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Extended Summary

Making a choice is an everyday activitywhich in various professional domairgten involveshe search for
additional information.However, abundance in input data requires special tools in order to perform a
balancedselection Overthelast decadesiumerous methods and deoisisupport tools were developdlit
unfortunately,possiblydue to thedck of knowledge, decision makers may see these toolaels Hoxes.
Ironically, systemgdeveloped to assist in decision making often seeimettoo complex and uncledn
addition within the selection process it is often necessary to make a subjetibiee among objectively

determined solutions.

This thesis addresses tlse-called project portfolio selection problenwhich aims atselecting a certain
number from a wide set of proposed projects. Usually the projects are not indepérdehere are
particular limitations that should be respected (segmentation constraints, mutually exclusive, precedence
etc) so that Multiple Criteria Désion Aid (MCDA) methodsneed tobe combined with combinatorial
optimization techniques. A popular way to deathwihis problem is to use a tvabep approach: (1) A
multicriteria method to evaluate the proje@sd (2) a mathematical programming model that incotpsra
constraintsn whichthe objective functioroefficiens are the multicriteria scores.

This thesiglevelops a method that helps to perform a selection in aviéepand transparent way. The core

idea lies inthe separation of project proposals into three separate sets. The approach is not totally new, but
the rules of this separati@me novelThe lasic idea of thg@roposedterative Trichotomic Approach (ITA) is

the classification of projects into three sets: the green projects (selected under all circumstances), the red
projects (definitely excluded frorie final portfolio) and the grey projects weh are chosen in some (but

not all) cases. The main focus is on building a balanced project pofitfaiioa wider set of proposals (a
subset of projects i s ¢ onoptimkiagoaedor mose crderiafapdosatisffing | i o
specificconstraints. In past, the usual solution was to rank projects using one or more criteria and choose the
top ranking ones that cumulatively satisfy a budget limitation. However, in real world there are many
circumstances that complicate the proagfsgecison making. In other words, top ranking projects may only

by chance satisfy imposed constraitdslike in financial problems (e.gportfolio optimization problems),

these projects are integerriables which are not divisiblend henceMultiple Criteria Decision Analysis

and mathematical programmingeahe mosappropriateools.

In this work we aretakinga step furtherandwe addresghe inherent uncertainty which can vary in nature
the most prominentype being the future project performance. \ehihe financial world offers a great

amount of datahat helpto build more @ less robust forecasts, it is almost impossible to obtain historical
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datafor emerging technologies or pioneering solutions. The uncertainty may be present either in the project
characteristics (e.gcosts, performances) or in the decision environment, (giggria weights, total budget).
In the proposed modethe uncertainties in various parameters or input data are modeled via stochastic

approaches taocktl with Monte Carlsimulation.

The method works iteratively, in decision roundasehch decision round wesethe obtained information or

follow a predetermined rule in order to reduce the uncertainty. Gradually from round totreoeen and

red sets increase while theey set with the ambiguous projects is reduced. Eventually, the process ends with
only green and red projectt. comparisorto the conventional project selection approaches, with ITA we

al so obtain the fAdegr ee of da excludedifront thedinaf portfolioaThe r o | €
earlier (i.e, in the early decision rounds) a project is accepted or discarded from the process the more sure
one can be about its incorporation or exclusion irfitiad portfolio, respectively

Furthermorethe proposd method is also adequate whmultiple decision makers are involved. Whibie
selection process takes place within a grdhp preferences of various experts ai@ the same and there

must be a negotiation approach taking into account all poiintiew. The whole process can either have a
predetermined number of decision rounds@ntinueuntil a convergence to the final portfolio is attained.
GroupITA provides a possibility to draw conclusions about the consensus over each individual ggoject
well as on the final portfolio. Initially, a mathematical model is developed, where preferences of decision
makers are expressed with appropriate weights of importance for the catatia Delphiike process is
designed fothe convergence of thegareferences. Weights are updafemm round to roundand in each
round,the mathematical model is updated according to the new weights and solved. As the iterative process
moves from round to round, the green and red aet®nrichedvhereaghe grey seshrinks. The iterative
process terminates when the grey set becomes emipéyinal outcome is the consensus portfolio of
projects, as well as the degree of consensus on each project and the consensus index for the whole portfolio
according tadhe convegence path. Theonsensuindexexpresses the easiness to arrive at a final conclusion
within a group. The more green projethsit are identified from early rounds the greater is the degree of
concordance among experts. This means that their prefer@xpesssed as weights) result in more or less

the same outcome, or, in other words, the consensus is easily attained. On the contrary, if the majority of
green projects is identifieid thelast roundsthisindicates the need to elaborate in the converggmocess

in order to agree at selected projects. In other words, the consensus is hardly aaaned.om the
consensusgndex, it is possible to extract the degree of consensus for each project according to the round that

it enters or exits the finglortfolio.

The membership of the projects in the final portfolio is also expanded to the membership of portfolios in the

final Pareto set where more than one objective functions are considered. While the original ITA method was

viii



designed to implement a gile objective mathematical programming problem, the latter version of ITA
method is extended to mutibjective programming problems. The degree of certainty of the Pareto optimal

portfolios that belong to the final Pareto set can also be measured.

ITA was applied to several real world problems that are presentedsitnésis.The first topic that attracted

our attention washe selection of projectin the telecommunications sectdWide and fast spread of new
technological developments requires effeetiools to select options for expansion and meeting growing
demand. The need for balanced introduction of new service offerings is a problem which involved different
and conflicting aspects. The main feature tbé proposed decision aid computational tdsl the
incorporation of several uncertaintiegle selection procesandthe gradual building of project portfolio.

Other applicationgnvolve renewable energy projects bdthnational and worldide levels. A case study

with real data fronthe CleanDevelopnent Mechanisnppr oj ect s 6 dat,anbhaer ® buillsa el ab
bal anced portfolio of Agreendo activities. The sy
selection problemwhere the output of each project as well as other paresnei@y be uncertain. Fdinis

case studywe consider the implied uncertainty in the parameters as being of stochastic thatuse
characterized by a probability distribution. SubsequeatiMonte Carlo simulation samples the values from

these distribtions and the mathematical programming models with the sampled values are solved. The
process output is not only the final portfolio, but alseinformation about the certainty of paipation or

exclusion of achproject in the final portfolio.

Anothe example deals with Greek renewable energy projects that seesrsfrpm financial institutions

where it is crucial fothedonor organizatiomn o0 ma ke a bal anced selection ar
i n one Ibthisdase 138 Greek projet proposals covering threenewable energyechnologies

(wind, small hydro, photovoltaic) were evaluated against 5 criteria. Since several experts with different
preferences took pait the selection process, Group ITi& designed to gradually add profe to the

portfolio according to the concordance within the tearmbers until a final portfoliégs reached.

The last example is an attempt to bridge the gap between busingspulilic interests. Nowadays,
increasing emphéasis put on the environmentaffriendly activitiesthatare considered to mong thekey

solutions in combating current financial and economic criss. this reason, weest the possibility to
incorporate Energy and Environmental Corporate Responsibility (EECR) in decision nmekopgrting
particularly the development of a new model for investment evaluation-ohjéctive programming model

is introduced in order to provide Pareto optimal portfolios (Pareto set) based on the Net Present Value (NPV)
of projects and the EECR scooé firms. Moreover, a systematic decision making approach using Monte
Carl o simulation is developed in order to deal v

coefficients, namely the NPV of each project and the EECR score of each faddition, the robustness of
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the Pareto set as a whole, as well as the robustness of the individual Pareto optimal portfolios can also be
assessed. The proposed approach facilitates investment organizations and institutions to the selection of

firms applying for financial support and credit grantingthin the frame of their EECR.

Within all case studies it wasmore than evidenhow the ITA offered very fruitful information to the
decision maker as it quantified the degree of certainty with which eacbcpmps treated in the final
portfolio, a task that cannot be accomplished with the conventional methods usiageaand expected

values inmodelirg theuncertainty.
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1. Introduction

1.1. Aims and scope

The problems of choice surround us every day and everywhere. They may be complicated requiring more
time and elaboration inrder to pick up the best solution in comparison with simple ones. Moreover, with
the growth of information necessary for the choice problem, the need for sophisticated assistance tools

increases.

One of common examples is the need of a university to mallmded selection from applicants. Students,
considering limited time, have to choose subjects and extra activities, such as additional research programs
or outdoor activities. Further, both public and private sectors are engaged in research and dedvelopmen
programs that were chosen from a plethora of proposals. The list of examples may continue for eternity as

making choices among alternative courses of action is a recurring activity.

Initially, every choice problem seems to be different and unique. Haowafter a thorough analysis and
structuring of the problem numerous similarities appear. First of all, these problems iomelgg more

decision makexr (DM), who needs to work with a given set of alternatividsgere may be morthan one
objectiveset toachieve depending on preferences of one person or of a group of invetpedts Thorough
assessment of available and necessary resources should be perforrbedoionately, it is impossible to

be totally sure abouhe outcomes ofa decision.Uncetainties in inputdata or preference information are

almost always present and need tothken into accountThe environment, in which the decision is
elaborated, is an open system and there is always a chance that something forgotten or discarded may

significantly influenceor evenalternate final resultéSalo et al. 2011)

Different multi-cirteria decision analysis (MCDA) methods aim at supporting complex planning and
decision process by providing a framework for collecting, storing and elaboratibbmedéeant information.

The core of any MCDA method is the decision model, which is a formal specification of how different kinds
of information are combined together to reach a solution. These methods are helpful for the development of
planning processe$o avoid numerous distortions, and to manage all the information, criteria, uncertainties,
and importance of the criteria. With their assistance it is possible to alleviate the problems causeedoy limi
human computational powdntuitive and adaptivehoices are replaced by a justified and jointly accepted
model (Lahdelma et al. 2000). Numerous auth@asi¢oechea et al. 1982, Hobbs 1984, Hobbs et al. 1992,
Simpson 1996, Lahdelma et al. 20@@jnt attention on the difficulty of picking a certain MCRdol due to

the factthat distinctive methods may provide different results with the same data, and there is usually no
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means to objectively identify the best alternative or method. Therefore, the chtiearadthod should be

well justified in real apptiations, #hough this is rarely donéVhen the problems are solved in close
cooperation with expertsome requirements are applied for the MCDA method. First of all, the method
should be well defined and easy to understand, particularly regardingtital ed@ments, such as modeling

of criteria and definition of weights. Next, the technique must be able to support the necessary number of
DMs as well as to manage the necessary number of alternatives and criteria. Since the available time and
financial syport are usually limited, the need of preference information from the experts should be as small
as possible. In addition, the ability to handle the inaccurate or uncertain criteria information should not be
overlooked too. As a rule, these requiremenigec the typical factors through which the practical relevance

of decision support methods is usually evalualdis is especially true, for example, in planning decisions

in thedomains of energy productiand climate change abatement.

Most of problemsan be attributed to several categories or typologies. Roy (1996) identifies four different
problemaitques for which MCDA may be useful:

e The choice problematiquefor making asimple choice from a set of alternatives;
e The sorting problematiquefor allocatian of optionsinto classes pcategories;

e The ranking problematique for placing actions in some form of preference ordering which might

not be necessarily complete;

e The description problematique summarizesactionsand their consequences in a formalized and
systematic manner so that decision makers can evaluate these actions. In core this is a way to gain

better understanding of what may and may not be achievable.
To these four main groups Belton and Stey2002)add two morgroblematiques, namely:

e The desgn problematique to search for, identify or create new decision alternatives to meet the

goals and aspirations throutite MCDA process;

e The portfolio problematique to choose a diset of alternatives from a larger initial set, taking into
account not onlyhe characteristics of the individual alternatives, but also of the manner in which

they interact and of positive or negative synergies.

In practice, the path of project selection combines several problemafidpever, in most situatiorisis
at leas as much of a problem to identify suitable alternatives and to establish appropriate criteriataas it is
make a selection from the available alternati@mnsideration of numerous criteria and objectives leads to

multi-objective design problems.



While problem structuring and analysis take a number of different forms, lack of knowledge leads to various
uncertainties. The lack of knowledge influentesmodeling processheuse of models for exploring trends

and options, andhe interpretation of restd. For the purposes of multicriteria decision, &elton and

Stewart (2002) differentiate between internal uncertainty, relating to the process of problem structuring and
analysis, and external uncertainty, regarding the nature of the environmentrahg the consequences of

a particular course of action. Uncertainty about the environment represents concern about issues outside the

control of the decision maker.
Several approaches to integrate external uncertainty have been developed. Some ofutbednaost

e Scenario planning which usually requires decision makers to identify a number of scenarios

relevant to the decision context (for instance: pessimistic, neutral, optimistic);
e Decision Theoryto use probability to describe the likelihood of unaerevents;

¢ Risk as criterion in a multiple criteria analysis which implies that certain level of risk is acceptable

in return for increased benefits of reducedtsdn terms of other criteria.

Unfortunately, for such complex problemnaditional sensitiity analysis that is usually performed on certain
criteria within defined ranges is not enougdks it is well observed in Antunes and Climaco (1992),
sensitivity analysis (also called pagitimal analysis) in single objective linear programming deals with
computing ranges on the variation of some initial data such that the optimal basis remains optimal for the
perturbed problem. The concept of optimal solution (in general unique) gives placaltiFOljective
Programmingto the concept of efficient solot (in general many, even if only extreme points are
considered). Moreover, changes in the underlying DM's preference structure as a result of the information
gathered throughowninteractive process must be taken into accdemt.a complex problem whichas its
optimum at an extreme point of the feasible region, the simultaneous consideration of constraints, which
may be nonlinear, makes the problem more intrichis. makes even more difficult to define sensitivity

analysis in a MCDM context, and indct this issue is not uniformly addressed in the literature.

On the other hand, scenario building also rarely reflects fine details and uncertainty in future pedaima
project proposals. As a rule, scenarios are developed for optimistic, beminessl and pessimistic
conditions which reveal certain trendand then experts need to make a choice based in the inner feeling.
Another approach is to model risk seeking, nepéad risk avert behavior for the parameters that depend
human factor. Yars of practice confirmed that almost always risk avert behavior is adopted by decision
makers. Hence, all these approachkmeare imcompleteand need more search and modeling to deliver

robust results.



That is why a combination of approaches and tditted for certain problem, are better than a single one.
The whole process needs more time and knowledge becomes more cumberstmehained results can
lead towards balanced decisioAstypical list of tools starts witthe identification of altenatives.In some
occasiongalternatives to be evaluateshy appear to be clearly defined. In other occastbesdefinition or
discovery of alternatives may be an integral part of a study. In certain circumstamagsseem impossible

to handle the werwhelming complexity obptions.

The following step is to evaluate available options whether they are few or a large number. Most
multicriteria evaluation methods are designed for the evaluation of independently defined alternatives.
Sometimes screenirtgchniques are applied for large number of proposals when certain targets are already
defined and should be meREA (Data Envelopment Analysighight be used as a way to identify
alternatives from a long list of promising options. addition, it has beesuggested that an outranking
method, like ELECTRE, could be used to draw up a short list of suggestion for a more thorough evaluation.
These screening approaches shouladdrefully used because a degree of {wompliance on one criterion

may be compensad for by exceptioal performance elsewhere.

Simultaneously, a set of criteria should be decided upom. wide sese, criteria areseen asa certain
standard by which one partian choice or course of action could be judgedoe more desirablthan
anaher. For every separate problem a set of criteria is unique and needs to be well balanced in order to

reflectproject behavior in the future.

Taking allthe aforenentioned into account, in this wonke incorporate already devekabtools and address

known weaknessewith a new approach that helps to build a balanced project portftmject portfolio

selection problem is defined as the problem of selecting a subset of projects usually based on one or more
criteria that have to fulfill specific constramtin the presence of the imposed constraints (e.g. policy,
segmentatiorconstrainty a simple MCDA method does not sufficEhe @mbinatorial character of the

problem implies the use of optimization methods aiming at the portfolio of projects that satisfyaints

and achieves the fibesto performance. A combinatio
Abest o performance is expressed ewhpelohes diteria relggedon e c
with the promotion of susiaable practicesenvironmental issuedpstering green growth, were not taken

into consideration in traditional models (Hobbs and Meier 2000).

The aim of the specific dissertation is to propose a method that effectively deals with decisions regarding the
selection of a subset of projects from a wider set. This selection is driven not only by the performance of the
projects (objectively of subjectively estimated) but also from various constraints and conditions among them
that should be fullfiled. In adddin, uncertainty is present either in a stochastic manner or in the subjective

views of different decision makeasd is treated carefully in the modeling process
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1.2. Thesis outline

This thesis focuses on building balanced project portfolio with great cdageration of performance
uncertainty which cannot be adequately captured via traditional tooferetasts andensitivity analysis.

The proposed methodology helps to capture incomplete information both in objective function(s) as well as
in model paramer values. Further, the influence and implications on project and portfolio decisions are
studied closer. That is why gradual portfolio building reveals inner dynamics and provides the possibility to

review and update initial assumptions and constraints.
The dissertation is structured follows

Chapter 2describes Hitorical background and sumnmes current ways to addregsoject portfolio
selection problems.

Chapter3 presents methodolas used alongvith crucial initial assumptions and conceptseTdescription
moves from basic foundations towards more complicatexs$ First, the types afools applied for modeling
are listed with short explanations of their uden, particularities of mathematical programming are

discussed. Finally, assumptioaisout handling incomplete informationtime current work are explained.

Chapter 4is devoted tahe main contribution of the dissertation, therative Trichotomic ApproacfiTA)

and its versionslnitially, a two-phase approacds developed to perforrarelatively quick project selection
which ha to meet certain constraintShe concepts furtherdeveloped to handle large number of projects
with more complicated constraints. For a certain case stuthsibeemecessary to adopt the approach for

the goup decision making in order to handleexpt s & di vergent points of vieuv

Within Chapter5 different applications are demonstratdthe first case study deals withe selection of
activities for expansion of services for a telecommunication comparg drastic developments in the area
required well thought future stepBhe need for balanced introduction of new service offerimgsproblem
which involves different and conflicting aspectsThe main feature ofthe proposed decision aid
computational tol is the incorporation of several uncertainties time selection process anthe gradual

building ofthe project portfolio.

Among next examplesherearea portfolio selection of climate related activities to be chosen for financial
support, a more comglted case of group portfolio building and an example of-@bjeictive problem
among othersMo st of these applications ar e f Olbewspeeift on r

focusis on the energy project portfolio selection problem whereotitput of each project as well as other
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parameters may be uncerta®n the other hand, for the donor organization it is crucial to make a balanced
selection and avoid t he Thaprotesscostpuid notrdylthe finalgdidte i n

but also information about the certainty of participation or exclusion of every project in the final portfolio.

In all case studies is very visible how ITA offes more fruitful information to the decision maker as it
guantifies the degree of ceritaty with which each projeds treated in the final portfolio, a task that cannot
be accomplished with the conventional methods using average and expectedinvaheesnodeling of

uncertainty.

In Chapter6, the contribution of this thesis is summarized some plans foluture work are suggested.
Also, the final chaptercompiles conclusions and observations from case studies and about the whole
framework of methodology.

The Appendix provides some general information about GAMS modeling language. lioadttie coding
of models fothecase studies isrovided

Overall, this thesis expands the material which has been published, submitted, or is under preparation, in

various journals and conferences.



2. The problem: Projed portfolio selection

Projectportfolio selection is defined as the problem of selecting a subset fromide set of prgposas.
Portfolio selection is a step ther aftersimplerankingof projects Usually the projects are not independent

i.e, there are particular limitations that should be respected (segmentation constraints, mutually exclusive,
precedence efcso that Multiple Criteria Decision Aid (MCDA) ethods do not suffice but they must be
combined with combinatoriaptimization techniquesA popular way to deal with this problem is to use a

two step approach: (1) A multicriteria method to evaluate the projects and (2) a mathematical programming
modelthat incorporates the constraints while the objective function coefficients are theriteulti scores.
Generally speaking, according to Vetschera and Almeida (30@@ctportfolio selection involves:

e Selection of subset from a wider set of projeciposals;
e Projects are indivisible and can be choasnvhole
e Constraints are applied, #uatnot all available proposals can be selected;

e Qutcomes are determined by some aggregation of properties of selected projects.

2.1. History and current status of portfolio selection

In project portfolio selection the intuitivapproachs to rank projects using one or more criteria and select

the top rankednes that cumulatively satisfy the budget limitaticas shown inFigure 2-1. Often this
straightforwardapproachs sufficient However, this may result in the budget cutting off midway through an
expensive projectAlso, in real world decision makinghere are two concepts that complicate the decision
situation: (a) the existence of corsiits and limitations imposed by the decision mai&rthe uncertainty

that accompanies the project evaluatior. the output uncertaintyMoreover, projects are rarely
independent (with most commdwgical constraints where alternatives A and B atgually exclusiveland
numerous interactions may take place. Among common examplegexeetions in cost (e.g., the cost of C

and D together is less than the cost of C by itself plus the cost of D by itself), interactions in the values (e.g.,
the valueof E and F together is different from the value of E by itself plus the value of F by itself), or
probabilistic covariance in outcomall these problems can be addressed by formulating a suitable binary
optimization program, which can be solved by usingee | 6 s Sol ver or ot her c¢omm

this approach should be used with caution. The math program can quickly become too tergeatty



understoodby or explaired to senior decision makers and stakeholders. The resulting optimum partfoli
can be fragile, in the sense that they can change drastically with smiglachange in data (for instance, a
little additional budget can result in an alternative being deleted from the portfolio, which is very hard to
expl ain t o trbhpartent)aFinallg if thegptoblemdsévery lgzdauqdreds of alternatives), it can
take a long time (hours or days) to solBeirk andParnel] 2011).

Ranking

MCDA -

an

Ranking 3

4th

Selection of the first h
n-projects "] Topn

Nth

Figure 2-1. Selection of n top ranking projects

The earliest contributions were published under the title of capital budgeting (see e.g. Lorie and Savage,
1955), using strictly financial measures to quantify the value of projects and portfolios, giving emphasis to
the budget constraint. From early sixtigee so called capital budgeting problem was recognized as
equivalent tathe popular in Operational Research (OR) knapsack paradigm. The incorporation of multiple
criteria can also be found ihe literature within Goal Programmin@ee e.gfor a review Zaakis et al.,

1995; for applications in Information Systems Badri et al., 2001; Santhanam et al., 1989; Santhanam and
Kyparisis, 1996; for university resource allocation Albright, 1975; Kwak and Lee, 1998; Fandel and Gal,
2001; for an industrial applicatioMukherjee and Bera, 1995), combinations of MCDA with IP (see e.g.
Golabi et al., 1981; Abu Taleb and Mareschal, 1995; Mavrotas et al., 2003; Mavrotas et al., 2006; Mavrotas
et al., 2008)and Data Envelopment Analysis (Cook and Green, 2000; Oral 4981, Oral et al., 2001)
among othersGhasemzadeh and Archer (2000) proposed the Project Analysis and Selection System (PASS)
based on MCDA and Integer Programming. Hunt et al. (2013) proposed OUTDO for energy projects.
Lourenco et al. (2012) proposed PB® (Portfolio Robustness Evaluation) introducing the concept of

robustness in project portfolio selection.

Project scoring methods do not necessarily ensure the quality of portfolio selection, because they do not

explicitly take into account portfolio lel/e&onsiderations, such as multiple resource constraints, portfolio
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balance requirements and other project interactiSBoghisticated project portfolio models, on the other
hand, seek to combine project portfolio optimization with explicit considerafionultiple value criteria

(Golabi et al., 1981; Golabi, 1987). These models build on the well establdbkidAttribute Value

Theory (MAVT; see, e.g., Keeney and Raiffa, 1976) to aggregate thearmitdtia projectvalues into a
portfolio overall value ad use integer linear programming to determine the optimal composition of the
project portfolio subject to resource and other constraints. Several high impact applications-ofitersti
portfolio models have been reported in the fields of militaryuesoallocation (Ewing et al., 2006), R&D
portfolio selection (Golabi et al., 1981), product release planning (Ruhe and Saliu, 2005) and healthcare
capital allocation (Kleinmuz, 2007), among others (Liesio 2008).

Based onthe aforementionedtudies, a mject portfolio decision support framework needs to strike a
balance between the following challenges:

Generality The decision support model should be flexible enough st fkapplicable in various problems
contexts. Most importantly it should allosonsideration of multiple criteria and resources. Moreover,
portfolio balance requirements and project interactions are common in applications. Finally, the model
should support benefitost analyses, as the budget, for instance, is not always a fixstlaganbut can be

adjusted to some extent.

Modest data requirementgven if a model could capture all aspects of project portfolio selection, the use of
such a model would require large amounts of data and/or subjective evaluations to estimate the model
parameters. Such data is often unavailable, whereas expert evaluations are costly to obtain and may contain
considerable uncertainties. Therefore, models that offer approximate or inconclusive results with modest
data requirements and explicitly take imtocount the incomplete or imprecise nature of the data, are more

useful than models that require accurate data before offering any results.

TransparencyFor a model to be accepted by practitioners, the key assumptions and concepts of the model
have to bainderstood by the DMs. Empirical research supports this claim as practitioners often use simple
scoring models to support project evaluation (Cooper et al., 1999).fAdsothe aspect of decision support,
models intelligible to nomxperts are more redgliapplicable, as difficulties in elicitation of preferences and

communication of results are likely to be avoidkigsio et al. 2007)

In his seminal work for portfolio optimization Markowitz (1952) prombsee Modern Portfolio Theory

(MPT) that incorpoated portfolio risk in the decision making process. There, wsk quantified by the co
variance matrix of the returns (outputs) as calculated by historical data. The MPT was designed for securities
where historical data is not a probléXidonas et al2012) In relation to projects the MPT cannot be easily

applied as the decision variables are binary and historical data are sWailee security prices can be



correlated, most investments into securities are not logically dependent on each other.pByédn
portfolio selection there can be many forms of interdependedaiedo logical relationships:or a more

realistic modéng, the uncertainty characterizing the output of projects should be taken into account. In the
literature this is done eithewith the use of scenarios (see e.g. Georgopoulou et al., 1998) or with fuzzy
parameters (see e.g. Damghani et al., 2011; Cavallaro, 2010) or with stochastic parameters (Liesio et al.,
2008; ShakhsNiaei et al., 2011). An appropriate tool for dealinghwstochastic uncertainty is Monte Carlo
simulation where sampling from certain probability distributions is performed for the inputs and the outputs
with all the relevanibtainedinformation. A great number of iterations is necessary in order to obtain
reliable results from the outputs (distribution of output value$. &nother feature to remember is the fact

that projects are treated as binary variables which are either selected or rejected. This differs from financial
portfolio optimization where esstially any fractional amount of resources can be invested into any security
(Vilkkumaa et al2014).

We note that finding exampl@$ project portfolio selectioproblemsis not an easy taskecause very often
theymay becalled in another way. Reseaiistspread between numerous specialized journals and books.
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3. Methodology

Complex problems need elaborated models. Certain $icapion is necessary, but oversimplification may
lead to wrong results. In order to capttiie complex nature of a problem itvgorth to apply different tools
and approache® short description of tools that were usedtlie current workis provided inthe sub
chapters below.

3.1. Initial elaboration of projects

All proposals for ativities may be called projectéemsor alternatives andre subject of evaluation terms

of multiple criteria h order tomake them comparable between each offiee critera provide numerical
measures for all relevabehavigs of different alternatives. The relevance of various impacts depends on
expertso pdalsonitisnemedsaryvd defiue precisely how each criterion is measured. Usually
criteria are aggregatelues computed from a much larger amount e€ated primary factors, which form

the lowest level of information, also known as the assessment level (Lahdelma et al\WA@@a)many
years numerous researchers addressed this Msimy either outraking or value and utility methods are
used for thatA well done description gireference elaboration methods basic principtedone by Stewart

and Belton (2002)Further elaboration may be made by straightforward pickingnefprojectrepresenting
each group omfter a prioritizatiorstage Ranking is usually performed on the basis of one most important
criterion such as cost/benefit ratio, required resource or something isee is noformal way of
constructing a list of possible alternativasd no concrete way of knowing when the setegpertsis
complete enough, other than relying erperience, intuition, and on the vague conceptlinfinishing

marginal return of satisfaction (Banviks al.1998).

One of classical examples is the knapspobblem which focuses on selecting projects utitd main
resource guch asdudget) is exhausted. Suah approach would produce the highest benefit for the money
spent, but would not necessarily deliver the maximum benefit for the available budgein@ioouviorton

and Bana e Costa 201Because of thisthe concept of constraints beconssital part ofthe selection
problem which in turndestroys one of the main assumptions in ranking methbd independence of the
projects(see e.g. Belton and Staw, 2002). In other words, the top ranked projects only by chance may
satisfy imposed constraints. A strong and useful tool to cope with such problems is Mathematical

Programming that optimizes under specific constraints. More specifically, in casgeuft g@ection, the
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combinatorial character of the problem implies the use of Integer Programming (IP)-Wihi@ary)

variables expressing incorporatiof=1) or exclusionX;=0) of respectiveproject infinal selection

In addition, numerouapproache were developed in order to capture a complicated nature of interactions
between projects. When the cumulative effect of implementation of several projects is greatde than
simple sum of their valueis then synergy effects take place. In some casese ttmay be opposite results
with the cumulative sum smaller thahe straightforward adtion. It may be caused byverlapsin projects

performance and outpl¢loreover, sme projects may be mutually exclusive.

Within thecurrent work we used different theds for initial evaluation of available options.

3.2. Toolsforpr o] asseassgnént

The field of MCDA has developed rapidly over the past decades and in the prowesbexr of divergent
schools of thoughttave emerged. For a balanced presentation of apgm@edice book oBeltonand Stewart
(2002 is a good starting point. Here we will mentiamyobriefly some major schools.

Among the oldest arealue measurementmodels in which numerical scores are constructed in order to
represent the degree to which a®eision option may be preferred to anotiserch scores are devetajfor

each individual criterion, and are then synthesized in ordgfdct aggregation into higher level preference
models. Among widely used approaches of this school ddaltiattribute Utility Theory (MAUT),
Multiattribute Value TheoryMAVT) and Analytic Hierarchy Process (AHP)hey differ primarily in terms

of the underlying assumptions about preference measuring, the methods used to elicit preference judgements

from experts involed, and the manner of transforming these into quantitative scores.

Other family is represented lgpal, aspiration or reference level modelsn which desirable or satisfactory

levels of achievements are established for each of the criteria. The ptomesseeks to discover options

which arein some sense closest to aclmgvthese desirable goals or aspiratidnsthese models much
dependont he framing of the probl em, reference points
Care thus neais to be taken in ensuring that decision makers understand and are satisfied with the implied

reference points used in the model.

Wide popularity gainedutranking models, in which alternative courses of actions are compared pairwise,
initially in terms ofeach criterion, in order to identify the extent to which a preference of one over the other
can be asserted. In aggregating such preference information across all relevant criterion, the model seeks to

establish the strength of evidence favouring seleaifamne alternative over another.

In what follows, wehave acloser look on some of most popular assessment methods.
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Value function methods synthesize projectsd perfo
inter-criteria information reftcting the relative importance different criteria, to give an overall evaluation

of each alternati ve i ngréeferemdes. Haveverfit istworth todesnemberithatn m:
learning and understanding which results from engagitigel whok analysis process is far more important

than numerical results. That is why evaluation should incorpaatensive sensitity analysis and

robustness analysis.

Within the value measurement approach, the $iep is to develop a hierarchy of critesaq¢ cal | ed HfAv
treeodo) . d¢omponentef preferande enodelingreac hi eved by constructing
value functionsy{ (a)) for each criterion. It should be remembered that the properties of the partial value
functions and the fornof aggregation used are critically interrelated. Usuallyadditive aggregation is
adopted, while multiplicative aggregation may be adopted in some MCDA approaches.

Utility theory can be viewed as an extension of value measurement, relating to thepuskadilities and
expectations to deal with uncertaintyere it is assumed that each criterion is directly associated with a
guantitative attributeneasured on a cardinal scale, which may also be influenced by unknown external
factors. The consequencekaach alternative are thus described in terms of a probability distribution on
certain attribute vectof-or a more detailed description of the method it is advised to read the work of
Keeney and Raiffa (1976).

As for the AHP, its main difference from MAVis in the use of pairwise comparisons between alternatives
with respect to criteria and criteria within families, as welllesuse of ratiscales for all judgement$he
method was initially developed by Saaty (1980yyas elaborated through yearsdebecame widely used in

practical applications.

In outranking methods, pecially acclaimed became theariations of ELECTRE and PROMETHEE
methods.The family of ELECTRE methodsvas developedthrough yeardy Roy B.and associateand
differs according tothe degree of complexity or richness of the information required or according to the
naure ofthe underlying problem.

Roy was critical of the utility and value function methods on the grounds that they require all options to be
comparable. In collaboraitn first with his associates at LAMSADE, University of Paris DaupHieestarted

to develop ELECTRE outranking method. Ondl@major features of this new approach wheprovision

of weaker, poorer models than value function, built with less effattfewer hypotheses, but not always
allowing conclusion to be drawn. The family of ELECTRE methods differ according to the degree of initial

information complexityandthe nature of the underlying problem
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The earliest and simplest outranking method was@®LRE | which is good for understanding of underlying
concepts.The methods are based on the evaluation of two indices, namelgotiverdanceand the
disconcordance indexeslefined for each pair of options under consideratiime concordance index,
C(a,b, measures the strength of support in the information given, for the hypothesissthateast as good

asbh. The disconcordance indeR(a,b), measures the strength of evidence against this hypothesis.

In general, the concordance index is the proporof criteria weights allocated toese criteria for whicka

is equal or preferred tb. The index takes values between 0 and 1 where higher values indicate stronger
preference ofa over b. The disconcordances expressed as a proportion of the maximweighted
difference between any two alternatives on any criterion. It ranges from 0 to 1 as the previous index and its
high value indicates thain at least one criterioh performs substdially better thara. Still, the form of this

index makes it approfate only for evaluations that were made on a cardinal scale and the weights render
scales comparable across criteriaeSBlassumptions are not easy to meet and may be quite restrictive.

The concordance and disconcordance irglfoe each pair of optios can be used to build an outranking
relation.Also, simultaneously respectiteresholdsshould be specified carefully. If the outranking relation

is too severe, then almost all pairs of alternatives will be deemed to be incomparable, while a light relati
will lead toa situation where too many options outrank too many otRertunately, an outranking relation

can be represented visually by a graph with arrows showing the direction of outranking relation.

Having built the outranking relation, the firgtep is the exploration of that relation in the decision process.
The procedure may have several shapes depending on the initial cause of the process. ditbanabe
determinati on of nophioas rdhking,sot adseparationi ironagrtclasses a groups of

alternatives. Also, sensitivity and robustness analysis may be perfrrsegdport final decisions.

ELECTRE Il was developed shortly after ELERE | and aims athe production ofal t er nat i ves d
rather than simple sezh ofthe most preferred ones. This is reached via different pairs of concordance and
disconcordance thresholds. These are referred to as thg sindnweak outranking relatignthe former

having a higher concordance threshold and a lower discordance ondeAsatall change was the
introduction of an additional constraint in the test for outranking in order to reduce the possibility of two

alternatives each outranking the other.

Later developmentgsuta greater emphasis on detailed preference himgdgincenot all alternatives perform
identicallyon a given criterionln ELECTRE Il the notions of indifference and preference thresholds were
introduced However, this requires more work in modeling preferences with respect to each individual

criterion before pogressing to the building and exploitation of the outranking relationrder to handle
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situations when it is impossible to specify criteria weights ELECTRE IV was developed. Outranking

relations, of different strength, are then defined by direct referto the performance levelsof alternatives.

ELECTRE TRI is for use in classification problems. The original procedure was designed to allocate
alternatives to one of three categories: acceptable, unacceptable and indéterbaber this has been
extenakd for use in classificatioproblems with greater number of categories. In certain way it became one

of filtering methods.

Another family ofprominent outranking methods represented byhe PROMETHEE methodsThe nitial
PROMETHEE method, developed byaBs and cavorkers,uses preference function for each criteribhe

next step determines a preferenceeix for one option over another and defines a valued outranking relation
which is exploited to determine an ordering of the alternatives. ,Tien aher indices, the positive
outranking flow and the negatiweitranking flow are defined where the sums are taken over all alternatives
under consideratiohe positive outranking flow expresses the extent to which certain option outranks all
others. Thenegative outranking flow expresses the level to which that option is outranked by all other
options. Each of these indices defines a complete preorder of alternatives.

It should be remembered that the values of both positive and negative outranking dmevel cbn the
complete set of alternatives under consideration. Hence, inclusion or exclusion of another option may

influence strongly already obtained preorders.

The primary appeal of all outranking methods is in the avoidance of what are perceived verlpe o
restrictive assumptions of value or utility based approachktsoutranking methods focus on pairwise
comparisons of alternatives, and are thus generally applied to discrete choice préblatims: advantage

of these methods is the use of less igemputs.

3.3. M athematical programming tools

In operations researcmathematical programminglso alternativelynamedmathematical optimizationr
simply optimization is the selection of a beatternativewith regard to some criterion froaninitial setof

availableoptionsusually expressed by specific constraints

The simplestexample ofan optimizationproblemconsistsof maximizing orminimizing a real function by
systematically choosingpput values from within an allowed set and computihg value of the function.
The generalization of optimization theory and techniques to other formulations comprises a laafe area
applied mathematicsMore generally, optimization includes finding "best available" values of some

objective function given aefined domain (or input), including a variety of different types of objective
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functions and different types of domaihdany realworld and theoretical problems may be modeled in this

general framework.

In the @erations researcdomain has a wide array of metls and approachds available to solve
problems. One of the largest familieshi® Convex programmingroblems where the objective functitn
eitherconvex(minimization)or concavgmaximization) and the constraint set@vex This can be viewed
as a particular case of nonlinear programming or aageneralization of linear or convex quadratic

programming.

Linear programming (LP) is amathematical technique which tries to satisfy initial demands by assigning
some amounts of resources so #aertan goal is elaborated ian optimal way while other limitations are

also satisfiedLP addresseproblems where the objective functid{x) is linear and the constraints are
specified using only linear equalities and inequalitissfeasibleregionis a convex polytopewhich is a set
defined aghe intersectionof finitely many half spaceseach of which is defined by a linear inequality. Its
objective function isreatvaluedaffine (linear) functiordefined on this polyhedron. A linear programming
algaithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a

point exists.

Methods ofinteger Programming (IP) study linear programs in which some or all variables are constrained
to take oninteger values. This $ not convex, and in general much more difficult than regular linear
programmingln many settings the term refersltaegerLinearProgramming(ILP), in which the objective
function and the constraints (other than the integer constraintiheae. There are two main reasons for

using integer variables when modeling problems as a linear program:

¢ The integer variables represent quantities that can only be integer. For example, it is not possible to

schedule 2.5 buses
e The intege(binary)variables reprgent decisions and so should only take on the value O or 1.

These considerations occur frequently in practice and so integer linear programmingusaal e many
applications areasAmong typical examples are the number of trucksaifleet, number of @ctricity

generators for energy production etc.

One of typical problems that wehave already mentioned earlier ifi@ knapsack problerwhich is a
relativdy simple integer program. Furthermore, the coefficients of this constraint and the objective are all
non-negative Initial information covers a knapsack with certain capacity and a number of ¢aotswith a

size and a value. The objective is to maximize the total value of the items in the knapsack. To solve the
associated linear program, it is simplynatter of determining which variable gives the mibstng for the

buck".In other words, after finding the ratio betwebe objective coefficienand constraint coefficierior
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each variable, the one with the highest ratio is the best item to pldee kndpsack. Then the item with the
second highest ratio is put in and so on until we reach an item that cannot fit. At this point, a fractional
amount of that item is placed in the knapsack to completely filh itertain way, a ranking is performed

until the main resource is use@or more detailed descriptisrsee e.g. H. P. Williams (1999) G.L.
Nemhauser and L.A. Wolsey (1999).

Much like linear programming problemilixed Integer Linear Programming (MILP) problems are very
important when solving desipon-making modelsMILP involves problems in which only some of the
variables are constrained to be integers, while other variables are allowedctmtiveious Efficient
algorithms for solving complex problems of this type are known and are availabéeform of solvers such
as CPLEX or Gurobi Winston (1994) made one of dasdt attempts to gather and explain some of most
widespread probfes in one book. Aextended review omodels and solving methods ca& found in Taha
H.A. (2003),Hillier and Lieberman (2001)

Goal programming may be viewed as the bridge between single objective raoti-objective
programming namely concerning reference points approaches. The aim is itoingithe function of the
deviations regarding targets established by OMsthe objective functionsThesetargets established by
DMs may lead t@ dominated solution to the problem under study if the DM is not sufficiently ambitious in
specifying his goals. In this casgoal progamming model leads to a satisfactory solutibut may not

belong to the nondominated solution $¢tre detailsnay be found irSteuer(1989.

3.4. Multi -objective mathematical programming

Multi-objective Mathematical Programming (MDMP) is an extension of traditional mathematical
programming theorylealng with mathematical optimization problenmsvolving more than onebjective
function to be optimized simultaneousl¥he family of these methods can be also caitedti-objective
programming, vector optimization, multi-criteria optimization, multiattribute optimizationor Pareto
optimization Adding more than one objective ta aptimization problem adds complexitylulti-objective
optimization has been applied in many fields of science, including engineering, economics and logistics
where optimal decisions need to be taken in the presentadabffs between two or more conflicting

objectives A general formulation of a KAMP problem is as follows:

Max or Min {fy( X), fo( X),..., fa( X)}
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wherex is the vector of decision variablds,f,,...,f,; arethe objective functions (linear or nonlinear) to be

optimized; andSis theset of feasible solutions.

In contrast to traditional mathematical programming theory, withdM® framework the usual concept of

an optimal solution is no lger applicable. This is because objective functions are of conflicting nature (the
opposite is rarely the case). Therefore, it is not possible to find a solution that optimizes simultaneously all
the objective functions. In this regard, within th©MP framework, the major point of interest is to search

for an appropriate fAcompromi sed solution. When s
considered. The efficient set consists of solutions, which are not dominated by any other solutien on t
prespecified objective#\ solution is called nhondominateRareto optimalParetoefficient or noninferior, if

none of the objective functions can be improved in value without degrading some of the other objective
values. Withoutadditional subjectivepreference information, all Pareto optimal solnsicare considered

equally goodas vectors cannot be ordered completéhyh a t is why the involveme
elaboration is welcomedJiost multiple objective programming procedures are interactivka review of

such interactive procedures is contained in Gardiner and StE@4). One of the earliest examples is of
Lawrence and Steu€t981) whoapplied an interactive multiple objective programming procedure to capital
budgeting to enable a deicis maker to gain improved appreciations of how the objectives tradeoff against

one another.

Several appropriate procedures have been developed to s@@PMroblems. These procedures are
interactive and iterativeThe general framework within which theggrocedures operate is a tstage

process. In the first stage, an initial efficient solution or group of solutions is presentedi! thithis

solution isfound to beacceptable (i.e., if it satisfies expectations on the given objectives), the olutio
procedure stops. If it is not acceptable, the expert is asked to provide information regarding his preferences
on the prespecified objectives. This information involves objectives that need to be improved and tradeoffs
that he is willing to undertake xhieve these improvements. The purpose of defining such information is to
specify a new search direction for the development of new, improved solutions. This process is repeated
unt il a solution is obtained t hoauntlmnodurthemimpeoemenr d an c

of thecurrent solution is possiblede e.g. Steuer, 198@avrotas, 200D

The set of all efficient points is called te#icientset While the efficient set is normally a portion of the
surface of the feasible regiofnet efficient set has the tendency to grow rapidly as problem size increases.

For special kind of MOMP problems (mostly linear problems) of small and medium size, there are also
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methods that produce the entire efficient set (Mavrotas, 2009). In genenalosheidely used generation
methods ar¢he weightingmethodindthe Uconstraint method. These methods can provide a representative
subset of the Pareto set which in most cases is adequate. In this,ddategtas (2009) proposé¢he use of
theaugmentd Uconstraint method (AUGMECON) which is a novel version ofdbeventionaldconstraint
method that provides remedies for its walbwn pitfalls. AUGMECON has been implemented in the
widely used modeling language GAMS.

The advantage of multiple objeéa programming is that provides the possibility to sample neighborhoods
on any multidimensional efficient surface to any degree of resolution. A disadvantage is the CPU run time

required.

3.5. Modeling incomplete information

In real world decision makindpére are two concepts that complicatedbaluation (a)thel i mi t s of e x|
knowledge;(b) the uncertainty that accompanies prdgjegvaluation i.e., its future performance (output)
uncertaintyMavrotas & Pechak 2013bin thefirst case, the ncetainty is essentially a lack of information;
complete ignorance represents one end of the spectrum and perfect information (i.e., certainty) #e other.

a most fundamental level, uncertainty relates to a state of the human.mjiack of complete kowledge

about something.

Moreover before incorporating data into the model, the notionsnakrtainty andrisk should be cleared.

Their definitions vary from one case study to another whbee meanings range from being totally
independent concepts toibg synonymsNumerous definitions, found in the literature, are very degand

on the context and field of a problem. The only thing that no one can argue against is the fact that these
terms are closely relate@ihe abundance of research focused on tamicgy and risk makes it impossible to

cover all assumptions within a short revidveedless to say that development and understanding of risk and
uncertainty concepts are heavily influenced by economy and finance theory, as well as of the portfolio.
ealy 20th century, Knight (1921) noted that there are two types of uncertainty. The first, esddsur
probability, Knight labed¢ d as Or i sko, and the second, unquant.i
management, risk can be assigned a probahiilue, whereas uncertainty is completely immeasurable
(Regan, 2011). It is critical to note this distinction, as risk is concerned with objective probabilities, whereas
uncertainty requires consideration of subjective probabilifRegherford, 1995Koleczko 2012 Another

dual classification is proposed by Roy and Oberkampf (2011) where uncertainty is classified as either
aleatory 1 the inherent variation in a quantity that, given sufficient samples of the stochastic process, can be

characterized via probability density distribution, acgpistemici uncertainty due to lack of knowledge by
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the modelers, analysts conducting the analysis, or experimentalists involved in validdéatory
uncertainty is also referred to in the literature as variabifitgducible uncertainty, inherent uncertainty and
stochastic uncertainty. This term is used to describe the inherent variation associated with the physical
system or the environment under consideration. Epistemic uncertainty derives from some levehnténo

or incomplete information, of the system or the surrounding environment and is also termed reducible
uncertainty, subjective uncertainty and model form uncertairg. lack of knowledge can pertain to, for
example, modeling of the system of intéres its surroundings, simulation aspects sashnumerical
solution error and computer rowodf error, and lack of experimental data. In scientific computing, there are
many sources of uncertainty including the model inputs, the form of the model, argtgimracterized
numerical approximation errors. All of these sources of uncertainty can be classified as either purely
aleatory, purely epistemic, or a mixture of the two.

In Operations Research the definition of uncertainty also distinguishes ungemsinobjective and
subjective uncertainties. He is more concerned about subjective uncertainty and the following definition
refers to it. AUncertainty implies that in a cert
guantitatively andqualitatively is appropriate to describe, prescribe or predict deterministically and
numerically a system, its behaviour or the charac
abundance of information, conflicting evidence, ambiguitgasurement and belief. He also strongly
believes that uncertainty should not be modell ed

is able to model al |l t Basemetaf200®ncertainty equally

Basically, definitions areplit in 3 areasOperations Researckconomics andrinance, and Engineering
For a comprehensive review cheSlamson et al(2009 and Stewarf(2005. As a rule, peoplalefine

fi unc er tsanethingnotadsfinitely known or decidedubject to doubt orquestion In the context of
practicalapplications irmulti-criteria decision analysishe definition giverby Zimmermannis particularly
appropriate. With minoediting, this is as followsiUncertainty implies that in a certain situation a person
does ot possess thimformation which quantitatively and qualitatively is appropriate to describe, prescribe

or predict deterministically and numerically a systembésavioror othercharacteristios

On the other hand, h e t e risrasudlly dpdiéd@situations in which probabilities on outconae (to

a large extent) known objectively. More recently, twncept of risk has come to refer primarily to the
desirability or otherwise afincertain outcomes, in addition to simple lack of knowledge. Thugxample,

Fishburn (1984y ef er s t o ri sk as f@Aa c¢hanc écteeparaoumeerttaimty ng b
(alternatives with several possible outcome valtresh the fundamental concept of risk as a bad outcome.

Due to the fact that insuramcindustry widely uses this interpretation of the risk (with negative
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connotations), one under st ands and feel s better

Further in thesis, thvalueneutral ternfi u n ¢ e r willdbé usdady 0

Moreover, nodern views of uncertaty assert that it is based mmtly on randomnes$ut also on beliefs

and behavior. Cultural norms and other informal institutions of society have an observable effect on decision
makers (Rutherford, 1995). Bounded rationaldgogrizesthat it is impossible to comprehend aamhblyze

all of the possibly relevant information while making choices. It proposes an idea that in dewgiog,
rationality of individuals is limited by their formal training, experience, skill, the cognitmitation of their

minds, and the finite amount of time they have to make a decision (Elster, 1983). A further component is
peer group pressures and the decision making that takes place in a group context, as opposed to individual
(Flyvbjerg et al., 206). Furthermore, behavioral studies indicate that when people are faced with prediction
tasks, they tend to underestimate prior informat.
Instead, they tend tmake decisions based on most reaaritlence, which can lead to errors in predicting

rare events and extreme realizations (Kahneman and Tversky 1979, Vilkkumaa 2014). Specifiaally, in
attempt to maximize the value by choosing one out of many alternatives based onassesgenentbat

reflect recent evidence, the DM will choose the alternatiiie the highest estiate. Unfortunately, there is

a high chance that this assessment is higher than the real value of the alternative and, consequently, the DM
will be disappointed whetheactua al t ernati vebs value is real-ized.
decision disappointment is the Bayesian revision of value estimates defined formally as the expected
negative gap between the realized and estimated value of the selected alttBrnatmel 974 Harrison and

March 1984, Smith and Winkler 2008Numerous studies conclude that the value of information varies in
unexpected, ambiguous and sometimes counterintuitive Wfslgsrotas, 200Q) but Delquie (2008)
demonstrated that under genesdsumptions, the indifferent DM provides the most correct project
evaluation, while the one with strong preference toward certain alternative provides lower quality of

information.

Even more types of uncertainty are describedKbggasand Kangas(2004) For instance they offer the
generalized categories of metrical (measurement variability/imprecision), structural (system complexity),
temporal (past/future states of nature), and translational (explaining results) uncekigintdpza and
Martins (2006)identify randomness, imprecision, and unknown preferences as factors contributing to
uncertainty in multcriteria decision analysid_eskinen etal. (2006) point to errors in inventory and
measurementprojections of future market conditions, projections of forest development over time in
response to management intervemtiand unknown preferences as sources of uncertainty in forest plans.
Another exampldrom Thompson and Calkin (20119 a common situation whem one can predict, i.e.

estimate the expected value of the amount of snow on the runway for any giventdafuinite, the amount
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of snow is random but nequantifiable and therefore uncertain. This fprantifiable randomness can be
modeled as an interval representimgertainty Regardless of the specific typology ultimately chosen, using
a coherent frameworknforms management by facilitating the identification of potential sources of

uncertainty and the quantification of their impact.

Almost all of these definitions are problem sensitive, i.e., they may not perform as well if applied to a new
problem area. @ne of these scholars suggest that uncertainty can be modeled as an interval even though
there is no consensus on whether it is quantifiable or not. Other researchers define risk using the variance
concept. However, there is no common modeling methodhbgtall agree upon (Samson et 2009)

3.6. Monte Carlo simulation

There is no consensus on hdvonte Carlo (MC)should be defined. Very oftescholarsdistinguish
between aimulation (a fictitious representation of reality), a Monte Carlo method (a teehtthat can be

used to solve a mathematical or statistical problem) and a Monte Carlo simulation which uses repeated
sampling to determine the properties of some phenomenon or behavior.

Generally speaking, Monte Carlo methofts MC experiments are a boad class ofcomputational
algorithmsthat rely on repeatedandomsampling to obtain numerical results. They are often used in
physical and mathematical problems and are most useful when it is difficult or impossible to use other
mathematical methods. M@ethods are mainly used in three distinct problem clasgatamization,

numerical integration, angenerating drawom aprobability distributionKroese et al. 2014)
Monte Carlo methods vary, but tend to follow a particular pattern:

a) Define a domain gbossible inputs.

b) Generate inputs randomly frompeobability distributionover the domain.

c) Perform adeterministiccomputation on the inputs.

d) Aggregate the results.

Monte Carlo simulation methods do not always require truly random numbers. Many of thesefos
techniques use deterministigseudorandom sequences, making it easy to test amh @mulations. The

only quality usually necessary to make good simulatisngr the pseudoandom sequence to appear
"random enough" in a certain senskhis reed for large amounts of random numbers spurred the
development opseudorandom number generators, which were far quicker to use than the tables of random

numbers that had been previously used for statistical sampling.
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There are several reasons &olarge number of Monte Carlo simulations. Firstly, if random grains are not
uniformly distributed, therhe resulting approximation will be unreliable. The approximation is generally
poor if only a fewseeds graing are randomly dropped into the whole intereélinterest. On average, the

approximation improves as more grains are dropped.

In the current work, uniform and normal distributions are used within MC simulations and are indicated in

respective cases

3.7. Chapter summary

We briefly described tools that are used for pheblem of projects selection where it is necessary to fulfill
specific constraints based on one or more availatilerie. Sincethe problems that we try to solve are
complex, combinations of approaches need to be adopted. For different problems the same tools can hardly
be applicable. Moreovea,single MCDA method does not suffice in the presence of the imposettaiots

Even problem formulation can result in different framing. As it was mentioned before, the problem can be
shaped aa single or multiobjective one. The principal aim on initial stage is to help experts learn about the
problem situation, about thebwn and others values and preferences with appropriate presentation of

available information.

Uncertainty plays a significant role, especially for technologies that evolve considerably year after year or
for pioneering solutions where historical performoa dataare not available. Here, family of goal
programming methods should be treated with special care because a strong inclination towards
overestimation of results is observed between project developers. The same stands for scenario building.
Hence, v u e measur ement met hods ar e more suithabl e f
optimization processperformance or assessment uncertainties can be handled through Monte Carlo

simulation or some other tools.

Further, the selection process leads better considered, justifiable and explainable decisiBrecess
transparency is of crucial importance. As a rthe,decision cycle involves 3 stages: problem identification
and structuring; model building and use; development of action pldwesmmbinatorial character of the
problem implies the use of optimization methods aiming portfolio of projects that satisfs constraints
and achi evesibWih thétoolp descrlibedeanie; nwe mave towardshe development oh
selection methothat helps to build a balanced portfolishich respects performance uncertainties. Further
actions are still to be made by decision makeeserthelesshey areprovided with additional information

about the path of project selection.
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4. The lterative Tri chotomic Approach

The trichotomic approach (trichotomy is separation of initial set into three parts) is based on the fact that
projects can be assigned to three classes depending on the information available: Projects that are present in
the final selectn urder all circumstances are labélgreen, red projects are those to be excluded under all
circumstancesand grey projectare the ones thaeed some additional elaboration before béietuded in

the final set under certain conditions.

At the verybeginning of the processfaindthe evaluation oprojectproposalsThe Decision Maker DM)

may select the MCDA method of his choice, either utility function based or outranking (e.g. PROMETHEE,
ELECTRE). All MCDA methods have specific decision parangef@reights, thresholds etc) that can be
considered stochastigith their valuestakenfrom appropriate distributiondhis isimplementedo counter

balance the subjectivity in selecting these parameters that may eventually lead to specificinitglilts
performance overestimation may damage the final selection on several ways. Firsh séathingly high
performing project may take the place afidy estimated antetter performing oné.hat is why he lack of
exactinput information due to variougasons is addressed with notion of uncertaivttich is expressed
throughthepr obabi |l ity distributions for the projectso
necessary parameters and thresholds can be also described by appropriate pdibaiblitjons. Then a

Monte Carlo simulation is performed using sampling from these distributions. Finally, an optimization
process with thenkeger Programming (IP)model provides optimal portfolio. This pair of sampling &
optimization is the core of caltations. For example, if the number of Monte Carlo simulations is Sgt to

then sampling & optimization rounds will be perform&dimes. The output will b& optimal portfolios
based on sampling of model 6s p ectsaisteited nte threeEsubsetst u a |
(classes): The green projects that are present in the final portfolio under all circumstancesali.g.

Monte Carlo simulations), the red projects that are absent from the final portfolio under all circumstances
andthe grey projects that are present in some of the final portfolios. The classification in three subsets is not
new in the literature. Liesio et al. (2007) used a similar approach in the framework of robust programming.
However, the way the projects arasigeed to each set is different. In addition, Mavrotas and Rozakis (2009)

used similar concepts in a student selection problem for a post graduate program.

The concept behind trichotomic approach is that the DM can focus on the projects that are stally. at
Unlike Aishort I i st 0 k prgegts with ¢he highesthexpeaed values areveduated), the
attentionisonl y on t he MfAambi guo unhile suempmjects (eghergn. or duthobéthegr ey

portfolio) are determined. The meth@iovides quantitative and qualitative information that cannot be
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acquired using e.g. expected values of distributionshératter case, the DM is provided with a unique
opti mal portfolio or, i n ot her woritHosit,anydisciininatiora r e t

about the degree of certainty for each of them.

On the contrary, the trichotomic approach provides extended information about the degree of certainty of
every entrance in the final selection. In other words, the method giwveisole picture with multiple
candidate projects and portfolios and provides the opportunity to fully control the process of selection. In
case of Aicl ose winnerso the expert is informed a
additional criter a f or furt her discri mi nat i otheDM fs awae bfethe e wi T
prioritization of projects given that the round which a project enters the green set is known. The earlier a
project gets in the green set, the stronger ahdsces to be included in the final portfolidne illustrative

examples from case studies in next sections demonstrate in practice the above mentioned concepts

4.1. Initial two -phase ITA

The twaphase approach combinegveral techniques such &CDA, Monte Garlo simulation and
optimization through Mathematical ProgrammifMP) speciallytailored to the project portfolio selection
problem. In the first phase, a session of Monte Carlo simulatiddCDA 1 MP optimization is performed

since performance of each poject in each criterion is given by a probability distribution (project
uncertainty). Moreover, criteria weights or any other necessary parameters and thresholds may also be
represented by appropriate probability distributions. The output of first prasikticriteria scores of each

project, which are used to driverflner optimizatiorprocess Namely,scoresare used as objective function
coefficients in the MP model of the next phase. Besides objective fubictioefficients, MP model may

have additinal stochastic parameter®., in the body of constraints that form the feasible region. Values for
uncertain parameters are sampled from specific probability distributions and resulting mathematical

programming model is solved (optimized) providing diptimal portfolio.

On thefirst phase, using Monte Carlo simulation the previously described process is repeated N tiriies and
optimal portfolios expressing all the possible states of nature (some of these optimal portfolios may be

identical)are obtainedThefirst phasds depicted irFigure 4-1.

The MP model orth Monte Carlo iteration is identicad the one of iterative process.
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Sampling from distributions for project
performances, and criteria parameters (e.g. weights)

|

| PerformMCDA |

|

Use multicriteria scores as objective function
coefficientsin MP model

|

Sampling from distributions for MP constraint parameters

l

| Solve MP model |

|

| Save the optimal solution |

Identify the

green, redand

grey set

Figure 4-1. Monte Carlo simulaticioptimization approach of phase 1.

As it was mentioned beforeptainedportfolios are rarely same across initialterations. It is feasible to
work further with project proposals. Hence, after completion of the cycle, on the basis of obtapiidal
portfolios projects are distributed between green, red and grey Isetwder to facilitatethe selection
process, membership thresholds for the green and the rednagtdeintroduced in order to relax
membership requirements. The membership threshold can be/lneedver the discrimination ability of the
first phase needs to be increased, e.g. where the gredmeamed! tsets are almost empty.

In thesecond phasehe main focus is on items from grey set while those in the green set are considered as
already seleetd and those in the red set are considered as discardethareese when grey set contains just

a few projects (say-3), a direct comparison of them can be performed easily and probably suffices to
determine the final selection. However, when more ptsjare present ithe grey setselection becomes a
complex task that needs a syst e ma fsiconstramis phusdb bec h (|
respected)The critical point of the second phase is thatotiye function coefficients afew model ee no

longer multicriteria scores but participation frequencies of the grey projBlobtimal portfolios of the first

phase. This means that objective function coefficients of the second phase are not stochastic but crisp
numbers, hence reducing the iaaility of results.In Figure 4-2 the unified process of first and second

phase ishown schematically
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1st phase 2nd phase

selected

grey

Figure 4-2. Unified process of twphase approach

Further in calculationswo casesshould be distinguishedhe first case with no uncertainty related to the
feasible region, meamy that there are no stochastic parameters in constrantiepicted in a following

way:.

maxF = Y fX
icgrey
st
XeS (4.1)
X; €{0,1
X, =1 iegreen
X, =0 iered

wheregrey, greenandred denote the grey, green and reets respectivelyf; is the frequency of theth

project inT optimal portfolios from first phase. The objective function of the 2nd phase actually expresses
the majority principle, i.e.the more times a project is present in optimal portfolios of the first phase, the
greater the chance to be eventually seledtad.obvious from the formulation that optimization takes place
among projects from grey setile green and red projects are already fixed to 1 greédgpectively. The
optimal solution ofequation(4.1) is a project portfolio that has the greatest acceptance given existing

uncertainty.

Another case stillcontainsuncertainty related to the feasible region which means that there are stochastic
parameters inconstraints (but not in objective function). In this case, the Monte Carlo simulation

optimization schemés used agaimnl|l y f or the model sé stochastic

constraints. The MP model that is iteratively solved in the secaselis described below:
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maxF® = Z f X

iegrey

st

XeSs® (4.2)
X, €{0,13

X, =1 ieqgreen

X, =0 iered

The Monte Carlo simulatioh optimization process is repeated tor  17Tétimes and result i3 optimal

portfolios (as it was in the first phase). However, now the variability is considerably reducedhgiven
presence ofrisp coefficients in the objective function. A project portfoliohntihe greatest acceptance is the

one that appears more times witfirnterations. If there are two or more portfolios with high frequency of
appearances the DM is asked to select among them. Usually the choice is between two or three projects that

alternage in obtained optimal portfolios.

Therefore, with the trichotomic approach projects are selected based on the notion of unanimity in the first
case (green projects) and based on the notion of

the second phase.

4.2.  Simpleiterative version

The term dAiterativebo i ndi cat es ctsibnarbundsor gydes. cAe s s d
predetermined number of decision rounds may be defined from the beginning and every round feeds its
subsequent urtia convergence to the final portfolio is attained. From round to round the uncertainty is
reduced for the grey projects forcing some of them to become either green or red. The uncertainty reduction
can be performed by getting more information orbyaoaont t i ¢ uni f orm narrowing

probability distributions. The whole process is depictefigure 4-3.

Monte Carlo simulation and optimization with Mathematical Programming is a rather recent development
that becoras plausible with vast improvement in computer power during the last years. Although it is a
computational demanding task it is worthwhile as it provides fruitful information regarding the uncertainty

of the final solution.
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Reduction of uncertainty in the parameters of the grey projects

final
t 2ndroun th )
1stround ound kth round portfolio
green
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set selected
Set of projects
| o5
Multiple constraints =
Uncertainty

Figure 4-3. Graphical illustration of iterative process

Various gobability distributions foruncertain parameters can be tested through Monte Carlo simulation (see
e.g. Vose, 1996; 2006). By sampling fremlecteddistributions, value of parameters are obtained fram
Mathematical Programming model that is subsequently optimized. This process is rdpiates [T is a

great number, e.gl=1000) andT optimal portfolios are received expressing all possible states of nature
(some of hese optimal portfolios may be identical).

The MP model on theth Monte Carlo iteration ias follows

b
®_ N a0

maxZ® = Iz:l: X

st (4.3)

XeS

X. €{0,1}

wherec?i s t he objective funct i on 6t prgestenftietithcongerCarlo ( s o me
iteration. The value af® is drawn from sampling ohe corresponding distributioi; is the binary decision

variable indicating ifi-th project from initial set is either selected; 1) or discardedX, =0) and S
represents a feasible region formulated by all imposed constraintgrdhibitedto select a sharor parts of

one project, thiais why the modeling is done with binary variables and not continuous ones as it is usually
the case in the original portfolio selection problem which involves shares. Besides usual budget constraints,
segmentation and policy constraints as well as iotierss and interdependencies among projects can also be

taken into account in the formulation of decision space S (Mavrotas et al., 2003; Liesio 2007).
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The output of mode(4.3) is an optimal portfolioX(t) with Z(t) as the value for the objective function.

Exploiting information from T optimal portfolios the projects are distributed between three sets:
¢ The green set that holds projects that are presentTnpalitfolios
e The red set that contains projects that are excluded from all T portfolios
e The grey set that holds projects that are present in some of the T portfolios

Table 4-1 shows an example of green, red and grey proje@gitmblem with P projects afd>5 iterations.
The rows contain values deratiord slecision variablesvhile the columns contain values of the decision

variables across Monte Carlo iterations.

Table 4-1. Example of results from initial roundgith 5 iterations

lteration X3 Xo X3 X4 é Xp

1 1 0 0 1 é 1

2 0 0 1 1 é 1

3 0 0 0 1 é 0

4 1 0 1 1 é 0

5 1 0 0 1 é 1
grey red grey green ¢é grey

One thing to remember is the fdlat especiallyn initial roundsit is almost impossible to drasonclusions
about a portfolio that appears most frequently amdniterations, which means that obtained optimal
portfolios are rarely the same across thEsens. Since conclusions cannot be drawn for the most frequent
portfolios it is feasible taanalyzethe maost frequently appearing projects in portfolios. Exactly this kind of
information is exploited in the method where the main focus is on the grey set, i.e. the finajequire

deeper attention.

As it was mentiong earlier, ITA incorporates decision rounds (or cycles). In every round of ITA a
simulation - optimization process takes place providing the corresponding green, red and grey sets of
projects. The process is quite flexible and can be implemented eithea wiedetermined, fixed number of

rounds or until sufficient convergence is obtained in a less formal way.

4.2.1. Predetermined number of rounds

The numbeR of roundsmay be set fronthe very beginningf the processin the first round Monte Carlo
sampling isperformed with initial probability distributions of uncertain parameterd obtainedesults

define green(1) red(1) and grey(1) sets (the number in parenthesis indicates the round from which
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corresponding set emerges).the second round projects frogreen(1)set are considered as given, those

from thered(1) set as discarded and the variance (quantitative measure of the uncertaintyyrefy{he
projects6 par afB Thsresluctiorsdegerds an the fdrm bfydistribution. For example, f
normal distribution the standard deviation is reduced/By or, for the uniform distribution the range is cut

by 1/2Rfrom both edges. It must be noted that this is done only for the grey projects while the sampling for
green and red projects maintdimh e pr evi ous roundds probability par
is as follows

maxZ® = zp: a® x
i=1
st
X e S (4.4)
X. {0,
X. =1 ieqgreen(l]
X, =0 iered(1)

After thesecond round of simulatiemp t i mi zati on the process6é output i
and red sets are enriched by new projects and new grey projects are identified. Subsequently, for the third
roud t he variance of grey projectsbé6 performance i
considered as given. The flowcharttloé decision making process is depictedrigure 4-4.

The reduction in variance usually falls a uniform pattern across rounds. For example in the case of normal
distribution the standard deviatios reducedoy 1/R after every round. This means that after rourtte

reduction of standard deviationdsd 1. Thus, iRthe final round grey pjc t s® par ameters a
as deterministic (have no variance at all). The output of the final round is a unique portfolio as all Monte

Carlo simulatioroptimization iterations produce the same solution
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r=0, green(0¥J, red(0=2, grey (0P
Initial distributions

Reduce variance igrey(r)projects
distributions byr/R

Freezegreen(r)andred(r) projects
X=1 forX e green(r)

II:ZI X=0for X e red(r)

NO
Sampling from distributions YES
for obj. function coefficients r>Re FINISH
| SolveMPmodel | Identify green(r)

red(r), grey(r)

| Save the optimal solutiod\

r=r+l

NO YES
t=t+1 t=1000?

Figure 4-4. Flowchart of Iterative Trichotomic Approach (predetermined number of rounds).

4.2.2. Undetermined number of rounds

Another option is to avoid the determination of rounds and finish the decision making process when
adequate convergence for theafiportfolio has been attained. The whole process is less formathban
previous casene After the simulatioroptimization approactthe DM identifies grey projects (projects in

doubt, gathers more information for these projects which is translate@riance redumn of their
parameter sdt dimmwsdtritbautnotined that the narrowing of t
attributes at every cyclecan be done either uniformly or based on obtained informdtiogach round the

grey set obviously shrinks and DM checks the frequency of each obtained optimal portfolio in the output of
simulation. If, for example, a specific portfolio occurs in 567 out of 1000 iterations it actually has 56.7%
probability to be the optimal portfolio undéhe given uncertainty level. lthe DM finds a stochastic
dominant portfolicthen the selection processay be stopped The ter m fido miinstancg, 0 i s

the DM can exit the loops of decision rounds as soon as a portfolio with 60% or 70%bititplemerges.
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The exit threshold (i.ethe probability of occurrence over which a portfolio is considered as selected) is
determined by DM according to a specific decision situation. The flowchathefiecision making process
is depicted inFigure 4-5. The steps with darker shading indicate the alterations from the ITAawith

predetermined number of rounds.

r=0, green(0¥d, red(0=J, grey (0P
Initial distributions

Reduce variance igrey(r)projects
distributions by obtaining more
information

Freezegreen(r)andred(r) projects
X=1 forX e green(r)

II:ZI X=0for X e red(r)

Sampling from distributions
for obj. function coefficients

|

| SolveMPmodel | Identify green(r),
i red(r), grey(r)
| Save the optimal solutiod\

i E=oy

NO YES

YES

Is there dominant
portfolio?

FINIS

H

Figure 4-5. Flowchart of Iterative Trichotomic Agpoach (not a priori determined number of rounds).

4.3. Membership threshold

One of first observations within applications on illustrative examples is that on early iterations there is no
dominant portfolio. When Monte Carlo simulation of uncertainties is ,us@tbng obtained optimal
portfolios only few were the same afr@quency of their appearance was found to be very low (less than 1

5%). Also,the number of projects in optimal portfolios considerably w@ridence, the focus #ted to the
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most frequentlyappearing projects across portfolios, siitagas hard to draw conclusions for portfolios as a

whole.

In order to facilitate and speed up the decision process, it is worth to introduce membership thresholds for
green and red sets in order to relax thenhee r shi p requi rement s. It can b
threshold of(» which means that if a project is present in optimal portfolidfm of iterations, it is
considered to be member of the green set. These thresholds are usually symmetric wigdhaheagreen

threshold oft% implies a red threshold of1%. For exampl e, a Agreeno thre
project is present in optimal portfolio in 95% of iterations, it should be considered as a member of green set.
Similal 'y, a eBholé af 5% rehns that a project which is present in the optimal portfolio in less than

5% of iterations is sent into the red set. The membership threshold can be used whenever the discrimination
ability of previous rounds needs to be increased, e.gengreen and red sets are almost empty.

4.4.  Group of decision makers

Project portfolio selection igitially a multiobjective problem where different points of view should be

taken into accountA team ofexperts working on certain problesia common practe i n t oday 6 s
especially in large organizations where the aggregation of opinions is necessary or whenever consensus is
sought among various stakeholders like e.g. when several levels of public policy are involved (Macharis et
al.,, 2012; Vandaele an@ecouttere, 2013)General agreemenbecomes crucial in situations when
collaboration between individuals is required to build and implement shared goals with available resources.
Within the process of development it is necessary to deal with varioustis@s conflicting, objectives
represented by non homogenous groups of professionals (decision makers, experts, stakeholders etc.). Even
if the final decision is to be taken by a single individual, the engagement of relevant experts is beneficial, as
they can provide valuable information which can be otherwise overlooked or neglected due to countless
reasons (Vilkkumaa et al. 2014). general, Group Decision Making in muttiiteria analysis has been used

in many applicationsuch asvater management (Masaand de Almeida, 2007; 2012, Morais et al. 2012),
energyenvironment issues (Turcksin et al., 2011; Hobbs and Meier, 2000), transportation issues (Macharis
et al. 2010; 2012) etc. However these applications usually deal with a discrete number oftginativas

and not with a project portfolio problem.

One approach is to aggregate these points of view to a single metric througleriteuii analysis and
subsequently optimize the resulting single objective problem where coefficients of objectivenfuamet
multi-criteria scores (Mavrotas et ,aR008). Alternatively, one can use a goal programming approach

aggregating objective functions based on their distance from individual goals (see e.g. Zanakis et al., 1995
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Santhanam & Kyparisis, 199@jurthemore active use of MCDA methods may help not only to identify the
areas of disagreement, but also to clarify possible alternatives, (S8 Salo and Hamalainer201Q
Vilkkumaa et al, 2014). Decision support tools are useful on different stagemllynithey help to describe

the problem in details and to capture the preferences of each group member. Later, they highlight points of
agreement and disagreement within the group. In addition, their skillful application can foster the
formulation of inmovative decision alternatives (Salo et, &003 Rios and Rios Insya2008) even in
presence of important obstacles such as incomplete input information. Finally, good breakdown of
preferences and possible options may help to discover and agree upofiopoufsde the initial set of
options.

In all above mentioned approach#ése decision maker has to define criteria or goals and to assign them
weights in order to aggregate thémna single objective functiornother way is to keep individual criteria

as separate objective functions and proceed to a-ohjéictive optimization generating the Pareto set of the
problem (or a Pareto front in criteria spae#)ich comprises Pareto optimal solutions or portfolios. Then,

the decision maker examingle obtaned Pareto front before reaching his final choice. These methods are
called fha posteriorio or Afgenerationd methods in
multi-objective optimization methods (first generate Pareto front, examine it, andséhest the most
preferred Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate

the Pareto seeither exactly or its approximation.

For the current case aombination of MCDAI IP is adoptedn order to detenine the optimal portfolio.
Initially, one of MCDA methods is used in order &®sign scores to projects based on their ratitieria
evaluation Then these scoresre introducedas objective function coefficients in the IP model that
incorporates constints of the project selection problem.the presence of multiplexperts it is natural to
assume that their preferences expressé by assigning weights to the criteria of project evaluatamich

mears that each of them usually has an objectivectiom that differs from the others. Hendke obtained

optimal portfolios are usually different among participants. In such case the membership of each project in
green, red or grey s&t determined according to the concordabeéveendecision makers. &mely, the

green set includes projects that are presetttatiinal portfolio of every decision maker, the red set those
projects that are absent frahefinal portfolio according to akxperts and projects that apgcked bysome

group memberformthe gr ey set . The devel oped method is nam
works of G.Mavrotas and O.Pechahkere a Delphilike approachis usedto deal with the problem of
providing decision support to multipexpertsin project selection problen{see e.g. Wang et al. 2013; Lee

and Kim, 2001; Juan et al., 2010). Delphi works in an iterative manner aiming at convergence of multiple
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opinions in a systematic waypecifically, the iterative charactés usedand a converging process

performedn orde to achieve a final consensus on project portfolio selection

Assume that there af¢ projects,P DMs andK criteria of evaluation. Therefore the weight of importance
that decision makep assigns to criteriork is wy, with p=1.P andk=1.K. For each DMp=1..P, multi-
criteria scoresns, for every projeci=1..N arecalculatel. The objective function of the IP problem for the
p-th DM is then:

maxi ms, x X (4.5

whereX; is the binary variable that indicates if th#h project is selecteX(=1) or rejectedX;=0). SolvingP
integer programming problems at méstifferent optimal pdfolios (some of them may be identicalje
obtained Subsequently, the members of green, red and gregreeitdentified Members of the green set are
projects that are present in BRlbptimal portfolios Accordingly, the members of the red set argquts that
are absent from al optimal portfolios and the grey projects are those thatnaiadedin some of theP
optimal portfolios.

1st round 2" round k™ round final
green
set green
. set green
Setof projects set selected
Multiple criteria
grey | > grey |+ -+ | grey
q a Set set Set
Multiple constraints

Multiple DM

Figure 4-6. lllustration of Group ITA method.

If the grey set imot emptythe process moves the next roundThe already found green and red projects
are keptin their status by fixing the value of corresponding decision variab¥g=tbfor green projects and
Xi=0 for red ones. This is done for &Imodels for thenext round. In additiomecessary modifications are
introducedin the objective function coefficients of the models following the convergence process

described in nexparagraph
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Figure 4-7. Flowchartof Group ITA method.

In the current case the convergence process deals with the weights of criteiidsandcessary to assure
that the iterative process terminates with a unique portfolio as output. The following illuskigtive 4-6
depicts the concept of GrodpA method.
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Maximum number of roundR in the GrouplTA method can be determined from the beginning. However,

the method may converge earlier. The indication for convergence is an empty grey set. As it willhe show

in the nextsubsectiorthe weights of importance are modified from round to round. Theram‘fbindicates

the weight of importance fdecriterion of thep-th DM in roundr=0..R. The methodsd fl owc
inFigure4-7. The step of <calculation of next roundb6s we

is described in detail ithenextsubsection

4.4.1. Convergence process

The aim of convergence process is to provide an algorithm that gradually smoothesrtfendevef criteria
weights across decision makers. In other words, the weights of importance are adjusted from round to round

in order to converg® a common solution after completionitafrative process.

Assume that originadriteriaweights for each Bl are defined awpk(o’. The maximum number of rounds in
the iteration processR] is agreed upon in advan@nd the convergence parametéris accordingly
determined agk1/R. Then, the deviation of each weight from their averag®9 across decision akers is
calculated from the equation:

dpk:Wpk(o)'WkaVg (4.6)

The iterative process includeseps €17 in the flowchart ofFigure 4-7. The adjustment of weights from
round to round is performed in step 17 using the following equation:

Wol=(wp@-a T o T d (4.7)

Actually, on every round the weights from each decision maker are moved towards stee@dgeenP
optimizations are performed agaRespectivenulti-criteria scores are updated and uetheras objective
function coefficients in the IP model. AftBrmodels are solved new green, red and grey sets that correspond
to ther-th round (denoted ageen(r) red(r) andgrey(r)) are identified. Binaryariables that correspond to

green projects are fixed to A10 and those of red

X, =1 iegreern(r)
X, =0 iered(r)

Once a project enters the green or the red sets it remains there for all subsequent iterations. It is obvious that

from round to round the green and the red sets grow while the grey set shrinks:

lgreen(r] >= green(rl)]
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red(n)] >= fed(r-1)|

lgrey(n) <= grey(~1)|

As iterations proceed more green and red projects are added into corresponding sets as thBMsaseof

getting closer. Iterations are performed until the grety(r) becomes empty what may happen before

reaching rounR (r < R). In any case, convergence process implies thRttinround all decision makers

have common weights so that only one mdidfis finally obtained fronP optimizations. Hence in thie-th

round the gey set is by definition empty.

It must be noted that during convergence process the weights of each decision maker automatically satisfy

the condition of summing to unity in eyeroundr as it is proved belowGiven the original weightsw;,®

the initial equation igs follows

K
> we =1 for p=1.P

k=1
The average across decision makers is calculated as:
P 0)
2. W

g _ pl

Vv —_—

“ P

v/

and the sum of4*" equals to unity as it is shown below:

P 0 K P 0 P K 0
SIS » XS
k=

K
Vg p=1 — k=1 p=1 — p=1k1
2=, P P P P

1 k=1

Hence, for the weights of roumdi.e.wpk(r) the expression is:

K

K
D We = (Wl — ax rxdyy)

k=1

=~
[y

M~ 2D

(99 e x (W)~ )]

K
[A-axr)xw]+ax rxzwzvg
1 k=1
K K
=(@-axr)> W +axrx ) w
k=1 k=

1

=
Il

=(@-axr)+axr=1

(4.8)

(4.9)

(4.10)

(4.11)

Therefore the weights do not need any normalization as it is applied automatically from their calculation.
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An example of weight calculation from round to round is shown next. Assume that there is a team of five

decision nakers, whosaitial weightsfor 4 criteriaare shown imTable 4-2.

Table 4-2. Initial weights of group members.

Cl C2 C3 C4 sum

DM1 025 025 025 025 1.00
DM2 08 005 01 0.05 1.00
DM3 0.1 0.1 07 01 1.00
DM4 0.2 06 01 0.1 1.00
DM5 005 015 01 0.7 1.00

Average 0.28 0.23 0.25 0.24 1.00

In Table 4-3 the deviatiors from the average of each column (across Dits) presented after calculations
usng equation(4.6).

Table4-3. Devi ati on from columnés average

Cl C2 C3 C4

DM1 -0.03 0.02 0.00 0.01
DM2 052 -0.18 -0.15 -0.19
DM3  -0.18 -0.13 045 -0.14
DM4 -0.08 0.37 -0.15 -0.14
DM5 -0.23 -0.08 -0.15 0.46

Table 4-4 presentiew weights of nexround according to equati@d.7) and using convergence parameter
U=0.2 (i.e. maximum roundg=5).

For examplethe new weight for DM2 in the®criterion is calculated as:
w3P=0.1-0 . 2 T-0115) € 0.130

In the same way all cells are calculated and the sum of weights for each DM remains unity. By comparing
Table 4-2 and Table 4-4 one camobservethe movementtowards average weightOn last iteration (when

R=5) the convergence process endlish all weights of every columibecomingthe same, equal to the
average (Ist row ofTable 4-2).
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Table 4-4. Newweights of group members.

C, C, Cs Cs sum

DM1 0.256 0.246 0.250 0.248 1.00
DM2 0.696 0.086 0.130 0.088 1.00
DM3 0.136 0.126 0.610 0.128 1.00
DM4  0.216 0.526 0.130 0.128 1.00
DM5  0.096 0.166 0.130 0.608 1.00

4.4.2. Consensus index

Within this workan approach taneasurethe level ofconsensusver the final portfolio according to the
degree of concordance between DWis developedThe consensugsdex expresses how easy or hiris

to arrive at a consensus amagxperts The more green projectse obtainedrom early rounds the greater
the degree of concordance amaragties involveds. Specifically,their preferences (expressed as weights)
result in more or lesghe same outcome without forcing their weights to converge or, in other words, the
consensus is easily attained. On the contrampeifnajority of green projects is identified in last rounds it
means thaturther elaboraion of the mnvergence process neededo reachagreenentuponthe selected

projects. This means that the consensus is attaiiiedyreat difficulties

Theindexis found througha consensus chart where the percerstafjgreen projects that are availablein

th roundare plotted as a function tfie respectivedecision round. The resulting curve is calthsensus
curve In Figure 4-8 one camobservethat from round 2 to round 3 there are no new projects added in the
green set. This mayappen especially when the maximum number of rouRdis (elatively high.

The Consensus Indegl) is calculated athe area below the consensus curve dividedhgrectangle area
denoted bya dashed rectangular iRigure 4-8. The dashed rectangular actually expresses the maximum
consensus{l=1) that occurs when from round O already, all projects are allocated either to green or red sets
(i.e., the grey set is empty). The minimum consensus occurs when all green projecidearénathe final
portfolio on the last roundd]=0). ClI takes values between 0 and 1 and it is calculated using the trapezoid

rule for piecewise linear functions according to the following equations:
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Cl :(a°+a1+a1+a2+...+ ot aR)/R
2 2 2

R-1
Cl=[2+Ya +3%)/R (4.12)
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_i R-1 }
C|_[2+;q+Z]/R
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Figure 4-8. Example of consensus chart with R=5.
For example, sm Figure 4-8 the correspondin@l is:

Cl :[0'731+o.53+ 0.6 0.6% 0.741—21 /5 62.9

Apart fromthe Consensus Index that characteribesfinal portfolio it is possible teextract the degree of
consensus for each project according to the rournditteaters or exits the final portfolidhe Consensus

Degree of the-th project can vary in [0,1] and can be quantified by the following formula:

cp ==k (4.13)
R
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wherer; is the round thait-th project enters or exits the final portfolio or in other words the roundtibat

respectiveproject leaves the grey set.

4.5.  Multi -objective project portfolio selection

After addressing the case of group project portfolio selectismallythe next issue that attracts attention is
the multi-objective project selectionin the current section the applicability of Iterative Trichotomic
Approach (ITA) is extendedo the case of muHbbjective optimizationlnitially, ITA was focused ona
single objective functiorproblem structuringreflecting the optimization criterionWhile the original
approachprovides the certainty degree of a spedifioject withinthe optimal portfolio given underlying
uncertainty, multiobjective ITA providesertaintydegreefor a specific project portfolio within the Pareto
set. A schematic representation of the multfiective ITA is shown irFigure 4-9.

Reduction ofuncertainty in the stochastic parameters

final

st 2ndround th
1stround k" round Pareto set

grey

grey set

set

Figure 4-9. Graphical illustration ofmulti-objective ITA

Unlike original ITA, the first iteration in mukbbjective ITA has no red set as there are no portfolios to be
excluded.The nitial iteration provides the maximum number of generated portfolios as candidate final

Pareto optimal portfolios. In subsequent iterations some of these portfolios are not present anymore in any

Pareto set so theare labeled as reilvith the movement fromound to round, the uncertainty of parameters
(objective funct i on s byredoiegitht standael daviatipn of amnormat plobabiktyd
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distribution or shrinlng the interval of a uniform probability distribution). With diminishingcertainty,
portfolios gradually move from grey set into green (appear in all Pareto sets). The red set is implied

indirectly by the initially generated portfolios that are not ené$n any current Pareto set.

The methodology is developed for the casénaf objective functions. It can be easily extended to a greater
number of objective functions, but with increasing number the elaboration of results may become too
cumbersomeThe Pareto Optimal Portfolios (POPS) of projects are actually the Pareto Optiu@ons of

the multiobjective integer problem with binary variables:

N
maxZ, => 6, X
i-1

maxZ, =Y G X (414
i=1

st

XeS

X, €{0,1}

whereN is the number of candidate projeatg,is the objective function coefficient ofth project ink-th

objective function); is a binary decision variable indicating if théh project from initial set is selected

(X=1) or not ¥=0), andS represents the feasible region formulated by all imposed constrjras. from

the usual budget constraints, segmentation and policy constraints, interactions and interdependencies among
projects can be also taken into account in the forfamaif decision spac8 Eventually, a Pareto optimal
Portfolio is represent e d.Abcyrdirg tothe multabjective YersivorooblTAa nd A
method, each portfolio from the initial set of Pareto Optimal Portfolios is eventuallgotbidzed as red or

green with gradual decrease of uncer t aconmmputationi N mc
rounds

In each computation round a great numhefd (T with e.g. T=1000) of problemsuch asmodel(4.14) is
solved with different modeparameters, specifically different objective function coefficients using a Monte
Carlo simulatn approach:

44



N
i=1

N
maxZ,"Y => ¢ X (4.19

i=1
st

XeS

X. €{0,1}

wherecY; is the objective function coefficient @fth project ink-th objective function during-th Monte
Carlo iteration. The values of’; are sampled from the selected probability distributions (uniform, normal,
triangular etc). Therefore, in each computation rodndPareto setsRS, t=1..T) are produced. The
generation of each Pareto set is perfed using the AUGMECON2 method (Mavrotas and Florios, 2013).
AUGMECON?2 is an improved version of the well knowitonstraint method, especially appropriate for
MOIP problems like modegl4.14). It must be noted that AUGMECON?2 is capable of generating the exact

Pareto set in MOIP problems which means that no Pareto Optimal Solution is left undiscovered.

Like in original ITA, in each computation rounkere arghree sets where all the Pareto Optimal Portfolios
p are allocated: The green s&){ the red setR) and the grey sety]. The membership relatisrior each

portfolio pin G, RandY are shown below.

peG:Vte 1.T , pe PS
pe R:iVte 1.T , pg¢ PS (4.16)
peY:dte 1.T , pe PS

In other wordsthe green set includes portfoligsthat are present in all Pareto seBS€ PS) of the
computatiam round, the red set includes portfolios that were produced in the initial computational round but
are not present in any @fPareto sets ithecurrent computational roundnd the grey set includes portfolios

that are present in some DPareto setsnlorder to be more specific about the rounldat a green, red and

grey set refers tahe notatiorG,, R andY, is used.

As it was mentioned@arlier, the resultof thefirst rounddefine green and grey sets denoteGasndY;. On

the second roundhe variance oY, pr oj ect s® parameters is reduced pl
roundsR. This reduction depends on the form of distributibor instane, for a normal distribution the

standard deviatiois reducedby 1/(R-1), or, for a uniform ditribution, it is cut by 1/(2(R-1)) from both

edges of the range.
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The variance reduction follows a uniform pattern across roumdthe case of normal distribution, the
standard deviatiors() is reducedy 1/(R-1) after each round. This means that aftemndr, the reduction of
standard deviation is d(i-1)/((R-1 ) . Thus, in the final round proj
coefficients) are considered as deterministic (have no variance at all). Thetiedofimal round produces

only one Paretget which is the final Pareto set that comprises the final Pareto portfolios. The flowchart of

the decision making process is depicte#igure 4-10.

To facilitate and speed uphe selecion process, membership thresholds foe treen set by relaxing
membership requirementanbe introduced For exampl e, a fAwpulceneantata hr e s h
portfolio is considered to be a member of green set if it is presahteéast 95% oPareto set

Start

Total roundsR first roundr=1,
Initial distributions

Reduce variance in obj. function
O2STFAOASY i am)/(RA)a i
- r=r+1
. - . 0 NO
Sampling from distributions far
> : . -
obj. function coefficients r=R? NYES.I EINISH
Solve MOIP mode
Save the Pareto s&$ GlEnUiLE R e
portfolios
NO YES
t=t+ 1jc— =17

Figure 4-10. Flowchart for multiobjective ITA.

On the basis of the obtained informationthg end of the mulbbjectivei ITA optimization procesg is
possible tacomputethe Robustness Degree of each Pareto Optimal Portfalibuild the Robustness chart
and find the Robustness Index of the Pareto set. In addition, the decisior{shiskare provided with
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informative charts that illustrate the Pareto front with additional information d@heubbustness of each

Pareto OptimiaPortfolio.

4.6. Robustness measuring

Robustnessf the Pareto Optimal Portfolios in mutibjective ITA is associated with how surae can be
about themembershipf a specific portfolio in the final (definitive) Pareto set, which is obtained in the last
conputation round. As uncertainty is reduced going from one computation round to the next, the sooner a
Pareto Optimal Portfolio enters the green set, the iiaee ¢ u r e 0 initke final patfolip. Tlaerefore,
for the Pareto Optimal Portfolios, the msaee of robustness can be quantified with Redustness Degree
for each Pareto Optimal Portfoli&D,) which is defined as follows:

R-r

RD, =~ (4.17

wherer, is the computation round thpith portfolio enters the green set (i.e. becomes member of the final
Pareto set) anR the total number of computation rounds it is obvous from equatiof4.17) Robustness
Degree ofp-th portfolio varies in [0, R-1)/ R] and the closer it is to 1 the more robust is the specific
portfolio.

Robustness chart h =1006
100% -

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% H

% of green portfolios in the final Pareto se

0% r T T T Y
0 1 2 3 4 5 6 7

Computation round

Figure 4-11. Example of Robustness Chart with R=6.
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Also, according to the information about how ednlyhe decision process the final Pareto optimal portfolios
enteed the green setit is possible to measel the robustnessof the final Pareto sefThe more green
portfolios are discovered from early rounds (i.@ith wider uncertaintyrangg, the more robusthe final
Pareto seis. On the contrary, if the majority of green portfolios is identifiethmlast rounds, it means that

the find Pareto set is not so stable.

For theassessment abbustness of the final Pareto set Rebustness Index (Ris employd which is
similar to the one used ithe previous sectionfor group decision makingin order tocalculate the
Robustness Indethe so calledRobustness Chais drawnwhere the percentages of green portfolios that are
available onr-th round (denoted az) are plotted as a function of the computation round. The resulting
curve is calledRobustness @ve In Figure 4-11 anexample of a Robustness Chart with the corresponding
Robustness Cunvs presentedt is easy tmbserve that from round 2 to round 3 there are no new portfolios
added in the green set. This may happeraally when the maximum number of round {s relatively
high.

The Robustness Index of final Pareto set is calculated as the area below the robustness curve, divided by the
rectangle area denoted by dashed rectangukigire 4-11. The dashed rectangular actually expresses the
maximum robustnessR(=1) that occurs when already from the first computation round (ileen the
uncertainty is on maximum) only one Pareto set is produced from all Monte Carlo iterations. Thenminimu
robustness occurs when all green portfolios are added in the final Paretotsetast round RI=0). RI

takes values between 0 and 1 and it is calculated using the trapezoid rule for piecewise linear functions

accordng to the following equations:

RI =(aizaz+az+33+...+ 3R~12+ %)/ (R-1)

2
R-1

RI:[%+ a+%]/(R—1) (4.18)
r=2
R-1

RI:[%+ a+52]/(R—1)

N

For example, fronfrigure 4-11thecorrepondingRI is:

RI:[%"+O.11+ 0.34+ 0.34 0.8:1'5—21 1/5 42.8
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5. Applications

Methods of portfolio selection are widely employed to support decipimtedures both in public
administration and industrial firenThat is why here and furtherfter detailed description of theoretical
conceptsthe focusis onreal case studies. Since the whole ITA method was developed on observations,

examples will helgo understand better all suggestions and concepts.

Extraordinary development of telecommunications technologies and tlensepossibilities they provide to
handle information about the state of the environment made it interesting to study the setebtem m
this domain. A case study from the literature made it possible to observe and compare the results within

different decision support systems.

A secondcase studycovers the problem of selecting projects for financing in the framework of Clean
Devdopment Mechanism (CDM)which comprised numerous uncertainties due to its navdlhe
mechanisngained momentum in 2005 after the entry into force of the Kyoto Praim¢sNFCCC and was

in full operation in the period of 20082012.Before the Protocoténtered into force, investors considered

this a key risk factor. The initial years of operation yielded fewer CDM sréiai#tn supporters had hoped

for. Later, it turned out that the purchases were made mainly within European Union Emission Trading
Schemeand it led to oversupply of emission allowances and to the crash of.pFitessconomic crisis
within EU made the future of CDM even more uncert&iill, these activities are maintained by industries
from developed countries, which care about the enwient and think about diversification of their

activities.

The rext subsection focuses on local renewable energy proj&tis.energy sector has been a fertile ground

for the application obperational research (OR) models amethods (Antunes and Mar§mi2003)Greece is

a mountain country meaning that there is almost always some wind blowing from or to the sea. The number
of sunny days is also among the highest within European countries and hence, all the technologies aimed at
capturing the energy fromenewablesources are attractive froalong term perspectivd he @se study is

focused on projects seeking for initial financial support from a development bank. Such decisions are usually
taken by a board of experts from different fields of expertis¢ ihwhy the situation of group decision

making was being tested.

The last case study incorporateésergy and Environmental Corporate Responsibility (EECR) in decision
makingprocedure in addition to the already widesprbiad Present ValueNPV) of projects proposalsA

bi-objective programming model istroducedin order to provide the Pareto optimal portfolios (Pareto set)
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based on thdlet Present ValueNPV) of projects and the EECR score of firms. A systematic decision
making approach using Monte Gasimulation and mukbbjective programming is also developed in order

to deal with the inherent uncertainty in the ob
facilitates banking organizations and institutions to the selection of firmgiagbr financial support and

credit granting, within the frame of thanvironmental obligations.

5.1.  Selection of elecommuncations projects

As it was mentioned in previous chapters, various sectors of economy face problems of choice. Wide and
fast spred of new telecommunications technologies required effective tools to select options for expansion
and meeting growing demand. Technological adeancmade possible new ways of ings
telecommunications which could be only part of science fiction decadesnamges and data, transferred

via satellites, help to monitor the state of environment, prevent natural catastrophes or send the rescue teams

in case of natural or industrial disasters.

During XX-th century there was relatively stable business environmehe telecommunications industry.

Due to recent advancements in technologies and changes in markets it became necessary to recensider long
term business goals (Lindstedt et, 2008). One of the earliest applicatiorisat dealed with these new
challengs was developed by Antunes and Craveirinha (1993). The need for balanced introduction of new
service offerings was a problem which involved different and conflicting asyiatts.public and private
companies were forced to reconsider their vision, misaiahstrategies. The achievement of these revised
strategic objectives called for changes in their product portfolio, whereby companies were facing with the
problem of choosing which products would effectively contribute to the achievement of theteriong

goals.

The modernization planning of telecommunications networks, namely as far as the evolution towards new
supporting technologies and service offerings are concerned, is a problem which involves different aspects,
some of which are not directly qué#iable by an economic indicatoOn a preliminary stage, project
proposals should be grouped accordingly. Further, within assessments varying degrees of uncertainties,
driven by the maturity of technologies and products, pace of technological advars;esegatopments in

market prices, changes in competitive situation should not be overlooked.
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5.1.1. The modelfor telecommunications project selection

An example from the literature is chosen for illustrative purposes. Namely a project portfolio optimization
problem under uncertainty that refers to telecommunication projects (Niaej 20Hl). The 40candidate
projectsare classified in three types: Basic, Developing and Applied. Idi@iglojects are evaluatedjainst

five criteria:

e Cost: Total projectast including all expenses required for project complefiormillion toomans

which is the Iranian monetary unit)

e Proposed methodology: Degree of being dtgstep, well planned, scientificaliyroven,
disciplined, and proper for organization curreitss in the proposed methodolog@palitative, 0
10).

e The abilities of personnel: Work experience of project team related to concerned (opogditative,
0-10).

e Scientific and actual capability: Sciseteami f i ¢
(qualitative, G10).

e Technical capability: Ability of providing technical facilities and infrastructceslitative, 010).

The performance of each project in each criterion is expressed as a uniform distribution with minimal and
maximal probablesalues (see Niaei et aR011, for the exact data). The weights of criteria in the original
paper were determined from expert judgment and fit appropriate distributiotise turrent case, this
information is simplified by using for all of them trianguldistribution with the parameters showrilaible

5-1.

Table 5-1. Parameters for criteria weigltsiangular distributios.

Min Mid Max
Cost 0.17 0.21 0.23
Methodology 0.12 0.13 0.14
Personnel 0.12 0.14 0.16
Scientific ability 0.11 0.13 0.15
Technical ability 0.36 0.40 0.43

In addition to the original paper, some variability in the total budget is added, which it supposed to follow a

normal distribution with mean 6 billiorobmans and standard deviation of 0.3 billion toomans. There are
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also segmentation constraints that are expressed with upper bounds to each type of project. Namely, the sum
of basic, developing and applied projects should not exceed the 20%, 70% and #h@%otdl projects in
the portfolio.

In the current subchaptera combination of three techniques is presented. MCDA, Mathematical
Programming and Monte Carlo simulation are chosen in order to deal with project portfolio optimization
with considerationof ml t i pl e criteria of projectsd evaluatio
associated (a) with projeésharacteristics angb) with the decision situationThe uncertainty in the
decision and the project parameters is represented with figbalstributions (a stochastic nature is
assumed) as it is also done in the multicriteria method SMAA (Ladhelma, €it98B; Tervonen and
Ladhelma, 2007) as well as other approaches (see e.g. Hyde2€08). The poposed method preserds

special ase of ITA: the twephase approacdind comparergesults obtained with clasditA.

The required models and the whole solution process was devdlopbkd General Algebraic Modab
System (GAMS, see e.g. Brooke et al., 1988) using MIP solver CPLEX 1t.Mibed Integer
Programming models optimization. The solution time was approximately about 3 minutes on Intel Pentium

i5 at 2.53 GHz for the 1000 Monte Carlo simulatioraptimizations.
5.1.2. Results anddiscussionon two-phaselTA

Thetheoretical basics for ih unit are described in Chapter 2.3. The number of iterations of the first round
was set to 1000. During the second phaswasirtfdroe pr i n

whilethere wastills ome f |l exi bility on model s constraints.

The first observation after execution of phase 1 was the absence of any dominant portfolio. Among the 1000
optimal portfolios at most two were the same. So, it is obvious that it was too early to draw conclusions
about the most widely accepted portfolicsf from the first phase. Moreover, the number of projects in

optimal portfolios varied from 21 to 27.

Subsequently, some membership thresholds (figreeno
tested. The symmetric caseeaning that if thegreen threshold iEP and the red threshold is(®6, was
adopted for calculation®\s it is obvious, with growth of the membership threshpldposals are easier

attributed either to green or red sets as showrabie 5-2.

Afterwards, different seeds for the random number generation in Monte Carlo simulation in order to check
the resultsd r ob Ttuttceresforbbadiffeeentseedsvere very sntlar, meaning that

15 different Monte Carlo sinhationi optimization sessionsereperformed. In the first phase in 3 out of 15
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runs the red set daone project less (2 instead of 3). However, in the second phase, 14 out of 15 runs

provided exactly the same optimal portfolio.

Table 5-2. Influence ofmembershp threshold o population of green and red sets

Membership threshold Green Red Grey
100% 6 0 34
99.5 % 7 1 32
99% 7 3 30
98% 7 3 30
95% 8 3 29
90% 10 5 25

Table 5-3. Frequency of appearance for projects in optimal portfolios

# Freq # Freq
1 944 21 882
2 4 22 249
3 674 23 150
4 76 24 548
5 1000 25 453
6 738 26 503
7 129 27 986
8 1000 28 732
9 1 29 1000
10 386 30 920
11 386 31 854
12 129 32 809
13 619 33 331
14 66 34 1000
15 1000 35 889
16 606 36 732
17 6 37 323
18 235 38 845
19 1000 39 623
20 711 40 1000

* Bold are projects from the green sialic are the ones from the red set.
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The run of phase one, with membership thoés of 99% provided following results:

Green set- 7 projects (5, 8, 15, 19, 29, 34, 40)

Red set - 3 projects (2,9, 17)

Grey set - 30 projects (the rest)

The frequency of projectsdé aplpdedBance in opti mal

Therefore, from the first phase it isfedo conclude that projects 5, 8, 15, 19, 29, 34 and 40 are in the final
portfolio under any circumstances while there is no chance for projects 2, 9 and 17 to enter the final
portfolio. Subsequently, on rephase under careful focus dineremaining projects of the grey set.

In the second phase only 30 projects from greypaeticipatedas the values of the decision variables for

green and red projects wer e f i xefdnctibnocoefiiclents azentte 7 0 0

frequencies fronTable 5-3. Due to the fact that there are still stochastic parametehe itonstraints (the
cost of each projects and the total budget) it is necessary to perform a Monte Carlo simuolatimization
session with 1000 iterations, according to the equation (2.3).

Even in the second phaselaarly dominating portfolias not appearing. The optimal portfolio of highest
frequency (portfolio A) is obtained in 22.6% of iterations (226/1000) while the nextfreqsient (portfolio
B) is obtained in the 19% of the iterations (190/1000). Theserwst frequent portfoliobave 23 and 22
projects respectively. Thalifference isonly oneproject namely project 16 which is present in portfolio A

and not in portftio B probably due to budget violation in respective runs.

It is interesting to comparthe results of the twghase approach witther e sul t s from a #fc

approach, considering only expected values for uncertain parameters. Further in thechaaitly shown

that a significant part of information is left out of the analysis and the DM is losing essential information. In
this case multicriteria scores and, hence, the objective function coefficients would be crisp numbers as well
as all parameterof constraints in the MP model. The whole process would be similar to the approaches
described among others by Abu Taleb et al. (1995), Mavrotas et al. (2003; 2006; 2008) where the uncertainty
was not addressed. The difference with the trichotomic aplprisaon the results themselves as well as the

information conveyed by these results. Results from both methods are shbaid®-4.

It can be seen thdhe obtained results are almost identical. Only projedis &nd #24 are interchanged,
whichareboth n gr oup of faampelsim@adcbaragerisiigéable 5-Sreveals thain some
criteria#24 performs weakduut it is characterized by less variation mieg more narrow distributions. The
final decision(to violate the available budget constraint and if yes, which of 2 projects to cl®esk)o

be made by a person according to the main gfdiee whole process
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Table54. Opt i mall portf odn al dvo-phase IHAcapproaches t i

Conventionz Trichotomic Conventiona Trichotomic

(expected (two-phase (expected (two-phase

Project# values) approach)| Project# values)  approach)
1 1 1 21 1 1
2 0 0 22 0 0
3 1 1 23 0 0
4 0 0 24* 1 0
5 1 1 25 0 0
6 1 1 26 0 0
7 0 0 27 1 1
8 1 1 28 1 1
9 0 0 29 1 1
10 0 0 30 1 1
11 0 0 31 1 1
12 0 0 32 1 1
13 1 1 33 0 0
14 0 0 34 1 1
15 1 1 35 1 1
16* 0 1 36 1 1
17 0 0 37 0 0
18 0 0 38 1 1
19 1 1 39 1 1
20 1 1 40 1 1

Table 5-5. Characteristics of borderline projeéts6 and#24.

Cost Methodology Personnel Scientific ability Technical ability
min  max min max min max min max min max
Proje¢ 16 374 486 2 6 4 8 1 3 2 6
Project24 385 416 1 4 1 4 1 5 3 5

Seeing similar results one may wonder what is the contribution of the trichotomic approach. The real
contribution is thatt provides the DM with extra information. In the conventional apph the DM is not
aware of the certainty degree for each project t
contrast, in the case of ITA the expert is aware of the degree of certainty for each project. This is fruitful
information that mg lead to better decisions (e.g. further adjustment of the total budget, identification of

vulnerable and stable projects etidere, the fact of two similar projects provides the chance to perform a
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direct comparison before deciding about the final sielecind maybe to reconsider initial assumptions and

requirements.
5.1.3. Results anddiscussionon iterative ITA

For the comparison of outcomes the iterative version of the trichotomic approach by gradually reducing the
uncertainty of grey projects in each cysl@s applied. The reduction of uncertainty was done by the
symmetric narrowing of their range of performances as expressed in the corresponding distributions
provided inTable 5-1. A reduction step of 25% of the range was applieamng that new min and max of

the uniform distribution were calculated by the following formula:

0,
min® = min+ k x 25%

x (Max- min)

506 (5.1)

2 .
max® = max-k x x (max min

Therefore, sampling for Monte Carlo simulation was performed by all the more narrow ranges of the
uniform distributions for grey projects. The midrange was reacheduoth fiteration which meant there was

no sampling buthe midrange as the one and only representative value.

From Table 5-6 it is obvious that the uncertainty reduction within grey projects drives gradually in more
populated red and green sets. For example, it caoheuded that a DM is more confident about e.g. the
inclusion of project 38 than 35, because it enters the green set in an earlier iteration. Similarly, one can be
more sure about the exclusion of project 17 (excluded from the first round) than ot firbjexcluded in

the third round).

Table 5-6. Results for iterative version of ITA

Uncertainty

reduction Red se! Project id Green se Project id
0% 3 2917 7 5,8,15,19,29,34,40
25% 3 2917 7 5,8,15,19,2,34,40
50% 8 2,4,79/12,14,17,23 11 1,5,8,15,19,21,27,29,34,38,40
75% 8 2,4,79,12,14,17,23 14  1,5,8,15,19,21,27,28,29,30,34,35,38,40
100% 11 2,4,7,9,10,12,14,17,22,23,: 18 1,5,8,13,15,19,20,21,27,28,29,30,32,34,35,38,3!
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When all uncertainty isemoved from grey projects (row of 100%) the unique optimal portfolio is still not
reached because some uncertaisitglatal to the weights of criteria and the total budget remains. However,

18 green projects from the eventually 23 are identified. It ldhioet remembered that once a project enters
green or red sets in iterati@rit remains there for all subsequent iterations, tthe green and red projects of
iteration k are nested in respective sets of the consecutive iterdtighsk+2, .... It mustbe noted that
narrowing of uncertainty intervals refers only to grey projects of a specific iteration. For example, when the
uncertainty is reduced from 50% to 75%, this reduction is not applied in the 8 red and 11 green projects of
the second iteration bwnly for the remaining 21 grey projects. The concept is that on every iteration
increased amount of information is obtained only for the currently grey projects in order to reduce their
performanceds variability. isfished the finad ponidiimtlseuttolpec | e o
the same as with thevo-phase approacfihe main assistance here lies in the fact of gradual selection of
projects, which is longer and covers more uncertain parameters then the previoblerenegain, two
projectsar e ficl ose winnerso and there is room for the

the assigned task.
5.1.4. Conclusions for classic andwo-phase ITA

An illustrative example from the literature was used to demonstrate and compare teachpep of the ITA
method. One of the most useful advantages of the method is the additional information delivered to the DM
and the direct control she/he has over the final solution (the disclosure of the borderline projects being a
significant hint).

The two-phase approach may be considered as a short version of iterative ITA which suits better for
relatively small set of project proposals. While the first part is the same for both apprélaekespnd part
represents the majority principlenere the ariability of the results is reduced and the portfolio(s) of greater
acceptancés(are easily recognized. Robustness of results for the selection of telecommunications projects
was additionally tested through different pseudedom seeds of Monte Carlionsilation and there were no

significant differences between them.

The iterative version has the advantage of gradual separation of projects between green and red sets giving
information to the DM about t h e robolor exddusionifronyit pr o ]
(according to the cycle that each project is included in the green or the red se@d @océdure is more

suitable for problems with large number of proposals seeking for support. Within the modeling procedure
uncertain futureoutcomes may be modeleddhgh different probability distributions. While the current

case study final portfolios from both approaches were the same, it would not be true in case of complicated

probability distributions of several parameters. Stillp tprojects with similar characteristics leave some
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space for interpretation of results and possible review of some constraints. If closer pair wise comparison
reveals increased importance of both of them, it is not prohibited to include them into theel@asion.

Still, it is easier to reconsider the future of one or two items instead of the whole portfolio.

5.2.  Selecting a portfolio of CDM projects

In the | ast two centuries energy became one of 1
devebpment. Especially now, when the scarcityfadsil fuelsand the impact of energy production and
consumption to climate change were realized, the issue of energy is high in the global agenda. Energy
projects are characterized by a variety of technologiesthey are spread all around the world as they are
related with indigenous sources. A special case of energy projects are those emerged recently in order to deal
with the Climate Change issue. The international effort against the global phenomegiomabfvarming

found its expression i n e almtdrgpveran®edta Pawdl dniClimate Ghanges t a b
(IPCC) and United Nation Framework Convention for Climate Change (UNFQG®GJo Protocolto the

UNFCCC provided several options in ordeo reducegreenhouse ga$sHG) emissions. One of themas

the Clean Development Mechanism (CDM) whighivethe possibility to offset carbon emissions in the

shape of environmentally friendly activiti@ghich turned out to benostly energy relategrgects Broadly

speaking they are projects implemented in developing countries using technology anthdiricor

devel oped countri es. The benefit for the funders
Certified Emission Reduction units (BE ) in order to r eduthe casehsaiyr el

presented further refers to this kind of projects and it is essentially a project portfolio selection .problem

The subject obpecific case study refers to climate related projebish aremainly related to energy either

from the supply side or from the side of energy efficiency. It is a growing domain of activities with many
parties involved. Among main players are governments, who plamaoducedifferent climate friendly
policies andaddress complex objectives of local development and employment as well as financial
institutions and developersearcing for perspective ways for investments. In addition, private companies
(both big and small) who care about public perception atsyfinance and support green activities. Even
individual people interested in sustainable future, can buy carbon credits to offset their everyday GHG

emissions.

Investors always face the problem of choice. Usually, the possibilities and options to invegtar@ne
greater than the available budget. One of the main tasks for a DMp&ftoma balanced selectionith

consideration otechnology, budde policies,geographical distribution and other constraints that may be
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imposed by him/her. Moreover, the put of the projects is rarely known with certaiatythe decision level

(a priori). Therefore, irthe current case the problem is stated as: which portfolio of climate related projects
should be selected by an entity, given information about the totgehuablicy and technical conditions that

mu st be met as well as the inherent uncertainty

constituted from projects under the CDM and the relevant data are drawn from the CDM database.

WithintheCDM pr oj ectsd selection two techniques are ci
Monte Carlo simulatiorthat helpsto take into account numerous constraints and the inherent uncertainty
associated with the pr oj e cepreséntegp with probabiity distrieutionsT(h e u 1
stochastic nature is assumed) as it is assumedn othersimilar research workd_adhelma et al., 1998;
Tervonen and Ladhelma, 2007; Hyde et al., 200Bg problem is solved in iterative wanging decisia

rounds. In each round a series of Monte Carlo simulatiol8 optimizations is performed providing
information about the membership of every project in resulting portfolios. This informatggriegated in

order to separatprojects into green, red drgrey sets. From round to round the variation (measure of
uncertainty) of grey projecis reducel so that the whole process converges to a final portfolio. The output

of the process incorporates important information of certalagreeassociated withwery project which is

included in the final portfolio.
521. Creating the Auniverse of projectso

In the currentcase studya hypothetic set of projects, based on real data, is used. The main information
source is CDM database, elaborated byBPNRisoe Centre. Every activity, in order to be registered,
submits a project design document (PDD) where hitsic features are described and calculated.
Subsequently, during their operatjoregistered projects are subject to performance monitoring and

verification according tanadopted schedule.

The majority of CDM activities araenewable energy projects, which are representethdyollowing

technologies:
e Wind energy,
e Hydro power plant (HPP),
e Biomass,
e Landfill gas,
e Methane avoidance,
e Energy efficiecy in industry (EE).
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As wind and hydro electricity generation are dominant technologies a great number of projects fall in this
category. In order to refine the decision process further split of these projects into small scale (up to 15 MW

of installed caacity) and large scale (more than 15 MW) ones is perfor8redll scale projects are labdl

with ASO0O at the beginni ngl A(LDWI (nLdWi nSIHYy dlrbby)d,r oa n.d Tl h

create sulgroups for other technologies sirtbe remainingprojects are nahatnumerous.

Wind electricity generation is the largest set of projects and most installatidosaieglin China and India.
Technology success may be attributed to strong incentives that these hosting countries created during
previows years (Pechak et al., 2011). Within hydro power generation projects there are ones that are focused
on modernizationof already existing, and those which started from zero (which in some cases means
construction of a new damilydro power plants bring gether several issues, mainly environmental, both

on local and international levels. In case of international rivers, active construction of dams and hydro power
plants in one country may cause water shortages during dry seasons or other related pnobitems i
countries, which are subsequent in the river flow. This is a complicated issue especially in SagitAsia
(WWDR4, 2012) Biomass covers many sub technologies, mainly related to agricultural wastes of different
kinds. Most of these projects ammall scale and possess strong environmental potential, which makes them
similar to power generation from landfill gas and methane avoidance on waste water treatment fHudities.
objective of landfill gas projects is to install a highly efficient coltattsystem to capture and destroy
methane by flaring at high temperatures and use the generated heat for the needs of communities. Generally,
the avoidance and reduction of methane emissions is very important not only from the public health point
view. Methane is characterized by the global warming pote(@&V/P) 21 times greater of CGand on the
planetary scale makes a considerable input to the overall greergfferte The biggest variety is found

within the energy efficiency (EE) projects for own eétimity generation from waste heat on such industrial

facilities as cement plants, iron and steel productionfeonus metal production and others.

Geographical distribution covers 17 countridsgentina, Brazil, Chile, China, Ecuador, Egypt, Honduras,
India, Indonesia, Malaysia, Mexico, Peru, Philippines, South Africa, South Korea, Thailand, and Vietnam.
According to the Kyoto Protocol classification, all these countries are considered to be developing. But each
of them has many specific characteristighich should be taken into account before the selection process
starts. Folinstance the state support for wind energy projects led China to become a major player in this
field and within few years it helped to develop a new industisn scratch On tre other side, for many

other developing countries, last technology developments are still not accessible due to lack of financial
resources and knowledge. Without technology transfers, they may follohistogic polluting trends of
industrialised countes. Instead, CDM demonstrates an effective way to move quickly to environmentally

sound and sustainable practices, institutions and technologies (Karakosta et al., 2010).
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Within evaluationstrongemphasis igput on environmental performance. Actually, &isability compound

was supposed to be very strong on the stage of CDM development. But reality turned out to be not as
fgreend as expected. These criteria were very vag
companies began to perfosustainability check of the projects, both existing and under development. That

is how demand for premium CERs occurred and the best known is Gold Standard (GS) ldibeditifies

renewable energy and energy efficiency carbon offset projects to e¢hatitbey all demonstrate real and
permanent greenhouse gas reductions and sustainable development benefits in local communities that are

measured, reported and verified.

Table 5-7. Input datafor CDM projeds by countries and technologies.

Swina Luina Sy Liyoro Biomass 01 Methane, EEown  GS Buge KCER! Totn

China 5 53 21 27 2 6 4 10 40 673 2588 | 128
India 36 4 10 5 15 1 2 6 10 979 17050 | 79
Argentina 0 0 0 0 1 1 0 0 o 42 305 2
Brazil 0 1 4 4 0 2 0 1 0 541 885 12
Chile 0 1 2 3 2 0 0 0 1 490 1346 8
Ecuador 1 0 0 2 0 0 0 0 0 62 210 3
Egypt 0 1 0 0 0 0 0 1 o 135 359 2
Honduras 0 0 1 0 0 0 1 0 1 10 54 2
Indonesia 0 0 0 0 2 1 3 0 3 52 361 6
Malaysi 0 0 0 0 5 1 4 0 0 44 686 10
Mexico 0 4 0 1 0 3 1 0 o 13% 2101 9
Peru 0 0 3 3 0 0 0 0 o 360 879 6
Philippines 0 1 0 0 1 0 1 1 o 104 191 4
South Africa | 0 0 0 0 1 2 1 0 o 3 133 4
South Korea | 1 1 2 1 0 0 0 0 0o 243 501 5
Thailand 0 0 0 0 2 1 10 1 6 161 958 14
Vietnam 0 1 2 3 0 0 0 0 2 119 198 6
Gold Standard, 3 33 2 2 8 2 12 1 63

Budget MUS§ 436 6861 400 25% 389 165 105 5983 2846

KCERsyear | 639 11059 1257 6898 179% 3075 1439 2644 6242

Totals 43 67 45 49 31 18 27 20 63 11501 28805 | 300

As it was mentioned before, the candidate projects are taken from UNEP Risoe Centre database. Only
registered projects are under consideration as they have more rich information. A summary of the input data
is presented inTable 57. 300 representative projects with specific technology and geographical

characteristics in order to illustrat€eA methodwere taken as inpuSolar, geothermal, tidal and several

61



other types of energy efficiency projects are excluded from selectiorodhe tack of initial information

(e.g. no investment costs).

The portfolio selection has a strong emphasis on environmental performance withtespeent situation
on CDM map.Sincealready existing project@re the input datdor environmental cteria the GS labkng

isused. Inthemoded, vai | abil ity of GS certification is repr

Within the model projects were coded according to technology, i.e. Small scale wi#8; llarge scale
wind: 44110, Small scale hydrol11-155, Large scale hydro: 15®4, Biomass: 20235, EE own
generation: 23@55, Landfill gas: 25&@73, Methane avoidance: 2300.

5.2.2. The modelfor CDM project selection

If not the most significant, one of the most critical criteria in specific decistaat&gin is the amount of

issued CERs. When a project is submitted the expected amount of CERs is declared. However, past
experience from previous projects shows that declared amount usually differsldlioared CERs after
implementation of the activityAn attempt to quantify this uncertainty by examiniegrlierpr oj ect s 0
issuance success according to their technology was made. The issuance success was defined as the ratic
between initially expected and actual CERs and it is catiedlin the CDM databador projects that have

one or more years of implementatidBince projects may vary by their duration, 10 years or 7 years
(renewable) crediting period, it was feasible to consider the annual amount of CERs as a common basis.
With consideration of availde historical data,Table 5-8 presents the levels of CERs issuance in

comparison with expected amounts from PDDs.

Table 5-8. Distribution characteristics of CERs issuance success

Total Average level of issuan Standard deviation of

projects successgvis) issuance successdi9
wind 370 89% 24%
Hydro 465 85% 39%
Biomass 174 84% 35%
EE own generation 97 7% 25%
Landfill 90 52% 36%
Methane avoidance 122 61% 38%

In current nodel actual CERs of the portfolio constitute the objective function for maximization. Given the
uncertainty characterizing issuance success of each project according to its technology, these values are

drawn from the corresponding normal distributions witlaracteristics frortable 5-8. Thereforeobjective
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function coefficients are random parameters sampled from the normal distribution with following

characteristics:
cY = expcerl normalavis, sdis) 3

wherecY, is the objective function coefficient declaring actual CERs foi-theproject according to theth
sampling,expcer is expected CERs declared during submission of the pr@ei,is average issuance
success for technologythat characterizes projecandsdis is standard deviation of the issuance success of
technologyj. The two latter paramers are taken fromiable 5-8. The second term of the product indicates
that the parameter is sampled from a normal distribution with specific characteristics. Therefore, the
objective function of the problemisllowing and is lased or(4.3):

P
maxZ® =>"q" X (5.3)

i=1

whereZ? is the total number of kCERs achived by the portfdiidin the iterationt of the Monte Carlo
simulation,c,® is the number of KCERs from tleh project as it is sampled in tiih iteration andX; is a
binary variable indicating if thieth project is includedXj=1) or excludedX;=0) from the optimal portfolio.

Constraints of the problem express policy limitations imposed by the decision maker. They have to do with
the desired teclutogy mixture as well as the geographical distribution of the projects in final portfolio. In

present case the imposed constraints are:
(a) Budget constraint

The total investment budget for the selected projects must be less than 2 billion US$ (albjdo pr
accumulate to 11.5 billion US$)

3 budg X <2000 (54)
i=1

wherebudg is the budet of thei-th project in million US$
(b) Geographical distribution

Certain conditions about the geographical distribution of projects are incorporated in the model as it is
usualy the case in real investment problems. The following conditions are exeneples just to liistrate

modding capabilities.

b1) At most 40% of allocated funds should be in projects in China

> budg X 30.42'3: budg X (5.5)

ieChina
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b2) At most 30% of allocated funds should be in projects in India

Y budg X <0. 32 budg X (5.6)
ielndia
b3) At least 30% of the selected projects must be located in Latin America

P

> X203 X (5.7)
ieLatAm i=1
(c) Technology mix

There are conditions that can be imposedffect technology mix of the final portfolio. This is often
required in order to obtain a more or less balanced partfola voi di ng t he Aall eggs
After several initialtrial and errorunsof the spontaneous model (without technology mix constraintsi and
becomes obvious that minimum or a maximum degree of representation of each technology imahe f

portfolio should be maintainedn the current model teeadditional constraints are:

cl) At least 40% of allocated funds should be in windegy installationgsmall and large scale)

> budg X >0. 42 budg X (5.8)

iewind

c2) At least 30% of allocated funds shogtdtohydropower installationgsmall and large scale)

> budg X 20.32 budg X (5.9)

ieHydro

¢3) Remaining four technologies should not have (separately) more than 10% of the afloudsed

uesgnasstdg X =0. 12 budg X (5.10)
.EEZE:ﬁ budg X <0. 12 budg X (5.11)
.e;;ﬁ.l. budg % <0. 12 budg X (512

> budg X <0. 12 budg X (5.13)

ieMethAv

c4) The Gold Standard projects should be at least 30% of total projects in the final portfolio
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> X =2 o.3§P: X; (5.19

ieGoldstd

The before mentionecconstraints are examples lrhitations that in a real case any decision maker may
face. h case of needf evenmore constraintssuch asmutually exclusive, precedent projects amter
logical conditionscan be incorporateihto the model Moreover, if annual cash flows are available,
constraints on annual expenses can also be incorporated. In gireenabddhg with Integer Programming

in project portfolo selection is very fbeble.
5.2.3. Resuts and discussion for classitTA

The ITA method was applied to specific problem irolbofving way: Five rounds of the iterative process

wer e defined a priori ( d e,rhenteRal)y Fromi rouhd tadirbundhetgieye 1 ni
project s & p e rwhsosampéed &roen a corridor aforresponding issuance sucdess di st r i but |
Particularly the standard deviation of respective probability distributias reducedoy 25% in each
subsequent round as shownHigure 5-1. Consequently, ithe final round the standard deviation of grey

projectswasconsidered to be zero so that for them deterministic values of issuance stereessumed.

Figure 5-1. Variancereduction from round to round for the grey projégiobability distribution

The model and the whole solution procesze developd in the General Algebraic Molileg System
(GAMS, see e.g. Brooke et al., 1988) using the MIP solver CPLEX fbt optimizing the Mixed Integer

Programming models. The number of iterations in Monte Carlo simulation was set toTh@0olution
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time varied from 17 20 minutes across the five rounds in an Intel Pentium i5 at 2.53 vi#tizh madethe

whole decigbn process not computationally prohibitive

The membership threshold was set to 99% for the green set and 1% for the red set. This meant that projects
that appeared ithefinal portfolio more than 990 times over the 1000 iterations were considered tedme g

projects, wile thoseprojects appeaing less than 10 times in total wedescarded

Initially, the simulation optimization process w
issuance success$l € sdis). Specifically, for calculatiorof every objective function coefficiert; the
equation(43)used nor mal di st r iTdble 5-8. Surpssingly granmilpe 1100 pprifaiios 0 m
initially obtained none of them were the same. Therefore, no conclusions about a dominant portfolio could
be extracted from the first round. The number of projects in portfolios varied from 70 tact0Ss these
iterations. EventuallylO projects were classified as green, 77 as red and the remaining 213 as grey.

In the seconditeration according to theequation(4.4), values of green pfoect s® deci si on Vv
fixed to be to 1 and those of the red projects to 0. The standard deviation of grey projects was reduced to
0.751 sdiswhilefor green and red projecitsvas | eft i n the previ othesecond und 0 s
round was 16 green, 100 red and 184 grey projects.

In thethird round,thev al ues of green projectsd decision vari
those of red projects as 0 in the modéie sandard deviation of grey projects was reduced td Gs8is

The output othethird round was 27 green projects, 117 red projects and 15@@giegts

The output of the fourth round was 49 green projects, 151 red projects amthtiningl100 were grey for

whichthe standard deviation was set to be 0.28lis

In the fifth and final round the standard deviation of remaining 100 grey projects was set to zero which
meant their issuance success was considered as deterministic value taking the average vEdinefEogn

Then, allgrey projects were fully allocated between green (51) and red sets (49). Conclusively, the whole
process ended with 100 green and 200 red projedisefinal round the obtained CERs calculated from the

final portfolio varied from 7089 to 8164 with a nmegalue of 7597 and a standard deviation of 190.IDhe

of projects as well as the decision round of their incorporation (for the green set) or their exclusion (for the
red set) from the final portfolio is illustrated graphicallyHigure 5-2. The darker the shading of a cell is,

the earlier round it enters green or red sets,itiése s ooner a conclusion about
goo) in the decision process i s mad efconfidenceoabdute r wo
their inclusion (green set) or their exclusion (red set) from the final portfolio. Therefore, every project is
accompanied not only with Agoo or fAno goo inform

decision.It is a cetain way to prioritize projects anid very useful for decision makers fine presence of
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underl ying uncert ai ntThe acalysis pihefipakportfalicdis ppesentédarfaliea n ¢ e .
5-9.

300 36] 40, 48 56 128 130 136 137 138
165 18§ 192 196 199 204 206
219 234 235 2349 237 23§

256 269 270 271 272 273
289 296 297 298 299 300

(a) The green set

6 10
441 45
49 51 52 55( 57| 58 59 60 65 68
70 72| 73] 74 75 78 82 83 84 85 87| 88
89 90 O5( 96 97| 98 99 100 10 106 10 110
11 122 12 12 13 13 139 140
1411 14 14 147 14 151} 15 157 159 16 163 16 169
171 172 17 17 18 18 187 189 19 193 19 197
20 20 209 212 213 21 2200 223 2249 226 230 232 24
24 24 253 25 258 259 260 268 274 279 280 281 283 287 29
(b) The red set
Figure 5-2. Finalgreen and red sets along withrtaintydegree for each project
It is noteworthy to mention that a hapve approac

(expected) values of issuansuccess and maximize the average CERs of the final portfolio, ignoring the
variance associated with projectsé performance.
single run (solution of an IP problem) is the same as in ITA apprésmiever, there is no information
about performance variations of the final portfolio, as well as there is no supportive evidence about the
degree of certainty for each project. In addition, if probability distributions were not symmetric the result of

thetwo approaches may differ which means different final portfolios.
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Table 5-9. Final selection by countries and technologies

SWind Lwind SHydrc LHydro Biomas: Lag;j;‘ill a,\\/l/gitcri]:rr:geggrllze?;\t/ir:rx GS ?Auggg kSE;S/ p:o?;?:lts

China 0 2 2 7 1 6 3 2 8 799 3828 23
India 4 1 1 0 10 0 1 5 10 204 1063 22
Argentina 0 0 0 0 1 1 0 0 0 42 305 2
Brazil 0 0 3 2 0 2 0 1 0 106 1121 8
Chile 0 0 2 2 1 0 0 0 0 119 278 5
Ecuador 1 0 0 2 0 0 0 0 0 62 210 3
Egypt 0 1 0 0 0 0 0 1 0 135 359 2
Honduras 0 0 1 0 0 0 1 0 1 10 54 2
Indonesia 0 0 0 0 1 0 3 0 3 17 192 4
Malaysia 0 0 0 0 3 0 4 0 0 29 591 7
Mexico 0 1 0 0 0 3 1 0 0 220 751 5
Peru 0 0 3 2 0 0 0 0 0 182 485 5
Philippines 0 0 0 0 0 0 0 0 0 0 0 0
South Africa 0 0 0 0 1 1 0 0 0 16.5 399 2
South Korea| 0 0 0 0 0 0 0 0 0 0 0 0
Thailand 0 0 0 0 0 1 7 0 6 33 638 8
Vietnam 0 0 1 1 0 0 0 0 2 24 43 2
Gold

Standard 3 1 2 2 7 2 12 1 30
BudgetMUSY 33 767 111 595 163 88 68 173 241
kCERsyear 54 1634 389 2255 1108 2713 1181 983 1287
Total 5 5 13 16 18 14 20 9 30 1998.5 10317 100

The geographical distribution is determined more or less by imposed constraintsady ito observthe
factthat there are still countries that are notspre in the final selection (Philippines and South Korea) as it
is not explicitly required by the regional constraints. Moreover, it was found that projects from Latin
Americawere entering the final portfolio from the first rounds. On the contridmsy,mgority of wind and

hydro projects from China and India are excluded very early in the decision prscessling toanother
requirementll available technologies are present intig of final portfolio. Because of restricted budget

(2 billion US$), mos of wind projects are excluded due to high initial investment costs. Thus, the share of
Chinese projects dropped significantlyhaltigh there we some projects with Gold Standard label among
them. It was also observed that conditions for the HPPs wene fanmrable than those of the wind projects.

In addition, the availability of already existing dam cha positive effect ast correspondd to lower

investment cost.
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Generally, consideration of minimal share of Gold Stangaojectshas a positive inflence. In the final
portfolio there are 30% qdfremium labedd projects while initially, in project universe, they had the share of
21%.The proportion of GS projects may be controlled by the decision ntakergh implied constraintén
thecurrent casgall GS labetd projects for HPPs, Landfill gas, Methane avoidance and EE in industry are in

the final selection.

It is nota surprise that the share of methane related projects is significant in the final portfolio (about 1/3).
With modest investments therovide more emission reductions and thus CERs. One of the reasons is the
higher Global Worming Potential (GWP) of methane towards. S&condly, these projects provide more of
direct sustainability benefits such as improved air and water quality, dodtien of dangerous wastes

within local communities.

Eventualy, the final portfolio represents714% of the investments1 comparison with initiall1.5 billion

US$ of 300 projectswhile it accounts for38% of t he proj ect (=2880b CERS)dne 6 s t
the current case studihe aimwas to maximize carbon creditsven though their final amount is not a

certain fixed number. The final portfolio demonstdateow it is possible to make a balanced selection
regarding financial as well as techndl@®] and geographical constrd$. In this exampl¢éhe modeling of
uncertainty in the most uncertain among prdjegptirameters (CERsS) was tested. Contrary to wrest w
expected, the dominant technologies (wind and hydro) in the available project unigerset sdavorable

in the final portfolig probably due to their increased investment cost. Becaube lifnited available total

budget, lower investment cost projeatare preferred even from the early rounds ofgbkecton process.

5.3. RES projects n Hellas

The capability of reliable provision of energy to meet a vast range of needs and requirements in residential,
services/commerce, agriculture, industrial and transportation sectors, is one of the most distinctive features
of modern developed sodies. From supplying power and heat to production systems to satisfying heating,

cooling, lighting, and mobility needs, energy is pervasive in everydagAliifeines and Henriques 2016)

The geographical position of Greece is extremely favorable for tlesatign of renewable energy
installations. With more than 250 days of sunsliii®no surprise to have an excessive amount of proposals
for photovoltaic power plants. While solar collectors are already a widespread technology for hot water
supply in housholds, PVs are only gaining populariGurrently, sate support for new energy technologies

is also of crucial importance since it is still cheaper to obtain electricity from fossil fuels. The same stands

for wind installations too.
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The basis of case stuis 133 Greek project proposals covering three RES technologies (wind, small hydro,
photovoltaic). These applications were evaluated against 5 criteria, naregipnal development
employmenteconomicperformance (expressed with IRR)O, emission redction and bBnd useThe data

for this problem are available in Makryveli@011).

In thissubdapterlTA is used for a case study with multiple decision makers. The preference of every expert
is expressed by assigning their own weights of importanceet@valuation criteria. Hence, each decision
maker has his/her own optimal portfolio of projects. Group ITA is designed to gradually add projects to the
portfolio according to the concordance within the team members until a final portfolio is reachedt A gr
advantage of Group ITA is that it also provides a measure of consensus for the final portfolio of projects
(Consensus Index) as well as concordance indices for each project that is either selected or rejected.

531. Description of RES projectsd6 propos

In order to start elaboration of proposals, it is necessary to perform their evaluationrreat example, the
MCDA method used for muHiriteria project evaluation is the value function method (von Winderfeldt and

Edwards, 1986). The partial value fuoctfor each criterion has the following form:

1_ eck%k
=

(5.15)

whereyy is a score ofi-th alternative ink-th criterion, Xy is a linear score normalized to [0,1] @fth

alternative irk-th criterion andcy is the value function coefficient for criteridn Value function coefficients

(c) are defined according to the dispersi o f alternativesd perfor mance
accumulation of performances in the upper half of criterion range indicates a convex value function while an
accumulation in the lower half leads to a concave value function. In this waystirenilating ability of

criteria is enhanced. Ithe present caséhe following values for value function coefficientse defined:

¢:=0.001 (linear)¢, = -1 (concave)gs =-3 (concave)g, =-5 (concave)gs =5 (convex).
Thexy are obtained as follows:

(a) For maximization criteria:

Vi Ve
Xk = VL\/IAX _ VILVHN (5.16)

(b) For minimization criteria
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MAX
Vi — Vi
Xk = —wax MIN (5.17)
Vi — Vi

MIN

wherevy is raw value of thé-th alternative in thé-th criterion,v* andv""™ the maximum and minimum

values acrosk criteria. Multi-criteria scoresnfis) for each alternative are calculated using an additive value

function:

5
ms =kz=; ¥oX W (5.19

In the present cas&2 decisionmakersfrom different positions are assumed, with diverse points of view that
provided weights of importaedo theTable 5-10. These are actuallyitial weightswpk(o).

Table 5-10. Importance weights for 12 decision makers.

Criteria

Regional CO, emissions  Economic performance Employment Land

DM development reduction (IRR) positions use
1 0.14 0.13 0.46 0.13 0.14

2 0.25 0.37 0.15 0.08 0.15

3 0.41 0.21 0.03 0.14 0.21

4 0.07 0.41 0.35 0.16 0.01

5 0.02 0.02 0.50 0.33 0.13

6 0.20 0.20 0.20 0.20 0.20

7 0.15 0.5 0.40 0.02 0.18

8 0.08 0.28 0.35 0.17 0.12

9 0.22 0.25 0.28 0.17 0.08

10 0.15 0.35 0.25 0.20 0.05
11 0.21 0.30 0.15 0.15 0.19
12 0.20 0.20 0.30 0.25 0.05

Average 0.1750 0.2475 0.2850 0.1667 0.1258

The detailed classification of project proposajstechnology and geographical distribution is presented

below.
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Table 5-11. Geographical and technological distributions of projects

Wind Small hydro PV Total
EASTERN MACEDONIATHRACE
( AR) 3 2 5
ATTICA( ) ¢ &) 1 1
NORTHERN AEGEAN(NAG) 6 6
WESTERN GREECE (WGR) 1 1
WESTERN MACEDONIA (WMD) 3 6 9
EPIRUS (EPR) 3 8 11
THESSALY (THE) 1 7 9 17
IONIAN ISLANDS (ION) 1 1
CENTRAL MACEDONIA (CMD) 3 5 6 14
CRETE (CRE) 4 4
SOUTHERN AEGEAN (SAG) 1 1
PELOPPONESE (PEL) 8 1 3 12
CENTRAL GREECE (STE) 33 13 5 51
Total 53 30 50 133

5.3.2. The modelfor Hellenic RES project selection

For solving the problem of project portfolio selectian IP model is developed with congiafion of
specific constraints that need to be satisfied. Technological and geographical distributionmoséipeare

shown inTable 5-11. In addition, it is neessaryo meet suclspecific policy constraintas
e Available budgebf1 50 MU (t he tot al cost of the 133 proj
e Cost of projects in Central Greece should be less than 30% of the total cost
e Cost of projects in Peloponreshould be less than 15% of the total post

e Cost of projects in East &est Macedonia, Northern & Southern Aegean, Epirus should be greater

than 10% of the total cqgst
¢ Number of projects by technology should be between 20% and 60% of selected;projects

e Total capacity of selected projects should be greater than 300 MW.
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Thedecision variables ahe corresponding IP model are binary and indicate acceptarE) (r rejection

(X =0) of thei-th project in the final portfolio. The full model is:

133
maxZ=> ms X
i=1
st
133

D costX; =C

i=1

C <150
D COStX; < 0.3 C

D e COStX < 0.1%C

gostX; > 0.kC

ZiEEMD,NAG,WMD, EPR SA!

133 133
0.2x> X, <D X <0.6<) X
i=1 iew i=1
133 133
0.2x Y X, <) X <0.6¢)
i=1 ieSH i=1
133 133
0.2x ) X;< ) X <0.6x) X
%= 2, 2 (519
133
> mw X >300

i=1

whereC is the total cost of the portfoliepst is the cost of projedt( i n nwyis)the installed capacityn
MW) andms is the multicriteria score of projedt The resulting model is an Broblemwith 133integer

decision variables and 11 constraints.

For the problem Groupr A method is applied with R=10 rounds (meaning that the convergence paréimeter
= 0.1). Required models and wimlsolution process is developed in General Algebraic Modeling System
(GAMS, see e.g. Brooke et al., ®)9using the MIP solver CPLEX 11.1 for optimizing Integer

Programming model§.he solution time was a few seconds for each modetorai5 64bit at & GHz.
5.3.3. Results andconclusionsfor Group ITA

Results obtained from round to round are depictdéignre 5-3 where colorintensityexpresses consensus
degree on each project. The dark green projsete selectedn early rounds and it means that thbes
beenincreased consensus for their selection. On ther atidle, the dark red projects neaejectedn early
roundssignifying increased consensus for their rejectibiis easy to bserve that from round 0 tound 3

there are no additions in the green or red sets. The same is true also for rounds 4 and 5, 6 and 7, 8 and 9. That
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is why rounds 1, 2, 3, 5, 7 and 9 do not appedfignire 5-3. It is noteworthy to highlighthe fact of
73+40=113 projects witlCD=1; 5+5=10 projects wit@D=0 and the remaining 10 in between projects.

1|12(3|4|5|6|7|8|9[10]11|12[13]|14|15[16]| 17| 18| 19] 20
21|22 23[24| 25| 26| 27|28 29[30|31[32|33|34|35|36[37[38]39]40
41|42 [43|44|45| 46| 47| 48| 49|50 |51 |52|53|54|55|56|57|58]|59]| 60
61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76| 77| 78| 79|80

< 81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96]| 97|98 99100

= 101[102(103[104|105|106|107|108|109|110{111|112|113|114|115|116{117[118[ 119|120

£ 121(122(123[124|125|126|127|128|129(130[131|132| 133
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Figure 5-3. Reslts of iterative process fdflellenicRES projects

Particular characteristics of the portfolio created by green projects in each round (consensus portfolio) are
shown inTable 5-12. The violations of constraints are denoted wéd, bold fontsBy studyingTable 5-12
decision makers may decide to select a consensus portfolio prematurehgfoee arriving to Round 10.

This can be done having in mind that they accept the respective violations chiotsist
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Table 5-12. Characteristics of consensus portfolio (green projects.only)

MW Cost STE  PEL  Other W SH PV
projects (>=300) ( < = 1 5 ((<=30%) (<=15%) (>=10%) (20%60%) (20%60%) (20%60%)

round 0 73 185.5 96.5 255% 32% 225% 15.1% 35.6% 49.3%
round 4 74 202.6 102.9 23.9% 92% 21.1% 16.2% 35.1% 48.6%
round 6 77 222.6 114.7 25.6% 82% 20.8%  16.9% 33.8% 49.4%
round 8 78 235.2 119.5 28.6% 7.9% 20.0% 17.9% 33.3% 48.7%
round 10 83 301.3 149.8 294% 10.3% 25.6% 20.5% 32.5% 47.0%

The consensus chart of the problem is depictédguare 5-4 andis calculated usingquatiorf4.12):

CI=[O'788+3><0.88+2< 0.892 2 0.928 2 0.9451 /30 91

While the same final portfolio is obtained with average weights fomy one rupnt hi s napupuve ap,
misses all information regding the consensus degree for each project as well as the consensus index for the

final portfolio.

IC

2 100% -
98% -
96% -
94% -
92% -

90% ~

88% ¢ ¢ ¢
86% -
84% -
82% ~

% of green projects in the final portfol

80% T T T T T T T T T 1

Rounds

Figure 5-4. Consensus chart f®ES project portfolio

In other words,the current approactpresens a systematic procedure towards convergence. The main

advantage of proposed GrolpA method is that not onhhelps to buildthe final portfolio, but also
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measures the degree of consensusr each project that is selected or rejected. Moreover, it provides a
measure of consensus for the final portfolio. The outcome of @fcAs not merely the final portfolio, but
al so the fAcoursed towards it that may provide fru

be used to reconsider some initialamptions.

5.4. Incorporation of Energy and Environmental Corporate

Responsibility into decision making procedure

One of the major reasons for economicesis the irrational distributiomnd useof resourcesThis problem

is one of the most common and oltpsoblems in Operations Research (OR). Financial organizations often

face theissueof selection within a set of projeproposalsto fund.As a rule, sveral OR techniques are

involved in this kind of problemsuch asviultiple Criteria Decision Analysi$MCDA) and Mathematical
Programming (MP). These techniques are widely exploited in relevant decision problems, sbheh as
portfolio selection, choice among alternative projects or investment opportunities, student selection, military
applications, capagitexpansion (see e.g. Golabi et al. 1981; Mavrotas & Rozakis 2009; Salo et al. 2011;
MartinezCosta et al.,, 2014) Usually the fbesto performance i s e
financial criteria.Other citeria related with the promotion of sastable practices, fostering green growth,

were not taken into consideration in traditional models (Hobbs and Meier 2000).

However, current financial and economic crisis, as well as growing-sooimomic and environmental
pressures, including climate aige, put seriously under question traditional development patterns. The need
to develop alternative models able to address current economic situation through the exploitation of
sustainable patterns is of crucial importance (Hobbs and Meier 2000; Dowta2@t2).One of the most
prominent examples comes from Oliveira and Antunes (2011), who developed -abijedtive model for
interactions betweeaconomy, energy and environmdat Portugal.The multisectoral model performs a
prospective analysis afhanges in the economic structure and the energy system, as well as assesses the
corresponding environmental impacts, providing decision support in policy making. This model is-a multi
objective linear programming model that allows for the explicit conaiia of distinct axes of evaluation,
generally conflicting and neeommensurate, of the merit of distinct policies. The policy recommendations
obtained are subject to the inherent uncertainty associated with the model coefficients and, therefore, they

may not be robust in face of changes of the input data.

Companies are at the heart of the Europe 2020 Strategy, taking into consideration their vital role towards

national prosperity and Sustainable Development (SBgy have to integrate social and envinoental
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concerns in their business operations and in their interaction with stakeholders on a voluntary basis, within

the framework of the Corporate Social Responsibility (CSR) concept.

Enterpriseswith vision have to address problenn a long term plan, ral become a driving force for
adoption of relative initiatives towards Afgreendo
environmentally friendly practices, within the CSR framework (Doukas et al. 2013). CSR has been
incorporated recently in det models using Data Envelopment Analysis (Lee & Farzipoor Saen, 2012),
inventory policy (Barcos et al. 2013) and supply chain (Hsueh, 2014) among otherstefiveavingof

energy and environmental policies, as an aspect of CSR is definitely smals&doés not appear to be a
systematic activity in new conditions of European market, a conclusion further confirmed by Apostolakou
and Jackson (2009) and GjRBl berg (2009 a, b) studi
detected recentlguch asin supplier selection (Hashemi et al., 2014). In this context, new tools and methods

are required to foster green entrepreneurship and green energy growth.

The innovation of the current study is the incorporation of Energy and Environmental Gsrporat
Responsibility (EECR) in decision making, supporting particularly the development of a new model for
investment evaluation. This model can assist financial institutiaith @reen loansapplication$ and
governmental bodies funding energgnvironmentbfriendly investments. The EECR performance of a firm

is considered as an evaluation criterion of the submitted project. Thereftirecinrentstudy the drivers of
optimization are two objective functions: (1) The Net Present Value (NPV) represémeé economic
dimensionthatcharacterizes each projeand (2) the EECR indefor the corporate social responsibilityat
characterizes each firm that submits the project. In this lusinessewith increased EECR are rewarded

without ignoring the ecamic performance of relevant projects.

The resulting multobjective model (specifically bjective) does not provide an optimal portfolio but a set

of Pareto optimal portfolios among which the most preferred one is selected by the decision maker. In
general, multiobjective optimization increases degrees of freedom within decision making process
providing not an optimal solution (as in single objective optimization) but a set of candidate solutions among
which the decision maker chooses. Therefore,stiteof Pareto optimal solutions (Pareto set) is essential
information in an integrated decision making approabrth to remembethat Multi-Objective Integer
Programming (MOIP) modelselp toproduce the exact Pareto set (ial the Pareto optimal sdtions).
Moreover especiallyin the last years, the mulbibjective character of project portfolio selection is addressed
with multi-objective metaheuristic methods that produce an approximation of the Pareto set (see e.g. Yu et
al. 2012; Tavana et al. 28; Hassanzadeh et al. 2014a).

The arrent case study goesne step further, considering also the uncertainty characterizing basic

parameters of the model, which are the coefficients of objective functions, namely NPV of each project and
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EECR score of e&cfirm. Given that these values are actually estimations, a systematic approach to deal
with the inherent uncertaintis adopted The latter is considered to be sfochastic nature, whera

probability distributionis usednstead of a crisp number foredh val ues of objective fu
must be noted that a similar approach for project selection problems with multiple criteria that deals with
stochastic uncertainty in projectsdé eval(BMAA) on i s
introduced by Lahdelma et al. (1998). However, SMAA cannot handle the case of multiple constraints that
are imposed to the constraints buappliedonly with independent alternatives in ICDM context.

Further in thesubdaper an innovative aproacht hat deal s wi th parametersodo
and eventually converges to the final Pareto iseintroduced It uses the main idea of the lterative
Trichotomic Approach (ITA) (Mavrotas and Pechak 2013 a, b). The version of ITA destuibeddeals

with multi-objective problems of project portfolio selection and provides information about the degree of
certainty for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area from
project level to portfab level. This kind of information is essential for teepertto be more confident to

select project portfolios that have high degree of certainty regarding their Pareto optimality. In this respect,
the decision maker has a sufficient tool to measurerdhastness of the final Pareto set as well as the
robustness of specific portfolios that appear in the final Pareto set. Robustness in project portfolio selection
has also been addressed in a different way in the works of (Liesio et al., 2008; Hassenabhd2®l4a, b).

5.4.1. Particularities of bi-objective programming

The basic idea ofhe currentsulchapteris to extend the applicability of Iterative Trichotomic Approach
(ITA) to the caseof multi-objective optimization, whichwas originally designed for rjle objective
problems of project portfolio selection. It gives information about the degree of certainty for the inclusion or
rejection of a specific project in the final portfolid.A was initially appliedfor project portfolio selection
under the frarework of Mathematical Programming and more specifically Integer Programming (IP). It was
used with a single objective function reflecting the optimization criterion. The uncertainty associated with

objective function coefficients has a stochastic natu@bgbility distributions instead of crisp numbers).

Project portfolio selection is by definition a medipjective problem. Different points of view should be
taken into account. One approach is to aggregate these points of view to a single metrianibtocrieria
analysis and subsequently optimize the resulting single objective problem where coefficients of objective
function are multicriteria scores (Mavrotas et al. 2008). Alternatively, one can use a goal programming
approach aggregating the objeetfunctions based on their distance from individual goals (see e.g. Zanakis
et al., 1995; Santhanam & Kyparisis, 1996).
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In the above mentioned approaches, the decision maker has to assign weights to criteria or goals in order to
aggregate them to a siegpbjective function (scalarization). Another approach is to keep individual criteria

as separate objective functions and proceed to a-ahjéictive optimization generating the Pareto set of the
problem (or the Pareto front in criteria space). The Bayet comprises Pareto optimal solutions (or Pareto
portfolios incurrentcase)which are examinetefore reachinghef i n a | choice. These me
posteriorio or fgenerationd methods in the- popul
objective optimization methods (first generate Pareto front, examine it, and then select the most preferred
Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate the Pareto
set (either exactly or its approxation).

5.4.2. Description of the bi-objective model

The overall procedure that was adoptedaddress multdbjective project portfolio selection problem is

graphically illustrated ifrigure 5-5.

Design of the exact Pareto front

Uncertainty management

(Monte Carlo simulation - multi objective optimization — Pareto sets)

Implementation of ITA method

e Final Pareto set and Pareto portfolios
(normal distribution)

Companies’ involvement in the optimal portfolios

Figure 5-5. The adopted procedufer the portfolio building

The idea of incorporating energy and environmental issues in Corporate Social Responsibility is rather
recent (Doukas and Psarras, 2010; Doukas et al., Z0M2). In the present aligation a multicriteria

project portfolio selection problem is addressed taking into account both economic and environmental
criteria. Given the uncertainty in quantifying economic as well as environmental performance of projects,
multi-objective ITA mehod is an appropriate choice to extract results about the robustness of obtained

project portfolios.

As it was mentionethefore,the mathematical programming model that represents the optimization problem
is a MOIP problem withseveral particulacharateristics| n t he speci fic case, f
expressed with-Q decision variables, witK; denoting the-th firm or application. More specifically:

79



if X; = 1, then the corresponding application is approved.
otherwise, ifX; = 0, the correspnding application is rejected.

Two objective functionsre considered in the modalamely theNPV of a portfolio and theEECRindex of

aportfolio. They are both additive functions of i

N
portfoliosEECR  max Z = eegr X
= (5.20)

N
portfolio'sNPV: maxZ = npy X
i=1
The parametempy andeect are NPV ofa specific project applicain andEECR score ofa certainapplied

company.

The adopted procedure used for calculation of the EECR scoring was based upon the Ordered Weighted
Average (OWA) operatorwhich had beenintroduced in 1988 by Yager. An aggregation operator is a
functionF: I"Y J wherel andJ are real intervald. denotes the set of values to be aggregated aethotes

the corresponding result of aggregation. The set of aggregation operators is dedg{edIasAn OWA

operator is an aggregation operator fiéy(, J) with an associated vector of weights= [0,1]", such that:

Fw(x) = zn: wx b (5.21)

where:Zn:vvI =1 andb; denoting the performance ahalternative in the criterigg, €, x

i-1
The criteria to be selected have to be operational, exhaustive in terms of containing all points of view,
monotonic and nonedundant since eachiterion should be countered only once, as pointed out by
Bouyssou (1990). With respect to this, the research focuses on the provision of a small but clearly
understood set of evaluation criteria, which can form a sound basis for the comparison of efiemsriad
terms of their systematic energy and environmental policy integration as a part of CSR and SD. Concisely,
all six criteria are presentéd Table 5-13. The data from these firms were mainly collected ftbenGlobal

Reporting Initiative Disclosure Database (GRI, 2013).
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Table 5-13. Criteria descriptiod or f i rmsdé eval uati on

Criteria Description

Degree to which Management of a fiprioritizes actions related to the energ
and environmental corporate policy, sets specific targets and correspondin

C1: Management

Commitment schedule for their accomplishment

C2: Monitoring Degree to which a firm adopts procedures and protdoplmonitoring the set o
Progress ahRelated targets, specific progress made in each related activity and the correspond
Impact impact in companies operation and activation in the market

Refl ects firmsd p amrattivites irpbsoadercammunity,
including among others, educational and information activities regarding
environmental practices, organization of workshops, conferences and othe
events, and sponsorships

Referstothd i r ms & i nvol vement for inves
to renewable energy sourcegnd power, solar power (thermal, photovoltaic
concentrated), hydrelectric power, tidal power, geothermal energy and bior
Extent to which dirm incorporates initiatives to provide energfficient
products and services, to reduce direct and indirect energy consumption al
energy conservation practices and technological improvements.

C6: Waste and Water  Effort of firms in reducing total water use or discharge and the adoption of \
Managment management activities.

C3: Participation in
Dissemination
Activities

C4: Promotion of
Renewable Energy

C5: Promotion of
Energy Hficiency

The model includes constraints, i mposed by each ¢k
budget constraint is used in erdo secure that the cumulative cost of approved applications does not exceed
the overall budget.

zN:cost X < avk (5.22

where avb is the total available budget armbst the cost ofi-th project application. Irthe specific

applicationt he avail abl e budget all40 3prMalj eavchtid ei ¢ h®. 4 oM@\l

Specific bounds anenposed to control the distributiai projecs according to their categogross various
sectors. In particulathe non-dominance of a certaiproject categoryn portfoliocan bee x pr essed as
sector or region is allowed to have more than halt dfe t ot al approved applica

expressed with the following constraints:

N
D> X, <0.5x » X  for S=Sector 1,2,3,4 (5.23)
ieS i=1

N
D> X, <0.5x ¥ X  for R=Region 1,2,3,4 (5.24)
ieR i=1
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In order to assure that all sect@nsd regionswill be present in final portfolios the following conditios
added dAal | sectors and areas wilcosbbeThusdedndithoat

with the followving constraints:

N

Y costX, > 0.k > coslX for S=Sector 1,2,3,4 (5.25
ieS i=1

N
D costX, > 0.k > cosl for R=Region 1,2,3,4 (5.26)
ieR i=1

In the framework of ITAthe uncertainty characterizinpe esti mati on of project :
calcul ati €ECRofschbireméds expressed with nor mal di s
Specifically themean value for the normal distributions the estimated valpeesented imable 5-14 and

as standard deviation of the initial rouisdthe 5% of the mean. This is done for the NPV as well as the
EECR values. From round to round the standard deviation of corresponding normal distrilsuteshsced

to 4%, 3%, 2%, 1% and 0% in the final raumhe whole process (model building, random sampling, Pareto

set generation) is implemented within GAMS platfo&AMS, 2010.

Table 5-14. Input data for the projects

CSR NPV ( U) Cost( 0) Sector Region
1 12.97 2,500 5,930 S1 R3
2 14.66 49,800 50,830 S1 R3
3 9.76 8,300 5,000 S1 R2
4 6.23 63,600 33,860 S1 R3
5 6.99 244,600 191,870 S2 R1
6 14.64 36,700 37,500 S2 R1
7 7.10 14,100 6,070 S2 R1
8 11.92 22,500 23,030 S2 R4
9 11.81 261,300 190,000 S2 R1
10 21.59 455,000 422,670 S3 R2
11 13.64 696,800 415,000 S3 R1
12 13.59 53,900 39,330 S3 R1
13 3.86 238,900 95,330 S1 R4
14 9.62 3,400 5,630 S4 R1
15 40.00 600 7,370 S4 R1
16 2.95 74,600 37,670 S4 R2
17 25.87 4,900 30,100 S1 R4
18 5.25 12,500 5,700 A R2
19 11.39 389,900 909,310 S4 R3

82



20 11.67 378,100 160,300 S4 R4

21 15.39 53,100 26,190 S4 R2
22 17.13 51,400 161,010 S4 R3
23 5.76 460,100 353,420 S3 R1
24 8.93 422,800 184,410 S1 R3
25 16.12 146,900 87,910 S4 R2
26 12.38 477,100 614,620 S1 R2
27 7.19 431,600 277,040 S1 R3
28 21.95 208,500 158,790 S3 R3
29 4.70 324,400 1,410,180 S2 R1
30 18.07 324,100 533,640 S3 R1
31 7.75 603,200 529,130 S4 R2
32 4.54 648,800 396,670 S2 R4
33 19.18 179,600 123,640 S1 R3
34 15.85 220,000 149,770 S1 R1
35 22.01 204,300 93,050 S4 R2
36 4.04 352,100 311,780 S4 R3
37 19.39 223,000 772,970 S3 R2
38 17.81 228,800 117,580 S2 R3
39 12.86 428,500 190,870 S4 R4
40 5.85 516,100 262,030 S2 R1

The par ame of the smdidel asavelluas the membership ofjgots in various sets (sectoral and
geographical) are shown ifable 5-14. Still, more types of constraints may be considered in the
mathematical programming framewoskich asthe specific number (or range) of accepted applications

(projects to be finallyunded), or constraints for mutually exclusive projects etc.
5.4.3. Results and discussioor multi -objective ITA

The selection is based on the characteristicdOoprojects from 40 different firms, with a geographical,

sectoral distribution as follows ifhable 5-15:

Table 5-15. Characteristics for 40 projects

Geographical regions Sectors

11 southern European enterprises 11 energy enterprises

10 northern European enterprises 9 industrial enterprises

13 central Europan enterprises 7 electrical equipment enterprises
6 Greek enterprises 13enterprises from other sectors
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In each computation rourtD00 Monte Carloiterationswere performedand the computation time vadie
between 7181 seconds and 9150 seconds from roumduttd ina core i5 running at 2.5 GHz. Fahe
specific applicationtheacceptance threshold for the greenveasset a the level 0f99% (if a portfolio was
present in 99% of Pareto sgts., in 990 aut of 1000).

The results of mulidbbjective ITA are shown ifiable 5-16. There are in total 398 Pareto optimal portfolios
that participate in 1000 Pareto sets of the initial round. Among them only 4 were pnesléRiaireto sets. At
subsequent iterations the standard deviation of sampling distributions as shown in the first cdlabia of
5-16 was reducedEventually,in the last roundthe final Pareto set that compis81 Pareto optimal
portfolios of projectemergedThese portfolios againfrom 18 to 28 projects.

Table 5-16. Results of multiobjective ITA from round to round

Computation

time (sec) Green Red Grey
0 =5 Roundl 9178 4 0 394
0 =4 Round2 8247 4 109 285
0 = 3 Round3 8592 5 215 178
0 = 2 Round4 7811 9 275 114
0 =1 Round5 8685 16 324 54
g = 0 Round6 7.3 31 367 0

* for just one iteration as there is no uncertainty quantified by standaiatidav

After completion of modeling runsafirst brief look revealavhich of these 31 portfolios can be considered

more certain than others. The degree of certainty for each portfolio is directly related to the corresponding
round hat it enters the greeset as shown ikigure 5-6. The dar ker the portfoliob
certainone can babout its Pareto optimalit§zigure 5-6 illustrates inaconvenient wayvhich portfolios are

more robust gen t he uncertainty . The dedisomn maked eah @loitptasr a me

information in his final selection.

Figure 5-6. Coloring code for 31 portfolios

A challenging task is to incorporate the robustness information in the Pareto front. As it is well Kr®wn,
Pareto front ofr problem with2 or 3 objective functionis a relatively easy to drawyraph of he Pareto set
in predefined criteria spac&he robustness of each portfolio can be expressed with a bubble ctiathew

size of bubble beingth port foli o6s robustness degree
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The upper chart ifrigure 5-7 is a conventional Pareto front with 31 Pareto optimal soluti(different
portfolios). The lower chart embdgs also robustness informatiarhich is visualized with the size of the
bubble. The greater the Robustness Degree of a Pareto Optimal Portfoltbdigarlier it enters the green
set), the greater the size of the bubflkis kind of information is essential for the decision matcer

recognize regions of the Pareto front with higher or lower robustness.

From this chart the decision maker can drawctigions about criteria values of each soluf@md therefore

assess the trad#) as well as about the robustness of solutions. In the specificicagems that the robust
Pareto optimal solutions are in the region of HFCR (horizontal axis)This also means that the values of
EECR have less uncertainty, and this is ttakinginto consideratiorthe detailed and precise way of their

calculations.

As a rule, pomising solutions are on the knee of the Pareto curve where the slope changes @l m
that with a little sacrifice in one objective functitris possible t@achieve large improvement in the other. A
promising solution (portfolio) in our case is the one pointed \aitharrow. This means thaa small
compromise from the maximuBECR value leads to a great improvement in NPV. Besides, it is evident
from the size of theespectivebubble which specific solution@areamongthe most robustConclusively, the
robustness of Pareto optimal solutions which is visualizegigare 5-8 can be regarded as an additional
characteristic that helpthe decision maker to evaluate the attractivenesthefobtained Pareto optimal

portfolios.
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Figure 5-7. Visualizing the robustness with bubble charts

The overall robustness tiefinal Pareto set can be measured using the Robustness Index. The Robustness
chart and the Robustness Index the currentcaseis depicted inFigure 5-8. Applying equation 2.18),
Robustness Index as the area underneath the Robustness Curve Rhi63i3.
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Robustness Index
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Figure 5-8. Robustness chart for the final Pareto set

Regardingall 40 projectsit is possible taneasure their presenagethe Pareto fronby countinghow many
times each of them appears in 398 initial Pareto portfolios and how many in times in 31 final Pareto

portfolios as shown ifrigure 5-9.
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Figure 5-9. Frequency of projects in the initial and final Pareto portfolios

The initial Pareto portfolios correspond to maximum uncertainty. Friguare 5-9 it is possible tcextract
information about the robustness of individual projects. The closer the two frequencyredieghe initial
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and in the final Pareto portfolios) for one project, the more robust the conclaseaifios the participation
frequency of the specific projedtrom Figure 5-9 onecan observe that there are projaéntdudedin more

than 90% of Pareto portfolios (even when maximum uncertainty is considergd, the. initial round) like
projects 7, 11, 13, 20, 21, 24, 3B, 39, 40) and other projects that never appear in Pareto portfolios (19, 23,
26, 29, 36, 37).

Moreover, based on the results, it can be notedcthrapanies requesting for larger loans, while having a
low EECR index, tend to be rejectgdn the other haly companies asking for smaller loans and having a
high NPV index, tend to be approved.

88



6. Concluding remarks

6.1. Conclusions dout the method

ITA for project portfolio selectioms an effectivemethodthat deabk with uncertainty in a volatile decision
environment. The aim is to provide the DM with as much as possitadenation to supporhis/her final

choice while the input informatin or future performance can be obtained with great difficulié®
existence of multiple |Iimitations denoting projec
probability distributions imply the use of a systematic approachthis eason a hybrid method combining
Multi-Criteria Analysis,Mathematical programmg andMonte Carlo simulation was developed. Under

these circumstances, the existence of a unique optimal portfolio is almost impossible, so that the trichotomic
approach driveshe DM to reach the portfolio with the greater acceptance. By doing this, the information
burden decreases and the focus of an expert is moved towards ambiguous grey projects which are not that

numerous. Due to its flexibility ITA can be easily adaptedaidous decision situatierand DMs.

The term Atrichotomyo refers WibhinthédlBA poeeguepradcts on o f
are assigned to one of three groups based on their performance and current level of uncertainty. $he latter i
incorporatedn various forms, depending on its natuBochastic parameters may be present either in the
objective function or in the constraints of the mod&ttually, incomplete information, expressed via
probability distributions may be preserin a | | model s par a meaitfueimfosmatiom imu | t an
extracted nobnly aboutthe projectsthat are eventually selectetiut also aboutiow sure an expert can be

with respect tahe selected or discarded ones. In contrast to the expected panimernwalues of projects
(napve approach), I TA moves s médaxtiGradual filing of grgen angd e nt s
red sets provides cruci al information to the DM a
final portfdio according to the round that each project entkesrespective set. Moreover, this level of

certainty can beasilymeasured in a shape of index after¢bmpletion of Monte Carlo runs.

As the curiosity grew bigger with every case study, it was plestibtest and compare the performance of
several modifications of ITAThe firstcase study tested the influence of uncertainty in the future output of
project proposals. Due to the novelty of climate related activities it was totally impossible toedegiedd
forecasts. For initial approximations the information about similar installations that had been put in operation
relatively recentlywas used The dassicversion of ITA with the modeling of uncertainty describedaby

normal distribution led to adlanced portfolio. Especially striking was the fact of expensive projects

89



exclusion which helped to build a selection withlanceddistribution of projects between regions and

technologies. Thebjectivenot to put all eggs inne basket was successfuthet.

A simplified version of ITA also produced good results for a relatively small problem. Most protvadsly,

phase ITA should not be considered as a full scale tool since in its second part it uses the principle of
majority according to the performangetheinitial round. In a certain way, it helps to speed up the process

of choice. It should be kept in mind that results may diffetheypresence of uncertaintiegth particular
distributions.

Perhapsthe most usefwersion ofITA is for groups of egerts with divergent points of view. Increased
transparency and gradual portfolio building are the main advantages of this version of ITA. Experts are
provided with initial preferences of others as well as with the stepwise convergence of these preferences
aimed at théuilding of a final selection.

It is extremely hard to avoid such highly subjective parametesgights of importance, utilities etm this

case the sampling of Monte Carlo iterationsas like a scenario building for every decision maker
According to the problem, several ways of searchafeolution can be adoptedhen a DM is aware that

arother expert may not insist that hard on his initial preferences in light of obtained information about
projectsin previous roundsthe others mayollow the suit. Gradual building of the final portfolio also

reveals the reasons behind rejection of certain proposals thus reducing the chances of being accused as
manipulator for excluding some good projects. By the end of the probhessprisensus ied is calculated

expresiig how easy or haril wasto reachconsensus amorexperts

Since ITA is an interactive decision support tool, the DM(s) can control and adjust the process accordingly
to newly obtained information. Ilthe casethat2 or 3 similaly performing projects compete for the place in
final selection, additional i nformation can be as
deepermpair wise comparison. In casieatall of them look attractive, basic constraints, suslbadget, may

be recondglered too. It is not obligatory to increase the budgetin be reduced too. All these details help to

build the confidence about decisions under consideration without additional lengthy robustness checks.

While it is common to wsa single objective model and put in constraiother desired outcome#t was
interesting to test the behavior of the ITA approach onabjgctive problem. In this case, the feedback of
calculations is a Pareto front consisting of various portfolie®. easier elaboration of this frorthe
robustness of each portfolio can be expressed with a bubble chiht, tehsize ofthe bubble being ta
portfoli obs .rAsdrules pomisirg solutioesgare erethe knee of the Pareto curve where the
slope changes sharply meaning that with a little sacrifice in one objective fuitgiquossible tcachieve

large improvement in the othdfloreover, robustness check for projects can be easily pextbioo.
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The whole selection process may be acceaddratith the adoption of threshold for every iteratiormhe

higher the thresholdhequi cker the process of pr.ojectsé separa

Lastly, more complex probability distributions (triangular, uniform, normal, special cases) for uncertain
parameters can be tested. The subject was barely touched by GrquphB&rA each DM may have his own
view about the shape of partial value functions or about the allocation of projects to regions and
technologies. In addition, it is worth to test an iat¢ive process of weights recalculation insteathefr

automatic recalculation.

6.2. Conclusions dout case studies

The need to maka choice between countless suggestions is an everyday task. That is why fortkesting
ITA method it was decided to use kearld applications The data for case studieeretaken from open
sources which actually helped to shape the process of modeling. Observations led to consideration of
numerous criteria and plentiful constraints (budget, policy, allocation etc) thatohlael satisfied. The
combination of MCDA with optimization tools, such as Integer Programming, provided the chance to solve

complex problems in limited time.

Nowadays, telecommunication technologies are an integral part of everyday life. Their appropriate
becomes crucial in case of extreme events, some of which can be caused by climate change.
Telecommunications networks have been subject to continuing technical innovations and to constantly
evolving multifaceted modes of communicati@ue to recenadvancements in technologies and changes in
markets it became necessary to reconsider-feng business goals for the providers of these services. The
achievement of new and revised strategic objectives called for changes in their product portfolioy where
companies were facing with the problem of choosing which products would effectively contribute to the
achievement of their loaterm goals. Hencemany scientists approached these problems with MCDA tools.
The resulting portfolio indicated exactly thisrectioni the projects from Developing group are the clear
winners. We tested ITA method against a case study tertiterature and obtained results similar to the
initial paper. Actually, close performing proposals were identified and sometimes ¢heynterchanging in

the final portfolio when more performance uncertainty was addea cémtain way, portfolio confirms the

conclusions of common sense thaaitompetitive environment it is necessarc@mtinuously seimprove.

Energy and environméaily oriented activities attracted our attention as the issues to be addressead soday

large scale. Environmental crisis requires new ways to respond apdtadhe challenges of today.
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Since fossil fuels are limited and harmful for the planet, neffert should be put in the deployment of
renewable energy installations around the woBde ofthese support efforts ihe Clean Development
Mechanism (CDM) which permitsto offset carbon emissions in the shape of environmentally friendly
activities with energy relategrgects being the most widespread onemfortunately, financial resources
are always limitedthat is why there is a sharp need to choose effectively project proposals for Cigl. In
current case studynie aimwas to maximize carboeredits even though their final amouwsas not a certain
fixed numberBy the end othe selection processfaal portfolio represeiiig 17.4% of the investments
comparison with initialL1.5 billion US$ of300 projectsvas built. Its main advantagee$ in the fact that
with modest financial support it represent®®8 of t he pr oj ect (=2880b kCERS} e 6 s t
The final portfolio demonstratehow it is possible to make a balanced selection regarding financial as well
as technologal and gegraphical constrats.

Anothercase study focused on similar projects within only one country, namely Greece. It was necessary to
make a portfolio with several different experts involved. Every decision maker exphisbedpreferences

by assignindhissher own weights of importance to the evaluation critelance,everydecision maker has
his/her own optimal portfolio of projecthe final selection slightly violated imposed constraintish
respectto the installed capacity andotal budget. The pdudlio was dominated by solar technologies
(photovoltaic) withCentral Greecbeing thewinning region Resuls are totally reasonable faplace with

more than 250 days of sunshine. A great advantage of Group ITA is that it also provided a measure of
congnsus for the final portfolio of projects (Consensus Index) as well as concoiiddives for each

project thatwas either selected or rejected. It seems that experts were speaking the same |degaage

Cl was 91%.Generally the Index is rarely thaiigh, especially irthe presence ohigh uncertainty inthe

financial criteria.

The last case study highligiitthe problem of shared responsibility. Not only is the government responsible

for the environmental initiatives, but also private sector. Ttegsyef economic crisis put seriously under
guestion traditional development patterns. It became clear that in the fight for sunvitteé market
enterprises have to integrate social and environmental concerns in their business operations and in their
interaction with stakeholders on a voluntary basis, within the framework of the Corporate Social
Responsibility (CSR) conceph the @se study equal emphasis was publoot economic and sustainability
components. Based on the results of the model, ibeamoted thatcompanies requesting for larger loans,

while having a low EECR index, tend to be rejected.the other hand, companies asking for smaller loans

and having a high NPV index, tend to be approved.

Itis noteworthyt hat i n t o d athedess ravely @ aniguezperson tbah makes important decisions

alone. Multiple experts from various positions, with different backgrounds and usually with conflicting
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views participate in the decision process and are expected to reach consensus margbeféilio. Wide
demand for decision support systems that deals with similar problems is nowadays undoubted. That is why
we have tested the performance of ITA in different selection problems, that are based on real data and

obtained balanced and reassgresults.

6.3. Directions for future research

The presented ITA method may be further improved along several directions.

Since the method is aimed at helping decision makers, it is feasible to develop a user friendly decision
support system (DSS) platforfiror the time being ITA is implemented as separated modules (one for multi
criteria analysis and another for Monte Carlo simulation along with mathematical programming). Our
calculations were performed in GAMS and the modelld be storedn GAMS library, which leaves the
possibility to modify avai andinttoducernheidoar datdtil, focnwostd i n g
of experts it would be more convenient to have a special platformawitiore usefriendly interface that

does not require exgit knowledge in programming.

Other fieldsstill remain for exploitation. Special focus may be paid to projects whose description contains
more qualitative than quantitative data. Becausesuch casessubjective judgmentsare involved
interpretation of esults may be more challenging in comparison with results obtained by technical means of
measurement. Such fields may touch the domains of education or healthcare where along with numerous

performance criteria human factor plays one of leading roles.

Another direction of work is aimed at handling massive inputidaith thousands of projectenmence data

may be so large and complex that traditional methods of collection and analysid@rgaran position to
handlethem effectivdy. The amount and vatig of big data has increased exponentially over the past
decade. Tools to handle this issue would be especially useful for public agencies that assist applicants in
need. Such examplesould involve house retrofitting programs, improvement of energy efiicy in

households or replacement of infrastructure in municipal districts.

In general, future research for ITA can\mry fruitful as it can combinearious OR techniques to address
specific detsion making problems that dealth the project portfolio election problem (or can be modeled
as such) gdor example problems that involve group decisiomaking with uncertain or vagusgata. The
great advantage of ITA is that it measures the degree of consensus or certainty of the finalvbidice

alwaysmeaningful in this kind of decision making situations.
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8. Annexes

8.1. Modeling languagei GAMS, GAMS/CPLEX solver

TheGeneral Algebraic Modeling Systef@AMS, seee.g. Brooke et al., 19883 designed for higtevel

modeling and solvinginear, nonlinear andmixed-integer optimizatioproblems. The system is tailored for
complex, largescale modeling applications and allows the user to build large maintainabédsrtioat can

be adapted to new situations. The system is available for use on various computer platforms. GAMS contains
anintegrated development environmglE) and is connected to a group of thpdrty optimizatiorsolvers

among whichare BARON,COIN-OR solvers, CONOPTCPLEX, DICOPT, Gurobi,MOSEK, SNOPT,

SULUM, andXPRESS GAMS allows users to implement a sorthgbrid algorithmcombining different

solvers. Models are described in concise, humeanlable algebraic statemerfihe GAMS software was
originally developed by a group of economists from the World Bank in order to facilitate the resolution of

large and complex non linear models on personal computer. Within the main advantages of GAMS are:
- Simplicity of implementation,

- Portability and tansferability between users and systems and

- Easiness of technical update because of the constant inclusion of new algorithms.

As a matter of fact, GAMS allows solving simultaneous non linear equation system, with or without

optimization of some objeige function (Dumont and Robichaud 2000).

Typically, a model programmed in GAMS can be decomposed in three modules corresponding respectively
to data entry, model specification and solve procedaseit is schematically shown Figure 8-1). It is

important to note that assignment, declaration and definition, must be completed for every element in use in
the model (i.e. sets, parameters, variables and equations). On the whole, it is necessary to proceed to the
declaration of anglement before using it. Specifically, sets must be declared at the very beginning of the

program.

It is particularly convenient that GAMS allows for statement on several lines or several statements on the
same line. This property can help to reduce émgth of the code or facilitate printing. In addition, capital

and small letters are not distinguished in GAMS.

The definition of sets is useful for multidimensional variables. It corresponds to the indexes in mathematical

representations of models. Nexhe parameters should be defined. Parameters are the elements in the
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equations that will not change after a simulation, such as elasticity, tax rates, distribution and scale
coefficients. In addition to these parameters, benchmark variables are alsaol defitheir value at the base

year will not change after simulation. A common way to define these variables is to add an "O" after the
variable name so it wi | | varialbet Pafarmeters and banchmatk vaviableh t |
definition begingwith the statement PARAMETER and end with a semicolon. Once again, it is useful to put

a description after the parameter designation, as it is done in the example. When a parameter is subject to an

index, like A, the set over which it is defined is putween parentheses, A()).

Figure 8-1. Organization chart of a typical GAMS code for a model.

Once the sets, parameters and benchmark variables are defined, data must be entered. This can be done usin

the TABLE command, which is useful for multidimensional variables.

All variables, endogenous or exogenous, appearing in the equations must first be declared. The statement
VARIABLES begins this procedure and ends with a semicolon. Following the variable ftaregample

W, a brief description can be added.

106












