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Abstract

Robotics field, and especially the one of articulated biomimetic robots, is one of the most
rapidly developing scientific fields, in which one is always required to test new ideas. For that
purpose, specialized setups are created where the designer can individually test various leg
configurations but also different control systems or controllers. Those setups are called
monopod robots and this thesis regards the one installed in our laboratory.

Since progress on the field is fast, both in the hardware and the software subcategories,
there is a need to adapt in recent developments equally fast.

This of course requires swift and easy renewal and replacement of structural elements,
parts and codes, standardization of the most frequently used and fundamental functions, as
well as their decoupling from each programmer and setup, leading to interchangeability
between, for example, different controllers, but also their recycling and reusal in different
versions of the robot. This task is to be carried out by the upcoming software platform ROS,
which was incorporated both in the monopod and the lab’s treadmill.

After the control system’s creation, there comes a need to somehow test its function, the
tools it offers and its various parameters, since the most popular simulation tools, like Matlab,
are not ideal for this purpose. This problem is resolved with the introduction of Gazebo, a
simulation software with the capability to interact with ROS, but also with various secondary
incorporated useful tools and libraries.

For the execution of simple tasks, like the position control of a motor, and considering
what we mentioned before about standardizing procedures, there was an evaluation of the
available options and resources that ROS provides, and specifically the ros pid and
ros_control packages. There is also a brief reference of the path planning capabilities that are
available.

Finally, in the frame of the general experimental leg testing setup renewal, there was a
transition from the first leg design, based on the classic SLIP model with one revolute hip joint
and a prismatic knee, to a second biomimetic articulated leg with two revolute joints, according
to a new innovative method conceived in our lab. In this thesis we will provide some basic

mechanical design concepts and ideas.






MepiAnyn

O Topéag TNG POUTIOTIKNG, KOI TTIO CUYKEKPIPEVA TWV ApOpWTWV PBIOUINNTIKWY POUTTOT cival
£Vag €K TWV TaXUTEPA AVOTITUCOOPEVWY, OTOV OTTOI0 KAVEIG Eival UTTOXPEWNEVOS OUVEXWG VA
ookiuadel véeg 16€ec. MNa 1o okoTTd autd dnuioupyouvTal dIATALEIC OTIG OTTOIEG O OXESIOOTAG
MTTOPEI VO OOKIUAOEI EPMOVWHEVD BIAPOPES HOPPES TTOBIWV AAAG Kail DIAPOPETIKA CUCTHHATA
eAéyxou. O1 dlaTagels autég ovopdaldovTal JovoTToda pouTIOT Kal N £pyacia auti agopd To
MoVvOTTO80 TO OTTOIO €ival EYKATEGTNUEVO OTO EPYACTHPIO UAG.

Eg@ocov n 1mpdodog GTo XwpPo Eival aAuaTtwong, TO00 OTOV TOPED TWV UAIKOTEXVIKWV
olatagewyv (hardware) 6o kai Aoyiouikou (software), dnuioupyeital dueca n avaykn ypriyopns
TIPOCGAPUOYNG OTIG OIAPOPES eEENIEEIC.

AuTO QuUOIKA TTPOUTTOBETEl ypriyopn Kal €UKOAN avavéwaon Kal avrikatdotaon OOMIKWYV
OTOIXEIWV KAl KWiIKwy, TUTTOTTOINCN TwV TTI0 ouvnBIopévwy Kal BAacIKwy dIadIKaoIwyY Kal
QTTEMTTAOKN TOUG OTTO TOV €KAOTOTE TTPOYPAMUATIOTH] KAl €YKATACTOON, OdNywvTag o€
EVOAQGINOTNTA  PETAEU, yIa  TTOPASEIYUA,  OIAQOPETIKWY  €AEYKTWY, OANG  Kal
ETTAVOXPNOIKUOTTOINGCT TOUG 0€ SIOPOPETIKEG EKDOXEG KAl EKDOTEIG TNG EYKATAOTACNG - POMTIOT.
To £pyo auTo £€pxeTal va eTTITEAECEI N AVEPXOPEVN TTAATQOPHA avaTITuENG AoyiouikoUu ROS, n
OTTOi0 EVOWMOTWVETAI TOOO OTO POVOTIOO0 POUTTOT OCO0 Kal OTOV KUAIOUEVO BIAdPOouo Tou
gEpyaoTnpiou.

Metd Tnv dnuioupyia evog cuoTAuaTog eAéyxou oto ROS, dnuioupyeital kaTeuBeiav n
avAaykn auTtd va dOKIPMOOTE], KABWG KAl Ta EpYAAEia TTou TTPOCPEPEI Kal 01 BIAQOPOI TTAPAPETPOI
Tou. Ta ouvndn TTPoypPAUPATA TTOU XPNOIUOTIOIOUVTAI OTNV TTAEIOWN@ia TwV TTEPITITWOEWY,
m.X. Matlab, ev Trpoc@épovTal yia auTtd To oKoTTo. To TTPORANUa £pxeTal va AUGEI TO AOYIGUIKO
TTpooopoiwong Gazebo, ye duvaTdTNTa EVOWUATWONG KAl ouvepyaaiag uE To ROS, aAAd kai
pE B1dpopeg XPNoIPES BonBNnTIKEG AsiToupyieg Kal BIBAIOBNAKEG.

MNa TNV emTéAEON BOOIKWY EPYACIWYV, OTTWG Yia TTapAdelyua Tov €Aeyxo B€ong evog
KIVNTAPQ, Kal e BACN QUTA TTOU QvVA@EPAME TTPIV yIa TNV TUTTOTTOINGN €PYACIWY, YiveTal
dlepelivnon Twv O1aB€CINWY ETTIAOYWYV KAl BUVOTOTATWY TTou pag Trapéxel To ROS, kail o
OUYKEKPIYEVA Ta TTAKETA ros_control kal ros_pid. [ivetal €TTiong pia cuvToun avagopd oTn
duvaTOTNTA YIA EVOWUATWOTN OXEDIAOHOU TPOXIAG.

TéNog, oTa TTAQiCIO TNG YEVIKOTEPNG aAvavéwong TNG TTEIPAMATIKNAG OIdTagnNg dOKIUAG
TOdIWYV, TTEPVANE OTO EPYACTAPIO aTTO TO TTPWTO OTAdIO TTOdIOU Baciopévo oTo KAaoIké SLIP
MOVTENO, diag TTEPIOTPOQIKAG GpBpwong oTo yoPd Kal TIPICHOTIKOU yovdTtou, O¢ €va
TEPIOTOTEPO BIOMIUNTIKG apBpwTd TTOdI dUO TTEPIOTPOPIKWY APBPWOEwWY, CUPNPWVA HE VEQ
KaIvoTOuo HEBOSO uTTOAOYIoHOU TTPOEPXOMEVN OTTO TO EPYACTHPIO PJOG. ZTA TTAQICIA QUTAG TNG

epyaciag 8a 600oUv KATTOIO OTOIXEIA YIa TOV UNXAVOAOYIKO OXeBIOONO Kal dIdTagn.
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Preface — Acknowledgements

For anyone relative to the field of legged robots, it is clear that a monopod robot can be used
as the basic test unit for a multi legged robot, e.g. a quadruped. It is a very reliable and safe
way to test leg properties, various leg configurations and control algorithms, as there is no
need for the researcher to deal with leg coordination and body balance. One can instead focus
on dynamics and control issues.

To this day, there have been two monopod versions in our lab. The first, featuring a PC-
104 and Linux OS, managed to function properly [8]and a dynamic hopping experiment was
conducted. In the second updated version the PC-104 was replaced by a Beaglebone and a
new set of electronics [32]. Unfortunately that second version never operated the way it should
have. That was partly because after the first successful attempt, same codes for same
functions had to be rewritten for the new computational system and the work that was actually
recycled was next to zero. Same holds for simulations and models that were created for both
versions. Therefore, the actual purpose was to start building on a new solid basis, upon which
other researchers and lab members could continue building, add features, utilize them on
other applications and generally benefit from, and not rediscover the wheel every single time
on the beginning of a new project.

To this end, a software platform that can provide said basis was tested and incorporated
on the experimental setup. Robot Operating System (ROS) is a generic platform that offers
various libraries and tools that promote code distribution, standardization and recycle. This
software is rapidly gaining ground in terms of popularity, so its utilization was somewhat
imposed. However there still exists a necessity to test the control systems we create in ROS,
but also to simulate the physical setup. Gazebo, the simulation platform in which our system
was modeled and tested, allows for simulating the robot’s behavior using the exact same
control system that will be used on the actual hardware, making the transition between
simulation and experiment as easy as the push of a button. It is exactly this capability to
connect with ROS that led to its utilization.

Finally, after properly redesigning the software aspect, and where it was required the
electronics, a new articulated biomimetic leg was designed. Segment lengths will be defined
later using the new leg design method for performance running. As it is a work in progress, a
diploma thesis of another lab member, we shall not mention any details and we will deal with
a modular joint design instead.

At this point | would like to thank professor E. Papadopoulos for the guidance throughout
this whole process, but also for his trust and the opportunity he offered me to work on the

highest level possible. Next, everyone else that contributed to this work. PhD candidates K.



Koutsoukis and K. Machairas for the general support, advice, useful ideas and most of all
patience, Phd candidate T. Mastrogeorgiou for his assistance in software debugging and K.
Assimakopoulos for the support in electronics. Finally, every member of the legged lab for

making those long hours seem less long and tiresome with the amazing atmosphere they

created.
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1 Introduction

1.1 Motivation and objectives
The field of legged robotics is only showing recent development, expanding on the last four

decades. Our demands increase as technology advances. For example, no one could have
considered planet exploration using a legged robot a viable option twenty years ago, although
it could have been a distant objective. Wheeled robots were, and still are, simple to build and
easy to control, and as such they represented the only option for mobile robot applications, no
matter what their deficiencies were, e.g. limited ability to move on rough terrains and slopes,
overcome obstacles. Such areas are hardly accessible by wheeled robots, as there is a large
possibility for them to get stuck, damage their-perhaps sensible- surroundings or even
damage themselves.

On the other hand, a legged robot can selectively define its gait and its foot placement to
maintain its balance, avoid sensitive or dangerous terrain areas, jump over obstacles or holes
and even develop high velocities, should that be required. Also the torso’s motion is uncoupled
of the leg motion, in contrast with a simple wheeled robot. This could prove to be useful in
cases of movement in uneven terrain, where the cargo, perhaps a sensory system or a
camera, has to remain steady while the robot is moving.

The above however, remained a distant dream, up until recently when the accumulated
know-how started showing reliable results. In any case, and since challenges and
requirements continuously arise, new concepts and ideas need to be tested and evaluated
constantly. Of course these experiments cannot be exacted on a functional robot or with all
the legs installed. For example, constructing four experimental legs and testing them in an
actual quadruped would be extremely costly, in terms both of time and money. To this end,
experimental setups are created where the researcher can modify a single leg, hence the
name monopod robots, and test mechanical properties, different configurations and control
algorithms, undistracted by coordination and balancing issues.

This thesis’ main purpose is to update the monopod robot of the CSL with the latest
development in software, the Robot Operating System (ROS). ROS is a platform for software
development that promotes code recycling from version to version, standardization of
processes and, most importantly, code sharing between different developers who share this
common basis.

To test and simulate the behavior of the system, the developer needs not only to solve
the usual dynamic equations but integrate elements such as communication between different
components, sampling rates, etc. For these purposes, the simulation software platform
Gazebo is preferred. A model of the monopod robot was created and the same control system

that would be applied to the real robot. This way the total system is simulated instead of just
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the dynamic behavior, without having to derive any dynamic equations, by defining only the
geometry and physical properties.

Finally, in the context of total renovation of the experimental setup, and in order to move
towards a more biomimetic design, a new articulated leg had to be designed. This leg, with
revolute hip and knee joints, resembles nature and can realize the design theory developed

in our lab concerning the optimization of segment lengths for various gaits or tasks.

1.2 Literature review
As was already mentioned, monopod robots are the most fundamental testing units for legs

and control algorithms that will later be adapted in multi legged robots. This is why there are
many recorded cases of such robots, both during the first years of legged robotics field
development, but also recently.

While browsing through the literature, what is really noticeable is the significant
guantitative difference between the several control strategies, algorithms and methods, and
the number of successful experiments with those techniques as well as the number of
functional monopods. Whereas there are many different control theories (e.g. [25], [5], [27]),
including our own lab’s work ([7], [31]) on controlling a 3 DOF monopod and its motion on
rough compliant terrains, no experimental confirmation is mentioned. Of course those
concepts are quite hard to implement themselves; it only gets more difficult when software
and hardware debugging issues are included. The existence of a fully functional, efficient and
reliant experiment platform is priceless for such purposes.

There are of course some examples of such functional setups. MIT’s 3D hopper machine
with a prismatic actuated knee joint [23] based on the SLIP model, is one of the most
important; the ARL Monopod versions | and Il [1] being quite similar. This model considers the
leg as an inverted pendulum while the foot is in contact with the ground (stance phase). Based
on this model, a large variety of controllers is developed; also quadruped robots featuring such
legs ([24], [8]). After a while, leg design leaned towards more biomimetic shapes, like the MIT's
Monopod [43]. This robot uses a boom link to connect to a fixed base, a method that we also
employed for our lab’s first single-legged robot [8]. Other examples include the Kenken single-
legged hopping robot [14], which is hydraulically actuated and articulated, the Uniroo [33],
motivated by kangaroo’s locomotion, the JennaHopper [26], and the leg of the biped Sugoi-
Neco, described in [19] and tested in [28]. Moving towards more recent attempts, the OSU’s
ATRIAS biped has its own monopod design. For its successor Cassie, by Agility Robotics [44],
there also seems to be a one-legged module on an introductory video, although the project is
still new and few details are available. We shall discuss this leg design and a few others in
Chapter 5.
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1.3 Thesis outline
This thesis is comprised of six chapters. In the first introductory chapter, a brief discussion is

presented on the motivation and the target of this work. There is also a presentation of the
various leg experimental setups available in the literature. Finally the thesis’ structure is
presented.

Chapter 2 introduces the various software platforms that were used. At first, we present
ROS, along with its advantages. A description is given of its basic tools and structure, as well
as a mention to some of its more advanced capabilities. The simulation software Gazebo is
also presented and described. There is also a mention of the path planning software Moveit!.

In Chapter 3, our lab’s monopod robot is presented. Its previous design, as well as the
problems associated with it are mentioned. Then we proceed with the work that was done,
including the redesign of the electronic subsystem, the design of the ROS nodes, as well as
the modeling in Gazebo and the simulations. Finally, the experiments that were conducted to
verify the setup’s functionality are described. For those experiments, we describe and define
the most fundamental experimental and simulation parameters.

In Chapter 4, we repeat the work that was done for the monopod for the case of the lab’s
treadmill. Redesign of the whole electronic subsystem, ROS structure and velocity control
experiments are described in detail.

In Chapter 5, the various leg designs of many known quadruped robots are reviewed, and
an initial attempt to realize the leg segment optimization theory is being made. A first design
of the modular knee and hip joints is analytically presented and tested.

Finally in Chapter 6, we summarize the results and assess the work done. We also offer

some ideas for potential future work.
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2 ROS, Gazebo and Movelt!

2.1 Introduction to ROS
Ever since the creation of the first robotic systems, there was a big discussion concerning the

software platform that should be employed. At first, everybody was using their own custom
software and electronics, which largely complicated the software design. Codes that would be
created and used for one specific combination of central processor and motor drive, for
example, could not be transferred easily and reliably to the next design version, that might
have a different combination of said parts. As a result the code had to be rewritten, taking into
consideration the new hardware and its characteristics, something that was very time
consuming. And all that because of the lack of a more general platform that different
components would just connect and communicate with each other.

After a while, it was decided that this could continue no more, and the Robot Operating
System started developing. ROS is a platform that includes a large database of drives for
many devices and sensors, and allows easy cross communication with each other. This
removes the need for codes to handle communication issues, which is extremely time
consuming as mentioned earlier. The database is updated continuously with new elements
allowing for fast incorporation of a new part in an existing system. Also common processes,
such as position control of a motor are included and no longer have to be rewritten, but rather
only properly configured from one application to another.

Another advantage of ROS is that it is running under Linux, usually Ubuntu. This makes
it easily transportable between devices that can run Linux, like Raspberry Pi, Beagleboard
and PC-104. Again, there is no need for rewriting or even modifying codes to fit the new
environment. Also there are tools included in order to distribute conveniently the computational
load by allocating executables in different devices; ROS handles their communication. This
would be really useful in case, for example, someone wanted to build a Raspberry Pi stack
instead of using an expensive PC-104, or run the PID control loops on the robot and the rest
user interface on a central control station.

To be more precise, ROS’ main features include [35]:

I.  Friendly and easy to use messaging system. This is one of the first challenges a
developer faces while designing a new robot. ROS provides a built-in and tested
messaging system that proves to be really handy, as it manages all the
communication’s small details relieving the developer from the need to set up
communication protocols, define and refine data exchange rates and of course,
the debugging of that system. Specifically, the system that ROS is providing is an

anonymous, asynchronous publish/subscribe mechanism where there is a
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publisher and a subscriber node (ROS’ form of executable files, written either in
C++ or Python). The first one publishes information on a hamed bus over which
nodes exchange messages called topic, and the second subscribes and receives
it as published. What is interesting is that the publisher node is not aware who is
receiving the messages that it is publishing, all it does is just use a specific type
of message. After that, a topic can have multiple subscribers, practically every
node that is interested or requires the relevant information. All they have to do is
subscribe using the same type of message, removing the requirement to set up
different communication channels between distributed devices to exchange a type
of information that everyone needs. This goes both ways, as it is possible for more
than one nodes to publish information on a topic. Another direct byproduct of this
system is that it enforces developers to implement clear nodes interfaces, leading
to less complex and readable algorithms, and also promoting code reuse.
Services. The aforementioned communication system regards one way message
exchange as, like we mentioned, there is no response when publishing a message
or a report about whether it was received and accordingly processed. However in
many applications there is a necessity to send a message to a process, e.g. to
execute atask, and receive a reply to know if the execution was successful or not.
The service performs exactly that function. It uses the same messages as before,
only now there are two, one for the request and one for the reply. Specifically a
node offers a service, a second node sends to it a request to activate it, and then
awaits for a reply.

Message monitoring. The publish/subscribe messaging system allows for easy
real time monitoring using plots (rqgt tool), if the data is plottable, or simply screen
printing of published data in case of more complex messages or strings. The data
can also be easily recorded for further processing in another software, e.g. Matlab,
using the rosbag tool. We can use rosbag to record messages in a rosbag file from
any topic of our choice, for as much time as we want. This file can be replayed to
reproduce the result. For example, let's assume we have two nodes, A and B.
Node A produces series of messages published on topic C, to which Node B
subscribes and reads. If we record topic C while A publishes, we can then shut
down A, replay the rosbag file and reproduce B’s response. In other words, Node
B does not realize the difference between data coming from A or a rosbag file.
This is of course a result of the communication structure, as in both cases, all that
node B sees is a topic in which it has to subscribe, without caring about its origin.
Global Parameter Server. In most cases, ROS provides a convenient library of

configuration values available for all nodes at runtime. This way all nodes can
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Figure 2-1.

have access and modify the system’s state. It is advised to be used only for static,

non-binary data as it is not particularly fast or efficient.
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ROS messaging and service structure.

Those are only a few and most basic features ROS has to offer. Other, more advanced

options include:

Standard robot messages, like poses, transforms, various vectors, IMU sensors,
lasers, etc. It also includes message definitions for navigation applications, like
odometry, paths and maps.

Robot description language. In some packages, like ros_control, a robot
description is required in a format compatible with ROS. Of course ROS is
providing a format called Unified Robot Description Format (URDF), i.e. an XML
file in which the user defines the geometry (links, joints) and their properties
(masses, inertias), but also visuals and sensors. This format can be used to
visualize the robot and its motion in Rviz but also to simulate a controller in
Gazebo.

Robot geometry library. In cases of robots with many links and joints it is useful,
although not easy, to know every part’s position with respect to each other. This
is most significant in cases where there are many sensors and we need a
common reference frame. For those purposes, ROS provides the tf (transform)
library to allow for easy transformation of sensor data from one system to another.
Actions, an improved version of services. While with services one could request
the execution of a task and receive a response once it was completed, with
actions the user can actually monitor the task while it is being executed. For
example, we could command a robot to move from point A to point B, monitor its

whole motion and even redirect it if necessary.
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¢ Diagnostic tools for messages, command-line tools and convenient visualization
tools (Rviz and rqt) perform several tasks and facilitate the debugging process.

Last but not least, ROS is providing some limited, for now, real time tools. Real time is
becoming steadily a trend nowadays, and ROS is starting to incorporate some features, like
a real time publisher. Note that the standard version of ROS is not real time, as it is based on
Linux, which is not a real time operating system either. Therefore, there is no guarantee that
processes will be timed and executed as required. This fact creates issues in high frequency
control applications, and subsequently real time control is required.

Examples of ROS’ widespread utilization include from various hobby, homemade robots
(especially using Raspberry Pi) to industrial applications and research projects. For example
in our laboratory, both the quadruped robot Laelaps [47] and the space robot Cepheus [48]
are using ROS for motor control, path planning and navigation purposes. Specifically modified
to be used in industry applications comes ROS-Industrial, with interfaces for commonly used
end effectors, grippers, etc. There are also several software libraries for path planning and
sensor calibration.

Lately, there has also been an attempt to standardize robot components, like sensors,
actuators, processors, etc, in a way that would be ROS compatible and easily
interchangeable; even if made by different manufacturers. That would reduce the development
of a new robot configuration into a simple plug and play process, where parts would just
connect and handle their low level communication and cooperation, leaving only the high level
programming and task assignment to the human operator. Damage repair and hardware
debugging, processes as time consuming and as hard as the software debugging itself, would
greatly simplify, also. This effort was named H-ROS [36] and it is currently on its very
beginning, to be seen how and if it will be embraced by the community.

In the corresponding page [49] there are over 120 robot cases listed which use ROS. The
majority regards wheeled platforms and manipulators. There are also some legged robots,
mostly bipeds and grippers, human-like hands, and a few quadcopters.

Finally we should mention the various ROS versions. When we started working on this
project, the most stable ROS version was Indigo, paired with Gazebo 2. After a while, ROS
versions Jade (with Gazebo 5) and Kinetic (with Gazebo 7) were released. Since we seek
continuous support and maintenance for all packages, and Gazebo 7 proved to be more
convenient, we decided to proceed with the latest version, Kinetic, the tenth ROS release with
end of life estimated date in May, 2021. Jade was released on an odd numbered year (2015),

and those releases are only supported for two years instead of five.
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2.2 Gazebo simulation software
Gazebo is a simulation software for dynamic systems that specializes in robotic systems’

simulation, providing a large variety of useful tools concerning robot modelling [37]. Its close
collaboration and relation with ROS has established it as the most utilized simulation software,
with V-Rep, Webots, ADAMS, etc. following [30].

Gazebo is offering multiple advantages in robot simulation. It supports all four major
physics engines, ODE, Bullet, Simbody and DART. It has enhanced visualizing and rendering
capabilities, utilizing OGRE, an open-source graphic rendering engine. It also allows a user to
run simulations on remote servers, using TCP/IP transport. However, probably the biggest
advantage, just like in the case of ROS, is the large database of robot and sensor models that
are provided. Cameras, lasers, Kinect, Lidar and force torque sensors are just a few examples,
with the option to add noise in order to make simulation even more realistic. Same holds for
numerous custom plugins that allow users to manipulate models exactly as they wish, as its
open source nature implies. An additional advantage lies in the fact that in contrast with Adams
and Webots, it is actually free to download, and yet there is a large, continuously growing
community for support and guidance. For that purpose there is also a set of tutorials that cover
most essential terms and functions.

Its simulation capabilities are impressive. It offers the opportunity even to run fluid
dynamics simulations, although it has declared them outdated and advices to use them with
caution. Also there are hydrodynamic and aerodynamic plugins to simulate the behavior of
underwater and aerial objects. However most relevant to our case and indicative of the field’s
tendency to turn to Gazebo for reliable simulations is its excessive use in the Virtual Robotics
Challenge, a part of the larger DARPA (Defense Advanced Research Projects Agency)
Robotics Challenge (DRC). The later was a prize competition funded and organized by
DARPA to develop autonomous robots that would compete in completing several tasks in
harsh environments. The challenge included the DRC Simulator, based on Gazebo, where
each team had to perform several tasks in the same simulated environment using their
controllers applied to the same simulated robot, Boston Dynamics’ Atlas. Gazebo includes a
set of tutorials that guide the user through the manipulation of such a complex robot, its
teleoperation, as well as grasping and navigation. The Atlas robot, as well as the simulated

environment are presented in Figure 2-2.
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(a) (b)

Figure 2-2. (a) DRC simulated environment - property of DARPA [38]. Atlas had to get in
and drive the vehicle for a certain distance avoiding obstacles. (b) Atlas anthropomorphic
robot - property of Boston Dynamics.

Despite its ability to closely cooperate with ROS and the fact that they are both maintained
by OSRF (Open Source Robotics Foundation), Gazebo actually is a standalone package,
where users can build models and simulate their dynamic behavior autonomously. It is
suggested to use Linux Ubuntu, but there has been an effort to expand its usage to include
Windows. However, there is not yet full support and it is not recommended.

We previously mentioned the various plugins that are available. The one that makes
Gazebo so precious and important to ROS users is the one that allows data to flow in and out
of the simulation using ROS topics. For example revolute joint angle measurements or joint
hip torque commands are easily received and applied respectively just by using a properly
modified plugin. This of course means that the same nodes that will be utilized on the actual
hardware can be directly tested in simulation, including their cross communication system.
This is a great improvement from just writing a controller in Matlab and running a simulation
in it, which is only an approximation, as it does not include anything like node data exchange
and node loop rates, parameters that are difficult to model and test. The only thing that has to
change between a Gazebo simulation and an actual experiment with the real hardware is the
interface between the sensors and the actuators, for example instead of the plugin there must
be a node that will receive measurements and send commands.

Gazebo has integrated design capabilities. One can insert basic geometric structures
(spheres, boxes and cylinders) and define joints (prismatic, revolute, spherical, etc.). As it is
clear from the description above, designing in Gazebo is quite limited. However, there is an
exporter that can take Solidworks assemblies and translate them into SDF files, the primary
file format Gazebo uses to define models. On this exporter we can define link chains, joints
and visuals. The created models can be attached to world files. Those files contain the models

we want to simulate as well as the solver definition and various solver parameters.
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We selected to use the Gazebo 7 version, since it is the most recent version, pairs well

with ROS Kinetic, and their end of life dates are the same.

2.3 Path planning using Movelt!
Movelt! is a modern path planning tool for robotic arms, wheeled vehicles and legged robots,

with over than 65 recorded applications [39].

The main reason we experimented with path planning methods was the desire to
maximize the proportional and derivative gains of the PID control that was eventually used on
the monopod’s hip joint. When path planning is used, setpoints are sent gradually until the
desired final value, in contrast with the case of a step input. This allows for larger gains, since
the error of each loop is smaller, therefore we can reach the motor limits, which is always a
requirement, especially in such demanding applications.

Movelt! works in a similar manner with Gazebo. One has to create a model using the
URDF format. The model and its entire configuration is inserted using the incorporated Movelt!
Setup Assistant, for which there are extended tutorials and instructions. There one can define
many characteristics, like kinematic chains, end effectors, virtual joints (connections with the
environment), non actuated -passive- joints and even predefined configurations, like the home
position for manipulators.

This package comes with a plugin for Rviz. There, the user can graphically define the
initial and final desired configurations, and then either just plan and visualize motion in Rviz
or plan and execute, by sending the trajectory to the controllers in Gazebo or the actual

hardware.

Figure 2-3. Movelt! Rviz plugin interface of the PR2 robot.
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One also has other options like obstacle detection and avoidance, self-collision detection,
and checks to ensure the arm is always inside the reachable workspace.

This platform is quite new and still developing. At the time of its examination, it was not
compatible with the other parts of software, ROS Kinetic and Gazebo 7, and therefore it was
deemed wise not to incorporate it on the current single actuated monopod version, as it is

quite simple and can be handled using standard techniques and methods.
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3  Monopod design and control using ROS

3.1 Hardware setup description
The first monopod robot version that has ever been manufactured and run in our lab is the

one pictured in the Figure 3-1 below. This setup included a fixed central base that would
connect to the robot and allow for rotational motion around its axis. This connection with the
robot was established through an aluminum bar, fixed on the robot and attached with a
revolute joint on the base, thus allowing vertical hopping, additional to the previously
mentioned circular motion. On the contrary, the fixed connection between the body and the
bar would not allow pitch motion. That was necessary in order for the robot to be as close as
possible to the 2D SLIP model mentioned previously. This setup was almost made entirely of
aluminum, in order to reduce weight and inertia. However, the leg that is receiving most of the
structural and impact loads is made of steel.

Figure 3-1. Previous experimental setup.

Thanks to the bar’s large length and the relatively small size of each stride, we can easily
assume that a setup like the one we are describing is appropriate to realize the monopod’s
motion on a 2D sagittal plane, according to the SLIP model that was mentioned earlier. One
can easily find similar examples in literature. Nevertheless, no matter how long the bar is, this
setup is and will remain a close approximation that was mainly used because a structure that
could support the robot to run on a treadmill, like most modern legged robot applications, was
not yet designed and manufactured. After the construction of such a system [22], we were
able to mount the modified monopod, as we shall describe next, on the treadmill. This solution
is preferred not only because it is an accurate realization of planar 2D motion but also because
of the reduced amount of space that it requires.
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The mounting mechanism consists of two rails and wagons in the vertical (Z) direction
and a one wagon-rail in the X direction, along the treadmill. We used two rails on the Z axis,
because the rail is cylindrical and it would allow for yaw rotation. The rails were mounted on

aluminum bars to keep the system lightweight, pictured in Figure 3-2.

() (d)

Figure 3-2. Mounting mechanism. (a)-Z axis rails, (b)-Z axis wagons, (¢)-X axis rail and
wagon, (d)-final assembly.

The monopod robot’s hip joint is actuated by an electric DC current motor with an
appropriate gearhead. The motor is made by Maxon (type RE35, 90 W, maximum continuous
DC current 3.36 A, nominal voltage 24V and maximum continuous torque 0.0933 Nm). The
planetary gearhead is also made by Maxon (type GP42C) and is mounted to the motor with
reduction ratio equal to 26:1. Also, to transmit motion to the hip joint axis, a belt drive was
employed, with reduction ratio 2:1, bringing up the total ratio to 52:1.

The motor was previously driven by a DZRALTE-012L080 amplifier made by Advanced
Motion Controls (AMC). Its main advantage is its ability to provide high current in combination
with its small size and weight. Software provided by AMC allows a user to program the
amplifying gains, avoiding use of mechanical switches and potentiometers. It can also operate
in position, velocity or current mode. However, this drive was considered as too complex for
our application and thanks to massive changes occurring simultaneously at our laboratory’s
guadruped robot design, Laelaps, it was replaced by an AZBDC12A8 drive, made also by
AMC. This drive can supply the same current as the previous one, up to 6A of continuous
current and 12A intermittent (for 2 seconds), but has no need for programming. To
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successfully use it, one sends an enabling signal to the corresponding pin, provides direction
on the direction pin (HIGH or LOW) and sends a PWM signal, properly configured according
to for the desired current. By default, 100% duty cycle corresponds to 12 A, although as
mentioned this amount can only be supplied for 2 seconds (modulated by the drive itself, so
there is no need to set our own software limitation to avoid drive damage). As one can easily
deduce from above, in our application this drive simply functions in current mode.

Those drives are combined with mounting boards made in our lab for our quadruped robot
Laelaps [4]. Since two different power levels are needed on the same drive, a low one for the
control signals and a high one for the power supply, this board was designed with an
optocoupler to isolate these two levels as a safety precaution. The optocoupler requires 3.3
to 5.5V of supply at both of its sides. Therefore, the board requires three ports in total:

e A low voltage and signal input to receive enable, direction and PWM signals, as
well as 5V and GND for the optocoupler’s first side,

¢ A high voltage input (24V) to supply the motor as well as 5V for the optocoupler’s
second side.

e A motor power supply output.

Figure 3-3. AZBDC12A8 drive and mounting board.

As far as the sensory system is concerned, there are two incremental encoders, charged
with measuring the leg’s angle with the vertical axis (hip joint angle) and the spring’s
displacement (knee prismatic joint). As usual, both encoders provide three channels, A, B and
index. They produce 500 counts per revolution (CPR) with equivalent resolution of 2000 CPR
when in quadrature mode. The hip encoder is mounted on the motor, type HEDS-5540, made
by HP. The second, same model and manufacturer, is mounted on a custom 3-bar mechanism
called quasi-knee that allows to measure the prismatic joint’s displacement, pictured on Figure
3-4. Practically, this mechanism connects the fixed with the moving part of the prismatic joint
with two links connected with a revolute joint, while the encoder is mounted on its axis. The
displacement is calculated indirectly by measuring the angle between the two links, taking into

consideration the geometry. This part was present in the first setup, but the original encoder
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was replaced in order to increase the resolution (500 CPR instead of 360) and to resolve some

wiring and connectivity issues.

Figure 3-4. Quasi-knee mechanism.

Additionally, to record the body’s velocity and acceleration, an inertial measurement unit
(IMU) is employed, (ADIS16375 Analog Devices). This sensor has 3 gyroscopes and 3

accelerometers, thus it can count translational accelerations and X, Y, Z angular velocities.

Figure 3-5. ADIS16375 IMU sensor with breakout board.

To measure impact forces and torques, but also for the controller to be able to tell when
the robot is on stance or flight phase, a force sensor is needed as it is the most common and
reliable option. Impact can be determined also by measuring the spring compression, and this
is how it was actually done, before a force sensor was installed. The disadvantage of this
method is that we can only measure forces along the leg axis, so a switch to force sensor
measurements was called for. The one finally installed was a Rikudo series sensor, by BOTA
Systems. Rikudo is a miniature force/torque sensor utilizing strain gauges across all six axis.
The sensor is available pre-calibrated from the manufacturer, while the calibration matrix is
provided to be used with the accompanying software. We used the Rikudo-4243-S, which is
the standard version. Made of aerospace aluminum alloy, the sensor is rigid, strong and
lightweight enough — it weighs only 80 grams —to be placed at the toe position. Also the sensor
is ROS-ready which greatly reduces the integration to a simple plug and read process, in a
machine that can run Ubuntu, e.g. a Raspberry Pi. No other external power supply is required.
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Figure 3-6. Rikudo-4243-S force sensor.

To mount the force sensor on the toe, a 3D printed adaptor was utilized displayed on the
figure below. Also to avoid cosmetic and structural wear, a silicon hemispherical cover was

constructed, using silicon casting on a plaster mold.

- ~

Figure 3-7. Rikudo force sensor with and without the silicon cover.

3.2 Electrical and electronic subsystems

3.2.1 Previous setup
The previous electronic subsystem was using a Beagleboard-xM as a main computer. Since

this could only send and receive signals up to 1.8V, there was an additional board designed
to convert signals from 1.8 to 3.3V and vice versa. There was also a DAC, MAX517 by Maxim,
to accept a digital signal from Beagleboard and produce the voltage output required by the old
motor drive.

All the electronic elements of this setup required 5V supply. For this purpose, a voltage
regulator (LT1085, Linear Technologies) was utilized. This regulator needed a supply of its
own, a voltage above 6.5V. To summarize, the old setup required:

o 24V to supply the motor

e 5V to supply the PIC microcontrollers responsible for reading the encoders (see
Section 3.2.2), the Beagleboard and its amplifier, the DAC and the encoders

e 6.5V to supply the voltage regulator
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To make all those different voltages available but also to mount the microcontrollers and
the drive, a main board was designed and constructed; an auxiliary board to create the 5V

supply was added.

Figure 3-8. Monopod previous setup.

3.2.2 Redesign and current setup
The method with which the encoders would be read was the first decision to be made. This

selection of method subsequently affects the whole redesign of the electric and electronic
subsystems.

The older monopod version was using two Microchip PIC18F4331 microcontrollers,
capable both for reading encoders with their incorporated QEI module and for producing PWM
signals. Those microcontrollers required a 5V supply, as well as the construction of a breakout
board that would connect and redirect each pin properly.

Figure 3-9. Microchip PIC18F4331 microcontroller.
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Considering our new requirement for ROS utilization, as well as the specification for
remote control, it was desirable for the new system to have the ability to be easily accessible
and controllable from any computer on a local network that is using ROS; therefore there must
be a way to send encoder measurements to said computer. It would be unwise and
inconvenient to send A, B and | signals directly to the main computer, both because of the
fragility of the cable type the encoder uses and the noise that would be inserted, even with a
line driver and receiver. In any case, it is generally preferable to read the encoders locally and
just transmit the angle value.

To this end, an Ethernet port could prove extremely useful. However the PIC18F4331
microcontroller does not offer one. Although perhaps there was a possibility to program it to
perform this function, this solution was rejected as too complex and non-worthy of the time it
would consume, since the microcontroller market was flooding with options, offering both
enhanced incorporated Ethernet connectivity as well as augmented processing power, if in
the future a requirement would arise to perform more functions locally, e.g. low level PID motor
control.

We should clarify that probably every microcontroller with GPIO pins can read encoder
signals using interrupts. This way, the amount of encoders a board is able to read
simultaneously is only limited by the number of input pins it has. However, this method was
tested and is was found out that little by little, for a repetitive swinging leg motion, the zero
point started moving towards the sides, instead of remaining steady as it should in the vertical
position. This is probably a result of some lost counts during the motion, which in our case
was particularly fast. In cases of slower motion this phenomenon seemed to diminish or even
disappear. This method was obviously rejected and it was decided to limit our microcontroller
research to devices that offer one or multiple QEI modules.

A QEI module is an interface that accepts channels A, B and | and can calculate signed
velocity and relative position. The way it works is that it detects whether pulse A or pulse B is
leading, and defines the direction accordingly. It also offers increased resolution as from 500
CPR for channels A and B, now there are four different combinations between them, summing
up to a total of 2000 equivalent CPR. Many microcontrollers offer libraries with convenient
functions that can automatically return relative position and velocity values without any

additional user editing.
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Figure 3-10. QEI module pulse succession.
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Finally, the TM4C1294 Connected LaunchPad from Tiva C series by Texas Instruments
was selected. The Beaglebone Black, with its incorporated eQEP module, similar to QEI, was
also considered but it was deemed expensive (about 60%) and it was more powerful than
necessary just for encoder reading. The Tiva board only costs 203, it has an 120MHz 32-bit
ARM Cortex-M4 CPU, 1 MB flash memory, an Ethernet Connection and it includes one QEI
module. It also includes TivaWare, a set of useful libraries and is debugged using the Code
Composer Studio, also provided by Texas Instruments.

Figure 3-11.  Tiva C Series TM4C1294 Connected LaunchPad, Texas Instruments.

For the new design things were significantly simplified. We still need to create a 5V level
to supply the three Tiva boards (one for the knee encoder, one for the hip encoder, and one
for the IMU) and the two encoders. We also need the same 24V supply as before to power
the motor. Since it is simpler and more compact to have a single power input for the whole
system, a voltage regulator is required to convert the high voltage to low. For this purpose, a
step-down regulator or buck converter was utilized. This type of regulator offers greater power
efficiency, reaching 95%, compared to the classic linear voltage regulator, which also
generates a large amount of heat. The regulator we selected is a Polulu D24V60F5, capable
of handling currents up to 6A, more than enough to power our low power components. This
part was mounted on a board with two outputs, to the motor drive and a second board we shall
present below, and a power supply input (24V). The Regulator Board’s (RB) schematic and
final construction are presented in Figure 3-13 and Figure 3-14.

Figure 3-12.  Polulu D24V60F5 5V Step-Down Voltage Regulator.
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Figure 3-13.  RB schematic.

Figure 3-14. Constructed RB.

This voltage has to be distributed to the three Tiva boards through a Power Distribution
Board (PDB). We chose to power the encoders directly from the Tiva boards and not use the
master power board to keep the design compact and simple. The motor drive also is supplied
and enabled by a Tiva board. Of course this nullifies the advantage of isolation between the
two sides of the optocoupler as both sides will essentially have one common ground. This is
not a great issue as in the unlikely case of an accident there is nothing expensive to be
damaged, as there is on Laelaps (PC-104). Note that in our case the central computer only
communicates with the robot through a rooter and therefore its electrical isolation is

guaranteed.
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Figure 3-15. PDB schematic.
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Figure 3-16.  Constructed PDB.

To avoid using small cables and wires that would detach during impacts, but also to supply
the Tiva boards from the Boosterpack instead from the debug port, a Mounting Board (MB)
was constructed. It includes a small capacitor to normalize any voltage fluctuations as well as
a standard Ethernet adaptor and a clip adaptor for the encoder flat cable, to ensure it will stay
connected even during impacts. Its schematic, the final design and the constructed board are
presented on Figure 3-17, Figure 3-18 and Figure 3-19 respectively. The construction was

carried out using the lab’s LPKF machine.

4

T

it

E

=
“c
—
—=
=
— =
E—
R

2
Ly

k>
H

] -—l
7

Figure 3-17. Tiva MB schematic.
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Figure 3-18.  Tiva MB final design.

(a) (b)

Figure 3-19.  Constructed MB. (a) top, (b) bottom layers.

3.3 Tiva
As is already mentioned, the basic design specification shared between all robots in the lab,

and the treadmill on which they are tested, is the ability for cross communication and control
using one common control center. This process requires two different parts of code. The first
is the one that will receive commands, send measurements and handle the communications
between the robot, or treadmill, and the control center. In our case, this part shall run on the

Tiva microcontroller.
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The code utilized activates the PWM and QEI modules to perform the tasks at hand. Also
it sets up the UDP communication, which shall be discussed below. The user can easily select
what modules he wishes to enable by defining the corresponding parameters. For example,
by defining ENABLE_MOTOR and ENABLE_ETHERNET the aforementioned modules are
enabled. One can also define ENABLE IMU to enable inertial measurements and

ENABLE_UART for debugging purposes. The whole code is included in Appendix A.

3.4 ROS
This is the second part of the control system, as mentioned before. It consists of five basic

nodes, namely the Hip, Knee and IMU interfaces, Read setpoint, PID control, Botasys driver
and high level controller. All of them are included in appendix A.

a. Hip_interface node

This node is the one that is charged with communicating with the hip Tiva board. Its function
is depicted in Figure 3-20. Tiva is continuously transmitting encoder measurements on a set
rate, using the User Datagram Protocol (UDP). This protocol is preferred over the standard
Transmission Control Protocol (TCP), mostly because of its speed. In time sensitive
applications, like real time control, TCP is rather inappropriate, as it includes error checked
delivery of data streams, causing a significant delay. On the other hand, UDP has no such
capabilities. For example, whenever a message is sent there is no guarantee it will reach its
destination and no retransmission can be requested. Also there is no guarantee for ordered
delivery. For example if one sends a message A and a message B right after, the order with
which those messages will be delivered cannot be predicted in advance, although it was
noticed that in their vast majority the messages arrived in the order they were sent. For these
reasons, this protocol is faster and it is preferred when we favor speed over accuracy. In this
node, we set up an asynchronous server to receive and read packets, and we define the
board’s IP and the send and receive ports. Those ports are software structures, numbered
between (0 and 65535), and provide application multiplexing. This way the computer can tell
which data correspond to which board, because there are three of them sending data to the

same |P address.
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Figure 3-20.  Tiva— ROS connection.

The measurements are read using a sigaction function and a signal handler. Every time
the node receives an angle, this handler is triggered. The execution of the main function is
interrupted, data is read and assigned to a global variable. The execution of main is then
continued from the point it stopped.

Received data corresponds to hip angle measured in counts, relative to the initial angle
where the board was activated and started measuring. We selected the zero point to be at the
vertical position, mostly to have better visual control over the real and measured angle. For
clockwise rotation the angle would be considered positive and for counterclockwise, negative,
in order to avoid measurements with discontinuities. However this is exactly how the QEI
library works. When we move towards zero from a small positive angle, the counter will reset
and count the largest value defined on memory, which should correspond to 359 degrees. For
example, we will count 2, 1, 0 and 359 degrees, when we would actually like to count 2, 1, 0
and -1 degrees. This is represented on Figure 3-21. With black we can see the output of the
QEl library, and with red the desired output.

Figure 3-21.  Angle succession, black for the QEI output and red for the desired.
Instead of modifying the QElI library, we take care of the issue in this node. If the algorithm
detects transition from a small positive to a large positive value, e.g. from 100 to 103500

counts, and given the large sampling rate, it assumes there was a zero crossing and it
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subtracts 104000 counts (or 360 degrees) from the measurement, e.g. 359-360=-1 degrees,
or the corresponding value in counts. The same subtraction should occur when we previously
ended up with a negative value, and we keep receiving descending positive values, which
means the leg crossed zero and it keeps moving in the counterclockwise direction. This whole
conversion occurs inside the signal handler.

Next, the final angle value is published on the proper topic, usually the one named /state,
as we send measurements directly to the PID controller. There are two separate ways to
handle the publishing. The first way is to publish the measurements inside the signal handler.
This way data is published in the same rate it is received, while the main function is practically
left empty. E.g. for a Tiva transmission rate of 5 kHz, the publishing rate will be about 4.98
kHz too. This way we have direct control over the publishing frequency. However, this method
results in various crushes and program shutdowns, therefore it was not selected.

The second is to publish data inside the main function. This method however, also
presents an issue. Since the main function’s execution flow is interrupted by the signal handler,
its actual loop rate is not the one we define, but it depends on the defined rate and the rate of
interrupts, or in other words, the Tiva transmission rate. Consider Table 3-1 with some
indicative experimental values. As one can observe, as Tiva’s rate increases, the deviation

between the defined and the achieved loop rate also increases.

Table 3-1. Tiva transmission rate — control loop rate relation.
Tiva transmission | Defined loop rate | Achieved loop rate ) _
Functionality
rate (Rate_1 - Hz) (Rate_2 - Hz) (Rate_2 - Hz)
1000 <1000 Equal to defined Unstable
Works at first, ends up
1000 1000 ~995
unstable
10000 1000 ~700 Works
15000 1000 ~200 Works
15000 10000 ~1650 Works
15000 20000 ~2700 Works (Best case)
20000 - - Cannot publish values
40000 - - Cannot publish values

As we can observe, as Tiva sends measurements faster, ROS has increasingly more
trouble reaching the defined loop rate. Above 20 kHz, ROS does not even manage to publish

the measurements, in any defined loop rate.
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It is really important to define what we mean by result. Rate_1 was initially set to 5 kHz.
In the case that a step command input was applied, it was observed that the control gains
could not exceed some specific values. Generally speaking, a rise in Kd should result in less
oscillations and a smoother response. While this was happening at first, for Kd > 0.00012 the
oscillations would start to rise again. As a result we could not increase Kp above its own set
value (0.0008) because there was no way to reduce the oscillations that would cause.
Therefore the system was underperforming.

When Rate_1 was increased, e.g. to 15 kHz, we managed to increase the gain values
and reach the motor’s limits (Kp = 0.003 and Kd = 0.00024). These are the control gains that
correspond to the experiments presented in Table 3-1, and those that decide if the setup is
functional or not. So when we refer to instability, it is implied that the setup is unstable for
those specific gains, and that it could be stable for lower gains. We will discuss further the
control gains and how we can theoretically predict their values in Paragraph 3.6.2. The reason
we mention this here is to show those gains predicted in that paragraph could not be reached
for a different control loop rate. Additionally, note that what we observe is due to the set
transmission rates and not to root locus behavior. As one can observe in Figure 3-22, an
increase of Kd, for a fixed Kp, could not possibly cause any increasing oscillations and

eventually instability.

Root Locus for Increasing Kd

I I f
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Figure 3-22.  Root locus for increasing Kd value.
Finally, this node subscribes on the /control_effort topic, reads the calculated necessary

PWM duty cycle and sends it back to Tiva.

b. Knee_interface node

This node is practically the same as the previous one. The only thing changing is that the knee

board does not actuate a motor, therefore there is no need for subscription to any topic. The
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guasi-knee angle measurement is received like before only this time it has to be translated
into a length in order to be published. The compression values are published to the

/compression topic. The translation occurs as follows.

L

Figure 3-23.  Quasi-knee geometry.

We are measuring angle theta, and wish to count Ls.

L, = /L% + L2 — 2L L, cos(theta) (3-1)
and
L=yL+L (3-2)
therefore
Ly = /L + L2 —2L,L, cos(theta) — L% (3-3)

We should finally mention that there is no problem with that node’s loop rate as it does not
affect the control system’s rate in any way. Of course same things hold but, since the
measurements can be sent from the board at a lower rate, e.g. 1 kHz, we can use the rates
mentioned on the first case of Table 3-1.

c. IMU_interface

As in the two previous cases, this node receives the X, Y and Z angles and respective
accelerations, and publishes them to the /IMU_feedback topic. There was an effort to integrate
measurements in order to get the total displacement, but we found out quickly that the
accumulating error makes that almost impossible. More complex methods, and of course more
than one sensors are required to get an accurate estimation. One method that could be utilized
is sensor fusion, but there was no further investigation on the matter [20] since there were no
other sensors available.

Again, this node’s loop rate can be defined without worrying about affecting the closed
loop’s rate.
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d. Read setpoint
This node reads a desired position in counts using the rgt_reconfigure tool. It was only used
on the PID hip position control experiment, as for more complex experiments this angle is

usually defined by a high level controller.

e rat reconfigure Param - rgt

# Dynamic Reconfigure D@ - o
Filter key: [Input_Setpoint 4
Collapse all | | Expand all setpoint 500000 e————— 50000.0 | 0.0

L =

PID

Figure 3-24.  Setpoint definition in counts.

e. PID controller

This is the controller provided by the ros_pid package. It offers various tools, like dynamic
reconfigure for gains, a filter on the estimation of the derivative term, saturation limits and
easily configurable published and subscribed topics, in case we wish to rename them, or run
more than one controllers at once so hame conflicts need to be avoided. This package was
selected over the ros_control package, as the latter’s structure is significantly more complex
and for the time being it lacks documentation.

The reason we took special care of the Hip_Interface node’s loop rate is that the controller
has no loop rate of its own. It operates at the rate it receives messages or, in other words, at
the rate that the /state topic is published. This means that the /state’s topic publishing rate is
in fact the rate of the entire control loop.

The filter was also a point that needed some consideration. This is a low pass filter
designed for audio applications, with a default cut off frequency of 3 kHz. It is useful in cases
of heavy spiking behavior of the velocity estimation. However, as we shall discuss in
Paragraph 3.5, those filters also insert a phase shift. This effect was in fact verified in a Gazebo
simulation; we decided not to modify the default value without further investigation.

Finally for the gain definition this node uses the same tool we used to define the setpoint,

rqt_reconfigure.

# Dynamic Reconfigure 0@ -ox

Filter key: Ipaosition_controller

Collapse all Expand all Kp_scale scale_hundredth (0.01)

 mm—— Kp 10— 10 |03

Ki_scale scale_ten (10.0)

Kkd_scale scale_thousandth (0.001)

Kd 1.0 e— 10 |02

Figure 3-25.  PID control node gain reconfigure.
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f. Botasys driver

Except for the main nodes mentioned previously, we also use the force sensor’s driver to read
measurements. This driver comes in a ROS package that only requires building. There are
two different launch files. The first, calibration.launch, is quite self-explanatory and handles
the sensor’s calibration. The second, driver.launch, is the one that receives and publishes
measurements in /botasys topic. Because the initial measurements come with some noise,
this driver provides an integrated filter that publishes filtered data on ffiltered_botasys. Finally

there is a capability to visualize the force’s direction and magnitude using Rviz.

LeRe-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel: Zoom. Shift: More optior

Figure 3-26.  Botasys sensor force-torque vector.

g. High level controller

We used another additional node to conduct a simple dynamic hopping experiment. This node
reads the compression and angle values and consequently determines if the leg is on a flight
or a stance phase. In the first case it activates the PID controller and sends a setpoint, the
touch-down angle. During stance phase, it deactivates the controller and sends a PWM duty
cycle directly to the /control_effort topic, which corresponds to a set torque. The controller
needs to be deactivated because, since it is receiving data on /state continuously, it would
keep operating and interfere with the continuous torque command we want to apply.

The main parameters to configure in this node are the compression after which we
consider the leg is on stance phase, the touch-down angle and the torque applied on stance.
The duty cycle is also important as this is the node that drives the controller. However since
the measurements are not read here, therefore we do not have the previous delay issue, the
user can just define the loop rate in which he desires the control to be closed.

This walking mechanism, if given proper initial conditions (free fall height and translational
forward velocity), and if there were no energy losses, its passive nature would allow it to keep

moving without actuation, while on stance phase, just utilizing its initial kinetic energy.
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However when losses are added, the system becomes quite parameter sensitive and it is hard
to find the initial conditions that would lead to stable motion. Therefore it is a matter of great
significance to estimate their values, as well as the values of stance phase torque and touch-

down angle.

3.5 Simulation in Gazebo

3.5.1 System modeling

The first step towards a complete Gazebo simulation is creating a model with physical
properties. Gazebo uses SDF files to describe a model [40]. However when one wants to use
it in combination with ROS, a different type of file is used, called URDF [45]. This file is
automatically converted into SDF by Gazebo. More info can be found in [46].

This format is quite outdated and lacks several features. One of the most important and
easily observable flaws, even after the first attempt to create a model, is the lack of a spring
stiffness parameter. An approximation of elastic behavior can be achieved by using the CFM
and ERP parameters. The ERP detects joint position errors and tries to correct them by the
defined factor, e.g. a value of 0.2 corrects the error by 20%. As it is obvious, increasing the
ERP might make the joint more rigid, however it increases the numerical instability. The CFM
works in a similar fashion with velocities and allows their modification. In contrast to ERP,
increasing the CFM will soften the joint behavior and will improve stability. Those parameters

combine stiffness, damping and time step in the following formulas [41]:

ERP = tK (3-4)
tK +b
and
1
CFM = (3-5)
tK +b

where K stands for the spring stiffness, b for the damping factor and t for the time step. It is
suggested in literature that one can achieve an accurate representation of a spring and
damper system simulated with implicit first order integration. However every time we modify
the time step, these parameters also need to be adjusted properly, therefore their utilization
is not suggested, except maybe in the case one wants to model a soft stop.

The aforementioned hold when one wants to insert a model through ROS, according to
the corresponding tutorial on the Gazebo page about connection with ROS, model actuation
and control using the ros_control package [42]. However we have already selected to control

the hip joint position with the ros_pid package. This allows us to use the more advanced SDF
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format description, if of course we find a way to connect Gazebo and ROS. To summarize the

main objectives are:

» the use, if possible, of SDF files with advanced modeling capabilities

« the connection with ROS, in a similar fashion with the real robot

A first approach is to insert the robot model as part of the simulation environment in the
corresponding world file. This way the first objective is achieved. Afterwards, if possible, one
can construct a mechanism on top of the environment, like a brace, using a URDF file as ROS
demands. This structure, without any properties like stiffness which is absent in the URDF file,
should only actuate and essentially move the robot. In our case the final system is presented
in Figure 3-27 (white-monopod robot as part of the environment, black-exoskeleton).

T Y IEXPA = 0@,

R——— |

Figure 3-27.  Monopod model with external brace for actuation.

This method, although it could work, it is quite hard to implement. It requires relatively
small link weights and inertias in order to be realistic, something that Gazebo does not handle
well and could lead to the whole model collapsing and simulation breaking down. Also it is
hard to receive measurements from the actual joints (position, velocity, torque) without using
an additional plugin. Finally, there is no correlation between the simulated and the real system.
Therefore the main issue remains.

A solution to our problem is finally offered by custom plugins. These plugins can virtually
perform any function a user wants. In our case, the target is to create a topic that accepts as
input commands from a controller and as output applies torque to a joint. A topic that contains
the joint state (e.g. position) is also required. The second topic is relatively easy to construct,
using the standard joint_state_publisher plugin that is available on the Gazebo plugins folder.
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Note that if, in addition to position, publication of velocity and torque is required, the standard
plugin has to be modified.

To create the command topic, another custom plugin was constructed, named
monopodplugin. This plugin has, again, to be built and moved into the gazebo plugins folder.
These two plugins also have to be added in the bottom of the SDF model in order for Gazebo
to load and activate them. Afterwards we only have to create a world and a launch file that will
run all the necessary nodes. All the codes, plugins and models are included in Appendix A.

Finally we end up with the system shown in Figure 3-28. Its similarity with the one used
on the real robot shall become obvious on Paragraph 3.7 (Figure 3-44), where we conduct the
experiments. The difference is that instead of the Tiva_Interface node we have two new nodes.
The State Callback Interface to receive measurements from Gazebo, and the

Command_Interface, to send commands.
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Figure 3-28. ROS control system structure in Gazebo simulation.

3.5.2 Solver parameters configuration - Matlab comparison

As already mentioned, Gazebo offers four different physics engines, ODE, Bullet, Simbody
and DART. We selected the ODE solver, as it was the easiest to set up and configure. This
solver also allows for easy verification and comparison of the produced results with those from
the same simulation in Matlab, which is also using said solver. We shall examine some

fundamental parameters that the user has to configure in order to produce accurate results.

Time step

Two values were tested, 1 ms and 0.1 ms. Both responses agreed with those from Matlab
simulations. In case that the simulation duration is irrelevant, it is suggested to use the smaller
time step. In all other cases, it is preferable to use the bigger, for reasons that will be mentioned

subsequently.
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PID loop rate

The controller’s loop rate (LR) should match the simulation’s solving frequency. For example,
considering the two mentioned time steps, the LRs should be 1 kHz and 10 kHz respectively.
The second case is quite computationally demanding, especially if many different PIDs must
run simultaneously (e.g. on a quadruped robot).

This is one of the reasons the smaller time step, if not otherwise required, should be our
first choice while defining the simulation’s parameters. If the LR is not selected appropriately,
the simulation results will not match the expected ones (received e.g. from Matlab), as shown
in the following diagrams. All following figures present simulation results of PID control on the
hip joint, and specifically the response to a step input of 6000 counts, or about 20.5 degrees,

for the same Kp and Kd gains.
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Figure 3-29.  Gazebo - Matlab control comparison. Time step =0.1 ms, LR =1 kHz, Update rate
=100.
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Figure 3-30. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update
rate = 100.
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Figure 3-31. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 20 kHz, Update
rate = 100.

Solver type

Two choices exist, i.e. quick and world. It is reported that quick, as one could imagine, is faster
but offers somewhat lower accuracy. However, it was observed that there were some issues
with said solver type. Specifically, a constant torque was exerted to a simple pendulum model.
While it was expected that the pendulum would be constantly accelerated to theoretically
infinite velocity, that was not the case. Instead the velocity diagram shown in Figure 3-32 was
recorded in ROS.
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Figure 3-32. Pendulum with constant torque applied (g =0, b =0, no static friction).
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Using the world type solver, that problem was resolved. Therefore its use is recommended.
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Real time update rate

The real time update rate parameter specifies in Hz the number of physics updates that will
be attempted per second. If this number is set to zero, it will run as fast as it can. Note that the
product of real time update rate and max step size represents the target real time factor, or
ratio of simulation time to real-time. Therefore:

Real _time _ factor =real _time _update _ rate-dt (3-6)

The real time factor parameter expresses the correlation between the real time and the
simulated time. For example, if during two real seconds, Gazebo has solved one second for
the simulated system, real time factor is 0.5 (1/2). Consequently, the meaning of the equation
above is clear. If the time step is 1 ms and the solver is called 1000 times per second, real

time factor will be equal to 1. In one real second, a simulated second will be solved.
This point however needs a lot of caution. The user can select the real time update rate
and the real time factor in the simulation launch file, but one needs to keep in mind two things:
1. Defining the real time update rate seems to transcend the definition of the real
time factor. To make this clear, consider the following example. We define a 0.1
ms time step, real time factor equal to 1 and real time update rate equal to 100.
Those values are incompatible, according to (3-6), and one of those should be
modified to satisfy it. The real time update rate could become equal to 10000. This
does not happen and we end up with real time factor = 0.01, as the aforementioned
eguation dictates, which means that this is the parameter that must be changed

in the case of conflicts.

2. There is no guarantee that Gazebo will manage to achieve the defined real time
update rate, end even if it does, that there will not be any unexpected behavior in
the simulation due to increased computational load. In our case there was an

unexplained oscillation at steady state. Consider the following cases.

A time step of 1 ms and the appropriate loop rate (1 kHz) are defined. If the update rate is set

to 1000, as we discussed previously, the following response is recorded (Figure 3-33):
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Figure 3-33.  Gazebo - Matlab control comparison. Time step =1 ms, LR = 1 kHz, Update rate
= 1000.

The expected real time factor (equal to 1) was not achieved. We end up with a value of
0.93, which also appears to be oscillating between 0.9-0.95. This instability suggests that there
might be a system overload. This hypothesis is supported by Figure 3-33, where random
oscillations appear at steady state.

This issue is observed better if we alter the update rate to 10000 calls per second
(estimated real time factor = 10). Again, the update rate parameter reaches only 4 when it
should actually become 10, with even bigger variation (3.8-4.5). Also the oscillations at steady

state increased dramatically, see Figure 3-34.
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Figure 3-34.  Gazebo - Matlab control comparison. Time step =1 ms, LR = 1 kHz, Update rate
= 10000.
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We can easily deduce form the aforementioned results that the update rate, in
combination with the ROS loop rate that runs simultaneously, is a parameter that loads
significantly the computational system. For that reason, we choose a smaller time step, in
order to choose the lower loop rate, but also to match the loop rate value on the real robot as
well. It is unlikely to exceed values of 1 kHz on the actual hardware.

In conclusion, it is hard to give an update rate value that will suffice for all cases. For the
two time step values that were mentioned before, a value that does not cause instabilities and
variations at the real time factor value is 100. This value is, of course, just an example and it
depends on the computational system. It is suggested to fine tune these parameters by

comparing the Gazebo simulation with one from another simulation environment, e.g. Matlab.

3.5.3 Spike examination
If we try to compute the velocity for one of the previous cases, we will record the responses
presented in Figure 3-35 and Figure 3-36.
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Figure 3-35. Gazebo - Matlab control comparison. Time step =1 ms, LR =1 kHz, Update rate
= 100.
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Figure 3-36. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update
rate = 100.

As observed, there are spikes in the velocity estimation as taken from the PID. In fact the
problem worsens in the case of a smaller step, where the control loop rate is 10 times higher.

The problem in the smaller time step case can be normalized using the incorporated PID’s
filter in the ros_pid package. By altering the cut off frequency from 2.5 kHz to 300 Hz, the
result shown in Figure 3-37 is recorded:

x10% Matlab and ROS control comparison - flitered and unflitered velocltles
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Figure 3-37.  Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step
=0.1ms, LR =10 kHz, Update rate = 100. Cut off frequency adjusted to 300 Hz.

In red colour, we can see the clearly improved velocity form. The oscillations can vanish
totally if we lower the cut off frequency even more. However, in such a case, the behavior of
the model is altered too, because of the phase delay that the filter introduces. Consider Figure

3-38 for cut off frequency equal to 30 Hz.
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Figure 3-38.  Gazebo - Matlab control comparison. Time step = 0.1 ms, Loop Rate = 10 kHz,
Update rate = 100. Cut off frequency adjusted to 30 Hz.

In the case of a larger time step (and loop rate), those values do not seem to work in a
similar fashion. The model's behavior starts altering earlier. Therefore, without further
investigation, the use of this filter is not suggested.

In any case, the filter would not deal with the actual cause but it would only mask the
problem. Being suspicious from previous cases, where system overload was leading to
unexplained simulation phenomena, we lower the update rate (referring to the case of time

step equal to 0.1 ms). The result is shown in Figure 3-39, where the spikes are less, and with
smaller amplitude.
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Figure 3-39.  Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step
=1 ms, Loop Rate =1 kHz, Update rate = 5.
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The disadvantage is that we end up with an extremely small real time factor, which results
in long simulation duration. It's up to the user to determine the update rate value, keeping this
tradeoff in mind, and considering that those spikes do not affect the simulation’s behavior (it

is the same for both update rates).

3.6 Experiments and comparison
Three main experiments were conducted to verify the setup’s functionality. The first was a

passive static hopping, to test measurements on the knee joint and examine how close
simulation could approximate reality. The second was a PID control on the hip joint, to test
software setup and also examine simulation accuracy. Finally the high level controller that was
previously described was used, in order to test all of the sensors at once and verify that there
would be no complications.

3.6.1 Passive static hopping

For the first experiment, the robot was left free to fall from a 5 cm height, while the leg was
commanded to remain on the vertical position. The responses both from the simulation and
the experiment were recorded using the rosbag tool from ROS and inserted in Matlab using
the code in Appendix A.

Although the two responses are almost identical in the beginning, after the first second
we can observe a small deviation between them. There are two reasons that could lead to this
phenomenon. First of all there might be a small miscalculation between the actual parameters
and those we got from Solidworks. Next, and more significant, this could probably occur
because of unmodeled dynamics. E.g. we notice a small damped oscillation on the real
response when the leg reaches and collides with the mechanical stop and absorber. This is
not modeled and it functions as an energy drain for our system. Also there is no ground model
on our simulation, whereas the treadmill’s belt, where we conducted the experiment, functions
as an absorber too. Nevertheless, this model managed to simulate all four bounces as well as

the actual settling time, steady state compression and general form.

Table 3-2. Passive static hopping simulation parameters.
Parameter Value
Real time update rate 100
Step time (s) 0.001
Real time factor 0.1
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Table 3-3. Passive static hopping experiment parameters.
Parameter Value
Defined PID control loop rate (Hz) 8000
Achieved PID control loop rate (Hz) ~1000
Tiva transmission rate (Hz) 15000
Kd 0.003
Kp 0.0002
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Figure 3-40.  Simulation-experiment comparison of static damped hopping.

3.6.2 Hip PID control
In this experiment, the body was held still above the ground and the only thing controlled was

the hip joint. We tested for a 7500 counts (26 degrees) step input and the response, real and

simulated, is presented in Figure 3-41.
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Figure 3-41.  Simulated and actual response to a 7500 counts step input.
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Figure 3-42.  Simulated and actual torque requirement.

Considering that such applications in legged robots demand extremely low swing time,
i.e. around 0.2 - 0.4 seconds, there is really no point in using an integral term. This is because
either it will be of small value and will have no time to load and produce an observable result
or it will be of large value and will cause instability and oscillations. So in fact, a simple PD
was employed. An estimation of the necessary proportional and derivative gains was taken

using a linearized leg model (Figure 3-43), around the vertical position, as follows.
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Figure 3-43.  Linearized leg model with PID control block diagram.
That model includes the linearized, around the vertical position, pendulum transfer function as

plant:
1
= 3-7
P Js®+Bs 37
The following parameters were used:
Table 3-4. System parameters.
Parameter Value
Reduction ratio 52
J (kg-m?) 0.0241
B (N'm-'s) 0.005
The closed loop transfer function is:
__GcGe
¢ 1+G.G,
Characteristic equation: 1+ G.G, =0 —
B+ 12 K, 52 2000 52K, 12 K, 52 2000 52K,
§? 4 100 2r S+ 100 2 -0
J J
Therefore:
B+ 12 K;52—— 2000 52K,
and
12 5220055,
o2 = 100 2 (3-9)
! J

where wnis the undamped natural frequency and ¢ the damping ratio. When  is equal to 1 we
have a critically damped system, which is the fastest without overshoot [21]. A value that is

frequently used in such applications is 0.7, which offers a good rise-settling time relation. In
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our case there is no need to completely eliminate overshoot as it produces a faster response,
so we selected ¢ equal to 0.6. We also set a settling time value of 0.35 s.
4

t,=—=0.35—>m, =19.05 (3-10)
140)

n

Using (3-8), (3-9) and (3-10), the control gains are found to be:

K, =0.003368

3-11
K, =0.000211 (3-11)
This approximation is really accurate. It was experimentally confirmed that the gains that
produced the best results were:

K, =0.003-0.0035

, (3-12)
K, =0.0002-0.00025

Of course their actual value was affected by many parameters, like those we mentioned earlier
about the PID node frequency and the Tiva transmission rate. Also, beyond these values, any
further increase of Kp would not produce any visible results as the applied torque was already
clipped due to saturation (Figure 3-42). An increase of Kd would again lead to instabilities and
oscillations, as we discussed earlier. An overview of the PID control simulation and experiment

is given in Table 3-5 and Table 3-6.

Table 3-5. Hip PID control simulation parameters.
Parameter Value
Real time update rate 100
Step time (s) 0.001
Real time factor 0.1
PID control loop rate 1000
Kd 0.003
Kp 0.0002
Table 3-6. Hip PID control experiment parameters.
Parameter Value
Defined PID control loop rate (Hz) 8000
Achieved PID control loop rate (Hz) ~1000
Tiva transmission rate (Hz) 15000
Kd 0.003
Kp 0.0002
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The gain values of (3-11) could probably increase if path planning methods were
employed, because smaller errors would be created during the motion. These increased gains

would provide better robustness and rigidity while the leg is still.

3.6.3 High level control
Additionally to those previous simple experiments, and in order to ensure system functionality,
we used a high level controller, similar to the one already used in our lab’s first monopod robot
[8].

This algorithm is a simple one. When the robot is on flight phase it repositions the leg in
a predefined angle of attack, or touch-down angle. After it lands and transits to stance phase,
a torque is applied to the hip joint in order to move forward and repeat the cycle. The system
structure appears in Figure 3-44.

botasys_force_torque_sensor_node botasys_force_torque_sensor_low_pass_filter
T
e
Knee_interface High_Level_Controller
]
Hip_Interface

/pid_enable

Hip_interface

B T M rtos

Figure 3-44.  Control system structure.
We run the experiment twice, with and without the force sensor. Both cases are presented
in Figure 3-45 and Figure 3-47.

Table 3-7. High level controller experiment without force sensor — parameters.
Parameter Value
Compression for stance (mm) 4
Touchdown desired angle (counts) 870
Stance phase torque (Nm) 1.8
Kp 0.0038
Kd 0.00024
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Figure 3-45.  High level controller experiment without force sensor.
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Figure 3-46.  Experiment pictures - (a) touchdown, (b) midstance, (c) takeoff.

One can easily see that the leg stops moving after approximately four strides. This issue
is quite complex and there might be many reasons for not achieving a stable gait. One of them
is the difficulty in controlling the initial conditions, i.e. of the translational velocity and drop
height. The latter was 0.08 m (counting from the toe), but there is no easy way to calculate
and apply a certain desired velocity, neither repeat it every time. In any case, that velocity and
height should be equal or slightly greater than those desired [32]. For example, for desired
apex height of 0.32 m and forward velocity of 0.5 m/s, the corresponding initial values should
be around 0.33 m and 0.6 m/s respectively.

Moving on to other parameters, after testing several combinations we selected those in
Table 3-7. This application, where the leg is moving towards negative values when
commanded to reposition in contrast to the PID control experiment we run previously when
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Acceleration (m/sz)

Force (N)

the leg was static, allows for utilization of slightly larger gain values than before. The values
of stance phase torque and the compression in which the controller considers it has entered
the stance phase were also experimentally configured. For larger torque or smaller
compression, the leg would simply slip and collapse on itself. That is also what would happen
for greater touchdown angles, where the torque provided was not enough to push the body
forward; with the motor at its maximum torque. It should be stated however, that this
combination is one of the several that might work in a similar manner and could definitely use

some refining.

Table 3-8. High level controller experiment with force sensor — parameters.
Parameter Value
Compression for stance (mm) 4
Touchdown desired angle (counts) 2500
Stance phase torque (Nm) 4
Kp 0.004
Kd 0.00026
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Figure 3-47.  High level controller experiment with force sensor.

With the addition of the force sensor, the leg is getting somewhat heavier, which is
depicted in Figure 3-47. There, we can observe that there are only have two strides instead
of four. That might have something to do with the silicon cover that acts like an absorber. For
this reason, the gains as well as the stance torque were increased, with the other parameters

remaining the same. We can also see the filtered and unfiltered measurements along the
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vertical axis. Peak impact force was measured about 200 N, or about 2.5-3 times the robot’s

weight.
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4 Treadmill

4.1  Setup description
Most of the robots developed in the Control Systems Laboratory are legged and especially

guadrupeds or monopods. The salient characteristics and the main design influences come
from nature itself (biomimetics). Since we are focusing on resembling nature and its features,
e.g. high speed, balance, obstacle detection and avoidance, it only makes sense that those
features should be tested in an environment that can simulate nature conditions. Considering
that it would be unwise and even dangerous to conduct the first experiments outside the
laboratory, the most common solution is to use a treadmill, with inclination capability. That
requires a support system, as well as a control system able to set and control velocity and
inclination. In addition, a treadmill ensures the security of both the robot and the researcher
and facilitates experimentation.

The treadmill currently installed in our laboratory is 6 meters long, and actuated by two 3-
phase induction motors. The first motor (model MS 100L 2-4, XIUSHI) drives the belt's main
pulley achieving a maximum running velocity of 12.6 m/s. The second motor (model FC80-4,
Electro Adda) actuates an endless screw and a rack-pinion system that sets the treadmill’s
inclination to the desired value (maximum angle of 20 degrees). Both are driven by inverters;
an EMERSON M200-022 model for the belt’'s motor, and a SIEMENS SINAMICS G110 for the

inclination motor.

Figure 4-1. MS 100L 2-4 motor and M200-0 inverter.
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Figure 4-2. FCB80-4 motor and SINAMIS G110 inverter.

4.2  Electronic system

4.2.1 Previous setup
In this setup’s previous version, a custom combination of magnets and a Hall effect sensor
were used to measure the rotational velocity of the belt's drum. Specifically there were 8
magnets placed circularly, at 45 degrees apart. When a magnet would pass in front of the Hall
effect sensor, a voltage pulse would be generated. The pulse was received and processed by
an AVR ATmegal6A microcontroller. The same microcontroller handled the transmission of
the desired velocity to the inverter. It communicated with a central computer, where the loop
was closed, with a serial communication protocol, RS-232. However to transform the
microcontroller’s output to RS-232 signal, readable by the computer, a signal transformer such
as the MAX 232 by Texas Instruments had to be used. For the inverter-microcontroller's
communication, for sending the command, a digital to analog converter (DAC) was used
(AD7302 by Analog Devices). The same circuit was employed for the inclination control
system. Finally for the selection of motion direction bipolar transistors were utilized [17].

The control loop of the experimental setup was realized in Simulink (model-based
control), which calculated the necessary command and transmitted it to the microcontroller.

This system required three different supply channels, one at 5V and two at 11.42V
precisely to supply the operational amplifier. This voltage had to be supplied using a dedicated
power supply, something that was not always available or easy to find. Also the Simulink
model was not very user friendly and easy to use. For those reasons, and the inability to

incorporate ROS, a redesign was imposed.
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4.2.2 Redesign and current setup

Let us first examine the system specifications. Both motors, for velocity and inclination, are
controlled by an inverter. Those inverters modify the supply current’s frequency, and therefore
modulate the operating speed as follows:

| _120f 1)

p
where f stands for the supply frequency and p for the number of poles.
The method to control the inverters is quite simple. According to Figure 4-3 that follows,
the inverter offers several signal inputs and outputs called terminals. Those connections alone
can fully control and define the operation of the machine, of course under the condition that it

is supplied.

Terminal Layout

Digital /O H Analog /O
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Figure 4-3. Unidrive M200 velocity inverter terminal layout.
When on terminal control mode, three connections are required at minimum. System
activation using enable (terminal 11), selection of motion direction (terminal 12 or 13) and

frequency reference (terminals 1 and 2). The order in which those connections were
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mentioned corresponds to the suggested procedure one has to follow while activating the
system according to the manufacturer. Specifically, for the motion to be activated, connection
of both the enable and the direction terminal is required. When this occurs and there is no
frequency reference, the treadmill will start running on a predefined frequency of about 7 Hz,
coded into its memory. So in order for the system to be fully functional through a central
computer, there must exist a way for all those connections to be activated electronically.

For those terminals to be connected (enable and direction) a 24V voltage is required. The
inverter provides such a voltage (terminal 9), so all one has to do is short-circuit terminals 9-
11/13 or 9-12/13 (depending on the desired direction). For the frequency reference a simple
analog signal 0-10V (terminal 2) is required, as well as the ground (GND, terminal 1).

Additional specifications are inserted in the design, such as the measurement the angular
speed of the belt's drum. Having already decided to use an incremental encoder for this
purpose, the need to read its output emerges.

Another point that needs to be taken into consideration during the design of the electronics
and the control system is that the treadmill, much like the robots we create, should be
structured in a way that it is possible to be run by a common control center, maybe even
remotely through the Internet. Since the robot’s and the treadmill’s function are so closely tied,
their control systems should be compatible. This means that there should be a capability for
data exchange, and maybe even intervention of the one control system to the other. Finally
there are safety limitations and specifications, like in every system. The treadmill’s operation
should be able to stop both by command and manually, if something goes wrong either in the
mechanical subsystem or in the control algorithm.

To summarize, the design specifications are:

e Maximum velocity of 10 m/s

e Incremental encoder feedback

e Control system compatible with the monopod or quadruped

e Function controlled by a computer

e Safety precautions - switches

Again, the basic decision regards the sensory system and specifically how the encoders
will be read. We choose to use the Tiva microcontroller, because of the know-how that already
exists and the subsequent ease of implementation, and of course because of the
characteristics we have already mentioned.

The inverter receives a 0-10V analog signal and translates it into an operating frequency
according to the frequency range defined in its memory. The lowest frequency would occur

for a OV input and the maximum for 10V. The maximum frequency currently defined is 50 Hz.
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Therefore, we need to ensure that the analog signal can drive the treadmill to velocities up to
10 m/s, according to specifications.

Let us first examine the transmission until the main belt's drum. Right after the motor,
which has no gearbox of its own, there is a belt drive (Figure 4-4), which transmits motion to
the treadmill’s level, but also reduces the velocity, with a reduction ratio of 1.524. Considering
the drum’s diameter is 245 mm, the velocity relation to the operating frequency is described
by (4-2), not considering load and slippage effects:

120 f
vo_4 7. D45t (4-2)
1524 30 2

Figure 4-4. Belt drive.

Using (4-2) it is easy to observe that for a 50 Hz operating frequency, a velocity of 12.6
m/s is obtained, while the maximum desired speed is reached with f = 40 Hz. Of course this
motor can safely operate up to 60 Hz, according to the manufacturer, so even larger velocity
values could be achieved, if it was so desired. Also if for some reason the output analog signal
cannot reach the required value, the maximum operating frequency could be defined to 60 Hz
in order to change the voltage-frequency relation. This way the same voltage value would be
matched to a higher frequency (e.g. 10V would correspond to 60 Hz instead of 50, and same
holds for the rest of the values). In any case, the design should result in a properly modified
signal, which shall lead to the exploitation of the whole range of the treadmill’s capabilities.

This signal can be produced by a PWM pulse. Specifically, in this form of signal, a pulse
is modulated so as to be high for a certain width, a percentage of the signal period. That ratio,
pulse width to period, is called duty cycle. Because of the extremely high modulation
frequency, which is also a parameter, the result is the average voltage. For example, for a

signal with 5V amplitude and 50% duty cycle the result would be a 2.5V signal.

70



Duty Cycle 10% —‘ “ \’ —‘

Period

Duty Cycle 30%

Pulse Width

Duty Cycle 50%

Duty Cycle 90% L L \\ L

Duty Cycle = Pulse Width x 100 / Period

Figure 4-5. Pulse width modulated signal.

Despite the high modulation frequency and the ostensibly steady signal produced, and
because an amplification of this signal will follow, it is common to insert a low pass filter and
stabilizer between the source and the amplifier. This filter attenuates high noise frequencies
and normalizes the signal, with a small repercussion on its amplitude. The most common

choice for such afilter is a passive RC circuit (Figure 4-6).
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Figure 4-6. Passive RC low pass filter.

The reactance of the capacitor is given as:

1
X. =
¢ 2zfC
where C stands for the capacity and f for the signal frequency. The circuit’s total impedance

Z=\R*+ X2 (4-4)

Finally, using a resistive potential divider, the output voltage amplitude is given by:

(4-3)

is calculated as:

Xc

X
"VOUT ” = |[V,N ”W - ”VOUT ” = ”VIN ”7C

(4-5)

Therefore in our case, where the amplitude of the PWM pulse the Tiva board produces is O-
3.3V, and for filter parameters 4700 Q ka1 47 nF for the resistor and the capacitor respectively,

the output voltage will be:
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Vour = 0.9, —>Vour iy =3:268 V (4-6)

Next, for the purpose of signal amplification till the desired value of 10V, an operational
amplifier was utilized, and specifically the LM358N by Texas Instruments (Figure 4-7). Such
types of setups require a supply larger than the amplified output, in our case 12V, as well as

an additional resistor circuit, like the one presented in Figure 4-8.

1
QUTPUT A&

2 T
INVERTING INPUT A == = QUTPUT B

NON-INVERTING __3
INPUT &

INVERTING ISPUT B

5 NONINVERTING
INPUT B

4

Figure 4-7. Operational amplifier LM358N.

Figure 4-8. Amplifying resistor circuit.
The amplification gain is defined in the equation (4-7):
R
K=1+-% (4-7)

1
In our case, in which the amplification gain is equal to 3, the resistors are selected as shown

in Figure 4-9:

— Qo 3V —+
0 to 10.003V

Bk

47K | Req=6k703

EKS%

Figure 4-9. Resistor selection.

According to (4-7), we obtain:
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K :1+% ~3.0312 (4-8)

The amplified average PWM signal can be fed directly to the inverter. For the whole setup to
be fully controllable by a control station, some additional elements have to be incorporated so
as to allow the user to initiate and stop the motion. This task was carried out using three relay
modules (Figure 4-10). These elements require a 5V supply and a logic level signal (HIGH or
LOW). According to this value, the relays open or close a circuit. Using these parts, and a
digital output coming from the Tiva board, it is possible to control the short-circuit of the enable

and direction terminals mentioned eatrlier.

Figure 4-10.  Parallax relay module.

Relays like the one in Figure 4-10 include three inputs-outputs. Let us consider Figure
4-11. At the middle contact, we connect the first end of the circuit that has to be controlled.
The other two contacts are marked as normally open (NO) and normally closed (NC).
Depending on the application the user has to select in which he shall connect the other end
of the circuit. For example in Figure 4-11, the circuit is connected to the normally open contact.
That means that in order for the circuit to close, one needs to send a HIGH logic level. If the
circuit was connected on the normally closed contact, a HIGH logic level would open the circuit

instead.
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Figure 4-11.  Application example with relay module.

The three relays used in our case control the enable, run forward and run reverse
terminals. The first was connected exactly as in Figure 4-11. The enable terminal is normally
disconnected, until given the proper command, as a safety precaution. It was critical to
decouple this certain terminal’s connection with any other in order to be able to stop the motion

in case of emergency. For the same reason there is a manual switch right after the relay, just
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in case there is a malfunction in the control system and we cannot shut down the motion by

command. The whole circuit is shown in Figure 4-12.
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Figure 4-12.  Activation system (terminal Drive enable).

The corresponding system for the selection of motion is slightly more complicated,
because there was an additional safety precaution. Since it is not clarified in the
manufacturer’'s manual and as reason dictates, the two direction terminals should never be
short-circuited simultaneously, because of the unknown and potentially harmful effect this
might have. We could short-circuit the terminals using a single relay like before but one of
them would be connected on the normally closed contact, so we would have a default direction
of motion and that is not desired. Therefore we chose to use a double relay module (Figure
4-13) with a small extra cost (6 euros instead of 3 the single costs).

Figure 4-13.  Double relay for motion direction selection.

Once again we need a 5V supply, however this time there are two enabling signals. In
order to satisfy the safety precaution that was mentioned before, these relays will be
connected in series, as shown in Figure 4-14. The system works as follows. We shall refer to
the relays as R1 and R2. The 24V line is connected to the central contact of R1. At start, when
no signal is sent to the module, this line is directed through the NC contact of R1 to the NC
contact of R2 which is not connected to anything, so there is no motion. When we set R1 to
HIGH, the 24 line is redirected through its NO contact to the run forward terminal, regardless
of what signal is sent to R2, since its central contact is disconnected. That protects the system
from a possible malfunction. To run the treadmill in reverse, we need to send a LOW signal to
R1 and HIGH to R2. It is obvious that there is no signal combination that leads to both terminals

being short-circuited simultaneously.
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Terminal 9 (24V)

Terminal 12 (Run forward)

Terminal 13 (Run reverse)

Figure 4-14.  Motion direction selection system (terminal run forward and reverse).

The incremental encoder is of type HEDL-5540, with a line driver to reduce the noise. In
our case this was not needed, since the signal did not have to travel too far and no noice was
observed. The encoder produces 500 counts per revolution, augmented to 2000 when in
guadrature mode. It has the same connections as the previous, 5V, GND, A, B channels and
optionally the index, used to count the total number of revolutions. The encoder and its

connectivity are presented in Figure 4-15.
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(a) (b)
Figure 4-15.  (a) HEDL-5540, (b) HEDL-5540 Pinout.

Finally, all those different pieces of equipment had to be properly supplied. The relays, as
well as the Tiva board and the encoder require 5V, while the operational amplifier needs 12V.
To use a single power supply, we employed a step down regulator, the same used on the
monopod, i.e. Polulu D24V60F5. Generally such parts are selected in high power applications,
as signified by their maximum current handling capacity (6A), but its use is simpler than that
of a simple voltage regulator; also it was available in our lab. Therefore it was preferred

compared to other solutions.

4.2.3 Construction
The final electronic subsystem schematic is presented in Figure 4-16.
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Figure 4-16.  Electronic subsystem schematic.

24V

FREQUENCY REFERENCE
GND

24V (TO INVERTER
VIA ETHERNET)
ENABLE

FORWARD
REVERSE

The secondary board includes the PWM filter and amplification circuits, as shown in

Figure 4-17.
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Figure 4-17.  Secondary board.
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All the aforementioned subsystems were connected and placed between two plexiglass

sheets as shown in Figure 4-18.
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Figure 4-18.  Electronic subsystem prototype.

One can observe four inputs-outputs. The blue Ethernet cable connects to the rooter and
communicates with the control center, the white cable is the one that connects to the inverter,
the flat cable on the upper left leads to the incremental encoder and the black is the power
supply. The two switches are also visible above the relay modules, one for the power supply

and one for motion activation.

4.3 Control system
The control system in the case of the treadmill is similar to the monopod’s. There are again

two main pieces of code, one running in Tiva and of course its counterpart running in a control

station using ROS.

4.3.1 Tiva
The part of code running in Tiva handles the PWM and QEI module activation, as well as the
set up of the UDP communication. The same code is used with some minor modifications in
order to send velocity instead of position and handle activation of motion and selection of
direction.

Special care has to be taken with the velocity estimation, as it is defined indirectly.
Specifically, we define a time lapse in form of a number of clock ticks, over which we want to
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sum the measured counts. This number in combination with the set clock frequency defines
the duration of velocity estimation. For example if we define the clock frequency to 120 MHz,
with a measuring lapse of 40.000.000 ticks, we shall get a new velocity estimation value three
times per second. Let us consider the following case. We define the velocity estimation
duration equal to 1s. If we request a new measurement precisely at 1s we shall get an X value,
the total number of counts in (0,1). If a new value is requested at 1.5s we shall not get the total
number of counts measured in (0.5,1.5) but we will receive the same value X as before, until
we reach 2s where a new value is calculated. This of course means that there is no point in
us asking for new values faster than they are calculated, as we would receive the same value
multiple times.

Finally for the code’s proper operation, it is again required to define the IP addresses for
the Tiva board and the control center as well as the device subnet kai device gateway. The
send and receive ports also need to be defined.

4.3.2 ROS

Necessary condition for the robot and the treadmill control systems to be able to communicate
with ease is to be compatible. Therefore, since all robots use ROS, it was again decided to
build the treadmill control system.

The system is similar to the one we already described for the monopod and it is comprised
of three nodes. The first, ros_speed, is the interface between the Tiva board and the computer.
Like before it activates the UDP communication and publishes received measurements on
/state topic. It also subscribes to the /control_effort topic and receives the desired PWM duty
cycle command. Obviously one has to define the IP address for Tiva, as well as the send and
receive ports.

The second node, ros_read_vel, takes as user input the desired velocity and publishes it
on the /desired_speed topic. Also this node can receive and recognize four key words, enable,
cw, ccw and kill. To enable clockwise motion, one needs to type the words enable and cw.
Typing ccw right after will reverse the motion, and of course kill will stop everything.

The third and last node is the PD controller from the ros_pid package that was used
before. It is the exact same node, except for a small modification. Generally in the PD control,
zero error corresponds to zero output. This is something we want to avoid in our case. The
velocity would rise to the desired value, then the inverter would receive a zero command and
it would start to fall until the error is significant again. That would cause an oscillating behavior
around the desired velocity, which of course is not desired. For this reason we modify the

control law as follows, using also (4-2):
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i.e. a constant term is added which, when the error (e) is equal to zero, produces the open
loop command, the frequency that is required by (4-2). The gains receive and handle any
oscillations and differences that might occur.

The cross node communication is presented in Figure 4-19.

ros_read_vel
/desired_speed
pid_node \ ros_speed

—» /control_effort [ros_speed
/

“\

/state

Figure 4-19. Node cross communication as depicted from the rqt_graph tool.

4.4  Experiments
To ensure the setup’s proper operation, simple experiments were conducted. The inverter

received desired frequency commands. Specifically the first experiment was an open loop
definition of the operating frequency. The velocity was gradually increased to 10m/s. In the
second experiment we closed the loop and recorded the responses for the simple and
augmented PD controller of (4-9). On both occasions the gains were experimentally defined.

Specifically, the following parameters were used.

Table 4-1. Treadmill velocity closed loop control experiment parameters —augmented PD.
Parameter Value
Defined PID control loop rate (Hz) 500
Achieved PID control loop rate (Hz) 499
Tiva transmission rate (Hz) 1000
Tiva sampling frequency (Hz) 15
Kd 100
Kp 10
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As one can observe in Figure 4-20 to Figure 4-23, this is a particularly slow system, mainly
because of the inverter. It takes about 22 seconds to reach the desired velocity of 10 m/s,
even if the command for its augmentation is given momentarily. This happens because the
inverter applies a standard fixed rate of acceleration or deceleration (counted in seconds per
100 Hz) for reasons of safety and proper function.

A second point that needs clarification are the oscillations and spikes that appear in the
steady state response (e.g. Figure 4-20). These spikes are the result of the sampling
frequency as we mentioned earlier. We can observe that with a 15 Hz sampling rate, 15 steps
appear per second (Figure 4-21), which confirms the aforementioned on the sampling
frequency in Paragraph 4.3.1. As far as the oscillations are concerned, these are probably
result from a slight misalignment between the encoder axis and its fixed frame which result in
different sums of counts during a second. However, the velocity is in fact steady. This was
confirmed both by visual and acoustic observations, while the value was also measured with
an optical tachometer and found to be the same with the one appearing on the diagrams.

We can finally observe the difference between the various experiments. The open loop
has large differences between the expected and the actual velocity. Using the closed loop we
observe the mentioned oscillations in steady state velocity because of the simple PD controller

and how the problem was resolved with the augmented control law.
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Figure 4-20.  Treadmill velocity open loop control experiment.
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Figure 4-22.  Treadmill velocity closed loop control experiment — simple PID.
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Figure 4-23.

Treadmill velocity closed loop control experiment —augmented PID.
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5 Articulated monopod design

5.1 Literature review
Ever since the first appearance of legged robots, a large variety of designs, materials and

manufacturing methods have been used. In this section we will focus more on these leg
aspects and examine some that have been actually used on biped or quadruped robots rather
than just monopod experimental testbeds.

One of the first attempts to create a walking robot that could alter its gait is recorded in
1968, with the General Electric quadruped, developed by R. Mosher (Liston and Mosher,
1968; Mosher, 1968). That was a hydraulic actuated robot, with 3 DOF (knee flexion-
extension, hip flexion-extension and abduction-adduction). This example is not representative
and easily comparable to most modern biomimetic walking robots, as it was 3.3 m tall, 3 m
long and it weighted about 1400 kg [16]. Each leg was controlled through a different joystick,
requiring 4 different joysticks — and operators — in total. However as we can see in Figure 5-1.

General Electric quadruped robot and compare with following figures, the basic
mechanical design principles have not changed dramatically through the years. We notice the
similar link design and general structure as, for example, in StarlETH. Of course the
manufacturing processes, the materials used and the mathematical analysis behind the
design have greatly improved in the last 50 years.

__

Figure 5-1. General Electric quadruped robot.

MIT’s Quadruped (1984-1987) was the robot that probably set the foundations and started
the revolution in the legged robotics field that continues today. This robot utilized the control
principles and algorithms of Raibert’'s monopod and it could trot, pace and bound [24]. It was
comprised of four 3 DOF legs (hip flexion-extension, abduction-adduction and a prismatic

knee joint) and an aluminum frame [23].
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Figure 5-2. MIT Leg Lab’s Quadruped Robot.

Since those first attempts to create a biomimetic walking robot, countless other quadruped
and monopod robots and leg designs have appeared. An indicative example are the Sugoi-
Neco legs [28]. Utilization of high tensile aluminum structures is quite common across the
literature and up till recently it was almost the only choice available, if one wanted to maintain
a low weight with a reasonable safety factor. Examples include ETH’s StarlETH [12], Boston
Dynamics’ Spot and SpotMini, and IIT’s hydraulically actuated HyQ [29], [15]. StarlETH and
HyQ are actually combining an aluminum frame structure on the femur link and a tube on the
shank, an element that we, too, are going to use next. HyQ also specifies that a combination
of stainless steel and aluminum alloy (Ergal - 7075) was used.

Figure 5-3. StarlETH quadruped robot.

While designing a leg, in terms of reducing the rotating inertia, it is a common practice to
place the motors as close to the body as possible (a known exception shall be reviewed
below). This of course results in the necessity to transmit motion from the body to the knee,
which in most cases is the most distal actuated joint. There seem to be two main approaches
in order to resolve the problem. The first is to use a four bar linkage, like in the aforementioned
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Sugoi-Neco legs and in the MIT’s Cheetah leg [18]. Specifically, the Cheetah robot takes
advantage of two concentric custom motors that reduce the inertia and a steel bar to actuate

the knee. Tendons are also utilized to reduce structural loads [3].

Figure 5-4. MIT’s Cheetah robot.

static tendon —>

Figure 5-5. Cheetah leg with four bar linkage and tendon.

The second approach is to use a standard torque transmission system, commonly a
pulley-belt or a sprocket-chain combination. In most cases, this solution succeeds to keep the
weight somewhat lower and if calculated correctly, it could provide added features. For
example, in the StarlETH robot, the miniature chain drive that is utilized is designed to fall
earlier than the gearbox in order to protect it and provide convenient and cheap maintenance

if failure occurs.
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Figure 5-6. StarlETH leg transmission.
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Steel cable transmission is also utilized in the Carnegie Mellon’s BIMASC’s legs. Steel
was selected after tests that proved the inability of Vectran and Xylon to sustain the fast
repetitive wrapping around a pulley — each for different reasons. Kevlar and other related
materials were also considered but because of their abrasive nature (when in contact with
itself) it was judged that would wear quickly. This leg also contains an interesting fiberglass

plate spring design [11].

Figure 5-7. BiMASC leg with fiberglass plate springs.

From the aforementioned designs and applications, only the MIT’s Cheetah has
something new to offer in terms of materials and manufacturing methods. Specifically, as
mentioned in [18], the leg is made of a polyester resin shell and polyester foam core. For the
manufacturing process two molds are required. The first is undersized (compared to the leg’s
actual external dimensions) and it is used to cast the foam core. Then, the core is transferred
to the second mold, which is dimensioned correctly, the polyester resin is cast and the shell
is formed. To fill the mold and make sure that no air bubbles are trapped inside, vacuum resin
infusion is utilized. During this process, the part is covered and hermetically sealed, usually
with plastic sheets, leaving only two openings. In the first a vacuum pump in connected, and
in the second a pot that carries the resin. When the pump is activated the resin is slowly
sucked in the part leaving no air bubbles, provided there is a smooth flow, and avoiding
accumulation of excess resin in some points.

Carbon fiber is also known to have been used in leg manufacturing. Perhaps the most
indicative example is the ATRIAS monopod [10]. Since the robot’s design has to be as close
to the SLIP model as possible, lightweight carbon fiber tubing has been used, both in the femur
and the shank. We can also notice the same fiberglass leaf springs that were used in the
BIMASC leg.
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Figure 5-8. ATRIAS leg.

Another known innovative quadruped in ANYmal [13]. This robot appeared just recently
and it features legs made of carbon fibers and aluminum with 3 DOF on each, enabling full
360 degrees rotation on hip and knee joints. However the most original element is the
ANYdrive [34], a custom combination of brushless motor, gearbox, absolute encoder, spring
and electronics, all included in a single cylindrical casing. Its extremely reduced weight (only
0.9 Kg) allowed the knee motor to be placed on the knee rather than the body, as usual. This
significantly simplifies the design, as there is no need to transmit motion through complex
mechanisms. The incorporation of all aforementioned elements in a single module also allows
for quick exchangeability of parts in case of failure, instead of time consuming disassembly of
motors, belts and pulleys.

Finally, it is worth mentioning some attempts that have been recorded to use 3D printed
structural parts, like the MIT’s Super Mini Cheetah [2]. However this method, under the current
technological limitations, would only apply to small sized robots (8-10 Kg) as it does not
provide anywhere near the necessary strength to support a normal sized robot (30-40 Kg)
without added reinforcement (e.g. fibers). For even smaller robots, like cockroaches, a new,
innovative method that seems to be gaining ground in terms of popularity is SDM (Shape
Deposition Manufacturing). It is a method reportedly used by both the MIT [9] and the Florida
State University [6] and allows for complex sandwich type structures to be created, like layers
of stainless steel and copper. This results in a more biomimetic design, as one can rarely
observe limbs or organs entirely made up from a single material layer in nature. Nevertheless,
to our knowledge, this method has not been applied yet in large scale projects like ours, and

has yet to be developed and expanded before it is.
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5.2 Laelaps quadruped robot
Laelaps | is CSL’s second quadruped [47]. Designed for velocities up to 10 m/s, it emphasizes

on performance rather than energy efficiency. This is the first essential difference compared
to the first version.

The other obviously is the transition to an articulated leg and body (spine) design. The
first quadruped had a prismatic knee, a revolute actuated hip joint and a rigid torso. In fact the
old quadruped’s leg is the same leg that we described previously in the case of the monopod
robot.

Figure 5-9. CSL’s first quadruped robot.

Figure 5-10.  Laelaps | quadruped robot.

Current design includes ten Maxon motors for the actuation (two for each leg, one for the
spine and one for the tail) as well as an aluminum frame body. The femur is also a new part
made of aluminum. Instead of a new shank (lower leg) design, the legs of the old quadruped
were utilized, featuring the same springy prismatic joint.

While hip joint is actuated directly, for reasons that we mentioned earlier, that was not an
option for the knee joint. A push bar was used instead, forming a four bar linkage. This

mechanism is designed to transfer maximum torque (forms a rectangle) when the femur-shank
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angle is 40 degrees. This feature shall be transferred to the new design, as well. Finally, the

leg has 90° motion width, limited with hard stops on the knee joint.

Femur (Upper leg)

F
g‘e
Lower knee joint

Transmission arm

4-bar linkage

Figure 5-11.  Laelaps | leg design.

/
Shank (Lower leg) / \
5.3 Leg Design

Note that in the case of Laelaps | leg, the femur joint was merged with the link design, as it
was a compact aluminum part. For the Laelaps Il quadruped, the basic design specification
and target was to decouple the joint and link design. This way one can easily change each
segment’s length according to the task at hand. For example, efficient bounding and trotting

gaits require different lengths.

5.3.1 Link design

Using carbon fiber tubes as main link parts, like ATRIAS, offers easy exchangeability between
pieces of different length while keeping the leg lightweight. In places where one tube cannot
bear the load, there is also the possibility to use a second inside the first. Specifically the tubes
available in our lab fit perfectly for that purpose as their inside and outside diameters match
(30/28 for the outer and 28/26 for the inner tube).

5.3.2 Joint design
The joint parts should be designed so as to safely bind the tubes without damaging or

destroying them. As far as the material was concerned a 7075-T6 aluminum was selected, an
alloy with yield (430-480 MPa) and ultimate tensile (510-540 MPa) strength comparable to
that of many steel alloys.

The knee joint is comprised by two parts, upper and lower. The lower part is a modification
of the Laelaps | design. A second protrusion was added to the opposite side of the first, as
well as in the transmission arm on the hip, in case we want to use threads to transmit motion

to the knee, e.g. Kevlar rope. Since the rope is flexible, in contrast to the pushing rod, it can
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only pull so it must be attached on both sides. The tube is bound using a detachable cover
and four M4 bolts. Same principles were used for the upper part, only it does not have any
protrusions except those to bind it with the lower part. For that connection, the SFL606ZZ ball
bearings and 6 mm, 1.1191/C45E steel shaft used on the current design were kept the same.
The hard stops at 0-90° were also preserved.

On the hip joint, besides the change that was already mentioned on the transmission arm,
the femur link was essentially shrunk and modified in a similar manner with the knee joints in
order to adapt the carbon tubes. The only difference is the utilization of M5 instead of M4 bolts
because of the increased load that seemed to be exerted in the following simulations in
comparison to the knee.

5.3.3 Compliance and transmission

The last things considered were the spring and force sensor-toe placement. A mechanism
like the StarlETH leg was examined, with the spring inside the carbon tube, but since it was
unclear how well the tube would react on resulting forces, it was decided to place the spring
below the carbon tube, using a same mechanism with the old lower leg. A linear bushing is
adapted and tied using a custom aluminum clamp. The spring is placed concentrically with a
properly shaped shaft. At its lower end, either a rubber toe or a force sensor can be adapted.

Finally, the push rod mechanism remained the same, as there was no reason suggesting

a replacement was in order.

5.3.4 Final design

The complete new design is shown in Figure 5-12. It weighs about 300g less than the old
(~1000 instead 1300g). The difference is actually increased to 450q if Kevlar rope is utilized
instead of the push rod.

The drawings of all parts are included in the CD that accompanies this thesis.

/ WL

Upper knee joint

Lower knee joint

Transmission arm
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Figure 5-12.  Laelaps Il new leg design.
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5.4  Structural analysis
The structural durability of the new parts in this design -links, joints and toe- were tested

and verified in the extreme condition they would have to support the whole body weight. This
is also the case of the rotary gallop, where only one leg is in contact with the ground at each
moment. Four main simulations were conducted, three drop tests and a static analysis. Drop
test is an analysis where the user defines a drop height or an impact velocity and can study
the resultant stresses and displacements.

The first was a drop test with the entire body weight, while femur and shank links are
aligned, with the knee locked because of the 0° stop, for a 45° touchdown angle. To stress the
design even more, the impact velocity was set to 9.7 m/s, which corresponds to the velocity
the toe would acquire if the hip motor increased to its no load speed. The second drop test
was the same, only for vertical touchdown, in order to check the compressive durability of
parts. The third drop test included the knee bent in 90° and again a 45° touchdown. The static
analysis was similar to the third simulation only this time the hip motor was exerting its
maximum possible torque on the leg, with the knee joint being fixed. These simulations are

presented below, alongside a separate analysis for the toe.

von Mises (N/mm#2 (MPa))
1.301e+002
l 1.193e+002
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- 3.259e+001
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1.093e+001
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7

Figure 5-13.  First simulation, drop test with a 45° touchdown angle and impact velocity of 9.7
m/s.
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Figure 5-14.  Second simulation, drop test for vertical touchdown.
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Figure 5-15.  Third simulation, drop test with a 45° touchdown angle.
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Figure 5-16.  Fourth simulation, static analysis stresses.

URES [mm)
1.075e+001
l 9.858e+000
. 8.961e+000
- 8.065e+000
- 1.169+000
. 6,273e+000
q 5.377e+000
| 4481e+000
- 3.585e+000
- 2.638e+000
1.792e+000
8.961e-001

1.000e-030

}_ﬂ,

Figure 5-17.  Fourth simulation, static analysis displacements.
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Figure 5-18.  Toe setup structural analysis stresses.

The simulations above verify the structural durability of the designed parts, as the stresses
do not exceed the yield strength values at any point. The part which was most stressed was
the carbon tube of the lower leg, so maybe the second smaller tube should be inserted inside
the first, since it would not make the design much heavier; it weighs about 50 g. Finally, we
could probably even refine and reduce the dimensions of the joint parts even more, since they
do not seem to have any trouble bearing the loads, in order to further reduce the total weight.
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6 Conclusion and Future Work

6.1 Conclusion
In the context of this thesis, the ROS platform was successfully employed to receive

measurements from and command the actuators of our lab’s monopod robot. At first we
introduced ROS and we mentioned its basic tools and capabilities. Additionally useful tools
and capabilities were mentioned and their operation briefly presented. Gazebo was also
introduced and described, as well as the path planning tool Movelt!.

To incorporate ROS, but also to upgrade system performance and ease of use, the active
electronic system was substituted by Tiva microcontrollers and custom supply boards. The
motor drive unit was replaced with a new one, more modern and simple to use. The structure
of the control system that was built was presented and this system was tested on a model
created especially for this purpose in Gazebo. There, besides gains and typical simulation
parameters, we also tested and tuned the control loop and data transmission rates. These
simulations were compared to those of Matlab and were found to be identical. They also
seemed to approximate the behavior of the real robot quite accurately. Finally, an experiment
with a high level controller was conducted. We managed to get a limited hopping motion of
about five strides. To summarize, we moved from a dysfunctional and outdated experimental
setup to a modern one, with handy tools that make the software development process less
time consuming and complicated. This system has accurately defined inputs and outputs and
therefore it can connect easily to any high level controller.

Moving on to the lab’s treadmill, again the entire sensory system and electronics were
replaced. The custom velocity Hall sensor was substituted by an incremental encoder. A Tiva
board was once more used to read measurements and a similar control system to that of the
monopod was developed. In fact we modified the same low level PID controller to control the
velocity which was used on the monopod to control the position. The system’s functionality
and capability of reaching velocities up to 10 m/s were examined and verified by conducting
velocity control experiments.

Simultaneously with the aforementioned work, the new leg design method for
performance running was also being developed and refined in our lab. After conclusive results
were received, a new articulated leg was designed. This leg is lighter than the old one and
seems to be able to withstand any stress that might occur while running. It also offers
convenient features, like easy change of segment length and exchangeability between push

bars and tendons.

6.2 Future Work
Future work could be divided into two separate branches, software and hardware.
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As far as software is concerned, probably the most significant update, and worth of the
time it requires, is the incorporation of the ros_control package. This is even more important
now, that the new leg has two actuated DOF instead of one. This package’s complexity was
deemed excessive for our project, but as the number of controlled joints increases (e.g.
Laelaps has ten, including tail and spine revolute joints), it is more convenient to utilize
ros_control instead of running several instances of the ros_pid package. It shall require a
significant amount of time at start but then, the addition of new controllers will be greatly
simplified.

Also the utilization of Movelt! would probably prove to be really convenient. Especially if
ros_control is previously set up, the amount of time necessary to configure it would greatly
decrease, as there exists a noticeable sum of information on their cooperation. Besides saving
time from writing custom path planning codes for joints, it could be used to provide direction
for the robot's movement (e.g. move forward, backward) through a graphic environment,
where one can even add feedback from cameras or other optical sensors and experiment with
navigation and obstacle avoidance.

Another suggestion would be to try and close the low level PID control loop on the Tiva
boards, which should be more than capable to withstand the computational load. The high
level control would remain on a main computer which, being relieved of the load of many
different controllers, could be more efficient or even replaced by a device like a Raspberry Pi,
something that was not possible so far, exactly because of the computational load.

Finally, since no stable gait was achieved, the experiments should be run again, perhaps
with better refinement of the parameters described and the initial conditions. We could even
try to add a counterweight to reduce the motor load.

On the hardware side, the most important task at hand is to manufacture and test the leg
design of Chapter 5. Also a more analytical exploration of material options and manufacturing
methods might has to be carried out, like 3D printed, plastic or resin parts in combination with
carbon skinning.

Moving on to the treadmill, a system like the one described needs to be constructed for
the inclination counterpart. Since the first prototype seemed to work properly, the new one
should be materialized using printed boards instead of flexible cable connections. Another
idea would be to try not to use an external supply for the system, but use the incorporated 24V

that the inverter provides instead.
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Appendix A
In this appendix, the various codes utilized during the work described are included.

Hip_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>

// UDP buffer length
#define BUFLEN 512

// UDP port to receive from
#define PORT 2015

// UDP port to send data to
#define PORT_BRD 2016

// Asynchronous UDP communication
#define ASYNC

// Tiva Hip board IP
#define BRD_IP "192.168.1.12"

// Global variables

bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication

int32_t encoderPos = @; // Place the received encoder value here
int32_t pos = @; // Place the actual value here

int32_t prevpos = @; // previous actual position

int32_t prevencoderpos = @; //previous encoder position

int msgs = @; // Incoming message counter

int msgss = @; // Incoming message counter

struct sockaddr_in si_pwm; // Struct for UDP send data socket
ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer

int broad; // The socket identifier for UDP Tx communication

int slen=sizeof(si_pwm); // Size of sockaddr_in strut

float pi = 4.0*atan(1.90);

// Generic error function
void error(char *s)
{
perror(s);
exit(1);
}

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
char buffer[BUFLEN]="";
unsigned char val[4];
struct sockaddr_in si_other;
unsigned int slen=sizeof(si_other);
ssize_t rcvbytes = 0;
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// Receive available bytes from UDP socket
if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, @, (struct sockaddr *)&si_other, &slen))==-1)
error("recvfrom()");
else
{
// Parse data , 1 int32 value
if(buffer[0] == 0x42)

//ROS_INFO(" received");
val[3] = (unsigned char)buffer[4];
val[2] = (unsigned char)buffer[3];
val[1l] = (unsigned char)buffer[2];
val[@] = (unsigned char)buffer[1];
prevencoderpos = encoderPos ;
memcpy (&encoderPos, &val, 4);
if (((prevencoderpos < 50000) &% (encoderPos > 50000)) || ((pos < @) &&
(encoderPos < prevencoderpos)))

prevpos = pos ;
pos = encoderPos - 104000 ;
}
else
{
prevpos = pos ;
pos = encoderPos ;
¥
if (encoderPos = 0)
pos = encoderPos ;
// Raise flag that we received a message
gotMsg = true;

}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)
{

int stat = -1;

int flags;

struct sigaction sa;

flags = fcntl(sock, F_GETFL);
fentl(sock, F_SETFL, flags | O_ASYNC);

sa.sa_flags = 0;
sa.sa_handler = sigio_handler;
sigemptyset(&sa.sa_mask);

if (sigaction(SIGIO, &sa, NULL))
error("Error:");

if (fcntl(sock, F_SETOWN, getpid()) < ©)
error("Error:");

if (fcntl(sock, F_SETSIG, SIGIO) < ©)
error("Error:");

return 0;

}

// Callback function for reception of PWM message from topic
void PWMCallback(const std_msgs::Float64::ConstPtr& msg)
{
// Extract the duty cycle value and send it to the Tiva board via UDP
SendBuffer[1] = (int8_t) msg->data;
if (sendto(broad, SendBuffer, SendPWMBytes, @, (struct sockaddr *)&si_pwm, slen)==-1)
error("sendto()");
// Print-out for debugging

msgs++;
if(msgs == 10)
{

msgs = 0;

//ROS_INFO("I heard: [%f]", msg->data);
¥
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}

// Main Function

int main(int argc, char **argv)

{
struct sockaddr_in si_me, si_other;
int i, slen=sizeof(si_other), msg_count;
char buf[BUFLEN], strout[28];

msg_count = 0;
memset (SendBuffer, 0, 6);

// Initialize UDP socket for data transmission
if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset ((char *) &si_pwm, 0, sizeof(si_pwm));
si_pwm.sin_family = AF_INET;
si_pwm.sin_port = htons(PORT_BRD);

if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
error("inet_aton() failed\n");
exit(1);

}

SendBuffer[@] = 0x31;

// Initialize ROS node

ros::init(argc, argv, "Hip_interface");

ros: :NodeHandle n;

// Initialize the publisher for Encoder data post

ros::Publisher position_interface_pub = n.advertise<std_msgs::Float64>("/state", 1000);

// Initialize the subscriber for PWM data reception
ros::Subscriber pwm_sub = n.subscribe("control_effort", 1000, PWMCallback);

ros::Rate loop_rate(6000);

// Wait for ROS node to initialize
while (!ros::ok());

// Initialize UDP socket for data reception
if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_me, 0, sizeof(si_me));

si_me.sin_family = AF_INET;

si_me.sin_port = htons(PORT);

si_me.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
error("bind");

enable_asynch(sock);

ROS_INFO("Starting communication with Tiva hip board.");
ROS_INFO("Communication with Tiva hip board established.");

std_msgs::Float64 state_msg;
state_msg.data = 0.90;

while (ros::ok())
{
// If we got a new message, publish to topic and print values every 100 messages
if(gotMsg)
{

msg_count++;
state_msg.data = (float) pos;
position_interface_pub.publish(state_msg);
if(msg_count >= 2000)
{
msg_count = 0;
ROS_INFO("%i angle", pos);

gotMsg = false;
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¥

ros::spinOnce();

loop_rate.sleep();
¥

return 0;

}

Knee_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>
#include "math.h"
#include <ros/time.h>

// UDP buffer length
#tdefine BUFLEN 512

// UDP port to receive from
#tdefine PORT 2014

// UDP port to send data to
#define PORT_BRD 2013

// Asynchronous UDP communication
#define ASYNC

// Tiva Knee board IP
#define BRD_IP "192.168.1.11"

// Global variables

bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication

int msgs = @; // Incoming message counter

struct sockaddr_in si_pwm; // Struct for UDP send data socket

ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer

int broad; // The socket identifier for UDP Tx communication

int slen=sizeof(si_pwm); // Size of sockaddr_in strut

float pi = 4.0*atan(1.90);

int32_t encoderPos = @; // Place the received encoder value here

float angle, compression ;

float 11 = 0.05 ; // knee top link length

float 12 = 0.065 ; // knee bot link length

float nl = 0.089 ; // initial length

float linit = sqrt(l1*11 + 12*12 - 2.0*11*12*cos(360.0%361/1999.0%pi/180.0) - ©.01%0.01) ;

float norm_compression ;

// Generic error function
void error(char *s)

{
perror(s);
exit(1);
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// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
char buffer[BUFLEN]="";
unsigned char val[4];
struct sockaddr_in si_other;
unsigned int slen=sizeof(si_other);
ssize_t rcvbytes = 0;

// Receive available bytes from UDP socket

if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, O, (struct sockaddr *)&si_other, &slen))==-1)
error("recvfrom()");

else

{
// Parse data , 1 int32 value
if(buffer[0] == o0x42)

//ROS_INFO(" received");
val[3] = (unsigned char)buffer[4];
val[2] = (unsigned char)buffer[3];
val[1l] = (unsigned char)buffer[2];
val[@] = (unsigned char)buffer[1];
memcpy (&encoderPos, &val, 4);
comrpession = (sqrt(l1*11 + 12*12 - 2.0*11*12*cos(360.0*encoderPos/1999.0*pi/180.0) -
0.01*0.01)- linit) ;
// Raise flag that we received a message
gotMsg = true;

}
}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)

{
int stat = -1;
int flags;
struct sigaction sa;
flags = fcntl(sock, F_GETFL);
fentl(sock, F_SETFL, flags | O_ASYNC);
sa.sa_flags = 0;
sa.sa_handler = sigio_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGIO, &sa, NULL))
error("Error:");
if (fcntl(sock, F_SETOWN, getpid()) < @)
error("Error:");
if (fcntl(sock, F_SETSIG, SIGIO) < )
error("Error:");
return 0;
}

// Main Function

int main(int argc, char **argv)

{
struct sockaddr_in si_me, si_other;
int i, slen=sizeof(si_other), msg_count;
char buf[BUFLEN], strout[28];

msg_count = 0;
memset (SendBuffer, 0, 6);

// Initialize UDP socket for data transmission
if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_pwm, 0, sizeof(si_pwm));
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AF_INET;

si_pwm.sin_family =
= htons(PORT_BRD);

si_pwm.sin_port

if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
error("inet_aton() failed\n");
exit(1);

}

SendBuffer[@] = 0x31;

// Initialize ROS node

ros::init(argc, argv, "Knee_interface");

ros: :NodeHandle n;

// Initialize the publisher for compression data post

ros: :Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000);

ros::Rate loop_rate(1000);

// Wait for ROS node to initialize
while (!ros::ok());

// Initialize UDP socket for data reception
if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_me, 0, sizeof(si_me));

si_me.sin_family = AF_INET;

si_me.sin_port = htons(PORT);

si_me.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
error("bind");

enable_asynch(sock);

ROS_INFO("Starting communication with Tiva knee board.");
ROS_INFO("Communication with Tiva knee board established.™);

std_msgs::Float64 compression_msg;
while (ros::ok())

if(gotMsg)
{
msg_count++;
compression_msg.data = compression ;
compression_pub.publish(compression_msg);
if(msg_count >= 2000)
{
msg_count = 0;
ROS_INFO("%f compression in m", compression);

gotMsg = false;

ros: :spinOnce();
loop_rate.sleep();
}

return 0;

}

IMU_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
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#include <stdint.h>

#include <inttypes.h>

#include "ros/ros.h"

#include "legged_robot/AccGyro.h"
#include <sstream>

#include <ros/time.h>

// UDP buffer length
#define BUFLEN 512

// UDP port to receive from
#define PORT 2012

// Asynchronous UDP communication
#define ASYNC

// Tiva IMU board IP
#define BRD_IP "192.168.1.10"

// Global variables

bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP communication

int msgs = @; // Incoming message counter

int16_t acc[3] = {0,0,0}; // Place raw accelerometer data here

int16_t gyro[3] = {0,0,0}; // Place raw gyroscope data here

int imu_dev = @; // 1 - ADIS16375

// Generic error function
void error(char *s)
{
perror(s);
exit(1);
}

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
char buffer[BUFLEN]="";
unsigned char val[2];
struct sockaddr_in si_other;
unsigned int slen=sizeof(si_other);
ssize_t rcvbytes = 0;

// Receive available bytes from UDP socket

if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, @, (struct sockaddr *)&si_other, &slen))==-1)
error("recvfrom()");

else

//ROS_INFO("%d bytes");
// Parse data , 6 intl1l6 values
if(buffer[@] == 0x43 && rcvbytes == 13)

imu_dev = 1;
val[1l] = (unsigned char)buffer[2];
val[@] = (unsigned char)buffer[1];
memcpy (&acc[0], &val, 2);
val[1l] = (unsigned char)buffer[4];
val[@] = (unsigned char)buffer[3];
memcpy (&acc[1], &val, 2);
val[1l] = (unsigned char)buffer[6];
val[@] = (unsigned char)buffer[5];
memcpy (&acc[2], &val, 2);
val[1l] = (unsigned char)buffer[8];
val[@] = (unsigned char)buffer[7];
memcpy (&gyro[0], &val, 2);
val[1l] = (unsigned char)buffer[10];
val[@] = (unsigned char)buffer[9];
memcpy (&gyro[1], &val, 2);
val[1l] = (unsigned char)buffer[12];
val[@] = (unsigned char)buffer[11];
memcpy (&gyro[2], &val, 2);

// Raise flag that we received a message
gotMsg = true;

105



}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)

{
int stat = -1;
int flags;
struct sigaction sa;
flags = fcntl(sock, F_GETFL);
fentl(sock, F_SETFL, flags | O_ASYNC);
sa.sa_flags = 0;
sa.sa_handler = sigio_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGIO, &sa, NULL))
error("Error:");
if (fcntl(sock, F_SETOWN, getpid()) < ©)
error("Error:");
if (fcntl(sock, F_SETSIG, SIGIO) < 0)
error("Error:");
return 0;
}

// Main Function

int main(int argc, char **argv)

{
struct sockaddr_in si_me, si_other;
int i, slen=sizeof(si_other), msg_count;
char buf[BUFLEN], strout[28];
legged_robot: :AccGyro accgyro_msg;
double realAcc[3], realGyro[3] ;

ros::Time prev_time;
ros::Duration delta_t;
msg_count = 0;

// Initialize ROS node

ros::init(argc, argv, "IMU_interface");

ros: :NodeHandle n;

// Initialize the publisher for Accelerometer and Gyroscope data post

ros::Publisher imu_interface_pub = n.advertise<legged_robot::AccGyro>("IMU_feedback"”, 1000);
ros::Rate loop_rate(1000);

// Wait for ROS node to initialize
while (!ros::ok());

// Initialize UDP communication
if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_me, 0, sizeof(si_me));

si_me.sin_family = AF_INET;

si_me.sin_port = htons(PORT);

si_me.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(sock, (struct sockaddr *)&si _me, sizeof(si_me))==-1)
error("bind");

enable_asynch(sock);

ROS_INFO("Starting communication with IMU Tiva board.");
while (ros::ok()){
// Initialize ROS message values
accgyro_msg.accX = 0;
accgyro_msg.accY = 0;
accgyro_msg.accZ = 0;
accgyro_msg.gyroX =
accgyro_msg.gyroY
accgyro_msg.gyroZ =
accgyro_msg.imu_dev

El

)
0
9;
0

El

0;
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// If we got a new message, publish to topic and print values every 500 messages

if(gotMsg)
{

msg_count++;
accgyro_msg.accX = acc[0];
accgyro_msg.accY = acc[1];
accgyro_msg.accZ = acc[2];
accgyro_msg.gyroX = gyro[0];
accgyro_msg.gyroY = gyro[1l];
accgyro_msg.gyroZ = gyro[2];
accgyro_msg.imu_dev = imu_dev;
imu_interface_pub.publish(accgyro_msg);
if(msg_count >= 1)

{
msg_count = 0;
if(imu_dev == 1)
{
realAcc[@] = (accgyro_msg.accX*1.0)*0.8192*9.81/1000.0 ;
realAcc[1] = (accgyro_msg.accY*1.0)*0.8192*9.81/1000.0 ;
realAcc[2] = (accgyro_msg.accZ*1.0)*0.8192*9.81/1000.0 ;
realGyro[@] = (accgyro_msg.gyrox*1.0)*0.013108;
realGyro[1] = (accgyro_msg.gyroY*1.0)*0.013108;
realGyro[2] = (accgyro_msg.gyroZ*1.0)*0.013108;
}
}
gotMsg = false;

}

ros::spinOnce();

loop_rate.sleep();
}

return 0;

}

Read_setpoint

#include "stdio.h"

#include "string.h"

#include "stdlib.h"

#include <inttypes.h>

#include "ros/ros.h"

#include <iostream>

#include <string>

#include <sstream>

#include "std_msgs/Float64.h"
#include <dynamic_reconfigure/server.h>
#include <legged_robot/ParamConfig.h>

float rpos, prevpos ;
float dt ;

using namespace std;

void callback(legged_robot::ParamConfig &config, uint32_t level)
{

}

// Global variables
std_msgs::Float64 setpoint_msg;
float pi = 4.0*atan(1.90);

rpos = config.setpoint;

int main(int argc, char **argv)
{
prevpos = 0.0 ;
// Initialize ROS node
ros::init(argc, argv, "Read_setpoint");
ros: :NodeHandle nod;
// Publish for desired position message

ros::Publisher read_setpoint_pub = nod.advertise<std_msgs::Float64>("/setpoint", 1000);

dynamic_reconfigure: :Server<legged_robot::ParamConfig> Read_setpoint;
dynamic_reconfigure: :Server<legged_robot::ParamConfig>::CallbackType f;
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f = boost::bind(&callback, _1, _2);
Read_setpoint.setCallback(f);

ros::Rate loop_rate(1000);
setpoint_msg.data = 0.0;
ROS_INFO("Reading Setpoint.");

while (ros::ok())
{
if (rpos != prevpos)

{

prevpos = rpos ;
}
setpoint_msg.data = rpos ;
read_setpoint_pub.publish(setpoint_msg);
ros: :spinOnce();
loop_rate.sleep();
}

return 0;

}

Tiva boards

#include <stdint.h>

#include <stdbool.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "drivers/pinout.h"
#include "driverlib/interrupt.h”
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/rom_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#tinclude "utils/uartstdio.h"
#tinclude "driverlib/flash.h"
#include "driverlib/systick.h"
#include "utils/locator.h"
#include "utils/lwiplib.h"
#include "utils/ustdlib.h"
#include "inc/hw_pwm.h"
#include "driverlib/pwm.h"
#include "inc/hw_gei.h"
#include "driverlib/gei.h"
#include "driverlib/timer.h"

#include "main.h"

#ifdef DEV_ADIS16375
#include "ADIS16375.h"
#tendif

#include "spi.h"

//*****************************************************************************
//

// Defines for setting up the system clock.

//

//*****************************************************************************

#define SYSTICKHZ 100
#define SYSTICKMS (1000 / SYSTICKHZ)

//*****************************************************************************
//

// Interrupt priority definitions. The top 3 bits of these values are

// significant with lower values indicating higher priority interrupts.

//
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//*****************************************************************************

#define SYSTICK_INT_PRIORITY ox80
#define ETHERNET_INT_PRIORITY  0xCO

][ REFEEAA KA A KA A A KA KA A KA A KR KA A KK KA KA KKK A KA KK A A H A KKK KK KA KK

//
// The current IP address.
//

[ REFEEAA KA A KA A A KA KA KA KKK AR KKK KA A KA KA KA KKK KA A KK A K AR A KA KKK

uint32_t g_ui32IPAddress;
//*****************************************************************************
//

// The system clock frequency.

//

//*****************************************************************************

uint32_t g_ui32SysClock;

#ifdef DEBUG
void
__error__(char *pcFilename, uint32_t ui32Line)

#ifdef ENABLE_ETHERNET

// Initialize the UDP receive pcb

struct udp_pcb * udp_init_r(void);

// Send data over UDP

void udp_send_data(void* sbuf, ul6_t len);

// Callback for UDP data reception

void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, ul6_t
port);

// The variable that hold the UDP receive pcb

struct udp_pcb *Rpcb;

// Variables assgined to the controller pc IP and current board IP
struct ip_addr controller_ip, board_ip;

// Flag that is raised when the IP is assigned

volatile uint8_t gotIP = ©;

// Variables for lwip configuration

unsigned long device_ip,device_subnet,device_gateway;

#endif

// Flags raised when events for encoder send and pwm set are active
bool sendEncoder, setPWMvalue;

// Variable for received PWM command

int8_t pwmValue;

#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375

// Function that configures the interrupt detection of ADIS16375 IMU
void ConfigureADIS16375Int(void);

// ADIS16375 object

ADIS16375 myIMU;

#endif

// Flag for IMU Data ready on interrupt

uint8_t imuDataReady = 0;

// Variables that hold the measurements received from the IMU

intl6_t accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z, delta_x, delta_y, delta_z, dv_x, dv_y,
dv_z, temp_out;

double dval_x, dval_y, dval_z, temp, deltaAccX, deltaAccY, deltaAccZ;

#endif

#ifdef ENABLE_ETHERNET
// Display the input IP address on UART
void DisplayIPAddress(uint32_t ui32Addr)

{
char pcBuf[16];

/7
// Convert the IP Address into a string.
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//
usprintf(pcBuf, "%d.%d.%d.%d", ui32Addr & Oxff, (ui32Addr >> 8) & Oxff,
(ui32Addr >> 16) & Oxff, (ui32Addr >> 24) & Oxff);

//
// Display the string.
//
#ifdef ENABLE_UART
UARTprintf(pcBuf);
#tendif
}
#tendif

#ifdef ENABLE_ETHERNET
// Ethernet lwip interrupt handler
void lwIPHostTimerHandler(void)

{

uint32_t ui32Idx, ui32NewIPAddress;

//

// Get the current IP address.

//

ui32NewIPAddress = 1lwIPLocalIPAddrGet();

//
// See if the IP address has changed.
//
if(ui32NewIPAddress != g ui32IPAddress)
{
//
// See if there is an IP address assigned.
//
if(ui32NewIPAddress == Oxffffffff)
{
//
// Indicate that there is no link.
//
//UARTprintf("Waiting for link.\n");

else if(ui32NewIPAddress == 0)

{
//
// There is no IP address, so indicate that the DHCP process is
// running.
//
//UARTprintf("Waiting for IP address.\n");
}
else
{
//
// Display the new IP address.
//

#ifdef ENABLE_UART
UARTprintf("IP Address: ");
DisplayIPAddress(ui32NewIPAddress);
UARTprintf("\n");

#endif
// Set the gotIP flag once IP is assigned
gotIP = 1;

¥

//

// Save the new IP address.

//

g_ui32IPAddress = ui32NewIPAddress;

//
// Turn GPIO off.

//
MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1);

//
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// If there is not an IP address.
//
if((ui32NewIPAddress == @) || (ui32NewIPAddress == Oxffffffff))
{
//
// Loop through the LED animation.
//

for(ui32Idx = 1; ui32Idx < 17; ui32Idx++)
{

//

// Toggle the GPIO

//

MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1,
(MAP_GPIOPinRead(GPIO_PORTN_BASE, GPIO_PIN_1) A
GPIO_PIN_1));

SysCtlDelay(g_ui32SysClock/(ui32Idx << 1));
}
}
#endif

//*****************************************************************************

//
// The interrupt handler for the SysTick interrupt.
//
[ ]k sk stk sk sk fok sk kot ok sk stk ko sk skt sk stk kst sk stk sk sk kst skok stk ok skl ok skt sk ook sk sk ok sk ok
void
SysTickIntHandler(void)
{
//
// Call the 1wIP timer handler.
//
#ifdef ENABLE_ETHERNET
1wIPTimer (SYSTICKMS);
#endif

}

#ifdef ENABLE_UART

// Configure the UART peripheral

void ConfigureUART(void)

{
//
// Enable the GPIO Peripheral used by the UART.
//
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

//

// Enable UARTO

//
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);

//

// Configure GPIO Pins for UART mode.

//

ROM_GPIOPinConfigure(GPIO_PA@_UORX);
ROM_GPIOPinConfigure(GPIO_PA1_UOTX);
ROM_GPIOPinTypeUART(GPIO_PORTA BASE, GPIO _PIN © | GPIO_PIN_1);

//

// Initialize the UART for console I/O.

//

UARTStdioConfig(@, 115200, g ui32SysClock);

#ifdef UART_BUFFERED
UARTEchoSet(false);
#endif

}
#tendif

// Generic delay function
void cyclesdelay(unsigned long cycles)
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{
}

#ifdef ENABLE_MOTOR

// Setup the PWM peripheral
void SetupPWM()

{

MAP_SysCtlDelay(cycles); // Tiva C series specific

SysCt1PWMClockSet (SYSCTL_PWMDIV_1);
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM®);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
GPIOPinConfigure(GPIO_PGO_MOPWM4) ;
GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_0);

PWMGenConfigure (PWMO_BASE, PWM_GEN_2, PWM_GEN_MODE_UP_DOWN |
PWM_GEN_MODE_NO_SYNC) ;

// Set the PWM period to 1000Hz. To calculate the appropriate parameter
// use the following equation: N = (1 / f) * SysClk. Where N is the

// function parameter, f is the desired frequency, and SysClk is the

// system clock frequency.

// In this case you get: (1 / 20000Hz) * 120MHz = 6000 cycles. Note that
// the maximum period you can set is 2”16.

// TODO: modify this calculation to use the clock frequency that you are
// using.

//

PWMGenPeriodSet (PWMO_BASE, PWM_GEN_2, 6000);

// Configure Direction pin
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
MAP_GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN 4);
MAP_GPIOPadConfigSet(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPD);
MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO PIN 4, 0);

}

// Fucntion to set the PWM output given the duty cycle

// PWM can range from -100 to 100, if the value is negative

// we reverse the motion by setting the DIR pin low for the drive

// positive direction correspond to DIR pin being high

int8_t SetPWMDuty(int8_t duty)

{
// If duty cycle is @ , disable the PWM generator and output
if(!duty)

PWMOutputState(PWMO_BASE, PWM_OUT_4 BIT, false);
PWMGenDisable (PWM@_BASE, PWM_GEN_2);
}
else
{
// Set DIR pin accordingly
if(duty < @)

MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO PIN 4, 0);
duty = 100 - (100 + duty);
}
else
MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO PIN_4);

if(duty == 100)
duty = 95;

// Set the PWM pulse width (duty cycle)
PWMPulseWidthSet (PWMO_BASE, PWM_OUT 4,
(PWMGenPeriodGet (PWMO_BASE, PWM_GEN_2) / 100) * (uint32_t)duty);
PWMOutputState(PWM@_BASE, PWM_OUT 4 BIT, true);
PWMGenEnable (PWM@_BASE, PWM_GEN_2);
}
// Return the set duty cycle
return duty;

}
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// 5 KHz timer that sets the flag for encoder value transmission
void
Timer@IntHandler(void)

{
//
// Clear the timer interrupt.
//
ROM_TimerIntClear(TIMER®_BASE, TIMER_TIMA_TIMEOUT);
// Set the flag
sendEncoder = true;
}
#tendif

#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375
// ADIS16375 Interrupt handler
void IntADIS16375(void)

{
uint32_t status;

// Clear the interrupt flag
status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);

// Set the appropriate flag
imuDataReady = 1;

// Read the desired data from the IMU
ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z);
ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z);
//ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z);
//ADIS16375_readDeltaVel (&myIMU, &dv_x, &dv_y, &dv_z);

// Value conversion for delta angle displacement

// Delta angles need to be accumulated to get proper euler angle values
/*dval_x = (delta_x*1.0)*0.005493;

dval_y = (delta_y*1.0)*0.005493;

dval_z = (delta_z*1.0)*0.005493;

deltaAccX += dval_x;
deltaAccY += dval_y;
deltaAccZ += dval_z;*/

GPIOIntClear(IMU_IRQ_PORT_BASE, status);
}

// Configure the ADIS16375 interrupt pin

void ConfigureADIS16375Int(void)

{
SysCtlPeripheralEnable(IMU_IRQ_PERIPH);
GPIOPinTypeGPIOInput(IMU_IRQ PORT_BASE, IMU_IRQ_PIN);
GPIOINntTypeSet(IMU_IRQ PORT_BASE, IMU_IRQ PIN, GPIO_RISING_EDGE);
GPIOIntRegister(IMU_IRQ_PORT_BASE, IntADIS16375);
//GPIOIntEnable(IMU_IRQ PORT_BASE, IMU_IRQ PIN);
IntEnable(IMU_IRQ_INT);

}

t#tendif

#tendif

// Main application
int main(void)
{
uint32_t status;
uint8_t printIMU = O;
// UART buffer
uint8_t charUART[256];
// The first time the IMU gives an interrupt we can set the BIAS NULL
// command for auto-bias correction on accelerometer and gyroscope data
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uint8_t firstIMU = O;

#ifdef ENABLE_UART
// Character that is used to receive commands from the UART
// Used only for debugging
unsigned char uCom = 0;

#tendif

#ifdef ENABLE_ETHERNET
uint32_t ui32Usereo, ui32Userl;
uint8_t pui8MACArray[8];
// UDP Send buffer
uint8_t senduDP[128];
// Hold the number of transmission (used for debugging)
uint32_t sends = 0;
#endif

// Variable to hold the read encoder value
int32_t encoderPos = 0;

// Initialize the application flags
#ifdef ENABLE_MOTOR

sendEncoder = false;

setPWMvalue = false;

pwmValue = 0;
#tendif

#ifdef ENABLE_ETHERNET
gotIP = 0;

// Set the proper values for lwip configuration based on board selection
#if defined(BOARD_IMU)

// 192.168.1.10

device_ip = OxCOA8010A;

IP4_ADDR(&board_ip, ©xC0,0xA8,0x01,0x0A);
#telif defined(BOARD_KNEE)

// // 192.168.1.11

device_ip = OxCOA8010B;

IP4_ADDR(&board_ip, ©xCo0,0xA8,0x01,0x0B);
#elif defined(BOARD_HIP)

// // 192.168.1.12

device_ip = 0xCOA8010C;

IP4_ADDR(&board_ip, 0xC@,0xA8,0x01,0x0C);
#tendif

// 255.255.255.0
device_subnet = OxFFFFFF0O;

// 192.168.1.1
device_gateway = OxCOA80101;

// 192.168.1.22
IP4_ADDR(&controller_ip, ©xC0,0xA8,0x01,0x16);

t#tendif

// Start the system clock (120 MHz)
SysCt1MOSCConfigSet (SYSCTL_MOSC_HIGHFREQ);

g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000) ;

// : Enable pins for relay signals -IN CASE OF TREADMILL BOARD
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOK);
SysCtlDelay(10000);

GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO PIN_7);
GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO _PIN_4);
GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO _PIN_5);
SysCt1lDelay(10000000) ;

GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7);
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false); //all on
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false);
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SysCtlDelay(10000000) ;

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_7, true);

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_4, GPIO_PIN 4); //all off
GPIOPinWrite(GPIO PORTK_BASE, GPIO_PIN_5, GPIO_PIN 5);

SysCtlDelay(10000000) ;

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_7, GPIO _PIN_7);

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_4, false); //all on

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_5, false);

SysCtlDelay(10000000) ;

GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true);

GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN 4); //all off
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);

#ifdef ENABLE_ETHERNET
// Set pins for ethernet functionality
PinoutSet(true, false);
MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1);
MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_ 1);
#telse
PinoutSet(false, false);
#endif

#ifdef ENABLE_UART
ConfigureUART();
#endif

#ifdef ENABLE_ETHERNET
// Initialize the SysTick timer
MAP_SysTickPeriodSet(g_ui32SysClock / SYSTICKHZ);
MAP_SysTickEnable();
MAP_SysTickIntEnable();

MAP_FlashUserGet (&ui32User9, &ui32Userl);
if((ui32User® == Oxffffffff) || (ui32Userl == Oxffffffff))

{
#ifdef ENABLE_UART

UARTprintf("No MAC programmed!\n");

#tendif
while(1)
{
}
}

#ifdef ENABLE_UART
UARTprintf("Waiting for IP.\n");
#endif

pui8MACArray[0] = ((ui32User@ >> ©0) & oxff);
pui8MACArray[1] = ((ui32User@ >> 8) & oxff);
pui8MACArray[2] = ((ui32User® >> 16) & oxff);
pui8MACArray[3] = ((ui32Userl >> ©0) & oxff);
pui8MACArray[4] = ((ui32Userl >> 8) & oxff);
pui8MACArray[5] = ((ui32Userl >> 16) & Oxff);

// 1wIP stack initialization
//IwIPInit(g_ui32SysClock, pui8MACArray, 0, ©, ©, IPADDR_USE_DHCP);

1wIPInit(g_ui32SysClock, pui8MACArray, device_ip, device_subnet, device_gateway,
IPADDR_USE_STATIC);

MAP_IntPrioritySet(INT_EMACO, ETHERNET_ INT_PRIORITY);
#tendif

MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY);

// Wait until an IP is assigned
#ifdef ENABLE_ETHERNET
while(gotIP == 0)
SysCtlDelay(120);
#endif

#ifdef ENABLE_UART

UARTprintf("Initializing...\n");
#endif
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// Configure motor interface modules
#ifdef ENABLE_MOTOR

// Setup the PWM generator

SetupPWM();

// QEI Setup

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
SysCtlPeripheralEnable(SYSCTL_PERIPH_QEIO);
GPIOPinConfigure(GPIO_PL3_IDX®);

GPIOPinConfigure(GPIO_PL1_PHA®);

GPIOPinConfigure(GPIO_PL2_PHBO);

GPIOPinTypeQEI(GPIO_PORTL_BASE, GPIO_PIN_1 | GPIO_PIN 2 | GPIO_PIN_3);

QEIConfigure(QEIO_BASE, (QEI_CONFIG_CAPTURE_A B | QEI_CONFIG_RESET_IDX | QEI_CONFIG_QUADRATURE |
QEI_CONFIG_NO_SWAP), 52%*2000-1); QEIVelocityConfigure(QEIO_BASE, QEI_VELDIV_1, 8000000);
QEIVelocityConfigure(QEIO_BASE, QEI_VELDIV_1, 8000000); // for the treadmill

//
// Enable the quadrature encoder.
//
QEIEnable(QEIQ_BASE);
QEIPositionSet(QEI®_BASE,®);
//
// Delay for some time...
//
SysCtlDelay(12000);
#endif

// Initialize the UDP receive pcb
#ifdef ENABLE_ETHERNET

Rpcb = udp_init_r();
#endif

// IMU Initializaztion
#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375

ADIS16375_Init(&myIMU, cyclesdelay, IMU_CS, IMU_RST, init_spil6, SpiTransferi6);
#ifdef ENABLE_UART

//UARTprintf("Prod ID : Ox%X\n",ADIS16375_device_id(&myIMU));

//ADIS16375 write(&myIMU,ADIS16375 REG_GLOB_CMD,0x8000);
#endif

//ADIS16375_debug(&myIMU);

ConfigureADIS16375Int();

//status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);

// Clear interrupt flag just to be safe
GPIOIntClear(IMU_IRQ PORT_BASE, IMU_IRQ PIN);
GPIOINntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);

//ADIS16375_wake (&myIMU) ;

//init_spil6();

//UARTprintf("Prod ID : Ox%X\n",ADIS16375_ device_id(&myIMU));
#endif

t#tendif

// Configure 5 KHz tier for encoder count acquisition
#ifdef ENABLE_MOTOR

SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMER®);

TimerConfigure(TIMERO_BASE, TIMER_CFG_PERIODIC);

TimerLoadSet(TIMERO_BASE, TIMER_A, g ui32SysClock/5000); //here the transmitting frequency is
defined

IntEnable(INT_TIMEROA);

TimerIntEnable(TIMERO_BASE, TIMER_TIMA TIMEOUT);

TimerEnable(TIMERO_BASE, TIMER_A);
#endif

// Application Main Loop
while(1)

{
#ifdef ENABLE_IMU
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// If data ready from IMU output the data

// On first interrupt only we check the product ID

// and are able to set the configuration for proper delta angle calculation
if(imuDataReady == 1)

if(!firstIMU)
{
firstIMU = 1;
#ifdef DEV_ADIS16375
UARTprintf("Prod ID : @x%X\n",ADIS16375_device_id(&myIMU));
#endif

#ifdef DEV_ADIS16375
// Resore factory calibration on strat-up
ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, ©x4000);
// Configure the ADIS16375 IMU
//MAP_SysCtlDelay(40000*100);

// Set the decimation coefficient
//ADIS16375 write(&myIMU, ADIS16375_REG_DEC_RATE, DECIMATION_COEF);

// Set configuration for the BIAS estimator
ADIS16375_write(&myIMU, ADIS16375_REG_NULL_CFG, @x@A07);

// Load values for bias correction (BIAS NULL command)
//ADIS16375 write(&myIMU, ADIS16375 REG_GLOB_CMD, ©x0100);

//GPIOIntDisable(IMU_IRQ PORT_BASE, IMU_IRQ PIN);
#endif
imuDataReady = ©;
deltaAccX = deltaAccY = deltaAccZ = 0.0;
}
else
{
imuDataReady = ©;
#ifdef ENABLE_ETHERNET
#ifdef DEV_ADIS16375
sendUDP[@] = 0x43;
#endif
memcpy (&sendUDP[1], (uint8_t*)(&accel_x),2);
memcpy (&sendUDP[3], (uint8_t*)(&accel_y),2);
memcpy (&sendUDP[5], (uint8_t*)(&accel_z),2);
memcpy (&sendUDP[7], (uint8_t*) (&gyro_x),2);
memcpy (&sendUDP[9], (uint8_t*) (&gyro_y),2);
memcpy (&sendUDP[11], (uint8_t*)(&gyro_z),2);
udp_send_data((void*)sendUDP,13);
#endif
// Handle the recieved IMU measrements
#ifdef ENABLE_UART
if(printIMU)

printIMU = 0;

#ifdef DEV_ADIS16375
UARTprintf("ACC_X_OUT : %d ©x%X\n",accel_x,accel_x);
UARTprintf("ACC_Y_OUT : %d ©x%X\n",accel_y,accel_y);
UARTprintf("ACC_Z_OUT : %d ©x%X\n",accel_z,accel_z);

UARTprintf("GYRO_X_OUT : %d ox%X\n",gyro_x,gyro_x);
UARTprintf("GYRO_Y_OUT : %d @x%X\n",gyro_y,gyro_y);
UARTprintf("GYRO_Z_OUT : %d @x%X\n",gyro_z,gyro_z);

dval_x = (gyro_x*1.0)*0.013108;
dval_y = (gyro_y*1.0)*0.013108;
dval_z = (gyro_z*1.0)*0.013108;

sprintf(charUART, "GYRO X : %1f\n", dval_x);
UARTprintf("%s",charUART);
sprintf(charUART, "GYRO Y : %1f\n", dval_y);
UARTprintf("%s",charUART);
sprintf(charUART, "GYRO Z : %1f\n", dval_z);
UARTprintf("%s",charUART);

dval_x = (accel_x*1.0)*0.8192;
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#tendif

#tendif

#tendif

#ifdef
#ifdef

t#tendif

#ifdef

#ifdef

t#tendif

#ifdef

#tendif

dval_y = (accel_y*1.0)*0.8192;
dval_z = (accel_z*1.0)*0.8192;

sprintf(charUART, "ACC X : %1f\n", dval_x);
UARTprintf("%s",charUART);
sprintf(charUART, "ACC Y : %1f\n", dval_y);
UARTprintf("%s",charUART);
sprintf(charUART, "ACC Z : %1f\n", dval_z);
UARTprintf("%s",charUART);

dval_x = (delta_x*1.0)*0.005493;
dval_y = (delta_y*1.0)*0.005493;
dval_z = (delta_z*1.0)*0.005493;

sprintf(charUART, "DELTA X : @x%X %1f\n", delta_x, dval_x);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA Y : Ox%X %1f\n", delta_y, dval_y);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA Z : Ox%X %1f\n", delta_z, dval_z);
UARTprintf("%s",charUART);

dval_x = (dv_x*1.0)*3.0518;
dval_y = (dv_y*1.0)*3.0518;
dval_z = (dv_z*1.0)*3.0518;

sprintf(charUART, "DELTA VEL X : %1f\n", dval_x);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA VEL Y : %1f\n", dval_y);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA VEL Z : %1f\n", dval_z);
UARTprintf("%s",charUART);

}

// UART command interface for debugging
ENABLE_UART

UART_BUFFERED

if (UARTRxBytesAvail()>0)

{
uCom = UARTgetc();
UARTF1lushRx();

}

switch(uCom)

ENABLE_IMU
case '1l' :
// Get IMU product ID
DEV_ADIS16375
UARTprintf("Prod ID : Ox%X\n",ADIS16375_device_id(&myIMU));

break;
case '2':
// Reset IMU measurement data
imuDataReady = 0;
accel_x = accel_y = accel_z = 0;
deltaAccX = deltaAccY = deltaAccZ = 0.0;
status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);
GPIOIntClear(IMU_IRQ_PORT_BASE, status);
GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
break;
case '3':
// Get data directly from IMU without waiting for interrupt
DEV_ADIS16375
ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z);
ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z);
ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z);
ADIS16375_readDeltaVel(&myIMU, &dv_x, &dv_y, &dv_z);
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dval_x = (gyro_x*1.0)*0.013108;
dval_y = (gyro_y*1.0)*0.013108;
dval_z = (gyro_z*1.0)*0.013108;

sprintf(charUART, "GYRO X :
UARTprintf("%s",charUART);
sprintf(charUART, "GYRO Y :
UARTprintf("%s",charUART);
sprintf(charUART, "GYRO Z :
UARTprintf("%s",charUART);

%1f\n", dval_x);
%1f\n", dval_y);

%1f\n", dval_z);

dval_x = (accel_x*1.0)*0.8192;
dval_y = (accel_y*1.0)*0.8192;
dval_z = (accel_z*1.0)*0.8192;

sprintf(charUART, "ACC X :
UARTprintf("%s",charUART);
sprintf(charUART, "ACC Y :
UARTprintf("%s",charUART);
sprintf(charUART, "ACC Z : %1f\n", dval_z);
UARTprintf("%s",charUART);

%1f\n", dval_x);

%1f\n", dval_y);

dval_x = (delta_x*1.0)*0.005493;
dval_y = (delta_y*1.0)*0.005493;
dval_z = (delta_z*1.0)*0.005493;

sprintf(charUART, "DELTA X :
UARTprintf("%s",charUART);

sprintf(charUART, "DELTA Y :
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA Z
UARTprintf("%s",charUART);

%1f\n", dval_x);
%1f\n", dval_y);

: %1f\n", dval_z);

dval_x = (dv_x*1.0)*3.0518;
dval_y = (dv_y*1.0)*3.0518;
dval_z = (dv_z*1.0)*3.0518;

sprintf(charUART, "DELTA VEL X :
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA VEL Y :
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA VEL Z
UARTprintf("%s",charUART);
break;

case '4'
// Output received IMU data
printIMU = 1;
break;

#ifdef DEV_ADIS16375

case 'S5’
// Read and display IMU internal temperature
temp_out = ADIS16375_temp(&mnyIMU);
temp = (temp_out*1.0)*0.00565 + 25.0;
sprintf(charUART, "%1f", temp);
UARTprintf("Temp : Ox%X %s\n",temp_out,charUART);
break;

case '6'
// Output bias coefficients

%1f\n", dval_x);
%1f\n", dval_y);

: %1f\n", dval_z);

UARTprintf("X_GYRO_OFF L
UARTprintf("X_GYRO_OFF_H
UARTprintf("Y_GYRO_OFF L
UARTprintf("Y_GYRO_OFF_H
UARTprintf("Z_GYRO_OFF L
UARTprintf("Z_GYRO_OFF_H :
UARTprintf("X_ACC_OFF_L
UARTprintf("X_ACC_OFF_H :
UARTprintf("Y_ACC_OFF_L
UARTprintf("Y_ACC_OFF_H :
UARTprintf("Z_ACC_OFF_L
UARTprintf("Z_ACC_OFF_H :
UARTprintf("X_GYRO_SCALE
UARTprintf("Y_GYRO_SCALE
UARTprintf("Z_GYRO_SCALE

: Ox%X\n",ADIS16375_read(&myIMU,
: Ox%X\n",ADIS16375_read(&myIMU,
: Ox%X\n",ADIS16375_read(&myIMU,
: Ox%X\n",ADIS16375_read(&myIMU,
: Ox%X\n",ADIS16375_read(&myIMU,

Ox%X\n" ,ADIS16375_read(&myIMU,

119

: Ox%X\n",ADIS16375_read(&myIMU, 16,
ox%X\n",ADIS16375_read(&myIMU, 16,
: Ox%X\n",ADIS16375_read(&myIMU, 16,
ox%X\n",ADIS16375_read(&myIMU, 16,
: Ox%X\n",ADIS16375_read(&myIMU, 16,

ox%X\n",ADIS16375_read(&myIMU, 16,
: @x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_SCALE));
: @x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_SCALE));
: @x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_SCALE));

ADIS16375_REG_X_GYRO_OFF_L));
ADIS16375_REG_X_GYRO_OFF_H));
ADIS16375_REG_Y_GYRO_OFF_L));
ADIS16375_REG_Y_GYRO_OFF_H));
ADIS16375_REG_Z_GYRO_OFF_L));

, ADIS16375_REG_Z_GYRO_OFF_H));

ADIS16375_REG_X_ACC_OFF_L));
ADIS16375_REG_X_ACC_OFF_H));
ADIS16375_REG_Y_ACC_OFF_L));
ADIS16375_REG_Y_ACC_OFF_H));
ADIS16375_REG_Z_ACC_OFF_L));
ADIS16375_REG_Z_ACC_OFF_H));



UARTprintf("X_ACC_SCALE : @x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACCEL_SCALE));
UARTprintf("Y_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACCEL_SCALE));
UARTprintf("Z_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375 REG_Z ACCEL_SCALE));
UARTprintf("GEN_CONFIG : ©x%X\n", (ADIS16375_read(&myIMU, 16, ADIS16375_REG_GEN_CFG) &
OX00FF));
UARTprintf("NULL_CONFIG : 0x%X\n", (ADIS16375_read(&myIMU, 16, ADIS16375_REG_NULL_CFG) &
Ox3FFF));
UARTprintf("DEC_RATE : @x%X\n", (ADIS16375_read(&myIMU, 16, ADIS16375 REG_DEC_RATE) & @x07FF));
break;
case '7':
// Load calibration values
ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x0100);
break;
case '8':
// Output delta angle from stored accumulated data
sprintf(charUART, "DELTA X : %1f\n", deltaAccX);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA Y : %1f\n", deltaAccY);
UARTprintf("%s",charUART);
sprintf(charUART, "DELTA Z : %1f\n", deltaAccZ);
UARTprintf("%s",charUART);
break;
#endif
case 'w':
// IMU wakeup
#ifdef DEV_ADIS16375
ADIS16375_wake(&myIMU);
#endif

break;
#tendif
default : break;
}
uCom = 0;
#tendif

#ifdef ENABLE_MOTOR
// If we received a PWM command set the corresponding PWM duty cyle and direction

if(setPWMvalue == true)

{
if (pwmValue == 103)
UARTprintf("enableccw");
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN 4);
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false);
UARTprintf("enableccw");
}
if (pwmValue == 101)
{
UARTprintf("kill");
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true);
GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_4, GPIO_PIN 4);
//all off

GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_5, GPIO_PIN 5);
UARTprintf("kill");

}

if (pwmValue == 102)

{
UARTprintf("enable");
GPIOPinWrite(GPIO_PORTK_BASE, GPIO PIN_7, GPIO_PIN 7);
UARTprintf("enable");

}
if (pwmValue == 104)

{
UARTprintf("enablecw");
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false);
GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);
UARTprintf("enablecw");

}

else

UARTprintf("else");
SetPWMDuty (pwmValue);
UARTprintf("else");
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setPWMvalue = false;

¥
// If send encoder value event occurs, send data via UDP
if(sendEncoder == true)
{
//sends++;

encoderPos = (QEIPositionGet(QEIO_BASE));
//encoderPos = (QEIVelocityGet(QEIO®_BASE)); for the treadmill

//if(sends == 5000)

/74
//UARTprintf("Position %d\n",encoderPos);
//sends = 0;

/7}

sendEncoder = false;
#ifdef ENABLE_ETHERNET
sendUDP[@] = ox42;
memcpy (&sendUDP[1], (uint8_t*)(&encoderPos),4);
udp_send_data((void*)sendUDP,5);
#endif
¥

#tendif

}
}
#ifdef ENABLE_ETHERNET

// Initializze the UDP receive pcb
struct udp_pcb * udp_init_r(void)
{

//err_t err;

struct udp_pcb *pcb_r;

pcb_r = udp_new();

// Bind to given port , receive from any IP
udp_bind(pcb_r, IP_ADDR_ANY, PORT_R);

#ifdef ENABLE_UART
UARTprintf("UDP to receive at port %d...\n", PORT_R);
#endif

// Set the receive data callback
udp_recv(pcb_r, udp_receive_data, NULL);

return pcb_r;

}

void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, ul6_t
port)
{

char * pPointer;
//struct pbuf *pil;

if (p !'= NULL)

//UARTwrite((char*)(p->payload), p->len);
//UARTprintf ("R : %s\n", (char*)(p->payload));

pPointer = (char*)(p->payload);

/* pl = pbuf_alloc(PBUF_TRANSPORT,8,PBUF_RAM);
memcpy (pl->payload, pData, 8);

udp_send(pcb, p1);

pbuf_free(pl);*/

/*if(pPointer[0] == ©x31)
{

udp_send_data((void*)pData, 68);
3/

// If we received PWM commnad (©x31 command byte)
// extract the transmitted value

121



}

if(pPointer[0] == Ox31)

pwmValue = pPointer[1];
setPWMvalue = true;

}
/*if(pPointer[0] == 0©x32)
{
sendEncoder = true;
y*/

pbuf_free(p);

// Send data over UDP to the defined port
void udp_send_data(void* sbuf, ul6_t len)

{

}

struct pbuf *p;
err_t err;

p = pbuf_alloc(PBUF_TRANSPORT,len,PBUF_RAM);
memcpy (p->payload, sbuf, len);
err = udp_sendto(Rpcb, p, &controller_ip, PORT_S);

pbuf_free(p);

#tendif

Joint_state_publisher

#include <boost/algorithm/string.hpp>

#include <gazebo_plugins/gazebo_ros_joint_state_publisher.h>
#include <tf/transform_broadcaster.h>

#include <tf/transform_listener.h>

using namespace gazebo;

GazeboRosJointStatePublisher::GazeboRosJointStatePublisher() {}

// Destructor
GazeboRosJointStatePublisher: :~GazeboRosJointStatePublisher() {

}

rosnode_->shutdown();

void GazeboRosJointStatePublisher::Load ( physics::ModelPtr _parent, sdf::ElementPtr _sdf ) {

// Store the pointer to the model

this->parent_ = _parent;
this->world_ = _parent->GetWorld();
this->robot_namespace_ = parent_->GetName ();

if ( !_sdf->HasElement ( "robotNamespace" ) ) {
ROS_INFO ( "GazeboRosJointStatePublisher Plugin missing <robotNamespace>, defaults to \"%s\"",
this->robot_namespace_.c_str() );

} else {
this->robot_namespace_ = _sdf->GetElement ( "robotNamespace" )->Get<std::string>();
if ( this->robot_namespace_.empty() ) this->robot_namespace_ = parent_->GetName ();

if ( !robot_namespace_.empty() ) this->robot_namespace_ += "/";
rosnode_ = boost::shared_ptr<ros::NodeHandle> ( new ros::NodeHandle ( this->robot_namespace_ ) );

if ( !_sdf->HaskElement ( "jointName" ) ) {

ROS_ASSERT ( "GazeboRosJointStatePublisher Plugin missing jointNames" );
} else {

sdf::ElementPtr element = _sdf->GetElement ( "jointName" ) ;

std::string joint_names = element->Get<std::string>();

boost::erase_all ( joint_names, " " );

boost::split ( joint_names_, joint_names, boost::is_any of ( "," ) );

}

this->update_rate_ = 100.90;
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if ( !_sdf->HasElement ( "updateRate" ) ) {

ROS_WARN ( "GazeboRosJointStatePublisher Plugin (ns = %s) missing <updateRate>, defaults to

%f",
this->robot_namespace_.c_str(), this->update_rate_ );
} else {
this->update_rate_ = _sdf->GetElement ( "updateRate" )->Get<double>();

}

// Initialize update rate stuff
if ( this->update_rate_ > 0.0 ) {
this->update_period_ = 1.0 / this->update_rate_;
} else {
this->update_period_ = 0.0;
3

last_update_time_ = this->world_->GetSimTime();

for ( unsigned int i = 0; i< joint_names_.size(); i++ ) {
joints_.push_back ( this->parent_->GetJoint ( joint_names_[i] ) );
ROS_INFO ( "GazeboRosJointStatePublisher is going to publish joint: %s",
joint_names_[i].c_str() );

ROS_INFO ( "Starting GazeboRosJointStatePublisher Plugin (ns = %s)!, parent name: %s", this-

>robot_namespace_.c_str(), parent_->GetName ().c_str() );

tf_prefix_ = tf::getPrefixParam ( *rosnode_ );

joint_state_publisher_ = rosnode_->advertise<sensor_msgs::JointState> ( "joint_states",1000 );

last_update_time_ = this->world_->GetSimTime();

// Listen to the update event. This event is broadcast every

// simulation iteration.

this->updateConnection = event::Events::ConnectWorldUpdateBegin (

boost::bind ( &GazeboRosJointStatePublisher::0OnUpdate, this, _1 ) );

}

void GazeboRosJointStatePublisher::0OnUpdate ( const common::UpdateInfo & _info ) {
// Apply a small linear velocity to the model.
common: :Time current_time = this->world_->GetSimTime();

double seconds_since_last_update = ( current_time - last_update_time_ ).Double();

if ( seconds_since_last_update > update_period_ ) {
publishJointStates();

last_update_time_+= common::Time ( update_period_ );

}

void GazeboRosJointStatePublisher::publishJointStates() {
ros::Time current_time = ros::Time::now();

joint_state_.header.stamp = current_time;
joint_state_.name.resize ( joints_.size() );
joint_state_.position.resize ( joints_.size() );
joint_state_.velocity.resize ( joints_.size() );
joint_state_.effort.resize ( joints_.size() );

for (int i = 0; 1 < joints_.size(); i++ ) {
physics::JointPtr joint = joints_[i];
math::Angle angle = joint->GetAngle ( © );
double veloc = joint->GetVelocity ( @ );
double eff = joint->GetForce ( 0 );

joint_state_.name[i] = joint->GetName();
joint_state_.position[i] = angle.Radian () ;
joint_state_.velocity[i] = veloc ;
joint_state_.effort[i] = eff ;

joint_state_publisher_.publish ( joint_state_ );
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simulation.world

<?xml version="1.0"?>
<sdf version='1.6">

<world name="default">

<physics type="ode">
<gravity>e 0 -9.81</gravity>
<max_step_size>0.001</max_step_size>
<real_time_factor>1</real_time_factor>
<real_time_update_rate>10.0</real_time_update_rate>
<ode>
<solver>
<type>quick</type>
<iters>100</iters>
<sor>1.3</sor>
</solver>
<constraints>
<cfm>0</cfm>
<erp>0.2</erp>
<contact_max_correcting_vel>100.0</contact_max_correcting_vel>
<contact_surface_layer>0.001</contact_surface_layer>
</constraints>
</ode>
</physics>

<include>
<uris>model://ground_plane</uri>
</include>

<include>
<uris>model://Monopod</uri>
</include>

<!-- Global Llight source -->
<include>

<uris>model://sun</uri>
</include>

<gui fullscreen='0"'>
<camera name='user_camera'>
<pose>4.927360 -4.376610 3.740080 0.000000 0.275643 2.356190</pose>
<view_controller>orbit</view_controller>
</camera>
</gui>

</world>
</sdf>

monopodplugin.cc

#ifndef _MONOPOD_PLUGIN_HH_
#define _MONOPOD_PLUGIN_HH_

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>
#include <gazebo/transport/transport.hh>
#include <gazebo/msgs/msgs.hh>
#include <thread>

#include "ros/ros.h"

#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float64.h"
#include <boost/algorithm/string.hpp>
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>
#include <boost/bind.hpp>

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>
#include <gazebo/common/common.hh>
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#include <stdio.h>
#include <math.h>

namespace gazebo

/// \brief A plugin to control a Monopod sensor.
class MonopodPlugin : public ModelPlugin
{

/// \brief Constructor

public: MonopodPlugin() {}

public: std::string joint_names ;

/// \brief The load function is called by Gazebo when the plugin 1is
/// inserted into simulation

/// \param[in] _model A pointer to the model that this plugin 1is
/// attached to.

/// \param[in] _sdf A pointer to the plugin's SDF element.

/// \brief A node use for ROS transport
private: std::unique_ptr<ros::NodeHandle> rosNode;

/// \brief A ROS subscriber
private: ros::Subscriber rosSub;

/// \brief A ROS callbackqueue that helps process messages
private: ros::CallbackQueue rosQueue;

/// \brief A thread the keeps running the rosQueue
private: std::thread rosQueueThread;

public: void SetJointPosition(const std::string & jointName, double _position);

public: virtual void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)
{

// Safety check

if (_model->GetJointCount() == @)

{
std::cerr << "Invalid joint count, Monopod plugin not loaded\n";
return;

}

// Store the model pointer for convenience.
this->model = _model;

if ( !_sdf->HaskElement ( "jointName" ) ) {
ROS_ASSERT ( "Plugin missing jointNames to send commands to" );
} else {
sdf::ElementPtr element = _sdf->GetElement ( "jointName" ) ;
joint_names = element->Get<std::string>();
boost::erase_all ( joint_names, " " );
boost::split ( joint_names_, joint_names, boost::is_any of ( "," ) );

// Initialize ros, if it has not already been initialized.
if (!ros::isInitialized())

{
int argc = 0;
char **argv = NULL;
ros::init(argc, argv, "gazebo_client",
ros::init_options::NoSigintHandler);
}

// Create our ROS node. This acts in a similar manner to
// the Gazebo node
this->rosNode.reset(new ros::NodeHandle("gazebo_client"));

// Create a named topic, and subscribe to it.
ros::SubscribeOptions so =

ros::SubscribeOptions: :create<std_msgs::Float64>(
"/" + this->model->GetName() + "/hip_torque_cmd",
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1,
boost: :bind(&VonopodPlugin: :OnRosMsg, this, _1),
ros::VoidPtr(), &this->rosQueue);

this->rosSub = this->rosNode->subscribe(so);

// Spin up the queue helper thread.
this->rosQueueThread =
std: :thread(std: :bind(&MVonopodPlugin: :QueueThread, this));

model->GetJoint("hip")->SetPosition(0 , 0.9) ;
model->GetJoint("z")->SetPosition(® , ©.1) ; //to set the initial height
model->GetJoint("x")->SetVelocity(® , ©.0) ; //to set the initial velocity

}

/// \brief Set the hip torque
/// \param[in] _vel New target velocity
public: void SetTorque(const double & trq)

{

model->GetJoint("hip")->SetForce( © ,_trq);

}

/// \brief Handle an incoming message from ROS

/// \param[in] _msg A float value that is used to set the velocity
/// of the Monopod

public: void OnRosMsg(const std_msgs::Float64ConstPtr & msg)

{
this->SetTorque(_msg->data);

}

/// \brief ROS helper function that processes messages
private: void QueueThread()

{
static const double timeout = 0.01;
while (this->rosNode->ok())
{
this->rosQueue.callAvailable(ros: :WallDuration(timeout));
}
}

/// \brief Pointer to the model.
private: physics::ModelPtr model;

private: std::vector<std::string> joint_names_;
s

// Tell Gazebo about this plugin, so that Gazebo can call Load on this plugin.
GZ_REGISTER_MODEL_PLUGIN(MonopodPlugin)

¥
#endif

model.sdf

<?xml version="1.0"'?>
<sdf version='1.6">
<model name="Asseml">
<static>false</static>

<link name="Lower_leg">
<pose>0.3 0 0.2 0 0 0</pose>
<must_be_base_link>0</must_be_base_link>
<inertial>
<pose>0 0 0.00903 0 0 0</pose>
<mass>0.338</mass>
<inertia>
<ixx>0.00409816</ixx>
<ixy>0</ixy>
<ixz»0</ixz>
<iyy>0.00409816</iyy>
<iyz>0</iyz>
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<izz>0.00409816</izz>
</inertia>
</inertial>
<collision name="Lower_leg_collision">
<geometry>
<cylinder>
<radius>.004</radius>
<length>.4</length>
</cylinder>
</geometry>
<surface>
<friction>
<ode>
<mu>10000.8</mu>
<mu2>10000.8</mu2>
</ode>
</friction>
</surface>
</collision>
<visual name="Lower_leg_visual">
<material>
<ambient>10 © © 10</ambient>
<diffuse>10 © 0 10</diffuse>
</material>
<geometry>
<cylinder>
<radius>.004</radius>
<length>.4</length>
</cylinder>
</geometry>
</visual>
</link>

<link name="Upper_leg">

<pose>0.3 0 0.35 @ 0 0</pose>

<must_be_base_link>0</must_be_base_link>

<inertial>
<pose>0 0 0.00193 @ 0 0</pose>
<mass>0.513</mass>
<inertia>

<l-- <1xx>0.0240557107408</1xX>

<ixx>0.0240557107408</ixx>
<ixy>e</ixy>
<ixz>0</ixz>
<iyy>0.0240557107408</iyy>
<iyz>e</iyz>
<izz>0.0240557107408</izz>
</inertia>
</inertial>
<collision name="Upper_leg_collision">
<geometry>
<cylinder>
<radius>.01</radius>
<length>.1</length>
</cylinder>
</geometry>
</collision>
<visual name="Upper_leg_visual">
<material>
<ambient>10 © © 10</ambient>
<diffuse>10 0 0 10</diffuse>
</material>
<geometry>
<cylinder>
<radius>.01</radius>
<length>.1</length>
</cylinder>
</geometry>
</visual>
</1link>

<joint name="spring" type="prismatic">
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<parent>Upper_leg</parent>
<child>Lower_leg</child>
<pose>0 0 © 0 O 0</pose>
<axis>
<Xyz>0 0 1</xyz>
<dynamics>
<damping>0.05</damping>
<friction»@.2</friction>
<spring_reference>0.0</spring_reference>
<spring_stiffness>6279.0</spring_stiffness>
</dynamics>
<limit>
<upper>0.2</upper>
<lower>0.0</lower>
<effort>l</effort>
</limit>
</axis>
</joint>

<link name="Body">
<pose>0.3 © 0.5 0 9 0</pose>
<inertial>
<mass>6.7</mass>
<inertia>
<ixx>0.002048</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.00182272</iyy>
<iyz>0</iyz>
<izz>0.00124928</izz>
</inertia>
</inertial>
<collision name="Body_collision">
<geometry>
<box>
<size»0.3 0.3 0.3</size>
</box>
</geometry>
</collision>
<visual name="Body_visual">
<material>
<ambient>1 © 0@ 1</ambient>
<diffuse>1l 0 0 1</diffuse>
</material>
<geometry>
<box>
<size»0.3 0.3 0.3</size>
</box>
</geometry>
</visual>
</1link>

<joint name="hip" type="revolute">
<parent>Body</parent>
<child>Upper_leg</child>
<pose>d 0 0 0 O 0</pose>
<axis>
<xyz>1l @ 0</xyz>
<dynamics>
<damping>0.005</damping>
<friction>0.1</friction>
</dynamics>
<limit>
<upper>0.5</upper>
<lower>-0.5</lower>
<effort>4.812</effort>
</limit>
</axis>
</joint>

<link name="Base4">

<pose>0.125 @ 0.575 0 © 0</pose>
<must_be_base_link>0</must_be_base_link>
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<inertial>
<mass>0.001</mass>
<inertia>
<ixx>0.00177083333333334</ixx>
<ixy»>0</ixy>
<ixz>0</ixz>
<iyy>0.00208333333333333¢/iyy>
<iyz>0</iyz>
<izz>0.00177083333333334</izz>
</inertia>
</inertial>
<collision name="Base4_collision">
<geometry>
<box>
<size>0.05 0.05 0.2</size>
</box>
</geometry>
<surface>
<friction>
<ode>
<mu>0.0</mu>
<mu2>0.0</mu2>
</ode>
</friction>
</surface>
</collision>
<visual name="Base4_visual">
<material>
<ambient>1 © @ 1</ambient>
<diffuse>1l © 0@ 1</diffuse>
</material>
<geometry>
<box>
<size>»0.05 0.05 0.2</size>
</box>
</geometry>
</visual>
</link>

<joint name="Base4-Body" type="fixed">
<parent>Base4</parent>
<child>Body</child>
<pose>-0.15 0 0 @0 @ 0</pose>
</joint>

<link name="Base3">
<pose>@ 0 0.575 @ @ 0</pose>
<must_be_base_link>0</must_be_base_link>
<inertial>
<mass>0.001</mass>
<inertia>
<ixx>0.00260416666666667</ixx>
<ixy>e</ixy>
<ixz>0</ixz>
<iyy>0.0060416666666667</iyy>
<iyz>e</iyz>
<izz>0.004166666666667</izz>
</inertia>
</inertial>
<collision name="Base3_collision">
<geometry>
<box>
<size»0.2 0.05 0.05</size>
</box>
</geometry>
<surface>
<friction>
<ode>
<mu>0.0</mu>
<mu2>0.0</mu2>
</ode>
</friction>
</surface>
</collision>
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<visual name="Base3_visual">
<material>
<ambient>1 © 0 1</ambient>
<diffuse>1 0 0 1</diffuse>
</material>
<geometry>
<box>
<size»0.2 0.05 0.05¢</size>
</box>
</geometry>
</visual>
</1link>
<joint name="z" type="prismatic">
<parent>Base3</parent>
<child>Base4</child>
<pose>-0.025 0 0 0 @ 0</pose>
<axis>
<Xyz>0 0 1</xyz>
<dynamics>
<damping>0.01</damping>
<friction»@.01</friction>
</dynamics>
<limit>
<upper>0.1</upper>
<lower>0.1</lower>
<effort>l</effort>
</limit>
</axis>
</joint>

<link name="Base2">
<pose>0 0 0.525 0 0 0</pose>
<inertial>
<mass>12.5</mass>
<inertia>
<ixx>26.00520833333333334</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>26.0442708333334</iyy>
<iyz>0</iyz>
<1z2>26.0442708333334</izz>
</inertia>
</inertial>
<collision name="Base2_collision">
<geometry>
<box>
<size>.05 50 .05</size>
</box>
</geometry>
<surface>
<friction>
<ode>
<mu>0</mu>
<mu2>0</mu2>
</ode>
</friction>
</surface>
</collision>
<visual name="Base2_visual">
<material>
<ambient>1 © © 1</ambient>
<diffuse>1l © 0@ 1</diffuse>
</material>
<geometry>
<box>
<size>.05 50 .05</size>
</box>
</geometry>
</visual>
</link>
<joint name="x" type="prismatic">
<parent>Base2</parent>
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<child>Base3</child>
<pose>0 0 -0.025 0 0 0</pose>
<axis>
<Xyz>0 1 0</xyz>
<dynamics>
<damping>0.0</damping>
<friction»@.0</friction>
</dynamics>
<limit>
<upper>0</upper>
<lower>0</lower>
<effort>l</effort>
</limit>
</axis>
</joint>

<link name="Basel">
<pose>d 0 0.25 0 0 0</pose>
<inertial>
<mass>1.25</mass>
<inertia>
<ixx>0.0263020833333333</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.0520833333333333</1iyy>
<iyz>e</iyz>
<i1zz>0.0263020833333333</izz>
</inertia>
</inertial>
<collision name="Basel_collision">
<geometry>
<box>
<size>.05 .05 .5</size>
</box>
</geometry>
</collision>
<visual name="Basel_visual">
<material>
<ambient>1 © @ 1</ambient>
<diffuse>l © 0@ 1</diffuse>
</material>
<geometry>
<box>
<size».05 .05 .5¢</size>
</box>
</geometry>
</visual>
</1link>

<joint name="Basel-Base2" type="fixed">
<parent>Basel</parent>
<child>Base2</child>
<pose>d 0 -0.025 0 0 0</pose>
</joint>

<joint type="fixed" name="baseworld">
<parent>world</parent>

<child>Basel</child>
<pose>0 0 -0.25 0 0 0</pose>
</joint>

<plugin name="joint_state_publisher" filename="libgazebo_ros_joint_state_publisher.so">
<jointName>hip, spring</jointName>
<updateRate>1000.0</updateRate>
<alwaysOn>true</alwaysOn>

</plugin>

<plugin name="commands" filename="libtreadmill_plugin.so"/>

</model>
</sdf>
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gazebo_sim.launch
<launch>

<!-- these are the arguments you can pass this launch file, for example paused:=true -->
<arg name="paused" default="true"/>
<arg name="use_sim_time" default="true"/>
<arg name="gui" default="true"/>
<arg name="headless" default="false"/>
<arg name="debug" default="false"/>

<!-- We resume the logic in empty world.launch, changing only the name of the world to be Launched -
->
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find monopod_exp_final)/worlds/simulation.world"/>
<arg name="debug" value="$(arg debug)" />
<arg name="gui" value="$(arg gui)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>
<arg name="headless" value="$(arg headless)"/>
</include>

<node name="position_controller" pkg="pid" type="controller" output="screen" >
<param name="node_name" value="position_controller" />
<param name="Kp" value="0.3" />
<param name="Ki" value="@.0" />
<param name="Kd" value="@.2" />
<param name="upper_limit" value="28" />
<param name="lower_limit" value="-28" />
<param name="windup_limit" value="10" />
<param name="diagnostic_period" value="0.25" />
<param name="max_loop_frequency" value="100.0" />
<param name="min_loop_frequency" value="100.0" />
</node>

<node name="Master" pkg="legged_robot" type="High_level_controller" output="screen" />

<node name="Command_Interface" pkg="legged_robot" type="Gazebo_Actuation_Interface"
output="screen" />

<node name="State_Callback_Interface" pkg="legged robot" type="Gazebo_Sensors_Interface"
output="screen" />

<node name="rqt_plot" pkg="rqt_plot" type="rqt_plot"
args="/state/data /setpoint/data" />

</launch>

rosbag.m

clear all ;

bagfile = 'mybagfile.bag';

bag = rosbag(bagfile);

% Dislpay Available Topics

bag.AvailableTopics

% Select each Topic

bagselectl = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/setpoint');
bagselect2 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/state');

bagselect3 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/control_effort');
bagselect4 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/botasys');
bagselect5 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/filtered_botasys');
bagselect6 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/velocity estimation');
bagselect7 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/IMU_feedback');

3% 3R

B

% Store total number of messages for each topic
all_msgsl = bagselectl.NumMessages;
all_msgs2 = bagselect2.NumMessages;
all_msgs3 = bagselect3.NumMessages;
all_msgs4 = bagselect4.NumMessages;
all_msgs5 = bagselect5.NumMessages;
all_msgs6 = bagselect6.NumMessages;
all_msgs7 = bagselect7.NumMessages;

3% 3R

B
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% Read messages from bag

msgsl(1l:all_msgsl) = readMessages(bagselectl,

msgs2(1:all_msgs2) = readMessages(bagselect2,

msgs3(1:all_msgs3) = readMessages(bagselect3,
% msgs4(l:all_msgs4) = readMessages(bagselect4,
% msgs5(1:all_msgs5) = readMessages(bagselect5,

msgs6(1:all_msgs6) = readMessages(bagselect6,
% msgs7(1:all_msgs7) = readMessages(bagselect7,

rall_msgsl);
rall_msgs2);
rall_msgs3);
:all msgs4);
:all msgs5);
:all_msgs6);
:all msgs7);

RPRRERRRRR

% Convert messages to data setpoint

for i = 1:all_msgsl; setpoint(i)= msgsi{i}.Data; end

% Convert messages to data state

for i = 1:all_msgs2; angle(i)= msgs2{i}.Data; end

% Convert messages to data control_effort

for i = 1:all_msgs3; control_effort(i)= msgs3{i}.Data; end
% Convert messages to data force sensor

for i = 1:all _msgs4; Force_x(i)= msgs4{i}.wrench.force.x; end
for i = 1:all _msgs4; Force_y(i)= msgs4{i}.wrench.force.y; end
for i = 1:all_msgs4; Force_z(i)= msgs4{i}.wrench.force.z; end
for i = 1:all_msgs4; Torque_x(i)= msgs4{i}.wrench.torque.x; end
for i = 1:all_msgs4; Torque_y(i)= msgs4{i}.wrench.torque.x; end
for i = 1:all_msgs4; Torque_z(i)= msgs4{i}.wrench.torque.x; end

Convert messages to data filtered force sensor

for i = 1:all_msgs5; Filtered_Force_x(i)= msgs5{i}.wrench.force.x; end
for i = 1:all_msgs5; Filtered_Force_y(i)= msgs5{i}.wrench.force.y; end
for i = 1:all_msgs5; Filtered_Force_z(i)= msgs5{i}.wrench.force.z; end
for i = 1:all_msgs5; Filtered_Torque_x(i)= msgs5{i}.wrench.torque.x; end
for i = 1:all_msgs5; Filtered_Torque_y(i)= msgs5{i}.wrench.torque.x; end

for i = 1:all_msgs5; Filtered_Torque_z(i)= msgs5{i}.wrench.torque.x; end
Convert messages to data compression
for i = 1:all_msgs6; velocity est(i)= msgs6{i}.Data; end

32 32 3% 3R 3R 3% 3R 3% 3% 3% 3% ¥ ¥ X

%  Convert messages to data IMU

% for i = 1:all_msgs7; acc_x(i)= msgs7{i}.accX; end

% for i = 1:all_msgs7; acc_y(i)= msgs7{i}.accY; end

% for i = 1:all_msgs7; acc_z(i)= msgs7{i}.accZ; end

% for i = 1:all_msgs7; gyro_x(i)= msgs7{i}.gyroX; end
% for i = 1:all_msgs7; gyro_y(i)= msgs7{i}.gyroY; end
% for i = 1:all_msgs7; gyro_z(i)= msgs7{i}.gyroZ; end

Time_setpoint = bagselectl.Messagelist(:,1).Time;
Time_state = bagselect2.Messagelist(:,1).Time;
Time_control_effort = bagselect3.Messagelist(:,1).Time;
Time_force = bagselect4.Messagelist(:,1).Time;

Time_fil force = bagselect5.Messagelist(:,1).Time;
Time_vel = bagselect6.Messagelist(:,1).Time;

Time_imu = bagselect7.Messagelist(:,1).Time;

3% 3R

B

clear all_msgsl all msgs2 all_msgs3 all msgs4 all_msgs5 all_msgs6 all_msgs7 ans bag bagfile i
msgsl msgs2 msgs3 msgs4d msgs5 msgs6 msgs7  bagselectl bagselect2 bagselect3 bagselect4 bagselect5
bagselect6 bagselect7 ;

save('mybagfile');

clear all
% end

Gazebo_sensors_interface.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include <math.h>
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#include "fcntl.h"

#include <stdint.h>

#include <inttypes.h>

#include "stdio.h"

#include <iostream>

#include <string>

#include <sstream>

#include "ros/ros.h"

#include "legged_robot/JointState.h"
#include "std_msgs/Float64.h"

using namespace std;

// Global variables

float pi = 4.0*atan(1.9);

double gposition[90], gvelocity[90] ;

float position, compression, hip_velocity, spring_velocity ;

// Generic error function
void error(char *s)
{

perror(s);

exit(1);

}

// Callback function for reception of position anf spring compression value from gazebo joint_states
topic
void GazeboCallback(const legged_robot::JointState::ConstPtr& arrayl)
{

int i = 0;

for(std: :vector<double>::const_iterator it = arrayl->position.begin(); it != arrayl-
>position.end(); ++it)

gposition[i] = *it;

i++;
¥
i=09;
for(std::vector<double>::const_iterator it = arrayl->velocity.begin(); it != arrayl->velocity.end();
++it)

{

gvelocity[i] = *it;

it+4;
}

compression = (float) gposition[2];
position = (float) gposition[@];
spring_velocity = (float) gvelocity[2];
hip_velocity = (float) gvelocity[O];
return;

}

// Main Function
int main(int argc, char **argv)

{

// Initialize ROS node
ros::init(argc, argv, "Gazebo_Actuation_Interface");
ros: :NodeHandle n;

ros::Subscriber Gazebo_sub = n.subscribe("/Asseml/joint_states", 1000, GazeboCallback);

ros: :Publisher angle2_pub = n.advertise<std_msgs::Float64>("/angle", 1000);

ros: :Publisher spring vel pub = n.advertise<std_msgs::Float64>("/spring_velocity", 1000);
ros::Publisher hip_vel_pub = n.advertise<std_msgs::Float64>("/hip_velocity", 1000);

ros: :Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000);
ros::Rate loop_rate(2000); // Control rate in Hz

// Wait for ROS node to initialize
while (!ros::ok());

std_msgs::Float64 pos;
std_msgs::Float64 comp;
std_msgs::Float64 svel, hvel;

while (ros::ok())
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pos.data = position ;
angle2_pub.publish(pos);

svel.data = spring_velocity ;
spring_vel_pub.publish(svel);

hvel.data = hip_velocity ;
hip_vel_pub.publish(hvel);

comp.data = compression ;
compression_pub.publish(comp) ;

ros::spinOnce();
loop_rate.sleep();
}

return 0;

}

Gazebo_actuation_interface.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"

#include "string.h"

#include "stdlib.h"

#include "signal.h"

#include "unistd.h"

#include <math.h>

#include "fcntl.h"

#include <stdint.h>

#include <inttypes.h>
#include "stdio.h"

#include <iostream>

#include <string>

#tinclude <sstream>

#include "ros/ros.h"

#include "std_msgs/Float64.h"
#include "std_msgs/Float32.h"

using namespace std;

// Global variables
float pi = 4.0*atan(1.90);
float command ;

// Generic error function
void error(char *s)
{
perror(s);
exit(1);
}

// Callback function for reception of position anf spring compression value from gazebo joint_states
topic
void CommandCallback(const std_msgs::Float64& com)
{
command = com.data*4.8/28;
return;

}

// Main Function

int main(int argc, char **argv)

{
// Initialize ROS node
ros::init(argc, argv, "Gazebo_Actuation_Interface");
ros: :NodeHandle nj;

ros: :Subscriber command_sub = n.subscribe("/control_effort", 1000, CommandCallback);
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ros: :Publisher command_pub = n.advertise<std_msgs::Float64>("/Asseml/hip_torque_cmd", 1000);
ros::Rate loop_rate(2000); // Control rate in Hz

// Wait for ROS node to initialize
while (!ros::ok());

std_msgs::Float64 new_command;

while (ros::ok())

{
new_command.data = command;
command_pub.publish(new_command);

ros::spinOnce();
loop_rate.sleep();

}

return 0;

ros_speed.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include <inttypes.h>
#include "ros/ros.h"
#include <sstream>
#include <iostream>
#include <string>
#include "std_msgs/Float64.h"

// UDP buffer length

#define BUFLEN 512

// UDP port to receive from
#define PORT 2012

// Asynchronous UDP communication
#define ASYNC

// UDP port to send data to
#define PORT_BRD 2011

// Tiva Back Left Leg board IP
#define BRD_IP "192.168.1.82"

using namespace std;

// Global variables

bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication

uint32_t encoderPos = @; // Place the received encoder value here
int msgs = @; // Incoming message counter

struct sockaddr_in si_pwm; // Struct for UDP send data socket
ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer

int broad; // The socket identifier for UDP Tx communication
int slen=sizeof(si_pwm); // Size of sockaddr_in strut

// Generic error function
void error(char *s)

perror(s);
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exit(1);
¥

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
char buffer[BUFLEN]="";
unsigned char val[4];
struct sockaddr_in si_other;
unsigned int slen=sizeof(si_other);
ssize_t rcvbytes = 0;
// Receive available bytes from UDP socket
if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1)
error("recvfrom()");
else
{
// Parse data , 1 int32 value
if(buffer[0] == o0x42)

//ROS_INFO(" received");
val[3] = (unsigned char)buffer[4];
val[2] = (unsigned char)buffer[3];
val[1l] = (unsigned char)buffer[2];
val[@] = (unsigned char)buffer[1];
memcpy (&encoderPos, &val, 4);
// Raise flag that we received a message
gotMsg = true;
}
}

}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)

{
int stat = -1;
int flags;
struct sigaction sa;
flags = fcntl(sock, F_GETFL);
fentl(sock, F_SETFL, flags | O_ASYNC);
sa.sa_flags = 0;
sa.sa_handler = sigio_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGIO, &sa, NULL))
error("Error:");
if (fcntl(sock, F_SETOWN, getpid()) < @)
error("Error:");
if (fcntl(sock, F_SETSIG, SIGIO) < @)
error("Error:");
return 0;
}

// Callback function for reception of PWM message from topic
void freqCallback(const std_msgs::Float64::ConstPtr& msg)

{
// Extract the duty cycle value and send it to the Tiva board via UDP
SendBuffer[1] = (int8_t) msg->data;
if (sendto(broad, SendBuffer, SendPWMBytes, @, (struct sockaddr *)&si_pwm, slen)==-1)
error("sendto()");
// Print-out for debugging
}

// Main Function
int main(int argc, char **argv)
{
struct sockaddr_in si_me, si_other;
int i, slen=sizeof(si_other), msg_count;
char buf[BUFLEN], strout[28];
string inputS;

msg_count = 0;
memset (SendBuffer, 0, 6);
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// Initialize UDP socket for data transmission
if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_pwm, 0, sizeof(si_pwm));
si_pwm.sin_family = AF_INET;
si_pwm.sin_port = htons(PORT_BRD);

if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
error("inet_aton() failed\n");
exit(1);

}

SendBuffer[0] = 0x31;

// Initialize ROS node
ros::init(argc, argv, "ros_speed");
ros: :NodeHandle nj;

// Initialize the publisher for Encoder data post

ros: :Publisher motor_interface_pub = n.advertise<std_msgs::Float64>("state", 1000);
// Initialize the subscriber for PWM data reception

ros::Subscriber motor_pid_sub = n.subscribe("control_effort", 1000, freqCallback);

ros::Rate loop_rate(10000);

// Wait for ROS node to initialize
while (!ros::ok());

// Initialize UDP socket for data reception
if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
error("socket");

memset((char *) &si_me, 0, sizeof(si_me));

si_me.sin_family = AF_INET;

si_me.sin_port = htons(PORT);

si_me.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
error("bind");

enable_asynch(sock);

ROS_INFO("Starting communication with TiVa board.");
ROS_INFO("Communication with TiVa board established.");

std_msgs::Float64 encoder_msg;
encoder_msg.data = 0.0;

while (ros::ok())

// If we got a new message, publish to topic and print values every 100 messages
if(gotMsg)
{

encoder_msg.data = encoderPos*60.0*120000000.0/(8000000.0*2000.0)*(3.14/30.0)*0.125; // no need
to add reduction, as we receive mesurements on the belt revolution axis

motor_interface_pub.publish(encoder_msg);
//ROS_INFO("I heard: [%f]", encoder_msg.data);
gotMsg = false;

}

ros::spinOnce();

loop_rate.sleep();

}

return O;

}

ros_read_vel.cpp

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include <inttypes.h>
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#include "ros/ros.h"

#include <iostream>

#include <string>

#include <sstream>

#include "std_msgs/Float64.h"

using namespace std;

// Global variables
std_msgs::Float64 position_msg;

int main(int argc, char **argv)
{

float rpos = 0.0;

string inputS;

// Initialize ROS node

ros::init(argc, argv, "ros_read_vel");

ros: :NodeHandle nj;

// Publish for desired position message

ros: :Publisher read_position_pub = n.advertise<std_msgs::Float64>("setpoint"”, 1000);
ros::Rate loop_rate(1);

position_msg.data = 0.9;

ROS_INFO("Reading Desired Velocity.");

while (ros::ok())

{
// Read a line from standard input and parse the desired position
getline (cin,inputS);
if (inputS == "q")
{
rpos = 0.0;
position_msg.data = rpos;
read_position_pub.publish(position_msg);
break;
}
else if (inputS == "kill")
{
position_msg.data = -1;
read_position_pub.publish(position_msg);
else if (inputS == "enable")
{
position_msg.data = -2;
read_position_pub.publish(position_msg);
else if (inputS == "ccw"
{
position_msg.data = -3;
read_position_pub.publish(position_msg);
else if (inputS == "cw")
{
position_msg.data = -4;
read_position_pub.publish(position_msg);
}
else
{
stringstream ss;
ss<<inputs;
ss>>rpos; //convert string into int and store it in "asInt"
ss.str(""); //clear the stringstream
ss.clear();
if ((rpos != 0.0) || (rpos == 0.0 && inputS == "0"))
//cout << "Read : " << rpos << endl;
// Publish the received desired position
position_msg.data = rpos;
read_position_pub.publish(position_msg);
¥
¥

ros::spinOnce();
loop_rate.sleep();
¥
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return 0;
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Appendix B

This appendix contains information and datasheets of the various of-the-shelf components
that were utilized for the purposes of this thesis.
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SONGLE RELAY

— TR E RELAY 1S09002 SRD

=) SONGLE RELAY

1. MAIN FEATURES

* Switching capacity available by 10A in spite of
small size design for highdensity P.C. board
mounting technique.

e UL,CUL,TUV recognized.

* Selection of plastic material for high temperature and
better chemical solution performance.

¢ Sealed types available.

¢ Simple relay magnetic circuit to meet low cost of
mass production.

2. APPLICATIONS
* Domestic appliance, office machine, audio, equipment, automobile, etc.
( Remote control TV receiver, monitor display, audio equipment high rushing current use application.)

3. ORDERING INFORMATION

SRD XX VDC S L C
Model of relay Nominal coil voltage Structure Coil sensitivity | Contact form
S:Sealed type L:0.36W ik formes,
SRD 03. 05, 06, 09, 12, 24, 48VDC |~ P . B:1 form B
F:Flux free type D:0.45W C:1form C
4. RATING
CCC FILE NUMBER:CH0052885-2000  7A/240VDC
CCC FILE NUMBER:CH0036746-99 10A/250VDC
UL /CUL FILE NUMBER: E167996 10A/125VAC 28VDC
TUV FILE NUMBER: R9933789 10A/240VAC 28VDC
5. DIMENSION ynit:mm) DRILLING nit:mm) WIRING DIAGRAM
19.1Mmax 15.5m0

1853mn s

A

2+0.05
14 S oo enns

| e

12£005
!
&
2
|
|
|

-
.?
T
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6. COIL DATA CHART (AT20°C)

Coil Coil |Nominal[ Nominal Coil Power Pull-In | Drop-Out [Max-Allowable
Sensitivity Voltage | Voltage | Current |Resistance|Consumption| Voltage | Voltage Voltage
Code | (VDC) [ (mA) | (Q)+10% (W) (VDC) (VDC) (VDC)
SRD 03 03 120 25 abt. 0.36W |75%Max. |10% Min. 120%
(High 05 05 71.4 70
Sensitivity)| 06 06 60 100
09 09 40 225
12 12 30 400
24 24 15 1600
48 48 75 6400
SRD 03 03 150 20 abt. 0.45W |75% Max.|10% Min. 110%
(Standard) 05 05 89.3 55
06 06 75 80
09 09 50 180
12 12 37.5 320
24 24 18.7 1280
48 48 10 4500 abt. 0.51W
7. CONTACT RATING 9.REFERENCE DATA
Type SRD Coil Temperature Rise
ltem FORM C FORMA . B
Contact Capacity ZQA 1255:/\%% 10A 28VDC o //
|Resistive Load (cos®=1) 7A  240VAC 10A 240VAC é - =
Inductive Load 3A 120VAC 5A 120VAC E a1 A
(cos®=0.4 L/R=7msec) 3A28VDC 5A 28VDC § T/
[Max. Allowable Voltage 250VAC/110VDC _ [250VAC/110VDC 4
|[Max. Allowable Power Force  [800VAC/240W 1200VA/300W %57 0e s o4 o5 he o7 0
[Contact Material AgCdO AgCdO Operation Time
8. PERFORMANCE (at initial value)
Type
ltem SRD oo timk
Contact Resistance 100mQ Max.
Operation Time 10msec Max. e o
Release Time 5msec Max. E | Rdleasp dinfe
Dielectric Strength B
Between coil & contact 1500VAC 50/60HZ (1 minute) | e TR v
Between contacts 1000VAC 50/60HZ (1 minute) Coil Power (W)
Insulation Resistance 100 MQ Min. (500VDC) A(L:f(e.\%ﬁ?ef\tanclyf,
Max. ON/OFF Switching
Mechanically 300 operation/min Y~
Electrically 30 operation/min g -
Ambient Temperature -25°C to +70°C ] N
Operating Humidity 45 to 85% RH 5: =
Vibration N
Endurance 10 to 55Hz Double Amplitude 1.5mm é
Error Operation 10 to 55Hz Double Amplitude 1.5mm g 1 L L 1l |
Shock Current of Load (A)
Endurance 100G Min. Life Expectancy
Error Operation 10G Min. =
Life Expectancy ®
|Mechanically 10’ operations. Min. (no load) = 3
Electrically 10° operations. Min. (at rated coil voltage) .g' Ndelisatys
Weight abt. 10grs. =
g‘ 1
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Pololu 5V, 6A Step-Down Voltage Regulator D24V60F5

Pololu item #: 2865
Dimensions

Size: 1.6" x 0.8" x 0.3"1
Weight:  4.8g1

This synchronous switching step-down (or buck) regulator takes an input voltage of up to 38 V
and efficiently reduces it to 5 V with an available output current of around 6 A. Typical efficiencies
of 80% to 95% make this regulator well suited for higher-power applications like powering motors
or servos, while high efficiencies are maintained at light loads by dynamically changing the
switching frequency, and an optional shutdown pin enables a low-power state with a current draw
of a few hundred microamps. The regulator’s output voltage setting can also be lowered by
adding an external resistor.

General specifications

Minimum operating voltage: 5V

Maximum operating voltage: 38V

Continuous output current: 6 A2

Output voltage: 5V

Reverse voltage protection?: Y

Maximum quiescent current: 15 mA3
Notes:

1 Without included hardware.

2 Typical. Actual continuous output current limited by thermal dissipation.

3 Typical worst case (i.e. with VIN close to 5V). Quiescent current depends on the input and
output voltages and is much lower for most of the input voltage range (typically below 1 mA).
The ENABLE pin can be used to reduce the quiescent current to a few hundred microamps.
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@ MOTOROLA

Dual Low Power
Operational Amplifiers

Utilizing the circuit designs perfected for recently introduced Quad
Operational Amplifiers, these dual operational amplifiers feature 1) low
power drain, 2) a common mode input voltage range extending to
ground/VEE, 3) single supply or split supply operation and 4) pinouts
compatible with the popular MC1558 dual operational amplifier. The LM158
series is equivalent to one—half of an LM124.

These amplifiers have several distinct advantages over standard
operational amplifier types in single supply applications. They can operate at
supply voltages as low as 3.0 V or as high as 32 V, with quiescent currents
about one—fifth of those associated with the MC1741 (on a per amplifier
basis). The common mode input range includes the negative supply, thereby
eliminating the necessity for external biasing components in many
applications. The output voltage range also includes the negative power
supply voltage.

Short Circuit Protected Outputs

True Differential Input Stage

Single Supply Operation: 3.0 Vto 32 V

Low Input Bias Currents

Internally Compensated

Common Mode Range Extends to Negative Supply
Single and Split Supply Operation

Similar Performance to the Popular MC1558

ESD Clamps on the Inputs Increase Ruggedness of the Device without
Affecting Operation

MAXIMUM RATINGS (Ta = +25°C, unless otherwise noted.)

Order this document by LM358/D

LM358, LM258,
LM2904, LM2904V

DUAL DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIERS

SEMICONDUCTOR
TECHNICAL DATA

8
1

N SUFFIX

PLASTIC PACKAGE
CASE 626

e\%

1

D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

PIN CONNECTIONS

LM258 LM2904
Rating Symbol LM358 LM2904V | Unit
Power Supply Voltages Vdc
Single Supply Vee 32 26
Split Supplies Vce. VEE +16 +13
Input Differential Voltage VIDR +32 +26 Vdc (Top View)
Range (Note 1)
Input Common Mode Voltage VICR -0.3t032 | -0.3t026 | Vdc
Range (Note 2
ge ( ) ORDERING INFORMATION
Output Short Circuit Duration tsc Continuous -
Operating
Junction Temperature i 150 °C Device | Temperature Range Package
Storage Temperature Range Tstg —55t0 +125 °C LM2904D SO-8
Ta =—40° to +105°C
Operating Ambient Temperature TA °C LM2904N Plastic DIP
Range
LM258 —25to +85 = LM2904VD TA = —40° to +125°C 508
LM358 0to +70 - LM2904VN Plastic DIP
LM2904 - —40 to +105
LM258D SO-8
LM2904V - —40 to +125 Ta =—25°to +85°C
- - LM258N Plastic DIP
NOTES: 1. Split Power Supplies.
2. For Supply Voltages less than 32 V for the LM258/358 and 26 V for the LM2904, the LM358D SO-8
absolute maximum input voltage is equal to the supply voltage. Ta = 0°to +70°C
LM358N Plastic DIP
© Motorola, Inc. 1996 Rev 2
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RE 35 @35 mm, Graphite Brushes, 90 Watt

M25 x4.5 fief/deep M

0
3

maxon DC motor

dx M2 3 tiel/deep

196 -1

4x M1 3 tief/deep

. Terminal 2.8:0.5
M1:2 G
Il Stock program
[ standard program
Special program (on request)
according to dimensional drawing BIELLz]| 323890 PLETi el PLeTin 273755| 273756 273757 |273758 PAfrlr) 273760| 273761| 273762 273763
shaft length 15.6 shortened to 4 mm 285785 | 323891 | 285786 | 285787 285788 2857 90 | 285791 | 285792 285793| 285794| 285795 285796

[MotorData | [ [ [ [ [ | [ [ | [ [ [ |
Sthtos 51 nomiet voitee
1 Nominal voltage V 150 240 300 420 480 480 480 480 480 480 480 480 480
2 No load spaed pm 7070 7670 7220 7530 7270 6650 5060 4740 3810 3140 2570 2100 1620
3 No load current mA 245 168 123 027 773 687 507 447 342 274 216 172 120
4 Nominal spead mm 6270 6010 6420 6770 6400 5860 5150 3020 2070 2280 1710 1220 732
5 Nominaltorque (max.continuoustorqua) mNm  73.2 033 024 O7.7 065 082 088 {02 105 105 105 104 104
6 Nominal cument (max.confinuous current) A 4.00 336 250 105 1.63 151 136 112 0015 0752 0.621 0503 0.391
7 Stall torque mNm 874 1160 040 1070 067 878 766 613 403 304 320 253 104
8 Starting current A 450 307 244 203 155 120 101 643 446 274 183 118 0.704
9 Max. efficiency % 8 84 B4 86 8 8 84 @3 g 80 70 77 74
Characteristics
10 Terminal resistance Q 0234 0605 123 207 300 372 475 746 115 175 262 405 682
11 Terminal inductance mH 0.085 0.101 0.340 0620 0.870 1.04 120 204 316 465 689 103 17.1
12 Torque constant mNm/A 104 202 380 525 622 68 758 052 110 144 175 214 276
13 Speed constant mm/V 401 328 246 182 154 140 126 100 805 664 546 447 346
14 Speed/ torque gradient mm/mNm 843 679 7.76 7.6 7.62 767 7.80 7.85 7.84 808 810 846 855
15 Mechanical time constant ms 507 560 550 540 538 538 530 538 537 538 530 530 541
16 Rotor inertia gom? 67.6 (787 676 720 674 670 652 654 655 636 628 60.8 604
Thermal data
17 Thermal resistance housing-ambient 6.2 /w " IP™I I Continuous operation

: P ; In observation of above listed thermal resistance
13 msm Lﬁmﬂnﬁgxu i = Kglovz 12000 oW m glines 17 and 13{ tgz ma)amhu: %enpissible t!wmdmg
20 Thermal time constant motor 1050 s :pg?:t:;": 2:"6 amb:::: Y
21 Ambient temperature -30 ... +100°C S Themmal Bt
22 Max. permissible winding temperature +155°C a
g A Short term operation
Mechanical data (ball bearings) 5 2
23 Max. permissibla spaed 12000 rpm The motor may be briefly overloaded (recurring).
24 Axial play 0.05-0.15mm
25 Radial play 0.025 mm
26 Max. axial load (dynamic) 56N 50 100 150 M [mim) Assigned power rating
27 Max. force for prass fits (static) 110N T4 0 20 0 30 A
(static, shaft supported) 1200 N
28 Max. radial loading, 5 mm from flange 28N -
maxon Modular System Overview on page 16 - 21
Other specifications
29 Numor ot poe pare i e
30 Number of commutator segments 13 0.75-8.0Nm ™1 T B’ Ychannels
31 Weight of motor 3409 pago232/234/235 Page 265
Values listed in the table are nominal. ;‘;2 m’v 55,36:%%9{ HED..
Explanation of the figures on page 49. 40-80Nm 1 T 2 channels
Page 237 Page 268 /270
Option . = <
Hollow shaft as special design 5':2 nm' et | A 1 3%2‘,‘5,’? Rl
Preloaded ball bearings 3-15Nm | 052V
Page 240 Recommended Electronics: Page 277
Spindle Drive ADS 50/5 Page 282 Brake AB 28
232 mm = ADS 50/10 283 L. 240 mm
Page 251/252/ 253 o | ADS_E 50/5 283 [} 24VDC, 0.4 Nm
ADS_E 50/10 283 Page 316
EPOS2 24/5 303
EPOS2 50/5 303
EPOS P 24/5 306
Notes 18
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Planetary Gearhead GP 42 C 42 mm, 3-15Nm

Ceramic Version

Technical Data

Planetary Gearhead straight teeth
Output shaft stainless steel
Bearing at output preloaded ball bearings
Radial play, 12 mm from flange max. 0.06 mm

20 1S0 2491-Adx4x20
ML K
3 5{ 1= | I I 2
8 s 1 ?
1S0 6411-A1,25x2,65/
B $]002] A
29,5 -1 <L

I Stock program
[Jstandard program
Special program (on request)

Gearhead Data

Order Number

Axial play at axial load <5N 0 mm
>5N max. 0.3 mm

Max. permissible axial load 150 N
Max. permissible force for press fits 300 N
Sense of rotation, drive to output =
Recommended input speed < 8000 rpm
Recommended temperature range -20...+100°C
Extended area as option -85 ... +100°C

M 6 tief /e '\Nnumbe:jgll Tta%es 1 2 3 4
My < I(X)Ncm lax. radial loaaq,
A M 1:2 12 mm from flange 120N 150 N 150 N 150 N

[ 203113 | 203115 |IETEFKENETERETN 203124 |EETEIEEN| 203128 | 203133 | 203137 |
. . ' | | [ [ [ |

1 Reduction 3.5:1 1l 26:1 43:1 81:1 156 :1 150 : 1 285:1 441:1 756 : 1
2 Reduction absolute A 49/, 26 343/ 2197/, 156 2401/ g || 15979/, 441 756
3 Mass inertia gem? 14 15 9.1 15 9.4 9.1 15 15 14 14
4 Max. motor shaft diameter mm 10 10 8 10 8 8 10 10 10 10
Order Number | 203114 [ 203116 | 203125 [203130 |[ENEREZM[ 203138 |[ENEREEA
1 Reduction 4.3:1 1551 53:1 91:1 186:1 319:1 488:1 936:1
2 Reduction absolute 13/4 /g 837/ 91 4459/, 637/, 294/, 936
3 Mass inertia gem? 9.1 15 15 15 15 15 9.4 9.1
4 Max. motor shaft diameter mm 8 10 10 10 10 10 8
[208117] (203122 |IEREIEE [ 203131 INRTEEN 203139 |
1 Reduction 19:1 66 :1 113:1 230:1 353:1 546:1
2 Reduction absolute 169/, 1183/ 14 338/4 8281/, 28561/, 546
3 Mass inertia gem? 9.4 15 9.4 15 9.4 14
4 Max. motor shaft diameter mm 8 10 8 10 8 10
[ 203123 IR (203132 | 203136 | 203140

1 Reduction 21:1 74 :1 126 : 1 257:1 394:1 676:1
2 Reduction absolute 21 147/, 126 1029/, 1183/ 676
3 Mass inertia gem? 14 15 14 15 15 9.1
4 Max. motor shaft diameter mm 10 10 10 10 10 8
5 Number of stages 1 2 2 3 3 3 4 4 4 4
6 Max. continuous torque Nm 3.0 75 D 15.0 15.0 15.0 15.0 15.0 15.0 15.0
7 Intermittently permissible torque at gear output Nm 4.5 1.3 11.3 22.5 22.5 22.5 22.5 225 22.5 22.5
8 Max. efficiency % 90 81 81 72 72 72 64 64 64 64
9 Weight g 260 360 360 460 460 460 560 560 560 560

10 Average backlash no load e 0.3 04 0.4 05 0.5 0.5 05 0.5 0.5 0.5

11 Gearhead length L1 mm 40.9 55.4 55.4 69.9 69.9 69.9 84.4 84.4 84.4 84.4

overall length L overall length |

maxon Modular System

+ Motor Page + Sensor

EC 45, 250 W 159 185.0 199.5
EC 45,250 W 159 HEDL 9140 273 200.6  215.1
EC 45, 250 W 159 Res 26 278 185.0 199.5
EC 45,250 W 159 AB 28 317 192.4 206.9
EC 45, 250 W 159 HEDL 9140 273 AB28 317 209.4 223.9
EC-max 30, 60 W 171 105.0 119.5
EC-max 30, 60 W 171 MR 264 117.2 131.7
EC-max 30, 60 W 171 HEDL 5540 271 125.6 140.1
EC-max 30, 60 W 171 AB 20 314 140.6 155.1
EC-max 30, 60 W 171 HEDL 5540 271 AB20 314 1646 17941
EC-max 40, 70 W 172 99.0 113.5
EC-max 40, 70 W 172 MR 265 1149 1294
EC-max 40, 70 W 172 HEDL 5540 271 122.4 136.9
EC-max 40, 70 W 172 AB 28 315 139.0 1535
EC-max 40, 70 W 173 HEDL 5540 271 AB28 315 162.4 176.9
EC-power 30, 100W 179 88.0 102.5
EC-power 30, 100W 179 MR 264 100.2 114.7
EC-power 30, 100W 179 HEDL 5540 272 108.6 123.1
EC-power 30, 100 W 179 AB 20 314 124.2 138.7
EC-power 30, 100W 179 HEDL 5540 272 AB20 314 145.0 159.5
EC-power 30, 200 W 180 105.0 119.5
EC-power 30,200 W 180 MR 264 117.2 1317
EC-power 30, 200 W 180 HEDL 5540 272 125.6 140.1
EC-power 30, 200W 180 AB 20 314 141.2 155.7
EC-power 30, 200 W 180 HEDL 5540 272 AB20 314 162.0 176.5
MCD EPOS, 60 W 311 161.0 175.5
MCD EPOSP60W 311 161.0 175.5

May 2009 edition / subject to change
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199.5
2151
199.5
206.9
223.9
1195
1317
140.1
155.1
1791
1135
129.4
136.9
153.5
176.9
102.5
114.7
1231
138.7
159.5
119.5
1317
140.1
155.7
176.5
175.5
175.5

Page +Brake Page Overall length [mm] = Motor length + gearhead length + (sensor / brake) + assembly parts

214.0 214.0 214.0 228.5 228.5 2285 228.5
229.6 229.6 229.6 2441 2441 2441 2441
214.0 214.0 214.0 228.5 228.5 2285 228.5
221.4 221.4 221.4 235.9 2359 2359 235.9
238.4 238.4 238.4 252.9 2529 2529 252.9
134.0 134.0 134.0 148.5 148.5 1485 148.5
146.2 146.2 146.2 160.7 160.7  160.7 160.7
154.6 154.6 154.6 169.1 169.1 169.1 169.1
169.6 169.6 169.6 184.1 184.1 184.1 184.1
193.6 193.6 193.6 208.1 208.1 208.1 208.1
128.0 128.0 128.0 142.5 1425 1425 142.5
143.9 143.9 143.9 158.4 1584 158.4 158.4
151.4 151.4 151.4 165.9 1659 165.9 165.9
168.0 168.0 168.0 182.5 1825 1825 182.5
191.4 191.4 191.4 205.9 205.9 205.9 205.9
117.0 117.0 117.0 131.5 1315 1315 131.5
129.2 129.2 129.2 143.7 143.7 1437 143.7
137.6 137.6 137.6 152.1 152.1 152.1 152.1
153.2 153.2 153.2 167.7 167.7 167.7 167.7
174.0 174.0 174.0 188.5 188.5 1885 188.5
134.0 134.0 134.0 148.5 148.5 1485 148.5
146.2 146.2 146.2 160.7 160.7  160.7 160.7
154.6 154.6 154.6 169.1 169.1 169.1 169.1
170.2 170.2 170.2 184.7 184.7 184.7 184.7
191.0 191.0 191.0 205.5 205.5 205.5 205.5
190.0 190.0 190.0 204.5 2045 2045 204.5
190.0 190.0 190.0 204.5 204.5 204.5 204.5
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maxon tacho

Encoder HEDS 5540, 500 Counts per turn, 3 Channels

Cycle C = 360°e
30 <183 Pulse P = 180°)
 — Ukigh
f 1L j Channel A
- 3 E ULow
p Phase shift
o E k . @ 90°e—
vi ] Uiigh (
N < Channel B
/ LLLJ | S— | Ulsw ‘\
Pin 11D
S3 S4 81 S \/S1_4=90
As<45%
I Stock program
[Jstandard program Order Nomber
Special program (on reques) o5t [ Tigsts | Tiosis |

Counts per turn 500 500 500
Number of channels 3 3 3
Max. operating frequency (kHz) 100 100 100
Shaft diameter (mm) 3 4 6

overall length overall length >

+ Motor Page + Gearhead Page  + Brake Page Overall length [mm] / ®see: + Gearhead
RE 25,10 W 77 75.3
RE 25, 10 W 77 GP26,0.5-20Nm 235 °
RE 25, 10 W 77 GP 32,04-20Nm 237 °
RE 25, 10 W 77 GP 32,0.75 - 6.0 Nm 238/240 L]
RE 25,20 W 79 75.3
RE 25,20 W 79 GP 26,0.5-2.0Nm 235 °
RE 25,20 W 79 GP 32,04-20Nm 237 .
RE 25,20 W 79 GP 32,0.75- 6.0 Nm 238/240 °
RE 25, 20 W 79 AB 28 308 105.7
RE 25,20 W 79 GP26,0.5-2.0Nm 235 AB 28 308 e
RE 25, 20 W 79 GP 32,04-20Nm 237 AB 28 308 o
RE 25,20 W 79 GP 32,0.75 - 6.0 Nm 238/240 AB 28 308 .
RE 26, 18 W 80 77.2
RE 26, 18 W 80 GP26,0.5-20Nm 235 .
RE 26, 18 W 80 GP 32,0.4-20Nm 237 e
RE 26, 18 W 80 GP 32,0.75-6.0 Nm 238/240 °
RE 35,90 W 82 91.9
RE 35,90 W 82 GP 32,0.75 - 6.0 Nm 239/240 °
RE 35, 90 W 82 GP 32,8 Nm 242 °
RE 35,90 W 82 GP 42,3.0-15Nm 244 )
RE 35,90 W 82 AB 28 308 124.1
RE 35,90 W 82 GP 32,0.75 - 6.0 Nm 239/240 AB 28 308 °
RE 35,90 W 82 GP 42,3.0-15Nm 244 AB 28 308 °
RE 36, 70 W 83 92.2
RE 36, 70 W 83 GP32,0.4-20Nm 237 °
RE 36, 70 W 83 GP 32,0.75 - 6.0 Nm 239/240 °
RE 36, 70 W 83 GP 42,3.0-15Nm 244 °
RE 40, 150 W 84 91.7
RE 40, 150 W 84 GP 42,3.0-15Nm 244 °
RE 40, 150 W 84 GP 52,4.0-30 Nm 247 °
RE 40, 150 W 84 AB 28 308 124.2
RE 40, 150 W 84 GP 42,3.0-15Nm 244 AB 28 308 °
RE 40, 150 W 84 GP 52,4.0- 30 Nm 247 AB 28 308 e
Technical Data Pin Allocation Connection example
Supply voltage 5V+10% Channel A
Output signal TTL compatible Encoder  Description ;z’s;gb'sm'“ S
Phase shift F (nominal) 90°% = 45% b~ pins Channel B s Channe! B,
Signal rise time E— Pin4 Vee 2 hannel |
(typical at C,_ = 25 pF, R_ = 2.7 kQ, 25°C) 180 ns I § E‘” 3 Channel A 3 Pin 2
Signal fall time gng g:ﬁ;‘”e' ! 3
2 in
(typical at C_= 25 pF, R_ = 2.7 kQ, 25°C) 40 ns AT, Rpull-up 3.3 kQ
Index pulse width (nominal) 90°¢ | Fjoeifs  Cable with plug: S
Operating temperature range -40 ... +100°C 600112 T’“,f::{;;‘;;:;ﬂg?; gggeeatm) E o IH
Moment of inertia of code wheel = 0.6 gcm? can be fixed in the required position| [ %, \/
Max. angular acceleration 250 000 rad s? g ) N 2R
Output current per channel min. -1 mA, max. 5 mA S::'E;:)‘g;‘:gbssmm
— E i maxon Art. No. 3409.504
o §00:2 The plug (3M 89110-0101) can GND
be fixed in the required position.
ﬁ Ambient temperature range dy = 25°C
262 maxon tacho May 2008 edition / subject to change
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ADVANCED

JAMOTION CONTROLS Analog Servo Drive AZBDC12A8
Description Power Range
Peak Current 12 A
The AZBDC12A8 PWM servo drive is designed to drive
brushless and brushed DC motors at a high switching Continuous Current 6A
frequency. To increase system reliability and to reduce
cabling costs, the drive is designed for direct Supply Voltage 20 - 80 vDC

integration into your PCB. The AZBDC12A8 is fully
protected against over-voltage, over-current, over-
heating and short-circuits. A single digital output
indicates operating status. The drive interfaces with
digital controllers that have digital PWM output. The
PWM IN duty cycle determines the output current and
DIR input determines the direction of rotation. This
servo drive requires only a single unregulated isolated
DC power supply, and is fully RoHS (Reduction of
Hazardous Substances) compliant.

See Part Numbering Information on last page of
datasheet for additional ordering options.

Features
4 Four Quadrant Regenerative Operation 4 Differential Input Command
A Direct Board-to-Board Integration 4 Digital Fault Output Monitor
4 Lightweight A Current Monitor Output
A High Switching Frequency 4 Single Supply Operation
A Wide Temperature Range 4 Compact Size
4 High Performance Thermal Dissipation 4 High Power Density
HARDWARE PROTECTION MODES OF OPERATION
= Qver-Voltage =  Current
= Over-Current COMMUTATION
=  Over-Temperature = Trapezoidal
= Short-circuit (phase-phase) MOTORS SUPPORTED
=  Short-circuit (phase-ground) =  Three Phase (Brushless)
INPUTS/OUTPUTS = Single Phase (Brushed, Voice Coil, Inductive Load)
= Digital Fault Output COMMAND SOURCE
=  Digital Inhibit Input =  PWM
= Analog Current Monitor COMPLIANCES & AGENCY APPROVALS
= Analog Command Input « UL
= Analog Current Reference = cUL
FEEDBACK SUPPORTED «  CEClass A (LVD)
= Hall Sensors = CEClass A (EMC)
= RoHS
Release Date: Status: ADVANCED Motion Controls - 3805 Calle Tecate, Camarillo, CA, 93012 Page 1 of 7
1/9/2014 Active ph# 805-389-1935 - fx# 805-389-1165- www.a-m-c.com 9
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Low Profile, Low Noise

Six Degrees of Freedom Inertial Sensor

ADIS16373

FEATURES

Triaxis digital gyroscope, +300°/sec
Tight orthogonal alignment: 0.05°

Triaxis digital accelerometer: +18 g

Delta-angle/velocity calculations

Wide sensor bandwidth: 330 Hz

High sample rate: 2.460 kSPS

Autonomous operation and data collection
No external configuration commands required
Startup time: 500 ms

Factory-calibrated sensitivity, bias, and axial alignment
Calibration temperature range: —-40°C to +85°C

SPI-compatible serial interface

Embedded temperature sensor

Programmable operation and control
Automatic and manual bias correction controls
4 FIR filter banks, 120 configurable taps
Digital I/O: data-ready, alarm indicator, external clock
Alarms for condition monitoring
Power-down/sleep mode for power management
Enable external sample clock input: up to 2.25 kHz
Single-command self test

Single-supply operation: 3.3V

2000 g shock survivability

Operating temperature range: —-40°C to +105°C

APPLICATIONS

Precision instrumentation
Platform stabilization and control
Industrial vehicle navigation
Downhole instrumentation
Robotics

Rev.C
hﬂunmmﬁmnd\edbymdogbwmssbeimdmbeaccmmandmidﬂe.ﬂwmnm
rspmsbinytsaswnedbyAnalogDevmsbmsuse.-u forany infri f pa orother
ights of third result fromits use. Specifications subject to change without notice. No
Inense |sgmmedby|mplmmaromemse under any patentorpatentnghtsofhnabg Devices.
ty of their

9! prop P

150

FUNCTIONAL BLOCK DIAGRAM

TEMPERATURE
SENSOR

[

TRIAXIS MEMS &
IANGULAR RATE i ||
SENSOR SIGNAL | caLBRATION[] ouTPuT SCLK
_|coNDITIONING AND REGISTERS
[ A conveRsion DIGITAL. INTERF ACE [P
PROCESSING -

TRIAXIS MEMS
ACCELERATION
SENSOR T T

)—; | ALARMS |
DIGITAL
SELF-TEST CONTROL

ADIS16375

POWER
MANAGEMENT
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Figure 1.

GENERAL DESCRIPTION

The ADIS16375 iSensor® is a complete inertial system that includes
a triaxis gyroscope and triaxis accelerometer. Each sensor in the
ADIS16375 combines industry-leading iMEMS® technology
with signal conditioning that optimizes dynamic performance.
The factory calibration characterizes each sensor for sensitivity,
bias, alignment, and linear acceleration (gyro bias). As a result,
each sensor has its own dynamic compensation formulas that
provide accurate sensor measurements over a temperature
range of —40°C to +105°C.

The ADIS16375 provides a simple, cost-effective method for
integrating accurate, multiaxis, inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at the
factory, greatly reducing system integration time. Tight orthogonal
alignment simplifies inertial frame alignment in navigation systems.
An improved SPI interface and register structure provide faster
data collection and configuration control.

This compact module is approximately 44 mm x 47 mm x 14 mm
and provides a flexible connector interface that enables multiple
mounting orientation options.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax:781.461.3113 ©2010-2012 Analog Devices, Inc. All rights reserved.
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BOTA “Rikudo” is a 6 D.O.F. (Degrees Of Freedom) Force/Torque sensor. Precision strain gauges are
used to measure all force/torque components through the elastic properties of the sensing beams inside
the sensor. Internal electronics carefully amplifies and filters the small amplitude signal of the strain
gages to a measurable voltage range and drives it through the internal ADC. Further digital filtering is
implemented. The final filtered signal can be, transferred to PC or other microcontroller through various
methods. The supported communication protocols are CAN, Ethernet, RS232, RS485 and USB.

The sensor can be calibrated and configured to be used to different force ranges as shown at Table 1.

TABLE 1. RANGES AND RESOLUTIONS.

DU s
|
FA\,J +500N +100 N, £200 N 0.049 N, 0.098 N 0.16 N,0.32 N
F: ‘ +1400N +180 N, £+360 N 0.088 N, 0.176 N 030N,0.60N
Tw +12Nm +3 Nm, 6 Nm 0.0015 Nm ,.0.003 Nm 0.005 Nm, 0.010 Nm
T: ‘ +15Nm +5Nm, £10 Nm 0.0025 Nm, 0.005 Nm 0.008 Nm, 0.016 Nm

Other important indices are described at table 2.

TABLE 2. BASIC CHARACTERISTICS.

RESONANT FREQUENCY 2200 Hz

SAMPLING RATE Up to 1.2 ksps (each axis) Serial Sampling rate depends on the
Communication protocol is used.
Higher speeds can also be
achieved.

WEIGHT 80 gr

DIAMETER 42 mm

HEIGHT 26 mm and 43 mm

MOUNTING 4xM3,4xM4

The aluminum construction provides rigidity to the sensor and compliance effects are no significant. A
high yield strength aluminum is used. Using steel instead of aluminum provides greater performance
both in the single axis overload and the stiffness but raises the cost. For most of the robotic applications
aluminum properties are adequate.

The Serial configurations outputs a 14 bytes stream which includes the 6 force/torque (two bytes each)
components, one starting byte and one finishing byte. Figure 1 shows the byte stream.

Prepared by: BOTA Systems Spec Sheet
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