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Abstract

In this thesis, we study the problem of traversing a series of points in the 3-
Dimensional space with a quadrotor Unmanned Aerial Vehicle (UAV). Given the
3D coordinates of the points, as well as the desired sequence, the state and control
input trajectories which lead the vehicle through the points are designed.

In that respect, the problem was formulated as an Optimal Control Problem
(OCP). This continuous time OCP was solved using the method of Pseudospectral
Optimal Control which consists of expanding the state and control variables over a
space of orthogonal polynomials. Moreover, in order to account for modeling imper-
fection and external disturbances, state feedback was accomplished by implementing
the controller in a Model Predictive Control (MPC) framework. In MPC schemes the
OCP is solved online iteratively using the current state measurement of the system
as the initial state. Since the desired interior waypoints are not equilibrium points
of the system conventional MPC schemes proved inefficient. Extensive research led
us to adopt a Variable-Horizon MPC approach (VH-MPC) in which the prediction
horizon is a decision variable of the OCP solved in each time-step. Finally, a number
of theorems presented in this work extend the preexisting robustness guarantees of
VH-MPC to nonlinear continuous-time systems.

Although the majority of the theory presented in this work could be applied to
any kind of aerial vehicle, simulations and comparative studies were conducted in a

quadrotor model to illustrate the validity of our algorithms.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles, also known as drones, are robotic platforms able to
operate freely in the 3D space. UAVs may be designed to display different levels of
autonomy: either by being teleoperated or by being able to perform certain tasks
with little to no supervision from a human operator. UAVs vary both in size and
capabilities, with larger ones, modeled after fixed-winged aerial vehicles, still in use
during military operations and smaller ones, many of which are rotor based, used in
everyday life.

Historically designed for military use, UAVs are now found in many civilian
applications. Moreover, they constitute the preferred platform to conduct robotics
research for a large part of the scientific community. As far as civilian operations
are concerned, some of the most important areas are search and rescue [1], long
term inspection missions [2], payload delivery [3] and surveillance in environments
where human presence is impeded or even when navigation in indoors environments
is required.

As mentioned before, the most defining characteristic used to categorize UAVs

is the design of their wings. Thus, we introduce two major types of vehicles:
e Fixed Wing Aircrafts: modeled after airplanes (see Fig.1.1)

e Rotary Wing Aircrafts: modeled after helicopters (see Fig.1.2). Defining ex-
ample of this type of UAV are the multirotors (see Fig.1.3).

Control of a UAV’s position and attitude is achieved either by actuation of
the flaps (in the case of fixed-wing UAVs) or by variating the rotation speed of
some combination of the rotors (in rotary-wing UAVs). As a result, the problem

of designing controllers for UAVs is made more difficult due to the system being
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underactuated, forced to control all six of their states using less actuators; in the

case of quadrotors four.

Figure 1.2: Rotary Wing Aircraft modeled after a conventional helicopter.

Figure 1.3: Rotary Wing Aircraft. Example of a hexarotor.
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1.2 Trajectory optimization

Future developments will call for robotic platforms that are able to move in
complex, often cluttered or hard environments in order to accomplish a plethora of
tasks. From mobile robots moving in a factory floor alongside workers to unmanned
aircraft flying across countries and spacecrafts cruising toward distant planets in the
Solar System, autonomous agents will have to plan a path and follow it. Trajectory
planning involves designing a path compatible with the dynamics of the system. For
example, paths for wheeled robots should respect their non-holonomic constraints.
Aircraft trajectories must be constrained with respect to turning radii and velocities.
Physical limitations should be considered, too. Trajectories through obstacles, such
as walls, must be avoided.Finally, actuator limits should be taken into account as

well.

A variety of methods have been used to solve the problem of trajectory design.
A large class is based on geometric considerations. Examples of such algorithms
are grid based methods, in which the robot’s workspace is decomposed and each
grid cell is identified with a certain point. At each grid point, the robot is allowed
to move to adjacent grid points as long as the line between them is completely
contained within the free space (in the sense of obstacle existence). This way the
set of actions is discretized, and search algorithms (like A*) are used to find a path
from the start to the goal [4]. For a review of these methods, the reader is referred
to [5]. Another method for trajectory planning is the use of navigation functions.
A virtual potential field is applied over the robot’s workspace, in which obstacles
are assigned a high potential value, whereas the goal configuration a low one. This
way, a virtual force is applied to the robot, attractive with respect to the goal and

repulsive with respect to the obstacles [6].

However, we are often tasked with designing a trajectory which not only respects
the system’s constraints, but produces optimal results in some sense, either by min-
imizing or maximizing a quantity of importance. For this purpose, a large class of
trajectory planning problems are formulated, and subsequently solved, as optimal
control problems. According to these methods, We define a cost functional, a func-
tion of functions (in a sense of mapping from a function space into a scalar field),
and we seek these functions that produce and extremal - minimum or maximum
- value for this functional. An advantage of optimal control methods is the ease
with which we may define various constraints on the variables. This way it becomes

straightforward to model obstacles in the workspace or actuation limits.

The formulation of trajectory design problems as optimal control problems (de-

noted in the sequel as OCPs) require the following:
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e A valid mathematical model of the system: No matter how rigorous we are
when modeling the system, we cannot account for stochastic phenomena such

as external disturbances and uncertainties in the system parameters.

e A performance measure: To evaluate the performance of the system, we design
the aforementioned cost functional.

e The physical constraints: These may include limitations on the control input,

obstacles, and even desired configurations we wish the system to achieve.

Trajectory planning via OCP is not without its disadvantages. First of all, solv-
ing the OCP is a really demanding process. With that in mind, a number of different
methodologies have been developed. These methods are categorized as indirect or
direct. Indirect methods involve deriving the Euler-Lagrange differential equations
that describe the evolution of the trajectories in time and then using numerical
discretization methods to solve them. On the other hand, direct methods involve
discretizing the OCP and then solving numerically the derived static optimization
problem.

Also, in most cases the solution of an OCP provides us with an open-loop control
policy which fails to take into account external disturbances or discrepancies between
the real system and the simplified model we provide. Therefore, we utilize a Model

Predictive Control (MPC) scheme to account for this issue.
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1.3 Model Predictive Control

Model Predictive Control (MPC) is an optimization based method for the feed-
back control of dynamical systems. Introduced in the chemical industry in the 1980s,
rapid development of computational systems helped transition MPC to a broader
class of problems. The difficulty of applying MPC schemes stems from their high
computational burden compared to "classic" PID or LQR controllers.

MPC consists of iteratively solving an optimal control problem online, utiliz-
ing current updates on the system states as initial conditions. These methods are
based on the use of dynamic models describing the plant’s process. Generally, MPC
is chosen in systems of high complexity, since most simpler systems can be ade-
quately controlled with classic schemes. Therefore, models used in MPC have great
complexity, high-frequency dynamics, or even contain discontinuities.

Through these dynamic models, it is possible to predict the system’s states at
some future time for a given control input. Therefore, in its conventional form, MPC
consists of computing at time ¢ the control strategy that minimizes a cost functional
over a prediction horizon [tg, t,+T,] and applying this strategy over a control horizon
[tr,tx + T.]. This way, at each recalculation instant ¢; (i = k,k + 1,...,N) the
optimal control input and state trajectory is found in order to guide the system to
the desired final configuration. Due to external disturbances or uncertainties in the
model, discrepancies may appear between the predicted state and the actual state of
the system. As a result, each recalculation of the optimal states and control, derives
information from the true state of the system and utilizes it as an initial state for
the optimization problem. Thus, MPC is considered a closed loop control scheme.

Until recently, there have been two ways to categorize MPC schemes:

e Based on time: While continuous-time MPC consists of using the system’s
dynamic model and defining a cost in the form of an integral, in discrete-time
MPC' the system model is sample-based and the cost is in the form of a discrete

suln.

e Based on form: Linear MPC, where the model consists of linear equations
(which is easily solvable with Linear Programming methods) and Nonlinear
MPC'" where we take into account the nonlinear model of the system in ques-

tion.

However, in this work we take into account another way to separate MPC. In
conventional MPC schemes, the prediction horizon is chosen a priori and remains
constant throughout. It has been shown that in this formulation, which will be de-
noted as fixed-horizon MPC (FH-MPC) there are certain limitations to the systems
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and the control objectives we may tackle, especially when trying to build provable al-
gorithms. In recent years, a significant body of work has dealt with MPC algorithms,
where the prediction horizon may change online. The horizon could be considered a
variable to be optimized, or it may decrease/increase in a predefined manner. Even
though experimental work has shown that this Variable-Horizon MPC (VH-MPC)
is of paramount importance to the control community, mathematical foundation has

been established only in the linear or linearized case.

PAST FUTURE
— A EEE—

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
— Past Control Input

tt

_.{ Control Horizon
‘ Prediction Horizon }

— —tttt1
k k+1 k+2 ... Sample Time k+p

Figure 1.4: Conventional Fixed Horizon MPC

MPC

Continuous Time Linear

Discrete Time Non Linear

Figure 1.5: Categories of MPC
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1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2 provides the derivation of the state-space model for the Quadrotor
UAV.

Chapter 3 consists of the formulation for the task of traversing the interior
points. Subsequently, different approaches to the trajectory optimization problem
are investigated. The indirect method, based on the Euler-Lagrange equations as
derived utilizing calculus of variations techniques is presented. The method of Pseu-
dospectral Optimal Control is introduced and utilized for the solution of our prob-
lem. Optimal trajectories are presented and discussed.

Chapter 4 presents the notion of Model Predictive Control and its shortcom-
ings. The Variable-Horizon MPC is introduced and its theoretical framework is
established. We derive bounds on the admissible disturbances under which nonlin-
ear vehicle maneuvering problems are feasible. A single parameter « is bounded to
provide guaranteed convergence to the final set. Comparative results for different
approaches and parameters are provided.

Chapter 5 concludes our work and showcases possible extensions and research

directions.






Chapter 2

UAV Modeling

To begin constructing the differential equations describing the behavior of the

vehicle, we define the following two reference frames:
e Earth inertial frame C,
e Body-fixed frame C

In the sequel, we adopt the notation ?R for the rotation matrix with dimension
R**? which denotes the orientation of frame C; with respect to C;. Also, we denote
the linear position of frame C; with respect to C; by the vector in R**!, ;?T :

For notation simplicity reasons, we define cax = cos(«) and sa = sin(a) for a
given angle a.

The angular position of the UAV (defined by the orientation of Cj, with respect
to C.) is given by three consecutive rotations about the main axes which take Cj,
into C.. We choose the "roll-pitch-yaw" set of Euler angles in this work.

This way, the rotation matrix R(¢) as a function of the Euler angles ¢ =

cpel  cypsbfsgp — syecp  csbco — syso

R(¢)=|sch syshsp — cipcp  sishcg — cipse (2.1)
—s6 clso chcop
Also, we define the Jacobian relating the angular velocity w = [p, ¢, r]7 with

the rate of change of the Euler angles gz.’) = [qb, 0, w]T by the equation w = E(ﬁ,

where:

1 0 —sf
E(¢)=|0 c¢ soch
0 —s¢ coch

9
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Figure 2.1: Quadrotor UAV

Having defined the rotations for the system, we formulate the differential equa-
tions describing the UAV behavior. These are nothing but the a hybrid system
of equations combining the Kinematic model of the platform, as well as the Dy-
namic model constructed via the Newton-Euler formalism. Therefore, we define the

generalized state vector x = [P, VI ¢ w7 with the following components:

e The linear body position relative to C.: P = [z, y, 2]*

e The linear velocity vector: V = [u, v, w]|"
e The Euler angles: ¢ = [¢, 0, |7
e The angular velocities: w = E¢

Under the following two assumptions:

e The origin of the body-fixed frame C}, coincides with the center of mass of the

platform.

e The body-fixed frame axes are parallel to the principal axes of inertia. Thus,
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the inertia matrix is diagonal:

In vector form the state space first order differential equations are:

dt
d
dt
d
dt
d

E(W)

(P)

(¢)

(V)

I, 0 0
=0 I, 0
0 0 L.

~- Vv
= E'(¢)w
m R(F + Fp) + g

= T+ — (Ixw))

(2.2)
(2.3)
(2.4)

(2.5)

where g = [0, 0, g]” is the gravity acceleration vector (g = —9.81m/s). The

force and torque vectors applied to the body through the rotors are denoted by

F=1[0,0, F,)', 7 = [rz, 7y, 7=]7, whereas Fp and 7p are the aerodynamic forces

that act upon the body. Though they are presented here for completeness purposes,

aerodynamic forces will not be taken into account by the controller. The feedback

nature of MPC will ameliorate any issues that arise by this discrepancy in the model,

as well as the stochastic nature of these forces.

Summing up, we derive the full state space model of the quadrotor in the form

which will be used by the MPC scheme, expressing analytically the equations as:

_R”Y S DO & 2 2o 8

r

- s¢psf

u
(%

w
(ctsbed + susg) - (1)
(s¢sbed — ciso) - (%)
(cOco) - = 4 g
p+ 22lg 4 <oy
cO-q—s¢-r
%.q_i_%.r
M-p%%—

Iyy Iyy
Loa—1Iyy

| T rat

Ty

(2.6)

Via the optimal controller, we aim to produce the trajectories of the states

x =z, vy, z, u, v, w, , 0, ¥, p, ¢, r]* and the control input w = [F, 7, 7, 7|

that will guide the quadrotor through the desired objectives. For the derivation of
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the kinematic and dynamic equations the reader is referred to |7] and the references
therein.

It should be noted, that the forces acting on the body should be updated with
frequency much greater than which we can solve an optimal control problem. There-
fore, we utilize high-frequency stabilizing controllers to achieve trajectory tracking

between updates.

Figure 2.2: Geometric representation of a Quadrotor



Chapter 3

Controller Design

3.1 Optimal Control Problem formulation

In this section, we formulate the optimal control problem (OCP), which will
produce the trajectories and control input which lead the quadrotor through the
desired interior points.

Given an n-tuple of vectors in Cartesian space, denoting interior points (x1 Xz ...Xp),
we plan a trajectory passing through these points optimally with respect to a certain
cost function.

We formulate the following Optimal Control Problem:

ty
min J(x, u, t) :/ L(x,u,T)dt (3.1)
to
Subject to:
Differential constraints:
z = f(z,u) (3.2)

This constraint is the derived state-space model (2.6), which describes the kinematics-
dynamics of the quadrotor.
Initial constraints:

Which denotes the equilibrium point from which the maneuver begins. This vector
contains information on every state of the system since xy € R"
Terminal constraints:
X(tf) = Xg (3.4)

Denoting the equilibrium point where the maneuver ends. Again, we specify the

final state completely xy € R"

13
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Interior point constraints:
x(t;) = x! (3.5)

where ¢ states are constrained, and n — g states are to be optimized. This constraint
denotes the desired waypoints. Therefore, x; € R?
Also, the obvious constraint: ¢;_; < t;, Vi € (1,2...N)

Solution via the Indirect Method: Using techniques from the calculus of
variations, we may derive the Euler-Lagrange equations, a set of Ordinary Differen-
tial Equations which solve the optimal control problem above [8].

First, we must express the interior point constraints (3.5) as a general equality
constraint of the form C'(x,u) = 0. We define the equation:

Clz,u) =x1(t;) —x1 =0 (3.6)

1

and adjoin them to the cost index (3.1) by a set of multipliers v.
- tr
J = VTC'—i-/ L(x,u,T)dt
to

Following standard optimal control procedure, defining the Hamiltonian H = L +

AT f and calculating the first variation of the augmented cost index, we get:
Ly
§J=0("C)+ 6 / (H — X'z)dt
to

Splitting the integral at t;:

5J :I/T@dti + T oc

N\T
ar. am(ti)dm A ox

to T ti—
— Nz
ti+ to

Ul 0H OH
— Ty - — Ty . T2 -
+(H = N&)|,_, dt;— (H—-\&)|_,  dt;+ /t [()\ + 50w+ o dt
Now, we utilize the relation between a variable’s differential and its variation,
namely dx(ty,) = ox(ty) + &diy.

By eliminating the variations dx(t;—) and dx(t;4) and regrouping terms, we get:

ac
T
Y Ba(t)

dti + )\T(Sm‘t:to

6J = )\Téa:‘t:tf + AT () = AT (=) + dx(t;)

+ H(t;—) — H(t;+) + uTgS
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Finally, we choose A(¢;—) and H(t;—) in such a way as to produce stationary
values of the cost index for different interior states and times. To accomplish that,

we cause their coeflicients to vanish:

N(tim) = M (t) + 07 550 (3.7)
oc

Therefore, equations (3.7) take the role of transversality conditions on time ¢;. As
a result, while most indirect optimal control methods based on the Euler Lagrange
equations require solving a Two-Point Boundary Value Problem, problems with
interior point constraints (as well as other types of constraints, but these cases
go beyond the scope of this thesis) require solving a Multi-Point Boundary Value
Problem.

There are inherent issues in dealing with these kinds of problems which made this

solution method, despite being mathematically sounder, unsuitable for this work:

e The costate functions A(t) as well as the Hamiltonian H(t) take arbitrary

values which have no physical meaning along the optimal trajectory.

e According to (3.7) jumps appear on these values which drive them from a

certain nonintuitive value to another one.

e It has been known to the control community since the 1960s that the Ordinary
Differential Equations derived in optimal control theory are extremely sensitive

to small variations in the initial guess |9)].

e Applying an MPC controller on such a problem would require solving the
equations at each recalculation instant, forcing us to guess valid initial values

for these two qualities repeatedly.

In order to avoid producing infeasible solutions due to erroneous guesswork,
ultimately, we chose to approach the OCP by a direct method. In direct transcription
methods, the continuous time variable is discretized over a grid and at each grid
point the continuous functions of the problem are discretized first, and then solved
via well-known static optimization techniques, such as interior point methods or

Sequential Quadratic Programming.
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3.2 Pseudospectral Optimal Control

General formulation: In the pseudospectral approximation to the optimal
control problem, the computational interval [to,?s], be it fixed or free, must be
transformed to [—1,1] to facilitate solution of the integral cost by a quadrature.

These sets are related by the affine transformation:

(tf — to)T + (tf + t[))
2

t= (3.8)

As a result, we may choose discrete nodes in 7 € [—1,1] to solve the problem
and subsequently map them to the interval ¢ € [to, ]

This way, the cost functional is reformulated as:

9 1
J(x,u,t :—/ L(x,u,7)dr
( 7) i =i/, ( )

In any pseudospectral method, both the system’s states and control variables are
approximated by a finite set of interpolating orthogonal polynomials. We choose the

Legendre Pseudospectral Method, in which the following holds:

u(r) = U(r) = ) Li(1)U(7)

=1

where L£;(7)(i = 1,...,N) is an orthogonal basis of N Lagrange polynomials
defined by:
1 (12 — 1) Py (1)

Li(r) = N(N +1)Py(13) T—T

Where Py(7) is the N'h degree Legendre polynomial.
Next, we define the collocation points of the method. The Legendre-Gauss-
Lobatto points are chosen to enable better approximation of the constraints as well

as the discretized cost index. The LGL nodes are:
® 7o = —].

e For 7, € (—1,1) the points are the roots of the derivative of the Legendre

polynomials Py (7):

e 7y =1
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along with their respective weights:

2 1
N(N +1) [Py(7:)?]

w; =

Subsequently, we perform the quadrature approximation to the cost index inte-

gral:

J(X(1),U(),1;) = - fo > L

Finally, one of the most important advantages of Pseudospectral control, is its
ability to transform the differential constraints of the problem to algebraic oven the

whole time interval through the following matrix multiplication:

X(r)=> L(nX(r)= Z DX (1;) (3.9)

=1

Where the differentiation matrix Dy, is given by:

(Pn(ri) 1 ;
Py (m) Ti—m S
—~N(N+1) g
Dy — —NN41 i=1=0
NNFD i=1=N
L0 otherwise

Having successfully transcribed the continuous OCP into the Nonlinear Program
(NLP):
b N
_ b
J(X,U,tf) = . ;:0 L(X,U)w;

subject to:

N
tr—1t

Z DuX(7;) — L 5 °F(X,U)=0 the discretized differential equations (2.6)

=0

e(Xo, Xy, to,ty) =0 discrete event constraints at initial /final times

we are able to solve it using well-known methods such as the Sequential Quadratic

Programming or the Interior Point Method.

Interior waypoint application: In order to implement the methodology of
Pseudospectral Optimal Control to our problem, we present the notion of knots.
According to this extension to the method, we split the problem in phases from
to to t; (when the system passes through the first point), from ¢; to ¢, and so

on. Therefore, the choice of LGL nodes is made in order to incorporate the notion
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of double Lobatto points i.e. two boundary points on top of one another. The
framework that has been developed allows for information exchange between the
phases (including the discontinuities inherent to our problem)

The mathematical framework of pseudospectral knotting methods can be derived
directly from the one presented above, therefore the inclusion of its equations are

omitted.

Discussion: Initially introduced in the early 2000s [10], new concepts and ap-
plications of Pseudospectral Optimal Control continue to appear in the literature.
The basic issue we faced during this thesis was the higher computational burden that
comes with the method compared to classic collocation techniques (which propagate
the states using the Euler method). However, in recent years, a number of research
groups have addressed this issue, leading to publications which propose frameworks
for better real time implementation of the method [11].

In this work, there are specific reasons we chose to solve the optimal control

problem with the Pseudospectral Optimal Control

e A powerful tool in the Pseudospectral method is the theoretical framework
supporting it. With the development of the Covector Mapping Principle [12],
the indirect continuous Hamiltonian and costate functions of the OCP are
directly related with the KK'T dual variables of the discretized problem’s NLP.
Subsequently, we are certain that the optimal solutions to the discrete problem
are equal to the continuous ones. Furthermore, the dual variables obtained by
the Pseudospectral method can be used as valid initial guesses for an indirect
method.

e The LGL grid contains nodes that are more cluttered close to the origin of the
maneuver. That way, implemented in an MPC framework, we obtain a more

accurate optimal solution for the first steps of the control horizon.

e By inspecting Eq.(3.8) we note that the interior times ¢; and final time ¢; don’t
affect the dimension of the NLP. As a result, Pseudospectral methods allow as
to extend the prediction horizon of the MPC with no cost in the computational

time.
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3.3 'Trajectory optimization results
In this section, simulated results are presented where a quadrotor is tasked to

pass through a series of waypoints.

The cost index we wish to minimize is:

J(wuty) = / "W+ () )dr

to

The importance of the particular formulation of the cost function will become ap-

parent in Chapter 4.

The quadrotor begins its maneuver from a resting state

xy=1[0,0,0,0,0, 0,0, 0,0, 0,0, 0]"

The Cartesian coordinates of the desired interior points are:

x; = [10, 10, 15]"
xy = [10, 10, 0]
xz = [13, 18, 20]7
x, = [10, 10, 15)7

Finally, the maneuver ends in the fully defined state:
x; = [10, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0]"

The optimization problem is solved using the Pseudospectral Optimal Control method,
as is implemented in the software PSOPT [13]
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Quadrotor Trajectory

Figure 3.1: 3D trajectory of the quadrotor without external disturbances by utilizing
the Pseudospectral Optimal Control method.

Hamiltonian

L

0 2 4 6 8 10 12 14
Time (s)

Figure 3.2: Optimal Hamiltonian as produced according to the Covector Mapping
Principle. It can be seen that random value jumps appear at each phase. However,

we note that %—i] is constant, in agreement with the Euler-Lagrange theory.
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Thrust Input

3 / ./
| N/

0] 2 4 6 8 10 12 14
Time (s)

Figure 3.3: Optimal thrust input.

Torque Input
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Figure 3.4: Applied torque input in the three axes of the quadrotor.
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quad:position

f X —+—
18 + Ay —<—
Z —K—
16 —
= SR ]
| | | |
6 8 10 12 14
time (s)

Figure 3.5: Optimal positions. We present the variables as produced by a run of the
Pseudospectral Optimal Controller. The asymmetric grid, finer near the Lobatto

nodes can be observed.

quad: rotation

T T T
theta —<—
psi —x—

rotation

14

time (s)

Figure 3.6: Optimal angles.



Chapter 4

Variable-Horizon Model Predictive
Control

4.1 Background

In its most general formulation a Model Predictive Control scheme is a simple
and intuitive method. It requires an explicit system model, utilized as a predictor
over a finite time prediction horizon. The MPC scheme provides an optimal input
trajectory over the horizon which, minimizing a predefined cost index for the pre-
dicted behavior of the system, guides us to a final configuration. Since the resulting
output of the system will be different from the predicted output (due to distur-
bances), MPC is solved iteratively. As a result, MPC is a closed loop controller. [14]

The mathematical formulation of the general MPC algorithm is as follows:

tk—‘er
min J(tx) :/ L(x,uw)dr

subject to:

Z(ty) = o(ty)

x(1) = f(@(7),u(r)), for 7 € [ty, tp + T})
z(ty +1,) ==y

where @ is the predicted state. Therefore, we seek at each time step ¢, to find the
input u(t), which will minimize the cost index J. The optimizations constraints force
the optimizer to use the real (measured) state at ¢ as an initial value, constrain the
system to evolve according to the predicted dynamics f(-,-) and force the state at
the end of the horizon to enter the final configuration x;.

However, this conventional formulation of MPC assumes that the final configu-

ration we wish to reach is an invariant set. Both experimental work and theoretical

23
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research holds this assumption [15], [16], [17]. In the problem we face, the interior
points we want to reach are not inside invariant sets (not being equilibrium points
of the system).

We introduce the notion of Variable-Horizon MPC(VH-MPC), where find both
the optimal control input and the optimal prediction horizon over which we must
optimize. Although a variety of problems in MPC (especially those dealing with ve-
hicle guidance) require the use of variable-horizon 18] the mathematical guarantees
are seldom derived. The first theoretical work on VH-MPC was presented in [16].
It was later extended in [19], [20]. In all cases, the authors considered Linear-MPC
(due to the access we have to the system’s state transition matrices). Inherent to
the definition of VH-MPC is the idea of completion. Since we are unable to prove
asymptotic stability of the algorithm to a non-equilibrium point, we prove that the
state will be driven to the terminal set in finite number of steps.

In the sequel, we combine the work of [21] with that of [19]. In [21], where the
authors approach the question of stability by guaranteeing recursive feasibility and
convergence of the MPC. In [19] the authors formulate a a cost index penalizing

time-to-go to the target set, as well as control effort:

ty(x(te))
min J(ty) = / (1+ y[lu(rs 2(t)]))dr

u, ty ty

The choice of this cost index is quite intuitive. Instead of penalizing the error
from the final state, we use the time it takes for the system to reach the target.
However, to avoid saturation of the actuators and to provide smoother trajectories,
we also penalize the control effort. This way, the convergence of the scheme will be
investigated based on a single variable, v, which will turn the optimization problem
more "time-optimal" or "energy-optimal".

Since our goal is to create a theoretical framework for nonlinear systems, we use
theorems from [22], where connections between the initial state of an OCP and the

final states were presented.
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4.2 Robust Nonlinear VH-MPC

4.2.1 Preliminaries

In order to perform the robustness analysis of the MPC algorithm, we also present
some properties for the general class of nonlinear systems, of which (2.6) is an
example. This kind of systems can be expressed by the following ordinary differential

vector equation:

x = f(x,u) (4.2)

where & denotes the system’s state and w the control input. These variables belong

to subsets of R™ and R™ respectively:

re X CR"
ueUCR™

where, in the case of the quadrotor, n = 12 and m = 4.

Equation (4.2) describes the nominal system, in which no stochastic behavior is
considered. Assuming additive disturbances, we also define the real system described
by the equation:

T = f(x,u) +w(t) (4.3)
where w € W denotes the unknown disturbance acting on the system which belongs
to the bounded set W C R". Henceforth, we denote by &(tj.;|tx) the vector of

predicted state of the system at time ;. ;, based on the measurement of the system

at time tj, applying a control profile u(t) on the nominal model:

B(teeslt) = (te) + / " @, w)dr (4.4)

tr

It is obvious that &(tx|ty) = x(t;). We also denote as x(tj;) the real state of the

system at time ¢, ;, applying the same control profile u(¢) on the real model:

olti) =alte) + [ (Few) +w(r)ir (45)

tr

4.2.2 Definitions

In this subsection, assumptions regarding the system as well as definitions of
some basic notions are presented:

Assumption 1: f is locally Lipschitz in X i.e., there is a positive constant
L; < oo, such that for every u € U, ||f(x1,u) — f(x2,u)|| < Ly|jx; — 22|, and
there is a constant 0 < M < oo, such that for every uw € U, ||f(x,u)| < M.
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Definition 1: Given a system subject to (4.3), we define its reachable target set

A(zy), starting from state x,, after some time period s, as:
Axg) ={z: z(s) € R(s : ) N X4}

where X, is some predefined terminal target set and for every xy € R™ and s > #:
R(s;xg) = {x(s), z(-) is a trajectory of the system on [to, s|, z(ty) = o}

Definition 2: Given two compact sets P and Q, the Hausdorff distance H(P, Q)
is defined as [23]:

H(P,Q) = max{H"(P,Q), H"(Q,P)} (4.6a)
HY"(P,Q)=inf{a>0;PC Q+a-B} (4.6b)
sup inf d(x,y)

reX WEY

sup inf d{z, y)
yey @ =X

Figure 4.1: Geometric representation of the Hausdorff distance for two sets in R2.
The Hausdorff distance is the longest distance you can be forced to travel by an
adversary who chooses a point in one of the two sets, from where you then must

travel to the other set.

Lemma 1: Given two initial states @, ' € R", the following Lipschitz property
of the reachable sets holds:

H(A(z),A(z")) < Ly|le — 2| (4.7)

Proof: See proof of Theorem 2.1 in [22].

Lemma 2: Considering a system measurement at time t, as well as an upper
bound on the norm of the admissible uncertainties W, ie.: YVw € W |[|Jw| < W
then, for a given control profile u(t), the difference between the predicted state based

on the nominal model and the real system at some time ;.1 > t;, is bounded by:

. W -
[@(trs1) = Z(trralte) || < L—f(eLf (=t — 1) (4.8)
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Proof: Formulating the difference between the real and the predicted state, we

get:

Jo(tin) - altunti)| = o)+ [ (f(o,w) +w(r)ir

tg
~at) - [ rlawar]
- [ o)+ wmar - [ @ wr

o /tktm(f(w, W~ s [ wiry|

lk

Utilizing the triangle inequality and the Lipschitz property of the system:

[ (trs1) — @ (Eesa|te)

tk+1 A tet1
<] / f(@w) — f(@u)dr]| + | / w(r)dr|
ty

< / @) - f@w)dr + / " w()ldr

tet1 tet1
g/ Ly - a(r) — &(7)]|dr + Wdr

173 tg

tk+1
= [ et = @+ W = 1)
12

Therefore, we have reached the following inequality:

tet1
[ (trr1) = & (Eera [t S/ Ly |le(r) — @(7)||dr

ty

+ W (b — b))

Applying the Gronwall-Bellman inequality, we get:

tet1
”w(tk"‘l) o i(tk+1|tk)|| S/ Lf ) w(T - tk;)eLf'(tk-v—l—T)dT
122

+ W (tkgr — tr)

Integrating by parts the right-hand side integral, we get:
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w

) W,
| (tir1) — (tera|te)] < L_eLf (tes1—7) _ =
I f

+ Wtk — tr) = Wtk — 1)

|14
=@ (ter1) — T(tera[tr)[] < L—(eLf'(t’““_t’“) —1)
f

which completes the proof.

As is usual in MPC frameworks, the proof of stability consists of two separate
parts. First, a feasibility analysis is presented through which we obtain an upper
bound on the admissible disturbances. Then, based on these results, a convergence
analysis provides guarantees on stability or ultimate boundedness [21], [15]. It should
be noted that in order to prove stability in MPC, the target set is required to be
invariant. However, since this is not our case, only finite time completion of the

problem, is provable [24], [19].

4.2.2.1 Feasibility

In this section the following argument is presented: Given a solution of the OCP
at some triggering instance t;, it is possible to calculate the maximum deviation
from the final target under bounded disturbances for the next triggering instance
tx+1. Therefore, by specifying the tolerance area around the target, the upper bound
on the admissible disturbances may be derived.

Consider the real system (4.3) of the unmanned quadrotor. The Nonlinear Model
Predictive Controller of Chapter 3 guides the system to a desired final state, if the

disturbances are bounded by:

L
W< ﬁ(eL’"'& —1)7p (4.9)

where p to be a positive predefined tolerance.

Proof: Consider the solution of the optimization process of Chapter 3 at some
time t;, i.e., the control profile w*(7; x(t;)) and the optimal final time ¢} (2(t;)) which
guides the nominal system from an initial measured state x(¢x) to the desired final
state &;. We predict the nominal state at the next calculation instant ¢, = t; + dt.
This state belongs to the nominal optimal trajectory as described in (4.4). The
nominal system’s remaining time to reach the target, beginning at tx,; is tyem =
t5(x(tr)) — dt. Due to the disturbances, the measured state of the system will be
according to (4.5).

We know that for s = t,¢,, for (4.7) the following holds:

A@(tpr1]tr)) = Al(tr)) = x4
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meaning that the reachable target set at time t; is a singleton containing the way-
point, while:
A(x(tin)) = Xa

where X is an extended set around ;. These equalities mean that even if the real
system cannot be guided to the target state the way the nominal can, it could utilize
the remaining time to approach it. In order to ensure that the distance between Xy

and x4 is smaller that the tolerance p:

H(Xd, md) < p =
H(A@(tr1)), A2 (trsaltr)) < p

Due to Lemma 1:
= Lyllz(tii1) — (trlte)|l < p

And ultimately, utilizing Lemma 2:

= LHK<€L’C.& — 1) < p
Ly

= W S ﬂ(eLf«St _ 1)—1 - p
Ly

which completes the proof.
Remark 1: During the proof of feasibility, the system was given a horizon of
trem = t3(®(tx)) — 0t to approach the target. If there exists an upper bound on the

horizon t*

max? max?

and t3(x(tr)) < t,4,, then the system can perform a longer maneuver
to get closer to the target. This fact makes our analysis stricter but creates no

problems on our proofs.

4.2.2.2 Convergence

In order to prove convergence of the algorithm, a Lyapunov function must be
shown to decrease. Following previous work on MPC stability analysis, it is proven
that for two consecutive triggers of the OCP, the optimal cost decreases as long
as the parameter ~ is within a previously calculated range. By bounding this pa-
rameter, the controller is permitted to apply enough control effort to overcome the
disturbances, without leading to excessive energy consumption or overly aggressive
maneuvers. First, the following lemma is presented:

Lemma 3: The optimal final time when optimizing the same cost function is

Lipschitz with respect to the initial state, with Lipschitz constant L;.
Ht}(m) — t’}(az')H < Li ||z — | (4.10)

Proof: See the proof of Theorem 3.1 in [22].
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We note that the optimal control profile as well as the optimal final time depend

solely on the initial state.

Consider the real system (4.3) of the unmanned quadrotor. The Nonlinear Model
Predictive Controller under admissible disturbances, guides the system to its target
set in finite time if:

Li/Lyp+ Ly - M - 6t

SUpHU” ’ t:’baw

Proof: Consider J*(t), the optimal cost, as a candidate Lyapunov-like function.
we wish to choose the variable v such that the cost to reach the target decreases
between two consecutive triggering instances. Practically, we wish to shift the weight
towards time-optimal solutions (rather that energy-optimal), so as to let the system
use enough control effort to account for the disturbances. Take the optimal cost

from initial time ¢, along with its corresponding initial measured state x(t;):

v (@(t))
re= [ W e s

tr

Obviously, at the next calculation instant ¢y, = t; + dt, the cost is:

(@ (tht1))
eﬂmﬁ>:/ (147 - [ (73 (trsn)) )
t

k+1

where, @ (tx1) can be derived if we apply the optimal control u*(7) to (4.5). To
simplify the notation, the dependency on running time 7 will be dropped unless

explicitly needed. Consider the difference between the optimal costs above:

(@ (ter1))
faﬂn—J%mwzj‘ (14 - [ (@) )dr

tkt1

£ (@(th) )
- [T e s
t

k

(@ (tey1))
:/ (147 - |u(@(tesr))|)dr

trt+1

5 ((t)) )
—/' (147 [ (e(t) ) dr
t

k+1

_ / Hl(l + - |l (2 (t)) ) dr

ty

Since any part of the cost function is positive, we may bound the equation above as



4.2 Robust Nonlinear VH-MPC 31

such:
5 (@(tr+1))
f@Hn—Jﬂm>s/’ (147 - [ @ (b)) dr
41
£ (@(t)
—/' (14 - (@ (t)) ) dr
tri1
5 (@ (te+1))
=¢@mﬂ»—mﬂ+v[ e (i) 1dr
k+1

1 (@(t)
-%ﬂﬂm»+mﬂ—7/ i ((t0)) | dr

trt1

= J* (1) = J*(t) < (@ (b)) — 5 (@)

£ (@ (th41)) 5 (@ (1)
s [ wetelar - [T @@l

tht1 tr41
Since we assume that the control input is bounded, i.e. u € U, it is correct to use
the following inequality:
infllull < ull < supllul]

Therefore we may further bound the cost difference:

T (trr1) — I (tr) < tp(2(thyr)) — 5 (te)
+ll (supllwll - 7 (2 (thi1)) — infllull - 13 (2(ir)
—tiea(supllull —infllul)]])
= S (terr) = J7(t) < tp(@(ter)) — 5 (tk)
+7 (supllull - th(@(tesr)) — infllull - th(z(t))
We may assume that inf|lu|| = 0 and also that there is an upper bound to the

*
max*

T (ten) = J*(t) < (@ (b)) — (@) + 3 (supllul] - £,)  (411)
In order to prove convergence, we require that (4.11) is non-positive:

tr(@(thi1)) — tp(@(te)) + 7 (suplle] - £,4,) <0
t7 (@ () — 13 (@ (tri1))

time-to-go/horizon ¢

=7 <
supllull - £},
Given that v > 0:
£y (@ (t)) — t7(2(trya))
Il < :
SupHu” Uz
tr(®(te)) =t (@(trs))
S iy < 1 i@l
Sup”’l.b“ “Unaz
_ i @t) - )|
supllul] - 5,4,
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Using Lemma 3 we obtain:

Lyl (o) — (te) |

SUp”’LLH ’ t;{rmm

Iyl < (4.12)

where x(t41) denotes the measured state at t;,1. Consider the predicted state at

the same time, under the optimal control w*(x(t)), which is:

B(tpalty) = 2(t) + / " e (w(t)dr

123

= a(t) = @ltenltd) ~ [ @ (@lt)dr

ty
So, we construct the state difference:
tet1
©(ter1) — 2(tr) = @(ter1) — T(tpra|te) + / f (@, u(x(ty)))dr
173

Taking the norm of the above expression, using the triangle inequality, as well as

the lemma 2, we get:
[ (ter1) — ()] < l2(trin) — (i te)]

T / " e @(t))dr]

%4
= |l&(te+1) — ()] < L—(eLf(t’““_t’“) —1)
f
tet1
[ e alte)) i
7%
By utilizing Assumption 1:
17,74 tr4+1
| (trs1) — (t) ]| < ("Bt — 1) +/ | M||dr
Lf tr
W Lttty
= |l&(tes1) — ()] < L—f(e FaT — 1)+ M - (tg1 — ) (4.13)

Using (4.13) in (4.12), we get:
Lt(L—V[;(eLf‘” — 1)+ M - 6t)

supllull - £},

S

Finally, taking into account Theorem 1:

Li/Lyp+ Ly - M - 6t

supllull - £},

which completes the proof.
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4.3 Comparative Results

The following cases will be analyzed and compared. First, a comparison be-
tween the behavior of the system when a classical fixed-horizon MPC and when
the proposed Variable-Horizon MPC are utilized under the same conditions. Then,
considering the Variable-Horizon Controller, a comparative study is presented for
different magnitudes of disturbance in order to validate Theorem 1. Ultimately, the
validity of Theorem 2 is illustrated through a case in which different values of the

constant v are considered.

Case A: Fixed and Variable Horizon

First, we examine a fixed-horizon MPC scheme. It is shown in Fig.4.2 that the
quadrotor is unable to reach even the first waypoint in finite time. Employing the
proposed Variable-Horizon MPC of this paper leads the quadrotor successfully to
the first waypoint (see Fig.4.3). Therefore, even in the absence of additive external
disturbances the fixed-horizon MPC fails to converge to the target.

In order to better examine the effects of the various parameters, the following
graphs consider the first part of the trajectory, i.e. from the initial resting position

to the first waypoint, which is a non-invariant target.

Case B: VH-MPC under disturbances of different magnitude

Consider the Variable-Horizon case, in which additive disturbances are taken into
account. The derivation of the various Lipschitz constants through mathematical
theorems and simulation results is omitted due to space limitations. In accordance
to Theorem 1, p = 0.5, and 6t = 0.1sec. The upper bound is found to be W = 4.5.
It can be seen in Fig.4.4 that applying a greater disturbance, W = 6 leads the
system to infeasibility. On the other hand, applying a disturbance of W = 3.5, the

algorithm produces feasible trajectories (see Fig.4.5)

Case C: Feasible VH-MPC with different values of v

Finally, applying a feasible disturbance, it becomes apparent from Fig.4.6 that
for larger v than Theorem 2 predicts the quadrotor fails to converge to the target. On
the contrary, shifting the weight towards time-optimality, the control input becomes
large enough to steer the system to the desired state (see Fig.4.7). The simulations
agree with the theoretical bound of v = 10~*. The derivation procedure of bound

M 1is omitted due to size limitations.
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Position errors fixed-horizon
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Figure 4.2: Position error when a fixed-horizon MPC is employed. In order for the
trajectory towards the target to end at a predefined horizon, the system reduces

its speed and hovers in place unable to complete the maneuver and reach the first
waypoint.
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Position errors variable-horizon
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Figure 4.3: Position error with respect to the first desired waypoint employing

the proposed variable-horizon MPC of this work. Under the proposed scheme, the

system is lead successfully to the first desired waypoint.
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Position errors W=6
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Figure 4.4: Position error with a disturbance greater than the computed theoretical
bound according to Theorem 1. The optimizer is unable to find a feasible solution

to the problem, and the algorithm fails to guide the quadrotor to the target.
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Position errors W=3.5
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Figure 4.5: Position error with a disturbance smaller that the theoretical bound.

The system is kept within a feasible region and the algorithm is able to guide the

quadrotor to the target.
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Position errors =1

15 ]
—
—N— error
\/></ A _y error
—Z
—" error
—~— /J\/
E \
w
0 \
C
o
.“§
)
\\/’__
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

Figure 4.6: Position error when the optimization is equal parts energy-optimal and
time-optimal. Although the optimization algorithm is able to produce feasible opti-
mal trajectories, the disturbances prevent the system from reaching the target, i.e.

the optimal cost is non-decreasing at each step.
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Figure 4.7: Position error when the optimization is primarily time-optimal. The

control effort produced by the optimization algorithm is enough to surpass the dis-

turbance and guide the quadrotor to the target. Consequently, the optimal cost is

decreasing at each step.






Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we investigated the problem of traversing a series of points in the
Cartesian space for a quadrotor UAV. Our work focused in two research directions.
Initially, we focused on the problem of trajectory optimization. Given the kinemat-
ic/dynamic model of the vehicle, we utilized theorems from optimal control to derive
the first order conditions that describe the solution. Due to issues inherent to the
classic formulation of optimal control problems, we turned to the newer framework
of Pseudospectral Optimal Control. This way, we presented the solution to the
original problem.

Subsequently, our focus shifted to the closed loop implementation of the opti-
mizer, which would enable us to account for external disturbances encountered in
real life applications. In that respect, the framework of Model Predictive Control
was chosen. After extensive literature review, it became apparent that there were
gaps in the mathematical foundation of MPC. While experimental work in the usage
of MPC schemes to vehicle maneuvering problems-problems where our goal is not to
regulate a system around an equilibrium point, but rather to guide it to some set-
has been presented before, feasibility, convergence and robustness guarantees have
been provided only for linear systems. As a result, manual tuning of the different
gains in the optimal cost was necessary. In this work, we provide bounds on the
admissible disturbances as well as on a single parameter that guarantees completion

of the problem.

41
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5.2 Future Work

The work conducted in this thesis could be extended in a number of different
directions. First of all, the framework of Pseudospectral Optimal Control is to this
day a very active field in trajectory optimization and optimal control. Computa-
tional improvements on the optimizer, which may include the use of intermediate
sub-optimal solutions, the combination of indirect and direct methods etc, could
decrease the computational burden of the method dramatically.

Further research in Variable-Horizon Model Predictive Control could lead to
improvements on the completion guarantees, allowing us to consider more general
terminal constraints. Also, via the use of reachability theorems, we could include ob-
stacles in the paths. Additionally, better approximations on the different constants
of the system used in the theorems developed here, could lead to easier computation
of the various sets. Furthermore, upon completing a working framework of guaran-
tees for the VH-MPC, combining it with the work on Event Triggered MPC would
be straightforward.

Another extension to the problem would be to allow for the sequence of interior
points to be subject to optimization. Preliminary research we conducted in that di-
rection pointed us towards the formulation of Mixed Integer Nonlinear Programming

problems, or approximations via Motorized Travelling Salesman paradigms.
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