.176 (0.07) [0, 1] OTP
Alternative airport D 0.604 (0.49) [0, 1] Own-computation
- Airport-Airline relationship
Hub C 0.630 (0.48) [0, 1] DBI1B
- Market specific
Market distance [in 1000 sm] D 1.572 (0.74)  10.09, 5.22] DB1B
- Airline dummies
Jet Blue Airways D and C 0.021 (0.14) [0,1] DB1B
Delta Air Lines D and C 0.208 (0.41) [0,1] DB1B
American Airlines D and C 0.128 (0.33) [0,1] DBI1B
Southwest Airlines Dand C  0.311 (0.46) [0,1] DB1B
Other legacy airlines D and C 0.133 (0.34) [0,1] DB1B
Other low-cost airlines D and C 0.074 (0.26) [0,1] DB1B
Number of O-D markets: 13,432
Number of airline connections (observations): 89,667

Study period: Year 2012

Table notes: @ D: Demand variable, C: Cost variable
b Fuel for both the LTO and CCD cycles. LTO fuel is based on the ICAO Engine Exhaust
Emissions Databank, while CCD fuel is computed on the registration-based typical profiles and

by applying the BADA fuel flow coefficients, as explained in Chapter 3.

The ticket price of each round-trip is taken as the passenger-weighted average ticket price.
In fact, in a given airline connection, different ticket prices may exist which correspond to
different passenger classes (business, economy etc). However, since we do not observe
individual passenger information, we cannot identify the passenger class of each ticket
record and, thus, do not account for passenger heterogeneity. In 2012, the passenger-
weighted average ticket price was equal to $457.3. The variable “number of stops” is
calculated as the number of layovers within the itinerary and takes three values 0, 1 or 2.
For a round-trip with both direct outbound and return flights, the variable is equal to
zero. On average, each airline connection of the sample had 1.56 stops. The itinerary
frequency is calculated as the logarithm of the minimum of segment frequencies. Round-
trip distance (cost variable) was on average 3,146 miles, while average market distance
(demand variable) is 1,572 sm. Regarding the time-related variables, it is found that in
2012 24.5% of airline connections are offered in the morning period. In addition, on
average, 17.6% of flights experienced more than 15 minutes delay during the previous
quarter of decision. 26.9% itineraries are served by wide-body aircraft in at least one their
segments, while the average fuel consumption is calculated equal to 0.151 tn per passenger.

In 2012, each airline connection of the sample passes via 0.13 slot-controlled airports.
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The supply and demand models are estimated by using instrumental variables to address
endogeneity of ticket prices and market shares. Table 7.5 summarizes the selected demand
and supply instrumental variables along with their descriptive statistics, based on the 2012

sample.

Table 7.5. Summary statistics of demand and supply instrumental variables

Demand/ 3
Instrumental Variable ‘emand, Mean S,td, Min Max
Supply® deviation
- Cost-shifting instruments
Hub indicat hether the destinati i t is hub fi
u %n.wa or (whether the destination airport is hub for D 0.103 0.304 0 1
the airline)
Hub indicat hether the ¢ ting ai t is hub f
u %n.wa or (whether the connecting airport is hub for D 0.476 0.499 0 1
the airline)
- Market-level characteristics
Number of airline connections within a market S 17.720 18.778 1 124
Number of airlines within a market D and S 4.833 2.024 1 10

- Rival connections’ characteristics
Percentage of nonstop routes that rivals operate in the

Dand S  0.259 0.290 0 1
same market

Average number of passengers carried by rivals in the
market S 100.2 171.89 0 4037.0

- Airline’s size of operation

Nl.m.lber. of cities that the airline directly serves from the DandS 12376 13.070 0 60
origin airport

- Other supply-side instruments

By-connection market size (in millions) S 0.384 0.407 0.02  9.29
By-airline market size (in millions) S 0.790 0.476 0.20 0.48

Table notes: (® D: included in the demand equation, S: included in the supply equation

124



8 Results

This chapter is divided in two parts; the first part (Section 8.1) presents the results
derived from the estimation of the air travel demand model and the airline’s behavior
model. In detail, the parameter estimates of the models are presented and discussed.
Finally, a comparison of estimated and observed passenger demand and ticket prices is
undertaken which reveals the goodness of fit of the demand and supply model. In the
second part (Section 8.2), our findings obtained by the implementation of the market-
based environmental policy are presented. Post-policy equilibrium ticket prices and market
shares are estimated. Several issues such as the carbon price variation, the estimated pass-

through rate, and the post-policy market concentration are also discussed.

8.1 Model estimation and validation results

When developing an econometric model three main tasks take place: model specification,
estimation and validation. In the current section, the model estimation and validation are
undertaken. The model specification, where the explanatory variables and the data to be
used in the estimation stage are defined, is included in Chapters 4 (demand model), 5
(airline behavior model) and 7 (air traffic data). In the estimation process we obtain the
estimation values of the coefficients of the demand and supply parameters. This task is
encountered in Section 8.1.1. In Section 8.1.2, the first task of the validation stage, which
is to evaluate the estimated model parameters, is included. In particular, the parameter
estimates obtained in the estimation stage are evaluated in terms of the expected signs and
magnitudes, while statistical tests are performed on their significance. Additional
statistical diagnostics are conducted for the instrumental variables used for addressing the
ticket price and market shares’ endogeneity. Another wvalidation sub-task is also
undertaken to establish the goodness of fit of our model. We compare the predicted values

of the passenger demand and ticket prices with the values actually observed.
8.1.1 Parameter Estimates

Several test runs were conducted to choose the appropriate demand and cost variables.
The final variable set is chosen based on the estimation results and applied statistical tests

as well as practical insights based on our intuition and prior literature.

The demand parameter estimates and the associated statistics are reported in Table 8.1
for different demand model specifications. Demand-alone parameter coefficients estimated
by the OLS and 2SLS methods are presented for comparison purposes. The OLS and 2SLS
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comparison reveals the endogeneity issue. Besides, the 2SLS estimates are used to initiate
the Generalized Method of Moments (GMM) and obtain the optimal weight matrix, as
explained in Section 6.3. In this work, the Nested Logit (NL) model is assumed to express
the decision process of travelers within markets. However, estimation results are also
presented for the Multinomial Logit (MNL) model for comparison purposes. The
estimation results of our final model are presented in Table 8.2, where the air travel
demand is modelled by the Nested Logit and is jointly estimated with the supply side by
the use of GMM method.

8.1.2 Validation

e Comparison of OLS and 2SLS estimates

In the demand model, ticket price is likely to be correlated with the unobserved-to-
researcher characteristic &. The OLS estimation ignores the endogeneity of ticket price and
therefore the estimates of the price coefficient are most likely biased. To confirm the
endogeneity of price we estimate the demand equation using OLS and 2SLS. We compare
the results given in columns (3) and (5) of Table 8.1 which correspond to the same model
(assumptions of Nested Logit model and demand-alone estimation) except for the method
of estimation; column (3) reports OLS estimates, while Column (5) gives 2SLS estimates.
Although the estimated ticket price coefficient (-0.175) in column (3) illustrate negative
fare impacts on demand, the magnitude of price coefficient in the 2SLS estimates is much
larger (in absolute value) than that from OLS. This suggests that the endogeneity of price
results in severe bias of the price coefficient estimate if instruments are not used for ticket

price.

e (Comparison of parameter estimates for the MNL and NL models

We now discuss results from assuming MNL or NL models to model the market share
function. We compare the results given in columns (1) and (3) of Table 8.1, which
consider MNL and NL models respectively. The estimated coefficient of ticket price is
equal to -0.032 for the MNL model and equal to -0.175 for the NL model. MNL and NL
models give similar patterns of coefficients for most demand variables, except time-related
and delay variables and few airline dummies. The negative coefficients of the percentage of
morning departures indicate that the attractiveness of an airline connection is lower in
these departure time periods, which is opposed to our intuition and the literature
recommendations. Furthermore, in the MNL model the estimated coefficient of the delay
variable is positive, meaning that the passengers may be attracted by arrival delays.
However, it is unreasonable to expect that delays positively influence passenger itinerary
choices. Next, we focus on the value of MS;j/¢’s coefficient. The parameter A is a measure of
the degree of independence within airline alternatives in air nest. Higher value of A means
greater independence and less correlation. The estimated value of (I-A) in the OLS-NL
case (column 3) indicates a correlation of 0.44 in the preferences of passengers for air.
Based on the above remarks, it is concluded that the Nested Logit model is more

preferable than the Multinomial Logit.
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Table 8.1. Estimation results for different demand model specifications

Dependent variable: InMS;j - InMSo

Single equation OLS-MNL Single equation OLS-NL Single equation 2SLS-NL

Variable Coefficient (s.e.) t-value | Coefficient (s.e.) t-value Coiﬁec;ent t-value
(1) (2) 3) 4) () (6)
Constant -9.823* (0.044) -220.746 | -8.575* (0.033)  -262.440 | -7.631* (0.060) -127.186
Ticket price -0.032* (0.004) -8.802 | -0.175* (0.003) -64.660 | -0.481* (0.012) -39.711
In(MSj/g) (1-2) - - | 0.440* (0.002)  231.896 | 0.357* (0.004) 82.503
Number of stops -1.180* (0.006) -197.156 | -0.906* (0.004) -201.636 | -0.983* (0.005) -181.695
Market distance 0.111% (0.007)  -15.441 | 0.116% (0.005)  21.778 | 0.381* (0.013) 29.231
In(minimum frequency) 0.499* (0.007) 74.187 | 0.474* (0.005) 97.347 | 0.473* (0.006) 84.907
% of morning departures -0.009 (0.025) 0.360 | 0.099* (0.018) 5.573 | 0.127* (0.020)  6.231
Slot control -0.537*% (0.012)  -43.788 | -0.134* (0.009) -14.836 | -0.271* (0.011) -25.674
Delays 0.111%% (0.065)  1.696 | -0.318* (0.047)  -6.745 | -0.171* (0.054)  -3.545
Alternative airport 0.603% (0.009)  -68.906 | -0.043% (0.007)  -6.326 | -0.183* (0.009) -21.101
Jet Blue Airways 0.765* (0.032) 23.915 | 0.310* (0.023) 13.317 | 0.175% (0.029)  6.125
Delta Air Lines 0.124* (0.015) 8.486 | -0.103* (0.011) -9.735 | -0.068* (0.012)  -5.506
American Airlines 0.198* (0.017) 11.440 | -0.208* (0.013) -16.475 | -0.163* (0.015) -10.831
Southwest Airlines 0.110% (0.014)  -7.861 | -0.111* (0.010)  -10.907 | -0.209* (0.012) -17.388
Other low-cost airlines 0.429* (0.019) 22.072 | 0.115* (0.014) 8.158 | -0.194* (0.021) -9.053
Other legacy airlines -0.123* (0.017) -7.289 | -0.155* (0.012) -12.638 | -0.116* (0.014) -8.338
Adjusted R2 0.539 0.758
F-stat. 4960.7 (prob.=0.00) 12410.8 (prob=0.00)
Ticket price: R2adjusted 15 stage 0.415
F-stat. 15t stage (p-value) 2305.2 (0.00)
In(MSj/g):  Radjusted 1 stage 0.665
F-stat. 15t stage (p-value) 6565.3 (0.00)

Number of observations: 89,667

Notes: OLS-MNL: MNL (single equation) demand model estimated by OLS, OLS-NL: NL (single equation) demand
model estimated by OLS, 2SLS-NL: NL (single equation) demand model estimated by 2SLS
Instrumental variables used in the IV methods are given in Table 7.5

1, ¥*:

*: significant at 1% leve significant at 10% level

US Airways is used as the base airline in the estimation

e Final model: System equation GMM-NL

To improve the efficiency of demand and supply estimates, the two equations are
eventually estimated jointly. The results from the joint estimation of parameters are

reported in Table 8.2 and are discussed next.

The coefficients associated with the explanatory demand variables have the expected sign.
As expected, the ticket price has negative effect on air travel demand (-0.46). The
estimated value of (1-A) indicates a correlation of 0.347 in the preferences of passengers for
air, which reflects moderate substitution possibility among flight connections. The negative
coefficient of the number of stops (-0.991) indicates that passengers do not favor flights via
connecting airports. This is partly explained by the extra travel. Market distance has a
positive coefficient equal to 0.36 which reflects the fact that aircraft is the preferred long
distance transport mode. The frequency coefficient (0.473) indicates that passenger’s
utility increases with the number of departures (in logarithmic form). The other indicator
of quality of service, namely the percentage of morning departures, has positive coefficient
(0.158). This value indicates that airlines attract more passengers if they offer a large

percentage of connections during morning hours. On the contrary, market shares are
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negatively influenced by delays. Arrival delays at the destination airport of more than 15
minutes negatively affect passenger’s utility (-0.246). The variable slot-controlled airports
is also negatively weighted (-0.278). Flight delays frequently observed at slot-controlled
airports may discourage passengers from choosing these airports. The negative coefficient
of the variable alternative airport (-0.196) is consistent with our intuition that the
existence of an alternative airport reduces passenger’s utility for the connection as it can

be served by another itinerary.

Table 8.2. Estimation results of the demand and supply system equation

Dependent variable: InMS;j - InMSyp

Dependent variable: p; (fare)

Demand variables - Cost variables Coefficient

Coefficient (s.e.)  t-value t-value

(std.err)

Constant -7.687* (0.065) -117.742  Constant 1.651* (0.024) 68.913
Ticket price -0.460* (0.013)  -34.179  Round-trip distance 0.480* (0.004) 136.798
In(MSi/g) (1-2) 0.347% (0.005)  74.228  Aircraft size -0.148* (0.014) -10.36
Number of stops -0.991* (0.006) -163.194  Hub dummy 0.053* (0.020) 2.673
Market distance 0.360* (0.014)  24.909  Jet Blue Airways -0.837* (0.027) -29.89
In{minimum frequency) 0.473* (0.006) 76.687  Delta Air Lines -0.095* (0.018) -5.405
% of morning departures 0.158* (0.021) 7.537  American Airlines -0.162* (0.017) -9.314
Slot control -0.278% (0.011)  -25.170 Southwest Airlines -0.360* (0.023) -15.820
Delays -0.246* (0.057) -4.289 Other low-cost airline  -1.082* (0.016) -66.630
Alternative airport -0.196* (0.009)  -22.762 Other legacy airlines 0.085* (0.020) 4.315
Jet Blue Airways 0.178* (0.029) 6.176
Delta Air Lines -0.077* (0.013) -6.133
American Airlines -0.156* (0.016) -9.717
Southwest Airlines -0.246* (0.012)  -20.528
Other low-cost airlines -0.183* (0.022) -8.244
Other legacy airlines -0.092* (0.016) _5.746
Statistics:
Ticket price: R2adjusted 15 stage 0.415

F-stat. 15 stage (p-value)
RQ‘ddjusr(‘d 15t stage
F-stat. 15 stage (p-value)

In(MS;/g):

GMM objective
Cragg-Donald F-statistic

Overid. test p-value (10% signif. Level)
Durbin-Wu-Hausman test p-value
Number of observations: 89,667

2305.2 (0.00)

0.665

6565.3 (0.00)

1020.9

806.4 (>Stock-Yogoo.05=19.45)

0.00
0.00

Notes: Instrumental variables used in the model are given in Table 7.5

*: significant at 1% level
US Airways is used as the base airline in the estimation

The estimated cost parameters have also the expected sign. The positive coefficient of
round-trip distance (0.48) indicates that cost rises with distance travelled. The aircraft size
coefficient (-0.148) implies that using wide-body aircraft may be more cost efficient for an
airline. Wide-body aircraft can provide more capacity and thus transfer more passengers,
lowering per passenger marginal cost. Cost economies of larger aircraft are as well
documented in Wei and Hansen (2003) and Ryerson and Hansen (2013). Passing through a
hub airport increases airline marginal cost, all else being equal. Hub operations offer
economies of density. Airlines may transfer higher traffic flows and thus generate higher
load factors, which decrease per-passenger cost (Lee, 2013a; Shen, 2012; Ssamula, 2008).
On the other hand, traffic concentration in hub airports may cause congestion and flight

delays or may increase travel time compared to the corresponding direct flight and
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ultimately increase marginal costs (Borenstein and Rose, 2007; Gayle and Wu, 2015). The
hub dummy coefficient (0.053) indicates that the net effect of these countervailing forces
on cost is positive. Finally airline dummies indicate that in general low cost airlines have
lower marginal cost (-1.082), with Jet Blue Airways being the most cost efficient (-0.837)
followed by Southwest Airlines (-0.36). The airline dummies have been constructed by
taking the US Airways as the base airline. Thus, the estimated coefficients show the
magnitudes of the other airlines’ marginal cost in comparison with the base carrier (US

Airways).

Before concluding to the model of Table 8.2, we ran several models with different demand
and cost variables each time. To choose among the different models, a specific evaluation

procedure was followed which included:

e Evaluation of the parameter estimates (e.g. whether they have the expected signs and
magnitudes) and their corresponding t-statistics and p-values. For example, in Pagoni
and Psaraki (2015), we estimated the models for a smaller time period (we used data
for the 1lst quarter of 2012) and we experimented with using the “late-afternoon
departures” variable in the demand model to assess the attractiveness of an airline
connection based on the time of departure (as explained in Section 4.3.2). In this paper
the “late-afternoon departures” variable had positive coefficient (equal to 0.14) and was
statistically significant. However, in the model developed for the sample of the whole
year (2012) this variable was not found to be statistically significant and was excluded
from the demand function.

e Due to the endogeneity issue, suitable instrumental variables are used to estimate the
model. To justify the appropriateness of the selected instruments, three instrumental
variables diagnostics are applied as explained in Section 6.2.3. The statistical package
Eviews is used for performing the tests. Cragg-Donald F-statistic for the explanatory
power of the instruments is equal to 806.4, which is much higher than the Stock-Yogo
critical value for 95% confidence level (equal to 19.45), indicating that the instruments
are not weak. The test of the overidentifying restrictions (to check the exogeneity of the
instruments) was performed several times for different sets of instruments by regressing
the residuals of the IV regressions with the selected instruments. The resulting m,-F
was found less than the chi-squared critical value. The results did not reject the
orthogonality condition at the 10% level. Finally, the Durbin-Wu-Hausman test is
performed. The test was found statistically significant (p-value=0.00) which means that
the null hypothesis (there are no differences between the model in which price and
market shares are treated as endogenous and the model where they are treated as
exogenous) can be rejected, and thus ticket price and market shares are endogenous.
Overall, we conclude that our instruments are exogenous and not weak and that ticket

price and market shares are endogenous.

Finally, we measure how well the estimated equations reproduce the observed data by
comparing two indicators: the passenger demand, which reveals the goodness of fit of the
demand model and the ticket prices, which reflect the characteristics of the supply side.
To obtain the estimated data, we substitute the demand and marginal cost estimates of
Table 8.2 into Eq. 5.4 and solve the equation for ticket price. Then, the estimated prices

are substituted into the market share function (Eq. 4.9) to predict market shares.
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Estimated passenger demand is calculated by multiplying the estimated market shares
with the respective market size. The results are illustrated in Figure 8.1 which provides a
comparison of average observed and estimated ticket prices (upper figure-a) and market
shares (lower figure-b). Summed across all airline connections, estimated market shares are
only 1.86% higher than the observed data while modeled ticket prices are only 0.72% lower
than the observed. Ticket prices are slightly over-estimated for direct flights (0.59%) while
they are slightly under-estimated for non-direct flights (0.75%). With regard to market
distance, the largest prediction error of ticket price is for markets of more than 2500 sm
distance where average ticket prices are over-predicted by 2.1%.
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Figure 8.1. Comparison of estimated and observed prices (a) and market shares (b)
In addition, a goodness of fit measure, which has been suggested for instrumental variables
regressions (Gugler and Yurtoglu, 2004; Pesaran and Smith, 1994; Windmeijer, 1995) is
calculated for the demand and the supply model. It is computed as the squared correlation
coefficient between predicted and observed values of the passenger demand and ticket
prices and ranges from 0 to 1. For the market shares, it is equal to 0.76, while for the
ticket prices it is equal to 0.45 (these values are indicated in parentheses in Figure 8.1),
which seem acceptable for cross-sectional data. Also our results indicate that direct
connections are better predicted since the squared correlation coefficient for the market
shares of the (0.68) is higher than that of the non-direct connections (equal to 0.54). The
same applies to the ticket prices as well, similar to what indicated in Figure 8.1. With
regard to distance, the better predictions for are obtained for the distance cluster of 620-
1250 sm where the squared correlation coefficient is equal to 0.835. For the distance

cluster of 0-620 sm the corresponding value is 0.82. All the above findings generally
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suggest that our model is capable of capturing the dominant effects of passenger demand

and ticket prices.
8.1.3 Marginal cost results

Given the price equation (Eq. 6.3) and the estimated coefficients of the demand and
supply model, the estimates of marginal costs are obtained for every airline connection.
Therefore, a natural test of our model validity to compare our estimates of marginal cost
with other studies is facilitated. Our estimates indicate an average marginal cost of
$294.80 (averaged for all airline connections in the estimation sample). A direct
comparison of this estimation with marginal cost estimates from past studies could be
misleading since different traffic samples are used in the estimation (i.e. different time
period or ticket prices etc). One idea is to compare the price-cost margin, which is the
difference between price and marginal cost as a fraction of price i.e. (p-mc)/p. This value
is used as an indicator of market power. Our model yields an average price-cost margin of
0.384, which is consistent with the existing literature, e.g. Shen’s (2012) estimate is 0.41,
while Alcobendas (2014) and Gayle (2013) report price-cost margins of 0.36 and 0.39
respectively. In cases where the price-cost margin is not reported in the literature, the
average marginal cost as a percentage of price is compared (i.e. mc/p). Our estimates
indicate that marginal cost constitutes on average the 64.6% of ticket price. This estimate
is close to published values, e.g. Lee (2013a) report estimates of 56.8% to 65% depending
on the number of airlines in the oligopoly market, while Brown and Gayle (2009) and
Gayle and Le (2015) report that on average marginal cost is 68% and 65.7% of ticket price

respectively.

8.2 Effects of the market-based environmental policy

The current section assesses the impact of the market-based environmental policy on ticket
prices and air travel demand. The analysis is conducted in market, network and airline
level. Post-policy equilibrium ticket prices and market shares are estimated. In addition
the impact of the studied policy on aviation emissions is assessed. Several issues such as

the carbon price variation and the estimated pass-through rate are also discussed.

As explained in Section 6.4, several elements are needed to conduct the simulation analysis
of the implementation of the CO2 emission fee. In particular, apart from the demand and
supply model coefficients, pre-policy airline’s marginal cost, unit carbon price, load factor
data, seat capacities and itinerary carbon emissions are also required. The pre-policy
airline’s marginal cost is estimated during the demand and supply model estimation. A
comparison of pre-policy and post-policy airline’s marginal cost is presented in Section
8.2.3.

Setting an effective level of carbon price is essential when designing a market-based policy.
In emission trading schemes, carbon price is driven by market conditions. For example, too
many allowances will result in a low carbon price but too few allowances will result in a
high carbon price. The policy considered in this dissertation employs a pre-defined carbon
unit price. To set a realistic unit carbon price, historical price data from existing policies
in aviation as well as values reported in various studies were reviewed in Sections 6.4.3

and 2.2 (Table 2.2). To take into account the uncertainties related to carbon price, three
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scenarios are considered: (i) low scenario, $10 per ton, (ii) medium scenario, $20 per ton
and (iii) high scenario, $50 and $100 per ton of CO2. The medium price scenario ($20/tn
COz2) was chosen in order to reflect the baseline price level used among existing research
papers (see Table 2.2). The low price was used to approximate the average price of
European Union Allowance price during 2012. The prices of $50 and $100 per tn COq

(high scenario) reflect two more aggressive scenarios for aviation emissions abatement.

Two other significant elements in the considered assessment analysis are the assumed load
factor and the seating capacities. Seating capacities are assigned to each segment of the
itinerary based on the aircraft type used (seat capacity data by aircraft type is given in
Appendix B-4). Load factors are computed by airline and distance combination and are
averaged for each quarter in 2012 based on the T-100 database. Since the diagram of load
factors by airline and distance combination is scarcely legible, we present average load
factors by distance cluster and quarter in Figure 8.2. It is shown that the computed load

factors in some distance clusters are different between the different quarters.
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Figure 8.2. Average load factor by distance cluster and quarter

Finally, itinerary carbon emissions are computed in accordance with the methodology

developed in Chapter 3.
8.2.1 System-wide analysis

Before presenting the effects of the environmental policy on ticket prices, air travel
demand and aviation CO2 emissions, a brief overview of the carbon footprint of the
considered airline network will be presented. It is noted that COz2 emissions are computed
as a function of aircraft fuel consumption, according to the methodology developed in
Chapter 3. The registration-based flight profiles are used as representative flight profiles
on which BADA’s fuel flow rates are employed to compute fuel consumption of each

round-trip itinerary of our sample.

Our computations indicate that on average each round-trip itinerary generate 0.17
kg/passenger-sm. However, this value is different for various itinerary distances and
aircraft types etc. Figure 8.3 presents the range of flights and CO2 emissions per
passenger-sm in our traffic sample. In accordance with previous studies, CO2 emissions per

passenger-sm tend to decrease as flight distance gets longer. The figure depicts that long
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distance flights, mainly operated by heavy aircraft, are most efficient in comparison with
very short distance flights. On average, itineraries longer than 6,000 miles generate 0.13
kg /passenger-sm, while itineraries with distance from 2,000 to 6,000 miles generate on
average 0.15 kg/passenger-sm. Itineraries shorter than 2,000 miles generate on average

0.22 kg/passenger-sm.
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Figure 8.3. Range of flights and CO; emission per passenger-km

Next we construct emission maps of the U.S. airspace. These maps enable the
identification of critical emission spots including routes, airports and aircraft type. The
map construction incorporates the use of Geographical Information Systems in order to
import the coordinates of the U.S. airports along with the output data of CO2 emissions.
COz2 emissions per O-D airport pair are illustrated in Figure 8.4. To provide a clear and
readable emissions map, only the 100 most popular U.S. domestic routes for 2012 are
considered and designed with direct lines. Figure 8.4 shows the geographical distribution of
the CO2 emissions on the top 100 U.S. domestic routes using the registration-based typical
profiles along the CCD cycle. The routes from New York (JFK) to San Francisco (SFO)
and Los Angeles (LAX) receive the bulk of CO2 emissions among the top 100 routes.
Furthermore, high amounts of CO2 are emitted by itineraries between Northeast U.S.
airports (e.g. ORD) to west coast’s airports (e.g. LAX, SFO) and Hawaii (HNL airport).
On the contrary, shorter flights between airports at the Eastern region of U.S. emit the
lowest, amount of carbon dioxide.
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Figure 8.4. CO2 emissions map of the 100 most popular U.S. routes

Figure 8.4 along with Figure 8.5 provide for an integrated comparison of the annual CO2

route emissions with reference to the main determinants i.e. aircraft size, flight distance
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and number of flights. The number of flights in 2012 is illustrated in Figure 8.5(a) and the
average aircraft size per O-D airport pair is given in Figure 8.5(b). Longer flights that fly
above the entire U.S. airspace (from West to East and vice versa) are operated by larger
aircraft with average passenger capacity of more than 190 seats. Short flights are operated
by smaller aircraft with seat capacity of 143-190. Although the flights in the route HNL-
LAX are few compared to other routes, the annual CO2 emissions are relatively high due
to the long flight distance and the aircraft size used for this route (>190 seat capacity).
The same applies to the routes SFO-JFK and LAX-JFK where flight distance and aircraft
size are the main factors of high emission values. On the contrary, although the routes
ORD-JFK and JFK-ATL have more than 9,000 flights annually, the short distance and
relatively small aircraft type (with seat capacity 143-165) lead to relatively low emission

values.
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Figure 8.5. Geographical distribution of number of flights (a) and aircraft size (b) for
the 100 most popular U.S. routes
The results after the simulation of the market-based environmental policy are presented in
Table 8.3. On average the ticket price increases by 1.07% to 10.73% depending on the
carbon price set. For the low carbon price scenario (F=10), the carbon cost imposed to the
airline for each passenger is on average $4.75, while this is increased to $23.77 for the high
carbon price scenario of $50 per ton CO2. As expected the higher the carbon price, the
higher the ticket price increases. The structure of the demand-and-supply model enables
that a change in a causal factor may impact both total air travel demand and within-
group market shares. In particular, the structure of the oligopoly game (as described in
Section 5.1.2) which includes the matrix of partial derivatives of MS;j with respect to price
allows for changes in within-group market shares due to ticket price changes among the
competitors within the market. After the implementation of the studied environmental
policy, on average an itinerary may lose from 0.22% of its within-group market share
(MS;j/g) for a carbon price of $10 to 2.23% for a carbon price of $100. In addition, the
inclusion of the non-air alternative in the passengers’ choice set allows for changes in

airline connections’ market shares (MS;j) (and thus total air travel demand) due to ticket
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price changes. Our results indicate that higher airfares after the implementation of the
studied policy are followed by a decrease in air traffic. Overall, the simulation results
indicate that total passenger traffic will be reduced by 1.47% for the low carbon price
scenario, while a relatively high demand decrease of 13.5% may occur for the high scenario
of 8100 per ton COz2. For the medium scenario (F=20), on total 2.91% of passengers may

choose not to fly as a result of increased prices.

Table 8.3. Effects of the market-based policy in the U.S. domestic airline network

Low Medium . .
. . High scenario
scenario scenario

F (8/tn CO2 F=10 F=20 F=50 F=100
Average effects per airline connection
Average carbon cost per connection [$] Acost 4.75 9.51 23.77 47.53
Average fare increase per connection [%] %Aprice 1.07% 2.15% 5.36% 10.73%
Avera‘ge. demand change of within-group %AMS; g 0.92% 0.45% 1.13% -9.93%
connections [%]
Total effects in the study network
Reduction in total air travel [%] %Apassengers  -1.47% -2.91% S1.07%  -13.50%
Reduction in air carbon emissions [%| %ACO2 -1.88% -3.73% -9.02%  -17.05%

Decreased air traffic will lead to lower emission levels for the network under consideration.
To accurately compute this effect, the number of “lost” passengers due to the fare increase
for each individual flight of an airline should be known. If this information is available,
changes in network configuration due to airfare increase could be assessed. For example,
the increased ticket prices may result in such air travel demand changes that the airlines
might be encouraged to change their flight frequency or shift to larger or smaller aircraft
on specific routes. However, our dataset does not provide such detailed information at that
level of individual flights at a particular day and time. Instead, aggregate data on the total
number of people in 2012 who chose a unique combination of “Origin-Connecting-
Destination airports by a specific airline in a quarter of 2012” are available. An illustrative
example of the available information for each round-trip airline connection is given in
Figure 8.6. In addition, the policy effects on travel demand are mentioned for this
example. Although we are able to compute the number of passengers that might stop
flying due to ticket price increase, we are not able to know how these passengers are
distributed in the various scheduled segment flights of the specific airline in the study
quarter of 2012. Thus, we are not able to know how the airline’s schedule in each airport-
pair segment would change (due to demand decrease) so as to compute the change of CO2
emissions due to reduced departures of each airline. However, to have an aggregate
estimate of the CO2 emissions reduction due to air travel demand decrease we adopted a
simplified assumption that network CO2 emissions are reduced by the following quantity:
number of passengers who stopped flying due to fare increase x per passenger CO2
emissions. It should be noted that although our approach over-estimates the CO2
reduction results, it is a satisfying approach to obtain aggregate estimates. Based on the
above, the results suggest that CO2 emissions may decrease by -1.88% to -17.05%
depending on the carbon price set due to the air travel demand decrease. It should be also
noted that some of the passengers will divert to other transport modes, while others may
choose not to travel at all. Due to the appearance of this travel mode substitution effect a

decrease in the aggregate volume of aviation will cause an increase in the aggregate traffic
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volume of another mode. Consequently, the additional traffic of the other transport modes
(e.g. car, train etc) would cause an increase in CO2 emissions. This especially applies to

short-distance trips where air transport strongly competes with land transport.

Connecting airport Pre-policy passengers: 1070
DFW Post-policy passengers: 880
19 ssenge flyi
7/ 2 (190 passengers stot];p;c;e I)Zélrge (il:j
Origin airport estlnagllgg airport
AUS

i Quarter 1, 2012 Airline: American Airlines i
' Representative aircraft types: MD82 for the segments AUS« DFW !
1 1
1 1

B738 for the segments DFW« SFO

Figure 8.6. Illustration of an airline connection and post-policy demand

The environmental fee constitutes part of the airline cost structure and thus affects
profitability. In this study it is assumed that, at least one part of it is passed onto
passengers. As shown, price increase beyond a certain level will inevitably lower demand.
Market shares of airlines will then be affected, albeit non-uniformly driving down revenues
and profitability. In reality, expected airline responses will differ depending on the
assessment of the respective impact on market share and will not be confined to a single
decision option but a variety of potential decision variable employed in reality (flight
frequency, aircraft size, etc). As already mentioned, for instance, if the load factor of the
airline connection falls to very low levels, the airline may decide to change its flight
frequency or shift to smaller aircraft (given that the flight distance can be covered by
smaller aircraft). Although the modelling approach of this dissertation does not capture
such airline responses, an attempt is made so as to estimate the effect of the market-based
policy on airline’s load factor (in the short term). If we assume that the demand decrease
is uniformly attributed in load factor decrease, Figure 8.7 presents the cumulative
distribution of load factors for the several carbon price scenarios. For comparison reasons,
the corresponding curve for the pre-policy load factors is illustrated. Based on the results,
before the implementation of the environmental policy the average load factor by itinerary
was 0.84, while half of the connections had load factor higher than 0.83. At a carbon price
of $20 per ton CO2, the average load factor by itinerary was 0.78, while half of the
connections had load factor higher than 0.79. The changes get highly sensitive at the price
of $100 per ton CO2. Average load factor falls to 0.66; this value is the highest level of load

factor for the half of connections.
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Figure 8.7. Changes in load factor cumulative frequency

On the whole, the above results reveal that the implementation of a carbon policy in the
U.S. aviation is expected to cause moderate to significant changes on ticket prices and
market shares, depending on the unit carbon price. In the low carbon price scenario
(F=10), which is close to the carbon price currently prevailing, ticket prices may increase
by 1.07%. This would decrease total passenger demand by 1.47% and network-wide CO2
emissions by 1.88%.

The effect of the above changes to different distance groups is illustrated in Figure 8.8.
Flight connections are grouped in four groups based on their market distance: connections
with market distance less than 620 miles (=1000 km), from 620 to 1250 miles (=1000-2000
km), from 1250 to 2500 miles (=2000-4000 km) and greater than 2500 miles (=4000 km).
The distance bounds are selected based on a review conducted by Miyoshi and Mason
(2009) on carbon emission levels estimated in various studies for different stage length. For
the medium scenario ($ 20/tn COg2), shorter flights become on average 1.3% more
expensive while longer flights’ fares increase by about 2.83%. Total air travel demand
changes by a range of -1.59% to -6.58% for the shortest and longest flights respectively (for
the medium carbon price scenario). Overall, as expected, longer flights experience the
greatest impact due to the carbon cost as they generate the largest amount of CO2
emissions. The large amount of CO2 emissions are due to several reasons: first, the largest
the distance the higher the amount of CO2 emitted. Second, longer flights are more likely
to have one (or more) intermediate stop(s). Thus, the “extra” landing/take-offs result in
higher amount of COz2 emissions. Last, longer flights tend to be served by larger aircraft,
as shown in Figure 3.16 where the share of passenger traffic by aircraft type is illustrated
for 2012. As we move to higher flight distances, larger aircraft such as Airbus 330-200
(A332) and Boeing 767-300 (B763), 767-400 (B764), 777-200 (B772) serve the flights. Most
of these aircraft types burn more fuel and, thus, generate more CO2 emissions as also
indicated in Figure 5.3.

Following the above findings, we may conclude that an airline with a high proportion of
long-haul itineraries would experience higher carbon costs and greater impact on demand
loss. However, Figure 8.3 indicates that carbon emissions per passenger-miles are lower for
long-haul flights in comparison to shorter flights (the value of COz2 per passenger-miles is a
common metric which indicates the flight’s efficiency with respect to energy and

emissions). Therefore, for a specific airline which serves a large percentage of short-haul
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flights, the amount of CO2 emissions and, thus, CO2 costs are lower in absolute terms (as
shown in Figure 8.8) but are higher if we consider the per passenger-mile metric (see
Figure 8.3).
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Figure 8.8. Changes in ticket prices and total air travel demand values for different
distance groups

Another critical observation is that the CO2 policy affects direct and non-direct flights
differently. Figure 8.9 shows that on average, a passenger will face a higher price increase
on non-direct flights. A one-stop flight includes the fuel consuming parts of landing and
take-off at the connecting airports. This results in higher CO2 emissions in comparison to
the corresponding direct flight. Hence, even within the same market, passengers who
choose to travel directly between O-D airports will benefit more than those who travel on
a one-stop flight. For the high scenario of $50 per tn CO2, connecting flights face a 5.7%
increase in ticket prices compared to 3.9% for direct flights. For the same carbon price,
10.9% and 6.5% of passengers in connecting and direct flights respectively may choose not
to fly after the introduction of carbon policy, due to higher airfare.
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Figure 8.9. Changes in ticket prices and total air travel demand for direct and indirect
flights
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8.2.2 Market-level analysis

The considered environmental policy is expected to have different impact on markets with
different level of competition. For example, it is believed that the number of competitors
in a market may influence the magnitude of ticket price increase after the implementation
of the studied environmental policy; the higher the number of players in a market, the less

the ticket price increase.

To identify the impact of market competition on the effects of the studied environmental
policy, markets with similar characteristics have been selected for comparison. Figure 8.10
presents the ticket price increase in relationship with the number of players (airlines) in
the market. The results correspond to the low carbon price scenario of $10 per ton COa.
Similar patterns are observed in the other carbon price scenarios, but with different
magnitude. The airfare changes for the whole set of airline connections are illustrated with
black points. To examine the trend of ticket price changes with respect to market
competition, the airline connections are then split in different categories (every 1000 miles)
depending on the roundtrip distance so as to ensure that we compare connections with
relatively similar characteristics. Comparing markets with different features (such as flight
distance, carbon emissions and thus imposed carbon costs, etc) could lead to misleading
interpretations. The linear fit curves for the various roundtrip distances are depicted in
different colors. Overall, it is shown that, ticket price increase demonstrates a decreasing
trend when we move to a higher number of players (airlines) in the market.
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Figure 8.10. Increase in ticket prices in relationship with the number of players in the
market?”

27 The regressions lines are as follows: Round-trip distance of i) <1000sm: y=2.097-0.048x, ii) 1000-
2000sm: y=3.03-0.077x, iii) 2000-3000sm: y=4.46-0.075x, iv) 3000-4000sm: y=5.46-0.075x, v) 4000-
5000sm: y=>5.95+0.03x, vi) 5000-6000sm: y=6.77+0.05x, vi) 6000-7000sm: y=9.13-0.115x, vii) >7000sm:
y=11.88-0.15x, where y is the ticket price increase (in $) and x is the number of airlines in the market.
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8.2.3 Airline-level analysis

In this section we focus on the effects of the considered environmental policy on the eleven
airlines that are active in our sample network. The policy is expected to affect each airline
differently due to differences in the level of each airline’s carbon emissions and resulting
carbon costs and due to deviations in airlines’ ticket prices before the environmental
policy. Table 8.4 presents the share of passenger-miles and CO2 emissions for the sample
airlines. Southwest (WN), Delta Air Lines (DL) and United Airlines (UA) rank first in
passenger-miles and CO2 emissions, while Hawaiian Airlines concentrate the lowest share
of both indicators. CO2 emissions efficiency for each airline has been also computed by
dividing the amount of CO2 emissions by the passenger-miles served by each airline in
our sample. The magnitude of this indicator depends on the aircraft types used, the
distance flown by each airline and the load factor. Thus, average itinerary miles flown

and load factor by airlines are presented in Table 8.4.

The highest values of CO2 emissions per passenger-mile (lowest efficiency) correspond to
Virgin America (VX) and JetBlue (B6). Both airlines’ itineraries are mainly served by
Airbus 321 (about 90% of VX’s itineraries and 65% of B6’s). This aircraft type is a
relatively efficient aircraft type (in terms of fuel consumption and CO2 emissions) in
comparison to the other aircraft types used (see Figure 5.3). However, the lower load
factor (compared to the other airlines) results in higher carbon emissions per passenger-
mile. The lowest values of CO2 emissions per passenger-mile (highest efficiency) correspond
to Frontier Airlines (F9), Alaska Airlines (AS) and Hawailan Airlines (HA). Both the
aircraft types used (F9’s connections mainly served by A319 (80% of them), AS’s
connections are mainly served by B738 (46%), CRJ9 (12%) and B737 (12%)) and the
higher load factors result in higher CO2 emissions efficiency. For Hawaiian Airlines, the
high level of CO2 emissions efficiency may be mainly explained by the long flights served.
HA’s itineraries are on average 5186 miles long, which is much longer than the connections

of the other airlines.

Table 8.4. Share of passenger-miles and CO; emissions by airline

o Share of Share of CO2 emissions. per Average Average

Airline ‘ . CO2 passenger-mile roundtrip miles load
passenger-miles . . ‘ . p

emissions  (kg/passenger-mile) (in 1000sm) factor
VX 2.6% 3.0% 0.172 4.173 0.77
B6 8.8% 9.5% 0.164 3.292 0.83
FL 4.0% 4.2% 0.160 2.673 0.79
AA 14.6% 15.4% 0.159 3.445 0.81
US 8.5% 8.7% 0.154 3.225 0.84
DL 17.5% 17.5% 0.152 3.234 0.84
UA 15.4% 15.0% 0.149 3.410 0.84
WN 21.8% 21.1% 0.147 2.854 0.80
F9 2.6% 2.2% 0.129 3.318 0.89
AS 2.9% 2.4% 0.123 3.044 0.87
HA 1.3% 1.1% 0.122 5.186 0.87
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Due to the carbon cost the marginal cost of each airline are increased. Figure 8.11
illustrates the airlines’ marginal cost before and after the studied environmental policy for
the medium carbon price scenario (F=$20). The stars next to the airlines’ names indicate
the LCC airlines. LCC airlines have lower marginal costs in comparison to other airlines,
both before and after the environmental policy. Above the bars the average carbon cost
per connection by airline is given.
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Figure 8.11. Airlines’ marginal cost before and after the environmental policy (for the
medium scenario F=$20/tn CO;)

The effects of the policy on ticket prices for the same carbon price scenario are shown in
Figure 8.12. Legacy airlines are illustrated in grey bars, while low cost airlines’ changes are
given in the light brown bars. We observe that low-cost airlines face the largest price
increase, except Southwest Airlines. Based on our simulation results, Virgin America’s
prices are likely to increase by 3.4%, followed by three other LCC airlines: JetBlue,
AirTran and Frontier. This large effect for LCCs may be explained by the pre-policy
prevailing ticket prices and the carbon cost implied under the environmental policy. For
example, Frontier and AirTran have a relatively low carbon cost in comparison with other
airlines (see Figure 8.11). However, due to their low pre-policy ticket prices (Frontier and
AirTran have on average the lowest pre-policy prices, $365.6 and $347.6 respectively), the
percentage price increase (2.4% and 2.5% respectively) after the environmental policy is
higher than in other airlines. For the cases of Virgin America and Southwest Airlines, the
high and low effects respectively may be explained by both the high/low carbon cost and
the pre-policy ticket prices (on average Virgin America has the 4" lowest ticket prices
while Southwest Airlines ranks 5.
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Figure 8.12. Ticket price changes by airline (for the medium scenario F=$20/tn CO;)

Similar patterns are observed for the rest of the carbon price scenarios (10, 50 and 100).

However, the level of price increase depends on the scenario applied.

As indicated in Table 8.3, ticket price changes are more likely to change total air travel
demand as opposed to affecting demand shift between airline connections. In particular,
within-group air travel demand is found to decrease by only 0.22% for the low scenario
and 2.23% for the highest carbon price. This means that competition distortions are
expected to be rather low. Our results are in agreement with the findings of other studies
which have investigated environmental policies in European or other markets (Anger,
2010; Malina et al., 2012; Miyoshi, 2014; Scheelhaase et al., 2010).

This dissertation assumes that the market-based environmental policy is uniformly
imposed to the different airline connections and airlines of the studied network (all airlines
and airports are subject to the considered policy). This is the reason why market share
changes mainly occur between the airline alternatives and the non-air alternative; in other
words, due to the massive ticket price increase the travelers are more likely to stop flying
than shifting to competing airline connections. In case the market-based policy treated
airlines or airports or airline connections in different way (i.e. emissions cost imposed to
some of the airline connections in the market), then the results might indicate more
intense conditional market share changes among the airlines. This case could be applicable,
for instance, if an airport in the given network imposed extra fees for the emissions
generated during landings and take-offs (while other airports in the same network did

not).
8.2.4 Carbon cost pass-through rate

Airlines’ decision on the level of CO2 cost pass-through rate is an important determinant
of the impact of the examined market-based measure on aviation. Consistent with airlines’
profit maximizing behavior in competitive markets, most studies claim that airlines may
pass the entire cost of CO2 emissions to passengers (Forsyth, 2008; Hofer et al., 2010;
Miyoshi, 2014; Sgouridis et al., 2011). On the other hand, some studies support that

airlines’ competition may not enable the full pass through of CO2 cost to passengers (Boon
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et al., 2007; Morrell, 2007; Scheelhaase et al., 2010; Malina et al., 2012) and that pass
through rate depends heavily on the type of competition (Oxera, 2003).

In this dissertation, the cost pass through rate (PTR) is not pre-determined but it is
computed within the supply-and-demand model as the ratio of the ticket price change

(Ap) to the change in marginal cost (which is equal to the carbon cost) as follows:

Ap

PTR [%] = co cost-
2

100 Eq. 8.1

Our estimation results indicate that COz2 cost pass through rates vary between 89% and
140%. However, for the 99.5% of the sample airline connections, the PTR ranges from 95%
to 112%, while on average the level of PTR is equal to 100.4%. Among the sample airlines,
Virgin America and JetBlue Airways have the lowest pass-through rate (99.1% and 99.4%
respectively), while Alaska and Southwest Airlines have the highest pass-through rate on
average (101.6% and 101.2% respectively). Figure 8.13 shows the distribution of the pass
through rates for the sample connections (for clarity reasons PTR greater than 115% are

not presented).
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Figure 8.13. Distribution of the resulting CO; cost pass-through rates
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9 Conclusions and Recommendations

This chapter summarizes the main conclusions of the work undertaken. Moreover,

recommendations for research are outlined.

9.1 Modelling approach and key research findings

This dissertation analyzes the airline industry from different perspectives, including
passenger choices, airline decisions, market competition, and aircraft carbon emissions and
resulting carbon cost in a regulated environment. In particular, it shows how airlines may
adjust their pricing strategies and how passengers may change their travel choices in view
of a market-based environmental policy within a competitive airline network. For this
purpose, a modelling approach, mainly used in the industrial organization economics
literature, is extended within the context of transportation engineering, so as to suitably
represent the airline network to which market-based environmental policies may induce
airfare and demand changes, influenced by air passenger choices, airline decisions and
imposed carbon cost. One important feature of this dissertation is that, after computing
aircraft carbon emissions by regulated itinerary, the corresponding carbon cost is
introduced as a shifter in the airline's marginal cost function. A portion of the induced
environmental cost may be passed onto the passengers, resulting in increased ticket prices.
The adjustment of ticket prices in response to the carbon cost is determined by a Nash
equilibrium in prices. Then, air passenger travel choices are modelled through discrete

choice analysis.

Various conclusions can be drawn regarding the methodological approach developed in this
dissertation. First, contrary to the majority of aggregate studies, which employ linear
regression models of passenger traffic, in this study air travel demand in an origin-
destination city pair is modeled by discrete choice models of passenger behavior, while the
supply side is formulated as a profit maximization problem for each active airline in a

competitive market with multiple players (competing airlines).

This analysis provided useful information on the key determinants of the utility function
of air passengers and the airlines’ marginal cost. Several macro-level variables identified in
the literature are adjusted or modified for inclusion in the demand model such as ticket
price, connection’s frequency, arrival delays, airline dummies, while additional explanatory
variables not formerly used in aggregate models, such as the presence of alternative airport
nearby the origin or the destination city and connection’s departure time, are also

specified.
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Due to the form of data used, some characteristics of the airline connection may be
unobserved to the analyst but are known to the potential passenger during his travel
decision process. A single term capturing these unobserved characteristics is included, the
existence of which implies that some demand variables, could be endogenous. Endogeneity
issues that arise from the correlation of ticket price and within-group market share with
the error term of the demand function necessitates the use of Instrumental Variable
method for the estimation of model parameters, since the use of Ordinary Least Squares
method could lead to biased parameter estimates. Specifically, the estimation results
obtained from different specifications of our demand model confirm endogeneity. Although
the estimated ticket price coefficient (-0.175) derived from the OLS estimation illustrates a
negative fare impact on demand, the magnitude of price coefficient in the 2SLS estimates
(which is much larger in absolute value) suggests that the endogeneity of price results in
severe bias of the price coefficient estimate if instruments are not used for ticket price.
Therefore, for the joint estimation of the nonlinear demand-and-supply model bypassing
endogeneity issues the two-step Generalized Method of Moments is used. The application

of diagnostic statistical tests enabled to use valid and relevant instrumental variables.

The structure of the demand-and-supply model, which introduces the non-air alternative
in the upper level of the nested logit model (in the demand model) and incorporates the
partial derivative of competing connections’ market share in the pricing equation of each
airline, enables that a change in a causal factor may impact both total air travel demand
(or equally the market share MSj) and within-group market shares (MSj/g). Furthermore,
the estimation results obtained from different specifications of our demand model suggest
that the Nested Logit model is preferable than the Multinomial Logit for the
representation of the passenger’ choice process in the air travel market.

To feed the CO2 emission model with flight profile data the LTO phase is separated from
the CCD phase. Second, big datasets of air traffic and flight track information over a wide
range of U.S. domestic flights are employed to conduct an extensive analysis of past
aircraft altitude profiles. Two different methods are used; the first uses a novel
combination of clustering and landmark registration techniques exploiting the information
of the entire trajectory of historic flights, while the second relies on the point mass BADA
model, which has been used by several researchers in the past. A detailed comparison of
the operational characteristics obtained by the above methods is conducted for the first
time to determine the suitable method for further provision of reliable COs2 emission
estimates for large scale networks, similar to our study U.S. airline network. Finally, the
construction of typical flight profiles, and their corresponding fuel burn and COz2 emission
values, for various combinations of “aircraft-distance-flight direction” is done in a novel

fashion.

The developed modelling approach is applied to the large-scale network of the United
States. The registration-based method performs significantly better than the BADA-based
estimation in terms of predicting the operational characteristics of a flight, since the first
fundamentally relies on operational data and can capture actual flight performance more
reliably. Despite the substantial difference in the estimated flight characteristics between
the two profile estimation methods, the difference in the estimates of fuel consumed and

CO2 emissions is less pronounced. On network-wide level, BADA-based typical profiles are
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estimated to consume 6.3% less fuel in comparison to registration-based profiles. The
comparison of the two methods with the two latest versions of the widely-used EMEP
CORINAIR database showed that its last version (EMEP CORINAIR 2013) gives similar
results with our methods, especially for the registration-based profiles. Finally, our
network-wide estimates generally agree with other published estimates for the U.S.
airspace, which provides a good indication of the validity and reliability of our methods

and results at network wide level.

Large datasets on air itineraries from different sources are processed to form the final
traffic sample for estimation and policy simulation. The estimated model parameters have

the expected signs, are statistically significant and intuitively appealing.

The simulation analysis revealed that the implementation of an environmental market-
based policy in the U.S. aviation could have some significant effects on ticket prices, air
travel demand and resulting CO2 emissions for high ranges of carbon unit price. In this
dissertation, different carbon price scenarios ($10, $20, $50, $100 per ton CO2) are
assumed so as to capture different situations of the carbon market. Based on our
simulations, for the low carbon price scenario ($10), which is close to the carbon price
currently prevailing, ticket prices may increase by 1.07%. This would decrease total
passenger demand by 1.47% and network-wide CO:2 emissions by 1.88%. If the most
aggressive carbon price scenario is assumed ($100), the ticket prices may increase by about
10.7% while the air travel industry may, in turn, face significant losses in terms of
passenger demand (losing about 13.5% of passengers who may stop flying due to higher
prices). Currently very low carbon prices exist in several carbon markets (a bit lower than
$10 per ton CO2) such as EU ETS, Shanghai’s ETS, as depicted in Figure 6.3. Despite the
considerable amount of volatility in the dynamics of the carbon price, the adoption of the

aggressive scenarios of $50 and $100 per ton COz2 is not possible given current trends.

Taking into account our simulation results for the low carbon price scenario of $10 per ton
COz2 (which is close to the prevailing price) and the aviation industry ambitious goal
(ICAO, 2016a) to reduce net aviation CO2 emissions by 50% until 2050 (relative to 2005
levels), this dissertation suggests that airlines and policy makers may need to turn
to alternative approaches to ensure economic and environmental sustainability.
Our analysis suggests that CO2 emissions pricing certainly contributes to a reduction in
CO2 emissions. Nevertheless, it seems that such low levels of carbon price would not
trigger more significant changes in the air transport sector so as to act as a stand-alone
measure. A combination of different policies (e.g. technological improvements, operational
changes etc) could be needed to effectively work towards the environmental target.
Moreover, policy makers should not ignore the potential passenger shift from air travel to
other transport modes, which is partly captured in this thesis as the non-air option. This
especially applies to short-distance trips where air transport strongly competes with land

transport.

Demand shift between airline connections may be slightly affected by a market-based
environmental policy. In particular, the within-group air travel demand change may be
only -0.22% for the low scenario ($10) and -2.23% for the highest carbon price ($100),

indicating that competition distortions are expected to be rather low. This concluding
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remark is consistent with other studies which have investigated environmental policies in

European or other markets.

The above result ignores the distinction between legacy and low cost airlines. The airline-
level analysis indicates that all low-cost airlines, except Southwest Airlines, may face the
largest price increase. The larger effect on LCCs may be explained by the pre-policy
prevailing ticket prices and the carbon cost implied under the environmental policy. The
latter is, in turn, influenced by the load factor, the miles flown and the aircraft type used
by each airline. Furthermore, another important finding is that the levels of ticket price
increase may vary depending on the size of the market. In particular, the market-level
analysis showed that ticket price increase decrease when a higher number of players enter
the market. Finally, the results show that longer flights experience the greatest impact in
terms of price increase and demand decrease due to the carbon cost as they generate the
largest amount of CO2 emissions, while even within the same market, passengers who
choose to travel directly between O-D airports will benefit more than those who travel on

a one-stop flight.

Another important dimension is the level of CO2 carbon cost pass-through onto the
passengers. COz2 cost pass through rates vary between 89% and 140%. However, for the
vast majority of the sample airline connections, the pass through rate ranges from 95% to
112%, while on average it is equal to 100.4%. This value is consistent with the
assumptions adopted in most existing studies (as reported in the relevant column of Table

2.2) while it is far from the 35% or 50% assumptions which were used by few researchers.

9.2 Research limitations and Future Research

This dissertation has dealt with passenger travel choices and airline pricing responses
under market-based environmental policies in a competitive environment.

Recommendations for further research are presented below.

The current modelling approach assumes that the decision process of an air passenger is
described by a Nested Logit model formulation, which is regarded as providing reasonable
substitution patterns among the air alternatives while remaining computational
manageable. Future research could consider other discrete choice models; for example the
use of mixed logit could allow the demand coefficients to vary over decision makers rather
than being fixed (Train, 2003). Random coefficients logit and probit models accounting for
variations in tastes among potential consumers can also be considered. The inclusion of
random price coefficients could extend the current modelling approach by allowing two or
more passenger types (e.g. leisure, business etc) and thus different demand changes to less

price sensitive passengers.

One assumption in our analysis is that ticket price is the key decision variable in the
airline strategy towards an externally imposed environmental fee. In future research,
additional decision variables actually considered by airlines such as frequency or hub
choice location could be examined. This will require a stepwise formulation of the oligopoly
game among the competing airlines and will have to address demanding computational

challenges.
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In transportation modelling, it is usual to model trips based on their purpose. In this
dissertation, trip purpose is not taken into account since such information is not available
in the publically available databases. A fruitful area of future research is to account for

trip purpose in the demand model, if relevant data are available.

Future research could strengthen the validity of flight profile estimation methods under
different assumptions. For example, the current approach only considers flight profiles
with constant cruise phase. This approach could be strengthened by including additional
carefully chosen registration points and by dealing with suitable warping functions.
Furthermore, in the current research no information on local conditions (e.g.
meteorological data) are used due to data unavailability. Our analysis could be augmented
to incorporate local conditions at the origin destination airports. This is believed to
provide more reliable estimates for the BADA-based flight profiles. Finally the accuracy of
fuel burn and CO2 emissions could be enhanced by tackling existing shortcomings of the
BADA model such as the nonconsideration of wind speed, delays, cancellations, or

reroutings as well as the approximate estimation of aircraft weight.

Application of the proposed methodology to a region where an environmental measure is
already in place would be worth to study as it would offer the opportunity to validate the
simulation results of the model and investigate any currently unidentified limitations. The
FEuropean region is one candidate region, where the EU ETS is currently implemented.
However, to the level of our knowledge, such aggregate itinerary data, with information of
ticket prices and other itinerary attributes are not, at least, publicly available. Moreover,
the model could simulate alternative environmental policies. A subsequent comparison of
the simulation results could shed light to the effectiveness of the different policies under

consideration.

Extension of the static setup considered in this work to dynamic environments is another
promising avenue for further research. This is a considerably harder research task but
worth to be pursued as airlines are known to engage in strategic interactions making
decisions that take into account estimated of future profitability discounted to present
values. In addition demand has dynamic elements as passengers make travel decisions
based on prior experience. State space models, dynamic programming decompositions,
Markov perfect and Bayesian equilibria provide a natural modeling framework for the

study of the above dynamic setup.
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A-1. Demand model equations

Demand model equations for the Nested Logit (Eq. 4.13) and the Multinomial Logit (Eq.
4.14) are derived as follows:

Nested Logit Demand Model

Recall that: MS s S eVilh | Ms 1 d MS e
ecall that: MS; = ———— =, D, =Y ic; €'} MSy=—— and MS;,, = ———.
J D;'A-Zg(Dg)l » Mg Jj€lg ) g(Dg)/l j/g Zjejg Vil
Divide MS;j by MSp : eVil*
MS; iz, () Vil
- 1 ~ p1-2
MS, —_— Dy
24 (Dg)
(Note that: 0 denotes the non-air nest, the utility Vip of
the non-air nest is normalized to zero) (A.1)

o . . . V
Take logarithms of (1): InMS; — InMS, = In (e7j> ~ in(D27)
V.
=L (1-2)-in(D,) (A.2)
Take logarithms of MS;,q - eVi/a
InMS;,q = In W = In(e"i/*) — ln(Dg) >
j€lg €

Vi
in(D5) =~ inMS; (a3

(A3) _ V; ;
(A.2) — InMS; — InMS, = i a-2- (7 - lnMSj/g)

Y 4
=7—(1—/1)(7—lnMS]/g>
/Y

V:
J J
== o InMSjg + A== A+ InMS)

A

which gives the linear regression form for the NI demand model (Eq. 4.13):

InMS; — InMS, = x;8 — ap; + (1 = 2) - InMSj ;4 + &

Multinomial Logit Demand Model

In this case the nesting structure shown in Figure 4.2(a) is assumed. Recall that the utility

of passenger i (Uj) for a product j in a market m, is given by:
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Uij =x]-,8—apj+fj+£l-j
Where x;f —apj+¢&; =V; is the systematic component of the utility and the stochastic

term ¢&;; is Independent Identically Distributed with a type I extreme value distribution.

The aggregate market share MS; of connection j (including the non-air alternative, j=0)
among the J connections in a market is given by the following logit formula:

oVi eXjP-apjtE;j .
MS; = Zj]-:()evj = Zjl-zoexjﬁ_ap”éj for all j=0,1,...,J (A1)

We normalize the systematic utility of the non-air alternative to zero, thus:

ef 1

S0 Do

MSO =

e*iF~aPj*e;
L= e T gipan
0 —
S (A.5)

InMS; — InMS, = In(eX/F~Pi*8i ) = x;f — ap; + §;

Divide MS;j by MSo:

Take algorithms of (5):

(A.6)
which gives the linear regression form for the MNL demand model (Eq. 4.14):

InMS; — InMS, = x; — ap; +§;

A-2. Elasticities

We first compute the derivatives dMS;/dp; and dMSy/dp;. These derivatives are used to
obtain (i) the own and cross price elasticities and (ii) the Jacobian D of the market share

function with respect to prices (used in Chapter 5).

[aMS1 aMS]]
| ops op,
D= : -
{amsl aMS]}
op; op,

The Nested Logit and the Multinomial Logit model are treated separately.

Nested Logit model

Vil 5 v d MS eVilt
—_— 7, =2 e’J an i
D;]_A'Eg(Dg)A g Jj€lg j/9
IMS;

= Z_je]g er/l .
]=< ) DI Zg(D) —el'(DllZg( )’1):
o (Dg}_l "2g (Dg)/l) (A.7)

Recall that: MS; =
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(eVilt) = (e@iB-ap+Ep/a) = _Ta ceB-avrEp/a = —&

(Dg)’ = (Z eVilt )' S eVilt
j€lg A

A\ j.pit.pr = .pi-1. 2% pvisa = L ViA . A=
(Zg(Dg)> =41 Dg 1 Dg—ﬂ. Dg 1 T eV]/ = —qa eV]/ Dg 1

(oY @) =03 @) 4o (Y o))

= (=207 () ), (Bo)' + 057 (2057 (8,))

CeVild

a
= (1—=2) DA -—=-eVilt. 2 (D) +2- == Vil

=—a-e"i/t. (— D;j*- 2 (Dy) +1>

T e Dy 5y () e (ma- e (053, (0,)' +1))
(0124 (05)")
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(o3 5,0)) (03 5,0

B —Ta,ev,-//l —a-eVi/'l-( vi/a, 14 -D7* %, (D ) +ev,-/,1)

0x,0)" (05 2,0
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. .MS,.<L
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2D,

a 1-2
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The derivative dMSy /dp; is computed as follows:
a _ pl a _ 2
OMSy E(er/l) "Dg~* - Eg (Dg) —eVi/t 'ﬁﬁ.(Dg1 * X (Dg) )
ap; _ 2
P (i %4 (D)") (A.8)

a(eVk/%)
ap

Note that: -
]

Thus (A.8) is written as:

. -1 - 2
OMS, e/t (—a el (17 "Dy %g(Dg)" + 1)>

ap; 2
P (pi-24(0,)")
Vil —a-e" - ERpihy (D)) g eVt
= 7 — 7 T 2
Ds} A'Zg (Dg) Dgl A'Zy (Dg) DLL} A'Zg (Dg)

—a-(1-2) eVt
- (0D

B A D

—a-MSj>
g

—a-(1-2)

aMSk a
== MS ((1—2)-MSj;4+2-MS))

Overall, the elements of the derivative matrix are given by:

—a
A
a
E-Msk-(m—z)-Msj,g+/1-M5j), ifj#k

MS;-(1—-(1—-2)-MS;,, —AMS;), if j=k
D =

The own-price (j=k) and cross-price (j#k) elasticities are given by:

[ (- —ams), i =k
p %-pj-((l—/l)'MS}/g'l'/l'MSk): ifj:#k

Multinomial Logit model

e’J

T oV 3] HPapitE;
Yjzoe / Yie IARJ)

eXiB-apj+ij

Since MS; = the derivative dMS;/dp; is computed as follows:

oMS; (exiB-apj+E)) . S eMIPmapI*E) — eXiP-apiHE; . () exib-api+Ey)

2
apj (Z§:0 exjﬁ—apj+fj)

But: (eX/A=2Pj*¢1) = —a - eX1F=Pj*¢;
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and (Zfzoexjﬁ—“l’ﬁs‘j)' = —q - eXF-apj+i;
aMS]- —q - eXiBapjté; . Zfzoexj-ﬁ—apj+fj eXiB-arj+é;. q . gXjB—ap;+§;
= +
2 2
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The derivative dMSy /dp; is computed as follows:

eXkB—ap+i
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aMS,
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For the Multinomial Logit model, the elements of the derivative matrix are given by:

D= —a-MS;-(1-MS;),if j=k
a-MS,-MS;, ifj*k

The own-price (j=k) and cross-price (j#k) elasticities are given by:

- —a-p;-(1-MS;), ifj=k
1p apJMSJ, lf]:/-'k
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B-1. Study Airports

I(I?OTdI: Airport Name Igj{: Airport Name

ABE Lehigh Valley Intl. LGA LaGuardia

ABQ Albuquerque Intl. Sunport LGB Long Beach Airport

ALB  Albany Intl. LIT  Bill and Hillary Clinton Nat Adams Field
ATL Hartsfield-Jackson Atlanta Intl. MAF Midland Intl.

AUS  Austin - Bergstrom Intl. MCI  Kansas City Intl.

BDL  Bradley Intl. MCO Orlando Intl.

BFL  Meadows Field MDW  Chicago Midway Intl.

BHM Birmingham-Shuttlesworth Intl. MEM Memphis Intl.

BLI  Bellingham Intl. MFE McAllen Miller Intl.

BNA  Naghville Intl. MHT Manchester-Boston Regional
BOI  Boise Air Terminal MIA  Miami Intl.

BOS Logan Intl. MKE  General Mitchell Intl.

BTR Baton Rouge Metropolitan/Ryan Field MSP  Minneapolis-St Paul Intl.
BUF Buffalo Niagara Intl. MSY Louis Armstrong New Orleans Intl.
BUR  Bob Hope OAK Metropolitan Oakland Intl.
BWI  Baltimore/ Washington Intl. OGG Kahului Airport

CAK  Akron-Canton Regional OKC  Will Rogers World

CHS Charleston AFB/Intl. OMA Eppley Airfield

CLE Cleveland-Hopkins Intl. ONT  Ontario Intl.

CLT Charlotte Douglas Intl. ORD  Chicago O'Hare Intl.

CMH Port Columbus Intl. ORF  Norfolk Intl.

COS City of Colorado Springs Municipal PBI  Palm Beach Intl.

CVG  Cincinnati/Northern Kentucky Intl. PDX  Portland Intl.

DAL Dallas Love Field PHF  Newport News/Williamsburg Intl.
DAY James M Cox/Dayton Intl. PHL  Philadelphia Intl.

DCA Ronald Reagan Washington National PHX  Phoenix Sky Harbor Intl.
DEN Denver Intl. PIT  Pittsburgh Intl.

DFW Dallas/Fort Worth Intl. PSP Palm Springs Intl.

DTW  Detroit Metro Wayne County PVD  Theodore Francis Green State
ECP  Northwest Florida Beaches Intl. RDM  Roberts Field

EGE Eagle County Regional RDU Raleigh-Durham Intl.
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ELP
EWR
FAT
FLL
GEG
GRR
GSP
HNL
HOU
HPN
HSV
IAD
TAH
IND  Indianapolis Intl.

ISP Long Island MacArthur

El Paso Intl.

Newark Liberty Intl.

Fresno Yosemite Intl.

Fort Lauderdale-Hollywood Intl.
Spokane Intl.

Gerald R. Ford Intl.
Greenville-Spartanburg Intl.
Honolulu Intl.

William P Hobby

Westchester County

Huntsville Intl.-Carl T Jones Field
Washington Dulles Intl.

George Bush Intercontinental /Houston

JAC  Jackson Hole

JAN  Jackson Medgar Wiley Evers Intl.
JAX  Jacksonville Intl.

JFK  John F. Kennedy Intl.

LAS McCarran Intl.

LAX Los Angeles Intl.

LBB Lubbock Preston Smith Intl.

RIC  Richmond Intl.

RNO Reno/Tahoe Intl.

ROC  Greater Rochester Intl.

RSW  Southwest Florida Intl.

SAN  San Diego Intl.

SAT  San Antonio Intl.

SAV  Savannah/Hilton Head Intl.
SBA  Santa Barbara Municipal

SDF  Louisville Intl.-Standiford Field
SEA  Seattle/Tacoma Intl.

SFO  San Francisco Intl.

SJC  Norman Y. Mineta San Jose Intl.
SJU  Luis Munoz Marin Intl.

SLC  Salt Lake City Intl.

SMF  Sacramento Intl.

SNA  John Wayne Airport-Orange County
STL  Lambert-St. Louis Intl.

SWF  Stewart Intl.

TPA Tampa Intl.

TUL  Tulsa Intl.

TUS  Tucson Intl.

TYS McGhee Tyson

B-2. Metropolitan Statistical Area Population

Metropolitan Statistical Area (MSA) population data for the study year 2012 were

obtained from the U.S. Census Bureau. The next table presents the MSA and airports

selected and associated population data.

MSA Population Airports included in
MSA name Code (%012) pour sample
New York-Newark-Jersey City, NY/NJ/PA 35620 19,831,858 EWR, LGA’Sif/if’ ISP, HPN,
Los Angeles-Long Beach-Anaheim, CA 31080 13,052,921 LAX, LGB, BUR, SNA
Chicago/Naperville-Elgin, IL/IN/WI 16980 9,522,434 ORD, MDW
Dallas-Fort Worth-Arlington, TX 19100 6,700,991 DFW, DAL
Houston-The Woodlands-Sugar Land, TX 26420 6,177,035 HOU, TAH
Philadelphia-Camden-Wilmington,PA /NJ/DE/MD 37980 6,018,800 PHL
Washington-Arlington-Alexandria, DC/VA/MD/WV | 47900 5,860,342 DCA, TIAD
Miami-Fort Lauderdale-West Palm Beach, FL. 33100 5,762,717 FLL, MIA, PBI
Atlanta-Sandy Springs-Roswell, GA 12060 5,457,831 ATL
Boston-Cambridge-Newton, MA /NH 14460 4,640,802 BOS
San Francisco-Oakland-Hayward, CA 41860 4,455,560 OAK, SFO
Riverside-San Bernardino-Ontario, CA 40140 4,350,096 ONT, PSP
Phoenix-Mesa-Scottsdale, AZ 38060 4,329,534 PHX
Detroit-Warren-Dearborn, MI 19820 4,292,060 DTW
Seattle-Tacoma-Bellevue, WA 42660 3,552,157 SEA
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Minneapolis-St.Paul-Bloomington, MN/WT
San Diego-Carlsbad, CA

Tampa-St. Petersburg-Clearwater, FL

St. Louis, MO-IL
Baltimore-Columbia-Towson, MD
Denver-Aurora-Lakewood, CO
Pittsburgh, PA

San Juan-Carolina-Caguas, PR
Charlotte-Concord-Gastonia, NC-SC
Portland-Vancouver-Hillsboro, OR/WA
San Antonio-New Braunfels, TX
Orlando-Kissimmee-Sanford, FL
Sacramento--Roseville--Arden-Arcade, CA
Cincinnati, OH/KY/IN

Cleveland-Elyria, OH

Kansas City, MO/KS

Las Vegas-Henderson-Paradise, NV
Columbus, OH
Indianapolis-Carmel-Anderson, IN

San Jose-Sunnyvale-Santa Clara, CA

Austin-Round Rock, TX

Nashville/Davidson/Murfreesboro/Franklin, TN
Virginia Beach-Norfolk-Newport News, VA/NC

Providence-Warwick, RI-MA
Milwaukee-Waukesha-West Allis, W1
Jacksonville, FL.

Memphis, TN/MS/AR

Oklahoma City, OK
Louisville/Jefferson County, KY/IN
Richmond, VA

New Orleans-Metairie, LA
Hartford-West Hartford-East Hartford, CT
Raleigh, NC

Birmingham-Hoover, AL
Buffalo-Cheektowaga-Niagara Falls, NY
Salt Lake City, UT

Rochester, NY

Grand Rapids-Wyoming, MI

Tucson, AZ

Urban Honolulu, HI

Tulsa, OK

Fresno, CA

Albuquerque, NM

Omaha-Council Bluffs, NE/TA
Albany-Schenectady-Troy, NY
Bakersfield, CA

33460
41740
45300
41180
12580
19740
38300
41980
16740
38900
41700
36740
40900
17140
17460
28140
29820
18140
26900
41940
12420
34980
47260
39300
33340
27260
32820
36420
31140
40060
35380
25540
39580
13820
15380
41620
40380
24340
46060
46520
46140
23420
10740
36540
10580
12540

3,422,264
3,177,063
2,842,878
2,795,794
2,753,149
2,645,209
2,360,733
2,315,683
2,296,569
2,289,800
2,234,003
2,223,674
2,196,482
2,128,603
2,063,535
2,038,724
2,000,759
1,944,002
1,928,982
1,894,388
1,834,303
1,726,693
1,699,925
1,601,374
1,566,981
1,377,850
1,341,690
1,296,565
1,251,351
1,231,980
1,227,096
1,214,400
1,188,564
1,136,650
1,134,210
1,123,712
1,082,284
1,005,648
992,394
976,372
951,880
947,895
901,700
885,624
874,646
856,158

MSP
SAN
TPA
STL
BWI
DEN
PIT
SJU
CLT
PDX
SAT
MCO
SMF
CVG
CLE
MCI
LAS
CMH
IND
sJC
AUS
BNA
ORF, PHF
PVD
MKE
JAX
MEM
OKC
SDF
RIC
MSY
BDL
RDU
BHM
BUF
SLC
ROC
GRR
TUS
HNL
TUL
FAT
ABQ
OMA
ALB
BFL
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Knoxville, TN 28940 848,350 TYS
El Paso, TX 21340 830,735 ELP
Allentown-Bethlehem-Easton, PA/NJ 10900 827,171 ABE
Baton Rouge, LA 12940 815,298 BTR
McAllen-Edinburg-Mission, TX 32580 806,552 MFE
Dayton, OH 19380 800,972 DAY

B-3. Airline Codes

TATA Airline Code | Airline Name Airline Type
AA American Airlines Inc. Legacy
AS Alaska Airlines Inc. Legacy
B6 Jetblue Airways Corporation | Low cost
DL Delta Air Lines Inc. Legacy
F9 Frontier Airlines, Inc. Low cost
FL AirTran Airways, Inc. Low cost
HA Hawaiian Airlines, Inc. Legacy
UA United Airlines, Inc. Legacy
US US Airways, Inc. Legacy
VX Virgin America Inc. Low cost
WN Southwest Airlines Co. Low cost

B-4. Aircraft types
The following table presents the aircraft types included in our traffic sample along with:

e The equivalent aircraft type, to be used for the CO2 emissions calculations by
EMEP CORINAIR and BADA databases,

e The engine type and the number of engines, to be used for the CO2 emissions
calculations by the ICAO Engine Exhaust Emissions databank,

o Their classification in narrow-body or wide-body to be used in the marginal cost
function of Chapter 5, and

e The seating capacity, which is used to calculate the per-passenger COz2 emissions.
Depending on the airline policy, seating capacity may vary even for the same
aircraft type. In our work, seat capacities are obtained by aircraft manufacturers’

manuals assuming two-class seating configuration.
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o < Engine Aircraft
<3| o) type size
w2 ; < < 3 ‘E}
& g ﬁj < g m; 3 & 'bgg e B > &
& 8 5z < B 2 o ° o T &
i E  d: ® 5 3 8 %5 S
< ggc g% M « " % ¢ 2 %
° : £ 3 B 7
< < z
A318 A318 A318 CFM56-5B9 2 . ° 107
A319 A319 A319 TAE V2522-A5 2 . ° 124
A321 A321 A321 CFM56 5B 2 . o 185
A332 A332 A332 TRENT 772B 2 . e 246
A333 A333 A333 CF6 80E1 A2 2 . e 300
ATT72 AT72 AT72 PWi124 2 . 68
B712 B712 B712 BR715-C1-30 2 . . 106
B733 B733 B733 CFMb56-3B1 2 . . 149
B734 B734 B734 CFMb56-3B2 2 . . 168
B735 B735 B735 CFM56-3B1 2 . . 132
B737 B737 B737 CFMb56-7 2 . ) 148
B738 B738 B738 CFMb56-7B 2 . . 184
B752 B732 B752 RB211-535E4 2 . . 186
B753 B753 B753 PW2037 2 . . 243
B762 B762 B762 PW4062 2 . e 216
B763 B763 B763 PW4060 2 . o 237
B764 B763 B764 PW4062 2 . e 296
B772 B772 B772 GE90-90B 2 . e 375
CRJ1 CRJ1 CRJ1 CF34-3A1 2 . . 50
CRJ2 CRJ2 CRJ2 CF34-3B1 2 . . 50
CRJ7 CRJ9 CRJ9 CF34-8C5 2 . . 78
CRJ9 CRJ9 CRJ9 CF34-8C5 2 . . 76
DC95 DC9%4 DC94 JT8D-11 2 . . 139
DHSA DHSA DHSA PW120 2 . . 37
DHS8C DHS8C DHSC PW120 2 . . 50
DH8D DHS8D DHSD PWI150A 2 . . 78
E120 E120 E120 PW118 2 . . 30
E135 E145 E135 AE 3007A1E 2 . . 37
E145 E145 E145 AFE 3007A1 2 . . 50
E170 E170 E170 CF34-8E5 2 . . 66
E190 E190 E190 CF34-10E6 2 . . 96
J328 D328 E135 AE 3007A1E 2 . . 30
MD82 MDS82 MDS82 JIT8D-217C 2 . . 155
MDS83 MD83 MDS83 JT8D-219 2 . . 155
MD90 MDS83 MDS83 JT8D-219 2 . . 172
SF34 SF34 SF34 GE CT7-9B 2 . . 30
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C-1. Data process from the Bureau of Transportation Statistics

Three databases for airline statistics are used: the Airline Origin and Destination Survey
(DB1B), the T-100 Domestic Segment for U.S. Carriers (T-100) and the On-Time
Performance (OTP) database.

Airline Origin and Destination Survey (DB1B)

DBIB is a 10% sample of domestic airline tickets sold by U.S. airlines including detailed

data on flight fares, itineraries (Origin, Connecting and Destination airports), ticketing

and operating carriers for each flight segment and the number of passengers. These data

are given in a quarterly basis through three data tables: DB1B Coupon, DB1B Market and

DBI1B Ticket. Each directional market is given a unique identification number “Mkt id”.

For each ticket the identification number is “Itin _id”. These numbers are used as keys in

order to merge these DB1B tables as shown in Figure C.1

DB1B COUPON

| ]
. . ) . . . . . » -
Ttin id ! Mkt id ISeqi Coupo Year Quart Origin De.stm Trip Tlc.ke.tlng Opfara.mtmg ReI.)Ol.tlng Passe |Distan
- - | num | Ds er ation | break | airline airline airline |ngers| ce
2012152! 201215201 ! 2 3 2012 1 CLT | ATL X US UsS 16 1 226
2012152! 201215201 i 1 3 2012 1 | ABE | CLT UsS 16 16 1 481
i 1
2012152 1 g()_l_QlEZQ_O_Q 13 3 2012 1 ATL | ABE X US UsS 16 1 692
TKey to merge DB1B Coupon and DB1B Market
4 DB1B MARKET
] I /
I I 1 . . . . . Market
Market Dest ing | Ticket ating |Passe| Market
: lifia_td : Mkt id : arket Year Quar Origin e§t1n Re}l)o%"tmb 10. e.tmg Opgrixtlnb asse| Market miles
I i —  jcoupons ter ation airline airline airline |ngers| fare
I [ 1 flown
i 2012152 i201215201! 2 2012 | 1 | ABE | ATL 16 US 99 1 224.4 707
i_2012152 J:_201215202J: 1 2012 | 1 | ATL | ABE 16 UsS US 1 | 219.64 692
T Key to merge DB1B Market and DB1B Ticket
v DB1B TICKET
T
Dolls ing |Passeng| Iti i
i Itin_id :Coupons Year |Quarter| Origin ROl.md Online orar Re}.)o?tlnb asseng| ltin_ Distance Miles
! ! trip cred airline ers fare flown
L2012152 i 3 2012 1 ABE 1 0 1 16 1 444 1399 1399

Figure C.1. Methodology to merge DB1B data tables

179




To supplement the characteristics of the constructed itineraries, two additional databases
are used: the T-100 Domestic Segment for U.S. Carriers (T-100) and the On-Time
Performance (OTP) database, as explained below.

T-100 Domestic Segment for U.S. Carriers (T-100)

The T-100 table contains non-stop segment data for domestic flights within the boundaries
of the U.S. The data are given in a monthly basis and include operating airline, origin and
destination airports, aircraft type, available capacity, number of departures, aircraft hours
etc. We use T-100 data to supplement airline connections’ characteristics with flight
frequency and representative aircraft type for each non-stop segment of the itinerary.
Table C.1 explains the computation process for flight frequency and representative aircraft
type. Flight frequency is extracted in quarterly basis (by summing the monthly frequency).
The representative aircraft type is the one with the higher utilization rate in the quarter.
The keys to merge T-100 data with DB1B are: Year, Quarter, Origin and Destination
airports and Operating airline (see Figure C.2).

Table C.1. Extracted characteristics from T-100 table

Frequency

Year Quarter Month Departures (flights/ Airline Origin ]?;i:l Aircraft type R;i?i:iimtjg\e’e
quarter)

2012 1 1 6 16 ABE CLT CRJ-200ER
S 2012 1 1 22 16 ABE CLT  CRJ-700 RJI-700
O 2012 1 2 2 102 16 ABE CLT CRJ-200ER (with 73
g 2012 1 2 23 16 ABE CLT CRJ -700 departures/
< 2012 1 3 21 16 ABE CLT CRJ-2008R  duarter)

2012 1 3 28 16 ABE CLT CRJ -700

2012 1 1 88 US CLT ATL A320

2012 1 1 140 US CLT ATL A319

2012 1 2 17 US CLT ATL A321
ﬁ 2012 1 2 84 US CLT ATL A320 A319
< 2012 1 2 118 . US CLT ATL A319 (with 407
S 2012 1 3 1 US CLT ATL  B737-400 departures/
O 012 1 3 2 US CLT ATL Brazseo ~ duarter)

2012 1 3 29 US CLT ATL A321

2012 1 3 47 US CLT ATL A320

2012 1 3 149 US CLT ATL A319

Airline On-Time Performance (OTP)

The Airline On-Time Performance (OTP) table contains on-time arrival data for non-stop
domestic flights by major airlines. The data are given flight-by-flight and include origin
and destination airports, flight numbers, reporting airlines, scheduled and actual departure
and arrival times, departure and arrival delays, taxi-out and taxi-in times etc. We use
OTP data to construct delay and time-related variables for the demand model and to
compute average taxi-in/out times for each U.S. airport (which are used in the CO2
emissions model). The keys to merge OTP data with DB1B are: Year, Quarter, Origin and

Destination airports and Reporting airline (see Figure C.2).
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Appendix C

Extracted data from T-100
Operating .. . | Representative Frequency
Y art © ] Destinat
: ear | Quarter Airline Origin | Destina 1on: aircraft type | (flights/quarter)
Y2012 | 1 US CLT ATL ! A319 675
L2012 1 16 ABE CLT !  RJ700 102
? Key to merge T100 and DB1B
v
DB1B COUPON
\ | i . . . 1 N | .
Destine ¥ Trip | Tick ; Passe|Diste
Ttin id | Mkt id Seq CoupoIYear Quarter |Origin e.stlnaOpéla'utmgl rip 1({ e.tmglReI.)o%tmgl asse|Distan
- num | ns | tion | Airline jbreak| airline | airline pngers| ce
2012152 [201215201] 2 | 3 j2012] 1 |OLT[ATL| US | X Us § 16 51 |22
2012152 (201215201 1 3 :2012 1 ABE | CLT 16 : US : 16 : 1 481
R bl L __?__.

.

v Extracted data from OTP

L. o Reportingl Airborne | Departure on |Arrival on time 15
:Year Quarter | Origin |Destination Airline time (avg) | time 15 [%] (%]
: 2012 1 ABE CLT 16 : 81.75 0.93 0.711
I2012 1 CLT ATL US : 44.50 0.90 0.83

IAVG: Average, POS: Positive, NEG: Negative

Figure C.2. DB1B, T-100 and OTP merging
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