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Abstract

The original contribution of this Thesis in scienti�c knowledge is the development of

a novel, continuum-level, sharp-interface modeling approach, which has been proven

particularly e�cient for simulating wetting phenomena on complex (geometrically or

chemically textured) solid surfaces. The above task is particularly useful for the rational

design and optimization of solid surfaces with tailor-made and tunable wetting behavior.

Such micro- and nano-structured surfaces have been observed in a variety of plants and

living organisms, endowed with fascinating wetting properties. Some examples are the

lotus leaf (Nelumbo nucifera), known for its self-cleaning ability, the desert beetle (Steno-

cara gracilipes) which uses its body surface as fog collector, and the wings of theMorpho

aega butter�y that are covered with asymmetric micro-structures exhibiting anisotropic

�ow friction. The latter is essential for maintaining �ying stability at the butter�y’s hu-

mid habitat. The design of such arti�cially micro- and nano-patterned surfaces, inspired

by the natural ones, has a great technological impact and could be exploited, among

others, for reducing drag in ship hulls, transporting liquids in miniaturized lab-on-a-

chip devices and collecting fresh water from fog in arid areas. Despite their signi�cance,

the above-mentioned applications are, however, limited due to severe restrictions in the

micro-fabrication methods as well as the inadequate capability to precisely model the

liquids behavior on complex, micro-textured surfaces (considering that a geometrically

patterned substrate can accommodate a large cardinality of meta-stable wetting states).

The method presented in this Thesis contributes to the tackling of the latter limitation,

enabling the e�cient modeling of both statics and dynamics of wetting on any kind of

heterogeneous surface.

The conventional modeling approaches of wetting phenomena have been proven insuf-

�cient for the design of such functional surfaces since: either they fail to adequately

describe the complicated behavior of a droplet on a rough substrate, or demand vast

computational resources for real-life applications with millimeter-sized droplets. On

one hand, the main drawback of the continuum-level approaches is the tedious im-

plementation of explicit boundary conditions to an a priory unknown number of the

droplet’s three-phase contact lines (where the three di�erent phases, liquid-ambient-

solid, meet). On the other hand, the �ne scale approaches (lattice-Boltzmann, molecular

dynamics), usually implemented for the same task, do not su�er from the above restric-

tion, however, demand prohibitively high computational power. In order to overcome

these limitations, in this Thesis we propose a new continuum-level approach where a

uni�ed formulation (avoiding the boundary conditions at the three-phase contact lines)
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for the liquid-ambient and liquid-solid interfaces of the droplet is adopted. In addition,

the material wettability, in our approach, is determined by micro-scale liquid-solid inter-

actions. This way, we bypass the implementation of any explicit boundary condition at

each three-phase contact line, thus enabling the e�cient simulation of entire millimeter-

sized droplets on structured substrates. The proposed formulation can be used to per-

form both static (by reformulating the Young-Laplace equation, which states the force

balance along a droplet surface) and dynamic wetting computations (by modifying the

Navier-Stokes equations in the hydrodynamic model).

The e�ciency of the proposed method is initially demonstrated by computing multiple

meta-stable equilibrium wetting states of droplets resting on geometrically patterned

solid surfaces. We also present the evaluation of the energy barriers, separating themeta-

stable wetting states, the height of which is of utmost importance for designing robust

water-repellent surfaces, inspired by the lotus leaf. We also successfully compare our

results against the a conceptually di�erent mesoscopic lattice-Boltzmann model. Then,

we utilize the proposed formulation to simulate the electrowetting phenomenon (where

the shape of the droplet is modi�ed by applying an electric �eld) on structured solid

dielectric surfaces. Additionally, based on the above electrowetting simulations, we ex-

perimentally demonstrate the real-time tuning of the wettability of structured surfaces.

The proposed formulation is also utilized to perform dynamic simulations of droplets im-

pacting and spreading on geometrically complex substrates -an essentially tedious task

for conventional hydrodynamic models. It is notable here that our predictions totally

agree with corresponding experimental measurements. We then examine the droplet

motion on asymmetrically structured substrates, inspired by the Morpho aega butter�y

wings, under the in�uence of forced vibrations. The latter methodology can be used

to transfer droplets in miniaturized devices. By studying these problems, we demon-

strate that our modeling approach can be utilized as an exceptional tool for designing

functional structured surfaces that can be potentially used in technological applications.
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Περίληψη

Η συνεισφορά της παρούσας διδακτορικής διατριβής στην υπάρχουσα επιστη-

μονική γνώση είναι η ανάπτυξη μίας νέας μεθοδολογίας, συνεχούς μέσου, για τη

μοντελοποίηση φαινομένων διαβροχής σε σύνθετες (τραχιές ή χημικά ετερογενείς)

στερεές επιφάνειες, βασιζόμενη στη θεώρηση της διεπιφάνειας μηδενικού πάχους

(sharp-interface). Αυτή η προσέγγιση είναι εξαιρετικά σημαντική για τον σχεδιασμό

και τη βελτιστοποίηση της τραχύτητας στερεών επιφανειών με επιθυμητή και πλήρως

ελεγχόμενη διαβρεκτικότητα. Αντίστοιχες μικρο- και νανο-δομημένες επιφάνειες

συναντώνται σε πολλά φυσικά συστήματα, προσδίδοντας τους αξιοζήλευτες διαβρεκ-

τικές ιδιότητες. Τέτοια παραδείγματα είναι το φύλλο του λωτού (Nelumbo nucifera)

που έχει τη δυνατότητα αυτοκαθαρισμού με το νερό της βροχής, το σκαθάρι της ερή-

μου (Stenocara gracilipes) που συλλέγει πόσιμο νερό αξιοποιώντας την πρωινή ομίχλη

και το φτερό της πεταλούδας Morpho aega, το οποίο καλύπτεται με κεκλιμένες, ασύμ-

μετρες, μικρο-δομές που ευνοούν την αποβολή της υγρασίας και συνεπώς ενισχύουν

την πτητική της ικανότητα. Ο σχεδιασμός τεχνητών μικρο- και νανο-δομημένων

επιφανειών, με πρότυπο τις φυσικές μορφολογίες, είναι πολύ σημαντικός σε επίπεδο

τεχνολογικών εφαρμογών όπως, μεταξύ άλλων, για τη μείωση της αντίστασης τριβής

του νερού στο κύτος πλοίων, για τη διαχείριση υγρών σε μικρο-συσκευές αναλύσεων

(lab-on-a-chip) και για τη συλλογή πόσιμου νερού από τα σταγονίδια της ομίχλης σε

περιοχές με λειψυδρία. Η υλοποίηση των παραπάνω εφαρμογών, ωστόσο, δεν έχει

ακόμα πλήρως επιτευχθεί λόγω περιορισμών στις μεθόδους κατασκευής τεχνητών

μικρο- και νανο-δομημένων επιφανειών, καθώς και λόγω των ανεπαρκών δυνα-

τοτήτων για ακριβή μοντελοποίηση της συμπεριφοράς υγρών σε τέτοιες σύνθετες

επιφάνειες (δεδομένου ότι μια τραχιά επιφάνεια μπορεί να φιλοξενήσει ένα μεγάλο

πλήθος μετασταθών καταστάσεων διαβροχής). Η μέθοδος που προτείνεται σε αυτή

τη διατριβή συμβάλλει ουσιαστικά στην αντιμετώπιση του τελευταίου περιορισμού,

επιτρέποντας τη μοντελοποίηση τόσο της στατικής όσο και της δυναμικής διαβρεκ-

τικότητας σε κάθε είδους ετερογενή επιφάνεια.

Οι συμβατικές μεθοδολογίες μοντελοποίησης των φαινομένων διαβροχής

αποδεικνύονται ως ανεπαρκή εργαλεία για τον σχεδιασμό της μικρο-δομής των

παραπάνω επιφανειών καθώς: είτε αποτυγχάνουν να περιγράψουν επαρκώς την

περίπλοκη συμπεριφορά μιας σταγόνας σε ένα τραχύ υπόστρωμα, ή έχουν απαγορε-

υτικά μεγάλο υπολογιστικό κόστος για σταγόνες συνηθισμένου μεγέθους (ακτίνας

μερικών χιλιοστών). Αφενός μεν, τα μοντέλα συνεχούς μέσου περιορίζονται λόγω

της ανάγκης εφαρμογής συνοριακών συνθηκών σε πολλαπλές (άγνωστες σε αριθμό)
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γραμμές επαφής των τριών φάσεων (υγρού-στερεού-αέρα) της σταγόνας. Αφετέρου

δε, τα μοντέλα μέσο- (lattice-Boltzmann) ή νάνο- (molecular dynamics) κλίμακας, που

χρησιμοποιούνται συνήθως για τέτοιου είδους προβλήματα, ξεπερνούν τον παρα-

πάνω περιορισμό, εντούτοις έχουν απαγορευτικά μεγάλες υπολογιστικές απαιτήσεις.

Για να αντιμετωπιστούν τα παραπάνω προβλήματα, σε αυτή τη διδακτορική δια-

τριβή προτείνεται μια νέα μεθοδολογία συνεχούς μέσου, στην οποία υιοθετείται μια

ενιαία αντιμετώπιση (αποφεύγοντας τις συνοριακές συνθήκες στις γραμμές επαφής)

για τις διεπιφάνειες υγρού-αέρα και υγρού-στερεού της σταγόνας. Επίσης, η δια-

βρεκτικότητα του στερεού, στην προτεινόμενη προσέγγιση, καθορίζεται πλέον από

διαμοριακές αλληλεπιδράσεις μεταξύ στερεής και υγρής φάσης. Με την παρα-

πάνω θεώρηση, καθίσταται μη αναγκαία η εφαρμογή οποιασδήποτε συνοριακής

συνθήκης στις γραμμές επαφής των τριών φάσεων, επιτρέποντας έτσι την προσο-

μοίωση ολόκληρων σταγόνων (ακτίνας μερικών χιλιοστών) σε στερεές επιφάνειες

με τραχύτητα. Η παραπάνω προσέγγιση μπορεί να εφαρμοστεί τόσο για υπολογισ-

μούς ισορροπίας σταγόνων (επαναδιατυπώντας την εξίσωση Young-Laplace, η οποία

διέπει την μηχανική ισορροπία της επιφάνειας της σταγόνας) όσο και για δυναμικές

προσομοιώσεις (τροποποιώντας τις εξισώσεις ροής (Navier-Stokes) στο υδροδυναμικό

μοντέλο).

Η προτεινόμενη μεθοδολογία προσομοίωσης χρησιμοποιήθηκε αρχικά για την εύρεση

πολλαπλών μετασταθών καταστάσεων ισορροπίας σταγόνων σε στερεές επιφάνειες

με τραχύτητα. Επιπλέον, παρουσιάστηκε ο υπολογισμός των ενεργειακών φραγ-

μάτων που διαχωρίζουν τις παραπάνω καταστάσεις ισορροπίας. Το ύψος των

ενεργειακών φραγμάτων είναι εξαιρετικά σημαντικό για τον σχεδιασμό αυτοκα-

θαριζόμενων επιφανειών, με πρότυπο το φύλλο του λωτού. Παρατηρήθηκε επίσης,

ότι τα αποτελέσματα της προτεινόμενης μεθόδου συμφωνούν με αντίστοιχα αποτελέσ-

ματα από υπολογισμούς μέσο-κλίμακας (lattice-Boltzmann), παρ' όλες τις θεμελιώδεις

διαφορές στις δύο προσεγγίσεις. Στη συνέχεια χρησιμοποιήσαμε την προτεινό-

μενη μεθοδολογία για να μελετήσουμε συστήματα ηλεκτροδιαβροχής (electrowet-

ting) (όπου το σχήμα της επιφάνειας της σταγόνας μεταβάλλεται με την εφαρμογή

ηλεκτρικού πεδίου) σε περιπτώσεις όπου σταγόνες διαβρέχουν τραχιές διηλεκτρικές

επιφάνειες. Επιπρόσθετα, βασιζόμενοι στις παραπάνω προσομοιώσεις συστημάτων

ηλεκτροδιαβροχής, επαληθεύσαμε πειραματικά τον δυναμικό έλεγχο των διαβρεκ-

τικών ιδιοτήτων μικρο-δομημένων επιφανειών. Η προτεινόμενη προσέγγιση εφαρ-

μόστηκε επίσης με επιτυχία για τη μελέτη της δυναμικής συμπεριφοράς σταγόνων που

προσκρούουν σε τραχιές επιφάνειες. Συγκεκριμένα, παρατηρήθηκε ότι οι υπολογισ-

τικές μας προβλέψεις συμφωνούν, με μεγάλη ακρίβεια, με αντίστοιχες πειραματικές

μετρήσεις. Στη συνέχεια μελετήθηκε η μετακίνηση σταγόνων, υπό την επίδραση εξ-

αναγκασμένων ταλαντώσεων, σε επιφάνειες με ασύμμετρη τραχύτητα, έχοντας ως

πρότυπο τη μορφολογία του φτερού της πεταλούδας Morpho aega. Η συγκεκριμένη

τεχνική μπορεί να εφαρμοστεί για τη μεταφορά υγρών σε μικρο-συσκευές. Με τη

μελέτη των παραπάνω προβλημάτων, αποδεικνύεται ότι η προτεινόμενη μεθοδολογία
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είναι ένα πολύτιμο εργαλείο για τον σχεδιασμό της μικρο-δομής επιφανειών με

πλήρως ελεγχόμενη διαβρεκτικότητα, απαραίτητες σε τεχνολογικές εφαρμογές.
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Preface

Multidisciplinary teams of scientists and engineers are currently working on wetting

and capillary phenomena research; indicatively we mention physicists, mathematicians,

biologists, chemical, metallurgical and mechanical engineers. Why a chemical engineer,

however, is interested in wetting phenomena? A chemical engineer cares about techno-

logical applications that involve exchange of momentum, mass, energy as well as mate-

rial properties. Wetting phenomena is a relatively new frontier that de�nitely comprise

all of the above. The research on wetting phenomena aims to initially understand the

underlying physics and then to fabricate smart, functional, micro-textured surfaces with

desirable wetting properties. Such examples were �rstly observed in nature, e.g. the fas-

cinating self-cleaning properties of the lotus leaf. At this juncture, we are a screwdriver’s

turn away from mimicking or even surpassing nature’s magni�cent creations, however,

this last turn is proving to be rather tedious. What impedes us are the emerging limita-

tions in the micro-fabrication methods as well as the currently inadequate capability to

e�ciently predict the behavior of liquids on such micro-textured surfaces. The latter is a

highly tedious task, considering the several meta-stable equilibrium droplet shapes that

can be accommodated on a certain structured substrate as well as the possible dynamic

transitions between these states. Overall, the modeling of such wetting phenomena is

of utmost importance since it would enable us to design and optimize surfaces, featur-

ing tailor-made wetting behavior, without fabricating tons of trial cases. Here, in this

Thesis, we present a novel modeling approach which, unlike the current conventional

methodologies, is proved to be particularly e�cient for such applications. Speci�cally,

the current Thesis is organized in four parts as follows:

• Part I: Theory and modeling of wetting phenomena (Chapters 1, 2, 3). In Chap-

ter 1 we demonstrate several examples of natural surfaces with fascinating wet-

ting properties. We also present some currently available technological applica-

tions, inspired by these natural examples, as well as interesting future challenges.

In Chapter 2 we present the basic theoretical concepts of wetting and capillary

phenomena. We also demonstrate the conventional models for describing the

equilibrium shape of droplets, particularly focusing on heterogeneous (geomet-

rically structured) solid surfaces. Then, we introduce a novel modeling approach,

by explaining its advantages when dealing with complex surface topographies.

In Chapter 3 we focus on the dynamic behavior of droplets. In particular, after

demonstrating the conventional formulations for predicting the droplet dynamics

on structured substrates, we present our advantageous modeling suggestion.
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• Part II: Static computations (Chapters 4, 5). Chapter 4 includes computational pre-

dictions of the proposedmodel for the equilibrium of sessile droplets on �at as well

as geometrically structured solid surfaces. In particular, we initially successfully

validate our method against a conceptually di�erent, mesoscopic modeling ap-

proach. Then, we demonstrate the computation of co-existing, meta-stable droplet

shapes on structured substrates, that have also been observed experimentally. In

Chapter 5 we augment our model with electric stresses, derived from the electro-

statics equations, in order to predict the droplet equilibrium behavior under the

e�ect of electric �eld (electrowetting phenomenon) on a textured solid dielectric

surface. This actuation technique is commonly used to actively control the wetting

properties of surfaces in technological applications.

• Part III:Dynamic computations (Chapters 6, 7). In Chapter 6we utilize the proposed

formulation in order to perform dynamic simulations of axisymmetric droplets

spreading on solid substrates covered with arbitrary asperities. We initially suc-

cessfully compare our results against experimental measurements. Then, we ex-

amine the early spreading dynamics (t ∼ 10 ms) on a variety of textured surfaces,

concluding that a universal law is obeyed for all cases, as was also observed in

recent experiments. In Chapter 7 we examine the dynamics of droplets on sub-

strates with asymmetric textures (inspired by surfaces found in nature), under the

e�ect of a periodic force induced by oscillating the bottom plate. Such a technique

can be exploited in order to transfer droplets more e�ciently in contemporary

applications.

• Part IV: Conclusions and future perspectives (Chapters 8, 9). Chapter 8 includes

concluding annotations, concerning the advantages of the proposed method for

modeling static and dynamic wetting phenomena. Finally, early experimental val-

idations of our model’s innovative predictions and suggestions regarding the fu-

ture research are presented in Chapter 9.

• Part V: Appendices. Appendix A contains supplementary material for Part I, Ap-

pendix B for Part II, Appendix C for Part III and Appendix D for Part IV, respec-

tively.

We also note that for the shake of readability, each of the �ve Parts of the current Thesis

contains a separate References Chapter.
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Nomenclature

Following is a list of symbols used frequently in this Thesis. Some symbols that appear

only in one chapter are not included. Note that, in general, vectors are denoted with

bold font.

Roman letters

A substrate oscillation amplitude

ALA liquid-ambient interfacial area

ALS liquid-solid interfacial area

ASA solid-ambient interfacial area

Adroplet droplet’s cross-sectional area

C local mean curvature

C1, C2 parameters controlling the disjoining pressure range

Ca capillary number

d distance between the solid protrusions (usually)

or dielectric thickness in Chapter 5

D0 characteristic droplet diameter

E surface energy (usually) or electric �eld strength in Chapter 5

Ediss dissipated energy

F retention force that resists droplet motion

f oscillation frequency

fres resonance frequency

g gravitational constant

g gravitational acceleration

h height of the solid protrusions
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Ha Hamaker constant

K reference pressure

Ks power law prefactor

Ls slip length

Mdroplet droplet’s mass

n unit normal of the liquid-ambient interface

ns unit normal of the solid surface

Ne electric bond number

Ng gravitational bond number

p liquid pressure

pLS disjoining pressure

pel electrostatic pressure

R Galerkin residuals vector

R0 characteristic droplet radius

Rcl contact radius of the droplet and the solid surface, in equilibrium

Rs dynamic contact radius

Re Reynolds number

rf roughness factor

s arc-length of the e�ectively one-dimensional droplet surface (usually)

or scale factor of the solid structure in Chapter 7

s total stress tensor

SLS spreading coe�cient

t time

tc inertio-capillary time

t unit tangent of the liquid-ambient interface

Tf oscillation period

Tres oscillation period corresponding to the resonance

u �uid velocity �eld

ux horizontal component of the velocity �eld (ur , in an axially symmetric case)

uz vertical component of the velocity �eld

umean mean droplet velocity

u electric potential

ucl contact line velocity

u0 characteristic velocity

U solution vector

V applied voltage

Vdroplet droplet’s volume

w width of the solid protrusions

w
LS wetting parameter

W work

We Weber number

xcm droplet’s center of mass (the horizontal position)
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Greek letters

α spreading exponent (usually) or tilt angle of the solid surface in Chapter 7

βe� e�ective slip coe�cient

βLS slip parameter

γLA liquid-ambient interfacial tension

γLS liquid-solid interfacial tension

γe�LS e�ective (incorporating electrostatic forces) liquid-solid interfacial tension

γSA solid-ambient interfacial tension

δ Euclidean distance between the liquid and the solid phases

∆p pressure jump across the droplet surface

∆ρ density di�erence between the liquid and ambient

ǫ disjoining pressure parameter

ǫ0 vacuum permittivity

ǫr dielectric constant (ǫ s for the ambient phase and ǫd for the solid dielectric)

η electrowetting number

θY Young’s contact angle

θa apparent (mascroscopic) contact angle

θd dynamic contact angle

θadv advancing contact angle

θrec receding contact angle

λκ capillary length

λF relative strength of the electric stress over the disjoining pressure

µ dynamic viscosity

ρ �uid density

σ disjoining pressure parameter

τ viscous stress tensor

τnn normal stress

τnt shear stress

φ viscous dissipation function

φk basis functions of the Finite Element Method

φs fraction of solid in contact with the liquid

ω e�ective interface potential (usually) or angular frequency in Chapter 7

ω∗ modi�ed (incorporating electrostatic forces) e�ective interface potential

ω0 resonance angular frequency

Special symbols

· dot product operator

: double-dot product operator

× vector product operator (usually) or multiplication sign of scalars
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∇ gradient operator

∇s surface gradient operator

∇ · divergence operator

∇2 Laplacian operator̂ dimensionless quantity
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PART I

Theory and modeling of wetting

phenomena
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CHAPTER1
Introduction

In this Chapter we highlight several examples of functional micro- and nano-textured sur-

faces found in nature, which are expected to bene�t various technological applications. The

most famous example is the lotus leaf, which has the ability to self-clean. Among others,

the potential uses of such bioinspired materials include drag reduction during moving in

water, liquid transport in lab-on-a-chip devices and collecting water from fog in arid ar-

eas. We present the contribution of computational modeling in the potential applications,

as well as the limitations of the current approaches. Finally, we discuss the impact of the

current Thesis in both �elds of applied and theoretical research in wetting and capillary

phenomena.

1.1 From natural surfaces to applications

Micro- and nano-textured surfaces, which appear in a variety of living organisms and

plants, feature fascinating or even enviable properties such as self-cleaning, directional

liquid transport, anti-icing and drag reduction. One of the most famous examples of

structured morphology is the leaf of Nelumbo nucifera (or simply lotus) (see Fig. 1.1a)

which is known, even from the Asian traditions, for its self-cleaning ability. The water-

repellency of the lotus was �rstly explained by Barthlott and Neinhuis [1] (described

as “lotus e�ect”) by imaging the leaves with scanning electron microscopy (SEM). In

particular, they reported that epicuticular wax crystalloids, covering the leaf, minimize

the adhesion between the substrate and an impinging water droplet (see Fig. 1.1b). As

a result, raindrops behave like “liquid-spheres” rolling o� the leaf and carrying any dirt

particles which is necessary for su�cient photosynthesis of the plant.

Even though the lotus leaf can resist wetting from water droplets, it fails to repel oils

or water containing surfactants. Such liquids can penetrate more easily in the lotus

micro-structure, thus limiting its self-cleaning ability. In was only recently that an other

natural micro-structured surface was found to address this drawback, exhibiting both

water and oil-repellency. In particular, Helbig et al. [2] reported that the cuticle of

springtails (Collembola) is covered with surface features with overhanging (mushroom-

shaped) pro�les, giving them exceptional self-cleaning properties (see Fig. 1.2a, b). This
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(a) (b) (c)

1 m20 m

Figure 1.1: (a) Water droplet forming an almost perfect sphere on the leaf of Nelumbo nucifera

(or simply lotus) (from Munich botanical garden). (b) SEM image of a lotus leaf structure of wax
crystals (reprinted from [1]). (c) SEM image of lotus leaf inspired, arti�cial micro-posts, obtained
from a photolithography process (reprinted from [4]).

(a) (b) (c)

1 mm
200 nm

Figure 1.2: (a) Colony of Orthonychiurus stachianus springtails (reprinted from [3]). (b) Skin
morphology of Sinella tenebricosa springtail, featuring mushroom-shaped asperities, obtained
from SEM (reprinted from [2]). (c) SEM images of a superrepellent double re-entrant structure
inspired by the surface topography of the springtail (reprinted from [5]).

ability emerged from an evolutionary adaptation to continue the cutaneous respiration

even in �ooded soil habitats [3].

Inspired by the above examples of self-cleaning materials, several approaches for arti-

�cially structured surfaces have been proposed in order to facilitate the daily life. Ar-

ti�cially structured surfaces are usually fabricated by a photolithography process on a

photoresist material (see Fig. 1.1c) [4]. Up to now, the state-of-the-art in fabricating wa-

ter and oil-repellent surfaces is double re-entrant, mushroom-shaped, structures [5] (see

Fig. 1.2c), inspired by the cuticle of springtails (Collembola) [3]. We indicatively mention

that some of the already exploited applications of such surfaces are: self-cleaning paints

(Ultra Ever Dry®), roof tiles (Erlus Lotus®), fabrics (NanoSphere®) and glass windows

(SunClean®). The above broad spectrum of current applications, triggered a strong in-

terest in studying a wider range of biological materials, concluding that nature abounds

with multifunctional surfaces [6] varying from insects which can walk on water (wa-

ter strider) [7] to surfaces with antibacterial properties (gecko skin) [8]. We are just in

the beginning of exploiting more and more fascinating physical mechanisms in order to

face intractable engineering challenges. In the next Section, we discuss some of the most

promising and challenging applications.
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(a) (b) (c)

Figure 1.3: (a) Namib desert beetle collecting water from the fog. Droplets accumulate on the
micro-bumps of the surface until they are large enough to coalesce and roll into the beetle’s
mouth (photo by Martin Harvey/Alamy). (b) SEM image of the textured surface of the Namib
desert beetle, covered with “bump-like” micro-structures (reprinted from [9]). (c) Fog harvesting
nets, set in South Africa (courtesy of University of South Africa)

1.2 Challenges of tomorrow

1.2.1 Fog harvesting

Freshwater shortage is one of the major problems for the people of developing countries

and is expected to worsen in the coming decades. In order to quantify the problem we

mention that, according to World Health Organization, 663 million people lack access

to clean water. The surviving of some organisms in extremely arid condition, like the

beetle Stenocara gracilipes found in the Namib Desert, has recently drew to scienti�c

attention, indicating that nature has already found a solution. The desert beetle uses its

body surface as water collector when facing the fog-laden wind and thus manages to

survive in one of the driest habitats on Earth (see Fig. 1.3a) [9, 10]. In particular, water

droplets accumulate on non-waxy bumps on the beetle’s back until they are large enough

to coalesce and roll, through wax-coated paths, into the beetle’s mouth (see Fig. 1.3b).

The above mechanism can be exploited for developing synthetic, industrial scale, sur-

faces to collect freshwater in arid areas. Such an application is, however, still hypo-

thetical, and the only current large scale device is polymer mesh installations in coastal

areas where the fog periods are frequent, without the implementation of the complex

beetle micro-structure (see Fig. 1.3c). These simple pilot systems can not yet be commer-

cially exploited, until the harvesting e�ciency is considerably improved. To implement

this, it is imperative that we must not only mimic but also combine and improve the

observed biological systems in order to adapt them in larger scales. In this direction,

Park et al. [11] fabricated a complex solid topography, which is based on principles de-

rived from Namib desert beetles [9], cacti [12], and the pitcher plant Nepenthes [13], and

can be used to collect water with an improved e�ciency. Such a combination of dis-

tinct natural mechanisms is more e�cient than using the structures based only from the

Namib desert beetle topography. There are several other studies arguing for the ideal

fog harvesting surface [14, 15, 16], however, a general conclusion is that the design of
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(a) (b) (c)

Figure 1.4: (a) The Salvinia molesta fern which can stabilize an air layer, required for respiration,
when submerged under water (CC BY-SA 3.0). (b) SEM image of a frozen Salvinia molesta leaf
exhibiting eggbeater-shaped hairs coated with nanoscopic wax crystals (reprinted from [17]). (c)
Ship hull fouling by barnacles (reprinted from [18]).

the micro-structure is an important factor for the system’s e�ciency.

1.2.2 Drag reduction

The reduction of drag force for marine vessels has always been an important concern for

the shipping industry. In addition, the fuel burn of a ship can increase up to 50% when

fouled (by barnacles, oysters, mussels, algae or bacteria) versus a clean hull (see Fig. 1.4c)

[19]. There are several studies where lotus leaf inspired surfaces have been found to

reduce drag in �uid channels [20]. In particular, a layer of air is trapped between the

water and the surface which acts as a lubricating �lm reducing the drag force which,

however, can be retained only for a short period of time [21]. Recently, an other natural

surface, the �oating fern of the genus Salvinia, has been observed to maintain air layers,

when submerged, for several days or even months (see Fig. 1.4a) [17]. The leaves of

Salvinia molesta are covered with hairs, of total height about 2 mm, which form terminal

ends of four (eggbeater-shaped) which stabilize the water-air interface (see Fig. 1.4b).

The above morphology can be exploited for reducing the drag on ship hulls and thus

the fuel consumption. Moreover, the air layer will potentially have an antifouling e�ect

and could thereby reduce the need of toxic antifouling agents, currently used in marine

industry [22]. For such an application, however, the eggbeater-shaped structure must

withstand stressed due to hydrostatic pressure and turbulent �ow conditions. Recently,

Mayser and Barthlott [23] have examined the sustainability of the air layer trapped in

the Salvinia micro-structure, under a maximum pressure of 2.5 bar, which corresponds

to the �ow conditions at the bottom of a ship hull. Although the work of Mayser and

Barthlott [23] indicate that some Salvinia species were capable of maintaining an air

layer under this pressure, it is questionable whether such arti�cial surfaces can be made

with the current fabrication methods, especially considering that an entire hull has to

be covered. It is reasonable that the Salvinia micro-structure has to be simpli�ed with,

however, retaining the air trapping ability. Again we conclude that the micro-structure

design is the key factor for applying this idea in industrial level.
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(a) (b) (c)

100 m

Figure 1.5: (a) An iridescent blue Morpho aega butter�y found in South America (CC BY-SA
4.0). (b) Asymmetrical structure of the Morpho aega wing, exhibiting anisotropic wetting prop-
erties. Water rolls easily along the direction denoted by the black arrow (reprinted from [24]).
(c) Micro�uidic lab-on-a-chip device, including pneumatic valves, used to study the growth of
microbial populations (chemostat) (reprinted from [25]).

1.2.3 Lab-on-a-chip devices

Lab-on-a-chip devices are systems that process or manipulate small amounts of �uids

using micro-channels (see Fig. 1.5c) [26, 27]. Such systems were initially created after

the end of the cold war to serve as detectors for chemical and biological threats, sup-

ported by the US Department of Defense. Current applications of Lab-on-a-chip devices

include sensors in laboratories (e.g. water analysis) (Micronit®), diagnostic devices in

medicine (Illumina®) and opto�uidics (Varioptic®), however, are not yet become widely

used. In most of the cases, the liquid manipulation in lab-on-a-chip devices is performed

by applying pressure gradients [25], electric �elds (electrowetting phenomenon) [28] or

by thermal gradients along the substrate (thermocapillary convection) [29]. The con-

ventional applications of lab-on-a-chip devices do not usually require any sophistacated

surface texture (e.g. micro-posts), however, as the dimensions of the channels shrink (for

enabling more complex processes, e.g. lab-on-a-chip devices that simulate the activities

of an entire biological organ for in vitro medical studies [30]) the solid structure impact

on the device e�ciency will be crucial [31]. In such a complex device, it would be useful

to minimize the liquid-solid friction so as to use as less energy supply as possible. Once

again, we will look at nature’s marvelous designs.

Recently, Morpho aega butter�ies (see Fig. 1.5a), which live in the South American rain-

forest, arouse the curiosity of researches due to their exceptional �ying stability, by

keeping their wings light-loaded, despite the high humidity of their environment. The

thought that the butter�y wing is covered by lotus leaf type structures did not seem log-

ical since the condensed water droplets would easily roll towards their body, preventing

them from �ying. The answer was �nally given by Zheng et al. [24], by examining the

micro-structure of the Morpho aega wings. In particular, they reported that the wing

surface exhibit asymmetric ratchet-like structures, leading to anisotropic wetting prop-

erties. Therefore, a droplet can roll o� the surface of the wings along only the outward

direction (see Fig. 1.5b). The application of this �nding in lab-on-a-chip devices would
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Figure 1.6: Environmental scanning electron microscopy (ESEM) image of a droplet edge on an
porous polycarbonate surface (reprinted from [33]).

greatly enhance the e�ciency of liquid transport along a prescribed route, however, such

a design would require the ability to predict the behavior of droplets on geometrically

structured surfaces. This is a rather di�cult task, by using the current approaches, as

we will present in the following Section.

1.3 Why computational modeling is important

We have previously presented commercially available applications of arti�cially rough-

ened, water-repellent surfaces. Even those paradigms, however, su�er from vulnera-

bilities due to the inadequate mechanical robustness of the structures at high external

pressure or due to a collapse wetting transition (where the liquid impales the solid pro-

trusions) resulting in the loss of their water-repellency ability. In addition, Cavalli et al.

[32] demonstrated that the micro-structure robustness and water-repellency ability have

an antagonistic action; the higher the mechanical stability, the less the water-repellent

performance of the surface. The above indicates that an ad hoc topography optimization

is required for a speci�c application. Overall, in order to e�ciently design and optimize

functional substrates with tailor-made wetting properties, keeping in mind that the fab-

rication cost may be prohibitive to experimentally test a plethora of solid topographies,

a predictive model of the droplet behavior on complex surfaces and under the e�ect

of di�erent external forces (pressure, electric �eld e�ect, thermal gradient) is deemed

necessary.

Such a complex system of a droplet moving on a geometrically of chemically structured

substrate, requires an accurate computation model, rather than simpli�ed phenomeno-

logical approaches. In order to understand the complexity of the studied system, we

demonstrate in Fig 1.6 the edge of a droplet in contact with a porous polymer substrate.

From the above it is clear that roughness greatly distorts the droplet shape, thus a phe-

18



Design of micro- and nano-structured surfaces with tunable wettability

nomenological model that accounts only for the macroscopic �uid characteristics is not

acceptable for designing and optimizing the previously referred applications.

1.4 The objective of this Thesis

Despite the vast amount of the developedmodeling approaches for predicting the droplet

equilibrium (including multiple distinct wetting states) and dynamics on a geometrically

structured solid surface, according to our knowledge, none of them has a general appli-

cability to all the aforementioned applications. In particular, either they are based on sig-

ni�cant simpli�cations failing to adequately describe the complex behavior of a droplet

on a rough substrate, or are too expensive, in terms of computational resources, for

real-life applications with millimeter-sized droplets. In this Thesis, we propose a novel

modeling approach, particularly e�cient to predict the static and dynamic behavior of

entire millimeter-sized droplets on any kind of structured (geometrically of chemically)

substrate. The mathematical formulation of the proposed model is presented in Chap-

ters 2 and 3. Then, we demonstrate numerical predictions of our model for a variety of

static and dynamic problems, in Chapters 4, 5, 6 and 7. The incorporation of additional

forces (e.g. electric �eld, thermocapillary stresses) that a�ect the droplet behavior, can

also be readily performed in our approach, which renders it, to our opinion, an extremely

valuable and e�cient tool.

The scope of the research presented here is twofold. Firstly, from the applications point

of view, the throughout simulations performed by our modeling approach can be ex-

ploited for designing, optimizing and then fabricating functional materials (e.g. e�cient

fog harvesters, low friction surfaces, micro-channels with directional adhesion) inspired

by the above natural mechanisms. The evaluation, for example, of a solid structure per-

formance, in terms of its water-repellency, is demonstrated in Chapter 4. Moreover, in

Chapter 6 we examine the e�ect of the solid topography, featuring asymmetric protru-

sions inspired by the Morpho aega wings, on the directional adhesion of droplets. As

previously stated, such tasks could not be addressed up to now, with the current mod-

eling methodologies. Secondly, our model can also contribute to the active theoretical

research regarding wetting phenomena on complex solid surfaces. In particular, our

detailed simulations can shed light to several physical mechanisms and explain exper-

imental �ndings that cannot be clari�ed by the current theoretical description. Such

an example is presented in Chapter 5, where we interpret recent experiments, by per-

forming simulations of a droplet impacting on an arbitrary roughened solid surface. Our

proposed modeling approach will be introduced in the following Chapter, after present-

ing the basic concepts of wetting and capillary phenomena.
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CHAPTER2
Statics

In this Chapter we present the fundamental concepts of wetting of solids by liquids in equi-

librium (also referred as capillary phenomena), particularly focusing on how roughness of

a solid surface a�ects its wetting properties. We refer to the conventional theoretical models

for predicting the shape of a droplet on the solid surface, which however, either fail to ade-

quately describe the complex behavior of a droplet on a rough substrate, or prove to be too

expensive in terms of computational resources for real-life millimeter-sized droplets. After

reporting these limitations we introduce a novel, continuum-level, sharp-interface model-

ing approach which is particularly e�cient for predicting entire droplet equilibrium pro�les

on any kind of textured (geometrically or chemically) solid surface. According to our ap-

proach, the liquid-ambient and the liquid-solid interfaces of the droplet are treated in a

uni�ed framework under the in�uence a disjoining pressure term modeling the molecular

interactions.

2.1 Basic aspects of wetting phenomena

2.1.1 Interfacial tension

A liquid surface can be considered as a stretched membrane featuring an interfacial ten-

sion that opposes any distortion. A demonstration of the surface tension (interfacial

tension of water-air interface) is presented in Fig. 2.1. In particular, surface tension sup-

ports a raft of ants linked together. Such a structure allows the ants to sail for months

to survive �oods [34]. The physical origin of interfacial tension can be understood by

considering a liquid at the molecular scale. A molecule in the midst of a liquid interacts

with all its neighbors. On the other hand a molecule on the surface loses half of these

cohesive interactions and is in an unfavorable energy state. This is the reason why liq-

uids adjust their shape so as to reduce the surface area as much as possible. Interfacial

tension may be equally though as (a) force per unit length and (b) free energy per unit

area. Next, we will present two examples to explain these viewpoints.

First, we consider a soap �lm stretched over a wire frame with a rod at the end which
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(a) (b)

Figure 2.1: Manifestation of surface tension: (a) a waterproof raft of 500 �re ants (Solenopsis
invicta) �oating on water. (b) The water-repellency of the ants prevents them from sinking when
submerged (reprinted from [34]).

is movable (see Fig. 2.2a). If the rod is displaced by dx, we can measure that a force is

acting on the movable rod in the direction indicated by the red arrow in the �gure. The

value of that force per unit length is the interfacial tension, which is denoted by γ (the

corresponding SI units are N/m), and the work done is:

W = γ λ dx, (2.1)

where, λ, is the length of the wire frame.

Now, we will think of γ in terms of energy per unit area (the corresponding SI units

are J/m2). In Fig. 2.2b we depict a droplet of oil submerged in water. In the absence

of gravitational �eld the oil droplet is spherical, since this the shape of the minimum

surface area for an enclosed volume. If the oil-water interface is displaced by dR (see

Fig. 2.2b), the work done is:

W = −poil dVoil − pwater dVwater + γow dA, (2.2)

where dVoil = 4 π R2 dR = −dVwater, and dA = 8 π R dR are the increase in volume

and surface of the droplet, respectively; poil and pwater are the pressures in the oil and

water phases, and γow is the oil-water interfacial tension. In equilibrium, Eq. 2.2 equals

to zero, which amounts to the fundamental equation, given in 1805 by Young and by

Laplace [35]:

∆P = poil − pwater =
2 γow

R
. (2.3)

From the above, we conclude that the smaller the droplet, the greater the pressure inside

compared to the outside phase.

2.1.2 Three-phase contact line

When a droplet is placed on a solid surface, forms, in equilibrium, a spherical cap with a

contact angle, θY, with the solid surface. The linewhere the three di�erent phases, liquid-

solid-ambient, intersect, is called three-phase contact line (TPL) (see Fig. 2.3). According
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(a) (b)

dx

pwater

Figure 2.2: (a) Interfacial tension, γ, as a force per unit length normal to a mobile rod. (b)
Schematic of an oil droplet immersed in water, used to highlight the second formulation of in-
terfacial tension as energy per unit area.

to the work of Young, the equilibrium contact angle (also known as Young’s contact

angle) of a droplet on a smooth solid surface depends on the solid-ambient, γSA, liquid-

solid, γLS, and liquid-ambient, γLA, interfacial tensions [35, 36, 37]. The surface free

energy in this case is de�ned as:

E = γLS ALS + γSA ASA + γLA ALA, (2.4)

where ALS, ASA, ALA is the liquid-solid, solid-ambient and liquid-ambient interfacial area,

respectively. The work done (the variation of the surface free energy) for a contact line

displacement by a distance, dx (Fig. 2.4) is:

W = dE = γLS dALS − γSA dALS + γLA cosθY dALS ⇒
dE

dALS
= γLS − γSA + γLA cosθY,

(2.5)

where, dALS = 2 π Rcl dx (with Rcl the contact radius of the droplet), is the change in the

liquid-solid interfacial area. We note that the bulk energy is una�ected in this case since

the liquid pressure does not change. In equilibrium ( lim
dALS→0

dE

dALS
= 0), Eq. 2.5 amounts

to the Young equation:

γSA = γLS + γLA cosθY. (2.6)

The above equation connects the Young contact angle, θY, with the liquid-solid, solid-

ambient and liquid-ambient interfacial tensions. We note that Young’s equation is valid

only for perfectly smooth solid surfaces; such an assumption, however, does not usually

stand in real life since a small amount of roughness may be present even in macroscop-

ically smooth materials. Moreover, it is interesting that although Eq. 2.6 is generally

accepted and widely used in the literature, it has never been veri�ed experimentally due

to the virtually impossible estimation of the interfacial tension of solids.

By de�nition, when the Young contact angle lies between 0o and 90o, the solid material is
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(a)

(b)

Figure 2.3: Droplet resting on a smooth solid surface. (a) The three-phase contact line (TPL) is
depicted with the dashed red line. (b) The Young contact angle, formed at the intersection of the
liquid-ambient and the liquid-solid interfaces, is demonstrated.

called hydrophilic, whereas it is called hydrophobic for θY greater than 90o. We note that

Young’s contact angle has an upper limit in experimental practice. In particular, common

hydrophobic materials (e.g. waxes and �uoropolymers such as Te�on® AF 1600) do not

exhibit θY > 120o. Apparent (macroscopically observed) contact angles higher than 120o,

however, can be observed on geometrically structured surfaces as discussed in Chapter 1.

When the apparent contact angle is at least 150o and the rolling-o� angle (the minimum

inclination angle at which the droplet rolls-o� the substrate) do not exceed 5-10o, then

the solid surface is called superhydrophobic. This term was initially introduced in 1996

by Onda et al. [38].

In the case where a liquid fully wets a solid surface (θY = 0, for e.g. a water droplet on

noble metals such as gold or platinum [39]), Eq. 2.6 ceases to hold and the imbalance of

the interfacial tensions is now given by a spreading coe�cient:

SLS = γSA − γLS − γLA. (2.7)

In the above case, the adhesion tension, γSA − γLS, which is a quantity introduced by

Bartell et al. [35], exceeds γLA.

The fact that wetting and capillary phenomena have been studied even from the early

18th century by great scientists of physics and mathematics (Francis Hawksbee, James
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Liquid
Ambientdx

θY

Solid

γLV

γSVγSL

Figure 2.4: Mechanical force balance at the three-phase contact line (or simply contact line),
where the di�erent phases (solid, liquid, ambient) meet.

Jurin, Thomas Young, Pierre-Simon Laplace) [40] is attributed to their close relation with

classical geometry. In particular, the static shape of a droplet on a smooth substrate can

be derived geometrically, in the absence of any gravitational �eld, as presented in the

next Section.

2.1.3 Droplet shape on smooth surfaces

The shape of an axisymmetric droplet on a smooth solid surface can be analytically

calculated, providing that the e�ect of gravity is negligible, for a given liquid volume

and Young’s contact angle. The negligible gravity e�ect assumption is valid only when

the initial droplet radius is smaller than the capillary length, λκ =
√

γLA
ρ g

, where ρ is the

liquid density and g the gravitational constant, respectively. Considering that a droplet

forms a spherical cap at equilibrium, the droplet shape can be obtained by solving the

following system of equations:

dz

dx
|z=0= tan (π − θY) , (2.8a)

Vdroplet =

∫ zmax

0
π x2 dz, (2.8b)

(z − zc)
2
+ x2 = R2, (2.8c)

where, Vdroplet, is the droplet volume, zc is the center of the circle (with radius R) which

adapts to the liquid-ambient interface and zmax = zc + R (see Fig. 2.5). From Eqs. 2.8a

and 2.8c for z=0, yields:

tan (π − θY)
x=Rcl
=

−Rcl
√

R2 − R2
cl

, for zc > 0, (2.9a)

tan (π − θY)
x=Rcl
=

Rcl
√

R2 − R2
cl

, for zc < 0, (2.9b)
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θYx

z

R

zmax

Rcl

zc

Figure 2.5: Droplet shape obtained by the analytical solution of Eqs. 2.8a, 2.8b and 2.8c.

which in combination with:

zc = −
√

R2 − R2
cl, for zc > 0, (2.10a)

zc =

√

R2 − R2
cl, for zc < 0, (2.10b)

(from Eq. 2.8c) yields:

zc =
Rcl

tan (π − θY)
. (2.11)

Moreover, from Eqs. 2.8b and 2.8c, yields:

Vdroplet = π R2 zc +
2 π R3

3
−
π z3c

3
, (2.12)

which in combination with, R2
=

√

z2c + R2
cl, and Eqs. 2.11 yields:

Rcl =


Vdroplet

2 π

(

1
tan2θY

+1
)3/2

3 − 2 π
3 tan3θY

− π
tanθY



1/3

. (2.13)

Overall, in order to calculate the shape of droplet, for given liquid volume and Young’s

contact angle, we:

1. compute the contact radius, Rcl, from Eq. 2.13,

2. compute the center of the circle, zc, which adapts to the liquid-ambient interface

from Eq. 2.11 and

3. calculate the radius of the circle, R, from R2
=

√

z2c + R2
cl.

Unfortunately, there is no such analytical solution in the case of a rough solid surface

due to the complex shape of the contact line which can form multiple contact regions
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with the substrate. The problem originates from the complex contact line shape (forming

multiple contact regions with the substrate), when the solid surface is geometrically or

chemically textured (see for example an ESEM image of the three-phase contact line on

an porous substrate in Fig 1.6). Wetting phenomena on structured surfaces were initially

studied in the work of Cassie and Wenzel more than 60 years ago [41], however, only

recently has become a highly attractive research �eld due to the modern applications

presented in Chapter 1. In the next Section, we present the theoretical models, starting

from elementary approaches to more complex ones, for predicting the static behavior of

droplets on solid surfaces, mainly focusing on heterogeneous (geometrically structured)

substrates.

2.2 Modeling of equilibrium wetting phenomena

2.2.1 Wenzel and Cassie-Baxter models

The solid wettability can be greatly a�ected by the surface topography and surface het-

erogeneities in general (chemical patterns, impurities). In the case of a geometrically

structured surface, the apparent (experimentally observed) contact angle, θa, di�ers from

what expected from Eq. 2.6. Such a behavior can be theoretically explained by the Wen-

zel and the Cassie-Baxter equations [41]. In particular, the Wenzel model is based on

the assumption that the liquid fully penetrates the solid roughness, by following all the

topological variations (see Fig. 2.6a) [42, 41]. The work done in this case (the surface

free energy variation, dE) as the contact line advances by a distance, dx, is de�ned as:

W = dE = rf γLS dALS − rf γSA dALS + γLA cosθa dALS ⇒
dE

dALS
= rf (γLS − γSA) + γLA cosθa,

(2.14)

where the roughness factor, rf, is the ratio of the actual over the apparent surface area.

In equilibrium ( lim
dALS→0

dE

dALS
= 0), the above equation, combined with Eq. 2.6, reads:

cosθa = rf cosθY. (2.15)

The Wenzel equation predicts that the apparent contact angle, θa, is larger than Young’s

for hydrophobic materials (θY > 90o) whereas it is smaller than the Young contact angle

in the case of hydrophilic materials (θY < 90o). The latter case is referred as superhy-

drophilic. Overall, the Wenzel equation concludes that roughness enhances solid wetta-

bility. Despite that such an argumentwas validated by experiments [43], the Eq. 2.15may

predict unphysical apparent wettabilities in some cases (e.g. cosθa > 1 or cosθa < −1,
for a large roughness factor, rf).

A di�erent approach is adopted in the Cassie-Baxter model [44, 41]. In particular, as
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(a)

Solid

Ambient

θa

Liquid dx

(b)

Solid

Ambient

θa

Liquid dx

Figure 2.6: Contact line displacement by a distance, dx, in (a) a Cassie-Baxter regime and (b) a
Wenzel regime. The apparent contact angle, θa, is evaluated above the solid protrusions.

observed in Fig. 2.6b, it is assumed that air remains trapped below the droplet. The

variation of the surface free energy as the droplet advances in this case reads:

W = dE = φs (γLS − γSA) dALS + (1 − φs) γLA dALS + γLA dALS cosθa, (2.16)

where φs is the fraction of solid in contact with the liquid (φs < 1). In equilibrium, i.e.

for a minimum surface free energy, the above equation, combined with Eq. 2.6, reads:

cosθa = −1 + φs(1 + cosθY). (2.17)

The Cassie-Baxter equation predicts that the solid wettability is reduced by decreasing

the liquid-solid contact area, however, the air entrapment assumption is only valid for

large Young’s contact angles, thus Eq. 2.17 ceases to hold for hydrophilic materials.

Lafuma and Quéré [45], in an attempt to combine these two theories and to extend our

understanding on roughness e�ect on wetting, assumed that Cassie-Baxter approach

(Eq. 2.17) should hold for substrates either very hydrophobic (large θY) or very rough

(large roughness factor, rf), where air entrapment should be favored. Similarly, they

expected that the Wenzel approach (Eq. 2.15) should hold for substrates that are hy-

drophilic (θY < 90o) and slightly hydrophobic (θY just above 90o) when air pockets

should not be favored. Moreover, they calculated the critical Young’s contact angle,

cosθC1 = (φs − 1)(rf − φs), which is the threshold between these regimes for a given
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Figure 2.7: The dependence of the apparent wettability, θa, on the Young contact angle, as mea-
sured by Onda et al. [38]. The solid lines show the behavior expected by the Cassie-Baxter
(Eq. 2.17), the Wenzel (Eq. 2.15) and the superhydrophilic (Eq. 2.19) theoretical models, with rf =
4.43 and φs = 0.35. The dotted line represents a meta-stable situation where Cassie-Baxter states
were observed by Lafuma and Quéré [45].

solid structure, by equating Eq. 2.17 and Eq. 2.15. This combined model is presented in

Fig. 2.7. Lafuma and Quéré, also performed experiments to validate their hypothesis. In

particular, by compressing a water droplet between superhydrophobic micro-structured

surfaces, they have noticed wetting transitions between Cassie-Baxter andWenzel states

for moderate solid hydrophobicity, θY < θC1, where the liquid impales the solid protru-

sions. They reported that the apparent contact angles in both states were comparable,

however, the adhesive properties greatly di�er; unlike Cassie-Baxter state, the droplet

in the Wenzel state was highly pinned to the solid. Moreover, they observed that Cassie-

Baxter to Wenzel wetting transitions were irreversible, i.e. the droplet does not return

to the Cassie-Baxter state when relaxing the pressure.

An attempt to experimentally validate the Wenzel and Cassie-Baxter theoretical mod-

els, for a wide range of Young’s contact angles, has been also performed by Onda

et al. [38] by modifying the roughness, and thus the wetting properties, of surfaces

made of alkylketene dimer (AKD) and using liquids of various interfacial tensions (see

Fig. 2.7). In particular, it is observed that the apparent wettability of hydrophobic ma-

terials (cosθY < 0 in Fig. 2.7), can be adequately predicted by the previous theoretical

description of Wenzel and Cassie-Baxter equations, however, in the case of hydrophilic

materials (cosθY > 0), the Wenzel regime was not obeyed when the Young contact an-
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Figure 2.8: Contact line displacement by a distance, dx, in the superhydrophilic regime, where
a liquid �lm propagates within the solid structure.

gle becomes smaller than some critical value (θC2 in Fig. 2.7). Thus a new regime was

assumed for this region, known as superhydrophilic, which can be characterized by a

liquid �lm that propagates within the material textures [41] as presented in Fig. 2.8. The

work done in this case as the contact line advances by a distance, dx, is de�ned as:

W = dE = φs (γLS − γSA) dALS − (1 − φs) γLA dALS + γLA dALS cosθa. (2.18)

In equilibrium, the above, combined with Eq. 2.6, reads:

cosθa = 1 + φs (cosθY − 1) , (2.19)

and the critical critical value of the Young contact angle, separating the Wenzel and the

superhydrophilic regime (see Fig 2.7), is calculated as cosθC2 = (1 − φs)(rf − φs), by
equating Eq. 2.15 and Eq. 2.19. We observe that the above equation can successfully

capture the experimental measurements of Onda et al. [38] for cosθY > cosθC2 (see

Fig. 2.7).

As a summary, Wenzel and Cassie-Baxter equations do succeed in capturing some exper-

imental trends (see [38, 43]), however, they should be used with caution since there are

also inconsistent with some publications [46, 47]. Recently, a discussion has been started

regarding the range of applicability of these classic modeling approaches. In particular,

recent experimental and computational studies on surfaces with heterogeneous islands,

criticize Wenzel and Cassie-Baxter equations, arguing that wetting behavior is deter-

mined by liquid-solid interactions at the outer three-phase contact line alone, and that

the interfacial areawithin the contact perimeter is irrelevant [48, 49, 40, 50]. Such a state-

ment, however, does not contradict with Wenzel and Cassie-Baxter approach, provided

that local values (in the vicinity of the outer three-phase contact line) of the roughness

factor and of the liquid-solid area fraction are used in Eqs. 2.15 and 2.17, respectively.

A more reasonable argument is made by McHale [51] where he suggested that Wen-

zel and Cassie-Baxter equations apply only (a) when the surface is similar and isotropic

everywhere and (b) when the size ratio of the droplet to the wavelength of roughness

or chemical heterogeneity is large enough. Even if the above assumptions are valid,
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Figure 2.9: Confocal microscopy images of a water miniscus in a unit cell of a pillar-structured
surface under di�erent liquid pressures (a) 0 kPa, (b) 14 kPa, (c) 50 kPa and (d) 50 kPa after
collapse. Reprinted from [53].

however, it is di�cult to imagine that simple approaches like Eq. 2.15 and Eq. 2.17 can

adequately describe the complexity of the contact line behavior on a structured surface

(see e.g. the magni�ed view of a contact line on a porous solid surface presented in

Fig. 1.6 of Chapter 1).

In addition, recent experimental studies, by using confocal microscopy techniques, re-

veal that composite meta-stable wetting states can also be formed, where the liquid has

partially penetrated the solid roughness (see e.g. the shape of a water meniscus for vari-

ous applied pressures in Fig. 2.9) [52, 53]. It is obvious that the multiplicity of meta-stable

equilibrium states, presented in Fig. 2.9, renders the prediction of the wetting behavior

on structured substrates extremely di�cult. In particular, Cassie-Baxter states, where air

is trapped underneath a droplet footprint (see Fig. 2.9a), can coexist with Wenzel states

(in the sense that the particular geometry can accommodate both states) where the liq-

uid has impaled the surface patterning (see Fig. 2.9d). The case is even more complicated

when the surface protrusions are partially �lled, and the resulting apparent wetting be-

havior lies between those of the Cassie-Baxter and the Wenzel (Fig. 2.9b). The complete

picture of the states’ space can be notably complex with an extended range of the pos-

sible apparent contact angles, θa, as well as of the adhesion properties. Obviously, such

a behavior is not predicted by the Wenzel and Cassie-Baxter equations. To our opinion,

the complete picture of the apparent wettability dependence can not be revealed by us-

ing Wenzel and Cassie-Baxter equations alone since a throughout study would require a

detailed computational approach. Several modeling approaches have been proposed in

order to compute the di�erent attainable wetting states on rough solid surfaces (e.g. the

suspended and collapsed states in Fig. 2.9a and Fig. 2.9d, respectively) as presented in

the following Sections. We begin with the solution of the Young-Laplace (YL) equation,

which is the simplest and most e�cient computational approach for the determination

of equilibrium wetting states.

2.2.2 Conventional Young-Laplace equation

The Young-Laplace equation, which is a generalized form of Eq. 2.3 (see Section A.1, of

the Appendix A, for a rigorous derivation), states the force balance between interfacial
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Figure 2.10: Schematic illustration of a droplet wetting a �at solid surface, with contact angle
θY. The droplet surface is parameterized with the angular coordinate, (r = r (θ)).

tension, capillary (Laplace) pressure and gravity along a droplet surface [35]:

γLA C + ∆ρ g z = ∆p ⇒ γLA
Ĉ

R0
+ ∆ρ g ẑR0 = ∆p ⇒

Ĉ + Ng ẑ = K,

(2.20)

where, C, is the local mean curvature of the droplet free surface (C = ∇s · n, with ∇s the

surface gradient operator and n the unit normal of the droplet surface) and Ĉ its dimen-

sionless form, ∆p is the pressure jump across the free surface, R0 is the characteristic

droplet radius and K = R0 ∆p/γLA, is a reference pressure, constant along the interface.

The e�ect of gravity is also included in Eq. 2.20 through the hydrostatic pressure term,

Ng ẑ, where, Ng =
∆ρ g R2

0
γLA

, is the gravitational Bond number, with ∆ρ the density dif-

ference between the liquid and ambient, and g the gravitational constant. More details

about derivation of the local mean curvature expressions can be found in the Section A.2

of the Appendix A. The Young-Laplace equation can be solved for both axisymmetric

(spherical) and cylindrical droplets, by assuming axial symmetry around the z-axis and

translational symmetry along a direction perpendicular to the xz-plane, respectively (see

Fig. 2.10). Cylindrical droplets can be formed in an experiment where the liquid is held

captive between two parallel plates to the xz-plane, and the plates’ material wettability is

such that the contact angle is equal to 90o. In both cases, the droplet can be conveniently

de�ned in polar coordinates (r , θ) since the problem is considered two-dimensional (see

Fig. 2.10). Note that for a three-dimensional case, the droplet would be de�ned in spher-

ical coordinates (r , θ, φ) when considering axial symmetry and cylindrical coordinates

(r , θ, y) when considering translational symmetry, respectively.

2.2.2.a Axial symmetry

We initially present the mathematical formulation for spherical droplets, where axial

symmetry is considered around the z-axis (see Fig. 2.10). The characteristic length R0,

in this case, corresponds to the radius of a sphere the volume of which is equal to the
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Figure 2.11: Unit normals used in the Young contact angle boundary condition at the three-
phase contact line (Eq. 2.23).

droplet volume (R0 =
3
√

3
4πVdroplet, where Vdroplet is the droplet volume). By parameter-

izing the droplet surface with the angular coordinate, θ, (i.e., r (θ)) the problem becomes

one-dimensional, where r is the distance from the substrate center (x, z) = (0,0) and θ

the angular coordinate (see Fig. 2.10). The local mean curvature of the droplet surface

formulated as a function of the angular coordinate, θ, reads (see Section A.2 of the Ap-

pendix A for the evaluation of the local mean curvature):

C =
1

r2 sinθ


2 r2 sin2θ + r2

θ
sin2θ

√

sin2θ
(

r2 + r2
θ

)

− d

dθ

r rθ sin
2θ

√

sin2θ
(

r2 + r2
θ

)


, (2.21)

where rθ =
dr
dθ . The Young-Laplace equation (2.20) is then solved subject to the following

boundary conditions in dimensionless form:

1

R0

dr

dθ
= 0 at θ = 0, (2.22)

1

R2
0

n · ns − cosθY = 0 at θ = θmax, (2.23)

where θmax is the maximum value of the angular coordinate. We keep the terms 1
R0

and
1

R2
0
in Eqs. 2.22 and 2.23, respectively, in order to be consistent with the dimensionless

formulation of the problem. The �rst, Neumann-type, boundary condition (Eq. 2.22),

prescribes the axial symmetry around the z-axis (see Fig. 2.10). The latter boundary

condition (Eq. 2.23) prescribes the Young contact angle, θY, at the three-phase contact

line, where n and ns are the corresponding unit normals of the droplet and solid surface

respectively (see Fig. 2.11). We note that in case of a �at and smooth solid surface, the

angular coordinate θ ∈ [0, π/2] with θmax = π/2 and ns equals to the unit vector in

the z direction. Finally, the solution of the Young-Laplace equation (2.20) is singled out

by using a constraint prescribing the droplet volume. In particular, considering that

the volume of the droplet equals to that of a sphere with radius R0, then the volume

33



Chapter 2. Statics

z
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Figure 2.12: Schematic illustration of a droplet resting on a single-corrugated substrate (only the
half side of the droplet is presented). In this case, the maximum value of the angular coordinate,
θmax, is unknown.

constraint in dimensionless form reads:

∫ θmax

0

(

r

R0

)3

sinθ dθ = 2, (2.24)

where, θmax = π/2, for a smooth substrate case.

In case where the solid surface is structured (see Fig 2.12 where a droplet is hanging on

a solid micro-post), the maximum value of the angular coordinate, θmax, which delimits

the boundary of the computational domain, is unknown. This suggests a free boundary

problem where the following extra algebraic equation is required:

1

R0
r cosθ = f̂solid( x̂), at θ = θmax. (2.25)

In the above, f̂solid( x̂) is a dimensionless function that de�nes the shape of the solid

structure. Essentially, Eq. 2.25 states that the liquid surface touches the solid at θ = θmax.

In addition, in the case of a structured substrate, the volume constraint has also to be

modi�ed:
∫ θmax

0

(

r

R0

)3

sinθ dθ − V̂solid = 2, (2.26)

where, V̂solid, is the dimensionless excess volume calculated by rotating the triangular

solid domain ABC around the z-axis (see Fig. 2.12).

From the above we conclude that the conventional YL equation su�ers from the follow-

ing limitations:

1. the structure height must be analytically expressed in a function form, fsolid(x),

thus no re-entrant structure (mushroom-like structures) or arbitrary roughness
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can be used,

2. the Young contact angle boundary condition (Eq. 2.23), the extra algebraic equation

(Eq. 2.25), as well as the volume constraint (Eq. 2.26) have to be de�ned ad hoc, for

each solid surface topography.

Next, we present themathematical formulation for the case of cylindrical droplets (trans-

lational symmetry).

2.2.2.b Translational symmetry

When translational symmetry along a direction perpendicular to the xz-plane is consid-

ered (cylindrical droplets) (see Fig. 2.10), the local mean curvature of the droplet surface

reads (see Section A.2 of the Appendix A for details about derivation of the local mean

curvature expressions):

C =
1

√

r2 + r2
θ

− 1

r

d

dθ

rθ
√

r2 + r2
θ

. (2.27)

The Young-Laplace equation (2.20) is then solved by using the same boundary conditions

as in the axisymmetric droplet case (Eqs. 2.22 and 2.23). The characteristic length R0,

in this case, corresponds to radius of a circle, the area of which is equal to the cross-

sectional area of the droplet, Adroplet. In particular, R0 =
√

Adroplet/π. The constraint

that singles out the solution of the Young-Laplace equation, now prescribes the droplet

cross-sectional area, Adroplet:

∫ θmax

0

(

r

R0

)2

dθ = π, (2.28)

where, θmax = π/2, for a �at and smooth substrate case. In addition, in the case of a

structured solid surface, the cross-sectional area constraint reads:

∫ θmax

0

(

r

R0

)2

dθ − Âsolid = π, (2.29)

where, Âsolid, is now the dimensionless area of the triangular domain ABC (see Fig. 2.12).

Moreover, the extra algebraic equation for de�ning the maximum value of the angular

coordinate, θmax, (Eq. 2.25) is not modi�ed in the cylindrical droplet case.

Overall, the Young-Laplace (Eq. 2.20), along with the volume constraint for spheri-

cal droplets (Eq. 2.24 or Eq. 2.26 for a structured substrate), or the area constraint for

cylindrical droplets (Eq. 2.28 or Eq. 2.29 for a structured substrate), and the algebraic

equation 2.25 in the case of a structured substrate, are discretized using the �nite el-

ement method (FEM) [54] accounting for the boundary conditions 2.22 and 2.23. The

resulting set of non-linear dimensionless equations is solved iteratively (with Newton-
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(a) (b) (c)

Figure 2.13: (a) Water droplet featuring multiple contact lines on a structured solid surface
(reprinted from [62]). Simulations of a similar system, by using molecular dynamics and lattice-
Boltzmann models, are demonstrated in (b) and (c), respectively (reprinted from [63] and [64]).

Raphson method) with an in-house code for the distance, r (θ), the reference pressure,

K = R0∆p/γLA, and the maximum value of the angular coordinate, θmax, only in the case

of a structured substrate (θmax = π/2 for a �at and smooth substrate).

The above formulation can be employed to predict the shape of axisymmetric, or cylin-

drical, droplets on geometrically heterogeneous surfaces, however, we note that the cur-

rent parameterization, in terms of the angular coordinate, θ, would be su�cient only for

solid surfaces with smooth corrugations (or single-corrugated substrates like Fig. 2.12),

where r (θ) is a single value function. In particular, when wetting occurs on solid sur-

faces of increased topographic complexity, di�erent r values can correspond to the same

angular coordinate, thus the angular parameterization would be de�cient. In addition,

the implementation of the Young contact angle boundary condition (Eq. 2.23) is of lim-

ited e�ciency on complex heterogeneous solid surfaces, since wetting states with mul-

tiple TPLs -the number and position of which is unknown- can be admitted (see e.g.

Fig. 2.13a). Computations of such composite solid-liquid-ambient states are feasible in a

unit cell of the surface pattern [55], however, they are of acceptable accuracy only when

the droplet size is considerably larger than the roughness scale since they disregard the

signi�cant pinning e�ects at the droplet endings.

Alternatively, wetting states with multiple contact lines can be predicted by using �ne-

scale computational approaches, such as molecular dynamics (MD) [56, 57, 58] and

mesoscopic lattice-Boltzmann (LB) models [59, 60, 61] (see Fig. 2.13b, c). However, the

required computational cost is considerably higher, especially in cases where real-life

millimeter-sized droplets are simulated. Fine-scale computational approaches are brie�y

described in the following Section.

2.2.3 Fine-scale modeling

In the �ne-scale models, the liquid-ambient and liquid-solid interfaces are actually dif-

fuse (have a �nite thickness), due to thermal �uctuations and the action of molecular

forces. Such an approach does not require any contact angle boundary condition which
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is imperative in the sharp-interface continuum-level methods (e.g. Young-Laplace equa-

tion). Bellow we present more details regarding the molecular dynamics and the lattice-

Boltzmann approaches.

2.2.3.a Molecular dynamics

Molecular dynamics simulation consists of the numerical solution of the classic equa-

tions of motion (Newton’s equations) [56]. The forces acting on the atoms are derived

from a potential energy, Uab, (usually modeled with Lennard-Jones potentials), which is

usually truncated at a relatively small cut-o� radius:

Uab = 4 ǫab

Cij

(

σab

rij

)12

− Dij

(

σab

rij

)6 , (2.30)

where, for a given pair of atoms a and b, the coe�cients ǫab and σab are related with

the depth of the potential well and the e�ective molecular diameter; rij is the distance

of separation and the coe�cients Cij and Dij regulate the repulsive (Cij) and attractive

(Dij) parts of the potential. Furthermore, if electrostatic charges are present, Coulomb

potentials are also included. Finally, the solid wettability is regulated by the strength

of the liquid-solid interaction (strong forces imply wetting whereas weak forces imply

non-wetting), thus Young’s contact angle derives implicitly in this case.

The �rst molecular dynamics simulations of wetting phenomena were presented in the

pioneer work of Saville in 1977 [65], where by using simple Lennard-Jones potentials to

describe molecular interactions, he concluded that wetting phenomena in the nano-scale

deviate from the Young’s equation predictions (2.6). Since then, the shape of droplets

on smooth as well as on rough substrates has been extensively studied, by performing

larger-scale simulations (∼106 atoms) made possible by the growth of computer power

[56, 57]. Cassie-Baxter to Wenzel wetting transitions on structured surfaces, however,

have low probability of occurring (“rare events”) and thus the MD simulation procedure

has to be highly accelerated. Such a task is made possible by using forward �ux sampling

(FFS) techniques [66] as presented in the recent publication of Savoy and Escobedo [58]

who have studiedwetting transitions on rough solid surfaces. Even in this case, however,

the droplet size is far from realistic. Overall, MD is powerful tool and can lead to a better

understanding of the physics of wetting, however, current simulations are still restricted

to physically small systems (nano-droplets).

2.2.3.b Lattice-Boltzmann

The mesoscopic lattice-Boltzmann method, where a �uid is represented in terms of the

probability of �nding a particle (�ctitious basic unit of the �uid) at a certain position in

space and time, has been widely used in simulating �ow phenomena [67]. LB o�ers the
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advantage of modeling microscopic liquid-ambient and liquid-solid interactions, with

lower computational resources compared to molecular dynamics simulations. In wetting

systems, the Boltzmann-BGK equation is solved [60, 61]:

d f

dt
+ v · ∇ f = − f − f eq

τ
+

δ f

δt
, (2.31)

where, f , is the probability distribution function, f eq, the equilibrium distribution of

particle velocities, τ, the relaxation time of the system and, v, the discretized velocity

space. The term δ f

δt
on the right-hand side of Eq. 2.31 accounts for the action of both ex-

ternal and internal forces. The liquid-solid interactions in this approach are modeled by

using a pseudo-potential with a repulsive and an attractive component, in direct analogy

with DLVO theory [60, 61]. The Young contact angle, θY, is then tuned by the attraction

and repulsion parameters of the liquid-solid pseudo-potential.

Similar to the MD simulations, the solution procedure here has to be accelerated, since

dynamic simulations converge to stable equilibrium states only after long execution

times. Such an acceleration has been performed through a time-stepper based computa-

tional framework, described in [60, 61], which wraps around the LB dynamic simulator

and enables the computation of steady state solutions, utilizing relatively short and ap-

propriately initialized LB executions. Overall, mesoscopic simulations can successfully

describe wetting behavior on complex surfaces (including Cassie-Baxter to Wenzel wet-

ting transitions [60]), however, the required computational cost is considerably higher

compared to the continuum-level methods.

Conclusively, �ne-scale models can handle cases withmultiple contact lines bymodeling

microscopic liquid-solid interactions, however, the computational power requirements

increase dramatically when the ratio of the droplet size over roughness is large (mil-

limeter size droplets). Alternatively, and in order to preserve the computational cost at

a reasonable level, the Young-Laplace equation (2.20) can be reformulated so as to en-

compass molecular details, lumped into a liquid-solid interaction term, and avoid the

implementation of the Young contact angle boundary condition, as described in the next

Section.

2.2.4 Augmented Young-Laplace equation

Here, in order to overcome the previously referred limitations in continuum-level mod-

eling, we present a new formulation of the Young-Laplace equation. From our point

of view, the liquid-ambient and the liquid-solid interface must be treated in a uni�ed

context. In particular, it is suggested that the application of the Young-Laplace equation

should not end at the three-phase contact line but it should govern the entire droplet

surface (both liquid-ambient and liquid-solid interfaces). This approach requires that

the liquid and solid phases are always separated by an thin layer (see Fig. 2.14). Young’s

angle, in this framework, would emerge “naturally” as the result of the combined action
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Figure 2.14: Uni�ed conception of the proposed augmented Young-Laplace (Eq. 2.32). The red
line depicts the liquid-ambient and the liquid-solid interfaces which are now treated uniformly
and parameterized with the arc-length, s.

of the surface tension and liquid-solid interactions.

In particular, we consider that themolecular interactions (van derWaals and electrostatic

forces) are incorporated in a disjoining (or Derjaguin) pressure term [68], active in the

vicinity of solid surface, which can be included in the Young Laplace equation. Thus,

starting from the conventional form (Eq. 2.20), the reformulated (or augmented) Young-

Laplace equation, which states the force balance between surface tension, gravity, the

disjoining and the Laplace pressure, reads in dimensionless form:

R0

γLA
pLS + Ĉ + Ng ẑ = K, (2.32)

where, pLS, is the disjoining pressure which consists of a short range, repulsive, and

a long range, attractive, term (see Section 2.2.4.b for more details about the disjoining

pressure formulation). The above equation now governs the whole droplet surface, en-

abling the computation of droplet pro�les with an unknown cardinality of three-phase

contact lines, on geometrically heterogeneous solid surfaces. This consideration, how-

ever, requires an appropriate parameterization of the droplet surface, as discussed in the

following Section.

2.2.4.a Arc-length parameterization

The previously presented parameterization (in terms of the angular coordinate, θ) would

not be su�cient in the case of the augmented Young-Laplace equation, since di�erent

r values (from the upper and the low part of the droplet) can correspond to the same

angular coordinate (see Fig. 2.14). An alternative approach is to parameterize polar co-

ordinates (r , θ) as a function of the arc-length, s, of the intersection of the droplet sur-

face with a vertical plane (i.e., r (s), θ(s)) (see Fig. 2.14). This parameterization enables

the tracking of the droplet surface in a natural way while the problem is maintained

one-dimensional. In particular, the local mean curvature of an axisymmetric droplet,
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formulated as a function of the arc-length, s, reads:

C =
1

r sinθ
√

r2 θ2s + r2s

[
2 r θs sinθ − rs cosθ + r sinθ

d

ds
arctan

(

r θs

rs

)]
. (2.33)

where θs = dθ
ds

and rs = dr
ds
. The determination of the angular coordinate, θ, requires

an extra di�erential equation; this is the arc-length equation, which by virtue of the

Pythagorean Theorem reads:

1

R2
0

(

dr2 + r2 dθ2 − ds2
)

= 0. (2.34)

The solution of the augmented Young-Laplace (2.32) is determined subject to the follow-

ing, Neumann-type, boundary condition:

1

R0

dr

dθ
= 0 at s = 0, (2.35)

which is equivalent to Eq. 2.22 and prescribes the axial symmetry around the z-axis (see

Fig. 2.14). In addition, the Young contact angle boundary condition (2.23) is now replaced

by the following Neumann-type condition:

1

R0

dr

dθ
= 0 at s = smax, (2.36)

which prescribes the axial symmetry around the z-axis, at the droplet base. Moreover,

the following, Dirichlet-type, boundary condition singles out the arc-length equation

(2.34):

θ = 0 at s = 0. (2.37)

The constraint prescribing the droplet volume,Vdroplet, now reads (starting fromEq. 2.24):

∫ smax

0

(

r

R0

)3

sinθ θs ds = 2, (2.38)

where, however, the maximum arc-length of the droplet surface, smax, which delimits

the boundary of the computational domain, is unknown. The extra equation required to

deal with the free boundary reads:

1

R0
r sinθ = 0, at s = smax. (2.39)

Essentially, Eq. 2.39 is a condition that the liquid surface touches the z-axis at s = smax

(see Fig. 2.14).

In the case of translational symmetry (considering cylindrical droplets), the local mean
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Solid

Liquid

θYδmin

Figure 2.15: Schematic of the three-phase contact using the proposed uni�ed conception (one
equation for both the liquid-solid and the liquid-ambient interfaces). The liquid and the solid
phases are considered to be separated by an intermediate layer (with thickness δmin) which is the
locus where the disjoining pressure acts.

curvature, as a function of the arc-length, s, reads:

C =
1

√

r2 θ2s + r2s

[
θs +

d

ds
arctan

(

r θs

rs

)]
. (2.40)

In addition, Eq. 2.38 must now be replaced by a constraint prescribing the droplet cross-

sectional area, Adroplet. In particular, starting from Eq. 2.28, yields:

∫ smax

0

(

r

R0

)2

θ2s ds = π, (2.41)

which singles out the solution of the augmented Young-Laplace equation in the case of

translational symmetry. The rest of the equations (Eqs. 2.34, 2.35, 2.36, 2.37 and 2.39) are

identical for both cylindrical (translational symmetry) and spherical (axial symmetry)

droplets.

We note that, in contrast with the conventional Young-Laplace equation, the expres-

sion of the augmented Young-Laplace is not a�ected by the shape of the solid structure.

In particular, the structure shape was explicitly introduced in the conventional Young-

Laplace equation, through the Young contact angle boundary condition (Eq. 2.23), as

well as through the volume (or area) constraint (Eq. 2.26 or Eq. 2.29), respectively. In

the proposed formulation, however, we do not have any explicit boundary condition at

the solid surface while the e�ect of the solid structure is implicitly incorporated in the

disjoining pressure term, pLS, as will be discussed in the following Section.

2.2.4.b Disjoining (or Derjaguin) pressure

The concept of the disjoining pressure was initially introduced by Derjaguin in order to

represent the molecular interactions between surfaces [69]. In particular, the disjoining

pressure is de�ned as the pressure in excess of the external pressure that must be applied

to a �uid between two plates to maintain a given separation, that is essentially, the force
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Figure 2.16: Pro�les of the dimensionless disjoining pressure, R0
γLA

pLS (red lines), and of the
corresponding dimensionless e�ective interface potential (blue lines), ω

γLA
, as a function of the

liquid-solid dimensionless distance, δ
R0
. The above pro�les are evaluated for two sets of param-

eters: (i) solid lines for σ = 3.8× 10−2, C1 = 8, C2 = 6, ǫ = 8× 10−3, wLS
= 4× 102 and (ii) dashed

lines for σ = 3.8 × 10−2, C1 = 6, C2 = 3, ǫ = 0, wLS
= 4 × 102.

of attraction or repulsion between the plates per unit area. Here, the disjoining pressure

term, pLS, essentially expresses the excess pressure in the region between the liquid and

the solid phases, due to molecular interactions (including van der Waals, electrostatic

and steric forces [68]). Such point of view di�ers from the conventional description,

where the disjoining pressure is raised within a thin liquid �lm that precedes the three-

phase contact line [68].

We formulate the disjoining pressure according to the following expression:

R0

γLA
pLS = w

LS

(

σ

δ/R0 + ǫ

)C1

−
(

σ

δ/R0 + ǫ

)C2 , (2.42)

which resembles a Lennard-Jones type potential (see Eq. 2.30). Alternative formulations

for the disjoining pressure could also be employed, as demonstrated in [70]. In Eq. 2.42,

the depth of the potential well is proportional to a wetting parameter, wLS, which is

directly related with the solid wettability (an increase of wLS results in a deeper well

of the potential, indicating stronger liquid-solid a�nity). In addition, the exponents C1

(in the repulsive term of Eq. 2.42) and C2 (in the attractive term of Eq. 2.42) control the

range of the molecular interactions (largeC1 andC2 reduce the range within which these

interactions are active, as can be observed in the disjoining pressure pro�les plotted in

Fig. 2.16). The distance, δ, between the liquid and the solid surface determines whether
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the disjoining pressure is attractive (modeling van der Waals interactions, for relatively

large δ) or repulsive (modeling steric forces and electrostatic interactions determined by

an overlapping of the electrical double layers, for small δ) [68]. In the case of a perfectly

�at solid surface, the distance, δ, is de�ned as the vertical distance of the liquid surface

from the solid boundary. For non-�at, rough, solid surfaces, the de�nition of distance,

δ, requires special consideration. Here, we take δ as the Euclidean distance from the

solid. This quantity is obtained from the solution of the Eikonal equation [71], which

expresses the signed distance from a boundary (even arbitrarily shaped). The solution

of the Eikonal equation is discussed in Section A.3 of the Appendix A. As previously

argued, in our formulation we consider that the liquid and the solid phases are separated

by an intermediate layer (with thickness δmin) which is stabilized by the presence of the

disjoining pressure (see Fig. 2.15). In particular at δ = δmin the repulsive and attractive

forces balance each other; further reduction of the intermediate layer thickness, below

δmin, would generate strong repulsion. The minimum allowed liquid-solid distance δmin

is determined by the constants σ and ǫ . Speci�cally, for δ = δmin ⇔ pLS = 0 ⇒ δmin =

R0(σ− ǫ ). We note that the presented formulation is still valid even with a zero value of

the ǫ parameter (see e.g. a disjoining pressure pro�le with ǫ = 0 in Fig. 2.16), however, ǫ

has a small �nite value in all of the demonstrated results in this Thesis, in order to avoid

any numerical singularities as δ approaches zero.

A common description of the attractive term (van derWaals component) of the disjoining

pressure (
[
−γLA

R0

(

σ
δ/R0+ǫ

)C2
]
in Eq. 2.42) can be given in terms of the so-called Hamaker

constant, Ha [72]. In particular, the van der Waals interactions are usually modeled as

[72]:
[
− Ha

6 π δ3

]
, with Ha > 0. By equating this common description with our disjoining

pressure formulation, considering that C2 = 3 and ǫ = 0, yields:

Ha = 6 π γLA R0
2 σ3. (2.43)

Since the typical values of the Hamaker constant of liquids is about 10-19 J [72], then

Eq. 2.43 yields that the disjoining pressure parameter, σ, must be of the order of 10-5,

for a water droplet (γLA = 0.072 N/m) with a nominal radius R0 = 1 mm. This results to

a minimum liquid-solid distance, δmin = R0(σ − ǫ ) ∼ 10-8 m. Unfortunately, the mod-

eling of such multiple length scales between the disjoining pressure (nm scale) and the

interfacial tension (µm to mm scale) would be infeasible in a continuum-level approach.

Thus, we can either consider droplets with very small nominal radius (of the order of

µm) or, for the shake of computational e�ciency, we can use a δmin quite larger than ∼
10-8 m. Even in the latter case, though, our formulation can e�ciently capture several

equilibrium and dynamic phenomena, as will be demonstrated in the following Chap-

ters (from 4 to 7). Decreasing liquid-solid distance to the realistic value of the order of

10-8 m, while simulating millimeter-sized droplets, would require a multiscale modeling

approach. In this case, the interaction phenomena at nanometer scale should be linked

with the macroscopic droplet behavior at a millimeter scale. Such a scale linking is a

subject of ongoing research and will be discussed in the Section 9.4 of Chapter 9.
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The molecular interactions, which are lumped into the disjoining pressure term, result

to an additional contribution to the surface free energy, referred as e�ective interface

potential,ω. The e�ective interface potential essentially expresses the cost of free energy

per unit area to maintain a distance, δ, between the solid and the liquid phases (ω → 0

when δ → ∞) and is expressed in terms of the disjoining pressure, pLS, according to

[68]:

pLS = −dω
dδ
, (2.44)

which yields:

ω

γLA
= w

LS

(

δ

R0
+ ǫ

) 
(

σ
δ/R0+ǫ

)C2

1 − C2
−

(

σ
δ/R0+ǫ

)C1

1 − C1

 . (2.45)

Characteristic pro�les of the disjoining pressure and the e�ective interface potential, as

a function of the liquid-solid distance, δ, are presented in Fig. 2.16. Starting from Eq. 2.4,

the surface free energy of the droplet now reads:

E = γLS ALS + γSA ASA + γLA ALA + ωmin ALS, (2.46)

whereωmin is the absolute minimum of the e�ective interface potential,ω (see Fig. 2.16).

In the above, we have considered that the contribution of ω in the free surface energy

is signi�cant only along the liquid-solid interface, i.e. when the liquid phase is at the

minimumdistance from the solid phase (δ = δmin). At this energetically favored distance,

where pLS = 0, Eq. 2.44 gives dω
dδ = 0 ⇒ ω = ωmin. Thus by substituting δ = δmin =

R0 (σ − ǫ ) in Eq. 2.45 yields:

ωmin

γLA
= − w

LS σ (C1 − C2)

(C1 − 1) (C2 − 1)
. (2.47)

In an analogy to the theory of adhesion [35], introduced by Dupré, ωmin can be also

treated as the work of adhesion between liquid and solid phases which is given by [35]:

ωmin = γSA + γLA − γLS, (2.48)

representing the work necessary to separate a unit area of the liquid-solid interface into

two liquid-ambient and solid-ambient interfaces.

Since the Young contact angle, θY, is not imposed explicitly in the simulation (both

liquid-ambient and liquid-solid interfaces are treated in a consolidated framework), a

correlation between the liquid-solid a�nity, expressed via the wetting parameter, wLS,

and Young’s contact angle is deemed necessary. In particular, such a correlation yields

by combining Eq. 2.48 with the Young equation (2.6):

cosθY =
ωmin

γLA
− 1. (2.49)

The above is known as Frumkin-Derjaguin equation and is widely used in the literature
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(see [73, 68]) to calculate contact angle values in the presence of a disjoining pressure,

replacing the Young equation (2.6). Finally, by using Eq. 2.47 we can construct an one-

to-one correlation between the Young contact angle and the wetting parameter (wLS
=

w
LS(θY)) which reads:

w
LS
=

(C1 − 1)(C2 − 1)(1 + cosθY)

σ(C1 − C2)
. (2.50)

A validation of the above formula is presented in Chapter 4 (Fig. 4.2), by calculating

the Young contact angle with circular �tting on the equilibrium droplet pro�les, in the

absence of any gravitational �eld.

We note that the computational cost of the Augmented Young-Laplace equation is sim-

ilar to that of the conventional form, however, it exhibits a plethora of advantages such

as modeling of droplets with multiple and recon�gurable three-phase contact lines and

independence of the equations form from the solid topography (in contrast with the con-

ventional Young-Laplace equation, the substrate geometry is not incorporated explicitly

in the augmented Young-Laplace equation).

The overall problem is solved as follows: the augmented Young-Laplace (2.32) and the

arc-length (2.34) equations, along with the constraints 2.38 (or 2.41 for a cylindrical

droplet) and 2.39, are discretized using the �nite element method, accounting for the

boundary conditions 2.35, 2.36 and 2.37. The resulting set of non-linear dimensionless

equations is solved iteratively (with Newton-Raphson method) with an in-house code

for the droplet surface coordinates r (s) and θ(s), the maximum arc-length, smax, and the

reference pressure, K . We note that the solution of the Eikonal equation is performed

only once for a particular solid geometry (see Section A.3 of the Appendix A), thus it is

not included in the above iterative procedure. Computational results of the augmented

Young-Laplace equation, along with the Galerkin residuals of the �nite element method,

when deemed necessary, are presented in Part II of the Thesis. Following is a discussion

regarding the modeling of dynamic wetting phenomena.
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CHAPTER3
Dynamics

In this Chapter we discuss the importance of the three-phase contact line motion for vari-

ous technological processes. We present the current modeling approaches for predicting the

three-phase contact line dynamics as well as the emerging limitations arising either from

the tedious implementation of the Young contact angle boundary condition or from the high

computational needs. We, then, apply our previously presented continuum level, sharp in-

terface approach, based on the uni�ed conception of the liquid-ambient and liquid-solid

interfaces, in order to predict the dynamics of wetting on heterogeneous substrates (chem-

ically or geometrically textured). Our formulation enables the computationally e�cient

treatment of multiple, dynamic contact lines, eliminating the need to apply any explicit

boundary condition at the three-phase contact line.

3.1 Contact line motion

Consider that a droplet is placed on a solid surface, far from its equilibrium state. What

follows is that the three-phase contact line will set in motion until the equilibrium con-

tact angle, θY, is reached. The evolving macroscopic contact angle, until the equilibrium

state, is called dynamic contact angle, θd (see Fig. 3.1). The dynamic behavior of the

three-phase contact is of utmost importance for various technological applications such

as coating of solids by liquid �lms, inkjet printing and �uid motion in lab-on-a-chip

devices. The contact line velocity, for example, determines whether air bubbles can be

entrapped underneath the liquid �lm in coating processes. This is a crucial limiting fac-

tor for the smoothness and adhesion of the coating. Due to their signi�cance in such

applications, wetting dynamics has been studied extensively, both theoretically and ex-

perimentally [74, 75, 37, 76].

What renders the dynamic wetting phenomena more complicated than the equilibrium

is the presence of viscous forces, in a length scale starting frommolecular size to the cap-

illary length, λκ =
√

γLA
ρg
, and inertial forces at larger scales. Therefore, the contact line

motion as well as the apparent dynamic contact angle of the droplet are now governed

by viscous, inertial and capillary forces as well as by molecular phenomena interplay.
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1 mm

0 ms             0.4 ms            0.8 ms            1.2 ms                ∞

θd

Figure 3.1: Di�erent time instances of a water droplet spreading on a solid surface with θY =
117o. The last image shows the equilibrium droplet shape (reprinted from [77]).

(a) (b)

Solid

x

z

θadv

θrec

Liqu
id

c

Solid

Figure 3.2: Schematic presentation of the advancing (θadv) and receding (θrec) contact angles in
the case of (a) a sliding droplet on a tilted substrate and (b) a droplet which is slowly pumped or
drawn, on a horizontal substrate.

The relative importance between the liquid-ambient interfacial tension, γLA, and viscos-

ity, µ, is given by the capillary number:

Ca =
ucl µ

γLA
, (3.1)

where ucl is the velocity scale (usually the contact line velocity). Several complex phe-

nomena originate from the presence of viscosity during the contact line motion. In par-

ticular, it has been observed that the dynamic contact angle at the front of a sliding

droplet (advancing contact angle, θadv) di�ers from the rear one (receding contact angle,

θrec) as much as tens of degrees [37, 76] (see Fig. 3.2a). A typical technique to measure

the advancing and receding dynamic contact angles is to add and withdraw liquid from

a droplet by using a needle, as demonstrated in Fig. 3.2b. In particular, the variation of

the dynamic contact angle, as a function of the droplet volume, is presented in Fig. 3.3.

This phenomenon of contact angle hysteresis (CAH) can also be substantially enhanced

by surface roughness and chemical heterogeneities, however, it has also been observed

in molecularly smooth free liquid �lms [78].

Apart from viscous forces, the inertial forces are also signi�cant in wetting dynamics,

especially in the case where the droplet impacts a solid surface with an initial veloc-

ity (see Fig 3.4). The dimensionless quantity which determines the relative importance

between the inertial forces and the interfacial tension is the Weber number:

We =
ρu0

2 D0

γLA
, (3.2)
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Figure 3.3: Typical advancing and receding contact angle measurements of a water droplet on
a �uorinated silicon substrate [80].

    0.1 ms                  1.1 ms                             9.3 ms                 14 ms

Figure 3.4: Di�erent time instances of a water droplet impacting on a wax solid surface with θY
= 93.5o and We = 58 (reprinted from [81]).

where ρ is the �uid density, D0 is the nominal droplet diameter (D0 = 2 R0) and u0 is

a characteristic velocity (usually, in the case of an impacting droplet, the velocity just

before the collision). Droplet impact with high velocities can lead to unusual droplet

formations (see Fig 3.4), accompanied with ejection of small satellite droplets (splash-

ing). The in�uence of solid texture is also crucial since it can lead to a complete droplet

rebound after the impact on a superhydrophobic surface [79], like the self-cleaning lo-

tus leaf. De�nitely, in order to design and optimize the functional substrates that are

described in Section 1.2, a detailed model for the droplet dynamic behavior on hetero-

geneous surfaces is deemed necessary.

The current prevailing modeling approaches to simulate dynamic wetting phenomena

are the hydrodynamic model (HD) [82] and the molecular kinetic theory (MKT) [83].

According to the hydrodynamic approach, the viscous friction is assumed to be the only

signi�cant dissipative force during liquid motion. On the other hand, molecular kinetic

theory derives a theoretical dependence of the dynamic contact angle on the velocity
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of the contact line, by balancing the capillary forces with a liquid-solid friction and ne-

glecting any viscous dissipation. A combined description was also proposed by Petrov

and Petrov [84], intending to exploit the advantages of the both approaches. We note,

however, that despite the huge amount of work published in the last thirty years, the ap-

propriate modeling of contact lines under dynamic conditions is yet a controversial issue

since both hydrodynamic model and the molecular kinetic theory exhibit discrepancies

from several sets of experiments [85]. In addition, in case we select the hydrodynamic

model to predict the behavior of a droplet on a geometrically structured substrate, a con-

tact angle boundary condition has to be applied to multiple three-phase contact lines,

unknown in number. Such a task would be infeasible by using the conventional sharp-

interface formulations of the hydrodynamic model.

Other approaches for predicting the contact line dynamics include �ne-scale methods

(molecular dynamics and mesoscopic lattice Boltzmann models) which are described in

Section 2.2.3. These methodologies can handle cases with multiple contact lines, how-

ever, they su�er from severe computational limitations when realistic-sized systems are

examined (i.e. millimeter-sized droplets). In the next Section, we initially discuss the hy-

drodynamic and the molecular kinetic approaches as well as their restrictions that pre-

vent us from performing e�cient dynamic simulations on structured geometries. We

then reformulate the hydrodynamic model, by applying the proposed uni�ed, sharp-

interface approach and incorporating molecular phenomena (liquid-solid interactions

via a disjoining pressure term) in order to address the previously referred limitations.

3.2 Modeling of dynamic wetting phenomena

3.2.1 Hydrodynamic model

In the hydrodynamic approach, the viscous dissipation determines the liquid motion on

a solid surface. Unlike the augmented Young-Laplace equation presented in Chapter 2,

we note that the variety of the dynamic wetting problems which are examined in the

current Thesis renders the de�nition of particular characteristic quantities complicated

and thus we prefer to present the following mathematical formulation in dimensional

form. In particular, the dynamics of a �uid are modeled by the incompressible Navier-

Stokes equations [86]:

ρ

(

du

dt
+ u · ∇u

)

= −∇p + µ∇2u +G, (3.3a)

∇ · u = 0, (3.3b)

where, ρ, is the �uid density, µ, is the viscosity, u = (ux ,uz) and p are the �uid velocity

�eld and pressure, respectively; G is a body force expressing the e�ect of gravity (G =

ρ g, where the vector, g, is the gravitational acceleration). The �uid dynamics at the
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Figure 3.5: Unit normal, n, and the unit tangent, t , vectors of the liquid-ambient interface.

droplet surface requires special consideration. In particular, the following stress balance

holds at liquid-ambient interface [86]:

s(n) |liquid − s(n) |ambient + ∇sγLA − γLA C n = 0, (3.4)

where s is the total stress tensor and n the unit normal of the liquid-ambient interface

(see Fig. 3.5). In the absence of surfactant adsorption on the droplet surface [87, 88] or

temperature gradients along the solid substrate (thermocapillary phenomena) [89, 90],

the interfacial tension gradient (∇sγLA) can be neglected from Eq. 3.4. Phenomena with

interfacial tension gradients are out of the scope of this Thesis. Therefore, resolving

Eq 3.4 into normal and tangential components gives [86]:

∆p + τnn |ambient − τnn |liquid − γLA C = 0, (3.5a)

τnt |ambient − τnt |liquid = 0, (3.5b)

where τnn is the normal and τnt the shear stress, respectively. In particular, τnn = n ·τ ·n
and τnt = n · τ · t , where τ is the viscous stress tensor (τ = µ

[
∇u + (∇u)T

]
) and t the

unit tangent of the liquid-ambient interface (see Fig. 3.5). It is also notable that, for static

�uids, Eq. 3.5a reduces to the Young-Laplace equation (2.20).

Considering that the liquid-ambient interface is explicitly tracked as a boundary of the

physical domain (sharp-interface scheme), the computational mesh must be capable of

following the droplet deformations. Such boundary conforming meshes are generated

by mapping the physical domain (x, y coordinates) into a geometrically simple domain

(ξc, ηc coordinates). One of the simplest algorithms is the conformal mapping [91, 92],

where the mesh is generated by solving a pair of Laplace’s equations:

∇2ξc = 0, (3.6a)

∇2ηc = 0, (3.6b)

accounting for the following kinematic boundary condition along the liquid-ambient

interface:

(umesh − u) · n = 0, (3.7)

where umesh is the velocity of the mesh at the interface.
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The typical boundary condition for the Navier-Stokes equations at the solid boundary

is the no-slip boundary condition, which in the case a �at solid surface reads:

ux = 0, (3.8)

where ux is the horizontal component of the velocity �eld. The above boundary con-

dition, however, is problematic since it creates a stress singularity at the three-phase

contact line. The breakdown of the standard hydrodynamic model at the three-phase

contact line was initially reported by Huh and Scriven in 1971 [82]. In particular, they

predicted a singularity for the shear stress which leads to a divergence in the energy dis-

sipation rate. Worth mentioning their famous quote: “not even Herakles could sink a solid

if the physical model were entirely valid, which it is not”, referring to the above paradox.

This problem has been resolved by introducing a slip boundary condition, where the

tangential component of the velocity appears to have a �nite value at the contact line

[93, 94]. The slip boundary condition that replaces Eq. 3.8 at the liquid-solid interface

has the following form in the case a �at solid surface:

ux = Ls
dux

dz
, (3.9)

where Ls is a constant called slip length. The slip length essentially denotes the �ctitious

depth within the solid at which ux would reach zero [86].

The three-phase contact line is a moving boundary, and therefore additional information

is needed in order to determine its evolution. Since the detailed physics very close to

the contact line is not clear yet, several theoretical correlations between the contact

line velocity and the dynamic contact angle, θd, imposed at the contact line, have been

developed. In particular, by assuming that the viscous friction is the only signi�cant

dissipative force at the contact line, Cox [94] proposed the following formula:

Ca =

[
ln(ǫ c)−1 − Q1

fc(θd)
+

Q2

fc(θY)

]−1
[gc(θd) − gc(θY)] +O

[
1

ln(ǫ c)−1

]3
, (3.10)

where, θd is the dynamic contact angle, ǫ c is a small dimensionless parameter related

with the slip region around the contact line, Q1, Q2 and fc, gc are parameters and func-

tions of the model [94]. The majority of the current modeling approaches of the dynamic

contact angle are based on the above general expression, which correlates the velocity

of the contact line (ucl, included in the capillary number) with the dynamic (θd) and the

Young contact angle (θY). One of the most famous working simpli�cation of Eq. 3.10

reads:

ucl = cT (θd − θY)nT (3.11)

where cT is an empirical constant called mobility exponent and nT usually takes values

in the range of 1 6 nT 6 3. This functional dependence has been used by several re-

searchers to model contact line motion [95, 96, 97]. We also note that similar correlations
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have been also derived from molecular dynamics simulations (see e.g. the work of Ren

and E [98]) indicating that despite its phenomenological nature, Eq. 3.11 can adequately

describe the physics of contact line motion.

The above sharp-interface hydrodynamic model does succeed in removing the singular-

ity arising in the motion of the contact line, however, it does not have general applicabil-

ity on a geometrically patterned solid surface since the change in the droplet topology

demands a recon�guration of the contact lines. In particular, the contact angle boundary

condition has to be applied in a priori unknown cardinality of contact lines hindering

the simulation of the physical system. An attempt to overcome this restriction was per-

formed by Savva and Kalliadasis [99] by treating the contact line of a two-dimensional

droplet as a set of two points, at the droplet edges. The applicability of this methodology

is however limited only for slow �ows and small contact angles. In addition, the exper-

imentally observed entrapment of the ambient phase under the droplet [100] is totally

neglected.

An alternative approach to alleviate the stress singularity at the moving contact line is

to use di�use-interface formulations of the hydrodynamic model. Such examples are

the level-set methods (LSM) [101], the volume of �uid (VOF) [102] and the phase-�eld

methods (PFM) [103] which can compute the interface motion and deformation on a

�xed computational mesh by using implicit functions to represent separate phases. In

these methods, the Navier-Stokes equations (3.3) are modi�ed by the addition of a term

representing the e�ect of interfacial tension.

In the level-set methods the interface is de�ned as the zero level-set of a distance func-

tion, φLSM, from the interface. The motion of the interface is then performed by con-

vecting the distance function with the velocity �eld:

dφLSM
dt

= u · ∇φLSM. (3.12)

Level-set methods have been widely used in wetting phenomena simulations, due to

their ease of implementation (see [104, 105]), however they su�er from loss of mass

problems in case where the interface is highly deformed.

In the case of VOF methods, a color function, φVOF, is employed indicating the fractional

amount of �uid present at every cell in the computational grid (φVOF = 0 for an empty

cell and φVOF = 1 for a cell �lled with the traced �uid). The evolution of the interface

is again predicted by Eq. 3.12. In this case, however, apart from the value of the color

function, the interface orientation has also to be determined from the gradient of φVOF.

Typically, VOFmethods do not su�er from loss of mass problems like level-set [106, 107],

however, there are still drawbacks compared to the sharp-interface schemes (e.g. loss of

accuracy due to numerical di�usion).

In the phase-�eld methods, the di�usion of the interface is assumed to be proportional
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to the chemical potential, FPFM, gradient:

dφPFM
dt

= κPFM∇2FPFM, (3.13)

where, φPFM, is the color function, κPFM, is model constant which is called mobility and

FPFM =
dEPFM

dφPFM
, with dEPFM the free energy of the phase concerned. Phase-�eld models,

have been extensively used to simulate wetting phenomena, since they can e�ectively

model liquid interactions with complex solid geometries [108, 109], however, they also

su�er from limitations such as the relatively large width of the interfaces.

Overall, di�use interface formulations can handle cases with multiple dynamic contact

lines on complex surfaces, however, they exhibit drawbacks compared to sharp-interface

hydrodynamic formulations (e.g. limited accuracy for highly deformed interfaces, mass

conservation problems, numerical di�usion, large width of the interface). The conceptu-

ally di�erent (since it neglects any viscous dissipation phenomena) modeling approach

of molecular kinetic theory is also presented in the next Section.

3.2.2 Molecular kinetic theory

According to the molecular kinetic theory, proposed by Blake and Haynes [83], the de-

pendence of the dynamic contact angle on the contact line velocity is determined by the

balance of the capillary force (γLA(cosθY−cosθd)) and a friction force in the three-phase

contact line, neglecting any viscous dissipation. Molecular kinetic theory is based on the

activated rate theory of Eyring [110], assuming that the movement of the contact line

is determined by the cumulative dynamics of the individual molecules within a region

close to the three-phase contact line. In particular, Blake and Haynes assume that the

wetting kinetics is a process of desorption of the molecules of the receding �uid and

adsorption of those of the advancing one onto adsorption sites of the solid surface. They

concluded that the contact line �nally moves with a velocity [83]:

ucl = 2 K0 λb sinh

λ2

b
γLA

2 kB TB

(cosθY − cosθd)

 , (3.14)

where, K0, is the equilibrium frequency of molecular displacement between adsorption

sites, λb, is the average distance between the adsorption sites of the solid surface and

kB TB is the thermal energy.

The molecular kinetic theory can predict the liquid motion in some systems (see e.g.

[111]), however, it does not have universal applicability and exhibits discrepancies from

other experimental data [85]. Moreover, it does not account for the exact solid geometry

near the contact line as well as it neglects any viscous dissipation phenomena.

Here we suggest to apply the previously presented uni�ed conception of the liquid-

ambient and the liquid-solid interfaces (see Section 2.2.4) to the sharp-interface hydro-
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dynamic model. This way, we would bypass the implementation of any explicit bound-

ary condition at the contact line (e.g. Eq. 3.11) and enable the simulation of multiple

dynamic contact lines on geometrically structured surfaces. The reformulation (aug-

mentation) of the hydrodynamic model is presented in the next Section. We note that

the incorporation of molecular interactions in the Navier-Stokes equations is not un-

usual in the literature. In particular, an extra body force, representing the van der Waals

interactions, has been used in a plethora of publications studying liquid �lms rapture

[112, 113]. Moreover, there are several examples where the lubrication approximation

has been used, taking account of a disjoining pressure term acting in a precursor liquid

�lm [114]. Such models, however, neglect the ambient phase entrapment and are limited

to small contact angle values.

3.2.3 Augmented hydrodynamic model

According to the uni�ed conception (see Fig.2.14 in Chapter 2), the solution of the

Navier-Stokes equations (Eq. 3.3) must by determined subject to a single stress bal-

ance boundary condition applied at the whole droplet surface, referred from now on

as the liquid-ambient interface. The behavior of this uni�ed interface is governed by

Eq. 3.4, which, due to the absence of any explicit boundary condition at the contact line,

should now be augmented with liquid-solid interactions. As described previously (see

Section 2.2.4), the liquid-solid interactions are lumped in a disjoining pressure term, pLS

(see Eq. 2.42), which will now be included in the normal component of the interface force

balance (Eq. 3.4). In particular Eq. 3.5a will now read:

∆p + τnn |ambient − τnn |liquid − γLA C − pLS = 0, (3.15)

which describes the interplay between capillary and molecular forces. Note that the

disjoining pressure term is active only in the vicinity of solid surface. For static �uids,

the above equation reduces to the augmented Young-Laplace equation (2.32). Regarding

the tangential stress component along the liquid surface (Eq. 3.5b), we will now use a

Navier slip model with an e�ective slip coe�cient, βe�, active only in close proximity to

the solid:

τnt |ambient − τnt |liquid + βe� (t · u) = 0, (3.16)

In the above we consider a uniform interfacial tension along the interface (∇sγLA = 0).

In order to activate the above slip model only in the vicinity of the solid surface, we

formulate the e�ective slip coe�cient, βe� (Eq. 3.16), as follows:

βe� =
µ βLS

R0

(

1 − tanh
[
ptrs

(

δ

δmin
− 1

)])
, (3.17)

where the dimensionless slip parameter, βLS (i.e. scaled inverse slip length), regulates

the adhesion strength of the liquid on the solid surface. The above formulation is a
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simple way to denote in a continuous manner the transition from a shear-free boundary

condition, applied on the liquid-ambient interface, to a partial slip boundary condition

along the liquid-solid interface. In particular, in the limit δ ≈ δmin, Eq. 3.17 reduces

to βe� = µβLS/R0, whereas for δ > δmin, Eq. 3.17 yields βe� = 0. The parameter, ptrs,

ensures a sharp transition between these two regimes. We note that, in the computations

presented in this Thesis, we assume ptrs = 5. Finally, we consider that typical values of

the dimensionless slip parameter, βLS, are of the order of the scaled inverse minimum

distance (R0/δmin).

Overall, the Navier-Stokes (Eq. 3.3) and the elliptic mesh generation equations (3.6)

are discretized using the �nite element method accounting for the boundary condi-

tions 3.15, 3.16 and 3.7. In addition, by assuming axial symmetry around the z-axis

(or translational symmetry along a direction perpendicular to the xz-plane), the model

becomes two-dimensional. The resulting set of discrete equations is integrated in time

using the implicit Euler method. The above model has been implemented in COMSOL

Multiphysics® commercial software. We note that, similar to the static case, the liquid-

solid distance, δ, is obtained from the solution of the Eikonal equation. The latter is

solved only once for a particular solid geometry (see Section A.3 of the Appendix A),

thus it is not included in the above iterative procedure. Computational results of the

augmented hydrodynamic model are presented in Part III of the Thesis.
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CHAPTER4
Wetting transitions on structured surfaces

In this Chapter, we validate the proposed augmented Young-Laplace equation against the

conventional formulation, as well as against mesoscopic lattice-Boltzmann simulations, for

simple solid surface geometries. Moreover, we demonstrate accurate and e�cient compu-

tations of equilibrium shapes of entire millimeter sized droplets on complex, geometrically

patterned, surfaces. Our computations reveal the existence of multiple meta-stable states

including Cassie-Baxter, Wenzel, as well as intermediate wetting states. The calculation

of the energy barriers separating these states, which can be performed by our method with

negligible computational cost, would be very important for designing and realizing surfaces

with fully tunable wetting properties.

4.1 Introduction: Meta-stable wetting states

As presented in Chapter 2, the wetting state where the droplet is sitting on top of the

protrusions (Cassie-Baxter state of “fakir” state, due to its similarity with a fakir sitting

on a bed of nails) is usually meta-stable, since the droplet can undergo a collapse tran-

sition to a Wenzel state, by impaling the solid protrusions. Unlike the Cassie-Baxter

state, the Wenzel state features strong pinning on the substrate [1]. Such dynamic mod-

i�cation of the adhesion properties of a solid surface would be highly advantageous in

many applications, for example micro-channels with intelligent adhesion switching and

controllable release of chemicals in lab-on-a-chip micro-reactors [2].

The Cassie-Baxter to the Wenzel wetting transition has been observed by increasing the

liquid pressure [3] or by vibrating the solid surface [4]. However, a more versatile tool

to examine wetting transitions is electrowetting phenomenon, where the material wet-

tability (Young’s contact angle) is electrostatically enhanced. Krupenkin et al, [5], by

performing electrowetting experiments on structured surfaces, reported that collapse

transitions occur when certain wettability thresholds are surpassed. They also observed

that the reverse transition could not be realized by switching o� the electric actuation.

Further experimental studies reveal that strong external actuations (e.g., thermal heat-

ing) are required in order to induce de-wetting transitions [6]. From a thermodynamic

point of view Cassie-Baxter and Wenzel states correspond to distinct minima of the free
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energy landscape suggesting the existence of at least one intermediate unstable state

which corresponds to a local maximum of the free energy. The di�erence between the

saddle of the free energy landscape and the local minima determine the energy barrier

for a wetting or a de-wetting transition. In this direction, recent publications argue that

reversible wetting transitions can be facilitated by minimizing the energy barriers which

separate the distinct wetting states through proper design of the solid surface roughness

[7, 8]. The majority of theoretical studies, however, provide analytical expressions for

such energy barrier computations based on signi�cant simpli�cations regarding the ac-

tual shape of the droplet and/or the solid surface [9, 10]. For an accurate determination

of the wetting transition energy barriers, the computation of all admissible states on a

heterogeneous surface is deemed necessary. Such a task can be readily performed by our

proposed modeling methodology. In particular, in this Chapter, we employ the proposed

augmented Young-Laplace equation (2.32) in order to simulate equilibrium wetting phe-

nomena of smooth aswell as rough solids wheremultiple and recon�gurable three-phase

contact lines are formed.

4.2 Results and discussion

4.2.1 Flat solid surface

We initially present computational predictions of the proposed augmented Young-

Laplace equation (2.32) for the equilibrium of cylindrical sessile droplets (assuming

translational symmetry along a direction perpendicular to the xz-plane in Fig. 2.10) on

�at and smooth solid surfaces. The e�ect of gravity is neglected in the computations pre-

sented here (Ng = 0 in Eq. 2.32) since the initial droplet radius is considered smaller than

the capillary length. More details about the discretization of Eq. 2.32 and in particular

the Galerkin residuals, R, are presented in the Section B.1 of Appendix B. As described

in the previous Chapter (2), in our formulation the material wettability is determined

by the wetting parameter value, wLS, without imposing any explicit boundary condition

at the three-phase contact lines. The disjoining pressure parameters (see Eq. 2.42) are

chosen here as σ = 3.8 × 10−2, C1 = 8, C2 = 6 and ǫ = 8 × 10−3. The above parameters

result to a disjoining pressure pro�le depicted in Fig. 4.1, for wLS
= 4 × 102. According

to Eq. 2.50 in Chapter 2 which reads: cosθY =
w
LS(C1−C2)σ

(C1−1)(C2−1)
− 1, the above wLS value cor-

responds to a Young contact angle θY ≈ 100o. In order, however, to test the validity of

this equation, we also calculate the Young contact angle value by performing circular

�tting to the liquid-ambient interface, considering that the droplet forms a spherical cap

in the absence of any gravitational �eld. The circular �tting on the droplet pro�le is per-

formed with least squares �tting at a level, beyond which the liquid-solid interactions

are of negligible magnitude, and a constant curvature of the droplet is to be expected.

The Young contact angle is then evaluated analytically from:
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Figure 4.1: Pro�les of the dimensionless disjoining pressure, R0
γLA

pLS (dashed line), and of the
corresponding dimensionless e�ective interface potential (solid line), ω

γLA
, as a function of the

dimensionless liquid-solid distance, δ
R0
, for σ = 3.8 × 10−2, C1 = 8, C2 = 6, ǫ = 8 × 10−3 and

w
LS
= 4 × 102.

θY = acos
(

1 − zmax

R

)

, (4.1)

where R is the radius of �tting circle and zmax the droplet height. The comparison is

presented in Fig. 4.2 where we observe that the results obtained by circular �tting are in

agreement with Eq. 2.50, except for extremely low wetting parameter values (wLS → 0),

which, however, do not correspond to realistic systems.

What is also interesting here is to present the variation of the local mean curvature, C,

along the surface of the droplet. The above is depicted in Fig. 4.3, for a solid wettability

which corresponds to θY = 120o. In Fig. 4.3, we can distinguish three interfacial regions:

(I) The liquid-ambient interface region, where the curvature is constant, consistent

with the circular pro�le,

(II) an intermediate region, in the vicinity of the �ctitious three-phase contact line,

with sharply increasing curvature, and

(III) the liquid-solid interface region where the curvature is equal with the curvature

of the solid surface (zero for �at surfaces).

The conventional Young-Laplace equation treats only the region (I) up to the three-phase

contact line, where the Young boundary condition is applied. On the other hand, the

augmented Young-Laplace equation accounts for the entire droplet surface, including

regions where liquid-solid interactions are active ((II) and (III)). In the inset of Fig. 4.3, we

can also observe the thin layer that separates the liquid and solid phases. In particular,
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Figure 4.2: Young’s contact angle, θY, for a droplet on a �at surface as a function of the w
LS.

The solid line is obtained from the application of Eq. 2.50; the dashed line is produced by circular
�tting to the liquid-ambient interface - Embedded �gure: Droplet pro�le and circular �tting at
the interface.

as described in Chapter 2, the repulsive interactions between the liquid and the solid

phases induce a minimum distance, δmin, between the droplet and the solid boundary.

When δ = δmin, then the disjoining pressure, pLS = 0 and Eq. 2.42 yields:

γLA

R0
w
LS


(

σ

δmin/R0 + ǫ

)C1

−
(

σ

δmin/R0 + ǫ

)C2 = 0 ⇒

δmin

R0
= σ − ǫ,

(4.2)

where in this case, δmin
R0
= 3 × 10−2. We note that for a droplet with e.g., cross-sectional

area, Adroplet = 5mm2, the characteristic length is R0 =
(

Adroplet/π
)1/2

= 1.262mm and

the minimum liquid-solid distance is δmin = 3.7 × 10−2 mm.

It is also interesting here to examine the small region where the local mean curvature of

the droplet pro�le reaches its maximum value ((II) in Fig. 4.3). At this region, the droplet

pro�le essentially bends, thus from the augmented YL equation (2.32) yields that the

dijoining pressure, pLS, reaches its absoluteminimumvalue (since the reference pressure,

K , is constant along the whole interface). The distance, δ, at this point will be denoted

as δTPL, and can be calculated as:

dpLS

dδTPL
= 0 ⇒ δTPL

R0
=

2
√
3σ

3
− ǫ . (4.3)

This is a crucial point since it separates the region where liquid-solid interactions are

68



Design of micro- and nano-structured surfaces with tunable wettability

δmin

Figure 4.3: Dimensionless local mean curvature, Ĉ = C R0, variation along the dimensionless
arc-length, ŝ = s/R0, of the droplet surface (θY = 120o).

strong (for δ 6 δTPL) from the region where the disjoining pressure fades and the local

mean curvature is constant (δ > δTPL) (see Fig. 4.3). Thus, since the droplet surface

is treated uniformly in our formulation, δTPL can be used as an arti�cial limit in order

to to distinguish the liquid-ambient from the liquid-solid interface. This is important

in cases where the calculation the liquid-solid and the liquid-ambient surface areas is

required (see e.g. Section 4.2.5). We note that δTPL equals 4.5 × 10−2 mm, for a droplet

with cross-sectional area Adroplet = 5mm2.

In the next Section we perform simulations on geometrically structured substrates. Such

solid surface cases are more interesting, in terms of potential applications, since they can

sustain meta-stable wetting states (Cassie-Baxter, Wenzel and intermediate states) with

di�erent adhesion behaviors, as also experimental observed by Lafuma and Quéré [3].

4.2.2 Single-stripe structured surfaces

Our �rst step here is to test the validity of the augmented Young-Laplace equation

by comparing its predictions against the ones obtained from the conventional Young-

Laplace equation (2.20), for a single-stripe structured solid surface (see Fig. 4.4). This is

a quite simple solid surface geometry that, however, can sustain meta-stable solutions,

which can also be predicted by the conventional Young-Laplace equation, as shown in

[11]. Such a task requires a throughout exploration of the solution space by using pa-

rameter continuation methods. On of the most common methods is the pseudo arc-

length continuation technique [12], which enables the computation of stable and unsta-

ble steady state solutions (see Section B.2 of the Appendix B). The stability of the com-
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Figure 4.4: Cylindrical droplet (by assuming translational symmetry along the direction per-
pendicular to the xz-plane) on a single-stripe structured solid surface (p1 = 0.6, p2 = 10, p3 = 5 in
Eq. 4.4).

puted solutions is quanti�ed by solving the eigenvalue problem of the Jacobian matrix

(the matrix of all �rst-order partial derivatives of the residual vector, R). One solution

is stable when the real part of all eigenvalues of the Jacobian matrix is negative; when

at least one eigenvalue has a positive real part, the solution is characterized as unstable

[13].

In this simpli�ed single-structured case, the dimensionless height of the geometry is

given by:

ẑ =
1 − erf [( x̂ − p1)p2]

p3
, (4.4)

where, erf, denotes the error function. The parameters p1, p2 and p3 determine the ge-

ometric features of the stripe: p1 regulates the width of the stripe at its top surface,

p2 controls the curvature of the lateral walls and p3 determines the maximum height.

The bifurcation diagram in Fig. 4.5 shows the dependence of the dimensionless droplet

height on the material wettability, θY. For the augmented Young-Laplace equation the

bifurcation parameter is the wetting parameter, wLS, which can be correlated with the

Young’s contact angle, θY, through Equation 2.50. One can observe that both formu-

lations predict, with exceptional agreement, an S-shaped curve with unstable wetting

states (dashed lines) linking the branches of stable wetting states (solid lines) at the two

turning points ((A) and (C)). This bifurcation diagram shows that transitions -induced by

wettability modi�cation- between suspended (upper stable branch) and collapsed states

(lower stable branch) are hysteretic. Starting with a hydrophobic material (point (D))

and gradually enhancing material wettability (e.g., through electrowetting), then a drop

collapse occurs at turning point (A) (θY ≈ 79o) i.e., the drop collapses following the route

(D)→ (A)→ (B).
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Figure 4.5: Dependence of the dimensionless droplet height, zmax/R0, on the material wetta-
bility, θY, for a single-striped solid surface structure (p1 = 0.6, p2 = 10, p3 = 5). The thick line
corresponds to the results obtained from the augmented Young-Laplace equation, whereas the
thin line corresponds to the conventional Young-Laplace equation results.

In a reverse experiment, where wettability is decreased, the droplet undergoes a de-

wetting transition at turning point (C). For this particular geometry, this lifting tran-

sition would require lowering of wettability of as much as θY ≈ 130o. This suggests

that de-wetting through wettability modi�cation cannot be realized, considering that

common hydrophobic materials do not exhibit θY > 120o (e.g. for Te�on® AF 1600,

θY = 120o). In experimental practice the range of tunable wettability is limited; e.g.,

when wettability is electrostatically enhanced (electrowetting), θY has an upper limit set

by the material chemistry [14] and a lower one due to the contact angle saturation phe-

nomenon [15]. The physical origins of the contact angle saturation, where a limiting

contact angle value is achieved (usually 60o for a water droplet in air ambient) even at

very large applied voltages, has been elucidated for some cases where electric charge is

trapped in the solid substrate [16, 17]. A universal theory, however, must incorporate

a variety of other synergistic phenomena, like ambient phase ionization [18] and liquid

instabilities resulting in ejection of micro-droplets [19].

Next, we validate the augmented Young-Laplace equation, for the case of a droplet rest-

ing on amore complex substrate, against the conventional formulation (see Section 2.2.2)

and the exceptionally di�erent mesoscopic lattice-Boltzmannmethod which is described

in Section 2.2.3).
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Figure 4.6: Dependence of the apparent contact angle of the droplet on the material wettability,
θY, for a wave-like stripe patterned surface (p4 = 4, p5 = 3 in Eq. 4.5). The thick line corresponds
to the results obtained from the augmented Young-Laplace equation, whereas the thin line cor-
responds to the conventional Young-Laplace equation results.

4.2.3 Wave-like patterned surfaces

4.2.3.a Validation against the conventional Young-Laplace

The augmented Young-Laplace formulation can also be easily applied for a more com-

plex, multi-striped solid surface. Here, we further test the validity of our method by

comparing its results against the ones obtained from conventional Young-Laplace equa-

tion. In this case, the solid surface is structured with wave-like stripes, the height of

which is described by:

ẑ =

[
cos(p4 x̂)

p5

]2
, (4.5)

where the parameters p4 and p5 determine the geometric characteristics of the solid sur-

face: p4 controls the wavelength period and p5 regulates the maximum height. We note

that for a droplet with e.g., cross-sectional area: Adroplet = 5mm2, the maximum height

of the stripes corresponds to 0.389mm and the wave-length period equals 1.325mm.

In Fig. 4.6 we present the dependence of the apparent contact angle of the droplet, θa,

as a function of the material wettability, θY, where θa is calculated by �tting a circle

to the liquid-ambient interface above the solid surface asperities. We observe that both

the augmented and the conventional Young-Laplace equations can successfully capture

the non-trivial behavior of the droplet on this wave-like stripe patterned surface. The

reason that the conventional Young-Laplace equation is still valid here is that the sur-

face roughness is relatively small (no air inclusions are formed below the droplet). In a
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Figure 4.7: Dependence of the apparent contact angle of the droplet on the material wettability,
θY, for a patterned surface (p4 = 3, p5 = 1.8 in Eq. 4.5). The thick line corresponds to the results
obtained from the augmented Young-Laplace equation, whereas the thin line corresponds to
lattice-Boltzmann based computations.

more complex solid substrate case (such as a solid with increased roughness presented

in the Section 4.2.4), however, the utilization of the conventional Young-Laplace equa-

tion would be unfeasible. Such a complex solid substrate requires the application of

the Young’s contact angle boundary condition to an unknown number of three-phase

contact lines.

4.2.3.b Validation against mesoscopic lattice-Boltzmann

The predictions of the proposed methodology are also compared with the ones obtained

from mesoscopic lattice-Boltzmann simulations (see also Section 2.2.3). A detailed de-

scription of the employed lattice-Boltzmann model can be found in [20]. In particular,

the employed model accounts for non-trivial microscopic e�ects (e.g. disjoining pres-

sure, partial wetting) through the application of liquid-solid pseudo-potential interac-

tions. The liquid-solid interactions include an attractive part modeling van der Waals

forces, and a repulsive component associated with double-layer interactions and in di-

rect analogy with DLVO theory [21]. Fluid-�uid interactions are de�ned to ensure con-

stant compressibility in both phases, with a density ratio of 10 : 1 and a compressibility

ratio of 15.625 : 1 when the system reaches phase equilibrium.

The dependence of the apparent contact angle, θa, on the material wettability, θY, is

depicted in Fig. 4.7 by using both approaches: the continuum-level augmented Young-

Laplace and the mesoscopic lattice-Boltzmann model. The droplet interface, obtained
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from the lattice-Boltzmann model, is de�ned by the density contour corresponding to

ρinterface = (ρ+ ρambient)/2, where ρambient is the density of the ambient bulk phase. Even

though that the Young-Laplace and the lattice-Boltzmann are conceptually di�erent de-

scriptions of wetting phenomena (continuum- level and mesoscopic), they both capture,

with satisfactory agreement, the non-trivial macroscopic behavior of a droplet wetting

a striped structure. The observed discrepancies are attributed to the di�use liquid-solid

and liquid-ambient interfaces modeled in the lattice-Boltzmann description, as well as

the di�erent formulation of the liquid-solid interactions.

As a summary, we report that both approaches can successfully capture the droplet

behavior, however, the augmented Young-Laplace description deals with the solution

of a one-dimensional problem, as opposed to the two dimensional lattice-Boltzmann

formulation. The computational bene�ts of the proposed continuum-level analysis are

signi�cant; indicatively we report that a Newton–Raphson iteration utilizing lattice-

Boltzmann runs requires approximately 10 minutes (∼ 6 × 104 lattice-Boltzmann time

steps plus the required time for the initialization of each lattice-Boltzmann run), whereas

the augmented Young-Laplacemodel requires about 1 second, when all computations are

performed on the same CPU (Intel® CoreTM i7 @3.07 GHz). This computational advan-

tage of the augmented Young-Laplace equation is obtained without implementing any

adaptivemesh technique for automatic re�nement in regions of high interface curvature,

which highlights the e�ciency of our proposed method.

4.2.4 Multi-stripe patterned surfaces

The proposed formulation is now used to compute the admissible equilibrium wetting

states on a stripe-patterned solid surface of increased roughness (see Fig. 4.8). De�nitely,

the conventional Young-Laplace formulation cannot be used here since the cardinality

of the formed contact lines (where the Young contact angle boundary condition has to

be applied) is unknown. In this example, the topography of the solid surface is given by

the following relation:

ẑ = 1 − erf [p6 cos(p7 x̂)]

p8
. (4.6)

The geometric features of the solid surface are de�ned by the parameters p6, p7, and

p8, which determine the stripe edge sharpness, the wavelength period and the maxi-

mum height of the stripes, respectively. The parameter values are given in the caption

of Fig. 4.8. The unit cell of this solid surface structure is a stripe (see Eq. 4.4) with p1 =

4.31×10-2, p2 = 43.88, p3 = 21.16. In the case of a droplet with cross-sectional area: Adroplet

= 5mm2, the maximum height of the stripes equals 0.125mm and the wavelength pe-

riod is 0.121mm. The roughness factor (ratio of the actual over the apparent surface

area), r f , is 1.52 as opposed to 1.19 for the solid surface presented in the previous Sec-

tion (4.2.3.b). It is worth mentioning that the application of bifurcation analysis utilizing

lattice-Boltzmann simulations, for this case study, requires a substantial amount of com-
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Figure 4.8: Cylindrical droplet pro�le (by assuming translational symmetry along the direction
perpendicular to the xz-plane) on a stripe-patterned surface (p6 = 1.3, p7 = 33, p8 = 20 in Eq. 4.6).

putational time and resources. However, the solution of the augmented Young-Laplace

equation sustains its computational needs at very low levels.

In Fig. 4.9 we present the dependence of the apparent contact angle, θa, on the material

wettability, quanti�ed by the Young contact angle, θY. The diagram exhibits multiple

S-shaped curves, which are directly associated with the number of stripes of the solid

surface. Multiple wetting steady states are computed (i.e. satisfy the governing equa-

tions of equilibrium) within large θY value intervals, e.g. 9 equilibrium states for a solid

material with θY = 104o. Wetting or de-wetting transitions induced by material wettabil-

ity modi�cation set on at the turning point values of θY. One can observe that de-wetting

transitions for this particular solid surface would demand a material wettability of θY >

120o (θY value at the lower right side turning point) which is not feasible with the com-

mon hydrophobic materials.

Each stable branch (solid line) extends over a �nite interval of θY values, the maximum

of which corresponds to droplets suspended on the surface protrusions trapping air

beneath it (see local magni�cation of the droplet shape corresponding to state (T2) at

Fig. 4.10); the lower end of this interval corresponds to wetting states being immersed in

the asperities of the surface (see local magni�cation of the droplet shape corresponding

to state (T1) at Fig. 4.10) retaining the number of wetted stripes. It is observed that the

material wettability modi�cation, along a stable branch, does not result in signi�cant

change of the apparent wettability. Indicatively, the di�erence in the apparent contact

angle (∆θa) between states (T2) and (T1) is 9o, whereas the material wettability modi�-

cation required is far greater (∆θY (T2→ T1) = 69o). This change, along the same stable

branch, is not usually observed in experiments because the apparent contact angle vari-
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Figure 4.9: Dependence of the apparent contact angle, θa, on the material wettability, θY, for a
patterned solid surface (p6 = 1.3, p7 = 33, p8 = 20 in Eq. 4.6).

Figure 4.10: Local magni�cation of the droplet shapes corresponding to points (T1) and (T2) of
Figure 4.9.

ation is small.

On the other hand, transitions between co-existing states, wetting a di�erent number

of stripes (e.g. from point (3) to (7) at Fig. 4.9) lead to substantial apparent contact an-

gle change (∆θa (3→ 7) = 23o) without modifying the wettability properties (∆θY (3→
7) = 0o). Thereafter, the experimentally observed signi�cant apparent wettability mod-

i�cation (e.g. at a Cassie-Baxter to Wenzel transition) is attributed to the variation in

the number of stripes covered by the liquid, which can be triggered, e.g., by mechanical

actuation [22].

In Fig. 4.11 we illustrate nine co-existing droplet pro�les (�ve stable and four unstable)

for a hydrophobic material with θY = 104o covering a large interval of apparent wetting

behaviour types, i.e. from hydrophilic to super-hydrophobic. In particular, the apparent

contact angle, θa, of the droplet ranges from 80o up to 125o. In experimental practice, a

super-hydrophobic state is attained when the droplet is gently deposited on the protru-

sions of the surface, whereas impaled states require forced droplet deposition (droplet

impacts the surface).
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Figure 4.11: Droplet pro�les corresponding to points (1) - (9) in Fig. 4.9. Pro�les drawn with
thick line correspond to stable wetting states, whereas thosewith thin line correspond to unstable
ones. All states computed correspond to material wettability, θY = 104o.

From a thermodynamic point of view, a wetting transition, e.g. between states (1) and

(3) in Fig. 4.9, requires a minimum amount of energy (energy barrier), set by an inter-

mediate unstable state (2) (see Fig. 4.12). The computation of energy barriers, separating

meta-stable wetting states, has been performed by Savoy et al. [23], by using molecular

dynamics, in, however, non-realistic systems (nano-droplets). In addition, continuum-

level computations of wetting transitions have only been presented, up to now, on a unit

cell of the structured surface [24]. Such computations disregard the pinning/ de-pining

e�ect of the droplet contact lines, when more stripes are wetted, as it actually happens

between states (1) and (3) in Fig. 4.9. According to our knowledge, this is the �rst time

that energy barrier computations are performed by using a continuum-level methodol-

ogy and accounting for the whole droplet surface. These computations will be presented

in the following Section.

4.2.5 Energy barrier computations

The computation of wetting or de-wetting energy barriers separating co-existing stable

wetting states for a certain material wettability can be computed as the di�erence in

surface free energy, given in Eq. 2.46, between each state and the unstable intermediate

one. Thus, by substituting Young’s equation, γSA = γLS+γLA cosθY (Eq. 2.6), into Eq. 2.46,
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Figure 4.12: Schematic of a segment of the surface free energy pro�le for a textured solid surface
and constant Young’s contact angle, θY.

the free surface energy reads:

E = γLA (ALA − cosθY ALS) + ωmin ALS + γSA AS, (4.7)

where, AS = ALS + ASA is the total, constant, area covered by the solid surface. If we

denote with Esu, Eco and Eun the surface free energy of the stable suspended (su), stable

collapsed (co) and unstable (un) - intermediate wetting states (Fig. 4.12), which can be

admitted on a textured solid surface with a constant Young’s contact angle, θY, then the

wetting (or the suspended to collapsed, su→ co) energy barrier can be computed from:

Esu→co = Eun − Esu ⇒
Esu→co

γLA
= (ALA,un − ALS,su) − cosθY(ALS,un − ALS,su)

+

ωmin

γLA

(

ALS,un − ALS,su
)

.

(4.8)

The surface area of the interfaces in Eq. 4.8 can be calculated as: A = SL, where S is the

corresponding arc-length of the interface (SLA and SLS) and L expresses the depth along

the direction perpendicular to the xz-plane; because of the translational symmetry of

the droplet, we set L = R0. The energy barrier for a de-wetting transition, Eco→su, is

computed similarly.

In Fig. 4.13 we present the energy barriers (using Eq. 4.8) for wetting and de-wetting

transitions on a hydrophobic material with θY = 104o. The admissible stable states,
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Figure 4.13: Energy barriers computed for the wetting and de-wetting transitions between the
stable wetting states corresponding to points (1), (3), (5), (7), (9) of Fig. 4.9.

between which transitions can occur, are shown in Fig. 8: (1) → (3) → (5) → (7) →
(9) for wetting, and (9) → (7) → (5) → (3) → (1) for de-wetting. It is found that the

energy barriers increase as the number of the wetted stripes increases. Notice that

E(1)→(3) < E(3)→(5) < E(5)→(7) < E(7)→(9) . On the contrary, for de-wetting transitions

the energy barriers increase as the number of the wetted stripes decreases. It is worth

mentioning that the presented methodology can be straightforwardly paired with opti-

mization algorithms in order to design surface structures that resist impalement transi-

tions or facilitate switching between certain wetting states.

4.3 Summary and conclusions

In this Chapter we initially validated the augmented YL equation against the conven-

tional form for droplets equilibrating solid surfaces with simple topography. Moreover,

a comparison with the conceptually di�erent lattice-Boltzmann approach showed sat-

isfactory agreement between the two di�erent methodologies. We then demonstrated

the e�ciency of the proposed methodology to compute all admissible wetting states on

a more complex, stripe-patterned solid surface. In particular, by performing paramet-

ric continuation methods, we computed multiple equilibrium wetting states and studied

their relative stability. Finally, the calculation of the free energy di�erence of the meta-

stable wetting states enabled the computation of theminimum energy required to induce

certain wetting transitions (energy barrier).

To our knowledge, this is the �rst time that a one-dimensional continuum-level model is

able to predict Cassie-Baxter and Wenzel wetting states by simulating the entire droplet

pro�le and not a unit cell. In addition to the results presented here, concerning cases

with translational symmetry, we also demonstrate similar computations for axisymmet-
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ric droplets in Chapter B.3 of the Appendix B. We note that our methodology can also be

extended beyond one spatial dimension, preserving its computational merits, however,

in this case, further investigation is required in order to properly parameterize the two-

dimensional droplet surface. Such an attempt has been recently performed by Pashos

et al. [25], by using the augmented YL methodology proposed here, simulating, how-

ever, only the bottom region and not the entire two-dimensional droplet surface. We

also note that �ne-scale simulators (e.g. lattice-Boltzmann or molecular dynamics) uti-

lized for the same task required substantial computational resources, especially when

real millimeter-sized droplets are studied, as also discussed in Section 2.2.3 of Chapter 2.

The study of the dependence of the computed energy barriers on various geometric

features of a rough surface would strongly impact the design of surfaces with address-

able wetting properties in terms of high resistance in impalement transitions or e�cient

switching between wetting states. The wetting properties of a solid material can be

modi�ed with a variety of techniques (electric, thermal, pressure). Among the di�erent

choices, electrowetting [5] (electrostatical enhancement of solid wettability) combines a

lot of advantages (rapid switchability, reliability) and is commonly used in recent appli-

cations. The equilibrium droplet shape on a structure solid surface, under the e�ect of

electric �eld is studied in the next Chapter (5).
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CHAPTER5
Electrowetting on structured dielectric

surfaces

In this chapter we employ the previously proposed augmented Young-Laplace equation, ac-

counting also for an electric stress term along the droplet surface, in order to simulate the

electrowetting phenomenon (i.e. the electrostatical enhancement of wetting by applying

a voltage). Without making any simpli�cation concerning the droplet shape or the �eld

distribution, our formulation goes beyond the limitations of the classic theoretical models

(Lippmann equation), while it is relieved from the implementation of the Young contact

angle boundary condition. This way, electric �eld singularities (arising in the conventional

modeling) are bypassed, allowing for accurate and e�cient simulations, in terms of com-

putational time and recourses. We initially examine the e�ect of the electric �eld strength

(controlled by the voltage magnitude as well as the solid dielectric thickness) on both macro-

scopic (apparent contact angle) and microscopic (Young’s contact angle) droplet shape char-

acteristics. Next, by applying our methodology to patterned dielectrics we compute all ad-

missible droplet equilibrium droplet pro�les, including Cassie-Baxter, Wenzel and mixed

wetting states.

5.1 Theory and modeling of electrowetting phenomenon

As previously discussed, miniaturization of devices renders electrowetting (EW) as the

most convenient tool for manipulating droplets in lab-on-a-chip systems [26], opto�u-

idic devices [27, 28] and even in more exotic systems such as energy harvesters using

reverse electrowetting [29]. In a typical electrowetting-on-dielectric (EWOD) setup (see

Fig. 5.1), a droplet of a conductive liquid (usually an aqueous solution) is deposited on a

dielectric layer coating a �at base electrode. We note that the ambient medium must be

an insulating �uid. By applying a voltage, V , between the base electrode and the con-

ductive droplet, electric charge accumulates in the liquid-solid interface. The resulting

decrease in the corresponding interfacial energy is observed as a decrease of the appar-

ent contact angle i.e., as an enhancement of the wettability of the solid by the liquid [30,

15, 31].
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Figure 5.1: Schematic of the electrowetting-on-dielectric (EWOD) setup illustrating a drop at
zero voltage (solid line) and its new pro�le when voltage is applied (dashed line).

A simple mathematical description of the apparent contact angle, θa, dependence on the

applied voltage, V , is provided by the so-called Lippmann equation [31]:

cosθa = cosθY +
ǫ0 ǫr V 2

2 d γLA
⇒ cosθa = cosθY + η, (5.1)

where d is the thickness of the solid dielectric, ǫ0 is the vacuum permittivity (ǫ0 =

8.854 × 10−12 F/m) and ǫr is the dielectric constant of the solid. The dimensionless EW

number, η, in Eq. 5.1 expresses the relative strength of the electrostatic over the surface

tension forces in the system, assuming a uniform electric �eld at the liquid-solid interface

(ideal parallel plate capacitor). Despite its simplicity, the Lippmann equation provides

accurate predictions in many EW con�gurations [32, 18], for low applied voltages and

�at dielectrics; however, when higher voltages are applied the Lippmann equation fails

to accurately predict the apparent contact angle since it neglects the electric fringe �elds

close to the three phase contact line (TPL), where the three di�erent phasesmeet. In addi-

tion, the Lippmann equation predicts a steepmonotonic decrease of the apparent contact

angle (up to complete wetting) as the voltage increases. This contradicts the experimen-

tally observed contact angle saturation phenomenon, where the contact angle variation

slows down at high voltages, before reaching total wetting [30, 15]. The physical origins

of contact angle saturation have not yet been completely explained in all cases, how-

ever, its onset is closely connected with the electric �eld distribution close to the TPL

[16]. Furthermore, Lippmann equation does not account for the solid structure e�ect on

the droplet shape, which would by particularly important in electrowetting applications

on superhydrophobic [6] and generally heterogeneous solid surfaces. Thus, for a more

accurate description of the EW phenomenon, accurate modeling approaches, without

making any assumptions regarding the droplet shape, are required. Such an approach

has been realized by solving the equations of capillary electrohydrostatics [33, 17]. In
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particular, the droplet shape is given by the conventional Young-Laplace equation (2.20),

augmented with the electric stress term accounting for the electric forces exerted on the

droplet surface. If such a modeling is applied to structured surfaces, however, it would

su�er from the previous discussed vulnerability of imposing the Young contact angle

boundary condition to an unknown in number three-phase contact lines. In addition,

the capillary electrohydrostatics equations are also limited from electric �eld singulari-

ties arising at the sharp wedge liquid shape, assumed at a three-phase contact line. The

above limitations can be overcome by using the previously proposed augmented Young-

Laplace formulation while incorporating the e�ect of the electric �eld on the equilibrium

droplet shape.

In particular, in this Chapter we utilize the augmented YL formulation in order to re-

formulate the capillary electrohydrostatics equations and e�ciently model, for a �rst

time, the electrowetting phenomenon on textured solid dielectric surfaces. As previ-

ously discussed, our formulation does not require any pinning boundary condition, thus

enabling the computation of wetting states with multiple and recon�gurable contact

lines. In addition, the emerging electrohydrostatics equations will not su�er from the

electric �eld singularities that arise from the sharp wedge shape of the liquid at the TPL.

The droplet pro�le solutions obtained from the augmented YL formulation do no longer

form wedges, allowing for a more accurate computation of the curvature of the liquid

surface and of the �eld distribution close to the TPL. The reformulated (augmented)

electrohydrostatics equations are presented in the following Section.

5.1.1 Augmented electrohydrostatics equations

Here, the electric �eld e�ect is incorporated in the augmented Young-Laplace equation

as an electric stress term [34]. In particular, starting from Eq. 2.32, the dimensionless

augmented Young-Laplace equation accounting for the electric stress term (and neglect-

ing the e�ect of gravity) reads:

R0

γLA
pLS + C = K +

NeÊ2

2
, (5.2)

where Ne =
ǫ0V

2

γLAR0
is the electric Bond number and Ê the dimensionless electric �eld

strength (Ê = E R0
V

). The latter is calculated along the droplet surface by solving the

equations of electrostatics (Gauss law for electricity) for both the ambient phase and the

dielectric material (see Fig. 5.2.):

∇ · (ǫr∇û) = 0, (5.3)

where û is the dimensionless electric potential (û = u
V
), and Ê ≡‖ ∇û ‖. The permittivity,

ǫr , is denoted by ǫ s for the ambient phase (insulatingmedium) and ǫd for the solid dielec-

tric, respectively. Eq. 5.3 is solved accounting for the following dimensionless boundary
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V0

Figure 5.2: Electrowetting of a cylindrical drop on a stripe patterned solid dielectric. The droplet
shape is obtained by solving the augmented Young-Laplace Equation (5.2).

conditions:
u

V
= 1 at (x, z) ∈

√

x2 + z2 = r (s), (5.4)

u

V
= 0 at z = 0, (5.5)

R0

V

du

dx
= 0 at x = 0, (5.6)

1

R0 V
∇u · nb = 0 at (x, z) ∈

√

x2 + z2 = Rmax, (5.7)

where nb is the unit vector normal to the boundary of the computational domain,√
x2 + z2 = Rmax (see Fig. 5.2). Here we assume that the droplet is perfectly conduc-

tive; however, in the case of a dielectric liquid or a liquid with �nite conductivity, the

equations of electrostatics should also be solved in the interior of the droplet, and the

electric stresses in the Eq. 5.2 should also bemodi�ed in order to account for the non-zero

electric �eld inside the droplet.

In our computations, we study droplets with translational symmetry along the direction

perpendicular to the xz-plane (cylindrical droplets). In order to capture both the liquid-

solid and the liquid-ambient interface, the droplet pro�le, which is de�ned in cylindrical
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coordinates (r , θ), is parameterized in terms of the arc-length, s, of the e�ectively one-

dimensional droplet surface (see Fig. 5.2). More details about the arc-length parameteri-

zation are presented in Section 2.2.4.a of Chapter 2. The sought droplet shape a�ects the

electric �eld distribution, u, and vice versa constituting a coupled non-linear and free

boundary problem, which can be solved iteratively as presented in Section B.4 of the

Appendix B.

5.2 Results and discussion

5.2.1 Apparent contact angle calculation

In this Section, we present computations of the dependence of the apparent contact an-

gle, θa, on the applied voltage, V , for a cylindrical aqueous droplet in silicone oil ambient

(AK 5, Wacker). Such insulating oils are commonly used as an ambient phase in experi-

mental practice [35, 36]. For the selected ambient phase, the Young contact angle of the

aqueous droplet on a Te�on® (PTFE) [37] �at surface is approximately 170o (correspond-

ing to a wetting parameter, wLS = 84, from Eq. 2.50). The disjoining pressure parameters,

used here, are: σ = 9 × 10−3 , C1 = 12, C2 = 10, ǫ = 8 × 10−3. The selected characteristic
length, R0 = 0.62mm, corresponds to a droplet with cross-sectional area Adroplet = πR0

2

= 1.21mm2. The same con�guration is used for the derivation of all results presented in

this Chapter.

The electric stresses, developed along the droplet surface in an electrowetting simula-

tion, result to an additional contribution to the surface free energy. This contribution

can be included in a modi�ed e�ective interface potential, ω∗. In particular, ω∗ must

incorporate both the molecular interactions (disjoining pressure, pLS) and the electric

�eld e�ect (expressed as an electrostatic pressure, pel =
ǫ0 V 2 Ê2

2 R2
0

[38]):

pLS − ǫ0 V 2 Ê2

2 R0
=

dω∗

dδ
. (5.8)

In the above, the electric �eld strength, E, is not constant but is evaluated along the

droplet surface, expressed as a function of the distance, δ, i.e., E = E(δ). Furthermore,

in an analogy to Eq. 2.48, the absolute minimum of ω∗ which appears at the liquid-solid

interface (for δ = δmin, where δmin is the minimum value of the liquid-solid distance)

can be expressed as:

ω∗min = γSA + γLA − γ
e�
LS , (5.9)

where γe�LS is an e�ective liquid-solid interfacial tension (incorporating electrostatic

forces) [38], with γe�LS < γLS. By using the above equation, we can derive a Frumkin-

Derjaguin type theoretical formula (similar to Eq. 2.49) for the prediction of the apparent

contact angle of the droplet in the presence of a disjoining pressure and electric �eld.

85



Chapter 5. Electrowetting on structured dielectric surfaces

Figure 5.3: Apparent contact angle dependence on the applied voltage; θa is calculated following
the Frumkin-Derjaguin approach (Eq. 5.11), as well as by circular �tting on the liquid-ambient
interface (ǫd = 2.1 (PTFE), ǫ s = 2.58 (AK 5, Wacker), θY = 170o, γLA = 0.038N/m, d = 10 µm).

In particular, by using a modi�ed Young’s equation (2.6), where γLS is replaced with the

e�ective γe�LS and the Young contact angle, θY, with the apparent one, θa:

γe�LS + γLA cosθa = γSA, (5.10)

and by combining Eq. 5.9 with Eq. 5.10, �nally yields:

cosθa =
ω∗min

γLA
− 1. (5.11)

In the above, the modi�ed e�ective interface potential is computed from the integral:

ω∗ =

∫ δ

δmin

p
LS(δ′) − ǫ0 V 2 Ê2(δ′)

2 R2
0

 dδ
′. (5.12)

We can observe that in order to compute the apparent contact angle from Eq. 5.11, apart

from the exact droplet shape, we also need the electric �eld distribution along the droplet

surface, which de�nitely is not convenient for a quick calculation of θa (it requires the

solution of the augmented electrohydrostatics equations described in Section 5.1.1). We

note, however, that the above relation can be used to validate our computations, by com-

paring its predictions against the θa derived from circular �tting. In particular, in Fig. 5.3,

we show the dependence of the apparent contact angle value on the applied voltage, for

a PTFE substrate with thickness d = 10 µm, as computed from the Frumkin-Derjaguin

type formula (Eq. 5.11) and by performing a circular �tting on the computed liquid-

ambient (here water-oil) interface (more details about the circular �tting are presented

in Section 4.2.1). We observe that the two lines are optically indistinguishable, which

strengthens the validity of our computations. We note that similar �ndings also hold for

di�erent dielectric thicknesses. Eq. 5.11 could also be used by assuming simpli�cations

regarding the electric �eld distribution (e.g. neglecting the e�ect of fringe �elds around

the contact line), in order to make quick estimations of the apparent contact angle. The
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Figure 5.4: Dependence of the apparent contact angle on the applied voltage, V , for d = 10 µm,
50 µm and 150 µm PTFE, calculated from the conventional YL, the augmented YL (Eq. 5.2) and
the Lippmann equation (5.1).

accuracy of such assumption, however, would be low, leading to erroneous estimations

of θa. Next, we further validate our proposed methodology by comparing the predictions

of the augmented YL equation, against those from the conventional one, which explicitly

imposes the Young contact angle boundary condition. The latter model is analytically

described in the work of Drygiannakis et al. [17].

5.2.2 Validation against the conventional Young-Laplace

The results obtained from the electro-capillary augmented YL equation (5.2) are com-

pared with those obtained from the conventional electrohydrostatics formulation (de-

scribed in detail in [17]) for �at solid dielectrics (PTFE foils) of variable thickness (d

= 10 µm, 50 µm and 150 µm). The apparent contact angle presented in Fig. 5.4 is ob-

tained by circular �tting at the liquid-ambient interface. The comparison between the

results obtained from the two di�erent formulations shows excellent agreement for all

dielectric thicknesses tested. However, the predicted contact angle values obtained by

the Lippmann equation are systematically smaller. This deviation is expected, and has

been reported in the literature [33], since the Lippmann equation accounts only for the

electrostatic energy stored within the dielectric layer between the droplet and the �at
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Figure 5.5: Electric potential distribution in the vicinity of the TPL computed from the solution
of (a) the augmented and (b) the conventional YL equation. The Young contact angle boundary
condition in the conventional formulation creates a wedge-shaped geometry at the TPL. The
equipotential lines are depicted with light yellow (d = 10 µm PTFE, η = 0.67, V = 165 Volt).

electrode, neglecting the corresponding energy of the ambient medium. Indeed, if we

neglect the surrounding medium permittivity (i.e., assuming ǫ s = 1) our computations

agree with the Lippmann equation (see Fig. 5.4).

In Fig. 5.5, the droplet pro�les and the electric potential distribution are shown at the

TPL region. In the case of the conventional YL equation, the Young contact angle is

explicitly imposed as a boundary condition assuming a wedge-shaped liquid-ambient

interface pro�le at the TPL. This geometric assumption is not necessary when solving

the augmented YL equation. In this case, and in order to implicitly obtain the Young

contact angle, we perform high order (sixth) polynomial �tting to the droplet pro�le

close to the TPL. The Young contact angle emerges within the range of action of the mi-

croscale interactions (disjoining pressure) (see Fig. 5.5(c)). The augmented YL equation

governs also the liquid-solid interface, de�ned as the part of the droplet interface, which

is at a minimum distance, δmin, from the solid boundary. This minimum distance, δmin,

corresponds to the thickness of the liquid-solid di�use interface. Indicatively, when the

characteristic length is R0 = 0.62mm, δmin= 3.25 × 10-4mm.

It should be also noted that the proposed augmented YL formulation can provide a more

detailed picture of the droplet surface shape and of the �eld distribution close to the

TPL, compared to the conventional formulation; in the latter case, the �eld strength the-

oretically reaches an in�nite value due to the singularity induced by the wedge-shaped

droplet pro�le at the TPL.

Theoretical studies of Buehrle et al. [39], based on the local balancing of electrostatic

and capillary forces at the TPL, suggest that the Young contact angle is independent of

the applied voltage. Experimental studies [35], however, show a variation of the Young

contact angle with the applied voltage, especially when the thickness of the solid dielec-

tric is small (6 10 µm). Below, we examine whether a change of the dielectric thickness
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Figure 5.6: Dimensionless local mean curvature (C R0) and disjoining pressure (R0 pLS/γLA) dis-
tribution along the droplet surface (d = 10 µm PTFE, η = 0.5, V = 319.7 Volt).

has an e�ect on the Young contact angle value, which in the augmented YL formulation

arises implicitly from the combined action of microscale and capillary forces.

5.2.3 In�uence of the dielectric thickness on Young’s contact angle

In this section we investigate a possible link between the dielectric thickness and the

Young contact angle value as well as the liquid surface curvature in the vicinity of the

TPL. Initially, in Fig. 5.6, we present the liquid surface curvature and the disjoining pres-

sure distribution along the droplet interface pro�le for electrowetting number, η = 0.5.

For a computed droplet equilibrium pro�le, the curvature distribution is evaluated from

Eq. 2.40. In Fig. 5.6, we distinguish three interfacial regions corresponding to:

(I) the liquid-ambient interface where the curvature is constant and the disjoining

pressure is virtually absent,

(II) the region close to the TPLwhere the curvature increases sharply up to amaximum

�nite value while the dimensionless disjoining pressure has reached a minimum

value, and

(III) the liquid-solid interface where the curvature equals to that of the solid surface

(zero for a �at dielectric) and the dimensionless disjoining pressure has a virtually
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constant value (R0 pLS γLA = K + Ne Ê2/2, from Eq. 5.2).

Overall, the droplet shape is mainly determined by the capillary forces along the liquid-

ambient interface whereas the microscale forces (disjoining pressure) prevail along the

TPL and the liquid-solid interface. The force balance at three-phase contact line region

is also a�ected by the electric �eld, resulting in an increase of the apparent wettability

with the applied voltage. The electric stresses e�ect on the force balance at the TPL

has been investigated in numerous publications [40, 39, 35]. In particular, two di�erent

approaches have been proposed in the literature: the electrochemical approach, where

the electric �eld a�ects the interfacial energies resulting in a reduction of the Young

contact angle, and the electromechanical approach, where the electric stresses result

in a net force acting on the droplet. In the latter case, the Young contact angle remains

una�ected as the droplet deforms. Here, since the Young contact angle derives implicitly

in our formulation (see Section 2.2.4), it is critical to examine the e�ect of the electric

�eld strength (by modifying the applied voltage and the thickness of the solid dielectric)

on the Young contact angle value and consequently on the curvature of the droplet in

the vicinity of the three-phase contact line.

In Fig. 5.7, we present important shape features of the droplet surface for di�erent solid

dielectric thicknesses of PTFE (d = 10 µm, 50 µm and 150 µm), over a range of electrowet-

ting numbers (η ∈ [0, 1]). In particular, we compute the dependence of the apparent

contact angle, θa, the Young contact angle, θY, and the dimensionless maximum local

mean curvature of the surface as a function of the electrowetting number, η. For the

computation of the Young contact angle, a sixth order polynomial �tting is applied on

the droplet surface in the vicinity of the TPL. Initially, in Fig. 5.7a, it is observed that

the macroscopic droplet shape (i.e. the apparent contact angle, θa) is not a�ected by the

thickness of the solid dielectric. Note that, however, the applied voltage is considerably

higher in the case of the thick dielectric, in order to achieve the same electrowetting

number (e.g. for η = 0.5, V = 101 V for thin dielectric (d = 10 µm) and V = 392 V for

the thick one (d = 150 µm)). Regarding the microscopic characteristics of the droplet,

in Fig. 5.7b, it is observed that the Young contact angle variates in the case of the thin

dielectric (d = 10 µm). In particular, θY is reduced from 170o to∼ 156o for η = 1. Such a be-
havior is not observed in the case of thick dielectrics (d = 50, 150 µm), where the Young

contact angle appears to be insensitive to the electrowetting number. The maximum

droplet curvature, at the (�ctitious in our model) three-phase contact line, behaves in a

similar fashion, as observed in Fig. 5.7c. Thus, the maximum curvature, in the case of the

thin dielectric (d = 10 µm), is considerable increased with the applied voltage, contrary

to the thick dielectrics cases (d = 50, 150 µm).

Similar trends have been presented in the experimental work of Mugele and Buehrle

[35]. In particular they performed electrowetting experiments of a water droplet, in a

silicone oil ambient (AK 5, Wacker), on solid dielectrics (PTFE) of various thicknesses (d

= 10, 50 and 150 µm). They found that Young’s contact angle decreases with the applied

voltage only in the case of the thin dielectric (d = 10 µm). A direct comparison of the
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Figure 5.7: Dependence of (a) the apparent contact angle, θa, (b) the Young contact angle, θY, and
(c) the dimensionless maximum curvature of the droplet surface on the electrowetting number,
η, for di�erent dielectric thicknesses (d = 10 µm, 50 µm and 150 µm).

0.5 mm

Figure 5.8: Comparison between experimental (upper part of the �gure, reprinted from [35])
and computed droplet shapes (lower part of the �gure) for di�erent dielectric (PTFE) thicknesses
(d = 10 µm, 50 µm and 150 µm) at η = 0.5. The aqueous droplets are immersed in a silicone oil
bath (AK 5, Wacker). The variation of the local curvature (in the vicinity of the TPL) with the
dielectric thickness can be easily observed in both experiments and simulations. We note that
the computed apparent contact angle is virtually the same for all these cases (see also Fig. 5.7a).
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Figure 5.9: Variation of the dimensionless local mean curvature (C R0) and the electric stress
term (Ne Ê2/2) of the augmented YL equation along the droplet surface for di�erent dielectric
thicknesses (η = 0.5).

droplet shapes between the experiments of Mugele and Buehrle and our simulations is

depicted in Fig. 5.8. In these experiments, the variation of the Young contact angle value

measured for thin dielectrics was attributed to the �nite and limited optical resolution

of their setup to resolve the details of the droplet pro�le; measuring curvature values

in experimental practice involves high order polynomial �tting of the droplet interface,

a process highly sensitive to the optical resolution. According to our perspective, the

Young contact angle variation is not really a resolution issue, but is related with the elec-

tric �eld distribution along the droplet surface, which strongly depends on the thickness

of the dielectric. The investigation of the dielectric thickness e�ect on the electric stress

term of the augmented YL equation would provide more evidence on the link between

the Young contact angle and the electric �eld strength at the TPL.

In Fig. 5.9, we present the variation of the curvature and the electric stress term of the

augmented YL, along the droplet surface for di�erent PTFE thicknesses and for a �xed

electrowetting number (in this case η = 0.5). We observe that for the case of the thin

dielectric (d = 10 µm) the strength of electric stress term increases sharply at the TPL

and then reaches a constant value along the liquid-solid interface. For thicker dielectrics

(see Fig. 5.9, d = 50 µm and 150 µm), the maximum electric stress value is reduced and its

e�ect extends over a wider region around the TPL (as compared to the case of the thin

dielectric with d = 10 µm in Fig. 5.9).
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Figure 5.10: Dependence of the relative strength, λF , of the electric stress term (Ne Ê2/2) over
the disjoining pressure (R0 pLS/γLA) of the augmented YL (Eq. 5.2), at the TPL, on the electrowet-
ting number for di�erent dielectric thicknesses: d = 10 µm, 50 µm and 150 µm.

As a summary, the observed variations of the computed maximum curvature value (as

well as the Young contact angle) for thin dielectrics can be attributed to the higher elec-

tric stresses developed within the action range of the microscale forces (disjoining pres-

sure). In Fig. 5.10, we present the relative strength, λF , of the electric stress term, of the

augmented YL equation, over the disjoining pressure in the vicinity of the TPL for dif-

ferent dielectric thicknesses and electrowetting numbers. The electric stress term is of

lower magnitude compared to the disjoining pressure in all studied cases of electrowet-

ting numbers, when the dielectric thickness is 50, and 150 µm. However, in thinner di-

electric thickness cases (d = 10 µm) the electric �eld e�ect is signi�cantly enhanced espe-

cially at high electrowetting numbers; the magnitude of the developed electric stresses

exceeds the disjoining pressure causing an increase of the local curvature and a concomi-

tant decrease in the Young contact angle. Similar results can be obtained using di�erent

forms of the disjoining pressure isotherm as presented in Section B.5 of the Appendix B.

The above argument is extremely important for realizing reversible wetting transitions

on superhydrophobic surfaces, by controlling the droplet surface curvature at the TPL,

as will be demonstrated in Section 9.1 of Chapter 9.

Apart from the previously presented curvature and electric �eld computations on

smooth solid surfaces, the main advantage of the proposed methodology is the abil-

ity to model electrowetting on geometrically patterned solid dielectric surfaces, where

multiple and recon�gurable TPLs arise. Existing �ne-scale electrowetting modeling ap-

proaches, e.g., molecular dynamics [41, 23] and mesoscopic lattice-Boltzmann models

[42, 11, 20] su�er from severe computational limitations (especially when real millime-

ter sized droplets are studied), whereas continuum-level models are based on signi�cant

simpli�cations regarding the actual shape of the droplet and the �eld distribution [43]
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Figure 5.11: Dependence of (a) the apparent contact angle, θa, and (b) the dimensionless half
perimeter length, smax/R0, on the electrowetting number, η, for a patterned solid dielectric sur-
face.

at the TPL.

5.2.4 Electrowetting on geometrically patterned dielectric surfaces

In our illustrative example we model electrowetting on a multi-striped dielectric (see

Fig. 5.2). The height (hd) and thewidth (wd) of the protrusions are 62.03 µm and 93.05 µm,

respectively. The minimum thickness of the dielectric (PTFE) is: dmin = 25 µm, and the

maximum thickness is dmax = hd + dmin = 87.03 µm. For the computation of the elec-

trowetting number (see Eq. 5.1), we select: d = dmax = hd + dmin in order to account for

the non-uniformity of the dielectric thickness.

As reported above, geometrically patterned dielectrics can admit multiple droplet equi-

librium pro�les ranging from Cassie-Baxter to Wenzel wetting states. By utilizing pa-

rameter continuation techniques, all the admissible wetting states (stable and unstable)

can be traced. In particular, in Fig. 5.11, we present the dependence of the apparent con-

tact angle (calculated by �tting a circle to the liquid-ambient interface above the solid

surface asperities) and the dimensionless half-perimeter length of the droplet, smax/R0,

on the electrowetting number. The di�erent solution branches correspond to distinct

wetting states. In particular, the stable solution branch AB corresponds to droplets wet-

ting a single stripe, while the stable solution branch FC corresponds to Cassie-Baxter
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Figure 5.12: Electric �eld distribution around co-existing wetting states on a stripe patterned
dielectric for η = 1.19, in the vicinity of the solid surface. The streamlines of the electric �eld are
depicted with light yellow. The stable wetting states are denoted with “S”, and the unstable ones
with “U”.

states wetting three stripes (taking into account the re�ection symmetry about the verti-

cal plane (θ = 0)). Several solution branches intervene between points E and D exhibiting

approximately the same apparent wettability for the same electrowetting number, and

correspond to:

1. Cassie-Baxter states wetting �ve stripes (see Fig. 5.11b, η = 1 (Cassie-Baxter)),

2. fully collapsed Wenzel states wetting the same number of stripes (see Fig. 5.11b, η

= 1 (Wenzel)) and

3. mixedwetting states where the liquid has partially penetrated into the solid rough-

ness (see Fig. 5.11b, η = 1 (Mixed)).

We also observe that the electrostatically induced wetting transitions on the patterned

dielectric under study are hysteretic. When no voltage is applied, a “fakir” droplet sits on

the top of protrusions (see Fig. 5.11, point A for η = 0, θa = 177o). By quasi-statically in-

creasing the applied voltage, the apparent wettability is enhanced (the apparent contact
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angle reduces from 177o to 128o) and the liquid gradually penetrates the solid surface

roughness following the route: A → B → C → D along the stable solution branches

(solid lines in Fig. 5.11a). By decreasing the applied voltage, the droplet de-wets the

solid surface following a di�erent route: D→ E→ F (see Fig. 5.11a). The range of hys-

teresis is determined by the range of the intermediate unstable branches (dashed lines

in Fig. 5.11). We also note that the initial “fakir” droplet with θa = 177o cannot be recov-

ered by switching o� the applied voltage; the wetting transition is irreversible, and the

highest apparent contact angle that can be recovered through voltage reduction is 164o.

Interestingly enough, the intervening stable solution branches between points E and D

in Fig. 5.11 correspond to wetting states exhibiting nearly identical macroscopic charac-

teristics (same apparent wettability for the same applied voltage), yet with signi�cantly

di�erent fractions of the solid surface area wetted by the liquid. In Fig. 5.12, we present

the electric �eld distribution in the vicinity of the solid surface for �ve co-existing wet-

ting states (stable and unstable) with θa ≈ 139.3o and the same electrowetting number (η

= 1.19). Apart from the stable Cassie-Baxter (Fig. 5.12a), and Wenzel (Fig. 5.12e) wetting

states, the patterned dielectric can also admit mixed stable states (Fig. 5.12c), where only

two of the four oil pockets of the solid surface are �lled with water. We remark that the

intermediate unstable equilibrium states depicted in Fig. 5.12b and Fig. 5.12d cannot be

tracked experimentally. The sequence of equilibrium pro�les in Fig. 5.12b-d illustrates

the intermediate states of a minimum energy path connecting the Cassie-Baxter state

(Fig. 5.12a) and Wenzel state (Fig. 5.12e); impalement originates from the outer side of

the droplet and succeeds in the center for the particular solid surface geometry.

5.3 Summary and conclusions

In this Chapter, after validating the presentedmethodology against the predictions of the

conventional Young-Laplace equation (which imposes the Young contact angle bound-

ary condition) we studied the e�ect of dielectric thickness on the liquid surface curvature

distribution, and on the Young contact angle for di�erent electrowetting numbers. We

found that by increasing the applied voltage in adequately thin dielectrics, results in

variations in the droplet shape both macroscopically (apparent contact angle), and mi-

croscopically (Young’s contact angle). Such a dependence of the Young contact angle on

the applied voltage has also been reported previously in the literature [35], however not

theoretically supported.

The advantage of the proposedmodeling approach is its ability to perform electrowetting

computations on geometrically structured dielectric surfaces. To our knowledge, this

is the �rst time that a continuum-level model can predict Cassie–Baxter, Wenzel, and

mixed wetting states by simulating the entire droplet and not a small part of it, like a unit

cell. Continuum-level studies of wetting transitions on geometrically patterned surfaces

have been previously presented in the literature, however they do not take into account
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the pinning/de-pinning e�ects of the droplet at the protrusion edges, performing the

analysis at a unit cell of the texture [44, 45]. Under this assumption, no mixed states can

be predicted (since the outer stripes are equivalent with the inner ones) and thus there

is no information concerning the energetics of the mechanism of the wetting transition.

The multiplicity of the wetting states, computed here for a relatively simple patterned

geometry is indicative of the wealth of equilibrium states expected to be computed when

smaller scale or of arbitrary roughness (i.e., without any symmetry assumption) solid

surfaces are studied.
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CHAPTER6
Modeling of droplet spreading on rough

surfaces

The conventional hydrodynamic model su�ers from severe limitations when modeling the

wetting dynamics on textured substrates due to the tedious implementation of the boundary

condition to an unknown number, and recon�gurable, contact lines. In order to resolve these

limitations, we apply the proposed hydrodynamic model formulation (see Section 3.2.3), in

which no explicitly boundary condition is required at the three-phase contact lines. The

validity of our approach is initially tested against experimental data of a droplet impacting

on an arbitrary roughened solid surface. In our simulations, we observe that the viscous dis-

sipation on the solid surface roughness gives rise to an e�ective no-slip boundary condition,

although it is not explicitly imposed. The study of the early spreading phase on hierarchi-

cally structured, as well as on chemically patterned, solid substrates reveal an inertial regime

where the contact radius grows according to a universal power law, perfectly agreeing with

recently published experimental �ndings. Finally, we also investigate the droplet dynamics

under the e�ect of electric �eld (electrospreading). Electrostatically assisted spreading is

commonly observed in practice, in lab-on-a-chip devices.

6.1 Spreading dynamics

As experimentally observed [1, 2] for low viscosity �uids on smooth substrates, the con-

tact radius of a spreading droplet, Rs (see Fig. 6.1), grows with time according to the

power law:
Rs

R0
= Ks

(

t

tc

)α

, (6.1)

where Ks is the power law prefactor, α is a spreading exponent and tc is the inertio-

capillary time (tc =

√

ρR3
0

γLA
), de�ning the time scale where the �ow is inertia-dominated.

Bird et al. [2] demonstrated that α = 0.3 for a water droplet on a solid substrate with θY =

120o, whereas it increases to α = 0.5 for a fully wetted substrate (θY ≈ 0o). As spreading

continues, the viscous friction inside in the droplet becomes the main dissipation mech-
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Figure 6.1: Snapshots of an axisymmetric droplet at di�erent time instances (t0 < t1 < t2) after
impacting on a �at solid substrate.

anism and α = 0.1, with another constant K′. Thus, in order to accurately simulate of a

droplet impinging and spreading on solid surface, one needs to take into account both

the inertial and viscous forces, as well as the friction that the liquid exhibits at the three-

phase contact lines. The latter is usually incorporated through the Navier slip boundary

condition (Eq. 3.9). In addition, since an amount of roughness is always present, even

in macroscopically �at substrates, the viscous friction on the solid micro-structure must

also be included in the modeling. Such a study, however, would be infeasible with the

conventional formulation of the hydrodynamicmodel (see Section 3.2.1). In this Chapter,

we utilize the proposed augmented hydrodynamic model formulation (see Section 3.2.3)

to perform dynamic simulations of axisymmetric droplets spreading on solid substrates

covered with arbitrary asperities, in air ambient. Contrary to the conventional hydrody-

namicmodel, in our proposed formulation the relative velocity between the solid and the

liquid is not directly imposed with a boundary condition, thus allowing the throughout

study of the solid roughness e�ect on the spreading dynamics.

In particular, in order to highlight the role of the solid surface micro-structure in the

energy dissipation, in this Chapter we neglect any tangential stresses along the liquid

surface (βe� = 0, in Equation 3.16). What we expect is that the roughness will enhance

the viscous dissipation in the vicinity of the solid surface, resulting to an e�ective tan-

gential stress. Such an argument was initially introduced by Richardson [3] and Jansons

[4] who concluded that the energy dissipation taking place on the intrinsic roughness

can approximate, macroscopically, a no-slip boundary condition, even when the solid

material is microscopically perfectly slipping. This assertion was later mathematically

proved for a three dimensional �ow by Casado-Diaz et al. [5], however, a throughout

investigation of the solid micro-structure e�ect on the �ow characteristics (e.g. con-

tact radius and apparent contact angle versus time) has not yet been performed. In the

following Section, we initially validate the computational results (i.e. contact radius

and dynamic contact angle of the droplet against time) against experimental measure-

ments and we discuss the in�uence of surface roughness geometric characteristics on

the spreading dynamics.
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Figure 6.2: Geometric parameters of the solid surface intrinsic roughness.

6.2 Results and discussion

6.2.1 Spreading dynamics: Validation with experimental data

The proposed “boundary-condition-free” approach is implemented to model the dynam-

ics of a droplet impacting and spreading on a horizontal surface (see Fig. 6.1). In order to

validate our predictions, the results are compared with experimental data [6] of a glyc-

erin/water mixture droplet (85 % of glycerin) spreading on a wax solid surface (see also

Section C.2 of the Appendix C for a pure water droplet). Since the viscosity of the sur-

rounding phase (air ambient) in our system is negligible compared to that of the droplet,

the �ow problem is solved only for the droplet interior (Q in Fig. 6.1) and thus the to-

tal stress tensor of the ambient phase, s(n) |ambient = 0, in the stress balance boundary

condition (Eq 3.4). In the studied experiment, the droplet impacts and then spreads on a

solid surface with an initial vertical speed of u0 = 1.04 m/s. This corresponds to a Weber

number, We = 51.2, and a Reynolds number, Re = 26.8 (We = ρu0
2 2R0

γLA
and Re = ρu0 2R0

µ
,

where ρ = 1220 kg/m3, R0 = 1.225 mm, γLA = 0.063 N/m and µ = 116 mPa s). Further-

more, the gravitational force, G, in the Navier-Stokes equation (3.3) is neglected since

the initial droplet radius, R0, is smaller than the capillary length, λκ (λκ =
√

γLA
ρ g

= 2.294

mm for the used glycerin/water mixture droplet). Finally, the wettability of the wax sub-

strate corresponds to a Young contact angle, θY = 93.5o, which is equivalent to a wetting

parameter wLS
= 5.16 × 103, given from Eq. 2.50 for C1 = 12, C2 = 10, σ = 9 × 10−3 and

ǫ = 8 × 10−3. We note that a sensitivity analysis regarding the value of the disjoining

pressure parameters is presented in Section C.3.1 of Appendix C.

There are previous studies [7, 8] where the conventional hydrodynamic model has been

utilized to simulate the same experiments. Although they do succeed in capturing some

of the experimental trends, the above approaches are case sensitive since ad hoc correla-

tions are used to model the dynamic contact angle and the shear stresses at the contact

lines. In particular, in the �rst study [7] Sikalo et al. use a semi-empirical correlation

given by Kistler [9], whereas in the latter [8] a time variation of the contact angle, based
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on experimental measurements, is employed. Here, by using the suggested hydrody-

namic formulation, the e�ective shear stresses have to arise macroscopically due to the

micro-scale roughness of the solid surface (note that disjoining pressure induces only

normal forces to the liquid-ambient interface (see Eq. 3.15)). Aiming to mimic the intrin-

sic roughness of the wax surface, we employ an arbitrary roughness topography, which

is characterized by two length parameters: a maximum amplitude of the protrusions, h,

and an average distance between two neighboring extrema of the surface, d (see Fig. 6.2).

The solid surface topography is produced with the following procedure: Initially, an ar-

ray of random scalars, representing the local extrema of the substrate pro�le, is drawn

from the standard uniform distribution on the interval (0,h) and the distance between

them is set equal to d. Next, the �nal form of the solid topography is obtained by per-

forming a piecewise cubic interpolation [10] on the random extrema of the substrate,

ensuring that the substrate pro�le and its derivatives are continuous. In order to quan-

tify the non-uniform, arbitrary pattern of the solid protrusions we also introduce the

surface roughness factor, rf, which is de�ned as the ratio of the actual over the apparent

surface area (rf ≥ 1). The e�ect of the roughness factor on the spreading dynamics is

examined in the following Section.

6.2.1.a The e�ect of the micro-scale roughness factor

In the cases under study, the intrinsic roughness factor of the modeled surface varies

from rf = 1 (for an ideally smooth surface) to rf = 1.2 (for the most roughened solid

surface). In the following Sections, when referring, for brevity, to a “smooth” surface we

mean an ideally smooth and �at substrate. The solid surface rugosity is parametrized by

the average distance of the inhomogeneities, d, (0.012 mm ≤ d ≤ 0.06 mm), and by their

maximum height, h, (0.012 mm ≤ h ≤ 0.055 mm). Note that the ratio of the smallest

roughness height (h = 0.012 mm) over the initial droplet diameter, 2R0, is
1
204 .

In Fig. 6.3, we present the temporal evolution of the normalized contact radius, Rs/R0

(see also Fig. 6.1), for di�erent solid surface roughness cases. In particular, we consider

that the contact radius is the position of the outer (or macroscopic) contact line which

is de�ned as the intersection of the droplet surface with a horizontal baseline just above

the substrate (z ≈ 4 × 10−3R0). The initial frame, i.e. t = 0, is the instance of the droplet

impact. The time is presented in dimensionless form and the characteristic time is tu0/R0.

The surface roughness factor, here, is increased either by decreasing the average distance

between the surface inhomogeneities while keeping �xed their maximum amplitude (see

Fig. 6.3a), or by increasing their maximum amplitude by �xing their distance constant

(see Fig. 6.3b).

Our results show that the spreading behavior is not similar for the di�erent surface

roughness cases. The spreading evolves in three stages (see Fig. 6.3):

(I) An early spreading stage, where the radius sharply increases with time (notice the
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Figure 6.3: Temporal evolution of the normalized contact radius of a glycerin/water mixture
droplet impacting on wax surface: simulations against experimental data from Sikalo et al. [6]
for di�erent roughness factor cases. The roughness is increased by: (a) reducing the average
distance of the inhomogeneities, d, or (b) enlarging the protrusions amplitude, h.

concave part of the curve). At this stage the spreading evolution does not depend

on the roughness factor.

(II) An intermediate stage, where an almost linear dependence of the normalized con-

tact radius on the logarithmic characteristic time can be observed. At the end of

this stage the e�ect of the roughness factor is visible. As it can be seen, the more

roughened the substrate, the slower the contact radius evolution.

(III) A recoiling stage, where the droplet begins to recede and the contact radius slightly

reduces after reaching a maximum value. This e�ect is particularly visible in the

case of the perfectly smooth surface. As it can be observed, at the recoiling stage,

the positions of the outer contact line for the smooth and the rough substrate cases

signi�cantly di�er.

Interestingly enough, the computational results converge to the experimental data, re-

gardless of the geometric details of the substrate, above a certain roughness factor

threshold (here for rf > 1.15). The minor e�ect of the exact roughness topography (for

rf > 1.15) on the impact dynamics, is an indication that the assumption of the axially-

symmetric substrate does not play a key role in the obtained results. We also note that

a sensitivity analysis regarding the size of the computational mesh is presented in Sec-

tion C.4.1 of Appendix C.
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Figure 6.4: Visualization of the r-component of the droplet velocity, ur , for di�erent roughness
factor cases: (a) rf = 1 and (c) rf = 1.2, at various time instances (t ∈ [0.5 ms, 1.5 ms]). The ur
distribution is also plotted along vertical, equidistant cut lines (with a δr step of 0.2 mm) for (b)
smooth and (d) rough substrate cases.

6.2.1.b Recovering the no-slip boundary condition

Aiming to unravel the e�ect of the solid substrate roughness on the �ow dynamics, we

visualize in Fig. 6.4 the r-component of the velocity, ur , for a droplet spreading on a

smooth and a rough solid surface. By plotting the ur distribution along equidistant cut

lines of constant r (see Fig. 6.4d1-d3), it can be observed that the velocity considerably

decreases and reaches almost zero, especially very close to the substrate (for z → 0),

in the case of the rough surface. This indicates that small variations in the velocity

direction, as the �uid slips on the solid asperities, dissipates a considerable amount of

energy. Clearly, the total dissipation in the roughness vicinity can approximate a no-slip

boundary condition, without imposing directly any shear interaction between the liquid

and the solid surfaces. On the contrary, in the absence of an intrinsic surface rough-

ness, the velocity has a �nite value on the wall since the energy dissipation is negligible

(see Fig. 6.4b1-b3). Note that such a free-slip case is non-realistic since a microscopic

slip length has been observed (in molecular dynamics simulations) even for molecularly

smooth surfaces due to the discrete nature of the lattice structure of the solids [11]. Here,

however, we use this case in order to highlight that the no-slip boundary condition can

occur as a solely geometric e�ect, even at a molecular level. The above is in line with

the work of Richardson [3] and Jansons [4].

Amagni�cation of the droplet pro�le in the vicinity of the solid surface, shown in Fig. 6.5,

provides a detailed view of the droplet deformation during the initial spreading stages

(t < 0.5 ms). The discrepancy between the contact radius at the smooth (Fig. 6.5a) and

the rough solid surface (Fig. 6.5b) is visible, especially on the last frame (t = 0.5 ms).
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Figure 6.5: Droplet pro�les in the vicinity of: (a) a perfectly smooth (rf = 1) and (b) a rough
solid surface (rf = 1.2) during the initial spreading stages (t ≤ 0.5 ms). A magni�cation of the
droplet shape, for the area outlined in (b), is depicted in (c) for t ∈ [0.3 ms, 0.35 ms]; changes
in the droplet topology (marked by the arrow) can be e�ectively handled by using our proposed
formulation.

The inherent capability of our formulation to handle changes in the droplet topology is

presented in Fig. 6.5c. In particular, the formation (t = 0.325 ms) as well as the destruction

(t = 0.35 ms) of contact lines can be observed, as the droplet slips on the corrugated

substrate. Regarding the evolution of the contact angle, it is noticeable that the two cases

(perfectly smooth and roughened substrate) exhibit large di�erences. We note here that

the apparent (or macroscopic) dynamic contact angle, in the conventional hydrodynamic

models, is set as a function between the equilibrium (Young’s) contact angle and the

capillary number, Ca (Ca = ucl µ/γLA, where ucl is the �uid velocity magnitude at the

outer contact line) (see e.g. Eq. 3.10 in Chapter 3), however, in our modeling approach

it emerges “naturally” as a result of the local interplay of viscous, capillary and liquid-

solid interaction forces. Indicatively, in Fig. 6.6 we present the dynamic contact angle

value, θd, of the droplet for a smooth (rf = 1) and a rough (rf = 1.2) solid surface cases, as

a function of time. Unfortunately, as Sikalo et al. [6] claim, the dynamic contact angle

measurements are at limited accuracy (the measured values depend on the experience of

the experimentalist). Here, we apply their measurement technique in our computational
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Figure 6.6: Dynamic contact angle, θd, of a glycerin/water mixture droplet impacting on wax
surface: Computations, on a smooth (rf = 1) and a rough (rf = 1.2) solid substrate, are tested
against experimental data from Sikalo et al. [6]

predictions (namely to obtain the contact angle from the computed droplet pro�les) in

order to directly compare them with the experimental measurements. In particular, the

slope of the droplet surface is evaluated, against the horizontal plane, at a �xed distance

from the substrate (z ≈ 8× 10−3R0) where the action of the disjoining pressure has been

e�ectively vanished (region III in Fig. C.4b, Section C.3.1).

Our results in Fig. (6.6) show that the early spreading (I) and the recoiling (III) stages are

adequately captured, for the case of rough solid substrate. During the intermediate stage

(II), however, our results predict �uctuations around a plateau value of the contact angle

which can be attributed to the pinning-depinning of the contact lines on the substrate

corrugations. This contrasts to Sikalo et al. [6] measurements, where a local maximum

of the dynamic contact angle is observed. To our opinion the discrepancy is caused

by the relative large height of the roughness protrusions, compared to the droplet size,

which highly distorts the droplet shape at the outer contact line. Further decrease of the

protrusions length scale, resulting in more realistic roughness structures (e.g. the docu-

mented average roughness amplitude for the wax surface is 0.3×10−3 mm [6]), although

it is feasible in our formulation, it requires extensive computational resources sacri�c-

ing the e�ciency of the continuum-level modeling. Such a study is beyond the scope of

this particular work. When the substrate is ideally smooth, the dynamic contact angle

coincides with the Young contact angle (θd ≈ θY = 93.5o) shortly after the droplet impact,

indicating again that an amount of roughness is essential in our modeling approach.

Aiming to obtain more insight of the viscous e�ects resisting the droplet spreading, we

next investigate the dissipation of energy during the droplet impact. In particular, we

focus on the di�erences at the energy loss between the case of the ideally smooth and a
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Figure 6.7: Rate of energy dissipation per unit volume, φ (given in units MJ
s m3 ), during the impact

process on: (a) a smooth solid surface (rf = 1) and (b) a rough solid surface (rf = 1.2), at di�erent
time instances (t ∈ [0.5 ms, 1.5 ms]). The distribution of φ along a line with constant height
(z = 5 × 10−3 mm) above the substrate is depicted in the right panel of the �gure (c).

roughened solid substrate.

6.2.1.c Quantifying the rate of energy dissipation

The energy dissipation can be quanti�ed by calculating the viscous dissipation function,

φ [12]:

φ = τ : ∇u. (6.2)

By evaluating the double-dot product and utilizing the symmetry arguments, Eq. 6.2 in

cylindrical coordinates, reads:

φ = 2 µ

(

dur

dr

)2

+

(

duz

dz

)2

+

(

ur

r

)2
+

1

2
*,
(

duz

dr

)2

+

(

dur

dz

)2

+ 2
duz

dr

dur

dz
+-
 , (6.3)

where uz represents the z-component of the �uid velocity. In Fig. (6.7), we plot the spa-

tial distribution of φ, which practically expresses the rate of energy dissipation per unit

volume of the �uid. It is observed that during the spreading process, the initial droplet

energy for the rough surface, is mainly dissipated in the vicinity of solid boundary. By

examining the distribution of φ along a line with constant height z = 5 × 10−3 mm

(see Fig. 6.7c1-c3), we �nd a considerable energy dissipation close to the outer contact

line (note that the φ values are presented on a logarithmic scale on the right panel of

Fig. 6.7). This means that the energy loss, responsible for the spreading deceleration

in the rough surface, predominantly occurs at the outer contact line region as a �uid

passes over the substrate irregularities. We note that the �uctuations, observed in dissi-

pation function distribution in Fig. 6.7c1-c3, are attributed to the highly inhomogeneous
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azimuthal coordinate (θ ∈ [0,2π)).

geometrical features of the substrate. Away from the outer contact line, as observed in

Fig. 6.7b1-b3, the rate of dissipation is negligible due to the low liquid velocity. When

the droplet is spreading on a perfectly smooth and slippery substrate, the energy dissi-

pation is attributed only to the inertial forces resisting the �uid movement. In this case,

as demonstrated in Fig. 6.7c1-c3, the dissipation function, φ, does not exhibit extreme

values along the line parallel to the solid surface at height z = 5 × 10−3 mm, since the

e�ect of the solid substrate is insigni�cant.

The integration of φ over the entire droplet’s volume, Vdroplet, presented in Fig. 6.8, also

highlights the di�erences in the evolution of energy dissipation, for the rough and the

smooth substrates, respectively. Speci�cally, in the rough surface, the overall rate of dis-

sipation is high during the early spreading stages ( t u0
R0
< 1) followed by a sharp decrease.

In the case of smooth surface the energy dissipation is milder. Although the rate of dis-

sipation over time di�ers signi�cantly between the two cases, a question arises about

the relative ratio of the total amount of energy dissipated. Up to the time where the

dissipation rate asymptotically gets very small (at t u0
R0
≈ 4 or t = 4.7 ms) we calculate

that the total energy consumed is: Ediss =
∫ 4.7ms

0

#

Q

φ dVdt = 4.72× 10−6 J for the rough

substrate, and Ediss = 4.35 × 10−6 J for the smooth substrate. The �rst corresponds to

the 75.3 % of the initial droplet energy before impact, Et , and the latter to the 69.3 %
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Figure 6.9: Solid substrates featuring: (a) micro-scale textures (rf = 1.15), (b) micro-scale tex-
tures accompanied with chemical heterogeneities and (c) hierarchical roughness with micro-
and macro-scale textures.

respectively, where Et is calculated as:

Et = Ek + Es =
1

2
Mdroplet u20 + Sdroplet γLA ⇒

Et = ρ
2

3
π R3

0 u20 + 4 π R2
0 γLA = 6.27 × 10−6 J,

(6.4)

with Ek the initial kinetic energy, Es the initial surface energy, Mdroplet the droplet’s

mass and Sdroplet the surface area of droplet at t = 0. From the above, we conclude that

although the overall energy loss is virtually the same, the major di�erences observed in

the spreading behavior on a rough and on a smooth solid surface, are mainly attributed

to the locally dissimilar distribution of φ close to the outer contact line.

We believe that such an analysis can provide important information for the under-

standing of energy dissipating phenomena taking place at the contact lines and would

contribute in extending our understanding regarding the underlying complex physical

mechanism. Finally, we note that the corresponding experimental measurement, of the

dissipated energy during the spreading process, is until now unfeasible. In the following

Section, we perform computations of droplets spreading on chemically patterned and

hierarchical roughened solid surfaces (where an intrinsic surface roughness is super-

imposed on larger structures) in order to examine a recently proposed argument [13]

of a universal droplet evolution regime at the early spreading stages, regardless of the

underlying substrate.

6.2.2 Early spreading universality on complex surfaces

6.2.2.a Spreading on di�erent types of surface complexity

The proposed modeling approach can be used to examine the e�ect of any kind of com-

plex geometrical structure of the substrate (even hierarchical patterned solid surfaces)

on the spreading dynamics - an arduous task for the conventional hydrodynamic mod-

els. Early time spreading phenomena, on partially or fully wetted substrates, are far from

being fully understood [14], since the droplet behavior is a�ected by inertia, viscous and
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Figure 6.10: Normalized contact radius, Rs/R0, as a function of dimensionless time from impact,
t/tc , for three di�erent types of solid substrates featuring topographical and chemical inhomo-
geneities (see Fig. 6.9).

contact line friction e�ects; for later times, the energy dissipation mechanism is simpli-

�ed and the dynamics can be adequately captured by the well-established Tanner’s law

[15], which is also recovered by our model (see C.1 of the Appendix C). In a recent work,

Stapelbroek et al. [13], argued that the initial spreading dynamics of low viscosity �uids

obey to a universal power law, independently of the geometric or chemical complexity

of the solid substrate. Aiming to verify this argument, i.e. the insensitivity of the early

spreading dynamics on the substrate’s details, we next perform droplet impact compu-

tations on di�erent types of solid surfaces, featuring topographical, as well as chemical

heterogeneities.

For a perfectly wetting substrate, it has been experimentally observed that the spreading

exponent, α, equals to 1/2 [1, 2]. In particular, Eq. 6.1 reads:

Rs

R0
= Ks

(

t

tc

)1/2

. (6.5)

The above applies for t/tc < 1, where the dynamics are inertia-dominated. Stapelbroek

et al. [13] experimentally demonstrated that the geometrical morphology and the chem-

ical heterogeneities of the substrate are unimportant during the early spreading case.

In particular, even if the �nal equilibrium pro�les are di�erent, they argue that there

exist an ubiquitous inertial regime where the power law (Eq. 6.5) is applicable. Here, in

order to demonstrate this inertial spreading universality, we perform computations of

the previously examined glycerin/water mixture droplet spreading on di�erent types of

solid surfaces. Indicatively, we examine the e�ect of geometrical, in conjunction with

chemical heterogeneities, on the droplet motion on silicon dioxide (SiO2) substrates (see
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Fig. 6.9). In the �rst solid substrate case (see Fig. 6.9a), the selected micro-scale (intrinsic)

geometrical complexity corresponds to a roughness factor of 1.15, which equals to the

minimum roughness required to match the experimental measurements in the case of

spreading on a horizontal wax surface (see Fig. 6.3).

Chemical patterns are introduced in the second solid surface case, by alternating the

hydrophilic SiO2 substrate with wax patches (see Fig. 6.9b). Indicatively, the wetting

parameter, wLS, varies along the spatial r coordinate, ranging from a minimum (SiO2)

to a maximum value (wax) with a wavelength of 0.2 mm. Note that the wettability of

the SiO2 corresponds to a θY = 5o, and θY = 93.5o for the wax substrate. Lastly, a hierar-

chical roughened solid surface (see Fig. 6.9c), where the micro-scale intrinsic roughness

is superimposed on larger sinusoidal structures (macro-scale roughness), is also investi-

gated. Regarding the hierarchical patterned surface (Fig. 6.9c), the ratio of �rst to second

level roughness amplitude is hm

h
= 1.7, whereas the distance of the respective inhomo-

geneities correspond to a ratio dm

d
= 6.8 (hm = 0.033 mm and dm = 0.1 mm). The impact

velocity of the droplet is now neglected since the approach speed at the corresponding

experiments is extremely low (u0 < 20 × 10−6 m/s) [13]. Overall, as demonstrated in

Fig. 6.10, the evolution of the normalized contact radius, Rs/R0 is indeed identical for

the di�erent types of surface complexity during the early stage of spreading (t/tc < 1).

The results are plotted in logarithmic scale so as to demonstrate the power law (Eq. 6.5)

growth dynamics of the early spreading inertial regime.

6.2.2.b Universal spreading mechanism

In order to interpret the minor role of the underlying substrate to the spreading dynam-

ics, we examine the normal component of the stress balance along the liquid-ambient

interface (Eq. 3.4) which reads:

∆p = τnn |liquid + 2 γLA κ + pLS = 0, (6.6)

where κ = C
2 . By disregarding the viscous stress components of the above equation, due

to the negligible impact velocity, the stress balance along the droplet surface (Eq. 6.6) for

the early spreading stage can be approximated by:

∆p ≈ 2 γLA κ + pLS. (6.7)

When the droplet equilibrates, the pressure di�erence between the liquid and the

ambient medium, ∆p, is maintained constant along the e�ectively one-dimensional

droplet surface. In our case, however, the calculation of the right hand side of Eq. 6.7,

2 γLA κ + pLS, along the entire droplet pro�le at the time instance just after impact (t = 5

×10−2 ms), shows a signi�cant deviation from a constant value, localized in the vicinity

of the solid surface. This results to a local pressure drop, close to the solid substrate

region, as illustrated in Fig. 6.11. Namely, the highly negative disjoining pressure value
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Figure 6.11: (a)Mean curvature, κ, (right axis) and pressure (left axis) values along the e�ectively
one-dimensional droplet surface just after the contact (t = 5×10−2ms)with a rough (rf = 1.15) SiO2

substrate. (b) Visualization of the pressure, p, distribution for the entire droplet and a magni�ed
region close to the outer contact line. The arrows at the latter sub-�gure represent the �uid
velocity �eld, u.

at the outer contact line (equals to the depth of the Lennard-Jones potential well; see

Eq. 2.42) (point B in Fig. 6.11a) is not compensated by the surface tension forces, 2 γLA κ,

even though κ reaches a peak value (point C in Fig. 6.11a). This unbalanced surface force

generates a pressure gradient inside the droplet (see point A in Fig. (6.11a)), which drives

the initial liquid motion over topographical or chemical inhomogeneities, annihilating

the role of the substrate. At equilibrium, the pressure di�erence between the liquid (p)

and the surroundingmedium (p0), ∆p = p−p0, should approach zero since the extremely

small Young contact angle (θY = 5o) drives the droplet into a liquid �lm. This yields to:

pLS = −2 γLA κ, at SQ, from Eq. 6.7. Previous theoretical attempts to explain the spread-

ing insensitivity on the roughness structure [16, 13] suggest that the strong curvature

induced at the liquid meniscus, connecting the droplet and the substrate (see Fig. 6.11b),

is the origin of the pressure di�erence. However, in our detailed analysis, by examining

the entire droplet surface, we conclude that the curvature of the meniscus does not have

a major contribution; contrariwise the key factor is the increased curvature at the three-

phase outer contact line. Speci�cally, we calculate that just after the droplet contacts the

substrate (t = 5 ×10−2 ms), the absolute curvature value of the liquid meniscus equals

to 7.8 × 10−2 µm−1 (point D in Fig. 6.11a) whereas the corresponding value at the outer

contact line is larger and equal to 38 × 10−2 µm−1 (point C in Fig. 6.11a).

As previously discussed, experimental studies show that the spreading exponent α and

the prefactor Ks in Eq. 6.1 depend on the �uid properties and the solid wettability [2].

Due to the recent development of lab-on-a-chip devices though, there is a need to in�u-
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(a)

(b)

Figure 6.12: Temporal evolution of the normalized contact radius of (a) a water and (b) a glyc-
erin droplet spreading, under the in�uence of electrostatic forces, on a hydrophobic substrate
(θY = 114o). The spreading exponent, α, and the power law prefactor, Ks , (of Eq. 6.1) vs the
electrowetting number, η, are presented in the insets.

ence these parameters in order to control the spreading dynamics. The use of an external

potential (e.g. electrowetting phenomenon which is described in Chapter 5) can over-

come these limits, o�ering a more precise control on the spreading dynamics. Next, we

perform a systematic study of such electrospreading dynamics of axisymmetric droplets

on smooth as well as structured solid surfaces.

6.3 Electrostatically assisted spreading

In this Section, we study the electrostatically assisted spreading (by utilizing the elec-

trowetting phenomenon) of conductive (aqueous) droplets on smooth as well as struc-

tured (even with arbitrary roughness) hydrophobic surfaces (θY = 114o). The e�ect of the
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(a)

50 m
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(b)

50 m
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1 mm

Figure 6.13: Geometric characteristics of (a) a concentric rings-structured and (b) an arbitrary
roughened topography. The roughness factor corresponds to rf = 2.21 for (a) and rf = 1.21 for (b),
respectively.

electric �eld is incorporated through an electrostatic pressure term, pel (see Section 5.2.1),

which acts on the liquid surface, with a negative contribution to the total pressure [17].

Themodi�ed normal stress component of the interface force balance (Eq. 3.4) thenwould

read:

∆p = τnn |liquid + γLA C + pLS − pel = 0. (6.8)

In the above, the electrostatic pressure, pel =
ǫ0 E2

2 , is calculated from the solution of the

electrostatics equations (5.3) in the air ambient and the solid dielectric, by accounting

for the boundary conditions 5.4-5.7 and without making any simpli�cation regarding the

droplet shape. Finally, similarly to the solution procedure presented in Section 3.2.3, the

set of Eqs. 3.3, 5.3 and 3.6 is discretized using the �nite element method and integrated

in time using the implicit Euler method. The extra unknown here is the electric �eld

distribution, u, around the droplet, as also described in the static electrowetting simula-

tions in Chapter 5. The above model has been implemented in COMSOL Multiphysics®

commercial software.

6.3.1 Glycerin droplet on a smooth substrate

We initially study the electrospreading dynamics of an conductive droplet on a smooth

solid dielectric substrate. In Fig. 6.12 we depict the normalized spreading radius just

after contact with the surface, Rs/R0, of (a) a water (ρ = 1000 kg/m3, R0 = 1.25 mm,

γLA = 0.072 N/m and µ = 1.002 mPa s) and (b) a glycerin droplet (ρ = 1261 kg/m3, R0 =

1.25 mm, γLA = 0.063 N/m and µ = 1.412 Pa s). The thickness of the dielectric material

(Te�on® coated silicon dioxide) is d = 50 µm and ǫd = 4.2 for both cases. By �tting

Eq. 6.1 to the computational results presented in Fig. 6.12, we observe that the spreading

exponent, α, and the prefactor, Ks, get higher values by increasing the electric potential

di�erence between the drop and the base electrode. Such an argument is in qualitative

agreement with electrospreading experiments of aqueous droplets on both hydrophilic
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Figure 6.14: Temporal evolution of the normalized contact radius of a glycerin droplet on dif-
ferent kind of hydrophobic substrates (smooth with the blue line, arbitrary roughened with the
red line and concentric rings-structured with the orange line) (see also Figure 6.13) for various
electrowetting numbers (η = 0, 0.25 and 0.48).
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(a)

(b)

Figure 6.15: (a) Electric potential, u, distribution of a spreading glycerin droplet on a concentric
rings-structured solid surface (at t = 5 ms in Fig 6.14c, with V = 300 V). A magni�cation of the
droplet pro�le in the vicinity of the solid surface is presented in (b).

and hydrophobic solid surfaces [18, 19].

6.3.2 Glycerin droplet on rough substrates

In this sectionwe examine the electrospreading dynamics on concentric rings-structured

as well as arbitrary roughened solid surfaces. The geometric details of these two cases

are demonstrated in Fig. 6.13. Our results, in Fig. 6.14, show that the topography of the

substrate strongly a�ects the capillary spreading dynamics (for η = 0). In particular, the

spreading on rough solid surfaces is found to be slower as compared to the spreading

on a �at solid surface due to viscous dissipation on the roughness protrusions. When

voltage is applied (η > 0), the role of the substrate morphology is downgraded since the

electrostatically enhancement of the liquid momentum lowers the e�ect of viscous dis-

sipation. Finally, the pro�le of an glycerin droplet spreading under the e�ect of electric

�eld, as well as a detailed view of the droplet shape close to the solid protrusions, at t =

5 ms is presented in Fig. 6.15.
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6.4 Summary and conclusions

Aiming to validate our augmented hydrodynamic model formulation (presented in Sec-

tion 3.2.3), we examined the dynamic behavior of a axisymmetric droplets spreading on

a horizontal surface. We found that when enhancing the micro-scale intrinsic roughness

of the solid surface, our results gradually converge to the experimental measurements.

Interestingly enough we demonstrated that local viscous forces, which are generated

at the solid surface roughness length scale, give rise to e�ective (macroscopic) shear

stresses resisting the droplet deformation. The above is accompanied with a substantial

energy loss at the outer contact line in the case of a roughened substrate, contrary to an

ideally smooth solid surface, as noticed by visualizing the local rate of energy dissipation.

By studying the initial spreading behavior of a droplet on highly complex -hierarchically

and/or chemically patterned- solid surfaces, we found that there always exists an inertia-

dominated, initial stage, where the contact radius evolution is independent of the under-

lying solid substrate complexity. During this time interval, the spreading dynamics can

be well approximated by a universal power law (Eq. 6.5). This argument is in remarkable

agreement with experimental observations performed by Stapelbroek et al. in a recently

published work[13]. After the initial spreading stage, the only factor that limits the dy-

namics is the viscosity of the liquid; this slow spreading regime can also be captured by

our model, in agreement with Tanner’s law [15]. The contact line dynamics of a droplet

spreading under the in�uence of electric �eld (by using the electrowetting phenomenon)

has been also examined. In particular, we observed that an increase in the voltage be-

tween the base electrode and the droplet induces a growth in the spreading exponent

of the power law (Eq 6.1), in qualitative agreement with experimental �ndings [19]. We

also, for a �rst time, investigated the e�ect of the solid roughness on electrospreading

dynamics. We found that the e�ect of solid topography on the spreading dynamics is

important at low voltages, however, the droplet motion is insensitive to the geometric

details of the substrate at high voltages.

Regarding the future perspectives of modeling, we note that our computations would

enable the derivation of an overall energy dissipation term (including all the micro-scale

dissipation phenomena taking place on the solid roughness) as a function of the outer

contact line velocity. Such a phenomenological approach, which is a subject of ongoing

research, could greatly simplify the computations since the complex roughness geome-

try could be replaced by a �at boundary featuring the same friction properties; di�erent

roughness scales can also be simulated in this way. These kind of approximations are al-

ready used inmodi�ed hydrodynamic models [20] as well as in phase-�eld computations

[21, 22], where the microscopic interactions at a contact line are incorporated through

a single friction parameter. The proposed modeling approach is however advantageous

over these methodologies when dealing with complex surface topographies.
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CHAPTER7
Passive droplet motion on asymmetrically

patterned surfaces

Asymmetrically patterned surfaces appear in many living organisms. An interesting ex-

ample is the ratchet-like structures of the Morpho aega butter�y wings which help to keep

water droplets away from its body, thus enhancing the �ying stability. Here, we investi-

gate the mechanisms of droplet motion on inclined as well as oscillated (horizontally or

vertically) asymmetrically structured substrates. Our results show that the imbalance of

capillary forces leads to a preferential direction of motion. In particular, the directionality

is regulated by the ratios of capillary retention forces (that impede movement) in opposing

directions. We demonstrate that the solid structure asymmetry can be exploited in order to

passively transfer droplets in miniaturized devices and we also perform a parametric study,

by varying the roughness parameters, in order to maximize the migration velocity.

7.1 Droplet actuation on asymmetric surfaces

As discussed in Section 1.2.3, the selection of the optimal actuation type for handling a

sessile droplet in lab-on-a-chip devices is of utmost importance for modern applications.

Several techniques have been proposed like the electrowetting e�ect [23] (see also Chap-

ter 5), thermocapillary convection [24], the Leidenfrost phenomenon (where a droplet

can levitate on a cushion of vapor when brought in contact with a hot solid) [25, 26]

or even acoustic �elds [27]. In addition, droplet handling can be achieved by a combi-

nation of vertical and horizontal substrate vibrations which result, due to their phase

di�erence, in the breaking of the droplet axial symmetry [28, 29, 30, 31]. Recently, it

has also been demonstrated that the uni-directional droplet transport can be facilitated

on surfaces featuring anisotropic wettability (with asymmetric micro-structures), even

if the micro-device is operating under non-stationary conditions [32, 33, 34, 35]. The

latter case actually requires only one driving oscillation, since the symmetry breaking

occurs due to the anisotropy of the solid substrate.

The concept of fabricating surfaces with anisotropic wettability originates from living

organisms. In particular, Zheng et al., in a milestone work [36], found that the wings of
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(a) (b) (c)
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R
0
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Figure 7.1: (a) Directional droplet motion (along the direction toward the corrugations tilt, RO)
on superhydrophobic butter�ywings (reprinted from [45]). Details of the asymmetric solid struc-
ture are presented in (b) (CC BY-SA 3.0). (c) Self-propelling ethanol droplet (with a radius R = 3
mm), moving in the direction opposing the corrugations tilt, on a hot ratchet (with temperature
350oC) (reprinted from [25]). The latter is known as Leidenfrost phenomenon, where the droplet
levitates on a cushion of its own vapor.

the Morpho aega butter�y are covered by asymmetric ratchet-like structures, exhibiting

directionally biased wetting. The above causes droplets deposited on the wings to roll o�

along the outward direction (and not toward its body), providing �ying stability for the

butter�y, which lives in the humid rainforest. A plethora of similar structure morpholo-

gies, that can directionally control the movement of droplets, have been also discovered

in living nature (e.g. shark and lizard skin, spider silk) [37, 38, 39], inspiring the design

of asymmetrically structured substrates in order to handle small amounts of liquid [40,

41, 42, 43, 44], as also discussed in Section 1.2.3 of Chapter 1.

Determining the preferable motion direction on an asymmetrically patterned surface is,

however, still an ambiguous issue in the literature, since it is a�ected by the local forces

applied in the vicinity of the contact lines. In particular, a droplet moves to the direction

toward the corrugations tilt on the butter�y wings [46] (see Fig. 7.1a, b) whereas it self-

propels to the opposite directionwhen deposited on a hot ratchet due to the vapor escape

below the droplet (Leidenfrost phenomenon [25]) (see Fig. 7.1c). In addition, opposing

motion directions of droplets on asymmetrically structured, vibrating substrates were

considered in published experiments [33] and simulations [35]. From the above it is

clear that di�erent driving forces may exist, originating from competing mechanisms.

In this Chapter, we aim to extend our understanding regarding the driving mechanism

and the dynamic behavior of a droplet on asymmetrically micro-structured substrates,

by using the proposed sharp-interface, continuum-level formulation. In particular, we

provide predictions regarding the migration velocity and the (dynamic) contact angle

hysteresis under the e�ect of gravity (by tilting the solid surface, as depicted in Fig 7.2a)

or a periodic force induced by oscillating the bottom plate either in the vertical (see

Fig 7.2b) or horizontal direction (see Fig 7.2c). The e�ect of the solid structure length

scale on the droplet motion is also investigated. Our goal here is to maximize the migra-

tion velocity of the droplet by understanding the role of the structure asymmetry on the

liquid transfer process. Such a task has a great practical importance in designing and
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(a) (b) (c)
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Figure 7.2: Schematic of a droplet: (a) sliding, and moving on a (b) vertically, or (c) horizontally
oscillated, asymmetrically structured substrate, where, A, is the oscillation amplitude and ω the
angular frequency (notice that droplet and surface features are not shown in the same scale).

optimizing modern miniaturized devices (see also Section 1.2.3 of Chapter 1).

7.2 Results

We begin our study by examining the �ow dynamics of a glycerin/water mixture droplet

(85% of glycerin, ρ = 1275 kg/m3, R0 = 1.5 mm, γLA = 0.07 N/m and µ = 116 mPa s)

sliding on inclined surfaces with di�erent topographies (both symmetrically and asym-

metrically structured). Then we study the e�ect of solid vibration on the movement of

droplets on asymmetrically structured surfaces. Here, we consider translational sym-

metry along a direction perpendicular to the xz-plane (see Fig. 7.2). Moreover, simi-

larly to the previous Chapter 6, the �ow problem is solved only for the droplet interior

(Q in Fig. 7.2). We have selected the glycerin/water mixture droplets (instead of water

droplets) so as to minimize the inertial e�ect and highlight the role of the solid surface

asymmetric structure. Considering that the disjoining pressure parameters (see Eq. 2.42)

do not signi�cantly a�ect the obtained results (the details of the disjoining pressure pro-

�le have a negligible e�ect on the droplet shape, as discussed in the sensitivity analysis

presented in Section C.3.2 and C.3.3 of Appendix C), we selected their values in accor-

dance with the previous Chapters (see 4 and 5), namely: C1 = 12, C2 = 10, σ = 9 × 10−3

and ǫ = 8 × 10−3. In addition, in order to account for the liquid-solid friction, even

on macroscopically smooth solid surfaces, we have selected a slip parameter value (see

Eq. 3.17) of the order of the scaled inverse minimum distance (R0/δmin), as also discussed

in Section 3.2.3 of Chapter 3. Speci�cally, βLS = 103. We note that the �ow dynamics

remain practically una�ected beyond this large βLS value, as demonstrated in [47] (in an

analogy to the converging curves of the spreading radius versus time, by increasing the

roughness factor in Fig. 6.3).

The heterogeneity of problems which are examined in the current Chapter (involving

sliding, and vibrated droplets) renders di�cult the de�nition of particular characteristic

quantities and thus we prefer to present the results of our simulations in dimensional

form. This is by no means restrictive since dimensionless groups are introduced where

deemed necessary to draw conclusions on the importance of di�erent physical mecha-

nisms. Finally, we note that a sensitivity analysis regarding the size of computational
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Figure 7.3: Unit structure of the di�erent substrate cases. The elementary corrugation of the
asymmetric surface (III) is a combination of the basic structure of the two symmetric surfaces (I,
II).

mesh can also be found in Section C.4.2 of Appendix C.

7.2.1 Droplet sliding on inclined structured surfaces

We initially examine the mobility of a droplet on two kinds of textured substrates, fa-

voring either the Wenzel (the droplet fully penetrates the micro-structure [48]) or the

Cassie-Baxter (air pockets are trapped in the micro-structure [48]) wetting state. In par-

ticular, as observed in Fig. 7.3, we consider:

1. a symmetrically structured striped surface (symmetric surface I) featuring smooth

protrusions of width w1 = 0.3 mm that favors the Wenzel wetting state,

2. a symmetrically structured striped surface (symmetric surface II) with mushroom

like cross-sectional shape that promotes the Cassie-Baxter wetting state. In this

case the width of the stripes, w2, is 0.18 mm.

The roughness factor, de�ned as the ratio of the actual over the apparent surface area,

is evaluated to be approximately equal to rf = 1.12 for the symmetric surface I and and

rf = 1.49 symmetric surface II, respectively. Our main objective, however, is to study

the droplet dynamic behavior on an asymmetrically structured surface. The asymmetric

surface is formed by merging the halves of each symmetric unit structure studied in our

previous work. Then a hybrid structure of width, w3 = 0.24 mm, arises (III in Fig. 7.3).

The height of the protrusions is identical for the three structures, h = 0.06 mm; Note that

the ratio of the height, h, over the initial droplet diameter, 2R0, is
1
50 . We also consider

that the solid material is hydrophobic (θY = 130o).
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Figure 7.4: Magni�cation of an equilibrium droplet pro�le on a solid substrate which promotes
(a) the Wenzel wetting state (symmetric surface I) and (b) the Cassie-Baxter wetting state (sym-
metric surface II).
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Figure 7.5: Equilibrium pro�le of a glycerin/water mixture droplet on an asymmetrically pat-
terned surface with θY = 130o.

Our computations showed that the liquid has impaled the solid roughness in the case of

symmetric surface II (see a magni�cation of the equilibrium droplet pro�le in Fig. 7.4a),

whereas the droplet sits on top of the protrusions minimizing the contact between the

liquid and the solid surface in the case of symmetric surface II (see Fig. 7.4b). Regarding

the asymmetric surface, we observe that the droplet rests on a Cassie-Baxter state (see

Fig. 7.5), where, however, the liquid meniscus between the protrusions is inclined (see

the inset of Fig. 7.5).

We continue by investigating the behavior of a droplet sliding on an inclined symmetri-

cally structured substrate. In particular, in a virtual experiment, starting from the equi-

librium state (at t = 0 the inclination angle is α = 0o) the droplet is inclined at α = 60o.

Naively, one would expect that the droplet mobility would decrease in the case of high

rf value since we would expect that viscous dissipation would be more enhanced on a

rougher surface. However, in Fig 7.6 we observe that the presence of air pockets trapped

in the solid structure (Cassie-Baxter wetting state) leads to an increased mobility of the

droplet as it slides on the inclined symmetric surface II. The above argument was also in

qualitative agreement with experimental observations [49]. Additionally, we also exam-

ine the dynamic behavior of a droplet sliding in the di�erent directions of an asymmet-

rically structured surface. In particular, we now tilt the left end of the substrate either
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Figure 7.6: Temporal evolution of the average x-component of the velocity for a glycerin/water
mixture droplet on di�erent kinds of solid surfaces. The two di�erent motion directions for the
asymmetric solid surface are presented with dashed lines of di�erent color (red - direction I, blue
- direction II). The unit structure of the di�erent surfaces is depicted in the right part of the �gure.
We note that the absolute value of the velocity is used in the case where the droplet is moving
in the negative direction (II).

upwards or downwards, as presented in Fig. 7.7. In the �rst case (for inclination angle

α = 60o) the droplet moves to the right (toward the direction of the corrugations tilt),

de�ned as direction I, whereas in the latter case (α = -60o) the droplet moves to the left

(opposite to the direction of the corrugations tilt), which is de�ned as direction II (see

also Fig. 7.3). Interestingly enough, in Fig 7.6 it is observed that the droplet exhibits

di�erent migration velocities, according to the direction of motion on the asymmetri-

cally structured substrate. An illustrative example is presented in Fig. 7.7, where, for the

same period of time (t = 0.1 s), the droplet has covered larger distance when moving in

the direction II. In particular, the droplet’s center of mass has been displaced by 5.25 and

6.35 mm when moving in the direction I and II, respectively.

By returning at Fig. 7.6, which presents the droplet migration velocity on the di�erent

solid substrate cases (symmetric surface I, II and asymmetric surface), we notice an ac-

celeration phase (sharp increase of the velocity) at early times (for t < 0.02 s) whereas

for later times (t > 0.07 s) the migration velocity reaches a plateau value. The observed

�uctuations of the velocity around the plateau value can be attributed to the pinning and

de-pinning of the contact lines on the substrate corrugations. In more detail, we observe

that the asymmetric surface behaves in a similar fashion with the symmetric surface

I (exhibiting stronger adhesion) when the droplet advances in the direction I, whereas

the dynamics compare to the ones of the symmetric surface II (facilitating the droplet

sliding) when the �uid moves in the direction II.
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Figure 7.7: Pro�les (at t = 0.1 s) of a glycerin/water mixture droplet, sliding on two di�erent di-
rections (a: forward and b: against the corrugations tilt) of an asymmetrically structured inclined
substrate.

7.2.1.a Preferable motion direction

In the previous Section, we have attributed the di�erence in the migration velocity, be-

tween the two symmetrically structured surfaces, to the presence of trapped air pockets

in the Cassie-Baxter state. However, in the case of asymmetric texturing the droplet is

always in the Cassie-Baxter state no matter whether it moves in the direction I or II (see

Fig. 7.7) and therefore the contact area between liquid and solid remains roughly the

same. Thus the preference in the motion direction has to arise due to the local forces ap-

plied in the vicinity of the solid surface. A study regarding the capillary retention forces

developed at the outer contact line of a droplet on asymmetric features has been per-

formed by Extrand [50]. In particular, it is calculated that the force resisting the droplet

motion, originated by the interfacial tension acting at the outer contact line of a sessile

droplet, is de�ned as:

Fi = k R0 γLA(cosθrec − cosθadv), (7.1)

where k is a prefactor which depends on the shape of the outer contact line, θadv and

θrec are the macroscopically observed advancing and receding contact angles of the

droplet, respectively (see Fig. 7.7). In our simulation the capillary forces are predom-

inant against the viscous forces (the capillary number is below unity, Ca = µu∗

γLA
= 0.2,

where u∗ =
√

‖g‖R0 is a characteristic velocity) therefore the capillary net force that

resists the droplet motion on the di�erent directions should be critical. Furthermore, the
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Figure 7.8: Advancing and receding contact angles of a glycerin/watermixture droplet sliding on
an inclined (α = 60o) asymmetrically structured surface. The solid lines correspond the direction
coinciding the corrugations tilt (I) whereas the dashed lines correspond to the opposite direction
of motion (II). The mean value for each advancing and receding contact angles is also presented.

advancing and receding contact angles can be easily predicted by our proposed scheme

as shown in Fig. 7.8. In particular, the slope of the droplet surface is evaluated, against

the inclined plane, at a �xed distance (y = 1 × 10−2R0) from the substrate, where the

action of the disjoining pressure has been e�ectively vanished (see also Fig. C.6, of Ap-

pendix C.3.2, for the advancing and receding contact angles of the symmetrically struc-

tured surfaces I and II). Even though the dynamic contact angles exhibit �uctuations

(due to the pinning-depinning of contact lines on the substrate corrugations), our results

show that the mean contact angle hysteresis, ∆θ (the di�erence between the advancing

and the receding contact angles) is smaller when the droplet slides in the slippery di-

rection (II). In particular ∆θI = θadv(mean)I − θrec(mean)I = 158.4o - 104.2o = 54.2o, whereas

∆θII = θadv(mean)II − θrec(mean)II = 154o - 109.3o = 44.7o. Therefore, the retention capillary

force in direction I, FI, signi�cantly exceeds the one in the opposite direction, FII, and

their ratio is FI
FII
= 1.23 (the values of FI, FII are calculated by using Eq. 7.1). We note

that the preferred motion direction predicted here is in line with the theoretical work

of Extrand [50], as well as the experimental works of Buguin et al. [33] who studied

droplets moving on vibrated asymmetrically structured substrates, and Contraires et al.

[51] who considered droplets growing asymmetrically on asymmetric asperities.

7.2.1.b Surfactant-bearing droplet

According to the above, it would be expected that a change in the capillary forces magni-

tude (e.g. by using a surfactant to lower the surface tension) would a�ect the preferable

motion direction of the droplet on the asymmetrically structured substrate. It order
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Figure 7.9: Temporal evolution of the average x-component of the velocity for a surfactant-
bearing glycerin/water mixture droplet on di�erent kinds of solid surfaces.
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Figure 7.10: Snapshots of a surfactant-bearing (gray line) versus a normal (black line) glyc-
erin/water mixture droplet, sliding (α = -60o) in the direction II of the asymmetric surface, at
t = 8.5 × 10−2 s.
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to examine this situation, we calculate the migration velocity of a surfactant-bearing

droplet (γLA = 0.014 N/m, which corresponds to a capillary number, Ca ≈ 1) sliding on

each of the previously studied substrates (the symmetric I, II and the asymmetric one).

Speci�cally, in Fig. 7.9 we plot the temporal evolution of the average x-component of

the droplet velocity. Interestingly enough, we observe that the migration velocity is vir-

tually the same for all the substrate cases. The above argument cannot be attributed to

the change of the wetting state (i.e. from Cassie-Baxter to Wenzel state) since the liquid,

on the asymmetrically patterned surface, is still suspended above the solid protrusions,

as can be observed in Fig. 7.10. Such a conclusion is important for selecting suitable liq-

uids in cases where a directional droplet motion is required. In particular, a low surface

tension liquid seems to be inappropriate.

7.2.2 Droplet on a vibrated asymmetrically structured surface

Although that transferring droplets on tilted substrates has a practical importance in

some applications (e.g. fog harvesting [52]), the active control of the droplet migration

velocity (e.g. in lab-on-a-chip devices) requires an external stimuli. Such an actuation

can be achieved by applying horizontal or vertical forced oscillations on the solid sub-

strate.

7.2.2.a E�ect of the vibration frequency

The e�ect of several parameters (frequency, direction, amplitude of the oscillation,

length scale of the solid texture) on the droplet motion is investigated in this Section.

We initially consider a droplet on an asymmetrically structured substrate subjected to a

forced sinusoidal vibration either at the vertical or the horizontal direction. The position

of the solid substrate for each of the two cases is described by the following equations:

z = z0 − A sin(ωt), (7.2a)

x = x0 − A sin(ωt), (7.2b)

where x0, y0 are the positions at t = 0; A is the oscillation amplitude and, ω, denotes

the angular frequency. In order to maximize the e�ect of vibration on the liquid droplet

motion and to minimize the energy damping, it is reasonable to set the frequency, f =

ω/2π, to the resonance frequency of the system [53]. It is well known that the resonance

frequency strongly depends on the droplet size and the liquid properties [54]. Moreover,

in the case of a supported droplet on a structured substrate the resonance frequency

depends on the detailed equilibrium droplet shape on the corrugated surface (it has been

demonstrated that several equilibrium droplet shapes can be accommodated on a certain

structured substrate [55]). The above requires detailed computations of the statics and

dynamics of the droplet on such a complex solid surface.
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Figure 7.11: Maximum contact angle variation as a function of the frequency of the horizontal
vibration. The semianalytical prediction of Celestini et al. [56] for the resonance frequency is
presented with the dashed line (see Eq. 7.3).
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Figure 7.12: Maximum aspect ratio of the droplet pro�le as a function of the frequency of the
vertical vibration. An analytical prediction for the resonance frequency, proposed by Lamb [57],
is depicted with the dashed line (see Eq. 7.4).
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Here, we detect the resonance by computing the dependence of the deformation of the

droplet on the applied frequency. A simplemeasure of the deformation for the horizontal

oscillations is the maximum di�erence between the right and the left contact angles (see

Fig. 7.11); for vertical oscillations we select the aspect ratio of the droplet pro�le (see

Fig. 7.12). Therefore, by using a small oscillation amplitude (A = 0.075 mm) we calculate

that the maximum deformation appears at fres, h = 16.1 Hz for the horizontal and fres, v

= 45.05 Hz for the vertical vibrations. At this point, it would be interesting to test our

predictions against the existing theoretical models.

For predicting the resonance frequency of horizontally vibrated droplets Celestini et

al. [56] proposed a semianalytical expression. In particular, by using a simple oscilla-

tor analogy they concluded that the resonance angular frequency of a two-dimensional

droplet under the in�uence of horizontal vibrations is estimated by:

ω0 =

√

6 γLA h(θY)

ρ (1 − cosθY) (2 + cosθY)
R
−3/2
0 , (7.3)

where the function h(θY), which is computed by static simulations, incorporates the

e�ect of droplet deformation [56]. The agreement between our simulation and the pre-

diction of Celestini et al. (see Fig. 7.11) corroborates to the reliability and accuracy of

our scheme. Unfortunately, there is no such formula for the vertical vibrations case,

however, our results can be roughly compared with a general expression, proposed by

Lamb [57], for the n-tn vibration mode of a three-dimensional free liquid droplet:

ωn =

√

n (n − 1) (n + 2) γLA

ρ R0
3

. (7.4)

The fundamental frequency (n = 2) predicted by Eq. 7.4 deviates from our computations

(see Fig. 7.12) due to the contribution of pinning e�ects of the contact lines that were

obviously not taken into account in the theoretical work of Lamb [57].

7.2.2.b E�ect of the vibration direction

We have already shown that the asymmetric structure may set a preferential direction

of motion in the case of gravity driven droplet migration. A question that may arise

is whether it is possible to exploit the asymmetric features in order to set a droplet to

motion by applying either vertical or horizontal vibrations. In Fig. 7.13 we present the

temporal evolution of the droplet’s center of mass (the horizontal position), xcm, as a

function of oscillation direction and amplitude. The forced frequency for each case corre-

sponds to the resonance ( fres), as calculated in the previous Section for a glycerin/water

mixture droplet. Note that in order to depict both cases of horizontal and vertical vi-

brations in a single graph, and given that the oscillation frequency di�er (16.1 Hz for

the horizontal and 45.05 Hz for the vertical vibrations, respectively), time is expressed
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for di�erent vibration directions (horizontal and vertical) and magnitudes, A. The normalized
time is de�ned as t/Tres where Tres is the oscillation period which corresponds to the resonance
(Tres =

1
fres

). An average value of the droplet’s center of mass , for A = 0.375 mm in the case of
horizontal vibrations, is presented by the black dotted line.

here in dimensionless units. It is observed that for small oscillation amplitude (A = 0.15

mm) the droplet deforms but does not move along the substrate (see Fig. 7.13). However,

for a vibration amplitude larger than the width of the solid protrusions (A = 0.375 mm

> w3 = 0.24 mm) the liquid moves to the direction opposing the corrugations tilt (di-

rection II). The motion direction here conforms to the preferable sliding direction when

the asymmetrically structured solid surface is tilted (see previous Section).

Although that the liquid moves to the same direction for both horizontal and vertical

substrate oscillations, the dynamic behavior of the droplet changes signi�cantly. In par-

ticular, as observed in Fig. 7.13, the displacement of the center of mass is smoother

in the case of vertical oscillations, whereas it is distorted (exhibits �uctuations) when

the substrate is vibrated horizontally. Moreover, in contrast with the vertical oscillation

case where the droplet starts to migrate almost immediately at t = 0, the droplet starts

to move after a certain time interval (e.g. ∼ 5 periods (5Tf), for the speci�c solid struc-

ture) in the case of horizontal vibrations. Interesting observations can also be made by

zooming at the droplet shape near the solid surface. In particular, in Fig. 7.14 we present

di�erent snapshots of the droplet (for t = 7.5Tf and 9Tf, where Tf = Tres for each case)

by applying horizontal and vertical forced vibrations. Note that in both time instances

(t = 7.5Tf and 9Tf) the solid substrate is at the same position although the acceleration

direction is opposite. It is observed that in the case of horizontal oscillations the droplet

sits on top of the protrusions, minimizing the contact area between the liquid and the

solid phases (Cassie-Baxter state). On the other hand, the picture is di�erent for the

vertical oscillations where the liquid fully penetrates the solid asperities (Wenzel state).
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Figure 7.14: Snapshots of a glycerin/water mixture droplet moving on an asymmetrically struc-
tured solid surfacewhich is vibrated (a) horizontally and (b) vertically on the resonance frequency
for each case. A magni�cation of the droplet pro�les, close to the solid surface, is presented in
the insets.

In particular, the higher momentum developed in the y-direction facilitates the collapse

from Cassie-Baxter to Wenzel state. The migration velocity is expected to be lower in

this case since it is known that Wenzel wetting states exhibit high friction and thus low

droplet mobility [49]. Such a behavior can be actually observed in Fig. 7.13, where the

droplet migrates faster in the case of horizontal vibration (black dotted line). The dif-

ferent rate in the energy dissipation may also be responsible for this discrepancy (the

droplet deforms to a greater extend in the case of vertical vibrations). A detailed analysis

regarding the energy dissipation rate will be presented in the following Section.

7.2.2.c E�ect of the vibration amplitude

We have shown that a droplet migrates uni-directionally on an asymmetrically struc-

tured surface when the oscillation amplitude is larger than a threshold value, however it

is important to better understand the factors that a�ect the droplet migration velocity.

In Fig. 7.15 we depict the mean value of the droplet migration velocity (computed in the

interval of two oscillation periods) for di�erent amplitudes. In particular, the mean ve-

locity is estimated by umean =
δxmean
8Tf−6Tf , where δxmean is the displacement of the droplet’s

center of mass in the time interval between the 6th and the 8th oscillation periods, when

the droplet has reached a virtually constant velocity (see also Fig. 7.13).

As observed in Fig. 7.15, the mean droplet velocity is very sensitive to the vibration

amplitude. In particular, we observe four di�erent regimes:

(I) For low vibration amplitudes (A < 0.2 mm) the external force is not enough to
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surpass the static hysteresis and thus no motion is detected.

(II) Exceeding a vibration amplitude threshold (A = 0.24 mm for the horizontal and

0.32 mm for vertical oscillations, respectively) the friction in direction II (opposing

the corrugations tilt) is surpassed and the droplet migrates with a mean velocity,

umean. The latter is observed to increase linearly with the amplitude.

(III) As the amplitude further increases, the vibration gets so intense that the contact

angle hysteresis can be surpassed in both directions. The above results to a de-

crease in the average droplet velocity. The critical amplitude, Acrit, where the mi-

gration velocity is maximal, is equal to 0.375 mm for the horizontal vibration case.

On the other hand it ranges from 0.34 mm to 0.41 mm for the vertical oscillations.

A similar behavior, where the migration velocity is reduced for large vibration am-

plitudes, has also been reported experimentally [33] which strengthens the validity

of our simulations.

(IV) Finally, the mean velocity is stabilized for larger vibration amplitudes.

Considering that during an oscillation period, Tf, the droplet moves along a number

of solid unit cells, nuc, the average velocity equals to: umean =
nuc w3

Tf
, where w3 is the

width of the unit cell structure of the asymmetric substrate (see Fig. 7.3). Consequently,

when the migration velocity is maximal (8 mm/s for the horizontal and 10.8 mm/s for

the vertical vibration) the droplet is shifted by two solid structure corrugations for the

horizontal and one for the vertical oscillations. Given that the lateral displacement of

the droplet by one corrugation requires overcoming an energy barrier [58] (constant for
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Figure 7.16: Surface integral of the energy dissipation function, φ, during an oscillation cycle
(from t = 7Tf to t = 8Tf), for both horizontal and vertical vibration cases.

both vibration cases), we would expect that the peak potential energy of the droplet is

larger in the case of the horizontal vibration. This is not the case though: by evaluating

the peak potential energy, Etot , per unit mass, Mdroplet, at A = Acrit and f = fres:

Etot

Mdroplet
= π f 2res A2

crit, (7.5)

we conclude that the peak energy of the vertical is considerable higher compared with

the horizontal vibrations, Etot, ver

Etot, hor
= 7.83 (we considered an average value of Acrit = 0.375

mm for the vertical vibration case). The lateral displacement per cycle, however, is

smaller in the �rst case. An explanation for this behavior can be derived by examin-

ing the energy dissipation for both vibration cases.

In Fig. 7.16 we present the surface integral, over the entire droplet cross-sectional area,

Adroplet, of the dissipation function, φ, which reads in cartesian coordinates [12]:

φ = τ : ∇u = 2 µ

(

dux

dx

)2

+

(

duz

dz

)2 + µ
[(
dux

dz

)

+

(

duz

dx

)]2
. (7.6)

It is clear, from our results, that the rate of dissipation is substantially larger in the case

of vertical vibrations. This is also evident by looking at the droplet deformation for the

two cases (see Fig. 7.14). In particular, the total energy, per unit depth of the droplet,

consumed during a cycle is: Ediss, hor =
∫ 8Tf
7Tf

!

Adroplet

φ dx dz dt = 5.05 × 10−5 J/m and

Ediss, ver = 2.34 × 10−4 J/m for the horizontal and vertical oscillations, respectively.
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7.2.2.d E�ect of the structure length scale

Useful conclusions can be derived by proportionally modifying the size of the solid struc-

ture unit cell. In particular, in Fig. 7.17 we present the dependence of the mean droplet

velocity on the texture scale factor, s. We consider that the basic case, studied in the

previous Sections, where w3 = 0.24 mm and h = 0.06 mm (see Fig. 7.3), corresponds to a

scale factor, s = 1. In the studied cases, the width the asymmetric structure (w3) ranges

from 0.18 mm (s = 0.75) to 0.3 mm (s = 1.25) and the height (h) from 0.045 mm to 0.075

mm, respectively. The frequency of each vibration is set to the corresponding resonance

which is evaluated as described in Section 7.2.2.a, for each case.

Initially, in the case of vertical forced vibrations (Fig. 7.17a) and small oscillation ampli-

tudes, we observe that the mean velocity of the droplet increases with the scale factor

of the solid structure. By further increasing the amplitude, we observe that the mean

velocity is at �rst stabilized but then decreases sharply, for very high amplitude values.

An interesting note here is that the interval of amplitudes, where the mean velocity of

the droplet has a constant value, shrinks by increasing the structure scaling. Thus, the

smaller the scale factor is, the more insensitive is the migration velocity to the oscillation

amplitude. We also remark that the maximal migration velocity is higher for larger solid

structure length scale.

On the other hand, in the case of horizontal vibrations (Fig. 7.17b), we detect a sharp

maximum of the migration velocity at a speci�c amplitude value (for A = Acrit) (in con-

trast with the interval of possible amplitudes, observed at the vertical vibrations). Fur-

thermore, we remark that this critical value of the amplitude (Acrit) is a non-linear func-

tion of the structure scaling (i.e. Acrit decreases from 0.725mm to 0.375mm as the texture

scale grows from 0.75 to 1 and then increases again to 0.65 mm for the larger structure

scale, s = 1.25). The above behavior can be attributed to the fact that the anisotropic

wetting properties gradually fade when reducing the structure scaling, thus requiring a

larger oscillation amplitude to start the droplet motion in a certain direction. The latter

depends on the maximum di�erence between the right and the left contact angles (see

Eq. 7.1) which is observed to reduce, for a static droplet, as the structure size is shrunk

(from ∆θ = 2o, at s = 1.25 to ∆θ = 0.2o, at s = 0.75). In addition, large amplitude is also

required when the structure scale is magni�ed, since the droplet needs to be deformed

to a greater extend in order to migrate. Therefore, �ne tuning the amplitude of the hori-

zontal oscillations, for an e�ective droplet migration in experimental practice, seems to

be a tedious task, unless a predictive model for the droplet behavior, as the one described

here, is employed.

An overall picture can be obtained by plotting, in Fig. 7.18, the maximum migration

velocity of the droplet, |umean (max) |, as a function of the solid structure length scale, s.

Interestingly enough, it is observed that the migration velocity increases linearly with

the texture scale factor for the vertical vibration case. The above behavior is attributed

on one hand to the larger distance covered by the droplet during a cycle (since the space
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Figure 7.17: Absolute value of the average droplet migration velocity on substrates with di�er-
ent structure scale factor subjected to (a) vertical and (b) horizontal vibrations. The oscillation
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between the protrusions is increased), and on the other hand to the ampli�ed e�ect of the

unbalanced capillary retention force at the outer contact line. Furthermore, in the case

of horizontal vibrations the migration velocity is not a�ected by changing the structure

scale factor. Such a behavior may be attributed to the limited droplet deformation in this

case, in contrast with the vertical vibrations (see also Fig. 7.14). The same analysis is

performed for the resonance frequency (see the inset of Fig. 7.18) which also seems to

change slightly with the length scale of the solid structure.

7.3 Summary and conclusions

In this Chapter, we focused on cases where the droplet motion was induced either by

tilting or vibrating asymmetrically structured substrate. In the case of a sliding droplet,

we demonstrated that an asymmetrically structured surface can reproduce two kinds of

wetting behaviors: slippery behavior (resembling the Cassie-Baxter regime), when the

substrate is tilted downward (for α < 0o) and sticky behavior (resembling the Wenzel

regime), when the substrate is tilted upward (for α > 0o). This is attributed to the un-

balanced capillary retention force at the outer contact line. Thus, in cases where the

capillary e�ect is weakened (e.g. for a surfactant-bearing droplet) we observed that the

anisotropic friction behavior fades.

We have also examined cases where the droplet movement is induced by a forced vi-

bration of the solid substrate. Once again the droplet follows the direction prescribed
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by the capillary forces (opposing the corrugations tilt), after a threshold value of the

oscillation amplitude has been surpassed. Moreover, we have found that the migration

velocity is maximal for a certain oscillation frequency and amplitude values (at f = fres

and A = Acrit). Finally, we have demonstrated a link between the droplet migration ve-

locity and the length scale of the solid structure. In particular, when applying vertical

vibrations, the migration velocity is appeared to be a linear function of the texture scale

factor. This is not the case, however, when the droplet is set to motion by horizontal

vibrations. In the latter situation the migration velocity is not considerably a�ected by

the structure scale factor.

Regarding the future perspectives, in order design more e�ective asymmetric structures

that promote the uni-directional liquid motion, it would be extremely useful to evaluate

the energy barriers (see Section 4.2.5) for the motion outset of a droplet in opposite di-

rections (opposing and coinciding the corrugations tilt). Such a task requires to solve the

augmented Young-Laplace equation (see Section 2.2.4) while, however, disregarding, due

to the asymmetric substrate, any mirror symmetry conditions at the droplet’s apex and

base. More information about our ongoing research will also be presented in Chapter 9.
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CHAPTER8
Concluding remarks

In this Chapter we summarize the research presented in the Thesis and we discuss the impact

of this work in both �elds of applied and theoretical research. Brie�y, our original contri-

bution to knowledge is a novel, continuum-level, sharp-interface modeling approach which

gave us the ability to study a plethora of wetting phenomena, ranging from equilibrium

wetting states to droplet motion, on structured solid surfaces. Such a study would have been

infeasible, up to now, with the conventional modeling approaches which either are failing

to adequately describe the complex behavior of a droplet on a rough substrate, or being too

expensive, in terms of computational cost, for real-life applications with millimeter-sized

droplets.

8.1 Summary of the Thesis

In this Thesis, we proposed a novel, continuum-level, sharp-interfacemodeling approach

which has been shown to be particularly e�cient in cases where the conventional for-

mulations fail, i.e. in the modeling of multiple static or dynamic contact lines of entire

droplets. In particular, the simplest and most e�cient computational approach for the

determination of equilibrium wetting states, i.e. the solution of the Young-Laplace equa-

tion [1, 2], is of limited applicability for the computation of droplets wetting geometri-

cally heterogeneous surfaces. The same applies also for the dynamic simulations where

the conventional models are based on the Cox equation [3] (a condition that relates the

velocity of a contact line with the dynamic contact angle). The above limitations origi-

nate from the a priori unknown number and position of the three contact lines (where

the three di�erent phases, liquid, ambient, solid, meet), where the Young contact angle

boundary condition has to be applied. The main advantage of our proposed methodol-

ogy is that it avoids the implementation of any explicit boundary condition at the con-

tact line(s) by treating the liquid-ambient and the liquid-solid interfaces of the droplet

in a uni�ed framework. The solid-liquid boundary condition has now been replaced by

micro-scale liquid-solid interactions, via a disjoining (or Derjaguin) pressure term [4],

which act in close proximity to the solid. By using the above formulation we can suc-

cessfully model the statics and dynamics of entire droplets (e.g. the droplet shape, the
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velocity of the contact line(s), the dynamic contact angle) on any kind of geometrically

or chemically structured solid surface.

After validating our methodology against the conventional modeling approach for static

cases (Young-Laplace equation) as well as against a conceptually di�erent mesoscopic

lattice-Boltzmann model, we have for a �rst time managed to e�ectively predict multi-

ple meta-stable equilibrium wetting states on patterned substrates. Moreover, we have

easily computed the energy barriers required for wetting transitions between the well-

known Cassie-Baxter (where air pockets are trapped in the solid structure) and Wenzel

(the liquid fully wets the solid structure) states (see Chapter 4 as well as the correspond-

ing published works [5, 6]). We note that �ne scale computational approaches, such as

molecular dynamics [7, 8] and mesoscopic lattice-Boltzmann models [9, 10, 11], com-

monly used for the same task, demand prohibitively higher computational resources.

By solving the equations of electrostatics, along with the augmented Young-Laplace, we

have also successfully simulated the electrowetting phenomenon (where the solid wetta-

bility is electrostatically enhanced) on structured substrates, deriving useful conclusions

regarding the mechanism of Cassie-Baxter to Wenzel wetting transitions. The electric

�eld e�ect is incorporated in this case through an electric stress term accounting for the

electric forces exerted on the droplet surface. Our results indicate that the microscopic

(Young) contact angle, as well as the local mean curvature of the droplet in the vicinity

of the solid surface, vary with the applied voltage, for adequately thin (6 10 µm) solid di-

electrics (see Chapter 5 as well as the corresponding published work [12]). Based on the

above conclusion, we have experimentally performed real-time tuning of the wettabil-

ity on superhydrophobic surfaces, which will be demonstrated in the following Chapter

(Section 9.1). To our opinion, the potential applications of such a technique are abundant

in lab-on-a-chip devices.

The proposed formulation was also utilized to perform dynamic simulations of droplets

spreading on geometrically complex substrates -an essentially tedious task for conven-

tional hydrodynamic models- showing exceptional agreement with experimental mea-

surements. In this case, we have also observed that the no-slip boundary condition de-

rives implicitly due to the viscous dissipation on the solid asperities, even though no

tangential forces are explicitly imposed. This conclusion is in accordance with the theo-

retical work of Richardson [13] and Jansons [14]. Moreover, the study of the early droplet

spreading stage on hierarchically structured, as well as on chemically patterned, solid

substrates revealed an inertial regime where the contact radius of the droplet with the

solid grows according to a universal power law, in agreement with recently published

experimental �ndings (see Chapter 6 as well as the corresponding published works [15,

16]). We have also studied the droplet dynamics under the e�ect of electric �eld (elec-

trospreading), which is commonly observed in practice, in lab-on-a-chip devices.

Finally, we have investigated the uni-directional droplet motion mechanism on asym-

metrically patterned surfaces, inspired by the wings of the Morpho aega butter�y [17].
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We have found that the uni-directional motion is strongly connected with the capillary

forces at the outer contact line, thus the anisotropic wetting properties vanish as we re-

duce the surface tension of the droplet. We demonstrated that the structure asymmetry

can be exploited in order to passively transfer a droplet by vibrating the solid surface,

either vertically or horizontally. In addition we have performed a full parameter space

investigation in order to improve the e�ciency of the droplet displacement (e.g. increase

the migration velocity of the droplet) (see Chapter 7 as well as the corresponding pub-

lished work [18]).

8.2 Impact on potential applications

As described in Chapter 1, the proper surface patterning design can dramatically change

the wetting properties of a solid surface (e.g. can render a slightly hydrophobic mate-

rial as super water-repellant like the lotus leaf). Thus when designing surfaces with

desirable and even switchable wettability, the surface patterning is of great importance.

There are several studies that deal with optimizing the solid surface structure shape in

order to obtain desirable wetting properties (e.g. by utilizing lattice-Boltzmann [19, 20]

of continuum-level modeling approaches [21, 22, 23]). Our proposed methodology, how-

ever, seem advantageous over these approaches, since the computational requirements

are quite lower than the lattice-Boltzmann models while the disengagement from the

contact angle boundary condition distinguish ourmethod between the other continuum-

level approaches. The presented methodology can be readily applied to any kind of solid

surface topography (or even chemically patterned) for understanding the e�ect of geo-

metric characteristics on static and dynamic wetting behavior. The study of the active

control of the droplet motion, by utilizing electrowetting phenomenon, is also an im-

portant feature of the proposed methodology. Several other actuation techniques, used

in micro�uidic applications, can also be readily incorporated in our modeling approach

(e.g. thermocapillary migration, magnetic forces) as will be discussed in Section 9.3. The

proposed formulation can even become more realistic by studying droplets resting on

three-dimensional structured surfaces (see also the Section in the following Chapter) and

by using more precise formulations of disjoining pressure pro�les, i.e. with experimen-

tal force-distance isotherms, obtained from atomic force microscopy (AFM) [24]. Note

that, however, the macroscopic droplet behavior, predicted by our model, seems to be

virtually insensitive to the exact value of the disjoining pressure parameters (e.g. C1, C2,

σ and ǫ , from Eq. 2.42) beyond a certain threshold (see also the sensitivity analysis is

Section C.3 of Appendix C).

The model proposed in this Thesis, paired with optimization algorithms (e.g. gradient

methods [25] or genetic algorithms [26]), can suggest the proper surface roughness ge-

ometry, in order to obtain certain apparent wettability and friction properties for the

substrate, to facilitate (or prevent) the switching between Cassie-Baxter and Wenzel
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wetting states and to directionally transfer droplet in lab-on-a-chip devices. The ra-

tional design of novel synthetic surfaces could contribute to the facing of contemporary

engineering challenges (see also Section 1.2 of Chapter 1), such as freshwater shortage

in arid areas (by using optimized fog harvesting surfaces inspired by the desert beetle),

fuel economy in marine and airline industry (by reducing the drag on ship and airplane

hulls with micro-structures inspired by the Salvinia molesta leaf) as well as better diag-

nostic technologies in developing countries (by using inexpensive lab-on-a-chip medical

devices).

8.3 Impact on theoretical research

Apart from the bene�ts in the technological applications discussed above, our detailed

simulations can also shed light to several physical mechanisms and explain experimental

�ndings that cannot be clari�ed by the conventional theoretical models. In particular, in

Chapters 4 and 5 we demonstrated the existence of multiple meta-stable wetting states

on structured solid surfaces. Although meta-stable equilibrium states had been exper-

imentally observed [27], the systematic study of the solid structure topography on the

energy barriers (the minimum amount of energy required of a transition between meta-

stable states) could not be performed, up to now. Moreover the fact that the dynamic

contact angle derives implicitly in our simulations, as a result of the viscous dissipation

above the arbitrary roughness of a solid surface (see Chapter 6), is a more sensible and

accurate mechanism than using an explicitly imposed friction at the three-phase contact

line(s). Obviously, the latter does not account for the exact solid surface topography. In

addition the results presented in Chapter 7 can be extremely important for illuminating

the onset of droplet motion on asymmetrically structured substrates. We note that this

topic is still unclear and controversial in the literature [28, 29]. The derivation of such

results would of course not have been possible by using the conventional Young-Laplace

and hydrodynamic modeling approaches.
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In this Chapter, we present the future perspectives of our research which are focused on four

directions: (a) experimental validation of our model’s predictions (e.g. the real-time tuning

of the wettability of structured surfaces, based on electrowetting simulations presented in

Chapter 5), (b) simulation of 3D droplets, (c) modeling of alternative droplet actuation tech-

niques (thermocapillary convection, magnetic forces) on patterned solid substrates and (d)

multi-scale modeling approaches so as to incorporate more realistic liquid-solid interactions.

9.1 Reversible wetting transitions on supehydrophobic sur-

faces

9.1.1 Theoretical establishment

As mentioned in Chapter 5 electrowetting is only e�cient when applied on horizontal-

smooth surfaces, on which only a limited range of apparent wettabilities is attain-

able, due to the constraints imposed by the material wettability (not exceeding 120o

in common hydrophobic materials) and the contact angle saturation phenomenon [30],

which prevents apparent contact angle values from dropping below a certain value

(∼ 60o). When electrowetting is applied on a structured surface it can be e�cient only

uni-directionally, and in particular inducing transitions from super-hydrophobicity to

hydrophilicity [31]; however, driving the reverse de-wetting transition is not feasible

through voltage reduction or even by completely switching o� the voltage application,

thus, strong external actuations (e.g., thermal shocks [32]) are often required. These ir-

reversibilities occur when a droplet undergoes a collapse transition from a Cassie-Baxter

state (where air inclusions are trapped between the droplet and the solid structure) to

a Wenzel wetting state (where the liquid fully impales the solid roughness). The latter

corresponds to a local minimum of the free energy landscape, suggesting that an energy

barrier has to be surpassed for a reverse de-wetting transition [6].

Several attempts have been made to prevent collapse transitions (Cassie-Baxter to Wen-

zel) on a structured surface subjected to electrowetting. In particular, Lapierre et al.
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[33] achieved a small ranged contact angle reversibility interval (160o - 130o) by using

specially designed substrates covered by two layers of packed silicon nanowires. Nev-

ertheless, their poor mechanical properties, as well as their fairly complex fabrication

technique render these substrates inappropriate for applications outside the laboratory.

Later, Barberoglou et al. [34] demonstrated an electrowetting induced reversible contact

angle modi�cation on structured surfaces, which have been produced by laser irradia-

tion. Although the reversibility range appears to be slightly wider in this case (140o -

108o), it is obscure whether the droplet at the �nal (reverted) state exhibits high mobility,

which is the second requirement for superhydrophobicity. The wettability modi�cation

cannot be termed reversible if the above criterion is not met.

Here, guided by the detailed computations presented in Chapter 5, we experimentally

verify that a fully reversible wettability tuning on superhydrophobic surfaces is possible

when the dielectric thickness is su�ciently large, regardless of the topography of the

structured solid. In particular, it was shown, in Section 5.2.3, that the local mean curva-

ture of the droplet pro�le at the contact line (the droplet has a single contact line in this

case since the substrate is smooth) exhibits strong dependence on the applied voltage

when the solid dielectric layer is relatively thin (6 10 µm) (see Fig. 5.7). Dielectrics of

such a thickness are typically used in electrowetting experiments. Surprisingly enough,

it was also found that when using a thicker dielectric layer (> 50 µm), the mean curva-

ture of the droplet pro�le remains virtually una�ected as the applied voltage increases.

This behavior can be explained considering that the electrostatic pressure, acting on the

droplet surface with a local negative contribution to the total pressure, is active at a

length scale proportional to the thickness of the dielectric layer. When the dielectric

layer is thin, the electrostatic pressure contribution is concentrated at the vicinity of the

contact line, leading to a signi�cant increase of the droplet local curvature. On the other

hand, in the case of a thick dielectric layer, the electrostatic pressure contribution is scat-

tered, resembling droplet compression experiments where a pressing force is applied to

the entire droplet captured between two parallel plates [35].

The above could interpret experimental observations where specially designed, highly

wetting resistant structured surfaces (e.g. with inverse-trapezoidal structures), cannot

resist to a collapse transition, when subjected to electrowetting experiments (see e.g. [31,

32]), since the localized increase in the droplet curvature results in the liquid impalement

into the solid roughness. Instead, we suggest that scattering of the electrostatic force

along the droplet surface by using thick dielectric layers, would prevent the increase of

the local curvature at the contact lines, which concomitantly would inhibit the liquid

impalement into the solid roughness. Such a �nding, that the only important require-

ment for contact angle reversibility is the thickness of the dielectric layer, regardless the

speci�cs of the solid structure geometry, can be signi�cantly useful for lab-on-a-chip

applications. The above argument is next experimentally veri�ed by demonstrating re-

versible wettability transitions on superhydrophobic surfaces.
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(a) (b)

Figure 9.1: (a) SEM image of the solid surface topography displaying submicron (quasi-)ordered
pillar arrays fabricated on the thin dielectric layer (400 nm TEOS and a 1 µm PMMA) and on the
75 µm SU8 �lm. (b) SEM image of the random micro-nanotextures fabricated on the 188 µm COP
�lm. Scale bar = 1 µm.

9.1.2 Electrowetting experiments

Three di�erent substrates (one thin and two thick) were used to test the e�ect of dielec-

tric thickness on electrowetting behavior. First, we prepared one thin dielectric stack,

consisting of a 400 nm tetraethoxysilane (TEOS) and a 1 µm poly(methyl methacrylate)

(PMMA) layer, was assembled on a silicon wafer. Next, we prepared a 75 µm thick di-

electric layer of SU8 photoresist. On top of these two stacks, submicron (quasi-)ordered

pillar arrays were prepared, using a combination of colloidal lithography and plasma

etching [36] (see Fig. 9.1a for a scanning electronmicrograph of the topography). Finally,

a random micro-nanostructure was fabricated on a 188 µm thick cyclic ole�n copolymer

(COP) �lm (see Fig. 9.1b). Details of the fabrication method are included in Appendix D.

The apparent contact angle, θa, was measured using a real time image processing soft-

ware that is developed in house and is based on drop shape analysis technique [30].

We initially conducted an electrowetting experiment on the thin dielectric substrate (1

um PMMA and 400 nm TEOS). Fig. 9.2a shows the dependence of the apparent contact

angle, θa, on the electrowetting number, η = cV 2

2γLA
, where c is the capacitance per unit

area. The experimental setup is also demonstrated in the inset of Fig. 9.2a. In particu-

lar, the apparent wettability reduces by increasing the applied voltage, V , according the

classic electrowetting model, given by an e�ective Lippmann equation [37] (solid line in

Fig. 9.2a):

cosθa = cosθa
0
+ η, (9.1)

where θa0 is zero voltage apparent contact angle. When switching o� the voltage appli-

cation, however, we observe that the contact angle modi�cation is irreversible for almost

all the experimental points presented in Fig. 9.2a (with the exception of very low volt-

ages, when η < 5 × 10-2). The apparent wettability reduction still follows the Lippmann
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(a)

(b)

V = 0

Figure 9.2: (a) Apparent contact angle vs electrowetting number, η = c V 2

2γLA
, for a water droplet

on structured surfaces featuring di�erent dielectric thicknesses. The capacitance per unit area,
c =

ǫ0ǫd
d

, is determined by �tting an e�ective Lippmann curve to the experimentalmeasurements.
In particular c = 2 × 10-5 F m-2 for the thin dielectric substrate (1 µm PMMA and 400 nm TEOS),
c = 3.1×10-7 Fm-2 for the 75 µm SU8 and c = 7.8×10-8 Fm-2 for the 188 µmCOP�lm, respectively.
A schematic of the experimental setup is presented in the inset. (b) Snapshots demonstrating the
contact angle reversibility (from 119o to 156o), when the voltage is switched o� from 452 V, on a
75 µm thick SU8 substrate.
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equation when performing the same electrowetting experiment on the thick dielectric

substrates (75 um SU8 and 188 um COP). Surprisingly enough, when the applied voltage

is removed in this case, the droplet retracts back almost to the initial superhydrophobic

state from all the experimental points in Fig. 9.2a. Speci�cally, the maximum reversible

contact angle modi�cation observed is ∼ 37o, from 156o to 119o, in the case of SU8 (see

Fig. 9.2b); this reversibility interval is considerably larger than any other relative exper-

iment in the literature. We also remark that the above behavior has been successfully

predicted by our previous computational analysis. Moreover, we note that the droplet

mobility of the �nal state (when the voltage has been removed) has not been a�ected,

indicating that the liquid has not impaled the solid roughness. In particular, the droplet

still rolls-o� easily, by tilting the substrate only by ∼ 2o.

Unfortunately, it was impossible to increase the apparent wettability up to complete

wetting since the droplet shape exhibited instabilities for very high applied voltages.

Thus, the minimum achieved apparent contact angle is 119o for the SU8 and 138o for

the COP, respectively (see Fig. 9.2a). Speci�cally, in the conducted experiments, the

droplet oscillates around the upper electrode, when approaching this wettability limit.

The above limiting phenomenon cannot be attributed to the contact angle saturation [37]

(see also Section 4.2.2 of Chapter 4) since the latter usually appears at ∼ 60o for a water

droplet in air ambient. A possible explanation is that the electric stresses along the outer

three-phase contact line are unbalanced (the electric charge is not evenly distributed)

due to in�nitesimal dissimilarities of solid structure below the contact line, thus leading

to a droplet bulk motion on the superhydrophobic surface. The above justi�es why the

wettabilitymodi�cation range is narrower in the case of the randommicro-nanotextured

substrate (COP �lm). We note that such a behavior is not observed in the thin dielectric

case, due to the strong pinning of droplet on the solid structure (the liquid has impaled

the solid roughness in this case).

Overall, considering that the two thick substrates (75 µm SU8 and 188 µm COP) have

di�erent surface topographies ((quasi-)ordered pillars and random micro-nanotextures)

(see Fig. 9.1b) we conclude that the geometric details of the structure do not play a major

role in the contact angle reversibility. Instead, we report that the electric �eld distribu-

tion along the droplet surface, which is controlled by the thickness of the dielectric layer,

is the key factor, as shown in the computations in Chapter 5. Such a �nding, that the

contact angle reversibility is not connected with the solid structure detailed topogra-

phy, opens new possibilities in manipulating micro-droplets, since the cost associated

with the texture fabrication in miniaturized devices will be signi�cantly reduced. We

believe that the potential applications of the real-time tuning of the wettability on su-

perhydrophobic surfaces, using electrowetting e�ect on a thick dielectric, are numerous

and remain to be explored. The experimentally demonstrated contact angle reversibility

opens new possibilities in manipulating micro-droplets, since the cost associated with

the texture fabrication in miniaturized devices will be signi�cantly reduced.
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Figure 9.3: Footprint aspect ratio, of a glycerin/water mixture droplet, as a function of θY; βLS =
103, C1 = 8, C2 = 6, σ = 0.038 and ǫ = 0.008.

9.2 3D simulations

Despite that the two-dimensional simulations, presented in the previous Chapters, can

e�ectively describe the static and dynamic droplet behavior in several cases, however,

3D simulations are crucial for understanding certain wetting phenomena (e.g the for-

mation of oval droplets when sliding on an inclined solid surface [38]). In particular,

in Fig. 9.3 we demonstrate the aspect ratio of a glycerin/water droplet’s footprint as a

function of the inclination angle for various material wettabilities, θY, by using our pro-

posed hydrodynamic model formulation (see Section 3.2.3). We note that, for the shake

of computational e�ciency, the above preliminary results have been obtained by con-

sidering an ideally smooth solid surface. It is interesting here that the droplet’s aspect

ratio increases with increasing hydrophobicity. Obviously, such a conclusion could not

be derived by the previously presented 2D simulations.

De�nitely, we can derive useful conclusions by performing 3D simulations on smooth

solid surfaces, however, the solid topography has to be included in order to examine

even more realistic cases (e.g. to investigate the viscous dissipation and friction of the

contact lines on the roughness scale as well as the contact angle hysteresis). In this case,

the computational cost may be considerably high, especially when the length scale of

the solid structure is quite smaller than the nominal droplet radius. A methodology to

reduce the computational requirements is to account for the solid roughness only in

the vicinity of the outer three-phase contact line. The rest liquid-solid interfacial area,

within the contact perimeter, can be considered as perfectly smooth, without any loss

in the modeling accuracy (such an argument has been experimentally and computation-

ally proved in recent studies [39, 40]). This work is among the subjects of our ongoing
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research.

9.3 Modeling of alternative actuation techniques

9.3.1 Thermal actuation

When a temperature gradient is applied along a substrate (on which a droplet equili-

brates) it induces surface tension gradients along the droplet surface, and in turn the

presence of Marangoni stresses driving liquid �ow from warmer to colder regions. The

thermocapillary droplet migration has been the subject of several theoretical studies in

the literature, which were mainly conducted under the thin �lm approximation [41, 42,

43]. Furthermore, several experimental studies of the droplet motion have been con-

ducted [44, 45].

Recently, Dai et al. [46] investigated the in�uence of surface roughness and surface

topography orientation and it was shown that the orientation of grinding scars may

guide the motion direction of the droplet. To the best of our knowledge, however, the

e�ect of the substrate topography has not been addressed theoretically in the literature

due to the modeling limitations. Such a study can be easily performed by incorporating

the Marangoni stresses at the stress balance along the droplet surface (Eq. 3.4) in our

modeling approach. Such a work would be of great importance for thermocapillary-

based micro�uidic devices for trapping, sorting, mixing droplets, etc. [47].

9.3.2 Magnetic actuation

Alternatively, superparamagnetic droplets can also be e�ectively manipulated by using

magnetic forces [48, 49]. In particular, as demonstrated in the literature, a magnetic �eld

can actively actuate a droplet containing superparamagnetic nanoparticles and induce

a Cassie-Baxter to Wenzel (and the reverse) wetting transition [50]. Once again the

magnetic forces can be incorporating in our model, giving us the opportunity to study

the physical phenomenon in detail, as well as to e�ectively design superparamagnetic

droplet-based micro�uidic devices.

9.4 Multiscale modeling

As discussed in Section 2.2.4, the exact modeling of the disjoining pressure action, would

demand resolving multiple length scales, ranging from 10−9 m to 10−3 m. Such a task

would be possible only by a multiscale modeling approach. In particular, simulations

in the nanoscale (e.g. molecular dynamics) must be combined with the Navier-Stokes

161



Chapter 9. Directions for future work

equations. This is not a trivial work due to the tedious coupling of these very di�erent

descriptions of �uids, and in particular generating microscopic particle con�gurations

from known macroscopic quantities such as density, momentum and energy. Although

that several coupling schemes have been developed [51, 52, 53], the computational e�-

ciency of such model is still relatively low.

In particular, Nie et al. [53] coupled the two descriptions by imposing continuity of

�uxes at the boundaries of an overlap region. The mean particle velocities provide the

boundary conditions for the Navier-Stokes solution at one side of the overlap region

whereas a constrained dynamics algorithm forces the mean particle velocity to equal

the continuum solution at the other side. We believe that such a multiscale approach,

which is among the subjects of our ongoing research, will enable a more accurate de-

scription of the liquid-solid interactions, especially when simulating wetting on hierar-

chically structured superhydrophobic surfaces, where nano and/or micro-structures are

superimposed on larger macro-structures.
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APPENDIXA

A.1 Derivation of the Young-Laplace equation

We consider a small enough section of an arbitrary surface, that the two radii of curva-

ture, R1,R2, are essentially constant (see Fig. A.1). If the surface is displaced by a small

distance outward (dz), the change in the surface area will be: (λ1 + dλ1)(λ2 + dλ2) −
λ1λ2 = λ1dλ1 + λ2dλ2. Thus, considering that there is a pressure di�erence, ∆p, across

the interface, the necessary work will be:

W = γ (λ1dλ1 + λ2dλ2) − ∆pλ1λ2dz, (A.1)

where γ is the interfacial tension. Moreover, from a comparison of similar triangles (see

Fig. A.1), it follows that:

λ1 + dλ1
R1 + dz

=

λ1

R1
⇒ dλ1 =

λ1dz

R1
, (A.2a)

λ2 + dλ2
R2 + dz

=

λ2

R2
⇒ dλ2 =

λ2dz

R2
. (A.2b)

In equilibrium state, Eq. A.1 equals to zero, thus by using Eqs. A.2a and A.2b for dλ1 and

dλ2, yields [1]:

∆p = γ

(

1

R1
+

1

R2

)

, (A.3)

where the sum, 1
R1
+

1
R2
, corresponds to local mean curvature, C

R0
, of this small section

of the surface (see also Section A.2). Eq. A.3 is the fundamental equation of capillarity

(given in 1805 by Thomas Young and by Pierre-Simon Laplace), referred as the Young-

Laplace equation [2]. We note that for the case of both radii being equal, Eq. A.3 simple

reduces to Eq. 2.3.

169



Appendix A.

λ1+

R1

R2

dz

λ

Figure A.1: Principal radii of curvature, R1,R2, of a small section of an arbitrary surface.

A.2 Evaluation of the local mean curvature

The local mean curvature of the droplet surface is evaluated as [3]:

C = ∇s · n =
2PM −QN − GL

H2
, (A.4)

where, n is the unit normal of the surface, ∇s is the surface gradient operator (∇s =

∇ − n(n · ∇)) and G,Q,P the �rst order magnitudes. The latter equal to:

G = p2H2, (A.5)

Q = q2H2, (A.6)

P = −p · qH2. (A.7)

In the above, H = n · (Fw1 × Fw2), with F is the position vector of a point on the

droplet surface (with w1, w2 the independent variables) and n the unit normal of the

droplet surface (n = Fw1×Fw2
|Fw1×Fw2 | ), p =

Fw1×n
H

and q = n×Fw2
H

. In addition, the second order

magnitudes L,M,N equal to:

L = Fw1 w1 · n, (A.8)

M = Fw1 w2 · n, (A.9)

N = Fw2 w2 · n. (A.10)

where Fw1 =
dF
dw1 , Fw2 =

dF
dw2 , Fw1w1 =

d2F
dw12 and Fw2w2 =

d2F
dw22 , Fw1w2 =

d2F
dw1dw2 .

Next, we will demonstrate the evaluation of the local mean curvature of an axisymmet-

ric droplet, parameterized in terms of the arc-length, s, of the intersection of the droplet
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r

er

eθ

eφ

θ

φ

Figure A.2: Unit vectors, er , eθ , eφ , of the spherical coordinate system.

surface with a vertical plane (see Section 2.2.4) and the azimuthal angle, φ, of the spher-

ical coordinates (see Fig. A.2). In particular, a general formula of the position vector of

a point on a surface, in Cartesian coordinates, reads:

F (s, φ) = xi + y j + zk , (A.11)

where i, j, k are the unit vectors of the Cartesian coordinate system in x, y and z di-

rection, respectively. The above relation can be expressed in spherical coordinates, by

using the following transformations:

x = rsinθcosφ, (A.12a)

y = rsinθsinφ, (A.12b)

z = rcosθ, (A.12c)

and

i = sinθcosφer + cosθcosφeθ − sinφeφ, (A.13a)

j = sinθsinφer + cosθsinφeθ + cosφeφ, (A.13b)

k = cosθer − sinθeθ, (A.13c)

where, er , eθ , eφ are the unit vectors of the spherical coordinate system (see Fig A.2).

Therefore, Eq. A.11 now reads:

F (s, φ) = rer . (A.14)

By assuming axial symmetry around the z-axis ( dr
dφ = 0, dθdφ = 0 and dφ

ds
= 0) (see Fig. A.2),
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the unit normal on the droplet surface is then evaluated as:

n =
F s × Fφ

|F s × Fφ |
⇒

n =
rθser − rseθ
√

r2θ2s + r2s

,

(A.15)

where rs =
dr
ds

and θs =
dθ
ds
. The scalar triple vector, H , is evaluated as:

H = n ·
(

F s × Fφ
)

⇒

H = rsinθ
√

r2θ2s + r2s ,
(A.16)

and the vectors p, q read:

p =
Fφ × n

H
=

rs

r2θ2s + r2s
er +

rθs

r2θ2s + r2s
eθ, (A.17a)

q =
n × F s

H
=

eφ

rsinθ
. (A.17b)

We then compute the �rst order magnitudes G,Q,P:

G = r2sin2θ, (A.18a)

Q = r2θ2s + r2s , (A.18b)

P = 0, (A.18c)

and the second order magnitudes L,M,N :

L =

(

rss − rθ2s

)

rθs − (2rsθs + rθss) rs

√

r2θ2s + r2s

, (A.19a)

M = 0, (A.19b)

N =
rrssinθcosθ − r2sin2θθs

√

r2θ2s + r2s

, (A.19c)

where Fss =

(

rss − rθ2s

)

er + (2rsθs + rθss) eθ , Fsφ = (rssinθ + rθscosθ) eφ , Fφφ =

−rsin2θer − rsinθcosθeθ , rss =
d2r
ds2

and θss =
d2θ
ds2

. The local mean curvature is �nally

evaluated from Eq. A.4:

C =
2PM −QN − GL

H2
⇒

C =
1

rsinθ
√

r2θ2s + r2s

[
2rθssinθ − rscosθ + rsinθ

d

ds
arctan

(

rθs

rs

)]
,

(A.20)

as also presented in Section 2.2.4.
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Solid
z

x

Ω

∂S

Figure A.3: Eikonal equation solution and contour lines of constant distance, δ, from a geomet-
rically structured boundary (left side of the �gure), along with the unstructured computational
mesh, generated by the Gmsh software [6] (right side of the �gure). The mesh is re�ned close to
the solid boundary, ∂S, where high resolution is required.

A.3 Eikonal equation

As previously reported, the disjoining pressure, pLS, is a function of the Euclidean dis-

tance from the solid boundary. In the case of geometrically structured surfaces, the

liquid-solid distance is calculated from the solution of the Eikonal equation, which reads

[4]:

| ∇δ(x, z) |= 1, x, z ∈ Ω, (A.21a)

δ(x, z) = 0, x, z ∈ ∂S, (A.21b)

whereΩ denotes the two-dimensional computational domain and ∂S is the solid surface

boundary (see Fig. A.3). The numerical solution of Eq. A.21a is a challenging task, and

among the proposed solution schemes we adopt the vanishing viscosity method [5]:

| ∇δ | −φE∇2δ = 1, x, z ∈ Ω, (A.22)

where φE is a small scalar (numerical di�usion coe�cient). When φE→ 0, Eq. A.22 yields

the original formulation of the Eikonal equation (Eq. A.21a). The non-linear di�erential

Eq. A.22 is discretized with the Finite Element Method (where the computational mesh

is generated by using the Gmsh software [6] as shown Fig. A.3), accounting for the

boundary condition A.21b and is solved with the iterative Newton-Raphson method in

an in-house code.

We note that the solution δ(x, z) constitutes aR2 → Rmapping, i.e., for each point (x, z)

of the two dimensional domain Ω, there exists a unique δ corresponding to the signed

distance from the solid boundary ∂S. It is also notable that the added computational cost

from the solution of the Eikonal equation is negligible, since a single Eikonal equation

solution is required for a particular solid surface geometry.
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B.1 Galerkin residuals

In the Galerkin �nite element method [7], the solution of a di�erential equation is ap-

proximated by a �nite sum of basis functions (usually �rst or second-order polynomials).

The approximate solution is then the coe�cient value of each of the basis function. The

latter is found byminimizing the error between the linear combination of basis functions

and actual solution (Galerkin residuals).

The Galerkin residuals, R, of the dimensionless augmented Young-Laplace equation, in

arc-length parameterization (i.e., r̂ (ŝ), θ(ŝ)), are built by multiplying Eq. 2.32 by each of

the basis functions, φk, and integrating the product over the entire droplet domain:

R =

∫

ŷmax

0

∫ ŝmax

0
φk

(

R0

γLA
pLS + C − K

) √

r̂2 θ̂s

2
+ r̂s

2 dŝdŷ, (B.1)

where r̂ = r/R0, ŝ = s/R0, ŷ = y/R0, r̂s = dr̂/dŝ, θ̂s = dθ/dŝ, ŷmax is the dimensionless

width of the cylindrical droplet (see Fig. 4.4) and

√

r̂2 θ̂s

2
+ r̂s

2 dŝ dŷ is free surface area

element (dimensionless), by considering a translationally symmetric case. For the shake

of simplicity, in the following relations we have omitted the hat symbol (̂ ) from the

dimensionless quantities. Next, we perform integration by parts of the curvature term

in order to reduce the second-order derivatives to a �rst-order. This step is required

so as to introduce the �rst-order derivative boundary conditions (2.35 and 2.36) in the
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Galerkin residuals. In particular:

R =

∫ smax

0
φk

(

R0

γLA
pLS + C − K

)

√

r2 θ2s + r2s ymax ds
ymax=1
=====⇒

R =

∫ smax

0
φk

(

R0

γLA
pLS + C − K

)

√

r2 θ2s + r2s ds
Eq. 2.40
=====⇒

R =

∫ smax

0
φk θs ds +

∫ smax

0
φk

d

ds

[
arctan

(

r θs

rs

)]
ds

−
∫ smax

0
φk K

√

r2 θ2s + r2s ds +

∫ smax

0
φk

R0

γLA
pLS

√

r2 θ2s + r2s ds ⇒

R =

∫ smax

0
φk θs ds −

∫ smax

0
φkK

√

r2 θ2s + r2s ds +

∫ smax

0
φk

R0

γLA
pLS

√

r2 θ2s + r2s ds

−
∫ smax

0

dφk

ds
arctan

(

r θs

rs

)

ds +

[
φk arctan

(

r θs

rs

)] smax

0

.

(B.2)

The boundary conditions (2.35 and 2.36) are then incorporated in the latter term as fol-

lows: [
φk arctan

(

r θs

rs

)] smax

0

=

π

2
|s=smax −

π

2
|s=0. (B.3)

Thus, by using Eq. B.3 and Eq. 2.42, Eq. B.2 reads:

R =

∫ smax

0
φk θs ds −

∫ smax

0
φk K

√

r2 θ2s + r2s ds

+

∫ smax

0
φk wLS

[
(

σ

δ + ǫ

)C1

−
(

σ

δ + ǫ

)C2
]

√

r2 θ2s + r2s ds

−
∫ smax

0

dφk

ds
arctan

(

r θs

rs

)

ds − π
2
|s=0 +

π

2
|s=smax ,

(B.4)

where the last two terms are included only at the �rst (s = 0) and the last (s =smax) resid-

ual, respectively. Similarly, the Galerkin weighted residuals of the augmented Young-

Laplace equation in the case of an axially symmetric droplet read:

R =

∫ smax

0
4 πφk r θs sinθ ds −

∫ smax

0
2 π φk us cosθ ds

−
∫ smax

0
2 π

dφk

ds
r sinθ arctan

(

r θs

rs

)

ds −
∫ smax

0
2 π φk rs sinθ arctan

(

r θs

rs

)

ds

−
∫ smax

0
2 π φk r cosθ arctan

(

r θs

rs

)

ds −
∫ smax

0
2 π φk K r sinθ

√

r2 θ2s + r2s ds

+

∫ smax

0
2 π φk wLS

[
(

σ

δ + ǫ

)C1

−
(

σ

δ + ǫ

)C2
]

r sinθ
√

r2 θ2s + r2s ds,

(B.5)

where the free surface area element of the droplet is r sinθ
√

r2 θ2s + r2s ds dφ in this case
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(φ is the azimuthal angle). Details about the discretization of the conventional Young-

Laplace equation (2.20) can be found in [8].

B.2 Pseudo arc-length continuation

The dependence of the droplet shape on parameter value, e.g. the wetting parameter,

w
LS, is of utmost importance for the studied problems. At some critical values of wLS pa-

rameter, however, the solution stability changes (see e.g. the turning points in Fig. B.3)

and the ordinary parameter continuation fails. In particular, in the general case, the dis-

cretization of a boundary value problem (e.g., with the �nite element method), produces

a set of non-linear equations which is solved iteratively by the Newton-Raphson algo-

rithm. In the turning points, however, the Jacobian matrix (the matrix of all �rst-order

partial derivatives of the residual vector, R) becomes singular and the Newton-Raphson

method fails to converge. To overcome this failure we apply special parameter continu-

ation techniques such as the pseudo arc-length continuation [9]. In this method, a new

monotonically increasing parameter -the arc-length of the solution branch, scont- is in-

troduced and the solution vector, in the case of the augmented YL equation,U = [r θ]T,

as well as the wetting parameter, wLS, are expressed as functions of this new parameter:

U = U (scont), wLS
= w

LS(scont). In addition, the system of equations is augmented with

an extra constraint that determines the value of scont, which reads [9]:

‖ U (scont) −U (scont,0) ‖2 +
[
w
LS(scont) − wLS(scont,0)

]2
=

(

scont − scont,0
)2
, (B.6)

where scont,0 is the previous value of the parameter. Finally, the augmented system of

equations becomes: 
dR
dU

dR
dscont

dRcont
dU

dRcont
dscont



δU

δscont


= −


R

Rcont


, (B.7)

where R is the Galerkin residuals vector and Rcont the residual of the augmenting equa-

tion (B.6). The above scheme, which is solvedwith theNewton-Raphsonmethod, enables

the suppression of turning points and, thus, the tracing of entire branches of solution

families, as demonstrated in Chapter 4.

B.3 Axisymmetric droplets

B.3.1 Single-pillar structured surface

Similarly to the cylindrical droplet case presented in Chapter 4, we initially test the va-

lidity of the augmented YL equation by comparing its predictions against the results
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Figure B.1: Dependence of the dimensionless droplet height, zmax/R0, on the material wettabil-
ity, θY, for a single-pillared solid surface structure (Eq. 4.4 with p1 = 0.6, p2 = 10, p3 = 5).

obtained from the conventional form for an axisymmetric droplet wetting a single-pillar

structured solid surface; the pillar intersection with the vertical xz-plane is given by

Eq. 4.4. We note that the expression of the local mean curvature, C, as well as the con-

straint equation that singles out the YL, di�er in the cylindrical and spherical droplet

cases (see the corresponding expressions in Section 2.2.4.a of Chapter 2).

The bifurcation diagram in Fig. B.1 depicts the dependence of the dimensionless droplet

height, zmax/R0, on the material wettability, θY. As expected, it is observed that both

the augmented and the conventional YL equations produce nearly identical results. Fur-

thermore, similarly to the cylindrical droplet case (see Fig. 4.5), the transition between

the upper and the lower stable branch is also hysteretic. In the following Section we

present equilibrium computations for the case of a droplet resting on a more complex

solid surface.

B.3.2 Concentric rings-patterned surface

The proposed methodology can also be applied to a spherical droplet wetting a more

complex, concentric rings-patterned solid surface (see Fig. B.2). The intersection of this

solid surface with the vertical xz-plane is given by Eq. 4.5. The dependence of the appar-

ent contact angle, θa, as a function of the material wettability, θY, is depicted in Fig. B.3.

We can observe that the solution space exhibits multiple S-shaped curves, similarly to the

cylindrical droplet case wetting a stripe patterned solid surface (see Fig. 4.7. What is also

important here is that the conventional Young-Laplace formulation cannot be applied in

such a complex solid surface case, since air pockets are observed to be trapped between
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Figure B.2: Axisymmetric droplet (considering axial symmetry around the z-axis) on a ring-
patterned solid surface (p4 = 8, p5 = 2 in Eq. 4.5).

Figure B.3: Apparent wettability dependence of an axisymmetric droplet wetting a concentric
rings-patterned solid surface (Eq. 4.5 with p4 = 8, p5 = 2), on the material wettability, θY.
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the liquid and the solid phases (see e.g. the droplet shape for θY = 148o in Fig. B.3).

B.4 Iterative solution of electrohydrostatics equations

The droplet pro�le, along with the electric potential distribution, is computed through

an iterative process, which consists of the following steps:

1. Given an initial estimation for the droplet pro�le (provided by the polar coordi-

nates r init and θinit), we compute the electric potential distribution u(x, z) from

Equation 5.3. In order to deal with the complex geometry of the droplet and the

solid dielectric for the discretization of the electrostatics equation, we generate, us-

ing the Gmsh grid generator software [6], an unstructured two-dimensional mesh

(due to the translational symmetry). In order to increase the accuracy of compu-

tations of the electric �eld, E, the mesh must be su�ciently dense in the vicinity

of the droplet surface (see Fig. B.4). In particular, the produced mesh has a typical

size of the order of 105 nodes.

2. We compute the magnitude of the electric �eld, E = ‖ ∇u ‖, and solve the system

of non-linear Equations 5.2, 2.34, 2.28, 2.25, with the updated electric stress term,
Ne Ê2

2 .

The updated droplet pro�le is then used in step (1) to compute the new electric �eld

distribution and we repeat the iterative process until the droplet pro�le converges to an

invariant shape. Steps (1) and (2) constitute a mapping:

[r θ]T = Φ([r init θinit]T), (B.8)

and the equilibrium droplet pro�le [r∗ θ∗] satis�es:

R ≡ [r∗ θ∗]T − Φ([r init θinit]T = 0. (B.9)

The resulting set of non-linear equations, R, is solved iteratively with an in-house code

using matrix-free Newton-GMRES methods [10]. In particular, the solution of Eq. B.9 is

obtained with an iterative Newton-Raphsonmethod, which solves the linearized system:

dΦ(U )

dU
δU = −R(U ), (B.10)

where U = [r θ]T. At each iteration, the estimated steady state solution, U , is itera-

tively updated throughU →U + δU , until an adopted convergence criterion is satis�ed

(e.g., ‖ δU ‖< 10−6). The computation of the Jacobian matrix, dΦ(U )

dU , as well as of the

residual, R, do not require knowledge of the explicit formulation of the equations to be

solved. Their values can be estimated by computing the mapping, Φ, at appropriately

perturbed values of the corresponding unknowns,U . This approach is computationally
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Figure B.4: Electric potential distribution (dimensionless) around a conductive water droplet in
oil ambient for η = 1.63 and d = 150 µm PTFE (left side of the �gure), alongwith the corresponding
unstructured computational mesh, generated by the Gmsh software [6] (right side of the �gure).

ine�cient for large systems since the estimation of the Jacobian matrix involves the re-

peated computation ofΦ for perturbations in each of the state space directions. Alterna-

tively, one can use matrix-free iterative solvers for the B.10 system, e.g. the Generalized

Minimal Residual Solver (GMRES) [11, 12], which overcomes this ine�ciency given that

its algorithmic implementation requires low-cost computation of matrix-vector prod-

uct, dΦ(U )

dU q. The set of vectors q (q is the orthonormal basis of the Krylov subspace,

Kr=span{b,Ab,A2b,A3b, ...}, with A =
dΦ(U )

dU and b = −R) is used to approximate the

solution of the linearized system of equations. By computing Φ from perturbed values

ofU one estimates the action of the linearized map dΦ(U )

dU on known vectors q, since:

dΦ(U )

dU
q ≈ Φ(U + ξq) − Φ(U )

ξ
, (B.11)

where ξ is a small and appropriately chosen scalar (e.g. ξ = 10−7) [11]. In addition,

by applying a pseudo arc-length parametric continuation method [9] (see also B.2), we

can compute the entire solution space including stable and unstable state solutions (see

Section 5.2.4), where the stability is quanti�ed by solving the eigenvalue problem of the

Jacobian matrix, dR/dU .

B.5 E�ect of the disjoining pressure parameters

In this Section we present the sensitivity of the augmented electrohydrostatics equa-

tions solution (see Chapter 5) by modifying the disjoining pressure pro�le (isotherm)

(Eq. 2.42). In particular, we modify the values of exponents C1 and C2, which control
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Figure B.5: Disjoining pressure pro�les (isotherms), as a function of the dimensionless liquid-
solid distance, δ/R0, for di�erent parameter values C1 and C2 (θY=170o).

Figure B.6: Dependence of the apparent contact angle, θa, on the applied voltage for di�erent
parameter values (C1, C2) of the disjoining pressure (d = 10 µm).
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Figure B.7: Dependence of the dimensionless maximum curvature of the droplet surface (left
panel) and of the Young’s contact angle, θY, (right panel) on the electrowetting number, η, for two
sets of disjoining pressure exponents (C1=8, C2=6 and C1 = 12, C2 = 10) and dielectric thicknesses
(a) d=10 µm and (b) d=150 µm.

the range within which the molecular forces are active . In particular, the pressure term,[
γLA
R0

(

σ
δ/R0+ǫ

)C1
]
, dominating at short distance, models the repulsion between the solid

and the liquid phases, whereas the pressure term,
[
−γLA

R0

(

σ
δ/R0+ǫ

)C2
]
, which is dominant

at large distance, constitute the attractive part. In Fig. B.5, we illustrate the disjoining

pressure isotherm for di�erentC1 andC2 values. Essentially, we observe that by increas-

ing C1 and C2, the range of molecular interactions decreases.

In Fig. B.6, we depict the e�ect of the applied voltage on the apparent contact angle, θa, of

a cylindrical droplet on a PTFE substrate with thickness d = 10 µm for two di�erent sets

of C1 and C2 exponent values (C1 = 12, C2 = 10 and C1 = 8, C2 = 6). The results obtained

for the di�erent parameter set values are in excellent agreement (the lines are optically

indistinguishable), which suggests that the macroscopic behavior of the droplet does not

depend on the parameters C1, C2 values (of course when they vary in a speci�ed range).

The same applies for all dielectric thickness cases.

Computations of the curvature and �eld distribution in the vicinity of the TPL, (pre-

sented in Section 5.2.3), indicate that the magnitude of the developed electric stresses in

the vicinity of the TPL is signi�cantly large (compared to the disjoining pressure), when

decreasing the thickness of the solid dialectic; this causes variations on the maximum
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curvature, as well as the Young’s contact angle values. Here, we examine whether a

change of the disjoining pressure isotherm has an e�ect on this trend.

In Fig. B.7, we present computations of the dimensionless maximum local mean curva-

ture of the droplet surface (left panel) and the Young’s contact angle (right panel) as a

function of the electrowetting number, η, for two di�erent sets of parameter values C1

and C2 and dielectric thickness (a) d=10 µm and (b) d=150 µm. One can observe that

the maximum curvature absolute values di�er for di�erent C1 and C2 values. However,

changing the disjoining pressure isotherm type does not alter the general trend of the

Young contact angle to remain practically insensitive to the applied voltage when the di-

electric thickness is su�ciently large, as opposed to thinner dielectric thickness cases.
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C.1 Viscous spreading: Validation with Tanner’s law

In the case of wettability driven spreading, the radius of the wetted area can be described

by the well-known Tanner’s law [13]:

Rs ∼ t1/10, (C.1)

where the only factor that limits spreading is the viscous dissipation near the contact

line. Eq. C.1 has been experimentally veri�ed [14] and is an excellent problem to bench-

mark our modeling approach for viscous-dominated dynamics. In Fig. C.1 we demon-

strate the dynamic behavior of a glycerin/water mixture droplet spreading on a hy-

drophilic substrate (θY = 30o), assuming an intrinsic surface roughness of rf = 1.01. Start-

ing from an equilibrium solution of θY = 93.5o, it is observed that our simulations can

successfully capture Tanner’s law at intermediate times (t ∈ (1,26) ms). For t > 26 ms

the droplet reaches equilibrium and is �nally immobilized. The dimensionless numbers

in this case correspond to Re = 1.41 and Ca = 0.2, respectively. For both cases, we use

u0 =
√
gR0 = 0.11 m/s as a characteristic velocity (where g is the gravity constant), since

the impact velocity is negligible.

Regarding the dynamic contact angle, our results follow roughly the Tanner’s law pre-

dictions (θd ≈ t−3/10) for intermediate times (5 < t < 26 ms) (see Fig. C.2), however,

smaller scale roughness is required in order to avoid the intense contact angle �uctu-

ations (attributed to the contact line pinning-depinning on the substrate corrugations)

and fully recover the Tanner’s regime. For t > 26 ms the droplet reaches equilibrium

and the dynamic contact angle is �xed at ≈ 35o.

C.2 Spreading of a water droplet

Here we present computations for the case of a water droplet spreading on a �at surface

with no initial velocity (see Fig C.3). It is observed that the simulation for a roughened
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Figure C.1: Evolution of the contact radius as a function of time for a glycerin/water mixture
droplet on a hydrophilic substrate (θY = 30o).

Figure C.2: Temporal evolution of the dynamic contact angle for a glycerin/water mixture
droplet on a hydrophilic substrate (θY = 30o).
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Figure C.3: Temporal evolution of the normalized contact radius of a water droplet spreading
on a hydrophobic (θY = 117o) surface: simulations against experimental data from Bird et al. [15]
(R0 = 1.225 mm, ρ = 1000 Kg/m3, γLA = 0.072 N/m).

surface (assuming an intrinsic surface roughness of rf = 1.01) adequately captures the

droplet dynamic behavior (experimental data by Bird et al. [15]). On the contrary, the

contact radius growth is overestimated when considering an ideally smooth solid sur-

face. A similar droplet behavior is presented in Section 6.2.1 for the experiments of Sikalo

et al. [16] (Fig. 6.3). The contact radius �uctuations, observed in the case of the rough

surface, indicate that the roughness length scale is relatively large. A more �ne-scale

simulation (with smaller roughness micro-structures on the solid surface, still maintain-

ing the same roughness factor) would be required in order to obtain a smoother curve,

at the expense of considerably increased computational cost.

C.3 E�ect of the disjoining pressure parameters

C.3.1 Spreading droplets

In this Section, we investigate whether a modi�cation in the parameters C1,C2 and σ

of the disjoining pressure (see Eq. 2.42) has an impact on the spreading behavior of

a droplet on a solid substrate (see Chapter 6). In all cases we study a glycerin/water

mixture droplet spreading on a wax solid surface with a roughness factor, rf = 1.15. In

particular, in Fig. C.4 by comparing the contact radius evolution for two di�erent C1,C2

parameters sets (C1 = 12,C2 = 10 and C1 = 14,C2 = 12), we conclude that the results are

in remarkable agreement despite the di�erent disjoining pressure pro�les (an increase
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Figure C.4: (a) Normalized contact radius of a glycerin/water mixture droplet impacting on wax
surface: simulations against experimental data from Sikalo et al. [16] for di�erent C1 and C2

parameters of the disjoining pressure (see Eq. (2.42)). The arising disjoining pressure pro�les
are illustrated in (b) as a function of the distance from the solid boundary, δ. The inset in (b)
shows the action range of the micro-scale forces in the vicinity of the contact line; attractive
interactions are dominant in region (II), whereas repulsive forces are generated in region (I),
keeping the liquid and solid phases separated. For δ ≈ 0.01 mm and beyond (region (III)), the
micro-scale liquid-solid interactions are negligible.
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Figure C.5: (a) Normalized contact radius evolution of a glycerin/water mixture droplet impact-
ing on wax surface: simulations against experimental data from Sikalo et al. [16] for di�erent
minimum distances (δmin ∈ [1× 10−3R0,8× 10−3R0]) between the solid and the liquid phase. The
corresponding droplet pro�les for the di�erent values of δmin are demonstrated in (b) at t = 1 ms.
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Figure C.6: Advancing and receding contact angles of a glycerin/water mixture droplet sliding
on surfaces I and II (see Fig. 7.3 at Chapter 7), inclined at α = 60o. The average dynamic hysteresis
is approximately equal to 53o for the surface I (Wenzel state) and 44o for the surface II (Cassie-
Baxter state).

in the exponents C1,C2 leads to a narrower range of micro-scale interaction as shown

in Fig. C.4b). Next, in Fig. C.5 we investigate the e�ect of the minimum distance, δmin,

between the liquid and solid phases, which encompasses the impact ofσ and ǫ as follows:

δmin = R0(σ − ǫ ). Speci�cally, starting from a large initial value (δmin = 8 × 10−3R0 =

9.8 × 10−3 mm) we reduce the minimum distance by lowering the parameter σ (σ ∈
[9×10−3,16×10−3]) keeping constant ǫ = 8×10−3. Conclusively, as presented in Fig. C.5a,
the computational results converge to the experimental data by reducing the minimum

liquid-solid distance, δmin; the lower δmin value is equal to 1 × 10−3 R0 = 1.225 × 10−3

mm, which is obtained for σ = 9 × 10−3.

C.3.2 Sliding droplets

In this section we investigate the in�uence of the C2 and σ parameters value on the

dynamic hysteresis on the droplet. The C2 parameter controls the range of attractive

liquid-solid interactions and the σ parameter regulates the minimum distance of sep-

aration between the solid and the liquid phases. We initially present, in Fig. C.6, the

temporal evolution of advancing and receding contact angles of a glycerin/water mix-

ture droplet sliding on surfaces I and II (see also Fig. 7.3 at Chapter 7), inclined at α = 60o.

The disjoining pressure parameters we use in this case are: C1 = 12, C2 = 10, σ = 9×10−3
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Figure C.7: Average dynamic hysteresis of a glycerin/water mixture droplet sliding on surface
II for di�erent C2 parameter values. The C2 value used in our simulations is marked with the red
arrow.

and ǫ = 8 × 10−3.

In Fig. C.7 we demonstrate the average dynamic hysteresis (the di�erence between the

mean value of advancing and the receding contact angles) of a glycerin/water mixture

droplet sliding on surface II (see Fig. 7.3 at Chapter 7), as a function of the C2 parameter.

We observe that our results converge to a constant value above a threshold C2 value

(C2 > 10). Similarly, in Fig. C.8 we observe that the computational results are virtually

the same below a threshold value of σ (σ 6 9 × 10−3).

C.3.3 Oscillated droplets

Here we perform a sensitivity analysis regarding the impact of the C2 and σ parameters

value on the dynamic behavior of a droplet on an asymmetrically patterned surface (see

Chapter 7). We have chosen to perform our analysis for vertical vibrations since the

droplet deforms to a greater extend, resulting to an increased in�uence of the liquid-

solid interactions. Moreover, in order to test the reliability of our formulation, we use

the �nest structure corrugations (s = 0.75).

In Fig. C.9 we present the droplet position, under the in�uence of vertical vibrations, at

t = 8Tf, for di�erent C2 parameter values. We observe that the e�ect of this parameter

is negligible above a threshold value (C2 > 9). Note that in our simulations we use C2 =

10 (red arrow in Fig. C.9). The above computations have been carried out for the same

C1 parameter value (C1 = 12). Speci�cally, we have not performed the same analysis for
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Figure C.8: Average dynamic hysteresis of a glycerin/water mixture droplet sliding on surface
II for di�erent σ parameter values. The σ value used in our simulations is marked with the red
arrow.

Figure C.9: Center of mass, xcm, of a glycerin/water mixture droplet on a vertically vibrated
asymmetrically patterned substrate (structure scaling, s = 0.75), at t = 8Tf, for di�erent C2 pa-
rameter values. The oscillation frequency is set to the resonance ( f = 41.8 Hz) and the amplitude
is A = 0.375 mm. The C2 value used in our simulations is marked with the red arrow.
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Figure C.10: Center of mass, xcm, of a glycerin/water mixture droplet on a vertically vibrated
asymmetrically patterned substrate (structure scaling, s = 0.75), at t = 8Tf, for di�erent σ param-
eter values. The oscillation frequency is set to the resonance ( f = 41.8 Hz) and the amplitude is
A = 0.375 mm. The σ value used in our simulations is marked with the red arrow.

the latter parameter (C1), which regulates the repulsive interactions magnitude as the

droplet touches the solid surface, since it slightly a�ects the disjoining pressure isotherm

at the contact line.

The e�ect of the liquid-solid minimum distance, δmin, is also investigated in Fig. C.10.

In particular, δmin is de�ned as R0(σ − ǫ ). Thus by reducing the value of σ, keeping

constant ǫ = 8 × 10−3, we shrink this intermediate layer. By performing a sensitivity

analysis we observe the computational results are identical below a threshold value of σ

(σ 6 1×10−2). Note that in our simulations we use σ = 9×10−3 (red arrow in Fig. C.10).

C.4 E�ect of the computational mesh size

C.4.1 Spreading droplets

The position of the droplet interface is tracked by the deformed mesh and thus high

mesh density is required along the boundary of the domain (see Fig. C.11). The accuracy

of the results of an impacting droplets is tested against discretization re�nement for the

case of a glycerin/water mixture droplet impacting on the most roughened substrate (rf
= 1.2) (see Chapter 6). In particular in Fig. C.12 we depict the relative error of the droplet

shape coordinates (r, z) for di�erent meshes, compared with a reference solution. The

reference solution has the denser mesh with 7 × 103 computational elements along the

droplet surface (note that a typical size of the computational problem is of the order of
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Figure C.11: (a) Initial and (b) deformed computational mesh of an axisymmetric droplet, im-
pacting on a perfectly smooth solid surface, generated by the COMSOL Multiphysics® commer-
cial software.
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Figure C.12: The relative error of the droplet shape coordinates, when impacting on a rough
wax surface (rf = 1.2, t = 5 ms) for various meshes. A reference solution with 7 × 103 elements
along the droplet surface is used (the length of the smallest computational element, ∆smin =
0.45 × 10−3 mm).
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Figure C.13: Temporal evolution of the droplet’s center of mass (the horizontal position), xcm,
of a glycerin/water mixture droplet on a vertically vibrated asymmetrically structured substrate
(structure scaling, s = 0.75). Two cases, of di�erent mesh size (with 3 × 103 and 6 × 103 nodes
along the droplet surface), are examined. The oscillation frequency is set to the resonance ( f =
41.8 Hz) and the amplitude equals to A = 0.375 mm, for both cases.

105 degrees of freedom, including the velocity �eld, pressure and mesh deformation).

For the calculation of the norms, the values of the droplet shape coordinates (r, z) were

interpolated at 250 points which are placed on equal distances throughout the droplet

surface of the coarsest mesh. Next, the r , z coordinates were interpolated for the other

meshes, at the positions corresponding to the 250 arc-length coordinates of the coarsest

mesh. Finally, as presented in Fig. C.12 the convergence with mesh re�nement is super-

quadratic.

C.4.2 Oscillated droplets

In this section we test the accuracy of our results, of a droplet moving on an asym-

metrically patterned surface (see Chapter 7), against mesh re�nement. In particular, in

Fig. C.13 we present the temporal evolution of the droplet’s center of mass (the horizon-

tal position), xcm, under vertical forced vibrations, for di�erent mesh sizes. We observe

that both simulations are in remarkable agreement (the two lines are practicably indis-

tinguishable) therefore we conclude that our results (featuring ≈ 6 × 103 nodes along

the droplet surface) are insensitive with the discretization re�nement. We have selected

to perform the above analysis for vertical substrate vibrations due to the larger droplet

deformation in this case.
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D.1 Surface preparation for the electrowetting experiments

Two di�erent stacks (one thin and one thick) were prepared to test the e�ect of dielec-

tric thickness on the contact angle reversibility, in electrowetting experiments. First,

one thin dielectric stack, consisting of a 400 nm TEOS and a 1 µm PMMA layer, was

assembled on a silicon wafer. For the preparation of the thick dielectric layer, SU8 (Mi-

crochem, SU8 3050) was spun on a silicon wafer. The spinning speed was set to 1500

rpm to achieve a 75 µm thick SU8 �lm. After spinning the surface was exposed to UV

light (wavelength 365 nm) for 3.5 min and hard baked at 150 oC for 30 min.

D.1.1 Submicron (quasi-)ordered pillar arrays

The pillar arrays were prepared using a combination of colloidal lithography and plasma

etching. PS particles with initial diameter of 0.5 µm were self-assembled creating a

monolayer using spin coating on top of the di�erent dielectric layers following the same

procedure described in the works [17, 18]. The etching conditions used to create the

multiscale re-entrant pillar topography shown in Fig. 9.1a, were presented in a recent

work about extremely robust superamphiphobic surfaces [19]. We note that the fabrica-

tion approach enables full control over the pillar diameter, pro�le, height and spacing,

key factors in optimizing the surface wetting properties [18, 20]. The two step etching

process followed to create the topography are:

1. 60 s anisotropic etching at 1900 W, 15 oC, 0.75 Pa, 100 sccm oxygen �ow and 250

W bias power and

2. 15 s isotropic etching at 1900 W, 15 oC, 0.75 Pa, 100 sccm oxygen �ow and 0 W

bias power.

The plasma processes were done on the high-density plasma reactor (Helicon plasma

reactor, Micromachining Etching Tool, MET, from Adixen-Alcatel) described elsewhere

[21].
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Appendix D.

D.1.2 Random micro-nanotextured COP surfaces

188 µm thick COP �lm was micro-nanotextured for 4 min using conditions that create

highly anisotropic etching (1900W, 15 oC, 0.75 Pa, 100 sccm oxygen �ow and 250W bias

power) in the same high-density plasma reactor. The resulting topography is shown in

Fig. 9.1b.

D.1.3 Hydrophobization of the surface

All surfaces after the oxygen plasma etching became hydrophilic exhibiting contact an-

gles below 10o. To render them superhydrophobic a 1 wt% Te�on AF 1600 solution was

spun at 7000 rpm on the top of the surfaces creating a conformal 30 nm thick coating.

After the spinning process, the surfaces were baked in air, at 95 oC for 10 min. For

the preparation of the 1 wt% Te�on AF 1600 solution Te�on® AF 1600 was diluted at

Fluorinert® Fluid FC-77 solvent.

We report that the all surfaces described in this Appendix have been fabricated in the

Institute of Nanoscience and Nanotechnology at NCSR “Demokritos” (Aghia Paraskevi,

Attica, Greece).
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