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Abstract

Reliability analysis is a scientific field, that deals with problems with uncertainties in a
probabilistic way. In structural engineering such uncertainties are common, and originate
from the properties of the materials, the geometry of a structure, the construction, the
mathematical modeling, and the loading. The most common approach is to distinguish those
uncertainties to favorable and unfavorable, and apply reductive and augmentative
coefficients respectively. Such an approach though, may be impossible in non-linear problem:s,
where the superposition principle does not hold, and also it leads to very conservative designs.
The probabilistic approach on the other hand, only requires the definition of those
uncertainties with probability density functions, and provides a measurement of probable
scenarios, such as the failure and safety, and ultimately the reliability of a structure.

Solving a reliability problem, is achieved with various methods. The analytical ones are
straightforward but restricted to a point that they are rendered impractical. Other gradient-
based method were developed through the years, but they are also restricted, and provide
approximations that often are not acceptable. The most prevailing techniques, are numerical
approximations called simulation experiments, or computer experiments. The most common
and robust is the known Monte Carlo Simulation (MCS), which produces numerous results
with purpose to classify them in the correspondent domain (e.g. failure or safety) and make
conclusions on the frequency of a phenomenon. The MCS and its variations, such as the Subset
Simulation (SS), are the most preferred methods to deal with a reliability analysis problem.

This thesis presents a way to deal with a great disadvantage of the simulation techniques. As
mentioned earlier, these techniques are based on an iterative algorithm, and therefore the
function that indicates the classification of a probable state, also called the performance
function g(x), has to be evaluated many times. This means that the computational cost is
high, and the procedure time-consuming, because a performance function may rely on solving
large finite elements models, or a time-history analysis. The main idea to treat this
inefficiency, is to replace the performance function with a new one, that provides accurate
classification and is computationally easy to evaluate. Such a function is referred to as a
surrogate model and is reliant on very few information of the performance function. This
thesis focuses on the application of the kriging predictor as a surrogate model in structural
reliability.

In the first chapter, the necessary theoretical framework is presented. This includes the
definition of a random variable and vector, and the most commonly used distributions that
define a random variable, the definition of a stochastic process and the kriging predictor. The
kriging predictor is a procedure that creates a Gaussian stochastic process G based on a
specific dataset or observations, which derive from the performance function. Making use of
correlation functions that express the confidence of the prediction in the vicinity of the
observations, the kriging predictor estimates the performance function, providing a mean
value pg(x) and variance og(x)? at any point of the input space. In reliability analysis only
the classification of a state is important. This classification is expressed from the probabilistic
classification function T(x), which depends on the kriging mean and variance, and provides
the probability, a state to reside in the safety or the failure domain.

In the second chapter, the most efficient simulation techniques to estimate the failure
probability, are presented. The application of those techniques differ slightly when performed



on the kriging model. More precisely, the probabilistic classification function m(x) replaces
the indicator function Iz(X) which relies on evaluating the performance function. The two
approaches, meaning the classic g(x)-based and the Gaussian process G~N (g (x), 0 (%)?)
based are shown in parallel, to highlight to similarities and the differences. Lastly, a new
simulation technique is introduced, that combines the kriging model based simulation
techniques with Importance Sampling. The hybrid method Meta-model based Importance
Sampling, focuses on approximating the optimal instrumental PDF from the kriging model,
and sampling efficiently with evaluations of the g(x) function. This technique can validate the
kriging model estimation, or corrected it if the model is inaccurate.

The third chapter focuses on the strategies that should be implemented, in order to enrich
the dataset of the kriging model and improve its prediction. As mentioned above, the kriging
model is not accurate in areas away from the observations. However, this is not important as
long as the classification is accurate. Consequently, the model is enriched with new points at
areas where the classification is not confident, with priority to those that affect more the
failure probability. This is achieved, by solving a clustering problem of a large amount of
candidate points, and choosing one of each cluster. This refinement procedure is repeated
until the kriging model is sufficient.

In the fourth chapter, validation examples and applications are presented. The kriging-based
reliability method is tested on problems with irregular limit state function, problems with
many dimensions and lastly on two structural reliability problems. The Meta-model
Importance Sampling is also implemented and illustrated at each application.

In the last chapter, the final conclusions are drawn. The kriging model approach, is proven to
be very reliable in reliability analysis, especially in problems with less than 100 dimensions, a
continuous performance function and low probabilities. Its application can be extended in
optimization, and big data regression.



Abstract in Greek

H avaAuon aflomiotiog eival éva emotnUovikO Tedio, TTIOU OKOTO €XEL VO OVILUETWTTLOEL
npoPAnuata pe ofeBaldtnteg, Ye TPOMO TLOAVOTIKO. ITNV OELOTLOTIO TWV KATAOKEUWV
tétoleg aPePfalotnteg eival ouvnBelg, kal mnyalouv amod TG LOLOTNTEG TWV UALKWY, TN
VEWUETplA TOU Popéa, TNV KATOOKEUN, TN HABnUATIK Tipooopoiwaon, ta emiPariopeva
doptia. H 1o Ko avILLETWIILON TETOLWVY TPORANUATWY lval 0 SLaXWPLOUOG TwV afERaLwv
peyeBwv oe eupevr) Kal SUCHEV, KAl N XPNoN HELWTLKWV Kol AUENTIKWV OUVTEAECTWY
avtiotolya. AUt n MPOCEYYLoN, WOoTO00, eival aduvatn o€ UN-YPAUULKA TipoBARAT, OTIOU
n apxn thg emaAAnAiog dev LoxUel, kot evEeXOUEVWE 08NYEl o€ UTIEPOUVTNPNTIKO OXESLOOUO.
Ao tnv AA\n, n TBAVOTIKN QVTIUETWIILON, OIOLTEL HovAXa ToV TPOCSLOPLOUWY TWV
afeBalotATwy, HE CUVOPTNOELG ocuxvoTnTaG TBavoTnTag (22M), TPOKEIUEVOU VA TTAPEXEL TNV
METPNON evog Bavol oevaplou, OTIWE AUTA TNG aoToxiag KoL TG achAAELOC, KOL EV TEAELTNG
Soukng aglomotiag.

H emiluon evog mpoBAnuartoc aflomiotiog, emituyyavetal pe Sladopoug Tpomouc. Amo
QUTOUG, OL aVOAUTIKOL TpOToL gival eUBE(C, OPWC EEALPETIKA TTIEPLOPLOUEVOL KAl AVEDAPHOCTOL
o moAumAoka mpofAnpota. AMeg pébodol, OmMwe autég mou PBaocilovtal oTn YVWaon Tng
TAPAYWYoU, €ival amoTEAECUATIKEG UTIO TPOUTOBOEDELG, KAl UMTOPOUV VO QVTLUETWITIOOUV
TIPOOEYYLOTIKA, HOVO Kamola €idn mpoPAnudatwyv. O emikpatéotepe HEBobdoL, elval
OpLOUNTIKEG, KOl TIPOCOUOLWVOUV TEWPAUOTA TUXNG O€ uToAoyloth. H 1o yvwoth Kat
gupwotn uéBodog eival n mpooouoiwon Monte Carlo (MCS), mou mapéxel MOAUTIANGN
QTMOTEALCHATA ATIO TIPOCOUOLWOELG, Ta omola taflvopouvtal oto avtiotolyo nedio (m.x. Tng
aoddalelag n Tng aotoyiag), wote va AndBel cuumépaopa yla tn cuxvotnta epdaviong evog
dawvopévou. H mpooopoiwon Monte Carlo kat ot maparAayEg TnG, ONMWG N Tpooopoilwaon He
™ UEBoSOo Twv umoouvOAwv (Subset Simulation f SS), elval oL TILO TPOTIUNTEEG yLa TV
OVTLUETWTTLON TPOBANUATWY aflomioTiog.

H epyaocia autr mopouclalel €va TPOTO QVILUETWIILONG TOU UEYAAUTEPOU LLELOVEKTHOTOC
Twv peBOdwv mpooopoiwong. Onwg mpoavadépbnke, autég ol puéBodol Baaoilovtal oe
enavoAnmrikég Sladikaoieq. Tuvenmwg n ouvaptnon aoctoxiag g(x), mou kaBopilel tnv
tafvounon piog mbavng kataotaong, urtoAoyiletat Stadoxikd ToAAEG popEC. AUTO onpaivel,
OTL TO UTIOAOYLOTIKO KOOTOG elvat uPnAd, kat n dtadikaoia xpovoBopa, SLOTL N cuvaptnon
ootoyiag pumopel va mephapBdavel TOAUTAOKA LOVTEAQ TTEMEPACUEVWY OTOLXELWY, avaAuon
xpovoiotopiag k.o.. H kUpla 18€a yla TNV QVTIUETWILON AUTAC TG SuokoAiag, sival n
QVTLKOTAOTAON TNG CUVAPTNONG aoToXlag, UE pio véa, TTou pmopel va TapEXEL aglomotn
taflvounon Kat eUkoAa umoAoyioun. Autr n cuvaptnon ovopAleTal ASPOUEPEG LOVTEAO KOl
elval Baollopevo oe MOAU TIEPLOPLOUEVN YVWON TNG MPAYUATLKAG cuvaptnong aotoyioag. H
epyaoia, AoLOV, ETUKEVIPWVETOL OTN YPOUULKN TIPOBAePN kriging wg adpopepég LovtéNo ot
Soutkn aflomiotia.

210 MpwTo KedAAaLo mapouatdlovtal OAa ta Bacikd BewpnTikd otolyeia ota onola Baciletal
n avaAuon oaflomotiag o povtélo kriging. Apxikd opilovtol oL tuxaisg peTafANnTEC Kot
Slavuoparta, KaBwe oL PacLKOTEPEG KATAVOUEC, OTIWG N KAVOVLKI, N AOyapLlOOKAVOVLK Kot
n akpotatwyv (Gumbel), pe Bdon tig omoieg mpooopolwvovtal oL aBeBaldTNTEG TWV HeyEBWV.
2Tn ouvéxela oplletal n otoxaotikn avéALEn, mou amoteAel tn Baon tng npoPAedng kriging.
I1a mAaiola aUTAG TNG EPYACLOC OL OTOXAOTIKEG aveAifelg meplopilovTal ot NKaoUOLAVEG.
EruuAéov, yivetal n amAomnoinon, OTL TO LNTPWO CUOCXETICEWC, TPOKUTITEL OO CUVOPTHOELS
OUOXETLONG, OL OTIOLEG CUVOPTAVE TN GUCYETLON LE TNV ATIOOTACH OTO XWPO TWV ELCAYOEVWV



petopfAntwy, Kat puBuilovtal amd toug cuvteAeotEg cuoxetiong. H mpoPAedn kriging, n
OoAALWG N BEATIOTN apepoAnTtn (unbiased) ypoppkn mpoBAsdn, otoxelel oTov mPooSLlopLlouo
plag otoxaotikng avéAéng, Baollopevn os mapatnpnoslg, dnAadn Eva MenepaoUévo cUVOAO
onpelwv tou mediou oplopol TNG ouVAPTNONG ACTOXlOG, HE TG avtioTolxeg TIUEG TNG. H
€UpPECN TWV OUVTEAEOTWV OUCYETIONG Yivetal emAloviag £€vo UTOAOYLOTIKA SUoKoAO
npoPAnua BeAtiotonoinong. Me autov tov TPomo, n poPAsdn kriging mapéxel To HoviEAO
G~V (ug (%), 06(x)?), 5nAadr yia to Tuxdv onueiou Tou mediou oplopoy, Sivetal n péon Tun
Hg(X) Kat n tumkn amokAlon og(X), Tou TEPLYpAPOUV TNV EKTIUNON TNG OUVAPTNONG
aotoyiag, pall pe tnv avtiotolyn apfefatdtnta. IS1OTNTA AUTOU TOU HOVTEAOU €ivol OTL OTA
UTTOOTNPLKTIKA onpeia (mopatnpnoelg), n péon Tun pg(x) tautiletat pe tnv g(x), evw n
Turkl amokAon og(X) sival undevikn. Zuvenwg to povtého kriging mapéxeL otig mepLoxEg
KOVTQA OTQ UTTOOTNPLKTIKA onueia o BERain mpoBAedn ar’ OTL Lo pakpLa.

Jta mpoBAnuata avaAuong aglomiotiog, amatteital n cwotn taflvopnon Kabe onueiou Tou
nediov oplopol. JTuvenmwc, to Hovieho kriging Beswpeital emapkég OxL OTAV TOPEXEL HE
BeBardtnta kABe TN g g(X), oA OTav MapEXEL owoTr Tagvounaon. Na tov UTtoAoyLopd
™T¢ mbavotntag aotoyiag, oTnV afLomMIoTio KATAOKEUWY, OpL{ETAL N CUVAPTNON TILBOVOTIKAC
tawvopnong T(X) mou ekppdlel tnv mbavotnta pio katdotaon A oAMWE €va onUEio Tou
XWPOoU va BplokeTal oTnv Teploxn TnG aotoxiog. AaUPAVEL TULECG oo TO UNGEV €wE TO Eval KOl
urntoAoyiletat anod tig npoavadpepBévteg moooTNTES g (X), o (X).

1o &evtepo kedpdlalo mapoucidlovral avalutikd ol péBodol mpooopoiwong ywo tnv
aplOuNTIKn mpoogyylon tng mbavotntag oaotoxiag. H mpoooupoiwon Monte Carlo kot n
npocopolwon pe tn HEBodo Twv umoouvolwy, ebapudlovtal eite Pe BAcN TNV TPAYUOTIKN
ouvdptnon aotoxiag eite pe Bdon to povrého kriging G~N (ug (%), 05(x)?). OL 00 autég
npooeyyioelg mapouoialovrat mapalAnla, wote va daivetal n avriotolyia. H kUpla Stadopa
glvat ot n ouvdptnon mBavoTikig tafvounong m(x) avtikadiotd to Seiktn Ig(x), otav n
npooopoiwan Baociletal oto povrélo kriging.

YTn ouvéxela, yivetal Adyog yla tn xpnotwun wdotnta tng Importance Sampling (IS). H IS
ETUTPEMEL TNV eTAoyn SLPOPETIKAG ouvapTnong cuxvotntag mbavotntag (instrumental
PDF), yLo TnVv apaywyn Tou tuxaiou deiypatog otnv ektipnon tg nibavotntog aotoyiag. Me
™ owotn emloyn evoAAakTiKNG 22M, n enavaAnmruikn Sadikaoia tng MCS umopel va
emtayuvBel onpavtika. Emiong amodetkvuetal mola ival n BéAtiotn 22N, dnAadn autr mou
pundevilel Tn Slaklpavon g eKTHWHEVNG TBavotnTag. Qotdoo, n BEAtioTn 23N amattel tn
YvVwon tng mbavotnTag Kol CUVENWG elval Pn-epapUOoLUn. 2€ AUTO TO ohelo mapoucLaleTal
n véa uPBpldikn nEBodog Meta-model based Importance Sampling (MIS). komdg tng elval n
nmpocogyylon tng BEATIOTNG 22N péow tou povtélou kriging, Kal n mapaywyr TeEPLOPLOUEVOU
tuxaiou Selypartog yla tnv extipnon ¢ mbavotntag. Me dAla AdyLa, av To poviého kriging
uropel va mapéxel pia pETpLa €we Ko exTipnon tng mbavotntog aotoyiag, n MIS SlopBwvel
oe 6eUtepn dpaon Tnv TBavoTnTa acToxiag He Ko Selypa TIoU amaltel UTIOAOYLOUOUC TNG
ocuvaptnong aotoxiag. H péBodog MIS cuvbudlel to povtého kriging pe tnv Importance
Sampling kat ivat e€alpetikd xpAoLun otav anatteitol emiBefaiwon TnS ektipnong n étav to
MOVTEAO £lval AVETOPKEC.

To tpito kedpdalato mep\apBAVEL TIC OTPATNYLKEC UE TIC oTtoieg n mpOPAedn kriging pumopet va
BeAtlwOel, wote va mapéxeL o BERatn tafvounon. Onwg npoavadepOnKe, N KATACKEUN TOU
HoVTEAOU BacileTal LOVAXO O OPLOUEVEG TTAPOTNPHOELG ) UTTOOTNPLKTIKA ONELa, Ta omoia
Aappavovtal tuxaia and to nedio oplopoU TG cuvaptnong actoxiag g(x). H BeAtiwon tou



LOVTEAOU ETUTUYXAVETAL AXBAVOVTAG VEEG TOPATNPAOELS Kol EMovVUTIOAOYI{oVTAG To. Ta véa
UTTOOTNPLKTIKA onuela emléyovtal, Pe BAon Hia cuvApPTNON-KPLTAPLO, TTOU A UBAVEL LeYAAES
TWMEG Otav n péon tn pg(X) mMAnolddel to undév, Kat 6tav n Tumikn anokAwon og(x)
auavetal. Me auTOv ToV TPOTIO OTOXEUOVTAL OL TIEPLOXEG OTLG OTOLEC YiveTal n petafaocn amno
Vv actoyla otnv acdpalela kal avtiotpoda. Eival ot meploxég, SnAadn, ot omolieg n
gkTipnon tng tagvopnong eivat o SUokoAn. Itnv napoloa epyacia, dUo ival Ta KpLTRPLA
ota omoia 6lvetal peyoAutepn £udaocn: H ouvdptnon mbavotikol elpoug (margin
probability function MP(X)) koL n mpotewouevn ocuvdptnon mbaveotepng €o0aApévng
tafvopnong (most probable misclassification function MF(X)). 2tn ouvéxela, Ta dvw KpLtripLa
ToU KkateuBuvouv otn HeTaPOTK TEPLOXN TNG aotoxiag Kal tng aocddaAslag,
rnoAarmhactdlovtal pe t 22N fx(x) tou mpoPfAnuatog aflomiotiag. Me autod tov TPOTo, TO
TeAko kputriplo fx(X) - MF(X) Aapupavel emumpocBeta urmoPLv OTL TIEPLOXES UE MEYANEG TLUEG
™G 22M elvat o KoBoPLOTIKEG OTOV UTTOAOYLOUO TNG MLIBavotnTag aotoyiag.

Y& aUTO TO onuElo, TO KPLTHPLO YLa TNV ETIAOYI VEWV TIAPATNPHOEWY OTNV KOTOOKEUT TOU
MOVTEAOU, Xpnolpomoleltal wg XXM yla Ty napaywyn delypotog. To Selypa auto sival éva
ouvolo untoPndlwy onpeiwv. Qotoco To PEyeBOC Tou elval LeYAAO Kal Elval PN-0mOS0TIKO
va eritAeyel oAOKANPO. MPOKELUEVOU Va ETIAEYOUV T TILO AVIUTPOCWTTEUTLIKA onpeia, AUvetal
o MPOPAnua cuctadomnoinong (clustering problem) pe tov aAyopiBuo k-means. Etol to
OUVOAO TWV MOPATNPHOEWV OIVOVEWVETAL KAl TO LOVTEAO kriging eival o akplBEG og Kploeg
TLEPLOXEC.

Avti Tng mapanavw pooéyylong, SnAadn tng mapaywyng Ssiypatog ue Bacn tnv ocuvaptnon
rwkvotntag mbavotntag « fy (x) - MF(X), mpoteivetal, emutpdabeta, pio evalhaktiki Avon.
Aebopévou OtL n Sadlkacia avavéwong TwV TNOPATNPACEWY, Elval HEPOC €VOC
gnavaAnmrtikol aAyopiBuou, kat otL n mbavotnta aotoxiag mapatnpeital o kabe Prpa, TOTe
umapyel StaBéolpo Seiypa mou €xel mapaxbel and tnv mpocopoiwon MCS i SS. Auto to
Selyua xpnowuomnoteitat yia va AuBei to mpopAnua cuctadomnoinong, Opwe Kabes onueio £xet
Swadopetikn Baputnta, mou kabopiletal and tn cuvaptnon w(x) = MF(X). Me autdv tov
TpoOMo, anodevyetal n mapaywyn deiypatog and v « fx(x) - MF(x), mou Ba anattoloe
SewypatoAnpia amd popkoflovée oluoideg Kol yivetol Tepestaipw eKUETAAAEUch Tou
umapyovrtog deiypartog amnod tnv npocopoiwon MCS 1 SS.

Onwc npoavad£pbnke, n Sladlkacio avaveéwaong Twv TapaTNPRoewVY Yivetol MOAAEG GOpPEG
SladoyLka pe Alyo onpueia, wote To poviéAo va propei va Sivel og kaBe Bripa véa kateBuvon.
To TPOTEWVOUEVO KPLTAPLO Yo TN AREn tng dadkaciag Baoiletal otnv moodtnta Py TOU
Looutal pe tnv ohokAnpwaon tng cuvaptnong fx(X) - MF(x) og Ao to mebio oplopol. Auto
ETUTUYXAVETAL PE ToV (6lo Tpomo mou umoloyiletal n mBbavotnta aotoxiag, Kol e To dLo
Selypa. Av, davikd, TOo HOVIEAO amoktioel TEAewd akpifewa otnv tafvounon, n
ouvaptnon MF(X) amoktd undevikn T, KoL CUVETIWG UNSEVIZETAL TO PiyE-

Y10 Tétapto Kedpdalalo, yivetal epappoyr] Tne uebddou aflomiotiog nov Baciletal os povtéAo
kriging. Autfj mepAaBAVEL TNV APXLK KOTOOKEUR TOU HOVTEAOU omd tuxaio emAeyUEVEG
TAPATNPNOELG, TNV AVAVEWON LE VEQ ATOSOTIKA UTIOOTNPLKTIKA ONELQ, TNV TEALKA EKTILNON
™¢ mbavotntag actoyiog, kat tnv emaAnBsuon pe tnv uPpLdIKN péBodo Meta-model based
Importance Sampling. Ta mpoPAnuata ota omoia epapuoletal sival mpoPfAnuota e
avwpaAn (aAA@& cuvexn) ouvdptnon aotoxiag, moAAwy SlaoTtdoswy, Kal Ta TeAeutaia dUo
odopolv meputtwoel SoplkAc aflomiotiag. To mpwto eival éva Siktiwpa peydAou
QvOLlyHaTOC, PE TUXALEG LETOPANTES T POPTLA, TN YEWHETPLA KAL TLC LOLOTNTEG TWV UALKWY, OTO
orolo petpdtat n mbavotnta umépBacng TOU EMITPEMOUEVOU PEAoug. Ito Seltepo
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npoPAnua, €va ktiplo OPoug 80 m TmpooopolwveTOL HE TNV Tapoadox OCUVEXOUG
KOUTTOSLOTUNTIKOU TIpoBOAoL, He Tuxaleg ouvexeilc petaPAntég tn Suokappia kal thv
avnyuévn ka®  OPog pala. Emiong, to ¢dopa Twv EMITAXUVOEWV  OKOAOUBOEL
AoyoplOpoKaVOoVLIK KaTtavoun, OMwG TPOKUTTEL amd OTATIOTIKA enefepyacia Twv Boore-
Atkinson. Q¢ ocuvaptnon actoyiog opiletal n unépPaon tou drift kata 0.75%.

To televtaio kepahalo meplhapPavel Ta TEAKA OULUUMEPAcpATA. H Tpooéyylon twv
TMPOBANUATWY A€LOTILOTIAC TWV KOTAOKEV WV HE TN ypap ULk tpoBAedn kriging amodetkvietal
amodotikr, €lblka o TpoPANUaTta KATw Twv 100 SlaoTACEWvV, HE GUVEXN OUVAPTNON
ootoxilag Kol HkpEC mBavotntes. To povtého kriging pmopet va enektabel os mpoPAnuata
BeAtiotomoinong kat og moAvdpopunon peyaiwy dedopévwy (big data).



1 Theoretical Framework

1.1 Random Variables

The function X: Q — R, defined in probability space (Q,F,P), is a real-valued random
variable if {w:X(w) <r} € F, Vr € R, where Q is the sample space containing all possible
outcomes, F the set of events containing possible outcomes and P the probability measure.

A continuous real-valued random variable can be entirely defined by its cumulative
distribution function:

Fx(x) =PX<x),xeXCES R (1.1)
Alternatively, it can also be defined by its probability distribution function:

dFx(x) (1.2)

() = —

Most commonly the following values are considered to describe a random variable.

The expected value, or mean value:

uy = E(X) = fx - fy (x) dx (1.3)
X

and the standard deviation, which is the square root of the variance of X:

ox = J L (x — )2 - Fy () dx e

1.2 Common probability distributions of continuous variables

1.2.1 Normal distribution

The normal distribution is the most common distribution used to describe random variables,
in natural sciences.

1 (x—p)?

e 207 (1.5)

fx(x) =

20%m

Below, the normal probability density function (PDF) and the normal cumulative distribution
function are plotted. In this case u=0 and o=1, the distribution is called standard. Also, such a
variable is called standard normal variable and noted commonly with Z.



Normal PDF Normal CDF

08r

061

Fx)

04r

02r

PDF and CDF of random variable ' (0,1)

1.2.2 Extreme type | distribution (or Gumbel distribution)

The extreme type | is used more often to describe random variables that are attributed to
loads on a structure, such a wind load or a snow load.

_"ij (1.6)
fx(x) =e™®
with:

pn
NG

Considering € = 0, B = 1 the PDF and CDF are plotted below:

u=%+vyB, vy= 0.5772,0 =

Extreme type | PDF Extreme type | CDOF

0.4

0351
08
03

025
06

X 02 =
“— w
015 1 041
01F
02+
005+
0 : 0
4 2 0 4 6 8 4 2 0 4 6 8
X X

PDF and CDF of random variable Gum(0,1)

1.2.3 Lognormal distribution
A log-normally distributed variable X is defined as:
X = eh+oZ (1.7)
where:
W, o: parameters of the distribution

Z: standard normal variable
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Considering u = 0, 0 = 1 the PDF and CDF are plotted below:

Lognormal PDF Lognormal CDF

0.7

06
08

05

0.4 H 061

f(x)
F(x)

037 04+

0.2

021
0.1

PDF and CDF of random variable InN(0,1)

1.3 Random Vectors

A random vector X is a vector, whose m components are random variables. The vector pyx
consists of the expected value of each component.

ny = EX;),i =1,2,...,m (1.8)
The covariance matrix C is defined as follows:
Cij = Cov[Xy,X;], 1j=12,..,m (1.9)

where Cov[Xi, X]-] = IE[(Xi — W) - (Xj — u]-)] is the covariance of any two random variables
Xj, Xj, and the correlation matrix R is defined as:

Cii
Rjj=—2—, 1j=12,..m (1.10)
0x; " 0%;

The joint probability density distribution can be defined from the cumulative distribution
function:

Fx(x) = P(X; < x4,X5 <X, 00, Xip < Xp) (1.12)

In the special case that the components of the random vector are independent, meaning:

_(1 i=] . (1.12)
Ri,j = {O i = ]}, )= 1,2, LM
the following expression is true:

fx(x) = fx1 (x1) - fx2 (X2) " oo fxm (Xm) (1.13)

1.4 Stochastic Processes

1.4.1 Definition

A stochastic process Y defined on a probability space (Q,F,P) is a collection of infinite or
finite random variables, indexed by the input space X:
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Y(x),x €X

Historically, x represents time, but in the context of this thesis the stochastic processes are
indexed by m-dimensional continuous vector x € X € R™ and are limited to Gaussian
processes. Therefore, the mean function p(x), and the autocovariance function C(x,x’) need
to be defined:

ux) = E[Y®)], x € X (1.14)

Cxx) = E[(Y®) —p®) - (Y&) —nx))],  (xx)EXxX (1.15)

An n X n covariance matrix C must be symmetric:
C3,j) = C(G,1), i,j=12,..n (1.16)
and positive definite:

zT-C-z>0, vz = (21,Z3, ..., Zy) " € R" (1.17)

1.4.2 Correlation functions

Correlation functions are used to define the autocorrelation in Gaussian processes. Those
functions are arbitrarily chosen, and are dependent on certain parameters. In structural
reliability problems, which this thesis focuses on, it is reasonable that the correlation should
be a function of the “distance” in the input space:

R =Rx—-Xx'), x,x)eXxX (1.18)

The quantity d = x — X’ is known as lag distance in kriging applications. In addition, the
Gaussian process is assumed to be componentwise anisotropic, therefore:

m
R@ =] [Rd),  di=x-xyi=12.m 0. 19)
i=1

Considering anisotropy is very crucial, since specific components may differ considerably in
the sensitivity of the physical problem.

Below, the most popular correlation functions are presented. Those are dependent on certain
parameters, that are usually more or equal to the number of the components m of the input
vector X. The common characteristics of those functions are:

e R(0)=1

e Ris continuous

e Inall cases R is descending, and reaches zero, at a specific “range” L. Therefore, L is
defined as the minimum lag distance d that R(d) = 0. In the case of correlation
functions that converge to zero in +, L is often defined such that R(L) = 0.05. The
quantity L shows the distance at which any two values of the process are entirely
uncorrelated. Although L can better show the physical meaning of the Gaussian
process correlation, the parameters 9;,i = 1,2, ..., m are used instead, because they
are more suitably defined in an optimization procedure described in a following
subchapter.

12



1.4.2.1 Linear autocorrelation function

m
RW@ = [ [max(—9;-1ai;0),  i=12..m (.20
i=1
1 ) 5
L; = 19—1' i=12,..m (1.21)

Below, an illustration of 3 random processes, with 1-dimensional input x = [0,1], that differ
in correlation length L = {0.05, 0.2, 1}, is shown:

Autocorrelation function:

Linear
L=0.05
[1%:] L=02 |
L=1
08 .
07 .
—
=
08 .
&
= 05 .
o
o
=04 :
o
]
03 .
02 .
0.1 .
o | } | | | |
0 01 02 03 04 05 06 07 0.8 08 1
distance d
4 T . T . T . . . .
L=0.05
3l L=0z2 | |
L=1
—
3
e
ik}
=
m
=
E
=]
=
2.
m
o

0 o1 02 03 04 05 06 07 08 09 1
sample x

It should be noted that the resulting random process Y(x) is non-differentiable.
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1.4.2.2 Spline autocorrelation function

m (1 —15@9|d;])? + 30(9;]d;)®> for ild;| < 0.2

R(d) = 1_[ 1.25(1 — 9;[di )3
i=1 0

Li =
lllustration for L = {0.05,0.2,1}:

1 o
o T

Autocorrelation

for 1 <9Yld;l

(1.22)

1,2,..m (1.23)

function:

Spline

09

0.8

I
[=1]

=
tn

=
Y

correlation R{d)

= =
=] =]

o

=

L=0.05
L=0.2
L=1

0.1 02 03 04 05
distance

[=]

06 07 08 08 1
d

random value Y(x)

. \
0 0.1 02 03 04 05
sample x
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1.4.2.3

Squared Exponential autocorrelation function

m
R(d) = nexp(—ﬂidiz), i=12,..m
i=1
3
L; = ﬂ—i, i=12,..m

lllustration for L = {0.05,0.2,1}:

-

Autocorrelation function:
Squared exponential

correlation R{d)
© o o = o o o
%3 s [ =2 = [ L=}

o
[X]
T

o
=
T

=

=

01 0.2

03 04 05 06 0.7 08 09 1
distance d

random value Y(x)

.4 I 1

1} 01 0.2

The resulting stochastic processes, in this case, are infinitely-differentiable.

.
03 04 05 06 07 08 0% 1
sample x
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1.4.2.4 Matérn autocorrelation function

m
1 v .
R(d) = nm(ZW-Sildil) Ky(2Vv-95ldil), v=05i=12,..m
i=1

(1.26)
I'(-): the Gamma function, K, (*): the Bessel function of the second kind
2 . 1.27
L; za—i, i=12,..m ( )

The Matérn autocorrelation function contains an extra parameter v, which affects the
differentiability of the Gaussian process. The resulting processes are v —1 times
differentiable. Controlling the differentiability is a very important advantage, which will be
discussed further in a following chapter.

lllustration for L = {0.05,0.2,1}and v = 0.5:

Autocorrelation function:

1 Matern v=0.5
L=0.05
09 L=0.2 |
L=1
0.8
07
=l
& 06|
=
% 05
o
= 04
8
03
0.2
0.1 \-\_\_‘_
Qo 0.1 02 03 04 o.ls c-.le oj? -o.la ofe 1
distance d
4 T
L=0.05
e L=0.2
L=1
P
2 b ) .
2 M L q')h.,A | 1 i
S ol ‘ [ 1 |||
! ai W |
: |
e -1
© |
2k
Atk
-4

. . . . . . . . .
0 0.1 02 03 04 05 06 07 08 09 1
sample x
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lllustration for L = {0.05,0.2,1}and v = 2.5:

Autocorrelation function:
Matern v=2.5

-

L=0.05
L=0.2
L=1

L
=]
I

=
i
I

L

=
|

T
1

=
m

T
1

=}
i

T
|

correlation R{d)
o

=
i
L

=)
X}

T
|

[=]
-
T

1

=]

0 0.1 02 03 04 05 06 0.7 08 09 1
distance d

random value Y{x)

0 o1 02 03 04 05 06 07 08 09 1
sample x

1.5 Kriging

1.5.1 Least-squares linear regression model
The least-square linear regression is the basis of the kriging predictor. It is defined as:

Y, =fT(x®)-+2%, i=12..n (1.28)
with:

Y: a vector with n observations in sites x¥
f(x): a regression function

B: the weights of the regression to be calculated
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Z;: the error of the regression measured at site x®
A regression function f(x) is usually a polynomial of order 0, 1 or 2:

e Constant

f(x) =1 (1.29)
withsizep =1
e Llinear
f(x) = [1% Xg 0. X ]T (1.30)
withsizep=m+1
e Quadratic
f(x) = [1 X; Xp .. Xy X2 X1Xp e X1 Xy oo X5 ]T (1.31)

with size p = 2 (m + 1) - (m + 2)

The number of observations n must always be more than p. Otherwise, the problem is under-
determined. Among the above polynomial regressions, the linear is generally preferred. The
guadratic regression, despite being more accurate, depends on many observations and
therefore is not efficient in problems with many dimensions. For example, a 50-dimensional
problem requires at least 1326 observations.

The vector Z is a Gaussian vector with E[Z] = 0 and Cov[Z, Z] = E[ZZ"] = ¢?R.

Considering the correlation matrix R known, the model is evaluated by solving the
optimization problem described below, through maximizing the likelihood of the weight
vector B and the variance 62, with y being the realization of the observations Y:

1 1
L(ylB.0*) = (Grotydet®) exp [_z_oz(y —FB)'R(y - FB)] (1.32)

where:

F=[fT(xV) fT(x®) ...fT(x(“))]T, a matrix of size n X p, with the regression functions

evaluated at the observation sites x®.

The maximum likelihood problem can be rewritten, using the natural logarithm. Equivalently:

(B,0%) = argmin(B’GZ)[—log(L(ym, o2))] (1.33)

Solving the minimization problem:

VlogL(y|B, 022) =0 B = (FTR-'F) 'FTR 1y (1.34)
dlogL(y|B, o) = 1 B
T =0 02 — H (y _ FB)TR l(y _ FB) (1. 35)

18



1.5.2 The best linear unbiased predictor — Kriging

A two-stage Gaussian process is assumed, consisting of the regression part and a Gaussian
process Z(X).

p
Yi= Z Bifj (x(i)) + Z(x(i)), i=012,..n (1.36)
=1

where, Y; is the unobserved value to be estimated. Also the Gaussian process Z(X) is defined
with zero mean:

E[Z(x)] = 0, Vx eX (1.37)
and stationary autocovariance:
Cov[Z(x),Z(x")] = 0?R(x,X"), v(xx) € Xx X (1.38)

Subsequently, the following Gaussian process is defined:

Yol _ fT(xO)B) ,[1 rf

{Y}_N({ FB 0 r, R (1.39)
where:

ro; = Rx©@,xV),  i=12,..n (1. 40)

which is the correlation vector that contains the correlation between the prediction Y, and
the observed Y;.

The matrix R and vector r are unknown, but assuming a correlation function as described in
paragraph 1.4.2, they are defined as:

ro; = R(x@ —x®,9), R;;=RxV-x®9), ij=12.n (L4
where 9 is the vector with the parameters of the correlation function, so far undetermined.

Theorem: The best linear unbiased predictor

The best linear unbiased predictor of the unobserved quantity of interest y, = y(x(o)) is the
Gaussian random variate Y, with mean:

Hy, = E[Yo] = E[Yo] = f,"B + R (y — FB) (1. 42)
and variance:
0%0 =E [(?o - Yo)z] = ¢? (1 —rdR7'ry + uoT(FTR‘lF)_luO) (1.43)
where:
B = (FTR'F)'FTR" 1y
up = F'R™'r, — fj (1. 44)
Proof:

Firstly, the following properties are defined:
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e Any prediction ?0 is a linear expression of the vector of observations Y through a
vector of weights a:

n

Y, = Z ao;Yi=a,"Y, a,=a(x®)eRn (1. 45)

i=1
e The predictor is unbiased:

E[Yo — Yo] =0 (1. 46)
e The prediction ?0 minimizes the mean squared error:

Yo = arg miny; E[(Ys — Yo)?] (1.47)

Therefore, the optimal weight vector a, is found by solving the following minimization
problem:

a, = argmin, E [(aOTY — YO)Z] (1. 48)

with constraint: E[a,TY — Yo] = 0 (1.49)
Y and Y, are replaced using the two-stage Gaussian process expression:
Yo—Yo=2a,"Y-Yo=a,"(FB+2Z)— (f, ' B+Zo) =ay"Z—Zy+ (a,"F—f," ) =
E[Yo — Yo] = E[aoTZ — Zo + (ao"F — £, )B] = E[agTZ — Zo] + (a,"F — £, ")

Considering the zero mean of Z(x) and the unbiasedness property the constraint expression
is simplified:

E[la,"Z—Z,] =0

Tp _¢ T — Te _ T:
]E[/Y\O_YO] =0}=>(ao F fO )B O:ao F fO 0

The mean squared prediction error is rewritten us such:

E[(%—Yo)’| = E[(a0"Z — Z)"| = E[a,"2ZTa, + 7,2 — 22,727
= a,"E[ZZ"]a, + E[Zy*] — 2a,TE[ZZ,] = a,"0?Ra, + 6% — 2a, 61,
= E [(?0 - YO)Z] = o2 (1 +aoT(Ray — 2r0))
where, by definition:
E[ZZ"] = 6%R, E[Zo*] = 02, E[ZZ,] = 0?1

Introducing Lagrange multipliers 49 = A(x(o)) the minimization problem with the equality
constraint is converted to the following unconstrained problem:

(a9, Ag) = argming, a,)L(ag, o) (1.50)

L(ag, &) = 0* (1 +a,T(Ray — Zro)) + loT(aOTF — fOT) (1.51)

Solving the optimization problem:
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VoL = 0} - 20%(Rag —1y) +FAy =0 -
= FTaO _fO = 0

[PBT g] {;Z} - {;2} with A9 = 2% (1.52)

Therefore the weights vector is obtained:
a, =R! (ro — F(FTR™'F) " (FTR'r, — f0)> (1.53)
Lastly, the mean and variance of the unobserved ?0, My, and 0%0 are obtained by substitution:
—a Ty — Tp-1g) (rTp-1 R
hy, =Ty = [rO—F(F R'F) " (FTR ro—fo)] R-ly
_ _q4 4T
=1, "Ry — [(F"R™'F) "F'R'ro + (FR'F) ' f| F'Rly
= £,"(F"R'F)'FTR"'y + r,"R™* (y — F(FTR'F)_'F'Ry)
=f, B+ R (y — FB)
0-%0 = 02 (1 + aOT(RaO - 21‘0))
_ T _
= o2 (1 +(ro — F(F'R™'F) 'u,) R ((r0 —F(F'R™'F) ) - 2r0>>

B AR N

-1 \T -1
=o?(1- (rOTR-er — (F(F'R™'F) "u,) R™'F(F'R"'F) u0)>

2

0% (1 rJRro + u,"(FTR™'F) " (F'R™'F)(F'R'F) " up)
o (

1 - rJR 'ty + up"(FTR™F) )

1.5.3 Estimation of parameters 9

The estimation of the parameters 9, is based on the least-squares maximum likelihood

estimator:
1 1
L(yIB, % 9) = T7exD [~ 5 (v — FBTR (v — F)
(2no2)ndet(R()))

The vector B and variance 62 depend on 9:

B(9) = (FTR(9)"'F) 'FTR()y

1 T
o?(9) = — (y —FB[@)) R®)(y—FB(9))

By replacing B(9) and 62(9) on the maximum likelihood estimator, and using the natural
logarithm, the following expression is obtained:
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log(L() |B' 02; 8))
=—(y—FB)TRM®) (y — FB) + =log(2m) + =log(c?)
2 2 y B y B 2 Og 2 Og o

1 n 1 n
+ 5 10g([detR(O)]) = > log (02 (8)[detR({))]n> +2 (og(2m) + 1)

Let: 1(9) = 62(9)[detR(O)]n
Therefore, the parameters 9 are obtained by solving the following optimization problem:

9 = argming Y(9) (1.54)
which eventually is equivalent to maximizing the maximum likelihood estimator.

The optimization problem described above cannot be solved analytically, and numerical
methods need to be used. Such methods can be gradient-based algorithm, or a genetic
algorithm.

1.5.4 Computational difficulties

It should be noted, that in many cases, numerical difficulties arise in the computation of the
inverse matrix of R which is generally very ill-conditioned. The ill-conditioness is treated with
various techniques, such as adding in the diagonal of R a very small value, historically called
nugget. The nugget in Applied Geostatistics, a scientific field in which kriging was at first
proposed, is a value that represents the measurement error, which produces noisy
observations. In this thesis, simulations don’t produce any noisy data, therefore the nugget
value should be, in theory, zero. The effect of using a small nugget value, for clearly
computational reasons, is that the mean kriging predictor becomes more “smooth” and does
not interpolate the observations, but such an error is negligibly small and is ignored.

Additionally, the selection of the autocorrelation function is important. It has been noticed by
Marrel (2005, 2008), that when the support points are very dense, which is a common case in
following applications, the squared exponential function is not efficient enough. That is
because it is infinitely differentiable. On the other hand, the use of a differentiable
autocorrelation function is desirable, because it depicts more accurately the physical
phenomenon that is emulated. Consequently, the Matérn autocorrelation function is very
efficient, due to the extra parameter v that affects differentiability, and performs well in
models with support points non-uniformly distributed (Vazquez 2005).

1.5.5 One-dimensional example of the kriging predictor

The following function is emulated with the kriging predictor, choosing various arbitrary
values for the 9 parameter of the correlation function, to demonstrate the way it affects the
prediction. Finally, the optimal parameter 9, and the probabilistic classification function T(x)
are calculated. For the regression stage of the model, the constant regressor is chosen. The
autocorrelation functions used are: (a) the squared exponential autocorrelation function and
(b) the linear autocorrelation function. The support points, or observations, are also arbitrarily
chosen, for the purpose of this example.

1
y(x) =§(x+2)+sin(x+2), XxER
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The evaluations of the function y(x), which are used as support points for the kriging model
are shown below:

i Xj Vi

1 -4 -1.909
2 -3 -1.341
3 1 1.641
4 2 1.243
5 4 2.721

(a) Squared exponential autocorrelation function (Gaussian)

The mean value pg(x) and variance o¢2(x) of the kriging predictor Y are evaluated in the
area of interest x € [—5,5], choosing 3 different correlation lengths. For L = {0.1;3;8} 9 is
obtained: 9 = {300;1/3 ;0.0469}, since 9 = 3/L2.

Regression models that differ in correlation length L
Autocorrelation function: Squared exponential

5 T T T

®  dataset

y(x) and mean of kriging predictor

4 T T T T T T T T T
® dataset
st L=0.1 7
L=3
g .l L=8 i
E 3
=
g
O 25f |
()]
E
o
2,1 |
o
‘B
B1sr 8
=
]
T
=
05} 8
0 [~ g
-5 -4 2 3 4 5




The dotted line in the figures above, is the function y(x) and is shown for reference. It should
be noted that in all cases the mean kriging predictor interpolates the data, and the variance is
zero at the same points. Also, it is clear that the correlation length L. = 0.1 is a very low value,
since the kriging model gives hardly any useful information in the area of interest, apart from
the areas very near to the observations. For the most part, the mean kriging predictor is equal

to: ug(x) = f(x)-f=1-0.4708 = 0.4708

For this example, the weight vector a, is also evaluated for x, = —1:

Observations

1 2 3 4 5

ap(L=0.1) 0200 0200 0200 0.200 0.200
ay(L = 3) -0.170 0574 0.642 -0.280 0.234
ay(L = 8) 0435 0.865 1.492 -1.108 0.186

It is reminded, that: pg(Xo) = ag 'y, with observations y defined in previous table.

Finally, solving the optimization problem of paragraph 1.5.3, the parameter 9 is obtained. Due
to the simplicity of this example, the objective function is also plotted.

It is reminded, that: ¥ (9) = o2 (8)[detR(ﬁ)]%

Estimation of 4}
Autocorrelation function: Squared exponential

w

(i)
----- &2
.......... [rg(,_“?[ﬂ}]%,

T

i

!

!

L
1 ® in
i

The estimation of 9 is:

9=0.182 =L =4.06

1
In the figure above, it is clear that for 9 — 07 the quantities 62(9) and [detR(9)]n approach
+o00 and zero respectively. Therefore, the objective function of the optimization problem is
very sensitive to numerical errors in the calculation of these quantities.

(b) Linear autocorrelation function

The above procedure is repeated with the use of the linear autocorrelation function.
Correlation lengths are the same:
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L={0.1;3;8}=9={10;1/3;0.125}, since 9 = 1/L in this case.

Variance of kriging predictor

y(x} and mean of kriging predictor

s
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Regression models that differ in correlation length L

Autocorrelation function: Linear

dataset

L=0.1
L=3
L=8

L
4

dataset
L=0.1
L=3
L=8

The main difference with (a), is that the mean kriging predictor p¢(x) is linear in parts, for any
X € R. Also the points, at which pg(x) is non-differentiable (“pointy”), differ by distance L
from a support point. This is because the linear autocorrelation function reaches zero in a non-
smooth way, compared to other autocorrelation functions, such as the squared-exponential,

or the spline.

The weight vector a,, evaluated for x,

1 is the following:

Observations

ay,(L=0.1)
ay(L=3)
ay,(L=28)

3 4
0.200 0.200
0.813 -0.500
0.500 0.000

0.200
0.313
0.000



In the case that L =8, the mean kriging predictor pg(x) is actually a simple linear
interpolation between the observations, therefore the weights of any unobserved value are
dependent only on the distance of the nearest support point, of each side on the x axis. Thus,
the weights a, for x, = —1, depend only on |xy — X,| = 2 and [xy — x3| = 2.

Solving the optimization problem, parameter 9 is obtained:

Estimation of «¥
Autocorrelation function: Linear

1 ()

Y 1 T A S (N a2 N
2 T N (N NN (R o [det R(1)]7

Al ]:i u min -

0 01 02 03 0.4 0.5 0.6 LI 0.8 03 1

9=0125=L=8
1.5.6 Probabilistic classification function 1t(x)

In reliability analysis, a limit-state function g(x) provides the information to classify a state x

in the failure domain:

or the safe domain:

Respectively, when a limit-state function is emulated through a Gaussian process, such as the
kriging predictor Y(x), the classification is approached in a probabilistic way, rather than
deterministically. The probabilistic classification function 1(x) describes the probability that
a state x belongs in the failure domain, and is the equivalent of the indicator function I(x) in

F={xeX:gXx) <0}

FC={xeX:gkx) >0}

The following indicator function Ig(x) with binary output is defined:

o(x) = {1 forg(x) <0

0

forg(x) >0

a probabilistic way. Therefore m(X) is defined as:

n(x) = P(Y(x) < 0) = @ <_”‘7(x)>
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where @ the standard normal cumulative distribution function. It is clear that m(x) takes
values from 0 to 1, and that for o¢(x) = 0 then (x) = Ip(x).

In the following example, it is assumed that pg(x) = x and o¢(x) = 1 for x € [—4,4].

e
nx) = ® <L = ®(—x)
og(x)
—_ 5 T T T T ]
X
=
£ 25
pul
3“,} 0 = = = iylrpray(x) |
:—_ ff\([x:‘
53- B e R, ;:Y[x}—dY[x}
= 5 ! 1
2 3 4
; .
0.75 |
= I i
\E-:' 0.5
025 |
0 : :

4 -3

X

In the second example, a kriging model is built with 8 support points, from the following limit-
state function, by Der Kiureghian and Dakessian (1998):

g(x) =b—x, —k(x; —e)?, X € X=[-8,8] x [-8,8]

whereb =5,k = 0.5 and e = 0.1. The kriging parameters 9 are set to 9 = (0.25,0.25), the
correlation function is the squared exponential and the regressor is constant.

Probabilistic classification function =(x)

8 \ 1
o Gio * ) ® dataset 0.9
6 Qq'l“:’ — T Tgx=0 L7 ’
/ 10.8
4t . gi(x)=<0
10.7
2T 106
x' 0 105 §
ot 10.4
0.3
ul
0.2
a 0.1
-8 * 0
-8 5 -4 2 0 2 4 [ 8

The dashed line represents the limit g(x) = 0 and the cyan-green represents m(x) = 0.5 &
Hg(x) = 0. Choosing a confidence-level of 95%, three areas are distinguished:
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X € X : (x) < 2.5%, in which safety is almost certain

X € X : (Xx) > 97.5%, in which failure is almost certain, and finally

X €X:2.5% < n(x) < 97.5%, the “grey area” in which the model fails to provide
confident classification. In later chapter, the database that is used to build the kriging
model, is refreshed with new data, with purpose to eliminate completely this grey
area, and bring the 1t(x) function closer to Ip(x).
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2 Reliability analysis

2.1 Introduction

In structural design, many types of uncertainties are encountered. Those uncertainties derive
mostly from lack of information, of ignorance of the physical laws. Material properties,
environmental loads, and other quantities, are very hard or impossible to determine,
therefore these quantities must be dealt us random variables. As a consequence, considering
all those uncertainties is necessary, in order to evaluate the probability a structure to fail its
purpose, in terms of strength of serviceability.

Firstly, the deterministic and random quantities are separated and defined. The deterministic
guantities are those that are known and can be defined in advance. Also random variables
with relatively small variance, can be assumed as deterministic. Otherwise, random variables
describe quantities, that are unknown beforehand, such us the strength of concrete, or the
maximum snow load in the next 50 years. In almost all cases though, such uncertainties can
be described in a probabilistic way, through mathematically defined distributions that derive
from statistical data.

Reliability analysis aims to calculate the failure probability, which depends on all present
uncertainties. In other words, all uncertainties are reduced to a single one, which can describe
the safety level of a structure. Nevertheless, evaluating such a failure probability, analytical
solutions are proven to be very restricted. One should rely on numerical methods, and more
specifically, on computer experiments.

This thesis focuses on the application of structural reliability, in problems with difficulties, such
as very low failure probability (< 107%), high number of random variables, and
computationally costly performance functions. In this chapter, the most efficient and
advanced simulation techniques are presented, incorporating the probabilistic classification,
provided by the kriging meta-modelling.

2.2 Problem definition

Let vector X a collection of m random variables, described by the multivariate probability
density function fx(x), x € X € R™. The performance function G = g(x): X » G c R, which
is also random since it depends on X, measures a specific quantity, that is adequate to classify
a state x to either:

the failure domain:
F={xeX:gkx) <0} (2.1)
or the safe domain:

F¢={xeX:g’x) >0} (2.2)

Therefore, the failure probability is defined as:
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b =P(6 < 0) = P(X) < 0) = [ G dx 23
F
The indicator function I(x) is defined as:

_ (1 forg(x) <0 (2.4)
() = {0 for g(x) > 0

Equivalently, the failure probability can be defined using the real performance function g(x)
or the probabilistic classification function m(x) from the kriging predictor

G ~NV (i (3, 66 (X)):

g GO~ (16(0,55°(0)

pe = f 5(x) - fx () dx Py~ P = f () - f () dx
X X
(2.5) (2.6)

The failure probability, when evaluated from a kriging model, is only an estimation, because
uncertainties of the model are present. In the rest of the chapter, all definitions and
methodology, are presented in two ways, in parallel. Firstly, using the real performance
function and the indicator function Iz(x), and secondly, through the model estimation and
the probabilistic classification function T(x).

In the following example, the functions Iz (x) and Tt(X) are presented, considering the function
of 1.5.4. The random variable X, is normally distributed with zero mean and unit standard
deviation. The kriging model is built, using constant regression function, and the squared
exponential autocorrelation function with optimal parameter 9.

1
g(x) =§(x+2)+sin(x+2), X €ER

® dataset

Perf. function gi{x) and Kr. predictor

mean of kr. predictor

5 -4 3 2 - 0 1 2 3 4 5

random variable x

It is worth noticing that, the mean kriging predictor pg(x) is almost identical to the real
function g(x), in the area of interest. Nevertheless, in the interval x € [—3,1] there is little
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information (no observations) and the model variance is large. This uncertainty is depicted in
the following figure:

T T T T T T T T T
1 ||||||||||| |[X) i
mix)

0.8 7
—_
»
-

E 06 J
w
=]
—_
»
=

04 r -

0zr B

o L 1 s . | ) | I
-5 -4 -3 -2 -1 1] 1 2 3 4 5

random variable x

It is clear that the probabilistic classification function m(X), is actually an estimation of the
indicator function. Although the estimation, may seem to be relatively good, the estimated
failure probability may differ by a large margin to the actual one.

9 N S N N N ) oo Ix)f(x) | |
ixf(x)
— = —f(x)

015 [ 4 | :

I{x)f(x), T{x)f(x) and f(x)

0.05 - £ 1

random variable x

The error of the estimation, is clearer above. The area of the two functions depicted, is equal
to the failure probability as defined in the above expressions. In this specific case, the PDF
enlargers the error of the estimator.

By numerical integration, the values of pf and p¢, are obtained:
g(®) GO~ (1600, 86° (X))

pf = 2.275- 1072 Pre = 5.704 - 1072
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The calculation of the definite multiple integral in the equations above, is generally impossible
to compute analytically, because the bounds are dependent on g(x). Also numerical
integration is just as inefficient, because the computational effort is rising exponentially with
higher dimensionality. Therefore, the following simulation techniques need to be
implemented, to calculate low failure probabilities in many dimensions.

2.3 Monte Carlo Simulation

The Monte Carlo Simulation (MCS), is a method to calculate numerically the integral that
defines the failure probability p¢. It is a necessary condition, that generating samples of any
size from the random vector X according to the predetermined PDF fx(x) is possible. This can
be achieved by sampling from a random variable U~T1/(0,1) using a pseudorandom number
generator, and then compute realizations of X through an isoprobabilistic transformation T.

x® =T(u®), i=1,2.N (2.7)

where:

x@ realization i of random variable X

u® realization i of random variable U~U(0,1)
N the sample size, or number of simulations
T(u) isoprobabilistic transformation U —» X

T(u) = Fx *(Fy(w) = Fx ' (u) (2.8)
where: Fx(x) the CDF of X and Fyy(u) = u the CDF of U

The calculation of the failure probability is estimated from the sample X(i), i=1,2,..Nas
follows:

800 G0~ (Rg(0,56” (X))

N N
1 . 1 .
Pr = Nz Ir(x®) P~ Pre = NZ (x®)
i=1 i=1

(2.9) (2.10)

The above estimation is dependent on the size sample N, and the coefficient of variation is
given below:

N
1—p 1 |1(1 _
8: 6 = |—| — Hy2z — 2
N pf £ bre N(N § n(xW) Pfe

=1
(2.11) 2.12)

It should be reminded, that P¢, is estimated with uncertainties that originate from the kriging
model and uncertainties from the MCS as well. The coefficient of variation &, expresses only
the probable error from the MCS, which is also called statistical error.

Usually, the coefficient of variation of the failure probability § (or &), defines the number of
simulations N, and is set to one of the following values: § = {1%, 2%, 5%, 10%]}.
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Monte Carlo Simulation is a powerful and robust method to calculate the failure probability.
It is independent of dimensionality and relies only on Iz(X), meaning that the differentiability,
the linearity or the convexity of g(x) are irrelevant. On the other hand, MCS may prove to be
computationally costly, because achieving low & requires many simulations when estimating

low failure probabilities. This disadvantage may often be amplified, when each evaluation of
g(x) is also computationally time consuming.

In the following example, the Monte Carlo Simulation is illustrated, using a performance
function from Rackwitz (2001):

g(x) = 4.5 — e0-3%1+07 _ 003%; Xy, Xy € R2

where:

X1,X5 hormally distributed random variables, with zero mean and unit variance

Performance function g(x)

& T T
2 AN \ 4
\
a W Y 2
4 A
= \
. & 1 10
=
2z o \
< '. {2
|
\ —_
<0 | 4 %
|
|
.'. I _,5
2 ;
'.I =
\ = -8
N o
-4 \ e
\ = -10
]
6 : 12
-6 4 2 [H] 2 4 [+
X

The kriging model is built with 10 observations. The MCS is run on sample with size N = 3000.

Monte Carlo Simulation on g(x)
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The samples in the failure domain (Ig(x) = 1), are illustrated with filled black dots.

Monte Carlo Simulation on Kriging model

& 1
\\ ot IL9

10.8

10.7

10.6

10.5

X}

10.4

0.3

0.2

0.1

The colors in gray scale, correspond to values of Tt(x) from 0 to 1. The failure probability and
its coefficient of variation, are calculated from the real g(x) function and from the kriging
model:

g(x) 6o~ (A6, 862X) )
Pr=4.47-1072 Pee = 2.89-1072
8 = 8.44% 8. =9.20%

The difference between pr and Py is attributed to the inaccuracy of the kriging model, rather
than the statistical error, because 6 and 6. are too small to justify it. It is worth noticing, that
in the first case N = 3000 evaluations of g(x) are required, while in the second only 10
evaluations of g(x) are required and N evaluations of the kriging model.

2.4 Importance Sampling

Importance sampling allows the use of an arbitrary PDF h(x) in sampling generation in
simulation techniques, unlike MCS which requires the use of the PDF fx(x) that defines the
random vector X. Although it is proven that any h(x) is utilizable, in a simulation context the
proper choice of h(x) can drastically decrease the number of simulations N. The optimal h(x)
focuses entirely on the failure domain, thus, the sampling is more efficient. However, defining
the optimal h(x) is not possible, but suboptimal PDFs can be almost as efficient.

Importance sampling is presented below, at a more general framework. The purpose is to
evaluate ¢ which is defined by the following integral:

5= [ 660 k(= Exl900) .13

where X € X € R™ the random vector with PDF fx(x) and ¢(x) a real-valued function. It
should be noted that ¢ is actually the failure probability ps, when ¢(x) is substituted by I(x)
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or (x).

Let h(x) a PDF, such that ¢p(x)fx(x) = 0 = h(x) # 0. The expression of ¢ is rewritten as
follows:

(Nfx(Y) (2. 14)

h(x) f d()fx (%)
h(Y)

B = fwmmmm) o

P, ) dx E4¢

where Y € X € R™ a random vector distributed according to h(y)

Resorting to the Monte Carlo Simulation, the estimated value of ¢ is the following:

¢(Y(‘))fx(y(')) (2.15)
h(y®)

-9- |

where:

N the sample size, or number of simulations
y®D,i = 1,2, ...N the sample generated according to PDF h(y)

Next, the variance of $ is evaluated:

2
= Vary[$] = N'Ey[l P K —N-E [1M

o5 N2~ h(Y)? YIN™ h(Y)
N . .
N ([ o) fx(¥)? =2\ 11 o)V =2
=Nz szh(y)dy—d) =3 —z (g > — ¢
X y) NAN& h(y®W)
(2. 16)
And the coefficient of variation of (T) is:
5o = — |11 C OO (yD)? 2 (2.17)
% [N\N h(y®2

Assuming 0$2 = 0 and ¢p(y) = 0, the optimal h(y) is defined (Rubinstein and Kroese 2008):

2f 2 -
o32=0= X—d)(’g( ’;EY) h(y)dy— ¢ = 0=
¢(Y)2fx(Y)2 d(x(y)
—d WxWdy > =—————=1=
x -h@) f¢yxy T
h(y) = d)(Y)cfX(Y) (2.18)
¢

Clearly, the optimal instrumental PDF h(y) cannot be defined because the value rT) is not
known. Nevertheless, an estimation of the optimal h(y), or else a suboptimal h(y), may also
grant satisfactory results. In Meta-Modeling Importance Sampling the suboptimal PDF is
estimated from the kriging model. More on that will be discussed in the respective chapter.
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In the following example, the failure probability is estimated with the Importance Sampling
technique, considering the performance function g(x) of 1.3.

The function h(x) is arbitrarily chosen for the purpose of this example:
h(x) = fx(x—d)

where d is the vector that maximizes fx(d) with the constraint that d € F  X. This vector is
also called the design point, because it is the most probable case of failure.

In other words, h(x) defines a normal distribution with the same variance as X, 6% = [1,1],
and meanm = d = {1.646,0.609}. The sample size is the same as in the MCS example, N =
3000.

Importance Sampling Simulation on g(x)

As shown in the figure, about half of the samples reside in the failure domain. The failure
probability and its coefficient of variation are estimated below:

pr=4.84-1072, 6 =2.62%

Comparing to the MCS, & is now about 3.2 times smaller, and such a value would be achieved
with about 10 times larger sample size. It is worth noticing though, that choosing a proper
h(x) function is very crucial. An improper h(Xx) choice, would result to lower efficiency
compared to the robust MCS.

Importance sampling provides a property that is fundamental for Subset Simulation and Meta-
Model Based Importance Sampling, described in the following subchapters.

2.5 Subset Simulation

2.5.1 Principle

Subset Simulation is a reliability method, by Au and Beck (2001), that splits the domain in
successive subsets, with purpose to detect the failure domain and estimate very low failure
probabilities. Starting from the initial domain, X € R™ the limit q; € G c R is evaluated so
that:

36



PXeF)=PgX) < q,xeX)=p; (2.19)
where:

IF, a subset of X such that g(x) < q;,x € X
g(x) the performance functiong(x): X - G c R
p1 an arbitrarily chosen probability referred to as an intermediate probability

Subsequently, the domain [F; is split into subsets [F; ¢ F;_; € --- € F, c [F; successively:
:;D(X € ]F1|X S ]Fi—l) = .‘P(g(X) < qi,)X € ]Fi—l) = pi|i—1’ i=23,..s (2.20)

where: g5 < qs—1 < ***qz < 4 the limits that define subsets F; = {x € X : g(x) < q;}
Piji-1,1 = 1,2,...s — 1 are the intermediate probabilities, arbitrarily chosen
Psjs—1 the conditional probability of the last subset that corresponds to g

The failure domain is defined as F = {x € X : g(x) < qg = 0}, therefore: F = F;

And the failure probability pg is given from the Bayes’ Theorem:

S
pr=PXEF) = PXEFJXEF,_): .- PXEF,XEF,) PXEF,) =p, np”i_l

i=2

(2.21)

In the following equations, the intermediate probabilities are additionally defined, from the
probabilistic classification function T(x).

80 G~ (16(0,35°(0)

1= | I GORGOdx pes = | mGORGIdX
X X
(2.22) (2.23)

Piji-1 = Pi/Pi-1 = Pejiji-1 = Pi/Pi-1 =

g () fx (%) m () fx (%)

Piji-1 = ——dx= Pejili-1 = ——dx=
Fi-;  Pi-1 F_, Pi-1

Pili-1 =-[]F g (%) Ipi—g (Ofx(x) ix= | Peiios =J]‘F m(x) i (Ofx(x) dx =

JFc1(®) pig i1 pig

Igi (%) J‘ (%)
L= ———h;i(x)dx = ieq = ——h;(x)dx
Piji-1 J[Fi_1 Ipj—1 (%) 1) Peili-1 1Fi_1ﬂi—1(x) i)
(2.25)
Piji-1 =f I (Oh;(x)dx
o (2. 24)
_ (1 forgx) <q; q; — Hg(x)
00 ={o g0 > m®:¢§?ﬁﬁﬁ
(2. 26) (2.27)
Ipi—1 (Ofx (%) M1 (Ofx (%)
hi(x) = ————~ hi(x) = ———2 22
1) Pi-1 ' Pei-1
(2.28) (2.29)
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In Subset Simulation, the conditional intermediate probabilities p;;_; uptoi=s—1 as well
as qs = 0 are known. The last conditional probability ps|s—; and the quantiles of g(x) q; >
gy >+ > qs—q > 0, are derived successively from the definitions above. The function h;(x)
is the PDF that describes the distribution of X restricted in subset [F;_4, and is referred to as
the conditional PDF. In the next subchapter, an efficient procedure for the estimation of the
failure probability is presented.

2.5.2 Algorithm

The main advantage of Subset Simulation (SS), is that the intermediate probabilities are
arbitrary, and can be relatively high, such as p;;—q; = 10%~20%. When resorting to
simulation methods, high probabilities are very costly to be estimated with low variance.
Therefore, SS alters the problem. Instead of calculating a low failure probability, high
probabilities are calculated, but multiple times.

The computational cost of SS, in terms of §, is (by simplification) proportionate to k, if the
failure probability is pf= 107Xk >0, whereas the computational cost of MCS is
proportionate to 10K,

On the other hand, SS depends on more advanced techniques in sampling generation, because
an isoprobabilistic transformation of h;(x) is inevitable or impractical. Such techniques are
the Markov chain Monte Carlo samplers (MCMC). In this thesis the modified Metropolis-
Hastings sampler is preferred, as discussed in following chapter.

Step 0: Set values for the intermediate probabilities, and sample size per step N

The intermediate probabilities pjj;_1,1 = 1,2,...s — 1 are all set to a certain value py. A small
value of py means that less steps will be required, but a targeted probability variance will be
harder to reach. By choosing a large value, smaller samples need to be generated but more
steps are required. An optimal choice is 0.1~0.2 and most commonly p, = 0.1. Therefore:

Piji-1 = Po i=12,..s—1

The choice of sample size per step N depends on the target coefficient of variation & of py. If
the failure probability ps can be estimated, then from the upper bound of §:

1-po 2 log(ps) (2.30)
N > (1+/T+y-&=-1), k= :
8% po ( Y ) log(po)

or less conservatively, from the lower bound:

1_
N> Po
82 po

(2.31)

(1+@+y)-k-1)

For values pg = 0.1, 8§ = 10%, y = 3, pf = 1077 = N > 152100 per step. The coefficient y
takes into account the correlation in samples generated from an MCMC sampler. More are
discussed in following chapter.

Step 1: Generate sample from fx(x),i =1

The first step is identical to MCS. The samples x[=1U0 Kk =12 . .Nis generated according to
fx(x).
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Step 2: Estimate q;

Estimating the quantile, g; can be achieved from pji_; = po. The procedure is different in the
case of the kriging model:

g(®) 6o~ (A, 862 )
N
[i](k
Piji-1 = lz I (x[1109) Pejiji-1 = z m(x )
N& N&Lim 1 (xR
(2.32) (2.33)
Find q;: Find q;:
1. Calculate g(x[1®) k =1,2,..N 1. Setacceptable errore = 0.01
Sort x1®) by ascending order with 2. Calculate q; = min fig(x11%) and
respect to g(x[111)) qu = max fig (x109)
3. q; = g(xHPoM) 3. Setq” = (q+qu)/2
4. Esti * _w(xl109)
. stimate p™ = _Zk 11.[ 1(X[1 (k))
x _ 9 -ic®
where T (X) = ( —- )
5. Ifp* > pgsetqy = q7 else set

a=q
6. Calculatee* = |p* — pol/Po
7. Ife* >egoto3,

else pjji-y =p“andq; =q"

S = o
1 — Ppiji-1 el
8= |l (g 4y
' \/N'pi|i—1 '

(2.34)

The coefficient of variation of p i_4 is the following:

1 1

8y =
' Peiji-1 [N

N .
! T (X[l](k)) 2 (2.35)
¥ 2. ey~ Pt (1 ve)

=1

Instepi = 1the F, “subset” (i — 1 = 0) is by definition the X space (F, = X). Also, y; = 0.
As shown in the algorithm above, a sorting of the g(x) values is required to find g;. In the case
of the kriging model though, such sorting is not possible. A bisection method can be utilized,
to find g;. It should be noted, that the intermediate probability p, is targeted, but is not
achieved. Consequently, the final intermediate probabilities piji—1 are close and not equal to
Po, but that has no effect to the process of SS.

Eventually, q; will reach a negative value. At this point q; is instead, set to zero:

qi=9s=0
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and the algorithm proceeds to step 4. Else, iis settoi =i+ 1, and the algorithm continues
to step 3.

Step 3: Generate sample x[1®) k = 1,2, ... N from conditional PDF h;(x)

As mentioned before, sampling from h;(x) can be achieved by Markov Chain Monte Carlo
samplers. Here, the Modified Metropolis-Hastings algorithm (MMHA) is used. Firstly an initial
seed is defined, and secondly the sample x0® k=12 . .Nis generated:

8x) G0~ (7i6(0,86° ()
Xgeeq® = x[~H® k =12 .. .poN Find Xgeeq
where xI=1® js the sorted sample from 1. j=1
the previous step. 2. Choose arandomk* € {1,2,...N}
Therefore' X[i_l](k) [= ]Fi—l and with prObablllty
. i—11(k
hi(x[l—l](k)) >0,Vvk=12,..poN. r = T[i—l(x[l 11( ))

T (x=1UE) - Np; 5,

3. Xgpeq = x[i-1K)
4. j=j+1
5. Ifj<poNgoto2,elseend

The sample is generated starting from poN | The sample is generated starting from pyN
independent chains, with 1/p, — 1 steps, | independent chains with b +t/p, steps,
and finally sample x[!/® k = 1,2,...N is | where b is the burn-in parameter, and t the
obtained. Also, the coefficient y; is | thinning parameter (b = 20,t = 10). Burn-in
estimated. is very important, because it corrects double
samples in the initial seed, and thinning, can
greatly reduce the y; coefficient. Those two
techniques are discussed further in following
chapter.

Finally, the sample x[i](k),k =12,..N is
obtained.

Consequently, the initial seed, in the kriging model case, likely contains multiple identical
samples. This is corrected with the burn-in procedure, meaning that the first b steps in the
MMHA are discarded. Go to step 2.

Step 4: Final step. Estimation of pgand 6.

At this point the intermediate probabilities pii-1,i=12,...,s -1, the coefficients of
variation 6;,i = 1,2, ...,s — 1 as well as the quantiles q;,i = 1,2, ..., s are estimated. The last
conditional probability is:

N
1 T X[S](k)
Ps|s-1 = NZ IFs(X[S](k)) Pesjs—-1 = N Z ( [s] (13
= 1 Tls— 1(x )
where, Igs(x) = [g(X) and T4 (x) = m(x) by definition, because q5 = 0.
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Therefore:

S
Pr=p1 npi|i—1
i=2

The coefficient of variation of Py cannot be determined. Instead, a lower and upper bound are
defined (by Au and Beck 2001):

(2.36)

In many examples (Au et al. 2007), it is shown that § is closer to the lower bound. Also, it
should be noted that the minimum size sample per step N, calculated in Step 0, is based on
the upper and the lower bound respectively.

2.5.3 Example

In the following example, the failure probability is estimated from Subset Simulation. The
performance function is the following:

g(x) =7— e0.3-x1+0.7 _ 80'3'X2, X1,Xy € ]RZ
where X4, X, normally distributed random variables, with zero mean and unit variance
Firstly, the failure probability is estimated from Monte Carlo Simulation, for reference:

pr=2.137-10"%8 = 3.66%,N = 3.5- 10°

Starting the Subset Simulation algorithm, the size sample per step is set to N = 10%, and the
intermediate probability to py = 0.1. The results are shown in the following table. Also the
samples of each step, are illustrated. It should be noted, that only 1/10 of the samples is
plotted for the purpose of the illustration:

Subset Simulation: Step 1 Subset Simulation: Step 2

Soo o | || g(x)=2.8998
4 g(x)=2.8098) © 4 g(x)=1.7698
* 1x)=1 0 *20x)=1
O HM{x)=0 O 12{x)=0
& : ; 5 :
- -4 2 0 2 4 6 -8B -4 2
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Subset Simulation: Step 3

5] | b ETr m—
4 = =- - af o —
2 2
o 0
2 \ o b [ermerien g(x)=2.8998
— — —gix)=2.8998 ‘I — — —g{x)=1.7698 ‘I
————— g(x)=1.7698 N ===-=g{x)=0.71842 d
- g(x)=0.71842 | - g(x)=0 -
®  BBix)= 1 ®  I4(x)=1 P
o 13(x)=0 1 o 14(x)=0 1 ;
L A N L 11
5 5
% -4 2 0 2 4 6 6 -4 2 0 4

The black dots in each step, represent the samples that reside in the lowest 10% of g(x)
values, and the highest of those defines the quantile q;. These samples, are also the seed used

to generate the samples of the next step.

i Piji-1 qdi 8i Yi
1 0.1 2.900 0.95% 0
2 0.1 1.770 1.84% 2.757
3 0.1 0.718 1.79% 2.560
4 0.215 0 1.23% 3.137

In the fourth step, the quantile q,4 is found q, = —0.351. Therefore, it is set to q, = 0, and
the final intermediate probability is estimated: p43 = 0.215. The failure probability is:

4
Pr=p1- Hpi“_l =0.13-0.215=2.15-10"*
i=2

The coefficient y; accounts for the correlation of the generated sample, which is inevitable in
Markov chains. Its value could be reduced, by increasing the number of chains, i.e. the size of
the seed. In all three cases, in which sample was generated from the MMHA, y; = 3, while the
samples in the first step are completely independent and uncorrelated, therefore y; = 0. In
case a kriging model is built, y; can be reduced to zero, due to thinning. The coefficient of
variation of ps cannot be estimated, but is bounded from the following values:

3.00% < 6 <5.81%

2.5.4 Comparison of the Subset Simulation and the Monte Carlo Simulation

Comparing the SS to the MCS, it is clear that, in the example above, the same variance of
probability is achieved, with much less computational effort. In terms of g(x) evaluations, the
MCS is completed with Nyc/Ngs = (3.5-10%)/(4-10°) = 8.75 times more evaluations.

Generally, the ratio Nyc/Ngg increases rapidly, while the failure probability decreases, and
the SS becomes more efficient.
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In the graph below, the required total sample size N is shown, for a target c.o.v. §, and a failure
probability ps. It is considered that py = 0.1 and y; = 3, which are common values. Both
bounds of 6 of SS are shown.

Comparison of MCS and SS in computational effort
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As shown in the graph, Subset Simulation is preferred to MCS, for low failure probabilities,
such as pf < 1074,

2.6 Meta-Model Based Importance Sampling

2.6.1 Introduction

Meta-Model Based Importance Sampling (MIS) (Dubourg 2011), is a hybrid method that
combines kriging modeling with importance sampling. The reliability analysis methods
described in this chapter, are based on numerous evaluations of the performance function
g(x) to generate sample, or very few evaluations, with which the kriging model is built. The
kriging model approach can provide the same accuracy in estimating the failure probability,
with low computational effort, provided it is refined with additional observations, carefully
selected as presented in the next chapter. However, it is noticed, that in certain cases, a kriging
model cannot be sufficiently refined. Most frequently, in problems with high dimensionality,
a kriging model has to be built with too many support points, in order to achieve acceptable
accuracy.

Such an insufficiently refined kriging model though, can provide an approximation of the
optimal instrumental probability density function, as described in chapter 1.4. The Meta-
Model Based Importance Sampling utilizes the sub-optimal PDF, provided by the kriging
model, to sample values of g(x) and reach low variance of the failure probability, with very
few model evaluations. Therefore, this hybrid reliability analysis method, consists of two
parts: Firstly, the construction of a kriging surrogate model, and secondly an importance
sampling application on the sub-optimal instrumental PDF.

In this subchapter, the Meta-Model Based Importance Sampling method is presented, and
illustrated on the example of subchapter 1.3.
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2.6.2 Implementation

As mentioned in the 1.4 Importance Sampling subchapter, the optimal instrumental PDF that
achieves § = 0, independently of sample size N, is the following:

[r(X)fx (%)
Ps

h*(x) =
which depends on the unknown probability ps. In meta-model based importance sampling,
the optimal PDF h*(X) is approximated by the sub-optimal PDF h*(x):

m(x)fx(x) (2.37)
Pre

h*(x) =

where pg, is the failure probability, estimated based on a kriging surrogate model. Therefore:

[r()fx (%) jIF(X)fx(X) ~ [p(X) ~
= | ————h*"xX)dx = | ———pe.h"X)dx = ——h*(x)dx
= [ T R [ oniey e e = b [ R0
and the correction factor is defined as:
I ~
_ (X f* (0 dx (2.38)

aCOI‘I‘
T X
( )

which corrects the first estimation pg,. The closer T(X) is to [g(X), the closer a.qr is to unity.
The coefficient acopr is estimated from Monte Carlo sampling, with sample generated
according to h*(x) with a Markov Chain Monte Carlo sampler, such as the Modified
Metropolis Hasting Algorithm:

Step 0: Set target §, &,

The coefficient of variation of the failure probability in meta-model based importance
sampling is dependent on §, of the simulation technique which is based on the kriging model,
and 8., Which is the coefficient of variation of a g

2.39
5= 87+ Beore” + 8:Buons” = [5:7 4+ Buons -

Since &, does not depend on evaluations of g(x), it should be significantly low, e.g. §; = 1%.

Therefore, the targeted value of S.opr IS Ocorr = /62 - 882

Step 1: Implementation of a simulation technique to obtain p¢

At this step, a simulation technique, such as the Monte Carlo Simulation or the Subset
Simulation is implemented with a low targeted &, to estimate p¢. Also the samples generated
are used to find initial seed for the sampling from PDF h*(X) in the next step.

Step 2: Sampling from h*(x), and estimation of a

The MCS provides the sample {X(k),k= 1,2,...N}, while the SS provides the sample
{X[S](k),k= 1,2, N} where s the last subset. In the respective case, an initial seed
xseed(k),k = 1,2, ...K, where K is the number of chains that generate samples. K should be
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set to a relatively small value, K = {50,100, 200}. The sample is generated from the following
sub-algorithm:

1. Setj=1
2. Choose randomly a k* € {1,2, ... N} with probability:
T[S(X[S](k))
B “s—l(x[s](k)) ' Nps|s—1
where ns_l(x[s](k)) =1, psjs—1 = P1jo = Pre by definition, if s = 1

'k

Xseeq = xK) setj=j+1

Ifj <Kgoto2,elsegoto5

Choose burn-in parameter b = 20 and thinning parameter t = 10

Perform b MMHA steps to acquire new corrected Xgeeq, Seti =1

Perform t MMHA steps to acquire sample {x((i_l)K“‘),k =1,2,.. K} from the last
state of each chain

8. Calculate §.opr and N =1 K. If 8¢0rr is Not low enough, seti =i+ 1 andgoto7.
Else end.

Noukuw

The correction factor acq, is estimated from:

Acorr

NCOrr .
1 Z Ip(x®) (2. 40)

m(x®)

NCOI‘I’ i

and the coefficient 8. is calculated from the following expression:

NCOI‘I‘ .
1 1 1 [p(x®)2 (2. 41)
8corr = N N Z iz acorr? | (1 + Yeorr)
Acorr corr | Neorr £ m(xW)

Burn-in is very important because identical samples are dealt with. Thinning is also crucial,
because it decreases the v, coefficient to very low values. That way, the correlation that is
innate in Markov Chains is eliminated. The last state of the thinning steps, is the sample added
to the whole set of samples. Therefore, every t MMHA steps, K new samples are obtained,
and 8.,y is revaluated. If the new 8., is low enough, the MIS ends.

It is worth noticing that sampling from h*(x), evaluations of g(x) are not required. Therefore,
the thinning procedure is computationally efficient, and the generated sample of size N.qr is
small and efficient.

2.6.3 Example

In the following example of subchapter 1.3, the kriging model is deliberately built
insufficiently, on only 11 observations (new ones), to illustrate the application of MIS.

Firstly, the failure probability p¢e is estimated, with Monte Carlo Simulation on the kriging
model. The targeted &, is 0.9% and the size sample N = 200000.

pre = 5.17 - 1072
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The above estimation is sufficient in terms of Monte Carlo Sampling, but the kriging model is
not accurate. The actual failure probability is pf = 4.62 - 10~2, for reference. The burn-in and
the thinning parameters are set to b = 20 and t = 20. The initial seed is chosen K = 100.

In the figures below, the optimal PDF and the sub-optimal approximated PDF from the kriging
model are illustrated:

Optimal Instrumental PDF
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l
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h*(x) = Ir(x)fx(x),/pr \

0T 1 104
2r 10.3
Aar 0.2
£ L 0.1
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Sub-optimal Instrumental PDF from the kriging model
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_QEXFD
0.4
al
40.35
ol
. , {03
h*(x) = m(x)fx(x)/pi
<10 0.25
10.2
2r
0.15
At
0.1
& : 0.05
) -4 -2 0 2 4 [

As shown above, the sub-optimal PDF h* (x) is a relatively good approximation, of the optimal,
yet impossible to use, h*(x). Considering that defining h*(x) required only 11 observations,
i.e. evaluations of g(x), the MIS is proven to be very efficient. In the following graphs, the
estimation of pg - acorr is displayed at each i step, as described in the algorithm of 1.6.2. In
the horizontal axis, the total sample size N, is shown up to each i step. Assuming a targeted
Scorr = 4%, the MIS should stop ati = 5 = Ny = 500. The estimated failure probability
is corrected:

Pfe * Acorr = 5.17-1072-0.906 = 4.684 - 1072
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with coefficient of variation:

8= [8corr” + 6.2 =+/0.042 4 0.0092 = 4.1%

Meta-Mode| Based Importance Sampling
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Itis worth noticing, that the MIS required only Ny;;s = 11 4+ 500 evaluations, while the Monte
Carlo Simulation based on g(x), would require Nycs = 13000 for the same § coefficient.
Also, it is important to consider, that the sample size N, does not depend on the failure
probability, in contrast to the MCS, but on the accuracy of the kriging model. For the purpose
of this example, the particular kriging model is not refined. The refinement procedure, which
is presented in the following chapter, can achieve such close approximations of the failure
probability, in low dimensional problems, that estimating pg would be sufficient (acorr = 1).
Consequently, the MIS is necessary, only in cases that the refinement procedure requires a
large number of observations. In such cases, which are usually high-dimensional problems,
the kriging model is costly to build and the refinement’s additional observations are more than
the number of evaluations N, required by the MIS.

47



48



3 Adaptive Refinement

3.1 Introduction

A kriging surrogate model is built from randomly chosen observations in the area of interest.
The area of interest is determined from the reliability problem. For example, assuming a
random vector X € X = R™ with m independent components with normal distribution, the
model is restricted in X*:

X*=[-a‘o0j,a 0] X[-a-0ya0,] X..X[-a-0p,a" 0] (3.1)

where, oj,i = 1,2,...m the standard deviation of each component, and a the range in
normalized space that affects greatly the measurement of a probability. The range of a = 8§,
means that the kriging model won’t provide reliable classification for any point that is further
than 8 standard deviations from the mean value. That error is negligible and easily
measurable, therefore it is ignored.

After defining the area X*, the kriging model is built only from observations than reside in the
area of interest. The number of initial observations, n,, depends partly on the dimensionality
of the problem. It is proposed to set ny, = min(10; 2m). The initial observations, or dataset,
D= {X(l),x(z), ...,x(no)}, are a Latin Hypercube sample in X*. Latin Hypercube Sampling
(LHS) provides a uniform distribution of O, and large areas in X* without observations are less
likely to occur, compared to the Monte Carlo Sampling.

Depending only on randomly selected observations though, it is certain that the kriging model
will be insufficient. Consequently, the dataset, should be enriched with new points, which
should be chosen strategically. The classification of any point in X, is the only information
required in reliability analysis. In other words, a reliability simulation method relies in
distinguishing the failure domain from the safe domain. Therefore a kriging model has to be
enriched with new observations, in areas where the classification is not confident. Such
“confidence” in classifying a point in X, is expressed from the probabilistic classification
function t(x).

In the one-dimensional example of 2.2 the probabilistic classification function Tt(X) is proven
to be an unreliable approximation, since the estimated failure probability pg. differs
significantly from the actual failure probability ps. Nevertheless, the Tt(x) function can provide
useful information to enrich the dataset by 1 additional observation and improve the
estimation pge.

In this simple, one-dimensional problem the criterion of choosing the new point, is the
following:

XEX =(=55):ug(x) =0 n(x) =0.5

which is the most probable root of g(x) = 0 and distinguishes the failure domain (in this
example x < —2) from the safe domain (x > —2). Therefore, by solving pg(x) = 0 the new
observation is acquired:

x® =-19769, g(x®)=10.035
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Perf. function g(x) and Kr. predictor
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As shown in the figures above, the new point improves the 1(x) function significantly. The
kriging model is refined and the estimation of the failure probability is accurate:

800 G0~ (Re(0,56° X))

ps = 2.275- 1072 Pre = 2.276 - 1072

The m(x) function, as well as the T(x)fx(x), appear to be identical to Ig(x) and Ip(x)fx(x)
respectively.
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It is worth noticing, that the failure probability is accurately estimated, with only 5+ 1
evaluations of the performance function g(x). However, in problems with more than 1
dimensions, the additional observations to enrich the dataset are harder to find, and a simple
criterion, such as the one used here, is not efficient. In the rest of the chapter, the most
efficient strategies of adaptive refinement are presented. Those strategies, mainly focus on
two objectives: locating the limit g(x) = 0 and prioritizing areas with high values of fx(x).

3.2 Refinement Criteria

The following refinement criteria aim to identify the g(x) = 0 limit, by highlighting the areas
with uncertainties in classifying a point X € X. Consequently, the probabilistic classification
function (x) has a prominent role.

3.2.1 The margin indicator function

The margin indicator function, relies on a chosen confidence level 1 — a. It indicates whether
a point x € Xresides in the “grey area”, as defined in 1.5.6.

1 a/2<1x) <1-—a/2 (3.2)
0 else

e = o) = {

The confidence level could be setto 1 — a = 95%. The second example of 1.5.6 is illustrated
below. The m(x) is also shown for reference.

3.2.2 The margin probability function

The margin probability function expresses the probability a point x € X to reside in the “grey
area”:

C(x) = MP(X) = P (E(X) < kl_aﬁG(x)) —P (E(x) < —kl_aac(x)) =

- <k1—a6G(X) - ﬁG(X)> _® <—k1—a80(x) - ﬁG(X)> (3.3)

6c(x) Gc(x)
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where k;_o = ®71(1 — a/2). For a confidence level 1 — a = 95% = kqgq, = 1.96.

Probabilistic classification function =(x)
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3.2.3 The function of most probable misclassification

The most probable misclassification function expresses the probability that G(x) is classified
in the complementary domain to the one that fig(x) is classified. This probability is:

IﬁG(X)I>

66(%)

min(‘r[(x); 1- n(x)) =0 (—

The criterion is therefore defined as:
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C(x) = MF(x) = & <_ IﬁG(X)|> (3.4)

6c(x)

The function takes values from 0 to 0.5. The MF(X) is a more strict criterion, compared to
the MP(x). To the author’s experience, both are equally efficient, and most preferred in this
thesis.

Margin Probability Function MP(x)

3.3 Sampling-based Adaptive Refinement

3.3.1 Principle

In reliability analysis, the objective is to solve the integral:

b = j H(Of () dx

X
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From a different perspective, (X) is integrated in X “weighted” by fx(x). Consequently, the
refinement criterion has to be weighted by fx(x), in order to take into account, that certain
areas of the X domain are more important and should be predicted accurately from the kriging
model. The refinement criterion is updated:

C*'(x) = C(x) - fx(x) (3.5)

The C*(x) function takes high values, close to g(x) = 0, and is proportionate to fx(x).
Therefore, expresses the uncertainty of the kriging model in terms of classification, and
prioritizes areas that affect the most the measurement of the failure probability. However,
finding new points to improve the kriging prediction, cannot be achieved from the
optimization problem of max C*(x). In order to find an efficient new point, C*(x) should be
high-valued in the vicinity of the candidate point, because every support point affects the
prediction in the near area. Consequently, C*(X) is seen as a probability density function of
random vector C:

fc(c) x C(c) - fx(c), ceX” (3.6)

A sample from fc(c), can be a list of candidate points, to add to the kriging dataset and
improve the predictor. However, this list of candidate points is very big, because fc(c) is, in
general, multimodal and a Markov Chain Monte Carlo sampler requires a large seed.
Therefore, only the most representative of those are selected, from solving a clustering
problem.

The K-means clustering problem is utilized in this thesis, to choose new support points from
the samples of fc(c). The K-means algorithm (Steinhaus 1956, MacQueen 1967, Lloyd 1982)
and the K-means ++ algorithm (Vassilvitskii 2007), provide clusters of points with respective
centers. From each cluster a new support point is derived.

3.3.2 Proposed Refinement Method

Sampling from f¢(c) can be difficult, because it is a multimodal PDF, and the initial seed should
be chosen carefully. In this thesis a different approach is presented, which does not require
sampling from f¢(c).

The refinement procedure is part of an iterative algorithm, which requires the estimation of
the failure probability in each step, in order to observe the improvement of the kriging model.
Therefore the refinement procedure is usually preceded by a simulation technique (MCS, SS).
Using the sample generated from the simulation, weighted by C(Xx), the clustering problem is
equivalent to using the sample from fc(c). More extensively:

e If preceded by Monte Carlo Simulation, then there is an available sample generated
according to fx(x):
x.® i=12..N

The K-means algorithm is performed with weights, given by:

wye(xcP) =e(xP),i=1.2,..N (3.7)

o If preceded by Subset Simulation, then there is an available sample generated
according to hy(x):
xS0 i=1,2,..N
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The K-means algorithm is performed with weights, given by:

e(x50)
T (X [51D)

(3.8)

wes(x[510) = i=12..N

At this point, the clusters are available, and the new support points are selected. The new
points are not the cluster centers, because they may correspond to low values of C*(x). The
closest point to the respective cluster center is chosen, with a restriction in weight:

x9 = arg o minf]o® — x OO, i = 1,2, N0, w(x D) 2 0.5 - Wyyay
O = {X(n+1),x(n+2), ...,X(n"'K)} (3.9)
where:

O the collection of new support points

n the size of the existing dataset O

k =1,2,...K the clusters

K the number of new support points, and the number of clusters

0® the center of each cluster

xc(k)(i) the samples of the clustering problem that belong to cluster k
Il the distance in R™

Winax 'O the maximum weight of all points in cluster k

N®) the size of cluster k

3.3.3 Stopping criterion of the refinement procedure

It is proposed that the following quantity is used as a criterion to indicate the confidence of
the measured failure probability ps. from the kriging predictor:

PMF = f MF (x)fx (x)dx (3. 10)
X
which depends on the previously defined, most probable misclassification function.

The quantity pyr can be estimated from the same sample, that the failure probability is
estimated.

e |n Monte Carlo Simulation:

N
A 1 - 3.11
. =_Z MF(x®) 3.11)

N
i=1
e In Subset Simulation:
MF(X[S](‘)) (3.12)
Pmr = NZ (x50 "Ps-1

It is always pumr < pre and while pyr/pre goes to zero, the kriging prediction is more
confident. The refinement should stop when pyr/pre is lower than a limit of £, = 1%~5%.
If pmpr/Pse is Not decreasing in several iterations, or the dataset is too big to add more support
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points (n > 1000), the algorithm should resort to the Meta-model Based Importance
Sampling.

In the example of 2.2 and 3.1, the Py, is estimated before, and after the refinement. The
following diagrams correspond to the initial kriging model:
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Before the refinement, pyr has a large value:

pMF = 4296 . 10_2 . pMF/pfS = 753%

but after the refinement:

pumr = 0.005- 1072 = pyp/pre = 0%
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3.4 Complete Algorithm of Kriging Based Reliability Analysis

This subchapter presents the complete procedure that is partially described in chapters 1
through 3:

Step 0: Set target coefficients of variation &, §, initial support points ny and additional K per
refinement iteration.

The coefficient 6 is usually set to § = 1%~10%, and depends on the desirable accuracy of
the estimated failure probability p;. The &, coefficient defines the sample size of the
simulation that measures the failure probability after each refinement iteration. For the
reason that the same sample is used for the clustering, 6, should be low enough, that there
are many points with high weight value w(x). A safe choice is to set §. = 8. However, at the
first refinement iterations, 8, can be lower than 8.

The number of initial support points ng is set to ny = max((2~4) *m; 20), where m the
dimensionality of the problem. This rule is not proven, but is based on the fact that more
observations are needed to build a reliable kriging model, as dimensionality rises. Similarly,
the additional observations per refinement iteration is set to K = max((1~2) - m; 5).

Step 1: Build a kriging model on initial n = ng observations, i = 0.

The initial n, observations are sampled uniformly in the area of interest X*. The Latin
Hypercube Sampling is proven to be very efficient, because the points are less likely to be
close to each other, and more areas of X* are covered.

It is worth mentioning, that in high-dimensional problems there is a probability that all of the
n, observations reside exclusively on the safe or the failure domain. In this case, it might be
helpful that the user provides manually a point in the domain with no observations, but that
is not mandatory. For example, if in a structural reliability problem all initial observations
reside in the failure domain, the vector of mean values could be an additional support point,
since it represents a safe state.

At this point the kriging model is not expected to be accurate. However, it provides useful
information to start distinguishing the safe and failure domains.

Step 2: Perform a simulation method on the kriging model. Estimate pse, pmE-

The Monte Carlo Simulation or the Subset Simulation estimate the model based failure
probability pf. and the pyr which expresses the uncertainty of the model, with a targeted §;,.
The ratio pmr/pPse should be observed in every iteration i, as it provides the stopping criterion.
It is proposed that even if pyr/pse reaches values less than £,. = 1%, the refinement should
stop after 2~3 iterations. In case pyg/pre Stabilizes in several iterations and pyg/pre < 7 is
not true, that means that any additional observations, do not improve the kriging model
considerably. In this case the refinement also stops, and the algorithm continues to step 4.
Otherwise, meaning pyr/Pre is decreasing, the algorithm continues to step 3.

Step 3: Perform weighted K-means clustering and add K new points to the dataset,i =i+ 1

The sample of the simulation performed in step 2, is clustered with the K-means algorithm,
weighted according to the w(x) function. It is recommended, that the samples with low
weights (e.g. w(x) < 0.02 - wp,.x) to be discarded, in order to facilitate the K-means
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algorithm, and avoid local maxima. The new observations are acquired and added to the
dataset: n = n + K. The algorithm continues to step 2.

Step 4: Estimate the model based failure probability p¢ with targeted c.o.v §;.
The final, model based failure probability p¢, is estimated with MCS or SS.

If pmp/Pre Stabilized in a higher value than the limit £,., the algorithm resorts to Meta-model
based Importance Sampling. Therefore, a low targeted e.g. 6. = 1% is set. Else, set §; = &
and end at step 4.

Step 5: Meta-model based Importance Sampling

The MIS is performed with targeted 8./ = 1/ 8% — 82. The agor is estimated, and the final
corrected failure probability is pf = acorr * Pte-

The last step can also be considered, as a verification of the model based estimation. This
means that MIS is useful even if the ratio pyr/pse is zero.

3.5 Refinement Example

A kriging model is built on the performance function of example 1.3:
g(x) =45 — e0.3'X1+0.7 _ e0.3-x2, X1, Xy € Rz
where, x4, X, normally distributed random variables, with zero mean and unit variance

The regressor is constant and the autocorrelation function is the squared exponential. The

initial support points for the kriging model is ny, = 8. Those are uniformly distributed (with
LHS) in the area of interest X* = [—6, 6] X [—6, 6].

Performance function g(x) and support points
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The probabilistic classification function (x) of the initial kriging model is displayed below.
The transition from the red area (probable failure) to the blue area (probable safety) does not

58



correspond with the dashed line, which is the real g(x) = 0 limit:

Probabilistic Classification Function m(x)

10.7

10.6

10.5

10.4

® dataset
= = =glx}=0

The failure probability is estimated on the T(x) function. For the purpose of this example, the
failure probability is numerically integrated, to avoid confusion between the error of the
simulation method and that of the kriging model:

Pte = 0.2473, pMF/pr =42.6%

For reference, the actual failure probability is pf = 0.0462. Clearly, the pyg/Ppse is too high
and, therefore, the kriging model is not considered accurate. For the refinement of the model,
asample of N = 100000 according to fx(X) is generated, and the clustering problem is solved
with K = 5. In the following figure, a part of the MC sample, along with the weight function
w(x) = MF(X) are illustrated. Also, the resulting new support points are shown as red dots:

Weighted K-means clustering
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The new support points are added to the dataset and the kriging model is built again. The
refined probabilistic classification function is shown below:

Probabilistic Classification Function m(x)

10.6

10.5

10.4

The new points are close to the actual g(x) = 0 curve, and form a parallel line. As a
consequence, the variance of the model in the vicinity of the new points has dropped greatly,
and the kriging prediction is more accurate:

Pre = 0.0468,  pyp/pre = 0.84%

However, the refinement continues for one last iteration:

Weighted K-means clustering

. : 05
v MC Samplin
.« __ piing 0.45
? N ®  dataset
4 "=, .| ® newobservations {10.4
10.35
ol =
. 103 =
, 1L
ol ' 1025 ¥
o
<
102 2
[ak]
_2 r o g
0.15
_ 0.1
at . [
. \ 0.05
. , . . - 0
6 4 -2 0 2 4 &

60



Visually, the Tt(x) function has not changed considerably:

Probabilistic Classification Function m(x)

10.7

10.6

10.5

10.4

The model based failure probability is measured:

Pte = 0.0462, pMF/pfs =0.01%

which by at least 3 significant figures, is equal to the actual one pf = 0.0462. Lastly, the final
dataset is illustrated on the real g(x) performance function:

Performance function g(x) and support points
6 T T T

4
2 N \\
. LY
0 \'; . 2
4r . =
N Fon v
- & .
2 ""\-\._\__Lh_ o |
. < . @ I|I -2
\ P ||
o~ a @
0 [ ] | ] -4
» \\ P |
e |
\I '-‘ | J -'5
-2 |
|II “ l:|!
\ . 8
4 1 I E=N dTJ
®  jnitial dataset 2 o =10
® additional observations
1
5 . . Al . . Az
-6 -4 -2 ) 2 4 5]

%

In conclusion, the kriging model based reliability analysis required only 8+ 10 = 18
evaluations of the performance function g(x), while a simulation technique based on g(x)
would require more than 10000 for the same result. In lower failure probabilities than the one
of the example, the required support points to build a model does not rise, in contrast to the
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evaluations of a simulation technique. Therefore, the benefit of substituting the performance
function with a surrogate model is achieved. In the next chapter, applications of higher
dimensional problems are presented. Finally, the above example is run multiple times, and
the results of each independent run are gathered in the following table. The relevant error, of
the measured failure probability to the actual one, is also shown: e, = |ps — pr|/ps, where
pr = 0.0462.

refinement iteration
i=0,n=28 i=1,n=13 i=2,n=18

Dre 0.0755 0.0465 0.0462
1 pwe/Pre 22.38% 0.97% <0.01%
ey 63.42% 0.65% <0.01%
Dre 0.4034 0.0443 0.0462
2 pme/Pre 50.94% 4.06% <0.01%
ey 773.2% 4.11% <0.01%
Dre 0.0834 0.0464 0.0462
3 pwr/Pre 54.44% 0.24% <0.01%
ey 80.52% 0.43% <0.01%
De 0.1091 0.0465 0.0462
4 pmr/Pre 39.32% 1.13% <0.01%
ep 136.0% 0.65% <0.01%
De 0.0323 0.0461 0.0462
5  pme/Pre 25.08% 0.76% <0.01%
ey 30.09% 0.22% <0.01%
De 0.0459 0.0463 0.0462
6  pmr/Pre 30.28% 0.33% <0.01%
ey 0.65% 0.22% <0.01%
Dte 0.0353 0.0468 0.0462
7 pme/Pre 28.61% 0.26% <0.01%
ep 23.59% 1.30% <0.01%

It is worth noticing that, at the first estimation (i = 0), the estimated failure probability is
most of the time higher than the actual one. This is quite possible to happen in structural
reliability problems, because the area near the mean values resides in the safe domain. This
is more obvious in the 2.2 example, where the error of (x) is enlarged by the fx(x). Also, in
the 6™ run, p¢. is almost equal to the actual p¢, despite that pyr/pse is large. This happened
because the misclassification of the areas in the safe and failure domain negated completely
each other by coincidence. In this example the iterative procedure converges rapidly, because
2-dimensional problems are generally easy to handle. However, in applications of the next
chapter, it is shown that the high-dimensional problems require many more iterations and
additional support points, in order an accurate solution to be achieved.
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4 Applications

The applications of kriging based reliability analysis presented in this chapter, aim to educate
the reader on the process and validate the method, in problems with many dimensions and
multiple design points. The first example, is another one-dimensional example, with purpose
to illustrate the role of the probabilistic classification function. The second example is a 2-
dimensional problem, with a piecewise performance function, which causes difficulties in the
refinement of the kriging model. In the third example, a benchmark problem is solved in 5, 10,
50 and 80 dimensions. The final two problems are structural, the one being a truss bridge with
a restriction to the deformation. The last is a tall structure modeled with the assumption of a
shear and flexural cantilever beam, which deforms according to a statistical earthquake
spectrum by Boore and Atkinson.

4.1 One-dimensional problem

The following one-dimensional problem is sampled at 5 points to build the kriging model. The
random variable is X € X = R and is normally distributed with zero mean and unit variance:

g(x) = (0.6x — 0.3)2cos(0.6x — 0.3) + 0.5

Kriging Model
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As shown above, the initial pre-refinement model fails to provide accurate classification. In
the 4" graph the refinement criterion depicts the best points to enrich the dataset. Two local
maxima are chosen, and the kriging model is reevaluated:

Kriging Model MF function
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The second refinement is the last one, and the failure probability is correctly evaluated, with
numerical integration:

refinement iteration
i=0,n=5 i=1,n=7 i=2,n=9

Pre 0.4769 0.0099 0.0086
P/ e 52.57% 7.43% 0.04%
e, 54.16% 14.92% 0.04%

where, e, = |pr — pPrel/Ps, and the actual failure probability ps = 0.0086.
p

4.2 2-dimensional, piecewise performance function

This function is difficult to emulate, because the limit g(x) = 0 surrounds the mean values
and many areas of the failure domain F c X = R? have to be accurately predicted. The
random vector X consists of 2 standard normal variables:
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r3+

3+
g(x) = min «

(%1 — X;)?

X1 + X2)

10

(x1 — Xz)z

V2

X1 + X5

10

X1 — Xy +

V2
7

>,XE]R2

V2

_Xl +X2 +

V2

The initial dataset is size ny = 15 and the additional points per refinement iteration is K = 5.
In iteration i the dataset consists of n = ny + i - K observations. In the following graphs the
weight function w(x) = MF(x) and the probabilistic classification function are illustrated in
iterations i = {0, 1, 2, 3,4, 10}. The stopping criterion pyg/pse takes low values before the
10" refinement, but the algorithm continues for the purpose of this example. In the last table
the values of the estimated failure probability pse and pmpr/pse are shown at each iteration,
with targeted 8. = 1.5%. For reference the failure probability, estimated on the actual
performance function is pf = 2.208 - 1073 with § = 1% and N = 4.5 - 10° evaluations.
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Weight function MF(x), iteration 1 Probabilistic Classfication (x), iteration 1
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The horizontal axis of the last charts, shows the number of observations that were used to
build the model and estimate the respective failure probability. Before the refinement, the
estimated py, is off the chart, but after the first refinement, the estimation is very close to the
actual one. At iteration i = 5,n = 40 the model is sufficient because the ratio pyg/pre is low
enough. Compared to the MCS on the real g(x) which required N = 4.5 - 10° evaluations, the
kriging model approach required only n = 40.

4.3 High-dimensional problem

The following performance function by Rackwitz (2001), is adaptable, meaning the number of
dimension is chosen freely. In this application, the kriging based reliability method is
performed on m = {5,10, 50} dimensions.

m
g(x) = m + 3oxvV/m — ZXi
i=1
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where vector X of m components with lognormal distribution, uyx = 1, ox = 0.2

The failure probability is estimated at each refinement iteration at a targeted 8, = 4.5%.
When the refinement procedure is over, a Meta-model based Importance Sampling is
performed, to verify or correct the kriging based pg¢;.

The actual failure probability with coefficient of variation 6 = 1%, is estimated on the real
g(x) with Monte Carlo Simulation. The respective model evaluations N are also displayed:

MSC on the real g(x)

m=25 m =10 m =50 m = 80
Pr 3.399-1073% 2.736-10"% 1.899-10"% 1.771-1073
N 3,000,000 3,700,000 5,200,000 5,600,000

Starting with ny = 25 initial observations, the kriging model is refined with K =15 new
observations at every step. It is reminded that each refinement step contains the statistical
error of the simulation, which affects partly the change of p¢,.
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Before initiating the Meta-model based Importance Sampling, the p¢. is more accurately
estimated with targeted 8§, = 1%, to reduce the final 6. The kriging based failure probability
is pre = 3.459 - 1073, The size of the initial seed, or the number of Markov Chains, for the
sample generation, is set to K. = 100. The burn-in and thinning parameters are set to 20 and
10 respectively. For the purpose of the example, the MIS is performed for multiple steps after
the targeted § is reached.

68
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The above graphs show that at a targeted 8.4+ = 1.5%, the final estimated failure probability
is Pr = acopr * Pre = 0.9712-3.459 1073 = 3.359 - 103 with 55 + 200 model evaluations
and c.o.v. § = 1.8%.

m =10

The procedure is the same, except the initial number of observations is set to ny = 40 and

the additional per refinement iteration to K = 10.
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The final model-based failure probability is estimated: pg = 2.852 - 1073 with §; = 1.3%.
Finally, the pg is corrected:
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The targeted 8.0, = 1.5% is reached at the 3™ MIS iteration. The corrected failure probability

is Pf = acorr " Pre = 0.9708 - 2.852- 1073 = 2.769 - 1073 with c.0.v. § = 2%, and the model
evaluations were 120 + 300 = 420.

e m=>50

The initial number of observations is set to ng

= 150 and the additional per refinement
iteration to K = 50.
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It is worth mentioning that at the first value of the ratio pyg/pse is very low. This is attributed
to the fact that the initial observations contained very few points in the safe domain (which is
common in high-dimensional problems), and the prediction seemed confident. The final

model-based failure probability is estimated: pg = 1.979 - 1073 with §, = 1.5%. Finally, the
Pre IS corrected:
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Stopping at the 10™" iteration a c.0.v of 8.4 = 1.75% is achieved. The final failure probability

is Pr = acorr * Pre = 0.9512-1.979 - 1073 =1.882-1073 and & = 2.30% with 500 + 1000
model evaluations.

In the last graph below, the observations used to build the model, are shown by their g(x)
values, in the order that they were chosen. The first 150 are randomly distributed in the area
of interest, while the rest are close to the estimated g(x) = 0 limit.
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g(x) values at kriging support points
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The initial number of observations is set to ny = 200 and the additional per refinement
iteration to K = 80.
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The final model-based failure probability is estimated: pg = 2.247 - 1073 with §; = 1.5%.
The pg, is corrected:
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Stopping at the 10" iteration a c.0.v of 8., = 4% is achieved. The final failure probability is

Pf = acorr " Pre = 0.7866 - 2.247-1073 = 1.767 - 1073 and § = 4.30% with 520 + 1500
model evaluations.

The results are gathered in the following table:

m=>5 m =10 m = 50 m = 80

Pre 3.459-1073 2.852-1073 1.979-1073 2.247-1073

8¢ 1% 1.3% 1.5% 1.5%

N, 55 120 500 520
Acorr 0.9712 0.9708 0.9512 0.7866
Scorr 1.5% 1.5% 1.75% 4%
Necorr 200 300 1000 1500

e 3.359-107%  2.769-107%  1.882-1073 1.767-1073

8 1.8% 2% 2.3% 4.3%

N 255 420 1500 2020

4.4 Truss Bridge

The following truss bridge is modeled with 13 random variables.

A

L=24m

Y

The vertical deformation of the center node is measured and restricted to L/200, where L
the length of the bridge. The performance function is:

g(x) = L/200 — ug(x)

where X the random vector consisting of all the random normal variables shown below. All
those variables are uncorrelated.

W C.0.V. o
E{, E; E3 210 GPa 10% 21 GPa
AL A, 20 cm? 5% 1 cm?
A, 10 cm? 5% 0.5 cm?
P,~P, 50 kN 15% 7.5 kN
H 2m 5% 0.1 m
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The kriging model is built with ny = 40 initial observations, and is refined with K = 13 new
points at every step. The actual failure probability pf = 1.029 - 1073,8 = 1.5% is estimated

with MCS.
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As shown above, 10 iterations are sufficient and the refinement stops at n = 170 total
observations. The model based failure probability is pg = 1.043 - 1073, with §, = 1.80%.

The results of the MIS are the following:
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At the 3" iteration the 8.0+ = 1.35% is low enough and the a., = 0.9885 is close to unity.
The final estimation is Pr = acopr * Pre = 0.9885-1.043 - 1073 = 1.031 - 1073 with § = 2%.

The design point, which is the point with the highest PDF value in the failure domain, is also
illustrated below. Each random variable is normalized:

Design Point
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A2

cpprrne
_0'5 I I
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random variables
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The variable that affects the most the deformation of the truss, is its height H. The E5 and A,
variables of the diagonals, affect it the less, as expected.

4.5 Tall building under seismic loads

This tall building of height H = 80m, is simulated as a simplified cantilever shear and flexural
beam in parallel (Miranda, Taghavi 2005).

7/— Flexural beam

o—
——— Shear beam
[t (éf
O]
] H
fr—] Links axially
P rigid
- d
[ ]

P Al

The quantities that determine the stiffness are EI and GA, which represent the flexural and
the shear stiffness respectively. These two quantities are linked with the dimensionless factor
0.
1
_ . (GA\2
= H ()
In this example, the o is set to ayg = 5 which corresponds to a structural system that
combines braced frames and moment-resisting frames. Assuming the geometry of the
building and the geometric properties of its elements (columns, braces) are deterministic, and
the elasticity module of the material is random, only one of the EI and GA quantities is set to
be a random variable and the other one is evaluated from the expression of ay. Therefore,
the EI defined as the following stochastic process:

EI(h)~M(pg;, C(h,h"))
where,

Hgr = 3.5 - 108 kNm? the mean values, constant along the height
C(h,h") = (0.1 pg))? max(1 — |h — h'|/Lg;; 0), the correlation of EI(h) and EI(h")
Lg; = 20m the correlation length

The mass along the height of the build is also a stochastic process:

m(h)~M (i, C (h, h"))

74



where,

Wy = 120 Mgr/m the mean values, constant along the height
Cm(h,h") = (0.1 py,)? max(1 — |h — h'| /Ly, ; 0), the correlation of EI(h) and EI(h")
L, = 12m the correlation length

The beam is divided in 25 segments of constant EI and mass, therefore 50 correlated variables
are defined so far. The seismic loads are arising from an earthquake spectrum, provided by
the ground-motion prediction equations by Boore and Atkinson (2008). Assuming the
following characteristics:

M 6.5 Moment magnitude
Rjg 10 km Joyner-Boore distance
Fault type Unspecified fault
Vs 30 800 m/s Shear wave velocity

the following acceleration spectrum occurs:

Spectral Accelaration, BA2008

8 T

mean SA
\ — = —mean SA £ a|

Lastly, the modal analysis provides with the 5 first eigenmodes, and the corresponding
spectral accelerations SA(T1=1,2,...5) are defined from the mean values and standard deviation
by Boore and Atkinson, and the correlation Rg (T, T") by Baker and Jayaram (2008).

The performance function is the limit restriction in drift, meaning the maximum absolute
value of the derivative of the beam’s deflection.

g(x) = 0.75% — maxy|u(x, h)|, h € [0, H]

The kriging model is built with ng = 150 initial observations and is refined with K = 55 at
each step. The actual failure probability is estimated on the real g(x): pf = 6.043 - 1073 and
6 =1.2%.
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The MIS reaches a very good approximation at the 10" iteration. The final failure probability
is Pr = acorr " Pe = 1.0155:5.930- 1073 = 6.022 - 1073 with § = 2.2% and total number
of g(x) evaluations N = 315 + 1000 = 1315.
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5 Conclusion

The kriging model based reliability analysis method is proven to fulfill its purpose, which is to
estimate the failure probability with very few evaluations of the real performance function
g(x). To the author’s experience, it is very efficient in problems with up to 20 dimensions, and
practical up to 100 dimensions. In problems with more than 100 dimensions, the kriging
correlation parameters are very difficult to be found and the method becomes
computationally inefficient. This is additionally worsened, if the dataset becomes dense in
certain areas, which is expected due to the refinement procedure. Such inefficiency can be
treated by utilizing multiple kriging models, which are supported by a part of the total dataset.
This approach is called big data regression and relies on clustering the original dataset.

It is worth mentioning though, that the kriging based analysis, does not lose efficiency as the
failure probability reaches low values such as < 10~7. This means that the number of g(x)
evaluations does not depend of the failure probability, but rather on the refinement
procedure. This holds also for the Meta-model based Importance Sampling. The N is high
only when the refinement is incomplete. Consequently, the Subset Simulation performed on
the kriging model, is the best approach to problems with low failure probability and hard-to-
evaluate g(x).

The meta-model based reliability analysis can be further combined with structural design
optimization. In this case, there are multiple performance functions and each corresponds a
failure probability which is bounded by an upper limit, with purpose to minimize the cost
function.
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Appendix A — Weighted K-means Clustering

The K-means (Steinhaus 1956, MacQueen 1967, Lloyd 1982) or the K-means++ (Arthur,
Vassilvitskii 2007) algorithms solve the clustering problem. These algorithms aim to classify a
dataset into clusters, according to the distance in the input space.

Step 0O: Initial dataset © = {x(l),x(z), ...,X(“)} with n points weighted by function w(x(i)),
and number of clusters K

Step 1: Select K cluster centers randomly from the dataset O

c={c®,c?, .., c®}
The K-means++ algorithm utilizes careful initialization, achieving greater efficiency.
Step 2: Classify the data points into nearest cluster centers

m(cP|x®) = {1 ifj = argmingeqs 5,.xg[[x® — ¢®|]
0 else

The above membership function is equal to 1, if ¢ is the closest of all centers to the point
x(i), or else, it is equal to zero.

Step 3: Find new cluster centers

nw(x®) - m(c®[x®) - x®

#(K) _ _
C = . . k=1,2,...K
?zlw(x(l)) . m(c(k)lx(l))
¢ ={c®W,c?@, . c®}
Step 4: Calculate Inertia
n K
— ®Y. ®1xDY. [l — D>
[= w(x®) - m(c®xD)-||c X ||2
i=1 k=1

The algorithm continues to step 2. If the inertia does not change considerably in a few
iterations, the algorithm stops.
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Appendix B — Latin Hypercube Sampling

The Latin Hypercube Sampling is an alternative sampling method of the Monte Carlo Sampling.
It ensures uniformity, but it may produce inaccurate results in reliability analysis. However, it
is very useful in sampling the initial observations in constructing a kriging model.

The dataset of size n in sampled in the m-dimensional hypercube x € [0,1]™.

0= X; =7, i=12,..nj=12,..m

where, 9 a random permutation of the vector {1,2,3, ...n}, u®) 3 realization of a uniform
distribution in the interval [0,1].
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Appendix C — Markov Chain Monte Carlo

In this thesis the Modified Metropolis-Hasting sampler (Au and Beck 2001) is used to generate
sample from a targeted PDF that is not possible with Monte Carlo Sampling. The modified
algorithm, is preferred to the usual in structural reliability. Such algorithms generate
correlated samples, which is undesirable. The original algorithm, has a high reject rate in high
dimensional problems, whereas the modified is unaffected by dimensionality. In this appendix
the modified algorithm, the burn-in and thinning procedure and the numerical estimation of
the y coefficient are presented.

Modified Metropolis-Hasting Algorithm
The Modified Metropolis-Hastings Algorithm generates samples according to a target
probability density function:

p(x) o< m(x) - fy (x)

where, 1(X) could be a positive function such as the probabilistic classification function or the
indicator function, and fx(x) the PDF of random vector X. It should be possible to define an
isoprobabilistic transformation T and its inverse T 1, from the random vector X to the random
vector U with standard normal and independent components. Therefore the target PDF is
rewritten:

p(w) ) - |
i=1

where, @(u) the PDF of a standard normal variable.

Step 0: Target PDF 1t(u) * @, (u), initial seed u(® and length of Markov Chain N/K

Each seed is the start of an independent parallel chain. The number of seeds is K and the final
sampleissizeN.i=1,j=1

Step 1: Propose a candidate for each component

A new candidate u; is randomly selected from a uniform distribution in:
ui ~U (ui(j_l) -1, ui(j_l) + 1)

It is accepted with probability:

1 i \2
r; = min {exp <§ (ui(J v _ u}‘2>> ; 1}

(

Otherwise it is rejected, meaning uj = uij_l). Seti=1i+ 1.Ifi > m, continue to step 2, else

repeat step 1.
Step 2: Accept/Reject new sample

The vector u* is accepted as u%) = u* with probability:

ELICY)
r, = min {m, 1}
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or rejected, u® = ul-Y, otherwise. Set j=j+1.1fj>N/Kend, else seti =1 and go to
step 1.

If the Tt(u) function is binary valued, such as the indicator function, the denominator of r, is
always unit, and r, is also binary valued.

Burn-in and thinning

In Markov Chain samplers it is often difficult to obtain reliable initial seeds. Ideally, the initial
seeds are distributed according to the target PDF, and sometimes this is true. However, the
seeds are often distributed differently, or there are duplicate points. The burn-in procedure is
to discard the initial b = 10~20 states of the Markov Chain and set the last state as seed, in
order to achieve a better distribution.

The thinning procedure is to accept to the final sample, only one state every t = 5~20.
Thinning achieves a less correlated sample as a result, which reduces greatly the y coefficient.

Burn-in and thinning are useful in Meta-model based Importance Sampling, because the
sample is chosen, based only on the kriging model, and not on the real g(x). This means that
the Ycorr @and consequently the 8., can be reduced significantly without any computational
cost. However, in Subset Simulation that is based on the real g(x), thinning does not reduce
the model evaluations, and for that reason it is not necessary.

Numerical estimation of coefficient y
A Markov Chain sample is used to evaluate the following integral:

p= jn(x)f(x)dx

X
If the sample is distributed according to f(x), then the estimation of p is:

K N/K
5= z z n(x M)
k=1 i=1

where N the total size sample, and K the number of chains. The variance of that quantity is:

o
G%=W(1 +v)

where 012) is the variance of the samples:

K N/K
o = %Z Z (xM0)* — 5
k=1 i=1
N/K-1
—2 Z (1 lK) R(D)
V= N
=1

and R(0) the correlation between states that differ by lag distance [

K N/K-1

1 . .
RO = =2, 2, () =) () )
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