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Abstract

This master’s dissertation examines different approaches for modeling the seismic response of
blocks that are either rigid or flexible. All models examined are formed with the aid of simple
beam-column elements and thus can be implemented with any finite element (FE) software.
We first study blocks that can be considered as rigid and we compare our findings with results
obtained after solving directly the block’s equation of motion as derived by Housner’s theory.
We compare three FE models which are based on single-degree-of-freedom oscillators
(SDOF). The models include a rigid column connected to a zero-length non-linear elastic
rotation spring with a negative-stiffness moment-rotation relationship. Both continuous and
event-based damping is considered. The proposed models are compared using simple
wavelets and also natural ground motion records. In the case of ground motion records, event-
based damping produced superior results compared to the continuous case, since energy
dissipation in rocking blocks takes place instantaneously at every impact. The proposed FE
approach is expanded to the case of flexible blocks offering a modeling that is considerably
simpler than other approaches in the literature and is able to provide very accurate solutions
within a fraction of the CPU time required if the block was modeled with a full mesh of

quadrilateral elements.
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Extended Summary (in Greek)

O oceopdc ivarl éva eoawvopevo 1o omoio ekdnAdvetal cuvnbmg ywpig Tposdonoinomn, dev
UTOPEL VoL amoTPOTTEl KO Topd T1 UIKPN XPOVIKY| OIAPKELDL TOV, UTOPEL VO TPOKAAEGEL LEYAAES
uég ot vmodopég Ue  emakOAoLOO TPOVUATIGHOVE, OTOAELES ovOpOTIVOV (ooV,
PEVGTOTOINON E00PDV, KATOTTMOGELS Ppaymv Kot dnpovpyio BoAAcoIOV KOUATOV (TCOVVALL).
I"a 1o Aoyo avtd TAN00g epevvav d1e&dyovtal TPOKEWEVOD VO TPOGEYYIGTEL 1 ATOKPLIOT| TOV

KOTOGKELOV GE SVVOAIKES POPTIGELS.

Aopikd cuotiuaTo 1 OVTIKEILEVA GTO. OTOlRL 1 GNUOAVTIKY] TOPAUETPOG TNG ATOKPIGNG VIO
duvopikég @opticels O0ev givol M TOPAUOPEMOGT TOL VAKOD OAAG 1M petaxivnon g
KOTOoKELNG €fvol avtd mov eEgtdlovtor otnv mapovcoa epyocio. TETol SopKA GLGTHHOTO
(apyaio pvnueto, povcesloxkd ekBépato, Emmio K.o.) omd «oyvpa» VAKE Bsmpodvton
dropmto 1 oyedov axaumta kol edpdloviar erebBepa otn Pdomn tovg. Xvvnbwmg, M Kwvhon
TETOIOV COUATOV €lte 010 emimedo €ite oto YOPOo OtOv avtd vHoPAnBodv ce emTEPIKN
O€yepon woodvvopel pe Kivnomn omoAVT®G OTEPEOD CMOUOTOS. ZTNV TEPIMTOON, OUMG,
COUITOV OV dgv Umopohv va. BempnBodv omdAvTo GKOUTTO KOL Ol UETOKIVIGES OgV
opeilovtal omoKAEIOTIKA G Kivnon oTePeoy CAOUATOG OAAGL KOl GE UETOKIVAGES AOY®
KGpyng to mpaypota  yivovtar mepimAoko. Q¢ omOTEAECUO, 1| CLUTEPIPOPE TETOLWV
AVTIKEWEVOV, COUATOV 1] SOUIKOV oTotyelwv Tov edpdlovtal eAchBepa Kol TOV TOAAEG POPEC
amoTEAOVV TOMTIGUIKT] KANpovod ypniet avikeipevo perémng. Lkomog g epyaciog eival n
LEAETN NG OEICIKNG amokplong elevBepa edpalopévov copdtov eite dxountov glite
e0KOUTTOV ©€ OYEOOV GKOUTTN EMEAVEL KOl OTOYOG M Onpovpyios HOVIEA®V Kot M

TPOGEYYION TNG CLUTEPLPOPAS KAT® OO GEICUKES O1EYEPTELS.

210 ke@diowo 1 mapovstdlovtal ot SPOPETIKOL TPOTOL OTOKPIONG EVOC COUATOG EAEVOEPQL
eopaldevon Vo o GEGUIKY 01€yepon. AmodeikvieTal o AOYoS yio Tov omoio 1 oAicOnon
apeAEital otV mOPOVGA £pyacio, Ol dVO OLPOPETIKOL TPOTOL OVOTPOTNG EVOG COOTOC
KaBMOG KOl 0 OPIGUOC TNG AIKVIOTIKNG CUUTEPIPOPES TOL €ivol KO TO OVTIKEIHLEVO TNG

epyaciog.
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To xepdiaio 2 mepthapfPdvel v avoyvopion Tov TPOPANUATOS TOV AMKVIGUOD OKOUTTOV
ocoudtomv erevbepa e0palOUEVOV GE AKAUTTN EMPAVELD, TNV €MiAvoT NG e&icmong kivnong,
™ Ypoppkonoinon g e€icwong Kivnong kot t dvvatdtnto enilvong avtig pe m Pondeia
evog solver mov dwteibeton otn MATLAB. Xtdyoc fitav 1 dnuiovpyio poviélov mov Oa
TpoceYYIlovv TN GLUTEPLPOPA OLTH YWOPIG TN HLOVIEAOTOINGT TOV QOPEN LE TETPUKOUPIKA
TEMEPACUEVA GTOLXELD TPdypa Tov odonyel o€ ypovoPopeg avorvoelc. ['a To okomd avtd
ToPOLGIALOVTOL 6TO KEQAANO 2 TO. LOVTEAD TTOL dMpovpyNONkay cto Aoyiopikd OpenSees
Kol 1 0mOKPLIoT] TOVG GLYKPIVETOL LE TNV ATOKPLIoT Ao TNV enidvon g e€lowong kivnong. H
TPOCOUOImON £€yve pHE 4 SLOQOPETIKOVG TOAAVIMTES, Ypnowomomdnkay beam-column
elements cuvdedpeva ot Pdon pe Eva oTPOEIKO EAATAPLO Yo TO omoio eEaeTdoTnKOY VO
dwpopetikol  vopor  pomng-otpoenc. T v emPePfaivon TV amotelecudTov
TPOYUATOTOONKAV SVVOLIKEG AVOADGELS PE O1APOPOVS TOALOVG KO TPAYLOTIKES GEIGUIKES
KOTOYpaQES, £Yve GOYKpLon TV Kopmvlodv Pushover, tov petakivioemv kot Tov pormv

OVOTPOTNG.

210 KEQAALO 3 £Yve oL SIEPEVVIOT GYETIKN UE TNV OTOAELN EVEPYELNG TOV GLUPaivel KATA
mv kivnon evdg Akvilopevov dopkod cvotiuotos. ‘Eyovv mpotabel xotd  kopovg
dpopeTikol TPOTOL TPOGEyyong tov BEpatog ot omoiot €€etdotnkoy KOl ovVOAVONKOV.
Apywcd, N omdAEW eVEPYELNG TPOGEYYIOTNKE e évav amocPeotipa tomobenuévo ot Pdon
TOV GTUAOL KOl TPOGPEPOVTOG GLVEYN AmOGPESN. LT GLVEXELD EEETAGTNKE 1| TEPIMTMOOM TNG
apuntikne amdoPeong (numerical damping) kot ¢ mTpocouoimong TG omocPeomg
ocvupwva pe tov Kavoviopd FEMA-356. Avto mov a&ilel va onpelwdel givat 1o yeyovog mmg
OTTMOAELD EVEPYELNG OE TETOLN OOUIKA GLGTNATO GLUPATVEL LOVO KOTE TIC GTIYIES TG KPOVONG
TOV GOUATOGC oTNV EMPAveLR. [ To AOY0 avTd, av Kot amd TIG TPONYOVUEVES TPOCOUOIDGELG
TPOKVITOVV IKOVOTOMTIKA amoteAéopata, avalntinke évag tpdmog otrypaiog andsPfeong
™ oty g kpovons. ‘Etot tpomomomOnkov to amlomomTikd HOVTEAN TETMEPAGUEVMV
otoyyelov Tov kepaiaiov 2, cvoyetiCoviag Tig YoVIOKEG TaxOTNTEG TOV KOUP®V HE TO
oLVTELEOTN amokatdotaong kébe otryun otny omoia AauPavel yopa po kpovon (event-based
damping). ITAn0og avardoewv pe Talpode Kol TPOYUATIKEG KaTaypapés emPBefaidvovy v

opBOTNTA TOV ATOTEAECUATMV.

Y10 ke@OAO0 4 oTdHY0G NTOV O EAEYYOG TOL TEAELTAIOL WOVIEAOL OTNV TEPIMTMOOTN TOV

e0KOUTTOV GOUATOV Kot O VTOAOYICUOS 1TNG OmOKPIoNG GULUTEPIAOUPOVOUEVOV  T®V
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KOUTTIK®OV petakivioemv. Emvinke éva ovykekpuévo ocopo oto tpdypaupa Abaqus vro
TOAUKT KO GEIGLUKN O1€yepon Yo TNV emPBePaimon g opBOTNTOG TV ATOTEAECUATMOV TOL
TPOKVTTOVV OO TO HOVTEAO 4 VM OTN GUVEXELD £YIVE 0L TOUPOUETPIKY OVAAVGT| OOV Ko
nopovctalovial ot dpopég oty omdkplon HeTald evOeg EVKOUTTOL Kol  (GKOUTTOL

MKVILOUEVOD COOTOG.

H mopovoo epyocio amotedel éva TpOmO €KTIUNONG KO TPOGEYYIONG TNG OEICUIKNG
CLUTEPLPOPES COUATOV TOV VITOPAALOVTOL GE MKVIGTIKY KiVoT HEGM OMADV LOVIEA®MV EVA
00N yNoE G€ KPIGIUO CUUTEPACUATO GYETIKA LLE TNV KATOVONON EVOG TOCO EVOLAPEPOVTOG KOl
Tavtoypova. mepimiokov Bépatog. Ta cvumepdopato mapotifevior 6to Ke@AAoO 5 evod

TPOTEIVOVTOL 10EC Y10 LEALOVTIKY] £PEVLVAL.

To kepdiaio 6 TeptlapPfavel BPAOYPAPIKES OVOPOPES TTOL ATOTEAOVVY £Val KOAO 0dNY0 Yo TN

HEAETN TTAPOUOLOV EPEVVITIK®V BepdTmV.
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1. Introduction

1.1. Presentation of the problem

Reconnaissance reports following strong earthquakes substantiate that a solitary free-standing
solid body subjected to a seismic excitation of the base can uplift, slide, rock or overturn. The
need to understand and predict these failures in association with the temptation to estimate
levels of ground motion by examining whether slender structures have overturned or survived

the earthquakes, has motivated a number of studies on the response of blocks.

Sliding Rocking Uplift

Figure 1: Seismic Response of a solitary free-standing solid body under a seismic excitation.

The phenomenon of the partial uplift of a structure from its foundation and its oscillation
when the center of rotation changes simultaneously from one point of reference to another is
known in the literature as rocking and it is often observed during seismic excitations. The
study of rocking motion in structures is crucial because as it was indicated by many
researchers slender structures may rock on their foundation, a phenomenon which can be
devastating in some cases. Rocking motion introduces a highly nonlinear mechanical problem
due to the fact that it involves a wide range of nonlinear physical phenomena, such as impact,
contact, uplift and sliding. Therefore, the mathematical formulation and solution of the full
rocking problem is a rather difficult task. For this reason, numerical modeling through
nonlinear finite element analysis is one of the most suitable tools for a wide range of dynamic

rocking problems, as it is able to provide accurate prediction of the rocking motion. However,
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the utilization of nonlinear finite element analysis requires special attention and validation of
the obtained results by means of comparison with experimental or analytical solutions. The
purpose of this master’s dissertation is to approach the seismic response of rocking blocks
subjected to pulses-like ground excitation or real records with the Finite Element Method
taking into account the nonlinear physical phenomena and the difficulties of an analytical

formulation and solution.

1.2. Sliding of Solitary Blocks — Coefficient of friction

During the dynamic movement of a free-standing solid body due to the base excitation a
nonlinear phenomenon which may take place is sliding. A body slides if it can’t follow the
ground motion. The friction in the interface between the base and the body has a direction
parallel to the interface and is produced by the relative displacement of the two surfaces in
contact and does not depend on their sliding velocities. If the horizontal force exceeds the
static force of friction (which is a boundary value) then the body is sliding. The ratio of the
static force of friction to the vertical base resistance is called static coefficient of friction:

T
ﬂst = _St (11)

N
During the sliding the body continues to exist forces of friction. The requirement for
continuation of sliding with fixed velocity is a horizontal force called sliding force of friction
and is constant during the sliding of the body. The ratio of the sliding force of friction to the
vertical base resistance is called sliding coefficient of friction:

T
Higt = ’t\cl)t (1.2)

and it is generally accepted that o< pst. The static coefficient of friction and the sliding
coefficient of friction is independent of the body mass and the area of the contact surface and

depends only from the kind of the contact surfaces.

Assuming that V and U are the vertical and horizontal base accelerations respectively, X and

Y are the horizontal and vertical displacements, X and Y are the velocities and X and Y are

the horizontal and vertical accelerations respectively of the body.
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According to the principle of D’ Alembert the equations of motion of the body will be:

mX =T (1.3)
mY =N -mg (1.4)

where m is the body mass. Modifying the above equations we have as a result:
T=mU (1.5)
Y
N =mg (1+—] (1.6)
g
In order to slide the free-standing solitary body the inertial force must be at least the same
with the static force of friction, namely:

mX >T

p (1.7)
Taking into account all the above is arising:

mxX >T, =

mX > u N =

mX > g, mg (1+ \i] =
g

u> Hq9 [1+\LJ
g

Ignoring the vertical ground motion (the vertical acceleration) then sliding takes place only in

case of:

u> Hs9 (1.8)

1.3. Rocking Motion

As it is described above the phenomenon of the partial uplift of a structure from its foundation
and its oscillation when the center of rotation changes simultaneously from one point of

reference to another is known in the literature as rocking. It has been proved that rocking
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initiates when during the excitation occurs U, >a =gtana, where tano=h/b and 2h, 2b

g,min
are the height and width of a rectangular body. In this master’s dissertation we have assume
that there is no sliding. This assumption means that tana<ust which is acceptable in the
majority of structures which are significant for a Civil Engineer. If tana>us then the body is

not rocking and consequently is sliding. Structures with tana>pst is not examined here.

The rocking motion is usual in free-standing body and generally in free-standing structures
due to the above observation. For this reason, for more than a century the response of rigid
blocks allowed to uplift and rock on a rigid foundation under seismic ground motion
excitation has been studied. Housner demonstrated that large rigid blocks and large rocking
rigid frames is difficult to overturn dynamically. In the same way Housner has shown a scale
effect that characterizes the response of rocking blocks subjected to a ground motion. For a
given earthquake, larger objects need a larger ground acceleration to overturn and longer
dominant period earthquakes have a larger overturning capability that shorter dominant period
ones. This explains the survival of ancient Greek and Roman top-heavy temple structures in
regions of high seismicity, despite the lack of historical evidence that ancient engineers were
aware of the size effect of rocking structures. This size effect has lead researchers to propose
rocking as a seismic response modification technique. A 60-m-tall bridge designed to rock has
already been built across the Rangitikei River in New Zealand in 1981. Moreover, a 33-m-tall
chimney at the Christchurch New Zealand airport has been designed to uplift. Furthermore,
three 30 to 38-m-tall chimneys in Piraeus, Greece, have been retrofitted by letting them uplift
in case of an earthquake.

Although the phenomenon has been studied there are questions and problems that require
further research and verification with the reality. On the other hand due to the Finite Element
Method problems that are more complicated can be solved. For this reason getting started
from problems that are simple and understanding the motion of a rocking block can have

models that approach the real response of rocking structures.

1.4. Overturning of Solitary Blocks

Sliding and rocking are two ways that a free-standing block can respond to a base movement

or a ground motion. The most significant questions researchers try to solve are when a
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structure is overturning and when is rocking, in what accelerations are stable, why slender
structures have survived the earthquakes, in what way can take place an overturning and how
can we protect ancient monuments if we know their properties. Early studies of the response

of rigid bodies have shown that a block can overturn with two different ways:
a) With one or more impacts.
b) Without impact.

With reference to the following figure can understand how difficult is the approaching of the
seismic response or the overturning of pillars or free-standing structures. Two pillars which
was shown as same under an earthquake had different response. The one has overturned while
the other is stable. The frame in the width of the picture is stable as it was expected.

Figure 2: Overturning of a free-standing pillar after an earthquake.
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2. Rocking Response of Undamped Rigid Blocks

2.1. Solution of the equation of motion of an Undamped Rocking Body (URB) using
standard ODE solvers available in MATLAB

It was assumed a rectangular block with height 2h and width 2b. If the coefficient of friction

between the block and the base is infinite so that there is no sliding, the equation of motion of
a solitary free standing block with R =+/h?+b? and slenderness a =arctan(b/h) under a
horizontal ground acceleration U, (t), when rocking around the pivot points O and

O’respectively is:
Ioé(t) +mgRsin[a sgn O(t) — O(t)] = —mU (t) R cos[er sgn O(t) — O(t)] (2.1)

where 1, =(4/3)mR? is the moment of inertia with respect to the pivot point, g is the gravity

acceleration, m is the mass of the block and 6 is the response rotation.
Rocking initiates when during the excitation occurs U, >a, ,;, = gtana. Replacing I, to the

above equation and defining the quantity p = fj—i as the frequency parameter of the rocking

block, equation takes the following form:
o(t) =—p? {sin [arsgn(6(t)) —6(t) ]+ UEg cos[a sgn(é(t)) — Q(t)]} (2.2)

If it is assumed that 6 and o are small or linearizing the equation of motion then it can be

expressed in a simplified form as:
1,6(t) + MgR(arsgn 6 — ) = —mii R (2.3)

The solution of Equations is obtained numerically via a state-space formulation with standard
ODE solvers available in MATLAB. With reference to Figure 3 and in order to decide among

the solvers a comparison between 2 ODE solvers took place. The response of a rigid rocking
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body with R=2m, slenderness ratio value tano=0.1 and 0.333 under a symmetric Ricker pulse
and a sine pulse excitation with a,=3.6gtana, wp=3x rad/s and wp=4.44x rad/s respectively is

computed and plotted in Figure 3.
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1 ‘ |—ODE23s ]
- _ ~
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Figure 3: Comparison of rocking rotation time history response of undamped rocking bodies under a
symmetric Ricker pulse (left) and to a sine pulse excitation (right) using ODE45 and ODE23s solver.
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Figure 4: Comparison of rocking rotation time history response of undamped rocking bodies using
full equation of motion (URB) and undamped rocking bodies with linearized equation of motion
(LURB) under a symmetric Ricker pulse (left) and a sine pulse excitation (right).
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The results obtained from the two ODE simulations do not match so well. Nevertheless,
ODE23s solver fits the real response of rocking bodies.

In Figure 4 is presented the different response of the above blocks in case of linearization of
the equation of motion. If the slenderness ratio is small (tano=0.1) or 6/a is small (right) the
results agree very well. For larger slenderness ratios, however, the assumption of small 6 and

o, contains errors.

2.2. Simulations of Undamped Rocking Bodies (URB) using OpenSees and Simple Finite

Element Models

If there is the assumption that a rigid body is rocking on a rigid surface, as it described
previously, equations can be easily solved using a numerical computing package. The
equations of more complex rocking structures or flexible rocking structures become much
more complicated and their solution becomes cumbersome. Therefore, equivalent SDOF
models are proposed. The models include an elastic column with cross section identical to the
cross section of the rocking block connected to a zero-length non-linear elastic rotation
spring. The Figure 5 (left) shows the moment-rotation relationship during the rocking motion
of a solitary free-standing rigid block. The system has infinite stiffness until the magnitude of
the applied moment reaches the value mgRsina. Once the block is rocking, its restoring forces
decreases monotonically, reaching zero when 6=a. The moment-rotation relationship was
introduced in the models either taking into account the negative stiffness of the rocking block
(linear spring) or considering second-order geometric transformations and large
displacements (non-linear spring). In the second case, the spring has a rigid-plastic moment-
rotation response envelope with yield moment equal to mgRsina and full geometric
nonlinearity. For the comparison of the response between the URB and the USDOFSM the
Young’s Modulus, E, is set to a very large value (E=10*?kPa) because the column is quasi-
rigid. In the following Figure 5 are presented the two different approaches of the moment-
rotation relationship as they introduced in the models. It is noteworthy that the yield rotation
for both of them and the yield stiffness for the case that the spring has a rigid-plastic moment-
rotation relationship are set to very small values (10 to 10°*2) in order to avoid problems of

convergence.
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M M

mgRsina mgRsin a

mgR sin{a— )
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Figure 5: Moment-rotation relationships for a rigid rocking body.

2.2.1. Undamped Single Degree of Freedom Spring Model 1 (USDOFSM -1)

Initially, the Single Degree of Freedom Spring Model 1 is considering as a case study. The
seismic response and specifically the rotation 6 is the basic target of the model. The results

obtained from the model verify the assumption as it is described below.

ROCKING BLOCK SDOFSM-1

2h

Non-linear
spring

2b 2b zlig cos a

Figure 6: Rocking Block and the proposed Single Degree of Freedom Spring Model 1 (SDOFSM-1).
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The equation of motion of the above spring model taking into account the negative stiffness

of the rocking block is the following:

I, 6(t) + mgRsin[cr sgn O(t) — O(t)] = —mU, (t)Rcosacos @ (2.4)

where Io'zémR2+mR2:ng2:|o. In comparison with the equation of motion of a

Rocking Block the difference locates in the term of the horizontal ground acceleration.

The response of the Undamped Single Degree of Freedom Spring Model 1 (USDOFSM-1) in
comparison with the response of a rigid rocking body with R=2m, slenderness ratio value
tana=0.1, 0.2 and 0.333 under a symmetric Ricker pulse and a sine pulse excitation with
ap=3.6gtana, mp=3x rad/s and wp=4.44x rad/s respectively is computed and plotted in Figure 7
and Figure 8. It is noted that the small differences are most likely due to the term of the

horizontal ground acceleration.

h/b=10 h/b=10 [--—URB
1 I I I 05F ‘ ‘ —— USDOFSM-1
A NSNS NNA
|30 ) t
0 Y 0
A 051
0 5 10 15 20 0 5 10 15 20

h/b=5 h/b=5

) 0 5 10 15 20 0 5 10 15 20
Tirne(s) Time(s)

Figure 7: Comparison of rocking rotation and velocity time history response between the URB and the
USDOFSM-1 to a symmetric Ricker pulse excitation.
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h/b=10 h/b=10 |--—URB
1 05 —— USDOFSM-1
3 A
=30 i\ = 0 1\/\/\/’\//\//‘\/
P 0.5
0 5 10 15 0 5 10 15
h/b=5 h/b=5

Time(s) Time(s)

Figure 8: Comparison of rocking rotation and velocity time history response between the URB and the
USDOFSM-1 to a sine pulse excitation.

2.2.2. Undamped Single Degree of Freedom Spring Model 2 (USDOFSM-2)

Secondly, an observation relevant to the equation of motion led to the Single Degree of

Freedom Spring Model 2.

ROCKING BLOCK SDOFSM-2
u
1

2h

Non-linear
spring

2b 2b i
&
4R

Figure 9: Rocking Body and the proposed Single Degree of Freedom Spring Model 2 (SDOFSM-2).
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We can transform the equation of motion of the model in order to solve the rocking problem
of a rigid block. The equation of motion of the above spring model taking into account the

negative stiffness of the rocking block is the following:

IOH(t) + ngSIn[a Sgn e(t) - H(t)] = _Mover’[urning (25)
where M =—1 U 3cosa coséd = —ngZUg 3cosa cos@ =-mti Rcosa cosd .

overturning og R

Considering that the term mgRsin[a:sgn @(t) —&(t)] has introduced to the model due to the
moment-rotation relationship of the rotational spring the only difference with the equation of
motion of a Rocking Block is in the term of the ground acceleration. For this reason, the
proposed model was modified by the direction of the ground acceleration (instead of
horizontal direction the ground acceleration exerted in the rotational degree of freedom) and

multiplying this term with the factor 3coso/4R.

The response of the Undamped Single Degree of Freedom Spring Model 2 in comparison
with the response of a rigid rocking body with R=5m, slenderness ratio value tana=0.1, 0.2
and 0.333 to a symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtana, wp=2n

rad/s and wp=2.66m7 rad/s respectively is computed and plotted in Figure 11 and Figure 12.
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Figure 10: A symmetric Ricker pulse and a sine pulse excitation with a,=3.6gtana, wy=2z rad/s and
wp=2.667 rad/s.
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Figure 11: Comparison of rocking rotation and velocity time history response between the URB and
the USDOFSM-2 to a symmetric Ricker pulse excitation.
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Figure 12: Comparison of rocking rotation and velocity time history response between the URB and
the USDOFSM-2 to a sine pulse excitation.

2.2.3. Undamped Single Degree of Freedom Spring Model 3 (USDOFSM-3)

Subsequently, a new Single Degree of Freedom Spring Model 3 is presented. The purpose in

each model is the approaching of the equation of motion of a free-standing rigid block. The
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idea included the most significant term which is the moment of inertia with respect to the
pivot point of the block.

ROCKING BLOCK SDOFSM-3
u,

2h

Non-linear

sPrinK}

2b 2b

Figure 13: Rocking Body and the proposed Single Degree of Freedom Spring Model-3 (SDOFSM-3).

The equation of motion of the above spring model taking into account the negative stiffness
of the rocking block is the following:

I, 6(t) + mgRsin[crsgn O(t) — A(t)] = —mU, (t)Rcosacos (2.6)
wherel," = %mR2 +mMR’sin® o + mR? cos® a = %mR2 +mR? = %mR2 =1,

Considering that the term mgRsin[a:sgn @(t) —O(t)] has introduced to the model due to the
moment-rotation relationship of the rotational spring the only difference with the equation of
motion of a Rocking Block is in the term of the ground acceleration. Consequently, the

SDOFSM-3 is another way to solve the rocking problem with the Finite Element Method.

The response of the Undamped Single Degree of Freedom Spring Model-3 in comparison
with the response of a rigid rocking body with R=10m, slenderness ratio value tano=0.1, 0.2

and 0.333 under a symmetric Ricker pulse and a sine pulse excitation with a,=3.6gtana,
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op=1.4n rad/s and op=1.905x rad/s respectively is computed and plotted in Figure 15 and
Figure 16.
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Figure 14:A symmetric Ricker pulse and a sine pulse excitation with a,=3.6gtana, wy=1.47 rad/s and
@p=1.9057 rad/s.
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Figure 15: Comparison of rocking rotation and velocity time history response between the URB and
the USDOFSM-3 to a symmetric Ricker pulse excitation.
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Figure 16: Comparison of rocking rotation and velocity time history response between the URB and
the USDOFSM-3 to a sine pulse excitation.

2.2.4. Undamped 5-element Spring Model 4 (USelemSM-4)

The last model emerged from the requirement of approaching the rocking response of flexible
bodies. For this reason, firstly a n-element model was considered.

ROCKING BLOCK S5elemSM-4
u
1

2R

2h

Non-linear
spring

2b 2b

Figure 17: Rocking Body and the proposed 5-element Spring Model-4 (5elemSM-4).
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Figure 18: Confirmation of the assumption that 6 and more masses can reach the desired outcome.

After a series of analyses it was observed that a model with 6 and more masses can reach the

desired outcome.

Figure 18 is presented the results obtained for 5, 10 or 20-element model for different R under
a symmetric Ricker Pulse with tana=0.3 and for wp=3xn rad/s (R=2m), wp=2x rad/s (R=5m)
and wp=1.4x rad/s (R=10m).

It is generally accepted that the moment of inertia of a bar rotated from his corner is
1 . . .
I :gmL2 where m is the total mass and L is the length of the bar. Taking into account the
above observation, the moment of inertia of a bar with total mass m and length 2R rotated
. 1 4 . .

from one corner O is: 1, :gm(ZR)2 :EmR2 = 1,. Consequently, the equation of motion of
the above spring model taking into account the negative stiffness of the rocking block is the
following:

I O'é(t) +mgRsin[a sgn O(t) — 6(t)] = —m, ()R cos « cos & (2.7)
Once more, the only difference with the equation of motion of a Rocking Block is in the term
of the ground acceleration.
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The response of the Undamped 5-element Spring Model 4 in comparison with the response of
a rigid rocking body with R=10m, slenderness ratio value tana=0.1, 0.2 and 0.333 under a
symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtana, wp=1.47 rad/s and

wp=1.905x rad/s respectively is computed and plotted in Figure 19 and Figure 20.

h/b=10 |--URB
05+ ——U5elemSM-4
BN 0 -W
-0.5¢
0 5 10 15 20
h/b=5
0.5
5 0 J\/\/\\,
1 -0.5¢
0 5 10 15 20 0 5 10 15 20
h/b=3 h/b=3
1 05F
=120 f\/\/\ =S 0 \/\/\/\/
1 -0.5¢
0 5 10 15 20 0 5 10 15 20

Time(s) Time(s)

Figure 19: Comparison of rocking rotation and velocity time history response between the URB and
the U5SelemSM-4 to a symmetric Ricker pulse excitation.
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Figure 20: Comparison of rocking rotation and velocity time history response between the URB and
the U5elemSM-4 to a sine pulse excitation.
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2.3. Comparison of the two moment-rotation relationships

The equation of motion of the proposed Spring Models, as it was described above,

considering the negative stiffness of the rocking block (disregarding damping) is:
I, 6(t) + mgRsin[cr sgn O(t) — O(t)] = —mU, (t)Rcosacos (2.8)

The equation of motion of the proposed Spring Models 1 and 4 considering second-order

geometric transformations and large displacements is:
Io'é(t) +mMgR(sin arsgn & —sin &) = —mU, (t)R cos a cos & (2.9)

and the equation of motion of the proposed Spring Models 2 and 3 considering second-order

geometric transformations and large displacements is:

I,'6(t) + mgR(sin azsgn @ —cos asin @) = —mU (t)Rcosacos @ (2.10)

.4
where |, :ngz =1, for all the tree cases.
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Figure 21: Comparison of the moment-rotation relationship between the RB and the SM 1 and 4 with
full geometric non-linearity.
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Figure 22: Comparison of the moment-rotation relationship between the RB and the SM 2 and 3
with full geometric non-linearity.

The difference between the three approaches is plotted in the Figure 21 and Figure 22.

2.4. Comparison of the displacements between the models

The horizontal and vertical displacements of the corners of the top cross section of the

Rocking Body are described by the following equations:

when 0<0:

when 6>0:

u, =2Rcosasiné
u, = 2R(sina —sin(a + 6))

v, =—2Rcos a(1-cos b)

(2.11)

v, = 2R(cos(a + 8) —cos @)

u, = 2R(sina —sin(a + 0))
u, =2Rcosasiné

v, = 2R(cos(e + 8) —cos @)

(2.12)

v, =—2Rcosa(l-cosé)
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The horizontal and vertical displacements of the top cross section (height=2h) of the
equivalent Single Degree of Freedom Spring Models taking into account the negative stiffness

of the rocking block are described by the equivalent equations:

U, =2Rsind—(2R-2Rcosa)sind =2Rcosasin &
SDOFSM-1: (2.13)
v,=0
u, = 2Rcosasinéd
SDOFSM-2: (2.14)
v, =0
u, = 2Rcosasiné
SDOFSM-3: (2.15)
v, =0
U, =2Rsind—(2R-2Rcosa)sind =2Rcosasin &
5elemSM-4: (2.16)
v,=0
h/b=10 h/b=5
o1l 02
01
32 g 0 = 551 0r
0.1F
01 0.2t
0.15 0.1 0.05 0 0.05 0.1 p—y=r 0.2 0.1 0 0.1 0.2
¢ — USM 6
h/b=3 h/b=2
05¢
02r
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-0.27
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Figure 23: Comparison of the horizontal displacements of the Rocking Block and the equivalent
Spring Models.

In Figure 23 was compared the equivalent horizontal displacement with the displacement of

the Rocking Block and was observed that the results match well if the slenderness is up to 0.3.
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In continuation of previous results, the horizontal and vertical displacements of the top cross

section (height=2h) of the equivalent Single Degree of Freedom Spring Models considering

second-order geometric transformations and large displacements are described by the

equivalent equations:

U, =2Rsind—(2R-2Rcosa)sind =2Rcosasin @

SDOFSM-1: 2.17
v, =—2Rcos a(1—-cosd) (2.17)
SDOESM.2: u, = 2Rcosasin @ )18
- v, = —2Rcos a(1—cos 6) (2.18)
SDOFSM.3 u, = 2Rcosasin @ 210
e v, =—2Rcosa(1-cosd) (219)
EelemSM_4 U, =2Rsind—(2R-2Rcosa)sind =2Rcosasin & 220
elemSM-4: :
Vv, =—2Rcos a(1—cosd) (2.20)
hlbl=10 ‘ . . ‘ hlp=5
0.1 02
0.1
= g 0 = g 0
-0.1
-0.1 02
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Figure 24: Comparison of the horizontal displacements of the Rocking Block and the equivalent

Spring Models.

Although in the first approach the vertical displacement of the top cross section is 0, taking

into account second-order geometric transformations is a way to compute the vertical
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displacements (which are insignificant in comparison with the horizontal displacements). It is

worth to notice that Spring Models give only negative displacements.

<1072 h/b=10 h/b=5
5r : ‘ ‘ ! : 0.02 ‘ ‘ ‘
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0.051 01r
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=15 of =5 o
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-0.05+ -0.1
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Figure 25: Comparison of the vertical displacements of the Rocking Block and the equivalent Spring
Models.

2.5. Pushover Curves

The horizontal force-displacement pushover response curve for the Rocking Body (RB) with
the force acting at the centroid of the block is given by:

F
. —t _

while the pushover curve for the equivalent Spring Models with the force acting at the node of
the concentrated mass is given:

1. If the moment-rotation relationship was introduced in the models taking into account
the negative stiffness of the rocking block by:

F _sin@=9) _ e —tane (2.22)
mg  cosacosd '
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Figure 26: Force-deformation pushover curves for the RB and the SM.

2. For the models 1 and 4 if the moment-rotation relationship was introduced in the

models considering second-order geometric transformations and large displacements

by:

0.15

0.1

0.05

03¢
i, E%‘0.2 F

01}

mg coséd cosa

0.15

h/b=10
0 0.05 0.1
14
h/b=3
0 0.1 0.2 0.3
0

F _tana tand

0.2

0157
0.1¢
0.05

—=-=URB
—USM

04r

02r

(2.23)
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Figure 27: Force-deformation pushover curves for the RB and the SM 1 and 4.
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3. For the model 3 if the moment-rotation relationship was introduced in the models

considering second-order geometric transformations and large displacements by:

F tana

—= —tan@
mg cosé (2.24)
h/b=10 h/b=5
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Figure 28: Force-deformation pushover curves for the RB and the SM 3.

In models 1 and 4 the assumption of full geometric non-linearity works almost perfectly in

every case while in models 3 only for small slenderness up to tana=0.2.

2.6. Comparison of the overturning moments

The equation of motion of a rocking block has arisen equalizing the restoring moment with

the overturning moment. For this reason, the overturning moment is given by:

M —mu, (t)Rcos(a - 6) (2.25)

overturning =
In a corresponding manner the overturning moment of the proposed models is given by:

M =-mu, (t)Rcosacosd (2.26)

overturning
The following figure represents the error which is considered as acceptable.
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Figure 29: Comparison of the overturning moments for the RB and the SM.
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3. Rocking Response of Damped Rigid Blocks

3.1. Solution of the equation of motion of a Damped Rocking Body (DRB) using
standard ODE solvers available in MATLAB

Energy dissipation in rocking bodies takes place instantaneously at each impact, when the
rotation changes sign at 6=0. The per-cycle of free vibration energy dissipation for a rigid
rectangular block is described by the restitution factor r and is independent of the amplitude

of vibration. The ratio of the energy after one complete cycle, E, to the initial energy, Eo is:

o (1-3n2,)
E——I’ = —ES"] (04 (31)

h/b=10 h/b=10 --—DRB

0 5 10 15 20 0 5 10 15
4 T 4
s 2 s 2
S _:_i 0 = § 0
E) ) U
-4 : ' ' -4 ' -
0 5 10 15 20 0 5 10 15

Time(s) Time(s)

Figure 30: Influence of the coefficient of restitution to the response of a Rocking Body with R=2m
under a symmetric Ricker pulse with a,=3.6gtana and wp=3x rad/s (left) and a sine pulse excitation
with a,=3.6gtana and wp,=4.44x rad/s (right).

In most cases, impact is described by a resulting coefficient of restitution that relates the post-

impact angular velocity 0* to the pre-impact angular - velocity and is:

0 3.
nz;zl—ismza (3.2)
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3.2. Simulations of damping at Damped Spring Models with a rotational damper

As it is described above energy dissipation in rocking blocks takes place instantaneously at
each impact. However, viscous damping models widely used in structural dynamics, dissipate
energy continuously in proportion to an associated relative velocity. Despite this fundamental
difference, the proposed models, originally, utilizes a viscous damper with a damping
coefficient ¢ associated with the column rotation velocity located at the base of the column
(Vassiliou, Mackie and Stojadinovi¢, 2014). This is intended to account only for energy
dissipated during impacts of the rigid body, and does not account for any additional
engineered dampers. It is further assumed that, without verification, that the energy dissipated
through rocking impact does not depend strongly on the flexibility of the rocking body, and
thus, on the flexibility of the column in the Spring Models.

The damping in the Spring Models is also different from the Rayleigh damping model used
by Wiebe et al. [27] in that it is based on equivalent viscous damping corresponding to energy

dissipation in a single cycle.

It is possible to define the per-cycle equivalent energy loss damping coefficient for the

rotational damper in the models as a function of the body mass, size and slenderness:

2
o 0515
c=0.02| — | mg—R
(0.1) g (3.3)

It is noted that that the damping coefficient was calibrated for large angles of rotation and,
therefore, it is suitable for overturning analyses of the blocks and for small angle uplift. On
the other hand, EIGawady et al. [28] have shown that the energy dissipated in a rocking body
impact depends not only on slenderness o, but also considerably on the interface material on
the rocking surfaces. Further research is needed to account for the type of interface material in

the equivalent viscous damper of the SM.

The time histories of the rocking response of rigid blocks with R=5m and slenderness ratio
values tana= 0.1, 0.2 and 0.333 to a symmetric Ricker pulse excitation with a,=3.6gtana and
wp=2=n rad/s computed using the ODE solvers and the damped Spring Models and plotted in

the following Figures.
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Figure 31: Comparison of rocking rotation and velocity time history response between the DRB and
the DSDOFSM-1 and DSDOFSM-2 with the negative stiffness of the rocking block to a Ricker pulse

excitation.
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Figure 32: Comparison of rocking rotation and velocity time history response between the DRB and
the DSDOFSM-3 and D5elemSM-4 with the negative stiffness of the rocking block to a Ricker pulse
excitation.
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Figure 33: Comparison of rocking rotation and velocity time history response between the DRB and
the DSDOFSM-1 and DSDOFSM-2 with full geometric non-linearity to a Ricker pulse excitation.
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Figure 34: Comparison of rocking rotation and velocity time history response between the DRB and
the DSDOFSM-3 and D5elemSM-4 with full geometric non-lineariy to a Ricker pulse excitation.

As a result, arising from the above figures, all the damped models either with negative

stiffness or full geometric non-linearity give almost the same response under a pulse-like

ground excitation but a response different of the Rocking Body because of the damping

coefficient.
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3.3. Simulations of damping at Damped 5-element Spring Model 4 using numerical

damping proposed by Vassiliou, Mackie and Stojadinovi¢ (2016)

Vassiliou, Mackie and Stojadinovi¢, 2016, proposed a model intended to facilitate a
numerical time history analysis of the in-plane response of rocking structures to earthquake
ground motion excitation. Assuming that no additional devices such as fuses, post-tensioned
cables or dissipaters are used so that the rocking motion at the rocking interface is free the
model had two components: (1) a finite element model of the solitary RB and (2) a set of
requirements for conducting the time step integration and the geometric transformations

during the time history solution process.

In order to model the rocking surface at the end of the rocking body a simplified version of
the model proposed by Barthes [29] was used. A rocking surface was modeled using the
OpenSees zero-length fiber cross-section element placed between the node j of the block and
the node i of the surface. The fiber material is non-linear, with no resistance in tension and an
elastic response in compression and defined using a stress/displacement relation. As a result
the material constant has units of force/length® and is equivalent to a Winkler soil spring. No

dampers are used while the fiber material is non-dissipative.

Zero-Length Fiber Element

Plan View

2b

Side View \
J

Beam Element
Pl l »
) n fibers . \J

2b

Figure 35: A solitary rigid rocking block (left) and the proposed by Vassiliou, Mackie and
Stojadinovi¢ model (right).
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There is the assumption that rotations and displacements are small and the OpenSees zero-
length element computes the relative displacement between two nodes. The error in modeling
the horizontal displacement of the bottom node of the block is evident but is insignificant

when the model is used to simulate rocking response.

On the other hand the rocking body is modeled using beam-column finite elements. The
current implementation of the Deformable Rocking Body model in OpenSees utilizes linear
elastic beam-column elements. In order to represent rocking of a rigid body on a rigid surface
the stiffness of the fibers used to model the rocking surface and the stiffness of the beam
element material used to model the rocking body should be set to sufficiently large values. It
is noted that the stiffness of the fibers has units of force/length® while the stiffness of the
beam element has units of force/length? and selected such that impact forces deform the

rocking body and not the rocking surface.

In this master’s dissertation are proposed 4 ways for modeling a rigid rocking body. Adjusting
the 5elemSM-4 with the above observations we had as a target to solve the rocking problem,
which involves a wide range of nonlinear physical phenomena, and to determine the seismic
response without classical or non-classical damping. For this reason, the model at each time
step was computed using the corotational formulation to account for the effect of large
displacements and rotations that may occur during the motion of a rocking body and
numerical damping via the Hilber-Hunges-Taylor algorithm. Vassiliou, Mackie and
Stojadinovi¢ based on the case of stiff enough fibers of the zero-length element and the
observation that the impact at pivot points induces elastic axial and flexural shock waves that
propagate into the rocking body used a dissipative time-stepping integration procedure to
numerically damp out the shock waves in the beam-column element and neglecting the
propagation of waves into the rocking surface. They have shown that the origination and
propagation of these high-frequency small-amplitude shock waves requires a very small
integration time step (10 is enough) and a very fine finite element mesh. However, in our
work the finite element mesh was the same in every case relying on the 5elemSM-4 with
fairly well results in comparison with Housner’s model which assumes rocking motion of a
rigid body on a rigid surface. For tall blocks (R=20m) and for big slenderness (0.333) there is
an error which is acceptable taking into account the differences in the equation of motion and

that there is non-compliance with their observation for a fine finite element mesh.
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In the following figures were compared the rotation time history responses of different blocks
under a Ricker pulse-like ground motion and a real record. It had been proven that the
response is not sensitive to the number of fibers used to model the rocking surface and to the
variation of the integration time step as long as it is reasonably short with respect to the period
of the dominant motion components. In addition, it is noted that the numerical damping is
maximum for the parameter of the OpenSees HHT algorithm ag=2/3 and zero for ag=1.

The most significant of this method is that the model can be used to investigate the rocking

response of deformable rocking bodies, complex assemblies of rigid bodies and rocking

frames comprised of deformable bodies.
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Figure 36: Comparison of rocking rotation time history response between the DRB and the
D5elemSM-4 to a Ricker pulse excitation with a,=3.6gtana and w,=2x rad/s using numerical
damping.
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Figure 37: Comparison of rocking rotation time history response between the DRB and the
D5elemSM-4 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Waho, ¢=90,
PGA=0.638g) using numerical damping.
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Figure 38: Comparison of rocking rotation time history response between the DRB and the
D5elemSM-4 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff Array,
»=165°, PGA=0.268g) using numerical damping.
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Figure 39: Zoom of the comparison of rocking rotation time history response between the DRB and
the D5elemSM-4 with R=5m and h/b=5 under the Loma Prieta’s 1989 earthquake (Station: Hollister
Diff Array, p=165°, PGA=0.268g) using numerical damping.

Nevertheless the seismic response in several cases is very close to the real response, there are
cases with different response and the most significant disadvantage of this method is the

required time of the analysis.

3.4. Simulations of damping at Damped Single Degree of Freedom Spring Models
according to FEMA-356

According to FEMA-356 buildings may rock on their foundations in an acceptable manner
provided the structural components can accommodate the resulting displacements and
deformations. Consideration of rocking can be used to limit the force input to a building.
However, rocking should not be considered simultaneously with the effects of soil flexibility.
The design professional is directed to FEMA 274 and the work of Yim and Chopra (1985),
Housner (1963), Makris and Roussos (1998), and Priestly and Evison (1978) for additional
information on rocking behavior. A possible procedure for considering rocking is outlined in

Figure 40. The procedure involves the following steps:
« Calculation of the mass, weight, and center of gravity for the rocking system (or subsystem).
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* Calculation of the soil contact area, center of contact, and rocking system dimension, R.
* Determination of whether rocking will initiate.

* Calculation of the effective viscous damping of the rocking system (and the corresponding

design displacement spectrum).

* Calculation (graphically or iteratively) of the period and amplitude of rocking (the solution

will not converge if overturning will occur—that is, when 0>a).

Figure 40: Rocking block as it was described by FEMA-356.

Mass, weight, and center of gravity

Note that, in general, the mass and weight will not be consistent with each other. The mass,
M, is the total seismic mass tributary to the wall. The weight, W, is the vertical gravity load
reaction. For the purposes of these calculations, the vertical location of the center of gravity is
taken at the vertical center of the seismic mass and the horizontal location of the center of

gravity is taken at the horizontal center of the applied gravity loads.
Soil contact area and center of contact

The soil contact area is taken as W/gc. The wall rocks about point O located at the center of

the contact area.
Wall rocking potential

Determine whether the wall will rock by comparing the overturning moment to the restoring

moment. For this calculation, Sa is based on the fundamental, elastic (no-rocking) period of
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the wall. The wall will rock if Sa> (W/Mg)tana. If rocking is not indicated, discontinue these

calculations.
Rocking calculations
Calculate I, the mass moment of inertia of the rocking system about point O.

Calculate the effective viscous damping, B, of the rocking system as follows:
f=04(1-r) (3.4)

where:

2 2

r= [1— N:R (1—cos(2a))} (3.5)
0

Construct the design response spectrum at this level of effective damping using the procedure

defined in Section 1.6.1.5 of FEMA-356. By iteration or graphical methods, solve for the

period and displacement that simultaneously satisfy the design response spectrum and the

following rocking period equation:

_ 1
T= cosh™ —a (3.6)
o 1-—
I, a
where:
o ..
9 — rocking
Rcosa (3.7)

2
while recall that: S, =S,g T—2
Az

At the desired solution: o

rocking

:Sd
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Figure 41: Comparison of rocking top displacement time history response between the DRB and the
proposed by FEMA-356 model with R=5m under the Loma Prieta’s 1989 earthquake (Station:
Anderson Dam Downstream, p=270°, PGA=0.235g).
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Figure 42: Comparison of rocking top displacement time history response between the DRB and the
proposed by FEMA-356 model with R=2m under the Loma Prieta’s 1989 earthquake (Station:
Hollister Diff Array, p=255°, PGA=0.279g).
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3.5. Event-based damping proposed

A new approach of the energy dissipation in rocking blocks is proposed in this master’s
dissipation. The idea emerged from the fact that the energy dissipation in the rocking motion
is an instantaneous event. As it is described in an above chapter the damping in the Spring
Models is different from the Rayleigh damping model used by Wiebe et al [27] in that it is
based on equivalent viscous damping corresponding to energy dissipation in a single cycle.
Obviously, a continuous damper can approach the seismic behavior regarding the maximum
rotations but it is suitable only for overturning analyses and for small angle uplift while it will
always contain errors because of the hypothesis of continuous loss of energy. As a result,
further research is needed to account in order to have a damping coefficient for several angles
and rotations and for the type of interface material in the equivalent viscous damper of the
SM.

On the other hand, if it is assumed that a rigid body is rocking on a rigid surface the
coefficient of restitution that relates the post-impact angular velocity 6 to the pre-impact
angular 0~ velocity has been described above. Regardless of the value of the coefficient of
restitution, the proposed model can approach the behavior because of the correlation of the
coefficient with the angular velocity of every node. For this reason and with the assumption
that energy dissipation in rocking blocks takes place instantaneously at each impact the
objective was a simple work. Initially, the models proposed in chapter 2 were transformed in
order to count the pre-impact velocity. Pausing the analysis in each impact and multiplying
the pre-impact velocity of every node with the coefficient of restitution was calculated the
post-impact angular velocity of every node. The post-impact angular velocity converted to an
initial condition in order to continue the analysis (Event-Based Damping). The same
procedure is repeated until the analysis stop. The following figures confirm the mass
proportional damping assumption and that a finite element model can assess the seismic

response of a rigid rocking block on a rigid surface.

In the following two subsections are presented several examples of blocks under pulses-like
ground excitation and real records in order to convince the proposed event-based damping

models works perfectly in almost every case.
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Figure 43: Comparison of rocking rotation and velocity time history response of between the DRB and
the EBDSDOFSM-3 with R=5m to a Ricker pulse excitation with a,=3.6gtana and w,=2z rad/s.
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Figure 44: Comparison of rocking rotation and velocity time history response s between the DRB and
the EBDSDOFSM-3 with R=5m to a sine pulse excitation with a,=3.6gtana and w,=2.66x rad/s.
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Figure 45: Overturning spectrum of damped rigid bodies under a Ricker pulse excitation.
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Figure 46: Equivalent overturning spectrum of the EBDSDOFSM-3 under a Ricker pulse excitation.
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3.5.2. Rocking Response under real records

The event-based damping works perfectly under a pulse like-ground excitation. However, the
most significant thing in a research around the seismic response of structures is the
approaching under a real record. A finite element model must verify the response resulting
from analytical models or experiments in order to be remarkable. In the following figures
some different models under several records are tested. Although four models are proposed
the results have been obtained by the SDOFSM-3 and the 5elemSM-4 aiming to confirm that
either a model with one or a model with more degrees of freedom can approach the real

behavior. Three models with different R or different slenderness were examined.

e Rocking Blocks with R=10m and slenderness h/b=10.
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Figure 47: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Anderson Dam
Downstream, p=360?, PGA=0.24g).
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Figure 48: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Waho, ¢=90,

PGA=0.638g).
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Figure 49: Comparison of rocking rotation and velocity time history response between the DRB and
the EBD5elemSM-4 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Agnews State
Hospital, p=90?, PGA=0.1599).
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Figure 50: Comparison of rocking rotation and velocity time history response between the DRB and
the EBD5elemSM-4 with R=10m under the Superstition Hills’ 1987 earthquake (Station: Wildlife

Liquefaction Array, 9=90°, PGA=0.18g).

e Rocking Blocks with R=5m and slenderness h/b=10.
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Figure 51: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff

Array, 9=165°, PGA=0.268g).
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Figure 52: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Waho, ¢p=0°,

PGA=0.37g).
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Figure 53: Comparison of rocking rotation and velocity time history response between the DRB and
the EBD5elemSM-4 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Anderson Dam
Downstream, p=270°, PGA=0.235g).
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Figure 54: Comparison of rocking rotation and velocity time history response between the DRB and
the EBD5elemSM-4 with R=5m under the Imperial Valleys’ 1979 earthquake (Station: Cucapah,
=85, PGA=0.3090).

e Rocking Blocks with R=2m and slenderness h/b=6.
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Figure 55: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=2m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff
Array, p=255°, PGA=0.2790).
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Figure 56: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=2m under the Loma Prieta’s 1989 earthquake (Station: Waho, ¢p=90,
PGA=0.638Q).

e Rocking Blocks with R=1m and slenderness h/b=6.

== DRB

01 I I —— EBDSDOFSM-3
= 0F 4
01 | I I | | | I 7
0 5 10 15 20 25 30 35 40
0.5 T T T T T T T
= ol il
05 ! I I ! ! ! !
0 5 10 15 20 25 30 35 40
T T T T T T T
02} wi B
i f f,.
Sl= 0 _WWM;J
|l
0.2 b
| I I | | | |
0 5 10 15 20 25 30 35 40
Time(s)

Figure 57: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=1m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff
Array, p=255°, PGA=0.279g).
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Figure 58: Comparison of rocking rotation and velocity time history response between the DRB and
the EBDSDOFSM-3 with R=1m under the Superstition Hills’ 1987 earthquake (Station: Wildlife
Liquefaction Array, p=360°, PGA=0.209).
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4. Rocking Response of Damped Flexible Blocks

Relatively few studies have been carried out to investigate the influence of the flexibility of a
structure on its rocking behavior taking into account that the rocking response of rigid
structures has been studied extensively. In this section is presented an investigation of rocking
of flexible blocks and an examination of the limits of the validity of the rigid block
assumption that has been used in all the above research. The proposed Spring Model 4 with
the event-based damping was extended and modified by assuming that the column represents
the rocking body is deformable. For this reason the model was modified by evenly
distributing the rotational inertia difference Alo= 4/3mR? *(1-cos?a) among the rotational
degrees of freedom of the nodes used to model the column. Namely, a rotational mass equal
to Alo /nnod (where nnod is the number of nodes) is added to the rotational degree of freedom
of each node in the finite element model. This means that the column with distributed masses
modeled as an Euler-Bernoulli beam-column with a linear elastic material characterized by

the elastic modulus E and the density p.

ROCKING BLOCK SelemSM-4

>
>

2h

Non-linear
spring

2b 2b U

Figure 59: 4 modified version of 5elemSM-4 suitable to solve flexible blocks
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Roh and Reinhorn performed experiments on rocking concrete columns and proved that, for
low values of axial force there is no-spalling of concrete when the column uplifts. With this
evidence it is assumed that the  geometry of the rocking interface does not change and that
the column continues to rotate around the pivot points O and O’. As a result, since the vertical
reaction at the rocking point (equal to the self-weight of the rocking body) is relatively small,
the compression zone of the base cross section tends to become a point.

The overturning instability of a flexible rocking column subjected to a pulse-like ground

motion is described by its base rotation and is a function of 7 variables:

o) = f(a,.0,,9,R,a.¢ p.E) 4.1
Each term of the above equation includes 3 reference dimensions:
a,=[LT?]0,=[T"],g=[LT?|,R=[L],a=[.{ =[.p=[ML*|,E=[ML"s?].

The damping ratio {, is the column first mode flexural vibration damping ratio, modeled in
OpenSees using stiffness proportional Rayleigh damping for the nodes of the column,
excluding the nodes at the end of the non-linear spring (an option available in OpenSees).
Energy dissipation due to rocking is modeled using the event-based damping proposed in the
previous chapter. Also, according to Backingham’s IT theorem of dimensional analysis the

previous equation can be transformed into:

9(t)=¢(i,&,a,§,iJ (4.2)
tana p POR

The departure from the rigid case becomes significant when either E/pg becomes small or
when the column has a large size R. If the material and slenderness o are given, the first
eigenperiod of elastic vibration of the flexible solid rectangular column (without rocking)

depends only on each size:

p h
T =12.38, | — ——
! E tana (43)

The flexible rocking bodies are assumed to be made of concrete with E=30GPa and
p=2.5Mg/m3. The damping ratio, {, of the cantilever was set to 0.01 assuming that the flexible
rocking body remains elastic.
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Several analyses took place and for the verification of our results arising from the OpenSees
model, the block was modeled with a full mesh of quadrilateral elements in the Finite Element

software Abaqus.

Two blocks were examined under pulses-like ground excitation and real records. The first
block had dimensions 2h=50m and 2b=5m (slenderness tana=0.1) and the second one had

dimensions 2h=25m and 2b=5m (slenderness tana=0.2).

4.1. Sufficiency of Model-4 in Flexible Bodies

In order to prove that our OpenSees model can extend in deformable rocking bodies, the
model examined under a sine pulse and two real records, assuming that there is no damping.
The results arising from the comparison of top displacement show that the model can assess
the rocking response pretty well. The response of a Flexible Rocking Body (FRB) with
dimensions 2h=50m and 2b=5m excited by a sine pulse with Tp=1.6sec and
ap=5gtana=4.905m/sec?.
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Figure 60: Comparison of top displacement (first row) and top displacement due to bending(second
row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tana=0.1 under a
sine pulse with Ty=1.6sec and a,=5gtana=4.905m/sec’.
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Figure 61: Comparison of top displacement (first row) and top displacement due to bending (second
row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tana=0.1 under the
Loma Prieta’s 1989 earthquake (Station: Hollister Diff Array, p=255°, PGA=0.2790).
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Figure 62: Comparison of top displacement (first row) and top displacement due to bending (second
row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tana=0.1 under the
Superstition Hills’ 1987 earthquake (Station: Wildlife Liquefaction Array, ¢=360°, PGA=0.20g) .
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4.2. Parametric Analysis

As it was proved that the model can assess the seismic response under a ground motion,
assuming that the coefficient of restitution is acceptable the two blocks of different
dimensions are excited and the results included the event-based damping proposed in the

previous chapter and the damping ratio, {, of Rayleigh damping are presented in the following
figures.
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Time(s)

Figure 63: Comparison of rotation(first row), top displacement (second row) and top displacement
due to bending (third row) time history response of a damped flexible rocking body with 2h=50m and
tana=0.1 under a sine pulse with T,=1.6sec and a,=5gtana=4.905m/sec’.
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Figure 64: Comparison of rotation(first row), top displacement (second row) and top displacement
due to bending (third row) time history response of a damped flexible rocking body with 2h=25m and
tana=0.2 under a sine pulse with T,=1.6sec and a,=3gtana=>5.886m/sec’.
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Figure 65: Comparison of top displacement (first row) and top displacement due to bending (second
row) time history response of a damped rigid and flexible rocking body with 2h=50m and tana=0.1
under a Ricker pulse with T,=2sec and a,=5.85gtana=>5.74m/sec?
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Figure 66: Comparison of top displacement (first row) and top displacement due to bending (second
row) time history response of a damped rigid and flexible rocking body with 2h=50m and tana=0.1
under a Ricker pulse with T,=4sec and a,=2.5gtana=2.45m/sec?

The above plots indicate that at each rocking impact, the deformation at the top caused by
flexure reverses directions. This reversal generates flexural vibration in the column. Hence,
part of the rotational kinetic energy of the flexible rocking block is transformed into high
frequency flexural vibration energy, which can not cause overturning of the body. This
transformation is the reason why the flexible rocking bodies are stable while the rigid rocking
body overturns for Tp=2sec. On the other hand, the longer pulse with Tp=4sec has smaller
amplitude such that the first part of this pulse only slightly uplifts the rocking body. Then, the
flexural vibration caused by the rocking impact is less intense, and most of the kinetic energy
is conserved, causing the flexible rocking body to overturn and the rigid rocking body to

continue rocking.
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5. Concluding Remarks

The purpose of this master’s dissertation was the seismic response assessment of rigid and in
extension of flexible rocking bodies under an excitation of the base. As it is described in the
previous chapters of this dissertation the rocking response of free-standing blocks due to the
wide range of nonlinear physical phenomena is a rather difficult task. We have the ability to
solve the mathematical formulation if a rigid body rocks on a rigid base. In any other case the
response is unpredictable. For this reason in the dissertation we try to solve the rocking
problem using the Finite Element Method with Simplified Finite Element Models. The most
important investigation was around the energy dissipation and how a Finite Element Model

can assess an instantaneous event of energy dissipation at each impact.

Initially, SDOF models are proposed and after a series of analysis we presume that although
the difference in the equation of motion and the expected errors the models can approach the
response satisfactorily in most cases while the errors are presented in the chapter 2 with
comparisons between the displacements, the pushover curves, the moment-rotation
relationships and the overturning moments. For slender blocks the results are perfect while for
more stocky blocks the errors are more significant. The initial target was the modeling of
flexible rocking blocks as the top displacements due to bending change the response and as it
is described in the last chapter there are cases that a rigid body is stable and the equivalent

flexible overturns and cases that the opposite happens. As a result a fourth model is presented.

On the other hand there is energy dissipation in every impact and a Finite Element Model
should be able to approach this dissipation. The first idea, which has been implemented. is a
rotational damper in the SM with an equation for the equivalent per-cycle energy loss
damping. The rotational damper is able to assess the behavior of the blocks in some cases but
further research is needed. Secondly, a numerical damping had been proposed using the
Hilber-Huges Algorithm. It works perfectly in the case of pulse-like ground excitation but
under real records the results are not likeable. The next step was the simulation of the rocking
block as a SDOF with the damping coefficient proposed by FEMA-356. The results are not

acceptable in the case of real records.
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After all this simulations and inferring that the above ways to approach the damping
coefficient are working under some conditions the idea emerged taking into account that the
energy dissipation of the rocking block is related with the pre-impact and the post-impact
angular velocity. For this reason we correlate the coefficient of restitution, giving the response
of a free-standing block, with the velocity of every mass of the models. As a result in each
impact the velocity was multiplied with the coefficient of restitution and the new velocities
converted to an initial condition in order to continue the analysis. It was proved that the
proposed models with the event-based damping and either taking into account the negative
stiffness of the block or the large displacements with the corotational formulation the results
are very close to the real response of the blocks.

As a summary in this master’s dissertation are proposed simplified Finite Element Models
able to assess the seismic response of either rigid or flexible rocking bodies and different
ways to approach the energy dissipation. The errors are calculated and as a result we can have
a full insight for the models. Finally, if the coefficient of restitution is different from the
coefficient of restitution proposed by Housner (1963) then the models are able to give the

seismic response just by changing this coefficient.

Taking into account the proposed models, the different way to assess the energy dissipation
and the extension of the model 4 in flexible systems is proposed for further research the
modeling of rocking frames with the Finite Element Method and if experimental results exist
a summary comparison between the response of damped flexible bodies and the models

aiming to have an equivalent coefficient of restitution.
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