
National Technical University of Athens
School of Applied Mathematical and Physical Sciences

Sparse recovery and matrix completion

Mathematical aspects and algorithms

Ioannis C. Tsaknakis

Supervisor : Michail Loulakis
Associate Professor, NTUA

A thesis presented for the degree of
Master of Science in Applied Mathematical Sciences

Athens, Greece
July 2017

National Technical University of Athens
School of Applied Mathematical and Physical Sciences

Sparse recovery and matrix completion

Mathematical aspects and algorithms

Ioannis C. Tsaknakis

BSc., Electrical and Computer Engineering
National Technical University of Athens (2015)

Supervisor : Michail Loulakis
Associate Professor, NTUA

(Signature) (Signature) (Signature)

......................
Michail Loulakis Dimitris Fouskakis Filia Vonta
Associate Professor, NTUA Associate Professor, NTUA Associate Professor, NTUA

A thesis presented for the degree of
Master of Science in Applied Mathematical Sciences

Athens, Greece
7-7-2017

Acknowledgements

First of all, i would like to thank associate professor Michalis Loulakis for his
continuous help during the months i worked on this thesis, as we had meetings
twice a month to discuss my progress. Also, i am grateful to him for the freedom
he gave me with respect to the way i work and the subject of this thesis. He
was willing to help me although the main subject of this thesis was outside of
his main research interests.

Furthermore, this thesis would not be complete without the contribution of
the team at the Institute for Astronomy, Astrophysics, Space Applications and
Remote Sensing (IAASARS) of the National Observatory of Athens (NOA).
Specifically, i would like to thank researchers Konstantinos Koutroumbas and
Athanasios Rontogiannis, as well as doctoral student Paris Giampouras. I am
grateful to them for the useful discussions we had and the time they spend with
me at the IAASARS site in Penteli helping me develop chapter 6.

Abstract

The ”data deluge” we are facing necessitates us to understand the structure
of the data we acquire and process. For that reason we introduce the notion
of low-dimensional models, i.e subsets of the signal space (the space in which
the data/signals reside) with specific properties (structure). We restrict our
attention on two signal models : sparse vectors and low-rank matrices. In sparse
vector models we focus on the sparse vector recovery problem. This problem is
about reconstructing/recovering a sparse signal after projecting it in a lower
dimensional space. The important result we present and prove is the ability,
under certain conditions, of certain classes of random matrices, such as Gaussian
and subgaussian random matrices, to project sparse vectors to lower dimensional
spaces in a way such that we can obtain successfully the original signal vectors
(reconstruction) using suitable algorithms. In low-rank matrices we focus on a
special recovery problem called matrix completion. In that problem we are given
an incomplete matrix and the prior knowledge that this matrix is low-rank and
we want to infer the values of the missing entries. In the last part of this thesis
we introduce several algorithms for the matrix completion problem and assess
them in synthetic and real data.

Keywords
Big Data, low-dimensional models, sparse vectors, low-rank matrices, sparse

recovery, matrix completion, l1 minimization, nuclear norm minimization, ran-
dom projections, Gordon’s lemma, concentration of measure, singular value
thresholding

Preface

The massive amounts of data that are produced nowadays are creating huge
challenges for the modern computational systems. The great impact of infor-
mation technologies in all aspects of our lives make imperative the discovery of
novel approaches for solving these problems. The recent years understanding
the structure of data we are dealing with and exploiting that knowledge in order
to tackle the emerging challenges has proven to be a productive and effective
approach.

The main concept behind this thesis is the importance of exploiting the
structure of data for performing information processing tasks efficiently and
successfully. We restrict our study on two specific structures, which we will
later call low-dimensional signal models : sparse signals and low-rank matrices.
Specifically we will focus our attention on two important problems of these
models : sparse recovery and matrix completion.

In my opinion one of the most fascinating aspects of machine learning is that
it manages to blend in a fruitful and interesting way theoretical (purely math-
ematical) and applied (practical) topics. The main topic of this thesis (sparse
recovery and matrix completion) lies in the intersection of machine learning, sig-
nal processing and applied mathematics and is a characteristic example of such
an interesting blend. For that reason this thesis deals both with mathematical
and applied issues of the above problems. This is reflected in the structure of
this thesis, since part 2 surveys some advanced mathematical topics of sparse
recovery, while in part 3 several matrix completion algorithms are described and
evaluated on synthetic and real data.

Specifically, this thesis consists of three parts:

• The first part is essentially a survey of the the two signal models of interest,
the sparse vectors model and the low-rank matrices model.

– The first chapter contains a general description of low-dimensional
signal models, the reason we study them and the notion of stable
embedding. This chapter highlights the importance of understanding
the underlying structure of data.

– The second chapter is devoted to sparse vectors. We start with the
necessary definitions and the general description of the sparse vector
recovery problem and move to topics such as the optimization tasks
of sparse recovery, restricted isometry property, algorithms for sparse
recovery and applications.

– The third chapter is about low-rank matrices. Besides providing the
necessary background, we focus on the problem of matrix completion.

i

• The second part contains some more advanced mathematical topics of the
sparse vector recovery problem. Essentially, the theme of this chapter is
the ability of certain classes of random matrices to project sparse vectors
to lower dimensional spaces in a way such that we can obtain successfully
the original signal vectors (reconstruction) using suitable algorithms.

– The fourth chapter contains the necessary probabilistic background.
It starts with basic notions and definitions and moves to more ad-
vanced topics, such as concentration of measure, suprema of stochas-
tic processes, Gaussian width, etc.

– The fifth chapter contains two main results along with the respective
proofs. Both results refer to the ability, under certain conditions, of
certain classes of random matrices to project sparse vectors in a way
such that successful recovery is guaranteed using suitable algorithms.
The first result deals with Gaussian random matrices, while in the
second result we refer to subgaussian matrices.

• The third part studies and evaluates five different matrix completion al-
gorithms.

– The sixth chapter introduces five different optimization tasks for the
matrix completion problem and the respective algorithms that solve
them. Then it proceeds by evaluating the algorithms on synthetic
and real data (MovieLens dataset).

Contents

I Sparse vectors and low-rank matrices 1

1 Introduction 3
1.1 Introduction . 3
1.2 Low-dimensional signal models 4

1.2.1 Inverse problems . 5
1.3 Stable embeddings . 6

2 Sparse vectors 9
2.1 Introduction . 9
2.2 Sparse and compressible signals 9
2.3 Signal dictionaries . 11
2.4 The big picture of sparse recovery 12
2.5 Underdetermined system of linear equations 14
2.6 The optimization tasks of sparse recovery 15

2.6.1 l0 norm . 15
2.6.2 l2 norm . 16
2.6.3 l1 norm . 17

2.7 Compressed sensing . 18
2.8 Measurement matrices . 19

2.8.1 Coherence . 20
2.8.2 Restricted isometry property 20

2.9 Reconstruction schemes . 22
2.9.1 Greedy algorithms . 24
2.9.2 Convex optimization algorithms 26
2.9.3 Iterative thresholding algorithms 26

2.10 Applications . 28

3 Low-rank matrices 29
3.1 Introduction . 29
3.2 Preliminaries about matrices . 29

3.2.1 Singular value decomposition 29
3.3 Low-rank matrix recovery . 31
3.4 Matrix completion . 32

3.4.1 The Netflix problem . 32
3.4.2 Which matrices can be completed? 33
3.4.3 Coherence . 34
3.4.4 The optimization tasks of matrix completion 35

3.5 Applications . 36

iii

II Mathematical aspects 39

4 Tools from probability theory 41
4.1 Probabilistic preliminaries . 41
4.2 Basic results in probability theory 43
4.3 Subgaussian and subexponential random variables 45
4.4 Bernstein’s inequality . 49
4.5 Expectation of norms of Gaussian vectors 51
4.6 Gaussian width . 54
4.7 Gordon’s Lemma . 55
4.8 Concentration of measure . 67

5 Sparse vectors recovery with random matrices 79
5.1 Introduction . 79
5.2 Uniform recovery with subgaussian matrices 80
5.3 Non-uniform recovery with Gaussian matrices 86

III Algorithms 99

6 Algorithms for matrix completion 101
6.1 Algorithms . 101

6.1.1 Proximal forward-backward splitting 102
6.1.2 Alternating regularized least squares 104
6.1.3 Alternating iteratively reweighted least squares 106
6.1.4 Fast alternating regularized least squares 108
6.1.5 Fast alternating iteratively reweighted least squares . . . 110

6.2 Evaluation on synthetic data . 111
6.2.1 Description of the scenarios 113
6.2.2 Performance measures . 113
6.2.3 Algorithm parameters . 114
6.2.4 Results . 115

6.3 Evaluation on the MovieLens dataset 117
6.3.1 Description of the scenario 117
6.3.2 Performance measures . 117
6.3.3 Results . 118

6.4 Remarks and conclusions . 118

Appendix 122

A Mathematical Preliminaries 123
A.1 Linear Algebra . 123

A.1.1 Vectors . 123
A.1.2 Matrices . 124

A.2 Convex geometry . 125
A.3 Analysis . 125

A.3.1 Beta and Gamma functions 126
A.4 Covering numbers . 127
A.5 Miscellanea . 127

Part I

Sparse vectors and low-rank
matrices

1

Chapter 1

Introduction

1.1 Introduction

We live in the Big data era. Huge amounts of data are produced every day
and that amount is continuously increasing. Based on previous estimates [Ibm]
that amount is larger than 2.5 exabytes per day and is increasing exponentially.
These data can take a variety of forms, such as image, video, audio, text and can
be found practically anywhere (social networks, radio telescopes, DVDs, medical
records, etc.). That tremendous amount of data is putting a strain on our
systems, a situation that is going to become more demanding the forthcoming
years. In order to get a good grasp of the magnitude of data we are referring
to, figure 1.1 presents the expected amount of data that are going to be used
in 2025 for acquisition and storage in three different data domains (astronomy,
genomics and YouTube), as given in [Ste+15].

The data we are referring to, the ”Big Data”, have several characteristics.
Among those characteristics is the high dimension of the space they reside and
the their huge volume. Furthermore, those data are usually grossly corrupted
due to noise, failure of the sensing devices, or intentional tampering. The situ-
ation becomes more complicated since some elements of those data are usually
missing; their volume and dimensionality makes it nearly impossible to collect
them all. It is apparent that these traits of data makes the situation even more
challenging.

The enormous flow of data we are dealing with, known as data deluge, and
their complexity, is creating several challenges concerning the acquisition, stor-
age, processing, learning and transmission of data. The importance of data in
nearly every aspect of our lives and the fact that they play a vital role in many
different fields such as science, finance and medicine is creating a demand for
pushing further the capabilities of our technologies. It is essential to develop

Phase \Domain Astronomy Genomics YouTube
Acquisition 25 ZB/year 1 zetta-bases/year 500-900 million hours/year
Storage 1 EB/year 2-40 EB/year 1-2 EB/year

Figure 1.1: Expected amount of data that are going to be used in 2025 for
acquisition and storage in three different data domains. [Ste+15]

3

novel computational methods, algorithms, mathematical tools and technologies,
in order to tackle efficiently all the problems that stem from the data deluge.
One such approach is to try to understand the underlying structure of data and
exploit that to perform all the necessary tasks successfully and efficiently. This
direction serves as the motivating concept behind this thesis.

1.2 Low-dimensional signal models

The fundamental notion we are going to deal with is that of a signal. A signal
is a function that contains information about the attributes or the behavior
of a system or some phenomenon [Pri90] and can refer to practically any time
or space varying quantity, such as music, audio, video, images, financial data,
scientific data, text, etc. We can also refer to signals as data. In the context of
signal processing we use the term signal, while in the machine learning commu-
nity the term data is preferred. Nevertheless, these terms both refer to some
piece of information that we want to process (e.g compress, code, learn, denoise,
etc.). In this thesis the main subject lies in the intersection of machine learning
and signal processing, so we are going to refer to information patterns, either
as signals or data, depending on the context without causing confusion.

The signals we study reside in a mathematical space, known as signal space.
In other words, the signal space is the set of all possible values the signal we
study can take. Sometimes, for reasons that will become apparent a bit later,
it is necessary to restrict our attention to a subset of the signal space. A signal
model is a subset of the (universal) signal space that possesses certain properties,
usually expressed in the form of mathematical statements. A (low-dimensional)
signal model is characterized by a number of degrees of freedom that is smaller
than the respective number for the signal space.

There are several types of low-dimensional signal models. The most notable
of them are the following. [BCW10]

1. Sparse vectors

2. Compressible vectors

3. Low-rank matrices

4. Manifolds

5. Point clouds

In a nutshell, a sparse vector is a vector that has at most k non-zero elements,
where k is a relatively small number compared to the dimensionality of the
ambient space. This is the most important and well-studied model and we are
going to present it in detail in chapter 2.

A compressible vector is a generalization of the sparse signal model, where
we have k significant elements (i.e elements with large values), while the rest of
the elements are very small. We are going to present the basics of this model in
chapter 2.

A low-rank matrix is a matrix whose rank is small compared to it’s dimen-
sion. It is an interesting model with many applications. It will comprise the
subject of chapter 3.

4

Figure 1.2: A collection of low-dimensional signal models: (a) k-sparse signals,
(b) structured k-sparse signals, (c) a point cloud, (d) a smooth k-dimensional
manifold. Image taken from [BCW10].

A manifold, from a mathematical point of view, is a topological space that
resembles locally the Euclidean space. Essentially, we can consider a manifold
as a generalization of a surface.

A point cloud is collection of a finite number of points in Rn, i.e vectors
x ∈ Rn that represent signals.

Figure 1.2 illustrates four characteristic low-dimensional signal models, namely
sparse vectors, structured sparse vectors 1, point clouds and manifolds. [BCW10]

1.2.1 Inverse problems

Low-dimensional models led to significant advances in the solution of linear
inverse problems. Inverse problems [The15] are problems, where a set of input-
output observations were given (training data in machine learning) and the
objective is to estimate or predict the parameters of the model that produces
that set of observations. Roughly, in inverse problems the task is to infer the
cause from the effect. In general, inverse problems are ill-posed. That means
that at least one of the following three conditions is violated : existence, unique-
ness and stability of solution. Finding the solution is in many cases a difficult,
if not impossible, task. The reason is that the model we use to describe the
data is too complex. As a result, it requires a number of parameters that is
too large, usually larger than the number of data points. Therefore, we cannot
estimate the parameters of the model from our observations.

The study of low-dimensional models led to a breakthrough in inverse prob-
lems. Exploiting the fact that the model of our data possesses a special struc-
ture, i.e the number of parameters that describe it is smaller than the number
of parameters characterizing the ambient space, we only need a small number of
data points in order estimate the parameters of the underlying model, which is
the final objective. It is typical in inverse problems to use as a prior assumption
that our model possesses a special structure. Note that this assumption is based
on the properties of the respective physical system, which the model describes.

Inverse problems are ubiquitous in science and engineering. The majority
of problems in signal processing and machine learning fall under the scope of
inverse problems. Typical examples are problems as regression, classification,
signal denoising and many more.

1Structured sparse vectors are a special case of sparse vectors, where the positions of the
non-zero elements are not completely arbitrary, but follow a specific pattern.

5

1.3 Stable embeddings

One of the most important concepts in machine learning is that of dimension-
ality reduction. It refers to algorithms that project data to a lower (than the
original) dimensional space, essentially reducing the number of variables that
describe the data. The concept of projection (dimensionality reduction) relies
on the fact that the some signals can be (approximately) described using less
parameters than the number of parameters used to describe an arbitrary signal
of the ambient signal space. We should note that formally, a projection is a lin-
ear function 2 Φ : Rn → Rm, m < n. The main motivations behind employing
dimensionality reduction is the speedup of the data processing and the reduced
requirements in storage space and memory.

Essentially, the objective is to design a suitable projection such that the
low-dimensional signal retains a significant amount (in the ideal situation all)
of the information content of the original signal. Generally, that is impossible,
as for the projection matrix it holds that null(Φ) 6= {0} (when m < n, which
in our case holds). As a result, several signals share the same low-dimensional
projection, i.e Φ · x = Φ(x + z), ∀z ∈ null(Φ). Consequently we need to
consider subsets of the signal space, i.e signal models, hoping that we will be
able to construct projections that preserve information in these models. In order
to construct these projections it is important to be able to describe the ability
of projections to preserve the information content of signals. One such notion
is that of a stable embedding.

Definition 1.3.1 (Stable embedding). [BCW10] Let U = Rn be the signal
space, x ∈ U an arbitrary signal and S ⊆ U a signal model. A stable embedding
on S is a projection Φ : Rn → Rm, m < n such that the following two conditions
hold

1. Φ · x1 6= Φ · x2, ∀x1, x2 ∈ S

2. It approximately preserves the distances between all the points of S.

Essentially, a stable embedding is a projection that approximately preserves
the distances between all the points of a signal model [BCW10]. This property
of stable embeddings results to robustness to noise. We want to construct stable
embeddings for certain classes of signal models, since in the general case this is
impossible. An important direction towards that goal is to use random matrices,
which will constitute a major part of this thesis.

The main questions that emerge in the development of stable embeddings
for signal models are the following. [BCW10]

• What is the smallest dimension m of the lower dimensional space for which
we can attain a stable embedding?

• How to construct the proper projection matrix, that provides the stable
embedding?

We are going to answer these questions for the sparse signals model in the next
chapters. Specifically, we are going to provide bounds for the values of m, with

2We restrict our attention to linear projections, although non-linear projections are used in
data sciences. The reason is simplicity, since in this part our aim is to highlight the conceptual
aspects of the topic

6

respect to the other parameters of the problem (e.g level of sparsity). Also, we
are going to establish that several classes of random matrices provide, under
certain conditions, a stable embedding for sparse signals.

Consequently, we can say that one of the main concepts underlying this thesis
is the power of randomness to provide information preserving embeddings for
specific classes of signal models. This also highlights another important aspect,
that of discovering and exploiting the underlying structure of data, i.e finding
the low-dimensional model that describes adequately the data. In a nutshell,
random projections and low-dimensional structure are two of the main keywords
characterizing this thesis.

7

8

Chapter 2

Sparse vectors

2.1 Introduction

Probably the most important and popular low-dimensional signal models are the
sparse signal models. Some of the basic elements, results and tools concerning
these models were developed several decades back, however the field witnessed a
research explosion in 2004 that continues to present day. The attention the field
received recently is due to the contributions of Candes, Tao [CT05] and Donoho
[Don06], around the middle of the previous decade. The study of sparse signals
led to a revolution in signal processing and data sciences, that produced new
techniques, ideas and tools as well as solutions in many problems that could not
be addressed previously.

The study of sparse signals is an interdisciplinary field of research, as it
attracts scientists from different communities, such as machine learning, signal
processing, imaging, statistics and applied mathematics. Also, it has proven
very useful in practice as many application arose in different fields, including
but not limited to computational biology, image processing, machine learning,
telecommunications, radars, medical imaging, etc. The study of this field of
research requires a solid theoretical background in linear algebra, probability
theory, optimization theory, functional analysis and other fields depending on
the specific problem.

2.2 Sparse and compressible signals

We are going to begin with the definition of a sparse signal.

Definition 2.2.1 (Sparse signal). A vector x ∈ Rn is called k-sparse if it’s
non-zero entries are at most k, i.e card(supp(x)) ≤ k.

The set of all k-sparse signal is denoted as Σk. Also note that this is an
idealized model in the sense that there are no sparse signals in reality, only
signals that are approximately sparse. We are going to define an extension of
sparse signal models that describes approximately sparse signals.

From a geometric point of view the set of all k-sparse signals is a union of
subspaces. The k-sparse signals model accounts for all the

(
n
k

)
different ways to

pick the k non-zero elements of the arbitrary k-sparse vector. Every different

9

way defines a subspace spanned by the basis vectors corresponding to the chosen
indices. Notice that each subspace covers the case that the vector possess at
most k non-zero elements in the respective positions. Consequently, taking into
account all the possible ways we end up with a union of subspaces.

In order to capture the model of signals that are approximately sparse we
introduce compressible signal models. Before we proceed with the definition of
a compressible signal we must define the lp error of the best k-term estimate of
a signal vector.

Definition 2.2.2 (lp error of the best k-term estimate). [FR13] The lp error
of the best k-term estimate of a signal vector x ∈ Rn, with p > 0, is given by

σk(x)p := inf
z∈Σk

‖x− z‖p.

It turns out that the best k-term estimate of an arbitrary vector x ∈ Rn
is simply the vector that is created by choosing the k larger elements of the
original vector x. Assuming that we have arranged the elements of the vector
x in descending order, for the lp error of the best k-term estimate of x, we get
obtain [Boc+15]

σk(x)p =


(

n∑
i=k+1

|xi|p
)1/p

, p ∈ (0,+∞)

xk+1 , p = +∞
.

Now we can define a compressible signal vector. Roughly, a signal vector
x ∈ Rn is called compressible if the lp error of its best k-term estimate, for some
p > 0, decays quickly with respect to k. More formally we have the following
definition.

Definition 2.2.3 (Compressible signal). [BCW10] A signal vector x ∈ Rn is
called compressible, if there exists R > 0 and p ≤ 1 such that it holds

|xi| ≤ Ri−1/p, 1 ≤ i ≤ n,

where we have assumed that the components were sorted in descending order.

Essentially the set of compressible signals is the set of signals that can be
successfully approximated by sparse ones. There are several examples of sparse/
compressible signals. One of the most characteristic example is provided below.

Many real-world images are (approximately) sparse in specific bases, such as
the Direct Cosine Transform (DCT) basis or the wavelet basis. This attribute of
images is exploited by the JPEG-2000 standard. Assuming that we represent an
image as a vector (by putting each column of the image’s matrix sequentially),
with each entry describing the grey-level intensity, the JPEG-2000 standard
transforms the image vector to the wavelet domain in which the signal contains
a small number of large coefficients. The final image is acquired by keeping those
large coefficients and putting the rest to zero. As a result, there is a significant
gain in storage space with only a small deterioration in the image’s quality.

10

2.3 Signal dictionaries

In our exposition a signal is a vector x ∈ Rn in the vector space Rn. As a result,
Rn admits a basis, in which x can be written in a unique way. In other words,
every signal vector x can be written as a linear combination of the independent
elements of a basis. There are many bases which can be used to describe a
given vector space. In this thesis the vectors represent signals, so we are going
to introduce some extra terms. In the nomenclature of signal processing the
generalization of the basis is called a dictionary and the elements of the basis/
dictionary are called atoms. [The15]

Definition 2.3.1 (Dictionary). A dictionary is a set of elementary signal vec-
tors ψi ∈ Rn, i ∈ I, not necessarily independent, that span a signal space. The
elements of the dictionary are called atoms.

The dictionaries can be characterized as complete and overcomplete. The
definition of these terms follows.

Definition 2.3.2 (Complete and overcomplete dictionaries).

• A dictionary is called complete if it consists of n (usually orthonormal)
independent signal vectors ψi ∈ Rn, 1 ≤ i ≤ n. An arbitrary signal x can
be written using the atoms of a complete dictionary in an unique way.

• A dictionary is called overcomplete if it consists of more than n signal vec-
tors ψi ∈ Rn, i ∈ I, i.e more vectors than the dimension of the underlying
vector space. The atoms are dependent, as their number is greater than
the dimensionality of the underlying vector space. There are many ways
to express an arbitrary signal x in such dictionaries.

We can express a signal x ∈ Rn in a given (overcomplete) dictionary Ψ as

x = Ψθ

or

x =
∑
i∈I

θiψi,

where {θi} , i ∈ I are the coefficients of the signal in the dictionary Ψ and
{ψi} , i ∈ I (the columns of matrix Ψ) the atoms of the dictionary. In general
there is no unique set of coefficients {θi} , i ∈ I when we use an overcomplete
dictionary. While it might seem that the existence of overcomplete dictionaries
is mathematically flawed, since it abuses the properties of a vector space basis,
there is a mathematical concept that describes these kind of dictionaries. This
generalization of a basis is called a frame. [KC07]

Probably the most characteristic example is the Discrete Fourier base; the
base that corresponds to the Discrete Fourier transform (DFT). If we put the
DFT basis vectors as columns in a matrix we formulate the DFT matrix Ψ.
Notice that Ψ is an orthogonal matrix as DFT is an orthogonal transformation,
i.e its basis vectors are orthogonal to one another.

Given a set of signal vectors, {xi}1≤i≤s, we can formulate the problem of
finding an (overcomplete) dictionary in which all the vectors admit a sparse
representation. This task is called dictionary learning and it has the potential
to enhance performance in many applications.

11

Sparse
signal vector

(θ ∈ Rn)

Signal vector
(x ∈ Rn)

Measurements
(y ∈ Rm)

Synthesis (Ψ ∈ Rn×n)

x = Ψθ

Measurement/ Sensing (Φ ∈ Rm×n)

y = Φx+ e

Reconstruction/Recovery

x̂

Analysis (ΨT ∈ Rn×n)

θ = ΨTx

Figure 2.1: The big picture of the sparse vector recovery problem.

2.4 The big picture of sparse recovery

In this section we are going to give an outline of the setting (i.e the big picture)
of the sparse recovery problem and define the basic elements that comprise it.
This presentation aims at collecting the basic concepts and terms in one place.
Figure 2.1 contains the basic elements and operations of the problem aside with
the necessary terminology. Do not take this figure too literally or stick to the
exact notation and meaning, as some things may be used differently at a later
stage.

The signals depicted in figure 2.1 are the following.

• Signal vector (x ∈ Rn)
The unknown signal vector, x ∈ Rn, that we observe through a linear
measurement process. It is the signal we want to (implicitly, through esti-
mation of θ) estimate based on the set of measurements y and exploiting
the fact that there exists a basis Ψ in which x is sparse. It belongs to
a high dimensional signal space (with respect to the dimension m of the
measurements space) and we assume that is given in the canonical basis,
in which the signal is not necessarily sparse.

• Observations/Measurements/Samples (y ∈ Rm)
The observations vector y ∈ Rm that results from sensing x with a mea-
surement matrix Φ. It is a vector residing in a low dimensional space (with
respect to the dimension n of the signal vector x).

• Sparse signal vector (θ ∈ Rn)
The signal vector x ∈ Rn expressed in a basis where it is sparse. It is
the signal that we want to estimate given the observations y and the
knowledge that x admits a sparsifying basis, in which it is represented as
θ.

The basic operations we present are the following.

• Change of basis/Transformation (Ψ, ΨT)
These matrices represent the change of basis matrices for the signal vectors
x and θ. For simplicity we assume that the dictionary used is complete
and orthogonal and so the transformations are represented by orthogonal
matrices. As a result, it holds that Ψ−1 = ΨT and consequently we have
that x = Ψθ (Synthesis) and θ = ΨTx (Analysis).

12

• Sensing/Measurement/Sampling/Projection/Dimensionality reduction (Φ)
The sensing matrix Φ that is used to perform the linear measurements pro-
cess1. The operation of measurement is y = Φx in the noiseless case and
y = Φx + e in the noisy one, where the vector e ∈ Rm represents the
noise.

• Recovery/Reconstruction
Recovery constitutes the inverse operation of sensing. This process aims
at estimating successfully the original signal vector, given the observations
y and the prior knowledge that the signal vector is sparse in some basis.

Now that we have described the basic components of the problem we are
dealing with we are going to formulate the corresponding mathematical problem.
In the noiseless case the following formulas hold

x = Ψθ, (2.1)

y = Φx. (2.2)

Combining the equations (2.1), (2.2) we get

y = Φx = ΦΨθ ⇒ y = Aθ,

where A = ΦΨ.
The problem we are dealing with is the sparse vector recovery problem and

can be stated as follows: We are given a signal vector x0 ∈ Rn, which is k-
sparse in some basis Ψ ∈ Rn×n and can be represented as θ0 ∈ Σk on it, and a
measurement matrix Φ ∈ Rm×n. We perform a measurement that is described
as follows, depending on the presence of noise:

• y = ΦΨθ0 = Aθ0 (noiseless case)

• y = ΦΨθ0 + e = Aθ0 + e, ‖e‖2 ≤ ε (noisy case)

The problem is, given A and y, to successfully reconstruct the sparse signal
vector θ0 and consequently x0. The exact meaning of success depends on the
type of scenario we are dealing with. As a result, we have the following recovery
concepts, where we denote the recovered vector (the estimate) as θ̂ :

• Exact recovery, if θ̂ = θ0, in the noiseless case

• Robust recovery, if ‖θ̂ − θ0‖ is small (for some norm), in the noisy case.
Roughly, we want the error to scale moderately with respect to the noise
level ε.

Also, another extension of both scenarios, the noiseless and the noisy one,
that we are going to consider refers to the possibility that the signal vector x0 we
measure and we want to reconstruct is only approximately sparse (compressible).

In that case we care about the stability of the solution θ̂, i.e the estimation error

1Essentially every observation is a linear combination of the elements of the unknown signal
vector, expressed as the inner product of the signal vector with some row of the measurement
matrix, i.e yi = φT

i θ, i = 1, . . . ,m. That is the reason we refer to sensing as a linear
measurement process.

13

‖θ̂ − θ0‖ to scale slowly with respect to the approximation error σk(θ)p of the
compressible vector by a sparse one. In order to avoid confusion we are going to
postpone the analysis of the noisy case and the discussion about stability issues.

Therefore, in the noiseless case we end up with the following underdeter-
mined system of linear equations, whose solutions we seek.

y = Aθ, A ∈ Rm×n, y ∈ Rm, θ ∈ Rn, m < n.

This system is underdetermined and as a result it admits an infinite number
of solutions. The fact that allows us to overcome this obstacle is the prior
knowledge that x is sparse in some basis. It is possible that the system, under
certain conditions, admits a unique sparse solution, the original sparse signal θ.
We are going to study this possibility, as well as the specific conditions in the
next sections.

2.5 Underdetermined system of linear equations

As we mentioned previously the mathematical problem that lies behind the
sparse signal recovery problem is the solution of an underdetermined system of
linear equations, given the constraint that the solution we seek is sparse. First
of all, we are going to study the general solution of the unconstrained problem.
Therefore, we have [The15]

y = Aθ, A ∈ Rm×n, y ∈ Rm, θ ∈ Rn, m < n. (2.3)

Without loss of generality we assume that matrix A has full row rank, so
it describes m independent linear equations of n variables. Obviously the set
of solutions is infinite. Specifically, each equation defines a hyperplane in the
n-dimensional space. Notice that the hyperplanes are non-parallel as a result
of the linear independence of the respective equations. So the solutions set is
created by the intersection of the m hyperplanes in the n-dimensional space. As
a result, the intersection is a (n −m)-dimensional hyperplane. We denote the
solution set as

Θ =
{
θ ∈ Rn : yi = aTi θ, i = 1, . . . ,m

}
,

where aTi denotes the rows of A.
Equivalently this set can be written as

Θ = θ0 + null(A),

where θ0 is a solution of (2.3). We can easily see that if we consider a fixed
solution θ0 and an arbitrary solution θ of system (2.3). Then we have that

A (θ0 − θ) = 0⇒ θ0 − θ ∈ Null(A)⇒ θ = θ0 +Null(A).

In order to obtain the solutions of the constrained system of linear equations
we are going to employ our intuition in finding the correct solution strategy.
Probably the first idea that comes in mind is to search in the set of all possi-
ble solutions of the unconstrained system and pick the solutions that have the
smallest number of non-zero elements. In the following subsection we are going
to formulate that idea as an optimization problem.

14

2.6 The optimization tasks of sparse recovery

We are going to reduce the problem of (noiseless) sparse recovery to the solution
of an optimization task of the form

minimize
θ∈Rn

‖θ‖p

subject to y = Aθ.
,

where ‖·‖p is some lp norm. Actually, we are going to evaluate three different
optimization tasks, corresponding to p = 0, 1, 2.

The setting in which we study the optimization tasks is the following: Sup-
pose that we have a signal vector x0, which admits a sparsifying representation
θ0 ∈ Σk. We measure the signal x0 and as a result we obtain the observations
y = Φx0 = Aθ0, where A = ΨΦ. At many points we are going to consider
the optimization tasks as algorithms that admit as input the matrix A and the
observations y and produce as output an estimate θ̂ of the vector θ0. Then we
can obtain an estimate of the original signal vector, x̂ = Ψθ̂. Also, note that we
are going to treat matrix A as the measurement/sensing matrix that measures
the sparse signal vector θ0, although we described it differently in the previous
section.

2.6.1 l0 norm

The analysis in this part relies on the notion of the l0 norm. The l0 norm
is defined as ‖θ‖0 = card(supp(θ)). However, it is important to stress that
technically the l0 norm is not valid, as it does not satisfy all the necessary
conditions in order to constitute a norm. Nevertheless, we are going to use the
term ”l0 norm” keeping though in mind this technicality.

A first idea in the direction of solving the problem is described by the fol-
lowing optimization task.

Definition 2.6.1 (l0 minimization task).

minimize
θ∈Rn

‖θ‖0

subject to y = Aθ.

Essentially, what the l0 minimization task does is from the set of all possible
solutions of the system of linear equations y = Aθ returns the solutions that
have the smallest l0 norm, i.e the sparsest ones. Clearly we hope that there is
only one solution that exhibits the smallest l0 norm, the one that was sensed
(θ0) and its respective measurement y = Aθ0 was given as input along with
matrix A.

This problem is NP-hard in the general case, where we consider as possible
input all the matrices A ∈ Rm×n and observations vectors y ∈ Rm. The im-
portant issue here is whether the output of the l0 minimization task returns a
unique and correct sparse solution in all possible cases. The answer is no, since
problems can occur if, for example, we pick the measurement matrix A in a way
that will project (at least) two sparse signals (where one of them is the true
signal; the one that was sensed and we seek to reconstruct) to the same vector
in the low dimensional space.

15

More formally we have the following theorem that characterizes the adequacy
of l0 optimization task in recovering sparse vectors from linear measurements.
[FR13]

Theorem 2.6.1. Let A ∈ Rm×n be a matrix. Then the following statements
are equivalent.

1. For every θ0 ∈ Σk, it holds that θ0 is the unique k-sparse solution of the
linear system y = Aθ, where y = Aθ0 and θ ∈ Rn.

2. For every θ0 ∈ Σk, it holds that θ0 is the unique solution of the l0 mini-
mization task

minimize
θ∈Rn

‖θ‖0

subject to y = Aθ
,

where y = Aθ0.

3. For the matrix A ∈ Rm×n it holds that

KerA ∩ Σ2k = {0} .

Essentially, the previous statement provides a necessary and sufficient con-
dition for a measurement matrix A that ensures that every k-sparse vector can
be successfully reconstructed using (2.6.1), after sensing using A. Also, it says
that if the system of equations has a unique k-sparse solution then the l0 min-
imization task will find it. Finally, it is worth noting that for the number of
measurements m that are necessary in order to reconstruct every k-sparse vec-
tor, using the same matrix, we can deduce that (at least in principle) m ≥ 2k
observations are sufficient.

Consequently, regarding its ability to provide a unique and correct sparse
solution we notice that this task captures the notion of finding the sparsest
solution, but fails to deliver the solution we seek in all cases. It only works
under certain conditions, depending on the choice of the measurement matrix
A. Nevertheless, even in the case where the conditions will proven to be relaxed
enough for us to claim that the correct solution is obtained in all practical
situations, the computational intractability renders this task useless. As a result,
we need to resort to a different approach.

2.6.2 l2 norm

One idea in order to mitigate the intractability of the previous optimization
task is to relax our objectives, deviating from the task that captures the notion
of finding sparse vectors, hoping though that in many (practical) cases the new
task will provide the correct solution. One such relaxation is contained in the
following optimization task.

Definition 2.6.2 (l2 minimization task).

minimize
θ∈Rn

‖θ‖2

subject to y = Aθ.

16

The solution of this problem is unique and is given by the closed form ex-
pression [The15]

θ = AT (AAT)−1y.

It is straightforward that this problem is computationally feasible as com-
puting its solution requires only matrix multiplications and inversions, tasks for
which we possess efficient algorithms. Again the important question is whether
the l2 minimization task provides a unique and correct sparse solution. Although
a unique solution is guaranteed, this solution is not necessarily the correct one,
the one that was sensed. Actually in many cases the l2 minimization task it
doesn’t even return sparse solutions. Hence, the l2 optimization task does not
have practical value for our problem and so we are going to omit a more detailed
analysis.

Consequently, this task, although computationally tractable, it does not
always provides us with sparse solutions. So we are forced to consider another
relaxation.

2.6.3 l1 norm

The middle ground between the previous two optimization tasks is the l1 min-
imization task.

Definition 2.6.3 (l1 minimization task).

minimize
θ∈Rn

‖θ‖1

subject to y = Aθ.

This problem can be reduced to a linear programming task, which is a prob-
lem that belongs to complexity class P . Thus, there are several efficient algo-
rithms which can be used to obtain the solutions of such tasks (e.g interior point
methods, simplex methods).

The main question here is whether the l1 minimization task can provide us
the correct sparse solution. As anyone by now might have anticipated the answer
is: under certain conditions, depending on the choice of the sensing matrix A.
The different outcomes of the l1 minimization task are the following

• An infinite number of solutions

• A unique sparse solution, but not the correct one

• The correct sparse solution (unique solution).

The different outcomes highlight the importance of choosing the proper sens-
ing matrix. Figure 2.2 illustrates these three different cases. Next, we are going
to present a necessary and sufficient condition for matrix A, such that the l1
minimization task returns the correct sparse solution, for every possible k-sparse
vector θ ∈ Rn given as input. The condition we will discuss is called the null-
space property.

17

θ0

θ1

finds correct solution
θ1

θ0

finds wrong solution

the correct sparse solution

θ0

finds an infinite number of solutions

Figure 2.2: The three different scenarios that can arise in the sparse vector
recovery problem using the l1 minimization task. Suppose that we have n =
2, m = 1, θ0 is the 1-sparse vector we sense and θ1 some other 1-sparse
vector. (a) The l1 minimization task finds the correct sparse solution. (b) The
l1 minimization task finds a 1-sparse solution but not the correct one (θ0). (c)
The l1 minimization task returns an infinite number of solutions including the
correct one. It is obvious that only case (a) is considered successful. The figure
is based on [The15].

Definition 2.6.4 (Null-space property of order k). [FR13] Let A ∈ Rm×n be
a matrix. We say that A satisfies the null space property of order k if it holds
that

‖xS‖1 < ‖x[n]\S‖1, ∀x ∈ KerA \ {0} and ∀S ⊆ [n] with card(S) ≤ k, (2.4)

where [n] = {1, 2, . . . , n}.

Now we can state the following theorem that links the null space property
with exact recovery of sparse vectors using the l1 minimization task.

Theorem 2.6.2 (Null-space property and exact recovery). [Cha+12a] Let A ∈
Rm×n be a matrix. The following statements are equivalent

1. For every θ0 ∈ Σk, it holds that θ0 is the unique solution of the l1 mini-
mization task, with y = Aθ0.

2. The null space property of order k holds for matrix A.

2.7 Compressed sensing

One possible way to exploit the fact that a signal is sparse in some basis is in
data compression schemes. To illustrate that we consider the following example.
Suppose that we have a signal x ∈ Rn that is (approximately) sparse in some
basis, where it is expressed as θ ∈ Rn. Essentially, that means that we have
performed a sampling procedure before that resulted in n observations (the n
elements of vector x). We want to exploit the signal’s sparsity in order to
compress it. We use the following steps in order to do that. [The15]

1. Transform the signal to the basis where it admits an approximate k-sparse
representation. That is performed by θ = Φx.

18

2. Keep the k largest values of θ and encode their locations and their values.
We can store a compressed version of the original signal using the previous
encoding.

3. Create the signal vector θ0, where the vector θ0 is equal to θ in the
positions that correspond to the k largest elements of θ and 0 in the rest.
Using the inverse transform x0 = ΦTθ0 we can obtain an approximate
version x0 of the original signal x ∈ Rn, when this is necessary.

The previous procedure appears to be effective for compressing (approxi-
mately sparse) signals, but there is one thing that needs further consideration.
We sample/measure n elements of a vector x ∈ Rn, but in the end we keep only
k of the coefficients, where usually k << n. That makes us wonder whether
we can do better. What if we managed to sample less than n elements of the
n-dimensional signal x, just enough in order to provide us with the k coeffi-
cients that adequately describe the signal in the sparsifying basis? That is the
motivating idea that gave birth to the field of Compressed sensing or Compres-
sive sampling. Ideally we would like to obtain a number of samples m close to
k << n (obviously k < m must hold). In other words, we directly obtain a re-
duced number of samples, merging the steps of compression and sampling, that
is the lowest possible, such that the information content of the signal (contained
in the k largest coefficients) is preserved.

Compressed sensing is essentially a technique in signal processing. Leaving
for a moment aside the exact formulation of the sparse recovery problem we used
until now and considering it in a more general framework we have the following
characteristic example that we should not omit from our exposition. We know
from Nyquist’s sampling theorem that in order to be able to perfectly recon-
struct a bandlimited (continuous-time) signal we must sample it with sampling
frequency fs ≥ 2f , where fs is the sampling frequency and f is the highest
frequency of the signal. We call the smallest possible sampling frequency, i.e
fN = 2f , Nyquist frequency. The field of compressed sensing essentially claims
that given that the signal is sparse in some (continuous) basis (e.g Fourier basis)
we can sample it with frequency lower that the Nyquist frequency and be able to
perfectly reconstruct it. This capability is important in cases where the signals
are wideband.

2.8 Measurement matrices

One of the most important aspects of the field of sparse recovery is that of
designing the suitable measurement matrix. It is crucial to design the proper
measurement matrix as it is the main factor that determines whether we can
recover the correct sparse solution. Essentially, what we need is a measurement
matrix that provides a stable embedding for the set of k-sparse vectors. In order
to evaluate the capability of an arbitrary measurement matrix in performing a
stable embedding we introduce two measures. The two measures are given
below.

1. Coherence

2. Restricted isometry property

19

2.8.1 Coherence

A measure that characterizes the ability of a matrix to provide a stable embed-
ding for the class of k-sparse vectors is mutual coherence. The definition is given
below.

Definition 2.8.1 (Mutual coherence). [The15] Let A ∈ Rm×n be an m × n
matrix and ai, 1 ≤ i ≤ n be the columns of A. The mutual coherence of A is
defined as

µ (A) = max
1≤i<j≤n

∣∣aTi aj∣∣
‖ai‖2‖aj‖2

.

Roughly, mutual coherence is a measure of orthogonality of the columns of
a matrix A. In other words, mutual coherence measures the ”correlation” or
”independence” between the columns of a matrix. In an orthogonal matrix A,
where the columns are orthogonal, the mutual coherence is µ (A) = 0. In non-
square matrices with (n > m), where full orthogonality is impossible, mutual
coherence shows how close a matrix is to an orthogonal one. Specifically for
the mutual coherence of an arbitrary matrix A it holds that 0 ≤ µ (A) ≤ 1. If
n > m then we can obtain an improved result, known as Welch bound,√

n−m
m(n− 1)

≤ µ (A) ≤ 1.

In the context of sparse recovery, the smaller the mutual coherence of a ma-
trix A, the better, in the sense of matrix A is able to handle greater levels of
sparsity and recovery becomes easier. Intuitively, we want the columns of the
measurement matrix to be as ”independent/uncorrelated” as possible (small
mutual coherence). Then in the formulation of the observations vector 2, each
component of the sparse signal vector is provided by a column, which has small
”correlation” with the other columns. Roughly that means that the information
encompassed in each component of θ is captured by a column that is ”uncor-
related” (”independent”) with the other columns, hence making the process of
separating these components and unveiling the information they contain easier.
As a result, a significant amount of the information content of the original signal
is preserved and recovery becomes easier.

2.8.2 Restricted isometry property

The Restricted Isometry Property (R.I.P) is probably the most important mea-
sure.

Definition 2.8.2 (Restricted Isometry Property (R.I.P) condition). [The15]
Let δk, 1 ≤ k ≤ n be the kth restricted isometry constant of a matrix A ∈ Rm×n.
It is defined as the smallest constant such that the following condition holds

(1− δk)‖θ‖22 ≤ ‖Aθ‖
2
2 ≤ (1 + δk)‖θ‖22, ∀θ ∈ Σk. (2.6)

2Note that the operation Aθ can be equivalently written as

y = Aθ =

n∑
i=1

θiai, (2.5)

where ai, 1 ≤ i ≤ n are the columns of A.

20

Roughly, we say that the Restricted Isometry Property of order k holds
if equation 2.6 holds and δk is sufficiently smaller than one. Essentially, if a
measurement matrix satisfies the R.I.P that means that the l2 norm of the
projection of every k-sparse vector is approximately preserved. Also, note that
we want the measurement matrix A to satisfy the R.I.P with as high k as
possible, since that means that it is capable of providing information preserving
projections for a wider range of sparsity levels.

It is easy to see that if the measurement matrix A manages to provide a
projection with a certain accuracy for some sparsity level k, it can also provide
at least the same accuracy to vectors with smaller levels of sparsity. Hence, for
the R.I.P constants it holds that

δ1 ≤ δ2 ≤ · · · ≤ δk ≤ δk+1 ≤ · · · ≤ δn. (2.7)

We also consider another form of the R.I.P. Let θ1, θ2 ∈ Σk be two k-sparse
vectors. Then, θ1 − θ2 is a 2k-sparse vector, so the R.I.P condition takes the
following form.

(1− δ2k)‖θ1 − θ2‖22 ≤ ‖A(θ1 − θ2)‖22 ≤ (1 + δ2k)‖θ1 − θ2‖22. (2.8)

If a measurement matrix satisfies the R.I.P of order 2k, i.e expression (2.6)
holds with δ2k sufficiently small, then the expression (2.8) dictates that the l2
distances between every pair of k-sparse vectors are approximately preserved
after the projection in the lower dimensional space. Thus, we can see that when
the R.I.P holds it is straightforward that the projection provided by A is a stable
embedding for the class of k-sparse vectors.

Matrices that obey the R.I.P

Establishing the R.I.P for a general matrix is a difficult task. Therefore, we need
to find classes of matrices for which the R.I.P can be evaluated in an efficient
way. Perhaps the most important class of matrices that obey, under certain
conditions, the R.I.P are specific classes of random matrices.

Several characteristic classes of random matrices for which, under certain
conditions, the R.I.P holds with high probability are the following. [FR13]
[CW08]

• Gaussian random matrices
A (normalized) Gaussian random matrix is a matrix A ∈ Rm×n, whose
entries are i.i.d Gaussian random variables with mean µ = 0 and variance

σ2 =
1

m
, i.e Ai,j ∼ N (0,

1

m
).

• Bernoulli random matrices
A (normalized) Bernoulli random matrix is a matrix A ∈ Rm×n, whose en-
tries are i.i.d Bernoulli random variables. The Bernoulli random variables
in this case take the following values

Ai,j =


1√
m

with probability 1/2

− 1√
m

with probability 1/2
.

21

• Subgaussian random matrices
A (normalized) subgaussian random matrix is a matrix A ∈ Rm×n, whose

entries are i.i.d subgaussian random variables, i.e P [|Ai,j | > t] ≤ e−t2/2,∀t >
0. Note that the previous two classes are special cases of subgaussian ran-
dom matrices.

One might have noticed that in the scenario we described earlier we can
freely choose the measurement matrix, but we obviously do not have a choice
on the transformation matrix, since we cannot pick the basis in which the signal
is sparse. As a result, we cannot completely specify matrix A = ΦΨ. At first
this seems to be a problem as we need to specify the matrix Φ with respect to
Ψ, in order for the R.I.P to hold for the matrix A = ΦΨ. However, in many
cases, this is not a problem. For example, the classes of random matrices we
mentioned before provide a universal choice of projection matrices that work
for any orthonormal basis, i.e matrix A = ΦΨ satisfies the R.I.P, when Φ is a
suitable random matrix and Ψ is some orthogonal dictionary. Hence, we can
choose the matrix Φ independently from the orthogonal basis matrix Ψ.

Random matrices offer a practical way to construct matrices that provably
obey the R.I.P with high probability. Establishing that under certain conditions
the R.I.P holds for subgaussian matrices is going to be one of the main topics of
the second part of this thesis, so we postpone the detailed analysis of the above
topic for the next chapters.

2.9 Reconstruction schemes

The are several types of algorithms/reconstruction schemes for sparse recovery.
The most important ones are the following. [The15]

1. Greedy algorithms

2. Convex optimization algorithms

3. Iterative shrinkage algorithms

We are going to evaluate the following aspects of the sparse recovery algo-
rithms. [FR13]

1. Computational complexity
A very important aspect of an algorithm is its computational complex-
ity, that is the amount of computational resources it requires in order
to provide an output, with respect to input size and other parameters.
Specifically we care about time complexity, i.e roughly the number of
steps required in order to compute the solution, with respect to the input
size.

2. Stability
Stability concerns the ability of the reconstruction scheme to provide sat-
isfactory solutions in cases where the signal vector is not exactly sparse,
but it is compressible. It is logical to demand from an algorithm to work
successfully in more realistic scenarios (remember that in reality there are
no sparse signals), in the sense of introducing an estimation error that is

22

controlled by the approximation error of the compressible signal vector by
a sparse one.

3. Robustness
Robustness refers to the ability of an algorithm to tolerate errors intro-
duced to the measurement process, either by noise or by our inability to
measure a quantity with infinite precision. We expect that the estimate
produced by a robust algorithm to deviate from the correct value by an
amount that is controlled by the measurement error.

It is vital for the reconstruction algorithms to possess the last two qualities
and at the same time to be able to work fast in order to have practical signif-
icance. In the opposite case the algorithm cannot be applied to practical situ-
ations and has purely theoretical significance. Taking into consideration more
realistic scenarios we modify the formulation of the sparse recovery problem in
order to accommodate for noise, measurement inaccuracies and compressible
vectors.

For the noisy case we know from section 2.4 that y = Aθ+ e, ‖e‖2 ≤ ε and
as result we have that

‖y −Aθ ‖2 ≤ ε (2.9)

Therefore, we develop an extension of the l1 minimization task (2.6.3), which
we call noisy or robust l1 minimization task. [The15]

Definition 2.9.1 (noisy l1 minimization task).

minimize
θ∈Rn

‖θ‖1

subject to ‖y −Aθ‖2 ≤ ε.
(2.10)

We should note that in this case seeking a unique sparse solution no longer
makes sense. Instead, the main issues here are robustness and stability (the last
aspect was already an issue in the noiseless case). In other words, we expect
from the algorithms that solve the previous task to be able to withstand noise
and deviations from the sparse signal model, in the sense of introducing an
estimation error that is roughly controlled by the noise level ε and the lp error
of the best k-term estimate σk(θ0)p of the original signal θ0 (the signal that
was sensed).

We are going to study one typical example from each type of reconstruction
schemes. For every reconstruction scheme we will provide a theorem concerning
the estimation error of the respective scheme for arbitrary input, when given
some guarantee about the R.I.P constant of the measurement matrix. The
general formulation of that theorem would be as follows.

Theorem 2.9.1 (Sufficient condition for robust and stable recovery). [FR13]
Suppose that the restricted isometry property of order rk holds for a matrix
A ∈ Rm×n, with constant δrk < δ < 1. Then for any θ ∈ Rn an output θ̂
of algorithm Alg, with input A, y = Aθ + e and ε satisfies the following error
bounds

‖θ − θ̂‖1 ≤ C0σk(θ)1 + C1

√
kε (2.11)

23

and

‖θ − θ̂‖2 ≤ C0
σk(θ)1√

k
+ C1ε, (2.12)

where C0, C1 are constants that depend only on δrk.

For every reconstruction scheme Alg we consider we provide the estimation
error in the form given in the above theorem (with different constants C0, C1

for each scheme), for specific choices of the R.I.P constant (r and δ, different
for every scheme). It is straightforward to see that the algorithm Alg, under the
condition that the theorem 2.9.1 holds for a reasonable R.I.P constant (δ < 1),
is stable and robust as the estimation error scales moderately with respect to
the approximation error σk(θ)1, the noise level ε, as well as the sparsity level k.
As a result, the algorithms that satisfy theorem 2.9.1 with a reasonable R.I.P
constant are considered successful.

2.9.1 Greedy algorithms

In general, a greedy algorithm is an algorithm that at each stage takes a locally
optimal choice, which may not necessarily lead to globally optimal solution,
although that is the final aim. A greedy algorithm for sparse reconstruction
[TW10] iteratively improves the current estimate of θ, using locally optimal
updates of its coefficients at each iteration, in order to reduce the estimation
error. There are several greedy algorithms for sparse reconstruction. Some of
them are the following

• Orthogonal matching pursuit (OMP)

• Least angle regression (LARS)

• Compressed sensing matching pursuit (CSMP)

– CoSaMP

– Subspace pursuit

The algorithm that we are going to study in more detail is Orthogonal Match-
ing Pursuit (OMP).

Orthogonal matching pursuit

Orthogonal Matching Pursuit is one of the oldest algorithms for sparse recon-
struction. A detailed description of OMP is provided next. [The15]

Orthogonal Matching Pursuit (OMP)

Input : Measurement matrix A ∈ Rm×n, observations y ∈ Rm.
Output : A k-sparse estimate θ̂ ∈ Rn.
Parameters :

• θ̂
(i)

: the i-sparse estimate at iteration i

• e(i) : the error at iteration i, i.e e(i) = y −Aθ̂
(i)

.

• S(i) : the support set at iteration i

24

• A(i) : the matrix formulated by considering the columns of A correspond-
ing to the indices of S(i), i.e the active columns

• ε : the termination tolerance

Algorithm:

1. Initialization

θ̂
(0)

= 0, e(0) = y, S(0) = ∅, i = 1.

2. Identification of the column maximally correlated to error vector

Select the column aji of A that exhibit the maximal correlation with the

error vector (e(i) = y − Aθ̂
(i)

) at the previous iteration. Specifically, we
pick the column

ji = arg max
j=1,...,n

∣∣aTj e(i−1)
∣∣

‖aj‖2
. (2.13)

3. Update of the support set

The support set at iteration i is

S(i) = S(i−1) ∪ {ji} .

4. Update of the sparse vector estimate

We can obtain the new estimate by solving the following least-squares
problem

θ = arg min
z∈Ri
‖y −A(i)z‖22.

Then we can obtain θ̂
(i)

by taking the elements of θ and inserting them in
the positions specified by the support set S(i), while setting the elements
in the other positions to 0.

5. Update of the error vector

The error at iteration i is

e(i) = y −Aθ̂
(i)
.

6. Condition check

The user picks a constant ε at the beginning as a termination tolerance.
If e(i) < ε then the algorithm terminates, else the algorithm moves back
to step 2.

Essentially, OMP is based on the idea that at iteration i the column which
exhibits the maximum correlation (equation (2.13)) with the error vector e(i−1)

is the one that leads to the highest reduction of the l2 norm of the error, when
taking into account all the active columns in the formulation of the new error
vector. Furthermore, notice that the error vector is orthogonal to the space

spanned by the active columns, i.e e(i) ⊥ {xj1 , . . . ,xji}, since θ̂
(i)

is the optimal
solution in the least squares sense. This property establishes that at the next

25

iteration the algorithm will not select a column that has already been chosen,
i.e an active column. [The15]

Also, notice that the algorithm after k iterations returns a k-sparse solution.
However, there is no guarantee that the final solution is a successful estimate
of the correct one. The only thing we know is that the error (in the l2 norm
sense) decreases at every iteration. Theorem (2.9.2) essentially provides some
conditions for matrix A under which OMP returns solutions with specific guar-
antees. Finally, the computational complexity of OMP is O(rnm), where r is
the level of sparsity of the final solution. [The15]

We provide a theorem containing a sufficient condition for robust and stable
recovery with OMP, as well as some performance bounds. [FR13]

Theorem 2.9.2 (Sufficient condition for robust and stable recovery with OMP).
Consider the scenario described in theorem (2.9.1) and suppose that the re-
stricted isometry property of order 13k holds for a matrix A ∈ Rm×n with con-
stant δ13k < 0.1666 (r = 13, δ = 0.1666). Then for Orthogonal Matching
Pursuit (OMP) theorem 2.9.1 is satisfied.

2.9.2 Convex optimization algorithms

Convex optimization algorithms offer an attractive approach for sparse recovery.
These algorithms solve convex optimization problems and therefore there are
polynomial time algorithms that can be used (e.g interior point methods). The
algorithm that we are going to discuss is robust l1 minimization.

Robust l1 minimization

Robust l1 minimization is simply the algorithm that solves the robust variant
of the familiar l1 minimization task we introduced previously as robust l1 min-
imization task.

Definition 2.9.2 (robust l1 minimization). Let A ∈ Rm×n be a measurement
matrix and ε be the noise level. The optimization task robust l1 minimization
solves is

minimize
θ∈Rn

‖θ‖1

subject to ‖y −Aθ‖2 ≤ ε.
(2.14)

The following theorem contains a sufficient condition for robust and stable
recovery with robust l1 minimization. [FR13]

Theorem 2.9.3 (Sufficient condition for robust and stable recovery with ro-
bust l1 minimization). Consider the scenario described in theorem (2.9.1) and
suppose that the restricted isometry property of order 2k holds for a matrix

A ∈ Rm×n with constant δ2k <
4√
41
≈ 0.6246 (r = 2, δ = 0.6246). Then robust

l1 minimization satisfies theorem 2.9.1.

2.9.3 Iterative thresholding algorithms

This class of algorithms can be considered an extension of the classical iterative
schemes for the solution of linear systems of equations, such as Gauss-Seidel

26

and Jacobi algorithms, to underdetermined systems of linear equations. The
general formula of the iterative scheme is the following [The15]

θ̂
(i+1)

= Fi

(
θ̂

(i)
+ Z(y −Aθ̂

(i)
)
)
, (2.15)

for some matrix Z. The function Fi is a nonlinear thresholding operator that
is applied component-wise. The two most notable choices for Fi is the hard-
thresholding operator and the soft-thresholding operator. The hard-thresholding
operator Hk acts on a vector and keeps its k largest elements unchanged, while
putting the rest of the elements to zero. The soft-thresholding operator Sa sets
to zero all the elements of the vector whose values are below the threshold a
and reduces the magnitude of the rest by a. Some basic iterative thresholding
algorithms are the following [FR13]

• Basic thresholding

• Iterative Hard Thresholding (IHT)

• Hard Thresholding Pursuit (HTP)

Iterative hard thresholding

Iterative hard thresholding (IHT) follows the formula (2.15) described before
with Fi = Hk and Z = δAT , for some parameter δ which may depend on
the iteration number. Roughly, choosing Z = AT makes sense since in sparse
recovery scenarios we want the measurement matrix A to be as orthogonal as
possible (low coherence) and therefore it holds that

y = Aθ ⇒ ATy = ATAθ ≈ θ.

A detailed description of IHT is provided next.
Input : Measurement matrix A ∈ Rm×n, observations y ∈ Rm, sparsity

level k
Output : A k-sparse estimate θ̂ ∈ Rn
Parameters :

• θ̂
(i)

: the estimate at iteration i

• ε : the termination tolerance

1. Initialization

θ̂
(0)

= 0.

2. Update of the estimate

θ̂
(i+1)

= Hk(θ̂
(i)

+AT (y −Aθ(i))),

where Hk is the hard-thresholding operator.

3. Condition check

If y − Aθ̂
(i)
< ε then the algorithm terminates, else the algorithm moves

back to step 2.

27

The following theorem contains a sufficient condition for robust and stable
recovery and an assessment of the estimation error of IHT. [FR13]

Theorem 2.9.4 (Sufficient condition for robust and stable recovery with IHT).
Consider the scenario described in theorem (2.9.1) and suppose that the re-
stricted isometry property of order 3k holds for a matrix A ∈ Rm×n with con-

stant δ3k <
1√
3
≈ 0.5774 (r = 3, δ = 0.5774). Then Iterative Hard Thresholding

(IHT) satisfies theorem 2.9.1.

2.10 Applications

The development of the theoretical aspects of sparse signal models led to many
practical applications. After all several of the tools used in this field were discov-
ered many years before and their creation was motivated by practical applica-
tions. The list of applications includes geophysics, sampling, machine learning,
radars, medical imaging, image processing, neuroscience, telecommunications,
computer vision, etc.

The study of sparsity led to significant advances in the solution of linear
inverse problems. We are going to give a characteristic example of how the
knowledge of sparsity allows us to solve an inverse problem that was previously
considered ill-posed. [The15] Suppose that we have a signal x ∈ Rn, which
admits a sparse representation θ ∈ Rn in a basis Ψ. Signal x suffers some
kind of distortion (e.g blurring in an image), a procedure described by a linear
operator D. Also, we consider some noise e and consequently the final signal
can be written as

y = Dx+ e = DΨθ + e. (2.16)

Solving the corresponding inverse problem entails obtaining a good estimate
θ̂ of θ, given D,Ψ and y. Then, we can estimate the original signal x, as
x̂ = Ψθ̂. Exploiting the fact that the original signal is sparse in some basis we
can formulate the solution of the inverse problem as a noisy l1 minimization
task, i.e

argmin
θ∈Rn

‖θ‖1

subject to ‖y −DΨθ‖2 ≤ ε.

The previous example can describe a wide range of situations, such as image
impainting, signal restoration, signal denoising, etc.

One of the most important applications of sparsity is in Magnetic Resonance
Imaging (MRI). MRI is a medical imaging technology that is used in tasks such
as brain imaging and angiography. It is able to produce pictures of the anatomy
and the processes of the human body using radiowaves and magnetic fields. As
a result, it does not expose the patients to harmful ionizing radiation. However,
the time required to obtain a high-resolution picture (in other words perform a
set of measurements) is generally high, ranging from several minutes to hours.
Compressed sensing can be employed to overcome this shortcoming by requiring
less samples and consequently reducing the time of an MRI scan.

28

Chapter 3

Low-rank matrices

3.1 Introduction

Low-rank matrices signal models are another important class of low-dimensional
models that captured the interest of machine learning’s community the recent
years and is currently a very active topic of research. Here the main problem of
interest is low-rank matrix recovery and especially a special case of this problem
called matrix completion. In matrix completion problems we are given a matrix
with missing entries and the objective is to complete those entries based on the
prior knowledge that the underlying matrix is low-rank. Low-rank matrix recov-
ery has numerous applications, including quantum mechanics, recommendation
systems, sensor networks and among others the famous Netflix problem.

3.2 Preliminaries about matrices

The main object of interest in this chapter are low-rank matrices. Therefore,
we need to introduce some basic definitions and results about matrices. A
fundamental quantity in linear algebra characterizing a matrix is rank.

Definition 3.2.1 (Matrix rank). Let M ∈ Rk×n be a matrix.

• The row rank of M is the greatest number of linearly independent rows of
M . Equivalently is the dimension of the row space, i.e the vector space
spanned by the rows of M .

• The column rank of M is the greatest number of linearly independent
columns of M . Equivalently is the dimension of the column space, i.e
the vector space spanned by the columns of M .

• The column rank and the row rank of M are always equal. This quantity
is also called rank and is denoted as rank(M).

3.2.1 Singular value decomposition

A very useful tool in linear algebra is Singular Value Decomposition (SVD),
which provides a factorization of a matrix M into three other special matrices. It

29

has numerous applications, especially in the field of machine learning. Formally,
the singular value decomposition of a matrix M is defined as follows.

Theorem 3.2.1 (Singular value decomposition). Let M ∈ Rk×n be a matrix
with rank(M) = r ≤ min(k, n). The singular value decomposition (SVD) of M
is

M = UΣV T

where

• U ∈ Rk×k is an orthogonal matrix, whose columns are the (normalized)
eigenvectors of MMT (left singular vectors).

• V ∈ Rn×n is an orthogonal matrix, whose columns are the (normalized)
eigenvectors of MTM (right singular vectors).

• Σ ∈ Rk×n is a (rectangular) diagonal matrix, whose first r diagonal entries
are the singular values of M , i.e σi =

√
λi, 1 ≤ i ≤ r (λi are the non-zero

eigenvalues of MMT), in descending order (σ1 ≥ σ2 ≥ . . . ≥ σr).

Also, we can write the SVD of a matrix M as

M = UrΣrV
T
r ,

where Ur ∈ Rk×r contains the first r columns of U , Vr ∈ Rn×r contains the first
r columns of V and Σr ∈ Rr×r is a diagonal matrix formulated by inserting
only the r non-zero singular values in the diagonal, in descending order. Using
this form we can see that the SVD can be expressed as a sum as follows

M =

r∑
i=1

σiukv
T
k , (3.1)

where ui, 1 ≤ i ≤ r and vi, 1 ≤ i ≤ r are the first r left and right singular
vectors respectively.

We can use the SVD of M to obtain the best l rank (with l ≤ r) estimate
of M , in the Frobenius ‖·‖F and spectral ‖·‖2, norm sense. This can be found
simply by keeping the first l elements of the SVD expansion (3.1), obtaining

M̂ =

l∑
i=1

σiukv
T
k .

The theorem that establishes that property of SVD is the Eckart-Young theorem.
The time complexity for obtaining the exact SVD of a k × n matrix is

O(min
{
kn2, k2n

}
). Therefore, computing the SVD is a tractable problem for

small and medium size matrices. However, for large data sets or problems where
online processing is required, computing the SVD is a difficult task.

Singular value decomposition can reveal several important aspects of low-
rank matrices, such as their geometry and the number of parameters that is
needed for describing them.[DR16] From a geometric point of view, the set of
k × n matrices with rank(M) = r, forms an uncountable union of subspaces in
Rk×n. First, notice that every outer product of singular vectors makes a k × n
matrix, i.e uiv

T
i ∈ Rk×n. Using expression (3.1) we can see that M is a vector

30

in the matrix vector space spanned by uiv
T
i , 1 ≤ i ≤ r ≤ kn and σi, 1 ≤ i ≤ r

are the respective expansion coefficients. Taking into account that the set of all
k × n matrices with rank(M) = r accounts for all the different values the 2r
left and right singular vectors can take (in a continuous domain) and the fact
that each different configuration of the singular vectors span a r-dimensional
subspace of Rk×n, we conclude that the collection of all k × n matrices, with
rank(M) = r, is a union of an uncountable number of r-dimensional subspaces.

Singular value decomposition unveils another intresting aspect. We notice
that every element σiuiv

T
i is fully specified by k+n+1 parameters. As a result,

the number of parameters fully characterizing a k×n matrix, with rank(M) = r,
are r(k + n+ 1). If r is relatively small we have that r(k + n+ 1) << kn, thus
the number of essential parameters of that matrix is much smaller than the
number of it’s entries. This succinct representation of a low rank matrix is
the element that make possible the recovery from a relatively small number of
measurements.

3.3 Low-rank matrix recovery

Let M ∈ Rk×n be a k × n matrix. A linear measurement operation on M is
modeled as [DR16]

y = A(M) + e, (3.2)

where y ∈ Rm is the observations/measurements vector, e ∈ Rm is the noise
vector and A : Rk×n → Rm is a linear measurement operator that acts as
follows:

yi =
〈
M,A(i)

〉
+ei = tr

(
A(i)TM

)
+ei =

k∑
j=1

n∑
l=1

MjlA
(i)
jl +ei, 1 ≤ i ≤ m, (3.3)

where the A(i), 1 ≤ i ≤ m are set of pre-defined matrices and ei is the respective
component of the noise vector.

In contrast to the sparse vector recovery problem, we are going to restrict
our attention to special kind of measurements and therefore to specific kinds of
recovery problems. The most notable cases are the following : [DR16]

1. Matrix completion

In the matrix completion scenario the matrices (A(i))1≤i≤m are defined as

A
(i)
jl =

{
1 , (j, l) = (s, t)

0 , (j, l) 6= (s, t)
, 1 ≤ i ≤ m (3.4)

for (si, ti) ∈ {1, . . . , k} × {1, . . . , n}. Essentially, we have a matrix M and
we observe only a subset of it’s entries. The objective is to recover the
matrix M , given the fact that M is low rank. In other words, the objective
is to complete the missing entries of the matrix.

2. Low-rank matrix recovery from random observations

In this scenario each A(i) is a random matrix. The most common case is
the one of Gaussian random matrices, where the entries of each matrix are

i.i.d Gaussian random variables with mean equal to 0 and variance
1

m
.

31

3. Low-rank matrix recovery from rank-1 measurements

In this case the matrices A(i) have rank 1. Characteristic examples of
problems that belong this category is phase retrieval and blind deconvo-
lution

The most important and well-studied scenario is matrix completion. Thus,
we are going to restrict our attention to that case only.

3.4 Matrix completion

As we mentioned previously, in a matrix completion problem we are given a
subset of the entries of a matrix M ∈ Rk×n and the knowledge that M is low-
rank. The objective is to complete successfully the missing entries of M . There
are several reasons why a matrix may have missing entries. First, the size of the
matrix may be large enough and as result observing the full matrix can be very
expensive. Also, it is possible that the missing entries is an intrinsic character-
istic of the problem we are dealing with, such as in the case of recommendation
systems, where it is practically impossible for every user to rate every possible
item.

In general, it is not always possible to complete a low-rank matrix and we are
going to study conditions that establish that the matrix can be completed with
high probability. Before we do that we must present a characteristic application
of matrix completion in order to motivate the development of this subject.

3.4.1 The Netflix problem

The most common example that accompanies a presentation about matrix com-
pletion is the Netflix recommendation system problem. We are going to give a
brief overview of this problem since it will proven to be useful to have a concrete
example to evaluate the soundness of our arguments. In that problem we con-
sider a set of users and a set of movies, where every user can rate any movie in
the movies set. We model that recommendation system using a matrix, where
each row corresponds to a different user and each column to a different movie.
Each entry Aij of the previous matrix corresponds to the rating given by user i
to movie j. Obviously, the rating matrix has missing entries, since in a realistic
scenario we are talking about thousands of movies and users and therefore it is
impractical for every user to rate every possible movie.

The problem that arises is to find a way to fill the missing entries of the
matrix, inferring this way the preference of users towards movies they haven’t
rated (from which a big portion of them most likely correspond to movies they
haven’t watched yet). In general this problem is impossible to solve. The
assumption that renders this task feasible is the low-rank of the rating matrix.
The low-rank of the rating matrix reflects the fact that the users often share
preferences, as well as movies belonging to the same category may be rated
in the same way by different users. The low rank of the rating matrix is the
mathematical notion that captures this empirical observation.

32

3.4.2 Which matrices can be completed?

One of the first thing we must examine is what kind of matrices can be com-
pleted. In principle problems arise in the following cases.

• Sparse matrices

Sparse matrices create a problem as we need to observe the majority of
their entries in order to be able to successfully complete them. As a result,
it is impractical to complete sparse matrices. For example, consider the
following matrix (∗ denotes the non-zero entry).

0 0 0 0
0 ∗ 0 0
0 0 0 0
0 0 0 0


It is obvious that if we do not observe the non-zero entry we cannot cor-
rectly complete the matrix, as there is no way to know that this element
is non-zero.

• Matrices with sparse singular vectors

Matrices that possess at least one sparse singular vector are problematic.
Consider the following example (taken from [FG16]) of a rank 2 matrix.

M =


2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
−3 3 −3 3

 = σ1u1v
T
1 + σ2u2v

T
2 =

= 8


0.5
0.5
0.5
0.5
0

 [0.5 0.5 0.5 0.5
]

+ 6


0
0
0
0
1

 [−0.5 0.5 −0.5 0.5
]
.

Notice that the elements of the singular vectors u1,v1 contribute to the
formation of almost all the rows (rows 1-4), while the elements of the
singular vectors u2,v2 contribute only to the formation of the 5th row. In
other words, only the 5th row of the matrix contains information about the
singular vectors u2,v2. Essentially, that means that we need to observe
at least all the entries of the 5th row in order to be able to successfully
complete the matrix, since the important information of the low rank
matrix is contained in its singular vectors and values.

In conclusion, we want the information provided by the singular vectors to
spread to many elements of the matrix. As a result, we want spread (or in other
words not sparse/spiky) singular vectors. The measure that quantifies how well
a matrix M , or more precisely the column and row space of that matrix (the
left singular vectors span the column space and the right singular vectors span
the row space), adhere to these guidelines is coherence.

33

We also need to examine which sampling sets give completable matrices.
Mainly, we have only one problematic case.

• Matrices with at least one row or column missing

It is impossible to complete a matrix if we fail to observe at least some
row or column. The following example contains a matrix with rank 1 and
a missing row (* denote the known entries and ? the unknown).

∗ ∗ ∗ ∗
? ? ? ?
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 = σ1


∗
?
∗
∗

 [∗ ∗ ∗ ∗]

It is apparent that there is no way to infer the missing value in the left
singular vector, since this value contributes only to the formation of the 2nd
row, whose entries are unknown to us. As a result, we need to observe at least
one entry from every column and every row.

We can establish with high probability that we are going to obtain at least
one element in every row and column if we apply the uniform sampling model
on the entries of M and the number of known entries satisfies some lower bound.
Note that in the uniform sampling model every possible subset with m elements
of the set of k · n entries of M is picked with equal probability. From the well-
known coupon collector’s problem we can deduce that we need at least klogk
(assuming that k ≥ n, else we need nlogn) known entries in order to ensure
with high probability that we have at least one entry in every row and every
column.

3.4.3 Coherence

A measure that quantifies the spread of the elements of the singular vectors of
a matrix M ∈ Rk×n is coherence.

Definition 3.4.1 (Coherence). [CR09] Let U be a subspace of Rn with dimU =
r. Also, let PU denote the orthogonal projection onto U . Then, we define the
coherence of U , with respect to the standard basis (ei)

n
i=1 as

µ(U) =
n

r
max

1≤i≤n
‖PUei‖22. (3.5)

Notice that PU = UUT , where U is the matrix formulated by inserting the
the basis vectors of U as columns. Thus,

‖PUei‖2 = (PUei)
T (PUei) = eTi P

T
U PUei = eTi UU

TUUTei = (U orthogonal)

= eTi UU
Tei = (UTei)

T (UTei) = ‖UTei‖22

Therefore, we can rewrite coherence as

µ(U) =
n

r
max

1≤i≤n
‖UTei‖2, (3.6)

where U in the right-hand side denotes the subspace matrix, i.e the matrix
whose columns are the basis vectors of the aforementioned subspace.

34

For the values of µ(U) it holds that

1 ≤ µ(U) ≤ n

r
.

The smallest value is attained in cases where all the vectors that span U

have entries with magnitude
1√
n

, i.e ui =

(
1√
n
, . . . ,

1√
n

)
∈ Rn, 1 ≤ i ≤ r.

The largest value of µ(U) is attained when there exists i ∈ {1, . . . , n}, such that
ei lies in the span of U .

In the context of matrix completion we are interested in µ(U) and µ(V),
where U and V are the column and row space respectively of M or equivalently
the matrices U ∈ Rk×r and V ∈ Rn×r of the left and right singular vectors
respectively, as provided by the SVD. We want the value of coherence to be as
small a possible. This implies that the correlation between the singular vectors
with the (”spiky”) standard basis vectors is small and as a result the singular
vectors are dense and not sparse (i.e ”spiky”). Only one sparse singular vector
is sufficient to force coherence to attain its maximum value.

3.4.4 The optimization tasks of matrix completion

We proceed to the formulation of the matrix completion problem and its solu-
tion. The general setting of the matrix completion problem is the following:

Let M ∈ Rk×n be a k×n matrix with rank(M) = r (approximately) small.
We observe m entries of the matrix M picked uniformly at random, while the
rest remain unknown. We denote the positions of the known entries as Ω.

The recovery of M is achieved using optimization tasks, as in the case of the
sparse vector recovery problem. We are going to provide two different optimiza-
tion tasks and we will evaluate their capability in accomplishing our objective,
i.e successful matrix recovery.

Rank minimization

The optimization task that captures the notion of finding the matrix with the
lowest rank is rank minimization. The formal definition follows.

Definition 3.4.2 (Rank minimization).

minimize
X∈Rk×n

rank(X)

subject to Xij = Mij , (i, j) ∈ Ω.

Essentially, this task searches in the space of all possible k×n matrices that
have the same values as M in the specified positions and picks the solution with
the lowest rank. Rank minimization is an NP-Hard problem in the general case,
where we consider all possible matrices M ∈ Rk×n and all possible sampling sets
Ω ⊆ {1, . . . , k} × {1, . . . , n} as input. Notice that this task corresponds to the
l0 minimization task used in the sparse vector recovery problem. We can easily
notice the correspondence if we see that rank(X) = ‖σ(X)‖0, where σ(X) is the
vector of the singular values of matrix X. Both problems are intractable and
although they capture the essence of the problem, we reject them and search
for tractable alternatives.

35

Nuclear norm minimization

The search for a tractable alternative leads to an optimization task called nuclear
norm minimization.

Definition 3.4.3 (Nuclear norm minimization).

minimize
X∈Rk×n

‖X‖∗

subject to Xij = Mij , (i, j) ⊆ Ω.

This optimization task can be reduced as a semidefinite optimization prob-
lem, hence we can find efficient, polynomial-time, algorithms that can solve
it. Notice that this optimization task corresponds to the l1 minimization task
we studied in the previous chapter, since for the nuclear norm we know that

‖X‖∗ =
r∑
i=1

|σi| (remember that σi are the singular values of X).

The first provable recovery guarantee using nuclear norm minimization for
matrix completion was given in [CR09]. We are going to provide a newer result
due to Recht [Rec11], which improves the previous result by providing a better
bound for the number of measurements.

Theorem 3.4.1 (Recovery guarantee with nuclear norm minimization). [Rec11]
Let M ∈ Rk×n be a matrix of rank r with singular value decomposition M =
UΣV T . Without loss of generality, we impose the conventions m < n, Σ ∈ Rr×r,
U ∈ Rm×r, V ∈ Rn×r. Also, we make the following assumptions

• The row and column spaces have coherences bounded above by some posi-
tive µ0, i.e µ0 = max {µ(U), µ(V)}.

• The matrix UV T has a maximum entry bounded in absolute value by

µ1

√
r

mn
, where µ1 > 0.

Suppose that we sample uniformly at random m entries from M . Then if

m ≥ 32 max
{
µ2

1, µ0

}
r(k + n)β log2(2n),

for some β > 1, the solution of problem (3.4.3) is equal to M with proba-

bility at least 1− 6log(n)(k + n)62−2β − n2−2β1/2

.

There are several algorithms that solve the nuclear norm minimization task,
as well as algorithms that solve the matrix completion problem using different
approaches. Algorithms for matrix completion is the topic of chapter 6, so we
will postpone the analysis of some algorithms and the necessary discussion for
that part of the thesis.

3.5 Applications

Low-rank matrix recovery has many applications in a wide range of fields in
science and engineering. For instance, in literature we encounter the following
examples. [DR16]

36

• Quantum state tomography: In quantum mechanics we describe the
state of a quantum system using a matrix that is called density ma-
trix. Suppose that we have a particle whose state is described using a
2-dimensional state vector, i.e a qubit. Then the dimension of the state
space of a system comprised by n qubits is 2n and as a result the dimen-
sion of the density matrix is 2n · 2n = 4n. We notice that the dimensions
of the density matrix scale exponentially, making the task of finding all
the entries of the density matrix and thus the state of the quantum sys-
tem a difficult task. It is possible when the density matrix is low-rank, i.e
the system consists of a small ensemble of pure states, to fill the missing
entries of the matrix using matrix completion algorithms. [Gro11]

• Recommendation systems: As we mentioned previously, recommen-
dations system is one of the most characteristic examples in the field of
matrix completion. Organizing the responses of individuals to a set of
items into a matrix, we end up with an incomplete matrix, as it is very
difficult to enforce every individual to evaluate every single product. Ex-
ploiting the fact that different individuals may share the same preferences,
which translates to the low-rank of the corresponding matrix, we apply
matrix completion algorithms to fill the missing entries of the ratings ma-
trix.

• Distance matrices: In many problems it is useful to have the matrix of
pairwise distances between the components of the system we are studying.
A characteristic example is a wireless sensor network, which consists of a
set of sensors scattered in an area. The respective distance matrix is
low rank and may have missing entries, rendering the usage of matrix
completion algorithms necessary.

There are many other problems and fields in machine learning and signal
processing that contain incomplete low-rank matrices, such as principal compo-
nent analysis(PCA), natural language processing, multi-task learning, etc.

37

38

Part II

Mathematical aspects

39

Chapter 4

Tools from probability
theory

4.1 Probabilistic preliminaries

The purpose of this chapter is to provide all the necessary tools of probability
theory that are vital for the next chapter. The tools we develop cover a wide
range, starting from elementary definitions and propositions that are part of
a typical undergraduate probability course and reaching more advanced topics
usually treated within the context of high dimensional probability theory. In
this section we are going to provide the most elementary definitions that are
necessary for the development of this thesis. This chapter is mainly based on
[FR13], essentially comprising a partial presentation of chapters 7 and 8.

The setting in which probability theory takes place is a probability space
(Ω,Σ,P), where Ω is the sample space (the set of all possible outcomes/results
of a random experiment), Σ is a σ-algebra on the sample space Ω (the set of all
possible events) and P a probability measure on (Ω,Σ) (a function that maps
every event to a real number).

Given a probability space (Ω,Σ,P) and 1 ≤ p <∞, we define the Lp(Ω,Σ,P)-
space of random variables as the set of random variables on (Ω,Σ,P) with finite
Lp norm, i.e

Lp(Ω,Σ,P) =
{
X : Ω→ R : ‖X‖p = (E [|X|p])1/p

<∞
}
.

Note that for 1 ≤ p <∞ the Lp space is a Banach space. In the special case
where p = 2 the L2 space is a Hilbert space, with the inner product defined as
〈X,Y 〉 = E [XY].

From the definition of the norm we can immediately obtain the triangle
inequality for Lp random variables.

Proposition 4.1.1 (Triangle inequality). For every X,Y ∈ Lp(Ω,Σ,P) it holds
that

(E [|X + Y |p])1/p ≤ (E [|X|p])1/p
+ (E [|Y |p])1/p

for some 1 ≤ p <∞.

A very useful inequality is Holder’s inequality.

41

Proposition 4.1.2 (Holder’s inequality). For every X ∈ Lp(Ω,Σ,P) and Y ∈
Lq(Ω,Σ,P) with p, q ≥ 1, such that

1

p
+

1

q
= 1 it holds that

|E [XY]| ≤ (E [|X|p])1/p · (E [|Y |q])1/q
.

A special case of Holder’s inequality, that we can easily obtain by setting
p = q = 2, is the famous Cauchy-Schwarz inequality.

Proposition 4.1.3 (Cauchy-Schwarz inequality). For every X,Y ∈ L2(Ω,Σ,P)
it holds that

|E [XY]| ≤
(
E
[
X2
]
· E
[
Y 2
])1/2

.

Another important inequality is Jensen’s inequality.

Proposition 4.1.4 (Jensen’s inequality). Let X ∈ Rn be a random vector and
f : Rn → R be a convex function. Then,

f (E [X]) ≤ E [f (X)] .

One useful function that we are going to use in order to facilitate some proofs
is the characteristic function of a random variable X.

Definition 4.1.1 (Characteristic function). The characteristic function of a
random variable X on an event A is defined as

I{X∈A}(x) =

{
1 x ∈ A
0 x /∈ A

.

Two very useful functions in probability theory are the moment-generating
function and the cummulant-generating function. Essentially the moment-generating
function provides an alternative representation of the probability density func-
tion of a random variable.

Definition 4.1.2 (Moment-generating function). The moment-generating func-
tion of a (real-valued) random variable X is a function MX such that

MX(t) = E
[
etX
]
, t ∈ R,

whenever this expectation exists.

Definition 4.1.3 (Cummulant-generating function). The cummulant-generating
function of a random variable X is a function CX such that

CX(t) = ln
(
E
[
etX
])
, t ∈ R

Lebesgue’s dominated convergence theorem is given without a proof.

Theorem 4.1.1 (Lebesgue’s dominated convergence theorem). Let {Xn}n∈N
be a sequence of random variables, such that lim

n→∞
Xn(ω) = X(ω), for almost all

ω ∈ Ω. Also, let Y be a random variable, with E [|Y |] <∞. If |Xn| ≤ |Y | , ∀n ∈
N, almost surely, then

lim
n→∞

E [Xn] = E [X] .

42

A generalization of the notion of the random variable is that of a random
vector, which is a finite collection of random variables.

Definition 4.1.4 (Random vector). A collection of n random variables, X =
[X1, X2, . . . , Xn] ∈ Rn, defined on a common probability space (Ω,Σ,P) is called
a random vector.

The type of random vector that we are going to utilize the most is the
standard Gaussian random vector.

Definition 4.1.5 (Standard Gaussian random vector). A random vector g =
[g1, g2, · · · , gn] ∈ Rn, such that its components gi, 1 ≤ i ≤ n are indepen-
dent standard Gaussian random variables, i.e gi v N (0, 1), is called a standard
Gaussian random vector.

More generally, about Gaussian random vectors we have the following defi-
nition.

Definition 4.1.6 (Gaussian random vector). Let X ∈ Rn be a random vector
defined as X = Ag+µ, where A ∈ Rn×m a matrix, g ∈ Rm a standard Gaussian
random vector and µ the expectation of X. Then, X ∈ Rn is called a Gaussian
random vector.

The notion of isotropicity is roughly a high dimensional generalization of
the notion of unit variance in random variables. A characteristic property of
isotropic random vectors is provided below.

Definition 4.1.7 (Isotropic random vector). A random vector Y ∈ Rn is
isotropic if

E
[
|〈X,x〉|2

]
= ‖x‖22, ∀x ∈ Rn.

A further generalization of a random vector is that of a random matrix.
In the next chapter part of the results are going to refer to Gaussian random
matrices and therefore we provide the formal definition.

Definition 4.1.8 (Gaussian random matrix). A Gaussian random matrix is
a matrix A ∈ Rm×n whose entries are independent standard Gaussian random
variables, i.e Aij v N (0, 1).

Finally, we give the definition of a stochastic process or a random process.

Definition 4.1.9 (Stochastic process). A stochastic process is a collection of
random variables, on the same probability space (Ω,Σ,P), indexed by some set
T , i.e {Xt}t∈T .

4.2 Basic results in probability theory

In this section several fundamental results in probability theory are going to
be presented. We provide the majority of them without proofs. The interested
reader can refer to [FR13] for more details.

For the expectation of the absolute moments of a random variable we have
the following result.

43

Proposition 4.2.1 (Expectation of absolute moments). Let X be a random
variable. For p > 0 it holds that

E [|X|p] = p

∞∫
0

P (|X| ≥ t) tp−1dt.

One of the most famous inequalities in probability theory is Markov’s in-
equality.

Theorem 4.2.1 (Markov’s inequality). Let X be a random variable. Then the
following inequality holds

P (|X| ≥ t) ≤ E [|X|]
t

, ∀t > 0.

A very important theorem in probability theory is the central limit theorem,
which underlines the value of the Gaussian distribution.

Theorem 4.2.2 (Central limit theorem). Let (Xi)i∈N be a sequence of indepen-
dent, identically distributed random variables, with E [Xi] = µ and V ar(Xi) =
σ2. Also, consider the following sequence of random variables

Zn =

n∑
i=1

(Xi − µ)

σ
√
n

.

Then, the sequence of random variables (Zi)i∈N converges in distribution to a
standard Gaussian random variable for all bounded continuous function, i.e

lim
n→∞

E [f(Zn)] = E [f(g)] ,

where g is a standard Gaussian random variable.

It is useful to have at our disposal the following formula for a standard
Gaussian random variable.

Lemma 4.2.1. Let g be a standard Gaussian random variable. Then, for t ∈ R
and c <

1

2
we have that

E
[
exp(cg2 + tg)

]
=

1√
1− 2c

exp

(
t2

2(1− 2c)

)
. (4.1)

The following proposition shows a connection between the moments and the
tails of a random variable.

Proposition 4.2.2 (Moments and tails for random variables). Let X be a
random variable that satisfies

P
(
|X| ≥ e1/γαu

)
≤ βe−u

γ/γ , ∀u > 0, for some γ > 0. (4.2)

Then, for p > 0 it holds that

E [|X|p] ≤ βap(eγ)p/γΓ

(
p

γ
+ 1

)
. (4.3)

44

Also, it holds that

E [|X|p]1/p ≤ C1αC
1/p
2,γ β

1/pp1/γ , ∀ p ≥ 1, (4.4)

where C1 = e1/(2e) and C2,γ =

√
2π

γ
eγ/12.

An important theorem in probability theory is Cramer’s theorem.

Theorem 4.2.3 (Cramer’s theorem). Let X1, . . . , Xn be a finite collection of
independent random variables. Then, we have that,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
inf
θ>0

{
−θt+

n∑
i=1

CXi(θ)

})
, ∀t > 0.

Proof. For θ > 0, we have that

P

(
n∑
i=1

Xi ≥ t

)
= P

(
exp

(
θ

n∑
i=1

Xi

)
≥ exp (θt)

)
≤

E
[
exp

(
θ

n∑
i=1

Xi

)]
exp (θt)

= (Markov’s inequality)

=

E
[
n∏
i=1

exp (θXi)

]
exp (θt)

=

n∏
i=1

E [exp (θXi)]

exp (θt)
= (Independence of Xi)

=

n∏
i=1

exp (ln (E [exp (θXi)]))

exp (θt)
=

n∏
i=1

exp (CXi(θ))

exp (θt)
=

= exp

(
−θt+

n∑
i=1

CXi(θ)

)
.

The previous result holds for an arbitrary θ > 0, so we can conclude that

P

(
n∑
i=1

Xi ≥ t

)
≤ inf
θ>0

{
exp

(
−θt+

n∑
i=1

CXi(θ)

)}
= exp

(
inf
θ>0

{
−θt+

n∑
i=1

CXi(θ)

})
.

4.3 Subgaussian and subexponential random vari-
ables

A subgaussian distribution is a class of probability distributions, whose tails
decay at least as fast as the tails of the Gaussian distribution.

Definition 4.3.1 (Subgaussian random variables). A random variable X is
called subgaussian if ∃ k, r > 0 such that

P (|X| ≥ t) ≤ ke−rt
2

, ∀ t > 0. (4.5)

45

We should mention that Bernoulli, Gaussian and bounded distributions are
all special cases of subgaussian distributions. There are several ways to describe
subgaussian random variables. One of those ways is contained in the following
proposition.

Proposition 4.3.1 (Property of subgaussian random variables). Let X be sub-
gaussian random variable. Then, there exists c1 > 0, c2 ≥ 1 such that

E
[
ec1X

2
]
≤ c2.

Proof. First of all, we see from definition 4.3.1 that equation (4.2) of proposition
4.2.2 is satisfied for a subgaussian random variable with α = (2er)−1/2, γ = 2,
β = k and u = (2r)1/2t. As a result, we can easily obtain the following estimate
for p = 2n, using property (A.3) of Gamma functions,

E
[
X2n

]
≤ k(2er)−n(2e)nΓ (n+ 1) = kr−nn!.

Using the Taylor expansion of the exponential function yields

E
[
ec1X

2
]

= 1 +

∞∑
n=1

cn1E
[
X2n

]
n!

≤ 1 + k

∞∑
n=1

cn1 r
−nn!

n!
= 1 +

kc1r
−1

1− c1r−1
,

if we choose c1 such that
c1
r
< 1. Notice that c2 = 1 +

kc1r

1− c1r−1
≥ 1, since

c1
r
< 1 and k > 0.

Also, the following moment estimate for subgaussian random variables will
proven to be useful.

Lemma 4.3.1 (Moment estimate for subgaussian random variables). Let X be
a subgaussian random variable. Then,

(E [|X|p])1/p ≤ Cr−1/2k1/pp1/2, ∀ p ≥ 1,

for C = exp

(
1

2e
+

1

6

)√
π

2e
.

Proof. Using the definition of a subgaussian random variable and proposition

4.2.2 we notice that α =
1√
2er

, γ = 2 and β = k (α, γ and β are the parameters

introduced in proposition 4.2.2). Hence, substituting these values in equation
(4.4) yields

E [|X|p]1/p ≤ C1(2er)−1/2C
1/p
2,2 k

1/pp1/2 =

= e1/(2e)(2e)−1/2r−1/2(
√
πe1/6)1/pk1/pp1/2 ≤

≤ e1/(2e)(2e)−1/2
√
πe1/6r−1/2k1/pp1/2 (

√
πe1/6 > 1, p ≥ 1)

= Cr−1/2k1/pp1/2,

where C = exp

(
1

2e
+

1

6

)√
π

2e
.

46

We need an estimate for the moment-generating function of a subgaussian
random variable.

Proposition 4.3.2 (Moment-generating function of a subgaussian random vari-
able). Let X be a subgaussian random variable, with E [X] = 0. Then, we have
that

E
[
etX
]
≤ ect

2

, ∀ t ∈ R, (4.6)

where c is a constant depending only on k and r.

Proof. Let t ≥ 0. We use the Taylor expansion of the exponential function and
the fact that E [X] = 0 to obtain

E
[
etX
]

= 1 + tE [X] +

∞∑
n=2

tnE [Xn]

n!
≤ 1 +

∞∑
n=2

tnE [|X|n]

n!
.

First, we consider the case where 0 ≤ t ≤ t0, for some t0 ≥ 0 So, we have
that

E
[
etX
]
≤ 1 + k

∞∑
n=2

Cntnr−n/2nn/2

n!
≤ 1 +

k√
2π

∞∑
n=2

Cntnr−n/2nn/2

nne−n
= (lemma 4.3.1),(A.5.2)

= 1 +
k√
2π

∞∑
m=0

(
Cet0r

−1/2
)m+2

(m+ 2)−(m+2)/2 ≤ (m = n− 2), (t ≤ t0)

≤ 1 +
C2t2e2k√

2πr

∞∑
n=0

(
Cet0r

−1/2
)n

=

= 1 +
C2t2e2k√

2πr

1

1− Cet0r−1/2
= (provided Cet0r

−1/2 < 1)

= 1 + ct2 ≤ ect
2

. (c = Cet0r
−1/2)

Next, we move to the case where t > t0. Notice that

tX − c′t2 = −
(√

c′t− X

2
√
c′

)2

+
X2

4c′
≤ X2

4c′
.

Therefore, we can obtain

E
[
etX−c

′t2
]
≤ E

[
exp

(
X2

4c′

)]
.

We set c′ =
1

4c1
, where c1 > 0 is the constant of proposition 4.3.1. Then,

using the same proposition we can conclude that

E
[
etX−c

′t2
]
≤ E

[
ec1X

2
]
≤ c2.

Let define θ as θ = ln(c2)t−2
0 , then

E
[
etX
]
≤ c2ec

′t2 = c2e
−θt2e(c′+θ)t2 ≤

≤ c2e−θt
2
0e(c′+θ)t2 = e(c′+θ)t2 .

47

Thus, if we set c0 = max {c, c′ + θ} we have established that

E
[
etX
]
≤ ect

2

, ∀ t ≥ 0

Finally, if we exchange X with −X we can easily see that the previous inequality
also holds for t < 0.

Note that any constant c that satisfies equation (4.6) is called a subgaussian
parameter of the subgaussian random variable X, however we prefer to use as
c the smallest possible value. From now on, when we refer to a subgaussian
random variable with parameter c, we mean the parameter c that is involved in
equation (4.6).

The next theorem essentially states that the distribution of a sum of inde-
pendent subgaussian random variables remains subgaussian.

Proposition 4.3.3 (Sum of subgaussian random variables). Let X1, . . . , Xn be
a sequence of independent subgaussian random variables, with E [Xi] = 0, 1 ≤
i ≤ n and subgaussian parameter c. For a ∈ Rn it holds that the random
variable

Y =

n∑
i=1

aiXi

is subgaussian with parameter c‖a‖22
Proof. We know thatX1, . . . , Xn are subgaussian random variables with E [Xi] =
0, 1 ≤ i ≤ n and subgaussian parameter c, so using proposition 4.3.2 we can
obtain

E
[
etXi

]
≤ ect

2

, ∀t ∈ R, 1 ≤ i ≤ n. (4.7)

For the random variable Y we have,

E
[
etY
]

= E

[
exp

(
t

n∑
i=1

aiXi

)]
= E

[
n∏
i=1

etaiXi

]
=

=

n∏
i=1

E
[
etaiXi

]
≤

n∏
i=1

eca
2
i t

2

= (Independence), (4.7)

= ec‖a‖
2
2t

2

.

As a result, the random variable Y is subgaussian, with parameter c‖a‖22.

Next we provide the definition of a subgaussian random vector. Essentially,
a random vector X ∈ Rn follows a subgaussian distribution if all of it’s one
dimensional marginals 〈X,x〉 also follow a subgaussian distribution.

Definition 4.3.2 (Subgaussian random vector). A random vector X ∈ Rn is
called a subgaussian random vector if, for all x ∈ Rn with ‖x‖2 = 1, the random
variable 〈X,x〉 is subgaussian, with subgaussian parameter c (independent of x).

Again here, when we refer to a subgaussian random vector with parameter
c, we mean the parameter c that is contained in definition 4.3.2.

A large part of the presentation that is going to follow uses subgaussian
random matrices. So, we provide a rigorous definition of a subgaussian random
matrix.

48

Definition 4.3.3 (Subgaussian random matrix). A subgaussian random matrix
is a matrix A ∈ Rm×n, whose entries Ai,j are independent subgaussian random
variables, with E [Ai,j] = 0, V ar [Ai,j] = 1 and the same subgaussian parameters
k, r.

Note that the entries of a subgaussian random vector, as well as the entries
of a subgaussian random matrix are not necessarily identically distributed.

A subexponential distribution is a class of probability distributions, whose
tails decay more slowly than any exponential tail. It is a wide class of distri-
butions accounting for subgaussian distributions and some other distributions
whose tails are heavier than Gaussian tails.

Definition 4.3.4 (Subexponential random variable). A random variable X is
called subexponential if ∃ k, r > 0 such that

P (|X| ≥ t) ≤ ke−rt, ∀ t > 0.

4.4 Bernstein’s inequality

One important topic in probability theory is concentration inequalities. Roughly,
a concentration inequality is an inequality that quantifies the deviation of a ran-
dom variable X around its expectation E [X] (or more generally around some
other variable), i.e P [|X − E [X]| ≥ t] ≤ f(t), for some function f of t. One
important tool we need for the next chapter that falls under the scope of con-
centration inequalities is Bernstein’s inequality.

Theorem 4.4.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent ran-
dom variables, with E [Xi] = 0 , 1 ≤ i ≤ n and

E [|Xi|m] ≤ m!cm−2σ2
i /2, 1 ≤ i ≤ n, m ≥ 2, (4.8)

where c > 0 and σi > 0, 1 ≤ i ≤ n are constants. Then the following holds,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2(σ2 + ct)

)
,∀ t > 0 ,

where σ2 =
n∑
i=1

σ2
i .

Proof. Using the Taylor expansion of the exponential function and taking into
account that E [θXi] = 0 we get

E [exp (θXi)] = 1+θE[Xi]+

∞∑
m=2

θmE[Xm
i]

m!
= 1+

θ2σ2
i

2

∞∑
m=2

2θm−2E[Xm
i]

m!σ2
i

, 1 ≤ i ≤ n

(4.9)
For clarity we replace the summation with the following expression

Si(θ) =

∞∑
m=2

2θm−2E[Xm
i]

m!σ2
i

, 1 ≤ i ≤ n.

Using the well-known inequality 1 + x ≤ ex and (4.9) we can obtain

49

E [exp (θXi)] = 1 +
θ2σ2

i

2
Si(θ) ≤ exp

(
θ2σ2

i

2
Si(θ)

)
≤ exp

(
θ2σ2

i

2
S(θ)

)
, 1 ≤ i ≤ n,

(4.10)

where S(θ) = max
1≤i≤n

Si(θ).

For the cummulant-generating function of Xi we have that

CXi(θ) = ln (E [exp (θXi)]) ≤
θ2σ2

i S(θ)

2
, 1 ≤ i ≤ n, (4.11)

where we have used inequality (4.10).

So Cramer’s theorem (4.2.3) and expression (4.11) yields

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
inf
θ>0

{
−θt+

n∑
i=1

CXi(θ)

})
≤ inf
θ>0

{
exp

(
−θt+

n∑
i=1

θ2σ2
i S(θ)

2

)}
=

= inf
θ>0

{
exp

(
−θt+

θ2S(θ)

2

n∑
i=1

σ2
i

)}
= inf
θ>0

{
exp

(
−θt+

θ2σ2S(θ)

2

)}
≤

≤ inf
0<cθ<1

{
exp

(
−θt+

θ2σ2S(θ)

2

)}
,

(4.12)

where c is the constant defined in (4.8).

For 0 < cθ < 1 it holds that

Si(θ) =

∞∑
m=2

2θm−2E[Xm
i]

m!σ2
i

≤
∞∑
m=2

2θm−2E[|Xi|m]

m!σ2
i

≤
∞∑
m=2

(
1

cθ

)m−2

=
1

1− cθ
, 1 ≤ i ≤ n,

where we have used the moment bound (4.8).

As a result,

S(θ) ≤ 1

1− cθ
, 0 < cθ < 1

The combination of the previous result with expression (4.12) leads to

P

(
n∑
i=1

Xi ≥ t

)
≤ inf

0<cθ<1

{
exp

(
−θt+

θ2σ2

2 (1− cθ)

)}

Finally, by considering θ =
t

σ2 + ct
, which satisfies cθ < 1, we have that

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

− t

σ2 + ct
· t+

(
t

σ2 + ct

)2

σ2

2

(
1− c · t

σ2 + ct

)
 =

= exp

(
t2

2(σ2 + ct)

)
.

50

Exchanging Xi with −Xi in the final expression yields

P

(
n∑
i=1

Xi ≤ −t

)
≤ exp

(
t2

2(σ2 + ct)

)
.

Consequently, using the union bound we obtain

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2(σ2 + ct)

)
,∀ t > 0.

We can use Bernstein’s inequality for subgaussian random variables in order
to prove that the same inequality holds for zero mean subexponential random
variables.

Corollary 4.4.1 (Bernstein’s inequality for subexponential random variables).
Let X1, . . . , Xn be independent subexponential random variables, with E [Xi] =
0, 1 ≤ i ≤ n. Then, for every t > 0

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− r2t2

4kn+ 2rt

)
.

Proof. For n ∈ N, n ≥ 2 we have,

E [|Xi|n] = n

∞∫
0

P(|Xi| ≥ t)tn−1dt ≤ kn
∞∫

0

e−rttn−1dt = (pro. 4.2.1), (def. 4.3.4)

= knr−n
∞∫

0

e−uun−1du = knr−nΓ(n− 1) = (u = rt⇒ du = rdt)

= knr−n(n− 1)! = kn!r−n = n!r−(n−2) 2kr2

2
(def.A.3.1)

Thus, the above expression satisfies condition (4.8) with c = r−1 and σ2
i =

2kr−2. As a result, Bernstein’s inequality (theorem 4.4.1) holds for the zero-
mean subexponential random variables defined in the beginning.

4.5 Expectation of norms of Gaussian vectors

In this section we are going to prove some results concerning the expectation
of the l2 norm of a Gaussian random vector. In order to do that we need some
intermediate results.

Lemma 4.5.1 (Pdf of sum of independent random variables). The probability
density function of the sum X + Y of two independent random variables X and
Y with probability density functions pX and pY respectively is given by

pX+Y (z) = (pX ∗ pY) (z) =

∞∫
−∞

pX(u)pY (z − u)du

51

Two necessary tools in order to estimate the expectation of the norm of a
Gaussian random vector are Beta and Gamma functions. For the respective def-
initions, as well as useful properties that we are going to use, refer to subsection
A.3.1 of the appendix.

Proposition 4.5.1. Let g = [g1, g2, · · · , gn] ∈ Rn be a standard Gaussian
random vector. The random variable

Y = ‖g‖22 =

n∑
i=1

g2
i

follows a χ2(n) distribution. The probability density function of the latter is

pχ2(n)(u) =


1

2n/2Γ(n/2)
u(n/2)−1e−u/2 , u > 0

0 , u ≤ 0
(4.13)

Proof. We are going to use induction in the number n of elements of g. For
n = 1 we have

P(g2 ≤ u) =

{
P(−
√
u ≤ g ≤

√
u) , u ≥ 0

0 , u < 0
=

{
FN (0,1)(

√
u)− FN (0,1)(−

√
u) u ≥ 0

0 u < 0
.

where FN (0,1) is the cumulative density function of a standard Gaussian
random variable.

The probability density function of the random variable g2 is

p1(u) =
d

du

(
FN (0,1)(

√
u)− FN (0,1)(−

√
u)
)

=
1

2
√
u
pN (0,1)(

√
u) +

1

2
√
u
pN (0,1)(−

√
u) =

=
1

2
√
u

(
1√
2π
e−u/2 +

1√
2π
e−u/2

)
=

1

2
√
u
u−1/2e−u/2,

for u ≥ 0 and p1 = 0, for u < 0.

Note that Γ

(
1

2

)
=
√
π (eq. A.4), so expression (4.13) holds for n = 1.

Suppose that expression (4.13) holds for somen > 1. We are going to show
that it holds for n + 1. Obviously, for u ≤ 0 we can deduce that pn+1(u) = 0.
For u > 0 we can use lemma 4.5.1 to obtain

52

pn+1(u) = (pn ∗ p1) (u) =

∞∫
−∞

pn(t)p1(u− t)dt = (t > 0 and u− t > 0)

=
1

2n/221/2Γ(n/2)Γ(1/2)

u∫
0

t(n/2)−1e−t/2(u− t)−1/2e−(u−t)/2dt =

=
1

2(n+1)/2Γ(n/2)Γ(1/2)
e−u/2

u∫
0

t(n/2)−1(u− t)−1/2dt = (Set x =
t

u
)

=
1

2(n+1)/2Γ(n/2)Γ(1/2)
e−u/2u(n/2)−(1/2)

1∫
0

x(n/2)−1(1− x)−1/2dx = (0 < x < 1)

=
1

2(n+1)/2Γ(n/2)Γ(1/2)
e−u/2u(n+1)/2−1B

(
n

2
,

1

2

)
= (def. A.3.2)

=
1

2(n+1)/2Γ(n/2)Γ(1/2)
e−u/2u(n+1)/2−1

Γ
(n

2

)
Γ

(
1

2

)
Γ

(
n+ 1

2

) =

=
1

2(n+1)/2Γ((n+ 1)/2)
u(n+1)/2−1e−u/2.

As a result, the formula (4.13) holds for every n ∈ N.

The following theorem contains some bounds for the expectation of the l2
norm of a Gaussian random vector.

Theorem 4.5.1. Let g = [g1, g2, · · · , gn] ∈ Rn be a standard Gaussian random
vector. Then,

n√
n+ 1

≤ E [‖g‖2] =
√

2

Γ

(
n+ 1

2

)
Γ
(n

2

) ≤
√
n

Proof. We know from proposition (4.5.1) that the random variable ‖g‖22 follows
the χ2(n) distribution, with probability density function pχ2(n)(u), given in
equation (4.13). So, we have that

E [‖g‖2] = E
[(
‖g‖22

)1/2]
=

∞∫
0

u1/2pχ2(n)(u)du =
1

2n/2Γ(n/2)

∞∫
0

u1/2un/2−1e−u/2du = (t =
u

2
)

=
1

2n/2Γ(n/2)

∞∫
0

(2t)
1/2

(2t)
n/2−1

e−t2dt =
2n/2+1/2

2n/2Γ(n/2)

∞∫
0

tn/2−1/2e−tdt =

=
21/2

Γ(n/2)

∞∫
0

t((n+1)/2)−1e−tdt =
√

2

Γ

(
n+ 1

2

)
Γ
(n

2

)
53

Since gi ∼ N (0, 1), 1 ≤ i ≤ n, it is straightforward that

E
[
‖g‖22

]
=

n∑
i=1

E
[
g2
i

]
= n.

Jensen’s inequality (definition 4.1.4) provides us the upper bound

(E [‖g‖2])2 ≤ E
[
‖g‖22

]
⇒ E [‖g‖2] ≤

√
E [‖g‖22]

⇒ E [‖g‖2] ≤
√
n.

Let En denote the expectation of the l2 norm of a Gaussian random vector
g ∈ Rn, i.e

En = E [‖g‖2] .

Then, using equation (A.2) yields

En+1En =
√

2

Γ

(
n+ 2

2

)
Γ

(
n+ 1

2

) √2

Γ

(
n+ 1

2

)
Γ
(n

2

) = 2
Γ
(n

2
+ 1
)

Γ
(n

2

) = 2

n

2
Γ
(n

2

)
Γ
(n

2

) = n.

Finally, the previous expression combined with En+1 ≤
√
n+ 1 yields the

lower bound

En =
n

En+1
≥ n√

n+ 1
.

4.6 Gaussian width

An important geometric quantity in high dimensional geometry, characterizing
a subset T ⊆ Rn, is Gaussian width. The definition of Gaussian width follows.

Definition 4.6.1 (Gaussian width). Let T ⊆ Rn be a subset of Rn and g ∈ Rn
be a standard Gaussian random vector. Then, the Gaussian width of the set T
is defined as

w(T) = E
[

sup
x∈T
〈g,x〉

]
.

Roughly, Gaussian width provides a measure of the width of some set T ⊆ Rn
averaged over the set of directions defined by a standard Gaussian random
vector.

Next, we provide some basic properties of Gaussian width. [Cha+12b]

Proposition 4.6.1 (Properties of Gaussian width). Let T ⊆ Rn. Then for the
Gaussian width w(T) of the set T the following properties hold

(a) w(T) is finite ⇐⇒ T is bounded

(b) Invariance under translations

(c) Invariance under unitary transformations

54

(d) Homogeneity, i.e w(cT) = cw(T), ∀ c > 0

(e) Monotonicity, i.e if T1 ⊆ T2 then w(T1) ≤ w(T2)

(f) The Gaussian width of a set is equal to the Gaussian width of it’s convex
hull, i.e w(T) = w(conv(T))

4.7 Gordon’s Lemma

The purpose of this section is to prove Gordon’s lemma. This lemma can be clas-
sified to the part of high-dimensional probability theory that aims at bounding

the expectation of the supremum of a stochastic process, i.e E
[

sup
x∈T

Xt

]
. Note

that we use the notion of lattice supremum, i.e

E
[

sup
x∈T

Xt

]
= sup

T ′⊆T
T ′ finite

{
E
[

sup
x∈T ′

Xt

]}
.

Using the lattice supremum helps avoiding measurability issues that may
arise in the calculation of the supremum of an uncountable set of random vari-
ables.

The underlying notion behind Gordon’s lemma is that the relation between
the expectations of functions of two families of Gaussian random variables are
determined by the relation of their respective covariances, since the latter com-
pletely characterizes the distribution of a mean-zero Gaussian random vector.
In order to prove Gordon’s lemma we need several intermediate lemmas and
propositions. First, we give the definition of a function of moderate growth.

Definition 4.7.1 (Functions of moderate growth). Let F : Rn → R be a func-
tion. We say that F is of moderate growth if for every c > 0, it holds that

lim
‖x‖2→∞

F (x)e−c‖x‖
2
2 = 0.

The first result that we are going to employ is Stein’s lemma, also known as
Gaussian integration by parts formula.

Proposition 4.7.1 (Stein’s Lemma). Let F : Rn → R be a differentiable func-
tion. Also, suppose that F and its first-order partial derivatives are of moderate
growth. Then the following statements hold

1. Let g be a Gaussian random variable, with E [g] = 0, and n = 1. It follows
that

E [gF (g)] = E
[
g2
]
E [F ′(g)] .

2. Let g = (g1, . . . , gn) be a zero-mean Gaussian random vector and g0 be a
zero-mean Gaussian random variable (not necessarily independent of g).
Then it holds that

E [g0F (g)] =

n∑
i=1

E [g0gi]E
[
ϑF

ϑxi
(g)

]
.

55

Proof. 1. For the random variable g we know that E [g] = 0, so σ2 = E
[
g2
]
.

Then using integration by parts we can find that

E [gF (g)] =

∞∫
−∞

1√
2πσ

exp

(
− u2

2σ2

)
· uF (u)du =

=
1√
2πσ

∞∫
−∞

(
−σ2exp

(
− u2

2σ2

))′
F (u)du =

= − 1√
2πσ

σ2

exp(− u2

2σ2

)
F (u)

∣∣∣∞
−∞
−
∞∫
−∞

exp

(
− u2

2σ2

)
F ′(u)du

 =

= σ2

∞∫
−∞

1√
2πσ

exp

(
− u2

2σ2

)
F ′(u)du = E

[
g2
]
E [F ′(g)] .

The fact that F is of moderate growth (with c =
1

2σ2
) is what establishes

that

exp

(
− u2

2σ2

)
F (u)

∣∣∣∞
−∞

= 0.

2. Let g′i = gi − g0
E [g0gi]

E [g2
0]
, 1 ≤ i ≤ n be n random variables.

Also, consider the function G : R→ R with

G(t) = F

(
g′1 + t

E [g0g1]

E [g2
0]

, . . . , g′n + t
E [g0gn]

E [g2
0]

)
.

Then, if we condition on g′ we have that

E [g0F (g)] = E [g0F (g1, . . . , gn)] = E
[
g0F

(
g′1 + g0

E [g0g1]

E [g2
0]

, . . . , g′n + g0
E [g0gn]

E [g2
0]

)]
=

= E [g0G(g0)] = E
[
g2

0

]
E [G′(g0)] =

= E
[
g2

0

]
E
[
dF

dt

(
g′1 + t

E [g0g1]

E [g2
0]

, . . . , g′n + t
E [g0gn]

E [g2
0]

) ∣∣∣
t=g0

]
=

= E
[
g2

0

]
E

[
n∑
i=1

ϑF

ϑxi

(
g′1 + t

E [g0g1]

E [g2
0]

, . . . , g′n + t
E [g0gn]

E [g2
0]

)
dxi
dt

∣∣∣
t=g0

]
=

= E
[
g2

0

]
E

[
n∑
i=1

ϑF

ϑxi

(
g′1 + g0

E [g0g1]

E [g2
0]

, . . . , g′n + g0
E [g0gn]

E [g2
0]

)
E [g0gi]

E [g2
0]

]
=

= E
[
g2

0

] n∑
i=1

E
[
ϑF

ϑxi
(g1, . . . , gn)

E [g0gi]

E [g2
0]

]
=

=

n∑
i=1

E [g0gi]E
[
ϑF

ϑxi
(g)

]
.

56

A characteristic result in integration theory that we are going to use is given
in the following proposition.

Proposition 4.7.2. Let J ⊆ R be an open interval and f : J × Ω → R be a
function defined on it. Also, let X : Ω → R be a random variable, such that
the mapping t 7→ f(t,X) is almost surely continuously differentiable in J . If for
every compact subinterval I ⊂ J ,

E
[
sup
t∈I
|f ′(t,X)|

]
<∞ (4.14)

then the function g : R → R, with g(t) = E [f(t,X)], is continuously differen-
tiable and

g′(t) = E [f ′(t,X)] .

Proof. Let t ∈ intJ and I ⊂ J a compact subinterval containing t in its interior.
For some h ∈ R \ {0} consider the set [t, t + h] (or [t − h, t] in the case where
h < 0), such that [t, t+ h] ⊆ I. Then, the mean value theorem establishes that
there exists ζ ∈ [t, t+ h], such that

f ′(ζ,X) =
f(t+ h,X)− f(t,X)

h
= fh(t,X).

It is obvious that

|f ′(ζ,X)| ≤ sup
t∈I
|f ′(t,X)| ⇒ |fh(t,X)| ≤ sup

t∈I
|f ′(t,X)| .

Also, we know that E
[
sup
t∈I
|f ′(t,X)|

]
<∞.

As a result, by Lebesgue’s dominated convergence theorem (Theorem (4.1.1)))
we get that

lim
h→0

E [fh(t,X)] = E
[

lim
h→0

fh(t,X)

]
= E [f ′(t,X)] .

Using the definition of g(t) we know that

g′(t) = lim
h→0

gh(t) = lim
h→0

g(t+ h)− fg(t)

h
=

= lim
h→0

E [f(t+ h,X)]− E [f(t,X)]

h
= lim
h→0

E [fh(t,X)] .

Combining the previous two expressions yields,

g′(t) = E [f ′(t,X)] .

The next proposition contains a vital tool for the proof of Gordon’s lemma.

Proposition 4.7.3. Let F : Rn → R be a differentiable function, with F and
all its first order partial derivatives to be of moderate growth. Also, let X =

57

(X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two independent Gaussian random vec-
tors with zero mean. We define a random vector U(t) = (U1(t), . . . , Un(t)) , t ∈
[0, 1], with

Ui(t) =
√
tXi +

√
1− tYi, 1 ≤ i ≤ n.

Then the derivative of the function

f(t) = E [F (U(t))]

is

f ′(t) =

n∑
i=1

E
[
U ′i(t)

ϑF

ϑxi
(U(t))

]
.

Furthermore, if F is two times differentiable, with all of its second order partial
derivatives to be of moderate growth then

f ′(t) =
1

2

n∑
i=1

n∑
j=1

(E [XiXj]− E [YiYj])E
[
ϑ2F

ϑxiϑxj
(U(t))

]
.

Proof. We want to use proposition 4.7.2 in order to find the derivative of f . The
first thing we must do is establish condition (4.14) for F . So, let I = [a, b] ⊂ [0, 1]
be an arbitrary compact subinterval. Then

E
[
sup
t∈I

(F ′(U(t)))

]
= E

[
sup
t∈I

(
d

dt
F (U(t))

)]
= E

[
sup
t∈I

(
n∑
i=1

ϑF (U(t))

ϑxi

dxi
dt

)]
≤

≤
n∑
i=1

E
[
sup
t∈I

(
U ′i(t)

ϑF

ϑxi
(U(t))

)]
.

Also, it is straightforward that

U ′i(t) =
dUi
dt

(t) =
1

2
√
t
Xi −

1

2
√

1− t
Yi, 1 ≤ i ≤ n.

As a result, it suffices to bound the expectation of an arbitrary term of the
above sum.

E
[
sup
t∈I

∣∣∣∣U ′i(t) ϑFϑxi (U(t))

∣∣∣∣] ≤ E
[
sup
t∈I
|U ′i(t)| sup

t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣] ≤
≤

√√√√E

[(
sup
t∈I
|U ′i(t)|

)2
]
·

√√√√E

[(
sup
t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣)2
]

= (pro. (4.1.3))

=

√
E
[
sup
t∈I
|U ′i(t)|

2

]
·

√√√√E

[
sup
t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣2
]
.

We want to prove that the previous expression is bounded. We work with
each term separately. For the first term we have that

58

√
E
[
sup
t∈I
|U ′i(t)|

2

]
=

√
E
[
sup
t∈I

(
1

4t
X2
i −

1

2
√
t
√

1− t
XiYi +

1

4(1− t)
Y 2
i

)]
≤

≤

√
E
[
sup
t∈I

(
1

4t
X2
i

)
+ sup

t∈I

(
1

2
√
t
√

1− t
XiYi

)
+ sup

t∈I

(
1

4(1− t)
Y 2
i

)]
=

=

√
E
[

1

4a
X2
i

]
+ E

[
1

4(1− b)
Y 2
i

]
≤ (Xi, Yi zero-mean, independent)

=

√√√√E

[(
1

2
√
a
Xi

)2

+

(
1

2
√

1− b
Yi

)2
]
≤

≤

√√√√E

[(
1

2
√
a
Xi +

1

2
√

1− b
Yi

)2
]
≤ (Triangle inequality, (4.1.1)))

≤

√
E
[

1

4a
X2
i

]
+

√
E
[

1

4(1− b)
Y 2
i

]
≤ ∞

Now we move to the second term. We know that the first-order partial
derivatives of F are of moderate growth. Thus, for every c > 0, there exists
A > 0 such that ∣∣∣∣ ϑFϑxi (x)

∣∣∣∣ ≤ Aec‖x‖22 ,∀x ∈ Rn, 1 ≤ i ≤ n (4.15)

Also,

‖U(t)‖2 = ‖
(√

tX1 +
√

1− tY1, . . . ,
√
tXn +

√
1− tYn

)
‖2 =

= ‖
√
t (X1, . . . , Xn) +

√
1− t (Y1, . . . , Yn)‖2 ≤

≤
√
t‖X‖2 +

√
1− t‖Y ‖2 ≤

≤ 2max {‖X‖2, ‖Y ‖2} , ∀t ∈ I (4.16)

Combining (4.15), (4.16) yields√√√√E

[
sup
t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣2
]
≤

√
E
[
sup
t∈I

(
Aec‖U(t)‖22

)2]
=

=

√
E
[
A2 sup

t∈I

(
e2c‖U(t)‖22

)]
≤

≤ A
√
E
[
e8c (max{‖X‖2,‖Y ‖2})2

]
= (eq.4.16)

= A
√
E
[
max

{
e8c‖X‖22 , e8c‖Y ‖22

}]
≤

≤ A
√
E
[
e8c‖X‖22 + e8c‖Y ‖22

]
.

59

We know that X and Y are Gaussian vectors, with zero mean. Hence, we
can write them as X = Dg1 and Y = D′g2, where D,D′ are n × n matrices
and g1, g2 ∈ Rn are independent standard Gaussian random vectors. Then,

√√√√E

[
sup
t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣2
]
≤ A

√
E
[
e8c‖D‖22→2‖g1‖22+8c‖D′‖22→2‖g2‖22

]
= (‖X‖22 ≤ ‖D‖22→2‖g1‖22)

= A

√√√√E

[
n∏
i=1

e8c‖D‖22→2(g1)2i ·
n∏
i=1

e8c‖D′‖22→2(g2)2i

]
=

= A

√√√√E

[
n∏
i=1

e8c‖D‖22→2(g1)2i

]
· E

[
n∏
i=1

e8c‖D′‖22→2(g2)2i

]
= (Independence)

= A

√√√√ n∏
i=1

E
[
e8c‖D‖22→2(g1)2i

]
·
n∏
i=1

E
[
e8c‖D′‖22→2(g2)2i

]
= (Lemma 4.2.1)

= A

√√√√ n∏
i=1

(
1√

1− 16c‖D‖22→2

e0

)
·
n∏
i=1

(
1√

1− 16c‖D′‖22→2

e0

)
=

= A

√√√√(1√
1− 16c‖D‖22→2

)n
·

(
1√

1− 16c‖D′‖22→2

)n
.

The usage of lemma 4.2.1 is permitted, since we can choose c such that,

c = min

{
1

16‖D‖22→2

,
1

16‖D‖22→2

}
.

As a result,√√√√E

[
sup
t∈I

∣∣∣∣ ϑFϑxi (U(t))

∣∣∣∣2
]

= A

√√√√(1√
1− 16c‖D‖22→2

)n
·

(
1√

1− 16c‖D′‖22→2

)n
<∞

and consequently

E
[
sup
t∈I

∣∣∣∣U ′i(t) ϑFϑxi (U(t))

∣∣∣∣] ≤ ∞
Then from proposition (4.7.2) we have that

f ′(t) = E
[
d

dt
F (U(t))

]
=

n∑
i=1

E
[
U ′i(t)

ϑF

ϑxi
(U(t))

]
.

Furthermore, if F is twice differentiable with all of its second-order partial
derivatives of moderate growth we can use proposition 4.7.1, i.e. Stein’s lemma
and obtain

f ′(t) =

n∑
i=1

E
[
U ′i(t)

ϑF

ϑxi
(U(t))

]
=

n∑
i=1

n∑
j=1

E [U ′i(t)Uj(t)]E
[
ϑ2F

ϑxiϑxj
(U(t))

]
.

60

Working the first expression inside the summation yields

E [U ′i(t)Uj(t)] = E
[√

t
1

2
√
t
XjXi −

√
t

1

2
√

1− t
XjYi +

1

2
√
t

√
1− tYjXi −

1

2
√

1− t
√

1− t 1

2
√
t
YjYi

]
=

1

2
(E [XiXj]− E [YiYj]) .

.
This leads to the final form of the derivative of f ,

f ′(t) =
1

2

n∑
i=1

n∑
j=1

(E [XiXj]− E [YiYj])E
[
ϑ2F

ϑxiϑxj
(U(t))

]
.

Lemma 4.7.1. Let F : Rn → R be a Lipschitz function for some constant
L > 0. Also, let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two Gaussian
random vectors, with zero mean. Suppose that (in the distributional sense)(

E
[
|Xi −Xj |2

]
− E

[
|Yi − Yj |2

]) ϑ2F

ϑxiϑxj
≥ 0, 1 ≤ i, j ≤ n (4.17)

and
F (x+ te) = F (x) + ct, ∀x ∈ Rn, (4.18)

where c is some constant and e ∈ Rn, with e = (1, . . . , 1). Then

E [F (X)] ≤ E [F (Y)] (4.19)

Proof. F is a Lipschitz function, so it holds that

|F (x)− F (0)| ≤ L‖x− 0‖2 ⇒||F (x)| − |F (0)|| ≤ L‖x‖2 ⇒
|F (x)| − |F (0)| ≤ L‖x‖2 ⇒
|F (x)| ≤ L‖x‖2 + |F (0)| ,∀x ∈ Rn.

As a result, we can establish that F is of moderate growth. Suppose b > 0,
then

lim
‖x‖2→+∞

F (x)e−b‖x‖
2
2 ≤ lim

‖x‖2→+∞
(L‖x‖2 + |F (0)|) e−b‖x‖

2
2 = 0.

First, we are going to prove the theorem for the case where F is a two
times continuously differentiable function, whose first and second-order partial
derivatives are of moderate growth.

Also, note that condition (4.18) is equivalent to the following expression

n∑
j=1

ϑF

ϑxiϑxj
(x) = 0,∀x ∈ Rn, 1 ≤ i ≤ n.

Then,

n∑
j=1

ϑF

ϑxiϑxj
(x) = 0⇒

n∑
j=1,j 6=i

ϑ2F

ϑxiϑxj
(x) +

ϑ2F

ϑx2
i

(x) = 0⇒

ϑ2F

ϑx2
i

(x) = −
n∑

j=1,j 6=i

ϑ2F

ϑxiϑxj
(x), x ∈ Rn, 1 ≤ i ≤ n. (4.20)

61

Consider the function

f(t) = E [F (U(t))] , t ∈ [0, 1].

which is defined as the corresponding function in proposition (4.7.3). As we said
before, we deal with the case where F is a two times continuously differentiable
function , whose partial derivatives up to second-order are of moderate growth.
Hence, from proposition (4.7.3) the derivative of f is

f ′(t) =
1

2

n∑
i=1

n∑
j=1

(E [XiXj]− E [YiYj])E
[
ϑ2F

ϑxiϑxj
(U(t))

]
, t ∈ [0, 1].

Working the right-hand side of the previous expression for an arbitrary x ∈
Rn yields

n∑
i=1

n∑
j=1

(E [XiXj]− E [YiYj])
ϑ2F

ϑxiϑxj
(x) =

=

n∑
i=1

(E [X2
i

]
− E

[
Y 2
i

]) ϑ2F

ϑx2
i

(x) +

n∑
j=1,i6=j

(E [XiXj]− E [YiYj])
ϑ2F

ϑxixj
(x)

 = (eq. (4.20))

= −
n∑
i=1

(E [X2
i

]
− E

[
Y 2
i

]) n∑
j=1,i6=j

ϑ2F

ϑxixj
(x) +

n∑
j=1,i6=j

(E [XiXj]− E [YiYj])
ϑ2F

ϑxixj
(x)

 =

= −1

2

n∑
i=1

n∑
j=1,i6=j

[(
E
[
X2
i

]
− E

[
Y 2
i

]
+ E

[
X2
j

]
− E

[
Y 2
j

]
− 2 (E [XiXj]− E [YiYj])

) ϑ2F

ϑxixj
(x)

]

= −1

2

n∑
i=1

n∑
j=1

[(
E
[
|Xi −Xj |2

]
− E

[
|Yi − Yj |2

]) ϑ2F

ϑxiϑxj
(x)

]
.

Condition (4.17) establishes that

−1

2

n∑
i=1

n∑
j=1

[(
E
[
|Xi −Xj |2

]
− E

[
|Yi − Yj |2

]) ϑ2F

ϑxiϑxj
(x)

]
≤ 0

and consequently

n∑
i=1

n∑
j=1

(E [XiXj]− E [YiYj])
ϑ2F

ϑxiϑxj
≤ 0, ∀x ∈ Rn.

It is not difficult to see that

f ′(t) ≤ 0, t ∈ [0, 1].

That means that f is a decreasing function in [0, 1] and thus,

f(1) ≤ f(0)⇒ E [f(X)] ≤ E [f(Y)] .

62

Turning now to the general case, where there is no guarantee that F is
two times continuously differentiable, we seek to find a two times continuously
differentiable approximation of F .

Let ψ(x) be a two times continuously differentiable, nonnegative function,
with support in B(0, 1), such that∫

Rn

ψ(x)dx = 1.

Also, we define the following function

ψh = h−nψ(
x

h
), h > 0,

for which it holds that

∫
Rn

ψh(x)dx =

∫
Rn

h−nψ(
x

h
)dx = h−n

∫
Rn

ψ(y)hndy = 1.

It is easy to see that

supp(ψ) ⊆ B(0, 1)⇒ supp(ψh) ⊆ B(0, h).

We define the following sequence of functions

Fh(x) = (F ∗ ψh)(x) =

∫
Rn

F (y)ψh(x− y)dy =

∫
Rn

F (x− y)ψh(y)dy. (4.21)

Furthermore, we can see that Lebesgue’s dominated convergence theorem
(theorem A.3.1) allows us to interchange the derivative with the integral. There-
fore, we can easily see that Fh is two times continuously differentiable. Indeed,

ϑFh
ϑxi

(x) =
ϑ

ϑxi

∫
Rn

F (y)ψh(x− y)dy =

∫
Rn

F (y)
ϑψh
ϑxi

(x− y)dy = F ∗ ϑψh
ϑxi

.

In the same way we can also attain

ϑ2Fh
ϑxiϑxj

(x) = F ∗ ϑ2ψh
ϑxiϑxj

.

Also, it is easy to verify that the first and second order partial derivatives
of Fh are of moderate growth, using the definition of convolution and the fact
that ψh has compact support and is two times continuously differentiable.

We know that, in the distributional sense, it holds that
ϑ2F

ϑxiϑxj
≥ 0, if for

all nonnegative functions g, two times differentiable, with compact support we
have that ∫

Rn

F (x)
ϑ2g

ϑxiϑxj
(x)dx ≥ 0.

63

So, let g be a nonnegative, two times continuously differentiable function on
Rn, with compact support. Then,

∫
Rn

Fh(x)
ϑ2g

ϑxiϑxj
(x)dx =

∫
Rn

∫
Rn

F (y)ψh(x− y)dy

 ϑ2g

ϑxiϑxj
(x)dx = (Fubini’s theorem)

=

∫
Rn

F (y)

∫
Rn

ψh(y − x)
ϑ2g

ϑxiϑxj
(x)dx

 dy = (Lebesgue’s th. (A.3.1))

=

∫
Rn

F (y)
ϑ2

ϑxiϑxj

∫
Rn

ψh(y − x)g(x)dx

 dy =

=

∫
Rn

F (y)
ϑ2

ϑxiϑxj
(ψh ∗ g)(y)dy.

As a result, condition (4.17) holds for Fh.

Moving to establishing the condition (4.18) for Fh, we can write that

Fh(x+ te) = (F ∗ ψh)(x+ te) = ψh(x+ te) ∗ F =

=

∫
Rn

F (x+ te− y)ψh(y)dy =

=

∫
Rn

(F (x− y) + ct)ψh(y)dy =

=

∫
Rn

F (x− y)ψh(y)dy +

∫
Rn

ctψh(y)dy =

= Fh(x) + ct

∫
Rn

ψh(x)dx =

= Fh(x) + ct.

Consequently, the function Fh satisfies all the conditions of this theorem and
in addition the conditions imposed by us in the first half of this proof. Using
the results obtained on the first half of this proof we can write that

E [Fh(X)] ≤ E [Fh(Y)] , ∀h > 0.

Moreover, we want to show that Fh converges uniformly to F . Before we do
that notice that

y ∈ B(x, h)⇒ ‖x− y‖2 ≤ h⇒ x− y ∈ B(0, h) ⊇ supp(ψh).

In order to prove the uniform convergence of Fh to F we consider the fol-
lowing sum.

64

|Fh(x)− F (x)| =

∣∣∣∣∣∣
∫
Rn

(F (y)− F (x))ψh(x− y)dy

∣∣∣∣∣∣ ≤
≤

∫
B(x,h)

|F (y)− F (x)|ψh(x− y)dy ≤ (F Lipschitz), (ψh nonnegative)

≤
∫

B(x,h)

L‖y − x‖2ψh(x− y)dy ≤

≤
∫

B(x,h)

Lhψh(x− y)dy ≤

≤ Lh,∀x ∈ Rn.

Therefore, we have established that for h→ 0, Fh converges uniformly to F .
Thus, the uniform convergence of Fh can be exploited to show that

E [F (X)] = E
[

lim
h→0

Fh(X)

]
= lim
h→0

E [Fh(X)] ≤

≤ lim
h→0

E [Fh(Y)] = E
[

lim
h→0

Fh(Y)

]
= E [F (Y)] .

At this point we have all the tools at our disposal that are necessary in order
to prove Gordon’s Lemma .

Theorem 4.7.1 (Gordon’s Lemma). Let Xi,j , Yi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m be
two finite families of Gaussian random variables with zero mean. If

E
[
|Xi,j −Xk,l|2

]
≤ E

[
|Yi,j − Yk,l|2

]
, ∀i 6= k, j, l

E
[
|Xi,j −Xi,l|2

]
≥ E

[
|Yi,j − Yi,l|2

]
, ∀i, j, l,

then it holds that

E
[

min
1≤i≤n

max
1≤j≤m

Xi,j

]
≥ E

[
min

1≤i≤n
max

1≤j≤m
Yi,j

]
.

Proof. We define the following function

F (x) = min
1≤i≤n

max
1≤j≤m

xij (4.22)

where x ∈ Rnm is a doubly-indexed vector x = (xij)1≤i≤n,1≤j≤m.
We are going to use lemma 4.7.1. We can easily see that F is Lipschitz, with

constant 1. Indeed,

|F (x)− F (y)| =
∣∣∣∣ min
1≤i≤n

max
1≤j≤m

xij − min
1≤i≤n

max
1≤j≤m

yij

∣∣∣∣ = |xi1j1 − yi2j2 | ≤

≤

√√√√ n∑
i=1

m∑
j=1

|xij − yij |2 = ‖x− y‖2

65

Next we want to show that (4.17) holds. We notice that only two variables
are involved each time, so we can choose two of the variables and fix the others.
Let t = xij and s = xkl. Then, we can express F as

F (x) =

{
A(t, s) , i = k

B(t, s) , i 6= k
=

{
max {f(t), g(s)} , i = k

min {f(t), g(s)} , i 6= k
.

The functions f, g are of the form

l(t) =


a , t < a

t , a ≤ t ≤ b
b , t > b

, (4.23)

where a ≤ b . Note that it is possible that a = −∞, b = +∞.
The weak derivative of l is

l′(t) =


0 , t < a

1 , a ≤ t ≤ b
0 , t > b

(4.24)

The function A(t, s) can be equivalently written as

A(t, s) = max {f(t), g(s)} =
1

2
(f(t) + g(s) + |f(t)− g(s)|) .

We calculate the partial weak derivative of A with respect to t.

h(t, s) =
ϑ

ϑt
A(t, s) =

1

2
(f ′(t) + f ′(t)sgn(f(t)− g(s))) =

=


1

2
(1 + sgn(t− g(s))) , a ≤ t ≤ b

0 , a < t, t > b
.

The function h(t, s), with fixed t, is nonincreasing, thus
ϑ2

ϑsϑt
A(t, s) ≤ 0, in

the distributional sense.
Moving to the other case we have

B(t, s) = min {f(t), g(s)} =
1

2
(f(t) + g(s)− |f(t)− g(s)|) .

Using the same reasoning with the previous case we can conclude that
ϑ2

ϑsϑt
B(t, s) ≥ 0, in the distributional sense.

Consequently, in the sense of distributional derivatives it holds that


ϑ2F

ϑxijϑxkl
≤ 0 , i = k

ϑ2F

ϑxijϑxkl
≥ 0 , i 6= k

.

66

Furthermore, the following condition is provided in the definition of Gordon’s
lemma, E

[
|Xi,j −Xk,l|2

]
− E

[
|Yi,j − Yk,l|2

]
≥ 0 , i = k

E
[
|Xi,j −Xk,l|2

]
− E

[
|Yi,j − Yk,l|2

]
≤ 0 , i 6= k

. (4.25)

Thus,
ϑ2F

ϑxijϑxkl
≤ 0 , i = k

ϑ2F

ϑxijϑxkl
≥ 0 , i 6= k

·

E
[
|Xi,j −Xk,l|2

]
− E

[
|Yi,j − Yk,l|2

]
≥ 0 , i = k

E
[
|Xi,j −Xk,l|2

]
− E

[
|Yi,j − Yk,l|2

]
≤ 0 , i 6= k

=

=
(
E
[
|Xi,j −Xk,l|2

]
− E

[
|Yi,j − Yk,l|2

])
· ϑ2F

ϑxijϑxkl
≤ 0,∀ i, j, k, l.

In addition, for r ∈ R

F (x+ re) = min
1≤i≤n

max
1≤j≤m

(xij + r) = min
1≤i≤n

max
1≤j≤m

(xij) + r = F (x) + r.

Then, the conditions of lemma (4.7.1) are satisfied for −F and as a result it
holds that

E [−F (X)] ≤ E [−F (Y)]⇒ E [F (X)] ≥ E [F (Y)] (4.26)

An important observation is the fact that Gordon’s lemma also holds for
Gaussian processes. This result is a combination of two things. First, we know
that any finite subset of a Gaussian process is a Gaussian random vector, i.e. if
(Xi)i∈T is a Gaussian stochastic process, then the vector (Xi)i∈S , S ⊆ T with
card(S) <∞, is a Gaussian random vector. Secondly, the suprema we consider
here are lattice suprema, which roughly means that the supremum is computed
on finite subsets of the stochastic process.

An immediate consequence of Gordon’s Lemma is Slepian’s Lemma.

Corollary 4.7.1 (Slepian’s Lemma). Let X, Y ∈ Rn be two Gaussian random
vectors with zero mean. If

E
[
|Xi −Xj |2

]
≤ E

[
|Yi − Yj |2

]
, 1 ≤ i, j ≤ n, (4.27)

then it holds that

E
[

max
1≤i≤n

Xi

]
≤ E

[
max

1≤i≤n
Yi

]
. (4.28)

4.8 Concentration of measure

In this section we aim at proving a concentration of measure argument. We are
going to follow the entropy method. As with every complex argument the proof
requires several intermediate propositions, definitions and lemmas.

First, we need to define the entropy of a random variable.

67

Definition 4.8.1 (Entropy). Let X be a nonnegative random variable on a prob-
ability space (Ω,Σ,P). Also, let define the convex function φ(x) = xln(x), x > 0,
which we continuously extend to x = 0 by setting φ(x) = 0. The entropy of X
is defined as

E(X) = E [φ(X)]− φ(E [X]) = E [Xln(X)]− E [X] ln(E [X]).

If E [Xln(X)] =∞, we set E(X) =∞.

We can easily verify that the entropy is a nonnegative quantity, i.e E(X) ≥ 0
and it is homogeneous, i.e E(tX) = tE(X), ∀ t > 0.

We are going to use the entropy in order to develop a concentration in-
equality for a random variable X. This approach is called the entropy method.
Specifically, we want to obtain a bound of the form

E
(
etX
)
≤ g(t)E

[
etX
]
,

for t > 0 and some suitable function g(t). Then we can use the following
procedure in order to obtain a concentration inequality for X.

First of all, note that M ′X(t) = E
[
XetX

]
. As a result, we can rewrite the

entropy of etX as

E(etX) = tM ′X(t)−MX(t)ln (MX(t)) ≤ g(t)MX(t)

⇒ M ′X(t)

tMX(t)
− ln(MX(t))

t2
≤ g(t)

t2

Then by setting F (t) =
ln(MX(t))

t
we can deduce that

F ′(t) ≤ g(t)

t2
⇒ F (t)− F (0) ≤

t∫
0

g(z)

z2
dz ⇒ (F (0) = lim

t→0

ln(MX(t))

t
= E [X])

F (t)− E [X] ≤
t∫

0

g(z)

z2
dz ⇒ ln(MX(t))

t
− E [X] ≤

t∫
0

g(z)

z2
dz ⇒

eln(MX(t))−tE[X] ≤ exp

t t∫
0

g(z)

z2
dz

⇒
E
[
et(X−E[X])

]
≤ exp

t t∫
0

g(z)

z2
dz

 .

Combining Markov’s theorem with the previous result yields the following
tail bound

P [X − E [X] ≥ s] ≤
exp

(
t
t∫

0

g(z)

z2
dz

)
ets

, s > 0

This approach is also called the Herbst argument. The next lemma contains
some basic results about entropy.

68

Lemma 4.8.1 (Results about entropy). Let X be a nonnegative random vari-
able such that E [X] <∞. Then, it holds that

(a)

E(X) = sup
{
E [XY] : E

[
eY
]
≤ 1
}
, (4.29)

(b)

E(X) = sup
Z>0
{E [Xln(Z)]− E [X] ln(E [Z])} .

(c) The entropy is a subadditive function, i.e

E(X + Z) ≤ E(X) + E(Z),

where Z is also a nonnegative random variable.

Proof. (a) First of all, assume that X is a strictly positive random variable.
Notice that the homogeneity of entropy allows us to assume that E [X] = 1.
Also, let Y be a random variable such that E

[
eY
]
≤ 1. Using Fenchel’s

inequality (A.5.3) and the fact that E
[
eY
]
≤ 1 we can obtain the following

expression.

E [XY] ≤ E
[
eY
]

+ E [Xln(X)]− exX ≤ E [Xln(X)] = E(X).

Hence,

sup
{
E [XY] : E

[
eY
]
≤ 1
}
≤ E(X).

In order to show the opposite inequality, we pick Y = ln(X) − ln(E [X]).
For that Y we can easily verify that

E
[
eY
]

= E
[
eln(X)−ln(E[X])

]
= E

[
X

1

E [X]

]
= 1.

Then,

E [XY] = E [Xln(X)−Xln(E [X])] = E(X).

Thus,

E(X) ≤ sup
{
E [XY] : E

[
eY
]
≤ 1
}
,

and the proof for a strictly positive random variable is complete. It is
now easy to show that the main result holds for a nonnegative random
variable using the continuity of φ(the function introduced in the definition
of entropy) at 0 and an elementary approximation argument.

(b) This result is obtained by setting in (4.29) Y = ln

(
Z

E [Z]

)
, where Z is

a positive random variable. Notice that E
[
eY
]
≤ 1 is satisfied for every

Z > 0.

69

(c) It is straightforward that

E(X + Z) = sup
{
E [(X + Z)Y] : E

[
eY
]
≤ 1
}
≤

≤ sup
{
E [XY] : E

[
eY
]
≤ 1
}

+ sup
{
E [ZY] : E

[
eY
]
≤ 1
}

=

= E(X) + E(Z).

Before we proceed to the next proposition we need to give three more def-
initions. Let X = (X1, X2, . . . , Xn) be a random vector and f : Rn → R be a

function. We denote with X(i) the following vector

X(i) = (X1, . . . , Xi−1, Xi, . . . , Xn).

Now we can define the following quantities.

• Conditional expectation

EXi [f(X)] = EXi [f(X1, . . . , Xi, . . . , Xn)] = E
[
f(X)|X(i)

]
.

The conditional expectation is a function of X1, . . . , Xi−1, Xi+1, . . . , Xn

and is constant with respect to Xi.

• Conditional entropy

EXi [f(X)] = E
(
f(X)|X(i)

)
= EXi [f(X)ln(f(X))]−EXi [f(X)] ln (EXi [f(X)])

The conditional entropy is a random variable that depends on X(i).

• Conditional expectation operator

Ei [f(X)] = EX1,...,Xi−1 [f(X)] = E [f(X)|Xi, . . . , Xn]

Notice that E1 [f(X)] = f(X) and En+1 [f(X)] = E [f(X)]

We are now ready to prove the tensorization inequality for entropy.

Proposition 4.8.1 (Tensorization inequality). Let X = (X1, . . . , Xn) be a
random vector, where Xi, 1 ≤ i ≤ n, are independent random variables and f
be a nonnegative function for which it holds that E [f(X)] <∞. Then

E(f(X)) ≤ E

[
n∑
i=1

EXi [f(X)]

]
.

Proof. First, assume that f is strictly positive. The use of lemma 4.8.1(b) with
Z = Ei [f(X)] > 0 leads to

EXi
[
f(X)ln

(
Ei [f(X)]

)]
− EXi [f(X)] ln

(
EXi

[
Ei [f(X)]

])
≤ EXi [f(X)]

⇒ EXi
[
f(X)ln

(
Ei [f(X)]

)
− f(X)ln

(
EXi

[
Ei [f(X)]

])]
≤ EXi [f(X)] .

(4.30)

70

Using the fact that Xi, 1 ≤ i ≤ n are independent random variables and
Fubini’s theorem we can obtain the following result

EXi
[
Ei [f(X)]

]
= EXi

[
EX1,...,Xi−1 [f(X)]

]
= Ei+1 [f(X)] . (4.31)

Also, we create the following telescopic sum

ln (f(X))− ln (E [f(X)]) =

n∑
i=1

(
ln
(
Ei [f(X)]

)
− ln

(
Ei+1 [f(X)]

))
,

using the conditional expectation operator. Then, using the above expression
we can obtain the following

E(f(X)) = E [f(X)ln(f(X))− f(X)ln (E [f(X)])] =

= E

[
f(X)

n∑
i=1

(
ln
(
Ei [f(X)]

)
− ln

(
Ei+1 [f(X)]

))]
=

=

n∑
i=1

E
[
f(X)ln

(
Ei [f(X)]

)
− f(X)ln

(
EXi

[
Ei [f(X)]

])]
= (eq.(4.31))

=

n∑
i=1

E
[
EXi

[
f(X)ln

(
Ei [f(X)]

)
− f(X)ln

(
EXi

[
Ei [f(X)]

])]]
≤ (eq.(4.30))

≤
n∑
i=1

E [EXi [f(X)]] = E

[
n∑
i=1

EXi [f(X)]

]
.

Notice that the main result extends to nonnegative random variables using
the continuity of φ (the function introduced in the definition of entropy) at 0
and an elementary approximation argument.

In order to prove the concentration of measure argument we need the loga-
rithmic Sobolev inequality for Rademacher vectors.

Theorem 4.8.1 (Log-Sobolev inequality for Rademacher vectors). Let f :
{−1, 1}n → R be a function and ε be an n-dimensional Rademacher vector
1. Then

E(f2(ε)) ≤ 1

2
E

[
n∑
i=1

(
f(ε)− f(ε(i))

)2
]
,

where ε(i) = (ε1, . . . , εi−1,−εi, εi+1, . . . , εn).

Proof. First, we are going to show that

Eεi
[
f2(ε)

]
≤ 1

2
Eεi
[(
f(ε)− f(ε(i))

)2
]
, ∀i ∈ {1, . . . , n} . (4.32)

Suppose that we have an arbitrary realization of the vector (ε1, . . . , εi−1, εi+1, . . . , εn).
Since εi is a Rademacher random variable, the vector (ε1, . . . , εi−1, εi, εi+1, . . . , εn)

1A Rademacher random variable εi takes the values +1,-1, with probability 1/2 for each
event. A Rademacher random vector ε is a vector of independent Rademacher variables.

71

and as a result the function f(ε) can take two possible values, which we denote
as a, b ∈ R. Notice that f(ε(i)) can take the same two possible values.

Using the definition of conditional entropy we can deduce that,

Eεi
[
f2(ε)

]
= Eεi

[
f2(ε)ln(f2(ε))

]
− Eεi

[
f2(ε)

]
ln
(
Eεi
[
f2(ε)

])
=

1

2

(
a2ln(a2) + b2ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
.

Also,

1

2
Eεi
[(
f(ε)− f(ε(i))

)2
]

=
1

2

(
1

2
(a− b)2 +

1

2
(b− a)2

)
=

1

2
(a− b)2.

Thus, we want to show that

1

2

(
a2ln(a2) + b2ln(b2)

)
− a2 + b2

2
ln

(
a2 + b2

2

)
≤ 1

2
(a− b)2.

We define the function

g(x) =
1

2

(
x2ln(a2) + b2ln(b2)

)
− x2 + b2

2
ln

(
x2 + b2

2

)
− 1

2
(x− b)2.

We calculate the first and second derivatives of g(a)

g′(x) = xln

(
2x2

x2 + b2

)
− (x− b),

g′′(x) = 1 + ln

(
2x2

x2 + b2

)
− 2x2

x2 + b2
.

We notice that g(b) = g′(b) = 0 and g′′(x) ≤ 0,∀x ∈ R. The last expression
was obtained using the inequality ln(x) ≤ x − 1. So we have established that
g(b) = 0 is a global maximum and consequently g(x) ≤ 0, ∀x ∈ R. Therefore,
equation (4.32) is valid for all i ∈ {1, . . . , n}.

From proposition 4.8.1 we can obtain the following result

E(f2(ε)) ≤ E

[
n∑
i=1

Eεi
[
f2(ε)

]]
. (4.33)

Combining proposition 4.8.1 and equation (4.33) yields the result provided
in the definition.

Theorem 4.8.2 (Gaussian logarithmic Sobolev inequality). Let f : Rn → R
be a continuously differentiable function such that E

[
φ(f2(g))

]
< ∞, where

g ∈ Rn is a standard Gaussian random vector. Then it holds that

E(f2(g)) ≤ 2E
[
‖∇f(g)‖22

]
72

Proof. We start by proving the above result for n = 1 and g = g, where g is
a standard Gaussian random variable. Suppose that f has compact support.
For the modulus of continuity ω(f ′, δ) = sup

|t−u|≤δ
|f ′(t)− f ′(u)| we have that

lim
δ→0

ω(f ′, δ) = 0, because f ′ is uniformly continuous.

Let define

Sm =
1√
m

m∑
i=1

εi,

where ε = (ε1, . . . , εm) is a Rademacher vector. Also, consider the function
f1(ε) = f(Sm). Using theorem 4.8.1 we can attain

E(f2(Sm)) ≤ 1

2
E

[
m∑
i=1

(
f1(ε)− f1(ε(i))

)2
]

=

=
1

2
E

[
m∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2
]
,

where ε(i) = (ε1, . . . , εi−1,−εi, εi+1, . . . , εm).
Isolating and working with an arbitrary term of the above sum yields

∣∣∣∣f(Sm)− f
(
Sm −

2εi√
m

)∣∣∣∣ =

∣∣∣∣∣∣∣
2εi√
m
f ′(Sm) +

Sm∫
Sm−2εi/

√
m

(f ′(t)− f ′(Sm)) dt

∣∣∣∣∣∣∣ ≤
≤ 2√

m
|f ′(Sm)|+ 2√

m
ω(f ′,

2√
m

).

Squaring both parts of the previous expression leads to

(
f(Sm)− f

(
Sm −

2εi√
m

))2

≤ 4

m
f ′(Sm)2 +

8

m
|f ′(Sm)|ω(f ′,

2√
m

) +
4

m
ω(f ′,

2√
m

)2.

Therefore, we have that

m∑
i=1

(
f(Sm)− f

(
Sm −

2εi√
m

))2

≤ 4f ′(Sm)2 + 8 |f ′(Sm)|ω(f ′,
2√
m

) + 4ω(f ′,
2√
m

)2.

Using the central limit theorem 4.2.2 and taking into account that f and f ′

are bounded function we can deduce that

lim
m→∞

E
[
f ′(Sm)2

]
= E

[
f ′(g)2

]
and

lim
m→∞

E(f2(Sm)) = E(f2(g)),

where g is a standard Gaussian random variable.
Therefore,

73

lim
m→∞

E(f2(Sm)) ≤ lim
m→∞

1

2
E
[
4f ′(Sm)2 + 8 |f ′(Sm)|ω(f ′,

2√
m

) + 4ω(f ′,
2√
m

)2

]
⇒ E(f2(g)) ≤ 2E

[
f ′(g)2

]
.

Moving to the general case, assume that f does not necessarily have compact
support. The expression E

[
φ(f2(g))

]
≤ ∞ implies that for a given ε > 0 there

exists T > 0, such that for any subset I ⊆ R \ [−T, T] ,

1√
2π

∫
I

∣∣φ(f(t)2)
∣∣ e−t2/2dt ≤ ε (4.34)

and

1√
2π

∫
I

e−t
2/2dt ≤ ε. (4.35)

Also, let h be a continuously differentiable function, such that 0 ≤ h(t) ≤ 1
and

h(t) =

{
1 , t ∈ [−T, T]

0 , t /∈ [−T, T]
.

Then, we define the function f̂ = fh. Notice that f̂ is a continuously
differentiable function with compact support. Consequently, using the results
we proved in the first part of this proof,

E(f̂(g)2) ≤ 2E
[
f̂ ′(g)2

]
.

Using the fact that entropy is a subadditive function (lemma 4.8.1(c)) we
can see that

E(f(g)2) = E
(
f̂(g)2 + f(g)2

(
1− h(g)2

))
≤

≤ E
(
f̂(g)2

)
+ E

(
f(g)2

(
1− h(g)2

))
. (4.36)

In order to obtain a bound on the second term of the above expression we
consider the sets I1 =

{
t ∈ R \ [−T, T] : f(t)2 < e

}
and I2 =

{
t ∈ R \ [−T, T] : f(t)2 ≥ e

}
.

Then

E
[
f(g)2(1− h(g)2)

]
=

1√
2π

∫
R\[−T,T]

f(g)2(1− h(g)2)e−t
2/2dt ≤

≤ 1√
2π

∫
I1

f(g)2e−t
2/2dt+

1√
2π

∫
I2

f(g)2e−t
2/2dt ≤

≤ 1√
2π

∫
I1

e · e−t
2/2dt+

1√
2π

∫
I2

∣∣φ(f(g)2)
∣∣ e−t2/2dt ≤ (eq.(4.34), (4.35))

≤ (e+ 1)ε. (4.37)

74

As a result, ∣∣φ (E [f(g)2(1− h(g)2)
])∣∣ ≤ φ ((e+ 1)ε) ,

for sufficiently small ε.
Also, we introduce the sets I3 =

{
t ∈ R \ [−T, T] : f(t)2(1− h(g)2) < e

}
,

I4 =
{
t ∈ R \ [−T, T] : f(t)2(1− h(g)2) ≥ e

}
and the value φ0 = max

0≤t≤e
|φ(t)| =

e−1.
Then,

∣∣E [φ (f(g)2(1− h(g)2)
)]∣∣ =

1√
2π

∣∣∣∣∣∣∣
∫

R\[−T,T]

φ(f(g)2(1− h(g)2))e−t
2/2dt

∣∣∣∣∣∣∣ ≤
≤ 1√

2π

∫
I3

φ0 · e−t
2/2dt+

1√
2π

∫
I4

∣∣φ(f(g)2)
∣∣ e−t2/2dt ≤

≤ φ0ε+

∫
I4

∣∣φ(f(g)2)
∣∣ e−t2/2dt ≤ (eq.(4.34), (4.35))

≤ (φ0 + 1)ε.

Therefore, using the definition of entropy (definition 4.8.1) we can conclude
that

E
(
f(g)2

(
1− h(g)2

))
≤
∣∣E [φ (f(g)2(1− h(g)2)

)]∣∣+
∣∣φ (E [f(g)2(1− h(g)2)

])∣∣ ≤
≤ |φ((e+ 1)ε)|+ (φ0 + 1)ε.

So, we have obtained a bound on the 2nd term of (4.36). Next we are going
to improve the bound on the first term of expression (4.36). We have already
shown that

E(f̂(g)2) ≤ 2E
[
f̂ ′(g)2

]
.

We can use the triangle inequality to obtain that

√
E
[
f̂ ′(g)2

]
=
√

E [(f ′h+ fh′)(g)2] ≤
√

E [(f ′h)(g)2] +
√

E [(fh′)(g)2].

For the first term of the above expression we can easily see that

E
[
(f ′h)(g)2

]
= E

[
f ′(g)2h(g)2

]
≤ E

[
f ′(g)2

]
.

Moving to the second term we can show that

E
[
(fh′)(g)2

]
=

1√
2π

+∞∫
−∞

f(t)2h′(t)2e−t
2/2dt ≤ ‖h

′‖2∞√
2π

∫
I1∪I2

f(t)2e−t
2/2dt ≤

≤ ‖h′‖2∞(e+ 1)ε.

75

In the last inequality we used the same reasoning as in expression (4.37).
Therefore, we can obtain the following bound

E(f̂(g)2) ≤ 2E
[
f̂ ′(g)2

]
= 2

√
E
[
f̂ ′(g)2

]2
≤

≤ 2
(√

E [f ′(g)2] + ‖h′‖∞
√

(e+ 1)ε
)2

.

For the entropy of f2 we can obtain the following bound combining several
of the previous results

E(f(g)2) ≤ 2
(√

E [f ′(g)2] + ‖h′‖∞
√

(e+ 1)ε
)2

+ |φ((e+ 1)ε)|+ (φ0 + 1)ε.

The above result result holds for all ε > 0. Combining that with the fact
that lim

t→0
φ(t) = φ(0) = 0 we can conclude that

E(f(g)2) ≤ 2E
[
f ′(g)2

]
.

Finally, we can generalize the previous result for any n ∈ N using the ten-
sorization inequality (proposition 4.8.1),

E(f2(g)) ≤ E

[
n∑
i=1

Egi [f(g)]

]
≤ 2E

[
n∑
i=1

(
ϑf

ϑxi
(g)

)2
]

=

= 2E
[
‖∇f(g)‖22

]
.

Finally, we are ready to state and prove a concentration of measure argu-
ment.

Theorem 4.8.3 (Concentration of measure). Let f : Rn → R be a Lipschitz
function (with constant L) and g ∈ Rn be a standard Gaussian random vector.
Then,

P(f(g)− E [f(g)] ≥ t) ≤ exp
(
− t2

2L2

)
, ∀t > 0

and

P(|f(g)− E [f(g)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
, ∀t > 0.

Proof. Assume that f is differentiable and let t > 0. Then, using the fact that
f is a Lipschitz function we can see that ‖∇f(x)‖2 ≤ L, ∀x ∈ Rn. Also, let
define the function h(x) = etf(x)/2, x ∈ Rn. Using the same fact we can easily
deduce that etf(x) ≤ et|f(0)|eLt‖x‖2 , ∀x ∈ Rn and thus h(x) satisfies condition
E
[
φ(h2(g))

]
= E

[
φ(etf(g))

]
< ∞. Therefore, h satisfies the conditions of the-

orem 4.8.2. Thus, using the logarithmic Sobolev inequality (theorem 4.8.2) on
the function h(g) yields

76

E(etf(g)) ≤ 2E
[
‖∇etf(g)/2‖22

]
= 2E

[
‖ t

2
etf(g)/2∇f(g)‖22

]
=

=
t2

2
E
[
etf(g)‖∇f(g)‖22

]
≤ t2L2

2
E
[
etf(g)

]
.

So, we have found an inequality of the form

E
(
etX
)
≤ g(t)E

[
etX
]
,

with g(t) =
L2t2

2
and X = f(g). As a result, we can obtain the following

bound for t > 0,

P [f(g)− E [f(g)] ≥ t] ≤
exp

(
s
s∫
0

z−2g(z)dz

)
est

⇒ P [f(g)− E [f(g)] ≥ t] ≤ es
2L2/2−st

⇒ P [f(g)− E [f(g)] ≥ t] ≤ inf
s>0

{
es

2L2/2−st
}

⇒ P [f(g)− E [f(g)] ≥ t] ≤ exp
(
− t2

2L2

)
. (s =

t

L2
global minimum)

If we replace f with −f we obtain the bound

P [E [f(g)]− f(g) ≥ t] ≤ exp
(
− t2

2L2

)
.

Therefore, the union bound establishes that

P(|f(g)− E [f(g)]| ≥ t) ≤ 2exp

(
− t2

2L2

)
, ∀t > 0.

Now moving to the case where f is not differentiable, for each ε > 0 we can
find a differentiable function h(x), which is Lipschitz with the same constant L
as f , such that

|f(x)− h(x)| ≤ ε, ∀x ∈ Rn.

Consequently,

P [f(g)− E [f(g)] ≥ t] ≤ P [h(g)− E [h(g)] ≥ t− 2ε] ≤ exp
(
− (t− 2ε)2

2L2

)
The previous expression holds for every ε > 0, hence we can establish that

the basic result is also valid for non-differentiable functions.

77

78

Chapter 5

Sparse vectors recovery
with random matrices

5.1 Introduction

In chapter 2 we introduced the problem of sparse vector recovery and its ex-
tension to noisy scenarios. In both settings we highlighted the importance of
choosing correctly the measurement matrix in order to ensure that the algorithm
we use succesfully recovers all k-sparse vectors. In this chapter we are going to
present in a mathematically rigorous way some results that refer to the ability
of specific classes of random matrices to guarantee succesfull recovery of sparse
vectors, under certain conditions, using the l1 minimization task. This whole
section is mainly based on [FR13], essentially providing a partial presentation
of chapter 9.

There are two types of recovery results, uniform and non-uniform recovery
guarantees. In uniform recovery guarantees the algorithm is able to recover
successfully all k-sparse vector (after projection using a randomly drawn mea-
surement matrix A), using the same matrix A, with high probability on the
choice of matrix A. A uniform recovery guarantee roughly contains a statement
of the form [FR13],

P (∀x ∈ Σk , recovery of x is sucessfull using matrix A) ≥ 1− ε.

On the other hand, in non-uniform recovery guarantees the algorithm is able
to recover successfully a fixed k-sparse vector (after projection using a randomly
drawn measurement matrix A), with high probability on the choice of matrix
A. A non-uniform recovery guarantee contains a statement of the form [FR13],

∀x ∈ Σk : P (recovery of x is sucessfull using matrix A) ≥ 1− ε.

In the present chapter we are going to prove the following results:

• A uniform recovery result for subgaussian matrices using the l1 minimiza-
tion task (section 5.2).

• A non-uniform recovery result for Gaussian matrices using the l1 mini-
mization task (section 5.3).

79

5.2 Uniform recovery with subgaussian matrices

In this section we are going to prove a uniform recovery result for subgaussian
matrices using the l1 minimization task. First of all, we are going to show that if
a random matrix A satisfies concentration inequality (5.1) then for that matrix
the expression (5.2) holds, which constitutes an intermediate result in order to
prove the R.I.P for A.

Theorem 5.2.1. Let A ∈ Rm×n be a random matrix for which the following
concentration inequality holds

P
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ t‖x‖22) ≤ 2e−c0mt

2

, ∀x ∈ Rn, t ∈ (0, 1). (5.1)

Given δ, ε ∈ (0, 1) and S ⊆ {1, . . . , n} with card(S) = k, if

m ≥ 14k + 4 ln(2ε−1)

3c0δ2

then
‖ATSAS − I‖2→2 < δ, (5.2)

1with probability at least 1− ε.

Proof. We perform a discretization of the unit ball of vectors with at most k
non-zero elements in the positions specified by the index set S. Specifically,
we consider the set BS = {x ∈ Rn : ‖x‖2 ≤ 1 ∧ supp(x) ⊆ S}. From theorem
(A.4.1) about covering numbers we know that, given a radius ρ ∈ (0, 1/2), we
can find a finite set U ⊆ BS , such that the following expressions hold

card(U) ≤
(

1 +
2

ρ

)k
(5.3)

and
min
u∈U
‖z − u‖2 ≤ ρ, ∀ z ∈ BS .

Using concentration inequality (5.1) it is easy to see that

P
(∣∣‖Au‖22 − ‖u‖22∣∣ ≥ t‖u‖22 for some u ∈ U

)
≤
∑
u∈U

P
(∣∣‖Au‖22 − ‖u‖22∣∣ ≥ t‖u‖22)

≤ 2 card(U)e−c0mt
2

≤ 2

(
1 +

2

ρ

)k
e−c0mt

2

. (eq. (5.3))

Suppose that for a randomly drawn random matrix A, from the probability
distribution for which the inequality (5.1) holds, we have that∣∣‖Au‖22 − ‖u‖22∣∣ < t‖u‖22,∀u ∈ U.

Also, we set B = ATSAS − I. Then, we can write the previous expression as

|〈Bu,u〉| < t,∀u ∈ U. (5.4)

1AS denotes the matrix created by keeping the columns of matrix A specified by the index
set S and removing the rest.

80

The previous expression holds with the following probability,

P
(∣∣‖Au‖22 − ‖u‖22∣∣ < t‖u‖22,∀u ∈ U

)
≥ 1− 2

(
1 +

2

ρ

)k
e−c0mt

2

. (5.5)

We want to show that for appropriate choice of ρ and t expression (5.4)
implies ∣∣‖Ax‖22 − ‖x‖22∣∣ < δ‖x‖22 ≤ δ, ∀x ∈ BS

which in turn implies

|〈Bx,x〉| < δ, ∀x ∈ BS

and

‖B‖2→2 < δ.

So, let x ∈ BS and u ∈ U , such that ‖x − u‖2 ≤ ρ < 1/2. Then we have
that

|〈Bx,x〉| = |〈Bx,x〉+ 〈Bu,u〉 − 〈Bu,u〉+ 〈x, Bu〉 − 〈x, Bu〉| =
= |〈Bx,x〉+ 〈Bu,u〉 − 〈Bu,u〉+ 〈Bu,x〉 − 〈Bx,u〉| = (B symmetric),(commutativity)

= |〈Bu,u〉+ 〈B(x+ u),x− u〉| ≤
≤ |〈Bu,u〉|+ |〈B(x+ u),x− u〉| ≤
≤ t+ ‖B(x+ u)‖2‖x− u‖2 < (Cauchy-Schwarz ineq.), (eq. 5.4)

< t+ ‖B‖2→2‖x+ u‖2‖x− u‖2 ≤
≤ t+ ‖B‖2→2(‖x‖2 + ‖u‖2)ρ ≤
≤ t+ 2ρ‖B‖2→2.

We know that we can obtain the norm of B as

‖B‖2→2 = sup
x∈BS

〈Bx,x〉 .

Therefore, from the previous inequality we can conclude that

‖B‖2→2 < t+ 2‖B‖2→2ρ⇒ ‖B‖2→2 <
t

1− 2ρ
, t ∈ (0, 1), ρ ∈

(
0,

1

2

)
.

We choose t = (1− 2ρ)δ and as a result we establish that ‖B‖2→2 < δ. For
the probability that this event occurs we can use (5.5) to deduce that

P (‖B‖2→2 < δ) ≥ 1− 2

(
1 +

2

ρ

)k
e−c0m(1−2ρ)2δ2 .

It is straightforward that

P (‖B‖2→2 ≥ δ) ≤ 2

(
1 +

2

ρ

)k
e−c0m(1−2ρ)2δ2 . (5.6)

81

So, if we denote ε = P (‖B‖2→2 ≥ δ) we have that

‖B‖2→2 ≤ δ

occurs with probability at least 1− ε provided

ε ≤ 2

(
1 +

2

ρ

)k
e−c0m(1−2ρ)2δ2 ⇒

m ≥ 1

c0(1− 2ρ)2δ2

(
ln

(
1 +

2

ρ

)
k + ln

(
2ε−1

))
.

We can obtain the bound provided in the definition if we consider ρ =
2

e7/2 − 1
, which leads to

m ≥ 14k + 4 ln(2ε−1)

3c0δ2
.

In the following remark an alternative description of the R.I.P is provided
that is necessary for the next theorem.

Remark 5.2.1 (Alternative description of R.I.P). Starting from the definition
of the R.I.P provided in expression (2.6) we can obtain the following alternative
description

(1− δ)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ)‖x‖22, ∀x ∈ Σk

⇒
∣∣∣‖ASx‖22 − ‖x‖22∣∣∣ ≤ δ‖x‖22, ∀S ⊆ {1, 2, . . . , n} , card(S) ≤ k, ∀x ∈ RS

⇒ 〈ASx, ASx〉 − 〈x,x〉
‖x‖22

≤ δ, ∀S ⊆ {1, 2, . . . , n} , card(S) ≤ k, ∀x ∈ RS \ {0}

⇒
〈
(ATSAS − I)x,x

〉
‖x‖22

≤ δ, ∀S ⊆ {1, 2, . . . , n} , card(S) ≤ k, ∀x ∈ RS \ {0}

⇒ max
x∈RS\{0}

〈
(ATSAS − I)x,x

〉
‖x‖22

≤ δ, ∀S ⊆ {1, 2, . . . , n} , card(S) ≤ k (ATSAS − I Symm.)

⇒ ‖ATSAS − I‖2→2 ≤ δ, ∀S ⊆ {1, 2, . . . , n} , card(S) ≤ k
⇒ max

S⊆{1,2,...,n}, card(S)≤k
‖ATSAS − I‖2→2 ≤ δ.

Therefore, the R.I.P constant of order k is

δk = max
S⊆{1,2,...,k}, card(S)≤k

‖ATSAS − I‖2→2.

Now we can use the previous theorem to establish the R.I.P condition for a
random matrix that satisfies concentration inequality (5.1).

Theorem 5.2.2. Let A ∈ Rm×n be a random matrix for which the following
concentration inequality holds

P
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ t‖x‖22) ≤ 2e−c0mt

2

, ∀x ∈ Rn, t ∈ (0, 1) (5.7)

82

Given δ, ε ∈ (0, 1), if

m ≥
2k
(

9 + 2ln
(n
k

))
+ 4 ln(2ε−1)

3c0δ2
,

then the restricted isometry constant of A satisfies δk < δ with probability at
least 1− ε.

Proof. Taking into account remark 5.2.1 we can easily see that

δk = sup
S⊆[n],card(S)=k

‖ATSAS − I‖2→2 = sup
S⊆[n],card(S)=k

‖B‖2→2

Therefore, we have that

P (δk ≥ δ) ≤
∑

S⊆[n],card(S)=k

P (‖B‖2→2 ≥ δ) ≤ (Union bound)

≤ 2

(
n

k

)(
1 +

2

ρ

)k
e−c0δ

2(1−2ρ)2m ≤ (eq. (5.6))

≤ 2
(en
k

)k (
1 +

2

ρ

)k
e−c0δ

2(1−2ρ)2m. (lemma (A.5.1))

Let set ε = P (‖B‖2→2 ≥ δ) and choose ρ =
2

e7/2 − 1
. Then we can see that

δk < δ holds with probability 1− ε if

ε ≤ 2
(en
k

)k (
1 +

2

ρ

)k
e−c0δ

2(1−2ρ)2m ⇒ (lemma (A.5.1))

m ≥
2k
(

9 + 2ln
(n
k

))
+ 4 ln(2ε−1)

3c0δ2
.

Next, we are intending to show that a matrix with independent, subgaussian,
isotropic rows satisfy concentration inequality (5.7).

Proposition 5.2.1. Let A ∈ Rm×n be a random matrix with independent,
isotropic and subgaussian rows (all rows have the same subgaussian parameter
c). Then the following concentration inequality holds

P
(∣∣∣∣ 1

m
‖Ax‖22 − ‖x‖22

∣∣∣∣ ≥ t‖x‖22) ≤ 2e−c0mt
2

, ∀x ∈ Rn, t ∈ (0, 1),

for a constant c0 that depends only on c.

Proof. The matrix A is of the form

A =


Y T

1

Y T
2

...

Y T
m

 , (5.8)

83

where Yi, 1 ≤ i ≤ m are independent, isotropic, subgaussian random vectors.
We define the following finite sequence of random variables,

Zi = |〈Y i,x〉|2 − ‖x‖22, 1 ≤ i ≤ m,

where x ∈ Rn with ‖x‖22 = 1 (we can assume that without loss of generality).
Using the fact that Y i is an isotropic random vector (theorem 4.1.7) we can

see that
E [Zi] = E

[
|〈Y i,x〉|2

]
− E

[
‖x‖22

]
= ‖x‖22 − ‖x‖22 = 0,

for every 1 ≤ i ≤ m.
Notice that the random variable 〈Y i,x〉 is subgaussian, since Yi is a sub-

gaussian random vector. Hence, Zi is also a subexponential random variable.
Also, we have that

1

m
‖Ax‖22 − ‖x‖22 =

1

m

m∑
i=1

(
|〈Y i,x〉|2 − ‖x‖22

)
=

1

m

m∑
i=1

Zi.

The random vectors Y i are independent and as a result the random variables
Zi are independent as well. We have established that Zi satisfy all the conditions
of Bernstein’s inequality for subexponential random variables (theorem 4.4.1).
Therefore, we can obtain the following result

P

(∣∣∣∣∣ 1

m

m∑
i=1

Zi

∣∣∣∣∣ ≥ t
)

= P

(∣∣∣∣∣
m∑
i=1

Zi

∣∣∣∣∣ ≥ mt
)
≤ 2exp

(
− κ2m2t2/2

2βm+ κmt

)
=

= 2exp

(
− r2

4k + 2rt
mt2

)
≤ 2exp

(
− r2

4k + 2r
mt2

)
. (t ∈ [0, 1])

Finally, we choose c0 =
κ2

4β + 2κt
. As a result, we conclude

P
(

1

m
‖Ax‖22 − ‖x‖22 ≥ t‖x‖22

)
≤ 2e−c0mt

2

, ∀x ∈ Rn, t ∈ (0, 1).

Using the previous results we can state rigorously the R.I.P condition for
matrices with isotropic and independent subgaussian rows.

Theorem 5.2.3. Let A ∈ Rm×n be a random matrix with independent, isotropic,
subgaussian rows (all rows have the same subgaussian parameter c). If

m ≥
C
(
k ln

(en
k

)
+ ln

(
2ε−1

))
δ2

,

then the matrix
1√
m
A satisfies the R.I.P condition with a constant δk ≤ δ and

with probability at least 1− ε.

Proof. Combining proposition 5.2.1 with theorem 5.2.2 and possibly altering
some constants establishes the above result.

84

At this point we have established that a (normalized) matrix with isotropic,
subgaussian rows under some specific conditions satisfy the R.I.P. What we need
now is to show that this result also holds for subgaussian matrices. We are going
to show that using the following lemma.

Lemma 5.2.1. Suppose that Y ∈ Rn is a random vector of independent sub-
gaussian entries, with E [Yi] = 0, V ar [Yi] = 1, 1 ≤ i ≤ n and the same sub-
gaussian parameter c. Then Y is an isotropic, subgaussian random vector with
parameter c.

Proof. From the definition we know that Yi are independent subgaussian ran-
dom variables with E [Yi] = 0 and V ar [Yi] = 1. Obviously,

E [YiYj] =

{
0 i 6= j

1 i = j
.

Then, for x ∈ Rn we have that

E
[
|〈Y ,x〉|2

]
= E

∣∣∣∣∣
n∑
i=1

xiYi

∣∣∣∣∣
2
 = E

 n∑
i=1

n∑
j=1

xixjYiYj

 =

=

n∑
i=1

n∑
j=1

xixjE [YiYj] =

n∑
i=1

x2
i = ‖x‖22.

As a result, from definition (4.1.7) we deduce that Y is an isotropic random
vector.

Also, considering x ∈ Rn, ‖x‖2 = 1, proposition (4.3.3) establishes that the
random variable

〈Y ,x〉 =

n∑
i=1

xiYi (5.9)

is subgaussian with parameter c‖x‖22 = c (independent of x ∈ Rn, ‖x‖2 = 1).
Then, from definition (4.3.2) we can conclude that Y is a subgaussian random
vector with parameter c.

We can now use the previous lemma to establish the R.I.P for subgaussian
matrices.

Theorem 5.2.4. Let A ∈ Rm×n be a subgaussian matrix. There exists C > 0
(depending only on the subgaussian parameters k and r) such that if

m ≥
C
(
k ln

(en
k

)
+ ln

(
2ε−1

))
δ2

,

then the matrix
1√
m
A satisfies the R.I.P condition with a constant δs ≤ δ and

with probability at least 1− ε.

Proof. This theorem follows immediately from theorem 5.2.3 and lemma 5.2.1.

85

Finally, we can present a uniform recovery guarantee for subgaussian matri-
ces using the l1 minimization task, in the noisy case.

Theorem 5.2.5 (Uniform recovery guarantee for subgaussian matrices-noisy
case). Let A ∈ Rm×n be a subgaussian random matrix and ε ∈ (0, 1). There exist
c1, c2 > 0 (depending only on the subgaussian parameters k, r) and d1, d2 > 0
(universal constants) such that if

m ≥ c1k ln
(en
k

)
+ c2 ln

(
2ε−1

)
,

then for all x ∈ Rn a solution of the robust l1 minimization task (2.9.2),
with y = Ax + e and ‖e‖2 ≤

√
mη (for some η > 0), satisfy the following

conditions

‖x− x̂‖1 ≤ d1σk(x)1 + d2

√
kη

and

‖x− x̂‖2 ≤ d1
σk(x)1√

k
+ d2η.

Proof. The robust l1 minimization task (2.9.2), with ‖e‖2 ≤
√
mη, is equivalent

to the following optimization task

minimize
x∈Rn

‖x‖1

subject to ‖ 1√
m
y − 1√

m
Ax‖

2

≤ η.
.

Therefore, combining theorems 5.2.4 and 2.9.3 provides the result we want.

In the noiseless case we have the following theorem.

Theorem 5.2.6 (Uniform recovery guarantee for subgaussian matrices-noiseless
case). Let A ∈ Rm×n be a subgaussian random matrix and ε ∈ (0, 1). There
exist c1, c2 > 0 (depending only on k, r) such that if

m ≥ c1s ln
(en
k

)
+ c2 ln

(
2ε−1

)
(5.10)

then the l1 minimization task (2.6.3), with y = Ax, recovers x, ∀x ∈ Σk
with probability at least 1− ε

Proof. Combining theorems 5.2.4 (in the special case where σk(x)p = 0 and
ε = 0), 2.9.3 and taking into account that exact recovery is not affected by the
normalization of the matrix provides the result we want.

5.3 Non-uniform recovery with Gaussian matri-
ces

In order to fully develop the theoretical results of this section we need to define
the tangent cone of the l1 norm.

86

Definition 5.3.1 (Tangent cone of l1 norm). The tangent cone of the l1 norm
at x ∈ Rn is

T (x) = cone {z − x : z ∈ Rn and ‖z‖1 ≤ ‖x‖1} ,

where cone defines the conic hull of a set.

Essentially, the tangent cone of the l1 norm is the set of all descent directions
from x, i.e. the set of all direction from x such that the l1 norm decreases. We
can now state a necessary and sufficient condition for the successful recovery of
a k-sparse vector with the l1 minimization task, using the tangent cone of the
l1 norm.

Theorem 5.3.1 (Sufficient and necessary condition for successful recovery-noise-
less case). Let x ∈ Rn and A ∈ Rm×n. Then optimization task (2.6.3), with
y = Ax, returns x as a unique solution, if and only if

Ker(A) ∩ T (x) = {0} .

Proof. Suppose that Ker(A)∩ T (x) = {0} holds. Also, let x̂ denote a solution
of (2.6.3) with y = Ax. Then, we have that ‖x̂‖1 ≤ ‖x‖1 and y = Ax̂. Let,
z = x̂ − x. From definition (5.3.1) we can see that, z ∈ T (x). Furthermore,
Ax = Ax̂ ⇒ A(x̂ − x) = 0 ⇒ z ∈ Ker(A). As a result, Ker(A) ∩ T (x) =
{0} ⇒ x̂ = x.

Now, suppose that x is the unique solution of (2.6.3) with y = Ax. Let
z ∈ T (x)\{0}. We can write this vector as z =

∑
i

ci(ui−x), where ci ≥ 0 and

‖ui‖1 ≤ ‖x‖1. Notice that z 6= 0 ⇒
∑
i

ci > 0. Suppose now that z ∈ KerA.

Then,

A

(∑
i

ci(ui − x)

)
= 0⇒ A

∑
i

ci∑
j

cj
(ui − x)

 = 0⇒ A

(∑
i

c′iui

)
= Ax,

where c′i =
ci∑
j

cj
. Furthermore, ‖

∑
i

c′iui‖1 ≤
∑
i

c′i‖ui‖1 ≤ ‖x‖1. However, we

have made the assumption that x is a unique solution of (2.6.3) and thus∑
i

c′iui = x⇒ z = 0.

So, we reached a contradiction. Therefore,

z /∈ KerA⇒ KerA ∩ (T (x) \ {0}) = ∅ ⇒ KerA ∩ T (x) = {0} .

In order for the content of the previous theorem to become more clear we
provide figures (5.1) and (5.2). So, let x0 ∈ Rn and A ∈ Rm×n. We have
successful recovery if and only if the affine space

X = {x ∈ Rn : y = Ax, with y = Ax0} = x0 +Ker(A)

87

x0 +Ker(A)x0

x0 + T (x0)

‖x‖1 ≤ ‖x0‖1

Figure 5.1: We have a sparse vector x0 ∈ Rn , the affine space generated by the
solutions of the equation y = Ax, with y = Ax0, the l1 norm ball (with radius
‖x0‖1) and the tangent cone of the l1 norm at x0. Notice that we have successful
recovery if and only if the affine space intersects the shifted tangent cone only
at x0. In that case we can successfully recover x0 using the l1 minimization
task. The image is based on [Ame+14].

x0 +Ker(A)

x0

x0 + T (x0)

‖x‖1 ≤ ‖x0‖1

Figure 5.2: In this figure we share the same setting with figure (5.1). However,
we illustrate the case where the l1 minimization algorithm fails to recover x0.

88

intersects the (shifted) tangent cone T (x0) +x0 only at {x0}. Equivalently, we
have successful recovery if and only if

Ker(A) ∩ T (x0) = {0} .

In the theoretical analysis that will follow, we are going to work with an
alternative condition, equivalent with the initial one.

Proposition 5.3.1 (Alternative sufficient and necessary condition for successful
recovery-noiseless case). Let x ∈ Rn and A ∈ Rm×n. Then optimization task
(2.6.3), with y = Ax, returns x as a unique solution, if and only if

inf
z∈T (x)∩Sn−1

‖Az‖2 > 0.

Proof. We are going to show that

Ker(A) ∩ T (x) = {0} ⇔ inf
z∈T (x)∩Sn−1

‖Az‖2 > 0.

Assume that Ker(A)∩T (x) = {0} holds. Then, if z ∈ T (x)∩Sn−1 it is obvious
that z 6∈ Ker(A) and thus ‖Az‖2 > 0. As a result,

inf
z∈T (x)∩Sn−1

‖Az‖2 > 0.

Now assume that inf
z∈T (x)∩Sn−1

‖Az‖2 > 0. Remember that T (x) is a cone,

hence if y ∈ T (x) then there exists λ > 0 and z ∈ T (x)∩Sn−1 such that y = λz.
So let z ∈ T (x) ∩ Sn−1. Then, for all λ > 0 we have that ‖A(λz)‖2 > 0. This
means that (T (x) \ {0}) ∩Ker(A) = ∅ and thus Ker(A) ∩ T (x) = {0}.

The next theorem contains a sufficient condition for robust recovery in the
noisy case.

Theorem 5.3.2 (Sufficient condition for successful recovery-noisy case). Let
x ∈ Rn and A ∈ Rm×n. Then for a solution x̂ of optimization task 2.9.2, with
y = Ax+ e, ‖e‖2 ≤ ε, it holds that

‖x̂− x‖2 ≤
2ε

τ
,

for some τ > 0, if

inf
z∈T (x)∩Sn−1

‖Az‖2 ≥ τ.

Proof. Let x̂ be a solution of (2.9.2) with y = Ax+e, then ‖x̂‖1 ≤ ‖x‖1. From
the definition of the tangent cone follows that (x̂− x) ∈ T (x) and thus

z =
x̂− x
‖x̂− x‖2

∈ T (x),

assuming that x̂ 6= x. It holds that ‖z‖2 = 1, hence

‖Az‖2 > τ ⇒ ‖A(x̂− x)‖2 ≥ τ‖x̂− x‖2.

89

So we can write that

τ‖x̂− x‖2 ≤ ‖A(x̂− x‖2 ≤
≤ ‖Ax̂− y‖2 + ‖Ax− y)‖2 ≤
≤ e+ e ≤ 2ε⇒

⇒ ‖x̂− x‖2 ≤
2ε

τ
.

In the previous definitions we referred to some arbitrary matrix A ∈ Rm×n.
The focus in this chapter is on random matrices, hence it is apparent by now
that we want an estimate of the following quantity

P
(

inf
z∈T (x)∩Sn−1

‖Az‖2 < t

)
, t > 0.

Roughly, we want to find the probability that the kernel of the measurement
matrix A misses the tangent cone at a point x. If we put it in a more general
framework, we want to obtain an estimate of the probability that a random
subspace (following a uniform distribution) misses a set. The result we are
looking for is called Gordon’s escape through the mesh theorem. [Gor88]

Theorem 5.3.3. (Gordon’s escape through the mesh theorem) Let A ∈ Rm×n
be a Gaussian random matrix and T ⊆ Sn−1 be a set. Then,

P
(

inf
z∈T
‖Az‖2 ≤ gm − w(T)− t

)
≤ e−t

2/2, t > 0,

where gm = E [‖g‖2] and w(T) is the Gaussian width of the set T .

Proof. We define the following Gaussian processes

Xx,y = 〈Ax,y〉 =

m∑
i=1

n∑
j=1

Aijxjyi

and
Yx,y = 〈g,x〉+ 〈h,y〉 ,

where g ∈ Rn and h ∈ Rm are independent standard Gaussian random
vectors.

Let x,x′ ∈ Sn−1 and y,y′ ∈ Sm−1. Then we have that

E
[
|Xx,y −Xx′,y′ |2

]
= E


∣∣∣∣∣∣
m∑
i=1

n∑
j=1

Aij(xjyi − x′jy′i)

∣∣∣∣∣∣
2
 =

m∑
i=1

n∑
j=1

(xjyi − x′jy′i)2 =

=

m∑
i=1

n∑
j=1

(
x2
jy

2
i − 2xjyix

′
jy
′
i + (x′j)

2(y′i)
2
)

=

=

 n∑
j=1

x2
j

(m∑
i=1

y2
i

)
− 2

(
m∑
i=1

yiy
′
i

) n∑
j=1

xjx
′
j

+

 n∑
j=1

(x′j)
2

(m∑
i=1

(y′i)
2

)
=

= ‖x‖22‖y‖22 − 2 〈x,x′〉 〈y,y′〉+ ‖x′‖22‖y′‖22
= 2− 2 〈x,x′〉 〈y,y′〉 .

90

We have used the fact that A is a Gaussian random matrix and as a result
for its entries we can write

E [AijAkl] =

{
0 , if ij 6= kl

1 , if ij = kl
.

Also, for the process Yx,y we have that

E
[
|Yx,y − Yx′,y′ |2

]
= E

[
|〈g,x〉+ 〈h,y〉 − 〈g,x′〉 − 〈h,y′〉|2

]
=

= E
[
|〈g,x− x′〉+ 〈h,y − y′〉|2

]
=

= E
[
|〈g,x− x′〉|2

]
+ E

[
|〈h,y − y′〉|2

]
= (Independence of g, h)

= ‖x− x′‖22 + ‖y − y′‖22 (Isotropicity),(lemma 5.2.1)

= ‖x‖22 − 2 〈x,x′〉+ ‖x′‖22 + ‖y‖22 − 2 〈y,y′〉+ ‖y′‖22 =

= 4− 2 〈x,x′〉 − 2 〈y,y′〉 .

Working the difference between the previous two expressions yields.

E
[
|Yx,y − Yx′,y′ |2

]
− E

[
|Xx,y −Xx′,y′ |2

]
= 2 (1− 〈x,x′〉 − 〈y,y′〉+ 〈x,x′〉 〈y,y′〉) =

= 2(1− 〈x,x′〉)(1− 〈y,y′〉).

Cauchy-Schwartz inequality and the fact that x,x′ ∈ Sn−1, y,y′ ∈ Sm−1

yield

〈x,x′〉 ≤ ‖x‖2‖x′‖2 = 1

and

〈y,y′〉 ≤ ‖y‖2‖y′‖2 = 1.

As a result,

E
[
|Yx,y − Yx′,y′ |2

]
− E

[
|Xx,y −Xx′,y′ |2

]
≥ 0.

Note that

E
[
|Yx,y − Yx′,y′ |2

]
− E

[
|Xx,y −Xx′,y′ |2

]
= 0⇔ 〈x,x′〉 = 1 or 〈y,y′〉 = 1.

So, he have established thatE
[
|Xx,y −Xx′,y′ |2

]
≤ E

[
|Yx,y − Yx′,y′ |2

]
, if x 6= x′

E
[
|Xx,y −Xx′,y′ |2

]
= E

[
|Yx,y − Yx′,y′ |2

]
, if x = x′

91

Using Gordon’s lemma (theorem 4.7.1) and the observation that states its
generalization in Gaussian processes we get

E
[

inf
x∈T

max
y∈Sm−1

Xx,y

]
≥ E

[
inf
x∈T

max
y∈Sm−1

Yx,y

]
=

= E
[

inf
x∈T

max
y∈Sm−1

{〈g,x〉+ 〈h,y〉}
]

=

= E
[

inf
x∈T

{
〈g,x〉+ max

y∈Sm−1
〈h,y〉

}]
=

= E
[

inf
x∈T
{〈g,x〉+ ‖h‖2}

]
=

= E [‖h‖2] + E
[

inf
x∈T
〈g,x〉

]
= (symmetry of std. Gaussian vector)

= E [‖h‖2]− E
[

sup
x∈T
〈g,x〉

]
=

= hm − w(T).

Notice that

E
[

inf
x∈T
‖Ax‖2

]
= E

[
inf
x∈T

max
y∈Sm−1

Xx,y

]
.

Therefore, combining the previous two expressions yields

E
[

inf
x∈T
‖Ax‖2

]
≥ hm − w(T). (5.11)

This result is known as Gordon’s Comparison theorem.
We define the function

F (A) = inf
x∈T
‖Ax‖2.

The function F is a Lipschitz function with respect to the Frobenius norm
and constant 1. Indeed,

inf
x∈T
{‖Ax‖2} = inf

x∈T
{‖(A−B)x+Bx‖2} ≤ inf

x∈T
{‖(A−B)x‖2 + ‖Bx‖2} ≤

≤ inf
x∈T
{‖A−B‖2→2‖x‖2}+ inf

x∈T
{‖Bx‖2} ≤ (T ⊆ Sn−1)

≤ ‖(A−B)‖2→2 + inf
x∈T
{‖Bx‖2} ≤

≤ ‖(A−B)‖F + inf
x∈T
{‖Bx‖2} (LemmaA.1.1)

⇒ inf
x∈T
{‖Ax‖2} − inf

x∈T
{‖Bx‖2} ≤ ‖(A−B)‖F .

In the same way we can show that

inf
x∈T
{‖Bx‖2} − inf

x∈T
{‖Ax‖2} ≤ ‖(A−B)‖F

So we conclude that,

|F (A)− F (B)| ≤ ‖(A−B)‖F .

92

Notice that F is Lipschitz with respect to the Frobenius norm (which is the l2
norm if we treat the matrix as a vector) with constant L = 1 and A is a standard
Gaussian vector in Rn·m if we treat matrix A as a vector. Consequently, the
function F satisfies all the conditions of theorem 4.8.3 and thus

P
[

inf
x∈T
‖Ax‖2 ≤ E

[
inf
x∈T
‖Ax‖2

]
− t
]
≤ e−t

2/2.

The use of Gordon’s comparison theorem (5.11) leads to the final result,

P
[

inf
x∈T
‖Ax‖2 ≤ hm − w(T)− t

]
≤ P

[
inf
x∈T
‖Ax‖2 ≤ E

[
inf
x∈T
‖Ax‖2

]
− t
]
≤ e−t

2/2.

At this point we have at our disposal a bound for the probability that a
random (uniformly distributed) subspace misses a subset of the n−1 dimensional
sphere. In order to adapt this result to the specific situation we are facing we
need to specify the two parameters it employs, the expectation of the l2 norm
of a standard Gaussian random vector gm and the Gaussian width of the set
T ∩Sn−1. We have already calculated an estimate for gm (section 4.5, theorem
4.5.1), which is sufficient. Hence, we need an estimate for the Gaussian width
of the set of unit-norm vectors of the tangent cone at a sparse vector x ∈ Σk.
Before we proceed, we need to define the normal cone of the l1 norm.

Definition 5.3.2 (Normal cone of l1 norm).

N (x) = {z ∈ Rn : ∀w s.t ‖w‖1 ≤ ‖x‖1 it holds that 〈z,w − x〉 ≤ 0} . (5.12)

So we can now state the following proposition.

Proposition 5.3.2. Let g ∈ Rn is be a standard Gaussian random vector. Then
we have that

w
(
T (x) ∩ Sn−1

)
≤ E

[
min

z∈N (x)
‖g − z‖2

]
.

Proof. We have that

w
(
T (x) ∩ Sn−1

)
= E

[
max

T (x)∩Sn−1
〈g, z〉

]
≤ E

[
max

z∈T (x),‖z‖2≤1
〈g, z〉

]
≤ (Lemma A.2.1)

≤ E
[

min
z∈T ◦(x)

‖g − z‖2
]

= E
[

min
z∈N (x)

‖g − z‖2
]
.

In the last equality we have used the fact that the polar cone of the tangent
cone is the normal cone, i.e T ◦(x) = N (x). (def. A.2.2)

It is apparent that in order to obtain a bound for the Gaussian width we need
to calculate the normal cone of the l1 norm at a sparse vector. The following
theorem provides that result.

93

Lemma 5.3.1. Let x ∈ Rn such that S = supp(x) ⊆ {1, 2, . . . , n}. Then the
normal cone on x can be written as

N (x) =
⋃
t≥0

{
z ∈ Rn :

{
zi = tsgn(xi) , for i ∈ S
|zi| < t , for i ∈ S

}
(5.13)

Proof. First, we are going to show that the right-hand side of (5.13) is a subset
of the right-hand side of (5.12). So, let z ∈ Rn be an element of the right-hand
side of (5.13). Also we consider an arbitrary y such that ‖y‖1 ≤ ‖x‖1. Then

〈z,y − x〉 = 〈z,y〉 − 〈z,x〉 ≤ ‖z‖∞‖y‖1 − ‖z‖∞‖x‖1 =

= ‖z‖∞(‖y‖1 − ‖x‖1) ≤ 0.

Therefore, z ∈ N (x).
Now we are going to show the converse direction, i.e the right-hand side of

(5.12) is a subset of the right-hand side of (5.13). So, let z ∈ N (x), i.e for all y
such that ‖y‖1 ≤ ‖x‖1 we have that 〈z,y − x〉 ≤ 0. Then we choose a vector
y such that ‖y‖1 = ‖x‖1 and

y =

{
yi , for i s.t |zi| = ‖z‖∞
0 , otherwise

,

with sgn(yi) = sgn(zi). So we have that

‖z‖∞‖y‖1 = 〈z,y〉 ≤ 〈z,x〉 ≤ ‖z‖∞‖x‖1 = ‖z‖∞‖y‖1.

The previous expression implies that

〈z,x〉 = ‖z‖∞‖x‖1,

which in turn implies that zi = sgn(xi)‖z‖∞,∀i ∈ S. Also, notice that |zi| ≤
‖z‖∞, ∀i ∈ S. Therefore, if we choose t = ‖z‖∞ we can see that z belongs to
the right-hand side of (5.13).

Now we are ready to provide a bound for the Gaussian width of the set of
unit-norm vectors of the tangent cone at a sparse vector.

Proposition 5.3.3. Let x ∈ Rn be a k-sparse vector. Then we have that(
w
(
T (x) ∩ Sn−1

))2 ≤ 2k ln
(en
k

)
.

Proof. First, notice that we can attain the following result

(
w
(
T (x) ∩ Sn−1

))2 ≤ (E [min
z∈N (x)

‖g − z‖2
])2

≤ (proposition 5.3.2)

≤ E
[

min
z∈N (x)

‖g − z‖22
]
. (Holder’s inequality)

Let S = supp(x) be the support of x. We isolate the expression inside the
expectation which yields,

94

min
z∈N (x)

‖g − z‖22 = min
t≥0

|zi|≤t,i∈S

∑
i∈S

(gi − tsgn(xi))
2

+
∑
i∈S

(gi − zi)2

 = (lemma 5.3.1)

= min
t≥0

∑
i∈S

(gi − tsgn(xi))
2

+ min
|zi|≤t,i∈S

∑
i∈S

(gi − zi)2


 .

It is easy to verify that

min
|zi|≤t

(gi − zi)2
= S2

t (gi),

where St is the soft thresholding operator

St(u) =


x+ t , x ≤ −t
0 , −t ≤ u ≤ t
x− t , x ≥ t

.

Then,

min
z∈N (x)

‖g − z‖22 = min
t≥0

∑
i∈S

(gi − tsgn(xi))
2

+
∑
i∈S

S2
t (gi)

 .

Thus, for some fixed t > 0, independent from g we have that

E
[

min
z∈N (x)

‖g − z‖22
]
≤ E

∑
i∈S

(gi − tsgn(xi))
2

+
∑
i∈S

S2
t (gi)

 =

= E

[∑
i∈S

(gi − tsgn(xi))
2

]
+ E

∑
i∈S

S2
t (gi)

 ≤
≤ kE

[
(g + t)2

]
+
∑
i∈S

E
[
S2
t (gi)

]
= (g standard Gaussian r.var)

= k(1 + t2) + (n− k)E
[
S2
t (gi)

]
.

For the expectation of the square of the soft thresholding operator we have
that

95

E
[
S2
t

]
=

1√
2π

 −t∫
−∞

S2
t (u)e−u

2/2du+

+∞∫
t

S2
t (u)e−u

2/2du

 = (Symmetry of g and St)

=
2√
2π

+∞∫
t

(u− t)2e−u
2/2du =

2√
2π

+∞∫
0

r2e−(r+t)2/2dr = (r = u− t)

=
2√
2π
e−t

2/2

+∞∫
0

r2e−r
2/2e−rtdr ≤ 2√

2π
e−t

2/2

+∞∫
0

r2e−r
2/2dr =

= e−t
2/2E

[
g2
]

= e−t
2/2 (g standard Gaussian r.var)

Hence, using the previous two expressions yields(
w
(
T (x) ∩ Sn−1

))2 ≤ min
t≥0

{
k(1 + t2) + (n− k)e−t

2/2
}
≤

≤ min
t≥0

{
k(1 + t2) + ne−t

2/2
}
.

Finally, if we pick t =

√
2ln

(n
k

)
we can obtain

(
w
(
T (x) ∩ Sn−1

))2 ≤ min
t≥0

{
k(1 + t2) + ne−t

2/2
}
≤

≤ k(1 + 2ln
(n
k

)
) + k =

= 2kln
(en
k

)
.

Now we have all the tools that are necessary in order to state the two main
theorems concerning non-uniform recovery with Gaussian matrices.

Theorem 5.3.4 (Non-uniform recovery with Gaussian matrices-noiseless case).
Let x ∈ Rn be a k-sparse vector, A ∈ Rm×n be a random Gaussian matrix and

m2

m+ 1
≥ 2k

(√
ln
(en
k

)
+

√
ln(ε−1)

k

)2

, (5.14)

for some ε ∈ (0, 1). Then, with probability at least 1−ε, x is the unique solution
of the optimization task (2.6.3), with y = Ax.

Proof. It is easy to see that

P
(

min
z∈T (x)∩Sn−1

‖Az‖2 > 0

)
≥

≥ P
(

min
z∈T (x)∩Sn−1

‖Az‖2 > gm − w(T (x) ∩ Sn−1)− t
)

=

= 1− P
(

min
z∈T (x)∩Sn−1

‖Az‖2 ≤ gm − w(T (x) ∩ Sn−1)− t
)

96

provided that

gm − w(T (x) ∩ Sn−1)− t ≥ 0.

Notice that from theorem 4.5.1 we know that

gm ≥
m√
m+ 1

and from proposition 5.3.3 we can obtain the following bound

w
(
T (x) ∩ Sn−1

)
≤
√

2k ln
(en
k

)
.

Hence, if we set t =
√

2ln(2ε−1) we have that

gm − w(T (x) ∩ Sn−1)− t ≥ 0⇒

m2

m+ 1
≥ 2k

(√
ln
(en
k

)
+

√
ln(ε−1)

k

)2

and

P
(

min
z∈T (x)∩Sn−1

‖Az‖2 > 0

)
≥

≥ 1− e−t
2/2 = 1− ε.

We conclude that if expression (5.14) holds, then proposition 5.3.1 establishes
that we have successful recovery with probability at least 1− ε.

In the noisy case we can obtain the following result.

Theorem 5.3.5 (Non-uniform recovery with Gaussian matrices-noisy case).
Let x ∈ Rn be a k-sparse vector, A ∈ Rm×n be a random Gaussian matrix and

m2

m+ 1
≥ 2k

(√
ln
(en
k

)
+

√
ln(ε−1)

k
+

τ√
k

)2

for some ε ∈ (0, 1) and τ > 0. Then for every solution x̂ of the optimization
task (2.9.1), with y = Ax+ e, ‖e‖2 < η, it holds that

‖x− x̂‖2 ≤
2η

τ
,

with probability at least 1− ε.

Proof. Using the same reasoning with the previous proof, notice that if we set
t =

√
2ln(2ε−1) we can deduce that

gm − w(T (x) ∩ Sn−1)− τ − t ≥ 0⇒

m2

m+ 1
≥ 2k

(√
ln
(en
k

)
+

√
ln(ε−1

k
+

τ√
k

)2

.

97

Using theorem (5.3.2) and the expression below we complete the proof

P
(

min
z∈T (x)∩Sn−1

‖Az‖2 > τ

)
≥

≥ P
(

min
z∈T (x)∩Sn−1

‖Az‖2 > gm − w(T (x) ∩ Sn−1)− τ − t
)
≥

≥ 1− e−t
2/2 = 1− ε.

98

Part III

Algorithms

99

Chapter 6

Algorithms for matrix
completion

The purpose of this chapter is to introduce five different approaches for the
matrix completion problem and evaluate the performance of the respective al-
gorithms on synthetic and real data (MovieLens dataset). The experiments were
performed in Matlab.

6.1 Algorithms

In this section we will describe the five algorithms that we are going to evaluate
at the next section. Before we do that we will make some general remarks and
some comments about the notation we are going to use.

We denote the matrices with capital letters, such as X, the ith column of a
matrix X as X(·,i) and the ith row as X(i,·). We consider X(·,i) to be a column
vector and X(i,·) to be a row vector. Note that we are also going to use the
notation xi for the ith row of X and xc,i for the ith column of X, but these will
be clearly stated. Finally, the expression C = diag(X(i,·)) denotes a diagonal
matrix, whose entries are the elements of the row vector X(i,·).

We introduce the operator PΩ for a sampling set Ω ⊆ {1, . . . , k}×{1, . . . , n}
(the positions of the known entries) and a matrix X ∈ Rk×n, which is defined
as follows.

PΩ(X) =

{
xij , (i, j) ∈ Ω

0 , (i, j) /∈ Ω

Unless otherwise stated, we consider the cardinality of the sampling set, i.e
card(Ω), to be m.

Consider an incomplete matrix X ∈ Rk×n. We denote with P ∈ Rk×n the
matrix with one in the positions (i, j) of the known entries and zero otherwise,
i.e.

P =

{
1 , (i, j) ∈ Ω

0 , (i, j) /∈ Ω
,

where Ω is the sampling set of X.

101

6.1.1 Proximal forward-backward splitting

In chapter 3 we introduced the nuclear norm minimization task (definition
(3.4.3)). We can relax the constraints of this task and express the cost function
in a different form. The new cost function is

f1(X) =
1

2
‖PΩ(M)− PΩ(X)‖2F + λ‖X‖∗ , (6.1)

for some λ > 0.
The respective minimization problem is provided below.

Definition 6.1.1 (Relaxed nuclear norm minimization). Let M ∈ Rk×n. The
nuclear norm minimization task is

min
X∈Rk×n

1

2
‖PΩ(M)− PΩ(X)‖2F + λ‖X‖∗.

We can interpret the previous minimization problem as the task that tries
to minimize the first term of (6.1) (the error term) and at the same time to
penalize large (in the nuclear norm sense) values of X. Essentially, the second
term reflects our prior knowledge that the solution we seek is low-rank and is
forcing the optimization task 6.1.1 to take that into account. This technique in
optimization theory is called regularization and is encountered in many different
scenarios. [BV04] Notice that parameter λ specifies the trade-off between the
error term and the regularization term (the nuclear norm term) in the above
optimization task. The higher the value of λ, the lower the rank of the recovered
solution, but at the cost of increasing the error. Finally, from now on we will
refer to the above task as nuclear norm minimization.

We define the functions f(X) =
1

2
‖PΩ(M)− PΩ(X)‖2F and g(X) = λ‖X‖∗.

Notice that f(X) is a differentiable function, while g(X) is not. However, the
problem is a convex one, since it is a sum of convex functions. One possible
approach for solving problems of that structure is using the proximal gradient
method or proximal forward-backward splitting method [CP09] [The15]. In order
to describe the proximal gradient method we need to define the notion of the
proximal operator.

Definition 6.1.2 (Proximal operator). Let f : Rn → R. The proximal operator
of index δ is an operator

proxδf : Rn → Rn,

such that

proxδf (x) = arg min
y∈Rn

{
f(y) +

1

2δ
‖x− y‖2

}
.

Notice that the proximal operator is a point in Rn. It can be proven that
the previous optimization task is strictly convex (as a sum of a convex and a
strictly convex function) and consequently it admits a unique minimum. Also,
the proximal operator serves as a generalization of the projection operator, i.e

PC(x) = arg min
y∈Rn

{
iC(y) +

1

2
‖x− y‖22

}
,

102

where C ⊆ Rn is a nonempty closed convex set and iC is the indicator function
of the set C (returns 1 if x ∈ C and +∞ otherwise). Now we are ready to
introduce the proximal forward-backward splitting method.

Let f, g : Rn → R be two convex functions defined on Rn. Also, assume
that f is differentiable, while g is not. Suppose that we have the following
optimization task

min
x∈Rn

{f(x) + g(x)} . (6.2)

The solutions of the above optimization task are characterized by the following
fixed point equation

x = proxδg(x− δ∇f(x)),∀δ > 0.

Therefore, the proximal gradient method applies the following iteration
scheme on the previous optimization task

x(k+1) = proxδkg(x
(k) − δk∇f(x(k))), (6.3)

for some appropriately chosen sequence {δk}.
Essentially, the proximal gradient method is a combination of the proximal

method [CP09] and the gradient descent method [The15]. Roughly, it can be
shown that the iteration scheme (6.3) converges to a minimum of optimization
task (6.2), i.e

x(k) → arg min
y∈Rn

{f(y) + g(y)} ,

under certain conditions; specifically the differentiable function f must have
continuous Lipschitz gradient, i.e

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Rn,

for some L > 0 and the sequence {δk} must be chosen appropriately.
The first step towards adapting the general method of proximal gradient in

the nuclear norm minimization problem is to calculate the proximal operator of
the nuclear norm.

Proposition 6.1.1 (Proximal operator of the nuclear norm). Let M ∈ Rk×n
with SVD M = UΣV T . The proximal operator of the nuclear norm is

proxδ‖·‖∗(X) = arg min
Y ∈Rk×n

{
f(Y) +

1

2δ
‖X − Y ‖2

}
= Dδ(X),

where Dδ(X) = USδ(Σ)V T and Sδ(Σ) is a diagonal matrix with entries

(Sδ(Σ))ii =

{
Σii − δ Σii ≥ δ
0 Σii < δ

.

The operator Dδ(X) is the soft-thresholding operator for the singular values
of X and therefore we can refer to it as singular value shrinkage operator.

Also,

∇f(X) = ∇
(

1

2
‖PΩ(M)− PΩ(X)‖2F

)
=

= PΩ(M)− PΩ(X).

103

As a result, the solutions of the nuclear norm minimization problem are
characterized by the following fixed point equation

X = Dλδ (X − δ [PΩ(M)− PΩ(X)]) , ∀δ > 0.

Therefore, for our problem the proximal gradient method provides the fol-
lowing iteration scheme

X(k+1) = Dλδk

(
X(k) − δk

[
PΩ(M)− PΩ(X(k))

])
.

In order to simplify the description of the algorithm we use the following
notation for the iteration scheme at iteration i+ 1.{

Y (i+1) ← X(i) − δi
[
PΩ(M)− PΩ(X(i))

]
X(i+1) ← Dλδi(Y

(i+1)) = USλδi(Σ)V T
,

where U,Σ, V is the SVD of Y .
We call this algorithm Matrix Completion with Proximal Forward-Backward

Splitting (MC-PFBS) and it’s pseudocode is provided in Algorithm 1. Notice
that we use a fixed step δ.

The complexity per iteration of the above algorithm isO(min(k, n)2max(k, n)).
Notice that the main load in each iteration is computing the SVD of matrix Y ,
which is a tractable problem, however for large dimensions this problem becomes
quite heavy.

Algorithm 1 Matrix Completion with Proximal Forward-Backward Splitting
(MC-PFBS)

Input: PΩ(M) ∈ Rk×n, δ, λ
Output: X

X(0) with x
(0)
ij ∼ N (0, 1)

while i < maxiter do
Y (i+1) ← X(i) − δi

[
PΩ(M)− PΩ(X(i))

]
[U,Σ, V]← SV D(Y (i+1))
X(i+1) ← USλδi(Σ)V T

if
‖X(i+1) −X(i)‖F

‖X(i)‖F
< toler then break

end if
end while

6.1.2 Alternating regularized least squares

One approach to reduce the size of the problem is to factor the matrixX ∈ Rk×n,
with rank(X) = r, into two matrices U ∈ Rk×r and V ∈ Rn×r, such that
X = UV T . An immediate advantage of this approach is the reduction of the
number of variables from k ·n to (k+n) ·r, which is a notable difference in large
problems. It can be proven that for the nuclear norm the following result holds.

Proposition 6.1.2. [DR16] Let X ∈ Rk×n, then for the nuclear norm of X it
holds that

‖X‖∗ = min
U,V

1

2

(
‖U‖2F + ‖V ‖2F

)
subject to X = UV T .

104

Using the previous proposition we can factorize matrix X into two factors U
and V and replace the nuclear norm term in cost function (6.1) with the expres-

sion
1

2

(
‖U‖2F + ‖V ‖2F

)
. This technique is known as Burer-Monteiro heuristic,

after the authors who proposed this approach for general semidefinite programs.
[BM05][BM03] Therefore, we can replace (6.1) with the following cost function

f2(U, V) =
1

2
‖PΩ(M)− PΩ(UV T)‖2F +

λ

2
(‖U‖2F + ‖V ‖2F) , (6.4)

where U ∈ Rk×L and V ∈ Rn×L, for some r ≤ L ≤ min(k, n).

The respective minimization problem is

Definition 6.1.3 (Matrix completion with the Burer-Monteiro heuristic). Let
M ∈ Rk×n, with rank(M) = r. We choose r ≤ L ≤ min(k, n). Then, we
formulate the following optimization task for matrix completion,

min
U∈Rn×L,V ∈Rk×L

s.t X=UV T

1

2
‖PΩ(M)− PΩ(UV T)‖2F +

λ

2
(‖U‖2F + ‖V ‖2F).

Note that the choice of L should be based on the prior knowledge we have
about the nature of the problem we are dealing with. Specifically, the choice of
L should be a safe overestimate of the true rank of the matrix. For example,
in the Netflix problem the choice of L reflects our belief about the number of
essential factors that determine the preference of users for the different movies.

We can solve the above optimization task using the technique known as
alternating minimization. That means we fix one of the two factor matrices
and minimize the cost function with respect to the other factor matrix. Then
at each iteration the optimization task that occurs is reduced to a regularized
least-squares problem, specifically to a ridge regression problem. Therefore,
we call this algorithm Matrix Completion with Alternating Regularized Least
Squares (MC-ARLS).

We fix V and we minimize the cost function (6.4) with respect to U . In order
to do that we compute the derivative of f2 with respect to U . After performing
all the necessary algebraical manipulations we end up with the following closed-
form expression for the jth row of U ,

uj =
(
V TCV + λI

)−1
V TCY T(j,·), (6.5)

where C = diag(P(j,·)) and Y = PΩ(M).

Using the same reasoning, for the jth row of V we have

vj =
(
UTCU + λI

)−1
UTCY(·,j), (6.6)

where C = diag(P(·,j)) and Y = PΩ(M).

The pseudocode of this algorithm is given in algorithm 2. The complexity
per iteration of the above algorithm is O(mL2 +max(k, n)L3).

105

Algorithm 2 Matrix Completion with Alternating Regularized Least Squares
(MC-ARLS)

Input: Y = PΩ(M) ∈ Rk×n, P, λ, L
Output: X = UV T

U (0) ∈ Rk×L with u
(0)
ij ∼ N (0, 1)

V (0) ∈ Rn×L with v
(0)
ij ∼ N (0, 1)

while i < maxiter do
for j = 1 : k do

C = diag(P(j,·))

u
(i+1)
j ←

(
V (i)TCV (i) + λI

)−1
V (i)TCY T(j,·)

end for
for j = 1 : n do

C = diag(P(·,j))

v
(i+1)
j ←

(
U (i+1)TCU (i+1) + λI

)−1
U (i+1)TCY(·,j)

end for
X(i+1) ← U (i+1)V (i+1)T

if
‖X(i+1) −X(i)‖F

‖X(i)‖F
< toler then break

end if
end while

6.1.3 Alternating iteratively reweighted least squares

In [GRK16] the l1/l2 norm for a matrix X ∈ Rk×n was introduced, i.e

‖X‖1,2 =

n∑
i=1

‖xc,i‖2,

where xc,i, i ∈ {1, 2, . . . , n} are the columns of X. In that paper the l1/l2 norm
was employed in the design of an online low-rank subspace learning scheme.
Next, this norm was incorporated in the optimization task of a low-rank ma-
trix factorization problem [GRK17a] and in a nonnegative matrix factorization
problem [GRK17b]. Here we use this norm in the formulation of an optimiza-
tion task for a matrix completion problem. This approach is contained in the
following cost function

f3(U, V) =
1

2
‖PΩ(M)− PΩ(UV T)‖2F + δ

L∑
i=1

√
‖uc,i‖22 + ‖vc,i‖22 , (6.7)

where uc,i,vc,i denote the columns of matrices U ∈ Rk×L and V ∈ Rn×L re-
spectively.

The respective minimization problem is the following.

Definition 6.1.4 (Matrix completion with l1/l2 norm). Let M ∈ Rk×n, with
rank(M) = r. We choose r ≤ L ≤ min(k, n). Then, we formulate the following

106

optimization task for matrix completion,

min
U∈Rn×L,V ∈Rk×L

s.t X=UV T

1

2
‖PΩ(M)− PΩ(UV T)‖2F + δ

L∑
i=1

√
‖uc,i‖22 + ‖vc,i‖22. (6.8)

In order to unveil the intuitive explanation of the usage of the l1/l2 norm in a
matrix completion problem, we rewrite the above cost function in the following
way

f3(U, V) =
1

2
‖PΩ(M)− PΩ(UV T)‖2F + δ‖Z‖1,2 =

=
1

2
‖PΩ(M)− PΩ(UV T)‖2F + δ

L∑
i=1

‖zc,i‖2,

where

Z =


| | . . . |
uc,1 uc,2 . . . uc,L
| | . . . |
| | . . . |
vc,1 vc,2 . . . vc,L
| | . . . |


and zc,i are the columns of Z.

The new regularization term penalizes the l1/l2 norm of matrix Z. Hence this
optimization task promotes solutions such that the columns of Z have elements
with small magnitude. Loosely, the above optimization task tries to shrink
as many columns of Z as possible, thus minimizing the rank of the recovered
solution . As a result, this optimization task promotes low-rank solutions.

We will apply here the same methodology as in the previous case, i.e al-
ternating minimization. Hence, for the jth row of the matrix U we have the
following closed-form expression,

uj =
(
V TCV +D

)−1
V TCY T(j,·), (6.9)

where C = diag(P(j,·)), Y = PΩ(M) and1

D = diag

(
δ√

‖uc,1‖22 + ‖vc,1‖22 + η2
, . . . ,

δ√
‖uc,L‖22 + ‖vc,L‖22 + η2

)
.

Using the same reasoning, for the the jth row of V we have

vj =
(
UTCU +D

)−1
UTCY(·,j), (6.10)

where C = diag(P(·,j)) and Y and D are defined as previously.
Notice that in this algorithm we introduced the term D, which considers the

values of the columns of the factor matrices U and V at the previous iteration.

1We use a small constant η to guarantee smoothness.

107

That term changes in every iteration and essentially serves as a weighting factor
in the formulation of the newest estimate. Therefore, we call this algorithm
Matrix Completion with Alternating Iteratively Reweighted Least Squares (MC-
AIRWLS) and it’s description is provided in algorithm 3. Finally, the complexity
per iteration of MC-AIRWLS is O(mL2 +max(k, n)L3).

Algorithm 3 Matrix Completion with Alternating Iteratively Reweighted Least
Squares (MC-AIRWLS)

Input: Y = PΩ(M) ∈ Rk×n, P, δ, L
Output: X = UV T

U (0) ∈ Rk×L with u
(0)
ij ∼ N (0, 1)

V (0) ∈ Rn×L with v
(0)
ij ∼ N (0, 1)

D(0) ∈ RL×L with d
(0)
ii ∼ N (0, 1)

while i < maxiter do
for j = 1 : k do

C = diag(P(j,·))

u
(i+1)
j ←

(
V (i)TCV (i) +D(i)

)−1
V (i)TCY T(j,·)

end for
for j = 1 : n do

C = diag(P(·,j))

v
(i+1)
j ←

(
U (i+1)TCU (i+1) +D(i)

)−1
U (i+1)TCY(·,j)

end for

D(i+1) ← diag

 δ√
‖u(i+1)

c,1 ‖22 + ‖v(i+1)
c,1 ‖22 + η2

, . . . ,
δ√

‖u(i+1)
c,L ‖22 + ‖v(i+1)

c,L ‖22 + η2


X(i+1) ← U (i+1)V (i+1)T

if
‖X(i+1) −X(i)‖F

‖X(i)‖F
< toler then break

end if
end while

6.1.4 Fast alternating regularized least squares

This algorithm also applies the alternating minimization framework to the cost
function (6.4), i.e f2(U, V). However, at each iteration it computes the minimum
of an upper bound of an approximation of f2(U, V), after fixing one of the two
variables. Specifically, we fix one of the two variables of f2(U, V) and compute an
upper bound for the 2nd order Taylor expansion of the respective cost function,
using an approximation for the Hessian. Finally, we minimize the cost function
that is formulated with respect to the other variable. Note that the technique
we use was introduced in [GRK17c] for the cost function (6.7).

Suppose that we want to find the new estimate of U at iteration i + 1,
i.e U (i+1). At this stage we have at our disposal the estimates U (i) and V (i).
Therefore, we fix the variable V and compute an upper bound for the 2nd order
Taylor expansion of f2(U, V (i)) at U (i), which is

108

∼
f2(U |U (i), V (i)) = f2(U (i), V (i)) + tr

{(
U − U (i)

)T
∇Uf2(U (i), V (i))

}
+ tr

{(
U − U (i)

) ∼
H(U (i), V (i))

(
U − U (i)

)T}
,

where

∼
H(U, V) = V TV + λI.

Roughly, the choice of
∼
H is justified by the fact that the matrix

∼
H − H is

positive semidefinite (if we arrange the elements of those matrices in a suitable
way), where H is the Hessian of f2(U, V (i)). For more details refer to [GRK17c].

Therefore, we need to find the minimum value of the following optimization
problem

min
U∈Rk×L

∼
f2(U |U (i), V (i)).

If we compute the derivative of
∼
f2(U |U (i), V (i)) with respect to U , equate

the result to 0 and solve the respective equation with respect to U we get

U (i+1) = U (i) +
{[
PΩ(M)− PΩ(U (i)V (i)T)

]
V (i) − λU (i)

}[
V (i)TV (i) + λI

]−1

Using the same reasoning, we fix U and formulate the following optimization
problem

min
V ∈Rk×L

∼
f2(V |U (i+1), V (i)),

where the cost function
∼
f2(V |U (i+1), V (i)) is an upper bound for the 2nd

order Taylor expansion of f2(U (i+1), V) at V (i) and is defined as

∼
f2(V |U (i+1), V (i)) = f2(U (i+1), V (i)) + tr

{(
V − V (i)

)T
∇V f2(U (i+1), V (i))

}
+ tr

{(
V − V (i)

)∼
J(U (i+1), V (i))

(
V − V (i)T

)}
,

where

∼
J(U, V) = UTU + λI.

If we compute the derivative of
∼
f2(V |U (i+1), V (i)) with respect to V , equate

the result to 0 and solve the respective equation with respect to V we get

109

V (i+1) = V (i) +

{[
PΩ(M)− PΩ(U (i+1)V (i)T)

]T
U (i+1) − λV (i)

}[
U (i+1)TU (i+1) + λI

]−1

We call this algorithm Matrix Completion with Fast Alternating Regularized
Least Squares (MC-FARLS) and we provide it’s pseudocode in algorithm 4. The
complexity per iteration of MC-FARLS is O(mL+max(k, n)L2).

Algorithm 4 Matrix Completion with Fast Alternating Regularized Least
Squares (MC-FARLS)

Input: PΩ(M) ∈ Rk×n, λ, L
Output: X = UV T

U (0) ∈ Rk×L with u
(0)
ij ∼ N (0, 1)

V (0) ∈ Rn×L with v
(0)
ij ∼ N (0, 1)

while i < maxiter do
U (i+1) ← U (i)+

{[
PΩ(M)− PΩ(U (i)V (i)T)

]
V (i) − λU (i)

} [
V (i)TV (i) + λI

]−1

V (i+1) ← V (i)+
{[
PΩ(M)− PΩ(U (i+1)V (i)T)

]T
U (i+1) − λV (i)

} [
U (i+1)TU (i+1) + λI

]−1

X(i+1) ← U (i+1)V (i+1)T

if
‖X(i+1) −X(i)‖F

‖X(i)‖F
< toler then break

end if
end while

6.1.5 Fast alternating iteratively reweighted least squares

This algorithm applies the procedure we described in the previous subsection to
the cost function (6.7), i.e f3(U, V). This approach is contained in [GRK17c].
Therefore, if we fix variable V we get the following minimization problem

min
U∈Rk×L

∼
f3(U |U (i), V (i)).

The cost function
∼
f3(U |U (i), V (i)) is an upper bound for the 2nd order Taylor

approximation of f3(U, V (i)) at U (i), i.e

∼
f3(U |U (i), V (i)) = f3(U (i), V (i)) + tr

{(
U − U (i)

)T
∇Uf3(U (i), V (i))

}
+ tr

{(
U − U (i)

) ∼
H(U (i), V (i))

(
U − U (i)T

)T}
,

where

∼
H(U, V) = V TV +D

and

110

D(i) = diag

 δ√
‖u(i)

1 ‖22 + ‖u(i)
1 ‖22 + η2

, . . . ,
δ√

‖u(i)
L ‖22 + ‖u(i)

L ‖22 + η2

 .

If we compute the derivative of
∼
f3(U |U (i), V (i)) with respect to U , equate

the result to 0 and solve the respective equation with respect to U we get

U (i+1) = U (i) +
{[
PΩ(M)− PΩ(U (i)V (i)T)

]
V (i) − U (i)D(i)

}[
V (i)TV (i) +D(i)

]−1

.

In a similar way, if we fix U we formulate the following minimization problem

min
V ∈Rk×L

∼
f3(V |U (i+1), V (i)).

The cost function
∼
f3(V |U (i+1), V (i)) is an upper bound for the 2nd order

Taylor approximation of f3(U (i+1), V) at V (i), i.e

∼
f3(V |U (i+1), V (i)) = f3(U (i+1), V (i)) + tr

{(
V − V (i)

)T
∇V f3(U (i+1), V (i))

}
+ tr

{(
V − V (i)

)∼
J(U (i+1), V (i))

(
V − V (i)T

)}
,

where we have that

∼
J(U, V) = UTU +D.

If we compute the derivative of
∼
f3(V |U (i+1), V (i)) with respect to V , equate

the result to 0 and solve with respect to V we get

V = V (i) +

{[
PΩ(M)− PΩ(U (i+1)V (i)T)

]T
U (i+1) − V (i)D(i)

}[
U (i+1)TU (i+1) +D(i)

]−1

We call this algorithm Matrix Completion with Fast Alternating Iteratively
Reweighted Least Squares (MC-AIRWLS) and we provide it’s pseudocode in al-
gorithm 5. The complexity per iteration of MC-FAIRWLS isO(mL+max(k, n)L2).

Figure 6.1 contains the complexity per iteration of the 5 algorithms we use.

6.2 Evaluation on synthetic data

In this section we will evaluate the five algorithms we described previously on
synthetic data.

111

Algorithm 5 Matrix Completion with Fast Alternating Iteratively Reweighted
Least Squares (MC-AIRWLS)

Input: PΩ(M) ∈ Rk×n, δ, L
Output: X = UV T

U (0) ∈ Rk×L with u
(0)
ij ∼ N (0, 1)

V (0) ∈ Rn×L with v
(0)
ij ∼ N (0, 1)

D(0) ∈ RL×L with d
(0)
ii ∼ N (0, 1)

while i < maxiter do
U (i+1) ← U (i)+

{[
PΩ(M)− PΩ(U (i)V (i)T)

]
V (i) − U (i)D(i)

} [
V (i)TV (i) +D(i)

]−1

V (i+1) ← V (i)+
{[
PΩ(M)− PΩ(U (i+1)V (i)T)

]T
U (i+1) − V (i)D(i)

} [
U (i+1)TU (i+1) +D(i)

]−1

D(i+1) ← diag

 δ√
‖u(i+1)

1 ‖22 + ‖u(i+1)
1 ‖22 + η2

, . . . ,
δ√

‖u(i+1)
L ‖22 + ‖u(i+1)

L ‖22 + η2


X(i+1) ← U (i+1)V (i+1)T

if
‖X(i+1) −X(i)‖F

‖X(i)‖F
< toler then break

end if
end while

algorithm Complexity per Iteration (CPI)
MC-PFBS O(min(k, n)2max(k, n))
MC-ARLS O(mL2 +max(k, n)L3)

MC-AIRWLS O(mL2 +max(k, n)L3)
MC-FARLS O(mL+max(k, n)L2)

MC-FAIRWLS O(mL+max(k, n)L2)

Figure 6.1: The Complexity per Iteration (CPI) of the 5 algorithms we use.

112

S1 S2 S3 S4 S5 S6 S7 S8
k, n 150, 300 150, 300 150, 300 150, 300 150, 300 150, 300 150, 300 150, 300
p 50 50 50 50 75 75 75 75
σ 10−1 10−1 10−2 10−2 10−1 10−1 10−2 10−2

r 10 20 10 20 10 20 10 20

Figure 6.2: The parameters of the 8 scenarios.

6.2.1 Description of the scenarios

We generate k×n matrices of (true) rank r as a product of two standard Gaus-
sian random matrices of dimensions k×r and r×n respectively. On that matrix
we sample uniformly at random m entries (the observed entries) and set the rest
to zero. We assume that there is some measurement noise that we incorporate
by contaminating the observed entries of the previous matrix with zero-mean
Gaussian noise of standard deviation σ. In order to evaluate the performance
of the 5 algorithms we develop 8 scenarios by altering the parameters of the
randomly generated matrices and the noise level. The parameters we consider
are the following :

• k, n : the dimensions of the matrix

• r : the true rank of the matrix

• σ : the standard deviation of the zero-mean Gaussian noise that contam-
inates the observed entries of the synthetic matrix

• p : percentage of missing entries, i.e p = 1− m

k · n

The 8 scenarios are contained in figure 6.2.1.

We perform the experiments for each scenario in the following way. We fix
the algorithm’s parameters and run the same experiment 50 times, randomly
drawing in each run a different matrix M . The results we produce in the end
are averaged over 50 runs.

Another important issue is the stopping criterion we use to terminate the
algorithms. We use the following condition,

‖X(i+1) −X(i)‖F
‖X(i)‖F

< toler,

where toler is the parameter that specifies how small the relative distance be-
tween two consecutive estimates must be in order for the algorithm to terminate,
i.e the termination tolerance. We set in all experiments and algorithms the value
toler = 10−4.

6.2.2 Performance measures

We are going to evaluate the algorithms on the following performance measures.

1. Relative error in the Frobenius norm sense

113

algorithm parameters S1 S2 S3 S4 S5 S6 S7 S8

MC-PFBS
δ 0.4 0.17 2 0.53 0.1 0.21 0.1 0.53
λ 2.5 6 0.5 1.9 10 4.7 10 1.9

MC-ARLS
λ 3.5 0.1 0.6 0.1 0.3 0.3 0.1 0.3
L 15 25 15 25 15 25 15 25

MC-AIRWLS
δ 6 6.2 2.5 3.3 2 6.3 1.1 6.1
L 15 25 15 25 15 25 15 25

MC-FARLS
λ 4.6 0.1 4.1 0.6 0.1 1.1 0.6 1.1
L 15 25 15 25 15 25 15 25

MC-FAIRWLS
δ 9.1 9.1 4.6 7 5 20.6 5.6 20.6
L 15 25 15 25 15 25 15 25

Figure 6.3: The values of the parameters we used in the experiments for the 5
algorithms, across the 8 different scenarios.

The relative error in the Frobenius norm sense is

relative error =
‖M −X‖F
‖M‖F

,

where X is the final estimate produced by the respective algorithm.

2. Rank

The rank of the final estimate, i.e the rank of the recovered solution.

3. Time

The time the algorithm needs to terminate and produce it’s output (the
final estimate).

Note that for every algorithm we return one value for each performance
measure in each scenario, which is the average of the respective values of that
measure on the 50 runs of the experiment.

6.2.3 Algorithm parameters

All the algorithms we study and evaluate have parameters that specify their
behavior and whose values need to be chosen appropriately. In order to find
the suitable parameters, we tested for each scenario several different parameter
values and picked the optimal ones. The optimality lies, in the majority of cases,
in choosing the parameter value that makes the algorithm return the solution
with the smallest possible relative error, while establishing that the recovered
rank is approximately equal to the true one. However, it is also possible that
the parameter values that offer solutions with rank equal to the true one, suffer
from high relative errors. In that cases we choose the parameter value that
provides the smallest possible relative error. In figure 6.3 we give a table that
contains the parameter values we used in our experiments for all five algorithms
across the eight scenarios.

114

p 50
σ 10−1 10−2

r 10 20 10 20
scenario S1 S2 S3 S4

MC-PFBS 3.74 · 10−2(10.02) 9.05 · 10−2(20.2) 6.36 · 10−3(10) 2.97 · 10−2(20.66)
MC-ARLS 4.72 · 10−2(10.08) 2.07 · 10−2(25) 1.05 · 10−2(10.08) 7.00 · 10−3(25)

MC-AIRWLS 2.42 · 10−2(10) 1.95 · 10−2(20.14) 5.40 · 10−3(10.22) 6.10 · 10−3(20.24)
MC-FARLS 5.89 · 10−2(10.42) 2.11 · 10−2(25) 4.89 · 10−2(10.06) 1.08 · 10−2(24.96)

MC-FAIRWLS 2.37 · 10−2(10.08) 1.94 · 10−2(20.3) 4.69 · 10−3(10.08) 6.29 · 10−3(20.04)

Figure 6.4: The relative error and the recovered rank of the five algorithms
across scenarios S1-S4.

p 75
σ 10−1 10−2

r 10 20 10 20
scenario S5 S6 S7 S8

MC-PFBS 2.97 · 10−1(10.74) 4.66 · 10−1(56.54) 2.96 · 10−2(10.62) 4.5 · 10−1(64)
MC-ARLS 4.06 · 10−2(15) 2.71 · 10−12(25) 1.44 · 10−2(15) 1.96 · 10−1(25)

MC-AIRWLS 2.68 · 10−2(10.12) 1.21 · 10−1(20.66) 7.30 · 10−3(10.14) 1.39 · 10−1(20.84)
MC-FARLS 4.38 · 10−2(15) 2.16 · 10−1(25) 3.38 · 10−2(15) 2.11 · 10−1(25)

MC-FAIRWLS 2.88 · 10−2(10.14) 1.31 · 10−1(20.06) 1.31 · 10−2(10.2) 1.28 · 10−1(20.04)

Figure 6.5: The relative error and the recovered rank of the five algorithms
across scenarios S5-S8.

6.2.4 Results

Figures 6.4 and 6.5 contain the results of the experiments we run, i.e the relative
error and the recovered rank. Also, in figure 6.6 the runtime for all 5 algorithms
across the 8 scenarios is provided. Finally, in figure 6.7 the relative error in
scenario 3, of the five algorithms, with respect to the number of iterations is
illustrated.

p 50 75
σ 10−1 10−2 10−1 10−2

r 10 20 10 20 10 20 10 20
scenario S1 S2 S3 S4 S5 S6 S7 S8

MC-PFBS 2.78 5.43 4.87 5.53 8.06 14.67 8.32 15.05
MC-ARLS 3.18 16.45 6.83 14.54 20.54 133.53 20.16 134.65

MC-AIRWLS 5.20 9.13 4.73 10.55 11.18 94.04 9.28 104.61
MC-FARLS 0.08 0.80 0.10 0.34 1.67 2.96 0.66 3.03

MC-FAIRWLS 0.24 0.43 0.39 0.54 1.06 2.90 0.95 2.93

Figure 6.6: The runtime of the five algorithms across all 8 scenarios.

115

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

1
0

−
3

1
0

−
2

1
0

−
1

1
0

0

1
0

1

Ite
ra

tio
n

Relative Error

L
o

g
a

rith
m

ic
 p

lo
t o

f th
e

 re
la

tiv
e

 e
rro

r w
ith

 re
s
p

e
c
t to

 th
e

 n
u

m
b

e
r o

f ite
ra

tio
n

s

M
C

−
P

F
B

S

M
C

−
A

R
L

S

M
C

−
A

IR
W

L
S

M
C

−
F

A
R

L
S

M
C

−
F

A
IR

W
L

S

F
ig

u
re

6.7:
R

elative
error

(in
lo

g
a
rith

m
ic

sca
le)

w
ith

resp
ect

to
th

e
n
u

m
b

er
o
f

iteration
s

(averaged
over

50
ru

n
s).

116

6.3 Evaluation on the MovieLens dataset

In this section we will evaluate three algorithms on real data, specifically on the
MovieLens dataset. [Mov]

6.3.1 Description of the scenario

In this section we use the MovieLens 100K dataset. This dataset contains 100000
ratings from 943 users on 1682 movies. The ratings are integers in the interval
1-5 and we know that each user has rated at least 20 movies. In those types of
datasets we need to split the data into a training and a test set. Instead of doing
this on our own we use the splits provided in the dataset’s files. Specifically we
use ”ub.base” as a training set and ”ub.test” as a test set. The test set is created
by keeping exactly 10 ratings per user from the 100K dataset.

We formulate the rating matrix of the training set by assigning to each user
a row of the matrix and to each movie a column. Then, the rating of user i for
the movie j is given on the (i, j) entry of the rating matrix. The resulting matrix
(dimensions 943 × 1675) is incomplete and the known entries comprise about
5.7% of the total entries. That is the matrix we seek to complete. We evaluate
our result on the ratings contained in the test set, which comprise about 0.6%
of the total entries.

We evaluate three algorithms on this dataset, MC-PFBS, MC-FARLS, MC-
FAIRWLS. We choose the optimal parameters simply by testing a wide range
of parameter values on the given data and selecting the values that make the
algorithms return the solutions with the minimum error (note that the notion
of error is different in this scenario). Specifically, for MC-PFBS we chose the
parameters λ = 3, δ = 1/3, for MC-FARLS the parameters λ = 7, L = 30
and for MC-FAIRWLS the parameters δ = 105, L = 30. Finally, the stopping
criterion we use to terminate the algorithms is the same we used on the synthetic
data.

6.3.2 Performance measures

Assume that we denote with T the positions of known entries of the incomplete
matrix M , which we use to evaluate the 3 algorithms, i.e the test set. Also, let
card(T) = c. We are going to evaluate the algorithms based on the following
performance measures.

1. Root mean square error (RMSE)

The root mean square error (RMSE) on T is defined as

RMSE =
‖PT (M)− PT (X)‖F√

c
.

2. Normalized mean average error (NMAE)

The normalized mean average error (NMAE) on T is defined as

NMAE =

∑
(i,j)∈T

|Mij −Xij |

4c
.

117

algorithm / performance measure NMAE RMSE Rank Time(s)
MC-PFBS 0.2165 1.1006 180 6988

MC-FARLS 0.2112 1.0704 30.00 260
MC-FAIRWLS 0.1867 0.9529 8 638

Figure 6.8: The NMAE, the RMSE, the recovered rank and the runtime of the
algorithms MC-PFBS, MC-FARLS and MC-FAIRWLS.

3. Rank

The rank of the final estimate, i.e the rank of the recovered solution.

4. Time

The time it takes for the algorithm to terminate and produce it’s output.

6.3.3 Results

In figure 6.8 we provide the results of the experiment, specifically the RMSE,
the NMAE, the recovered rank and the runtime of the 3 algorithms. Also, in
figures 6.9 and 6.10 we plot the NMAE and the RMSE, respectively, of the 3
algorithms with respect to the number of iterations.

6.4 Remarks and conclusions

The following remarks occur from the parameter selection stage and the exper-
iments we performed on synthetic data.

• The MC-ARLS and the MC-FARLS algorithms in most scenarios (except
scenarios 1 and 3) fail to provide a solution with rank equal to the true
rank. However, during the parameter selection stage we noticed that it is
possible to force the two algorithms to return solutions with rank equal to
the true one for appropriate choices of the parameter λ, but with a notable
deterioration (with respect to the presented results) in the relative error
of the recovered matrix. Therefore, we can say that practically the two
algorithms, i.e MC-ARLS and MC-FARLS, cannot recover the true rank.

• The MC-AIRWLS and the MC-FAIRWLS algorithms in all scenarios man-
age to (approximatelly) recover the true rank. Also, they provide the
lowest relative error among the 5 algorithms in all scenarios. Actually,
they provide the best performance under the restriction (which we im-
posed during the parameter selection stage) that the recovered solution
has rank approximately equal to the true one. On the contrary, we impose
no such restrictions on the MC-ARLS and the MC-FARLS algorithms (ex-
cept from two scenarios where we can obtain the true rank at an affordable
cost with resepct to the deterioration of the relative error). This obser-
vation accentuates the superior performance of the MC-AIRWLS and the
MC-FAIRWLS algorithms.

• With respect to the time required by the algorithms to provide their esti-
mate, we notice that the MC-FARLS and the MC-FAIRWLS algorithms

118

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

it
e

ra
ti
o

n

NMAE

T
h

e
 N

M
A

E
 w

it
h

 r
e

s
p

e
c
t

to
 t

h
e

 n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 (

te
s
t

d
a

ta
)

M
C

−
P

F
B

S

M
C

−
F

A
R

L
S

M
C

−
F

A
IR

W
L

S

F
ig

u
re

6.
9:

T
h

e
N

M
A

E
of

M
C

-P
F

B
S

,
M

C
-F

A
R

L
S

a
n

d
M

C
-F

A
IR

W
L

S
w

it
h

re
sp

ec
t

to
th

e
n
u

m
b

er
o
f

it
er

a
ti

o
n

s.

119

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0 1 2 3 4 5 6

ite
ra

tio
n

RMSE

T
h

e
 R

M
S

E
 w

ith
 re

s
p

e
c
t to

 th
e

 n
u

m
b

e
r o

f ite
ra

tio
n

s
 (te

s
t d

a
ta

)

M
C

−
P

F
B

S

M
C

−
F

A
R

L
S

M
C

−
F

A
IR

W
L

S

F
igu

re
6
.1

0
:

T
h

e
R

M
S

E
o
f

M
C

-P
F

B
S

,
M

C
-F

A
R

L
S

a
n

d
M

C
-F

A
IR

W
L

S
w

ith
resp

ect
to

th
e

n
u

m
b

er
of

iteration
s.

120

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
10

−3

10
−2

10
−1

Sampling ratio

R
e
la

ti
v
e
 e

rr
o
r

VSBL

MC−FAIRWLS

Figure 6.11: The relative error of MC-FAIRWLS and VSBL with respect to the
sampling ratio.

are considerably faster than the remaining three algorithms. Especially in
the hard scenarios the difference is quite large. That was expected, since
the approximation we used in those two algorithms allowed us to com-
pute closed-form expressions for directly updating the factor matrices U
and V , while in the MC-ARLS and MC-FARLS algorithms the respective
expressions are with resepct to the rows of U and V .

• The MC-AIRWLS and the MC-FAIRWLS algorithms gradually reduce the
rank of the estimate during the training stage. This is important, since we
can exploit that fact in our implementation to speed up the calculations.
On the contrary, we generally (there are some exceptions) do not observe
such behaviour in the MC-ARLS and the MC-FARLS algorithms.

We perform a rough comparison with a Bayesian algorithm for matrix com-
pletion, the VSBL algorithm.[Bab+12] Indicatively, we perform the experiment
depicted in figure 2 (of the respective paper) and using the respective data we
compare VSBL with MC-FAIRWLS. In figure 6.11 the relative error with re-
spect to the sampling ratio, of the two algorithms, is illustrated. With respect
to the experiment’s results, we note that the recovered rank of both algorithms
is equal to the true one (in all scenarios), however the runtime of VSBL is higher
than the respective runtime of MC-FAIRWLS (which ranges from 20s to 40s)
in all scenarios. Also, from figure 6.11 we can see that the relative error of MC-
FAIRWLS is sligthly smaller than the respective error of VSBL, for sampling
ratios 0.16, 0.2, 0.24, 0.28. However, for highly incomplete matrices (sampling
ratios 0.08 and 0.12) VSBL performs better than MC-FAIRWLS and especially
for sampling ratio p = 0.08 the difference is notable.

121

The experiments on the MovieLens dataset strengthen some basic observa-
tions we made on synthetic data. Moreover, from the figures we notice that
the number of iterations that are needed for MC-FAIRWLS to converge is more
than two times larger than the respective number for the MC-FARLS algorithm.
That is reflected on the runtime of the two algorithms, where MC-FARLS re-
quires less than half of the respective time of MC-FAIRWLS. However, both
algorithms work significantly faster than MC-PFBS and thus we can charac-
terize them as time efficient (i.e fast). Finally, we should note that we cannot
really evaluate in this scenario the recovered rank, since we are not aware of its
true value, however it straightforward to recognize the expected behaviour, as
noted in the previous remarks.

In [YDC15] the main algorithms were evaluated against the same dataset
and split we use on this thesis, which allows us to make a simple comparison. It
is easy to see that MC-FAIRWLS manages to achieve lower RMSE and at the
same time to converge using a smaller number of iterations than the respective
algorithms.

We can conclude that the algorithms that solve the minimization problem
6.1.4, i.e MC-AIRWLS and MC-FAIRWLS, offer the best performance with
respect to the relative error and the recovered rank. If, in addition, we take
into account the time needed to compute an output, MC-FAIRWLS offers the
superior performance, since it provides solutions with low relative error (in half
scenarios it offers the lowest relative error and in the remaining half it provides
error close to the lowest one), it manages to recover approximatley the true
rank and it works quite fast. The other algorithm whose runtime is comparable
to the runtime of MC-FAIRWLS, i.e MC-FARLS, fails to provide comparable
performance with respect to the relative error and the recovered rank.

122

Appendix A

Mathematical Preliminaries

The purpose of this appendix is to collect several lemmas, theorems and defini-
tions that do not fit to the main presentation.

A.1 Linear Algebra

We will start with the fundamental notion of the norm.

Definition A.1.1 (Norm). Let V be a vector space. A norm is a function
‖·‖ : V → R that satisfies the following conditions

1. ‖x‖ ≥ 0,∀x ∈ V

2. ‖x‖ = 0⇔ x = 0

3. ‖λx‖ = |λ| ‖x‖,∀x ∈ V

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖,∀x,y ∈ V .

A.1.1 Vectors

Definition A.1.2 (Support). The support of a vector x ∈ Rn is the set of the
indices of it’s nonzero elements, i.e

supp(x) = {i ∈ {1, . . . , n} : xi 6= 0} .

Vector norms

We will restrict our attention to the vector space V = Rn.

Definition A.1.3 (lp norms). The lp norm of x ∈ Rn is defined as

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

The most important lp norms are the following.

123

p = 1 p = 2 p =∞

Figure A.1: The unit norm lp balls for p = 1, 2,∞.

Definition A.1.4 (l1 norm). The l1 norm of x ∈ Rn is defined as

‖x‖1 =

n∑
i=1

|xi| .

Definition A.1.5 (l2 norm). The l2 norm of x ∈ Rn is defined as

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

.

Definition A.1.6 (l∞ norm). The l∞ norm of x ∈ Rn is defined as

‖x‖∞ = max
1≤i≤n

|xi| .

Figure A.1.1 illustrates the unit norm balls for the lp norms with p = 1, 2,∞.

A.1.2 Matrices

Matrix norms

Now we will provide some norms for matrices. We will define two kind of
matrix norms, Schatten norms and operator norms. The definition of the former
follows.

Definition A.1.7 (Schatten norm). The Schatten p norm of A ∈ Rk×n is
defined as

‖A‖p =

(
r∑
i=1

|σi|p
)1/p

,

where σi are the singular values and r the rank of matrix A.

Two notable cases of Schatten norms are the nuclear norm and the Frobenius
norm.

Definition A.1.8 (Nuclear norm). The nuclear norm of A ∈ Rk×n is defined
as

‖A‖∗ =

r∑
i=1

|σi| .

124

Definition A.1.9 (Frobenius norm). The Frobenius norm of A ∈ Rk×n is
defined as

‖A‖2 =

(
r∑
i=1

|σi|2
)1/2

=

 k∑
i=1

n∑
j=1

|aij |2
1/2

.

Next, we provide the definition of matrix operator norms.

Definition A.1.10 (Matrix operator norms). The matrix operator norm of
A ∈ Rk×n from lp to lq is defined as

‖A‖p→q = sup
‖x‖p≤1

‖Ax‖q.

A result that will proven to be useful is contained in the following lemma.

Lemma A.1.1. [FR13] For the Frobenius and the 2 → 2 norm the following
inequality holds

‖A−B‖2→2 ≤ ‖A−B‖F .

A.2 Convex geometry

A fundamental notion in convex geometry is the convex cone.

Definition A.2.1 (Cone and convex cone). [FR13] The set C ⊆ Rn is called a
cone if

tx ∈ C, ∀x ∈ C, ∀t ≥ 0.

Furthermore, the set C ⊆ Rn is called a convex cone if

tx+ sy ∈ C, ∀x,y ∈ C, ∀t, s ≥ 0.

Essentially a convex cone is a convex set C that is a cone and at the same
time. Given a cone C, the polar cone of C is defined as follows.

Definition A.2.2 (Polar cone). [FR13] The polar cone of a cone C is

C◦ = {z ∈ Rn : 〈x, z〉 ≤ 0, ∀x ∈ C} .

We are going to use the following lemma in chapter 5.

Lemma A.2.1. [FR13][Cha+12b] Let C be a convex cone, C◦ be it’s polar cone
and g ∈ Rn be a vector. Then

max
z∈C,‖z‖2≤1

〈g, z〉 ≤ min
z∈C◦

‖g − z‖2.

A.3 Analysis

Lebesgue’s dominated convergence theorem is a classical result in measure theory.

Theorem A.3.1. [Lebesgue’s dominated convergence theorem] [Bre10] Let {fn}n∈N
be a sequence of functions such that the following conditions hold

125

1. fn ∈ L1 =

{
f : Ω→ R |

∫
Ω

|f(x)| dx < +∞
}
, ∀n ∈ N,

2. lim
n→+∞

fn(x) = f(x) almost everywhere on Ω,

3. There exists a function g ∈ L1 such that |fn(x)| ≤ g(x), for all n ∈ N,
almost everywhere on Ω.

Then, f ∈ L1 and

lim
n→+∞

∫
Ω

fn(x)dx =

∫
Ω

f(x)dx.

A.3.1 Beta and Gamma functions

Beta and Gamma functions will play an important role in this thesis.

Gamma function

The Gamma function serves as a continuous analog of the factorial function.[FR13]

Definition A.3.1 (Gamma function). For x > 0 the Gamma function is

Γ(x) =

∞∫
0

tx−1e−tdt. (A.1)

Lemma A.3.1 (Gamma function properties). The Gamma function satisfies
the following properties

1.
Γ(x+ 1) = xΓ(x), x > 0 (A.2)

2.
Γ(n+ 1) = n!, (A.3)

for all positive integers n.

3.

Γ

(
1

2

)
=
√
π (A.4)

Beta function

The definition of Beta functions is provided below.[FR13]

Definition A.3.2 (Beta function). For x, y > 0 the Beta function is defined as

B(x, y) =

1∫
0

ux−1(1− u)y−1du.

Proposition A.3.1 (Beta function property). For all x, y > 0 it holds that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

126

A.4 Covering numbers

Covering numbers often arise in the context of high dimensional probability
theory. Practically the covering number of a set T of a metric space (X, d) is
the smallest number of balls of a given radius ρ that cover the whole set. The
formal definition follows.

Definition A.4.1 (Covering number). [FR13] Let (X, d) be a metric space,
T ⊆ X and ρ > 0. The covering number N (T, d, ρ) is the smallest number such
that

T ⊆
N⋃
i=1

B(xi, ρ),

where B(xi, ρ) = {x ∈ X : d(x,xi) ≤ ρ} ,for xi ∈ T , i ∈ {1, . . . ,N}.

Next, we are going to attain a bound on the covering number of a subset of
the unit ball in Rn.

Theorem A.4.1 (Bound for the covering number of a unit ball in Rn). [FR13]
Consider the space (Rn, ‖·‖) and the set T ⊆ B = {x ∈ Rn : ‖x‖2 ≤ 1}. Then
we have that

N (T, ‖·‖, ρ) ≤
(

1 +
2

ρ

)n
. (A.5)

A.5 Miscellanea

In this section we provide some results, without proof, that do no fit to the
previous sections.

Lemma A.5.1 (Upper bound for the combinations formula). Let n ≥ k > 0 be
some integers. Then, (

n

k

)
≤
(en
k

)k
.

Stirling’s formula is a classical result that provides an approximation of
the factorial function. A consequence of Stirling’s formula is contained in the
following lemma.

Lemma A.5.2 (Stirling’s formula). For all positive integers n we have that

n! ≥
√

2πnne−n.

Finally, we need the following inequality in chapter 4. For more details on
how we can obtain this inequality refer to [FR13].

Lemma A.5.3 (Fenchel’s inequality).

xy ≤ ex + yln(y)− y, ∀x ∈ R, y > 0.

127

128

Bibliography

[Ame+14] Dennis Amelunxen et al. “Living on the edge: Phase transitions in
convex programs with random data”. In: Information and Infer-
ence (2014), iau005.

[Bab+12] S Derin Babacan et al. “Sparse Bayesian methods for low-rank
matrix estimation”. In: IEEE Transactions on Signal Processing
60.8 (2012), pp. 3964–3977.

[BCW10] Richard G Baraniuk, Volkan Cevher, and Michael B Wakin. “Low-
dimensional models for dimensionality reduction and signal recov-
ery: A geometric perspective”. In: Proceedings of the IEEE 98.6
(2010), pp. 959–971.

[BM03] Samuel Burer and Renato DC Monteiro. “A nonlinear program-
ming algorithm for solving semidefinite programs via low-rank fac-
torization”. In: Mathematical Programming 95.2 (2003), pp. 329–
357.

[BM05] Samuel Burer and Renato DC Monteiro. “Local minima and con-
vergence in low-rank semidefinite programming”. In: Mathematical
Programming 103.3 (2005), pp. 427–444.

[Boc+15] Holger Boche et al. “A Survey of Compressed Sensing”. In: Com-
pressed Sensing and its Applications: MATHEON Workshop 2013.
Ed. by Holger Boche et al. Springer International Publishing, 2015,
pp. 1–39.

[Bre10] Haim Brezis. Functional analysis, Sobolev spaces and partial dif-
ferential equations. Springer Science & Business Media, 2010.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[Cha+12a] Djalil Chafäı et al. Interactions between compressed sensing ran-
dom matrices and high dimensional geometry. Société Mathématique
de France, 2012.

[Cha+12b] Venkat Chandrasekaran et al. “The convex geometry of linear in-
verse problems”. In: Foundations of Computational mathematics
12.6 (2012), pp. 805–849.

[CP09] Patrick L Combettes and Jean-Christophe Pesquet. “Proximal split-
ting methods in signal processing”. In: arXiv preprint arXiv:0912.3522
(2009).

129

[CR09] Emmanuel J Candès and Benjamin Recht. “Exact Matrix Comple-
tion via Convex Optimization”. In: Foundations of computational
mathematics 9.6 (2009), pp. 717–772.

[CT05] Emmanuel J Candes and Terence Tao. “Decoding by linear pro-
gramming”. In: IEEE transactions on information theory 51.12
(2005), pp. 4203–4215.

[CW08] Emmanuel J Candès and Michael B Wakin. “An introduction to
compressive sampling”. In: IEEE signal processing magazine 25.2
(2008), pp. 21–30.

[Don06] David L Donoho. “Compressed sensing”. In: IEEE Transactions
on information theory 52.4 (2006), pp. 1289–1306.

[DR16] Mark A Davenport and Justin Romberg. “An overview of low-rank
matrix recovery from incomplete observations”. In: IEEE Journal
of Selected Topics in Signal Processing 10.4 (2016), pp. 608–622.

[FG16] Carlos Fernandez-Granda. Low-rank models. Optimization-based
Data Analysis, NYU. 2016.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction
to compressive sensing. Vol. 1. 3. Springer, 2013.

[Gor88] Y Gordon. “On Milman’s inequality and random subspaces which
escape through a mesh in Rn”. In: Lecture Notes in Mathematics
(1988), p. 84.

[GRK16] Paris V Giampouras, Athanasios A Rontogiannis, and Konstanti-
nos D Koutroumbas. “Online low-rank subspace learning from in-
complete data using rank revealing l2/l1 regularization”. In: Statis-
tical Signal Processing Workshop (SSP), 2016 IEEE. IEEE. 2016,
pp. 1–5.

[GRK17a] Paris V Giampouras, Athanasios A Rontogiannis, and Konstanti-
nos D Koutroumbas. “l1/l2 regularized non-convex low-rank ma-
trix factorization”. In: Signal Processing with Adaptive Sparse Struc-
tured Representations (SPARS) , Lisbon, June 2017 (2017).

[GRK17b] Paris V Giampouras, Athanasios A Rontogiannis, and Konstanti-
nos D Koutroumbas. “Low-rank and Sparse NMF for Joint End-
members’ Number Estimation and Blind Unmixing of Hyperspec-
tral Images”. In: arXiv preprint arXiv:1703.05785 (2017).

[GRK17c] Paris V Giampouras, Athanasios A Rontogiannis, and Konstanti-
nos D Koutroumbas. “Low-rank matrix factorization via l1/l2 norm
minimization”. In: (in preparation) (2017).

[Gro11] D. Gross. “Recovering Low-Rank Matrices From Few Coefficients
in Any Basis”. In: IEEE Transactions on Information Theory 57.3
(2011), pp. 1548–1566.

[Ibm] What is big data? https://www-01.ibm.com/software/data/

bigdata/what-is-big-data.html. [Online; accessed 18-February-
2017].

[KC07] Jelena Kovacevic and Amina Chebira. “Life beyond bases: The
advent of frames (Part I)”. In: IEEE Signal Processing Magazine
24.4 (2007), pp. 86–104.

130

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

[Mov] MovieLens dataset. https://grouplens.org/datasets/movielens/.
Accessed: 2017-05-01.

[Pri90] Roland Priemer. Introductory signal processing. World Scientific
Publishing Co Inc, 1990.

[Rec11] Benjamin Recht. “A simpler approach to matrix completion”. In:
Journal of Machine Learning Research 12.Dec (2011), pp. 3413–
3430.

[Ste+15] Zachary D Stephens et al. “Big data: astronomical or genomical?”
In: PLoS Biol 13.7 (2015), e1002195.

[The15] Sergios Theodoridis. Machine learning: a Bayesian and optimiza-
tion perspective. Academic Press, 2015.

[TW10] Joel A Tropp and Stephen J Wright. “Computational methods for
sparse solution of linear inverse problems”. In: Proceedings of the
IEEE 98.6 (2010), pp. 948–958.

[YDC15] Alp Yurtsever, Quoc Tran Dinh, and Volkan Cevher. “A univer-
sal primal-dual convex optimization framework”. In: Advances in
Neural Information Processing Systems. 2015, pp. 3150–3158.

131

https://grouplens.org/datasets/movielens/

	I Sparse vectors and low-rank matrices
	Introduction
	Introduction
	Low-dimensional signal models
	Inverse problems

	Stable embeddings

	Sparse vectors
	Introduction
	Sparse and compressible signals
	Signal dictionaries
	The big picture of sparse recovery
	Underdetermined system of linear equations
	The optimization tasks of sparse recovery
	l0 norm
	l2 norm
	l1 norm

	Compressed sensing
	Measurement matrices
	Coherence
	Restricted isometry property

	Reconstruction schemes
	Greedy algorithms
	Convex optimization algorithms
	Iterative thresholding algorithms

	Applications

	Low-rank matrices
	Introduction
	Preliminaries about matrices
	Singular value decomposition

	Low-rank matrix recovery
	Matrix completion
	The Netflix problem
	Which matrices can be completed?
	Coherence
	The optimization tasks of matrix completion

	Applications

	II Mathematical aspects
	Tools from probability theory
	Probabilistic preliminaries
	Basic results in probability theory
	Subgaussian and subexponential random variables
	Bernstein's inequality
	Expectation of norms of Gaussian vectors
	Gaussian width
	Gordon's Lemma
	Concentration of measure

	Sparse vectors recovery with random matrices
	Introduction
	Uniform recovery with subgaussian matrices
	Non-uniform recovery with Gaussian matrices

	III Algorithms
	Algorithms for matrix completion
	Algorithms
	Proximal forward-backward splitting
	Alternating regularized least squares
	Alternating iteratively reweighted least squares
	Fast alternating regularized least squares
	Fast alternating iteratively reweighted least squares

	Evaluation on synthetic data
	Description of the scenarios
	Performance measures
	Algorithm parameters
	Results

	Evaluation on the MovieLens dataset
	Description of the scenario
	Performance measures
	Results

	Remarks and conclusions

	Appendix
	Mathematical Preliminaries
	Linear Algebra
	Vectors
	Matrices

	Convex geometry
	Analysis
	Beta and Gamma functions

	Covering numbers
	Miscellanea

