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Mepiinyn

«vopilovpe meprocdTEP Y00 TV KIVIION TOV OVPAVIOV COUATOV O’ OTL Y10, TO 600G KATM
amd o O LOC...» 1oyvprloTav o Agovdapvto via Bivtol. Evetoyn mapatipnon mov ciyovpa pog
dtvel Tpo1| Yio oKEYN " TaL €5G.PN GTN PVOIKT TOLG KATAGTOGT GUYKATUAEYOVTOL AAAMGTE OVAUECH
ota o «afEPatoy LAIKA. AvoToy®dc, 1 EALENYT O100ECIUOV OEOUEVMV GYETIKA LE TIG 1O10TNTEG
TOVG MONGE TOVG UNYOVIKODS GTNV avalTNOT TPOTOV AVTILETOTIONG TG £V AOY® afefatdtntag.
Ag avoAoY1oTOVUE, Y100 TOPAOELY LA, TV EICOYWOYT TOV GUVIEAEGTMV OCPOAEING 1) EKTANKTIKY
VIOAOYLIGTIKN 10Y0G TV GUYYPOVOV TOPAAANA®V VTOAOYIGTOV (volEe evieA®S VEOLS opilovted,
EOIKADOC OGOV aPOPE TV EVEOUATMOOT TNG aefatdTNTOC TOV EGOPIKMV OI0TNTMOV OTIC APLOUNTIKES
avaAVoELS. MEypt onuepa, LEPIKES amd TIG TTLO JLUOEGOUEVEG LeBOOOVG EVTACCOVTOL GTN AEYOLEV
«owkoyévelny tov Mebodwv Ztoxactikdv Ilemepacuévaov Xtoyeimv, ot omoieg voouviol g
EMEKTOOT TNG TOPAOOGLOKNG T KVTETEPUIVIOTIKNG»Y MeBddov twv [lenepacuévaov Ztoyeimv.

H ovykekpyévn Awatpify aoyoAeitor ewdikd pe v aflomoinon TV  ZTOYOCTIKOV
[Temepaocuévaov Ztoyeimv yio ™MV TPOCOUOIMOT YEMTEXVIKOV TPOPANUATOV UE GTOYOOTIKES
€00PIKEG 1O1OTNTEG, OOV 1 YOPIKN OOKVUAVOT] TOV WOOTATOV TOV LAMKOD, OT®G TO WETPO
eloTIKOTNTAG 1 M OlamepatOTNTO, AouPdvetar vadyn HEC® NG YPNONG OUOYEVAOV TLYOIMV
nedimv.

Y10 MPOTO MEPOG, ekTifevtar ol oToyElddel; OewpnTtikég Pdoelc’ yio 10 okomd owTo,
napovotdlovtor n Poacikny Bewpic cuvorwv kol mOovotHTeV, pali pe ekelvn TOV TVYXOIOV
dwdkacwwv kot mediwv. Emmiéov, emefnyovvror ot Poocikéc mapoailoyés twv Mebodwv
Yroyaotikwv Ilemepacuévov Ztoyeimv, axolovbovueveg amd pion oOVIOUN E€l00y®YN OTIG
YVOOTEG KOl G ZVVOPTNOELG AlokOOVoT G ATOKPIONG MG EVOAAAKTIKY 0SIOTIOTN TEXVIKT Y10, TNV
T0G0TIKOToiNo™ NG afefardtnTog g £€eTalOUEVNC «OTOKPLONCY.

To debtepO PEPOG GLYKPOTEITAL OO HEUOVOUEVES oplOUNTIKEG «UeAETEGH NG peBodoroyiag
Yroxaotikwv Ilemepacpévov Xtoyeiov pe Eupacn o€ TPOPANUATO YEOTEXVIKNG (VOTG.
2UYKEKPIUEVA, Ol TPAOTEG EQPapUoYES e&eTalovy v kobilnon evog Bepehiov 6 GTEPEOTOMGIUO
€00PIKO GTPMULOL UE GTOYUOTIKO HETPO EANCTIKOTNTOG Kol SLOTEPATOTNTA. LT OEVTEPT EPUPLLOYN,
70 TPOPANUA S1G00MG SATUNTIKOD KOUATOS GE €00PIKO GTPOUO LE YOPIKE UETOPANTO HETPO
dtatunong amotedel To KOPLO avTikeipevo Epevuvag. Avtd axpiPag emlvetal pe ™ pebodoroyia
tov  Avvopkov  Xovoptioeov  AwkOpovons  AmOKpong  (PNOLOTOIOVING TNV Taxeio
npoocopoiwon Monte Carlo, evd 1 6An aéomotio g pebddov eréyyxetor kot maAl pEC®
TOPEUPEPDV ATOTELEGUATOV TOV EYOVV TPOKVYEL amd Tpocpolmacels torov Monte Carlo. Télog,
0 TPOPANUa. TG otepeomoinong emaveletdletoan ot Pdon TV AvvapiKOV ZuvapTicE®V
Awxopavons Andkpiong, pe okomd va amoderytel 0 SLVOUIKO TG &V AOY® EVOAAOKTIKNG
pebodoroyiag.

Ev oAiyoig, kaf’ O6An v éktacm tng mapovcag epyaciog, kotofdiietor mpoomdOelo va
avadelytel To TANPEG duvapko TG MeBodov Zroyaotikmv Ilemepacuévov Etotyeiov yuo ™)
SlEPEHVIOT YEMTEYVIKOV TPOPANUAT®VY, KATL TOL UEAAEL VO ATOdELYTEL EPYOAELD OVEKTIUNTNG
a&lag yio v mocotikonoinon g apefatdotnrog kot v aloAdynon Kivddivev oTa XEPLL TOV
CUYYXPOVOV UNYaVIKOV. AG un Anopovovpe to amdebeypo mov o Opdtiog Mavy, Aupepikavog



avOpomoTig Ko KaTteEoyNV UETAPPLOUOTIS TOL OUEPIKAVIKOD EKTOLOEVTIKOD GLGTHLOTOG,
éypape to 1855 otig «Alarééeig mepil Exmadevoewey (Stareén 1): «Kdbe mpochnkn otnv ainbivi
yvoon eitvan TpocOnkn oty avOpdmivn dovauny.

AéEerc-khe1o1d.:

Edagikn otepeonoinon — uéBodog 6ToyacTIK®V TENEPACUEVOV oTOLYEIWV — KaBilnon Oeperiov —
npocopoinon Monte Carlo — diddoon SoTunTikod KOUATOG — YOPIKT SOKVUOVET 110THTOV
€00LPIKOL LAKOV — opotoyevn tuyaia media — apefardotnta amdkpiong — apefotdtnra £30PIKOV
TOPAPETP®V — OVVOUIKEG GUVOPTNOELS OLKVDLLOVGTG ATOKPLONG.
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Abstract

"We know more about the movement of celestial bodies than we know about the
soil underfoot" claimed once Leonardo da Vinci; a clever quotation that certainly
gives us food for thought. Soils in their natural state are by far among the most
variable materials. Unfortunately, lack of available data on their properties has led
engineers to seek new ways of dealing with this uncertainty. Let us consider, for
example, the adoption of safety factors; the astounding computing power of today’s
parallel computers has opened completely new paths for engineers, especially on how
to incorporate uncertain soil parameters directly in their numerical analyses. Up to
now, some of the most widely used methods lay under the umbrella of stochastic
finite element methods (SFEM), consisting of the alternative extension of the classical
deterministic finite element method (FEM).

This thesis, in particular, deals with the application of SFEM for the simulation of
geotechnical problems with uncertain soil parameters, while the spatial variability of
material properties such as elasticity or permeability is taken into account via the use
of homogeneous random fields.

In the first part, essential theoretical concepts are established; to this purpose, basic
set and probability theory, together with random processes and fields, are analyzed.
Furthermore, the basic variants of SFEM are discussed, followed by a brief introduction
to variability response functions (VRF) as an alternative, trustworthy technique for
quantifying response uncertainty:.

The second part consists of numerical case studies of the SFEM methodology with
a special regard to problems of a clearly geotechnical nature. Specifically, the first
application consists of the settlement of a footing resting on a consolidating soil layer
with stochastic Young’s modulus and permeability. In the second application, the
problem of shear wave propagation in a soil layer with spatially variable shear-modulus
is studied; this is tackled with the DVRF methodology using the fast Monte Carlo
simulation (FMCS), whereas again the accuracy of the FMCS is compared with the

results obtained via the MCS. Next, the footing problem is revisited on the basis of



dynamic variability response functions (DVRF), in order to prove the potential of this
alternative methodology.

To conclude, throughout the present work, the potential of SFEM is fully demon-
strated, something which will definitely prove to be of immense value for uncertainty
quantification and risk assessment in the hands of modern engineers. After all, we must
never forget what Horace Mann wrote in 1855: "Every addition to true knowledge is

an addition to human power" (Lectures on Education, Lecture 1).

Keywords: geotechnical, soil consolidation, stochastic finite element method, Monte
Carlo simulation, shear wave propagation, footing settlement, variability response
functions, response uncertainty, homogeneous random fields, uncertain soil parameters,

spatial variability of soil properties.



Extevrg llepiAndm

0.1 Ewaywyn

To €ddpn otn QUOWT TOUG XATACTACT] CUYXUTAAEYOVTAL OVHUECH 0T THO UETUBANTY
VA, EVG 1) Yweixy| BlaxOpover) ot ofeBatdTnTo Twv WITHTLY Toug eivon TapoloES o-
XOUT XU O €BUPIXE GTEMUATO TOU VEWEOVVTAL OUOYEVH OTIC YEWTEYVIXES EQUPUOYES.
H é\eupn wot600 emopucv Ge00UEVLY TOU AMATOUVTOL YL TNV EXTIUNCT TV EBAUPXOY
TOUEUUETEWY OGOV apoEd YEWTEY VXA TEoBAAUATH 00AYNoE oTNY LOVETNOT) VIETEPULVL-
OTIXWY PEVOOWY avdhuong, PactlOuevey 6 GUVTEAECTEC ao@aleiog (OOTE Vo AauBdveTon
umodn N oPBeBandTNTA Mo BLOXOUAVET] TV EBAUPIXGY WIoTHTWY. Elvor yeyovée mwe n u-
TOAOYIO T Loy UC TTOU TOREYOUV 0L GUYYPOVOL TOAUTUETVOL ETECERY UG TEC OVOLYEL VEOUQ
OPOUOUS OTNY EVOWUATKON NG aBefoundtnrog ot TEOBAUUTH UnyavixoU. Xe ouTy| Ty
xatelYLUVoT), OAO %o ALEAVOUEVO TOCOCTO EQEUVIC EIVAL APIEPWUEVO OTNY ETALCT GTO-
YACTIXWY TROBANUATWY UE GTOYO TNV TOCOTIXOTOMNOY TWV CUVETELWY TNE ofeBardTnTog
TOGO TOV WLOTHTOY UAXOV Xl YEOUETEIOS, 6G0 X0t PORTICNE XAl GUVORLUXMY GUVINXEMY.

[Swodtepar Tor TeEAeuTadaL YEOVLAL, 1) ETLEEOT| TNG EYYEVOUS EBUPIXTC DLOXOUAVOTNC OF YEW-
TeEYVIXS TEoPBAAuATY EYEL TpocEAXDOEL Dletvig To eVOLapEpoy. Meydhog mpdrypott aprd-
MO EQELVITWY EYEL UEAETHOEL TNV ETEEOT TNG YWELXNG BLAXVUAVOTS DLUPORmY EBAPXEY
WBOTATWY OTWE TO UETPO EAACTIXOTNTAS, 1) YVio TEUSHC XAl 1) OLATERAUTOTNTO OE OYETINES
eqpopuoyés. Meréteg pépoucag avotnrag Vepehinwy (Al-Bittar and Soubra, 2013; Cho
and Park, 2010; Griffiths et al., 2002, 2006; Simoes et al., 2014) xon xad{{nonec (Fenton
and Griffiths, 2005; Maheshwari and Kumar, 2011; Paice et al., 1996), euotdietoc npo-
vov (Griffiths and Fenton, 2004; Griffiths et al., 2009), xodoe xon dufdnone  (Griffiths
and Fenton, 1997), aroteholv MEQLXEC UOVO YOROUXTNEIO TIXES TEPITTWOELS. Emnicov,
TO QaVOUEVO TNG GTEpEoTOiNoTG LTS TdavoTixr) oxomid €xel pehetndel amd didpopoug
epevvntéc. Xta dpdpa (Badaoui et al., 2007; Houmadi et al., 2012), yu mopddety-
oL, 1) ETLEEON TNG BLOUUOVONG TNG OLITEQPATOTNTAS X0 TOU UETEOU EAACTIXOTNTAG OTNY
xatoopLE dtebuvor e€etdleTanl Yol TO TEOBANUA TN LOVODLAG TUTNG G TEQEOTOMOT.

Enione, oto dpdpo (Bong et al., 2014) OLEPEUVATAL 1) ETLEEOT| TNG YWEIXAC OLacduay-

Xx1



Extevig Ilepiindn

OMG TV CUVTEAECTOV GTEPEOTOINONG XaTd TNV 0pLLOVTIA Xal XAToXOELPT] BlebuVoT) 6TO
Bodud otepeonoinong tou popTlouevou eddypouc. 2to de dodpo (Huang et al., 2010) pe-
AETdTOL 1) ETULEEOT| TNG CUCYETIONG UETAC) TG OTOY UG TIXAC DLUMEPATOTNTAUS TOU €0BPOUC,
OANG X0 TOU GUVTEAEG TH) OYXOUETEIXY|C CUUTIEC TOTNTAC O GULEUYUEVOL LOVOOLAG TOTOL YOl
OLoLdo Tartor TEoPAfUTa GTEpEOTOMNONG. Auvoxd TEOBAAUUTA UE GTOYUO TIXEG EQUPIXES
TopauéTeoug €youy emmpdoieta dicpeuvniel ota dpdpa (Ho Lee et al., 2013; Johari and
Khodaparast, 2015; Johari and Momeni, 2015; Wang and Sett, 2016). Téloc, o
eXTEVAS XGAUPT TV THAVOTIXOY UEVODWY TEOCOUOIWONE GTY) YEWTEYVIXT) UNYovixY|, OU-
vodeudpeV omd TAHYOC TEaXTIXDY EQOpUOY®Y, Tapouatdleton oto olyypaupo (Fenton
and Griffiths, 2008).

H mo edpwotn utoloyiotixy| uedodog Yo T BIEEUVNOY TNG ETEEONG TNG Y WEIXHS
OLOOUAVOTS TWV WLOTATOY TOV UAIXMY OTNY OTOXELOY OLopOpemY TEOBANUATOVY €lvor 1
uéVod0c TV oToYAUoTIXMY TENEPUoUEVLY oToyelwy (MEIIY) (Stefanou, 2009). O de
TEELC THO ONUAVTIXES TapahAayEc auTAg ebvon: 1 pedodog dlatapaync, 1 Yedodog twv
(PUCUOTIXWDY GTOYUCTIXOV TETERUOUEVKDY aTolyelwy (MPEIIY) xau n yédodoc Monte
Carlo. H pédodog dratapayfic cuvioTatar amo to avémtuypa o€ oetpd Taylor tou cto-
YAOTIXOU UNTe®oL oTRupdTNTC, xaddS Xt ToU BlavOoUATOC ATOXELOTS TOU UTO HEAET
ovoThuatog. Xto mhaloo tng MOXIIY, to otoyaoTind untpwo oTBupdTNTIC TWV TE-
TEPAOUEVWY GTOLYElWY cuvicTaton amd To dlpotoua Uag VIETEQUIVIO TIXAG XAl aG O TO-
YOO TIXAC GUVICTOONG, 1) oTtola didetan péow tou avantiypatoc Karhunen-Loeve (K-L),
EVEK TO UNTEMO ATOXELONG EXPEACETAL (S AVATTUYUN ToAUwVUUeY Hermite. Xnueichveton
BeBalwe mwe oty avdhuotn TOAITAOXOY TEOBANUATOY, oL 800 avwTéRw TEYVIXEG UTOPEL
vo. efvar 500%0AA UAOTIOWOLUES, EVE TOAES PORES UTOOELXVIOVTAL X0l UTONOYIC TS Oa-
novneéc (Stavroulakis et al., 2014). I'V autolc toug Adyoug, 1 aneudeioc avdiuorn Monte
Carlo mapauével 1 LoV a€lomo T xot oAy, LOAOVOTL UTOAOYIC T o3y, uédodog
YLOL TNV OVTLHETOTLOT TETOWU l00UC TEOBANUAT®Y, EWBXE OE TEQITTOOEIC OTOU TUQUTY-
pElTOL UEYSEAT BLox VO TwY O0TOY Ao TIXWY Topauétewy (Stavroulakis et al., 2014).

‘Eva and 1o onuavtixotepa otddia tng mpocouoiwong Monte Carlo eivon 1 yéveon
OELYHATOCUVURTACEWY TV Tuyoiwy Tediwy (Vanmarcke, 2010) nou nepypdgouv Ue a-
xplBetar T YETABANTOTNTA TNG UTO UEAETH WOIOTNTAC. 1TV TEAYHATIXOTNTY, OLAPOPES
uédodol €youv mpotadel yioo TN YEVEST TV TopATdvVL Oeryuatocuvoptioewy. H uédo-
6o¢ poouatixrc avarapdotaong (Shinozuka and Deodatis, 1996), eivon plo ond tic mo
OLBEBOUEVES UeDOOOUS Yiar TN YEVEST, ololoyevay I'naouctavey tuyalny tediwy ot pla,
000 xan TEEG Ywewés dloTtdoele. Kdvovtag pdhiota yeron tne Yedodou gauouatixnig
UVATOPAOC TUONG X0l OTN CUVEYELRL EVOY PETAOYNUATIONS Ywelc puvAun (Grigoriu, 1995,

2002), Serypatoouvapthoels un-I'xoovotavody tediny eivar e0xoho Vo UTOAOYIGTODY.

xXxii



0.1 Ewcaywyn

2ITIC TEQLOCOTEPEG PEAETEG, TA YEWTEY VXA TEOBAAUATA ovaAbovToL Ue T1) UEY0d0 TkV
OTOYAC TGV TETEPACUEVLY G TOLYEIWY, EVOWUATOVOVTAS UE OIIPOPES TEYVIXES TN GTO-
Yo T WBOTNT Tou £0dpous. LuvAdwg, xdmota tapaihayt| Tne uedodov Monte Carlo
vtodeteiton Ye oxomd TNV Tocotixomoinom TN ABefoudTNTC TNE UTO UEAETT GTOYUC TIXNG
wotnrog. Ilépa duwe amd Tic omoteg mpoxTnéS BUOXOAEC TTOU ToEOUGIALEL 1) €V AOY W
uédodog Aoyw Tou LPNAOD UTOROYIGTIXOU XOGTOUG, TO UEYAAO TNG UELOVEXTNHO EYXELTOL
070 OTL 1) DoY) CUCYETIONG TWV UTO UEAETN IOLOTATWY OPelAel Vo Efval €X TV TEOTEPWY
YVWOTH, YEYOVOC TOAD omdvio otny Tedln. {2¢ ex TolTou, 1) Olepelivnon TNe evaicVn-
olag NG amodXELONE TOU HOVTEAOL WS TEOC Tol DLUPOPETLIXG YUQUXTNEIO XY CUCYETIONG
xhoTd T YEV0BO GYEDOV ATAYOREVTIXY Yol TNV ETIAUCT) PEAALC TIXWY TEOBANUETLY.

[ot TNV AVTLHETOTILOT QUTOY TV BUGKOLOY, 1) EVVOLX TWV CUVIPTHCENY OLUXOUAVOTNG
e amdxptone (EAA) napovoidotnxe oe pio oelpd and dpdpa (Bucher and Shinozuka,
1988; Kardara et al., 1989; Shinozuka, 1987). Tmeviupileton nwe n TAA elvon o
ouvdptnon Green mou cuoyetiCel TN BlXUUAVOT TNG ATOXELONG TOU CUGTAUNTOS UE TO
pdopo oy vog v aféBouwy tapauétewy (Arwade et al., 2016). Q¢ tétow, e€uptdTon a-
TO VIETEQUIVIO TIXES WOLOTNTEG OYETINES UE TN YEWUETPLA, TIC cLuVOopLUXES UVINXES o TIg
oLVITXES POETIONG, TN MEOT TUY| TWV IBLOTATWY TWY VALXMY, AAAG X0k TNV TUTIXT ATOXAL-
ON O ff TNG OTOYAOTXAG WOTNTAS TOU PEAETATOL. AQY XY, EXPEACTNXE OE XAELC T LOPYPN
YL LOOG TATIXOUE X0l UTIERPOC TUTLXOUS (POPEIC BOXMY X0 OIXTUMUATODY UTO VIETEQUIVIO TIXY)
(POPTIOT, EVE 0PYOTEQN ETMEXTAUNNUE Ko TNV EMEAUGT) TEOBANUATOY GTOY oG TIXS XEUPNS
mhoxdv (Graham and Deodatis, 1998). ‘Onwe avagépetar oto dpdpo (Papadopoulos
et al., 2005), ot TEPLooOTEPY TEOBAAUATY, 1) 0PECT WG AVOAUTIXAS OYEoNg Yol TN
LAA ebvor moAd d0oxohn, av oyt adlvatr. Tlop’ Gha autd, dOvaTon evalhoxTind Voo UTO-
hoyiotel aprdunTtind pe T Aeyouevn toyeta uédodo Monte Carlo, xdvovtag yerion tng
UeVOB0L TV TETERUOUEVKDY O TOYElWY OTwe enednyeitar aTo dpdpo (Papadopoulos et al.,
2005, 2006). Emniéov EQPUAPUOYES TNG ATOTEAODY 1) UEAETY WOLOTHTWY UAXOU YIo ETEQO-
vevh tuyada LAxd (Arwade et al., 2016), xaddc xou 0 €0pwoTOG BEhTIoTOC OYEDLAOUOSG
6mou hopPdvovton vnddn ol cToyaoTIXéS TopdueTeol Tou cucthuatoc (Kokkinos and
Papadopoulos, 2016). Oo mpénel acpaine vo onuetwdel tog 1 oy exdoyr| tne LAA
apopoloe oToyYaoTE oTatixd TpoAruata. H enéxtaon tng uedddou yio duvouxd ou-
oAUt Tou 08fyNoE ot duvauxh cuvdptnon Staxbuavone tne andxpeone (AXAA),
TOEOVCLAC TXE OYETXG Tpdapata 1o dpdpo (Papadopoulos and Kokkinos, 2012). Ilo-
edhhnha, amodetytnxe mwe 1 AXAA xou 1 avtioToryn duvouxs cuvdeTnon PEoNng TWAC
e amdxptone (AXMA) Sltneolv 10 TAeovEXTNUA TS UNTEIXNS LEVEB0U Yior Suvoixd

goptio. Tnv ave€aptnoio Toug dnhadh and To @doua oy o, emTeénovTog TNy eufdiuvon
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Extevig Ilepiindn

otnv evancUnoio TNg amdXELOTE BUVAULXGY CUC TNUATWY WS TEOS TIG OTOYUC TIXEC QUTOV

wi6tnte (Papadopoulos and Kokkinos, 2015).

0.2 Xxomdg tng oLatelBNig

H ¢@Uon tng epeuvnuiniic epyaoiug mou anartelto yio TNV ohoxAfpwoT TN Topolcus lo-
TN LThEEE BITTA 1), OTwe xavelg edoToya Yo Tapatneovot, To uéyetog auThg BUvVaTOL
v Vewpndel Bimhd oe 6yxo, epdoov nepthduPave: o) T Biepedvnom, alOAOYNOT) X0 ET0-
AUELOT VEOY UTOAOYIO TGV PEVOOWY Yior TNV EEETUON TNG CUUTERLPORAS TOU EBA(POUC
ue ) yenon oaféBouwy mopauétowy xa B) T dnutoupyia Tou xotdAAnhou Thaciouv Aoyl-
oUxoU yiot TV UTOG THREY| TV €V Aoy egapuoy®y. Ogeliel Befalng vo onueindel twg
T0 Be0TERO HTAV TO TEOATAUTOVUEVO, Xat OYL O Baoxdc oTéyoc, oUTe To xUplo Véua Tng
oLaTe3ric, xdtt mou oiyoupa e€nyel yiatl ) onuacia Tou TapoBAéneTan 1 emoxidleTon amd
ToL EMTEDYUATO TOU TpdTou. Edv duwe Angdel unodn, autr n Aentopépela eivon xordopt-
O TIXY), AMOXAUADTITOVTOG TAUTOYPOVA TOCO T BUGXOAY, GO %ot TOAUTAOXOTNTA TOU GAOU
eyyctenuatoc. TrhAoye mdoouTtar AOYOS Ylol TH CUYXEXPWEVT ETLAOYT|, TN WUN cuUPotixy
ouTh mopelo. XOppova ue 600 YVwEilouUE, BEV UTHEYOUY, TOUALYLOTOV Uéypl OUsp,
Olordeotda eumopLnd TaxETo AoYLoUXoL e [Bdon To temepaouiva oTotyela, Tor omola Yo
UTopoUGAY Vol UTOG TNEIZ0UY TNV aVAAUCT] UE GTOY A TG TEnepaouéva oTotyelo. {2 ex
ToUTOL, 1 AVATTUEYN EVOC XUTAAANAOU aptIUNTIXOU TAXETOU QouvoTay 1) HovY AOoT Yo
NV emiteudn Tou otdyou. Aol Aowmdy 1 uhomoinom auTtod Xxpllnxe EPIXTY, TO €V AOYW
eCeWWEVPEVO hoYIouxd yenotuonotinxe yia TNV TocoTixonoinom tng ofSefondtTnTog xou
OLODCOHOVOTC TV EBUPIXDY TORAUUETEMY OTa UEYEDT AmdXQPIOTC TOU TOPOUCLALOUY EVOLO-
PEEOV OF YEWTEY VXS TEOBAAUATA. 2To oTuelo auTd Vol TEETEL ACPAUADS VoL ETLOTUEVOUNE
10 €L axEBKC EMEWDY) Tor €83 cUYXaTAAEYOVTAL avapEcH oTa o a3éfotar VAL, T
EVOWUATOON TNG BLUXVUAVONG TV WOLOTHTWY TOUG O ApLIUNTIXES TROCOUOLWOELS XEIVETOL

e&éyovoug onuaoctag.

0.2.1 Avdantugn Aoyiouixov

‘Onog mpoavagépdnxe, {ntoluevo yia T Slexnepainorn Tng SloteiB3ng Aoy 1 avamTuén Tev
AATIAANAGY opEIUNTIXWY UEVODMY TTOL ATATOVVTAY YIOL TNV ETUTUY T EXTEAECT) AVOADCEWY
Ue otoyaoTixd menepaouéva ototyela. Tlpoxewévou de va emtevydel o ev Aoyw otoy0C,
O AVTIXEWEVOCTRUPTC XWOIXAC TETEPUCUEVLY GToLYElwY Solverize npeme emavelANUUéVA
var BtevpuVUel Ue T Lop@r VEOY XAJoEWY, BIETaP®Y Xt UeVOdwy. Aedopévou autol, 1)

O Bradixaota avdmTuEng hoytopxol pmopel Vo ywetoTel oe 800 @doeL:
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0.2 Yxondég tng dratelPne

1. H mpwtr, anoTteholuevn amd Oha o GTotyela Tou avamTOyUnxoy UE GXOTO TNV €-
TAVOT) TEOPANUATWY UE VIETEQUIIO TIXEG WOLOTNTES LAV, TEpIAGuPBave Tar axdAou-
Yo:

o EumhouTiouoc e BLOLEO TUTol TETRUTAEURIXE XUk TELY WVIXE LOOTOROUETELXS G TOL-
yelo ue modheg emAoYES ¢ TEOC TV dpLiUd TV XOUBLY, MOTE Vo XATAC TEL
ouvaty| 1 eniAuon TEOPANUdTLY UTo cuvIfxeg eTinedng éviaong XoL TopEo-
uoppwone. Emmiéov, eonydnoav e€aedpoind xou TETPUEOPXY TETEQUOUEVA
oToLyelol TELOV BLUC TACEWY PE UTOC THELET EVOANOXTIXDY TAEEWY CUVORTAOE-

WV oY UATOC.

o IIpooUxn LOVOBLAGTATWY BIATUNTIXWY CTOLYEIWY YIol TNV TEOGOUOIWOT TNG

duVaULXG amdxELoNg €0dPoug ot Pia Ywetxt| dldoTao).

o AvAamTugn TETPATAEURIXWY %ot ECUEDEIXWY GTOLYEIWY TUTOL U-P Ylot TNV TPO-
O0UOlWOoT ToPMOWY LAXGOY. Edw® Yo npénet va utoypauuotel twg 1 aveldeTn-
TN EMAOYY CUVIPTACEWY Oy UATOS Yo Toug Boduoie ercuieplag petatodmiong

xau ieong mopwy emiTpénel mpooUeTn eveMla Tpocouolwong.

o Ewoaywyn e yevixeuuévng pedodou oprduntixic oloxhpwone Newmark

(GN11) yu TV mpocouoinon Tou guuvouévou edagixic oTepEoToiNoTC.

o IlpooUxn €wdmy arocBeothpwy TUToL Lysmer o¢ anoppognTixés cuvopta-

%€ OUVUXES Yo TNV TEOGOUOIWoT BIddooN S XOUATOC.

 Ipoypaupotioude ameuvieiog uedddwyv oroxhipwone tne eiowong xivnong xau
ouvyxexpyéva twv Newmark, HHT-a xou Bathe, yio tnv mpocouolworn duvo-

XV TEOBANUATOY.

o IIpooUxn ewinric xhdong mou avoropPdvel T UETATEOTY DEDOUEVNC OEIOUL-
x\C xoTarypopric o€ LloodLVaHa emxouflo @optio emBaridueva oTtn Bdorn Tou

oprdunTiXol e6uPX0) TEOGOUOLOUTOC.

2. H dedtepn @dor), nepthdufave toug amoutoluevoug aptduntixols alydprduoug mou
VoL ETETEETAY OTOV WO VoL EXTENEL TTOOGOUOLWOELS UE CTOYACTIXS TEMEQUOUEVOL

otowyelo. I'ot To oxomd autd avamtOyInxay Tor axdroutor TUAATA AOYIOUIXOU:

o Avdmtuén tng mohudWoTATNG UEVOBOU PUCUATIXNAC OVATOEAOUAOTC YLol TN
yeveon ouoyeveyv I'xaouctavov tuyaiwy medinv o uia, 600 xou TEEC Olo-
otdoeic. Eniong, mpootédnxay nowdheg douée cuoyétiong xadog xan peto-
oynuatiopol LTO TN HoE@PT TEBIWY UETUPORAS VLo TN YEVEST, hOYopLipoXo-

7 ’ 7 / ’ / 7. 7’
VOVIXWY TEBlwY, eve) CeYwELoTh @povTida 56Unxe hoTe Vo eaoQaAloTEL 1)
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Extevig Ilepiindn

o€loTolnon TOAUTUENVWY ETEEEQYAC TMY Yo TNV ETLTAYLVOT TNG OANG OLodLxo-

oloc.

o Ilpoypaupotionds g Yetddou GTOYUC TIXWY TENEQUCUEVKY G TOLYElWwY TOTOU
Monte Carlo pe vnootriplen napdAning extéleonc o€ ToAUTUENVOUC ENEEep-
YUOTEC, ARG XU AMOTEAECUOTIXY AmOVAXEUCT TWV ATOTEAEOUATWY UTO TN

wopY| apyeiov HAE5 .
o Avdmtuén tng Toyetac uedodouv Monte Carlo yia tov unoroyioud twv AXMA

xor AYAA YEVIXELUEVLY TPOCOUOLWUATOVY TETEQUOUEVKDY GTOLYEIWY, OToU
X0 TIAL 1) UTOGTARIET TOAUTOENVWY ETEEEQYATTV XU 1) ATOTEAEGUUTIXOTNTOL

amo¥rixeuong uheday TewTapYIXAS onuacioc.

o Anuoupyior TwV anopaiTNTwY TUNUETWY AOYIOUIXO) YIol TOV UTOAOYIGUO TGV
OTATIOTIXOY amoxplone uéow Twv AXMA xoau AYAA xou TV TapeyOUeEVKDY
OOUWY CUCYETIONG.

o Avdmtuén x@dixa oe YA®ooo Tpoypouuatiopol Python yio tny enelepyaocio

TWV CTATICTIXMY ATOXQPLONG, UAAG XA TT) YROPIXY| AUTWY AVATURAGTACT).

0.2.2 TewteyVixEc EQAPUOYES

‘Eneita amd TNV eMTUY A EVOWUATOON TV ETYELOUS oVaYXalwY TUNUETLY AOYLOUIX0U,
0 xwowxag Solverize yenowwonot\Inxe Yoo TNV TEOGOPOIGT) TEOBANUATLY YEWTEYVIXNS
plong, oto omolo ApUnxe Lo 1 YweY| SlocduaveT xou ABEBUOTNTA TOV EBAUPXDY
mopopétewy. H mpdtn epapuoyn apopd ) yerétn tng xodilnong dxoumtou Yepyeiiov et
O TEQEOTIO|OLUOU EBUPLXOU GTPMUATOS, OTIOU 1) YPNOT] TWV CTOYUC XMV TETEPUCUEVGY
OTOLYElWY EMTEETEL TNV EVOWUATWOT TNE dBefondTnTog TOG0 TOoU UETEOL EANUC TIXOTNTOG,
OGO oL TNG OLAMEPATOTNTAC TOU EBAQOUS oTNV Tpocouoinwar. Ot de avalloelg evoucin-
olog TEOGPEROUY OTY CUVEYELX Uldl AETTOUERECTERY] EXOVAL, OCOV APOES TNV ETLEEON TNG
OOUNC CUOYETIONG TNG UTO PERETN IBLOTNTAC OTNY AMOXELOT WS oG TI¢ XahlHOELS, ahAd
X0l TIC UTEPTUEDELC TTOPWV.

Axoloulel 1 uerétn Tou TEOBAUUTOC TNG BLEBOONS BLATUNTIXOU XVUATOC GE €00-
(POC PE GTOYAOTIXO PETEO BLdTUnoNG, 6mou altomotiinxe 1 uedodohoyla TwV SUVOLXEDY
ouVaPTHOEWY Bloxlpovone tne andxpetone (AXAA), ot onolec xou uToloYioTNXAY UECE
¢ toryetag pedodou Monte Carlo. Xnuetdveton mewg ot avahOOES TOU EXTEAECTNNXOY
apoEOVGAY TN BLABOCT) BLATUNTIXOU XVPATOG OF €DUPIXE TEOCOUOLOUOTA plag 1o 600
OLC TACEWY, ETBELUWMVOVTAC TNV EYXUEOTNTA, xodng xat aveloptnola Twv ANAA g
TEOC TO PAOUA Loy VOGS TWV WBOTHTOY LAX0U. ATodelyUnxe eniong Teg Tor 6 TUATIO TN Ue-

yeUT andxplong g edapixfc empdvelag elvor evaicinta o 1oyLed cuoyeTiopEva TEdlo
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0.3 Ytowyela Yewpiog nrdavothtwy

1, Yoo Ty axpiBela, mog To SloTunTind x0ua ETNEEGCETOL WOVO amd OUAAY| BLOXOUVOT)
TWYV TEBIWY TOL TEOGOUOLWOYOUY TO UETEO BLATUNOTG.

Téhog, o mpOPBANua TNg edagixiic oTepeonoinoNne emaveleTdleton LT To TRloU TNS
uedodoroyiag Twv AXAA, émou 1 évvoln Twv AXAA emBeBouncyveton yiow ShAn Wit popd
o¢ mpog Ty oxpBed g, Topdhinha, avadetydnxe neputépn N alia twv AXAA, de-
OOUEVOL TS AUTEC ATOXAUAOTITOUY TOUG UNYOVICUOOS TOU EAEYYOLVY TN BLUXOUUVOT TNG

ATOXELONG.

0.3 Xrowyesio Jewplag mrdavorrtwy

Yy evotnta auth| topouctdlovat ot Bactxég EVVOLES TV CUVOAWY, xaddg xau 1) ewpia
TiovoTAT®Y o Tuykwy ueTaBANTOY. O evilopepduevoc uropet BERota var avatpédel ota
ouyypduata (Bertsekas and Tsitsiklis, 2008; Papoulis and Pillai, 2002), 6mou ot ev héyw

évvoleg e€etdlovtan oe Badoc.

0.3.1 Ocwpia cLUVOAWY

Q¢ otrodo opiletan Pt GUALOYT OVTIXEWEVWY TOU CGUVIGTOOY Tl €A TOU GUVOIOUL.
Aéue 6T 0 & avixel 6To cUvolo A yenoiuomoldviag To cUUBoMoud T € A, Ve yiol TV
avtiVetn nepintwon yenowonoteitar o cuyBohiopdc = ¢ A. To de olvolo mou dev €yel
xavévo ototyelo ovoudletal kevd oivoho xan cUUBoA et Ue 0. Av xdde oToLyelo & Tou
A eivon xan otoyelo tou B, 16t T0 A n0deltan vmooUrvolo Tou B xou cupfBoiileTon we
A C B. Téhog, oplleton To olvoro (2, 1o onolo mepLéyetl OAa ToL UG PENETT GTOLYElR WS
kaoAiké ovvodo xow x&de dAho cvoro eivar utocUvohlo autol. Metall 0o cuvolwy A
xau B optlovtan ot e€hc oyéoeic:

o To ouumAnpwpaticé evoc cuvorou A, mou cuufBohileton ue A°, elvor T0 olvolo Yo

T0 onolo av x € A, t6te = ¢ A°.

o H évwon twv ouvodewv A, B, mou cupfoiiCeta we AU B, elvar 10 olvolo Yo 10
omoloaver € AUB, téte x € Az € B.

o H woun v cuvorwv A, B, mou cuyforiletan wg A N B, eivon 10 olvolo Yy t0
otoloavr € ANB, tétex € Axu z € B.

o H bapopd twv cuvorov A, B, mou cufoiiletoan wg A — B, eivon 10 olvolo yo

10 omofo av x € A— B, t6te v € Axaw x ¢ B.

o H ouuperpixn) diapopd tev cuvérwv A, B, nou cupforiletan we A A B, eivan 10
olvoho yio to onolo ov x € AA B, tétex € Afa ¢ B, aldz ¢ AN B.
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« Alo oOvora A, B héyovta &va av AN B = ().

0.3.2 Noépot ntdavotrTwy

To Boaoixd cuctatind tne Yewplac miavotitev elvon 1 évvola Tou Telpdpatos, ohhd xou
TWV OLYVATOV amoTeAeoudTwY, EVK TO GOVORO OAWY TWV BUVATKOY ATOTEAEOUUTLY OVO-
udleton Serypatindg yweog £2. Eva utocivolo tou €2, to omolo cuwiotd ula cuALOYH
o6 mdavd anoteéopata ovopdletar evdexouevo. O vopog mbavitntag avadétel oe éva
evoeyouevo E évav apudud, o onolog ovoudleton mbarvdtnra tou evdeyouévou FE, mou
wovorotel 0 < P(E) < 1 xou exgpdlet 1o méco mbavéd eivor vor ABet yodpa 10 ev Aoyw
evdeybuevo. Tndpyouv 80o tpbdToL va teptypdouye Tn onuacio g mdavétntoe P(E).
Apynd , ac avoroylotolue 1 pidn evog e€dedpou dixawou Laptod. ‘Eotwn A to evdeydue-
VO ¢ To anotéhecyo g pldng elvon o apriudg 6. To évar dixono Cdpt etvon hoyd vo
Vewproouue twe n miovotnta tou A eivar P(A) = 1/6, n omola xou ebvor xovi ylar 6hot o
duvatd amoteréopata TNe pidne. Ag Yewprioouue Thpa OTL To TElpopa EmavoAdBdveTo
n Qopéc, 6mou Ue 14 cudBoiiloupe To TAdog TV piewy ue arotélecua Tov aptiuod 6.
Torte, n mboavétnro P(A) dhvoarton vo epunveuTtel wg 0 Aoyoc na/n, o¢ Snhady| 1 oyetixn
CLYVOTNTA PE TNV oTola To anoTéheoua Tng pidng divel 6 dTay 0 cuVolOS dpLuOS pide-
WV N elvon apxeTd Yeydhog. Trdoyouv mdoouTta TEQITTHOOELS 6oV TO Telpoua OV UTopet
vo. enovaangVel xou 1 epunvela Bdoet tng cuyvotnTag dev etvan Eyxupn. T topdderyua,
€0t T0 Yeyovog G g aotoylag evog xTiplou xatd TN Oudpxela EVOC LoYUEOU GELGUOU
o embueva 50 ypdvia. Lnyv mepintwon auty, n miavétnta P(G) yenowonoteiton yio
VoL EXPEACEL TNV UTOXEWEVIXT| oG TEToldnom oyeTd ue to néco miavd etvar vor AdSBet
Ywea T0 yeyovog G
H Yewpla mdavothtov etvar Yepchiouévn ota e€hg aliduata twy mibavotitwy:
1. T xdde evdeyduevo A, P(A) > 0.

2. Av to evdeydueva A xan B eivan Eéva, Snhody AN B = (), téte
P(AUB) = P(A) + P(B).

3. H mbavétnta tou derypatixod ydpou € eivar P()) = 1.

0.3.3 Tuyaleg petoSANTES

Av 10 anotéheoya evog TEWRGUOTOS Elvan aprIUNTL T, 1) TT auTH ovoudleTon Tuyaia
petapAnTn. Mhovtog e gadnuatinois 6poug, 1 tuyado uetofBAnty| etvan uio cuvdptnon
TOL AVTIOTOLYEL EVOEYOUEVOL TOU BELYHATIXOU YWeou o apldunTixéc TwwéS. AtaxpivovTo

OLOUPORETINES TEPLTTWOELS, AVAAOYU UE TN QUCT TV ApLIUNTIXOY TGV ToU UTopEl va
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0.3 Ytowyela Yewpiog nrdavothtwy

ABer 1) tuyado ueTaBANnTA. ¢ ex ToUTOL, O Tuyaleg UETABANTES TTOL UTOEOVY Vo AdBouy
UOVo BaxpLtég apriunTinés Tiég ovoudlovton OakpItés Tuyaies petafantés. O de dpog
ouvexnS Tuyaia peTapAnNTr) avVaPEQETAUL OTNY TERIMTWON TV PETUBANTGY oL Aoufdvouy
Tiéc oty evdeio Twv TpaypaTxody aprdumy. AeuxpI(EToL AGPIANS TWS, GTNY TUEOUCA

OLatELBT], Aoy OAOUUAOTE AMOXAEIGTIXG UE TIEQLTTMOOELS CUVEYWY TUY UMY UETUBANTOY.

0.3.3.1 3uvdptnorn nuxvortntag miavotnTag xow adpoloTiny] cuvde-
TNOT XATAVOUNG

[t v mhAen meprypagt| plag cuveyole Tuyatag petaBAntic X, amouteiton wévo 1) yvaon

e ouvdptnons tukvétntas mbavétntag (XIII) mou cugBoriletar o fx(x). Kévovtog

xenon owthg, n miavotnta plo Tuyaio petoPanth X va Beloxeton Yetald twv oy a, b

umoloyi{leton we e€ng:

Pla< X <b)= /ab Fx(@)de (1)

[poxewévou va eCacpoiilovton tor allwpata Twv mavothtwy, n M1 wavonowel Tic

oxohovleg oyéoelc:

Ix(x) >0 (2)
| ix@)dz =1 3)

H 8¢ afpowotixrj ovvdptnon katavouns (AXK) piog tuyoloc petoBAnTrc X, mou cuuPo-
Metow ¢ Fx(z), oyetileton ye ) X péow e oxdroudng oyéong:

Px(e) = [ fx(w)du 4

xou exealel TNy miavotnTa 1 T plog Tuyaiog petoafAntic X va ebvon pixpdtepn 1 ion
evog aptiuol x:
Fx(z) = P(X < x) (5)

Téhoc n EIII uroroyileton amd v AXK ye napoydyion wg e€nc:

fx () Ir

0.3.3.2 Mcéon Ty xou Siacmopd

Ou XIIIT xan AXK mapéyouy peydho 6yxo nmAnpogoplac oyetxd Ue tnv tuyaio petoBAnTY

X. T mpoxtixolg Adyoug, ebvor xplowo va cuvolicouue Ohn auth TNV TAneogopla, o-
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Extevig Ilepiindn

eiCovtag avTImPOoKHTEVTIXES TOCOTNTES Tou YopaxTNellouv wio Tuyaio LeTaBANTY. Edud
Yl To 6%0T6 auTo, optleTal 1 mpoodokia E[X] 1 péon nipun) px plog tuyaiog YeTaBAnTrg
X ¢ 10 %x€v1p0 Bdpoug OAWY TWV SUVITGY TYWOY Tou AopfBdver 1 X xou diveton omd

oYEo:

+o0
BIX] = px = [ afx(@)de (7)
H E[X] exppdlet plo ovuinpoowreutixn Ty yior Ty tuyota petointh X. Evalhootixée
ONUAVTIXES TOGOTNTEG TOL TPOGPEPOUV TANPoQopia yia uio Tuyala petaBAnth X elvon ot
Aeyoueveg porés.  Ewdwodtepa, n n-ootn pony| tng X elvon n mpoodoxia tng tuyodag
uetaBAntic X™ xou diveton amd tn oyéon:
“+o0o

EX" = px = [ a"fx(a)ds (8)

Mo axoun onupavtiny tocdtnTo TG TUYdog peToAnthc X ebvan 1 dweomopd mou oplleTon
oC:
Var(X) = E[(X - E[X])’] (9)

xou amoTeAel uétpo Tne doduavong tne Tuyadog petoPAnTic X yOew amd T uéomn Ty

e px. H 6 tetpaywviny ol tne dlaomopdc ovoudleton Tumki anékAion ox:

ox =/Var(X) (10)

xou omoTehel Eva o QUOIXG PETPO TNG dlalpoavomng e X, OEBOUEVOL T ot ot 500
€Y0UV TG {DLEC LOVADES UETENONG. LNUELOVETU TWS TOCO 1) BLACTIOPA, OGO KoL 1) TUTILXY
anoxhion ebvon €€ optopol pn-apvnTés. Télog, éva evahhoxtind Yétpo Tng draxduavong
e Tuyaiog wetaBintrc X elvon o ouvrteAeotris dakUuavong, Tou TEpLypdpeL To Uéyedog
TNe Stoduaveng o€ oyéon pe T péon T xan opiletan we e€ng:

covy = X (11)
X

0.3.4 3uvrUeic xatavoueg TIAvVOTNTAC

Y auTH TNV UTOEVOTNTA TUPOUGLACOVTUL Ol TEEL To CUVAVELS CUVEYELC xoTavoués Tdo-

VOTNTOC TOU Y PNOWOTOL0UVTOL GTNY TEUEN:
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0.3 Ytowyela Yewpiog nrdavothtwy

1. H mo amhf cuveyric xatavour) etvon 1 opo1dpopgn katavopurj, cOUQwv e TNy onolo
n miovotnta N Tuyodor HeToBANTH vor APl T oTto xhetotd Sidotnue [a, b] ebvon
otodept|. H opotduoppn xatavour €yetl Tic e€hg OOTNTES:

o Yuvdptnomn muxvotnTog TiavoTnToC:

ﬁ, ava<zx<b
fx(x) = (12)

0, OLaPOPETIXG

o Méon tyh: E[X] =52

2

o Awomnopd: Var(X) = %

2. H xavovikr) 11 I'kaovoiavr) katavoun) efval 1 onuavTIXOTERT, GUVEYNC XAUTAVOUN TiL-

Yavotntoc. H ouvdptnon muxvotntog mdavotntag TNG XavovIXAC XATavounc lvou

n eghc: ,
Frle) = — exp(—(‘””‘”)> (13)

2ro 202

omou M pEon T e Tuyadag YeTABANTAC X xou o 1) TUTLXY ATOXALOT).

3. H AoyapiQuoxavorvikn katavoun, cOugpewva Ue Ty ool 0 puoixde Aoydpriuog tne
Tuyadoc uetaBantrc X oxohoudel xavovixr xatovour. H cuvdptnomn muxvotntog

4 7
TEUSO(VOTT]TO(C_, ELvalL:

fylz) = ;ex _M (14)
. B V21O x P 207, x

OTOU fiin x X O, ¢ 1) LEOT TYA %o Blaomopd Tou Yuotkol hoyderduou Tne Tuyadag

uetaBAntic X avtioTtoya.

0.3.5 Amnd xowol cuveyeic tuyaleg LETABANTES

Y€ TOAESG TEPITTWOELS, EVOLUPEPOUACTE Yo VO 1) TEQLIOCOTERES TUYUES UETABANTES TTOU
oVIX0LY GTOV (B0 BELYHATIXG YWPOo, xodng xou TN oyEoT Tou Tig cLVOEeL. T'a to Adyo
oUTO, TNV TEOVCN UTOEVOTNTA UEAETMOVTAL OL amd K010V OUveEXElS Tuyaies JeTapAnTES.
Ye avoroyio ye v meplnTwon Tou yweou ulag Tuyaiag UETUBANTAC, DIEEEUVOUNE TNV
mioavotnTa dVo tuyaieg petaBintés X xon Y va AdBouv ouyxexpéveg Tés. Tote,

opiletan 1 and kool afporotikn ovvdpTnOon Katavouns Tou €yl we €N
Fxy(z,y) = P[(X <2)N (Y <y)] (15)
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Extevig Ilepiindn

eve 1) and kowov owvdptnon rukvétntas mbavdtnas og:

62FXY
= 1
fXY(x7y> 8[E8y (l’,y) ( 6)
1 omola xavomolel TNy axdhoudn cuvinxn:
+oo +oo
| [ rer(@ydedy =1 (17)

Me Bdon tnv amd xowvol cuvdptnorn muxvotntag TavoTnTaS, UToEoVY VoL UTOAOYLOTOUY

Ol AEYOUEVES 0plakés ouvaptioels Tukvotntas mibavétntag Twv X xou Y we eZhc:

—+00

fx@) = [ pevlen)dy (13)
) = [ fev(w )i (19)

TIOL AYTIOTOLYOVUY GTIC GUVARTHCELS TUXVOTNTAS THaVOTNTAS TOUS, EQOCOV AUTES OVTLUE-
TOTOTOLY w¢ Eeywelotée Tuyaleg uetofAntéc. Alvatoar vo optotel 1 and kool pomn
dvo tuyaiwy petaPAntar X xa Y oc E[X™ - Y™], 6nou 10 ddpoiopa v n xow m ovo-
udleton ovvohikny tdén g pomrs. Ewbwdtepa, 1 6eitepn pon) twv X, Y ylow and To
XEVTPOELDEC TOLG ovoudleton ourdaomopd, cUUBoMIeTon w¢ oxy xou uoloyiletan and
NV oxdhovdn oyéon:

mxr = EIX =) (V =) = [ [ @ = wa)ly = ) for (o )dady (20

Av oxy = 0, ot tuyadec yetofintéc X, Y civou acvoyériores. Tovileton de nwg 800
ave€dpTnTeg Tuyaleg UETABANTES Elvol TEVTA ACUCYETIOTES, EVK TO aVTIGTPOYO OV £lvol
mdvtote akndéc. Me oxond Ttopa TNV xahlTepn xatavonen tou Boduold cucyétiong
0Vo Tuyadwy peTofAnTov X, Y, n ouvdlaomopd unopel va xavovixonondel we Tpog To

YIVOUEVO TV TUTLX®Y ATOXAICENDY TOUE, amtd OTOU TEOXUTITEL O TUVTEAETTIIS OUOYETIONS:

(21)
O ouvtekeotric ouoyétiong opiletar uévo otny mepintwon mov ox # 0 xou oy # 0,

evey avorotel —1 < pxy < +1. Abo tuyaleg petofAntéc X, Y elvon avebdpTnres, ov

1 omd x0WoU GUVIETNCT TUXVOTNTAS THAVOTNTOS LGOUTAL UE TO YIVOUEVO TWV OPLIXGDY
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0.4 YtoyaocTixég dladixaciceg xou Tuyaio Tedio

CLUVAPTHCENDY TOUG, 1 AAALOG:

Ixv(z,y) = fx(x)fy(y) (22)

H évvoia tng avelaptnotog uropel eniong va yevixeutel xou oTnv neplntwon TeplocoTepeY

e plog Tuyaionv YETafANTOY W e€ng:
Ixvz(2,y,2) = fx(2) fy(y) f2(2) (23)

v Tig tuyaieg uetoPantéc X, Y, Z.

0.4 Xtoyaoctixég dadixacieg xou Tuyala media

0.4.1 Boaowéc €vvolec

Ou oroyaotikés n) Tuyaieg dadikaoieg amotehoy axoroudieg Tuyalomy petofintoy. Ievi-
%8, 0 6poc avapépeton elte otn Sadacia, eite oty mapoyouevn oxorovdia. Eotw Y (1)
war otoyao Tixy) Sldixacio. To olvolo GhwV TV BUVITOY TUY LWV UETABANTOY AmoTEAE!
TO Ypo kKatdotaong auTthg, VG TO GOVOAO TWV TWOY TOU t GUVIOTA TO XPOo OEIKTWY
e, 2tn owedvr| Bihoypagla, o dpog otoyaotikn Owdikaoia yenowonoleiton 6Tay o
YGP0G BETOY amoTeAElTaL amd ypovixd onueia, eve o bpog Tuyaio medio viodeteiton dTory
exetvog amoteleiton amd ornuelor 6TO Y®EO.

Ewid oty mapoloa dlatpyr|, peketmvton mporyuatixd Poduwtd Tuyola medio Ue ou-
VEYT| YOPO BEXTOV, OTOL oL TUYaleg UETABANTES elvar TporyoTixol apriuol, eve ot delxteg
avapEpOVTUL GE YwEWwd onuela 1éco oe pla, 6co xar oe 500 xou Teelg dotdoel. ‘Oco
YL TLC OELYUOTOGUVORTHOELS TV TUY kWY TEBLWY oL YewpolvTal aveldpTnTES UE O
CLVAETNOY XATUVOUNG, AUTEC ovoudlovial Tpayuatomtonoes Tou Tuyolou Tediou. Xta
oyt 1, 2 xau 3 ameixovi{ovTon TeayUaToTotoelg Tuyokwy Tediwy piag, 800 xat TELOY

Olo TdoEWY avTioToLya.

0.4.2 Ev cuvOolw RECT TLLY XA BLACTORA

' éva Tuyado medio Y, o oupPohiopde Y (x) yenowonoteiton yior to tuyoio medio doov
agopd TN VEon T 0T0 YWeo. LuVeEnwg, ot xdle onuelo T, 1 xotavour| TG UETABANTAS

f(x) elvon n oplot) cuvdpTnon xatavourc g Sldxaciog fy () (y). Ot Be ev GUVOA
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Extevig Ilepiindn

Jx)

0.2
0.0
-0.2
0 20 40 60 80 100
x(m)
0.2
~~
;2 0.0
-0.2
20 40 60 80 100
x(m)

Lyfuo 1. IHporypotonomoeig Tuyadwy nediwy ploag didotaong

4
60
1 (771) 0 w0

4
60
1 (771) 0 w0

Yy 2. Tporypatonotioelg Tuyodwy ediny 500 BLUCTICEMY.

uéon Tin xan Slaomopd utohoyilovTon o€ XxAE YwEO ONUED CUUPWVIL UE TIC OYEOEIS:

=Bl @)= [ ulvwdy (24)
= [l @) o)y

i = B[V (@)~ py(@)’] = |

(25)
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0.4 YtoyaocTixég dladixaciceg xou Tuyaio Tedio

Lo 3. Tporyuatonotioeic Tuyodwy TEdiwY TELOV BLUCTAGEWY.

0.4.3 3TACULEC CTOYAC TIXES DLABLXACIES XA OULOYEVY] TL-

oo medio

YE YEVIXEC TIEQITTAOELS, 1) XUTAVOUY| TOU TEPLYRAPEL Wio YpoVIXT| oTOY oo TixY| dladixacia
UETUBIAAETAL UE TO YEOVO, YEYOVOC TOU GUVETAYETAL TS 1) UECT) THUY), OLOTIORE XAl CU-
VapTNoT oLoYETIoNG eCopTMVTL amd TO YedvVo t. Ol 6Toyac TiXég Sladxacies, Twy onoiwy
1 xotavour| mapauével otoepr] UE To Ypovo, ovopdlovial otdoiues dadikaoies. o tny
oxpiBeta, pio otoyaoTiny dladcactio etvar avotnped otdoiun, ov 1 and xowol cuvdeTNno
XATOYOUnC Topoével otadepy| ue To Ypdvo. Emonuaiveton ac@uine tog oty Tedln, 1
omodtnoT auTy elvor 80oxoho va amodery Vel xou plar o yohapry cuviixn yenowonoteito.
Mia otoyacTt| dadixactia avTidétwe ovoudleton oTdoun pe TNy e€upela évvoia, av 1
uéom Ty TNe ebvon otordepr| xou 1 GUVAETNOT CUCYETIONG ECUPTATOL UOVO UG T1) OYETIXN
Yeovixt| amooTooT Yetald dUo ypovixwyv onueiwy. Etot, n cuvdptnon autocuoyétiong
ueTald 800 ypovixwy onuelwy t; xou ty eCoptdton YOVo amd TN Olagopd T = t; — to.
LNy TEPIMTWOT TORA TwV TuYaiwY TEBIWY 6TO Y®EO, 0 6POC OUOYEVTS YeNOoYLoTOoLE T
YL TO YoEaxTNEoU6 evog Tedlou, Tou omolou 1 cUVETNOT XaTavourg elvor oTadepr) 6To
Y@eo. Tro autéc Tic GUVINXES, 1) CUVEETNOT CUCYETIONG UETOED BUO YwEWM®OY onueinY

ue Stavbopato Véone T xan Yy e€apTdTon HOVO Amd TN SLUVUCUATIXY OLopopd T = & — Y.

0.4.4 EpyYodxég ocTO(ACTIXES BLadxacieg xow Tuyolo me-
ola

‘Eotw X (t) plo ypovinh otoyactnr| drodixooto xon X, (t) pio Sevypatoouvdptnon te. H

Sroducostior X (t) ovoudleton epyodikr) ws mpog Tn puéon Tipn, epdoov 1 Yeovixn uéon T

omolaedinote Tpayuatonoinone e X, (t) woltu ye Ty ev ouvorw péon tun fux(t).

Eivow qovepd mwe, yiar va ebvon plo Sodixacto pyoduct|, Yo mpénel va ebvar otdoun, eve

T0 avTioTEoPo dev elvor TavTo aAndég. Me tov (Blo TpdTo opileton o 1 EpYOBNOTNTA WS
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Extevig Ilepiindn

TEOC TN BLIOTOPd, TN CUVEETNOT CUOYETIONGS, AAAG Xou TG poTEG avTepng Tddng. Mia
otadtxactior amoxaAelton 1wy upd €pyodirn), av OAEG oL YPoVIXEG PECES TIES TNg ebvan oeg
ue Tic avtioTtoryeg ev ouvolw. Ovoudleton S aolevws epyodixr), av eivon epyodiny) we
TEOC TN UECT TiuY), T1) DLIOTIORE X0 T CLUVAETNOT) CUCYETIONG.

Yy mepintwon twy tuyoioy mediov f(x), étou o deixtng & avtioTtoyel oe éva
OTNUElD TOU YWEOU, 1) EEYOBOTNTA WS TEOG TN UECT] THIA OVAUPERETOL GTNY TEPIMTWON
oL 1) ywex uéon Ty ebvan {on ye v v ocuvorw. ‘Omwe xou oty ERInTHoN TV
OTOYACTIXMVY OLUBLXACLOY, ETOL X0 Yo Tor Tuyodar TeEdlar €Y OUNE EQYOBXOTNTA WS TEOS TN

OLOIGTIOPA, TN CUVEETNOT CUCYETIONG, AAAGL Yol TIC POTIEC AV TERAS TAENC.

0.4.5 3XtoyaocTtixég dradixacicg xou Tuyala tedlo oto nedio

CLUYVOTHTWYV

Y1y unoevoTnTo auTh TopouctdleTon plor EVOhAaX TIXT) BIUTUTWOT TWV WBIOTHTWY BEVTEROS
TENG VOGS OTUTIOTING OUOYEVOUS Tuyakou TESIOU, YVWOTH W¢ paouatiky avanapdotaor).
e auTH) TNV TERITTWOT), 1) CUVEETNOT) AUTOCUCYETIONG UTOPEL Var ExppacTel 0To TEDID TwV
CLYVOTHTWY UE TN pop@r Tou gdopatog wyvos. To (éuyog yetacynuatiopod Fourier
g(z) xau G(k) optletan we:

Glr) = ;ﬁ / ;oo g(z)e " dz (26)
o(r) = [ +: )™ ds (27)

6mou 1 ouvdptnon G(k) xohetton petaoynuatiopde Fourier tne ouvdptnone g(x). A-
vahutixotepa, 1 elowon (26) elvo o eumpds petaoynuatiopds Fourier xou n (27) o

avtiotpogoS petaoynuatiopds Fourier .

0.4.6 Xy<€oesiwc Wiener-Khinchine

Ed¢ napovoidlovton ol oyécelg Wiener-Khinchine yia ogoyevi| tuyaio nedio plog didoto-
ong:

1 ptoe

Sx (k) Rx(T)e "dr (28)

")

Rx(r)= [ T: S (k)e"" ds (29)

6mou Sx (k) T0 pdopa wyvos, Kk 0 kKuuatikés apiduds xo Rx (1) n ouvdptnon autocu-

oYETIONG ToL elvol GUVEPTNOY TNG OYETIXNG ATOCTUOTG T.
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0.4 YtoyaocTixég dladixaciceg xou Tuyaio Tedio

[t ogoyevh Tuyada edio, o @dopa oy o efvar TEAYUATIX XaL CUUUETELX GUVSE-
™o, e anotéhecya ot e€lowoels (28) xau (29) va SOvavton vor oplotolv ywelc TN Yehon

PAVTUC TIXWY UPLIUOY WE:

1 [+oo
Sx(k) = o Rx(7) cos(kT)dr (30)
R(7) = f: S (k) cos(rr)d (31)

O 8e oyéoeic Wiener-Khinchine yio Siidototo nedior etvon ot e€rc:
1 +oo  p+
S)((lil, Iig) = H /; - Rx(Tl, 7'2) COS(KlTl + RQTQ)dTldTQ (32)

+oo  pHfoo
Rx(m,7m2) = [ [ Sx (K1, ko) cos(k1T + KoTo)dk dKa (33)

0.4.7 Ilpoocopolwon I'raovolavoy Tuyainwy TEdlwy Re TN
KEVOBO TNG PACUATIANG AVATALACTACTNG

Yy evotnta oauth avaheTon 1 U€V0B0G TNG PUOUATIXNG AVATUREC TAONG YLt TV ToR0-
Yy I'xaouctovedy ogotoyevey mediwy. X0ugovo Ue auth, 10 aToyaotixd nedlo f(x)

ovamTOCCETAUL WS AYPOLOUA TELYWVOUETEIXMY CUVIPTACEWY UE TUYaeS YwVIEC pdong.

0.4.7.1 MegJ000g PACUATIXNG AVATALACTACTE YL TV TEOCOWLOIWOT

I'raovoiavey tuyaiwy nediowy wiog didotaong

H oycon mou yenowwonoteitar yior Ty Tpocouoiwsot) opoyevoig Tuyalou tedlou f(a:l) ulog

didiotaone, petd T dartrenon uovo v Tedtey Ny dpov, éxer s eic:
R N1
flan) = VEY. Ascos(mim + 6) 3
i=1

6mou ¢;(t = 1,..., Ny) elvon ave&dptnres tuyaieg YOVIES PAONS, OUOLOUOPPO XOTOVEUT)-
uéveg oo dtdotnua [0, 27]. Ot 8e xupotixol aptdyol K1; AVTIOTOLYOVY GTOV TEMTO YWEXH
dEova we eChc:

Ry

K1 = 1K, = 1— vio 1=1,...,N; (35)
Ny
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Extevig Ilepiindn

OOV K1y V0L O GV XUPATIXGG apLipog amoxorhc. O vietepuvioTinol cuvteheoTtéc A;

optlovtar we:

Ay=0 A, = /255, (K1) ARy vio 1=1,...,N; (36)

omou Sy, elvor To Qdopa Loy YOS, UN-aEVNTIXY GLUVEETNOT TOU XUUATIXOL aEtiuol K;. To-
viletaw mwe 0 ouvteheo i Ay emhéyetar undevindc Hote va e€aopoliletar Twe 1 uéon
T, uTohoytouévn oe Gho o uixoc Ty = 27/ Ak, tou ediou f(x), mapauéver undevi-
1. Adyw Tou %EVTEIX0U 0pLoxoV VEWENUATOS, TO TUPAYOUEVO TUY A0 Eivol AGUUTTWTIXG
I'xaovciavo xadog Ni — co. H de péorn tiun xan 1 cuvdptnon autocuoyEtiong etvar toeg
ue Tic avtiotolyec mou €youv tedel we otdyoc yia N; — 0o. Emmpdoieta, to noporydue-
vo tuyaio medio f(zcl) elvon meptodd pe mepiodo Tp. Evog emniéov neploptouog ogeilel
VoL €QUPUOCTEL 0TO YweWwd BrAua Axy, OTOTE YEVVOVTUL OELYUUTOCUVAPTHOELS TUY ey

Tedlowv ot ula ddo taon:
27

Azxy <
2/‘€1u

(37)

xou oauTo, yrotl n ouvden (37) ebvar omapadTnTn Yl THY AmoQUYT TOU QuVOUEVOU TV

ETOAVPEDV.

0.4.8 Mn-I'raovoclavég cTOYAOTIXES OLadixacieg xow Tu-

yolo medio

O meploc6TEPES WLOTNTEG TWV UAXGOY TOU TROGOUOWMVOVTAL (¢ Tuyaio medio etvon pn-
['xaovoiavég. Autdg ebvon xan o Adyog mou 1 uerétn twv un-I'raovotavey tuyoiwy nedivy
eyeL Wiadtepn onuascia Yot TN 0WoTH TEOCGOUOIWOT TNG YWEMXNS OLXOUAVOTS TOV LOLO-
THTwV Tou LTS e€€tacT LALxoU. Ebixdtepa otny napoloa duteln, Yo aoyorndolue ue
ular LB XUTNY 0Pl OTOY UG TGV DLABXACLOY Yol TUY kWY TEdlwY, TI¢ O1adikaoies jeta-
Popds ka1 ta media petapopds, Tou TEooPEpoLY Uio amAY| uedodohoyla Yl TH HETATEOT)

AAVOVIXWY OLUBIXACLOY KO TEDLWY OF UN-XAVOVIXAL.

0.4.8.1 Awxduxacicg xou nedio LeTtopopds

Y10 onuelo autd yehetdrar 1 mepintworn Baduwmtdy Tpayuatixdy dodactdv X () o
Y (t). 'Eotw g pio povotovixh) cuvdetnon xaw Y (t) pio otdowun I'xaovsiovy otoyootixnn
Sroduoiar pe povadtada Sloomopd xar cuvdpTtnon cuayétione p(7) = E[Y (t+ 7)Y (1)].

H Siadixacio tou mpoximtel and tov axdAoudo UETUCY NUATIOUO Ywelc uvAun:
X(t)=g(Y (1) (38)
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0.5 YtoyacTIXd TENEPATUEVA CTTOLYEL

ovoudleton dadikacia petapopds. Me avéhoyo tpémo, éotw Y (t), 6mou t € RY éva
Boduwto mpoyuotind ['noouctavd ouoyevég Tuyalo medio Ye povadiala dlaoTopd xaL ou-
véptnon ovoyétone p(T) = EY (t+ 7)Y (t)]. To tuyaio nedlo mou mpoximter and

TOV axOAoV Y0 UETUCY NUATICUO:
X(t)=g(Y (1) (39)

ovopdletan medio jeTapopds.

0.5 Z‘coxcxc‘cmdc TcE:Tc&:pchpLévcx G‘COLXE:ioc

T 8o televtalec dexactieg, 1 PEVOBOC TWV CTOYUCTIXWY TETEQUOUEVCDY O TOLYEIWY
(MXIIY), EMEXTAOT) TNG XAACIXAG VIETEQUIVIC TIXAC UeVOdoL, Eyel avaderydel we 1 xu-
elapyn ueHodog yia TNV ETIAUGT) G TOY UG TGV TEOBANUATWY GTNY UTOAOYLC TIXH UNYOVIXT).
O x0pteg mapahharyéc autrc ebvon ol e€Ng:

1. H pédodog Owtapayris, mou €yel egapuootel e emtuyla oc mARlog yoouuxy
XL U] YROUUXOY CTUTIXGY, xo®S %ok dLVAUX®Y TEoPANudtwy. ‘Ocov agpopd
€VoL OTATIXO EAACTIXG TEOBANUO UTO VIETEQUIVIC TIXT| POPTLOT), QUTY cuVIoTOTAL GTO
VAT TLUY A TOU XadoAx00 UNTE®OoU 6 TYBUEOTNTAS, UAAS XAl TOU BLUVUCUOTOS HETO-
HVACEWY, XEAVOVTAS YE1oN EVOS Tuyaiou BLUVOCUOTOS € UE UNOEVIXT| MEOT) TN ol

YVWOTO UNTEMO GUVDLAOTORS WC:

0 4 Z K(l)el + Z Z I{(2 €€+ ... (40)

'Lljl

+ZU ez—l—ZZU €€ + (41)

i=1j5=1

AvtohoTdvTog TI¢ Tapandve oyEoels oTtny eiowaor looppoTiag xaL eELoWVOVToG
Toug 6poug BAoEL Tou €, TEOXUTTEL OTN GUVEYELN OELRd amd eEIGWOELC TEOC ENEAU-
on. Awtne®vToag 0 Toug 6poug uéyet xou BEVTEENS TAENG ot ATUAElPOVTAS TOUG

UTOAOLTTOUC amd TIC avewTéPw EELOMOELS, 1) UEOT) TWT| TNS ATOXELONG TEOXVTTEL Ao

™ oyéon:

n

EU)=U® + 33> U Elee;] (42)
1

i=1j=

2. H uédodoc paouatikdy otovaotikdy tenepaouévaoy otoryeiowy, OTwe Tapouotdo Tr-
)

xe oné toug Ghanem & Spanos (Ghanem and Spanos, 2003), Bascileton oto o-
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vamtuypa Karhunen-Loeve (K-L) tou untedou otifapdtnrog, evéd to Tuyaio Sévu-
OO HETAXIVACEWY EXPEACETAL WS AVATTUYUA TOAUWYLULXOV ydouc. 2¢ ex ToUTou

TEOXUTITOLY Ol OYECELC:

K©(0) = K + 3 KO (0) (43)
U0) =3 U, 0) (44)

6mov oty e€iowon (43), 1o Ky exppdlet tn uéon Ty Tou untetou oTBupdTnTog
K©(0), evé 10 Kl-(e) olvetan amé TN oyéon:

K9 = \/\ / ¢:(x) BT DyBdQ, (45)
Qe

H 8¢ el e€iowon wooppotiag TpoxinTel we:

(Tx) (f: Uy, <e>) ~F=0 (16)

eve o aptiude ayvootwv oty egiowarn (46) eaptdton amd tov opriud TV dpwyv
Tou BtatneolvTon ot avomToyUaTa TV eElohoewy (43) xou (44).
3. H pébodog Monte Carlo, 1 omolo efvan duvatdy Vo EQUEUOGTEL GE OTOLOOHTOTE
O0TOYAOTIXO TEOPBANUN TETEPACUEVLY GTOLYElWY cuvicToTow amd Ta e€X¢ Tela BruoTa:
o I'éveomn BelyUaTOOLVUPTACENY TUY ALY TEGIWY TOU TEQLYPAPOLY TNV UTO UE-
AETN oTOYACTIXT LOLOTNTO.
o Extéleon vieTepuvioTinAc avdAUGTC TETEQPUCUEVGY OTOLYElWY Yiot xdde Eval
amo ToL TUEATAVE TEDLAL.

o MToToTixY EMEEERYUOIN TV ATOTEAECUATLY OAWY TWV TORATAVE) AVOUAIGERY,
UE OXOTO TOV UTOAOYIOHUO TOV OTUTIOTIXOV YUQUXTNPIOTIXMY TV UTO UEAETT

ueYeddy amdxpLomg.

Treviuuileton mwe x0plo YelovéxTnUa TNg uedoou elvor TO UEYIAO UTOAOYLOTINO

%060T0¢ AOY® TOU TARUOUS TWV avahOCEWY TOU ATALTOVOVTAL.

0.5.1 MEeEU0doL ONUELAXNS BLAXPLTOTONONG

Ou dnuoguéctepeg puéodor onueaknis O1aKkpITOTOINONS TOU TUPLOTAVOLUY €VOL CUVEYES

oToyacTxd medlo oe cuyxexpEva onueia Tou yweou elva:

x|



0.6 XUVaETNOELS BLAXVUAVONG TNG ATOXPLONG

1. H pédodog tov koupiiov onpeiov, 6mou ot Tyéc Tou Tuyaiou tediov utoloyilovto

0TOUS XOUPOUS TOU TAEYUUTOS TWV TETEPACUEVWY GTOLYELWY.

2. H puébodog tov onueiov odokAnpwong, 6mou oL TWeS tou Tuyalou mediov uToAo-

yiCovtan ot onueior ohoxApwong Tou xdie cTolyelov.

3. H pébodog tou kevtpikol onueiov, 6mou to tuyoio medio umoloyileton 6TO xE-
vTpwo onuelo xde nenepacuévou cTolyeiou, eV 1 T Tou TpoxinTel Yewpeiton

AVTITPOCWTEUTIXY X GToERT| € OAO TO TETEPAOUEVO GToLyE(D.

0.6 2XUVIUETAOELS SLAXVUAVONG TNG ATOXELONG

H 18é0 twv ouvaptAceny Stoxduavone tne amdxptone (LAA) eofydn and tov Shinozuka
oe pla oepd ond tpwtonoptaxd dpdeo (Bucher and Shinozuka, 1988; Kardara et al.,
1989; Shinozuka, 1987). Apywd, n uédodog eupudoTNXE Ot GTATIXG TEOPAY AT, EVE 1|
EMEXTAOT) TNE Yot Suvalxd TEOBARTa Tou 0dNYel 6TNV EdpalwoTn TN duvoUXTc cUVSE-
mone daxdpavong andxpone (AXAA) napouvoidotnxe ota dpdpa (Papadopoulos and
Kokkinos, 2012, 2015). Av xou éwvon 60oxolo 1 adivatov va mopay Vel xAetoth oyéon
yioe e LAA xou AYAA, autéc SOvavTtan mhpouTta vor UTOAOYLoTOUY apliunTixd Ye yehon
g Toryelog uedo6dou Monte Carlo (FMCS).

0.6.1 Oplopdg FuvapLxhc CLVEETNOYNS KECTS TLLHC/SLoxl-
RAVONG TNG ATOXELONG

[N povodidotota TEoBAAUNTA, 0L GUVIPTAGELS UEOTS THAG/BLoXOHOVONG TNG AmOXELONS

opilovTon GUUPEVA UE TIC OYECELS:

Efu(t)] = :” DMRF(t, r,0,,)S;(k)dr (47)
Var[u(t)] = /_J:o DV RF(t,k,0¢f)Sss(K)dR (48)

6mou u(t) elvon n und PeAéTn amdxplomn, eved wc Sy BNAGVETOL TO @doUa oY DOC TOU
TuYalou TEBIOL TOU TUPLGTAVEL T1) OTOY UG T TocoTNTA Tou e€eTdleTar. Edd npénet v
emonuaviel xar to xVplo yopoxtnetotixd twv AXMA/AYAA, dnhadn n avelaptnoia
TOUG a6 TO QAo LoY YOS dEal Xou T1) DoY) CUCYETIONG TOU TuY oL TEBloL TV YETNOLIO-
TOLELTAL Yol TNV TEPLYEAPT) TNG UTO UEAETY) GTOY G TIXNS IBLOTNTAC TOL GUCTHUATOC. AuTo

GAOOTE TO TAEOVEXTNHA €iVol TOU ETUTEETEL TNV avdAuoT) euanoinciog Tne uéong Tng

xli



Extevig Ilepiindn

XL TNG OLOTOPAS TNG AMOXPLONG WG TEOG T YUPAXTNPLO TIXE CUCYETIONG TV TuyaiwY
TEdlWY.

‘Ocov agopd dididotota npofAfuata, ot avtiotoryes oyéoelc v g AXMA/AYAA
€youv ¢ eCAC:

+oo  ptoo

Elu(t)] :/ DMRF(t, k1, ke, 057)Spp(k1, ko)dridre (49)
“+o0o “+oo

Varfu(t)] :/ DV RF(t, k1, ko, 05p)Sss(K1, ko)dridks (50)

0.6.2 Ymnoloylopdg dve oplwy pEong Tiwnhc/diacopds Tng
ATOXELOTG

H pedodoroyla twv AXMA/AYAA emtpénet tov dueco umoloylopd dve oplwy g

UEONC TYWNS, ARG Xou BLoTIORAC TNE AmdXELoNE, OAA GUVIETAGELS ToL Ypedvou t. T 6To-

YAOTIX UG THUOTL OE Wiot BLAG TAUOT), ToL VW TERE Lol UTOAOY(CoVTon BACEL TwV OYECEWY:
“+00

Eld(t)] = DMRF(t,k,057,1)Ssp(k)ds < DMRF(t, K™ (1), Jff)a]ch (51)

—00

+00
Varld(t)] = / DV RFE(t,k,045,t)Sss(k)dr < DVRF(t, k™ (t),04¢)0%;  (52)

6mou K™ (t) éwvan 0 xupatixde oprdude tou peytotonotel Tic AXMA/AYAA oavtiotorya
yioexdie ypovixr| otiyur| . Ta o mAvien exdva, divovTton 6T GUVEYELD XaL oL avT{oToLyES

OYECELS YO TOV UTOAOYLOUO TV dve 0plwv Ot BIBLIGTATH GTOYUCTING CUCTALOTA:

~+00  p+o0
Eld(t)] :/700 [m DMRF(t, Ky, by, 05f)Stf(Kg, by)dkgpdr, (53)

< DMRF(t, k' (t), k" (t), 045)07

Y

+oo  ptoo
Varld(t)] = /_OO /_OO DV RF(t, Ky, Ky, 07)Stf(Ka, Ky)dRydRy (54)

< DVRF(t, k™ (t), k)" (t), aff)a]%f

6mou (K (1), k(1)) ebvon o Le0ym TV XUPATIXGOY dpLIUGY OTOUC GEOVES Ky XOU Ky

mou peytotonooly Tic AXMA/AYAA 1 ypovixr otiyur t.
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0.6 XUVaETNOELS BLAXVUAVONG TNG ATOXPLONG

0.6.3 Toayela uéVodog Monte Carlo

‘Onoe avapépinxe Topandve, etvon e€apeTind 50oxoho, av oyt avépixto, va Peedel pla
xheoth oyéon yo tic AXMA/AYAA. Tlop” dha autd, ot avwtépw CUVIPTACELS Elvor
BLVATOY VO UTOAOYLOTOUY optduntixd pe T yeron tne tayeioc pedodou Monte Carlo
(FMCS). H Baow ovMndn éyxerton otn yéveon tuyaiwy nediwv f(z) yio povodidotata
TEOBAAUATH TOU AVTIOTOLYOVUY G TUuy ool NUITOVA UE UOVOYPOUUTIXG (QACHATA LY YOG,
Yuyxexpweéva, utohoyilovtag T péon Ty xaL TN SLUOTOPd TNG UTO UEAETY amOXEIoNG
yior xardéva omd o mopondve nuitove, on AXMA/AYAA unoloyilovtan Eeywptotd yia
xde xupatd apripd. H de FMCS cuvodiCeton ota e€fig Briwarto:

1. T Ty tumixr andxhion opy g UTH YEAETN andxplong, Yiveton yéveon N (5-10),

OELYUATOCLVORTACEWY NULTOVOY Yot Xdle xuuaTnd apriud K wg eEAC:

fi(x) = V205 cos(k - o + ¢;) (55)
omou ¢; ebval TO ®EVTPO TV BLIG TNUATWY (2%, W) vyio j =0,1,...,N — 1.

Toviléton puowd twe, Aoyw tng ouuuetpiog wv AXMA/AYAA oe povodido toto
OTOYOC TG CUG TAUATA, UOVO U1 0OVNTIXES THES TOU XUUOTiXoU aptduod yenotuo-
mowolvTon. o v oxplBeta, evag dve xuuaTindg aprdude amoxomhg Ky, ETAEYETOL
x&e Qopd, EVE 0 GZovog XUPATIX®Y apliu®y ywpelleton oe M uTOBLC THUATOL.
AeBopévmv TV Tapamdve, 1 dlaxpltototnuévn uopgt tne e&lowone (55) €yet wg
eChc:

fis(x) = V2055 cos(ri - x + ¢;) (56)

6mou k; = 1Ak Yy i =0,1,..., M xou 10 Ak = Kk, /M ocuuBolilel To TAdTOC TOU

OLUGTHUAUTOC GTOV GEOVAL TV XUPATIXOV ORLUUOY.

2. T xdrde SroxpLtd xupotind aprdud K;, uToloyiCetar xoToOTY 1 UECT) THLY) Xou BlAoTO-
ed TNg amdxELoMNE Yol TIC avTio Tolyeg IV BELYUATOCUVILTOELS TV TUY WY NULTOVKY,

omou fi; vy =1,2,..., N.

3. Troloytopde v Tuey v ALMA/AYAA yio xdde xugatixd aprdud k; xdvo-

VTG YPNOT TV OYECEWV:

DMRF(t, K, O'ff) = % (57)
Off
DVRE(t, ks, 04p) — Y140 (58)

2
ff
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Extevig Ilepiindn

4. Buyxévtpwon 6hwv tov Twov v ALMA/AYAA v xéde xupatixd aprdud k;
oe xdde ypovixd Bruc yia TN Oedopévr TuTx andxhion opp. H 6An draduactia
oUvaton eiong vor emovaAn@Oel yior VORI TIXES TWES TNG TUTIXAC UTOXAIONG O ff.

Me avéroyo tpoT0, 1) Topamdve UEVOBOC EMEXTEVETOL YL TNV OVTYETMTLOY) GTOY UG TNV

TEOBANUATOV GE U0 XU TEELC YWEIXES DLACTAOELS.

0.7 Xtepeomoinom €d0dPOUS UE CTOYACTIXES LOLO-
TNTES

2NV evotnTa auUTY| UEAETATUL TO (QUUVOUEVO TNG OTEPEOTOMNONG XOPECUEVOU EDUPLXOY
OTPOUATOC PE OTOYUCTIXN OlamepatdtnTa b xan Yetpo ehactixdotntag F. T'a tnv ev-
CWUATOON TNG YWEWAS BLIXOUAVOTS TWY E00PXOY WIOTHTWY uodeTelton 1 uédodog Twy
O TOY O TGV TEMEQUOUEVLY GTOLYELWY PE TN Hwop@t| TNng ameuieiog avdiuvong Monte Carlo.
Yuyxexpwéva, 1 apuduntixy egopuoyy| mou e€etdletar cuvioTaTal And AXUUTTO TEOYY
ApdnTo Yepého entl otoyaoTnol edapol otpwuatoc. H 8 umd pehétn amdxpion

mepthaufdver T6co TNV xadilnon tou Veyehiov, 600 xou TIC EBUPEC UTERTIETELS TOPWV.

0.7.1 ApwpnTtixn enilvon Twv eicwoewy ctepeonoinong

Kotd 1o goavéuevo g edagpxnic oTepeonolnong ouvieheltan oTadlony| arotoveno Twy
UTERTIECEWY TV TORWY, GUVOBEUOUEVT] OTtO TURUUORPKOOT] TOU E0aPX0) OXENETOU. Avo-
AUTIXOTERA, EVaL POPTIO, TOU EQUPUOLETOL OE XOPECUEVO EQUPIXO CTEMUA, ToEahouBdve-
ToL AEYIXA o6 TO UYPEO TWV TOPKY TOL £D8POUC UTO T1| LOp@Y| UTERTESTC XL O TodLX.
uetaBiBdleton otov edapxd oxchetd. H dewpla tne Hovodidotatne otepeonoinong mo-
couoldotnxe and tov Terzaghi, eve n eméxtacn oTIC TEELC DLICTACELS TEXYUATOTOLRITXE
and tov Biot (Maurice A. Biot, 1941). Xtnv nporypotixdtnta, T0 XAeWdi Yo TNV XoTovon-
oY) TOU QouvopEVoL efvan 1) €VVoLa TG EVERYOUS TAOTG, 1) OTOLN AVAPERETAL GTO TOGOGTO
TN OMXTC TdoNe Tou TopohopfdveTal and ToV €duPIXd GXEAETO. Luvoudloviag O TIg
edlowoelg Wooppotiog xou Swthenong wdlag Ye to vopo tou Darcy, mou meplypdget T pof
LYPOU PECK TOPMOOUS PEGOU, 0BNYOUUUCTE 0TO GULELYHEVO GUCTNUN TWY EELOWOENY
otepeonolnong.

YNy napovoa SLaTelBT), 1) Ywexr Blaxpltonolnon 1wy eEloWoEwWY O TEQEOTOMOTNG ETL-
TUYYGveTaL PE TN HEY0B0 TEMEPUOUEVWY GTOLYEIOY UETATOTIONC-TEOTC TOPWY (u-p), eved

YL TNV OAOXATIPOGCT) WG TTPOG TO YEOVO yenotuonoteltar 1) yevixeupevr pédodog Newmark
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0.7 Ytepeonolnor €8APOUE UE OTOYACTIXES LOLOTNTES

TeKOTNE T8ENg. Bdoetl tov mapamdve, 1 teA untewmixy eéicwon mpoxinTel ¢ e€hg:

GESY F+D)
1,,(n+1) - sCT (1) (59)

omou K, T0 unte®o oTiBapdtnTag Twv edapxay oTtotyelwy, C To untemo olleuing,

K,, sC
sCT —s2AtK,

K. 10 unteto UBpaUAXAG Ay WYILOTNTOG, EVM U XUl Uy, T OLVOOUATO UETOXLVTOLOXWY
Boduwy ereudepiog xou mieong mtopwv aviictolya. Emmiéov, 1o At dnimvel 10 ypovixd
B ohoxhfpwong xat s Evag PatunTtos CUVTEAEGTAC TOU BEATIOVEL TO BelxTn XaTdoTa-
OMG TOU UNTRMOL GTO aploTepd Pélog, 6mwe poteivetat oto dedpo (Reed, 1984). To be
UNTE®O ToU TEOXVOTTOUY TNV e&lowon (59) HOPPOVOVTUL CUUPOVA UE TIC CUVIRTNOELS
OYUATOG TOU YENOLOTOOUVTOL Yial TNV TUPEUSOAT| Twv Paducy ecuieplog uetaxivnorng
xa Tieong TOPWY. LMUEIWVETAL WS OL TEYVIXES TTOU YLENOWOTOLOUYTOL YL TO GXOTO Au-
16 avolvovta o Bédvoc oo ouyypdpata (Lewis et al., 1998; O. C. Zienkiewicz et al.,
1999; Smith and Griffiths, 2004). Ogether var onueiwdel towe, oty napoloa ST, o
ouvtereosThc dlamepatdtntag k oplleton ot povddec [whixoc)?[ypdvoc]/[udla] A 100dlvopa
[whwoc]* [B0vapn] !/ [xpdvoc], Brapopetinéc amd T uovéda Toy UTNTAS TOU YENOYoToLE ToL
oTn YEOTEYVIXY|. §20T600, 1o 800 BLpPOEETIXE UEYEDT BLUTEPUTOTNTAUS CUVBEOVTAL UECK
e oyeong k = k' /4w, 6mov K o CUVTEAEO TG DLUTEQUTOTNTAS EXPEUCUEVOS GE OPOUG
ToyUTNTAS X0 Yy TO €00 Bdpog Tou vepol. Emmpdoieta, viodeteiton iootpominy dio-
TEQPATOTNTA Xal €TOL 0 TAVUCTAG Olomepatotntog k exgpdletan we k = kI, émou I o

wovadlaiog Tavuo TS BedTEPNC TAENC.

0.7.2 AvdAuom e CTOYACTIXG TMENEQACUEVA CTOLYEL

XNV eV AOYw UEAETN, O OUVTEASOTHC OLAMEQUTOTNTAS K Xt TO UETPO EANCTIXOTNTOG
E mpocopoidvovton w¢ Bodtuwtd ogoyevh hoyapripoxoavovixd tuyaio nedia (2D-1V) ue
Yot dtonduavor oTig 6Vo dlaotdoelg. H emppor twv k xan B yehetdron aveldptnta oe
Eeywplotéc avarloel Monte Carlo, evey 1 pédodoc xevtpixol onueiou yenoylomoleiton
YL TN LORPOOT) TWV CTOYACTIXDY UNTEMOY LORUUMXAG Ay WYUOTNTAS Xt OTBAPOTNTACS.
LUgpove e auTr, N Y0eWwd cuveHS edapixy| WLOTNTY, T.Y. k, Tpooeyyileton and uia
HovodLxY| Tuyoka ETABANTY k(z) mou opileton wc 1 TW1 Tou TUYAlou TEBIOL GTO XEVTELXO

onuelo x, xdie ototyelov 2, we:

k(z) = k(z,) Ve (60)
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Katoapynv, 1 u€dodog gaouatixng avanopdo TaoTg YeNOUOTOLEToL Yol T YEVECT) OHOYE-
vov I'raouciavey tuyaieov tediov undevixrc péong TWhc xat Jovadtodag SlaoTopds 6To
xevtpd onueto xdie nenepacuévou ctotyeiou. Emeita, ot Aoyaprduoxavovixéc mopdpe-

TeoL unoloyilovTon we e€rc:

Ok
Pk
Oy = In(1 4 v7) (62)
1
Pngky = In(pe) — 50-12n(k) (63)

EV® oL TENxéC Téc k; (avtiotorya v E;) vnohoyilovto uetaoynuatilovtag ta oTovyelo

Tou 'raouctavol medlov G Y€ow Tng axdrouing oyéorng:

ki = exp(fin(k) + O Gi) (64)

0.7.3 ApwdunTtixr epapproyi
0.7.3.1 TIlepiypapr ToL ApLIUNTIXO0 TEOCOUOLOUATOS

‘Onwe avagéplnxe mopandve, 1 aerdunTixy eQououoyy| arotekelton amd Evo dxauUTTo TEA-
YO Awpdwto Yepého enl xopeouévou eddgpouc. Autd @optileton UE OPOLOUOPYO PopETIO
QUEAVOUEVO PE TO YPOVO, UEYPL Vo QTAoEL uiot UEYIOTN T OTOU %ol TOPUUEVEL ETEL-
To otodepd. To oyeTnd TpocoUOlwUN TWV TENEPAUOUEVLY CTOLYEIWY anexovI(eTon GTO
oyfua 6.3, 6Tou T Thyog TOoL EdAPO GTpwUaTog elvar H = 20m xo To TAdTOS TOU
Yepehlov B = 10m. ¢ mpoc tnv oplovTia dietbuver), To cuvokxd urixog L = 60 m e-
wpeltan emapxéc Yoo TNV Tpocouolwsor Tou TeoBifuatoc. IoomapousTond TeTEoXOUBINd
TETPAYWVIXS o Totyela eTiMEdNG TUPAUOLPWOTNC YENOYLOTOWOVTAL ETUONE YLt T1) OLoEL-
Tonolnom €ddpouc xou Vepehlouv pe uixog oxunc 1m.Troypouuileton mwe Tor oTolyel
Tou avtieTololy 670 €dagog dtadéTouy Paduolc ehevieploc uetaxivnong xon mieong
TOPWY, TOL TOREUSIANOVTOL UE OLYQOUULXES CUVORTNOELS OYAATOC, EVE ToL OTOLYElN TOU
Yepelov dradetouv povo Poduoile ehevdepiog petoxiviong. ‘Ocov agopd T cUVOELIXES
ouvirxeg, 1 BdoTn TOU HOVTEAOU TOXTOVETHL, TNV Bla GTLYU TOU GTIC 000 XATUXOPU-
(PEC TAEUREC OL OPLLOVTIEC UETOXIVACELS OECUEVOVTAL.  MUYYPOVWS, GTOUS XOUBoUC TNg
Bdone ot TV XATAAOPUPKY TAEULKOY YENOHIOTOLOUYTOL UOLATEQUTES UDPUUAIXEC GUVO-
ELoKéG GUVITXES, EVG OTNY ETLPAVELNL TOU E0A(POLG emitpéneTton eAcOUERT ON, 1 dAALDG

undevixy umepmieon népwyv. To 6e opolduopPo empaveloxd QopTio p, Tou EQupuoleTo
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0.7 Ytepeonolnor €8APOUE UE OTOYACTIXES LOLOTNTES

oto Vepého, auldveton yoauuixd and o Ypovo 0 €wg To ypovixd onuelo ty = 25 nué-
PEC, OTOTE o TUPOUMEVEL GTadEPd UE TWH Par = 1.0 kEN/m?. Egbéoov 1o mpoBinuo
elvor YooUUIXAOS EAXGTIXG, 1) ETLAOYT] TOU povadiafou goptiou ETITEETEL T YEVIXEUOT) TWY

AMOTENEOUATOVY Yiot EVORhaX TS PEYEDT popTiou. XTnv TEOoXeWEV €QoapuoYY O CUVTE-

p

Pmax |- ;
/it
\\\\ 0 /,l//’

I S —
drained !
JE %3
1K 5
N D
D b
| >

> <o
P P
b

undrained L =60m ~undrained

Lo 4. Alxtuo TETEQUCUEVRDY GTOLYEWY.

AeoTAC BlamepatoOTNTUC Kk X0 TO PETEO EAACTIXOTNTAC B elvor oL 6TOY Ao TIXES TORAUETEOL
TOU TEOPAAUATOS, EVE OL UTOAOLTES LOLOTNTES TWV UMXMV EIVOL YWEIxd Xt Ypovixd o To-
Yepéc. O Adyog Poisson tou eddgoug etvor v = 0.3, eved 10 LAXO Tou Veyehiou €xel
Tic Wotteg F = 20GPa xan v = 0.4. O cuvteheo g OlamepatoTnTog A ot T0 UETEO
ENCTIXOTNTOS F TPOGOUOLOVOVTAL (G AOYapLIOXaVOVIXS. OpOYEVT| Tuyala TEdio PE uéom
Th gy = 1221075 m* - kN1 /day xou pp = 622.7 kPa avtiotoya. IIAdoc dragpopeti-
XDV GLVTEAEGTHV dloxUpavone COV = {0.25,0.5,1.0,2.0,5.0} yenoyonoteiton xot yio
TIC BVOo edapxég wiotnTeg. Emmpdoldeta, o uinn cuoyétiong bl = 021k = bin)
vk oxon bliyp)y = 021(p) = bin(p) Yo £ xupoatvovton petacd 4.0m xan 100.0m.  ¥to

A ¢ D
i |
VAY voy J‘VD
L
B >

A
y

Eyfua 5. Kardilnon depehiov.
oyfua 5, Ta onuela A xan D ovTioToly o0V GTIC Gve aploTeEpd xou Se€d x0puPES Tou Vee-
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Aouv, vy 10 C' 610 %€VTEOo TN GV axuhc Tou. Ot 08 XATAXOPUPES UETOXVACELS TV A,
C xou D ouyPorilovton ¢ va, v xou Vo avtiotorya. Tovileton mwe otn ouyxexpiuévn
EVOTNTAL 0 6p0¢ O1aPop1kT) kaOilnon yenooToLElTon Yo Vor EXPEUCEL TNV AmOAUTN T
NS OLaPoRdC TNG XaToxOpLENG ueToxivone Twv A xau D, A adhioe Av = lva —vp).

0.7.4 MeléTn CTATIOTIXWY ATOXELONG
0.7.4.1 Kadinon Yepeiiov

X1y mopolco UToEVOTN T HEAETATAL 1) amdxploT) Tou Yeusiiou ot dpoug xadilnone. Ap-
X8, 1 EMEEOT| TOU UAXouS GUOYETIONG Din(k) = bl = b21nk) % ey = bl =
b21,(E), TO omolo houPdveTar WE IGOTEOTIXG, OTWE XAl TOU GUVTEAECTH DLOXUUAVOTNS 0T
uéor dtagopxt| xoilnomn amewcoviCovtow oto oyfue 6. Amd exel yivetan @avepd mwg
UEYOAUTEQEC TWEC TOU GLUVTEAECTY| Sloxlpavone awdvouy Tn dtagopixn xadilnon. Xu-
YXxEVOVTAC O To AMOTEAECUATA YIo TIC CTOYUCTIXES WWOTNTES k xou E, mpoximtel to
CLUTEREAOHA TS 1) BLapopixt] xardlnom etvar dpXeTd UEYUADTERT) TNV TERITTMOT TNG OLo-
x0povong Tou PéTpou eAacTixoTNToC. Emmiéov, n yoper tng xoumding eéhéng tng
orapophc xodilnone elvan dlaopeTiny oTic Yo Tepimtwoelc. ‘Ocov agopd TNy Tepintew-
o1 Tou oToYaoTwoU k, 1 Sopopixry xadilnom hauBdver uio puéyiotn T xon €mertar @oivel
meog undevxéc Tyée. Avtideta, oty mepintwon tou F, ot dwgopwéc xohlHoelg mo-
eauéVOLY o) OAT) T BIBEXELN TNG OTEPEOTOMOTNG, EVEK AUEAVOVTOL UOVOTOVIXA [E TO
yeovo. ‘Etol, 1 tedut| dtagopixry xodilnom elvon un undevixr) uévo yio TNy meplntwon
NS OLXVUAVOTNC TOU UETEOU EAACTIXOTNTAC. LNUEIWVETAUL WS 1 xaH{{Non UELOVLUEVGLY
onueiwy Tou Yeyehiov dev ToEOLGLALEL TO (BlO EVOLUPEROY YOl YLl TO AOYO QUTO TUQUAE-
(meTo.

H perétn Aowndv g evonoinoiog tng Yéong TYhG xaL TUTIXHS amOXMoNG TN UEYL-
oTNe dtapophc xad{lnomg we TEOC TO XUAVOVIXOTOUNUEVO UAXOS CUCYETIONS TWYV TUY WY
TedlwY 0dNYEL 0TO MO EVOLAPEPOY CUUTERUOUA TNG EV AOYW epapuoyic. Kau autd yotl,
TOEAUTNEOVTAS T oyua 7, eivon Eexdlapo mwe 1 U€om Ty xou TUTIIXY| AmOXMGOT| UEYL-
oTomOUVTAL Yiot T ToU AOYOU biy(ry/B %x0vTé ot povdda yior TNy Tepinteor tou k,
avelapTATWS TNS TYWHS Tou GUVTEAESTY cuoyétione. ‘Ocov agopd de TNy TeplnTwor Tou
E., nev Myw peyiotonolnon npaypotonoteitar yia Tég 10U AOYoU biyg)/B uetalld tov
1.5 %o 2.5.

0.7.4.2 TYrnepnicon népwv

Y aUTY| TNV UTOEVOTNTA BLEPELVATOL 1) UTERTEDT) TOPWY TOL E0UPO) GTEMUAUTOS. Lu-

yxexpéva, eZetdleton unepmieon tou onueiov mou Beloxetan oe Bddoc B/2 and tny
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1e-5 1e-4
B COV=025|| € b (m) COV =2.00
c 6 — |4 = 3 — 4
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84 — D5 o ) -— 05
S S
c c
(] o
2 2 = 1
© o
[ [
© ©
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= DN
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mean differential settlement (m)
5

0.5
0.0
107! 10° 10t 107 103 104 10° 1071 100 101 102 103 104 10°
time (days) time (days)

(Y) (®)

Yyfuo 6. Méon tun tne Sopopniic xoilnone vap yuw @ (o) otoyootxd k xou COV =
0.25, (B) otoyaoctnd k xou COV = 2.00, (y) otoyoouxd E xou COV = 0.25 xau (9)
otoyactxd E xou COV = 2.00.

oLy EmpAvela el TNG XATAXOELPOL ToL BLEpyETL amd To XEvTpo Tou Veueiiou. Ilo-
eaTNEOVTUG TO oy Aua 8, efvar OAOPAVECD TWE 1) UECT) TYY| TNG UTERTIEONC TOPWY To-
CUUEVEL AVETNEEAG TN At TO UNX0G GLUOYETIONG b, xad® xon TNV TWH TOU CUVTEAESTY
SroxUpavone (COV) téc0 yior T ywewr dtaxdpaven tou k, 6co xat tou E. Toap’ 6ha
oUTE, CUUPWVOL XoL UE TO oYU 9, Yo UEYIAES THIEC TOU GUVTEAECTY| BLAXOUOVOTG To-
eoUGLECETOL ONUOVTIXY BloOUaveT) TG Teong YUEw amd Tn HECT T YLo TNV TEPITTWOT
Tou otoyacTxol E. Téhog, pehet@vtag T PEYIOTN T TG MEONG TIWAG Xou TUTIL-
xS AMOXNONG TNG UTERTEOTG CUVOIPTACEL TOU XUVOVIXOTIOUNUEVOU UNX0UG GUOYETIONG
mou ametxoviCovtow 6to oyfue 10, etvon Eexdiiopo mwe dev TaUPOVCLALETOL CUYXEXPWEVO

OY AU TOV XAUTUAGY Yoo TNV Tepintworn tou k. Touvavtiov, otnv mepintwon tou F,
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Yyhuar 7. Méom tyur xon Tumaed amédxAiom g uéYloTng dtagoptxis xadilnong vap cuvae-
ThoEL Tou Pixoug cuoyétionc: (o) péom T Yo otoyacTixd k, (B) tumxi andxhion yio
otoyooTd k, () péon Ty yio otoyaotixd E xou (8) tumxd andxhion yio 0 Toyoo Tixd
E.

Ol TYWEG UEYLOTOTOLOUVTOL YIal UXEd Prjxn CUGYETIONG, VK oTadeponotodvTal 66O aUTd

avEdvovTalt.
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Yyfua 8. Méon tn g unepnicong népwy ppje v (o) otoyootind k xau COV =
0.25, (B) otoyaotxd k xou COV = 2.00, (y) otoyactxd E xa COV = 0.25 xou (9)
otoyaotixd E xan COV = 2.00.
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YyAua 9. Trepnicon nopwv pe Yo uAxog cuoyETIoNg b = by = b, = 10.0m yuo
(o) otoyaouxd k xaw COV = 0.25, (B) otoyaoctixd k xou COV = 2.00, (y) otoyootxd
E xou COV = 0.25 xau (8) otoyaoctixé E xau COV = 2.00.
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Yyfua 10. Méon tiun xon Tumf|] amdxAlon TG HEYIOTNG TWAC TNS PB/2 CUVIPTACEL TOU
wixoug ouoyétiong: (o) uéom Tn yioe otoyooTtid k, (B) Tumx| oamdxAom yiol 6TOY Ao TG
k, (y) péon tun yo otoyactnd E xou (8) tumixh amdxhion yio otoyactixd E.

liii



Extevig Ilepiindn

0.8 AXAA vy 1 6LAB00Y) XVUATOC COE CTOY -
OTIxO £0POG

Yy ev Moy evotnta e€etdletan To TEOBANUA TG SLdb00TE BIUTUNTIX0) XUUATOS OF €80
(pOC UE YwpeLxT BloxOuovoT Tou pétpou didtunone G und to mpiopa wv AXMA/AYAA.
LnueEldVETHL WS 1 ave€apTnoio aUTOY amd TO QAGUN LoY YOS TNE UTO UEAETT) BLOTNTAC UAL-
%00 %o Td Tn pevodohoyia xaTdAAnAn yio TeoBAUoTa Tou TepthauBdvouy eddepr), dTou
1 €M emapxy Bedopévev etvar ouviing. Ewdwdtepa, amodeivietal Twe, UEcw TeV
AYXMA/AYAA, n ypovoictopla Tne péomng TS xou BlaoTopds Twmv UEYEDDY amdxplong
oUVavTaL Vo UTohoYloToOV Ue axpifeta yior TpoBAfuata B1éddoong SlaTunTo) XOUATOg
o€ £0upd TpocouolUaTe Uiog xou dVo Sotdocwy. o Tov apriuntind unohoyloud
v AMYA/AYAA petotdmiong, toyOTnNTog xon EMTEUYONS TNS ESUPIXAC ETLPAVELIS,
vioveteitan 1 tayela pédodoc Monte Carlo (FMCS). H egapuoyn cuvictatar and ova-
ANOGELC TEMEQUOUEVKY GTOLYEIWY Yol TN BLEB0CT, CUVIETIXWDY XUUATIOLAXWY CUVIOTACEWY,
xS KL TEOYUATIXNAG OELOUIXNC XATAYRUPHC UE OXOTO TNV ETXVEMCT) TOU BUVOULXOU
¢ pedodou. H de axplBeta tng yedddou ehéyyeton pe olyXELON TV ATOTEAEOUATWY UE

7’ 7 / /7 7
avtioTolya mou mpoxUmTouy and areulelac avaivoewc Monte Carlo.

0.8.1 IIpoocopoiwoy diddoong SLATUNTIXOV XVUATOS GE CTO-
YAOTIXO E0UPOG

H o toyaoTtixr edaguxr| Tapdueteog Tou ueheTtdrtal lvor To avTio Tpo)o Tou HETEOL BLdTuN-
ONG TOU EBAPOUG 1/G, tou omnoiovu 1 YOEWXY| BLOXOUAVOT] CUVTEAEITOL GTOV XUTAXOQUPO
GEoval Y YLor LOVOBLIC TOTA HOVTEATL, EVE Yol HOVTEAN ETUTEDTG TAPAUOEPKOTS TOCO O 0pL-
CovTiog dZovag T, 660 xol 0 XATaXOELPOS Y Aapfdvovtar utodrn. Ievind, otn BidLdc ToTY

TepInTwOoT Loy Vel 1) €A oyéon:

o = P (1 @) (65)
6mou G(x,y) To Y€tpo dLdTunong oto orneio Ye ywpwxé ouvtetayuéves (x,y) xou f(z,y)
€val OUOYEVEC TUY o TEDID UNOEVIX|C UEOTC TWUNAS TOU OVUTOELOTA TN BLaOUOVGT) TOU
1/G yOpw ané tn yéon tun touv Fy = 1/G.

To SrtpnTind xopo dradideTan uéow evog Peayddoug 6 TEmUATog Tou Yewpeltal oUo-
YeVég 670 edapixd otpwua entt autol. Ipoxewévou va Angidet urddn 1 evbooudTn T TOU

Beayddoug umofdipou, EOdEC anocBectipeg mpootidevton otoug xéuPouc tne Bdong
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0.8 AXAA yia T SLAB0CY] XVUATOG OE CTOYACTIXNO EBAPOG

TOU YovTéhoU, OTw¢ amewovileton ot oyfuata 11 xan 12 yior pla xou 500 BlacTdoElg
avtioTolya.
‘Ocov agopd Tn dBLddooT BlaTuNTXo) XVUATOG Ot pio BIGoTUoY, 1) SLUTUNTIXY TdoM
olvetar amod N oyéon:
ou
Toy = G— 66
Yy ay ( )

omou u 1 opwldvtia petaxivion xatd Tov dova x. Ot O emxoufieg Suvduels yio Eva

HOVOOLACTATO oTOLYElD e ovadloda ETLPAVELX BLATOUNE Xt UAXOG e, OTWE AUTES ATEL-
xovi{ovton oto oyfua 11, utoloyilovtour we e€ng:

F; 1 U;
f-w e @)

6ToU To UNTE®o oTo Oei YEhog Tne edlowaong (67) AVTIGTOLYEL GTO PNTEWO OTRUPOTN-

G -G
-G G

TAG YL TN dovodido taty mepintworn. T v mpocouoinon tng duddoong xouatog oTig
000 OLUC TUCELS YPNOHLOTIOLOLYTOL LOOTIURAUUETELXS TETEAXOUPBIXS TETPATAEUEIXS G TOLYEl
en{medng mapoudPPLoNC.

Ogether va onuewwdel mwe, yioo TNV TeptTwon Tpocopoiwone diddoonc dedoUEvne
edapixric xbvnong t6co o pla, 660 xu o€ 600 BLACTACE, TO TEOCTINTOV XU TOU
OLodideTon amd To Poy®deg LTOCTEWHA Vo TEETEL VoL UETACYNUATIOTEL OE LGOBUVAUES
emxoUPieg duvduels mou egopudlovion ot Bdorn tou povtédou. T 1o oxond autd

vtodeteiton 1 axdrovdn oyéon:
Fwave<t> = QPb : ‘/sb . ‘/I(t> -A (68)

OToU pp M TUXVOTNTA TOu PBodyou, Vg 1 toydtnTa 01ddoong SlatunTixod XOPAToS TOU
Bediyou, Vi n yeovoioTtopior ToydTNnTog Tou SlepyOpevoL x0uatog xou A 1 emipdvela Tou

avTioTolyel 6Tov x6uBo 6mou epupudleTon 1 BUVAUN.

0.8.1.1 ApwdunTtixf epoproyy

Ye auty| T utoevotnta, 1 wévodoc twv ALMA /AYXAA epopudletor oTny mpocouoinon
OLTUNTIXOL XOUAUTOC GE LOVOOLAC TOTo X0l OLdLdo Tortar €dopixd ovtéha. AmocagpnvileTol
TWE XU OTIC 0VO TMEQITTWOELS, OL EBUPIXES WLOTNTES Efvan ot (Bieg. H umd perétn otoya-
o WoTNTA ebvon To avtioTpogo Tou pétpou ddtunong G, 1 Ywewr| SLodUAVoT) TOU
OTOlOU X0l EVOWUATWOVETAL OTIC Tpooopotwoelc. Kat ta 60o povtéha aroteholvtar and
e0upIxd oTEWOUO Tou popTileTal amd oUoYeVES Pooy®deg uTdoTEmUa. Ol 88 VIETEQUIVL-

oTIXéC TopdueTEoL elvar ot €V muxvotnTa p = 1.8 Mg/m3, Moyog Poisson v = 0.3,
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Cshp = prsb

% incoming wave

Yyfuo 11. Movodidotato npocouolnmua diddoong BLaTUnTixo) xOUATOS OE €D0POG.

L
<t >
soil surface
-V
AN

Vs, py v H

)

T > T H—TH T T3 1o VoA

o Csb, T PbVsh

dal __
. chp = pVind
mcoming wave

Yyfua 12, TTpooouolnyo eninedng napaude@mone yio Tn SlE00CT BIATUNTIXOL XOUATOS
o€ EDa(OC.

eV oL avTtioTotyeg WLoTNTES Tou Pedyou: Vi = 760 m/s, pp = 2.4 .Mg/m3 wou vy, = 0.3.
Téhog, n emheyeioa uédodog ypovixAc aprduntixic ohoxhfpwong eivow 1 HHT — o e
mopdueteo o = —0.02. H péon tun tng toy T tddoong dlatuntixod xOUUTog ToU
eddgpouc etvor Vio = 240m/s bpp § pé ph pé dp &t Go = p- V2 = 103.68 M Pa, evé
T0 UETPO BdTunoNe Tou Bedyou utoroyileton we Gy = py - 321) = 1386.24 M Pa. Onwc
TEOAVAPEPUNXE, TO AVTIOTEOPO TOU UETEOU DLETUNONG TPOCOUOLMVETHL (G Tuyalo TEd(O,

1 Y| Tou onofou diveTon amd TN oyéon:

=L fay) (69)



0.8 AXAA yia T SLAB0CY] XVUATOG OE CTOYACTIXNO EBAPOG

émou f(z,y) éva opoyevéc Tuyaio tedio undevixric puéong tung. o tov utoloyioud twy
ouvopthoewy AMYEA/AYAA yenowonoeitaw 1 FMCS, olugpwva ye tnv omola to 1edio
[ avuotowyel ato tuyaio nuitovo énwe oplotnxe oty e&iowaon (55). Avtideto, yio v
amevieiog pédodo Monte Carlo to f avtioTouyel oe éva opoyevég medio undevixrc uéorng
TWNAS, Ol TEAYUXTOTOCELS TOU OTOlOU YEVVWVTOL UE YQENOT TG UEVOO0U PuOUATIXNS

OVATOEACTUOTG.

0.8.1.2 Addoon xLuatog oc pio didotooT

[ v mpocopoiwon tng Slddoomg Tou SloTunTo) xUotog otn plo dldotaon, To Jo-
VTEAO TETEPUOUEVWY O TOLYElWY, OTwe amexoviletar oto oyfua 11, anoteheiton and 100
otouyeio Opoug he = 1.0m xou €10l TO GUVOMXO TYOG TOU EDUPIXOL GTPWUATOS E-
v H = 100m. Emmiéov, xdde otoyelo €yer povadiaia Satopy A = 1.0m?, evéd
yenowomoteiton anéoBeon Rayleigh ye Adyoug amdoBeong & = & = 0.05 mou avti-
oTOLYOUY OTIC BVO TEMTES IOOPOPPES UE YWVIIXES ouyvotntes wy = (mVio)/(2H) xau
wy = (37Vi)/(2H). "Evag 1&odne amoofBeothpac npootideton enione otov xoufo tng
Bdone Tou poviéhou pe ambdofeon ¥ = p, - Vg A = 1824.0kN - s/m. Evdewtind
ueAETTAL 1) DLEDOOT LovadLalou ToAoD TG Hopghc Tou Teotdlnxe and toug Mavroeidis
& Papageorgiou. To de avtiotpogo tou yétpou ddtunone urtohoy((eTol 0TO XEVTELXO

OTMLELO %xdde O TOLYELOL ATLO TT) OYECT:

1 1

GG, (1+f(v)) (70)

6mou to f(y) avtioTolyel oE opoYEVES Yovodidotato Tuyaio tedio undevixrc uéong Tiuhc.
Ewwd v m odyxplon twv pedodwy FMCOS xa arsudeiog avdiuone Monte Carlo,

Yewpeiton TS T0 Qdoua 1oy 00¢ ToU avwTERW Tuyaiou Tedlou elvor To e€ng:

Sys(s) = 30 % exp (~b]s) (71)
‘Onwe éyel enavelhnuuéva avagepdet, n uédodoc FMCS yenowomoleiton yio Tov utolo-
yopd twv AMEA/AYAA. Yo oyfua 7.4 onewxoviCovton oo AMXA/AYAA yio tov
mou6 Mavroeidis & Papageorgiou yio Tumix| amdxhon tuyaiou nediov oy = 0.2, ar’
omou xou mpoxUnTEl Twe 1 AXMA elvon otadepr) ¢ mpog Tov dEovo TV XUUATIXGDV
oprducv. Touvavtiov, 1 AXAA ennpedleton povo amd uixpolc xuyatixols aprduoic,
1 SloTopd dnAadr Tng amdxpiong eugaviCel euaoinoio oe 1oyYLEd CUCYETIONEVES TYIES
ou 1/G. X1 ouvéyew, oto oyfua 14, mopouctdyovtor oL XouTOAES UEong TWNG ot

OLoTOEAE TN METOXIVNONG, T UTNTUC XAl ETULTEYLVONG TNG E0UPIXAC ETLPAVELIG TOU U-
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Tohoylotrxay T6c0 e 1 pedodo FMCS, 660 xou tnyv ancudelog avdiuon Monte Carlo
yioo Ty mepinTwon I'naovotavold Tuyalou edlou pe urxog oucyétiong b = 40.0m. Xu-
yxpivovtag Oe TIC eV AoYw Yedodoloyieg, amodemvieTal Twe, oTNY TEPITTWOoT TNg YEoTS
TS, TO AMOTEAEGUATA GUUTITTOLY, EVE), 6GOV 0Popd. T BLUCGTOEE AmOXALSY) TNS HEVOB0U
FMCS, mopatnpeltar uovo oTic P€YIoTEG TYWES TNG ATOXPLONG, UE TO CPAAULIL VOL TOOAUEVEL

EVTOC ATOOEXTAOV 0pleV.

0.8.1.3 Addoon xLuatog oc 800 dLacTAoELS

To povtého mou yenowdomole{ton Yo TNV TEOGOUOIWCT BIdB0CTS BLUTUNTIXOL XOUATOG OF
0V0 Blaotdoelc amewoviletar oto oo 12. Xougunva ye autd, To apriuntixd Tpocouo-
fwpo amoteAeitan amd edapixd otpwua pe dotdoelg L = 200m o H = 40m. ‘Onwg 8¢
xou TNV TERIMTWwon TNg plag SldoTaong, €ToL xat €86 IEMOEIC anocPec THEES Teoo TidevTon
otoug xoufouc tng Bdong. To pétpo didtunong tou Bedyou eivon Gy = 1386.24 M Pa
xaL 0 hoyog Poisson v = 0.3, eved ot Twég tng andofBeonc yio Toug anocBecThpeS elvou
Csb = po - Vap = 1824.0kN - s/m? otnv oplldviia xou cp, = pp - Voo = 3412.39kN - s/m?
oty xatoxdpuen dievduvon, omov Vi, = 1421.83m/s n taybtnta diddoong tou Sua-
unxoug x0uatog oTo Peoay®deg UTOoTewUA. Ot TEMXEC TWES TOU YENOLIOTOLOLYTUL OF

x&de anoofBecthpa AauBdvovTon amd TO YWOUEVO TV ATOCBECEWY Cpy XOL Cgp HE TNV O-

vtioTolyn empdvela A Tou x6uou otov onolo eoupudlovTa, 1 AAALOS cggdal = cop A nou
nodal __ . / ’ ’ , ’ ,
o™ = cppA. Emomnuadveton guotxd mwg oL 1LoTNTES TOU EBUPLXOL GTRMUATOC Elvar (Bleg

ue exelveg oty mepintwon g plag didotaone. T tn dlaxpitonolnon Tou TEOGOUOLWHo-
TOG YPNOYLOTOLOUVTOL LOOTIORUUETEIXY TETPOXOUSIXG TETEAUYWVIXG TETEPACUEV G ToLyElol
eNiMEONE TUPUUOPPWONG UE UAXOS oxuNc 1 m, ue amoTEAEGUA TO WOVTEAO Vo amoTEAELTOL
and 8000 ororyeior cuvolixd. Evdewtind yeietdton 1 diddoorn tng xotaypaprc Gilroy
Nol EW 7ou ceiopot Loma Prieta to 1989. I'io 0 olyxplon towv pedddwy FMCS xo

amevdeiog avdiuone Monte Carlo, to @doua toybog Tou tuyaiou tedlov Aapfdvetar we:

b,b borio\> by )’
sutee =3 o (- (%5°) - (*57) ™

210 onuElo AUTO PEAETOVTOL T OTATIOTIXS TNG AMOXQIONG YA TOV XEVTEXO XxOufo TNng

ebapIXTic ETpAvelas. XTo oyfua 15 amewoviCovtan ot AN AA Tng andxplong Tou XevTpl-
%00 xOUPou NG EBUPIXAC ETUPAVELNS VLol TNV TEPITTWOT TNG CEIOUXAG XUTAYPAUPNS UE
TUTXY amOxAloT Tou Tuyatou medlou oy = 0.2, Mio xon uévo patid amoxohOTTEL TG
LOVO pxeol xupotixol aptipol CUUUETEYOUY OTT) BLACTIOEE TNG ATOXELOTS OGOV APORd TOV

GEOVAL Ky, €V aVTLHETA, UEYHAO EVPOC THIWY TOU XATAXOPLUPOU XUPATIXOV GEOVOL Ky CUVEL-
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G-8l

DVRF
AN W OO0

Eyruo 13, AMYA/AYAA tne eSapixic emupdvelag yio Tn Siddoon povadlaiou mokuol
tOnouv Mavroeidis & Papageorgiou yw opp = 0.2: (o) AMYA petoxivione, (8) ALAA
uetoxivnong, (y) AMEA toydtrag, (8) ALAA taydtnrog, (€) AMEA emtdyuvong xat
(o1) AXAA emtdyvvorng.

OQEPEL ONUAVTIXG OTNY EV AOY® BLIoTORd. LTV TERINTOOTN AOLTOV TV 600 SlUCTAGERY,

TO PUUVOUEVO TNG OLEB00NE SlaTunTiXol xUpatog eugavilel evoncinoia ot SloxdpavoT
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Yyfuo 14, Etamiotind andxpiong o ovadioto toahud tomou Mavroeidis & Papageorgiou
v Ixaouotovd tuyado medio pe opp = 0.2 xou pixoc ouoyétione b = 40m: (a) péon

T petoxivnone, (B) Swomopd petoxiviong, (y) wéon tun toyvtnog, (8) Swomopd
oy OtTNnToe, (€) péomn T emtdyuvone xa (o) Blaomopd EmTdyuUVoTC.
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0.8 AXAA yia T SLAB0CY] XVUATOG OE CTOYACTIXNO EBAPOG

TOU UETPOL BIATPNOTG XaTd TNV xoToxbpuer diebiuvor. Télog, oto oyrfjua 16 divovton 1)
UEDT) TWT| o BlaoTopd Twy PeYeEV®Y andxplong yia Tig uedodoug FMCS xon ameudeiog
avéivone Monte Carlo. Ou e mapduetpol Tou Tuyalou Tedlov oTny TepinTwon auTh elvou
orp = 0.2 xau by = by = 100m. Me Ayo Aoyta, omodetXvVIETOL KOS, XAl OTNY TEOXEWEVT
TepInTOOoT, 1 uéon Ty elvan xowi ot yio Tig 800 pedodoloyieg, v, 600V apopd Tn dio-
omopd, 1 amoxion tng FMCS napatneeiton uévo ylor amdtoues UETHBOAES OTNV amoOXELo
TOU, TR OAL AUTE, HUUAUVETOL EVTOG UVEXTMY 0pleV.

[ny:0.0(md/m) M ilﬂ::ny:

5o
=

DVRF -
Canw s OO N ®
DVRF -
6 o N w & a o

A, y 0.0 6 ¢
4. S
v (r“a/m) 08 2 TWLek )

z-ol

ol

DVRF

DVRF

DVRF =
6 am e s o o N

(e =5y

ol
~
S

DVRF
S

‘(’zzd/,)Z .2 ,ﬁmekg

(C) ()

Yyruo 15. AXAA andxprong edogpixhc empdvetog yio opp = 0.2: (o) ALAA yetotont-
ong yw Ky = 0.0 (rad/m), (B) ASAA petatémone yi £k, = 0.0 (rad/m), (y) AXAA
UETOTOTUONG YW Ky = Ky, () AXAA tayltnuac yw &, = 0.0 (rad/m), () AXAA
oot Y ke = 0.0 (rad/m), (oT)ANAA toydmtag Yo ky = Ky, (0) ALAA em-
Wyuvone v ky = 0.0 (rad/m), (n) ALAA emtdyuvone yw £, = 0.0 (rad/m) xou (V)
AYAA emtdyuvong Yo Ky = Ky.

Ay (’ado/om) 05 2 ?I;Lmse\s\
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Yyfuor 16. Mtotiotind andxpetong o dwddoon xataypapric Gilroy Nol EW yia I'voou-
otavo tuyato medio ue o = 0.2 xau urxog cucyetiong b, = b, = 100m: (o) HEOT TN
uetoxivnong, (B) dioomopd petoxiviong, () wéon tuh toydtntag, (8) Stomopd ToyUTn-
T0¢, (€) wéon th emtdyuvong xa (ot) Suomopd emLTdyLVONC.
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0.9 Egapuoy) AXAA otn ctoyacTtixy otepeonoinoy ddgpoug

0.9 Egoppoyn AXAA o1n oTOYACTIXY) CTEREO-
noinon £6dgpoug

XNy ev AOYw EVOTNTA, 1) EQUPUOYT TNG OTOYAC TIXY|G EBUPLXNG OTEPEOTOINONG, OTWS AUTY
uekethdnxe otnv evotnta 0.7, emaveletdletor UTO TO TRICPA TWV BUVOXOY CUVORTHOE-
oV éone Thic/dtoxduavone tne andxplone (AXMA/AYAA). Yuyxexpéva, 1 toyeia
uévodoc Monte Carlo (FMCS) yenowonoteitar yio tnyv evpeon twv ALMA/AYAA, o
omoleg xoTOTY LIOYETOUVTAL YId TOV UTOAOYLOUG TN PEOTS THINAS %ot DLoTORdS TOGO
e xadilnong tou Yepehiov, 600 xan Tng edagxrc unepnicone mopwy. H 6 olyxpeion
ue To avtioTolyo oTatioTnd peyédn mou AouPdvovTon pe eqopuoyy| Tne ancudeiog Ue-
Y680u Monte Carlo emixup®VeL TNV ATOTEAEOUATIXOTNTA X 0pVOTNTA TNE TEOTEWOUEVNS

uedodoroyiag.

0.9.1 Enavetaon Tou TEOBAYUATOS TNG O TOYAC TLXNG O TE-
econolnong

‘Onwe mpoavapéednxe, o TedfAnua anoteheltar amd Eva dxounto Teay) AWEdwTo -
UENLO GE GTEQEOTOLAOUIO E0APLXO oTEOUN U of3éBatn BlamepatoTnTa b ou UETEO EAUCTI-
xotntog . Ov ovetépw edapués wiotnteg utoloyiCoviar 6To xevtpwd onucio xdie

TETEPUOUEVOU GTOLYEIOU UE CUVTETAYUEVES (T, Y) ¢ e

omou ko xou Ey elvan 1 p€on TWr TG OLUMEEATOTNTAC XAl TOU PETPOU EAXOCTIXOTNTAS
avtiotowya. Emonuaiveton mog, omoe xa oty evotne 0.8, 1o f(z,y) avuotoiyel 6to
Tuyado nuitovo yio Ty nepintworn g FMCS, evey avamopiotd éva opoyevég I'vaouctavd
Tuyalo edlo undevinfic uéong TnNe oty ancudeiag Tpocouolwon Monte Carlo. Tovileton
0E WS 1N YEWUETELO XAl 1) BLUXELTOTOMNOT, TOU WOVTEAOL, OTIC XAk OL WOLOTNTES TWV UTO
UEAETN VALY, Topouévouy (Bleg pe v evotnta 0.7. Tap’ oha autd, 1 Ueon Ty Twv
otoyaotx®y k xou E avagépeton ex véou €86, dnhadh ko = pp = 1.22 - 1070 m? -
EN~/day xou Ey = up = 622.7 kPa.

2T GUVEYELN HEAETOVTOL TOCO ToL OTATIOTIXE TwV xahlHoewy Tou Vepehiou, 660 xou
TV edapxwy utepmiéocwy. ‘Ocov agopd tnv xadilnor, e€etdlovtour auTh Tou XEVTPOU
Tou Vepehlov v, xaddg xou 1 dwpopwh) xadllnon vap = va — Vp, EVO, 60OV aQo-

ed TNy unepTieon oWV, exelv pehetdtan o dLdpopa Bddn and TNV edapLxY| ETLPAVELDL.
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Extevig Ilepiindn

Me otdyo v emxdpwon tne axpiBetog tne yedodoroyiaug twv AXMA/AYAA, to mo-
eayOUEVYL amoTENEOUATA CUYXEIVOVTAUL UE TA AvTIGTOLYOl TOU TEOXUTITOLY UE YEeNOTN TNG
amevieiog npocouolwone Monte Carlo. Ewdwdtepa, n olyxpion yivetar cuYXeEXOIUéVa yid
T TG TUTUIXAC amdxAiong 0 = o = 0.2, eVvi T0 Qdopa Loy 0og TwV TUYAiwY TEdlWY

et TNV e€ng HopgN:

o2bib biks > [ ory )\
(2 (2))

Téhoc, to ufixoc ouoyétiong etvan by, = by, = by, = by, = 10.0m. Ewixd otny nepinto-

on g avdhuone Monte Carlo, 1 uédodog @acyatixic avamapdoTaoTg YenotuonoLeito

YL TN YEVECT) TV ATOUTOUUEVWY TUY iy TEBIWV.

0.9.1.1 3ratiotixd xadilnong Touv Yepeiiov

Y10 oyfua 17 anewovileton 1 uéon tiun xou dlaomopd e xoilnong Ve Tou x€vipou Tou
Yepehlov. Eivow ohogdvepo mwe 1 péon tuy| yior tny FMCS, ahhd xon tnv amevdeiog ava-
Auon Monte Carlo Bploxovtow oe mhrien tadTion 1600 TNV TERINTWOT TNG OTOYACTIXAG
OLATEPATOTNTUC OGO Xal ToL PETPOL ehacTixoTnTag. ‘Ocov agopd de T SloTopd, U6vo
YioL UEYSAES THES aTHS TapaTneeiTon Uixpr) amdxhor uetadd Tewv 600 uedddwy, 1 onola
ToEE TOOTOL TOPAUUEVEL EVTIOC AmOBEXTOY oplwv. XTo oyrua 18 divetan 1 Slaomopd Tng
OLopophc xoilnNone Vap Yo OTOY O TIXT| BLUTEPAUTOTNTA Xt PETEO ehacTixoTnTac. Ko
ot aUTH TNV TEP(NTWOoT, 1 BlacTopd Tou unohoyiletar Yéow tng FMCS epgaviCer pixen
amoxAloT antd Ty avtiototyn g ancuieiog yedodov Monte Carlo xau ebvar evtovétepn
oTNV TEPINTWOT ToU GTOYAcTOU PETEOoU ehacTixdTnTag. AZlel 6e var onueiwdel mwe
ol Tée Tng Somopde elvon TNe TEENS TOU 107% vy 70 ctoyactxd B, oc oyéomn ue
TIC avTloTOLYES TNG OTOYACTIXAC OLUTEPAUTOTNTAC 1078, emPBeladvoviog TN UEYUAUTER
ETPEOT] TOU UETPOU EAACTIXOTNTAS GO0V aopd 1 Slapopixr) xadilnor. AxpBde emeldn
1 wéon Ty tne drapopixric xailnong etvar undevixr, Adoyw CUUPETEIC 0T YEWUETElN
xaL 10 @optio, N amexovior) Tne mapakeineTton. Téhog, oto oyrua 19 anewoviCovtou ol
AYAA vty xadilnon vap. Eletdlovtoc autéc o8 6poug TwV XUUUTIXGY optiudy
Ky and Ky, XUTAAYOUUE OTO GUUTEQUOUN WG OL TYIEG TIOU AVTIOTOLYOUY OTOV Ky EYOUV
TOND UEYANDTERY) ETPEOT) G GUYXELON UE TOV Ky XaL Yio TIG 000 TEQITTOOELS TV EOA-
PXOV WBLOTATLY. DOUPWVOL O XalL UE ToL BlarypduuaTa, efvol eVOLAQEEOY Vol ETLOTUGVOUNE
Twe 1 Stoxduavor Tne dapopixiic xadilnone emnpedleton xUplwe amd Tr BLXOUOVET) TV

WothTRV oty oplévtia Biedduvor, pe xplowo xuatxd apdud K, = 0.25 (rad/m).
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0.4
0.2 0.5
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0.0
10! 100 10! 1.0z 10° 10* 10° (I)O‘[ 10° 10! 102 103 104 10°
Time (days) Time (days)

(v) ()

Yyfua 17, Méon Ty xou dlaomopd g xahlnong Ve Yo oToyooTXT| BlmepaToTnTA
xou P€Tpo e acTIXOTNTAC UE 0 = op = 0.2 xou wixog ocvoyétione b = 10m: (a) fu,
v otoyaotixd k, (B) Var(ve) yi otoyaotnd k, (y) p, v otoyoouxd E xa (5)
Var(ve) yw otoyoouxéd E.

0.9.1.2 3tatioTixd UREPTIECTE ToOPWY

LTV UTOEVOTNTOL QUTY| UEASTMVTAL TOL OTATIOTIXG TNG €0aPXAC UTEPTEESTS TOPWY. Lu-
yxexpléva, mopovatdletar 1 unepticon oe Béddoc B/2 ond tnv edopixry em@pdvelo oTny
XoTax6pLPo Tou SLEpyETAL AT TO XEVTEO Tou Veueiiou xan ocupfoliletar WS Pp/a.

Y10 oyfua 20 amewxoviCeton 1 Yo TN XL BlaoTopd TNG PB/2 Yo TIC 000 oTOYO-
oTiég edapég WLOTNTEG oL AouPdvovtar umtodm. Eivar Eexddapo mwg ol Tyée mou
urohoyilovta pe yerion tov ALMA/AYAA tavtilovtan ye Ti¢ avtioTolyes Tng anev-
Velog pedodou Monte Carlo .

To oyfuata 21 xou 22 mopovotdlovv e AXMA/AYAA avtictorya yo tnv unep-
Tleon TOPWY Pgya. BTNV TEOXEWEVY TEP(TTWON, 0 xUplog 6yxog g ANAA eivon ou-
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Yyfuo 18, Ataomopd tne xodilnone vap Yol 0TOYAOTIXY DLUMEQAUTOTNTA Xl UETEO €-
hooTixotnrag Ye o = o = 0.2 xou uhixoc ovoyétone b = 10m: (a) Var(vap) yw
otoyootwd k xa (B) Var(vap) yi otoyactxd E.

YUEVTPWUEVOS Y0Pw Amd UXEOUE XUUATX00S ApLIUOUC Ky XAL Ky, 1) DLOXOUOVGT) ONADY
emneedleTon amd LOoYUEA CUCYETIONEVES THES TNne damepatotntag. Avtieta, otny ne-
elmtworn Tou YETEou Ao TIXOTNTAS, Ol Xployol xupatxol apriuol avTioTolyolV oe TYES
Ky = —0.75 (rad/m), k, = 0.75 (rad/m) »o (—1.0,—0.75) U (0.75,1.00) (rad/m) écov

APORY TO Ky
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Yyfuo 19. AXAA tne xodilnong vap Yot 6TOYAOTIXT) SLIMERUTOTITA Yol UETPO EAAUC TI-
xotnroc: (o) AXAA vy otoyaotixd domepatomnta xa Ky = 0.0 (rad/m), (B) ALAA
Yl 6ToYao TG PéTPOo ehaoTdTNToC Xou Ky = 0.0 (rad/m), (v) AXAA v otoyactix)

SrameportoTnTa xou Ky = 0.0 (rad/m) xou (8) AXAA yi 0To)00 TN PETPO ENACTIXOTN
toc xat Ky, = 0.0 (rad/m).
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Yyua 20. Méon tiun xou SLaoTopd TN UTEPTESTIC TOPWY Pp/2 Yo OTOY O TIXT| OLUTEQ-
TOTNTA X0 UETEO ENCTIXOTNTAC PE 0 = o = 0.2 xau unxog cuoyétione b = 10m: («)
Hpg 5 Y10 OTOYX00TXG K, (B) Var(pp2) yio otoxaowxd k, (Y) Hpy, Yot 0TOYo0TXO B
xou (6) Var(pp/z) yio otoyactixd E.
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Yyfua 21. AXMA/AYAA tnc unepricone ntdpwv PBj2 YLO OTOYAOTIXY| OLUMEQAUTOTNTA
ue o = 0.2: (o) AXMA vy 6, = 0.0 (rad/m), () ALAA vy s, = 0.0 (rad/m), (y)
AYMA yw £, = 0.0 (rad/m) xor (3) ALAA vy k, = 0.0 (rad/m).
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Yyfua 22. AEMA/AYXAA e unepnicong mopwy B/2 YLOL OTOYACTIXO UETPO EAAC TIXOTT
¢ e o = 0.2: () AXMA vy 5y = 0.0 (rad/m), (B) AXAA yw &, = 0.0 (rad/m),
(v) AXMA vy £, = 0.0 (rad/m) xou (8) AXAA vy £, = 0.0 (rad/m).
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0.10 ZupNEPACUATA XA CLVELCPOEA TNG dLaTELPrg

0.10 XUUNEPACUATA XA CUVELCPOEA TNG OLATEL-
EUE
Xty nopovoa ddaxtopxy dlTel3Y| tpowdRinxe 1 ueHodog TwV CTOYUCTIXWY TETEPO-
opévev otoyelwv (MXEIIX) o¢ anapoitnto cpyareio yio TV Tocotixonoinon tng emie-
PONC TNG DLAXVHUOVONG TWV EBUPIXMY WOOTATWY OE YEOTEY VXY TeoPfAfuata. H de ollo-
moinom auTthc amotehel PEAMOTIXG OTOY0, BEGOUEVNC TNG CUVEYMS AUEAVOUEVNC UTOMO-
Yo TS oyVog mou ebvan dladeoyun otoug unyovixolg. Me autd TO OXETTIXG, 1) EV
AoYw epyaoio dOvatan va Yewpniel we éva onuavtixd Briua otn Aentouept| enclriynon
TWYV ATOUTOVUEVGY UEVOOWY VLo TNV ETTLY T EVOWUATOOT of3EBaiwy EBaQIXMY WOIOTHTLY
oc YEOTEYVIXEG UeréTec. IBialtepn éugoom 86Unxe oTIC TEOCQUTY EBPUWUEVES EVVOLES
TWY OUVOHIXOY CUVAPTHCEWY PECTS ThC/ Brodpovong NG amdxplong, oL omoleg mpo-
o@Epouy o allOTo TN evolloxTixr) uedodoloyio Yol TOV UTOAOYIONG GTUTIOTIXOY TNG
UTO YEAETNG amdxptong. T to oxond autd, 1 toyela pédodog Monte Carlo, 6w amo-
oty Unxe amd TIC EQupUoYEC Tou YeAeTAUNXY, cuVIGTE TNV xatedoyhyv uedodolroyio yia
TV omoteheoyatixy extiunon 1wy ouvapthioewy ALMA/AYAA yevixdv npofinudtwy

TETEPUOUEVWY G TOLYELWY.

0.10.1 Kipia onueio cuvelcpopds tTng dtatelfng

H cuvelsgopd tng mapoloug dateric ouvodileton ota e&hg xbpLor ornuela:

o Texunpiwon e onuaciog viodEtnong g UEVOBOU TOV CTOYACTIXOY TEMEQD-
OUEVOY GTOLYEIWY 08 TEOPAAUNTA YEDTEYVIXNAG UNYAVIXAG. LUYEXQUIEVA, 1) EV-
OWUATOON TNG BLUXOUAVOTNS TV EDAPIXMY TURUUETEMY GTNY aELIUNTIX TEocoUo-
WOT) AVUOELXVUEL YUEUXTNEIC TS TNG ATOXELONG, OTWS YLol TUEADELYUOL 1) OLopPOELXY
xodilnomn oty mepinTwon tou Yeuchiou o€ GTEPEOTOACIO €BPOC, Tor OToloL DEV

CLVAVTOVTAL OTNY TEPIMTWOT oL TO €daog Vewpnlel opoyevég.

« Emxdpwon tne axpiBetog xar tne euxohiag egopuoyic twv ALMA/AYAA yio tov
UTOAOYIOUO TGV CTATIOTIXWY TNG OTOXELONG OF TEOBAAUATO UE TOPWOT LAXE, X0-
YOS %A OE TEQIMTOOELS OLABOGNE BLUTUNTIXOV XVUATOC Yol TNV AVIAUGT) AmOXELONG

NG E0APLXNG ETLPAVELOC.

o Ex véou emBefaivon tne tayeloc petddou Monte Carlo we xateloynv alldémotn
uevodohoyla unohoyiopol twv cuvopthoewy AXMA/AYAA yo yevind tpoco-

UOLOUOTO TETEPUOUEVWY GTOLYEIWY aVECUPTATWS TOAUTAOXOTNTAC.
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Extevig Ilepiindn

+ Eotioon ot onoubadtnto e aveloptnolag twv ALMA/AXAA oné ) Sour| ou-
oyETong, ahAd xou TNV ThovoTixy xoTovour| Tov Tuyainy Tedlwy Tou Teprypdpouy
TN YWEWT SLXOUAVOT] TV EBUPIXGY WOLOTHTOY. Edd auth Toug 1 wioTnTa €-
TUTEETEL TNV EUXOAT XU UTOAOYLOTIXA amodoTixy| avdiucr euooinocioag Tou utd
UEAETT LOVTEAOU OC TROC TIC OTOYUOTIXEC TOPUUETOOUS TWY UALXMY, YWl Vo o-

TUTOUVTOL ETUTAEOV UVUAUCEL TEMEQUOUEVWY O TOLYELWVY.
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Chapter 1

Introduction

1.1 Motivation and Scope

Soils in their natural state are among the most variable materials, while spatial
variability and uncertainty of their properties is present even in soil layers considered
homogeneous in geotechnical engineering practice. Nevertheless, lack of sufficient
data required for accurately estimating the properties of soil materials involved in
geotechnical problems has led to the adoption of deterministic analysis methods, which
rely on safety factors to take into consideration the uncertainty and variability of soil
properties. Currently, computing power provided by modern parallel computers is
opening new frontiers in the incorporation of uncertainty in engineering problems in
general. To this purpose, an increasing amount of research is dedicated to solving
stochastic problems in order to quantify the effect of the uncertainty in material and
geometry properties, as well as load and boundary conditions.

In recent years, the influence of inherent soil variability on geotechnical engineering
applications has attracted considerable attention. A number of researchers have studied
the effect of spatial variability of various soil properties such as elasticity modulus,
friction angle and permeability on different related applications. Investigations of
footing bearing capacity (Al-Bittar and Soubra, 2013; Cho and Park, 2010; Griffiths
et al., 2002, 2006; Simdes et al., 2014) and settlements (Fenton and Griffiths, 2005;
Maheshwari and Kumar, 2011; Paice et al., 1996), slope stability (Griffiths and Fenton,
2004; Griffiths et al., 2009), as well as seepage (Griffiths and Fenton, 1997), are some
characteristic cases. Furthermore, the consolidation phenomenon in a probabilistic
setting has been studied by various researchers. In (Badaoui et al., 2007; Houmadi et al.,
2012), for example, the effect of the variability of & and E on the vertical direction for
the 1-D consolidation problem was investigated. Additionally, in (Bong et al., 2014),



Introduction

the effect of the spatial variability of the consolidation coefficients in the vertical and
horizontal directions on the degree of consolidation of the loaded soil was studied.
What’s more, in (Huang et al., 2010), the effect of the correlation between the stochastic
soil permeability k£ and the coefficient of volume compressibility m, on 1-D and 2-D
coupled consolidation problem was investigated. Dynamic problems with stochastic
soil parameters were also investigated in a number of research articles (Ho Lee et al.,
2013; Johari and Khodaparast, 2015; Johari and Momeni, 2015; Wang and Sett, 2016).
An in-depth coverage of probabilistic modeling in geotechnical engineering, along with
a variety of case studies, are presented in (Fenton and Griffiths, 2008) too.

The most robust computational tool used to examine the effect of spatial variability
of material properties on the response of various problems in general, is the stochas-
tic finite element method (SFEM) (Stefanou, 2009). Concerning SFEM, the three
most important alternative formulations are: the perturbation method, the spectral
stochastic finite element method (SSFEM) and the Monte Carlo simulation (MCS).
The perturbation method consists of the Taylor series expansion of the stochastic
finite element matrix and of the resulting response vector of the physical system.
In the SSFEM context, the stochastic finite element matrix consists of the sum of
a deterministic and a stochastic part obtained through the Karhunen-Loeve (K-L)
expansion, whereas the response vector is expanded using random Hermite polynomials.
In the analysis of complex problems, these two approaches may be quite difficult to
implement and sometimes they are computationally expensive (Stavroulakis et al.,
2014). Thus, the MCS, and in particular the direct MCS method, remains the only
reliable and universal, albeit computationally intensive procedure for treating this kind
of problems, particularly for large variation of the stochastic parameters (Stavroulakis
et al., 2014).

One of the most important parts of Monte Carlo simulation is the generation of
sample functions of the random fields (Vanmarcke, 2010) that accurately describe the
variability of the studied property. Various methods are available for the generation of
the required field realizations. The spectral representation method (Shinozuka and De-
odatis, 1996) is one of the most widely used methodologies for generating homogeneous
Gaussian random fields in 1D, 2D and 3D. Using the spectral representation method
followed by a memoryless transformation in the form of translation fields (Grigoriu,
1995, 2002), non-Gaussian random field realizations can be easily generated.

In most studies, geotechnical problems have been analyzed in the context of the
finite element method, incorporating in various ways the stochastic property of the

soil. Specifically, a version of the globally applicable MCS method has been adopted
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to quantify the response variability with respect to the stochastic property considered.
The advantage of the MCS is its applicability to any probabilistic finite element model
regardless of its complexity. Besides the well-known limitations of MCS due to its large
computational cost, the main disadvantage of this approach is that the correlation
structure of the underlying stochastic property of the soil materials has to be known in
advance, which is rarely the case. As a result, the study of sensitivity of the required
response with respect to different correlation characteristics makes the MCS almost
prohibitive for the treatment of realistic examples.

In order to tackle the aforementioned limitations, the concept of variability response
functions (VRF) was introduced in a number of articles (Bucher and Shinozuka, 1988;
Kardara et al., 1989; Shinozuka, 1987). The VRF is a Green’s function which relates
the variance of a response quantity of a system to the spectral density function of its
underlying uncertain parameters (Shinozuka, 1987). The VRF depends on deterministic
system properties related to geometry, boundary and loading conditions, mean material
properties as well as the standard deviation o of the considered stochastic parameter.
The VRF function was initially expressed in closed form for statically determinate
and indeterminate beam and truss structures under deterministic loading conditions;
later the concept was extended to stochastic plate bending problems (Graham and
Deodatis, 1998). As stated in (Papadopoulos et al., 2005), in most problems, a closed
form expression of the VRF is extremely difficult, if not impossible to extract. However,
the VRF can alternatively be estimated numerically using a so-called fast Monte Carlo
finite element based procedure explained in (Papadopoulos et al., 2005, 2006). Other
applications of the variability response function include the study of apparent material
properties for heterogeneous random materials (Shinozuka, 1987), as well as robust
design optimization taking into account the stochastic system parameters (Kokkinos
and Papadopoulos, 2016). Keep in mind that the original VRF was formulated for
static stochastic problems; an extension of the VRF for dynamic problems leading
to the dynamic variability response function (DVRF) was recently introduced in (Pa-
padopoulos and Kokkinos, 2012). It was also demonstrated that the DVRF and the
closely related dynamic mean response function (DMRF') provide the same spectral-free
advantages of the VRF for dynamic loadings, giving insight on the sensitivity of the
response of dynamical systems with respect to the stochastic properties (Papadopoulos
and Kokkinos, 2015).
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1.2 Dissertation Objective

The objective of the research required for the completion of the disseration is twofold;
or, as one might arguably say, the amount of work demanded was double in size, since
it involved both: a) the exploration, assessment and validation of novel computational
methods to examine soil behavior with the use of uncertain parameters and b) the
development of the software framework needed to support these applications. Please
note that the second was the prerequisite, not the primary goal, nor the main subject
of the thesis, something which may well explain why its importance is overlooked or
overshadowed by the “achievements” of the latter. Taken into consideration though,
this detail is staggering, revealing the difficulty and complexity of the overall attempt;
however, there was a reason for this unconventionality. To the author’s knowledge, there
are no commercial finite element software packages available up to now, which could
support stochastic finite element computations. Therefore, the development of an in-
house numerical package was the only way to achieve this goal. Once accomplished, this
specially tuned software framework could then be used to quantify the uncertainty and
variability of soil material properties on response quantities of interest in geotechnical
problems. At this point, we have to stress this out: since soils in general are among the
most uncertain materials, incorporating the variability of their properties in numerical

simulations is of utmost importance.

1.2.1 Software Development

As mentioned above, a central objective throughout the dissertation was the devel-
opment of the numerical methods necessary to successfully perform stochastic finite
element analyses. To this purpose, the in-house, object-oriented finite element software
suite Solverize had to be expanded in terms of new interfaces, classes and methods.
Given this, the overall software development procedure can be furtherly divided in two

phases:

a) The first one, consisting of all the software developed in order to enable Solverize to

tackle new problems for deterministic material properties, involved the following:

e Enrichment with two-dimensional quadrilateral and triangular isoparametric
elements with various choices of element nodes, supporting both plane strain
and plane stress conditions. Additionally, three-dimensional hexahedral
and tetrahedral finite elements were introduced, supporting various shape

function orders.
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o Addition of one-dimensional shear elements for simulation of 1D ground

response analyses.

o Development of quadrilateral and hexahedral elements of the u-p family
for simulation of porous media. It has to be noted that, separate choice
of shape functions for displacement and pore pressure dofs is supported,

allowing for versatile interpolation schemes.

« Introduction of implicit generalized Newmark (GN11) time integration

scheme to enable the simulation of the consolidation phenomenon in soils.

o Viscous damper elements of the Lysmer type to be used as absorbing

boundary conditions in wave propagation analyses were also introduced.

o Programming of implicit time integration algorithms for the equation of
motion, namely the Newmark, HHT-«a and Bathe schemes, to tackle dynamic

problems.

« Addition of a special class, handling the transformation of given earthquake
motion records to equivalent nodal forces applied at the base of the finite

element model.

b) The second phase included the required numerical algorithms, which enabled
Solverize to perform stochastic finite element simulations. To this purpose, the

following software components were developed:

e Development of the multidimensional spectral representation method for
generation of homogeneous Gaussian random field realizations in 1D, 2D
and 3D. Various correlation structures were added, along with lognormal
translation field transformations. Furthermore, emphasis was given, so
that modern multicore processors were adequately supported in order to

accelerate the generation of the fields.

e Programming of the Monte Carlo stochastic finite element method with

support for parallel multicore execution and efficient storage of results
through HdAf5 files.

o Development of the fast Monte Carlo simulation method in order to be able

to calculate DMRF and DVRF functions for general finite element systems.

Again, multicore support and storage efficiency were crucial.

e Development of the software components needed to calculate response
statistics via the DMRF and DVRF functions and the provided correlation

structures.
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e Development of scripts, written in Python, for the post-processing of the

response statistics, along with their graphical representation.

1.2.2 (Geotechnical Applications

After successfully incorporating the required software components, Solverize was used to
perform a number of case studies of geotechnical nature, considering spatial variability
of soil properties. The first application consists of the study of the settlement of a rigid
footing resting on a consolidating soil layer. Stochastic finite element analyses were
performed, incorporating the uncertainty of Young’s modulus and soil permeability.
A sensitivity study, with respect to the correlation structure of the underlying soil
property, provided insight into the statistics of the differential footing settlements, as
well as the excess pore pressures below the footing.

The following application deals with the problem of shear wave propagation in
soils with uncertain shear modulus. In this case, the methodology of DVRF functions
calculated through the fMCS method was employed. Both 1D and 2D wave propagation
analyses were performed, demonstrating the validity of the DVRF, as well as its spectral-
free nature. It is shown that the response statistics at the ground surface are sensitive
to strongly correlated fields, i.e. the propagating wave is affected mainly by smooth
random fields representing the shear modulus.

Finally, the problem of soil consolidation is revisited under the DVRF methodology,
where the DVRF function concept is once again validated in terms of accuracy. Addi-
tionally, the value of the DVRF functions is further demonstrated, since they reveal

the mechanisms controlling the response variability.

1.3 Thesis Outline

The present thesis consists of nine chapters outlined as follows:

a) Chapter 2 introduces the basic concepts of probability theory. Specifically, sets
and set operations are illustrated with the help of Venn diagrams. Furthermore,
the probability axioms are established, accompanied with the concept of con-
ditional probability, Bayes’ rule and event independence. Definition of random
variables, probability and cumulative distribution functions, as well as measures
of central tendency and dispersion follow. The most common probability distri-

butions and their properties are then presented, while the chapter concludes with
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the definition of jointly distributed random variables, together with the concepts

of covariance, correlation and independence.

Chapter 3 is dedicated to stochastic processes and fields. Definitions of the index
set and state space are given for random processes and fields. Ensembles and
ensemble averages are then introduced, while realizations of random fields in
1D, 2D and 3D are illustrated. Next, stationary random processes and their
spatial equivalents, i.e. homogeneous random fields, are presented. The concept
of ergodicity is stressed followed by the analysis of random fields in the frequency
domain via the Wiener-Khinchine relations. The spectral representation is then
thorougly analyzed as the method of choice for computer generation of realizations
of 1D, 2D and 3D homogeneous Gaussian random fields. What’s more, the
application of the method is demonstrated through illustrated examples showing
the effect of different parameters of the correlation structure of the random
fields on the generated realizations. Finally, the chapter concludes with a brief
discussion on non-Gaussian random fields focusing on the concept of translation
fields, which is used to present a methodology for generation of lognormal fields

in a step-by-step manner.

In chapter 4, the most widely used methodologies comprising the stochastic finite
element method are presented. In particular, main concepts of the perturbation
method, the spectral stochastic finite element method and the globally appli-
cable Monte Carlo method are introduced. Furthermore, the available spatial
discretization methods regarding the random fields representing the stochastic
parameter of interest, i.e. the nodal point method, the integration point method

and the midpoint method adopted in this thesis are covered.

In chapter 5, the concept of variability and mean response functions is presented.
The main advantage of MRF/VRF functions which lies in their independence
of the correlation structure of the uncertain property considered, is emphasized.
The extension of the MRF/VRF to time dependent problems through the concept
of their dynamic equivalents, namely the dynamic mean and variability response
functions, follows. In addition, the use of the DMRF/DVRF functions for
calculation of upper bounds of response mean and variance in the time domain
is presented. The fast Monte Carlo simulation method is then explained, which
is the method of choice for numerically calculating the DMRF/DVRF functions

for general stochastic finite element systems in 1D, 2D and 3D.
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In chapter 6, the direct MCS method is applied to a classical geotechnical problem.
Specifically, the problem of a rigid rough footing resting on a consolidating soil
layer and loaded with a ramp loading is studied. The stochastic parameters
incorporated in the analysis are the Young’s modulus and permeability, which
are simulated as lognormal random fields in 2D. Different correlation lengths and
coefficients of variation are used in order to quantify the effect of the uncertain
parameters on the variability of the response in terms of footing settlements,
as well as excess soil pore pressures. Examination of the calculated response
statistics provides insight into the different effect of the uncertainty in Young’s
modulus and permeability on the differential footing settlements. In the end,
useful guidelines are provided regarding the design of footings on consolidating

soil layers when spatial variability data of the soil properties is available.

In chapter 7, the problem of shear wave propagation in soils exhibiting spatial
variability of their shear modulus is studied. To this purpose, the DMRF/DVRF
functions are employed in order to quantify the effect of the uncertain shear
modulus on the response of the soil surface. The FMCS method is used to
numerically evaluate the DMRF/DVRF functions. Test cases include simulation
of propagation of synthetic wavelets, as well as a real recorded earthquake motion
in both 1D and 2D soil domains. Comparison between the results obtained via
the FMCS and the MCS is made, validating the accuracy and efficiency of the
FMCS. Furthermore, the spectral and probability distribution free nature of the
DMRF/DVRF is taken advantage of, in order to calculate upper bounds of the
response mean and variance. Finally, inspection of the DMRF/DVRF functions
illustrated offers insight into the mechanisms affecting the model sensitivity to

uncertainty.

In chapter 8, the stochastic consolidation problem studied in chapter 6 is revisited
on the basis of the DMRF/DVRF methodology. The FMCS method is used in
order to numerically calculate the DMRF /DVRF functions for footing settlements,
as well as excess soil pore pressures. Results obtained via the FMCS-based
DMRF/DVRF functions, regarding statistics of the response quantities, are then
compared with the corresponding results from analogous MCS analyses. It is
thus shown that the proposed method is accurate and computationally efficient,
revealing the model sensitivity to the uncertain material parameters, i.e. the

Young’s modulus and permeability.
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h) Chapter 9 is the final one, summarizing the research conducted throughout the
dissertation. To this purpose, the main contributions of the current work are
outlined. A number of topics is finally proposed for future research, which could
extend the scope of the methodologies discussed and promote the use of the

SFEM for solving additional geotechnical engineering problems.






Chapter 2
Basic probability theory

In this chapter, the basic concepts of sets, probability theory and random variables are
introduced. Together, they constitute the fundamental components needed in order to
understand and use stochastic processes and random fields. For further understanding
of the concepts presented, the reader may refer to (Bertsekas and Tsitsiklis, 2008;
Papoulis and Pillai, 2002), which explain the probability theory in much greater depth.

2.1 Sets

In this section we introduce the basic components of the set theory needed in order
to use sets and set relations; operations, which are widely used in probability theory.

Venn diagrams are used in order to help understand the basic concepts.

2.1.1 Terminology

A set is a collection of items which are called the members of the set. Let A denote
a set and = a member of the set. We say that = belongs to the set A which can be
written in mathematical form as x € A. If x does not belong to set A, we write z ¢ A.
A set which does not contain any elements is called null set or empty set and is denoted
as .

If every element = of set A is also an element of set B, set A is called a subset of B
and we write A C B. Two sets A and B are equal, if and only if, A C B and B C A,
and we write A = B. A set C is called a proper subset of a set D denoted by C' C D,
if it is a subset that is strictly contained in D thus excluding at least one element of D.
Finally, a set €2 is defined, which contains all the items of interest and is called the

universal set, while every other set is considered a subset of (2.
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2.1.2 Set operations

We introduce the complement of a set A, A so that if z € A, then x ¢ A°. The
complement of the universal set € is the empty set (). In general, relations and
operations involving sets are best understood through the use of Venn diagrams like
the one illustrated in fig. 2.1, where the white area indicates set A, the gray area set

A® and the rectangle area corresponds to the universal set €.

Q
AC’

Figure 2.1. Venn diagram for sets A, A and 2

The union of two sets A, B, written as AU B, is the set for which if z € AU B
then x € A or x € B. In fig. 2.2, the gray area indicates the set AU B.

Q
AUB

Figure 2.2. Venn diagram for AU B

The intersection of two sets A, B, written as AN B is the set for which if x € AN B,
then x € A and x € B. In fig. 2.3, the gray area indicates the set AN B. Alternative
symbols denoting the intersection of A and B are AB and A + B.

The difference of two sets A, B, written as A — B is the set for which = € A and
x ¢ B. In fig. 2.4, the gray area indicates the set A — B.

12
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Figure 2.3. Venn diagram for AN B

’ )

Figure 2.4. Venn diagram for difference of A and B

The symmetric difference of two sets A, B, written as A A B is the set for which
x€Aorx € B,but x ¢ AN B; that is, AB=(A— B)U(B— A). In fig. 2.5, the gray
area indicates the set A A B.

’ B
KAABJ

Figure 2.5. Venn diagram for symmetric difference of A, B

Two sets A, B are called mutually exclusive or disjoint, if they do not have any
element in common, which in set terminology is written as AN B = (). For example,
in fig. 2.6, sets A, B are disjoint.
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Figure 2.6. Venn diagram for disjoint sets A, B

2.2 Probability law

The basic components of probability theory are the notions of an experiment and its
possible outcomes while, the set of all possible outcomes is called the sample space
Q. A subset of €2, which is a collection of possible outcomes is called an event. The
probability law assigns a number to an event E called the probability of event F,
denoted as P(E), satisfies 0 < P(E) < 1 and expresses how likely this event takes
place. There are two ways of describing the meaning of P(E). First, assume that
we devise an experiment related to a roll of a fair six-sided die. Let event A denote
the case when the roll of the die results in number six. For a fair die, it is natural to
say that P(A) = 1/6, which is the same for all possible results of the roll. Suppose
that we repeat the experiment n times and let n, denote the number of times that
the die roll results in six. Then P(A) can be interpreted as the ratio ns/n i.e., the
relative frequency of the roll of the die resulting in number six when the number n
of repetitions is sufficiently large. Nevertheless, there are cases where the experiment
cannot be repeated and the frequency concept is not valid. For example, let event GG
denote the collapse of a building due to a strong earthquake motion in the next 50
years; then the probability P(G) is used to express our beliefs of how likely event G is
going to take place.

2.2.1 Probability axioms

The theory of probability is founded on the following three probability azioms:
1. For every event A, P(A) > 0.

2. If events A and B are disjoint, i.e. AN B = (), then P(AU B) = P(A) + P(B).

3. The probability of the sample space 2 is P(Q2) = 1.

14



2.2 Probability law

2.2.2 Conditional probability

Conditional probability provides a mechanism for incorporating additional information
in calculations regarding the outcome of an experiment. Practically, while studying an
experiment with given sample space € and probability law, we want to take advantage
of the extra information that the outcome lies into an event B. This changes our
beliefs regarding the outcome of the studied experiment, and it is desired to quantify
the probability of an event A, given that it lies into B. In probability terms, a new
probability law is established and the term conditional probability is used for the
probability of event A given B, denoted as P(A|B). The conditional probability of A

given B is defined as:
P(AN B)

(2.1)

Equation (2.1) in defined only for events B with nonzero probability, i.e. P(B) > 0.

2.2.3 Total probability theorem and Bayes’ rule

Let events Aq, Ay, ..., A, be some disjoint sets that form a partition of the sample
space €2, with positive probabilities i.e. P(A4;) > 0,Vi € 1,2,...,n; let B be any event,
then the total probability theorem states that:

P(B)=P(AiNB)+ P(Ay,NB)+---+ P(A,NB)

P(A;N B)

(A1) - P(BJA1) + P(Az) - P(B[Az) + -+ + P(Ay) - P(B|Ay) .

7

I
e

I
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P(A;) - P(B|A;)

1

<.
Il

Bayes’ theorem or Bayes’ rule relates conditional probability P(A|B) to conditional
probability P(B|A) for two events A, B. Let again events A;, Ao, ..., A, be some
disjoint sets that form a partition of the sample space €2, with positive probabilities
ie. P(A;) > 0,Vi € 1,2,...,n. Then, by making use of the total probability theorem
stated in eq. (2.2) Bayes’ theorem is defined as follows:

P(Ai) - P(B|A;)
P(B)
P(Ai) - P(B|A;)
i=1 P(Ai) - P(B|A;)

P(Ai|B) =
(2.3)

— P(Ai|B) =

15
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Bayes’s theorem is the foundation of Bayesian inference, which is a method of statistical
inference in which Bayes’ theorem is used to update the probability for an hypothesis,

as more evidence or information becomes available.

2.2.4 Independence of events

Two events A and B are called independent if the following relation holds:
P(ANB)=P(A)-P(B) (2.4)

Practically, independence of events A and B means that knowledge of occurrence of
event B does not give any extra information regarding event A. Applying conditional

probabilities, the following relation holds:
P(A|B) = P(A) (2.5)

i.e. the conditional probability of A given B is equal to the unconditional one. The
notion of independence can be extended to more that two events. We say that events

Ay, Ay, ... A,, are mutually independent if the following is true:

P(ANAsN---NA) = P(A) - P(A) -+ - P(A,) (2.6)

2.3 Random variables

If the outcome of an experiment is a numerical value, this value is called a random
variable. In mathematical terms, a random variable is a function which maps events
of the sample space to numerical values. Distinction is made based on the nature of
the numerical values a random variable can take. Therefore, random variables that
take only distinct arithmetic values, are called discrete random variables. The term
continuous random variable applies to random variables that can take range of values
on the real line. In this dissertation only continuous random variables are used and

are analyzed in this chapter.
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2.3.1 Probability density and cumulative distribution func-

tions

In order to fully describe a continuous random variable X, one only needs its probability
density function (pdf), which is designated fx(x). Using the pdf, the probability that

the random variable X lies between two values a, b is calculated by:
b
Pla< X <b) = / Fx()de (2.7)
In order to satisfy the probability axioms, the pdf satisfies the following relations:

fx(x) >0 (2.8)
/O:O fx(z)dr =1 (2.9)

The cumulative distribution function (cdf) of a random variable X designated Fx(x)

is related to the pdf by the following relation:

Fy(z) = / xoo e (w)du (2.10)

expressing the probability that the random variable X is less than or equal to a specific

value x:
Fx(z)=P(X <1z (2.11)

The pdf of a random variable can be obtained from the cdf by differentiation:

 dx

fx(x) (2.12)

2.3.2 Measures of central tendency and dispersion

The pdf and cdf give too much information regarding a random variable X. Sometimes,
it is critical to compress all this information to representative quantities characterizing
a random variable. The exzpectation E[X] or mean value py of a random variable X is

the average of all the possible values of X; it is given by the following relation:

—+00

BIX] = px = [ afx(a)de (2.13)

— 00

E[X], expresses the representative value of the random variable X.
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Basic probability theory

Other important quantities which offer information on a random variable X are its
moments. In particular, the n-moment of X is the expectation of the random variable
X™ and is given by:

—+00

E[X"] = ux = /oo 2" fx(x)dx (2.14)

One very important quantity of the random variable X is its variance given by:
Var(X) = E[(X - E[X])’] (2.15)

which is a measure of the variation of X around its mean value px. The square root

of the variance is called the standard deviation ox:

ox =/ Var(X) (2.16)

and is a more natural measure of the variation of X, because it shares the same units
with it. The variance and the standard deviation are always non-negative.

Finally, an alternative measure of spread of the random variable X is the coefficient
of variation (COV); it describes the amount of variability relative to the mean and is

defined as follows:

covy = 2X (2.17)
Hx

2.4 Common probability distributions

Although there is a large collection of distribution families, the most common ones
which are also used in later chapters when considering applications, are the uniform,

the normal and the lognormal distributions.

2.4.1 Uniform distribution

The simplest case of a random variable is the one that has the same probability of
taking values in a closed interval [a, b] and is called the uniform or uniformly distributed
random variable. Specifically, we use the symbol X ~ U(a,b) in order to denote that
the random variable X follows the uniform distribution, while the probability density

function of a uniform random variable is given by:

=, ifa<a<b
fx(z) = (2.18)
0, otherwise
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2.4 Common probability distributions

Figure 2.7 illustrates the probability density function of X ~ U(1, 3).

1.0
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Ix(x)
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0.0 4
00 05 10 15 20 25 30 35 40

X

Figure 2.7. Probability density function for random variable X ~ U(1, 3).

The mean and variance of a uniformly distributed random variable X are:

EIX] = b ; a
Var(X) = (b IQG)

2.4.2 Normal distribution

The normal or Gaussian distribution is the most important continuous probability
distribution. This is true mainly because of the central limit theorem according to
which the sum of independent identically distributed (iid) random variables follows
the normal distribution. The probability density function of a normally distributed

random variable is given by:

Fre@) = — exp (—(“‘)) (219)

2mo 202

where p is the mean value of X, o the standard deviation and we write X ~ N(u,o?).
For the special case where = 0 and o = 1, the normal is called standard normal. The

probability density fucntion of the standard normal is illustrated in fig. 2.8.

2.4.3 Lognormal distribution

The last distribution presented in this chapter is the lognormal distribution. It represents

a random variable, whose natural logarithm is normally distributed and is commonly
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Figure 2.8. Probability density function for random variable X ~ N(0,1).

used because it takes strictly positive values. Given these, the probability density

function of a lognormally distributed random variable X is given by:

(nz— mnx)2>

1
. 2.20
fx(x) V2T o x P ( 202 ( )

where i, x and o,  are the mean and variance of the natural logarithm of X respec-

tively. The mean and variance of X are given by the following relations:

1
Hx = eXp <#lnx + 501211)()
2

(2.21)
0% = iy (exp (Ufnx) - 1)

Alternatively, it is possible to compute p, xy and o2,  from the corresponding mean

and variance ux and 0% by making use of the following relations:

2
iy =In (1 + %)
X
1

Minx = In (MX) - §Ul2nX

(2.22)

Figure 2.9 illustrates the probability density function of a lognormally distributed

random variable.
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2.5 Jointly distributed continuous random variables

1.0

0.8

Figure 2.9. Probability density function for lognormal random variable X with p;,x = 1
and o InX — 1.

2.5 Jointly distributed continuous random variables

In many cases, we are interested in two or more continuous random variables belonging
to the same sample space and the relations between them. Thus, the study of jointly

distributed random variables is of utter importance and considered in this section.

2.5.1 Joint and marginal distributions

In analogy to the single random variable space, we are interested in the probability of
two random variables X and Y acquiring particular values. Similar to the cumulative
distribution function, in case of two or more random variables, the joint cumulative

distribution function is defined as:
Fxy(z,y) =P[(X <z)n (Y <y)] (2.23)

The joint probatility density function is defined as:

82FXY
and satisfies:
+oo +oo
[ - xv(wy)dedy =1 (2.25)

Given the joint probability density function, we can calculate the so-called marginal

probability density functions of X and Y, which correspond to the probability densities
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of X, Y, treated as separate random variables:

fx(z) = J:O fxv(z,y)dy (2.26)
) = [ fev(w 2.27)

2.5.2 Covariance and correlation coefficient

The joint moment of two random variables X and Y is defined as E[X" - Y™] where
the sum of n and m is called the total order of the moment. Particularly, the second
moment of X, Y around their centroid is known as covariance, and is denoted as oxy.

The covariance can be calculated by the following relation:

oxy = B(X =) (V=) = [ [T — m)ly = m) v e)dedy - (2.25)

By expanding the product of eq. (2.28), an alternative more useful relation can also be
derived:
oxy — E[XY] — UX My (229)

If oxy = 0, the random variables X, Y are uncorrelated. Two independent random
variables are uncorrelated, while the inverse is not always the case. In order to get a
better notion of the degree of correlation of two random variables X, Y, the covariance
can be normalized by the product of the standard deviations of X, Y, and the resulting

ratio is known as the correlation coefficient:

Pxy = (2.30)

The correlation coefficient can be defined only if ox # 0 and oy # 0; furthermore, the

correlation coefficient satisfies —1 < pxy < +1.

2.5.3 Independent random variables

Two random variables X, Y are independent if their joint probability density function

equals the product of their corresponding marginal probability density functions i.e:

Ixv(z,y) = fx(z)fr(y) (2.31)

Independence of random variables can be generalized to more than two random variables.

For example, if random variable X, Y and Z are independent, then eq. (2.31) can be
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2.5 Jointly distributed continuous random variables

generalized as:

Ixvz(x,y,2) = fx(x) fy(y) f2(2) (2.32)

Similarly to egs. (2.31) and (2.32), the joint CDF of independent random variables
equals the product of their marginal CDFs:

Fxy(z,y) = Fx(z)Fy(y) (2.33)

When two random variables X, Y are independent, some useful relations hold.

First, the expectation of the product of X, Y equals the product of the expectations:
E[XY] = E[X]|E[Y] (2.34)

In addition, the variance of their sum equals to the sum of the variances:
Var(X +Y)=Var(X)+ Var(Y) (2.35)

To conclude, a special case of independent random variables is presented, namely
the case of two independent normal random variables. In this particular case, the joint

probability density function of X, Y is given by:

exp (_ (z — MX)2 _ (y — MY)2> (2.36)

2 2
20% 205

fxv(z,y) = fx(@)fy(y) =

2mox oy

where px and py are the mean values of X, Y and ox, oy are the standard deviations

of X and Y respectively.
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Chapter 3

Random processes and random
fields

3.1 Basic definitions

Stochastic or random processes generate sequences of random variables. Generally
speaking, the term stochastic process refers to the process itself or to the generated
sequence. Let Y (¢) denote a stochastic process. The set of all possible values of the
random variable 2 constitutes the state space of the process, while the set consisting
of the values of index t is the index set of the process. In scientific literature, the
term stochastic or random process is used whenever the index refers to some point in
time, while the term random field is used when the index space consists of points in a
spatial domain. It should be noted that in this dissertation the two terms are used
interchangeably. For a thorough coverage of random processes and fields, the reader
may refer to (Grigoriu, 2002; Papoulis and Pillai, 2002; Vanmarcke, 2010; Wirsching
et al., 2006).

In particular, we are considering real scalar, continuous index random fields i.e.
fields where the random variables are real numbers and the index is a point in space
in either 1D, 2D or 3D. Samples of the random field are called realizations of the
field and are assumed to be independent and identically distributed. Figure 3.1, for
example, illustrates sample realizations of a random field in 1D space, while in fig. 3.2
realizations of a random field in 2D are presented. Finally, in fig. 3.3, realizations for a
3D random field are plotted in isocontour form. As for random fields of more than 3

spatial dimensions, they cannot be visualized for all spatial axes simultaneously.
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0.2
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Figure 3.1. Sample realizations of 1D random fields.

3.1.1 Ensembles and ensemble averages

The set of all possible realizations of a random field is called the ensemble. Specifically,
we use the symbol Y () to refer to a random field Y with respect to spatial position

x. At each spatial point @, the distribution of the corresponding random variable f(x)
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60
21 (m ) B w0

£y (m)m 00
Figure 3.2. Sample realizations of 2D random fields.

is the marginal distribution of the process fy(z)(y). Thus, for each point « the mean

and variance can be calculated using the following relations:
+o0
wr(@) = BV @) = [ yfvm()dy
2 2 o 2
)= B[V (@) =y @] = [ =y (@) fro W)y

UY(a:

(3.1)

(3.2)
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Figure 3.3. Sample realizations of 3D random fields.

The quantities calculated via egs. (3.1) and (3.2) are called the ensemble average and

ensemble variance.

3.1.2 Stationary random processes and homogeneous random
fields

In general, the distribution describing a temporal stochastic process changes in time;
this means that the mean, variance and autocorrelation function depend on time t.

Random processes for which the probability distribution stays constant in time are

called stationary processes (Yaglom and Silverman, 1973).
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A random process is strictly stationary if its joint probability distribution stays
constant through time. In practice, this requirement is not easy to prove and a relaxed
stationarity condition is used. A stochastic process is called stationary in the wide
sense (or stationary in Khinchin’s sense) if its mean is constant and the correlation
function depends only on the relative time distance of two different time points. Thus,
the correlation function between two time points ¢; and ¢ depends only on 7 =t — 5,
which is called the time lag.

When considering random processes or fields in space, the term homogeneous is
used to characterize a random process or field for which the probability distribution is
constant in space. In this case, the autocorrelation function between two spatial points,
with coordinate vectors  and y, depends only on the vectorial difference 7 =« — y
which is called the lag vector. Alternatively, the term separation distance is used to
denote the lag vector 7.

An additional property closely related to homogeneity of random fields of two
and more spatial dimensions is isotropy. A random field is isotropic if its joint pdf is
invariant under rotations. Isotropy implies statistical homogeneity, while the inverse is
not always true. The correlation between two spatial points of an isotropic random
field, therefore depends only on their separation distance and not on the orientation

relative to one another.

3.1.3 Ergodic random processes and fields

Let X(t) be a temporal random process and X,,(t) a sample realization of it. X(¢) is
called ergodic in the mean if the temporal mean of any realization X,,(t) is equal to
the ensemble average px(t). It is clear that for a process to be ergodic, it must be
stationary, although the inverse doesn’t always hold. Similarly, we can define ergodicity
in the variance, the autocorrelation function, as well as higher order moments. The
process is called strongly ergodic, if all the corresponding temporal averages are equal
to the corresponding ensemble quantities. It’s called weakly ergodic, if it is ergodic in
the mean, variance and autocorrelation function.

For random fields f(x) where the index @ is a point in a spatial domain ergodicity
in the mean refers to the case when the spatial average of a realization of f equals
to the ensemble average. Ergodicity can be defined in the variance, autocorrelation

equivalently to the random process case.
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3.1.4 Random processes and fields in the frequency domain

In this subsection, an alternative description of the second order characteristics of a
statistically homogeneous random field, namely its spectral representation, is presented.
The autocorrelation function can be represented equivalently in the frequency domain
in the form of the spectral density function. To begin the derivation of the spectral

density function, we define the Fourier transform pair g(x) and G(k) as:

Glr) = ;ﬂ / :’o g(z)e—"dy (3.3)
+o00o .
g(x) :/_Oo G(r)e"™ dr (3.4)

where the function G(k) is called the Fourier transform of function g(x). Equation (3.3)

is the forward Fourier transform and eq. (3.4) the inverse Fourier transform.

3.1.4.1 Wiener-Khinchine relations

We now present the Wiener-Khinchine relations for homogeneous random fields in 1d

defined as:

1 pteo

Sx(k) = o Rx(T)e " dr (3.5)
400 .
Rx (1) = /_oo Sx(k)e"Tdk (3.6)

where Sx (k) is the spectral density function, k the wave number and Rx(7) is the
autocorrelation function defined in terms of the separation distance 7.
For homogenous real valued random fields, the spectral density function is real and

symmetric; egs. (3.5) and (3.6) can thus be used without including the imaginary i as:

Sx(k) = 217r .J:O Rx(7) cos(kT)dr (3.7)
+o00
Ry(r) = /_  Sx() cos(wr)dn (3.8)

The Wiener-Khinchine relations can be written for 2D random fields as:

1 +o0o  p+oo
Sx(/il,/ig) = / Rx(Tl,Tz) COS(/{lTl + /€27’2)d7’1d7’2 (39)

47T2 —00 —00

+o0o —+o0
Rx(m1,7) = /_ /_ Sx (K1, ko) cos(k1Ty + KoTo)dk drks (3.10)
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3.2 Simulation of Gaussian random fields by the spectral representation
method

Finally, for 3d random fields the Wiener-Khichine relations are the following:

1 +o00 +oo +o0
Sx(/il,/ig,lfg) = @/7 L 3 Rx(7'1,7'2,7'3) COS(KlTl +/€2’7’2 +/€37’3)d7’1d7’2d7’3

(3.11)
+oo  ptoo pto00
Rx<7'1, T2, 7'3) = L L /7 Sx(lﬁl, Ko, K,g) COS(/ﬁZlTl + RoTo + I{ng)dlfldK,leig
(3.12)

3.2 Simulation of Gaussian random fields by the

spectral representation method

In this section, the spectral representation method is introduced for simulating Gaussian
random fields in one, two and three spatial dimensions (Giovanis and Papadopoulos,
2015; Shinozuka and Deodatis, 1996; Stefanou and Papadrakakis, 2007). It should
be noted that the advantage of the spectral representation method lies on its general
applicability, as well as the implementation simplicity. According to the spectral
representation method, the stochastic field f(x) is expanded as a sum of trigonometric
functions with random phase angles and amplitudes. In this work, the version which
uses random phase angles and deterministic amplitudes is adopted, as it leads to sample

functions which are ergodic in the mean value and autocorrelation.

3.2.1 Spectral representation method for simulation of 1D
fields

The simulation formula for a truncated after N; terms one-dimensional homogeneous

random field f(x;) is the following:
. N1
f(x1) = \/52 A; cos(k1ix1 + ¢;) (3.13)
i=1

where ¢;(i = 1, ..., N7) are independent random phase angles uniformly distributed in
the range [0, 27]. The frequencies ky; correspond to the first spatial axis and are given
by:

.R1u

Kli:iAlil =1— for 1= 1,...,N1 (314)
Ny
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where k1, is the upper cut-off wave number. The deterministic coefficients A; are

defined as follows:
AO =0 Az = QSfO(/‘fli)A/‘fl for 1= ]_, ceny Ny (315)

where Sy, is the power spectral density function, which is a real non-negative function of
the wave number x1;. The coefficient Aq is chosen zero in order to ensure that the mean
value averaged over the whole simulation domain Ty = 27/Ak; of the generated random
field f(x1) remains zero. Due to the central limit theorem, the simulated random
field is asymptotically Gaussian as N; — oo; the mean value and the autocorrelation
function of the simulated field are identical to the corresponding targets as N; — oo;
in addition f (x1), is periodic with period Tj.

An additional constraint must be applied to the space increment Ax;, when

generating sample function of the simulated stochastic field according to eq. (3.13):

2

2/€1u

AfEl <

(3.16)

The condition of eq. (3.16) is necessary in order to avoid aliasing according to the
sampling theorem.

An application of the spectral representation method for 1D Gaussian random fields
is presented below. The power spectral density function used is of the following type:

0.2b3/i26—b\n\
Splw) = T (3.17)

where oy is the standard deviation, b a correlation length parameter and x the wave
number. Figure 3.4 illustrates the spectral density function for oy = 0.2 and correlation
length parameters b = 1.0m and b = 5.0m.

The spectral representation method is applied in order to generate random field
realizations with underlying spectral density function given by eq. (3.17). The standard
deviation is chosen as oy = 0.2; the spatial domain has a total length of 10.0m and is
subdivided in 1000 intervals so that Az = 0.01 m. Two different values of the correlation
length parameter b are chosen in order to illustrate its effect on the generated fields:

(a) For b = 1.0m, the upper cut-off wave number is chosen k, = 12.0rad/m. The
wave number axis is subdivided to 100 intervals so that, according to eq. (3.14),
N1 =100 and Ak; = 0.12rad/m. Note that the values of the parameters chosen
ensure that the condition of eq. (3.16) is satisfied. while sample realizations of
the random field f(z) for b = 1.0 m are illustrated in fig. 3.5,
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Figure 3.4. Plot of Sy, with respect to wave number &

(b) For b = 5.0m, the upper cut-off wave number is chosen as k, = 2.5rad/m,
the wave number axis is again subdivided to 100 intervals so that, according
to eq. (3.14), Ny = 100 and Ar; = 0.025rad/m. The selection of the above
parameters therefore satisfies eq. (3.16), while sample realizations of the random
field f(x) for b = 5.0m are illustrated in fig. 3.6

3.2.2 Spectral representation method for simulation of 2D
fields

The corresponding spectral representation formula for 2D homogeneous Gaussian
random fields f (€1, x2) is the following:
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Figure 3.5. Sample realizations of a 1D random field with oy = 0.2 and b = 1.0 m.

1 2
flay, @) =v2Y" ¥ [AEJI-) cos (/ﬁiwl + KojTa + <b8-))

i=1j5=1

(3.18)
+ AEJZ-) cos (F&u‘e’ﬂl — K2;jT2 + QSZ(JQ')) ]
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Figure 3.6. Sample realizations of a 1D random field with oy = 0.2 and b = 5.0m.

where the sums are truncated to Ny and N, for the first and second wave number axes

respectively. The wave numbers are given by:
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ki = 1Aky and Ak = — (3.19)
Ny

Koj = jAkKy and Aky = 2w (3.20)
Ny

In egs. (3.19) and (3.20), k1, and kg, indicate the upper cut-off wave numbers for axis 1
and axis 2 respectively, while in eq. (3.18), ¢, ¢(?) are two sets of independent random
uniformly distributed phase angles in the range [0,2x]. Finally, the deterministic

amplitudes are given by:

Ag) - \/QSfofo("flia K2;) Ak Ay (3.21)
Ag‘) = \/QSfofo("ﬁia —52j)A/€1AH2 (3.22)

where Sy, is the 2D power spectral density function and Ak, Ak, are the increments
of the wave number axes given by egs. (3.19) and (3.20). The simulated random fields
are periodic with respect to the two spatial axes and the corresponding periods are
Tor = 27/Aky and Ty = 27/ Aks. In order to avoid aliasing, the space increments
along the z; and x5 must obey:

2T C Amy < 21

Az <
Riu 2/43211

(3.23)

The 2D version of the spectral representation method is applied in order to generate
random field realizations with an underlying spectral density function of exponential
type given by eq. (3.24). The standard deviation is chosen as oy = 0.2. The 2D spatial
domain has lengths of L; = Ly = 10.0m on axes 1, 2 respectively and is subdivided in
200 intervals so that Axz; = Axzy = 0.05m. Various combinations of the correlation
length parameters by, by are chosen in order to illustrate their effect on the generated
fields:

(a) For by = by = 1.0m, the upper cut-off wave number is chosen k,, = Ky, =
5.0 rad/m; the wave number axis is subdivided to 500 intervals so that, according
to eq. (3.20), N3 = Ny = 500 and Ary; = Aky = 0.01 rad/m. The values of the
parameters chosen ensure that the condition of eq. (3.23) is satisfied. Sample
realizations of the random field f(z) for by = by = 1.0 m are illustrated in fig. 3.8.

(b) For b; = by = 5.0m, the upper cut-off wave number is chosen as k,, = Ky, =
1.0rad/m. The wave number axis is again subdivided to 500 intervals so that,
according to eq. (3.20), N1 = Ny = 500 and Ax; = 0.002rad/m. The selection
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of the aforementioned parameters satisfies eq. (3.23). Sample realizations of the
random field f(xy,zy) for by = by = 5.0 m are illustrated in fig. 3.9.

(¢) Furthermore, realizations of the 2D random field for b; = 1.0m and by = 5.0m

are illustrated in fig. 3.10 where the effect of the correlation length parameter on

(3.24)

each axis is demonstrated. ) )
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Figure 3.7. Spectral density function in 2D for various correlation length parameters:
(a) by = by =1.0m, (b) by = by =5.0m, (c) by = 1.0m, by = 5.0m and (d) by = 5.0m,
b2 =1.0m.
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Figure 3.8. Sample realizations of a 2D random field for b; = b, = 1.0m.

3.2.3 Spectral representation method for simulation of 3D

fields
Although applications in this dissertation do not include 3D random fields, the spectral
representation method for simulation of 3D homogeneous Gaussian random fields is
presented. Due to the inherent difficulty in visualizing random fields in 3D, only the
basic simulation methodology is outlined. The spectral representation formula for 3D
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Figure 3.9. Sample realizations of a 2D random field for by = by = 5.0m

homogeneous Gaussian random fields f (x1, T2, x3) is the following

N1 N2 Ns
[A”k cos (/111331 + K2j®2 + K3kT3 + f%k)

flay, @a,25) =v23 D>

i=1j=1k=1
+ ASZ Cos (fiuml + Koj®2 — Kap®s + ¢l(]2;)g)
(fﬂuml — KojT2 + K3p®s + C%k)

Uk cos (kX1 —

(3.25)

zgk COS

RojT2 — K3k T3 + d)l]k) ]
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Figure 3.10. Sample realizations of a 2D random field for by = 1.0m and by = 5.0m.

where the sums are truncated to Ny, Ny and N3 for the first, second and third wave
number axes respectively. The corresponding wave numbers are given by:
. Riu
ki = 1Aky and Ak, = — (3.26)
Ny

Koj = jAKe and Akg = F2u (3.27)
Ny

Kor = kAks and Akz = %’: (3.28)
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In eqgs. (3.26) to (3.28), K1y, k2. and ks, indicate the upper cut-off wave numbers
for axis 1, axis 2 and axis 3 respectively, while in eq. (3.25), ¢V, ¢, ¢ and ¢®
represent four sets of independent random uniformly distributed phase angles in the

range [0, 27]. Finally, the deterministic amplitudes are given by:

mk = \/QSfOfOf()(/ih, Koj, Kak) Ak1 AR ARg (3.29)
zyk \/QSfOfofo(/ﬁ,,/igj, —K3k) AR Ak AK3 (3.30)
”k \/QSfOfOf()(/fll, —Kaj, Kk ) Ak Ak Ak (3.31)
Z]k \/2Sf0f0f0</€1“ —Koj, —kKsk) AR1 Ak Akg (3.32)

where Sy, f, 5, indicates the 3D power spectral density function and Ak, Aks, Argz the
increments of the wave number axes given by egs. (3.26) to (3.28). The simulated
random fields are periodic with respect to the three spatial axes with corresponding
periods Ty = 27/ Ary, Toa = 27/ Aky and Tys = 27/ Aks. In order to avoid aliasing,

the space increments along x1, x5 and x3 must obey:

2 2 2
Axl§27r ) A$2§ ﬂ-v ’ A:B2< i

Riu Koy o 2"12u

(3.33)

3.3 Non-Gaussian random processes and fields

In general, most material properties represented as random processes or fields are
non-Gaussian in nature. Therefore, the study of non-Gaussian stochastic processes
and fields is essential in order to correctly simulate the spatial variability of material
properties of interest (Grigoriu, 1995). In this section, a special class of processes (and
fields), namely translation processes (and fields), are presented, which offer a simple

methodology for deriving non-Gaussian processes (and fields) from Gaussian ones.

3.3.1 Memoryless transformations

Let Y (t) represent a m—dimensional Gaussian vector process and let g be a measurable
mapping from R to R”. The n—dimensional process X (¢) resulting from the following
transformation:

X(t) =g (Y (1)) (3.34)

is Gaussian only if g is a linear function. The mapping defined in eq. (3.34) is called a
memoryless transformation since X (t) depends only on the values of Y (¢) at the time

instant ¢. Through the memoryless transformation, the process X (t) is then defined
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from the mean and covariance functions of Y (¢). In addition, if Y (¢) is stationary, the

resulting process X (t) is also stationary in the strict sense.

3.3.1.1 Translation processes and fields

In this subsection, we consider the case where m = n = 1, i.e. X(¢) and Y (¢) are
univariate real valued stochastic processes. Let g be a monotonic function and Y () a
zero-mean stationary Gaussian stochastic process with unit variance and correlation
function p(t) = E[Y (t+ 7)Y (t)]. Then the process resulting from the following
memoryless transformation:

X(t) =g (1) (3.35)

is called a translation process.

In an analogous manner, if Y (t) with ¢ € R? is a univariate zero mean, ho-
mogenous Gaussian random field with unit variance and correlation function p(7) =
EY (t+ 7)Y (t)], the random field resulting from the following transformation:

X(t) =g (Y (1)) (3.36)

is called a translation field.

Translation processes and fields are a very attractive class of processes (and fields),
since the available methods for generating realizations of Gaussian processes (and fields),
such as the spectral representation method analyzed in section 3.2, are used with
suitable nonlinear functions g to generate via egs. (3.35) and (3.36) the corresponding

realizations of various families of non-Gaussian processes (or fields).

3.3.1.2 Lognormal random processes and fields

Lognormal random processes and fields are a very attractive option when simulating
material properties. In particular, soil properties such as Young’s modulus, permeability
etc. which are strictly positive can be represented by underlying lognormal random
fields, which are by nature strictly positive. Realizations of lognormal random fields can
be easily obtained as translations fields from zero mean homogeneous Gaussian random
fields. The key relation which enables the mapping from a zero mean homogeneous
Gaussian random field with unit variance G(x), to a lognormal field Y (x) is the
following;:

Y(x) =exp (pmy + omy - G (x)) (3.37)
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3.3 Non-Gaussian random processes and fields

where u,y and o,y are the mean and standard deviation of the natural logarithm
of field Y. They are calculated from the target mean and standard deviation of the

random field Y from the following set of relations:

covy = 2% (3.38)
Ky
oty =In(1+COV) (3.39)
1
Hiny = In (/’LY) - 50-12nY (340)

To conclude, the process of generating realizations of lognormal random fields can be
summarized in the following steps:

(a) Generate realizations G (x) where i = 1,2, ...,n of homogeneous zero mean unit

variance Gaussian fields using one of the available methods such as the spectral

representation method section 3.2 (here 4 indicates the i realization of a total
of n).

(b) Use egs. (3.38) to (3.40) to calculate o1,y and py,y from the corresponding oy
and py of the target lognormal field Y.

(¢) Use eq. (3.37) to transform the components of each Gaussian realization G (z;)

to the corresponding Y(i)(mj), where z; is the spatial position of the j** point.
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Chapter 4

The Stochastic Finite Element
Method

In the last two decades, the stochastic finite element method (SFEM) has emerged
as the most powerful method used to solve problems in computational stochastic
mechanics. This fact is the result of extensive scientific research, accompanied by
advances in computer technology that provide the computational power required to
tackle stochastic problems. The classical FEM has been the predominant method
applied up to now for deterministic problems, but cannot be directly used to take
into account uncertainty. On the contrary, the SFEM, which is an extension of the
deterministic FEM, can incorporate uncertainties in loading and boundary conditions,

as well as model geometry and material properties.

4.1 Main variants of the Stochastic Finite Element
Method

The two main variants of the SFEM are the perturbation method and the Spectral
Stochastic finite element method (SSFEM). An additional method is the Monte Carlo
simulation method (MCS), which is the method of choice in this dissertation.

4.1.1 The Perturbation method

The perturbation method is one of the most widely used methods in computational
stochastic mechanics. Its analytical tractability together with the ability to estimate

response statistics for general linear and nonlinear stochastic systems makes it thus
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very effective and computationally efficient. The main aspects of the perturbation

method are covered in this section.

4.1.1.1 Main aspects of the Perturbation method

Let a general differential equation with a given right-hand side g:
G(u) =q (4.1)

where G is a differential operator and u the solution of eq. (4.1). Making the assumption
that a solution exists, a linear operator L is introduced and the following auxiliary

equation is used:
L(u) =q

4.2
—u=1L""q (4.2

The initial differential equation 4.1, enriched with the auxiliary equation 4.2, can now
be written as:

L(u) + G(u) — L(u) = q (4.3)
By defining the new differential operator N:
N(u) = G(u) — L(u) (4.4)

eq. (4.3) is rewritten as:
L(u) + N(u) =g¢ (4.5)

Now a parameter € is defined and finally eq. (4.5) is reformulated as:
L(u) + N(u)e = q (4.6)

The solution u of eq. (4.6) can be expressed as a series expansion with respect to
parameter € as:
U = Uy + ure + ug€e? + . .. (4.7)

Substituting eq. (4.7) in eq. (4.5) and moving terms related to operator N to the
right-hand side, the following relation is produced:

L(ug + ure +uge® +...) = q — N(ug + ure +uge® + ... )e (4.8)
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and, by taking into account that L is a linear operator by definition, the left-hand side

of eq. (4.8) is rewritten as:
L(ug + ure +uge® + ... ) = L(ug) + L(uy)e + L(ug)e® + ... (4.9)
The right-hand side part of eq. (4.8) related to operator N is reformulated as:
N (ug + ure +uge® +...) = N(ug) + Ni(ug, ur)e + No(ug, ur, ug)e® +...  (4.10)

The final step consists of equating terms with ¢ powers of egs. (4.9) and (4.10)
through eq. (4.8) to obtain the following set of equations:

L(uo) = ¢

L(Ul) = —N(Uo)

L(UQ) = —Nl(u(),ul) (411)
L(ugy1) = —Ng(ug, u, ..., uy)

and using the inverse of the linear operator L, the set of solutions of eq. (4.11) is

calculated by:

up =L "q

Uy = L_l(—N(Uo))

Ug = L’l(—Nl(uo, Ul)) (412)
upsr = L (=Ni(ug, us, ..., ug))

By setting € = 1, the solution of the initial eq. (4.1) can be calculated.

Now, the disadvantage of the perturbation approach lies on the fact that, in order
for the method to be valid, the fluctuation of the stochastic parameters considered
cannot be large. The solution of the stochastic problems can be approximated by the
set of equations given in eq. (4.12), by making the almost valid assumption that the
random variables involved do not deviate much from their respective mean values, so

that the term N (u)e introduced in eq. (4.6) is small enough.
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4.1.1.2 The Perturbation-based stochastic finite element method

In this section, the perturbation method is described in the SFEM context. The
perturbation-based SFEM has been successfully applied to a variety of stochastic
problems including linear elastic static and dynamic systems, as well as nonlinear and
eigenvalue problems. In order to demonstrate the application of the method, a linear
elastic structural problem under static loading conditions with stochastic material
properties is used.

The fundamental equations of equilibrium for a structural system discretized with

finite elements can be written in the following compact matrix form:
KU =P (4.13)

where K is the total assembled stiffness matrix, U the nodal displacement vector and
P the external force vector, which is considered deterministic and is constant over time.
System parameters such as Young’s modulus, Poisson’s ratio, as well as additional
structural properties like the cross section area, moment of inertia and torsional stiffness
can be treated as stochastic or uncertain properties of the studied structure. Note that
a discretization method to produce the underlying random fields of the corresponding
stochastic parameters has to be chosen to incorporate the uncertain properties in the
analysis.

Let € denote a random vector involved in the calculation of the total stiffness matrix
K. Vector € is assumed to have zero mean value and known covariance matrix. The
purpose of the stochastic analysis is the calculation of the first and second moments of
the response quantities of interest such as nodal displacements and stresses, strains at
certain points of the structure.

The total stiffness matrix is expanded with respect to powers of the random vector

€ at its mean values as:

0 4 ZK(l)el + ZZK(Q)QGJ ) (4.14)

i=175=1

where KO, K i(l) and Kz(f ) are the zeroth, first and second mean-centered second rates
of change of the stiffness matrix with respect to €; and €;, and n is the total number

of random variables considered.
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The nodal displacement vector U is also expanded as:

—i—ZU(l e,—l—zz eej : (4.15)

i=1j=1

Equation (4.15) is the system response expressed in terms of the lower-order polynomial
function with respect to the random vector €. To specify, this is an approximation of
the response surface, while the solution accuracy depends on how accurate the response
surface is. Substituting eqgs. (4.14) and (4.15) to the equilibrium equation i.e. eq. (4.13),

and equating the corresponding terms, results in the following set of equations:

KOyo — p
KOu® — _K(l)U(O)

(]

KOU® - - (KU + KO

v

(4.16)

Truncating the expanded series given by eqgs. (4.14) and (4.15) so that only terms up
to second order are included, the expected value of the nodal displacement vector is

obtained:
EU)=U®Y + Z Z U Elee;] (4.17)

i=1j5=1
where the expectation operator is denoted as E[], and Ele;€;] is the covariance matrix

of the random vector €. Furthermore, the covariance matrix of the nodal displacement

vector can be calculated by:

=33 (U) (U)") Fle

>

1j=

M:

E|(U-E[U)(U-E[U

o
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where €;; = €;€; — El€;€;]. Statistics of any other response quantities such as stresses

and strains can be calculated according to eqs. (4.17) and (4.18).
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4.1.2 The Spectral Stochastic Finite Element Method

The spectral stochastic finite element method (SSFEM) was introduced by Ghanem
and Spanos (Ghanem and Spanos, 2003). It is an extension of the classical deterministic
finite element method, which is used to solve boundary value problems considering
spatial variability of the material properties. The random material property is described
by an underlying Gaussian stochastic field, represented according to the Karhunen-
Loeve (K-L) expansion. According to the (K-L) expansion, the random field f(x, )

representing the studied material property can be written as:
F(@.0) = u(@) 3 Niei(@)&i(6) (4.19)
i=1

where () is the mean value of the field at the spatial point with coordinates x, &; a
set of uncorrelated random variables and \;, ¢;(x) the eigenvalues and eigenfunctions
of the autocorrelation function Cys(x1,x2) of f, calculated from the solution of the

following Fredholm integral equation of the second kind:

/D O (@1, 22)0i(@1)dy = \ichi(2) (4.20)

The stochastic stiffness matrix of element (e) can then be written according to:

K©0) = K + 3 K¢(0) (4.21)
=1

where Kée) is the mean value of K(©)(6) and Ki(e) are deterministic and given by:
K = \/\ [ 6(@)B" DB 4.22
= yA [ él@)B Dy (4.22)

where B is the classical strain-displacement matrix and Dg corresponds to the mean
value of the constitutive matrix. If we assume deterministic loading conditions, the

final equilibrium finite element equation can be written as follows:

Ko+ Ke )| U0) - (1.23)

=1

where U (0) is the unknown vector of random nodal displacements and F' the deter-

ministic loading vector. The next step in the SSFEM is the expansion of the random

=0’
a process known as polynomial chaos expansion (PCE). According to the PCE, the

nodal displacement vector U () in a series of random Hermite polynomials {V, (9)}
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4.1 Main variants of the Stochastic Finite Element Method

displacement vector is expressed as the following sum:
Uo) => U, (0) (4.24)
5=0

while the final form of the equilibrium equation is:

(2 K; (9)> : (i Ujib; (9)) ~F=0 (4.25)

When considering the application of the SSFEM, the K-L. and PCE expansions are
truncated to a finite number of terms. Let M +1 denote the number of terms retained in
the K-L expansion and P the corresponding number for the PCE. After some algebraic

manipulations, the following linear system with N P unknowns has to be solved:

Ky Kyp Uy F,
K Kl,:P—l . ({1 _ 1*?1 (4.26)
Kp 1o KPf.l,Pfl UI;’fl Ff;q
which is written in compact form as:
KU=xF (4.27)

The dimension of the resulting system of eq. (4.27) depends on the number of terms P
retained in the PCE and the number of degrees of freedom N of the corresponding
finite element problem. Thus, the computational cost required for the solution of the
stochastic problem is much larger compared to the deterministic one. In most cases,
the size of K makes direct solution methods prohibitive and iterative solution schemes,

such as the preconditioned conjugate gradient, have to be used.

4.1.3 The Monte Carlo Simulation Method

The class of Monte Carlo methods is a classical computational tool used in many
fields of science and engineering to simulate natural phenomena based on probabili-
ties (Greenbaum and Chartier, 2012). The MCS method in the context of stochastic
finite elements is but an adaptation of the classical technique to incorporate uncertain
model parameters in a finite element model. The main methodology consists of the

following steps:
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1. Generate a number of random field or random process realizations representing

the desired stochastic property or properties to be incorporated in the analysis.

2. Run a separate deterministic finite element simulation using each of the above

realizations as input and keep track of the response quantities of choice.

3. Analyze the resulting data of the analyses and calculate the required statistical
quantities such as mean values, variances and probability distributions. At this
stage, probabilities of failure according to a predefined criterion may also be
determined.

The MCS finite element method is globally applicable regardless of the number
of uncertain parameters considered, the model nonlinearity, time dependence etc. In
addition, it is effective even in cases where the magnitude of the variations of the
system properties is large, which might make the other available methods unsuitable.
Furthermore, the MCS is used to check the validity of the alternative methods used.

The main disadvantage of the MCS is the substantial computational cost, which
results from the extensive number of realizations that have to be considered to correctly
calculate the statistical quantities of interest. Nevertheless, since each finite element
simulation is independent of the others, this method is embarrassingly parallel, a
property that makes it a successful candidate for taking advantage of today’s multicore

and multi-cpu computer architectures.

4.2 Discretization methods

4.2.1 The nodal point method

The nodal point method dictates that the values of the chosen random field representing
the uncertain property have to be calculated at each finite element node of the model
mesh. Thus, the spatially continuous random field f is transformed to a discrete vector

of size N™%" which is the total number of mesh nodes with values:

fi = f(z;) (4.28)

where x; is the vector of coordinates of the j* node and f; the value of the random
field at this node.
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4.2.2 The integration point method

According to the integration point method, the random field representing the stochastic
property of interest must be calculated at the integration points of each finite element
of the given mesh. This particular method is used for finite elements which employ
numerical integration, such as Gauss quadrature for calculation of the corresponding
matrices. The problem of this approach simply lies on the increased computational

cost in large scale problems, especially when high-order elements are used.

4.2.3 The Midpoint method

The midpoint method is one of the most widely used methodologies related to SFEM
analysis. According to the midpoint method, the random field is discretized at the
middle point of each finite element of the model mesh considered. The coordinate
vector of the central point of each element is then calculated according to:

1
xl = Ve Z x (4.29)

j=1
where @§ are the nodal coordinates of the 7" node and N¢ the number of nodes of the
element. The midpoint method makes the assumption that the random field property
is uniform on each element and that the value of the random field at the central point is
representative for the whole element. This is the method of choice in this dissertation,

mainly due to its implementation simplicity and low computational cost.
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Chapter 5
Variability response functions

The concept of variability response functions (VRF) was first introduced by Shinozuka
in the late 1980s, in a series of seminal papers: (Bucher and Shinozuka, 1988; Kardara
et al., 1989; Shinozuka, 1987). The main advantage demonstrated by the VRF is
the variance information related to a response quantity expressed independently of
the correlation structure of the underlying uncertain system property considered. As
a result, the VRF is a deterministic function which depends on the structure to be
analyzed, its boundary conditions and the loading applied.

Initially, the VRF methodology was applied to simple statically determinate truss
and frame structures with linear material properties under static loading conditions. The
method has since then been extended to treat dynamic problems leading to the concept
of dynamic variability response functions (DVRF), as described in (Papadopoulos and
Kokkinos, 2012, 2015).

Finally, an explicit formula for the VRF can be derived only for very simple models.
In order to address this limitation, a fast Monte Carlo simulation (FMCS) methodology
was devised, which generalized the applicability of the VRF in general finite element

models.

5.1 Definition of VRF and MRF

The VRF concept is defined through the following integral expression for the variance

of a response quantity u of a finite element model in 1D:

Var[u] = /_;OO VRF(k)S¢(k)dr (5.1)
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where S¢(k) is the power spectral density of the underlying random field representing
the random property of the system. Equivalently, a mean response function (MRF) is
defined, expressing the corresponding information for the mean value of a response
quantity wu:

oy = /+OO MRF (k)S¢(k)dr (5.2)

Furthermore, the VRF and MRF can be defined for 2D and 3D problems, where

the corresponding definitions for 2D are:

+oo  p+oo

Var[u] = / VRF (kq, k2)St (K1, ko)dridks (5.3)
+oo +0o0

Bl = / MRF(k1, k) S (b1, iz) iy dics (5.4)

and for 3D:
+oo  ptoo ptoo
Var[u] = / / V RF (K1, ke, k3)Sf(K1, Ko, K3)dr1dradks (5.5)

“+o0o +oo +oo
Elu] = / / MRF (K1, ko, k3)Sf (K1, Ko, k3)dr1drodks (5.6)

5.2 Definition of DVRF and DMRF

The concept of dynamic variability response functions (DVRF) and dynamic mean
response functions (DMRF) was initially proposed in (Papadopoulos and Kokkinos,
2012, 2015). They are but a straightforward generalization of the classical VRF and
MRF defined in section 5.1; the DVRF/DMRF pair is used to treat the limitations
of VRF/MRF which treat stochastic problems under static loading conditions. Thus,
the DVRF and DMRF can tackle stochastic analyses where the studied responses are
transient. The DVRF is defined as:

Varlu®) = [ DVRE(t, ,0,7)S;;(k)dx (5.7)

—0o0

where u(t) is the studied response, which is a function of time, and Sy the 1D spectral
density function of the underlying random field. The definition of the DMRF is

analogous:

Blu() = [ zo DMRF(t, #,01)Ss7(r)dr (5.8)

where Elu(t)] is the mean value of the response quantity u, which is a function of time.
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To complete, the equivalent relations for 2D stochastic problems are given:

+oo +00
Varlu(t)] = [ DVRF(t, k1, k2, 077)Sss(kr, ko)dkadis  (5.9)

— 00 —00

for the DVRF, and furthermore the DMRF":
+oo  p+o00
Elu(t)] = / / DMRF(t, 5y, ks, 057) Sy 1 (51, iz k1 (5.10)

which are both functions of time ¢, the standard deviation o of the underlying random
field and wave numbers corresponding to the two spatial axes, namely x; and ks.
To conclude, the corresponding DVRF and DMRF definitions for 3D stochastic

transient problems are:
“+oo +oo “+o0o
Varlu(t)] = / / DV RF(t, k1, ko, K3, 0 1)Sy (v, fia, )iy dsadiss (5.11)
for the DVRF and:
+oo p+oo  p+o0o
Elu(t)] :/ / DMRF(t, k1, ke, k3, 07f)Spr(K1, Ko, k3)dkidkadks  (5.12)

for the DMRF. They again are function of time ¢, the standard deviation (std) o of
the underlying random field and wave number axes corresponding to the three spatial

axes K1, ko and k3.

5.3 Upper bounds of the response variance and

mean value

One of the main advantages of the VRF/MRF methodology and their transient
equivalents DVRF /DMRF is the establishment of spectral- and distribution-free upper
bounds of the response variance and mean value. In this section, the methods for
calculating these upper bounds based on the VRF/MRF, as well as DVRF/DMRF,

are described.

5.3.1 Time independent response

For static loading cases with constant loading conditions, the classical VRF and MRF
functions are used in order to calculate the upper bounds of the response variance

and mean. Regarding the variance of the studied response quantity u, the following
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relation is satisfied:

+o00
Var[u] = VRF(k,077)Sss(k)ds < VRF (K™ 0s5)0%; (5.13)
where £ is the wave number for which the VRF function is maximum. The analogous
expression, regarding the mean value of u is written with respect to the MRF function,

is thus as follows:

+o0
Elu] = MRF(k,057)Sss(k)dr < MRF(K™ 0f5)07; (5.14)

—00

T now denotes the wave number at which the MRF function is maxi-

where £™*
mized. Equations (5.13) and (5.14) are used to calculate the upper bounds of the
variance and mean of the response quantity u respectively for stochastic finite element
models in 1D, while the extension to 2D and 3D problems follows.

For 2D problems, the upper bound of the variance is calculated from the following

relation:

+oo  pHtoo
Varlu] = / VRF (kg Ky, 057)Sp (Ko, iy)di < VRE (K] K7 0pp)0F,
(5.15)

where (k7'*, ,'%%) indicate the pair of wave numbers maximizing the 2D VRF function.

The upper bound for the mean of the response is calculated by:

Elu] = /+oo " MRF(Ky, ky, 05f)St(Ka, ky)dk < MRF (K], Ky, aff)aif
o (5.16)
where (k7'*, 57%%) now denotes the pair of wave numbers maximizing the 2D MRF
function.

Finally, for 3D problems, the upper bound of the response variance is established
through the following relation:

+oo  ptoo  ptoo
Var[u] :/_OO /_OO . VRE (Ky, Ky, bz, 05)Sf (K, Ky, K2)dE (5.17)

S VRF(K)max, Hma:r} Kmaa:’ O—ff)o—]%f

T y 'z

max

max max
K z

T y Yy
function. The corresponding upper bound for the mean of the response quantity d is

where (k , K7 is the triplet of wave numbers maximizing the 3D VRF
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calculated by:

+oo ptoo  pHfoo0
E[u] :/ / MRF(K%HyaKmaff)sff(’%:w/{ya"iz)d“

< MRF (K™, k1% K79 g 1)0%,

(5.18)

max max max
x ) K/y 9 ’K‘"z

function.

where (K ) denotes the triplet of wave numbers maximizing the 3D MRF

5.3.2 Transient response

When considering stochastic systems with transient response, i.e. the response is a
function of time, the upper bounds of the response variability and mean value are
calculated through the use of the DVRF and DMRF functions respectively. It has to
be noted though that in the transient case, unlike section 5.3, the upper bounds of
the corresponding response quantity of interest d are functions of time ¢. For the 1D
stochastic systems, the upper bound of the response variance is therefore specifically
established through the following relation:

+oo
VCLT[d(t)] = / DVRF(t, R,0frf, t)Sff(K,)dFL < DVRF(t, /imax(t), Off)OJch (519)

where k™% (t) is the wave number that maximizes the DVRF function at time instance
t. The analogous expressions for the mean value of the response quantity d is:
“+oo

E[d(t)] = DMRF(t,Ii,Uff,t)Sff(/i)dli < DMRF(Zf,F&maI(t),O'ff)O'J%f (520)
where "% (t) is the wave number maximizing the DMRF function at time ¢.

For 2D stochastic systems, the corresponding upper bound of the response variance
can be derived from the following relation:

400 p+oo

Varld(t)] = / DV RF(t, Ky, Ky, 07)Stf(Ky, Ky)dR,dk, (5.21)

< DVRF(t, k" (t), " (), aff)a]%f
where (k3% (t), k;"**(t)), denotes the pair of wave numbers in axes r, and k, which
maximize the DVRF function at time ¢. The corresponding relation for the time-
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dependent upper bound of the response mean is:

+oo  ptoo
Eld(t)] = Lm . DMRF(t, Ky, by, 055)Stf(Kg, by)dkgpdr, (5.22)

< DMRF(t, k[?*(t), k" (t), aff)aj%f

where (k' (t), ;%% (t)) is now the wave number pair maximizing the DMRF function
at time ¢.

Finally, for 3D stochastic systems, the corresponding relations used to calculate the
upper bounds of the response variability and mean are given right below, the relation

for the upper bound of the variance being:

+oo ptoo  p+too
Varld(t)] = / / / DV RF(t, Ky, Ky, Kz, 0£)Stf(Kay Ky, K2)dRkgdiydE

< DV RFE(t, k™ (t), k™ (L), k7 (t), aff)a]%f

Y Yy z
(5.23)
where (k7' (t), k9% (t), K7'**(t)) is the triplet of the wave number values that maximizes

the DVRF function at time ¢. The analogous relation for the upper bound of the mean

of response quantity d is:

+00 +o0o +oo
E[d(t)] = /_OO /_OO /_Oo DMRE(t, Ky, by, bz, 07 ) Spp(Kg, Ky, K2)dRgdiydE

< DMRF(t, k" (t), k' (t) mm“I(t),aff)UJ%f

) Y ? z

(5.24)

where (k' (t), k9% (t), K7'**(t)) is the triplet of the wave number values that maximizes

the DMRF function at time ¢.

5.4 The fast Monte Carlo simulation method

An explicit formula for the DVRF and DMRF functions can be only obtained for
very simple models. As a result, the calculation of discrete versions of DVRF and
DMREF is possible only when using numerical techniques. In this thesis, the FMCS
method is used. The concept behind the FMCS is the generation of random fields
f(x) for 1D problems, f(z,y) for 2D and f(z,y, z) for 3D, corresponding to random
sinusoids, with monochromatic spectral densities. By computing the variance and
mean of the response quantity for these sinusoids, the DVRF and DMRF are then

calculated separately for each wave number.
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5.4 The fast Monte Carlo simulation method

5.4.1 Problems in 1D

For 1D problems, the FMCS method is reduced to the following steps:
1. For the standard deviation o, of the studied quantity generate N(5-10), sample

functions of sinusoids for each corresponding wave number x given by:

fi(x) = V20, cos(k -z + ¢;) (5.25)
where ¢; is the center of intervals (2%, 2”(]{,“)) for j=0,1,..., N—1. In general,

due to the symmetry of the DMRF/DVRF functions for stochastic systems in
1D, only positive wave numbers are used. An upper cut-off wave number «, is
each time chosen and the wave number axis is subdivided in M intervals. Given

this, the discretized version of eq. 5.25 is:
fij(x) = V207 cos(k; - & + ¢;) (5.26)

where r; = iAk for i =0,1,..., M and Ak = k, /M indicates the wave number

spacing.

2. For each discrete wave number k;, calculate the variance and mean of the response

from the N corresponding f;; 7 = 1,2,..., N realizations of the random sinusoid.

3. Calculate the values of the DMRF and DVREF at the wave number x; using the

following relations:

Eld®)],

DMRF(Zf,KJi,O'ff) = 5 : (527)
Off
d(t)|,.
DVRF(t, ki, 0p7) = w (5.28)
Iff

4. Gather all the required DMRF and DVRF values for each wave number x; and
each time step for the standard deviation oys; the overall procedure may be

repeated for alternative values of 0.

5.4.2 Problems in 2D

For 2D problems, the method is adjusted in order to take into account the two wave

number axes:
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1. For the standard deviation oy of the studied quantity generate N(5-10), sample

functions of sinusoids for each pair of wave numbers x, and s, given by:

fr(z,y) = \/ﬁaff cos(ky - T+ Ky - Y + @) (5.29)

where ¢y, is the center of intervals (%, 2”%“)) for k=0,1,..., N—1. Unlike the
1D case, the DMRF/DVRF functions in 2D are not fully symmetric, prompting
us to consider positive, as well as negative wave numbers for the two wave number
axes. Lower and upper cut-off wave numbers are selected for each axis, namely
(Kats Kgu) and (Ky, Ky,), whereas the two wave number axes are discretized in M,
and M, intervals respectively. However, in most cases, the lower and cut-off wave
numbers are selected to be symmetric with respect to the axis origin, so that half
of the selected intervals are used to discretize the negative portion of the axis
and the other half for the positive one. Given these, the discretized version of
eq. 5.29 is:

fije(z,y) = \/§Jff CoS(Kyi - T + Kyj -y + @) (5.30)

where Ky = kg + 1Ak, for i =0,1,..., My, Ak, = (Kgu — Kat) /My indicates the
wave number spacing in the first wave number axis, and x,; = Ky + jAk, for
j=0,1,..., My and Ak, = (kyy — Ky1)/M>, the wave number spacing in the

second wave number axis.

2. For each discrete wave number pair (kg, £y;), calculate the variance and mean of
the response from the N corresponding fi;x & = 1,2,..., N realizations of the

random sinusoid.

3. Calculate the values of the DMRF and DVRF at the wave number pair £, kg

using the following relations:

Eld()]

DMRF(t, Kaj, Ky, 0pf) = —— 52 (5.31)
Tfr
Var[d(t)]s,.x,.
DVRE(t, kas, gy, ) = LoDy, (5.32)
95

4. Gather all the required DMRF /DVRF values for each wave number pair (g, £y;)
and each time step for the standard deviation oys; the overall procedure may

then be repeated for alternative values of oyy.
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5.4 The fast Monte Carlo simulation method

5.4.3 Problems in 3D

For 3D problems, the FMCS method is adjusted in order to incorporate the three wave
number axes and is summarized in the following steps:
1. For the standard deviation o of the studied quantity generate N(5-10), sample

functions of sinusoids for each tuple of wave numbers x,, x, and k. given by:
fi(z,y,2) = V20,5 cos(kip -2+ Ky -y + Kz - 2+ &) (5.33)

where ¢; is the midpoint of intervals (%rl, 2”(}\?1)) forl=0,1,...,N — 1. Again,

unlike the 1D case, the DMRF/DVRF functions in 3D are not fully symmetric,

so positive, as well as negative wave numbers have to be considered for the three

wave number axes. Lower and upper cut-off wave numbers are selected for each
axis, namely (Kz, Kzu), (Kyi, Byu) and (K, K2,), while the three wave number
axes are subdivided in M;, My and M3 intervals respectively. In most cases,
the lower and upper cut-off wave numbers are selected to be symmetric with
respect to the axis origin, resulting in half of the selected intervals being used to
discretize the negative portion of the axis and the other half for the positive one.

This time, the discretized version of eq. 5.33 is:
fijui(z,y, 2) = \/§0ff COS(Kyi - & + Kyj - Y+ Ko - 2+ Op) (5.34)

where Ky = Ky + 1Ak, for i = 0,1,..., My, Aky = (Kgu — Ka1)/M; indicates
the wave number spacing for the s, axis, Ky; = Ky + JAK, for j =0,1,..., My
with Aky = (Kyy — Kyi)/Ma the spacing for the x, axis and k., = K, + kAk, for
kE=0,1,..., M3 with Ak, = (k,y — k21)/Mj3 the corresponding spacing for the

K, axis.

2. For each discrete wave number tuple (K, ky;, £yi), calculate the variance and
mean of the response from the N corresponding fiji [ = 1,2,..., N realizations

of the random sinusoid.

3. Calculate the values of the DMRF and DVRF at the wave number tuple

(Kgis Kzj, K2k) using the following relations:

Eld(t Kgikyjk
DMRFE(t, Ky, Kyjy Kok Opf) = [ ()]2“ ug sk (5.35)
Iff
Varldt)] e .
DV RE(t, by, iy Kooty Op1) = arld( )j ity (5.36)
Off
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4. Gather all the required DMRF and DVRF values for each wave number tuple
(Kgi, Kyj, kz) and each time step for the standard deviation of; the overall

procedure may well be repeated for alternative values of oy.

5.5 Symmetries of the DMRF and DVRF functions

5.5.1 Symmetry in the 1D case

In this subsection, the complete symmetry of the DMRF and DVRF functions are proven
for the 1D case. Consider a certain wave number denoted x* and the corresponding
negative wave number —x*. Let one of the angles chosen for the random sinusoid
in eq. (5.25) be denoted ¢*. Then, the corresponding random sinusoid f*(x) is given
by:

f(x) = cos(k* -z + ¢*) (5.37)

Taking into account that cos is an even function, the following relation holds:
ff(z) =cos(k" -z + @) = cos(—k" - — ¢*) =cos (—Kr" -z + 2m — ¢"))  (5.38)

The DMRF and DVRF for the wave number x* are calculated from N random sinusoids
which are uniformly distributed in [0, 27]. Let us take for example that N = 5; then,
¢ € {m/5, 3n/5, m, Tn/5, 9w /5}, whereas for each value of ¢, the corresponding value
of 2m — ¢ is also used in the calculation. Given these, the N random sinusoids used to
generate the DMRF/DVRF functions for the wave number x* and —x* are the same
according to eq. (5.38). This proves that the DMRF/DVRF functions are even with
respect to k i.e. DM RF(k,t) = DM RF(—k,t), while the same holds for the DVRF.
Taking advantage of the symmetry of the DVRF and DMRF in 1D, only positive wave
numbers have to be considered and the computational cost is reduced by half. Thus,

relations eqs. (7.40) and (7.42) can be written as:
+oo
Eld(t)] = 2 / DMRFE(t, 5,0, - Sy (k)de (5.39)
0

Varld(®) =2 [ " DVRE(, K, 01p) - Sy (k) dr (5.40)

5.5.2 Symmetry in the 2D case

In this subsection, the partial symmetry of the DMRF and DVRF functions are

proven for the 2D case. Consider a certain wave number pair denoted (x7, x;) and the
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5.5 Symmetries of the DMRF and DVRF functions

corresponding negative wave number pair (-}, —k; ). Let one of the angles chosen
for the random sinusoid in eq. (5.29) be denoted ¢*. Then, the corresponding random

sinusoid f*(z,y) is given by:
[ (@, y) = cos(ky - v+ Ky -y + ¢") (5.41)
Taking into account that cos is an even function, the following relation holds:

[ (x) = cos(ky - v+ Ky -y + @) = cos(—k} - & — K, -y — ¢)

= COS (—/{; - — /{Z cy 4 (27T _ Qb*)) (542)

The DMRF and DVRF for the wave number pair (x}, #;) are calculated from N random
sinusoids which are uniformly distributed in [0, 27]. As already explained for the 1D
case, for each value of ¢, the corresponding value of 27 — ¢ is also used in the calculation.
Therefore, the N random sinusoids used to calculate the DMRF and DVRF functions
for the wave number pair (x7, ;) and (—+}, —k;) are the same according to eq. (5.42).
In the same way, it can be proved that the N random sinusoids used to calculate
the DMRF and DVRF functions are the same considering the wave number pairs
(3, —#,) and (—r}, &y ). Thus, the DMRF and DVRF functions in 2D are symmetric in
quadrants 1, 3 and 2, 4 of the x,-k, planei.e. DM RF (ky, ky,t) = DM RF(—Ky, —ky, t),
DMRF kg, —ky,t) = DM RF (=K, Ky, t), while the same is true regarding the DVRF.
This fact alone can indeed help reduce computational cost by considering either
only non-negative x, values or only non-negative x, values. In case of non-negative

Kz, €qs. (7.41) and (7.43) may be written as follows:

“+oo [e%e}
Eld(t)] = 2 / / DMRE(t, kg, kg, 01f) - Sy (K iy )dbindic, (5.43)
—oo JO

+oo  p+oo
Varld(t)] = 2/ / DV RF(t, Ky, by, 0ff) - St(Ka, ky)dkydk, (5.44)
—oco JO
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Chapter 6

Consolidation of a soil layer with

stochastic material properties

In this chapter, the consolidation phenomenon of a saturated soil layer with stochastic
permeability £ and Young’s modulus F is studied. The direct Monte Carlo stochastic
finite element method is employed in order to numerically solve the consolidation
equations and incorporate the spatial variability of £ and E. In particular, the case
study consists of the loading of a rigid rough strip footing resting on a consolidating
soil layer, where the effect of the variability of £ and E on the footing settlements, as

well as the generated excess pore pressures of the underlying soil is investigated.

6.1 The Consolidation Equation and its Numerical

Solution

Soil consolidation is the phenomenon involving the gradual dissipation of porous fluid
pressure accompanied by deformation of the soil skeleton. When a load is applied
on a saturated soil layer, it is initially undertaken by the fluid contained in the soil
pores in the form of excess pore pressures, and is gradually transferred to the soil
skeleton. The one-dimensional theory of soil consolidation introduced by Terzaghi
was later extended to three dimensions by Biot (Maurice A. Biot, 1941). The key to
understanding the consolidation phenomenon is the notion of effective soil stress, which
refers to the portion of the total stress undertaken by the soil skeleton and causes its
actual deformation. The equations of equilibrium and balance of mass are combined
with Darcy’s law governing the flow of water through a soil medium, leading to the

coupled set of consolidation equations.

67
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The consolidation equations are discretized in space using the finite element u-p
formulation, according to which the following matrix equation is derived (ignoring

water sources and sinks):

K,u+Cu,=f (6.1)
du
T* — =
C 7 K.u,=0 (6.2)

where K, denotes the stiffness matrix of the soil elements, C' the coupling matrix
and K, the fluid conductivity matrix, whereas w and wu,, are the displacement and
excess pore pressure nodal degrees of freedom. The matrices used in egs. (6.1) and (6.2)
are formulated according to the shape functions used to interpolate the displacement
and pore pressure degrees of freedom. Derivation of the consolidation equations, their
discretized form in terms of finite elements and the numerical solution schemes used are
analytically explained in (Lewis et al., 1998; O. C. Zienkiewicz et al., 1999; Smith and
Griffiths, 2004). In this study, the permeability coefficient & is used with dimensions
of [length]®[time]/[mass] or equivalently [length]*[force]™/[time], which is different
from the usual soil mechanics convention where it is defined in velocity terms. The
two different permeability measures, are related through k = &'/, where £’ is the
permeability coefficient in velocity terms and -, the specific weight of water (O. C.
Zienkiewicz et al., 1999). Furthermore, isotropic soil permeability is considered and
thus, the permeability tensor k is given by k = kI, where I is the second order identity
tensor. The fully implicit form of the generalized Newmark first order scheme (GN11)

is used for time integration of the coupled set of consolidation equations according to:

u(n—l—l) o u(n) B du(n+1)

At Cdt (6:3)

where n+1 refers to time t+At, n to time ¢ and At is the time step used. Equations (6.1)

and (6.2) are written for time ¢ + At as follows:

Kmu(n-l-l) + C’ug”“l) _ f(n-‘rl) (64)
(n+1)
TCZL _ Kl =0 (6.5)

Substituting eq. (6.3) in eq. (6.5), we get:

(n+1) _ g (m) (P

u
cl———— - Kaum) =0 6.6
o ] (6.6)
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while, by multiplying both sides of eq. (6.6) with the timestep At, the following

expression is derived:
CTu" — AtK ult) = CTu™ (6.7)

Combining all the above equations the combined set of consolidation equations is

expressed in the compact matrix form:

w ) FOtD)
u (D) )Ty (6.8)

The extensive magnitude difference between the permeability coefficient & and Young’s

K, C
CT —AlK.

modulus £ may lead to an ill-conditioned coefficient matrix on the left-hand side of the
linear equation system of eq. (6.8). Ill-conditioning is even worse in stochastic finite
elements analyses with large variations of k. To overcome this, a technique proposed
in (Reed, 1984), which improves the condition number of the coefficient matrix, is used;

the coupled set of equations is written as:

D) f(n+1)
{1u(n+1)} - {ScTu(nJrl) (6-9)

where s is a scalar constant which renders K,, and —s?AtK, matrix entries of the

K,, sC
sCT —s2AtK,

same order of magnitude. This leads to increased stability in direct linear system

solvers, as well as improved rate of convergence of iterative schemes.

6.2 Representation of uncertain soil properties

In general, Gaussian and non-Gaussian random fields have been used to represent
uncertain material properties. Nevertheless, the Gaussian assumption is not valid for
soil material properties which are strictly positive, such as the permeability coefficient k
and the elastic modulus E, making the study of non-Gaussian stochastic fields essential
for treating this limitation.

In this study, soil permeability coefficient k, as well as elastic modulus E are
simulated as lognormal random fields in two dimensions. Thus, a robust and efficient
procedure to generate the required random field realizations is needed. In general,
various methods exist for simulation of random fields. The multi-dimensional spectral

representation method (Shinozuka and Deodatis, 1996) and specifically the sum of
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cosines version is considered here for its implementation simplicity, as well as its

applicability in nonuniform finite element meshes.

6.2.1 Stochastic finite element analysis

It is assumed that the permeability coefficient £ and the elastic modulus F are
represented by two-dimensional uni-variate (2D-1V) homogeneous stochastic fields.
The effect of k and E is examined separately in different Monte Carlo simulations.
The midpoint method (Der Kiureghian and Ke, 1988) is used in order to derive the
stochastic fluid conductivity matrix K, and the stochastic soil stiffness matrix K,,.
According to this, the spatially continuous soil property, such as k, is approximated
by a single random variable l%(:n) defined as the value of the field at the centroid z. of

each finite element domain €.:
k(z) = k(z,) Ve, (6.10)

As a result, each realization of the random property is piecewise constant and the
discontinuities are localized at element boundaries. First, the spectral representation
method described in section 3.2 is used to generate unit-variance zero mean homoge-
neous Gaussian fields at each finite element centroid and then, the following relations

are used to calculate the lognormal parameters (Fenton and Griffiths, 2008):

Ok
vp = " (6.11)
M
Ty = (1 4 v7) (6.12)
1
Pn(ky = In(pg) — 5012n(k) (6.13)

Finally, the corresponding permeability k; (equivalently for E;) is calculated from the

Gaussian G; through the lognormal transformation by the following relation:

k; = exp(,uln(k) + Uln(k)Gz‘) (6.14)

Characteristic random field realizations of permeability coefficient k, indicating
the influence of correlation length by,) and the COV on the simulated lognormal
fields, are shown in figs. 6.1 and 6.2. As illustrated in both cases, smaller values of
the correlation length parameter b,y lead to weakly correlated random field values
compared to larger values, which result in strongly correlated fields. On the other

hand, the COV value dictates the expected distance of the permeability values from
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the corresponding mean.

As a result, random fields with COV = 2.00,

illustrated

in fig. 6.2 contain permeability values which in some cases are much larger or much

smaller than the mean value, visualized with more vibrant color compared to the case

of COV =0.25 in fig. 6.1.
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In this study, a Gaussian type correlation structure is condidered for the underlying

Gaussian fields and its power spectral density function is given by:

5 D16y < 1
02 ——= exp

SQQ(KMHQ) 9 42
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where o, denotes the standard deviation of the stochastic field and b,, by the correlation

lengths the x and y axes, respectively.

6.3 Case Study

6.3.1 Description of the numerical example

The case study considered consists of a rigid, rough strip footing resting on a saturated
soil layer. A uniform area load, which follows a ramp pattern over time, is applied on
the footing. The finite element mesh used is depicted in fig. 6.3, the soil layer thickness
is H = 20m and the footing width B = 10m. In order to represent the horizontal
extent of the soil layer, a total length of L = 60m is considered. Isoparametric 4-node
quadrilateral elements are used for the discretization of soil and footing. Elements
corresponding to soil have both displacement and pore pressure degrees of freedom
(dofs) and make use of bilinear shape functions, while footing elements contain only
displacement dofs. The problem is analyzed assuming plain strain conditions and a
uniform mesh with all element edges equal to 1 m. The applied displacement boundary
conditions consist of fixed displacements in x and y directions for the soil layer base and
fixed x displacements for the vertical sides. The hydraulic boundary conditions consist
of impervious conditions at the soil base and side nodes, while free drainage is allowed
at the soil surface. The uniform area load p applied on the footing increases linearly
from time 0 to time ¢, = 25 days and then remains constant at value ppq. = 1.0 kN/ m2.
Since the problem is linear elastic, the choice of a unit load allows generalization to
different load magnitudes. Soil permeability coefficient k£ and elasticity modulus £
are the stochastic parameters considered in the simulation, whereas the other soil and
footing mechanical properties are constant throughout the analysis. The Poisson’s
ratio of the soil is ¥ = 0.3 and footing material properties are £ = 20 GPa and
v = 0.4. The permeability coefficient k is simulated as a lognormal random field
with mean value p, = 1.22 - 1075m?* - kN~ /day. The elastic modulus E is also
simulated as a lognormal random field with mean value up = 622.7 kPa. Different
coefficients of variation are considered, COV = {0.25,0.5,1.0,2.0,5.0} for both random
soil properties. In addition, the correlation length parameters bli,x) = b21n(x) = bin(k)
for k and blyy(py = 021y(k) = b for E, which dictate the autocorrelation distance
of the simulated random fields, range from 4.0m to 100.0m. A variable time step
is implemented to accelerate the time integration process, in order to simulate the

consolidation phenomenon for a large time period and retain a reasonable computational
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Figure 6.3. Finite element mesh of the model.

cost. Finally, a number of 1000 Monte Carlo analyses are executed for each COV-

correlation length parameter pair.
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Figure 6.4. Footing settlements.

In fig. 6.4, points A and D correspond to the top left and top right footing points,
while point C' is the center of the top of the footing. The vertical displacements of
A, C'and D are denoted as v4, vg and v respectively. Throughout this study, the
term differential footing settlement is used corresponding to the absolute value of the
vertical displacement difference of points A and D, i.e. Av = |v4 — vp|. Furthermore,
the term absolute settlement is used to denote the vertical displacement of point C| i.e.
ve.

Nodal displacements on top of the footing, as well as excess pore pressures along
all the nodes below its center, are obtained from each Monte Carlo simulation analysis.
Statistical processing of the response quantities leads to quantification of the influence
of spatial variability of permeability k& and elastic modulus E on the overall footing-soil

system response.
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6.3.2 On the choice of finite elements and model dimensions

In many consolidation applications throughout the scientific literature, researchers use
quadrilateral 8-node isoparametric finite elements, where each node has displacement
degrees of freedom, while only the 4 vertices have both displacement and pore pressure
degrees of freedom. In this case study, quadrilateral 4-node isoparametric elements
are used instead, in order to reduce the computational cost. To verify the accuracy
obtained by the elements used, a comparison between the results obtained with 4-node
and 8-node elements is made, where the two different formulations are denoted as
4U4P and 8U4P. To this purpose, the problem described in section 6.3 is simulated for
the deterministic case with both formulations. The corresponding results are illustrated
in fig. 6.5, a closer look at which reveals that the choice of the 4U4P quadrilateral

elements provides sufficient accuracy, while retaining a relatively low computational

cost.
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Figure 6.5. Comparison of results between 4U4P and 8U8P quadrilateral element
formulations, where: (a) Settlement of footing center and (b) Excess pore pressure at
depth B/2.

An additional modeling assumption requiring validation is the horizontal dimension
of the model L shown in fig. 6.3, which has to be large enough so that its effect
on the footing-soil response is diminished. To this purpose, a parametric study has
been performed, where different choices of L are made and the resulting footing-soil
responses are compared. By inspecting fig. 6.6, it is clear that the choice of L = 60m

gives satisfying results, and is therefore used to reduce the computational cost.
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Figure 6.6. Comparison of the footing-soil response for different choices of the horizontal
model dimension L, where: (a) Settlement of footing center and (b) Excess pore pressure
at depth B/2.

6.3.3 Discussion of results
6.3.3.1 Footing settlement

In this section, footing settlements resulting from the Monte Carlo analyses are
discussed.

The influence of the correlation length parameter by, (k) = blink) = 02m(k), considered
equal in both dimensions, as well as of the COV on the mean differential footing
settlement, is illustrated in fig. 6.7. It is clear that larger COV values lead to greater
differential settlements overall. By comparing the results to the corresponding case of
variable £ shown in fig. 6.8, it is also evident that the magnitude of the differential
settlement is much larger in the stochastic E case. As a result, the footing-soil system
is much more sensitive to the variability of the elastic modulus E. In addition, the
pattern of the time evolution of the differential settlement is completely different in the
case of spatially variable elastic modulus. When considering a random permeability
k, the differential settlement first reaches a peak value and then gradually tends
to zero as excess pore pressures dissipate, a fact amply illustrated in fig. 6.7. In
the stochastic E case though, the differential settlements remain throughout the
consolidation phenomenon and increase monotonically over time as shown in fig. 6.8.

What’s more, as b increases, the magnitude of differential settlement increases up to
binky = 10m for k and by, () = 16 m for E, and then gradually decreases. This is verified
by inspection of figs. 6.11 and 6.12, where the convergence of maximum differential

settlements with increasing number of Monte Carlo simulations is demonstrated. Larger
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COV values correspond to greater standard deviation of the maximum differential
settlements, as shown in figs. 6.13 and 6.14. It is important to emphasize that, the
differential settlement for the deterministic case of the same problem is zero throughout
the consolidation process, since the problem examined is symmetric in geometry and
loading.

In order to demonstrate the validity of the Monte Carlo method in terms of
differential settlements, figs. 6.11 to 6.14 illustrate the convergence of both mean and
standard deviation of the maximum differential settlement with respect to the number
of MCS analyses performed. It is thus obvious that the 1000 simulations performed
give satisfactory convergence.

Next, we examine the influence of spatial variability of permeability k& and elastic
modulus F in terms of settlements of the footing center. Time evolution of the
settlements of footing center is illustrated in figs. 6.15 and 6.16. Direct comparison
between the mean value j,,., the median 7 and the values corresponding to p,,. £ 0,
follow. Observing these, it is evident that the deviation from the mean response
becomes greater as COV increases. In addition, the median value of the absolute
settlement ¢ is identical to the mean for small COV values, while it starts to deviate for
larger COV values. The corresponding results for the footing edge points are identical
and are therefore not illustrated. In any case, the influence of spatial variability of &,
as well as E is less dramatic compared to the differential settlements.

Additionally, the distributions of maximum value of differential footing settlements
are plotted in figs. 6.17 and 6.18, whereas maximum settlements of the footing center
are shown in figs. 6.19 and 6.20. In the differential settlements case, the histogram
is skewed and thus, a lognormal distribution is fitted and presented with red color.
Regarding the settlements of the footing center though, the values corresponding to the
stochastic permeability case are concentrated around a particular value for each COV
case as illustrated in fig. 6.19, indicating that the maximum settlement of the footing
center is not affected by the variation of the permeability. The situation is different
when considering the maximum settlement of the footing center for the stochastic
elastic modulus as shown in fig. 6.20, where the distribution resembles a Gaussian one
and the resulting fit is marked with red color.

Examination of the sensitivity of the mean and STD of the max differential footing
settlements to the normalized correlation parameter b/ B (where B is the footing width)
leads to the most important finding of the analysis. Observing fig. 6.21, it is clear that
a peak of the mean value of the max differential settlement coincides with values of

bin(k)/ B close to unity for the case of variable k, regardless of the COV value; the same
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is true for the STD of the max differential settlement. Regarding the spatial variability
of F, the maximum mean and STD values of the max differential settlement are
obtained for values of bi,(g)/B ranging from 1.5 to 2.5 as shown in fig. 6.22. This leads
to the conclusion that, the footing response with respect to the differential settlement
is worse for a critical value of correlation parameter by, ) equal to the footing width B
when the variability of k is considered, and for a larger value close to b,z = 1.5B
when considering variability of E.
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Figure 6.7. Mean differential settlement vs time for stochastic permeability £ and COV
values: (a) 0.25 and (b) 2.00.
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Figure 6.8. Mean differential settlement vs time for stochastic elastic modulus E and
COV values: (a) 0.25 and (b) 2.00.
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Figure 6.9. Monte Carlo results of differential footing settlement for stochastic perme-
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Figure 6.10. Monte Carlo results of differential footing settlement for stochastic elastic
modulus with by,(gy = 10m and COV values: (a) 0.25 and (b) 2.00.
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Figure 6.11. Mean of max differential settlement vs Monte Carlo simulations for
stochastic permeability k£ and COV values: (a) 0.25 and (b) 2.00.

— 1e-3 = le-2

£ £

:g 3.0 COV =0.25 ..E COV =2.00

@ 24

525 5

b 3

©20 23

s S

$15 o

£ o~ £ 2

2 of :

3 S

€05 €1

5 5

= 0 200 400 600 800 1000 = 0 200 400 600 800 1000
Monte Carlo simulations Monte Carlo simulations

(a) (b)
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Figure 6.15. Monte Carlo results of footing center settlement for stochastic permeability
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6.3.3.2 Pore pressures

In this subsection, the response of the loaded soil in terms of excess pore pressure
generation is analyzed. All nodes below the footing center are monitored in every
Monte Carlo analysis. Four characteristic points in depths B/10, B/5, B/2 and B
from the soil surface are examined, where B is the footing width.

First, by inspecting figs. 6.23 and 6.25, it can be seen that the mean of the excess
pore pressure is largely insensitive to correlation length parameter b, as well as to the
COV value of the permeability k. This is also true when considering spatial variability
of the elastic modulus F illustrated in figs. 6.23 and 6.25; the situation is similar for
points in depth B/5 and B which are not shown.

Only a very slight deviation from the mean is evident for small COV values regardless
of the depth from the soil surface. The median of the pore pressure for b,y = 10m,
shown in figs. 6.27 and 6.29, starts to deviate from the mean curve for large COV
values of k. The deviation, also evident in the case of spatially variable elastic modulus,
is depicted in figs. 6.28 and 6.30. However, it is important to notice that for large
coefficients of variation, the max excess pore pressure generated at depth B/10 exceeds
in many cases the value of the maximum applied load p,,.. = 1.0 kPa for variable both
k and E.

Unlike the response of the differential settlements of fig. 6.21, the mean and STD
of the maximum pressure, depicted in figs. 6.31 to 6.34, follow no general pattern
regarding the influence of the correlation length parameter by,). On the contrary,
when considering random F, it becomes clear that the mean and STD of the maximum
pore pressure at the various studied depths are maximized for small correlation lengths,
while tending to stabilize for large by,(g) as shown in figs. 6.32 and 6.34.

Finally, histograms of the maximum values of the resulting pressures are presented
in figs. 6.35, 6.37, 6.39 and 6.41 for stochastic permeability k& and figs. 6.36, 6.38, 6.40
and 6.42 for stochastic Young’s modulus E. For depth B/10 a Gaussian distribution is
fitted, while for depths B/5, B/5 and B, a lognormal distribution gives a better fit for
both £ and E.
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Figure 6.29. Excess pore pressure at depth B/2 vs time for stochastic permeability
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Figure 6.30. Excess pore pressure at depth B/2 vs time for stochastic elastic modulus
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Figure 6.35. Histogram of max excess pore pressure at depth B/10 and fitted Gaussian
distribution for stochastic permeability with by, = 10m and COV values: (a) 0.25

and (b) 2.00.
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Figure 6.36. Histogram of max excess pore pressure at depth B/10 and fitted Gaussian
distribution for stochastic elastic modulus with by,(zy = 10m and COV values: (a)

0.25 and (b) 2.00.
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Figure 6.37. Histogram of max excess pore pressure at depth B/5 and fitted lognormal
distribution for stochastic permeability with by, = 10m and COV values: (a) 0.25
and (b) 2.00.
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Figure 6.38. Histogram of max excess pore pressure at depth B/5 and fitted lognormal
distribution for stochastic elastic modulus with by,(zy = 10m and COV values: (a)

0.25 and (b) 2.00.
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Figure 6.39. Histogram of max excess pore pressure at depth B/2 and fitted lognormal
distribution for stochastic permeability with by, = 10m and COV values: (a) 0.25

and (b) 2.00.
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Figure 6.40. Histogram of max excess pore pressure at depth B/2 and fitted lognormal
distribution for stochastic elastic modulus with by,(zy = 10m and COV values: (a)

0.25 and (b) 2.00.
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Figure 6.41. Histogram of max excess pore pressure at depth B and fitted lognormal

distribution for stochastic permeability with by, = 10m and COV values: (a) 0.25
and (b) 2.00.

-\

120

150

100

80

60

frequency
frequency

40

20

0
0.32 0.34 0.36 0.38 0.40 0.42 0.2 0.3 0.4 0.5 0.6 0.7

max pressure at depth B (kPa) max pressure at depth B (kPa)
(a) (b)

Figure 6.42. Histogram of max excess pore pressure at depth B and fitted lognormal
distribution for stochastic elastic modulus with by,(gy = 10m and COV values: (a)

0.25 and (b) 2.00.
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6.3.4 Foundation design guidelines

Regarding the design of foundations resting on saturated consolidating soil layers the
findings of the previous parametric study may lead to notable recommendations. First,
when considering superstructures sensitive to differential settlement, a safety threshold
for the maximum differential settlement should be set. The probability of failure can
then be easily calculated from the area of the corresponding differential settlement
histograms corresponding to values higher than the allowed threshold. Furthermore, if
data of the soil variability and autocorrelation is available, Monte Carlo analyses can
be carried out to find the critical footing widths resulting to the greater differential
settlement. In case of square or more complicated footing shapes, full 3-D probabilistic
analyses might have to be considered. It is also important to take into account the
spatial soil variability whenever considering the settlements corresponding to the footing
center, despite the fact that the sensitivity of the system is lower with respect to them.
Nevertheless, it is possible to calculate probabilities of exceeding an allowable absolute
settlement. To conclude, it may be the case that the generated water pore pressures,
which in many cases exceed the magnitude of the applied load, reduce the strength
of the underlying soil. If this is the case, bearing capacity analyses which take into
account the consolidation process and the variability of the soil parameters have to be
taken into consideration at the design stage. In this scenario, the footing design might
have to change; otherwise, techniques such as installation of prefabricated vertical
drains (PVDs), in combination with soil pre-loading that accelerate the consolidation

of the soil layer, might be considered as proposed in (Bari et al., 2016).

6.4 Concluding remarks

In this work, the influence of spatial variability of the soil permeability k£ and elastic
modulus F on the consolidation phenomenon is investigated. A coupled u-p finite
element formulation is considered to discretize the underlying governing equations.
Permeability and elastic modulus were simulated as lognormal random fields using the
spectral representation method. A case study of a classical geotechnical engineering
footing settlement problem is presented. The direct Monte Carlo simulation method
was used to carry out the stochastic finite element analysis. A number of different
parametric studies were performed to study the response of the footing-soil system.
It was shown that the spatial variability of the soil permeability and elastic modulus
has a direct effect on the footing-soil system response. Differential footing settlements,

absent in deterministic analysis for the case study examined, are observed even for
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slight variations of k£ or E. They have to be taken into account, especially in cases of
structures sensitive to differential movement. It was also found that the soil-footing
system is much more sensitive to variation of E' compared to k. Furthermore, in the
case of spatially variable E, a different pattern of differential settlement is observed.
Specifically, the differential footing settlement increases continuously, while for the
spatially variable k, it obtains a maximum value and then gradually decreases to zero.
In addition, different values of b maximize the variability of the system response when
k and E are considered, namely 1.0B for k and about 1.5B for F where B is the
footing width. The generated excess pore pressures of the underlying consolidating
soil layer are also affected by the variation of soil properties. The variation of E is
crucial once more, although variations of both k£ and F can lead to pore pressures with
larger magnitudes than the applied footing load. This alone might affect the strength
of the underlying soil and play a negative role in the footing bearing capacity. To
conclude, it was demonstrated that probabilistic analyses can provide an insight into
the influence of uncertain soil parameters in various geotechnical applications. Under
these circumstances, the stochastic finite element method proves to be a valuable tool

for analysis and design in geotechnical engineering.

99






Chapter 7

Dynamic variability response
functions for shear wave

propagation in soils

In this chapter, the problem of shear wave propagation in soils with spatially varying
shear modulus G is studied on the basis of the DMRF/DVRF concept. The indepen-
dence assumption of DMRF/DVRF functions to the spectral density function of the
underlying material property renders the methodology ideal for problems involving soil
materials, where lack of sufficient data is the common case. It is shown that through
the DMRF/DVRF functions, the time history of mean and variance of the response
quantity of interest can be accurately and efficiently calculated for stochastic shear
wave propagation problems in 1D and 2D soil domains. Specifically, the FMCS method
is used to numerically evaluate the DMRF/DVRF functions for displacement, velocity
and acceleration of the soil layer surface. Application of finite element analyses of
propagation of synthetic Ricker and (Mavroeidis and Papageorgiou, 2003) wavelets, as
well as a real recorded earthquake motion are then used as test-cases to demonstrate
the potential and validity of the method. Furthermore, upper bounds of the mean
and variance of the response quantities of interest are established through the use of
the calculated DMRF and DVRF functions. The accuracy of the proposed approach
is verified by direct comparison of the results obtained via the MCS method. Useful
conclusions regarding the sensitivity of the statistical characteristics of the soil response

on the underlying nature of the material correlation properties are finally drawn.
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7.1 Time integration of equations of motion

In wave propagation analyses in the time domain, the general dynamic equilibrium
system of equations must be solved:

Mii(t) + Cu(t) + Ku(t) = P(t) (7.1)
where M, C and K are the mass, damping and stiffness matrices, (t), @(t) and w(t)
the acceleration, velocity and displacement vectors and P(t) the external force vector.
The equation of motion which is alternatively called equation of dynamical equilibrium
has to be satisfied throughout time ¢. In order to numerically solve eq. (7.1), various
time integrations schemes are used. To this purpose, three alternative numerical time
integrations schemes are presented, namely the Newmark algorithm, the Hilber-Hughes-
Taylor and the latest Bathe method.

7.1.1 The Newmark algorithm

In this section the classical Newmark time integration scheme is presented. According
to the Newmark scheme, the following assumptions are used to relate the response
quantities between two successive timesteps, namely ¢ and t + At, where At is the

chosen timestep:

,il't+At - 'l:l/t + [(1 - 5) + (S'ut+At] (72)

1
Ut At — Ut + 'U,tAt + |:<2 - Oé) 'ﬁ,t + Oé’l.j,H_At At2 (73)

while parameters o and 0 are determined for integration accuracy and stability. The
originally proposed values & = 1/4 and 6 = 1/2 lead to the unconditionally stable
scheme known as the constant-average acceleration method or trapezoidal rule. In order
to determine the final form of the Newmark integration scheme, the aforementioned

equilibrium according to eq. (7.1) is considered at timestep ¢ + At:
My + CUppnr + Kupny = Pipag (7.4)

Combining egs. (7.2) and (7.5) an analogous relation for the nodal acceleration vector
at time t + At can be derived:

. Ly .. 1 . 1
Ut = <1 - 2a> Uy — CLAtUt + PN (werar — wr) (7.5)
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7.1 Time integration of equations of motion

The following table introduces the eight effective constants ag,..., a7 used in the
following derivations for the Newmark algorithm.

Equations (7.2), (7.3) and (7.5) are now rewritten using constants of section 7.1.1 as:

Newmark constants
Constant Value
Qo a 1t2
mo|
Q2 oY
Qs ? —
g |
At (s
t
(673 At (1 — 5)
(0%4 OAt

Table 7.1. Table of Newmark constants

Upy At = Qg (Ut+At - Ut) — Qo — a3ty (7~6)
Wiy nr = Uy + gty + o7ty ng (7.7)
as ., 1.
Ui At = Ut + Attt + 73’11115 + — UL AL (78)
Qg Qo

Substituting eqs. (7.6) and (7.7) in eq. (7.4) the following relation is obtained:

M [040 (ut+At - Ut) — Ty — OCSﬁt] (7 9)
+C [t + aptiy + ariiag] + Kupons = Pryas

By keeping all terms related to w4 a; at the left-hand side of eq. (7.9) and rearranging

the right-hand side, another relation is obtained:

(K + oM + a1 C) upynr = Pipn+M (g + oty + agity)+C (oquy + oty + asiiy)
(7.10)

which may be written in the compact form:
K%u,, s = P, (r.11)

To conclude, the Newmark time integration scheme for linear problems is summarized

in the following simple steps:
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1. Assemble the total mass matrix M, the stiffness matrix K and the damping

matrix C.

2. Use the initial conditions ug, ¢ and iig; the initial vector of accelerations can

be calculated by solving the equation of motion eq. (7.1) at the zeroth timestep.

3. Select the timestep At and the Newmark integration parameters «, 6 which have

to satisfy the following conditions:

§ > 0.50 (7.12)
a > 0.25(0.5+6)? (7.13)

4. Calculate the Newmark constants from section 7.1.1.
5. Form the effective stiffness matrix from the left-hand side of eq. (7.10).

6. For each timestep repeat the following steps:
6.1. Calculate the effective external force vector from the right-hand side of eq. (7.10).
6.2. Solve eq. (7.11).

6.3. Calculate the accelerations and velocities at timestep ¢ + At from eqs. (7.6)
and (7.7).

7.1.2 Bathe algorithm

The algorithm of Bathe was first introduced in (Bathe, 2007) and further analyzed
in (Bathe and Noh, 2012); it has been successfully applied to wave propagation
problems (Noh et al., 2013). The Bathe method is a composite implicit direct time
integrations scheme for solving the equation of motion with respect to time. The main
idea behind the algorithm is the division of each timestep At into two equal sub-steps
and the subsequent use of two different integration rules for each of the sub-steps. This
composite integration scheme has three advantages; it offers numerical damping of high
frequency modes, is second order accurate and unconditionally stable. It is effective for
linear and nonlinear finite element analyses even in the presence of large deformations
of the analyzed model.

The classical equation of dynamical equilibrium given by eq. (7.1) has to be solved

at each timestep. Initially the equation of motion is written at the half of the interval
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7.1 Time integration of equations of motion

between time points ¢t and ¢ + At as follows:
My nijo + Cgpngy2 + Ktgpnr2 = Prpagyo (7.14)

In order to integrate the equation of motion of eq. (7.14), the trapezoidal rule is used.

Velocity and displacement at timestep ¢ + At/2 are calculated via:

. At ..

Uy At)2 = Ut + T (Ut + ut+At/2) (7.15)
Aty

Uy At/2 = Ut + T (Ut + ut+At/2> (7.16)

Substituting eq. (7.15) in eq. (7.16) and solving with respect to ;4 a¢/2 results into
the following relation:

. 4 .
U tAt)2 = N (Ut+At/2 - Ut) — Uy (7.17)

Combining egs. (7.16) and (7.17) and solving with respect to is4a¢/2, the following
relation is derived:

.. 16 8 .
Urrat/2 = A3 (ut+At/2 ) A wy — Uy (7.18)

Now, eqs. (7.17) and (7.18) can be used directly in eq. (7.14):

16 16 8 . ..
M (gt sun = g~z ~ i)
4 4

(7.19)
+C (Atut+At/2 N ﬁt) + Kuinrye = Piyag)2

Rearranging terms in eq. (7.19) and keeping all vectors related to time ¢t + At/2 at the
left-hand side, the following equation is obtained:

16 16 8 . ..
(K + EC + At2M> Upiarje = Priaye + M (At2 + AL + Ut) (720
1 :
+C (Atut + ut)
which can be written in the more compact form:
K wae = P, (7.21)
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The linear equation system of eq. (7.21) can now be solved with any available method
in order to calculate the displacement nodal vector u,ya;/2-

For the second sub-step, i.e. for time integration between time points ¢ + At/2 and
t + At, the three-point backward Euler is used, where velocity and acceleration are

now calculated via the following relations:

) 1 4 3

Ut At = KtUt — Eut+At/2 =+ EutJrAt (7.22)
) 1. 4. 3 12 9
Uriar = 1 Wt = 1 Wit/ + Ap Ut T Ap a2 + A YA (7.23)

Substituting eqs. (7.22) and (7.23) in the equation of motion at time ¢t + At, the

following relation is derived:

9 12 3 4 1.
M (MUHAt - @meﬁ + Tﬁut — Ktuwm/z + Atut)

3 4

. (7.24)
+C <Atut+At - KtutJrAt/Q + AtUt> + Kupnr = Prya

Keeping only the vectors related to time point ¢ + At on the left-hand side
of eq. (7.24), we get:

3 9
<K +--C+ M) Ui nr = Pryag

At At?
+M <A3tZ (40tr a0y — wr) + Alt (4be 02 — ut)> +C (Alt (424002 — ut>>
(7.25)
which is written in the more compact form:
KPPy, n = P (7.26)

This time, the only unknown is the nodal displacement vector at time point ¢ + At
and eq. (7.26) can be solved by standard methods for linear systems.

To conclude, the Bathe time integration scheme for linear problems is summarized
in the following simple steps:

1. Assemble the total mass matrix M, the stiffness matrix K and the damping

matrix C.

2. Use the initial conditions ug, 1y and iiy. The initial vector of accelerations may

be calculated by solving the equation of motion eq. (7.1) at the zeroth timestep.
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3. Select the timestep At for the time integration.

4. Form the effective stiffness matrices K//1 and K¢/ used in eqgs. (7.20) and (7.25)
respectively.

5. For each timestep repeat the following steps:
5.1. Calculate the effective external force vector Pffﬁ Jo of eq. (7.21).
5.2. Solve eq. (7.21).

5.3. Calculate the accelerations and velocities at timestep ¢t+At/2 from eqs. (7.17)
and (7.18).

5.4. Calculate the effective external force vector P;fﬁ of eq. (7.26).
5.5. Solve eq. (7.26).

5.6. Calculate the accelerations and velocities at timestep ¢ + At from eqs. (7.22)
and (7.23).

7.1.3 Hilber-Hughes-Taylor a method

In order to integrate the equation of motion 7.1 in this chapter, the implicit uncon-
ditionally stable a-method (Hilber-Hughes-Taylor) Hughes (2000) is used. The basic
parameters are the timestep At and parameter «, which lies in the interval [—1/3, 0]
and controls the numerical damping. The two other parameters 5 and 7 are calculated

as a function of a by the following relations:

B = i(1 —a)? (7.27)
N = ;(1 — 20) (7.28)

According to this time integration scheme, the following relations are used:

1
Upi1 = WUy + U, AL+ [(1 — 28) 1y, + 25,11 §At2

) (7.30)
— wu, + w, At + ﬁniAtZ + (g — ihy) BAL?

Note that, in eqs. (7.29) and (7.30), the quantities with subscript n refer to time ¢,
whereas n + 1 refers to time t + At for a chosen timestep At. Combining egs. (7.29)
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and (7.30) so that the basic unknown is w1, the following relations hold:

1 1 1
'l.l'n-‘rl = (1 - 22;,) Atun + (1 - g) un + 57& (un-i-l - un) (732)

The equation of motion 7.1 is written at a time instance between timesteps ¢ and
t+ At:

Mii, 1+ (1+a)Ctyyy — aCty + (1 + o) Kuyyy — aKu, = (1 +a) Py — oP,

(7.33)
Substituting egs. (7.31) and (7.32) in eq. (7.33) and moving the ¢ + At terms at the
left-hand side and the ¢ terms at the right-hand side, the final form of the linear system

of equations is obtained:

1 1
<6At2M + (g_AiMC+ (1+ a)K) Up1 = (1+a)Pyyy — aP, + aKu,

(1 + )y ay 7 , Y "
+C (ﬁAtu" + (ﬂ + 57 1) w, + (1 + ) (25 — 1) Atun> (7.34)

+M ! + L, + ! 1)
A Un A Up Y u,
BAL? BAt 26
which may be written in the more compact form:
Ky, = P (7.35)

This particular equation can now be solved for the unknown displacement vector w,, 1
at time t + At.

To conclude, the HHT-« time integration scheme for linear problems is summarized
in the following simple steps:

1. Assemble the total mass matrix M, the stiffness matrix K and the damping

matrix C.

2. Use the initial conditions ug, ¢ and 1iig; the initial vector of accelerations can

be calculated by solving the equation of motion eq. (7.1) at the zeroth timestep.

3. Select the timestep At and the integration parameter «, which has to lie in the
interval [—1/3,0]. Furthermore, calculate the additional parameters  and ~y
from egs. (7.27) and (7.28).
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4. Form the effective stiffness matrix from the left-hand side of eq. (7.35).

5. For each timestep repeat the following steps:
5.1. Calculate the effective external force vector from the right-hand side of eq. (7.35).
5.2. Solve eq. (7.35).

5.3. Calculate the accelerations and velocities at timestep ¢ + At from egs. (7.31)
and (7.32).

7.2 Simulation of stochastic shear wave propaga-

tion in soils

The stochastic soil parameter considered is the inverse of the soil shear modulus 1/G,
which varies randomly along the vertical axis y in 1D models and in the horizontal
and vertical axes x, y for plane strain models. In the general 2D case, the following

relation holds: .

G(z,y)

where G(z,y) denotes the soil shear modulus at the spatial point with coordinates

= Fo-(1+ f(z,9)) (7.36)

(x,y) and f(z,y) is a zero-mean homogeneous stochastic field which models the spatial
variation of 1/G around its mean value Fy = 1/Gy.

The shear wave propagates through an underlying bedrock layer which is considered
homogeneous to the soil layer above. What’s more, the compliance of the underlying
bedrock layer is taken into account by attaching viscous dampers to the base nodes of
the soil model, according to the methodology proposed in (Lysmer and Kuhlemeyer).
Both 1D and 2D shear wave propagation is considered and the corresponding models
used are illustrated in figs. 7.1 and 7.2 respectively.

When considering shear wave propagation in 1D, the shear stress is given by:

Ju
Toy = G oy (7.37)
where u is the displacement along the horizontal axis x. The nodal forces of a unit
area 1D element of height h.;, illustrated in fig. 7.1, are then calculated as follows:
- - “ (7.38)
Fj hel -G G U
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where the matrix on the right-hand side of eq. 7.38 corresponds to the stiffness matrix
for the 1D case. For the simulation of shear wave propagation in the 2D case, standard
isoparametric plane strain 4-node quadrilateral elements are used.

It is very important to note that, when simulating the propagation of a recorded
wave motion in either 1D or 2D domains, the incoming motion from the underlying
bedrock layer has to be transformed to equivalent nodal forces, which are applied at the
base of the model. To this purpose, the following relation is used according to (Joyner
and Chen, 1975):

Foaue(t) = 20, - Viy - Vi(t) - A (7.39)

where p; is the density of the underlying bedrock, V,, the shear wave propagation
velocity of the bedrock, V; the velocity history of the incoming shear wave and A
the area corresponding to the node where the force is applied. The resulting nodal
forces correspond to the external force vector P(t), which constitutes the right-hand
side of eq. (7.1), and are applied to the base nodes of the 1D or 2D model as shown
in figs. 7.1 and 7.2.

{ u_]' soil surface
J \vans
U;
] ?; ‘/S P

y SN} H
i

1.,
]_CsbIPszb

% incoming wave

Figure 7.1. Numerical model used for the simulation of 1D shear wave propagation in
soil

7.3 Dynamic Variability Response Function

The dynamic mean response function (DMRF) Papadopoulos and Kokkinos (2012) can

be used to calculate the mean of the studied response quantity d(t), i.e. u(t), velocity
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Figure 7.2. Numerical model used for the simulation of 2D shear wave propagation in
soil

u(t) or acceleration (t), by the following expressions:

for 1D : E[d(t)] = /_ " DMRF(t, k,047) - S (k)dr (7.40)

—+00 0
for 2D:E[d(t)]:/_oo /_OODMRF(t,Hx,FLy,Uff)'Sff(fiw,/fy)dffwdﬁy (7.41)

The same holds true for the variance of the response quantity where the dynamic

variability response function (DVRF) is used instead:

+oo
for 1D: Var[d(t)] = / DVRE(t,k,0s7) - Syy(k)de (7.42)
+oo  p+o0
for 2D: Varld(t)] = / DV RF(t, kg, by, 0¢f) - Spf(ky, ky)drgdr, — (7.43)

Explicit expressions for the DMRF/DVRF are rarely available; they have to be in-
stead calculated numerically. To this purpose, the FMCS method analyzed in section 5.4
is adopted.

7.4 Numerical application

In this section, the DMRF/DVRF methodology is applied in the simulation of shear
wave propagation in 1D and 2D soil domains; in both cases, the soil material properties

considered are the same. The inverse of the shear modulus G is the uncertain soil
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material parameter which has to be incorporated in the analysis. Both models consist
of a soil layer which is loaded with an incoming stress wave from the bedrock layer
below, considered homogeneous. The deterministic soil layer parameters assumed are:
density p = 1.8 Mg/m?, Poisson’s ratio v = 0.3, whereas the corresponding bedrock
properties are: Vi, = 760m/s, p, = 2.4 Mg/m?, v, = 0.3. The parameter a = —0.02 is
chosen for the time integration method of egs. (7.33) and (7.34) analyzed in section 7.2.
The mean value of the shear wave velocity is Vi = 240m /s corresponding to a mean
shear modulus of the soil Gy = p- V2 = 103.68 M Pa. The shear modulus of the
bedrock is calculated by Gy, = p, - V3 = 1386.24 M Pa. As explained in section 7.2, the

inverse of the soil shear modulus is modeled as the random field with spatial value:

1 1

with f(z,y) denoting a zero-mean homogeneous random field. For 1D fields, the
horizontal coordinate z is omitted and eq. (7.44) is reduced to one dimension. It is
important to emphasize that, in the FMCS case, f corresponds to the random sinusoid
defined in egs. (5.25) and (5.29), while in the direct MCS method, f corresponds to a
zero-mean random field. In this study, the spectral representation method is used to

generate realizations of the random field f in the MCS case.

7.4.1 Synthetic wavelets used

In this section, explicit relations for the Ricker and Mavroeidis & Papageorgiou
synthetic wavelets are given; they are used as test loading cases in the numerical
application (Semblat, 2009).

The Ricker wavelet is defined as the derivative of the Gaussian at various orders;
the Oth, 1st and 2nd order cases are presented:

o The Ricker wavelet of order 0 is given by:

Ro(t) = glexp [—H(t_t;s)j (7.45)

o The Ricker wavelet of order 1 is given by:

t—1s

Ry(t) = —Arm exp [—WQ@;;S)Q] (7.46)
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o Finally, the Ricker wavelet of order 2 is defined as:

2 2
tp tP

Ry(t) = A <2w2 (t=t) 1) exp l_WQW] (7.47)

In egs. (7.45) to (7.47), ts denotes the time corresponding to the maximum amplitude
of the Oth and 2nd order Ricker wavelets, while ¢, is the fundamental period of the
2nd order wavelet.

The wavelet proposed by Mavroeidis & Papageorgiou is given by the following

relation:
2 f,

Y

£(t) = ’;‘ [1 + cos ( t)] cos (2 f,t + v) (7.48)

In eq. (7.48), A is the amplitude, f, the fundamental frequency, v the phase angle and

~ controls the oscillatory character of the wavelet.

7.4.2 Wave propagation in 1D

For the 1D simulation of shear wave propagation, the finite element model, which is
illustrated in fig. 7.1, consists of 100 1D elements with height h.,; = 1.0 m for a total soil
layer height H = 100 m. Unit area A = 1.0m? is used for each element, while Rayleigh
damping is considered with damping ratios & = & = 0.05 corresponding to the first
two vibrational modes of the model at wy = (7Vy)/(2H) and wy = (37Vy)/(2H). A
viscous damper is then added at the base node of the model to simulate the compliance
of the bedrock layer with damping value c%! = p, - Vi, A = 1824.0 kN - s/m. Loading
cases consist of a propagating Ricker synthetic wavelet with amplitude 1kN, as well as
a real recorded earthquake motion, namely the Gilroy Nol EW recorded during the
1989 Loma Prieta earthquake (Kramer, 1996). The underlying correlation structure of
the random field f(y) is assumed to correspond to an exponential spectral density of

the following type:

1
Srr(k) = EO'J%fbgFéz exp (—b|x|) (7.49)

The inverse of shear modulus of the soil 1/G is evaluated at the middle point of each

element (midpoint approach) by:

1 1

&= 11 (7.50)

where f(y) is a one dimensional zero-mean homogeneous random field.
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As stated above, the FMCS is used to numerically evaluate the DMRF/DVRF
functions. Figures 7.3 to 7.5 depict the DMRF and DVRF functions estimated via
FMCS for a Ricker wavelet, a Mavroeidis & Papageorgiou wavelet and the Gilroy
earthquake motion record for oy; = 0.2. It is clear that the DMRF of the response
quantities is constant with respect to the wave number of the underlying random
field. In contrast, the DVRF is affected by a range of small values of wave number k,
indicating that the response variance of the 1D shear wave propagation phenomenon is
sensitive to strongly correlated values of 1/G.

Figures 7.6 and 7.7 present plots of the mean and variance of the displacement,
velocity and acceleration of the soil surface for Mavroeidis & Papageorgiou wavelet
and the Gilroy motion respectively, calculated with MCS and FMCS for a Gaussian
field with o4y = 0.2 and correlation parameter b = 40m. In the case of the Gilroy
motion, only the first 10 s of the time histories of the ground response quantities are
illustrated, since their values for t > 10 s are very small. From the comparison of mean
of displacement, velocity and acceleration, it is also evident that the results calculated
with the FMCS methodology coincide with those calculated with the MCS. In case
of variance, the FMCS methodology differs slightly from the MCS only in the peak
values of the response, with a maximum error of less than 15%.

The FMCS methodology is applied next for a truncated-Gaussian field. The
truncated field values are obtained through simple truncation of the underlying Gaussian
field values f(y), in order to lie in the [—0.95,0.95] range. The truncated-Gaussian
field g(y) has a different spectral density, which can be estimated by the following

formula: )

! /OLy f(y) exp(—iry)dy (7.51)

Sgg(“) = on L
Y

where L, is the length of the sample functions of the non-Gaussian field modelling
the inverse shear modulus. It is therefore important to note that the variance of the

truncated field needs also to be calculated by the following relation:

+oo
or, =2 [ Seg()dr (7.52)

where the standard deviation of the truncated field is o,y = 0.29, while the correlation
length parameter of the underlying Gaussian field is b = 100m. It is exactly this
corrected value that must be used in the FMCS procedure of egs. (5.39) and (5.40).
Figure 7.8 presents a comparison of the mean and variance of the displacement, velocity
and acceleration between the FMCS and MCS. From this figure, it is also clear that

the mean of the response quantities is accurately calculated with the FMCS. Small
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variance errors are again observed for steep changes of the variance time-history as in
the previous case, with error level less than 20%.
Finally, the FMCS methodology is applied for a lognormal field g, (y) obtained as

a translation field from the following transformation:

frly) = FLHAF )]} (7.53)

where f(y) is a zero-mean Gaussian field, whereas the lognormal field can be simulated

gr(y) = exp (m +sf(y)) + a (7.54)

where f(y) is a zero-mean unit-variance, underlying Gaussian field generated with the
spectral representation method (Shinozuka and Deodatis, 1996). In this particular
case, the values m = —0.0431, s = 0.2936 and a; = —1.0 were selected, leading to
a standard deviation of the lognormal field 0,4, ,, = 0.3. The spectral density of the
underlying Gaussian Sy is then again chosen from eq. (7.49) with correlation parameter
b = 20 m, while the new spectral density function S,, () is recalculated using eq. (7.51).
Comparison of response statistics calculate via the DMRF /DVRF methodology and the
standard direct MCS for the Ricker wavelet case are illustrated in fig. 7.9. From this,
it is obvious that the results obtained with the FMCS coincide with those obtained
with the MCS for both the mean and variance.

For all the above case studies, the parameters chosen for the FMCS method are
invariably the same. Specifically, the number of sinusoids for each wave number is
N = 5, the upper wave number x, = 1.0rad/m, while the wave number axis is
discretized in M = 200 intervals, i.e. 201 discrete wave numbers were used; this results
to a total cost of 5-201 = 1005 finite element analyses. The corresponding number of
direct MCS used for comparison is 2000, a number in which the MCS is considered
to exhibit a fair accuracy. It is thus clear that the computational cost of the FMCS
is considerably lower compared to the cost of the MCS in terms of required finite
element analyses. The real advantage in terms of efficiency though, comes from the
fact that once the FMCS for the given o is complete, all information regarding the
variance and mean of the specified response quantity d(¢) can be obtained for any
other correlation structure without having to perform any additional finite element
analysis. This alone allows for efficient sensitivity analysis of the studied system. On
the contrary, in the direct MCS case, all available data from the analyses correspond
to the specific correlation structure used when generating the underlying random fields

of the stochastic material property. Therefore, statistical quantities of the studied
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response d(t) for a different correlation structure require the generation of new random
fields, followed by another series of finite element analyses.

Subsequently, the upper bounds of the response statistics are calculated. For this
calculation, the maximum values DMRF (¢, kpas, 077), DVRF (%, ks, 07f) are selected
at each time. Figure 7.10 illustrates the upper bounds of the mean and variance of the
soil surface response calculated for o¢; = 0.2 for the Gilroy earthquake record. There
is ample evidence that the larger values of the variance for displacement, velocity and
acceleration of the ground surface correspond to the timesteps where the maximum
values of the corresponding mean quantities occur. It is however very important to
note that, for the value of oss = 0.2 considered, the upper bounds of the variance of the
ground response quantities are significantly larger. For instance, at time ¢ = 4.67 s, the
upper bound of the acceleration mean is 4.0 m/s® and the corresponding upper bound
of the variance 3.5m? /s, leading to a coefficient, of variation COV = 1/3.5/4.0 = 0.48.
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Figure 7.3. DMRF and DVRF of ground response for incoming Ricker wavelet with
unit amplitude for ofy = 0.2: (a) displacement DMRF, (b) displacement DVRF, (c)
velocity DMRF, (d) velocity DVRF, (e) acceleration DMRF and (f) acceleration DVRF.
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Figure 7.4. DMRF and DVRF of ground response for incoming Mavroeidis & Pa-
pageorgiou wavelet with unit amplitude for o¢f = 0.2: (a) displacement DMRF, (b)
displacement DVRF, (c) velocity DMRF, (d) velocity DVRF, (e) acceleration DMRF
and (f) acceleration DVRF.
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Figure 7.5. DMRF and DVRF of ground response for incoming Gilroy earthquake
motion record for opf = 0.2: (a) displacement DMRF, (b) displacement DVRF, (c)
velocity DMRF, (d) velocity DVRF, (e) acceleration DMRF and (f) acceleration DVRF.
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Figure 7.6. Mean and variance of ground response for incoming Mavroeidis & Pa-
pageorgiou wavelet for a Gaussian field with o¢; = 0.2 and correlation parameter
b =40m: (a) displacement mean, (b) displacement variance, (c¢) velocity mean, (d)
velocity variance, (e) acceleration mean and (f) acceleration variance.
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7.4.3 Wave propagation in 2D

For the 2D simulation of shear wave propagation, the corresponding model consists of
a soil layer with horizontal dimension L = 200 m and vertical dimension H = 40 m.
Viscous dampers are added to the base nodes in both the horizontal and vertical
directions, simulating the compliance of the bedrock layer; the numerical model is
illustrated in fig. 7.2. The shear modulus of the bedrock is G, = 1386.24 M Pa and
its Poisson ratio v = 0.3, the damping values cy = pp - Vop = 1824.0kN - s/m3
for the horizontal and c,, = pp - Vi = 3412.39kN - s/m3 for the vertical, where
Vo = 1421.83m/s is the P-wave velocity in the bedrock layer. In order to obtain the

actual nodal damping values used in the finite element model, damping values c,;, and

cgp, have to be multiplied with the corresponding nodal area A, i.e. ¢ = ¢y, A and
c;‘,g’d“l = cppA. In general, given the shear modulus G, Poisson’s ratio v and density p
of a material, the P-wave velocity can be calculated by V,, = 4/ (i((12:225)))' In addition,

quadrilateral plane strain 4-node isoparametric elements (Bathe, 2006) with sides of
1m have been used for a total number of 8000 elements. Analogous to the 1D cases,
the test loads consist of a propagating unit Ricker synthetic wavelet, as well as a real
recorded earthquake motion. A 2D correlation structure of exponential type is used

with the spectral density function, given by:

b,b botin N> [bury )’
Sy Ky Ky) = 0= exp (-( 5 > - ( y2y> ) (7.55)

The mean and variance of the response quantity d(t) are calculated via eqs. (5.3)

and (5.4) using numerical integration, since the FMCS methodology provides discrete
values of the DMRF/DVRF functions. In the meanwhile, the horizontal response of the
top middle node is monitored. Figures 7.11 and 7.12 depict the DMRF/DVRF functions
estimated for the unit Ricker wavelet and Gilroy motion with underlying os; = 0.2
for both cases. From these figures, it can be seen that the most interesting response
variability characteristic lies on the observation that the DVRF values are high only
for minute wave numbers on the k, axis, while a larger range of wave numbers on the
Kk, axis contributes to the response variance. Thus, in 2D, the shear wave propagation
variance is much more sensitive with respect to correlation characteristics of the vertical
direction. In figs. 7.13 and 7.14, a comparison between the response mean and variance
obtained via application of the FMCS and MCS is made for the Ricker wavelet and the
Gilroy motion respectively. Note that the underlying random fields for both loading

cases have standard deviation oy; = 0.2 and correlation parameters b, = b, = 100 m;
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as anyone can see, the mean is accurately captured by the FMCS methodology. In
terms of variance, similarly to the 1D case, errors exist only in cases of steep response
changes, but stay within reasonable bounds with error less than 25%. Nevertheless,
the actual shape of the variance is accurately captured.

For the FMCS in the 2D wave propagation analyses, the number of sinusoids
for each wave number is N = 5, while wave number bounds are r,; = 0.0 rad/m,
K = 0.1rad/m and K, = —0.5rad/m, Ky, = 0.5rad/m. The wave number axis k,
is discretized in M; = 10 intervals, i.e. 11 discrete wave numbers, and the r, axis
in My = 50 intervals, i.e. 51 discrete wave numbers. This results to a total cost of
5-11-51 = 2805 finite element analyses offering a good balance of computational cost
and accuracy. The corresponding number of direct MCS analyses used for comparison
is 2000; it is therefore obvious that, in terms of computational cost, the FMCS for
the 2D case is comparable to the MCS in terms of required finite element analyses.
As already stated in the 1D case, the true power of the DMRF/DVRF, lies the fact
that all required data is available to calculate the statistics of the response quantities
for alternative correlation structures without having to resort to further finite element

analyses, which is the case for the direct MCS method.
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Figure 7.11. DVRF of ground response for incoming Ricker wavelet for o =
0.2: (a) displacement DVRF for x, = 0.0 (rad/m), (b) displacement DVRF for
ke = 0.0 (rad/m), (c) displacement DVRF for k, = k,, (d) velocity DVRF for
ky = 0.0 (rad/m), (e) velocity DVRF for k, = 0.0 (rad/m), (f) velocity DVRF for
Ky = Ry, (8) acceleration DVRF for s, = 0.0 (rad/m), (h) acceleration DVRF for
ke = 0.0 (rad/m) and (i) acceleration DVRF for x, = k.
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Figure 7.13. Mean and variance of ground response for Ricker wavelet for a Gaussian
field with o ¢y = 0.2 and correlation parameters b, = b, = 100 m: (a) displacement mean,
(b) displacement variance, (c¢) velocity mean, (d) velocity variance, (e) acceleration

mean and (f) acceleration variance.
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Figure 7.14. Mean and variance of ground response for Gilroy motion for a Gaussian field
with ¢ = 0.2 and correlation parameters b, = b, = 100m: (a) displacement mean,
(b) displacement variance, (c) velocity mean, (d) velocity variance, (e) acceleration
mean and (f) acceleration variance.
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7.5 Concluding remarks

In this study, it was shown that, according to the DMRF/DVRF methodology, the
variance and mean of the ground response quantities, namely displacement, velocity
and acceleration, are accurately calculated for shear wave propagation problems in
soils. Errors regarding the system response are negligible when considering the mean
of the response quantities, while the error of the calculated response variance based
on the DVRF increases with larger values of standard deviation, as well as skewness
of the underlying fields, but stays nevertheless within reasonable bounds. It was also
demonstrated that the phenomenon of shear wave propagation in 1D soil is sensitive to
underlying random field representations of 1/G, which exhibit large correlation lengths.
The DVRF spread is much more significant in the frequency axis corresponding to the
vertical direction, as was demonstrated by 2D wave propagation analyses. Thus, in
2D problems and in the vertical dimension, the range of sensitive wave numbers is
much larger. Finally, it was proven that the DMRF/DMRF functions are extremely
useful when considering the incorporation of uncertain material parameters, revealing
the system sensitivity to uncertainty; what’s more, the DMRF/DVRF functions can
be calculated effectively via the FMCS method. This fact alone leads to significant
computational savings, since the spectral density and probability distribution free
nature of the DMRF/DVRF functions allows the direct calculation of the mean and
variance of the ground response quantities for any underlying correlation structure of

1/G, without the need for further finite element simulations.
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Chapter 8

Dynamic variability response
functions for stochastic

consolidation of soils

In this chapter, the case study of soil consolidation analyzed in chapter 6 is revisited
using the DMRF/DVRF methodology used in chapter 7 to quantify the mean and
variance of the response quantities of the footing-soil system. The FMCS method is
again employed to numerically evaluate the DMRF/DVRF functions for the response
quantities of interest. The results obtained via the DMRF/DVRF functions are
then compared with the corresponding statistics obtained via the direct Monte Carlo
simulation, in order to demonstrate the accuracy and effectiveness of the proposed

methodology.

8.1 Revisiting the stochastic consolidation problem

As mentioned above, the problem consists of a rigid rough strip footing resting on a
consolidating soil layer with uncertain permeability £ and Young’s modulus £. The
corresponding permeability /Young’s modulus at each spatial point (x,y) of the soil

domain are given via the following relations:

where kg and Ej are the mean values of permeability and Young’s modulus respectively.

As was the case in chapter 7, f(z,y) corresponds to the random sinusoid used when
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the FMCS is considered, while representing a zero mean homogeneous Gaussian
random field in the case of the MCS. The geometry of the model, as well as the finite
element discretization, are the same as the ones used in chapter 6 and are illustrated
in fig. 6.3. Furthermore, the material properties used in the numerical model are
the same with the corresponding ones used in chapter 6. Thus, the mean values
of the uncertain k£ and F remain the same, but are nevertheless repeated here, i.e.
ko= =122-10"°m*- kN~ /day, Ey = pg = 622.7kPa.

Both footing settlement and pore pressure response statistics are studied. In
particular, in terms of footing settlements, referring to fig. 6.4 v4, vc, as well as
vap = V4 — vp are considered, while in terms of pore pressures, representative soil
points below the footing center C' at depths B/10, B/5, B/2 and B are studied denoted
as pp/i0, PB/5, PB/2 and pp respectively.

Finally, in order to demonstrate the accuracy of the methodology, direct comparison
between the results obtained through the FMCS-based DMRF/DVRF functions and
the ones from the direct MCS is made. For both methodologies, the standard deviation
of both k and E is 0, = op = 0.2. Furthermore, in the MCS case, the underlying

correlation structure has a spectral density of exponential type given by:

o2byb bika\> Dok, \
Sri(Ka, ky) = 4; % exp (— ( 12 ) - (22y> ) (8.3)

Isotropic correlation lengths by, = by, = b1, = by, = 10.0m are used for both

permeability and Young’s modulus. The spectral representation method is employed to
generate realizations of the random fields for each stochastic material property needed
for the MCS method.

8.2 Footing settlement statistics

In this section, we study the response statistics of the footing settlements. Specifically,
v4 and vo, as well as v4p are considered. Comparison between the results obtained via
the DMRF/DVRF methodology and the MCS method is made. The DMRF/DVRF
functions are calculated according to the FMCS method analyzed in section 5.4.
Figures 8.1 and 8.2 illustrate the results of mean and variance for v4, vo and
vap. Due to the symmetry of the problem, the statistics of vp are the same with the
statistics of v4 and are therefore omitted. It is clear that in all cases, the mean value
is in complete agreement for the FMCS and MCS. It is important to note though, that

the mean value of v4p is theoretically zero due to the symmetry of the studied problem.
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8.2 Footing settlement statistics

The values shown both for the FMCS and MCS are non-zero, but being minute, they
are attributed to the finite accuracy available and therefore should not be taken into
account. In terms of variance, only for very high values a difference between the FMCS
and MCS is seen, although the error stays within the acceptable range of 3-5%.

In fig. 8.3, the DVRF function of the settlement v4p for stochastic k is illustrated.
By inspecting the DVRF with respect to wave number axes k. and &, respectively, it can
be clearly seen that the DVRF values corresponding to x, are many magnitudes larger
than the corresponding ones for x,, namely 1.0e~" compared to 1.0e~**. According to
these observations, the variance of v,p is much more sensitive to the variability of k
on the horizontal direction compared to the vertical.

The same observation can be made by inspecting fig. 8.4 where the DVRF function for
stochastic F is illustrated. In this case, the corresponding values of the DVRF for &,
and k, are 1.0e~* and 1.0e~'? respectively.

Considering all the above, it can be said that the differential settlement variance is
mostly governed by the variability of k£ and E with respect to the horizontal axis. In
addition, in both £ and E, the predominant wave numbers governing the variance lie
in the vicinity of x, = 0.25 (rad/m). It is also obvious that the values of the DVRF
for the case of F are much larger than the ones of the k case, this being in agreement
with the results obtained for the same problem in chapter 6.

The DMRF/DVRF functions for the settlement of the footing center, i.e. v¢, are
illustrated next in figs. 8.5 and 8.6 for k and E respectively. In both cases, the DMRF
is constant with respect to x, and k,. What’s more, the contribution of s, and x,
wave numbers is of the same order of magnitude, namely 1.0e=% for k and 1.0e~* for
E. To conclude, the significant wave numbers for the DVRF in all cases lie close to
ky = 0.0 (rad/m) and k, = 0.0 (rad/m), suggesting that the variance of v¢ is sensitive

to strongly correlated random fields in both z and y dimensions.
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8.3 Excess pore pressure statistics

In this section, the statistics of the excess pore pressure generated in the soil below
the center of the footing are studied. In order to demonstrate the accuracy of the
DMRF /DVRF methodology, the pore pressures at depths B/10, B/5, B/2 and B (B
denoting the footing width), namely pg/10, Pg/5, PB/2 and pp, are used.

Figures 8.7 to 8.10 illustrate the time evolving mean and variance of the pore
pressures mentioned above. Comparing the mean and variance of the pore pres-
sures examined for both spatially variable & and F, it is clear that the FMCS-based
DMRF/DVRF results coincide with the ones obtained through the MCS method.
This fact is also true for all the studied pore pressures at various depths. As was the
case for footing settlements, the advantage of the DMRF/DVRF method lies in the
insight provided by the DMRF/DVRF functions on the sensitivity of the pore pres-
sure statistics on the correlation structure characteristics of the underlying uncertain
material properties. Figures 8.11 to 8.18 illustrate the DMRF/DVRF functions for
pore pressures at all the depths mentioned above. Studying these, it is clear that in all
depths and for both £ and E, the DMRF functions are constant with respect to k., as
well as k,. The situation is different though, when considering the DVRF' functions.
Examining the DVRF functions in figs. 8.11 and 8.12 for pg /10, it is obvious that, in
the case of k, slight differences are visible with respect to x, and &, while in the £
case, predominant wave numbers exist for both x, and &, axes.

The DVRF function for pp/s is plotted in fig. 8.13 for k. Now, the DVRF appears to be
definitely more sensitive to small x, wave numbers, i.e. strongly correlated permeability
in the horizontal direction, whereas being affected more or less equally by a wide range
of wave numbers x,. The DVRF function for pg/s for £ is plotted in fig. 8.14, where
it becomes clear that the predominant wave numbers for both x, and &, lie in the
(—=0.50,—0.25)U(0.25, 0.50) (rad/m) range. Finally, the DVRF for pp/, and pp depicted
in figs. 8.15 and 8.17 for k is examined. In this case, the DVRF is significant only for
small k., and k, wave numbers, i.e. for strongly correlated k values in the horizontal
and vertical dimensions. In contrast, for spatially variable £ the DVRF functions
shown in figs. 8.16 and 8.18 terms, the predominant wave numbers lie in the vicinity of
ky = —0.75 (rad/m), k, = 0.75 (rad/m) and (—1.0,—0.75) U (0.75,1.00) (rad/m) for
Ky

To conclude, it can be said that with increasing depth, the variance of excess pore
pressures is sensitive to strongly correlated values of k, while in the case of E, there is

significant contribution for a wide range of wave numbers x, and &,,.
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8.4 Conclusion

8.4 Conclusion

In this chapter, the validity and accuracy of the DMRF/DVRF methodology was
again demonstrated for a coupled problem of soil consolidation. The importance
of the insight provided by the DMRF/DVRF functions was once again noted and
the computational efficiency of the FMCS method shown. Comparison between the
DMRF /DVRF-based statistics and the ones obtained via the direct MCS also showed
that the proposed method is suitable for uncertainty quantification of coupled problems

involving uncertain soil parameters.
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Chapter 9

Concluding remarks and
recommendation for further

research

9.1 Conclusions and recommendations for further

research

9.1.1 Summary and conclusions of the research developed

In this dissertation, use of the stochastic finite element method was promoted, rendering
it an indispensable tool for quantifying the effect of variability of soil properties in
geotechnical problems. The incorporation of the SFEM is a realistic goal nowadays
due to the ever-increasing computing power available to engineers. In view of this, the
present dissertation is a major step forward on the detailed description of the required
methodologies to successfully incorporate uncertain soil properties in geotechnical
studies. Emphasis was given on the recently established concepts of the DMRF/DVRF
functions, which offer a reliable alternative methodology for calculation of the response
statistics of interest. To this purpose, the FMCS was shown to be the method of choice
for the efficient estimation of the DMRF/DVRF of general finite element systems.
Specifically, chapter 2 introduced the basic set theory along with probability theory
and random variables.
In chapter 3, the main concepts of random processes and random fields were discussed
and the spectral representation method steps needed for successful computer generation

of random field realizations outlined.
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In chapter 4, the alternative methodologies of the SFEM family were presented.

In chapter 5, the concepts of MRF/VREF and their dynamic equivalents DMRF/DVRF
were analyzed and the use of the FMCS for their numerical calculation illustrated in a
step by step fashion.

In chapter 6, the direct MCS was applied to solve a problem of geotechnical nature.
To specify, the problem of the loading of a rigid rough strip footing resting on a
consolidating soil layer with spatially variable permeability and Young’s modulus was
thoroughly studied. Response statistics for footing settlements, as well as the generated
excess pore pressures were obtained.

In chapter 7, shear wave propagation analyses were performed in 1D and 2D soil
domains with uncertain shear modulus. The FMCS was again employed to calculate the
DMRF/DVRF functions, which were used to obtain response statistics of displacement,
velocity and acceleration of the ground surface.

Finally, in chapter 8 the consolidation problem was revisited on the basis of the
DMRF/DVRF methodology. It was also proven that the FMCS is a powerful and
efficient technique for numerically acquiring the DMRF/DVRF functions, which are
then used to calculate the response statistics in a spectral and probability distribution

free manner.

9.1.2 Contributions of the dissertation

The contributions of this dissertation can be summarized in the following key points:
o Demonstration of the importance of adopting the stochastic finite element method

in geotechnical engineering problems. In particular, incorporation of spatial
variability of soil parameters in the analysis via the SFEM reveals response
characteristics such as the differential settlement in the footing loading case,

which are absent if the soil is considered homogeneous.

« Validation of the accuracy and applicability of the DMRF/DVRF methodology
for calculation of response statistics in porous problems, as well as site response

analyses on the basis of shear wave propagation.

e Re-establishment of the FMCS as an efficient and accurate procedure to numeri-
cally calculate the DMRF/DVRF functions for general finite element systems,

regardless of complexity.

 Highlight of the spectral and probability distribution free nature of the DMRF /DVRF

functions. This allows to effectively assess the sensitivity of the model concerned
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to uncertainty of the stochastic soil parameters taken into consideration, without

the need to perform further finite element analyses.

9.1.3 Proposed future research

The research conducted throughout this dissertation is a major step forward on the use

of the SFEM in geotechnical problems. However, the following topics are proposed for

further research, which could enhance the applicability of the methodologies discussed:

Extension of footing settlement test case in full three-dimensional analyses. It
would be really interesting to investigate the same problem considering correlated
values of permeability and Young’s modulus. Furthermore, different footing
shapes, as well as cases with more than one footing, would offer further insight

on the stochastic consolidation problem.

Investigation of the effect of additional soil properties such as cohesion and
friction angle. To this purpose, nonlinear stochastic consolidation analyses have

to be performed allowing failure of the footing-soil system to be simulated.

Extension of the DMRF/DVRF methodology for nonlinear constitutive soil
models. This development is considered crucial, since more realistic numerical
simulations would be possible. A proposed direction could as well be the study

and application of the recently proposed generalized variability response function
(GVRF) concept developed in Teferra and Deodatis (2012); Teferra et al. (2014).

Incorporation of multiple soil layers in wave propagation analyses. In addition,
consideration of uncertainty regarding the orientation and thickness of each soil
layer in three-dimensional analyses would provide further insight on the wave

propagation phenomenon.

Development of an adaptive version of the fast Monte Carlo simulation that would
take into account the importance of wave numbers of the problems concerned.
In this case, sampling of the wave number axes would be automatically refined
in the vicinity of predominant wave numbers, allowing for further computational
efficiency of the FMCS.

Extension of the variability response function theory for statistical moments
of higher order; this would make the VRF methodology essential for reliability

analyses.
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Appendix A

Software used

In this appendix, all software used throughout the dissertation including programming
languages, libraries, programming environments, operating systems and additional
software is summarized. It is very important to emphasize though that most of the
software used are open source projects, are freely available and anyone can contribute
to their further development.

o The finite element analyses were performed using the Solverize inhouse finite
element program developped by Alexander Karatarakis and Theofilos-Ioannis
Manitaras. Solverize is an extension of the finite element code AnalyzerSharp
written in the C# programming language by George Stavroulakis during his
PhD. However, Solverize was written entirely in the Java programming language
using the latest features available in Java 8. Both the Oracle Java Development
Kit (JDK) available in: https://www.oracle.com/, as well as the open source
alternative OpenJDK available through: http://openjdk.java.net/, were used.
Java is an object-oriented programming language that runs on a virtual machine,
namely the Java Virtual Machine (JVM). It has built-in language support for
multithreaded execution and offers high-level programming constructs, enabling
developers to take advantage of modern multicore processor architectures and

reduce computing time (Horstmann and Cornell, 2013; Urma et al., 2015).

« Commons Math http://commons.apache.org/proper/commons-math/ is
a library of lightweight, self-contained mathematics and statistics components
addressing the most common problems not available in the Java programming

language and was used in many essential mathematical computations in Solverize.

» Google Guava https://github.com/google/guava is a set of core libraries

that includes new collection types (such as multimap and multiset), immutable col-
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Software used

lections, a graph library, functional types, an in-memory cache and APIs/utilities
for concurrency, 1/0O, hashing, primitives, reflection, string processing and much

more. It was a main component used in Solverize.

« Eclipse https://eclipse.org/ is the integrated development environment (IDE)

of choice for Java programming.

 Git https://git-scm.com/ is a distributed version control system and was used
throughout the Solverize project development. It has been essential for successfull
colaboration while developing and extending Solverize, in addition to finding

bugs and introducing new features to the program (McQuaid, 2015).

e The output of the stochastic finite element computations was saved in HDF5
file format https://support.hdfgroup.org/HDF5/. HDF5 is a data model,
library, and file format for storing and managing data. It is suitable for storing
array-based numerical data and offers high-performance I/O operations. The
numerical data are stored in binary format which results in no accuracy loss,
while the HDF5 data model offers compatibility across a variety of operating
systems and hardware. Wrappers for the Java programming language are officially
supported. The hbpy Python package http://www.h5py.org/ is a pythonic
interface that allows interaction with HDF5 files through the Python programming
language (Collette, 2014).

o The Python programming language https://www.python.org/ was used for
all statistical calculations and post-processing of the stochastic finite element
output. Note that Python is a high-level dynamic programming language which
is easy to learn, while offering many useful software components in its standard
library (Beazley, 2013; Gorelick and Ozsvald, 2014; Phillips, 2010; Ramalho, 2015;
Slatkin, 2015; Summerfield, 2014).

« Python was combined with Numpy http://www.numpy.org/, the de facto

standard Python package for scientific computing with arrays.

« Scipy was also used https://www.scipy.org/, which works aside Numpy offer-

ing many mathematical routines used in scientific computing.

« Matplotlib was also used http://matplotlib.org/ to produce the plots and
figures of the PhD dissertation. Furthermore, using Seaborn http://seaborn.
pydata.org/ on top of Matplotlib gives better quality plots especially for visu-

alizing statistical data.
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Pandas http://pandas.pydata.org/ offers high level data-structures and op-

erations for data analysis with Python.

Jupyter http://jupyter.org/ has been an additional tool allowing for interactive
computing and visualization essential for scientific research, whenever alternative

numerical recipes, algorithms and clear perspective of data were needed.

Paraview http://www.paraview.org/ is a high performance parallel visual-
ization software based on the Visualization Toolkit (VTK) http://www.vtk.
org/, Schroeder et al. (2006). It was used to visualize all the finite element

models and their resulting time dependent response.

Inkscape https://inkscape.org/en/ was the software of choice for high quality
vector drawings for this dissertation, as well as scientific articles and conference

presentations.

During the present PhD dissertation, the author has also used Windows, Linux,
macOS operating systems, while all the software mentioned above are able to

work in all these operating systems.
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Appendix B

Validation of the software used

In order to validate the correctness and accuracy of the in-house finite element suite
Solverize, a 1D benchmark problem of coupled soil consolidation is simulated. Specif-
ically, the problem corresponds to the example program 9.3 studied in (Smith and
Griffiths, 2004) and thus, a comparison between the resulting settlements and excess
pore pressures between Solverize and the ones supplied with the finite element code
provided in (Smith and Griffiths, 2004) is made.

The finite element mesh is shown in fig. B.1 and consists of 4 quadrilateral 8-node
plane strain elements with equal edges of 0.25m for a total model height of 1.00m.
Note that all element nodes have displacement degrees of freedom (u), while only the
four vertices contain pore pressure dofs (p). Young’s modulus, as well as permeability
of the soil, have unit values, i.e. F = 1.0 and k/7, = 1.0 and Poisson’s ratio v = 0.0.
A ramp load p, increasing linearly from 0.0 to p.. = 1.0 at time ¢y = 0.5 and then
remaining constant is applied at the top edge of the model. The timestep chosen
is At = 0.01 and a total number of 300 timesteps is used. The vertical sides of the
model are constrained with respect to horizontal displacements, whereas the bottom of
the model is fixed. Finally, the hydraulic boundary conditions consist of undrained
conditions at the bottom and the sides of the model, while free drainage is allowed at
the top edge of the mesh.

In fig. B.2, the vertical settlement of node 1 and the excess pore pressure of node
21 are illustrated. It is therefore clear that, the results obtained by Solverize are in
perfect agreement with the corresponding ones calculated by the finite element code
supplied in (Smith and Griffiths, 2004), confirming the accuracy and correctness of

our in-house developed software.

175



Validation of the software used

dréﬁ?ﬂ;i\\\\\\

B> 4 59 .

- o udofs
1.00m TBCBE SO
e, 15’<3
16 17 18
Be19  206<H
21 22 23
undrained
undrained ~_
0.25m

Figure B.1. Finite element mesh of the model.
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Figure B.2. Comparison between the results obtained by Solverize and (Smith
and Griffiths, 2004) for a benchmark 1D consolidation problem, where: (a) Vertical
displacement of node 1 and (b) Excess pore pressure of node 21.
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