

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF MECHANICAL ENGINEERING

SECTION OF MECHANICAL DESIGN & AUTOMATIC CONTROL

Control Systems Lab

Diploma Thesis

DESIGN AND ROS-BASED CONTROL OF AN ARTICULATED MONOPOD AND
ITS EXPERIMENTAL SETUP

Spyridon Garyfallidis

Supervisor: E. G. Papadopoulos

ATHENS 2017

2

3

Abstract

Robotics field, and especially the one of articulated biomimetic robots, is one of the most

rapidly developing scientific fields, in which one is always required to test new ideas. For that

purpose, specialized setups are created where the designer can individually test various leg

configurations but also different control systems or controllers. Those setups are called

monopod robots and this thesis regards the one installed in our laboratory.

Since progress on the field is fast, both in the hardware and the software subcategories,

there is a need to adapt in recent developments equally fast.

This of course requires swift and easy renewal and replacement of structural elements,

parts and codes, standardization of the most frequently used and fundamental functions, as

well as their decoupling from each programmer and setup, leading to interchangeability

between, for example, different controllers, but also their recycling and reusal in different

versions of the robot. This task is to be carried out by the upcoming software platform ROS,

which was incorporated both in the monopod and the lab’s treadmill.

After the control system’s creation, there comes a need to somehow test its function, the

tools it offers and its various parameters, since the most popular simulation tools, like Matlab,

are not ideal for this purpose. This problem is resolved with the introduction of Gazebo, a

simulation software with the capability to interact with ROS, but also with various secondary

incorporated useful tools and libraries.

For the execution of simple tasks, like the position control of a motor, and considering

what we mentioned before about standardizing procedures, there was an evaluation of the

available options and resources that ROS provides, and specifically the ros_pid and

ros_control packages. There is also a brief reference of the path planning capabilities that are

available.

Finally, in the frame of the general experimental leg testing setup renewal, there was a

transition from the first leg design, based on the classic SLIP model with one revolute hip joint

and a prismatic knee, to a second biomimetic articulated leg with two revolute joints, according

to a new innovative method conceived in our lab. In this thesis we will provide some basic

mechanical design concepts and ideas.

4

5

Περίληψη

Ο τομέας της ρομποτικής, και πιο συγκεκριμένα των αρθρωτών βιομιμητικών ρομπότ είναι

ένας εκ των ταχύτερα αναπτυσσόμενων, στον οποίο κανείς είναι υποχρεωμένος συνεχώς να

δοκιμάζει νέες ιδέες. Για το σκοπό αυτό δημιουργούνται διατάξεις στις οποίες ο σχεδιαστής

μπορεί να δοκιμάσει μεμονωμένα διάφορες μορφές ποδιών αλλά και διαφορετικά συστήματα

ελέγχου. Οι διατάξεις αυτές ονομάζονται μονόποδα ρομπότ και η εργασία αυτή αφορά το

μονόποδο το οποίο είναι εγκατεστημένο στο εργαστήριό μας.

Εφόσον η πρόοδος στο χώρο είναι αλματώδης, τόσο στον τομέα των υλικοτεχνικών

διατάξεων (hardware) όσο και λογισμικού (software), δημιουργείται άμεσα η ανάγκη γρήγορης

προσαρμογής στις διάφορες εξελίξεις.

Αυτό φυσικά προϋποθέτει γρήγορη και εύκολη ανανέωση και αντικατάσταση δομικών

στοιχείων και κωδίκων, τυποποίηση των πιο συνηθισμένων και βασικών διαδικασιών και

απεμπλοκή τους από τον εκάστοτε προγραμματιστή και εγκατάσταση, οδηγώντας σε

εναλλαξιμότητα μεταξύ, για παράδειγμα, διαφορετικών ελεγκτών, αλλά και

επαναχρησιμοποίησή τους σε διαφορετικές εκδοχές και εκδόσεις της εγκατάστασης - ρομπότ.

Το έργο αυτό έρχεται να επιτελέσει η ανερχόμενη πλατφόρμα ανάπτυξης λογισμικού ROS, η

οποία ενσωματώνεται τόσο στο μονόποδο ρομπότ όσο και στον κυλιόμενο διάδρομο του

εργαστηρίου.

Μετά την δημιουργία ενός συστήματος ελέγχου στο ROS, δημιουργείται κατευθείαν η

ανάγκη αυτό να δοκιμαστεί, καθώς και τα εργαλεία που προσφέρει και οι διάφοροι παράμετροί

του. Τα συνήθη προγράμματα που χρησιμοποιούνται στην πλειοψηφία των περιπτώσεων,

π.χ. Matlab, δεν προσφέρονται για αυτό το σκοπό. Το πρόβλημα έρχεται να λύσει το λογισμικό

προσομοίωσης Gazebo, με δυνατότητα ενσωμάτωσης και συνεργασίας με το ROS, αλλά και

με διάφορες χρήσιμες βοηθητικές λειτουργίες και βιβλιοθήκες.

Για την επιτέλεση βασικών εργασιών, όπως για παράδειγμα τον έλεγχο θέσης ενός

κινητήρα, και με βάση αυτά που αναφέραμε πριν για την τυποποίηση εργασιών, γίνεται

διερεύνηση των διαθέσιμων επιλογών και δυνατοτήτων που μας παρέχει το ROS, και πιο

συγκεκριμένα τα πακέτα ros_control και ros_pid. Γίνεται επίσης μια σύντομη αναφορά στη

δυνατότητα για ενσωμάτωση σχεδιασμού τροχιάς.

Τέλος, στα πλαίσια της γενικότερης ανανέωσης της πειραματικής διάταξης δοκιμής

ποδιών, περνάμε στο εργαστήριο από το πρώτο στάδιο ποδιού βασισμένο στο κλασικό SLIP

μοντέλο, μίας περιστροφικής άρθρωσης στο γοφό και πρισματικού γονάτου, σε ένα

περισσότερο βιομιμητικό αρθρωτό πόδι δύο περιστροφικών αρθρώσεων, σύμφωνα με νέα

καινοτόμο μέθοδο υπολογισμού προερχόμενη από το εργαστήριό μας. Στα πλαίσια αυτής της

εργασίας θα δοθούν κάποια στοιχεία για τον μηχανολογικό σχεδιασμό και διάταξη.

6

7

To my family

8

9

Preface – Acknowledgements

For anyone relative to the field of legged robots, it is clear that a monopod robot can be used

as the basic test unit for a multi legged robot, e.g. a quadruped. It is a very reliable and safe

way to test leg properties, various leg configurations and control algorithms, as there is no

need for the researcher to deal with leg coordination and body balance. One can instead focus

on dynamics and control issues.

To this day, there have been two monopod versions in our lab. The first, featuring a PC-

104 and Linux OS, managed to function properly [8]and a dynamic hopping experiment was

conducted. In the second updated version the PC-104 was replaced by a Beaglebone and a

new set of electronics [32]. Unfortunately that second version never operated the way it should

have. That was partly because after the first successful attempt, same codes for same

functions had to be rewritten for the new computational system and the work that was actually

recycled was next to zero. Same holds for simulations and models that were created for both

versions. Therefore, the actual purpose was to start building on a new solid basis, upon which

other researchers and lab members could continue building, add features, utilize them on

other applications and generally benefit from, and not rediscover the wheel every single time

on the beginning of a new project.

To this end, a software platform that can provide said basis was tested and incorporated

on the experimental setup. Robot Operating System (ROS) is a generic platform that offers

various libraries and tools that promote code distribution, standardization and recycle. This

software is rapidly gaining ground in terms of popularity, so its utilization was somewhat

imposed. However there still exists a necessity to test the control systems we create in ROS,

but also to simulate the physical setup. Gazebo, the simulation platform in which our system

was modeled and tested, allows for simulating the robot’s behavior using the exact same

control system that will be used on the actual hardware, making the transition between

simulation and experiment as easy as the push of a button. It is exactly this capability to

connect with ROS that led to its utilization.

Finally, after properly redesigning the software aspect, and where it was required the

electronics, a new articulated biomimetic leg was designed. Segment lengths will be defined

later using the new leg design method for performance running. As it is a work in progress, a

diploma thesis of another lab member, we shall not mention any details and we will deal with

a modular joint design instead.

At this point I would like to thank professor E. Papadopoulos for the guidance throughout

this whole process, but also for his trust and the opportunity he offered me to work on the

highest level possible. Next, everyone else that contributed to this work. PhD candidates K.

10

Koutsoukis and K. Machairas for the general support, advice, useful ideas and most of all

patience, Phd candidate T. Mastrogeorgiou for his assistance in software debugging and K.

Assimakopoulos for the support in electronics. Finally, every member of the legged lab for

making those long hours seem less long and tiresome with the amazing atmosphere they

created.

11

Contents

Abstract ... 3

Περίληψη ... 5

Preface – Acknowledgements .. 9

Contents .. 11

List of Figures ... 13

List of Tables ... 16

List of Symbols ... 17

1 Introduction ... 18

1.1 Motivation and objectives .. 18

1.2 Literature review .. 19

1.3 Thesis outline ... 20

2 ROS, Gazebo and MoveIt! ... 21

2.1 Introduction to ROS ... 21

2.2 Gazebo simulation software .. 25

2.3 Path planning using MoveIt! .. 27

3 Monopod design and control using ROS .. 29

3.1 Hardware setup description ... 29

3.2 Electrical and electronic subsystems ... 33

3.3 Tiva .. 39

3.4 ROS ... 40

3.5 Simulation in Gazebo ... 47

3.6 Experiments and comparison .. 57

4 Treadmill .. 66

4.1 Setup description ... 66

4.2 Electronic system ... 67

4.3 Control system ... 77

4.4 Experiments ... 79

5 Articulated monopod design .. 82

5.1 Literature review .. 82

5.2 Laelaps quadruped robot ... 87

5.3 Leg Design ... 88

5.4 Structural analysis ... 90

6 Conclusion and Future Work ... 94

6.1 Conclusion ... 94

6.2 Future Work ... 94

Bibliography .. 96

Appendix A .. 99

12

Appendix B .. 141

13

List of Figures

Figure 2-1. ROS messaging and service structure. ... 23

Figure 2-2. (a) DRC simulated environment - property of DARPA [38]. Atlas had to get in and drive
the vehicle for a certain distance avoiding obstacles. (b) Atlas anthropomorphic robot -
property of Boston Dynamics. .. 26

Figure 2-3. MoveIt! Rviz plugin interface of the PR2 robot. ... 27

Figure 3-1. Previous experimental setup. ... 29

Figure 3-2. Mounting mechanism. (a)-Z axis rails, (b)-Z axis wagons, (c)-X axis rail and wagon, (d)-
final assembly. ... 30

Figure 3-3. AZBDC12A8 drive and mounting board. ... 31

Figure 3-4. Quasi-knee mechanism. .. 32

Figure 3-5. ADIS16375 IMU sensor with breakout board. ... 32

Figure 3-6. Rikudo-4243-S force sensor. ... 33

Figure 3-7. Rikudo force sensor with and without the silicon cover. .. 33

Figure 3-8. Monopod previous setup. ... 34

Figure 3-9. Microchip PIC18F4331 microcontroller. ... 34

Figure 3-10. QEI module pulse succession. ... 35

Figure 3-11. Tiva C Series TM4C1294 Connected LaunchPad, Texas Instruments. 36

Figure 3-12. Polulu D24V60F5 5V Step-Down Voltage Regulator. ... 36

Figure 3-13. RB schematic. .. 37

Figure 3-14. Constructed RB. ... 37

Figure 3-15. PDB schematic... 37

Figure 3-16. Constructed PDB. .. 38

Figure 3-17. Tiva MB schematic. .. 38

Figure 3-18. Tiva MB final design. .. 39

Figure 3-19. Constructed MB. (a) top, (b) bottom layers. ... 39

Figure 3-20. Tiva – ROS connection. ... 41

Figure 3-21. Angle succession, black for the QEI output and red for the desired. 41

Figure 3-22. Root locus for increasing Kd value. ... 43

Figure 3-23. Quasi-knee geometry. .. 44

Figure 3-24. Setpoint definition in counts. .. 45

Figure 3-25. PID control node gain reconfigure. .. 45

Figure 3-26. Botasys sensor force-torque vector. .. 46

Figure 3-27. Monopod model with external brace for actuation. .. 48

Figure 3-28. ROS control system structure in Gazebo simulation. .. 49

Figure 3-29. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 1 kHz, Update rate =
100. .. 50

Figure 3-30. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update rate =
100. .. 50

Figure 3-31. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 20 kHz, Update rate =
100. .. 51

Figure 3-32. Pendulum with constant torque applied (g = 0, b = 0, no static friction). 51

14

Figure 3-33. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate = 1000.
 ... 53

Figure 3-34. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate = 10000.
 ... 53

Figure 3-35. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate = 100.
 ... 54

Figure 3-36. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update rate =
100. .. 55

Figure 3-37. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step = 0.1
ms, LR = 10 kHz, Update rate = 100. Cut off frequency adjusted to 300 Hz. 55

Figure 3-38. Gazebo - Matlab control comparison. Time step = 0.1 ms, Loop Rate = 10 kHz, Update
rate = 100. Cut off frequency adjusted to 30 Hz. ... 56

Figure 3-39. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step = 1 ms,
Loop Rate = 1 kHz, Update rate = 5. ... 56

Figure 3-40. Simulation-experiment comparison of static damped hopping. 58

Figure 3-41. Simulated and actual response to a 7500 counts step input. .. 59

Figure 3-42. Simulated and actual torque requirement. ... 59

Figure 3-43. Linearized leg model with PID control block diagram. ... 60

Figure 3-44. Control system structure. ... 62

Figure 3-45. High level controller experiment without force sensor. .. 63

Figure 3-46. Experiment pictures - (a) touchdown, (b) midstance, (c) takeoff. 63

Figure 3-47. High level controller experiment with force sensor. ... 64

Figure 4-1. MS 100L 2-4 motor and Μ200-0 inverter. .. 66

Figure 4-2. FC80-4 motor and SINAMIS G110 inverter. .. 67

Figure 4-3. Unidrive M200 velocity inverter terminal layout. .. 68

Figure 4-4. Belt drive. ... 70

Figure 4-5. Pulse width modulated signal. ... 71

Figure 4-6. Passive RC low pass filter. .. 71

Figure 4-7. Operational amplifier LM358N. .. 72

Figure 4-8. Amplifying resistor circuit. .. 72

Figure 4-9. Resistor selection. .. 72

Figure 4-10. Parallax relay module. ... 73

Figure 4-11. Application example with relay module. ... 73

Figure 4-12. Activation system (terminal Drive enable). .. 74

Figure 4-13. Double relay for motion direction selection. ... 74

Figure 4-14. Motion direction selection system (terminal run forward and reverse). 75

Figure 4-15. (a) HEDL-5540, (b) HEDL-5540 Pinout. .. 75

Figure 4-16. Electronic subsystem schematic. ... 76

Figure 4-17. Secondary board. ... 76

Figure 4-18. Electronic subsystem prototype. .. 77

Figure 4-19. Node cross communication as depicted from the rqt_graph tool. 79

Figure 4-20. Treadmill velocity open loop control experiment. ... 80

Figure 4-21. Velocity response detail. .. 81

Figure 4-22. Treadmill velocity closed loop control experiment – simple PID. 81

15

Figure 4-23. Treadmill velocity closed loop control experiment – augmented PID. 81

Figure 5-1. General Electric quadruped robot. ... 82

Figure 5-2. MIT Leg Lab’s Quadruped Robot... 83

Figure 5-3. StarlETH quadruped robot. .. 83

Figure 5-4. MIT’s Cheetah robot. ... 84

Figure 5-5. Cheetah leg with four bar linkage and tendon. .. 84

Figure 5-6. StarlETH leg transmission. .. 84

Figure 5-7. BiMASC leg with fiberglass plate springs. ... 85

Figure 5-8. ATRIAS leg. ... 86

Figure 5-9. CSL’s first quadruped robot. .. 87

Figure 5-10. Laelaps I quadruped robot. .. 87

Figure 5-11. Laelaps I leg design. .. 88

Figure 5-12. Laelaps II new leg design. ... 89

Figure 5-13. First simulation, drop test with a 45o touchdown angle and impact velocity of 9.7 m/s. 90

Figure 5-14. Second simulation, drop test for vertical touchdown. .. 91

Figure 5-15. Third simulation, drop test with a 45o touchdown angle. ... 91

Figure 5-16. Fourth simulation, static analysis stresses. ... 92

Figure 5-17. Fourth simulation, static analysis displacements. .. 92

Figure 5-18. Toe setup structural analysis stresses. .. 93

16

List of Tables

Table 3-1. Tiva transmission rate – control loop rate relation. .. 42

Table 3-2. Passive static hopping simulation parameters. .. 57

Table 3-3. Passive static hopping experiment parameters. .. 58

Table 3-4. System parameters. ... 60

Table 3-5. Hip PID control simulation parameters. ... 61

Table 3-6. Hip PID control experiment parameters. .. 61

Table 3-7. High level controller experiment without force sensor – parameters. 62

Table 3-8. High level controller experiment with force sensor – parameters. 64

Table 4-1. Treadmill velocity closed loop control experiment parameters – augmented PD. 79

17

List of Symbols

QEI Quadrature Encoder Interface

CPR Counts Per Revolution

SLIP Spring Loaded Inverted Pendulum

PWM Pulse Width Modulation

eQEP enhanced Quadrature Encoder Pulse

DAC Digital to Analog Converter

ERP Error Reduction Parameter

CFM Constraint Force Mixing

LR Loop Rate

MB Mounting Board

PDB Power Distribution Board

RB Regulator Board

18

1 Introduction

1.1 Motivation and objectives

The field of legged robotics is only showing recent development, expanding on the last four

decades. Our demands increase as technology advances. For example, no one could have

considered planet exploration using a legged robot a viable option twenty years ago, although

it could have been a distant objective. Wheeled robots were, and still are, simple to build and

easy to control, and as such they represented the only option for mobile robot applications, no

matter what their deficiencies were, e.g. limited ability to move on rough terrains and slopes,

overcome obstacles. Such areas are hardly accessible by wheeled robots, as there is a large

possibility for them to get stuck, damage their-perhaps sensible- surroundings or even

damage themselves.

On the other hand, a legged robot can selectively define its gait and its foot placement to

maintain its balance, avoid sensitive or dangerous terrain areas, jump over obstacles or holes

and even develop high velocities, should that be required. Also the torso’s motion is uncoupled

of the leg motion, in contrast with a simple wheeled robot. This could prove to be useful in

cases of movement in uneven terrain, where the cargo, perhaps a sensory system or a

camera, has to remain steady while the robot is moving.

The above however, remained a distant dream, up until recently when the accumulated

know-how started showing reliable results. In any case, and since challenges and

requirements continuously arise, new concepts and ideas need to be tested and evaluated

constantly. Of course these experiments cannot be exacted on a functional robot or with all

the legs installed. For example, constructing four experimental legs and testing them in an

actual quadruped would be extremely costly, in terms both of time and money. To this end,

experimental setups are created where the researcher can modify a single leg, hence the

name monopod robots, and test mechanical properties, different configurations and control

algorithms, undistracted by coordination and balancing issues.

This thesis’ main purpose is to update the monopod robot of the CSL with the latest

development in software, the Robot Operating System (ROS). ROS is a platform for software

development that promotes code recycling from version to version, standardization of

processes and, most importantly, code sharing between different developers who share this

common basis.

To test and simulate the behavior of the system, the developer needs not only to solve

the usual dynamic equations but integrate elements such as communication between different

components, sampling rates, etc. For these purposes, the simulation software platform

Gazebo is preferred. A model of the monopod robot was created and the same control system

that would be applied to the real robot. This way the total system is simulated instead of just

19

the dynamic behavior, without having to derive any dynamic equations, by defining only the

geometry and physical properties.

Finally, in the context of total renovation of the experimental setup, and in order to move

towards a more biomimetic design, a new articulated leg had to be designed. This leg, with

revolute hip and knee joints, resembles nature and can realize the design theory developed

in our lab concerning the optimization of segment lengths for various gaits or tasks.

1.2 Literature review

As was already mentioned, monopod robots are the most fundamental testing units for legs

and control algorithms that will later be adapted in multi legged robots. This is why there are

many recorded cases of such robots, both during the first years of legged robotics field

development, but also recently.

While browsing through the literature, what is really noticeable is the significant

quantitative difference between the several control strategies, algorithms and methods, and

the number of successful experiments with those techniques as well as the number of

functional monopods. Whereas there are many different control theories (e.g. [25], [5], [27]),

including our own lab’s work ([7], [31]) on controlling a 3 DOF monopod and its motion on

rough compliant terrains, no experimental confirmation is mentioned. Of course those

concepts are quite hard to implement themselves; it only gets more difficult when software

and hardware debugging issues are included. The existence of a fully functional, efficient and

reliant experiment platform is priceless for such purposes.

There are of course some examples of such functional setups. MIT’s 3D hopper machine

with a prismatic actuated knee joint [23] based on the SLIP model, is one of the most

important; the ARL Monopod versions I and II [1] being quite similar. This model considers the

leg as an inverted pendulum while the foot is in contact with the ground (stance phase). Based

on this model, a large variety of controllers is developed; also quadruped robots featuring such

legs ([24], [8]). After a while, leg design leaned towards more biomimetic shapes, like the MIT's

Monopod [43]. This robot uses a boom link to connect to a fixed base, a method that we also

employed for our lab’s first single-legged robot [8]. Other examples include the Kenken single-

legged hopping robot [14], which is hydraulically actuated and articulated, the Uniroo [33],

motivated by kangaroo’s locomotion, the JennaHopper [26], and the leg of the biped Sugoi-

Neco, described in [19] and tested in [28]. Moving towards more recent attempts, the OSU’s

ATRIAS biped has its own monopod design. For its successor Cassie, by Agility Robotics [44],

there also seems to be a one-legged module on an introductory video, although the project is

still new and few details are available. We shall discuss this leg design and a few others in

Chapter 5.

20

1.3 Thesis outline

This thesis is comprised of six chapters. In the first introductory chapter, a brief discussion is

presented on the motivation and the target of this work. There is also a presentation of the

various leg experimental setups available in the literature. Finally the thesis’ structure is

presented.

Chapter 2 introduces the various software platforms that were used. At first, we present

ROS, along with its advantages. A description is given of its basic tools and structure, as well

as a mention to some of its more advanced capabilities. The simulation software Gazebo is

also presented and described. There is also a mention of the path planning software Moveit!.

In Chapter 3, our lab’s monopod robot is presented. Its previous design, as well as the

problems associated with it are mentioned. Then we proceed with the work that was done,

including the redesign of the electronic subsystem, the design of the ROS nodes, as well as

the modeling in Gazebo and the simulations. Finally, the experiments that were conducted to

verify the setup’s functionality are described. For those experiments, we describe and define

the most fundamental experimental and simulation parameters.

In Chapter 4, we repeat the work that was done for the monopod for the case of the lab’s

treadmill. Redesign of the whole electronic subsystem, ROS structure and velocity control

experiments are described in detail.

In Chapter 5, the various leg designs of many known quadruped robots are reviewed, and

an initial attempt to realize the leg segment optimization theory is being made. A first design

of the modular knee and hip joints is analytically presented and tested.

Finally in Chapter 6, we summarize the results and assess the work done. We also offer

some ideas for potential future work.

21

2 ROS, Gazebo and MoveIt!

2.1 Introduction to ROS

Ever since the creation of the first robotic systems, there was a big discussion concerning the

software platform that should be employed. At first, everybody was using their own custom

software and electronics, which largely complicated the software design. Codes that would be

created and used for one specific combination of central processor and motor drive, for

example, could not be transferred easily and reliably to the next design version, that might

have a different combination of said parts. As a result the code had to be rewritten, taking into

consideration the new hardware and its characteristics, something that was very time

consuming. And all that because of the lack of a more general platform that different

components would just connect and communicate with each other.

After a while, it was decided that this could continue no more, and the Robot Operating

System started developing. ROS is a platform that includes a large database of drives for

many devices and sensors, and allows easy cross communication with each other. This

removes the need for codes to handle communication issues, which is extremely time

consuming as mentioned earlier. The database is updated continuously with new elements

allowing for fast incorporation of a new part in an existing system. Also common processes,

such as position control of a motor are included and no longer have to be rewritten, but rather

only properly configured from one application to another.

Another advantage of ROS is that it is running under Linux, usually Ubuntu. This makes

it easily transportable between devices that can run Linux, like Raspberry Pi, Beagleboard

and PC-104. Again, there is no need for rewriting or even modifying codes to fit the new

environment. Also there are tools included in order to distribute conveniently the computational

load by allocating executables in different devices; ROS handles their communication. This

would be really useful in case, for example, someone wanted to build a Raspberry Pi stack

instead of using an expensive PC-104, or run the PID control loops on the robot and the rest

user interface on a central control station.

To be more precise, ROS’ main features include [35]:

I. Friendly and easy to use messaging system. This is one of the first challenges a

developer faces while designing a new robot. ROS provides a built-in and tested

messaging system that proves to be really handy, as it manages all the

communication’s small details relieving the developer from the need to set up

communication protocols, define and refine data exchange rates and of course,

the debugging of that system. Specifically, the system that ROS is providing is an

anonymous, asynchronous publish/subscribe mechanism where there is a

22

publisher and a subscriber node (ROS’ form of executable files, written either in

C++ or Python). The first one publishes information on a named bus over which

nodes exchange messages called topic, and the second subscribes and receives

it as published. What is interesting is that the publisher node is not aware who is

receiving the messages that it is publishing, all it does is just use a specific type

of message. After that, a topic can have multiple subscribers, practically every

node that is interested or requires the relevant information. All they have to do is

subscribe using the same type of message, removing the requirement to set up

different communication channels between distributed devices to exchange a type

of information that everyone needs. This goes both ways, as it is possible for more

than one nodes to publish information on a topic. Another direct byproduct of this

system is that it enforces developers to implement clear nodes interfaces, leading

to less complex and readable algorithms, and also promoting code reuse.

II. Services. The aforementioned communication system regards one way message

exchange as, like we mentioned, there is no response when publishing a message

or a report about whether it was received and accordingly processed. However in

many applications there is a necessity to send a message to a process, e.g. to

execute a task, and receive a reply to know if the execution was successful or not.

The service performs exactly that function. It uses the same messages as before,

only now there are two, one for the request and one for the reply. Specifically a

node offers a service, a second node sends to it a request to activate it, and then

awaits for a reply.

III. Message monitoring. The publish/subscribe messaging system allows for easy

real time monitoring using plots (rqt tool), if the data is plottable, or simply screen

printing of published data in case of more complex messages or strings. The data

can also be easily recorded for further processing in another software, e.g. Matlab,

using the rosbag tool. We can use rosbag to record messages in a rosbag file from

any topic of our choice, for as much time as we want. This file can be replayed to

reproduce the result. For example, let’s assume we have two nodes, A and B.

Node A produces series of messages published on topic C, to which Node B

subscribes and reads. If we record topic C while A publishes, we can then shut

down A, replay the rosbag file and reproduce B’s response. In other words, Node

B does not realize the difference between data coming from A or a rosbag file.

This is of course a result of the communication structure, as in both cases, all that

node B sees is a topic in which it has to subscribe, without caring about its origin.

IV. Global Parameter Server. In most cases, ROS provides a convenient library of

configuration values available for all nodes at runtime. This way all nodes can

23

have access and modify the system’s state. It is advised to be used only for static,

non-binary data as it is not particularly fast or efficient.

Figure 2-1. ROS messaging and service structure.

Those are only a few and most basic features ROS has to offer. Other, more advanced

options include:

 Standard robot messages, like poses, transforms, various vectors, IMU sensors,

lasers, etc. It also includes message definitions for navigation applications, like

odometry, paths and maps.

 Robot description language. In some packages, like ros_control, a robot

description is required in a format compatible with ROS. Of course ROS is

providing a format called Unified Robot Description Format (URDF), i.e. an XML

file in which the user defines the geometry (links, joints) and their properties

(masses, inertias), but also visuals and sensors. This format can be used to

visualize the robot and its motion in Rviz but also to simulate a controller in

Gazebo.

 Robot geometry library. In cases of robots with many links and joints it is useful,

although not easy, to know every part’s position with respect to each other. This

is most significant in cases where there are many sensors and we need a

common reference frame. For those purposes, ROS provides the tf (transform)

library to allow for easy transformation of sensor data from one system to another.

 Actions, an improved version of services. While with services one could request

the execution of a task and receive a response once it was completed, with

actions the user can actually monitor the task while it is being executed. For

example, we could command a robot to move from point A to point B, monitor its

whole motion and even redirect it if necessary.

24

 Diagnostic tools for messages, command-line tools and convenient visualization

tools (Rviz and rqt) perform several tasks and facilitate the debugging process.

Last but not least, ROS is providing some limited, for now, real time tools. Real time is

becoming steadily a trend nowadays, and ROS is starting to incorporate some features, like

a real time publisher. Note that the standard version of ROS is not real time, as it is based on

Linux, which is not a real time operating system either. Therefore, there is no guarantee that

processes will be timed and executed as required. This fact creates issues in high frequency

control applications, and subsequently real time control is required.

Examples of ROS’ widespread utilization include from various hobby, homemade robots

(especially using Raspberry Pi) to industrial applications and research projects. For example

in our laboratory, both the quadruped robot Laelaps [47] and the space robot Cepheus [48]

are using ROS for motor control, path planning and navigation purposes. Specifically modified

to be used in industry applications comes ROS-Industrial, with interfaces for commonly used

end effectors, grippers, etc. There are also several software libraries for path planning and

sensor calibration.

Lately, there has also been an attempt to standardize robot components, like sensors,

actuators, processors, etc, in a way that would be ROS compatible and easily

interchangeable; even if made by different manufacturers. That would reduce the development

of a new robot configuration into a simple plug and play process, where parts would just

connect and handle their low level communication and cooperation, leaving only the high level

programming and task assignment to the human operator. Damage repair and hardware

debugging, processes as time consuming and as hard as the software debugging itself, would

greatly simplify, also. This effort was named H-ROS [36] and it is currently on its very

beginning, to be seen how and if it will be embraced by the community.

In the corresponding page [49] there are over 120 robot cases listed which use ROS. The

majority regards wheeled platforms and manipulators. There are also some legged robots,

mostly bipeds and grippers, human-like hands, and a few quadcopters.

Finally we should mention the various ROS versions. When we started working on this

project, the most stable ROS version was Indigo, paired with Gazebo 2. After a while, ROS

versions Jade (with Gazebo 5) and Kinetic (with Gazebo 7) were released. Since we seek

continuous support and maintenance for all packages, and Gazebo 7 proved to be more

convenient, we decided to proceed with the latest version, Kinetic, the tenth ROS release with

end of life estimated date in May, 2021. Jade was released on an odd numbered year (2015),

and those releases are only supported for two years instead of five.

25

2.2 Gazebo simulation software

Gazebo is a simulation software for dynamic systems that specializes in robotic systems’

simulation, providing a large variety of useful tools concerning robot modelling [37]. Its close

collaboration and relation with ROS has established it as the most utilized simulation software,

with V-Rep, Webots, ADAMS, etc. following [30].

Gazebo is offering multiple advantages in robot simulation. It supports all four major

physics engines, ODE, Bullet, Simbody and DART. It has enhanced visualizing and rendering

capabilities, utilizing OGRE, an open-source graphic rendering engine. It also allows a user to

run simulations on remote servers, using TCP/IP transport. However, probably the biggest

advantage, just like in the case of ROS, is the large database of robot and sensor models that

are provided. Cameras, lasers, Kinect, Lidar and force torque sensors are just a few examples,

with the option to add noise in order to make simulation even more realistic. Same holds for

numerous custom plugins that allow users to manipulate models exactly as they wish, as its

open source nature implies. An additional advantage lies in the fact that in contrast with Adams

and Webots, it is actually free to download, and yet there is a large, continuously growing

community for support and guidance. For that purpose there is also a set of tutorials that cover

most essential terms and functions.

Its simulation capabilities are impressive. It offers the opportunity even to run fluid

dynamics simulations, although it has declared them outdated and advices to use them with

caution. Also there are hydrodynamic and aerodynamic plugins to simulate the behavior of

underwater and aerial objects. However most relevant to our case and indicative of the field’s

tendency to turn to Gazebo for reliable simulations is its excessive use in the Virtual Robotics

Challenge, a part of the larger DARPA (Defense Advanced Research Projects Agency)

Robotics Challenge (DRC). The later was a prize competition funded and organized by

DARPA to develop autonomous robots that would compete in completing several tasks in

harsh environments. The challenge included the DRC Simulator, based on Gazebo, where

each team had to perform several tasks in the same simulated environment using their

controllers applied to the same simulated robot, Boston Dynamics’ Atlas. Gazebo includes a

set of tutorials that guide the user through the manipulation of such a complex robot, its

teleoperation, as well as grasping and navigation. The Atlas robot, as well as the simulated

environment are presented in Figure 2-2.

26

(a)

(b)

Figure 2-2. (a) DRC simulated environment - property of DARPA [38]. Atlas had to get in
and drive the vehicle for a certain distance avoiding obstacles. (b) Atlas anthropomorphic
robot - property of Boston Dynamics.

Despite its ability to closely cooperate with ROS and the fact that they are both maintained

by OSRF (Open Source Robotics Foundation), Gazebo actually is a standalone package,

where users can build models and simulate their dynamic behavior autonomously. It is

suggested to use Linux Ubuntu, but there has been an effort to expand its usage to include

Windows. However, there is not yet full support and it is not recommended.

We previously mentioned the various plugins that are available. The one that makes

Gazebo so precious and important to ROS users is the one that allows data to flow in and out

of the simulation using ROS topics. For example revolute joint angle measurements or joint

hip torque commands are easily received and applied respectively just by using a properly

modified plugin. This of course means that the same nodes that will be utilized on the actual

hardware can be directly tested in simulation, including their cross communication system.

This is a great improvement from just writing a controller in Matlab and running a simulation

in it, which is only an approximation, as it does not include anything like node data exchange

and node loop rates, parameters that are difficult to model and test. The only thing that has to

change between a Gazebo simulation and an actual experiment with the real hardware is the

interface between the sensors and the actuators, for example instead of the plugin there must

be a node that will receive measurements and send commands.

Gazebo has integrated design capabilities. One can insert basic geometric structures

(spheres, boxes and cylinders) and define joints (prismatic, revolute, spherical, etc.). As it is

clear from the description above, designing in Gazebo is quite limited. However, there is an

exporter that can take Solidworks assemblies and translate them into SDF files, the primary

file format Gazebo uses to define models. On this exporter we can define link chains, joints

and visuals. The created models can be attached to world files. Those files contain the models

we want to simulate as well as the solver definition and various solver parameters.

27

 We selected to use the Gazebo 7 version, since it is the most recent version, pairs well

with ROS Kinetic, and their end of life dates are the same.

2.3 Path planning using MoveIt!

MoveIt! is a modern path planning tool for robotic arms, wheeled vehicles and legged robots,

with over than 65 recorded applications [39].

The main reason we experimented with path planning methods was the desire to

maximize the proportional and derivative gains of the PID control that was eventually used on

the monopod’s hip joint. When path planning is used, setpoints are sent gradually until the

desired final value, in contrast with the case of a step input. This allows for larger gains, since

the error of each loop is smaller, therefore we can reach the motor limits, which is always a

requirement, especially in such demanding applications.

MoveIt! works in a similar manner with Gazebo. One has to create a model using the

URDF format. The model and its entire configuration is inserted using the incorporated MoveIt!

Setup Assistant, for which there are extended tutorials and instructions. There one can define

many characteristics, like kinematic chains, end effectors, virtual joints (connections with the

environment), non actuated -passive- joints and even predefined configurations, like the home

position for manipulators.

This package comes with a plugin for Rviz. There, the user can graphically define the

initial and final desired configurations, and then either just plan and visualize motion in Rviz

or plan and execute, by sending the trajectory to the controllers in Gazebo or the actual

hardware.

Figure 2-3. MoveIt! Rviz plugin interface of the PR2 robot.

28

One also has other options like obstacle detection and avoidance, self-collision detection,

and checks to ensure the arm is always inside the reachable workspace.

This platform is quite new and still developing. At the time of its examination, it was not

compatible with the other parts of software, ROS Kinetic and Gazebo 7, and therefore it was

deemed wise not to incorporate it on the current single actuated monopod version, as it is

quite simple and can be handled using standard techniques and methods.

29

3 Monopod design and control using ROS

3.1 Hardware setup description

The first monopod robot version that has ever been manufactured and run in our lab is the

one pictured in the Figure 3-1 below. This setup included a fixed central base that would

connect to the robot and allow for rotational motion around its axis. This connection with the

robot was established through an aluminum bar, fixed on the robot and attached with a

revolute joint on the base, thus allowing vertical hopping, additional to the previously

mentioned circular motion. On the contrary, the fixed connection between the body and the

bar would not allow pitch motion. That was necessary in order for the robot to be as close as

possible to the 2D SLIP model mentioned previously. This setup was almost made entirely of

aluminum, in order to reduce weight and inertia. However, the leg that is receiving most of the

structural and impact loads is made of steel.

Figure 3-1. Previous experimental setup.

Thanks to the bar’s large length and the relatively small size of each stride, we can easily

assume that a setup like the one we are describing is appropriate to realize the monopod’s

motion on a 2D sagittal plane, according to the SLIP model that was mentioned earlier. One

can easily find similar examples in literature. Nevertheless, no matter how long the bar is, this

setup is and will remain a close approximation that was mainly used because a structure that

could support the robot to run on a treadmill, like most modern legged robot applications, was

not yet designed and manufactured. After the construction of such a system [22], we were

able to mount the modified monopod, as we shall describe next, on the treadmill. This solution

is preferred not only because it is an accurate realization of planar 2D motion but also because

of the reduced amount of space that it requires.

30

The mounting mechanism consists of two rails and wagons in the vertical (Z) direction

and a one wagon-rail in the X direction, along the treadmill. We used two rails on the Z axis,

because the rail is cylindrical and it would allow for yaw rotation. The rails were mounted on

aluminum bars to keep the system lightweight, pictured in Figure 3-2.

(a)

(b)

(c)

(d)

Figure 3-2. Mounting mechanism. (a)-Z axis rails, (b)-Z axis wagons, (c)-X axis rail and
wagon, (d)-final assembly.

The monopod robot’s hip joint is actuated by an electric DC current motor with an

appropriate gearhead. The motor is made by Maxon (type RE35, 90 W, maximum continuous

DC current 3.36 A, nominal voltage 24V and maximum continuous torque 0.0933 Nm). The

planetary gearhead is also made by Maxon (type GP42C) and is mounted to the motor with

reduction ratio equal to 26:1. Also, to transmit motion to the hip joint axis, a belt drive was

employed, with reduction ratio 2:1, bringing up the total ratio to 52:1.

The motor was previously driven by a DZRALTE-012L080 amplifier made by Advanced

Motion Controls (AMC). Its main advantage is its ability to provide high current in combination

with its small size and weight. Software provided by AMC allows a user to program the

amplifying gains, avoiding use of mechanical switches and potentiometers. It can also operate

in position, velocity or current mode. However, this drive was considered as too complex for

our application and thanks to massive changes occurring simultaneously at our laboratory’s

quadruped robot design, Laelaps, it was replaced by an AZBDC12A8 drive, made also by

AMC. This drive can supply the same current as the previous one, up to 6A of continuous

current and 12A intermittent (for 2 seconds), but has no need for programming. To

31

successfully use it, one sends an enabling signal to the corresponding pin, provides direction

on the direction pin (HIGH or LOW) and sends a PWM signal, properly configured according

to for the desired current. By default, 100% duty cycle corresponds to 12 A, although as

mentioned this amount can only be supplied for 2 seconds (modulated by the drive itself, so

there is no need to set our own software limitation to avoid drive damage). As one can easily

deduce from above, in our application this drive simply functions in current mode.

Those drives are combined with mounting boards made in our lab for our quadruped robot

Laelaps [4]. Since two different power levels are needed on the same drive, a low one for the

control signals and a high one for the power supply, this board was designed with an

optocoupler to isolate these two levels as a safety precaution. The optocoupler requires 3.3

to 5.5V of supply at both of its sides. Therefore, the board requires three ports in total:

 A low voltage and signal input to receive enable, direction and PWM signals, as

well as 5V and GND for the optocoupler’s first side,

 A high voltage input (24V) to supply the motor as well as 5V for the optocoupler’s

second side.

 A motor power supply output.

Figure 3-3. AZBDC12A8 drive and mounting board.

As far as the sensory system is concerned, there are two incremental encoders, charged

with measuring the leg’s angle with the vertical axis (hip joint angle) and the spring’s

displacement (knee prismatic joint). As usual, both encoders provide three channels, A, B and

index. They produce 500 counts per revolution (CPR) with equivalent resolution of 2000 CPR

when in quadrature mode. The hip encoder is mounted on the motor, type HEDS-5540, made

by HP. The second, same model and manufacturer, is mounted on a custom 3-bar mechanism

called quasi-knee that allows to measure the prismatic joint’s displacement, pictured on Figure

3-4. Practically, this mechanism connects the fixed with the moving part of the prismatic joint

with two links connected with a revolute joint, while the encoder is mounted on its axis. The

displacement is calculated indirectly by measuring the angle between the two links, taking into

consideration the geometry. This part was present in the first setup, but the original encoder

32

was replaced in order to increase the resolution (500 CPR instead of 360) and to resolve some

wiring and connectivity issues.

Figure 3-4. Quasi-knee mechanism.

Additionally, to record the body’s velocity and acceleration, an inertial measurement unit

(IMU) is employed, (ADIS16375 Analog Devices). This sensor has 3 gyroscopes and 3

accelerometers, thus it can count translational accelerations and X, Y, Z angular velocities.

Figure 3-5. ADIS16375 IMU sensor with breakout board.

To measure impact forces and torques, but also for the controller to be able to tell when

the robot is on stance or flight phase, a force sensor is needed as it is the most common and

reliable option. Impact can be determined also by measuring the spring compression, and this

is how it was actually done, before a force sensor was installed. The disadvantage of this

method is that we can only measure forces along the leg axis, so a switch to force sensor

measurements was called for. The one finally installed was a Rikudo series sensor, by BOTA

Systems. Rikudo is a miniature force/torque sensor utilizing strain gauges across all six axis.

The sensor is available pre-calibrated from the manufacturer, while the calibration matrix is

provided to be used with the accompanying software. We used the Rikudo-4243-S, which is

the standard version. Made of aerospace aluminum alloy, the sensor is rigid, strong and

lightweight enough – it weighs only 80 grams – to be placed at the toe position. Also the sensor

is ROS-ready which greatly reduces the integration to a simple plug and read process, in a

machine that can run Ubuntu, e.g. a Raspberry Pi. No other external power supply is required.

33

Figure 3-6. Rikudo-4243-S force sensor.

To mount the force sensor on the toe, a 3D printed adaptor was utilized displayed on the

figure below. Also to avoid cosmetic and structural wear, a silicon hemispherical cover was

constructed, using silicon casting on a plaster mold.

Figure 3-7. Rikudo force sensor with and without the silicon cover.

3.2 Electrical and electronic subsystems

3.2.1 Previous setup

The previous electronic subsystem was using a Beagleboard-xM as a main computer. Since

this could only send and receive signals up to 1.8V, there was an additional board designed

to convert signals from 1.8 to 3.3V and vice versa. There was also a DAC, MAX517 by Maxim,

to accept a digital signal from Beagleboard and produce the voltage output required by the old

motor drive.

All the electronic elements of this setup required 5V supply. For this purpose, a voltage

regulator (LT1085, Linear Technologies) was utilized. This regulator needed a supply of its

own, a voltage above 6.5V. To summarize, the old setup required:

 24V to supply the motor

 5V to supply the PIC microcontrollers responsible for reading the encoders (see

Section 3.2.2), the Beagleboard and its amplifier, the DAC and the encoders

 6.5V to supply the voltage regulator

34

To make all those different voltages available but also to mount the microcontrollers and

the drive, a main board was designed and constructed; an auxiliary board to create the 5V

supply was added.

Figure 3-8. Monopod previous setup.

3.2.2 Redesign and current setup

The method with which the encoders would be read was the first decision to be made. This

selection of method subsequently affects the whole redesign of the electric and electronic

subsystems.

The older monopod version was using two Microchip PIC18F4331 microcontrollers,

capable both for reading encoders with their incorporated QEI module and for producing PWM

signals. Those microcontrollers required a 5V supply, as well as the construction of a breakout

board that would connect and redirect each pin properly.

Figure 3-9. Microchip PIC18F4331 microcontroller.

35

Considering our new requirement for ROS utilization, as well as the specification for

remote control, it was desirable for the new system to have the ability to be easily accessible

and controllable from any computer on a local network that is using ROS; therefore there must

be a way to send encoder measurements to said computer. It would be unwise and

inconvenient to send A, B and I signals directly to the main computer, both because of the

fragility of the cable type the encoder uses and the noise that would be inserted, even with a

line driver and receiver. In any case, it is generally preferable to read the encoders locally and

just transmit the angle value.

To this end, an Ethernet port could prove extremely useful. However the PIC18F4331

microcontroller does not offer one. Although perhaps there was a possibility to program it to

perform this function, this solution was rejected as too complex and non-worthy of the time it

would consume, since the microcontroller market was flooding with options, offering both

enhanced incorporated Ethernet connectivity as well as augmented processing power, if in

the future a requirement would arise to perform more functions locally, e.g. low level PID motor

control.

We should clarify that probably every microcontroller with GPIO pins can read encoder

signals using interrupts. This way, the amount of encoders a board is able to read

simultaneously is only limited by the number of input pins it has. However, this method was

tested and is was found out that little by little, for a repetitive swinging leg motion, the zero

point started moving towards the sides, instead of remaining steady as it should in the vertical

position. This is probably a result of some lost counts during the motion, which in our case

was particularly fast. In cases of slower motion this phenomenon seemed to diminish or even

disappear. This method was obviously rejected and it was decided to limit our microcontroller

research to devices that offer one or multiple QEI modules.

A QEI module is an interface that accepts channels A, B and I and can calculate signed

velocity and relative position. The way it works is that it detects whether pulse A or pulse B is

leading, and defines the direction accordingly. It also offers increased resolution as from 500

CPR for channels A and B, now there are four different combinations between them, summing

up to a total of 2000 equivalent CPR. Many microcontrollers offer libraries with convenient

functions that can automatically return relative position and velocity values without any

additional user editing.

Figure 3-10. QEI module pulse succession.

36

Finally, the TM4C1294 Connected LaunchPad from Tiva C series by Texas Instruments

was selected. The Beaglebone Black, with its incorporated eQEP module, similar to QEI, was

also considered but it was deemed expensive (about 60$) and it was more powerful than

necessary just for encoder reading. The Tiva board only costs 20$, it has an 120MHz 32-bit

ARM Cortex-M4 CPU, 1 MB flash memory, an Ethernet Connection and it includes one QEI

module. It also includes TivaWare, a set of useful libraries and is debugged using the Code

Composer Studio, also provided by Texas Instruments.

Figure 3-11. Tiva C Series TM4C1294 Connected LaunchPad, Texas Instruments.

For the new design things were significantly simplified. We still need to create a 5V level

to supply the three Tiva boards (one for the knee encoder, one for the hip encoder, and one

for the IMU) and the two encoders. We also need the same 24V supply as before to power

the motor. Since it is simpler and more compact to have a single power input for the whole

system, a voltage regulator is required to convert the high voltage to low. For this purpose, a

step-down regulator or buck converter was utilized. This type of regulator offers greater power

efficiency, reaching 95%, compared to the classic linear voltage regulator, which also

generates a large amount of heat. The regulator we selected is a Polulu D24V60F5, capable

of handling currents up to 6A, more than enough to power our low power components. This

part was mounted on a board with two outputs, to the motor drive and a second board we shall

present below, and a power supply input (24V). The Regulator Board’s (RB) schematic and

final construction are presented in Figure 3-13 and Figure 3-14.

Figure 3-12. Polulu D24V60F5 5V Step-Down Voltage Regulator.

37

Figure 3-13. RB schematic.

Figure 3-14. Constructed RB.

This voltage has to be distributed to the three Tiva boards through a Power Distribution

Board (PDB). We chose to power the encoders directly from the Tiva boards and not use the

master power board to keep the design compact and simple. The motor drive also is supplied

and enabled by a Tiva board. Of course this nullifies the advantage of isolation between the

two sides of the optocoupler as both sides will essentially have one common ground. This is

not a great issue as in the unlikely case of an accident there is nothing expensive to be

damaged, as there is on Laelaps (PC-104). Note that in our case the central computer only

communicates with the robot through a rooter and therefore its electrical isolation is

guaranteed.

Figure 3-15. PDB schematic.

38

Figure 3-16. Constructed PDB.

To avoid using small cables and wires that would detach during impacts, but also to supply

the Tiva boards from the Boosterpack instead from the debug port, a Mounting Board (MB)

was constructed. It includes a small capacitor to normalize any voltage fluctuations as well as

a standard Ethernet adaptor and a clip adaptor for the encoder flat cable, to ensure it will stay

connected even during impacts. Its schematic, the final design and the constructed board are

presented on Figure 3-17, Figure 3-18 and Figure 3-19 respectively. The construction was

carried out using the lab’s LPKF machine.

Figure 3-17. Tiva MB schematic.

39

Figure 3-18. Tiva MB final design.

(a)

(b)

Figure 3-19. Constructed MB. (a) top, (b) bottom layers.

3.3 Tiva

As is already mentioned, the basic design specification shared between all robots in the lab,

and the treadmill on which they are tested, is the ability for cross communication and control

using one common control center. This process requires two different parts of code. The first

is the one that will receive commands, send measurements and handle the communications

between the robot, or treadmill, and the control center. In our case, this part shall run on the

Tiva microcontroller.

40

The code utilized activates the PWM and QEI modules to perform the tasks at hand. Also

it sets up the UDP communication, which shall be discussed below. The user can easily select

what modules he wishes to enable by defining the corresponding parameters. For example,

by defining ENABLE_MOTOR and ENABLE_ETHERNET the aforementioned modules are

enabled. One can also define ENABLE_IMU to enable inertial measurements and

ENABLE_UART for debugging purposes. The whole code is included in Appendix A.

3.4 ROS

This is the second part of the control system, as mentioned before. It consists of five basic

nodes, namely the Hip, Knee and IMU interfaces, Read setpoint, PID control, Botasys driver

and high level controller. All of them are included in appendix A.

a. Hip_interface node

This node is the one that is charged with communicating with the hip Tiva board. Its function

is depicted in Figure 3-20. Tiva is continuously transmitting encoder measurements on a set

rate, using the User Datagram Protocol (UDP). This protocol is preferred over the standard

Transmission Control Protocol (TCP), mostly because of its speed. In time sensitive

applications, like real time control, TCP is rather inappropriate, as it includes error checked

delivery of data streams, causing a significant delay. On the other hand, UDP has no such

capabilities. For example, whenever a message is sent there is no guarantee it will reach its

destination and no retransmission can be requested. Also there is no guarantee for ordered

delivery. For example if one sends a message A and a message B right after, the order with

which those messages will be delivered cannot be predicted in advance, although it was

noticed that in their vast majority the messages arrived in the order they were sent. For these

reasons, this protocol is faster and it is preferred when we favor speed over accuracy. In this

node, we set up an asynchronous server to receive and read packets, and we define the

board’s IP and the send and receive ports. Those ports are software structures, numbered

between (0 and 65535), and provide application multiplexing. This way the computer can tell

which data correspond to which board, because there are three of them sending data to the

same IP address.

41

Figure 3-20. Tiva – ROS connection.

The measurements are read using a sigaction function and a signal handler. Every time

the node receives an angle, this handler is triggered. The execution of the main function is

interrupted, data is read and assigned to a global variable. The execution of main is then

continued from the point it stopped.

Received data corresponds to hip angle measured in counts, relative to the initial angle

where the board was activated and started measuring. We selected the zero point to be at the

vertical position, mostly to have better visual control over the real and measured angle. For

clockwise rotation the angle would be considered positive and for counterclockwise, negative,

in order to avoid measurements with discontinuities. However this is exactly how the QEI

library works. When we move towards zero from a small positive angle, the counter will reset

and count the largest value defined on memory, which should correspond to 359 degrees. For

example, we will count 2, 1, 0 and 359 degrees, when we would actually like to count 2, 1, 0

and -1 degrees. This is represented on Figure 3-21. With black we can see the output of the

QEI library, and with red the desired output.

Figure 3-21. Angle succession, black for the QEI output and red for the desired.

Instead of modifying the QEI library, we take care of the issue in this node. If the algorithm

detects transition from a small positive to a large positive value, e.g. from 100 to 103500

counts, and given the large sampling rate, it assumes there was a zero crossing and it

42

subtracts 104000 counts (or 360 degrees) from the measurement, e.g. 359-360=-1 degrees,

or the corresponding value in counts. The same subtraction should occur when we previously

ended up with a negative value, and we keep receiving descending positive values, which

means the leg crossed zero and it keeps moving in the counterclockwise direction. This whole

conversion occurs inside the signal handler.

Next, the final angle value is published on the proper topic, usually the one named /state,

as we send measurements directly to the PID controller. There are two separate ways to

handle the publishing. The first way is to publish the measurements inside the signal handler.

This way data is published in the same rate it is received, while the main function is practically

left empty. E.g. for a Tiva transmission rate of 5 kHz, the publishing rate will be about 4.98

kHz too. This way we have direct control over the publishing frequency. However, this method

results in various crushes and program shutdowns, therefore it was not selected.

The second is to publish data inside the main function. This method however, also

presents an issue. Since the main function’s execution flow is interrupted by the signal handler,

its actual loop rate is not the one we define, but it depends on the defined rate and the rate of

interrupts, or in other words, the Tiva transmission rate. Consider Table 3-1 with some

indicative experimental values. As one can observe, as Tiva’s rate increases, the deviation

between the defined and the achieved loop rate also increases.

Table 3-1. Tiva transmission rate – control loop rate relation.

Tiva transmission

rate (Rate_1 - Hz)

Defined loop rate

(Rate_2 - Hz)

Achieved loop rate

(Rate_2 - Hz)
Functionality

1000 <1000 Equal to defined Unstable

1000 1000 ~995
Works at first, ends up

unstable

10000 1000 ~700 Works

15000 1000 ~200 Works

15000 10000 ~1650 Works

15000 20000 ~2700 Works (Best case)

20000 - - Cannot publish values

40000 - - Cannot publish values

As we can observe, as Tiva sends measurements faster, ROS has increasingly more

trouble reaching the defined loop rate. Above 20 kHz, ROS does not even manage to publish

the measurements, in any defined loop rate.

43

It is really important to define what we mean by result. Rate_1 was initially set to 5 kHz.

In the case that a step command input was applied, it was observed that the control gains

could not exceed some specific values. Generally speaking, a rise in Kd should result in less

oscillations and a smoother response. While this was happening at first, for Kd > 0.00012 the

oscillations would start to rise again. As a result we could not increase Kp above its own set

value (0.0008) because there was no way to reduce the oscillations that would cause.

Therefore the system was underperforming.

When Rate_1 was increased, e.g. to 15 kHz, we managed to increase the gain values

and reach the motor’s limits (Kp = 0.003 and Kd = 0.00024). These are the control gains that

correspond to the experiments presented in Table 3-1, and those that decide if the setup is

functional or not. So when we refer to instability, it is implied that the setup is unstable for

those specific gains, and that it could be stable for lower gains. We will discuss further the

control gains and how we can theoretically predict their values in Paragraph 3.6.2. The reason

we mention this here is to show those gains predicted in that paragraph could not be reached

for a different control loop rate. Additionally, note that what we observe is due to the set

transmission rates and not to root locus behavior. As one can observe in Figure 3-22, an

increase of Kd, for a fixed Kp, could not possibly cause any increasing oscillations and

eventually instability.

Figure 3-22. Root locus for increasing Kd value.

Finally, this node subscribes on the /control_effort topic, reads the calculated necessary

PWM duty cycle and sends it back to Tiva.

b. Knee_interface node

This node is practically the same as the previous one. The only thing changing is that the knee

board does not actuate a motor, therefore there is no need for subscription to any topic. The

44

quasi-knee angle measurement is received like before only this time it has to be translated

into a length in order to be published. The compression values are published to the

/compression topic. The translation occurs as follows.

Figure 3-23. Quasi-knee geometry.

We are measuring angle theta, and wish to count L5.

2 2

3 1 2 1 22 cos(theta)L L L L L   (3-1)

and

2 2

3 4 5L L L  (3-2)

therefore

2 2 2

5 1 2 1 2 42 cos(theta)L L L L L L    (3-3)

We should finally mention that there is no problem with that node’s loop rate as it does not

affect the control system’s rate in any way. Of course same things hold but, since the

measurements can be sent from the board at a lower rate, e.g. 1 kHz, we can use the rates

mentioned on the first case of Table 3-1.

c. IMU_interface

As in the two previous cases, this node receives the X, Y and Z angles and respective

accelerations, and publishes them to the /IMU_feedback topic. There was an effort to integrate

measurements in order to get the total displacement, but we found out quickly that the

accumulating error makes that almost impossible. More complex methods, and of course more

than one sensors are required to get an accurate estimation. One method that could be utilized

is sensor fusion, but there was no further investigation on the matter [20] since there were no

other sensors available.

Again, this node’s loop rate can be defined without worrying about affecting the closed

loop’s rate.

45

d. Read setpoint

This node reads a desired position in counts using the rqt_reconfigure tool. It was only used

on the PID hip position control experiment, as for more complex experiments this angle is

usually defined by a high level controller.

Figure 3-24. Setpoint definition in counts.

e. PID controller

This is the controller provided by the ros_pid package. It offers various tools, like dynamic

reconfigure for gains, a filter on the estimation of the derivative term, saturation limits and

easily configurable published and subscribed topics, in case we wish to rename them, or run

more than one controllers at once so name conflicts need to be avoided. This package was

selected over the ros_control package, as the latter’s structure is significantly more complex

and for the time being it lacks documentation.

The reason we took special care of the Hip_Interface node’s loop rate is that the controller

has no loop rate of its own. It operates at the rate it receives messages or, in other words, at

the rate that the /state topic is published. This means that the /state’s topic publishing rate is

in fact the rate of the entire control loop.

The filter was also a point that needed some consideration. This is a low pass filter

designed for audio applications, with a default cut off frequency of 3 kHz. It is useful in cases

of heavy spiking behavior of the velocity estimation. However, as we shall discuss in

Paragraph 3.5, those filters also insert a phase shift. This effect was in fact verified in a Gazebo

simulation; we decided not to modify the default value without further investigation.

Finally for the gain definition this node uses the same tool we used to define the setpoint,

rqt_reconfigure.

Figure 3-25. PID control node gain reconfigure.

46

f. Botasys driver

Except for the main nodes mentioned previously, we also use the force sensor’s driver to read

measurements. This driver comes in a ROS package that only requires building. There are

two different launch files. The first, calibration.launch, is quite self-explanatory and handles

the sensor’s calibration. The second, driver.launch, is the one that receives and publishes

measurements in /botasys topic. Because the initial measurements come with some noise,

this driver provides an integrated filter that publishes filtered data on /filtered_botasys. Finally

there is a capability to visualize the force’s direction and magnitude using Rviz.

Figure 3-26. Botasys sensor force-torque vector.

g. High level controller

We used another additional node to conduct a simple dynamic hopping experiment. This node

reads the compression and angle values and consequently determines if the leg is on a flight

or a stance phase. In the first case it activates the PID controller and sends a setpoint, the

touch-down angle. During stance phase, it deactivates the controller and sends a PWM duty

cycle directly to the /control_effort topic, which corresponds to a set torque. The controller

needs to be deactivated because, since it is receiving data on /state continuously, it would

keep operating and interfere with the continuous torque command we want to apply.

The main parameters to configure in this node are the compression after which we

consider the leg is on stance phase, the touch-down angle and the torque applied on stance.

The duty cycle is also important as this is the node that drives the controller. However since

the measurements are not read here, therefore we do not have the previous delay issue, the

user can just define the loop rate in which he desires the control to be closed.

This walking mechanism, if given proper initial conditions (free fall height and translational

forward velocity), and if there were no energy losses, its passive nature would allow it to keep

moving without actuation, while on stance phase, just utilizing its initial kinetic energy.

47

However when losses are added, the system becomes quite parameter sensitive and it is hard

to find the initial conditions that would lead to stable motion. Therefore it is a matter of great

significance to estimate their values, as well as the values of stance phase torque and touch-

down angle.

3.5 Simulation in Gazebo

3.5.1 System modeling

The first step towards a complete Gazebo simulation is creating a model with physical

properties. Gazebo uses SDF files to describe a model [40]. However when one wants to use

it in combination with ROS, a different type of file is used, called URDF [45]. This file is

automatically converted into SDF by Gazebo. More info can be found in [46].

This format is quite outdated and lacks several features. One of the most important and

easily observable flaws, even after the first attempt to create a model, is the lack of a spring

stiffness parameter. An approximation of elastic behavior can be achieved by using the CFM

and ERP parameters. The ERP detects joint position errors and tries to correct them by the

defined factor, e.g. a value of 0.2 corrects the error by 20%. As it is obvious, increasing the

ERP might make the joint more rigid, however it increases the numerical instability. The CFM

works in a similar fashion with velocities and allows their modification. In contrast to ERP,

increasing the CFM will soften the joint behavior and will improve stability. Those parameters

combine stiffness, damping and time step in the following formulas [41]:

tK

ERP
tK b




 (3-4)

and

1

CFM
tK b




 (3-5)

where K stands for the spring stiffness, b for the damping factor and t for the time step. It is

suggested in literature that one can achieve an accurate representation of a spring and

damper system simulated with implicit first order integration. However every time we modify

the time step, these parameters also need to be adjusted properly, therefore their utilization

is not suggested, except maybe in the case one wants to model a soft stop.

The aforementioned hold when one wants to insert a model through ROS, according to

the corresponding tutorial on the Gazebo page about connection with ROS, model actuation

and control using the ros_control package [42]. However we have already selected to control

the hip joint position with the ros_pid package. This allows us to use the more advanced SDF

48

format description, if of course we find a way to connect Gazebo and ROS. To summarize the

main objectives are:

• the use, if possible, of SDF files with advanced modeling capabilities

• the connection with ROS, in a similar fashion with the real robot

A first approach is to insert the robot model as part of the simulation environment in the

corresponding world file. This way the first objective is achieved. Afterwards, if possible, one

can construct a mechanism on top of the environment, like a brace, using a URDF file as ROS

demands. This structure, without any properties like stiffness which is absent in the URDF file,

should only actuate and essentially move the robot. In our case the final system is presented

in Figure 3-27 (white-monopod robot as part of the environment, black-exoskeleton).

Figure 3-27. Monopod model with external brace for actuation.

This method, although it could work, it is quite hard to implement. It requires relatively

small link weights and inertias in order to be realistic, something that Gazebo does not handle

well and could lead to the whole model collapsing and simulation breaking down. Also it is

hard to receive measurements from the actual joints (position, velocity, torque) without using

an additional plugin. Finally, there is no correlation between the simulated and the real system.

Therefore the main issue remains.

A solution to our problem is finally offered by custom plugins. These plugins can virtually

perform any function a user wants. In our case, the target is to create a topic that accepts as

input commands from a controller and as output applies torque to a joint. A topic that contains

the joint state (e.g. position) is also required. The second topic is relatively easy to construct,

using the standard joint_state_publisher plugin that is available on the Gazebo plugins folder.

49

Note that if, in addition to position, publication of velocity and torque is required, the standard

plugin has to be modified.

To create the command topic, another custom plugin was constructed, named

monopodplugin. This plugin has, again, to be built and moved into the gazebo plugins folder.

These two plugins also have to be added in the bottom of the SDF model in order for Gazebo

to load and activate them. Afterwards we only have to create a world and a launch file that will

run all the necessary nodes. All the codes, plugins and models are included in Appendix A.

Finally we end up with the system shown in Figure 3-28. Its similarity with the one used

on the real robot shall become obvious on Paragraph 3.7 (Figure 3-44), where we conduct the

experiments. The difference is that instead of the Tiva_Interface node we have two new nodes.

The State_Callback_Interface to receive measurements from Gazebo, and the

Command_Interface, to send commands.

Figure 3-28. ROS control system structure in Gazebo simulation.

3.5.2 Solver parameters configuration - Matlab comparison

As already mentioned, Gazebo offers four different physics engines, ODE, Bullet, Simbody

and DART. We selected the ODE solver, as it was the easiest to set up and configure. This

solver also allows for easy verification and comparison of the produced results with those from

the same simulation in Matlab, which is also using said solver. We shall examine some

fundamental parameters that the user has to configure in order to produce accurate results.

Time step

Two values were tested, 1 ms and 0.1 ms. Both responses agreed with those from Matlab

simulations. In case that the simulation duration is irrelevant, it is suggested to use the smaller

time step. In all other cases, it is preferable to use the bigger, for reasons that will be mentioned

subsequently.

50

PID loop rate

The controller’s loop rate (LR) should match the simulation’s solving frequency. For example,

considering the two mentioned time steps, the LRs should be 1 kHz and 10 kHz respectively.

The second case is quite computationally demanding, especially if many different PIDs must

run simultaneously (e.g. on a quadruped robot).

This is one of the reasons the smaller time step, if not otherwise required, should be our

first choice while defining the simulation’s parameters. If the LR is not selected appropriately,

the simulation results will not match the expected ones (received e.g. from Matlab), as shown

in the following diagrams. All following figures present simulation results of PID control on the

hip joint, and specifically the response to a step input of 6000 counts, or about 20.5 degrees,

for the same Kp and Kd gains.

Figure 3-29. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 1 kHz, Update rate
= 100.

Figure 3-30. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update
rate = 100.

51

Figure 3-31. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 20 kHz, Update
rate = 100.

Solver type

Two choices exist, i.e. quick and world. It is reported that quick, as one could imagine, is faster

but offers somewhat lower accuracy. However, it was observed that there were some issues

with said solver type. Specifically, a constant torque was exerted to a simple pendulum model.

While it was expected that the pendulum would be constantly accelerated to theoretically

infinite velocity, that was not the case. Instead the velocity diagram shown in Figure 3-32 was

recorded in ROS.

Figure 3-32. Pendulum with constant torque applied (g = 0, b = 0, no static friction).

Using the world type solver, that problem was resolved. Therefore its use is recommended.

52

Real time update rate

The real time update rate parameter specifies in Hz the number of physics updates that will

be attempted per second. If this number is set to zero, it will run as fast as it can. Note that the

product of real time update rate and max step size represents the target real time factor, or

ratio of simulation time to real-time. Therefore:

 _ _ _ _ _Real time factor real time update rate dt  (3-6)

The real time factor parameter expresses the correlation between the real time and the

simulated time. For example, if during two real seconds, Gazebo has solved one second for

the simulated system, real time factor is 0.5 (1/2). Consequently, the meaning of the equation

above is clear. If the time step is 1 ms and the solver is called 1000 times per second, real

time factor will be equal to 1. In one real second, a simulated second will be solved.

This point however needs a lot of caution. The user can select the real time update rate

and the real time factor in the simulation launch file, but one needs to keep in mind two things:

1. Defining the real time update rate seems to transcend the definition of the real

time factor. To make this clear, consider the following example. We define a 0.1

ms time step, real time factor equal to 1 and real time update rate equal to 100.

Those values are incompatible, according to (3-6), and one of those should be

modified to satisfy it. The real time update rate could become equal to 10000. This

does not happen and we end up with real time factor = 0.01, as the aforementioned

equation dictates, which means that this is the parameter that must be changed

in the case of conflicts.

2. There is no guarantee that Gazebo will manage to achieve the defined real time

update rate, end even if it does, that there will not be any unexpected behavior in

the simulation due to increased computational load. In our case there was an

unexplained oscillation at steady state. Consider the following cases.

A time step of 1 ms and the appropriate loop rate (1 kHz) are defined. If the update rate is set

to 1000, as we discussed previously, the following response is recorded (Figure 3-33):

53

Figure 3-33. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate
= 1000.

The expected real time factor (equal to 1) was not achieved. We end up with a value of

0.93, which also appears to be oscillating between 0.9-0.95. This instability suggests that there

might be a system overload. This hypothesis is supported by Figure 3-33, where random

oscillations appear at steady state.

This issue is observed better if we alter the update rate to 10000 calls per second

(estimated real time factor = 10). Again, the update rate parameter reaches only 4 when it

should actually become 10, with even bigger variation (3.8-4.5). Also the oscillations at steady

state increased dramatically, see Figure 3-34.

Figure 3-34. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate
= 10000.

54

We can easily deduce form the aforementioned results that the update rate, in

combination with the ROS loop rate that runs simultaneously, is a parameter that loads

significantly the computational system. For that reason, we choose a smaller time step, in

order to choose the lower loop rate, but also to match the loop rate value on the real robot as

well. It is unlikely to exceed values of 1 kHz on the actual hardware.

In conclusion, it is hard to give an update rate value that will suffice for all cases. For the

two time step values that were mentioned before, a value that does not cause instabilities and

variations at the real time factor value is 100. This value is, of course, just an example and it

depends on the computational system. It is suggested to fine tune these parameters by

comparing the Gazebo simulation with one from another simulation environment, e.g. Matlab.

3.5.3 Spike examination

If we try to compute the velocity for one of the previous cases, we will record the responses

presented in Figure 3-35 and Figure 3-36.

Figure 3-35. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate
= 100.

55

Figure 3-36. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update
rate = 100.

As observed, there are spikes in the velocity estimation as taken from the PID. In fact the

problem worsens in the case of a smaller step, where the control loop rate is 10 times higher.

The problem in the smaller time step case can be normalized using the incorporated PID’s

filter in the ros_pid package. By altering the cut off frequency from 2.5 kHz to 300 Hz, the

result shown in Figure 3-37 is recorded:

Figure 3-37. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step
= 0.1 ms, LR = 10 kHz, Update rate = 100. Cut off frequency adjusted to 300 Hz.

In red colour, we can see the clearly improved velocity form. The oscillations can vanish

totally if we lower the cut off frequency even more. However, in such a case, the behavior of

the model is altered too, because of the phase delay that the filter introduces. Consider Figure

3-38 for cut off frequency equal to 30 Hz.

56

Figure 3-38. Gazebo - Matlab control comparison. Time step = 0.1 ms, Loop Rate = 10 kHz,
Update rate = 100. Cut off frequency adjusted to 30 Hz.

In the case of a larger time step (and loop rate), those values do not seem to work in a

similar fashion. The model’s behavior starts altering earlier. Therefore, without further

investigation, the use of this filter is not suggested.

In any case, the filter would not deal with the actual cause but it would only mask the

problem. Being suspicious from previous cases, where system overload was leading to

unexplained simulation phenomena, we lower the update rate (referring to the case of time

step equal to 0.1 ms). The result is shown in Figure 3-39, where the spikes are less, and with

smaller amplitude.

Figure 3-39. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step
= 1 ms, Loop Rate = 1 kHz, Update rate = 5.

57

The disadvantage is that we end up with an extremely small real time factor, which results

in long simulation duration. It’s up to the user to determine the update rate value, keeping this

tradeoff in mind, and considering that those spikes do not affect the simulation’s behavior (it

is the same for both update rates).

3.6 Experiments and comparison

Three main experiments were conducted to verify the setup’s functionality. The first was a

passive static hopping, to test measurements on the knee joint and examine how close

simulation could approximate reality. The second was a PID control on the hip joint, to test

software setup and also examine simulation accuracy. Finally the high level controller that was

previously described was used, in order to test all of the sensors at once and verify that there

would be no complications.

3.6.1 Passive static hopping

For the first experiment, the robot was left free to fall from a 5 cm height, while the leg was

commanded to remain on the vertical position. The responses both from the simulation and

the experiment were recorded using the rosbag tool from ROS and inserted in Matlab using

the code in Appendix A.

Although the two responses are almost identical in the beginning, after the first second

we can observe a small deviation between them. There are two reasons that could lead to this

phenomenon. First of all there might be a small miscalculation between the actual parameters

and those we got from Solidworks. Next, and more significant, this could probably occur

because of unmodeled dynamics. E.g. we notice a small damped oscillation on the real

response when the leg reaches and collides with the mechanical stop and absorber. This is

not modeled and it functions as an energy drain for our system. Also there is no ground model

on our simulation, whereas the treadmill’s belt, where we conducted the experiment, functions

as an absorber too. Nevertheless, this model managed to simulate all four bounces as well as

the actual settling time, steady state compression and general form.

Table 3-2. Passive static hopping simulation parameters.

Parameter Value

Real time update rate 100

Step time (s) 0.001

Real time factor 0.1

58

Table 3-3. Passive static hopping experiment parameters.

Parameter Value

Defined PID control loop rate (Hz) 8000

Achieved PID control loop rate (Hz) ~1000

Tiva transmission rate (Hz) 15000

Kd 0.003

 Kp 0.0002

Figure 3-40. Simulation-experiment comparison of static damped hopping.

3.6.2 Hip PID control

In this experiment, the body was held still above the ground and the only thing controlled was

the hip joint. We tested for a 7500 counts (26 degrees) step input and the response, real and

simulated, is presented in Figure 3-41.

59

Figure 3-41. Simulated and actual response to a 7500 counts step input.

Figure 3-42. Simulated and actual torque requirement.

Considering that such applications in legged robots demand extremely low swing time,

i.e. around 0.2 - 0.4 seconds, there is really no point in using an integral term. This is because

either it will be of small value and will have no time to load and produce an observable result

or it will be of large value and will cause instability and oscillations. So in fact, a simple PD

was employed. An estimation of the necessary proportional and derivative gains was taken

using a linearized leg model (Figure 3-43), around the vertical position, as follows.

60

Figure 3-43. Linearized leg model with PID control block diagram.

That model includes the linearized, around the vertical position, pendulum transfer function as

plant:

2

1
PG

Js Bs



 (3-7)

The following parameters were used:

Table 3-4. System parameters.

Parameter Value

Reduction ratio 52

J (kg∙m2) 0.0241

B (N∙m∙s) 0.005

The closed loop transfer function is:

2

1

Characteristic equation: 1 0

12 2000 12 2000
52 52 52 52

100 2 100 2 0

C P
CL

C P

C P

T D T P

G G
G

G G

G G

B K K K K

s s
J J

 

 


  



  

Therefore:

12 2000
52 52

100 22
T D

n

B K K

J




 (3-8)

and

2

12 2000
52 52

100 2
T P

n

K K

J

  (3-9)

where ωn is the undamped natural frequency and ζ the damping ratio. When ζ is equal to 1 we

have a critically damped system, which is the fastest without overshoot [21]. A value that is

frequently used in such applications is 0.7, which offers a good rise-settling time relation. In

61

our case there is no need to completely eliminate overshoot as it produces a faster response,

so we selected ζ equal to 0.6. We also set a settling time value of 0.35 s.

4

0.35 19.05s n

n

t 


    (3-10)

Using (3-8), (3-9) and (3-10), the control gains are found to be:

0.003368

0.000211D

P

K

K




 (3-11)

This approximation is really accurate. It was experimentally confirmed that the gains that

produced the best results were:

'

'

0.003 0.0035

0.0002 0.00025D

P

K

K 

 


 (3-12)

Of course their actual value was affected by many parameters, like those we mentioned earlier

about the PID node frequency and the Tiva transmission rate. Also, beyond these values, any

further increase of Kp would not produce any visible results as the applied torque was already

clipped due to saturation (Figure 3-42). An increase of Kd would again lead to instabilities and

oscillations, as we discussed earlier. An overview of the PID control simulation and experiment

is given in Table 3-5 and Table 3-6.

Table 3-5. Hip PID control simulation parameters.

Parameter Value

Real time update rate 100

Step time (s) 0.001

Real time factor 0.1

PID control loop rate 1000

Kd 0.003

Kp 0.0002

Table 3-6. Hip PID control experiment parameters.

Parameter Value

Defined PID control loop rate (Hz) 8000

Achieved PID control loop rate (Hz) ~1000

Tiva transmission rate (Hz) 15000

Kd 0.003

Kp 0.0002

62

The gain values of (3-11) could probably increase if path planning methods were

employed, because smaller errors would be created during the motion. These increased gains

would provide better robustness and rigidity while the leg is still.

3.6.3 High level control

Additionally to those previous simple experiments, and in order to ensure system functionality,

we used a high level controller, similar to the one already used in our lab’s first monopod robot

[8].

This algorithm is a simple one. When the robot is on flight phase it repositions the leg in

a predefined angle of attack, or touch-down angle. After it lands and transits to stance phase,

a torque is applied to the hip joint in order to move forward and repeat the cycle. The system

structure appears in Figure 3-44.

Figure 3-44. Control system structure.

We run the experiment twice, with and without the force sensor. Both cases are presented

in Figure 3-45 and Figure 3-47.

Table 3-7. High level controller experiment without force sensor – parameters.

Parameter Value

Compression for stance (mm) 4

Touchdown desired angle (counts) 870

Stance phase torque (Nm) 1.8

Kp 0.0038

Kd 0.00024

63

Figure 3-45. High level controller experiment without force sensor.

 (a)

(b)

(c)

Figure 3-46. Experiment pictures - (a) touchdown, (b) midstance, (c) takeoff.

One can easily see that the leg stops moving after approximately four strides. This issue

is quite complex and there might be many reasons for not achieving a stable gait. One of them

is the difficulty in controlling the initial conditions, i.e. of the translational velocity and drop

height. The latter was 0.08 m (counting from the toe), but there is no easy way to calculate

and apply a certain desired velocity, neither repeat it every time. In any case, that velocity and

height should be equal or slightly greater than those desired [32]. For example, for desired

apex height of 0.32 m and forward velocity of 0.5 m/s, the corresponding initial values should

be around 0.33 m and 0.6 m/s respectively.

Moving on to other parameters, after testing several combinations we selected those in

Table 3-7. This application, where the leg is moving towards negative values when

commanded to reposition in contrast to the PID control experiment we run previously when

64

the leg was static, allows for utilization of slightly larger gain values than before. The values

of stance phase torque and the compression in which the controller considers it has entered

the stance phase were also experimentally configured. For larger torque or smaller

compression, the leg would simply slip and collapse on itself. That is also what would happen

for greater touchdown angles, where the torque provided was not enough to push the body

forward; with the motor at its maximum torque. It should be stated however, that this

combination is one of the several that might work in a similar manner and could definitely use

some refining.

Table 3-8. High level controller experiment with force sensor – parameters.

Parameter Value

Compression for stance (mm) 4

Touchdown desired angle (counts) 2500

Stance phase torque (Nm) 4

Kp 0.004

Kd 0.00026

Figure 3-47. High level controller experiment with force sensor.

With the addition of the force sensor, the leg is getting somewhat heavier, which is

depicted in Figure 3-47. There, we can observe that there are only have two strides instead

of four. That might have something to do with the silicon cover that acts like an absorber. For

this reason, the gains as well as the stance torque were increased, with the other parameters

remaining the same. We can also see the filtered and unfiltered measurements along the

65

vertical axis. Peak impact force was measured about 200 N, or about 2.5-3 times the robot’s

weight.

66

4 Treadmill

4.1 Setup description

Most of the robots developed in the Control Systems Laboratory are legged and especially

quadrupeds or monopods. The salient characteristics and the main design influences come

from nature itself (biomimetics). Since we are focusing on resembling nature and its features,

e.g. high speed, balance, obstacle detection and avoidance, it only makes sense that those

features should be tested in an environment that can simulate nature conditions. Considering

that it would be unwise and even dangerous to conduct the first experiments outside the

laboratory, the most common solution is to use a treadmill, with inclination capability. That

requires a support system, as well as a control system able to set and control velocity and

inclination. In addition, a treadmill ensures the security of both the robot and the researcher

and facilitates experimentation.

The treadmill currently installed in our laboratory is 6 meters long, and actuated by two 3-

phase induction motors. The first motor (model MS 100L 2-4, XIUSHI) drives the belt’s main

pulley achieving a maximum running velocity of 12.6 m/s. The second motor (model FC80-4,

Electro Adda) actuates an endless screw and a rack-pinion system that sets the treadmill’s

inclination to the desired value (maximum angle of 20 degrees). Both are driven by inverters;

an EMERSON M200-022 model for the belt’s motor, and a SIEMENS SINAMICS G110 for the

inclination motor.

Figure 4-1. MS 100L 2-4 motor and Μ200-0 inverter.

67

Figure 4-2. FC80-4 motor and SINAMIS G110 inverter.

4.2 Electronic system

4.2.1 Previous setup

In this setup’s previous version, a custom combination of magnets and a Hall effect sensor

were used to measure the rotational velocity of the belt’s drum. Specifically there were 8

magnets placed circularly, at 45 degrees apart. When a magnet would pass in front of the Hall

effect sensor, a voltage pulse would be generated. The pulse was received and processed by

an AVR ATmega16A microcontroller. The same microcontroller handled the transmission of

the desired velocity to the inverter. It communicated with a central computer, where the loop

was closed, with a serial communication protocol, RS-232. However to transform the

microcontroller’s output to RS-232 signal, readable by the computer, a signal transformer such

as the ΜΑΧ 232 by Texas Instruments had to be used. For the inverter-microcontroller’s

communication, for sending the command, a digital to analog converter (DAC) was used

(AD7302 by Analog Devices). The same circuit was employed for the inclination control

system. Finally for the selection of motion direction bipolar transistors were utilized [17].

The control loop of the experimental setup was realized in Simulink (model-based

control), which calculated the necessary command and transmitted it to the microcontroller.

This system required three different supply channels, one at 5V and two at 11.42V

precisely to supply the operational amplifier. This voltage had to be supplied using a dedicated

power supply, something that was not always available or easy to find. Also the Simulink

model was not very user friendly and easy to use. For those reasons, and the inability to

incorporate ROS, a redesign was imposed.

68

4.2.2 Redesign and current setup

Let us first examine the system specifications. Both motors, for velocity and inclination, are

controlled by an inverter. Those inverters modify the supply current’s frequency, and therefore

modulate the operating speed as follows:

120 f

n
p

 (4-1)

where f stands for the supply frequency and p for the number of poles.

The method to control the inverters is quite simple. According to Figure 4-3 that follows,

the inverter offers several signal inputs and outputs called terminals. Those connections alone

can fully control and define the operation of the machine, of course under the condition that it

is supplied.

Figure 4-3. Unidrive M200 velocity inverter terminal layout.

When on terminal control mode, three connections are required at minimum. System

activation using enable (terminal 11), selection of motion direction (terminal 12 or 13) and

frequency reference (terminals 1 and 2). The order in which those connections were

69

mentioned corresponds to the suggested procedure one has to follow while activating the

system according to the manufacturer. Specifically, for the motion to be activated, connection

of both the enable and the direction terminal is required. When this occurs and there is no

frequency reference, the treadmill will start running on a predefined frequency of about 7 Hz,

coded into its memory. So in order for the system to be fully functional through a central

computer, there must exist a way for all those connections to be activated electronically.

For those terminals to be connected (enable and direction) a 24V voltage is required. The

inverter provides such a voltage (terminal 9), so all one has to do is short-circuit terminals 9-

11/13 or 9-12/13 (depending on the desired direction). For the frequency reference a simple

analog signal 0-10V (terminal 2) is required, as well as the ground (GND, terminal 1).

Additional specifications are inserted in the design, such as the measurement the angular

speed of the belt’s drum. Having already decided to use an incremental encoder for this

purpose, the need to read its output emerges.

Another point that needs to be taken into consideration during the design of the electronics

and the control system is that the treadmill, much like the robots we create, should be

structured in a way that it is possible to be run by a common control center, maybe even

remotely through the Internet. Since the robot’s and the treadmill’s function are so closely tied,

their control systems should be compatible. This means that there should be a capability for

data exchange, and maybe even intervention of the one control system to the other. Finally

there are safety limitations and specifications, like in every system. The treadmill’s operation

should be able to stop both by command and manually, if something goes wrong either in the

mechanical subsystem or in the control algorithm.

To summarize, the design specifications are:

 Maximum velocity of 10 m/s

 Incremental encoder feedback

 Control system compatible with the monopod or quadruped

 Function controlled by a computer

 Safety precautions - switches

Again, the basic decision regards the sensory system and specifically how the encoders

will be read. We choose to use the Tiva microcontroller, because of the know-how that already

exists and the subsequent ease of implementation, and of course because of the

characteristics we have already mentioned.

The inverter receives a 0-10V analog signal and translates it into an operating frequency

according to the frequency range defined in its memory. The lowest frequency would occur

for a 0V input and the maximum for 10V. The maximum frequency currently defined is 50 Hz.

70

Therefore, we need to ensure that the analog signal can drive the treadmill to velocities up to

10 m/s, according to specifications.

Let us first examine the transmission until the main belt’s drum. Right after the motor,

which has no gearbox of its own, there is a belt drive (Figure 4-4), which transmits motion to

the treadmill’s level, but also reduces the velocity, with a reduction ratio of 1.524. Considering

the drum’s diameter is 245 mm, the velocity relation to the operating frequency is described

by (4-2), not considering load and slippage effects:

120

4 0.2525
1.524 30 2

f
D

V f


    (4-2)

Figure 4-4. Belt drive.

Using (4-2) it is easy to observe that for a 50 Hz operating frequency, a velocity of 12.6

m/s is obtained, while the maximum desired speed is reached with f = 40 Hz. Of course this

motor can safely operate up to 60 Hz, according to the manufacturer, so even larger velocity

values could be achieved, if it was so desired. Also if for some reason the output analog signal

cannot reach the required value, the maximum operating frequency could be defined to 60 Hz

in order to change the voltage-frequency relation. This way the same voltage value would be

matched to a higher frequency (e.g. 10V would correspond to 60 Hz instead of 50, and same

holds for the rest of the values). In any case, the design should result in a properly modified

signal, which shall lead to the exploitation of the whole range of the treadmill’s capabilities.

This signal can be produced by a PWM pulse. Specifically, in this form of signal, a pulse

is modulated so as to be high for a certain width, a percentage of the signal period. That ratio,

pulse width to period, is called duty cycle. Because of the extremely high modulation

frequency, which is also a parameter, the result is the average voltage. For example, for a

signal with 5V amplitude and 50% duty cycle the result would be a 2.5V signal.

71

Figure 4-5. Pulse width modulated signal.

Despite the high modulation frequency and the ostensibly steady signal produced, and

because an amplification of this signal will follow, it is common to insert a low pass filter and

stabilizer between the source and the amplifier. This filter attenuates high noise frequencies

and normalizes the signal, with a small repercussion on its amplitude. The most common

choice for such a filter is a passive RC circuit (Figure 4-6).

Figure 4-6. Passive RC low pass filter.

The reactance of the capacitor is given as:

1

2
CX

fC
 (4-3)

where C stands for the capacity and f for the signal frequency. The circuit’s total impedance

is calculated as:

2 2

CZ R X  (4-4)

Finally, using a resistive potential divider, the output voltage amplitude is given by:

2 2

C

C C
OUT IN OUT IN

X X
V V V

ZR
V

X
 


 (4-5)

Therefore in our case, where the amplitude of the PWM pulse the Tiva board produces is 0-

3.3V, and for filter parameters 4700 Ω και 47 nF for the resistor and the capacitor respectively,

the output voltage will be:

72

,0.99 3.268 OUT IN OUTV V V V  (4-6)

Next, for the purpose of signal amplification till the desired value of 10V, an operational

amplifier was utilized, and specifically the LM358N by Texas Instruments (Figure 4-7). Such

types of setups require a supply larger than the amplified output, in our case 12V, as well as

an additional resistor circuit, like the one presented in Figure 4-8.

Figure 4-7. Operational amplifier LM358N.

Figure 4-8. Amplifying resistor circuit.

The amplification gain is defined in the equation (4-7):

 2

1

1
R

K
R

  (4-7)

In our case, in which the amplification gain is equal to 3, the resistors are selected as shown

in Figure 4-9:

Figure 4-9. Resistor selection.

According to (4-7), we obtain:

73

6.703

1 3.0312
3.3

K    (4-8)

The amplified average PWM signal can be fed directly to the inverter. For the whole setup to

be fully controllable by a control station, some additional elements have to be incorporated so

as to allow the user to initiate and stop the motion. This task was carried out using three relay

modules (Figure 4-10). These elements require a 5V supply and a logic level signal (HIGH or

LOW). According to this value, the relays open or close a circuit. Using these parts, and a

digital output coming from the Tiva board, it is possible to control the short-circuit of the enable

and direction terminals mentioned earlier.

Figure 4-10. Parallax relay module.

Relays like the one in Figure 4-10 include three inputs-outputs. Let us consider Figure

4-11. At the middle contact, we connect the first end of the circuit that has to be controlled.

The other two contacts are marked as normally open (ΝΟ) and normally closed (ΝC).

Depending on the application the user has to select in which he shall connect the other end

of the circuit. For example in Figure 4-11, the circuit is connected to the normally open contact.

That means that in order for the circuit to close, one needs to send a HIGH logic level. If the

circuit was connected on the normally closed contact, a HIGH logic level would open the circuit

instead.

Figure 4-11. Application example with relay module.

The three relays used in our case control the enable, run forward and run reverse

terminals. The first was connected exactly as in Figure 4-11. The enable terminal is normally

disconnected, until given the proper command, as a safety precaution. It was critical to

decouple this certain terminal’s connection with any other in order to be able to stop the motion

in case of emergency. For the same reason there is a manual switch right after the relay, just

74

in case there is a malfunction in the control system and we cannot shut down the motion by

command. The whole circuit is shown in Figure 4-12.

Figure 4-12. Activation system (terminal Drive enable).

The corresponding system for the selection of motion is slightly more complicated,

because there was an additional safety precaution. Since it is not clarified in the

manufacturer’s manual and as reason dictates, the two direction terminals should never be

short-circuited simultaneously, because of the unknown and potentially harmful effect this

might have. We could short-circuit the terminals using a single relay like before but one of

them would be connected on the normally closed contact, so we would have a default direction

of motion and that is not desired. Therefore we chose to use a double relay module (Figure

4-13) with a small extra cost (6 euros instead of 3 the single costs).

Figure 4-13. Double relay for motion direction selection.

Once again we need a 5V supply, however this time there are two enabling signals. In

order to satisfy the safety precaution that was mentioned before, these relays will be

connected in series, as shown in Figure 4-14. The system works as follows. We shall refer to

the relays as R1 and R2. The 24V line is connected to the central contact of R1. At start, when

no signal is sent to the module, this line is directed through the NC contact of R1 to the NC

contact of R2 which is not connected to anything, so there is no motion. When we set R1 to

HIGH, the 24 line is redirected through its NO contact to the run forward terminal, regardless

of what signal is sent to R2, since its central contact is disconnected. That protects the system

from a possible malfunction. To run the treadmill in reverse, we need to send a LOW signal to

R1 and HIGH to R2. It is obvious that there is no signal combination that leads to both terminals

being short-circuited simultaneously.

75

Figure 4-14. Motion direction selection system (terminal run forward and reverse).

The incremental encoder is of type HEDL-5540, with a line driver to reduce the noise. In

our case this was not needed, since the signal did not have to travel too far and no noice was

observed. The encoder produces 500 counts per revolution, augmented to 2000 when in

quadrature mode. It has the same connections as the previous, 5V, GND, A, B channels and

optionally the index, used to count the total number of revolutions. The encoder and its

connectivity are presented in Figure 4-15.

(a)

(b)

Figure 4-15. (a) HEDL-5540, (b) HEDL-5540 Pinout.

Finally, all those different pieces of equipment had to be properly supplied. The relays, as

well as the Tiva board and the encoder require 5V, while the operational amplifier needs 12V.

To use a single power supply, we employed a step down regulator, the same used on the

monopod, i.e. Polulu D24V60F5. Generally such parts are selected in high power applications,

as signified by their maximum current handling capacity (6A), but its use is simpler than that

of a simple voltage regulator; also it was available in our lab. Therefore it was preferred

compared to other solutions.

4.2.3 Construction

The final electronic subsystem schematic is presented in Figure 4-16.

76

Figure 4-16. Electronic subsystem schematic.

The secondary board includes the PWM filter and amplification circuits, as shown in

Figure 4-17.

Figure 4-17. Secondary board.

All the aforementioned subsystems were connected and placed between two plexiglass

sheets as shown in Figure 4-18.

77

Figure 4-18. Electronic subsystem prototype.

One can observe four inputs-outputs. The blue Ethernet cable connects to the rooter and

communicates with the control center, the white cable is the one that connects to the inverter,

the flat cable on the upper left leads to the incremental encoder and the black is the power

supply. The two switches are also visible above the relay modules, one for the power supply

and one for motion activation.

4.3 Control system

The control system in the case of the treadmill is similar to the monopod’s. There are again

two main pieces of code, one running in Tiva and of course its counterpart running in a control

station using ROS.

4.3.1 Tiva

The part of code running in Tiva handles the PWM and QEI module activation, as well as the

set up of the UDP communication. The same code is used with some minor modifications in

order to send velocity instead of position and handle activation of motion and selection of

direction.

Special care has to be taken with the velocity estimation, as it is defined indirectly.

Specifically, we define a time lapse in form of a number of clock ticks, over which we want to

78

sum the measured counts. This number in combination with the set clock frequency defines

the duration of velocity estimation. For example if we define the clock frequency to 120 MHz,

with a measuring lapse of 40.000.000 ticks, we shall get a new velocity estimation value three

times per second. Let us consider the following case. We define the velocity estimation

duration equal to 1s. If we request a new measurement precisely at 1s we shall get an X value,

the total number of counts in (0,1). If a new value is requested at 1.5s we shall not get the total

number of counts measured in (0.5,1.5) but we will receive the same value X as before, until

we reach 2s where a new value is calculated. This of course means that there is no point in

us asking for new values faster than they are calculated, as we would receive the same value

multiple times.

Finally for the code’s proper operation, it is again required to define the IP addresses for

the Tiva board and the control center as well as the device subnet και device gateway. The

send and receive ports also need to be defined.

4.3.2 ROS

Necessary condition for the robot and the treadmill control systems to be able to communicate

with ease is to be compatible. Therefore, since all robots use ROS, it was again decided to

build the treadmill control system.

The system is similar to the one we already described for the monopod and it is comprised

of three nodes. The first, ros_speed, is the interface between the Tiva board and the computer.

Like before it activates the UDP communication and publishes received measurements on

/state topic. It also subscribes to the /control_effort topic and receives the desired PWM duty

cycle command. Obviously one has to define the IP address for Tiva, as well as the send and

receive ports.

The second node, ros_read_vel, takes as user input the desired velocity and publishes it

on the /desired_speed topic. Also this node can receive and recognize four key words, enable,

cw, ccw and kill. To enable clockwise motion, one needs to type the words enable and cw.

Typing ccw right after will reverse the motion, and of course kill will stop everything.

The third and last node is the PD controller from the ros_pid package that was used

before. It is the exact same node, except for a small modification. Generally in the PD control,

zero error corresponds to zero output. This is something we want to avoid in our case. The

velocity would rise to the desired value, then the inverter would receive a zero command and

it would start to fall until the error is significant again. That would cause an oscillating behavior

around the desired velocity, which of course is not desired. For this reason we modify the

control law as follows, using also (4-2):

79

100
100 0.2525

50 50

des

des
P D P D

V

f
u K e K e K e K e      (4-9)

i.e. a constant term is added which, when the error (e) is equal to zero, produces the open

loop command, the frequency that is required by (4-2). The gains receive and handle any

oscillations and differences that might occur.

The cross node communication is presented in Figure 4-19.

Figure 4-19. Node cross communication as depicted from the rqt_graph tool.

4.4 Experiments

To ensure the setup’s proper operation, simple experiments were conducted. The inverter

received desired frequency commands. Specifically the first experiment was an open loop

definition of the operating frequency. The velocity was gradually increased to 10m/s. In the

second experiment we closed the loop and recorded the responses for the simple and

augmented PD controller of (4-9). On both occasions the gains were experimentally defined.

Specifically, the following parameters were used.

Table 4-1. Treadmill velocity closed loop control experiment parameters – augmented PD.

Parameter Value

Defined PID control loop rate (Hz) 500

Achieved PID control loop rate (Hz) 499

Tiva transmission rate (Hz) 1000

Tiva sampling frequency (Hz) 15

Kd 100

Kp 10

80

As one can observe in Figure 4-20 to Figure 4-23, this is a particularly slow system, mainly

because of the inverter. It takes about 22 seconds to reach the desired velocity of 10 m/s,

even if the command for its augmentation is given momentarily. This happens because the

inverter applies a standard fixed rate of acceleration or deceleration (counted in seconds per

100 Hz) for reasons of safety and proper function.

A second point that needs clarification are the oscillations and spikes that appear in the

steady state response (e.g. Figure 4-20). These spikes are the result of the sampling

frequency as we mentioned earlier. We can observe that with a 15 Hz sampling rate, 15 steps

appear per second (Figure 4-21), which confirms the aforementioned on the sampling

frequency in Paragraph 4.3.1. As far as the oscillations are concerned, these are probably

result from a slight misalignment between the encoder axis and its fixed frame which result in

different sums of counts during a second. However, the velocity is in fact steady. This was

confirmed both by visual and acoustic observations, while the value was also measured with

an optical tachometer and found to be the same with the one appearing on the diagrams.

We can finally observe the difference between the various experiments. The open loop

has large differences between the expected and the actual velocity. Using the closed loop we

observe the mentioned oscillations in steady state velocity because of the simple PD controller

and how the problem was resolved with the augmented control law.

Figure 4-20. Treadmill velocity open loop control experiment.

81

Figure 4-21. Velocity response detail.

Figure 4-22. Treadmill velocity closed loop control experiment – simple PID.

Figure 4-23. Treadmill velocity closed loop control experiment – augmented PID.

82

5 Articulated monopod design

5.1 Literature review

Ever since the first appearance of legged robots, a large variety of designs, materials and

manufacturing methods have been used. In this section we will focus more on these leg

aspects and examine some that have been actually used on biped or quadruped robots rather

than just monopod experimental testbeds.

One of the first attempts to create a walking robot that could alter its gait is recorded in

1968, with the General Electric quadruped, developed by R. Mosher (Liston and Mosher,

1968; Mosher, 1968). That was a hydraulic actuated robot, with 3 DOF (knee flexion-

extension, hip flexion-extension and abduction-adduction). This example is not representative

and easily comparable to most modern biomimetic walking robots, as it was 3.3 m tall, 3 m

long and it weighted about 1400 kg [16]. Each leg was controlled through a different joystick,

requiring 4 different joysticks – and operators – in total. However as we can see in Figure 5-1.

 General Electric quadruped robot and compare with following figures, the basic

mechanical design principles have not changed dramatically through the years. We notice the

similar link design and general structure as, for example, in StarlETH. Of course the

manufacturing processes, the materials used and the mathematical analysis behind the

design have greatly improved in the last 50 years.

Figure 5-1. General Electric quadruped robot.

MIT’s Quadruped (1984-1987) was the robot that probably set the foundations and started

the revolution in the legged robotics field that continues today. This robot utilized the control

principles and algorithms of Raibert’s monopod and it could trot, pace and bound [24]. It was

comprised of four 3 DOF legs (hip flexion-extension, abduction-adduction and a prismatic

knee joint) and an aluminum frame [23].

83

Figure 5-2. MIT Leg Lab’s Quadruped Robot.

Since those first attempts to create a biomimetic walking robot, countless other quadruped

and monopod robots and leg designs have appeared. An indicative example are the Sugoi-

Neco legs [28]. Utilization of high tensile aluminum structures is quite common across the

literature and up till recently it was almost the only choice available, if one wanted to maintain

a low weight with a reasonable safety factor. Examples include ETH’s StarlETH [12], Boston

Dynamics’ Spot and SpotMini, and IIT’s hydraulically actuated HyQ [29], [15]. StarlETH and

HyQ are actually combining an aluminum frame structure on the femur link and a tube on the

shank, an element that we, too, are going to use next. HyQ also specifies that a combination

of stainless steel and aluminum alloy (Ergal - 7075) was used.

Figure 5-3. StarlETH quadruped robot.

While designing a leg, in terms of reducing the rotating inertia, it is a common practice to

place the motors as close to the body as possible (a known exception shall be reviewed

below). This of course results in the necessity to transmit motion from the body to the knee,

which in most cases is the most distal actuated joint. There seem to be two main approaches

in order to resolve the problem. The first is to use a four bar linkage, like in the aforementioned

84

Sugoi-Neco legs and in the MIT’s Cheetah leg [18]. Specifically, the Cheetah robot takes

advantage of two concentric custom motors that reduce the inertia and a steel bar to actuate

the knee. Tendons are also utilized to reduce structural loads [3].

Figure 5-4. MIT’s Cheetah robot.

Figure 5-5. Cheetah leg with four bar linkage and tendon.

The second approach is to use a standard torque transmission system, commonly a

pulley-belt or a sprocket-chain combination. In most cases, this solution succeeds to keep the

weight somewhat lower and if calculated correctly, it could provide added features. For

example, in the StarlETH robot, the miniature chain drive that is utilized is designed to fail

earlier than the gearbox in order to protect it and provide convenient and cheap maintenance

if failure occurs.

Figure 5-6. StarlETH leg transmission.

85

Steel cable transmission is also utilized in the Carnegie Mellon’s BiMASC’s legs. Steel

was selected after tests that proved the inability of Vectran and Xylon to sustain the fast

repetitive wrapping around a pulley – each for different reasons. Kevlar and other related

materials were also considered but because of their abrasive nature (when in contact with

itself) it was judged that would wear quickly. This leg also contains an interesting fiberglass

plate spring design [11].

Figure 5-7. BiMASC leg with fiberglass plate springs.

From the aforementioned designs and applications, only the MIT’s Cheetah has

something new to offer in terms of materials and manufacturing methods. Specifically, as

mentioned in [18], the leg is made of a polyester resin shell and polyester foam core. For the

manufacturing process two molds are required. The first is undersized (compared to the leg’s

actual external dimensions) and it is used to cast the foam core. Then, the core is transferred

to the second mold, which is dimensioned correctly, the polyester resin is cast and the shell

is formed. To fill the mold and make sure that no air bubbles are trapped inside, vacuum resin

infusion is utilized. During this process, the part is covered and hermetically sealed, usually

with plastic sheets, leaving only two openings. In the first a vacuum pump in connected, and

in the second a pot that carries the resin. When the pump is activated the resin is slowly

sucked in the part leaving no air bubbles, provided there is a smooth flow, and avoiding

accumulation of excess resin in some points.

Carbon fiber is also known to have been used in leg manufacturing. Perhaps the most

indicative example is the ATRIAS monopod [10]. Since the robot’s design has to be as close

to the SLIP model as possible, lightweight carbon fiber tubing has been used, both in the femur

and the shank. We can also notice the same fiberglass leaf springs that were used in the

BiMASC leg.

86

Figure 5-8. ATRIAS leg.

Another known innovative quadruped in ANYmal [13]. This robot appeared just recently

and it features legs made of carbon fibers and aluminum with 3 DOF on each, enabling full

360 degrees rotation on hip and knee joints. However the most original element is the

ANYdrive [34], a custom combination of brushless motor, gearbox, absolute encoder, spring

and electronics, all included in a single cylindrical casing. Its extremely reduced weight (only

0.9 Kg) allowed the knee motor to be placed on the knee rather than the body, as usual. This

significantly simplifies the design, as there is no need to transmit motion through complex

mechanisms. The incorporation of all aforementioned elements in a single module also allows

for quick exchangeability of parts in case of failure, instead of time consuming disassembly of

motors, belts and pulleys.

Finally, it is worth mentioning some attempts that have been recorded to use 3D printed

structural parts, like the MIT’s Super Mini Cheetah [2]. However this method, under the current

technological limitations, would only apply to small sized robots (8-10 Kg) as it does not

provide anywhere near the necessary strength to support a normal sized robot (30-40 Kg)

without added reinforcement (e.g. fibers). For even smaller robots, like cockroaches, a new,

innovative method that seems to be gaining ground in terms of popularity is SDM (Shape

Deposition Manufacturing). It is a method reportedly used by both the MIT [9] and the Florida

State University [6] and allows for complex sandwich type structures to be created, like layers

of stainless steel and copper. This results in a more biomimetic design, as one can rarely

observe limbs or organs entirely made up from a single material layer in nature. Nevertheless,

to our knowledge, this method has not been applied yet in large scale projects like ours, and

has yet to be developed and expanded before it is.

87

5.2 Laelaps quadruped robot

Laelaps I is CSL’s second quadruped [47]. Designed for velocities up to 10 m/s, it emphasizes

on performance rather than energy efficiency. This is the first essential difference compared

to the first version.

The other obviously is the transition to an articulated leg and body (spine) design. The

first quadruped had a prismatic knee, a revolute actuated hip joint and a rigid torso. In fact the

old quadruped’s leg is the same leg that we described previously in the case of the monopod

robot.

Figure 5-9. CSL’s first quadruped robot.

Figure 5-10. Laelaps I quadruped robot.

 Current design includes ten Maxon motors for the actuation (two for each leg, one for the

spine and one for the tail) as well as an aluminum frame body. The femur is also a new part

made of aluminum. Instead of a new shank (lower leg) design, the legs of the old quadruped

were utilized, featuring the same springy prismatic joint.

While hip joint is actuated directly, for reasons that we mentioned earlier, that was not an

option for the knee joint. A push bar was used instead, forming a four bar linkage. This

mechanism is designed to transfer maximum torque (forms a rectangle) when the femur-shank

88

angle is 40 degrees. This feature shall be transferred to the new design, as well. Finally, the

leg has 90o motion width, limited with hard stops on the knee joint.

Figure 5-11. Laelaps I leg design.

5.3 Leg Design

Note that in the case of Laelaps I leg, the femur joint was merged with the link design, as it

was a compact aluminum part. For the Laelaps II quadruped, the basic design specification

and target was to decouple the joint and link design. This way one can easily change each

segment’s length according to the task at hand. For example, efficient bounding and trotting

gaits require different lengths.

5.3.1 Link design

Using carbon fiber tubes as main link parts, like ATRIAS, offers easy exchangeability between

pieces of different length while keeping the leg lightweight. In places where one tube cannot

bear the load, there is also the possibility to use a second inside the first. Specifically the tubes

available in our lab fit perfectly for that purpose as their inside and outside diameters match

(30/28 for the outer and 28/26 for the inner tube).

5.3.2 Joint design

The joint parts should be designed so as to safely bind the tubes without damaging or

destroying them. As far as the material was concerned a 7075-T6 aluminum was selected, an

alloy with yield (430–480 MPa) and ultimate tensile (510–540 MPa) strength comparable to

that of many steel alloys.

The knee joint is comprised by two parts, upper and lower. The lower part is a modification

of the Laelaps I design. A second protrusion was added to the opposite side of the first, as

well as in the transmission arm on the hip, in case we want to use threads to transmit motion

to the knee, e.g. Kevlar rope. Since the rope is flexible, in contrast to the pushing rod, it can

89

only pull so it must be attached on both sides. The tube is bound using a detachable cover

and four M4 bolts. Same principles were used for the upper part, only it does not have any

protrusions except those to bind it with the lower part. For that connection, the SFL606ZZ ball

bearings and 6 mm, 1.1191/C45E steel shaft used on the current design were kept the same.

The hard stops at 0-90o were also preserved.

On the hip joint, besides the change that was already mentioned on the transmission arm,

the femur link was essentially shrunk and modified in a similar manner with the knee joints in

order to adapt the carbon tubes. The only difference is the utilization of M5 instead of M4 bolts

because of the increased load that seemed to be exerted in the following simulations in

comparison to the knee.

5.3.3 Compliance and transmission

The last things considered were the spring and force sensor-toe placement. A mechanism

like the StarlETH leg was examined, with the spring inside the carbon tube, but since it was

unclear how well the tube would react on resulting forces, it was decided to place the spring

below the carbon tube, using a same mechanism with the old lower leg. A linear bushing is

adapted and tied using a custom aluminum clamp. The spring is placed concentrically with a

properly shaped shaft. At its lower end, either a rubber toe or a force sensor can be adapted.

Finally, the push rod mechanism remained the same, as there was no reason suggesting

a replacement was in order.

5.3.4 Final design

The complete new design is shown in Figure 5-12. It weighs about 300g less than the old

(~1000 instead 1300g). The difference is actually increased to 450g if Kevlar rope is utilized

instead of the push rod.

The drawings of all parts are included in the CD that accompanies this thesis.

Figure 5-12. Laelaps II new leg design.

90

5.4 Structural analysis

The structural durability of the new parts in this design -links, joints and toe- were tested

and verified in the extreme condition they would have to support the whole body weight. This

is also the case of the rotary gallop, where only one leg is in contact with the ground at each

moment. Four main simulations were conducted, three drop tests and a static analysis. Drop

test is an analysis where the user defines a drop height or an impact velocity and can study

the resultant stresses and displacements.

The first was a drop test with the entire body weight, while femur and shank links are

aligned, with the knee locked because of the 0o stop, for a 45o touchdown angle. To stress the

design even more, the impact velocity was set to 9.7 m/s, which corresponds to the velocity

the toe would acquire if the hip motor increased to its no load speed. The second drop test

was the same, only for vertical touchdown, in order to check the compressive durability of

parts. The third drop test included the knee bent in 90o and again a 45o touchdown. The static

analysis was similar to the third simulation only this time the hip motor was exerting its

maximum possible torque on the leg, with the knee joint being fixed. These simulations are

presented below, alongside a separate analysis for the toe.

Figure 5-13. First simulation, drop test with a 45o touchdown angle and impact velocity of 9.7
m/s.

91

Figure 5-14. Second simulation, drop test for vertical touchdown.

Figure 5-15. Third simulation, drop test with a 45o touchdown angle.

92

Figure 5-16. Fourth simulation, static analysis stresses.

Figure 5-17. Fourth simulation, static analysis displacements.

93

Figure 5-18. Toe setup structural analysis stresses.

The simulations above verify the structural durability of the designed parts, as the stresses

do not exceed the yield strength values at any point. The part which was most stressed was

the carbon tube of the lower leg, so maybe the second smaller tube should be inserted inside

the first, since it would not make the design much heavier; it weighs about 50 g. Finally, we

could probably even refine and reduce the dimensions of the joint parts even more, since they

do not seem to have any trouble bearing the loads, in order to further reduce the total weight.

94

6 Conclusion and Future Work

6.1 Conclusion

In the context of this thesis, the ROS platform was successfully employed to receive

measurements from and command the actuators of our lab’s monopod robot. At first we

introduced ROS and we mentioned its basic tools and capabilities. Additionally useful tools

and capabilities were mentioned and their operation briefly presented. Gazebo was also

introduced and described, as well as the path planning tool MoveIt!.

To incorporate ROS, but also to upgrade system performance and ease of use, the active

electronic system was substituted by Tiva microcontrollers and custom supply boards. The

motor drive unit was replaced with a new one, more modern and simple to use. The structure

of the control system that was built was presented and this system was tested on a model

created especially for this purpose in Gazebo. There, besides gains and typical simulation

parameters, we also tested and tuned the control loop and data transmission rates. These

simulations were compared to those of Matlab and were found to be identical. They also

seemed to approximate the behavior of the real robot quite accurately. Finally, an experiment

with a high level controller was conducted. We managed to get a limited hopping motion of

about five strides. To summarize, we moved from a dysfunctional and outdated experimental

setup to a modern one, with handy tools that make the software development process less

time consuming and complicated. This system has accurately defined inputs and outputs and

therefore it can connect easily to any high level controller.

Moving on to the lab’s treadmill, again the entire sensory system and electronics were

replaced. The custom velocity Hall sensor was substituted by an incremental encoder. Α Tiva

board was once more used to read measurements and a similar control system to that of the

monopod was developed. In fact we modified the same low level PID controller to control the

velocity which was used on the monopod to control the position. The system’s functionality

and capability of reaching velocities up to 10 m/s were examined and verified by conducting

velocity control experiments.

Simultaneously with the aforementioned work, the new leg design method for

performance running was also being developed and refined in our lab. After conclusive results

were received, a new articulated leg was designed. This leg is lighter than the old one and

seems to be able to withstand any stress that might occur while running. It also offers

convenient features, like easy change of segment length and exchangeability between push

bars and tendons.

6.2 Future Work

Future work could be divided into two separate branches, software and hardware.

95

As far as software is concerned, probably the most significant update, and worth of the

time it requires, is the incorporation of the ros_control package. This is even more important

now, that the new leg has two actuated DOF instead of one. This package’s complexity was

deemed excessive for our project, but as the number of controlled joints increases (e.g.

Laelaps has ten, including tail and spine revolute joints), it is more convenient to utilize

ros_control instead of running several instances of the ros_pid package. It shall require a

significant amount of time at start but then, the addition of new controllers will be greatly

simplified.

Also the utilization of MoveIt! would probably prove to be really convenient. Especially if

ros_control is previously set up, the amount of time necessary to configure it would greatly

decrease, as there exists a noticeable sum of information on their cooperation. Besides saving

time from writing custom path planning codes for joints, it could be used to provide direction

for the robot’s movement (e.g. move forward, backward) through a graphic environment,

where one can even add feedback from cameras or other optical sensors and experiment with

navigation and obstacle avoidance.

Another suggestion would be to try and close the low level PID control loop on the Tiva

boards, which should be more than capable to withstand the computational load. The high

level control would remain on a main computer which, being relieved of the load of many

different controllers, could be more efficient or even replaced by a device like a Raspberry Pi,

something that was not possible so far, exactly because of the computational load.

Finally, since no stable gait was achieved, the experiments should be run again, perhaps

with better refinement of the parameters described and the initial conditions. We could even

try to add a counterweight to reduce the motor load.

On the hardware side, the most important task at hand is to manufacture and test the leg

design of Chapter 5. Also a more analytical exploration of material options and manufacturing

methods might has to be carried out, like 3D printed, plastic or resin parts in combination with

carbon skinning.

Moving on to the treadmill, a system like the one described needs to be constructed for

the inclination counterpart. Since the first prototype seemed to work properly, the new one

should be materialized using printed boards instead of flexible cable connections. Another

idea would be to try not to use an external supply for the system, but use the incorporated 24V

that the inverter provides instead.

96

Bibliography

[1] Ahmadi, M., and Buehler, M., “The ARL Monopod II Running Robot: Control and

Energetics,” Proceedings of IEEE International Conference on Robotics and

Automation, Detroit, USA (May 1999) pp. 1689–1694.

[2] Ajilo, D., “Mechanical Design of a Quadruped Robot”, Diploma thesis, MIT, June 2015.

[3] Ananthanarayanan, A., Azadi, M., and Kim, S., “Towards a bio-inspired leg design for

high-speed running”, Bioinspiration & Biomimetics, Volume 7, Number 4 , 8 August

2012.

[4] Assimakopoulos, K., “Design and Development of the Electric and Electronic

Subsystems of a Quadruped Robot”, MSc Dissertation, NTUA, 2016

[5] Azad, M. & Featherstone, R. Auton Robot (2016) 40: 93. doi:10.1007/s10514-015-

9446-z

[6] Balbuena, David, "Dynamic Legged Robot: Shape Deposition Manufacturing" (2015).

Undergraduate Research Symposium 2015, Book 9.

[7] Cherouveim, N. and Papadopoulos, E., “Single Actuator Control of a 3DOF Hopping

Robot”, Chapter in Robotics: Science and Systems I, MIT Press, Cambridge, MA,

December 2005.

[8] Cherouveim, N., “Dynamics and control of legged robots”, PhD Dissertation, NTUA,

2009.

[9] Cutkosky, M. R. and Kim, S., “Design and fabrication of multi-material structures for

bioinspired robots”, Philosophical Transactions of The Royal Society, The Royal

Society Publishing, 30 March 2009.

[10] Grimmes, J. A., and Hurst, J. W., “The Desing of ATRIAS 1.0, A Unique Monopod,

Hopping Robot”, CLAWAR 2012 – Proceedings of the Fifteenth International

Conference on Climbing and Walking Robots and the Support Technologies for Mobile

Machines, Baltimore, MD, USA, 23 – 26 July 2012.

[11] Hurst, J. W., “The Role and Implementation of Compliance in Legged Locomotion”,

PhD Dissertation, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2008.

[12] Hutter, M., “StarlETH & Co. – Design and Control of Legged Robots with Compliant

Actuation”, PhD Dissertation, ETH, Zurich, Switzerland, 2013.

[13] Hutter, Μ., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo,

J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A. and

Hoepflinger, M., “ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot”,

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016,

(2016) Zürich, ETH Zürich.

97

[14] Hyon, S. H., and Mita, T., “Development of a biologically inspired hopping robot-

"kenken",” IEEE International Conference on Robotics and Automation, 2002.

Proceedings. ICRA ’02, vol. 4, 2002, pp. 3984–3991 vol.4.

[15] Khan, H., Featherstone, R., Caldwell, D. G., Semini, C., “Bio-inspired Knee Joint

Mechanism for a Hydraulic Quadruped Robot”, Proceedings of the 6th International

Conference on Automation, Robotics and Applications, Queenstown, New Zealand,

Feb 17-19, 2015.

[16] Machado, J. A. Tenreiro and Silva, M. F, “An Overview of Legged Robots”, Department

of Electrical Engineering, Institute of Engineering of Porto, Porto, Portugal, 2006.

[17] Manolioudakis, P., “Modeling and closed loop control of an experimental treadmill with

3-phase induction motors”, Diploma Thesis, NTUA, 2014.

[18] McKenzie, J. E., “Design of Robotic Quadruped Legs”, MSc Dissertation, MIT,

February 2012.

[19] Ming, A., Sato, K., Sato, R., Kazama, E., Miyamoto, I., Shimojo, M., “Development of

Robot Leg Composed of Parallel Linkage and Elastic Spring for Dynamic Locomotion”,

Proceeding of the 2015 IEEE International Conference on Information and Automation,

Lijiang, China, August 2015.

[20] Noussias, S., “Quadrupedal State estimation using Kalman filtering techniques”, MSc

Dissertation, NTUA, 2015.

[21] Ogata, K., Modern Control Engineering, 5th Edition.

[22] Parthenaki, A. M., “Design and Construction of a Passive 6-dof Mechanism for

Constraining Legged Robots on a Treadmill”, MSc Dissertation, NTUA, 2016

[23] Raibert, M. H, Legged robots that balance, MIT Press, Cambridge, MA, 1986.

[24] Raibert, M. H, “Trotting, pacing, and bounding by a quadruped robot”, Journal of

Biomechanics, 1991.

[25] Rehman, F., “Steering control of a hopping robot model during the flight phase”, IEEE

Proc.-Control Theory Appl., Vol. 152, No. 6, November 2005

[26] Rummel, J., Iida, F., Smith, J. A., Seyfarth, A., “Enlarging Regions of Stable Running

with Segmented Legs”, 2008 IEEE International Conference on Robotics and

Automation, Pasadena, CA, USA, May 19-23, 2008.

[27] Sang-Ho Hyon and Takashi Emura, “Energy-preserving control of a passive one-

legged running robot”, Advanced Robotics, Vol. 18, No. 4, pp. 357–381 (2004).

[28] Sato, R., Miyamoto, I., Sato, K., Ming, A., Shimojo, M., “Development of Robot Legs

Inspired by Bi-articular Muscle-tendon Complex of Cats” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept 28

- Oct 2, 2015.

98

[29] Semini, C., “HyQ - Design and Development of a Hydraulically Actuated Quadruped

Robot”, PhD Dissertation, University of Genoa, Italy, Italian Institute of Technology

(IIT), April 2010.

[30] Serena, I., Padois, V., Nori, F., "Tools for dynamics simulation of robots: a survey

based on user feedback.", 2014.

[31] Vasilopoulos, V., Paraskevas, I. S. and Papadopoulos, E., “Control and Energy

Considerations for a Hopping Monopod on Rough Compliant Terrains”, 2015 IEEE

International Conference on Robotics and Automation (ICRA), Washington State

Convention Center, Seattle, Washington, May 26-30, 2015.

[32] Vasilopoulos, V., “Dynamics and control of a monopod robot with a single actuator on

compliant terrains”, Diploma Thesis, NTUA, 2014.

[33] Zeglin, G., “Uniroo: A one legged dynamic hopping robot”, Diploma Thesis, MIT,

Cambridge, May 1991.

[34] http://www.rsl.ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-

systems/rsl-dam/documents/ANYdriveFlyer.pdf

[35] http://www.ros.org/core-components/

[36] https://www.h-ros.com/#

[37] http://gazebosim.org/

[38] http://newatlas.com/darpa-virtual-robotics-challenge-winners/28092/#gallery

[39] http://moveit.ros.org/robots/

[40] http://sdformat.org/

[41] http://www.kode-physics.org/wiki/index.php?title=Manual:_ERP_and_CFM

[42] http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros

[43] http://www.ai.mit.edu/projects/leglab/robots/monopod/monopod.html

[44] http://www.agilityrobotics.com/

[45] http://wiki.ros.org/urdf

[46] http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros

[47] https://nereus.mech.ntua.gr/legged/

[48] http://csl-ep.mech.ntua.gr/index.php/research/robotics-for-extreme-

environments/space-robotics

[49] http://wiki.ros.org/Robots

http://www.rsl.ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/ANYdriveFlyer.pdf
http://www.rsl.ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/ANYdriveFlyer.pdf
http://www.ros.org/core-components/
https://www.h-ros.com/%23
http://gazebosim.org/
http://newatlas.com/darpa-virtual-robotics-challenge-winners/28092/%23gallery
http://moveit.ros.org/robots/
http://sdformat.org/
http://www.kode-physics.org/wiki/index.php?title=Manual:_ERP_and_CFM
http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros
http://www.ai.mit.edu/projects/leglab/robots/monopod/monopod.html
http://www.agilityrobotics.com/
http://wiki.ros.org/urdf
http://gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros
https://nereus.mech.ntua.gr/legged/
http://csl-ep.mech.ntua.gr/index.php/research/robotics-for-extreme-environments/space-robotics
http://csl-ep.mech.ntua.gr/index.php/research/robotics-for-extreme-environments/space-robotics
http://wiki.ros.org/Robots

99

Appendix A

In this appendix, the various codes utilized during the work described are included.

Hip_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>

// UDP buffer length
#define BUFLEN 512

// UDP port to receive from
#define PORT 2015

// UDP port to send data to
#define PORT_BRD 2016

// Asynchronous UDP communication
#define ASYNC

// Tiva Hip board IP
#define BRD_IP "192.168.1.12"

// Global variables
bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication
int32_t encoderPos = 0; // Place the received encoder value here
int32_t pos = 0; // Place the actual value here
int32_t prevpos = 0; // previous actual position
int32_t prevencoderpos = 0; //previous encoder position
int msgs = 0; // Incoming message counter
int msgss = 0; // Incoming message counter
struct sockaddr_in si_pwm; // Struct for UDP send data socket
ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer
int broad; // The socket identifier for UDP Tx communication
int slen=sizeof(si_pwm); // Size of sockaddr_in strut
float pi = 4.0*atan(1.0);

// Generic error function
void error(char *s)
{
 perror(s);
 exit(1);
}

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
 char buffer[BUFLEN]="";
 unsigned char val[4];
 struct sockaddr_in si_other;
 unsigned int slen=sizeof(si_other);
 ssize_t rcvbytes = 0;

100

 // Receive available bytes from UDP socket
 if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1)
 error("recvfrom()");
 else
 {
 // Parse data , 1 int32 value
 if(buffer[0] == 0x42)
 {
 //ROS_INFO(" received");
 val[3] = (unsigned char)buffer[4];
 val[2] = (unsigned char)buffer[3];
 val[1] = (unsigned char)buffer[2];
 val[0] = (unsigned char)buffer[1];
 prevencoderpos = encoderPos ;
 memcpy(&encoderPos, &val, 4);
 if (((prevencoderpos < 50000) && (encoderPos > 50000)) || ((pos < 0) &&
(encoderPos < prevencoderpos)))
 {
 prevpos = pos ;
 pos = encoderPos - 104000 ;
 }
 else
 {
 prevpos = pos ;
 pos = encoderPos ;
 }
 if (encoderPos = 0)
 pos = encoderPos ;
 // Raise flag that we received a message
 gotMsg = true;
 }
 }
}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)
{
 int stat = -1;
 int flags;
 struct sigaction sa;

 flags = fcntl(sock, F_GETFL);
 fcntl(sock, F_SETFL, flags | O_ASYNC);

 sa.sa_flags = 0;
 sa.sa_handler = sigio_handler;
 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGIO, &sa, NULL))
 error("Error:");

 if (fcntl(sock, F_SETOWN, getpid()) < 0)
 error("Error:");

 if (fcntl(sock, F_SETSIG, SIGIO) < 0)
 error("Error:");

 return 0;
}

// Callback function for reception of PWM message from topic
void PWMCallback(const std_msgs::Float64::ConstPtr& msg)
{
 // Extract the duty cycle value and send it to the Tiva board via UDP
 SendBuffer[1] = (int8_t) msg->data;
 if (sendto(broad, SendBuffer, SendPWMBytes, 0, (struct sockaddr *)&si_pwm, slen)==-1)
 error("sendto()");
 // Print-out for debugging
 msgs++;
 if(msgs == 10)
 {
 msgs = 0;
 //ROS_INFO("I heard: [%f]", msg->data);
 }

101

}

// Main Function
int main(int argc, char **argv)
{
 struct sockaddr_in si_me, si_other;
 int i, slen=sizeof(si_other), msg_count;
 char buf[BUFLEN], strout[28];

 msg_count = 0;
 memset(SendBuffer, 0, 6);

 // Initialize UDP socket for data transmission
 if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_pwm, 0, sizeof(si_pwm));
 si_pwm.sin_family = AF_INET;
 si_pwm.sin_port = htons(PORT_BRD);

 if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
 error("inet_aton() failed\n");
 exit(1);
 }

 SendBuffer[0] = 0x31;

 // Initialize ROS node
 ros::init(argc, argv, "Hip_interface");
 ros::NodeHandle n;
 // Initialize the publisher for Encoder data post
 ros::Publisher position_interface_pub = n.advertise<std_msgs::Float64>("/state", 1000);

 // Initialize the subscriber for PWM data reception
 ros::Subscriber pwm_sub = n.subscribe("control_effort", 1000, PWMCallback);

 ros::Rate loop_rate(6000);

 // Wait for ROS node to initialize
 while (!ros::ok());

 // Initialize UDP socket for data reception
 if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_me, 0, sizeof(si_me));
 si_me.sin_family = AF_INET;
 si_me.sin_port = htons(PORT);
 si_me.sin_addr.s_addr = htonl(INADDR_ANY);
 if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
 error("bind");

 enable_asynch(sock);

 ROS_INFO("Starting communication with Tiva hip board.");
 ROS_INFO("Communication with Tiva hip board established.");

 std_msgs::Float64 state_msg;
 state_msg.data = 0.0;

 while (ros::ok())
 {
 // If we got a new message, publish to topic and print values every 100 messages
 if(gotMsg)
 {
 msg_count++;
 state_msg.data = (float) pos;
 position_interface_pub.publish(state_msg);
 if(msg_count >= 2000)
 {
 msg_count = 0;
 ROS_INFO("%i angle", pos);
 }
 gotMsg = false;

102

 }
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

Knee_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>
#include "math.h"
#include <ros/time.h>

// UDP buffer length
#define BUFLEN 512

// UDP port to receive from
#define PORT 2014

// UDP port to send data to
#define PORT_BRD 2013

// Asynchronous UDP communication
#define ASYNC

// Tiva Knee board IP
#define BRD_IP "192.168.1.11"

// Global variables
bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication
int msgs = 0; // Incoming message counter
struct sockaddr_in si_pwm; // Struct for UDP send data socket
ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer
int broad; // The socket identifier for UDP Tx communication
int slen=sizeof(si_pwm); // Size of sockaddr_in strut
float pi = 4.0*atan(1.0);

int32_t encoderPos = 0; // Place the received encoder value here
float angle, compression ;
float l1 = 0.05 ; // knee top link length
float l2 = 0.065 ; // knee bot link length
float nl = 0.089 ; // initial length
float linit = sqrt(l1*l1 + l2*l2 - 2.0*l1*l2*cos(360.0*361/1999.0*pi/180.0) - 0.01*0.01) ;

float norm_compression ;

// Generic error function
void error(char *s)
{
 perror(s);
 exit(1);
}

103

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
 char buffer[BUFLEN]="";
 unsigned char val[4];
 struct sockaddr_in si_other;
 unsigned int slen=sizeof(si_other);
 ssize_t rcvbytes = 0;

 // Receive available bytes from UDP socket
 if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1)
 error("recvfrom()");
 else
 {
 // Parse data , 1 int32 value
 if(buffer[0] == 0x42)
 {
 //ROS_INFO(" received");
 val[3] = (unsigned char)buffer[4];
 val[2] = (unsigned char)buffer[3];
 val[1] = (unsigned char)buffer[2];
 val[0] = (unsigned char)buffer[1];
 memcpy(&encoderPos, &val, 4);
 comrpession = (sqrt(l1*l1 + l2*l2 - 2.0*l1*l2*cos(360.0*encoderPos/1999.0*pi/180.0) -
0.01*0.01)- linit) ;
 // Raise flag that we received a message
 gotMsg = true;
 }
 }
}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)
{
 int stat = -1;
 int flags;
 struct sigaction sa;

 flags = fcntl(sock, F_GETFL);
 fcntl(sock, F_SETFL, flags | O_ASYNC);

 sa.sa_flags = 0;
 sa.sa_handler = sigio_handler;
 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGIO, &sa, NULL))
 error("Error:");

 if (fcntl(sock, F_SETOWN, getpid()) < 0)
 error("Error:");

 if (fcntl(sock, F_SETSIG, SIGIO) < 0)
 error("Error:");

 return 0;
}

// Main Function
int main(int argc, char **argv)
{
 struct sockaddr_in si_me, si_other;
 int i, slen=sizeof(si_other), msg_count;
 char buf[BUFLEN], strout[28];

 msg_count = 0;
 memset(SendBuffer, 0, 6);

 // Initialize UDP socket for data transmission
 if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_pwm, 0, sizeof(si_pwm));

104

 si_pwm.sin_family = AF_INET;
 si_pwm.sin_port = htons(PORT_BRD);

 if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
 error("inet_aton() failed\n");
 exit(1);
 }

 SendBuffer[0] = 0x31;

 // Initialize ROS node
 ros::init(argc, argv, "Knee_interface");
 ros::NodeHandle n;
 // Initialize the publisher for compression data post
 ros::Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000);

 ros::Rate loop_rate(1000);

 // Wait for ROS node to initialize
 while (!ros::ok());

 // Initialize UDP socket for data reception
 if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_me, 0, sizeof(si_me));
 si_me.sin_family = AF_INET;
 si_me.sin_port = htons(PORT);
 si_me.sin_addr.s_addr = htonl(INADDR_ANY);
 if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
 error("bind");

 enable_asynch(sock);

 ROS_INFO("Starting communication with Tiva knee board.");
 ROS_INFO("Communication with TiVa knee board established.");

 std_msgs::Float64 compression_msg;

 while (ros::ok())
 {
 if(gotMsg)
 {
 msg_count++;
 compression_msg.data = compression ;
 compression_pub.publish(compression_msg);
 if(msg_count >= 2000)
 {
 msg_count = 0;
 ROS_INFO("%f compression in m", compression);
 }
 gotMsg = false;
 }
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

IMU_interface

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"

105

#include <stdint.h>
#include <inttypes.h>
#include "ros/ros.h"
#include "legged_robot/AccGyro.h"
#include <sstream>
#include <ros/time.h>

// UDP buffer length
#define BUFLEN 512
// UDP port to receive from
#define PORT 2012

// Asynchronous UDP communication
#define ASYNC

// Tiva IMU board IP
#define BRD_IP "192.168.1.10"

// Global variables
bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP communication
int msgs = 0; // Incoming message counter
int16_t acc[3] = {0,0,0}; // Place raw accelerometer data here
int16_t gyro[3] = {0,0,0}; // Place raw gyroscope data here
int imu_dev = 0; // 1 - ADIS16375

// Generic error function
void error(char *s)
{
 perror(s);
 exit(1);
}

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
 char buffer[BUFLEN]="";
 unsigned char val[2];
 struct sockaddr_in si_other;
 unsigned int slen=sizeof(si_other);
 ssize_t rcvbytes = 0;

 // Receive available bytes from UDP socket
 if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1)
 error("recvfrom()");
 else
 {
 //ROS_INFO("%d bytes");
 // Parse data , 6 int16 values
 if(buffer[0] == 0x43 && rcvbytes == 13)
 {
 imu_dev = 1;
 val[1] = (unsigned char)buffer[2];
 val[0] = (unsigned char)buffer[1];
 memcpy(&acc[0], &val, 2);
 val[1] = (unsigned char)buffer[4];
 val[0] = (unsigned char)buffer[3];
 memcpy(&acc[1], &val, 2);
 val[1] = (unsigned char)buffer[6];
 val[0] = (unsigned char)buffer[5];
 memcpy(&acc[2], &val, 2);
 val[1] = (unsigned char)buffer[8];
 val[0] = (unsigned char)buffer[7];
 memcpy(&gyro[0], &val, 2);
 val[1] = (unsigned char)buffer[10];
 val[0] = (unsigned char)buffer[9];
 memcpy(&gyro[1], &val, 2);
 val[1] = (unsigned char)buffer[12];
 val[0] = (unsigned char)buffer[11];
 memcpy(&gyro[2], &val, 2);
 // Raise flag that we received a message
 gotMsg = true;
 }
 }

106

}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)
{
 int stat = -1;
 int flags;
 struct sigaction sa;

 flags = fcntl(sock, F_GETFL);
 fcntl(sock, F_SETFL, flags | O_ASYNC);

 sa.sa_flags = 0;
 sa.sa_handler = sigio_handler;
 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGIO, &sa, NULL))
 error("Error:");

 if (fcntl(sock, F_SETOWN, getpid()) < 0)
 error("Error:");

 if (fcntl(sock, F_SETSIG, SIGIO) < 0)
 error("Error:");
 return 0;
}

// Main Function
int main(int argc, char **argv)
{
 struct sockaddr_in si_me, si_other;
 int i, slen=sizeof(si_other), msg_count;
 char buf[BUFLEN], strout[28];
 legged_robot::AccGyro accgyro_msg;
 double realAcc[3], realGyro[3] ;

 ros::Time prev_time;
 ros::Duration delta_t;
 msg_count = 0;

 // Initialize ROS node
 ros::init(argc, argv, "IMU_interface");
 ros::NodeHandle n;
 // Initialize the publisher for Accelerometer and Gyroscope data post
 ros::Publisher imu_interface_pub = n.advertise<legged_robot::AccGyro>("IMU_feedback", 1000);
 ros::Rate loop_rate(1000);

 // Wait for ROS node to initialize
 while (!ros::ok());

 // Initialize UDP communication
 if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_me, 0, sizeof(si_me));
 si_me.sin_family = AF_INET;
 si_me.sin_port = htons(PORT);
 si_me.sin_addr.s_addr = htonl(INADDR_ANY);
 if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
 error("bind");

 enable_asynch(sock);

 ROS_INFO("Starting communication with IMU Tiva board.");
 while (ros::ok()){
 // Initialize ROS message values
 accgyro_msg.accX = 0;
 accgyro_msg.accY = 0;
 accgyro_msg.accZ = 0;
 accgyro_msg.gyroX = 0;
 accgyro_msg.gyroY = 0;
 accgyro_msg.gyroZ = 0;
 accgyro_msg.imu_dev = 0;

107

 // If we got a new message, publish to topic and print values every 500 messages
 if(gotMsg)
 {
 msg_count++;
 accgyro_msg.accX = acc[0];
 accgyro_msg.accY = acc[1];
 accgyro_msg.accZ = acc[2];
 accgyro_msg.gyroX = gyro[0];
 accgyro_msg.gyroY = gyro[1];
 accgyro_msg.gyroZ = gyro[2];
 accgyro_msg.imu_dev = imu_dev;
 imu_interface_pub.publish(accgyro_msg);
 if(msg_count >= 1)
 {
 msg_count = 0;
 if(imu_dev == 1)
 {
 realAcc[0] = (accgyro_msg.accX*1.0)*0.8192*9.81/1000.0 ;
 realAcc[1] = (accgyro_msg.accY*1.0)*0.8192*9.81/1000.0 ;
 realAcc[2] = (accgyro_msg.accZ*1.0)*0.8192*9.81/1000.0 ;
 realGyro[0] = (accgyro_msg.gyroX*1.0)*0.013108;
 realGyro[1] = (accgyro_msg.gyroY*1.0)*0.013108;
 realGyro[2] = (accgyro_msg.gyroZ*1.0)*0.013108;
 }
 }
 gotMsg = false;
 }
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

Read_setpoint

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include <inttypes.h>
#include "ros/ros.h"
#include <iostream>
#include <string>
#include <sstream>
#include "std_msgs/Float64.h"
#include <dynamic_reconfigure/server.h>
#include <legged_robot/ParamConfig.h>

float rpos, prevpos ;
float dt ;

using namespace std;

void callback(legged_robot::ParamConfig &config, uint32_t level)
{
 rpos = config.setpoint;
}

// Global variables
std_msgs::Float64 setpoint_msg;
float pi = 4.0*atan(1.0);

int main(int argc, char **argv)
{
 prevpos = 0.0 ;
 // Initialize ROS node
 ros::init(argc, argv, "Read_setpoint");
 ros::NodeHandle nod;
 // Publish for desired position message
 ros::Publisher read_setpoint_pub = nod.advertise<std_msgs::Float64>("/setpoint", 1000);

 dynamic_reconfigure::Server<legged_robot::ParamConfig> Read_setpoint;
 dynamic_reconfigure::Server<legged_robot::ParamConfig>::CallbackType f;

108

 f = boost::bind(&callback, _1, _2);
 Read_setpoint.setCallback(f);

 ros::Rate loop_rate(1000);
 setpoint_msg.data = 0.0;
 ROS_INFO("Reading Setpoint.");

 while (ros::ok())
 {
 if (rpos != prevpos)
 {

 prevpos = rpos ;
 }
 setpoint_msg.data = rpos ;
 read_setpoint_pub.publish(setpoint_msg);
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

Tiva boards

#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "drivers/pinout.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/rom_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "driverlib/flash.h"
#include "driverlib/systick.h"
#include "utils/locator.h"
#include "utils/lwiplib.h"
#include "utils/ustdlib.h"
#include "inc/hw_pwm.h"
#include "driverlib/pwm.h"
#include "inc/hw_qei.h"
#include "driverlib/qei.h"
#include "driverlib/timer.h"

#include "main.h"

#ifdef DEV_ADIS16375
#include "ADIS16375.h"
#endif
#include "spi.h"

//***
//
// Defines for setting up the system clock.
//
//***
#define SYSTICKHZ 100
#define SYSTICKMS (1000 / SYSTICKHZ)

//***
//
// Interrupt priority definitions. The top 3 bits of these values are
// significant with lower values indicating higher priority interrupts.
//

109

//***
#define SYSTICK_INT_PRIORITY 0x80
#define ETHERNET_INT_PRIORITY 0xC0

//***
//
// The current IP address.
//
//***
uint32_t g_ui32IPAddress;
//***
//
// The system clock frequency.
//
//***

uint32_t g_ui32SysClock;

#ifdef DEBUG
void
__error__(char *pcFilename, uint32_t ui32Line)
{
}
#endif

#ifdef ENABLE_ETHERNET
// Initialize the UDP receive pcb
struct udp_pcb * udp_init_r(void);
// Send data over UDP
void udp_send_data(void* sbuf, u16_t len);
// Callback for UDP data reception
void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, u16_t
port);
// The variable that hold the UDP receive pcb
struct udp_pcb *Rpcb;
// Variables assgined to the controller pc IP and current board IP
struct ip_addr controller_ip, board_ip;
// Flag that is raised when the IP is assigned
volatile uint8_t gotIP = 0;
// Variables for lwip configuration
unsigned long device_ip,device_subnet,device_gateway;
#endif

// Flags raised when events for encoder send and pwm set are active
bool sendEncoder, setPWMvalue;
// Variable for received PWM command
int8_t pwmValue;

#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375
// Function that configures the interrupt detection of ADIS16375 IMU
void ConfigureADIS16375Int(void);
// ADIS16375 object
ADIS16375 myIMU;
#endif

// Flag for IMU Data ready on interrupt
uint8_t imuDataReady = 0;
// Variables that hold the measurements received from the IMU
int16_t accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z, delta_x, delta_y, delta_z, dv_x, dv_y,
dv_z, temp_out;
double dval_x, dval_y, dval_z, temp, deltaAccX, deltaAccY, deltaAccZ;
#endif

#ifdef ENABLE_ETHERNET
// Display the input IP address on UART
void DisplayIPAddress(uint32_t ui32Addr)
{
 char pcBuf[16];

 //
 // Convert the IP Address into a string.

110

 //
 usprintf(pcBuf, "%d.%d.%d.%d", ui32Addr & 0xff, (ui32Addr >> 8) & 0xff,
 (ui32Addr >> 16) & 0xff, (ui32Addr >> 24) & 0xff);

 //
 // Display the string.
 //
#ifdef ENABLE_UART
 UARTprintf(pcBuf);
#endif

}
#endif

#ifdef ENABLE_ETHERNET
// Ethernet lwip interrupt handler
void lwIPHostTimerHandler(void)
{
 uint32_t ui32Idx, ui32NewIPAddress;

 //
 // Get the current IP address.
 //
 ui32NewIPAddress = lwIPLocalIPAddrGet();

 //
 // See if the IP address has changed.
 //
 if(ui32NewIPAddress != g_ui32IPAddress)
 {
 //
 // See if there is an IP address assigned.
 //
 if(ui32NewIPAddress == 0xffffffff)
 {
 //
 // Indicate that there is no link.
 //
 //UARTprintf("Waiting for link.\n");
 }
 else if(ui32NewIPAddress == 0)
 {
 //
 // There is no IP address, so indicate that the DHCP process is
 // running.
 //
 //UARTprintf("Waiting for IP address.\n");
 }
 else
 {
 //
 // Display the new IP address.
 //
#ifdef ENABLE_UART
 UARTprintf("IP Address: ");
 DisplayIPAddress(ui32NewIPAddress);
 UARTprintf("\n");
#endif
 // Set the gotIP flag once IP is assigned
 gotIP = 1;
 }

 //
 // Save the new IP address.
 //
 g_ui32IPAddress = ui32NewIPAddress;

 //
 // Turn GPIO off.
 //
 MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1);
 }

 //

111

 // If there is not an IP address.
 //
 if((ui32NewIPAddress == 0) || (ui32NewIPAddress == 0xffffffff))
 {
 //
 // Loop through the LED animation.
 //

 for(ui32Idx = 1; ui32Idx < 17; ui32Idx++)
 {

 //
 // Toggle the GPIO
 //
 MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1,
 (MAP_GPIOPinRead(GPIO_PORTN_BASE, GPIO_PIN_1) ^
 GPIO_PIN_1));

 SysCtlDelay(g_ui32SysClock/(ui32Idx << 1));
 }
 }
}
#endif

//***
//
// The interrupt handler for the SysTick interrupt.
//
//***
void
SysTickIntHandler(void)
{
 //
 // Call the lwIP timer handler.
 //
#ifdef ENABLE_ETHERNET
 lwIPTimer(SYSTICKMS);
#endif
}

#ifdef ENABLE_UART
// Configure the UART peripheral
void ConfigureUART(void)
{
 //
 // Enable the GPIO Peripheral used by the UART.
 //
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 //
 // Enable UART0
 //
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

 //
 // Configure GPIO Pins for UART mode.
 //
 ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
 ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
 ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 //
 // Initialize the UART for console I/O.
 //
 UARTStdioConfig(0, 115200, g_ui32SysClock);

#ifdef UART_BUFFERED
 UARTEchoSet(false);
#endif
}
#endif

// Generic delay function
void cyclesdelay(unsigned long cycles)

112

{
 MAP_SysCtlDelay(cycles); // Tiva C series specific
}

#ifdef ENABLE_MOTOR
// Setup the PWM peripheral
void SetupPWM()
{
 SysCtlPWMClockSet(SYSCTL_PWMDIV_1);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
 GPIOPinConfigure(GPIO_PG0_M0PWM4);
 GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_0);

 PWMGenConfigure(PWM0_BASE, PWM_GEN_2, PWM_GEN_MODE_UP_DOWN |
 PWM_GEN_MODE_NO_SYNC);

 //
 // Set the PWM period to 1000Hz. To calculate the appropriate parameter
 // use the following equation: N = (1 / f) * SysClk. Where N is the
 // function parameter, f is the desired frequency, and SysClk is the
 // system clock frequency.
 // In this case you get: (1 / 20000Hz) * 120MHz = 6000 cycles. Note that
 // the maximum period you can set is 2^16.
 // TODO: modify this calculation to use the clock frequency that you are
 // using.
 //
 PWMGenPeriodSet(PWM0_BASE, PWM_GEN_2, 6000);

 // Configure Direction pin
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
 MAP_GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_4);
 MAP_GPIOPadConfigSet(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO_STRENGTH_8MA,
 GPIO_PIN_TYPE_STD_WPD);
 MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, 0);

}

// Fucntion to set the PWM output given the duty cycle
// PWM can range from -100 to 100, if the value is negative
// we reverse the motion by setting the DIR pin low for the drive
// positive direction correspond to DIR pin being high
int8_t SetPWMDuty(int8_t duty)
{
 // If duty cycle is 0 , disable the PWM generator and output
 if(!duty)
 {
 PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, false);
 PWMGenDisable(PWM0_BASE, PWM_GEN_2);
 }
 else
 {
 // Set DIR pin accordingly
 if(duty < 0)
 {
 MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, 0);
 duty = 100 - (100 + duty);
 }
 else
 MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO_PIN_4);

 if(duty == 100)
 duty = 95;

 // Set the PWM pulse width (duty cycle)
 PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4,
 (PWMGenPeriodGet(PWM0_BASE, PWM_GEN_2) / 100) * (uint32_t)duty);
 PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, true);
 PWMGenEnable(PWM0_BASE, PWM_GEN_2);
 }
 // Return the set duty cycle
 return duty;
}

113

// 5 KHz timer that sets the flag for encoder value transmission
void
Timer0IntHandler(void)
{
 //
 // Clear the timer interrupt.
 //
 ROM_TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Set the flag
 sendEncoder = true;

}
#endif

#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375
// ADIS16375 Interrupt handler
void IntADIS16375(void)
{
 uint32_t status;

 // Clear the interrupt flag
 status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);

 // Set the appropriate flag
 imuDataReady = 1;

 // Read the desired data from the IMU
 ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z);
 ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z);
 //ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z);
 //ADIS16375_readDeltaVel(&myIMU, &dv_x, &dv_y, &dv_z);

 // Value conversion for delta angle displacement
 // Delta angles need to be accumulated to get proper euler angle values
 /*dval_x = (delta_x*1.0)*0.005493;
 dval_y = (delta_y*1.0)*0.005493;
 dval_z = (delta_z*1.0)*0.005493;

 deltaAccX += dval_x;
 deltaAccY += dval_y;
 deltaAccZ += dval_z;*/

 GPIOIntClear(IMU_IRQ_PORT_BASE, status);
}

// Configure the ADIS16375 interrupt pin
void ConfigureADIS16375Int(void)
{
 SysCtlPeripheralEnable(IMU_IRQ_PERIPH);
 GPIOPinTypeGPIOInput(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
 GPIOIntTypeSet(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN, GPIO_RISING_EDGE);
 GPIOIntRegister(IMU_IRQ_PORT_BASE, IntADIS16375);
 //GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
 IntEnable(IMU_IRQ_INT);
}
#endif

#endif

// Main application
int main(void)
{
 uint32_t status;
 uint8_t printIMU = 0;
 // UART buffer
 uint8_t charUART[256];
 // The first time the IMU gives an interrupt we can set the BIAS NULL
 // command for auto-bias correction on accelerometer and gyroscope data

114

 uint8_t firstIMU = 0;

#ifdef ENABLE_UART
 // Character that is used to receive commands from the UART
 // Used only for debugging
 unsigned char uCom = 0;
#endif

#ifdef ENABLE_ETHERNET
 uint32_t ui32User0, ui32User1;
 uint8_t pui8MACArray[8];
 // UDP Send buffer
 uint8_t sendUDP[128];
 // Hold the number of transmission (used for debugging)
 uint32_t sends = 0;
#endif

 // Variable to hold the read encoder value
 int32_t encoderPos = 0;

 // Initialize the application flags
#ifdef ENABLE_MOTOR
 sendEncoder = false;
 setPWMvalue = false;
 pwmValue = 0;
#endif

#ifdef ENABLE_ETHERNET
 gotIP = 0;

 // Set the proper values for lwip configuration based on board selection
#if defined(BOARD_IMU)
 // 192.168.1.10
 device_ip = 0xC0A8010A;
 IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0A);
#elif defined(BOARD_KNEE)
 // // 192.168.1.11
 device_ip = 0xC0A8010B;
 IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0B);
#elif defined(BOARD_HIP)
 // // 192.168.1.12
 device_ip = 0xC0A8010C;
 IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0C);
#endif

 // 255.255.255.0
 device_subnet = 0xFFFFFF00;

 // 192.168.1.1
 device_gateway = 0xC0A80101;

 // 192.168.1.22
 IP4_ADDR(&controller_ip, 0xC0,0xA8,0x01,0x16);

#endif

 // Start the system clock (120 MHz)
 SysCtlMOSCConfigSet(SYSCTL_MOSC_HIGHFREQ);

 g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
 SYSCTL_OSC_MAIN |
 SYSCTL_USE_PLL |
 SYSCTL_CFG_VCO_480), 120000000);

 // TODO: Enable pins for relay signals -IN CASE OF TREADMILL BOARD
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOK);
 SysCtlDelay(10000);
 GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_7);
 GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_4);
 GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_5);
 SysCtlDelay(10000000);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false); //all on
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false);

115

 SysCtlDelay(10000000);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4); //all off
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);
 SysCtlDelay(10000000);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false); //all on
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false);
 SysCtlDelay(10000000);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4); //all off
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);

#ifdef ENABLE_ETHERNET
 // Set pins for ethernet functionality
 PinoutSet(true, false);
 MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1);
 MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1);
#else
 PinoutSet(false, false);
#endif

#ifdef ENABLE_UART
 ConfigureUART();
#endif

#ifdef ENABLE_ETHERNET
 // Initialize the SysTick timer
 MAP_SysTickPeriodSet(g_ui32SysClock / SYSTICKHZ);
 MAP_SysTickEnable();
 MAP_SysTickIntEnable();

 MAP_FlashUserGet(&ui32User0, &ui32User1);
 if((ui32User0 == 0xffffffff) || (ui32User1 == 0xffffffff))
 {
#ifdef ENABLE_UART
 UARTprintf("No MAC programmed!\n");
#endif
 while(1)
 {
 }
 }

#ifdef ENABLE_UART
 UARTprintf("Waiting for IP.\n");
#endif

 pui8MACArray[0] = ((ui32User0 >> 0) & 0xff);
 pui8MACArray[1] = ((ui32User0 >> 8) & 0xff);
 pui8MACArray[2] = ((ui32User0 >> 16) & 0xff);
 pui8MACArray[3] = ((ui32User1 >> 0) & 0xff);
 pui8MACArray[4] = ((ui32User1 >> 8) & 0xff);
 pui8MACArray[5] = ((ui32User1 >> 16) & 0xff);

 // lwIP stack initialization
 //lwIPInit(g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR_USE_DHCP);
 lwIPInit(g_ui32SysClock, pui8MACArray, device_ip, device_subnet, device_gateway,
IPADDR_USE_STATIC);

 MAP_IntPrioritySet(INT_EMAC0, ETHERNET_INT_PRIORITY);
#endif

 MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY);

 // Wait until an IP is assigned
#ifdef ENABLE_ETHERNET
 while(gotIP == 0)
 SysCtlDelay(120);
#endif

#ifdef ENABLE_UART
 UARTprintf("Initializing...\n");
#endif

116

 // Configure motor interface modules
#ifdef ENABLE_MOTOR
 // Setup the PWM generator
 SetupPWM();

 // QEI Setup
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI0);
 GPIOPinConfigure(GPIO_PL3_IDX0);
 GPIOPinConfigure(GPIO_PL1_PHA0);
 GPIOPinConfigure(GPIO_PL2_PHB0);
 GPIOPinTypeQEI(GPIO_PORTL_BASE, GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3);

 QEIConfigure(QEI0_BASE, (QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX | QEI_CONFIG_QUADRATURE |
QEI_CONFIG_NO_SWAP), 52*2000-1); QEIVelocityConfigure(QEI0_BASE, QEI_VELDIV_1, 8000000);
 QEIVelocityConfigure(QEI0_BASE, QEI_VELDIV_1, 8000000); // for the treadmill

 //
 // Enable the quadrature encoder.
 //
 QEIEnable(QEI0_BASE);
 QEIPositionSet(QEI0_BASE,0);
 //
 // Delay for some time...
 //
 SysCtlDelay(12000);
#endif

 // Initialize the UDP receive pcb
#ifdef ENABLE_ETHERNET
 Rpcb = udp_init_r();
#endif

 // IMU Initializaztion
#ifdef ENABLE_IMU

#ifdef DEV_ADIS16375
 ADIS16375_Init(&myIMU, cyclesdelay, IMU_CS, IMU_RST, init_spi16, SpiTransfer16);
#ifdef ENABLE_UART
 //UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU));
 //ADIS16375_write(&myIMU,ADIS16375_REG_GLOB_CMD,0x8000);
#endif
 //ADIS16375_debug(&myIMU);
 ConfigureADIS16375Int();
 //status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);

 // Clear interrupt flag just to be safe
 GPIOIntClear(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
 GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);

 //ADIS16375_wake(&myIMU);
 //init_spi16();
 //UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU));
#endif

#endif

 // Configure 5 KHz tier for encoder count acquisition
#ifdef ENABLE_MOTOR
 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
 TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC);
 TimerLoadSet(TIMER0_BASE, TIMER_A, g_ui32SysClock/5000); //here the transmitting frequency is
defined
 IntEnable(INT_TIMER0A);
 TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
 TimerEnable(TIMER0_BASE, TIMER_A);
#endif

 // Application Main Loop
 while(1)
 {
#ifdef ENABLE_IMU

117

 // If data ready from IMU output the data
 // On first interrupt only we check the product ID
 // and are able to set the configuration for proper delta angle calculation
 if(imuDataReady == 1)
 {
 if(!firstIMU)
 {
 firstIMU = 1;
#ifdef DEV_ADIS16375
 UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU));
#endif

#ifdef DEV_ADIS16375
 // Resore factory calibration on strat-up
 ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x4000);
 // Configure the ADIS16375 IMU
 //MAP_SysCtlDelay(40000*100);

 // Set the decimation coefficient
 //ADIS16375_write(&myIMU, ADIS16375_REG_DEC_RATE, DECIMATION_COEF);

 // Set configuration for the BIAS estimator
 ADIS16375_write(&myIMU, ADIS16375_REG_NULL_CFG, 0x0A07);

 // Load values for bias correction (BIAS NULL command)
 //ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x0100);

 //GPIOIntDisable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
#endif
 imuDataReady = 0;
 deltaAccX = deltaAccY = deltaAccZ = 0.0;
 }
 else
 {
 imuDataReady = 0;
#ifdef ENABLE_ETHERNET
#ifdef DEV_ADIS16375
 sendUDP[0] = 0x43;
#endif
 memcpy(&sendUDP[1],(uint8_t*)(&accel_x),2);
 memcpy(&sendUDP[3],(uint8_t*)(&accel_y),2);
 memcpy(&sendUDP[5],(uint8_t*)(&accel_z),2);
 memcpy(&sendUDP[7],(uint8_t*)(&gyro_x),2);
 memcpy(&sendUDP[9],(uint8_t*)(&gyro_y),2);
 memcpy(&sendUDP[11],(uint8_t*)(&gyro_z),2);
 udp_send_data((void*)sendUDP,13);
#endif
 // Handle the recieved IMU measrements
#ifdef ENABLE_UART
 if(printIMU)
 {
 printIMU = 0;
#ifdef DEV_ADIS16375
 UARTprintf("ACC_X_OUT : %d 0x%X\n",accel_x,accel_x);
 UARTprintf("ACC_Y_OUT : %d 0x%X\n",accel_y,accel_y);
 UARTprintf("ACC_Z_OUT : %d 0x%X\n",accel_z,accel_z);

 UARTprintf("GYRO_X_OUT : %d 0x%X\n",gyro_x,gyro_x);
 UARTprintf("GYRO_Y_OUT : %d 0x%X\n",gyro_y,gyro_y);
 UARTprintf("GYRO_Z_OUT : %d 0x%X\n",gyro_z,gyro_z);

 dval_x = (gyro_x*1.0)*0.013108;
 dval_y = (gyro_y*1.0)*0.013108;
 dval_z = (gyro_z*1.0)*0.013108;

 sprintf(charUART, "GYRO X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "GYRO Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "GYRO Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);

 dval_x = (accel_x*1.0)*0.8192;

118

 dval_y = (accel_y*1.0)*0.8192;
 dval_z = (accel_z*1.0)*0.8192;

 sprintf(charUART, "ACC X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "ACC Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "ACC Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);

 dval_x = (delta_x*1.0)*0.005493;
 dval_y = (delta_y*1.0)*0.005493;
 dval_z = (delta_z*1.0)*0.005493;

 sprintf(charUART, "DELTA X : 0x%X %lf\n", delta_x, dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Y : 0x%X %lf\n", delta_y, dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Z : 0x%X %lf\n", delta_z, dval_z);
 UARTprintf("%s",charUART);

 dval_x = (dv_x*1.0)*3.0518;
 dval_y = (dv_y*1.0)*3.0518;
 dval_z = (dv_z*1.0)*3.0518;

 sprintf(charUART, "DELTA VEL X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA VEL Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA VEL Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);
#endif

 }
 }
#endif
 }
#endif
 // UART command interface for debugging
#ifdef ENABLE_UART
#ifdef UART_BUFFERED
 if(UARTRxBytesAvail()>0)
 {
 uCom = UARTgetc();
 UARTFlushRx();
 }
#endif
 switch(uCom)
 {
#ifdef ENABLE_IMU
 case '1' :
 // Get IMU product ID
#ifdef DEV_ADIS16375
 UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU));
#endif

 break;
 case '2':
 // Reset IMU measurement data
 imuDataReady = 0;
 accel_x = accel_y = accel_z = 0;
 deltaAccX = deltaAccY = deltaAccZ = 0.0;
 status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true);
 GPIOIntClear(IMU_IRQ_PORT_BASE, status);
 GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN);
 break;
 case '3':
 // Get data directly from IMU without waiting for interrupt
#ifdef DEV_ADIS16375
 ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z);
 ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z);
 ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z);
 ADIS16375_readDeltaVel(&myIMU, &dv_x, &dv_y, &dv_z);
#endif

119

 dval_x = (gyro_x*1.0)*0.013108;
 dval_y = (gyro_y*1.0)*0.013108;
 dval_z = (gyro_z*1.0)*0.013108;

 sprintf(charUART, "GYRO X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "GYRO Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "GYRO Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);

 dval_x = (accel_x*1.0)*0.8192;
 dval_y = (accel_y*1.0)*0.8192;
 dval_z = (accel_z*1.0)*0.8192;

 sprintf(charUART, "ACC X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "ACC Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "ACC Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);

 dval_x = (delta_x*1.0)*0.005493;
 dval_y = (delta_y*1.0)*0.005493;
 dval_z = (delta_z*1.0)*0.005493;

 sprintf(charUART, "DELTA X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);

 dval_x = (dv_x*1.0)*3.0518;
 dval_y = (dv_y*1.0)*3.0518;
 dval_z = (dv_z*1.0)*3.0518;

 sprintf(charUART, "DELTA VEL X : %lf\n", dval_x);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA VEL Y : %lf\n", dval_y);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA VEL Z : %lf\n", dval_z);
 UARTprintf("%s",charUART);
 break;
 case '4' :
 // Output received IMU data
 printIMU = 1;
 break;
#ifdef DEV_ADIS16375
 case '5' :
 // Read and display IMU internal temperature
 temp_out = ADIS16375_temp(&myIMU);
 temp = (temp_out*1.0)*0.00565 + 25.0;
 sprintf(charUART, "%lf", temp);
 UARTprintf("Temp : 0x%X %s\n",temp_out,charUART);
 break;
 case '6' :
 // Output bias coefficients
 UARTprintf("X_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_OFF_L));
 UARTprintf("X_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_OFF_H));
 UARTprintf("Y_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_OFF_L));
 UARTprintf("Y_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_OFF_H));
 UARTprintf("Z_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_OFF_L));
 UARTprintf("Z_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_OFF_H));
 UARTprintf("X_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACC_OFF_L));
 UARTprintf("X_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACC_OFF_H));
 UARTprintf("Y_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACC_OFF_L));
 UARTprintf("Y_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACC_OFF_H));
 UARTprintf("Z_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACC_OFF_L));
 UARTprintf("Z_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACC_OFF_H));
 UARTprintf("X_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_SCALE));
 UARTprintf("Y_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_SCALE));
 UARTprintf("Z_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_SCALE));

120

 UARTprintf("X_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACCEL_SCALE));
 UARTprintf("Y_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACCEL_SCALE));
 UARTprintf("Z_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACCEL_SCALE));
 UARTprintf("GEN_CONFIG : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_GEN_CFG) &
0x00FF));
 UARTprintf("NULL_CONFIG : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_NULL_CFG) &
0x3FFF));
 UARTprintf("DEC_RATE : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_DEC_RATE) & 0x07FF));
 break;
 case '7':
 // Load calibration values
 ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x0100);
 break;
 case '8':
 // Output delta angle from stored accumulated data
 sprintf(charUART, "DELTA X : %lf\n", deltaAccX);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Y : %lf\n", deltaAccY);
 UARTprintf("%s",charUART);
 sprintf(charUART, "DELTA Z : %lf\n", deltaAccZ);
 UARTprintf("%s",charUART);
 break;
#endif
 case 'w':
 // IMU wakeup
#ifdef DEV_ADIS16375
 ADIS16375_wake(&myIMU);
#endif

 break;
#endif
 default : break;
 }
 uCom = 0;
#endif

#ifdef ENABLE_MOTOR
 // If we received a PWM command set the corresponding PWM duty cyle and direction
 if(setPWMvalue == true)
 {
 if (pwmValue == 103)
 {
 UARTprintf("enableccw");
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false);
 UARTprintf("enableccw");
 }
 if (pwmValue == 101)
 {
 UARTprintf("kill");
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4);
 //all off
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);
 UARTprintf("kill");
 }
 if (pwmValue == 102)
 {
 UARTprintf("enable");
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7);
 UARTprintf("enable");
 }
 if (pwmValue == 104)
 {
 UARTprintf("enablecw");
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false);
 GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5);
 UARTprintf("enablecw");
 }
 else
 {
 UARTprintf("else");
 SetPWMDuty(pwmValue);
 UARTprintf("else");

121

 }
 setPWMvalue = false;
 }

 // If send encoder value event occurs, send data via UDP
 if(sendEncoder == true)
 {
 //sends++;
 encoderPos = (QEIPositionGet(QEI0_BASE));
 //encoderPos = (QEIVelocityGet(QEI0_BASE)); for the treadmill

 //if(sends == 5000)
 //{
 //UARTprintf("Position %d\n",encoderPos);
 //sends = 0;
 //}
 sendEncoder = false;
#ifdef ENABLE_ETHERNET
 sendUDP[0] = 0x42;
 memcpy(&sendUDP[1],(uint8_t*)(&encoderPos),4);
 udp_send_data((void*)sendUDP,5);
#endif
 }
#endif
 }
}

#ifdef ENABLE_ETHERNET

// Initializze the UDP receive pcb
struct udp_pcb * udp_init_r(void)
{
 //err_t err;
 struct udp_pcb *pcb_r;
 pcb_r = udp_new();

 // Bind to given port , receive from any IP
 udp_bind(pcb_r, IP_ADDR_ANY, PORT_R);

#ifdef ENABLE_UART
 UARTprintf("UDP to receive at port %d...\n", PORT_R);
#endif

 // Set the receive data callback
 udp_recv(pcb_r, udp_receive_data, NULL);

 return pcb_r;
}

void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, u16_t
port)
{
 char * pPointer;

 //struct pbuf *p1;

 if (p != NULL)
 {
 //UARTwrite((char*)(p->payload), p->len);
 //UARTprintf("R : %s\n",(char*)(p->payload));

 pPointer = (char*)(p->payload);

 /* p1 = pbuf_alloc(PBUF_TRANSPORT,8,PBUF_RAM);
 memcpy (p1->payload, pData, 8);
 udp_send(pcb, p1);
 pbuf_free(p1);*/

 /*if(pPointer[0] == 0x31)
 {
 udp_send_data((void*)pData, 68);
 }*/
 // If we received PWM commnad (0x31 command byte)
 // extract the transmitted value

122

 if(pPointer[0] == 0x31)
 {
 pwmValue = pPointer[1];
 setPWMvalue = true;
 }

 /*if(pPointer[0] == 0x32)
 {
 sendEncoder = true;
 }*/

 pbuf_free(p);
 }
}

// Send data over UDP to the defined port
void udp_send_data(void* sbuf, u16_t len)
{
 struct pbuf *p;
 err_t err;

 p = pbuf_alloc(PBUF_TRANSPORT,len,PBUF_RAM);
 memcpy (p->payload, sbuf, len);
 err = udp_sendto(Rpcb, p, &controller_ip, PORT_S);

 pbuf_free(p);
}

#endif

Joint_state_publisher

#include <boost/algorithm/string.hpp>
#include <gazebo_plugins/gazebo_ros_joint_state_publisher.h>
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>

using namespace gazebo;

GazeboRosJointStatePublisher::GazeboRosJointStatePublisher() {}

// Destructor
GazeboRosJointStatePublisher::~GazeboRosJointStatePublisher() {
 rosnode_->shutdown();
}

void GazeboRosJointStatePublisher::Load (physics::ModelPtr _parent, sdf::ElementPtr _sdf) {
 // Store the pointer to the model
 this->parent_ = _parent;
 this->world_ = _parent->GetWorld();

 this->robot_namespace_ = parent_->GetName ();
 if (!_sdf->HasElement ("robotNamespace")) {
 ROS_INFO ("GazeboRosJointStatePublisher Plugin missing <robotNamespace>, defaults to \"%s\"",
 this->robot_namespace_.c_str());
 } else {
 this->robot_namespace_ = _sdf->GetElement ("robotNamespace")->Get<std::string>();
 if (this->robot_namespace_.empty()) this->robot_namespace_ = parent_->GetName ();
 }
 if (!robot_namespace_.empty()) this->robot_namespace_ += "/";
 rosnode_ = boost::shared_ptr<ros::NodeHandle> (new ros::NodeHandle (this->robot_namespace_));

 if (!_sdf->HasElement ("jointName")) {
 ROS_ASSERT ("GazeboRosJointStatePublisher Plugin missing jointNames");
 } else {
 sdf::ElementPtr element = _sdf->GetElement ("jointName") ;
 std::string joint_names = element->Get<std::string>();
 boost::erase_all (joint_names, " ");
 boost::split (joint_names_, joint_names, boost::is_any_of (","));
 }

 this->update_rate_ = 100.0;

123

 if (!_sdf->HasElement ("updateRate")) {
 ROS_WARN ("GazeboRosJointStatePublisher Plugin (ns = %s) missing <updateRate>, defaults to
%f",
 this->robot_namespace_.c_str(), this->update_rate_);
 } else {
 this->update_rate_ = _sdf->GetElement ("updateRate")->Get<double>();
 }

 // Initialize update rate stuff
 if (this->update_rate_ > 0.0) {
 this->update_period_ = 1.0 / this->update_rate_;
 } else {
 this->update_period_ = 0.0;
 }
 last_update_time_ = this->world_->GetSimTime();

 for (unsigned int i = 0; i< joint_names_.size(); i++) {
 joints_.push_back (this->parent_->GetJoint (joint_names_[i]));
 ROS_INFO ("GazeboRosJointStatePublisher is going to publish joint: %s",
joint_names_[i].c_str());
 }

 ROS_INFO ("Starting GazeboRosJointStatePublisher Plugin (ns = %s)!, parent name: %s", this-
>robot_namespace_.c_str(), parent_->GetName ().c_str());

 tf_prefix_ = tf::getPrefixParam (*rosnode_);
 joint_state_publisher_ = rosnode_->advertise<sensor_msgs::JointState> ("joint_states",1000);

 last_update_time_ = this->world_->GetSimTime();
 // Listen to the update event. This event is broadcast every
 // simulation iteration.
 this->updateConnection = event::Events::ConnectWorldUpdateBegin (
 boost::bind (&GazeboRosJointStatePublisher::OnUpdate, this, _1));
}

void GazeboRosJointStatePublisher::OnUpdate (const common::UpdateInfo & _info) {
 // Apply a small linear velocity to the model.
 common::Time current_time = this->world_->GetSimTime();
 double seconds_since_last_update = (current_time - last_update_time_).Double();
 if (seconds_since_last_update > update_period_) {

 publishJointStates();

 last_update_time_+= common::Time (update_period_);

 }

}

void GazeboRosJointStatePublisher::publishJointStates() {
 ros::Time current_time = ros::Time::now();

 joint_state_.header.stamp = current_time;
 joint_state_.name.resize (joints_.size());
 joint_state_.position.resize (joints_.size());
 joint_state_.velocity.resize (joints_.size());
 joint_state_.effort.resize (joints_.size());

 for (int i = 0; i < joints_.size(); i++) {
 physics::JointPtr joint = joints_[i];
 math::Angle angle = joint->GetAngle (0);
 double veloc = joint->GetVelocity (0);
 double eff = joint->GetForce (0);

 joint_state_.name[i] = joint->GetName();
 joint_state_.position[i] = angle.Radian () ;
 joint_state_.velocity[i] = veloc ;
 joint_state_.effort[i] = eff ;
 }
 joint_state_publisher_.publish (joint_state_);
}

124

simulation.world

<?xml version='1.0'?>
<sdf version='1.6'>

 <world name="default">

 <physics type="ode">
 <gravity>0 0 -9.81</gravity>
 <max_step_size>0.001</max_step_size>
 <real_time_factor>1</real_time_factor>
 <real_time_update_rate>10.0</real_time_update_rate>
 <ode>
 <solver>
 <type>quick</type>
 <iters>100</iters>
 <sor>1.3</sor>
 </solver>
 <constraints>
 <cfm>0</cfm>
 <erp>0.2</erp>
 <contact_max_correcting_vel>100.0</contact_max_correcting_vel>
 <contact_surface_layer>0.001</contact_surface_layer>
 </constraints>
 </ode>
 </physics>

 <include>
 <uri>model://ground_plane</uri>
 </include>

 <include>
 <uri>model://Monopod</uri>
 </include>

 <!-- Global light source -->
 <include>
 <uri>model://sun</uri>
 </include>

 <gui fullscreen='0'>
 <camera name='user_camera'>
 <pose>4.927360 -4.376610 3.740080 0.000000 0.275643 2.356190</pose>
 <view_controller>orbit</view_controller>
 </camera>
 </gui>

 </world>
</sdf>

monopodplugin.cc

#ifndef _MONOPOD_PLUGIN_HH_
#define _MONOPOD_PLUGIN_HH_

#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>
#include <gazebo/transport/transport.hh>
#include <gazebo/msgs/msgs.hh>
#include <thread>
#include "ros/ros.h"
#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float64.h"
#include <boost/algorithm/string.hpp>
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>
#include <boost/bind.hpp>
#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>
#include <gazebo/common/common.hh>

125

#include <stdio.h>
#include <math.h>

namespace gazebo
{
 /// \brief A plugin to control a Monopod sensor.
 class MonopodPlugin : public ModelPlugin
 {
 /// \brief Constructor
 public: MonopodPlugin() {}

 public: std::string joint_names ;

 /// \brief The load function is called by Gazebo when the plugin is
 /// inserted into simulation
 /// \param[in] _model A pointer to the model that this plugin is
 /// attached to.
 /// \param[in] _sdf A pointer to the plugin's SDF element.

 /// \brief A node use for ROS transport
 private: std::unique_ptr<ros::NodeHandle> rosNode;

 /// \brief A ROS subscriber
 private: ros::Subscriber rosSub;

 /// \brief A ROS callbackqueue that helps process messages
 private: ros::CallbackQueue rosQueue;

 /// \brief A thread the keeps running the rosQueue
 private: std::thread rosQueueThread;

 public: void SetJointPosition(const std::string &_jointName, double _position);

 public: virtual void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)
 {

 // Safety check
 if (_model->GetJointCount() == 0)
 {
 std::cerr << "Invalid joint count, Monopod plugin not loaded\n";
 return;
 }

 // Store the model pointer for convenience.
 this->model = _model;

 if (!_sdf->HasElement ("jointName")) {
 ROS_ASSERT ("Plugin missing jointNames to send commands to");
 } else {
 sdf::ElementPtr element = _sdf->GetElement ("jointName") ;
 joint_names = element->Get<std::string>();
 boost::erase_all (joint_names, " ");
 boost::split (joint_names_, joint_names, boost::is_any_of (","));
 }

 // Initialize ros, if it has not already been initialized.
 if (!ros::isInitialized())
 {
 int argc = 0;
 char **argv = NULL;
 ros::init(argc, argv, "gazebo_client",
 ros::init_options::NoSigintHandler);
 }

 // Create our ROS node. This acts in a similar manner to
 // the Gazebo node
 this->rosNode.reset(new ros::NodeHandle("gazebo_client"));

 // Create a named topic, and subscribe to it.
 ros::SubscribeOptions so =
 ros::SubscribeOptions::create<std_msgs::Float64>(
 "/" + this->model->GetName() + "/hip_torque_cmd",

126

 1,
 boost::bind(&MonopodPlugin::OnRosMsg, this, _1),
 ros::VoidPtr(), &this->rosQueue);
 this->rosSub = this->rosNode->subscribe(so);

 // Spin up the queue helper thread.
 this->rosQueueThread =
 std::thread(std::bind(&MonopodPlugin::QueueThread, this));

 model->GetJoint("hip")->SetPosition(0 , 0.0) ;
 model->GetJoint("z")->SetPosition(0 , 0.1) ; //to set the initial height
 model->GetJoint("x")->SetVelocity(0 , 0.0) ; //to set the initial velocity

 }

 /// \brief Set the hip torque
 /// \param[in] _vel New target velocity
 public: void SetTorque(const double &_trq)
 {
 model->GetJoint("hip")->SetForce(0 ,_trq);
 }

 /// \brief Handle an incoming message from ROS
 /// \param[in] _msg A float value that is used to set the velocity
 /// of the Monopod
 public: void OnRosMsg(const std_msgs::Float64ConstPtr &_msg)
 {
 this->SetTorque(_msg->data);

 }

 /// \brief ROS helper function that processes messages
 private: void QueueThread()
 {
 static const double timeout = 0.01;
 while (this->rosNode->ok())
 {
 this->rosQueue.callAvailable(ros::WallDuration(timeout));
 }
 }

 /// \brief Pointer to the model.
 private: physics::ModelPtr model;

 private: std::vector<std::string> joint_names_;

 };

 // Tell Gazebo about this plugin, so that Gazebo can call Load on this plugin.
 GZ_REGISTER_MODEL_PLUGIN(MonopodPlugin)
}
#endif

model.sdf

<?xml version='1.0'?>
<sdf version='1.6'>
 <model name="Assem1">
 <static>false</static>

 <link name="Lower_leg">
 <pose>0.3 0 0.2 0 0 0</pose>
 <must_be_base_link>0</must_be_base_link>
 <inertial>
 <pose>0 0 0.00903 0 0 0</pose>
 <mass>0.338</mass>
 <inertia>
 <ixx>0.00409816</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.00409816</iyy>
 <iyz>0</iyz>

127

 <izz>0.00409816</izz>
 </inertia>
 </inertial>
 <collision name="Lower_leg_collision">
 <geometry>
 <cylinder>
 <radius>.004</radius>
 <length>.4</length>
 </cylinder>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>10000.8</mu>
 <mu2>10000.8</mu2>
 </ode>
 </friction>
 </surface>
 </collision>
 <visual name="Lower_leg_visual">
 <material>
 <ambient>10 0 0 10</ambient>
 <diffuse>10 0 0 10</diffuse>
 </material>
 <geometry>
 <cylinder>
 <radius>.004</radius>
 <length>.4</length>
 </cylinder>
 </geometry>
 </visual>
 </link>

 <link name="Upper_leg">
 <pose>0.3 0 0.35 0 0 0</pose>
 <must_be_base_link>0</must_be_base_link>
 <inertial>
 <pose>0 0 0.00193 0 0 0</pose>
 <mass>0.513</mass>
 <inertia>
<!-- <ixx>0.0240557107408</ixx>
 -->
 <ixx>0.0240557107408</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.0240557107408</iyy>
 <iyz>0</iyz>
 <izz>0.0240557107408</izz>
 </inertia>
 </inertial>
 <collision name="Upper_leg_collision">
 <geometry>
 <cylinder>
 <radius>.01</radius>
 <length>.1</length>
 </cylinder>
 </geometry>
 </collision>
 <visual name="Upper_leg_visual">
 <material>
 <ambient>10 0 0 10</ambient>
 <diffuse>10 0 0 10</diffuse>
 </material>
 <geometry>
 <cylinder>
 <radius>.01</radius>
 <length>.1</length>
 </cylinder>
 </geometry>
 </visual>
 </link>

 <joint name="spring" type="prismatic">

128

 <parent>Upper_leg</parent>
 <child>Lower_leg</child>
 <pose>0 0 0 0 0 0</pose>
 <axis>
 <xyz>0 0 1</xyz>
 <dynamics>
 <damping>0.05</damping>
 <friction>0.2</friction>
 <spring_reference>0.0</spring_reference>
 <spring_stiffness>6279.0</spring_stiffness>
 </dynamics>
 <limit>
 <upper>0.2</upper>
 <lower>0.0</lower>
 <effort>1</effort>
 </limit>
 </axis>
 </joint>

 <link name="Body">
 <pose>0.3 0 0.5 0 0 0</pose>
 <inertial>
 <mass>6.7</mass>
 <inertia>
 <ixx>0.002048</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.00182272</iyy>
 <iyz>0</iyz>
 <izz>0.00124928</izz>
 </inertia>
 </inertial>
 <collision name="Body_collision">
 <geometry>
 <box>
 <size>0.3 0.3 0.3</size>
 </box>
 </geometry>
 </collision>
 <visual name="Body_visual">
 <material>
 <ambient>1 0 0 1</ambient>
 <diffuse>1 0 0 1</diffuse>
 </material>
 <geometry>
 <box>
 <size>0.3 0.3 0.3</size>
 </box>
 </geometry>
 </visual>
 </link>

 <joint name="hip" type="revolute">
 <parent>Body</parent>
 <child>Upper_leg</child>
 <pose>0 0 0 0 0 0</pose>
 <axis>
 <xyz>1 0 0</xyz>
 <dynamics>
 <damping>0.005</damping>
 <friction>0.1</friction>
 </dynamics>
 <limit>
 <upper>0.5</upper>
 <lower>-0.5</lower>
 <effort>4.812</effort>
 </limit>
 </axis>
 </joint>

 <link name="Base4">
 <pose>0.125 0 0.575 0 0 0</pose>
 <must_be_base_link>0</must_be_base_link>

129

 <inertial>
 <mass>0.001</mass>
 <inertia>
 <ixx>0.00177083333333334</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.00208333333333333</iyy>
 <iyz>0</iyz>
 <izz>0.00177083333333334</izz>
 </inertia>
 </inertial>
 <collision name="Base4_collision">
 <geometry>
 <box>
 <size>0.05 0.05 0.2</size>
 </box>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>0.0</mu>
 <mu2>0.0</mu2>
 </ode>
 </friction>
 </surface>
 </collision>
 <visual name="Base4_visual">
 <material>
 <ambient>1 0 0 1</ambient>
 <diffuse>1 0 0 1</diffuse>
 </material>
 <geometry>
 <box>
 <size>0.05 0.05 0.2</size>
 </box>
 </geometry>
 </visual>
 </link>

 <joint name="Base4-Body" type="fixed">
 <parent>Base4</parent>
 <child>Body</child>
 <pose>-0.15 0 0 0 0 0</pose>
 </joint>

 <link name="Base3">
 <pose>0 0 0.575 0 0 0</pose>
 <must_be_base_link>0</must_be_base_link>
 <inertial>
 <mass>0.001</mass>
 <inertia>
 <ixx>0.00260416666666667</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.0060416666666667</iyy>
 <iyz>0</iyz>
 <izz>0.004166666666667</izz>
 </inertia>
 </inertial>
 <collision name="Base3_collision">
 <geometry>
 <box>
 <size>0.2 0.05 0.05</size>
 </box>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>0.0</mu>
 <mu2>0.0</mu2>
 </ode>
 </friction>
 </surface>
 </collision>

130

 <visual name="Base3_visual">
 <material>
 <ambient>1 0 0 1</ambient>
 <diffuse>1 0 0 1</diffuse>
 </material>
 <geometry>
 <box>
 <size>0.2 0.05 0.05</size>
 </box>
 </geometry>
 </visual>
 </link>

 <joint name="z" type="prismatic">
 <parent>Base3</parent>
 <child>Base4</child>
 <pose>-0.025 0 0 0 0 0</pose>
 <axis>
 <xyz>0 0 1</xyz>
 <dynamics>
 <damping>0.01</damping>
 <friction>0.01</friction>
 </dynamics>
 <limit>
 <upper>0.1</upper>
 <lower>0.1</lower>
 <effort>1</effort>
 </limit>
 </axis>
 </joint>

 <link name="Base2">
 <pose>0 0 0.525 0 0 0</pose>
 <inertial>
 <mass>12.5</mass>
 <inertia>
 <ixx>26.00520833333333334</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>26.0442708333334</iyy>
 <iyz>0</iyz>
 <izz>26.0442708333334</izz>
 </inertia>
 </inertial>
 <collision name="Base2_collision">
 <geometry>
 <box>
 <size>.05 50 .05</size>
 </box>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>0</mu>
 <mu2>0</mu2>
 </ode>
 </friction>
 </surface>
 </collision>
 <visual name="Base2_visual">
 <material>
 <ambient>1 0 0 1</ambient>
 <diffuse>1 0 0 1</diffuse>
 </material>
 <geometry>
 <box>
 <size>.05 50 .05</size>
 </box>
 </geometry>
 </visual>
 </link>

 <joint name="x" type="prismatic">
 <parent>Base2</parent>

131

 <child>Base3</child>
 <pose>0 0 -0.025 0 0 0</pose>
 <axis>
 <xyz>0 1 0</xyz>
 <dynamics>
 <damping>0.0</damping>
 <friction>0.0</friction>
 </dynamics>
 <limit>
 <upper>0</upper>
 <lower>0</lower>
 <effort>1</effort>
 </limit>
 </axis>
 </joint>

 <link name="Base1">
 <pose>0 0 0.25 0 0 0</pose>
 <inertial>
 <mass>1.25</mass>
 <inertia>
 <ixx>0.0263020833333333</ixx>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyy>0.0520833333333333</iyy>
 <iyz>0</iyz>
 <izz>0.0263020833333333</izz>
 </inertia>
 </inertial>
 <collision name="Base1_collision">
 <geometry>
 <box>
 <size>.05 .05 .5</size>
 </box>
 </geometry>
 </collision>
 <visual name="Base1_visual">
 <material>
 <ambient>1 0 0 1</ambient>
 <diffuse>1 0 0 1</diffuse>
 </material>
 <geometry>
 <box>
 <size>.05 .05 .5</size>
 </box>
 </geometry>
 </visual>
 </link>

 <joint name="Base1-Base2" type="fixed">
 <parent>Base1</parent>
 <child>Base2</child>
 <pose>0 0 -0.025 0 0 0</pose>
 </joint>

 <joint type="fixed" name="baseworld">
 <parent>world</parent>
 <child>Base1</child>
 <pose>0 0 -0.25 0 0 0</pose>
 </joint>

 <plugin name="joint_state_publisher" filename="libgazebo_ros_joint_state_publisher.so">
 <jointName>hip, spring</jointName>
 <updateRate>1000.0</updateRate>
 <alwaysOn>true</alwaysOn>
 </plugin>

 <plugin name="commands" filename="libtreadmill_plugin.so"/>

 </model>
</sdf>

132

gazebo_sim.launch

<launch>

 <!-- these are the arguments you can pass this launch file, for example paused:=true -->
 <arg name="paused" default="true"/>
 <arg name="use_sim_time" default="true"/>
 <arg name="gui" default="true"/>
 <arg name="headless" default="false"/>
 <arg name="debug" default="false"/>

 <!-- We resume the logic in empty_world.launch, changing only the name of the world to be launched -
->
 <include file="$(find gazebo_ros)/launch/empty_world.launch">
 <arg name="world_name" value="$(find monopod_exp_final)/worlds/simulation.world"/>
 <arg name="debug" value="$(arg debug)" />
 <arg name="gui" value="$(arg gui)" />
 <arg name="paused" value="$(arg paused)"/>
 <arg name="use_sim_time" value="$(arg use_sim_time)"/>
 <arg name="headless" value="$(arg headless)"/>
 </include>

 <node name="position_controller" pkg="pid" type="controller" output="screen" >
 <param name="node_name" value="position_controller" />
 <param name="Kp" value="0.3" />
 <param name="Ki" value="0.0" />
 <param name="Kd" value="0.2" />
 <param name="upper_limit" value="28" />
 <param name="lower_limit" value="-28" />
 <param name="windup_limit" value="10" />
 <param name="diagnostic_period" value="0.25" />
 <param name="max_loop_frequency" value="100.0" />
 <param name="min_loop_frequency" value="100.0" />
 </node>

 <node name="Master" pkg="legged_robot" type="High_level_controller" output="screen" />

 <node name="Command_Interface" pkg="legged_robot" type="Gazebo_Actuation_Interface"
output="screen" />

 <node name="State_Callback_Interface" pkg="legged_robot" type="Gazebo_Sensors_Interface"
output="screen" />

 <node name="rqt_plot" pkg="rqt_plot" type="rqt_plot"
 args="/state/data /setpoint/data" />

</launch>

rosbag.m

 clear all ;
 bagfile = 'mybagfile.bag';
 bag = rosbag(bagfile);
 % Dislpay Available Topics
 bag.AvailableTopics
 % Select each Topic
 bagselect1 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/setpoint');
 bagselect2 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/state');
 bagselect3 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/control_effort');
% bagselect4 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/botasys');
% bagselect5 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/filtered_botasys');
 bagselect6 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/velocity_estimation');
% bagselect7 = select(bag, 'Time', [bag.StartTime bag.EndTime], 'Topic', '/IMU_feedback');

 % Store total number of messages for each topic
 all_msgs1 = bagselect1.NumMessages;
 all_msgs2 = bagselect2.NumMessages;
 all_msgs3 = bagselect3.NumMessages;
% all_msgs4 = bagselect4.NumMessages;
% all_msgs5 = bagselect5.NumMessages;
 all_msgs6 = bagselect6.NumMessages;
% all_msgs7 = bagselect7.NumMessages;

133

 % Read messages from bag
 msgs1(1:all_msgs1) = readMessages(bagselect1, 1:all_msgs1);
 msgs2(1:all_msgs2) = readMessages(bagselect2, 1:all_msgs2);
 msgs3(1:all_msgs3) = readMessages(bagselect3, 1:all_msgs3);
% msgs4(1:all_msgs4) = readMessages(bagselect4, 1:all_msgs4);
% msgs5(1:all_msgs5) = readMessages(bagselect5, 1:all_msgs5);
 msgs6(1:all_msgs6) = readMessages(bagselect6, 1:all_msgs6);
% msgs7(1:all_msgs7) = readMessages(bagselect7, 1:all_msgs7);

 % Convert messages to data setpoint
 for i = 1:all_msgs1; setpoint(i)= msgs1{i}.Data; end
 % Convert messages to data state
 for i = 1:all_msgs2; angle(i)= msgs2{i}.Data; end
 % Convert messages to data control_effort
 for i = 1:all_msgs3; control_effort(i)= msgs3{i}.Data; end
 % Convert messages to data force sensor
% for i = 1:all_msgs4; Force_x(i)= msgs4{i}.wrench.force.x; end
% for i = 1:all_msgs4; Force_y(i)= msgs4{i}.wrench.force.y; end
% for i = 1:all_msgs4; Force_z(i)= msgs4{i}.wrench.force.z; end
% for i = 1:all_msgs4; Torque_x(i)= msgs4{i}.wrench.torque.x; end
% for i = 1:all_msgs4; Torque_y(i)= msgs4{i}.wrench.torque.x; end
% for i = 1:all_msgs4; Torque_z(i)= msgs4{i}.wrench.torque.x; end
% Convert messages to data filtered force sensor
% for i = 1:all_msgs5; Filtered_Force_x(i)= msgs5{i}.wrench.force.x; end
% for i = 1:all_msgs5; Filtered_Force_y(i)= msgs5{i}.wrench.force.y; end
% for i = 1:all_msgs5; Filtered_Force_z(i)= msgs5{i}.wrench.force.z; end
% for i = 1:all_msgs5; Filtered_Torque_x(i)= msgs5{i}.wrench.torque.x; end
% for i = 1:all_msgs5; Filtered_Torque_y(i)= msgs5{i}.wrench.torque.x; end
% for i = 1:all_msgs5; Filtered_Torque_z(i)= msgs5{i}.wrench.torque.x; end
% Convert messages to data compression
 for i = 1:all_msgs6; velocity_est(i)= msgs6{i}.Data; end
% Convert messages to data IMU
% for i = 1:all_msgs7; acc_x(i)= msgs7{i}.accX; end
% for i = 1:all_msgs7; acc_y(i)= msgs7{i}.accY; end
% for i = 1:all_msgs7; acc_z(i)= msgs7{i}.accZ; end
% for i = 1:all_msgs7; gyro_x(i)= msgs7{i}.gyroX; end
% for i = 1:all_msgs7; gyro_y(i)= msgs7{i}.gyroY; end
% for i = 1:all_msgs7; gyro_z(i)= msgs7{i}.gyroZ; end

 Time_setpoint = bagselect1.MessageList(:,1).Time;
 Time_state = bagselect2.MessageList(:,1).Time;
 Time_control_effort = bagselect3.MessageList(:,1).Time;
% Time_force = bagselect4.MessageList(:,1).Time;
% Time_fil_force = bagselect5.MessageList(:,1).Time;
 Time_vel = bagselect6.MessageList(:,1).Time;
% Time_imu = bagselect7.MessageList(:,1).Time;

 clear all_msgs1 all_msgs2 all_msgs3 all_msgs4 all_msgs5 all_msgs6 all_msgs7 ans bag bagfile i
msgs1 msgs2 msgs3 msgs4 msgs5 msgs6 msgs7 bagselect1 bagselect2 bagselect3 bagselect4 bagselect5
bagselect6 bagselect7 ;
 save('mybagfile');

 clear all
% end

Gazebo_sensors_interface.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include <math.h>

134

#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "stdio.h"
#include <iostream>
#include <string>
#include <sstream>
#include "ros/ros.h"
#include "legged_robot/JointState.h"
#include "std_msgs/Float64.h"

using namespace std;
// Global variables
float pi = 4.0*atan(1.0);
double gposition[90], gvelocity[90] ;
float position, compression, hip_velocity, spring_velocity ;

// Generic error function
void error(char *s)
{
 perror(s);
 exit(1);
}

// Callback function for reception of position anf spring compression value from gazebo joint_states
topic
void GazeboCallback(const legged_robot::JointState::ConstPtr& array1)
{
 int i = 0;
 for(std::vector<double>::const_iterator it = array1->position.begin(); it != array1-
>position.end(); ++it)
 {
 gposition[i] = *it;
 i++;
 }
 i = 0;
 for(std::vector<double>::const_iterator it = array1->velocity.begin(); it != array1->velocity.end();
++it)
 {
 gvelocity[i] = *it;
 i++;
 }
 compression = (float) gposition[2];
 position = (float) gposition[0];
 spring_velocity = (float) gvelocity[2];
 hip_velocity = (float) gvelocity[0];
return;
}

// Main Function
int main(int argc, char **argv)
{

 // Initialize ROS node
 ros::init(argc, argv, "Gazebo_Actuation_Interface");
 ros::NodeHandle n;

 ros::Subscriber Gazebo_sub = n.subscribe("/Assem1/joint_states", 1000, GazeboCallback);

 ros::Publisher angle2_pub = n.advertise<std_msgs::Float64>("/angle", 1000);
 ros::Publisher spring_vel_pub = n.advertise<std_msgs::Float64>("/spring_velocity", 1000);
 ros::Publisher hip_vel_pub = n.advertise<std_msgs::Float64>("/hip_velocity", 1000);
 ros::Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000);
 ros::Rate loop_rate(2000); // Control rate in Hz

 // Wait for ROS node to initialize
 while (!ros::ok());

 std_msgs::Float64 pos;
 std_msgs::Float64 comp;
 std_msgs::Float64 svel, hvel;

 while (ros::ok())

135

 {

 pos.data = position ;
 angle2_pub.publish(pos);

 svel.data = spring_velocity ;
 spring_vel_pub.publish(svel);

 hvel.data = hip_velocity ;
 hip_vel_pub.publish(hvel);

 comp.data = compression ;
 compression_pub.publish(comp) ;

 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

Gazebo_actuation_interface.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include <math.h>
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "stdio.h"
#include <iostream>
#include <string>
#include <sstream>
#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include "std_msgs/Float32.h"

using namespace std;
// Global variables
float pi = 4.0*atan(1.0);
float command ;

// Generic error function
void error(char *s)
{
 perror(s);
 exit(1);
}

// Callback function for reception of position anf spring compression value from gazebo joint_states
topic
void CommandCallback(const std_msgs::Float64& com)
{
 command = com.data*4.8/28;
return;
}

// Main Function
int main(int argc, char **argv)
{

 // Initialize ROS node
 ros::init(argc, argv, "Gazebo_Actuation_Interface");
 ros::NodeHandle n;

 ros::Subscriber command_sub = n.subscribe("/control_effort", 1000, CommandCallback);

136

 ros::Publisher command_pub = n.advertise<std_msgs::Float64>("/Assem1/hip_torque_cmd", 1000);

 ros::Rate loop_rate(2000); // Control rate in Hz

 // Wait for ROS node to initialize
 while (!ros::ok());

 std_msgs::Float64 new_command;

 while (ros::ok())
 {
 new_command.data = command;
 command_pub.publish(new_command);

 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

ros_speed.cpp

#include "arpa/inet.h"
#include "netinet/in.h"
#include "stdio.h"
#include "sys/types.h"
#include "sys/socket.h"
#include "unistd.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "unistd.h"
#include "fcntl.h"
#include <stdint.h>
#include <inttypes.h>
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include <inttypes.h>
#include "ros/ros.h"
#include <sstream>
#include <iostream>
#include <string>
#include "std_msgs/Float64.h"

// UDP buffer length
#define BUFLEN 512
// UDP port to receive from
#define PORT 2012
// Asynchronous UDP communication
#define ASYNC
// UDP port to send data to
#define PORT_BRD 2011
// Tiva Back Left Leg board IP
#define BRD_IP "192.168.1.82"

using namespace std;
// Global variables
bool gotMsg = false; // Flag set high when message is received from UDP
int sock; // The socket identifier for UDP Rx communication
uint32_t encoderPos = 0; // Place the received encoder value here
int msgs = 0; // Incoming message counter
struct sockaddr_in si_pwm; // Struct for UDP send data socket
ssize_t SendPWMBytes = 2; // Number of bytes to send for PWM command
char SendBuffer[6]; // UDP Send Buffer
int broad; // The socket identifier for UDP Tx communication
int slen=sizeof(si_pwm); // Size of sockaddr_in strut

// Generic error function
void error(char *s)
{
 perror(s);

137

 exit(1);
}

// Signal handler for asynchronous UDP
void sigio_handler(int sig)
{
 char buffer[BUFLEN]="";
 unsigned char val[4];
 struct sockaddr_in si_other;
 unsigned int slen=sizeof(si_other);
 ssize_t rcvbytes = 0;
 // Receive available bytes from UDP socket
 if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1)
 error("recvfrom()");
 else
 {
 // Parse data , 1 int32 value
 if(buffer[0] == 0x42)
 {
 //ROS_INFO(" received");
 val[3] = (unsigned char)buffer[4];
 val[2] = (unsigned char)buffer[3];
 val[1] = (unsigned char)buffer[2];
 val[0] = (unsigned char)buffer[1];
 memcpy(&encoderPos, &val, 4);
 // Raise flag that we received a message
 gotMsg = true;
 }
 }
}

// Function to enable asynchronous UDP communication
int enable_asynch(int sock)
{
 int stat = -1;
 int flags;
 struct sigaction sa;
 flags = fcntl(sock, F_GETFL);
 fcntl(sock, F_SETFL, flags | O_ASYNC);
 sa.sa_flags = 0;
 sa.sa_handler = sigio_handler;
 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGIO, &sa, NULL))
 error("Error:");

 if (fcntl(sock, F_SETOWN, getpid()) < 0)
 error("Error:");

 if (fcntl(sock, F_SETSIG, SIGIO) < 0)
 error("Error:");
 return 0;
}

// Callback function for reception of PWM message from topic
void freqCallback(const std_msgs::Float64::ConstPtr& msg)
{
 // Extract the duty cycle value and send it to the Tiva board via UDP
 SendBuffer[1] = (int8_t) msg->data;
 if (sendto(broad, SendBuffer, SendPWMBytes, 0, (struct sockaddr *)&si_pwm, slen)==-1)
 error("sendto()");
 // Print-out for debugging
}

// Main Function
int main(int argc, char **argv)
{
 struct sockaddr_in si_me, si_other;
 int i, slen=sizeof(si_other), msg_count;
 char buf[BUFLEN], strout[28];
 string inputS;

 msg_count = 0;
 memset(SendBuffer, 0, 6);

138

 // Initialize UDP socket for data transmission
 if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_pwm, 0, sizeof(si_pwm));
 si_pwm.sin_family = AF_INET;
 si_pwm.sin_port = htons(PORT_BRD);

 if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) {
 error("inet_aton() failed\n");
 exit(1);
 }

 SendBuffer[0] = 0x31;

 // Initialize ROS node
 ros::init(argc, argv, "ros_speed");
 ros::NodeHandle n;

 // Initialize the publisher for Encoder data post
 ros::Publisher motor_interface_pub = n.advertise<std_msgs::Float64>("state", 1000);
 // Initialize the subscriber for PWM data reception
 ros::Subscriber motor_pid_sub = n.subscribe("control_effort", 1000, freqCallback);

 ros::Rate loop_rate(10000);

 // Wait for ROS node to initialize
 while (!ros::ok());

 // Initialize UDP socket for data reception
 if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1)
 error("socket");

 memset((char *) &si_me, 0, sizeof(si_me));
 si_me.sin_family = AF_INET;
 si_me.sin_port = htons(PORT);
 si_me.sin_addr.s_addr = htonl(INADDR_ANY);
 if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1)
 error("bind");

 enable_asynch(sock);

 ROS_INFO("Starting communication with TiVa board.");
 ROS_INFO("Communication with TiVa board established.");

 std_msgs::Float64 encoder_msg;
 encoder_msg.data = 0.0;

 while (ros::ok())
 {
 // If we got a new message, publish to topic and print values every 100 messages
 if(gotMsg)
 {
 encoder_msg.data = encoderPos*60.0*120000000.0/(8000000.0*2000.0)*(3.14/30.0)*0.125; // no need
to add reduction, as we receive mesurements on the belt revolution axis
 motor_interface_pub.publish(encoder_msg);
 //ROS_INFO("I heard: [%f]", encoder_msg.data);
 gotMsg = false;
 }
 ros::spinOnce();
 loop_rate.sleep();
 }
 return 0;
}

ros_read_vel.cpp

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include <inttypes.h>

139

#include "ros/ros.h"
#include <iostream>
#include <string>
#include <sstream>
#include "std_msgs/Float64.h"

using namespace std;

// Global variables
std_msgs::Float64 position_msg;

int main(int argc, char **argv)
{
 float rpos = 0.0;
 string inputS;

 // Initialize ROS node
 ros::init(argc, argv, "ros_read_vel");
 ros::NodeHandle n;
 // Publish for desired position message
 ros::Publisher read_position_pub = n.advertise<std_msgs::Float64>("setpoint", 1000);
 ros::Rate loop_rate(1);
 position_msg.data = 0.0;
 ROS_INFO("Reading Desired Velocity.");
 while (ros::ok())
 {
 // Read a line from standard input and parse the desired position
 getline (cin,inputS);
 if (inputS == "q")
 {
 rpos = 0.0;
 position_msg.data = rpos;
 read_position_pub.publish(position_msg);
 break;
 }
 else if (inputS == "kill")
 {
 position_msg.data = -1;
 read_position_pub.publish(position_msg);
 }
 else if (inputS == "enable")
 {
 position_msg.data = -2;
 read_position_pub.publish(position_msg);
 }
 else if (inputS == "ccw")
 {
 position_msg.data = -3;
 read_position_pub.publish(position_msg);
 }
 else if (inputS == "cw")
 {
 position_msg.data = -4;
 read_position_pub.publish(position_msg);
 }
 else
 {
 stringstream ss;
 ss<<inputS;
 ss>>rpos; //convert string into int and store it in "asInt"
 ss.str(""); //clear the stringstream
 ss.clear();

 if ((rpos != 0.0) || (rpos == 0.0 && inputS == "0"))
 {
 //cout << "Read : " << rpos << endl;
 // Publish the received desired position
 position_msg.data = rpos;
 read_position_pub.publish(position_msg);
 }
 }
 ros::spinOnce();
 loop_rate.sleep();
 }

140

 return 0;
}

141

Appendix B

This appendix contains information and datasheets of the various of-the-shelf components

that were utilized for the purposes of this thesis.

142

143

144

145

146

147

148

149

150

151

