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Extended Summary

Making a choice is an everyday activity, which in various professional domains often involves the search for
additional information. However, abundance in input data requires special tools in order to perform a
balanced selection. Over the last decades, numerous methods and decision support tools were developed, but
unfortunately, possibly due to the lack of knowledge, decision makers may see these tools as black boxes.
Ironically, systems developed to assist in decision making often seem to be too complex and unclear. In
addition, within the selection process it is often necessary to make a subjective choice among objectively

determined solutions.

This thesis addresses the so-called project portfolio selection problem, which aims at selecting a certain
number from a wide set of proposed projects. Usually the projects are not independent, i.e., there are
particular limitations that should be respected (segmentation constraints, mutually exclusive, precedence
etc.) so that Multiple Criteria Decision Aid (MCDA) methods need to be combined with combinatorial
optimization techniques. A popular way to deal with this problem is to use a two-step approach: (1) A
multicriteria method to evaluate the projects, and (2) a mathematical programming model that incorporates

constraints in which the objective function coefficients are the multicriteria scores.

This thesis develops a method that helps to perform a selection in a step-wise and transparent way. The core
idea lies in the separation of project proposals into three separate sets. The approach is not totally new, but
the rules of this separation are novel. The basic idea of the proposed lterative Trichotomic Approach (ITA) is
the classification of projects into three sets: the green projects (selected under all circumstances), the red
projects (definitely excluded from the final portfolio) and the grey projects which are chosen in some (but
not all) cases. The main focus is on building a balanced project portfolio from a wider set of proposals (a
subset of projects is considered as a “portfolio of projects”), optimizing one or more criteria and satisfying
specific constraints. In past, the usual solution was to rank projects using one or more criteria and choose the
top ranking ones that cumulatively satisfy a budget limitation. However, in real world there are many
circumstances that complicate the process of decision making. In other words, top ranking projects may only
by chance satisfy imposed constraints. Unlike in financial problems (e.g., portfolio optimization problems),
these projects are integer variables which are not divisible, and hence, Multiple Criteria Decision Analysis

and mathematical programming are the most appropriate tools.

In this work, we are taking a step further, and we address the inherent uncertainty which can vary in nature,
the most prominent type being the future project performance. While the financial world offers a great

amount of data that help to build more or less robust forecasts, it is almost impossible to obtain historical
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data for emerging technologies or pioneering solutions. The uncertainty may be present either in the project
characteristics (e.g., costs, performances) or in the decision environment (e.g., criteria weights, total budget).
In the proposed model, the uncertainties in various parameters or input data are modeled via stochastic

approaches tackled with Monte Carlo simulation.

The method works iteratively, in decision rounds. In each decision round we use the obtained information or
follow a predetermined rule in order to reduce the uncertainty. Gradually from round to round, the green and
red sets increase while the grey set with the ambiguous projects is reduced. Eventually, the process ends with
only green and red projects. In comparison to the conventional project selection approaches, with ITA we
also obtain the “degree of certainty” for a project that is included or excluded from the final portfolio. The
earlier (i.e., in the early decision rounds) a project is accepted or discarded from the process the more sure
one can be about its incorporation or exclusion in the final portfolio, respectively.

Furthermore, the proposed method is also adequate when multiple decision makers are involved. When the
selection process takes place within a group, the preferences of various experts are not the same and there
must be a negotiation approach taking into account all points of view. The whole process can either have a
predetermined number of decision rounds or continue until a convergence to the final portfolio is attained.
Group-ITA provides a possibility to draw conclusions about the consensus over each individual project as
well as on the final portfolio. Initially, a mathematical model is developed, where preferences of decision
makers are expressed with appropriate weights of importance for the criteria, and a Delphi-like process is
designed for the convergence of these preferences. Weights are updated from round to round, and in each
round, the mathematical model is updated according to the new weights and solved. As the iterative process
moves from round to round, the green and red sets are enriched whereas the grey set shrinks. The iterative
process terminates when the grey set becomes empty. The final outcome is the consensus portfolio of
projects, as well as the degree of consensus on each project and the consensus index for the whole portfolio
according to the convergence path. The consensus index expresses the easiness to arrive at a final conclusion
within a group. The more green projects that are identified from early rounds the greater is the degree of
concordance among experts. This means that their preferences (expressed as weights) result in more or less
the same outcome, or, in other words, the consensus is easily attained. On the contrary, if the majority of
green projects is identified in the last rounds, this indicates the need to elaborate in the convergence process
in order to agree at selected projects. In other words, the consensus is hardly attained. Apart from the
consensus index, it is possible to extract the degree of consensus for each project according to the round that

it enters or exits the final portfolio.

The membership of the projects in the final portfolio is also expanded to the membership of portfolios in the

final Pareto set where more than one objective functions are considered. While the original ITA method was
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designed to implement a single objective mathematical programming problem, the latter version of ITA
method is extended to multi-objective programming problems. The degree of certainty of the Pareto optimal

portfolios that belong to the final Pareto set can also be measured.

ITA was applied to several real world problems that are presented in this thesis. The first topic that attracted
our attention was the selection of projects in the telecommunications sector. Wide and fast spread of new
technological developments requires effective tools to select options for expansion and meeting growing
demand. The need for balanced introduction of new service offerings is a problem which involved different
and conflicting aspects. The main feature of the proposed decision aid computational tool is the
incorporation of several uncertainties in the selection process, and the gradual building of a project portfolio.

Other applications involve renewable energy projects both in national and worldwide levels. A case study
with real data from the Clean Development Mechanism projects’ database is elaborated, in order to build a
balanced portfolio of “green” activities. The specific work is focused on the energy project portfolio
selection problem, where the output of each project as well as other parameters may be uncertain. For this
case study, we consider the implied uncertainty in the parameters as being of stochastic nature that is
characterized by a probability distribution. Subsequently, a Monte Carlo simulation samples the values from
these distributions and the mathematical programming models with the sampled values are solved. The
process output is not only the final portfolio, but also the information about the certainty of participation or

exclusion of each project in the final portfolio.

Another example deals with Greek renewable energy projects that seek support from financial institutions,
where it is crucial for the donor organization to make a balanced selection and avoid the tactics of “all eggs
in one basket”. In this case, 133 Greek project proposals covering three renewable energy technologies
(wind, small hydro, photovoltaic) were evaluated against 5 criteria. Since several experts with different
preferences took part in the selection process, Group ITA is designed to gradually add projects to the

portfolio according to the concordance within the team members until a final portfolio is reached.

The last example is an attempt to bridge the gap between business and public interests. Nowadays,
increasing emphasis is put on the environmentally friendly activities that are considered to be among the key
solutions in combating current financial and economic crisis. For this reason, we test the possibility to
incorporate Energy and Environmental Corporate Responsibility (EECR) in decision making, supporting
particularly the development of a new model for investment evaluation. A bi-objective programming model
is introduced in order to provide Pareto optimal portfolios (Pareto set) based on the Net Present Value (NPV)
of projects and the EECR score of firms. Moreover, a systematic decision making approach using Monte
Carlo simulation is developed in order to deal with the inherent uncertainty in the objective functions’

coefficients, namely the NPV of each project and the EECR score of each firm. In addition, the robustness of
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the Pareto set as a whole, as well as the robustness of the individual Pareto optimal portfolios can also be
assessed. The proposed approach facilitates investment organizations and institutions to the selection of

firms applying for financial support and credit granting, within the frame of their EECR.

Within all case studies it was more than evident how the ITA offered very fruitful information to the
decision maker as it quantified the degree of certainty with which each project was treated in the final
portfolio, a task that cannot be accomplished with the conventional methods using average and expected

values in modeling the uncertainty.



Iepiinyn

H 6wdwacio g emioyng sivol pio Kabnueptv dpactnplotnta, 1 0moio. 6€ SUPOPOVS EMAYYEALOTIKOVG
topelg ovyva mepthapPdver v avalnmon mpoéchetwv TAnpoopidv. Qot6c0, 1 aebovia ota dedopéva
€10000V amattel 101K epyareia yio v ektéleon pog wwoppomnuévng emioyns. Tig terevtaieg dexoetieg
avantOyOnkav moArég péBodot kot epyaieia VIOGTPIENG OMOPAGEDY, AL JVGTUYMS, EVOEXOLEVMOG AOY®
EMenyng yvadong, ot vrevBuvol yuo T ANYN aropdcewv PAEToLV ta epyaieia avtd wg pavpa kovtid. Katd
nepiepyo TpOMO, TOL 010 TO GLGTNUATO TOV AVOTTOGGOVTOL Yo VO fonncovy o ANYN amoPdcemy cuyva
eaivovtal moAd mepimhoka kot acapr. Emnpdcobeta, oto miaicio tng dadikociog emroyng sivar cuyvd

OTOPOITNTO VO YIVEL L0l VITOKELUEVIKT] ETIAOYT OVALESH GE AVTIKEUEVIKA TPOGOIOPIGUEVEG AVGELC.

H mapovoa datpipn) aocyolreitor pe 1o mpoPANUa EMAOYNG XOPTOPLAOKIOL £pymV ylo TNV EMAOYN €VOG
CUYKEKPIUEVOL 0plBuoy amd €va €vpd GUVOAO TPOTEWOUEVOV £pymv. Zuvnbmg ta épya dgv eivon
avegaptnto, ONANON VTAPYOVY GUYKEKPIUEVOL TTEPLOPIoUOL OV TPEMEL va. ikavomomboby (meplopicpol
TUNUOTOTOiNoNG, aUOPaiov ATOKAEICUOV, TPOTEPOUIOTNTOC, K.AT.), OMOTE Ol TOALKPIINPLOKEG MéEBodOL
vrootpiEng g amoégaong (Multiple Criteria Decision Aid - MCDA) dev emopkodv kol Tpémel vo.
oLVOVOCTOVV UE TEYVIKEG GVVIVLUGTIKNG PeATioTomoinonc. 'Evag onpoiAfg TpOTOC OVIILETMTIONG GVTOD TOV
TPOPANHTOC givor 1 xpfon Hog Tpocéyyione ovo Pnudtov: (1) Miag moAvkprmplokig puedodov yio v
alohdynon tev Eépyov Kot (2) &vog HOVTEAOL HOONUATIKOD TPOYPOUUOTIGHOD 7OV EVOOUATMOVEL
TEPLOPICUOVG HE TOVG GCUVIEAECTEG TNG OVTIKEWEVIKNG GLUVAPTNONG Vo €lval Ol TOAVKPLTNPLOKEG

Babuoloyiec.

H mapovoo dwotpiPn avortdcoel o pébodo mov Pondd oty mpayuatoroinon wag emAoyng pruo-frunc
Kot pe dapdvela. H faoikn 10éa £yKeTar 610 Sy ®PIGHO TV TPOTACEMV £pYmV o€ Tpia EEXPLoTA GUVOAQ.
H mpocéyyion dev elvar eviehdg véa, ot kKavOveg OUMG anToh TOV d@plopol givol Koawvotopol. Baoum
10600 NG EMOVOATTIKNG Tpyotopknc mpooéyyiong (lterative Trichotomic Approach - ITA) eivar m
TagvouNoN TV £pYmV o€ TPio. GOVOAA: T TTPAGIVO £pYa (TOL EMAEYOVTOL VIO OTOIECONTOTE GLUVONKES), TaL
KOKKIVO £pya (OploTIKA OTOKAEIGUEVO OO TO TEAIKO YOPTOPVAGKIO) Kol Ta Ykpila €pyn TOV EMAEYOVTOL GE
oplopévec mepmTOCElS (0AAG Oyt OAeg). O KOplog oTdYOG €ivor 1M Onpiovpyio. €VOC 1GOPPOTNUEVOV
YOPTOPLAOKIOV €pyv omd €va gupVTEPO GLVOAO Tpotdcewv (éva vTOcUVoAo épywv Bempeital ®g
"YOPTOPLAAKIO Epy@V"), PEATIOTOTOIOVIOG MG TPOG £val 1| TEPLGGOTEPU KPITHPLOL KOl TKOVOTOIDVTOG
OUYKEKPIUEVOVG TEPLOPICUOVGS. XT0 TopeABov, 1 ocvvnbiouévn Avon Ntav m Kotdtaln Tov Epynv
YPNOLUOTOIDOVTAG £Va. 1 TEPICCOTEPO KPITHPLOL KOL 1) ETIAOYN TOV TPATOV KATA CGEPAE OV KOVOTOL0VV

0fpo1oTIKG TOV TEPLOPIoUO TOV TPODTOAOYIGHOD. Q0TOG0, 6TV TPdén 1 dredikacio vt Elval apkeTd mo
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nepimhokn. To mpdta katd cepd Kotdtagng £pyc Umopovv HOVO KATO TOYN VO IKOVOTOUGOLV TOVG
emParlopevovg meplopiopovs. Xe  avtiBeon pe To owovouilkd mpofAnuata  (my.  mpoPAnpoTa
BeAtictomoinong yaptopurakiov), Ta pya avtd eivor aképateg peTafAntég mov dev dapodvial, Kot Kotd
GUVETEWL 1| TOAVKPLTNPLOKY] OvEADGN NG OmOPOoNG KOl O HoONUOTIKOS TPOYPAUUATIGHOS OTOTEAOVY TO

mAéoV KatdAnAa epyareia.

Ymv mopodco epyacio, Tpoxwpape £vo PR mapakdte, eEetdlovtag v yyevn afefatotnta, N omoio
Umopel va TOKIAEL 6T OO, LE TNV O CNUAVTIKY VO €ival 1 LEAAOVTIKY armddoot Tov €pyov. Evd otov
YPNUOTOTIOTOTIKO KOOUO givol dtobéoiua moAhd dedopéva mov Ponbovv Tig oeTIKA 1oYVPEG TPOPAEYELS,
glvar oxeddv advvato vo amokTnBohv 16TOPIKA JESOUEVA Y10 OVOOVOUEVES TEYVOAOYIEG N TPOTOTOPLUKES
Aooewg. H afefotdtnta pmopel va vmapyel ite ota YopoKTNPLOTIKG TOV £pY0V (7). KOOTOG, EMOOCEL]) €iTE
oto mepPdilov andpaong (m.y. otabuicelg kpirnpiov, GLUVOAIKOC TPOUTOAOYIGUAC). LTO TPOTEIVOUEVO
HOVTELO O1 affefardTNTEC GE O1APOPES TOPAUETPOVG 1) HEGOUEVH EIGOO0V SLOUOPPDVOVTOL LEGH GTOYOCTIKADV

TPOCEYYIGEDY OV YPNOIUoTOL0vV Tpocopoimon Monte Carlo.

H pébodoc Aettovpyel emavainmtikd, 6€ YOPOLg amo@dcemy. Xg KAbe yOpo amdPacne YPTOULOTOIOVUE TIG
mAnpoeopieg mov AopPdavovpe 1 axoAovBovpe évav mpokaBoploHEVO KOVOVOL YO VO, UELDGOVUE TNV
afefardotnta. Xtadokd omd yOpo og yOpo, Ta TPAGIVO Kol KOKKIVO GOVOAL avEdvovial evad 1o ykpilo
obvolo e Ta "acapn" £pya pewdverol. TeAud, 1 Sodikacio TEAELOVEL HOVO LE TPAGIVO KOl KOKKIVO, £pyOl.
Ye ovyKplon Ue TG cvpuPartikég Tpooeyyioels emhoyng épyov, pe v ITA Aappdvooue eniong to "Babud
BePardtrac" ya éva épyo mov meprropPaveton 1 amokAeietal amd o teAMko yopropuiaxio. Oco vopitepa
(dNAadn oToVG TPMTOLG YOPOLG amoPAcE®V) Eva £pyo Yivetal dekTo 1 amoppinteTal omd T dadtKacio, TOGO

o Giyovupn UTopEl va glval 1 EVEOUATMOGT 1] 0 ATOKAEIGHOG TOV Atd TO TEAMKO YOAPTOPLAAKLO, OVTIGTOLYA.

EmumAéov, n mpotevopevn péBodog eivar emiong katdAAnin o0tov eumAékovior ToAAol vrevhuvol AqyYng
amopdoewv. Otav 1 dadkacio emAoyng Aapupdvel yodpa péco og po opdda, ot TPOTIUNCELS doPOPMV
EUTELPOYVOUOVOV OgV Elval 01 101EG KO TPETEL VO, DITAPYEL L TPOGEYYIOT] OLOTPUYUATEDGEDY TOV AauPavel
VoY OAeG TIC amoyelc. H 0An dadwcacio umopei eite va €xel mpokabopiouévo apiud yopov anopacewmy
gite vo ovveyiletar péypt va emtevydei oOyKAion ot1o TeEMKO YopToQLAGKI0. H opadikn emovoinmtikn
tpryotopkn mpocéyyion (Group-ITA) mapiyxer ™ Svvatdmnto eEay®yng CUUTEPUCUATMOV GYETIKO UE TN
ovvaiveon yuo Kabe pepovouévo £pyo Kabmg Kol Yo TO TEAIKO YOPTOPUAGKLO. APYIKA, ovamtiooeTal £val
LOONUOTIKO HOVTELD OTIOV 0L TTPOTIUNGELS TMV VIEVOLVOV ANYNG ATOPACE®DY EKPPALOVTAL IE TO KOUTOAAN AL
Bapn omovdadTNTOC Yo TO KpLTiplo, katl oyedidletan wio, dadikacio Tomov Delphi yio ) cOykAion avtdv
tov mpotyunoswv. Ta Bapn evnuepdvovtal amnd yopo o€ yOpo Kol Kabe Qopd, T0 UadnUATIKO HOVTELD
emkaponoteitan pe ta véa Bapn kot emAadetor. Kabmg n emovoinmrikn dadikacio exteieital, omnd yOpo o€

Y0po, Ta TPAGIVO Kol KOKKIVO GOVOAO EUTAOVTILOVTAL, EVA TO YKPL GUVOLO cuppikvavetal. H emavolnmrikn
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owdkacio Aryet otov 10 Ykpilo oOvoro yiver kevo. To tehkd amotélecpa eivor 10 GUVOLVETIKO
YOPTOPLAAKIO £pymv, KaBdS kot o Babudc cuvaiveong ya kdbe €pyo kor o delktng ocvvaiveons yw 1o
60VOLO TOV YOPTOPLANKIOV GUHEOVA e T dadpoun ovykhong. O deiktng cvvaiveong (consensus index)
exppalel v evkoMa pe v omoia o opddo KataAryel og €va tehikd cvpmépacuae. Oco mepiocoTepa
npacva épya evtomiloval 0md TOVG TPMTOVS YOPOLS, TOGO LeyaAvTepog eivat o Babuds cuppoviag peta&d
TOV EUTEPOYVOUOVAOV. AVTO GNUOIVEL OTL 01 TPOTIUNOELG TOVG (ek@PalONEVEG ¢ BApM) 001 YOUV GYESOV GTO
010 amotélecpo 1, pe GARa AOYLO, EMTVYYXAVETOL E0KOAO 1| Guvaiveor. Avtibeta, av 1 mAsloyneio Tov
TPACIVOV EPYOV EVTOTIOTEL GTOVG TEAELTAIOVS YOPOLG, AVTO EIVOL EVIEIKTIKO TNG OVAYKNG Y10, TEPULTEP®
avamtuén g Sadkaciog GUYKAIONC TPOKEEVOD Vo emttevybel cuppovia ota emleyuéva Epya. Me dAla
A0y, M Guvaiveot emtuyydveTol duckoia. Extog amd tov deltn ovvaiveong, eivar dvvatd va eEaybel o
Babuog cvvaiveong yio kabe £pyo cOUE®VO pe Tov YOPO KOTA TOV 0moio eloépyetor N e&épyetol amd 10

TEAIKO YOPTOPLAGKIO.

H ovppetoyn tov £pymv 6To TEAIKO YOPTOPUAGKIO EMEKTEIVETOL KO GTNV GUUUETOYN TOV YOPTOPLANKI®OV
0710 TeMKO oOvolo Pareto O6mov efetdlovrol meplocdTepes amd pio aVTIKEWEVIKEG GuvapToels. Evd n
apykn péBodog ITA oyedidotnie yio va epaprocetl Eva TPOPANU LoONUATIKOD TPOYPUUUOTIGHOD LE ptio
OVTIKEWEVIKT] ouvapTnom, 1 opodiky éxdoon g pebodov ITA emexteiverar oe mpoPfAqpoTe UE
TEPLOCOTEPES AVTIKEIUEVIKEG cvvapthoels. O Pabuog Pefardtrog tov BéATioTmV yoptouiakiov Pareto

OV AVINKOLV 6T0 TEMKO cbvolo Pareto pmopet eniong va petpnOet.

H pébodog ITA epapudéotnke 6€ OPKETO TPOYUOTIKA TPOPAAUOTO TOL TOPOLGLALOVTOL GTNV TOPOLGA
owtpipn. To mpdTo BEH0 TOL TPOGEAKLGE TNV TPOCOYN UOG NTAV 1) ETAOYN £PYOV OTOV TOUEN TMOV
mAemKovovidv. H gupela kot ypriyopn 014000m TV vEDV TEXVOAOYIKOV eEEMEE®V OmOLTEL ATOTEAEGLLOTIK
gpyorela yuo TNV EMAOYN EVOALOKTIK®V EXEKTAOTG KO KAALYNG TG av&ovopevng (nmong. H avaykn o
Q0 1COPPOTNUEVY]  TPOCGOPA  VEMV  VLANPECLODV  €ivar  €va  TPOPANUO  HE  OOPOPETIKEG Kot
oAAniocvykpovouevee TTuyxéG. To KOPLO YOPOKTNPIGTIKO TOL TPOTEWOUEVOD VTOAOYIGTIKOD €pYyaieiov
VTOGTNPIENG TG OmOPOONG Eval 1 EVOOUAT®ON TOAMGOV ofefardmtov oty Slodikacio ETIAOYNG Kot 1

oTOdLOKT "otKodoUNeN” TOV YOPTOPLACKIOV EpYmV.

AMAEG EQUPUOYEC OGYOAODVTOL UE EPYO OVOVEDGIUNG EVEPYELNC TOGO G€ €0vikd OGO Kol 6€ TAyKOGHLO
eminedo. E&etdobnke pehét mepintoong pe mpoyuatikd ototyeio and tn Baon dedopévav tov Mnyavicpon
Koboprig Avdamrvuéng, mpokeiyévov vo onovpyndel €va 100ppomnuévo  xopTtoPuAdklo "Tpdoivov'
dpaotnpotntov. H ocvykekpuyévn epyoacio emikevipdvetol ot1o mpOPANUC ETAOYNG YOPTOPLANKIOV
EVEPYELOKMV £PY@V OTOV 1) EVEPYELOKN TTOPpAy®YN KGOe Epyov kabmdg kot dAAeg TapdueTpol uropei vo ivar
aféPatec. T v tpéyovca uerétn mepintwong Oewmpodue 01t 1 afefardmmra oTIg TAPOUETPOLS Eivar

OTOYXOOTIKN Kot yopoaktnpiletor amd pio katovoun mbavotntag. XTn cuvéxeln, e mpocopoimon Monte
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Carlo AopBdvovtor otr Twég omd avTEG TIC KOTOVOUEG Kol EMAVOVTOL TO HOVTEAQ pafnpotikol
TPOYPOULATICUOV HE TIG TIES detypotonyias. To anotéhespa g dadikaciog dev elvar povo to TEMKO
YOPTOPLAAKLO, OAAG Kot Ot TANpoPOpies oxeTiKd e TN PefardTnTa GUUUETOXNS N OMOKAEIGHOD KABE Epyov

O7tO TO TEALKO YOPTOPLAAKIO.

To emdpevo mapdderypa apopd épya Avavedoung [Inyodv Evépyeiag (AIIE) oty EALGda, mov emdidiovy
OIKOVOUIKT] VTOoTNPEN OO YPNUCTOTIOTOTIKG 10pVUATH, OTOL €ivol TOAD OMUOVTIKO Vo, yivel o
GOPPOTNUEVT] EMAOYT KOl Vo omo@evyfel 1 taktiky "O6Ao to avyd o éva kaAdd'. v eéetacheica
nepintoon, agoloyndnkav 133 mpotdoelg épywv mov KaAvmTovv Tpelg texvoroyieg AIIE (aoAikd épya,
WIKPE VOPONAEKTPIKA, POTOPOATAIKG) PE 5 KprTipla. Agdopévon 6Tl 61N dlodKacio ETAOYNG GUUUETEL OV
OpKETOL €101KOL e OLOPOPETIKEG TPOTIUNGELS, N opadikn ITA oyedidotnke yio vo TpochHETel oTadlokd To
£pY0l GTO YOPTOPLAGKLO CVAAOYO, UE TN CLUP®VIOL TTOV EMITVYYOVETUL GTA WEAN TNG OUAOAG HEXPL VO QTAGEL

éva TEMKO YOPTOPLAGKIO.

To tekevtaio mapddeypo sivor pio wpoomabeio va yepupwbel 10 ydopo UeTalld EMYEPNUATIKOV KoL
MUOGL®V CUUPEPOVTOV. ZNUEPO., SIOETAL OAOEVA KOL LUEYAADTEPT EUPOCT] OTIS QIAIKEG TPOC TO TEPPAALOV
OpaoTNPOTNTEG, 01 omoieg Bewpovvtan pia amd TG PacIKEG AVGELS Yo TNV KATATOAEUNGT TNG TPEXOVGOS
YPNUOTOTIOTOTIKNG KOl OWKOVOMKNG Kpiong. Avtdg eivar o Adyog mov dokipalovpe 1n dvvarodtnTo
EVOOUATOONG TNG &vepyewkng kot mepfarloviikng etapiknig €vbovng (Energy and Environmental
Corporate Responsibility - EECR) ot dwdwkacio Ayng amogdcewv, vrootnpilovtag waitepa v
avamTuén evog véou HovTELOVL Yo TV a&loddynon Tov enevdvcemv. Epoapuoletot éva poviélo pabnpoticod
TPOYPOUUATICUOD VO OVIIKEYEVIKMY GUVOPTCE®V, TPOKELEVOL Vo BpeBodv Ta Bértiota kot Pareto
yaptopuAdkio (cvvolo Pareto) pe Baon v Kabapn Mapovoa Aia (Net Present Value - NPV) tov épyov
kot v PBabporoyio twv emyeipnoewv g tpog v EECR. Emmpdcheta, avantdicoetal Lo cuoTNHATIKY
TPOGEYYION  ANYNG  OmOPACE®MY  YPNOLLOTOIdVTOG Tpocopoimon Monte Carlo, mpoxepévov  va
OVTIUETOTIOTEL 1) €YYEVNG 0fEPAIOTNTA TOV GUVIEAEGTOV TOV OVTIKEUEVIKOV GUVOPTHoE®DY, dnAadn 1 NPV
k@0e €pyov kot  Pabuoroyic EECR «d0e emyeipnone. Emumiéov, umopei va agloloyndei n evpmaortio tov
id10v toV GVVOAOL Pareto, KOG Kot M evpwaoTtia TOV emUEPOVE PEATIOT®OY YopTOPLANKI®V Tov Pareto. H
TPOTEWOLEVT] TPOGEYYIOT OLEVKOADVEL TOVE EMEVOLTIKOVC OPYOVIGUOVEC KOl WOPOUOTO GTNV ETIAOYN TOV
EMYEPNOEMY TOL LITOPAAAOVY QLTNON YO OIKOVOUIKT] LTOGTAPLEN KOl YOPTYNON MICTOGEMY GTO TANIG10

¢ EECR.

Y& OMEC TIC TEPUTTMOOIOAOYIKEG LEAETEC MTaY TTEPLoGOTEPO amd eppavec tL N uéBodoc ITA mpocépepe TOAD
YPAOUN TANPOPOPNOT GTOV VIELOVYO ANYNG UTOPACENDY, TOGOTIKOTOLOVTOC TO Badud Befatdtntog e tov
omoio kabe £pyo Ppébnke 6to TEAMKO YOPTOPLAGKIO, YEYOVOS TO Omoio dev pmopel va emtevyfel pe Tig

ouppartikég peBdOOVG Kat TN XPToN LECHOY KOl AVOUEVOUEVAOV TYEG OTT LOVIEAOTOINoN TG ofefardtnrag.
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DEA — Data Envelopment Analysis

DM - decision maker
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GHG — Greenhouse gas emissions
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ILP - Integer Linear Programming

IP — Integer Programming

IPCC — Intergovernmental Panel on Climate Change
IRR — Internal Rate of Return

IT — Information Technology industry

ITA — Iterative Trichotomic Approach

KP — Kyoto Protocol to the UNFCCC

MAUT — Multi-Attribuye Utility Theory

MAVT — Multi-Attribute Value Theory

MC — Monte Carlo simulation

MCDA/MCDM — Multi Criteria Decision Analysis/Making
MP — Mathematical Programming

NPV — Net Present Value

OR — Operations Research

OWA — Ordered Weighted Average Operator
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1. Introduction

1.1. Aims and scope

The problems of choice surround us every day and everywhere. They may be complicated requiring more
time and elaboration in order to pick up the best solution in comparison with simple ones. Moreover, with
the growth of information necessary for the choice problem, the need for sophisticated assistance tools

increases.

One of common examples is the need of a university to make balanced selection from applicants. Students,
considering limited time, have to choose subjects and extra activities, such as additional research programs
or outdoor activities. Further, both public and private sectors are engaged in research and development
programs that were chosen from a plethora of proposals. The list of examples may continue for eternity as

making choices among alternative courses of action is a recurring activity.

Initially, every choice problem seems to be different and unique. However, after a thorough analysis and
structuring of the problem numerous similarities appear. First of all, these problems involve one or more
decision makers (DM), who needs to work with a given set of alternatives. There may be more than one
objective set to achieve, depending on preferences of one person or of a group of involved experts. Thorough
assessment of available and necessary resources should be performed too. Unfortunately, it is impossible to
be totally sure about the outcomes of a decision. Uncertainties in input data or preference information are
almost always present and need to be taken into account. The environment, in which the decision is
elaborated, is an open system and there is always a chance that something forgotten or discarded may

significantly influence or even alternate final results (Salo et al. 2011).

Different multi-cirteria decision analysis (MCDA) methods aim at supporting complex planning and
decision process by providing a framework for collecting, storing and elaboration of all relevant information.
The core of any MCDA method is the decision model, which is a formal specification of how different kinds
of information are combined together to reach a solution. These methods are helpful for the development of
planning processes, to avoid numerous distortions, and to manage all the information, criteria, uncertainties,
and importance of the criteria. With their assistance it is possible to alleviate the problems caused by limited
human computational power. Intuitive and adaptive choices are replaced by a justified and jointly accepted
model (Lahdelma et al. 2000). Numerous authors (Goicoechea et al. 1982, Hobbs 1984, Hobbs et al. 1992,
Simpson 1996, Lahdelma et al. 2000) point attention on the difficulty of picking a certain MCDA tool due to

the fact that distinctive methods may provide different results with the same data, and there is usually no
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means to objectively identify the best alternative or method. Therefore, the choice of the method should be
well justified in real applications, although this is rarely done. When the problems are solved in close
cooperation with experts, some requirements are applied for the MCDA method. First of all, the method
should be well defined and easy to understand, particularly regarding its central elements, such as modeling
of criteria and definition of weights. Next, the technique must be able to support the necessary number of
DMs as well as to manage the necessary number of alternatives and criteria. Since the available time and
financial support are usually limited, the need of preference information from the experts should be as small
as possible. In addition, the ability to handle the inaccurate or uncertain criteria information should not be
overlooked too. As a rule, these requirements cover the typical factors through which the practical relevance
of decision support methods is usually evaluated. This is especially true, for example, in planning decisions
in the domains of energy production and climate change abatement.

Most of problems can be attributed to several categories or typologies. Roy (1996) identifies four different
problematiques for which MCDA may be useful:

e The choice problematique for making a simple choice from a set of alternatives;
e The sorting problematique for allocation of options into classes or categories;

e The ranking problematique for placing actions in some form of preference ordering which might

not be necessarily complete;

e The description problematique summarizes actions and their consequences in a formalized and
systematic manner so that decision makers can evaluate these actions. In core this is a way to gain

better understanding of what may and may not be achievable.
To these four main groups Belton and Stewart (2002) add two more problematiques, namely:

e The design problematique to search for, identify or create new decision alternatives to meet the

goals and aspirations through the MCDA process;

e The portfolio problematique to choose a subset of alternatives from a larger initial set, taking into
account not only the characteristics of the individual alternatives, but also of the manner in which

they interact and of positive or negative synergies.

In practice, the path of project selection combines several problematiques. Moreover, in most situations it is
at least as much of a problem to identify suitable alternatives and to establish appropriate criteria, as it is to
make a selection from the available alternatives. Consideration of numerous criteria and objectives leads to

multi-objective design problems.



While problem structuring and analysis take a number of different forms, lack of knowledge leads to various
uncertainties. The lack of knowledge influences the modeling process, the use of models for exploring trends
and options, and the interpretation of results. For the purposes of multicriteria decision aid, Belton and
Stewart (2002) differentiate between internal uncertainty, relating to the process of problem structuring and
analysis, and external uncertainty, regarding the nature of the environment and thereby the consequences of
a particular course of action. Uncertainty about the environment represents concern about issues outside the

control of the decision maker.
Several approaches to integrate external uncertainty have been developed. Some of the most used are:

e Scenario planning, which usually requires decision makers to identify a number of scenarios

relevant to the decision context (for instance: pessimistic, neutral, optimistic);
e Decision Theory to use probability to describe the likelihood of uncertain events;

¢ Risk as criterion in a multiple criteria analysis which implies that certain level of risk is acceptable

in return for increased benefits of reduced costs in terms of other criteria.

Unfortunately, for such complex problems traditional sensitivity analysis that is usually performed on certain
criteria within defined ranges is not enough. As it is well observed in Antunes and Climaco (1992),
sensitivity analysis (also called post-optimal analysis) in single objective linear programming deals with
computing ranges on the variation of some initial data such that the optimal basis remains optimal for the
perturbed problem. The concept of optimal solution (in general unique) gives place in Multi-Objective
Programming to the concept of efficient solution (in general many, even if only extreme points are
considered). Moreover, changes in the underlying DM's preference structure as a result of the information
gathered throughout an interactive process must be taken into account. For a complex problem which has its
optimum at an extreme point of the feasible region, the simultaneous consideration of constraints, which
may be nonlinear, makes the problem more intricate.This makes even more difficult to define sensitivity

analysis in an MCDM context, and in fact this issue is not uniformly addressed in the literature.

On the other hand, scenario building also rarely reflects fine details and uncertainty in future performance of
project proposals. As a rule, scenarios are developed for optimistic, business-as-usual and pessimistic
conditions, which reveal certain trends, and then experts need to make a choice based in the inner feeling.
Another approach is to model risk seeking, neutral, and risk avert behavior for the parameters that depend on
human factor. Years of practice confirmed that almost always risk avert behavior is adopted by decision
makers. Hence, all these approaches alone are imcomplete and need more search and modeling to deliver

robust results.



That is why a combination of approaches and tools, fitted for certain problem, are better than a single one.
The whole process needs more time and knowledge becomes more cumbersome, but the obtained results can
lead towards balanced decisions. A typical list of tools starts with the identification of alternatives. In some
occasions, alternatives to be evaluated may appear to be clearly defined. In other occasions, the definition or
discovery of alternatives may be an integral part of a study. In certain circumstances, it may seem impossible

to handle the overwhelming complexity of options.

The following step is to evaluate available options whether they are few or a large number. Most
multicriteria evaluation methods are designed for the evaluation of independently defined alternatives.
Sometimes screening techniques are applied for large number of proposals when certain targets are already
defined and should be met. DEA (Data Envelopment Analysis) might be used as a way to identify
alternatives from a long list of promising options. In addition, it has been suggested that an outranking
method, like ELECTRE, could be used to draw up a short list of suggestion for a more thorough evaluation.
These screening approaches should be carefully used because a degree of non-compliance on one criterion
may be compensated for by exceptional performance elsewhere.

Simultaneously, a set of criteria should be decided upon. In a wide sense, criteria are seen as a certain
standard by which one particular choice or course of action could be judged to be more desirable than
another. For every separate problem a set of criteria is unique and needs to be well balanced in order to

reflect project behavior in the future.

Taking all the aforementioned into account, in this work we incorporate already developed tools and address
known weaknesses with a new approach that helps to build a balanced project portfolio. Project portfolio
selection problem is defined as the problem of selecting a subset of projects usually based on one or more
criteria that have to fulfill specific constraints. In the presence of the imposed constraints (e.g. policy,
segmentation constraints) a simple MCDA method does not suffice. The combinatorial character of the
problem implies the use of optimization methods aiming at the portfolio of projects that satisfy constraints
and achieves the “best” performance. A combination of projects is defined as project portfolio. Usually the
“best” performance is expressed emphasizing on economic and financial criteria while other criteria related
with the promotion of sustainable practices, environmental issues, fostering green growth, were not taken

into consideration in traditional models (Hobbs and Meier 2000).

The aim of the specific dissertation is to propose a method that effectively deals with decisions regarding the
selection of a subset of projects from a wider set. This selection is driven not only by the performance of the
projects (objectively of subjectively estimated) but also from various constraints and conditions among them
that should be fullfiled. In addition, uncertainty is present either in a stochastic manner or in the subjective

views of different decision makers and is treated carefully in the modeling process.
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1.2. Thesis outline

This thesis focuses on building a balanced project portfolio with great consideration of performance
uncertainty, which cannot be adequately captured via traditional tools of forecasts and sensitivity analysis.
The proposed methodology helps to capture incomplete information both in objective function(s) as well as
in model parameter values. Further, the influence and implications on project and portfolio decisions are
studied closer. That is why gradual portfolio building reveals inner dynamics and provides the possibility to

review and update initial assumptions and constraints.
The dissertation is structured as follows.

Chapter 2 describes historical background and summarizes current ways to address project portfolio
selection problems.

Chapter 3 presents methodologies used along with crucial initial assumptions and concepts. The description
moves from basic foundations towards more complicated ones. First, the types of tools applied for modeling
are listed with short explanations of their use. Then, particularities of mathematical programming are

discussed. Finally, assumptions about handling incomplete information in the current work are explained.

Chapter 4 is devoted to the main contribution of the dissertation, the Iterative Trichotomic Approach (ITA)
and its versions. Initially, a two-phase approach is developed to perform a relatively quick project selection
which has to meet certain constraints. The concept is further developed to handle large number of projects
with more complicated constraints. For a certain case study it has been necessary to adopt the approach for

the group decision making in order to handle experts’ divergent points of view.

Within Chapter 5 different applications are demonstrated. The first case study deals with the selection of
activities for expansion of services for a telecommunication company, since drastic developments in the area
required well thought future steps. The need for balanced introduction of new service offerings is a problem
which involves different and conflicting aspects. The main feature of the proposed decision aid
computational tool is the incorporation of several uncertainties in the selection process and the gradual

building of the project portfolio.

Among next examples there are a portfolio selection of climate related activities to be chosen for financial
support, a more complicated case of group portfolio building and an example of a bi-objective problem
among others. Most of these applications are focused on renewable energy projects’ selection. The specific

focus is on the energy project portfolio selection problem where the output of each project as well as other



parameters may be uncertain. On the other hand, for the donor organization it is crucial to make a balanced
selection and avoid the tactics of “all eggs in one basket”. The process output is not only the final portfolio,

but also information about the certainty of participation or exclusion of every project in the final portfolio.

In all case studies it is very visible how ITA offers more fruitful information to the decision maker as it
guantifies the degree of certainty with which each project is treated in the final portfolio, a task that cannot
be accomplished with the conventional methods using average and expected values in the modeling of

uncertainty.

In Chapter 6, the contribution of this thesis is summarized and some plans for future work are suggested.
Also, the final chapter compiles conclusions and observations from case studies and about the whole
framework of methodology.

The Appendix provides some general information about GAMS modeling language. In addition, the coding

of models for the case studies is provided.

Overall, this thesis expands the material which has been published, submitted, or is under preparation, in

various journals and conferences.



2. The problem: Project portfolio selection

Project portfolio selection is defined as the problem of selecting a subset from a wide set of proposals.
Portfolio selection is a step further after simple ranking of projects. Usually the projects are not independent,
i.e., there are particular limitations that should be respected (segmentation constraints, mutually exclusive,
precedence etc.) so that Multiple Criteria Decision Aid (MCDA) methods do not suffice but they must be
combined with combinatorial optimization techniques. A popular way to deal with this problem is to use a
two step approach: (1) A multicriteria method to evaluate the projects and (2) a mathematical programming
model that incorporates the constraints while the objective function coefficients are the multicriteria scores.
Generally speaking, according to Vetschera and Almeida (2012) project portfolio selection involves:

e Selection of subset from a wider set of project proposals;
e Projects are indivisible and can be chosen as whole;
e Constraints are applied, so that not all available proposals can be selected;

e Qutcomes are determined by some aggregation of properties of selected projects.

2.1. History and current status of portfolio selection

In project portfolio selection the intuitive approach is to rank projects using one or more criteria and select
the top ranked ones that cumulatively satisfy the budget limitation, as shown in Figure 2-1. Often this
straightforward approach is sufficient. However, this may result in the budget cutting off midway through an
expensive project. Also, in real world decision making, there are two concepts that complicate the decision
situation: (a) the existence of constraints and limitations imposed by the decision maker; (b) the uncertainty
that accompanies the project evaluation, i.e., the output uncertainty. Moreover, projects are rarely
independent (with most common logical constraints where alternatives A and B are mutually exclusive) and
numerous interactions may take place. Among common examples are interactions in cost (e.g., the cost of C
and D together is less than the cost of C by itself plus the cost of D by itself), interactions in the values (e.g.,
the value of E and F together is different from the value of E by itself plus the value of F by itself), or
probabilistic covariance in outcome. All these problems can be addressed by formulating a suitable binary
optimization program, which can be solved by using Excel’s Solver or other commercial software. However,

this approach should be used with caution. The math program can quickly become too large to be really



understood by or explained to senior decision makers and stakeholders. The resulting optimum portfolios
can be fragile, in the sense that they can change drastically with only a small change in data (for instance, a
little additional budget can result in an alternative being deleted from the portfolio, which is very hard to
explain to that alternative’s proponent). Finally, if the problem is very large (hundreds of alternatives), it can

take a long time (hours or days) to solve (Burk and Parnell, 2011).
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Figure 2-1. Selection of n top ranking projects.

The earliest contributions were published under the title of capital budgeting (see e.g. Lorie and Savage,
1955), using strictly financial measures to quantify the value of projects and portfolios, giving emphasis to
the budget constraint. From early sixties, the so called capital budgeting problem was recognized as
equivalent to the popular in Operational Research (OR) knapsack paradigm. The incorporation of multiple
criteria can also be found in the literature within Goal Programming (see e.g. for a review Zanakis et al.,
1995; for applications in Information Systems Badri et al., 2001; Santhanam et al., 1989; Santhanam and
Kyparisis, 1996; for university resource allocation Albright, 1975; Kwak and Lee, 1998; Fandel and Gal,
2001; for an industrial application Mukherjee and Bera, 1995), combinations of MCDA with IP (see e.g.
Golabi et al., 1981; Abu Taleb and Mareschal, 1995; Mavrotas et al., 2003; Mavrotas et al., 2006; Mavrotas
et al., 2008), and Data Envelopment Analysis (Cook and Green, 2000; Oral et al., 1991; Oral et al., 2001)
among others. Ghasemzadeh and Archer (2000) proposed the Project Analysis and Selection System (PASS)
based on MCDA and Integer Programming. Hunt et al. (2013) proposed OUTDO for energy projects.
Lourenco et al. (2012) proposed PROBE (Portfolio Robustness Evaluation) introducing the concept of

robustness in project portfolio selection.

Project scoring methods do not necessarily ensure the quality of portfolio selection, because they do not

explicitly take into account portfolio level considerations, such as multiple resource constraints, portfolio
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balance requirements and other project interactions. Sophisticated project portfolio models, on the other
hand, seek to combine project portfolio optimization with explicit consideration of multiple value criteria
(Golabi et al., 1981; Golabi, 1987). These models build on the well established Multi-Attribute Value
Theory (MAVT; see, e.g., Keeney and Raiffa, 1976) to aggregate the multi-criteria project values into a
portfolio overall value and use integer linear programming to determine the optimal composition of the
project portfolio subject to resource and other constraints. Several high impact applications of multi-criteria
portfolio models have been reported in the fields of military resource allocation (Ewing et al., 2006), R&D
portfolio selection (Golabi et al., 1981), product release planning (Ruhe and Saliu, 2005) and healthcare
capital allocation (Kleinmuntz, 2007), among others (Liesio 2008).

Based on the aforementioned studies, a project portfolio decision support framework needs to strike a
balance between the following challenges:

Generality. The decision support model should be flexible enough so that it is applicable in various problems
contexts. Most importantly it should allow consideration of multiple criteria and resources. Moreover,
portfolio balance requirements and project interactions are common in applications. Finally, the model
should support benefit-cost analyses, as the budget, for instance, is not always a fixed constraint but can be

adjusted to some extent.

Modest data requirements. Even if a model could capture all aspects of project portfolio selection, the use of
such a model would require large amounts of data and/or subjective evaluations to estimate the model
parameters. Such data is often unavailable, whereas expert evaluations are costly to obtain and may contain
considerable uncertainties. Therefore, models that offer approximate or inconclusive results with modest
data requirements and explicitly take into account the incomplete or imprecise nature of the data, are more

useful than models that require accurate data before offering any results.

Transparency. For a model to be accepted by practitioners, the key assumptions and concepts of the model
have to be understood by the DMs. Empirical research supports this claim as practitioners often use simple
scoring models to support project evaluation (Cooper et al., 1999). Also, from the aspect of decision support,
models intelligible to non-experts are more readily applicable, as difficulties in elicitation of preferences and

communication of results are likely to be avoided (Liesio et al. 2007).

In his seminal work for portfolio optimization Markowitz (1952) proposed the Modern Portfolio Theory
(MPT) that incorporated portfolio risk in the decision making process. There, risk was quantified by the co-
variance matrix of the returns (outputs) as calculated by historical data. The MPT was designed for securities
where historical data is not a problem (Xidonas et al. 2012). In relation to projects the MPT cannot be easily

applied as the decision variables are binary and historical data are scarce. While security prices can be



correlated, most investments into securities are not logically dependent on each other. But in project
portfolio selection there can be many forms of interdependencies due to logical relationships. For a more
realistic modeling, the uncertainty characterizing the output of projects should be taken into account. In the
literature, this is done either with the use of scenarios (see e.g. Georgopoulou et al., 1998) or with fuzzy
parameters (see e.g. Damghani et al., 2011; Cavallaro, 2010) or with stochastic parameters (Liesio et al.,
2008; Shakhsi-Niaei et al., 2011). An appropriate tool for dealing with stochastic uncertainty is Monte Carlo
simulation, where sampling from certain probability distributions is performed for the inputs and the outputs
with all the relevant obtained information. A great number of iterations is necessary in order to obtain
reliable results from the outputs (distribution of output values etc.). Another feature to remember is the fact
that projects are treated as binary variables which are either selected or rejected. This differs from financial
portfolio optimization where essentially any fractional amount of resources can be invested into any security
(Vilkkumaa et al. 2014).

We note that finding examples of project portfolio selection problems is not an easy task, because very often
they may be called in another way. Research is spread between numerous specialized journals and books.
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3. Methodology

Complex problems need elaborated models. Certain simplification is necessary, but oversimplification may
lead to wrong results. In order to capture the complex nature of a problem it is worth to apply different tools
and approaches. A short description of tools that were used in the current work is provided in the sub-
chapters below.

3.1. Initial elaboration of projects

All proposals for activities may be called projects, items or alternatives and are subject of evaluation in terms
of multiple criteria in order to make them comparable between each other. The criteria provide numerical
measures for all relevant behaviors of different alternatives. The relevance of various impacts depends on
experts’ points of view. Also, it is necessary to define precisely how each criterion is measured. Usually
criteria are aggregate values computed from a much larger amount of so-called primary factors, which form
the lowest level of information, also known as the assessment level (Lahdelma et al. 2000). Within many
years numerous researchers addressed this issue. Mainly either outranking or value and utility methods are
used for that. A well done description of preference elaboration methods basic principles’ is done by Stewart
and Belton (2002). Further elaboration may be made by straightforward picking of one project representing
each group or after a prioritization stage. Ranking is usually performed on the basis of one most important
criterion, such as cost/benefit ratio, required resource or something else. There is no formal way of
constructing a list of possible alternatives and no concrete way of knowing when the set of experts is
complete enough, other than relying on experience, intuition, and on the vague concept of diminishing

marginal return of satisfaction (Banville et al. 1998).

One of classical examples is the knapsack problem which focuses on selecting projects until the main
resource (such as budget) is exhausted. Such an approach would produce the highest benefit for the money
spent, but would not necessarily deliver the maximum benefit for the available budget (Lourenco, Morton
and Bana e Costa 2012). Because of this, the concept of constraints becomes a vital part of the selection
problem, which in turn destroys one of the main assumptions in ranking method - the independence of the
projects (see e.g. Belton and Stewart, 2002). In other words, the top ranked projects only by chance may
satisfy imposed constraints. A strong and useful tool to cope with such problems is Mathematical

Programming that optimizes under specific constraints. More specifically, in case of project selection, the
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combinatorial character of the problem implies the use of Integer Programming (IP) with 0-1 (binary)

variables expressing incorporation (X;=1) or exclusion (X;=0) of respective project in final selection.

In addition, numerous approaches were developed in order to capture a complicated nature of interactions
between projects. When the cumulative effect of implementation of several projects is greater than the
simple sum of their values — then synergy effects take place. In some cases, there may be opposite results
with the cumulative sum smaller than the straightforward addition. It may be caused by overlaps in projects

performance and output. Moreover, some projects may be mutually exclusive.

Within the current work we used different methods for initial evaluation of available options.

3.2. Tools for projects’ assessment

The field of MCDA has developed rapidly over the past decades and in the process a number of divergent
schools of thought have emerged. For a balanced presentation of approaches the book of Belton and Stewart
(2002) is a good starting point. Here we will mention only briefly some major schools.

Among the oldest are value measurement models, in which numerical scores are constructed in order to
represent the degree to which one decision option may be preferred to another. Such scores are developed for
each individual criterion, and are then synthesized in order to affect aggregation into higher level preference
models. Among widely used approaches of this school are Multiattribute Utility Theory (MAUT),
Multiattribute Value Theory (MAVT) and Analytic Hierarchy Process (AHP). They differ primarily in terms
of the underlying assumptions about preference measuring, the methods used to elicit preference judgements

from experts involved, and the manner of transforming these into quantitative scores.

Other family is represented by goal, aspiration or reference level models, in which desirable or satisfactory
levels of achievements are established for each of the criteria. The process then seeks to discover options
which are in some sense closest to achieving these desirable goals or aspirations. In these models much
depends on the framing of the problem, reference points and perception of what constitutes “gain” or “loss”.
Care thus needs to be taken in ensuring that decision makers understand and are satisfied with the implied

reference points used in the model.

Wide popularity gained outranking models, in which alternative courses of actions are compared pairwise,
initially in terms of each criterion, in order to identify the extent to which a preference of one over the other
can be asserted. In aggregating such preference information across all relevant criterion, the model seeks to

establish the strength of evidence favouring selection of one alternative over another.

In what follows, we have a closer look on some of most popular assessment methods.
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Value function methods synthesize projects’ performance assessment against certain criteria, together with
inter-criteria information reflecting the relative importance of different criteria, to give an overall evaluation
of each alternative indicative of the decision makers’ preferences. However, it is worth to remember that
learning and understanding which results from engaging in the whole analysis process is far more important
than numerical results. That is why evaluation should incorporate extensive sensitivity analysis and

robustness analysis.

Within the value measurement approach, the first step is to develop a hierarchy of criteria (so called “value
tree”). Further, the components of preference modeling are achieved by constructing “marginal” / “partial”
value functions (v; (a)) for each criterion. It should be remembered that the properties of the partial value
functions and the form of aggregation used are critically interrelated. Usually an additive aggregation is
adopted, while multiplicative aggregation may be adopted in some MCDA approaches.

Utility theory can be viewed as an extension of value measurement, relating to the use of probabilities and
expectations to deal with uncertainty. Here it is assumed that each criterion is directly associated with a
guantitative attribute measured on a cardinal scale, which may also be influenced by unknown external
factors. The consequences of each alternative are thus described in terms of a probability distribution on
certain attribute vector. For a more detailed description of the method it is advised to read the work of
Keeney and Raiffa (1976).

As for the AHP, its main difference from MAVT is in the use of pairwise comparisons between alternatives
with respect to criteria and criteria within families, as well as the use of ratio scales for all judgements. The
method was initially developed by Saaty (1980), it was elaborated through years and became widely used in

practical applications.

In outranking methods, specially acclaimed became the variations of ELECTRE and PROMETHEE
methods. The family of ELECTRE methods was developed through years by Roy B. and associates and
differs according to the degree of complexity or richness of the information required or according to the

nature of the underlying problem.

Roy was critical of the utility and value function methods on the grounds that they require all options to be
comparable. In collaboration first with his associates at LAMSADE, University of Paris Dauphine, he started
to develop ELECTRE outranking method. One of the major features of this new approach was the provision
of weaker, poorer models than value function, built with less effort and fewer hypotheses, but not always
allowing conclusion to be drawn. The family of ELECTRE methods differ according to the degree of initial

information complexity and the nature of the underlying problem.
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The earliest and simplest outranking method was ELECTRE | which is good for understanding of underlying
concepts. The methods are based on the evaluation of two indices, namely the concordance and the
disconcordance indexes, defined for each pair of options under consideration. The concordance index,
C(a,b), measures the strength of support in the information given, for the hypothesis that a is at least as good

as b. The disconcordance index, D(a,b), measures the strength of evidence against this hypothesis.

In general, the concordance index is the proportion of criteria weights allocated to these criteria for which a
is equal or preferred to b. The index takes values between 0 and 1 where higher values indicate stronger
preference of a over b. The disconcordance is expressed as a proportion of the maximum weighted
difference between any two alternatives on any criterion. It ranges from 0 to 1 as the previous index and its
high value indicates that on at least one criterion b performs substantially better than a. Still, the form of this
index makes it appropriate only for evaluations that were made on a cardinal scale and the weights render
scales comparable across criteria. These assumptions are not easy to meet and may be quite restrictive.

The concordance and disconcordance indices for each pair of options can be used to build an outranking
relation. Also, simultaneously respective thresholds should be specified carefully. If the outranking relation
is too severe, then almost all pairs of alternatives will be deemed to be incomparable, while a light relation
will lead to a situation where too many options outrank too many others. Fortunately, an outranking relation

can be represented visually by a graph with arrows showing the direction of outranking relation.

Having built the outranking relation, the final step is the exploration of that relation in the decision process.
The procedure may have several shapes depending on the initial cause of the process. It can be either a
determination of the “best” option, or an options ranking, or a separation into certain classes or groups of

alternatives. Also, sensitivity and robustness analysis may be performed to support final decisions.

ELECTRE Il was developed shortly after ELECTRE | and aims at the production of alternatives’ ranking
rather than simple search of the most preferred ones. This is reached via different pairs of concordance and
disconcordance thresholds. These are referred to as the strong and weak outranking relations, the former
having a higher concordance threshold and a lower discordance one. Another small change was the
introduction of an additional constraint in the test for outranking in order to reduce the possibility of two

alternatives each outranking the other.

Later developments put a greater emphasis on detailed preference modeling since not all alternatives perform
identically on a given criterion. In ELECTRE 111 the notions of indifference and preference thresholds were
introduced. However, this requires more work in modeling preferences with respect to each individual

criterion before progressing to the building and exploitation of the outranking relation. In order to handle
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situations when it is impossible to specify criteria weights ELECTRE IV was developed. Outranking

relations, of different strength, are then defined by direct reference to the performance levelsof alternatives.

ELECTRE TRI is for use in classification problems. The original procedure was designed to allocate
alternatives to one of three categories: acceptable, unacceptable and indeterminate. Later this has been
extended for use in classification problems with greater number of categories. In certain way it became one

of filtering methods.

Another family of prominent outranking methods is represented by the PROMETHEE methods. The initial
PROMETHEE method, developed by Brans and co-workers, uses preference function for each criterion. The
next step determines a preference index for one option over another and defines a valued outranking relation,
which is exploited to determine an ordering of the alternatives. Then, two other indices, the positive
outranking flow and the negative outranking flow, are defined where the sums are taken over all alternatives
under consideration. The positive outranking flow expresses the extent to which certain option outranks all
others. The negative outranking flow expresses the level to which that option is outranked by all other
options. Each of these indices defines a complete preorder of alternatives.

It should be remembered that the values of both positive and negative outranking flows depend on the
complete set of alternatives under consideration. Hence, inclusion or exclusion of another option may

influence strongly already obtained preorders.

The primary appeal of all outranking methods is in the avoidance of what are perceived to be overly
restrictive assumptions of value or utility based approaches. All outranking methods focus on pairwise
comparisons of alternatives, and are thus generally applied to discrete choice problems. Another advantage

of these methods is the use of less precise inputs.

3.3. Mathematical programming tools

In operations research, mathematical programming, also alternatively named mathematical optimization or
simply optimization, is the selection of a best alternative with regard to some criterion from an initial set of

available options usually expressed by specific constraints.

The simplest example of an optimization problem consists of maximizing or minimizing a real function by
systematically choosing input values from within an allowed set and computing the value of the function.
The generalization of optimization theory and techniques to other formulations comprises a large area of
applied mathematics. More generally, optimization includes finding "best available” values of some

objective function given a defined domain (or input), including a variety of different types of objective
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functions and different types of domains. Many real-world and theoretical problems may be modeled in this

general framework.

In the operations research domain has a wide array of methods and approaches is available to solve
problems. One of the largest families is the Convex programming problems where the objective function is
either convex (minimization) or concave (maximization) and the constraint set is convex. This can be viewed
as a particular case of nonlinear programming or as a generalization of linear or convex quadratic

programming.

Linear programming (LP) is a mathematical technique which tries to satisfy initial demands by assigning
some amounts of resources so that a certain goal is elaborated in an optimal way while other limitations are
also satisfied. LP addresses problems where the objective function f(x) is linear and the constraints are
specified using only linear equalities and inequalities. Its feasible region is a convex polytope, which is a set
defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its
objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming
algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a

point exists.

Methods of Integer Programming (IP) study linear programs in which some or all variables are constrained
to take on integer values. This is not convex, and in general much more difficult than regular linear
programming. In many settings the term refers to Integer Linear Programming (ILP), in which the objective
function and the constraints (other than the integer constraints) are linear. There are two main reasons for

using integer variables when modeling problems as a linear program:

e The integer variables represent quantities that can only be integer. For example, it is not possible to

schedule 2.5 buses.
e The integer (binary) variables represent decisions and so should only take on the value 0 or 1.

These considerations occur frequently in practice and so integer linear programming can be used in many
applications areas. Among typical examples are the number of trucks in a fleet, number of electricity

generators for energy production etc.

One of typical problems that we have already mentioned earlier is the knapsack problem which is a
relatively simple integer program. Furthermore, the coefficients of this constraint and the objective are all
non-negative. Initial information covers a knapsack with certain capacity and a number of items, each with a
size and a value. The objective is to maximize the total value of the items in the knapsack. To solve the
associated linear program, it is simply a matter of determining which variable gives the most ‘bang for the

buck". In other words, after finding the ratio between the objective coefficient and constraint coefficient for
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each variable, the one with the highest ratio is the best item to place in the knapsack. Then the item with the
second highest ratio is put in and so on until we reach an item that cannot fit. At this point, a fractional
amount of that item is placed in the knapsack to completely fill it. In certain way, a ranking is performed
until the main resource is used. For more detailed descriptions see e.g. H. P. Williams (1999), G.L.
Nembhauser and L.A. Wolsey (1999).

Much like linear programming problems, Mixed Integer Linear Programming (MILP) problems are very
important when solving decision-making models. MILP involves problems in which only some of the
variables are constrained to be integers, while other variables are allowed to be continuous. Efficient
algorithms for solving complex problems of this type are known and are available in the form of solvers such
as CPLEX or Gurobi. Winston (1994) made one of earliest attempts to gather and explain some of most
widespread problems in one book. An extended review of models and solving methods can be found in Taha
H.A. (2003), Hillier and Lieberman (2001).

Goal programming may be viewed as the bridge between single objective and multi-objective
programming, namely concerning reference points approaches. The aim is to minimize the function of the
deviations regarding targets established by DMs for the objective functions. These targets established by
DMs may lead to a dominated solution to the problem under study if the DM is not sufficiently ambitious in
specifying his goals. In this case, goal programming model leads to a satisfactory solution but may not

belong to the nondominated solution set. More details may be found in Steuer (1986).

3.4. Multi-objective mathematical programming

Multi-objective Mathematical Programming (MOMP) is an extension of traditional mathematical
programming theory dealing with mathematical optimization problems involving more than one objective
function to be optimized simultaneously. The family of these methods can be also called multi-objective
programming, vector optimization, multi-criteria optimization, multiattribute optimization or Pareto
optimization. Adding more than one objective to an optimization problem adds complexity. Multi-objective
optimization has been applied in many fields of science, including engineering, economics and logistics
where optimal decisions need to be taken in the presence of tradeoffs between two or more conflicting

objectives. A general formulation of a MOMP problem is as follows:

Max or Min {f( X), f2( X),..., fa( X )}
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where X is the vector of decision variables; f;, f,,..., f,; are the objective functions (linear or nonlinear) to be

optimized; and S is the set of feasible solutions.

In contrast to traditional mathematical programming theory, within MOMP framework the usual concept of
an optimal solution is no longer applicable. This is because objective functions are of conflicting nature (the
opposite is rarely the case). Therefore, it is not possible to find a solution that optimizes simultaneously all
the objective functions. In this regard, within the MOMP framework, the major point of interest is to search
for an appropriate “compromise” solution. When searching for such a solution, only the efficient set is
considered. The efficient set consists of solutions, which are not dominated by any other solution on the
prespecified objectives. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if
none of the objective functions can be improved in value without degrading some of the other objective
values. Without additional subjective preference information, all Pareto optimal solutions are considered
equally good as vectors cannot be ordered completely. That is why the involvement of DM in results’
elaboration is welcomed. Most multiple objective programming procedures are interactive and a review of
such interactive procedures is contained in Gardiner and Steuer (1994). One of the earliest examples is of
Lawrence and Steuer (1981) who applied an interactive multiple objective programming procedure to capital
budgeting to enable a decision maker to gain improved appreciations of how the objectives tradeoff against

one another.

Several appropriate procedures have been developed to solve MOMP problems. These procedures are
interactive and iterative. The general framework within which these procedures operate is a two-stage
process. In the first stage, an initial efficient solution or group of solutions is presented to the DM. If this
solution is found to be acceptable (i.e., if it satisfies expectations on the given objectives), the solution
procedure stops. If it is not acceptable, the expert is asked to provide information regarding his preferences
on the prespecified objectives. This information involves objectives that need to be improved and tradeoffs
that he is willing to undertake to achieve these improvements. The purpose of defining such information is to
specify a new search direction for the development of new, improved solutions. This process is repeated
until a solution is obtained that is in accordance with the DM’s preferences or until no further improvement

of the current solution is possible (see e.g. Steuer, 1989, Mavrotas, 2000).

The set of all efficient points is called the efficient set. While the efficient set is normally a portion of the
surface of the feasible region, the efficient set has the tendency to grow rapidly as problem size increases.

For special kind of MOMP problems (mostly linear problems) of small and medium size, there are also
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methods that produce the entire efficient set (Mavrotas, 2009). In general, the most widely used generation
methods are the weighting methodand the e-constraint method. These methods can provide a representative
subset of the Pareto set which in most cases is adequate. In this context, Mavrotas (2009) proposes the use of
the augmented e-constraint method (AUGMECON) which is a novel version of the conventional e-constraint
method that provides remedies for its well-known pitfalls. AUGMECON has been implemented in the
widely used modeling language GAMS.

The advantage of multiple objective programming is that it provides the possibility to sample neighborhoods
on any multi-dimensional efficient surface to any degree of resolution. A disadvantage is the CPU run time
required.

3.5. Modeling incomplete information

In real world decision making there are two concepts that complicate the evaluation: (a) the limits of expert’s
knowledge; (b) the uncertainty that accompanies project’s evaluation, i.e., its future performance (output)
uncertainty (Mavrotas & Pechak 2013b). In the first case, the uncertainty is essentially a lack of information;
complete ignorance represents one end of the spectrum and perfect information (i.e., certainty) the other. At
a most fundamental level, uncertainty relates to a state of the human mind, i.e., lack of complete knowledge

about something.

Moreover, before incorporating data into the model, the notions of uncertainty and risk should be cleared.
Their definitions vary from one case study to another where the meanings range from being totally
independent concepts to being synonyms. Numerous definitions, found in the literature, are very dependent
on the context and field of a problem. The only thing that no one can argue against is the fact that these
terms are closely related. The abundance of research focused on uncertainty and risk makes it impossible to
cover all assumptions within a short review. Needless to say that development and understanding of risk and
uncertainty concepts are heavily influenced by economy and finance theory, as well as of the portfolio. In
early 20-th century, Knight (1921) noted that there are two types of uncertainty. The first, measureable
probability, Knight labeled as ‘risk’, and the second, unquantifiable ambiguity, or uncertainty. In project
management, risk can be assigned a probability value, whereas uncertainty is completely immeasurable
(Regan, 2011). It is critical to note this distinction, as risk is concerned with objective probabilities, whereas
uncertainty requires consideration of subjective probabilities (Rutherford, 1995; Koleczko 2012). Another
dual classification is proposed by Roy and Oberkampf (2011) where uncertainty is classified as either
aleatory — the inherent variation in a quantity that, given sufficient samples of the stochastic process, can be

characterized via a probability density distribution, or epistemic — uncertainty due to lack of knowledge by
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the modelers, analysts conducting the analysis, or experimentalists involved in validation. Aleatory
uncertainty is also referred to in the literature as variability, irreducible uncertainty, inherent uncertainty and
stochastic uncertainty. This term is used to describe the inherent variation associated with the physical
system or the environment under consideration. Epistemic uncertainty derives from some level of ignorance,
or incomplete information, of the system or the surrounding environment and is also termed reducible
uncertainty, subjective uncertainty and model form uncertainty. The lack of knowledge can pertain to, for
example, modeling of the system of interest or its surroundings, simulation aspects such as numerical
solution error and computer round-off error, and lack of experimental data. In scientific computing, there are
many sources of uncertainty including the model inputs, the form of the model, and poorly-characterized
numerical approximation errors. All of these sources of uncertainty can be classified as either purely
aleatory, purely epistemic, or a mixture of the two.

In Operations Research the definition of uncertainty also distinguishes uncertainty as objective and
subjective uncertainties. He is more concerned about subjective uncertainty and the following definition
refers to it. “Uncertainty implies that in a certain situation a person does not dispose about information which
guantitatively and qualitatively is appropriate to describe, prescribe or predict deterministically and
numerically a system, its behaviour or the characteristics.” His list of causes for uncertainty includes lack or
abundance of information, conflicting evidence, ambiguity measurement and belief. He also strongly
believes that uncertainty should not be modelled context free and that there exists no “single method which

is able to model all types of uncertainty equally well.” (Samson et al. 2009).

Basically, definitions are split in 3 areas: Operations Research, Economics and Finance, and Engineering.
For a comprehensive review check Samson et al. (2009) and Stewart (2005). As a rule, people define
“uncertain” as something not definitely known or decided; subject to doubt or question. In the context of
practical applications in multi-criteria decision analysis, the definition given by Zimmermann is particularly
appropriate. With minor editing, this is as follows: “Uncertainty implies that in a certain situation a person
does not possess the information, which quantitatively and qualitatively is appropriate to describe, prescribe

or predict deterministically and numerically a system, its behavior or other characteristics”.

On the other hand, the term “risk™ is usually applied to situations in which probabilities on outcomes are (to
a large extent) known objectively. More recently, the concept of risk has come to refer primarily to the
desirability or otherwise of uncertain outcomes, in addition to simple lack of knowledge. Thus, for example,
Fishburn (1984) refers to risk as “a chance of something bad happening”, and in fact separates uncertainty
(alternatives with several possible outcome values) from the fundamental concept of risk as a bad outcome.

Due to the fact that insurance industry widely uses this interpretation of the risk (with negative
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connotations), one understands and feels better this term in comparison with “uncertainty” in general.

Further in thesis, the value-neutral term “uncertainty” will be used.

Moreover, modern views of uncertainty assert that it is based not only on randomness, but also on beliefs
and behavior. Cultural norms and other informal institutions of society have an observable effect on decision
makers (Rutherford, 1995). Bounded rationality recognizes that it is impossible to comprehend and analyze
all of the possibly relevant information while making choices. It proposes an idea that in decision-making,
rationality of individuals is limited by their formal training, experience, skill, the cognitive limitation of their
minds, and the finite amount of time they have to make a decision (Elster, 1983). A further component is
peer group pressures and the decision making that takes place in a group context, as opposed to individual
(Flyvbjerg et al., 2006). Furthermore, behavioral studies indicate that when people are faced with prediction
tasks, they tend to underestimate prior information about the “base rate” of the event which being predicted.
Instead, they tend to make decisions based on most recent evidence, which can lead to errors in predicting
rare events and extreme realizations (Kahneman and Tversky 1979, Vilkkumaa 2014). Specifically, in an
attempt to maximize the value by choosing one out of many alternatives based on ex ante assessments that
reflect recent evidence, the DM will choose the alternative with the highest estimate. Unfortunately, there is
a high chance that this assessment is higher than the real value of the alternative and, consequently, the DM
will be disappointed when the actual alternative’s value is realized. One of the ways to eliminate this post-
decision disappointment is the Bayesian revision of value estimates defined formally as the expected
negative gap between the realized and estimated value of the selected alternative (Brown 1974, Harrison and
March 1984, Smith and Winkler 2006). Numerous studies conclude that the value of information varies in
unexpected, ambiguous and sometimes counterintuitive ways (Mavrotas, 2000), but Delquie (2008)
demonstrated that under general assumptions, the indifferent DM provides the most correct project
evaluation, while the one with strong preference toward certain alternative provides lower quality of

information.

Even more types of uncertainty are described by Kangas and Kangas (2004). For instance, they offer the
generalized categories of metrical (measurement variability/imprecision), structural (system complexity),
temporal (past/future states of nature), and translational (explaining results) uncertainty. Mendoza and
Martins (2006) identify randomness, imprecision, and unknown preferences as factors contributing to
uncertainty in multi-criteria decision analysis. Leskinen et al. (2006) point to errors in inventory and
measurement, projections of future market conditions, projections of forest development over time in
response to management intervention, and unknown preferences as sources of uncertainty in forest plans.
Another example from Thompson and Calkin (2011) is a common situation when no one can predict, i.e.

estimate the expected value of the amount of snow on the runway for any given day in the future, the amount
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of snow is random but non-quantifiable and therefore uncertain. This non-quantifiable randomness can be
modeled as an interval representing uncertainty. Regardless of the specific typology ultimately chosen, using
a coherent framework informs management by facilitating the identification of potential sources of

uncertainty and the quantification of their impact.

Almost all of these definitions are problem sensitive, i.e., they may not perform as well if applied to a new
problem area. Some of these scholars suggest that uncertainty can be modeled as an interval even though
there is no consensus on whether it is quantifiable or not. Other researchers define risk using the variance
concept. However, there is no common modeling method that they all agree upon (Samson et al., 2009).

3.6. Monte Carlo simulation

There is no consensus on how Monte Carlo (MC) should be defined. Very often scholars distinguish
between a simulation (a fictitious representation of reality), a Monte Carlo method (a technique that can be
used to solve a mathematical or statistical problem) and a Monte Carlo simulation which uses repeated
sampling to determine the properties of some phenomenon or behavior.

Generally speaking, Monte Carlo methods (or MC experiments) are a broad class of computational
algorithms that rely on repeated random sampling to obtain numerical results. They are often used in
physical and mathematical problems and are most useful when it is difficult or impossible to use other
mathematical methods. MC methods are mainly used in three distinct problem classes: optimization,

numerical integration, and generating draws from a probability distribution (Kroese et al. 2014).
Monte Carlo methods vary, but tend to follow a particular pattern:

a) Define a domain of possible inputs.

b) Generate inputs randomly from a probability distribution over the domain.

c) Perform a deterministic computation on the inputs.

d) Aggregate the results.

Monte Carlo simulation methods do not always require truly random numbers. Many of the most useful
techniques use deterministic, pseudorandom sequences, making it easy to test and re-run simulations. The
only quality usually necessary to make good simulations is for the pseudo-random sequence to appear
"random enough™ in a certain sense. This need for large amounts of random numbers spurred the
development of pseudorandom number generators, which were far quicker to use than the tables of random

numbers that had been previously used for statistical sampling.
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There are several reasons for a large humber of Monte Carlo simulations. Firstly, if random grains are not
uniformly distributed, then the resulting approximation will be unreliable. The approximation is generally
poor if only a few seeds (grains) are randomly dropped into the whole interval of interest. On average, the

approximation improves as more grains are dropped.

In the current work, uniform and normal distributions are used within MC simulations and are indicated in

respective Cases.

3.7. Chapter summary

We briefly described tools that are used for the problem of projects selection where it is necessary to fulfill
specific constraints based on one or more available criteria. Since the problems that we try to solve are
complex, combinations of approaches need to be adopted. For different problems the same tools can hardly
be applicable. Moreover, a single MCDA method does not suffice in the presence of the imposed constraints.
Even problem formulation can result in different framing. As it was mentioned before, the problem can be
shaped as a single or multi-objective one. The principal aim on initial stage is to help experts learn about the
problem situation, about their own and others values and preferences with appropriate presentation of

available information.

Uncertainty plays a significant role, especially for technologies that evolve considerably year after year or
for pioneering solutions where historical performance data are not available. Here, family of goal
programming methods should be treated with special care because a strong inclination towards
overestimation of results is observed between project developers. The same stands for scenario building.
Hence, value measurement methods are more suitable for initial projects’ evaluation. Then, in the
optimization process, performance or assessment uncertainties can be handled through Monte Carlo

simulation or some other tools.

Further, the selection process leads to better considered, justifiable and explainable decisions. Process
transparency is of crucial importance. As a rule, the decision cycle involves 3 stages: problem identification
and structuring; model building and use; development of action plans. The combinatorial character of the
problem implies the use of optimization methods aiming at a portfolio of projects that satisfies constraints
and achieves“best” performance. With the tools described earlier, we move towards the development of a
selection method that helps to build a balanced portfolio, which respects performance uncertainties. Further
actions are still to be made by decision makers, nevertheless they are provided with additional information

about the path of project selection.
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4. The Iterative Trichotomic Approach

The trichotomic approach (trichotomy is separation of initial set into three parts) is based on the fact that
projects can be assigned to three classes depending on the information available: Projects that are present in
the final selection under all circumstances are labeled green, red projects are those to be excluded under all
circumstances, and grey projects are the ones that need some additional elaboration before being included in

the final set under certain conditions.

At the very beginning of the process isfound the evaluation of project proposals. The Decision Maker (DM)
may select the MCDA method of his choice, either utility function based or outranking (e.g. PROMETHEE,
ELECTRE). All MCDA methods have specific decision parameters (weights, thresholds etc) that can be
considered stochastic with their values taken from appropriate distributions. This is implemented to counter
balance the subjectivity in selecting these parameters that may eventually lead to specific results. Initial
performance overestimation may damage the final selection on several ways. First of all, a seemingly high
performing project may take the place of a duly estimated and better performing one. That is why the lack of
exact input information due to various reasons is addressed with notion of uncertainty which is expressed
through the probability distributions for the projects’ output. Moreover, criteria weights or any other
necessary parameters and thresholds can be also described by appropriate probability distributions. Then a
Monte Carlo simulation is performed using sampling from these distributions. Finally, an optimization
process with the Integer Programming (IP) model provides optimal portfolio. This pair of sampling &
optimization is the core of calculations. For example, if the number of Monte Carlo simulations is set to T,
then sampling & optimization rounds will be performed T times. The output will be T optimal portfolios
based on sampling of model’s parameters. Eventually, the initial set of projects is divided into three subsets
(classes): The green projects that are present in the final portfolio under all circumstances (i.e., in all T
Monte Carlo simulations), the red projects that are absent from the final portfolio under all circumstances
and the grey projects that are present in some of the final portfolios. The classification in three subsets is not
new in the literature. Liesio et al. (2007) used a similar approach in the framework of robust programming.
However, the way the projects are assigned to each set is different. In addition, Mavrotas and Rozakis (2009)

used similar concepts in a student selection problem for a post graduate program.

The concept behind trichotomic approach is that the DM can focus on the projects that are really at stake.
Unlike “short list” approach (where k projects with the highest expected values are re-evaluated), the
attention is only on the “ambiguous” ones (e.g. the grey set) while sure projects (either in or out of the

portfolio) are determined. The method provides quantitative and qualitative information that cannot be
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acquired using e.g. expected values of distributions. In the latter case, the DM is provided with a unique
optimal portfolio or, in other words, which are the “go” and the “no go” projects, without any discrimination

about the degree of certainty for each of them.

On the contrary, the trichotomic approach provides extended information about the degree of certainty of
every entrance in the final selection. In other words, the method gives a whole picture with multiple
candidate projects and portfolios and provides the opportunity to fully control the process of selection. In
case of “close winners” the expert is informed about the more or less equivalent solutions. In this way
additional criteria for further discrimination of “close winners” can be used. Hence, the DM is aware of the
prioritization of projects given that the round in which a project enters the green set is known. The earlier a
project gets in the green set, the stronger are its chances to be included in the final portfolio. The illustrative

examples from case studies in next sections demonstrate in practice the above mentioned concepts.

4.1. Initial two-phase ITA

The two-phase approach combines several techniques such as MCDA, Monte Carlo simulation and
optimization through Mathematical Programming (MP) specially tailored to the project portfolio selection
problem. In the first phase, a session of Monte Carlo simulation — MCDA — MP optimization is performed
since performance of each project in each criterion is given by a probability distribution (project
uncertainty). Moreover, criteria weights or any other necessary parameters and thresholds may also be
represented by appropriate probability distributions. The output of first phase are multicriteria scores of each
project, which are used to drive further optimization process. Namely, scores are used as objective function
coefficients in the MP model of the next phase. Besides objective function’s coefficients, MP model may
have additional stochastic parameters, i.e., in the body of constraints that form the feasible region. Values for
uncertain parameters are sampled from specific probability distributions and resulting mathematical

programming model is solved (optimized) providing the optimal portfolio.

On the first phase, using Monte Carlo simulation the previously described process is repeated N times and T
optimal portfolios expressing all the possible states of nature (some of these optimal portfolios may be

identical) are obtained. The first phase is depicted in Figure 4-1.

The MP model on t-th Monte Carlo iteration is identical to the one of iterative process.
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Figure 4-1. Monte Carlo simulation-optimization approach of phase 1.

As it was mentioned before, obtained portfolios are rarely same across initial T iterations. It is feasible to
work further with project proposals. Hence, after completion of the cycle, on the basis of obtained T optimal
portfolios projects are distributed between green, red and grey sets. In order to facilitate the selection
process, membership thresholds for the green and the red sets may be introduced in order to relax
membership requirements. The membership threshold can be used whenever the discrimination ability of the
first phase needs to be increased, e.g. where the green and the red sets are almost empty.

In the second phase the main focus is on items from grey set while those in the green set are considered as
already selected and those in the red set are considered as discarded ones. In case when grey set contains just
a few projects (say 2-3), a direct comparison of them can be performed easily and probably suffices to
determine the final selection. However, when more projects are present in the grey set, selection becomes a
complex task that needs a systematic approach (given also that the MP model’s constraints must be
respected). The critical point of the second phase is that objective function coefficients of new model are no
longer multicriteria scores but participation frequencies of the grey project in N optimal portfolios of the first
phase. This means that objective function coefficients of the second phase are not stochastic but crisp
numbers, hence reducing the variability of results. In Figure 4-2 the unified process of first and second

phase is shown schematically.
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Figure 4-2. Unified process of two-phase approach.

Further in calculations two cases should be distinguished. The first case with no uncertainty related to the
feasible region, meaning that there are no stochastic parameters in constraints, is depicted in a following

way:

max F =Y fX;
iegrey
st

XeS 4.2)
X, €{0,1}

X, =1 iegreen

X, =0 iered

where grey, green and red denote the grey, green and red sets respectively, f; is the frequency of the i-th
project in T optimal portfolios from first phase. The objective function of the 2nd phase actually expresses
the majority principle, i.e., the more times a project is present in optimal portfolios of the first phase, the
greater the chance to be eventually selected. It is obvious from the formulation that optimization takes place
among projects from grey set while green and red projects are already fixed to 1 and 0, respectively. The
optimal solution of equation (4.1) is a project portfolio that has the greatest acceptance given existing

uncertainty.

Another case still contains uncertainty related to the feasible region which means that there are stochastic
parameters in constraints (but not in objective function). In this case, the Monte Carlo simulation —
optimization scheme is used again only for the models’ stochastic parameters sampling that exist in

constraints. The MP model that is iteratively solved in the second case is described below:
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Xes® (4.2)
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The Monte Carlo simulation — optimization process is repeated for t = 1... T times and result is T optimal
portfolios (as it was in the first phase). However, now the variability is considerably reduced given the
presence of crisp coefficients in the objective function. A project portfolio with the greatest acceptance is the
one that appears more times within T iterations. If there are two or more portfolios with high frequency of
appearances the DM is asked to select among them. Usually the choice is between two or three projects that

alternate in obtained optimal portfolios.

Therefore, with the trichotomic approach projects are selected based on the notion of unanimity in the first
case (green projects) and based on the notion of “majority” (among the iterations, i.e. the most frequent) in

the second phase.

4.2. Simple iterative version

The term “iterative” indicates that a process develops in a series of decision rounds or cycles. A
predetermined number of decision rounds may be defined from the beginning and every round feeds its
subsequent until a convergence to the final portfolio is attained. From round to round the uncertainty is
reduced for the grey projects forcing some of them to become either green or red. The uncertainty reduction
can be performed by getting more information or by an automatic uniform narrowing of the grey projects’

probability distributions. The whole process is depicted in Figure 4-3.

Monte Carlo simulation and optimization with Mathematical Programming is a rather recent development
that becomes plausible with vast improvement in computer power during the last years. Although it is a
computational demanding task it is worthwhile as it provides fruitful information regarding the uncertainty

of the final solution.
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Figure 4-3. Graphical illustration of iterative process

Various probability distributions for uncertain parameters can be tested through Monte Carlo simulation (see
e.g. Vose, 1996; 2006). By sampling from selected distributions, values of parameters are obtained from a
Mathematical Programming model that is subsequently optimized. This process is repeated T times (T is a
great number, e.g. T=1000) and T optimal portfolios are received expressing all possible states of nature
(some of these optimal portfolios may be identical).

The MP model on the t-th Monte Carlo iteration is as follows:

p
max Z® =>"cVX,
i=1

st (4.3
XeS
X. €{0,1}

where ¢;¥) is the objective function’s coefficient (some kind of output) of i-th project in the t-th Monte Carlo
iteration. The value of ¢, is drawn from sampling of the corresponding distribution. X; is the binary decision
variable indicating if i-th project from initial set is either selected (X; =1) or discarded (X; =0) and S
represents a feasible region formulated by all imposed constraints. It is prohibited to select a share or parts of
one project, that is why the modeling is done with binary variables and not continuous ones as it is usually
the case in the original portfolio selection problem which involves shares. Besides usual budget constraints,
segmentation and policy constraints as well as interactions and interdependencies among projects can also be

taken into account in the formulation of decision space S (Mavrotas et al., 2003; Liesio 2007).
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The output of model (4.3) is an optimal portfolio X(t) with Z(t) as the value for the objective function.

Exploiting information from T optimal portfolios the projects are distributed between three sets:
e The green set that holds projects that are present in all T portfolios
e The red set that contains projects that are excluded from all T portfolios
e The grey set that holds projects that are present in some of the T portfolios

Table 4-1 shows an example of green, red and grey projects in a problem with P projects and T=5 iterations.
The rows contain values of iteration’s decision variables while the columns contain values of the decision

variables across Monte Carlo iterations.

Table 4-1. Example of results from initial round with 5 iterations.

Iteration X1 Xo X3 X4 . Xp

1 1 0 0 1 1

0 0 1 1 1

3 0 0 0 1 0

4 1 0 1 1 .. 0

5 1 0 0 1 ... 1
grey red grey green ... grey

One thing to remember is the fact that especially in initial rounds it is almost impossible to draw conclusions
about a portfolio that appears most frequently among T iterations, which means that obtained optimal
portfolios are rarely the same across these T runs. Since conclusions cannot be drawn for the most frequent
portfolios it is feasible to analyze the most frequently appearing projects in portfolios. Exactly this kind of
information is exploited in the method where the main focus is on the grey set, i.e. the projects that require

deeper attention.

As it was mentioned earlier, ITA incorporates decision rounds (or cycles). In every round of ITA a
simulation - optimization process takes place providing the corresponding green, red and grey sets of
projects. The process is quite flexible and can be implemented either with a predetermined, fixed number of

rounds or until sufficient convergence is obtained in a less formal way.

4.2.1. Predetermined number of rounds

The number R of rounds may be set from the very beginning of the process. In the first round Monte Carlo
sampling is performed with initial probability distributions of uncertain parameters and obtained results

define green(1), red(1) and grey(l) sets (the number in parenthesis indicates the round from which
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corresponding set emerges). In the second round projects from green(1) set are considered as given, those
from the red(1) set as discarded and the variance (quantitative measure of the uncertainty) of the grey(1)
projects’ parameters is reduced by 1/R. This reduction depends on the form of distribution. For example, for
normal distribution the standard deviation is reduced by 1/R, or, for the uniform distribution the range is cut
by 1/2R from both edges. It must be noted that this is done only for the grey projects while the sampling for
green and red projects maintain the previous round’s probability parameters. The model for the second cycle
is as follows:

P
max Z® =X,

i=1

st

XeSs® (4.4)
X, €{0,1}

X, =1 iegreen(l)

X, =0 iered(l)

After the second round of simulation-optimization the process’ output is elaborated. More specifically, green
and red sets are enriched by new projects and new grey projects are identified. Subsequently, for the third
round the variance of grey projects’ performance is reduced even more and new green and red sets are

considered as given. The flowchart of the decision making process is depicted in Figure 4-4.

The reduction in variance usually follows a uniform pattern across rounds. For example in the case of normal
distribution the standard deviation is reduced by 1/R after every round. This means that after round r the
reduction of standard deviation is sd x »/R. Thus, in the final round grey projects’ parameters are considered
as deterministic (have no variance at all). The output of the final round is a unique portfolio as all Monte

Carlo simulation-optimization iterations produce the same solution.
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Figure 4-4. Flowchart of Iterative Trichotomic Approach (predetermined number of rounds).

Another option is to avoid the determination of rounds and finish the decision making process when
adequate convergence for the final portfolio has been attained. The whole process is less formal than the
previous case one. After the simulation-optimization approach, the DM identifies grey projects (projects in
doubt, gathers more information for these projects which is translated in variance reduction of their
parameters’ distribution). It must be noted that the narrowing of the probability distributions in grey projects’
attributes at every cycle r can be done either uniformly or based on obtained information. In each round the
grey set obviously shrinks and DM checks the frequency of each obtained optimal portfolio in the output of
simulation. If, for example, a specific portfolio occurs in 567 out of 1000 iterations it actually has 56.7%
probability to be the optimal portfolio under the given uncertainty level. If the DM finds a stochastic
dominant portfolio then the selection process may be stopped. The term “dominant” is flexible. For instance,

the DM can exit the loops of decision rounds as soon as a portfolio with 60% or 70% probability emerges.




The exit threshold (i.e., the probability of occurrence over which a portfolio is considered as selected) is
determined by a DM according to a specific decision situation. The flowchart of the decision making process
is depicted in Figure 4-5. The steps with darker shading indicate the alterations from the ITA with a

predetermined number of rounds.

r=0, green(0)=3, red(0)=3, grey(0)=P
Initial distributions

Reduce variance in grey(r) projects
distributions by obtaining more
information

Freeze green(r) and red(r) projects
X=1for X € green(r)
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for obj. function coefficients

|

Is there dominant
portfolio?

| Solve MP model | Identify green(r),
| red(r), grey(r)
|Save the optimal solution |
l r=r+1

NO YES
t=1000?

Figure 4-5. Flowchart of Iterative Trichotomic Approach (not a priori determined number of rounds).

4.3. Membership threshold

One of first observations within applications on illustrative examples is that on early iterations there is no
dominant portfolio. When Monte Carlo simulation of uncertainties is used, among obtained optimal
portfolios only few were the same and frequency of their appearance was found to be very low (less than 1-

5%). Also, the number of projects in optimal portfolios considerably varied. Hence, the focus shifted to the
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most frequently appearing projects across portfolios, since it was hard to draw conclusions for portfolios as a

whole.

In order to facilitate and speed up the decision process, it is worth to introduce membership thresholds for
green and red sets in order to relax the membership requirements. It can be expressed through a “green”
threshold of a% which means that if a project is present in optimal portfolio in a% of iterations, it is
considered to be member of the green set. These thresholds are usually symmetric which means that a green
threshold of a% implies a red threshold of 1-a %. For example, a “green” threshold of 95% means that if a
project is present in optimal portfolio in 95% of iterations, it should be considered as a member of green set.
Similarly, a “red” threshold of 5% means that a project which is present in the optimal portfolio in less than
5% of iterations is sent into the red set. The membership threshold can be used whenever the discrimination
ability of previous rounds needs to be increased, e.g. where green and red sets are almost empty.

4.4, Group of decision makers

Project portfolio selection is initially a multi-objective problem where different points of view should be
taken into account. A team of experts working on certain problem is a common practice in today’s world,
especially in large organizations where the aggregation of opinions is necessary or whenever consensus is
sought among various stakeholders like e.g. when several levels of public policy are involved (Macharis et
al.,, 2012; Vandaele and Decouttere, 2013). General agreement becomes crucial in situations when
collaboration between individuals is required to build and implement shared goals with available resources.
Within the process of development it is necessary to deal with various, sometimes conflicting, objectives
represented by non homogenous groups of professionals (decision makers, experts, stakeholders etc.). Even
if the final decision is to be taken by a single individual, the engagement of relevant experts is beneficial, as
they can provide valuable information which can be otherwise overlooked or neglected due to countless
reasons (Vilkkumaa et al. 2014). In general, Group Decision Making in multi-criteria analysis has been used
in many applications such as water management (Morais and de Almeida, 2007; 2012, Morais et al. 2012),
energy-environment issues (Turcksin et al., 2011; Hobbs and Meier, 2000), transportation issues (Macharis
et al. 2010; 2012) etc. However these applications usually deal with a discrete number of given alternatives

and not with a project portfolio problem.

One approach is to aggregate these points of view to a single metric through multi-criteria analysis and
subsequently optimize the resulting single objective problem where coefficients of objective function are
multi-criteria scores (Mavrotas et al., 2008). Alternatively, one can use a goal programming approach

aggregating objective functions based on their distance from individual goals (see e.g. Zanakis et al., 1995;
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Santhanam & Kyparisis, 1996). Furthermore, active use of MCDA methods may help not only to identify the
areas of disagreement, but also to clarify possible alternatives (Salo, 1995; Salo and Hamalainen, 2010;
Vilkkumaa et al., 2014). Decision support tools are useful on different stages. Initially, they help to describe
the problem in details and to capture the preferences of each group member. Later, they highlight points of
agreement and disagreement within the group. In addition, their skillful application can foster the
formulation of innovative decision alternatives (Salo et al., 2003; Rios and Rios Insua, 2008) even in
presence of important obstacles such as incomplete input information. Finally, good breakdown of
preferences and possible options may help to discover and agree upon portfolio outside the initial set of
options.

In all above mentioned approaches, the decision maker has to define criteria or goals and to assign them
weights in order to aggregate them to a single objective function. Another way is to keep individual criteria
as separate objective functions and proceed to a multi-objective optimization generating the Pareto set of the
problem (or a Pareto front in criteria space) which comprises Pareto optimal solutions or portfolios. Then,
the decision maker examines the obtained Pareto front before reaching his final choice. These methods are
called “a posteriori” or “generation” methods in the popular Hwang and Masud (1979) terminology for
multi-objective optimization methods (first generate Pareto front, examine it, and then select the most
preferred Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate

the Pareto set, either exactly or its approximation.

For the current case a combination of MCDA — IP is adopted in order to determine the optimal portfolio.
Initially, one of MCDA methods is used in order to assign scores to projects based on their multi-criteria
evaluation. Then, these scores are introduced as objective function coefficients in the IP model that
incorporates constraints of the project selection problem. In the presence of multiple experts it is natural to
assume that their preferences are expressed by assigning weights to the criteria of project evaluation, which
means that each of them usually has an objective function that differs from the others. Hence, the obtained
optimal portfolios are usually different among participants. In such case the membership of each project in
green, red or grey set is determined according to the concordance between decision makers. Namely, the
green set includes projects that are present in the final portfolio of every decision maker, the red set those
projects that are absent from the final portfolio according to all experts, and projects that are picked by some
group members form the grey set. The developed method is named “Group ITA” and is based on previous
works of G.Mavrotas and O.Pechak. Here a Delphi-like approach is used to deal with the problem of
providing decision support to multiple experts in project selection problems (see e.g. Wang et al. 2013; Lee

and Kim, 2001; Juan et al., 2010). Delphi works in an iterative manner aiming at convergence of multiple
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opinions in a systematic way. Specifically, the iterative character is used and a converging process is

performed in order to achieve a final consensus on project portfolio selection.

Assume that there are N projects, P DMs and K criteria of evaluation. Therefore the weight of importance
that decision maker p assigns to criterion k is wy with p=1..P and k=1..K. For each DM p=1..P, multi-
criteria scores msy; for every project i=1..N are calculated. The objective function of the IP problem for the
p-th DM is then:

max i ms,; x X, (4.5)
i=1

where X; is the binary variable that indicates if the i-th project is selected (X;=1) or rejected (X;=0). Solving P
integer programming problems at most P different optimal portfolios (some of them may be identical) are
obtained. Subsequently, the members of green, red and grey sets are identified. Members of the green set are
projects that are present in all P optimal portfolios. Accordingly, the members of the red set are projects that
are absent from all P optimal portfolios and the grey projects are those that are included in some of the P
optimal portfolios.

1st round 2" round kth round final

green
set green

set green
set selected

Set of projects

Multiple criteria

grey | =) | grey | * * ° | 9rey
set set

Multiple constraints

Multiple DM

Figure 4-6. Illustration of Group ITA method.

If the grey set is not empty the process moves to the next round. The already found green and red projects
are kept in their status by fixing the value of corresponding decision variable to X;=1 for green projects and
Xi=0 for red ones. This is done for all P models for the next round. In addition, necessary modifications are
introduced in the objective function coefficients of the P models following the convergence process

described in next paragraph.
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Figure 4-7. Flowchart of Group ITA method.

In the current case the convergence process deals with the weights of criteria and it is necessary to assure
that the iterative process terminates with a unique portfolio as output. The following illustrative Figure 4-6

depicts the concept of Group-ITA method.
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Maximum number of rounds R in the Group-ITA method can be determined from the beginning. However,
the method may converge earlier. The indication for convergence is an empty grey set. As it will be shown,
in the next subsection the weights of importance are modified from round to round. Therefore wpk(r’ indicates
the weight of importance for k-criterion of the p-th DM in round r=0...R. The methods’ flowchart is shown
in Figure 4-7. The step of calculation of next round’s weights, which is the essence of convergence process,

is described in detail in the next subsection.

44.1. Convergence process

The aim of convergence process is to provide an algorithm that gradually smoothes the divergence of criteria
weights across decision makers. In other words, the weights of importance are adjusted from round to round

in order to converge to a common solution after completion of iterative process.

Assume that original criteria weights for each DM are defined as ka(o). The maximum number of rounds in
the iteration process (R) is agreed upon in advance and the convergence parameter « is accordingly
determined as o=1/R. Then, the deviation of each weight from their average (w**®) across decision makers is
calculated from the equation:

dpkzwpk(o)'WkaVg (4.6)
The iterative process includes steps 6-17 in the flowchart of Figure 4-7. The adjustment of weights from
round to round is performed in step 17 using the following equation:

ka(r)z(ka(o)' a xr X dy) (4.7)

Actually, on every round the weights from each decision maker are moved towards averages and then P
optimizations are performed again. Respective multi-criteria scores are updated and used further as objective
function coefficients in the IP model. After P models are solved new green, red and grey sets that correspond
to the r-th round (denoted as green(r), red(r) and grey(r)) are identified. Binary variables that correspond to

green projects are fixed to “1” and those of red projects are fixed to “0”.

X, =1 1egreen(r)
X, =0 iered(r)

Once a project enters the green or the red sets it remains there for all subsequent iterations. It is obvious that

from round to round the green and the red sets grow while the grey set shrinks:

|green(r)| >= |green(r-1)|
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[red(r)| >= |red(r-1)|

lgrey(r)| <= |grey(r-1)|

As iterations proceed more green and red projects are added into corresponding sets as the views of DMs are
getting closer. lterations are performed until the set grey(r) becomes empty what may happen before
reaching round R (r < R). In any case, convergence process implies that in R-th round all decision makers
have common weights so that only one portfolio is finally obtained from P optimizations. Hence in the R-th
round the grey set is by definition empty.

It must be noted that during convergence process the weights of each decision maker automatically satisfy
the condition of summing to unity in every round r as it is proved below. Given the original weights Wy,

the initial equation is as follows:

K
> w =1 for p=1.P (4.8)
k=1

The average across decision makers is calculated as:

w'e = 2= (4.9)

and the sum of w,®"9 equals to unity as it is shown below:

P K& c
" 2V 22 22 Ly

K
Wavg — p=1 _ k=1 p=1 _ p=1 k=1 1 4.10
20 =2 P P P P 19

Hence, for the weights of round r, i.e. ka(r) the expression is:

K

Sui -

k=1

K
Z(Wg&) —ax rxdpk)
k=1
c 0 0
= Z [Wék) —axrx (Wék) - stg )]
k=1
K

K
[A-ax r)xwéi)]+axrx2wlfvg (4.11)

k=1 k=1
K K
=(@-axr)> wh +axrx> w"
=} a
=(l-axr)+axr=1

Therefore the weights do not need any normalization as it is applied automatically from their calculation.
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An example of weight calculation from round to round is shown next. Assume that there is a team of five

decision makers, whose initial weights for 4 criteria are shown in Table 4-2.

Table 4-2. Initial weights of group members.

Cl C2 C3 C4 sum

DM1 025 025 025 025 1.00
DM2 08 005 01 005 1.00
DM3 0.1 0.1 0.7 0.1 1.00
DM4 0.2 0.6 0.1 0.1 1.00
DM5 005 015 01 0.7 1.00

Average 028 023 025 024 1.00

In Table 4-3 the deviations from the average of each column (across DMs) are presented after calculations

using equation (4.6).

Table 4-3. Deviation from column’s average.

Cl CZ C3 C4

DM1 -0.03 0.02 0.00 0.01
DM2 052 -018 -0.15 -0.19
DM3 -0.18 -0.13 045 -0.14
DM4 -0.08 037 -015 -0.14
DM5 -0.23 -0.08 -0.15 0.46

Table 4-4 presents new weights of next round according to equation (4.7) and using convergence parameter

0=0.2 (i.e. maximum rounds R=5).
For example, the new weight for DM2 in the 3" criterion is calculated as:
W,3M=0.1 - 0.2x1x(-0.15) = 0.130

In the same way all cells are calculated and the sum of weights for each DM remains unity. By comparing
Table 4-2 and Table 4-4 one can observe the movement towards average weights. On last iteration (when
R=5) the convergence process ends with all weights of every column becoming the same, equal to the

average (last row of Table 4-2).
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Table 4-4. New weights of group members.

C, C, Cs Cy sum

DM1  0.256 0.246 0.250 0.248 1.00
DM2  0.696 0.086 0.130 0.088 1.00
DM3  0.136 0.126 0.610 0.128 1.00
DM4  0.216 0526 0.130 0.128 1.00
DM5  0.096 0.166 0.130 0.608 1.00

4.4.2. Consensus index

Within this work an approach to measure the level of consensus over the final portfolio according to the
degree of concordance between DMs was developed. The consensus index expresses how easy or hard it is
to arrive at a consensus among experts. The more green projects are obtained from early rounds the greater
the degree of concordance among parties involved is. Specifically, their preferences (expressed as weights)
result in more or less the same outcome without forcing their weights to converge or, in other words, the
consensus is easily attained. On the contrary, if the majority of green projects is identified in last rounds it
means that further elaboration of the convergence process is needed to reach agreement upon the selected

projects. This means that the consensus is attained with great difficulties.

The index is found through a consensus chart where the percentages of green projects that are available in r-
th round are plotted as a function of the respective decision round. The resulting curve is called consensus
curve. In Figure 4-8 one can observe that from round 2 to round 3 there are no new projects added in the

green set. This may happen especially when the maximum number of rounds (R) is relatively high.

The Consensus Index (Cl) is calculated as the area below the consensus curve divided by the rectangle area
denoted by a dashed rectangular in Figure 4-8. The dashed rectangular actually expresses the maximum
consensus (Cl=1) that occurs when from round 0 already, all projects are allocated either to green or red sets
(i.e., the grey set is empty). The minimum consensus occurs when all green projects are added in the final
portfolio on the last round (C1=0). CI takes values between 0 and 1 and it is calculated using the trapezoid

rule for piecewise linear functions according to the following equations:
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Figure 4-8. Example of consensus chart with R=5.
For example, from Figure 4-8 the corresponding Cl is:

Cl = [0'731 +0.53+0.61+0.61+ 0.74+%] 15=62.9%

Apart from the Consensus Index that characterizes the final portfolio it is possible to extract the degree of
consensus for each project according to the round that it enters or exits the final portfolio. The Consensus

Degree of the i-th project can vary in [0,1] and can be quantified by the following formula:

cp -R-h

= (4.13)
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where r; is the round that i-th project enters or exits the final portfolio or in other words the round that the

respective project leaves the grey set.

4.5. Multi-objective project portfolio selection

After addressing the case of group project portfolio selection, usually the next issue that attracts attention is
the multi-objective project selection. In the current section the applicability of Iterative Trichotomic
Approach (ITA) is extended to the case of multi-objective optimization. Initially, ITA was focused on a
single objective function problem structuring reflecting the optimization criterion. While the original
approach provides the certainty degree of a specific project within the optimal portfolio given underlying
uncertainty, multi-objective ITA provides certainty degree for a specific project portfolio within the Pareto
set. A schematic representation of the multi-objective ITA is shown in Figure 4-9.

Reduction of uncertainty in the stochastic parameters

final

1stround 2" round kth round
Pareto set

grey

re
e set

set

Figure 4-9. Graphical illustration of multi-objective ITA.

Unlike original ITA, the first iteration in multi-objective ITA has no red set as there are no portfolios to be
excluded. The initial iteration provides the maximum number of generated portfolios as candidate final
Pareto optimal portfolios. In subsequent iterations some of these portfolios are not present anymore in any
Pareto set so they are labeled as red. With the movement from round to round, the uncertainty of parameters
(objective functions’ coefficients) is reduced (e.g. by reducing the standard deviation of a normal probability
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distribution or shrinking the interval of a uniform probability distribution). With diminishing uncertainty,
portfolios gradually move from grey set into green (appear in all Pareto sets). The red set is implied

indirectly by the initially generated portfolios that are not present in any current Pareto set.

The methodology is developed for the case of two objective functions. It can be easily extended to a greater
number of objective functions, but with increasing number the elaboration of results may become too
cumbersome. The Pareto Optimal Portfolios (POPS) of projects are actually the Pareto Optimal Solutions of
the multi-objective integer problem with binary variables:

N
max Z, = » ¢, X,
i=1

N

max Z, = Y Gy X, (4.14)
i=1

st

XeS

X, e{0,1}

where N is the number of candidate projects, c; is the objective function coefficient of i-th project in k-th
objective function, X; is a binary decision variable indicating if the i-th project from initial set is selected
(X;=1) or not (X;=0), and S represents the feasible region formulated by all imposed constraints. Apart from
the usual budget constraints, segmentation and policy constraints, interactions and interdependencies among
projects can be also taken into account in the formulation of decision space S. Eventually, a Pareto optimal
Portfolio is represented by a vector of “0” and “1” of size N. According to the multi-objective version of ITA
method, each portfolio from the initial set of Pareto Optimal Portfolios is eventually characterized as red or
green with gradual decrease of uncertainty in model’s parameters, which is performed in computation

rounds.

In each computation round a great number (t=1..T with e.g. T=1000) of problems such as model (4.14) is
solved, with different model parameters, specifically different objective function coefficients using a Monte
Carlo simulation approach:
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N
max Z," = Zcfl‘) X,

i=1

N
max Z,“ =" c¥X, (4.15)

i1
st
XeS

X, {0,}

where ¢ is the objective function coefficient of i-th project in k-th objective function during t-th Monte
Carlo iteration. The values of ¢ are sampled from the selected probability distributions (uniform, normal,
triangular etc). Therefore, in each computation round T Pareto sets (PS, t=1..T) are produced. The
generation of each Pareto set is performed using the AUGMECON2 method (Mavrotas and Florios, 2013).
AUGMECON?2 is an improved version of the well known e-constraint method, especially appropriate for
MOIP problems like model (4.14). It must be noted that AUGMECON?2 is capable of generating the exact

Pareto set in MOIP problems which means that no Pareto Optimal Solution is left undiscovered.

Like in original ITA, in each computation round there are three sets where all the Pareto Optimal Portfolios
p are allocated: The green set (G), the red set (R) and the grey set (Y). The membership relations for each

portfolio p in G, Rand Y are shown below.

peG:Vte 1.T ,pePS,
peR:Vte 1.T ,p¢PS, (4.16)
peY:dte 1.T ,pePS,

In other words, the green set includes portfolios p that are present in all Pareto sets (PS;...PS;) of the
computation round, the red set includes portfolios that were produced in the initial computational round but
are not present in any of T Pareto sets in the current computational round, and the grey set includes portfolios
that are present in some of T Pareto sets. In order to be more specific about the round r that a green, red and

grey set refers to, the notation G,, R, and Y, is used.

As it was mentioned earlier, the results of the first round define green and grey sets denoted as G; and Y;. On
the second round, the variance of Y; projects’ parameters is reduced proportionally to the number of total
rounds R. This reduction depends on the form of distribution. For instance, for a normal distribution the
standard deviation is reduced by 1/(R-1), or, for a uniform distribution, it is cut by 1/(2(R-1)) from both

edges of the range.
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The variance reduction follows a uniform pattern across rounds. In the case of normal distribution, the
standard deviation (sd) is reduced by 1/(R-1) after each round. This means that after round r, the reduction of
standard deviation is sdx(r-1)/(R-1). Thus, in the final round projects’ parameters (objective function
coefficients) are considered as deterministic (have no variance at all). Therefore, the final round produces
only one Pareto set which is the final Pareto set that comprises the final Pareto portfolios. The flowchart of

the decision making process is depicted in Figure 4-10.

To facilitate and speed up the selection process, membership thresholds for the green set by relaxing
membership requirements can be introduced. For example, a “green” threshold of 95% would mean that a

portfolio is considered to be a member of green set if it is present in at least 95% of Pareto sets.

Start

Total rounds=R, first round r=1,
Initial distributions

Reduce variance in obj. function
coefficients’ distributions by (r-1)/(R-1)
=il
r=r+1
NO
N Sampling from distributions for
obj. function coefficients r=R? N5 S8 FINISH
Solve MOIP model
Save the Pareto set PS, Jelandy R_f el i
portfolios
NO YES
t=t+1 [K— t=T?

Figure 4-10. Flowchart for multi-objective ITA.

On the basis of the obtained information by the end of the multi-objective — ITA optimization process it is
possible to compute the Robustness Degree of each Pareto Optimal Portfolio, to build the Robustness chart

and find the Robustness Index of the Pareto set. In addition, the decision maker(s) is/are provided with
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informative charts that illustrate the Pareto front with additional information about the robustness of each

Pareto Optimal Portfolio.

4.6. Robustness measuring

Robustness of the Pareto Optimal Portfolios in multi-objective ITA is associated with how sure one can be
about the membership of a specific portfolio in the final (definitive) Pareto set, which is obtained in the last
computation round. As uncertainty is reduced going from one computation round to the next, the sooner a
Pareto Optimal Portfolio enters the green set, the more “secure” is its place in the final portfolio. Therefore,
for the Pareto Optimal Portfolios, the measure of robustness can be quantified with the Robustness Degree
for each Pareto Optimal Portfolio (RD,) which is defined as follows:

R-r

RD, = = i (4.17)

where r, is the computation round that p-th portfolio enters the green set (i.e. becomes member of the final
Pareto set) and R the total number of computation rounds. As it is obvious from equation (4.17) Robustness
Degree of p-th portfolio varies in [0, (R-1)/ R] and the closer it is to 1 the more robust is the specific
portfolio.
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Figure 4-11. Example of Robustness Chart with R=6.
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Also, according to the information about how early in the decision process the final Pareto optimal portfolios
entered the green set, it is possible to measure the robustness of the final Pareto set. The more green
portfolios are discovered from early rounds (i.e., with wider uncertainty range), the more robust the final
Pareto set is. On the contrary, if the majority of green portfolios is identified in the last rounds, it means that

the final Pareto set is not so stable.

For the assessment of robustness of the final Pareto set the Robustness Index (RI) is employed which is
similar to the one used in the previous section for group decision making. In order to calculate the
Robustness Index the so called Robustness Chart is drawn where the percentages of green portfolios that are
available on r-th round (denoted as a,) are plotted as a function of the computation round. The resulting
curve is called Robustness Curve. In Figure 4-11 an example of a Robustness Chart with the corresponding
Robustness Curve is presented. It is easy to observe that from round 2 to round 3 there are no new portfolios
added in the green set. This may happen especially when the maximum number of rounds (R) is relatively
high.

The Robustness Index of final Pareto set is calculated as the area below the robustness curve, divided by the
rectangle area denoted by dashed rectangular in Figure 4-11. The dashed rectangular actually expresses the
maximum robustness (RI=1) that occurs when already from the first computation round (i.e., when the
uncertainty is on maximum) only one Pareto set is produced from all Monte Carlo iterations. The minimum
robustness occurs when all green portfolios are added in the final Pareto set on the last round (RI=0). RI
takes values between 0 and 1 and it is calculated using the trapezoid rule for piecewise linear functions

according to the following equations:

RI = (A% + 275 ft LI (R-1)

2
R-1

RI :[%+ a +a—;]/(R—1) (4.18)
r=2
R-1

RI :[%Jr ar+%]/(R—l)

=2

-

For example, from Figure 4-11 the corresponding RI is:

RI = [0'—24 +0.11+0.34+0.34 + 0.83+%] 15=42.8%
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5. Applications

Methods of portfolio selection are widely employed to support decision procedures both in public
administration and industrial firms. That is why here and further, after detailed description of theoretical
concepts, the focus is on real case studies. Since the whole ITA method was developed on observations,

examples will help to understand better all suggestions and concepts.

Extraordinary development of telecommunications technologies and tremendous possibilities they provide to
handle information about the state of the environment made it interesting to study the selection problem in
this domain. A case study from the literature made it possible to observe and compare the results within

different decision support systems.

A second case study covers the problem of selecting projects for financing in the framework of Clean
Development Mechanism (CDM), which comprised numerous uncertainties due to its novelty. The
mechanism gained momentum in 2005 after the entry into force of the Kyoto Protocol to UNFCCC and was
in full operation in the period of 2008 — 2012. Before the Protocol entered into force, investors considered
this a key risk factor. The initial years of operation yielded fewer CDM credits than supporters had hoped
for. Later, it turned out that the purchases were made mainly within European Union Emission Trading
Scheme and it led to oversupply of emission allowances and to the crash of prices. The economic crisis
within EU made the future of CDM even more uncertain. Still, these activities are maintained by industries
from developed countries, which care about the environment and think about diversification of their

activities.

The next sub-section focuses on local renewable energy projects. The energy sector has been a fertile ground
for the application of operational research (OR) models and methods (Antunes and Martins, 2003).Greece is
a mountain country meaning that there is almost always some wind blowing from or to the sea. The number
of sunny days is also among the highest within European countries and hence, all the technologies aimed at
capturing the energy from renewable sources are attractive from a long term perspective. The case study is
focused on projects seeking for initial financial support from a development bank. Such decisions are usually
taken by a board of experts from different fields of expertise that is why the situation of group decision

making was being tested.

The last case study incorporates Energy and Environmental Corporate Responsibility (EECR) in decision
making procedure in addition to the already widespread Net Present Value (NPV) of projects proposals. A

bi-objective programming model is introduced in order to provide the Pareto optimal portfolios (Pareto set)
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based on the Net Present Value (NPV) of projects and the EECR score of firms. A systematic decision
making approach using Monte Carlo simulation and multi-objective programming is also developed in order
to deal with the inherent uncertainty in the objective functions’ coefficients. The proposed approach
facilitates banking organizations and institutions to the selection of firms applying for financial support and

credit granting, within the frame of their environmental obligations.

5.1. Selection of telecommunications projects

As it was mentioned in previous chapters, various sectors of economy face problems of choice. Wide and
fast spread of new telecommunications technologies required effective tools to select options for expansion
and meeting growing demand. Technological advances made possible new ways of using
telecommunications which could be only part of science fiction decades ago. Images and data, transferred
via satellites, help to monitor the state of environment, prevent natural catastrophes or send the rescue teams

in case of natural or industrial disasters.

During XX-th century there was relatively stable business environment in the telecommunications industry.
Due to recent advancements in technologies and changes in markets it became necessary to reconsider long-
term business goals (Lindstedt et al., 2008). One of the earliest applications that dealed with these new
challenges was developed by Antunes and Craveirinha (1993). The need for balanced introduction of new
service offerings was a problem which involved different and conflicting aspects. Both public and private
companies were forced to reconsider their vision, mission and strategies. The achievement of these revised
strategic objectives called for changes in their product portfolio, whereby companies were facing with the
problem of choosing which products would effectively contribute to the achievement of their long-term

goals.

The modernization planning of telecommunications networks, namely as far as the evolution towards new
supporting technologies and service offerings are concerned, is a problem which involves different aspects,
some of which are not directly quantifiable by an economic indicator. On a preliminary stage, project
proposals should be grouped accordingly. Further, within assessments varying degrees of uncertainties,
driven by the maturity of technologies and products, pace of technological advancements, developments in

market prices, changes in competitive situation should not be overlooked.
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5.1.1.  The model for telecommunications project selection

An example from the literature is chosen for illustrative purposes. Namely a project portfolio optimization
problem under uncertainty that refers to telecommunication projects (Niaei et al., 2011). The 40 candidate
projects are classified in three types: Basic, Developing and Applied. Initial 40 projects are evaluated against

five criteria;

e Cost: Total project cost including all expenses required for project completion (in million toomans

which is the Iranian monetary unit).

e Proposed methodology: Degree of being step-by-step, well planned, scientifically-proven,
disciplined, and proper for organization current status in the proposed methodology (qualitative, 0-
10).

e The abilities of personnel: Work experience of project team related to concerned project (qualitative,
0-10).

e Scientific and actual capability: Scientific degree and educational certificates of project’s team

(qualitative, 0-10).
e Technical capability: Ability of providing technical facilities and infrastructures (qualitative, 0-10).

The performance of each project in each criterion is expressed as a uniform distribution with minimal and
maximal probable values (see Niaei et al., 2011, for the exact data). The weights of criteria in the original
paper were determined from expert judgment and fit appropriate distributions. In the current case, this
information is simplified by using for all of them triangular distribution with the parameters shown in Table
5-1.

Table 5-1. Parameters for criteria weights’ triangular distributions.

Min Mid Max
Cost 0.17 0.21 0.23
Methodology 0.12 0.13 0.14
Personnel 0.12 0.14 0.16
Scientific ability 0.11 0.13 0.15
Technical ability 0.36 0.40 0.43

In addition to the original paper, some variability in the total budget is added, which it supposed to follow a

normal distribution with mean 6 billion toomans and standard deviation of 0.3 billion toomans. There are
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also segmentation constraints that are expressed with upper bounds to each type of project. Namely, the sum
of basic, developing and applied projects should not exceed the 20%, 70% and 40% of the total projects in
the portfolio.

In the current subchapter a combination of three techniques is presented. MCDA, Mathematical
Programming and Monte Carlo simulation are chosen in order to deal with project portfolio optimization
with consideration of multiple criteria of projects’ evaluation, multiple constraints and inherent uncertainty
associated (a) with projects’ characteristics and (b) with the decision situation. The uncertainty in the
decision and the project parameters is represented with probability distributions (a stochastic nature is
assumed) as it is also done in the multicriteria method SMAA (Ladhelma et al., 1998; Tervonen and
Ladhelma, 2007) as well as other approaches (see e.g. Hyde et al., 2003). The proposed method presents a
special case of ITA: the two-phase approach and compares results obtained with classic ITA.

The required models and the whole solution process was developed in the General Algebraic Modeling
System (GAMS, see e.g. Brooke et al., 1988) using MIP solver CPLEX 11.1 for Mixed Integer
Programming models optimization. The solution time was approximately about 3 minutes on Intel Pentium

i5 at 2.53 GHz for the 1000 Monte Carlo simulations — optimizations.
5.1.2.  Results and discussion on two-phase ITA

The theoretical basics for this unit are described in Chapter 2.3. The number of iterations of the first round
was set to 1000. During the second phase the principle of majority for the projects’ coefficients was in force,

while there was still some flexibility on model’s constraints.

The first observation after execution of phase 1 was the absence of any dominant portfolio. Among the 1000
optimal portfolios at most two were the same. So, it is obvious that it was too early to draw conclusions
about the most widely accepted portfolio just from the first phase. Moreover, the number of projects in

optimal portfolios varied from 21 to 27.

Subsequently, some membership thresholds (“green” and “red” thresholds as described in Chapter 2.2) were
tested. The symmetric case, meaning that if the green threshold is a% and the red threshold is 1-a%, was
adopted for calculations. As it is obvious, with growth of the membership threshold, proposals are easier

attributed either to green or red sets as shown in Table 5-2.

Afterwards, different seeds for the random number generation in Monte Carlo simulation in order to check
the results’ robustness were considered. The outcomes for 15 different seeds were very similar, meaning that

15 different Monte Carlo simulation — optimization sessions were performed. In the first phase in 3 out of 15
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runs the red set had one project less (2 instead of 3). However, in the second phase, 14 out of 15 runs

provided exactly the same optimal portfolio.

Table 5-2. Influence of membership threshold on population of green and red sets.

Membership threshold Green Red Grey
100% 6 0 34
99.5 % 7 1 32
99% 7 3 30
98% 7 3 30
95% 8 3 29
90% 10 5 25

Table 5-3. Frequency of appearance for projects in optimal portfolios.

# Freq # Freq
1 944 21 882
2 4 22 249
3 674 23 150
4 76 24 548
5 1000 25 453
6 738 26 503
7 129 27 986
8 1000 28 732
9 1 29 1000
10 386 30 920
11 386 31 854
12 129 32 809
13 619 33 331
14 66 34 1000
15 1000 35 889
16 606 36 732
17 6 37 323
18 235 38 845
19 1000 39 623
20 711 40 1000

* Bold are projects from the green set, Italic are the ones from the red set.
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The run of phase one, with membership threshold of 99% provided following results:

Green set - 7 projects (5, 8, 15, 19, 29, 34, 40)
Redset - 3 projects (2,9,17)
Grey set - 30 projects (the rest)

The frequency of projects’ appearance in optimal portfolio is shown in Table 5-3.

Therefore, from the first phase it is safe to conclude that projects 5, 8, 15, 19, 29, 34 and 40 are in the final
portfolio under any circumstances while there is no chance for projects 2, 9 and 17 to enter the final
portfolio. Subsequently, on next phase under careful focus are the remaining projects of the grey set.

In the second phase only 30 projects from grey set participated as the values of the decision variables for
green and red projects were fixed to “1” and “0” respectively. The objective function coefficients are the
frequencies from Table 5-3. Due to the fact that there are still stochastic parameters in the constraints (the
cost of each projects and the total budget) it is necessary to perform a Monte Carlo simulation — optimization
session with 1000 iterations, according to the equation (2.3).

Even in the second phase a clearly dominating portfolio is not appearing. The optimal portfolio of highest
frequency (portfolio A) is obtained in 22.6% of iterations (226/1000) while the next most frequent (portfolio
B) is obtained in the 19% of the iterations (190/1000). These two, most frequent portfolios have 23 and 22
projects, respectively. The difference is only one project, namely project 16 which is present in portfolio A

and not in portfolio B probably due to budget violation in respective runs.

It is interesting to compare the results of the two-phase approach with the results from a “conventional”
approach, considering only expected values for uncertain parameters. Further in the unit is clearly shown
that a significant part of information is left out of the analysis and the DM is losing essential information. In
this case multicriteria scores and, hence, the objective function coefficients would be crisp numbers as well
as all parameters of constraints in the MP model. The whole process would be similar to the approaches
described among others by Abu Taleb et al. (1995), Mavrotas et al. (2003; 2006; 2008) where the uncertainty
was not addressed. The difference with the trichotomic approach is on the results themselves as well as the

information conveyed by these results. Results from both methods are shown in Table 5-4.

It can be seen that the obtained results are almost identical. Only projects #16 and #24 are interchanged,
which are both in group of “applied” projects and have similar characteristics. Table 5-5 reveals that in some
criteria #24 performs weaker but it is characterized by less variation meaning more narrow distributions. The
final decision (to violate the available budget constraint and if yes, which of 2 projects to choose) is still to

be made by a person according to the main goals of the whole process.
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Table 5-4. Optimal portfolio from “conventional” and two-phase ITA approaches.

Conventional Trichotomic Conventional Trichotomic
(expected  (two-phase (expected  (two-phase
Project#  values) approach) | Project# values) approach)
1 1 1 21 1 1
2 0 0 22 0 0
3 1 1 23 0 0
4 0 0 24* 1 0
5 1 1 25 0 0
6 1 1 26 0 0
7 0 0 27 1 1
8 1 1 28 1 1
9 0 0 29 1 1
10 0 0 30 1 1
11 0 0 31 1 1
12 0 0 32 1 1
13 1 1 33 0 0
14 0 0 34 1 1
15 1 1 35 1 1
16* 0 1 36 1 1
17 0 0 37 0 0
18 0 0 38 1 1
19 1 1 39 1 1
20 1 1 40 1 1

Table 5-5. Characteristics of borderline projects #16 and #24.

Cost Methodology ~ Personnel Scientific ability Technical ability
min max min  max min  max min max min max
Project 16 374 486 2 6 4 8 1 3 2 6
Project24 385 416 1 4 1 4 1 5 3 5

Seeing similar results one may wonder what is the contribution of the trichotomic approach. The real
contribution is that it provides the DM with extra information. In the conventional approach the DM is not
aware of the certainty degree for each project that is selected (with “1” in the corresponding column). By
contrast, in the case of ITA the expert is aware of the degree of certainty for each project. This is fruitful
information that may lead to better decisions (e.g. further adjustment of the total budget, identification of

vulnerable and stable projects etc). Here, the fact of two similar projects provides the chance to perform a
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direct comparison before deciding about the final selection and maybe to reconsider initial assumptions and

requirements.
5.1.3. Results and discussion on iterative ITA

For the comparison of outcomes the iterative version of the trichotomic approach by gradually reducing the
uncertainty of grey projects in each cycle was applied. The reduction of uncertainty was done by the
symmetric narrowing of their range of performances as expressed in the corresponding distributions
provided in Table 5-1. A reduction step of 25% of the range was applied meaning that new min and max of

the uniform distribution were calculated by the following formula:

0
min® = min+k x 25%

x (Mmax—min)

506 (5.1)

2 .
max" = max—k x ——x (max—min)
Therefore, sampling for Monte Carlo simulation was performed by all the more narrow ranges of the
uniform distributions for grey projects. The midrange was reached on fourth iteration which meant there was

no sampling but the midrange as the one and only representative value.

From Table 5-6 it is obvious that the uncertainty reduction within grey projects drives gradually in more
populated red and green sets. For example, it can be concluded that a DM is more confident about e.g. the
inclusion of project 38 than 35, because it enters the green set in an earlier iteration. Similarly, one can be
more sure about the exclusion of project 17 (excluded from the first round) than of project 14 (excluded in
the third round).

Table 5-6. Results for iterative version of ITA.

Uncertainty

reduction Red set Project id Green set Project id
0% 3 2917 7 5,8,15,19,29,34,40
25% 3 2917 7 5,8,15,19,29,34,40
50% 8 24,791214,17,23 11 1,5,8,15,19,21,27,29,34,38,40
75% 8 24,7912,14,17,23 14 1,5,8,15,19,21,27,28,29,30,34,35,38,40
100% 11 2,4,7,9,10,12,14,17,22,23,37 18 1,5,8,13,15,19,20,21,27,28,29,30,32,34,35,38,39,40
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When all uncertainty is removed from grey projects (row of 100%) the unique optimal portfolio is still not
reached because some uncertainty is related to the weights of criteria and the total budget remains. However,
18 green projects from the eventually 23 are identified. It should be remembered that once a project enters
green or red sets in iteration k it remains there for all subsequent iterations, i.e., the green and red projects of
iteration k are nested in respective sets of the consecutive iterations k+1, k+2, .... It must be noted that
narrowing of uncertainty intervals refers only to grey projects of a specific iteration. For example, when the
uncertainty is reduced from 50% to 75%, this reduction is not applied in the 8 red and 11 green projects of
the second iteration but only for the remaining 21 grey projects. The concept is that on every iteration
increased amount of information is obtained only for the currently grey projects in order to reduce their
performance’s variability. When the whole cycle of calculations is finished, the final portfolio turns out to be
the same as with the two-phase approach. The main assistance here lies in the fact of gradual selection of
projects, which is longer and covers more uncertain parameters then the previous one. Here, again, two
projects are “close winners” and there is room for the expert to make or modify final portfolio according to

the assigned task.
5.1.4.  Conclusions for classic and two-phase ITA

An illustrative example from the literature was used to demonstrate and compare two approaches of the ITA
method. One of the most useful advantages of the method is the additional information delivered to the DM
and the direct control she/he has over the final solution (the disclosure of the borderline projects being a

significant hint).

The two-phase approach may be considered as a short version of iterative ITA which suits better for
relatively small set of project proposals. While the first part is the same for both approaches, the second part
represents the majority principle where the variability of the results is reduced and the portfolio(s) of greater
acceptance is(are) easily recognized. Robustness of results for the selection of telecommunications projects
was additionally tested through different pseudo-random seeds of Monte Carlo simulation and there were no

significant differences between them.

The iterative version has the advantage of gradual separation of projects between green and red sets giving
information to the DM about the reliability projects’ inclusion in the final portfolio or exclusion from it
(according to the cycle that each project is included in the green or the red set). Such a procedure is more
suitable for problems with large number of proposals seeking for support. Within the modeling procedure
uncertain future outcomes may be modeled through different probability distributions. While in the current
case study final portfolios from both approaches were the same, it would not be true in case of complicated

probability distributions of several parameters. Still, two projects with similar characteristics leave some
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space for interpretation of results and possible review of some constraints. If closer pair wise comparison
reveals increased importance of both of them, it is not prohibited to include them into the final selection.

Still, it is easier to reconsider the future of one or two items instead of the whole portfolio.

5.2. Selecting a portfolio of CDM projects

In the last two centuries energy became one of the most critical resources for mankind’s survival and
development. Especially now, when the scarcity of fossil fuels and the impact of energy production and
consumption to climate change were realized, the issue of energy is high in the global agenda. Energy
projects are characterized by a variety of technologies and they are spread all around the world as they are
related with indigenous sources. A special case of energy projects are those emerged recently in order to deal
with the Climate Change issue. The international effort against the global phenomenon of global warming
found its expression in early ‘90s with the establishment of the Intergovernmental Panel on Climate Change
(IPCC) and United Nation Framework Convention for Climate Change (UNFCCC). Kyoto Protocol to the
UNFCCC provided several options in order to reduce greenhouse gas (GHG) emissions. One of them was
the Clean Development Mechanism (CDM) which gave the possibility to offset carbon emissions in the
shape of environmentally friendly activities which turned out to be mostly energy related projects. Broadly
speaking they are projects implemented in developing countries using technology and financing from
developed countries. The benefit for the funders is that they get the “environmental” benefits quantified as
Certified Emission Reduction units (CERs) in order to reduce their “emission balance”. The case study

presented further refers to this kind of projects and it is essentially a project portfolio selection problem.

The subject of specific case study refers to climate related projects which are mainly related to energy either
from the supply side or from the side of energy efficiency. It is a growing domain of activities with many
parties involved. Among main players are governments, who plan and introduce different climate friendly
policies and address complex objectives of local development and employment as well as financial
institutions and developers, searching for perspective ways for investments. In addition, private companies
(both big and small) who care about public perception may also finance and support green activities. Even
individual people interested in sustainable future, can buy carbon credits to offset their everyday GHG

emissions.

Investors always face the problem of choice. Usually, the possibilities and options to invest money are
greater than the available budget. One of the main tasks for a DM is to perform a balanced selection with

consideration of technology, budget, policies, geographical distribution and other constraints that may be
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imposed by him/her. Moreover, the output of the projects is rarely known with certainty at the decision level
(a priori). Therefore, in the current case the problem is stated as: which portfolio of climate related projects
should be selected by an entity, given information about the total budget, policy and technical conditions that
must be met as well as the inherent uncertainty in projects’ output. The “universe” of available options is

constituted from projects under the CDM and the relevant data are drawn from the CDM database.

Within the CDM projects’ selection two techniques are combined, namely, Mathematical Programming and
Monte Carlo simulation that helps to take into account numerous constraints and the inherent uncertainty
associated with the projects’ performance. The uncertainty is represented with probability distributions (a
stochastic nature is assumed) as it is also assumed in other similar research works (Ladhelma et al., 1998;
Tervonen and Ladhelma, 2007; Hyde et al., 2003). The problem is solved in iterative way using decision
rounds. In each round a series of Monte Carlo simulations — IP optimizations is performed providing
information about the membership of every project in resulting portfolios. This information is aggregated in
order to separate projects into green, red and grey sets. From round to round the variation (measure of
uncertainty) of grey projects is reduced so that the whole process converges to a final portfolio. The output
of the process incorporates important information of certainty degree associated with every project which is

included in the final portfolio.
5.2.1.  Creating the “universe of projects” from CDM database

In the current case study a hypothetic set of projects, based on real data, is used. The main information
source is CDM database, elaborated by UNEP Risoe Centre. Every activity, in order to be registered,
submits a project design document (PDD) where its basic features are described and calculated.
Subsequently, during their operation, registered projects are subject to performance monitoring and

verification according to an adopted schedule.

The majority of CDM activities are renewable energy projects, which are represented by the following

technologies:
e Wind energy,
e Hydro power plant (HPP),
e Biomass,
e Landfill gas,
e Methane avoidance,
e Energy efficiency in industry (EE).
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As wind and hydro electricity generation are dominant technologies a great number of projects fall in this
category. In order to refine the decision process further split of these projects into small scale (up to 15 MW
of installed capacity) and large scale (more than 15 MW) ones is performed. Small scale projects are labeled
with “S” at the beginning (SWind, SHydro), and large scale — “L” (LWind, LHydro). There is no need to

create sub-groups for other technologies since the remaining projects are not that numerous.

Wind electricity generation is the largest set of projects and most installations are located in China and India.
Technology success may be attributed to strong incentives that these hosting countries created during
previous years (Pechak et al., 2011). Within hydro power generation projects there are ones that are focused
on modernization of already existing, and those which started from zero (which in some cases means
construction of a new dam). Hydro power plants bring together several issues, mainly environmental, both
on local and international levels. In case of international rivers, active construction of dams and hydro power
plants in one country may cause water shortages during dry seasons or other related problems in the
countries, which are subsequent in the river flow. This is a complicated issue especially in South — East Asia
(WWDR4, 2012). Biomass covers many sub technologies, mainly related to agricultural wastes of different
kinds. Most of these projects are small scale and possess strong environmental potential, which makes them
similar to power generation from landfill gas and methane avoidance on waste water treatment facilities. The
objective of landfill gas projects is to install a highly efficient collection system to capture and destroy
methane by flaring at high temperatures and use the generated heat for the needs of communities. Generally,
the avoidance and reduction of methane emissions is very important not only from the public health point
view. Methane is characterized by the global warming potential (GWP) 21 times greater of CO, and on the
planetary scale makes a considerable input to the overall greenhouse effect. The biggest variety is found
within the energy efficiency (EE) projects for own electricity generation from waste heat on such industrial

facilities as cement plants, iron and steel production, non-ferrous metal production and others.

Geographical distribution covers 17 countries: Argentina, Brazil, Chile, China, Ecuador, Egypt, Honduras,
India, Indonesia, Malaysia, Mexico, Peru, Philippines, South Africa, South Korea, Thailand, and Vietnam.
According to the Kyoto Protocol classification, all these countries are considered to be developing. But each
of them has many specific characteristics which should be taken into account before the selection process
starts. For instance, the state support for wind energy projects led China to become a major player in this
field and within few years it helped to develop a new industry from scratch. On the other side, for many
other developing countries, last technology developments are still not accessible due to lack of financial
resources and knowledge. Without technology transfers, they may follow the historic polluting trends of
industrialised countries. Instead, CDM demonstrates an effective way to move quickly to environmentally

sound and sustainable practices, institutions and technologies (Karakosta et al., 2010).
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Within evaluation, strong emphasis is put on environmental performance. Actually, sustainability compound
was supposed to be very strong on the stage of CDM development. But reality turned out to be not as
“green” as expected. These criteria were very vague and led to strong critics of CDM. As a result, external
companies began to perform sustainability check of the projects, both existing and under development. That
is how demand for premium CERs occurred and the best known is Gold Standard (GS) labelling. It certifies
renewable energy and energy efficiency carbon offset projects to ensure that they all demonstrate real and
permanent greenhouse gas reductions and sustainable development benefits in local communities that are

measured, reported and verified.

Table 5-7. Input data for CDM projects by countries and technologies.

Swin Luna Sty Lhyero Bionsss 1 Melbre EEoun G5 Bude (CET| T

China 5 53 21 27 2 6 4 10 40 6733 2588 | 128
India 36 4 10 5 15 1 2 6 10 979 17050 | 79
Argentina 0 0 0 0 1 1 0 0 0 42 305 2
Brazil 0 1 4 4 0 2 0 1 0 541 885 12
Chile 0 1 2 3 2 0 0 0 1 490 1346 8
Ecuador 1 0 0 2 0 0 0 0 0 62 210 3
Egypt 0 1 0 0 0 0 0 1 o 18 359 2
Honduras 0 0 1 0 0 0 1 0 1 10 54 2
Indonesia 0 0 0 0 2 1 3 0 3 52 361 6
Malaysia 0 0 0 0 5 1 4 0 0 44 686 10
Mexico 0 4 0 1 0 3 1 0 o 13% 2101 9
Peru 0 0 3 3 0 0 0 0 o 360 879 6
Philippines 0 1 0 0 1 0 1 1 o 104 1091 4
South Africa 0 0 0 0 1 2 1 0 0 30 133 4
South Korea 1 1 2 1 0 0 0 0 o 243 501 5
Thailand 0 0 0 0 2 1 10 1 6 161 958 14
Vietnam 0 1 2 3 0 0 0 0 2 119 198 6
Gold Standard 3 33 2 2 8 2 12 1 63

Budget MUSS | 436 6861 400 2555 389 165 105 503 2846

KCERs/year 639 11059 1257 6898 1794 3075 1439 2644 6242

Totals 43 67 45 49 31 18 27 20 63 11501 28805 | 300

As it was mentioned before, the candidate projects are taken from UNEP Risoe Centre database. Only
registered projects are under consideration as they have more rich information. A summary of the input data
is presented in Table 5-7. 300 representative projects with specific technology and geographical

characteristics in order to illustrate ITA method were taken as input. Solar, geothermal, tidal and several
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other types of energy efficiency projects are excluded from selection due to the lack of initial information

(e.g. no investment costs).

The portfolio selection has a strong emphasis on environmental performance with respect to current situation
on CDM map. Since already existing projects are the input data, for environmental criteria the GS labelling

is used. In the model, availability of GS certification is represented by “1”, and “0” if not.

Within the model, projects were coded according to technology, i.e. Small scale wind: 1-43, Large scale
wind: 44-110, Small scale hydro: 111-155, Large scale hydro: 156-204, Biomass: 205-235, EE own
generation: 236-255, Landfill gas: 256-273, Methane avoidance: 274-300.

5.2.2.  The model for CDM project selection

If not the most significant, one of the most critical criteria in specific decision situation is the amount of
issued CERs. When a project is submitted the expected amount of CERs is declared. However, past
experience from previous projects shows that declared amount usually differs from delivered CERs after
implementation of the activity. An attempt to quantify this uncertainty by examining earlier projects’
issuance success according to their technology was made. The issuance success was defined as the ratio
between initially expected and actual CERs and it is calculated in the CDM database for projects that have
one or more years of implementation. Since projects may vary by their duration, 10 years or 7 years
(renewable) crediting period, it was feasible to consider the annual amount of CERs as a common basis.
With consideration of available historical data, Table 5-8 presents the levels of CERs issuance in

comparison with expected amounts from PDDs.

Table 5-8. Distribution characteristics of CERs issuance success.

Total  Average level of issuance Standard deviation of

projects success (avis) issuance success (sdis)
Wind 370 89% 24%
Hydro 465 85% 39%
Biomass 174 84% 35%
EE own generation 97 7% 25%
Landfill 90 52% 36%
Methane avoidance 122 61% 38%

In current model actual CERs of the portfolio constitute the objective function for maximization. Given the
uncertainty characterizing issuance success of each project according to its technology, these values are

drawn from the corresponding normal distributions with characteristics from Table 5-8. Therefore, objective

62



function coefficients are random parameters sampled from the normal distribution with following

characteristics:
c¢® = expcer; x normal(avis;, sdis;) (5.2)

where cY; is the objective function coefficient declaring actual CERs for the i-th project according to the t-th
sampling, expcer; is expected CERs declared during submission of the project, avis; is average issuance
success for technology j that characterizes project i and sdis; is standard deviation of the issuance success of
technology j. The two latter parameters are taken from Table 5-8. The second term of the product indicates
that the parameter is sampled from a normal distribution with specific characteristics. Therefore, the
objective function of the problem is following and is based on (4.3):

P
max Z® =>"cVX, (5.3)

i=1

where Z9 is the total number of kCERs achived by the portfolio PY in the iteration t of the Monte Carlo
simulation, ¢ is the number of KCERSs from the i-th project as it is sampled in the t-th iteration and X; is a
binary variable indicating if the i-th project is included (X;=1) or excluded (X;=0) from the optimal portfolio.

Constraints of the problem express policy limitations imposed by the decision maker. They have to do with
the desired technology mixture as well as the geographical distribution of the projects in final portfolio. In

present case the imposed constraints are:
(a) Budget constraint

The total investment budget for the selected projects must be less than 2 billion US$ (all 300 projects
accumulate to 11.5 billion US$)

P
3 budg, X; < 2000 (5.4)
i=1

where budg; is the budget of the i-th project in million US$
(b) Geographical distribution

Certain conditions about the geographical distribution of projects are incorporated in the model as it is
usually the case in real investment problems. The following conditions are some examples just to illustrate

modeling capabilities.

b1) At most 40% of allocated funds should be in projects in China

P
Y budg;X; <0.4> budg, X, (5.5)
i=1

ieChina
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b2) At most 30% of allocated funds should be in projects in India
P
> budg, X; <0.3> budg; X, (5.6)
ieIndia i=1
b3) At least 30% of the selected projects must be located in Latin America
P
D> X 203> X, (5.7)
ieLatAm i=1
(c) Technology mix

There are conditions that can be imposed to affect technology mix of the final portfolio. This is often
required in order to obtain a more or less balanced portfolio avoiding the “all eggs in one basket” policy.
After several initial trial and error runs of the spontaneous model (without technology mix constraints) and it
becomes obvious that a minimum or a maximum degree of representation of each technology in the final

portfolio should be maintained. In the current model these additional constraints are:

cl) At least 40% of allocated funds should be in wind power installations (small and large scale)

P
>’ budg, X; =0.4> " budg; X; (5.8)

ieWind i=1

c2) At least 30% of allocated funds should go to hydro power installations (small and large scale)

P
> budg, X; >0.3> budg; X, (5.9)
i=1

ieHydro

¢3) Remaining four technologies should not have (separately) more than 10% of the allocated funds

P
> budg,X; <0.1> budg, X; (5.10)
ieBiomass i=1
P
> budg, X; <0.1)_budg, X, (5.11)
icEEff i=1
p
> budg;X; <0.1> budg, X, (5.12)
ieLandfill i=1
P
> budg,X; <0.1> budg, X (5.13)
ieMethAv i=1

c4) The Gold Standard projects should be at least 30% of total projects in the final portfolio
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> X zo.szpj X; (5.14)

ieGoldstd i=1

The before mentioned constraints are examples of limitations that in a real case any decision maker may
face. In case of need of even more constraints, such as mutually exclusive, precedent projects and other
logical conditions can be incorporated into the model. Moreover, if annual cash flows are available,
constraints on annual expenses can also be incorporated. In general, the modeling with Integer Programming

in project portfolio selection is very flexible.
5.2.3.  Results and discussion for classic ITA

The ITA method was applied to specific problem in a following way: Five rounds of the iterative process
were defined a priori (denoting with “0” the initial round, hence R=4). From round to round the grey
projects’ performance was sampled from a corridor of corresponding issuance success’ distributions.
Particularly, the standard deviation of respective probability distribution was reduced by 25% in each
subsequent round as shown in Figure 5-1. Consequently, in the final round the standard deviation of grey

projects was considered to be zero so that for them deterministic values of issuance success were assumed.

o= sdis
o=0.75 sdis
o=0.5sdis
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Figure 5-1. Variance reduction from round to round for the grey projects’ probability distribution.

The model and the whole solution process were developed in the General Algebraic Modeling System
(GAMS, see e.g. Brooke et al., 1988) using the MIP solver CPLEX 11.1 for optimizing the Mixed Integer

Programming models. The number of iterations in Monte Carlo simulation was set to 1000. The solution
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time varied from 17 — 20 minutes across the five rounds in an Intel Pentium i5 at 2.53 GHz, which made the

whole decision process not computationally prohibitive.

The membership threshold was set to 99% for the green set and 1% for the red set. This meant that projects
that appeared in the final portfolio more than 990 times over the 1000 iterations were considered to be green

projects, while those projects appearing less than 10 times in total were discarded.

Initially, the simulation optimization process was run with consideration of full uncertainty of projects’
issuance success (o = sdis). Specifically, for calculation of every objective function coefficient c; the
equation (4.3) used normal distributions’ sampling from Table 5-8. Surprisingly, from the 1000 portfolios
initially obtained none of them were the same. Therefore, no conclusions about a dominant portfolio could
be extracted from the first round. The number of projects in portfolios varied from 70 to 103 across these
iterations. Eventually, 10 projects were classified as green, 77 as red and the remaining 213 as grey.

In the second iteration, according to the equation (4.4), values of green projects’ decision variables were
fixed to be to 1 and those of the red projects to 0. The standard deviation of grey projects was reduced to
0.75 x sdis while for green and red projects it was left in the previous round’s level. The output of the second
round was 16 green, 100 red and 184 grey projects.

In the third round, the values of green projects’ decision variables from previous round were set as 1 and
those of red projects as 0 in the model. The standard deviation of grey projects was reduced to 0.5 x sdis.

The output of the third round was 27 green projects, 117 red projects and 156 grey projects.

The output of the fourth round was 49 green projects, 151 red projects and the remaining 100 were grey for

which the standard deviation was set to be 0.25 x sdis.

In the fifth and final round the standard deviation of remaining 100 grey projects was set to zero which
meant their issuance success was considered as deterministic value taking the average value from Table 5-8.
Then, all grey projects were fully allocated between green (51) and red sets (49). Conclusively, the whole
process ended with 100 green and 200 red projects. In the final round the obtained CERs calculated from the
final portfolio varied from 7089 to 8164 with a mean value of 7597 and a standard deviation of 190. The 1D
of projects as well as the decision round of their incorporation (for the green set) or their exclusion (for the
red set) from the final portfolio is illustrated graphically in Figure 5-2. The darker the shading of a cell is,
the earlier round it enters green or red sets, i.e., the sooner a conclusion about project’s status (“go” or “no
£0”) in the decision process is made. In other words, darker cells illustrate higher level of confidence about
their inclusion (green set) or their exclusion (red set) from the final portfolio. Therefore, every project is
accompanied not only with “go” or “no go” information, but also with the degree of certainty about this

decision. It is a certain way to prioritize projects and is very useful for decision makers in the presence of
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underlying uncertainty on projects’ performance. The analysis of the final portfolio is presented in Table
5-9.

115| 116| 124 128| 130| 136| 137| 138
182| 188| 192| 196 199( 204| 206
234| 235| 236| 237| 238

269| 270| 271| 272| 273
296 297| 298| 299| 300

(a) The green set

| 183

259| 260| 268 279| 280| 281

(b) The red set

Figure 5-2. Final green and red sets along with certainty degree for each project.

It is noteworthy to mention that a naive approach of dealing with uncertainty is to use just the average
(expected) values of issuance success and maximize the average CERs of the final portfolio, ignoring the
variance associated with projects’ performance. In this case, the final portfolio that is calculated from a
single run (solution of an IP problem) is the same as in ITA approach. However, there is no information
about performance variations of the final portfolio, as well as there is no supportive evidence about the
degree of certainty for each project. In addition, if probability distributions were not symmetric the result of

the two approaches may differ which means different final portfolios.
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Table 5-9. Final selection by countries and technologies.

SWind Lwind SHydro LHydro Biomass Lag;j:ill a'\\fl;t(;]::fe geEnEercr)a\?ilgn GS ?}fﬂ%;t kSE;S/ p;gc}feilts
China 0 2 2 7 1 6 3 2 8 799 3828 23
India 4 1 1 0 10 0 1 5 10 204 1063 22
Argentina 0 0 0 0 1 1 0 0 0 42 305 2
Brazil 0 0 3 2 0 2 0 1 0 106 1121 8
Chile 0 0 2 2 1 0 0 0 0 119 278 5
Ecuador 1 0 0 2 0 0 0 0 0 62 210 3
Egypt 0 1 0 0 0 0 0 1 0 135 359 2
Honduras 0 0 1 0 0 0 1 0 1 10 54 2
Indonesia 0 0 0 0 1 0 3 0 3 17 192 4
Malaysia 0 0 0 0 3 0 4 0 0 29 591 7
Mexico 0 1 0 0 0 3 1 0 0 220 751 5
Peru 0 0 3 2 0 0 0 0 0 182 485 5
Philippines 0 0 0 0 0 0 0 0 0 0 0 0
South Africa 0 0 0 0 1 1 0 0 0 16.5 399 2
South Korea 0 0 0 0 0 0 0 0 0 0 0 0
Thailand 0 0 0 0 0 1 7 0 6 33 638 8
Vietnam 0 0 1 1 0 0 0 0 2 24 43 2
Gold
Standard 3 1 2 2 7 2 12 1 30

Budget MUS$| 33 767 111 595 163 88 68 173 241

KCERs/year 54 1634 389 2255 1108 2713 1181 983 1287

Total 5 5 13 16 18 14 20 9 30 19985 10317 100

The geographical distribution is determined more or less by imposed constraints. It is easy to observe the
fact that there are still countries that are not present in the final selection (Philippines and South Korea) as it
is not explicitly required by the regional constraints. Moreover, it was found that projects from Latin
America were entering the final portfolio from the first rounds. On the contrary, the majority of wind and
hydro projects from China and India are excluded very early in the decision process. According to another
requirement all available technologies are present in the mix of final portfolio. Because of restricted budget
(2 billion US$), most of wind projects are excluded due to high initial investment costs. Thus, the share of
Chinese projects dropped significantly although there were some projects with Gold Standard label among
them. It was also observed that conditions for the HPPs were more favorable than those of the wind projects.
In addition, the availability of already existing dam had a positive effect as it corresponded to lower

investment cost.
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Generally, consideration of minimal share of Gold Standard projects has a positive influence. In the final
portfolio there are 30% of premium labeled projects while initially, in project universe, they had the share of
21%. The proportion of GS projects may be controlled by the decision maker through implied constraints. In
the current case, all GS labeled projects for HPPs, Landfill gas, Methane avoidance and EE in industry are in

the final selection.

It is not a surprise that the share of methane related projects is significant in the final portfolio (about 1/3).
With modest investments they provide more emission reductions and thus CERs. One of the reasons is the
higher Global Worming Potential (GWP) of methane towards CO,. Secondly, these projects provide more of
direct sustainability benefits such as improved air and water quality, and reduction of dangerous wastes

within local communities.

Eventually, the final portfolio represents 17.4% of the investments in comparison with initial 11.5 billion
US$ of 300 projects while it accounts for 35.8% of the project universe’s total CERs (=28805 KCERS). In
the current case study the aim was to maximize carbon credits, even though their final amount is not a
certain fixed number. The final portfolio demonstrated how it is possible to make a balanced selection
regarding financial as well as technological and geographical constraints. In this example the modeling of
uncertainty in the most uncertain among project’s parameters (CERs) was tested. Contrary to what was
expected, the dominant technologies (wind and hydro) in the available project universe were not so favorable
in the final portfolio, probably due to their increased investment cost. Because of the limited available total

budget, lower investment cost projects were preferred even from the early rounds of the selection process.

5.3. RES projects in Hellas

The capability of reliable provision of energy to meet a vast range of needs and requirements in residential,
services/commerce, agriculture, industrial and transportation sectors, is one of the most distinctive features
of modern developed societies. From supplying power and heat to production systems to satisfying heating,

cooling, lighting, and mobility needs, energy is pervasive in everyday life (Antunes and Henriques 2016).

The geographical position of Greece is extremely favorable for the operation of renewable energy
installations. With more than 250 days of sunshine it is no surprise to have an excessive amount of proposals
for photovoltaic power plants. While solar collectors are already a widespread technology for hot water
supply in households, PVs are only gaining popularity. Currently, state support for new energy technologies
is also of crucial importance since it is still cheaper to obtain electricity from fossil fuels. The same stands

for wind installations too.
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The basis of case study is 133 Greek project proposals covering three RES technologies (wind, small hydro,
photovoltaic). These applications were evaluated against 5 criteria, namely: regional development,
employment, economic performance (expressed with IRR), CO, emission reduction and land use. The data

for this problem are available in Makryvelios (2011).

In this subchapter ITA is used for a case study with multiple decision makers. The preference of every expert
is expressed by assigning their own weights of importance to the evaluation criteria. Hence, each decision
maker has his/her own optimal portfolio of projects. Group ITA is designed to gradually add projects to the
portfolio according to the concordance within the team members until a final portfolio is reached. A great
advantage of Group ITA is that it also provides a measure of consensus for the final portfolio of projects
(Consensus Index) as well as concordance indices for each project that is either selected or rejected.

5.3.1.  Description of RES projects’ proposals

In order to start elaboration of proposals, it is necessary to perform their evaluation. For current example, the
MCDA method used for multi-criteria project evaluation is the value function method (von Winderfeldt and

Edwards, 1986). The partial value function for each criterion has the following form:

1_ eck‘xik

L= 5.15
ylk :l-_eck ( )

where yj is a score of i-th alternative in k-th criterion, x; is a linear score normalized to [0,1] of i-th
alternative in k-th criterion and c, is the value function coefficient for criterion k. Value function coefficients
(ce) are defined according to the dispersion of alternatives’ performances by criteria. Specifically, an
accumulation of performances in the upper half of criterion range indicates a convex value function while an
accumulation in the lower half leads to a concave value function. In this way the discriminating ability of
criteria is enhanced. In the present case the following values for value function coefficients are defined:

€1=0.001 (linear), ¢, = -1 (concave), c; =-3 (concave), ¢, =-5 (concave), cs =5 (convex).
The x; are obtained as follows:

(a) For maximization criteria:

MIN
_ Vi VY%
Xix = MAX MIN (5'16)
Vi — Vi

(b) For minimization criteria:
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Vi — Vik
Xik = —wax MIN (5.17)
Vi — Vi

MIN

where vy is raw value of the i-th alternative in the k-th criterion, v, and v the maximum and minimum

values across k criteria. Multi-criteria scores (ms;) for each alternative are calculated using an additive value

function:
5

ms; =D Y X W (5.18)
k=1

In the present case 12 decision makers from different positions are assumed, with diverse points of view that
provided weights of importance to the Table 5-10. These are actually initial weights wpk(o’.

Table 5-10. Importance weights for 12 decision makers.

Criteria

Regional CO, emissions Economic performance  Employment Land

DM development reduction (IRR) positions use
1 0.14 0.13 0.46 0.13 0.14
2 0.25 0.37 0.15 0.08 0.15
3 0.41 0.21 0.03 0.14 0.21
4 0.07 0.41 0.35 0.16 0.01
5 0.02 0.02 0.50 0.33 0.13
6 0.20 0.20 0.20 0.20 0.20
7 0.15 0.25 0.40 0.02 0.18
8 0.08 0.28 0.35 0.17 0.12
9 0.22 0.25 0.28 0.17 0.08
10 0.15 0.35 0.25 0.20 0.05
11 0.21 0.30 0.15 0.15 0.19
12 0.20 0.20 0.30 0.25 0.05
Average 0.1750 0.2475 0.2850 0.1667 0.1258

The detailed classification of project proposals by technology and geographical distribution is presented

below.
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Table 5-11. Geographical and technological distributions of projects.

Wind Small hydro PV Total
EASTERN MACEDONIA-THRACE 3 2 5
(EMD)
ATTICA (ATT) 1 1
NORTHERN AEGEAN (NAG) 6 6
WESTERN GREECE (WGR) 1 1
WESTERN MACEDONIA (WMD) 3 6 9
EPIRUS (EPR) 3 8 11
THESSALY (THE) 1 7 9 17
IONIAN ISLANDS (ION) 1 1
CENTRAL MACEDONIA (CMD) 3 5 6 14
CRETE (CRE) 4 4
SOUTHERN AEGEAN (SAG) 1 1
PELOPPONESE (PEL) 8 1 3 12
CENTRAL GREECE (STE) 33 13 5 51
Total 53 30 50 133
5.3.2.  The model for Hellenic RES project selection

For solving the problem of project portfolio selection an IP model is developed with consideration of

specific constraints that need to be satisfied. Technological and geographical distributions of proposals are

shown in Table 5-11. In addition, it is necessary to meet such specific policy constraints as:

Available budget of 150 ME€ (the total cost of the 133 projects is 659 M€);
Cost of projects in Central Greece should be less than 30% of the total cost;
Cost of projects in Peloponnese should be less than 15% of the total cost;

Cost of projects in East & West Macedonia, Northern & Southern Aegean, Epirus should be greater
than 10% of the total cost;

Number of projects by technology should be between 20% and 60% of selected projects;

Total capacity of selected projects should be greater than 300 MW.
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The decision variables of the corresponding IP model are binary and indicate acceptance (X;j=1) or rejection

(X; =0) of the i-th project in the final portfolio. The full model is:

133

max Z =" ms; X,
i=1

st

133

> cost;X; =C

i=1

C <150
D COst X; 0.3xC
> . cost,X; <0.156xC
iePEL
cost; X; 20.1xC

z ieEMD,NAG WMD,EPR,SAG

133 133
0.2x D X; <D X, <0.6x ) X,
o p
0.2x) X; <D X;<06x) X,
o i
02x Y X, <Y X, <06x> X,
RRP L 619
133
> mw,X; >300

i=1

where C is the total cost of the portfolio, cost; is the cost of project i (in M€), mw; is the installed capacity (in
MW) and ms; is the multi-criteria score of project i. The resulting model is an IP problem with 133 integer

decision variables and 11 constraints.

For the problem Group-ITA method is applied with R=10 rounds (meaning that the convergence parameter «
= 0.1). Required models and whole solution process is developed in General Algebraic Modeling System
(GAMS, see e.g. Brooke et al.,, 1998) using the MIP solver CPLEX 11.1 for optimizing Integer

Programming models. The solution time was a few seconds for each model in a core i5 64bit at 2.5 GHz.
5.3.3.  Results and conclusions for Group ITA

Results obtained from round to round are depicted in Figure 5-3 where color intensity expresses consensus
degree on each project. The dark green projects were selected in early rounds and it means that there has
been increased consensus for their selection. On the other side, the dark red projects were rejected in early
rounds signifying increased consensus for their rejection. It is easy to observe that from round O to round 3

there are no additions in the green or red sets. The same is true also for rounds 4 and 5, 6 and 7, 8 and 9. That
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is why rounds 1, 2, 3, 5, 7 and 9 do not appear in Figure 5-3. It is noteworthy to highlight the fact of
73+40=113 projects with CD=1; 5+5=10 projects with CD=0 and the remaining 10 in between projects.

1 (2|3 |4|5|6 (7|89 [10|11|12)|13[14|15|16|17|18|19|20

21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |33|34)|35|36|37)|38)39)|40
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Figure 5-3. Results of iterative process for Hellenic RES projects.

Particular characteristics of the portfolio created by green projects in each round (consensus portfolio) are
shown in Table 5-12. The violations of constraints are denoted with red, bold fonts. By studying Table 5-12
decision makers may decide to select a consensus portfolio prematurely, i.e., before arriving to Round 10.

This can be done having in mind that they accept the respective violations of constraints.
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Table 5-12. Characteristics of consensus portfolio (green projects only).

MW Cost STE  PEL  Other W SH PV
projects (>=300) (<=150 M€) (<=30%) (<=15%) (>=10%) (20%-60%) (20%-60%) (20%-60%)
round 0 73 1855 96.5 255%  3.2%  225%  151%  35.6%  49.3%
round 4 74 2026 1029 23.9% 92% 211%  162%  351%  48.6%
round 6 77 2226 1147 256% 8.2%  20.8%  169%  33.8%  49.4%
round 8 78 2352 1195 286%  7.9%  20.0%  17.9%  33.3%  48.7%
round10 83 3013  149.8 29.4% 10.3% 25.6%  205%  325%  47.0%

The consensus chart of the problem is depicted in Figure 5-4 and is calculated using equation(4.12):

0.88

Cl :[T+3><0.88+2><O.892+2><0.928+2><0.94+%]/10:91%

While the same final portfolio is obtained with average weights from only one run, this naive approach

misses all information regarding the consensus degree for each project as well as the consensus index for the

final portfolio.
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Figure 5-4. Consensus chart for RES project portfolio.

In other words, the current approach presents a systematic procedure towards convergence. The main

advantage of proposed Group-ITA method is that not only helps to build the final portfolio, but also
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measures the degree of consensus over each project that is selected or rejected. Moreover, it provides a
measure of consensus for the final portfolio. The outcome of Group-ITA is not merely the final portfolio, but
also the “course” towards it that may provide fruitful information about project selection problem and may

be used to reconsider some initial assumptions.

54, Incorporation of Energy and Environmental Corporate

Responsibility into decision making procedure

One of the major reasons for economic crises is the irrational distribution and use of resources. This problem
is one of the most common and oldest problems in Operations Research (OR). Financial organizations often
face the issue of selection within a set of project proposals to fund. As a rule, several OR techniques are
involved in this kind of problems such as Multiple Criteria Decision Analysis (MCDA) and Mathematical
Programming (MP). These techniques are widely exploited in relevant decision problems, such as the
portfolio selection, choice among alternative projects or investment opportunities, student selection, military
applications, capacity expansion (see e.g. Golabi et al. 1981; Mavrotas & Rozakis 2009; Salo et al. 2011;
Martinez-Costa et al., 2014). Usually the “best” performance is expressed emphasizing on economic and
financial criteria. Other criteria related with the promotion of sustainable practices, fostering green growth,

were not taken into consideration in traditional models (Hobbs and Meier 2000).

However, current financial and economic crisis, as well as growing socio-economic and environmental
pressures, including climate change, put seriously under question traditional development patterns. The need
to develop alternative models able to address current economic situation through the exploitation of
sustainable patterns is of crucial importance (Hobbs and Meier 2000; Doukas et al. 2012). One of the most
prominent examples comes from Oliveira and Antunes (2011), who developed a multi-objective model for
interactions between economy, energy and environment for Portugal. The multi-sectoral model performs a
prospective analysis of changes in the economic structure and the energy system, as well as assesses the
corresponding environmental impacts, providing decision support in policy making. This model is a multi-
objective linear programming model that allows for the explicit consideration of distinct axes of evaluation,
generally conflicting and non-commensurate, of the merit of distinct policies. The policy recommendations
obtained are subject to the inherent uncertainty associated with the model coefficients and, therefore, they

may not be robust in face of changes of the input data.

Companies are at the heart of the Europe 2020 Strategy, taking into consideration their vital role towards

national prosperity and Sustainable Development (SD). They have to integrate social and environmental
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concerns in their business operations and in their interaction with stakeholders on a voluntary basis, within

the framework of the Corporate Social Responsibility (CSR) concept.

Enterprises with vision have to address problems in a long term plan, and become a driving force for
adoption of relative initiatives towards “green” development and promotion of energy efficiency and
environmentally friendly practices, within the CSR framework (Doukas et al. 2013). CSR has been
incorporated recently in decision models using Data Envelopment Analysis (Lee & Farzipoor Saen, 2012),
inventory policy (Barcos et al. 2013) and supply chain (Hsueh, 2014) among others. The interweaving of
energy and environmental policies, as an aspect of CSR is definitely small and CSR does not appear to be a
systematic activity in new conditions of European market, a conclusion further confirmed by Apostolakou
and Jackson (2009) and Gjelberg (2009 a, b) studies. However, relevant works in various fields have been
detected recently such as in supplier selection (Hashemi et al., 2014). In this context, new tools and methods
are required to foster green entrepreneurship and green energy growth.

The innovation of the current study is the incorporation of Energy and Environmental Corporate
Responsibility (EECR) in decision making, supporting particularly the development of a new model for
investment evaluation. This model can assist financial institutions (with green loans applications) and
governmental bodies funding energy - environmental friendly investments. The EECR performance of a firm
is considered as an evaluation criterion of the submitted project. Therefore, in the current study the drivers of
optimization are two objective functions: (1) The Net Present Value (NPV) representing the economic
dimension that characterizes each project, and (2) the EECR index for the corporate social responsibility that
characterizes each firm that submits the project. In this way, businesses with increased EECR are rewarded

without ignoring the economic performance of relevant projects.

The resulting multi-objective model (specifically bi-objective) does not provide an optimal portfolio but a set
of Pareto optimal portfolios among which the most preferred one is selected by the decision maker. In
general, multi-objective optimization increases degrees of freedom within decision making process
providing not an optimal solution (as in single objective optimization) but a set of candidate solutions among
which the decision maker chooses. Therefore, the set of Pareto optimal solutions (Pareto set) is essential
information in an integrated decision making approach. Worth to remember that Multi-Objective Integer
Programming (MOIP) models help to produce the exact Pareto set (i.e., all the Pareto optimal solutions).
Moreover, especially in the last years, the multi-objective character of project portfolio selection is addressed
with multi-objective metaheuristic methods that produce an approximation of the Pareto set (see e.g. Yu et
al. 2012; Tavana et al. 2013; Hassanzadeh et al. 2014a).

The current case study goes one step further, considering also the uncertainty characterizing basic

parameters of the model, which are the coefficients of objective functions, namely NPV of each project and
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EECR score of each firm. Given that these values are actually estimations, a systematic approach to deal
with the inherent uncertainty is adopted. The latter is considered to be of stochastic nature, where a
probability distribution is used instead of a crisp number for the values of objective functions’ coefficients. It
must be noted that a similar approach for project selection problems with multiple criteria that deals with
stochastic uncertainty in projects’ evaluation is Stochastic Multiobjective Acceptability Analysis (SMAA)
introduced by Lahdelma et al. (1998). However, SMAA cannot handle the case of multiple constraints that
are imposed to the constraints but is applied only with independent alternatives in an MCDM context.

Further in the subchapter an innovative approach that deals with parameters’ uncertainty in a MOIP model
and eventually converges to the final Pareto set is introduced. It uses the main idea of the Iterative
Trichotomic Approach (ITA) (Mavrotas and Pechak 2013 a, b). The version of ITA described futher deals
with multi-objective problems of project portfolio selection and provides information about the degree of
certainty for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area from
project level to portfolio level. This kind of information is essential for the expert to be more confident to
select project portfolios that have high degree of certainty regarding their Pareto optimality. In this respect,
the decision maker has a sufficient tool to measure the robustness of the final Pareto set as well as the
robustness of specific portfolios that appear in the final Pareto set. Robustness in project portfolio selection

has also been addressed in a different way in the works of (Liesio et al., 2008; Hassanzadeh et al., 2014a, b).
5.4.1. Particularities of bi-objective programming

The basic idea of the current subchapter is to extend the applicability of Iterative Trichotomic Approach
(ITA) to the case of multi-objective optimization, which was originally designed for single objective
problems of project portfolio selection. It gives information about the degree of certainty for the inclusion or
rejection of a specific project in the final portfolio. ITA was initially applied for project portfolio selection
under the framework of Mathematical Programming and more specifically Integer Programming (IP). It was
used with a single objective function reflecting the optimization criterion. The uncertainty associated with

objective function coefficients has a stochastic nature (probability distributions instead of crisp numbers).

Project portfolio selection is by definition a multi-objective problem. Different points of view should be
taken into account. One approach is to aggregate these points of view to a single metric through multicriteria
analysis and subsequently optimize the resulting single objective problem where coefficients of objective
function are multicriteria scores (Mavrotas et al. 2008). Alternatively, one can use a goal programming
approach aggregating the objective functions based on their distance from individual goals (see e.g. Zanakis
et al., 1995; Santhanam & Kyparisis, 1996).
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In the above mentioned approaches, the decision maker has to assign weights to criteria or goals in order to
aggregate them to a single objective function (scalarization). Another approach is to keep individual criteria
as separate objective functions and proceed to a multi-objective optimization generating the Pareto set of the
problem (or the Pareto front in criteria space). The Pareto set comprises Pareto optimal solutions (or Pareto
portfolios in current case) which are examined before reaching the final choice. These methods are called “a
posteriori” or “generation” methods in the popular Hwang and Masud (1979) terminology for multi-
objective optimization methods (first generate Pareto front, examine it, and then select the most preferred
Pareto portfolio). Their aim is not just to provide the most preferred solution but also to generate the Pareto
set (either exactly or its approximation).

5.4.2.  Description of the bi-objective model

The overall procedure that was adopted to address multi-objective project portfolio selection problem is

graphically illustrated in Figure 5-5.

Design of the exact Pareto front

Uncertainty management

(Monte Carlo simulation - multi objective optimization — Pareto sets)

Implementation of ITA method

Final Pareto set and Pareto portfolios

(normal distribution)

Companies’ involvement in the optimal portfolios

Figure 5-5. The adopted procedure for the portfolio building.

The idea of incorporating energy and environmental issues in Corporate Social Responsibility is rather
recent (Doukas and Psarras, 2010; Doukas et al., 2012; 2014). In the present application a multi-criteria
project portfolio selection problem is addressed taking into account both economic and environmental
criteria. Given the uncertainty in quantifying economic as well as environmental performance of projects,
multi-objective ITA method is an appropriate choice to extract results about the robustness of obtained

project portfolios.

As it was mentioned before, the mathematical programming model that represents the optimization problem
is a MOIP problem with several particular characteristics. In the specific case, firms’ applications are

expressed with 0-1 decision variables, with X; denoting the i-th firm or application. More specifically:
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if Xij = 1, then the corresponding application is approved.
otherwise, if X; = 0, the corresponding application is rejected.

Two objective functions are considered in the model, namely the NPV of a portfolio and the EECR index of

a portfolio. They are both additive functions of individual projects’ relevant values.

N
portfolio's EECR:  max Z, = eecr,X;
U (5.20)
portfolio’s NPV: max Z, =) npv,X,
i=1
The parameters npv; and eecr; are NPV of a specific project application and EECR score of a certain applied

company.

The adopted procedure used for calculation of the EECR scoring was based upon the Ordered Weighted
Average (OWA) operator, which had been introduced in 1988 by Yager. An aggregation operator is a
function F: 1"—J where | and J are real intervals. | denotes the set of values to be aggregated and J denotes
the corresponding result of aggregation. The set of aggregation operators is denoted as Aq(l, J). An OWA

operator is an aggregation operator from A.(l, J) with an associated vector of weights w e [0,1]", such that:

Fw(x) = zn:wi xb, (5.21)

where: Zn:wi =1 and b; denoting the performance of an alternative in the criteria xy, ...,xn.
i-1

The criteria to be selected have to be operational, exhaustive in terms of containing all points of view,
monotonic and non-redundant since each criterion should be countered only once, as pointed out by
Bouyssou (1990). With respect to this, the research focuses on the provision of a small but clearly
understood set of evaluation criteria, which can form a sound basis for the comparison of examined firms in
terms of their systematic energy and environmental policy integration as a part of CSR and SD. Concisely,
all six criteria are presented in Table 5-13. The data from these firms were mainly collected from the Global

Reporting Initiative Disclosure Database (GRI, 2013).
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Table 5-13. Criteria description for firms’ evaluation.

Criteria Description

Degree to which Management of a firm prioritizes actions related to the energy

C1: Management and environmental corporate policy, sets specific targets and corresponding time

Commitment schedule for their accomplishment

C2: Monitoring Degree to which a firm adopts procedures and protocols for monitoring the set of
Progress and Related targets, specific progress made in each related activity and the corresponding
Impact impact in companies operation and activation in the market

Reflects firms’ participation in dissemination activities in broader community,
including among others, educational and information activities regarding
environmental practices, organization of workshops, conferences and other
events, and sponsorships

C3: Participation in
Dissemination
Activities

Refers to the firms’ involvement for investment in projects and initiatives related
to renewable energy sources -wind power, solar power (thermal, photovoltaic and
concentrated), hydro-electric power, tidal power, geothermal energy and biomass
Extent to which a firm incorporates initiatives to provide energy-efficient

products and services, to reduce direct and indirect energy consumption and other

C4: Promotion of
Renewable Energy

C5: Promotion of

Energy Efficiency . . L

energy conservation practices and technological improvements.
C6: Waste and Water Effort of firms in reducing total water use or discharge and the adoption of waste
Management management activities.

The model includes constraints, imposed by each banking institution’s specific credit policy. First of all, a
budget constraint is used in order to secure that the cumulative cost of approved applications does not exceed
the overall budget.

N
Y cost; X; <avb (5.22)
i=1

where avb is the total available budget and cost; the cost of i-th project application. In the specific
application the available budget is 3 M€ while the total cost of all 40 projects is 9.4 M€.

Specific bounds are imposed to control the distribution of projects according to their category, across various
sectors. In particular, the non-dominance of a certain project category in portfolio can be expressed as “no
sector or region is allowed to have more than half of the total approved applications”. This condition is

expressed with the following constraints:

N
D X;<05x Y X; forS=Sector 1,234 (5.23)
ieS i=1

N
D> X;<05x » X; forR=Region 1,234 (5.24)
ieR i=1
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In order to assure that all sectors and regions will be present in final portfolios the following condition is
added: “all sectors and areas will be funded with at least 10% of the total cost”. This condition is expressed

with the following constraints:

N

D cost;X; =0.1x » cost;X; forS = Sector 1,2,3,4 (5.25)
ieS i=1

N
D cost;X; >0.1x » cost;X; for R = Region 1,2,3,4 (5.26)
ieR i=1

In the framework of ITA, the uncertainty characterizing the estimation of projects’ NPV as well as the
calculation of firm’s EECR score is expressed with normal distributions for relevant projects’ values.
Specifically, the mean value for the normal distributions the estimated value is presented in Table 5-14 and
as standard deviation of the initial round is the 5% of the mean. This is done for the NPV as well as the
EECR values. From round to round the standard deviation of corresponding normal distributions is reduced
to 4%, 3%, 2%, 1% and 0% in the final round. The whole process (model building, random sampling, Pareto
set generation) is implemented within GAMS platform (GAMS, 2010).

Table 5-14. Input data for the projects.

CSR NPV (€) Cost (€) Sector Region
1 12.97 2,500 5,930 S1 R3
2 14.66 49,800 50,830 S1 R3
3 9.76 8,300 5,000 S1 R2
4 6.23 63,600 33,860 S1 R3
5 6.99 244,600 191,870 S2 R1
6 14.64 36,700 37,500 S2 R1
7 7.10 14,100 6,070 S2 R1
8 11.92 22,500 23,030 S2 R4
9 11.81 261,300 190,000 S2 R1
10 21.59 455,000 422,670 S3 R2
11 13.64 696,800 415,000 S3 R1
12 13.59 53,900 39,330 S3 R1
13 3.86 238,900 95,330 S1 R4
14 9.62 3,400 5,630 S4 R1
15 40.00 600 7,370 S4 R1
16 2.95 74,600 37,670 S4 R2
17 25.87 4,900 30,100 S1 R4
18 5.25 12,500 5,700 S4 R2
19 11.39 389,900 909,310 S4 R3
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20 11.67 378,100 160,300 S4 R4

21 15.39 53,100 26,190 S4 R2
22 17.13 51,400 161,010 S4 R3
23 5.76 460,100 353,420 S3 R1
24 8.93 422,800 184,410 Sl R3
25 16.12 146,900 87,910 S4 R2
26 12.38 477,100 614,620 Sl R2
27 7.19 431,600 277,040 Sl R3
28 21.95 208,500 158,790 S3 R3
29 4.70 324,400 1,410,180 S2 R1
30 18.07 324,100 533,640 S3 R1
31 7.75 603,200 529,130 S4 R2
32 4.54 648,800 396,670 S2 R4
33 19.18 179,600 123,640 Sl R3
34 15.85 220,000 149,770 S1 R1
35 22.01 204,300 93,050 S4 R2
36 4.04 352,100 311,780 S4 R3
37 19.39 223,000 772,970 S3 R2
38 17.81 228,800 117,580 S2 R3
39 12.86 428,500 190,870 S4 R4
40 5.85 516,100 262,030 S2 R1

The parameters’ values of the model as well as the membership of projects in various sets (sectoral and
geographical) are shown in Table 5-14. Still, more types of constraints may be considered in the
mathematical programming framework such as the specific number (or range) of accepted applications

(projects to be finally funded), or constraints for mutually exclusive projects etc.
5.4.3. Results and discussion for multi-objective ITA

The selection is based on the characteristics of 40 projects from 40 different firms, with a geographical,

sectoral distribution as follows in Table 5-15:

Table 5-15. Characteristics for 40 projects.

Geographical regions Sectors

11 southern European enterprises 11 energy enterprises

10 northern European enterprises 9 industrial enterprises

13 central European enterprises 7 electrical equipment enterprises
6 Greek enterprises 13 enterprises from other sectors

83



In each computation round 1000 Monte Carlo iterations were performed and the computation time varied
between 7181 seconds and 9150 seconds from round to round in a core i-5 running at 2.5 GHz. For the
specific application, the acceptance threshold for the green set was set at the level of 99% (if a portfolio was
present in 99% of Pareto sets, i.e., in 990 out of 1000).

The results of multi-objective ITA are shown in Table 5-16. There are in total 398 Pareto optimal portfolios
that participate in 1000 Pareto sets of the initial round. Among them only 4 were present in all Pareto sets. At
subsequent iterations the standard deviation of sampling distributions as shown in the first column of Table
5-16 was reduced. Eventually, in the last round, the final Pareto set that comprises 31 Pareto optimal
portfolios of projects emerged. These portfolios contain from 18 to 28 projects.

Table 5-16. Results of multi-objective ITA from round to round.

Computation
time (sec) Green  Red Grey

6=5% Round1 9178 4 0 394
c=4% Round 2 8247 4 109 285
6=3% Round 3 8592 5 215 178
c=2% Round 4 7811 9 275 114
c=1% Round5 8685 16 324 54
c=0% Round 6 7.3* 31 367 0

* for just one iteration as there is no uncertainty quantified by standard deviation

After completion of modeling runs, a first brief look reveals which of these 31 portfolios can be considered
more certain than others. The degree of certainty for each portfolio is directly related to the corresponding
round that it enters the green set as shown in Figure 5-6. The darker the portfolio’s background the more
certain one can be about its Pareto optimality. Figure 5-6 illustrates in a convenient way which portfolios are
more robust given the uncertainty in the model’s parameters. The decision maker can exploit this

information in his final selection.

Figure 5-6. Coloring code for 31 portfolios.

A challenging task is to incorporate the robustness information in the Pareto front. As it is well known, the
Pareto front of a problem with 2 or 3 objective functions is a relatively easy to draw graph of the Pareto set
in predefined criteria space. The robustness of each portfolio can be expressed with a bubble chart, with the

size of bubble being the portfolio’s robustness degree.
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The upper chart in Figure 5-7 is a conventional Pareto front with 31 Pareto optimal solutions (different
portfolios). The lower chart embodies also robustness information which is visualized with the size of the
bubble. The greater the Robustness Degree of a Pareto Optimal Portfolio (i.e., the earlier it enters the green
set), the greater the size of the bubble. This kind of information is essential for the decision maker to

recognize regions of the Pareto front with higher or lower robustness.

From this chart the decision maker can draw conclusions about criteria values of each solution (and therefore
assess the tradeoff) as well as about the robustness of solutions. In the specific case, it seems that the robust
Pareto optimal solutions are in the region of high EECR (horizontal axis). This also means that the values of
EECR have less uncertainty, and this is true, taking into consideration the detailed and precise way of their

calculations.

As a rule, promising solutions are on the knee of the Pareto curve where the slope changes sharply meaning
that with a little sacrifice in one objective function it is possible to achieve large improvement in the other. A
promising solution (portfolio) in our case is the one pointed with an arrow. This means that a small
compromise from the maximum EECR value leads to a great improvement in NPV. Besides, it is evident
from the size of the respective bubble, which specific solutions are among the most robust. Conclusively, the
robustness of Pareto optimal solutions which is visualized in Figure 5-8 can be regarded as an additional
characteristic that helps the decision maker to evaluate the attractiveness of the obtained Pareto optimal

portfolios.
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Figure 5-7. Visualizing the robustness with bubble charts.

The overall robustness of the final Pareto set can be measured using the Robustness Index. The Robustness
chart and the Robustness Index for the current case is depicted in Figure 5-8. Applying equation (2.18),
Robustness Index as the area underneath the Robustness Curve which is RI1=0.33.
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Figure 5-8. Robustness chart for the final Pareto set.

Regarding all 40 projects, it is possible to measure their presence in the Pareto front by counting how many
times each of them appears in 398 initial Pareto portfolios and how many in times in 31 final Pareto

portfolios as shown in Figure 5-9.
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Figure 5-9. Frequency of projects in the initial and final Pareto portfolios.

The initial Pareto portfolios correspond to maximum uncertainty. From Figure 5-9 it is possible to extract
information about the robustness of individual projects. The closer the two frequency rates are (in the initial
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and in the final Pareto portfolios) for one project, the more robust the conclusions are for the participation
frequency of the specific project. From Figure 5-9 one can observe that there are projects included in more
than 90% of Pareto portfolios (even when maximum uncertainty is considered, i.e., in the initial round) like
projects 7, 11, 13, 20, 21, 24, 35, 38, 39, 40) and other projects that never appear in Pareto portfolios (19, 23,
26, 29, 36, 37).

Moreover, based on the results, it can be noted that companies requesting for larger loans, while having a
low EECR index, tend to be rejected. On the other hand, companies asking for smaller loans and having a
high NPV index, tend to be approved.
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6. Concluding remarks

6.1. Conclusions about the method

ITA for project portfolio selection is an effective method that deals with uncertainty in a volatile decision
environment. The aim is to provide the DM with as much as possible information to support his/her final
choice, while the input information or future performance can be obtained with great difficulties. The
existence of multiple limitations denoting projects’ interactions and the underlying uncertainty expressed as
probability distributions imply the use of a systematic approach. For this reason a hybrid method combining
Multi-Criteria Analysis, Mathematical programming and Monte Carlo simulation was developed. Under
these circumstances, the existence of a unique optimal portfolio is almost impossible, so that the trichotomic
approach drives the DM to reach the portfolio with the greater acceptance. By doing this, the information
burden decreases and the focus of an expert is moved towards ambiguous grey projects which are not that

numerous. Due to its flexibility ITA can be easily adapted to various decision situations and DMs.

The term “trichotomy” refers to the separation of a set into three parts. Within the ITA procedure, projects
are assigned to one of three groups based on their performance and current level of uncertainty. The latter is
incorporated in various forms, depending on its nature. Stochastic parameters may be present either in the
objective function or in the constraints of the model. Actually, incomplete information, expressed via
probability distributions, may be present in all model’s parameters simultaneously. Fruitful information is
extracted not only about the projects that are eventually selected, but also about how sure an expert can be
with respect to the selected or discarded ones. In contrast to the expected performance values of projects
(naive approach), ITA moves smoothly and prevents the feeling of a black-box. Gradual filling of green and
red sets provides crucial information to the DM about the reliability of projects’ inclusion or exclusion in the
final portfolio according to the round that each project enters the respective set. Moreover, this level of

certainty can be easily measured in a shape of index after the completion of Monte Carlo runs.

As the curiosity grew bigger with every case study, it was possible to test and compare the performance of
several modifications of ITA. The first case study tested the influence of uncertainty in the future output of
project proposals. Due to the novelty of climate related activities it was totally impossible to draw detailed
forecasts. For initial approximations the information about similar installations that had been put in operation
relatively recently was used. The classic version of ITA with the modeling of uncertainty described by a

normal distribution led to a balanced portfolio. Especially striking was the fact of expensive projects
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exclusion which helped to build a selection with balanced distribution of projects between regions and

technologies. The objective not to put all eggs in one basket was successfully met.

A simplified version of ITA also produced good results for a relatively small problem. Most probably, two-
phase ITA should not be considered as a full scale tool since in its second part it uses the principle of
majority according to the performance in the initial round. In a certain way, it helps to speed up the process
of choice. It should be kept in mind that results may differ in the presence of uncertainties with particular
distributions.

Perhaps, the most useful version of ITA is for groups of experts with divergent points of view. Increased
transparency and gradual portfolio building are the main advantages of this version of ITA. Experts are
provided with initial preferences of others as well as with the stepwise convergence of these preferences
aimed at the building of a final selection.

It is extremely hard to avoid such highly subjective parameters as weights of importance, utilities etc. In this
case, the sampling of Monte Carlo iterations was like a scenario building for every decision maker.
According to the problem, several ways of search for a solution can be adopted. When a DM is aware that
another expert may not insist that hard on his initial preferences in light of obtained information about
projects in previous rounds, the others may follow the suit. Gradual building of the final portfolio also
reveals the reasons behind rejection of certain proposals thus reducing the chances of being accused as
manipulator for excluding some good projects. By the end of the process, the consensus index is calculated

expressing how easy or hard it was to reach consensus among experts.

Since ITA is an interactive decision support tool, the DM(s) can control and adjust the process accordingly
to newly obtained information. In the case that 2 or 3 similarly performing projects compete for the place in
final selection, additional information can be asked directly from the projects’ developers in order to perform
deeper pair wise comparison. In case that all of them look attractive, basic constraints, such as budget, may
be reconsidered too. It is not obligatory to increase the budget; it can be reduced too. All these details help to

build the confidence about decisions under consideration without additional lengthy robustness checks.

While it is common to use a single objective model and put in constraints other desired outcomes, it was
interesting to test the behavior of the ITA approach on a bi-objective problem. In this case, the feedback of
calculations is a Pareto front consisting of various portfolios. For easier elaboration of this front, the
robustness of each portfolio can be expressed with a bubble chart, whith the size of the bubble being the
portfolio’s robustness degree. As a rule, promising solutions are on the knee of the Pareto curve where the
slope changes sharply meaning that with a little sacrifice in one objective function it is possible to achieve

large improvement in the other. Moreover, robustness check for projects can be easily performed too.
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The whole selection process may be accelerated with the adoption of a threshold for every iteration. The

higher the threshold, the quicker the process of projects’ separation between three sets.

Lastly, more complex probability distributions (triangular, uniform, normal, special cases) for uncertain
parameters can be tested. The subject was barely touched by Group ITA, where each DM may have his own
view about the shape of partial value functions or about the allocation of projects to regions and
technologies. In addition, it is worth to test an interactive process of weights recalculation instead of their

automatic recalculation.

6.2. Conclusions about case studies

The need to make a choice between countless suggestions is an everyday task. That is why for testing the
ITA method it was decided to use real world applications. The data for case studies were taken from open
sources, which actually helped to shape the process of modeling. Observations led to consideration of
numerous criteria and plentiful constraints (budget, policy, allocation etc) that had to be satisfied. The
combination of MCDA with optimization tools, such as Integer Programming, provided the chance to solve

complex problems in limited time.

Nowadays, telecommunication technologies are an integral part of everyday life. Their appropriate work
becomes crucial in case of extreme events, some of which can be caused by climate change.
Telecommunications networks have been subject to continuing technical innovations and to constantly
evolving multifaceted modes of communication. Due to recent advancements in technologies and changes in
markets it became necessary to reconsider long-term business goals for the providers of these services. The
achievement of new and revised strategic objectives called for changes in their product portfolio, whereby
companies were facing with the problem of choosing which products would effectively contribute to the
achievement of their long-term goals. Hence, many scientists approached these problems with MCDA tools.
The resulting portfolio indicated exactly this direction — the projects from Developing group are the clear
winners. We tested ITA method against a case study from the literature and obtained results similar to the
initial paper. Actually, close performing proposals were identified and sometimes they were interchanging in
the final portfolio when more performance uncertainty was added. In a certain way, portfolio confirms the

conclusions of common sense that in a competitive environment it is necessary to continuously self-improve.

Energy and environmentally oriented activities attracted our attention as the issues to be addressed today in a

large scale. Environmental crisis requires new ways to respond and adapt to the challenges of today.
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Since fossil fuels are limited and harmful for the planet, more effort should be put in the deployment of
renewable energy installations around the world. One of these support efforts is the Clean Development
Mechanism (CDM), which permits to offset carbon emissions in the shape of environmentally friendly
activities, with energy related projects being the most widespread ones. Unfortunately, financial resources
are always limited, that is why there is a sharp need to choose effectively project proposals for CDM. In the
current case study the aim was to maximize carbon credits, even though their final amount was not a certain
fixed number. By the end of the selection process a final portfolio representing 17.4% of the investments in
comparison with initial 11.5 billion US$ of 300 projects was built. Its main advantage lies in the fact that
with modest financial support it represented 35.8% of the project universe’s total CERs (=28805 kCERS).
The final portfolio demonstrated how it is possible to make a balanced selection regarding financial as well
as technological and geographical constraints.

Another case study focused on similar projects within only one country, namely Greece. It was necessary to
make a portfolio with several different experts involved. Every decision maker expressed his/her preferences
by assigning his/her own weights of importance to the evaluation criteria. Hence, every decision maker has
his/fher own optimal portfolio of projects.The final selection slightly violated imposed constraints with
respect to the installed capacity and total budget. The portfolio was dominated by solar technologies
(photovoltaic) with Central Greece being the winning region. Results are totally reasonable for a place with
more than 250 days of sunshine. A great advantage of Group ITA is that it also provided a measure of
consensus for the final portfolio of projects (Consensus Index) as well as concordance indices for each
project that was either selected or rejected. It seems that experts were speaking the same language, because
Cl was 91%. Generally, the Index is rarely that high, especially in the presence of high uncertainty in the

financial criteria.

The last case study highlighted the problem of shared responsibility. Not only is the government responsible
for the environmental initiatives, but also private sector. The years of economic crisis put seriously under
question traditional development patterns. It became clear that in the fight for survival in the market,
enterprises have to integrate social and environmental concerns in their business operations and in their
interaction with stakeholders on a voluntary basis, within the framework of the Corporate Social
Responsibility (CSR) concept. In the case study equal emphasis was put both on economic and sustainability
components. Based on the results of the model, it can be noted that companies requesting for larger loans,
while having a low EECR index, tend to be rejected. On the other hand, companies asking for smaller loans

and having a high NPV index, tend to be approved.

It is noteworthy that in today’s organizations there is rarely a unique person that makes important decisions

alone. Multiple experts from various positions, with different backgrounds and usually with conflicting
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views participate in the decision process and are expected to reach consensus over the final portfolio. Wide
demand for decision support systems that deals with similar problems is nowadays undoubted. That is why
we have tested the performance of ITA in different selection problems, that are based on real data and

obtained balanced and reassuring results.

6.3. Directions for future research

The presented ITA method may be further improved along several directions.

Since the method is aimed at helping decision makers, it is feasible to develop a user friendly decision
support system (DSS) platform. For the time being ITA is implemented as separated modules (one for multi-
criteria analysis and another for Monte Carlo simulation along with mathematical programming). Our
calculations were performed in GAMS and the model could be stored in GAMS library, which leaves the
possibility to modify available models according to one’s needs and introduce their own data. Still, for most
of experts it would be more convenient to have a special platform with a more user-friendly interface that

does not require explicit knowledge in programming.

Other fields still remain for exploitation. Special focus may be paid to projects whose description contains
more qualitative than quantitative data. Because in such cases subjective judgments are involved,
interpretation of results may be more challenging in comparison with results obtained by technical means of
measurement. Such fields may touch the domains of education or healthcare where along with numerous

performance criteria human factor plays one of leading roles.

Another direction of work is aimed at handling massive input data with thousands of projects. Immence data
may be so large and complex that traditional methods of collection and analysis are no longer in position to
handle them effectively. The amount and variety of big data has increased exponentially over the past
decade. Tools to handle this issue would be especially useful for public agencies that assist applicants in
need. Such examples could involve house retrofitting programs, improvement of energy efficiency in

households or replacement of infrastructure in municipal districts.

In general, future research for ITA can be very fruitful as it can combine various OR techniques to address
specific decision making problems that deal with the project portfolio selection problem (or can be modeled
as such) as, for example, problems that involve group decision making with uncertain or vague data. The
great advantage of ITA is that it measures the degree of consensus or certainty of the final choice, which is

always meaningful in this kind of decision making situations.
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8. Annexes

8.1. Modeling language — GAMS, GAMS/CPLEX solver

The General Algebraic Modeling System (GAMS, see e.g. Brooke et al., 1988) is designed for high-level
modeling and solving linear, nonlinear, and mixed-integer optimization problems. The system is tailored for
complex, large-scale modeling applications and allows the user to build large maintainable models that can
be adapted to new situations. The system is available for use on various computer platforms. GAMS contains
an integrated development environment (IDE) and is connected to a group of third-party optimization solvers
among which are BARON, COIN-OR solvers, CONOPT, CPLEX, DICOPT, Gurobi, MOSEK, SNOPT,
SULUM, and XPRESS. GAMS allows users to implement a sort of hybrid algorithm combining different
solvers. Models are described in concise, human-readable algebraic statements. The GAMS software was
originally developed by a group of economists from the World Bank in order to facilitate the resolution of

large and complex non linear models on personal computer. Within the main advantages of GAMS are:
- Simplicity of implementation,

- Portability and transferability between users and systems and

- Easiness of technical update because of the constant inclusion of new algorithms.

As a matter of fact, GAMS allows solving simultaneous non linear equation system, with or without

optimization of some objective function (Dumont and Robichaud 2000).

Typically, a model programmed in GAMS can be decomposed in three modules corresponding respectively
to data entry, model specification and solve procedure (as it is schematically shown in Figure 8-1). It is
important to note that assignment, declaration and definition, must be completed for every element in use in
the model (i.e. sets, parameters, variables and equations). On the whole, it is necessary to proceed to the
declaration of any element before using it. Specifically, sets must be declared at the very beginning of the

program.

It is particularly convenient that GAMS allows for statement on several lines or several statements on the
same line. This property can help to reduce the length of the code or facilitate printing. In addition, capital

and small letters are not distinguished in GAMS.

The definition of sets is useful for multidimensional variables. It corresponds to the indexes in mathematical

representations of models. Next, the parameters should be defined. Parameters are the elements in the
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equations that will not change after a simulation, such as elasticity, tax rates, distribution and scale
coefficients. In addition to these parameters, benchmark variables are also defined for their value at the base
year will not change after simulation. A common way to define these variables is to add an "O" after the
variable name so it will not be confused with the ,true® variable. Parameters and benchmark variables
definition begins with the statement PARAMETER and end with a semicolon. Once again, it is useful to put
a description after the parameter designation, as it is done in the example. When a parameter is subject to an
index, like A;, the set over which it is defined is put between parentheses, A(j).

Stage 3: Resolution

» SOLVE statement

7 Results display

Stage 2: Model

» VARIABLES declaration
7 EQUATIONS declaration

7 Equations definition /—‘_

» MODEL definition

Stage 1: Data

» SETS declaration and definition
» PARAMETERS declaration and definition
» Data assignment

» Intermediate displays

o

Figure 8-1. Organization chart of a typical GAMS code for a model.

Once the sets, parameters and benchmark variables are defined, data must be entered. This can be done using

the TABLE command, which is useful for multidimensional variables.

All variables, endogenous or exogenous, appearing in the equations must first be declared. The statement
VARIABLES begins this procedure and ends with a semicolon. Following the variable name, for example
W, a brief description can be added.
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As with the previous components of the model, the equation must be declared and defined. This step begins
with the EQUATIONS statement followed by the symbols for which a description can be added. For
example, the equation named EQ1(j) is followed by a short description. When all equations are declared, a

semicolon indicates the end.
The list of main mathematical functions is provided in Table 8-1.

Table 8-1. Main mathematical functions in GAMS.

Multiplication * Equality in an operation = Logarithm | LOG(.)
Subtraction - Summation SUM(set domain, element) | Maximum | MAX(.)
Addition + Product Prod(set domain, element) | Minimum | MIN(.)
Division / Absolute Value ABS(.)
Exponent ** | Exponential EXP(.)

Further step is to choose a procedure from list of solvers which are provided in a shape of a table. The rows
are the list of solvers available in the GAMS system and the columns are the problem types that GAMS can
solve. The procedure to be used is determined by the type of model to solve. For example, linear programs
can be solved using the LP procedure, while non-linear programs can be solved using NLP. The table tells
what solvers are available for what problem types and what the current selection or default is. Each
procedure uses a different solver (MINOS, CONOPT, MILES, CPLEX, etc). These solvers use different
algorithms that can be efficient in resolving some systems but less in other cases. Specifically, CPLEX
optimizers are designed to solve large, difficult problems quickly and with minimal user intervention. Access
is provided (subject to proper licensing) to Cplex solution algorithms for linear, quadratically constrained
and mixed integer programming problems. While numerous solving options are available, GAMS/CPLEX
automatically calculates and sets most options at the best values for specific problems. For problems with
integer variables, CPLEX uses a branch and cut algorithm which solves a series of LP, subproblems.
Because a single mixed integer problem generates many subproblems, even small mixed integer problems

can be very compute intensive and require significant amounts of physical memory.

Since GAMS has been used already for decades for solving various problems it is reasonable to use this
great amount of experience and knowledge. The system has incorporated library of models that have been
selected not only because they collectively provide strong basis for new users to stand on, but also because
they represent interesting and sometimes classic problems. For example the tradeoff between consumption

and investment is richly illustrated in the Ramsey problem, which can be solved using nonlinear

107



programming methods. Examples of other problems included in the library are production and shipment by
firms, investment planning in time and space, cropping patterns in agriculture, operation of oil refineries and
petrochemical plants, macroeconomics stabilization, applied general equilibrium, international trade in
aluminum and in copper, water distribution networks, and relational databases. Among other reasons to
include a problem to the library is specification of initial solutions as staring points in the search for the
optimal solution of dynamic nonlinear optimization problems. Moreover, some models have been selected
for inclusion because they have been used in other modeling systems and permit the user to compare how
problems are set up and solved in different modeling systems.

Most of the models have been contributed by GAMS users. Within many problems in the library there are
several developed by Prof. G. Mavrotas (Mavrotas 2009, Mavrotas and Florios 2013). First one is a GAMS
implementation of the augmented e-constraint method for generating the efficient (Pareto optimal,
nondominated) solutions in multiobjective problems. The e-constraint method optimizes one of the objective
functions using the remaining objective functions as constraints, varying their right hand side. The method
uses lexicographic optimization in the construction of the payoff table (in order to secure the Pareto
optimality of the individual optima) and a slightly modified objective function in order to ensure the
production of Pareto optimal (and not weakly Pareto optimal) solutions. In addition, it performs early exit
from infeasible loops improving the performance of the algorithm in multi-objective problems with several

objective functions.

Further work resulted into the Augmented Epsilon Constraint Method version 2 (AUGMECON?2). The
method is applied to a Multi-Objective Integer Programming problem (specifically a Multi-Objective Multi-
Dimensional Knapsack Problem) with 50 binary variables X, 2 objective functions and 2 constraints. The
AUGMECON?2 can be used to generate the exact Pareto set (all the Pareto optimal solutions) if the step size
(i.e.the interval between the grid points of the objective functions that are used as constraints) is
appropriately chosen. For problems with integer objective function coefficients the step size should be at

most equal to unity.

The required models and the whole solution process for the case studies within the current thesis were
developed in the General Algebraic Modeling System using the MIP solver CPLEX 11.1 for optimizing the

Mixed Integer Programming models.
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8.2. GAMS codes

Model for two-phase approach (40 telecommunication projects (Niaei et al. 2011))

Phase 1

$TITLE project selection under uncertainty

$eolcom //

$ontext

Project selection problem

Data from Computers and Industrial Engineering 61 226-237 (2011)
$offtext

SETS

| projects /1*40/

APPLIED(I) /1,3,4,6,10,11,16,18,20,21,24,25,27,30,31,32,33,35,36/
BASIC(l) /2,7,9,12,13,14,17,22,23,26,28,37,38,39/

DEVELOP(I) /5,8,15,19,29,34,40/

J criteria /cost,meth,pers,sci,tech /

TRIPLET the parameters of the triangular distribution /MIN,MID,MAX/

alias (1,12);

parameter costmin(l) minimum cost for project(l)
/

1 341

2 31

3 316

39 32

40 145

/

parameter costmax(l) maximum cost for project(l)
/

1 447

2 42

3 493

39 49

40 158

/

parameter methmin(l) minimum score for methodology
/

1 4

2 5

3 3

39 3

40 0

parameter methmax (1) maximum score for methodology

/

1 8
2 8
3 5
39 5
40 3

parameter persmin(l) minimum score for personnel

1 3
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2 2

3 4
39 3
40 4
/

parameter persmax(l) maximum score for personnel

1 6

2 4

3 6

39 6

40 8

/

parameter scimin(l) minimum score for scientific contribution
/

1 2

2 3

3 4

39 1

40 2

/

parameter scimax(l) maximum score for scientific contribution
/

1 5

2 5

3 6

39 6

40 6

/

parameter techmin(l) minimum score for technical capacity
/

1 3

2 0

3 2

39 4

40 2

/

parameter techmax(l) maximum score for technical capacity
/

1 7

2 1

3 4

39 6

0 4

parameter sc(l,J) random generated scores for alternative I in criterion J
parameter rcost(l) random generated cost for project |

parameter rmeth(l) random generated cost for project |

parameter rpers(l) random generated cost for project |

parameter rsci(l) random generated cost for project |

parameter rtech(l) random generated cost for project |

parameter rwght(J) random generated weight for criterion J

parameter tot_sc(l) total score for project |

table wght(J, TRIPLET) the triplet for the triangular distribution for the weights
min mid max
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cost 0.167 0.2051 0.231
meth 0.12 0.1356 0.141
pers 0.119 0.1364 0.157
sci 0.114 0.1274 0.149
tech 0.363 0.3955 0.434

parameter trigmid(J) normalized MID score for triangular distribution;

trigmid(J) = (wght(J,'MID")-wght(J,'MIN"))/(wght(J,MAX'")-wght(J,'MIN"));

scalar

elapsed_time elapsed time for payoff and e-constraint

start start time

finish finish time

iter counter for iterations

sumwj sum of random generated weights

r auxiliary parameter

MCiter number of Monte Carlo iterations /1000/

maxbudg maximum budget (million toomans) /6000/

appl_ub applied projects upper bound percentage in total /0.7/
basic_ub basic research projects upper bound percentage in total /0.2/
dev_ub developing projects upper bound percentage in total /0.4/

rhsbudget RHS of the budget constraint

g2 counter for e-constraint

numg2  number of grid points /10/
meancost mean value for costs

stdevcost standard deviation for costs
meanmeth mean value methodology
stdevmeth standard deviation for methodology
meanpers mean value personnel

stdevpers standard deviation for personnel
meansci mean value science

stdevsci standard deviation for science
meantech mean value technology
stdevtech standard deviation for technology

BINARY VARIABLES
X(I) binary variable indicating if project | is selected or not

Positive variables
TOTBUDG total budget (million toomans)
TOTPRO)J total projects;

FREE VARIABLES
PORTF_SCORE total NPV in thousand USD;

EQUATIONS

EQ_TOTBUDG equation for total budget

EQ_TOTPROJ equation for total projects

EQ_APPL  constraint for applied projects

EQ_BASIC constraint for basic research projects

EQ_DEV  constraint for developing projects

EQ_OBJ  objective function --> maximization of portfolio's score

EQ_TOTBUDG.. sum(l, rcost(l)*X(1))=e= TOTBUDG;
EQ_TOTPROJ.. sum(l, X(1)) =e= TOTPROJ;

EQ_APPL.. sum(APPLIED(I),X(l)) =l= appl_ub*TOTPROJ ;
EQ_BASIC.. sum(BASIC(1),X(1)) =I= basic_ub*TOTPROJ ;
EQ_DEV.. sum(DEVELOP(I),X(1)) =I= dev_ub*TOTPROJ ;
EQ_OBJ.. sum(l, tot_sc(l)*X(I))=e= PORTF_SCORE;

rhsbudget = maxbudg;
TOTBUDG.up = rhsbudget;

MODEL CAIE_40_model /ALL/;
OPTION OPTCR =0;

111



option seed=1513,;

FILE cdmfile /c:\tp\caie_40_1b NORMAL.txt/ ;
cdmfile.pw=2000;
put cdmfile ;

start=jnow;
iter=0;

for(iter=1 to MCiter,
* random generation of criteria weights from triangular distribution
loop(J,

% ok ok ok %

r=uniform(0,1);
if (r<trigmid(J),
rwght(J)=wght(J,'MIN'") + sqrt(r*(wght(J, MAX")-wght(J,'MIN"))*(wght(J,'MID")-wght(J,'MIN")));
else
rwght(J)=wght(J,'MAX') - sqrt((1-r)*(wght(J, MAX")-wght(J,' MIN"))*(wght(J,' MAX")-wght(J,'MID")));

=

suijzsum(J,mght(J));

loop(J, rwght(J)=rwght(j)/sumwj)

* random generation of project scores from normal distribution
loop(l,

meancost=(costmax(l)-costmin(1))/2;
stdevcost=(costmax(l)-costmin(1))/6;
rcost(l)=normal(meancost,stdevcost);
meanmeth=(methmax(l)-methmin(l))/2;
stdevmeth=(methmax(l)-methmin(1))/6;
rmeth(l)=normal(meanmeth,stdevmeth);
meanpers=(persmax(l)-persmin(1))/2;
stdevpers=(persmax(l)-persmin(1))/6;
rpers(l)=normal(meanpers,stdevpers);
meansci=(scimax(l)-scimin(1))/2;
stdevsci=(scimax(l)-scimin(l))/6;
rsci(l)=normal(meansci,stdevsci);
meantech=(techmax(l)-techmin(1))/2;
stdevtech=(techmax(l)-techmin(1))/6;
rtech(l)=normal(meantech,stdevtech);

sc(l,'cost")=10*(1-(rcost(l)/smax(12,costmax(12))));
sc(l,'meth")=round(normal(methmin(1)-0.5,methmax(l1)+0.5));
sc(l,'pers')=round(normal(persmin(1)-0.5,persmax(1)+0.5));
sc(1,'sci")=round(normal(scimin(l)-0.5,scimax(1)+0.5));
sc(l,'tech")=round(normal(techmin(1)-0.5,techmax(1)+0.5));
tot_sc(l)=sum(J,rwght(J)*sc(1,J));

)

* random budget ariund maxbudg
rhsbudget=normal(maxbudg, maxbudg/20);
* random budget between max, 110%max

*

*

rhsbudget=uniform(maxbudg, 1.1*maxbudg);

TOTBUDG.up = rhsbudget;
SOLVE CAIE_40_model using MIP maximizing PORTF_SCORE;
if (CAIE_40_model.modelstat<>1,

put iter:6:0, ' INFEASIBLEY;

else

put iter:6:0;

put g2:4:0

)

put PORTF_SCORE.L:12:2
put TOTPROJ.L:12:0;

put TOTBUDG.L:12:2

put rhsbudget:12:2

loop(l, put X.L(1):3:0);
put/;

)

finish=jnow;
elapsed_time=(finish-start)*86400;
put cdmfile 'Elapsed time: ',elapsed_time:12:2, ' seconds'/ ;
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putclose cdmfile ;
*$offtext
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Phase 2 (normal distribution)

$TITLE project selection under uncertainty

$eolcom //

$ontext

Project selection problem

Data from Computers and Industrial Engineering 61 226-237 (2011)
$offtext

SETS

| projects /1*40/

APPLIED(I) /1,3,4,6,10,11,16,18,20,21,24,25,27,30,31,32,33,35,36/
BASIC(l) /2,7,9,12,13,14,17,22,23,26,28,37,38,39/

DEVELORP(I) /5,8,15,19,29,34,40/

J criteria /cost,meth,pers,sci,tech /

TRIPLET the parameters of the triangular distribution /MIN,MID,MAX/

alias (1,12);

parameter costmin(l) minimum cost for project(l)
/

1 341

2 31

3 316

39 32

40 145

/

parameter costmax(l) maximum cost for project(l)
/

1 447

2 42

3 493

39 49

40 158

/

parameter freq(l) frequency of participation in phase 1
/

1 1

2 0

3 0.74

39 0.68

40 1

/

parameter sc(l,J) random generated scores for alternative I in criterion J
parameter rcost(l) random generated cost for project |

*parameter rmeth(l) random generated cost for project |

*parameter rpers(l) random generated cost for project |

*parameter rsci(l) random generated cost for project |

*parameter rtech(l) random generated cost for project |

parameter rwght(J) random generated weight for criterion J

parameter tot_sc(l) total score for project |

table wght(J, TRIPLET) the triplet for the triangular distribution for the weights
min mid max

cost 0.167 0.2051 0.231

meth 0.12 0.1356 0.141

pers 0.119 0.1364 0.157

sci 0.114 0.1274 0.149

tech 0.363 0.3955 0.434

parameter trigmid(J) normalized MID score for triangular distribution;
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trigmid(J) = (wght(J,'MID")-wght(J,'MIN"))/(wght(J,'  MAX'")-wght(J,'MIN"));

scalar

elapsed_time elapsed time for payoff and e-constraint

start start time

finish finish time

iter counter for iterations

sumwj sum of random generated weights

r auxiliary parameter

MCiter number of Monte Carlo iterations /100/

maxbudg maximum budget (million toomans) /6000/

appl_ub applied projects upper bound percentage in total /0.7/
basic_ub basic research projects upper bound percentage in total /0.2/
dev_ub developing projects upper bound percentage in total /0.4/

rhsbudget RHS of the budget constraint

g2 counter for e-constraint

numg2  number of grid points /10/
meancost mean value for costs

stdevcost standard deviation for costs
meanmeth mean value methodology
stdevmeth standard deviation for methodology
meanpers mean value personnel

stdevpers standard deviation for personnel
meansci mean value science

stdevsci standard deviation for science
meantech mean value technology
stdevtech standard deviation for technology

BINARY VARIABLES
X(l) binary variable indicating if project | is selected or not

Positive variables
TOTBUDG total budget (million toomans)
TOTPRO)J total projects;

FREE VARIABLES
PORTF_SCORE total NPV in thousand USD;

EQUATIONS

EQ_TOTBUDG equation for total budget

EQ_TOTPROJ equation for total projects

EQ_APPL  constraint for applied projects

EQ_BASIC constraint for basic research projects

EQ_DEV  constraint for developing projects

EQ_OBJ  objective function --> maximization of portfolio's score

EQ_TOTBUDG.. sum(l, rcost(l)*X(1))=e= TOTBUDG;
EQ_TOTPROJ.. sum(l, X(1)) =e= TOTPROJ;

EQ_APPL.. sum(APPLIED(1),X(l)) =I= appl_ub*TOTPROJ ;
EQ_BASIC.. sum(BASIC(1),X(1)) =I= basic_ub*TOTPROJ ;
EQ_DEV.. sum(DEVELORP(I),X(1)) =I= dev_ub*TOTPROJ ;
EQ_OBJ.. sum(l, freq(l)*X(l))=e= PORTF_SCORE;

rhsbudget = maxbudg;
TOTBUDG.up = rhsbudget;

* red and green projects from phase 1
X.FX(2)=0;

X.FX('7)=0;

X.FX('9)=0;

X.FX('12')=0;

X.FX('14"=0;

X.FX('17')=0;

X.FX(23)=0;

X.FX('1)=1;

X.FX(5)=1;
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X.FX(8)=1;
X.FX(15)=1;
X.FX(19)=1;
X.FX(21)=1;
X.FX(27)=1;
X.FX(29)=1;
X.FX(30)=1;
X.FX(34)=1;
X.FX(38)=1;
X.FX(40)=1;

MODEL CAIE_40_model /ALL/;
OPTION OPTCR = 0;
option seed=1513;

FILE cdmfile /c:\\tp\NORMAL ph2 100GR.txt/ ;
cdmfile.pw=2000;
put cdmfile ;

start=jnow;
iter=0;

for(iter=1 to MCiter,
* random generation of criteria weights from triangular distribution
$ontext
loop(J,
r=uniform(0,1);
if (r<trigmid(J),
rwght(J)=wght(J,'MIN") + sqrt(r*(wght(J, MAX")-wght(J,'MIN"))*(wght(J,'MID")-wght(J,'MIN")));
else
rwght(J)=wght(J,MAX') - sqrt((1-r)*(wght(J, MAX")-wght(J,' MIN"))*(wght(J,' MAX")-wght(J,'MID")));

sumwj=sum(J,rwght(J));
loop(J, rwght(J)=rwght(j)/sumwj)
$offtext
* random generation of project scores from normal distribution
loop(l,
meancost=(costmax(l)+costmin(1))/2;
stdevcost=(costmax(l)-costmin(1))/6;
rcost(l)=normal(meancost,stdevcost);
sc(l,'cost')=10*(1-(rcost(I)/smax(12,costmax(12))));

$ontext
meanmeth=(methmax(l)+methmin(1))/2;
stdevmeth=(methmax(l)-methmin(1))/6;
sc(1,'meth")=round(normal(meanmeth,stdevmeth));

meanpers=(persmax(l)+persmin(l))/2;
stdevpers=(persmax(l)-persmin(1))/6;
sc(l,'pers)=round(normal(meanpers,stdevpers));

meansci=(scimax(l)+scimin(1))/2;
stdevsci=(scimax(l)-scimin(l))/6;
sc(1,'sci")=round(normal(meansci,stdevsci));

meantech=(techmax(l)+techmin(1))/2;
stdevtech=(techmax(l)-techmin(1))/6;
sc(1,'tech")=round(normal(meantech,stdevtech));

sc(l,'cost")=10*(1-(rcost(l)/smax(12,costmax(12))));
sc(l,'meth")=round(normal(methmin(1)-0.5,methmax(l1)+0.5));
sc(1,'pers)=round(normal(persmin(1)-0.5,persmax(1)+0.5));
sc(1,'sci")=round(normal(scimin(l)-0.5,scimax(1)+0.5));
sc(1,'tech")=round(normal(techmin(1)-0.5,techmax(1)+0.5));

tot_sc(l)=sum(J,rwght(J)*sc(l,J));

$offtext

)

* random budget ariund maxbudg

% F F 3k
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rhsbudget=normal(maxbudg, maxbudg/20);
* random budget between max, 110%max
* rhsbudget=uniform(maxbudg, 1.1*maxbudg);
TOTBUDG.up = rhsbudget;
SOLVE CAIE_40_model using MIP maximizing PORTF_SCORE;
if (CAIE_40_model.modelstat<>1,
put iter:6:0, ' INFEASIBLE'/;
else
put iter:6:0;
*  put g2:4:0
put PORTF_SCORE.L:12:2
put TOTPROJ.L:12:0;
put TOTBUDG.L:12:2
put rhsbudget:12:2
loop(l, put X.L(1):3:0);
put/;
)i
)

finish=jnow;

elapsed_time=(finish-start)*86400;

put cdmfile 'Elapsed time: ',elapsed_time:12:2, ' seconds'/ ;
putclose cdmfile ;

*$offtext
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Model for iterative approach (40 telecommunication projects (Niaei et al. 2011))

$TITLE project selection under uncertainty

$eolcom //

$ontext

Project selection problem

Data from Computers and Industrial Engineering 61 226-237 (2011)

05.01.2013 e-constraint with Monte Carlo
the only intervention needed is to take out of the monte carlo loop all the declarations including text files
$offtext

SETS

I projects /1*40/

SE(1) /1*2,4,19,22,24,27*28,33,36,38 /
NE(I) /3,10,16,18,21,25*26,31,35,37 /
CE(l) /5*7,9,11*12,14*15,23,29*30,34,40 /
GR(l) /8,13,17,20,32,39 /

EN(I) /1*4,13,17,24,26%27,33*34 /
IN(I) /5*9,29,32,38,40/

EE(I) /10*12,23,28,30,37 /

CG(l) /14*16,18*22,25,31,35*36,39 /
k objective functions /1*2/

Parameter dir(k) direction of the objective functions 1 for max and -1 for min
/11

21
/

parameter cost(l) cost for project(l)

1 5930
2 50830
3 5000
4 33860
5 191870
35 93050
36 311780
37 772970
38 117580
39 190870
40 262030

parameter avgreturn(l) average NPV of project |

/

1 2500

2 49800

3 8300

4 63600

5 244600
35 204300
36 352100
37 223000
38 228800
39 428500
40 516100

parameter return(l) random return ;
*return(l)=normal(avgreturn(l),(0.05*avgreturn(l)));

parameter avgcsr(l) average CSR index for project |
/

1 12.97

2 14.66
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3 9.76

4 6.23

5 6.99
35 22.01
36 4.04
37 19.39
38 17.81
39 12.86
40 5.85

’parameter csr(l) random csr ;
*csr(l)=normal(avgcsr(l),(0.05*avgcsr(1)));

scalar
maxbudg maximum budget (euros) /3000000/

BINARY VARIABLES
X(l) binary variable indicating if project | is selected or not

Positive variables

TOTBUDG total budget (million toomans)
TOTPROJ total projects

Z(K) onjective function values

EQUATIONS

EQ_TOTBUDG equation for total budget
EQ_TOTPROJ equation for total projects
EQ_SE  constraint for southern europe
EQ_NE constraint for northern europe
EQ_CE  constraint for central europe
EQ_GR  constraint for greece

EQ_EN constraint for energy sector
EQ_IN  constraint for industry sector
EQ_EE  constraint for electric equipment
EQ_CG constraint for consumer goods
EQ_NPV  objective function --> maximization of portfolio's NPV
EQ_CSR  objective function --> maximization of portfolio's CSR
EQ_SE2  constraint for southern europe
EQ_NE2  constraint for northern europe
EQ_CE2 constraint for central europe
EQ_GR2  constraint for greece

EQ_EN2  constraint for energy sector
EQ_IN2  constraint for industry sector
EQ_EE2  constraint for electric equipment
EQ_CG2 constraint for consumer goods

EQ_TOTBUDG.. sum(l, cost(l)*X(I))=e= TOTBUDG,;
EQ_TOTPROJ.. sum(l, X(I)) =e= TOTPROJ;

EQ_SE.. sum(SE(I),X(1)) == 0.5*TOTPROJ ; //7 11
EQ_NE.. sum(NE(1),X(I)) =I= 0.5*TOTPROJ; //6 10
EQ_CE.. sum(CE(l),X(l)) =I= 0.5*TOTPROJ; //9 13
EQ_GR.. sum(GR(l),X(l)) =I= 0.5*TOTPROJ ; //4 6
EQ_EN.. sum(EN(1),X(I)) =I= 0.5*TOTPROJ ; //7 11
EQ_IN.. sum(IN(I),X(1)) =I= 0.5*TOTPROJ ; //6 10
EQ_EE.. sum(EE(1),X(1)) =I= 0.5*TOTPROJ ; //4 7
EQ_CG.. sum(CG(l),X(l)) =I= 0.5*TOTPROJ; //9 13

EQ_SE2.. sum(SE(1),cost(l)*X(I)) =g= 0.1*TOTBUDG ;
EQ_NE2.. sum(NE(),cost()*X(I)) =g= 0.1*TOTBUDG ;
EQ_CE2.. sum(CE(l),cost(l)*X(l)) =g= 0.1*TOTBUDG ;
EQ_GR2.. sum(GR(l),cost(l)*X(1)) =g= 0.1*TOTBUDG ;
EQ_EN2.. sum(EN(I),cost(l)*X(I)) =g= 0.1*TOTBUDG ;
EQ_IN2.. sum(IN(l),cost(1)*X(1)) =g= 0.1*TOTBUDG ;
EQ_EE2.. sum(EE(I),cost(l)*X(I)) =g= 0.1*TOTBUDG ;
EQ_CG2.. sum(CG(l),cost(1)*X(1)) =g= 0.1*TOTBUDG ;
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EQ_CSR.. sum(l, csr(I)*X(I))=e= Z('1");
EQ_NPV.. sum(l, return(1)*X(l))=e= Z('2";

TOTBUDG.up = maxbudg;
TOTPROJ.lo = 5;

MODEL CSR_40_model /ALL/ ;

*

Set k1(k) the first element of k, km1(k) all but the first elements of k;
k1(k)$(ord(k)=1) = yes; km1(k)=yes; km1(k1) = no;
Set kk(k) active objective function in constraint allobj

Parameter
rhs(k)  right hand side of the constrained obj functions in eps-constraint
maxobj(k) maximum value from the payoff table
minobj(k) minimum value from the payoff table
intervals(k) number of intervals that we divide the k-1 objective functions
bestobj(k) the best objective function value (maxobj for dir=1 minobj for dir=-1)
worstobj(k) the worst objective function value (minobj for dir=1 maxobj for dir=-1)
step(k)  the step obtained from range divided by intervals
jump(k)  the jump for augmecon2

Scalar

iter total number of iterations

infeas total number of infeasibilities

elapsed_time elapsed time for payoff and e-constraint
start start time

finish finish time

summax auxiliary parameter

firstOffMax, lastZero, mciter some counters
mcitermax monte carlo iterations /10/

Variables
a_objval auxiliary variable for the objective function
obj auxiliary variable during the construction of the payoff table
Positive Variables
sl(k)  slack or surplus variables for the eps-constraints
Equations
con_obj(k) constrained objective functions
augm_obj augmented objective function to avoid weakly efficient solutions
allobj  all the objective functions in one expression;

con_obj(km1).. z(kml) - dir(kml)*sl(kml) =e= rhs(km1l);

* We optimize the first objective function and put the others as constraints
* the second term is for avoiding weakly efficient points
*augm_obj..
* sum(kl,dir(k1)*z(k1))+1e-3*sum(km1,sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval;
augm_obj..
sum(k$(ord(k)=1),dir(k)*z(k)) + 1.0e-3*sum(k$(ord(k)>1),power(10,-(ord(k)-1))*sl(k)/(maxobj(k)-minobj(k))) =e= a_objval,

allobj.. sum(kk, dir(kk)*z(kk)) =e= obj;

Model mod_payoff /CSR_40_model, allobj / ;
Model mod_epsmethod / CSR_40_model, con_obj, augm_obj / ;

Parameter
payoff(k,k) payoff tables entries;
Alias(k,kp);
option optcr=0.000;
loop(k, intervals(k)=20);
option limrow=0, limcol=0, solprint=off ;

*option limrow=3, limcol=3 ;
option seed=1515;
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File fx / c:\gams\CSR_40_20bj_MC_exact.txt /;

start=jnow;
for (mciter=1 to mcitermax,

* random generation of return and profit from normal distributions
return(l)=normal(avgreturn(l),(0.05*avgreturn(l)));
return(1)=1000*round(return(1)/1000);
csr(l)=normal(avgcsr(1),(0.05*avgcsr(l)));

* Generate payoff table applying lexicographic optimization
loop(kp,
kk(kp)=yes;
repeat
solve mod_payoff using mip maximizing obj;
payoff(kp,kk) = z.I(kk);
z.fx(kk) = z.I(kk); // freeze the value of the last objective optimized
kk(k++1) = kk(k); // cycle through the objective functions
until kk(kp); kk(kp) = no;
* release the fixed values of the objective functions for the new iteration
z.up(k) = inf; z.lo(k) =-inf;

h,c (mod_payoff.modelstat<>1 and mod_payoff.modelstat<>8, abort 'no optimal solution for mod_payoff');

loop (kp,
loop(k, put fx payoff(kp,k):12:2);
put/;
)
*put fx /;

*display payoff;
minobj(K)=smin(kp,payoff(kp,k));
maxobj(k)=smax(kp,payoff(kp,k));

*

*new 17.03.2013

*

*loop(k, intervals(k)=(maxobj(k)-minobj(k))/1000);
loop(k, intervals(k)=20);

loop(k,
if (dir(k)=1,
bestobj(k)=maxobj(K);
worstobj(k)=minobj(k);
else
bestobj(k)=minobj(k);
worstobj(k)=maxobj (k)

step’(k)=(maxobj(k)-minobj(k))/intervals(k)

rhs(k)=worstobj(k);
iter=0;

infeas=0;
*start=jnow;

repeat

solve mod_epsmethod maximizing a_objval using mip;

iter=iter+1,;

if (mod_epsmethod.modelstat<>1 and mod_payoff.modelstat<>8, // not optimal is in this case infeasible
infeas=infeas+1;
put fx iter:5:0, " infeasible'/;
lastZero = 0;
loop(k$(ord(k)>1),

if(abs(rhs(k)-worstobj(k))>0.001 and lastzero=0, lastzero=ord(k))

loop(k$(ord(k)>1 and ord(k)<=lastzero),rhs(k)=bestobj(k));
else

put fx mciter:5:0; // for monte carlo counter

put fx iter:5:0;
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loop(k, put fx z.1(k):12:2);
put TOTPROJ.L:10:0;
put TOTBUDG.L:12:0;
loop(l, put fx X.L(1):4:0);

* the jump is for AUGMECON2
jump(K)=1;

* The jump is calculated for the innermost objective function (ord(k)=2)
jump(k)$(ord(k)=2) = 1+max(0,floor(sl.L(k)/step(k)));
put rhs('2'):10:0,jump('2"):10:0,step('2"):10:0;
loop(k$(jump(k)>1),put * jump', jump(k):4:0);

* put/;

* Proceed forward in the grid
firstOffMax = 0;
loop(k$(ord(k)>1),
if(abs(rhs(k)-bestobj(k))>0.001 and firstOffMax=0,
if (dir(k)=1, rhs(k)=min((rhs(k)+jump(k)*step(k)),bestobj(k))
else rhs(k)=max((rhs(k)-jump(k)*step(k)),bestobj(k))

)
firstOffMax=ord(k)
)
put firstOffmax:5:0 /
loop(k$(ord(k)>1),
if(ord(k)< firstOffMax, rhs(k)=worstobj(k));

sun’1max=0;
loop(k$(ord(k)>1),
if(abs(rhs(k)-bestobj(k))<=0.001, summax=summax+1);

*until iter >= 100;
until (summax=card(k)-1 and firstOffMax=0) //or iter=100;

); [/ for loop

finish=jnow;
elapsed_time=(finish-start)*86400;

put 'Elapsed time: ‘,elapsed_time:10:2, ' seconds'/ ;
putclose fx; // close the point file

122



Model for 300 CDM projects (5 iterations and average values, 1000 runs)

$TITLE project selection under uncertainty
$eolcom //

$ontext

Project selection problem

Data from CDM pipeline

$offtext

SETS
I projects /1*300/

SWIND(I) /1*43/

LWIND(I) /44*110/

SHYDR(I) /111*155/

LHYDR(I) /156*204/

BIOMS(I) /205*235/

EEPGN(I) /236*255/

LANDF(I) /256*273/

CHAAV(I) /274*300/

GOLDST(I)
/23,30,36,51,52,57,58,59,60,62,68,70,72,73,74,76,82,83,87,88,89,90,91,92,93,95,96,97,98,99,100,101,104,106,107,110,154,155,188,204,219,227 22
8,229,231,232,233,234,250,272,273,285,286,288,289,290,291,294,296,297,298,299,300/

CHINA(I)
/4,8,24,31,37,46,47,49,50,51,52,54,57,58,59,60,62,63,64,65,66,68,70,71,72,73,74,75,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,1
00,101,103,104,105,106,107,108,109,110,117,119,121,122,123,129,131,132,134,135,136,137,139,140,141,143,145,147148,151,152,160,163,166,16
7,168,169,171,172,174,178,179,181,182,183,185,186,188,190,191,193,194,196,197,199,201,202,203,221,232,240,242,243,247,249,250,251,253,254
255,257,262,267,269,272,273,281,291,294,300/

INDIA(I)
/1,2,3,5,6,9,10,11,12,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,32,33,34,35,36,38,39,40,41,42,43,44,61,85,102,111,112,114,115,120,125,126,
133,150,153,162,164,173,176,184,205,206,207,211,212,213,219,220,224,227,228,229,233,234,237,238,239,244,246,252,268,274,275/

BRASIL(l) /53,113,116,130,142,170,175,180,189,236,256,263/

SKOREA(l) /7,86,118,146,198/

ECUAD(I) /13,156,161/

PHILL(I) /45,223,241,295/

MEXICO(l) /48,55,67,69,159,261,265,266,284/

EGYPT(I) /56,245/

CHILE(I) /76,127,144,157,177,192,214/

VIETN(I) /84,149,155,195,200,204/

PERU(I) /124,128,138,158,165,187/

HOND(l) /154,292/

MALAY(l) /210,215,218,230,258,276,277,282,293/

INDONES(I) /216,217,260,286,288,289/

SAFRIC(l) /222,259,264,280/

THAI(I) /225,226,248,270,278,279,283,285,287,290,296,297,298,299/

ARGEN(l) /235,271/

T type of project - technology /sw, Iw, sh, Ih, bi, eep, Idf, mav/

alias (1,12);

parameter budg(l) budget for project(l) in million euros
/

g wWN -
~
~

295 10.1

297 1.6
298 3.9
299 2.6
300 4.9
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parameter expcer(l) annual expected cers for project(l)

R WN P~
~
o

295 34
296 52
297 10
298 33
299 18
300 61
/

parameter avcer(l) average issuance success fot technology T

0.85
0.85
0.85
0.85
0.85

abhwNE

295 0.61
296 0.61
297 0.61
298 0.61
299 0.61
300 0.61
/

parameter sdcer(l) standard deviation of issuance success fot technology T

GO wWNE ™
o
N

295 0.375

296 0.375

297 0.375

298 0.375

299 0.375

300 0.375

/

parameter rcer(l) random cers for project(l)

scalar

elapsed_time elapsed time for payoff and e-constraint
start start time

finish finish time

iter counter for iterations

r auxiliary parameter

MCiter number of Monte Carlo iterations /1000/
maxbudg maximum budget (million euros) /2000/

BINARY VARIABLES
X(l) binary variable indicating if project I is selected or not

Positive variables
TOTBUDG total budget (million euros)
TOTPROJ total projects;

FREE VARIABLES
PORTF_CER total CER from portfolio;
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EQUATIONS

EQ_TOTBUDG equation for total budget
EQ_TOTPROJ equation for total projects

EQ_GS constraint for GoldenStandard condition
EQ_GEO1 constraint for geographical condition 1
EQ_GEO2  constraint for geographical condition 2
EQ_GEO3 constraint for geographical condition 3
EQ_TECH1 constraint for technology condition 1
EQ_TECH2 constraint for technology condition 2
EQ_TECH3 constraint for technology condition 3
EQ_TECH4 constraint for technology condition 3
EQ_TECHS5 constraint for technology condition 3
EQ_TECHS6 constraint for technology condition 3

EQ_OBJ  objective function --> maximization of portfolio's CERs

EQ_TOTBUDG.. sum(l, budg(ly*X(1))=e= TOTBUDG;
EQ_TOTPROL.. sum(l, X(1)) =e= TOTPROJ;
EQ GS..  sum(GOLDST(l),X(I)) =g= 0.3*TOTPROJ ;

EQ _GEOL.. sum(CHINA(I),budg(l)*X(1)) =I= 0.4*TOTBUDG;

EQ _GEO2.. sum(INDIA(I),budg(l)*X(1)) =I= 0.3*TOTBUDG;

EQ_GEO3.. sum(BRASIL(I),X(1))*+sum(ECUAD(I),X(1))+sum(MEXICO(I),X(I))+sum(CHILE(I),X(l))
+sum(PERU(I),X(1))+sum(HOND(1), X(1))+sum(ARGEN(I), X(1))=g= 0.3*TOTPROJ;

EQ_TECH1.. sum(SWIND(I),budg(l)*X(1))+ sum(LWIND(I),budg(l)*X(1)) =g= 0.4*TOTBUDG;
EQ_TECH2.. sum(SHYDR(I),budg(l)*X(1))+ sum(LHYDR(I),budg(l)*X(I)) =g= 0.3*TOTBUDG;
EQ_TECH3.. sum(BIOMS(I),budg(1)*X(1)) =I= 0.1*TOTBUDG;
EQ_TECH4.. sum(EEPGN(I),budg(l)*X(1)) == 0.1*TOTBUDG;
EQ_TECHS.. sum(LANDF(I),budg(l)*X(1)) =I= 0.1*TOTBUDG;
EQ_TECHS.. sum(CH4AV(I),budg(l)*X(1)) =I= 0.1*TOTBUDG;

EQ_OBJ.. sum(l, rcer(l)*X(l))=e= PORTF_CER,;
TOTBUDG.up = maxbudg;

MODEL CAIE_40_model /ALL/;
OPTION OPTCR =0;
option seed=1513;

FILE cdmfile /c:\tp\pdd_results_1000.txt/ ;
cdmfile.pw=2000;
put cdmfile ;

start=jnow;

for(iter=1 to MCiter,
* random generation of project scores from normal distribution
loop(l, rcer(l)=expcer(l)*normal(avcer(l),sdcer(l)));
SOLVE CAIE_40_model using MIP maximizing PORTF_CER,;
if (CAIE_40_model.modelstat<>1,
put iter:6:0, ' INFEASIBLE'/;
else
put iter:6:0;
*  putg2:4:0
put PORTF_CER.L:12:2
put TOTPROJ.L:12:0;
put TOTBUDG.L:12:2
loop(l, put X.L(1):3:0);
put/;
)
)

finish=jnow;

elapsed_time=(finish-start)*86400;

put cdmfile 'Elapsed time: ',elapsed_time:12:2, ' seconds'/ ;
putclose cdmfile ;

*$offtext
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Model for Bi-objective problem with 300 CDM projects (6 iterations and average values)

$TITLE project selection under uncertainty
$eolcom //

$ontext

Project selection problem

Data from CDM pipeline

$offtext

SETS
I projects /1*300/
K criteria /1*2/

SWIND(I) /1*43/

LWIND(I) /44*110/

SHYDR(I) /111*155/

LHYDR() /156%204/

BIOMS(I) /205*235/

EEPGN(I) /236*255/

LANDF(I) /256*273/

CHAAV(I) /274*300/

GOLDST(I)
123,30,36,51,52,57,58,59,60,62,68,70,72,73,74,76,82,83,87,88,89,90,91,92,93,95,96,97,98,99,100,101,104,106,107,110,154,155,188,204,219,227,22
8,229,231,232,233,234,250,272,273,285,286,288,289,290,291,294,296,297,298,299,300/

CHINA(I)

/4,8,24,31,37,46,47,49,50,51,52 54,57,58,59,60,62,63,64,65,66,68,70,71,72,73,74,75,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,1
00,101,103,104,105,106,107,108,109,110,117,119,121,122,123,129,131,132,134,135,136,137,139,140,141,143,145,147148,151,152,160,163,166,16
7,168,169,171,172,174,178,179,181,182,183,185,186,188,190,191,193,194,196,197,199,201,202,203 221,232,240,242, 243,247 249 250,251,253,254
255,257,262,267,269,272,273,281,291,294,300/

INDIA(I)
/1,2,3,5,6,9,10,11,12,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,32,33,34,35,36,38,39,40,41,42,43,44,61,85,102,111,112,114,115,120,125,126,
133,150,153,162,164,173,176,184,205,206,207,211,212,213,219,220,224,227,228,229,233,234,237,238,239,244,246,252,268,274,275/

BRASIL(l) /53,113,116,130,142,170,175,180,189,236,256,263/

SKOREA(l) /7,86,118,146,198/

ECUAD(I) /13,156,161/

PHILL(I) /45,223,241,295/

MEXICO(l) /48,55,67,69,159,261,265,266,284/

EGYPT(I) /56,245/

CHILE(I) /76,127,144,157,177,192,214/

VIETN(I) /84,149,155,195,200,204/

PERU(I) /124,128,138,158,165,187/

HOND(l) /154,292/

MALAY(l) /210,215,218,230,258,276,277,282,293/

INDONES(I) /216,217,260,286,288,289/

SAFRIC(l) /222,259,264,280/

THAI(I) /225,226,248,270,278,279,283,285,287,290,296,297,298,299/

ARGEN(l) /235.271/

T type of project - technology /sw, Iw, sh, Ih, bi, eep, Idf, mav/

alias (1,12);

parameter budg(l) budget for project(l) in million euros

/

1 8.4

2 35

3 4.4

4 14.0

5 7.7
295 10.1
296 5.1
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297 1.6

298 3.9
299 2.6
300 49
/

parameter expcer(l) annual expected cers for project(l)
/

1 11

2 6.9

3 7.6

4 20

5 15
295 34
296 52
297 10
298 33
299 18
300 61
/

scalar

elapsed_time elapsed time for payoff and e-constraint
start start time

finish finish time

iter counter for iterations

minbudg minimum budget (million euros) /1800/

BINARY VARIABLES
X(I) binary variable indicating if project | is selected or not

Positive variables

TOTBUDG total budget (million euros)
OVBUDG budget overflow

TOTPRO!J total projects

PORTF_CER total CER from portfolio;

FREE VARIABLES
Z(K) obgective function variables

EQUATIONS

EQ_TOTBUDG equation for total budget
EQ_OVBUDG equation for budget violation
EQ_TOTPROJ equation for total projects

EQ_GS constraint for GoldenStandard condition
EQ_GEO1 constraint for geographical condition 1
EQ_GEO2 constraint for geographical condition 2
EQ_GEO3 constraint for geographical condition 3
EQ_TECH1 constraint for technology condition 1
EQ_TECH2 constraint for technology condition 2
EQ_TECH3 constraint for technology condition 3
EQ_TECH4 constraint for technology condition 3
EQ_TECHS5 constraint for technology condition 3
EQ_TECH6 constraint for technology condition 3

EQ_TOTCER portfolio's CERs
EQ_OBJ1 first objective function maximization of portfolio's cers
EQ_OBJ2  second objective function minimization of budget violation

EQ_TOTBUDG.. sum(l, budg(l)*X(I))=e= TOTBUDG;
EQ_OVBUDG.. TOTBUDG=e= minbudg+OVBUDG:;

EQ_TOTPROL.. sum(l, X(1)) =e= TOTPROJ;
EQ_GS.  sum(GOLDST(I),X(l)) =g= 0.3*TOTPROJ ;
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EQ_GEOL.. sum(CHINA(I),budg(l)*X(1)) =I= 0.4*TOTBUDG;

EQ_GEO2.. sum(INDIA(I),budg(l)*X(l)) =I= 0.3*TOTBUDG;

EQ_GEO3.. sum(BRASIL(I),X(I))+sum(ECUAD(I),X(I))+sum(MEXICO(I),X(I))+sum(CHILE(1),X(I))
+sum(PERU(I), X(1))+sum(HOND(1), X(1))+sum(ARGEN(1), X(I))=g= 0.3* TOTPROJ;

EQ_TECHL.. sum(SWIND(I),budg(l)*X(1))+ sum(LWIND(I),budg(l)*X(1)) =g= 0.4*TOTBUDG;
EQ_TECH2.. sum(SHYDR(I),budg(l)*X(1))+ sum(LHYDR(I),budg(l)*X(I)) =g= 0.3* TOTBUDG;
EQ_TECHS3.. sum(BIOMS(I),budg(l)*X(l)) =I= 0.1*TOTBUDG;
EQ_TECHA4.. sum(EEPGN(I),budg(l)*X(l)) =I= 0.1*TOTBUDG;
EQ_TECHS.. sum(LANDF(I),budg(l)*X(l)) =I= 0.1*TOTBUDG;
EQ_TECHS6.. sum(CH4AV(I),budg(l)*X(l)) =I= 0.1*TOTBUDG;

EQ_TOTCER.. sum(l, expcer(l)*X(I))=e= PORTF_CER;

EQ_OBJL.. Z(‘'1')=e=PORTF_CER;
EQ_OBJ2.. Z(2')=e=OVBUDG;

OVBUDG.up = 400;
OVBUDG.lo = 0;

model pps300_cdm /all/;

*,

$STitle eps-constraint method

Set k1(k) the first element of k, km1(k) all but the first elements of k;
k1(k)$(ord(k)=1) = yes; km1(k)=yes; km1(k1) = no;
Set kk(k) active objective function in constraint allobj

Parameter
rhs(k)  right hand side of the constrained obj functions in eps-constraint
maxobj(k) maximum value from the payoff table
minobj(k) minimum value from the payoff table

Parameter dir(k) direction of the objective functions
/

11

-1

~ N

Scalar

iter total number of iterations

infeas total number of infeasibilities

elapsed_time elapsed time for payoff and e-sonstraint
start start time

finish finish time

Variables
a_objval auxiliary variable for the objective function
obj auxiliary variable during the construction of the payoff table
Positive Variables
sl(k)  slack or surplus variables for the eps-constraints
Equations
con_obj(k) constrained objective functions
augm_obj augmented objective function to avoid weakly efficient solutions
allobj  all the objective functions in one expression;

con_obj(km1).. z(kml) - dir(km1)*sl(km1l) =e= rhs(km1l);
* We optimize the first objective function and put the others as constraints
* the second term is for avoiding weakly efficient points
augm_obj..
sum(k1,dir(k1)*z(k1))+1e-3*sum(km1,sl(km1)/(maxobj(km1)-minobj(km1)+0.001)) =e= a_objval;
allobj.. sum(kk, dir(kk)*z(kk)) =e= obj;

Model mod_payoff /pps300_cdm, allobj /;
Model mod_epsmethod / pps300_cdm, con_obj, augm_obj / ;
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Parameter
payoff(k,k) payoff tables entries;
Alias(k,kp);

File fx / c:\gams\pdd300_out.txt /;
fX.pw = 2000;

option optcr=0.000;
start=jnow;

* Generate payoff table applying lexicographic optimization
loop(kp,
kk(kp)=yes;
repeat
solve mod_payoff using mip maximizing obj;
payoff(kp,kk) = z.I(kk);
z.fx(kk) = z.I(kk); // freeze the value of the last objective optimized
kk(k++1) = kk(k); // cycle through the objective functions
until kk(kp); kk(kp) = no;
* release the fixed values of the objective functions for the new iteration
z.up(k) = inf; z.lo(k) =-inf;

h’c (mod_payoff.modelstat<>1 and mod_payoff.modelstat<>8, abort 'no optimal solution for mod_payoff');

PUT fx ' PAYOFF TABLE'/ ;
loop (kp,
loop(k, put payoff(kp,k):12:2);
put/;
)
put fx /;

*display payoff;
minobj(K)=smin(kp,payoff(kp,k));
maxobj(k)=smax(kp,payoff(kp,k));

*$set fname h.%scrext.dat%

$if not set gridpoints $set gridpoints 20

Set g grid points /g0*g%gridpoints%/
grid(k,g) grid

Parameter
gridrhs(k,g) rhs of eps-constraint at grid point
maxg(k) maximum point in grid for objective
posg(k) grid position of objective
firstOffMax, lastZero some counters
first counter for printing output
numk(k) ordinal value of k starting with 1
numg(g) ordinal value of g starting with 0
step(k) step of grid points in objective functions
jump(k) jumps in the grid points' traversing

lastZero=1; loop(km1, numk(km1)=lastZero; lastZero=lastZero+1); numg(g) = ord(g)-1;

grid(km1,g) = yes; // Here we could define different grid intervals for different objectives

maxg(km1) = smax(grid(km1,g), numg(g));

step(km1)=(maxobj(km1)- minobj(km1))/maxg(km1);

gridrhs(grid(km1,g))$(dir(km1)=-1) = maxobj(km1) - numg(g)/maxg(km1)*(maxobj(km1)- minobj(km1));
gridrhs(grid(km1,g))$(dir(km1)=1) = minobj(km1) + numg(g)/maxg(km1)*(maxobj(km1)- minobj(km1));
*display gridrhs;

PUT fx ' Grid points'/ ;

loop (g,
loop(km1, put gridrhs(km1,g):12:2);
put/;

)
put fx /;
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put fx 'Pareto front with efficient solutions'/;

* Walk the grid points and take shortcuts if the model becomes infeasible
posg(km1l) = 0;

iter=0;

infeas=0;

repeat
rhs(km1) = sum(grid(km1,9)$(numg(g)=posg(km1)), gridrhs(km1,9));
solve mod_epsmethod maximizing a_objval using mip;
iter=iter+1;
if (mod_epsmethod.modelstat<>1 and mod_epsmethod.modelstat<>8, // not optimal is in this case infeasible
infeas=infeas+1;
put fx iter:5:0, " infeasible'/;
lastZero = 0; loop(km1$(posg(km1)>0 and lastZero=0), lastZero=numk(km1));
posg(km1)$(numk(kml)<=lastZero) = maxg(km1l); // skip all solves for more demanding values of rhs(km1)
else
put fx iter:5:0," ;
loop(k, put fx z.1(k):12:2);
put TOTPROJ.L:12:0;
put TOTBUDG.L:12:2
loop(l, put X.L(1):3:0);
put /;

jump(km1)=1;
* find last objective function in the sequence with slack less than step
lastZero = 0; loop(km1$(floor(sl.L(km1)/step(km1))=0 and lastZero=0), lastZero=numk(km1));
jump(km1)$(numk(km1)=1)=1+floor(sl.L(km1)/step(km1));
loop(km1$(jump(km1)>1),put ' jump'/);

* Proceed forward in the grid
firstOffMax = 0;
loop(km1$(posg(kml)<maxg(kml) and firstOffMax=0), posg(km1)=posg(km1)+jump(km1); firstOffMax=numk(km1));
posg(km1)$(numk(kml)<firstOffMax) = 0;

until sum(km1$(posg(km1)=maxg(km1)),1)=card(km1) and firstOffMax=0;

finish=jnow;

elapsed_time=(finish-start)*86400;

put fx /;

put fx 'Infeasibilities = ', infeas:5:0 /;

put fx 'Elapsed time: ',elapsed_time:7:2, ' seconds'/ ;

putclose fx; // close the point file
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Model for group of 12 members working on 133 projects (6 iterations and average values)

*TITLE eps-Constraint Method for Multiobjective Optimization (EPSCM,SEQ=319)
$ontext

The eps-Constraint Method

$offtext

$inlinecom [ ]

$eolcom //

$STitle Example model definitions

sets
p project /1*133/
geo districts /1*13/
$ontext
1 Eastern Macedonia Thrace
2 Attica
3 Northern Aegean
4 Western Greece
5 Western Macedonia
6
7
8
9

Epirus

Thessaly

Eonian

Central Macedonia
10 Crete
11 Southern Aegean
12 Peloponnese
13 Sterea Ellada
Sofftext

tech type of technology / WIND, SH, PV/
dm decision makers /1*12/

*green green projects /3,6/;
*red red projects /5/;

pgeo(geo,p) mapping of projects to districts
/

1.(10,22,48,90,108)

2.(60)

3.(86,87,97,98,118,120)

4.(101)

5.(4,7,41,88,89,129,130,131,132)
6.(57,68,75,96,100,104,106,113,119,123,133)
7.(37,58,64,65,66,72,77,81,95,109,111,112,115,122,124,125,126)
8.(39)

9.(15,43,50,56,62,67,73,79,92,105,110,114,116,117)
10.(99,102,127,128)

11.(47)

12.(11,16,19,26,27,29,42,44,61,84,85,107)
13.(1,2,3,5,6,8,9,12,13,14,17,18,20,21,23,24,25,28,30,31,32,33,34,35,36,38,40,45 46,49 51,52,53 54,55 59,63,69,70,71,74,76,78,80,82,83,91,93,94,1
03,121)

/

ptech(tech,p) mapping of projects to technologies
/

WIND.(1*53)
SH.(54*83)
PV.(84*133)
/

alias(dm, ddm);

table mecs(p,dm) multicriteria score for project p for decision maker dm
1 2 3 4 5 6 7 8 9 10 11 12

0.6256 0.5353 0.3421 0.7158 0.6146 0.4868 0.6517 0.6473 0.5571 0.6047 0.5066 0.5456
0.5840 0.4699 0.2861 0.6477 0.5800 0.4352 0.6024 0.5917 0.5003 0.5391 0.4469 0.4912
0.6320 0.4401 0.2936 0.5746 0.6345 0.4543 0.6418 0.5844 0.4780 0.4786 0.4399 0.4642
0.6140 0.6427 0.5746 0.7176 0.6654 0.6391 0.6171 0.6822 0.6387 0.6921 0.6518 0.6503
0.6352 0.6332 0.4914 0.7658 0.6870 0.6183 0.6547 0.7165 0.6268 0.7003 0.6384 0.6307
0.5492 0.4992 0.4861 0.4447 0.4925 0.5014 0.5905 0.5013 0.4635 0.4314 0.4998 0.4276
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0.5972

0.6198

0.5850
0.5826
0.5505
0.5884
0.5959
0.4839
0.3764
0.5336
0.5698
0.5009
0.5191
0.5546
0.4681
0.5312
0.5662
0.4783
0.4461
0.5128
0.5129
0.4378
0.4539
0.5113
0.5478
0.4238
0.5698
0.5545
0.4219
0.4462
0.5199
0.4839
0.4928
0.5374
0.3034
0.4937
0.3773
0.4719
0.3668
0.4783
0.5239
0.5266
0.5452
0.3764
0.5435
0.4791
0.5432
0.5150
0.5576
0.4808
0.5690
0.5495
0.5554
0.5566
0.5164
0.5283
0.3651
0.5234
0.5158
0.4985
0.5214
0.5239
0.5106
0.3318
0.5095
0.4969
0.4880
0.3274
0.4585
0.3182

0.6360

0.6002

0.5558
0.4155
0.6048
0.5382
0.5437
0.6613
0.5066
0.3926
0.4118
0.5447
0.4746
0.5549
0.5076
0.5780
0.5228
0.5434
0.4639
0.5794
0.4950
0.3756
0.5948
0.4901
0.4790
0.5714
0.4118
0.4824
0.5821
0.4751
0.5630
0.5314
0.4948
0.4712
0.5052
0.4327
0.4992
0.5365
0.3714
0.5434
0.2721
0.5954
0.4230
0.5066
0.4599
0.4665
0.4530
0.2981
0.3105
0.2642
0.4192
0.3148
0.3063
0.3056
0.2758
0.2867
0.2278
0.3279
0.3158
0.2939
0.2892
0.4803
0.2960
0.2371
0.2931
0.2926
0.2692
0.2322
0.3494
0.2530

0.5682

0.4647

0.4117
0.3168
0.4848
0.4069
0.4186
0.7045
0.4490
0.2849
0.3155
0.4189
0.3551
0.4419
0.4512
0.4754
0.4054
0.4045
0.4620
0.5133
0.3769
0.3683
0.5250
0.4525
0.3604
0.5975
0.3155
0.3710
0.6210
0.4151
0.4690
0.5249
0.4424
0.3546
0.4950
0.3163
0.4600
0.4319
0.3483
0.4045
0.2063
0.5290
0.3272
0.4490
0.3556
0.3328
0.3519
0.2514
0.2536
0.2344
0.3502
0.2593
0.2511
0.2494
0.2368
0.2426
0.2294
0.2745
0.2667
0.2541
0.2454
0.4350
0.2512
0.2496
0.2494
0.2527
0.2368
0.2455
0.3182
0.2715

0.7446

0.7177

0.6929
0.4709
0.7150
0.6423
0.6337
0.6224
0.5804
0.4766
0.4649
0.6972
0.5573
0.6572
0.6039
0.6642
0.6105
0.7282
0.4121
0.6439
0.5805
0.3229
0.6437
0.5030
0.5658
0.5484
0.4649
0.5542
0.5421
0.5757
0.6235
0.5249
0.5808
0.5582
0.5416
0.5417
0.5631
0.6296
0.3700
0.7282
0.3389
0.6098
0.4724
0.5804
0.5212
0.6189
0.5087
0.3191
0.3499
0.2721
0.4398
0.3487
0.3451
0.3457
0.2990
0.3142
0.1837
0.3470
0.3329
0.3052
0.3132
0.4709
0.3147
0.1695
0.3115
0.3039
0.2798
0.1642
0.3251
0.1705

0.6527

0.6598

0.6208
0.5719
0.5560
0.6081
0.6126
0.4331
0.4662
0.5253
0.5643
0.5742
0.4957
0.6034
0.5154
0.5829
0.5876
0.5605
0.3929
0.5762
0.4939
0.4015
0.5167
0.5194
0.5564
0.3771
0.5643
0.5602
0.3748
0.4905
0.5352
0.5212
0.5263
0.5474
0.3593
0.5055
0.4587
0.4924
0.3203
0.5605
0.5448
0.5229
0.5393
0.4661
0.5447
0.5251
0.5422
0.5280
0.5749
0.4993
0.5571
0.5632
0.5738
0.5757
0.5380
0.5482
0.3727
0.5273
0.5224
0.5093
0.5390
0.5256
0.5234
0.3274
0.5232
0.5080
0.5061
0.3242
0.4468
0.3042

0.6165 0.5811
0.5893 0.6431
0.5368 0.6025

0.4452
0.5465
0.5291
0.5393
0.5797
0.4956
0.4025
0.4431
0.5195
0.4420
0.5492
0.4870
0.5652
0.5193
0.5032
0.4436
0.5761
0.4551
0.3955
0.5729
0.4993
0.4757
0.4966
0.4431
0.4846
0.5098
0.4543
0.5368
0.5451
0.4817
0.4677
0.4600
0.4187
0.4887
0.4923
0.3386
0.5032
0.3463
0.5664
0.4434
0.4956
0.4672
0.4415
0.4634
0.3747
0.3927
0.3496
0.4564
0.3925
0.3901
0.3899
0.3651
0.3735
0.3002
0.3919
0.3838
0.3686
0.3727
0.5032
0.3726
0.2965
0.3709
0.3675
0.3539
0.2927
0.3911
0.3020
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0.6074
0.5761
0.6155
0.6268
0.4950
0.3780
0.5502
0.5945
0.4995
0.5543
0.5716
0.4518
0.5537
0.5933
0.4687
0.4834
0.5227
0.5474
0.4713
0.4817
0.5280
0.5753
0.4350
0.5945
0.5855
0.4350
0.4293
0.5540
0.4930
0.4775
0.5633
0.3019
0.5072
0.3717
0.4959
0.3883
0.4687
0.5089
0.5715
0.5748
0.3780
0.5748
0.4809
0.5753
0.5166
0.5529
0.4776
0.5944
0.5483
0.5496
0.5504
0.5085
0.5216
0.3771
0.5334
0.5233
0.5020
0.5175
0.5576
0.5124
0.3544
0.5104
0.5005
0.4849
0.3495
0.4864
0.3485

0.6716

0.6833

0.6441
0.5246
0.6321
0.6234
0.6262
0.5413
0.5158
0.4942
0.5186
0.6106
0.5319
0.6243
0.5343
0.6245
0.6004
0.6088
0.4330
0.6078
0.5421
0.3905
0.5925
0.5194
0.5621
0.4734
0.5186
0.5629
0.4735
0.5065
0.5906
0.5320
0.5298
0.5529
0.4472
0.5121
0.5003
0.5605
0.3569
0.6088
0.4188
0.5922
0.5138
0.5158
0.5405
0.5471
0.5343
0.4192
0.4507
0.3809
0.5085
0.4474
0.4472
0.4479
0.4079
0.4205
0.2927
0.4382
0.4275
0.4058
0.4178
0.5205
0.4152
0.2737
0.4130
0.4046
0.3877
0.2692
0.4061
0.2700

0.6572

0.5916

0.5594
0.4217
0.5924
0.5312
0.5307
0.6341
0.4831
0.4099
0.4154
0.5541
0.4646
0.5455
0.5285
0.5534
0.5113
0.5637
0.4247
0.5587
0.4823
0.3451
0.5436
0.4752
0.4730
0.5496
0.4154
0.4706
0.5536
0.4994
0.5302
0.5056
0.5201
0.4661
0.4776
0.4445
0.4844
0.5173
0.3591
0.5637
0.3249
0.5434
0.4166
0.4830
0.4479
0.4857
0.4405
0.3219
0.3471
0.2891
0.4160
0.3460
0.3439
0.3439
0.3107
0.3218
0.2195
0.3421
0.3322
0.3128
0.3201
0.4468
0.3190
0.2109
0.3169
0.3114
0.2949
0.2062
0.3298
0.2146

0.7172

0.6528

0.6206
0.4041
0.6603
0.5742
0.5690
0.6565
0.5764
0.4062
0.4012
0.6443
0.4906
0.6068
0.5814
0.6254
0.5509
0.6700
0.4112
0.6264
0.5177
0.3135
0.6346
0.4850
0.5011
0.5710
0.4012
0.4933
0.5732
0.5496
0.5852
0.5339
0.5549
0.4948
0.5640
0.4768
0.5655
0.5865
0.3542
0.6700
0.2797
0.5880
0.4132
0.5763
0.4625
0.5525
0.4509
0.2756
0.2975
0.2378
0.3909
0.2983
0.2933
0.2933
0.2570
0.2693
0.1753
0.3020
0.2898
0.2666
0.2695
0.4489
0.2724
0.1711
0.2697
0.2654
0.2439
0.1663
0.3012
0.1781

0.6315

0.6059

0.5538
0.4281
0.5819
0.5407
0.5495
0.6186
0.5235
0.3931
0.4267
0.5443
0.4587
0.5645
0.5011
0.5883
0.5293
0.5346
0.4547
0.5950
0.4769
0.3870
0.6090
0.5004
0.4821
0.5316
0.4267
0.4890
0.5450
0.4671
0.5624
0.5513
0.4884
0.4741
0.4998
0.4265
0.5125
0.5246
0.3506
0.5346
0.2997
0.5947
0.4350
0.5235
0.4682
0.4590
0.4626
0.3327
0.3455
0.3036
0.4373
0.3483
0.3420
0.3414
0.3151
0.3246
0.2669
0.3573
0.3470
0.3283
0.3261
0.5011
0.3307
0.2721
0.3283
0.3272
0.3080
0.2680
0.3734
0.2843

0.6823

0.5897

0.5604
0.3958
0.5918
0.5214
0.5175
0.6365
0.5090
0.3928
0.3908
0.5768
0.4449
0.5487
0.5521
0.5573
0.5012
0.5958
0.3977
0.5709
0.4661
0.3145
0.5522
0.4663
0.4589
0.5507
0.3908
0.4531
0.5537
0.5222
0.5220
0.5090
0.5375
0.4532
0.5055
0.4402
0.5117
0.5190
0.3431
0.5958
0.3162
0.5269
0.3925
0.5089
0.4280
0.4985
0.4190
0.3039
0.3313
0.2734
0.3890
0.3288
0.3286
0.3288
0.2966
0.3070
0.1986
0.3206
0.3117
0.2941
0.3043
0.4248
0.3009
0.1856
0.2993
0.2927
0.2791
0.1812
0.3024
0.1860



115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

0.4835
0.4964
0.4947
0.5053
0.4542
0.2992
0.4375
0.3211
0.3695
0.3803
0.3802
0.3133
0.3081
0.3718
0.3428
0.3073
0.3394
0.3523
0.4396
0.3368
0.3802
0.3802
0.4374
0.2906
0.3560
0.4240
0.3242
0.3368
0.3669
0.3282
0.3180
0.3477
0.4219
0.3073
0.4116
0.3937
0.3180
0.3629
0.3313
0.3716
0.3711
0.3802
0.2856
0.3802
0.4348
0.3392
0.3006
0.3392
0.3392
0.3392
0.4098
0.3932
0.2730
0.3438
0.2931
0.2833
0.2010

0.2863
0.2811
0.3244
0.3494
0.2668
0.2949
0.4133
0.4174
0.2466
0.2284
0.2283
0.2340
0.2158
0.2512
0.2340
0.2517
0.2304
0.2221
0.2561
0.2210
0.2284
0.2283
0.2476
0.2401
0.2505
0.2430
0.2277
0.2210
0.2273
0.2151
0.2515
0.2098
0.2504
0.2517
0.2437
0.2245
0.2117
0.2248
0.2439
0.2270
0.2265
0.2283
0.2027
0.2283
0.2624
0.2284
0.2129
0.2284
0.2284
0.2284
0.2386
0.2342
0.2241
0.2211
0.2126
0.1960
0.1622

0.2498
0.2430
0.2759
0.2902
0.2413
0.3126
0.4060
0.4517
0.1961
0.2257
0.2257
0.2573
0.2351
0.2396
0.2389
0.2953
0.2339
0.2271
0.2326
0.2296
0.2257
0.2257
0.2298
0.2674
0.2324
0.2289
0.2439
0.2296
0.2234
0.2259
0.2441
0.2058
0.2302
0.2953
0.2202
0.1933
0.2254
0.2255
0.2500
0.2255
0.2248
0.2257
0.2257
0.2257
0.2338
0.2319
0.2306
0.2319
0.2319
0.2319
0.2279
0.2281
0.2537
0.2284
0.2183
0.2019
0.1853

0.2925
0.2950
0.3310
0.3600
0.2611
0.1965
0.3617
0.4283
0.3062
0.1928
0.1928
0.1575
0.1440
0.2380
0.1934
0.1997
0.1931
0.1738
0.2507
0.1657
0.1928
0.1928
0.2368
0.1603
0.2378
0.2264
0.1612
0.1657
0.1931
0.1566
0.2483
0.1795
0.2394
0.1997
0.2394
0.2381
0.1483
0.1830
0.1889
0.1888
0.1887
0.1928
0.1242
0.1928
0.2635
0.1790
0.1426
0.1790
0.1790
0.1790
0.2159
0.2038
0.1407
0.1683
0.1596
0.1464
0.0914

barameter budg(p) budget for project p in keuro

A wWwNDE ™~

130

132
133

5630
4800
3450
14450
11250

610

3540
2120
2120

0.4943
0.5120
0.4942
0.4990
0.4659
0.2737
0.4341
0.4146
0.3688
0.3911
0.3911
0.3049
0.3068
0.3806
0.3399
0.3705
0.3368
0.3590
0.4522
0.3404
0.3911
0.3911
0.4530
0.2777
0.3604
0.4386
0.3213
0.3404
0.3745
0.3325
0.3407
0.3569
0.4326
0.3705
0.4218
0.4052
0.3216
0.3711
0.3248
0.3809
0.3805
0.3911
0.2854
0.3911
0.4455
0.3401
0.2991
0.3401
0.3401
0.3401
0.4231
0.4045
0.2673
0.3492
0.2919
0.2839
0.1941

0.3606
0.3617
0.3820
0.3968
0.3433
0.3222
0.4431
0.4444
0.2637
0.3045
0.3045
0.2888
0.2782
0.3054
0.2875
0.3370
0.2827
0.2932
0.3316
0.2880
0.3045
0.3045
0.3295
0.2831
0.2966
0.3237
0.2880
0.2880
0.2963
0.2830
0.2923
0.2775
0.3229
0.3370
0.3117
0.2861
0.2788
0.2970
0.2939
0.3006
0.2999
0.3045
0.2655
0.3045
0.3302
0.2893
0.2730
0.2893
0.2893
0.2893
0.3175
0.3109
0.2732
0.2906
0.2631
0.2487
0.2016

133

0.4882
0.4959
0.5109
0.5285
0.4588
0.3453
0.4707
0.2906
0.3605
0.3889
0.3889
0.3349
0.3282
0.3766
0.3538
0.2963
0.3495
0.3650
0.4427
0.3526
0.3889
0.3889
0.4388
0.3142
0.3670
0.4271
0.3432
0.3526
0.3770
0.3444
0.3175
0.3555
0.4272
0.2963
0.4157
0.3927
0.3357
0.3742
0.3519
0.3817
0.3811
0.3889
0.3077
0.3889
0.4390
0.3558
0.3214
0.3558
0.3558
0.3558
0.4148
0.4007
0.2966
0.3583
0.3130
0.3004
0.2228

0.3937
0.3992
0.4198
0.4403
0.3661
0.2806
0.4275
0.4055
0.3198
0.3028
0.3028
0.2575
0.2500
0.3139
0.2798
0.2898
0.2769
0.2821
0.3531
0.2720
0.3028
0.3028
0.3466
0.2472
0.3073
0.3362
0.2640
0.2720
0.2953
0.2644
0.2951
0.2776
0.3401
0.2898
0.3327
0.3174
0.2566
0.2907
0.2785
0.2970
0.2967
0.3028
0.2320
0.3028
0.3557
0.2778
0.2457
0.2778
0.2778
0.2778
0.3256
0.3133
0.2331
0.2764
0.2469
0.2340
0.1685

0.3021
0.3048
0.3277
0.3458
0.2790
0.2323
0.3708
0.4181
0.2824
0.2263
0.2262
0.2062
0.1904
0.2547
0.2268
0.2435
0.2249
0.2116
0.2692
0.2050
0.2263
0.2262
0.2614
0.2075
0.2470
0.2531
0.2055
0.2050
0.2234
0.1975
0.2532
0.2085
0.2592
0.2435
0.2548
0.2446
0.1910
0.2177
0.2221
0.2223
0.2221
0.2262
0.1724
0.2262
0.2749
0.2128
0.1865
0.2128
0.2128
0.2128
0.2446
0.2351
0.1888
0.2073
0.1899
0.1773
0.1305

0.2567
0.2563
0.2915
0.3164
0.2324
0.2106
0.3614
0.4658
0.2651
0.1806
0.1806
0.1657
0.1496
0.2228
0.1875
0.2268
0.1863
0.1680
0.2234
0.1632
0.1806
0.1806
0.2121
0.1730
0.2208
0.2046
0.1643
0.1632
0.1811
0.1558
0.2417
0.1675
0.2150
0.2268
0.2132
0.2068
0.1499
0.1739
0.1870
0.1779
0.1777
0.1806
0.1333
0.1806
0.2342
0.1739
0.1479
0.1739
0.1739
0.1739
0.1972
0.1889
0.1559
0.1645
0.1589
0.1449
0.1035

0.3213
0.3180
0.3525
0.3734
0.3038
0.3197
0.4384
0.4463
0.2464
0.2684
0.2683
0.2664
0.2526
0.2787
0.2617
0.3062
0.2571
0.2609
0.2925
0.2586
0.2683
0.2683
0.2874
0.2671
0.2751
0.2829
0.2624
0.2587
0.2637
0.2537
0.2752
0.2451
0.2861
0.3062
0.2765
0.2522
0.2505
0.2636
0.2729
0.2661
0.2655
0.2683
0.2411
0.2683
0.2949
0.2626
0.2488
0.2626
0.2626
0.2626
0.2784
0.2738
0.2560
0.2597
0.2430
0.2268
0.1883

0.2832
0.2879
0.3040
0.3194
0.2603
0.1988
0.3476
0.4539
0.2795
0.2067
0.2067
0.1818
0.1666
0.2412
0.2082
0.2478
0.2070
0.1907
0.2517
0.1830
0.2067
0.2067
0.2442
0.1840
0.2313
0.2354
0.1821
0.1830
0.2039
0.1753
0.2497
0.1909
0.2411
0.2478
0.2381
0.2317
0.1684
0.1973
0.1991
0.2024
0.2022
0.2067
0.1482
0.2067
0.2581
0.1909
0.1630
0.1909
0.1909
0.1909
0.2263
0.2159
0.1660
0.1857
0.1686
0.1573
0.1102



/
parameter mw(p) power of project p (MW)
/

15
12.8
9.2
28.9
30

abhwnN -

130 0.51
131 2.95
132 177
133 177
/

parameter w(dm) weight of decision maker dm (takes values 0 or 1);
w(dm)=1.0; //initial value

scalar
start, finish start and finish time
elapsed_time solution time

free Variables
PORTFMCS portfolio's multicriteria score
TOTBUDG total budget
TOTMW  total MW
NUMP  number of projects
Binary Variables
X(p) decision variables indicating if project p is selected if eq to 1
Equations
objfunl objective function for multicriteria score
objfun2 function for budget
objfun3 function for MW
totnum  calculation of total number of projects
geol  geographical constraint 1
geo2  geographical constraint 2
geo3  geographical constraint 3
techla technological constraint 1a
techlb technological constraint 1b
tech2a  technological constraint 2a
tech2b  technological constraint 2b
tech3a technological constraint 3a
tech3b  technological constraint 3b

objfunl.. sum(p,sum(dm, mecs(p,dm)*w(dm))*X(p)) =e= PORTFMCS;
objfun2.. sum(p,budg(p)*X(p)) =e= TOTBUDG;

objfun3.. sum(p,mw(p)*X(p)) =e= TOTMW,;

totnum..  sum(p,x(p))=e= NUMP;

geol..  sum(pgeo('13',p),budg(p)*X(p))=I=0.3*TOTBUDG;
geo2..  sum(pgeo('12',p),budg(p)*X(p))=1=0.15*TOTBUDG;
geo3..  sum(pgeo('',p),budg(p)*X(p)) + sum(pgeo('3',p),budg(p)*X(p))+
sum(pgeo(’s',p),budg(p)*X(p)) + sum(pgeo(6’,p),budg(p)*X(p)) + sum(pgeo('11’,p),budg(p)*X(p))=g=0.10*TOTBUDG;
techla.. sum(ptech('WIND',p),X(p)) =g= 0.2*NUMP;
techlb.. sum(ptech('WIND',p),X(p)) =I= 0.6*NUMP;
tech2a..  sum(ptech('SH',p),X(p)) =g= 0.2*NUMP;
tech2b.. sum(ptech('SH',p),X(p)) =I= 0.6*NUMP;
tech3a.. sum(ptech('PV',p),X(p)) =g= 0.2*NUMP;
tech3b.. sum(ptech('PV',p),X(p)) =I= 0.6*NUMP;

TOTMW.lo = 300;
TOTBUDG.UP = 120000;

*X.FX(green)=1;
*X.FX(red)=0;

model project133/all/;
start=jnow;
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FILE fx /c:\gams\pdd\proj_133_group12_results.txt/ ;
fx.pw=2000;

put fX ;

option optcr=0.000;

put' MSCORE BUDGET NUMBER MW'/;
loop(ddm,
loop(dm, w(dm)=0);
w(dm)$(ord(dm)=ord(ddm))=1;

solve project133 maximizing PORTFMCS using mip;

put fx ddm.tl:5:0;
put PORTFMCS.L:10:4;
put TOTBUDG.L:10:0;
put NUMP.L:10:0;
put TOTMW.L:10:2;
loop(p, put X.I(p):3:0);
put/;
* the jump is for AUGMECON2
)

finish=jnow;
elapsed_time=(finish-start)*86400;

put/;
putclose fx; // close the point file
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Model for bi-objective EECR and NPV

$TITLE project selection under uncertainty

$eolcom //

$ontext

Project selection problem

Data from Computers and Industrial Engineering 61 226-237 (2011)

05.01.2013 e-constraint with Monte Carlo
the only intervention needed is to take out of the monte carlo loop all the declarations including text files
$offtext

SETS

| projects /1*40/

SE(1) /1*2,4,19,22,24,27*28,33,36,38 /
NE() /3,10,16,18,21,25*26,31,35,37 /
CE(l) /5*7,9,11*12,14*15,23,29*30,34,40 /
GR(1) /8,13,17,20,32,39 /

EN(I) /1*4,13,17,24,26%27,33*34 /
IN(1) /5*9,29,32,38,40/

EE(I) /10*12,23,28,30,37 /

CG(I) /14*16,18*22,25,31,35*36,39 /
k objective functions /1*2/

Parameter dir(k) direction of the objective functions 1 for max and -1 for min
/11

21
/

parameter cost(l) cost for project(l)

1 5930

2 50830

3 5000

39 190870
40 262030

/

parameter avgreturn(l) average NPV of project |
/

1 2500

2 49800

3 8300

39 428500
40 516100

/

parameter return(l) random return ;
*return(l)=normal(avgreturn(l),(0.05*avgreturn(l)));

parameter avgcsr(l) average CSR index for project |
/

1 12.97
2 14.66
3 9.76
39 12.86
40 5.85

/

barameter csr(l) random csr ;
*csr(l)=normal(avgcsr(l),(0.05*avgcsr(1)));

scalar
maxbudg maximum budget (euros) /3000000/
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BINARY VARIABLES
X(I) binary variable indicating if project | is selected or not

Positive variables

TOTBUDG total budget (million toomans)
TOTPROJ total projects

Z(K) onjective function values

EQUATIONS

EQ_TOTBUDG equation for total budget
EQ_TOTPROJ equation for total projects
EQ_SE  constraint for southern europe
EQ_NE constraint for northern europe
EQ_CE constraint for central europe
EQ_GR constraint for greece

EQ_EN constraint for energy sector
EQ_IN  constraint for industry sector
EQ_EE  constraint for electric equipment
EQ_CG constraint for consumer goods
EQ_NPV  objective function --> maximization of portfolio's NPV
EQ_CSR  objective function --> maximization of portfolio's CSR
EQ_SE2  constraint for southern europe
EQ_NE2  constraint for northern europe
EQ_CE2 constraint for central europe
EQ_GR2  constraint for greece

EQ_EN2  constraint for energy sector
EQ_IN2  constraint for industry sector
EQ_EE2  constraint for electric equipment
EQ_CG2  constraint for consumer goods

EQ_TOTBUDG.. sum(l, cost(l)*X(1))=e= TOTBUDG;
EQ_TOTPROL.. sum(l, X(1)) =e= TOTPROJ;

EQ_SE.. sum(SE(I),X(l)) =I= 0.5*TOTPROJ ; /17 11
EQ_NE.. sum(NE(l),X(I)) == 0.5*TOTPROJ; //6 10
EQ_CE.. sum(CE(I),X(l)) =I= 0.5*TOTPROJ ; //9 13
EQ_GR.. sum(GR(l),X(I)) == 0.5*TOTPROJ; //4 6
EQ_EN.. sum(EN(I),X(I)) == 0.5*TOTPROJ; /7 11
EQ_IN.. sum(IN(I),X(I)) =I= 0.5*TOTPROJ; //6 10
EQ_EE.. sum(EE(I),X(l)) == 0.5*TOTPROJ ; //4 7
EQ_CG.. sum(CG(l),X(I)) == 0.5*TOTPROJ; //9 13

EQ_SE2.. sum(SE(l),cost(l)*X(l)) =g= 0.1*TOTBUDG ;
EQ_NE2.. sum(NE(I),cost(1)*X(l)) =g= 0.1*TOTBUDG ;
EQ_CE2.. sum(CE(l),cost(1)*X(l)) =g= 0.1*TOTBUDG ;
EQ_GR2.. sum(GR(l),cost(I)*X(1)) =g= 0.1*TOTBUDG ;
EQ_EN2.. sum(EN(I),cost(1)*X(l)) =g= 0.1*TOTBUDG ;
EQ_IN2.. sum(IN(I),cost(1)*X(1)) =g= 0.1*TOTBUDG ;
EQ_EE2.. sum(EE(I),cost(l)*X(l)) =g= 0.1*TOTBUDG ;
EQ_CG2.. sum(CG(l),cost(l)*X(l)) =g= 0.1*TOTBUDG ;

EQ_CSR.. sum(l, csr(I)*X(I))=e= Z('1");
EQ_NPV.. sum(l, return(1)*X(l))=e= Z('2";

TOTBUDG.up = maxbudg;
TOTPROJ.lo = 5;

MODEL CSR_40_model /ALL/;

Set k1(k) the first element of k, km1(k) all but the first elements of k;
k1(k)$(ord(k)=1) = yes; kml(k)=yes; km1(kl) = no;
Set kk(k) active objective function in constraint allobj

Parameter

rhs(k) right hand side of the constrained obj functions in eps-constraint

maxobj(k) maximum value from the payoff table
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minobj(k) minimum value from the payoff table

intervals(k) number of intervals that we divide the k-1 objective functions
bestobj(k) the best objective function value (maxobj for dir=1 minobj for dir=-1)
worstobj(k) the worst objective function value (minobj for dir=1 maxobj for dir=-1)
step(k)  the step obtained from range divided by intervals

jump(k)  the jump for augmecon2

Scalar

iter total number of iterations

infeas total number of infeasibilities

elapsed_time elapsed time for payoff and e-constraint
start start time

finish finish time

summax auxiliary parameter

firstOffMax, lastZero, mciter some counters
mcitermax monte carlo iterations /10/

Variables
a_objval auxiliary variable for the objective function
obj auxiliary variable during the construction of the payoff table
Positive Variables
sl(k)  slack or surplus variables for the eps-constraints
Equations
con_obj(k) constrained objective functions
augm_obj augmented objective function to avoid weakly efficient solutions
allobj all the objective functions in one expression;

con_obj(km1).. z(kml) - dir(kml)*sl(kml) =e= rhs(km1l);

* We optimize the first objective function and put the others as constraints
* the second term is for avoiding weakly efficient points
*augm_obj..
* sum(kl,dir(k1)*z(k1))+1e-3*sum(km1,sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval;
augm_obj..
sum(k$(ord(k)=1),dir(k)*z(k)) + 1.0e-3*sum(k$(ord(k)>1),power(10,-(ord(k)-1))*sl(k)/(maxobj(k)-minobj(k))) =e= a_objval,

allobj.. sum(kk, dir(kk)*z(kk)) =e= obj;

Model mod_payoff /CSR_40_maodel, allobj /;
Model mod_epsmethod / CSR_40_model, con_obj, augm_obj / ;

Parameter
payoff(k,k) payoff tables entries;
Alias(k,kp);

option optcr=0.000;

loop(k, intervals(k)=20);

option limrow=0, limcol=0, solprint=off ;
*option limrow=3, limcol=3 ;

option seed=1515;
File fx / c:\gams\CSR_40_20bj_MC_exact.txt /;

start=jnow;
for (mciter=1 to mcitermax,

* random generation of return and profit from normal distributions
return(l)=normal(avgreturn(l),(0.05*avgreturn(l)));
return(1)=1000*round(return(1)/1000);
csr(l)=normal(avgcsr(l),(0.05*avgcsr(1)));

* Generate payoff table applying lexicographic optimization
loop(kp,
kk(kp)=yes;
repeat
solve mod_payoff using mip maximizing obj;
payoff(kp,kk) = z.I(kk);
z.fx(kk) = z.I(kK); // freeze the value of the last objective optimized
kk(k++1) = kk(k); // cycle through the objective functions
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until kk(kp); kk(kp) = no;

* release the fixed values of the objective functions for the new iteration
z.up(k) = inf; z.lo(k) =-inf;

).

ii‘: (mod_payoff.modelstat<>1 and mod_payoff.modelstat<>8, abort 'no optimal solution for mod_payoff');

loop (kp,
loop(k, put fx payoff(kp,k):12:2);
put/;

)
*put fx /;
*display payoff;
minobj(k)=smin(kp,payoff(kp,k));
maxobj(k)=smax(kp,payoff(kp,k));

*

*new 17.03.2013

*

*loop(k, intervals(k)=(maxobj(k)-minobj(k))/1000);
loop(k, intervals(k)=20);

loop(k,
if (dir(k)=1,
bestobj(k)=maxobj(K);
worstobj(k)=minobj(k);
else
bestobj(k)=minobj(k);
worstobj(k)=maxobj(k)

ste[;(k)z(maxobj(k)-minobj(k))/intervals(k)

rhs(k)=worstobj(k);
iter=0;

infeas=0;
*start=jnow;

repeat

solve mod_epsmethod maximizing a_objval using mip;

iter=iter+1,;

if (mod_epsmethod.modelstat<>1 and mod_payoff.modelstat<>8, // not optimal is in this case infeasible
infeas=infeas+1;
put fx iter:5:0, " infeasible'/;
lastZero = 0;
loop(k$(ord(k)>1),

if(abs(rhs(k)-worstobj(k))>0.001 and lastzero=0, lastzero=ord(k))

loop(k$(ord(k)>1 and ord(k)<=lastzero),rhs(k)=bestobj(k));
else
put fx mciter:5:0; // for monte carlo counter
put fx iter:5:0;
loop(k, put fx z.1(k):12:2);
put TOTPROJ.L:10:0;
put TOTBUDG.L:12:0;
loop(l, put fx X.L(1):4:0);
*the jump is for AUGMECON2
jump(k)=1;
* The jump is calculated for the innermost objective function (ord(k)=2)
jump(k)$(ord(k)=2) = 1+max(0,floor(sl.L(k)/step(k)));
put rhs('2'):10:0,jump('2"):10:0,step('2"):10:0;
loop(k$(jump(k)>1),put" jump', jump(k):4:0);
* put/;
)
* Proceed forward in the grid
firstOffMax = 0;
loop(k$(ord(k)>1),
if(abs(rhs(k)-bestobj(k))>0.001 and firstOffMax=0,
if (dir(k)=1, rhs(k)=min((rhs(k)+jump(k)*step(k)),bestobj(k))
else rhs(k)=max((rhs(k)-jump(k)*step(k)),bestobj(k))
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)
firstOffMax=ord(k)

)
put firstOffmax:5:0 /
loop(k$(ord(k)>1),
if(ord(k)< firstOffMax, rhs(k)=worstobj(k));

sun“’lmax=0;
loop(k$(ord(k)>1),
if(abs(rhs(k)-bestobj(k))<=0.001, summax=summax+1);

*untii iter >=100;
until (summax=card(k)-1 and firstOffMax=0) //or iter=100;

); [/ for loop

finish=jnow;
elapsed_time=(finish-start)*86400;

put 'Elapsed time: ‘,elapsed_time:10:2, ‘ seconds'/ ;
putclose fx; // close the point file
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