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Introduction 

 

The role of cables in contemporary forms of engineering is fundamental. Cables are used extensively 

as structural members for many applications, ranging from suspension bridge hangers to kite string. 

Because of their participation in wide range of applications, cable mechanics has been subject of intensive 

studies during the last decades.  

Within the field of marine technology mooring, crane operations and towing have been the most 

important applications driving the development of the field forward. Marine cables, towed by ships or 

submarines, have been used in a variety of civil and military applications. Civilian applications include 

acoustic surveying for sub-seabed hydrocarbon reservoirs and for the geophysical mapping of ocean 

basins. Military applications are principally concerned with the detection of submarines. There is also a 

parallel activity, undertaken for many years now, the laying of undersea communication cables across 

virtually all of the world’s oceans.  

On the other hand, in robotics, continuing efforts to establish a more continual presence in the deep 

ocean are requiring a drastic increase in the number of remotely operated vehicles ( ROV ) deployments 

in the ocean floor. Through real time telemetry afforded by the ROV tether, a human operator can control 

the ROV and the vehicle manipulators, through haptic and visual interfaces. Given the need for a human 

presence in the control loop, and the lack of any wireless alternative, the tether is a necessity for ROV 

operation. Thus, it is reasonable to conclude that there is currently a boom in the development of such set-

ups from universities, research institutes, third parties and offshore industries.  

The problem of predicting the time domain dynamic response of moored and towed cable system is 

common in many fields of ocean engineering. Understanding the dynamics of these cable systems is 

crucial for operational and safety concerns. The cable is usually simplified as a flexible tension member 

and its bending stiffness is neglected because of the extremely large ratio of length over cross section 

dimension. The motion of the towed cable usually involves large rigid body motion and small elastic 

stretch. 

Nevertheless, often the physics involved in these problems are very complicated and difficult to 

solve. The marine environment continuously disturbs cable systems through the action of surface water 

waves, currents, subsurface turbulence, internal water waves and other external disturbances, such as the 

motions of the supporting vessel and subsystem. These factors cause nonlinear cable geometry plus the 

dominance of nonlinear hydrodynamic forces, and as a result corresponding equations are highly 

nonlinear and there can be no analytic solution for that reason. Thus, one needs to turn to numerical 

approaches in order to solve the problem under consideration. 

In practice, what usually interests the engineers and designers is the current position of the cable, and 

not its displacement. The way the problem is solved, however, can vary widely depending on the 

application. Modelling methods can be distinguished principally from the way in which they discretize 

the physical system in space. During this particular diploma thesis pursuit, the methods that have been 

tackled, and are the main methods which are usually used to model problems of this kind, are listed 

below: 
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 Lumped mass cable modeling [1, 2, 3, 4, 6]: This method can be considered as a special case of 

the general Finite Element method ( FEM ). It simplifies the coupled nonlinear differential equations of 

motion into ordinary differential equations by lumping the distributed mass, external loads, inertia forces 

of the cable to the specified nodes along the cable. The armored cable is discretized into an assembly of 𝑁 

linear elements. The mass is lumped at the 𝑁 + 1 node points, from 0 to 𝑁. To model the elasticity of the 

true cable, each visco-elastic cable element is idealized as a parallel combination of an ideal spring and 

viscous damper. 

 

 Finite Difference Method [9, 10, 11]: This method was first introduced by Ablow and Schechter 

[9] in 1983, and was later expanded by Milinazzo et al. [10]. The main differential equations that describe 

the dynamics of the cable are of the first order in space and time variables. In order to acquire a solution, 

the main equations need to be discretized, while implementing the necessary boundary conditions, plus 

the compatibility relations which ensure body continuity during and after deformation has taken place. 

 

The above methods , however, are problem specific and are difficult to be implemented in general 

purpose analysis programs for complex geometries with multiple cable branches or different cable 

properties along the length. 

 

 Nodal Position Finite Element Method [14, 15]: In general, the Finite Element Method ( FEM ) 

discretizes the cable structure into a finite number of elements. While each element may have different 

mechanical properties, the equations for each one of them are the same. FEM is simple conceptually, but 

is valid only for small rotation or increment if the large rigid body rotation is analyzed by an incremental 

solution. As a result, we chose to implement a novel method that has been successfully used, which 

solves for the position of an element directly instead of its displacement. 

 

The main focus of this thesis is not only to implement a procedure which predicts the dynamic 

response of a random cable set-up in water environment, but to also transform the derived equations in 

such a manner, so as to bring the final system in a control system - like kind of form for future 

applications. 

 

Thesis structure: In chapters 1 and 2, an overview of Lumped mass and Finite Differences methods is 

presented, while explicating the pros and cons of each one and the reasons why they were in the end 

inferior, for the specific scenario in mind at least, to the NPFEM. 

In chapter 3, the algorithm actually implemented using the NPFEM is presented. The program used to 

simulate the phenomena under consideration has been developed using Matlab®, and was created from 

scratch. 

In chapter 4, simulation results are presented, and compared with other papers’ results for code 

validation and method verification.  

Finally, in chapter 5, guidelines are given for future research and topics that need to be considered. 
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Chapter 1  

Lumped mass parameter method 

 

As stated earlier above, this method can be considered as a special case of the general Finite Element 

method ( FEM ). The method of lumped mass parameter modelling was first introduced by Walton and 

Polachek [8] in 1960. According to their approach, the cable was considered as a concatenation of 

inextensible linear elements. The mass of the cable was concentrated, or lumped, at frictionless spherical 

joints connecting these linear elements. Applying a heuristic procedure, the hydrodynamic, buoyancy and 

gravitational forces acting over the linear elements were also lumped at the node points. This lumping of 

the mass and environmental forces allowed the motion of the cable node points to be represented by a 

series of ordinary differential equations. 

The approach that has been studied during this diploma thesis pursuit [1, 2, 6] simplifies the coupled 

nonlinear differential equations of motion into ordinary differential equations by lumping the distributed 

mass, external loads, inertia forces of the cable to the specified nodes along the cable. The armored cable 

is discretized into an assembly of 𝑁 linear elements. The mass is lumped at the 𝑁 + 1 node points, 0 to 𝑁. 

To model the elasticity of the true cable, each visco-elastic cable element is idealized as a parallel 

combination of an ideal spring and viscous damper. 

To aid in the modelling of the cable, we define an inertial reference frame, and a sequence of moving 

frames attached at points along the cable. A horizontal direction, X, is defined positive to the right, the 

vertical direction, Z, is defined positive downward, and the Y direction completes the right handed 

coordinate system. The lumped mass approximation allows for the motion of each node to be calculated 

independently in the three degrees of freedom, but the elastic internal force of the element constrains the 

motion of the nodes. The calculation of the elastic tension, damping, and hydrodynamic drag forces is 

performed in a body-fixed reference frame. Each cable element has a body frame 𝑝1, 𝑝2 and 𝑞 attached to 

it, where 𝑝1 is normal, 𝑝2 is binormal and 𝑞 is tangent to the cable element. 

 

 
Figure 1. Discrete representation of the marine cable [1] 
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Kinematics: The orientation of each discretized cable element is represented using a z-y-x (𝜓𝑖, 𝜃𝑖,

𝜑𝑖) Euler angle set. These successive rotations align the inertial frame with the i
th
 body frame. If one 

neglects the torsion of the cable, only two of the three Euler angles are required to specify the orientation 

of each cable element. Thus, the initial 𝜓𝑖 rotation is constrained to zero [18]. Applying the specified 

Euler angle set, the rotation matrix 𝑅𝐼𝐵
𝑖  that describes the mapping from local to global coordinates 

(inertial frame) becomes: 

 

cos sin sin sin sin

0 cos sin

sin cos sin cos cos

i i i i i
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  ( 1 ) 

 

The Euler angles can be calculated at any instance of the simulation provided that the endpoints of the 

cable element are known. For example, consider the i
th
 element of the cable that is bounded by nodes 

𝑖 − 1 and 𝑖. When expressed in terms of the body fixed frame, the only non-zero component of the vector 

𝑙𝑖 is in the tangential direction. Thus, it follows that: 
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, where 𝑙𝑖, the length of the i
th
 element at any instant in time is given by: 
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, and 𝑟𝑖 is the position vector, the elements of which describe the location of the i
th
 node in the inertial 

frame. Substitution of (1) into (2), results in the following set of nonlinear equations: 
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Solving the above system of equations yields the following solution for the rotation angles: 
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Internal forces: By the term internal forces, one refers to the forces that are generated by the elasticity 

of the cable elements, which results in the stretch of the elements in the tangent direction.  

According to [4], the tension within the i
th
 cable element  𝑇𝑖 acts in the tangential direction and is 

modeled as a linear function of the tangential strain of the element 𝜀𝑖: 

i i

i i

i u

i

u

T EA

L L

L










  ( 5 ) 

, where: 

 𝐿𝑢
𝑖  is the unstretched length of the corresponding cable element 

 𝐴 is the cross sectional area of the element 

 𝐸 is the effective Young’s modulus of the cable 

It has been observed that during cable motion, the friction between the braids of the cable will 

dissipate energy within the cable structure. Obviously, this calls for some form of damping modeling. 

This phenomenon is modeled as a linear viscous damping effect, with axial force being generated defined 

as follows: 

   1
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, where: 

 𝐶𝐼𝐷 is the internal viscous damping coefficient of the cable structure 

 𝑣
𝑞𝑖
(𝑖)

 is the component of the i
th

 node velocity 𝑣(𝑖) = {𝑣
𝑝1

𝑖
(𝑖)

𝑣
𝑝2

𝑖
(𝑖)

𝑣
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(𝑖)

}
𝑇
in the tangential direction 

External forces: The external forces are a result of the cable structure’s interaction with the 

surrounding environment. They mainly consist of hydrodynamic drag, weight and buoyancy effects. One 

has also to consider applied loads, namely forces that can be defined explicitly in terms of time.  

 

The drag forces can be calculated as follows: 
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, where: 

 ℎ𝑝1
𝑖 , ℎ𝑝2

𝑖 , ℎ𝑞
𝑖  are the hydrodynamic drag components in terms of body fixed representation 

 𝜌𝑤 is the density of the water 

 𝑑𝑐 is the cable diameter 

 𝐶𝐷 is the normal drag coefficient of the cable 

 𝑣𝑖 is the velocity of the geometric center of the element, with respect to the surrounding fluid 

 𝑓𝑝, 𝑓𝑞 are loading functions which modify the drag coefficient, that depend on the incidence angle 

of the relative fluid flow 

The mass and buoyancy of the i
th
 cable element are given by: 

i i

c c c

i i

w c

m V

b gV








. 

 

, where: 

 𝜌𝑐 is the density of the cable 

 𝑔 = {0 0 𝑔}𝑇 is the gravity acceleration, in terms of the inertial frame 

 𝑏𝒊 buoyancy force of the cable element expressed in the inertial frame 

 𝑉𝑐
𝑖 is the volume of the corresponding cable element 

Finally, the effects of added mass are accounted for in the calculation of the cable element mass 

matrix. Using the assumption that there are no added mass effects in the tangential direction, one can 

write the element mass matrix as follows: 

0 0

0 0

0 0

i i

c a
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m m

M m m
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  ( 8 ) 

 

In order to be used in the governing equations of motion, the mass matrix needs to be transformed 

using the rotation matrix 𝑅𝐼𝐵
𝑖 . The mass attributed to the 𝑖𝑡ℎ node is formed from contributions of 

elements above and below the node. Thus: 

   1 1 11 1

2 2

T T
i i i i i i i

I IB B IB IB B IB
M R M R R M R

  
    ( 9 ) 

  



D.Paraskevas, Postgraduate diploma thesis 

Dynamics modelling of an umbilical tether for control purposes using Finite Element Method, Athens 2016 

7 
 

Assembly of forces: Application of Newton’s second law to the nodes of the lumped mass 

representation yields asset of 3(𝑁 + 1) second order differential equations (where 𝑁 is the number of the 

elements in which the cable is discretized into), which govern the motion of the nodes in the 𝑋, 𝑌, 𝑍 

directions. Thus, the equation of translational motion of the 𝑖𝑡ℎ  node of the tether (0 ≤ 𝑖 ≤ 𝑁) becomes: 

 

     

 

1 1 1 1

1 1

1 1

2 2

1
             

2

ii i i i i i i i i

I IB IB
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 ( 10 ) 

 

In order to solve the above equation, the author proposes a transformation of (10) into a system of 

6(𝑁 + 1) first order differential equations to afford the use of a 4
th
 order Runge-Kutta approach, with the 

appropriate boundary conditions (either kinematic or dynamic) at nodes 0 and 𝑁 specified accordingly. 

Assuming a time dependent state vector of the following form: 

 

                           0 0 1 1
T

N N N
Y t r t r t r t r t r t r t


  

 

Given an initial state of the tether, one can augment the node acceleration with the velocities of the 

current tether state to form the first time differential of the state vector �̇�(𝑡𝑘).  This vector is then passed 

to the chosen integration scheme in order to produce 𝑌(𝑡𝑘+1). 

 

The method presented and its’ solution procedure described [1] is pretty much straightforward and 

easily understood conceptually. However, the above mentioned control transformation proved to be 

harder than expected, with no guarantee that it could be effectively used for the desired control purposes 

later on. That was mostly due to the high nonlinearity nature and the non-systematic representation of the 

loads equations. This rendered variable separation and consequent transformation of the problem into a 

meaningful control form a burdensome task. 
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Chapter 2 

Finite differences method 

This method was first introduced by Ablow and Schechter [9], and was some years later expanded by 

Milinazzo et al., who introduced a number of modifications in order to produce a more efficient and 

stable method of computing, applied in towed cable systems [10]. The main differential equations that 

describe the dynamics of the cable are of the first order in space (𝑠) and time (𝑡) variables. In order to 

acquire a solution, the main equations need to be discretized.  

 

Kinematics: During the modelling procedure, the cable is treated as a single curvilinear line. Let 𝑠 

denote the unstretched Lagrangian coordinate along the cable, measured from the origin of the coordinate 

system to a material point on the cable. Usually, the origin is chosen so as to coincide with a boundary, 

and is denoted as 𝑠 = 0. The other endpoint is denoted as 𝑠 = 𝐿.  

The cable is taken to be extensible, so we define 𝑝(𝑡, 𝑠) as the stretched distance to the same material 

point 𝑠, at time 𝑡. The longitudinal strain 𝑒 is defined as follows: 

0

lim 1
s

p s dp
e

s ds

 




     ( 11 ) 

 

The cable cross sectional area is also altered due to elongation. Assuming that the cable has a 

Poisson’s ratio of  
1

2
 means that its’ volume is preserved after stretching. The change in cable diameter 𝑑 

for the typical case of a cross-sectional area is: 

 

 
1

21
s

d d e   

 

The coordinate system is resolved into the tangent, normal and binormal directions, given by the unit 

vectors  �̂�, �̂�, �̂� respectively. The tangential direction is defined as tangent to the cable, pointing in the 

direction of increasing 𝑠. The normal direction is perpendicular to  �̂� and the binormal direction is defined 

in such a way the resulting system is orthogonal and right-handed. 

 

 
Figure 2. Coordinate system and Euler rotation sequence [11] 
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The transformation between the Lagrangian coordinates 𝑥, 𝑦, 𝑧 and the fixed coordinates 𝑋, 𝑌, 𝑍 is 

accomplished through a set of rotations (Euler angles). 
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The balance of forces at a point of a cable may be written as follows: 

0T W F B
S


   


  ( 13 ) 

 

, where: 

 𝑆 is the distance along the stretched cable 

 𝑇 is the tension 

 𝑊 is the weight minus buoyancy per unit length 

 𝐹 is the force exerted on the cable by the fluid per unit length 

 𝐵 is the d’Alembert force of the cable motion per unit length 

The cable is assumed to be elastic, thus extensible, and to have a circular cross section area. Without 

loss of generality, consider the 2d cable dynamics problem. The governing equations of motion are as 

following: 
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, where the cable properties are defined by: 

 𝑇(𝜀) is the tension strain relationship 

 𝑤0 is the wet weight of the cable 

 𝑚, 𝑚𝑎 are the mass and added mass per unit length of the structure, respectively 

 𝑑 is the diameter of the cable 

 𝐶𝑑𝑛
, 𝐶𝑑𝑡

 are the normal and tangential drag coefficients 

The motion and force state of the cable are completely described by the following 6 d.o.f: 

 tangential and normal velocities, 𝑢 and 𝑣 

 strain 𝜀 

 shear force 𝑆𝑛 

 Inclination 𝜑 

 and the curvature of the cable 𝛺3, which is introduced to remove higher order derivatives of 𝜑 

Finally, the sea current is given in the global vertical and horizontal coordinates by 𝑈 and 𝑉 

respectively. In this case, 𝑢𝑟 and 𝑣𝑟 represent the relative velocities in local coordinates, which are 

defined as follows: 

cos sin

sin cos

r

r

u u U V
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If one wishes to write the problem in matrix form:  
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, the matrices have to be defined as follows: 

 

 

 

 

3
, , , , ,

0 0 0 0

0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

T

n

a

Y S u v

m mv

m m

M

 



 



 




 

 
 
 
 
 
 
 
 
 

 ( 16a ) 

 

 



D.Paraskevas, Postgraduate diploma thesis 

Dynamics modelling of an umbilical tether for control purposes using Finite Element Method, Athens 2016 

11 
 

 

 

 
3

0

3

0

1
cos 1

2

1

' 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0

1
sin 1

2

0

0

t

n

w D r r

n

n

w D r r

w C u u

S

T S

T

v
K

u

EI

d

w dC v v

F

  







  

  








 





 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  ( 16b ) 

 

Vector 𝑌 essentially contains the problem’s state variables.  

The discretization of the governing’s partial differential equation can procced in several ways. A 

straightforward method is to use finite differences in both time and space using the box method. The 

discretization is applied on the half grid points. As a result, the method is supposed to be second order 

accurate. During our avocation with it, this has been mathematically proven to be true (see appendix for 

more information on the subject). 

 

 

Figure 3. Stencil of the box discretization method 
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As was stated earlier, in our case, we need to cast the problem in some kind of form that resembles 

the classical control form structure, implying �̇� = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) . In order to do this, the first step 

is to apply the spatial discretization at half grid points. This will result in the vanishing of the space 

variable from the partial differential governing equation, thus transforming it in a differential equation 

with respect to time only. Application of spatial discretization at each half grid point yields: 
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, with the matrices presented above being defined as: 
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Writing the equations for all nodes, one gets: 
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 Assembling the blocks associated with all nodes, we derive a form of global equation, as follows: 
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 ( 18b ) 

 

 Since we are going to investigate the dynamics from a control perspective, at some point in the 

process, matrix 𝑀𝐺 will have to be inverted. This means that one has to make sure that 𝑀−1 exists. 

Unfortunately, typical boundary conditions are described in terms of state variables, not their derivatives 

(usually being kinematic constraints or known forces at both ends). This means that typically 𝐴0 = 𝐴𝑁 =

03𝑥6, which obviously renders matrix 𝑀𝐺  non-invertible. 
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Appendix 

 

Box method accuracy: In order to verify the stability and the accuracy of the proposed method, it is 

common practice to consider the application of the method to the corresponding single degree of freedom, 

linear, homogenous problem: 

 

0
y y

t s


 
 

 
  ( 19 ) 

 

Applying the box discretization technique, one derives the following equation: 
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 ( 18 ) 

 

Assume that �̃� is an exact solution to the continuous differential equation. Using Taylor series 

expansion for 𝑠 = 𝑗𝛥𝑠, 𝑡 = 𝑛𝛥𝑡 around the defined solution above, yields: 
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Since �̃� is an exact solution to the problem, one can write: 
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Substituting (21) and (22) into (20) yields: 
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Chapter 3 

Nodal Position Finite Element Method 

 

The following is based on [15, 16] that describe a new nodal position finite element method (FEM) 

for use in the simulation of the dynamics of towed body systems. The method assumes superiority to 

conventional FEM methods, in the sense that it solves the problem for the position of the cable directly 

and not indirectly via the displacements. 

Consider a two-node straight cable element in 3-d space. Element geometry is described by its nodal 

coordinates (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) (𝑖 = 1,2) in the global coordinate system. Define 𝑋𝑒 such that 

 

 1 1 1 2 2 2
, , , , ,

T

e
X X Y Z X Y Z   ( 24 ) 

 

If one wishes to express the position and its time derivatives in terms of the element shape functions 

and nodal values, then one has: 

 

e

e

e

R NX

v R NX

a R NX



 

 

  ( 25 ) 

 

, where: 

 

 𝑅 = {X, Y, Z}T is the global position of the arbitrary point 

 𝑣 = {𝑣𝑥, 𝑣𝑦, 𝑣𝑧}
𝑇

 and 𝑎 = {𝑎𝑥𝑎𝑦𝑎𝑧}
𝑇
 are the velocity and acceleration vectors of the arbitrary 

point, and 𝑁 is the element shape functions, such that: 
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  ( 26 ) 

 

The Green - Lagrangian strain of the element is defined as: 

 

0

1 1
x e

L
BX

L
       ( 27 ) 

 

, where 𝐵 is the strain matrix, defined as: 
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 ( 28 ) 

 

Mass matrix 

 

The mass matrix is derived from the kinetic energy of the element, as follows: 
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  ( 29 ) 

 

, where 𝜌, 𝐴 are the material density and the cross sectional area respectively. The element mass 

matrix is expressed in the global coordinate system and as it is apparent, is constant.  

 

Stiffness matrix 

 

The stiffness matrix can be derived from the strain energy of the element, as follows: 
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 ( 30 ) 

, where: 

 

 𝐸 is the Young’s modulus of the cable element 

 𝐾 is the stiffness matrix of the element 

 𝐹𝑘 is the generalized nodal force vector resulting from the elasticity of the cable element 

 

Like the mass matrix, the stiffness matrix is also expressed in the global coordinate system.  It is 

highly nonlinear and decoupling into linear and nonlinear part cannot be achieved as in the conventional 

FEM method. 
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Material viscous damping matrix 

 

Since a system without damping is virtually non-existent, the author of the method under 

consideration introduces a damping matrix of the following form: 

 

 a
C M M K      ( 31 ) 

 

, where: 

 𝛽, 𝛾 are the Rayleigh damping coefficients 

 𝑀𝑎 is the added mass matrix ( see below ) 

 

In order to calculate the Rayleigh damping coefficients, one can employ many formulas. In our case, 

we chose to approximate them by employing the calculation of the natural frequencies of the system. The 

relationship between multiple experimental modal analysis frequency and damping estimates and the 

coefficients (𝛼 and 𝛽) can be derived using the frequency domain version of the equations (see appendix 

for more information on the subject).  

 

Fluid dynamic force vectors (Drag + added mass effects) 

 

Drag effects can be modelled as follows: 
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  ( 32 ) 

 

, where: 

 

 𝑓𝑑𝑛, 𝑓𝑑𝑡, 𝐶𝑑𝑛, 𝐶𝑑𝑡 are the drag components normal and tangent to the element and their respective 

loading functions 

 𝑎 is the angle of attack, and 𝑓𝑎 is the inertial force normal to the element resulting from the added 

mass of fluid surrounding the element  

 Finally, 𝑉𝑐 is the free stream velocity of the fluid (see appendix for more information on the 

subject) 
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Virtual work done by the inertial force of the added mass effect is: 
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 ( 33 ) 

 

, where �̇�𝑐
𝑒 is the fluid acceleration vector at the element nodes.  

 

The drag forces will be calculated in the local element coordinates. The local coordinate system is 

assumed to be constructed in the following way (see appendix for more information on the subject):  

 

The 𝑥 axis is aligned with the cable element, the 𝑦 axis is aligned with the plane containing the 𝑥 axis 

and the relative fluid velocity but normal to the element, and the 𝑧 axis is the cross product of 𝑥 and 𝑦. 

Thus, the fluid velocity relative to the element in the local coordinates can be written as: 

 

0
T

c cx cy
v r v x v y v         ( 34 ) 

 

It follows that the drag force vector can be expressed in the local coordinates, as follows: 
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The virtual work done by the drag forces is given by: 
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  ( 36a ) 

 

, where 𝑓𝑑
𝑒 is the equivalent nodal drag forces vector expressed in the local coordinates. Since we are 

going to write the equations of motion in the global coordinate system, one has to transform the drag 

forces from local to global coordinates using the standard FEM coordinate transformation matrix. 

 
T e

d d
F T f   ( 37 ) 

 

Buoyant and gravity forces 

 

Gravitational forces in global coordinates are given such as: 
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0 0

T

bg
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, where 𝑔 is the acceleration due to gravity. Accordingly, the virtual work done by the gravitational 

forces is given by: 
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  ( 39 ) 

 

, where 𝐹𝑏𝑔 is the equivalent nodal buoyant force vector. 
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Equations of motion 

 

The equations of motion of a single element, derived from the principle of virtual work, are 

as follows: 

 

 

0
v a d bg

a e e e k a bg d

U T W W W W

M M X CX KX F F F F

           

      
  ( 40 ) 

 

The equations derived describe the dynamics of a single element for the problem without exogenous 

input. If the configuration dictates a force input to the system, then one has to simply add the applied 

loads to the corresponding element equations. 

Following the trivial FEM global equation assembly, it follows that the global form of the equations 

discussed above is: 

G G G
M X C X K X F     ( 41 ) 

 

, where: 

 𝑀𝐺 , 𝐶𝐺 , 𝐾𝐺  are global square matrices of (3𝑛 × 3𝑛) dimensions, with 𝑛 denoting the total 

number of node points in the structure. 

 𝑋 = {𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2,   𝑥3, 𝑦3,   𝑧3, ⋯ }
𝑇
  is the global displacement vector of (3𝑛 × 1) 

dimension. 

 �̃� = 𝐹 + 𝐹𝑢, with 𝐹 denoting the sum of forces of the unforced problem and 𝐹𝑢 being the force 

input to the system (typically at one or both ends of the cable structure). 

As stated in the introduction of the thesis, we wish to transform the above derived equations to a form 

resembling a control scheme. To that end, declaring the nodal displacements and velocities as state 

variables, one can write: 

1 1 1

G G G G G

x x

x M C x M K x M F
  



   
  ( 42 ) 

 

Writing the above equations to matrix form, it follows that: 

 

1 1 1

0 0
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Ix x
F
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  ( 43 ) 

 

, or in other words: 

 

y Ay Bu    ( 44 ) 
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Appendix 

A. Local coordinate system definition 

The calculations performed in order to define the local coordinate system are presented here. The 

standard coordinate transformation matrix 𝑇 in the FEM is defined as follows: 

 

2

y z y z y

G L x z x y z x z x y z x y

x z x y z x z x y z x y
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  ( 45 ) 

 

When expressed in terms of the body fixed frame, the only non-zero component of the length vector 

is in the 𝑥 direction. Thus, it follows that: 
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                ( 46 ) 

 

This results into the following: 
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Given the known initial state of the umbilical tether, the values of 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 are known. The length 𝐿 

can be calculated anytime as: 
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With minor equation manipulation, the values of angles about 𝑦 and 𝑧 axis can be derived: 
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All that remains now in order for the local coordinate system to be fully defined is to find 𝜃𝑥. By 

theory, the system was defined in such a way that the fluid velocity relative to the element in the local 

coordinates can be written as: 

0
T

c cx cy
v r v x v y v                   ( 47 ) 

The following equation holds: 
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  ( 48 )  

 

The 3
rd

 equation provides the value of 𝑑𝑥. More specifically: 
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    ( 49 ) 

Given the known initial state of the tether, the vector of global nodal velocities �⃗�  is known as well. 

This leads to the following system of equations: 

 

   
2 2

0

1

x z x z y x y z x y z y y z

x x

s s u c u c s c u s s u c u

s c

    

 
  ( 50 ) 

 

The solution of this system yields the values of sin 𝜃𝑥 , cos 𝜃𝑥 and fully defines the local coordinate 

system. 
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B. Rayleigh damping constants calculation 

 

The modes of the system are solutions to the homogenous form of the equations, which are written as: 

 

         2
0M p C p K      ( 51 ) 

p j        ( 19 ) 

 

Substituting (51) into (52) and rearranging terms gives: 

 

            

               

2

2

0

2 1 0

M p M K p K

M j K j

  

       

    

         
 ( 53 ) 

 

A known property of the mode shapes  {𝜑} of an undamped structure model is that they are real 

valued. This means that the real and imaginary parts of (53) are uncoupled, and therefore can be rewritten 

as separate equations: 
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 ( 54 ) 

 

Putting these equations in the standard form for an undamped structure yields: 
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 ( 55 ) 

Both of these equations must be satisfied for a proportionally damped structure. The solutions to this 

equation are unique poles. The equation for each pole can be written as: 
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  ( 56 ) 

 

, where  𝛺 is an undamped natural frequency. This provides a single equation with two unknowns ( 𝛼 

and 𝛽): 

 

 2 2
2         ( 57 ) 

 

Given a set of EMA frequencies and damping for n modes ( 𝑛 ≥ 2 ),  𝑛 equations can be written: 
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  ( 58 ) 

 

The least-squared solution of the overdetermined system presented above yields approximate values 

for the damping coefficients. 

As for the natural frequencies themselves, they can be derived by solving the following eigenvalue 

problem for the undamped, unforced structure: 

       2
0M K X                         ( 59 ) 

 

C. Fluid velocity  

 

The global current profile imposed during this thesis is a complex 2-d current profile, given by the 

following equation: 

 

2 2
cos sin

z z
U u I u J

h h

 
 

   
   
   

  ( 60 ) 

, where: 

 

 𝑧 is the corresponding coordinate of the point under consideration in the z-axis. 

 ℎ is the maximum water depth 

 

As is apparent, the sheared current velocity is a function of the depth only, and there is no vertical 

component of the current. However, the program developed allows the user to impose a constant potential 

vertical percussive value to simulate a disturbance of the form of a wave in the 𝑧 direction in case this is 

desirable. 



D.Paraskevas, Postgraduate diploma thesis 

Dynamics modelling of an umbilical tether for control purposes using Finite Element Method, Athens 2016 

27 
 

Chapter 4 

Simulation Results 

 

In order to verify the performance of the script written in Matlab, we tried to reproduce the results of 

experiments presented at [17] and used as verification data in [1]. These experiments’ scenario specified 

the upper end’s displacement and velocity profiles resembling a straight unsteady tow operation.  

The experiments that were used for the validation process were of 2 kinds: 

 

 Acceleration test: For the straight tow considered here, the motion of the towpoint is constrained 

to the  𝑋 axis of the inertial frame and is defined by the piecewise function defined as follows: 

 

Time (s) �̇�𝑋
(0)

 (m/s) 𝑟𝑋
(0)

 (m) 

0.0 < 𝑡 ≤ 120.0 0.566 0.566 ∙ 𝑡 

120.0 < 𝑡 ≤ 180.0 0.566 + 0.0112 ∙ (𝑡 − 120) 67.92 + 0.566 ∙ (𝑡 − 120) + 0.006 ∙ (𝑡 − 120)2 

180.0 < 𝑡 1.235 123.48 + 1.235 ∙ (𝑡 − 180) 

 

The towpoint motion corresponds to a cruise speed of 0.566 m/s for a 120s interval. During this 

time the cable achieves an equilibrium profile. Since the material properties are uniform over the scope of 

the cable, the equilibrium profile is expected to be a straight line inclined to the free surface. After that, an 

acceleration period of 60s occurs, during which the towpoint achieves linearly a speed of 1.235 m/s, 

which remains constant for the rest of the duration of the experiment. 

 

 Deceleration test: Once again, the motion of the towpoint is constrained to the  X axis of the 

inertial frame and is defined by the following piecewise function 

 

Time (s) �̇�𝑋
(0)

 (m/s) 𝑟𝑋
(0)

 (m) 

0.0 < 𝑡 ≤ 60.0 1.286 1.286 ∙ 𝑡 

60.0 < 𝑡 ≤ 120.0 1.286 − 0.0129 ∙ (𝑡 − 60) 77.16 + 1.286 ∙ (𝑡 − 60) − 0.0065 ∙ (𝑡 − 60)2 

120.0 < 𝑡 0.514 131.2 + 0.514 ∙ (𝑡 − 120) 

 

The physical properties of the cable were the same as those that were used in [17] and are 

summarized in the following table: 

 

Parameter Symbol Value 

Cable diameter 𝑑𝑐 0.0332 m 

Cable density 𝜌𝑐 3121 kg/m
3 

Effective modulus of elasticity 𝐸 77.5 GPa 

Cable length 𝐿 300 m 

 

The results derived from simulating with the above kinematic constraints, using 6 elements of 50m 

length, are shown in the plot diagrams that follow: 
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Figure 4. Tether attached to ship, ship accelerating from 0.566 to 1.284 m/s 
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Figure 5. Tether attached to ship, ship decelerating from 1.286 to 0.514 m/s 
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The experiments used to validate the model and the corresponding code in Matlab assumed excitation 

of the system in terms of kinematic constraints at the upper end. To further investigate the performance of 

the code, additional simulations were conducted that assumed dynamic constraints at either one, or both 

ends of the umbilical tether. These are relevant to operating scenarios during which a ROV is attached to 

the lower end of the tether, while the upper end is firmly attached to the surface station (i.e. a boat). 

In particular, three operating cases were considered during this thesis: 

 

1. Stationary upper end (equivalent to an anchor), with a constant known force applied at the 

lower end. This is the most common scenario that one will face in real life operations. 

Typically, the surface station will be stationary and the ROV will perform whatever task the 

engineer wants it to do. 

2. Stationary lower end and a constant known force applied at the upper end. 

3. Both ends movable, with constant, equal and opposite forces applied at both ends. 

 

 

 

 
Figure 6. General configuration of a ROV attached to a ship 
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Figure 7. Operating scenario #1 schematic 

 

 

 

 

 
Figure 8. Operating scenario #2 schematic 
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Figure 9. Operating scenario #3 schematic 

 

 

 

These scenarios were simulated for varying environmental conditions and disturbances. In general, 

surface ocean currents are driven by the wind and the velocity drops off rapidly with depth. For example, 

the Gulf Stream appears to be the fastest with reported speeds of up to 2.5 meters per second (5.4 miles 

per hour). However the average surface velocity of the Gulf Stream is less than 1 meter per second and 

other surface currents are even slower. Deep water currents are driven by temperature and salinity 

differences and are slower still - generally less than 0.01 meters per second.  

Taking all of the above into account, simulations were performed under the assumption of absence of 

current, and the presence of currents of 0.5m/s and 1m/s amplitudes, which resemble conditions close to 

typical ones. During the simulations, discretization of 10 elements with universal properties and equal 

starting length was used. The driving force was taken to be 𝐹 =  [100 30 0] (𝑁)  unless otherwise 

mentioned. The cable attributes and the results are summarized below: 

 

 

Parameter Symbol Value 

Cable diameter 𝑑𝑐 0.0332 m 

Cable density 𝜌𝑐 1200 kg/m
3 

Effective modulus of elasticity 𝐸 77.5 MPa 

Cable length 𝐿 100 m 
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Figure 10. Stationary upper end, no current 
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Figure 11. Stationary upper end, 0.5 m/s current amplitude 
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Figure 12. Stationary upper end, 1 m/s current amplitude 
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Figure 13. Projection of final configurations w.r.t starting configuration 
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Further simulations were conducted assuming an equal but opposite force at the lower end in comparison 

with the previous case. The results are displayed below: 

 

 

 

 

 
Figure 14. Stationary upper end, equal and opposite force at lower end, no current 
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Figure 15. Stationary upper end, equal and opposite force at lower end, 0.5 m/s current amplitude 
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Figure 16. Stationary upper end, equal and opposite force at lower end, 11 m/s current amplitude 
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In order to verify the model’s performance, the above displayed results were compared with the 

corresponding ones for a cable with the same attributes except for its density, which was taken to be equal 

to 1600 kg/m
3
. This resulted to the cable becoming heavier, thus affecting its’ dynamic response. The 

excitation force at the lower end of the cable remained the same during these simulations. The results are 

displayed below: 

 

 

 

 

 
Figure 17. Stationary upper end, 1600 kg/m3 cable density, no current 
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Figure 18.  Stationary upper end, 1600 kg/m3 cable density, current amplitude 0.5 m/s 
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Figure 19.  Stationary upper end, 1600 kg/m3 cable density, current amplitude 1m/s 

 

We can see that the results indeed depict the expected performance of the umbilical. With its density 

changed it became heavier, thus the excitation force has a lesser impact on its shape. More specifically, it 

is more difficult for the upper part of the cable to follow the motion indicated by the lower part. Also, the 

environmental disturbances tend to affect it less than the previous case. 

 

Results from operating scenarios 2 and 3 are displayed in the plots that follow: 
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Figure 20. Stationary lower end, no current 
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Figure 21. Stationary lower end, current amplitude 0.5 m/s 

 

  



D.Paraskevas, Postgraduate diploma thesis 

Dynamics modelling of an umbilical tether for control purposes using Finite Element Method, Athens 2016 

45 
 

 

 

 

 

 

 

 

 

 
Figure 22. Stationary lower end, current amplitude 1m/s 

 

 

 

During this operating scenario, the gravity is the dominant force over the entire cable length. The cable 

shapes of time before the mark of 420s were omitted, since during that period the cable is performing a 

snake-like motion while descending. The inclusion of such shapes would have rendered the resulting plot 

incomprehensible for the reader.  
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Figure 23. Projection of final configurations w.r.t starting configuration 
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Figure 24. Equal and opposite forces at both ends, no current 
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Figure 25. Equal and opposite forces at both ends, current amplitude 0.5 m/s 

 

 

  



D.Paraskevas, Postgraduate diploma thesis 

Dynamics modelling of an umbilical tether for control purposes using Finite Element Method, Athens 2016 

49 
 

 

 

 

 

 

 

 

 

 

 
Figure 26. Equal and opposite forces at both ends, current amplitude 1m/s 

 

For operating scenario 3, when equal and opposite forces are applied at both ends of the umbilical, it 

is expected to get a straight line shape parallel to the x-axis as the steady state configuration. This is 

indeed confirmed by viewing the results displayed on the above plots. Since there are no kinematic 

constraints at either of the cable ends, it keeps submerging, thus the varying depth of the whole 

configuration. 
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Chapter 5 

Future directions 

 

 
The purpose of this diploma thesis was to construct and validate a dynamic model that would describe 

the dynamic response of an umbilical tether in such a way, that it would be convenient for future control 

purposes from a mathematical perspective. This research was a success. Thus, future directions include 

the study the structural properties of the nonlinear scheme, namely controllability and observability. If 

first task is burdensome, then linearize the model about equilibrium points and try to study the structural 

properties of the resulting linearized model. It would be beneficial to do so, as the performance of the 

cable could be monitored by using position and velocity sensors. Implementation of control algorithms 

would allow it to achieve desired states, depending on the operating scenario and he task at hand.  
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