

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ « ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ » ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΜΕΤΑΛΛΙΚΟΥ ΠΟΛΥΟΡΟΦΟΥ ΚΤΙΡΙΟΥ ΓΡΑΦΕΙΩΝ ΜΕ ΕΝΑΛΛΑΚΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΣΥΝΔΕΣΜΩΝ ΔΥΣΚΑΜΨΙΑΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΝΝΑ ΘΕΟΔΩΡΟΠΟΥΛΟΥ, ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΕΜΠ/ΔΟΜΟΣΤΑΤΙΚΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΡΑΥΤΟΓΙΑΝΝΗΣ

> AΘHNA, ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΕΜΚ ΜΕ 2017/01

Θεοδωροπούλου Άννα (2017) Σχεδιασμός μεταλλικού πολυορόφου κτιρίου γραφειων με εναλλακτικές διατάξεις συνδέσμων δυσκαμψίας Μεταπτυχιακή Εργασία ΜΕ 2017/02 Εργαστήριο Μεταλλικών Κατασκευών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Theodoropoulou Anna (2017) Postgraduate Thesis EMK ME 2017/02 Institute of Steel Structures, National Technical University of Athens, Greece

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα Μεταπτυχιακή Εργασία εκπονήθηκε στο Εργαστήριο Μεταλλικών Κατασκευών της Σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου υπό την επίβλεψη του καθηγητή μου Κου Ι. Ραυτογιάννη.

Πρώτα απ' όλα θα ήθελα να ευχαριστήσω θερμά τον καθηγητή μου κ. Ι. Ραυτογιάννη για την ανάθεση αυτής της μεταπτυχιακής εργασίας. Τον ευχαριστώ επίσης για την πολύτιμη επιστημονική καθοδήγησή του, τις συμβουλές του και τη στήριξή του καθ' όλη τη διάρκεια της συνεργασίας μας. Οι γνώσεις του, η συνεχής παρακολούθηση της πορείας μου, αλλά και η διάθεσή του να βοηθήσει ουσιαστικά, έπαιξαν καθοριστικό ρόλο στην εκπόνηση της παρούσας μεταπτυχιακής εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου, για την κατανόηση, την υπομονή και τη συμπαράσταση που μου προσέφερε καθ' όλη τη διάρκεια των μεταπτυχιακών μου σπουδών.

Άννα Θεοδωροπούλου

Αθήνα

Φεβρουάριος 2017

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΜΚ ΜΕ 2017/01

Σχεδιασμός μεταλλικού πολυορόφου κτιρίου γραφείων με εναλλακτικές διατάξεις συνδέσμων δυσκαμψίας

Άννα Θεοδωροπούλου

Επιβλέπων: Ι. Ραυτογιάννης, Καθηγητής ΕΜΠ

Φεβρουάριος 2017

Περίληψη

Η παρούσα μεταπτυχιακή εργασία έχει ως αντικείμενο τη μελέτη (ανάλυση και διαστασιολόγηση) ενός μεταλλικού κτιρίου γραφείων με υπόγειο από οπλισμένο σκυρόδεμα. Το κτίριο αποτελείται από κατακόρυφους χιαστί συνδέσμους δυσκαμψίας για την εξασφάλιση αμετάθετων πλαισίων.

Πιο συγκεκριμένα, μελετήθηκε η συμπεριφορά του μεταλλικού κτιρίου υπό δυσμενείς φορτίσεις, οι οποίες καθορίζονται από τον κανονισμό, με σκοπό την διαστασιολόγησή του καθώς και τον έλεγχο της συμπεριφοράς του στην σεισμική φόρτιση, η οποία κρίνεται ιδιαίτερα σημαντική λόγω της εξαιρετικά σεισμογενούς περιοχής στην οποία βρίσκεται η χώρα μας. Συνεπώς, με την βοήθεια του προγράμματος πεπερασμένων στοιχείων SAP2000 προέκυψαν οι απαραίτητες διατομές υποστυλωμάτων, δοκών, διαδοκίδων και συνδέσμων δυσκαμψίας που απαιτούνται για την στατική ευστάθεια του κτιρίου αλλά και για την ασφαλή λειτουργία.

Εξετάστηκαν επιπλέον 3 παραλλαγές του κτιρίου με σκοπό την καταλληλότερη διάταξη των κατακόρυφων συνδέσμων δυσκαμψίας και τη επίδραση θα έχει στη συμπεριφορά του κτιρίου. Συγκεκριμένα, στην 1 παραλλαγή οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας της διεύθυνσης x-x' παρέμειναν περιμετρικά και οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας της διεύθυνσης y-y' τοποθετήθηκαν πιο μέσα. Στην 2 παραλλαγή οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας της διεύθυνσης της διεύθυνσης χ-x' παρέμειναν περιμετρικά. Στην 2 παραλλαγή οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας της διεύθυνσης της διεύθυνσης χ-x' τοποθετήθηκαν πιο μέσα ενώ οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας της διεύθυνσης της διεύθυνσης χ-χ' παρέμειναν περιμετρικά. Στην 3 παραλλαγή όλοι οι σύνδεσμοι δυσκαμψίας τοποθετήθηκαν πιο μέσα.

Παραλληλα, εξετάστηκε η σεισμική απόκριση της κατασκευής σε όλες τις περιπτώσεις (συνολικά τέσσερις) και παρουσιάζονται αναλυτικά τα αποτελέσματα που προέκυψαν από τις ιδιομορφικές αναλύσεις. Έγινε επίσης έλεγχος δοκιμαστικής σύνδεσης του υποστυλώματος με την κύρια δοκό στο αρχικό κτίριο.

Τέλος έγινε σύγγριση των όλων των περιπτώσεων μόρφωσης του κτιρίου και τα αποτελέσματα παρατίθενται στην όγδοη ενότητα.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΜΚ ΜΕ 2017/01

Σχεδιασμός μεταλλικού πολυορόφου κτιρίου γραφείων με εναλλακτικές διατάξεις συνδέσμων δυσκαμψίας

Άννα Θεοδωροπούλου Επιβλέπων: Ι. Ραυτογιάννης, Καθηγητής ΕΜΠ

Φεβρουάριος 2017

Abstract

This thesis is intended to study (analysis and design) of a metal office building with reinforced concrete basement. The building consists of vertical stiffness cross links to ensure immovable frame.

Specifically, we studied the behavior of the metal building under adverse loads, which are defined by the Regulation, the purpose of sizing and controlling the behavior of the seismic loading, which is particularly important because of highly seismic area in which the our country. Therefore, with the help of finite element program SAP2000 emerged the necessary column sections, beams, struts and stiffening joints required for static stability of the building and to ensure safe operation.

Several additional three variants of the building to appropriate arrangement of the vertical joints stiffness and impact will have the behavior of the building. Specifically, in one variation vertical cross stiffness of the steering links x-x 'remained perimeter and vertical cross links stiffness of the y-y direction' placed more inside. In two variation vertical cross stiffness links of address x-x 'placed further inside while vertical cross stiffness links of y-y direction' remained around. In three variant all stiffness links placed further inside.

Simultaneously, the seismic response of the structure was examined in all cases (four in total) and details the results obtained from the modal analysis.

There was also proof connection control of the column with the main beam to the original building.

Finally was syngrisi of all the building molding case and the results are listed in the eighth section.

ΠΕΡΙΕΧΟΜΕΝΑ

Εı	υχαριστίεςiii
Π	ερίληψην
A	bstractvii
1.	Εισαγωγή1
	1.1. Σκοπός της εργασίας1
	1.2. Παρουσίαση προγράμματος SAP20001
2.	Περιγραφή του κτιρίου3
	2.1. Αρχιτεκτονικά
	2.2. Στατικά
	2.3. Προσομοίωμα κτιρίου στο SAP20006
3.	Υλικά και Φορτίσεις9
	3.1. Υλικά κατασκευής9
	3.1.1. Δομικός χάλυβας S3559
	3.1.2. Σκυρόδεμα C25/309
	3.1.3. Σύμμικτη Πλάκα10
	3.1.4. Χάλυβας οπλισμού B500C10
	3.2. Φορτίσεις11
	3.2.1. Μόνιμα φορτία (Dead Loads)11
	3.2.2. Κινητά φορτία (Line Loads)11
	3.2.3. Δράσεις ανέμου12
	3.2.4. Φορτίο χιονιού25
	3.2.5. Σεισμικές δράσεις

	3.3. Συνδιασμοί δράσεων32
	3.3.1. Οριακή κατάσταση αστοχίας32
	3.3.2. Οριακή κατάσταση λειτουργικότητας33
	3.3.3. Συνδιασμοί φορτίσεων33
4.	Ανάλυση και διαστασιολόγηση φορέα35
	4.1. Έλεγχος στην οριακή κατάσταση αστοχίας35
	4.1.1. Υποστύλωμα36
	4.1.2. Κύρια δοκός
	4.1.3. Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας40
	4.1.4. Δευτερεύουσες δοκοί HEB 30042
	4.1.5. Διαδοκίδες IPE 24044
	4.2. Έλεγχος στην οριακή κατάσταση λειτουργικότητας45
	4.3. Περιορισμός βλαβών47
	4.4. Έλεγχος σύμμικτης πλάκας48
	4.5. Σεισμική απόκριση κατασκευής57
	4.6. Έλεγχος κοχλιωτής σύνδεσης δοκού – υποστυλώματος63
5.	Ανάλυση και διαστασιολόγηση του φορέα με μετάθεση των συνδέσμων δυσκαμψίας της διεύθυνσης y-y'79
	5.1. Περιγραφή του κτιρίου79
	5.2. Έλεγχος στην οριακή κατάσταση αστοχίας
	5.2.1. Έλεγχος υποστυλωμάτων79
	5.2.2. Έλεγχος κύριας δοκού81
	5.2.3. Έλεγχος κατακόρυφων χιαστί συνδέσμων δυσκαμψίας
	5.2.4. Έλεγχος Δευτερεύουσας δοκού85
	5.3. Έλεγχος στην οριακή κατάσταση λειτουργικότητας86
	5.4. Περιορισμός βλαβών87
	5.5. Σεισμική απόκριση Κατασκευής87

6.	Ανάλυση και διαστασιολόγηση του φορέα με μετάθεση των συνδέσμων δυσκαμψίας της διεύθυνσης x-x'89
	6.1. Περιγραφή του κτιρίου
	6.2. Έλεγγος στην οριακή κατάσταση αστογίας. 89
	6.2.1 Therefore program equation Therefore Th
	6.2.2 Therefore the product of
	0.2.2. Ελεγχος κυριας σοκου
	6.2.3. Ελεγχος κατακορυφων χιαστι συνοεσμων ουσκαμψιας
	6.2.4. Έλεγχος Δευτερεύουσας δοκού94
	6.3. Έλεγχος στην οριακή κατάσταση λειτουργικότητας95
	6.4. Περιορισμός βλαβών96
	6.5. Σεισμική απόκριση Κατασκευής96
7.	Ανάλυση και διατασιολόγηση του φορέα με μετάθεση όλων των συνδέσμων δυσκαμψίας99
	7.1. Περιγραφή του κτιρίου99
	7.2. Έλεγχος στην οριακή κατάσταση αστοχίας99
	7.2.1. Έλεγχος υποστυλωμάτων99
	7.2.2. Έλεγχος κύριας δοκού101
	7.2.3. Έλεγχος κατακόρυφων χιαστί συνδέσμων δυσκαμψίας
	7.2.4. Έλεγχος Δευτερεύουσας δοκού104
	7.3. Έλεγχος στην οριακή κατάσταση λειτουργικότητας105
	7.4. Περιορισμός βλαβών106
	7.5. Σεισμική απόκριση Κατασκευής106
8.	Σύγκριση αποτελεσμάτων109
	8.1. Σύγκριση εντατικών μεγεθών110
	8.1.1. Αξονική ένταση υποστυλωμάτων110
	8.1.2. Τέμνουσα δύναμη κύριων δοκών110
	8.1.3. Ροπή κάμψης κύριων δοκών111
	8.1.4 Αξονική ένταση κατακόρυφων χιαστί συνδέσμων δυσκαμψίας111

	8.2. Σύγκριση ιδιομορφών	112
	8.3. Σύγκριση γωνιακών παραμορφώσεων	113
9.	. Συμπεράσματα	115
10	0.Βιβλιογραφία	117

1 Εισαγωγή

1.1 Σκοπός της εργασίας

Σκοπός της παρούσας μεταπτυχιακής εργασίας είναι ο σχεδιασμός και η διαστασιολόγηση πενταόροφου μεταλλικού κτιρίου, με φέροντα οργανισμό από χάλυβα, το οποίο θα βρίσκεται στην περιοχή της Αττικής με τους ισχύοντες Ευρωκώδικες. Η στατική προσέγγιση έγινε με τη χρήση του προγράμματος ηλεκτρονικού υπολογιστή SAP2000 και η μελέτη βασίστηκε στους ισχύοντες κανονισμούς:

- Ευρωκώδικας 1: Βασικές Αρχές Σχεδιασμού και Δράσεις στις κατασκευές
- Ευρωκώδικας 3: Σχεδιασμός Κατασκευών από Χάλυβα
- Ευρωκώδικας 4: Σχεδιασμός Σύμμικτων Κατασκευών
- Ευρωκώδικας 8: Αντισεισμικός Σχεδιασμός

1.2 Παρουσίαση του προγράμματος SAP2000

Η επίλυση του φορέα πραγματοποιήθηκε με χρήση του προγράμματος SAP2000 version 14.2.2, ένα διεθνώς αναγνωρισμένο εξελιγμένο λογισμικό στην τεχνολογία της τρισδιάστατης ανάλυσης – διαστασιολόγησης δομικών στοιχείων. Διαθέτει ένα εύκολο στη χρήση γραφικό περιβάλλον, προσφέροντας συγχρόνως τις πιο εξελιγμένες υπολογιστικές τεχνικές με εξαιρετικές δυνατότητες δημιουργίας προσομοιωμάτων μεγάλης γκάμας δομιμάτων, συμπεριλαμβανομένων γεφυρών, φραγμάτων, δεξαμενών και κτιρίων. Ένα χαρακτηριστικό του προγράμματος είναι ότι μπορεί να χρησιμοποιηθεί για την επίλυση είτε μεταλλικών κατασκευών, είτε κατασκευών από οπλισμένο σκυρόδεμα.

Παρακάτω γίνεται αναφορά σε κάποια βασικά πλεονεκτήματα που προσφέρει το συγκεκριμένο λογισμικό ανάλυσης:

- Το SAP2000 δίνει τη δυνατότητα ταχύτατης παραγωγής προσομοιωμάτων με τη χρήση προτύπων (templates). Η δημιουργία και η τροποποίηση των προσομοιωμάτων, η εκτέλεση της ανάλυσης, η ανάγνωση των αποτελεσμάτων και η βελτιστοποίηση της διαστασιολόγησης είναι όλα αλληλένδετα στο ίδιο περιβάλλον χρήσης.
- Οι δυνατότητες στατικών φορτίσεων επιτρέπουν την εφαρμογή φορτίων βαρύτητας, πίεσης (ομοιόμορφα κατανεμημένων φορτίων), θερμοκρασιακών φορτίων και φορτίων από προένταση, ενώ επιπλέον μπορούμε να έχουμε επικόμβιες φορτίσεις με προκαθορισμένες δυνάμεις ή μετακινήσεις στους κόμβους. Οι δυναμικές φορτίσεις μπορεί να είναι της μορφής φασματικής απόκρισης πολλαπλής βάσεως ή πολλαπλά χρονικά μεταβαλλόμενων φορτίων και διεγέρσεις βάσης. Το πρόγραμμα υποστηρίζει ανάλυση με ιδιομορφές και ανάλυση Ritz, καθώς και συνδυασμό ιδιομορφών με τις μεθόδους SRSS, CQC ή GMC. Επιπλέον, είναι διαθέσιμα ματαβαλλόμενα φορτία οχημάτων για μεμονωμένα οχήματα, λωρίδες φόρτισης και φορτία συρμών.
- Το πρόγραμμα είναι εφοδιασμένο με όλους τους Διεθνείς κανονισμούς, συμπεριλαμβανομένων των Ευρωκωδίκων και των Αμερικανικών κανονισμών. Έτσι, παρέχει ολοκληρωμένη δυνατότητα διαστασιολόγησης που συμπεριλαμβάνει επιλογές διαστασιολόγησης και βελτιστοποίησης χαλύβδινων διατομών με AISC-ASD, LRFD και

EC3, διαστασιολόγηση μελών από οπλισμένο σκυρόδεμα με Αμερικάνικους κανονισμούς και EC2, καθώς και διαστασιολόγηση επιφανειακών στοιχείων.

Σε περίπτωση μη γραμμικής πλαστικής ανάλυσης, η στατική Pushover ανάλυση εκτελείται με έναν απλό και πρακτικό τρόπο. Μη γραμμικές αρθρώσεις (πλαστικές αρθρώσεις) μπορούν να οριστούν σε οποιαδήποτε θέση των ραβδωτών στοιχείων, ενώ οι ιδιότητές τους μπορούν να οριστούν από τον χρήστη ή να υπολογιστούν αυτόματα από το πρόγραμμα. Οι αναλύσεις μπορεί να ελέγχονται, είτε από τις εξωτερικές δυνάμεις, είτε από τις παραμορφώσεις, και τα αποτελέσματα είναι διαθέσιμα σε γραφική μορφή ή πίνακες. Το ίδιο μοντέλο μπορεί να χρησιμοποιηθεί για Στατική, Δυναμική και μη γραμμική ανάλυση με χρονική ολοκλήρωση (Time History Analysis). Τα αποτελέσματα της μη γραμμικής Pushover ανάλυσης μπορούν να χρησιμοποιηθούν στη συνέχεια από τους επεξεργαστές διαστασιολόγησης του προγράμματος. Τα αποτελέσματα της Pushover ανάλυσης απεικονίζονται και είναι διαθέσιμα βήμα – βήμα τόσο σε γραφική μορφή όσο και σε μορφή κειμένου. Οι φασματικές καμπύλες αντοχών με τις εξαιρετικές ιδιότητες αλληλεπίδρασης που διαθέτουν, επιτρέπουν την μελέτη των επιπτώσεων στην κατασκευή με άμεση αλλαγή των παραμέτρων.

2 Περιγραφή του κτιρίου

2.1 Αρχιτεκτονικά

Πρόκειται για πενταόροφο βιομηχανικό κτίριο με μεταλλικό σκελετό. Έχει συνολικό μήκος 42 m και πλάτος 24 m. Η κάτοψη του κάθε ορόφου καλύπτει επιφάνεια 1008 m² και συνολικά καταλαμβάνει ωφέλιμη επιφάνεια 6048 m².

Η αρχιτεκτονική του κτιρίου είναι βασισμένη σε κάνναβο με φατνώματα των 7 m κατά τη διεύθυνση x και των 6 m κατά τη διεύθυνση y.

Παρατίθενται οι χαρακτηριστικές όψεις και κατόψεις:

Σχήμα 2.1: Κάτοψη τυπικού ορόφου

Σχήμα 2.2: Όψη πλαισίου κατά τον άξονα χ

Σχήμα 2.3: Όψη πλαισίου κατά τον άξονα γ

2.2 Στατικά

Ο σκελετός του κτιρίου αποτελείται από μεταλλικά υποστυλώματα, μεταλλικές δοκούς, και πλάκες από οπλισμένο σκυρόδεμα.

Σχήμα 2.4: Κάτοψη τυπικού ορόφου

Πιο συγκεκριμένα χρησιμοποιήθηκαν οι παρακάνω διατομές:

- Υποστυλώματα διατομής 2HEB 360 (κόκκινο χρώμα)
- Κύριες δοκοί διατομής HEB 360 (μαύρο χρώμα)
- Δευτερεύουσες δοκοί διατομής HEB 300 (μπλε χρώμα)
- Διαδοκίδες διατομής IPE 240 (πράσινο χρώμα)
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας διατομής RHS 120.120.8
- Σύμμικτη πλάκα Symdeck 73 αποτελούμενη από λαμαρίνα KSH 50 με πάχος t=0,8 mm

Η θεμελίωση έγινε με γενική κοιτόστρωση με πάχος πλάκας 0,90m κατασκευασμένη από σκυρόδεμα C25/30. Το υπόγειο κατασκευάστηκε με τοιχεία πλάτους 0,25m από σκυρόδεμα C25/30 καθώς και από υποστυλώματα διατομής 60x60. Η πλάκα οροφής υπογείου είναι κατασκευασμένη από μπετόν C25/30 πάχους 0,22m.

Οι δοκοί της οροφής υπογείου είναι μορφής πλακοδοκού με συνεργαζόμενο πλάτος 1,50m και πλάτος κορμού 0,3m με ύψος 0,8m όπως φαίνεται στη χαρακτηριστική διατομή.

Σχήμα 2.5: Χαρακτηριστική διατομή πλακοδοκού υπογείου

2.3 Προσομοίωμα κτιρίου στο SAP2000

Σύμφωνα με όσα έχουν αναφερθεί έγινε εισαγωγή του μοντέλου του κτιρίου στο SAP2000.

Σχήμα 2.6: Τρισδιάστατη απεικόνιση του κτιρίου στο SAP2000

Ενδεικτικά επίσης παρουσιάζονται:

Σχήμα 2.7: Κάτοψη χαρακτηριστικού ορόφου

Σχήμα 2.8: Όψη πλαισίου κατά τον άξονα χ

Σχήμα 2.9: Όψη πλαισίου κατά τον άξονα γ

Όλες οι συνδέσεις δοκών – υποστυλωμάτων, υπστυλωμάτων – συνδέσμων δυσκαμψίας είναι απλές συνδέσεις τέμνουσας (αρθρώσεις), πλην των πλαισίων παραλαβής ροπής όπου η σύνδεση υποστυλώματος – δοκού θεωρείται πάκτωση. Οι βάσεις των υποστυλωμάτων με το έδαφος είναι πάκτωση.

3 Υλικά και Φορτίσεις

3.1 Υλικά κατασκευής

3.1.1 Δομικός Χάλυβας S355

Ο δομικός χάλυβας είναι το βασικό υλικό από το οποίο συντίθεται ο φέρων οργανισμός των χαλύβδινων τεχνικών έργων, όπως το υπό μελέτη κτίριο. Οι ποιότητες και τα μηχανικά χαρακτηριστικά των δομικών χαλύβων δίνονται στην ευρωπαϊκή προδιαγραφή ΕΝ 10025. Σε όλα τα μέλη της κατασκευής χρησιμοποιήθηκε χάλυβας S355, οι χαρακτηριστικές τιμές του ορίου διαρροής f_y και της εφελκυστικής αντοχής (όριο θραύσης) f_u του δομικού χάλυβα δίνονται στον Πίνακα 3.1.

Μέτρο Ελαστικότητας	$E=210.000 \text{ MPa} (2,1.10^8 \text{ kN/m}^2)$
Μέτρο διάτμησης	G=80769MPa
Σταθερά Poisson	v=0,3
Ειδικό βάρος	$\gamma = 78,5 \text{ kN/m}^3$
Τάση σχεδιασμού	$f_{yd}=f_{yk}/\gamma_M, \gamma_M=1,0$

TT /	0 1		,			10	,	10	0 0055
Πινακας	- 5 .	l∶Mr	ιγανικά	vaoa	κτηρισι	μκά σοι	11600	γαλη	30 5355
1100 oncong			IV out theorem	V and a				Vou 100	

Ποιότητα κατά	Πάχος σγ t ≤ 4	τοιχείου t 0mm	Πάχος στοιχείου t 40mm < t ≤ 80mm		
Ποιότητα κατά ΕΝ 10025-2 \$355	f _y (MPa)	f _u (MPa)	f _y (MPa)	f _u (MPa)	
S355	355	510	335	470	

3.1.2 Σκυρόδεμα C25/30

Οι ποιότητες του σκυροδέματος βασίζονται στην χαρακτηριστική αντοχή κυλινδρικών δοκιμίων 28 ημερών. Για τις πλάκες του κτιρίου και τα τοιχώματα όπου αυτά υπάρχουν, έχει χρησιμοποιηθεί σκυρόδεμα κατηγορίας C25/30, που αντιστοιχεί σε αντοχή κυλίνδρου 25MPa.

Μέση τιμή επιβατικού μέτρου Ελαστικότητας	$E_{cm}=31 \text{ GPa} (31 \cdot 10^6 \text{ kN/m}^2)$
Σταθερά Poisson	v=0,2
Ειδικό βάρος	$\gamma=25 \text{ kN/m}^3$ (οπλισμένο σκυρόδεμα)
Τάση σχεδιασμού	$f_{cd}=f_{ck}/\gamma_c, \gamma_c=1,5$

Κατά τους υπολογισμούς των αντοχών λαμβάνουμε υπόψη την μείωση της θλιπτικής αντοχής λόγω μακροχρόνιων επιδράσεων της φόρτισης. Έτσι η οριακή θλιπτική αντοχή του σκυροδέματος είναι 0,85f_{cd}.

Ποιότητα Σκυροδέματος	\mathbf{f}_{ck}	\mathbf{f}_{cm}	\mathbf{f}_{ctm}	f _{ctk,0.05}	f _{ctk,0.95}
C25/30	25	33	2,9	1,8	3,3

Πίνακας 3.2: Τιμές αντοχών σε MPa, σκυροδέματος C25/30

3.1.3 Σύμμικτη Πλάκα

Οι πλάκες των ορόφων επιλέχθηκαν σύμμικτες αποτελούμενες από χαλυβδόφυλλα και έγχυτο σκυρόδεμα. Τα χαλυβδόφυλλα λειτουργούν ως μεταλλότυπος κατά τη φάση σκυροδέτησης, ενώ στη φάση λειτουργίας συνεργάζονται με το έγχυτο σκληρυμένο σκυρόδεμα και τα δύο υλικά λειτουργούν ως σύμμικτη πλάκα. Θα χρησιμοποιηθεί τραπεζοειδές προφίλ επικάλυψης τύπου SYMDECK 73 με πάχος λαμαρίνας t= 0,80 mm, t_c=57mm, hr=73mm, w_r=50mm και s_r=187,5mm.

Πάχος	t (mm)	0,75	0,80	1,00	1,25
Βάρος	G (kg/m²)	9,81	10,47	13,08	16,36
Επιφάνεια	A (cm ² /m)	12,76	13,533	16,96	21,31
Ροπή αδράνειας	L _v (cm ⁴ /m)	110,01	117,33	147,22	184,43
Ροπή αντίστασης	W (cm ⁸ /m)	27,57	29,48	36,99	42,23

Πίνακας 3.3: Χαρακτηριστικά χαλυβδόφυλλου Symdeck 73

Σχήμα 3.1: Γεωμετρία του τραπεζοειδούς χαλυβδόφυλλου SYMDECK73

3.1.4 Χάλυβας οπλισμού Β500C

Χρησιμοποιήθηκε χάλυβας οπλισμού B500C με χαρακτηριστική τιμή ορίου διαρροής

 f_{yk} = 500 MPa και τάση σχεδιασμού f_{sd} = f_{ys} / γ_s , γ_s =1,15

Τα υπόλοιπα χαρακτηριστικά των χαλύβων οπλισμού σκυροδέματος είναι τα ίδια με αυτά του δομικού χάλυβα.

3.2 Φορτίσεις

Η εκτίμηση των φορτίων και δυνάμεων που καταπονούν την κατασκευή δεν είναι πάντα δυνατό να γίνει με ακρίβεια. Η κατανομή μιας φόρτισης καθορίζεται συνήθως με παραδοχές και προσεγγίσεις, ακόμα κι αν η φόρτιση είναι γνωστή. Το κτίριο θα πρέπει να είναι σε θέση να παραλάβει και να μεταφέρει τα φορτία με ασφάλεια στο έδαφος. Τα φορτία που δρούν στην κατασκευή διακρίνονται στις παρακάτω κατηγορίες :

Μόνιμα φορτία (G)

- Ιδία βάρη της κατασκευής
- Ιδίο βάρος επικάλυψης
- Λοιπά μόνιμα (επικαλύψεις, δάπεδα κτλ)

Κινητά φορτία (Q)

- Κινητά φορτία ορόφων
- Δράσεις Ανέμου
- Φορτίο Χιονιού

Τυχηματικά φορτία

• Σεισμικά Φορτία

3.2.1 Μόνιμα φορτία (Dead loads)

Με τον όρο αυτό νοούνται όλες οι δράσεις, οι οποίες αναμένεται να επενεργήσουν κατά τη διάρκεια μιας δεδομένης περιόδου αναφοράς και για την οποία η διαφοροποίηση του μεγέθους τους στο χρόνο είναι αμελητέα. Στην κατηγορία αυτή περιλαμβάνονται όλα τα κατακόρυφα φορτία που δρουν καθ' όλη την διάρκεια ζωής του έργου.

Ιδία βάρη της κατασκευής

Ιδίο βάρος σκυροδέματος: gc=25kN/m³

Ιδίο βάρος σιδηροδοκού: $g_a=78,5 kN/m^3$

Όλα τα ιδία βάρη υπολογίζονται αυτόματα από το πρόγραμμα.

Λοιπά μόνιμα (επικαλύψεις, δάπεδα, οροφή, ηλεκτρομηχανικός εξοπλισμός, μόνωση, σύμμικτη πλάκα κτλ) με τιμή 3,5kN/m2.

3.2.2 Κινητά φορτία (Line loads)

Στην κατηγορία αυτή περιλαμβάνονται τα φορτία που προκύπτουν από την χρήση του κτιρίου και προέρχονται από την παρουσία ανθρώπων, επίπλων, κινητού εξοπλισμού κτλ. Λόγω της φύσης των φορτίων αυτών δεν είναι επακριβής η τιμή και η θέση τους για αυτό προσδιορίζονται στατιστικά και οι δε τιμές τους δίνονται από κανονισμούς.

Οι μεταβλητές δράσεις, λαμβάνονται ως ομοιόμορφα κατανεμημένες και θα πρέπει να τοποθετούνται κατά τον πλέον δυσμενή τρόπο στον φορέα, ώστε να καλύπτονται όλες οι

ενδεχόμενες φορτικές καταστάσεις (δυσμενείς φορτίσεις), και να προσδιορίζεται η δυσμενέσττερη επιρροή τους. Στη μελέτη μας λήφθηκαν κινητά φορτία 5,00kN/m

3.2.3 Δράσεις ανέμου

Σύμφωνα με τον Ευρωκώδικα 1, μέρος 1-4 (EN 1991-1-4), για κτίρια και έργα ύψους μέχρι 200m, οι δράσεις ανέμου στις κατασκευές κατατάσσονται στις μεταβλητές σταθερές δράσεις και αναπαρίστανται με ένα απλοποιημένο σύνολο πιέσεων ή δυνάμεων των οποίων οι επιδράσεις είναι ισοδύναμες με τις ακραίες επιδράσεις του στροβιλώδους ανέμου. Θα πρέπει να λαμβάνεται υπόψη η ταυτόχρονη επιρροή και άλλων δράσεων επί της κατασκευής (π.χ. χιόνι, κυκλοφορία, πάγος) που είναι δυνατόν να επιφέρουν αλλαγές στην επιφάνεια αναφοράς ή σε κάποιους συντελεστές, καθώς επίσης και αλλαγές του σχήματος κατά την φάση κατασκευής, που θα μπορούσαν να αλλάξουν την εξωτερική και εσωτερική πίεση ή τα δυναμικά χαρακτηριστικά.

Οι δράσεις λόγω ανέμου στις κατασκευές από χάλυβα, παίζουν ιδιαίτερα σημαντικό ρόλο και αποτελούν σε πολλές περιπτώσεις τη βασική φόρτιση. Το μέγεθος των δράσεων αυτών ματαβάλλεται ανάλογα με την τοποθεσία, το ύψος της κατασκευής, το είδος του περιβάλλοντος χώρου κλπ.

Οι δυνάμεις λόγω ανέμου είναι χρονικά μεταβαλλόμενες και μπορεί να προκαλέσουν ταλαντώσεις. Συνήθως, όμως, η επίδραση αυτή είναι μικρή, οπότε τα φορτία του ανέμου μπορεί να θεωρούνται ως στατικά.

Η πιο σημαντική παράμετρος για τον προσδιορισμό των δράσεων ανέμου είναι η ταχύτητα του ανέμου, η οποία επηρεάζεται από ένα πλήθος παραγόντων όπως η γεωγραφική θέση, η φυσική θέση, η τοπογραφία, οι διαστάσεις του κτιρίου (κυρίως το ύψος), η μέση ταχύτητα του ανέμου, το σχήμα της κατασκευής, η κλίση της στέγης και η διεύθυνση του ανέμου.

Στην παρούσα μεταπτυχιακή εργασία εξετάζονται δύο διευθύνσεις ανέμου με φορά τη θετική διεύθυνση του άξονα x'x (θ =0°) και τη θετική διεύθυνση του άξονα y'y (θ =90°).

Στο συγκεκριμένο έργο οι δράσεις λόγω ανέμου υπολογίστηκαν ως εξής:

Δίνεται ότι ένας τυπικός άνεμος στην Ελλάδα έχει ταχύτητες:

- 33 m/s σε απόσταση έως και 10km από την ακτή
- 27 m/s στην υπόλοιπη χώρα

Στην επίλυση έχει ληφθεί υπόψη ταχύτητα ανέμου $v_{b,0}=33$ m/s και κατηγορία εδάφους IV (Περιοχή στην οποία τουλάχιστον το 15% της επιφάνειας καλύπτεται με κτίρια και το μέσο ύψος τους ξεπερνά τα 15m) εφόσον θεωρήσαμε ότι η κατασκευή θα γίνει στην Αθήνα. Για την συγκεκριμένη κατηγορία εδάφους προκύπτει z₀=1,0m και z_{min}=10m (από τον πίνακα 3.4).

	Κατηγορία εδάφους	z₀ m	z _{min} m
0	Θάλασσα ή παράκτια περιοχή εκτεθειμένη σε ανοικτή θάλασσα	0,003	1
I	Λίμνες ή επίπεδες και οριζόντιες περιοχές με αμελητέα βλάστηση και χωρίς εμπόδια	0,01	1
II	Περιοχή με χαμηλή βλάστηση όπως γρασίδι και μεμονωμένα εμπόδια (δέντρα, κτίρια) με απόσταση τουλάχιστον 20 φορές το ύψος των εμποδίων	0,05	2
III	Περιοχή με κανονική κάλυψη βλάστησης ή με κτίρια ή με μεμονωμένα εμπόδια με μέγιστη απόσταση το πολύ 20 φορές το ύψος των εμποδίων (όπως χωριά, προάστια, μόνιμα δάση)	0,3	5
IV	Περιοχή όπου τουλάχιστον το 15% της επιφάνειας καλύπτεται με κτίρια των οποίων το μέσο ύψος ξεπερνά τα 15m.	1,0	10

Πίνακας 3.4: Κατηγορίες εδάφους και αντίστοιχες παράμετροι

Βασική ταχύτητα του ανέμου

Η μέση ταχύτητα του ανέμου vm(z), σε ύψος z πάνω από το έδαφος, εξαρτάται από την τραχύτητα του εδάφους και την τοπογραφική διαμόρφωση, προσδιορίζεται δε από τη σχέση:

 $v_b = c_{dir} \cdot c_{season} \cdot v_{b,0} = 1,00 \cdot 1,00 \cdot 33m/s = 33m/s$

Ύψος αναφοράς Ζε

Ο προσδιορισμός του ύψους αναφοράς για τους προσήνεμους τοίχους ανάλογα με τη σχέση ύψους h και πλάτους b του κτιρίου γίνεται στα παρακάτω σχήματα

Σχήμα 3.2: Ύψος αναφοράς, ze, που εξαρτάται από τα h και b, και αντίστοιχη κατανομή πιέσεων.

Για τον υπήνεμο τοίχο και τους παράπλευρους τοίχους το ύψος αναφοράς λαμβάνεται ίσο με το ύψος του κτιρίου.

Suntelesths tracúthtas Cr(z)

Ο συντελεστής τραχύτητας Cr(z) υπολογίζεται από τις σχέσεις:

$$C_r(z) = k_r \cdot \ln\left(\frac{z}{z_0}\right) \gamma \iota \alpha \ z_{\min} \le z \le z_{\max} = 200m$$
$$C_r(z) = C_r(z_{\min}) = k_r \cdot \ln\left(\frac{z_{\min}}{z_0}\right) \gamma \iota \alpha \ z \le z_{\min}$$

Όπου

$$k_r = 0.19 \cdot \left(\frac{z_0}{z_{0,\text{II}}}\right)^{0.07} = 0.19 \cdot \left(\frac{1}{0.05}\right)^{0.07} = 0.2343 \text{ (suntelesting edgewice)}$$

z0: είναι το μήκος της ταχύτητας σε m, σύμφωνα με την κατηγορία εδάφους

 $z_{a,n}$: σύμφωνα με τον κανονισμό

zmin: είναι το ελάχιστο ύψος που ορίζει ο κανονισμός

 z_{max} : λαμβάνεται ίσο με 200m

Στην περίπτωσή μας έχουμε:

<u>Για διεύθυνση ανέμου θ=0°:</u>

Έχουμε ύψος h=21m και πλάτος b=24m \rightarrow h<2b και συνεπώς το κτίριο θεωρείται ότι απαρτίζεται από ένα τμήμα με ύψος z_e=h.

Ισχύει ότι zmin≤z≤zmax=200m

$$C_r(z) = k_r \cdot \ln\left(\frac{z}{z_0}\right) = 0,2343 \ln\left(\frac{21}{1,0}\right) = 0,7133$$

<u>Για διεύθυνση ανέμου θ=90°:</u>

Έχουμε ύψος h=21m και πλάτος b=42m \rightarrow h<2b και συνεπώς το κτίριο θεωρείται ότι απαρτίζεται από ένα τμήμα με ύψος z_e=h.

Ισχύει ότι zmin≤z≤zmax=200m

$$C_r(z) = k_r \cdot \ln\left(\frac{z}{z_0}\right) = 0,2343 \ln\left(\frac{21}{1,0}\right) = 0,7133$$

Συντελεστής Τοπογραφικής Διαμόρφωσης Ct

Μέσω του συντελεστή τοπογραφικής διαμόρφωσης (ή αναγλύφου) εκτιμάται η αύξηση της μέσης ταχύτητας του ανέμου πάνω από μεμονωμένους λόφους και εξάρσεις ή γκρεμούς ανάλογα με την προσήνεμη κλίση κατά τη διεύθυνση του ανέμου.

Ο συντελεστής τοπογραφικής διαμόρφωσης προσδίδεται από τις ακόλουθες σχέσεις:

 $C_t = 1$ $\gamma \iota \alpha \Phi < 0.05$
 $C_t = 1 + 2 \cdot s \cdot \Phi$ $\gamma \iota \alpha 0.05 < \Phi < 0.3$
 $C_t = 1 + 0.6 \cdot s$ $\gamma \iota \alpha \Phi > 0.3$

Όπου

s: είναι ο συντελεστής τοπογραφικής θέσης, συνάρτηση των στοιχείων σύμφωνα με την προσήνεμη πλαγιά (οριζόντια, κατακόρυφη απόσταση κ.τ.λ.)

Φ=Hu/L είναι η κλίση προς την προσήνεμη πλαγιά

Θεωρώ Φ=0 άρα Ct=1

Μέση ταχύτητα ανέμου

Η μέση ταχύτητα του ανέμου vm(z), σε ύψος z πάνω από το έδαφος, εξαρτάται από την τραχύτητα του εδάφους και την τοπογραφική διαμόρφωση, προσδιορίζεται δε από τη σχέση:

 $v_m(z) = c_r(z) \cdot c_0(z) \cdot v_b$

Όπου

 $C_r(z)$: είναι ο συντελεστής τραχύτητας, ο οποίος έχει υπολογιστεί παραπάνω και ισούται με 0,7133

 $C_0(z)$: είναι ο συντελεστής τοπογραφικής διαμόρφωσης με προτεινόμενη τιμή 1,0.

Στην περίπτωσή μας έχουμε $v_m(z) = 0,7133 \cdot 1 \cdot 33m/s = 23,54m/s$

Δυναμικός Συντελεστής cscd

Ο συντελεστής αυτός απαρτίζεται από δύο παραμέτρους, την παράμετρο cs, η οποία λαμβάνει υπόψη της τη μειωτική επίδραση στη δράση του ανέμου λόγω μη ταυτόχρονης ύπαρξης των πιέσεων αιχμής από άνεμο επί της επιφάνειας και την δυναμική παράμετρο cd, η οποία λαμβάνει υπόψη της την αυξανόμενη επίδραση από ταλαντώσεις λόγω στροβιλισμού.

Ο δυναμικός συντελεστής εξαρτάται από τον τύπο της κατασκευής, το ύψος και το πλάτος της και η τιμή του προκύπτει από αντίστοιχο σχήμα του Ευρωκώδικα (για πολυόραφα κτίρια από χάλυβα).

- Για διεύθυνση ανέμου θ=0° με ύψος h=21 m και πλάτος b=24 m →c_sc_d=0,90.
- Για διεύθυνση ανέμου θ=90° με ύψος h=21 m και πλάτος b=42 m →c_sc_d=0,90.

Πίεση Ταχύτητας Αιχμής

Η πίεση ταχύτητας αιχμής σε ύψος z, η οποία περιλαμβάνει μέσες και μικρής διάρκειας διακυμάνσεις ταχύτητας, προσδιορίζεται από τη σχέση:

$$q_{p}(z) = [1 + 7 \cdot I_{v}(z)] \cdot \frac{1}{2} \cdot \rho \cdot v_{m}^{2}(z) = c_{e}(z) \cdot q_{b}$$

Όπου

- ρ είναι η πυκνότητα του αέρα, που εξαρτάται από το υψόμετρο, τη θερμοκρασία και τη βαρομετρική πίεση που αναμένονται σε μία περιοχή κατά τη διάρκεια ανεμοθύελλας $(\rho = 1, 25 kg / m^3)$
- $I_{v}(z)$ είναι η ένταση του στροβιλισμού σε ύψος z
- $c_e(z)$ είναι ο συντελεστής έκθεσης και δίνεται από τη σχέση $c_e(z) = \frac{q_p(z)}{q_h}$
 - q_b είναι η βασική πίεση που δίνεται από τη σχέση $q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$
 - v_b είναι η βασική ταχύτητα ανέμου, που ορίζεται ως συνάρτηση της διεύθυνσης του ανέμου και της εποχής του έτους, στα 10m πάνω από έδαφος κατηγορίας ΙΙ, σύμφωνα με τη σχέση $v_b = c_{dir} \cdot c_{season} \cdot v_{b,0}$

Στη σχέση αυτή είναι:

 C_{dir} είναι ο συντελεστής διεύθυνσης (ίσος με 1,0)

 C_{season} είναι ο συντελεστής εποχής (ίσος με 1,0)

 $\mathcal{V}_{b,0}$ είναι η θεμελιώδης τιμή της βασικής ταχύτητας του ανέμου

Η ένταση του στροβιλισμού $I_v(z)$ σε ύψος z υπολογίζεται από τις σχέσεις:

$$I_{v}(z) = \frac{k_{I}}{c_{0}(z) \ln\left(\frac{z}{z_{0}}\right)}$$
για z_{min} $\leq z \leq z_{max}$ και

 $I_v(z) {=} I_v(z_{min}) \ \text{giama} \ z < z_{min}$

Όπου ki είναι ο συντελεστής στροβιλισμού (ίσος με 1,0)

Στην εξεταζόμενη περίπτωση η ένταση στροβιλισμού προκύπτει $I_v(z)=0,328$ και τελικά η πίεση ταχύτητας αιχμής $q_p(z)=1,142~kN/m^2$.

Αεροδυναμικοί Συντελεστές πίεσης και δύναμης

Οι συντελεστες αυτοί (εξωτερικής πίεσης c_{pe}, εσωτερικής πίεσης cpi και συντελεστής δύναμης cf) εισάγονται προκειμένου να υπολογιστούν οι τελικές πιέσεις επί των επιφανειών των κατασκευών, ή οι τελικές δυνάμεις ανέμου σε όλη την κατασκευή, ή σε ένα τμήμα της. Οι συντελεστές εξωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εξωτερικές επιφάνειες των κτιρίων, ενώ οι συντελεστές εσωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εξωτερικές επιφάνειες των κτιρίων, ενώ οι συντελεστές εσωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εξωτερικές επιφάνειες των κτιρίων, ενώ οι συντελεστές εσωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εσωτερικές επιφάνειες των κτιρίων. Επιπλέον οι συντελεστές εξωτερικής πίεσης διακρίνονται σε καθολικούς και τοπικούς συντελεστές. Εξαρτώνται από τις διαστάσεις της φορτιζόμενης επιφάνειας Α, η οποία μεταφέρει στο εξεταζόμενο στοιχείο της κατασκευής τη δράση της ανεμοπίεσης και προκαλεί την αντίστοιχη καταπόνησή του. Οι τοπικοί συντελεστές c_{pe,1} αφορούν τους συντελεστές πίεσης για φορτιζόμενες επιφάνειες μικρότερες ή ίσες από $1m^2 π.χ$. για το σχεδιασμό μικρών στοιχείων και στερεώσεων. Οι καθολικοί συντελεστές c_{pe,10} αφορούν τους συντελεστές πίεσης για φορτιζόμενες επιφάνειες μεγαλύτερες των $10m^2$.

Εμβαδόν φορτιζόμενης επιφάνειας

- Για διεύθυνση ανέμου $θ=0^{\circ}$: έχω ύψος h=21m και πλάτος b=24m→A=504m²
- Για διεύθυνση ανέμου θ=90°: έχω ύψος h=21m και πλάτος b=42m \rightarrow A=882m²

Και στις δυο περιπτώσεις το εμβαδόν είναι μεγαλύτερο των $10m^2$, επομένως $c_{pe}=c_{pe,10}$.

Στους Πίνακες του Ευρωκώδικα 1 οι τιμές των συντελεστών cpe, που αναφέρονται μόνο σε κτίρια, αντιστοιχούν σε διευθύνσεις του ανέμου κατα γωνίες 0°, 90° και 180°, έχουν όμως προκύψει για το εύρος μεταβολής της γωνίας αυτής κατά 45° ανά διεύθυνση. Αντιπροσωπεύουν επομένως τις δυσμενέστερες πιέσεις που μπορεί να εμφανιστούν στα διάφορα σημεία του κτιρίου.

Οι συντελεστές εξωτερικής πίεσης, για το υπό μελέτη κτίριο, δίνονται από το Σχήμα 3.4 και τον Πίνακα 3.2, για κατακόρυφους τοίχους, για διευθύνσεις ανέμου 0° και 90° και ανάλογα με το λόγο h/d. Για ενδιάμεσες τιμές των πινάκων χρησιμοποιείται γραμμική παρεμβολή.

Σχήμα 3.3: Υπόμνημα για κατακόρυφους τοίχους

Πίνακας 3.5: Προτεινόμενες τιμές συντελεστών εξωτερικής πίεσης για κατακόρυφους τοίχους κτιρίων ορθογωνικής κάτοψης

Ζώνη		А	E	3	C D		E			
h/d	Cpe, 10	Cpe,1	Cpe,10	Cpe,1	Cpe,10	Cpe,1	Cpe, 10	Cpe,1	Cpe,10	Cpe,1
5	-1,2	-1,4	-0,8	-1,1	-0,	,5	+0,8	+1,0	-(),7
1	-1,2	-1,4	-0,8	-1,1	-0	5	+0,8	+1,0	-(),5
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0,	5	+0,7	+1,0	-(),3

Εξωτερική Πίεση κατακόρυφων τοίχων

Ανεμος διεύθυνσης θ=0°

Σχήμα 3.4: Κάτοψη κτιρίου

Σύμφωνα με τους ισχύοντες κανονισμούς

e=min (b ; 2h)=min (24 ; 2*21)=min(24 ; 42)=24m

e=24m < d=42m

h / d = 21/42 = 0,5

Σχήμα 3.5: Όψη κτιρίου για e<d

Τελικά οι εξωτερικές πιέσεις προκύπτουν:

 $w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-1.2) = -1,370 kN / m^{2} : A$ $w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,8) = -0,914 kN / m^{2} : B$ $w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,5) = -0,571 kN / m^{2} : C$ $w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (0,733) = 0,837 kN / m^{2} : D$ $w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,367) = -0,419 kN / m^{2} : E$

Σχήμα 3.6: Εξωτερικές πιέσεις για διεύθυνση ανέμου $\theta=0^{\circ}$

Ανεμος διευθύνσεως θ=90°

Σχήμα 3.7: Κάτοψη κτιρίου

Σύμφωνα με τους ισχύοντες κανονισμούς

e=min (b ; 2h)=min (42; 2*21)=min(42 ; 42)=42m

e=42m>d=24m

h / d = 21/24 = 0,875

Σχήμα 3.8: Όψη κτιρίου για e>d

Τελικά οι εξωτερικές πιέσεις προκύπτουν:

$$w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-1,2) = -1,370kN / m^{2} : A$$

$$w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,8) = -0,914kN / m^{2} : B$$

$$w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,5) = -0,571kN / m^{2} : C$$

$$w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (0,783) = 0,894kN / m^{2} : D$$

$$w_{e} = q_{p}(z_{e}) \cdot c_{pe,10} = 1,142 \cdot (-0,467) = 0,533kN / m^{2} : E$$

Σχήμα 3.9: Εξωτερικές πιέσεις για διεύθυνση ανέμου θ=0°

Εξωτερική Πίεση Στέγης

Η στέγη του κτιρίου είναι επίπεδη με αποτέλεσμα να δέχεται υποπίεση λόγω των φορτίων του ανέμου. Δηλαδή ο άνεμος έχει ευμενή επιρροή ως προς τα κατακόρυφα φορτία, συνεπώς δε συνδυάζεται με αυτά.

Τα αναλυτικά υπολογισθέντα φορτία ανέμου θεωρούμε, λόγω του τρόπου στήριξης της πλαγιοκάλυψης, ότι δρουν στα υποστυλώματα σαν γραμμικά ομοιόμορφα κατανεμημένα. Δηλαδή, το επιφανειακό φορτίο πολλαπλασιάστηκε με το μήκος επιρροής κάθε στήλου προκειμένου να αναχθεί σε γραμμικό ομοιόμορφα κατανεμημένο.

Σημειώνεται ότι στις υπήνεμες πλευρές οι οποίες χωρίζονται σε ζώνες φώρτισης εισήχθηκαν οι δυσμενέστερες τιμές σε όλο το μήκος.

Με αυτόν τον τρόπο κατασκευάσαμε τα φορτια WIND0 και WIND90 στο μελετούμενο μοντέλο του SAP2000.
3.2.4 Φορτίο Χιονιού

Τα φορτία του χιονιού προσδιορίζονται με βάσει τις διατάξεις του EC1. Θεωρούνται ως στατικά και κατατάσσονται στις μεταβλητές καθορισμένες δράσεις (όπως αυτές ορίζονται στον EN 1991). Σε ειδικές περιπτώσεις όταν οι καταγραφές της χιονόπτωσεις δίνουν ακραίες τιμές, οι οποίες δεν μπορούν να αξιοποιηθούν μέσω των συνθηκών στατικών μεθόδων της χαρακτηριστικής τιμής του φορτίου του χιονιού, οι ακραίες τιμές μπορεί να θεωρούνται ως τυχηματικές δράσεις.

Στην περίπτωσή μας το φορτίο του χιονιού στην στέγη θα προσδιοριστεί από την σχέση για καταστάσεις διαρκείας ή παροδικές:

$$S = \mu_i \cdot C_e \cdot C_t \cdot s_k$$

Όπου

- μ_i Είναι ο συντελεστής μορφής του φορτίου, ο οποίος για μονοκλινή στέγη με κλίση α=0° ισούται με 0,8.
- $S_{k,0}$ Είναι η χαρακτηριστική τιμή του φορτίου χιονιού για έδαφος που βρίσκεται στην στάθμη της θάλασσας (δηλαδή για A=0), ο οποίος για την Ζώνη ΙΙ ισούται με $0.8kN/m^2$
- C_{e} Είναι ο συντελεστής έκθεσης, ο οποίος για προστατευόμενο κτίριο λαμβάνεται ίσος με 1,2.
- C_{t} Είναι θερμικός συντελεστής, ο οποίος είναι συνήθως ίσως με 1 για κανονικές συνθήκες θερμικής μόνωσης της στέγης.
- s_k Είναι η χαρακτηριστική τιμή του φορτίου χιονιού επί του εδάφους σε kN/m^2 συναρτήσει της ζώνης και του αντίστοιχου υψομέτρου (A), για μια συγγεκριμένη τοποθεσία και δίνεται από την σχέση:

$$s_k = s_{k,0} \cdot \left(1 + \left(\frac{A}{917} \right)^2 \right)$$

Όπου

Α είναι το υψόμετρο της συγκεκριμένης τοποθεσίας από την στάθμη της θάλασσας, το οποίο είναι 100m για την δικιά μας περίπτωση

Επομένως
$$s_k = 0.8 \cdot \left[1 + \left(\frac{100}{917} \right)^2 \right] = 0.81 k N / m^2$$

Μπορούμε πλέον να υπολογίσουμε το φορτίο χιονιού το οποίο θα είναι:

$$S = \mu_i \cdot C_e \cdot C_t \cdot s_k = 0, 8 \cdot 1, 2 \cdot 1, 0 \cdot 0, 81 = 0,777 kN / m^2$$

3.2.5 Σεισμικές Δράσεις

Κατά τη διάρκεια ενός σεισμού αναπτύσσονται στο έδαφος επιταχύνσεις (οριζόντιες και κατακόρυφες), που έχουν ως συνέπεια τη δημιουργία αδρανειακών δυνάμεων επί των κατασκευών. Από τις δυνάμεις αυτές, οι οριζόντιες θεωρούνται οι πλέον σοβαρές, χωρίς αυτό να σημαίνει, ότι και οι κατακόρυφες δε μπορούν να αποβούν καταστροφικές υπό ορισμένες συνθήκες.

Η χώρα μας βρίσκεται σε μία εξαιρετικά σεισμογενή περιοχή και ως εκ τούτου οι σεισμικές δράσεις παίζουν σημαντικό ρόλο στο σχεδιασμό των κατασκευών.

Ως σεισμικές δράσεις σχεδιασμού θεωρούνται οι ταλαντώσεις του κτιρίου λόγω του σεισμού, οι οποίες ονομάζονται και σεισμικές διεργέσεις ή σεισμικές δονήσεις. Οι σεισμικές δράσεις κατατασσονται επίσεις στις τυχηματικές και δεν συνδυάζονται με άλλες τυχηματικές δράσεις, όπως επίσεις δεν συνδυάζονται με τις δράσεις λόγω ανέμου. Είναι λοιπόν αδρανειακές δυνάμεις που προέρχονται από την αντίσταση της μάζας της κατασκευής στη μεταδιδόμενη σε αυτήν κίνηση από το έδαφος. Κατά συνέπεια οι σεισμικές δράσεις εξαρτώνται από την φύση της σεισμικής κίνησης του εδάφους (καθοριζόμενη από την επιτάχυνση, την ταχύτητα, τη χρονική διάρκει και τη διεύθυνση) και την συμπεριφορά της κατασκευής (καθοριζόμενη από την ακαμψία, την κατανομή μάζας, την απόσβεση, τις ιδιότητες του υλικού κ.τ.λ.).

Σύμφωνα με τον Ευρωκώδικα 8, τα σεισμικά αποτελέσματα και τα αποτελέσματα των άλλων δράσεων που περιλαμβάνονται στη σεισμική κατάσταση σχεδιασμού μπορούν να υπολογιστούν με βάσει γραμμική – ελαστική συμπεριφορά του φορέα. Μπορεί λοιπόν να χρησιμοποιηθεί ένας από τους ακόλουθούς δύο τύπους γραμμικής – ελαστικής ανάλυσης:

- Μέθοδος ανάλυσης οριζόντιας φόρτισης
- Ιδιομορφική ανάλυση φάσματος απόκρισης

Η μελέτη του κτιρίου έναντι σεισμού έγινε μέσω της Ιδιομορφικής Ανάλησης Φάσματος Απόκρισης, η οποία περιλαμβάνει πλήρη ιδιομορφική ανάλυση του συστήματος και υπολογισμό της μέγιστης σεισμικής απόκρισης για κάθε ιδιομορφή ταλάντωσης. Αυτή η μέθοδος χρησιμοποιήθηκε κατά την επίλυση με το πρόγραμμα.

Ζώνες σεισμικής επικινδυνότητας

Η ένταση των εδαφικών σεισμικών διεγέρσεων, καθορίζεται συμβατικά με μία μόνη παράμετρο, τη μέγιστη σεισμική επιτάχυνση Α και καθορίζεται ανάλογα με την ζώνη σεισμικής επικινδυνότητας στην οποία βρίσκεται το έργο. Η Ελλάδα χωρίζεται σε τρεις Ζώνες Σεισμικής Επικινδυνότητας (Ι, ΙΙ, ΙΙΙ) τα όρια των οποίων καθορίζονται στον χάρτη σεισμικής επικινδυνότητας. Σε κάθε ζώνη αντιστοιχεί μια τιμή σεισμικής επιτάχυνσης, η οποία έχει πιθανότητα υπέρβασης 10% στα 50 χρόνια (ή περίοδο επαναφοράς 457 έτη).

Το κτίριό μας θα θεωρήσουμε ότι βρίσκεται στη Ζώνη Σεισμικής Επικινδυνότητας Ι.

Σχήμα 3.10: Ζώνες Σεισμικής Επικινδυνότητας

Σεισμική επιτάχυνση του εδάφους

Σε κάθε ζώνη αντιστοιχεί μια τιμή σεισμικής επιτάχυνσης Α που έχει ληφθεί από το χάρτη ζωνών στο Εθνικό Προσάρτημα, και σύμφωνα με τα σεισμολογικά δεδομένα έχει πιθανότητα υπέρβασης 10% στα 50 χρόνια, (η περίοδος επαναφοράς είναι 475 χρόνια), με βάση την σχέση Α=αxg. Για ζώνη σεισμικής επικινδυνότητας Ι, η σεισμική επιτάχυνση του εδάφους είναι Α=0,16xg.

Ζώνη Σεισμικής Επικινδυνότητας	Ι	Π	Ш
α	0,16	0,24	0,36

Πίνακας	3.6	: Σεισμική	επιτάγυνση	του	εδάφου	C
						_

Προσδιορισμός της κατηγορίας εδάφους

Από άποψη σεισμικής επικινδυνότητας, τα εδάφη κατατάσσονται σε 5 κατηγορίες Α, Β, Γ, Δ, Ε και Χ. Το κτίριο εδράζεται σε έδαφος κατηγορίας Β (αποθέσεις πολύ πυκνής άμμου, χαλικιών, ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος) σύμφωνα με τον πίνακα 3.2 του Ευρωκώδικα 8, ο οποίος καθορίζει την κατηγορία εδάφους από την στρωματογραφία και τις παραμέτρους που δίνονται σε αυτόν.

КАТНГОРІА	ПЕРІГРАФН
	Βραχώδεις ή ημιβραχώδεις σχηματισμοί εκτεινόμενοι σε αρκετή έκταση και βάθος, με την προϋπόθεση ότι δεμ παρουσιάζουν έντονη αποσάθρωση.
А	Στρώσεις πυκνού κοκκώδους υλικού με μικρό ποσοστό ιλοαργιλικών προσμίξεων, πάχους μικρότερου των 70m.
	Στρώσεις πολύ σκληρής προσυμπιεσμένης αργίλου πάχους μικρότερου των 70m.
	Εντόνως αποσαθρωμένα βραχώδη ή εδάφη που από μηχανική άποψη μπορούν να εξομοιωθούν με κοκκώδη.
В	Στρώσεις κοκκώδους υλικού μέσης πυκνότητας πάχους μεγαλύτερου των 5m ή μεγάλης πυκνότητας πάχους μεγαλύτερου των 70m.
	Στρώσεις σκληρής προσυμπιεσμένης αργίλου πάχους μεγαλύτερη των 70m.
Г	Στρώσεις κοκκώδους υλικού μικρής σχετικής πυκνότητας πάχους μεγαλύτερου των 5m ή μέσης πυκνότητας πάχους μεγαλύτρου των 70m.
	Ιλυοαργιλικά εδάφη μικρής αντοχής σε πάχος μεγαλύτερο των 5m.
Δ	Έδαφος με μαλακές αργίλους υψηλού δείκτη πλαστιμότητας (Ip>50) συνολικού πάχους μεγαλύτερου των 10m.
x	Χαλαρά λεπτόκοκκα αμμοϊλιώδη εδάφη υπό τον υδάτινο ορίζοντα, που ενδέχεται να ρευστοποιηθούν (εκτός αν ειδική μελέτη αποκλείσει τέτοιο κίνδυνο, ή γίνει βελτίωση των μηχανικών τους ιδιοτήτων).
	Εδάφη που βρίσκονται δίπλα σε εμφανή τεκτονικά ρήγματα.
	Απότομες κλιτείς καλυπτόμενες με προϊόντα χαλαρών πλευρικών κορημάτων.

Πίνακας	3.7:	Κατηγορία	εδάφους
5			1 2

Συντελεστής σπουδαιότητας

Τα κτίρια κατατάσσονται σε τέσσερις κατηγορίες σπουδαιότητας ανάλογα με τις κοινωνικοοικονομικές συνέπειες που μπορεί να έχει ενδεχόμενη καταστροφή ή διακοπή της λειτουργίας τους. Σε κάθε κατηγορία σπουδαιότητας αντιστοιχεί μια τιμή του συντελεστή σπουδαιότητας γ_I. Για κατηγορία σπουδαιότητας ΙΙ (συνήθη κτίρια κατοικιών και γραφείων, βιομηχανικά κτίρια, ξενοδοχεία κ.τ.λ.) ο συντελεστής σπουδαιότητας είναι γ_I=1,00.

Συντελεστής Συμπεριφοράς q

Ο συντελεστής συμπεριφοράς q εισάγει τη μείωση των σεισμικών επιταχύνσεων της πραγματικής κατασκευής λόγω μετελαστικής συμπεριφοράς, σε σχέση με τις επιταχύνσεις που προκύπτουν υπολογιστικά σε απεριόριστα ελαστικό σύστημα. Μέγιστες τιμές του συντελεστή q δίδονται στον παρακάτω Πίνακα, ανάλογα με το είδος του υλικού κατασκευής και τον τύπο του δομικού συστήματος. Οι τιμές αυτές ισχύουν εφόσον για τον σεισμό σχεδιασμού έχουμε έναρξη διαρροής του συστήματος (πρώτη πλαστική άρθρωση) και με την περαιτέρω αύξηση της φόρτισης είναι δυνατός ο σχηματισμός αξιόπιστου μηχανισμού διαρροής με τη δημιουργία ικανού αριθμού πλαστικών αρθρώσεων.

ҮЛІКО	ΔΟΜΙΚΟ ΣΥΣΤΗΜΑ		
	α. Πλαίσια ή μικτά συστήματα	3,50	
1. ΟΠΑΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ	β. Συστήματα τοιχωμάτων που λειτουργούν σαν πρόβολοι		
	γ. Συστήματα στα οποία τουλάχιστον το 50% της συνολικής μάζας βρίσκεται στο ανώτερο 1/3 του ύψους	2,00	
	α. Πλαίσια	4,00	
	β. Δικτυωτοί σύνδεσμοι με εκκεντρότητα	4,00	
	γ. Δικτυωτοί σύνδεσμοι χωρίς εκκεντρότητα		
2. ΧΑΛΥΒΑΣ	 Διαγώνιοι σύνδεσμοι 	3,00	
	 Σύνδεσμοι τύπου V ή L 	1,50	
	 Σύνδεσμοι τύπου Κ (όπου επιτρέπεται) 	1,00	
	α. Με οριζόντια διαζώματα	1,50	
3. ТҮХОПОІЇА	β. Με οριζόντια και κατακόρυφα διαζώματα	2,00	
	γ. Οπλισμένη (κατακόρυφα και οριζόντια)	2,50	
	α. πρόβολοι	1,00	
	β. Δοκοί – Τόξα – Κολλητά πετάσματα	1,50	
4. ±1/10	γ. Πλαίσια με κοχλιώσεις	2,00	
	δ. Πετάσματα με υλώσεις	3,00	

Πίναισας 2.8. Μό		συντελεστή	GUUTCO1000	ác (
111VUKUS 5.0. MIC	riores ripes	00016/16011	ουμπεριφυμ	ωςι	1

Στο έργο μας λαμβάνουμε q=1,50

Φάσμα Σχεδιασμού

Κατασκευάστηκαν τα φάσματα σχεδιασμού για τις οριζόντιες και τις κατακόρυφες συνιστώσες του σεισμού. Για την κατασκευή των φασμάτων έγιναν λοιπόν οι ακόλουθες παραδοχές:

- Ζώνη σεισμικής επικινδυνότητας
 Ι (επιτάχυ
- Κατηγορία εδάφους

Απόσβεση

•

- Κατηγορία σπουδαιότητας
- Συντελεστής συμπεριφοράς q
- I (επιτάχυνση A=0,16g) B II (συνήθη κτίρια), γ=1,00 1,50 4%

Για τις οριζόντιες συνιστώσες της σεισμικής δράσης το φάσμα σχεδιασμού, Sd(T), ορίζεται από τις ακόλουθες εκφράσεις (EK8):

$$\begin{split} S_{d}\left(T\right) &= a_{g} \cdot S \cdot \left[\frac{2}{3} + \frac{T}{T_{B}} \cdot \left(\frac{2,5}{q} - \frac{2}{3}\right)\right] & \qquad \forall ua \ 0 \leq T \leq T_{B} \\ S_{d}\left(T\right) &= a_{g} \cdot S \cdot \frac{2,5}{q} & \qquad \forall ua \ T_{B} \leq T \leq T_{C} \end{split}$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \frac{T_{C}}{T} \ge \beta \cdot a_{g} \qquad \qquad \forall \text{in } T_{C} \le T \le T_{D}$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \frac{T_{C} \cdot T_{D}}{T^{2}} \ge \beta \cdot a_{g} \qquad \qquad \gamma \iota \alpha \ T_{D} \le T \le 4 \sec q$$

Όπου

- $S_d(T)$ Είναι η φασματική επιτάχυνση του σχεδιασμού
- Τ Είναι η περίοδος ταλάντωσης ενός γραμμικού συστήματος μιας ελεύθερης κίνησης
- ag Είναι η εδαφική επιτάχυνση σχεδιασμού σε έδαφος κατηγορίας A (ag=γIagR)
- T_B Είναι η περίοδος κάτω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης
- Τ_C Είναι η περίοδος άνω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης
- T_D Είναι η τιμή της περιόδου που ορίζει την αρχή της περιοχής σταθερής μετακίνησης του φάσματος
- S Είναι ο συντελεστής εδάφους
- q Είναι ο συντελεστής συμπεριφοράς
- β Είναι συντελεστής κατώτατου ορίου για το οριζόντιο φάσμα σχεδιασμού, συνιστώμενη τιμή β=0,2.

Σχήμα 3.11: Φασματική Επιτάχυνση

Σύμφωνα με τον παρακάτω πίνακα για έδαφος κατηγορίας Β, έχουμε:

S=1,2 , T_B=0,15s, T_C=0,5s kai T_D=2,0s.

Πίνακας 3.9:	Τιμές των	παραμέτρων πο	υ περιγράφουν	τα συ	ονιστώμενα	φάσματα	ελαστικής
		απά	κρισης τύπου	1			

Εδαφικός Τύπος	S	$T_{B}(s)$	$T_{C}(s)$	$T_{D}(s)$
А	1,00	0,15	0,40	2,50
В	1,20	0,15	0,50	2,50
С	1,15	0,20	0,60	2,50
D	1,35	0,20	0,80	2,50
Е	1,40	0,15	0,50	2,50

3.3 Συνδυασμοί δράσεων

Ανάλογα με το είδος, τη μορφή και τη θέση της κατασκευής προσδιορίζονται οι διάφορες χαρακτηριστικές τιμές των δράσεων, οποίες επενεργούν σε αυτή. Οι δράσεις αυτές πολλαπλασιασμένες με κατάλληλους συντελεστές (επιμέρους συντελεστές ασφαλείας γ), συνδυάζονται μεταξύ τους καταλλήλως (συντελεστές συνδυασμού ψ) για κάθε μία από τις δύο οριακές καταστάσεις, αστοχίας και λειτουργικότητας, και στη συνέχεια εφαρμόζονται στο φορέα. Στους συνδυασμούς αυτούς δεν συνυπολογίζονται δράσεις οι οποίες δεν είναι δυνατόν να εμφανιστούν ταυτόχρονα.

Προκειμένου να ελεχθεί η επάρκεια της κατασκευής στις οριακές καταστάσεις, οι οποίες διακρίνονται στις Οριακές Καταστάσεις Αστοχίας (ULS) και στις Λειτουργικότητας (SLS), χρησιμοποιούνται συνδυασμοί των φορτίων που έχουμε υπολογίσει στην προηγούμενη παράγραφο. Οι συνδυασμοί αυτοί καλύπτουν όλες τις καταστάσεις σχεδιασμού (καταστάσεις διάρκειας, παροδικές, τυχηματικές και σεισμού) και περιέχουν δράσεις που μπορεί να εκδηλώνονται ταυτόχρονα και μόνον.

3.3.1 Οριακή Κατάσταση Αστοχίας

Σε αυτή την περίπτωση έχουμε πλαστικές αντοχές, απώλεια ευστάθειας, θραύση, κόπωση, ανατροπή κ.λ.π, που συνδέονται με κατάρρευση ή με ισοδύναμες μορφές αστοχίας του φορέα ή τμήματός του.

Για καταστάσεις διαρκείας ή παροδικές:

 $\Sigma \gamma_{G_i} G_{k,i} + \gamma_{Q,i} Q_{k,i} + \Sigma \gamma_{Q,i} \psi_{0,i} Q_{k,i}$

Όπου το Qk,1 αντιστοιχεί στην εκάστωτε επικρατέστερη μεταβλητή δράση.

Με αυτόν τον τρόπο προκύπτει μεγάλος συνδυασμός δράσεων:

Δυσμενής Συνδυασμός:

- Θεωρώντας βασικό μεταβλητό φορτίο το ωφέλιμο φορτίο Q
- $1,35 \times G + 1,5 \times Q + 1,5 \times 0,6 \times W + 1,5 \times 0,5 \times S$
- Θεωρώντας βασικό μεταβλητό φορτίο τον άνεμο W
- $1,35 \times G + 1,5 \times W + 1,5 \times 0,7 \times Q + 1,5 \times 0,5 \times S$
- Θεωρώντας βασικό μεταβλητό φορτίο το χιόνι S
- $1,35 \times G + 1,5 \times S + 1,5 \times 0,7 \times Q + 1,5 \times 0,6 \times W$

Ευμενής Συνδυασμός

• $1,00 \times G + 1,00 \times Q$

Για καταστάσεις σεισμού

• $\Sigma G_{k,j} + A_{Ed} + \Sigma \psi_{2,i} Q_{k,i}$

Οι τιμές των συντελεστών ψί για κτίρια προκύπτουν από τον ακόλουθο πίνακα.

Δράσας	40	Ψı	Ψ2
Επιβαλλόμενα φορτία σε κτήρια, κατηγορία (βλέπε ΕΝ 1991-1-1)	a a 1		
Κατηγορία Α: κατοικίες, συνήθη κτήρια κατοικιών	0,7	0,5	0,3
Κατηγορία Β: χώροι γραφείων	0,7	0,5	0,3
Κατηγορία C: χώροι συνάθροισης	0,7	0,7	0,6
Κατηγορία D: χώροι καταστημάτων	0,7	0,7	0,6
Κατηγορία Ε: χώροι αποθήκευσης	1,0	0,9	0,8
Κατηγορία F: χώροι κυκλοφορίας σχημάτων βάρος σχημάτων ≤ 30kN	0,7	0,7	0,6
Κατηγορία G: χώροι κυκλοφορίας οχημάτων 30kN < βάρος οχημάτων ≤ 160kN Κατηγορία H: στέγες	0,7 0	0,5	0,3
Φορτία γιονιού επάνω σε κτήρια (βλέπε EN 1991-1-3)*			
Φιλανδία, Ισλανδία, Νορβηγία, Σουηδία	0.70	0.50	0.20
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που	0,70	0,50	0,20
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που βρίσκονται σε υψόμετρο Η ≤ 1000 m	0,50	0,20	0
Φορτία ανέμου σε κτήρια (βλέπε ΕΝ 1991-1-4)	0,6	0,2	0
0 (P)	0.6	0.5	0

Πίνακας 3.10: Προτεινόμενες τιμές των συντελεστών ψ για τα κτίρια

3.3.2 Οριακή Κατάσταση Λειτουργικότητας

Σε αυτή την περίπτωση έχουμε μετατοπίσεις, ταλαντώσεις, ρηγματώσεις κλπ, που συνδέονται με συνθήκες πέραν των οποίων δεν πληρούνται πλέον οι καθορισμένες λειτουργικές απαιτήσεις για το φορέα ή για μέλος αυτού.

Χαρακτηριστικός συνδυασμός:

 $\sum\nolimits_{j \ge 1} {{G_{k,j}} + {Q_{k,l}} + \sum\nolimits_{i \ge 1} {{\psi _{0,1}}{Q_{k,l}}} }$

- Θεωρώντας βασικό μεταβλητό φορτίο το ωφέλιμο φορτίο Q
- $G+Q+0, 6\times W+0, 5\times S$
- Θεωρώντας βασικό μεταβλητό φορτίο τον άνεμο W
- $G+W+0, 7\times Q+0, 5\times S$
- Θεωρώντας βασικό μεταβλητό φορτίο το χιόνι S
- $G+S+0, 7 \times Q+0, 6 \times W$

3.3.3 Συνδυασμοί Φορτίσεων

Ακολουθούν οι συνδυασμοί φορτίσεων όπως έχουν ορισθεί στο πρόγραμμα:

Άθροισμα μόνιμων φορτίων
Άθροισμα κινητών φορτίων
Άνεμος (κατά τη διεύθυνση χ)
Άνεμος (κατά τη διεύθυνση y)
Φορτίο χιονιού
σεισμός

Συνδυασμοί	DEAD	LIVE	WIND0	WIND90	SNOW	Е
ΑΣΤΟΧΙΑ 1	1,35	1,50				
ΑΣΤΟΧΙΑ 2	1,35	1,50	0,90	0,90	0.75	
ΑΣΤΟΧΙΑ 3	1,35	1,50			0.75	
ΑΣΤΟΧΙΑ 4	1,35	1,50	0,90	0,90		
ΑΣΤΟΧΙΑ 5	1,35	1,05	0,90	0,90	1,50	
ΑΣΤΟΧΙΑ 6	1,35		0,90	0,90	1,50	
ΑΣΤΟΧΙΑ 7	1,35	1,05			1,50	
ΑΣΤΟΧΙΑ 8	1,35	1,05	1,50	1,50	0,75	
ΑΣΤΟΧΙΑ 9	1,35		1,50	1,50		
ΑΣΤΟΧΙΑ 10	1,00		1,50	1,50		
ΑΣΤΟΧΙΑ 11	1,00	0,30				1,00
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 1	1,00	1,00			0,50	
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 2	1,00	1,00	0,60	0,60	0,50	
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 3	1,00	1,00	0,60	0,60		
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 4	1,00	0,70			1,00	
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 5	1,00	0,70	0,60	0,60	1,00	
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 6	1,00		0,60	0,60	1,00	
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 7	1,00		1,00	1,00		
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ 8	1,00	0,70	1,00	1,00	0,5	

Πίνακας 3.11: Συνδυασμοί φορτίσεων όπως εισήχθησαν στο πρόγραμμα

4 Ανάλυση και διαστασιολόγηση φορέα

4.1 Έλεγχος στην οριακή κατάσταση αστοχίας

Ενδεικτικά παρουσιάζονται η διαστασιολόγηση χαρακτηριστικών μελών, όπως προέκυψε από την επίλυση του προγράμματος.

Επιγραμματικά, οι έλεγχοι που πραγματοποιούνται στα μέλη για την οριακή κατάσταση αστοχίας (OKA) είναι αντοχής σε θλίψη, αντοχής σε τέμνουσα, αντοχής σε κάμψη, έλεγχος υπό κάμψη και τέμνουσα, έλεγχος σε κάμψη και αξονική δύναμη, καμπτικού λυγισμού λόγω αξονικής θλιπτικής δύναμης, στρεπτοκαμπτικού (πλευρικού) λυγισμού και στρεπτοκαμπτικού λυγισμού υπό θλίψη και κάμψη.

Ο δείκτης του πόσο ευμενής ή δυσμενής είναι μία διατομή είναι ο δείκτης εκμετάλλευσης (RATIO). Αποτελείται από ένα άθροισμα 3 λόγων (Δράση-i/Αντοχή-i), όπου Ι είναι η αξονική δύναμη, η ροπή περί τον ισχυρό άξονα και περί τον ασθενή άξονα.

Η αρχική επίλυση η οποία έγινε με τις εξής διατομές:

Σχήμα 4.1: Κάτοψη τυπικού ορόφου

Πιο συγκεκριμένα χρησιμοποιήθηκαν οι παρακάτω διατομές:

- Υποστυλώματα διατομής 2HEB 360 (κόκκινο χρωμα)
- Κύριες δοκοί διατομής ΗΕΒ 360 (μαύρο χρώμα)
- Δευτερεύουσες δοκοί διατομής HEB 300 (μπλε χρώμα)
- Διαδοκίδες διατομής IPE 240 (πράσινο χρώμα)
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας διατομής RHS 120.120.8
- Σύμμικτη πλάκα Symdeck 73 αποτελούμενη από λαμαρίνα KSH 50 με πάχος t=0,8mm.

Παρουσιάζονται ενδεικτικά οι δυσμενέστερες θέσεις των υποστυλωμάτων, των κύριων και δευτερευουσών δοκών, των διαδοκίδων και τέλος των κατακόρυφων συνδέσμων δυσκαμψίας.

4.1.1 Υποστύλωμα

Επιλέξαμε ένα από τα υποστυλώματα του 1^{ου} ορόφου (μέλος SIS20), καθώς αυτά προκύπτουν δυσμενέστερα ως προς τον έλεγχο αστοχίας.

Σχήμα 4.2: Σχήμα διατομής υποστυλώματος

Χαρακτηριστικά διατομής υποστυλώματος:

Πίνακας 4.1: Χαρακτηριστικά διατομής υποστυλώματος (μέλους SIS20)

Υποστύλωμα
h _c =360,00mm
b _{fc} = 300,00mm
t _{wc} = 12,50mm
t _{fc} = 22,50mm
A=347cm2
d= 261mm
W _{pl,y} = 3613cm3

Όπως φαίνεται από τα αποτελέσματα της ανάλυσης, ο δυσμενέστερος συνδυασμός για τα υποστυλώματα είναι ο ULS3 (1,35μόνιμο+1,5κινητό+0,75χιόνι). Για αυτό το συνδυασμό αστοχίας το ratio του μέλους είναι 0,729, δηλαδή η διατομή επαρκεί για τον έλεγχο αστοχίας.

	Steel Stress Check Information (Eurocode 3-2005)								
Frame ID Design Code	SIS20 Eurocode 3-200)5	Ana Desi	lysis Sectio ign Sectior	n 1	2HEB360 2HEB360			
СОМВО	STATION /	-MOMENT IN	TERACT	ION CHE	СК	//-MAJ	-SHRM	IN-SHR-	/
10	LUC RA.	= 110	AXL +	B-MAJ ·	- D-M	IN R	AIIO	RAIIO	
ULS2a	2,50 0,	724(C) = 0	,723 +	0,001 -	+ 0,0	00 0	,000	0,000	^
ULS2a	5,00 0,	724(C) = 0	,722 +	0,002 -	+ 0,0	00 0	,000	0,000	
ULS2b	0,00 0,	729(C) = 0	,724 +	0,005 -	+ 0,0	00 0	,000	0,000	
ULS2b	2,50 0,	724(C) = 0	,723 +	0,001 -	+ 0,0	00 0	,000	0,000	
ULS2b	5,00 0,	724(C) = 0	,722 +	0,002 -	+ 0,0	00 0	,000	0,000	
ULS3	0,00 0,1	729(C) = 0	,724 +	0,005 -	+ 0,0	00 0	,000	0,000	¥
⊂ Modify/Show Overv	Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data								
Strength	C Deflection		K]	Cance	1		Styleshee Table Fo	et: Default ormat File	

Πίνακας 4.2: Πίνακας ανάλυσης μέλους SIS20 για όλους τους συνδυασμούς αστοχίας

Πίνακας 4.3: Πίνακας ανάλυσης μέλους SIS20 για τον συνδυασμό αστοχίας ULS3

×			Ste	el Stress Cheo	k Data Eurocode 3-2005	×
File						
Fundanda 2 2885 STE						Inits KN m C 💌
Combo : III S2	EL SEGIIUN CHEU	,R				
Units KN m C						
011C5 . KH, H, U						
Frame : SIS20	Design Se	ct: 2HEB3	60			
X Mid : 35,000	Design Ty	pe: Colum/	n			
Y Mid : 12,000	Frame Typ	oe : Brace	d Frame			
Z Mid : 2,500	Sect Clas	s : Class	3			
Length : 5,000	Major Axi	.s : 0,000	degrees cou	nterclockwi	se from local 3	
LOC : 0,000	KLLF	: 1,000				
0403 - 8 825	SMajor -	0 002	r Matio	8 122	0UMpior- 8 810	
IMajor : 5 189F-04	SMinor ·	0,003	r Mino	r · 8 122	AllMinor: 0 810	
IMinor : 5,189E-04	ZMaior :	0,004	F	210000	88.88	
Ixu : 0.000	ZMinor :	0.004	Fu	: 355000.	000	
STRESS CHECK FORCES	& MOMENTS					
Location	P	M33	M22	U2	U3 T	
0,000	-5376,481	6,731	2,080E-04	1,934	1,031E-04 0,000	
	DOTTO					
PHH DEPHND/CHPHCITY	Total	D	Miniar	MMinow	Patio Statuc	
Equation	Patio	Patio	Ratio	Ratio	Limit Check	
(6 61)	8 720 =	8 724	+ 0.005	+ 8 888	1 888 08	
(0.01)	0,127	0,124	0,005	0,000	1,000	
AXIAL FORCE DESIGN						
	Ned	Nc,Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
	Force Ca	pacíty	Capacity	Major	Minor	
Axial	-5376,481 74	22,912	11204,688	7422,912	8086,100	
MOMENT DESIGN						
	Med	Mc,Rd	Mv,Rd	Mb,Rd		
	Moment Ca	pacity	Capacity	Capacity		
Major Moment	0,731 9	30,280	930,280	930,280		
minor moment	2,080E-04 9	30,280	930,280			

4.1.2 Κύρια δοκός

Παρακάτω παρουσιάζονται ενδεικτικά τα αποτελέσματα της ανάλυσης του μέλους D42.

I/Wide Flange Section						
Section Name	HE360B					
Section Notes		Modify/Show Notes				
Extract Data from Section Proper	ty File					
Open File c:\program fil	les (x86)\computers an	d Import				
Properties	Property Modifiers	Material				
Section Properties	Set Modifiers	+ \$355 -				
Dimensions						
Outside height(t3)	0,36					
Top flange width (t2)	0,3					
Top flange thickness (tf)	0,0225	3.				
Web thickness (tw)	0,0125					
Bottom flange width(t2b)	0,3					
Bottom flange thickness(tfb)	0,0225	Display Color				
	ÖK Car	ncel				

Πίνακας 4.4: Χαρακτηριστικά διατομής κύριας δοκού (μέλους D42)

Ο συνδυασμός που είναι δυσμενέστερος για τις κύριες δοκούς του 1^{ou} ορόφου είναι ο σεισμικός (ULS19=1,00μόνιμο + 0,3κινητό + 1,00σεισμός).

Για αυτό το συνδυασμό αστοχίας το ratio του μέλους είναι 0,171 οπότε επαρκεί για τον έλεγχο αστοχίας.

	Steel Str	ess Check	Inform	ation (I	Euroc	ode 3-20)05)		
Frame ID Design Code	D42 Eurocode 3-200	5	Anal Desi	ysis Secti gn Sectio	on n	HE 360B HE 360B			
COMBO	STATION /	MOMENT IN	ITERACT	ION CHE	СК	//-MAJ	-SHRMI	IN-SHR-,	/
ID	LOC RAT	= 0I1	AXL +	B-MAJ	+ B-M	IN R	ATIO	RATIO	
ULS19	3,50 0,0	068(C) = 0	,000 +	0,068	+ 0,0	00 0	,374	0,000	~
ULS19	4,00 0,0	0.46(C) = 0	,000 +	0,046	+ 0,0	00 0	, 395	0,000	
ULS19	4,50 0,0	(C) = 0	,000 +	0,011	+ 0,0	00 0	,417	0,000	
ULS19	5,00 0,0	038(C) = 0	,000 +	0,038	+ 0,0	00 0	,439	0,000	_
ULS19	5,50 0,0)98(C) = 0	,000 +	0,098	+ 0,0	00 0	,461	0,000	
ULS19	6,00 0,3	L71(C) = 0	,000 +	0,171	+ 0,0	00 0	,482	0,000	¥
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data									
🖲 Strength	C Deflection		<u>)K</u>	Cance			Styleshee Table Fo	et: Default ormat File]

Πίνακας 4.5: Πίνακας ανάλυσης μέλους D42 για όλους τους συνδυασμούς αστοχίας

Πίνακας 4.6: Πίνακας ανάλυσης μέλους D42 για το συνδυασμό αστοχίας ULS19

×	Steel Stress Check Data Eurocode 3-2005	×
File		
		Units KN m C
Combo • ULS10		
Hoits KN m C		
011C5 . kit, it, o		
Frame : D42	Design Sect: HE360B	
X Mid : 14,000	Design Type: Beam	
Y Mid : 21,000	Frame Type : Braced Frame	
2 M10 : 17,888	Sect CLASS : CLASS 1	
Length : 0,000	plic - 1 and	
. 0,000		
Area : 0.018	SMajor : 0.802 rMajor : 0.154 00Major: 0.805	
IMajor : 4,319E-04	SMinor: 6,768E-84 rMinor: 8,875 AVMinor: 8,811	
IMinor : 1,014E-04	ZMajor : 0,003 E : 210000000,00	
Ixy : 0,000	ZMinor : 0,001 Fy : 355000,000	
STRESS CHECK FURGES	& MURENIS	
LOCATION	P M33 M22 V2 V3 I	
0,000		
PMM DEMAND/CAPACITY	RATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Ratio Limit Check	
(6.62)	6,171 = 6,606 + 6,171 + 6,666 1,666 0K	
HATHE FURGE DESIGN	Ned Ne Pd Nt Pd Nh22 Pd Nh22 Pd	
	Force Canacitu Canacitu Major Minor	
Axial	8 868 2098,636 5841.364 5143,339 2098,636	
MOMENT DESIGN		
	Med Mc,Rd Mv,Rd Mb,Rd	
	Moment Capacity Capacity Capacity	
Major Moment	-126,229 865,877 865,877 865,877	
Minor Moment	0,000 333,055 333,055	

4.1.3 Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας

Οι κατακόρυφοι χιαστοί σύνδεσμοι δυσκαμψίας διατομής RHS 120.120.8 προκύπτουν δυσμενέστεροι στον 1° όροφο.

Τα χαρακτηριστικά της διατομής παρατίθενται στον παρακάτω πίνακα.

Πίνακας 4.7: Χαρακτηριστικά διατομής κατακόρυφου χιαστί συνδέσμου δυσκαμψίας (μέλους DIS2)

	Box/Tube Section
Section Name	TUB0120×120×8
Section Notes	Modify/Show Notes
Extract Data from Section Prop	arty File
Open File c:\program	files (x86)\computers and Import
Properties Section Properties	Property Modifiers Material
Dimensions	
Outside depth(t3)	
Outside width(t2)	0,12
Flange thickness (tf)	8,000E-03
Web thickness(tw)	8,000E-03
	Display Color
_	
Ĺ	ÖK Cancel

Ο δυσμενέστερος συνδυασμός αστοχίας είναι ο σεισμικός συνδυασμός ULS18

(1,00μόνιμο+0,3κινητό+1,00σεισμός) όπως φαίνεται και στον παρακάτω πίνακα.). Για αυτό το συνδυασμό αστοχίας το ratio του μέλους είναι 0,825, δηλαδή η διατομή επαρκεί για τον έλεγχο αστοχίας.

	Steel	Stress Check	Inform	ation (E	Euroc	ode 3-3	2005)		
Frame ID Design Code	DIS2 Eurocode 3	2005	Ana Des	lysis Sectio ign Sectio	on n	TUB012 TUB012	20×120×8 20×120×8		
COMBO	STATION /-	MOMENT IN RATIO =	NTERACT	ION CHE	СК	//-M2	AJ-SHR RATIO	-MIN-SHR- RATIO	1
ULS16	8,60	0,750(C) = (0,750 +	0,000	+ 0,0	00	0,003	0,000	~
ULS17	0,00	0,383(C) = (,383 +	0,000	+ 0,0	00	0,003	0,000	
ULS17	4,30	0,452(C) = (0,387 +	0,064	+ 0,0	00	0,000	0,000	
ULS17	8,60	0,392(C) = (0,392 +	0,000	+ 0,0	00	0,003	0,000	
ULS18	0,00	0,742(C) = (0,742 +	0,000	+ 0,0	00	0,003	0,000	
ULS18	4,30	0,825(C) = (0,746 +	0,078	+ 0,0	00	0,000	0,000	Υ.
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Details Details Tabular Data									
Strength 🕈	C Deflection		OK	Cance	!		Style: Tabl	sheet: Default le Format File	

Πίνακας 4.8: Πίνακας ανάλυσης μέλους DIS2 για όλους τους συνδυασμούς αστοχίας

Πίνακας 4.9: Πίνακας ανάλυσης μέλους DIS2 για τον συνδυασμό αστοχίας ULS18

×			St	eel Stress Check	Data Eurocode 3-2005	×
File						
						Units KN as C
Eurocode 3-2005 ST	EEL SECTION CHI	ECK				
Combo : ULS18						
Units : KN, m, C						
Exame • DIS2	Decim 4	Sect. TURO-	28212828			
X Mid - 10 500	Decign	Tuno: Brace	20012000			
Y Mid : 0,000	Erame Ti	une : Brace	od Erame			
Z Mid : 2.500	Sect Cl.	ass : Class	1			
Length : 8.602	Major Az	xis : 0.00	dearees co	unterclockwis	e from local 3	
Loc : 4,301	RLLF	: 1,00				
Area : 0,004	SMajor	: 1,255E-04	∔ rMaj	or : 0,046	AVMajor: 0,002	
IMajor : 7,531E-06	SMinor	: 1,255E-04	+ rMin	or : 0,046	AUMinor: 0,002	
IMinor : 7,531E-06	ZMajor	: 1,508E-04	4 E	: 21000000	9,99	
Ixy : 0,000	ZMinor	: 1,508E-04	i Fy	: 355000,0	99	
STRESS CHECK FURGES		HOO	HOO		T	
LUCALIUN 5 204	-121 880	9 110	9 999	0 000	0.000 0.000	
4,301	-131,000	2,110	0,000	0,000	0,000 0,000	
PMM DEMAND/CAPACITY	Y RATIO					
Governing	Total	P	MMajor	MMinor	Ratio Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit Check	
(6.61)	0,825 =	0,746	+ 0,078	+ 0,000	1,000 OK	
AXIAL FURCE DESIGN						
	Ned	NC,Rd	Nt,Rd	ND33,Rd	ND22,Rd	
0	F0rce l	Japacity	Capacity	Major 175 For	M1N0r	
нхтат	-131,008	175,505	1150,055	175,505	175,505	
MOMENT DESIGN						
	Med	Mc.Rd	My.Rd	Mb.Rd		
	Moment (Capacitu	Capacitu	Capacity		
Major Moment	2,118	48,667	48,667	48,667		
Minor Moment	0,000	48,667	48,667			

Οι έλεγχοι διαδοκίδας και δευτερεύουσας δοκού διενεργούνται χωρίς να ληφθεί υπόψη σύμμικτη λειτουργία διότι στη φάση κατασκευής (νωπό σκυρόδεμα) οι χαλύβδινες διατομές παραλαμβάνουν το φορτίο σκυροδέματος σαν εξωτερική φόρτιση.

4.1.4 Δευτερεύουσες δοκοί ΗΕΒ300

Παρουσιάζονται αρχικά τα χαρακτηριστικά της διατομής:

Πίνακας 4.10: 2	Χαρακτηριστικά	διατομής	δευτερεύουα	σας δοκού
-----------------	----------------	----------	-------------	-----------

١٨	Vide Flange :	Section
Section Name	HES	300B
Section Notes		Modify/Show Notes
Extract Data from Section Proper	ty File	
Open File c:\program fil	es (x86)\compute	rs and Import
Properties Section Properties	Property Modifier Set Modifiers	s Material + S355 V
Dimensions		
Outside height(t3)	0,3	
Top flange width(t2)	0,3	
Top flange thickness (tf)	0,019	
Web thickness(tw)	0,011	
Bottom flange width(t2b)	0,3	
Bottom flange thickness (tfb)	10,013	Display Color J
	<u>ОК</u>	Cancel

Ο δυσμενέστερος συνδυασμός αστοχίας είναι ο σεισμικός συνδυασμός ULS3 (1,35μόνιμο+1,5κινητό+0,75χιόνι) όπως φαίνεται και στον παρακάτω πίνακα. Για αυτό το συνδυασμό αστοχίας το ratio του μέλους είναι 0,677, δηλαδή η διατομή επαρκεί για τον έλεγχο αστοχίας.

	Steel Stress Check Information (Eurocode 3-2005)								
Frame ID Design Code	E8 Eurocode (3-2005	Anal Desi	lysis Sectior ign Section	HE30 HE30	OB OB			
COMBO	STATION /	MOMENT	INTERACT:	ION CHEC	K//-	-MAJ-SHR	MIN-SHR-	/	
ID	LOC	RATIO =	= AXL +	B-MAJ +	B-MIN	RATIO	RATIO		
ULS3	4,50	0,256(C) =	= 0,000 +	0,256 +	0,000	0,128	0,000	~	
ULS3	5,00	0,152(C) =	= 0,000 +	0,152 +	0,000	0,191	0,000		
ULS3	5,50	0,007(C) =	= 0,000 +	0,007 +	0,000	0,255	0,000		
ULS3	6,00	0,180(C) =	= 0,000 +	0,180 +	0,000	0,319	0,000		
ULS3	6,50	0,408(C) =	= 0,000 +	0,408 +	0,000	0,383	0,000		
ULS3	7,00	0,677(C) =	= 0,000 +	0,677 +	0,000	0,447	0,000	×	
Modify/Sho	Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data								
© Strength	C Deflection	n [0K I	Cancel		Styles Table	neet: Default Format File]	

Πίνακας 4.11: Πίνακας ανάλυσης μέλους Ε8 για όλους τους συνδυασμούς αστοχίας

Πίνακας 4.12: Πίνακας ανάλυσης μέλους Ε8 για τον συνδυασμό αστοχίας ULS3

X	Steel Stress Check Data Eurocode 3-2005	×
File		
Europedo 2 2865 STEEL		Unite KN m C v
Combo • III S3		
Units • KN m C		
011C5 . 111, 11, 0		
Frame : E8	Design Sect: HE300B	
X Mid : 10,500	Design Type: Beam	
Y M1d : 6,000	Frame Type : Braced Frame	<u> → → → → → → → → → → → → → → → → → → →</u>
2 M1d : 21,000	Sect Glass : Glass 2	
Length : 7,000	Major Hx1s : 0,000 degrees counterclockwise from local 3	
100 : 7,000		
Area - 0 015	SMajor - 0.002	
IMajor : 2.517E-04	Shipor : 5,7895-84	
IMinor : 8,563E-05	ZMajor: 0.002 E : 210000000.00	
Ixy : 0,000	ZMinor : 8,700E-04 Fy : 355000,000	
STRESS CHECK FORCES &	• MOMENTS	
Location	P M33 M22 U2 U3 T	
7,000	8,888 -328,367 8,888 274,569 8,888 -4,358E-85	
PMM DEMAND/CAPACITY R	ATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Limit Check	
(6.62)	0,677 = 0,000 + 0,677 + 0,000 1,000 0K	
HATHE FURGE DESIGN	Nod No Dd Ntt Dd Ntt-22 Dd Nt522 Dd	
	neu nc,ku nc,ku nu,ku nuss,ku nuzz,ku	
Avial	roce capacity capacity najor ninor 8 888 2866 528	
notat	0,000 200,220 1000,000 01,23,001 2000,220	
MOMENT DESIGN		
	Med Mc,Rd Mv,Rd Mb,Rd	
	Moment Capacity Capacity Capacity	
Major Moment -	329,867 693,177 693,177 693,177	
Minor Moment	0,000 280,//3 280,//3	

4.1.5 Διαδοκίδες ΙΡΕ240

Τοποθετήθηκε διατομή IPE 240 η οποία ελέγχεται σε οριακή κατάσταση αστοχίας και (σε επόμενη ενότητα) σε οριακή κατάσταση λειτουργικότητας.

Η διαδοκίδα είναι καμπτόμενη με ομοιόμορφα κατανεμημένο κατακόρυφο φορτίο (σκυρόδεμα και χαλυβδόφυλλο) η οποία λειτουργεί σαν αμφιέρειστη δοκός (Σχήμα 4.2)

Σχήμα 4.3: Στατικό μοντέλο διαδοκίδας

Μόνιμα φορτία: g=3,5kN/m²

Κινητά φορτία: q=5kN/m²

Ζώνη επιρροής φορτίου: b=1,5m

Σχήμα 4.4: Διαγράμματα εντατικών μεγεθών δοκού

 $q_{Ed} = (1,35 \cdot g + 1,50 \cdot q) \cdot b = (1,35 \cdot 3,5kN / m^2 + 1,50 \cdot 5kN / m^2) \cdot 1,5m = 18,338kN / m$

Έλεγχος σε μονοαξονική κάμψη διατομής κατηγορίας 1 σε καθαρή κάμψη

Εξωτερικό μέγεθος: $M_{Ed} = \frac{q_{Ed}l^2}{8} = \frac{18,338kN/m\cdot(7m)^2}{8} = 112,32kNm$

Avtoχή:
$$M_{pl,Rd} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{366,6cm^3 \cdot 35,5kN/cm^2}{1,00} = 13014,3kNcm = 130,143kNm$$

Έλεγχος: $M_{pl,Rd} = 130,143 kNm \ge M_{Ed} = 112,32 kNm$

Άρα, επαρκεί η διατομή έναντι μονοαξονικής κάμψης περί τον ισχυρό άξονα.

Έλεγχος επάρκειας έναντι τέμνουσας

Εξωτερικό μέγεθος: $V_{Ed} = \frac{q_{Ed}l}{2} = \frac{18,338kN / m \cdot 7m}{2} = 64,183kN$

Αντοχή: $V_{pl,Rd} = \frac{A_{vz} \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{19,1476cm^2 \cdot 35,5kN / cm^2}{\sqrt{3}} = 392,45kN$

Έλεγχος: $V_{pl,Rd} = 392, 45kN > V_{Ed} = 64,183kN$

Άρα, επαρκεί η διατομή έναντι τέμνουσας.

Όπως προέκυψε από τους ελέγχους διατομών και μελών σε ΟΚΑ, οι διατομές επαρκούν σε ΟΚΑ.

4.2 Έλεγχος στην οριακή κατάσταση λειτουργικότητας

Η οριακή κατάσταση λειτουργικότητας, η οποία συνδέεται με την κανονική χρήση και ανθεκτικότητα, έχει ως βασικό κριτήριο τον έλεγχο των μετατοπίσεων της κατασκευής ώστε να μην υπερβαίνουν κάποια όρια, σύμφωνα με τα οποία ο χρήστης να αισθάνεται ασφάλεια κάτω από κανονικές συνθήκες χρήσης. Τόσο οι μετατοπίσεις όσο και οι ταλαντώσεις σχετίζονται περισσότερο με τη δυσκαμψία παρά με την αντοχή του φορέα. Επειδή αναφέρονται στη συμπεριφορά του φορέα υπό συνθήκες φορτίσεων λειτουργίας, ο έλεγχος γίνεται με τους συνδυασμούς λειτουργικότητας (LEIT).

Ο σχεδιασμός περιλαμβάνει προσδιορισμό βελών και σύγκρισή τους με τα επιτρεπόμενα όρια, τα οποία εξαρτόνται από το είδος των φερόντων και μη φερόντων στοιχείων. Για παράδειγμα, τα όρια βελών για στέγες δεν είναι τόσο αυστηρά όσο για δάπεδα. Το συνολικό βέλος δmax αποτελείται από επιμέρους συνιστώσες, ως εξής:

 $\delta_{max} = \delta_1 + \delta_2 - \delta_0$

Όπου

δ1 βέλος λόγω μόνιμων φορτίων

δ2 βέλος λόγω μεταβλητών φορτίων

 δ_0 το αρχικό αντιβέλος (αν υπάρχει) στην αφόρτιστη κατάσταση

Σχήμα 4.5: Βέλη κάμψης

Οι οριακές τιμές των κατακόρυφων και οριζόντιων μετακινήσεων και τν δυναμικών επιρροών καθορίζονται στο Εθνικό Προσάρτημα του ΕΝ1993-1-1, ως εξής:

1100000000000000000000000000000000000	Πίνακας	4.13: °C	ρια κατακό	ρυφων	μελών
---------------------------------------	---------	----------	------------	-------	-------

	δmax	δ2
Μη βατές στέγες	L/200	L/250
Πατώματα και βατές στέγες	L/250	L/300

Ελέγχουμε τα ίδια μέλη που ελέγξαμε σε οριακή κατάσταση αστοχίας στις αντίστοιχες οριακές καταστάσεις σε λειτουργικότητα (υπό συνθήκες φορτίσεων λειτουργίας με τους συνδυασμούς λειτουργικότητας OKL):

Κύρια δοκός διατομής HEB360

Diagrams for Frame Object D42 (HE360B)	
Case SLS3a Items Major (V2 and M3) Single valued Itemd Jt: 176 0.000000 m (0.00000 m) O00000 m (0.00000 m) J-End: Jt: 225 0.000000 m (6.00000 m) Jt: 225	Display Options Scroll for Values Show Max Location J,00000 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN, Concentrated Mo	ments in KN-m) Dist Load (2-dir) 60,92 KN/m at 3,00000 m Positive in -2 direction
Resultant Shear	Shear V2 10,697 KN at 3,00000 m
Resultant Moment	Moment M3 97,4523 KN-m at 3,00000 m
C Absolute C Relative to Beam Minimum (Relative to Beam Ends	Deflection (2-dir) 0,002505 m at 3,00000 m Positive in -2 direction
Reset to Initial Units Done	Units KN, m, C 💌

Επομένως δmax=0,002505<L/250=6/250=0,024

Δευτερεύουσα δοκός διατομής HEB300

Diagrams for Frame Object	E8 (HE300B)
Case SLS1 Items Major (V2 and M3) Single valued J-End:	Jt: 73 Display Options Jt: 73 © Scroll for Values 0.000000 m © Show Max J1: 78 Location 0.000000 m Location 0.000000 m 3.50000 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN	N, Concentrated Moments in KN-m)
222,24 198,65	222,64 54,50 KN/m at 3,50000 m Positive in -2 direction
Resultant Shear	CI V2
	0,057 KN at 3,50000 m
- Resultant Moment	
	Moment M3 111.3798 KN-m at 3,50000 m
Deflections	
C. Abadata C. Balaina b Barry Miringan C. Bala	Deflection (2-dir) 0,006328 m at 3,50000 m Positive in -2 direction tive to Beam Ends
C Absolute C nelative to beam winimum (* nela	

Επομένως δmax=0,006328<L/250=7/250=0,028

4.3 Περιορισμός βλαβών

Η απαίτηση περιορισμού βλαβών αποτελεί θεμελιώδη αρχή που πρέπει να καλύπτεται με ικανοποιητική αξιοπιστία για φορείς σε σεισμικές περιοχές. Σύμφωνα με την παραπάνω απαίτηση, ο φορέας σχεδιάζεται και κατασκευάζεται για να αναλαμβάνει σεισμική δράση με μεγαλύτερη πιθανότητα εμφάνισης από τη σεισμική δράση σχεδιασμού, χωρίς την εμφάνιση βλαβών. Έτσι σύμφωνα με τον ΕΑΚ2000 (4.2.2) σε κτίρια με οργανισμό πλήρωσης από τοιχωποιία αλλά και στην περίπτωση που τα χωρίσματα είναι από μεταλλικό σκελετό θα ελέγχεται ότι η γωνιακή παραμόρφωση, σε όλους τους περιμετρικούς τοίχους, λαμβανομένης υπόψη και της σχετικής στροφής. Οι μέγιστες γωνιακές παραμορφώσεις των ορόφων για να μη σπάσουν τα διαχωριστικά είναι:

- 5‰ για ευαίσθητα διαχωριστικά, δηλαδή για κτίρια με μή-φέροντα στοιχεία από ψαθυρό υλικό συνδεδεμένα με το φορέα (π.χ. γυαλί, τούβλα)
- 7‰ για μη ευαίσθητα διαχωριστικά, δηλαδή για κτίρια με πλάστιμα μή-φέροντα στοιχεία (π.χ. πανέλα)

Στο κτίριό μας έγινε ο έλεγχος των γωνιακών παραμορφώσεων για τον δυσμενέστερο συνδυασμό, ο οποίος είναι ο σεισμικός (ULS12) και τα αποτελέσματα φαίνονται παρακάτω:

Γωνιακές παραμορφώσεις										
Όροφος	Υψος ορόφου Η	U_1	U ₁ /H	U_2	U_2/H					
4ος	4	0,0055	0,001375	0,000000000165	4,125*10 ⁻¹²					
3ος	4	0,0048	0,0012	0,000000000403	1,0075*10 ⁻¹¹					
2ος	4	0,0039	0,000975	0,0000000007495	1,87375*10 ⁻¹¹					
1ος	4	0,0027	0,000675	0,0000000008173	2,04325*10 ⁻¹¹					
ισόγειο	5	0.0014	0,00028	0,00000000047	9,4*10 ⁻¹²					

Παρατηρούμε ότι όλες οι γωνιακές παραμορφώσεις είναι μικρότερες από τις μέγιστες τιμές. Άρα μπορεί να τοποθετηθεί οποιοδήποτε είδος διαχωριστικού χωρίς πρόβλημα.

4.4 Έλεγχος σύμμικτης πλάκας

Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεμα. Τα πλεονεκτήματα από τη χρήση τους συνοψίζοται στα παρακάτω:

- Απαιτούνται γενικώς μικρότεροι χρόνοι κατασκευής.
- Αποφεύγεται η χρήση ξυλοτύπου.
- Επιτυγχάνεται η γεφύρωση μεγαλύτερων ανοιγμάτων με αντίστοιχη μείωση των μεταλλικών διαδοκίδων.

Σχήμα 4.6: Σύμμικτη πλάκα

Μελέτη σύμμικτων πλακών

Στα μεταλλικά κτίρια, οι πλάκες έχουν ποικίλους ρόλους:

- Λειτουργία ως στοιχεία πλάκας προς παραλαβή και μεταφορά των κατακόρυφων φορτίων στις δοκούς.
- Λειτουργία ως πέλμα των σύμμικτων δοκών, μέσω της διατμητικής σύνδεσής τους με τη σιδηροδοκό.
- Λειτουργία ως διαφράγματα προς μεταφορά εντός του επιπέδου τους οριζόντιων φορτίων στο σύστημα που εξασφαλίζει τη πλευρική ευστάθεια του κτιρίου.

Η μελέτη και ο σχεδιασμός των σύμμικτων πλακών, σύμφωνα με τις διατάξεις του Ευρωκώδικα 4, περιλαμβάνει δύο στάδια, τη «φάση κατασκευής» και τη «φάση λειτουργίας». Κατά τη φάση κατασκευής, δηλαδή πριν τη σκλήρυνση του σκυροδέματος, επιδιώκεται το προβλεπόμενο στατικό σύστημα να έχει την ικανότητα παραλαβής της έντασης που δημιουργεί το νωπό σκυρόδεμα και τα λοιπά φορτία διάστρωσης. Ο φορέας παραλαβής της προκαλούμενης έντασης είναι το γυμνό χαλυβδόφυλλο με τις στηρίξεις, που στην ουσία είναι ο μεταλλότυπος της πλάκας. Μετά την πήξη του σκυροδέματος, ο σχεδιασμός αφορά τη φάση λειτουργίας, όπου χαλυβδόφυλλο και σκυρόδεμα δρουν σύμμικτα ως ενιαία πλάκα. Η ένταση που προκαλούν τα φορτία που επιβάλλονται στη πλάκα κατά τη διάρκεια ζωής του έργου παραλαμβάνονται σε αυτή τη φάση από τη σύμμικτη δράση των δύο υλικών. Φάση κατασκευής

Στη φάση κατασκευής ο σχεδιασμός γίνεται με βάση τις οριακές καταστάσεις αστοχίας και λειτουργικότητας. Ειδικότερα ελέγχεται η δυνατότητα παραλαβής της ροπής κάμψης που προκαλούν τα δρώντα φορτία από το χαλυβδόφυλλο με το δεδομένο στατικό σύστημα. Η οριακή κατάσταση αντοχής διεξάγεται σύμφωνα με τις διατάξεις του Ευρωκώδικα 3 που αφορούν τις λεπτότοιχες διατομές ψυχρής διαμόρφωσης (Μέρος 1.3). Στην περίπτωση που για δεδομένο πάχος χαλυβδόφυλλου ο έλεγχος δεν ικανοποιείται, προβλέπονται ενδιάμεσες στηρίξεις στο χαλυβδόφυλλο. Επίσης θα πρέπει τα βέλη κάμψης που δημιουργούνται να είναι εντός των ορίων που καθορίζονται από τον Ευρωκώδικα 4.

Φάση λειτουργίας

Στη φάση λειτουργίας διεξάγονται έλεγχοι που αφορούν την ικανότητα παραλαβής της έντασης της πλάκας έναντι αρνητικής και θετικής ροπής κάμψης καθώς και έναντι κατακόρυφης και διαμήκους διάτμησης. Επίσης ελέγχονται οι παραμορφώσεις της σύμμικτης πλάκας οι οποίες θα πρέπει να είναι συμβατές με προκαθορισμένα όρια. Ο παραπάνω σχεδιασμός έναντι των οριακών καταστάσεων αστοχίας έχει ως σκοπό την αποτροπή των μορφών αστοχίας που περιγράφονται παρακάτω.

Μορφές αστοχίας σύμμικτων πλακών

Οι σύμμικτες πλάκες δύναται να αστοχήσουν με μία από τις παρακάτω μορφές αστοχίας:

- Καμπτική Αστοχία (κρίσιμη διατομή Ι)
- Διαμήκης Διατμητική Αστοχία (κρίσιμη διατομή ΙΙ)
- Κατακόρυφη Διατμητική Αστοχία (κρίσιμη διατομή ΙΙΙ)

Σχήμα 4.7: Μορφές αστοχίας σύμμικτων πλακών

<u>Καμπτική Αστοχία</u>

Η καμπτική μορφή αστοχίας επιτυγχάνεται μόνο όταν είναι εξασφαλισμένη η πλήρης διατμητική σύνδεση μεταξύ του χαλυβδόφυλλου και του σκυροδέματος. Σ' αυτή την περίπτωση κρίσιμη είναι η διατομή στο άνοιγμα (διατομή Ι) καθ' ύψος της οποίας εκδηλώνονται κατακόρυφες ρωγμές.

<u>Αστοχία σε διαμήκη διάτμηση</u>

Όταν οι δυνάμεις διαμήκους διάτμησης που εμφανίζονται στη διεπιφάνεια σκυροδέματοςχαλυβδόφυλλου, δεν παραλαμβάνονται επαρκώς, τότε η διατομή στο άνοιγμα της πλάκας (διατομή Ι) παύει να είναι κρίσιμη. Αντιθέτως κρίσιμη είναι η οριζόντια διατομή κατά μήκος του διατμητικού μήκους LS σε μια από δύο τις στηρίξεις (διατομή ΙΙ) στην οποία εμφανίζεται σχετική ολίσθηση μεταξύ χαλυβδόφυλλου και σκυροδέματος. Προφανώς η αστοχία σε αυτή την περίπτωση επέρχεται για φορτίο μικρότερο αυτού για το οποίο επέρχεται καμπτική αστοχία.

Αστοχία σε κατακόρυφη διάτμηση (τέμνουσα)

Η κατακόρυφη διατμητική αστοχία είναι καθοριστική σε σύμμικτες πλάκες με μεγάλο ύψος, μικρό άνοιγμα και σχετικά μεγάλα φορτία. Κρίσιμη διατομή είναι η διατομή ΙΙΙ.

Σημαντικό ρόλο στις σύμμικτες πλάκες όσον αφορά τη συμπεριφορά τους και τις μορφές αστοχίας κατέχει το χαλυβδόφυλλο, διότι είναι αυτό το οποίο καθορίζει το είδος της διατμητικής σύνδεσης με το σκυρόδεμα. Ο προσδιορισμός της αντοχής της σύμμικτης πλάκας έναντι διαμήκους διάτμησης σύμφωνα με τον Ευρωκώδικα 4 εξαρτάται από τις χαρακτηριστικές παραμέτρους m,k, οι οποίες καθορίζονται μετά από κατάλληλη πειραματική διαδικασία.

Η πειραματική διαδικασία είαι συγκεκριμένη και περιγράφεται αναλυτικά στον Ευρωκώδικα 4. Τα δοκίμια είναι σύμμικτες πλάκες με διαστάσεις που προκύπτουν από το Σχήμα 4.45.

Σχήμα 4.8: Πειραματική διάταξη για τον υπολογισμό των συντελεστών m,k

Η αμφιέρειστη πλάκα φορτίζεται με δύο συγκεντρωμένα φορτία σε ίση απόσταση από τις στηρίξεις ούτως ώστε το διατμητικό άνοιγμα του φορέα να είναι LS=L/4. Διεξάγονται δύο σειρές πειραμάτων (A, B), κάθε μία από τις οποίες περιλαμβάνει τρία δοκίμια. Στη σειρά A τα δοκίμια έχουν μεγάλο διατμητικό άνοιγμα ενώ στη σειρά B μικρό διατμητικό άνοιγμα. Με βάση τα αποτελέσματα των πειραμάτων προσδιορίζεται η ευθεία από την οποία υπολογίζονται οι χαρακτηριστικές παράμετροι και m και k (Σχήμα 4.46).

Σχήμα 4.9: Πειραματική διάταξη για τον υπολογισμό m,k

Οι τιμές υπολογίστηκαν από το διάγραμμα του Σχήματος 4.47.

Οι συντελεστές αυτοί ισχύουν:

- ✓ Για πάχη πλάκας ίσα ή μικρότερα από αυτά των δοκιμών (d≤20cm)
- ✓ Για πάχη χαλυβδόφυλλων ίσα ή μεγαλύτερα από αυτά των δοκιμών (t≥0,75mm)
- ✓ Για σκυρόδεμα με fck≥20MPa (C20/25 και άνω)
- ✓ Για χαλυβδόφυλλα με fy≥293MPa (πρακτικά Fe320G και άνω)

Σχήμα 4.10: Υπολογισμός των συντελεστών από τα πειραματικά αποτελέσματα

Διαστασιολόγηση σύμμικτης πλάκας στο υπό μελέτη κτίριο

Από τους πίνακες οι οποίοι έχουν συνταχθεί για διάφορα πάχη χαλυβδόφυλλου SYMDECK 73, ποιότητες σκυροδέματος και στατικά συστήματα, δίνονται οι παρακάτω δυνατότητες:

- Με δεδομένο άνοιγμα είναι εφικτή η εύρεση του πάχους της πλάκας που ικανοποιεί συγκεκριμένη απαίτηση οριακού φορτίου.
- Με δεδομένο το πάχος της πλάκας είναι εφικτός ο προσδιορισμός του ανοίγματος που ικανοποιεί συγκεκριμένη απαίτηση οριακού φορτίου.
- Με δεδομένο το πάχος της πλάκας και το μήκος του ανοίγματος είναι εφικτός ο προσδιορισμός του μέγιστου φορτίου που μπορεί να αναλάβει το σύστημα.

Παράλληλα στους πίνακες αυτούς επισημαίνεται η πιθανή ανάγκη για προσωρινή υποστήριξη του χαλυβδόφυλλου κατά τη φάση σκυροδέτησης καθώς και ο αριθμός των απαιτούμενων στηριγμάτων.

Σύμφωνα με τον παρακάτω πίνακα, ο οποίος μας δίνει τις τιμές του ωφέλιμου φορτίου που μπορεί να παραλάβει η πλάκα μας χρησιμοποιώντας το χαλυβδόφυλλο του συγκεκριμένου πάχους (t =1mm), συναρτήσει του ανοίγματος μεταξύ των διαδοκίδων μας (L = 1,5m) και του ύψους της πλάκας μας (hc = 0,13m). Επίσης, τα χαλυβδόφυλλα στη κατασκευή μας τοποθετούνται επί των δοκών με ενδιάμεσες στηρίξεις στις διαδοκίδες. Προκύπτει ότι για τα χαρακτηριστικά της πλάκας μας, το μέγιστο ωφέλιμο φορτίο που μπορούμε να εφαρμόσουμε είναι Q = 8,55kN/m². Στη δική μας κατασκευή έχουμε λάβει ωφέλιμο φορτίο ίσο προς: q = 5kN/m2 < Q = 8,55kN/m².

	Οπλισμοί στις θέσεις των Ορνπτικών ροπών																		
h _e (r	m)	(0,13		0,14		0,15		0,16		0,17		0	,18		0,19		0,2	0
ΟΠλισ	poq	Ø	8/20	¢	8/20	0	08/15		D8/15		Φ10/2	20	D 1	0/20		@10/15		@10,	/15
Πάχος πλάκας								1	Ανοιγμα	1 L(m)									
h _e (m)	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00	5,25	5,50
0,18	21,96	17,17	13,98	11,68	8,55	6,39	4,84	3,69	2,82	2,18	1,59	1,15	0,78						
0,14	23,52	18,37	14,94	12,49	9,52	7,12	5,40	4,12	8,14	2,88	1,77	1,28	0,88	0,54					
0,15	25,05	19,55	15,89	13,27	10,50	7,85	5,95	4,54	3,46	2,62	1,95	1,41	0,97	0,60					
0,16	28,56	20,72	16,82	14,04	11,48	8,58	6,51	4,96	3,79	2,87	2,14	1,55	1,06	0,65					
0,17	28,04	21,86	17,78	14,79	12,46	8,32	7,06	5,39	4,11	8,11	2,82	1,68	1,15	0,71					
0,18	29,50	22,98	18,63	15,52	13,19	10,05	7,62	5,81	4,44	3,36	2,50	1,81	1,24	0,77					
0,19	30,93	24,08	19,51	16,24	13,80	10,78	8,17	6,24	4,76	3,61	2,69	1,84	1,33	0,83					
0,20	32,34	25,16	20,37	16,95	14,39	11,51	8,73	6,66	5,08	3,85	2,87	2,08	1,43	0,88					

Μέγιστες τιμές του ωφέλιμου φορτίου (kN/m²)

Απαιτείται μια ενδιάμεση υποστύλωση Απαιτούνται δύο ενδιάμεσες υποστυλώσεις

Αναλυτικά, ο έλεγχος επάρκειας της σύμμικτης πλάκας του ημιώροφου του υπό εξέταση φορέα, έγινε με τη χρήση του προγράμματος SymDeck Designer, το οποίο είναι ένα πρόγραμμα ειδικό για την ανάλυση και διαστασιολόγηση σύμμικτων πλακών με χαλυβδόφυλλο SYMDECK73 που αναπτύχθηκε από την εταιρεία ΕΛΑΣΤΡΟΝ και κυκλοφορεί δωρεάν στο διαδίκτυο (Σχήμα 4.49). Οι κανονισμοί στους οποίους βασίζεται η λειτουργία του είναι ο Ευρωκώδικας 3 – Μέρος 1.3, ο Ευρωκώδικας 4 – Μέρος 1.1 και ο ΕΚΩΣ 2000.

Sym Deck Designer 2	- • ×
Αρχείο Βοήθεια Language	
📄 🖶 🧼 🧯 Πληροφορίες	
5.0 kN/m 5.0 kN/m 5.0 kN/m	α/α L (m) q (kN/m²) 3 1.5 5 4 1.5 5 5 - - Τδιο βάρος = 2.21 kN/m²
\square	Πρόσθετα μόνιμα = 0.35 kN/m²
Πρόβολος αριστερά L = q = Πρόβολος δεξιά L = q = Γενικά στοιχεία Φάση κατασκευής Φάση λειτουργίας Έλεγχος Πυραντοχής	$\begin{tabular}{c} \hline Σ_{χ} εδίαση φορέα \\ \hline γ_G = $ 1.35 $ γ_Q = $ 1.50 $ \end{tabular} \end{tabular}$
$t = 0.80 \forall mm \gamma_{M1} = 1.00 \qquad A_{S} = 2.513 cm^{2}/m$ $C : 25/30 \forall MPa \gamma_{C} = 1.50 \qquad \emptyset : 8 \forall mm / d = 20 \forall \ cm \checkmark$	$M^+_{Rd,S}$ $M^{Rd,S}$ $M^+_{pl.Rd}$ 22.81 kNm/m $M^{pl.Rd}$ 9.41 kNm/m $V_{pl.Rd}$ 9.41 kNm/m $W_{rd,c}$ 25.42 kN/m m = 90.83 k = 0.0144 MPa VIRA
S: 500 \checkmark MPa $\gamma_S = 1.15$ h = 0.13 m c = 0.03 m Fe: 320 \checkmark G MPa	

Σχήμα 4.12: Γραφικό περιβάλλον προγράμματος SymDeck Designer.

Τα δεδομένα εισαγωγής για την υπό μελέτη πλάκα είναι τα εξής:

Γεωμετρία φορέα

• Μήκος φατνώματος: L=1,5m

<u>Φορτία</u>

- Μόνιμα (ίδιο βάρος πλάκας) : 2,21 kN/m²
- Λοιπά μόνιμα (επικαλύψεις, μόνωση, κλπ) : 0,35 $\rm kN/m^2$
- $\Omega \varphi \epsilon \lambda_{\mu \alpha}$: 5,0 kN/m² (se óla ta vatuámata the plákae)
- Συντελεστές ασφαλείας φορτίων:
- Suntelesthz asgaleíaz monimun drásewn: $\gamma_G=1,35$
- Suntelestác asgaleíac metablytán drásewn: $\gamma_{Q} \! = 1,\! 5$

<u>Γενικά στοιχεία – Παράμετροι των υλικών</u>

- Πάχος χαλυβδόφυλλου: t = 0,80mm
- Ποιότητα χάλυβα χαλυβδόφυλλου: Fe320G
- Πάχος πλάκας: h = 0,13m
- Ποιότητα σκυροδέματος: C25/30
- Ποιότητα χάλυβα οπλισμού: S500s
- Επικάλυψη οπλισμού: c = 0,03 m
- Εμβαδόν οπλισμού: As = 2,513 cm²/m

Συντελεστές ασφαλείας υλικών

- Χάλυβας χαλυβδόφυλλου: $\gamma_{M1} = 1.10$
- Σκυροδέματος: γ_c = 1.50
- Χάλυβας οπλισμού: γ_s = 1.15

Πειραματικά προσδιορισμένοι συντελεστές

- m = 90,83Mpa
- k = 0,0144 Mpa

- Έλεγχοι στη φάση κατασκευής

Σχήμα 4.13: Έλεγχοι της σύμμικτης πλάκας κατά τη φάση κατασκευής.

i) Έλεγχος καμπτικής αντοχής

Συνδυασμός φόρτισης : $\gamma_G^*G_p + (\gamma_G^*G_c + \gamma_Q^*0.75) + \gamma_Q^*Q_{\text{sk}}$.

όπου:

- το φορτίο Qσκ. είναι ένα φορτίο 0,75 kN το οποίο εφαρμόζεται σε μία περιοχή 3m X 3m (σε κάτοψη) και λαμβάνεται υπ' όψη στους υπολογισμούς η δυσμενέστερη θέση του στον φορέα,
- το ίδιον βάρος του σκυροδέματος, Qc, μαζί με το φορτίο 0,75 kN εφαρμόζεται ή μόνο στο άνοιγμα όπου εφαρμόζεται το φορτίο σκυροδέτησης ή σε όλο τον φορέα έτσι ώστε να προκύπτει η δυσμενέστερη εντατική κατάσταση,
- Gp είναι το ίδιον βάρος χαλυβδόφυλλου.

Ο έλεγχος των ροπών κάμψης ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε καμπτική ροπή είναι: 0,23 < 1,00

ii) Έλεγχος βελών κάμψης

Φορτίο επίλυσης : g

Όρια για τον έλεγχο των βελών κάμψης: 1/180 ή 20mm

Ο έλεγχος των βελών κάμψης ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε βέλος κάμψης είναι: 0,03 < 1,00

Ικανοποιούνται όλοι οι έλεγχοι κατά τη φάση κατασκευής, οπότε δεν χρειάζεται κάποια προσωρινή στήριξη.

- Έλεγχοι στη φάση λειτουργίας

Σχήμα 4.14: Έλεγχοι της σύμμικτης πλάκας κατά τη φάση λειτουργίας.

i) Έλεγχος καμπτικής αντοχής

Συνδυασμός φόρτισης : $\gamma_G * (g + g_{post}) + \gamma_Q * q$

Ο έλεγχος των ροπών κάμψης ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε καμπτική ροπή είναι: 0,28 < 1,00

ii) Έλεγχος έναντι εγκάρσιας και διαμήκους διάτμησης

Sunduasmós jórtishs : γ_{G} * ($g + g_{\text{prosf.}}) + \gamma_{Q} * q$

Ο έλεγχος έναντι εγκάρσιας διάτμησης ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε εγκάρσια διάτμηση είναι: 0,39 < 1,00

Ο έλεγχος έναντι διαμήκους διάτμηση ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε διαμήκη διάτμηση είναι: 0,40 < 1,00

iii) Έλεγχος βελών κάμψης

Συνδυασμός φόρτισης : $g + g_{\text{prosq.}} + ~q$

Όριο για τον έλεγχο των βελών κάμψης: 1/250

Ο έλεγχος των βελών κάμψης ικανοποιείται. Ο συντελεστής εκμετάλλευσης της διατομής σε βέλος κάμψης είναι: 0,01< 1,00

4.5 Σεισμική απόκριση κατασκευής

Επιλέχθηκε ως μέθοδος «ισοδύναμης» γραμμικής ανάλυσης η Δυναμική φασματική μέθοδος. Η δυναμική φασματική μέθοδος περιλαμβάνει πλήρη ιδιομορφική ανάλυση του συστήματος και υπολογισμό της μέγιστης σεισμικής απόκρισης για κάθε ιδιομορφή ταλάντωσης. Εφαρμόζεται χωρίς περιορισμούς σε όλες τις περιπτώσεις κατασκευών. Με τη μέθοδο αυτή υπολογίζονται οι πιθανές ακραίες τιμές τυχόντος μεγέθους απόκρισης με τετραγωνική επαλληλία των ιδιομορφικών τιμών του υπόψη μεγέθους. Στη δυναμική ανάλυση προσδιορίστηκαν οι ιδιομορφές του κτιρίου με αύξουσα σειρά τιμής ιδιοσυχνότητας. Οι ιδιομορφές είναι ανεξάρτητες της φόρτισης και εξαρτώνται μόνο από το μητρώο μάζας [m] και το μητρώο ακαμψίας της κατασκευής [K]. Επειδή η χρήση των φασμάτων δίνει μέγιστες τιμές, οι οποίες προφανώς δεν συμβαίνουν ταυτόχρονα και αφετέρου δεν έχουν κατ' ανάγκη το ίδιο πρόσημο, οι συμμετοχές των ιδομορφών σε κάποιο μέγεθος Χ συνδυάζονται με έναν εκ των παρακάτω τρόπων:

- SRSS: Square Root of the Sum of Squares
- CQC: Complete Quadratic Combination

Στο πρόγραμμα ορίστηκαν οι συνιστώσες ΕΧ, ΕΥ και ΕΖ και εφαρμόστηκε ο κανόνας της απλής τετραγωνικής επαλληλίας, γνωστός και ως SRSS. Κατά την επίλυση και διαστασιολόγηση του φορέα ορίστηκαν 25 ιδιομορφές έτσι ώστε το άθροισμα των δρώσων ιδιομορφικών μαζών να φτάσει στο 90% της συνολικής ταλαντούμενης μάζας του συστήματος. Συνολική ταλαντούμενη μάζα είναι η μάζα άνωθεν της διεπιφάνειας κατασκευής- εδάφους, η οποία υφίσταται ελεύθερη μετατόπιση κατά την θεωρούμενη διεύθυνση υπολογισμού. Δρώσα ιδιομορφική μάζα είναι το μέρος της συνολικής ταλαντούμενης μάζας που ενεργοποιείται για κάθε ιδιομορφή ταλάντωσης. Παρουσιάζονται τα αποτελέσματα των ιδιομορφών:

	Modal Participating Mass Ratios												
File \	File View Format-Filter-Sort Select Options												
Units: 7	As Noted				Мо	dal Participating N	Aass Ratios			-			
		01 T	0. N					<u> </u>	0 184	_			
	UutputLase Text	Steplype	StepNum	Period	UX Unitless	UY	U2 Unitless	SumUX	SumUY	4			
	MODAL	Mode	1	1.001674	0.67135	0	1.023E-19	0.67135	0				
	MODAL	Mode	2	0,985882	0	0,67465	1,254E-18	0,67135	0,67465				
	MODAL	Mode	3	0,659745	0	0	3,205E-18	0,67135	0,67465				
	MODAL	Mode	4	0,320671	0,08756	3,132E-18	2,794E-16	0,75892	0,67465				
	MODAL	Mode	5	0,313025	7,326E-19	0,08998	1,155E-18	0,75892	0,76463				
	MODAL	Mode	6	0,211195	1,021E-18	6,753E-16	6,936E-14	0,75892	0,76463				
	MODAL	Mode	7	0,18106	0,01895	8,41E-16	9,892E-13	0,77787	0,76463	i I			
	MODAL	Mode	8	0,174963	4,193E-16	0,01779	7,785E-13	0,77787	0,78242	i			
	MODAL	Mode	9	0,128354	0,00614	1,77E-15	4,091E-13	0,78401	0,78242	i I			
	MODAL	Mode	10	0,125069	4,644E-16	3,437E-17	0,44422	0,78401	0,78242				
	MODAL	Mode	11	0,124828	1,184E-17	0,00542	3,592E-16	0,78401	0,78784				
	MODAL	Mode	12	0,124468	0,0000001835	1,991E-19	1,239E-13	0,78401	0,78784				
	MODAL	Mode	13	0,123544	3,519E-15	5,484E-15	0,03546	0,78401	0,78784				
	MODAL	Mode	14	0,122484	0,0000002045	5,456E-15	1,095E-13	0,78401	0,78784				
	MODAL	Mode	15	0,122088	1,316E-16	0,000007211	5,867E-14	0,78401	0,78785				
	MODAL	Mode	16	0,121631	1,776E-15	2,559E-14	0,00295	0,78401	0,78785				
	MODAL	Mode	17	0,121536	1,584E-17	2,108E-14	2,044E-14	0,78401	0,78785				
	MODAL	Mode	18	0,120662	1,163E-16	0,0000007268	2,28E-14	0,78401	0,78785				
	MODAL	Mode	19	0,119691	5,043E-14	8,081E-14	4,174E-15	0,78401	0,78785				
L .	MODAL	Mode	20	0,119083	4,701E-15	7,046E-15	4,906E-16	0,78401	0,78785	-			
									•				
Record		1 🕨 M of	85					Add Tables	Done]			

Πίνακας 4.14: Χαρακτηριστικά ιδιομορφών

	Modal Participating Mass Ratios											
File V	File View Format-Filter-Sort Select Options											
Linits: A	As Noted				Mo	dal Participating M	Aass Batios			T		
j												
	OutputCase	StepType	StepNum	Period	UX Unitional	UY	UZ	SumUX	SumUY			
		Hede	Unidess	0.020645	A 707E 10	1 0000007221	C C10E 1E	0.70545	0 000CE			
	MODAL	Mode	07	0,020040	4,737E-10 2,107E-17	000000007331	0,013E-13	0,76040	0,33360			
	MODAL	Mode	00	0,020640	3,107E-17	000000001110	2 0005 15	0,76040	0,33360			
	MODAL	Mode	70	0,020633	7.0045.10	1 2515 12	3,003E-10	0,70046	0,33360			
	MODAL	Mode	70	0,020633	7,004E-10	0.1005-14	0,00233	0,76046	0,33360			
	MODAL	Mode	71	0,028469	4 505 10	0,102E-14	3,643E-16	0,78364	0,33360			
	MODAL	Mode	72	0,028468	4,08E-18	E 000E 10	2,276E-14	0,78364	0,99960			
	MODAL	Mode	73	0,028459	8,922E-18	5,889E-13	0,01491	0,78364	0,99960			
	MUDAL	Mode	/4	0,028459	4,986E-18	0,00005652	2,629E-15	0,78564	0,99966			
	MUDAL	Mode	/5	0,02808	0,00049	00000001546	1,173E-14	0,78613	0,99966			
	MUDAL	Mode	/6	0,028079	8,642E-18	9,309E-13	0,00668	0,78613	0,99966			
	MUDAL	Mode		0,028071	8,123E-17	0,00004779	4,299E-14	0,78613	0,99966			
	MODAL	Mode	78	0,028067	2,39E-16	4,933E-13	7,145E-15	0,78613	0,99966			
	MODAL	Mode	79	0,028021	0,00857	000000005618	4,559E-15	0,7947	0,99966			
	MODAL	Mode	80	0,028007	1,589E-20	000000000375	0,00015	0,7947	0,99966			
	MODAL	Mode	81	0,028007	7,26E-18	0,00001106	6,007E-16	0,7947	0,99967			
	MODAL	Mode	82	0,027997	1,005E-16	000000002259	9,697E-16	0,7947	0,99967			
	MODAL	Mode	83	0,027356	0,20474	000000001561	4,774E-16	0,99944	0,99967			
	MODAL	Mode	84	0,026528	8,241E-17	7,098E-13	0,02349	0,99944	0,99967			
	MODAL	Mode	85	0,026515	0,00001056	2,321E-13	1,522E-15	0,99945	0,99967			
	1								•	-		
	-											
Record		1 🕨 附 of	85					Add Tables	Done]		

Παρακάτω ακολουθούν οι εικόνες των 3 πρώτων ιδιομορφών (σε κάθε ιδιομορφή παρατίθεται το τρισδιάστατο σχήμα του κτηρίου καθώς και οι 2 όψεις)

- Image: Deformed Shape (MODAL) Mode 1 T = 1,00167; f = 0,99833
- 1η Ιδιομορφή (T=1,00167sec)

Σχήμα 4.15: Παραμόρφωση τρισδιάστατου μοντέλου κατά την 1η ιδιομορφή

Σχήμα 4.16: Παραμόρφωση όψης άξονα χ κατά την 1η ιδιομορφή

Σχήμα 4.17: Παραμόρφωση όψης άξονα Α κατά την 1η ιδιομορφή

➤ 2η Ιδιομορφή (T=0,98588 sec)

Σχήμα 4.18: Παραμόρφωση τρισδιάστατου μοντέλου κατά την 2η ιδιομορφή

Σχήμα 4.19: Παραμόρφωση όψης άξονα 1 κατά την 2η ιδιομορφή

Σχήμα 4.20: Παραμόρφωση όψης άξονα Α κατά την 2η ιδιομορφή

➢ 3η Ιδιομορφή (T= 0,65975 sec)

Σχήμα 4.21: Παραμόρφωση τρισδιάστατου μοντέλου κατά την 3η ιδιομορφή

Σχήμα 4.22: Παραμόρφωση όψης άξονα 1 κατά την 3η ιδιομορφή

Σχήμα 4.23: Παραμόρφωση όψης άξονα Α κατά την 3η ιδιομορφή

4.6 Έλεγχος κοχλιωτής σύνδεσης δοκού – υποστυλώματος

Σχήμα 4.24: Κοχλιωτός κόμβος δοκού υποστυλώματος

Θα ελέγξουμε την σύνδεση του Υποστυλώματος διατομής 2HEB360 με την κύρια δοκό διατομής HEB360 με τα εξής χαρακτηριστικά:

Υποστύλωμα	Δοκός
h _c =360,00mm	h _b = 360,00mm
b _{fc} = 300,00mm	b _{fb} = 300,00mm
t _{wc} = 12,50mm	t _{wb} = 12,50mm
t _{fc} = 22,50mm	t _{fb} = 22,50mm
A=347cm ²	A=181cm ²
d= 261mm	d=261 mm
$W_{pl,y} = 3613 cm^3$	$W_{pl,y} = 2683 cm^3$

Η πορεία προσδιορισμού της ροπής σχεδιασμού της κοχλιωτής σύνδεσης σύμφωνα με τον Ευρωκώδικα 3 (μέρος 1.8) είναι η εξής :

Προσδιορισμός της αντοχής των βασικών συνιστωσών της σύνδεσης:

- του κορμού του υποστυλώματος σε διάτμηση και θλίψη
- του πέλματος και κορμού της δοκού σε θλίψη

Προσδιορισμός των δυνάμεων των κοχλιών, οι οποιές υπολογίζονται με βάση:

- την αντοχή του υποστυλώματος σε κάμψη
- την αντοχή της μετωπικής πλάκας σε κάμψη
- την εφελκυστική αντοχή των κοχλιών

Κορμός του υποστυλώματος σε διάτμηση

Η λυγηρότητα του κορμού του υποστυλώματος ικανοποιεί τον περιορισμό:

$$\frac{d}{t_w} < 69\varepsilon$$

Έχουμε
$$\frac{d}{t_w} = \frac{261}{12,5} = 20,88 < 69\varepsilon = 56,166$$

Όπου
$$\varepsilon = \sqrt{\frac{235}{f_y}} = 0.814$$

Σε ένα μονόπλευρο κόμβο η αντοχή σχεδιασμού σε διάτμηση του μη ενισχυμένου κορμού προσδιορίζεται από τη σχέση:

$$V_{wp,Rd} = \frac{0.9f_{y,wc}A_{vc}}{\sqrt{3}\gamma_{M0}}$$

Όπου

Avc: η επιφάνεια διάτμησης του υποστυλώματος

 $F_{y,wc}$: το όριο διαρροής

γмо: 1,0

$$A_{vc} = A - 2bt_f + (t_w + 2r) t_f = 181 - 2*30*2,25 + (1,25 + 2*2,7)*2,25 = 60,96cm^2$$

Επομένως η αντοχή σε διάτμηση είναι:

$$V_{wp,Rd} = \frac{0,9 \cdot 35,5 \cdot 60,96}{\sqrt{3} \cdot 1,0} = 1124,48kN$$

Κορμός υποστυλώματος σε θλίψη

Η αντοχή σχεδιασμού σε εγκάρσια θλίψη του μη ενισχυμένου κορμού υποστυλώματος προσδιορίζεται από τις σχέσεις :

$$F_{c,wc,Rd} = \frac{\omega \times k_{wc} \times b_{eff,c,wc} \times t_{wc} \times f_{y,wc}}{\gamma_{M0}} \text{ for } F_{c,wc,Rd} \leq \frac{\omega \times k_{wc} \times \rho \times b_{eff,c,wc} \times t_{wc} \times f_{y,wc}}{\gamma_{M1}}$$

όπου ω: μειωτικός συντελεστής για την αλληλεπίδραση με διάτμηση που εξατράται από την παράμετρο μετασχηματισμού β

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1, 3\left(\frac{t_{wc} \times b_{eff,c,wc}}{A_{vc}}\right)^2}}$$

 k_{wc} : μειωτικός συντελεστής $\ k_{wc}{=}1{,}0$

ρ : μειωτικός συντελεστής για το λυγισμό του ελάσματος που εξαρτάται από τη λυγηρότητα του ελάσματος

$$b_{eff,c,wc} = t_{fb} + 2\sqrt{2}a_p + s_p + 5(t_{fc} + r_c) = 2,25 + 2\sqrt{2} \cdot 0,6 + 2 \cdot 2,0 + 5 \cdot (2,25 + 2,7) = 32,7cm$$

Όπου $s_p=2t_p$

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1, 3\left(\frac{1, 25 \times 32, 7}{60, 96}\right)^2}} = 0,794$$

Ο μειωτικός συντελεστής ρ για την κύρτωση του υποστυλώματος υπολογίζεται ως εξής:

•
$$\Gamma_{\text{LC}} \overline{\lambda p} \leq 0,72 \rightarrow \rho = 1,0$$

• $\Gamma \iota \alpha \ \overline{\lambda p} > 0,72 \rightarrow \rho = \left(\overline{\lambda p} - 0,2\right) / \overline{\lambda p}^2$

όπου $\overline{\lambda p}$ είναι η λυγηρότητα του κορμού του υποστυλώματος και υπολογίζεται ως εξής :

$$\overline{\lambda p} = 0.932 \sqrt{\frac{b_{eff,c,wc} \cdot d_{wc} \cdot f_{y,wc}}{E \cdot t_{wc}^{2}}} = 0.932 \sqrt{\frac{32,7 \cdot 26,1 \cdot 35,5}{2,1 \cdot 10^{4} \cdot 1,25^{2}}} = 0.896 > 0.72$$

$$\rho = \left(\overline{\lambda p} - 0.2\right) / \overline{\lambda p}^{2} = \left(0.896 - 0.2\right) / 0.896^{2} = 0.867 < 1$$

Συνεπώς η αντοχή του κορμού σε θλίψη είναι

$$F_{c,wc,Rd} = \frac{0,794 \times 1,00 \times 32,7 \times 1,25 \times 35,5}{1,00} = 1152,14kN$$

Και θα πρέπει να ισχύει επίσης

$$F_{c,wc,Rd} \le \frac{\omega \times k_{wc} \times \rho \times b_{eff,c,wc} \times t_{wc} \times f_{y,wc}}{\gamma_{M1}} = \frac{0,794 \times 1,00 \times 0,867 \times 32,7 \times 1,25 \times 35,5}{1,00} = 998,91 kN$$

 $A \rho \alpha F_{c,wc,Rd} = 998,91 \text{ kN}$

Πέλμα και κορμός δοκού σε θλίψη

Η αντοχή σχεδιασμού σε θλίψη του πέλματος δοκού και της παρακείμενης θλιβόμενης ζώνης του κορμού της, δίνεται από την επόμενη σχέση :

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}}$$

όπου :

h_b: το ύψος της συνδεόμενης δοκού

 $M_{c,\text{Rd}}$ η αντοχή σχεδιασμού σε ροπή της διατομής της δοκού

tfd: το πάχος πέλματος της συνδεόμενης δοκού

Η αντοχή σχεδιασμού σε ροπή της δοκού για διατομές κατηγορίας 1 είναι :

$$M_{c,Rd} = \frac{M_{pl,b}}{\gamma_{M0}} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{2683, 0.35, 5}{1,00} = 95246, 5kNcm = 952, 5kNm$$

Και η αντοχή σε θλίψη προκύπτει :

$$F_{c,fb,Rd} = \frac{95246,5}{36-2,25} = 2822,12kN$$

Πέλμα υποστυλώματος σε κάμψη

Άνω, 1η σειρά κοχλιών

 $e_1 = 30 \text{ mm}$ (κατακόρυφη απόσταση από το άνω άκρο του πέλματος)

e= 40 mm (οριζόντια απόσταση του κοχλία από το άκρο της πλάκας)

$$p=75 \text{ mm}$$

$$m = \frac{w - t_{wc}}{2} - 0, 8r_c = \frac{200 - 12, 5}{2} - 0, 8 \cdot 27 = 72, 15mm$$
$$n = \min\{e_{\min}; 1, 25 \cdot m\} = \{40; 1, 25 \cdot 72, 15\} = 40mm$$

Ενεργό μήκος για μεμονωμένη σειρά κοχλιών

Κυκλικές μορφές αστοχίας

$$l_{eff,cp} = \min\{2\pi m \; ; \; \pi m + 2e_1\} = \min\{2\pi \cdot 72, 15 \; ; \; \pi \cdot 72, 15 + 2 \cdot 30\} \Longrightarrow$$
$$l_{eff,cp} = \min\{453, 33 \; ; \; 286, 67\} = 286, 67mm$$

Μη κυκλικές μορφές αστοχίας

$$\begin{split} l_{eff,nc} &= \min\left\{4m + 1,25e \quad ; \quad 2m + 0,625e + e_1\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{4\cdot72,15 + 1,25\cdot40 \quad ; \quad 2\cdot72,15 + 0,625\cdot40 + 30\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{338,6 \quad ; \quad 199,3\right\} = 199,3mm \end{split}$$

Μηχανισμός 1

 $\ell_{eff,1} = \ell_{eff,nc} = 199,3 \text{ mm}$ αλλά θα πρέπει $\ell_{eff,1} \le \ell_{eff,cp} = 286,67 \text{ mm}$

άρα $\ell_{eff,1} = 199,30$ mm

Η ροπή αντοχής για τον μηχανισμό 1 είναι:

$$M_{pl,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_f^2 \cdot f_y}{\gamma_{M0}} = 0,25 \frac{19,93 \cdot 2,25^2 \cdot 35,5}{1,00} = 895,449 kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 1 (πλήρης διαρροή του πέλματος) είναι:

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4 \cdot 895,449}{7,215} = 496,44kN$$

Μηχανισμός 2

 $\ell_{eff,2} = \ell_{eff,nc} = 199,3 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 2 είναι :

$$M_{pl,2,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 0,25 \frac{19,93 \cdot 2,25^{2} \cdot 35,5}{1,00} = 895,449 kNcm$$

Η αντοχή ενός κοχλία σε εφελκυσμό

$$F_{t,Rd} = \frac{k_2 \cdot A_s \cdot f_{ub}}{\gamma_{M2}} = \frac{0,90 \cdot 2,45 \cdot 80}{1,25} = 141,12kN$$

όπου As η ενεργός διατομή του κοχλία για M20 και $k_2 = 0.90$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 2 (αστοχία κοχλία με διαρροή του πέλματος) είναι:

$$F_{T,2,Rd} = \frac{4M_{pl,2,Rd} + n\sum_{t,Rd}}{m+n} = \frac{4\cdot895,449 + 4\cdot(2\cdot141,12)}{7,215+4} = 420,04kN$$

Μηχανισμός 3

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 3 (Αστοχία κοχλία) είναι:

 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 2 \times 141,12 \text{ kN} = 282,24 \text{ kN}$

Αντοχή του βραχέος Τ του υποστυλώματος της πρώτης σειράς κοχλιών είναι:

 $F_{T,Rd}=min\{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}\}=min\{496,44 \text{ kN}; 420,04 \text{ kN}; 282,24 \text{ kN}\}=282,24 \text{ kN}\}$

Ενδιάμεση, 2η σειρά κοχλιών

Ενεργό μήκος (μεμονωμένοι κοχλίες)

Κυκλικές μορφές αστοχίας: $l_{eff,cp} = 2\pi m = 453,33mm$

Μη κυκλικές μορφές αστοχίας : $l_{eff,nc} = 4 \times m + 1,25 \times e = 4 \times 72,15 + 1,25 \times 40 = 338,6 mm$

Μηχανισμός 1

 $\ell_{eff,1} = \ell_{eff,nc} = 338,6 \text{ mm}$ αλλά θα πρέπει $\ell_{eff,1} \le \ell_{eff,cp} = 453,33 \text{ mm}$

άρα $\ell_{eff,1}$ = 338,6 mm

Η ροπή αντοχής για τον μηχανισμό 1 είναι:

$$M_{pl,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 0,25 \frac{33,86 \cdot 2,25^{2} \cdot 35,5}{1,00} = 1521,32kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 1 (πλήρης διαρροή του πέλματος) είναι:

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4 \cdot 1521,32}{7,215} = 843,42kN$$

Μηχανισμός 2

 $\ell_{eff,2} = \ell_{eff,nc} = 338,6 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 2 είναι :

$$M_{pl,2,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_f^2 \cdot f_y}{\gamma_{M0}} = 1521,32kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 2 (αστοχία κοχλία με διαρροή του πέλματος) είναι:

$$F_{T,2,Rd} = \frac{4M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{4\cdot1521,32+4\cdot(2\cdot141,12)}{7,215+4} = 643,27kN$$

Μηχανισμός 3

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 3 (Αστοχία κοχλία) είναι:

 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 2 \times 141,12 \text{ kN} = 282,24 \text{ kN}$

Αντοχή του βραχέος Τ του υποστυλώματος της πρώτης σειράς κοχλιών είναι:

 $F_{T,Rd}=min\{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}\}=min\{843,42 \text{ kN}; 643,27 \text{ kN}; 282,24 \text{ kN}\}=282,24 \text{ kN}$

1η και 2η σειρά κοχλιών :

p = 75 mm (το κατακόρυφο συνεργαζόμενο πλάτος για την 1η σειρά κοχλιών)

p = 75/2 + 220/2 = 147,5 mm (το κατακόρυφο συνεργαζόμενο πλάτος για την 2η σειρά κοχλιών)

Ενεργό μήκος για ομάδα κοχλιών

Ακραία σειρά κοχλιών :

Κυκλικές μορφές αστοχίας

$$\begin{split} l_{eff,cp} &= \min \left\{ \pi m + p \quad ; \quad 2e_1 + p \right\} = \min \left\{ \pi \cdot 72, 15 + 75 \quad ; \quad 2 \cdot 30 + 75 \right\} \Longrightarrow \\ l_{eff,cp} &= \min \left\{ 301, 67 \quad ; \quad 135 \right\} = 135 mm \end{split}$$

Μη κυκλικές μορφές ασροχίας

$$\begin{split} l_{eff,nc} &= \min\left\{2m + 0,625e + 0,5p \quad ; \quad e_1 + 0,5p\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{2 \cdot 72,15 + 0,625 \cdot 200 + 0,5 \cdot 75 \quad ; \quad 30 + 0,5 \cdot 75\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{306,80 \quad ; \quad 67,5\right\} = 67,5mm \end{split}$$

Εσωτερική σειρά κοχλιών :

Κυκλικές μορφές αστοχίας

$$l_{eff,cp} = 2p = 2.147, 5 = 295mm$$

Μη κυκλικές μορφές αστοχίας

$$l_{eff,nc} = p = 147,5mm$$

Μηχανισμός 1

 $\Sigma\ell_{eff,1} = \Sigma\ell_{eff,nc} = 67,5mm + 147,5mm = 215mm$

 $\Sigma \ell_{eff,cp} = 135 \text{ mm} + 295 \text{ mm} = 430 \text{ mm}$ Ισχύει ότι $\Sigma \ell_{eff,nc} = 215 \text{mm} < \Sigma \ell_{eff,cp} = 430 \text{ mm}$ άρα

 $\Sigma\ell_{eff,1} = \Sigma\ell_{eff,nc} = 67,5mm + 147,5mm = 215mm$

Η ροπή αντοχής για τον μηχανισμό 1 είναι:

$$M_{pl,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_f^{2} \cdot f_y}{\gamma_{M0}} = 0,25 \frac{21,5 \cdot 2,25^2 \cdot 35,5}{1,00} = 965,99kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 1 (πλήρης διαρροή του πέλματος) είναι:

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4.965,99}{7,215} = 535,55kN$$

Μηχανισμός 2

 $\Sigma \ell_{eff,2} = \Sigma \ell_{eff,nc} = 215 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 2 είναι :

$$M_{pl,2,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_f^{2} \cdot f_y}{\gamma_{M0}} = 965,99 kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 2 (αστοχία κοχλία με διαρροή του πέλματος) είναι:

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum_{t,Rd}}{m+n} = \frac{2\cdot965,99 + 4\cdot(2\cdot141,12)}{7,215+4} = 272,93kN$$

Μηχανισμός 3

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 3 (Αστοχία κοχλία) είναι:

 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 4 \times 141,12 \text{ kN} = 564,48 \text{ kN}$

Αντοχή του βραχέος Τ του υποστυλώματος της πρώτης σειράς κοχλιών είναι:

F_{T,Rd}=min{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}}=min{535,55 kN; 272,93 kN; 564,48 kN}=272,93 kN

Μετωπική πλάκα σε κάμψη

e x =30mm (η κατακόρυφη απόσταση του κοχλία από το άνω άκρο της πλάκας)

p =75mm (η κατακόρυφη απόσταση των κοχλιών)

e=40mm (η οριζόντια απόσταση του κοχλία από το άκρο της πλάκας)

w =200mm (η οριζόντια απόσταση των κοχλιών)

bp=280mm (το πλάτος της μετωπικής πλάκας)

 $mx = 40mm - 0.8 \times 6mm \times \sqrt{2} = 33.2 mm$

(η κατακόρυφη απόσταση κοχλία – άνω πέλματος δοκού)

 $n = min\{ex; 1,25 \times mx\} = min\{30mm; 1,25 \times 33,2 mm\} = 30mm$

Άνω πρώτη σειρά κοχλιών (ακραία σειρά)

Ενεργό μήκος (μεμονωμένοι κοχλίες εκτός εφελκυομένου πέλματος δοκού)

Κυκλικές μορφές αστοχίας

$$\begin{split} l_{eff,cp} &= \min \left\{ 2\pi m_x \; ; \; \pi m_x + w; \; \pi m_x + 2e \right\} \Longrightarrow \\ l_{eff,cp} &= \min \left\{ 2\pi \cdot 33, 2mm \; ; \pi \cdot 33, 2mm + 200mm; \; \pi \cdot 33, 2mm + 2 \cdot 40mm \right\} \Longrightarrow \\ l_{eff,cp} &= \min \left\{ 208, 60mm \; ; 304, 3; \; 113, 2mm \right\} = 113, 2mm \end{split}$$

Μη κυκλικές μορφές

$$\begin{split} l_{eff,nc} &= \min\left\{4m_x + 1,25e_x \quad ; \quad e + 2m_x + 0,625e_x; \quad 0,5b; \quad 0,5w + 2m_x + 0,625e_x\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{4\cdot 33,2mm + 1,25\cdot 30mm \quad ; 40mm + 2\cdot 32,2mm + 0,625\cdot 30mm; \quad 0,5\cdot 280mm; \\ ; 0,5\cdot 200mm + 2\cdot 33,2mm + 0,625\cdot 30mm\right\} \Longrightarrow \\ l_{eff,nc} &= \min\left\{170,30mm \quad ; 125,15mm; \quad 140mm; \quad 185,15mm\right\} = 125,15mm \end{split}$$

Μηχανισμός 1

 $\ell_{eff,1} = \ell_{eff,nc} = 125,15 \text{ mm}$ αλλά θα πρέπει $\ell_{eff,1} \le \ell_{eff,cp} = 113,20 \text{ mm}$

άρα $\ell_{eff,1} = 125,15$ mm

Η ροπή αντοχής για τον μηχανισμό 1 είναι:

$$M_{pl,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 0,25 \frac{12,515 \cdot 2,25^{2} \cdot 35,5}{1,00} = 562,3kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 1 (πλήρης διαρροή του πέλματος) είναι:

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4 \cdot 562,3}{3,32cm} = 677,47kN$$

Μηχανισμός 2

 $\ell_{eff,2} = \ell_{eff,nc} = 125,15 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 2 είναι :

$$M_{pl,2,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 562,3kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 2 (αστοχία κοχλία με διαρροή του πέλματος) είναι:

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum_{t,Rd}}{m+n} = \frac{2\cdot562, 3+4\cdot(2\cdot141,12)}{3,32+3} = 356,58kN$$

Μηχανισμός 3

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 3 (Αστοχία κοχλία) είναι:

 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 2 \times 141,12 \text{ kN} = 282,24 \text{ kN}$

Αντοχή του βραχέος Τ του υποστυλώματος της πρώτης σειράς κοχλιών είναι:

 $F_{T,Rd}=min\{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}\}=min\{677,47 \text{ kN}; 356,58 \text{ kN}; 282,24 \text{ kN}\}=282,24 \text{ kN}$

Δεύτερη σειρά κοχλιών (κάτω από το εφελκυόμενο πέλμα)

$$m = \frac{w - t_{wb}}{2} - 0.8 \cdot a_{wb} \sqrt{2} = \frac{200mm - 12,5mm}{2} - 0.8 \cdot 3 \cdot \sqrt{2} = 90,355mm$$

$$m_2 = 75 - 40 - 13, 5 - 0, 8 \cdot 6 \cdot \sqrt{2} = 14, 71 mm$$

$$\lambda_1 = \frac{m}{m+e} = \frac{90,355}{90,355+40} = 0,693$$

$$\lambda_2 = \frac{m_2}{m_2 + e} = \frac{14,71}{14,71 + 40} = 0,268$$

Για αυτές τις τιμές των $λ_1$, $λ_2$ προκύπτει a=5,5

 $n = min\{e_{min}; 1,25 \times m\} = min\{30mm; 1,25 \times 90,355 mm\} = 30mm$

Ενεργό μήκος (μεμονωμένοι κοχλίες)

Κυκλικές μορφές: $\ell_{eff,cp}=2\pi m = 2 \times \pi \times 90,355 = 567,715 \text{ mm}$

Mη κυκλικές μορφές: $\ell_{eff,nc} = \alpha m = 5,5 \times 90,355 = 496,95 \text{ mm}$

Μηχανισμός 1

 $\ell_{eff,1} = \ell_{eff,nc} = 496,95 \text{ mm}$ allá $\theta \alpha \pi \rho \epsilon \pi \epsilon \iota$ $\ell_{eff,1} \le \ell_{eff,cp} = 567,715 \text{ mm}$

άρα $\ell_{eff,1} = 496,95 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 1 είναι:

$$M_{pl,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 0,25 \frac{49,695 \cdot 2,25^{2} \cdot 35,5}{1,00} = 2232,78 kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 1 (πλήρης διαρροή του πέλματος) είναι:

$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4 \cdot 2232,78}{9,0355cm} = 988,45kN$$

Μηχανισμός 2

 $\ell_{eff,2} = \ell_{eff,nc} = 496,95 \text{ mm}$

Η ροπή αντοχής για τον μηχανισμό 2 είναι :

$$M_{pl,2,Rd} = 0,25 \frac{\sum l_{eff,1} \cdot t_{f}^{2} \cdot f_{y}}{\gamma_{M0}} = 2232,78 kNcm$$

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 2 (αστοχία κοχλία με διαρροή του πέλματος) είναι:

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum_{r,Rd}}{m+n} = \frac{2 \cdot 2232,78 + 4 \cdot (2 \cdot 141,12)}{9,035+3} = 464,85kN$$

Μηχανισμός 3

Η αντοχή για μορφή αστοχίας σύμφωνα με τον μηχανισμό 3 (Αστοχία κοχλία) είναι:

 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 2 \times 141,12 \text{ kN} = 282,24 \text{ kN}$

Αντοχή του βραχέος Τ του υποστυλώματος της πρώτης σειράς κοχλιών είναι:

 $F_{T,Rd}=min\{F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}\}=min\{988,45 \text{ kN}; 464,85 \text{ kN}; 282,24 \text{ kN}\}=282,24 \text{ kN}\}$

• Πρώτη και δεύτερη σειρά κοχλιών

Η πρώτη και δεύτερη σειρά κοχλιών δεν θεωρούνται ομάδα κοχλιών για την μετωπική πλάκα.

• Τρίτη σειρά κοχλιών (κάτω από το εφελκυόμενο πέλμα)

Η τρίτη σειρά κοχλιών θεωρούμε ότι δεν εφελκύεται επειδή βρίσκεται πολύ κοντά στο θλιβόμενο πέλμα, γι'αυτό και δεν υπολογίζουμε την αντοχή, αφού η δύναμη που παίρνει είναι πολύ μικρή.

Κορμός υποστυλώματος σε εγκάρσιο εφεκλκυσμό

Η αντοχή σχεδιασμού σε εγκάρσιο εφελκυσμό του υποστυλώματος υπολογίζεται από την σχέση :

$$F_{t,wc,Rd} = \frac{\omega \cdot b_{eff,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}}$$

Για μια κοχλιωτή σύνδεση το πλάτος b_{eff,wc} του κορμού του υποστυλώματος σε εφελκυσμό πρέπει να λαμβάνεται ίσο με το ενεργό μήκος ενός ισοδύναμου βραχέως ταυ που αντιστοιχεί στο πέλμα του υποστυλώματος. Έτσι :

1. για την 1η σειρά κοχλίων $b_{eff,wc} = \ell_{eff,nc} = 199,3mm$

2. για την 2η σειρά κοχλίων $b_{eff,wc} = \ell_{eff,cp} = 453,33mm$

3. για την 1η και 2η σειρά κοχλίων $b_{eff,wc} = \ell_{eff,nc,1σειρα} + \ell_{eff,nc,2σειρα} = 67,5 + 112,5 = 180 mm$

Επομένως :

α) για την 1η σειρά κοχλίων :

$$F_{t,wc,Rd} = \frac{0,794 \cdot 19,93 \cdot 1,25 \cdot 35,5}{1,0} = 702,21kN$$

β) για την 2η σειρά κοχλίων :

$$F_{t,wc,Rd} = \frac{0,794 \cdot 45,33 \cdot 1,25 \cdot 35,5}{1,0} = 1597,15kN$$

γ) για την 1η και 2η σειρά κοχλίων :

$$F_{t,wc,Rd} = \frac{0,794 \cdot 18,0 \cdot 1,25 \cdot 35,5}{1,0} = 634,21kN$$

Κορμός δοκού σε εφεκλκυσμό

Σε μία κοχλιωτή σύνδεση με μετωπική πλάκα, η αντοχή σχεδιασμού σε εφελκυσμό του κορμού της δοκού πρέπει να υπολογίζεται από τη σχέση:

$$F_{t,wc,Rd} = \frac{b_{eff,t,wb} \cdot t_{wb} \cdot f_{y,wb}}{\gamma_{M0}}$$

Το ενεργό πλάτος b_{eff,t,wb} του κορμού της δοκού σε εφελκυσμό πρέπει να λαμβάνεται ίσο με το ενεργό μήκος ενός ισοδύναμου βραχέος ταυ που αντιστοιχεί στη μετωπική πλάκα σε κάμψη, για μία μεμονωμένη σειρά κοχλιών ή μια ομάδα κοχλιών. Μόνο η δεύτερη σειρά κοχλιών εφελκύει τον κορμό της δοκού, επομένως:

 $b_{eff,t,wb} = l_{eff,nc} = 496,95mm$

$$F_{t,wc,Rd} = \frac{b_{eff,t,wb} \cdot t_{wb} \cdot f_{y,wb}}{\gamma_{M0}} = \frac{49,69 \cdot 1,25 \cdot 35,5}{1,0} = 2204,99kN$$

<u>Αποτελέσματα ελέγχων</u>

	1η σειρά	2η σειρά	1η & 2η σειρά	1η & 2η σειρά
	κοχλιών	κοχλιών	κοχλιών	κοχλιών
Κορμός		1124,48/β - F _{t1,Rd}		
υποστυλώματος		= 1124,48 -		1124 ARKN
σε διάτμηση		282,24= 842,24		1124,40KIN
$\mathbf{V}_{wp,\mathbf{Rd}}$		KN		
Κορμός		998,91/ β - $F_{t1,Rd}$ =		
υποστυλώματος		998,91 - 282,24		998,91KN
σε θλίψη Fc,wc,Rd		= 716,67 KN		
		2822,12 / β -		
Πελμα και		$F_{t1,Rd} = 2822, 12 - $		2022 12 KN
κορμος σοκου		282,24 = 2539,88		2022,12 MIN
σε θλιψη Fc,fb,Rd		KN		
Πέλμα				
υποστυλώματος	282,24KN	282,24KN	272,93KN	
σε κάμψη Fc,rd				
Μετωπική				
πλάκα σε κάμψη	282,24KN	282,24KN		
Fep,Rd				
Κορμός				
υποστυλώματος	702 21 KN	1507 15KN	624 21 VN	
σε εφελκυσμό	702,21KN	1397,13KIN	034,21 N IN	
Ft,wc,Rd				
Κορμός δοκού				
σε εφελκυσμό		2204,99KN		
Ft,wb,Rd				
F _{T,min}	282,24KN	282,24KN	272,93KN	937,89 KN

Ροπή αντοχής σχεδιασμού της σύνδεσης

Η απόσταση της πρώτης σειράς κοχλιών από το κέντρο θλίψης (κάτω πέλμα της δοκού) είναι:

 $h_1 = 420 - 30 - 20 - 13{,}5{/}2{=}~343{,}25~mm$

ενώ η απόσταση της δεύτερης σειράς κοχλιών από το κέντρο θλίψης είναι:

 $h_2 = 343,25 - 75 = 268,25 \text{ mm}$

Η ροπή αντοχής του κόμβου με βάση την αντοχή της εφελκυόμενης ζώνης δίνεται:

 $M_{B,Rd} = \Sigma h_r F_{tr,Rd} = F_{1,Rd} \times h_1 + F_{2,Rd} \times h_2 = 282,24 \text{ kN} \times 0,343 \text{ m} + 282,24 \text{ kN} \times 0,268 \text{ m} = 172,45 \text{ kNm}$

Από το πρόγραμμα προέκυψε η τιμή για τον συνδυασμό UlS11 $M_{Ed} = 146,30 \text{ kNm}$

Επειδή ισχύει $M_{B,Rd}$ = 172,45 kNm>MEd= 146,30 kNm άρα η σύνδεση είναι ολικής αντοχής, αφού η ροπή αντοχής της σύνδεσης του κόμβου είναι μεγαλύτερη από τη ροπή αντοχής της δοκού.

Τέμνουσα σχεδιασμού της σύνδεσης

Έλεγχος αποστάσεων

Ελάχιστες αποστάσεις :

 $mine_1 = mine_2 = 1.2 \ d0 = 1.2*22 = 26 \ mm < e2 = 30 \ mm$

 $minp_1 = 2.2 \ d_0 = 2.2 * \ 22 = 48 \ mm < \ p1 = 75 \ mm$

 $minp_2=2.4 d_0=2.4* 22= 52,80 mm < p2=75 mm$

Μέγιστες αποστάσεις:

 $maxe_1 = 40mm + 4t = 40 + 4*20mm = 120mm > e2 = 30mm$

 $maxp_1 = maxp_2 = min(14t; 200) = min(14*20; 200) = 200 mm > p_1 = p_2 = 75 mm$

Η κοχλίωση είναι τύπου Α.

Το σπείρωμα θεωρείται εντός του επιπέδου διάτμησης.

$$F_{\nu,Rd} = \frac{a_{\nu} \cdot A_s \cdot f_{ub}}{\gamma_{M2}} = \frac{0, 6 \cdot 2, 45cm^2 \cdot 80kN / cm^2}{1,25} = 94kN$$

Για τον υπολογισμό σε σύνθλιψη άντυγας ισχύει:

$$k_{1} = \min\left(2, 8 \cdot \frac{e_{2}}{d_{0}} - 1, 7; 2, 5; 1, 4 \cdot \frac{p_{2}}{d_{0}} - 1, 7\right) = \min\left(2, 8 \cdot \frac{30}{22} - 1, 7; 2, 5; 1, 4 \cdot \frac{75}{22} - 1, 7\right)$$

$$k_{1} = \min\left(2, 11; 2, 5; 3, 07\right) = 2, 11$$

$$a_{b} = \min\left(\frac{f_{ub}}{f_{u}}; \frac{e_{1}}{3d_{0}}; \frac{p_{1}}{3d_{0}} - \frac{1}{4}; 1\right) = \min\left(\frac{80}{43}; \frac{30}{3 \cdot 22}; \frac{75}{3 \cdot 22} - \frac{1}{4}; 1\right)$$

$$a_{b} = \min\left(1, 86; 0, 45; 0, 88; 1\right) = 0, 45$$

t=min(20; 12,5) = 9,5 mm

Η συνολική αντοχή σε σύθλιψη άντυγας θα είναι:

$$F_{b,Rd} = \frac{k_1 \cdot a_d \cdot f_u \cdot d \cdot t}{\gamma_{M2}} = \frac{2,11 \cdot 0,45 \cdot 43 \cdot 2,0 \cdot 1,25}{1,25} = 81,66kN$$

Άρα min (F_{b,Rd}; F_{v,Rd})= min(81,66 kN; 94 kN)= 81,66 kN

και για μία σειρά κοχλιών (2 κοχλίες): $F_{v,Rd}=2*81,66$ kN= 163,32 kN

Η μειωμένη διατμητική αντοχή των κοχλιών υπό εφελκυσμό και διάτμηση δινεται από τη σχέση:

$$F_{s,Rd} = F_{v,Rd} \left(1 - \frac{F_{t,sd}}{1, 4F_{t,Rd}} \right)$$

1η σειρά κοχλιών $F_{s,Rd} = 163, 32 \left(1 - \frac{282, 24}{1, 4 \cdot 282, 24} \right) = 46,66 kN$

2η σειρά κοχλιών
$$F_{s,Rd} = 163, 32 \left(1 - \frac{282, 24}{1, 4 \cdot 282, 24} \right) = 46,66 k N$$

3η σειρά κοχλιών
$$F_{s,Rd} = 163, 32 \left(1 - \frac{272,93}{1,4 \cdot 282,24} \right) = 50,51 kN$$

Τέμνουσα σχεδιασμού της σύνδεσης

 V_{Rd} =46,66kN + 46,66kN + 50,51kN = 143,83 kN

Η τέμονουσα σχεδιασμού της δοκού έχει προκύψει από το συνδυασμό ULS11 και είναι

V_{Ed}= 110,78 kN

Aqoú $V_{Rd}{=}143,83~kN~>V_{Ed}{=}~110,78~kN~$, η súndesh mporeí na paralábei thn exateriký drása témnousa ston kómbo.

Έλεγχος συγκόλλησης δοκού - υποστυλώματος

Εντατικά μεγέθη

Τέμνουσα δύναμη: $V_{Ed} = 110,78 \text{ kN}$

Καμπτική ροπή: $M_{Ed} = 146,30$ kNm

Ροπές αδράνειας της συγκόλλησης

Η ροπή αδράνειας της συγκόλλησης κατά τον άξονα y

$$\begin{split} I_{y} &= 2 \cdot \frac{1}{12} \cdot a_{w} \cdot d_{b}^{3} + 2 \cdot a_{f} \cdot b \cdot (\frac{h}{2})^{2} + 2 \cdot a_{f} \cdot (b - t_{wb} - 2r_{b}) \cdot \left(\frac{h}{2} - t_{fb}\right)^{2} \\ I_{y} &= 2 \cdot \frac{1}{12} \cdot 0.3cm \cdot (26, 1cm)^{3} + 2 \cdot 0.5cm \cdot 0.3cm \cdot \left(\frac{36}{2}\right)^{2} + 2 \cdot 0.5cm \cdot 0.3cm \cdot (30cm - 1.25cm - 2 \cdot 2.7cm) \cdot \left(\frac{36}{2}cm - 2.25cm\right)^{2} \\ I_{y} &= 16401, 239cm^{4} \end{split}$$

Έλεγχος συγκολλήσεων

Η συγκόλληση καταπονείται από ορθές τάσεις λόγω της καμπτικής ροπής MEd και από διατμητικές τάσεις λόγω της τέμνουσας VEd. Τα ακραία σημεία της συγκόλλησης είναι τα περισσότερο καταπονούμενα σημεία και εκεί γίνεται ο έλεγχος αντοχής της συγκόλλησης.

Έλεγχος πάχους συγκόλλησης

 $t_{min} = min(12,5mm,15mm) = 12,5mm = 1,25cm$

Πάχος συγκόλλησης κορμού $\alpha_w = 3mm < 0.70 \times t_{min} = 0.70 \times 1.25 cm = 0.875 cm$

Πάχος συγκόλλησης πέλματος α_{\rm f} = 5mm < 0,70 \times t_{\rm min} = 0,70 \times 1,25cm=0,875cm

Διατμητική τάση στη συγκόλληση

Η τέμνουσα δύναμη μεταβιβάζεται από τη δοκό στο υποστύλωμα μέσω της συγκόλλησης του κορμού της δοκού. Η τάση που προκαλεί στη συγκόλληση η τέμνουσα δύναμη είναι διατμητική παράλληλη στον άξονα της συγκόλησης και ίση με :

$$\tau_{Ed} = \frac{V_{Ed}}{A_{w}} = \frac{110,78kN}{2 \cdot 26,1cm \cdot 0,3cm} = 7,07kN / cm^{2}$$

Ορθή τάση στη συγκόλληση

Η ορθή τάση που οφείλεται στην καμπτική ροπή Mb,Ed στο σημείο 1 (κορμός) και 2 (πέλμα) αντίστοιχα είναι:

$$\sigma_{\kappa\alpha\theta,1} = \frac{M_{Ed}}{2I} d_b = \frac{14630 kN cm}{2 \cdot 16401, 239 cm^4} \cdot 26,10 cm = 19,59 kN / cm^2$$

$$\sigma_{\kappa\alpha\theta,2} = \frac{M_{Ed}}{2I} h_b = \frac{14630kNcm}{2.16401,239cm^4} \cdot 36cm = 27,03kN / cm^2$$

Αντοχή συγκολλήσεων

Η συνισταμένη τάση στη συγκόλληση είναι:

$$\sigma_{\max} = \sigma_{\kappa\alpha\theta,2} = 27,03kN / cm^{2} < \frac{f_{u}}{\gamma_{M2}} = \frac{43kN / cm^{2}}{1,25} = 34,40kN / cm^{2}$$

$$\sqrt{\left(\sigma_{\kappa\alpha\theta}\right)^{2} + \left(\tau_{Ed}\right)^{2}} = \sqrt{\left(19,59kN / cm^{2}\right)^{2} + \left(7,07kN / cm^{2}\right)^{2}} = 20,82kN / cm^{2}$$

$$< \frac{f_{u}}{\sqrt{3} \cdot \beta_{w} \cdot \gamma_{M2}} = \frac{43,0kN / cm^{2}}{\sqrt{3} \cdot 0,85 \cdot 1,25} = 23,36kN / cm^{2}$$

όπου ο συντελεστής συσχετίσεως βw = 0,85
για χάλυβα S275

5 Ανάλυση και διαστασιολόγηση φορέα με μετάθεση των συνδέσμων δυσκαμψίας της διεύθυνσης y-y'

5.1 Περιγραφή του κτιρίου

Σε αυτή την επίλυση οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση χ παρέμειναν στην ίδια θέση (περιμετρικά) ενώ οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση y τοποθετήθηκαν κατά μία θέση πιο μέσα, όπως φαίνεται στο παρακάτω σχήμα:

Σχήμα 5.1: Κάτοψη μεταλλικού κτιρίου με σχηματική απεικόνιση των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Μετά από δοκιμές η διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας άλλαξε και έγινε SHS 180.180.10. Τα υποστυλώματα διατομής 2HEB360, οι κύριες δοκοί διατομής HEB360, οι δευτερεύουσες δοκοί HEB300 και οι διαδοκίδες διατομής IPE240 παρέμειναν ως έχουν.

5.2 Έλεγχος στην οριακή κατάσταση αστοχίας

5.2.1 Έλεγχος υποστυλωμάτων

Επιλέγουμε για έλεγχο το μέλος SIS20, υποστύλωμα του ισογείου, το οποίο είχαμε ελέγξει και στον αρχικό φορέα. Το μέλος SIS20 έχει διατομή 2HEB360 της οποίας τα χαρακτηριστικά έχουν παρουσιαστεί παραπάνω.

Τα αποτελέσματα της ανάλυσης φαίνονται παρακάτω:

	Steel St	ress Check	Inform	ation (Euroc	ode 3-20	05)		
Frame ID Design Code	SIS20 Eurocode 3-20	05	Anal Desi	ysis Secti gn Sectio	on n	2HEB360 2HEB360			
COMBO ID	STATION / LOC RA	-MOMENT IN TIO =	ITERACT: AXL +	ION CHE B-MAJ	СК + В-М	//-MAJ- IIN RA	-SHRMI ATIO	N-SHR-/ RATIO	/
ULS2a ULS2a ULS2b ULS2b ULS2b	2,50 0, 5,00 0, 0,00 0, 2,50 0, 5,00 0,	713(C) = 0 712(C) = 0 717(C) = 0 713(C) = 0 712(C) = 0	(,711 +),710 +),713 +),711 +),711 +),711 +),710 +),710 +),710 +),710 +),710 +),710 +),710 +),710 +),711 +),710 +),710 +),710 +),710 +),710 +),710 +),710 +),711 +),710 +),710 +),710 +),710 +),710 +),710 +),711 +),710 +),71	0,001 0,002 0,005 0,001 0,002	+ 0,0 + 0,0 + 0,0 + 0,0 + 0,0	000 0, 000 0, 000 0, 000 0,	000 000 000 000	0,000 0,000 0,000 0,000 0,000	^
ULS3	0,00 0,	717(C) = 0	,713 +	0,005	+ 0,0	00 0,	,000	0,000	¥
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data									
© Strength	C Deflection		JK	Canc			Styleshee Table Fo	t: Default rmat File	

Πίνακας 5. 1: Πίνακας ανάλυσης μέλους SIS20 για όλους τους συνδυασμούς αστοχίας

Πίνακας 5. 2: Πίνακας ανάλυσης μέλους SIS20 για τον συνδυασμό αστοχίας ULS3

×		Steel Stress Che	ck Data Eurocode 3-2005	×
File				
Fundade 2-2885 STEEL S				Units KN m C 💌
Combo • III \$3	SECTION CHECK			Offics INN, III, C
Units · KN m C				
Frame : SIS20	Design Sect: 2HE	B360		
X Mid : 35,000	Design Type: Col	umn		
Y Mid : 12,000	Frame Type : Bra	ced Frame		
Z Mid : 2,500	Sect Class : Cla	ss 3		
Length : 5,000	Major Axis : 0,0	00 degrees counterclockwi	se from local 3	
LOC : 0,000	RLLF : 1,0	88		
	ou - 1			
Hrea : 0,035	SMajor : 0,003	rmajor : 0,122	HUMAJOR: 0,019	
INJUC : 5,1895-04	2Major - 8 884	FILLIUF : 0,122	HUMIING: 0,019	
TNUT - 8 888	ZMinov : 8 884	E . 2100000		
1.9 . 0,000	2111101 . 0,004	ry . 355000,	000	
STRESS CHECK FORCES & M	IOMENTS			
Location	P M33	M22 U2	U3 T	
0.000 -529	0.378 6.714	0.000 1.927	0.000 0.000	
PMM DEMAND/CAPACITY RAT	F 10			
Governing	Total P	MMajor MMinor	Ratio Status	
Equation	Ratio Ratio	Ratio Ratio	Limit Check	
(6.61)	0,717 = 0,713	+ 0,005 + 0,000	1,000 OK	
AXIAL FORCE DESIGN				
	Ned Nc,Rd	Nt,Rd Nb33,Rd	ND22,Rd	
	Force Capacity	Capacity Major	Minor	
Axiai -529	70,378 7422,912	11204,688 7422,912	8980,199	
MONENT DECTON				
NUMENT DESIGN	Mod Mo Dd	Mu Dd Mb Dd		
	neu PC,Ku Iomont Canacitu	Capacity Capacity		
Major Moment	6 715 020 200	038 288 038 208		
Minor Moment	6 666 936 288	038 288		
ATION HOMEIC	0,000 700,200	200,200		

Ο δείκτης Ratio για το μέλος SIS20 προκύπτει από την ανάλυση 0,717 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

5.2.2 Έλεγχος κύριας δοκού

Ο έλεγχος της κύριας δοκού θα γίνει στο μέλος D42 όπως και προηγουμένως , για λόγους σύγκρισης.

	Eurocode	3-2005		Des	ign Secti	on	HE36	0B	
COMBO	STATION /	MOMEN	T INT	TERACT	ION CH	ECK	(//-	-MAJ-SHR	-MIN-SHR-
ID	LOC	RATIO	=	AXL +	B-MAJ	+	B-MIN	RATIO	RATIO
ULS19	3,50	0,069(C)	= 0,	,000 +	0,069	+	0,000	0,373	0,000
ULS19	4,00	0,047(C)	= 0,	,000 +	0,047	+	0,000	0,395	0,000
ULS19	4,50	0,013(C)	= 0,	,000 +	0,013	+	0,000	0,416	0,000
ULS19	5,00	0,037(C)	= 0,	,000 +	0,037	+	0,000	0,438	0,000
ULS19	5,50	0,097(C)	= 0,	,000 +	0,097	+	0,000	0,460	0,000
ULS19	6,00	0,169(C)	= 0	,000 +	0,169		0,000	0,481	0,000
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Details Tabular Data									

Πίνακας 5.3: Πίνακας ανάλυσης μέλους D42 για όλους τους συνδυασμούς αστοχίας

Πίνακας 5.4: Πίνακας ανάλυσης μέλους D42 για τον συνδυασμό αστοχίας ULS19

×	Steel Stress Check Data Eurocode 3-2005	×
File		
Fundanda 2 2005 STE		Units KN m C -
Combo + ULS10		
Unite KN m C		
011C5 . KII, H, U		
		2
Frame : D42	Design Sect: HE360B	
X Mid : 14,000	Design Type: Beam	
Y Mid : 21,000	Frame Type : Braced Frame	→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→
Z Mid : 17,000	Sect Class : Class 1	
Length : 6,000	Major Axis : 0,000 degrees counterclockwise from local 3	
Loc : 6,000	RLLF : 1,800	
Hrea : 0,018	Shajor: 0,002 rhajor: 0,154 HVMajor: 0,005	
INGJUF : 4,319E-04		
THINGT . 1,814C-84	Zhajur - 9,995 E - 21999999,99	
179 . 0,000		
STRESS CHECK FORCES	& MOMENTS	
Location	P M33 M22 U2 U3 T	
6,000	8,998 -124,592 8,998 -173,688 8,898 -7,995E-84	
PMM DEMAND/CAPACITY	RATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Limit Check	
(6.62)	0,169 = 0,000 + 0,169 + 0,000 1,000 OK	
HATHE FURGE DESIGN		
	reu nu, ku nu, ku nu sa ku ND22, ku Sa	
Ic ivo	a a a 200a ASA CONTSALLY MAJOR MILLOR MILLOR	
notat	0,000 2770,000 9041,004 9140,007 2770,000	
MOMENT DESIGN		
	Med Mc.Rd Mv.Rd Mb.Rd	
	Moment Capacity Capacity	
Major Moment	-124,592 865,877 865,877 865,877	
Minor Moment	8,000 333,055 333,055	

Ο δείκτης Ratio για το μέλος D42 προκύπτει από την ανάλυση 0,169 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

5.2.3 Έλεγχος κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Ο έλεγχος των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας θα γίνει στο μέλος DIS2 όπως και προηγουμένως, για λόγους σύγκρισης.

Steel Stress Check Information (Eurocode 3-2005) DIS2 TUB0180X180X10 Frame ID Analysis Section TUB0180×180×10 Eurocode 3-2005 Design Code Design Section STATION /----MOMENT INTERACTION CHECK----//-MAJ-SHR---MIN-SHR-/ COMBO ID LOC RATIO = AXL + B-MAJ + B-MIN RATIO RATIO 0,004 0,328(C) = 0,328 + 0,000 + 0,0000,000 ULS2a 8,60 ^ 0,323(C) = 0,323 + 0,000 + 0,0000,004 0,000 ULS2b 0,00 0,377(C) = 0,325 + 0,052 + 0,0000,000 0,000 ULS2b 4,30 0,000 ULS2b 8,60 0,328(C) = 0,328 + 0,000 + 0,0000,004 0,000 ULS3 0,00 0,323(C) = 0,323 + 0,000 + 0,0000,004 ULS3 4,30 052 + 0.000Modify/Show Overwrites-Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data Stylesheet: Default Strength C Deflection Cancel ÖΚ Table Format File

Πίνακας 5.5:Πίνακας ανάλυσης μέλους DIS2 για όλους τους συνδυασμούς αστοχίας

Πίνακας 5.6: Πίνακας ανάλυσης μέλους DIS2 για τον συνδυασμό αστοχίας ULS3

×		Steel Stress Chec	k Data Eurocode 3-2005	×
File				
Europede 2-288E ST				Unite KN m C
Combo : III S2	EL SECTION CHECK			
Units · KN m C				
Frame : DIS2	Design Sect:	TUB0180X180X10		
X Mid : 10,500	Design Type:	Brace		
Y M1d : 0,000	Frame Type :	Braced Frame		
2 M10 : 2,500	Sect Class :	Class 1		
Length : 8,002	PILE	1 AAA	Se from local 3	
LUC . 4,301	nLLF -	1,000		
Area : 8.887	SMaior : 3.65	2E-04 rMajor : 0.070	AUMaior: 8.884	
IMajor : 3.287E-05	SMinor : 3.65	2E-04 rMinor : 0.070	AVMinor: 0.004	
IMinor : 3,287E-05	ZMajor : 4,34	0E-04 E : 2100000	00,00	
Ixy : 0,000	ZMinor : 4,34	0E-04 Fy : 355000,	999	
-				
STRESS CHECK FORCES	& MOMENTS			
Location	P M	133 M22 U2		
4,301	-232,934 5,4	24 0,000 0,000	0,000 0,000	
	POTIO			
Gouerning	Total	P MMajor MMinor	Ratio Status	
Equation	Ratio Rat	in Ratio Ratio	Limit Check	
(6.61)	0,377 = 0,3	25 + 0,052 + 0,000	1,000 OK	
AXIAL FORCE DESIGN				
	Ned Nc,	Rd Nt,Rd Nb33,Rd	Nb22,Rd	
	Force Capaci	ty Capacity Major	Minor	
Axial	-232,934 716,1	13 2194,545 716,113	716,113	
MUMENT DESIGN	Mod	Dd Mu Dd Mb Dd		
	Memort Caraci	nu MV,KU MD,KO		
Major Moment	5 h2h 1h8 8	су сарастсу сарастсу Ка 148 864 148 865		
Minor Moment	0 000 140,0	64 148 864		
nanor nonene	0,000 140,0			

Επειδή από την ανάλυση προέκυψε ότι πρέπει να αυξήσουμε τη διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας σε SHS180.180.10 κάνουμε έναν ενδεικτικό έλεγχο στο μέλος DIS13.

Box/Tube Section						
Section Name Section Notes	TUB0180X180X10 Modify/Show Notes					
Extract Data from Section Property File Open File C:\program files (x86)\cor	nputers and Import					
Properties Property Mo Section Properties	odifiers Material + \$355					
Dimensions Outside depth (t3) 0,18 Outside width (t2) 0,18 Flange thickness (tf) 0,01 Web thickness (tw) 0,01						
	Display Color					

Πίνακας 5.7: Χαρακτηριστικά διατομής SHS180.180.10

Frame ID Design Code	DIS13 Eurocode	3-2005	Ana Des	lysis Sectio ign Sectior	n TUB	0180×180×10 0180×180×10		
COMBO	STATION /	MOMENT	INTERACT	ION CHEC		-MAJ-SHR	-MIN-SHR-	/
ID	LOC	RATIO =	AXL +	B-MAJ +	- B-MIN	RATIO	RATIO	
ULS2a	7,81	0,567(C) =	0,567 +	0,000 +	0,000	0,003	0,000	~
ULS2b	0,00	0,572(C) =	0,572 +	0,000 +	- 0,000	0,003	0,000	
ULS2b	3,91	0,616(C) =	0,570 +	0,046 4	- 0,000	0,000	0,000	
ULS2b	7,81	0,567(C) =	0,567 +	0,000 4	- 0,000	0,003	0,000	
ULS3	0,00	0,572(C) =	0,572 +	0,000 4	- 0,000	0,003	0,000	
ULS3	3,91	0,616(C) =	0,570 +	0,046 +	0,000	0,000	0,000	\mathbf{v}
- Modify/Show Overwrites Display Details for Selected Item Display Complete Details Details Details Tabular Data								
Strength	C Deflectio	m [OK	Cance		Styles Table	heet: Default • Format File	1

Πίνακας 5.8: Πίνακας ανάλυσης μέλους DIS13 για όλους τους συνδυασμούς αστοχίας

Πίνακας 5.9: Πίνακας ανάλυσης μέλους DIS13 για τον συνδυασμό αστοχίας ULS3

×	Steel Stress Check Data Eurocode 3-2005	×
File		
Eurocode 3-2005 STE	EEL SECTION CHECK	Units KN, m, L 💌
COMDO : ULSO		
UNILS : KN, M, C		
		· · · · · · · · · · · · · · · · · · ·
Frame : DIS13	Design Sect: TUB0180X180X18	
X Mid : 35.000	Design Tupe: Brace	
Y Mid : 3,000	Frame Tupe : Braced Frame	
Z Mid : 2,500	Sect Class : Class 1	
Length : 7,810	Major Axis : 0,000 degrees counterclockwise from local 3	
Loc : 3,905	RLLF : 1,600	
Area : 0,007	SMajor : 3,652E-04 rMajor : 0,070 AVMajor : 0,084	
IMajor : 3,287E-05	SMinor : 3,652E-04 rMinor : 9,070 AVMinor : 9,004	
IMinor : 3,287E-05	ZMajor : 4,349E-64 E : 210900000,00	
Ixy : 0,000	2Minor : 4,340E-04 Fy : 355000,000	
STRESS OFFICE CORPORA		
STRESS UNEUR FURGES		
2 0.05		
5,705	401,575 4,221 8,000 8,000 8,000 8,000	
PMM_DEMAND/CAPACITY	Y ROTIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Limit Check	
(6.61)	0,616 = 0,570 + 0,846 + 0,890 1,890 0K	
AXIAL FORCE DESIGN		
	Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd	
	Force Capacity Capacity Major Minor	
Axial	-481,593 845,552 2194,545 845,552 845,552	
MUMENT DESIGN		
	mea mc, ka mv, ka mo, ka	
Majou Monant	Noment Capacity Capacity Capacity	
Minow Moment		
minor Homenic	0,000 140,004 140,004	

Ο δείκτης Ratio για το μέλος DIS13 προκύπτει από την ανάλυση 0,616 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

5.2.4 Έλεγχος δευτερεύουσας δοκού

Ο έλεγχος της δευτερεύουσας δοκού θα γίνει στο μέλος D42 όπως και προηγουμένως , για λόγους σύγκρισης.

	Stee	l Stress Ch	eck Inform	ation (E	urocode :	3-2005)		
Frame ID	E8		Ana	lysis Sectio	n HE30	OB		
Design Code	Eurocode	3-2005	Des	ign Sectior	HE30	OB		
COMBO	STATION /	MOMEN	I INTERACT	ION CHE	ск//-	-MAJ-SHR	-MIN-SHR-/	,
ID	LOC	RATIO	= AXL +	B-MAJ -	+ B-MIN	RATIO	RATIO	
ULS2b	5,00	0,161(C)	= 0,000 +	0,161 -	+ 0,000	0,185	0,000	~
ULS2b	5,50	0,021(C)	= 0,000 +	0,021 -	+ 0,000	0,249	0,000	
ULS2b	6,00	0,160(C)	= 0,000 +	0,160 -	+ 0,000	0,313	0,000	
ULS2b	6,50	0,381(C)	= 0,000 +	0,381 -	+ 0,000	0,377	0,000	
ULS2b	7,00	0,644(C)	= 0,000 +	0,644 -	+ 0,000	0,440	0,000	
ULS3	0,00	0,699(C)	= 0,000 +	0,699	+ 0,000	0,453	0,000	Υ.
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data Stylesheat: Default Stylesheat: Default								
© Strength	C Deflectio	n [<u> </u>	Cance	1	Styles Table	heet: Default : Format File	

Πίνακας 5.10: Πίνακας ανάλυσης μέλους DIS13 για όλους τους συνδυασμούς αστοχίας

Πίνακας 5.11: Πίνακας ανάλυσης μέλους DIS13 για τον συνδυασμό αστοχίας ULS3

×	Steel Stress Check Data Eurocode 3-2005	×
File		
Eurocode 3-2005 STEEL Combo : ULS3 Units : KN, m, C		Units KN, m, C 💌
Frame • F8	Design Sect: HF3888	
X Mid : 10,500	Design Tupe: Beam	
Y Mid : 6,000 Z Mid : 21,000	Frame Type : Braced Frame Sect Class : Class 2	
Loc : 0,000	Najor HXIS : 0,000 degrees counterclockwise from local 3 RLLF : 1,000	
Area : 0.015	SMajor: 0.002 rMajor: 0.130 AVMajor: 0.003	
IMajor : 2,517E-04	SMihor : 5,799E-04 rMinor : 0,076 AVMinor : 0,010	
IMinor : 8,563E-05	ZMajor : 0,002 E : 210000000,00	
Ixy : 0,000	2Minor : 8,700E-04 Fy : 355000,000	
STRESS CHECK FORCES	R MOMENTS	
Location		
0,000	0,000 -333,950 0,000 -2/8,230 0,000 -7,059E-04	
PMM DEMAND/CAPACITY	RATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Limit Check	
(6.62)	9,699 = 9,800 + 9,699 + 9,800 1,800 0K	
AXIAL FORCE DESIGN	Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd	
	Force Capacity Capacity Major Minor description	
Axial	9,000 2066,520 4808,636 3755,337 2066,520	
MOMENT DESIGN		
	Meno Me, Ka Mu, Ka MD, Ka Meno L Capacity Capacity	
Major Moment	Proment capacity capacity capacity	
Minor Moment	9,690 289,773 289,773	

5.3 Έλεγχος στην οριακή κατάσταση λειτουργίας

Κύρια δοκός διατομής HEB360

Diagrams for Frame Object D42 (HE360B)	l.
Case SLS3a Items End Length Offset (Location 0.00000 m) Items Major (V2 and M3) Single valued Itend: Jt. 176 Jtend: Jt. 225 0.000000 m) 0.000000 m) Jtend: Jt. 225 0.000000 m)	n) Display Options © Scroll for Values © Show Max Location 3,00000 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN, Concentrated Mo	ments in KN-m) Dist Load (2-dir) 60,92 KN/m at 3,00000 m Positive in -2 direction
Resultant Shear	Shear V2 9,590 KN at 3,00000 m
Resultant Moment	Moment M3 97,4424 KN-m at 3,00000 m
C Absolute C Relative to Beam Minimum © Relative to Beam Ends	Deflection (2-dir) 0,002505 m at 3,0000 m Positive in -2 direction
Reset to Initial Units Done	Units KN, m, C 💌

Επομένως δmax=0,002505<L/250=6/250=0,024

Δευτερεύουσα δοκός διατομής HEB300

	/
Case SLS1 Items End Length Offset (Local 0.000000 m (0.000000 m) Items Major (V2 and M3) Single valued Itemd: Jt: 73 0.000000 m (0.000000 m) J-End: Jt: 78 0.000000 m (7,00000 m) Option Option	ion) Display Options © Scroll for Values © Show Max Location 3,50000 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN, Concentrated Forces in KN, Concentrate in KN, Concentrate in KN, Concentrate in KN, Concent	foments in KN-m) Dist Load (2-dir) 54,50 KN/m at 3,50000 m Positive in -2 direction
Resultant Shear	Shear V2 -2,605 KN at 3,50000 m
	-
Resultant Moment	Moment M3 110,8551 KN-m at 3,50000 m
Resultant Moment Deflections C Absolute C Relative to Beam Minimum © Relative to Beam End	Moment M3 110,8551 KN-m at 3,50000 m Deflection (2-dir) 0,006267 m at 3,50000 m Positive in -2 direction

Επομένως δmax=0,006267<L/250=7/250=0,028

5.4 Περιορισμών βλαβών

Σύμφωνα με τον κανονισμό και τα όρια που επιβάλλει, δηλαδή :

- 5‰για ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με μη-φέροντα στοιχεία από ψαθυρό υλικό συνδεδεμένα με το φορέα (πχ γυαλί, τούβλα)
- 7‰ για μη ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με πλάστιμα μη-φέροντα στοιχεία (πχ πανέλα)

		Γωνιακέω	ς παραμορφώσε	ας	
Όροφος	Υψος ορόφου Η	U_1	U1/H	U2	U2/H
4ος	4	0,0047	0,001175	0,000000000624	1,56*10 ⁻¹¹
3ος	4	0,004	0,001	0,000000001302	3,255*10 ⁻¹¹
2ος	4	0,0032	0,0008	0,0000000007604	1,901*10 ⁻¹¹
1ος	4	0,0022	0,00055	0,000000008277	2,06925*10 ⁻¹¹
ισόγειο	5	0,0011	0,00022	0,000000001031	2,062*10 ⁻¹¹

Πίνακας 5.12: Αποτελέσματα ανάλυσης για γωνιακές παραμορφώσεις

Οι γωνιακές παραμορφώσεις που προέκυψαν από την ανάλυση ικανοποιούν τις προϋποθέσεις.

5.5 Σεισμική συμπεριφορά

Σε αυτό το σημείο παρασιάζονται τα χαρακτηριστικά των ιδιομορφών όπως εμφανίζονται στο πρόγραμμα :

Πίνακας 5.13	: Χαρακτηριστι	κά ιδιομορφώ	ν
--------------	----------------	--------------	---

			М	lodal Partio	cipating Mas	s Ratios				
File V	/iew Format-I	Filter-Sort Se	lect Options							
Units: 7	As Noted				Mod	lal Participating N	lass Ratios			⊒
					J.					
	OutputCase	StepType Towt	StepNum	Period	UX	UY	UZ	SumUX	SumUY	1
	MODAL	Mode	1	0.858526	<u> </u>	0.6594	1.384E-18	0 nicess	0.6594	
_	ΜΟΠΔΙ	Mode	2	0.827973	0.66103	0,0000	5 193E-19	0.66103	0.6594	
	MODAL	Mode	3	0.636029	0,00,000	0	2 413E-18	0.66103	0.6594	
	MODAL	Mode	4	0,261536	1.662E-17	0.10656	2,953E-15	0.66103	0.76597	
	MODAL	Mode	5	0.26057	0.10004	1.726E-16	2.076E-14	0.76107	0.76597	
	MODAL	Mode	6	0.203547	2.632E-17	9.656E-17	1.672E-14	0.76107	0.76597	
	MODAL	Mode	7	0.145161	0.01931	7.417E-17	4,475E-13	0.78038	0,76597 (
	MODAL	Mode	8	0,14284	2,865E-15	0,0189	1,148E-13	0,78038	0,78486	
	MODAL	Mode	9	0,124859	1,379E-15	1,593E-16	0,32179	0,78038	0,78486	
	MODAL	Mode	10	0,123711	00000008346	6,954E-15	2,201E-13	0,78038	0,78486	
	MODAL	Mode	11	0,122226	2,878E-15	1,169E-14	0,02742	0,78038	0,78486	
	MODAL	Mode	12	0,121847	3,614E-15	0,000002852	1,678E-14	0,78038	0,78486	
	MODAL	Mode	13	0,120668	1,376E-14	3,406E-17	7,572E-14	0,78038	0,78486	
	MODAL	Mode	14	0,120385	0,000003053	1,517E-15	9,888E-14	0,78039	0,78486	
	MODAL	Mode	15	0,120308	4,369E-16	2,146E-14	0,03282	0,78039	0,78486	
	MODAL	Mode	16	0,119259	1,105E-15	0,000003218	5,082E-16	0,78039	0,78487	
	MODAL	Mode	17	0,118065	1,249E-15	4,754E-16	0,02187	0,78039	0,78487	
	MODAL	Mode	18	0,116957	0,0000001032	4,188E-15	3,506E-14	0,78039	0,78487	
	MODAL	Mode	19	0,115712	1,593E-14	5,66E-15	0,00364	0,78039	0,78487	
	MODAL	Mode	20	0,115423	5,349E-20	4,578E-19	2,948E-19	0,78039	0,78487	-
•									•	
Record		1 F of	85					Add Tables	Done]

			М	odal Partic	ipating Ma	ss Ratios				
File V	/iew Format-F	Filter-Sort Sel	ect Options							
Units: /	As Noted				Mo	dal Participating	Mass Ratios			F
					J					_
	0	C1 T	C1N	Desiral		19	117	C	C	_
	Text	Text	Unitless	Sec	Unitless	Unitless	∪∠ Unitless	Unitless	Unitless	
	MODAL	Mode	67	0,028675	0,00015	000000001676	00000000842	0,78799	0,99951	1
	MODAL	Mode	68	0,028674	2,274E-17	9,197E-14	0,00044	0,78799	0,99951	
	MODAL	Mode	69	0,028637	1,484E-17	000000005077	000000001377	0,78799	0,99951	
	MODAL	Mode	70	0,028637	1,293E-18	0,00001619	2,821E-14	0,78799	0,99953	
	MODAL	Mode	71	0,028632	7,167E-17	0,0000002525	2,536E-13	0,78799	0,99953	
	MODAL	Mode	72	0,028632	1,008E-17	000000007518	0,00167	0,78799	0,99953	
	MODAL	Mode	73	0,028607	0,00005654	000000001211	4,019E-13	0,78805	0,99953	
	MODAL	Mode	74	0,028607	2,892E-17	000000001554	0,00866	0,78805	0,99953	
	MODAL	Mode	75	0,02809	1,635E-16	4,335E-13	0,01097	0,78805	0,99953	
	MODAL	Mode	76	0,028086	7,663E-15	0,00001194	4,382E-17	0,78805	0,99954	
	MODAL	Mode	77	0,028085	0,00161	00000003036	3,395E-14	0,78966	0,99954	
	MODAL	Mode	78	0,028074	1,38E-15	8,521E-13	2,835E-14	0,78966	0,99954	
	MODAL	Mode	79	0,027383	0,19403	4,188E-13	1,208E-13	0,98369	0,99954	
	MODAL	Mode	80	0,026756	4,501E-16	000000004741	0,0022	0,98369	0,99954	
	MODAL	Mode	81	0,026752	4,965E-16	6,785E-13	2,264E-15	0,98369	0,99954	
	MODAL	Mode	82	0,02674	1,513E-16	0,0000664	1,875E-13	0,98369	0,99961	
	MODAL	Mode	83	0,026685	0,01572	000000004763	8,467E-16	0,99941	0,99961	
	MODAL	Mode	84	0,026523	6,533E-16	000000000115	0,01734	0,99941	0,99961	
	MODAL	Mode	85	0,026498	0,000003456	6,21E-14	8,806E-14	0,99941	0,99961	
									Þ	
Record		1 D DI of	85					Add Tables	Done	1
										-

Όπως παρατηρούμε από τους δείκτες sumUX και sumUY ότι οι 85 ιδιομορφές που πήραμε ήταν πάνω από το 90% των δρώσων ιδιομοτφικών μαζών.

Οι ιδιομορφές δεν παρουσιάζονται αναλυτικά σε αυτό το σημείο λόγω του ότι δεν παρουσιάζουν κάποια ιδιαίτερη διαφορά στην μορφή τους σε σχέση με αυτές του αρχικού φορέα.

6 Ανάλυση και διαστασιολόγηση φορέα με μετάθεση των συνδέσμων δυσκαμψίας της διεύθυνσης x-x'

6.1 Περιγραφή του κτιρίου

Σε αυτή την επίλυση οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση y παρέμειναν στην ίδια θέση (περιμετρικά) ενώ οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση x τοποθετήθηκαν κατά μία θέση πιο μέσα, όπως φαίνεται στο παρακάτω σχήμα:

Σχήμα 6.1: Κάτοψη μεταλλικού κτιρίου με σχηματική απεικόνιση των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Μετά από δοκιμές η διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας άλλαξε και έγινε SHS 180.180.10. Τα υποστυλώματα διατομής 2HEB360, οι κύριες δοκοί διατομής HEB360, οι δευτερεύουσες δοκοί HEB300 και οι διαδοκίδες διατομής IPE240 παρέμειναν ως έχουν.

6.2 Έλεγχος στην οριακή κατάσταση αστοχίας

6.2.1 Έλεγχος υποστυλωμάτων

Επιλέγουμε για έλεγχο το μέλος SIS20, υποστύλωμα του ισογείου, το οποίο είχαμε ελέγξει και στον αρχικό φορέα. Το μέλος SIS20 έχει διατομή 2HEB360 της οποίας τα χαρακτηριστικά έχουν παρουσιαστεί παραπάνω.

Τα αποτελέσματα της ανάλυσης φαίνονται παρακάτω:

Frame ID Design Code	Steel SIS20 Eurocode 3-	Stress Check	Ana Des	ation (lysis Sections and Sect	Eurocc	ode 3-2005) 2HEB360 2HEB360		
COMBO	STATION /-	MOMENT I	NTERACT	ION CHE	СК	-//-MAJ-SHR	MIN-SHR-	-/
ID	LOC	RATIO =	AXL +	B-MAJ	+ B-MI	N RATIO	RATIO	
ULS2a	2,50	0,723(C) =	0,722 +	0,001	+ 0,00	0 0,000	0,000	A
ULS2a	5,00	0,723(C) =	0,721 +	0,002	+ 0,00	0 0,000	0,000	
ULS2b	0,00	0,728(C) =	0,723 +	0,005	+ 0,00	0 0,000	0,000	
ULS2b	2,50	0,723(C) =	0,722 +	0,001	+ 0,00	0 0,000	0,000	
ULS2b	5,00	0,723(C) =	0,721 +	0,002	+ 0,00	0 0,000	0,000	
ULS3	0,00	0,728(C) =	0,723 +	0,005	+ 0,00	0,000	0,000	Υ.
− Modify/Shov	w Overwrites writes	– Display Detail:	s for Select	ed Item — ails		Displa	y Complete Det Tabular Data	ails —
© Strength	C Deflection	1	OK]	Canc	el	Sty Ta	lesheet: Defaul able Format File	t

Πίνακας 6.1: Πίνακας ανάλυσης μέλους SIS20 για όλους τους συνδυασμούς αστοχίας

Πίνακας 6.2: Πίνακας ανάλυσης μέλους SIS20 για τον συνδυασμό αστοχίας ULS3

X			Stee	I Stress Check	k Data Eurocoo	de 3-2005	×
File							
		rov.					
Eurocode 3-2005 ST	EEL SECTION CH	EGK					
LOMDU : ULS3							
011115 . KH, H, G							
Frame : SIS20	Design	Sect: 2HEB36	9				
X Mid : 35,000	Design	Type: Column					
Y Mid : 12,000	Frame T	ype : Braced	Frame				
Z Mid : 2,500	Sect Cl	ass : Class	3				
Length : 5,000	Major A	xis : 0,000	degrees coun	terclockwis	e from local	. 3	
Loc : 0,000	RLLF	: 1,000					
Area : 0,035	SMajor	: 0,003	rMajor	: 0,122	AVMa	ijor: 0,019	
IMajor : 5,189E-04	SMinor	: 0,003	rMinor	: 0,122	AUMi	.nor: 0,019	
IMinor : 5,189E-04	ZMajor	: 0,004	E	: 2100000	10,00		
1xy : 0,000	ZMinor	: 0,004	Fy	: 355000,0	188		
STRESS CHECK ENDER							
Location		M33	M22	112	113	т	
0.000	-5369-616	6.715	6.666	1.928	6.666	6.666	
	5001,010		.,	.,	0,000	0,000	
PMM DEMAND/CAPACIT	Y RATIO						
Governing	Total	Р	MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check	
(6.61)	0,728 =	0,723 +	0,005 +	0,000	1,000	OK	
AXIAL FORCE DESIGN							
	Ned	Nc ,Rd	Nt,Rd	Nb33,Rd	Nb22,Rd		
	Force	Capacity	Capacity	Major	Minor		
Axial	-5369,616	7422,912 1	1204,688	7422,912	8086,100		
MUMENT DESIGN	Mod	Me Dd	Mu Dd	Mb Dd			
	Memorit	Pic,K0	riv,Kū	PiD,KQ			
Major Memont	6 71E	non oon	028 208	non oon			
Minor Moment	0,715	020 200	750,200	750,200			
HINDE HOMEHIC	0,000	200,200	200,200				

Ο δείκτης Ratio για το μέλος SIS20 προκύπτει από την ανάλυση 0,728 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

6.2.2 Έλεγχος κύριας δοκού

Ο έλεγχος της κύριας δοκού θα γίνει στο μέλος D42 όπως και προηγουμένως , για λόγους σύγκρισης.

Frame ID	Steel	Stress Ch	eck Ir	nform Ana	ation (lysis Sec	(Eu tion	HE36	3-2005) 08		
Design Code	Eurocode	3-2005		Des	ign Secti	on	JHE36	OB		
COMBO	STATION /	MOMEN	I INT	ERACTI	ION CHI B-MAJ	ECF	(//- B-MIN	-MAJ-SHR	-MIN-SHR- RATIO	1
111.519	3 50	0.069(C)	= 0	000 +	0 069	+	0 000	0.373	0 000	
ULS19	4,00	0,005(C)	= 0,	000 +	0.047	+	0,000	0.395	0,000	<u></u>
ULS19	4,50	0,012(C)	= 0.	000 +	0.012	÷	0,000	0,417	0,000	
ULS19	5,00	0,038(C)	= 0,	000 +	0,038	+	0,000	0,438	0,000	
ULS19	5,50	0,098(C)	= 0,	000 +	0,098	+	0,000	0,460	0,000	
ULS19	6,00	0,171(C)	= 0,	000 +	0,171	+	0,000	0,482	0,000	Υ.
_ Modify/Sho Over	w Overwrites rwrites	– Display D	etails fo	r Seleci Deta	ed Item-			Display C	omplete Deta pular Data	ails —
© Strength	C Deflection	n [(<u>Ö</u> K		Cano	cel		Styles Table	heet: Default • Format File	

Πίνακας 6.3: Πίνακας ανάλυσης μέλους D42 για όλους τους συνδυασμούς αστοχίας

Πίνακας 6.4: Πίνακας ανάλυσης μέλους D42 για τον συνδυασμό αστοχίας ULS19

Ο δείκτης Ratio για το μέλος D42 προκύπτει από την ανάλυση 0,171 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

6.2.3 Έλεγχος κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Ο έλεγχος των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας θα γίνει στο μέλος DIS2 όπως και προηγουμένως, για λόγους σύγκρισης.

Frame ID Design Code	DIS2 Eurocode	3-2005	Ana Des	lysis Sectior ign Section	TUBO	0180×180×10 0180×180×10		
COMBO	STATION /	MOMENT I	NTERACT	ION CHEC	K//	-MAJ-SHR	MIN-SHR-	,
10	LOC	RATIO =	AXL +	B-MAJ +	B-MIN	RATIO	RATIO	
ULS2a	8,60	0,473(C) =	0,473 +	0,000 +	0,000	0,004	0,000	^
ULS2b	0,00	0,478(C) =	0,478 +	0,000 +	0,000	0,004	0,000	
ULS2b	4,30	0,532(C) =	0,475 +	0,057 +	0,000	0,000	0,000	
ULS2b	8,60	0,473(C) =	0,473 +	0,000 +	0,000	0,004	0,000	
ULS3	0,00	0,478(C) =	0,478 +	0,000 +	0,000	0,004	0,000	
ULS3	4,30	0,532(C) =	0,475 +	0,057 +	0,000	0,000	0,000	4
Modify/Show	v Overwrites- vrites	— Display Detail	s for Selec Det	ted Item		Display C	omplete Deta ular Data	ils—
Strength	C Deflectio	on 🚺	0K	Cancel		Styles Table	neet: Default Format File	

Πίνακας 6.5: Πίνακας ανάλυσης μέλους DIS2 για όλους τους συνδυασμούς αστοχίας

Πίνακας 6.6: Πίνακας ανάλυσης μέλους DIS2 για τον συνδυασμό αστοχίας ULS3

×			Ste	el Stress Check	c Data Eurocode 3-2005	×
File						
Europada 2-288E ST		ev l				Units KN m C 💌
Combo : ULS3	EL SEGIION GHE	LK .				
Units : KN. m. C						
Frame : DIS2	Design S	ect: IUBU18	0X180X10			
A MILU : 10,500	Examo Tu	ope: Brace	Examo			
7 Mid : 2.588	Sect Cla	ss : Class	1			
Length : 8,602	Major Ax	is : 0,000	degrees cou	nterclockwis	e from local 3	
Loc : 4,301	RLLF	: 1,000				
Area : 0,007	SMajor :	3,652E-04	rMajo	r : 0,070	AVMajor: 0,004	
IMajor : 3,287E-05	SMinor :	3,652E-04	rMino	r : 0,070	AVMinor: 0,004	
IMINOP : 3,28/E-05	ZMajor : ZMinor :	4,340E-04	E	2100000	10,00	
1xy . 0,000	ZHINDE :	4,3400-04	ry	. 355000,0	100	
STRESS CHECK FORCES	& MOMENTS					
Location	P	M33	M22	U2	U3 T	
4,301	-340,272	5,424	0,000	0,000	0,000 0,000	
	ROTIO					
Governing	Total	Р	MMajor	MMinor	Ratio Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit Check	
(6.61)	0,532 =	0,475 +	0,057	+ 0,000	1,000 OK	
AXIAL FORCE DESIGN						
	Ned Forco C	NC,KO	NC,KO	mD33,Kd	Minor	
Avial	-340 272	716 113	219 <u>4</u> 545	716 113	716 113	
mini	UTUILIE		,545			
MOMENT DESIGN						
	Med	Mc ,Rd	Mv,Rd	Mb,Rd		
	Moment C	apacity (Capacity	Capacity		
Major Moment	5,424	140,064	140,064	140,064		
Minor Moment	0,000	140,064	140,064			

Επειδή από την ανάλυση προέκυψε ότι πρέπει να αυξήσουμε τη διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας σε SHS180.180.10 κάνουμε έναν ενδεικτικό έλεγχο στο μέλος DIS13.

rame ID esign Code	DIS13 Eurocode	Ar De	ialysis Secti esign Sectio	on n	TUB0180×180× TUB0180×180×	180×180×10 180×180×10		
OMBO	STATION /	MOMEN	T INTERAC	TION CHE	ск	//-MAJ-SHR	MIN-SHR-	1
D	LOC	RATIO	= AXL	+ B-MAJ	+ B-N	IN RATIO	RATIO	
LS2a	7,81	0,226(C)	= 0,226	+ 0,000	+ 0,0	0,003	0,000	~
LS2b	0,00	0,231(C)	= 0,231	+ 0,000	+ 0,0	0,003	0,000	
LS2b	3,91	0,266(C)	= 0,228	+ 0,038	+ 0,0	00 0,000	0,000	
LS2b	7,81	0,226(C)	= 0,226	+ 0,000	+ 0,0	0,003	0,000	
LS3	0,00	0,231(C)	= 0,231	+ 0,000	+ 0,0	0,003	0,000	
LS3	3,91	0,266(C)	= 0,228	+ 0,038	+ 0,0	00 0,000	0,000	~
Modify/Show	v Overwrites- writes	– Display D	etails for Sele	cted Item-		Displa	y Complete Deta Tabular Data	ails-
Modify/Show	v Overwrites writes	– Display D	etails for Sele	cted Item-		Displa	y Complete I Tabular Data	Deta

Πίνακας 6.7: Πίνακας ανάλυσης μέλους DIS13 για όλους τους συνδυασμούς αστοχίας

Πίνακας 6.8: Πίνακας ανάλυσης μέλους DIS13 για τον συνδυασμό αστοχίας ULS3

×			Ste	el Stress Check	Data Eurocode 3-2005	×
File						
Eurocode 3-2005 STE	EL SECTION CH	FCK				Linits KN m C 💌
Combo : ULS3 Units : KN, m, C						
Frame : DIS13	Design	Sect: TUB018	0X180X10			
X Mid : 42,000	Design	Type: Brace				
Y Mid : 3,000	Frame T	ype : Braced	Frame			
2 M1d : 2,500	Sect C1	ass : Class	1			
Loc - 3 985	RLLE	- 1 888	uegrees cou	UCELCIOCKWIS	6 LLON TOPAT 9	
		,				
Area : 0,007	SMajor	: 3,652E-04	rMajo	r : 0,070	AVMajor: 0,004	
IMajor : 3,287E-05	SMinor	: 3,652E-04	rMino	r : 0,070	AVMinor: 0,004	
IMinor : 3,287E-05	ZMajor	: 4,340E-04	E	: 2100000	0,00	
1xy : 0,000	ZMinor	: 4,340E-04	Fy	: 355000,0	88	
STRESS CHECK FORCES	& MOMENTS					
Location	P	M33	M22	U2	U3 T	
3,905	-193,198	4,221	0,000	0,000	0,000 0,000	
Governing	Total	Р	MMaior	MMinor	Ratio Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit Check	
(6.61)	0,266 =	0,228 +	0,038	+ 0,000	1,000 OK	
AXIAL FURCE DESIGN	Mod	No. Dd	NH Da	NESS DA	NE22 Dd	
	Force	Canacitu	Canacitu	Major	Minor	
Axial	-193,198	845,552	2194,545	845,552	845,552	
MOMENT DESIGN						
	Med	Mc,Rd	Mv,Rd	Mb,Rd		
Major Moment	nument b 224	тина окъ	160 066	160 066		
Minor Moment	9,221	140,064	140,004	140,004		
nanor nonene	0,000	,				

Ο δείκτης Ratio για το μέλος DIS13 προκύπτει από την ανάλυση 0,266 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

6.2.4 Έλεγχος δευτερεύουσας δοκού

Ο έλεγχος της κύριας δοκού θα γίνει στο μέλος Ε8 όπως και προηγουμένως , για λόγους σύγκρισης.

Πίνακας 6.9: Πίνακας ανάλυσης μέλους Ε8 για όλους τους συνδυασμούς αστοχίας

Frame ID Design Code	E8 Eurocode	3-2005		Analy Desig	isis Sectio In Sectio	on n	HE30	OB OB		
COMBO	STATION /	MOMEN	T INTERA	CTI	ON CHE	СК	//-	-MAJ-SHR	-MIN-SHR-	/
ID	LOC	RATIO	= AXI	, + :	B-MAJ	+	B-MIN	RATIO	RATIO	
ULS3	4,50	0,255(C)	= 0,000	+	0,255	+	0,000	0,128	0,000	~
ULS3	5,00	0,152(C)	= 0,000	+	0,152	+	0,000	0,192	0,000	
ULS3	5,50	0,006(C)	= 0,000	+	0,006	+	0,000	0,255	0,000	
ULS3	6,00	0,180(C)	= 0,000	+	0,180	+	0,000	0,319	0,000	
ULS3	6,50	0,408(C)	= 0,000	+	0,408	+	0,000	0,383	0,000	
ULS3	7,00	0,677(C)	= 0,000		0,677		0,000	0,447	0,000	Y
- Modify/Show Overwrites Display Details for Selected Item Display Complete Details Details Tabular Data										
Strength	C Deflectio	n	OK.		Cance	əl]	Styles Table	neet: Default : Format File	

Πίνακας 6.10: Πίνακας ανάλυσης μέλους Ε8 για τον συνδυασμό αστοχίας ULS3

×	Steel Stress Check Data Eurocode 3-2005	×
File		
Fundanda 2-2885 STE		Unite KN m C 💌
Combo : III S2		
Unite · KN m P		
01115 . 111, 11, 0		
Frame : E8	Design Sect: HE300B	
X Mid : 10,500	Design Type: Beam	
Y Mid : 6,000	Frame Type : Braced Frame	>3
Z Mid : 21,000	Sect Class : Class 2	
Length : 7,000	Major Axis : 0,000 degrees counterclockwise from local 3	
Loc : 7,000	RLLF : 1,000	
Area : 0,015	SMajor : 0,002 rMajor : 0,130 AVMajor : 0,003	
IMajor : 2,517E-04	SMinor : 5,709E-04 rMinor : 0,076 AVMinor : 0,010	
IMinor : 8,563E-05	ZMajor : 0,002 E : 210000000,00	
Ixy : 0,000	ZMinor : 8,700E-04 Fy : 355000,000	
STRESS CHECK FURCES		
Location		
7,000		
	PATTO	
Print DEnindy Christian	Total D MMajor MMinor Patio Status	
Equation	Patio Patio Patio Patio Limit Check	
(6 62)		
(0.02)		
AXIAL FORCE DESIGN		
	Ned Nc.Rd Nt.Rd Nb33.Rd Nb22.Rd	
	Force Capacity Capacity Major Minor	
Axial	0,000 2066,520 4808,636 3755,337 2066,520	
MOMENT DESIGN		
	Med Mc,Rd Mv,Rd Mb,Rd	
	Moment Capacity Capacity Capacity	
Major Moment	-329,656 6,03,177 6,03,177 6,03,177	
Minor Moment	9,090 289,773 289,773	

Ο δείκτης Ratio για το μέλος DIS13 προκύπτει από την ανάλυση 0,677 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

6.3 Έλεγχος στην οριακή κατάσταση λειτουργίας

Κύρια δοκός διατομής HEB360

Diagrams for Frame Object D42 (HE360B)	
Case SLS3a Case End Length Offset (Location Items Major (V2 and M3) Single valued Items Up (0,00000 m) J-End: Jt 176 0,000000 m 0,000000 m 0,000000 m (0,00000 m) 0,000000 m 0,000000 m 0,000000 m (6,00000 m) 0,000000 m 0,000000 m	n) Display Options Scroll for Values Show Max Location 3,00000 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN, Concentrated Mo	ments in KN-m] Dist Load (2-din) 60,92 KN/m at 3,00000 m Positive in -2 direction
Flesultant Shear	Shear V2 10,032 KN at 3,00000 m
Resultant Moment	Moment M3 97,3945 KN-m at 3,00000 m
C Absolute C Relative to Beam Minimum © Relative to Beam Ends	Deflection (2-dir) 0,002502 m at 3,00000 m Positive in -2 direction
Reset to Initial Units Done	Units KN, m, C 💌

Επομένως δmax=0,002502<L/250=6/250=0,024

Δευτερεύουσα δοκός διατομής HEB300

	E8 (HE300B)
Case SLS1 Items Major (V2 and M3) Single valued J-End:	th Offset (Location) Display Options Jt: 73 Scroll for Values Show Max 0.000000 m C Show Max Location D.000000 m C Show Max Location D.000000 m (3,50000 m) Scould mark
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN,	, Concentrated Moments in KN-m) 222,84 24,50 KN/m at 3,50000 m Positive in -2 direction
Resultant Shear	Shear V2 0,106 KN at 3,50000 m
Resultant Moment	Moment M3 111,3485 KN-m at 3,50000 m
C Absolute C Relative to Beam Minimum C Relativ	Deflection (2-dir) 0,006324 m at 3,50000 m Positive in -2 direction ve to Beam Ends

Επομένως δmax=0,006324<L/250=7/250=0,0028

6.4 Περιορισμών βλαβών

Σύμφωνα με τον κανονισμό και τα όρια που επιβάλλει, δηλαδή :

- 5‰για ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με μη-φέροντα στοιχεία από ψαθυρό υλικό συνδεδεμένα με το φορέα (πχ γυαλί, τούβλα)
- 7‰ για μη ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με πλάστιμα μη-φέροντα στοιχεία (πχ πανέλα)

Γωνιακές παραμορφώσεις									
Όροφος	Υψος ορόφου Η	U1	U1/H	U_2	U2/H				
4ος	4	0,005	0,00125	0,000000001162	1,162*10 ⁻¹⁰				
3ος	4	0,0042	0,00105	0,0000000007294	1,8235*10 ⁻¹¹				
2ος	4	0,0033	0,000825	0,0000000004842	1,2105*10 ⁻¹¹				
1ος	4	0,0023	0,000575	0,000000001006	2,515*10 ⁻¹¹				
ισόγειο	5	0,0012	0,0003	0,00000000001137	$2,274*10^{-13}$				

Πίνακας 6.11: Αποτελέσματα ανάλυσης για γωνιακές παραμορφώσεις

Οι γωνιακές παραμορφώσεις που προέκυψαν από την ανάλυση ικανοποιούν τις προϋποθέσεις.

6.5 Σεισμική συμπεριφορά

Σε αυτό το σημείο παρασιάζονται τα χαρακτηριστικά των ιδιομορφών όπως εμφανίζονται στο πρόγραμμα :

	Modal Participating Mass Ratios											
ile 💧	View Format-I	Filter-Sort Se	lect Options									
nits: As Noted Modal Participating Mass Ratios												
	OutputCase Text	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless			
•	MODAL	Mode	1	0,875443	0,6557	0	1,969E-20	0,6557	0			
	MODAL	Mode	2	0,860223	1,628E-19	0,65736	1,181E-18	0,6557	0,65736			
	MODAL	Mode	3	0,616912	4,036E-20	0	5,197E-20	0,6557	0,65736			
	MODAL	Mode	4	0,264046	0,10508	9,9E-16	1,109E-16	0,76078	0,65736			
	MODAL	Mode	5	0,262675	7,172E-15	0,10945	7,387E-16	0,76078	0,76682			
	MODAL	Mode	6	0,187506	7,731E-15	2,028E-15	1,484E-15	0,76078	0,76682			
	MODAL	Mode	7	0,145738	0,01892	3,986E-17	2,078E-15	0,77971	0,76682			
	MODAL	Mode	8	0,142639	2,468E-16	0,01934	2,41E-15	0,77971	0,78615			
	MODAL	Mode	9	0,124678	7,797E-17	4,565E-16	0,44806	0,77971	0,78615			
	MODAL	Mode	10	0,124022	0,0000000476	1,427E-14	9,656E-14	0,77971	0,78615			
	MODAL	Mode	11	0,122868	3,494E-16	9,086E-16	0,02235	0,77971	0,78615			
	MODAL	Mode	12	0,121424	7,433E-15	0,0000007065	3,536E-14	0,77971	0,78615			
	MODAL	Mode	13	0,12065	2,503E-16	2,508E-15	3,587E-17	0,77971	0,78615			
	MODAL	Mode	14	0,119747	2,072E-14	0,0000001839	9,754E-14	0,77971	0,78615			
	MODAL	Mode	15	0,119395	0,0000236	4,707E-16	1,104E-13	0,77973	0,78615			
	MODAL	Mode	16	0,119364	3,596E-15	2,095E-14	0,00454	0,77973	0,78615			
	MODAL	Mode	17	0,117844	4,465E-19	9,217E-15	0,02622	0,77973	0,78615			
	MODAL	Mode	18	0,117391),00000001309	3,424E-13	1,19E-15	0,77973	0,78615			
	MODAL	Mode	19	0,116263	2,152E-14	1,107E-13	0,00214	0,77973	0,78615			
	MODAL	Mode	20	0,105306	0,00641	5,082E-15	2,403E-13	0,78614	0,78615			
•									•			
lecord		1 🕨 🕨 of	85					Add Tables	Done			

Πίνακας 6.12: Χαρακτηριστικά ιδιομορφών
			N	/lodal Partic	ipating Ma	ss Ratios				
File V	/iew Format-f	Filter-Sort Sel	ect Options							
Linite: 6	\s Noted				Mo	dal Participating M	Asse Batios			Ţ
Offica. A	AS MOREA				June	darr artsipatrig r	1035 110(05			
	OutputCase	StepType	StepNum	Period	UX UX	UY	UZ UZ	SumUX	SumUY	
	I ext	lext	Unitiess	0.000740	Unitless	Unitless	Unitiess	Unitiess 0.70015	Unitiess	
	MUDAL	Mode	67	0,028748	5,114E-17	00000000184	0,00011	0,78815	0,99964	
	MUDAL	Mode	68	0,028748	4,017E-17	0,000006203	5,479E-16	0,78815	0,99965	
	MUDAL	Mode	69	0,028679	0,00018	7,057E-13	2,659E-14	0,78833	0,99965	
	MODAL	Mode	70	0,028678	1,45E-16	6,478E-14	7,356E-15	0,78833	0,99965	
	MODAL	Mode	71	0,028638	4,027E-18	5,061E-13	0,00244	0,78833	0,99965	
	MODAL	Mode	72	0,028638	0,000004116	000000001541	2,719E-16	0,78833	0,99965	
	MODAL	Mode	73	0,028604	4,362E-17	5,904E-14	0,00149	0,78833	0,99965	
	MODAL	Mode	74	0,028604	6,861E-17	0,00001043	1,559E-15	0,78833	0,99966	
	MODAL	Mode	75	0,028551	0,00008818	7,748E-13	9,257E-15	0,78842	0,99966	
	MODAL	Mode	76	0,028551	1,092E-17	3,298E-13	2,373E-17	0,78842	0,99966	i l
	MODAL	Mode	77	0,028521	1,268E-16	0,0000009297	1,178E-16	0,78842	0,99966	i
	MODAL	Mode	78	0.028521	1,846E-15	000000001788	0,01342	0,78842	0,99966	í .
	MODAL	Mode	79	0.027643	4.297E-19	000000000128	0.0071	0.78842	0.99966	i
	MODAL	Mode	80	0.027643	0.000003088	000000000519	5.821E-15	0.78842	0.99966	i
	MODAL	Mode	81	0.027624	2.055E-18	0.00004205	4.905E-16	0.78842	0.9997	i
	MODAL	Mode	82	0.027617	4 646E-17	4 133E-14	2 745E-16	0 78842	0,9997	
	MODAL	Mode	83	0.027345	0.2078	1.55E-14	5.659E-16	0.99622	0,9997	
	MODAL	Mode	84	0.026505	9.741E-17	3 261E-13	0.01555	0,99622	0,9997	
	ΜΟΠΔΙ	Mode	85	0.026476	0.000004027	2 276E-14	8.011E-15	0,99623	0,9997	
	MODAL	Mode	00	0,020470	0,000004027	2,2102-14	0,0716-10	0,00020	0,0007	T.
•									•	Г
Record:		1 🕨 附 of	85					Add Tables	Done	ב

Όπως παρατηρούμε από τους δείκτες sumUX και sumUY ότι οι 85 ιδιομορφές που πήραμε ήταν πάνω από το 90% των δρώσων ιδιομοτφικών μαζών.

Οι ιδιομορφές δεν παρουσιάζονται αναλυτικά σε αυτό το σημείο λόγω του ότι δεν παρουσιάζουν κάποια ιδιαίτερη διαφορά στην μορφή τους σε σχέση με αυτές του αρχικού φορέα.

7 Ανάλυση και διαστασιολόγηση φορέα με μετάθεση όλων των συνδέσμων δυσκαμψίας

7.1 Περιγραφή του κτιρίου

Σε αυτή την επίλυση οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση y παρέμειναν στην ίδια θέση (περιμετρικά) ενώ οι κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας κατά τη διεύθυνση x τοποθετήθηκαν κατά μία θέση πιο μέσα, όπως φαίνεται στο παρακάτω σχήμα:

Σχήμα 7.1: Κάτοψη μεταλλικού κτιρίου με σχηματική απεικόνιση των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Μετά από δοκιμές η διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας άλλαξε και έγινε SHS 180.180.10. Τα υποστυλώματα διατομής 2HEB360, οι κύριες δοκοί διατομής HEB360, οι δευτερεύουσες δοκοί HEB300 και οι διαδοκίδες διατομής IPE240 παρέμειναν ως έχουν.

7.2 Έλεγχος στην οριακή κατάσταση αστοχίας

7.2.1 Έλεγχος υποστυλωμάτων

Επιλέγουμε για έλεγχο το μέλος SIS20, υποστύλωμα του ισογείου, το οποίο είχαμε ελέγξει και στον αρχικό φορέα. Το μέλος SIS20 έχει διατομή 2HEB360 της οποίας τα χαρακτηριστικά έχουν παρουσιαστεί παραπάνω.

Τα αποτελέσματα της ανάλυσης φαίνονται παρακάτω:

Frame ID Design Code	Stee SIS20 Eurocode	I Stress Check 3-2005	Inform Ana Des	ation (l lysis Secti ign Sectio	Eurc on n	2HEB	3-2005) 360 360		
COMBO	STATION /	MOMENT IN	TERACT	ION CHE	ск	//-	-MAJ-SHR	MIN-SHR-	/
ID	LOC	RATIO =	AXL +	B-MAJ	+ B-	-MIN	RATIO	RATIO	
ULS2a	2,50	0,665(C) = 0	,664 +	0,001	+ 0,	,000	0,000	0,000	~
ULS2a	5,00	0,665(C) = 0	,663 +	0,002	+ 0,	,000	0,000	0,000	
ULS2b	0,00	0,670(C) = 0	,665 +	0,005	+ 0,	,000	0,000	0,000	
ULS2b	2,50	0,665(C) = 0	,664 +	0,001	+ 0,	,000	0,000	0,000	
ULS2b	5,00	0,665(C) = 0	,663 +	0,002	+ 0,	,000	0,000	0,000	
ULS3	0,00	0,670(C) = 0	,665 +	0,005	+ 0,	,000	0,000	0,000	¥
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Details Tabular Data									
Strength	C Deflectio	m E	K	Cance	9		Stylesł Table	neet: Default Format File	

Πίνακας 7.1: Πίνακας ανάλυσης μέλους SIS20 για όλους τους συνδυασμούς αστοχίας

Πίνακας 7.2: Πίνακας ανάλυσης μέλους SIS20 για τον συνδυασμό αστοχίας ULS3

X Steel Stress Check Data Eurocode 3-2005 X							
File							
Europede 3-2005 STEEL SECTION CHECK	Lipits KN m C 💌						
Units : KN, m, C							
Evame • STS28 Design Sect • 24ER368							
X Mid : 35.000 Design Tube: Column							
Y Mid : 12,000 Frame Type : Braced Frame							
2 Mid : 2,500 Sect Class : Class 3							
Length : 5,000 Major Axis : 0,000 degrees counterclockwise from local 3							
Loc : 9,999 RLLF : 1,999							
9rea - 8 835 SMajor - 8 883 FMajor - 8 122 OUMajor - 8 819							
IMajor : 5,189E-04 SNinor : 0,003 rMinor : 0,122 AUMinor : 0,019							
IMinor : 5,189E-04 ZMajor : 0,004 E : 210000000,00							
Ixy : 0,000 ZMinor : 0,004 Fy : 355000,000							
STRESS SUEDV EDDESS & MOMENTS							
Sinces cation P M33 M22 U2 U3 T							
0,000 -4936,767 6,713 0,000 1,924 0,000 0,000							
PMM DEMAND/CAPACITY RATIO							
Governing 10tal P MMajor MMinor Katio Status							
EQUALIDII NALLU NALLU NALLU LIMIL CHECK							
AXIAL FORCE DESIGN							
Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd							
Force Capacity Capacity Major Minor							
Axial -4936,767 7422,912 11284,688 7422,912 8086,100							
NOMENT DESIGN							
Med Mc,Rd Mv,Rd Mb,Rd							
Moment Capacity Capacity Capacity							
Major Moment 6,713 938,280 938,280 938,280							
Minor Moment 8,000 930,280 930,280							

Ο δείκτης Ratio για το μέλος SIS20 προκύπτει από την ανάλυση 0,670 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

7.2.2 Έλεγχος κύριας δοκού

Ο έλεγχος της κύριας δοκού θα γίνει στο μέλος D42 όπως και προηγουμένως , για λόγους σύγκρισης.

Steel Stress Check Information (Eurocode 3-2005)										
Frame ID	D42			Ana	lysis Sect	ion	HE36	50B		
Design Code	Eurocode	3-2005		Des	ign Sectio	n	HE38	60B		
COMBO	STATION /	MOMEN	T IN	TERACT	ION CHI	CF	(//	-MAJ-SHR	-MIN-SHR-	/
ID	LOC	RATIO	=	AXL +	B-MAJ	+	B-MIN	RATIO	RATIO	
ULS19	3,50	0,069(C)	= 0	,000 +	0,069	+	0,000	0,373	0,000	~
ULS19	4,00	0,047(C)	= 0	,000 +	0,047	+	0,000	0,395	0,000	
ULS19	4,50	0,012(C)	= 0	,000 +	0,012	+	0,000	0,417	0,000	
ULS19	5,00	0,038(C)	= 0	,000 +	0,038	+	0,000	0,438	0,000	
ULS19	5,50	0,098(C)	= 0	,000 +	0,098	+	0,000	0,460	0,000	
ULS19	6,00	0,170(C)	= 0	,000 +	0,170	+	0,000	0,482	0,000	¥
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data										ails —
Strength	C Deflectio	n [<u>(</u>)K	Cano	el		Styles Table	heet: Default • Format File	

Πίνακας 7.3: Πίνακας ανάλυσης μέλους D42 για όλους τους συνδυασμούς αστοχίας

Πίνακας 7.4: Πίνακας ανάλυσης μέλους D42 για τον συνδυασμό αστοχίας ULS19

×	Steel Stress Check Data Eurocode 3-2005	
File		
Eurocodo 2-2885 STE		Units KN m C -
Combo • III \$19		
Units : KN. m. C		
Frame : D42	Design Sect: HE360B	
X M10 : 14,000	Design Type: Beam	
Y M10 : 21,000	Frame Lype : Braced Frame	
2 HLU : 17,000	Sett 61455 - 61455 - 6	
Loc . 6 888	DIE - 1 888	
. 0,000		
Area : 0.018	SMajor: 8.892 rMajor: 8.154 AVMajor: 8.895	
IMajor : 4,319E-04	SMinor : 6,760E-04 rMinor : 0,075 AVMinor: 0,011	
IMinor : 1,014E-04	ZMajor : 0,003 E : 210000000,00	
Ixy : 0,000	ZMinor : 0,001 Fy : 355000,000	
STRESS CHECK FORCES	& MOMENTS	
Location		
0,000	9,000 -125,042 9,000 -173,341 9,000 -1,000E-04	
	RATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Limit Check	
(6.62)	6,170 = 6,000 + 0,170 + 9,000 1,000 0K	
AXIAL FORCE DESIGN		
	Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd	
	Force Capacity Capacity Major Minor	
Axial	6,666 2996,636 5841,364 5143,339 2996,636	
PUPENT DESIGN	Mad Mo Dd Mu Dd Mb Dd	
	Monot Canadity Canadity Canadity	
Major Moment	-105 Kh2 845 877 845 877 845 877	
Minor Moment	6 000 333 055 333 055 3	
nanor nonenc	0,000,000,000	

Ο δείκτης Ratio για το μέλος D42 προκύπτει από την ανάλυση 0,170 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

7.2.3 Έλεγχος κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Ο έλεγχος των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας θα γίνει στο μέλος DIS2 όπως και προηγουμένως, για λόγους σύγκρισης.

	0 2000		Des	ign Sectio	n	TUBC)180×180×10	
STATION /	MOMEN	I INTER	ACT	ION CHE	ск	//	-MAJ-SHR	-MIN-SHR-
LOC	RATIO	= AX	L +	B-MAJ	+ 3	B-MIN	RATIO	RATIO
8,60	0,460(C)	= 0,46	i0 +	0,000	+	0,000	0,004	0,000
0,00	0,465(C)	= 0,46	5 +	0,000	+	0,000	0,004	0,000
4,30	0,519(C)	= 0,46	2 +	0,057	+	0,000	0,000	0,000
8,60	0,460(C)	= 0,46	i0 +	0,000	+	0,000	0,004	0,000
0,00	0,465(C)	= 0,46	5 +	0,000	+	0,000	0,004	0,000
4,30	0,519(C)	= 0,46	52 +	0,057		0,000	0,000	0,000
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data								
	STATION / LOC 8,60 0,00 4,30 8,60 0,00 4,30 v Overwrites writes	STATION /MOMENT LOC RATIO 8,60 0,460(C) 0,00 0,465(C) 4,30 0,519(C) 8,60 0,460(C) 0,00 0,465(C) 4,30 0,519(C) v Overwrites writes	STATION /MOMENT INTER LOC RATIO = AX 8,60 0,460 (C) = 0,46 0,00 0,465 (C) = 0,46 4,30 0,519 (C) = 0,46 0,00 0,465 (C) = 0,46 0,00 0,465 (C) = 0,46 4,30 0,519 (C) = 0,46 4,30 0,519 (C) = 0,46 v Overwrites Display Details for S Image: State St	STATION /MOMENT INTERACT LOC RATIO = AXL + 8,60 0,460 (C) = 0,460 + 0,00 0,465 (C) = 0,465 + 4,30 0,519 (C) = 0,462 + 8,60 0,460 (C) = 0,462 + 8,60 0,460 (C) = 0,460 + 0,00 0,465 (C) = 0,465 + 4,30 0,519 (C) = 0,462 + VOverwrites Display Details for Select writes Details Details	STATION /MOMENT INTERACTION CHE LOC RATIO = AXL + B-MAJ 8,60 0,460 (C) = 0,460 + 0,000 0,00 0,465 (C) = 0,465 + 0,000 4,30 0,519 (C) = 0,462 + 0,057 8,60 0,460 (C) = 0,460 + 0,000 0,00 0,465 (C) = 0,460 + 0,000 0,00 0,465 (C) = 0,465 + 0,000 4,30 0,519 (C) = 0,462 + 0,057 VOverwrites Display Details for Selected Item- writes Details	STATION /MOMENT INTERACTION CHECK LOC RATIO = AXL + B-MAJ + 8,60 0,460 (C) = 0,460 + 0,000 + 0,00 0,465 (C) = 0,465 + 0,000 + 4,30 0,519 (C) = 0,462 + 0,057 + 8,60 0,460 (C) = 0,460 + 0,000 + 0,00 0,465 (C) = 0,460 + 0,000 + 0,00 0,465 (C) = 0,465 + 0,000 + 4,30 0,519 (C) = 0,462 + 0,057 + VOverwrites Display Details for Selected Item	STATION /MOMENT INTERACTION CHECK//- LOC RATIO = AXL + B-MAJ + B-MIN 8,60 0,460 (C) = 0,460 + 0,000 + 0,000 0,00 0,465 (C) = 0,465 + 0,000 + 0,000 4,30 0,519 (C) = 0,462 + 0,057 + 0,000 8,60 0,460 (C) = 0,460 + 0,000 + 0,000 8,60 0,460 (C) = 0,460 + 0,000 + 0,000 8,60 0,465 (C) = 0,465 + 0,000 + 0,000 4,30 0,519 (C) = 0,462 + 0,057 + 0,000 4,30 0,519 (C) = 0,462 + 0,057 + 0,000	STATION /MOMENT INTERACTION CHECK//-MAJ-SHR LOC RATIO = AXL + B-MAJ + B-MIN RATIO 8,60 0,460 (C) = 0,460 + 0,000 + 0,000 0,004 0,00 0,465 (C) = 0,465 + 0,000 + 0,000 0,004 4,30 0,519 (C) = 0,462 + 0,057 + 0,000 0,000 8,60 0,460 (C) = 0,465 + 0,000 + 0,000 0,000 8,60 0,460 (C) = 0,462 + 0,057 + 0,000 0,004 0,00 0,465 (C) = 0,465 + 0,000 + 0,000 0,004 4,30 0,519 (C) = 0,462 + 0,057 + 0,000 0,000 writes Display Details for Selected Item Display C

Πίνακας 7.5: Πίνακας ανάλυσης μέλους DIS2 για όλους τους συνδυασμούς αστοχίας

Πίνακας 7.6: Πίνακας ανάλυσης μέλους DIS2 για τον συνδυασμό αστοχίας ULS3

×			Ste	el Stress Check	CData Eurocode 3-2005	×
File						
Eurocode 3-2885 ST	EL SECTION CHE	CK III				Units KN m C 💌
Combo : ULS3		on l				
Units : KN, m, C						
5			0040.004.0			
Frame : DIS2 V Mid - 10 E00	Design S	ect: 10801	807180710			
Y Mid : 6,888	Erame Tu	ne : Brace	1 Frame			
Z Mid : 2,500	Sect Cla	ss : Class	1			
Length : 8,602	Major Ax	is : 0,000	degrees cou	nterclockwis	e from local 3	
Loc : 4,301	RLLF	: 1,000				
Area : 0,007	SMajor :	3,652E-04	rMajo	r: 0,070	RVMajor: 0,004	
Indjur : 3,287E-05	ZMajor -	3,052E-04 h 3h0E-0h	FILIN	- 2100000	HUMINUF: 0,004	
IXU : 0.000	ZMinor :	4,340F-04	Ēu	: 355000.0	366	
		.,				
STRESS CHECK FURGES		моо	Maa		т по	
LUCACIUN 4 301	-331 161	1133 5 h2h	0 000	6 666		
	001,101	,	0,000	0,000		
PMM DEMAND/CAPACITY	Y RATIO					
Governing	Total	P	MMajor	MMinor	Ratio Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit Check	
(6.61)	0,519 =	0,462	• 0,057	+ 0,000	1,000 OK	
mine ronde bestan	Ned	Nc.Rd	Nt . Rd	Nb33.Rd	Nb22-Rd	
	Force C	apacitu	Capacitu	Major	Minor	
Axial	-331,161	716,113	2194,545	716,113	716,113	
MUMENT DESIGN	Mad	Ma Da	Mu Dd	Mb Dz		
	Memort C	ис,ка	PV,KO	PID,Kd		
Major Moment	5 h2h	apacity 148 864	140 064	148 864		
Minor Moment	0.000	140.064	140.064			

Επειδή από την ανάλυση προέκυψε ότι πρέπει να αυξήσουμε τη διατομή των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας σε SHS180.180.10 κάνουμε έναν ενδεικτικό έλεγχο στο μέλος DIS13.

Steel Stress Check Information (Eurocode 3-2005)									
Frame ID Design Code	Frame ID DIS13 Design Code Eurocode 3-2005			alysis Sectio sign Sectio	n TUB(0180×180×10 0180×180×10			
COMBO	STATION /	MOMENT	I INTERAC	TION CHE	СК//	-MAJ-SHR	MIN-SHR-	/	
ID	LOC	RATIO	= AXL ·	⊢ B-MAJ	+ B-MIN	RATIO	RATIO		
ULS2a	7,81	0,469(C)	= 0,469 -	+ 0,000	+ 0,000	0,003	0,000	~	
ULS2b	0,00	0,473(C)	= 0,473 -	+ 0,000	+ 0,000	0,003	0,000	11 C	
ULS2b	3,91	0,515(C)	= 0,471 .	+ 0,044	+ 0,000	0,000	0,000		
ULS2b	7,81	0,469(C)	= 0,469	+ 0,000	+ 0,000	0,003	0,000		
ULS3	0,00	0,473(C)	= 0,473 .	+ 0,000	+ 0,000	0,003	0,000		
ULS3	3,91	0,515(C)	= 0,471 ·	+ 0,044	+ 0,000	0,000	0,000	Υ	
Modify/Shov	Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data								
C Strength	C Deflectio	n [<u> </u>	Cance	1	Styles) Table	neet: Default Format File		

Πίνακας 7.7: Πίνακας ανάλυσης μέλους DIS13 για όλους τους συνδυασμούς αστοχίας

Πίνακας 7.8: Πίνακας ανάλυσης μέλους DIS13 για τον συνδυασμό αστοχίας ULS3

×			Stee	I Stress Check	Data Eurocode 3-2005	×
File						
Fundanda 2 2885 STE		ev				Unite KN m C 💌
Combo : ULS3	EL SEGIION GRE	-un				Office Internet of the Interne
Units : KN, m, C						
Frame : DIS13	Design S	Sect: TUB0180	X 18 0X 1 0			
X Mid : 35,000	Design 1	fype: Brace	_			
Y M10 : 9,000	Frame Ty	pe : Braced	Frame			
2 MIG : 2,500	Sect Cla	155 : UIASS 1		torolockwic	5 Kom 10021 9	
Length : 7,010	PLIE	- 1 888	iegrees coun	Cer CIUCKWIS	. LLOW TOCAT 9	
. 3,765	nLLr	. 1,000				
Area - 0.007	SMajor	3.652E-84	rMajor	- 0.070	AUMaior: 0.004	
IMajor : 3.287E-05	SMinor :	3.652E-04	rMinor	: 0.070	AUMinor: 0.004	
IMinor : 3,287E-05	ZMajor :	4.340E-04	E	: 21000000	3, 69	
Ixy : 0,000	ZMinor :	4,340E-04	Fy	: 355000,0		
			_			
STRESS CHECK FORCES	S & MOMENTS					
Location	P P	M33	M22	02	03 1	
3,905	-398,428	4,221	0,000	0,000	0,000 0,000	
Governing	Total	P	MMajor	MMinor	Ratio Status	
Equation	Batio	Batio	Batio	Batio	limit Check	
(6.61)	0.515 =	0.471 +	0.044 +	0.000	1.000 OK	
				-		
AXIAL FORCE DESIGN						
	Ned	Nc,Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
	Force (Capacity C	apacity	Major	Minor	
Axial	-398,428	845,552 2	194,545	845,552	845,552	
MOMENT DESIGN						
	Med	Mc ,Rd	Mv,Rd	Mb,Rd		
	Moment (Capacity C	apacity	Capacity		
Major Moment	4,221	140,064	140,064	140,064		
Minor Moment	0,000	140,064	140,064			
	-,					

Ο δείκτης Ratio για το μέλος DIS13 προκύπτει από την ανάλυση 0,515 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

7.2.4 Έλεγχος δευτερεύουσας δοκού

Ο έλεγχος της κύριας δοκού θα γίνει στο μέλος Ε8 όπως και προηγουμένως , για λόγους σύγκρισης.

Πίνακας 7.9: Πίνακας ανάλυσης μέλους Ε8 για όλους τους συνδυασμούς αστοχίας

Frame ID Design Code	E8 Eurocode 3	Stress Ch	eck Inf	form Ana Desi	ation (lysis Secl ign Secti	(Eu tion on	HE30 HE30 HE30	8-2005) 08 08		
COMBO	STATION /-	MOMENT	INTE	RACT	ION CH	ECI	/-</td <td>-MAJ-SHR</td> <td>-MIN-SHR-</td> <td>/</td>	-MAJ-SHR	-MIN-SHR-	/
ID	LOC	RATIO	= A	XL +	B-MAJ	+	B-MIN	RATIO	RATIO	
ULS2b	5,00	0,152(C)	= 0,0	00 +	0,152	+	0,000	0,191	0,000	~
ULS2b	5,50	0,007 (C)	= 0,0	00 +	0,007	+	0,000	0,255	0,000	
ULS2b	6,00	0,179(C)	= 0,0	00 +	0,179	+	0,000	0,319	0,000	
ULS2b	6,50	0,406(C)	= 0,0	00 +	0,406	+	0,000	0,382	0,000	
ULS2b	7,00	0,675 (C)	= 0,0	00 +	0,675	+	0,000	0,446	0,000	
ULS3	0,00	0,678(C)	= 0,0	00 +	0,678	+	0,000	0,447	0,000	¥
Modify/Show Overwrites Display Details for Selected Item Display Complete Details Overwrites Details Tabular Data										
Strength	C Deflection	[ŌK]	Cano	el:		Styles Table	neet: Default Format File	

Πίνακας 7.10: Πίνακας ανάλυσης μέλους Ε8 για τον συνδυασμό αστοχίας ULS3

×	Steel Stress Check Data Eurocode 3-2005	×
File		
		Units I/N or C -
Combo - ULSO		Office IKin, in, C
LOMDU : ULSO		
UNITS . KN, M, C		
Frame : E8	Design Sect: HE300B	
X Mid : 10,500	Design Type: Beam	
Y Mid : 6,000	Frame Type : Braced Frame	
Z Mid : 21,000	Sect Class 2	
Length : 7,000	Major Axis : 0,000 degrees counterclockwise from local 3	
Loc : 0,000	RLLF : 1,000	
Area : 0,015	SMajor : 0,002 rMajor : 0,130 AVMajor : 0,003	
IMajor : 2,51/E-04	SMINOF : 5,789E-94 PMINOF : 9,076 RUMINOF : 9,019	
IMINOF : 8,503E-05		
1xy : 0,000	ZPHINDF: 8,700E-04 Fy : 355000,000	
STRESS CHECK FORCES	8 MOMENTS	
Location	P M33 M22 U2 U3 T	
0,000	0,000 -321,172 0,000 -274,705 0,000 -7,273E-04	
PMM DEMAND/CAPACITY	RATIO	
Governing	Total P MMajor MMinor Ratio Status	
Equation	Ratio Ratio Ratio Ratio Limit Check	
(6.62)	8,678 = 8,888 + 8,678 + 8,888 1,888 0K	
HATHL FURCE DESIGN	Nod No Pd NH Pd Nh22 Pd Nh22 Pd	
	reu nu, nu nu, ku nudo, ku nudo, ku nudo, ku	
04121	6 86 8 2645 52 1985 524 1985 524 275 297 2656 528	
10101		
MOMENT DESIGN		
	Med Mc.Rd Mv.Rd Mb.Rd	
	Moment Capacity Capacity Capacity	
Major Moment	-321,172 603,177 603,177 603,177	
Minor Moment	9,000 280,773 280,773	

Ο δείκτης Ratio για το μέλος Ε8 προκύπτει από την ανάλυση 0,678 και συνεπώς η διατομή κρίνεται επαρκής όσον αφορά τον έλεγχο οριακής αστοχίας.

7.3 Έλεγχος στην οριακή κατάσταση λειτουργίας

Κύρια δοκός διατομής HEB360

Diagrams for Frame Object D42 (HE360B)							
Case SLS3a Items Major (V2 and M3) Single valued	End Length Offset (Location) Display Options I-End: Jt: 176 © Scroll for Values 0.000000 m C Show Max J: 225 Location 0.000000 m [6,00000 m] [6,00000 m] [3 m]						
Equivalent Loads - Free Body Diagram (Concentrated F	Torces in KN, Concentrated Moments in KN-m) 286,23 Dist Load (2-dir) 60,92 KN/m at 3,00000 m Positive in -2 direction						
Resultant Shear	Shear V2 9,820 KN at 3,00000 m						
Resultant Moment	Moment M3 97,3743 KN-m at 3,00000 m						
C Absolute C Relative to Beam Minimum	Deflection (2-dir) 0,002501 m at 3,0000 m Positive in -2 direction Relative to Beam Ends						
Reset to Initial Units Do	one Units KN, m, C 💌						

Επομένως δmax=0,002501<L/250=6/250=0,024

Δευτερεύουσα δοκός διατομής HEB300

Diagrams for Frame Object E8 (HE300B)	
Case SLS1 Image:	1) Display Options C Scroll for Values C Show Max Location 3.5 m
Equivalent Loads - Free Body Diagram (Concentrated Forces in KN, Concentrated Mo 223, 18 198, 98	ments in KN-m) Dist Load (2-dir) 54,50 KN/m at 3,50000 m Positive in -2 direction
Resultant Shear	Shear V2 -0,147 KN at 3,50000 m
Resultant Moment	Moment M3 111,1510 KN-m at 3,50000 m
C Absolute C Relative to Beam Minimum © Relative to Beam Ends	Deflection (2-dir) 0,006301 m at 3,50000 m Positive in -2 direction
Reset to Initial Units Done	Units KN, m, C 💌

Επομένως δmax=0,006301<L/250=7/250=0,028

7.4 Περιορισμών βλαβών

Σύμφωνα με τον κανονισμό και τα όρια που επιβάλλει, δηλαδή :

- 5‰για ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με μη-φέροντα στοιχεία από ψαθυρό υλικό συνδεδεμένα με το φορέα (πχ γυαλί, τούβλα)
- 7‰ για μη ευαίσθητα διαχωριστικά, δηλαδή για κτήρια με πλάστιμα μη-φέροντα στοιχεία (πχ πανέλα)

Γωνιακές παραμορφώσεις									
Όροφος Υψος ορόφου Η		U1	U_1/H	U2	U2/H				
4ος	4	0,0049	0,001225	0,000000003375	8,4375*10 ⁻¹²				
3ος	4	0,0042	0,00105	0,000000003972	9,93*10 ⁻¹²				
2ος	4	0,0033	0,000825	0,000000003416	8,54*10 ⁻¹²				
1ος	4	0,0023	0,000575	0,000000002832	7,08*10 ⁻¹²				
ισόγειο	5	0,0012	0,00024	0,0000000004603	9,206*10 ⁻¹²				

Πίνακας 7.11: Αποτελέσματα ανάλυσης για γωνιακές παραμορφώσεις

Οι γωνιακές παραμορφώσεις που προέκυψαν από την ανάλυση ικανοποιούν τις προϋποθέσεις.

7.5 Σεισμική συμπεριφορά

Σε αυτό το σημείο παρασιάζονται τα χαρακτηριστικά των ιδιομορφών όπως εμφανίζονται στο πρόγραμμα :

	Modal Participating Mass Ratios											
File \	ile View Format-Filter-Sort Select Options											
Units: .	Inits: As Noted Modal Participating Mass Ratios											
	OutputCase Text	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless	-		
•	MODAL	Mode	1	0,858919	0,65912	0	9,343E-20	0,65912	0	-		
	MODAL	Mode	2	0,768804	5,435E-20	0,68069	1,547E-18	0,65912	0,68069			
	MODAL	Mode	3	0,690776	0	0	5,429E-19	0,65912	0,68069			
	MODAL	Mode	4	0,262148	0,10185	1,608E-17	2,151E-16	0,76097	0,68069			
	MODAL	Mode	5	0,245925	9,79E-17	0,08759	8,701E-15	0,76097	0,76829			
	MODAL	Mode	6	0,225826	7,758E-18	6,073E-16	4,342E-15	0,76097	0,76829			
	MODAL	Mode	7	0,145605	0,01879	9,343E-17	3,313E-14	0,77975	0,76829			
	MODAL	Mode	8	0,140511	1,108E-15	0,01714	1,641E-14	0,77975	0,78542			
	MODAL	Mode	9	0,131704	1,584E-14	1,186E-15	6,306E-15	0,77975	0,78542			
	MODAL	Mode	10	0,124323	6,556E-16	1,04E-16	0,36997	0,77975	0,78542			
	MODAL	Mode	11	0,123089	0,000002824	3,768E-16	1,155E-14	0,77976	0,78542			
	MODAL	Mode	12	0,122158	7,713E-16	8,88E-16	0,08504	0,77976	0,78542			
	MODAL	Mode	13	0,120631	1,049E-15	0,000002858	1,557E-13	0,77976	0,78543			
	MODAL	Mode	14	0,118587	2,738E-14	7,312E-15	0,05005	0,77976	0,78543			
	MODAL	Mode	15	0,118151	0,00001205	1,102E-15	6,305E-14	0,77977	0,78543			
	MODAL	Mode	16	0,116393	3,278E-15	5,113E-17	0,00165	0,77977	0,78543			
	MODAL	Mode	17	0,106781	2,662E-15	0,00233	7,059E-13	0,77977	0,78775			
	MODAL	Mode	18	0,105813	5,792E-17	1,126E-16	1,603E-13	0,77977	0,78775			
	MODAL	Mode	19	0,10538	0,00644	3,566E-16	8,257E-15	0,78621	0,78775			
- ,	MODAL	Mode	20	0,101172	3,824E-14	0,00354	9,217E-14	0,78621	0,79129	-		
•									•			
Record		1 🕨 🕨 of	85					Add Tables	Done]		

Πίνακας 7.12: Χαρακτηριστικά ιδιομορφών

	Modal Participating Mass Ratios										
File \	File View Format-Filter-Sort Select Options										
Inits:)	Units: As Noted										
01110.1											
	OutputCase	StepType Tout	StepNum	Period	UX	UY	UZ	SumUX	SumUY		
	MODAL	Mode	67	0.028749	9 203E-15	00000000145	0.00026	0 79916	0 99956		
	ΜΟΡΑΙ	Mode	68	0,020149	3 132E-15	0.0000008771	1 889E-14	0,78816	0,99957		
	MODAL	Mode	69	0.028689	0,00033	000000001111	1.645E-15	0,78849	0,99957		
	MODAL	Mode	70	0.028681	7 398E-15	000000000000000000000000000000000000000	6.814E-16	0,78849	0,99957		
	MODAL	Mode	71	0.028675	1.578E-14	000000006714	0.00069	0,78849	0.99957		
	MODAL	Mode	72	0.028666	0.0000001011	3,932E-13	1.174E-13	0,78849	0,99957		
	MODAL	Mode	73	0.028639	2,897E-15	0,00002099	1,527E-13	0,78849	0,99959	1	
	MODAL	Mode	74	0,028635	1,33E-15	9,556E-14	4,303E-15	0,78849	0,99959		
	MODAL	Mode	75	0,028611	3,068E-15	000000001087	0,00905	0,78849	0,99959		
	MODAL	Mode	76	0,028607	0,00004238	1,794E-16	6,435E-14	0,78853	0,99959	i	
	MODAL	Mode	77	0,028602	3,822E-15	0,000005371	6,289E-15	0,78853	0,9996	i	
	MODAL	Mode	78	0,028599	6,088E-16	000000001211	0,00101	0,78853	0,9996	i l	
	MODAL	Mode	79	0,028551	0,00007051	2,62E-15	2,333E-15	0,7886	0,9996	i	
	MODAL	Mode	80	0,02855	2,126E-15	00000002194	1,164E-14	0,7886	0,9996	i	
	MODAL	Mode	81	0,028521	9,865E-16	0,0000009068	2,389E-14	0,7886	0,9996	i	
	MODAL	Mode	82	0,028521	7,996E-17	00000002228	0,01275	0,7886	0,9996		
	MODAL	Mode	83	0,027344	0,20817	2,419E-15	2,144E-14	0,99677	0,9996		
	MODAL	Mode	84	0,026503	2,3E-15	00000005798	0,01136	0,99677	0,9996		
	MODAL	Mode	85	0,026443	0,00012	00000000288	5,004E-15	0,9969	0,9996		
	1								•	-	
										_	
Record		1 🕨 M of	85					Add Tables	Done]	

Όπως παρατηρούμε από τους δείκτες sumUX και sumUY ότι οι 85 ιδιομορφές που πήραμε ήταν πάνω από το 90% των δρώσων ιδιομοτφικών μαζών.

Οι ιδιομορφές δεν παρουσιάζονται αναλυτικά σε αυτό το σημείο λόγω του ότι δεν παρουσιάζουν κάποια ιδιαίτερη διαφορά στην μορφή τους σε σχέση με αυτές του αρχικού φορέα.

8 Σύγκριση αποτελεσμάτων

Στα προηγούμενα κεφάλαια έγινε διαστασιολόγηση και ανάλυση της κατασκευής για 4 διαφορετικές περιπτώσεις και συνδυασμούς των κατακόρυφων συνδέσμων δυσκαμψίας. Τα αποτελέματα που προέκυψαν συνοψίζονται παρακάτω :

Διατομές αρχικού φορέα :

- Υποστυλώματα διατομής 2HEB 360
- Κύριες δοκοί διατομής ΗΕΒ 360
- Δευτερεύουσες δοκοί διατομής HEB 300
- Διαδοκίδες διατομής IPE 240
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας διατομής RHS 120.120.8

Διατομές 1ης παραλλαγής (με μετατόπιση των συνδέσμων της διεύθυνσης y-y'):

- Υποστυλώματα διατομής 2HEB 360
- Κύριες δοκοί διατομής HEB 360
- Δευτερεύουσες δοκοί διατομής HEB 300
- Διαδοκίδες διατομής IPE 240
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας διατομής RHS 180.180.10

Διατομές 2ης παραλλαγής (με μετατόπιση των συνδέσμων της διεύθυνσης x-x'):

- Υποστυλώματα διατομής 2HEB 360
- Κύριες δοκοί διατομής ΗΕΒ 360
- Δευτερεύουσες δοκοί διατομής HEB 300
- Διαδοκίδες διατομής IPE 240
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας RHS180.180.10

Διατομές 3ης παραλλαγής (με μετατόπιση όλων των συνδέσμων δυσκαμψίας):

- Υποστυλώματα διατομής 2HEB 360
- Κύριες δοκοί διατομής ΗΕΒ 360
- Δευτερεύουσες δοκοί διατομής HEB 300
- Διαδοκίδες διατομής IPE 240
- Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας RHS180.180.10

Παρακάτω θα γίνει μία γενικότερη σύγκριση των 4 περιπτώσεων όσον αφορά το ίδιο βάρος της κατασκευής, τα εντατικά μεγέθη των μελών που μελετήθηκαν προηγουμένως για τον έλεγχο οριακής αστοχίας, η συμπεριφορά της κατασκευής κατά την σεισμική δράση καθώς και οι μετακινήσεις και οι γωνιακές παραμορφώσεις των κόμβων.

8.1 Σύγκριση εντατικών μεγεθών

8.1.1 Αξονική ένταση υποστυλωμάτων

Η σύγκριση των αξονικών δυνάμεων θα πραγματοποιηθεί στο μέλος SIS20 για το οποίο έχουμε ελέγξει προηγουμένως για την επάρκεια της διατομής.

Αξονική Δύναμη Υποστυλωμάτων									
	Μέλος	Διατομή	Συνδυασμός φόρτισης	Axial Force Ned (kN)	Ποσοστιαία μεταβολή (%)				
Κτίριο Α	SIS20	2HEB 360	ULS3	-5376,481					
Κτίριο Β	SIS20	2HEB 360	ULS3	-5290,378	-1,60				
Κτίριο Γ	SIS20	2HEB 360	ULS3	-5369,616	-0,13				
Κτίριο Δ	SIS20	2HEB 360	ULS3	-4936,767	-8,18				

Πίνακας 8.1: Σύγκριση αξονικής έντασης υποστυλωμάτων για το μέλος SIS20

Παρατηρούμε ότι στο κτίριο Γ, όπου οι σύνδεσμοι δυσκαμψίας στη διεύθυνση χ έχουν τοποθετηθεί μια θέση πιο μέσα και οι σύνδεσμοι δυσκαμψίας στη διεύθυνση y έχουν παραμείνει περιμετρικά, δεν υπάρχει σημαντική μείωση της αξονικής έντασης των υποστυλωμάτων. Σε αντίθεση με το κτίριο Δ, όπου όλοι οι σύνδεσμοι δυσκαμψίας έχουν τοποθετηθεί μια θέση πιο μέσα, υπάρχει σημαντική μείωση της αξονικής έντασης των υποστυλωμάτων της τάξεως του 8,18%. Ενώ στο κτίριο Β, όπου οι σύνδεσμοι δυσκαμψίας στη διεύθυνση x έχουν παραμείει περιμετρικά και οι σύνδεσμοι δυσκαμψίας στη διεύθυνση x έχουν παραμείει περιμετρικά και οι σύνδεσμοι δυσκαμψίας στη διεύθυνση x έχουν παραμείει περιμετρικά στο κτίριο Β, όπου οι σύνδεσμοι δυσκαμψίας στη διεύθυνση x έχουν παραμείει περιμετρικά και οι σύνδεσμοι δυσκαμψίας στη διεύθυνση y έχουν τοποθετηθεί μία θέση πιο μέσα, υπάρχει μία μείωση στην αξονική ένταση των υποστυλωμάτων της τάξεως του 1,6%.

8.1.2 Τέμνουσα δύναμη κύριων δοκών

Τα συγκριτικά μεγέθη της τέμνουσας θα προκύψουν από την ανάλυση του μέλους D42, το οποίο έχουμε ελέγξει προηγουμένως στην οριακή κατάσταση αστοχίας.

Τέμνουσα δύναμη Κύριων δοκών									
Μέλος		Διατομή	Συνδυασμός φόρτισης	Shear Force Ved (kN)	Ποσοστιαία μεταβολή (%)				
Κτίριο Α	D42	HEB 360	ULS19	404,347					
Κτίριο Β	D42	HEB 360	ULS19	403,652	-0,17				
Κτίριο Γ	D42	HEB 360	ULS19	404,024	-0,08				
Κτίριο Δ	D42	HEB 360	ULS19	403,910	-0,11				

Πίνακας 8.2: Σύγκριση τέμνουσας δύναμης κύριων δοκών για το μέλος D42

Παρατηρούμε μια αμελητέα μείωση της τέμνουσας.

8.1.3 Ροπή κάμψης κύριων δοκών

Σε αυτό το σημείο γίνεται η σύγκριση της ροπής κάμψης My κατά τον ισχυρό άξονα (M2-2) για το μέλος D42.

Ροπή κάμψεως Κύριων δοκών										
Μέλος		Διατομή	Συνδυασμός φόρτισης	Biaxial Moment Med (kN)	Ποσοστιαία μεταβολή (%)					
Κτίριο Α	D42	HEB 360	ULS19	-126,229						
Κτίριο Β	D42	HEB 360	ULS19	-124,592	-1,3					
Κτίριο Γ	D42	HEB 360	ULS19	-125,901	-0,26					
Κτίριο Δ	D42	HEB 360	ULS19	-125,642	-0,47					

Πίνακας 8.3: Σύγκριση	ροπής κάμψεα	ος κύριων δοκο	ών για το μέλος D42
	F		

Μετά την σύγκριση των εντατικών μεγεθών είναι εμφανές ότι κατά την τοποθέτηση περισσότερων κατακόρυφων συνδέσμων δυσκαμψίας η κατασκευή λειτουργεί με λιγότερα φορτία και συνεπώς αυτό μας δίνει το δικαίωμα να διαστασιολογήσουμε με μικρότερες διατομές.

8.1.4 Αξονική ένταση κατακόρυφων χιαστί συνδέσμων δυσκαμψίας

Πίνακας 8.4: Σύγκριση αξονικής έντασης κατακόρυφων χιαστί συνδέσμων δυσκαμψίας για το μέλος DIS2

Αξονική ένταση κατακόρυφων χιαστί συνδέσμων δυσκαμψίας										
	Μέλος	Διατομή	Συνδυασμός φόρτισης	Axial Force Ned (kN)						
Κτίριο Α	DIS2	RHS120.120.8	ULS3	-131,008						
Κτίριο Β	DIS2	RHS180.180.10	ULS3	-232,934						
Κτίριο Γ	DIS2	RHS180.180.10	ULS3	-340,272						
Κτίριο Δ	DIS2	RHS180.180.10	ULS3	-331,161						

Παρατηρούμε μία αύξηση της αξονικής έντασης των κατακόρυφων χιαστί συνδέσμων δυσκαμψίας, η οποία μας οδήγησε σε αύξηση της διατομής.

8.2 Σύγκριση ιδιομορφών

	Α			В			Г			Δ		
	Т	SumUx	SumUy									
1	1,001674	0,67135	0	0,858526	0	0,6594	0,875443	0,6557	0	0,858919	0,65912	0
2	0,985882	0,67135	0,67465	0,827973	0,66103	0,6594	0,860223	0,6557	0,65736	0,768804	0,65912	0,68069
3	0,659745	0,67135	0,67465	0,636029	0,66103	0,6594	0,616912	0,6557	0,65736	0,690776	0,65912	0,68069
4	0,320671	0,75892	0,67465	0,261536	0,66103	0,76597	0,264046	0,76078	0,65736	0,262148	0,76097	0,68069
5	0,313025	0,75892	0,76463	0,26057	0,76107	0,76597	0,262675	0,76078	0,76682	0,245925	0,76097	0,76829
6	0,211195	0,75892	0,76463	0,203547	0,76107	0,76597	0,187506	0,76078	0,76682	0,225826	0,76097	0,76829
7	0,18106	0,77787	0,76463	0,145161	0,78038	0,76597	0,145738	0,77971	0,76682	0,145605	0,77975	0,76829
8	0,174963	0,77787	0,78242	0,14284	0,78038	0,78486	0,142639	0,77971	0,78615	0,140511	0,77975	0,78542
9	0,128354	0,78401	0,78242	0,124859	0,78038	0,78486	0,124678	0,77971	0,78615	0,131704	0,77975	0,78542
10	0,125069	0,78401	0,78242	0,123711	0,78038	0,78486	0,124022	0,77971	0,78615	0,124323	0,77975	0,78542
11	0,124828	0,78401	0,78784	0,122226	0,78038	0,78486	0,122868	0,77971	0,78615	0,123089	0,77976	0,78542
12	0,124468	0,78401	0,78784	0,121847	0,78038	0,78486	0,121424	0,77971	0,78615	0,122158	0,77976	0,78542

Σύμφωνα με τον παραπάνω πίνακα, παρατηρούμε ότι το κτίριο A, όπου όλοι οι σύνδεσμοι δυσκαμψίας βρίσκονται περιμετρικά, αναπτύσσει τις μεγαλύτερες ιδιοπερίοδους. Τα κτίρια B,Γ και Δ παρουσιάζουν μεγάλη ιδιοπερίοδο στις ιδιομορφές που κινητοποιούν τη μεγαλύτερη μάζα και είναι αρκετά μικρότερη από την αντίστοιχη του κτιρίου A ενώ για τις υπόλοιπες ιδιοπεριόδους η διαφορά αυτή μειώνεται.

8.3 Σύγκριση γωνιακών παραμορφώσεων

Από τους πίνακες των γωνιακών παραμορφώσεων για το κάθε κτίριο, προέκυψε τα παρακάτω διαγράμματα κατά τους άξονες $\chi - \chi$ και y - y.

Πίνακας 8.5: Δίαγραμμα σύγκρισης γωνιακών παραμορφώσεων κατά τον άξονα χ

Είναι φανερό από το παραπάνω διάγραμμα για την διεύθυνση x , ότι το κτίριο A έχει τις μεγαλύτερες γωνιακές παραμορφώσεις κατά x ενώ το κτίριο B τις μικρότερες . Στη διεύθυνση y το κτίρι Δ έχει τις μικρότερες παραμορφώσεις και το κτίριο Γ παρουσιάζει τη μεγαλύτερη γωνιακή του παραμόρφωση στον 1° όροφο.

9 Συμπεράσματα

Ο σχεδιασμός και η κατασκευή του πενταόροφου μεταλλικού κτιρίου γίνεται τόσο με βάση την επάρκειά του σε καταστάσεις αστοχίας και λειτουργικότητας, όσο και με γνώμονα την απαίτηση να αποτελεί μία λειτουργική μονάδα για την απαίτηση των αναγκών για τις οποίες κατασκευάζεται. Για αυτό το λόγο, οι διατομές του ελέγθηκαν από το πρόγραμμα με βάση την ικανοποίηση των ελέγχων σε οριακή κατάσταση αστοχίας και λειτουργικότητας.

Για κάθε παραλλαγή του κτιρίου που μελετήθηκε, έγινε ξεχωριστά διαστασιολόγηση και έλεγχος των διατομών με σκοπό να βελτιστοποιήσουμε την λειτουργικότητα αλλά και την οικονομικότητα του κτρίου.

Σε γενικές γραμμές δεν παρατηρείται μεγάλη μείωση των εντατικών μεγεθών που εξετάστηκαν. Όσον αφορά την αξονική ένταση των κατακόρυφων χιαστί συνδέσμων δυσκμψίας αυτή αυξάνεται όταν δεν είναι τοποθετημένοι περιμετρικά με αποτέλεσμα τη χρήση μεγαλύτερης διατομής,το οποίο αυξάνει και το κόστος της κατασκευής. Τις μικρότερες γωνιακές παραμορφώσεις στη διεύθυνση x έχει το κτίριο B ενώ τις μεγαλύτερες το κτίριο A. Επίσης το κτίριο A παρουσιάζει τις μεγαλύτερες ιδιοπεριόδους σε σχέση με τα άλλα κτίρια.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- Βάγιας Ι, Ερμόπουλος Ι, Ιωαννίδης Γ. 2005. Σχεδιασμός δομικών έργων από χάλυβα με βάση τα τελικά κείμενα των Ευρωκωδίκων. Αθήνα: Εκδόσεις Κλειδάριθμος.
- Βάγιας Ι, Ερμόπουλος Ι, Ιωαννίδης Γ. 2004. Σιδηρές κατασκευές–Παραδείγματα εφαρμογής του Ευρωκώδικα 3, Τόμος ΙΙ. Αθήνα: Εκδόσεις Κλειδάριθμος.
- Βάγιας Ι. 2006. Σύμμικτες κατασκευές από χάλυβα και οπλισμένο σκυρόδεμα, εκδ. 2η. Αθήνα: Εκδόσεις Κλειδάριθμος.
- Βάγιας Ι. 2003. Σιδηρές κατασκευές-Ανάλυση και διαστασιολόγηση. Αθήνα: Εκδόσεις Κλειδάριθμος.
- Chopra A. 2007. Δυναμική των κατασκευών-Θεωρία και εφαρμογές στη σεισμική μηχανική. 3η Έκδοση. Εκδόσεις Μ Γκιούρδας.
- Γιώργος Τσάμπρας 2010. SAP2000 "Ανάλυση και Σχεδιασμός Κατασκευών με Πεπερασμένα Στοιχεία"
- EN1993-1-1, Eurocode3: Design of steel structures, Part1-1:General structural rules, CEN, Brussels,2002
- EN1993-1-1, Eurocode1: Actions on structures, Part 1-1: General actions- Densities, self weight, imposed loads for buildings, CEN, April 2002
- EN 1994-1-1, Eurocode4: Design of composite steel and concrete structures Part 1-1: General rules and rules for buildings., CEN, January 2002
- EN1998-1, Eurocode8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings, CEN, December 2004
- Ερμόπουλος Ι. 2000. Στοιχεία σχεδιασμού μεταλλικών κατασκευών. Αθήνα.
- Ερμόπουλος Ι. 2005. Ευρωκώδικας 1-Βασικές αρχές σχεδιασμού και δράσεις επί των κατασκευών & Ερμηνευτικά σχόλια και παραδείγματα εφαρμογής. 2η Έκδοση, Αθήνα: Εκδόσεις Κλειδάριθμος.
- Εταιρεία Ερευνών Μεταλλικών Έργων (ΕΕΜΕ): Τόμοι πρακτικών Εθνικών Συνεδρίων Σιδηρών Κατασκευών.
- Καρύδη Π. Γ. 1996. Σημειώσεις αντισεισμικής τεχνολογίας. Αθήνα: Εκδόσεις Εθνικού Μετσόβιου Πολυτεχνείου.
- Κατσικαδέλης Ι.Θ. 2003. Δυναμική των Κατασκευών. Τόμος ΙΙ. Αθήνα: Εκδόσεις Εθνικού Μετσόβιου Πολυτεχνείου.
- Berkeley, California, USA «ETABS® Structural and Earthquake Engineering Software, Integrated Analysis, Design and drafting of building systems –Steel Design Manual, Composite Design Manual », Computers and Structures, Inc.
- ΚΤΙΡΙΟ, τεχνικό περιοδικό, Εκδόσεις Επιλογή στη Δόμηση ΕΠΕ
- ΜΕΤΑΛΛΟΝ, τεχνικό περιοδικό, Εκδόσεις New Genesis
- Μιχάλτσος Γ, Ελαφρές Μεταλλικές κατασκευές, Β' Έκδοση, Εκδόσεις «Παπασωτηρίου», Αθήνα 2004
- Ο.Α.Σ.Π-ΣΠΜΕ ,Ελληνικός Αντισεισμικός Κανονισμός (Ε.Α..Κ.), Αθήνα 2001.
- Σπυράκος Κωνσταντίνος. 2004. Ενίσχυση κατασκευών για σεισμικά φορτία. Αθήνα: Τεχνικό επιμελητήριο Ελλάδας.
- Trahair N.S., Bradford M.A., Nethercot D.A., Gardner L., The Behaviour and Design of Steel Structures to EC3