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Abstract 

Reliability analysis is a scientific field, that deals with problems with uncertainties in a 

probabilistic way. In structural engineering such uncertainties are common, and originate 

from the properties of the materials, the geometry of a structure, the construction, the 

mathematical modeling, and the loading. The most common approach is to distinguish those 

uncertainties to favorable and unfavorable, and apply reductive and augmentative 

coefficients respectively. Such an approach though, may be impossible in non-linear problems, 

where the superposition principle does not hold, and also it leads to very conservative designs. 

The probabilistic approach on the other hand, only requires the definition of those 

uncertainties with probability density functions, and provides a measurement of probable 

scenarios, such as the failure and safety, and ultimately the reliability of a structure. 

Solving a reliability problem, is achieved with various methods. The analytical ones are 

straightforward but restricted to a point that they are rendered impractical. Other gradient-

based method were developed through the years, but they are also restricted, and provide 

approximations that often are not acceptable. The most prevailing techniques, are numerical 

approximations called simulation experiments, or computer experiments. The most common 

and robust is the known Monte Carlo Simulation (MCS), which produces numerous results 

with purpose to classify them in the correspondent domain (e.g. failure or safety) and make 

conclusions on the frequency of a phenomenon. The MCS and its variations, such as the Subset 

Simulation (SS), are the most preferred methods to deal with a reliability analysis problem. 

This thesis presents a way to deal with a great disadvantage of the simulation techniques. As 

mentioned earlier, these techniques are based on an iterative algorithm, and therefore the 

function that indicates the classification of a probable state, also called the performance 

function g(𝐱), has to be evaluated many times. This means that the computational cost is 

high, and the procedure time-consuming, because a performance function may rely on solving 

large finite elements models, or a time-history analysis. The main idea to treat this 

inefficiency, is to replace the performance function with a new one, that provides accurate 

classification and is computationally easy to evaluate. Such a function is referred to as a 

surrogate model and is reliant on very few information of the performance function. This 

thesis focuses on the application of the kriging predictor as a surrogate model in structural 

reliability. 

In the first chapter, the necessary theoretical framework is presented. This includes the 

definition of a random variable and vector, and the most commonly used distributions that 

define a random variable, the definition of a stochastic process and the kriging predictor. The 

kriging predictor is a procedure that creates a Gaussian stochastic process G based on a 

specific dataset or observations, which derive from the performance function. Making use of 

correlation functions that express the confidence of the prediction in the vicinity of the 

observations, the kriging predictor estimates the performance function, providing a mean 

value μG(𝐱) and variance σG(𝐱)
2  at any point of the input space. In reliability analysis only 

the classification of a state is important. This classification is expressed from the probabilistic 

classification function π(𝐱), which depends on the kriging mean and variance, and provides 

the probability, a state to reside in the safety or the failure domain. 

In the second chapter, the most efficient simulation techniques to estimate the failure 

probability, are presented. The application of those techniques differ slightly when performed 
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on the kriging model. More precisely, the probabilistic classification function π(𝐱) replaces 

the indicator function IF(𝐱) which relies on evaluating the performance function. The two 

approaches, meaning the classic g(𝐱)-based and the Gaussian process G~𝒩(μG(𝐱), σG(𝐱)
2) 

based are shown in parallel, to highlight to similarities and the differences. Lastly, a new 

simulation technique is introduced, that combines the kriging model based simulation 

techniques with Importance Sampling. The hybrid method Meta-model based Importance 

Sampling, focuses on approximating the optimal instrumental PDF from the kriging model, 

and sampling efficiently with evaluations of the g(𝐱) function. This technique can validate the 

kriging model estimation, or corrected it if the model is inaccurate. 

The third chapter focuses on the strategies that should be implemented, in order to enrich 

the dataset of the kriging model and improve its prediction. As mentioned above, the kriging 

model is not accurate in areas away from the observations. However, this is not important as 

long as the classification is accurate. Consequently, the model is enriched with new points at 

areas where the classification is not confident, with priority to those that affect more the 

failure probability. This is achieved, by solving a clustering problem of a large amount of 

candidate points, and choosing one of each cluster. This refinement procedure is repeated 

until the kriging model is sufficient. 

In the fourth chapter, validation examples and applications are presented. The kriging-based 

reliability method is tested on problems with irregular limit state function, problems with 

many dimensions and lastly on two structural reliability problems. The Meta-model 

Importance Sampling is also implemented and illustrated at each application. 

In the last chapter, the final conclusions are drawn. The kriging model approach, is proven to 

be very reliable in reliability analysis, especially in problems with less than 100 dimensions, a 

continuous performance function and low probabilities. Its application can be extended in 

optimization, and big data regression. 
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Abstract in Greek 

Η ανάλυση αξιοπιστίας είναι ένα επιστημονικό πεδίο, που σκοπό έχει να αντιμετωπίσει 

προβλήματα με αβεβαιότητες, με τρόπο πιθανοτικό. Στην αξιοπιστία των κατασκευών 

τέτοιες αβεβαιότητες είναι συνήθεις, και πηγάζουν από τις ιδιότητες των υλικών, τη 

γεωμετρία του φορέα, την κατασκευή, τη μαθηματική προσομοίωση, τα επιβαλλόμενα 

φορτία. Η πιο κοινή αντιμετώπιση τέτοιων προβλημάτων είναι ο διαχωρισμός των αβέβαιων 

μεγεθών σε ευμενή και δυσμενή, και η χρήση μειωτικών και αυξητικών συντελεστών 

αντίστοιχα. Αυτή η προσέγγιση, ωστόσο, είναι αδύνατη σε μη-γραμμικά προβλήματα, όπου 

η αρχή της επαλληλίας δεν ισχύει, και ενδεχομένως οδηγεί σε υπερσυντηρητικό σχεδιασμό. 

Από την άλλη, η πιθανοτική αντιμετώπιση, απαιτεί μονάχα τον προσδιορισμών των 

αβεβαιοτήτων, με συναρτήσεις συχνότητας πιθανότητας (ΣΣΠ), προκειμένου να παρέχει την 

μέτρηση ενός πιθανού σεναρίου, όπως αυτά της αστοχίας και της ασφάλειας, και εν τέλει της 

δομικής αξιοπιστίας. 

Η επίλυση ενός προβλήματος αξιοπιστίας, επιτυγχάνεται με διάφορους τρόπους. Από 

αυτούς, οι αναλυτικοί τρόποι είναι ευθείς, όμως εξαιρετικά περιορισμένοι και ανεφάρμοστοι 

σε πολύπλοκα προβλήματα. Άλλες μέθοδοι, όπως αυτές που βασίζονται στη γνώση της 

παραγώγου, είναι αποτελεσματικές υπό προϋποθέσεις, και μπορούν να αντιμετωπίσουν 

προσεγγιστικά, μόνο κάποια είδη προβλημάτων. Οι επικρατέστερες μέθοδοι, είναι 

αριθμητικές, και προσομοιώνουν πειράματα τύχης σε υπολογιστή. Η πιο γνωστή και 

εύρωστη μέθοδος είναι η προσομοίωση Monte Carlo (MCS), που παρέχει πολυπληθή 

αποτελέσματα από προσομοιώσεις, τα οποία ταξινομούνται στο αντίστοιχο πεδίο (π.χ. της 

ασφάλειας ή της αστοχίας), ώστε να ληφθεί συμπέρασμα για τη συχνότητα εμφάνισης ενός 

φαινομένου. Η προσομοίωση Monte Carlo και οι παραλλαγές της, όπως η προσομοίωση με 

τη μέθοδο των υποσυνόλων (Subset Simulation ή SS), είναι οι πιο προτιμητέες για την 

αντιμετώπιση προβλημάτων αξιοπιστίας. 

Η εργασία αυτή παρουσιάζει ένα τρόπο αντιμετώπισης του μεγαλύτερου μειονεκτήματος 

των μεθόδων προσομοίωσης. Όπως προαναφέρθηκε, αυτές οι μέθοδοι βασίζονται σε 

επαναληπτικές διαδικασίες. Συνεπώς η συνάρτηση αστοχίας g(𝐱), που καθορίζει την 

ταξινόμηση μίας πιθανής κατάστασης, υπολογίζεται διαδοχικά πολλές φορές. Αυτό σημαίνει, 

ότι το υπολογιστικό κόστος είναι υψηλό, και η διαδικασία χρονοβόρα, διότι η συνάρτηση 

αστοχίας μπορεί να περιλαμβάνει πολύπλοκά μοντέλα πεπερασμένων στοιχείων, ανάλυση 

χρονοϊστορίας κ.α.. Η κύρια ιδέα για την αντιμετώπιση αυτής της δυσκολίας, είναι η 

αντικατάσταση της συνάρτησης αστοχίας, με μία νέα, που μπορεί να παρέχει αξιόπιστη 

ταξινόμηση και εύκολα υπολογίσιμη. Αυτή η συνάρτηση ονομάζεται αδρομερές μοντέλο και 

είναι βασιζόμενο σε πολύ περιορισμένη γνώση της πραγματικής συνάρτησης αστοχίας. Η 

εργασία, λοιπόν, επικεντρώνεται στη γραμμική πρόβλεψη kriging ως αδρομερές μοντέλο στη 

δομική αξιοπιστία. 

Στο πρώτο κεφάλαιο παρουσιάζονται όλα τα βασικά θεωρητικά στοιχεία στα οποία βασίζεται 

η ανάλυση αξιοπιστίας σε μοντέλο kriging. Αρχικά ορίζονται οι τυχαίες μεταβλητές και 

διανύσματα, καθώς οι βασικότερες κατανομές, όπως η κανονική, η λογαριθμοκανονική και 

η ακροτάτων (Gumbel), με βάση τις οποίες προσομοιώνονται οι αβεβαιότητες των μεγεθών. 

Στη συνέχεια ορίζεται η στοχαστική ανέλιξη, που αποτελεί τη βάση της πρόβλεψης kriging. 

Στα πλαίσια αυτής της εργασίας οι στοχαστικές ανελίξεις περιορίζονται στις Γκαουσιανές. 

Επιπλέον, γίνεται η απλοποίηση, ότι το μητρώο συσχετίσεως, προκύπτει από συναρτήσεις 

συσχέτισης, οι οποίες συναρτάνε τη συσχέτιση με την απόσταση στο χώρο των εισαγόμενων 
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μεταβλητών, και ρυθμίζονται από τους συντελεστές συσχέτισης. Η πρόβλεψη kriging, ή 

αλλιώς η βέλτιστη αμερόληπτη (unbiased) γραμμική πρόβλεψη, στοχεύει στον προσδιορισμό 

μίας στοχαστικής ανέλιξης, βασιζόμενη σε παρατηρήσεις, δηλαδή ένα πεπερασμένο σύνολο 

σημείων του πεδίου ορισμού της συνάρτησης αστοχίας, με τις αντίστοιχες τιμές της. Η 

εύρεση των συντελεστών συσχέτισης γίνεται επιλύοντας ένα υπολογιστικά δύσκολο 

πρόβλημα βελτιστοποίησης. Με αυτόν τον τρόπο, η πρόβλεψη kriging παρέχει το μοντέλο 

G~𝒩(μG(𝐱), σG(𝐱)
2), δηλαδή για το τυχόν σημείου του πεδίου ορισμού, δίνεται η μέση τιμή 

μG(𝐱) και η τυπική απόκλιση σG(𝐱), που περιγράφουν την εκτίμηση της συνάρτησης 

αστοχίας, μαζί με την αντίστοιχη αβεβαιότητα. Ιδιότητα αυτού του μοντέλου είναι ότι στα 

υποστηρικτικά σημεία (παρατηρήσεις), η μέση τιμή μG(𝐱) ταυτίζεται με την g(𝐱), ενώ η 

τυπική απόκλιση σG(𝐱) είναι μηδενική. Συνεπώς το μοντέλο kriging παρέχει στις περιοχές 

κοντά στα υποστηρικτικά σημεία πιο βέβαιη πρόβλεψη απ’ ότι πιο μακριά. 

Στα προβλήματα ανάλυσης αξιοπιστίας, απαιτείται η σωστή ταξινόμηση κάθε σημείου του 

πεδίου ορισμού. Συνεπώς, το μοντέλο kriging θεωρείται επαρκές όχι όταν παρέχει με 

βεβαιότητα κάθε τιμή της g(𝐱), αλλά όταν παρέχει σωστή ταξινόμηση. Για τον υπολογισμό 

της πιθανότητας αστοχίας, στην αξιοπιστία κατασκευών, ορίζεται η συνάρτηση πιθανοτικής 

ταξινόμησης π(𝐱) που εκφράζει την πιθανότητα μία κατάσταση ή αλλιώς ένα σημείο του 

χώρου να βρίσκεται στην περιοχή της αστοχίας. Λαμβάνει τιμές από το μηδέν έως το ένα και 

υπολογίζεται από τις προαναφερθέντες ποσότητες μG(𝐱), σG(𝐱). 

Στο δεύτερο κεφάλαιο παρουσιάζονται αναλυτικά οι μέθοδοι προσομοίωσης για την 

αριθμητική προσέγγιση της πιθανότητας αστοχίας. Η προσομοίωση Monte Carlo και η 

προσομοίωση με τη μέθοδο των υποσυνόλων, εφαρμόζονται είτε με βάση την πραγματική 

συνάρτηση αστοχίας είτε με βάση το μοντέλο kriging G~𝒩(μG(𝐱), σG(𝐱)
2). Οι δύο αυτές 

προσεγγίσεις παρουσιάζονται παράλληλα, ώστε να φαίνεται η αντιστοιχία. Η κύρια διαφορά 

είναι ότι η συνάρτηση πιθανοτικής ταξινόμησης π(𝐱) αντικαθιστά το δείκτη IF(𝐱), όταν η 

προσομοίωση βασίζεται στο μοντέλο kriging. 

Στη συνέχεια, γίνεται λόγος για τη χρήσιμη ιδιότητα της Importance Sampling (IS). Η IS 

επιτρέπει την επιλογή διαφορετικής συνάρτησης συχνότητας πιθανότητας (instrumental 

PDF), για την παραγωγή του τυχαίου δείγματος στην εκτίμηση της πιθανότητας αστοχίας. Με 

τη σωστή επιλογή εναλλακτικής ΣΣΠ, η επαναληπτική διαδικασία της MCS μπορεί να 

επιταχυνθεί σημαντικά. Επίσης αποδεικνύεται ποια είναι η βέλτιστη ΣΣΠ, δηλαδή αυτή που 

μηδενίζει τη διακύμανση της εκτιμώμενης πιθανότητας. Ωστόσο, η βέλτιστη ΣΣΠ απαιτεί τη 

γνώση της πιθανότητας και συνεπώς είναι μη-εφαρμόσιμη. Σε αυτό το σημείο παρουσιάζεται 

η νέα υβριδική μέθοδος Meta-model based Importance Sampling (MIS). Σκοπός της είναι η 

προσέγγιση της βέλτιστης ΣΣΠ μέσω του μοντέλου kriging, και η παραγωγή περιορισμένου 

τυχαίου δείγματος για την εκτίμηση της πιθανότητας. Με άλλα λόγια, αν το μοντέλο kriging 

μπορεί να παρέχει μία μέτρια έως καλή εκτίμηση της πιθανότητας αστοχίας, η MIS διορθώνει 

σε δεύτερη φάση την πιθανότητα αστοχίας με μικρό δείγμα που απαιτεί υπολογισμούς της 

συνάρτησης αστοχίας. Η μέθοδος MIS συνδυάζει το μοντέλο kriging με την Importance 

Sampling και είναι εξαιρετικά χρήσιμη όταν απαιτείται επιβεβαίωση της εκτίμησης ή όταν το 

μοντέλο είναι ανεπαρκές. 

Το τρίτο κεφάλαιο περιλαμβάνει τις στρατηγικές με τις οποίες η πρόβλεψη kriging μπορεί να 

βελτιωθεί, ώστε να παρέχει πιο βέβαιη ταξινόμηση. Όπως προαναφέρθηκε, η κατασκευή του 

μοντέλου βασίζεται μονάχα σε ορισμένες παρατηρήσεις ή υποστηρικτικά σημεία, τα οποία 

λαμβάνονται τυχαία από το πεδίο ορισμού της συνάρτησης αστοχίας g(𝐱). Η βελτίωση του 
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μοντέλου επιτυγχάνεται λαμβάνοντας νέες παρατηρήσεις και επανυπολογίζοντάς το. Τα νέα 

υποστηρικτικά σημεία  επιλέγονται, με βάση μία συνάρτηση-κριτήριο, που λαμβάνει μεγάλες 

τιμές όταν η μέση τιμή μG(𝐱) πλησιάζει το μηδέν, και όταν η τυπική απόκλιση σG(𝐱) 

αυξάνεται. Με αυτόν τον τρόπο στοχεύονται οι περιοχές στις οποίες γίνεται η μετάβαση από 

την αστοχία στην ασφάλεια και αντίστροφα. Είναι οι περιοχές, δηλαδή, στις οποίες η 

εκτίμηση της ταξινόμησης είναι πιο δύσκολη. Στην παρούσα εργασία, δύο είναι τα κριτήρια 

στα οποία δίνεται μεγαλύτερη έμφαση: Η συνάρτηση πιθανοτικού εύρους (margin 

probability function MP(𝐱)) και η προτεινόμενη συνάρτηση πιθανέστερης εσφαλμένης 

ταξινόμησης (most probable misclassification function MF(𝐱)). Στη συνέχεια, τα άνω κριτήρια 

που κατευθύνουν στη μεταβατική περιοχή της αστοχίας και της ασφάλειας, 

πολλαπλασιάζονται με τη ΣΣΠ f𝐗(𝐱) του προβλήματος αξιοπιστίας. Με αυτό τον τρόπο, το 

τελικό κριτήριο f𝐗(𝐱) ∙ MF(𝐱) λαμβάνει επιπρόσθετα υπόψιν ότι περιοχές με μεγάλες τιμές 

της ΣΣΠ είναι πιο καθοριστικές στον υπολογισμό της πιθανότητας αστοχίας. 

Σε αυτό το σημείο, το κριτήριο για την επιλογή νέων παρατηρήσεων στην κατασκευή του 

μοντέλου, χρησιμοποιείται ως ΣΣΠ για την παραγωγή δείγματος. Το δείγμα αυτό είναι ένα 

σύνολο υποψήφιων σημείων. Ωστόσο το μέγεθός του είναι μεγάλο και είναι μη-αποδοτικό 

να επιλεγεί ολόκληρό. Προκειμένου να επιλεγούν τα πιο αντιπροσωπευτικά σημεία, λύνεται 

το πρόβλημα συσταδοποίησης (clustering problem) με τον αλγόριθμο k-means. Έτσι το 

σύνολο των παρατηρήσεων ανανεώνεται και το μοντέλο kriging είναι πιο ακριβές σε κρίσιμες 

περιοχές. 

Αντί της παραπάνω προσέγγισης, δηλαδή της παραγωγής δείγματος με βάση την συνάρτηση 

πυκνότητας πιθανότητας ∝ f𝐗(𝐱) ∙ MF(𝐱), προτείνεται, επιπρόσθετα, μία εναλλακτική λύση. 

Δεδομένου ότι η διαδικασία ανανέωσης των παρατηρήσεων, είναι μέρος ενός 

επαναληπτικού αλγορίθμου, και ότι η πιθανότητα αστοχίας παρατηρείται σε κάθε βήμα, τότε 

υπάρχει διαθέσιμο δείγμα που έχει παραχθεί από την προσομοίωση MCS ή SS. Αυτό το 

δείγμα χρησιμοποιείται για να λυθεί το πρόβλημα συσταδοποίησης, όμως κάθε σημείο έχει 

διαφορετική βαρύτητα, που καθορίζεται από τη συνάρτηση w(𝐱) = MF(𝐱). Με αυτόν τον 

τρόπο, αποφεύγεται η παραγωγή δείγματος από την ∝ f𝐗(𝐱) ∙ MF(𝐱), που θα απαιτούσε 

δειγματοληψία από μαρκοβιανές αλυσίδες και γίνεται περεταίρω εκμετάλλευση του 

υπάρχοντος δείγματος από την προσομοίωση MCS ή SS. 

Όπως προαναφέρθηκε, η διαδικασία ανανέωσης των παρατηρήσεων γίνεται πολλές φορές 

διαδοχικά με λίγα σημεία, ώστε το μοντέλο να μπορεί να δίνει σε κάθε βήμα νέα κατεύθυνση. 

Το προτεινόμενο κριτήριο για τη λήξη της διαδικασίας βασίζεται στην ποσότητα pMF που 

ισούται με την ολοκλήρωση της συνάρτησης f𝐗(𝐱) ∙ MF(𝐱) σε όλο το πεδίο ορισμού. Αυτό 

επιτυγχάνεται με τον ίδιο τρόπο που υπολογίζεται η πιθανότητα αστοχίας, και με το ίδιο 

δείγμα. Αν, ιδανικά, το μοντέλο αποκτήσει τέλεια ακρίβεια στην ταξινόμηση, η 

συνάρτηση MF(𝐱) αποκτά μηδενική τιμή, και συνεπώς μηδενίζεται το pMF. 

Στο τέταρτο κεφάλαιο, γίνεται εφαρμογή της μεθόδου αξιοπιστίας που βασίζεται σε μοντέλο 

kriging. Αυτή περιλαμβάνει την αρχική κατασκευή του μοντέλου από τυχαία επιλεγμένες 

παρατηρήσεις, την ανανέωση με νέα αποδοτικά υποστηρικτικά σημεία, την τελική εκτίμηση 

της πιθανότητας αστοχίας, και την επαλήθευση με την υβριδική μέθοδο Meta-model based 

Importance Sampling. Τα προβλήματα στα οποία εφαρμόζεται είναι προβλήματα με 

ανώμαλη (αλλά συνεχή) συνάρτηση αστοχίας, πολλών διαστάσεων, και τα τελευταία δύο 

αφορούν περιπτώσεις δομικής αξιοπιστίας. Το πρώτο είναι ένα δικτύωμα μεγάλου 

ανοίγματος, με τυχαίες μεταβλητές τα φορτία, τη γεωμετρία και τις ιδιότητες των υλικών, στο 

οποίο μετράται η πιθανότητα υπέρβασης του επιτρεπόμενου βέλους. Στο δεύτερο 
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πρόβλημα, ένα κτίριο ύψους 80 m προσομοιώνεται με την παραδοχή συνεχούς 

καμπτοδιατμητικού προβόλου, με τυχαίες συνεχείς μεταβλητές τη δυσκαμψία και την 

ανηγμένη καθ’ ύψος μάζα. Επίσης, το φάσμα των επιταχύνσεων ακολουθεί 

λογαριθμοκανονική κατανομή, όπως προκύπτει από στατιστική επεξεργασία των Boore-

Atkinson. Ως συνάρτηση αστοχίας ορίζεται η υπέρβαση του drift κατά 0.75%. 

Το τελευταίο κεφάλαιο περιλαμβάνει τα τελικά συμπεράσματα. Η προσέγγιση των 

προβλημάτων αξιοπιστίας των κατασκευών με τη γραμμική πρόβλεψη kriging αποδεικνύεται 

αποδοτική, ειδικά σε προβλήματα κάτω των 100 διαστάσεων, με συνεχή συνάρτηση 

αστοχίας και μικρές πιθανότητες. Το μοντέλο kriging μπορεί να επεκταθεί σε προβλήματα 

βελτιστοποίησης και σε παλινδρόμηση μεγάλων δεδομένων (big data). 
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1 Theoretical Framework 

1.1 Random Variables 

The function 𝐗:𝛀 → ℝ, defined in probability space (Ω, ℱ,𝒫), is a real-valued random 

variable if {ω: Χ(ω) ≤ r} ∈ ℱ, ∀r ∈ ℝ, where Ω is the sample space containing all possible 

outcomes, ℱ the set of events containing possible outcomes and 𝒫 the probability measure.  

A continuous real-valued random variable can be entirely defined by its cumulative 

distribution function: 

 FX(x) = P(X ≤ x), x ∈ 𝕏 ⊆ ℝ (1. 1) 

Alternatively, it can also be defined by its probability distribution function: 

 
fX(x) =

dFX(x)

dx
 (1. 2) 

 

Most commonly the following values are considered to describe a random variable. 

The expected value, or mean value: 

 
μΧ = 𝔼(X) = ∫x ∙ fX(x)

 

𝕏

dx (1. 3) 

 

and the standard deviation, which is the square root of the variance of X: 

 
σX = √∫(x − μΧ)

2 ∙ fX(x)
 

𝕏

dx (1. 4) 

 

1.2 Common probability distributions of continuous variables 

1.2.1 Normal distribution 

The normal distribution is the most common distribution used to describe random variables, 

in natural sciences. 

 
fX(x) =

1

√2𝜎2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  (1. 5) 

 

Below, the normal probability density function (PDF) and the normal cumulative distribution 

function are plotted. In this case μ=0 and σ=1, the distribution is called standard. Also, such a 

variable is called standard normal variable and noted commonly with Z. 
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PDF and CDF of random variable 𝒩(0,1) 

1.2.2 Extreme type I distribution (or Gumbel distribution) 

The extreme type I is used more often to describe random variables that are attributed to 

loads on a structure, such a wind load or a snow load. 

 
fX(x) = 𝑒

−𝑒
−
𝑥−𝜉
𝛽

 
(1. 6) 

with: 

μ = ξ + γβ, γ ≈ 0.5772, σ =
βπ

√6
 

Considering ξ = 0, β = 1 the PDF and CDF are plotted below: 

  

PDF and CDF of random variable Gum(0,1) 
 

 

1.2.3 Lognormal distribution 

A log-normally distributed variable X is defined as: 

 X = eμ+σΖ (1. 7) 

where: 

μ, σ: parameters of the distribution 

Z: standard normal variable 
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Considering μ = 0, σ = 1 the PDF and CDF are plotted below: 

  

PDF and CDF of random variable lnN(0,1) 

1.3 Random Vectors 

A random vector X is a vector, whose m components are random variables. The vector 𝛍𝚾 

consists of the expected value of each component. 

 𝛍𝚾 =  𝔼(X𝑖), 𝑖 = 1,2,… ,𝑚 (1. 8) 

The covariance matrix 𝐂 is defined as follows: 

 Ci,j = Cov[Xi, Xj], i, j = 1,2,… ,m (1. 9) 

where Cov[Xi, Xj] = 𝔼[(Xi − μi) ∙ (Xj − μj)] is the covariance of any two random variables 

Xi, Xj, and the correlation matrix 𝐑 is defined as: 

 
Ri,j =

Ci,j

σXi ∙ σXj
, i, j = 1,2,…m (1. 10) 

The joint probability density distribution can be defined from the cumulative distribution 

function: 

 F𝐗(𝐱) = P(X1 ≤ x1, X2 ≤ x2, … , Xm ≤ xm) (1. 11) 

In the special case that the components of the random vector are independent, meaning: 

 
Ri,j = {

1 i = j
0 i ≠ j

} , i, j = 1,2,…m (1. 12) 

the following expression is true: 

 f𝐗(𝐱) = fX1(x1) ∙ fX2(x2) ∙ … ∙ fXm(xm) 
(1. 13) 

1.4 Stochastic Processes 

1.4.1 Definition 

A stochastic process Y defined on a probability space (Ω, ℱ,𝒫) is a collection of infinite or 

finite random variables, indexed by the input space X: 
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Y(𝐱), 𝐱 ∈ 𝕏 

Historically, 𝐱 represents time, but in the context of this thesis the stochastic processes are 

indexed by m-dimensional continuous vector 𝐱 ∈ 𝕏 ⊆ ℝ𝑚 and are limited to Gaussian 

processes. Therefore, the mean function μ(𝐱), and the autocovariance function C(𝐱, 𝐱′) need 

to be defined: 

 μ(𝐱) ≡ 𝔼[Y(𝐱)], 𝐱 ∈ 𝕏 (1. 14) 

 C(𝐱, 𝐱′) = 𝔼[(Y(𝐱) − μ(𝐱)) ∙ (Y(𝐱′) − μ(𝐱′))], (𝐱, 𝐱′) ∈ 𝕏 × 𝕏 (1. 15) 

An n × n covariance matrix 𝐂 must be symmetric: 

 𝐂(i, j) = 𝐂(j, i), i, j = 1,2,…n (1. 16) 

and positive definite: 

 zT ∙ C ∙ z ≥ 0, ∀z = (z1, z2, … , zn)
T ∈ ℝn (1. 17) 

1.4.2 Correlation functions 

Correlation functions are used to define the autocorrelation in Gaussian processes. Those 

functions are arbitrarily chosen, and are dependent on certain parameters. In structural 

reliability problems, which this thesis focuses on, it is reasonable that the correlation should 

be a function of the “distance” in the input space: 

 R = R(𝐱 − 𝐱′), (𝐱, 𝐱′) ∈ 𝕏 × 𝕏 (1. 18) 

The quantity 𝐝 = 𝐱 − 𝐱′ is known as lag distance in kriging applications. In addition, the 

Gaussian process is assumed to be componentwise anisotropic, therefore: 

 
R(𝐝) =∏R(di)

m

i=1

, di = xi − x
′
i, i = 1,2, …m (1. 19) 

Considering anisotropy is very crucial, since specific components may differ considerably in 

the sensitivity of the physical problem. 

Below, the most popular correlation functions are presented. Those are dependent on certain 

parameters, that are usually more or equal to the number of the components m of the input 

vector 𝐱. The common characteristics of those functions are: 

 R(0) = 1 

 R is continuous 

 In all cases R is descending, and reaches zero, at a specific “range” L. Therefore, L is 

defined as the minimum lag distance d that R(d) = 0. In the case of correlation 

functions that converge to zero in +∞, L is often defined such that R(L) = 0.05. The 

quantity L shows the distance at which any two values of the process are entirely 

uncorrelated. Although L can better show the physical meaning of the Gaussian 

process correlation, the parameters ϑi, i = 1,2,… ,m are used instead, because they 

are more suitably defined in an optimization procedure described in a following 

subchapter. 
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1.4.2.1 Linear autocorrelation function 

 
R(𝐝) =∏max(1 − ϑi ∙ |di|; 0)

m

i=1

, i = 1,2,…m 

 

(1. 20) 

 
Li =

1

ϑi
, i = 1,2, …m (1. 21) 

Below, an illustration of 3 random processes, with 1-dimensional input x = [0,1], that differ 

in correlation length L = {0.05, 0.2, 1}, is shown: 

 

 

It should be noted that the resulting random process Y(x) is non-differentiable. 
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1.4.2.2 Spline autocorrelation function 

R(𝐝) =∏{
1 − 15(ϑi|di|)

2 + 30(ϑi|di|)
3 for 

1.25(1 − ϑi|di|)
3 for

0 for

ϑi|di| ≤ 0.2
0.2 < ϑi|di| ≤ 1

1 < ϑi|di|
}

m

i=1

, i = 1,2,…m 

(1. 22) 

 
Li =

1

ϑi
, i = 1,2, …m 

(1. 23) 

Illustration for L = {0.05, 0.2, 1}: 
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1.4.2.3 Squared Exponential autocorrelation function 

 
R(𝐝) =∏exp(−ϑidi

2)

m

i=1

, i = 1,2, …m (1. 24) 

 

Li ≈ √
3

ϑi
, i = 1,2,…m (1. 25) 

Illustration for L = {0.05, 0.2, 1}: 

 

 

The resulting stochastic processes, in this case, are infinitely-differentiable. 
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1.4.2.4 Matérn autocorrelation function 

R(𝐝) =∏
1

2ν−1Γ(ν)
(2√ν ∙ ϑi|di|)

ν
∙ Κν(2√ν ∙ ϑi|di|)

m

i=1

, ν ≥ 0.5, i = 1,2,…m 

(1. 26) 

Γ(∙): the Gamma function, Κν(∙): the Bessel function of the second kind 

 
Li ≈

2

ϑi
, i = 1,2,…m 

(1. 27) 

The Matérn autocorrelation function contains an extra parameter ν, which affects the 

differentiability of the Gaussian process. The resulting processes are 𝜈 − 1 times 

differentiable. Controlling the differentiability is a very important advantage, which will be 

discussed further in a following chapter. 

Illustration for L = {0.05, 0.2, 1} and 𝝂 = 𝟎. 𝟓: 

 

 



17 
 

Illustration for L = {0.05, 0.2, 1} and 𝝂 = 𝟐. 𝟓: 

 

 

1.5 Kriging 

1.5.1 Least-squares linear regression model 

The least-square linear regression is the basis of the kriging predictor. It is defined as: 

 Yi = 𝐟
T(𝐱(𝐢)) ∙ 𝛃 + Zi, i = 1,2,…n (1. 28) 

with: 

Y: a vector with n observations in sites 𝐱(𝐢) 

𝐟(𝐱): a regression function 

𝛃: the weights of the regression to be calculated 
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Zi: the error of the regression measured at site 𝐱(𝐢) 

A regression function 𝐟(𝐱) is usually a polynomial of order 0, 1 or 2: 

 Constant 

 𝐟(𝐱) = 1 (1. 29) 

with size p = 1 

 

 Linear 

 𝐟(𝐱) = [1 x1 x2…xm]
T (1. 30) 

with size p = m + 1 

 

 Quadratic 

 𝐟(𝐱) = [1  x1  x2…xm  x1
2  x1x2…x1xm…xm

2 ]T (1. 31) 

with size p =
1

2
(m + 1) ∙ (m + 2) 

The number of observations n must always be more than p. Otherwise, the problem is under-

determined. Among the above polynomial regressions, the linear is generally preferred. The 

quadratic regression, despite being more accurate, depends on many observations and 

therefore is not efficient in problems with many dimensions. For example, a 50-dimensional 

problem requires at least 1326 observations. 

The vector 𝐙 is a Gaussian vector with 𝔼[𝐙] = 0 and Cov[𝐙, 𝐙] = 𝔼[𝐙𝐙T] = σ2𝐑. 

Considering the correlation matrix R known, the model is evaluated by solving the 

optimization problem described below, through maximizing the likelihood of the weight 

vector 𝛃 and the variance σ2, with 𝐲 being the realization of the observations 𝐘: 

 

 
L(𝐲|𝛃, σ2) =

1

((2πσ2)ndet(𝐑))
1 2⁄

exp [−
1

2σ2
(𝐲 − 𝐅𝛃)T𝐑−1(𝐲 − 𝐅𝛃)] (1. 32) 

 

where: 

𝐅 = [𝐟𝐓(𝐱(𝟏))  𝐟𝐓(𝐱(𝟐))… 𝐟𝐓(𝐱(𝐧))]
𝐓

, a matrix of size n × p, with the regression functions 

evaluated at the observation sites 𝐱(𝐢). 

The maximum likelihood problem can be rewritten, using the natural logarithm. Equivalently: 

 (𝛃, σ2) = arg𝑚𝑖𝑛(𝛃,σ2)[−log(L(𝐲|𝛃, σ
2))] (1. 33) 

 

Solving the minimization problem: 

 ∇𝛃logL(𝐲|𝛃, σ
2) = 0

∂logL(𝐲|𝛃, σ2)

∂σ2
= 0

} ⟹
𝛃 = (𝐅Τ𝐑−1𝐅)

−1
𝐅Τ𝐑−1𝐲

σ2 =
1

n
(𝐲 − 𝐅𝛃)T𝐑−1(𝐲 − 𝐅𝛃)

 

(1. 34) 

 (1. 35) 
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1.5.2 The best linear unbiased predictor – Kriging 

A two-stage Gaussian process is assumed, consisting of the regression part and a Gaussian 

process Z(𝐱). 

 
Yi =∑βjfj(𝐱

(i)) + Z(𝐱(i)), i = 0,1,2,…

p

j=1

n (1. 36) 

 

where, Y0 is the unobserved value to be estimated. Also the Gaussian process Z(𝐱) is defined 

with zero mean: 

 𝔼[Z(𝐱)] = 0, ∀𝒙 ∈ 𝕏 (1. 37) 

and stationary autocovariance: 

 Cov[Z(𝐱), Z(𝐱′)] = σ2R(𝐱, 𝐱′), ∀(𝐱, 𝐱′) ∈ 𝕏 × 𝕏 (1. 38) 

Subsequently, the following Gaussian process is defined: 

 
{
Y0
𝐘
} = 𝒩 ({

𝐟T(𝐱(𝟎))𝛃

𝐅𝛃
} , σ2 [

1 𝐫𝟎
𝐓

𝐫𝟎 𝐑
]) (1. 39) 

where: 

 r0,i = R(𝐱
(𝟎), 𝐱(𝐢)), i = 1,2,… n (1. 40) 

which is the correlation vector that contains the correlation between the prediction Ŷ0 and 

the observed Yi. 

The matrix 𝐑 and vector 𝐫 are unknown, but assuming a correlation function as described in 

paragraph 1.4.2, they are defined as: 

 r0,i = R(𝐱
(𝟎) − 𝐱(𝐢), 𝛝), Ri,j = R(𝐱

(𝐢) − 𝐱(𝐣), 𝛝), i, j = 1,2, …n (1. 41) 

where 𝛝 is the vector with the parameters of the correlation function, so far undetermined. 

Theorem: The best linear unbiased predictor 

The best linear unbiased predictor of the unobserved quantity of interest y0 = y(𝐱
(𝟎)) is the 

Gaussian random variate Ŷ0 with mean: 

 μŶ0 = 𝔼[Ŷ0] = 𝔼[Y0] = 𝐟0
T�̂� + 𝐫0

T𝐑−1(𝐲 − 𝐅�̂�) (1. 42) 

and variance: 

 σŶ0
2 = 𝔼 [(Ŷ0 − Y0)

2
] = σ2 (1 − 𝐫0

T𝐑−1𝐫0 + 𝐮0
T(𝐅Τ𝐑−1𝐅)

−1
𝐮0) (1. 43) 

where: 

�̂� = (𝐅Τ𝐑−1𝐅)
−1
𝐅Τ𝐑−1𝐲 

 𝐮0 = 𝐅
Τ𝐑−1𝐫0 − 𝐟0 (1. 44) 

Proof: 

Firstly, the following properties are defined: 
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 Any prediction Ŷ0 is a linear expression of the vector of observations 𝐘 through a 

vector of weights 𝐚: 

 
Ŷ0 =∑a0,iYi

n

i=1

= 𝐚0
T𝐘, 𝐚0 ≡ 𝐚(𝐱

(𝟎)) ∈ ℝn (1. 45) 

 

 The predictor is unbiased: 

 𝔼[Ŷ0 − Y0] = 0 (1. 46) 

 The prediction Ŷ0 minimizes the mean squared error: 

 Ŷ0 = argminY0∗ 𝔼[(Y0
∗ − Y0)

2] (1. 47) 

 

Therefore, the optimal weight vector 𝐚0 is found by solving the following minimization 

problem: 

 𝐚0 = arg𝑚𝑖𝑛𝐚0𝔼[(𝐚0
T𝐘 − Y0)

2
] (1. 48) 

 with constraint: 𝔼[𝐚0
T𝐘 − Y0] = 0 (1. 49) 

𝐘 and Y0 are replaced using the two-stage Gaussian process expression: 

Ŷ0 − Y0 = 𝐚0
T𝐘 − Y0 = 𝐚0

T(𝐅𝛃 + 𝚭) − (𝐟0
T𝛃 + Ζ0) = 𝐚0

T𝐙 − Z0 + (𝐚0
T𝐅 − 𝐟0

T)𝛃 ⟹ 

𝔼[Ŷ0 − Y0] = 𝔼[𝐚0
T𝐙 − Z0 + (𝐚0

T𝐅 − 𝐟0
T)𝛃] = 𝔼[𝐚0

T𝐙 − Z0] + (𝐚0
T𝐅 − 𝐟0

T)𝛃 

Considering the zero mean of Z(𝐱) and the unbiasedness property the constraint expression 

is simplified: 

𝔼[𝐚0
T𝐙 − Z0] = 0

𝔼[Ŷ0 − Y0] = 0
} ⟹ (𝐚0

T𝐅 − 𝐟0
T)𝛃 = 𝟎 ⟹ 𝐚0

T𝐅 − 𝐟0
T = 0 

The mean squared prediction error is rewritten us such: 

𝔼 [(Ŷ0 − Y0)
2
] = 𝔼 [(𝐚0

T𝐙 − Z0)
2
] = 𝔼[𝐚0

T𝐙𝐙𝐓𝐚0 + Z0
2 − 2𝐚0

T𝐙Z0]

= 𝐚0
T𝔼[𝐙𝐙𝐓]𝐚0 + 𝔼[Z0

2] − 2𝐚0
T𝔼[𝐙Z0] = 𝐚0

Tσ2𝐑𝐚0 + σ
2 − 2𝐚0

Tσ2𝐫0

⟹  𝔼 [(Ŷ0 − Y0)
2
] = σ2 (1 + 𝐚0

T(𝐑𝐚0 − 2𝐫0)) 

where, by definition: 

𝔼[𝐙𝐙𝐓] = σ2𝐑,𝔼[Z0
2] = σ2, 𝔼[𝐙Z0] = σ

2𝐫0 

Introducing Lagrange multipliers 𝛌𝟎 ≡ 𝛌(𝐱
(𝟎)) the minimization problem with the equality 

constraint is converted to the following unconstrained problem: 

 (𝐚0, 𝛌𝟎) = arg𝑚𝑖𝑛(𝐚0,𝛌𝟎)L(𝐚0, 𝛌𝟎) 
(1. 50) 

 L(𝐚0, 𝛌𝟎) = σ
2 (1 + 𝐚0

T(𝐑𝐚0 − 2𝐫0)) + 𝛌𝟎
T(𝐚0

T𝐅 − 𝐟0
T) (1. 51) 

 

Solving the optimization problem: 
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∇𝐚0L = 0

∇𝛌𝟎L = 0
} ⟹

2σ2(𝐑𝐚0 − 𝐫0) + 𝐅𝛌𝟎 = 0

𝐅T𝐚0 − 𝐟0 = 0
} ⟹ 

 
[
𝐑 𝐅
𝐅𝐓 𝟎

] {
𝐚0
�̃�𝟎
} = {

𝐫0
𝐟0
}, with �̃�𝟎 =

𝛌𝟎

2σ2
 

 

(1. 52) 

 

Therefore the weights vector is obtained: 

 𝐚0 = 𝐑
−1 (𝐫0 − 𝐅(𝐅

Τ𝐑−1𝐅)
−𝟏
(𝐅Τ𝐑−1𝐫0 − 𝐟0)) (1. 53) 

Lastly, the mean and variance of the unobserved Ŷ0, μŶ0  and σŶ0
2  are obtained by substitution: 

μŶ0 = 𝐚0
T𝐲 = [𝐫0 − 𝐅(𝐅

Τ𝐑−1𝐅)
−𝟏
(𝐅Τ𝐑−1𝐫0 − 𝐟0)]

𝐓

𝐑−1𝐲

= 𝐫0
𝐓𝐑−1𝐲 − [(𝐅Τ𝐑−1𝐅)

−𝟏
𝐅Τ𝐑−1𝐫0 + (𝐅

Τ𝐑−1𝐅)
−𝟏
𝐟0]

𝐓

𝐅Τ𝐑−1𝐲

= 𝐟0
T(𝐅Τ𝐑−1𝐅)

−𝟏
𝐅Τ𝐑−1𝐲 + 𝐫0

𝐓𝐑−1 (𝐲 − 𝐅(𝐅Τ𝐑−1𝐅)
−𝟏
𝐅Τ𝐑−1𝐲)

= 𝐟0
T�̂� + 𝐫0

T𝐑−1(𝐲 − 𝐅�̂�) 

σŶ0
2 = σ2 (1 + 𝐚0

T(𝐑𝐚0 − 2𝐫0))

= σ2 (1 + (𝐫0 − 𝐅(𝐅
Τ𝐑−1𝐅)

−𝟏
𝐮0)

T

𝐑−1 ((𝐫0 − 𝐅(𝐅
Τ𝐑−1𝐅)

−𝟏
𝐮0) − 2𝐫0))

= σ2 (1 − (𝐫0 − 𝐅(𝐅
Τ𝐑−1𝐅)

−𝟏
𝐮0)

T

𝐑−1 (𝐫0 + 𝐅(𝐅
Τ𝐑−1𝐅)

−𝟏
𝐮0))

= σ2 (1 − (𝐫0
T𝐑−1𝐫0 − (𝐅(𝐅

Τ𝐑−1𝐅)
−𝟏
𝐮0)

T

𝐑−1𝐅(𝐅Τ𝐑−1𝐅)
−𝟏
𝐮0))

= σ2 (1 − 𝐫0
T𝐑−1𝐫0 + 𝐮0

T(𝐅Τ𝐑−1𝐅)
−𝟏
(𝐅Τ𝐑−1𝐅)(𝐅Τ𝐑−1𝐅)

−𝟏
𝐮0)

= σ2 (1 − 𝐫0
T𝐑−1𝐫0 + 𝐮0

T(𝐅Τ𝐑−1𝐅)
−𝟏
𝐮0) 

1.5.3 Estimation of parameters 𝛝 

The estimation of the parameters 𝛝, is based on the least-squares maximum likelihood 

estimator: 

L(𝐲|𝛃, σ2, 𝛝) =
1

((2πσ2)ndet(𝐑(𝛝)))
1 2⁄

exp [−
1

2σ2
(𝐲 − 𝐅𝛃)T𝐑−1(𝐲 − 𝐅𝛃)] 

The vector 𝛃 and variance σ2 depend on 𝛝: 

𝛃(𝛝) = (𝐅Τ𝐑(𝛝)−1𝐅)
−1
𝐅Τ𝐑(𝛝)−1𝐲 

σ2(𝛝) =
1

n
(𝐲 − 𝐅𝛃(𝛝))

T

𝐑(𝛝)−1(𝐲 − 𝐅𝛃(𝛝)) 

By replacing 𝛃(𝛝) and σ2(𝛝) on the maximum likelihood estimator, and using the natural 

logarithm, the following expression is obtained: 
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−log(L(𝐲|𝛃, σ2, 𝛝))

=
1

2σ2
(𝐲 − 𝐅𝛃)T𝐑(𝛝)−1(𝐲 − 𝐅𝛃) +

n

2
log(2π) +

n

2
log(σ2)

+
1

2
log([det𝐑(𝛝)]) =

n

2
log (σ2(𝛝)[det𝐑(𝛝)]

1
n) +

n

2
(log(2π) + 1) 

Let: 𝜓(𝛝) = σ2(𝛝)[det𝐑(𝛝)]
1

n 

Therefore, the parameters 𝛝 are obtained by solving the following optimization problem: 

 �̂� = arg𝑚𝑖𝑛𝛝𝜓(𝛝) (1. 54) 

which eventually is equivalent to maximizing the maximum likelihood estimator. 

The optimization problem described above cannot be solved analytically, and numerical 

methods need to be used. Such methods can be gradient-based algorithm, or a genetic 

algorithm. 

1.5.4 Computational difficulties 

It should be noted, that in many cases, numerical difficulties arise in the computation of the 

inverse matrix of 𝐑 which is generally very ill-conditioned. The ill-conditioness is treated with 

various techniques, such as adding in the diagonal of 𝐑 a very small value, historically called 

nugget. The nugget in Applied Geostatistics, a scientific field in which kriging was at first 

proposed, is a value that represents the measurement error, which produces noisy 

observations. In this thesis, simulations don’t produce any noisy data, therefore the nugget 

value should be, in theory, zero. The effect of using a small nugget value, for clearly 

computational reasons, is that the mean kriging predictor becomes more “smooth” and does 

not interpolate the observations, but such an error is negligibly small and is ignored. 

Additionally, the selection of the autocorrelation function is important. It has been noticed by 

Marrel (2005, 2008), that when the support points are very dense, which is a common case in 

following applications, the squared exponential function is not efficient enough. That is 

because it is infinitely differentiable. On the other hand, the use of a differentiable 

autocorrelation function is desirable, because it depicts more accurately the physical 

phenomenon that is emulated. Consequently, the Matérn autocorrelation function is very 

efficient, due to the extra parameter ν that affects differentiability, and performs well in 

models with support points non-uniformly distributed (Vazquez 2005). 

1.5.5 One-dimensional example of the kriging predictor 

The following function is emulated with the kriging predictor, choosing various arbitrary 

values for the 𝛝 parameter of the correlation function, to demonstrate the way it affects the 

prediction. Finally, the optimal parameter 𝛝, and the probabilistic classification function π(𝐱) 

are calculated. For the regression stage of the model, the constant regressor is chosen. The 

autocorrelation functions used are: (a) the squared exponential autocorrelation function and 

(b) the linear autocorrelation function. The support points, or observations, are also arbitrarily 

chosen, for the purpose of this example. 

y(x) =
1

2
(x + 2) + sin(x + 2), x ∈ ℝ 
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The evaluations of the function y(x), which are used as support points for the kriging model 

are shown below: 

i xi yi 
1 -4 -1.909 
2 -3 -1.341 
3 1 1.641 
4 2 1.243 
5 4 2.721 

 

(a) Squared exponential autocorrelation function (Gaussian) 

The mean value μŶ(x) and variance σŶ
2(x)  of the kriging predictor Ŷ are evaluated in the 

area of interest x ∈ [−5,5], choosing 3 different correlation lengths. For L = {0.1 ; 3 ; 8} ϑ is 

obtained: ϑ = {300 ; 1 3⁄  ; 0.0469}, since ϑ = 3 L2⁄ . 
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The dotted line in the figures above, is the function y(x) and is shown for reference. It should 

be noted that in all cases the mean kriging predictor interpolates the data, and the variance is 

zero at the same points. Also, it is clear that the correlation length L = 0.1 is a very low value, 

since the kriging model gives hardly any useful information in the area of interest, apart from 

the areas very near to the observations. For the most part, the mean kriging predictor is equal 

to: μŶ(x) ≈ f(x) ∙ β = 1 ∙ 0.4708 = 0.4708 

For this example, the weight vector 𝐚0 is also evaluated for x0 = −1: 

 Observations 
1 2 3 4 5 

𝐚0(L = 0.1) 0.200 0.200 0.200 0.200 0.200 
𝐚0(L = 3) -0.170 0.574 0.642 -0.280 0.234 
𝐚0(L = 8) -0.435 0.865 1.492 -1.108 0.186 

 

It is reminded, that: μŶ(x0) = 𝐚𝟎
T𝐲, with observations 𝐲 defined in previous table. 

Finally, solving the optimization problem of paragraph 1.5.3, the parameter ϑ is obtained. Due 

to the simplicity of this example, the objective function is also plotted. 

It is reminded, that: 𝜓(𝛝) = σ2(𝛝)[det𝐑(𝛝)]
1

n 

 

The estimation of ϑ is: 

ϑ = 0.182 ⟹ L = 4.06 

In the figure above, it is clear that for ϑ → 0+ the quantities σ2(𝛝) and [det𝐑(𝛝)]
1

n approach 

+∞ and zero respectively. Therefore, the objective function of the optimization problem is 

very sensitive to numerical errors in the calculation of these quantities. 

(b) Linear autocorrelation function 

The above procedure is repeated with the use of the linear autocorrelation function. 

Correlation lengths are the same: 
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L = {0.1 ; 3 ; 8} ⟹ ϑ = {10 ; 1 3⁄  ; 0.125}, since ϑ = 1 L⁄  in this case. 

 

 

The main difference with (a), is that the mean kriging predictor μŶ(x) is linear in parts, for any 

x ∈ ℝ. Also the points, at which μŶ(x) is non-differentiable (“pointy”), differ by distance L 

from a support point. This is because the linear autocorrelation function reaches zero in a non-

smooth way, compared to other autocorrelation functions, such as the squared-exponential, 

or the spline. 

The weight vector 𝐚0, evaluated for x0 = −1 is the following: 

 Observations 
1 2 3 4 5 

𝐚0(L = 0.1) 0.200 0.200 0.200 0.200 0.200 
𝐚0(L = 3) -0.313 0.688 0.813 -0.500 0.313 
𝐚0(L = 8) 0.000 0.500 0.500 0.000 0.000 

 



26 
 

In the case that L = 8, the mean kriging predictor μŶ(x) is actually a simple linear 

interpolation between the observations, therefore the weights of any unobserved value are 

dependent only on the distance of the nearest support point, of each side on the x axis. Thus, 

the weights 𝐚0 for x0 = −1, depend only on |x0 − x2| = 2 and |x0 − x3| = 2. 

Solving the optimization problem, parameter ϑ is obtained: 

 

ϑ = 0.125 ⟹ L = 8 

1.5.6 Probabilistic classification function 𝛑(𝐱) 

In reliability analysis, a limit-state function g(𝐱) provides the information to classify a state 𝐱 

in the failure domain: 

 𝔽 = {𝐱 ∈ 𝕏 ∶ g(𝐱) ≤ 0} (1. 55) 

or the safe domain: 

 𝔽c = {𝐱 ∈ 𝕏 ∶ g(𝐱) > 0} (1. 56) 

The following indicator function IF(𝐱) with binary output is defined: 

 
 IF(𝐱) = {

1 for g(𝐱) ≤ 0 
0 for g(𝐱) > 0

 (1. 57) 

 

Respectively, when a limit-state function is emulated through a Gaussian process, such as the 

kriging predictor Ŷ(𝐱), the classification is approached in a probabilistic way, rather than 

deterministically. The probabilistic classification function π(𝐱) describes the probability that 

a state 𝐱 belongs in the failure domain, and is the equivalent of the indicator function IF(𝐱) in 

a probabilistic way. Therefore π(𝐱) is defined as: 

 
π(𝐱) = 𝒫(Ŷ(𝐱) ≤ 0) = Φ(

−μŶ(𝐱)

σŶ(𝐱)
) (1. 58) 
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where Φ the standard normal cumulative distribution function. It is clear that π(𝐱) takes 

values from 0 to 1, and that for σŶ(𝐱) = 0 then π(𝐱) =  IF(𝐱). 

In the following example, it is assumed that μŶ(x) = x and σŶ(x) = 1 for x ∈ [−4,4]. 

π(x) = Φ(
−μŶ(x)

σŶ(x)
) = Φ(−x) 

 

In the second example, a kriging model is built with 8 support points, from the following limit-

state function, by Der Kiureghian and Dakessian (1998): 

g(𝐱) = b − x2 − κ(x1 − e)
2, 𝐱 ∈ 𝕏 = [−8, 8] × [−8, 8] 

where b = 5, κ = 0.5 and e = 0.1. The kriging parameters 𝛝 are set to 𝛝 = (0.25, 0.25), the 

correlation function is the squared exponential and the regressor is constant. 

 

The dashed line represents the limit g(𝐱) = 0 and the cyan-green represents π(𝐱) = 0.5 ⇔

μŶ(𝐱) = 0 . Choosing a confidence-level of 95%, three areas are distinguished: 
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 𝐱 ∈ 𝕏 ∶ π(𝐱) ≤ 2.5%, in which safety is almost certain 

 𝐱 ∈ 𝕏 ∶ π(𝐱) > 97.5%, in which failure is almost certain, and finally 

 𝐱 ∈ 𝕏 ∶ 2.5% < π(𝐱) ≤ 97.5%, the “grey area” in which the model fails to provide 

confident classification. In later chapter, the database that is used to build the kriging 

model, is refreshed with new data, with purpose to eliminate completely this grey 

area, and bring the π(𝐱) function closer to IF(𝐱). 
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2 Reliability analysis 

2.1 Introduction 

In structural design, many types of uncertainties are encountered. Those uncertainties derive 

mostly from lack of information, of ignorance of the physical laws. Material properties, 

environmental loads, and other quantities, are very hard or impossible to determine, 

therefore these quantities must be dealt us random variables. As a consequence, considering 

all those uncertainties is necessary, in order to evaluate the probability a structure to fail its 

purpose, in terms of strength of serviceability. 

Firstly, the deterministic and random quantities are separated and defined. The deterministic 

quantities are those that are known and can be defined in advance. Also random variables 

with relatively small variance, can be assumed as deterministic. Otherwise, random variables 

describe quantities, that are unknown beforehand, such us the strength of concrete, or the 

maximum snow load in the next 50 years. In almost all cases though, such uncertainties can 

be described in a probabilistic way, through mathematically defined distributions that derive 

from statistical data. 

Reliability analysis aims to calculate the failure probability, which depends on all present 

uncertainties. In other words, all uncertainties are reduced to a single one, which can describe 

the safety level of a structure. Nevertheless, evaluating such a failure probability, analytical 

solutions are proven to be very restricted. One should rely on numerical methods, and more 

specifically, on computer experiments. 

This thesis focuses on the application of structural reliability, in problems with difficulties, such 

as very low failure probability (< 10−4), high number of random variables, and 

computationally costly performance functions. In this chapter, the most efficient and 

advanced simulation techniques are presented, incorporating the probabilistic classification, 

provided by the kriging meta-modelling. 

2.2 Problem definition 

Let vector 𝐗 a collection of m random variables, described by the multivariate probability 

density function f𝐗(𝐱), 𝐱 ∈ 𝕏 ⊂ ℝ
𝐦. The performance function G = g(𝐱): 𝕏 → 𝔾 ⊂ ℝ, which 

is also random since it depends on 𝐗, measures a specific quantity, that is  adequate to classify 

a state 𝐱 to either: 

the failure domain: 

 𝔽 = {𝐱 ∈ 𝕏 ∶ g(𝐱) ≤ 0} (2. 1) 

or the safe domain: 

 𝔽c = {𝐱 ∈ 𝕏 ∶ g(𝐱) > 0} (2. 2) 

 

Therefore, the failure probability is defined as: 
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pf = 𝒫(G ≤ 0) = 𝒫(g(𝐗) ≤ 0) = ∫f𝐗(𝐱)

 

𝔽

dx (2. 3) 

The indicator function IF(𝐱) is defined as: 

 
IF(𝐱) = {

1 for g(𝐱) ≤ 0 
0 for g(𝐱) > 0

 
(2. 4) 

 

Equivalently, the failure probability can be defined using the real performance function g(𝐱) 

or the probabilistic classification function π(𝐱) from the kriging predictor 

Ĝ(𝐱)~𝒩(�̂�𝐺(𝐱), �̂�𝐺(𝐱)): 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

pf = ∫IF(𝐱) ∙ f𝐗(𝐱)
 

𝕏

dx 

(2. 5) 

pf ≈ pfε = ∫π(𝐱) ∙ f𝐗(𝐱)
 

𝕏

dx 

(2. 6) 
 

The failure probability, when evaluated from a kriging model, is only an estimation, because 

uncertainties of the model are present. In the rest of the chapter, all definitions and 

methodology, are presented in two ways, in parallel. Firstly, using the real performance 

function and the indicator function IF(𝐱), and secondly, through the model estimation and 

the probabilistic classification function π(𝐱). 

In the following example, the functions IF(𝐱) and π(𝐱) are presented, considering the function 

of 1.5.4. The random variable 𝐗, is normally distributed with zero mean and unit standard 

deviation. The kriging model is built, using constant regression function, and the squared 

exponential autocorrelation function with optimal parameter ϑ. 

g(x) =
1

2
(x + 2) + sin(x + 2), x ∈ ℝ 

 

It is worth noticing that, the mean kriging predictor μĜ(x) is almost identical to the real 

function g(x), in the area of interest. Nevertheless, in the interval x ∈ [−3,1] there is little 
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information (no observations) and the model variance is large. This uncertainty is depicted in 

the following figure: 

 

It is clear that the probabilistic classification function π(𝐱), is actually an estimation of the 

indicator function. Although the estimation, may seem to be relatively good, the estimated 

failure probability may differ by a large margin to the actual one. 

 

The error of the estimation, is clearer above. The area of the two functions depicted, is equal 

to the failure probability as defined in the above expressions. In this specific case, the PDF 

enlargers the error of the estimator. 

By numerical integration, the values of pf and pfε are obtained: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 
pf = 2.275 ∙ 10

−2 pfε = 5.704 ∙ 10
−2 
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The calculation of the definite multiple integral in the equations above, is generally impossible 

to compute analytically, because the bounds are dependent on g(𝐱). Also numerical 

integration is just as inefficient, because the computational effort is rising exponentially with 

higher dimensionality. Therefore, the following simulation techniques need to be 

implemented, to calculate low failure probabilities in many dimensions. 

2.3 Monte Carlo Simulation 

The Monte Carlo Simulation (MCS), is a method to calculate numerically the integral that 

defines the failure probability pf. It is a necessary condition, that generating samples of any 

size from the random vector 𝐗 according to the predetermined PDF fX(x) is possible. This can 

be achieved by sampling from a random variable U~𝒰(0,1) using a pseudorandom number 

generator, and then compute realizations of X through an isoprobabilistic transformation T. 

 x(i) = T(u(i)), i = 1, 2,…N (2. 7) 

where: 

x(i) realization i of random variable X 

u(i) realization i of random variable U~𝒰(0,1)  

N the sample size, or number of simulations 

T(u) isoprobabilistic transformation U →  X 

 T(u) = FX
−1(FU(u)) = FX

−1(u) (2. 8) 

where: FX(x) the CDF of X and FU(u) = u the CDF of U 

The calculation of the failure probability is estimated from the sample x(i), i = 1, 2, …N as 

follows: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

p̂f =
1

N
∑IF(x

(i))

N

i=1

 

(2. 9) 

p̂f ≈ p̂fε =
1

N
∑π(x(i))

N

i=1

 

(2. 10) 
 

The above estimation is dependent on the size sample N, and the coefficient of variation is 

given below: 

δ = √
1 − pf
N ∙ pf

 

(2. 11) 

δε =
1

pfε
√
1

Ν
(
1

Ν
∑π(x(i))2
Ν

ι=1

− pfε
2) 

(2. 12) 
  

It should be reminded, that p̂fε is estimated with uncertainties that originate from the kriging 

model and uncertainties from the MCS as well. The coefficient of variation δε expresses only 

the probable error from the MCS, which is also called statistical error. 

Usually, the coefficient of variation of the failure probability δ (or δε), defines the number of 

simulations N, and is set to one of the following values: δ = {1%, 2%, 5%, 10%}. 
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Monte Carlo Simulation is a powerful and robust method to calculate the failure probability. 

It is independent of dimensionality and relies only on IF(𝐱), meaning that the differentiability, 

the linearity or the convexity of g(𝐱) are irrelevant. On the other hand, MCS may prove to be 

computationally costly, because achieving low δ requires many simulations when estimating 

low failure probabilities. This disadvantage may often be amplified, when each evaluation of 

g(𝐱) is also computationally time consuming. 

In the following example, the Monte Carlo Simulation is illustrated, using a performance 

function from Rackwitz (2001): 

g(𝐱) = 4.5 − e0.3∙x1+0.7 − e0.3∙x2 , x1, x2 ∈ ℝ
2 

where: 

x1, x2 normally distributed random variables, with zero mean and unit variance 

 

The kriging model is built with 10 observations. The MCS is run on sample with size  N = 3000. 
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The samples in the failure domain (IF(𝐱) = 1), are illustrated with filled black dots. 

 

The colors in gray scale, correspond to values of π(𝐱) from 0 to 1. The failure probability and 

its coefficient of variation, are calculated from the real g(𝐱) function and from the kriging 

model: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

p̂f = 4.47 ∙ 10
−2 

 
p̂fε = 2.89 ∙ 10

−2 
 

δ = 8.44% δε = 9.20% 
 

The difference between p̂f and p̂fε is attributed to the inaccuracy of the kriging model, rather 

than the statistical error, because δ and δε are too small to justify it. It is worth noticing, that 

in the first case N = 3000 evaluations of g(x) are required, while in the second only 10 

evaluations of g(x) are required and N evaluations of the kriging model. 

2.4 Importance Sampling 

Importance sampling allows the use of an arbitrary PDF h(𝐱) in sampling generation in 

simulation techniques, unlike MCS which requires the use of the PDF f𝐗(𝐱) that defines the 

random vector 𝐗. Although it is proven that any h(𝐱) is utilizable, in a simulation context the 

proper choice of h(𝐱) can drastically decrease the number of simulations N. The optimal h(𝐱) 

focuses entirely on the failure domain, thus, the sampling is more efficient. However, defining 

the optimal h(𝐱) is not possible, but suboptimal PDFs can be almost as efficient.  

Importance sampling is presented below, at a more general framework. The purpose is to 

evaluate ϕ̅ which is defined by the following integral: 

 
ϕ̅ = ∫ϕ(𝐱)

 

𝕏

f𝐗(𝐱)d𝐱 = 𝔼𝐗[ϕ(𝐗)] 
(2. 13) 

where 𝐗 ∈ 𝕏 ⊂ ℝm the random vector with PDF f𝐗(𝐱) and ϕ(𝐱) a real-valued function. It 

should be noted that ϕ̅ is actually the failure probability pf, when ϕ(𝐱) is substituted by IF(𝐱) 
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or π(𝐱). 

Let h(𝐱) a PDF, such that ϕ(𝐱)f𝐗(𝐱) ≠ 0⟹ h(𝐱) ≠ 0. The expression of ϕ̅ is rewritten as 

follows: 

 
ϕ̅ = ∫ϕ(𝐱)

 

𝕏

f𝐗(𝐱)
h(𝐱)

h(𝐱)
d𝐱 = ∫

ϕ(𝐱)f𝐗(𝐱)

h(𝐱)
h(𝐱)

 

𝕏

d𝐱 = 𝔼Y [
ϕ(𝐘)f𝐗(𝐘)

h(𝐘)
] 

(2. 14) 

 

where 𝐘 ∈ 𝕏 ⊂ ℝm a random vector distributed according to h(𝐲) 

Resorting to the Monte Carlo Simulation, the estimated value of ϕ̅ is the following: 

 
 ϕ̂̅ =

1

N
∑

ϕ(𝐲(𝐢))f𝐗(𝐲
(𝐢))

h(𝐲(𝐢))

N

i=1

 
(2. 15) 

where: 

N the sample size, or number of simulations 

𝐲(𝐢), i = 1,2,…N the sample generated according to PDF h(𝐲) 

Next, the variance of ϕ̂̅ is evaluated: 

σ
ϕ̂̅
2 = VarY[ϕ̂̅] = Ν ∙ 𝔼Y [

1

Ν2
ϕ(𝐘)2f𝐗(𝐘)

2

h(𝐘)2
] − Ν ∙ 𝔼Y [

1

Ν

ϕ(𝐘)f𝐗(𝐘)

h(𝐘)
]

2

=
Ν

Ν2
(∫

ϕ(𝐲)2f𝐗(𝐲)
2

h(𝐲)2

 

𝕏

h(𝐲)d𝐲 − ϕ̂̅
2
) =

1

N
(
1

N
∑

ϕ(𝐲(𝐢))2f𝐗(𝐲
(𝐢))2

h(𝐲(𝐢))2

N

i=1

− ϕ̂̅
2
) 

(2. 16) 

And the coefficient of variation of ϕ̂̅ is: 

 

δ
ϕ̂̅
=
1

ϕ̂̅ 
√
1

N
(
1

N
∑

ϕ(𝐲(𝐢))2f𝐗(𝐲
(𝐢))2

h(𝐲(𝐢))2

N

i=1

− ϕ̂̅
2
) 

(2. 17) 

 

Assuming σ
ϕ̂̅
2 = 0 and ϕ(𝐲) ≥ 0, the optimal h(𝐲) is defined (Rubinstein and Kroese 2008): 

σ
ϕ̂̅
2 = 0⟹ ∫

ϕ(𝐲)2f𝐗(𝐲)
2

h(𝐲)2

 

𝕏

h(𝐲)d𝐲 − ϕ̂̅
2
= 0⟹ 

∫
ϕ(𝐲)2f𝐗(𝐲)

2

ϕ̂̅ ∙ h(𝐲)

 

𝕏

d𝐲 = ∫ϕ(𝐲)
 

𝕏

f𝐗(𝐲)d𝐲 ⟹
ϕ(𝐲)f𝐗(𝐲)

ϕ̂̅ ∙ h(𝐲)
= 1⟹ 

 
h(𝐲) =

ϕ(𝐲)f𝐗(𝐲)

ϕ̂̅
 (2. 18) 

 

Clearly, the optimal instrumental PDF h(𝐲) cannot be defined because the value ϕ̂̅ is not 

known. Nevertheless, an estimation of the optimal h(𝐲), or else a suboptimal h(𝐲), may also 

grant satisfactory results. In Meta-Modeling Importance Sampling the suboptimal PDF is 

estimated from the kriging model. More on that will be discussed in the respective chapter. 
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In the following example, the failure probability is estimated with the Importance Sampling 

technique, considering the performance function g(𝐱) of 1.3. 

The function h(𝐱) is arbitrarily chosen for the purpose of this example: 

h(𝐱) = f𝐗(𝐱 − 𝐝) 

where 𝐝 is the vector that maximizes f𝐗(𝐝) with the constraint that 𝐝 ∈ 𝔽 ⊂ 𝕏. This vector is 

also called the design point, because it is the most probable case of failure. 

In other words, h(𝐱) defines a normal distribution with the same variance as 𝐗, 𝛔2 = [1,1], 

and mean 𝐦 = 𝐝 = {1.646,0.609}. The sample size is the same as in the MCS example, N =

3000. 

 

As shown in the figure, about half of the samples reside in the failure domain. The failure 

probability and its coefficient of variation are estimated below: 

p̂f = 4.84 ∙ 10
−2, δ = 2.62% 

Comparing to the MCS, δ is now about 3.2 times smaller, and such a value would be achieved 

with about 10 times larger sample size. It is worth noticing though, that choosing a proper  

h(𝐱) function is very crucial. An improper h(𝐱) choice, would result to lower efficiency 

compared to the robust MCS. 

Importance sampling provides a property that is fundamental for Subset Simulation and Meta-

Model Based Importance Sampling, described in the following subchapters. 

2.5 Subset Simulation 

2.5.1 Principle 

Subset Simulation is a reliability method, by Au and Beck (2001), that splits the domain in 

successive subsets, with purpose to detect the failure domain and estimate very low failure 

probabilities. Starting from the initial domain, 𝕏 ⊂ ℝm the limit q1 ∈ 𝔾 ⊂ ℝ is evaluated so 

that: 
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 𝒫(𝐗 ∈ 𝔽1) = 𝒫(g(𝐗) ≤  q1, 𝐱 ∈ 𝕏) = p1 (2. 19) 

where: 

𝔽1 a subset of 𝕏 such that g(𝐱) ≤  q1, 𝐱 ∈ 𝕏 

g(𝐱) the performance function g(𝐱): 𝕏 → 𝔾 ⊂ ℝ 

p1 an arbitrarily chosen probability referred to as an intermediate probability 

Subsequently, the domain 𝔽1 is split into subsets 𝔽s ⊂ 𝔽s−1 ⊂ ⋯ ⊂ 𝔽2 ⊂ 𝔽1 successively: 

 𝒫(𝐗 ∈ 𝔽i|𝐗 ∈ 𝔽i−1) = 𝒫(g(𝐗) ≤  qi, 𝐱 ∈ 𝔽i−1) = pi|i−1, i = 2,3,… s (2. 20) 

where: qs < qs−1 < ⋯q2 < q1 the limits that define subsets 𝔽i = {𝐱 ∈ 𝕏 ∶ g(𝐱) ≤ qi}  

pi|i−1, i = 1,2, … s − 1  are the intermediate probabilities, arbitrarily chosen 

ps|s−1 the conditional probability of the last subset that corresponds to qs 

The failure domain is defined as  𝔽 = {𝐱 ∈ 𝕏 ∶ g(𝐱) ≤  qs = 0}, therefore: 𝔽 = 𝔽s 

And the failure probability pF is given from the Bayes’ Theorem: 

pf = 𝒫(𝐗 ∈ 𝔽) = 𝒫(𝐗 ∈ 𝔽s|𝐗 ∈ 𝔽s−1) ∙ … ∙ 𝒫(𝐗 ∈ 𝔽2|𝐗 ∈ 𝔽1) ∙ 𝒫(𝐗 ∈ 𝔽1) = p1∏pi|i−1

s

i=2

 

(2. 21) 

In the following equations, the intermediate probabilities are additionally defined, from the 

probabilistic classification function π(𝐱). 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

p1 = ∫IF1(𝐱)f𝐗(𝐱)d𝐱
 

𝕏

 

(2. 22) 
 

pε,1 = ∫π1(𝐱)f𝐗(𝐱)d𝐱
 

𝕏

 

(2. 23) 

pi|i−1 = pi pi−1⁄ ⟹ 

pi|i−1 = ∫
IFi(𝐱)f𝐗(𝐱)

pi−1
d𝐱

 

𝔽i−1

⟹ 

pi|i−1 = ∫
IFi(𝐱)

IFi−1(𝐱)

IFi−1(𝐱)f𝐗(𝐱)

pi−1
d𝐱 ⟹

 

𝔽i−1

 

pi|i−1 = ∫
IFi(𝐱)

IFi−1(𝐱)
hi(𝐱)d𝐱 ⟹

 

𝔽i−1

 

pi|i−1 = ∫ IFi(𝐱)hi(𝐱)d𝐱
 

𝔽i−1

 

(2. 24) 
 

pε,i|i−1 = pi pi−1⁄ ⟹ 

pε,i|i−1 = ∫
πi(𝐱)f𝐗(𝐱)

pi−1
d𝐱

 

𝔽i−1

⟹ 

pε,i|i−1 = ∫
πi(𝐱)

πi−1(𝐱)

πi−1(𝐱)f𝐗(𝐱)

pi−1
d𝐱 ⟹

 

𝔽i−1

 

pε,i|i−1 = ∫
πi(𝐱)

πi−1(𝐱)
hi(𝐱)d𝐱

 

𝔽i−1

 

(2. 25) 

IFi(𝐱) = {
1 for g(𝐱) ≤ qi 
0 for g(𝐱) > qi

 

(2. 26) 
 

πi(𝐱) = Φ(
qi − μĜ(𝐱)

σĜ(𝐱)
) 

(2. 27) 

hi(𝐱) =
IFi−1(𝐱)f𝐗(𝐱)

pi−1
 

(2. 28) 

hi(𝐱) =
πi−1(𝐱)f𝐗(𝐱)

pε,i−1
 

(2. 29) 
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In Subset Simulation, the conditional intermediate probabilities pi|i−1 up to i = s − 1  as well 

as qs = 0 are known. The last conditional probability ps|s−1 and the quantiles of g(𝐱) q1 >

q2 > ⋯ > qs−1 > 0, are derived successively from the definitions above. The function hi(𝐱) 

is the PDF that describes the distribution of 𝐗 restricted in subset 𝔽i−1, and is referred to as 

the conditional PDF. In the next subchapter, an efficient procedure for the estimation of the 

failure probability is presented. 

2.5.2 Algorithm 

The main advantage of Subset Simulation (SS), is that the intermediate probabilities are 

arbitrary, and can be relatively high, such as pi|i−1 = 10%~20%. When resorting to 

simulation methods, high probabilities are very costly to be estimated with low variance. 

Therefore, SS alters the problem. Instead of calculating a low failure probability, high 

probabilities are calculated, but multiple times. 

The computational cost of SS, in terms of δ, is (by simplification) proportionate to k, if the 

failure probability is pf = 10
−k, k > 0, whereas the computational cost of MCS is 

proportionate to 10k. 

On the other hand, SS depends on more advanced techniques in sampling generation, because 

an isoprobabilistic transformation of hi(𝐱) is inevitable or impractical. Such techniques are 

the Markov chain Monte Carlo samplers (MCMC). In this thesis the modified Metropolis-

Hastings sampler is preferred, as discussed in following chapter. 

Step 0: Set values for the intermediate probabilities, and sample size per step N 

The intermediate probabilities pi|i−1, i = 1,2, … s − 1 are all set to a certain value p0. A small 

value of p0 means that less steps will be required, but a targeted probability variance will be 

harder to reach. By choosing a large value, smaller samples need to be generated but more 

steps are required. An optimal choice is 0.1~0.2 and most commonly p0 = 0.1. Therefore: 

pi|i−1 = p0, i = 1,2,… s − 1 

The choice of sample size per step N depends on the target coefficient of variation δ of pf. If 

the failure probability pf can be estimated, then from the upper bound of δ: 

 
N >

1 − p0
δ2 ∙ p0

∙ (1 + √1 + γ ∙ (k − 1))
2
, k =

log (pf)

log (p0)
 

(2. 30) 

or less conservatively, from the lower bound: 

 
N >

1 − p0
δ2 ∙ p0

∙ (1 + (1 + γ) ∙ (k − 1)) 
(2. 31) 

For values p0 = 0.1, δ = 10%, γ = 3, pf = 10
−7 ⟹N > 152100 per step. The coefficient γ 

takes into account the correlation in samples generated from an MCMC sampler. More are 

discussed in following chapter. 

Step 1: Generate sample from f𝐗(𝐱), i = 1 

The first step is identical to MCS. The samples 𝐱[i=1](k), k = 1,2,…N is generated according to 

f𝐗(𝐱). 
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Step 2: Estimate qi 

Estimating the quantile, qi can be achieved from pi|i−1 = p0. The procedure is different in the 

case of the kriging model: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

pi|i−1 =
1

N
∑ IFi(𝐱

[i](k))

N

k=1

 

(2. 32) 
 

pε,i|i−1 =
1

N
∑

πi(𝐱
[i](k))

πi−1(𝐱
[i](k))

N

k=1

 

(2. 33) 

  
Find qi: 

1. Calculate g(𝐱[i](k)), k = 1,2, …N 

2. Sort 𝐱[i](k) by ascending order with 

respect to g(𝐱[i](k)) 

3. qi = g(𝐱
[i](p0∙N)) 

Find qi: 
1. Set acceptable error e = 0.01 

2. Calculate ql = min μ̂G(𝐱
[i](k)) and 

qu = max μ̂G(𝐱
[i](k)) 

3. Set q∗ = (ql + qu) 2⁄  

4. Estimate p∗ =
1

N
∑

π∗(𝐱[i](k))

πi−1(𝐱
[i](k))

N
k=1  

where π∗(𝐱) = Φ(
q∗−μ̂G(𝐱)

σ̂G(𝐱)
) 

5. If p∗ > p0 set qu = q
∗, else set 

ql = q
∗ 

6. Calculate e∗ = |p∗ − p0| p0⁄  
7. If e∗ > e go to 3, 

 else pi|i−1 = p
∗ and qi = q

∗ 

 
 

δi = √
1 − pi|i−1

N ∙ pi|i−1
(1 + γi) 

(2. 34) 

δε,i = ⋯ 

 

 

The coefficient of variation of pε,i|i−1 is the following:  

 

δε,i =
1

pε,i|i−1
√
1

N
[
1

N
∑

πi(𝐱
[i](k))

πi−1(𝐱
[i](k))

N

k=1

− pε,i|i−1
2] (1 + γε,i) 

(2. 35) 

 

In step i = 1 the 𝔽0 “subset” (i − 1 = 0) is by definition the 𝕏 space (𝔽0 = 𝕏). Also, γ1 = 0. 

As shown in the algorithm above, a sorting of the g(𝐱) values is required to find qi. In the case 

of the kriging model though, such sorting is not possible. A bisection method can be utilized, 

to find qi. It should be noted, that the intermediate probability p0 is targeted, but is not 

achieved. Consequently, the final intermediate probabilities pi|i−1 are close and not equal to 

p0, but that has no effect to the process of SS. 

Eventually, qi will reach a negative value. At this point qi is instead, set to zero: 

qi = qs = 0 
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and the algorithm proceeds to step 4. Else, i is set to i = i + 1,  and the algorithm continues 

to step 3.  

Step 3: Generate sample 𝐱[i](k), k = 1,2,…N from conditional PDF hi(𝐱) 

As mentioned before, sampling from hi(𝐱) can be achieved by Markov Chain Monte Carlo 

samplers. Here, the Modified Metropolis-Hastings algorithm (MMHA) is used. Firstly an initial 

seed is defined, and secondly the sample 𝐱[i](k), k = 1,2,…N is generated: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 

𝐱seed
(k) = 𝐱[i−1](k), k = 1,2, …p0N 

 

where 𝐱[i−1](k) is the sorted sample from 
the previous step. 

Therefore, 𝐱[i−1](k) ∈ 𝔽i−1 and 

hi(𝐱
[i−1](k)) > 0, ∀ k = 1,2, …p0N. 

 
 

Find 𝐱seed 
 

1. j = 1 
2. Choose a random k∗ ∈ {1,2,…N} 

with probability: 

rk =
πi−1(𝐱

[i−1](k))

πi−2(𝐱
[i−1](k)) ∙ Npi−1|i−2

 

3. 𝐱seed
(j) = 𝐱[i−1](k

∗) 
4. j = j + 1 
5. If j ≤ p0N go to 2, else end 

 
The sample is generated starting from p0N 
independent chains, with  1 p0⁄ − 1 steps, 

and finally sample 𝐱[i](k), k = 1,2,…N is 
obtained. Also, the coefficient γi is 
estimated. 

The sample is generated starting from p0N 
independent chains with b + t p0⁄  steps, 
where b is the burn-in parameter, and t the 
thinning parameter (b = 20, t = 10). Burn-in 
is very important, because it corrects double 
samples in the initial seed, and thinning, can 
greatly reduce the γi coefficient. Those two 
techniques are discussed further in following 
chapter. 

Finally, the sample 𝐱[i](k), k = 1,2,…N is 
obtained. 

 

Consequently, the initial seed, in the kriging model case, likely contains multiple identical 

samples. This is corrected with the burn-in procedure, meaning that the first b steps in the 

MMHA are discarded. Go to step 2. 

Step 4: Final step. Estimation of pf and δ. 

At this point the intermediate probabilities pi|i−1, i = 1,2,… , s − 1, the coefficients of 

variation δi, i = 1,2,… , s − 1 as well as the quantiles qi, i = 1,2,… , s are estimated. The last 

conditional probability is: 

ps|s−1 =
1

N
∑ IFs(𝐱

[s](k))

N

k=1

 

 
 

pε,s|s−1 =
1

N
∑

πs(𝐱
[s](k))

πs−1(𝐱
[s](k))

N

k=1

 

where, IFs(𝐱) = IF(𝐱) and πs(𝐱) = π(𝐱) by definition, because qs = 0. 
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Therefore: 

p̂f = p1∏pi|i−1

s

i=2

 

The coefficient of variation of p̂f cannot be determined. Instead, a lower and upper bound are 

defined (by Au and Beck 2001): 

 

√∑δi
2

s

i=1

≤ δ ≤ √∑∑δiδj

s

j=1

s

i=1

 
(2. 36) 

 

In many examples (Au et al. 2007), it is shown that δ is closer to the lower bound. Also, it 

should be noted that the minimum size sample per step N, calculated in Step 0, is based on 

the upper and the lower bound respectively. 

2.5.3 Example 

In the following example, the failure probability is estimated from Subset Simulation. The 

performance function is the following: 

g(𝐱) = 7 − e0.3∙x1+0.7 − e0.3∙x2 , x1, x2 ∈ ℝ
2 

where x1, x2 normally distributed random variables, with zero mean and unit variance 

Firstly, the failure probability is estimated from Monte Carlo Simulation, for reference: 

pf = 2.137 ∙ 10
−4, δ = 3.66% , N = 3.5 ∙ 106 

Starting the Subset Simulation algorithm, the size sample per step is set to N = 105, and the 

intermediate probability to p0 = 0.1. The results are shown in the following table. Also the 

samples of each step, are illustrated. It should be noted, that only 1 10⁄  of the samples is 

plotted for the purpose of the illustration: 
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The black dots in each step, represent the samples that reside in the lowest 10% of g(𝐱) 

values, and the highest of those defines the quantile qi. These samples, are also the seed used 

to generate the samples of the next step. 

i pi|i−1 qi δi γi 

1 0.1 2.900 0.95% 0 
2 0.1 1.770 1.84% 2.757 
3 0.1 0.718 1.79% 2.560 
4 0.215 0 1.23% 3.137 

 

In the fourth step, the quantile q4 is found q4 = −0.351. Therefore, it is set to q4 = 0, and 

the final intermediate probability is estimated: p4|3 = 0.215. The failure probability is: 

p̂f = p1 ∙∏pi|i−1

4

i=2

= 0.13 ∙ 0.215 = 2.15 ∙ 10−4 

The coefficient γi accounts for the correlation of the generated sample, which is inevitable in 

Markov chains. Its value could be reduced, by increasing the number of chains, i.e. the size of 

the seed. In all three cases, in which sample was generated from the MMHA, γi ≈ 3, while the 

samples in the first step are completely independent and uncorrelated, therefore γ1 = 0. In 

case a kriging model is built, γi can be reduced to zero, due to thinning. The coefficient of 

variation of pf cannot be estimated, but is bounded from the following values: 

3.00% ≤ δ ≤ 5.81% 

2.5.4 Comparison of the Subset Simulation and the Monte Carlo Simulation 

Comparing the SS to the MCS, it is clear that, in the example above, the same variance of 

probability is achieved, with much less computational effort. In terms of g(𝐱) evaluations, the 

MCS is completed with NMC NSS⁄ = (3.5 ∙ 106) (4 ∙ 105)⁄ = 8.75 times more evaluations. 

Generally, the ratio NMC NSS⁄  increases rapidly, while the failure probability decreases, and 

the SS becomes more efficient. 
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In the graph below, the required total sample size N is shown, for a target c.o.v. δ, and a failure 

probability pf. It is considered that p0 = 0.1 and γi = 3, which are common values. Both 

bounds of δ of SS are shown. 

 

As shown in the graph, Subset Simulation is preferred to MCS, for low failure probabilities, 

such as pf < 10
−4.  

2.6 Meta-Model Based Importance Sampling 

2.6.1 Introduction 

Meta-Model Based Importance Sampling (MIS) (Dubourg 2011), is a hybrid method that 

combines kriging modeling with importance sampling. The reliability analysis methods 

described in this chapter, are based on numerous evaluations of the performance function 

g(𝐱) to generate sample, or very few evaluations, with which the kriging model is built. The 

kriging model approach can provide the same accuracy in estimating the failure probability, 

with low computational effort, provided it is refined with additional observations, carefully 

selected as presented in the next chapter. However, it is noticed, that in certain cases, a kriging 

model cannot be sufficiently refined. Most frequently, in problems with high dimensionality, 

a kriging model has to be built with too many support points, in order to achieve acceptable 

accuracy. 

Such an insufficiently refined kriging model though, can provide an approximation of the 

optimal instrumental probability density function, as described in chapter 1.4. The Meta-

Model Based Importance Sampling utilizes the sub-optimal PDF, provided by the kriging 

model, to sample values of g(𝐱) and reach low variance of the failure probability, with very 

few model evaluations. Therefore, this hybrid reliability analysis method, consists of two 

parts: Firstly, the construction of a kriging surrogate model, and secondly an importance 

sampling application on the sub-optimal instrumental PDF. 

In this subchapter, the Meta-Model Based Importance Sampling method is presented, and 

illustrated on the example of subchapter 1.3. 
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2.6.2 Implementation 

As mentioned in the 1.4 Importance Sampling subchapter, the optimal instrumental PDF that 

achieves δ = 0, independently of sample size N, is the following: 

h∗(𝐱) =
IF(𝐱)f𝐗(𝐱)

pf
 

which depends on the unknown probability pf. In meta-model based importance sampling, 

the optimal PDF h∗(𝐱) is approximated by the sub-optimal PDF ĥ∗(𝐱): 

 
ĥ∗(𝐱) =

π(𝐱)f𝐗(𝐱)

pfε
 

(2. 37) 

where pfε is the failure probability, estimated based on a kriging surrogate model. Therefore: 

pf = ∫
IF(𝐱)f𝐗(𝐱)

ĥ∗(𝐱)
ĥ∗(𝐱)d𝐱

 

𝕏

= ∫
IF(𝐱)f𝐗(𝐱)

π(𝐱)f𝐗(𝐱)
pfεĥ

∗(𝐱)d𝐱

 

𝕏

= pfε∫
IF(𝐱)

π(𝐱)
ĥ∗(𝐱)d𝐱

 

𝕏

 

and the correction factor is defined as: 

 
acorr = ∫

IF(𝐱)

π(𝐱)
ĥ∗(𝐱)d𝐱

 

𝕏

 (2. 38) 

which corrects the first estimation pfε. The closer π(𝐱) is to IF(𝐱), the closer acorr is to unity. 

The coefficient acorr is estimated from Monte Carlo sampling, with sample generated 

according to ĥ∗(𝐱) with a Markov Chain Monte Carlo sampler, such as the Modified 

Metropolis Hasting Algorithm: 

Step 0: Set target δ, δε 

The coefficient of variation of the failure probability in meta-model based importance 

sampling is dependent on δε of the simulation technique which is based on the kriging model, 

and δcorr which is the coefficient of variation of acorr: 

 
δ = √δε

2 + δcorr
2 + δε

2δcorr
2 ≈ √δε

2 + δcorr
2 

(2. 39) 

Since δε does not depend on evaluations of g(𝐱), it should be significantly low, e.g. δε = 1%. 

Therefore, the targeted value of δcorr is δcorr = √δ
2 − δε

2 

Step 1: Implementation of a simulation technique to obtain pfε 

At this step, a simulation technique, such as the Monte Carlo Simulation or the Subset 

Simulation is implemented with a low targeted δε, to estimate pfε. Also the samples generated 

are used to find initial seed for the sampling from PDF ĥ∗(𝐱) in the next step. 

Step 2: Sampling from ĥ∗(𝐱), and estimation of acorr 

The MCS provides the sample {𝐱(k), k = 1,2, …N}, while the SS provides the sample 

{𝐱[s](k), k = 1,2, …N} where s the last subset. In the respective case, an initial seed 

𝐱seed
(k), k = 1,2,…K, where K is the number of chains that generate samples. K should be 
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set to a relatively small value, K = {50, 100, 200}. The sample is generated from the following 

sub-algorithm: 

1. Set j = 1 

2. Choose randomly a k∗ ∈ {1,2,…N} with probability: 

rk =
πs(𝐱

[s](k))

πs−1(𝐱
[s](k)) ∙ Nps|s−1

 

where πs−1(𝐱
[s](k)) = 1, ps|s−1 = p1|0 = pfε by definition, if s = 1 

3. 𝐱seed
(j) = 𝐱(k

∗), set j = j + 1 

4. If j ≤ K go to 2, else go to 5 

5. Choose burn-in parameter b = 20 and thinning parameter t = 10 

6. Perform b MMHA steps to acquire new corrected 𝐱seed, set i = 1 

7. Perform t MMHA steps to acquire sample {𝐱((i−1)K+k), k = 1,2,…K} from the last 

state of each chain 

8. Calculate δcorr and Ncorr = i ∙ K. If δcorr is not low enough, set i = i + 1 and go to 7. 

Else end. 

The correction factor acorr is estimated from: 

 

acorr =
1

Ncorr
∑

IF(𝐱
(i))

π(𝐱(i))

Ncorr

i=1

 
(2. 40) 

and the coefficient δcorr is calculated from the following expression: 

 

δcorr =
1

acorr
√

1

Ncorr
[
1

Ncorr
∑

IF(𝐱
(i))2

π(𝐱(i))2

Ncorr

i=1

− acorr
2] (1 + γcorr) 

(2. 41) 

Burn-in is very important because identical samples are dealt with. Thinning is also crucial, 

because it decreases the γcorr coefficient to very low values. That way, the correlation that is 

innate in Markov Chains is eliminated. The last state of the thinning steps, is the sample added 

to the whole set of samples. Therefore, every t MMHA steps, K new samples are obtained, 

and δcorr is revaluated. If the new δcorr is low enough, the MIS ends. 

It is worth noticing that sampling from  ĥ∗(𝐱), evaluations of  g(𝐱) are not required. Therefore, 

the thinning procedure is computationally efficient, and the generated sample of size Ncorr is 

small and efficient. 

2.6.3 Example 

In the following example of subchapter 1.3, the kriging model is deliberately built 

insufficiently, on only 11 observations (new ones), to illustrate the application of MIS. 

Firstly, the failure probability pfε is estimated, with Monte Carlo Simulation on the kriging 

model. The targeted δε is 0.9% and the size sample Ν = 200000. 

pfε = 5.17 ∙ 10
−2 
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The above estimation is sufficient in terms of Monte Carlo Sampling, but the kriging model is 

not accurate. The actual failure probability is pf = 4.62 ∙ 10
−2, for reference. The burn-in and 

the thinning parameters are set to b = 20 and t = 20. The initial seed is chosen K = 100. 

In the figures below, the optimal PDF and the sub-optimal approximated PDF from the kriging 

model are illustrated: 

 

 

As shown above, the sub-optimal PDF ĥ∗(𝐱) is a relatively good approximation, of the optimal, 

yet impossible to use, h∗(𝐱). Considering that defining ĥ∗(𝐱) required only 11 observations, 

i.e. evaluations of g(𝐱), the MIS is proven to be very efficient. In the following graphs, the 

estimation of pfε ∙ acorr is displayed at each i step, as described in the algorithm of 1.6.2. In 

the horizontal axis, the total sample size Ncorr is shown up to each i step. Assuming a targeted 

δcorr = 4%, the MIS should stop at i = 5 ⟹ Ncorr = 500. The estimated failure probability 

is corrected: 

pfε ∙ acorr = 5.17 ∙ 10
−2 ∙ 0.906 = 4.684 ∙ 10−2 
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with coefficient of variation: 

δ = √δcorr
2 + δε

2 = √0.042 + 0.0092 = 4.1% 

 

It is worth noticing, that the MIS required only NMIS = 11 + 500 evaluations, while the Monte 

Carlo Simulation based on g(𝐱), would require NMCS = 13000 for the same δ coefficient. 

Also, it is important to consider, that the sample size Ncorr does not depend on the failure 

probability, in contrast to the MCS, but on the accuracy of the kriging model. For the purpose 

of this example, the particular kriging model is not refined. The refinement procedure, which 

is presented in the following chapter, can achieve such close approximations of the failure 

probability, in low dimensional problems, that estimating pfε would be sufficient (acorr = 1). 

Consequently, the MIS is necessary, only in cases that the refinement procedure requires a 

large number of observations. In such cases, which are usually high-dimensional problems, 

the kriging model is costly to build and the refinement’s additional observations are more than 

the number of evaluations Ncorr, required by the MIS. 
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3 Adaptive Refinement 

3.1 Introduction 

A kriging surrogate model is built from randomly chosen observations in the area of interest. 

The area of interest is determined from the reliability problem. For example, assuming a 

random vector 𝐗 ∈ 𝕏 ≡ ℝm with m independent components with normal distribution, the 

model is restricted in 𝕏∗: 

 𝕏∗ ≡ [−a ∙ σ1, a ∙ σ1] × [−a ∙ σ2, a ∙ σ2] × …× [−a ∙ σm, a ∙ σm] (3. 1) 

where, σi, i = 1,2, …m the standard deviation of each component, and a the range in 

normalized space that affects greatly the measurement of a probability. The range of a = 8, 

means that the kriging model won’t provide reliable classification for any point that is further 

than 8 standard deviations from the mean value. That error is negligible and easily 

measurable, therefore it is ignored. 

After defining the area 𝕏∗, the kriging model is built only from observations than reside in the 

area of interest. The number of initial observations, n0, depends partly on the dimensionality 

of the problem. It is proposed to set n0 = min (10; 2m). The initial observations, or dataset, 

𝔒 = {𝐱(1), 𝐱(2), … , 𝐱(n0)}, are a Latin Hypercube sample in 𝕏∗. Latin Hypercube Sampling 

(LHS) provides a uniform distribution of 𝔒, and large areas in 𝕏∗ without observations are less 

likely to occur, compared to the Monte Carlo Sampling. 

Depending only on randomly selected observations though, it is certain that the kriging model 

will be insufficient. Consequently, the dataset, should be enriched with new points, which 

should be chosen strategically. The classification of any point in 𝕏, is the only information 

required in reliability analysis. In other words, a reliability simulation method relies in 

distinguishing the failure domain from the safe domain. Therefore a kriging model has to be 

enriched with new observations, in areas where the classification is not confident. Such 

“confidence” in classifying a point in 𝕏, is expressed from the probabilistic classification 

function π(𝐱). 

In the one-dimensional example of 2.2 the probabilistic classification function π(𝐱) is proven 

to be an unreliable approximation, since the estimated failure probability pfε differs 

significantly from the actual failure probability pf. Nevertheless, the π(𝐱) function can provide 

useful information to enrich the dataset by 1 additional observation and improve the 

estimation pfε. 

In this simple, one-dimensional problem the criterion of choosing the new point, is the 

following: 

x ∈ 𝕏∗ ≡ (−5,5): μĜ(x) = 0 ⇔ π(x) = 0.5 

which is the most probable root of g(x) = 0 and distinguishes the failure domain (in this 

example x ≤ −2) from the safe domain (x > −2). Therefore, by solving μĜ(x) = 0 the new 

observation is acquired: 

x(6) = −1.9769, g(x(6)) = 0.035 
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As shown in the figures above, the new point improves the π(x) function significantly. The 

kriging model is refined and the estimation of the failure probability is accurate: 

g(𝐱) Ĝ(𝐱)~𝒩 (μ̂G(𝐱), σ̂G
2(𝐱)) 

 
pf = 2.275 ∙ 10

−2 pfε = 2.276 ∙ 10
−2 

 

The π(x) function, as well as the π(x)fX(x), appear to be identical to IF(x) and IF(x)fX(x) 

respectively. 
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It is worth noticing, that the failure probability is accurately estimated, with only 5 + 1 

evaluations of the performance function g(x). However, in problems with more than 1 

dimensions, the additional observations to enrich the dataset are harder to find, and a simple 

criterion, such as the one used here, is not efficient. In the rest of the chapter, the most 

efficient strategies of adaptive refinement are presented. Those strategies, mainly focus on 

two objectives: locating the limit g(𝐱) = 0 and prioritizing areas with high values of f𝐗(𝐱). 

3.2 Refinement Criteria 

The following refinement criteria aim to identify the g(𝐱) = 0 limit, by highlighting the areas 

with uncertainties in classifying a point 𝐱 ∈ 𝕏. Consequently, the probabilistic classification 

function π(𝐱) has a prominent role. 

3.2.1 The margin indicator function 

The margin indicator function, relies on a chosen confidence level 1 − α. It indicates whether 

a point 𝐱 ∈ 𝕏 resides in the “grey area”, as defined in 1.5.6. 

 𝒞(𝐱) = I1−α(𝐱) = {
1 α 2⁄ ≤ π(𝐱)  ≤ 1 − α 2⁄
0 else

 
(3. 2) 

The confidence level could be set to 1 − α = 95%. The second example of 1.5.6 is illustrated 

below. The π(𝐱) is also shown for reference. 

3.2.2 The margin probability function 

The margin probability function expresses the probability a point 𝐱 ∈ 𝕏 to reside in the “grey 

area”: 

𝒞(𝐱) = MP(𝐱) = 𝓟(Ĝ(𝐱) ≤ k1−ασ̂G(𝐱)) − 𝓟(Ĝ(𝐱) ≤ −k1−ασ̂G(𝐱)) = 

 
= Φ(

k1−ασ̂G(𝐱) − μ̂G(𝐱)

σ̂G(𝐱)
) − Φ(

−k1−ασ̂G(𝐱) − μ̂G(𝐱)

σ̂G(𝐱)
) 

(3. 3) 
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where k1−α = Φ
−1(1 − α 2⁄ ). For a confidence level 1 − α = 95%  ⟹ k95% = 1.96. 

 

3.2.3 The function of most probable misclassification 

The most probable misclassification function expresses the probability that Ĝ(𝐱) is classified 

in the complementary domain to the one that μ̂G(𝐱) is classified. This probability is: 

min(π(𝐱); 1 − π(𝐱)) = Φ(−
|μ̂G(𝐱)|

σ̂G(𝐱)
) 

The criterion is therefore defined as: 
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𝒞(𝐱) = MF(𝐱) = Φ(−

|μ̂G(𝐱)|

σ̂G(𝐱)
) 

(3. 4) 

The function takes values from 0 to 0.5. The MF(𝐱) is a more strict criterion, compared to 

the MP(𝐱). To the author’s experience, both are equally efficient, and most preferred in this 

thesis. 

 

 

3.3 Sampling-based Adaptive Refinement 

3.3.1 Principle 

In reliability analysis, the objective is to solve the integral: 

pf = ∫π(𝐱)f𝐗(𝐱)d𝐱

 

𝕏
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From a different perspective, π(𝐱) is integrated in 𝕏 “weighted” by f𝐗(𝐱). Consequently, the 

refinement criterion has to be weighted by f𝐗(𝐱), in order to take into  account, that certain 

areas of the 𝕏 domain are more important and should be predicted accurately from the kriging 

model. The refinement criterion is updated: 

 𝒞∗(𝐱) = 𝒞(𝐱) ∙ f𝐗(𝐱) (3. 5) 

The 𝒞∗(𝐱) function takes high values, close to g(𝐱) = 0, and is proportionate to f𝐗(𝐱). 

Therefore, expresses the uncertainty of the kriging model in terms of classification, and 

prioritizes areas that affect the most the measurement of the failure probability. However, 

finding new points to improve the kriging prediction, cannot be achieved from the 

optimization problem of max𝒞∗(𝐱). In order to find an efficient new point, 𝒞∗(𝐱) should be 

high-valued in the vicinity of the candidate point, because every support point affects the 

prediction in the near area. Consequently, 𝒞∗(𝐱) is seen as a probability density function of 

random vector 𝐂: 

 f𝐂(𝐜) ∝ 𝒞(𝐜) ∙ f𝐗(𝐜), 𝐜 ∈ 𝕏∗ (3. 6) 

A sample from f𝐂(𝐜), can be a list of candidate points, to add to the kriging dataset and 

improve the predictor. However, this list of candidate points is very big, because f𝐂(𝐜) is, in 

general, multimodal and a Markov Chain Monte Carlo sampler requires a large seed. 

Therefore, only the most representative of those are selected, from solving a clustering 

problem. 

The K-means clustering problem is utilized in this thesis, to choose new support points from 

the samples of f𝐂(𝐜). The K-means algorithm (Steinhaus 1956, MacQueen 1967, Lloyd 1982) 

and the K-means ++ algorithm (Vassilvitskii 2007), provide clusters of points with respective 

centers. From each cluster a new support point is derived. 

3.3.2 Proposed Refinement Method 

Sampling from f𝐂(𝐜) can be difficult, because it is a multimodal PDF, and the initial seed should 

be chosen carefully. In this thesis a different approach is presented, which does not require 

sampling from f𝐂(𝐜). 

The refinement procedure is part of an iterative algorithm, which requires the estimation of 

the failure probability in each step, in order to observe the improvement of the kriging model. 

Therefore the refinement procedure is usually preceded by a simulation technique (MCS, SS). 

Using the sample generated from the simulation, weighted by 𝒞(𝐱), the clustering problem is 

equivalent to using the sample from f𝐂(𝐜). More extensively: 

 If preceded by Monte Carlo Simulation, then there is an available sample generated 

according to f𝐗(𝐱): 

𝐱c
(i), i = 1, 2, …N 

 

 The K-means algorithm is performed with weights, given by: 

 wMC(𝐱c
(i)) = 𝒞(𝐱c

(i)), i = 1,2,…N (3. 7) 

 If preceded by Subset Simulation, then there is an available sample generated 

according to hs(𝐱): 

𝐱c
[s](i), i = 1, 2, …N 
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The K-means algorithm is performed with weights, given by: 

 
wSS(𝐱c

[s](i)) =
𝒞(𝐱c

[s](i))

πs−1(𝐱c
[s](i))

, i = 1,2, …N 
(3. 8) 

At this point, the clusters are available, and the new support points are selected. The new 

points are not the cluster centers, because they may correspond to low values of 𝒞∗(𝐱). The 

closest point to the respective cluster center is chosen, with a restriction in weight: 

𝐱(n+k) = arg𝐱cl(k)(i)min‖𝐨
(k) − 𝐱c

(k)(i)‖
2
, i = 1,2, . . N(k), w(𝐱c

(k)(i)) ≥ 0.5 ∙ wmax
(k) 

 𝔒∗ = {𝐱(n+1), 𝐱(n+2), … , 𝐱(n+K)} (3. 9) 

where: 

𝔒∗ the collection of new support points 

n the size of the existing dataset 𝔒 

k = 1,2, …K the clusters 

K the number of new support points, and the number of clusters 

𝐨(k) the center of each cluster 

𝐱c
(k)(i) the samples of the clustering problem that belong to cluster k 

‖∙‖2 the distance in ℝm 

wmax
(k) the maximum weight of all points in cluster k 

N(k) the size of cluster k 

3.3.3 Stopping criterion of the refinement procedure 

It is proposed that the following quantity is used as a criterion to indicate the confidence of 

the measured failure probability pfε from the kriging predictor: 

 
pMF = ∫MF(𝐱)f𝐗(𝐱)d𝐱

 

𝕏

 (3. 10) 

which depends on the previously defined, most probable misclassification function. 

The quantity pMF can be estimated from the same sample, that the failure probability is 

estimated. 

 In Monte Carlo Simulation: 

 
p̂MF =

1

N
∑MF(𝐱(i))

N

i=1

 
(3. 11) 

 In Subset Simulation: 

 
p̂MF =

1

N
∑

MF(𝐱[s](i))

πs−1(𝐱
[s](i))

N

i=1

∙ ps−1 
(3. 12) 

It is always pMF < pfε and while pMF pfε⁄  goes to zero, the kriging prediction is more 

confident. The refinement should stop when pMF pfε⁄  is lower than a limit of  ℓr = 1%~5%. 

If pMF pfε⁄  is not decreasing in several iterations, or the dataset is too big to add more support 
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points (n > 1000), the algorithm should resort to the Meta-model Based Importance 

Sampling. 

In the example of 2.2 and 3.1, the p̂MF, is estimated before, and after the refinement. The 

following diagrams correspond to the initial kriging model: 

 

 

Before the refinement, pMF has a large value: 

pMF = 4.296 ∙ 10
−2 ⟹ pMF pfε⁄ = 75.3% 

but after the refinement: 

pMF = 0.005 ∙ 10
−2 ⟹ pMF pfε⁄ = 0% 
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3.4 Complete Algorithm of Kriging Based Reliability Analysis 

This subchapter presents the complete procedure that is partially described in chapters 1 

through 3: 

Step 0: Set target coefficients of variation δr, δ, initial support points n0 and additional K per 

refinement iteration. 

The coefficient δ is usually set to δ = 1%~10%, and depends on the desirable accuracy of 

the estimated failure probability pf. The δr coefficient defines the sample size of the 

simulation that measures the failure probability after each refinement iteration. For the 

reason that the same sample is used for the clustering, δr should be low enough, that there 

are many points with high weight value w(𝐱). A safe choice is to set δr = δ. However, at the 

first refinement iterations, δr can be lower than δ. 

The number of initial support points n0 is set to n0 = max((2~4) ∙ m; 20), where m the 

dimensionality of the problem. This rule is not proven, but is based on the fact that more 

observations are needed to build a reliable kriging model, as dimensionality rises. Similarly, 

the additional observations per refinement iteration is set to K = max((1~2) ∙ m; 5). 

Step 1: Build a kriging model on initial n = n0 observations, i = 0. 

The initial n0 observations are sampled uniformly in the area of interest 𝕏∗. The Latin 

Hypercube Sampling is proven to be very efficient, because the points are less likely to be 

close to each other, and more areas of 𝕏∗ are covered. 

It is worth mentioning, that in high-dimensional problems there is a probability that all of the 

n0 observations reside exclusively on the safe or the failure domain. In this case, it might be 

helpful that the user provides manually a point in the domain with no observations, but that 

is not mandatory. For example, if in a structural reliability problem all initial observations 

reside in the failure domain, the vector of mean values could be an additional support point, 

since it represents a safe state. 

At this point the kriging model is not expected to be accurate. However, it provides useful 

information to start distinguishing the safe and failure domains. 

Step 2: Perform a simulation method on the kriging model. Estimate pfε, pMF. 

The Monte Carlo Simulation or the Subset Simulation estimate the model based failure 

probability pfε and the pMF which expresses the uncertainty of the model, with a targeted δr. 

The ratio pMF pfε⁄  should be observed in every iteration i, as it provides the stopping criterion. 

It is proposed that even if pMF pfε⁄  reaches values less than ℓ𝑟 = 1%, the refinement should 

stop after 2~3 iterations. In case pMF pfε⁄  stabilizes in several iterations and pMF pfε⁄ ≤ ℓ𝑟 is 

not true, that means that any additional observations, do not improve the kriging model 

considerably. In this case the refinement also stops, and the algorithm continues to step 4. 

Otherwise, meaning pMF pfε⁄  is decreasing, the algorithm continues to step 3. 

Step 3: Perform weighted K-means clustering and add K new points to the dataset, i = i + 1 

The sample of the simulation performed in step 2, is clustered with the K-means algorithm, 

weighted according to the w(𝐱) function. It is recommended, that the samples with low 

weights (e.g. w(𝐱) < 0.02 ∙ wmax) to be discarded, in order to facilitate the K-means 
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algorithm, and avoid local maxima. The new observations are acquired and added to the 

dataset: n = n + K. The algorithm continues to step 2. 

Step 4: Estimate the model based failure probability pfε with targeted c.o.v δε. 

The final, model based failure probability pfε is estimated with MCS or SS. 

If pMF pfε⁄  stabilized in a higher value than the limit ℓ𝑟, the algorithm resorts to Meta-model 

based Importance Sampling. Therefore, a low targeted e.g. δε = 1% is set. Else, set δε = δ 

and end at step 4. 

Step 5: Meta-model based Importance Sampling 

The MIS is performed with targeted δcorr = √δ
2 − δε

2. The acorr is estimated, and the final 

corrected failure probability is pf = acorr ∙ pfε. 

The last step can also be considered, as a verification of the model based estimation. This 

means that MIS is useful even if the ratio pMF pfε⁄  is zero.  

3.5 Refinement Example 

A kriging model is built on the performance function of example 1.3: 

g(𝐱) = 4.5 − e0.3∙x1+0.7 − e0.3∙x2 , x1, x2 ∈ ℝ
2 

where, x1, x2 normally distributed random variables, with zero mean and unit variance 

The regressor is constant and the autocorrelation function is the squared exponential. The 

initial support points for the kriging model is n0 = 8. Those are uniformly distributed (with 

LHS) in the area of interest 𝕏∗ ≡ [−6, 6] × [−6, 6]. 

 

The probabilistic classification function π(𝐱) of the initial kriging model is displayed below. 

The transition from the red area (probable failure) to the blue area (probable safety) does not 



59 
 

correspond with the dashed line, which is the real g(𝐱) = 0 limit: 

 

The failure probability is estimated on the π(𝐱) function. For the purpose of this example, the 

failure probability is numerically integrated, to avoid confusion between the error of the 

simulation method and that of the kriging model: 

pfε = 0.2473, pMF pfε⁄ = 42.6% 

For reference, the actual failure probability is pf = 0.0462. Clearly, the pMF pfε⁄  is too high 

and, therefore, the kriging model is not considered accurate. For the refinement of the model, 

a sample of N = 100000 according to f𝐗(𝐱) is generated, and the clustering problem is solved 

with K = 5. In the following figure, a part of the MC sample, along with the weight function 

w(𝐱) = MF(𝐱) are illustrated. Also, the resulting new support points are shown as red dots: 
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The new support points are added to the dataset and the kriging model is built again. The 

refined probabilistic classification function is shown below: 

 

The new points are close to the actual g(𝐱) = 0 curve, and form a parallel line. As a 

consequence, the variance of the model in the vicinity of the new points has dropped greatly, 

and the kriging prediction is more accurate: 

pfε = 0.0468, pMF pfε⁄ = 0.84% 

However, the refinement continues for one last iteration: 
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Visually, the π(𝐱) function has not changed considerably: 

 

The model based failure probability is measured: 

pfε = 0.0462, pMF pfε⁄ = 0.01% 

which by at least 3 significant figures, is equal to the actual one pf = 0.0462. Lastly, the final 

dataset is illustrated on the real g(𝐱) performance function: 

 

In conclusion, the kriging model based reliability analysis required only 8 + 10 = 18 

evaluations of the performance function g(𝐱), while a simulation technique based on g(𝐱) 

would require more than 10000 for the same result. In lower failure probabilities than the one 

of the example, the required support points to build a model does not rise, in contrast to the 
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evaluations of a simulation technique. Therefore, the benefit of substituting the performance 

function with a surrogate model is achieved. In the next chapter, applications of higher 

dimensional problems are presented. Finally, the above example is run multiple times, and 

the results of each independent run are gathered in the following table. The relevant error, of 

the measured failure probability to the actual one, is also shown: ep = |pf − pfε| pf⁄ , where 

 pf = 0.0462. 

 

  refinement iteration 
  i = 0, n = 8 i = 1, n = 13 i = 2, n = 18 

1 

pfε 0.0755 0.0465 0.0462 

pMF pfε⁄  22.38% 0.97% <0.01% 
ep 63.42% 0.65% <0.01% 

2 

pfε 0.4034 0.0443 0.0462 

pMF pfε⁄  50.94% 4.06% <0.01% 
ep 773.2% 4.11% <0.01% 

3 

pfε 0.0834 0.0464 0.0462 

pMF pfε⁄  54.44% 0.24% <0.01% 
ep 80.52% 0.43% <0.01% 

4 

pfε 0.1091 0.0465 0.0462 

pMF pfε⁄  39.32% 1.13% <0.01% 
ep 136.0% 0.65% <0.01% 

5 

pfε 0.0323 0.0461 0.0462 

pMF pfε⁄  25.08% 0.76% <0.01% 
ep 30.09% 0.22% <0.01% 

6 

pfε 0.0459 0.0463 0.0462 

pMF pfε⁄  30.28% 0.33% <0.01% 
ep 0.65% 0.22% <0.01% 

7 

pfε 0.0353 0.0468 0.0462 

pMF pfε⁄  28.61% 0.26% <0.01% 
ep 23.59% 1.30% <0.01% 

 

It is worth noticing that, at the first estimation (i = 0), the estimated failure probability is 

most of the time higher than the actual one. This is quite possible to happen in structural 

reliability problems, because the area near the mean values resides in the safe domain. This 

is more obvious in the 2.2 example, where the error of π(𝐱) is enlarged by the f𝐗(𝐱). Also, in 

the 6th run,  pfε  is almost equal to the actual  pf, despite that pMF pfε⁄  is large. This happened 

because the misclassification of the areas in the safe and failure domain negated completely 

each other by coincidence. In this example the iterative procedure converges rapidly, because 

2-dimensional problems are generally easy to handle. However, in applications of the next 

chapter, it is shown that the high-dimensional problems require many more iterations and 

additional support points, in order an accurate solution to be achieved. 
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4 Applications 

The applications of kriging based reliability analysis presented in this chapter, aim to educate 

the reader on the process and validate the method, in problems with many dimensions and 

multiple design points. The first example, is another one-dimensional example, with purpose 

to illustrate the role of the probabilistic classification function. The second example is a 2-

dimensional problem, with a piecewise performance function, which causes difficulties in the 

refinement of the kriging model. In the third example, a benchmark problem is solved in 5, 10, 

50 and 80 dimensions. Τhe final two problems are structural, the one being a truss bridge with 

a restriction to the deformation. The last is a tall structure modeled with the assumption of a 

shear and flexural cantilever beam, which deforms according to a statistical earthquake 

spectrum by Boore and Atkinson. 

4.1 One-dimensional problem 

The following one-dimensional problem is sampled at 5 points to build the kriging model. The 

random variable is 𝐗 ∈ 𝕏 ≡ ℝ and is normally distributed with zero mean and unit variance: 

g(x) = (0.6x − 0.3)2cos(0.6x − 0.3) + 0.5 
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As shown above, the initial pre-refinement model fails to provide accurate classification. In 

the 4th graph the refinement criterion depicts the best points to enrich the dataset. Two local 

maxima are chosen, and the kriging model is reevaluated: 

 

 

 

 

The second refinement is the last one, and the failure probability is correctly evaluated, with 

numerical integration: 

 refinement iteration 

 i = 0, n = 5 i = 1, n = 7 i = 2, n = 9 

pfε 0.4769 0.0099 0.0086 

pMF pfε⁄  52.57% 7.43% 0.04% 
ep 54.16% 14.92% 0.04% 

 

where, ep = |pf − pfε| pf⁄ , and the actual failure probability  pf = 0.0086. 

4.2 2-dimensional, piecewise performance function 

This function is difficult to emulate, because the limit g(𝐱) = 0 surrounds the mean values 

and many areas of the failure domain  𝔽 ⊂ 𝕏 ≡ ℝ𝟐 have to be accurately predicted. The 

random vector 𝐗 consists of 2 standard normal variables: 
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g(𝐱) = min

{
 
 
 
 

 
 
 
 3 +
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+
x1 + x2

√2

x1 − x2 +
7

√2

−x1 + x2 +
7

√2 }
 
 
 
 

 
 
 
 

, 𝐱 ∈ ℝ𝟐 

The initial dataset is size n0 = 15 and the additional points per refinement iteration is K = 5. 

In iteration i the dataset consists of n = n0 + i ∙ K observations. In the following graphs the 

weight function w(𝐱) = MF(𝐱) and the probabilistic classification function are illustrated in 

iterations i = {0, 1, 2, 3, 4, 10}. The stopping criterion pMF pfε⁄  takes low values before the 

10th refinement, but the algorithm continues for the purpose of this example. In the last table 

the values of the estimated failure probability pfε and pMF pfε⁄  are shown at each iteration, 

with targeted δε = 1.5%. For reference the failure probability, estimated on the actual 

performance function is pf = 2.208 ∙ 10
−3 with δ = 1% and N = 4.5 ∙ 106 evaluations. 
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The horizontal axis of the last charts, shows the number of observations that were used to 

build the model and estimate the respective failure probability. Before the refinement, the 

estimated pfε is off the chart, but after the first refinement, the estimation is very close to the 

actual one. At iteration i = 5, n = 40 the model is sufficient because the ratio pMF pfε⁄  is low 

enough. Compared to the MCS on the real g(𝐱) which required N = 4.5 ∙ 106 evaluations, the 

kriging model approach required only n = 40.  

4.3 High-dimensional problem 

The following performance function by Rackwitz (2001), is adaptable, meaning the number of 

dimension is chosen freely. In this application, the kriging based reliability method is 

performed on m = {5, 10, 50} dimensions. 

g(𝐱) = m + 3σ𝚾√m−∑xi

m

i=1
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where vector 𝐗 of m components with lognormal distribution, μ𝐗 = 1, σ𝐗 = 0.2 

The failure probability is estimated at each refinement iteration at a targeted δε = 4.5%. 

When the refinement procedure is over, a Meta-model based Importance Sampling is 

performed, to verify or correct the kriging based pfε. 

The actual failure probability with coefficient of variation δ = 1%, is estimated on the real 

g(𝐱) with Monte Carlo Simulation. The respective model evaluations N are also displayed: 

 MSC on the real g(𝐱) 

 m = 5 m = 10 m = 50 m = 80 

pf 3.399 ∙ 10−3 2.736 ∙ 10−3 1.899 ∙ 10−3 1.771 ∙ 10−3 

N 3,000,000 3,700,000 5,200,000 5,600,000 

 

 m = 5 

Starting with n0 = 25 initial observations, the kriging model is refined with K = 5 new 

observations at every step. It is reminded that each refinement step contains the statistical 

error of the simulation, which affects partly the change of pfε. 

 

 

 

Before initiating the Meta-model based Importance Sampling, the pfε is more accurately 

estimated with targeted δε = 1%, to reduce the final δ. The kriging based failure probability 

is pfε = 3.459 ∙ 10
−3. The size of the initial seed, or the number of Markov Chains, for the 

sample generation, is set to Kc = 100. The burn-in and thinning parameters are set to 20 and 

10 respectively. For the purpose of the example, the MIS is performed for multiple steps after 

the targeted δ is reached. 
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The above graphs show that at a targeted δcorr = 1.5%, the final estimated failure probability 

is p̂f = acorr ∙ pfε = 0.9712 ∙ 3.459 ∙ 10
−3 = 3.359 ∙ 10−3 with 55 + 200 model evaluations 

and c.o.v. δ = 1.8%. 

 

 m = 10 

The procedure is the same, except the initial number of observations is set to n0 = 40 and 

the additional per refinement iteration to K = 10. 

 

The final model-based failure probability is estimated: pfε = 2.852 ∙ 10
−3 with δε = 1.3%. 

Finally, the  pfε is corrected: 
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The targeted δcorr = 1.5% is reached at the 3rd MIS iteration. The corrected failure probability 

is p̂f = acorr ∙ pfε = 0.9708 ∙ 2.852 ∙ 10
−3 = 2.769 ∙ 10−3 with c.o.v. δ = 2%, and the model 

evaluations were 120 + 300 = 420. 

 

 m = 50 

The initial number of observations is set to n0 = 150 and the additional per refinement 

iteration to K = 50. 

 

It is worth mentioning that at the first value of the ratio pMF pfε⁄  is very low. This is attributed 

to the fact that the initial observations contained very few points in the safe domain (which is 

common in high-dimensional problems), and the prediction seemed confident. The final 

model-based failure probability is estimated: pfε = 1.979 ∙ 10
−3 with δε = 1.5%. Finally, the  

pfε is corrected: 

  

 

Stopping at the 10th iteration a c.o.v of δcorr = 1.75% is achieved. The final failure probability 

is p̂f = acorr ∙ pfε = 0.9512 ∙ 1.979 ∙ 10
−3 = 1.882 ∙ 10−3 and δ = 2.30% with 500 + 1000 

model evaluations. 

In the last graph below, the observations used to build the model, are shown by their g(𝐱) 

values, in the order that they were chosen. The first 150 are randomly distributed in the area  

of interest, while the rest are close to the estimated g(𝐱) = 0 limit. 
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 m = 80 

The initial number of observations is set to n0 = 200 and the additional per refinement 

iteration to K = 80. 

  

The final model-based failure probability is estimated: pfε = 2.247 ∙ 10
−3 with δε = 1.5%. 

The  pfε is corrected: 

  
  

 



72 
 

Stopping at the 10th iteration a c.o.v of δcorr = 4% is achieved. The final failure probability is 

p̂f = acorr ∙ pfε = 0.7866 ∙ 2.247 ∙ 10
−3 = 1.767 ∙ 10−3 and δ = 4.30% with 520 + 1500 

model evaluations. 

The results are gathered in the following table: 

 m = 5 m = 10 m = 50 m = 80 

pfε 3.459 ∙ 10−3 2.852 ∙ 10−3 1.979 ∙ 10−3 2.247 ∙ 10−3 

δε 1% 1.3% 1.5% 1.5% 

Nε 55 120 500 520 

acorr 0.9712 0.9708 0.9512 0.7866 

δcorr 1.5% 1.5% 1.75% 4% 

Ncorr 200 300 1000 1500 

p̂f 3.359 ∙ 10−3 2.769 ∙ 10−3 1.882 ∙ 10−3 1.767 ∙ 10−3 

δ 1.8% 2% 2.3% 4.3% 

N 255 420 1500 2020 

4.4 Truss Bridge 

The following truss bridge is modeled with 13 random variables. 

 

The vertical deformation of the center node is measured and restricted to L 200⁄ , where L 

the length of the bridge. The performance function is: 

g(𝐱) = L 200⁄ − u8(𝐱) 

where 𝐗 the random vector consisting of all the random normal variables shown below. All 

those variables are uncorrelated. 

 μ c.o.v. σ 

Ε1, Ε2, Ε3 210 GPa 10% 21 GPa 
Α1, Α2 20 cm2 5% 1 cm2 
Α3 10 cm2 5% 0.5 cm2 
P1~P6 50 kN 15% 7.5 kN 
H 2 m 5% 0.1 m 
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The kriging model is built with n0 = 40 initial observations, and is refined with K = 13 new 

points at every step. The actual failure probability pf = 1.029 ∙ 10
−3, δ = 1.5% is estimated 

with MCS. 

 

As shown above, 10 iterations are sufficient and the refinement stops at n = 170 total 

observations. The model based failure probability is pfε = 1.043 ∙ 10
−3, with δε = 1.80%. 

The results of the MIS are the following: 

 

At the 3rd iteration the δcorr = 1.35% is low enough and the acorr = 0.9885 is close to unity. 

The final estimation is p̂f = acorr ∙ pfε = 0.9885 ∙ 1.043 ∙ 10
−3 = 1.031 ∙ 10−3 with δ = 2%. 

The design point, which is the point with the highest PDF value in the failure domain, is also 

illustrated below. Each random variable is normalized: 
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The variable that affects the most the deformation of the truss, is its height H. The E3 and A3 

variables of the diagonals, affect it the less, as expected. 

4.5 Tall building under seismic loads 

This tall building of height H = 80m, is simulated as a simplified cantilever shear and flexural 

beam in parallel (Miranda, Taghavi 2005).  

 

The quantities that determine the stiffness are EI and GA, which represent the flexural and 

the shear stiffness respectively. These two quantities are linked with the dimensionless factor 

α0. 

α0 = H(
GA

EI
)

1
2

 

In this example, the α0 is set to α0 = 5 which corresponds to a structural system that 

combines braced frames and moment-resisting frames. Assuming the geometry of the 

building and the geometric properties of its elements (columns, braces) are deterministic, and 

the elasticity module of the material is random, only one of the EI and GA quantities is set to 

be a random variable and the other one is evaluated from the expression of α0. Therefore, 

the EI defined as the following stochastic process: 

EI(h)~𝓝(μΕΙ, C(h, h′)) 

where,  

μΕΙ = 3.5 ∙ 10
8 kNm2 the mean values, constant along the height 

C(h, h′) = (0.1 ∙ μΕΙ)
2max(1 − |h − h′| LEI⁄ ; 0), the correlation of  EI(h) and EI(h′) 

LEI = 20m the correlation length 

The mass along the height of the build is also  a stochastic process: 

m(h)~𝓝(μm, Cm(h, h′)) 
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where,  

μm = 120 Mgr/m the mean values, constant along the height 

Cm(h, h
′) = (0.1 ∙ μm)

2max(1 − |h − h′| Lm⁄ ; 0), the correlation of  EI(h) and EI(h′) 

Lm = 12m the correlation length 

The beam is divided in 25 segments of constant EI and mass, therefore 50 correlated variables 

are defined so far. The seismic loads are arising from an earthquake spectrum, provided by 

the ground-motion prediction equations by Boore and Atkinson (2008). Assuming the 

following characteristics: 

M 6.5 Moment magnitude 
Rjg 10 km Joyner-Boore distance 

Fault type  Unspecified fault 
vs,30 800 m s⁄  Shear wave velocity 

 

the following acceleration spectrum occurs: 

 

Lastly, the modal analysis provides with the 5 first eigenmodes, and the corresponding 

spectral accelerations SA(Ti=1,2,…5) are defined from the mean values and standard deviation 

by Boore and Atkinson, and the correlation RSA(T, T′) by Baker and Jayaram (2008). 

The performance function is the limit restriction in drift, meaning the maximum absolute 

value of the derivative of the beam’s deflection. 

g(𝐱) = 0.75%−maxh|u̇(𝐱, h)|, h ∈ [0, H] 

The kriging model is built with n0 = 150 initial observations and is refined with K = 55 at 

each step. The actual failure probability is estimated on the real g(𝐱): pf = 6.043 ∙ 10
−3 and 

δ = 1.2%. 
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The MIS reaches a very good approximation at the 10th iteration. The final failure probability 

is p̂f = acorr ∙ pfε = 1.0155 ∙ 5.930 ∙ 10
−3 = 6.022 ∙ 10−3 with δ = 2.2% and total number 

of g(𝐱) evaluations N = 315 + 1000 = 1315. 
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5 Conclusion 

The kriging model based reliability analysis method is proven to fulfill its purpose, which is to 

estimate the failure probability with very few evaluations of the real performance function 

g(𝐱). To the author’s experience, it is very efficient in problems with up to 20 dimensions, and 

practical up to 100 dimensions. In problems with more than 100 dimensions, the kriging 

correlation parameters are very difficult to be found and the method becomes 

computationally inefficient. This is additionally worsened, if the dataset becomes dense in 

certain areas, which is expected due to the refinement procedure.  Such inefficiency can be 

treated by utilizing multiple kriging models, which are supported by a part of the total dataset. 

This approach is called big data regression and relies on clustering the original dataset. 

It is worth mentioning though, that the kriging based analysis, does not lose efficiency as the 

failure probability reaches low values such as  < 10−7. This means that the number of g(𝐱) 

evaluations does not depend of the failure probability, but rather on the refinement 

procedure. This holds also for the Meta-model based Importance Sampling. The Ncorr is high 

only when the refinement is incomplete. Consequently, the Subset Simulation performed on 

the kriging model, is the best approach to problems with low failure probability and hard-to-

evaluate g(𝐱). 

The meta-model based reliability analysis can be further combined with structural design 

optimization. In this case, there are multiple performance functions and each corresponds a 

failure probability which is bounded by an upper limit, with purpose to minimize the cost 

function. 
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Appendix A – Weighted K-means Clustering 

The K-means (Steinhaus 1956, MacQueen 1967, Lloyd 1982) or the K-means++ (Arthur, 

Vassilvitskii 2007) algorithms solve the clustering problem. These algorithms aim to classify a 

dataset into clusters, according to the distance in the input space. 

Step 0: Initial dataset 𝔒 = {𝐱(1), 𝐱(2), … , 𝐱(n)} with n points weighted by function w(𝐱(i)), 

and number of clusters K 

Step 1: Select K cluster centers randomly from the dataset 𝔒 

𝒞 = {𝐜(1), 𝐜(2), … , 𝐜(K)} 

The K-means++ algorithm utilizes careful initialization, achieving greater efficiency. 

Step 2: Classify the data points into nearest cluster centers 

m(𝐜(j)|𝐱(i)) = {1 if j = argmink∈{1,2,…K}‖𝐱
(i) − 𝐜(k)‖

2

2

0 else
 

The above membership function is equal to 1, if 𝐜(j) is the closest of all centers to the point 

𝐱(i), or else, it is equal to zero. 

Step 3: Find new cluster centers 

𝐜∗(k) =
∑ w(𝐱(i)) ∙ m(𝐜(k)|𝐱(i)) ∙ 𝐱(i)n
i=1

∑ w(𝐱(i)) ∙ m(𝐜(k)|𝐱(i))n
i=1

, k = 1, 2, …K 

𝒞 = {𝐜∗(1), 𝐜∗(2), … , 𝐜∗(K)} 

 

Step 4: Calculate Inertia 

I =∑∑w(𝐱(i)) ∙ m(𝐜(k)|𝐱(i)) ∙ ‖𝐜(k) − 𝐱(i)‖
2

2
K

k=1

n

i=1

 

The algorithm continues to step 2. If the inertia does not change considerably in a few 

iterations, the algorithm stops. 
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Appendix B – Latin Hypercube Sampling 

The Latin Hypercube Sampling is an alternative sampling method of the Monte Carlo Sampling. 

It ensures uniformity, but it may produce inaccurate results in reliability analysis. However, it 

is very useful in sampling the initial observations in constructing a kriging model. 

The dataset of size n in sampled in the m-dimensional hypercube 𝐱 ∈ [0,1]m. 

𝔒 = {xj
(i) =

πi
(j)
− 1 + u(i,j)

n
, i = 1,2, …n, j = 1,2,…m} 

where, 𝛑(j) a random permutation of the vector {1,2,3,…n}, u(i,j) a realization of a uniform 

distribution in the interval [0,1]. 
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Appendix C – Markov Chain Monte Carlo 

In this thesis the Modified Metropolis-Hasting sampler (Au and Beck 2001) is used to generate 

sample from a targeted PDF that is not possible with Monte Carlo Sampling. The modified 

algorithm, is preferred to the usual in structural reliability. Such algorithms generate 

correlated samples, which is undesirable. The original algorithm, has a high reject rate in high 

dimensional problems, whereas the modified is unaffected by dimensionality. In this appendix 

the modified algorithm, the burn-in and thinning procedure and the numerical estimation of 

the γ coefficient are presented. 

 Modified Metropolis-Hasting Algorithm 
The Modified Metropolis-Hastings Algorithm generates samples according to a target 

probability density function: 

p(𝐱) ∝ π(𝐱) ∙ fX(𝐱) 

where, π(𝐱) could be a positive function such as the probabilistic classification function or the 

indicator function, and fX(𝐱) the PDF of random vector 𝐗. It should be possible to define an 

isoprobabilistic transformation T and its inverse T−1, from the random vector 𝐗 to the random 

vector 𝐔 with standard normal and independent components. Therefore the target PDF is 

rewritten: 

p(𝐮) ∝ π(𝐮) ∙∏φ(ui)

m

i=1

 

where, φ(u) the PDF of a standard normal variable. 

Step 0: Target PDF π(𝐮) ∙ φm(𝐮), initial seed 𝐮(0) and length of Markov Chain N/K 

Each seed is the start of an independent parallel chain. The number of seeds is K and the final 

sample is size N. i = 1, j = 1 

Step 1: Propose a candidate for each component 

A new candidate ui
∗ is randomly selected from a uniform distribution in: 

ui
∗~𝒰(ui

(j−1)
− 1, ui

(j−1)
+ 1) 

It is accepted with probability: 

r1 = min{exp(
1

2
(ui

(j−1)2
− ui

∗2)) ; 1} 

Otherwise it is rejected, meaning ui
∗ = ui

(j−1)
. Set i = i + 1. If i > m, continue to step 2, else 

repeat step 1. 

Step 2: Accept/Reject new sample 

The vector 𝐮∗ is accepted as 𝐮(j) = 𝐮∗ with probability: 

r2 = min{
π(𝐮∗)

π(𝐮(j−1))
; 1} 
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or rejected, 𝐮(j) = 𝐮(j−1), otherwise. Set j = j + 1. If j > N/K end, else set i = 1 and go to 

step 1. 

If the π(𝐮) function is binary valued, such as the indicator function, the denominator of r2 is 

always unit, and r2 is also binary valued. 

 Burn-in and thinning 
In Markov Chain samplers it is often difficult to obtain reliable initial seeds. Ideally, the initial 

seeds are distributed according to the target PDF, and sometimes this is true. However, the 

seeds are often distributed differently, or there are duplicate points. The burn-in procedure is 

to discard the initial b = 10~20 states of the Markov Chain and set the last state as seed, in 

order to achieve a better distribution. 

The thinning procedure is to accept to the final sample, only one state every t = 5~20. 

Thinning achieves a less correlated sample as a result, which reduces greatly the γ coefficient. 

Burn-in and thinning are useful in Meta-model based Importance Sampling, because the 

sample is chosen, based only on the kriging model, and not on the real g(𝐱). This means that 

the  γcorr  and consequently the δcorr can be reduced significantly without any computational 

cost. However, in Subset Simulation that is based on the real g(𝐱), thinning does not reduce 

the model evaluations, and for that reason it is not necessary. 

 Numerical estimation of coefficient 𝛄 
A Markov Chain sample is used to evaluate the following integral: 

p̅ = ∫π(𝐱)f(𝐱)dx

 

𝕏

 

If the sample is distributed according to f(𝐱), then the estimation of p̅ is: 

p̂̅ = ∑∑π(𝐱[k](i))

N K⁄

i=1

K

k=1

 

where N the total size sample, and K the number of chains. The variance of that quantity is: 

σp̅
2 =

σp
2

N
(1 + γ) 

where σp
2 is the variance of the samples: 

σp
2 =

1

N
∑∑π(𝐱[k](i))

2

N/K

i=1

K

k=1

− p̅2 

γ = 2 ∑ (1 −
𝑙K

N
)R(𝑙)

N K⁄ −1

𝑙=1

 

and R(𝑙) the correlation between states that differ by lag distance 𝑙 

R(𝑙) =
1

σp
2(Ν − 𝑙K)

∑ ∑ (π(𝐱[k](i)) − p̅)

N K⁄ −𝑙

i=1

K

k=1

(π(𝐱[k](i+𝑙)) − p̅) 
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