

GENERATION OF

COMPUTATIONAL MESHES FOR

BEM SIMULATIONS OF MARINE

PROPULSORS USING THE

SOFTWARE CATIA

A Diploma Thesis by

Dagkli Vasiliki
Presented to

The Department of Ship and Marine Hydrodynamics

School of Naval Architecture and Marine Engineering

National Technical University of Athens

Athens, February 2016

i

Table of Contents

Part I. Intro .. 1

Part II. The UBEM program .. 3

II-1 Formulation ... 3

II-1.1 Geometry .. 3

II-1.2 Velocity and potential representation theorems .. 4

II-1.3 The integral equation .. 5

II-1.4 Kutta condition .. 5

II-1.5 Shear layer dynamics .. 6

II-1.6 Calculation of forces, moments, power and efficiency ... 6

II-2 Discretization and solution ... 6

II-2.1 The GPP’s and MPP’s .. 8

II-3 Resulting mesh requirements .. 10

Part III. CAD software review ... 11

III-1 Rhinoceros 3D .. 11

III-2 Autodesk Inventor ... 11

III-3 Solidworks .. 12

III-4 CATIA .. 12

III-5 Siemens NX ... 12

Part IV. The software CATIA .. 13

IV-1 The workbench concept ... 13

IV-2 Features ... 14

IV-3 Solid modeling ... 15

IV-3.1 Boundary representation ... 15

IV-3.2 Parametric model ... 15

IV-4 Design intent ... 16

IV-5 Constraints .. 17

IV-5.1 Using constraints ... 17

IV-6 Associations ... 19

IV-6.1 Managing Links.. 19

IV-6.2 The Design Table .. 19

IV-7 Surface analysis ... 20

ii

Part V. Meshing in CATIA ... 22

V-1 Global meshing parameters .. 22

V-1.1 Mesh parameters ... 22

V-2 Meshing specifications .. 24

V-2.1 Geometrical Specifications toolbar.. 24

V-2.2 1D Mesh Specifications toolbar ... 25

V-2.3 2D Mesh Specifications toolbar ... 27

V-1 Exporting the mesh ... 28

V-2 Mesh quality analysis ... 30

Part VI. Reformatting the meshes for use in UBEM ... 31

VI-1 CATIA’s exported format .. 31

VI-1.1 Small field format ... 31

VI-1.2 Large field format ... 32

VI-1.3 The exported Data .. 32

VI-1.4 Matrix arrangement ... 34

VI-2 The interface program ... 35

VI-2.1 Types of surfaces .. 35

VI-2.2 Orientation markers .. 35

VI-2.3 Program .. 36

Part VII. Application: A Wageningen B-Series Propeller .. 37

VII-1 The propeller geometry ... 37

VII-1.1 Reference lines .. 37

VII-1.2 The hydrofoil Section ... 38

VII-1.3 Helical line .. 39

VII-2 Propeller Model in CATIA ... 40

VII-2.1 Design Intent .. 40

VII-3 Propeller Model creation overview ... 41

VII-3.1 The Blade .. 41

VII-3.1 The Hub .. 42

VII-3.2 The Fillet .. 42

VII-3.3 Preparation for meshing .. 42

VII-4 B-series meshes and runs ... 43

VII-4.1 Meshes .. 43

iii

VII-4.2 Runs .. 48

Part VIII. Application: an Azimuthing propulsor .. 51

VIII-1 The propulsor segments .. 52

VIII-1.1 The propeller .. 52

VIII-1.2 The strut ... 52

VIII-1.3 The motor module (pod) ... 53

VIII-2 Azimuthing propulsor model in CATIA ... 53

VIII-2.1 Model Axes .. 53

VIII-2.2 Design intent .. 53

VIII-3 Model creation overview .. 53

VIII-3.1 Strut .. 53

VIII-3.2 Pod ... 54

VIII-4 The Assembly ... 56

VIII-4.1 Assembly Definition ... 56

VIII-4.2 The assembly materialized in CATIA ... 56

VIII-4.3 The pod Assembly ... 57

VIII-5 Meshing .. 59

VIII-5.1 Meshing the Assembly ... 59

VIII-6 Podded propulsor meshes and runs .. 59

Part IX. Application: SMP Workshop Propeller ... 62

IX-1.1 Data provided ... 62

IX-1.2 Blade ... 63

IX-1.3 Fillet .. 64

IX-1.4 Hub .. 65

IX-1.5 Created Surface .. 66

IX-2 SMP propeller meshes and runs ... 67

Part X. Conclusions & Future Work ... 70

Part XI. Bibliography... 71

Aknowledgements ... 72

Appendix 0: Introductory Information ... 73

Appendix A. Step-by-step creation of the B-series model .. 75

A-1. Blade .. 75

A-1.1. Blade Wireframe .. 75

iv

A-1.2. Blade surface .. 79

A-2. The hub .. 80

A-3. Root Fillet .. 81

A-4. The hub caps.. 84

A-5. Preparing surfaces for meshing ... 85

A-5.1. Blade Surface ... 85

A-5.2. Fillet and Hub .. 86

Appendix B. Step-by-step creation of the podded propulsor model 90

B-1. Strut ... 90

B-1.1. Strut Wireframe ... 90

B-1.2. Strut Surface .. 93

B-2. Pod ... 94

B-2.1. Pod Wireframe ... 94

B-2.2. Pod Surface... 94

B-2.3. Pod and Strut Joined ... 96

B-2.4. Pod with Fin ... 96

B-3. Meshing preparation ... 96

Appendix C. The B-Series model excel files ... 99

C-1. The model parameters file .. 99

C-2. The mesh distributions file ... 101

Appendix D. The podded propulsor excel files.. 104

D-1. The pod part model parameters file ... 104

D-2. The pod Assembly mesh excel file .. 105

Appendix E. Example of design table creation: a propeller section 109

E-1. Design table file creation .. 109

E-2. Step-by-step creation of section with associations .. 110

Appendix F. Step- by-step creation and export of meshes .. 113

F-1. Step-by-step mesh export for use in UBEM .. 113

Appendix G. The source code of the interface program ... 117

1

Part I. Intro

The quest for efficiency leads the propulsor designers to adopt more complex geometries,

leading to ever higher demand for integration of simulations to the design process. Boundary

Element Methods (BEM) have already been tried and tested for the first steps in the initial

propeller design. However, the propeller design has been a well-set and addressed problem,

but more complex geometries pose a difficulty in their representation. An approach to this

problem is proposed in the current thesis

Modern propulsors have evolved beyond the simple propeller. Even the propeller’s design

itself has increased in complexity, with design elements such as extreme skew, tip unloading,

contracted tip and so on. Added to that are geometries, such as stators or ducts. Its

counterpoint, non-conventional propulsion configurations, such as podded propulsors and

ducted propellers are more often than not quite complex in themselves.

Boundary Element Methods, as a formulation, can handle any (within limitation) geometry,

but the programs currently available work with mesh geometries produced by in-house

programs, based on algebraic meshing methods. These are effective, fast and good at creating

known geometries, such as foils, wings and propeller blades. However, input of new geometry

to an existing simulation requires new code with which to create the them. This also means

that the designer ought to be a programmer, in order to write the new code that will produce

the new grid geometry.

On the other hand, CAD programs can produce any geometry the designer wants.

Additionally, several of current CAD programs offer built-in meshing capabilities that can

deal with any complex geometry. Consequently, the role of the designer could be decoupled

from that of the programmer so long as the meshes are produced in a format compatible to

the BEM solver. Additionally, some CAD programs also have parametric design capabilities.

Considering that the existing geometry generation code is parameterized to a great extent,

parametric CAD can be a suitable substitute.

Taking the above under consideration, it is possible to use a CAD software to produce a grid

input for the BEM code using the software’s built-in mesher, and to do so in a parametric

way that will enable rapid geometry creation, thus bridging the gap between CAD and BEM.

In this direction, the following steps were taken:

a) Selection of a program, taking under consideration the BEM requirements and

limitations, and design intent.

b) Acquaintance with the program of choice. This includes looking into the format in

which the grid is exported and detection of any incompatibilities with the BEM

program

c) Creation of parametric models and meshes

2

d) Creation of an interface program that translates the mesh from the exported format

to the input format for the BEM program

e) Utilization of the Animation code, written by V. Tsarsitalidis (Tsarsitalidis 2015)

f) Input in UBEM

g) Execution of test applications

Product of this work is the introduction of a methodology that enables the designer to create

complex geometries in CAD and input in UBEM with added complex motions.

For the development of the meshing method, 3 distinct cases were investigated:

i) Creation of a model and mesh with the more traditional approach of provided

offsets: for this the Wageningnen B-Series (Oosterveld and van Oossanen 1975)

was selected, since it is one of the most well-documented propeller series and is

already described in a parametric manner.

ii) Creation of a model and mesh without a fully established geometry: a podded

propulsor was created, based on a design concept inspired by existing podded

propulsors

iii) Creation of mesh from a third-party surface geometry: an external geometry in the

IGES format, provided by SVA for the SMP ’15 Cavitating Propeller Workshop,

was used

The work on the propeller and pod resulted in the creation of parametric models that can be

modified by any user, by changing the parameter values in the accompanying excel files.

In addition, parametric mesh models were created for all cases, that can be easily modified

through external excel files. The resulting meshes can then be exported, translated using the

developed interface program and input in UBEM.

To test the method, a set of meshes were created for each of the aforementioned cases and

run with UBEM. The results were compared to the existing data for evaluation.

3

Part II. The UBEM program

The Boundary Element solver UBEM, initially created by Politis (2004), is a well-established

solver and is the tool that will be used for the simulations.

In order to make a choice regarding the CAD program, its requirements and need to be

defined. The method is roughly described below.

II-1 Formulation

The formulation of the boundary element method used in the solver code UBEM is thoroughly

discussed by Politis (2011). A general overview is presented here.

II-1.1 Geometry

In the UBEM formulation, the geometry is built of complex systems of bodies using surface

patches. Each patch consists of a number of bilinear quadrilateral elements. Two types of

patches are allowed: lifting patches and non-lifting patches. By combining patches, lifting

and/or non-lifting bodies are built.

Lifting surfaces are distinguished from the non-lifting by supplying to the former a flow

separation line, defined by the user. Each separation line is the generator of a free shear

layer. On each free shear layer, two distinct parts can be considered: a) the strip directly

adjacent to the line (the line is bound to the surface), which is called the “Kutta strip” and b)

the remaining part of the shear layer. The free shear layer surface at each time t is

expressible as a Boolean union of all the Kutta strips and all the remaining parts of the shear

layer.

Let M denotes the number of patches in the system. Introduce an index set M ≡ (1,2,…,M)

for all the patches. Let 𝑆𝐵𝑛(𝑡), 𝑛 ∈ 𝛭 denotes the defining surface of the nth patch at time t.

The flow separation line is denoted by 𝐿𝑛(𝑡) where 𝑛 ∈ 𝑀′ and 𝑀′ ⊂ 𝑀 denotes the an index

subset of M characterising the lifting patches: 𝐿𝑛(𝑡) ∈ 𝑆𝐵𝑛(𝑡), 𝑛 ∈ 𝑀′. Each separation line

𝐿𝑛(𝑡) is the generator of a free shear layer. Kutta strip is denoted by 𝑆𝐾𝑛(𝑡), 𝑛 ∈ 𝑀′. Thus,

each free shear layer surface at time t is expressible as 𝑆𝐾𝑛(𝑡) ∪ 𝑆𝐹𝑛(𝑡), 𝑛 ∈ 𝑀′.

Total system surface at time t:

𝑆𝐵(𝑡) = ⋃ 𝑆𝐵𝑛(𝑡)𝑛∈𝑀 (1)

Total system Kutta strip surface at time t:

𝑆𝐾(𝑡) = ⋃ 𝑆𝐾𝑛(𝑡)𝑛∈𝑀′ (2)

Total system free shear layer surface at time t, excluding Kutta strips:

𝑆𝐹(𝑡) = ⋃ 𝑆𝐹𝑛(𝑡)𝑛∈𝑀′ (3)

4

II-1.2 Velocity and potential representation theorems

For the definition of velocities, an inertial (built in earth surface) frame of reference is used.

A corresponding coordinate system (assumed Cartesian-orthogonal) is denoted by OXYZ.

As a result of the unsteady motion of the system of bodies, in the region outer of them, there

exists a velocity potential φ. At each timestep, it is expressible through its traces 𝛷, 𝛻𝛷 on

the boundary points 𝑄 ∈ 𝑆𝐵(𝑡) ∪ 𝑆𝐾(𝑡) ∪ 𝑆𝐹(𝑡).

Introduce:

𝐹(𝑃) = −
1

4𝜋
∫

�⃗� ∙ 𝛻𝛷

𝑟
𝑆𝐵(𝑡)

𝑑𝑆 +
1

4𝜋
∫ 𝛷

𝑛 ∙⃗⃗⃗⃗ 𝑟

𝑟3
𝑑𝑆

𝑆𝐵(𝑡)

+
1

4𝜋
∫ 𝜇

𝑛 ∙⃗⃗⃗⃗ 𝑟

𝑟3
𝑑𝑆 +

1

4𝜋
∫ 𝜇

𝑛 ∙⃗⃗⃗⃗ 𝑟

𝑟3
𝑑𝑆

𝑆𝐹(𝑡)𝑆𝐾(𝑡)

(4)

�⃗⃗� (𝑃) =
1

4𝜋
∫ (�⃗� ∙ 𝛻𝛷

𝑆𝐵(𝑡)

)
𝑟

𝑟3
𝑑𝑆 +

1

4𝜋
∫ (�⃗� × 𝛻𝛷

𝑆𝐵(𝑡)

) ×
𝑟

𝑟3
𝑑𝑆

+
1

4𝜋
∫ 𝛾

𝑆𝛫(𝑡)

×
𝑟

𝑟3
𝑑𝑆 +

1

4𝜋
∫ 𝛾 ×⃗⃗⃗⃗ ⃗⃗

𝑆𝐹(𝑡)

𝑟

𝑟3
𝑑𝑆 −

1

4𝜋
∫ 𝜇

𝐿′(𝑡)

𝑑𝑙 × 𝑟

𝑟3

 (5)

Where P is the evaluation point (or control point) for either F orH⃗⃗ , n⃗ is a unit normal vector

at the boundary integration point 𝑄 ∈ 𝑆𝐵(𝑡) ∪ 𝑆𝐾(𝑡)𝑆𝐹(𝑡) showing inside the flow region, 𝑟 =

𝑄𝑃⃗⃗⃗⃗ ⃗, 𝑟 = |𝑄𝑃⃗⃗⃗⃗ ⃗|, μ is the dipole intensity with support on 𝑆𝐾(𝑡) ∪ 𝑆𝐹(𝑡) and 𝛾 is the corresponding

(to μ) vorticity intensity given by

𝜇 = 𝛷+ − 𝛷− (6)

𝛾 = �⃗� × 𝛻𝜇 (7)

Finally, 𝐿′(𝑡) = 𝜕(𝑆𝐾(𝑡) ∪ 𝑆𝐹(𝑡)) − 𝐿(𝑡), where 𝐿(𝑡) =∪𝑛∈𝑀′ 𝐿𝑛(𝑡) (the free part of the line

bounding the free shear layers)

With the aid of relations (4) and (5), representations for 𝛷, 𝛻𝛷become

𝛷(𝑃) = 𝐹(𝑃)

 𝛻𝛷(𝑃) = �⃗⃗� (𝑃)
}𝑃(𝑆𝐵(𝑡) ∪ 𝑆𝐾(𝑡) ∪ 𝑆𝐹(𝑡))

(8)

𝛷(𝑃) =
1

2
𝛷(𝑃) + 𝐹(𝑃)

𝛻𝛷(𝑃) =
1

2
(�⃗� ∙ 𝛻𝛷) ∙ �⃗� +

1

2
(�⃗� × 𝛻𝛷) × �⃗� + �⃗⃗� (𝑃)

} ⇔ {

1

2
𝛷(𝑃) = 𝐹(𝑃)

1

2
𝛻𝛷(𝑃) = �⃗⃗� (𝑃)

}𝑃 ∈ 𝑆𝐵(𝑡)

(9)

5

𝛷+.−(𝑃) = ±
1

2
𝜇(𝑃) + 𝐹(𝑃)

𝛻𝛷+.−(𝑃) = ±
1

2
𝛾 (𝑃) × �⃗� (𝑃) + �⃗⃗� (𝑃)

}𝑃 ∈ 𝑆𝐹+.−(𝑡)

(10)

And similarly for𝑆𝐾+.−. In relation (10) the superscripts (+ .-) denote the two sides of the free

shear (or vorticity) layer surfaces. While the unit normal �⃗� is directed from (-) to (+)

II-1.3 The integral equation

Let 𝑣𝐴⃗⃗⃗⃗ denotes the velocity to the boundary point 𝐴 ∈ 𝑆𝐵(𝑡) and �⃗� a unit vector normal to body

surface at A with direction pointing into the flow region. Then, the no-entrance conditions at

A has the form:

𝛻𝛷 ∙ �⃗� = 𝑣𝐴⃗⃗⃗⃗ ∙ �⃗� (11)

Substituting (11) to the first of eq. (9) and using (4) we get:

1

2
𝛷(𝑃) −

1

4𝜋
∫ 𝛷

𝑆𝐵(𝑡)

�⃗� ∙ 𝑟

𝑟3
𝑑𝑆 −

1

4𝜋
∫ 𝜇

𝑆𝐾(𝑡)

�⃗� ∙ 𝑟

𝑟3
𝑑𝑆

= −
1

4𝜋
∫

�⃗� ∙ 𝑣 𝐴
𝑟

𝑑𝑆 +
1

4𝜋
∫ 𝜇

�⃗� ∙ 𝑟

𝑟3
𝑑𝑆, 𝑃 ∈ 𝑆𝐵(𝑡)

𝑆𝐹(𝑡)𝑆𝐵(𝑡)

(12)

This is a second kind Fredholm type Cauchy singular boundary integral equation for the

determination of Φ and μ on points of SB(t) and SK(t), respectively. In the right hand side of

(12) the first term is a known integral (as far as the motion of the system of bodies is known)

and the second term is known from the solution of the problem at previous time steps. The

unknowns in the left hand side of (12) are the potentialΦ on SB(t) and the dipole intensity μ

on SK(t). For their determination the additional required condition is the Kutta condition at

the separation lines (trailing edges in case of wing flow w/o separation).

II-1.4 Kutta condition

Let the point 𝐴 ∈ 𝑆𝐵(𝑡). Let (𝑑/𝑑𝑡)|𝐴denotes the time derivative for an observer built to the

point A of the moving body and let 𝑣𝐴⃗⃗⃗⃗ denotes the known velocity of A. Then unsteady

Bernoulli equation takes the following form:

𝑝 − 𝑝∞

𝜌
= −

𝑑𝛷

𝑑𝑡
|
𝐴

−
1

2
(𝛻𝛷 − 𝑣 𝐴

2) +
1

2
𝑣 𝐴

2
 (13)

According to a pressure type Kutta condition, as we approach the trailing edge point from

either pressure side (superscript +) or suction side (superscript -), the pressure should be

continuous i.e.

𝑝+ = 𝑝− (14)

6

Using (13), this becomes a quadratic (nonlinear) relation between 𝛷+, 𝛻𝛷+, 𝛷−, 𝛻𝛷−.

Assuming steady linearized flow, Bernoulli equation degenerates to the famous Morino

condition

𝜇𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑖𝑛𝑔𝐿(𝑡)𝑓𝑟𝑜𝑚𝑠ℎ𝑒𝑎𝑟𝑙𝑎𝑦𝑒𝑟 = (𝛷+ − 𝛷−)𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑖𝑛𝑔𝐿(𝑡)𝑓𝑟𝑜𝑚𝑏𝑜𝑑𝑦𝑝𝑜𝑖𝑛𝑡𝑠 (15)

Which is a linear equation in Φ, μ.

II-1.5 Shear layer dynamics

Kinematic and dynamic conditions on a free vortex sheet expressed in terms of the dipole

intensity of the sheet results in the following equation Politis (2004):

𝐷𝜇

𝐷𝑡
= 0 (16)

Where D/Dt denotes a material derivative for μ, based on the mean perturbation velocity of

the shear layer. Mean perturbation velocity > 𝑣 < on points of the shear layer can be found

using (10)

> 𝑣 < =
𝛻𝛷+ + 𝛻𝛷−

2
= �⃗⃗� (𝑃) (17)

So, relation (16) becomes

𝐷𝜇

𝐷𝑡
=

𝜕𝜇

𝜕𝜏
+ (> 𝑣 <∙ 𝛻)𝜇 =

𝜗𝜇

𝜗𝑡
+ (�⃗⃗� (𝑃) ∙ 𝛻)𝜇 = 0 (18)

II-1.6 Calculation of forces, moments, power and efficiency

Pressure forces on element centroids can be calculated using (13). The developed code also

contains a simple subroutine for the calculation of viscous effects, using an elemental drag

coefficient provided by the user. We can then integrate the pressure and viscous drag forces

to find total body and/or system forces or moments around any given point or axis. In the

current computer code a moving coordinate system is introduced, with position and

orientation defined by the user, which is used for the interpretation/representation of

instantaneous forces and moments.

II-2 Discretization and solution

Subdivide 𝑆𝐵(𝑡), 𝑆𝐾(𝑡) and 𝑆𝐹(𝑡) into 𝑁𝐵 , 𝑁𝐾 and 𝑁𝐹 elements respectively. Four node

quadrilateral elements have been used for the subdivision of bodies and shear layer

boundaries. Assume piecewise constant 𝛷 and �⃗� ∙ 𝛻𝛷 for all elements on 𝑆𝐵(𝑡)

Assume piecewise constant 𝜇 for all elements on𝑆𝐾(𝑡) ∪ 𝑆𝐹(𝑡). Denote these constant values

by 𝛷𝑖 , 𝜎𝑖(= (𝑛 ∙ 𝛻𝛷)𝑖), 𝜇𝑖 where the range of index (i) is adapted accordingly

With the aid of the previous assumptions/notation integral Eq. (12) becomes

7

1

2
𝛷𝑖 − ∑ 𝛣𝑖𝑗𝛷𝑗 − ∑ 𝐵𝑖𝑗𝜇𝑗

𝑗=1,𝑁𝐾

= ∑ 𝐴𝑖𝑗𝜎𝑗
𝑗=1,𝑁𝐵

+ ∑ 𝐵𝑖𝑗𝜇𝑗

𝑗=1,𝑁𝐹𝑗=1,𝑁𝐵

(19)

Where

𝐴𝑖𝑗 − −
1

4𝜋
∫

𝑑𝑆

|𝑄𝑃𝑖|
𝛦𝑗

, 𝐵𝑖𝑗 =
1

4𝜋
∫

�⃗� (𝑄) ∙ 𝑄𝑃𝑖⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑆

|𝑄𝑃𝑖|
3

𝐸𝑗

And 𝐸𝑗 denotes the surface of the jth element from either 𝑆𝐵(𝑡), 𝑆𝐾(𝑡), 𝑆𝐹(𝑡) and 𝑃𝑖 denotes

the ith control point (centroid of𝐸𝑖) on 𝑆𝐵(𝑡).

Relation (19) applied at the 𝑁𝐵centroids of the body elements, gives 𝑁_𝐵 linear equations for

the determination of element potentials. The 𝑁𝐾 additional equations required for the

calculation of 𝜇𝑗are taken from the satisfaction of the Kutta condition on 𝐿(𝑡). As already

said, the computer code can implement three alternatives for the satisfaction of a Kutta

condition, and thus completion of the system of equations:

(i) The first alternative uses a linear Morino condition in the form of (15), which in

discretised form becomes: 𝜇𝑖 = 𝛷𝑖+ − 𝛷𝑖− , where 𝑖+ and 𝑖− denote element numbers

on body, neighboring to trailing edge from different sides (i.e. pressure side and

suction side to use terminology from wings) and i denotes element number on

Kutta strip, neighbouring to the same point of the trailing edge

(ii) The second alternative uses a pressure type Kutta in the form of Eq. (14). This is

a nonlinear equation between the unknowns 𝛷𝑗 and 𝜇𝑗. There are two ways to

implement numerically the nonlinear pressure type Kutta. The first is to express

velocities in (13) as functions of the unknowns 𝛷𝑗, 𝜇𝑗 using the representation

theorems (9). The second is to evaluate velocities from surface potentials by using

finite differences in a body surface curvilinear system. The second method was

used, since the computational cost for calculating velocity induction factors needed

in the first formulation, is high.

(iii) The third alternative uses a mixed type Kutta i.e. partly Morino and partly

Pressure type.

If alternatives (ii) or (iii) have been selected, the resulting system of equations is nonlinear

and it is solved by using a Newton iteration method, with starting value taken from a Morino-

type Kutta (first alternative). After the system of equations has been solved, the code

calculates and prints forces, moments, power and efficiency. It also prepares a number of

graphic output files ready to be used by the commercial program TECPLOT to visualize the

complex unsteady phenomena in video form.

Solution of the problem is implemented by a time stepping algorithm as follows:

8

At each time step, the SOLVER-CODE:

1. Reads the next position of the system of bodies, which is calculated by a GPP/MPP

(Geometric Preprocessor Program (GPP), Motion Preprocessor Program (MPP)—

explained in the next section)

2. Generates corresponding Kutta strips, for the case of lifting bodies, thus introducing

the extra unknowns required for the Kutta condition satisfaction.

3. Solves the system consisting of the ‘‘no-entrance’’ and ‘‘Kutta’’ conditions. In case of

pressure type Kutta Newton iteration is used at this step.

4. Deforms the free shear layers to their new positions by applying a special filtering

technique to calculate > 𝑣 < , Eq. (17).

5. Output results (pressures, forces, velocities and position of free shear layers) for this

time step.

6. Proceeds to the next time step and repeats the calculation from step (1).

II-2.1 The GPP’s and MPP’s

According to UBEM architecture a body (lifting or non-lifting) can be built by a number of

patches. Thus, for each case to be modelled, a specialized GPP (Geometry Preprocessing

Program) and MPP (Motion Preprocessing Program) has to be developed.

The MPP code used was developed by V. Tsarsitalidis. As shown in Fig. II-1, for the

systematic exploration of parameters of movement to performance characteristics, a sequence

of simulations is executed. The initial geometry parameters have to be given, along with a set

of fixed parameters and the parameters that will be systematically changed in the sequence.

For each step, an intermediate subprogram gives the specific parameters to the geometry pre-

processing program, which in turn makes the time history (animation) of movement to be

input for the solver. The solver in turn, exports result files signified by the parameters of each

simulation. Lastly, an insert data collection subprogram gathers user-defined data from all

iterations and exports them into a single file (for each set of variables) in order to make it

easy to extract summary plots for the whole set of systematic runs performed.

9

 Input file generation

A file containing the description of geometry (in animated panel mesh form), is necessary for

the solver. Since the architecture is modular, input file generators are built for this purpose.

Fig. II-2 depicts the structure of the in-house program that has been created for wing

simulations. For the current application, the Geometry Data generation is provided by the

developed method, using the meshes created from the parametric models and translated with

the interface program.

 Animating a given geometry.

The Motion pre-processing subprogram, is actually superimposing user defined rigid

(rotations and translations of the whole body) and flexing motions. If flexing motions are

employed, they are performed before the rigid motions. In our case, no flexing motions are

used, so the rigid body motions calculation will be the only one explained.

 Rigid body motions

In the most general case an instantaneous motion is a result of an instantaneous rotation

around a given axis and an instantaneous translation along another given axis. For the

minimization of errors, instead of incremental motion (i.e. moving the geometry from the

position of the previous step to that of the next), a direct approach is taken, where one rotation

and one translation is applied to the initial geometry at each step in order to arrive at the

desirable position. The movements of each point are done by means of vector translation and

rotation relative to given point and axis or the absolute centre of reference using the

aforementioned linear algebra/geometry functions. Then, the definition of motions is a matter

of defining the rotation angle and vector, and the translation vector in time.

Fig. II-1 Schematic of used program architecture. Source: (Tsarsitalidis 2015)

10

II-3 Resulting mesh requirements

From the UBEM formulation, the following requirements for grid creation arise:

- Mesh curves should be smooth and with smooth derivatives

- Mesh line distribution should be denser in domain areas where higher calculation

errors are expected

- Mesh element size distribution should be smooth (no big discrepancies in size between

neighbouring grid elements)

- Mesh elements should be as rectangular as possible

However, fulfilment of above requirements is not always feasible. Domain boundary

geometry plays a major part and might be prohibiting to achieving smooth curves or

rectangular grids. In addition, geometric fidelity or smoothness cannot always be achieved

without leading to solutions that are too demanding either in time or data volume.

Consequently, it is obvious that a balance must be struck between requirements and

resulting grid.

Fig. II-2 Schematic of geometry generation program architecture Source: (Tsarsitalidis 2015)

11

Part III. CAD software review

As a consequence of the aforementioned requirements, the CAD program needs to:

1) Produce any required geometry, regardless of complexity

2) Have parametrization capabilities

3) Have its own built-in mesher that can create structured grids

Additionally, the software should be available for student use.

The following software is checked against the requirements:

- Rhinoceros 3D

- Autodesk inventor

- Solidworks

- CATIA

- SIEMENS NX

III-1 Rhinoceros 3D

Rhinoceros 3D, developed by Robert McNeel & Associates, is a freeform surface modeller with

solid modelling capabilities. It uses NURBS for the representation of curves and freeform

surfaces, and feature-based techniques for solid modelling.

Rhino is not primarily a parametric modelling program. However, the software’s architecture

enables the creation of scripts and add-ons that expand its capabilities. In this spirit, there

are add-ons that offer parametric modelling capabilities (for example Grasshopper and

Rhinoworks).

The software is available for student use. Its ease of use combined with its very informative

manual renders it a program approachable to beginner users. However, its built-in mesher

doesn’t offer the choice to construct a structured mesh, which makes it unsuitable for the

current application.

III-2 Autodesk Inventor

Inventor, developed by Autodesk, is a solid modelling program with parametric capabilities

and high programmability using scripts. The program exists in the school’s computers and is

also offered free as a student licence by the company itself.

Even though Inventor offers some Finite Element Analysis tools, doesn’t have a mesher that

can specifically create a structured grid. It is mostly meant to be a tool to create the solid

objects that will be imported into a separate mesher and FEA program.

12

III-3 Solidworks

Solidworks, produced by Dassault Systèmes, is the equivalent of Inventor. Just like its

counterpart, it is a solid modelling CAD and CAE program with parametric capabilities.

Solidworks includes a mesher, however it only offers the choice of unstructured meshes

creation.

III-4 CATIA

CATIA, produced by Dassault Systèmes is actually a 3D Product Lifecycle Management

software suite. It supports different stages of a product’s development, from design (CAD), to

engineering (CAE) and manufacturing (CAM). It is a feature-based geometric and solid

modelling software, highly parametric. It shares features with Solidworks from the same

company (but with extended capabilities). Its built-in FEA solver includes a native mesher,

which offers the option of structured mesh creation and modification. CATIA can also

integrate with other programs and is programmable using scripts written in a modified

version of Visual Basic.

One major downside of the program stems from the very own thing that sets it aside: due to

its many features and capabilities, the learning curve is very steep. To reach a level where

they can comfortably design something, users need to dedicate a lot of time learning the

program both by reading its extensive manual and practicing. CATIA was also available for

student use.

III-5 Siemens NX

Siemens NX is a program suite by Siemens, with similar capabilities to CATIA. Since there

was not a student licence available, it was not investigated further.

Evidently, CATIA appears to be the most promising choice. Despite the fact that the program

has a steep learning curve, it is the most powerful software for the intended use.

Table III-1 CAD Software Comparison

Parametric

capability

Structured meshes

Support
Ease of use

Licence

Availability

Rhinoceros 3D
Yes, on

conditions
No Easy Yes

Autodesk

Inventor
Yes No Medium Yes

Solidworks Yes No Medium Yes

CATIA Yes, highly Yes Difficult Yes

Siemens NX Yes, highly Yes Unknown No

13

Part IV. The software CATIA

CATIA is the CAD/CAM and CAE part of Dassault’s PLM (Product Lifecycle Management)

software suite. This means that it includes the necessary software to assist in the different

stages of product development, including conceptualization, design, engineering and

manufacturing. It is a feature-based, parametric and solid modeling design tool that can be

used to create fully associative 3-D solid models, while utilizing automatic or user-defined

relations to capture design intent.

For the creation of the 3D models and meshes in this thesis, CATIA’s CAD and CAE

capabilities were used, so these will be presented further.

It is suggested to anyone interested in further learning of the software to carefully read the

CATIA documentation, since it’s extensive, describes tool capabilities in great detail and

includes a lot of examples and user tasks to help the prospective user with learning. In

addition, “CATIA V5 Essentials” (Kogent 2009), as well as the “CATIA Fundamentals”

training course guide are a very good introduction to using CATIA. A great resource for

general solid modelling and CAD system functionality is “Solid Modelling and CAD Systems

– How to Survive a CAD System” (Stroud and Nagy 2011). Further insight on parametric

modelling can be found in “Parametric Modelling” - Ch. 21 of the Handbook of Computer

Aided Geometric Design” (Christoph M. Hoffmann 2002), and on the b-rep geometric

representation in “Boundary representation modelling techniques” (Stroud 2006).

IV-1 The workbench concept

CATIA’s capabilities are subdivided in a set of products, each having a general theme. Each

product is further subdivided into the so-called workbenches. In order to create a CATIA

document, the user must select one of the workbenches suitable for the document type. Each

workbench contains a toolset dedicated to performing specific tasks. These tools can be

anything from curve, surface and solid creation tools, dimensioning tools, file organising tools

and features. The tools included in a workbench aren’t exclusive, with a lot of workbenches

sharing tools between them or even properly including whole other workbenches (Kogent

2009).

The most commonly used workbenches are:

- Part Design: provides a solid modeling approach to design model parts

- Sketcher: used for 2Dprofiles creation which are then used to build 3D geometry

- Wireframe and surface: creation of complex parts and features that include a 3D curve

wireframe and/or surface elements

- Assembly Design: creation of assemblies by adding constraints, features and

specifications to parts

14

- Generative Shape Design: creation of surfaces and drawings in connection to part and

assembly designs

It has to be noted that the Sketcher workbench is contained in most of the other workbenches.

It is the most important workbench, since geometries are generally constructed with one or

more sketches as a basis and a lot of the features offered are sketch-based. Apart from the

Sketcher, for the scope of this thesis, the workbenches used are the Generative Shape Design,

Freestyle, Advanced Meshing Tools and Assembly Design.

The tools will not be fully described, since the aim of this thesis is not to teach use of the

software, which is quite expansive, with a lot of capabilities and has, as previously noted, a

steep learning curve. Rather than this, the creation of the model will be presented in a step-

by-step manner, in order to create the specific model, in the aim of giving the reader a first

glimpse of the way CATIA works and a starting point for their further involvement with the

software.

IV-2 Features

A CATIA document can be composed of a number of primitives (points, lines) and features.

When working in a document, the user adds features (such as pads, pockets, holes etc.), that

are directly applied to model.

Features represent a specific combination of attributes and relationships of a product’s units

and provide an essential package of information for various design tasks and performance

analyses. A lot of the basic features generally available are borrowed from the manufacturing

process. Consequently, they can be linked to a product’s manufacturing knowledge,

facilitating manufacturing and process planning. They also provide a framework for

organizing design and manufacturing information in a way that can be easily reapplied in

future designs.

Most features in CATIA CAM/CAD workbenches can be classified either as sketcher-based

or dress-up. Sketcher-based features are based on a 2D sketch. Generally, the sketch is

transformed into a 3D solid by actions such as extruding, rotating, sweeping, or lofting.

Dress-up features are features created directly on the solid model, such as fillets and

chamfers. Dress-up features have their roots in the machining operation, examples of which

include extruding, which creates a surface by pulling a curve along a direction, and rotating,

which creates a surface by revolving a profile around an axis. On the other hand, dress-up

features examples include filleting, holes and slots which are similar to their real-life

manufacturing namesakes (Fig. IV-1).

15

Fig. IV-1 Fillet feature in CATIA (left) and its real-life counterpart, a propeller root fillet (right)

IV-3 Solid modeling

A solid model contains all the wireframe and surface geometry necessary to fully describe

the edges and faces of the model. In addition to the geometric information, solid models

also convey their topology, which relates the geometry together. CATIA uses the

Boundary Representation (b-rep) method to represent a model’s topology.

IV-3.1 Boundary representation

In boundary representation (Stroud (2006)), the object is represented in terms of its “skin”

- the boundaries between the model and non-model, which is a set of adjacent bounded

surface called “faces” . The faces are bounded by sets of curves, their edges. The point

where more than one edges meet is called a vertex. B-rep techniques can be used to

describe both solid models and a variety of simplified forms called “degenerate models” as

well as non-manifold objects.

The “manifold” condition states that at every point of the boundary of an object, a small

enough sphere will cut the object boundary in a figure homeomorphic to a disc. A manifold

object is essentially an object that can be charted, that can be physically realisable.

IV-3.2 Parametric model

The parametric solid model is more than a representation of a solid. It includes, a meta-

structure from which specific solids can be instantiated, which means that a history of

the dimensions and relations used to create a feature are stored in the model. This enables

the user to capture design intent and to easily make changes to the model by modifying

these parameters. So, it might be more appropriate to describe a parametric solid as a

class of possible specific solid models.

16

C. M. Hoffman and R. Joan-Arinyo Christoph M. Hoffmann (2002) propose the following

definition for parametric models:

“A parametric solid model is an information structure that permits deriving specific solid

models using a deterministic algorithm. Moreover, the specific shape derived depends on

parameters that are explicit in the information structure and must be valuated for obtaining

a specific solid shape”

Parameters in CATIA are categorized into driving dimensions and relations:

- Driving dimensions are the main dimensions used when creating a feature. They

include both dimensions associated with the sketch geometry, and those associated

with the feature itself.

- Relations include information such as parallelism, tangency and concentricity.

With a combination of the aforementioned parameters, capturing of the design intent is

possible.

IV-4 Design intent

Design intent is the designer’s plan of how to construct the solid model in order to properly

convey its required form and functionality. For a parametric modeler like CATIA to be used

efficiently, the designer must consider the design intent both at the early stages and during

the creation of the parametric model. The way the model is set up affects its behaviour during

the modifications in the duration of its life cycle, including its flexibility to changes and its

stability during updates, including the resources required to compute them. Therefore,

taking the design intent under consideration is very important for efficient design and

modelling.

The following factors contribute to how the design intent is captured:

- Implicit relations:

Based on the sketch geometry, implicit relations provide common geometric relationships

between objects, such as tangency, parallelism, perpendicularity, horizontality and

verticality

- Equations

Equations create mathematical relations between dimensions, providing an external way to

influence changes.

- Additional relations

Other relations, such as concentricity, coincidence and offset, provide another way to relate

model geometries to one another.

- Dimensioning

The way the sketch is dimensioned impacts its design intent. Dimensions are added in a way

that reflects the user’s intent of making variations of them and controlling the outcome.

17

IV-5 Constraints

Design intent (and the parameters and relations derived from it) is represented in a solid

model using constraints. Constraints establish relationships between features in the model,

by determining their relative positions to one another, providing the necessary information

on dimensions, size, number of features and so on.

Some examples of constraints that frequently arise are:

- Dimensional: such as length, distance, angle.

- Geometric: such as concentricity, tangency, perpendicularity.

- Equational: expressing the relations between dimensional parameters and/or

derivative variables such as an object’s moment.

- Semantic: defining validity conditions on a shape

- Topological: relations between entities in a model such as connectivity and incidence.

If the imposed constraints are considered a system of functions (where the constraints

themselves are either variables or constants), the parametric problem (the solid) can be

solved by identifying a sequence of steps that can provide the solution to the constraint

system. When the constraints representing the model’s parameters are changed by the

designer according to the design intent, this leads to a solution that takes under consideration

the rest of the constraints that were established during the design process. If the model is

well-constrained, the solution should represent the design intent. On the other hand, if the

model is under-constrained or wrongly constrained, the resulting model can be very different

to the one expected.

IV-5.1 Using constraints

Constraint-based modelling offers the capability of quickly creating precise drawings and

models by applying specific dimensional and relational constraints on a rough sketch or solid.

Since the method developed is based on models produced from sketches, the constraints as

used in the sketcher are presented.

The most usual approach to using constraints, is to prepare an initial sketch with the

required geometry. Then, the sketches are constrained through CATIA’s menu. The sketches

are converted into precise drawing by solving the constraints. Finally, a solid object or surface

is generated by applying operations and features, such as extruding, revolving and cutting,

padding, holes etc. The features are also constrained by defining their parameters.

In order for a sketch to be portrayed as per the designer’s intent, there should be no grounds

for misinterpretation of the constraints by the solver. This entails that the sketch should be,

as it is called, well-constrained, meaning that no additional constraints can be added without

creating redundancies. A sketch that is over-constrained (has redundant constraints) is

usually rejected. On the other hand, a sketch that needs more constraints to be defined is

under-constrained. The sketch may still be represented, but under-constrained elements

might take values not in accordance to the designer’s intent, when solving the constraints.

18

In CATIA, unconstrained or semi-constrained elements in a sketch are coloured white; fully-

constrained elements are coloured green; over-constrained elements are coloured magenta

(an example can be seen in Fig. IV-2). Apart from the colour-coded geometry, the sketch

analysis tool can also provide further info on the constraint status of the sketch geometries.

When an already constrained model is edited, for example by changing some of the

constraints, a new instance of that model is automatically constructed by solving the

constraint problems with the changed values. Complex editing may make radical changes to

the whole model, for example by automatically adding features or changing the definitions of

them.

Fig. IV-2 Example of an unconstrained (top) and a fully constrained (bottom) sketch of a foil section.

The original shape is created with little resemblance to the final sketch on purpose, to show the

impact that constraining has on the sketch.

19

IV-6 Associations

A CATIA model is fully associative with the drawings and parts or assemblies that reference

it. Changes to the model are automatically reflected in the associated drawings, parts and/or

assemblies. Likewise, changes in the context of the drawing or assembly are reflected back

in the model. In addition to that, CATIA documents can also be linked with and receive input

from other types of files, such as excel worksheets, import geometry from other programs in

different file formats (such as IGES, DXF, STEP, STL etc.) and receive scripts written in its

scripting language that is based on Visual Basic.

IV-6.1 Managing Links

An important tool that helps manage the CATIA modularity is the document Links

management. This provides a list of the currently active direct links and their status. Direct

links are external documents directed pointed to by the active document. The command can

be found under Edit>Links.

The Links dialog box provide link-related information, such as the pointing and pointed

element, the pointed document, the link type, the status, when it was last synchronised and

so on. Replacement of a document can also be performed within the dialog window, under the

“Pointed documents” tab.

Replacement can also be done for any types of documents, either non-CATIA or CATIA. For

example, a linked design table can be exchanged for another version of the table; or in an

Analysis product, the pointed CATIA part document can be exchanged for another using the

same command.

IV-6.2 The Design Table

The design table is software capability designed to serve as the interface between the

parameters of a CATIA document and external values. The external values are stored in the

form of a table, either in a Microsoft Excel file, or in a tabulated text file. A design table can

be created from a CATIA document and then export the data to a design table. It can also be

importing to a document if it is pre-existing, with its data saved into CATIA parameters.

The design table columns may not correspond completely to the CATIA document’s

parameters. In any case, the user needs to declare which documents parameters are linked

to the required design table columns. This is achieved by creating associations between the

design table cells and CATIA parameters.

For ease of use, the design tables used for this thesis are saved in an Excel file and this is

what will be described below.

 Excel sheet format

The values in the sheet cells need to be expressed in the appropriate units. If no unit is

mentioned, then the unit is either taken into account as mentioned in the first row, or as the

relevant SI unit of the parameter, if no unit is mentioned.

20

The table should be saved in the Excel 97-2003 version (.xls extension) and not the more

recent one (.xlsx), which is not supported.

 Design table creation

No matter where the existing data is saved, the design table must be created in CATIA. The

two ways to do that are using current parameter values or using a pre-existing file.

In the first case, a new file to save the values is created. The user names the table, selects its

orientation (horizontal or vertical), the sheet index in case of an Excel file and the tree

destination of the table. Then, the parameters to be inserted in the table are chosen and last,

a new file is created.

In the second case, the user names the table, selects the orientation of the existing table, the

sheet index where the data can be found (in case of an Excel file) and the tree destination of

the table. The existing file is then selected and a choice is offered of automatically creating

associations between existing parameters and table columns that have the same name. The

associations can also be manually defined under the associations tab. Existing parameters

can be selected to be associated with a table column. New parameters can also be created in

case they are needed. It is not required to associate all of the tables columns with a

parameter. The current design table, as existing in CATIA, is presented under the

configurations tab.

 Value update

The design table is automatically updated (synchronized) every time the external file is

altered and saved. The associated parameters take on the modified values and, depending on

the settings, the solid model is updated accordingly

IV-7 Surface analysis

CATIA includes tools to analyse the created geometry. One of these is the surface curvature

analysis tool, included in the freestyle shaper workbench. The tool provides a quick visual

representation of the changes in surfacic curvature, colouring areas with different curvature

according to a user-specified colour chart. Options on the type of analysis are offered

(Gaussian, mean, maximum and minimum curvature), as well as the option to display values

on a spot using the cursor. An example of the surfacic curvature analysis on the third-party

propeller geometry that was meshed is presented in Fig. IV-3

21

Fig. IV-3 Surface curvature analysis of the SMP propeller using the Gaussian type. The colour

legend is also presented: Red(minimum): 0.072m-1, Green:24.363m-1, Blue(maximum): 8250.7 m-1

22

Part V. Meshing in CATIA

The CATIA mesher can be found in the Advanced Meshing Tools workbench of the Analysis

product. It allows the rapid creation of a finite element model for complex parts, whether

they are surface or solid. It will generate an associative mesh from complex parts, with

advanced control on mesh specifications. The mesher contains two functionalities:

- The FEM Surface Mesher (FMS), used to generate a finite element model from surface

parts

- The FEM Solid Mesher (FMD), to generate a finite element model from solid parts.

Since the aim is the creation of surface meshes, the Surface Mesher is used and it is what

will be described in this chapter. Further details on CATIA’s mesher can be found in the

CATIA User’s manual – Advanced meshing tools. A step-by-step example for the creation of

meshes can be found in the Appendix.

There are two surface meshing capabilities: the simple surface mesher and the advanced

surface mesher, offering similar functionalities. The simple surface mesher was chosen due

to its being simpler in use and modification.

The basis of the mesher operation is the following:

1. Pick a mesh support surface

2. Define Global meshing parameters

3. Define meshing specifications

4. Execute meshing

The surface support to be meshed is picked upon entering the mesher. The mesh can be

considered a feature that is applied to the specific surface by defining a domain. Each support

may have more than one domain and subsequently have more than one sub-meshes that

together make up the final mesh. However, for the current method, it is strictly required that

each support is meshed using only one domain. For this, support is specified during the model

creation phase, by splitting the model into the necessary surfaces, so no other action needs

to be taken within the mesher workbench.

V-1 Global meshing parameters

The Global parameters are defined upon support selection, through a window. They include

the Mesh parameters and the Geometry parameters, and pertain to the supporting surface

meshing parameters.

V-1.1 Mesh parameters

 For the Mesh parameters, the following can be defined

- the shape of mesh elements (triangular or rectangular)

- their type (linear or parabolic)

23

- The mesh size

- What the default meshing method will be

- Whether the mesh distribution will be automatically captured by neighbouring

meshes or explicitly given.

For the current method, the type of the elements is very important. The mesh translation

program is written with the assumption that the meshes exported have linear elements.

Parabolic elements include extra information that is not necessary for the current intended

use of the mesh, whereas both types result in the same mesh. So, it is imperative that all

meshes are created and exported with linear elements.

The mesh size is generally used for automatic meshing. It is a guideline for the mesher for

the final size of the meshes. However, it also plays a part in the mesh update time. A small

mesh size will make updating slower, whether the mesh is automatic or with imposed

specifications. It has also been noticed that in case of complex geometry, setting a smaller

element size leads to the generated mesh following the geometry better and being smoother.

So, a general rule would be to use larger element sizes in simpler geometries that don’t have

a lot of detail and use smaller element sizes in more complex geometries, so that a balance

between meshing time and geometry fidelity is achieved.

The meshing method choice is irrelevant, since the mesh type will be explicitly imposed later

on. However, the automatic mesh capture option is best left unused, since it sometimes

creates problems with the mesh update.

 Geometry parameters

The geometry parameters tab defines constrains regarding the surface geometry. Of all the

options given, constraint sag is what plays a part in the current meshing procedure:

 Constraint sag

A constraint is created along the edge of a face to avoid creating elements across this edge

(the element sag would be higher than the specified value). This does not guarantee that the

whole mesh respects the sag value but helps with constraints creation. For a given mesh size,

the lower the constraint sag value, the more numerous the created constraints, and vice

versa.

The constraint sag can be controlled either by input of the value in the box, or using a slider

below it. The requirement is to avoid having inner edge constraints, so the constraint sag

slider is set to 0. Depending on element sizes, the constraint sag box above it gets a different

value, which should be higher than the element size in case inner constraints are undesired.

The other options in the geometry parameters tab should be left unchecked, since automatic

capturing of the internal geometry must be avoided.

24

V-2 Meshing specifications

The local meshing specifications can be defined using tools inside the mesher workbench. The

tools deal with the meshing parameters for the domain(s) of which the support consists.

The meshing specifications are divided in the following three toolbars, according to their use:

-Geometrical Specifications

- 1D Mesh Specifications

- 2D Mesh Specifications

V-2.1 Geometrical Specifications toolbar

 Hole suppression

The suppressing holes toolbar enables the user to define holes in the geometry to be ignored.

The mesher will deal with the suppressed holes as if they’re non-existent, creating a mesh

over them.

 Edge Constrain

A surface’s outer edges are always constrained (they are marked in a green colour). However,

sub-domains can be defined within the supporting surface, by specifying inner edges to be

constrained or unconstrained. A constrained inner edge takes on a yellow colour, whereas an

edge specified as unconstrained is blue. In order for an edge to be constrained, it must be a

b-rep geometry. This practically means that every edge that appears in any “with edges”

rendering option can be constrained.

The edge constraint tool creates similar constraints as the automatic global parameters one.

Their main difference is that the global setting may constrain more or less of the inner

geometry than needed, whereas the edge constrain tool creates constraints in a more specific

way. In addition, the tool can override the global parameters, turning an edge that is

constrained due to the global rule into an unconstrained one.

It is reminded, that for the developed method, creating more than one domain must be

avoided.

 Vertex Constrain

Same as with the edges, vertices on edges can be constrained. Defining a vertex as

constrained tells the mesher where the edge’s boundaries lie. The mesher deals with any

vertex where there is an edge junction as a constrained one by default. This means that in

order to remove a vertex constrain, there have to be only two constrain edges that touch that

vertex – a vertex cannot be removed when there are more edges passing through it. However,

a constrained edge can be split, by adding a vertex constrain without adding an extra

constrained edge. A constrained vertex has red colour and a constrained vertex that splits an

edge is yellow, whereas an unconstrained vertex is blue.

25

 External curves and points projection

Edges and vertices can also be created by projecting external curves or points. These

projections can then be constrained in a similar way as the b-rep ones, using the constrain

tools.

V-2.2 1D Mesh Specifications toolbar

 Elements Distribution

Elements distribution is defined by imposing nodes on a supporting edge. To define an

element distribution, the supporting edge is picked, then the type of distribution and,

depending on the distribution type, a set of parameters to define the number of elements,

size, distance between them etc.

The types of elements distribution that the mesher offers is the following:

- Uniform: The distance between all distributed nodes is the same. The offered options

are either number of elements or element size.

- Arithmetic: the distance between the distributed nodes will be defined by a common

difference computed with two of the following parameters:

o Number of elements

o Difference between first and last distribution edge (Size 2/ Size 1)

o Length of first element in distribution

o Length of last element in distribution

- Geometric: same as arithmetic, however the distance between distributed nodes is

defined by a common ratio. Parameters are similar to the arithmetic distribution. The

only difference is that the Size 2/ Size1 option calculates a ratio instead of a difference.

Both this and the Arithmetic distribution offer the option to create a symmetric

distribution

- User Law: The distance between the nodes is defined by a knowledge law created by

the user.

The type of distribution used in the current meshing method is either the geometric or the

arithmetic one, since they offer the option to decrease nodes distance in place where required.

In addition, the only used defining parameters are the number of elements and the size

2/size1 ratio/difference. For the uniform meshes, the ratio is assigned a value of 1

The element distribution can be modified using parameters. More specifically, the number of

elements, mesh size and ratios can receive values from formulas. This is a main component

in the way the proposed method updates the meshes, since it enables the use of Excel to

facilitate modifying the elements distribution.

26

Fig. V-1 Uniform elements distribution mesh

Fig. V-2 Geometric elements distribution, denser towards right edge

Fig. V-3 Geometric elements distribution, symmetric with denser distribution on edges

27

 Elements Capture

Apart from explicitly defining the elements distribution, the mesher enables the capturing of

a mesh distribution from the edge of an adjacent mesh. The mesh edges do not need to be

exactly matched, since the nodes source can be automatically found within a distance

tolerance that the user defines. Apart from the source edge selection (from which the

distribution will be derived), two extra nodes options are offered:

Coincidence: if checked, the nodes will be superimposed on the common edge. This leads to

pairs of nodes with the same coordinates.

Condensation: the coinciding nodes for either mesh are “merged”. There is only one node per

set of coordinates and it is shared by both meshes.

For the proposed meshing method, elements capture is advised against, since it is frequently

problematic with the model updating. However, in case it is used, it must be used with only

the coincidence option checked so that individual nodes are created for each mesh.

 Elements distribution around hole

As its name suggests, this tool enables the user to define the elements distribution around a

hole.

The structured mesh domain is not compatible with meshing around holes, so this is not a

tool used in the current method.

 Distribution propagation

With the distribution propagation tool, a node distribution of an edge (source) can be

reproduced on another edge (support) of the same domain. The reproduction can be:

- Proportional: the relative distance between nodes is preserved

- Normal: the source-target vector direction is normal to the supporting edge

- Directional: the source-target vector is parallel to a given direction

Distribution propagation is not a tool preferred, mostly because by explicitly defining the

nodes distribution for each edge using the elements distribution tool, the chance for errors is

minimized.

V-2.3 2D Mesh Specifications toolbar

The 2D mesh specifications toolbar contains tools to define the type of mesh a domain will

receive. In general, the mesh defined by selecting the required method and then the

supporting domain. All of the meshing methods have an “impact neighbour domains” option,

which re-meshes the neighbouring meshes to match the edge nodes of current domain’s mesh.

One thing to keep in mind is that in order to be available for selection, the domain geometry

must be visible, not hidden.

28

 Mapped Mesh Method

The Mapped Mesh Method creates a structured mesh, which is the one required (Fig. V-4).

To create a structured mesh per the current requirements, the domain must always be

meshed with the “Split quadrangles” option unchecked, so that no triangular meshes are

created such as in Fig. V-5. In addition, the impact neighbour domains, as well as the mesh

size options have no effect in a fully constrained mesh.

 Other meshing methods

No other meshing methods are used in the current thesis, since they don’t produce a

structured mesh. Examples of each method can be seen below (Fig. V-6 - Fig. V-11).

V-1 Exporting the mesh

After the required meshes have been created, they need to be exported. The export can be

done either in a bulk data file with the .dat file extension or in a CATIA V4 file with the

.model file extension. For the current requirements, the bulk data file type is selected.

Every active mesh will be exported, and in the order that it appears in the specification tree.

Thus, every mesh that is undesired for a particular export, must be deactivated via the

specification tree. In addition, the meshes can be rearranged inside the specification tree,

according to the user’s needs.

Fig. V-4 Mapped Method - Split quadrangles

unselected

Fig. V-5 Mapped Method - Split quadrangles

selected

29

Fig. V-6 Frontal Quadrangle

Method

Fig. V-7 Frontal Triangle

Method

Fig. V-8 Mapped Free Method

Fig. V-9 Triangular Domain

Mapped Method

Fig. V-10 Bead Method

Fig. V-11 Half Bead Method

30

V-2 Mesh quality analysis

The CATIA mesher offers a set of tools to analyze the quality of the elements in the mesh,

both visually and in report form.

The “Quality Analysis” tool in the Mesh Analysis workbench contains a set of criteria for

element analysis, such as skewness (and skew angle), warp factor, min. and max. angle of

the quadrilateral elements, aspect ratio etc. Each analysis criterion can toggled on or off and

receive three threshold values that define the three categories (best value, poor and bad – see

Fig. V-13). Using the criteria, an analysis report can be produced and saved, showing the

percentage of elements contained in each of the quality categories. This report can also be

presented in the form of a bar diagram.

The visual analysis is carried out using the Quality Visualisation option in the Mesh

Visualisation toolbar. The elements are colour-coded according to the thresholds set in the

Quality Analysis tool and are presented in Table III-1

Table V-1 Quality analysis colour codes

Green Best value

Yellow Poor

Bad Red

An example of a visual analysis based on the elements aspect ratio can be seen in Fig. V-12

Fig. V-12 1 Quality analysis of a B4-60-D5P1

blade, 15X15 uniform mesh, using the aspect

ratio criterion (green: best at 1, yellow: poor at

2.5, red: bad at 5)

 Fig. V-13 Aspect ratio definition and

thresholds as defined in the Quality Analysis

tool

31

Part VI. Reformatting the meshes for use

in UBEM

The exported meshes from CATIA contain the necessary information, but not in the correct

format for input in UBEM. For this reason, a separate interface program was written in

FORTRAN, which translates the exported mesh into the format needed.

VI-1 CATIA’s exported format

CATIA exports the mesh in a Bulk Data file to be used by software NASTRAN. The nodes

are presented in a global numbering with coordinates scheme and the elements in relation to

the nodes. The data is presented in two kinds of formats, the small field and the large field

format.

VI-1.1 Small field format

With the small field format, the software separates an 80 column line of Bulk Data entry into

ten equal fields of eight characters each (Fig. VI-1):

The small field format rules are as following:

- Fields 1 and 10 must be left-justified.

- Fields 2 through 9 don’t need to be either right- or left-justified. However, aligning

the data fields is a good practice.

- Embedded blanks can’t be included in a character field

Fig. VI-1 Small field format (Source: NX Nastran - User’s Guide)

Fig. VI-2 Example of small field format for use in NASTRAN (Source: NX Nastran - User’s Guide)

32

VI-1.2 Large field format

A high degree of numerical accuracy is required in some applications. The large field format

can be used when the small field format doesn’t provide enough significant digits. Note: A

minus sign, decimal point, and the “E” in scientific notation count as characters.

The large field format rules are as following:

The large field format requires (at least) two lines for each entry:

- the first and last field of each line contains eight columns

- the fields in between contain 16 columns

The large field entries are denoted by an asterisk (*). The asterisk must:

- immediately follow the character string in field 1A of the first line of the entry

- immediately precede the character string in field 1B of the second line of the entry

Fig. VI-3 Example of large field format, showing the number of characters in each field (Source: NX

Nastran - User’s Guide)

VI-1.3 The exported Data

The data in the export file is contained in two groups: the Nodes group and the Elements

group. The nodes receive global numbering and their coordinates; the elements are separated

by surface, with the numbering carrying on from the group of one surface to the elements of

the next one.

 The Nodes

The Nodes group contains the information for all of the meshes nodes, using the large field

format, as follows (Table VI-1):

Table VI-1– Nodes export format (large field) in CATIA

GRID* Node

number

X coordinate Y coordinate

* Z coordinate

As it can be seen in Fig. VI-4, each node is assigned a number (in a way that will be described

further down), and is followed by its X, Y and Z coordinates.

33

 The Elements

The Elements group is presented by surface. For each surface, the Elements are written in

the small field format. For linear elements, the format is as presented in Table VI-2.

Table VI-2 Linear quadratic element export format (small field) in CATIA

CQUAD4 Element number Srfc number Node A nodeB nodeC nodeD

The elements are presented in relation to their nodes; for each element, its index and the four

nodes that define it are given. A screenshot of a bulk data file can be seen in Fig. VI-5

Fig. VI-4Nodes data in CATIA bulk file. For each node its number and X,Y and Z coordinates

are presented in two lines.

34

VI-1.4 Matrix arrangement

Each element consists of 4 nodes (here designated as nodeA, nodeB, nodeC and node D),

which are printed in the file as described above and seen in Fig. VI-5. The nodes go clockwise

around each element, with nodeA of the first element being the node not shared by any other

of the patch’s elements. The rest of the elements follow the same arrangement. This is true

regardless of the patch’s orientation.

CATIA indexes each patch of the mesh in a different direction, without allowing manual

specification. In some patches the elements are indexed in a chordwise manner (chordwise

oriented) and in others in a spanwise manner (spanwise oriented). Also, the orientation might

differ even in adjacent patches. The orientation can be determined from the CATIA model

after the mesh creation and is important for the proper printing of the final translated mesh.

Fig. VI-5 Linear elements data example – CQUAD4 denotes a linear quadrangle element,

Second column is the element number, third is the surface number and last four columns are the

nodes that define the element

35

VI-2 The interface program

The interface program’s inputs are: the CATIA exported mesh bulk data file and an input.txt

file. The input.txt file contains the following information:

- filename of input mesh bulk data file

- number of patches constituting the mesh

- total number of mesh elements

- type of surface: face-back, modified face-back (for the hub) and ordinary

- output print direction (spanwise, chordwise or hub modified)

- output filename

- 3 orientation markers for each patch and the patch’s number of elements

(chordwise, spanwise)

VI-2.1 Types of surfaces

The program handles two types of surfaces: the face-back type and the modified face-back.

An example of face-back type of surface (Fig. VI-6) is the propeller blade. The surface patches

are indexed in the chordwise direction (they share a spanwise edge). The surface is first

defined by the Face edge, starting with a direction from the LE to the TE, followed by the

Back edge, also with a LE-to-TE direction.

The modified face-back (Fig. VI-7) is a surface where the patches are divided in two groups

being indexed in one main direction, having a common edge on the other direction (for

example, when elements are indexed in a chord-wise manner, the surfaces share a spanwise

edge). However, the groups between them also share a main direction edge (in a chordwise

direction, they share a chordwise edge). The main shared edge will be handled as the

equivalent of the Face-Back’s Leading Edge when reformatting. This type of surface is used

for the propeller hub.

VI-2.2 Orientation markers

When the mesh is exported, the elements are frequently indexed in an order other than

required. In order to allow the user to easily change the indexing orientation of a surface

patch, the orientation markers feature was added to the interface program, and works as

follows:

- A value of 0 keeps the corresponding direction as is, while 1 reverses it

- The first marker controls the patch’s chordwise direction

- The second marker controls the patch’s spanwise direction

- The third marker controls the patch’s orientation (inward- outward)

- To assign the values, compare the patch in CATIA with the required final mesh

A set of markers for each patch is located at the end of the interface program’s input file.

36

Fig. VI-6 Face-Back surface type

example Fig. VI-7 Modified Face-Back surface type example

VI-2.3 Program

In a nutshell, the program works as following:

[1] Reads input file of surface

[2] Reads through mesh bulk data file and indexes the data location inside the file

[3] Checks if number of nodes in bulk data file is the same as number in input file

[4]Re-reads mesh file, saving the data in arrays, one for the elements and one for the nodes

[5] Constructs a temporary array (patches not properly oriented) using the information saved

in the nodes and elements array

[6] Constructs the final mesh array by reading from temporary array in proper orientation

[7] Prints final mesh array in direction of choice

The interface program’s source code with comments can be found in Appendix G.

37

Part VII. Application: A Wageningen B-

Series Propeller

VII-1 The propeller geometry

The description of the propeller geometry and the one used for the development of the model

uses the following reference frame: a rectangular, Cartesian system, with the X-axis

coincident with the propeller shaft axis, aftwards positive; the Y-axis positive to starboard;

and the Z-axis positive in the vertical upwards direction.

Fig. VII-1Propeller reference system. Source: (Carlton 2012)

VII-1.1 Reference lines

The propeller blade is defined about the propeller reference line or directrix, a line normal to

the shaft axis, which is frequently defined starting at the origin of the Cartesian reference

system (Carlton (2012)

The blade of a propeller is comprised of hydrofoil sections defined on the surfaces of cylinders

whose axes are concentric with the shaft axis. Due to their pitch, the sections lie obliquely on

the cylinder surface, so their nose-tail lines form helixes. The points where those helixes

intersect the plane defined by the directrix and the X-axis form the propeller’s generator line.

38

Fig. VII-2 Blade reference lines (Carlton 2012)

The propeller geometry is a complex one. However, it can be (and traditionally is) broken into

simpler geometries which are easily defined and which, combined, will result in the required

propeller geometry. These are: the hydrofoil section and the helical line.

VII-1.2 The hydrofoil Section

The general definition of the hydrofoil is presented in Fig. VII-3. The camber line is the locus

of the mid-points between the face and back surface. The extremities of the camber line are

the leading and trailing edge and the straight line joining them is the chord line. The length

of the chord line is termed chord length (c) of the section. The camber of the section is the

maximum distance between the mean camber line and the chord line. The hydrofoil thickness

is the maximum distance between the face and back edge, usually measured perpendicularly

to the chord line. The leading edge is usually a circle about a point on the camber line.

In most cases, the sections of a propeller are described by their interpolating points, which

are given in the form of their offsets from the section’s reference line. Chordwise on the

hydrofoil, the offsets are measured either from one of the two reference line extremities, or

from another reference point (for example the chord’s midpoint). Then, each point’s other

spanwise offset is defined by its distance from the reference line. It’s become common practice

to use the section’s chord or nose-tail line as a reference line. However, this is not always the

39

case, especially for older propeller series, such as the Wageningen B-series; a line tangent to

the pressure face (face pitch line), with length same as the chord, is used as the section’s

reference line (Fig. VII-4).

The point where the generator line intersects the section reference line is also an important

parameter, since it defines the location of each section.

Fig. VII-3General definition of a hydrofoil section

Fig. VII-4 Pitch lines

VII-1.3 Helical line

The helical line is the product of the propeller’s pitch. Each point on the propeller surface

leaves a helical track while the propeller is in operation, due to the combination of the

rotation and the straight movement of the propeller. For a point on the cylindrical section

with radius r (r<R =the propeller’s radius), the following is true:

40

𝜃 = tan−1(
𝑝

2𝜋𝑟
)

Where, p is the pitch length and θ the helix angle.

Considering the above, a section’s reference line will be a helix lying on the corresponding

cylindrical surface and its length would be the same as the section’s chord length; it will also

pass by the generator line-cylinder intersection point.

VII-2 Propeller Model in CATIA

For the purposes of this thesis, the propeller models are based on the Wageningen B-Series

for 4 blades or more. The propeller is left-hand (counter-clockwise) rotating. The

accompanying files are presented in Table VII-1

Table VII-1 B-Series propeller model files

Parametric model file ‘B-Series_Propeller.CATPart’

Model parameters file ‘Wageningnen.xls’

Mesh model file ‘B-Series_Analysis.CATAnalysis’

Mesh parameters file ‘Wageningen_elements.xls’

VII-2.1 Design Intent

The B-series is a fixed-pitched, non-ducted propeller series that is widely used and

extensively studies. Its geometry is given as a series of section offsets for sections at certain

percentages of the propeller’s Radius. Each propeller’s geometry is defined by a set of

equations that use the propeller’s diameter (D), expanded blade area (AE/AO) and number of

blades (Z). The pitch ratio (P/D) is also a main defining parameter. Subsequently, these are

used as input parameters to create the B-series propeller model in CATIA.

In addition to the B-series parameters, a few other parameters are used for the propeller

definition: rake angle (θrake), the hub’s diameter (Dhub), the hub’s slope (θhub) and the

thickness at the tip (tip thickness). Especially for the last one, the tip, as defined by the B-

series, is originally a zero-thickness section. However, the BEM program can’t deal with zero-

thickness sections. In order to solve the problem, the blade tip can either be designed as a

section with thickness, or be designed according to the B-series and then trimmed. The former

was selected, in order to have more control over the thickness of the blade tip. In any case,

the effect on the propeller performance is negligible, since the tip contributes very little to

the generated thrust.

The propeller design intent, general geometry and axes can be seen in Fig. VII-5

Taking the design intent into consideration, the propeller model parameters are saved in the

Excel file “Wageningen.xls”, a description of which can be found in Appendix C.

41

Fig. VII-5 Propeller design intent. See Table VII-2

Table VII-2 Propeller parameters

Z Number of blades Tip thickness Max thickness of the tip section

D Diameter Θrake Generator line rake angle

AE/AO Expanded area ratio Θhub Hub slope angle

VII-3 Propeller Model creation overview

The propeller model consists of the blade and the hub, on which the root fillet is added as a

surface-based feature. A general overview of the model creation is given, with a step-by-step

description presented in Appendix A

VII-3.1 The Blade

For the propeller blade, the wireframe is first built, on which the surface is subsequently

added. The wireframe consists of the cylindrical sections and the outline. To create the

cylindrical sections, the flat sections are first created and constrained, according to the Series’

offsets, in sketches supported by their respective planes. The flat sections are then deformed

according to helical lines that have the same pitch as the respective section. Two outline

splines are created by interpolating the endpoints of the cylindrical sections.

42

The propeller’s Face and Back surfaces are built upon the created wireframe. The leading

edge is completed with a strip and all the surfaces are joined. The final surface is created by

adding a tritangent fillet feature on the joined surfaces to round off the leading edge strip.

Each section is constructed using its offsets, as calculated by the B-series formulas and saved

in a design table. In the following description, the Sketcher workbench is used for each 2D

drawing. For the wireframe and surface creation, work is done in the Generative Shape

Design workbench. Exceptions will be explicitly noted. Face denotes the propeller’s pressure

or face side, whereas face implies the b-rep’s geometry subdivision. LE and TE are Leading

Edge and Trailing Edge respectively and GL is Generator Line.

VII-3.1 The Hub

The hub is a much simpler surface to build, since it’s essentially a truncated cone. One simple

way to create the hub surface is by revolving the hub profile around the X-axis. However, this

may create problems with the updating for certain expanded area ratios, due to the way

CATIA handles the revolved surface. To avoid those problems, a helix is used as the profile

to create the revolved surface. The hub is completed with spherical caps at each end.

VII-3.2 The Fillet

The root fillet is created as a dress-up feature. Before creating it, the blade and the hub

surfaces are joined into one object.

The propeller’s trailing edge needs to close at a sharp edge, which presents a problem with

the fillet around the edge. As a solution, separate fillets are created for the LE, Face and

Back edges using the face-to-face fillet tool. The Face and Back fillets don’t go all the way

towards the TE, stopping a set distance from the edge. The remaining fillet portion is then

built manually, constructing a wireframe on which a surface is created.

The root fillet starts from the 0.2r radius on the blade to the hub.

VII-3.3 Preparation for meshing

The Motion Preprocessing Module can be set to use multiple instances of the same body and

give initial position and orientation to each of them. This allows only 1/zth (where z the

number of blades) of the propeller to be exported as a mesh and multiplied within the MPP

with the suitable initial angle. Consequently, the surface that is finally exported to the

mesher consists of one blade, its root fillet and the hub portion between it and the next blade

on its face side. The surface is further separated into the blade, fillet and hub, since this is

how it will be input in UBEM.

43

VII-4 B-series meshes and runs

VII-4.1 Meshes

Using the developed method, a variety of Wageningen propeller meshes can be created.

Representative meshes from the Wageningen propeller model are shown in Fig. VII-6 - Fig.

VII-19

Fig. VII-12 show different element distributions for a B4-70 propeller. A set of meshes for

different geometries is shown in Fig. VII-13 - Fig. VII-19. The presented meshes are instances

from the MPP program, so they include the Kutta strip at the blade’s TE.

The B-series naming convention is used, to which the diameter and pitch ratio is added. For

example, “B4-70 – D5P1” denotes a 4-bladed propeller with Ae/Ao=0.7, D=5m and P/D=1.

Element numbers in distributions are denoted per blade face, in a chordwiseXspanwise

manner.

44

B4-70-D5P1 geometry with different element distributions:

Fig. VII-6 A B4-70-D5P1 propeller, 10X20

distribution with denser mesh towards edges
Fig. VII-7 A B4-70-D5P1 propeller, 10X20

uniform distribution

Fig. VII-8 A B4-70-D5P1 propeller, 15X30

distribution with denser mesh towards edges

Fig. VII-9 A B4-70-D5P1 propeller, 15X30

uniform distribution

45

Fig. VII-10 A B4-70-D5P1 propeller 22X40

distribution with denser mesh towards edges

Fig. VII-11 A B4-70-D5P1 propeller, 22X40

uniform distribution

Fig. VII-12 A B4-70-D5P1 propeller, 30X50

uniform distribution

46

Other geometries:

Fig. VII-13 A B4-60-D5P07 propeller, 14X22

distribution with denser mesh towards LE

Fig. VII-14 A B4-85-D5P08 propeller, 23X15

distribution with denser mesh towards LE

Fig. VII-15 A B4-50-D5P1 propeller, 15X15

uniform distribution

Fig. VII-16 A B4-80-D5P08 propeller, 15X15

uniform distribution

47

Fig. VII-17 A B4-100-D5P1 propeller, 15X15

uniform distribution

Fig. VII-18 A B5-80-D5P1 propeller, 15X15

uniform distribution

Fig. VII-19 A B5-100-D5P1 propeller, 15X15

uniform distribution

48

VII-4.2 Runs

In order to verify proper interaction of the produced geometry with the UBEM program, a

series of runs were carried out.

The run results, some of them presented in Table VII-4, show some deviation from the test

results but is within accepted margin. It is expected that further fine-tuning of the meshes

will eliminate it.

2 runs of a B4-70-D5P1 propeller, with a 10X20 and a 15X30 (per blade face) distribution are

presented in Fig. VII-20 and Fig. VII-21. Instances are taken at the beginning, mid and end

of the run (after 3 periods).

Table VII-3 Propeller Data

D= 5 [m]

Ae/Ao= 0.7

P/D= 1

z= 4

Va= 7 [m/s]

Table VII-4 Run Results

instance

10X20

uniform

15X30

uniform

10X20

denser at

edges

15X30

denser

at edges

J 0.6 0.6 0.6 0.6

Fx -826.51 -754.04 -887.01 -800.73

KT 0.24 0.22 0.26 0.24

Kt(exp) 0.22555 0.22555 0.22555 0.22555

diff% 7.90 -1.55 15.8 4.54

Mx -651.11 -592.85 -695.87 -630.83

KQ 0.03835 0.034916 0.04098 0.03715

KQ(exp) 0.03727 0.03727 0.03727 0.03727

diff% 2.89 -6.32 9.96 -0.32

η exp 0.578 0.578 0.578 0.578

η res. 0.607 0.608 0.609 0.607

diff% 4.87 5.08 5.31 4.87

49

Fig. VII-20 A B4-70-D5P1 propeller, with a uniform 10X20 element distribution

(per blade face) at t=0, 0.66 and 1.37s

50

Fig. VII-21 A B4-70-D5P1 propeller, with a uniform 15X30 element distribution (per

blade face) at t=0, 0.66 and 1.37s

51

Part VIII. Application: an Azimuthing

propulsor

The azimuthing or podded propulsor model that was created is modelled after ABB’s Azipod®

XO and Rolls-Royce’s Mermaid® propulsors. This type of propulsor consists of the motor

module (pod) that attaches on the ship’s hull via the strut. These specific models include one

pulling propeller.

Fig. VIII-2 Rolls Royce Mermaid

(source: www.rolls-royce.com)

Fig. VIII-3 Rolls Royce Azipull

(source: www.rolls-royce.com)

Fig. VIII-1 ABB Azipod XO (source: www.abb.com)

52

VIII-1 The propulsor segments

The propulsor unit can be broken down into 3 main segments: the strut, the pod and the

propeller, as seen in Fig. VIII-4

Fig. VIII-4 Podded propulsor main geometric segments

VIII-1.1 The propeller

For the propeller segment, the Wageningen B-series propeller model described in the

previous chapter is used. However, CATIA’s intrinsic modularity enables swapping out this

propeller for another, so a designer can easily create another propeller model and use that

with the propulsor’s main body.

VIII-1.2 The strut

The propulsor’s strut is its connection with the steering unit installed on the ship, and

subsequently with the ship’s hull. It is a wing-like structure, with a hydrofoil cross-section.

Spanwise, two zones can be distinguished: the upper zone, towards the ship and the lower,

where the pod attaches. The lower zone shows a slightly different geometry, especially on the

rear end of the strut, where its profile changes angles to attach to the pod. This is more

notable on the Azipod model.

53

VIII-1.3 The motor module (pod)

The pod’s geometry can roughly be described as a (tapered) cylinder with truncated cones on

either end. The front end attaches to the propeller and the rear end closes off with a cap. The

edges are rounded off with fillets.

VIII-2 Azimuthing propulsor model in CATIA

As was described in the propulsor’s geometry paragraph, the main body’s geometry can be

constructed using a set of different solids: (i) a wing with foil cross-section for the strut and

(ii) a combination of three truncated cones and a hemisphere for the pod. On that, the

propeller with the front cap is attached.

VIII-2.1 Model Axes

The X-axis coincides with the model’s longitudinal axis, propulsor looking towards the

negative, the Y axis coincides with the model’s transverse axis and Z axis with the model’s

vertical axis. The model is created symmetrical, with the XZ plane as the plane of symmetry.

The model’s Axis origin is located so that it coincides with the centre of the pod’s front

(circular) edge.

VIII-2.2 Design intent

The design intent and selected driving parameters for the pod can be seen in Fig. VIII-5. An

Excel file is created, containing geometric the parameters for the propulsor body, as they

appear in Fig. VIII-5. In addition the hydrofoil section design parameters, seen in Fig. VIII-6,

are included in the same file. The parameters are input in CATIA, in the form of design

tables.

VIII-3 Model creation overview

VIII-3.1 Strut

To create the upper section of the strut, the foil cross-section is swept along the outline. The

same goes for the lower strut section. For this, a wireframe that consists of the upper foil

sketch, the lower foil sketch and the outline is created for half of the propulsor. The surface

is subsequently created and then mirrored by the plane of symmetry to create the other half.

 Foil Section

The foil section is defined using 3 points and the chord: The Leading Edge (LE) point,

maximum thickness point and Trailing Edge (TE) point. The LE point coincides with the

chord’s LE. The maximum thickness point is defined by its offsets from the LE and the chord.

Both of them are given as a percentage of the chord’s length. The TE point lies on the a line

perpendicular to the chord that passes from the Chord’s TE and is offset by a length also

determined as a percentage of the chord’s length.

54

The section is symmetric about the chord. The trailing edge closes off with a tangent circle

that has its centre on the chord (Fig. VIII-6)

 Wireframe

The upper foil section is defined by its maximum thickness, location of maximum thickness

and trailing edge thickness, all of which are percentages of the chord’s length (determined by

the outline).

For the lower section, a choice was made to keep the same thickness in the same model-

relative X position. Its chord length also is determined by the strut outline.

The outline is created as a sketch on the plane of symmetry. Splines were used for the upper

curves, so that a propulsor similar to the ABB mermaid model can be created from the same

3D model. If this is not desired, lines can be used instead, as was used in the lower outline.

 Surface

To create the strut surface, two multisection surfaces are created, using the respective

hydrofoil sections and outlines as profiles and guides respectively. A fillet is created between

the upper and lower strut surface to create a smooth join.

VIII-3.2 Pod

The pod is created with a series of truncated cones joined together. Fillets are created on the

joint edges. The rear is completed with a spherical cap tangent to the rear truncated cone.

Each cone is created by blending between two circles. The circles are created on planes

parallel to the XY plane, offset by the respective distances LP1, LP2, LP3, LP4

For the cap, a sketch of a circular arc tangent to the truncated cone is created after the surface

creation, which is then revolved around the X axis to produce the surface.

The final (mirrored) strut surface and the pod surface are joined together and a fillet is

applied on the join edge.

55

 Fig. VIII-5 Podded propulsor Side - Design Intent. The geometric parameters used to create the model

be seen in Table VIII-1

Pod body Strut

Parameter Description Parameter Description

LP1 – 4 Length of pod cones that

make up the pod body

OffsetS Offset of Strut Leading Edge from X

axis

DP1 – 3 Diameter of Pod cone edges LS Strut Length

RFP1 – 3 Radii of fillets on cone edges HSUp Height of upper strut

 HSLo Height of lower strut (from pod

body edge)

 θSFr – Rr Angle of lower strut front and rear

edges

 Rs Radius of fillet upper and lower

strut join edge

Table VIII-1 Pod design parameters

56

Fig. VIII-6 The strut hydrofoil section

VIII-4 The Assembly

VIII-4.1 Assembly Definition

An assembly is a document that stores a collection of components. The components used in

the assembly can be pre-existing, or created within the assembly. The components are

constrained in relation to each other and in space. They can also interact between them by

using shared parameters.

VIII-4.2 The assembly materialized in CATIA

CATIA’s assembly capabilities can be accessed in the Assembly Design workbench, under the

Mechanical Design product.

The components are initially inserted with their origin points and axes coinciding with the

assembly’s origin point and axes. This frequently means that the components overlap and

need to be placed in relation to each other and to their required positions (Fig. VIII-7). This

is achieved by using a set of constraints, such as coincidence, contact, offset, angle and fixing.

 In addition, certain measurements might need to be communicated from one component to

another. This is achieved by copying the parameter from the component of origin and pasting

it to the target component, using the paste special command. In order to maintain the

parameter’s updatability but also its link with the source component, it should be pasted “As

result with Link”.

The Assembly enables adding, removing and replacing components. This means that, for

example, the Wageningen model used for the current pod can be replaced with another

propeller model. However, in case of swapping out components, the mesh of the old

component isn’t transferred to the new one, which needs to be meshed from scratch.

57

VIII-4.3 The pod Assembly

In order to create the final pod model, the propeller body described in Chapter 3.2 and the

Wageningen propeller model described in 3.1 where put together in an assembly.

 Components

 Propeller

The Wageningen propeller model describedin [Chapter] was used. For the Pulling propeller,

the rear hub surfaces are not used. This is achieved by defining the rear cutting plane as the

plane to be used with the Assembly constraints. In addition, a length parameter, set to

reference, is created at the edge of the hub midto measure the edge’s radius.

 Pod

For the pod component, all of the final meshing surfaces are used

 Constraints

 Geometrical constraints

The propeller was arbitrarily chosen to be the anchoring component. So, a Fix constraint is

applied to it. This way, the propeller can’t be moved around.

In order to properly place the pod body in relation to the propeller, a coincidence constraint

between the respective planes on the propeller and pod is assigned. More specifically, the

cutting plane that split the hub mid and rear coincides with the pod’s local YZ plane. By

imposing this constraint, the pod body component is moved in such a way that the two planes

coincide.

 External parameters

Both components are fully defined using their respective Excel files. To simplify the

assembly, a choice is made to keep this as is instead of creating a new file. However, there

has to be at least some inner-communication between the components to avoid external

calculations. For this case, a length parameter is created that savesthe measured length of

the propeller’s edge. This parameter is then pasted with the paste special command into the

pod model, while preserving the link to the propeller model. Last, the pod’s front circle’s

diameter (circle_p1) takes on its diameter value from the external parameter.

58

Fig. VIII-7 The assembly components (pod body and propeller) upon insertion. Before constraining

they overlap

Fig. VIII-8 The assembly after being constrained. The components take their proper place relative to

each other

59

VIII-5 Meshing

VIII-5.1 Meshing the Assembly

The mesh creation of an assembly is no different to the mesh creation of any other part. Each

surface created receives a structured mesh, following the general method of meshing. A

description for the excel file can be found in Appendix D.

For the propeller section, the same method is followed as with the propeller model.

The pod’s surfaces are regarded as follows:

The strut and strut cap are meshed in a way similar to the propeller’s blade surface (Face-

back type)

The pod is meshed in a way similar to the propeller’s hub. (Modified Face-back)

VIII-6 Podded propulsor meshes and runs

Lacking test results, it was considered suitable to check the produced pod geometry against

its implementation in the BEM program. For this, models with configuration similar to

Azipod XO, with pulling propellers (the pod body follows the propeller), were initially

checked. The interaction of the propeller wake with the pod strut presented problems that

could not be overcome presently. To verify that a pod model could complete a full run, a

configuration with a pushing propeller (the propeller follows the pod body) was created and

run successfully.

A series of different pod meshes are presented (Fig. VIII-9 - Fig. VIII-11) as well as instances

from one of the successful runs with the pushing propeller configuration (Fig. VIII-12).

60

Fig. VIII-9 A pod with a B4-70D5P1

Wageningen propeller

Fig. VIII-10 A pod with a B4-70D5P1

Wageningen propeller and 1 fin

Fig. VIII-11 A pod with a B4-70D5P1

Wageningen propeller and 2 fins

61

Fig. VIII-12 A pod configuration with a pushing propeller (B4-60-D5P1) at t=0, 0.67 and 1.37 s

62

Part IX. Application: SMP Workshop

Propeller

A very important capability of the proposed meshing method is the ability to create a mesh

from an imported geometry in a format supported by CATIA. Analytic description of such

surface could be very time consuming. However, the importing, clearing up and preparation

of the surface for meshing, as well as the meshing itself, is relatively quicker and easier with

the proposed method.

IX-1.1 Data provided

To present this, the model of a controllable pitch propeller, VP1304, by SVA is used. The

propeller was designed for academic purposes, with the intention to generate a stable tip

vortex. Its main particulars are as presented in Table IX-1:

Propeller diameter DP [mm] 250.0000

Pitch at r/R=0.7 P0.7 [mm] 408.7500

Pitch at r/R=0.75 P0.75 [mm] 407.3804

Mean pitch Pmean [mm] 391.8812

Chord length at r/R=0.70 C0.70 [mm] 104.1670

Chord length at r/R=0.75 C0.75 [mm] 106.3476

Thickness at r/R=0.75 t0.75 [mm] 3.7916

Pitch ratio P0.7/D [-] 1.6350

Mean pitch ratio Pmean/D [-] 1.5675

Area ratio AE/A0 [-] 0.7790

Skew θeff [°] 18.8000

Hub diameter ratio dh/DP [-] 0.1500

Number of blades z [-] 5

Direction of rotation right-handed
Table IX-1 Propeller main particulars

The propeller form was presented both in the form of an offset table and as a series of 3D

geometry files that additionally contained the rest of the tests setup models.

The file that is chosen to be imported to CATIA is the IGES (.iges) file. IGES (Initial Graphics

Exchange Specification) is a vendor-neutral file format that allows the digital exchange of

information among computer-aided design (CAD) systems. It is the file format most widely

supported by CAD software, as well as programs that receive input from CAD software in

the form of 3D geometry.

63

Fig. IX-1 The provided IGES model

The imported geometry does not contain a specification tree or any form of model history.

The only imported objects are the surfaces that constitute the final object (Fig. IX-1). To

create the mesh, the surfaces need to be manipulated in order to create surfaces suitable for

use with the current method. This manipulation consists of joining and splitting surfaces, as

well as creating some geometry such as curves and points to be used as splitting objects.

The mesh is created, as in Wageningen, for the 1/Zth of the model, which is then revolved

inside the UBEM program. For this, the input model is segmented into 3 parts: the blade,

the fillet and the hub, which are in turn split in order to follow the face-back input format

the UBEM program requires. A description of the modifications done on the model are

presented below:

IX-1.2 Blade

1. Each blade face to be used is joined together with its corresponding fillet surface.

2. A truncated cone surface, offset from the hub, with a diameter of 0.2R is used to split

the joins into the Blade faces and the fillet.

3. The Blade faces are then split at the tip using a spline, based on the initial projected

outline of the blade (Fig. IX-2). The spline is created and then extruded along the X

direction to create the cutting surface.

64

Fig. IX-2 The blade tip is split using a spline (orange) similar to its original outline (in dashed)

IX-1.3 Fillet

4. The fillet leftovers from the split in step 2 are joined with the hub.

5. The fillet’s edge is extracted and the two supremums alongside the X direction are

defined.

6. Since the propeller is designed as a Controllable Pitch one, the fillet’s outline is

unsuitable for the current method. So, a new spline, supported by the hub, is created

around the fillet edge, interpolating the two supremums. The spline is created in such

a way that the two supremums of the outline are also the supremums of the spline.

This is achieved by constraining the tangency on the two points to be parallel to the

Y axis.

7. Using the spline, the Join from step 4 is split into the fillet and the hub.

8. New Leading and Trailing edges are defined on the fillet, that end to the Leading and

Trailing supremum respectively. The fillet from step7 is split into the Face and Back

segment

65

Fig. IX-3 The new fillet outline (in green), v.s. the old fille outline (in magenta) on the original hub

surfaces provided by SMP. At either edge the two extremum points and cutting planes can be seen.

The transparent surface is the propeller blade. The rest of the root fillet surface is hidden.

IX-1.4 Hub

9. The hub from step 7 is split with two planes parallel to plane YZ, that pass from the

two supremum points. The hub front and middle (surface between them) are kept.

10. The spline from step 6 is copied and rotated around the X axis by 360/Z degrees (72

deg, since Z=5). The rotated copy splits the mid of the hub from step 9.

11. The hub middle is split in a manner similar to the Wageningen model, creating planes

along its length, finding their intersections with the surface and then interpolating a

spline through the midpoints of the intersection, supported by the surface. The spline

splits the middle in two.

12. The rear hub is recreated as a truncated cone, in a manner similar to the Pod body

model. The circles used for the blending have the same diameter as the original hub

in the same place. A spherical cap created in the same way as the caps in the previous

models is also added.

13. A circular hole is created to the Hub Front and Rear, with a small diameter, centred

on the X axis

14. Both the front and the rear hub portions are split using 3 planes each, defined as

following:

a) First plane is created by rotating plane XZ around X axis, passing from the

supremum point that is nearer the portion to be split

b) Second plane is created by rotating first plane around X axis, by 360/Z

degrees

c) Third plane is the bisecting plane of first and second planes (it should pass

from the spline endpoint)

15. After their creation, all of the final surfaces are rotated around the Z axis by 180deg.

This is done because the UBEM program requires the forward direction towards the

66

negative X-axis, whereas the SMP model’s forward direction is towards the positive

X-axis.

IX-1.5 Created Surface

The final surfaces created are presented in Fig. IX-4:

- Face and Back of propeller Blade

- Face and Back of propeller Fillet

- Upper and Lower of Hub Front, Middle and Rear.

Fig. IX-4 The final surfaces to be meshed: Purple and pink: the blade pressure and suction side

respectively; Green: the root fillet; Shades of brown: the hub front; Shades of blue: the hub mid;

Shades of orange: the hub rear.

67

IX-2 SMP propeller meshes and runs

A set of different meshes were created from the provided IGES geometry and ran in the

UBEM code with different degrees of success.

Some indicative meshes that were created with the method are presented in Fig. IX-5 - Fig.

IX-8, whereas some of the run results are presented in Table IX-2

Table IX-2 SMP runs results

instance
15X20

Dense edges

23X30

Dense edges

25X40

Blades only

Fx 0.97 0.91 -0.96

KT run 0.33 0.31 0.33

KT provided 0.36 0.36 0.36

diff% -8.30 -13.85 -9.25

Mx 0.0637 0.0614 0.0654

10KQ run 0.867 0.835 0.889

10KQ provided 0.960 0.960 0.960

diff% 9.72 13.06 7.44

η from prov. 0.609 0.609 0.609

η run 0.618 0.603 0.597

diff% -1.56 -0.91 -1.95

68

Fig. IX-5 SMP propeller, 15X18 mesh

distribution, denser towards edgesz

Fig. IX-6 SMP propeller, 15X20 uniform

mesh

Fig. IX-7 SMP propeller, 15X20 mesh,

denser towards LE

Fig. IX-8 SMP propeller, 20X30 uniform

mesh

69

Fig. IX-9 SMP propeller instances, 15X10 denser mesh towards edges, at t=0, 0.06 and 0.12 s

70

Part X. Conclusions & Future Work

The aim of this thesis was to develop a methodology to generate computational meshes for

BEM simulations for marine propulsors from a CAD geometry. A set of parametric models

were created using the software CATIA, which then became the basis from which the

computational meshes were generated. Both the geometry and mesh models are parametric,

leading to the possibility of generating a series of meshes with different geometric attributes

and mesh distributions. In addition to that, a pre-fabricated geometry provided by a third

party is imported and successfully meshed using the same method.

The produced meshes are tested in the UBEM code to verify that the meshes are useable and

produce satisfactory results. The meshes were successfully imported and simulated, with

results conforming to those expected from test data

It becomes clear that mesh creation for complex geometries is feasible using the proposed

method in conjunction with CATIA. This opens up the possibility of increasing the complexity

of geometries in future research with BEM. In addition, the ease of handling both

A further improvement of the method would be to program most manual tasks with scripts,

to simplify and make the procedure quicker. In addition, the interface program could be

expanded upon, adding features such as extracting a sparser mesh from a denser one.

With the method developed, any geometry that can be created or imported in CATIA can be

manipulated and exported as a BEM mesh. Future designers can expand on the models

presented, adding new geometries and configurations, or even create new geometries from

scratch and export them as grids using the method as a tool. In addition, CATIA offers the

capability of deforming existing geometries in a parametric way, which can be applied to any

existing geometry.

 Some proposals for future research are:

- Creation of propeller models of different series or original designs

- Expansion on the existing models by reusing them in assemblies. For example, models of

ducted and rudder propeller can be easily be created with the propeller model, while the pod

can be changed by exchanging the propeller for another model.

- Creation of other propulsor types or energy saving devices

- Deformation of existing surfaces in a parametric way to investigate optimal form

71

Part XI. Bibliography

Carlton, J. (2012). Marine Propellers and Propulsion, Elsevier Ltd.

Christoph M. Hoffmann, R. J.-A. (2002). "Parametric Modeling." Handbook of Computer

Aided Geometric Design: 22.

Kogent, I. (2009). Catia V5 Essentials, Jones & Bartlett Learning, LLC.

Oosterveld, M. W. C. and P. van Oossanen (1975). "FURTHER COMPUTER-ANALYZED

DAT OF THE WAGENINGEN B-SCREW SERIES." International Shipbuilding Progress

22(251): 251-262.

Politis, G. K. (2004). "Simulation of unsteady motion of a propeller in a fluid including free

wake modeling." Engineering Analysis with Boundary Elements 28(6): 633-653.

Politis, G. K. (2011). "Application of a BEM time stepping algorithm in understanding

complex unsteady propulsion hydrodynamic phenomena." Ocean Engineering 38(4): 699-711.

Stroud, I. (2006). Boundary Representation Modelling Techniques, Springer London.

Stroud, I. and H. Nagy (2011). Solid Modelling and CAD Systems: How to Survive a CAD

System, Springer London.

Tsarsitalidis, V. (2015). Hydrodynamic Simulation of Biological Propulsion Systems and

Application on the Design of Optimal Marine Propulsors, National Technical University of

Athens.

NX Nastran User’s Guide

Azipod XO Brochure

CATIA User’s Manual

CATIA: www.catia.com

Rhino3D: www.rhino3d.com

Solidworks: www.solidworks.com

Siemens NX: www.plm.automation.siemens.com/en_us/products/nx/

Inventor: www.autodesk.com/products/inventor/overview

http://www.catia.com/
http://www.rhino3d.com/
http://www.solidworks.com/
http://www.plm.automation.siemens.com/en_us/products/nx/
http://www.autodesk.com/products/inventor/overview

72

Aknowledgements

I would like to express my deepest gratitude to my assisting supervisor, V. Tsarsitalidis, for

his assistance, advice, patience and insight. Without him, the current thesis would be much

different.

I would also like to thank my supervising professor, G. Politis, for giving me the

opportunity for this research, despite the initial indications that it would not be viable.

Last but not least, my utmost gratitude to my mother and brother, Maria and Fanis, who

stand by me all these years, and all the people (who are too numerous to list) who have

supported me over the course of my studies.

73

Appendix 0: Introductory Information

In the appendix, the basic elements of the meshing method will be presented. The general

methodology can be summed up in Fig. 0-1

Fig. 0-1 Meshing methodology chart

For the creation of the meshes, as outlined by the 3 cases studied, the following exist:

In case of an existing surface: if there is both a parametric geometry and a mesh model, the

mesh is modified only by changing the parameters. It can then be exported and translated

for input in UBEM.

If there is only a parametric surface model, without a mesh model, the surface is input in the

mesher workbench, the mesh model, created and then the mesh can be exported and

translated as above.

In case of an existing surface that is not a CATIA surface (as is the case with the SMP

propeller), it needs to be imported in CATIA, modified accordingly (split in segments and by

bodies) and then input in the mesher to create the mesh model. The SMP model example can

be found in Part IX

Existing surface?

Create model in
CATIA

CATIA parametric
model?

Import in CATIA

Ready for
meshing?Existing mesh

model?

Import to mesher
Create mesh(es)

Export mesh(es)

Run through
interface program

Run in UBEM

Modify parameters
Update mesh(es)

NO

YES

YES

NO

YES

NO

Modify accordingly

NO

YES

Start of meshing
procedure

Appendix F

B-Series Propeller
Pod Assembly

Appendixes A - D

SMP Propeller
Part IX

74

In case there are only offsets provided, the model must be built from scratch, creating the

necessary parameters according to the design intent. A step-by-step example of a model based

on offsets (B-Series) can be found in Appendix A with the parameter excel file described in

Appendix C. The general overview of the model is contained in Part VII

In case the user is working from a concept design, the model must also be built from scratch,

creating the necessary parameters according to the design intent. A step-by-step example of

a model based on offsets (Podded propulsor) can be found in Appendix A with the parameter

excel file described in Appendix C. The general overview of the model is contained in Part

VIII.

75

Appendix A. Step-by-step creation of the

B-series model

A-1. Blade

A-1.1. Blade Wireframe

 Reference Lines

First, the propeller reference lines are defined.

The generator line [GL] is a straight line on the XZ plane that is at an angle <𝜃𝑖𝑝>with the Z

axis. A set of planes offset from the XY plane, one for each radius, are created [section planes]

and their intersections with the GL are located [GL points].

 The pitch distribution is also drawn: each point of the pitch spline lies on the corresponding

plane and is offset from the Z axis by the <pitch length>.

 2D sections

Each flat section is created in a sketch supported by the respective plane. All offsets from TE

and chord.

Pitch angles are calculated as following:

𝜃𝑃 = tan−1 (
𝑝

2𝜋𝑟
)

Where r is the respective radius, p is the respective pitch.

1. Draw line [chord] – impose length constraint<chord length>, turn into construction

element

2. Draw line perpendicular to chord, passing through LE [LE perpendicular], turn into

construction element.

3. Create two splines with N control points [Face] and [Back], N number of points as

given for each section face. Impose offset constraints from TE and chord as needed.

Note: LE control point coincides with LE perpendicular, TE control point coincides

with TE on chord.

4. Impose offset constraint for GL point <length A>

5. Impose angle constraint between sketch’s V-axis (global Y axis) and chord. Value as

calculated from pitch angle equation.

6. Create output [chord output]

7. Exit sketcher

8. Associate design table values with appropriate constraints and update part

76

 Helixes

Each helix starts at the GL intersection point with the respective plane, but will extend by

<length1=a> and <length2=(c-a)> to each side, both lengths measured on curve.

Using the helix tool:

- Starting point : [GL point]

- Axis : X axis

- Pitch length : Pitch length for given radius

- Height:< ℎ = 𝑠𝑖𝑛𝜃𝑝(𝑐 − 𝑎) >

- Orientation: clockwise (dependent on the propeller orientation)

- Starting angle:< 𝜑 =
−360∙𝛼∙𝑠𝑖𝑛𝜃𝑝

𝑝
>

 3D sections

The 3D sections are constructed with the Shape morphing tool, by deforming the flat sections

to follow the helical lines. For each section:

- Element to deform: create extract -> selected section side to deform (each side is

deformed separately)

- Reference: respective output chord

- Type: reference point/curve

- Target: respective helix

- Constraint: point

 Outlines

To create the outlines, the Spline tool is used. 4 splines are created: [LEface], [TEface],

[LEback], [TEback].

1. Create points on 3D section curves start and end.

2. Interpolate points with Spline as needed (Fig. 0-4)

77

Fig. 0-1 Blade flat section definition with some of the constraints. The sketch is fully constrained, so

the geometry is green

.Fig. 0-2 Blade Flat Sections with generator line

and section planes– Dashed white lines are

chord outputs, dashed green line is X axis

Fig. 0-3 Helixes (orange) and flat sections

(white) with generator line and section planes.

Dashed green line is X axis. The flat sections

will be deformed according to the helixes.

78

 Fig. 0-4 Creation of outline spline by interpolating the endpoints of the cylindrical sections.

Shown: sections 0.15R-0.5R

Fig. 0-5 Cylindrical Face (magenta) and Back

(green) sections with outline (white)

 Fig. 0-6 Cylindrical sections and resulting

blade surface

79

A-1.2. Blade surface

 Face and Back surface

Working in the Freestyle workbench.

1. To create the blade face surfaces, the Net Surface tool is used for each side, [Face] and

[Back]:

- Guides: the deformed curves for the side being created. Set section 0.7R as the

driving guide.

- Profiles: select the two outline splines. Set TE outline as the driving profile

- Surface [Face_srfc] and [Back_srfc] are created.

Return to Generative Shape Design workbench

2. Create cylinder with radius r=0.155R

3. Trim Face and Back surfaces with cylinder (necessary for more reliable model

updates)

 Leading Edge Fillet

First, a closing strip will be created in the Leading Edge:

1. Create Extracts for the LE edge of both Face and Back surfaces

2. Create points on start, mid, 0.75 of length and end of each extract. Create line between

each face point with respective back point, resulting in 4 lines.

3. Create Multisections Surface[LE strip] using lines from step two as sections and

extracts from step1 as guides.

4. Join LE strip, Face and Back surfaces using Healing. (Fig. 0-7)

The circle in the LE is finally created with a Tritangent Fillet, on the Healing from step4,

with the following settings [blade_srfc] (Fig. 0-8):

- Extremities: smooth

- Faces to fillet: [Face_srfc; Back_srfc faces]

- Face to remove: LE strip

- Trim support is selected

- No limiting element

As it can be seen in Fig. 0-8, the tritangent fillet leaves a raised edge at the tip. This will be

fixed further on, when preparing the surfaces for meshing.

80

Fig. 0-7 LE strip detail at propeller tip before

fillet

Fig. 0-8 Detail at LE propeller tip after

tritangent fillet. The tip will be rounded off in

further steps

A-2. The hub

The following method is proposed:

1. Create a2D sketch on [XZ plane] for the [hub profile]. It is essentially a straight line

at an angle < 𝜃ℎ𝑢𝑏 > with the X-axis. Impose constraints: horizontal length (should be

enough to support the blade), LE distance from X axis (essentially the hub’s radius),

angle with X axis, edge offset from GL. Exit sketcher

2. Create a Helix starting from the hub profile’s edge and tapering outwards [hub helix]:

- Starting point : hub profile’s LE

- Axis : X axis

- Pitch length : Pitch length for 0.2r

- Height: hub’s length

- Orientation: dependent on the propeller orientation – clockwise for right-handed

propellers

- Starting angle: 0

- Radius variation: select hub profile

3. Revolve hub helix around X axis to create [hub_srfc]. Total angle should be less than

360o, but the surface created should be able to support at least two blades (Fig. 0-9).

81

Fig. 0-9 Hub surface: created by revolving the helix (light blue) around X axis (dashed green)

A-3. Root Fillet

The root fillet is created as a dress-up feature. Before creating it, the blade and the hub

surfaces need to be joined into one object.

Trim [blade_srfc; hub_srfc]. Pick the appropriate surface parts to be kept to create the

[Blade_Hub_Trim].

 Spines

1. Create a cylinder with radius 0.2r around X axis, either by extruding a circular profile,

or by using the cylinder command.

2. Create intersection between the cylinder and blade [Fillet Edge]

3. Create point exactly on intersection TE [TE Fillet Point]

4. Create 3 extracts of the intersection: [Face Fillet Edge], [LE Fillet Edge], [Back Fillet

Edge].

5. On the Back and Face fillet edges, create 5 repetition points and planeson each. Also

create a point and normal plane at 0.1 from each extract’s TE [limiting plane] and

another pair exactly on the LE edge. There shouldn’t be a point on the curves’ Trailing

edges.

6. On the LE extract, create 3 points and normal planes pairs: one on each edge and one

at the midpoint of the curve.

7. Using the planes created in steps 4 and 5, create 3 Spines: [Face spine], [LE spine],

[Back spine]. The Face and Back spines should go up to the limiting planes (Fig. 0-10).

82

Fig. 0-10 Points, planes and spines used in the root fillet creation. The points are created on the

fillet’s upper edge at 0.2R, not currently shown. The planes pass from the points and are vertical to

the fillet’s edge. The spines are defined by the planes, using the “spine” tool.

 Fillet

The main fillet surface is created with the Face-Face Fillet tool in 3 parts for Face, Leading

Edge and Back. For each face on the blade, create a face-face fillet with the hub’s face:

- Support: [Blade_Hub_Trim]

- Extremities: smooth

- Faces to fillet: 2 elements (select as needed)

- Trim support: no

- Under the more>> menu:

- Hold curve: respective Fillet Edge curve from step 3

- Spine: respective Spine from step 6.

Three different fillet surfaces are created [Face_fillet], [LE_fillet], [Back_fillet] (Fig. 0-11)

83

Fig. 0-11 Blade face and LE fillets, as created with the Face-to-face fillet tool. The TE portion will be

added in next steps

To create the TE portion of the fillet:

1. Create a plane tangent to the blade’s TE near the fillet area [TE plane]:

a. Create line from TE Fillet Point tangent to blade TE edge

b. Create two lines tangent to Fillet Edge on each side, passing from TE Fillet

Point

c. Create bisecting line to lines in b

d. Define a plane using lines from a and c

2. On TE plane create a sketch [TE arc]:

a. Project 3D elements: Blade TE. Make construction element.

b. Intersect 3D elements: Hub Surface. Make construction element.

c. Create circular arc, tangent to a and b.

d. Impose constraint on upper arc edge: coincidence with TE Fillet Point

e. Impose constraint on lower arc edge: coincidence with b. Create output of point

[TE Fillet Point 2]

f. Exit sketcher

3. Create [Face FilletCurve] by intersecting with Face limiting plane.

4. Create spline on hub (geometry on support: [Blade_Hub_Trim]), Face side, that

coincides with lower fillet edge and continues to TE Fillet Point [Fillet Spline].

5. Switch to Freestyle workbench.

6. Create Net Surface:

- Guides: [Face Fillet Curve; Fillet Spline]

- Profiles: [TE arc; Face Fillet Curve]

7. Repeat steps 3-6 for Back side

84

Join the Face, LE and Back Fillets with the TE portions using Healing. The Fillet surface is

complete [Root_Fillet].

Fig. 0-12 TE root fillet's wireframe (left) and resulting surface (right)

A-4. The hub caps

The Boundary Element Method used requires that the body to be input doesn’t have big

openings. In the propeller model this is achieved using a pair of caps at each end of the hub.

The caps are spherical and have a small circular hole, centred at their point of intersection

with the X-axis. They are constructed as follows:

1. Create sketch (support: ZX plane) [sketch_front_cap]

Intersect3D elements: [hub_srfc] – turninto construction element [mark1] (will use

only upper intersection)

Create Arc: centre on H-axis (coincidence), point1 coincidence with mark_1, point2

coincidence with H axis.

Impose constraint: tangency [Arc; mark_1] (Fig. 0-13)

2. Revolute: [sketch_front_cap] around X axis [front_cap]

3. Repeat steps 1-2 for [rear_cap]

4. Circle on YZ plane [hole_circle]. Radius= <0.005*D>

5. Extrude: Profile: hole_circle

Direction: X axis

Limit1: up to element: front_cap, Limit2: up to element: rear_cap [hole_cylinder]

85

6. Join: [hub_srfc; front_cap; rear_cap] [hub_with_caps]

Fig. 0-13 Tangent arc (green) at cap with the hub intersection (dashed yellow). The cap surface will

be created by revolving the sketch around X-axis

A-5. Preparing surfaces for meshing

The model mesh is segmented into 3 surface groups: blade, fillet and hub.

The UBEM program requires each surface to be defined in a Face-Back type, so the surfaces

need to be split accordingly. This is done in the surface design workbench, before switching

over to the mesher. The blade and root fillet surfaces are split along the Leading Edge, into

a Face and Back portion. The hub is split transversely, with planes parallel to YZ that pass

from the front and rear edges of the fillet. This creates 3 parts: the front, mid and rear. The

mid of the hub is split longitudinally, using a spline, that is created roughly in the middle

between two fillet edges. The front and rear parts are split in two symmetric portions using

planes.

A-5.1. Blade Surface

The blade surface is segmented into a Face and a Back surface as follows:

1. Split the Blade_Hub_Trimusing the 0.2R cylinder, keeping the upper part [Blade

Surface]

2. Create extract of blade’s LE round fillet face [LE face extract]

3. Locate midpoint of LE Fillet’s Edge [LE point]

4. Create isoparametric curve on the LE face extract so that it splits the extract in middle

[LE isoparametric](Fig. 0-14)

- Support: LE face extract

- Point: LE point

- Direction: pick suitable direction

5. Extrudethe1.0r helix by the X direction and use it to split LE face extract, keeping the

lower part.

86

6. Split trimmed from (5) using the LE isoparametric curve, keeping both sides [LE

Face], [LE Back] (Fig. 0-15)

7. Extract faces on Face and Back

8. Join with healing the Face extract with LE Face and the Back extract with LE Back

[Face2], [Back2]

9. Create 2 edge extracts on the Face2 and Back2 tip edges.

10. Create point at the tip extracts intersection

Fig. 0-14 LE extract and isoparametric curve used to

split the Leading Edge fillet (magenta). Root fillet,

hub and rest of the blade are slightly transparent

Fig. 0-15 Leading edge near tip, after split

into its face and back portion and rounded

off.

A-5.2. Fillet and Hub

The fillet surface is split in a way similar to the blade, resulting in 2 surfaces, Fillet Face and

Fillet Back.

The hub is split transversely at the extreme edges of the fillet in the front and rear, by two

planes parallel to YZ, resulting in 3 pieces: front, mid and rear. The mid portion is split

longitudinally in two parts, upper and lower, with the upper being the one closest to the fillet

Face edge. The front and rear are similarly split in two longitudinally, using a rotation of the

XZ plane that passes from the two fillet edge extremums. The final hub pieces to be meshed

are the 6: Hub Upper Front, Mid and Rear and Hub Lower Front, Mid and Rear.

 Filet split

1. Create Boundary of the lower fillet edge

2. Project boundary on Hub

87

3. Find the twoextremumsof the projected curve along the X axis [LE extremum], [TE

extremum]

4. Create line tangentto LE isoparametric curve at LE point

5. Create line between LE point and LE extremum

6. Create plane from lines in (4) and (5)

7. Intersect Fillet with plane from (6), keep Front edge with Near

8. Extract TE arc

9. Connect (7) and (8) – leave Trim Elements unchecked

10. Join (7), (8) and (9) together [Splitting Join]

11. Split Fillet using Splitting Join. Keep both sides [Face Fillet], [Back Fillet])

 Hub mid

1. Split projected from (Filet spit -2) using (Fillet split-10) as cutting element. Keep both

sides [Face Fillet Projected], [Back Fillet Projected]

2. Create Circular pattern[Back Pattern]

Parameters: Instance & angular spacing

Instances: 2

Angular spacing: <360deg/Z>.

Reference Element: X axis

Object to Pattern: Back Fillet Projected

3. Project Back Pattern on Hub

4. Create two planes parallel to YZ plane, passing from the extremum points [Front

Cutting Plane], [Rear Cutting Plane]

5. Split Hub with Front and Rear Cutting Planes. Keep the section between them.

6. Split (5) using Face Fillet Projected and projected Back Pattern as cutting elements.

Keep the section between them [Split Hub]

7. Create a set of 5 planes between [Front; Rear Cutting plane] using Planes between

8. Intersect set of planes from (7) with Split Hub [Intersection set]

9. Find midpoint for each curve in Intersection set.

10. Create extract of Front and Rear edges of Split Hub[Front Hub Extract], [Rear Hub

Extract] and find midpoints

11. Create spline interpolating points from (9) and (10) [Long. Hub Splitting spline]

12. Split the Split Hub using Long. Hub Splitting spline. Keep both sides.

[Hub_mid_upper], [Hub_mid_Lower]

 Front and Rear Hub

1. Split [hub_with_caps] with [Front Cutting Plane]. Keep front portion

2. Create Line:

Line type: Point-point

Point1: LE extremum

Point2: intersect: [X-axis, Front Cutting Plane]

3. Create Plane:

Plane type: through two lines: [Line from (2); X-axis] [F_long_cutting_p1]

4. Revolve F_long_cutting_p1around X axis by <360deg/Z> [F_long_cutting_p2]

88

5. Revolve F_long_cutting_p1 around X axis by <360deg/Z/2> [F_long_cutting_p3]

6. Split (1) with (3), (4) and [hole_cylinder]. Keep surface between

7. Split (6) with (5), keep both sides [Front_hub_upper], [Front_hub_lower]

8. Repeat (1)-(7) for rear [Rear_hub_upper], [Rear_hub_lower]

Fig. 0-16 The surfaces to be meshed (with shades of blue are the blade surfaces, shades of green the

root fillet, shades of brown the hub surfaces)

89

Fig. 0-17 Gaussian-style qualitative surfacic curvature analysis on the propeller blade. Red is

minimum, blue is maximum

90

Appendix B. Step-by-step creation of the

podded propulsor model

B-1. Strut

B-1.1. Strut Wireframe

1. Create sketch: (support: XZ plane) [strut_outline]

Upper strut:

- Rectangle: height= <h1>, length = <ls1>

- Constraint: offset [rectangle edge; sketch V-axis] = <offset1>

- Intersect 3D elements: pod – make construction element [mark_s1]

- Constraints: offset [rectangle lower edge; upper mark_s1 line] = <h2>

- Splines: interpolate points on vertical rectangle edges. Start and end points of

splines coincide with rectangle corners. [spline_front], [spline_rear]

- Lower strut:

- Line: horizontal [line_s1]

- Constraint: offset [line_s1; lower rectangle edge] = <h2*1.5>

- Create two lines, starting from each of the lower rectangle corners [line_front],

[line_rear]

- Constraint: angle [line_front; line_s1], [line_rear; line_s1] =<θstrut_front>,

<θstrut_rear> the front and rear angle respectively.

- Create output of the following: spline_Front, spline_rear, line_front, line_rear, two

lowest corners of rectangle (LE_output, TE_output), lower edges of lines s2 and s3

(LE_lower_output), (TE_lower_output)

Note that the rectangle is created to aid with keeping the splines straight. In case the outline

is not straight, the coincidence constraints of the spline points with the lines can be

deactivated and the points moved freely in the desirable configuration. If the outline is to

remain straight, the splines can be omitted. In this case, outputs of the vertical rectangle

edges will be created instead (the vertical lines will be toggled from construction elements to

standard ones). In addition, the verticality constraint on the lines can be deactivated and the

lines rotated freely to create a slanted outline.

As an example, the variants in Fig. 0-19, Fig. 0-20 can be created.

2. Create planes, parallel through point:

Reference: XY plane

Point: LE_output [plane_u_foil] – LE_lower_output [plane_l_foil]

3. Create sketch: (support: plane_u_foil) [foil_upper] (Fig. 0-21)

- Line: endpoints:[LE_output, TE_output] – make construction element [chord_1]

- Line throughTE_output. Constraint: perpendicular to chord_1 [TE_perp_1]

- Point. Offset constraints: from LE = <max_t_sp*ls1>

- from chord_1 = <max_t*ls1> [max_t1]

91

- Point on TE_perp. Offset constraint: from chord =<te_t*ls1> [te_t1]

- Line: endpoints:[max_t1;te_t1] [line_uf1]

- Spline: interpolate [LE_output; max_t1; te_t1]

- Tangency on LE_output: constraint: perpendicular to chord_1

- Tangency on max_t1 point: constraint: parallel to chord_1

- Tangency onte_t1: constraint: parallel to line_uf1

- Create output: max_t1 [outp_maxt1]

Fig. 0-18 Left: Outline in sketcher, with its constraints. In yellow dashed curve, the pod

intersection with the sketch plane. Right: the resulting strut

92

Fig. 0-19 Outline Variant - Removed Coincidence Constraint of Spline Control Points to create

curved outline

Fig. 0-20 Outline Variant - Removed Verticality Constraint of Lines to created slanted outline.

Fig. 0-21 Foil_upper section sketch with constraints

93

4. Project outp_maxt1 to plane_u_foil [max_t2]

5. Create sketch: (support: plane_l_foil) [foil_lower]

- Line: endpoints:[LE_lower_output; TE_lower_output] – make construction

element [chord_2]

- Line throughTE_lower_output. Constraint: perpendicular to chord_2 [TE_perp_2]

- Point on TE_perp. Offset constraint: from chord =<te_t*ls1> [te_t2]

- Line: endpoints:[max_t2;te_t2] [line_uf2]

- Spline: interpolate [LE_lower_output; max_t2; te_t2]

- Tangency on LE_lower_output: constraint: perpendicular to chord_2

- Tangency on max_t2 point: constraint: parallel to chord_2

- Tangency onte_t2: constraint: parallel to line_uf2

6. Plane: parallel through point [plane_s1]

Reference: XZ plane; point:LE_output

7. Project: [spline_rear; support: plane_s1] [proj_upper]

[line_rear;support: plane_s1] [proj_lower]

8. Line: endpoints:[max_t2;outp_maxt1] [line_maxt]

B-1.2. Strut Surface

1. Multi-sections surface: [section: foil_upper; Guides: spline_front, Proj_upper]

[upper_strut]

2. Multi-sections surface: [sections: foil_upper, foil_lower; Guides: line_front;proj_lower]

[lower_strut]

Switch back to Generative shape design

3. Join [upper_strut; lower_strut] [join_s1]

4. Symmetry: element: join_s1, reference: XZ plane [sym_s1]

5. Extract: [rear edge of upper_strut] [extr_u]

[rear edge of lower_strut] [extr_l]

6. Extrude: profile: extr_u [upper_TE]

Direction: Y-axis

Limit1: up-to element [join_s1], Limit2=0

7. Extrude: profile: extr_l [lower_TE]

Direction: Y-axis

Limit1: up-to element [join_s1], Limit2=0

8. Join: [join_s1;sym_s1;upper_TE;lower_TE] [join_s2]

9. Tri-tangent fillet: Support: join_s2 [tri_fi1]

Faces to fillet: upper_strut faces

Faces to remove: upper_TE face

10. Tri-tangent fillet: Support: tri_fi1 [tri_fi2]

Faces to fillet: lower_strut faces

Faces to remove: lower_TE face

11. Edge Fillet: Object to fillet: tri_fi2 [strut]

Radius= <rfstrut>

Edge: join between upper and lower strut

94

The resulting suface can be seen in Fig. 0-18

B-2. Pod

B-2.1. Pod Wireframe

1. Create planes offset from YZ by <lp1> [plane_p1], offset from plane_p1 <lp2>

[plane_p2], offset from plane_p2 by <lp3> [plane_p3], offset from plane_p3 by <lp4>

[plane_p4], offset from plane_p4 by <lp5> [plane_p5]

2. Create circle on plane [YZ] [circle_p1]

- Centre: Intersection [YZ plane; X axis]

- Diameter = <external parameter: hub diameter on touching edge>

3. Create line [line_p1]:

- Angle/normal to curve

- Support: ZX plane

- Angle: external parameter: <θhub>

- Point: create extremum: on circle_p1, max on Z axis

- Up-to: YZ plane

4. Create circle on plane_p1. [circle_p2]

- Circle type: centre and point

- Centre: intersect [plane_p1; X axis]

- Point: end of line_p1

5. Create circles on planes [plane_p3; plane_p4; plane_p5], centre is the intersection of

each plane with X axis. Diameters are <d1> [circle_p3], <d2> [circle_p4] and <d3>

[circle_p5]

B-2.2. Pod Surface

To create each part of the pod surface, create a series of blends, blending between two

consecutive circles. For closing points, create a max-extremum on Z axis

Example:

1. Blend [blend1]

First curve: circle_p1

First support: No selection

Second Curve: circle_p2

Second Support: No selection

Under the closing points tab:

First closing point: extremum (Max) of first curve on the Z axis

Second closing point: extremum (Max) of second curve on the Z axis

Repeat for rest of circles [blend2; blend3; blend4]

95

Fig. 0-22 Left: Wireframe front circles and X axis with strut outline front

Right: Blend2 (blend between second and third circle)

2. Join [blend1+blend2+blend3+blend4][Join_p1]

3. Edge Fillet on Join_p1 [fillet_p1]

Radius: <rfp1>

4. Edge Fillet on fillet_p1 [fillet_p2]

Radius: <rfp2>

5. Edge Fillet on fillet_p2 [fillet_p3]

Radius: <rfp3>

6. Create sketch (support: ZX plane) [sketch_p1]

- Intersect3D elements: [fillet_p3] – into construction element [mark_p1] (will use

only upper intersection)

- Create Arc: centre on H-axis (coincidence constraint), point1 coincidence with

mark_p1, point2 coincidence with H axis.

- Impose constraint: tangency [Arc – mark_p1]

7. Revolute: sketch_p1 around X axis [rear_cap]

8. Circle on plane_p5 [hole_circle]. Diameter= <d2*0.1>

9. Extrude: Profile: hole_circle

Direction: X axis

Limit1: up to element: rear_cap, Limit2: dimension = 0 [rear_hole]

10. Split: Element to cut: rear_cap

Cutting element: rear_hole

Keep cap part [cap_with_hole]

11. Join: [fillet_p3 ; cap_with_hole] [pod]

96

B-2.3. Pod and Strut Joined

1. Trim [strut; pod] [trim1]

2. Edge fillet: object to fillet: trim1 [propulsor_body]

Radius = <rfpod>

B-2.4. Pod with Fin

The creation of the fin is similar to the creation of the upper portion of the strut, so the step-

by-step procedure will not be repeated. The fin is joined to the pod model the same way as

the strut is joined to the pod (see B-2.3)

B-3. Meshing preparation

For use in mesh creation without fins:

1. Split: Element to cut: propulsor body, cutting elements: XZ plane – Keep right side

[bod_right]

2. Extract: lower edge of fillet between strut and pod (tangent continuity) [extr_f1]

3. Planes: parallel through point: Reference: YZ plane, points on either end of extr_f1

[plane_m1], [plane_m2]

4. Split: element to cut: bod_right, cutting elements: extr_f1

Keep both sides [strut_r], [pod_r1]

5. Consecutive Splits: pod_r1 with planes plane_m1, plane_m2 and plane_p2 (at the cap)

as necessary to create 4 surfaces: front, mid and rear pod and cap as per fig.13.

6. Repeat steps 1-5 for left side

For use in mesh creation with fins, the pod body is split around the fin(s) accordingly. The

fins are split with their planes of symmetry, keeping both sides.

97

Fig. 0-23 The propulsor’s body before being split for meshing

Fig. 0-24 Right half of surfaces to be meshed: Blue: strut - Green: Hub front - Red: hub mid - Cyan:

Hub rear

98

Fig. 0-25 Qualitative surface curvature analysis of the pod, using the “maximum” style of analysis.

Red is minimum value, blue is maximum

Appendix C. The B-Series model excel

files

The B-series parametric model is modified externally using the Excel file ‘Wageningnen.xls’,

while its mesh distribution model is modified with the ‘Wageningen_elements.xls’ file. These

The model parameters file

The offsets for the B-series sections are calculated using a set of equations and relations that

can be found in the bibliography. For these calculations, the required data are: the diameter

‘D’, number of blades ‘Z’ and the expanded blade area ratio ‘AE/AO’. In addition to those, the

pitch ratio ‘P/D’ and rake angle ‘θip’ are required to construct the propeller.

The excel file contains the aforementioned main data, in addition to all the calculated offsets

and other required parameters that will input in CATIA, and is organized as follows:

Number of sheets: 14

Sheet 1: Contains the main parameters modified by the user. Apart from main parameters,

there are three more parameters included: the tip thickness, tipchordpercentage and

hub_angle. The main data portion of the sheet that controls the model update is presented in

Table 0-1

Below these, the initial calculations for each section are presented, which, apart from the

pitch distribution column, are not modified by the user and are contained in the sheet for

ease of reference.

Table 0-1 Sheet1: Propeller Main Data

AE / A0 Expanded blade ratio

Z Number of blades

P / D Pitch ratio

D (m) Diameter (m)

Propeller rake angle

(θip)

Rake angle (deg)

tip thickness(m) Thickness at the tip section (m)

tipchordpercentage Percentage of tip helix used in the outline

creation

Hub_angle Angle of Hub profile (deg)

100

Sheets 2 – 11: contain the calculated section offsets for sections at r/R= 0.15, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9 and tip. Each section takes up one sheet. All offsets are measured from the

chord’s TE and are arranged in such a way that facilitate associations in CATIA, as described

in Appendix E. The sheet for section at r/R=0.2 is presented in Table 0-2. Some offsets are

omitted from the presentation, to avoid unnecessary repetition.

Table 0-2 Sheet 3: section offsets for r/R=0.2

0.2_ChordLength Chord length

0.2_A(GenToLE) Distance of Generator line from TE

0.2_offset19 X offset for point 19 on back side

0.2_yback19 Y offset for point 19 on back side

0.2_offset18 X offset for point 18 on back side

0.2_yback18 Y offset for point 18 on back side

[…] […]

0.2_offset2 X offset for point 2 on back side

0.2_yback2 Y offset for point 2 on back side

0.2_offsetface19 X offset for point 19 on face side

0.2_yface19 Y offset for point 19 on face side

[…] […]

0.2_offsetface2 X offset for point 2 on face side

0.2_yface2 Y offset for point 2 on face side

0.2_yfaceTE Y offset for TE point on face side

0.2_yBackTE Y offset for TE point on back side

0.2_yBackLE Y offset for LE point on back side

0.2_yFaceLE Y offset for LE point on face side

0.2_B Distance of max. thickness point from

TE

Sheet 12: contains the pitches for each section, as calculated from the distribution defined in

sheet1.

Sheet 13: contains the full offset calculations as determined by the B-series formulas. This

sheet provides the data for the section offset sheets and is not imported in CATIA design

table

Sheet 14: contains all the calculated offsets and is used to rename and re-arrange them in a

suitable way. Section offset sheets 2 to 11 source their data from this sheet.

101

C-2. The mesh distributions file

The mesh distributions file contains parameters that control the number of elements and the

distribution along the edges.

Number of sheets: 4

Sheet1: is the main data sheet that the user modifies.

The number of Elements segment contains the element number parameters and must always

contain integer numbers as values. The descriptions of each parameter appear next to the

parameter name. For the elements distribution segment, the distribution names can be seen

in Fig. 0-26. The ratios values can be any real number. The symmetry values can be either 0

(false: the distribution is not symmetric) or 1 (true: the distribution is symmetric)

Number of Elements

Chordwise

Blade Face Chordwise Number of CW elements on blade face

Blade Chorwise Total Total number of CW elements on blade body

Front Hub Chordwise Number of CW elements on hub front

Rear Hub Chordwise Number of CW elements on hub rear

Hub Chordwise Total Total number of CW elements on hub

Spanwise

Spanwise Blade Number of SW elements on blade face

Spanwise Fillet Number of SW elements on fillet face

Spanwise Hub (per face) Number of SW elements on each hub face

Spanwise Hub Total Total number of SW elements on hub

Elements distribution

Distribution Ratios Symmetry

Chordwise

CWBladeTop (CW1)

102

CWBladeBottom (CW2)

CWFilletBottomFace (CW3)

CWFilletBottomBack (CW5)

CWHubmid (CW4)

CWHubFront (CWHF)

CWHubRear (CWHR)

Spanwise

SWBladeLE (SWBLE)

SWBladeTE (SWBTE)

SWFilletLE (SWFLE)

SWFilletTE (SWFTE)

SWHubUpperFront (SWHUF)

SWHubLowerFront (SWHLF)

SWHubUpperRear (SWHUR)

SWHubLowerRear (SWHLR)

Sheets 2 -4 contain the data from sheet1, but organised for input in CATIA

Sheet2: element numbers

Sheet 3: distribution ratios

Sheet 4: symmetry notations. The values assigned in Sheet 1 are turned into “false” or “true”

in order to be input in CATIA as Boolean parameters.

103

Fig. 0-26 Propeller mesh distribution naming convention

104

Appendix D. The podded propulsor

excel files

The podded propulsor is an Assembly document, consisting of the propeller part and the pod

body part. The propeller part used for the current setup is the Wageningen model, for which

the excel file is already presented in Appendix C. The pod body model has its own Excel file,

which will be presented further down.

For the mesh creation, an excel file is used for all of the assembly, which is an expansion of

the propeller mesh excel file. For this reason, only the parameters concerning the pod body

meshes will be presented here.

The pod body model is modified externally using the Excel file ‘pod_dimensions.xls’, while

the assembly mesh is modified with the ‘assembly_elements.xls’ file.

D-1. The pod part model parameters file

The excel file contains the parameters described in VIII-2.2 - Design intent.

Number of sheets: 3

Sheet 1: contains the pod’s and strut’s geometric parameters as presented in Table 0-3 and

Fig. 0-29

Table 0-3 pod_dimensions.xls Sheet 1: Pod main parameters

Pod body

LP1 – 4 Length of pod cones that make up the pod body

DP1 – 3 Diameter of Pod cone edges

RFP1 – 3 Radii of fillets on cone edges

Strut

OffsetS Offset of Strut Leading Edge from X axis

LS Strut Length

HSUp Height of upper strut

HSLo Height of lower strut (from pod body edge)

θSFr Angle of lower strut front edge

θSRr Angle of lower strut rear edge

Rs Radius of fillet upper and lower strut join edge

105

Sheet 2: contains the foil section’s parameters (Table 0-4)

Table 0-4 Pod_dimensions.xls Sheet 2: foil section parameters

Sheet 3 : contains the fin’s parameters (Table 0-5)

Table 0-5 Pod_dimensions.xls Sheet 3: Fin parameters

F_LC Length of fin’s foil cross-section chord length

fin_max_thickness_prc Sections’ maximum thickness as percentage of the chord length

fin_max_th_prc_fromLE
offset of max thickness from the LE as percentage of the chord

length

fin_te_offset_prc thickness on TE as percentage of chord length

FH Height of fin, measured from edge of pod

FO Offset from pod body’s front edge

F_θFr Fin outline’s front angle

F_θRr Fin outline’s rear angle

fin_root_fillet Radius of fillet at the root of the fin

fin_angle In case of two fins, their angle relative to the XZ plane

D-2. The pod Assembly mesh excel file

The podded propulsor assembly mesh distribution file, ‘assembly_elements.xls’, is the same

as the propeller one, but with added parameters for the pod. The propeller parameters are

the same, so the user is referred to the description of the propeller mesh parameters file in

Appendix C.

Number of sheets: 7

Sheet 1: is the main data sheet that the user modifies.

The number of Elements segment contains the element number parameters and must always

contain integer numbers as values. The descriptions of each parameter appear next to the

parameter name. For the elements ratio segment, the distribution names can be seen in Fig.

0-28 . The ratios values can be any real number. The symmetry values can be either 0 (false:

the distribution is not symmetric) or 1 (true: the distribution is symmetric)

l_chord Chord length

max_thickness_prc maximum thickness as percentage of the chord length

max_th_prc_fromLE offset of max thickness from the LE as percentage of the chord length

te_offset_prc thickness on TE as percentage of chord length

106

Fig. 0-27 Pod mesh excel file parameter names

Number of Elements

Chordwise

Strut Chordwise Number of CW elements on strut per face

Pod Front Chordwise Total number of CW elements on pod front

Pod Rear Chordwise Number of CW elements on pod rear

Fin chordwise Number of CW elements on fin per face

Spanwise

Strut Spanwise Number of SW elements on Strut

Pod Spanwise (per side) Number of SW elements on pod per side

Fin spanwise Number of SW elements on fin

Sheets 2 -7 contain the data from sheet1, but organised for input in CATIA

Sheets 2-4: propeller data

Sheet 5: pod element numbers

Sheet 6: pod distribution ratios

Sheet 7: pod symmetry notations. The values assigned in Sheet 1 are turned into “false” or

“true” in order to be input in CATIA as Boolean parameters.

Table 0-6 Pod edges distributions naming convention (see also: Fig. 0-28)

Spanwise Distributions Chordwise Distributions

Name Explanation Name Explanation

SWSF Spanwise Strut Front CW1-3 Chordwise at the Mid, 1-3 from

strut top to pod bottom

SWSR Spanwise Strut Rear CW2-3F Chordwise top (2) and bottom (3)

edges on Front Hub

SWH1-4 Spanwise Hub Edges (1 to 4 from

front to rear

CW2-3R Chordwise top (2) and bottom (3)

edges on Rear Hub

107

Fig. 0-28 Pod mesh distribution naming convention (see also: Table 0-6)

Fig. 0-29 Pod main parameters

Appendix E. Example of design table

creation: a propeller section

The design table feature is a very important part of the proposed method, for the creation

and modification both of the geometry and of the meshes. For this reason, the step-by-step

creation of a propeller section, from the excel file, to the design table creation, to the

association and update is presented. The reader can expand on this example and apply a

similar procedure to every model where external modification of parameters would be

preferred (as opposed to in-model parameter modification). Additional examples can be found

in CATIA User’s Manual.

E-1. Design table file creation

The creation of a design table in a CATIA requires the creation of an external file that

communicates the table data to CATIA. This external file is either a Microsoft Excel® .xls

file, or a .txt file. In the current thesis, all the design tables are saved in the Excel file format

and in some cases a single excel file provides data to multiple design tables. This will be

explained below.

The design table Excel file must contain the following data:

Parameter name (optional: including units)

Parameter value

The table orientation can be either vertical or horizontal and the names should be unique for

each parameter.

In case of a single Excel file containing multiple design tables, a good practice would be to

assign different (exclusive) sheets to each table. However, the sheet order should never be

changed. It is also recommended that the Excel file be stored in the same folder as the CATIA

document(s).

For this example, the file used is “Wageningen.xls” ; its description can be found in Appendix

C. The creation of section on the 0.2R plane is described. For this, the data used are the spline

point offsets, the chord length and the distance of the generator line from the TE. The offsets

parallel to the chord (X offsets) are measured from the section’s trailing edge. The Y offsets

are measured from the chord line. The design table data are contained in Sheet 3.

 The creation of the section is part of the propeller blade wireframe creation and some of the

previous steps in wireframe creation are assumed (as described in Appendix A).

110

E-2. Step-by-step creation of section with associations

1. Create Excel file containing required parameters and save

2. In CATIA, create the section sketch as follows:

i. Enter sketcher

ii. Draw line [chord] – impose length constraint and turn into construction

element

iii. Draw lines perpendicular to chord, passing through chord’s LE and TE points

[LE perpendicular, TE perpendicular], turn into construction elements.

iv. Create two splines, each with 20 control points

v. Spline LE points: impose coincidence constraint with LE perpendicular, offset

constraint from chord

vi. Spline TE points: impose coincidence constraint with TE perpendicular, offset

constraint from chord

vii. Impose offset constraints on rest of spline points

viii. Impose offset constraint: GL intersection point from TE perpendicular

ix. Impose angle constraint between chord and H-direction

x. Exit sketcher

Notes: (vi) For quicker constraint definition, the auto-constraint tool is

recommended. Since the selection order of the points is important when using it, a

tip to make creating the associations easier is selecting the points in such a way

that reflects the order in which the parameters appear in the Excel file. In our

case, the points were selected in order, from TE to LE (the LE and TE points

where left out, since they are constrained in previous steps). The chord and TE

perpendicular where set as reference elements and the constraint mode was

selected to be stacked. The offsets created appear in the specification tree in the

same order as selected, with the X offset of each point followed by the y offset,

followed by the X offset of the next point and so on. This order is reflected in the

excel file

3. Create Design table and associations for the section offsets:

i. Select Design Table creation from the Knowledge toolbar. In the window that

pops up, input table name, select “Create a design table from pre-existing

file”, select orientation and input sheet index and press ok

ii. In automatic association, select no. The table is created

111

iii. Go to the associations tab. On the specifications tree select the sketch. The

constraints contained in the sketch are shown.

iv. Associate each offset in the parameters box with the corresponding design

table parameter in the columns box by selecting them and clicking the

Associate button

v. Select OK and exit

vi. Update model and check for errors

Notes: (i)For the 0.2RSection offsets, sheet index=3, horizontal orientation

(ii) selecting yes or no does not influence the outcome in the current case, since there

are no parameters with a similar name

(iii) Using the filter is optional, but facilitates the procedure

(iv) The selected offset from the parameters box turns orange so that the user can

see which constraint is currently selected.

4. Create Design table and parameters for the pitch length:

i. Create design table as in steps 3.i – 3.ii

ii. Click the Create Parameters button

iii. Select the desired parameters and click ok

iv. Click OK to exit design table definition. The created parameters appear in

the specification tree

Notes: (i) sheet index = 12, orientation horizontal for the Wageningen file

(ii) In the created propeller model, a sketch with the pitch distribution as a spline is

created, where the spline points offset from the V-axis at each radius is the

corresponding pitch length. However, in this example the pitch lengths are saved in

parameters in order to showcase this capability

(iii) The pitch length parameters type should be either real or length.

5. Set pitch angle:

i. Enter the section sketch

ii. Double-click the angle constraint -> right-click the value box -> edit formula

iii. Write the pitch angle formula, clicking the corresponding parameters where

required.

Notes: (ii) this is one common way to bring up the formula editor for a constraint.

Formulas can always be edited

(iii) It is assumed that the propeller main parameters, including the propeller

diameter D have been imported in a design table as well.

The formula for the current example is: atan(`pitch_r0.2` /(2*PI *0.2*0.5*`D`)),

where `pitch_r0.2`: the parameter containing the pitch for the 0.2 section

`D` : The parameter containing the propeller diameter.

112

Fig. 0-30 Top: The section's back spline before being constrained

Middle: during the associations creation, the sketch needs to be selected to show the constraints

Bottom: The same spline after being constrained and associations are created

113

Appendix F. Step- by-step creation and

export of meshes
The mesher can be found in the Advanced Meshing Tools of the Analysis and Simulation

product. The mesh data is saved in a CATIA analysis file (.CATAnalysis)

Meshing with the current method consists of the following general phases:

A. Creation of surfaces to be meshed from model

B. Creation of design table containing mesh distributions

C. Creation of the meshes based on split surfaces

D. Export of the meshes/patches that compose a single body into a bulk data file

E. Run mesh file through the interface program to produce body input file

F. Check patches orientation with Tecplot

G. Run through UBEM

H. Final check of surface vectors with Tecplot

Step A is the model creation phase as described in the respective chapters.

Steps B and C are one-off and saved in the analysis file. For use of existing documents, they

are by-passed

Steps D-E are required every time a mesh needs to be exported

The rest of the steps can be bypassed if there already is an exported mesh from the existing

model and the new meshes are created by a simple update of the geometry or the mesh

distribution, since the mesh orientation remains the same. In case a surface needs to be

remeshed (for example due to an update error) or a new mesh be created, a check should be

made in Tecplot as in step F.

F-1. Step-by-step mesh export for use in UBEM

The following step-by-step description deals with the general steps B-H

1. Create a new Analysis file from the product

2. Create the design table and import it in the Analysis file

3. Create parameters from the imported design table

4. Create mesh on supporting surface:

i. Select surface mesher from the meshing methods toolbar

ii. Select supporting surface

iii. In the global meshing parameters, mesh tab set the following:

Shape: Frontal quadrangle method

Type: Linear

Mesh size: As required (here, 0.02m)

Quads only Selected

114

Automatic mesh capture unselected

In the geometry tab, set constraint sag the same as mesh size

iv. Click OK to enter the surface mesh workbench.

v. Select Element distribution from the 1D mesh specification toolbar

vi. Define nodes distribution on edge as follows:

Support Select edge

Type Geometric or Arithmetic

Number of edges Edit formula-> set corresponding parameter

Size 2/Size1 Edit formula -> set corresponding parameter

Click OK to accept nodes distribution (appears as green dots on the edge)

vii. Define nodes on the other surface edges

viii. Select mapped method from the 2D Mesh Specifications toolbar and then

click on the surface

ix. Specify required parameters.

i. Split quadrangles must remain unselected

ii. Mesh domain corners can be seen on the model, denoted as C1, C2, C3

and C4. In case they need to be moved, it can be done by clicking first

on the domain corner and then on the surface vertex it will be moved

to.

iii. Select OK to mesh the surface

x. Exit the sketcher

5. Create meshes on the rest of the surfaces

6. Export mesh as follows

i. In the specification tree, deactivate every mesh that will not be exported

ii. Click Export Mesh from the Import/Export toolbar

iii. Save as bulk data file (.dat) with a filename meshxx.dat, where xx=00 to 99

7. Run mesh through the interface program

i. Create interface program’s input, specifying the following:

Line2: Bulk data mesh file name

Line 4: number of meshes that the body consists of

Line 6: total number of chordwise and spanwise elements the body consists of

Line 8:type of surface (1: face-back surface, 2: modified face-back)

Line 10: print direction (1: chordwise, 0: spanwise)

Line 12: output filename

Line 15, 17,…(depending to number of surfaces): orientation markers and

To set the orientation markers, either check element order in CATIA mesher,

or assign arbitrary values, run and open with tecplot, modifying as in step 8.

In case the same geometry has been run through the interface programme

before, the same markers can be used

Execute program

8. Open output file with Tecplot.

Plot type: 3D Cartesian

Switch on the mesh and contour layer

115

The mesh should appear as created in CATIA.

Check the i and j contours: In a face-back surface, i contours should go from the Face

LE to the TE and then from the Back LE to the TE; j contours should go from bottom

to top. (Fig. 0-31, Fig. 0-32)

In a modified face-back surface, i contours should go from the center seam to one side

and then from the center seam to the other side; j contours should go from front to

rear. (Fig. 0-33)

If the surface appears twisted, or the contours are wrong, modify the orientation

markers in the interface program’s input file and re-run. Repeat until the mesh

surface is correct

9. Repeat steps 6-8 for every body that will be input in UBEM

10. Finally, when the vector file is created in UBEM, open with Tecplot to check vector

orientation. The calculated normal vectors should point outwards. In case of a body’s

vectors pointing inwards, re-arrange the corresponding meshes in the CATIA

specification tree, export and run body meshes through the interface program.

Fig. 0-31 i contours on face-back surface type mesh (propeller blade – left: Face side, right: Back side)

116

`

Fig. 0-32 j contours on face-back surface type mesh (propeller blade –Back side)

Fig. 0-33 Contours on a modified face-back type surface: left: i contours, right: j contours

117

Appendix G. The source code of the

interface program

 program Mesh_translator

 implicit none

 ! Variables
 character:: cchar*2, filename*10, outfile*17
 integer:: ccount, cindex, gcount, gindex, aa, bb, ii, jj, kk, ll, nn,
srfcn, ndif, ncw, nsw, temp, prntdirection, cc,ss, tp
 integer:: idif, tabind, nodn, nodind, sindex, iscircular, ispatches,
stepcw, stepsw, ni, nj, startcw, endcw,startsw, endsw
 integer, allocatable:: element(:), srfc(:), srfci(:,:), na(:), nb(:),
nc(:), nd(:), node(:), srfcinfo(:,:), indexi(:,:), indexj(:,:), stepi(:),
stepj(:)
 logical:: encc, encg, facechange
 real, allocatable:: xn(:), yn(:), zn(:), x(:,:), y(:,:), z(:,:), xa(:,:),
ya(:,:), za(:,:), ncoord(:,:),te(:,:)
 real:: difference

 ! Body of Mesh_translator

 open (unit=40, file='input.dat')

 1 FORMAT(8x,i16,16x,f16.9,f16.9,8x,/,8x,f16.9) !Formatting for
reading GRIDS
 2 FORMAT(8x,i8,i8,i8,i8,i8,i8) !Formatting for
reading CQUADS
 3 FORMAT('node=', i6,f16.9,f16.9,f16.9)
 5 FORMAT(a2)
 18 FORMAT (a17)
 6 FORMAT('element=',i8,i8,i8,i8,i8,i8)

 read(40,*)
 read(40,*) filename
 read(40,*)
 read(40,*) srfcn !number of surfaces
 read(40,*)
 read(40,*) ncw, nsw
 read(40,*)
 read(40,*) tp
 read(40,*)
 read(40,*) prntdirection
 read(40,*)

118

 read(40,18) outfile

 OPEN (unit=20, file=outfile)

 read(40,*)
 allocate (srfcinfo(srfcn,5), srfci(srfcn,2)) !srfci will contain indexes
for the start and end of each srf in the node matrix

 do ll=1,srfcn
 read (40,*)
 read (40,*) (srfcinfo(ll,ii),ii=1,5) !1-3 is srfc orientation, 4
is cw elements, 5 is sw elements
 end do

 !CATIA meshes must be created so that each patch doesn't share nodes
with the adjacent one (no condensation)
 !ncw=ncw+srfcn !final number of nodes is ncw+1, though. This is
just the number of nodes in the file
 !CAUTION the above is true only for patches that
share a spanwise connection

 open (unit=10, file=filename)

 !1st Readthrough -
 !---------DATA LOCATION IN INPUT FILE

 !The logical variables are used to locate the start of each data group
inside the input file
 !grid or cquad. When the first set of data of each group hasn't been
encountered yet, value is 'false'
 !On encounter, they toggle to 'true'

 encg=.false.
 encc=.false.

 gcount=0
 ccount=0
 ii=0
 sindex=0

 do
 ii=ii+1
 read(10,5) cchar
 if (cchar.EQ.'EN') then
 exit
 end if
 if (cchar.eq.'GR'.OR.cchar.eq.'* ') then
 if (encg==.false.) then
 encg=.true.

119

 gindex=ii
 end if
 gcount=gcount+1 !each node requires 2 lines of data in
the input mesh file, so total number of nodes equals half number of counted
lines
 end if
 if (cchar.eq.'CQ') then !elements denoted with CQUAD4 in mesh
file
 if (encc==.false.) then
 encc=.true.
 cindex=ii
 end if
 ccount=ccount+1 !counts elements
 end if
 end do

 nodn=(ncw+srfcn)*(nsw+1)

 if (tp.eq.2) then
 nodn=(nsw+2)*(ncw+srfcn/2) !the surfaces are added in the chordwise
direction and they have a "LE" that runs in the chordwise direction
 end if

 if (nodn.NE.(gcount/2)) then
 write (*,*) 'error, check input file element distribution'
 write(*,*) nodn, 'inputfile <> meshfile', gcount/2
 pause
 end if

 nodn=gcount/2 !number of nodes counted in input mesh file

 allocate (node(nodn), xn(nodn), yn(nodn), zn(nodn))
 allocate (element(ccount), srfc(ccount), na(ccount), nb(ccount),
nc(ccount), nd(ccount))

 rewind (10)

 ii=1
 do while (ii<gindex)
 read(10,*)
 ii=ii+1
 end do
 kk=0
 do while (ii>=gindex.and.ii<=(gindex-1+gcount/2))
 kk=kk+1
 read(10,1) node(kk), xn(kk), yn(kk), zn(kk)
 ii=ii+1
 end do
 cindex=cindex-nodn
 do while (ii<(cindex))

120

 read(10,*)
 ii=ii+1
 end do

 kk=0
 nn=1
 srfci(1,1)=1

 do while (ii>=cindex.and.ii<=cindex+ccount-1)
 read(10,5) cchar
 if (cchar.eq.'CQ') then !reading the first 2 characters for each line
(record)
 backspace (10) !and then needs to get to the beginning of the
line to read it with formatting
 kk=kk+1
 read(10,2) element(kk), srfc(kk), na(kk), nb(kk), nc(kk), nd(kk)
 if (srfc(kk)>nn) then !indexing the starting and ending element
of each surface
 srfci(nn,2)=kk-1
 nn=nn+1
 srfci(nn,1)=kk
 end if
 ii=ii+1
 end if
 end do
 srfci(srfcn,2)=kk

 !------------END OF DATA LOCATION

 !--

 !------------MESH CREATION

 !each element is defined by 4 nodes: na, nb, nc, nd, presented in this
order in the input file
 !The mesh is created by ordered elements, so I'm using the elements to
create the ordered mesh
 !assuming the i direction as a 'row' and the j direction as a 'column',
I'm using the na node to fill in the mesh
 !at the end of each 'row', I'm also using the nb node.
 !to fill in the final row of nodes, I'm using the nc nodes of the last
element on each 'column'
 !the last node (on the corner) is node nd of the last element of the mesh

 ncw=ncw+1 !final number of nodes is number of elements+1 per
direction
 nsw=nsw+1
 facechange=.false.

121

 if (tp.eq.1) then
 ncw=ncw+1 !TE nodes are double for each part face-back
 allocate (te(nsw,3))

 else if(tp.eq.2) then

 nsw=nsw+1 !TE nodes are double for each part face-back
ncw
 !nsw=(nsw+1)/2 !each surface is half the total nsw, so we have
nsw/2+1 per surface. Total nsw=nsw+2, already have +1 in previous line

 end if

 nn=ncw*nsw

 allocate (x(nn,nn),y(nn,nn),z(nn,nn))
 x=0
 y=0
 z=0

 cc=1 !cc, ss are indexes for final array (cc chorwise, ss spanwise)
 ss=1
 nn=0

 do ll=1,srfcn !this loop creates the coordinates array for each surface
 nn=(srfcinfo(ll,4)+2)*(srfcinfo(ll,5)+2)

 allocate(xa(nn,nn),ya(nn,nn),za(nn,nn))
 xa=0
 ya=0
 za=0

 ii=1
 jj=1

 !The surface consists of smaller sub-surfaces(faces) that each gets its
own mesh. In order to create the final mesh, I read the mesh part for each
sub-surface
 !and then I add it in the final array by removing the common nodes

 !start of sub-surface reading - array creation
 do kk=srfci(ll,1),srfci(ll,2)
 xa(ii,jj)=xn(na(kk)) !the array is filled primarily by the na
nodes of each element
 ya(ii,jj)=yn(na(kk))
 za(ii,jj)=zn(na(kk))
 ii=ii+1 !the ii index is with the surface direction (ii=1,ncw+1
if surface has chorwise direction, else ii=1,nsw+1). Let's say ii defines
'columns' and jj 'rows'
 if (kk.LT.srfci(srfcn,2)) then

122

 if (nb(kk).NE.na(kk+1)) then !if nb(kk)=na(kk+1) then
elements kk, kk+1 are next to each other in the 'row', otherwise, element kk
is the last one in the 'row'
 xa(ii,jj)=xn(nb(kk))
 ya(ii,jj)=yn(nb(kk))
 za(ii,jj)=zn(nb(kk))
 !indexi(ll,2)=ii !should be either ncw-1 for a chorwise
distribution or nsw-1 for a spanwise distribution
 jj=jj+1 !change of 'row'
 ni=ii
 ii=1
 end if
 else !last element of the surface, there's no kk+1 so I need
this exception
 xa(ii,jj)=xn(nb(kk))
 ya(ii,jj)=yn(nb(kk))
 za(ii,jj)=zn(nb(kk))
 jj=jj+1 !change of 'row'
 end if
 end do
 ii=1
 !The following loop is to fill the last 'row' of nodes

 kk=srfci(ll,2)-(ni-2) !elements in 'row' are ni-1, nodes are ni
 do while (kk.LE.srfci(ll,2))

 xa(ii,jj)=xn(nd(kk))
 ya(ii,jj)=yn(nd(kk))
 za(ii,jj)=zn(nd(kk))
 kk=kk+1
 ii=ii+1
 end do

 !this is to add the last node in the corner (nc of the last element
of the surface)
 kk=srfci(ll,2)
 xa(ii,jj)=xn(nc(kk))
 ya(ii,jj)=yn(nc(kk))
 za(ii,jj)=zn(nc(kk))
 ni=ii !number of nodes in the i direction (number of 'columns')
 nj=jj !number of nodes in the j direction (number of 'rows')
 !end of sub-surface array

 if (tp.eq.2) then
 if (ll.eq.(srfcn/2+1).and.facechange.eq..false.) then
 facechange=.true.
 cc=1
 end if

123

 end if

 !Adding the sub-surface array to the final array
 startcw=1
 stepcw=1
 startsw=1
 stepsw=1

 if (srfcinfo(ll,3).EQ.0) then
 endcw=ni !the chordwise direction is i (I have ni columns)
 endsw=nj !the spanwise direction is j
 else
 endcw=nj !the chorwise direction is j
 endsw=ni !spanwise direction is i

 end if

 if (srfcinfo(ll,1).EQ.1) then !sub-array is created with the
direction of added sub-arrays
 stepcw=-1
 temp=startcw
 startcw=endcw
 endcw=temp
 end if

 if (srfcinfo(ll,2).EQ.1) then !sub array is created from top-to-
bottom
 stepsw=-1
 temp=startsw
 startsw=endsw
 endsw=temp
 end if

 if (ll.LT.srfcn) then !removes one set of common nodes between
adjacent patches --- CAUTION! this is true only if common edge is spanwise!

 endcw=endcw-stepcw

 end if

 if (tp.eq.1.or.tp.eq.2) then !type 1 (face-back surfaces) don't have
a common edge on TE, so I need to preserve this)
 if (ll.eq.srfcn/2) then
 endcw=endcw+stepcw
 ! ncw=ncw+1
 end if
 end if

 if (srfcinfo(ll,3).EQ.0) then
 if (tp.eq.2.and.ll.gt.srfcn/2) then

124

 ss=nsw/2+1
 end if

 do ii=startcw,endcw,stepcw
 do jj=startsw,endsw,stepsw
 x(cc,ss)=xa(ii,jj)
 y(cc,ss)=ya(ii,jj)
 z(cc,ss)=za(ii,jj)

 ss=ss+1
 end do
 ss=1
 cc=cc+1
 if (tp.eq.2.and.ll.gt.srfcn/2) then
 ss=nsw/2+1
 end if

 end do
 else
 if (tp.eq.2.and.ll.gt.srfcn/2) then
 ss=nsw/2+1
 end if
 do jj=startcw,endcw,stepcw
 do ii=startsw,endsw,stepsw
 x(cc,ss)=xa(ii,jj)
 y(cc,ss)=ya(ii,jj)
 z(cc,ss)=za(ii,jj)

 ss=ss+1
 end do
 temp=ss
 ss=1
 if (tp.eq.2.and.ll.gt.srfcn/2) then
 ss=nsw/2+1
 end if

 cc=cc+1

 end do

 end if

 deallocate (xa,ya,za)
 end do

 !Tecplot output -------------------------------------
 !Header ---

 write(20,4) filename

125

 4 FORMAT('TITLE = ',a6)
 write(20,7)
 7 FORMAT('VARIABLES = "x", "y", "z", "i","j" ')
 9 FORMAT(' ZONE T=" ISO theta ", I=',i5,', J=',i5,', F=POINT ')
 11 FORMAT('nodes CW=', i5,', SW= ',i5)
 8 FORMAT(3(1x,f16.9),i5,i5)

 if (prntdirection.eq.0) then !spanwise distribution (span nodes
printed first)
 write(20,9) nsw, ncw

 do jj=1,nsw
 do ii=1,ncw
 write(20,8) x(ii,jj), y(ii,jj), z(ii,jj), ii, jj
 end do
 end do

 else if(prntdirection.eq.1) then !chordwise distribution
(chord nodes printed first)
 write(20,9) nsw, ncw

 do ii=1,ncw
 do jj=1,nsw
 write(20,8) x(ii,jj), y(ii,jj), z(ii,jj), ii, jj

 end do

 end do
 else

 write(20,9) ncw, nsw

 do jj=1,nsw
 do ii=1,ncw
 write(20,8) x(ii,jj), y(ii,jj), z(ii,jj), jj, ii
 end do

 end do

 end if

 end program Mesh_translator

	Part I. Intro
	Part II. The UBEM program
	II-1 Formulation
	II-1.1 Geometry
	II-1.2 Velocity and potential representation theorems
	II-1.3 The integral equation
	II-1.4 Kutta condition
	II-1.5 Shear layer dynamics
	II-1.6 Calculation of forces, moments, power and efficiency

	II-2 Discretization and solution
	II-2.1 The GPP’s and MPP’s
	Input file generation
	Animating a given geometry.
	Rigid body motions

	II-3 Resulting mesh requirements

	Part III. CAD software review
	III-1 Rhinoceros 3D
	III-2 Autodesk Inventor
	III-3 Solidworks
	III-4 CATIA
	III-5 Siemens NX

	Part IV. The software CATIA
	IV-1 The workbench concept
	IV-2 Features
	IV-3 Solid modeling
	IV-3.1 Boundary representation
	IV-3.2 Parametric model

	IV-4 Design intent
	IV-5 Constraints
	IV-5.1 Using constraints

	IV-6 Associations
	IV-6.1 Managing Links
	IV-6.2 The Design Table
	Excel sheet format
	Design table creation
	Value update

	IV-7 Surface analysis

	Part V. Meshing in CATIA
	V-1 Global meshing parameters
	V-1.1 Mesh parameters
	Geometry parameters
	Constraint sag

	V-2 Meshing specifications
	V-2.1 Geometrical Specifications toolbar
	Hole suppression
	Edge Constrain
	Vertex Constrain
	External curves and points projection

	V-2.2 1D Mesh Specifications toolbar
	Elements Distribution
	Elements Capture
	Elements distribution around hole
	Distribution propagation

	V-2.3 2D Mesh Specifications toolbar
	Mapped Mesh Method
	Other meshing methods

	V-1 Exporting the mesh
	V-2 Mesh quality analysis

	Part VI. Reformatting the meshes for use in UBEM
	VI-1 CATIA’s exported format
	VI-1.1 Small field format
	VI-1.2 Large field format
	VI-1.3 The exported Data
	The Nodes
	The Elements

	VI-1.4 Matrix arrangement

	VI-2 The interface program
	VI-2.1 Types of surfaces
	VI-2.2 Orientation markers
	VI-2.3 Program

	Part VII. Application: A Wageningen B-Series Propeller
	VII-1 The propeller geometry
	VII-1.1 Reference lines
	VII-1.2 The hydrofoil Section
	VII-1.3 Helical line

	VII-2 Propeller Model in CATIA
	VII-2.1 Design Intent

	VII-3 Propeller Model creation overview
	VII-3.1 The Blade
	VII-3.1 The Hub
	VII-3.2 The Fillet
	VII-3.3 Preparation for meshing

	VII-4 B-series meshes and runs
	VII-4.1 Meshes
	VII-4.2 Runs

	Part VIII. Application: an Azimuthing propulsor
	VIII-1 The propulsor segments
	VIII-1.1 The propeller
	VIII-1.2 The strut
	VIII-1.3 The motor module (pod)

	VIII-2 Azimuthing propulsor model in CATIA
	VIII-2.1 Model Axes
	VIII-2.2 Design intent

	VIII-3 Model creation overview
	VIII-3.1 Strut
	Foil Section
	Wireframe
	Surface

	VIII-3.2 Pod

	VIII-4 The Assembly
	VIII-4.1 Assembly Definition
	VIII-4.2 The assembly materialized in CATIA
	VIII-4.3 The pod Assembly
	Components
	Propeller
	Pod

	Constraints
	Geometrical constraints
	External parameters

	VIII-5 Meshing
	VIII-5.1 Meshing the Assembly

	VIII-6 Podded propulsor meshes and runs

	Part IX. Application: SMP Workshop Propeller
	IX-1.1 Data provided
	IX-1.2 Blade
	IX-1.3 Fillet
	IX-1.4 Hub
	IX-1.5 Created Surface
	IX-2 SMP propeller meshes and runs

	Part X. Conclusions & Future Work
	Part XI. Bibliography
	Aknowledgements
	Appendix 0: Introductory Information
	Appendix A. Step-by-step creation of the B-series model
	A-1. Blade
	A-1.1. Blade Wireframe
	Reference Lines
	2D sections
	Helixes
	3D sections
	Outlines

	A-1.2. Blade surface
	Face and Back surface
	Leading Edge Fillet

	A-2. The hub
	A-3. Root Fillet
	Spines
	Fillet

	A-4. The hub caps
	A-5. Preparing surfaces for meshing
	A-5.1. Blade Surface
	A-5.2. Fillet and Hub
	Filet split
	Hub mid
	Front and Rear Hub

	Appendix B. Step-by-step creation of the podded propulsor model
	B-1. Strut
	B-1.1. Strut Wireframe
	B-1.2. Strut Surface

	B-2. Pod
	B-2.1. Pod Wireframe
	B-2.2. Pod Surface
	B-2.3. Pod and Strut Joined
	B-2.4. Pod with Fin

	B-3. Meshing preparation

	Appendix C. The B-Series model excel files
	C-1. The model parameters file
	C-2. The mesh distributions file

	Appendix D. The podded propulsor excel files
	D-1. The pod part model parameters file
	D-2. The pod Assembly mesh excel file

	Appendix E. Example of design table creation: a propeller section
	E-1. Design table file creation
	E-2. Step-by-step creation of section with associations

	Appendix F. Step- by-step creation and export of meshes
	F-1. Step-by-step mesh export for use in UBEM

	Appendix G. The source code of the interface program

