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Extended Summary 

Making a choice is an everyday activity, which in various professional domains often involves the search for 

additional information. However, abundance in input data requires special tools in order to perform a 

balanced selection. Over the last decades, numerous methods and decision support tools were developed, but 

unfortunately, possibly due to the lack of knowledge, decision makers may see these tools as black boxes. 

Ironically, systems developed to assist in decision making often seem to be too complex and unclear. In 

addition, within the selection process it is often necessary to make a subjective choice among objectively 

determined solutions. 

This thesis addresses the so-called project portfolio selection problem, which aims at selecting a certain 

number from a wide set of proposed projects. Usually the projects are not independent, i.e., there are 

particular limitations that should be respected (segmentation constraints, mutually exclusive, precedence 

etc.) so that Multiple Criteria Decision Aid (MCDA) methods need to be combined with combinatorial 

optimization techniques. A popular way to deal with this problem is to use a two-step approach: (1) A 

multicriteria method to evaluate the projects, and (2) a mathematical programming model that incorporates 

constraints in which the objective function coefficients are the multicriteria scores. 

This thesis develops a method that helps to perform a selection in a step-wise and transparent way. The core 

idea lies in the separation of project proposals into three separate sets. The approach is not totally new, but 

the rules of this separation are novel. The basic idea of the proposed Iterative Trichotomic Approach (ITA) is 

the classification of projects into three sets: the green projects (selected under all circumstances), the red 

projects (definitely excluded from the final portfolio) and the grey projects which are chosen in some (but 

not all) cases. The main focus is on building a balanced project portfolio from a wider set of proposals (a 

subset of projects is considered as a ñportfolio of projectsò), optimizing one or more criteria and satisfying 

specific constraints. In past, the usual solution was to rank projects using one or more criteria and choose the 

top ranking ones that cumulatively satisfy a budget limitation. However, in real world there are many 

circumstances that complicate the process of decision making. In other words, top ranking projects may only 

by chance satisfy imposed constraints. Unlike in financial problems (e.g., portfolio optimization problems), 

these projects are integer variables which are not divisible, and hence, Multiple Criteria Decision Analysis 

and mathematical programming are the most appropriate tools. 

In this work, we are taking a step further, and we address the inherent uncertainty which can vary in nature, 

the most prominent type being the future project performance. While the financial world offers a great 

amount of data that help to build more or less robust forecasts, it is almost impossible to obtain historical 



viii  

 

data for emerging technologies or pioneering solutions. The uncertainty may be present either in the project 

characteristics (e.g., costs, performances) or in the decision environment (e.g., criteria weights, total budget). 

In the proposed model, the uncertainties in various parameters or input data are modeled via stochastic 

approaches tackled with Monte Carlo simulation. 

The method works iteratively, in decision rounds. In each decision round we use the obtained information or 

follow a predetermined rule in order to reduce the uncertainty. Gradually from round to round, the green and 

red sets increase while the grey set with the ambiguous projects is reduced. Eventually, the process ends with 

only green and red projects. In comparison to the conventional project selection approaches, with ITA we 

also obtain the ñdegree of certaintyò for a project that is included or excluded from the final portfolio. The 

earlier (i.e., in the early decision rounds) a project is accepted or discarded from the process the more sure 

one can be about its incorporation or exclusion in the final portfolio, respectively. 

Furthermore, the proposed method is also adequate when multiple decision makers are involved. When the 

selection process takes place within a group, the preferences of various experts are not the same and there 

must be a negotiation approach taking into account all points of view. The whole process can either have a 

predetermined number of decision rounds or continue until a convergence to the final portfolio is attained. 

Group-ITA provides a possibility to draw conclusions about the consensus over each individual project as 

well as on the final portfolio. Initially, a mathematical model is developed, where preferences of decision 

makers are expressed with appropriate weights of importance for the criteria, and a Delphi-like process is 

designed for the convergence of these preferences. Weights are updated from round to round, and in each 

round, the mathematical model is updated according to the new weights and solved. As the iterative process 

moves from round to round, the green and red sets are enriched whereas the grey set shrinks. The iterative 

process terminates when the grey set becomes empty. The final outcome is the consensus portfolio of 

projects, as well as the degree of consensus on each project and the consensus index for the whole portfolio 

according to the convergence path. The consensus index expresses the easiness to arrive at a final conclusion 

within a group. The more green projects that are identified from early rounds the greater is the degree of 

concordance among experts. This means that their preferences (expressed as weights) result in more or less 

the same outcome, or, in other words, the consensus is easily attained. On the contrary, if the majority of 

green projects is identified in the last rounds, this indicates the need to elaborate in the convergence process 

in order to agree at selected projects. In other words, the consensus is hardly attained. Apart from the 

consensus index, it is possible to extract the degree of consensus for each project according to the round that 

it enters or exits the final portfolio. 

The membership of the projects in the final portfolio is also expanded to the membership of portfolios in the 

final Pareto set where more than one objective functions are considered. While the original ITA method was 
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designed to implement a single objective mathematical programming problem, the latter version of ITA 

method is extended to multi-objective programming problems. The degree of certainty of the Pareto optimal 

portfolios that belong to the final Pareto set can also be measured. 

ITA was applied to several real world problems that are presented in this thesis. The first topic that attracted 

our attention was the selection of projects in the telecommunications sector. Wide and fast spread of new 

technological developments requires effective tools to select options for expansion and meeting growing 

demand. The need for balanced introduction of new service offerings is a problem which involved different 

and conflicting aspects. The main feature of the proposed decision aid computational tool is the 

incorporation of several uncertainties in the selection process, and the gradual building of a project portfolio. 

Other applications involve renewable energy projects both in national and worldwide levels. A case study 

with real data from the Clean Development Mechanism projectsô database is elaborated, in order to build a 

balanced portfolio of ñgreenò activities. The specific work is focused on the energy project portfolio 

selection problem, where the output of each project as well as other parameters may be uncertain. For this 

case study, we consider the implied uncertainty in the parameters as being of stochastic nature that is 

characterized by a probability distribution. Subsequently, a Monte Carlo simulation samples the values from 

these distributions and the mathematical programming models with the sampled values are solved. The 

process output is not only the final portfolio, but also the information about the certainty of participation or 

exclusion of each project in the final portfolio.  

Another example deals with Greek renewable energy projects that seek support from financial institutions, 

where it is crucial for the donor organization to make a balanced selection and avoid the tactics of ñall eggs 

in one basketò. In this case, 133 Greek project proposals covering three renewable energy technologies 

(wind, small hydro, photovoltaic) were evaluated against 5 criteria. Since several experts with different 

preferences took part in the selection process, Group ITA is designed to gradually add projects to the 

portfolio according to the concordance within the team members until a final portfolio is reached. 

The last example is an attempt to bridge the gap between business and public interests. Nowadays, 

increasing emphasis is put on the environmentally friendly activities that are considered to be among the key 

solutions in combating current financial and economic crisis. For this reason, we test the possibility to 

incorporate Energy and Environmental Corporate Responsibility (EECR) in decision making, supporting 

particularly the development of a new model for investment evaluation. A bi-objective programming model 

is introduced in order to provide Pareto optimal portfolios (Pareto set) based on the Net Present Value (NPV) 

of projects and the EECR score of firms. Moreover, a systematic decision making approach using Monte 

Carlo simulation is developed in order to deal with the inherent uncertainty in the objective functionsô 

coefficients, namely the NPV of each project and the EECR score of each firm. In addition, the robustness of 
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the Pareto set as a whole, as well as the robustness of the individual Pareto optimal portfolios can also be 

assessed. The proposed approach facilitates investment organizations and institutions to the selection of 

firms applying for financial support and credit granting, within the frame of their EECR. 

Within all case studies it was more than evident how the ITA offered very fruitful information to the 

decision maker as it quantified the degree of certainty with which each project was treated in the final 

portfolio, a task that cannot be accomplished with the conventional methods using average and expected 

values in modeling the uncertainty.  
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ɄŮɟɑɚɖɣɖ  

ȼ ŭɘŬŭɘəŬůɑŬ Űɖɠ Ůˊɘɚɞɔɐɠ ŮɑɜŬɘ ɛɘŬ əŬɗɖɛŮɟɘɜɐ ŭɟŬůŰɖɟɘɧŰɖŰŬ, ɖ ɞˊɞɑŬ ůŮ ŭɘɎűɞɟɞɡɠ ŮˊŬɔɔŮɚɛŬŰɘəɞɨɠ 

ŰɞɛŮɑɠ ůɡɢɜɎ ˊŮɟɘɚŬɛɓɎɜŮɘ Űɖɜ ŬɜŬɕɐŰɖůɖ ˊɟɧůɗŮŰɤɜ ˊɚɖɟɞűɞɟɘɩɜ. ɋůŰɧůɞ, ɖ ŬűɗɞɜɑŬ ůŰŬ ŭŮŭɞɛɏɜŬ 

Ůɘůɧŭɞɡ ŬˊŬɘŰŮɑ ŮɘŭɘəɎ ŮɟɔŬɚŮɑŬ ɔɘŬ Űɖɜ ŮəŰɏɚŮůɖ ɛɘŬɠ ɘůɞɟɟɞˊɖɛɏɜɖɠ Ůˊɘɚɞɔɐɠ. ɇɘɠ ŰŮɚŮɡŰŬɑŮɠ ŭŮəŬŮŰɑŮɠ 

ŬɜŬˊŰɨɢɗɖəŬɜ ˊɞɚɚɏɠ ɛɏɗɞŭɞɘ əŬɘ ŮɟɔŬɚŮɑŬ ɡˊɞůŰɐɟɘɝɖɠ ŬˊɞűɎůŮɤɜ, ŬɚɚɎ ŭɡůŰɡɢɩɠ, ŮɜŭŮɢɞɛɏɜɤɠ ɚɧɔɤ 

ɏɚɚŮɘɣɖɠ ɔɜɩůɖɠ, ɞɘ ɡˊŮɨɗɡɜɞɘ ɔɘŬ Űɖ ɚɐɣɖ ŬˊɞűɎůŮɤɜ ɓɚɏˊɞɡɜ ŰŬ ŮɟɔŬɚŮɑŬ ŬɡŰɎ ɤɠ ɛŬɨɟŬ əɞɡŰɘɎ. ȾŬŰɎ 

ˊŮɟɑŮɟɔɞ Űɟɧˊɞ, ŰŬ ɑŭɘŬ ŰŬ ůɡůŰɐɛŬŰŬ ˊɞɡ ŬɜŬˊŰɨůůɞɜŰŬɘ ɔɘŬ ɜŬ ɓɞɖɗɐůɞɡɜ ůŰɖ ɚɐɣɖ ŬˊɞűɎůŮɤɜ ůɡɢɜɎ 

űŬɑɜɞɜŰŬɘ ˊɞɚɨ ˊŮɟɑˊɚɞəŬ əŬɘ ŬůŬűɐ. ȺˊɘˊɟɧůɗŮŰŬ, ůŰɞ ˊɚŬɑůɘɞ Űɖɠ ŭɘŬŭɘəŬůɑŬɠ Ůˊɘɚɞɔɐɠ ŮɑɜŬɘ ůɡɢɜɎ 

ŬˊŬɟŬɑŰɖŰɞ ɜŬ ɔɑɜŮɘ ɛɘŬ ɡˊɞəŮɘɛŮɜɘəɐ Ůˊɘɚɞɔɐ ŬɜɎɛŮůŬ ůŮ ŬɜŰɘəŮɘɛŮɜɘəɎ ˊɟɞůŭɘɞɟɘůɛɏɜŮɠ ɚɨůŮɘɠ. 

ȼ ́ŬɟɞɨůŬ ŭɘŬŰɟɘɓɐ ŬůɢɞɚŮɑŰŬɘ ɛŮ Űɞ ˊɟɧɓɚɖɛŬ Ůˊɘɚɞɔɐɠ ɢŬɟŰɞűɡɚŬəɑɞɡ ɏɟɔɤɜ ɔɘŬ Űɖɜ Ůˊɘɚɞɔɐ Ůɜɧɠ 

ůɡɔəŮəɟɘɛɏɜɞɡ Ŭɟɘɗɛɞɨ Ŭˊɧ ɏɜŬ Ůɡɟɨ ůɨɜɞɚɞ ˊɟɞŰŮɘɜɧɛŮɜɤɜ ɏɟɔɤɜ. Ɇɡɜɐɗɤɠ ŰŬ ɏɟɔŬ ŭŮɜ ŮɑɜŬɘ 

ŬɜŮɝɎɟŰɖŰŬ, ŭɖɚŬŭɐ ɡˊɎɟɢɞɡɜ ůɡɔəŮəɟɘɛɏɜɞɘ ˊŮɟɘɞɟɘůɛɞɑ ˊɞɡ ˊɟɏˊŮɘ ɜŬ ɘəŬɜɞˊɞɘɖɗɞɨɜ (ˊŮɟɘɞɟɘůɛɞɑ 

ŰɛɖɛŬŰɞˊɞɑɖůɖɠ, ŬɛɞɘɓŬɑɞɡ ŬˊɞəɚŮɘůɛɞɨ, ˊɟɞŰŮɟŬɘɧŰɖŰŬɠ, ə.ɚˊ.), ɞˊɧŰŮ ɞɘ ˊɞɚɡəɟɘŰɖɟɘŬəɏɠ ɛɏɗɞŭɞɘ 

ɡˊɞůŰɐɟɘɝɖɠ Űɖɠ ŬˊɧűŬůɖɠ (Multiple Criteria Decision Aid - MCDA) ŭŮɜ ŮˊŬɟəɞɨɜ əŬɘ ˊɟɏˊŮɘ ɜŬ 

ůɡɜŭɡŬůŰɞɨɜ ɛŮ ŰŮɢɜɘəɏɠ ůɡɜŭɡŬůŰɘəɐɠ ɓŮɚŰɘůŰɞˊɞɑɖůɖɠ. ȰɜŬɠ ŭɖɛɞűɘɚɐɠ Űɟɧˊɞɠ ŬɜŰɘɛŮŰɩˊɘůɖɠ ŬɡŰɞɨ Űɞɡ 

ˊɟɞɓɚɐɛŬŰɞɠ ŮɑɜŬɘ ɖ ɢɟɐůɖ ɛɘŬɠ ˊɟɞůɏɔɔɘůɖɠ ŭɨɞ ɓɖɛɎŰɤɜ: (1) ɀɘŬɠ ˊɞɚɡəɟɘŰɖɟɘŬəɐɠ ɛŮɗɧŭɞɡ ɔɘŬ Űɖɜ 

Ŭɝɘɞɚɧɔɖůɖ Űɤɜ ɏɟɔɤɜ əŬɘ (2) Ůɜɧɠ ɛɞɜŰɏɚɞɡ ɛŬɗɖɛŬŰɘəɞɨ ˊɟɞɔɟŬɛɛŬŰɘůɛɞɨ ˊɞɡ ŮɜůɤɛŬŰɩɜŮɘ 

ˊŮɟɘɞɟɘůɛɞɨɠ ɛŮ Űɞɡɠ ůɡɜŰŮɚŮůŰɏɠ Űɖɠ ŬɜŰɘəŮɘɛŮɜɘəɐɠ ůɡɜɎɟŰɖůɖɠ ɜŬ ŮɑɜŬɘ ɞɘ ˊɞɚɡəɟɘŰɖɟɘŬəɏɠ 

ɓŬɗɛɞɚɞɔɑŮɠ. 

ȼ ́ŬɟɞɨůŬ ŭɘŬŰɟɘɓɐ ŬɜŬˊŰɨůůŮɘ ɛɘŬ ɛɏɗɞŭɞ ˊɞɡ ɓɞɖɗɎ ůŰɖɜ ˊɟŬɔɛŬŰɞˊɞɑɖůɖ ɛɘŬɠ Ůˊɘɚɞɔɐɠ ɓɐɛŬ-ɓɐɛŬ 

əŬɘ ɛŮ ŭɘŬűɎɜŮɘŬ. ȼ ɓŬůɘəɐ ɘŭɏŬ ɏɔəŮɘŰŬɘ ůŰɞ ŭɘŬɢɤɟɘůɛɧ Űɤɜ ˊɟɞŰɎůŮɤɜ ɏɟɔɤɜ ůŮ ŰɟɑŬ ɝŮɢɤɟɘůŰɎ ůɨɜɞɚŬ. 

ȼ ˊɟɞůɏɔɔɘůɖ ŭŮɜ ŮɑɜŬɘ ŮɜŰŮɚɩɠ ɜɏŬ, ɞɘ əŬɜɧɜŮɠ ɧɛɤɠ ŬɡŰɞɨ Űɞɡ ŭɘŬɢɤɟɘůɛɞɨ ŮɑɜŬɘ əŬɘɜɞŰɧɛɞɘ. ȸŬůɘəɐ 

ɘŭɏŬ Űɖɠ ŮˊŬɜŬɚɖˊŰɘəɐɠ ŰɟɘɢɞŰɞɛɘəɐɠ ˊɟɞůɏɔɔɘůɖɠ (Iterative Trichotomic Approach - ITA)  ŮɑɜŬɘ ɖ 

ŰŬɝɘɜɧɛɖůɖ Űɤɜ ɏɟɔɤɜ ůŮ ŰɟɑŬ ůɨɜɞɚŬ: ŰŬ ˊɟɎůɘɜŬ ɏɟɔŬ (ˊɞɡ ŮˊɘɚɏɔɞɜŰŬɘ ɡˊɧ ɞˊɞɘŮůŭɐˊɞŰŮ ůɡɜɗɐəŮɠ), ŰŬ 

əɧəəɘɜŬ ɏɟɔŬ (ɞɟɘůŰɘəɎ ŬˊɞəɚŮɘůɛɏɜŬ Ŭˊɧ Űɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ) əŬɘ ŰŬ ɔəɟɑɕŬ ɏɟɔŬ ˊɞɡ ŮˊɘɚɏɔɞɜŰŬɘ ůŮ 

ɞɟɘůɛɏɜŮɠ ˊŮɟɘˊŰɩůŮɘɠ (ŬɚɚɎ ɧɢɘ ɧɚŮɠ). Ƀ əɨɟɘɞɠ ůŰɧɢɞɠ ŮɑɜŬɘ ɖ ŭɖɛɘɞɡɟɔɑŬ Ůɜɧɠ ɘůɞɟɟɞˊɖɛɏɜɞɡ 

ɢŬɟŰɞűɡɚŬəɑɞɡ ɏɟɔɤɜ Ŭˊɧ ɏɜŬ ŮɡɟɨŰŮɟɞ ůɨɜɞɚɞ ˊɟɞŰɎůŮɤɜ (ɏɜŬ ɡˊɞůɨɜɞɚɞ ɏɟɔɤɜ ɗŮɤɟŮɑŰŬɘ ɤɠ 

"ɢŬɟŰɞűɡɚɎəɘɞ ɏɟɔɤɜ"), ɓŮɚŰɘůŰɞˊɞɘɩɜŰŬɠ ɤɠ ˊɟɞɠ ɏɜŬ ɐ ˊŮɟɘůůɧŰŮɟŬ əɟɘŰɐɟɘŬ əŬɘ ɘəŬɜɞˊɞɘɩɜŰŬɠ 

ůɡɔəŮəɟɘɛɏɜɞɡɠ ˊŮɟɘɞɟɘůɛɞɨɠ. ɆŰɞ ˊŬɟŮɚɗɧɜ, ɖ ůɡɜɖɗɘůɛɏɜɖ ɚɨůɖ ɐŰŬɜ ɖ əŬŰɎŰŬɝɖ Űɤɜ ɏɟɔɤɜ 

ɢɟɖůɘɛɞˊɞɘɩɜŰŬɠ ɏɜŬ ɐ ˊŮɟɘůůɧŰŮɟŬ əɟɘŰɐɟɘŬ əŬɘ ɖ Ůˊɘɚɞɔɐ Űɤɜ ˊɟɩŰɤɜ əŬŰɎ ůŮɘɟɎ ˊɞɡ ɘəŬɜɞˊɞɘɞɨɜ 

ŬɗɟɞɘůŰɘəɎ Űɞɜ ˊŮɟɘɞɟɘůɛɧ Űɞɡ ˊɟɞɦˊɞɚɞɔɘůɛɞɨ. ɋůŰɧůɞ, ůŰɖɜ ˊɟɎɝɖ ɖ ŭɘŬŭɘəŬůɑŬ ŬɡŰɐ ŮɑɜŬɘ ŬɟəŮŰɎ ˊɘɞ 
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ˊŮɟɑˊɚɞəɖ. ɇŬ ́ɟɩŰŬ əŬŰɎ ůŮɘɟɎ əŬŰɎŰŬɝɖɠ ɏɟɔŬ ɛˊɞɟɞɨɜ ɛɧɜɞ əŬŰɎ Űɨɢɖ ɜŬ ɘəŬɜɞˊɞɘɐůɞɡɜ Űɞɡɠ 

ŮˊɘɓŬɚɚɧɛŮɜɞɡɠ ˊŮɟɘɞɟɘůɛɞɨɠ. ɆŮ ŬɜŰɑɗŮůɖ ɛŮ ŰŬ ɞɘəɞɜɞɛɘəɎ ˊɟɞɓɚɐɛŬŰŬ (ˊ.ɢ. ˊɟɞɓɚɐɛŬŰŬ 

ɓŮɚŰɘůŰɞˊɞɑɖůɖɠ ɢŬɟŰɞűɡɚŬəɑɞɡ), ŰŬ ɏɟɔŬ ŬɡŰɎ ŮɑɜŬɘ ŬəɏɟŬɘŮɠ ɛŮŰŬɓɚɖŰɏɠ ˊɞɡ ŭŮɜ ŭɘŬɘɟɞɨɜŰŬɘ, əŬɘ əŬŰɎ 

ůɡɜɏˊŮɘŬ ɖ ˊɞɚɡəɟɘŰɖɟɘŬəɐ ŬɜɎɚɡůɖ Űɖɠ ŬˊɧűŬůɖɠ əŬɘ ɞ ɛŬɗɖɛŬŰɘəɧɠ ˊɟɞɔɟŬɛɛŬŰɘůɛɧɠ ŬˊɞŰŮɚɞɨɜ ŰŬ 

ˊɚɏɞɜ əŬŰɎɚɚɖɚŬ ŮɟɔŬɚŮɑŬ. 

ɆŰɖɜ ˊŬɟɞɨůŬ ŮɟɔŬůɑŬ, ˊɟɞɢɤɟɎɛŮ ɏɜŬ ɓɐɛŬ ˊŬɟŬəɎŰɤ, ŮɝŮŰɎɕɞɜŰŬɠ Űɖɜ ŮɔɔŮɜɐ ŬɓŮɓŬɘɧŰɖŰŬ, ɖ ɞˊɞɑŬ 

ɛɞ́ɟŮɑ ɜŬ ˊɞɘəɑɚŮɘ ůŰɖ űɨůɖ, ɛŮ Űɖɜ ˊɘɞ ůɖɛŬɜŰɘəɐ ɜŬ ŮɑɜŬɘ ɖ ɛŮɚɚɞɜŰɘəɐ Ŭˊɧŭɞůɖ Űɞɡ ɏɟɔɞɡ. Ⱥɜɩ ůŰɞɜ 

ɢɟɖɛŬŰɞˊɘůŰɤŰɘəɧ əɧůɛɞ ŮɑɜŬɘ ŭɘŬɗɏůɘɛŬ ˊɞɚɚɎ ŭŮŭɞɛɏɜŬ ˊɞɡ ɓɞɖɗɞɨɜ Űɘɠ ůɢŮŰɘəɎ ɘůɢɡɟɏɠ ˊɟɞɓɚɏɣŮɘɠ, 

ŮɑɜŬɘ ůɢŮŭɧɜ ŬŭɨɜŬŰɞ ɜŬ ŬˊɞəŰɖɗɞɨɜ ɘůŰɞɟɘəɎ ŭŮŭɞɛɏɜŬ ɔɘŬ ŬɜŬŭɡɧɛŮɜŮɠ ŰŮɢɜɞɚɞɔɑŮɠ ɐ ˊɟɤŰɞˊɞɟɘŬəɏɠ 

ɚɨůŮɘɠ. ȼ ŬɓŮɓŬɘɧŰɖŰŬ ɛˊɞɟŮɑ ɜŬ ɡˊɎɟɢŮɘ ŮɑŰŮ ůŰŬ ɢŬɟŬəŰɖɟɘůŰɘəɎ Űɞɡ ɏɟɔɞɡ (ˊ.ɢ. əɧůŰɞɠ, ŮˊɘŭɧůŮɘɠ) ŮɑŰŮ 

ůŰɞ ˊŮɟɘɓɎɚɚɞɜ ŬˊɧűŬůɖɠ (ˊ.ɢ. ůŰŬɗɛɑůŮɘɠ əɟɘŰɖɟɑɤɜ, ůɡɜɞɚɘəɧɠ ˊɟɞɦˊɞɚɞɔɘůɛɧɠ). ɆŰɞ ˊɟɞŰŮɘɜɧɛŮɜɞ 

ɛɞɜŰɏɚɞ ɞɘ ŬɓŮɓŬɘɧŰɖŰŮɠ ůŮ ŭɘɎűɞɟŮɠ ˊŬɟŬɛɏŰɟɞɡɠ ɐ ŭŮŭɞɛɏɜŬ Ůɘůɧŭɞɡ ŭɘŬɛɞɟűɩɜɞɜŰŬɘ ɛɏůɤ ůŰɞɢŬůŰɘəɩɜ 

ˊɟɞůŮɔɔɑůŮɤɜ ˊɞɡ ɢɟɖůɘɛɞˊɞɘɞɨɜ ˊɟɞůɞɛɞɑɤůɖ Monte Carlo. 

ȼ ɛɏɗɞŭɞɠ ɚŮɘŰɞɡɟɔŮɑ ŮˊŬɜŬɚɖˊŰɘəɎ, ůŮ ɔɨɟɞɡɠ ŬˊɞűɎůŮɤɜ. ɆŮ əɎɗŮ ɔɨɟɞ ŬˊɧűŬůɖɠ ɢɟɖůɘɛɞˊɞɘɞɨɛŮ Űɘɠ 

ˊɚɖɟɞűɞɟɑŮɠ ˊɞɡ ɚŬɛɓɎɜɞɡɛŮ ɐ ŬəɞɚɞɡɗɞɨɛŮ ɏɜŬɜ ˊɟɞəŬɗɞɟɘůɛɏɜɞ əŬɜɧɜŬ ɔɘŬ ɜŬ ɛŮɘɩůɞɡɛŮ Űɖɜ 

ŬɓŮɓŬɘɧŰɖŰŬ. ɆŰŬŭɘŬəɎ Ŭˊɧ ɔɨɟɞ ůŮ ɔɨɟɞ, ŰŬ ́ɟɎůɘɜŬ əŬɘ əɧəəɘɜŬ ůɨɜɞɚŬ ŬɡɝɎɜɞɜŰŬɘ Ůɜɩ Űɞ ɔəɟɑɕɞ 

ůɨɜɞɚɞ ɛŮ ŰŬ "ŬůŬűɐ" ɏɟɔŬ ɛŮɘɩɜŮŰŬɘ. ɇŮɚɘəɎ, ɖ ŭɘŬŭɘəŬůɑŬ ŰŮɚŮɘɩɜŮɘ ɛɧɜɞ ɛŮ ˊɟɎůɘɜŬ əŬɘ əɧəəɘɜŬ ɏɟɔŬ. 

ɆŮ ůɨɔəɟɘůɖ ɛŮ Űɘɠ ůɡɛɓŬŰɘəɏɠ ˊɟɞůŮɔɔɑůŮɘɠ Ůˊɘɚɞɔɐɠ ɏɟɔɤɜ, ɛŮ Űɖɜ ITA ɚŬɛɓɎɜɞɡɛŮ Ůˊɑůɖɠ Űɞ "ɓŬɗɛɧ 

ɓŮɓŬɘɧŰɖŰŬɠ" ɔɘŬ ɏɜŬ ɏɟɔɞ ˊɞɡ ˊŮɟɘɚŬɛɓɎɜŮŰŬɘ ɐ ŬˊɞəɚŮɑŮŰŬɘ Ŭˊɧ Űɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. ȳůɞ ɜɤɟɑŰŮɟŬ 

(ŭɖɚŬŭɐ ůŰɞɡɠ ˊɟɩŰɞɡɠ ɔɨɟɞɡɠ ŬˊɞűɎůŮɤɜ) ɏɜŬ ɏɟɔɞ ɔɑɜŮŰŬɘ ŭŮəŰɧ ɐ ŬˊɞɟɟɑˊŰŮŰŬɘ Ŭˊɧ Űɖ ŭɘŬŭɘəŬůɑŬ, Űɧůɞ 

ˊɘɞ ůɑɔɞɡɟɖ ɛˊɞɟŮɑ ɜŬ ŮɑɜŬɘ ɖ ŮɜůɤɛɎŰɤůɖ ɐ ɞ ŬˊɞəɚŮɘůɛɧɠ Űɞɡ Ŭˊɧ Űɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ, ŬɜŰɑůŰɞɘɢŬ. 

Ⱥˊɘˊɚɏɞɜ, ɖ ˊɟɞŰŮɘɜɧɛŮɜɖ ɛɏɗɞŭɞɠ ŮɑɜŬɘ Ůˊɑůɖɠ əŬŰɎɚɚɖɚɖ ɧŰŬɜ ŮɛˊɚɏəɞɜŰŬɘ ˊɞɚɚɞɑ ɡˊŮɨɗɡɜɞɘ ɚɐɣɖɠ 

ŬˊɞűɎůŮɤɜ. ȳŰŬɜ ɖ ŭɘŬŭɘəŬůɑŬ Ůˊɘɚɞɔɐɠ ɚŬɛɓɎɜŮɘ ɢɩɟŬ ɛɏůŬ ůŮ ɛɘŬ ɞɛɎŭŬ, ɞɘ ˊɟɞŰɘɛɐůŮɘɠ ŭɘŬűɧɟɤɜ 

ŮɛˊŮɘɟɞɔɜɤɛɧɜɤɜ ŭŮɜ ŮɑɜŬɘ ɞɘ ɑŭɘŮɠ əŬɘ ˊɟɏˊŮɘ ɜŬ ɡˊɎɟɢŮɘ ɛɘŬ ˊɟɞůɏɔɔɘůɖ ŭɘŬˊɟŬɔɛŬŰŮɨůŮɤɜ ˊɞɡ ɚŬɛɓɎɜŮɘ 

ɡˊɧɣɖ ɧɚŮɠ Űɘɠ ŬˊɧɣŮɘɠ. ȼ ɧɚɖ ŭɘŬŭɘəŬůɑŬ ɛˊɞɟŮɑ ŮɑŰŮ ɜŬ ɏɢŮɘ ˊɟɞəŬɗɞɟɘůɛɏɜɞ Ŭɟɘɗɛɧ ɔɨɟɤɜ ŬˊɞűɎůŮɤɜ 

ŮɑŰŮ ɜŬ ůɡɜŮɢɑɕŮŰŬɘ ɛɏɢɟɘ ɜŬ ŮˊɘŰŮɡɢɗŮɑ ůɨɔəɚɘůɖ ůŰɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. ȼ ɞɛŬŭɘəɐ ŮˊŬɜŬɚɖˊŰɘəɐ 

ŰɟɘɢɞŰɞɛɘəɐ ˊɟɞůɏɔɔɘůɖ (Group-ITA) ˊŬɟɏɢŮɘ Űɖ ŭɡɜŬŰɧŰɖŰŬ ŮɝŬɔɤɔɐɠ ůɡɛˊŮɟŬůɛɎŰɤɜ ůɢŮŰɘəɎ ɛŮ Űɖ 

ůɡɜŬɑɜŮůɖ ɔɘŬ əɎɗŮ ɛŮɛɞɜɤɛɏɜɞ ɏɟɔɞ əŬɗɩɠ əŬɘ ɔɘŬ Űɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. ȷɟɢɘəɎ, ŬɜŬˊŰɨůůŮŰŬɘ ɏɜŬ 

ɛŬɗɖɛŬŰɘəɧ ɛɞɜŰɏɚɞ ɧˊɞɡ ɞɘ ˊɟɞŰɘɛɐůŮɘɠ Űɤɜ ɡˊŮɡɗɨɜɤɜ ɚɐɣɖɠ ŬˊɞűɎůŮɤɜ ŮəűɟɎɕɞɜŰŬɘ ɛŮ ŰŬ əŬŰɎɚɚɖɚŬ 

ɓɎɟɖ ůˊɞɡŭŬɘɧŰɖŰŬɠ ɔɘŬ ŰŬ əɟɘŰɐɟɘŬ, əŬɘ ůɢŮŭɘɎɕŮŰŬɘ ɛɘŬ ŭɘŬŭɘəŬůɑŬ Űɨˊɞɡ Delphi ɔɘŬ Űɖ ůɨɔəɚɘůɖ ŬɡŰɩɜ 

Űɤɜ ˊɟɞŰɘɛɐůŮɤɜ. ɇŬ ɓɎɟɖ ŮɜɖɛŮɟɩɜɞɜŰŬɘ Ŭˊɧ ɔɨɟɞ ůŮ ɔɨɟɞ əŬɘ, əɎɗŮ űɞɟɎ, Űɞ ɛŬɗɖɛŬŰɘəɧ ɛɞɜŰɏɚɞ 

Ů́ ɘəŬɘɟɞˊɞɘŮɑŰŬɘ ɛŮ ŰŬ ɜɏŬ ɓɎɟɖ əŬɘ ŮˊɘɚɨŮŰŬɘ. ȾŬɗɩɠ ɖ ŮˊŬɜŬɚɖˊŰɘəɐ ŭɘŬŭɘəŬůɑŬ ŮəŰŮɚŮɑŰŬɘ, Ŭˊɧ ɔɨɟɞ ůŮ 

ɔɨɟɞ, ŰŬ ˊɟɎůɘɜŬ əŬɘ əɧəəɘɜŬ ůɨɜɞɚŬ ŮɛˊɚɞɡŰɑɕɞɜŰŬɘ, Ůɜɩ Űɞ ɔəɟɘ ůɨɜɞɚɞ ůɡɟɟɘəɜɩɜŮŰŬɘ. ȼ ŮˊŬɜŬɚɖˊŰɘəɐ 
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ŭɘŬŭɘəŬůɑŬ ɚɐɔŮɘ ɧŰŬɜ Űɞ ɔəɟɑɕɞ ůɨɜɞɚɞ ɔɑɜŮɘ əŮɜɧ. ɇɞ ŰŮɚɘəɧ ŬˊɞŰɏɚŮůɛŬ ŮɑɜŬɘ Űɞ ůɡɜŬɘɜŮŰɘəɧ 

ɢŬɟŰɞűɡɚɎəɘɞ ɏɟɔɤɜ, əŬɗɩɠ əŬɘ ɞ ɓŬɗɛɧɠ ůɡɜŬɑɜŮůɖɠ ɔɘŬ əɎɗŮ ɏɟɔɞ əŬɘ ɞ ŭŮɑəŰɖɠ ůɡɜŬɑɜŮůɖɠ ɔɘŬ Űɞ 

ůɨɜɞɚɞ Űɞɡ ɢŬɟŰɞűɡɚŬəɑɞɡ ůɨɛűɤɜŬ ɛŮ Űɖ ŭɘŬŭɟɞɛɐ ůɨɔəɚɘůɖɠ. Ƀ ŭŮɑəŰɖɠ ůɡɜŬɑɜŮůɖɠ (consensus index) 

ŮəűɟɎɕŮɘ Űɖɜ ŮɡəɞɚɑŬ ɛŮ Űɖɜ ɞˊɞɑŬ ɛɘŬ ɞɛɎŭŬ əŬŰŬɚɐɔŮɘ ůŮ ɏɜŬ ŰŮɚɘəɧ ůɡɛˊɏɟŬůɛŬ. ȳůɞ ˊŮɟɘůůɧŰŮɟŬ 

ˊɟɎůɘɜŬ ɏɟɔŬ ŮɜŰɞˊɑɕɞɜŰŬɘ Ŭˊɧ Űɞɡɠ ˊɟɩŰɞɡɠ ɔɨɟɞɡɠ, Űɧůɞ ɛŮɔŬɚɨŰŮɟɞɠ ŮɑɜŬɘ ɞ ɓŬɗɛɧɠ ůɡɛűɤɜɑŬɠ ɛŮŰŬɝɨ 

Űɤɜ ŮɛˊŮɘɟɞɔɜɤɛɧɜɤɜ. ȷɡŰɧ ůɖɛŬɑɜŮɘ ɧŰɘ ɞɘ ˊɟɞŰɘɛɐůŮɘɠ Űɞɡɠ (ŮəűɟŬɕɧɛŮɜŮɠ ɤɠ ɓɎɟɖ) ɞŭɖɔɞɨɜ ůɢŮŭɧɜ ůŰɞ 

ɑŭɘɞ ŬˊɞŰɏɚŮůɛŬ ɐ, ɛŮ ɎɚɚŬ ɚɧɔɘŬ, ŮˊɘŰɡɔɢɎɜŮŰŬɘ ŮɨəɞɚŬ ɖ ůɡɜŬɑɜŮůɖ. ȷɜŰɑɗŮŰŬ, Ŭɜ ɖ ˊɚŮɘɞɣɖűɑŬ Űɤɜ 

ˊɟɎůɘɜɤɜ ɏɟɔɤɜ ŮɜŰɞˊɘůŰŮɑ ůŰɞɡɠ ŰŮɚŮɡŰŬɑɞɡɠ ɔɨɟɞɡɠ, ŬɡŰɧ ŮɑɜŬɘ ŮɜŭŮɘəŰɘəɧ Űɖɠ ŬɜɎɔəɖɠ ɔɘŬ ˊŮɟŬɘŰɏɟɤ 

ŬɜɎˊŰɡɝɖ Űɖɠ ŭɘŬŭɘəŬůɑŬɠ ůɨɔəɚɘůɖɠ ˊɟɞəŮɘɛɏɜɞɡ ɜŬ ŮˊɘŰŮɡɢɗŮɑ ůɡɛűɤɜɑŬ ůŰŬ ŮˊɘɚŮɔɛɏɜŬ ɏɟɔŬ. ɀŮ ɎɚɚŬ 

ɚɧɔɘŬ, ɖ ůɡɜŬɑɜŮůɖ ŮˊɘŰɡɔɢɎɜŮŰŬɘ ŭɨůəɞɚŬ. ȺəŰɧɠ Ŭˊɧ Űɞɜ ŭŮɑəŰɖ ůɡɜŬɑɜŮůɖɠ, ŮɑɜŬɘ ŭɡɜŬŰɧ ɜŬ ŮɝŬɢɗŮɑ ɞ 

ɓŬɗɛɧɠ ůɡɜŬɑɜŮůɖɠ ɔɘŬ əɎɗŮ ɏɟɔɞ ůɨɛűɤɜŬ ɛŮ Űɞɜ ɔɨɟɞ əŬŰɎ Űɞɜ ɞˊɞɑɞ ŮɘůɏɟɢŮŰŬɘ ɐ ŮɝɏɟɢŮŰŬɘ Ŭˊɧ Űɞ 

ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. 

ȼ ůɡɛɛŮŰɞɢɐ Űɤɜ ɏɟɔɤɜ ůŰɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ ŮˊŮəŰŮɑɜŮŰŬɘ əŬɘ ůŰɖɜ ůɡɛɛŮŰɞɢɐ Űɤɜ ɢŬɟŰɞűɡɚŬəɑɤɜ 

ůŰɞ ŰŮɚɘəɧ ůɨɜɞɚɞ Pareto ɧˊɞɡ ŮɝŮŰɎɕɞɜŰŬɘ ˊŮɟɘůůɧŰŮɟŮɠ Ŭˊɧ ɛɑŬ ŬɜŰɘəŮɘɛŮɜɘəɏɠ ůɡɜŬɟŰɐůŮɘɠ. Ⱥɜɩ ɖ 

Ŭɟɢɘəɐ ɛɏɗɞŭɞɠ ITA ůɢŮŭɘɎůŰɖəŮ ɔɘŬ ɜŬ ŮűŬɟɛɧůŮɘ ɏɜŬ ˊɟɧɓɚɖɛŬ ɛŬɗɖɛŬŰɘəɞɨ ˊɟɞɔɟŬɛɛŬŰɘůɛɞɨ ɛŮ ɛɑŬ 

ŬɜŰɘəŮɘɛŮɜɘəɐ ůɡɜɎɟŰɖůɖ, ɖ ɞɛŬŭɘəɐ ɏəŭɞůɖ Űɖɠ ɛŮɗɧŭɞɡ ITA ŮˊŮəŰŮɑɜŮŰŬɘ ůŮ ˊɟɞɓɚɐɛŬŰŬ ɛŮ 

ˊŮɟɘůůɧŰŮɟŮɠ ŬɜŰɘəŮɘɛŮɜɘəɏɠ ůɡɜŬɟŰɐůŮɘɠ. Ƀ ɓŬɗɛɧɠ ɓŮɓŬɘɧŰɖŰŬɠ Űɤɜ ɓɏɚŰɘůŰɤɜ ɢŬɟŰɞűɡɚŬəɑɤɜ Pareto 

ˊɞɡ Ŭɜɐəɞɡɜ ůŰɞ ŰŮɚɘəɧ ůɨɜɞɚɞ Pareto ɛˊɞɟŮɑ Ůˊɑůɖɠ ɜŬ ɛŮŰɟɖɗŮɑ. 

ȼ ɛɏɗɞŭɞɠ ITA ŮűŬɟɛɧůŰɖəŮ ůŮ ŬɟəŮŰɎ ˊɟŬɔɛŬŰɘəɎ ˊɟɞɓɚɐɛŬŰŬ ˊɞɡ ˊŬɟɞɡůɘɎɕɞɜŰŬɘ ůŰɖɜ ˊŬɟɞɨůŬ 

ŭɘŬŰɟɘɓɐ. ɇɞ ˊɟɩŰɞ ɗɏɛŬ ˊɞɡ ˊɟɞůɏɚəɡůŮ Űɖɜ ˊɟɞůɞɢɐ ɛŬɠ ɐŰŬɜ ɖ Ůˊɘɚɞɔɐ ɏɟɔɤɜ ůŰɞɜ ŰɞɛɏŬ Űɤɜ 

ŰɖɚŮˊɘəɞɘɜɤɜɘɩɜ. ȼ ŮɡɟŮɑŬ əŬɘ ɔɟɐɔɞɟɖ ŭɘɎŭɞůɖ Űɤɜ ɜɏɤɜ ŰŮɢɜɞɚɞɔɘəɩɜ ŮɝŮɚɑɝŮɤɜ ŬˊŬɘŰŮɑ ŬˊɞŰŮɚŮůɛŬŰɘəɎ 

ŮɟɔŬɚŮɑŬ ɔɘŬ Űɖɜ Ůˊɘɚɞɔɐ ŮɜŬɚɚŬəŰɘəɩɜ ŮˊɏəŰŬůɖɠ əŬɘ əɎɚɡɣɖɠ Űɖɠ ŬɡɝŬɜɧɛŮɜɖɠ ɕɐŰɖůɖɠ. ȼ ŬɜɎɔəɖ ɔɘŬ 

ɛɘŬ ɘůɞɟɟɞˊɖɛɏɜɖ ˊɟɞůűɞɟɎ ɜɏɤɜ ɡˊɖɟŮůɘɩɜ ŮɑɜŬɘ ɏɜŬ ˊɟɧɓɚɖɛŬ ɛŮ ŭɘŬűɞɟŮŰɘəɏɠ əŬɘ 

ŬɚɚɖɚɞůɡɔəɟɞɡɧɛŮɜŮɠ ˊŰɡɢɏɠ. ɇɞ əɨɟɘɞ ɢŬɟŬəŰɖɟɘůŰɘəɧ Űɞɡ ˊɟɞŰŮɘɜɧɛŮɜɞɡ ɡˊɞɚɞɔɘůŰɘəɞɨ ŮɟɔŬɚŮɑɞɡ 

ɡˊɞůŰɐɟɘɝɖɠ Űɖɠ ŬˊɧűŬůɖɠ ŮɑɜŬɘ ɖ ŮɜůɤɛɎŰɤůɖ ˊɞɚɚɩɜ ŬɓŮɓŬɘɧŰɖŰɤɜ ůŰɖ ŭɘŬŭɘəŬůɑŬ Ůˊɘɚɞɔɐɠ əŬɘ ɖ 

ůŰŬŭɘŬəɐ "ɞɘəɞŭɧɛɖůɖ" Űɞɡ ɢŬɟŰɞűɡɚŬəɑɞɡ ɏɟɔɤɜ. 

ȯɚɚŮɠ ŮűŬɟɛɞɔɏɠ ŬůɢɞɚɞɨɜŰŬɘ ɛŮ ɏɟɔŬ ŬɜŬɜŮɩůɘɛɖɠ ŮɜɏɟɔŮɘŬɠ Űɧůɞ ůŮ Ůɗɜɘəɧ ɧůɞ əŬɘ ůŮ ˊŬɔəɧůɛɘɞ 

ŮˊɑˊŮŭɞ. ȺɝŮŰɎůɗɖəŮ ɛŮɚɏŰɖ ˊŮɟɑˊŰɤůɖɠ ɛŮ ˊɟŬɔɛŬŰɘəɎ ůŰɞɘɢŮɑŬ Ŭˊɧ Űɖ ɓɎůɖ ŭŮŭɞɛɏɜɤɜ Űɞɡ ɀɖɢŬɜɘůɛɞɨ 

ȾŬɗŬɟɐɠ ȷɜɎˊŰɡɝɖɠ, ˊɟɞəŮɘɛɏɜɞɡ ɜŬ ŭɖɛɘɞɡɟɔɖɗŮɑ ɏɜŬ ɘůɞɟɟɞˊɖɛɏɜɞ ɢŬɟŰɞűɡɚɎəɘɞ "ˊɟɎůɘɜɤɜ" 

ŭɟŬůŰɖɟɘɞŰɐŰɤɜ. ȼ ůɡɔəŮəɟɘɛɏɜɖ ŮɟɔŬůɑŬ ŮˊɘəŮɜŰɟɩɜŮŰŬɘ ůŰɞ ˊɟɧɓɚɖɛŬ Ůˊɘɚɞɔɐɠ ɢŬɟŰɞűɡɚŬəɑɞɡ 

ŮɜŮɟɔŮɘŬəɩɜ ɏɟɔɤɜ ɧˊɞɡ ɖ ŮɜŮɟɔŮɘŬəɐ ˊŬɟŬɔɤɔɐ əɎɗŮ ɏɟɔɞɡ əŬɗɩɠ əŬɘ ɎɚɚŮɠ ˊŬɟɎɛŮŰɟɞɘ ɛˊɞɟŮɑ ɜŬ ŮɑɜŬɘ 

ŬɓɏɓŬɘŮɠ. ũɘŬ Űɖɜ ŰɟɏɢɞɡůŬ ɛŮɚɏŰɖ ˊŮɟɑˊŰɤůɖɠ ɗŮɤɟɞɨɛŮ ɧŰɘ ɖ ŬɓŮɓŬɘɧŰɖŰŬ ůŰɘɠ ˊŬɟŬɛɏŰɟɞɡɠ ŮɑɜŬɘ 

ůŰɞɢŬůŰɘəɐ əŬɘ ɢŬɟŬəŰɖɟɑɕŮŰŬɘ Ŭˊɧ ɛɑŬ əŬŰŬɜɞɛɐ ˊɘɗŬɜɧŰɖŰŬɠ. ɆŰɖ ůɡɜɏɢŮɘŬ, ɛŮ ˊɟɞůɞɛɞɑɤůɖ Monte 



xiv 

 

Carlo ɚŬɛɓɎɜɞɜŰŬɘ ɞɘ Űɘɛɏɠ Ŭˊɧ ŬɡŰɏɠ Űɘɠ əŬŰŬɜɞɛɏɠ əŬɘ ŮˊɘɚɨɞɜŰŬɘ ŰŬ ɛɞɜŰɏɚŬ ɛŬɗɖɛŬŰɘəɞɨ 

ˊɟɞɔɟŬɛɛŬŰɘůɛɞɨ ɛŮ Űɘɠ Űɘɛɏɠ ŭŮɘɔɛŬŰɞɚɖɣɑŬɠ. ɇɞ ŬˊɞŰɏɚŮůɛŬ Űɖɠ ŭɘŬŭɘəŬůɑŬɠ ŭŮɜ ŮɑɜŬɘ ɛɧɜɞ Űɞ ŰŮɚɘəɧ 

ɢŬɟŰɞűɡɚɎəɘɞ, ŬɚɚɎ əŬɘ ɞɘ ˊɚɖɟɞűɞɟɑŮɠ ůɢŮŰɘəɎ ɛŮ Űɖ ɓŮɓŬɘɧŰɖŰŬ ůɡɛɛŮŰɞɢɐɠ ɐ ŬˊɞəɚŮɘůɛɞɨ əɎɗŮ ɏɟɔɞɡ 

Ŭɧ́ Űɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. 

ɇɞ ŮˊɧɛŮɜɞ ˊŬɟɎŭŮɘɔɛŬ ŬűɞɟɎ ɏɟɔŬ ȷɜŬɜŮɩůɘɛɖɠ Ʉɖɔɩɜ ȺɜɏɟɔŮɘŬɠ (ȷɄȺ) ůŰɖɜ ȺɚɚɎŭŬ, ˊɞɡ Ůˊɘŭɘɩəɞɡɜ 

ɞɘəɞɜɞɛɘəɐ ɡˊɞůŰɐɟɘɝɖ Ŭˊɧ ɢɟɖɛŬŰɞˊɘůŰɤŰɘəɎ ɘŭɟɨɛŬŰŬ, ɧˊɞɡ ŮɑɜŬɘ ˊɞɚɨ ůɖɛŬɜŰɘəɧ ɜŬ ɔɑɜŮɘ ɛɘŬ 

ɘůɞɟɟɞˊɖɛɏɜɖ Ůˊɘɚɞɔɐ əŬɘ ɜŬ ŬˊɞűŮɡɢɗŮɑ ɖ ŰŬəŰɘəɐ "ɧɚŬ ŰŬ ŬɡɔɎ ůŮ ɏɜŬ əŬɚɎɗɘ". ɆŰɖɜ ŮɝŮŰŬůɗŮɑůŬ 

ˊŮɟɑˊŰɤůɖ, ŬɝɘɞɚɞɔɐɗɖəŬɜ 133 ˊɟɞŰɎůŮɘɠ ɏɟɔɤɜ ˊɞɡ əŬɚɨˊŰɞɡɜ ŰɟŮɘɠ ŰŮɢɜɞɚɞɔɑŮɠ ȷɄȺ (ŬɘɞɚɘəɎ ɏɟɔŬ, 

ɛɘəɟɎ ɡŭɟɞɖɚŮəŰɟɘəɎ, űɤŰɞɓɞɚŰŬɥəɎ) ɛŮ 5 əɟɘŰɐɟɘŬ. ȹŮŭɞɛɏɜɞɡ ɧŰɘ ůŰɖ ŭɘŬŭɘəŬůɑŬ Ůˊɘɚɞɔɐɠ ůɡɛɛŮŰŮɑɢŬɜ 

ŬɟəŮŰɞɑ Ůɘŭɘəɞɑ ɛŮ ŭɘŬűɞɟŮŰɘəɏɠ ˊɟɞŰɘɛɐůŮɘɠ, ɖ ɞɛŬŭɘəɐ ITA ůɢŮŭɘɎůŰɖəŮ ɔɘŬ ɜŬ ˊɟɞůɗɏŰŮɘ ůŰŬŭɘŬəɎ ŰŬ 

ɏɟɔŬ ůŰɞ ɢŬɟŰɞűɡɚɎəɘɞ ŬɜɎɚɞɔŬ ɛŮ Űɖ ůɡɛűɤɜɑŬ ˊɞɡ ŮˊɘŰɡɔɢɎɜŮŰŬɘ ůŰŬ ɛɏɚɖ Űɖɠ ɞɛɎŭŬɠ ɛɏɢɟɘ ɜŬ űŰɎůŮɘ 

ɏɜŬ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ. 

ɇɞ ŰŮɚŮɡŰŬɑɞ ˊŬɟɎŭŮɘɔɛŬ ŮɑɜŬɘ ɛɘŬ ˊɟɞůˊɎɗŮɘŬ ɜŬ ɔŮűɡɟɤɗŮɑ Űɞ ɢɎůɛŬ ɛŮŰŬɝɨ ŮˊɘɢŮɘɟɖɛŬŰɘəɩɜ əŬɘ 

ŭɖɛɧůɘɤɜ ůɡɛűŮɟɧɜŰɤɜ. ɆɐɛŮɟŬ, ŭɑŭŮŰŬɘ ɞɚɞɏɜŬ əŬɘ ɛŮɔŬɚɨŰŮɟɖ ɏɛűŬůɖ ůŰɘɠ űɘɚɘəɏɠ ˊɟɞɠ Űɞ ˊŮɟɘɓɎɚɚɞɜ 

ŭɟŬůŰɖɟɘɧŰɖŰŮɠ, ɞɘ ɞˊɞɑŮɠ ɗŮɤɟɞɨɜŰŬɘ ɛɑŬ Ŭˊɧ Űɘɠ ɓŬůɘəɏɠ ɚɨůŮɘɠ ɔɘŬ Űɖɜ əŬŰŬˊɞɚɏɛɖůɖ Űɖɠ ŰɟɏɢɞɡůŬɠ 

ɢɟɖɛŬŰɞˊɘůŰɤŰɘəɐɠ əŬɘ ɞɘəɞɜɞɛɘəɐɠ əɟɑůɖɠ. ȷɡŰɧɠ ŮɑɜŬɘ ɞ ɚɧɔɞɠ ˊɞɡ ŭɞəɘɛɎɕɞɡɛŮ Űɖ ŭɡɜŬŰɧŰɖŰŬ 

ŮɜůɤɛɎŰɤůɖɠ Űɖɠ ŮɜŮɟɔŮɘŬəɐɠ əŬɘ ˊŮɟɘɓŬɚɚɞɜŰɘəɐɠ ŮŰŬɘɟɘəɐɠ Ůɡɗɨɜɖɠ (Energy and Environmental 

Corporate Responsibility - EECR) ůŰɖ ŭɘŬŭɘəŬůɑŬ ɚɐɣɖɠ ŬˊɞűɎůŮɤɜ, ɡˊɞůŰɖɟɑɕɞɜŰŬɠ ɘŭɘŬɑŰŮɟŬ Űɖɜ 

ŬɜɎˊŰɡɝɖ Ůɜɧɠ ɜɏɞɡ ɛɞɜŰɏɚɞɡ ɔɘŬ Űɖɜ Ŭɝɘɞɚɧɔɖůɖ Űɤɜ ŮˊŮɜŭɨůŮɤɜ. ȺűŬɟɛɧɕŮŰŬɘ ɏɜŬ ɛɞɜŰɏɚɞ ɛŬɗɖɛŬŰɘəɞɨ 

ˊɟɞɔɟŬɛɛŬŰɘůɛɞɨ ŭɨɞ ŬɜŰɘəŮɘɛŮɜɘəɩɜ ůɡɜŬɟŰɐůŮɤɜ, ˊɟɞəŮɘɛɏɜɞɡ ɜŬ ɓɟŮɗɞɨɜ ŰŬ ɓɏɚŰɘůŰŬ əŬŰɎ Pareto 

ɢŬɟŰɞűɡɚɎəɘŬ (ůɨɜɞɚɞ Pareto) ɛŮ ɓɎůɖ Űɖɜ ȾŬɗŬɟɐ ɄŬɟɞɨůŬ ȷɝɑŬ (Net Present Value - NPV) Űɤɜ ɏɟɔɤɜ 

əŬɘ Űɖɜ ɓŬɗɛɞɚɞɔɑŬ Űɤɜ ŮˊɘɢŮɘɟɐůŮɤɜ ɤɠ ˊɟɞɠ Űɖɜ EECR. ȺˊɘˊɟɧůɗŮŰŬ, ŬɜŬˊŰɨůůŮŰŬɘ ɛɘŬ ůɡůŰɖɛŬŰɘəɐ 

ˊɟɞůɏɔɔɘůɖ ɚɐɣɖɠ ŬˊɞűɎůŮɤɜ ɢɟɖůɘɛɞˊɞɘɩɜŰŬɠ ˊɟɞůɞɛɞɑɤůɖ Monte Carlo, ˊɟɞəŮɘɛɏɜɞɡ ɜŬ 

ŬɜŰɘɛŮŰɤˊɘůŰŮɑ ɖ ŮɔɔŮɜɐɠ ŬɓŮɓŬɘɧŰɖŰŬ Űɤɜ ůɡɜŰŮɚŮůŰɩɜ Űɤɜ ŬɜŰɘəŮɘɛŮɜɘəɩɜ ůɡɜŬɟŰɐůŮɤɜ, ŭɖɚŬŭɐ ɖ NPV 

əɎɗŮ ɏɟɔɞɡ əŬɘ ɖ ɓŬɗɛɞɚɞɔɑŬ EECR əɎɗŮ ŮˊɘɢŮɑɟɖůɖɠ. Ⱥˊɘˊɚɏɞɜ, ɛˊɞɟŮɑ ɜŬ ŬɝɘɞɚɞɔɖɗŮɑ ɖ ŮɡɟɤůŰɑŬ Űɞɡ 

ɑŭɘɞɡ Űɞɡ ůɡɜɧɚɞɡ Pareto, əŬɗɩɠ əŬɘ ɖ ŮɡɟɤůŰɑŬ Űɤɜ Ůˊɘɛɏɟɞɡɠ ɓɏɚŰɘůŰɤɜ ɢŬɟŰɞűɡɚŬəɑɤɜ Űɞɡ Pareto. ȼ 

ˊɟɞŰŮɘɜɧɛŮɜɖ ˊɟɞůɏɔɔɘůɖ ŭɘŮɡəɞɚɨɜŮɘ Űɞɡɠ ŮˊŮɜŭɡŰɘəɞɨɠ ɞɟɔŬɜɘůɛɞɨɠ əŬɘ ɘŭɟɨɛŬŰŬ ůŰɖɜ Ůˊɘɚɞɔɐ Űɤɜ 

ŮˊɘɢŮɘɟɐůŮɤɜ ˊɞɡ ɡˊɞɓɎɚɚɞɡɜ ŬɑŰɖůɖ ɔɘŬ ɞɘəɞɜɞɛɘəɐ ɡˊɞůŰɐɟɘɝɖ əŬɘ ɢɞɟɐɔɖůɖ ˊɘůŰɩůŮɤɜ ůŰɞ ˊɚŬɑůɘɞ 

Űɖɠ EECR. 

ɆŮ ɧɚŮɠ Űɘɠ ˊŮɟɘˊŰɤůɘɞɚɞɔɘəɏɠ ɛŮɚɏŰŮɠ ɐŰŬɜ ˊŮɟɘůůɧŰŮɟɞ Ŭˊɧ ŮɛűŬɜɏɠ ɧŰɘ ɖ ɛɏɗɞŭɞɠ ITA ˊɟɞůɏűŮɟŮ ˊɞɚɨ 

ɢɟɐůɘɛɖ ˊɚɖɟɞűɧɟɖůɖ ůŰɞɜ ɡˊŮɨɗɡɜɞ ɚɐɣɖɠ ŬˊɞűɎůŮɤɜ, ˊɞůɞŰɘəɞˊɞɘɩɜŰŬɠ Űɞ ɓŬɗɛɧ ɓŮɓŬɘɧŰɖŰŬɠ ɛŮ Űɞɜ 

ɞˊɞɑɞ əɎɗŮ ɏɟɔɞ ɓɟɏɗɖəŮ ůŰɞ ŰŮɚɘəɧ ɢŬɟŰɞűɡɚɎəɘɞ, ɔŮɔɞɜɧɠ Űɞ ɞˊɞɑɞ ŭŮɜ ɛˊɞɟŮɑ ɜŬ ŮˊɘŰŮɡɢɗŮɑ ɛŮ Űɘɠ 

ůɡɛɓŬŰɘəɏɠ ɛŮɗɧŭɞɡɠ əŬɘ Űɖ ɢɟɐůɖ ɛɏůɤɜ əŬɘ ŬɜŬɛŮɜɧɛŮɜɤɜ Űɘɛɏɠ ůŰɖ ɛɞɜŰŮɚɞˊɞɑɖůɖ Űɖɠ ŬɓŮɓŬɘɧŰɖŰŬɠ. 
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1. Introduction  

1.1. Aims and scope 

The problems of choice surround us every day and everywhere. They may be complicated requiring more 

time and elaboration in order to pick up the best solution in comparison with simple ones. Moreover, with 

the growth of information necessary for the choice problem, the need for sophisticated assistance tools 

increases. 

One of common examples is the need of a university to make balanced selection from applicants. Students, 

considering limited time, have to choose subjects and extra activities, such as additional research programs 

or outdoor activities. Further, both public and private sectors are engaged in research and development 

programs that were chosen from a plethora of proposals. The list of examples may continue for eternity as 

making choices among alternative courses of action is a recurring activity. 

Initially, every choice problem seems to be different and unique. However, after a thorough analysis and 

structuring of the problem numerous similarities appear. First of all, these problems involve one or more 

decision makers (DM), who needs to work with a given set of alternatives. There may be more than one 

objective set to achieve, depending on preferences of one person or of a group of involved experts. Thorough 

assessment of available and necessary resources should be performed too. Unfortunately, it is impossible to 

be totally sure about the outcomes of a decision. Uncertainties in input data or preference information are 

almost always present and need to be taken into account. The environment, in which the decision is 

elaborated, is an open system and there is always a chance that something forgotten or discarded may 

significantly influence or even alternate final results (Salo et al. 2011). 

Different multi-cirteria decision analysis (MCDA) methods aim at supporting complex planning and 

decision process by providing a framework for collecting, storing and elaboration of all relevant information. 

The core of any MCDA method is the decision model, which is a formal specification of how different kinds 

of information are combined together to reach a solution. These methods are helpful for the development of 

planning processes, to avoid numerous distortions, and to manage all the information, criteria, uncertainties, 

and importance of the criteria. With their assistance it is possible to alleviate the problems caused by limited 

human computational power. Intuitive and adaptive choices are replaced by a justified and jointly accepted 

model (Lahdelma et al. 2000). Numerous authors (Goicoechea et al. 1982, Hobbs 1984, Hobbs et al. 1992, 

Simpson 1996, Lahdelma et al. 2000) point attention on the difficulty of picking a certain MCDA tool due to 

the fact that distinctive methods may provide different results with the same data, and there is usually no 
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means to objectively identify the best alternative or method. Therefore, the choice of the method should be 

well justified in real applications, although this is rarely done. When the problems are solved in close 

cooperation with experts, some requirements are applied for the MCDA method. First of all, the method 

should be well defined and easy to understand, particularly regarding its central elements, such as modeling 

of criteria and definition of weights. Next, the technique must be able to support the necessary number of 

DMs as well as to manage the necessary number of alternatives and criteria. Since the available time and 

financial support are usually limited, the need of preference information from the experts should be as small 

as possible. In addition, the ability to handle the inaccurate or uncertain criteria information should not be 

overlooked too. As a rule, these requirements cover the typical factors through which the practical relevance 

of decision support methods is usually evaluated. This is especially true, for example, in planning decisions 

in the domains of energy production and climate change abatement. 

Most of problems can be attributed to several categories or typologies. Roy (1996) identifies four different 

problematiques for which MCDA may be useful: 

 The choice problematique for making a simple choice from a set of alternatives; 

 The sorting problematique for allocation of options into classes or categories; 

 The ranking problematique for placing actions in some form of preference ordering which might 

not be necessarily complete; 

 The description problematique summarizes actions and their consequences in a formalized and 

systematic manner so that decision makers can evaluate these actions. In core this is a way to gain 

better understanding of what may and may not be achievable. 

To these four main groups Belton and Stewart (2002) add two more problematiques, namely: 

 The design problematique to search for, identify or create new decision alternatives to meet the 

goals and aspirations through the MCDA process; 

 The portfolio  problematique to choose a subset of alternatives from a larger initial set, taking into 

account not only the characteristics of the individual alternatives, but also of the manner in which 

they interact and of positive or negative synergies. 

In practice, the path of project selection combines several problematiques. Moreover, in most situations it is 

at least as much of a problem to identify suitable alternatives and to establish appropriate criteria, as it is to 

make a selection from the available alternatives. Consideration of numerous criteria and objectives leads to 

multi-objective design problems. 
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While problem structuring and analysis take a number of different forms, lack of knowledge leads to various 

uncertainties. The lack of knowledge influences the modeling process, the use of models for exploring trends 

and options, and the interpretation of results. For the purposes of multicriteria decision aid, Belton and 

Stewart (2002) differentiate between internal uncertainty, relating to the process of problem structuring and 

analysis, and external uncertainty, regarding the nature of the environment and thereby the consequences of 

a particular course of action. Uncertainty about the environment represents concern about issues outside the 

control of the decision maker. 

Several approaches to integrate external uncertainty have been developed. Some of the most used are: 

 Scenario planning, which usually requires decision makers to identify a number of scenarios 

relevant to the decision context (for instance: pessimistic, neutral, optimistic); 

 Decision Theory to use probability to describe the likelihood of uncertain events; 

 Risk as criterion in a multiple criteria analysis which implies that certain level of risk is acceptable 

in return for increased benefits of reduced costs in terms of other criteria. 

Unfortunately, for such complex problems traditional sensitivity analysis that is usually performed on certain 

criteria within defined ranges is not enough. As it is well observed in Antunes and Climaco (1992), 

sensitivity analysis (also called post-optimal analysis) in single objective linear programming deals with 

computing ranges on the variation of some initial data such that the optimal basis remains optimal for the 

perturbed problem. The concept of optimal solution (in general unique) gives place in Multi-Objective 

Programming to the concept of efficient solution (in general many, even if only extreme points are 

considered). Moreover, changes in the underlying DM's preference structure as a result of the information 

gathered throughout an interactive process must be taken into account. For a complex problem which has its 

optimum at an extreme point of the feasible region, the simultaneous consideration of constraints, which 

may be nonlinear, makes the problem more intricate.This makes even more difficult to define sensitivity 

analysis in an MCDM context, and in fact this issue is not uniformly addressed in the literature.  

On the other hand, scenario building also rarely reflects fine details and uncertainty in future performance of 

project proposals. As a rule, scenarios are developed for optimistic, business-as-usual and pessimistic 

conditions, which reveal certain trends, and then experts need to make a choice based in the inner feeling. 

Another approach is to model risk seeking, neutral, and risk avert behavior for the parameters that depend on 

human factor. Years of practice confirmed that almost always risk avert behavior is adopted by decision 

makers. Hence, all these approaches alone are imcomplete and need more search and modeling to deliver 

robust results. 
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That is why a combination of approaches and tools, fitted for certain problem, are better than a single one. 

The whole process needs more time and knowledge becomes more cumbersome, but the obtained results can 

lead towards balanced decisions. A typical list of tools starts with the identification of alternatives. In some 

occasions, alternatives to be evaluated may appear to be clearly defined. In other occasions, the definition or 

discovery of alternatives may be an integral part of a study. In certain circumstances, it may seem impossible 

to handle the overwhelming complexity of options. 

The following step is to evaluate available options whether they are few or a large number. Most 

multicriteria evaluation methods are designed for the evaluation of independently defined alternatives. 

Sometimes screening techniques are applied for large number of proposals when certain targets are already 

defined and should be met. DEA (Data Envelopment Analysis) might be used as a way to identify 

alternatives from a long list of promising options. In addition, it has been suggested that an outranking 

method, like ELECTRE, could be used to draw up a short list of suggestion for a more thorough evaluation. 

These screening approaches should be carefully used because a degree of non-compliance on one criterion 

may be compensated for by exceptional performance elsewhere. 

Simultaneously, a set of criteria should be decided upon. In a wide sense, criteria are seen as a certain 

standard by which one particular choice or course of action could be judged to be more desirable than 

another. For every separate problem a set of criteria is unique and needs to be well balanced in order to 

reflect project behavior in the future. 

Taking all the aforementioned into account, in this work we incorporate already developed tools and address 

known weaknesses with a new approach that helps to build a balanced project portfolio. Project portfolio 

selection problem is defined as the problem of selecting a subset of projects usually based on one or more 

criteria that have to fulfill specific constraints. In the presence of the imposed constraints (e.g. policy, 

segmentation constraints) a simple MCDA method does not suffice. The combinatorial character of the 

problem implies the use of optimization methods aiming at the portfolio of projects that satisfy constraints 

and achieves the ñbestò performance. A combination of projects is defined as project portfolio. Usually the 

ñbestò performance is expressed emphasizing on economic and financial criteria while other criteria related 

with the promotion of sustainable practices, environmental issues, fostering green growth, were not taken 

into consideration in traditional models (Hobbs and Meier 2000).  

The aim of the specific dissertation is to propose a method that effectively deals with decisions regarding the 

selection of a subset of projects from a wider set. This selection is driven not only by the performance of the 

projects (objectively of subjectively estimated) but also from various constraints and conditions among them 

that should be fullfiled. In addition, uncertainty is present either in a stochastic manner or in the subjective 

views of different decision makers and is treated carefully in the modeling process. 
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1.2. Thesis outline 

This thesis focuses on building a balanced project portfolio with great consideration of performance 

uncertainty, which cannot be adequately captured via traditional tools of forecasts and sensitivity analysis. 

The proposed methodology helps to capture incomplete information both in objective function(s) as well as 

in model parameter values. Further, the influence and implications on project and portfolio decisions are 

studied closer. That is why gradual portfolio building reveals inner dynamics and provides the possibility to 

review and update initial assumptions and constraints. 

The dissertation is structured as follows. 

Chapter 2 describes historical background and summarizes current ways to address project portfolio 

selection problems.  

Chapter 3 presents methodologies used along with crucial initial assumptions and concepts. The description 

moves from basic foundations towards more complicated ones. First, the types of tools applied for modeling 

are listed with short explanations of their use. Then, particularities of mathematical programming are 

discussed. Finally, assumptions about handling incomplete information in the current work are explained. 

Chapter 4 is devoted to the main contribution of the dissertation, the Iterative Trichotomic Approach (ITA) 

and its versions. Initially, a two-phase approach is developed to perform a relatively quick project selection 

which has to meet certain constraints. The concept is further developed to handle large number of projects 

with more complicated constraints. For a certain case study it has been necessary to adopt the approach for 

the group decision making in order to handle expertsô divergent points of view. 

Within Chapter 5 different applications are demonstrated. The first case study deals with the selection of 

activities for expansion of services for a telecommunication company, since drastic developments in the area 

required well thought future steps. The need for balanced introduction of new service offerings is a problem 

which involves different and conflicting aspects. The main feature of the proposed decision aid 

computational tool is the incorporation of several uncertainties in the selection process and the gradual 

building of the project portfolio. 

Among next examples there are a portfolio selection of climate related activities to be chosen for financial 

support, a more complicated case of group portfolio building and an example of a bi-objective problem 

among others. Most of these applications are focused on renewable energy projectsô selection. The specific 

focus is on the energy project portfolio selection problem where the output of each project as well as other 
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parameters may be uncertain. On the other hand, for the donor organization it is crucial to make a balanced 

selection and avoid the tactics of ñall eggs in one basketò. The process output is not only the final portfolio, 

but also information about the certainty of participation or exclusion of every project in the final portfolio.  

In all case studies it is very visible how ITA offers more fruitful information to the decision maker as it 

quantifies the degree of certainty with which each project is treated in the final portfolio, a task that cannot 

be accomplished with the conventional methods using average and expected values in the modeling of 

uncertainty. 

In Chapter 6, the contribution of this thesis is summarized and some plans for future work are suggested. 

Also, the final chapter compiles conclusions and observations from case studies and about the whole 

framework of methodology. 

The Appendix provides some general information about GAMS modeling language. In addition, the coding 

of models for the case studies is provided. 

Overall, this thesis expands the material which has been published, submitted, or is under preparation, in 

various journals and conferences. 

 

Equation Section 2 
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2. The problem: Project portfolio selection 

Project portfolio selection  is defined as the problem of selecting a subset from a wide set of proposals. 

Portfolio selection is a step further after simple ranking of projects. Usually the projects are not independent, 

i.e., there are particular limitations that should be respected (segmentation constraints, mutually exclusive, 

precedence etc.) so that Multiple Criteria Decision Aid (MCDA) methods do not suffice but they must be 

combined with combinatorial optimization techniques. A popular way to deal with this problem is to use a 

two step approach: (1) A multicriteria method to evaluate the projects and (2) a mathematical programming 

model that incorporates the constraints while the objective function coefficients are the multicriteria scores. 

Generally speaking, according to Vetschera and Almeida (2012) project portfolio selection involves: 

 Selection of subset from a wider set of project proposals; 

 Projects are indivisible and can be chosen as whole; 

 Constraints are applied, so that not all available proposals can be selected; 

 Outcomes are determined by some aggregation of properties of selected projects.  

2.1. History and current status of portf olio selection 

In project portfolio selection the intuitive approach is to rank projects using one or more criteria and select 

the top ranked ones that cumulatively satisfy the budget limitation, as shown in Figure 2-1. Often this 

straightforward approach is sufficient. However, this may result in the budget cutting off midway through an 

expensive project. Also, in real world decision making, there are two concepts that complicate the decision 

situation: (a) the existence of constraints and limitations imposed by the decision maker; (b) the uncertainty 

that accompanies the project evaluation, i.e., the output uncertainty. Moreover, projects are rarely 

independent (with most common logical constraints where alternatives A and B are mutually exclusive) and 

numerous interactions may take place. Among common examples are interactions in cost (e.g., the cost of C 

and D together is less than the cost of C by itself plus the cost of D by itself), interactions in the values (e.g., 

the value of E and F together is different from the value of E by itself plus the value of F by itself), or 

probabilistic covariance in outcome. All these problems can be addressed by formulating a suitable binary 

optimization program, which can be solved by using Excelôs Solver or other commercial software. However, 

this approach should be used with caution. The math program can quickly become too large to be really 
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understood by or explained to senior decision makers and stakeholders. The resulting optimum portfolios 

can be fragile, in the sense that they can change drastically with only a small change in data (for instance, a 

little additional budget can result in an alternative being deleted from the portfolio, which is very hard to 

explain to that alternativeôs proponent). Finally, if the problem is very large (hundreds of alternatives), it can 

take a long time (hours or days) to solve (Burk and Parnell, 2011). 

 

Figure 2-1.  Selection of n top ranking projects. 

The earliest contributions were published under the title of capital budgeting (see e.g. Lorie and Savage, 

1955), using strictly financial measures to quantify the value of projects and portfolios, giving emphasis to 

the budget constraint. From early sixties, the so called capital budgeting problem was recognized as 

equivalent to the popular in Operational Research (OR) knapsack paradigm. The incorporation of multiple 

criteria can also be found in the literature within Goal Programming (see e.g. for a review Zanakis et al., 

1995; for applications in Information Systems Badri et al., 2001; Santhanam et al., 1989; Santhanam and 

Kyparisis, 1996; for university resource allocation Albright, 1975; Kwak and Lee, 1998; Fandel and Gal, 

2001; for an industrial application Mukherjee and Bera, 1995), combinations of MCDA with IP (see e.g. 

Golabi et al., 1981; Abu Taleb and Mareschal, 1995; Mavrotas et al., 2003; Mavrotas et al., 2006; Mavrotas 

et al., 2008), and Data Envelopment Analysis (Cook and Green, 2000; Oral et al., 1991; Oral et al., 2001) 

among others. Ghasemzadeh and Archer (2000) proposed the Project Analysis and Selection System (PASS) 

based on MCDA and Integer Programming. Hunt et al. (2013) proposed OUTDO for energy projects. 

Lourenco et al. (2012) proposed PROBE (Portfolio Robustness Evaluation) introducing the concept of 

robustness in project portfolio selection. 

Project scoring methods do not necessarily ensure the quality of portfolio selection, because they do not 

explicitly take into account portfolio level considerations, such as multiple resource constraints, portfolio 
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balance requirements and other project interactions. Sophisticated project portfolio models, on the other 

hand, seek to combine project portfolio optimization with explicit consideration of multiple value criteria 

(Golabi et al., 1981; Golabi, 1987). These models build on the well established Multi-Attribute Value 

Theory (MAVT; see, e.g., Keeney and Raiffa, 1976) to aggregate the multi-criteria project values into a 

portfolio overall value and use integer linear programming to determine the optimal composition of the 

project portfolio subject to resource and other constraints. Several high impact applications of multi-criteria 

portfolio models have been reported in the fields of military resource allocation (Ewing et al., 2006), R&D 

portfolio selection (Golabi et al., 1981), product release planning (Ruhe and Saliu, 2005) and healthcare 

capital allocation (Kleinmuntz, 2007), among others (Liesio 2008).  

Based on the aforementioned studies, a project portfolio decision support framework needs to strike a 

balance between the following challenges: 

Generality. The decision support model should be flexible enough so that it is applicable in various problems 

contexts. Most importantly it should allow consideration of multiple criteria and resources. Moreover, 

portfolio balance requirements and project interactions are common in applications. Finally, the model 

should support benefit-cost analyses, as the budget, for instance, is not always a fixed constraint but can be 

adjusted to some extent. 

Modest data requirements. Even if a model could capture all aspects of project portfolio selection, the use of 

such a model would require large amounts of data and/or subjective evaluations to estimate the model 

parameters. Such data is often unavailable, whereas expert evaluations are costly to obtain and may contain 

considerable uncertainties. Therefore, models that offer approximate or inconclusive results with modest 

data requirements and explicitly take into account the incomplete or imprecise nature of the data, are more 

useful than models that require accurate data before offering any results. 

Transparency. For a model to be accepted by practitioners, the key assumptions and concepts of the model 

have to be understood by the DMs. Empirical research supports this claim as practitioners often use simple 

scoring models to support project evaluation (Cooper et al., 1999). Also, from the aspect of decision support, 

models intelligible to non-experts are more readily applicable, as difficulties in elicitation of preferences and 

communication of results are likely to be avoided (Liesio et al. 2007). 

In his seminal work for portfolio optimization Markowitz (1952) proposed the Modern Portfolio Theory 

(MPT) that incorporated portfolio risk in the decision making process. There, risk was quantified by the co-

variance matrix of the returns (outputs) as calculated by historical data. The MPT was designed for securities 

where historical data is not a problem (Xidonas et al. 2012). In relation to projects the MPT cannot be easily 

applied as the decision variables are binary and historical data are scarce. While security prices can be 
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correlated, most investments into securities are not logically dependent on each other. But in project 

portfolio selection there can be many forms of interdependencies due to logical relationships. For a more 

realistic modeling, the uncertainty characterizing the output of projects should be taken into account. In the 

literature, this is done either with the use of scenarios (see e.g. Georgopoulou et al., 1998) or with fuzzy 

parameters (see e.g. Damghani et al., 2011; Cavallaro, 2010) or with stochastic parameters (Liesio et al., 

2008; Shakhsi-Niaei et al., 2011). An appropriate tool for dealing with stochastic uncertainty is Monte Carlo 

simulation, where sampling from certain probability distributions is performed for the inputs and the outputs 

with all the relevant obtained information. A great number of iterations is necessary in order to obtain 

reliable results from the outputs (distribution of output values etc.). Another feature to remember is the fact 

that projects are treated as binary variables which are either selected or rejected. This differs from financial 

portfolio optimization where essentially any fractional amount of resources can be invested into any security 

(Vilkkumaa et al. 2014). 

We note that finding examples of project portfolio selection problems is not an easy task, because very often 

they may be called in another way. Research is spread between numerous specialized journals and books. 

Equation Section (Next) 
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3. Methodology 

Complex problems need elaborated models. Certain simplification is necessary, but oversimplification may 

lead to wrong results. In order to capture the complex nature of a problem it is worth to apply different tools 

and approaches. A short description of tools that were used in the current work is provided in the sub-

chapters below. 

3.1. Initial elaboration of projects 

All proposals for activities may be called projects, items or alternatives and are subject of evaluation in terms 

of multiple criteria in order to make them comparable between each other. The criteria provide numerical 

measures for all relevant behaviors of different alternatives. The relevance of various impacts depends on 

expertsô points of view. Also, it is necessary to define precisely how each criterion is measured. Usually 

criteria are aggregate values computed from a much larger amount of so-called primary factors, which form 

the lowest level of information, also known as the assessment level (Lahdelma et al. 2000). Within many 

years numerous researchers addressed this issue. Mainly either outranking or value and utility methods are 

used for that. A well done description of preference elaboration methods basic principlesô is done by Stewart 

and Belton (2002). Further elaboration may be made by straightforward picking of one project representing 

each group or after a prioritization stage. Ranking is usually performed on the basis of one most important 

criterion, such as cost/benefit ratio, required resource or something else. There is no formal way of 

constructing a list of possible alternatives and no concrete way of knowing when the set of experts is 

complete enough, other than relying on experience, intuition, and on the vague concept of diminishing 

marginal return of satisfaction (Banville et al. 1998). 

One of classical examples is the knapsack problem which focuses on selecting projects until the main 

resource (such as budget) is exhausted. Such an approach would produce the highest benefit for the money 

spent, but would not necessarily deliver the maximum benefit for the available budget (Lourenco, Morton 

and Bana e Costa 2012). Because of this, the concept of constraints becomes a vital part of the selection 

problem, which in turn destroys one of the main assumptions in ranking method - the independence of the 

projects (see e.g. Belton and Stewart, 2002). In other words, the top ranked projects only by chance may 

satisfy imposed constraints. A strong and useful tool to cope with such problems is Mathematical 

Programming that optimizes under specific constraints. More specifically, in case of project selection, the 
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combinatorial character of the problem implies the use of Integer Programming (IP) with 0-1 (binary) 

variables expressing incorporation (Xi=1) or exclusion (Xi=0) of respective project in final selection. 

In addition, numerous approaches were developed in order to capture a complicated nature of interactions 

between projects. When the cumulative effect of implementation of several projects is greater than the 

simple sum of their values ï then synergy effects take place. In some cases, there may be opposite results 

with the cumulative sum smaller than the straightforward addition. It may be caused by overlaps in projects 

performance and output. Moreover, some projects may be mutually exclusive.  

Within the current work we used different methods for initial evaluation of available options. 

3.2. Tools for projectsô assessment 

The field of MCDA has developed rapidly over the past decades and in the process a number of divergent 

schools of thought have emerged. For a balanced presentation of approaches the book of Belton and Stewart 

(2002) is a good starting point. Here we will mention only briefly some major schools. 

Among the oldest are value measurement models, in which numerical scores are constructed in order to 

represent the degree to which one decision option may be preferred to another. Such scores are developed for 

each individual criterion, and are then synthesized in order to affect aggregation into higher level preference 

models. Among widely used approaches of this school are Multiattribute Utility Theory (MAUT), 

Multiattribute Value Theory (MAVT) and Analytic Hierarchy Process (AHP). They differ primarily in terms 

of the underlying assumptions about preference measuring, the methods used to elicit preference judgements 

from experts involved, and the manner of transforming these into quantitative scores.  

Other family is represented by goal, aspiration or reference level models, in which desirable or satisfactory 

levels of achievements are established for each of the criteria. The process then seeks to discover options 

which are in some sense closest to achieving these desirable goals or aspirations. In these models much 

depends on the framing of the problem, reference points and perception of what constitutes ñgainò or ñlossò. 

Care thus needs to be taken in ensuring that decision makers understand and are satisfied with the implied 

reference points used in the model. 

Wide popularity gained outranking models, in which alternative courses of actions are compared pairwise, 

initially in terms of each criterion, in order to identify the extent to which a preference of one over the other 

can be asserted. In aggregating such preference information across all relevant criterion, the model seeks to 

establish the strength of evidence favouring selection of one alternative over another. 

In what follows, we have a closer look on some of most popular assessment methods. 
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Value function methods synthesize projectsô performance assessment against certain criteria, together with 

inter-criteria information reflecting the relative importance of different criteria, to give an overall evaluation 

of each alternative indicative of the decision makersô preferences. However, it is worth to remember that 

learning and understanding which results from engaging in the whole analysis process is far more important 

than numerical results. That is why evaluation should incorporate extensive sensitivity analysis and 

robustness analysis. 

Within the value measurement approach, the first step is to develop a hierarchy of criteria (so called ñvalue 

treeò). Further, the components of preference modeling are achieved by constructing ñmarginalò / ñpartialò 

value functions (vi (a)) for each criterion. It should be remembered that the properties of the partial value 

functions and the form of aggregation used are critically interrelated. Usually an additive aggregation is 

adopted, while multiplicative aggregation may be adopted in some MCDA approaches. 

Utility theory can be viewed as an extension of value measurement, relating to the use of probabilities and 

expectations to deal with uncertainty. Here it is assumed that each criterion is directly associated with a 

quantitative attribute measured on a cardinal scale, which may also be influenced by unknown external 

factors. The consequences of each alternative are thus described in terms of a probability distribution on 

certain attribute vector. For a more detailed description of the method it is advised to read the work of 

Keeney and Raiffa (1976). 

As for the AHP, its main difference from MAVT is in the use of pairwise comparisons between alternatives 

with respect to criteria and criteria within families, as well as the use of ratio scales for all judgements. The 

method was initially developed by Saaty (1980), it was elaborated through years and became widely used in 

practical applications. 

In outranking methods, specially acclaimed became the variations of ELECTRE and PROMETHEE 

methods. The family of ELECTRE methods was developed through years by Roy B. and associates and 

differs according to the degree of complexity or richness of the information required or according to the 

nature of the underlying problem.  

Roy was critical of the utility and value function methods on the grounds that they require all options to be 

comparable. In collaboration first with his associates at LAMSADE, University of Paris Dauphine, he started 

to develop ELECTRE outranking method. One of the major features of this new approach was the provision 

of weaker, poorer models than value function, built with less effort and fewer hypotheses, but not always 

allowing conclusion to be drawn. The family of ELECTRE methods differ according to the degree of initial 

information complexity and the nature of the underlying problem. 
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The earliest and simplest outranking method was ELECTRE I which is good for understanding of underlying 

concepts. The methods are based on the evaluation of two indices, namely the concordance and the 

disconcordance indexes, defined for each pair of options under consideration. The concordance index, 

C(a,b), measures the strength of support in the information given, for the hypothesis that a is at least as good 

as b. The disconcordance index, D(a,b), measures the strength of evidence against this hypothesis.  

In general, the concordance index is the proportion of criteria weights allocated to these criteria for which a 

is equal or preferred to b. The index takes values between 0 and 1 where higher values indicate stronger 

preference of a over b. The disconcordance is expressed as a proportion of the maximum weighted 

difference between any two alternatives on any criterion. It ranges from 0 to 1 as the previous index and its 

high value indicates that on at least one criterion b performs substantially better than a. Still, the form of this 

index makes it appropriate only for evaluations that were made on a cardinal scale and the weights render 

scales comparable across criteria. These assumptions are not easy to meet and may be quite restrictive.  

The concordance and disconcordance indices for each pair of options can be used to build an outranking 

relation. Also, simultaneously respective thresholds should be specified carefully. If the outranking relation 

is too severe, then almost all pairs of alternatives will be deemed to be incomparable, while a light relation 

will lead to a situation where too many options outrank too many others. Fortunately, an outranking relation 

can be represented visually by a graph with arrows showing the direction of outranking relation.  

Having built the outranking relation, the final step is the exploration of that relation in the decision process. 

The procedure may have several shapes depending on the initial cause of the process. It can be either a 

determination of the ñbestò option, or an options ranking, or a separation into certain classes or groups of 

alternatives. Also, sensitivity and robustness analysis may be performed to support final decisions. 

ELECTRE II was developed shortly after ELECTRE I and aims at the production of alternativesô ranking 

rather than simple search of the most preferred ones. This is reached via different pairs of concordance and 

disconcordance thresholds. These are referred to as the strong and weak outranking relations, the former 

having a higher concordance threshold and a lower discordance one. Another small change was the 

introduction of an additional constraint in the test for outranking in order to reduce the possibility of two 

alternatives each outranking the other.  

Later developments put a greater emphasis on detailed preference modeling since not all alternatives perform 

identically on a given criterion. In ELECTRE III the notions of indifference and preference thresholds were 

introduced. However, this requires more work in modeling preferences with respect to each individual 

criterion before progressing to the building and exploitation of the outranking relation. In order to handle 
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situations when it is impossible to specify criteria weights ELECTRE IV was developed. Outranking 

relations, of different strength, are then defined by direct reference to the performance levelsof alternatives. 

ELECTRE TRI is for use in classification problems. The original procedure was designed to allocate 

alternatives to one of three categories: acceptable, unacceptable and indeterminate. Later this has been 

extended for use in classification problems with greater number of categories. In certain way it became one 

of filtering methods. 

Another family of prominent outranking methods is represented by the PROMETHEE methods. The initial 

PROMETHEE method, developed by Brans and co-workers, uses preference function for each criterion. The 

next step determines a preference index for one option over another and defines a valued outranking relation, 

which is exploited to determine an ordering of the alternatives. Then, two other indices, the positive 

outranking flow and the negative outranking flow, are defined where the sums are taken over all alternatives 

under consideration. The positive outranking flow expresses the extent to which certain option outranks all 

others. The negative outranking flow expresses the level to which that option is outranked by all other 

options. Each of these indices defines a complete preorder of alternatives. 

It should be remembered that the values of both positive and negative outranking flows depend on the 

complete set of alternatives under consideration. Hence, inclusion or exclusion of another option may 

influence strongly already obtained preorders. 

The primary appeal of all outranking methods is in the avoidance of what are perceived to be overly 

restrictive assumptions of value or utility based approaches. All outranking methods focus on pairwise 

comparisons of alternatives, and are thus generally applied to discrete choice problems. Another advantage 

of these methods is the use of less precise inputs. 

3.3. Mathematical programming tools 

In operations research, mathematical programming, also alternatively named mathematical optimization or 

simply optimization, is the selection of a best alternative with regard to some criterion from an initial set of 

available options usually expressed by specific constraints.  

The simplest example of an optimization problem consists of maximizing or minimizing a real function by 

systematically choosing input values from within an allowed set and computing the value of the function. 

The generalization of optimization theory and techniques to other formulations comprises a large area of 

applied mathematics. More generally, optimization includes finding "best available" values of some 

objective function given a defined domain (or input), including a variety of different types of objective 
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functions and different types of domains. Many real-world and theoretical problems may be modeled in this 

general framework. 

In the operations research domain has a wide array of methods and approaches is available to solve 

problems. One of the largest families is the Convex programming problems where the objective function is 

either convex (minimization) or concave (maximization) and the constraint set is convex. This can be viewed 

as a particular case of nonlinear programming or as a generalization of linear or convex quadratic 

programming. 

Linear programming (LP) is a mathematical technique which tries to satisfy initial demands by assigning 

some amounts of resources so that a certain goal is elaborated in an optimal way while other limitations are 

also satisfied. LP addresses problems where the objective function f(x) is linear and the constraints are 

specified using only linear equalities and inequalities. Its feasible region is a convex polytope, which is a set 

defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its 

objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming 

algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a 

point exists. 

Methods of Integer Programming (IP) study linear programs in which some or all variables are constrained 

to take on integer values. This is not convex, and in general much more difficult than regular linear 

programming. In many settings the term refers to Integer Linear Programming (ILP), in which the objective 

function and the constraints (other than the integer constraints) are linear. There are two main reasons for 

using integer variables when modeling problems as a linear program: 

 The integer variables represent quantities that can only be integer. For example, it is not possible to 

schedule 2.5 buses. 

 The integer (binary) variables represent decisions and so should only take on the value 0 or 1. 

These considerations occur frequently in practice and so integer linear programming can be used in many 

applications areas. Among typical examples are the number of trucks in a fleet, number of electricity 

generators for energy production etc. 

One of typical problems that we have already mentioned earlier is the knapsack problem which is a 

relatively simple integer program. Furthermore, the coefficients of this constraint and the objective are all 

non-negative. Initial information covers a knapsack with certain capacity and a number of items, each with a 

size and a value. The objective is to maximize the total value of the items in the knapsack. To solve the 

associated linear program, it is simply a matter of determining which variable gives the most óbang for the 

buck''. In other words, after finding the ratio between the objective coefficient and constraint coefficient for 
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each variable, the one with the highest ratio is the best item to place in the knapsack. Then the item with the 

second highest ratio is put in and so on until we reach an item that cannot fit. At this point, a fractional 

amount of that item is placed in the knapsack to completely fill it. In certain way, a ranking is performed 

until the main resource is used. For more detailed descriptions see e.g. H. P. Williams (1999), G.L. 

Nemhauser and L.A. Wolsey (1999). 

Much like linear programming problems, Mixed Integer Linear Programming (MILP) problems are very 

important when solving decision-making models. MILP involves problems in which only some of the 

variables are constrained to be integers, while other variables are allowed to be continuous. Efficient 

algorithms for solving complex problems of this type are known and are available in the form of solvers such 

as CPLEX or Gurobi. Winston (1994) made one of earliest attempts to gather and explain some of most 

widespread problems in one book. An extended review of models and solving methods can be found in Taha 

H.A. (2003), Hillier and Lieberman (2001). 

Goal programming may be viewed as the bridge between single objective and multi-objective 

programming, namely concerning reference points approaches. The aim is to minimize the function of the 

deviations regarding targets established by DMs for the objective functions. These targets established by 

DMs may lead to a dominated solution to the problem under study if the DM is not sufficiently ambitious in 

specifying his goals. In this case, goal programming model leads to a satisfactory solution but may not 

belong to the nondominated solution set. More details may be found in Steuer (1986). 

 

3.4. Multi -objective mathematical programming 

Multi -objective Mathematical Programming (MOMP) is an extension of traditional mathematical 

programming theory dealing with mathematical optimization problems involving more than one objective 

function to be optimized simultaneously. The family of these methods can be also called multi-objective 

programming, vector optimization, multi-criteria optimization, multiattribute optimization or Pareto 

optimization. Adding more than one objective to an optimization problem adds complexity. Multi -objective 

optimization has been applied in many fields of science, including engineering, economics and logistics 

where optimal decisions need to be taken in the presence of tradeoffs between two or more conflicting 

objectives. A general formulation of a MOMP problem is as follows: 

Max or Min {f1( x), f2( x),..., fn( x )} 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Trade-off
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where x is the vector of decision variables; f1, f2,..., fn;  are the objective functions (linear or nonlinear) to be 

optimized; and S is the set of feasible solutions. 

In contrast to traditional mathematical programming theory, within MOMP framework the usual concept of 

an optimal solution is no longer applicable. This is because objective functions are of conflicting nature (the 

opposite is rarely the case). Therefore, it is not possible to find a solution that optimizes simultaneously all 

the objective functions. In this regard, within the MOMP framework, the major point of interest is to search 

for an appropriate ñcompromiseò solution. When searching for such a solution, only the efficient set is 

considered. The efficient set consists of solutions, which are not dominated by any other solution on the 

prespecified objectives. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if 

none of the objective functions can be improved in value without degrading some of the other objective 

values. Without additional subjective preference information, all Pareto optimal solutions are considered 

equally good as vectors cannot be ordered completely. That is why the involvement of DM in resultsô 

elaboration is welcomed. Most multiple objective programming procedures are interactive and a review of 

such interactive procedures is contained in Gardiner and Steuer (1994). One of the earliest examples is of 

Lawrence and Steuer (1981) who applied an interactive multiple objective programming procedure to capital 

budgeting to enable a decision maker to gain improved appreciations of how the objectives tradeoff against 

one another. 

Several appropriate procedures have been developed to solve MOMP problems. These procedures are 

interactive and iterative. The general framework within which these procedures operate is a two-stage 

process. In the first stage, an initial efficient solution or group of solutions is presented to the DM. If this 

solution is found to be acceptable (i.e., if it satisfies expectations on the given objectives), the solution 

procedure stops. If it is not acceptable, the expert is asked to provide information regarding his preferences 

on the prespecified objectives. This information involves objectives that need to be improved and tradeoffs 

that he is willing to undertake to achieve these improvements. The purpose of defining such information is to 

specify a new search direction for the development of new, improved solutions. This process is repeated 

until a solution is obtained that is in accordance with the DMôs preferences or until no further improvement 

of the current solution is possible (see e.g. Steuer, 1989, Mavrotas, 2000). 

The set of all efficient points is called the efficient set. While the efficient set is normally a portion of the 

surface of the feasible region, the efficient set has the tendency to grow rapidly as problem size increases. 

For special kind of MOMP problems (mostly linear problems) of small and medium size, there are also 
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methods that produce the entire efficient set (Mavrotas, 2009). In general, the most widely used generation 

methods are the weighting methodand the Ů-constraint method. These methods can provide a representative 

subset of the Pareto set which in most cases is adequate. In this context, Mavrotas (2009) proposes the use of 

the augmented Ů-constraint method (AUGMECON) which is a novel version of the conventional Ů-constraint 

method that provides remedies for its well-known pitfalls. AUGMECON has been implemented in the 

widely used modeling language GAMS.  

The advantage of multiple objective programming is that it provides the possibility to sample neighborhoods 

on any multi-dimensional efficient surface to any degree of resolution. A disadvantage is the CPU run time 

required. 

3.5. Modeling incomplete information 

In real world decision making there are two concepts that complicate the evaluation: (a) the limits of expertôs 

knowledge; (b) the uncertainty that accompanies projectôs evaluation, i.e., its future performance (output) 

uncertainty (Mavrotas & Pechak 2013b). In the first case, the uncertainty is essentially a lack of information; 

complete ignorance represents one end of the spectrum and perfect information (i.e., certainty) the other. At 

a most fundamental level, uncertainty relates to a state of the human mind, i.e., lack of complete knowledge 

about something. 

Moreover, before incorporating data into the model, the notions of uncertainty and risk  should be cleared. 

Their definitions vary from one case study to another where the meanings range from being totally 

independent concepts to being synonyms. Numerous definitions, found in the literature, are very dependent 

on the context and field of a problem. The only thing that no one can argue against is the fact that these 

terms are closely related. The abundance of research focused on uncertainty and risk makes it impossible to 

cover all assumptions within a short review. Needless to say that development and understanding of risk and 

uncertainty concepts are heavily influenced by economy and finance theory, as well as of the portfolio. In 

early 20-th century, Knight (1921) noted that there are two types of uncertainty. The first, measureable 

probability, Knight labeled as óriskô, and the second, unquantifiable ambiguity, or uncertainty. In project 

management, risk can be assigned a probability value, whereas uncertainty is completely immeasurable 

(Regan, 2011). It is critical to note this distinction, as risk is concerned with objective probabilities, whereas 

uncertainty requires consideration of subjective probabilities (Rutherford, 1995; Koleczko 2012). Another 

dual classification is proposed by Roy and Oberkampf (2011) where uncertainty is classified as either 

aleatory ï the inherent variation in a quantity that, given sufficient samples of the stochastic process, can be 

characterized via a probability density distribution, or epistemic ï uncertainty due to lack of knowledge by 
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the modelers, analysts conducting the analysis, or experimentalists involved in validation. Aleatory 

uncertainty is also referred to in the literature as variability, irreducible uncertainty, inherent uncertainty and 

stochastic uncertainty. This term is used to describe the inherent variation associated with the physical 

system or the environment under consideration. Epistemic uncertainty derives from some level of ignorance, 

or incomplete information, of the system or the surrounding environment and is also termed reducible 

uncertainty, subjective uncertainty and model form uncertainty. The lack of knowledge can pertain to, for 

example, modeling of the system of interest or its surroundings, simulation aspects such as numerical 

solution error and computer round-off error, and lack of experimental data. In scientific computing, there are 

many sources of uncertainty including the model inputs, the form of the model, and poorly-characterized 

numerical approximation errors. All of these sources of uncertainty can be classified as either purely 

aleatory, purely epistemic, or a mixture of the two. 

In Operations Research the definition of uncertainty also distinguishes uncertainty as objective and 

subjective uncertainties. He is more concerned about subjective uncertainty and the following definition 

refers to it. ñUncertainty implies that in a certain situation a person does not dispose about information which 

quantitatively and qualitatively is appropriate to describe, prescribe or predict deterministically and 

numerically a system, its behaviour or the characteristics.ò His list of causes for uncertainty includes lack or 

abundance of information, conflicting evidence, ambiguity measurement and belief. He also strongly 

believes that uncertainty should not be modelled context free and that there exists no ñsingle method which 

is able to model all types of uncertainty equally well.ò (Samson et al. 2009). 

Basically, definitions are split in 3 areas: Operations Research, Economics and Finance, and Engineering. 

For a comprehensive review check Samson et al. (2009) and Stewart (2005). As a rule, people define 

ñuncertainò as something not definitely known or decided; subject to doubt or question. In the context of 

practical applications in multi-criteria decision analysis, the definition given by Zimmermann is particularly 

appropriate. With minor editing, this is as follows: ñUncertainty implies that in a certain situation a person 

does not possess the information, which quantitatively and qualitatively is appropriate to describe, prescribe 

or predict deterministically and numerically a system, its behavior or other characteristicsò. 

On the other hand, the term ñriskò is usually applied to situations in which probabilities on outcomes are (to 

a large extent) known objectively. More recently, the concept of risk has come to refer primarily to the 

desirability or otherwise of uncertain outcomes, in addition to simple lack of knowledge. Thus, for example, 

Fishburn (1984) refers to risk as ña chance of something bad happeningò, and in fact separates uncertainty 

(alternatives with several possible outcome values) from the fundamental concept of risk as a bad outcome. 

Due to the fact that insurance industry widely uses this interpretation of the risk (with negative 
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connotations), one understands and feels better this term in comparison with ñuncertaintyò in general. 

Further in thesis, the value-neutral term ñuncertaintyò will be used. 

Moreover, modern views of uncertainty assert that it is based not only on randomness, but also on beliefs 

and behavior. Cultural norms and other informal institutions of society have an observable effect on decision 

makers (Rutherford, 1995). Bounded rationality recognizes that it is impossible to comprehend and analyze 

all of the possibly relevant information while making choices. It proposes an idea that in decision-making, 

rationality of individuals is limited by their formal training, experience, skill, the cognitive limitation of their 

minds, and the finite amount of time they have to make a decision (Elster, 1983). A further component is 

peer group pressures and the decision making that takes place in a group context, as opposed to individual 

(Flyvbjerg et al., 2006). Furthermore, behavioral studies indicate that when people are faced with prediction 

tasks, they tend to underestimate prior information about the ñbase rateò of the event which being predicted. 

Instead, they tend to make decisions based on most recent evidence, which can lead to errors in predicting 

rare events and extreme realizations (Kahneman and Tversky 1979, Vilkkumaa 2014). Specifically, in an 

attempt to maximize the value by choosing one out of many alternatives based on ex ante assessments that 

reflect recent evidence, the DM will choose the alternative with the highest estimate. Unfortunately, there is 

a high chance that this assessment is higher than the real value of the alternative and, consequently, the DM 

will be disappointed when the actual alternativeôs value is realized. One of the ways to eliminate this post-

decision disappointment is the Bayesian revision of value estimates defined formally as the expected 

negative gap between the realized and estimated value of the selected alternative (Brown 1974, Harrison and 

March 1984, Smith and Winkler 2006). Numerous studies conclude that the value of information varies in 

unexpected, ambiguous and sometimes counterintuitive ways (Mavrotas, 2000), but Delquie (2008) 

demonstrated that under general assumptions, the indifferent DM provides the most correct project 

evaluation, while the one with strong preference toward certain alternative provides lower quality of 

information. 

Even more types of uncertainty are described by Kangas and Kangas (2004). For instance, they offer the 

generalized categories of metrical (measurement variability/imprecision), structural (system complexity), 

temporal (past/future states of nature), and translational (explaining results) uncertainty. Mendoza and 

Martins (2006) identify randomness, imprecision, and unknown preferences as factors contributing to 

uncertainty in multi-criteria decision analysis. Leskinen et al. (2006) point to errors in inventory and 

measurement, projections of future market conditions, projections of forest development over time in 

response to management intervention, and unknown preferences as sources of uncertainty in forest plans. 

Another example from Thompson and Calkin (2011) is a common situation when no one can predict, i.e. 

estimate the expected value of the amount of snow on the runway for any given day in the future, the amount 

http://www.sciencedirect.com/science/article/pii/S0301479711000818#bib148
http://www.sciencedirect.com/science/article/pii/S0301479711000818#bib148
http://www.sciencedirect.com/science/article/pii/S0301479711000818#bib129
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of snow is random but non-quantifiable and therefore uncertain. This non-quantifiable randomness can be 

modeled as an interval representing uncertainty. Regardless of the specific typology ultimately chosen, using 

a coherent framework informs management by facilitating the identification of potential sources of 

uncertainty and the quantification of their impact. 

Almost all of these definitions are problem sensitive, i.e., they may not perform as well if applied to a new 

problem area. Some of these scholars suggest that uncertainty can be modeled as an interval even though 

there is no consensus on whether it is quantifiable or not. Other researchers define risk using the variance 

concept. However, there is no common modeling method that they all agree upon (Samson et al., 2009). 

3.6. Monte Carlo simulation 

There is no consensus on how Monte Carlo (MC) should be defined. Very often scholars distinguish 

between a simulation (a fictitious representation of reality), a Monte Carlo method (a technique that can be 

used to solve a mathematical or statistical problem) and a Monte Carlo simulation which uses repeated 

sampling to determine the properties of some phenomenon or behavior.  

Generally speaking, Monte Carlo methods (or MC experiments) are a broad class of computational 

algorithms that rely on repeated random sampling to obtain numerical results. They are often used in 

physical and mathematical problems and are most useful when it is difficult or impossible to use other 

mathematical methods. MC methods are mainly used in three distinct problem classes: optimization, 

numerical integration, and generating draws from a probability distribution (Kroese et al. 2014). 

Monte Carlo methods vary, but tend to follow a particular pattern: 

a) Define a domain of possible inputs. 

b) Generate inputs randomly from a probability distribution over the domain. 

c) Perform a deterministic computation on the inputs. 

d) Aggregate the results. 

Monte Carlo simulation methods do not always require truly random numbers. Many of the most useful 

techniques use deterministic, pseudorandom sequences, making it easy to test and re-run simulations. The 

only quality usually necessary to make good simulations is for the pseudo-random sequence to appear 

"random enough" in a certain sense. This need for large amounts of random numbers spurred the 

development of pseudorandom number generators, which were far quicker to use than the tables of random 

numbers that had been previously used for statistical sampling. 
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There are several reasons for a large number of Monte Carlo simulations. Firstly, if random grains are not 

uniformly distributed, then the resulting approximation will be unreliable. The approximation is generally 

poor if only a few seeds (grains) are randomly dropped into the whole interval of interest. On average, the 

approximation improves as more grains are dropped. 

In the current work, uniform and normal distributions are used within MC simulations and are indicated in 

respective cases. Equation Section (Next) 

3.7. Chapter summary 

We briefly described tools that are used for the problem of projects selection where it is necessary to fulfill 

specific constraints based on one or more available criteria. Since the problems that we try to solve are 

complex, combinations of approaches need to be adopted. For different problems the same tools can hardly 

be applicable. Moreover, a single MCDA method does not suffice in the presence of the imposed constraints. 

Even problem formulation can result in different framing. As it was mentioned before, the problem can be 

shaped as a single or multi-objective one. The principal aim on initial stage is to help experts learn about the 

problem situation, about their own and others values and preferences with appropriate presentation of 

available information. 

Uncertainty plays a significant role, especially for technologies that evolve considerably year after year or 

for pioneering solutions where historical performance data are not available. Here, family of goal 

programming methods should be treated with special care because a strong inclination towards 

overestimation of results is observed between project developers. The same stands for scenario building. 

Hence, value measurement methods are more suitable for initial projectsô evaluation. Then, in the 

optimization process, performance or assessment uncertainties can be handled through Monte Carlo 

simulation or some other tools. 

Further, the selection process leads to better considered, justifiable and explainable decisions. Process 

transparency is of crucial importance. As a rule, the decision cycle involves 3 stages: problem identification 

and structuring; model building and use; development of action plans. The combinatorial character of the 

problem implies the use of optimization methods aiming at a portfolio of projects that satisfies constraints 

and achievesñbestò performance. With the tools described earlier, we move towards the development of a 

selection method that helps to build a balanced portfolio, which respects performance uncertainties. Further 

actions are still to be made by decision makers, nevertheless they are provided with additional information 

about the path of project selection. 
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4. The Iterative Tri chotomic Approach 

The trichotomic approach (trichotomy is separation of initial set into three parts) is based on the fact that 

projects can be assigned to three classes depending on the information available: Projects that are present in 

the final selection under all circumstances are labeled green, red projects are those to be excluded under all 

circumstances, and grey projects are the ones that need some additional elaboration before being included in 

the final set under certain conditions.  

At the very beginning of the process isfound the evaluation of project proposals. The Decision Maker (DM) 

may select the MCDA method of his choice, either utility function based or outranking (e.g. PROMETHEE, 

ELECTRE). All MCDA methods have specific decision parameters (weights, thresholds etc) that can be 

considered stochastic with their values taken from appropriate distributions. This is implemented to counter 

balance the subjectivity in selecting these parameters that may eventually lead to specific results. Initial 

performance overestimation may damage the final selection on several ways. First of all, a seemingly high 

performing project may take the place of a duly estimated and better performing one. That is why the lack of 

exact input information due to various reasons is addressed with notion of uncertainty which is expressed 

through the probability distributions for the projectsô output. Moreover, criteria weights or any other 

necessary parameters and thresholds can be also described by appropriate probability distributions. Then a 

Monte Carlo simulation is performed using sampling from these distributions. Finally, an optimization 

process with the Integer Programming (IP) model provides optimal portfolio. This pair of sampling & 

optimization is the core of calculations. For example, if the number of Monte Carlo simulations is set to T, 

then sampling & optimization rounds will be performed T times. The output will be T optimal portfolios 

based on sampling of modelôs parameters. Eventually, the initial set of projects is divided into three subsets 

(classes): The green projects that are present in the final portfolio under all circumstances (i.e., in all T 

Monte Carlo simulations), the red projects that are absent from the final portfolio under all circumstances 

and the grey projects that are present in some of the final portfolios. The classification in three subsets is not 

new in the literature. Liesio et al. (2007) used a similar approach in the framework of robust programming. 

However, the way the projects are assigned to each set is different. In addition, Mavrotas and Rozakis (2009) 

used similar concepts in a student selection problem for a post graduate program.  

The concept behind trichotomic approach is that the DM can focus on the projects that are really at stake. 

Unlike ñshort listò approach (where k projects with the highest expected values are re-evaluated), the 

attention is only on the ñambiguousò ones (e.g. the grey set) while sure projects (either in or out of the 

portfolio) are determined. The method provides quantitative and qualitative information that cannot be 
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acquired using e.g. expected values of distributions. In the latter case, the DM is provided with a unique 

optimal portfolio or, in other words, which are the ñgoò and the ñno goò projects, without any discrimination 

about the degree of certainty for each of them.  

On the contrary, the trichotomic approach provides extended information about the degree of certainty of 

every entrance in the final selection. In other words, the method gives a whole picture with multiple 

candidate projects and portfolios and provides the opportunity to fully control the process of selection. In 

case of ñclose winnersò the expert is informed about the more or less equivalent solutions. In this way 

additional criteria for further discrimination of ñclose winnersò can be used. Hence, the DM is aware of the 

prioritization of projects given that the round in which a project enters the green set is known. The earlier a 

project gets in the green set, the stronger are its chances to be included in the final portfolio. The illustrative 

examples from case studies in next sections demonstrate in practice the above mentioned concepts. 

4.1. Initial two -phase ITA 

The two-phase approach combines several techniques such as MCDA, Monte Carlo simulation and 

optimization through Mathematical Programming (MP) specially tailored to the project portfolio selection 

problem. In the first phase, a session of Monte Carlo simulation ï MCDA ï MP optimization is performed 

since performance of each project in each criterion is given by a probability distribution (project 

uncertainty). Moreover, criteria weights or any other necessary parameters and thresholds may also be 

represented by appropriate probability distributions. The output of first phase are multicriteria scores of each 

project, which are used to drive further optimization process. Namely, scores are used as objective function 

coefficients in the MP model of the next phase. Besides objective functionôs coefficients, MP model may 

have additional stochastic parameters, i.e., in the body of constraints that form the feasible region. Values for 

uncertain parameters are sampled from specific probability distributions and resulting mathematical 

programming model is solved (optimized) providing the optimal portfolio.  

On the first phase, using Monte Carlo simulation the previously described process is repeated N times and T 

optimal portfolios expressing all the possible states of nature (some of these optimal portfolios may be 

identical) are obtained. The first phase is depicted in Figure 4-1. 

The MP model on t-th Monte Carlo iteration is identical to the one of iterative process. 
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Figure 4-1.  Monte Carlo simulation-optimization approach of phase 1. 

As it was mentioned before, obtained portfolios are rarely same across initial T iterations. It is feasible to 

work further with project proposals. Hence, after completion of the cycle, on the basis of obtained T optimal 

portfolios projects are distributed between green, red and grey sets. In order to facilitate the selection 

process, membership thresholds for the green and the red sets may be introduced in order to relax 

membership requirements. The membership threshold can be used whenever the discrimination ability of the 

first phase needs to be increased, e.g. where the green and the red sets are almost empty. 

In the second phase the main focus is on items from grey set while those in the green set are considered as 

already selected and those in the red set are considered as discarded ones. In case when grey set contains just 

a few projects (say 2-3), a direct comparison of them can be performed easily and probably suffices to 

determine the final selection. However, when more projects are present in the grey set, selection becomes a 

complex task that needs a systematic approach (given also that the MP modelôs constraints must be 

respected). The critical point of the second phase is that objective function coefficients of new model are no 

longer multicriteria scores but participation frequencies of the grey project in N optimal portfolios of the first 

phase. This means that objective function coefficients of the second phase are not stochastic but crisp 

numbers, hence reducing the variability of results. In Figure 4-2 the unified process of first and second 

phase is shown schematically. 
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Figure 4-2.  Unified process of two-phase approach. 

Further in calculations two cases should be distinguished. The first case with no uncertainty related to the 

feasible region, meaning that there are no stochastic parameters in constraints, is depicted in a following 

way: 
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where grey, green and red denote the grey, green and red sets respectively, fi is the frequency of the i-th 

project in T optimal portfolios from first phase. The objective function of the 2nd phase actually expresses 

the majority principle, i.e., the more times a project is present in optimal portfolios of the first phase, the 

greater the chance to be eventually selected. It is obvious from the formulation that optimization takes place 

among projects from grey set while green and red projects are already fixed to 1 and 0, respectively. The 

optimal solution of equation (4.1) is a project portfolio that has the greatest acceptance given existing 

uncertainty.  

Another case still contains uncertainty related to the feasible region which means that there are stochastic 

parameters in constraints (but not in objective function). In this case, the Monte Carlo simulation ï 

optimization scheme is used again only for the modelsô stochastic parameters sampling that exist in 

constraints. The MP model that is iteratively solved in the second case is described below: 
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The Monte Carlo simulation ï optimization process is repeated for t = 1é T times and result is T optimal 

portfolios (as it was in the first phase). However, now the variability is considerably reduced given the 

presence of crisp coefficients in the objective function. A project portfolio with the greatest acceptance is the 

one that appears more times within T iterations. If there are two or more portfolios with high frequency of 

appearances the DM is asked to select among them. Usually the choice is between two or three projects that 

alternate in obtained optimal portfolios.  

Therefore, with the trichotomic approach projects are selected based on the notion of unanimity in the first 

case (green projects) and based on the notion of ñmajorityò (among the iterations, i.e. the most frequent) in 

the second phase. 

 

4.2. Simple iterative version 

The term ñiterativeò indicates that a process develops in a series of decision rounds or cycles. A 

predetermined number of decision rounds may be defined from the beginning and every round feeds its 

subsequent until a convergence to the final portfolio is attained. From round to round the uncertainty is 

reduced for the grey projects forcing some of them to become either green or red. The uncertainty reduction 

can be performed by getting more information or by an automatic uniform narrowing of the grey projectsô 

probability distributions. The whole process is depicted in Figure 4-3. 

Monte Carlo simulation and optimization with Mathematical Programming is a rather recent development 

that becomes plausible with vast improvement in computer power during the last years. Although it is a 

computational demanding task it is worthwhile as it provides fruitful information regarding the uncertainty 

of the final solution. 
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Figure 4-3.  Graphical illustration of iterative process 

Various probability distributions for uncertain parameters can be tested through Monte Carlo simulation (see 

e.g. Vose, 1996; 2006). By sampling from selected distributions, values of parameters are obtained from a 

Mathematical Programming model that is subsequently optimized. This process is repeated T times (T is a 

great number, e.g. T=1000) and T optimal portfolios are received expressing all possible states of nature 

(some of these optimal portfolios may be identical).  

The MP model on the t-th Monte Carlo iteration is as follows: 

( ) ( )

1

max

{0,1}

P
t t

i i

i

i

Z c X

st

S

X

X

        (4.3) 

where ci
(t)

 is the objective functionôs coefficient (some kind of output) of i-th project in the t-th Monte Carlo 

iteration. The value of ci
(t)

 is drawn from sampling of the corresponding distribution. Xi is the binary decision 

variable indicating if i-th project from initial set is either selected (Xi =1) or discarded (Xi =0) and S 

represents a feasible region formulated by all imposed constraints. It is prohibited to select a share or parts of 

one project, that is why the modeling is done with binary variables and not continuous ones as it is usually 

the case in the original portfolio selection problem which involves shares. Besides usual budget constraints, 

segmentation and policy constraints as well as interactions and interdependencies among projects can also be 

taken into account in the formulation of decision space S (Mavrotas et al., 2003; Liesio 2007). 
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The output of model (4.3) is an optimal portfolio X(t) with Z(t) as the value for the objective function. 

Exploiting information from T optimal portfolios the projects are distributed between three sets:  

 The green set that holds projects that are present in all T portfolios  

 The red set that contains projects that are excluded from all T portfolios  

 The grey set that holds projects that are present in some of the T portfolios 

Table 4-1 shows an example of green, red and grey projects in a problem with P projects and T=5 iterations. 

The rows contain values of iterationôs decision variables while the columns contain values of the decision 

variables across Monte Carlo iterations. 

Table 4-1.  Example of results from initial round with 5 iterations. 

Iteration x1 x2 x3 x4 é xP 

1 1 0 0 1 é 1 

2 0 0 1 1 é 1 

3 0 0 0 1 é 0 

4 1 0 1 1 é 0 

5 1 0 0 1 é 1 

 grey red grey green é grey 

 

One thing to remember is the fact that especially in initial rounds it is almost impossible to draw conclusions 

about a portfolio that appears most frequently among T iterations, which means that obtained optimal 

portfolios are rarely the same across these T runs. Since conclusions cannot be drawn for the most frequent 

portfolios it is feasible to analyze the most frequently appearing projects in portfolios. Exactly this kind of 

information is exploited in the method where the main focus is on the grey set, i.e. the projects that require 

deeper attention. 

As it was mentioned earlier, ITA incorporates decision rounds (or cycles). In every round of ITA a 

simulation - optimization process takes place providing the corresponding green, red and grey sets of 

projects. The process is quite flexible and can be implemented either with a predetermined, fixed number of 

rounds or until sufficient convergence is obtained in a less formal way. 

4.2.1. Predetermined number of rounds 

The number R of rounds may be set from the very beginning of the process. In the first round Monte Carlo 

sampling is performed with initial probability distributions of uncertain parameters and obtained results 

define green(1), red(1) and grey(1) sets (the number in parenthesis indicates the round from which 



31 

 

corresponding set emerges). In the second round projects from green(1) set are considered as given, those 

from the red(1) set as discarded and the variance (quantitative measure of the uncertainty) of the grey(1) 

projectsô parameters is reduced by 1/R. This reduction depends on the form of distribution. For example, for 

normal distribution the standard deviation is reduced by 1/R, or, for the uniform distribution the range is cut 

by 1/2R from both edges. It must be noted that this is done only for the grey projects while the sampling for 

green and red projects maintain the previous roundôs probability parameters. The model for the second cycle 

is as follows:    

( ) ( )

1

( )

max

{0,1}

1

0

P
t t

i i

i

t

i

i

i

Z c X

st

S

X

X i green(1)

X i red(1)

X        (4.4) 

After the second round of simulation-optimization the processô output is elaborated. More specifically, green 

and red sets are enriched by new projects and new grey projects are identified. Subsequently, for the third 

round the variance of grey projectsô performance is reduced even more and new green and red sets are 

considered as given. The flowchart of the decision making process is depicted in Figure 4-4.  

The reduction in variance usually follows a uniform pattern across rounds. For example in the case of normal 

distribution the standard deviation is reduced by 1/R after every round. This means that after round r the 

reduction of standard deviation is sd Ĭ r/R. Thus, in the final round grey projectsô parameters are considered 

as deterministic (have no variance at all). The output of the final round is a unique portfolio as all Monte 

Carlo simulation-optimization iterations produce the same solution. 
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Figure 4-4.  Flowchart of Iterative Trichotomic Approach (predetermined number of rounds). 

4.2.2. Undetermined number of rounds 

Another option is to avoid the determination of rounds and finish the decision making process when 

adequate convergence for the final portfolio has been attained. The whole process is less formal than the 

previous case one. After the simulation-optimization approach, the DM identifies grey projects (projects in 

doubt, gathers more information for these projects which is translated in variance reduction of their 

parametersô distribution). It must be noted that the narrowing of the probability distributions in grey projectsô 

attributes at every cycle r can be done either uniformly or based on obtained information. In each round the 

grey set obviously shrinks and DM checks the frequency of each obtained optimal portfolio in the output of 

simulation. If, for example, a specific portfolio occurs in 567 out of 1000 iterations it actually has 56.7% 

probability to be the optimal portfolio under the given uncertainty level. If the DM finds a stochastic 

dominant portfolio then the selection process may be stopped. The term ñdominantò is flexible. For instance, 

the DM can exit the loops of decision rounds as soon as a portfolio with 60% or 70% probability emerges. 
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The exit threshold (i.e., the probability of occurrence over which a portfolio is considered as selected) is 

determined by a DM according to a specific decision situation. The flowchart of the decision making process 

is depicted in Figure 4-5. The steps with darker shading indicate the alterations from the ITA with a 

predetermined number of rounds.  
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Figure 4-5.  Flowchart of Iterative Trichotomic Approach (not a priori determined number of rounds). 

 

4.3. Membership threshold 

One of first observations within applications on illustrative examples is that on early iterations there is no 

dominant portfolio. When Monte Carlo simulation of uncertainties is used, among obtained optimal 

portfolios only few were the same and frequency of their appearance was found to be very low (less than 1-

5%). Also, the number of projects in optimal portfolios considerably varied. Hence, the focus shifted to the 
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most frequently appearing projects across portfolios, since it was hard to draw conclusions for portfolios as a 

whole.  

In order to facilitate and speed up the decision process, it is worth to introduce membership thresholds for 

green and red sets in order to relax the membership requirements. It can be expressed through a ñgreenò 

threshold of Ŭ% which means that if a project is present in optimal portfolio in Ŭ% of iterations, it is 

considered to be member of the green set. These thresholds are usually symmetric which means that a green 

threshold of Ŭ% implies a red threshold of 1-Ŭ %. For example, a ñgreenò threshold of 95% means that if a 

project is present in optimal portfolio in 95% of iterations, it should be considered as a member of green set. 

Similarly, a ñredò threshold of 5% means that a project which is present in the optimal portfolio in less than 

5% of iterations is sent into the red set. The membership threshold can be used whenever the discrimination 

ability of previous rounds needs to be increased, e.g. where green and red sets are almost empty. 

4.4. Group of decision makers 

Project portfolio selection is initially  a multi-objective problem where different points of view should be 

taken into account. A team of experts working on certain problem is a common practice in todayôs world, 

especially in large organizations where the aggregation of opinions is necessary or whenever consensus is 

sought among various stakeholders like e.g. when several levels of public policy are involved (Macharis et 

al., 2012; Vandaele and Decouttere, 2013). General agreement becomes crucial in situations when 

collaboration between individuals is required to build and implement shared goals with available resources. 

Within the process of development it is necessary to deal with various, sometimes conflicting, objectives 

represented by non homogenous groups of professionals (decision makers, experts, stakeholders etc.). Even 

if the final decision is to be taken by a single individual, the engagement of relevant experts is beneficial, as 

they can provide valuable information which can be otherwise overlooked or neglected due to countless 

reasons (Vilkkumaa et al. 2014). In general, Group Decision Making in multi-criteria analysis has been used 

in many applications such as water management (Morais and de Almeida, 2007; 2012, Morais et al. 2012), 

energy-environment issues (Turcksin et al., 2011; Hobbs and Meier, 2000), transportation issues (Macharis 

et al. 2010; 2012) etc. However these applications usually deal with a discrete number of given alternatives 

and not with a project portfolio problem. 

One approach is to aggregate these points of view to a single metric through multi-criteria analysis and 

subsequently optimize the resulting single objective problem where coefficients of objective function are 

multi-criteria scores (Mavrotas et al., 2008). Alternatively, one can use a goal programming approach 

aggregating objective functions based on their distance from individual goals (see e.g. Zanakis et al., 1995; 
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Santhanam & Kyparisis, 1996). Furthermore, active use of MCDA methods may help not only to identify the 

areas of disagreement, but also to clarify possible alternatives (Salo, 1995; Salo and Hamalainen, 2010; 

Vilkkumaa et al., 2014). Decision support tools are useful on different stages. Initially, they help to describe 

the problem in details and to capture the preferences of each group member. Later, they highlight points of 

agreement and disagreement within the group. In addition, their skillful application can foster the 

formulation of innovative decision alternatives (Salo et al., 2003; Rios and Rios Insua, 2008) even in 

presence of important obstacles such as incomplete input information. Finally, good breakdown of 

preferences and possible options may help to discover and agree upon portfolio outside the initial set of 

options. 

In all above mentioned approaches, the decision maker has to define criteria or goals and to assign them 

weights in order to aggregate them to a single objective function. Another way is to keep individual criteria 

as separate objective functions and proceed to a multi-objective optimization generating the Pareto set of the 

problem (or a Pareto front in criteria space) which comprises Pareto optimal solutions or portfolios. Then, 

the decision maker examines the obtained Pareto front before reaching his final choice. These methods are 

called ña posterioriò or ñgenerationò methods in the popular Hwang and Masud (1979) terminology for 

multi-objective optimization methods (first generate Pareto front, examine it, and then select the most 

preferred Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate 

the Pareto set, either exactly or its approximation. 

For the current case a combination of MCDA ï IP is adopted in order to determine the optimal portfolio. 

Initially, one of MCDA methods is used in order to assign scores to projects based on their multi-criteria 

evaluation. Then, these scores are introduced as objective function coefficients in the IP model that 

incorporates constraints of the project selection problem. In the presence of multiple experts it is natural to 

assume that their preferences are expressed by assigning weights to the criteria of project evaluation, which 

means that each of them usually has an objective function that differs from the others. Hence, the obtained 

optimal portfolios are usually different among participants. In such case the membership of each project in 

green, red or grey set is determined according to the concordance between decision makers. Namely, the 

green set includes projects that are present in the final portfolio of every decision maker, the red set those 

projects that are absent from the final portfolio according to all experts, and projects that are picked by some 

group members form the grey set. The developed method is named ñGroup ITAò and is based on previous 

works of G.Mavrotas and O.Pechak. Here a Delphi-like approach is used to deal with the problem of 

providing decision support to multiple experts in project selection problems (see e.g. Wang et al. 2013; Lee 

and Kim, 2001; Juan et al., 2010). Delphi works in an iterative manner aiming at convergence of multiple 
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opinions in a systematic way. Specifically, the iterative character is used and a converging process is 

performed in order to achieve a final consensus on project portfolio selection. 

Assume that there are N projects, P DMs and K criteria of evaluation. Therefore the weight of importance 

that decision maker p assigns to criterion k is wpk with p=1..P and k=1..K. For each DM p=1..P, multi-

criteria scores mspi for every project i= 1..N are calculated. The objective function of the IP problem for the 

p-th DM is then: 

1

max
N

pi i

i

ms X        (4.5) 

where Xi is the binary variable that indicates if the i-th project is selected (Xi=1) or rejected (Xi=0). Solving P 

integer programming problems at most P different optimal portfolios (some of them may be identical) are 

obtained. Subsequently, the members of green, red and grey sets are identified. Members of the green set are 

projects that are present in all P optimal portfolios. Accordingly, the members of the red set are projects that 

are absent from all P optimal portfolios and the grey projects are those that are included in some of the P 

optimal portfolios.  
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Figure 4-6.  Illustration of Group ITA method. 

If the grey set is not empty the process moves to the next round. The already found green and red projects 

are kept in their status by fixing the value of corresponding decision variable to Xi=1 for green projects and 

Xi=0 for red ones. This is done for all P models for the next round. In addition, necessary modifications are 

introduced in the objective function coefficients of the P models following the convergence process 

described in next paragraph.  
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Figure 4-7.  Flowchart of Group ITA method. 

In the current case the convergence process deals with the weights of criteria and it is necessary to assure 

that the iterative process terminates with a unique portfolio as output. The following illustrative Figure 4-6 

depicts the concept of Group-ITA method.  
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Maximum number of rounds R in the Group-ITA method can be determined from the beginning. However, 

the method may converge earlier. The indication for convergence is an empty grey set. As it will be shown, 

in the next subsection the weights of importance are modified from round to round. Therefore wpk
(r)

 indicates 

the weight of importance for k-criterion of the p-th DM in round r=0...R. The methodsô flowchart is shown 

in Figure 4-7. The step of calculation of next roundôs weights, which is the essence of convergence process, 

is described in detail in the next subsection. 

 

4.4.1. Convergence process 

The aim of convergence process is to provide an algorithm that gradually smoothes the divergence of criteria 

weights across decision makers. In other words, the weights of importance are adjusted from round to round 

in order to converge to a common solution after completion of iterative process.  

Assume that original criteria weights for each DM are defined as wpk
(0)

. The maximum number of rounds in 

the iteration process (R) is agreed upon in advance and the convergence parameter Ŭ is accordingly 

determined as Ŭ=1/R. Then, the deviation of each weight from their average (wk
avg

) across decision makers is 

calculated from the equation: 

dpk=wpk
(0)

-wk
avg 

       (4.6) 

The iterative process includes steps 6-17 in the flowchart of Figure 4-7. The adjustment of weights from 

round to round is performed in step 17 using the following equation: 

wpk
(r)

=(wpk
(0)

- a Ĭ r Ĭ dpk)       (4.7) 

Actually, on every round the weights from each decision maker are moved towards averages and then P 

optimizations are performed again. Respective multi-criteria scores are updated and used further as objective 

function coefficients in the IP model. After P models are solved new green, red and grey sets that correspond 

to the r-th round (denoted as green(r), red(r) and grey(r)) are identified. Binary variables that correspond to 

green projects are fixed to ñ1ò and those of red projects are fixed to ñ0ò.  

1 ( )

0 ( )

i

i

X i green r

X i red r
  

Once a project enters the green or the red sets it remains there for all subsequent iterations. It is obvious that 

from round to round the green and the red sets grow while the grey set shrinks: 

|green(r)|  >=  |green(r-1)| 
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|red(r)|  >=  |red(r-1)|  

|grey(r)|  <=  |grey(r-1)| 

As iterations proceed more green and red projects are added into corresponding sets as the views of DMs are 

getting closer. Iterations are performed until the set grey(r) becomes empty what may happen before 

reaching round R (r < R). In any case, convergence process implies that in R-th round all decision makers 

have common weights so that only one portfolio is finally obtained from P optimizations. Hence in the R-th 

round the grey set is by definition empty.  

It must be noted that during convergence process the weights of each decision maker automatically satisfy 

the condition of summing to unity in every round r as it is proved below. Given the original weights wpk
(0)

 

the initial equation is as follows: 

(0)

1

1 1..
K

pk

k

w for p P       (4.8) 

The average across decision makers is calculated as:  

(0)

1

P

pk

pavg

k

w

w
P

         (4.9) 

and the sum of wk
avg

 equals to unity as it is shown below: 

(0) (0) (0)

1 1 1 1 1

1 1

(1 1 ... 1)
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P K P P K

pk pk pkK K
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k k

w w w
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P P P P

   (4.10) 

Hence, for the weights of round r, i.e. wpk
(r)

 the expression is: 
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    (4.11) 

Therefore the weights do not need any normalization as it is applied automatically from their calculation.  
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An example of weight calculation from round to round is shown next. Assume that there is a team of five 

decision makers, whose initial weights for 4 criteria are shown in Table 4-2. 

Table 4-2.  Initial weights of group members. 

 C1 C2 C3 C4 sum 

DM1 0.25 0.25 0.25 0.25 1.00 

DM2 0.8 0.05 0.1 0.05 1.00 

DM3 0.1 0.1 0.7 0.1 1.00 

DM4 0.2 0.6 0.1 0.1 1.00 

DM5 0.05 0.15 0.1 0.7 1.00 

Average 0.28 0.23 0.25 0.24 1.00 

 

In Table 4-3 the deviations from the average of each column (across DMs) are presented after calculations 

using equation (4.6). 

Table 4-3.  Deviation from columnôs average. 

 C1 C2 C3 C4 

DM1 -0.03 0.02 0.00 0.01 

DM2 0.52 -0.18 -0.15 -0.19 

DM3 -0.18 -0.13 0.45 -0.14 

DM4 -0.08 0.37 -0.15 -0.14 

DM5 -0.23 -0.08 -0.15 0.46 

 

Table 4-4 presents new weights of next round according to equation (4.7) and using convergence parameter 

Ŭ=0.2 (i.e. maximum rounds R=5). 

For example, the new weight for DM2 in the 3
rd
 criterion is calculated as:  

w23
(1)

=0.1 - 0.2Ĭ1Ĭ(-0.15) = 0.130 

In the same way all cells are calculated and the sum of weights for each DM remains unity. By comparing 

Table 4-2 and Table 4-4 one can observe the movement towards average weights. On last iteration (when 

R=5) the convergence process ends with all weights of every column becoming the same, equal to the 

average (last row of Table 4-2).  
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Table 4-4.  New weights of group members. 

 C1 C2 C3 C4 sum 

DM1 0.256 0.246 0.250 0.248 1.00 

DM2 0.696 0.086 0.130 0.088 1.00 

DM3 0.136 0.126 0.610 0.128 1.00 

DM4 0.216 0.526 0.130 0.128 1.00 

DM5 0.096 0.166 0.130 0.608 1.00 

 

4.4.2. Consensus index 

Within this work an approach to measure the level of consensus over the final portfolio according to the 

degree of concordance between DMs was developed. The consensus index expresses how easy or hard it is 

to arrive at a consensus among experts. The more green projects are obtained from early rounds the greater 

the degree of concordance among parties involved is. Specifically, their preferences (expressed as weights) 

result in more or less the same outcome without forcing their weights to converge or, in other words, the 

consensus is easily attained. On the contrary, if the majority of green projects is identified in last rounds it 

means that further elaboration of the convergence process is needed to reach agreement upon the selected 

projects. This means that the consensus is attained with great difficulties. 

The index is found through a consensus chart where the percentages of green projects that are available in r-

th round are plotted as a function of the respective decision round. The resulting curve is called consensus 

curve. In Figure 4-8  one can observe that from round 2 to round 3 there are no new projects added in the 

green set. This may happen especially when the maximum number of rounds (R) is relatively high.  

The Consensus Index (CI) is calculated as the area below the consensus curve divided by the rectangle area 

denoted by a dashed rectangular in Figure 4-8. The dashed rectangular actually expresses the maximum 

consensus (CI=1) that occurs when from round 0 already, all projects are allocated either to green or red sets 

(i.e., the grey set is empty). The minimum consensus occurs when all green projects are added in the final 

portfolio on the last round (CI=0). CI takes values between 0 and 1 and it is calculated using the trapezoid 

rule for piecewise linear functions according to the following equations: 
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Figure 4-8.  Example of consensus chart with R=5. 

For example, from Figure 4-8 the corresponding CI is:  

0.31 1
[ 0.53 0.61 0.61 0.74 ] / 5 62.9%

2 2
CI  

Apart from the Consensus Index that characterizes the final portfolio it is possible to extract the degree of 

consensus for each project according to the round that it enters or exits the final portfolio. The Consensus 

Degree of the i-th project can vary in [0,1] and can be quantified by the following formula: 

i
i

R r
CD

R
         (4.13) 
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where r i is the round that i-th project enters or exits the final portfolio or in other words the round that the 

respective project leaves the grey set. 

4.5. Multi -objective project portfolio selection 

After addressing the case of group project portfolio selection, usually the next issue that attracts attention is 

the multi-objective project selection. In the current section the applicability of Iterative Trichotomic 

Approach (ITA) is extended to the case of multi-objective optimization. Initially , ITA was focused on a 

single objective function problem structuring reflecting the optimization criterion. While the original 

approach provides the certainty degree of a specific project within the optimal portfolio given underlying 

uncertainty, multi-objective ITA provides certainty degree for a specific project portfolio within the Pareto 

set. A schematic representation of the multi-objective ITA is shown in Figure 4-9.  
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Figure 4-9.  Graphical illustration of multi-objective ITA. 

Unlike original ITA, the first iteration in multi-objective ITA has no red set as there are no portfolios to be 

excluded. The initial iteration provides the maximum number of generated portfolios as candidate final 

Pareto optimal portfolios. In subsequent iterations some of these portfolios are not present anymore in any 

Pareto set so they are labeled as red. With the movement from round to round, the uncertainty of parameters 

(objective functionsô coefficients) is reduced (e.g. by reducing the standard deviation of a normal probability 
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distribution or shrinking the interval of a uniform probability distribution). With diminishing uncertainty, 

portfolios gradually move from grey set into green (appear in all Pareto sets). The red set is implied 

indirectly by the initially generated portfolios that are not present in any current Pareto set. 

The methodology is developed for the case of two objective functions. It can be easily extended to a greater 

number of objective functions, but with increasing number the elaboration of results may become too 

cumbersome. The Pareto Optimal Portfolios (POPs) of projects are actually the Pareto Optimal Solutions of 

the multi-objective integer problem with binary variables:  

1 1

1

1

max

...

max

{0,1}

i i

i

K iK i

i

i

Z c X

Z c X

st

S

X

X

        (4.14) 

where N is the number of candidate projects, cik is the objective function coefficient of i-th project in k-th 

objective function, Xi is a binary decision variable indicating if the i-th project from initial set is selected 

(Xi=1) or not (Xi=0), and S represents the feasible region formulated by all imposed constraints. Apart from 

the usual budget constraints, segmentation and policy constraints, interactions and interdependencies among 

projects can be also taken into account in the formulation of decision space S. Eventually, a Pareto optimal 

Portfolio is represented by a vector of ñ0ò and ñ1ò of size N. According to the multi-objective version of ITA 

method, each portfolio from the initial set of Pareto Optimal Portfolios is eventually characterized as red or 

green with gradual decrease of uncertainty in modelôs parameters, which is performed in computation 

rounds. 

In each computation round a great number (t=1..T with e.g. T=1000) of problems such as model (4.14) is 

solved, with different model parameters, specifically different objective function coefficients using a Monte 

Carlo simulation approach: 
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        (4.15) 

where c
(t)

ik is the objective function coefficient of i-th project in k-th objective function during t-th Monte 

Carlo iteration. The values of c
(t)

ik are sampled from the selected probability distributions (uniform, normal, 

triangular etc). Therefore, in each computation round T Pareto sets (PSt, t=1..T) are produced. The 

generation of each Pareto set is performed using the AUGMECON2 method (Mavrotas and Florios, 2013). 

AUGMECON2 is an improved version of the well known Ů-constraint method, especially appropriate for 

MOIP problems like model (4.14). It must be noted that AUGMECON2 is capable of generating the exact 

Pareto set in MOIP problems which means that no Pareto Optimal Solution is left undiscovered. 

Like in original ITA, in each computation round there are three sets where all the Pareto Optimal Portfolios 

p are allocated: The green set (G), the red set (R) and the grey set (Y). The membership relations for each 

portfolio p in G, R and Y are shown below.  

: 1.. ,

: 1.. ,

: 1.. ,

t

t

t

p G t T p PS

p R t T p PS

p Y t T p PS

     (4.16) 

In other words, the green set includes portfolios p that are present in all Pareto sets (PS1éPST) of the 

computation round, the red set includes portfolios that were produced in the initial computational round but 

are not present in any of T Pareto sets in the current computational round, and the grey set includes portfolios 

that are present in some of T Pareto sets. In order to be more specific about the round r that a green, red and 

grey set refers to, the notation Gr, Rr and Yr is used.  

As it was mentioned earlier, the results of the first round define green and grey sets denoted as G1 and Y1. On 

the second round, the variance of Y1 projectsô parameters is reduced proportionally to the number of total 

rounds R. This reduction depends on the form of distribution. For instance, for a normal distribution the 

standard deviation is reduced by 1/(R-1), or, for a uniform distribution, it is cut by 1/(2(R-1)) from both 

edges of the range.  
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The variance reduction follows a uniform pattern across rounds. In the case of normal distribution, the 

standard deviation (sd) is reduced by 1/(R-1) after each round. This means that after round r, the reduction of 

standard deviation is sdĬ(r-1)/(R-1). Thus, in the final round projectsô parameters (objective function 

coefficients) are considered as deterministic (have no variance at all). Therefore, the final round produces 

only one Pareto set which is the final Pareto set that comprises the final Pareto portfolios. The flowchart of 

the decision making process is depicted in Figure 4-10.  

To facilitate and speed up the selection process, membership thresholds for the green set by relaxing 

membership requirements can be introduced. For example, a ñgreenò threshold of 95% would mean that a 

portfolio is considered to be a member of green set if it is present in at least 95% of Pareto sets.   
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Figure 4-10.  Flowchart for multi-objective ITA. 

On the basis of the obtained information by the end of the multi-objective ï ITA optimization process it is 

possible to compute the Robustness Degree of each Pareto Optimal Portfolio, to build the Robustness chart 

and find the Robustness Index of the Pareto set. In addition, the decision maker(s) is/are provided with 
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informative charts that illustrate the Pareto front with additional information about the robustness of each 

Pareto Optimal Portfolio. 

4.6. Robustness measuring 

Robustness of the Pareto Optimal Portfolios in multi-objective ITA is associated with how sure one can be 

about the membership of a specific portfolio in the final (definitive) Pareto set, which is obtained in the last 

computation round. As uncertainty is reduced going from one computation round to the next, the sooner a 

Pareto Optimal Portfolio enters the green set, the more ñsecureò is its place in the final portfolio. Therefore, 

for the Pareto Optimal Portfolios, the measure of robustness can be quantified with the Robustness Degree 

for each Pareto Optimal Portfolio (RDp) which is defined as follows:  

p

p

R r
RD

R
         (4.17) 

where rp is the computation round that p-th portfolio enters the green set (i.e. becomes member of the final 

Pareto set) and R the total number of computation rounds. As it is obvious from equation (4.17) Robustness 

Degree of p-th portfolio varies in [0, (R-1)/ R] and the closer it is to 1 the more robust is the specific 

portfolio.  
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Figure 4-11.  Example of Robustness Chart with R=6. 
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Also, according to the information about how early in the decision process the final Pareto optimal portfolios 

entered the green set, it is possible to measure the robustness of the final Pareto set. The more green 

portfolios are discovered from early rounds (i.e., with wider uncertainty range), the more robust the final 

Pareto set is. On the contrary, if the majority of green portfolios is identified in the last rounds, it means that 

the final Pareto set is not so stable. 

For the assessment of robustness of the final Pareto set the Robustness Index (RI) is employed which is 

similar to the one used in the previous section for group decision making. In order to calculate the 

Robustness Index the so called Robustness Chart is drawn where the percentages of green portfolios that are 

available on r-th round (denoted as ar) are plotted as a function of the computation round. The resulting 

curve is called Robustness Curve. In Figure 4-11 an example of a Robustness Chart with the corresponding 

Robustness Curve is presented. It is easy to observe that from round 2 to round 3 there are no new portfolios 

added in the green set. This may happen especially when the maximum number of rounds (R) is relatively 

high.  

The Robustness Index of final Pareto set is calculated as the area below the robustness curve, divided by the 

rectangle area denoted by dashed rectangular in Figure 4-11. The dashed rectangular actually expresses the 

maximum robustness (RI=1) that occurs when already from the first computation round (i.e., when the 

uncertainty is on maximum) only one Pareto set is produced from all Monte Carlo iterations. The minimum 

robustness occurs when all green portfolios are added in the final Pareto set on the last round (RI=0). RI 

takes values between 0 and 1 and it is calculated using the trapezoid rule for piecewise linear functions 

according to the following equations: 
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    (4.18) 

For example, from Figure 4-11 the corresponding RI is:  

0.04 1
[ 0.11 0.34 0.34 0.83 ] / 5 42.8%

2 2
RI  

 

Equation Section (Next) 
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5. Applications 

Methods of portfolio selection are widely employed to support decision procedures both in public 

administration and industrial firms. That is why here and further, after detailed description of theoretical 

concepts, the focus is on real case studies. Since the whole ITA method was developed on observations, 

examples will help to understand better all suggestions and concepts. 

Extraordinary development of telecommunications technologies and tremendous possibilities they provide to 

handle information about the state of the environment made it interesting to study the selection problem in 

this domain. A case study from the literature made it possible to observe and compare the results within 

different decision support systems. 

A second case study covers the problem of selecting projects for financing in the framework of Clean 

Development Mechanism (CDM), which comprised numerous uncertainties due to its novelty. The 

mechanism gained momentum in 2005 after the entry into force of the Kyoto Protocol to UNFCCC and was 

in full operation in the period of 2008 ï 2012. Before the Protocol entered into force, investors considered 

this a key risk factor. The initial years of operation yielded fewer CDM credits than supporters had hoped 

for. Later, it turned out that the purchases were made mainly within European Union Emission Trading 

Scheme and it led to oversupply of emission allowances and to the crash of prices. The economic crisis 

within EU made the future of CDM even more uncertain. Still, these activities are maintained by industries 

from developed countries, which care about the environment and think about diversification of their 

activities. 

The next sub-section focuses on local renewable energy projects. The energy sector has been a fertile ground 

for the application of operational research (OR) models and methods (Antunes and Martins, 2003).Greece is 

a mountain country meaning that there is almost always some wind blowing from or to the sea. The number 

of sunny days is also among the highest within European countries and hence, all the technologies aimed at 

capturing the energy from renewable sources are attractive from a long term perspective. The case study is 

focused on projects seeking for initial financial support from a development bank. Such decisions are usually 

taken by a board of experts from different fields of expertise that is why the situation of group decision 

making was being tested. 

The last case study incorporates Energy and Environmental Corporate Responsibility (EECR) in decision 

making procedure in addition to the already widespread Net Present Value (NPV) of projects proposals. A 

bi-objective programming model is introduced in order to provide the Pareto optimal portfolios (Pareto set) 



50 

 

based on the Net Present Value (NPV) of projects and the EECR score of firms. A systematic decision 

making approach using Monte Carlo simulation and multi-objective programming is also developed in order 

to deal with the inherent uncertainty in the objective functionsô coefficients. The proposed approach 

facilitates banking organizations and institutions to the selection of firms applying for financial support and 

credit granting, within the frame of their environmental obligations. 

 

5.1. Selection of telecommunications projects 

As it was mentioned in previous chapters, various sectors of economy face problems of choice. Wide and 

fast spread of new telecommunications technologies required effective tools to select options for expansion 

and meeting growing demand. Technological advances made possible new ways of using 

telecommunications which could be only part of science fiction decades ago. Images and data, transferred 

via satellites, help to monitor the state of environment, prevent natural catastrophes or send the rescue teams 

in case of natural or industrial disasters. 

During XX-th century there was relatively stable business environment in the telecommunications industry. 

Due to recent advancements in technologies and changes in markets it became necessary to reconsider long-

term business goals (Lindstedt et al., 2008). One of the earliest applications that dealed with these new 

challenges was developed by Antunes and Craveirinha (1993). The need for balanced introduction of new 

service offerings was a problem which involved different and conflicting aspects. Both public and private 

companies were forced to reconsider their vision, mission and strategies. The achievement of these revised 

strategic objectives called for changes in their product portfolio, whereby companies were facing with the 

problem of choosing which products would effectively contribute to the achievement of their long-term 

goals.  

The modernization planning of telecommunications networks, namely as far as the evolution towards new 

supporting technologies and service offerings are concerned, is a problem which involves different aspects, 

some of which are not directly quantifiable by an economic indicator. On a preliminary stage, project 

proposals should be grouped accordingly. Further, within assessments varying degrees of uncertainties, 

driven by the maturity of technologies and products, pace of technological advancements, developments in 

market prices, changes in competitive situation should not be overlooked.  

 

 



51 

 

5.1.1. The model for telecommunications project selection 

An example from the literature is chosen for illustrative purposes. Namely a project portfolio optimization 

problem under uncertainty that refers to telecommunication projects (Niaei et al., 2011). The 40 candidate 

projects are classified in three types: Basic, Developing and Applied. Initial 40 projects are evaluated against 

five criteria:  

 Cost: Total project cost including all expenses required for project completion (in million toomans 

which is the Iranian monetary unit). 

 Proposed methodology: Degree of being step-by-step, well planned, scientifically-proven, 

disciplined, and proper for organization current status in the proposed methodology (qualitative, 0-

10). 

 The abilities of personnel: Work experience of project team related to concerned project (qualitative, 

0-10). 

 Scientific and actual capability: Scientific degree and educational certificates of projectôs team 

(qualitative, 0-10). 

 Technical capability: Ability of providing technical facilities and infrastructures (qualitative, 0-10). 

The performance of each project in each criterion is expressed as a uniform distribution with minimal and 

maximal probable values (see Niaei et al., 2011, for the exact data). The weights of criteria in the original 

paper were determined from expert judgment and fit appropriate distributions. In the current case, this 

information is simplified by using for all of them triangular distribution with the parameters shown in Table 

5-1. 

Table 5-1.  Parameters for criteria weightsô triangular distributions. 

 
Min Mid Max 

Cost 0.17 0.21 0.23 

Methodology 0.12 0.13 0.14 

Personnel 0.12 0.14 0.16 

Scientific ability 0.11 0.13 0.15 

Technical ability 0.36 0.40 0.43 

 

In addition to the original paper, some variability in the total budget is added, which it supposed to follow a 

normal distribution with mean 6 billion toomans and standard deviation of 0.3 billion toomans. There are 
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also segmentation constraints that are expressed with upper bounds to each type of project. Namely, the sum 

of basic, developing and applied projects should not exceed the 20%, 70% and 40% of the total projects in 

the portfolio. 

In the current subchapter a combination of three techniques is presented. MCDA, Mathematical 

Programming and Monte Carlo simulation are chosen in order to deal with project portfolio optimization 

with consideration of multiple criteria of projectsô evaluation, multiple constraints and inherent uncertainty 

associated (a) with projectsô characteristics and (b) with the decision situation. The uncertainty in the 

decision and the project parameters is represented with probability distributions (a stochastic nature is 

assumed) as it is also done in the multicriteria method SMAA (Ladhelma et al., 1998; Tervonen and 

Ladhelma, 2007) as well as other approaches (see e.g. Hyde et al., 2003). The proposed method presents a 

special case of ITA: the two-phase approach and compares results obtained with classic ITA. 

The required models and the whole solution process was developed in the General Algebraic Modeling 

System (GAMS, see e.g. Brooke et al., 1988) using MIP solver CPLEX 11.1 for Mixed Integer 

Programming models optimization. The solution time was approximately about 3 minutes on Intel Pentium 

i5 at 2.53 GHz for the 1000 Monte Carlo simulations ï optimizations. 

5.1.2. Results and discussion on two-phase ITA  

The theoretical basics for this unit are described in Chapter 2.3. The number of iterations of the first round 

was set to 1000. During the second phase the principle of majority for the projectsô coefficients was in force, 

while there was still some flexibility on modelôs constraints. 

The first observation after execution of phase 1 was the absence of any dominant portfolio. Among the 1000 

optimal portfolios at most two were the same. So, it is obvious that it was too early to draw conclusions 

about the most widely accepted portfolio just from the first phase. Moreover, the number of projects in 

optimal portfolios varied from 21 to 27.  

Subsequently, some membership thresholds (ñgreenò and ñredò thresholds as described in Chapter 2.2) were 

tested. The symmetric case, meaning that if the green threshold is Ŭ% and the red threshold is 1-Ŭ%, was 

adopted for calculations. As it is obvious, with growth of the membership threshold, proposals are easier 

attributed either to green or red sets as shown in Table 5-2.  

Afterwards, different seeds for the random number generation in Monte Carlo simulation in order to check 

the resultsô robustness were considered. The outcomes for 15 different seeds were very similar, meaning that 

15 different Monte Carlo simulation ï optimization sessions were performed. In the first phase in 3 out of 15 
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runs the red set had one project less (2 instead of 3). However, in the second phase, 14 out of 15 runs 

provided exactly the same optimal portfolio.  

 

Table 5-2.  Influence of membership threshold on population of green and red sets. 

Membership threshold Green Red Grey 

100% 6 0 34 

99.5 % 7 1 32 

99% 7 3 30 

98% 7 3 30 

95% 8 3 29 

90% 10 5 25 

 

 

Table 5-3.  Frequency of appearance for projects in optimal portfolios. 

# Freq # Freq 

1 944 21 882 

2 4 22 249 

3 674 23 150 

4 76 24 548 

5 1000 25 453 

6 738 26 503 

7 129 27 986 

8 1000 28 732 

9 1 29 1000 

10 386 30 920 

11 386 31 854 

12 129 32 809 

13 619 33 331 

14 66 34 1000 

15 1000 35 889 

16 606 36 732 

17 6 37 323 

18 235 38 845 

19 1000 39 623 

20 711 40 1000 

* Bold are projects from the green set, Italic are the ones from the red set. 
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The run of phase one, with membership threshold of 99% provided following results:  

Green set  -  7 projects            (5, 8, 15, 19, 29, 34, 40) 

Red set      -  3 projects  (2, 9, 17)  

Grey set    -   30 projects (the rest) 

The frequency of projectsô appearance in optimal portfolio is shown in Table 5-3. 

Therefore, from the first phase it is safe to conclude that projects 5, 8, 15, 19, 29, 34 and 40 are in the final 

portfolio under any circumstances while there is no chance for projects 2, 9 and 17 to enter the final 

portfolio. Subsequently, on next phase under careful focus are the remaining projects of the grey set. 

In the second phase only 30 projects from grey set participated as the values of the decision variables for 

green and red projects were fixed to ñ1ò and ñ0ò respectively. The objective function coefficients are the 

frequencies from Table 5-3. Due to the fact that there are still stochastic parameters in the constraints (the 

cost of each projects and the total budget) it is necessary to perform a Monte Carlo simulation ï optimization 

session with 1000 iterations, according to the equation (2.3). 

Even in the second phase a clearly dominating portfolio is not appearing. The optimal portfolio of highest 

frequency (portfolio A) is obtained in 22.6% of iterations (226/1000) while the next most frequent (portfolio 

B) is obtained in the 19% of the iterations (190/1000). These two, most frequent portfolios have 23 and 22 

projects, respectively. The difference is only one project, namely project 16 which is present in portfolio A 

and not in portfolio B probably due to budget violation in respective runs.  

It is interesting to compare the results of the two-phase approach with the results from a ñconventionalò 

approach, considering only expected values for uncertain parameters. Further in the unit is clearly shown 

that a significant part of information is left out of the analysis and the DM is losing essential information. In 

this case multicriteria scores and, hence, the objective function coefficients would be crisp numbers as well 

as all parameters of constraints in the MP model. The whole process would be similar to the approaches 

described among others by Abu Taleb et al. (1995), Mavrotas et al. (2003; 2006; 2008) where the uncertainty 

was not addressed. The difference with the trichotomic approach is on the results themselves as well as the 

information conveyed by these results. Results from both methods are shown in Table 5-4. 

It can be seen that the obtained results are almost identical. Only projects #16 and #24 are interchanged, 

which are both in group of ñappliedò projects and have similar characteristics. Table 5-5 reveals that in some 

criteria #24 performs weaker but it is characterized by less variation meaning more narrow distributions. The 

final decision (to violate the available budget constraint and if yes, which of 2 projects to choose) is still to 

be made by a person according to the main goals of the whole process.  
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Table 5-4.  Optimal portfolio from ñconventionalò and two-phase ITA approaches. 

Project # 

Conventional 

(expected 

values) 

Trichotomic     

(two-phase 

approach) Project # 

Conventional 

(expected 

values) 

Trichotomic     

(two-phase 

approach) 

1 1 1 21 1 1 

2 0 0 22 0 0 

3 1 1 23 0 0 

4 0 0 24* 1 0 

5 1 1 25 0 0 

6 1 1 26 0 0 

7 0 0 27 1 1 

8 1 1 28 1 1 

9 0 0 29 1 1 

10 0 0 30 1 1 

11 0 0 31 1 1 

12 0 0 32 1 1 

13 1 1 33 0 0 

14 0 0 34 1 1 

15 1 1 35 1 1 

16* 0 1 36 1 1 

17 0 0 37 0 0 

18 0 0 38 1 1 

19 1 1 39 1 1 

20 1 1 40 1 1 

 

Table 5-5.  Characteristics of borderline projects #16 and #24. 

 Cost Methodology Personnel Scientific ability Technical ability 

 min max min max min max min max min max 

Project 16 374 486 2 6 4 8 1 3 2 6 

Project 24 385 416 1 4 1 4 1 5 3 5 

 

Seeing similar results one may wonder what is the contribution of the trichotomic approach. The real 

contribution is that it provides the DM with extra information. In the conventional approach the DM is not 

aware of the certainty degree for each project that is selected (with ñ1ò in the corresponding column). By 

contrast, in the case of ITA the expert is aware of the degree of certainty for each project. This is fruitful 

information that may lead to better decisions (e.g. further adjustment of the total budget, identification of 

vulnerable and stable projects etc). Here, the fact of two similar projects provides the chance to perform a 
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direct comparison before deciding about the final selection and maybe to reconsider initial assumptions and 

requirements. 

5.1.3. Results and discussion on iterative ITA  

For the comparison of outcomes the iterative version of the trichotomic approach by gradually reducing the 

uncertainty of grey projects in each cycle was applied. The reduction of uncertainty was done by the 

symmetric narrowing of their range of performances as expressed in the corresponding distributions 

provided in Table 5-1. A reduction step of 25% of the range was applied meaning that new min and max of 

the uniform distribution were calculated by the following formula: 

( )

( )

25%
min min (max min)

2

25%
max max (max min)

2

k

k

k

k

    (5.1) 

Therefore, sampling for Monte Carlo simulation was performed by all the more narrow ranges of the 

uniform distributions for grey projects. The midrange was reached on fourth iteration which meant there was 

no sampling but the midrange as the one and only representative value.  

From Table 5-6 it is obvious that the uncertainty reduction within grey projects drives gradually in more 

populated red and green sets. For example, it can be concluded that a DM is more confident about e.g. the 

inclusion of project 38 than 35, because it enters the green set in an earlier iteration. Similarly, one can be 

more sure about the exclusion of project 17 (excluded from the first round) than of project 14 (excluded in 

the third round). 

Table 5-6.  Results for iterative version of ITA. 

Uncertainty 

reduction 
Red set Project id Green set Project id 

0% 3 2,9,17 7 5,8,15,19,29,34,40 

25% 3 2,9,17 7 5,8,15,19,29,34,40 

50% 8 2,4,7,9,12,14,17,23 11 1,5,8,15,19,21,27,29,34,38,40 

75% 8 2,4,7,9,12,14,17,23 14 1,5,8,15,19,21,27,28,29,30,34,35,38,40 

100% 11 2,4,7,9,10,12,14,17,22,23,37 18 1,5,8,13,15,19,20,21,27,28,29,30,32,34,35,38,39,40 
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When all uncertainty is removed from grey projects (row of 100%) the unique optimal portfolio is still not 

reached because some uncertainty is related to the weights of criteria and the total budget remains. However, 

18 green projects from the eventually 23 are identified. It should be remembered that once a project enters 

green or red sets in iteration k it remains there for all subsequent iterations, i.e., the green and red projects of 

iteration k are nested in respective sets of the consecutive iterations k+1, k+2, .... It must be noted that 

narrowing of uncertainty intervals refers only to grey projects of a specific iteration. For example, when the 

uncertainty is reduced from 50% to 75%, this reduction is not applied in the 8 red and 11 green projects of 

the second iteration but only for the remaining 21 grey projects. The concept is that on every iteration 

increased amount of information is obtained only for the currently grey projects in order to reduce their 

performanceôs variability. When the whole cycle of calculations is finished, the final portfolio turns out to be 

the same as with the two-phase approach. The main assistance here lies in the fact of gradual selection of 

projects, which is longer and covers more uncertain parameters then the previous one. Here, again, two 

projects are ñclose winnersò and there is room for the expert to make or modify final portfolio according to 

the assigned task. 

5.1.4. Conclusions for classic and two-phase ITA 

An illustrative example from the literature was used to demonstrate and compare two approaches of the ITA 

method. One of the most useful advantages of the method is the additional information delivered to the DM 

and the direct control she/he has over the final solution (the disclosure of the borderline projects being a 

significant hint).  

The two-phase approach may be considered as a short version of iterative ITA which suits better for 

relatively small set of project proposals. While the first part is the same for both approaches, the second part 

represents the majority principle where the variability of the results is reduced and the portfolio(s) of greater 

acceptance is(are) easily recognized. Robustness of results for the selection of telecommunications projects 

was additionally tested through different pseudo-random seeds of Monte Carlo simulation and there were no 

significant differences between them. 

The iterative version has the advantage of gradual separation of projects between green and red sets giving 

information to the DM about the reliability projectsô inclusion in the final portfolio or exclusion from it 

(according to the cycle that each project is included in the green or the red set). Such a procedure is more 

suitable for problems with large number of proposals seeking for support. Within the modeling procedure 

uncertain future outcomes may be modeled through different probability distributions. While in the current 

case study final portfolios from both approaches were the same, it would not be true in case of complicated 

probability distributions of several parameters. Still, two projects with similar characteristics leave some 
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space for interpretation of results and possible review of some constraints. If closer pair wise comparison 

reveals increased importance of both of them, it is not prohibited to include them into the final selection. 

Still, it is easier to reconsider the future of one or two items instead of the whole portfolio.  

 

5.2. Selecting a portfolio of CDM projects 

In the last two centuries energy became one of the most critical resources for mankindôs survival and 

development. Especially now, when the scarcity of fossil fuels and the impact of energy production and 

consumption to climate change were realized, the issue of energy is high in the global agenda. Energy 

projects are characterized by a variety of technologies and they are spread all around the world as they are 

related with indigenous sources. A special case of energy projects are those emerged recently in order to deal 

with the Climate Change issue. The international effort against the global phenomenon of global warming 

found its expression in early ó90s with the establishment of the Intergovernmental Panel on Climate Change 

(IPCC) and United Nation Framework Convention for Climate Change (UNFCCC). Kyoto Protocol to the 

UNFCCC provided several options in order to reduce greenhouse gas (GHG) emissions. One of them was 

the Clean Development Mechanism (CDM) which gave the possibility to offset carbon emissions in the 

shape of environmentally friendly activities which turned out to be mostly energy related projects. Broadly 

speaking they are projects implemented in developing countries using technology and financing from 

developed countries. The benefit for the funders is that they get the ñenvironmentalò benefits quantified as 

Certified Emission Reduction units (CERs) in order to reduce their ñemission balanceò. The case study 

presented further refers to this kind of projects and it is essentially a project portfolio selection problem.  

The subject of specific case study refers to climate related projects which are mainly related to energy either 

from the supply side or from the side of energy efficiency. It is a growing domain of activities with many 

parties involved. Among main players are governments, who plan and introduce different climate friendly 

policies and address complex objectives of local development and employment as well as financial 

institutions and developers, searching for perspective ways for investments. In addition, private companies 

(both big and small) who care about public perception may also finance and support green activities. Even 

individual people interested in sustainable future, can buy carbon credits to offset their everyday GHG 

emissions.  

Investors always face the problem of choice. Usually, the possibilities and options to invest money are 

greater than the available budget. One of the main tasks for a DM is to perform a balanced selection with 

consideration of technology, budget, policies, geographical distribution and other constraints that may be 
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imposed by him/her. Moreover, the output of the projects is rarely known with certainty at the decision level 

(a priori). Therefore, in the current case the problem is stated as: which portfolio of climate related projects 

should be selected by an entity, given information about the total budget, policy and technical conditions that 

must be met as well as the inherent uncertainty in projectsô output. The ñuniverseò of available options is 

constituted from projects under the CDM and the relevant data are drawn from the CDM database. 

Within the CDM projectsô selection two techniques are combined, namely, Mathematical Programming and 

Monte Carlo simulation that helps to take into account numerous constraints and the inherent uncertainty 

associated with the projectsô performance. The uncertainty is represented with probability distributions (a 

stochastic nature is assumed) as it is also assumed in other similar research works (Ladhelma et al., 1998; 

Tervonen and Ladhelma, 2007; Hyde et al., 2003). The problem is solved in iterative way using decision 

rounds. In each round a series of Monte Carlo simulations ï IP optimizations is performed providing 

information about the membership of every project in resulting portfolios. This information is aggregated in 

order to separate projects into green, red and grey sets. From round to round the variation (measure of 

uncertainty) of grey projects is reduced so that the whole process converges to a final portfolio. The output 

of the process incorporates important information of certainty degree associated with every project which is 

included in the final portfolio.  

5.2.1. Creating the ñuniverse of projectsò from CDM database 

In the current case study a hypothetic set of projects, based on real data, is used. The main information 

source is CDM database, elaborated by UNEP Risoe Centre. Every activity, in order to be registered, 

submits a project design document (PDD) where its basic features are described and calculated. 

Subsequently, during their operation, registered projects are subject to performance monitoring and 

verification according to an adopted schedule.  

The majority of CDM activities are renewable energy projects, which are represented by the following 

technologies: 

 Wind energy, 

 Hydro power plant (HPP), 

 Biomass, 

 Landfill gas, 

 Methane avoidance, 

 Energy efficiency in industry (EE). 
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As wind and hydro electricity generation are dominant technologies a great number of projects fall in this 

category. In order to refine the decision process further split of these projects into small scale (up to 15 MW 

of installed capacity) and large scale (more than 15 MW) ones is performed. Small scale projects are labeled 

with ñSò at the beginning (SWind, SHydro), and large scale ï ñLò (LWind, LHydro). There is no need to 

create sub-groups for other technologies since the remaining projects are not that numerous. 

Wind electricity generation is the largest set of projects and most installations are located in China and India. 

Technology success may be attributed to strong incentives that these hosting countries created during 

previous years (Pechak et al., 2011). Within hydro power generation projects there are ones that are focused 

on modernization of already existing, and those which started from zero (which in some cases means 

construction of a new dam). Hydro power plants bring together several issues, mainly environmental, both 

on local and international levels. In case of international rivers, active construction of dams and hydro power 

plants in one country may cause water shortages during dry seasons or other related problems in the 

countries, which are subsequent in the river flow. This is a complicated issue especially in South ï East Asia 

(WWDR4, 2012). Biomass covers many sub technologies, mainly related to agricultural wastes of different 

kinds. Most of these projects are small scale and possess strong environmental potential, which makes them 

similar to power generation from landfill gas and methane avoidance on waste water treatment facilities. The 

objective of landfill gas projects is to install a highly efficient collection system to capture and destroy 

methane by flaring at high temperatures and use the generated heat for the needs of communities. Generally, 

the avoidance and reduction of methane emissions is very important not only from the public health point 

view. Methane is characterized by the global warming potential (GWP) 21 times greater of CO2 and on the 

planetary scale makes a considerable input to the overall greenhouse effect. The biggest variety is found 

within the energy efficiency (EE) projects for own electricity generation from waste heat on such industrial 

facilities as cement plants, iron and steel production, non-ferrous metal production and others. 

Geographical distribution covers 17 countries: Argentina, Brazil, Chile, China, Ecuador, Egypt, Honduras, 

India, Indonesia, Malaysia, Mexico, Peru, Philippines, South Africa, South Korea, Thailand, and Vietnam. 

According to the Kyoto Protocol classification, all these countries are considered to be developing. But each 

of them has many specific characteristics which should be taken into account before the selection process 

starts. For instance, the state support for wind energy projects led China to become a major player in this 

field and within few years it helped to develop a new industry from scratch. On the other side, for many 

other developing countries, last technology developments are still not accessible due to lack of financial 

resources and knowledge. Without technology transfers, they may follow the historic polluting trends of 

industrialised countries. Instead, CDM demonstrates an effective way to move quickly to environmentally 

sound and sustainable practices, institutions and technologies (Karakosta et al., 2010). 
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Within evaluation, strong emphasis is put on environmental performance. Actually, sustainability compound 

was supposed to be very strong on the stage of CDM development. But reality turned out to be not as 

ñgreenò as expected. These criteria were very vague and led to strong critics of CDM. As a result, external 

companies began to perform sustainability check of the projects, both existing and under development. That 

is how demand for premium CERs occurred and the best known is Gold Standard (GS) labelling. It certifies 

renewable energy and energy efficiency carbon offset projects to ensure that they all demonstrate real and 

permanent greenhouse gas reductions and sustainable development benefits in local communities that are 

measured, reported and verified. 

Table 5-7.  Input data for CDM projects by countries and technologies. 

  
SWind Lwind SHydro LHydro Biomass 

Landfill 

gas 

Methane 

avoidance 

EE own 

generation 

GS 

 

Budget 

MUS$ 

kCERs/ 

year 
Total 

projects 

China 5 53 21 27 2 6 4 10 40 6733 2588 128 

India 36 4 10 5 15 1 2 6 10 979 17050 79 

Argentina 0 0 0 0 1 1 0 0 0 42 305 2 

Brazil 0 1 4 4 0 2 0 1 0 541 885 12 

Chile 0 1 2 3 2 0 0 0 1 490 1346 8 

Ecuador 1 0 0 2 0 0 0 0 0 62 210 3 

Egypt 0 1 0 0 0 0 0 1 0 135 359 2 

Honduras 0 0 1 0 0 0 1 0 1 10 54 2 

Indonesia 0 0 0 0 2 1 3 0 3 52 361 6 

Malaysia 0 0 0 0 5 1 4 0 0 44 686 10 

Mexico 0 4 0 1 0 3 1 0 0 1396 2101 9 

Peru 0 0 3 3 0 0 0 0 0 360 879 6 

Philippines 0 1 0 0 1 0 1 1 0 104 191 4 

South Africa 0 0 0 0 1 2 1 0 0 30 133 4 

South Korea 1 1 2 1 0 0 0 0 0 243 501 5 

Thailand 0 0 0 0 2 1 10 1 6 161 958 14 

Vietnam 0 1 2 3 0 0 0 0 2 119 198 6 

Gold Standard 3 33 2 2 8 2 12 1 63 
  

  

Budget  MUS$ 436 6861 400 2555 389 165 105 593 2846 
   

kCERs/year 639 11059 1257 6898 1794 3075 1439 2644 6242 
   

Totals 43 67 45 49 31 18 27 20 63 11501 28805 300 

 

As it was mentioned before, the candidate projects are taken from UNEP Risoe Centre database. Only 

registered projects are under consideration as they have more rich information. A summary of the input data 

is presented in Table 5-7. 300 representative projects with specific technology and geographical 

characteristics in order to illustrate ITA method were taken as input. Solar, geothermal, tidal and several 
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other types of energy efficiency projects are excluded from selection due to the lack of initial information 

(e.g. no investment costs). 

The portfolio selection has a strong emphasis on environmental performance with respect to current situation 

on CDM map. Since already existing projects are the input data, for environmental criteria the GS labelling 

is used. In the model, availability of GS certification is represented by ñ1ò, and ñ0ò if not.  

Within the model, projects were coded according to technology, i.e. Small scale wind: 1-43, Large scale 

wind: 44-110, Small scale hydro: 111-155, Large scale hydro: 156-204, Biomass: 205-235, EE own 

generation: 236-255, Landfill gas: 256-273, Methane avoidance: 274-300. 

5.2.2. The model for CDM project selection 

If not the most significant, one of the most critical criteria in specific decision situation is the amount of 

issued CERs. When a project is submitted the expected amount of CERs is declared. However, past 

experience from previous projects shows that declared amount usually differs from delivered CERs after 

implementation of the activity. An attempt to quantify this uncertainty by examining earlier projectsô 

issuance success according to their technology was made. The issuance success was defined as the ratio 

between initially expected and actual CERs and it is calculated in the CDM database for projects that have 

one or more years of implementation. Since projects may vary by their duration, 10 years or 7 years 

(renewable) crediting period, it was feasible to consider the annual amount of CERs as a common basis. 

With consideration of available historical data, Table 5-8 presents the levels of CERs issuance in 

comparison with expected amounts from PDDs. 

Table 5-8.  Distribution characteristics of CERs issuance success. 

 

Total 

projects 

Average level of issuance 

success (avis) 

Standard deviation of 

issuance success (sdis) 

Wind 370 89% 24% 

Hydro 465 85% 39% 

Biomass 174 84% 35% 

EE own generation 97 77% 25% 

Landfill 90 52% 36% 

Methane avoidance 122 61% 38% 

 

In current model actual CERs of the portfolio constitute the objective function for maximization. Given the 

uncertainty characterizing issuance success of each project according to its technology, these values are 

drawn from the corresponding normal distributions with characteristics from Table 5-8. Therefore, objective 



63 

 

function coefficients are random parameters sampled from the normal distribution with following 

characteristics:  

c
(t)

i = expceri Ĭ normal(avisj, sdisj)       (5.2) 

where c
(t)

i is the objective function coefficient declaring actual CERs for the i-th project according to the t-th 

sampling, expceri is expected CERs declared during submission of the project, avisj is average issuance 

success for technology j that characterizes project i and sdisj is standard deviation of the issuance success of 

technology j. The two latter parameters are taken from Table 5-8. The second term of the product indicates 

that the parameter is sampled from a normal distribution with specific characteristics. Therefore, the 

objective function of the problem is following and is based on (4.3): 

( ) ( )
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P

t t

i i

i

Z c X          (5.3) 

where Z
(t)

 is the total number of kCERs achived by the portfolio P
(t)

 in the iteration t of the Monte Carlo 

simulation, ci
(t)

 is the number of kCERs from the i-th project as it is sampled in the t-th iteration and Xi is a 

binary variable indicating if the i-th project is included (Xi=1) or excluded (Xi=0) from the optimal portfolio. 

Constraints of the problem express policy limitations imposed by the decision maker. They have to do with 

the desired technology mixture as well as the geographical distribution of the projects in final portfolio. In 

present case the imposed constraints are:  

(a) Budget constraint 

The total investment budget for the selected projects must be less than 2 billion US$ (all 300 projects 

accumulate to 11.5 billion US$) 

1

2000
P

i i

i

budg X        (5.4) 

where budgi is the budget of the i-th project in million US$ 

(b) Geographical distribution  

Certain conditions about the geographical distribution of projects are incorporated in the model as it is 

usually the case in real investment problems. The following conditions are some examples just to illustrate 

modeling capabilities. 

b1) At most 40% of allocated funds should be in projects in China 

1

0.4
P

i i i i

i China i

budg X budg X      (5.5) 
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b2) At most 30% of allocated funds should be in projects in India 

1

0.3
P

i i i i

i India i

budg X budg X     (5.6) 

b3) At least 30% of the selected projects must be located in Latin America 

1

0.3
P

i i

i LatAm i

X X        (5.7) 

(c) Technology mix  

There are conditions that can be imposed to affect technology mix of the final portfolio. This is often 

required in order to obtain a more or less balanced portfolio avoiding the ñall eggs in one basketò policy. 

After several initial trial and error runs of the spontaneous model (without technology mix constraints) and it 

becomes obvious that a minimum or a maximum degree of representation of each technology in the final 

portfolio should be maintained. In the current model these additional constraints are:   

c1) At least 40% of allocated funds should be in wind power installations (small and large scale) 

1

0.4
P

i i i i

i Wind i

budg X budg X     (5.8) 

c2) At least 30% of allocated funds should go to hydro power installations (small and large scale) 

1

0.3
P

i i i i

i Hydro i

budg X budg X     (5.9) 

c3) Remaining four technologies should not have (separately) more than 10% of the allocated funds  

1

0.1
P

i i i i

i Biomass i

budg X budg X     (5.10) 

1

0.1
P

i i i i

i EEff i

budg X budg X      (5.11) 

1

0.1
P

i i i i

i Landfill i

budg X budg X     (5.12) 

1

0.1
P

i i i i

i MethAv i

budg X budg X      (5.13) 

c4) The Gold Standard projects should be at least 30% of total projects in the final portfolio 
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1

0.3
P

i i

i GoldStd i

X X        (5.14) 

The before mentioned constraints are examples of limitations that in a real case any decision maker may 

face. In case of need of even more constraints, such as mutually exclusive, precedent projects and other 

logical conditions can be incorporated into the model. Moreover, if annual cash flows are available, 

constraints on annual expenses can also be incorporated. In general, the modeling with Integer Programming 

in project portfolio selection is very flexible. 

5.2.3. Results and discussion for classic ITA  

The ITA method was applied to specific problem in a following way: Five rounds of the iterative process 

were defined a priori (denoting with ñ0ò the initial round, hence R=4). From round to round the grey 

projectsô performance was sampled from a corridor of corresponding issuance successô distributions. 

Particularly, the standard deviation of respective probability distribution was reduced by 25% in each 

subsequent round as shown in Figure 5-1. Consequently, in the final round the standard deviation of grey 

projects was considered to be zero so that for them deterministic values of issuance success were assumed.  
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ˋ Ґ лΦтр sdis
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Figure 5-1.  Variance reduction from round to round for the grey projectsô probability distribution. 

The model and the whole solution process were developed in the General Algebraic Modeling System 

(GAMS, see e.g. Brooke et al., 1988) using the MIP solver CPLEX 11.1 for optimizing the Mixed Integer 

Programming models. The number of iterations in Monte Carlo simulation was set to 1000. The solution 
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time varied from 17 ï 20 minutes across the five rounds in an Intel Pentium i5 at 2.53 GHz, which made the 

whole decision process not computationally prohibitive. 

The membership threshold was set to 99% for the green set and 1% for the red set. This meant that projects 

that appeared in the final portfolio more than 990 times over the 1000 iterations were considered to be green 

projects, while those projects appearing less than 10 times in total were discarded. 

Initially, the simulation optimization process was run with consideration of full uncertainty of projectsô 

issuance success (ů = sdis). Specifically, for calculation of every objective function coefficient ci the 

equation (4.3) used normal distributionsô sampling from Table 5-8. Surprisingly, from the 1000 portfolios 

initially obtained none of them were the same. Therefore, no conclusions about a dominant portfolio could 

be extracted from the first round. The number of projects in portfolios varied from 70 to 103 across these 

iterations. Eventually, 10 projects were classified as green, 77 as red and the remaining 213 as grey. 

In the second iteration, according to the equation (4.4), values of green projectsô decision variables were 

fixed to be to 1 and those of the red projects to 0. The standard deviation of grey projects was reduced to 

0.75 Ĭ sdis while for green and red projects it was left in the previous roundôs level. The output of the second 

round was 16 green, 100 red and 184 grey projects.  

In the third round, the values of green projectsô decision variables from previous round were set as 1 and 

those of red projects as 0 in the model. The standard deviation of grey projects was reduced to 0.5 Ĭ sdis. 

The output of the third round was 27 green projects, 117 red projects and 156 grey projects. 

The output of the fourth round was 49 green projects, 151 red projects and the remaining 100 were grey for 

which the standard deviation was set to be 0.25 Ĭ sdis. 

In the fifth and final round the standard deviation of remaining 100 grey projects was set to zero which 

meant their issuance success was considered as deterministic value taking the average value from Table 5-8. 

Then, all grey projects were fully allocated between green (51) and red sets (49). Conclusively, the whole 

process ended with 100 green and 200 red projects. In the final round the obtained CERs calculated from the 

final portfolio varied from 7089 to 8164 with a mean value of 7597 and a standard deviation of 190. The ID 

of projects as well as the decision round of their incorporation (for the green set) or their exclusion (for the 

red set) from the final portfolio is illustrated graphically in Figure 5-2. The darker the shading of a cell is, 

the earlier round it enters green or red sets, i.e., the sooner a conclusion about projectôs status (ñgoò or ñno 

goò) in the decision process is made. In other words, darker cells illustrate higher level of confidence about 

their inclusion (green set) or their exclusion (red set) from the final portfolio. Therefore, every project is 

accompanied not only with ñgoò or ñno goò information, but also with the degree of certainty about this 

decision. It is a certain way to prioritize projects and is very useful for decision makers in the presence of 
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underlying uncertainty on projectsô performance. The analysis of the final portfolio is presented in Table 

5-9. 

 

13 23 30 36 40 48 56 61 92 94 113 115 116 124 127 128 130 136 137 138
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(a) The green set

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21

22 24 25 26 27 28 29 31 32 33 34 35 37 38 39 41 42 43 44 45

46 47 49 50 51 52 53 54 55 57 58 59 60 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

89 90 91 93 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112 114 117 118 119 120 121 122 123 125 126 129 131 132 133 134 135 139 140

141 142 143 145 146 147 148 149 150 151 152 153 157 159 160 162 163 164 166 169

171 172 173 174 175 176 178 181 183 184 185 186 187 189 190 191 193 194 195 197

198 200 201 202 203 205 207 209 212 213 217 218 220 223 225 226 230 232 240 241

242 243 246 248 249 251 253 254 255 258 259 260 268 274 279 280 281 283 287 295

(b) The red set  

Figure 5-2.  Final green and red sets along with certainty degree for each project. 

It is noteworthy to mention that a naµve approach of dealing with uncertainty is to use just the average 

(expected) values of issuance success and maximize the average CERs of the final portfolio, ignoring the 

variance associated with projectsô performance. In this case, the final portfolio that is calculated from a 

single run (solution of an IP problem) is the same as in ITA approach. However, there is no information 

about performance variations of the final portfolio, as well as there is no supportive evidence about the 

degree of certainty for each project. In addition, if probability distributions were not symmetric the result of 

the two approaches may differ which means different final portfolios.  



68 

 

Table 5-9.  Final selection by countries and technologies. 

  
SWind Lwind SHydro LHydro Biomass 

Landfill 

gas 

Methane 

avoidance 

EE own 

generation 
GS 

Budget 

MUS$ 

kCERs/ 

year 
Total 

projects 

China 0 2 2 7 1 6 3 2 8 799 3828 23 

India 4 1 1 0 10 0 1 5 10 204 1063 22 

Argentina 0 0 0 0 1 1 0 0 0 42 305 2 

Brazil 0 0 3 2 0 2 0 1 0 106 1121 8 

Chile 0 0 2 2 1 0 0 0 0 119 278 5 

Ecuador 1 0 0 2 0 0 0 0 0 62 210 3 

Egypt 0 1 0 0 0 0 0 1 0 135 359 2 

Honduras 0 0 1 0 0 0 1 0 1 10 54 2 

Indonesia 0 0 0 0 1 0 3 0 3 17 192 4 

Malaysia 0 0 0 0 3 0 4 0 0 29 591 7 

Mexico 0 1 0 0 0 3 1 0 0 220 751 5 

Peru 0 0 3 2 0 0 0 0 0 182 485 5 

Philippines 0 0 0 0 0 0 0 0 0 0 0 0 

South Africa 0 0 0 0 1 1 0 0 0 16.5 399 2 

South Korea 0 0 0 0 0 0 0 0 0 0 0 0 

Thailand 0 0 0 0 0 1 7 0 6 33 638 8 

Vietnam 0 0 1 1 0 0 0 0 2 24 43 2 

Gold 

Standard 3 1 2 2 7 2 12 1 30 

  

  

Budget MUS$ 33 767 111 595 163 88 68 173 241 

   
kCERs/year 54 1634 389 2255 1108 2713 1181 983 1287 

   
Total 5 5 13 16 18 14 20 9 30 1998.5 10317 100 

 

The geographical distribution is determined more or less by imposed constraints. It is easy to observe the 

fact that there are still countries that are not present in the final selection (Philippines and South Korea) as it 

is not explicitly required by the regional constraints. Moreover, it was found that projects from Latin 

America were entering the final portfolio from the first rounds. On the contrary, the majority of wind and 

hydro projects from China and India are excluded very early in the decision process. According to another 

requirement all available technologies are present in the mix of final portfolio. Because of restricted budget 

(2 billion US$), most of wind projects are excluded due to high initial investment costs. Thus, the share of 

Chinese projects dropped significantly although there were some projects with Gold Standard label among 

them. It was also observed that conditions for the HPPs were more favorable than those of the wind projects. 

In addition, the availability of already existing dam had a positive effect as it corresponded to lower 

investment cost.  
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Generally, consideration of minimal share of Gold Standard projects has a positive influence. In the final 

portfolio there are 30% of premium labeled projects while initially, in project universe, they had the share of 

21%. The proportion of GS projects may be controlled by the decision maker through implied constraints. In 

the current case, all GS labeled projects for HPPs, Landfill gas, Methane avoidance and EE in industry are in 

the final selection.  

It is not a surprise that the share of methane related projects is significant in the final portfolio (about 1/3). 

With modest investments they provide more emission reductions and thus CERs. One of the reasons is the 

higher Global Worming Potential (GWP) of methane towards CO2. Secondly, these projects provide more of 

direct sustainability benefits such as improved air and water quality, and reduction of dangerous wastes 

within local communities. 

Eventually, the final portfolio represents 17.4% of the investments in comparison with initial 11.5 billion 

US$ of 300 projects while it accounts for 35.8% of the project universeôs total CERs (=28805 kCERs). In 

the current case study the aim was to maximize carbon credits, even though their final amount is not a 

certain fixed number. The final portfolio demonstrated how it is possible to make a balanced selection 

regarding financial as well as technological and geographical constraints. In this example the modeling of 

uncertainty in the most uncertain among projectôs parameters (CERs) was tested. Contrary to what was 

expected, the dominant technologies (wind and hydro) in the available project universe were not so favorable 

in the final portfolio, probably due to their increased investment cost. Because of the limited available total 

budget, lower investment cost projects were preferred even from the early rounds of the selection process.  

 

5.3. RES projects in Hellas 

The capability of reliable provision of energy to meet a vast range of needs and requirements in residential, 

services/commerce, agriculture, industrial and transportation sectors, is one of the most distinctive features 

of modern developed societies. From supplying power and heat to production systems to satisfying heating, 

cooling, lighting, and mobility needs, energy is pervasive in everyday life (Antunes and Henriques 2016).  

The geographical position of Greece is extremely favorable for the operation of renewable energy 

installations. With more than 250 days of sunshine it is no surprise to have an excessive amount of proposals 

for photovoltaic power plants. While solar collectors are already a widespread technology for hot water 

supply in households, PVs are only gaining popularity. Currently, state support for new energy technologies 

is also of crucial importance since it is still cheaper to obtain electricity from fossil fuels. The same stands 

for wind installations too. 
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The basis of case study is 133 Greek project proposals covering three RES technologies (wind, small hydro, 

photovoltaic). These applications were evaluated against 5 criteria, namely: regional development, 

employment, economic performance (expressed with IRR), CO2 emission reduction and land use. The data 

for this problem are available in Makryvelios (2011). 

In this subchapter ITA is used for a case study with multiple decision makers. The preference of every expert 

is expressed by assigning their own weights of importance to the evaluation criteria. Hence, each decision 

maker has his/her own optimal portfolio of projects. Group ITA is designed to gradually add projects to the 

portfolio according to the concordance within the team members until a final portfolio is reached. A great 

advantage of Group ITA is that it also provides a measure of consensus for the final portfolio of projects 

(Consensus Index) as well as concordance indices for each project that is either selected or rejected.  

5.3.1. Description of RES projectsô proposals 

In order to start elaboration of proposals, it is necessary to perform their evaluation. For current example, the 

MCDA method used for multi-criteria project evaluation is the value function method (von Winderfeldt and 

Edwards, 1986). The partial value function for each criterion has the following form: 

1

1

k ik

k

c x

ik c

e
y

e
        (5.15) 

where yik is a score of i-th alternative in k-th criterion, xik is a linear score normalized to [0,1] of i-th 

alternative in k-th criterion and ck is the value function coefficient for criterion k. Value function coefficients 

(ck) are defined according to the dispersion of alternativesô performances by criteria. Specifically, an 

accumulation of performances in the upper half of criterion range indicates a convex value function while an 

accumulation in the lower half leads to a concave value function. In this way the discriminating ability of 

criteria is enhanced. In the present case the following values for value function coefficients are defined: 

c1=0.001 (linear), c2 = -1 (concave), c3 =-3 (concave), c4 =-5 (concave), c5 =5 (convex). 

The xik are obtained as follows: 

(a) For maximization criteria: 

MIN

ik k
ik MAX MIN

k k

v v
x

v v
       (5.16) 

(b) For minimization criteria: 



71 

 

MAX

k ik
ik MAX MIN

k k

v v
x

v v
        (5.17) 

where vik is raw value of the i-th alternative in the k-th criterion, vk
MAX

 and vk
MIN

 the maximum and minimum 

values across k criteria. Multi-criteria scores (msi) for each alternative are calculated using an additive value 

function: 

5

1

i ik k

k

ms y w        (5.18) 

In the present case 12 decision makers from different positions are assumed, with diverse points of view that 

provided weights of importance to the Table 5-10.  These are actually initial weights wpk
(0)

.  

Table 5-10.  Importance weights for 12 decision makers. 

   

Criteria  

  

DM 

Regional 

development 

CO2 emissions 

reduction 

Economic performance 

(IRR) 

Employment 

positions 

Land  

use 

1 0.14 0.13 0.46 0.13 0.14 

2 0.25 0.37 0.15 0.08 0.15 

3 0.41 0.21 0.03 0.14 0.21 

4 0.07 0.41 0.35 0.16 0.01 

5 0.02 0.02 0.50 0.33 0.13 

6 0.20 0.20 0.20 0.20 0.20 

7 0.15 0.25 0.40 0.02 0.18 

8 0.08 0.28 0.35 0.17 0.12 

9 0.22 0.25 0.28 0.17 0.08 

10 0.15 0.35 0.25 0.20 0.05 

11 0.21 0.30 0.15 0.15 0.19 

12 0.20 0.20 0.30 0.25 0.05 

Average 0.1750 0.2475 0.2850 0.1667 0.1258 

 
The detailed classification of project proposals by technology and geographical distribution is presented 

below. 
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Table 5-11.  Geographical and technological distributions of projects. 

   Wind Small hydro PV Total 

EASTERN MACEDONIA-THRACE 

(ȺɀD)  
3 

 
2 5 

ATTICA (ȷɇɇ)  
 

1 
 

1 

NORTHERN AEGEAN (NAG)  
  

6 6 

WESTERN GREECE (WGR) 
  

1 1 

WESTERN MACEDONIA (WMD)  3 
 

6 9 

EPIRUS (EPR)  
 

3 8 11 

THESSALY (THE)  1 7 9 17 

IONIAN ISLANDS (ION)  1 
  

1 

CENTRAL MACEDONIA (CMD)  3 5 6 14 

CRETE (CRE)  
  

4 4 

SOUTHERN AEGEAN (SAG)  1 
  

1 

PELOPPONESE (PEL)  8 1 3 12 

CENTRAL GREECE (STE) 33 13 5 51 

Total  53 30 50 133 

 

5.3.2. The model for Hellenic RES project selection 

For solving the problem of project portfolio selection an IP model is developed with consideration of 

specific constraints that need to be satisfied. Technological and geographical distributions of proposals are 

shown in Table 5-11. In addition, it is necessary to meet such specific policy constraints as:  

 Available budget of 150 Mú (the total cost of the 133 projects is 659 Mú); 

 Cost of projects in Central Greece should be less than 30% of the total cost; 

 Cost of projects in Peloponnese should be less than 15% of the total cost; 

 Cost of projects in East & West Macedonia,  Northern & Southern Aegean, Epirus should be greater 

than 10% of the total cost;  

 Number of projects by technology should be between 20% and 60% of selected projects; 

 Total capacity of selected projects should be greater than 300 MW. 
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The decision variables of the corresponding IP model are binary and indicate acceptance (Xi=1) or rejection 

(Xi =0) of the i-th project in the final portfolio. The full model is: 
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    (5.19) 

where C is the total cost of the portfolio, costi is the cost of project i (in Mú), mwi is the installed capacity (in 

MW) and msi is the multi-criteria score of project i. The resulting model is an IP problem with 133 integer 

decision variables and 11 constraints. 

For the problem Group-ITA method is applied with R=10 rounds (meaning that the convergence parameter Ŭ 

= 0.1). Required models and whole solution process is developed in General Algebraic Modeling System 

(GAMS, see e.g. Brooke et al., 1998) using the MIP solver CPLEX 11.1 for optimizing Integer 

Programming models. The solution time was a few seconds for each model in a core i5 64bit at 2.5 GHz.  

5.3.3. Results and conclusions for Group ITA  

Results obtained from round to round are depicted in Figure 5-3 where color intensity expresses consensus 

degree on each project. The dark green projects were selected in early rounds and it means that there has 

been increased consensus for their selection. On the other side, the dark red projects were rejected in early 

rounds signifying increased consensus for their rejection. It is easy to observe that from round 0 to round 3 

there are no additions in the green or red sets. The same is true also for rounds 4 and 5, 6 and 7, 8 and 9. That 
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is why rounds 1, 2, 3, 5, 7 and 9 do not appear in Figure 5-3. It is noteworthy to highlight the fact of 

73+40=113 projects with CD=1; 5+5=10 projects with CD=0 and the remaining 10 in between projects.  
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Figure 5-3.  Results of iterative process for Hellenic RES projects. 

Particular characteristics of the portfolio created by green projects in each round (consensus portfolio) are 

shown in Table 5-12. The violations of constraints are denoted with red, bold fonts. By studying Table 5-12 

decision makers may decide to select a consensus portfolio prematurely, i.e., before arriving to Round 10. 

This can be done having in mind that they accept the respective violations of constraints.  
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Table 5-12.  Characteristics of consensus portfolio (green projects only). 

 

projects 

MW  

(>=300) 

Cost 

(<=150 Mú) 

STE 

(<=30%) 

PEL 

(<=15%) 

Other 

(>=10%) 

W  

(20%-60%) 

SH 

(20%-60%) 

PV 

(20%-60%) 

round 0 73 185.5 96.5 25.5% 3.2% 22.5% 15.1% 35.6% 49.3% 

round 4 74 202.6 102.9 23.9% 9.2% 21.1% 16.2% 35.1% 48.6% 

round 6 77 222.6 114.7 25.6% 8.2% 20.8% 16.9% 33.8% 49.4% 

round 8 78 235.2 119.5 28.6% 7.9% 20.0% 17.9% 33.3% 48.7% 

round 10 83 301.3 149.8 29.4% 10.3% 25.6% 20.5% 32.5% 47.0% 

 

The consensus chart of the problem is depicted in Figure 5-4 and is calculated using equation(4.12): 

0.88 1
[ 3 0.88 2 0.892 2 0.928 2 0.94 ] /10 91%

2 2
CI  

While the same final portfolio is obtained with average weights from only one run, this naµve approach 

misses all information regarding the consensus degree for each project as well as the consensus index for the 

final portfolio.  
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Figure 5-4.  Consensus chart for RES project portfolio. 

 
In other words, the current approach presents a systematic procedure towards convergence. The main 

advantage of proposed Group-ITA method is that not only helps to build the final portfolio, but also 
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measures the degree of consensus over each project that is selected or rejected. Moreover, it provides a 

measure of consensus for the final portfolio. The outcome of Group-ITA is not merely the final portfolio, but 

also the ñcourseò towards it that may provide fruitful information about project selection problem and may 

be used to reconsider some initial assumptions.  

 

5.4. Incorporation of Energy and Environmental Corporate 

Responsibility into decision making procedure 

One of the major reasons for economic crises is the irrational distribution and use of resources. This problem 

is one of the most common and oldest problems in Operations Research (OR). Financial organizations often 

face the issue of selection within a set of project proposals to fund. As a rule, several OR techniques are 

involved in this kind of problems such as Multiple Criteria Decision Analysis (MCDA) and Mathematical 

Programming (MP). These techniques are widely exploited in relevant decision problems, such as the 

portfolio selection, choice among alternative projects or investment opportunities, student selection, military 

applications, capacity expansion (see e.g. Golabi et al. 1981; Mavrotas & Rozakis 2009; Salo et al. 2011; 

Martinez-Costa et al., 2014). Usually the ñbestò performance is expressed emphasizing on economic and 

financial criteria. Other criteria related with the promotion of sustainable practices, fostering green growth, 

were not taken into consideration in traditional models (Hobbs and Meier 2000).  

However, current financial and economic crisis, as well as growing socio-economic and environmental 

pressures, including climate change, put seriously under question traditional development patterns. The need 

to develop alternative models able to address current economic situation through the exploitation of 

sustainable patterns is of crucial importance (Hobbs and Meier 2000; Doukas et al. 2012). One of the most 

prominent examples comes from Oliveira and Antunes (2011), who developed a multi-objective model for 

interactions between economy, energy and environment for Portugal. The multi-sectoral model performs a 

prospective analysis of changes in the economic structure and the energy system, as well as assesses the 

corresponding environmental impacts, providing decision support in policy making. This model is a multi-

objective linear programming model that allows for the explicit consideration of distinct axes of evaluation, 

generally conflicting and non-commensurate, of the merit of distinct policies. The policy recommendations 

obtained are subject to the inherent uncertainty associated with the model coefficients and, therefore, they 

may not be robust in face of changes of the input data. 

Companies are at the heart of the Europe 2020 Strategy, taking into consideration their vital role towards 

national prosperity and Sustainable Development (SD). They have to integrate social and environmental 
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concerns in their business operations and in their interaction with stakeholders on a voluntary basis, within 

the framework of the Corporate Social Responsibility (CSR) concept. 

Enterprises with vision have to address problems in a long term plan, and become a driving force for 

adoption of relative initiatives towards ñgreenò development and promotion of energy efficiency and 

environmentally friendly practices, within the CSR framework (Doukas et al. 2013). CSR has been 

incorporated recently in decision models using Data Envelopment Analysis (Lee & Farzipoor Saen, 2012), 

inventory policy (Barcos et al. 2013) and supply chain (Hsueh, 2014) among others. The interweaving of 

energy and environmental policies, as an aspect of CSR is definitely small and CSR does not appear to be a 

systematic activity in new conditions of European market, a conclusion further confirmed by Apostolakou 

and Jackson (2009) and Gjßlberg (2009 a, b) studies. However, relevant works in various fields have been 

detected recently such as in supplier selection (Hashemi et al., 2014). In this context, new tools and methods 

are required to foster green entrepreneurship and green energy growth.  

The innovation of the current study is the incorporation of Energy and Environmental Corporate 

Responsibility (EECR) in decision making, supporting particularly the development of a new model for 

investment evaluation. This model can assist financial institutions (with green loans applications) and 

governmental bodies funding energy - environmental friendly investments. The EECR performance of a firm 

is considered as an evaluation criterion of the submitted project. Therefore, in the current study the drivers of 

optimization are two objective functions: (1) The Net Present Value (NPV) representing the economic 

dimension that characterizes each project, and (2) the EECR index for the corporate social responsibility that 

characterizes each firm that submits the project. In this way, businesses with increased EECR are rewarded 

without ignoring the economic performance of relevant projects.  

The resulting multi-objective model (specifically bi-objective) does not provide an optimal portfolio but a set 

of Pareto optimal portfolios among which the most preferred one is selected by the decision maker. In 

general, multi-objective optimization increases degrees of freedom within decision making process 

providing not an optimal solution (as in single objective optimization) but a set of candidate solutions among 

which the decision maker chooses. Therefore, the set of Pareto optimal solutions (Pareto set) is essential 

information in an integrated decision making approach. Worth to remember that Multi-Objective Integer 

Programming (MOIP) models help to produce the exact Pareto set (i.e., all the Pareto optimal solutions). 

Moreover, especially in the last years, the multi-objective character of project portfolio selection is addressed 

with multi-objective metaheuristic methods that produce an approximation of the Pareto set (see e.g. Yu et 

al. 2012; Tavana et al. 2013; Hassanzadeh et al. 2014a).  

The current case study goes one step further, considering also the uncertainty characterizing basic 

parameters of the model, which are the coefficients of objective functions, namely NPV of each project and 
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EECR score of each firm. Given that these values are actually estimations, a systematic approach to deal 

with the inherent uncertainty is adopted. The latter is considered to be of stochastic nature, where a 

probability distribution is used instead of a crisp number for the values of objective functionsô coefficients. It 

must be noted that a similar approach for project selection problems with multiple criteria that deals with 

stochastic uncertainty in projectsô evaluation is Stochastic Multiobjective Acceptability Analysis (SMAA) 

introduced by Lahdelma et al. (1998). However, SMAA cannot handle the case of multiple constraints that 

are imposed to the constraints but is applied only with independent alternatives in an MCDM context.  

Further in the subchapter an innovative approach that deals with parametersô uncertainty in a MOIP model 

and eventually converges to the final Pareto set is introduced. It uses the main idea of the Iterative 

Trichotomic Approach (ITA) (Mavrotas and Pechak 2013 a, b). The version of ITA described futher deals 

with multi-objective problems of project portfolio selection and provides information about the degree of 

certainty for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area from 

project level to portfolio level. This kind of information is essential for the expert to be more confident to 

select project portfolios that have high degree of certainty regarding their Pareto optimality. In this respect, 

the decision maker has a sufficient tool to measure the robustness of the final Pareto set as well as the 

robustness of specific portfolios that appear in the final Pareto set. Robustness in project portfolio selection 

has also been addressed in a different way in the works of (Liesio et al., 2008; Hassanzadeh et al., 2014a, b). 

5.4.1. Particularities of bi -objective programming 

The basic idea of the current subchapter is to extend the applicability of Iterative Trichotomic Approach 

(ITA) to the case of multi-objective optimization, which was originally designed for single objective 

problems of project portfolio selection. It gives information about the degree of certainty for the inclusion or 

rejection of a specific project in the final portfolio. ITA was initially applied for project portfolio selection 

under the framework of Mathematical Programming and more specifically Integer Programming (IP). It was 

used with a single objective function reflecting the optimization criterion. The uncertainty associated with 

objective function coefficients has a stochastic nature (probability distributions instead of crisp numbers).  

Project portfolio selection is by definition a multi-objective problem. Different points of view should be 

taken into account. One approach is to aggregate these points of view to a single metric through multicriteria 

analysis and subsequently optimize the resulting single objective problem where coefficients of objective 

function are multicriteria scores (Mavrotas et al. 2008). Alternatively, one can use a goal programming 

approach aggregating the objective functions based on their distance from individual goals (see e.g. Zanakis 

et al., 1995; Santhanam & Kyparisis, 1996).  
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In the above mentioned approaches, the decision maker has to assign weights to criteria or goals in order to 

aggregate them to a single objective function (scalarization). Another approach is to keep individual criteria 

as separate objective functions and proceed to a multi-objective optimization generating the Pareto set of the 

problem (or the Pareto front in criteria space). The Pareto set comprises Pareto optimal solutions (or Pareto 

portfolios in current case) which are examined before reaching the final choice. These methods are called ña 

posterioriò or ñgenerationò methods in the popular Hwang and Masud (1979) terminology for multi-

objective optimization methods (first generate Pareto front, examine it, and then select the most preferred 

Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate the Pareto 

set (either exactly or its approximation). 

5.4.2. Description of the bi-objective model 

The overall procedure that was adopted to address multi-objective project portfolio selection problem is 

graphically illustrated in Figure 5-5. 

 

Figure 5-5.  The adopted procedure for the portfolio building. 

The idea of incorporating energy and environmental issues in Corporate Social Responsibility is rather 

recent (Doukas and Psarras, 2010; Doukas et al., 2012; 2014). In the present application a multi-criteria 

project portfolio selection problem is addressed taking into account both economic and environmental 

criteria. Given the uncertainty in quantifying economic as well as environmental performance of projects, 

multi-objective ITA method is an appropriate choice to extract results about the robustness of obtained 

project portfolios.     

As it was mentioned before, the mathematical programming model that represents the optimization problem 

is a MOIP problem with several particular characteristics. In the specific case, firmsô applications are 

expressed with 0-1 decision variables, with Xi denoting the i-th firm or application. More specifically:  
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if Xi = 1, then the corresponding application is approved. 

otherwise, if Xi = 0, the corresponding application is rejected.  

Two objective functions are considered in the model, namely the NPV of a portfolio and the EECR index of 

a portfolio. They are both additive functions of individual projectsô relevant values. 

portfolio's :

portfolio's :

N

1 i i

i=1

N

2 i i

i=1

EECR max Z = eecr X

NPV max Z = npv X

    (5.20) 

The parameters npvi and eecri are NPV of a specific project application and EECR score of a certain applied 

company.  

The adopted procedure used for calculation of the EECR scoring was based upon the Ordered Weighted 

Average (OWA) operator, which had been introduced in 1988 by Yager. An aggregation operator is a 

function F: I
n
ŸJ where I and J are real intervals. I denotes the set of values to be aggregated and J denotes 

the corresponding result of aggregation. The set of aggregation operators is denoted as An(I, J). An OWA 

operator is an aggregation operator from An(I, J) with an associated vector of weights w  [0,1]
n
, such that: 

1

( )
n

i i

i

Fw x w b        (5.21) 

where: 
1

1
n

i

i

w   and bi denoting the performance of an alternative in the criteria x1,é,xn. 

The criteria to be selected have to be operational, exhaustive in terms of containing all points of view, 

monotonic and non-redundant since each criterion should be countered only once, as pointed out by 

Bouyssou (1990). With respect to this, the research focuses on the provision of a small but clearly 

understood set of evaluation criteria, which can form a sound basis for the comparison of examined firms in 

terms of their systematic energy and environmental policy integration as a part of CSR and SD. Concisely, 

all six criteria are presented in Table 5-13. The data from these firms were mainly collected from the Global 

Reporting Initiative Disclosure Database (GRI, 2013).   
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Table 5-13.  Criteria description for firmsô evaluation. 

Criteria Description 

C1: Management 

Commitment 

Degree to which Management of a firm prioritizes actions related to the energy 

and environmental corporate policy, sets specific targets and corresponding time 

schedule for their accomplishment 

C2: Monitoring 

Progress and Related 

Impact 

Degree to which a firm adopts procedures and protocols for monitoring the set of 

targets, specific progress made in each related activity and the corresponding 

impact in companies operation and activation in the market 

C3: Participation in 

Dissemination 

Activities 

Reflects firmsô participation in dissemination activities in broader community, 

including among others, educational and information activities regarding 

environmental practices, organization of workshops, conferences and other 

events, and sponsorships 

C4: Promotion of 

Renewable Energy 

Refers to the firmsô involvement for investment in projects and initiatives related 

to renewable energy sources -wind power, solar power (thermal, photovoltaic and 

concentrated), hydro-electric power, tidal power, geothermal energy and biomass 

C5: Promotion of 

Energy Efficiency 

Extent to which a firm incorporates initiatives to provide energy-efficient 

products and services, to reduce direct and indirect energy consumption and other 

energy conservation practices and technological improvements. 

C6: Waste and Water 

Management 

Effort of firms in reducing total water use or discharge and the adoption of waste 

management activities. 

 

The model includes constraints, imposed by each banking institutionôs specific credit policy. First of all, a 

budget constraint is used in order to secure that the cumulative cost of approved applications does not exceed 

the overall budget.  

1

cost  X avb
N

i i

i

        (5.22) 

where avb is the total available budget and costi the cost of i-th project application. In the specific 

application the available budget is 3 Mú while the total cost of all 40 projects is 9.4 Mú. 

Specific bounds are imposed to control the distribution of projects according to their category, across various 

sectors. In particular, the non-dominance of a certain project category in portfolio can be expressed as ñno 

sector or region is allowed to have more than half of the total approved applicationsò. This condition is 

expressed with the following constraints:  

1

0.5  
N

i i

i S i

X X   for S = Sector 1,2,3,4      (5.23) 

1

0.5  
N

i i

i R i

X X   for R = Region 1,2,3,4     (5.24) 
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In order to assure that all sectors and regions will be present in final portfolios the following condition is 

added: ñall sectors and areas will be funded with at least 10% of the total costò. This condition is expressed 

with the following constraints: 

1

cost 0.1  cost
N

i i i i

i S i

X X   for S = Sector 1,2,3,4     (5.25) 

1

cost 0.1  cost
N

i i i i

i R i

X X   for R = Region 1,2,3,4      (5.26) 

In the framework of ITA, the uncertainty characterizing the estimation of projectsô NPV as well as the 

calculation of firmôs EECR score is expressed with normal distributions for relevant projectsô values. 

Specifically, the mean value for the normal distributions the estimated value is presented in Table 5-14  and 

as standard deviation of the initial round is the 5% of the mean. This is done for the NPV as well as the 

EECR values. From round to round the standard deviation of corresponding normal distributions is reduced 

to 4%, 3%, 2%, 1% and 0% in the final round. The whole process (model building, random sampling, Pareto 

set generation) is implemented within GAMS platform (GAMS, 2010). 

 

Table 5-14.  Input data for the projects. 

 CSR NPV (ú) Cost (ú) Sector Region 

1 12.97 2,500 5,930 S1 R3 

2 14.66 49,800 50,830 S1 R3 

3 9.76 8,300 5,000 S1 R2 

4 6.23 63,600 33,860 S1 R3 

5 6.99 244,600 191,870 S2 R1 

6 14.64 36,700 37,500 S2 R1 

7 7.10 14,100 6,070 S2 R1 

8 11.92 22,500 23,030 S2 R4 

9 11.81 261,300 190,000 S2 R1 

10 21.59 455,000 422,670 S3 R2 

11 13.64 696,800 415,000 S3 R1 

12 13.59 53,900 39,330 S3 R1 

13 3.86 238,900 95,330 S1 R4 

14 9.62 3,400 5,630 S4 R1 

15 40.00 600 7,370 S4 R1 

16 2.95 74,600 37,670 S4 R2 

17 25.87 4,900 30,100 S1 R4 

18 5.25 12,500 5,700 S4 R2 

19 11.39 389,900 909,310 S4 R3 
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20 11.67 378,100 160,300 S4 R4 

21 15.39 53,100 26,190 S4 R2 

22 17.13 51,400 161,010 S4 R3 

23 5.76 460,100 353,420 S3 R1 

24 8.93 422,800 184,410 S1 R3 

25 16.12 146,900 87,910 S4 R2 

26 12.38 477,100 614,620 S1 R2 

27 7.19 431,600 277,040 S1 R3 

28 21.95 208,500 158,790 S3 R3 

29 4.70 324,400 1,410,180 S2 R1 

30 18.07 324,100 533,640 S3 R1 

31 7.75 603,200 529,130 S4 R2 

32 4.54 648,800 396,670 S2 R4 

33 19.18 179,600 123,640 S1 R3 

34 15.85 220,000 149,770 S1 R1 

35 22.01 204,300 93,050 S4 R2 

36 4.04 352,100 311,780 S4 R3 

37 19.39 223,000 772,970 S3 R2 

38 17.81 228,800 117,580 S2 R3 

39 12.86 428,500 190,870 S4 R4 

40 5.85 516,100 262,030 S2 R1 

 

The parametersô values of the model as well as the membership of projects in various sets (sectoral and 

geographical) are shown in Table 5-14. Still, more types of constraints may be considered in the 

mathematical programming framework such as the specific number (or range) of accepted applications 

(projects to be finally funded), or constraints for mutually exclusive projects etc.  

5.4.3. Results and discussion for multi -objective ITA 

The selection is based on the characteristics of 40 projects from 40 different firms, with a geographical, 

sectoral distribution as follows in Table 5-15: 

Table 5-15.  Characteristics for 40 projects. 

Geographical regions Sectors 

11 southern European enterprises 

10 northern European enterprises 

13 central European enterprises 

6 Greek enterprises 

11 energy enterprises 

9 industrial enterprises 

7 electrical equipment enterprises 

13 enterprises from other sectors 
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In each computation round 1000 Monte Carlo iterations were performed and the computation time varied 

between 7181 seconds and 9150 seconds from round to round in a core i-5 running at 2.5 GHz. For the 

specific application, the acceptance threshold for the green set was set at the level of 99% (if a portfolio was 

present in 99% of Pareto sets, i.e., in 990 out of 1000).  

The results of multi-objective ITA are shown in Table 5-16. There are in total 398 Pareto optimal portfolios 

that participate in 1000 Pareto sets of the initial round. Among them only 4 were present in all Pareto sets. At 

subsequent iterations the standard deviation of sampling distributions as shown in the first column of Table 

5-16 was reduced. Eventually, in the last round, the final Pareto set that comprises 31 Pareto optimal 

portfolios of projects emerged. These portfolios contain from 18 to 28 projects. 

Table 5-16.  Results of multi-objective ITA from round to round.    

  

Computation 

time (sec) Green Red Grey 

ů =5% Round 1 9178 4 0 394 

ů =4% Round 2 8247 4 109 285 

ů =3% Round 3 8592 5 215 178 

 ů =2% Round 4 7811 9 275 114 

ů =1% Round 5 8685 16 324 54 

ů =0% Round 6 7.3* 31 367 0 
* for just one iteration as there is no uncertainty quantified by standard deviation 

 

Af ter completion of modeling runs, a first brief look reveals which of these 31 portfolios can be considered 

more certain than others. The degree of certainty for each portfolio is directly related to the corresponding 

round that it enters the green set as shown in Figure 5-6. The darker the portfolioôs background the more 

certain one can be about its Pareto optimality. Figure 5-6 illustrates in a convenient way which portfolios are 

more robust given the uncertainty in the modelôs parameters. The decision maker can exploit this 

information in his final selection. 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31   

Figure 5-6.  Coloring code for 31 portfolios. 

A challenging task is to incorporate the robustness information in the Pareto front. As it is well known, the 

Pareto front of a problem with 2 or 3 objective functions is a relatively easy to draw graph of the Pareto set 

in predefined criteria space. The robustness of each portfolio can be expressed with a bubble chart, with the 

size of bubble being the portfolioôs robustness degree.  
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The upper chart in Figure 5-7 is a conventional Pareto front with 31 Pareto optimal solutions (different 

portfolios). The lower chart embodies also robustness information which is visualized with the size of the 

bubble. The greater the Robustness Degree of a Pareto Optimal Portfolio (i.e., the earlier it enters the green 

set), the greater the size of the bubble. This kind of information is essential for the decision maker to 

recognize regions of the Pareto front with higher or lower robustness.  

From this chart the decision maker can draw conclusions about criteria values of each solution (and therefore 

assess the tradeoff) as well as about the robustness of solutions. In the specific case, it seems that the robust 

Pareto optimal solutions are in the region of high EECR (horizontal axis). This also means that the values of 

EECR have less uncertainty, and this is true, taking into consideration the detailed and precise way of their 

calculations.  

As a rule, promising solutions are on the knee of the Pareto curve where the slope changes sharply meaning 

that with a little sacrifice in one objective function it is possible to achieve large improvement in the other. A 

promising solution (portfolio) in our case is the one pointed with an arrow. This means that a small 

compromise from the maximum EECR value leads to a great improvement in NPV. Besides, it is evident 

from the size of the respective bubble, which specific solutions are among the most robust. Conclusively, the 

robustness of Pareto optimal solutions which is visualized in Figure 5-8  can be regarded as an additional 

characteristic that helps the decision maker to evaluate the attractiveness of the obtained Pareto optimal 

portfolios.  
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Figure 5-7.  Visualizing the robustness with bubble charts. 

The overall robustness of the final Pareto set can be measured using the Robustness Index. The Robustness 

chart and the Robustness Index for the current case is depicted in Figure 5-8. Applying equation (2.18), 

Robustness Index as the area underneath the Robustness Curve which is RI=0.33.  
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Figure 5-8.  Robustness chart for the final Pareto set. 

Regarding all 40 projects, it is possible to measure their presence in the Pareto front by counting how many 

times each of them appears in 398 initial Pareto portfolios and how many in times in 31 final Pareto 

portfolios as shown in Figure 5-9.  
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Figure 5-9.  Frequency of projects in the initial and final Pareto portfolios. 

The initial Pareto portfolios correspond to maximum uncertainty. From Figure 5-9 it is possible to extract 

information about the robustness of individual projects. The closer the two frequency rates are (in the initial 
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and in the final Pareto portfolios) for one project, the more robust the conclusions are for the participation 

frequency of the specific project. From Figure 5-9 one can observe that there are projects included in more 

than 90% of Pareto portfolios (even when maximum uncertainty is considered, i.e., in the initial round) like 

projects 7, 11, 13, 20, 21, 24, 35, 38, 39, 40) and other projects that never appear in Pareto portfolios (19, 23, 

26, 29, 36, 37). 

Moreover, based on the results, it can be noted that companies requesting for larger loans, while having a 

low EECR index, tend to be rejected. On the other hand, companies asking for smaller loans and having a 

high NPV index, tend to be approved. 

 

Equation Section (Next) 
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6. Concluding remarks 

6.1. Conclusions about the method 

ITA for project portfolio selection is an effective method that deals with uncertainty in a volatile decision 

environment. The aim is to provide the DM with as much as possible information to support his/her final 

choice, while the input information or future performance can be obtained with great difficulties. The 

existence of multiple limitations denoting projectsô interactions and the underlying uncertainty expressed as 

probability distributions imply the use of a systematic approach. For this reason a hybrid method combining 

Multi -Criteria Analysis, Mathematical programming and Monte Carlo simulation was developed. Under 

these circumstances, the existence of a unique optimal portfolio is almost impossible, so that the trichotomic 

approach drives the DM to reach the portfolio with the greater acceptance. By doing this, the information 

burden decreases and the focus of an expert is moved towards ambiguous grey projects which are not that 

numerous. Due to its flexibility ITA can be easily adapted to various decision situations and DMs. 

The term ñtrichotomyò refers to the separation of a set into three parts. Within the ITA procedure, projects 

are assigned to one of three groups based on their performance and current level of uncertainty. The latter is 

incorporated in various forms, depending on its nature. Stochastic parameters may be present either in the 

objective function or in the constraints of the model. Actually, incomplete information, expressed via 

probability distributions, may be present in all modelôs parameters simultaneously. Fruitful information is 

extracted not only about the projects that are eventually selected, but also about how sure an expert can be 

with respect to the selected or discarded ones. In contrast to the expected performance values of projects 

(naµve approach), ITA moves smoothly and prevents the feeling of a black-box. Gradual filling of green and 

red sets provides crucial information to the DM about the reliability of projectsô inclusion or exclusion in the 

final portfolio according to the round that each project enters the respective set. Moreover, this level of 

certainty can be easily measured in a shape of index after the completion of Monte Carlo runs. 

As the curiosity grew bigger with every case study, it was possible to test and compare the performance of 

several modifications of ITA. The first case study tested the influence of uncertainty in the future output of 

project proposals. Due to the novelty of climate related activities it was totally impossible to draw detailed 

forecasts. For initial approximations the information about similar installations that had been put in operation 

relatively recently was used. The classic version of ITA with the modeling of uncertainty described by a 

normal distribution led to a balanced portfolio. Especially striking was the fact of expensive projects 
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exclusion which helped to build a selection with balanced distribution of projects between regions and 

technologies. The objective not to put all eggs in one basket was successfully met. 

A simplified version of ITA also produced good results for a relatively small problem. Most probably, two-

phase ITA should not be considered as a full scale tool since in its second part it uses the principle of 

majority according to the performance in the initial round. In a certain way, it helps to speed up the process 

of choice. It should be kept in mind that results may differ in the presence of uncertainties with particular 

distributions. 

Perhaps, the most useful version of ITA is for groups of experts with divergent points of view. Increased 

transparency and gradual portfolio building are the main advantages of this version of ITA. Experts are 

provided with initial preferences of others as well as with the stepwise convergence of these preferences 

aimed at the building of a final selection. 

It is extremely hard to avoid such highly subjective parameters as weights of importance, utilities etc. In this 

case, the sampling of Monte Carlo iterations was like a scenario building for every decision maker. 

According to the problem, several ways of search for a solution can be adopted. When a DM is aware that 

another expert may not insist that hard on his initial preferences in light of obtained information about 

projects in previous rounds, the others may follow the suit. Gradual building of the final portfolio also 

reveals the reasons behind rejection of certain proposals thus reducing the chances of being accused as 

manipulator for excluding some good projects. By the end of the process, the consensus index is calculated 

expressing how easy or hard it was to reach consensus among experts. 

Since ITA is an interactive decision support tool, the DM(s) can control and adjust the process accordingly 

to newly obtained information. In the case that 2 or 3 similarly performing projects compete for the place in 

final selection, additional information can be asked directly from the projectsô developers in order to perform 

deeper pair wise comparison. In case that all of them look attractive, basic constraints, such as budget, may 

be reconsidered too. It is not obligatory to increase the budget; it can be reduced too. All these details help to 

build the confidence about decisions under consideration without additional lengthy robustness checks. 

While it is common to use a single objective model and put in constraints other desired outcomes, it was 

interesting to test the behavior of the ITA approach on a bi-objective problem. In this case, the feedback of 

calculations is a Pareto front consisting of various portfolios. For easier elaboration of this front, the 

robustness of each portfolio can be expressed with a bubble chart, whith the size of the bubble being the 

portfolioôs robustness degree. As a rule, promising solutions are on the knee of the Pareto curve where the 

slope changes sharply meaning that with a little sacrifice in one objective function it is possible to achieve 

large improvement in the other. Moreover, robustness check for projects can be easily performed too. 
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The whole selection process may be accelerated with the adoption of a threshold for every iteration. The 

higher the threshold, the quicker the process of projectsô separation between three sets. 

Lastly, more complex probability distributions (triangular, uniform, normal, special cases) for uncertain 

parameters can be tested. The subject was barely touched by Group ITA, where each DM may have his own 

view about the shape of partial value functions or about the allocation of projects to regions and 

technologies. In addition, it is worth to test an interactive process of weights recalculation instead of their 

automatic recalculation. 

 

6.2. Conclusions about case studies 

The need to make a choice between countless suggestions is an everyday task. That is why for testing the 

ITA method it was decided to use real world applications. The data for case studies were taken from open 

sources, which actually helped to shape the process of modeling. Observations led to consideration of 

numerous criteria and plentiful constraints (budget, policy, allocation etc) that had to be satisfied. The 

combination of MCDA with optimization tools, such as Integer Programming, provided the chance to solve 

complex problems in limited time. 

Nowadays, telecommunication technologies are an integral part of everyday life. Their appropriate work 

becomes crucial in case of extreme events, some of which can be caused by climate change. 

Telecommunications networks have been subject to continuing technical innovations and to constantly 

evolving multifaceted modes of communication. Due to recent advancements in technologies and changes in 

markets it became necessary to reconsider long-term business goals for the providers of these services. The 

achievement of new and revised strategic objectives called for changes in their product portfolio, whereby 

companies were facing with the problem of choosing which products would effectively contribute to the 

achievement of their long-term goals. Hence, many scientists approached these problems with MCDA tools. 

The resulting portfolio indicated exactly this direction ï the projects from Developing group are the clear 

winners. We tested ITA method against a case study from the literature and obtained results similar to the 

initial paper. Actually, close performing proposals were identified and sometimes they were interchanging in 

the final portfolio when more performance uncertainty was added. In a certain way, portfolio confirms the 

conclusions of common sense that in a competitive environment it is necessary to continuously self-improve. 

Energy and environmentally oriented activities attracted our attention as the issues to be addressed today in a 

large scale. Environmental crisis requires new ways to respond and adapt to the challenges of today. 
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Since fossil fuels are limited and harmful for the planet, more effort should be put in the deployment of 

renewable energy installations around the world. One of these support efforts is the Clean Development 

Mechanism (CDM), which permits to offset carbon emissions in the shape of environmentally friendly 

activities, with energy related projects being the most widespread ones. Unfortunately, financial resources 

are always limited, that is why there is a sharp need to choose effectively project proposals for CDM. In the 

current case study the aim was to maximize carbon credits, even though their final amount was not a certain 

fixed number. By the end of the selection process a final portfolio representing 17.4% of the investments in 

comparison with initial 11.5 billion US$ of 300 projects was built. Its main advantage lies in the fact that 

with modest financial support it represented 35.8% of the project universeôs total CERs (=28805 kCERs). 

The final portfolio demonstrated how it is possible to make a balanced selection regarding financial as well 

as technological and geographical constraints. 

Another case study focused on similar projects within only one country, namely Greece. It was necessary to 

make a portfolio with several different experts involved. Every decision maker expressed his/her preferences 

by assigning his/her own weights of importance to the evaluation criteria. Hence, every decision maker has 

his/her own optimal portfolio of projects.The final selection slightly violated imposed constraints with 

respect to the installed capacity and total budget. The portfolio was dominated by solar technologies 

(photovoltaic) with Central Greece being the winning region. Results are totally reasonable for a place with 

more than 250 days of sunshine. A great advantage of Group ITA is that it also provided a measure of 

consensus for the final portfolio of projects (Consensus Index) as well as concordance indices for each 

project that was either selected or rejected. It seems that experts were speaking the same language, because 

CI was 91%. Generally, the Index is rarely that high, especially in the presence of high uncertainty in the 

financial criteria. 

The last case study highlighted the problem of shared responsibility. Not only is the government responsible 

for the environmental initiatives, but also private sector. The years of economic crisis put seriously under 

question traditional development patterns. It became clear that in the fight for survival in the market, 

enterprises have to integrate social and environmental concerns in their business operations and in their 

interaction with stakeholders on a voluntary basis, within the framework of the Corporate Social 

Responsibility (CSR) concept. In the case study equal emphasis was put both on economic and sustainability 

components. Based on the results of the model, it can be noted that companies requesting for larger loans, 

while having a low EECR index, tend to be rejected. On the other hand, companies asking for smaller loans 

and having a high NPV index, tend to be approved. 

It is noteworthy that in todayôs organizations there is rarely a unique person that makes important decisions 

alone. Multiple experts from various positions, with different backgrounds and usually with conflicting 
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views participate in the decision process and are expected to reach consensus over the final portfolio. Wide 

demand for decision support systems that deals with similar problems is nowadays undoubted. That is why 

we have tested the performance of ITA in different selection problems, that are based on real data and 

obtained balanced and reassuring results. 

 

6.3. Directions for future research 

The presented ITA method may be further improved along several directions. 

Since the method is aimed at helping decision makers, it is feasible to develop a user friendly decision 

support system (DSS) platform. For the time being ITA is implemented as separated modules (one for multi-

criteria analysis and another for Monte Carlo simulation along with mathematical programming). Our 

calculations were performed in GAMS and the model could be stored in GAMS library, which leaves the 

possibility to modify available models according to oneôs needs and introduce their own data. Still, for most 

of experts it would be more convenient to have a special platform with a more user-friendly interface that 

does not require explicit knowledge in programming. 

Other fields still remain for exploitation. Special focus may be paid to projects whose description contains 

more qualitative than quantitative data. Because in such cases subjective judgments are involved, 

interpretation of results may be more challenging in comparison with results obtained by technical means of 

measurement. Such fields may touch the domains of education or healthcare where along with numerous 

performance criteria human factor plays one of leading roles. 

Another direction of work is aimed at handling massive input data with thousands of projects. Immence data 

may be so large and complex that traditional methods of collection and analysis are no longer in position to 

handle them effectively. The amount and variety of big data has increased exponentially over the past 

decade. Tools to handle this issue would be especially useful for public agencies that assist applicants in 

need. Such examples could involve house retrofitting programs, improvement of energy efficiency in 

households or replacement of infrastructure in municipal districts. 

In general, future research for ITA can be very fruitful as it can combine various OR techniques to address 

specific decision making problems that deal with the project portfolio selection problem (or can be modeled 

as such) as, for example, problems that involve group decision making with uncertain or vague data. The 

great advantage of ITA is that it measures the degree of consensus or certainty of the final choice, which is 

always meaningful in this kind of decision making situations. 
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8. Annexes 

8.1. Modeling language ï GAMS, GAMS/CPLEX solver 

The General Algebraic Modeling System (GAMS, see e.g. Brooke et al., 1988) is designed for high-level 

modeling and solving linear, nonlinear, and mixed-integer optimization problems. The system is tailored for 

complex, large-scale modeling applications and allows the user to build large maintainable models that can 

be adapted to new situations. The system is available for use on various computer platforms. GAMS contains 

an integrated development environment (IDE) and is connected to a group of third-party optimization solvers 

among which are BARON, COIN-OR solvers, CONOPT, CPLEX, DICOPT, Gurobi, MOSEK, SNOPT, 

SULUM, and XPRESS. GAMS allows users to implement a sort of hybrid algorithm combining different 

solvers. Models are described in concise, human-readable algebraic statements. The GAMS software was 

originally developed by a group of economists from the World Bank in order to facilitate the resolution of 

large and complex non linear models on personal computer. Within the main advantages of GAMS are: 

- Simplicity of implementation,  

- Portability and transferability between users and systems and  

- Easiness of technical update because of the constant inclusion of new algorithms.  

As a matter of fact, GAMS allows solving simultaneous non linear equation system, with or without 

optimization of some objective function (Dumont and Robichaud 2000).  

Typically, a model programmed in GAMS can be decomposed in three modules corresponding respectively 

to data entry, model specification and solve procedure (as it is schematically shown in Figure 8-1). It is 

important to note that assignment, declaration and definition, must be completed for every element in use in 

the model (i.e. sets, parameters, variables and equations). On the whole, it is necessary to proceed to the 

declaration of any element before using it. Specifically, sets must be declared at the very beginning of the 

program.  

It is particularly convenient that GAMS allows for statement on several lines or several statements on the 

same line. This property can help to reduce the length of the code or facilitate printing. In addition, capital 

and small letters are not distinguished in GAMS.  

The definition of sets is useful for multidimensional variables. It corresponds to the indexes in mathematical 

representations of models. Next, the parameters should be defined. Parameters are the elements in the 



106 

 

equations that will not change after a simulation, such as elasticity, tax rates, distribution and scale 

coefficients. In addition to these parameters, benchmark variables are also defined for their value at the base 

year will not change after simulation. A common way to define these variables is to add an "O" after the 

variable name so it will not be confused with the Ătrue ͍ variable. Parameters and benchmark variables 

definition begins with the statement PARAMETER and end with a semicolon. Once again, it is useful to put 

a description after the parameter designation, as it is done in the example. When a parameter is subject to an 

index, like Aj, the set over which it is defined is put between parentheses, A(j). 

 

 

Figure 8-1.  Organization chart of a typical GAMS code for a model. 

Once the sets, parameters and benchmark variables are defined, data must be entered. This can be done using 

the TABLE command, which is useful for multidimensional variables.  

All variables, endogenous or exogenous, appearing in the equations must first be declared. The statement 

VARIABLES begins this procedure and ends with a semicolon. Following the variable name, for example 

W, a brief description can be added. 








