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Abstract 

This master’s dissertation examines different approaches for modeling the seismic response of 

blocks that are either rigid or flexible. All models examined are formed with the aid of simple 

beam-column elements and thus can be implemented with any finite element (FE) software. 

We first study blocks that can be considered as rigid and we compare our findings with results 

obtained after solving directly the block’s equation of motion as derived by Housner’s theory. 

We compare three FE models which are based on single-degree-of-freedom oscillators 

(SDOF). The models include a rigid column connected to a zero-length non-linear elastic 

rotation spring with a negative-stiffness moment-rotation relationship. Both continuous and 

event-based damping is considered. The proposed models are compared using simple 

wavelets and also natural ground motion records. In the case of ground motion records, event-

based damping produced superior results compared to the continuous case, since energy 

dissipation in rocking blocks takes place instantaneously at every impact. The proposed FE 

approach is expanded to the case of flexible blocks offering a modeling that is considerably 

simpler than other approaches in the literature and is able to provide very accurate solutions 

within a fraction of the CPU time required if the block was modeled with a full mesh of 

quadrilateral elements. 
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Extended Summary (in Greek) 

Ο σεισμός είναι ένα φαινόμενο το οποίο εκδηλώνεται συνήθως χωρίς προειδοποίηση, δεν 

μπορεί να αποτραπεί και παρά τη μικρή χρονική διάρκειά του, μπορεί να προκαλέσει μεγάλες 

ζημιές στις υποδομές με επακόλουθα τραυματισμούς, απώλειες ανθρώπινων ζωών, 

ρευστοποίηση εδαφών, καταπτώσεις βράχων και δημιουργία θαλάσσιων κυμάτων (τσουνάμι). 

Για το λόγο αυτό πλήθος ερευνών διεξάγονται προκειμένου να προσεγγιστεί η απόκριση των 

κατασκευών σε δυναμικές φορτίσεις.  

Δομικά συστήματα ή αντικείμενα στα οποία η σημαντική παράμετρος της απόκρισης υπό 

δυναμικές φορτίσεις δεν είναι η παραμόρφωση του υλικού αλλά η μετακίνηση της 

κατασκευής είναι αυτά που εξετάζονται στην παρούσα εργασία. Τέτοια δομικά συστήματα 

(αρχαία μνημεία, μουσειακά εκθέματα, έπιπλα κ.α.) από «ισχυρά» υλικά θεωρούνται 

άκαμπτα ή σχεδόν άκαμπτα και εδράζονται ελεύθερα στη βάση τους. Συνήθως, η κινήση 

τέτοιων σωμάτων είτε στο επίπεδο είτε στο χώρο όταν αυτά υποβληθούν σε εξωτερική 

διέγερση ισοδυναμεί με κίνηση απολύτως στερεού σώματος. Στην περίπτωση, όμως, 

σωμάτων που δεν μπορούν να θεωρηθούν απόλυτα άκαμπτα και οι μετακινήσεις δεν 

οφείλονται αποκλειστικά σε κίνηση στερεού σώματος αλλά και σε μετακινήσεις λόγω 

κάμψης τα πράγματα γίνονται περίπλοκα. Ως αποτέλεσμα, η συμπεριφορά τέτοιων 

αντικειμένων, σωμάτων ή δομικών στοιχείων που εδράζονται ελεύθερα και που πολλές φορές 

αποτελούν πολιτισμική κληρονομιά χρήζει αντικείμενο μελέτης. Σκοπός της εργασίας είναι η 

μελέτη της σεισμικής απόκρισης ελεύθερα εδραζομένων σωμάτων είτε άκαμπτων είτε 

εύκαμπτων σε σχεδόν άκαμπτη επιφάνεια και στόχος η δημιουργία μοντέλων και η 

προσέγγιση της συμπεριφοράς κάτω από σεισμικές διεγέρσεις.  

Στο κεφάλαιο 1 παρουσιάζονται οι διαφορετικοί τρόποι απόκρισης ενός σώματος ελεύθερα 

εδραζόμενου υπό μια σεισμική διέγερση. Αποδεικνύεται ο λόγος για τον οποίο η ολίσθηση 

αμελείται στην παρούσα εργασία, οι δυο διαφορετικοί τρόποι ανατροπής ενός σώματος 

καθώς και ο ορισμός της λικνιστικής συμπεριφοράς που είναι και το αντικείμενο της 

εργασίας.  
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Το κεφάλαιο 2 περιλαμβάνει την αναγνώριση του προβλήματος του λικνισμού άκαμπτων 

σωμάτων ελεύθερα εδραζόμενων σε άκαμπτη επιφάνεια, την επίλυση της εξίσωσης κίνησης, 

τη γραμμικοποίηση της εξίσωσης κίνησης και τη δυνατότητα επίλυσης αυτής με τη βοήθεια 

ενός solver που διατείθεται στη MATLAB. Στόχος ήταν η δημιουργία μοντέλων που θα 

προσεγγίζουν τη συμπεριφορά αυτή χωρίς τη μοντελοποίηση του φορέα με τετρακομβικά 

πεπερασμένα στοιχεία πράγμα που οδηγεί σε  χρονοβόρες αναλύσεις. Για το σκοπό αυτό 

παρουσιάζονται στο κεφάλαιο 2 τα μοντέλα που δημιουργήθηκαν στο λογισμικό OpenSees 

και η απόκρισή τους συγκρίνεται με την απόκριση από την επίλυση της εξίσωσης κίνησης. Η 

προσομοίωση έγινε με 4 διαφορετικούς ταλαντωτές, χρησιμοποιήθηκαν beam-column 

elements συνδεόμενα στη βάση με ένα στροφικό ελατήριο για το οποίο εξαετάστηκαν δύο 

διαφορετικοί νόμοι ροπής-στροφής. Για την επιβεβαίωση των αποτελεσμάτων 

πραγματοποιήθηκαν δυναμικές αναλύσεις με διάφορους παλμούς και πραγματικές σεισμικές 

καταγραφές, έγινε σύγκριση των καμπυλών Pushover, των μετακινήσεων και των ροπών 

ανατροπής. 

Στο κεφάλαιο 3 έγινε μια διερεύνηση σχετική με την απώλεια ενέργειας που συμβαίνει κατά 

την κίνηση ενός λικνιζόμενου δομικού συστήματος. Έχουν προταθεί κατά καιρούς 

διαφορετικοί τρόποι προσέγγισης του θέματος οι οποίοι εξετάστηκαν και αναλύθηκαν. 

Αρχικά, η απώλεια ενέργειας προσεγγίστηκε με έναν αποσβεστήρα τοποθετημένο στη βάση 

του στύλου και προσφέροντας συνεχή απόσβεση. Στη συνέχεια εξετάστηκε η περίπτωση της 

αριθμητικής απόσβεσης (numerical damping) και της προσομοίωσης της απόσβεσης 

σύμφωνα με τον κανονισμό FEMA-356. Αυτό που αξίζει να σημειωθεί είναι το γεγονός πως 

απώλεια ενέργειας σε τέτοια δομικά συστήματα συμβαίνει μόνο κατά τις στιγμές της κρούσης 

του σώματος στην επιφάνεια. Για το λόγο αυτό, αν και από τις προηγούμενες προσομοιώσεις   

προκύπτουν ικανοποιητικά αποτελέσματα, αναζητήθηκε ένας τρόπος στιγμιαίας απόσβεσης 

τη στιγμή της κρούσης. Έτσι τροποποιήθηκαν τα απλοποιητικά μοντέλα πεπερασμένων 

στοιχείων του κεφαλαίου 2, συσχετίζοντας τις γωνιακές ταχύτητες των κόμβων με το 

συντελεστή αποκατάστασης κάθε στιγμή στην οποία λαμβάνει χώρα μια κρούση (event-based 

damping). Πλήθος αναλύσεων με παλμούς και πραγματικές καταγραφές επιβεβαιώνουν την 

ορθότητα των αποτελεσμάτων. 

Στο κεφάλαιο 4 στόχος ήταν ο έλεγχος του τελευταίου μοντέλου στην περίπτωση των 

εύκαμπτων σωμάτων και ο υπολογισμός της απόκρισης συμπεριλαμβανομένων των 
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καμπτικών μετακινήσεων. Επιλύθηκε ένα συγκεκριμένο σώμα στο πρόγραμμα Abaqus υπό 

παλμική και σεισμική διέγερση για την επιβεβαίωση της ορθότητας των αποτελεσμάτων που 

προκύπτουν από το μοντέλο 4 ενώ στη συνέχεια έγινε μια παραμετρική ανάλυση όπου και 

παρουσιάζονται οι διαφορές στην απόκριση μεταξύ ενός εύκαμπτου και άκαμπτου 

λικνιζόμενου σώματος. 

Η παρούσα εργασία αποτελεί ένα τρόπο εκτίμησης και προσέγγισης της σεισμικής 

συμπεριφοράς σωμάτων που υποβάλλονται σε λικνιστική κίνηση μέσω απλών μοντέλων ενώ 

οδήγησε σε κρίσιμα συμπεράσματα σχετικά με την κατανοήση ενός τόσο ενδιαφέροντος και 

ταυτόχρονα περίπλοκου θέματος. Τα συμπεράσματα παρατίθενται στο κεφάλαιο 5 ενώ 

προτείνονται ιδέες για μελλοντική έρευνα. 

Το κεφάλαιο 6 περιλαμβάνει βιβλιογραφικές αναφορές που αποτελούν ένα καλό οδηγό για τη 

μελέτη παρόμοιων ερευνητικών θεμάτων. 
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1. Introduction 

1.1. Presentation of the problem 

Reconnaissance reports following strong earthquakes substantiate that a solitary free-standing 

solid body subjected to a seismic excitation of the base can uplift, slide, rock or overturn. The 

need to understand and predict these failures in association with the temptation to estimate 

levels of ground motion by examining whether slender structures have overturned or survived 

the earthquakes, has motivated a number of studies on the response of blocks. 

 

Sliding   Rocking   Uplift 

Figure 1: Seismic Response of a solitary free-standing solid body under a seismic excitation. 

 

The phenomenon of the partial uplift of a structure from its foundation and its oscillation 

when the center of rotation changes simultaneously from one point of reference to another is 

known in the literature as rocking and it is often observed during seismic excitations. The 

study of rocking motion in structures is crucial because as it was indicated by many 

researchers slender structures may rock on their foundation, a phenomenon which can be 

devastating in some cases. Rocking motion introduces a highly nonlinear mechanical problem 

due to the fact that it involves a wide range of nonlinear physical phenomena, such as impact, 

contact, uplift and sliding. Therefore, the mathematical formulation and solution of the full 

rocking problem is a rather difficult task. For this reason, numerical modeling through 

nonlinear finite element analysis is one of the most suitable tools for a wide range of dynamic 

rocking problems, as it is able to provide accurate prediction of the rocking motion. However, 
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the utilization of nonlinear finite element analysis requires special attention and validation of 

the obtained results by means of comparison with experimental or analytical solutions. The 

purpose of this master’s dissertation is to approach the seismic response of rocking blocks 

subjected to pulses-like ground excitation or real records with the Finite Element Method 

taking into account the nonlinear physical phenomena and the difficulties of an analytical 

formulation and solution. 

1.2. Sliding of Solitary Blocks – Coefficient of friction 

During the dynamic movement of a free-standing solid body due to the base excitation a 

nonlinear phenomenon which may take place is sliding. A body slides if it can’t follow the 

ground motion. The friction in the interface between the base and the body has a direction 

parallel to the interface and is produced by the relative displacement of the two surfaces in 

contact and does not depend on their sliding velocities. If the horizontal force exceeds the 

static force of friction (which is a boundary value) then the body is sliding. The ratio of the 

static force of friction to the vertical base resistance is called static coefficient of friction: 

st
st

T

N
   (1.1) 

During the sliding the body continues to exist forces of friction. The requirement for 

continuation of sliding with fixed velocity is a horizontal force called sliding force of friction 

and is constant during the sliding of the body. The ratio of the sliding force of friction to the 

vertical base resistance is called sliding coefficient of friction: 

tot
tot

T

N
   (1.2) 

and it is generally accepted that μtot< μst. The static coefficient of friction and the sliding 

coefficient of friction is independent οf the body mass and the area of the contact surface and 

depends only from the kind of the contact surfaces. 

Assuming that V and U are the vertical and horizontal base accelerations respectively, X and 

Y are the horizontal and vertical displacements, X  and Y are the velocities and  X  and Y are 

the horizontal and vertical accelerations respectively of the body. 
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According to the principle of D’ Alembert the equations of motion of the body will be: 

mX T  (1.3) 

mY N mg   (1.4) 

where m is the body mass. Modifying the above equations we have as a result: 

T mU  (1.5) 

1
V

N mg
g

 
  

 
 (1.6) 

In order to slide the free-standing solitary body the inertial force must be at least the same 

with the static force of friction, namely: 

stmX T  (1.7) 

Taking into account all the above is arising: 

1

1

st

st

st

st

mX T

mX N

V
mX mg

g

V
U g

g







 

 

 
   

 

 
  

 

 

Ignoring the vertical ground motion (the vertical acceleration) then sliding takes place only in 

case of: 

stU g  (1.8) 

1.3. Rocking Motion 

As it is described above the phenomenon of the partial uplift of a structure from its foundation 

and its oscillation when the center of rotation changes simultaneously from one point of 

reference to another is known in the literature as rocking. It has been proved that rocking 
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initiates when during the excitation occurs ,mina tang gu g   , where tanα=h/b and 2h, 2b 

are the height and width of a rectangular body. In this master’s dissertation we have assume 

that there is no sliding. This assumption means that tanα<μst which is acceptable in the 

majority of structures which are significant for a Civil Engineer. If  tanα>μst then the body is 

not rocking and consequently is sliding. Structures with tanα>μst is not examined here. 

The rocking motion is usual in free-standing body and generally in free-standing structures 

due to the above observation. For this reason, for more than a century the response of rigid 

blocks allowed to uplift and rock on a rigid foundation under seismic ground motion 

excitation has been studied. Housner demonstrated that large rigid blocks and large rocking 

rigid frames is difficult to overturn dynamically. In the same way Housner has shown a scale 

effect that characterizes the response of rocking blocks subjected to a ground motion. For a 

given earthquake, larger objects need a larger ground acceleration to overturn and longer 

dominant period earthquakes have a larger overturning capability that shorter dominant period 

ones. This explains the survival of ancient Greek and Roman top-heavy temple structures in 

regions of high seismicity, despite the lack of historical evidence that ancient engineers were 

aware of the size effect of rocking structures. This size effect has lead researchers to propose 

rocking as a seismic response modification technique. A 60-m-tall bridge designed to rock has 

already been built across the Rangitikei River in New Zealand in 1981. Moreover, a 33-m-tall 

chimney at the Christchurch New Zealand airport has been designed to uplift. Furthermore, 

three 30 to 38-m-tall chimneys in Piraeus, Greece, have been retrofitted by letting them uplift 

in case of an earthquake. 

Although the phenomenon has been studied there are questions and problems that require 

further research and verification with the reality. On the other hand due to the Finite Element 

Method problems that are more complicated can be solved. For this reason getting started 

from problems that are simple and understanding the motion of a rocking block can have 

models that approach the real response of rocking structures. 

1.4. Overturning of Solitary Blocks 

Sliding and rocking are two ways that a free-standing block can respond to a base movement 

or a ground motion. The most significant questions researchers try to solve are when a 
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structure is overturning and when is rocking, in what accelerations are stable, why slender 

structures have survived the earthquakes, in what way can take place an overturning and how 

can we protect ancient monuments if we know their properties. Early studies of the response 

of rigid bodies have shown that a block can overturn with two different ways: 

a) With one or more impacts. 

b) Without impact. 

With reference to the following figure can understand how difficult is the approaching of the 

seismic response or the overturning of pillars or free-standing structures. Two pillars which 

was shown as same under an earthquake had different response. The one has overturned while 

the other is stable. The frame in the width of the picture is stable as it was expected. 

 

Figure 2: Overturning of a free-standing pillar after an earthquake. 
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2. Rocking Response of Undamped Rigid Blocks  

2.1. Solution of the equation of motion of an Undamped Rocking Body (URB) using 

standard ODE solvers available in MATLAB 

It was assumed a rectangular block with height 2h and width 2b. If the coefficient of friction 

between the block and the base is infinite so that there is no sliding, the equation of motion of 

a solitary free standing block with 2 2R h b   and slenderness arctan( / )a b h  under a 

horizontal ground acceleration ( )gu t , when rocking around the pivot points O and 

O΄respectively is: 

0 ( ) sin[ sgn ( ) ( )] ( ) cos[ sgn ( ) ( )]gI t mgR t t mu t R t t            (2.1) 

where 2

0 (4 / 3)I mR  is the moment of inertia with respect to the pivot point, g is the gravity 

acceleration, m is the mass of the block and θ is the response rotation. 

Rocking initiates when during the excitation occurs ,mina tang gu g a  . Replacing 0I  to the 

above equation and defining the quantity 
3

4

g
p

R
  as the frequency parameter of the rocking 

block, equation takes the following form: 

 2( ) sin sgn( ( )) ( ) cos[ sgn( ( )) ( )]
gu

t p t t t t
g

      
 

     
 

 (2.2) 

If it is assumed that θ and α are small or linearizing the equation of motion then it can be 

expressed in a simplified form as: 

0 ( ) ( sgn ) gI t mgR mu R        (2.3) 

The solution of Equations is obtained numerically via a state-space formulation with standard 

ODE solvers available in MATLAB. With reference to Figure 3 and in order to decide among 

the solvers a comparison between 2 ODE solvers took place. The response of a rigid rocking 
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body with R=2m, slenderness ratio value tanα=0.1 and 0.333 under a symmetric Ricker pulse 

and a sine pulse excitation with ap=3.6gtanα, ωp=3π rad/s and ωp=4.44π rad/s respectively is 

computed and plotted in Figure 3.  

 

Figure 3: Comparison of rocking rotation time history response of undamped rocking bodies under a 

symmetric Ricker pulse (left) and to a sine pulse excitation (right) using ODE45 and ODE23s solver. 

 

Figure 4: Comparison of rocking rotation time history response of undamped rocking bodies using  

full equation of motion (URB) and undamped rocking bodies with linearized equation of motion 

(LURB) under a symmetric Ricker pulse (left) and a sine pulse excitation (right). 
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The results obtained from the two ODE simulations do not match so well. Nevertheless, 

ODE23s solver fits the real response of rocking bodies. 

In Figure 4 is presented the different response of the above blocks in case of linearization of 

the equation of motion. If the slenderness ratio is small (tanα=0.1) or θ/α is small (right) the 

results agree very well. For larger slenderness ratios, however, the assumption of small θ and 

α contains errors. 

2.2. Simulations of Undamped Rocking Bodies (URB) using OpenSees and Simple Finite 

Element Models 

If there is the assumption that a rigid body is rocking on a rigid surface, as it described 

previously, equations can be easily solved using a numerical computing package. The 

equations of more complex rocking structures or flexible rocking structures become much 

more complicated and their solution becomes cumbersome. Therefore, equivalent SDOF 

models are proposed. The models include an elastic column with cross section identical to the 

cross section of the rocking block connected to a zero-length non-linear elastic rotation 

spring. The Figure 5 (left) shows the moment-rotation relationship during the rocking motion 

of a solitary free-standing rigid block. The system has infinite stiffness until the magnitude of 

the applied moment reaches the value mgRsinα. Once the block is rocking, its restoring forces 

decreases monotonically, reaching zero when θ=α. The moment-rotation relationship was 

introduced in the models either taking into account the negative stiffness of the rocking block 

(linear spring) or considering second-order geometric transformations and large 

displacements (non-linear spring). In the second case, the spring has a rigid-plastic moment-

rotation response envelope with yield moment equal to mgRsinα and full geometric 

nonlinearity. For the comparison of the response between the URB and the USDOFSM the 

Young’s Modulus, E, is set to a very large value (E=1012kPa) because the column is quasi-

rigid. In the following Figure 5 are presented the two different approaches of the moment-

rotation relationship as they introduced in the models. It is noteworthy that the yield rotation 

for both of them and the yield stiffness for the case that the spring has a rigid-plastic moment-

rotation relationship are set to very small values (10-5 to 10-12) in order to avoid problems of 

convergence.  
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Figure 5: Moment-rotation relationships for a rigid rocking body. 

2.2.1. Undamped Single Degree of Freedom Spring Model 1 (USDOFSM -1) 

Initially, the Single Degree of Freedom Spring Model 1 is considering as a case study. The 

seismic response and specifically the rotation θ is the basic target of the model. The results 

obtained from the model verify the assumption as it is described below. 

 

Figure 6: Rocking Block and the proposed Single Degree of Freedom Spring Model 1 (SDOFSM-1). 
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The equation of motion of the above spring model taking into account the negative stiffness 

of the rocking block is the following: 

0 ( ) sin[ sgn ( ) ( )] ( ) cos cosgI t mgR t t mu t R           (2.4) 

where
 

2 2 2

0 0

1 4

3 3
mR mR mR I     . In comparison with the equation of motion of a 

Rocking Block the difference locates in the term of the horizontal ground acceleration. 

The response of the Undamped Single Degree of Freedom Spring Model 1 (USDOFSM-1) in 

comparison with the response of a rigid rocking body with R=2m, slenderness ratio value 

tanα=0.1, 0.2 and 0.333 under a symmetric Ricker pulse and a sine pulse excitation with 

ap=3.6gtanα, ωp=3π rad/s and ωp=4.44π rad/s respectively is computed and plotted in Figure 7 

and Figure 8. It is noted that the small differences are most likely due to the term of the 

horizontal ground acceleration. 

 

Figure 7: Comparison of rocking rotation and velocity time history response between the URB and the 

USDOFSM-1 to a symmetric Ricker pulse excitation. 
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Figure 8: Comparison of rocking rotation and velocity time history response between the URB and the 

USDOFSM-1 to a sine pulse excitation. 

2.2.2. Undamped Single Degree of Freedom Spring Model 2 (USDOFSM-2) 

Secondly, an observation relevant to the equation of motion led to the Single Degree of 

Freedom Spring Model 2. 

 

Figure 9: Rocking Body and the proposed Single Degree of Freedom Spring Model 2 (SDOFSM-2). 
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We can transform the equation of motion of the model in order to solve the rocking problem 

of a rigid block. The equation of motion of the above spring model taking into account the 

negative stiffness of the rocking block is the following: 

0 ( ) sin[ sgn ( ) ( )] overturningI t mgR t t M        (2.5) 

where 23cos 4 3cos
cos cos cos cos

4 3 4
overturning o g g gM I u mR u mu R

R R

 
         . 

Considering that the term sin[ sgn ( ) ( )]mgR t t    has introduced to the model due to the 

moment-rotation relationship of the rotational spring the only difference with the equation of 

motion of a Rocking Block is in the term of the ground acceleration. For this reason, the 

proposed model was modified by the direction of the ground acceleration (instead of 

horizontal direction the ground acceleration exerted in the rotational degree of freedom) and 

multiplying this term with the factor 3cosα/4R. 

The response of the Undamped Single Degree of Freedom Spring Model 2 in comparison 

with the response of a rigid rocking body with R=5m, slenderness ratio value tanα=0.1, 0.2 

and 0.333 to a symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtana, ωp=2π 

rad/s and ωp=2.66π rad/s respectively is computed and plotted in Figure 11 and Figure 12. 

 

Figure 10: A symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtanα, ωp=2π rad/s and 

ωp=2.66π rad/s. 
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Figure 11: Comparison of rocking rotation and velocity time history response between the URB and 

the USDOFSM-2 to a symmetric Ricker pulse excitation. 

 

Figure 12: Comparison of rocking rotation and velocity time history response between the URB and 

the USDOFSM-2 to a sine pulse excitation. 

2.2.3. Undamped Single Degree of Freedom Spring Model 3 (USDOFSM-3) 

Subsequently, a new Single Degree of Freedom Spring Model 3 is presented. The purpose in 

each model is the approaching of the equation of motion of a free-standing rigid block. The 
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idea included the most significant term which is the moment of inertia with respect to the 

pivot point of the block. 

 

Figure 13: Rocking Body and the proposed Single Degree of Freedom Spring Model-3 (SDOFSM-3). 

 

The equation of motion of the above spring model taking into account the negative stiffness 

of the rocking block is the following: 

0 ( ) sin[ sgn ( ) ( )] ( ) cos cosgI t mgR t t mu t R           (2.6) 

where 2 2 2 2 2 2 2 2

0 0

1 1 4
sin cos

3 3 3
mR mR mR mR mR mR I          

Considering that the term sin[ sgn ( ) ( )]mgR t t    has introduced to the model due to the 

moment-rotation relationship of the rotational spring the only difference with the equation of 

motion of a Rocking Block is in the term of the ground acceleration. Consequently, the 

SDOFSM-3 is another way to solve the rocking problem with the Finite Element Method. 

The response of the Undamped Single Degree of Freedom Spring Model-3 in comparison 

with the response of a rigid rocking body with R=10m, slenderness ratio value tanα=0.1, 0.2 

and 0.333 under a symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtanα, 
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ωp=1.4π rad/s and ωp=1.905π rad/s respectively is computed and plotted in Figure 15 and 

Figure 16. 

 

Figure 14:A symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtana, ωp=1.4π rad/s and 

ωp=1.905π rad/s. 

 

Figure 15: Comparison of rocking rotation and velocity time history response between the URB and 

the USDOFSM-3 to a symmetric Ricker pulse excitation. 
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Figure 16: Comparison of rocking rotation and velocity time history response between the URB and 

the USDOFSM-3 to a sine pulse excitation. 

2.2.4. Undamped 5-element Spring Model 4 (U5elemSM-4) 

The last model emerged from the requirement of approaching the rocking response of flexible 

bodies. For this reason, firstly a n-element model was considered.  

 

Figure 17: Rocking Body and the proposed 5-element Spring Model-4 (5elemSM-4). 
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Figure 18: Confirmation of the assumption that 6 and more masses can reach the desired outcome. 

 

After a series of analyses it was observed that a model with 6 and more masses can reach the 

desired outcome. 

Figure 18 is presented the results obtained for 5, 10 or 20-element model for different R under 

a symmetric Ricker Pulse with tanα=0.3 and for ωp=3π rad/s (R=2m), ωp=2π rad/s (R=5m) 

and ωp=1.4π rad/s (R=10m). 

It is generally accepted that the moment of inertia of a bar rotated from his corner is 

21

3
I mL  where m is the total mass and L is the length of the bar. Taking into account the 

above observation, the moment of inertia of a bar with total mass m and length 2R rotated 

from one corner O is: 
' 2 2

0 0

1 4
(2 )

3 3
I m R mR I   . Consequently, the equation of motion of 

the above spring model taking into account the negative stiffness of the rocking block is the 

following: 

0 ( ) sin[ sgn ( ) ( )] ( ) cos cosgI t mgR t t mu t R           (2.7) 

Once more, the only difference with the equation of motion of a Rocking Block is in the term 

of the ground acceleration. 
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The response of the Undamped 5-element Spring Model 4 in comparison with the response of 

a rigid rocking body with R=10m, slenderness ratio value tanα=0.1, 0.2 and 0.333 under a 

symmetric Ricker pulse and a sine pulse excitation with ap=3.6gtanα, ωp=1.4π rad/s and 

ωp=1.905π rad/s respectively is computed and plotted in Figure 19 and Figure 20. 

 

Figure 19: Comparison of rocking rotation and velocity time history response between the URB and 

the U5elemSM-4 to a symmetric Ricker pulse excitation. 

 

Figure 20: Comparison of rocking rotation and velocity time history response between the URB and 

the U5elemSM-4 to a sine pulse excitation. 
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2.3. Comparison of the two moment-rotation relationships 

The equation of motion of the proposed Spring Models, as it was described above, 

considering the negative stiffness of the rocking block (disregarding damping) is: 

0 ( ) sin[ sgn ( ) ( )] ( ) cos cosgI t mgR t t mu t R           (2.8) 

The equation of motion of the proposed Spring Models 1 and 4 considering second-order 

geometric transformations and large displacements is: 

0 ( ) (sin sgn sin ) ( ) cos cosgI t mgR mu t R           (2.9) 

and the equation of motion of the proposed Spring Models 2 and 3 considering second-order 

geometric transformations and large displacements is:  

0 ( ) (sin sgn cos sin ) ( ) cos cosgI t mgR mu t R            (2.10) 

where 
' 2

0 0

4

3
I mR I   for all the tree cases. 

 

Figure 21: Comparison of the moment-rotation relationship between the RB and the SM 1 and 4 with 

full geometric non-linearity. 
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Figure 22: Comparison of the moment-rotation relationship between the RB and the SM 2 and 3  

with full geometric non-linearity. 

 

The difference between the three approaches is plotted in the Figure 21 and Figure 22. 

2.4. Comparison of the displacements between the models 

The horizontal and vertical displacements of the corners of the top cross section of the 

Rocking Body are described by the following equations: 

when θ<0:   

 
1

2

1

2

2 cos sin

2 (sin sin( ))

2 cos (1 cos )

2 (cos( ) cos )

u R

u R

v R

v R

 

  

 

  



  

  

  

 (2.11) 

when θ>0:   

 
1

2

1

2

2 (sin sin( ))

2 cos sin

2 (cos( ) cos )

2 cos (1 cos )

u R

u R

v R

v R

  

 

  

 

  



  

  

 (2.12) 
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The horizontal and vertical displacements of the top cross section (height=2h) of the 

equivalent Single Degree of Freedom Spring Models taking into account the negative stiffness 

of the rocking block are described by the equivalent equations: 

SDOFSM-1: 
2 sin (2 2 cos )sin 2 cos sin

0

e

e

u R R R R

v

       


 (2.13) 

SDOFSM-2: 
2 cos sin

0

e

e

u R

v

 


 (2.14) 

SDOFSM-3: 
2 cos sin

0

e

e

u R

v

 


 (2.15) 

5elemSM-4: 
2 sin (2 2 cos )sin 2 cos sin

0

e

e

u R R R R

v

       


 (2.16) 

 

 

Figure 23: Comparison of the horizontal displacements of the Rocking Block and the equivalent 

Spring Models. 

 

In Figure 23 was compared the equivalent horizontal displacement with the displacement of 

the Rocking Block and was observed that the results match well if the slenderness is up to 0.3. 
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In continuation of previous results, the horizontal and vertical displacements of the top cross 

section (height=2h) of the equivalent Single Degree of Freedom Spring Models considering 

second-order geometric transformations and large displacements are described by the 

equivalent equations: 

SDOFSM-1: 
2 sin (2 2 cos )sin 2 cos sin

2 cos (1 cos )

e

e

u R R R R

v R

    

 

   

  
 (2.17) 

SDOFSM-2: 
2 cos sin

2 cos (1 cos )

e

e

u R

v R

 

 



  
 (2.18) 

SDOFSM-3: 
2 cos sin

2 cos (1 cos )

e

e

u R

v R

 

 



  
 (2.19) 

5elemSM-4: 
2 sin (2 2 cos )sin 2 cos sin

2 cos (1 cos )

e

e

u R R R R

v R

    

 

   

  
 (2.20) 

 

 

Figure 24: Comparison of the horizontal displacements of the Rocking Block and the equivalent 

Spring Models. 

 

Although in the first approach the vertical displacement of the top cross section is 0, taking 

into account second-order geometric transformations is a way to compute the vertical 
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displacements (which are insignificant in comparison with the horizontal displacements). It is 

worth to notice that Spring Models give only negative displacements. 

 

Figure 25: Comparison of the vertical displacements of the Rocking Block and the equivalent Spring 

Models. 

2.5. Pushover Curves 

The horizontal force-displacement pushover response curve for the Rocking Body (RB) with 

the force acting at the centroid of the block is given by: 

tan( )
F

mg
    

(2.21) 

while the pushover curve for the equivalent Spring Models with the force acting at the node of 

the concentrated mass is given: 

1. If the moment-rotation relationship was introduced in the models taking into account 

the negative stiffness of the rocking block by: 

sin( )
tan tan

cos cos

F

mg

 
 

 


    

(2.22) 
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Figure 26: Force-deformation pushover curves for the RB and the SM. 

 

2. For the models 1 and 4 if the moment-rotation relationship was introduced in the 

models considering second-order geometric transformations and large displacements 

by:  

tan tan

cos cos

F

mg

 

 
   

(2.23) 

 

Figure 27: Force-deformation pushover curves for the RB and the SM 1 and 4. 
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3. For the model 3 if the moment-rotation relationship was introduced in the models 

considering second-order geometric transformations and large displacements by: 

tan
tan

cos

F

mg





   

(2.24) 

 

Figure 28: Force-deformation pushover curves for the RB and the SM 3. 

 

In models 1 and 4 the assumption of full geometric non-linearity works almost perfectly in 

every case while in models 3 only for small slenderness up to tanα=0.2. 

2.6. Comparison of the overturning moments 

The equation of motion of a rocking block has arisen equalizing the restoring moment with 

the overturning moment. For this reason, the overturning moment is given by: 

( ) cos( )overturning gM mu t R      (2.25) 

In a corresponding manner the overturning moment of the proposed models is given by: 

( ) cos cosoverturning gM mu t R     (2.26) 

The following figure represents the error which is considered as acceptable. 
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Figure 29: Comparison of the overturning moments for the RB and the SM. 
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3. Rocking Response of Damped Rigid Blocks 

3.1. Solution of the equation of motion of a Damped Rocking Body (DRB) using 

standard ODE solvers available in MATLAB 

Energy dissipation in rocking bodies takes place instantaneously at each impact, when the 

rotation changes sign at θ=0. The per-cycle of free vibration energy dissipation for a rigid 

rectangular block is described by the restitution factor r and is independent of the amplitude 

of vibration. The ratio of the energy after one complete cycle, E, to the initial energy, E0 is: 

4

2 2

0

3
1 sin

2

E
r

E


 
   

 
 (3.1) 

 

Figure 30: Influence of the coefficient of restitution to the response of a Rocking Body with R=2m 

under a symmetric Ricker pulse with ap=3.6gtanα and ωp=3π rad/s (left) and a sine pulse excitation 

with ap=3.6gtanα and ωp=4.44π rad/s (right). 

In most cases, impact is described by a resulting coefficient of restitution that relates the post-

impact angular velocity    to the pre-impact angular    velocity and is: 

23
1 sin

2


 






    (3.2) 
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3.2. Simulations of damping at Damped Spring Models with a rotational damper 

As it is described above energy dissipation in rocking blocks takes place instantaneously at 

each impact. However, viscous damping models widely used in structural dynamics, dissipate 

energy continuously in proportion to an associated relative velocity. Despite this fundamental 

difference, the proposed models, originally, utilizes a viscous damper with a damping 

coefficient c associated with the column rotation velocity located at the base of the column 

(Vassiliou, Mackie and Stojadinović, 2014). This is intended to account only for energy 

dissipated during impacts of the rigid body, and does not account for any additional 

engineered dampers. It is further assumed that, without verification, that the energy dissipated 

through rocking impact does not depend strongly on the flexibility of the rocking body, and 

thus, on the flexibility of the column in the Spring Models. 

The damping in the Spring Models is also different from the Rayleigh damping model used 

by Wiebe et al. [27] in that it is based on equivalent viscous damping corresponding to energy 

dissipation in a single cycle. 

It is possible to define the per-cycle equivalent energy loss damping coefficient for the 

rotational damper in the models as a function of the body mass, size and slenderness: 

2

0.5 1.50.02
0.1

c mg R
 

  
 

 (3.3) 

It is noted that that the damping coefficient was calibrated for large angles of rotation and, 

therefore, it is suitable for overturning analyses of the blocks and for small angle uplift. On 

the other hand, ElGawady et al. [28] have shown that the energy dissipated in a rocking body 

impact depends not only on slenderness α, but also considerably on the interface material on 

the rocking surfaces. Further research is needed to account for the type of interface material in 

the equivalent viscous damper of the SM. 

The time histories of the rocking response of rigid blocks with R=5m and slenderness ratio 

values tanα= 0.1, 0.2 and 0.333 to a symmetric Ricker pulse excitation with ap=3.6gtanα and 

ωp=2π rad/s computed using the ODE solvers and the damped Spring Models and plotted in 

the following Figures. 



Spyridon G. Diamantopoulos Seismic Response of Rocking Bodies using Simple FEM 

-31- 

 

 

Figure 31: Comparison of rocking rotation and velocity time history response between the DRB and 

the DSDOFSM-1 and DSDOFSM-2 with the negative stiffness of the rocking block to a Ricker pulse 

excitation. 

 

Figure 32: Comparison of rocking rotation and velocity time history response between the DRB and 

the DSDOFSM-3 and D5elemSM-4 with the negative stiffness of the rocking block to a Ricker pulse 

excitation. 
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Figure 33: Comparison of rocking rotation and velocity time history response between the DRB and 

the DSDOFSM-1 and DSDOFSM-2 with full geometric non-linearity to a Ricker pulse excitation. 

 

Figure 34: Comparison of rocking rotation and velocity time history response between the DRB and 

the DSDOFSM-3 and D5elemSM-4 with full geometric non-lineariy to a Ricker pulse excitation. 

 

As a result, arising from the above figures, all the damped models either with negative 

stiffness or full geometric non-linearity give almost the same response under a pulse-like 

ground excitation but a response different of the Rocking Body because of the damping 

coefficient. 
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3.3. Simulations of damping at Damped 5-element Spring Model 4 using numerical 

damping proposed by Vassiliou, Mackie and Stojadinović (2016) 

Vassiliou, Mackie and Stojadinović, 2016, proposed a model intended to facilitate a 

numerical time history analysis of the in-plane response of rocking structures to earthquake 

ground motion excitation. Assuming that no additional devices such as fuses, post-tensioned 

cables or dissipaters are used so that the rocking motion at the rocking interface is free the 

model had two components: (1) a finite element model of the solitary RB and (2) a set of 

requirements for conducting the time step integration and the geometric transformations 

during the time history solution process. 

In order to model the rocking surface at the end of the rocking body a simplified version of 

the model proposed by Barthes [29] was used. A rocking surface was modeled using the 

OpenSees zero-length fiber cross-section element placed between the node j of the block and 

the node i of the surface. The fiber material is non-linear, with no resistance in tension and an 

elastic response in compression and defined using a stress/displacement relation. As a result 

the material constant has units of force/length3 and is equivalent to a Winkler soil spring. No 

dampers are used while the fiber material is non-dissipative.  

 

Figure 35: A solitary rigid rocking block (left) and the proposed by Vassiliou, Mackie and 

Stojadinović model (right). 
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There is the assumption that rotations and displacements are small and the OpenSees zero-

length element computes the relative displacement between two nodes. The error in modeling 

the horizontal displacement of the bottom node of the block is evident but is insignificant 

when the model is used to simulate rocking response. 

On the other hand the rocking body is modeled using beam-column finite elements. The 

current implementation of the Deformable Rocking Body model in OpenSees utilizes linear 

elastic beam-column elements. In order to represent rocking of a rigid body on a rigid surface 

the stiffness of the fibers used to model the rocking surface and the stiffness of the beam 

element material used to model the rocking body should be set to sufficiently large values. It 

is noted that the stiffness of the fibers has units of force/length3 while the stiffness of the 

beam element has units of force/length2 and selected such that impact forces deform the 

rocking body and not the rocking surface. 

In this master’s dissertation are proposed 4 ways for modeling a rigid rocking body. Adjusting 

the 5elemSM-4 with the above observations we had as a target to solve the rocking problem, 

which involves a wide range of nonlinear physical phenomena, and to determine the seismic 

response without classical or non-classical damping. For this reason, the model at each time 

step was computed using the corotational formulation to account for the effect of large 

displacements and rotations that may occur during the motion of a rocking body and 

numerical damping via the Hilber-Hunges-Taylor algorithm. Vassiliou, Mackie and 

Stojadinović based on the case of stiff enough fibers of the zero-length element and the 

observation that the impact at pivot points induces elastic axial and flexural shock waves that 

propagate into the rocking body used a dissipative time-stepping integration procedure to 

numerically damp out the shock waves in the beam-column element and neglecting the 

propagation of waves into the rocking surface. They have shown that the origination and 

propagation of these high-frequency small-amplitude shock waves requires a very small 

integration time step (10-4 is enough) and a very fine finite element mesh. However, in our 

work the finite element mesh was the same in every case relying on the 5elemSM-4 with 

fairly well results in comparison with Housner’s model which assumes rocking motion of a 

rigid body on a rigid surface. For tall blocks (R=20m) and for big slenderness (0.333) there is 

an error which is acceptable taking into account the differences in the equation of motion and 

that there is non-compliance with their observation for a fine finite element mesh. 
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In the following figures were compared the rotation time history responses of different blocks 

under a Ricker pulse-like ground motion and a real record. It had been proven that the 

response is not sensitive to the number of fibers used to model the rocking surface and to the 

variation of the integration time step as long as it is reasonably short with respect to the period 

of the dominant motion components. In addition, it is noted that the numerical damping is 

maximum for the parameter of the OpenSees HHT algorithm ad=2/3 and zero for ad=1.  

The most significant of this method is that the model can be used to investigate the rocking 

response of deformable rocking bodies, complex assemblies of rigid bodies and rocking 

frames comprised of deformable bodies. 

 

Figure 36: Comparison of rocking rotation time history response between the DRB and the 

D5elemSM-4  to a Ricker pulse excitation with ap=3.6gtana and ωp=2π rad/s using numerical 

damping. 
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Figure 37: Comparison of rocking rotation time history response between the DRB and the 

D5elemSM-4 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Waho, φ=90ο, 

PGA=0.638g) using numerical damping. 

 

Figure 38: Comparison of rocking rotation time history response between the DRB and the 

D5elemSM-4 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff Array, 

φ=165ο, PGA=0.268g) using numerical damping. 
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Figure 39: Zoom of the comparison of rocking rotation time history response between the DRB and 

the D5elemSM-4 with R=5m and h/b=5 under the Loma Prieta’s 1989 earthquake (Station: Hollister 

Diff Array, φ=165ο, PGA=0.268g) using numerical damping. 

 

Nevertheless the seismic response in several cases is very close to the real response, there are 

cases with different response and the most significant disadvantage of this method is the 

required time of the analysis. 

3.4. Simulations of damping at Damped Single Degree of Freedom Spring Models 

according to FEMA-356 

According to FEMA-356 buildings may rock on their foundations in an acceptable manner 

provided the structural components can accommodate the resulting displacements and 

deformations. Consideration of rocking can be used to limit the force input to a building. 

However, rocking should not be considered simultaneously with the effects of soil flexibility. 

The design professional is directed to FEMA 274 and the work of Yim and Chopra (1985), 

Housner (1963), Makris and Roussos (1998), and Priestly and Evison (1978) for additional 

information on rocking behavior. A possible procedure for considering rocking is outlined in 

Figure 40. The procedure involves the following steps: 

• Calculation of the mass, weight, and center of gravity for the rocking system (or subsystem). 
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• Calculation of the soil contact area, center of contact, and rocking system dimension, R. 

• Determination of whether rocking will initiate. 

• Calculation of the effective viscous damping of the rocking system (and the corresponding 

design displacement spectrum). 

• Calculation (graphically or iteratively) of the period and amplitude of rocking (the solution 

will not converge if overturning will occur—that is, when θ>α). 

 

Figure 40: Rocking block as it was described by FEMA-356. 

Mass, weight, and center of gravity 

Note that, in general, the mass and weight will not be consistent with each other. The mass, 

M, is the total seismic mass tributary to the wall. The weight, W, is the vertical gravity load 

reaction. For the purposes of these calculations, the vertical location of the center of gravity is 

taken at the vertical center of the seismic mass and the horizontal location of the center of 

gravity is taken at the horizontal center of the applied gravity loads. 

Soil contact area and center of contact 

The soil contact area is taken as W/qc. The wall rocks about point O located at the center of 

the contact area. 

Wall rocking potential 

Determine whether the wall will rock by comparing the overturning moment to the restoring 

moment. For this calculation, Sa is based on the fundamental, elastic (no-rocking) period of 
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the wall. The wall will rock if Sa > (W/Mg)tanα. If rocking is not indicated, discontinue these 

calculations. 

Rocking calculations 

Calculate IO, the mass moment of inertia of the rocking system about point O. 

Calculate the effective viscous damping, β, of the rocking system as follows: 

 0.4 1 r    (3.4) 

where: 

 
2

2

0

1 1 cos(2 )
MR

r a
I

 
   
 

 (3.5) 

Construct the design response spectrum at this level of effective damping using the procedure 

defined in Section 1.6.1.5 of FEMA-356. By iteration or graphical methods, solve for the 

period and displacement that simultaneously satisfy the design response spectrum and the 

following rocking period equation: 

1

0

4 1
cosh

1

T
WR

I







 
 

  
 
 

 (3.6) 

where: 

cos

rocking

R





  (3.7) 

while recall that: 
2

24
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T
S S g


   

At the desired solution: rocking dS    
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Figure 41: Comparison of rocking top displacement time history response between the DRB and the 

proposed by FEMA-356 model with R=5m under the Loma Prieta’s 1989 earthquake (Station: 

Anderson Dam Downstream, φ=270ο, PGA=0.235g). 

 

Figure 42: Comparison of rocking top displacement time history response between the DRB and the 

proposed by FEMA-356 model with R=2m under the Loma Prieta’s 1989 earthquake (Station: 

Hollister Diff Array, φ=255ο, PGA=0.279g). 
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3.5. Event-based damping proposed 

A new approach of the energy dissipation in rocking blocks is proposed in this master’s 

dissipation. The idea emerged from the fact that the energy dissipation in the rocking motion 

is an instantaneous event. As it is described in an above chapter the damping in the Spring 

Models is different from the Rayleigh damping model used by Wiebe et al [27] in that it is 

based on equivalent viscous damping corresponding to energy dissipation in a single cycle. 

Obviously, a continuous damper can approach the seismic behavior regarding the maximum 

rotations but it is suitable only for overturning analyses and for small angle uplift while it will 

always contain errors because of the hypothesis of continuous loss of energy. As a result, 

further research is needed to account in order to have a damping coefficient for several angles 

and rotations and for the type of interface material in the equivalent viscous damper of the 

SM. 

On the other hand, if it is assumed that a rigid body is rocking on a rigid surface the 

coefficient of restitution that relates the post-impact angular velocity    to the pre-impact 

angular    velocity has been described above. Regardless of the value of the coefficient of 

restitution, the proposed model can approach the behavior because of the correlation of the 

coefficient with the angular velocity of every node. For this reason and with the assumption 

that energy dissipation in rocking blocks takes place instantaneously at each impact the 

objective was a simple work. Initially, the models proposed in chapter 2 were transformed in 

order to count the pre-impact velocity. Pausing the analysis in each impact and multiplying 

the pre-impact velocity of every node with the coefficient of restitution was calculated the 

post-impact angular velocity of every node. The post-impact angular velocity converted to an 

initial condition in order to continue the analysis (Event-Based Damping). The same 

procedure is repeated until the analysis stop. The following figures confirm the mass 

proportional damping assumption and that a finite element model can assess the seismic 

response of a rigid rocking block on a rigid surface.  

In the following two subsections are presented several examples of blocks under pulses-like 

ground excitation and real records in order to convince the proposed event-based damping 

models works perfectly in almost every case.  
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3.5.1. Rocking Response under pulse-like ground excitation 

 

Figure 43: Comparison of rocking rotation and velocity time history response of between the DRB and 

the EBDSDOFSM-3 with R=5m to a Ricker pulse excitation with ap=3.6gtana and ωp=2π rad/s. 

 

Figure 44: Comparison of rocking rotation and velocity time history response s between the DRB and 

the EBDSDOFSM-3 with R=5m to a sine pulse excitation with ap=3.6gtana and ωp=2.66π rad/s. 
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Figure 45: Overturning spectrum of damped rigid bodies under a Ricker pulse excitation. 

 

Figure 46: Equivalent overturning spectrum of the EBDSDOFSM-3 under a Ricker pulse excitation. 
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3.5.2. Rocking Response under real records 

The event-based damping works perfectly under a pulse like-ground excitation. However, the 

most significant thing in a research around the seismic response of structures is the 

approaching under a real record. A finite element model must verify the response resulting 

from analytical models or experiments in order to be remarkable. In the following figures 

some different models under several records are tested. Although four models are proposed 

the results have been obtained by the SDOFSM-3 and the 5elemSM-4 aiming to confirm that 

either a model with one or a model with more degrees of freedom can approach the real 

behavior. Three models with different R or different slenderness were examined. 

 Rocking Blocks with R=10m and slenderness h/b=10. 

 

Figure 47: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Anderson Dam 

Downstream, φ=360ο, PGA=0.24g). 
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Figure 48: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Waho, φ=90ο, 

PGA=0.638g). 

 

Figure 49: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBD5elemSM-4 with R=10m under the Loma Prieta’s 1989 earthquake (Station: Agnews State 

Hospital, φ=90ο, PGA=0.159g). 
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Figure 50: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBD5elemSM-4 with R=10m under the Superstition Hills’ 1987 earthquake (Station: Wildlife 

Liquefaction Array, φ=90ο, PGA=0.18g). 

 Rocking Blocks with R=5m and slenderness h/b=10. 

 

Figure 51: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff 

Array, φ=165ο, PGA=0.268g). 
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Figure 52: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Waho, φ=0ο, 

PGA=0.37g). 

 

Figure 53: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBD5elemSM-4 with R=5m under the Loma Prieta’s 1989 earthquake (Station: Anderson Dam 

Downstream, φ=270ο, PGA=0.235g). 
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Figure 54: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBD5elemSM-4 with R=5m under the Imperial Valleys’ 1979 earthquake (Station: Cucapah, 

φ=85ο, PGA=0.309g). 

 Rocking Blocks with R=2m and slenderness h/b=6. 

 

Figure 55: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=2m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff 

Array, φ=255ο, PGA=0.279g). 
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Figure 56: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=2m under the Loma Prieta’s 1989 earthquake (Station: Waho, φ=90ο, 

PGA=0.638g). 

 

 Rocking Blocks with R=1m and slenderness h/b=6. 

 

Figure 57: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=1m under the Loma Prieta’s 1989 earthquake (Station: Hollister Diff 

Array, φ=255ο, PGA=0.279g). 
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Figure 58: Comparison of rocking rotation and velocity time history response between the DRB and 

the EBDSDOFSM-3 with R=1m under the Superstition Hills’ 1987 earthquake (Station: Wildlife 

Liquefaction Array, φ=360ο, PGA=0.20g). 
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4. Rocking Response of Damped Flexible Blocks 

Relatively few studies have been carried out to investigate the influence of the flexibility of a 

structure on its rocking behavior taking into account that the rocking response of rigid 

structures has been studied extensively. In this section is presented an investigation of rocking 

of flexible blocks and an examination of the limits of the validity of the rigid block 

assumption that has been used in all the above research. The proposed Spring Model 4 with 

the event-based damping was extended and modified by assuming that the column represents 

the rocking body is deformable. For this reason the model was modified by evenly 

distributing the rotational inertia difference ΔI0= 4/3mR2 *(1-cos2α) among the rotational 

degrees of freedom of the nodes used to model the column. Namely, a rotational mass equal 

to ΔI0 /nnod (where nnod is the number of nodes) is added to the rotational degree of freedom 

of each node in the finite element model.  This means that the column with distributed masses 

modeled as an Euler-Bernoulli beam-column with a linear elastic material characterized by 

the elastic modulus E and the density ρ. 

 

 

Figure 59: Α modified version of 5elemSM-4 suitable to solve flexible blocks 
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Roh and Reinhorn performed experiments on rocking concrete columns and proved that, for 

low values of axial force there is no-spalling of concrete when the column uplifts. With this 

evidence it is assumed that the   geometry of the rocking interface does not change and that 

the column continues to rotate around the pivot points O and O’. As a result, since the vertical 

reaction at the rocking point (equal to the self-weight of the rocking body) is relatively small, 

the compression zone of the base cross section tends to become a point.  

The overturning instability of a flexible rocking column subjected to a pulse-like ground 

motion is described by its base rotation and is a function of 7 variables: 

 ( ) , , , , , , ,p pt f a g R       (4.1) 

Each term of the above equation includes 3 reference dimensions: 

 2 1 2 3 1 2, , , , [], [], ,p pa LT T g LT R L ML E ML S                                  . 

The damping ratio ζ, is the column first mode flexural vibration damping ratio, modeled in 

OpenSees  using stiffness proportional Rayleigh damping for the nodes of the column, 

excluding the nodes at the end of the non-linear spring (an option available in OpenSees). 

Energy dissipation due to rocking is modeled using the event-based damping proposed in the 

previous chapter. Also, according to Backingham’s Π theorem of dimensional analysis the 

previous equation can be transformed into: 

( ) , , , ,
tan

p pa E
t

a p gR


   



 
  

 
 (4.2) 

The departure from the rigid case becomes significant when either E/ρg becomes small or 

when the column has a large size R. If the material and slenderness α are given, the first 

eigenperiod of elastic vibration of the flexible solid rectangular column (without rocking) 

depends only on each size: 

1 12.38
tan

h
T







 (4.3) 

The flexible rocking bodies are assumed to be made of concrete with E=30GPa and 

ρ=2.5Mg/m3. The damping ratio, ζ, of the cantilever was set to 0.01 assuming that the flexible 

rocking body remains elastic. 
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Several analyses took place and for the verification of our results arising from the OpenSees 

model, the block was modeled with a full mesh of quadrilateral elements in the Finite Element 

software Abaqus. 

Two blocks were examined under pulses-like ground excitation and real records. The first 

block had dimensions 2h=50m and 2b=5m (slenderness tanα=0.1) and the second one had 

dimensions 2h=25m and 2b=5m (slenderness tanα=0.2). 

4.1. Sufficiency of Model-4 in Flexible Bodies 

In order to prove that our OpenSees model can extend in deformable rocking bodies, the 

model examined under a sine pulse and two real records, assuming that there is no damping. 

The results arising from the comparison of top displacement show that the model can assess 

the rocking response pretty well. The response of a Flexible Rocking Body (FRB) with 

dimensions 2h=50m and 2b=5m excited by a sine pulse with Tp=1.6sec and 

ap=5gtanα=4.905m/sec2. 

 

Figure 60: Comparison of top displacement (first row) and top displacement due to bending(second 

row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tanα=0.1 under a 

sine pulse with Tp=1.6sec and ap=5gtanα=4.905m/sec2. 
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Figure 61: Comparison of top displacement (first row) and top displacement due to bending (second 

row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tanα=0.1 under the 

Loma Prieta’s 1989 earthquake (Station: Hollister Diff Array, φ=255ο, PGA=0.279g). 

 

Figure 62: Comparison of top displacement (first row) and top displacement due to bending (second 

row) time history response between the FRB and the 5elemSM-4 with 2h=50m and tanα=0.1 under the 

Superstition Hills’ 1987 earthquake (Station: Wildlife Liquefaction Array, φ=360ο, PGA=0.20g)  . 
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4.2. Parametric Analysis 

As it was proved that the model can assess the seismic response under a ground motion, 

assuming that the coefficient of restitution is acceptable the two blocks of different 

dimensions are excited and the results included the event-based damping proposed in the 

previous chapter and the damping ratio, ζ, of Rayleigh damping are presented in the following 

figures. 

 

Figure 63: Comparison of rotation(first row), top displacement (second row) and top displacement 

due to bending (third row) time history response of a damped flexible rocking body with 2h=50m and 

tanα=0.1 under a sine pulse with Tp=1.6sec and ap=5gtanα=4.905m/sec2. 
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Figure 64: Comparison of rotation(first row), top displacement (second row) and top displacement 

due to bending (third row) time history response of a damped flexible rocking body with 2h=25m and 

tanα=0.2 under a sine pulse with Tp=1.6sec and ap=3gtanα=5.886m/sec2. 

 

Figure 65: Comparison of top displacement (first row) and top displacement due to bending (second 

row) time history response of a damped rigid and flexible rocking body with 2h=50m and tanα=0.1 

under a Ricker pulse with Tp=2sec and ap=5.85gtanα=5.74m/sec2 
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Figure 66: Comparison of top displacement (first row) and top displacement due to bending (second 

row) time history response of a damped rigid and flexible rocking body with 2h=50m and tanα=0.1 

under a Ricker pulse with Tp=4sec and ap=2.5gtanα=2.45m/sec2 

 

The above plots indicate that at each rocking impact, the deformation at the top caused by 

flexure reverses directions. This reversal generates flexural vibration in the column. Hence, 

part of the rotational kinetic energy of the flexible rocking block is transformed into high 

frequency flexural vibration energy, which can not cause overturning of the body. This 

transformation is the reason why the flexible rocking bodies are stable while the rigid rocking 

body overturns for Tp=2sec. On the other hand, the longer pulse with Tp=4sec has smaller 

amplitude such that the first part of this pulse only slightly uplifts the rocking body. Then, the 

flexural vibration caused by the rocking impact is less intense, and most of the kinetic energy 

is conserved, causing the flexible rocking body to overturn and the rigid rocking body to 

continue rocking. 
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5. Concluding Remarks 

The purpose of this master’s dissertation was the seismic response assessment of rigid and in 

extension of flexible rocking bodies under an excitation of the base. As it is described in the 

previous chapters of this dissertation the rocking response of free-standing blocks due to the 

wide range of nonlinear physical phenomena is a rather difficult task. We have the ability to 

solve the mathematical formulation if a rigid body rocks on a rigid base. In any other case the 

response is unpredictable. For this reason in the dissertation we try to solve the rocking 

problem using the Finite Element Method with Simplified Finite Element Models. The most 

important investigation was around the energy dissipation and how a Finite Element Model 

can assess an instantaneous event of energy dissipation at each impact. 

Initially, SDOF models are proposed and after a series of analysis we presume that although 

the difference in the equation of motion and the expected errors the models can approach the 

response satisfactorily in most cases while the errors are presented in the chapter 2 with 

comparisons between the displacements, the pushover curves, the moment-rotation 

relationships and the overturning moments. For slender blocks the results are perfect while for 

more stocky blocks the errors are more significant. The initial target was the modeling of 

flexible rocking blocks as the top displacements due to bending change the response and as it 

is described in the last chapter there are cases that a rigid body is stable and the equivalent 

flexible overturns and cases that the opposite happens. As a result a fourth model is presented. 

On the other hand there is energy dissipation in every impact and a Finite Element Model 

should be able to approach this dissipation. The first idea, which has been implemented. is a 

rotational damper in the SM with an equation for the equivalent per-cycle energy loss 

damping. The rotational damper is able to assess the behavior of the blocks in some cases but 

further research is needed. Secondly, a numerical damping had been proposed using the 

Hilber-Huges Algorithm. It works perfectly in the case of pulse-like ground excitation but 

under real records the results are not likeable. The next step was the simulation of the rocking 

block as a SDOF with the damping coefficient proposed by FEMA-356. The results are not 

acceptable in the case of real records.  
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After all this simulations and inferring that the above ways to approach the damping 

coefficient are working under some conditions the idea emerged taking into account that the 

energy dissipation of the rocking block is related with the pre-impact and the post-impact 

angular velocity. For this reason we correlate the coefficient of restitution, giving the response 

of a free-standing block, with the velocity of every mass of the models. As a result in each 

impact the velocity was multiplied with the coefficient of restitution and the new velocities 

converted to an initial condition in order to continue the analysis. It was proved that the 

proposed models with the event-based damping and either taking into account the negative 

stiffness of the block or the large displacements with the corotational formulation the results 

are very close to the real response of the blocks. 

As a summary in this master’s dissertation are proposed simplified Finite Element Models 

able to assess the seismic response of either rigid or flexible rocking bodies and different 

ways to approach the energy dissipation. The errors are calculated and as a result we can have 

a full insight for the models. Finally, if the coefficient of restitution is different from the 

coefficient of restitution proposed by Housner (1963) then the models are able to give the 

seismic response just by changing this coefficient. 

Taking into account the proposed models, the different way to assess the energy dissipation 

and the extension of the model 4 in flexible systems is proposed for further research the 

modeling of rocking frames with the Finite Element Method and if experimental results exist 

a summary comparison between the response of damped flexible bodies and the models 

aiming to have an equivalent coefficient of restitution. 
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