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ABSTRACT 

 

The increasing interest in renewable energy has motivated a large number of researchers to 

deal with such themes. Although solar and aeolic applications are already in production, 

ocean energy means and specifically wave energy conversion through oscillating bodies is 

under development. This delay mainly lies on the complexity of such systems as interaction 

effects occur throughout the domain around them and not only in their wake, which is the 

case for wind turbines. First, the linear hydrodynamic and mechanical problems are presented, 

followed by the proper numerical boundary element method formulation applied. The 

necessary discretization program developed is also described. The motions and power 

absorption of a wave energy converter is dependent on three main factors. First on the 

exciting forces acting on the body, second on the characteristics of the body which can be 

divided in the hydrodynamic and in the mass distribution ones and finally on external factors 

like the ones of the power take-off mechanism. This thesis deals with the interaction effects 

concerning the hydrodynamic problem, examined for a number of array cylinder 

configurations in terms of exciting forces, added masses and damping coefficients. 

Specifically, near trapping relating effects were found to influence significantly the exciting 

forces magnitude hence the sensitivity of results on changing parameters like the separating 

distance and the position of the cylinders is significant. On the mechanical problem, motions 

and power absorption in wave energy farms are examined in the case of heaving power 

absorption of fully movable bodies, with all six degrees of freedom modelled. As observed 

appropriate design leading to frequency coincidence of some phenomena can built 

constructive effects, greatly improving the total efficiency of wave energy converter 

configurations. 
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INTRODUCTION 

 

As the problem of climate change has become more and more significant in the long term 

mankind’s energy production ability, the notion of renewable energy means was introduced. 

Even now there already exist a wide number of solar and aeolic energy applications and ocean 

energy ones are mainly still under development. As stated in (Chowdhury, et al., 2015), the 

term ocean renewable energy refers to a number of different forms such as tidal energy, 

thermal energy conversion, current power and wave energy. The most promising out of these 

is the wave energy since the local problems of the tidal energy are overcome, the thermal 

energy conversion has a low cost effectiveness and current power shows low energy density. 

Picture 1 showing the annual wave mean power around the globe indicates the large amount 

of power available however the applications are still limited. This is basically due to the 

complexity of the hydrodynamic interaction problems that take place and the optimization 

difficulty that arises. Furthermore, the neighboring operation of complex equipment with the 

water environment and the environmental issues that must be determined and overcome, as 

discussed in (Chowdhury, et al., 2015), make wave energy converters applications very 

challenging for engineers. Aim of this thesis is to approach the hydrodynamic interaction field 

and to figure the impact it has in the energy absorption efficiency. As presented in (Ilyas, et 

al., 2014), (Babarit, 2015) and (Day, et al., 2015) a number of different wave energy 

converters has been introduced. Specifically their performance comparison is presented in 

(Babarit, et al., 2011) The ones examined in this thesis are the six degrees of freedom heaving 

absorption cylindrical buoys positioned in a number of configurations. 

In chapter 1, the linear hydrodynamic theory of a number of oscillating bodies in waves in 

the frequency domain is presented. It begins with the time domain non-linear formulation and 

continues with its evolution into an indirect boundary integral equation problem using 

complex representation. Finally the hybrid formulation is introduced in order to reduce 

computational cost and make possible the examination of multi body arrays. 

In chapter 2, first the linear dynamic problem of a body oscillating under the excitation of 

waves is presented based on (Athanassoulis & Belibassakis, 2012) presentation. After that the 

expansion for any number of bodies, introducing the appropriate values and symbols, is 

presented. As stated previously all modes of motion have been modelled but the energy 

absorption is assumed to be performed only through the linear generator hydraulic power take 

off (PTO) mechanism of the heaving motion. Modelling of the PTO mechanism was based on 

(Ekstrom, et al., 2014) and (Li, et al., 2015). Comparison between linear and non-linear PTO 

mechanisms is presented in (Zhang, et al., 2014) and (Zhang & Yang, 2015) and novel PTO 

systems in (Xiao, et al., 2017). 

In chapter 3 the numerical formulation of the hydrodynamic problem, using BEM, is 

introduced. After discretizing the boundary in a number of quadrilateral panels, the classic 

constant strength equations by Hess and Smith in (Katz & Plotkin, 2001) were used to 

calculate the induced velocity potential and normal derivative. Fortran 90 program freFLOW 

is based on this formulation and it was used in order to obtain all the hydrodynamic results 

presented. It is interesting to mention that techniques combining BEM with semi-analytic 

methods have been presented as in (Singh & Babarit, 2014). 

In chapter 4, the developed program GAWEC is presented. This program produced all the 

necessary grids for the discretization of the boundary surfaces needed for the application of 

the BEM theory. The programming language was Matlab®2016a as there was no high 

performance need from a more efficient program language. The basic principle it was based 

on was the transfinite interpolation presented in (Gordon & Thiel, 1982) and (Dyken & 
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Floater, 2009). Total grid consisted of a number of structured grids. This program supports a 

large number of array configurations giving the ability for competitive ones to be compared. 

Before its development open source programs on the internet were sought but their interaction 

with other codes used was found problematic and the computational cost of the unstructured 

grids extruded could not be controlled. 

In chapter 5, a number of BEM hydrodynamic results obtained was compared to semi-

analytic results. As stated in (Chowdhury, et al., 2015) in order to solve the boundary problem 

a number of methods is applied like the point absorption theory (PA), the multiple scattering 

scheme (MS) and plane wave theory (PW). The first assumes the bodies to be much smaller 

in comparison to the separating distance allowing the neglect of diffraction potential. The 

second introduced a scheme of iterations of multiple diffracted or radiated waves and the third 

one under the assumption of far positioned bodies uses plane waves to calculate the 

interactions. A comparison between those methods is presented in (Mavrakos & McIver, 

1997). Some of those methods which refer to axisymmetric bodies were used by (Garrett, 

1971), (Yeung, 1980), (Williams & Demirbilek, 1988), (Williams & Abul-Azm, 1989) and 

(Matsui & Tamaki, 1981). These are the sources of the hydrodynamic results comparing to. 

Similar results using the methods described above were also presented by (McIver & Evans, 

1984), (McIver, 1984), (Kagemoto & Yue, 1986) and (Mavrakos & Koumoutsakos, 1987). 

All these results were produced at the 70’s, 80’s and 90’s in order to support mainly the 

offshore industry with information about submersible column leg platforms of the oil industry 

and this explains the relatively small separating distances presented. Recently these semi 

analytic methods are used again in order to obtain results for large farms as in (Goteman, et 

al., 2015). 

In chapter 6, a wide variety of BEM results obtained in this thesis is represented concerning 

array configurations of vertical circular cylinders. The aim of those results is to indicate the 

interaction phenomena observed in the calculation of the excitation forces and the 

hydrodynamic coefficients. In order to meet the wave energy converters arrays specifications, 

larger separating distances between the bodies were also considered than those examined for 

the comparisons of the previous chapter. Special reference was made to near trapping effect, 

introduced in (Evans & Porter, 1997), (Evans & Porter, 1999) and (Newman, 2001), which is 

the dominant factor affecting the results. 

Last chapter of this thesis, chapter 7 was dedicated to results concerning body motions and 

energy absorption. This theme has risen great interest due to its complexity. In (Babarit, 2013) 

the park effect is presented which greatly affects the power production of a wave energy farm 

and therefore cost effectiveness. More specific observations in the constructive and 

destructive phenomena are presented in (Thomas, 2011) and (Chen, et al., 2016). Furthermore 

the idea of small clusters instead of large arrays is introduced in (Borgarino, et al., 2011). 

Apart from positioning, power absorption is highly dependent on the tuning of the PTO 

damping. A number of tuning strategies has been proposed in (Borgarino, et al., 2012), 

(Falnes, 2004) and (Wang, et al., 2016). In (Wang, et al., 2016), the tuning strategy proposed 

is also subject to motion constraints. Different approaches, like phase control with 

declutching and resonance control through PTO characteristics selection, are also presented in 

(Wahyudie, et al., 2016), (Song, et al., 2016) and (Cargo, et al., 2016). 
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Picture 1 Global annual mean wave power in kW/m, source (Chowdhury, et al., 2015). 
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CHAPTER 1:  FORMULATION OF THE HYDRODYNAMIC PROBLEM  

 

1.1 Euler equations and potential theory 

 

Describing the kinetic behavior of an incompressible fluid, Newton’s second law of motion 

comes in the form of the Navier-Stokes equations 

  
1

, ,p D
t



 


         



v
v v F v x   (1.1.1) 

where  

( , )tv v x  is the domain velocity, 

  is the fluid’s density,  

( , )p p t x  is the domain’s pressure,  

  is the dynamic viscosity coefficient, 

F  are the global forces per mass unit.  

These equations lead to the Euler ones for a non-viscous fluid, 

  
1

,        .p D
t 


      



v
v v F x   (1.1.2) 

Examining the kinematic part of the problem, assuming furthermore irrotational flow, the 

domain’s velocity arises from the velocity potential ( , )t   x  as 

 , .D v x   (1.1.3) 

Using this velocity expression, the integration of the Euler equations results to the Bernoulli 

equation 

 
21

,
2

p
g z const

t 


    


  (1.1.4) 

which provides us with the hydrodynamic pressure  

 
21

 .
2

DYNp
t

 


   


  (1.1.5) 

Another necessary definition is that of the mass conservation law which is described by 

 0, ,D  v x   (1.1.6) 

hence the mass conservation of an irrotational flow is represented by the Laplace equation 

 , .0 D  x   (1.1.7) 
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1.2 Time and frequency domain formulations 

 

 

Figure 1-1 Hydrodynamic problem’s geometry 

As stated in the previous paragraph, the velocity potential inside the fluid domain is 

represented using the Laplace equation. As for the boundary conditions, these are categorized 

in the following way.  

 On the wetted surface of body n , the fluid’s velocity must match the velocity of the 

rigid body (no insertion condition), 

 

6

1

, .
n

n
nk
k B

k

n D
n t






 

 
 x   (1.2.1) 

 On the free surface, there exist two conditions. One kinematic condition which states 

that the velocity on the free surface is the same with the velocity of the fluid’s surface 

particles, 

   0, ,F

D
z D

Dt t x x y y z

  


     
      

     
x   (1.2.2) 

which after the linearization takes the form of 

 , : z 0.FD
z t

 
  

 
x   (1.2.3) 

Also one dynamic condition which states that the pressure on the surface must be 

constant, 

 
21

0, ,
2

Fg D
t

   


    


x   (1.2.4) 

which after the linearization takes the form of 

 , : z 0.Fg D
t




  


x   (1.2.5) 
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The combination of those conditions results in the following equation which acts on 

the mean position of the surface due to the linearization, 

 

2

2
0, : z 0.Fg D

t z

  
   

 
x   (1.2.6) 

 On the sea bed the no insertion condition takes the form, 

 0, .D
n




 


x   (1.2.7) 

 These boundary conditions must be fulfilled with another condition on the horizontal 

direction of the form, 

 0, . r     (1.2.8) 

In the frequency domain the system will be examined under the excitation of a regular wave of 

frequency . Due to the linearity adopted, all values are regular too, of the same frequency. A 

much more comfortable way to work is using the complex form of the regular values. Euler’s 

formula is denoted by 

    cos sin ,j te j t j j t            (1.2.9) 

hence 

    Re cos .
j t

e j t
 

 


    (1.2.10) 

In this way for instance, 

 

   

   

( )( , ) ( )cos Re ( )

Re ( ) Re , .

j t

A A

j j t j t

A

t t e

e e e D

 

  

  



       

 
        

 

x x x

x x x
  (1.2.11) 

Similarly, 

  ( , ) Re , ,j t

Ft e D 
 

   
 

x x x   (1.2.12) 

 ( ) Re .
nn j t
kk t e  
 

 
 

    (1.2.13) 

The use of complex variables also serves the transformation of the differential equations of 

motion into algebraic ones according to the following formula concerning time derivatives. 

    cos Re ,j td
t j e

dt

     (1.2.14) 

     
2

2

2
cos Re

j td
t j e

dt


     (1.2.15) 
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The hydrodynamic problem can be summed then in the following equations for N bodies, 

 

2 2 2

2 2 2
( ) 0, ,D

x y z

  
      

     
  

x x   (1.2.16) 

 

1

6
1

1

6

1

, ,

, ,
N

k k B

k

N

k k B

k

j n D
n

j n D
n

 

 












   




   







x

x

  (1.2.17) 

 

2

0, D : z 0,F
g z




 
    


x   (1.2.18) 

 0, ,D
n






 


x   (1.2.19) 

In the frequency domain the wave’s propagation is assumed to have fully expanded to an 

infinite distance from the body, so the horizontal boundary condition takes the form of the  

«Sommerfeld’s radiation condition» for infinite water depth, 

   3/2

0 0 0, ,jk O k r k r
r



 
 
    

 
 

  (1.2.20) 

where 
0

k  is the real solution of the dispersion relation. 

The fact that the Laplace equation is a linear one, in addition to the linearized boundary 

conditions, allows us to assume the velocity potential ( )

 x  to be obtained from the 

superposition of potentials corresponding to simpler problems. Specifically the whole 

hydrodynamic problem can be split in the incident wave, diffraction and radiation problems, 

 
1

( ) ( ) ( ) ( ).n

N

I D R

n

   



      x x x x   (1.2.21) 

The incident wave’s potential is known from the bibliography as, 

 
 0

0

0

cosh ( )
( ) exp( ),

cosh( )
I

k z hjgA
j

k h

 
    x k R   (1.2.22) 

where  

0 0 1 2(cos sin )k   k i i , 

1 2 30x y  R i i i ,  

  is the incident wave’s direction. 



5 

 

The diffraction potential describes the fluid’s potential resulting from the wave scattered by 

the surface of the grounded rigid bodies. The radiation ones on the other hand, are the result of 

body n oscillating on its k direction assuming zero further movements as 

    

     

1,

0, 1,2,...,6 ,

0, 1,2,...,6 , 1,2,..., .

n
k

n
l

m
l

l k

l m N n















  

   

  (1.2.23) 

In order to represent the various problems in a unique way, the incident wave potential, the 

diffraction potential and the radiation ones are written in the following form, 

  0( ) , ,I j A D
 
   x x x   (1.2.24) 

  ( ) , ,D dj A D
 
   x x x   (1.2.25) 

 

1

1 1
( ) , , 1,2,....,6,

( ) , ,
N

k kR

k

N N

k kR

k

j D k

j D





  

  

    

   





x x

x x

  (1.2.26) 

so the total potential is given by, 

    
6

0

1 1

( ) , .
N

n n

kd k

n k

j A j D 
    

 

 
       

 
x x x x   (1.2.27) 

The diffraction potential problem for each direction is obtained by solving the following 

boundary problem, 

 

2 2 2

2 2 2
( ) 0, ,

d d d
d D

x y z

  
      

     
  

x x   (1.2.28) 

 

1

1 , ,

, ,
N

d

d B

d N

d B

n D
n

n D
n






 




 



x

x

  (1.2.29) 

 

2

0, : z 0,
d

d FD
g z




 
    


x   (1.2.30) 

 0, ,
d

D
n






 


x   (1.2.31) 
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   3/2

0 0 00 , ,
d

djk k r k r
r



 
 
     

 
 

  (1.2.32) 

where  

0 0 0

1 2 31,2,..., , .n n n n

dn N n n n n
x y z

  
    

  
 

The radiation problem of body n  oscillating in the k  direction is defined as, 

 
2 2 2

2 2 2
( ) 0, ,

n n n
n k k k
k D

x y z

  
      

     
  

x x   (1.2.33) 

 , ,
n

n

k n

k Bn D
n




 


x   (1.2.34) 

    0, : 1,2,..., ,
m

n

k

BD m N n
n




   


x   (1.2.35) 

 
2

0, D : z 0,

n
n k
k F

g z




 
    


x   (1.2.36) 

 0, ,

n

k
D

n






 


x   (1.2.37) 

   3/2

0 0 00 , .

n
nk
kjk k r k r

r


 

 
     

  
 

  (1.2.38) 

As a result of the aforementioned representation, the potentials are functions of the following 

factors, 

    ; , , ,
n

n n

k k BD h 
 
   x x   (1.2.39) 

    ; , , , ,
n

d d BD h  
 
   x x   (1.2.40) 

1,2,..., , 1,2,....,6.n N k   
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Assuming that the potentials are known, the hydrodynamic forces and moments on body p  in 

the i  direction are given using the linearized Bernoulli equation in the form, 

 

, = ,

1, 2,....,6, 1, 2,..., .

p p

B Bp p

HYDp p p
i i B i B

D D

F p t n dS n dS

i p N

 x
  (1.2.41) 

Using the complex representation and the previously obtained division of the total potential 

the hydrodynamic forces are given by the following components, 

 
6

0

1 1

,
N

pqp p p

i i d i i j

q j

F X X X
   

 

     (1.2.42) 

where 

  
2

0 0
p

Bp

p p
i i B

D

X j A n dS 




     (1.2.43) 

are Froude-Krylov forces & moments on body p  in direction i . 

  
2

p

Bp

p p
d i d i B

D

X j A n dS 




     (1.2.44) 

are diffraction forces & moments on body p  in direction i .  

  
2

p

Bp

pq qq p
ji j j i B

D

X j n dS 
 



     (1.2.45) 

are radiation forces & moments on body p  in direction i  by the oscillation of body q  in j  

direction. 

Especially the radiation forces and moments can be formulated in the form, 

  
2

,
pq pqq

ji j i jX j 
  

     (1.2.46) 

where 

 
1

( ) ( )
p

Bp

pq q p pq pq
i j j i B i j i j

D

n dS A B
j

  






       (1.2.47) 

are the so called hydrodynamic coefficients. Specifically pq

i jA  and pq

i jB  denote the 

hydrodynamic masses and damping coefficients respectively. 
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1.3 Indirect  boundary integral equations formulation 
 

1.3.1 Single layer distribution 

 

In this formulation the unknown potential is represented as the superposition of continuously 

distributed singular potentials (sources or dipoles) on the boundary of the fluid domain. If the 

singular potential is a simple (free space) source then the distribution is called a single layer 

distribution, while if the potential is a dipole it is called a double-layer distribution. It is a 

necessity for the formulation to stand the strengths to be bounded. Starting from the single 

layer distribution, free space source definition is given.   

 
     

 3

2 2 2

1 1 2 2 3 3

1 1 1 1
, .

4 4
F

x x x    
   

     
x ξ x ξ

x ξ
 (1.3.1) 

The velocity potential ( )

 x  in a bounded domain D  with boundary D  is assumed to be 

expressed as  

 
1 1

( ) ( ) ,     ,
4

D

dS D






  
x ξ x

x ξ
  (1.3.2) 

where ( ) ξ  is an appropriate continuous source-strength function defined over the boundary

D , to be determined. As known from the theory, the velocity inside the domain D  is given 

by  

 

3

1 1
( ) ( ) ( )

4

1
( ) , .

4

D

D

dS

dS D

















    



  







v x x ξ
x ξ

x ξ
ξ x

x ξ

  (1.3.3) 

The velocity component in the direction of any unit vector n  is given by  

 
 

3

( ) 1
( ) ( ) , .

4
D

dS D







 
     

 
x ξ nx

x n ξ x
n x ξ

  (1.3.4) 

Since the formulation must be fitted on boundary conditions, the potential value and its normal 

derivative must be found for a point sx which lies on the boundary. Since representations 

(1.3.2) and (1.3.4) become singular on the boundary points sx , a special treatment is needed. 

 

Figure 1-2 Inclusion of point sx , in domain D . 
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More specific, as presented in (Power & Wrobel, 1995), the boundary point sx  is included in 

the inner domain D  by changing locally the boundary, using a small hemisphere of radius   

around that point. The values of ( )

 sx  and ( ) / ( )


 s sx n x  are obtained by calculating the 

limits as 0 . Specifically,  

 
1 1

( ) ( ) ,     ,
4

D

dS D






  
s s

s

x ξ x
x ξ

  (1.3.5) 

and 

 
 

3

( )( ) ( ) 1
( ) , .

( ) 2 4
D

dS D










 
   

 
s ss s

s

s s

x ξ n xx x
ξ x

n x x ξ
  (1.3.6) 

Here, it must be denoted that these values correspond to the approach of the boundary D  

from inside the domain D . If the approach takes place from the outside domain then, 

 
1 1

( ) ( ) ,     ,
4outside

D

dS D






  
s s

s

x ξ x
x ξ

  (1.3.7) 

and 

 
 

3

( )( ) ( ) 1
( ) , .

( ) 2 4
D

outside

dS D










 
    

 
s ss s

s

s s

x ξ n xx x
ξ x

n x x ξ
  (1.3.8) 

From the above equations it is clear that the velocity potential of a single layer distribution is 

continuous through the boundary surface, something that does not apply to the normal 

derivative. There is a jump in its value on the boundary, given by ( ) sx .  

1.3.2 Double layer distribution 

 

As described previously, a double layer distribution corresponds to dipoles in the direction of 

the boundary. Such a dipole is denoted as, 

 

 
 

     

     
 

3

1 1 1 2 2 2 3 3 3 3

3
2 2 2

1 1 2 2 3 3

( )1

4

( ) ( ) ( )1
, .

4

M

x n x n x n

x x x



     


  

 
  



    
   

    

x ξ n ξ
x ξ

x ξ

x ξ

  (1.3.9) 

The velocity potential is given by 

 
 

3

( )1
( ) ( ) , .

4
D

dS D






 
   


x ξ n ξ

x ξ x
x ξ

  (1.3.10) 

Using the same methodology as for the single layer distribution, the value on point sx of the 

boundary D is given by 
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 

3

( )( ) 1
( ) ( ) , .

2 4
D

dS D










 
    


ss

s s

s

x ξ n ξx
x ξ x

x ξ
  (1.3.11) 

If the approach of the boundary is from outside the domain D  then, 

 
 

3

( )( ) 1
( ) ( ) , ,

2 4outside
D

dS D










 
    


ss

s s

s

x ξ n ξx
x ξ x

x ξ
  (1.3.12) 

hence there is also a value jump as in the case of the single layer normal derivative. As for the 

continuity of the normal derivative of the double layer representation approaching the 

boundary, even its existence is under examination. In (Power & Wrobel, 1995) it is stated that 

it exists not only if the distribution is continuous and bounded but also if certain continuity 

conditions apply. Assuming meeting the existence conditions for either inside-outside 

approaching limits, Lyapunov-Tauber theorem guarantees the existence and equality of the 

other. 

 
( ) ( )

, .
( ) ( )

outside

D

 
 

 
 

s s
s

s s

x x
x

n x n x
  (1.3.13) 

 

1.3.3 Single layer, diffraction and radiation problems 

 

Use of the mentioned single layer representation in the examined problem, requires the 

domain D  to be bounded. As described, boundary D  consists of the free surface boundary 

F
D , the bottom boundary D


  and the body boundaries 

Bn
D . In order for it to close in the 

horizontal direction, a cylindrical surface is introduced of radius R


, (
R

D


 ) such that 

0
1k R


. Then the boundary conditions for the diffraction problem take the form, 

 

 

 

1

1

3

3

( )( ) 1
( ) ( ), ,

2 4

( )( ) 1
( ) ( ), ,

2 4 N

d
d d B

D

Nd
d d B

D

dS n D

dS n D



















 
   



 
   







s ss
s s

s

s ss
s s

s

x ξ n xx
ξ x x

x ξ

x ξ n xx
ξ x x

x ξ

 (1.3.14) 
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3

( )( ) 1
( ) 0, ,

2 4

d
d

D

dS D









 
   


s ss

s

s

x ξ n xx
ξ x

x ξ
 (1.3.15) 
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 (1.3.16) 

 

 
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
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







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x ξ

 (1.3.17) 

where 

0 0 0

1 2 31,2,..., , .n n n n

dn N n n n n
x y z

  
    

  
  

The boundary conditions for the radiation problems take the form, 
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 (1.3.18) 
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 (1.3.19) 
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 (1.3.20) 
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 (1.3.21) 
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












 
  
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 (1.3.22) 

where    1,2,..., , 1,2,..., .n N m N n      
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1.4 Hybrid, indirect boundary integral equations formulation 

 

The set of equations representing the diffraction and radiation problems with indirect 

formulation are closed ones and therefore solvable. The difficulty arises from the fact that 

analytical solutions can be extracted only for some specific geometries. For arbitrary shaped 

bodies numerical schemes must be adopted to obtain solutions. Under numerical formulations 

distance R


 must be equal to a number of wave lengths in order for value 
0

k R


to increase 

sufficiently for the solution to converge. This approach however has a significant computer 

sources cost. In order to overcome the aforementioned problem, the total domain D  is divided 

in the near field RD

and the far field RD D


  by a vertical cylindrical surface totally 

enclosing the bodies:  *( , , ) :  ,  0 2  0 .x r z r R h z           The cost of this 

action is that the boundary condition in the horizontal direction no longer applies. The 

connection between the potential and its normal derivative is unknown and the system is not 

closed. In order for it to close a proper connection between the two values is sought. 

Specifically, the potential in the outer field is represented by its eigenfunction expansion in 

cylindrical coordinates ( , , )x r z  as, 

 

(2)

00 0*

(2)
000 * 0

*1 0

cos( ) ( )
( , , z)

sin( ) ( )

cos( ) ( )
                         ,

sin( ) ( )

mm

mmm

nmm n n

nmm nn m n

a mH k r g z
r

b mH k R g z

a mK k r g z

b mK k R g z














 

 

 
     

 

  
       



 
  (1.4.1) 

where 

,  nm nma b  are coefficients depending on the problem’s geometry and the frequency ω, 

(2)

mH  denotes the Hankel function of the second kind, 

mK  denotes the modified Bessel function of the first kind, 

0 ( )g z  is the propagating mode’s vertical eigenfunction of the Sturm-Liouville problem, 

( )ng z  are the evanescent mode’s vertical eigenfunctions of the Sturm-Liouville problem, 

 

 

 

0

0 0

0 0

0

0

0

0

( ) cosh ( )
,

( ) sinh 21
1

2 2

( ) e
,

1 1( )

2

( ) cos ( )
, 1,2,...

( ) sin 21
1

2 2

k z

n n

n n

n

g z k z h
nondeep water case

g z k h

k h

g z
deep water case

g z

k h

g z k z h
n

g z k h

k h

 
 

 
 

    
  

  
 

 
 
 
 

  
  
   

   

  (1.4.2) 
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0 , nk k  are the eigenvalues of the vertical Sturm-Liouville problem, which are solutions 

of equations, 

 
0 0tanh( )  and   tanh( ),    1,2,... .n nh k h k h h k h k h n       (1.4.3) 

After calculating the derivative of the special functions in the radial direction as 

 

(2)
(2) (2)0

0 1 0 0

( )
( ) ( ),m

m m

dH k r m
k H k r H k r

dR r
     (1.4.4) 

 
1

( )
( ) ( ),m n

n m n m n

dK k r m
k K k r K k r

dR r
     (1.4.5) 

the derivative of the outer domain potential in the radial direction is formed as, 

(2) (2)
* 0 1 0 0

0 0

(2)

00 * 00

1

*0

( ) ( ) cos ( )( , , z)

sin( ) ( )

( ) ( ) cos
                    

sin( )

m m
m

mmm

n m n m n
nm

nmm nm

m
k H k r H k r a m g zr r

b mr H k R g z

m
k K k r K k r a mr

b mK k R









 



 



 
    

     
   

 

  
     

    
   

 




1

( )
.

( )

n

nn

g z

g z








 




  (1.4.6) 

This potential representation refers not to a different potential than the one sought. It is only 

the form the potential takes from the boundary cylinder to the infinity and guarantees the 

compliance with the radiation condition. This means that both the potential and also its normal 

derivative on the boundary cylinder must be equal on either side  * 0   orr R 

* 0r R  . This statement can be written as follows, 

 
* *

*

0 0
lim ( , , ) lim ( , , ),

r R r R
r z r z 

   
     (1.4.7) 

 
* *

*

0 0

( , , ) ( , , )
lim lim ,

r R r R

r z r z

r r

 

   

 


 
  (1.4.8) 

     , 0, 2 ,0z h     . 

These conditions are referred to as matching conditions. The same way the cylindrical 

boundary is referred to as matching boundary
M

D . Appropriate handling of the outer domain 

representation, using these equations, enrich the problem with a closure condition involving 

the velocity potential and its normal derivative on the matching boundary
M

D . This handling 

requires use of the following functions orthogonality, 

 1 ,cos ,  sinm m  . 

and 

  ( ),  0,1, 2,...ng z n  . 
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Specifically, first the value 
0

0

( )
cos

( )

g z
m

g z
   is multiplied on both sides of equation (1.4.1) and 

then follows integration on the domain    0, 2 ,0h    giving the result, 

 * 0
* 0

0

( )
( , , ) cos ,

( )
M

m m

D

g z
R z m d dz a

g z
   



       (1.4.9) 

where 
2   for m = 0

 
    for m > 0

m






 
  

 
. 

In a similar way using the value 0

0

( )

( )
sin

g z

g z
m  , 

 * 0
* 0

0

( )
( , , ) sin .

( )
M

m m

D

g z
R z m d dz b

g z
   



       (1.4.10) 

Following the same procedure for every coefficient 
nma  and nmb  with 0n  , the result given 

is 
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*
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( , , ) cos ,

( )
M

n
m nm

nD

g z
R z m d dz a

g z
   



       (1.4.11) 

 *

*
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( , , ) sin .
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M

n
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nD

g z
R z m d dz b

g z
   



       (1.4.12) 

Introducing these relations in equation (1.4.6), the following representation is gained, 

(2) (2)
* 0 1 0 0
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0 * 00

* *0 0
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0 0

( ) ( )
( )( , , z)

( ) ( )
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 (1.4.13)  

This equation which is a Dirichlet to Neumann map ( DtN ) when applied for *
r R  

becomes the boundary condition on the matching boundary. 



15 

 

As stated previously, the total domain D  is divided in the near field RD

and the far field 

RD D


 . Adopting this definition, the solution sought refers to domain RD

. In order not to 

make the symbolism complex, the symbol D  is used to describe the inner domain which is 

bounded by the free surface boundary 
F

D , the bottom boundary D


 , the body boundaries 

Bn
D  and the matching boundary 

M
D

F MnB

n

D D D DD


       
 
 
 

 . Then the 

diffraction problem boundary conditions are given by, 
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 (1.4.14) 
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The radiation ones of body n  oscillating in the k  direction are, 
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k k B

D

dS n D







 
   


s ss

s s

s

x ξ n xx
ξ x x

x ξ
 (1.4.18) 

 
 

3

,( )( ) 1
( ) 0,

2 4 ,

m

n
Bnk

k

D

D
dS

m n








  
   

 


ss ss

s

xx ξ n xx
ξ

x ξ
 (1.4.19) 

 
 

3

( )( ) 1
( ) 0, ,

2 4

n
nk
k

D

dS D









 
   


s ss

s

s

x ξ n xx
ξ x

x ξ
  (1.4.20) 

 

 
3

2

( )( ) 1
( )

2 4

1 1
( ) 0, ,

4

n
nk
k

D

n

k F

D

dS

dS D
g



















 
  



  






s ss

s

s

s

x ξ n xx
ξ

x ξ

ξ x
x ξ

 (1.4.21) 

 

 
3

( )( ) 1
( )

2 4

1 1
DtN ( ) , ,

4

n
nk
k

D

n

k M

D

dS

dS D

















 
  



 
  
 
 





s ss

s

s

s

x ξ n xx
ξ

x ξ

ξ x
x ξ

  (1.4.22) 

where 

   1,2,..., , 1, 2,..., .n N m N n    
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CHAPTER 2:  FORMULATION OF THE OSCILLATING DYNAMIC 

PROBLEM  

 

2.1 One body equations of motion 

 

 

Figure 2-1 Free floating body 

The problem of one rigid body moving in space-time is formulated using the translating and 

rotational momentum conservation theorem as, 

   ,
B

B B
D

d
dD

dt


 
 

  u ω r F+ ×   (2.1.1) 

   ,
B

B B
D

d
dD M

dt


 
  

  Gr u ω r u×u K+× ×   (2.1.2) 

where  

B

B B
D

M dD   is the total body’s mass, 

F  and K  are the influence forces and moments respectively. 

Using as a main argument the fact that the body’s density remains constant in time derivations 

(Athanassoulis & Belibassakis, 2012) the selected reference system is a cartesian one with 

axes fixed on the body  1 2 3Ox x x . As a result equations (2.1.1) and (2.1.2) are transformed in, 

   ,
B

B B
D

d
dD

dt
  u ω r F+ ×   (2.1.3) 

    .
B

B B
D

d
dD M

dt
   Gr u ω r u×u K+× ×   (2.1.4) 
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The time derivatives shown inside the integrals are formed based on the body fixed system as, 

       ,t t

d

dt
      u ω r u r ω ω u ω ω r r ω ω+ × × × × ×   (2.1.5) 

 
      

       ,

t t t

d

dt
      

  

r u ω r r× u r×r ω r r ω+× × ×

r u ω u r ω r ω r ω× × × ×

  (2.1.6) 

where t refers to the time derivative based on the body fixed axes. Under the assumption of small 

amplitude oscillations the linearized form of the derivatives is, 

   ,t t

d

dt
   u ω r u r ω+ × ×   (2.1.7) 

       .t t t

d

dt
     r u ω r r u r r ω r r ω+× × ×××   (2.1.8) 

By inserting equations (2.1.7) and (2.1.8) in (2.1.3) and (2.1.4) respectively and furthermore 

by neglecting M Gu×u  as a second order factor, the result is, 

 ,
B B

B B t B B t
D D

dD dD 
   

      
    u r ω F   (2.1.9) 

      ,
B B

B B t B t t B
D D

dD dD 
 

      
  r u r r ω r r ω K××   (2.1.10) 

where  

 is the total body’s mass,
B

B B
D

dD M    (2.1.11) 

 ,
B

B B
D

dD M   G
r J R   (2.1.12) 

 

    

3 3 3 3

2

1 1 1 1

3 3 3

1 1 2 2 3 3

1 1 1

ˆ ˆ

ˆ ˆ ˆ

B

B

B t t B
D

B k t m m k k m t m B
D

k m k m

k t k k t k k t k

k k k

dD

r r r dD

I I I



  

  

   

  

   

  
     

  

     
          
     
     



   

  

r r ω r r ω××

x x

x x x

  (2.1.13) 

and 

 

3

2 2

1

, 1,2,3 ,
B

kk B m k B
D

m

I r r dD k


 
   

 
 
   (2.1.14) 
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 , , 1,2,3 .
B

kk B k m B
D

I r r dD k m k     (2.1.15) 

After replacing (2.1.11)-(2.1.15) into (2.1.9) and (2.1.10) 

 

1 3 2 3 1

2 3 1 1 3 2

3 2 1 1 2 3

3 2 2 3 11 1 12 2 13 3 1

3 1 1 3 21 1 22 2 23 3 2

2 1 1 2 31 1 32 2 33 3 3

0 0 0 ,
2

0 0 0 ,

0 0 0 ,

0 ,

0 ,

0 .

Mu J J F

Mu J J F

Mu J J F

J u J u I I I K

J u J u I I I K

J u J u I I I K

 

 

 

  

  

  

     

     

     

     

     

      

  (2.1.16) 

Under the assumption of linear theory, all the velocities u  and   also the accelerations u  

and   based on the fixed on body axes can be linked to the motions based on an earth system 

as, 

 , , 1, 2,3 , 4,5,6 ,a a b bu a b        (2.1.17) 

 , , 1, 2,3 , 4,5,6 .a a b bu a b        (2.1.18) 

A matrix presentation for  equations (2.1.16) using (2.1.17) and (2.1.18) is 

 

13 2 11

23 1 22

3 332 1

4143 2 11 12 13

52
53 1 21 22 23

3 6
62 1 31 32 33

0 0 0

0 0 0

0 0 0

0

0

0

M J J FF

M J J FF

FFM J J

FKJ J I I I

FKJ J I I I

K F
J J I I I













                                                        
.



  (2.1.19) 

Giving attention to the right section of the above equations, special treatment was applied to 

the definition of the active forces. One basic component are the hydrostatic forces which act as 

reset forces. These forces are direct products of the motions with reverse sign as 

 
6

,

1

,k ST km m

m

F C 


    (2.1.20) 

where matrix C  is given by 

 

2 1

2 1

2

1 1

2

33 34 35

43 44 45

53 54 55

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0 0

x x

x x

x

x x

x

C C C

C C C

C C C

 
 
 
 
 
 
 
 
 
 
 

  (2.1.21) 
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1 1 2

2

,
x x or x

x
denote zero value when 1 0x   and/or 2 0x   are planes of symmetry. 

Specifically the hydrostatic coefficients are denoted as: 

 

33

34 43 2

35 53 1

44 22

45 54 12

55 11

,

,

,

,

,

,

C gS

C C gS

C C gS

C Mg gS

C C gS

C Mg gS















 

  

 

  

 

GB

GB

  (2.1.22) 

where B  is the center of floatation. 

The factors S  are the waterline’s surface area and its first and second moments as, 

 , .k k km k m

S S

S x dS S x x dS     (2.1.23) 

Adding the hydrostatic forces denotation, equation (2.1.19) is formed as 

 

13 2

23 1

33 34 3532 1

43 34 3543 2 11 12 13

53 54 55
53 1 21 22 23

62 1 31 32 33

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 00 0 0

0 0 00

0 0 00

0 0 0 0 0 0
0

M J J

M J J

C C CM J J

C C CJ J I I I

C C CJ J I I I

J J I I I













  
  
  
  
      
  
  
         

1 1

2 2

3 3

4 4

5 5

6 6

F

F

F

F

F

F













   
   
   
   

   
   
   
   
   
   

  

(2.1.24) 

or with alternative symbolism 

 
1 1 1 1 1.M C F       (2.1.25) 
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2.2 Any number of bodies equations of motion expansion 

 

In the case of multiple bodies oscillating, motion of body n  in the k  direction is symbolized 

as n

k
 . Writing the modes of motion variables for all N  bodies in a vector form 

 
1 1 1 1 1 1

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6, , , , , , ... , , , , , , ... , , , , ,
T

n n n n n n N N N N N N                      (2.2.1) 

and by inserting the symbols 
n ,

n  ,
nM ,

nF ,
nC  for the local matrixes of body n , the 

total motion equations can be written in the next global matrix form 

 

1 11 1

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

0 0 0 0

0 0 0 0

0 0 0 0

x x x x

n n n n

x x x x

N N NN
x x x x

M C

M C

M C

 

 



      
      
      
            
     
              

1

.

n

N

F

F

F

 
 
 
 
 

  
     

  (2.2.2) 

Introducing the complex form introduced in Chapter 1, 

  

1 11 1

6 6 6 6 6 6 6 6

2

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

0 0 0 0

0 0 0 0

0 0 0 0

x x x x

n n n n

x x x x

N NN N
x x x x

M C

j M C

M C

 

  

 

      
      
     
          
     
                

1

.

n

N

F

F

F

 
 

  
    
  
     

  (2.2.3) 

In order to analyze the hydrodynamic forces, it is necessary to introduce the interaction added 

mass and damping matrices between oscillating bodies, 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

pq pq pq pq pq pq

pq pq pq pq pq pq

pq pq pq pq pq pq

pq

pq pq pq pq pq pq

pq pq pq pq pq pq

pq pq pq pq pq pq

A A A A A A

A A A A A A

A A A A A A
A

A A A A A A

A A A A A A

A A A A A A

 
 
 



 




 

,









  (2.2.4) 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

pq pq pq pq pq pq

pq pq pq pq pq pq

pq pq pq pq pq pq

pq

pq pq pq pq pq pq

pq pq pq pq pq pq

pq pq pq pq pq pq

B B B B B B

B B B B B B

B B B B B B
B

B B B B B B

B B B B B B

B B B B B B

 
 
 



 




 

.









  (2.2.5) 

The global added mass and damping matrices are formed as 

 

11 1 1

1

1 ,

n N

n nn nN

N Nn NN

A A A

A A A A

A A A

 
 
 
 
 
 
  
 

  (2.2.6) 

 

11 1 1

1

1 .

n N

n nn nN

N Nn NN

B B B

B B B B

B B B

 
 
 
 
 
 
  
 

  (2.2.7) 

By analyzing the hydrodynamic forces, using equations (1.2.42), (1.2.46) and (1.2.47), the 

right part of equation (2.2.3) is formulated as 

 

 

1 11
0

0

0

11 1 1 11 1 1

2 1 1

1

1

d

n n n

d

N N N

d

n N n N

n nn nN n

N Nn NN

F FF

F F F

F F F

A A A B B B

j A A A B
j

A A A




    
    
    
       
    
    
         

     

 
 
 
  
 
 
  
 

1

1

.nn nN n

N Nn NN N

B B

B B B







   
   
   
   

   
   
         

 (2.2.8) 
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Equation (2.2.3) is then given by 

 

 

11 11 1 1

6 6 6 6

2 1

6 6 6 6

1

6 6 6 6

11

0 0

0 0

0 0

n N

x x

n n nn nN n

x x

N Nn NNN N
x x

M A A A

j M A A A

A A AM

B B

j



 





     
     
     
           

     
             
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  (2.2.9) 

or in a shorter form, 

    
2

0 .dj M A j B C F F           (2.2.10) 

By solving this algebraic equation all the modes of motion of each body become available. 
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2.3 PTO modelling and quantification 

 

2.3.1 Equations of motion with PTO modelled 

 

There is a number of conceptual devices in the process of the wave energy absorption (Day, et 

al., 2015). In this thesis the heaving buoy farms are examined. The differentiation on the free 

floating bodies case by the heaving PTO mechanism is an additional damping and mooring 

force (Ekstrom, et al., 2014) and (Li, et al., 2015). Equation (2.2.10) is then changed to 

    
2

0 ,d extj M A j B C F F F            (2.3.1) 

The PTO force which acts on body n  is given in the regular time domain from 
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and in the frequency domain from 
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So in matrix form, 
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So for a total of N  bodies, 
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Equations of motion (2.2.9) are then formed as, 

 

 

 

1 11 1 1

6 6 6 6

2 1

6 6 6 6

1

6 6 6 6

11 1 1

1

0 0

0 0

0 0

n N

x x

n n nn nN

x x

N Nn NNN

x x

n N

n nn n

M A A A

j M A A A

A A AM

B B B

j B B B





     
     
     
           
     
            



11

6 6 6 6

6 6 6 6

1

6 6 6 6

1

6 6 6 6

6 6 6 6

6 6 6 6

0 0

0 0

0 0

0 0

0 0

0 0

ext x x

N nn

x ext x

N Nn NN NN

x x ext

x x

n

x x

N

x x

B

B

B B B B

C

C

C

   
   
   
     
   
   
      
     

 






 

1 1 11
06 6 6 6

6 6 6 6 0

6 6 6 6 0

0 0

0 0

0 0

dx x

n n n n

x x d

N N NN
x x d

F FK

K F F

K F F







       
       
       
                 

        
                       

.










 (2.3.6) 

 

2.3.2 PTO calculation 

 

The energy absorbed by body n  in the heaving mode of motion is given by, 

         
2

,3 ,3 3 ,33 3| | | | .n n n nn n

ext ext extP t F t t B t           (2.3.7)  

Since  

  3 3 3 2
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equation (2.3.7) leads to 
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Mean absorbed power is denoted as, 
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Heaving velocity magnitude is given by 

 3 3 3 ,n

A A j      (2.3.11)  

therefore absorbed mean power is expressed as 
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The total mean power absorbed by N  bodies is denoted as 
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CHAPTER 3:  NUMERICAL FORMULATION USING PLANE PANEL BEM 

 

3.1 Influence matrices 

 

In geometric first order approximation BEM, the boundary surfaces are discretized into a 

number of quadrilateral panels. In order to calculate the potential and its normal derivative 

value in a point P , which may lie inside the fluid domain or on its boundary, a sum of 

products must be calculated, each corresponding to a specific panel. As for the source 

distribution approximation, the simplest case is the zero-order one. In this case the strength is 

supposed to be constant, equal to the value on the center of the panel surface cx . The potential 

value on point cx is given by, 
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  (3.1.1) 

The same value on all panels can be written in matrix form as, 
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Each line of ,Φ σ  corresponds to the potential value and source strength respectively on each 

panel and _AS G is the so called influence matrix. Each line of the influence matrix holds an 

integral of the sum in (3.1.1). These integrals are introduced for the quadrilateral, constant 

strength case by Hess and Smith in (Katz & Plotkin, 2001) as, 
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and 
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Figure 3-1 Quadrilateral source strength element. Picture taken from (Katz & Plotkin, 2001) 
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It must be denoted that  , ,x y z  are the pane’s local coordinates of the calculation point 

which in this case is point cx . As for the velocity components in the local system of each 

panel, these are denoted as 
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for , 1, 2,..., .p TOTc D p N x  

If the calculation point is on the quadrilateral’s surface, defining the self induced case, the 

normal velocity component on the panel takes the value 
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If the calculation point is far from the panel the integral takes the form 

 

   
2 2 2

0 0

11

44
i

i

cD

A
dS

x x y y z







 
    

 x ξ
  (3.1.11) 

where iA  corresponds to the i  panel’s surface area. The velocity components are given by, 
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where 0 0 0, ,x y z  are the centroid coordinates of the influencing panel. After the transformation 

in the global system, the normal derivative of the potential in matrix form is, 

 
1
.

TOT TOT TOTN N Nn  


 



Φ
_AS thG σ   (3.1.15) 

 

  



31 

 

3.2 Numerical formulation of the indirect, hybrid problem 

 

The hydrodynamic problem is then formed in the following form, 
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According to equation (1.4.13) the matching boundary condition is formed as, 
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Equation (1.4.13) then is formulated as 
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Using the representation of equations (3.1.1) and (3.1.15) for the potential and it’s normal 

derivative the aforementioned equation referring to each matching boundary panel takes the 

form, 
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So matrix AS  and BS  are filled with their final part as, 
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Calculation of matrices AS  and BS  leads to the source strength values of each problem, 

making the potentials and their normal derivatives available. Those potentials are functions of 

the following factors, 
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where discretization  refers to the transferring of the continuous boundaries into their panel 

counterparts. 
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3.3 Numerical calculation of exciting forces and hydrodynamic coefficients 

 

Numerical formulation of exciting forces based on equations (1.2.43) and (1.2.44), is as 

follows, 
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Radiation forces are also formulated in a similar way based on equation (1.2.47), 
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The added mass and damping coefficients are then given by 
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CHAPTER 4:  DEVELOPMENT OF A GRID GENERATION PROGRAM 

 

4.1 Transfinite interpolation 

 

MATLAB®R2016a program GAWEC was developed in order to provide the necessary grid 

on the boundary surfaces, needed in order to apply the aforementioned hybrid numerical 

method. The boundary surfaces are divided into four types in accordance to the theory, body, 

free surface, sea bed and matching boundary type. Each of these types may consist of one or 

more parts numbered accordingly. The basic numerical tool used by this program is the 

transfinite interpolation in compliance to (Gordon & Thiel, 1982) and (Dyken & Floater, 

2009) which was inspired from (Belibassakis, et al., 2016). Given the parametric four curves 

enclosing the planar surface ( ), ( ), ( ), ( )u v u v
1 2 3 4

c c c c  any point inside this surface is given by, 
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S c c c c
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  (4.1.1) 

where 
abP  is the point curves ,a bc c  meet. 

By discretizing the continuous parameters  , 0,1u v  the nodes of the required structured 

grid are given. 

 

Figure 4-1 Application of transfinite interpolation  

  



38 

 

4.2 Free surface grid 

 

The free surface, which has a circular shape, is divided in two areas, the “inside” and “outside” 

one. The inside area includes the bodies whose waterline cuts the free surface, creating a 

number of holes. 

4.2.1 Inside area 

The basic idea applied in this area was to enclose each body in a rectangle of decided size 

which in program terms is called a “box”. The number of panels in the azimuthal direction is 

controlled from the body’s perimeter discretization selection and in the radial direction 

through the input selection. One fundamental requirement, for the proper function of the 

program, is the angle step to be a divisor of 90 degrees. It is not a necessity to also be a divisor 

of 45 degrees, as the program can handle an odd number of panels in a quadrant with proper 

distribution between the horizontal and vertical sides of the box. 

 

Figure 4-2 Basic "box" 

If the box is positioned on the corners of the inner area the box is rounded accordingly in order 

for the grid to be more homogeneous in terms of panel geometry and size. 
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Figure 4-3 Basic corner "box" 

Another feature of the program is that the additional number of panels in two parallel sides of 

the box can be controlled in the case of slender bodies with high aspect ratio. 

 

Figure 4-4 Slender body inside "box". No control of the panels, up. Control of the points, down. 

The bodies are placed in an array system with rows and columns. The distances between rows 

and columns are controlled. If the size of the boxes and the distances are specific, some parts 

which are called “gaps” are created in order to close the inner surface.  
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Figure 4-5 Bodies array without "gaps" 

Another feature of the program is that in whichever row it can be selected the bodies to be 

placed in a position which lies between the positions of the original columns. This position is 

controlled through a ratio of the original distance.  

 

 

Figure 4-6 Bodies array with "gaps" 
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Figure 4-7 Bodies array with intermediate positioned column, without "gaps" 

 

 

 

Figure 4-8 Bodies array with intermediate positioned column, with "gaps" 
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Also with the appropriate selection, each box can be left empty. 

 

Figure 4-9 The previous array grid with an "empty box" 

Concerning the number of panels in the gaps these are in part controlled directly and part from 

the number of panels in the boxes. The red ones, which in program terms are referred to as 

“vertical”, are formed vertically from the number of panels in the vertical side of the box and 

horizontally through selection. The green ones, called “horizontal”, have a vertical number of 

panels directly selected, and a horizontal in accordance with the number of panels of the 

horizontal box’s side and the selection for the vertical gaps. 

4.2.2 Outside area 

This area’s grid closes the free surface grid between the inner part and the outer circular limit. 

Basically it is formed in one part using the transfinite interpolation between the given 

boundary curves. The most complex boundary curve is the one that lies on the limit between 

the inside and outside areas. This curve is generally formed from four ellipsoidal curves and 

four lines if that is necessary. The number of panels and consequently the nodes on the curve 

parts are given by the ones of the inside part. The number of panels in the linear part is 

controlled independently.  
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Figure 4-10 Outside part 

This boundary curve selection guarantees that there are no openings on the free surface grid. 

 

Figure 4-11 Curved part between inside and outside parts 

The number of nodes on the bottom curve determines the angle step of the outer part and on 

the matching boundary grid. A feature of the program is the ability to divide the outside area 

into multiple parts that have azimuthally a number of panels that is product of the initial 

number with the desirable values. 



44 

 

 

Figure 4-12 Outside part with panel split 

The aforementioned panel division is done in such a way that no openings are created. 

 

Figure 4-13 Panel division 
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4.2.3 Total free surface grid and special cases 

The total free surface grid has the following general form. 

 

Figure 4-14 Example of a total free surface grid 

The program can also create either line or column array and single body grids. 

 

Figure 4-15 Column array free surface grid 
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Figure 4-16 Line array free surface grid 

 

 

Figure 4-17 One body free surface grid 
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4.3 Bodies grid 

 

The available types of bodies are cylinders and ellipsoid solids. The necessary grids are 

available in one grid part for each body. The number of panels in the azimuthal direction are 

directly controlled. This also applies to the number of panels in the vertical direction and on 

the radial one in the bottom. 

 

Figure 4-18 Cylinder body grid 

 

 

Figure 4-19 Ellipsoid body grid 
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4.4 Matching boundary grid 

 

The matching boundary is a cylindrical surface that encloses all the bodies. The simplest 

discretization available for this surface is to divide it into panels of constant height and angular 

width. This distribution is very wasteful in terms of computational memory for a lot of 

hydrodynamic problems. This comes as a result to the fact that a body without a big draught 

does not face any influence from panels far from it, in big depths. This defines no need for the 

grid to be dense on that depths. Another need is on the other hand, the panel’s size distribution 

to be as homogeneous as possible. These requirements are met through the adoption of the 

geometric progression for the height of the panels. So these two options are available. 

 

Figure 4-20 Matching boundary grid without use of geometric progression 

 

Figure 4-21 Matching boundary grid with use of geometric progression 
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4.5 Sea bed grid 

 

The construction of the sea bed grid follows the same method as the outside part of the free 

surface grid. By means of transfinite interpolation the starting point 0 0x , y  is linked to the 

external boundary, a cycle with radius equal to that of the matching boundary’s one. The 

number of panels in the azimuthal direction are controlled from the value calculated for the 

matching boundary. The option of panel division is also available for the sea bed grid. 

 

 

Figure 4-22 Sea bed grid with panel division 
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4.6 Panel size specifications 

 

Control of the number of panels, as mentioned in the previous paragraphs, leads to a specific 

dimensioning of them. In order to examine the arising dimensions, a number of distances is 

defined for the panels. 

Free surface 

 

Figure 4-23 Free surface panel dimensions 

dboxrx : horizontal distance in the radial direction 

dboxry : vertical distance in the radial direction 

dboxrd : diagonal distance in the radial direction 

dboxx : horizontal distance on the box’s perimeter  

dboxy : vertical distance on the box’s perimeter 

doutrx : horizontal distance in the radial direction 

doutry : vertical distance in the radial direction 

doutrd : diagonal distance in the radial direction 

doutx : horizontal distance on the inside area’s perimeter  

douty : vertical distance on the inside area’s perimeter 

dgapvx : horizontal distance of the vertical gaps 

dgapv0x : horizontal distance of the vertical gaps, in “intermediate” rows 

dgaphy : vertical distance of the horizontal gaps 

dtnRst : the distance on the matching boundary cycle 
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Sea bed 

dsb : radial size of each panel 

 

Matching boundary 

dh : vertical height of each panel, constant step 

dz : vertical height of each panel, geometric progression 

 

Bodies 

drb1 : horizontal distance on the body’s bottom 

drb2 : vertical distance on the body’s bottom 

dTb : vertical height on the body’s side 

 

Total grid 

dthb : the angle step on the creation of each body 

dthm : the angle step on the creation of the matching boundary 
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CHAPTER 5:  COMPARISON BETWEEN BEM AND SEMI-ANALYTIC 

HYDRODYNAMIC RESULTS 

 

5.1 Introduction 

 

The numerical scheme presented in chapter 3 is implemented in freFLOW (Manolas, 2015) 

which is a FORTRAN 90 program solving both the scattering, for a number of directions, and 

the radiation problems, for any number of bodies allowed by computer sources. Equipped with 

the provided grid nodes by GAWEC, freFLOW was used in order to obtain numerous results. 

In this chapter these results were compared with semi-analytic ones published by a number of 

authors who studied such problems, motivated by offshore industry interest. The problem 

geometry after the hybrid formulation adoption and the numbering of the bodies is represented 

in Figure 5-1 and Figure 5-2 respectively. It must be stated that this geometry naming is 

followed also in the following chapters. 

 

Figure 5-1 Hydrodynamic problem’s geometry after the matching boundary definition 

 

 

Figure 5-2 Numbering of bodies, inside an array. 
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5.2 Results concerning one body 

 

5.2.1 Scattering problem 

 

The scattering problem of a vertical cylinder oscillating in waves using a semi-analytic method 

was examined in (Miles & Gilbert, 1968). Garrett found errors to that work and presented his 

results in (Garrett, 1971). The results obtained were compared to those results showing a great 

convergence, both for the horizontal (Figure 5-3) and the vertical forces (Figure 5-4). The 

cylinder dimension choices used were two, with the draught changing and the rest of the 

dimensions constant.  

 

 

Figure 5-3 Isolated cylinder: Horizontal scattering force on isolated cylinder by Garrett (1971) 

 

5.2.2 Radiation problems 

 

The results obtained for the radiation problems were compared to those published in (Yeung, 

1980). Yeung used a semi-analytic method to obtain the hydrodynamic coefficients similar to 

that presented by Garrett. The program results showed perfect matching for a variety of 

cylinder dimensions. Specifically the hydrodynamic coefficients in surge (Figure 5-5) and 

heave (Figure 5-6 & Figure 5-7) motion both for a = 0.5 and a = 0.2 follow exactly the semi-

analytic results in low frequencies and slightly underestimate the added mass in high 

frequencies. The coupled pitch-surge hydrodynamic results (Figure 5-8) and the pitch (Figure 

5-9) ones matched exactly, especially in the d = 0.9 case. 
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Figure 5-4 Isolated cylinder: Vertical scattering force by Garrett (1971) 

 

Figure 5-5 Isolated cylinder: Hydrodynamic coefficients in surge motion by Yeung (1980) 
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Figure 5-6 Isolated cylinder: Hydrodynamic coefficients in heave motion by Yeung (1980) 

 

Figure 5-7 Isolated cylinder: Hydrodynamic coefficients in heave motion by Yeung (1980) 



57 

 

 

Figure 5-8 Isolated cylinder: Coupled hydrodynamic coefficients in pitch and heave motion by Yeung (1980) 

 

Figure 5-9 Isolated cylinder: Hydrodynamic coefficients in pitch motion by Yeung (1980) 
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5.3 Results concerning a 1x2 cylinder bodies array 

 

Although the isolated cylinder’s response was examined and a number of results were 

available by the early 70s, the absence of an appropriate interaction theory led to the study of 

this subject by a large number of researchers. In the case of axisymmetric bodies, a number of 

semi-analytic theories was developed with respect to the poor computer sources of that period. 

Most of those simplified presentations used the superposition of the isolated cylinder’s data 

with special theories. 

5.3.1 Scattering problem 

 

The data used for comparisons were those presented in (Matsui & Tamaki, 1981). The 

horizontal and vertical forces of cylinder 1 (Figure 5-10) showed good convergence as did the 

ones for cylinder 2 (Figure 5-11). 

 

Figure 5-10 Horizontal and vertical exciting forces, 1x2 array, cylinder 1 (continuous lines: freFLOW, dashed lines: 

Matsui and Tamaki 1981) 

5.3.2 Radiation problems 

 

The results concerning the radiation problems were compared to those presented in (Matsui & 

Tamaki, 1981) and in (Mavrakos, 1991). The matching of the results obtained was satisfying 

with the exception of cylinder 1 self influenced case in surge motion (Figure 5-12) where 8-

9% differences in the data peaks were reported. 
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Figure 5-11 Horizontal and vertical scattering forces, 1x2 array, cylinder 2 (continuous lines: freFLOW, dashed 

lines: Matsui and Tamaki 1981) 

 

Figure 5-12 Hydrodynamic coefficients, 1x2 array, (continuous lines: freFLOW, dashed lines: Matsui and Tamaki 

1981). 
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Figure 5-13 Interaction hydrodynamic coefficients, 1x2 array, (continuous lines: freFLOW, dashed lines: Mavrakos 

1991). 

 

Figure 5-14 Interaction hydrodynamic coefficients, 1x2 array, (continuous lines: freFLOW, dashed lines: Matsui 

and Tamaki 1981). 
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Figure 5-15 Hydrodynamic coefficients, 1x2 array, (continuous lines: freFLOW, dashed lines: Matsui and Tamaki 

1981). 

 

Figure 5-16 Interaction hydrodynamic coefficients, 1x2 array, (continuous lines: freFLOW, dashed lines: Mavrakos 

1991). 
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5.4 Results concerning an 2x2 cylinder bodies array 

 

Mavrakos in (Mavrakos, 1991) presented a number of results for different configurations such 

as the 2x2 cylinder array. The comparison between the results obtained and the presented ones 

was held for the hydrodynamic interaction coefficients corresponding to each body’s 

horizontal motion in cylinder No1’s vertical motion. The results showed very good matching 

behavior with small differences in some sharp areas of the curves. 

 

Figure 5-17 Interaction hydrodynamic coefficients, 2x2 array, (continuous lines: freFLOW, dashed lines: 

Mavrakos 1991). 

 

Figure 5-18 Interaction hydrodynamic coefficients, 2x2 array, (continuous lines: freFLOW, dashed lines: 

Mavrakos 1991). 
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CHAPTER 6:  HYDRODYNAMIC INTERACTION IN WEFs 

 

6.1 Explanation of the obtained results 

 

As it will be stated with power terms in proceeding chapter, the interaction between WECs is 

of fundamental importance when arranging them in a WEF. The interaction in some cases can 

lead to higher exciting forces compared to the isolated body case and in others lower. In order 

not to make the results incomprehensible, the same dimensions were applied for all the 

circular cylinders examined. The configurations shown in Figure 6-1 which can be divided in 

one row and multiple row ones were used to obtain the sought interaction phenomena. 

 

6.1.1 Excitation forces 

 

The first results presented concern the two cylinder case. In the β=0° case, cylinder No2 

follows the results of the isolated one in terms of the horizontal and vertical force, but with a 

decrease in value occurring. On the other hand, the cylinder greatly affected as seen in Figure 

6-3 is No1. Depending on the wave length of the incident wave, in some frequencies exciting 

forces can be higher or lower. This behavior is a classic result observed in multi-body 

interactions and appears due to the diffracted waves from the rear in a row cylinders to the 

ones in front of them. The dependence on wave length and not on specific frequencies can be 

confirmed from the repeated pattern which is shown between the results obtained for separated 

distance l=5a and l=8a. In the β=90° case, the solution becomes symmetric for cylinders No1 

and No2 and so the results are the same for both of them. In Figure 6-5 force on y-direction is 

almost equal to the isolated horizontal one and a small force is shown in the x-direction caused 

 
Figure 6-1 Numbering of bodies inside an array. 
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by the side diffracted waves. In the vertical direction the solution is affected by the diffracted 

waves from each cylinder and wave length dependent peaks are observed. When the incident 

wave direction is β=45°, the force in x-direction follows the β=0° behavior while the force in 

y-direction the β=90° one. Not obvious to predict is the fact that the total resultant horizontal 

force for some wave lengths is significantly higher than in the isolated case. As for the vertical 

force, as seen in Figure 6-4, the aforementioned fluctuations occur, which are more intense in 

No1 cylinder than in No2. It is interesting though that peak values occur in higher frequencies, 

something directly linked to the incident wave angle as seen in Figure 6-14 and Figure 6-15. 

The one row configuration results of three and four cylinders agree with the observations for 

the two cylinder case with slight differences. The last cylinder of the row, No 3 or No 4 

respectively, still is the one that experiences the mildest interaction effects when β=0°. In 

Figure 6-6 and Figure 6-9 it is shown that the greatest, in terms of value, fluctuations are 

developed on the first cylinder of the row. This is due to the superposition of the diffracted 

waves from all the cylinders behind it. Similarly, the second cylinder is influenced from the 

ones behind it only and its peak values are the second highest. When β=90° as seen in Figure 

6-8 for the 1x3 configuration, No2 cylinder shows zero value x-direction force due to the 

symmetric diffracted waves from No1 and No3 ones. Also cylinders No1 and No2 have the 

same response as No3 and No4 respectively, in the 1x4 configuration presented in Figure 6-11 

for the same reason. Differences in comparison to one row results can be observed in the 

fundamentally important for array configurations, 2x2 case. When the incident wave angle is 

β=0°, cylinders behave similarly to the ones of the 1x2 configuration with the exception that 

the y-direction force has non zero value. This is a result of the diffracted waves from the 

opposite row cylinders. New observations are made in the β=45° case, as seen in Figure 6-13. 

Specifically, No2 cylinder although being the last cylinder a wave crest reaches, shows some 

sort of fluctuation both in the horizontal and vertical forces, probably due to the diffracted 

waves from cylinders No1 and No4. These cylinders present an increased, same, resultant 

horizontal force compared to the isolated case. The cylinder on the other hand that is greatly 

affected is cylinder No3 which for specific wave lengths shows high peaks. 

 

6.1.2 Near trapping effect 

 

As stated in the previous paragraph, for a certain configuration, there are some frequencies 

which correspond to wave lengths that the interaction effects are significant. Specifically when 

the separating distance between two bodies is a product of the half wave length, 

 0 , 1,2,3,... ,

2

l
k l   


      (6.1.1) 

then the wave’s crest diffracted from the body which lies behind, in terms of incident 

direction, reaches the first body simultaneously with one crest of the incident wave. The 

superposition of these two waves results in a peak either higher or lower to the isolated 

exciting force value. This phenomenon was extensively investigated in (Evans & Porter, 

1997), (Evans & Porter, 1999) and (Newman, 2001) and is called near trapping. It is observed 

in row arrays of identical bodies separated by the same distance. The term “near” is used 

because firstly trapping refers to the resonance on infinite element row arrays or bodies in 

channels and secondly trapping is found when 1   and the rest values cannot be considered 

trapped too in the examined case. As stated, near trapping actually occurs in a wave length 

slightly lower than the values in (6.1.1). In order for this phenomenon to be presented in the 

examined cases a set of figures was prepared, focused on indicating it. First the 1x3 



65 

 

configuration under β=0° is examined. In Figure 6-6 the horizontal and vertical forces are 

presented for separating distances 5l a  and 8l a  with special plotting of 
0

k l  value. On 

the horizontal force, as stated in the previous analysis, cylinder No3 shows a decreased but 

similar behavior to the isolated case and no peaks exist since no diffraction wave reaches this 

last cylinder in the row. Cylinder No2 which lies in front of cylinder No3 shows a behavior 

similar to that of the last cylinder but with the superposition of a sinusoidal with high peak 

when 
0

/k l   reaches values such as 1, 2, 3 and low peak when this factor is equal to 1.5, 2.5, 

3.5 and so on. Odd integer numbers refer to 180° difference in the phase of the two cylinders, 

and even ones to no difference. On the other hand non integer values like the ones denoted 

refer to the case the incident wave and the diffracted one reach the front cylinder with 180° 

difference in the phase resulting in zero influence and decrease in value. Cylinder No1 which 

is the first cylinder to face the incident wave, responds the way an isolated cylinder should 

with the superposition of two diffracted waves. The first wave comes from cylinder No2 and 

has the same impact as in cylinder No2 and No3 interaction. The second wave comes from 

cylinder No3 which is positioned in a 2 l  separating distance, which means that even when 

0
/k l   is equal to 1.5, 2.5, 3.5, ..., 

0
2 /k l   is equal to 3, 5, 7 and so on. This results in an 

increased value, even on such wave lengths. On the vertical force, the same observations apply 

but now the high peaks correspond to low ones and vice versa. In other configurations, 1x4 is 

presented in Figure 6-9 and 2x2 in Figure 6-12. When in a row the fourth cylinder and the 

whole configuration follows the observations for the three cylinder case with respect to the 3 l  

separating distance between the first and the last cylinder. When four cylinders are positioned 

in a 2x2 configuration, the behavior of the front ones with respect to the incident wave 

direction is similar to that of cylinder No1, in a 1x2 configuration and of the ones behind them 

similar to that of cylinder No2. Deviations from this behavior are due to the diffracted waves 

from the second row cylinders and are more significant for the greater separating distance 

8l a . The observations that were presented and their appliance to any number of members 

row can be understood from Figure 6-27 and Figure 6-28. With an increasing number of 

bodies the forces increase since more diffracted waves exist and also the amplitude of the 

diffracted waves and their impact decreases with the increasing distance between two bodies. 

This is the reason for cylinder No1 to have the greatest high or low peak and also to have the 

maximum number of local peaks even if those can be considered of secondary order. For 

instance the interaction effect of cylinder No2 on No1 can be considered of secondary order 

and the interaction effect of cylinder No3 on No1 of third order. 

 

6.1.3 Added mass and damping coefficients 

 

As stated in preceding paragraphs 
pq

i jA and 
pq

i jB correspond to added mass and damping 

coefficients respectively, of body p  in the i  direction due to the motion of body q  in the j  

direction. Based on the radiation potentials whose result those coefficients constitute, the 

interaction effects can be divided in two types. The first one refers to the coefficients of a body 

which are the result of diffracted waves from neighboring stationary bodies, of the radiated 

wave by this body itself. The second one refers to coefficients of a body by another body’s 

radiated wave. Furthermore, on interaction effects, a key role is played by the mode of motion 

that results in a radiated wave. As seen in Figure 6-2 surging waves have a significant impact 

in the direction introduced by the motion, on the contrary heaving waves are symmetric 

around the axis of the cylinder. In Figure 6-29 for the two body case, the coefficients 

concerning the potential induced by the body itself show significant fluctuations which follow 
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a pattern similar to that of the exciting forces. Peak values are observed near wave lengths 

which follow the previously introduced equation (6.1.1). The fact that it is not obvious exactly 

which wave lengths result in those increased or decreased values is because the main 

dimension of the bodies are not relatively small compared to the separating distance between 

them. As a result wave crests can reach one body, in phase, in a different location on it, 

changing the result obtained. In Figure 6-30, the coefficients of cylinder No1 due to the 

motion of cylinder No2 are presented. The ones induced by surging mode of motion follow the 

general described behavior and the fluctuations occur around zero value, which means the 

coefficients take also negative values. The ones induced by heaving mode of motion on the 

other hand show a damping behavior which takes approximately zero value from 
0

1.8k a   

and on. In the 1x3 configuration the same behavior is observed but the difference lies on the 

fact that the cylinder influenced by two interactions and not only one is cylinder No2. This is 

indicated in Figure 6-31 and Figure 6-32 where cylinder No2 reaches a higher value than 

cylinder No1. Concerning the interaction coefficients, Figure 6-33 and Figure 6-34 show as 

expected that a coefficient value increases as the separating distance decreases and the number 

of high and low peaks depends on the number of half wave lengths that fit in the separating 

distance. This is also confirmed in the figures referring to 1x4 configuration. The last case 

considered is the 2x2 configuration, which is very indicative due to the positions of the bodies. 

Coefficients of the self induced case in Figure 6-39 reach a high peak for wave length 
0

/k l   

equal to 2, in the 5l a  separating distance while for 8l a  the values follow the usual 

pattern explained. As for the interaction ones in Figure 6-40 and Figure 6-41 they indicate the 

difference between surge and heave modes of motion. In the heaving case the interaction 

effects of cylinders No2 and No3 are the same in contrast to their effect when surging. 

Specifically when surging, No1 cylinder lies in the direction of the radiated wave from No2 

cylinder and not in the direction of No3 one. Especially in the surging No3 cylinder occasion, 

cylinder No1 is positioned vertically to the radiated wave’s direction hence the interaction 

effects are even lower than the ones in No4 cylinder’s surging case, which lies in a greater 

separating distance. 

 

 

Figure 6-2 Field pattern of the radiated wave for an axisymmetric body moving in heave (left), surging (right) motion, 

taken from (Babarit, 2015) 
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6.2 Exciting forces acting on WECs 

 

6.2.1 Results with respect to oscillating cylinder, one row array 

 

 

Figure 6-3 Exciting forces, 1x2 array, β=0 deg. 
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Figure 6-4 Exciting forces, 1x2 array, β=45deg. 
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Figure 6-5 Exciting forces, 1x2 array, β=90 deg. 
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Figure 6-6 Exciting forces, 1x3 array, β=0 deg. 
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Figure 6-7 Exciting forces, 1x3 array, β=45 deg. 
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Figure 6-8 Exciting forces, 1x3 array, β=90 deg. 
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Figure 6-9 Exciting forces, 1x4 array, β=0 deg. 
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Figure 6-10 Exciting forces, 1x4 array, β=45 deg. 
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Figure 6-11 Exciting forces, 1x4 array, β=90 deg. 
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6.2.2 Results with respect to oscillating cylinders, two rows array 

 

 

Figure 6-12 Exciting forces, 2x2 array, β=0 deg. 
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Figure 6-13 Exciting forces, 2x2 array, β=45 deg. 
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6.2.3 Results with respect to incident wave angle, one row array 

 

 

Figure 6-14 Exciting forces, 1x2 array, l=5a. 
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Figure 6-15 Exciting forces, 1x2 array, l=8a. 
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Figure 6-16 Exciting forces, 1x3 array, cylinder No1. 
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Figure 6-17 Exciting forces, 1x3 array, cylinder No2. 
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Figure 6-18 Exciting forces, 1x3 array, cylinder No3. 
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Figure 6-19 Exciting forces, 1x4 array, cylinder No1. 
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Figure 6-20 Exciting forces, 1x4 array, cylinder No2. 
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Figure 6-21 Exciting forces, 1x4 array, cylinder No3. 
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Figure 6-22 Exciting forces, 1x4 array, cylinder No4. 
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6.2.4 Results with respect to incident wave angle, two rows array 

 

 

Figure 6-23 Exciting forces, 2x2 array, cylinder No1. 
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Figure 6-24 Exciting forces, 2x2 array, cylinder No2. 
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Figure 6-25 Exciting forces, 2x2 array, cylinder No3. 
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Figure 6-26 Exciting forces, 2x2 array, cylinder No4. 
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6.2.5 Combined configurations, near trapping indicating results 

 

 

Figure 6-27 Exciting forces on the middle cylinder in row arrays of N bodies, β=0 deg, l=5a. The magenta dashed 

line corresponds to 
0

k l   with   being odd number and green dashed line corresponding to even number. 
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Figure 6-28 Exciting forces of cylinder No1 in row arrays of N bodies, β=0 deg, l=5a. The magenta dashed line 

corresponds to 
0

k l   with   being odd number and green dashed line corresponding to even number. 
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6.3 Interaction added masses and damping coefficients 

 

 

Figure 6-29 Added masses-damping coefficients, 1x2 array. 
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Figure 6-30 Interaction added masses-damping coefficients, 1x2 array. 
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Figure 6-31 Added masses-damping coefficients, 1x3 array, l=5a. 
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Figure 6-32 Added masses-damping coefficients, 1x3 array, l=8a. 
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Figure 6-33 Interaction added masses-damping coefficients, 1x3 array, l=5a. 
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Figure 6-34 Interaction added masses-damping coefficients, 1x3 array, l=8a. 
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Figure 6-35 Added masses-damping coefficients, 1x4 array, l=5a. 
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Figure 6-36 Added masses-damping coefficients, 1x4 array, l=8a. 
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Figure 6-37 Interaction added masses-damping coefficients, 1x4 array, l=5a. 
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Figure 6-38 Interaction added masses-damping coefficients, 1x4 array, l=8a. 
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Figure 6-39 Added masses-damping coefficients, 2x2 array. 
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Figure 6-40 Interaction added masses-damping coefficients, 2x2 array, l=5a. 
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Figure 6-41 Interaction added masses-damping coefficients, 2x2 array, l=8a. 
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CHAPTER 7:  HEAVING MOTIONS AND POWER ABSORPTION 

 

7.1 Isolated body’s motion and absorbed power 

 

Obtaining hydrodynamic results for a number of WEC configurations, made it possible to also 

solve the mechanical problem introduced in chapter 2. In this way a MATLAB®R2016a 

program was developed, named freOSCIP after the hydrodynamic one, which was able to 

calculate both the motions of each body but also the absorbed power. Although this program, 

is able to model the external damping and spring in any mode of motion, it was used only for 

heaving motion. 

7.1.1 Cylinder characteristics 

 

As applied for the hydrodynamic results the same cylinder dimensions were used, 

0.1, 1.0, 0.95a h d    and the same assumptions were made. Due to lack of specific WEC 

design and mass matrices, cylinders were considered homogeneous, solid, non-hollow. Their 

characteristics are 

Displacement 

 
2R T     (7.1.1) 

where R  is the cylinder’s radius, T  is its draught and 
3

1025 /kg m   is salt waters density. 

 

Figure 7-1 Heaving motion for variable constant external damping. For constant spring value, for increasing damping 

value motion decreases. The damping value step is equal to 0.1 times the hydrodynamic damping in the resonance 

frequency of the isolated cylinder. 
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Figure 7-2 Absorbed power for variable constant external damping. For constant spring value, for increasing 

damping value absorbed power increases. The damping value step is equal to 0.1 the hydrodynamic damping in the 

resonance frequency of the isolated cylinder. 

Moments of inertia 
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  (7.1.2) 

where H  is the cylinder’s height, considered equal to 1.2T in this thesis. 

 

Radius of gyration 
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Metacentric height 

 GM KM KG KB BM KG       (7.1.4) 

where 

 

4
2

2

2

4

4

2

TKB

R
R

BM
R T T

HKG







 



  (7.1.5) 

 

7.1.2 External damping tuning and spring value 

 

In Figure 7-1 and Figure 7-2 , heaving motion and absorbed power respectively of an isolated 

cylinder are presented for various values of external spring factor 
33

K  and external damping 

,33ext
B . Although in most cases spring factor 

33
K  depends on construction factors, the damping 

one is able to be tuned and a lot of interest has been shown on this issue as in (Falnes, 2004), 

(Borgarino, et al., 2012), (Cargo, et al., 2016) and (Wang, et al., 2016). In this thesis the aim 

was to search the interaction effects caused in selected configurations and not to find the 

optimal damping value for a specific configuration. The damping coefficient was held the 

same for every cylinder and tuned as stated in (Borgarino, et al., 2012) as equal to the 

hydrodynamic damping of an isolated cylinder at its resonant frequency. On the spring value, 

two cases were examined. One with zero spring value
33 33

0.0K C and one equal to
33 33

0.5K C . 
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7.2 Heaving mode motions 

 

The heaving motion response of a body depends on three main factors. First on the exciting 

forces acting on the body, second on the characteristics of the body which can be divided in 

the hydrodynamic and in the mass distribution ones and finally on external factors like the 

PTO mechanism. As indicated in the previous chapter, the dominant phenomenon effecting 

the exciting forces and the hydrodynamic characteristics of one body is near trapping. On the 

other hand the characteristics of the body in combination with the external factors determine 

the resonant frequency where the motion is expected to reach the highest value. As shown in 

Figure 7-1, resonance frequency in the case of 
33 33

0.0K C  is equal to 
0

0.8k a  and in the case 

of 
33 33

0.5K C  equal to 
0

1.5k a . The configurations examined are shown in Figure 7-3. 

Starting from the two cylinder configuration for incident wave angle equal to zero (β=0°), the 

interaction effects are similar to those observed for the exciting forces in Figure 6-3. As seen 

in Figure 7-4 and Figure 7-5 cylinder No2 has a response similar to that of the isolated body 

of a lower magnitude. On the contrary No1 cylinder’s response shows fluctuations indicated  

 

Figure 7-3 Numbering of bodies inside an array (1) 
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by the near trapping effect. Specifically, frequencies near the ones given from (6.1.1) 

correspond to low peak values and intermediate frequencies to high peak ones following the 

vertical exciting force behavior. When the incident wave angle is equal to β=90°, due to the 

symmetry of the configuration, the response of both cylinders is the same. For 
33 33

0.0K C  and 

separating distance 5l a , cylinders reach a significant increase in maximum value of 15%  

on the resonant frequency. An interesting observation is that in this configuration the 

intermediate near trapping frequency in which the vertical force increases coincides with the 

resonant one. This is not observed for 8l a . For 
33 33

0.5K C  similar behavior is shown with 

the exception of the heaving motion just reaching the one of the isolated body for 5l a . The 

impact of this coincidence is more clear for β=90° because of the contribution of body’s 

hydrodynamic coefficients in the motion response. The difference between heaving and 

surging/swaying radiation waves as shown in Figure 6-2 results in small values for 

coefficients 12

32
A  and 12

32
B . Sway motion being the dominant motion in the horizontal direction 

makes the effect of the heaving radiated waves and therefore near trapping significant. When 

β=0° surging through coefficients 12

31
A  and 12

31
B  impacts on the vertical motion, not letting 

similar behavior to the β=90° one. In the intermediate incident wave angle β=45°, the results 

are similar to those for the zero angle case. Peak values are not as high and the motion of 

cylinder No2 is increased leading to higher values than the isolated one, especially for 

33 33
0.5K C . For this external spring value intermediate near trapping frequencies exist close to 

value 
0

1.5k a , justifying this increase. These observations are generalized for the rest one row 

results presented. Like in the case of exciting forces, all the diffraction waves and the radiated 

ones create fluctuations of different order depending on the separating distance and the 

position in the row cylinders have. It is interesting to confirm that when the intermediate near 

trapping frequency coincides with the resonance one, the resulting response is again 

significantly high for the β=90° incident wave angle. This is increase in value is more 

significant as the position of one cylinder is near the middle of the row. In the 2x2 

configuration the behavior of cylinders resembles that of the 1x2 configuration under β=90° 

incident wave angle for the β=0° and β=90° cases. In the β=45° case the results are highly 

fluctuating. No1 and No4 cylinders have the same response which shows high and low peaks 

in the intermediate near trapping frequencies as their distance from the others is equal to l . 

No2 and No3 cylinders on the other hand take their peak values on frequencies that correspond 

again to near trapping effect with respect that their separating distance is equal to / cos 45l . 

No3 cylinder shows the highest value increase comparing to the isolated one. The last heaving 

motion results were about two different configurations carrying five cylinders each. The 1x5 

configuration shows inferior behavior than the 2x2-3 one under zero incident wave angle as 

almost all cylinders oscillate with magnitude lower than the one of the isolated case. Only 

cylinder No1 shows slightly higher values in some frequencies. On the contrary most elements 

of the 2x2-3 configuration with the exception of cylinders No2 and No5 show higher 

magnitudes than in the isolated case. When the incident wave is equal to β=90° the behavior 

reverses. The row configuration shows a high value peak at resonant frequency and the 2x2-3 

configuration has a decreased performance. For incident wave angle equal to β=60° the 

behavior of both configurations is more complicated and the best option is pointed out through 

the total energy absorption calculation. 
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Figure 7-4 Heaving motion, 1x2 array, 
33 33

0.0K C . 

 

 

 



113 

 

 

Figure 7-5 Heaving motion, 1x2 array, 
33 33

0.5K C . 
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Figure 7-6 Heaving motion, 1x3 array, 
33 33

0.0K C . 
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Figure 7-7 Heaving motion, 1x3 array, 
33 33

0.5K C . 
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Figure 7-8 Heaving motion, 1x4 array, 
33 33

0.0K C . 
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Figure 7-9 Heaving motion, 1x4 array, 
33 33

0.5K C . 
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Figure 7-10 Heaving motion, 2x2 array, 
33 33

0.0K C . 
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Figure 7-11 Heaving motion, 2x2 array, 
33 33

0.5K C . 
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Figure 7-12 Heaving motion, 1x5 and 2x2-3 arrays, 
33 33

0.0K C , l=5a. 
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Figure 7-13 Heaving motion, 1x5 and 2x2-3 arrays, 
33 33

0.5K C , l=5a 
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7.3 Power absorption and park effect 

 

7.3.1 Park effect 

 

As expected and confirmed by a wide number of researchers as (Babarit, 2013), the operation of each 

individual WEC in a WEF is affected by the operation of the rest ones. This results in a total 

absorbed power different than the one absorbed by all WECs, assuming they oscillate isolated from 

each other. In this way the efficiency of the WEF is given by an introduced q-factor. It is denoted as 

the ratio of the absorbed power to the one absorbed by the isolated WECs, 

 

,3
,31

,3, ,3,

( )
( )

( ) .
( ) ( )

N

n
totext

extn

ext iso ext iso

P
P

q
N P N P





 




 


  (7.1.6) 

 

This ratio can be greater, less or of course even to unit. These values correspond to a constructive or 

destructive interaction between WECs. 

 

7.3.2 Results with respect to separating distance and external spring value 

 

The power absorbed by the heaving motion of a cylinder is given from equation (2.3.12). Since the 

damping coefficient is assumed constant for all results obtained, power absorption behavior is 

determined from the heaving motion one with respect to the quadratic connection. For this reason the 

total power absorbed is examined. Furthermore, attention must be paid on the normalization process 

of the results. Each power value is normalized with the maximum power absorbed by the isolated 

body having the same external factors. This means that although the results for 
33 33

0.0K C  and 

33 33
0.5K C  can be misunderstood as comparable, they are totally of different magnitude order as seen 

in Figure 7-2. The total power absorbed in the 1x2 configuration depends highly on the incident wave 

direction and on the cylinder external factors. In the 
33 33

0.0K C case for separating distance 5l a , 

when the incident wave angle is β=90° both cylinders reach a higher value than in the isolated case 

resulting in maximum total power absorption. The zero angle case shows the second highest value 

and lower than the isolated case remains the β=45° one near the resonant frequency. On the 8l a

separating distance, zero incident wave angle case is similar to the isolated one as does the β=45° 

case around the resonant frequency. In the area after that frequency both β=45° and β=90° curves 

show a significant reserve in power absorption in contrast to the isolated one. When 
33 33

0.5K C the 

most power absorption rich case is the β=45° case no matter the separating distance. This is due to 

near trapping and resonance effects acting in close frequencies as in the zero incident wave angle for 

33 33
0.0K C  case. In all other cases the absorption remains near the level of the isolated case with the 

exception of the β=90° and 8l a  case where the interaction is significantly destructive. In Figure 

7-17 the described behavior is presented through the q-factor. What seems misleading is the high 

values observed, corresponding to low absorbed power differences mainly for frequencies greater 

than 
0

2.0k a . These observations are generalized for the rest of one row configurations. As for the 

2x2 configuration, β=0° and β=90° cases give the same constructive result in the 
33 33

0.0K C , 5l a  

case around resonant frequency. As for the rest cases the β=45° incident wave angle seems not only 

more widely distributed but when 
33 33

0.5K C  also gives the highest power absorption values. 
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Figure 7-14 Mean power absorbed per body, 1x2 array, 
33 33

0.0K C . 
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Figure 7-15 Mean power absorbed per body, 1x2 array, 
33 33

0.5K C . 
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Figure 7-16 Total mean power absorbed, 1x2 array. 

 

Figure 7-17 q-factor, 1x2 array. 
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Figure 7-18 Mean power absorbed per body, 1x3 array, 
33 33

0.0K C . 
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Figure 7-19 Mean power absorbed per body, 1x3 array, 
33 33

0.5K C . 
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Figure 7-20 Total mean power absorbed, 1x3 array. 

 

Figure 7-21 q-factor, 1x3 array. 
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Figure 7-22 Mean power absorbed per body, 1x4 array, 
33 33

0.0K C . 
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Figure 7-23 Mean power absorbed per body, 1x4 array, 
33 33

0.5K C . 
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Figure 7-24 Total mean power absorbed, 1x4 array. 

 

Figure 7-25 q-factor, 1x4 array. 
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Figure 7-26 Mean power absorbed per body, 2x2 array, 
33 33

0.0K C . 
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Figure 7-27 Mean power absorbed per body, 2x2 array, 
33 33

0.5K C . 
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Figure 7-28 Total mean power absorbed, 2x2 array. 

 

Figure 7-29 q-factor, 2x2 array. 
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7.3.3 Comparing results between different array configurations 

 

As stated before, the resulting output behavior prediction is very complicating due to the many 

parameters affecting it. Especially when the coincidence of near trapping effects and 

resonance ones take place. In the five cylinder configurations such complicated behavior can 

be observed. In Figure 7-33, for the 1x5 configuration, it is shown that for 
33 33

0.0K C  the 

highest power absorption occurs for β=90° incident wave angle and when 
33 33

0.5K C  for 

β=60°. This emphasizes the impact the resonance frequency has on the result, as in the first 

case intermediate near trapping frequency coincides with 
0

0.8k a  when β=90° under the 

existence of some more parameters discussed in a previous paragraph and in the second one 

when β=60°. On the 2x2-3 configuration, for 
33 33

0.0K C  the β=90° case shows the highest 

value despite the expectance for the β=0° one and for 
33 33

0.5K C  the β=60° case. The effect 

behind this unexpected behavior for 
33 33

0.0K C  is the same as for the 1x5 configuration. The 

difference which causes the lower high peak value is that cylinders No1 and No2 are lying 

behind those three cylinders the wave meets first, decreasing their heaving response. Last 

observation on these configurations is that as expected, β=0° cases are characterized as non-

efficient in contrast to their output in the 2x2-3 configuration where for 
33 33

0.5K C  the power 

absorption is above the isolated one. Respectively, β=90° cases can be assumed non efficient 

for the 2x2-3 configuration when no other phenomena take place. The next set of results 

presented from Figure 7-35 to Figure 7-37 concerns the impact of additional rows in the power 

absorbed. In all configurations, the separating distance is supposed constant equal to l=5a as 

does the external spring factor (
33 33

0.0K C ). In many sources as in (Babarit, 2013), it is 

advised to keep the number of rows with respect to the incident wave direction as low as 

possible. Returning to the results obtained for incident wave angle β=0°, the isolated case 

seems to be more power rich with the one row configuration (1x4) following next. For this 

incident wave angle it is the 3x4 configuration that shows improved power absorption in 

contrast to the 2x4 configuration. A possible explanation is that the same phenomenon occurs 

as in the row configurations under β=90° incident wave angle, where an increase in elements 

leads to higher values. For β=45° the response of the multi-row configurations is more 

complicated and the total power absorbed must be examined. As expected the front rows show 

improved behavior. It is important to observe that the third row added in the 3x4 configuration 

has a significant low power absorption. The picture changes in the β=90° case where the 

resonance and near trapping effects cause the absorbed power of the row configurations to 

increase. Although the second row, in the 2x4 configuration, adds to the power absorbed by 

the front one about 40% in peak value compared to the 1x4 configuration, the total power 

absorbed by the two rows is about the same as twice the one absorbed by the 1x4 

configuration. In the 3x4 configuration the front row (r = 3) output decreases compared to the 

2x4 configuration (r = 2), as do the two other rows compared to the 1x4 configuration. Due to 

the fact that the compared configurations have a different number of cylinders, it is very useful 

to examine their total absorbed power efficiency through the q-factor. Examining Figure 7-37, 

makes it clear that the presence of additional rows in an array decreases the power efficiency 

of the configuration. As seen in the case examined appropriate design can lead into increased 

power absorption in multi-row configurations compared to the isolated bodies case. This is the 

reason only for incident wave angle β=0° increasing number of rows corresponds to better 

results. The last results obtained concern the different impact two different middle row types, 

as introduced in Figure 7-30 for the 3x4 and 3x4-3-4 configurations, have on the total 

configurations. In Figure 7-38 for β=0°, the constructive effect observed in the 3x4 

configuration is not shown in the 3x4-3-4 one as the cylinders are no longer aligned. As 
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expected the β=60° behavior of the 3x4-3-4 configuration is improved compared to the 3x4 

one, reaching the 2x4 configuration value level. Finally, when the incident wave angle is equal 

to β=90°, the behavior of both configurations is similar, with the 3x4 configuration being 

slightly superior, in terms of efficiency, to the 3x4-3-4 one. 

 

Figure 7-30 Numbering of bodies inside an array (2) 
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Figure 7-31 Mean absorbed power per body, 1x5 and 2x2-3 arrays, 
33 33

0.0K C , l=5a. 
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Figure 7-32 Mean absorbed power per body, 1x5 and 2x2-3 arrays, 
33 33

0.5K C , l=5a. 
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Figure 7-33 Total mean power absorbed, 1x5 and 2x2-3 arrays, l=5a. 

 

Figure 7-34 q-factor, 1x5 and 2x2-3 arrays, l=5a. 
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Figure 7-35 Mean absorbed power per row, 1x4, 2x4 and 3x4 arrays, 
33 33

0.0K C , l=5a. 
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Figure 7-36 Total mean power absorbed, 2x4 and 3x4 arrays, l=5a. 

 

Figure 7-37 q-factor, 2x4 and 3x4 arrays, l=5a. 
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Figure 7-38 Mean absorbed power per row, 3x4 and 3x4-3-4 arrays, 
33 33

0.0K C , l=5a. 
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Figure 7-39 Total mean power absorbed, 3x4 and 3x4-3-4 arrays, l=5a. 

 

Figure 7-40 q-factor, 3x4 and 3x4-3-4 arrays, l=5a. 
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OVERVIEW AND CONCLUSIONS 

 

The main objective of this thesis was to examine the hydrodynamic interactions that take place 

in arrays of wave energy converters and the power efficiency achieved. In this direction, the 

frequency domain, BEM, hydrodynamic program freFLOW was used in order to obtain the 

exciting forces, added masses and damping coefficients of all array elements. In order to use 

this BEM code, a grid generation program (GAWEC) was developed, which supported us with 

all the necessary grids in the boundary discretization process. Furthermore, the requirement of 

obtaining motion and power absorption results led also to the development of another program 

(freOSCIP), able to solve the rigid body equations of motion with external PTO mechanisms 

modelled for all modes of motion. In this study the heaving power production from fully 

movable cylinders, with constant external damping, was examined for a variety of array 

configurations. The results obtained led to the following conclusions. 

 The dominant interaction phenomenon that determines the exciting forces, added masses 

and damping coefficients of the array elements is near trapping effect. Its dependence on 

the separating distance between two bodies relative to the wave length and the type of 

radiation wave, being a surging or a heaving one makes it complicated. When it comes to 

maximizing the heaving response of a body, separating distances as the ones obtained 

from the following equation are suggested. 

 0

1 1
, 1,2,3,...

2 / 2 2

l
k l    



 
      
 

  

 The heaving motion response of a body depends on three main factors. First on the 

exciting forces acting on the body, second on the characteristics of the body which can be 

divided in the hydrodynamic and in the mass distribution ones and finally on external 

factors like the ones of PTO mechanism. The dominant phenomenon effecting the exciting 

forces and the hydrodynamic characteristics of one body is near trapping as stated before. 

On the other hand the characteristics of the body in combination with the external factors 

determine the resonant frequency where the motion is expected to reach the highest value. 

The results obtained lead us to the conclusion that coincidence of both these effects can 

result in highly constructive behavior close to the resonant area of frequencies, in which 

the highest power absorption values occur. Therefore the calculation of the resonant 

frequency of the isolated body is suggested first and then the separating distance can be 

determined appropriately.  

 Constructive performance frequency areas are followed by areas in which efficiency drops 

in a relative way. This means that if the q-factor value is bigger than unity near to a 

frequency area, it will be smaller in another one. As shown through a number of results 

though the efficiency scale is highly dependent on the magnitude of the value to which it 

refers. This means that increased efficiency must be sought in power rich regions. 

 As stated by many authors, the number of rows in an array must be kept as low as 

possible. This suggestion is confirmed by the results obtained since as the number of rows 

increased, the efficiency dropped. However since very long row arrays are not an option 

especially in geographically limited available areas, proper design respecting the second 

conclusion is shown that can lead in highly constructive behavior in comparison to the 

isolated cylinders case. Additionally, if the required by the wave spectrum bigger spread 

in wave directions is needed, it is shown that there are configurations that can serve such a 

demand. 

 



146 

 

BIBLIOGRAPHY 

 

Athanassoulis, G. A. & Belibassakis, K. A., 2012. Ship Dynamics, Lecture Notes, School of Naval 

Architecture and Naval Engineering, (in Greek). Athens: s.n. 

Babarit, A., 2013. On the park effect in arrays of oscillating Wave Energy Converters. Renewable 

energy, Volume 58, pp. 68-78. 

Babarit, A., 2015. A database of capture width ration of wave energy converters. Renewable Energy.  

Babarit, A. et al., 2011. Power absorption measures and comparison of selected wave energy 

converters. s.l., s.n. 

Belibassakis, K. A., Gerostathis, T. P. & Athanassoulis, G. A., 2016. A 3D-BEM coupled-mode 

method for WEC arrays in variable bathymetry. Progress in renewable energies offshore, pp. 365-

373. 

Borgarino, B., Babarit, A. & Ferrant, P., 2011. Impact of the separating distance between WECs on 

the energy extractio of ana array. s.l., s.n. 

Borgarino, B., Babarit, A. & Ferrant, P., 2012. Impact of wave interactions effects on energy 

absorption in large arrays of wave energy converters. Ocean Engineering, Volume 41, pp. 79-88. 

Cargo, C. J., Hillis, A. J. & Plummer, A. R., 2016. Strategies for active tuning of wave energy 

converter hydraulic power take-off mechanisms. Renewable Energy, Issue 94, pp. 32-47. 

Chen, W., Gao, F., Meng, X. & Fu, J., 2016. Design of the wave energy converter array to achieve 

constructive effects. Ocean engineering, Issue 124, pp. 13-20. 

Chowdhury, S. D. et al., 2015. A review of hydrodynamic investigtions into arrays of ocean wave 

energy converters, s.l.: Australian Renewable Energy Agency, Emerging Renewables Program grant 

A00575. 

Day, A. et al., 2015. Hydrodynamic modelling of marine renewable energy devices: A state of the art 

review. Ocean Engineering, Volume 108, pp. 46-69. 

Dyken, C. & Floater, M., 2009. Transfinite mean value interpolation. Computer aided geometric 

design, Issue 26, pp. 117-134. 

Ekstrom, R., Ekergard, B. & Leijon, M., 2014. Electrical damping of linear generators for wave 

energy converters-A review. Renewable and Sustainable Energy Reviews, Volume 42, pp. 116-128. 

Evans, D. V. & Porter, R., 1997. Near-trapping of waves by circular arrays of vertical cylinders. 

Applied ocean research, Volume 19, pp. 83-99. 

Evans, D. V. & Porter, R., 1999. Trapping and near-trapping by arrays of cylinders in waves. Journal 

of engineering mathematics, Issue 35, pp. 149-179. 

Falnes, J., 2004. Ocean waves and oscillating systems. s.l.:Cambridge University Press. 

Garrett, C., 1971. Wave forces on a circular dock. J. Fluid Mech., Issue 46, pp. 129-139. 

Gordon, W. & Thiel, L., 1982. Transfinite mappings and their application to grid generation.  

Goteman, M., Engstrom, J., Eriksson, M. & Isberg, J., 2015. Fast modeling of large wave energy 

farms using interaction distance cut-off. Energies, Issue 8, pp. 13741-13757. 



147 

 

Ilyas, A., Kashif, S., Saqib, M. & Asad, M., 2014. Wave electrical systems: Implementation, 

challenges and environmental issues. Rewnewable and sustainable energy reviews, Volume 40, pp. 

260-268. 

Kagemoto, H. & Yue, D. K. P., 1986. Interaction among multiple three-dimensional bodies in water 

waves: an exact algebraic method. Journal of fluid mechanics, Volume 166, pp. 189-209. 

Katz, J. & Plotkin, A., 2001. Low-Speed Aerodynamics. s.l.:CAMBRIDGE UNIVERCITY PRESS. 

Li, W. et al., 2015. Parametric study of the power absorption for a linear generator wave energy 

converter. Journal of ocean and wind energy, pp. 248-252. 

Manolas, D., 2015. Hydro-aero-elastic analysis of offshore wind turbines, Phd Thesis. NTUA, 

Athens: s.n. 

Matsui, T. & Tamaki, T., 1981. Hydrodynamic interaction between groups of vertical axisymmetric 

bodies floating in waves. Trondheim, Norway, s.n., pp. 817-836. 

Mavrakos, S. A., 1991. Hydrodynamic coefficients for groups of interacting vertical axisymmetric 

bodies. Ocean Engineering, Vol. 18, No5, pp. 485-515. 

Mavrakos, S. A. & Koumoutsakos, P., 1987. Hydrodynamic interaction among vertical axisymmetric 

bodies restrained in waves. Applied ocean research, 9(3), pp. 128-140. 

Mavrakos, S. A. & McIver, P., 1997. Comparison of methods for computing hydrodynamic 

characteristics of arrays of wave power devices. Applied ocean research, Issue 19, pp. 283-291. 

McIver, P., 1984. Wave forces on arrays of floating bodies. Journal of engineering mathematics, 

Issue 18, pp. 273-285. 

McIver, P. & Evans, D. V., 1984. Approximation of wave forces on cylinder arrays. Applied ocean 

research, 6(2), pp. 101-107. 

Miles, J. & Gilbert, F., 1968. Scattering of gravity waves by a circular dock. Journal Fluid Mech. 

Vol. 34, part 4, pp. 783-793. 

Newman, J. N., 2001. Wave effects on multiple bodies. Hydrodynamics in ship and ocean 

engineering, April, pp. 3-26. 

Power, H. & Wrobel, L. C., 1995. Boundary Integral Methods in Fluid Mechanics. Southampton 

Boston: Computational Mechanics Publications. 

Singh, J. & Babarit, A., 2014. A fast approach coupling boundary element method and plane wave 

approximation for wave interaction analysis in sparse arrays of wave energy converters. Ocean 

engineering.  

Song, J. et al., 2016. Multi-resonant feedback control of heave wave energy converters. Ocean 

engineering, Issue 127, pp. 269-278. 

Thomas, G., 2011. Some observations on modelling arrays of wavepower devices. s.l.:s.n. 

Wahyudie, A. et al., 2016. Simple bottom-up hierarchical control strategy for heaving wave energy 

converters. Electrical power and energy systems.  

Wang, L., Engstrom, J., Leijon, M. & Isberg, J., 2016. Coordinated control of wave energy 

converters subject to motion constraints. Energies.  

Wang, L., Engstrom, J., Leijon, M. & Isberg, J., 2016. Performance of arrays of direct-driven wave 

energy converters under optimal take-off damping. AIP ADVANCES, Volume 6. 



148 

 

Williams, A. N. & Abul-Azm, A. G., 1989. Hydrodynamic interactions in floatingcylinder arrays-II. 

Wave radiation. Ocean Engineering, Vol. 16, No 3, pp. 217-263. 

Williams, A. N. & Demirbilek, Z., 1988. Hydrodynamic interactions in floating cylinder arrays-I. 

Wave scattering. Ocean Engineering, pp. 549-583. 

Xiao, X., Xiao, L. & Peng, T., 2017. Comparative study on power capture performance of oscillating-

body wave energy converters with three novel power take-off systems. Renewable energy, Issue 103, 

pp. 94-105. 

Yeung, R. W., 1980. Added mass and damping of a vertical cylinder in finite-depth waters. Appl. 

Ocean Res. 3, pp. 119-133. 

Zhang, X. & Yang, J., 2015. Power capture performance of an oscillating-body WEC with nonlinear 

snap through PTO systems in irregular waves. Applied ocean research, Issue 52, pp. 261-273. 

Zhang, X., Yang, J. & Xiao, L., 2014. Numerical study of an oscillating wave energy converter with 

nonlinear snap-through power take-off systems in regular waves. Journal of ocean and wind energy, 

1(4), pp. 225-230. 

 

 


