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Abstract 

 

Robotics field, and especially the one of articulated biomimetic robots, is one of the most 

rapidly developing scientific fields, in which one is always required to test new ideas. For that 

purpose, specialized setups are created where the designer can individually test various leg 

configurations but also different control systems or controllers. Those setups are called 

monopod robots and this thesis regards the one installed in our laboratory.  

Since progress on the field is fast, both in the hardware and the software subcategories, 

there is a need to adapt in recent developments equally fast.   

This of course requires swift and easy renewal and replacement of structural elements, 

parts and codes, standardization of the most frequently used and fundamental functions, as 

well as their decoupling from each programmer and setup, leading to interchangeability 

between, for example, different controllers, but also their recycling and reusal in different 

versions of the robot. This task is to be carried out by the upcoming software platform ROS, 

which was incorporated both in the monopod and the lab’s treadmill.  

After the control system’s creation, there comes a need to somehow test its function, the 

tools it offers and its various parameters, since the most popular simulation tools, like Matlab, 

are not ideal for this purpose. This problem is resolved with the introduction of Gazebo, a 

simulation software with the capability to interact with ROS, but also with various secondary 

incorporated useful tools and libraries.  

For the execution of simple tasks, like the position control of a motor, and considering 

what we mentioned before about standardizing procedures, there was an evaluation of the 

available options and resources that ROS provides, and specifically the ros_pid and 

ros_control packages. There is also a brief reference of the path planning capabilities that are 

available.  

Finally, in the frame of the general experimental leg testing setup renewal, there was a 

transition from the first leg design, based on the classic SLIP model with one revolute hip joint 

and a prismatic knee, to a second biomimetic articulated leg with two revolute joints, according 

to a new innovative method conceived in our lab. In this thesis we will provide some basic 

mechanical design concepts and ideas.  
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Περίληψη 

 

Ο τομέας της ρομποτικής, και πιο συγκεκριμένα των αρθρωτών βιομιμητικών ρομπότ είναι 

ένας εκ των ταχύτερα αναπτυσσόμενων, στον οποίο κανείς είναι υποχρεωμένος συνεχώς να 

δοκιμάζει νέες ιδέες. Για το σκοπό αυτό δημιουργούνται διατάξεις στις οποίες ο σχεδιαστής 

μπορεί να δοκιμάσει μεμονωμένα διάφορες μορφές ποδιών αλλά και διαφορετικά συστήματα 

ελέγχου. Οι διατάξεις αυτές ονομάζονται μονόποδα ρομπότ και η εργασία αυτή αφορά το 

μονόποδο το οποίο είναι εγκατεστημένο στο εργαστήριό μας.   

Εφόσον η πρόοδος στο χώρο είναι αλματώδης, τόσο στον τομέα των υλικοτεχνικών 

διατάξεων (hardware) όσο και λογισμικού (software), δημιουργείται άμεσα η ανάγκη γρήγορης 

προσαρμογής στις διάφορες εξελίξεις. 

Αυτό φυσικά προϋποθέτει γρήγορη και εύκολη ανανέωση και αντικατάσταση δομικών 

στοιχείων και κωδίκων, τυποποίηση των πιο συνηθισμένων και βασικών διαδικασιών και 

απεμπλοκή τους από τον εκάστοτε προγραμματιστή και εγκατάσταση, οδηγώντας σε 

εναλλαξιμότητα μεταξύ, για παράδειγμα, διαφορετικών ελεγκτών, αλλά και 

επαναχρησιμοποίησή τους σε διαφορετικές εκδοχές και εκδόσεις της εγκατάστασης - ρομπότ. 

Το έργο αυτό έρχεται να επιτελέσει η ανερχόμενη πλατφόρμα ανάπτυξης λογισμικού ROS, η 

οποία ενσωματώνεται τόσο στο μονόποδο ρομπότ όσο και στον κυλιόμενο διάδρομο του 

εργαστηρίου.  

Μετά την δημιουργία ενός συστήματος ελέγχου στο ROS, δημιουργείται κατευθείαν η 

ανάγκη αυτό να δοκιμαστεί, καθώς και τα εργαλεία που προσφέρει και οι διάφοροι παράμετροί 

του. Τα συνήθη προγράμματα που χρησιμοποιούνται στην πλειοψηφία των περιπτώσεων, 

π.χ. Matlab, δεν προσφέρονται για αυτό το σκοπό. Το πρόβλημα έρχεται να λύσει το λογισμικό 

προσομοίωσης Gazebo, με δυνατότητα ενσωμάτωσης και συνεργασίας με το ROS, αλλά και 

με διάφορες χρήσιμες βοηθητικές λειτουργίες και βιβλιοθήκες. 

Για την επιτέλεση βασικών εργασιών, όπως για παράδειγμα τον έλεγχο θέσης ενός 

κινητήρα, και με βάση αυτά που αναφέραμε πριν για την τυποποίηση εργασιών, γίνεται 

διερεύνηση των διαθέσιμων επιλογών και δυνατοτήτων που μας παρέχει το ROS, και πιο 

συγκεκριμένα τα πακέτα ros_control και ros_pid. Γίνεται επίσης μια σύντομη αναφορά στη 

δυνατότητα για ενσωμάτωση σχεδιασμού τροχιάς.  

Τέλος, στα πλαίσια της γενικότερης ανανέωσης της πειραματικής διάταξης δοκιμής 

ποδιών, περνάμε στο εργαστήριο από το πρώτο στάδιο ποδιού βασισμένο στο κλασικό SLIP 

μοντέλο, μίας περιστροφικής άρθρωσης στο γοφό και πρισματικού γονάτου, σε ένα 

περισσότερο βιομιμητικό αρθρωτό πόδι δύο περιστροφικών αρθρώσεων, σύμφωνα με νέα 

καινοτόμο μέθοδο υπολογισμού προερχόμενη από το εργαστήριό μας. Στα πλαίσια αυτής της 

εργασίας θα δοθούν κάποια στοιχεία για τον μηχανολογικό σχεδιασμό και διάταξη.  
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Preface – Acknowledgements 

 

For anyone relative to the field of legged robots, it is clear that a monopod robot can be used 

as the basic test unit for a multi legged robot, e.g. a quadruped. It is a very reliable and safe 

way to test leg properties, various leg configurations and control algorithms, as there is no 

need for the researcher to deal with leg coordination and body balance. One can instead focus 

on dynamics and control issues. 

To this day, there have been two monopod versions in our lab. The first, featuring a PC-

104 and Linux OS, managed to function properly [8]and a dynamic hopping experiment was 

conducted. In the second updated version the PC-104 was replaced by a Beaglebone and a 

new set of electronics [32]. Unfortunately that second version never operated the way it should 

have. That was partly because after the first successful attempt, same codes for same 

functions had to be rewritten for the new computational system and the work that was actually 

recycled was next to zero. Same holds for simulations and models that were created for both 

versions. Therefore, the actual purpose was to start building on a new solid basis, upon which 

other researchers and lab members could continue building, add features, utilize them on 

other applications and generally benefit from, and not rediscover the wheel every single time 
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To this end, a software platform that can provide said basis was tested and incorporated 

on the experimental setup. Robot Operating System (ROS) is a generic platform that offers 

various libraries and tools that promote code distribution, standardization and recycle. This 

software is rapidly gaining ground in terms of popularity, so its utilization was somewhat 

imposed. However there still exists a necessity to test the control systems we create in ROS, 

but also to simulate the physical setup. Gazebo, the simulation platform in which our system 

was modeled and tested, allows for simulating the robot’s behavior using the exact same 

control system that will be used on the actual hardware, making the transition between 

simulation and experiment as easy as the push of a button. It is exactly this capability to 

connect with ROS that led to its utilization. 

Finally, after properly redesigning the software aspect, and where it was required the 

electronics, a new articulated biomimetic leg was designed. Segment lengths will be defined 

later using the new leg design method for performance running. As it is a work in progress, a 

diploma thesis of another lab member, we shall not mention any details and we will deal with 

a modular joint design instead.  
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this whole process, but also for his trust and the opportunity he offered me to work on the 
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1 Introduction 

1.1 Motivation and objectives 

The field of legged robotics is only showing recent development, expanding on the last four 

decades. Our demands increase as technology advances. For example, no one could have 

considered planet exploration using a legged robot a viable option twenty years ago, although 

it could have been a distant objective. Wheeled robots were, and still are, simple to build and 

easy to control, and as such they represented the only option for mobile robot applications, no 

matter what their deficiencies were, e.g. limited ability to move on rough terrains and slopes, 

overcome obstacles. Such areas are hardly accessible by wheeled robots, as there is a large 

possibility for them to get stuck, damage their-perhaps sensible- surroundings or even 

damage themselves.  

On the other hand, a legged robot can selectively define its gait and its foot placement to 

maintain its balance, avoid sensitive or dangerous terrain areas, jump over obstacles or holes 

and even develop high velocities, should that be required. Also the torso’s motion is uncoupled 

of the leg motion, in contrast with a simple wheeled robot. This could prove to be useful in 

cases of movement in uneven terrain, where the cargo, perhaps a sensory system or a 

camera, has to remain steady while the robot is moving.  

The above however, remained a distant dream, up until recently when the accumulated 

know-how started showing reliable results. In any case, and since challenges and 

requirements continuously arise, new concepts and ideas need to be tested and evaluated 

constantly. Of course these experiments cannot be exacted on a functional robot or with all 

the legs installed. For example, constructing four experimental legs and testing them in an 

actual quadruped would be extremely costly, in terms both of time and money. To this end, 

experimental setups are created where the researcher can modify a single leg, hence the 

name monopod robots, and test mechanical properties, different configurations and control 

algorithms, undistracted by coordination and balancing issues.  

This thesis’ main purpose is to update the monopod robot of the CSL with the latest 

development in software, the Robot Operating System (ROS). ROS is a platform for software 

development that promotes code recycling from version to version, standardization of 

processes and, most importantly, code sharing between different developers who share this 

common basis.  

To test and simulate the behavior of the system, the developer needs not only to solve 

the usual dynamic equations but integrate elements such as communication between different 

components, sampling rates, etc. For these purposes, the simulation software platform 

Gazebo is preferred. A model of the monopod robot was created and the same control system 

that would be applied to the real robot. This way the total system is simulated instead of just 
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the dynamic behavior, without having to derive any dynamic equations, by defining only the 

geometry and physical properties.  

Finally, in the context of total renovation of the experimental setup, and in order to move 

towards a more biomimetic design, a new articulated leg had to be designed. This leg, with 

revolute hip and knee joints, resembles nature and can realize the design theory developed 

in our lab concerning the optimization of segment lengths for various gaits or tasks. 

1.2 Literature review  

As was already mentioned, monopod robots are the most fundamental testing units for legs 

and control algorithms that will later be adapted in multi legged robots. This is why there are 

many recorded cases of such robots, both during the first years of legged robotics field 

development, but also recently.  

While browsing through the literature, what is really noticeable is the significant 

quantitative difference between the several control strategies, algorithms and methods, and 

the number of successful experiments with those techniques as well as the number of 

functional monopods. Whereas there are many different control theories (e.g. [25], [5], [27]), 

including our own lab’s work ([7], [31]) on controlling a 3 DOF monopod and its motion on 

rough compliant terrains, no experimental confirmation is mentioned. Of course those 

concepts are quite hard to implement themselves; it only gets more difficult when software 

and hardware debugging issues are included. The existence of a fully functional, efficient and 

reliant experiment platform is priceless for such purposes. 

There are of course some examples of such functional setups. MIT’s 3D hopper machine 

with a prismatic actuated knee joint [23] based on the SLIP model, is one of the most 

important; the ARL Monopod versions I and II [1] being quite similar. This model considers the 

leg as an inverted pendulum while the foot is in contact with the ground (stance phase). Based 

on this model, a large variety of controllers is developed; also quadruped robots featuring such 

legs ([24], [8]). After a while, leg design leaned towards more biomimetic shapes, like the MIT's 

Monopod [43]. This robot uses a boom link to connect to a fixed base, a method that we also 

employed for our lab’s first single-legged robot [8]. Other examples include the Kenken single-

legged hopping robot [14], which is hydraulically actuated and articulated, the Uniroo [33], 

motivated by kangaroo’s locomotion, the JennaHopper [26], and the leg of the biped Sugoi-

Neco, described in [19] and tested in [28]. Moving towards more recent attempts, the OSU’s 

ATRIAS biped has its own monopod design. For its successor Cassie, by Agility Robotics [44], 

there also seems to be a one-legged module on an introductory video, although the project is 

still new and few details are available. We shall discuss this leg design and a few others in 

Chapter 5.  
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1.3 Thesis outline 

This thesis is comprised of six chapters. In the first introductory chapter, a brief discussion is 

presented on the motivation and the target of this work. There is also a presentation of the 

various leg experimental setups available in the literature. Finally the thesis’ structure is 

presented.  

Chapter 2 introduces the various software platforms that were used. At first, we present 

ROS, along with its advantages. A description is given of its basic tools and structure, as well 

as a mention to some of its more advanced capabilities. The simulation software Gazebo is 

also presented and described. There is also a mention of the path planning software Moveit!. 

In Chapter 3, our lab’s monopod robot is presented. Its previous design, as well as the 

problems associated with it are mentioned. Then we proceed with the work that was done, 

including the redesign of the electronic subsystem, the design of the ROS nodes, as well as 

the modeling in Gazebo and the simulations. Finally, the experiments that were conducted to 

verify the setup’s functionality are described. For those experiments, we describe and define 

the most fundamental experimental and simulation parameters.    

In Chapter 4, we repeat the work that was done for the monopod for the case of the lab’s 

treadmill. Redesign of the whole electronic subsystem, ROS structure and velocity control 

experiments are described in detail.  

In Chapter 5, the various leg designs of many known quadruped robots are reviewed, and 

an initial attempt to realize the leg segment optimization theory is being made. A first design 

of the modular knee and hip joints is analytically presented and tested.    

Finally in Chapter 6, we summarize the results and assess the work done. We also offer 

some ideas for potential future work.   
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2 ROS, Gazebo and MoveIt! 

2.1 Introduction to ROS 

Ever since the creation of the first robotic systems, there was a big discussion concerning the 

software platform that should be employed. At first, everybody was using their own custom 

software and electronics, which largely complicated the software design. Codes that would be 

created and used for one specific combination of central processor and motor drive, for 

example, could not be transferred easily and reliably to the next design version, that might 

have a different combination of said parts. As a result the code had to be rewritten, taking into 

consideration the new hardware and its characteristics, something that was very time 

consuming. And all that because of the lack of a more general platform that different 

components would just connect and communicate with each other. 

After a while, it was decided that this could continue no more, and the Robot Operating 

System started developing. ROS is a platform that includes a large database of drives for 

many devices and sensors, and allows easy cross communication with each other. This 

removes the need for codes to handle communication issues, which is extremely time 

consuming as mentioned earlier. The database is updated continuously with new elements 

allowing for fast incorporation of a new part in an existing system. Also common processes, 

such as position control of a motor are included and no longer have to be rewritten, but rather 

only properly configured from one application to another.  

Another advantage of ROS is that it is running under Linux, usually Ubuntu. This makes 

it easily transportable between devices that can run Linux, like Raspberry Pi, Beagleboard 

and PC-104. Again, there is no need for rewriting or even modifying codes to fit the new 

environment. Also there are tools included in order to distribute conveniently the computational 

load by allocating executables in different devices; ROS handles their communication. This 

would be really useful in case, for example, someone wanted to build a Raspberry Pi stack 

instead of using an expensive PC-104, or run the PID control loops on the robot and the rest 

user interface on a central control station.   

To be more precise, ROS’ main features include [35]: 

 

I. Friendly and easy to use messaging system. This is one of the first challenges a 

developer faces while designing a new robot. ROS provides a built-in and tested 

messaging system that proves to be really handy, as it manages all the 

communication’s small details relieving the developer from the need to set up 

communication protocols, define and refine data exchange rates and of course, 

the debugging of that system. Specifically, the system that ROS is providing is an 

anonymous, asynchronous publish/subscribe mechanism where there is a 
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publisher and a subscriber node (ROS’ form of executable files, written either in 

C++ or Python). The first one publishes information on a named bus over which 

nodes exchange messages called topic, and the second subscribes and receives 

it as published. What is interesting is that the publisher node is not aware who is 

receiving the messages that it is publishing, all it does is just use a specific type 

of message. After that, a topic can have multiple subscribers, practically every 

node that is interested or requires the relevant information. All they have to do is 

subscribe using the same type of message, removing the requirement to set up 

different communication channels between distributed devices to exchange a type 

of information that everyone needs. This goes both ways, as it is possible for more 

than one nodes to publish information on a topic. Another direct byproduct of this 

system is that it enforces developers to implement clear nodes interfaces, leading 

to less complex and readable algorithms, and also promoting code reuse.  

II. Services. The aforementioned communication system regards one way message 

exchange as, like we mentioned, there is no response when publishing a message 

or a report about whether it was received and accordingly processed. However in 

many applications there is a necessity to send a message to a process, e.g. to 

execute a task, and receive a reply to know if the execution was successful or not. 

The service performs exactly that function. It uses the same messages as before, 

only now there are two, one for the request and one for the reply. Specifically a 

node offers a service, a second node sends to it a request to activate it, and then 

awaits for a reply.  

III. Message monitoring. The publish/subscribe messaging system allows for easy 

real time monitoring using plots (rqt tool), if the data is plottable, or simply screen 

printing of published data in case of more complex messages or strings. The data 

can also be easily recorded for further processing in another software, e.g. Matlab, 

using the rosbag tool. We can use rosbag to record messages in a rosbag file from 

any topic of our choice, for as much time as we want. This file can be replayed to 

reproduce the result. For example, let’s assume we have two nodes, A and B. 

Node A produces series of messages published on topic C, to which Node B 

subscribes and reads. If we record topic C while A publishes, we can then shut 

down A, replay the rosbag file and reproduce B’s response. In other words, Node 

B does not realize the difference between data coming from A or a rosbag file. 

This is of course a result of the communication structure, as in both cases, all that 

node B sees is a topic in which it has to subscribe, without caring about its origin. 

IV. Global Parameter Server. In most cases, ROS provides a convenient library of 

configuration values available for all nodes at runtime. This way all nodes can 
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have access and modify the system’s state. It is advised to be used only for static, 

non-binary data as it is not particularly fast or efficient.  

 

 

 

Figure 2-1. ROS messaging and service structure. 

Those are only a few and most basic features ROS has to offer. Other, more advanced 

options include:  

 Standard robot messages, like poses, transforms, various vectors, IMU sensors, 

lasers, etc. It also includes message definitions for navigation applications, like 

odometry, paths and maps.  

 Robot description language. In some packages, like ros_control, a robot 

description is required in a format compatible with ROS. Of course ROS is 

providing a format called Unified Robot Description Format (URDF), i.e. an XML 

file in which the user defines the geometry (links, joints) and their properties 

(masses, inertias), but also visuals and sensors. This format can be used to 

visualize the robot and its motion in Rviz but also to simulate a controller in 

Gazebo.  

 Robot geometry library. In cases of robots with many links and joints it is useful, 

although not easy, to know every part’s position with respect to each other. This 

is most significant in cases where there are many sensors and we need a 

common reference frame. For those purposes, ROS provides the tf (transform) 

library to allow for easy transformation of sensor data from one system to another. 

 Actions, an improved version of services. While with services one could request 

the execution of a task and receive a response once it was completed, with 

actions the user can actually monitor the task while it is being executed. For 

example, we could command a robot to move from point A to point B, monitor its 

whole motion and even redirect it if necessary.  
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 Diagnostic tools for messages, command-line tools and convenient visualization 

tools (Rviz and rqt) perform several tasks and facilitate the debugging process.  

Last but not least, ROS is providing some limited, for now, real time tools. Real time is 

becoming steadily a trend nowadays, and ROS is starting to incorporate some features, like 

a real time publisher. Note that the standard version of ROS is not real time, as it is based on 

Linux, which is not a real time operating system either. Therefore, there is no guarantee that 

processes will be timed and executed as required. This fact creates issues in high frequency 

control applications, and subsequently real time control is required.  

Examples of ROS’ widespread utilization include from various hobby, homemade robots 

(especially using Raspberry Pi) to industrial applications and research projects. For example 

in our laboratory, both the quadruped robot Laelaps [47] and the space robot Cepheus [48] 

are using ROS for motor control, path planning and navigation purposes. Specifically modified 

to be used in industry applications comes ROS-Industrial, with interfaces for commonly used 

end effectors, grippers, etc. There are also several software libraries for path planning and 

sensor calibration.  

Lately, there has also been an attempt to standardize robot components, like sensors, 

actuators, processors, etc, in a way that would be ROS compatible and easily 

interchangeable; even if made by different manufacturers. That would reduce the development 

of a new robot configuration into a simple plug and play process, where parts would just 

connect and handle their low level communication and cooperation, leaving only the high level 

programming and task assignment to the human operator. Damage repair and hardware 

debugging, processes as time consuming and as hard as the software debugging itself, would 

greatly simplify, also. This effort was named H-ROS [36] and it is currently on its very 

beginning, to be seen how and if it will be embraced by the community.  

In the corresponding page [49] there are over 120 robot cases listed which use ROS. The 

majority regards wheeled platforms and manipulators. There are also some legged robots, 

mostly bipeds and grippers, human-like hands, and a few quadcopters.  

Finally we should mention the various ROS versions. When we started working on this 

project, the most stable ROS version was Indigo, paired with Gazebo 2. After a while, ROS 

versions Jade (with Gazebo 5) and Kinetic (with Gazebo 7) were released. Since we seek 

continuous support and maintenance for all packages, and Gazebo 7 proved to be more 

convenient, we decided to proceed with the latest version, Kinetic, the tenth ROS release with 

end of life estimated date in May, 2021. Jade was released on an odd numbered year (2015), 

and those releases are only supported for two years instead of five.       



 
25 

2.2 Gazebo simulation software  

Gazebo is a simulation software for dynamic systems that specializes in robotic systems’ 

simulation, providing a large variety of useful tools concerning robot modelling [37]. Its close 

collaboration and relation with ROS has established it as the most utilized simulation software, 

with V-Rep, Webots, ADAMS, etc. following [30].   

Gazebo is offering multiple advantages in robot simulation. It supports all four major 

physics engines, ODE, Bullet, Simbody and DART. It has enhanced visualizing and rendering 

capabilities, utilizing OGRE, an open-source graphic rendering engine. It also allows a user to 

run simulations on remote servers, using TCP/IP transport. However, probably the biggest 

advantage, just like in the case of ROS, is the large database of robot and sensor models that 

are provided. Cameras, lasers, Kinect, Lidar and force torque sensors are just a few examples, 

with the option to add noise in order to make simulation even more realistic. Same holds for 

numerous custom plugins that allow users to manipulate models exactly as they wish, as its 

open source nature implies. An additional advantage lies in the fact that in contrast with Adams 

and Webots, it is actually free to download, and yet there is a large, continuously growing 

community for support and guidance. For that purpose there is also a set of tutorials that cover 

most essential terms and functions.  

Its simulation capabilities are impressive. It offers the opportunity even to run fluid 

dynamics simulations, although it has declared them outdated and advices to use them with 

caution. Also there are hydrodynamic and aerodynamic plugins to simulate the behavior of 

underwater and aerial objects. However most relevant to our case and indicative of the field’s 

tendency to turn to Gazebo for reliable simulations is its excessive use in the Virtual Robotics 

Challenge, a part of the larger DARPA (Defense Advanced Research Projects Agency) 

Robotics Challenge (DRC). The later was a prize competition funded and organized by 

DARPA to develop autonomous robots that would compete in completing several tasks in 

harsh environments. The challenge included the DRC Simulator, based on Gazebo, where 

each team had to perform several tasks in the same simulated environment using their 

controllers applied to the same simulated robot, Boston Dynamics’ Atlas. Gazebo includes a 

set of tutorials that guide the user through the manipulation of such a complex robot, its 

teleoperation, as well as grasping and navigation. The Atlas robot, as well as the simulated 

environment are presented in Figure 2-2.  
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(a) 

 

(b) 

Figure 2-2. (a) DRC simulated environment - property of DARPA [38]. Atlas had to get in 
and drive the vehicle for a certain distance avoiding obstacles. (b) Atlas anthropomorphic 
robot - property of Boston Dynamics. 

Despite its ability to closely cooperate with ROS and the fact that they are both maintained 

by OSRF (Open Source Robotics Foundation), Gazebo actually is a standalone package, 

where users can build models and simulate their dynamic behavior autonomously. It is 

suggested to use Linux Ubuntu, but there has been an effort to expand its usage to include 

Windows. However, there is not yet full support and it is not recommended.  

We previously mentioned the various plugins that are available. The one that makes 

Gazebo so precious and important to ROS users is the one that allows data to flow in and out 

of the simulation using ROS topics. For example revolute joint angle measurements or joint 

hip torque commands are easily received and applied respectively just by using a properly 

modified plugin. This of course means that the same nodes that will be utilized on the actual 

hardware can be directly tested in simulation, including their cross communication system. 

This is a great improvement from just writing a controller in Matlab and running a simulation 

in it, which is only an approximation, as it does not include anything like node data exchange 

and node loop rates, parameters that are difficult to model and test. The only thing that has to 

change between a Gazebo simulation and an actual experiment with the real hardware is the 

interface between the sensors and the actuators, for example instead of the plugin there must 

be a node that will receive measurements and send commands. 

Gazebo has integrated design capabilities. One can insert basic geometric structures 

(spheres, boxes and cylinders) and define joints (prismatic, revolute, spherical, etc.). As it is 

clear from the description above, designing in Gazebo is quite limited. However, there is an 

exporter that can take Solidworks assemblies and translate them into SDF files, the primary 

file format Gazebo uses to define models. On this exporter we can define link chains, joints 

and visuals. The created models can be attached to world files. Those files contain the models 

we want to simulate as well as the solver definition and various solver parameters.  
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 We selected to use the Gazebo 7 version, since it is the most recent version, pairs well 

with ROS Kinetic, and their end of life dates are the same.  

2.3 Path planning using MoveIt!  

MoveIt! is a modern path planning tool for robotic arms, wheeled vehicles and legged robots, 

with over than 65 recorded applications [39].  

The main reason we experimented with path planning methods was the desire to 

maximize the proportional and derivative gains of the PID control that was eventually used on 

the monopod’s hip joint. When path planning is used, setpoints are sent gradually until the 

desired final value, in contrast with the case of a step input. This allows for larger gains, since 

the error of each loop is smaller, therefore we can reach the motor limits, which is always a 

requirement, especially in such demanding applications.  

MoveIt! works in a similar manner with Gazebo. One has to create a model using the 

URDF format. The model and its entire configuration is inserted using the incorporated MoveIt! 

Setup Assistant, for which there are extended tutorials and instructions. There one can define 

many characteristics, like kinematic chains, end effectors, virtual joints (connections with the 

environment), non actuated -passive- joints and even predefined configurations, like the home 

position for manipulators.  

This package comes with a plugin for Rviz. There, the user can graphically define the 

initial and final desired configurations, and then either just plan and visualize motion in Rviz 

or plan and execute, by sending the trajectory to the controllers in Gazebo or the actual 

hardware.   

 

Figure 2-3. MoveIt! Rviz plugin interface of the PR2 robot. 
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One also has other options like obstacle detection and avoidance, self-collision detection, 

and checks to ensure the arm is always inside the reachable workspace.  

This platform is quite new and still developing. At the time of its examination, it was not 

compatible with the other parts of software, ROS Kinetic and Gazebo 7, and therefore it was 

deemed wise not to incorporate it on the current single actuated monopod version, as it is 

quite simple and can be handled using standard techniques and methods.   
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3 Monopod design and control using ROS  

3.1 Hardware setup description  

The first monopod robot version that has ever been manufactured and run in our lab is the 

one pictured in the Figure 3-1 below. This setup included a fixed central base that would 

connect to the robot and allow for rotational motion around its axis. This connection with the 

robot was established through an aluminum bar, fixed on the robot and attached with a 

revolute joint on the base, thus allowing vertical hopping, additional to the previously 

mentioned circular motion. On the contrary, the fixed connection between the body and the 

bar would not allow pitch motion. That was necessary in order for the robot to be as close as 

possible to the 2D SLIP model mentioned previously. This setup was almost made entirely of 

aluminum, in order to reduce weight and inertia. However, the leg that is receiving most of the 

structural and impact loads is made of steel.  

 

Figure 3-1. Previous experimental setup. 

Thanks to the bar’s large length and the relatively small size of each stride, we can easily 

assume that a setup like the one we are describing is appropriate to realize the monopod’s 

motion on a 2D sagittal plane, according to the SLIP model that was mentioned earlier. One 

can easily find similar examples in literature. Nevertheless, no matter how long the bar is, this 

setup is and will remain a close approximation that was mainly used because a structure that 

could support the robot to run on a treadmill, like most modern legged robot applications, was 

not yet designed and manufactured. After the construction of such a system [22], we were 

able to mount the modified monopod, as we shall describe next, on the treadmill. This solution 

is preferred not only because it is an accurate realization of planar 2D motion but also because 

of the reduced amount of space that it requires.  
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The mounting mechanism consists of two rails and wagons in the vertical (Z) direction 

and a one wagon-rail in the X direction, along the treadmill. We used two rails on the Z axis, 

because the rail is cylindrical and it would allow for yaw rotation. The rails were mounted on 

aluminum bars to keep the system lightweight, pictured in Figure 3-2.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-2. Mounting mechanism. (a)-Z axis rails, (b)-Z axis wagons, (c)-X axis rail and 
wagon, (d)-final assembly. 

The monopod robot’s hip joint is actuated by an electric DC current motor with an 

appropriate gearhead. The motor is made by Maxon (type RE35, 90 W, maximum continuous 

DC current 3.36 A, nominal voltage 24V and maximum continuous torque 0.0933 Nm). The 

planetary gearhead is also made by Maxon (type GP42C) and is mounted to the motor with 

reduction ratio equal to 26:1. Also, to transmit motion to the hip joint axis, a belt drive was 

employed, with reduction ratio 2:1, bringing up the total ratio to 52:1.  

The motor was previously driven by a DZRALTE-012L080 amplifier made by Advanced 

Motion Controls (AMC). Its main advantage is its ability to provide high current in combination 

with its small size and weight. Software provided by AMC allows a user to program the 

amplifying gains, avoiding use of mechanical switches and potentiometers. It can also operate 

in position, velocity or current mode. However, this drive was considered as too complex for 

our application and thanks to massive changes occurring simultaneously at our laboratory’s 

quadruped robot design, Laelaps, it was replaced by an AZBDC12A8 drive, made also by 

AMC. This drive can supply the same current as the previous one, up to 6A of continuous 

current and 12A intermittent (for 2 seconds), but has no need for programming. To 
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successfully use it, one sends an enabling signal to the corresponding pin, provides direction 

on the direction pin (HIGH or LOW) and sends a PWM signal, properly configured according 

to for the desired current. By default, 100% duty cycle corresponds to 12 A, although as 

mentioned this amount can only be supplied for 2 seconds (modulated by the drive itself, so 

there is no need to set our own software limitation to avoid drive damage). As one can easily 

deduce from above, in our application this drive simply functions in current mode.  

Those drives are combined with mounting boards made in our lab for our quadruped robot 

Laelaps [4]. Since two different power levels are needed on the same drive, a low one for the 

control signals and a high one for the power supply, this board was designed with an 

optocoupler to isolate these two levels as a safety precaution. The optocoupler requires 3.3 

to 5.5V of supply at both of its sides. Therefore, the board requires three ports in total: 

 

 A low voltage and signal input to receive enable, direction and PWM signals, as 

well as 5V and GND for the optocoupler’s first side,   

 A high voltage input (24V) to supply the motor as well as 5V for the optocoupler’s 

second side.  

 A motor power supply output.  

 
 

Figure 3-3. AZBDC12A8 drive and mounting board. 

As far as the sensory system is concerned, there are two incremental encoders, charged 

with measuring the leg’s angle with the vertical axis (hip joint angle) and the spring’s 

displacement (knee prismatic joint). As usual, both encoders provide three channels, A, B and 

index. They produce 500 counts per revolution (CPR) with equivalent resolution of 2000 CPR 

when in quadrature mode. The hip encoder is mounted on the motor, type HEDS-5540, made 

by HP. The second, same model and manufacturer, is mounted on a custom 3-bar mechanism 

called quasi-knee that allows to measure the prismatic joint’s displacement, pictured on Figure 

3-4. Practically, this mechanism connects the fixed with the moving part of the prismatic joint 

with two links connected with a revolute joint, while the encoder is mounted on its axis. The 

displacement is calculated indirectly by measuring the angle between the two links, taking into 

consideration the geometry. This part was present in the first setup, but the original encoder 
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was replaced in order to increase the resolution (500 CPR instead of 360) and to resolve some 

wiring and connectivity issues.  

 

Figure 3-4. Quasi-knee mechanism. 

 

Additionally, to record the body’s velocity and acceleration, an inertial measurement unit 

(IMU) is employed, (ADIS16375 Analog Devices). This sensor has 3 gyroscopes and 3 

accelerometers, thus it can count translational accelerations and X, Y, Z angular velocities.  

 

Figure 3-5. ADIS16375 IMU sensor with breakout board. 

To measure impact forces and torques, but also for the controller to be able to tell when 

the robot is on stance or flight phase, a force sensor is needed as it is the most common and 

reliable option. Impact can be determined also by measuring the spring compression, and this 

is how it was actually done, before a force sensor was installed. The disadvantage of this 

method is that we can only measure forces along the leg axis, so a switch to force sensor 

measurements was called for. The one finally installed was a Rikudo series sensor, by BOTA 

Systems. Rikudo is a miniature force/torque sensor utilizing strain gauges across all six axis. 

The sensor is available pre-calibrated from the manufacturer, while the calibration matrix is 

provided to be used with the accompanying software. We used the Rikudo-4243-S, which is 

the standard version. Made of aerospace aluminum alloy, the sensor is rigid, strong and 

lightweight enough – it weighs only 80 grams – to be placed at the toe position. Also the sensor 

is ROS-ready which greatly reduces the integration to a simple plug and read process, in a 

machine that can run Ubuntu, e.g. a Raspberry Pi. No other external power supply is required.   
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Figure 3-6. Rikudo-4243-S force sensor. 

 
To mount the force sensor on the toe, a 3D printed adaptor was utilized displayed on the 

figure below. Also to avoid cosmetic and structural wear, a silicon hemispherical cover was 

constructed, using silicon casting on a plaster mold.     

  

Figure 3-7. Rikudo force sensor with and without the silicon cover. 

3.2 Electrical and electronic subsystems 

3.2.1 Previous setup 

The previous electronic subsystem was using a Beagleboard-xM as a main computer. Since 

this could only send and receive signals up to 1.8V, there was an additional board designed 

to convert signals from 1.8 to 3.3V and vice versa. There was also a DAC, MAX517 by Maxim, 

to accept a digital signal from Beagleboard and produce the voltage output required by the old 

motor drive.  

All the electronic elements of this setup required 5V supply. For this purpose, a voltage 

regulator (LT1085, Linear Technologies) was utilized. This regulator needed a supply of its 

own, a voltage above 6.5V. To summarize, the old setup required: 

 24V to supply the motor 

 5V to supply the PIC microcontrollers responsible for reading the encoders (see 

Section 3.2.2), the Beagleboard and its amplifier, the DAC and the encoders 

 6.5V to supply the voltage regulator 
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To make all those different voltages available but also to mount the microcontrollers and 

the drive, a main board was designed and constructed; an auxiliary board to create the 5V 

supply was added.  

 

Figure 3-8. Monopod previous setup. 

3.2.2  Redesign and current setup  

The method with which the encoders would be read was the first decision to be made. This 

selection of method subsequently affects the whole redesign of the electric and electronic 

subsystems.   

The older monopod version was using two Microchip PIC18F4331 microcontrollers, 

capable both for reading encoders with their incorporated QEI module and for producing PWM 

signals. Those microcontrollers required a 5V supply, as well as the construction of a breakout 

board that would connect and redirect each pin properly. 

 

Figure 3-9. Microchip PIC18F4331 microcontroller. 
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Considering our new requirement for ROS utilization, as well as the specification for 

remote control, it was desirable for the new system to have the ability to be easily accessible 

and controllable from any computer on a local network that is using ROS; therefore there must 

be a way to send encoder measurements to said computer. It would be unwise and 

inconvenient to send A, B and I signals directly to the main computer, both because of the 

fragility of the cable type the encoder uses and the noise that would be inserted, even with a 

line driver and receiver. In any case, it is generally preferable to read the encoders locally and 

just transmit the angle value.  

To this end, an Ethernet port could prove extremely useful. However the PIC18F4331 

microcontroller does not offer one. Although perhaps there was a possibility to program it to 

perform this function, this solution was rejected as too complex and non-worthy of the time it 

would consume, since the microcontroller market was flooding with options, offering both 

enhanced incorporated Ethernet connectivity as well as augmented processing power, if in 

the future a requirement would arise to perform more functions locally, e.g. low level PID motor 

control.  

We should clarify that probably every microcontroller with GPIO pins can read encoder 

signals using interrupts. This way, the amount of encoders a board is able to read 

simultaneously is only limited by the number of input pins it has. However, this method was 

tested and is was found out that little by little, for a repetitive swinging leg motion, the zero 

point started moving towards the sides, instead of remaining steady as it should in the vertical 

position. This is probably a result of some lost counts during the motion, which in our case 

was particularly fast. In cases of slower motion this phenomenon seemed to diminish or even 

disappear. This method was obviously rejected and it was decided to limit our microcontroller 

research to devices that offer one or multiple QEI modules.  

A QEI module is an interface that accepts channels A, B and I and can calculate signed 

velocity and relative position. The way it works is that it detects whether pulse A or pulse B is 

leading, and defines the direction accordingly. It also offers increased resolution as from 500 

CPR for channels A and B, now there are four different combinations between them, summing 

up to a total of 2000 equivalent CPR. Many microcontrollers offer libraries with convenient 

functions that can automatically return relative position and velocity values without any 

additional user editing.  

 

Figure 3-10. QEI module pulse succession. 
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Finally, the TM4C1294 Connected LaunchPad from Tiva C series by Texas Instruments 

was selected. The Beaglebone Black, with its incorporated eQEP module, similar to QEI, was 

also considered but it was deemed expensive (about 60$) and it was more powerful than 

necessary just for encoder reading. The Tiva board only costs 20$, it has an 120MHz 32-bit 

ARM Cortex-M4 CPU, 1 MB flash memory, an Ethernet Connection and it includes one QEI 

module. It also includes TivaWare, a set of useful libraries and is debugged using the Code 

Composer Studio, also provided by Texas Instruments. 

 

Figure 3-11. Tiva C Series TM4C1294 Connected LaunchPad, Texas Instruments. 

For the new design things were significantly simplified. We still need to create a 5V level 

to supply the three Tiva boards (one for the knee encoder, one for the hip encoder, and one 

for the IMU) and the two encoders. We also need the same 24V supply as before to power 

the motor. Since it is simpler and more compact to have a single power input for the whole 

system, a voltage regulator is required to convert the high voltage to low. For this purpose, a 

step-down regulator or buck converter was utilized. This type of regulator offers greater power 

efficiency, reaching 95%, compared to the classic linear voltage regulator, which also 

generates a large amount of heat. The regulator we selected is a Polulu D24V60F5, capable 

of handling currents up to 6A, more than enough to power our low power components. This 

part was mounted on a board with two outputs, to the motor drive and a second board we shall 

present below, and a power supply input (24V). The Regulator Board’s (RB) schematic and 

final construction are presented in Figure 3-13 and Figure 3-14. 

 

Figure 3-12. Polulu D24V60F5 5V Step-Down Voltage Regulator.  
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Figure 3-13. RB schematic. 

 

Figure 3-14. Constructed RB. 

This voltage has to be distributed to the three Tiva boards through a Power Distribution 

Board (PDB). We chose to power the encoders directly from the Tiva boards and not use the 

master power board to keep the design compact and simple. The motor drive also is supplied 

and enabled by a Tiva board. Of course this nullifies the advantage of isolation between the 

two sides of the optocoupler as both sides will essentially have one common ground. This is 

not a great issue as in the unlikely case of an accident there is nothing expensive to be 

damaged, as there is on Laelaps (PC-104). Note that in our case the central computer only 

communicates with the robot through a rooter and therefore its electrical isolation is 

guaranteed.  

 

Figure 3-15. PDB schematic. 
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Figure 3-16. Constructed PDB. 

To avoid using small cables and wires that would detach during impacts, but also to supply 

the Tiva boards from the Boosterpack instead from the debug port, a Mounting Board (MB) 

was constructed. It includes a small capacitor to normalize any voltage fluctuations as well as 

a standard Ethernet adaptor and a clip adaptor for the encoder flat cable, to ensure it will stay 

connected even during impacts. Its schematic, the final design and the constructed board are 

presented on Figure 3-17, Figure 3-18 and Figure 3-19 respectively. The construction was 

carried out using the lab’s LPKF machine. 

 

Figure 3-17. Tiva MB schematic. 
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Figure 3-18. Tiva MB final design. 

 

(a) 

 

(b) 

Figure 3-19. Constructed MB. (a) top, (b) bottom layers. 

3.3 Tiva  

As is already mentioned, the basic design specification shared between all robots in the lab, 

and the treadmill on which they are tested, is the ability for cross communication and control 

using one common control center. This process requires two different parts of code. The first 

is the one that will receive commands, send measurements and handle the communications 

between the robot, or treadmill, and the control center. In our case, this part shall run on the 

Tiva microcontroller. 
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The code utilized activates the PWM and QEI modules to perform the tasks at hand. Also 

it sets up the UDP communication, which shall be discussed below. The user can easily select 

what modules he wishes to enable by defining the corresponding parameters. For example, 

by defining ENABLE_MOTOR and ENABLE_ETHERNET the aforementioned modules are 

enabled. One can also define ENABLE_IMU to enable inertial measurements and 

ENABLE_UART for debugging purposes. The whole code is included in Appendix A.   

3.4 ROS  

This is the second part of the control system, as mentioned before. It consists of five basic 

nodes, namely the Hip, Knee and IMU interfaces, Read setpoint, PID control, Botasys driver 

and high level controller. All of them are included in appendix A. 

a. Hip_interface node 

This node is the one that is charged with communicating with the hip Tiva board. Its function 

is depicted in Figure 3-20. Tiva is continuously transmitting encoder measurements on a set 

rate, using the User Datagram Protocol (UDP). This protocol is preferred over the standard 

Transmission Control Protocol (TCP), mostly because of its speed. In time sensitive 

applications, like real time control, TCP is rather inappropriate, as it includes error checked 

delivery of data streams, causing a significant delay. On the other hand, UDP has no such 

capabilities. For example, whenever a message is sent there is no guarantee it will reach its 

destination and no retransmission can be requested. Also there is no guarantee for ordered 

delivery. For example if one sends a message A and a message B right after, the order with 

which those messages will be delivered cannot be predicted in advance, although it was 

noticed that in their vast majority the messages arrived in the order they were sent. For these 

reasons, this protocol is faster and it is preferred when we favor speed over accuracy. In this 

node, we set up an asynchronous server to receive and read packets, and we define the 

board’s IP and the send and receive ports. Those ports are software structures, numbered 

between (0 and 65535), and provide application multiplexing. This way the computer can tell 

which data correspond to which board, because there are three of them sending data to the 

same IP address.   
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Figure 3-20. Tiva – ROS connection. 

The measurements are read using a sigaction function and a signal handler. Every time 

the node receives an angle, this handler is triggered. The execution of the main function is 

interrupted, data is read and assigned to a global variable. The execution of main is then 

continued from the point it stopped.  

Received data corresponds to hip angle measured in counts, relative to the initial angle 

where the board was activated and started measuring. We selected the zero point to be at the 

vertical position, mostly to have better visual control over the real and measured angle. For 

clockwise rotation the angle would be considered positive and for counterclockwise, negative, 

in order to avoid measurements with discontinuities. However this is exactly how the QEI 

library works. When we move towards zero from a small positive angle, the counter will reset 

and count the largest value defined on memory, which should correspond to 359 degrees. For 

example, we will count 2, 1, 0 and 359 degrees, when we would actually like to count 2, 1, 0 

and -1 degrees. This is represented on Figure 3-21. With black we can see the output of the 

QEI library, and with red the desired output.   

 

Figure 3-21. Angle succession, black for the QEI output and red for the desired. 

Instead of modifying the QEI library, we take care of the issue in this node. If the algorithm 

detects transition from a small positive to a large positive value, e.g. from 100 to 103500 

counts, and given the large sampling rate, it assumes there was a zero crossing and it 
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subtracts 104000 counts (or 360 degrees) from the measurement, e.g. 359-360=-1 degrees, 

or the corresponding value in counts. The same subtraction should occur when we previously 

ended up with a negative value, and we keep receiving descending positive values, which 

means the leg crossed zero and it keeps moving in the counterclockwise direction. This whole 

conversion occurs inside the signal handler.  

Next, the final angle value is published on the proper topic, usually the one named /state, 

as we send measurements directly to the PID controller. There are two separate ways to 

handle the publishing. The first way is to publish the measurements inside the signal handler. 

This way data is published in the same rate it is received, while the main function is practically 

left empty. E.g. for a Tiva transmission rate of 5 kHz, the publishing rate will be about 4.98 

kHz too. This way we have direct control over the publishing frequency. However, this method 

results in various crushes and program shutdowns, therefore it was not selected.   

The second is to publish data inside the main function. This method however, also 

presents an issue. Since the main function’s execution flow is interrupted by the signal handler, 

its actual loop rate is not the one we define, but it depends on the defined rate and the rate of 

interrupts, or in other words, the Tiva transmission rate. Consider Table 3-1 with some 

indicative experimental values. As one can observe, as Tiva’s rate increases, the deviation 

between the defined and the achieved loop rate also increases.  

Table 3-1. Tiva transmission rate – control loop rate relation. 

Tiva transmission 

rate (Rate_1 - Hz) 

Defined loop rate 

(Rate_2 - Hz) 

Achieved loop rate 

(Rate_2 - Hz) 
Functionality 

1000 <1000 Equal to defined Unstable 

1000 1000 ~995 
Works at first, ends up 

unstable 

10000 1000 ~700 Works 

15000 1000 ~200 Works 

15000 10000 ~1650 Works 

15000 20000 ~2700 Works (Best case) 

20000 - - Cannot publish values 

40000 - - Cannot publish values 

As we can observe, as Tiva sends measurements faster, ROS has increasingly more 

trouble reaching the defined loop rate. Above 20 kHz, ROS does not even manage to publish 

the measurements, in any defined loop rate.  
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It is really important to define what we mean by result. Rate_1 was initially set to 5 kHz. 

In the case that a step command input was applied, it was observed that the control gains 

could not exceed some specific values. Generally speaking, a rise in Kd should result in less 

oscillations and a smoother response. While this was happening at first, for Kd > 0.00012 the 

oscillations would start to rise again.  As a result we could not increase Kp above its own set 

value (0.0008) because there was no way to reduce the oscillations that would cause. 

Therefore the system was underperforming.  

When Rate_1 was increased, e.g. to 15 kHz, we managed to increase the gain values 

and reach the motor’s limits (Kp = 0.003 and Kd = 0.00024). These are the control gains that 

correspond to the experiments presented in Table 3-1, and those that decide if the setup is 

functional or not. So when we refer to instability, it is implied that the setup is unstable for 

those specific gains, and that it could be stable for lower gains. We will discuss further the 

control gains and how we can theoretically predict their values in Paragraph 3.6.2. The reason 

we mention this here is to show those gains predicted in that paragraph could not be reached 

for a different control loop rate. Additionally, note that what we observe is due to the set 

transmission rates and not to root locus behavior. As one can observe in Figure 3-22, an 

increase of Kd, for a fixed Kp, could not possibly cause any increasing oscillations and 

eventually instability.  

 

Figure 3-22. Root locus for increasing Kd value. 

Finally, this node subscribes on the /control_effort topic, reads the calculated necessary 

PWM duty cycle and sends it back to Tiva.   

b. Knee_interface node 

This node is practically the same as the previous one. The only thing changing is that the knee 

board does not actuate a motor, therefore there is no need for subscription to any topic. The 
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quasi-knee angle measurement is received like before only this time it has to be translated 

into a length in order to be published. The compression values are published to the 

/compression topic. The translation occurs as follows. 

 

Figure 3-23. Quasi-knee geometry. 

We are measuring angle theta, and wish to count L5.  

 

 
2 2

3 1 2 1 22 cos(theta)L L L L L     (3-1) 

and 

 
2 2

3 4 5L L L    (3-2) 

therefore 

 
2 2 2

5 1 2 1 2 42 cos(theta)L L L L L L      (3-3) 

 

We should finally mention that there is no problem with that node’s loop rate as it does not 

affect the control system’s rate in any way. Of course same things hold but, since the 

measurements can be sent from the board at a lower rate, e.g. 1 kHz, we can use the rates 

mentioned on the first case of Table 3-1. 

c. IMU_interface  

As in the two previous cases, this node receives the X, Y and Z angles and respective 

accelerations, and publishes them to the /IMU_feedback topic. There was an effort to integrate 

measurements in order to get the total displacement, but we found out quickly that the 

accumulating error makes that almost impossible. More complex methods, and of course more 

than one sensors are required to get an accurate estimation. One method that could be utilized 

is sensor fusion, but there was no further investigation on the matter [20] since there were no 

other sensors available. 

Again, this node’s loop rate can be defined without worrying about affecting the closed 

loop’s rate.  
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d. Read setpoint 

This node reads a desired position in counts using the rqt_reconfigure tool. It was only used 

on the PID hip position control experiment, as for more complex experiments this angle is 

usually defined by a high level controller.    

 

Figure 3-24. Setpoint definition in counts. 

e. PID controller 

This is the controller provided by the ros_pid package. It offers various tools, like dynamic 

reconfigure for gains, a filter on the estimation of the derivative term, saturation limits and 

easily configurable published and subscribed topics, in case we wish to rename them, or run 

more than one controllers at once so name conflicts need to be avoided. This package was 

selected over the ros_control package, as the latter’s structure is significantly more complex 

and for the time being it lacks documentation.  

The reason we took special care of the Hip_Interface node’s loop rate is that the controller 

has no loop rate of its own. It operates at the rate it receives messages or, in other words, at 

the rate that the /state topic is published. This means that the /state’s topic publishing rate is 

in fact the rate of the entire control loop.  

The filter was also a point that needed some consideration. This is a low pass filter 

designed for audio applications, with a default cut off frequency of 3 kHz. It is useful in cases 

of heavy spiking behavior of the velocity estimation. However, as we shall discuss in 

Paragraph 3.5, those filters also insert a phase shift. This effect was in fact verified in a Gazebo 

simulation; we decided not to modify the default value without further investigation.  

Finally for the gain definition this node uses the same tool we used to define the setpoint, 

rqt_reconfigure.  

 

Figure 3-25. PID control node gain reconfigure. 
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f. Botasys driver  

Except for the main nodes mentioned previously, we also use the force sensor’s driver to read 

measurements. This driver comes in a ROS package that only requires building. There are 

two different launch files. The first, calibration.launch, is quite self-explanatory and handles 

the sensor’s calibration. The second, driver.launch, is the one that receives and publishes 

measurements in /botasys topic. Because the initial measurements come with some noise, 

this driver provides an integrated filter that publishes filtered data on /filtered_botasys. Finally 

there is a capability to visualize the force’s direction and magnitude using Rviz.  

 

Figure 3-26. Botasys sensor force-torque vector. 

g. High level controller 

We used another additional node to conduct a simple dynamic hopping experiment. This node 

reads the compression and angle values and consequently determines if the leg is on a flight 

or a stance phase. In the first case it activates the PID controller and sends a setpoint, the 

touch-down angle. During stance phase, it deactivates the controller and sends a PWM duty 

cycle directly to the /control_effort topic, which corresponds to a set torque. The controller 

needs to be deactivated because, since it is receiving data on /state continuously, it would 

keep operating and interfere with the continuous torque command we want to apply.  

The main parameters to configure in this node are the compression after which we 

consider the leg is on stance phase, the touch-down angle and the torque applied on stance. 

The duty cycle is also important as this is the node that drives the controller. However since 

the measurements are not read here, therefore we do not have the previous delay issue, the 

user can just define the loop rate in which he desires the control to be closed.   

This walking mechanism, if given proper initial conditions (free fall height and translational 

forward velocity), and if there were no energy losses, its passive nature would allow it to keep 

moving without actuation, while on stance phase, just utilizing its initial kinetic energy. 
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However when losses are added, the system becomes quite parameter sensitive and it is hard 

to find the initial conditions that would lead to stable motion. Therefore it is a matter of great 

significance to estimate their values, as well as the values of stance phase torque and touch-

down angle. 

3.5 Simulation in Gazebo  

3.5.1 System modeling 

The first step towards a complete Gazebo simulation is creating a model with physical 

properties. Gazebo uses SDF files to describe a model [40]. However when one wants to use 

it in combination with ROS, a different type of file is used, called URDF [45]. This file is 

automatically converted into SDF by Gazebo. More info can be found in [46]. 

This format is quite outdated and lacks several features. One of the most important and 

easily observable flaws, even after the first attempt to create a model, is the lack of a spring 

stiffness parameter. An approximation of elastic behavior can be achieved by using the CFM 

and ERP parameters. The ERP detects joint position errors and tries to correct them by the 

defined factor, e.g. a value of 0.2 corrects the error by 20%. As it is obvious, increasing the 

ERP might make the joint more rigid, however it increases the numerical instability. The CFM 

works in a similar fashion with velocities and allows their modification. In contrast to ERP, 

increasing the CFM will soften the joint behavior and will improve stability. Those parameters 

combine stiffness, damping and time step in the following formulas [41]: 

 

 
tK

ERP
tK b




  (3-4) 

and 

 
1

CFM
tK b




  (3-5) 

 
where K stands for the spring stiffness, b for the damping factor and t for the time step. It is 

suggested in literature that one can achieve an accurate representation of a spring and 

damper system simulated with implicit first order integration. However every time we modify 

the time step, these parameters also need to be adjusted properly, therefore their utilization 

is not suggested, except maybe in the case one wants to model a soft stop. 

The aforementioned hold when one wants to insert a model through ROS, according to 

the corresponding tutorial on the Gazebo page about connection with ROS, model actuation 

and control using the ros_control package [42]. However we have already selected to control 

the hip joint position with the ros_pid package. This allows us to use the more advanced SDF 
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format description, if of course we find a way to connect Gazebo and ROS. To summarize the 

main objectives are: 

 

• the use, if possible, of SDF files with advanced modeling capabilities 

• the connection with ROS, in a similar fashion with the real robot 

 

A first approach is to insert the robot model as part of the simulation environment in the 

corresponding world file. This way the first objective is achieved. Afterwards, if possible, one 

can construct a mechanism on top of the environment, like a brace, using a URDF file as ROS 

demands. This structure, without any properties like stiffness which is absent in the URDF file, 

should only actuate and essentially move the robot. In our case the final system is presented 

in Figure 3-27 (white-monopod robot as part of the environment, black-exoskeleton). 

 

Figure 3-27. Monopod model with external brace for actuation. 

This method, although it could work, it is quite hard to implement. It requires relatively 

small link weights and inertias in order to be realistic, something that Gazebo does not handle 

well and could lead to the whole model collapsing and simulation breaking down. Also it is 

hard to receive measurements from the actual joints (position, velocity, torque) without using 

an additional plugin. Finally, there is no correlation between the simulated and the real system. 

Therefore the main issue remains. 

A solution to our problem is finally offered by custom plugins. These plugins can virtually 

perform any function a user wants. In our case, the target is to create a topic that accepts as 

input commands from a controller and as output applies torque to a joint. A topic that contains 

the joint state (e.g. position) is also required. The second topic is relatively easy to construct, 

using the standard joint_state_publisher plugin that is available on the Gazebo plugins folder. 
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Note that if, in addition to position, publication of velocity and torque is required, the standard 

plugin has to be modified. 

To create the command topic, another custom plugin was constructed, named 

monopodplugin. This plugin has, again, to be built and moved into the gazebo plugins folder. 

These two plugins also have to be added in the bottom of the SDF model in order for Gazebo 

to load and activate them. Afterwards we only have to create a world and a launch file that will 

run all the necessary nodes. All the codes, plugins and models are included in Appendix A.   

Finally we end up with the system shown in Figure 3-28. Its similarity with the one used 

on the real robot shall become obvious on Paragraph 3.7 (Figure 3-44), where we conduct the 

experiments. The difference is that instead of the Tiva_Interface node we have two new nodes. 

The State_Callback_Interface to receive measurements from Gazebo, and the 

Command_Interface, to send commands.  

 

Figure 3-28. ROS control system structure in Gazebo simulation. 

3.5.2 Solver parameters configuration - Matlab comparison 

 
As already mentioned, Gazebo offers four different physics engines, ODE, Bullet, Simbody 

and DART. We selected the ODE solver, as it was the easiest to set up and configure. This 

solver also allows for easy verification and comparison of the produced results with those from 

the same simulation in Matlab, which is also using said solver. We shall examine some 

fundamental parameters that the user has to configure in order to produce accurate results.  

Time step 

Two values were tested, 1 ms and 0.1 ms. Both responses agreed with those from Matlab 

simulations. In case that the simulation duration is irrelevant, it is suggested to use the smaller 

time step. In all other cases, it is preferable to use the bigger, for reasons that will be mentioned 

subsequently. 
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PID loop rate 

The controller’s loop rate (LR) should match the simulation’s solving frequency. For example, 

considering the two mentioned time steps, the LRs should be 1 kHz and 10 kHz respectively. 

The second case is quite computationally demanding, especially if many different PIDs must 

run simultaneously (e.g. on a quadruped robot). 

This is one of the reasons the smaller time step, if not otherwise required, should be our 

first choice while defining the simulation’s parameters. If the LR is not selected appropriately, 

the simulation results will not match the expected ones (received e.g. from Matlab), as shown 

in the following diagrams. All following figures present simulation results of PID control on the 

hip joint, and specifically the response to a step input of 6000 counts, or about 20.5 degrees, 

for the same Kp and Kd gains. 

 

Figure 3-29. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 1 kHz, Update rate 
= 100. 

 

Figure 3-30. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update 
rate = 100. 
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Figure 3-31. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 20 kHz, Update 
rate = 100. 

Solver type 

Two choices exist, i.e. quick and world. It is reported that quick, as one could imagine, is faster 

but offers somewhat lower accuracy. However, it was observed that there were some issues 

with said solver type. Specifically, a constant torque was exerted to a simple pendulum model. 

While it was expected that the pendulum would be constantly accelerated to theoretically 

infinite velocity, that was not the case. Instead the velocity diagram shown in Figure 3-32 was 

recorded in ROS. 

 

Figure 3-32. Pendulum with constant torque applied (g = 0, b = 0, no static friction). 

 
Using the world type solver, that problem was resolved. Therefore its use is recommended. 
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Real time update rate 

The real time update rate parameter specifies in Hz the number of physics updates that will 

be attempted per second. If this number is set to zero, it will run as fast as it can. Note that the 

product of real time update rate and max step size represents the target real time factor, or 

ratio of simulation time to real-time. Therefore: 

 _ _ _ _ _Real time factor real time update rate dt    (3-6) 

 
The real time factor parameter expresses the correlation between the real time and the 

simulated time. For example, if during two real seconds, Gazebo has solved one second for 

the simulated system, real time factor is 0.5 (1/2). Consequently, the meaning of the equation 

above is clear. If the time step is 1 ms and the solver is called 1000 times per second, real 

time factor will be equal to 1. In one real second, a simulated second will be solved. 

This point however needs a lot of caution. The user can select the real time update rate 

and the real time factor in the simulation launch file, but one needs to keep in mind two things: 

1. Defining the real time update rate seems to transcend the definition of the real 

time factor. To make this clear, consider the following example. We define a 0.1 

ms time step, real time factor equal to 1 and real time update rate equal to 100. 

Those values are incompatible, according to (3-6), and one of those should be 

modified to satisfy it. The real time update rate could become equal to 10000. This 

does not happen and we end up with real time factor = 0.01, as the aforementioned 

equation dictates, which means that this is the parameter that must be changed 

in the case of conflicts.  

2. There is no guarantee that Gazebo will manage to achieve the defined real time 

update rate, end even if it does, that there will not be any unexpected behavior in 

the simulation due to increased computational load. In our case there was an 

unexplained oscillation at steady state. Consider the following cases. 

 
A time step of 1 ms and the appropriate loop rate (1 kHz) are defined. If the update rate is set 

to 1000, as we discussed previously, the following response is recorded (Figure 3-33): 
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Figure 3-33. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate 
= 1000. 

The expected real time factor (equal to 1) was not achieved. We end up with a value of 

0.93, which also appears to be oscillating between 0.9-0.95. This instability suggests that there 

might be a system overload. This hypothesis is supported by Figure 3-33, where random 

oscillations appear at steady state. 

This issue is observed better if we alter the update rate to 10000 calls per second 

(estimated real time factor = 10). Again, the update rate parameter reaches only 4 when it 

should actually become 10, with even bigger variation (3.8-4.5). Also the oscillations at steady 

state increased dramatically, see Figure 3-34. 

 

Figure 3-34. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate 
= 10000. 
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We can easily deduce form the aforementioned results that the update rate, in 

combination with the ROS loop rate that runs simultaneously, is a parameter that loads 

significantly the computational system. For that reason, we choose a smaller time step, in 

order to choose the lower loop rate, but also to match the loop rate value on the real robot as 

well. It is unlikely to exceed values of 1 kHz on the actual hardware. 

In conclusion, it is hard to give an update rate value that will suffice for all cases. For the 

two time step values that were mentioned before, a value that does not cause instabilities and 

variations at the real time factor value is 100. This value is, of course, just an example and it 

depends on the computational system. It is suggested to fine tune these parameters by 

comparing the Gazebo simulation with one from another simulation environment, e.g. Matlab. 

3.5.3 Spike examination 

If we try to compute the velocity for one of the previous cases, we will record the responses 

presented in Figure 3-35 and Figure 3-36.  

 

Figure 3-35. Gazebo - Matlab control comparison. Time step = 1 ms, LR = 1 kHz, Update rate 
= 100. 
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Figure 3-36. Gazebo - Matlab control comparison. Time step = 0.1 ms, LR = 10 kHz, Update 
rate = 100. 

As observed, there are spikes in the velocity estimation as taken from the PID. In fact the 

problem worsens in the case of a smaller step, where the control loop rate is 10 times higher. 

The problem in the smaller time step case can be normalized using the incorporated PID’s 

filter in the ros_pid package. By altering the cut off frequency from 2.5 kHz to 300 Hz, the 

result shown in Figure 3-37 is recorded: 

 

Figure 3-37. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step 
= 0.1 ms, LR = 10 kHz, Update rate = 100. Cut off frequency adjusted to 300 Hz. 

In red colour, we can see the clearly improved velocity form. The oscillations can vanish 

totally if we lower the cut off frequency even more. However, in such a case, the behavior of 

the model is altered too, because of the phase delay that the filter introduces. Consider Figure 

3-38 for cut off frequency equal to 30 Hz.  
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Figure 3-38. Gazebo - Matlab control comparison. Time step = 0.1 ms, Loop Rate = 10 kHz, 
Update rate = 100. Cut off frequency adjusted to 30 Hz. 

In the case of a larger time step (and loop rate), those values do not seem to work in a 

similar fashion. The model’s behavior starts altering earlier. Therefore, without further 

investigation, the use of this filter is not suggested. 

In any case, the filter would not deal with the actual cause but it would only mask the 

problem. Being suspicious from previous cases, where system overload was leading to 

unexplained simulation phenomena, we lower the update rate (referring to the case of time 

step equal to 0.1 ms). The result is shown in Figure 3-39, where the spikes are less, and with 

smaller amplitude. 

 

Figure 3-39. Gazebo (filtered and unfiltered velocities) - Matlab control comparison. Time step 
= 1 ms, Loop Rate = 1 kHz, Update rate = 5. 
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The disadvantage is that we end up with an extremely small real time factor, which results 

in long simulation duration. It’s up to the user to determine the update rate value, keeping this 

tradeoff in mind, and considering that those spikes do not affect the simulation’s behavior (it 

is the same for both update rates). 

3.6 Experiments and comparison 

Three main experiments were conducted to verify the setup’s functionality. The first was a 

passive static hopping, to test measurements on the knee joint and examine how close 

simulation could approximate reality. The second was a PID control on the hip joint, to test 

software setup and also examine simulation accuracy. Finally the high level controller that was 

previously described was used, in order to test all of the sensors at once and verify that there 

would be no complications.  

3.6.1 Passive static hopping  

For the first experiment, the robot was left free to fall from a 5 cm height, while the leg was 

commanded to remain on the vertical position. The responses both from the simulation and 

the experiment were recorded using the rosbag tool from ROS and inserted in Matlab using 

the code in Appendix A.   

Although the two responses are almost identical in the beginning, after the first second 

we can observe a small deviation between them. There are two reasons that could lead to this 

phenomenon. First of all there might be a small miscalculation between the actual parameters 

and those we got from Solidworks. Next, and more significant, this could probably occur 

because of unmodeled dynamics. E.g. we notice a small damped oscillation on the real 

response when the leg reaches and collides with the mechanical stop and absorber. This is 

not modeled and it functions as an energy drain for our system. Also there is no ground model 

on our simulation, whereas the treadmill’s belt, where we conducted the experiment, functions 

as an absorber too. Nevertheless, this model managed to simulate all four bounces as well as 

the actual settling time, steady state compression and general form.  

Table 3-2. Passive static hopping simulation parameters. 

Parameter Value 

Real time update rate 100 

Step time (s) 0.001 

Real time factor 0.1 

 

 

 

 



 
58 

Table 3-3. Passive static hopping experiment parameters. 

Parameter Value 

Defined PID control loop rate (Hz) 8000 

Achieved PID control loop rate (Hz) ~1000 

Tiva transmission rate (Hz) 15000 

Kd 0.003 

  Kp 0.0002 

 

Figure 3-40. Simulation-experiment comparison of static damped hopping. 

3.6.2 Hip PID control  

In this experiment, the body was held still above the ground and the only thing controlled was 

the hip joint. We tested for a 7500 counts (26 degrees) step input and the response, real and 

simulated, is presented in Figure 3-41.   
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Figure 3-41. Simulated and actual response to a 7500 counts step input. 

 

Figure 3-42. Simulated and actual torque requirement. 

Considering that such applications in legged robots demand extremely low swing time, 

i.e. around 0.2 - 0.4 seconds, there is really no point in using an integral term. This is because 

either it will be of small value and will have no time to load and produce an observable result 

or it will be of large value and will cause instability and oscillations. So in fact, a simple PD 

was employed. An estimation of the necessary proportional and derivative gains was taken 

using a linearized leg model (Figure 3-43), around the vertical position, as follows.  
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Figure 3-43. Linearized leg model with PID control block diagram. 

That model includes the linearized, around the vertical position, pendulum transfer function as 

plant:  
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The following parameters were used: 

Table 3-4. System parameters. 

Parameter Value 

Reduction ratio 52 

J (kg∙m2) 0.0241 

B (N∙m∙s) 0.005 

  

The closed loop transfer function is: 
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Therefore:  
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where ωn is the undamped natural frequency and ζ the damping ratio. When ζ is equal to 1 we 

have a critically damped system, which is the fastest without overshoot [21]. A value that is 

frequently used in such applications is 0.7, which offers a good rise-settling time relation. In 
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our case there is no need to completely eliminate overshoot as it produces a faster response, 

so we selected ζ equal to 0.6. We also set a settling time value of 0.35 s.  
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Using (3-8), (3-9) and (3-10), the control gains are found to be: 
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This approximation is really accurate. It was experimentally confirmed that the gains that 

produced the best results were:  
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Of course their actual value was affected by many parameters, like those we mentioned earlier 

about the PID node frequency and the Tiva transmission rate. Also, beyond these values, any 

further increase of Kp would not produce any visible results as the applied torque was already 

clipped due to saturation (Figure 3-42). An increase of Kd would again lead to instabilities and 

oscillations, as we discussed earlier. An overview of the PID control simulation and experiment 

is given in Table 3-5 and Table 3-6.    

Table 3-5. Hip PID control simulation parameters. 

Parameter Value 

Real time update rate 100 

Step time (s) 0.001 

Real time factor 0.1 

PID control loop rate 1000 

Kd 0.003 

Kp 0.0002 

Table 3-6. Hip PID control experiment parameters. 

Parameter Value 

Defined PID control loop rate (Hz) 8000 

Achieved PID control loop rate (Hz) ~1000 

Tiva transmission rate (Hz) 15000 

Kd 0.003 

Kp 0.0002 
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The gain values of (3-11) could probably increase if path planning methods were 

employed, because smaller errors would be created during the motion. These increased gains 

would provide better robustness and rigidity while the leg is still.  

3.6.3 High level control  

Additionally to those previous simple experiments, and in order to ensure system functionality, 

we used a high level controller, similar to the one already used in our lab’s first monopod robot 

[8].  

This algorithm is a simple one. When the robot is on flight phase it repositions the leg in 

a predefined angle of attack, or touch-down angle. After it lands and transits to stance phase, 

a torque is applied to the hip joint in order to move forward and repeat the cycle. The system 

structure appears in Figure 3-44. 

 

Figure 3-44. Control system structure. 

We run the experiment twice, with and without the force sensor. Both cases are presented 

in Figure 3-45 and Figure 3-47. 

Table 3-7. High level controller experiment without force sensor – parameters. 

Parameter Value 

Compression for stance (mm) 4 

Touchdown desired angle (counts) 870 

Stance phase torque (Nm) 1.8 

Kp 0.0038 

Kd 0.00024 
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Figure 3-45. High level controller experiment without force sensor. 

 

 (a) 

 

(b) 

 

(c) 

Figure 3-46. Experiment pictures - (a) touchdown, (b) midstance, (c) takeoff.  

One can easily see that the leg stops moving after approximately four strides. This issue 

is quite complex and there might be many reasons for not achieving a stable gait. One of them 

is the difficulty in controlling the initial conditions, i.e. of the translational velocity and drop 

height. The latter was 0.08 m (counting from the toe), but there is no easy way to calculate 

and apply a certain desired velocity, neither repeat it every time. In any case, that velocity and 

height should be equal or slightly greater than those desired [32]. For example, for desired 

apex height of 0.32 m and forward velocity of 0.5 m/s, the corresponding initial values should 

be around 0.33 m and 0.6 m/s respectively.  

Moving on to other parameters, after testing several combinations we selected those in 

Table 3-7. This application, where the leg is moving towards negative values when 

commanded to reposition in contrast to the PID control experiment we run previously when 
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the leg was static, allows for utilization of slightly larger gain values than before. The values 

of stance phase torque and the compression in which the controller considers it has entered 

the stance phase were also experimentally configured. For larger torque or smaller 

compression, the leg would simply slip and collapse on itself. That is also what would happen 

for greater touchdown angles, where the torque provided was not enough to push the body 

forward; with the motor at its maximum torque. It should be stated however, that this 

combination is one of the several that might work in a similar manner and could definitely use 

some refining.  

Table 3-8. High level controller experiment with force sensor – parameters. 

Parameter Value 

Compression for stance (mm) 4 

Touchdown desired angle (counts) 2500 

Stance phase torque (Nm) 4 

Kp 0.004 

Kd 0.00026 

 

Figure 3-47. High level controller experiment with force sensor. 

With the addition of the force sensor, the leg is getting somewhat heavier, which is 

depicted in Figure 3-47. There, we can observe that there are only have two strides instead 

of four. That might have something to do with the silicon cover that acts like an absorber. For 

this reason, the gains as well as the stance torque were increased, with the other parameters 

remaining the same. We can also see the filtered and unfiltered measurements along the 



 
65 

vertical axis. Peak impact force was measured about 200 N, or about 2.5-3 times the robot’s 

weight. 
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4 Treadmill  

4.1 Setup description 

Most of the robots developed in the Control Systems Laboratory are legged and especially 

quadrupeds or monopods. The salient characteristics and the main design influences come 

from nature itself (biomimetics). Since we are focusing on resembling nature and its features, 

e.g. high speed, balance, obstacle detection and avoidance, it only makes sense that those 

features should be tested in an environment that can simulate nature conditions. Considering 

that it would be unwise and even dangerous to conduct the first experiments outside the 

laboratory, the most common solution is to use a treadmill, with inclination capability. That 

requires a support system, as well as a control system able to set and control velocity and 

inclination. In addition, a treadmill ensures the security of both the robot and the researcher 

and facilitates experimentation.  

The treadmill currently installed in our laboratory is 6 meters long, and actuated by two 3-

phase induction motors. The first motor (model MS 100L 2-4, XIUSHI) drives the belt’s main 

pulley achieving a maximum running velocity of 12.6 m/s. The second motor (model FC80-4, 

Electro Adda) actuates an endless screw and a rack-pinion system that sets the treadmill’s 

inclination to the desired value (maximum angle of 20 degrees). Both are driven by inverters; 

an EMERSON M200-022 model for the belt’s motor, and a SIEMENS SINAMICS G110 for the 

inclination motor. 

  

Figure 4-1. MS 100L 2-4 motor and Μ200-0 inverter.  
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Figure 4-2. FC80-4 motor and SINAMIS G110 inverter. 

4.2 Electronic system 

4.2.1 Previous setup  

In this setup’s previous version, a custom combination of magnets and a Hall effect sensor 

were used to measure the rotational velocity of the belt’s drum. Specifically there were 8 

magnets placed circularly, at 45 degrees apart. When a magnet would pass in front of the Hall 

effect sensor, a voltage pulse would be generated. The pulse was received and processed by 

an AVR ATmega16A microcontroller. The same microcontroller handled the transmission of 

the desired velocity to the inverter. It communicated with a central computer, where the loop 

was closed, with a serial communication protocol, RS-232. However to transform the 

microcontroller’s output to RS-232 signal, readable by the computer, a signal transformer such 

as the ΜΑΧ 232 by Texas Instruments had to be used. For the inverter-microcontroller’s 

communication, for sending the command, a digital to analog converter (DAC) was used 

(AD7302 by Analog Devices). The same circuit was employed for the inclination control 

system. Finally for the selection of motion direction bipolar transistors were utilized [17].  

The control loop of the experimental setup was realized in Simulink (model-based 

control), which calculated the necessary command and transmitted it to the microcontroller.  

This system required three different supply channels, one at 5V and two at 11.42V 

precisely to supply the operational amplifier. This voltage had to be supplied using a dedicated 

power supply, something that was not always available or easy to find. Also the Simulink 

model was not very user friendly and easy to use. For those reasons, and the inability to 

incorporate ROS, a redesign was imposed. 
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4.2.2 Redesign and current setup 

Let us first examine the system specifications. Both motors, for velocity and inclination, are 

controlled by an inverter. Those inverters modify the supply current’s frequency, and therefore 

modulate the operating speed as follows: 

 

 
120 f

n
p

   (4-1)

    
where f stands for the supply frequency and p for the number of poles.  

The method to control the inverters is quite simple. According to Figure 4-3 that follows, 

the inverter offers several signal inputs and outputs called terminals. Those connections alone 

can fully control and define the operation of the machine, of course under the condition that it 

is supplied.  

 

Figure 4-3. Unidrive M200 velocity inverter terminal layout. 

When on terminal control mode, three connections are required at minimum. System 

activation using enable (terminal 11), selection of motion direction (terminal 12 or 13) and 

frequency reference (terminals 1 and 2). The order in which those connections were 
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mentioned corresponds to the suggested procedure one has to follow while activating the 

system according to the manufacturer. Specifically, for the motion to be activated, connection 

of both the enable and the direction terminal is required. When this occurs and there is no 

frequency reference, the treadmill will start running on a predefined frequency of about 7 Hz, 

coded into its memory. So in order for the system to be fully functional through a central 

computer, there must exist a way for all those connections to be activated electronically. 

For those terminals to be connected (enable and direction) a 24V voltage is required. The 

inverter provides such a voltage (terminal 9), so all one has to do is short-circuit terminals 9-

11/13 or 9-12/13 (depending on the desired direction). For the frequency reference a simple 

analog signal 0-10V (terminal 2) is required, as well as the ground (GND, terminal 1).  

Additional specifications are inserted in the design, such as the measurement the angular 

speed of the belt’s drum. Having already decided to use an incremental encoder for this 

purpose, the need to read its output emerges.   

Another point that needs to be taken into consideration during the design of the electronics 

and the control system is that the treadmill, much like the robots we create, should be 

structured in a way that it is possible to be run by a common control center, maybe even 

remotely through the Internet. Since the robot’s and the treadmill’s function are so closely tied, 

their control systems should be compatible. This means that there should be a capability for 

data exchange, and maybe even intervention of the one control system to the other. Finally 

there are safety limitations and specifications, like in every system. The treadmill’s operation 

should be able to stop both by command and manually, if something goes wrong either in the 

mechanical subsystem or in the control algorithm.  

To summarize, the design specifications are:  

 Maximum velocity of 10 m/s 

 Incremental encoder feedback  

 Control system compatible with the monopod or quadruped 

 Function controlled by a computer 

 Safety precautions - switches 

Again, the basic decision regards the sensory system and specifically how the encoders 

will be read. We choose to use the Tiva microcontroller, because of the know-how that already 

exists and the subsequent ease of implementation, and of course because of the 

characteristics we have already mentioned. 

The inverter receives a 0-10V analog signal and translates it into an operating frequency 

according to the frequency range defined in its memory. The lowest frequency would occur 

for a 0V input and the maximum for 10V. The maximum frequency currently defined is 50 Hz. 
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Therefore, we need to ensure that the analog signal can drive the treadmill to velocities up to 

10 m/s, according to specifications.  

Let us first examine the transmission until the main belt’s drum. Right after the motor, 

which has no gearbox of its own, there is a belt drive (Figure 4-4), which transmits motion to 

the treadmill’s level, but also reduces the velocity, with a reduction ratio of 1.524. Considering 

the drum’s diameter is 245 mm, the velocity relation to the operating frequency is described 

by (4-2), not considering load and slippage effects: 
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Figure 4-4. Belt drive. 

Using (4-2) it is easy to observe that for a 50 Hz operating frequency, a velocity of 12.6 

m/s is obtained, while the maximum desired speed is reached with f = 40 Hz. Of course this 

motor can safely operate up to 60 Hz, according to the manufacturer, so even larger velocity 

values could be achieved, if it was so desired. Also if for some reason the output analog signal 

cannot reach the required value, the maximum operating frequency could be defined to 60 Hz 

in order to change the voltage-frequency relation. This way the same voltage value would be 

matched to a higher frequency (e.g. 10V would correspond to 60 Hz instead of 50, and same 

holds for the rest of the values). In any case, the design should result in a properly modified 

signal, which shall lead to the exploitation of the whole range of the treadmill’s capabilities.  

This signal can be produced by a PWM pulse. Specifically, in this form of signal, a pulse 

is modulated so as to be high for a certain width, a percentage of the signal period. That ratio, 

pulse width to period, is called duty cycle. Because of the extremely high modulation 

frequency, which is also a parameter, the result is the average voltage. For example, for a 

signal with 5V amplitude and 50% duty cycle the result would be a 2.5V signal.  
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Figure 4-5. Pulse width modulated signal. 

Despite the high modulation frequency and the ostensibly steady signal produced, and 

because an amplification of this signal will follow, it is common to insert a low pass filter and 

stabilizer between the source and the amplifier. This filter attenuates high noise frequencies 

and normalizes the signal, with a small repercussion on its amplitude. The most common 

choice for such a filter is a passive RC circuit (Figure 4-6).  

 

Figure 4-6. Passive RC low pass filter. 

The reactance of the capacitor is given as: 
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where C stands for the capacity and f for the signal frequency. The circuit’s total impedance 

is calculated as: 
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Finally, using a resistive potential divider, the output voltage amplitude is given by:  
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Therefore in our case, where the amplitude of the PWM pulse the Tiva board produces is 0-

3.3V, and for filter parameters 4700 Ω και 47 nF for the resistor and the capacitor respectively, 

the output voltage will be:  
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,0.99 3.268   OUT IN OUTV V V V     (4-6) 

                                          
Next, for the purpose of signal amplification till the desired value of 10V, an operational 

amplifier was utilized, and specifically the LM358N by Texas Instruments (Figure 4-7). Such 

types of setups require a supply larger than the amplified output, in our case 12V, as well as 

an additional resistor circuit, like the one presented in Figure 4-8. 

 

Figure 4-7. Operational amplifier LM358N. 

 

Figure 4-8. Amplifying resistor circuit. 

The amplification gain is defined in the equation (4-7):  

 2

1

1  
R

K
R

     (4-7) 

In our case, in which the amplification gain is equal to 3, the resistors are selected as shown 

in Figure 4-9: 

 

Figure 4-9. Resistor selection. 

According to (4-7), we obtain:  
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The amplified average PWM signal can be fed directly to the inverter. For the whole setup to 

be fully controllable by a control station, some additional elements have to be incorporated so 

as to allow the user to initiate and stop the motion. This task was carried out using three relay 

modules (Figure 4-10). These elements require a 5V supply and a logic level signal (HIGH or 

LOW). According to this value, the relays open or close a circuit. Using these parts, and a 

digital output coming from the Tiva board, it is possible to control the short-circuit of the enable 

and direction terminals mentioned earlier. 

 

Figure 4-10. Parallax relay module. 

Relays like the one in Figure 4-10 include three inputs-outputs. Let us consider Figure 

4-11. At the middle contact, we connect the first end of the circuit that has to be controlled. 

The other two contacts are marked as normally open (ΝΟ) and normally closed (ΝC). 

Depending on the application the user has to select in which he shall connect the other end 

of the circuit. For example in Figure 4-11, the circuit is connected to the normally open contact. 

That means that in order for the circuit to close, one needs to send a HIGH logic level. If the 

circuit was connected on the normally closed contact, a HIGH logic level would open the circuit 

instead.     

 

Figure 4-11. Application example with relay module. 

The three relays used in our case control the enable, run forward and run reverse 

terminals. The first was connected exactly as in Figure 4-11. The enable terminal is normally 

disconnected, until given the proper command, as a safety precaution. It was critical to 

decouple this certain terminal’s connection with any other in order to be able to stop the motion 

in case of emergency. For the same reason there is a manual switch right after the relay, just 
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in case there is a malfunction in the control system and we cannot shut down the motion by 

command. The whole circuit is shown in Figure 4-12.  

 

Figure 4-12. Activation system (terminal Drive enable). 

The corresponding system for the selection of motion is slightly more complicated, 

because there was an additional safety precaution. Since it is not clarified in the 

manufacturer’s manual and as reason dictates, the two direction terminals should never be 

short-circuited simultaneously, because of the unknown and potentially harmful effect this 

might have. We could short-circuit the terminals using a single relay like before but one of 

them would be connected on the normally closed contact, so we would have a default direction 

of motion and that is not desired. Therefore we chose to use a double relay module (Figure 

4-13) with a small extra cost (6 euros instead of 3 the single costs).   

 

Figure 4-13. Double relay for motion direction selection. 

Once again we need a 5V supply, however this time there are two enabling signals. In 

order to satisfy the safety precaution that was mentioned before, these relays will be 

connected in series, as shown in Figure 4-14. The system works as follows. We shall refer to 

the relays as R1 and R2. The 24V line is connected to the central contact of R1. At start, when 

no signal is sent to the module, this line is directed through the NC contact of R1 to the NC 

contact of R2 which is not connected to anything, so there is no motion. When we set R1 to 

HIGH, the 24 line is redirected through its NO contact to the run forward terminal, regardless 

of what signal is sent to R2, since its central contact is disconnected. That protects the system 

from a possible malfunction. To run the treadmill in reverse, we need to send a LOW signal to 

R1 and HIGH to R2. It is obvious that there is no signal combination that leads to both terminals 

being short-circuited simultaneously.  
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Figure 4-14. Motion direction selection system (terminal run forward and reverse). 

The incremental encoder is of type HEDL-5540, with a line driver to reduce the noise. In 

our case this was not needed, since the signal did not have to travel too far and no noice was 

observed. The encoder produces 500 counts per revolution, augmented to 2000 when in 

quadrature mode. It has the same connections as the previous, 5V, GND, A, B channels and 

optionally the index, used to count the total number of revolutions. The encoder and its 

connectivity are presented in Figure 4-15.  

 

(a) 

 

(b) 

Figure 4-15. (a) HEDL-5540, (b) HEDL-5540 Pinout. 

Finally, all those different pieces of equipment had to be properly supplied. The relays, as 

well as the Tiva board and the encoder require 5V, while the operational amplifier needs 12V. 

To use a single power supply, we employed a step down regulator, the same used on the 

monopod, i.e. Polulu D24V60F5. Generally such parts are selected in high power applications, 

as signified by their maximum current handling capacity (6A), but its use is simpler than that 

of a simple voltage regulator; also it was available in our lab. Therefore it was preferred 

compared to other solutions.  

4.2.3 Construction 

The final electronic subsystem schematic is presented in Figure 4-16. 
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Figure 4-16. Electronic subsystem schematic. 

The secondary board includes the PWM filter and amplification circuits, as shown in 

Figure 4-17.  

 

 

Figure 4-17. Secondary board. 

 

All the aforementioned subsystems were connected and placed between two plexiglass 

sheets as shown in Figure 4-18. 
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Figure 4-18. Electronic subsystem prototype. 

One can observe four inputs-outputs. The blue Ethernet cable connects to the rooter and 

communicates with the control center, the white cable is the one that connects to the inverter, 

the flat cable on the upper left leads to the incremental encoder and the black is the power 

supply. The two switches are also visible above the relay modules, one for the power supply 

and one for motion activation. 

4.3 Control system 

The control system in the case of the treadmill is similar to the monopod’s. There are again 

two main pieces of code, one running in Tiva and of course its counterpart running in a control 

station using ROS. 

4.3.1 Tiva 

The part of code running in Tiva handles the PWM and QEI module activation, as well as the 

set up of the UDP communication. The same code is used with some minor modifications in 

order to send velocity instead of position and handle activation of motion and selection of 

direction.  

Special care has to be taken with the velocity estimation, as it is defined indirectly. 

Specifically, we define a time lapse in form of a number of clock ticks, over which we want to 
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sum the measured counts. This number in combination with the set clock frequency defines 

the duration of velocity estimation. For example if we define the clock frequency to 120 MHz, 

with a measuring lapse of 40.000.000 ticks, we shall get a new velocity estimation value three 

times per second. Let us consider the following case. We define the velocity estimation 

duration equal to 1s. If we request a new measurement precisely at 1s we shall get an X value, 

the total number of counts in (0,1). If a new value is requested at 1.5s we shall not get the total 

number of counts measured in (0.5,1.5) but we will receive the same value X as before, until 

we reach 2s where a new value is calculated. This of course means that there is no point in 

us asking for new values faster than they are calculated, as we would receive the same value 

multiple times. 

Finally for the code’s proper operation, it is again required to define the IP addresses for 

the Tiva board and the control center as well as the device subnet και device gateway. The 

send and receive ports also need to be defined.  

4.3.2 ROS  

Necessary condition for the robot and the treadmill control systems to be able to communicate 

with ease is to be compatible. Therefore, since all robots use ROS, it was again decided to 

build the treadmill control system. 

The system is similar to the one we already described for the monopod and it is comprised 

of three nodes. The first, ros_speed, is the interface between the Tiva board and the computer. 

Like before it activates the UDP communication and publishes received measurements on 

/state topic. It also subscribes to the /control_effort topic and receives the desired PWM duty 

cycle command. Obviously one has to define the IP address for Tiva, as well as the send and 

receive ports.  

The second node, ros_read_vel, takes as user input the desired velocity and publishes it 

on the /desired_speed topic. Also this node can receive and recognize four key words, enable, 

cw, ccw and kill. To enable clockwise motion, one needs to type the words enable and cw. 

Typing ccw right after will reverse the motion, and of course kill will stop everything.  

The third and last node is the PD controller from the ros_pid package that was used 

before. It is the exact same node, except for a small modification. Generally in the PD control, 

zero error corresponds to zero output. This is something we want to avoid in our case. The 

velocity would rise to the desired value, then the inverter would receive a zero command and 

it would start to fall until the error is significant again. That would cause an oscillating behavior 

around the desired velocity, which of course is not desired. For this reason we modify the 

control law as follows, using also (4-2): 
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i.e. a constant term is added which, when the error (e) is equal to zero, produces the open 

loop command, the frequency that is required by (4-2). The gains receive and handle any 

oscillations and differences that might occur. 

The cross node communication is presented in Figure 4-19.  

 

Figure 4-19. Node cross communication as depicted from the rqt_graph tool. 

4.4 Experiments 

To ensure the setup’s proper operation, simple experiments were conducted. The inverter 

received desired frequency commands. Specifically the first experiment was an open loop 

definition of the operating frequency. The velocity was gradually increased to 10m/s. In the 

second experiment we closed the loop and recorded the responses for the simple and 

augmented PD controller of (4-9). On both occasions the gains were experimentally defined. 

Specifically, the following parameters were used.  

Table 4-1. Treadmill velocity closed loop control experiment parameters – augmented PD. 

Parameter Value 

Defined PID control loop rate (Hz) 500 

Achieved PID control loop rate (Hz) 499 

Tiva transmission rate (Hz) 1000 

Tiva sampling frequency (Hz) 15 

Kd 100 

Kp 10 
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As one can observe in Figure 4-20 to Figure 4-23, this is a particularly slow system, mainly 

because of the inverter. It takes about 22 seconds to reach the desired velocity of 10 m/s, 

even if the command for its augmentation is given momentarily. This happens because the 

inverter applies a standard fixed rate of acceleration or deceleration (counted in seconds per 

100 Hz) for reasons of safety and proper function. 

A second point that needs clarification are the oscillations and spikes that appear in the 

steady state response (e.g. Figure 4-20). These spikes are the result of the sampling 

frequency as we mentioned earlier. We can observe that with a 15 Hz sampling rate, 15 steps 

appear per second (Figure 4-21), which confirms the aforementioned on the sampling 

frequency in Paragraph 4.3.1. As far as the oscillations are concerned, these are probably 

result from a slight misalignment between the encoder axis and its fixed frame which result in 

different sums of counts during a second. However, the velocity is in fact steady. This was 

confirmed both by visual and acoustic observations, while the value was also measured with 

an optical tachometer and found to be the same with the one appearing on the diagrams.  

We can finally observe the difference between the various experiments. The open loop 

has large differences between the expected and the actual velocity. Using the closed loop we 

observe the mentioned oscillations in steady state velocity because of the simple PD controller 

and how the problem was resolved with the augmented control law. 

 

Figure 4-20. Treadmill velocity open loop control experiment. 
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Figure 4-21. Velocity response detail. 

 

Figure 4-22. Treadmill velocity closed loop control experiment – simple PID. 

 

Figure 4-23. Treadmill velocity closed loop control experiment – augmented PID. 
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5 Articulated monopod design 

5.1 Literature review 

Ever since the first appearance of legged robots, a large variety of designs, materials and 

manufacturing methods have been used. In this section we will focus more on these leg 

aspects and examine some that have been actually used on biped or quadruped robots rather 

than just monopod experimental testbeds. 

One of the first attempts to create a walking robot that could alter its gait is recorded in 

1968, with the General Electric quadruped, developed by R. Mosher (Liston and Mosher, 

1968; Mosher, 1968). That was a hydraulic actuated robot, with 3 DOF (knee flexion-

extension, hip flexion-extension and abduction-adduction). This example is not representative 

and easily comparable to most modern biomimetic walking robots, as it was 3.3 m tall, 3 m 

long and it weighted about 1400 kg [16]. Each leg was controlled through a different joystick, 

requiring 4 different joysticks – and operators – in total. However as we can see in Figure 5-1.

 General Electric quadruped robot and compare with following figures, the basic 

mechanical design principles have not changed dramatically through the years. We notice the 

similar link design and general structure as, for example, in StarlETH. Of course the 

manufacturing processes, the materials used and the mathematical analysis behind the 

design have greatly improved in the last 50 years.  

 

Figure 5-1. General Electric quadruped robot. 

MIT’s Quadruped (1984-1987) was the robot that probably set the foundations and started 

the revolution in the legged robotics field that continues today. This robot utilized the control 

principles and algorithms of Raibert’s monopod and it could trot, pace and bound [24]. It was 

comprised of four 3 DOF legs (hip flexion-extension, abduction-adduction and a prismatic 

knee joint) and an aluminum frame [23].  
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Figure 5-2. MIT Leg Lab’s Quadruped Robot. 

Since those first attempts to create a biomimetic walking robot, countless other quadruped 

and monopod robots and leg designs have appeared. An indicative example are the Sugoi-

Neco legs [28]. Utilization of high tensile aluminum structures is quite common across the 

literature and up till recently it was almost the only choice available, if one wanted to maintain 

a low weight with a reasonable safety factor. Examples include ETH’s StarlETH [12], Boston 

Dynamics’ Spot and SpotMini, and IIT’s hydraulically actuated HyQ [29], [15]. StarlETH and 

HyQ are actually combining an aluminum frame structure on the femur link and a tube on the 

shank, an element that we, too, are going to use next. HyQ also specifies that a combination 

of stainless steel and aluminum alloy (Ergal - 7075) was used.   

 

Figure 5-3. StarlETH quadruped robot. 

While designing a leg, in terms of reducing the rotating inertia, it is a common practice to 

place the motors as close to the body as possible (a known exception shall be reviewed 

below). This of course results in the necessity to transmit motion from the body to the knee, 

which in most cases is the most distal actuated joint. There seem to be two main approaches 

in order to resolve the problem. The first is to use a four bar linkage, like in the aforementioned 
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Sugoi-Neco legs and in the MIT’s Cheetah leg [18]. Specifically, the Cheetah robot takes 

advantage of two concentric custom motors that reduce the inertia and a steel bar to actuate 

the knee. Tendons are also utilized to reduce structural loads [3]. 

 

Figure 5-4. MIT’s Cheetah robot. 

 

Figure 5-5. Cheetah leg with four bar linkage and tendon. 

The second approach is to use a standard torque transmission system, commonly a 

pulley-belt or a sprocket-chain combination. In most cases, this solution succeeds to keep the 

weight somewhat lower and if calculated correctly, it could provide added features. For 

example, in the StarlETH robot, the miniature chain drive that is utilized is designed to fail 

earlier than the gearbox in order to protect it and provide convenient and cheap maintenance 

if failure occurs.  

 

Figure 5-6. StarlETH leg transmission. 



 
85 

Steel cable transmission is also utilized in the Carnegie Mellon’s BiMASC’s legs. Steel 

was selected after tests that proved the inability of Vectran and Xylon to sustain the fast 

repetitive wrapping around a pulley – each for different reasons. Kevlar and other related 

materials were also considered but because of their abrasive nature (when in contact with 

itself) it was judged that would wear quickly. This leg also contains an interesting fiberglass 

plate spring design [11]. 

 

Figure 5-7. BiMASC leg with fiberglass plate springs. 

From the aforementioned designs and applications, only the MIT’s Cheetah has 

something new to offer in terms of materials and manufacturing methods. Specifically, as 

mentioned in [18], the leg is made of a polyester resin shell and polyester foam core. For the 

manufacturing process two molds are required. The first is undersized (compared to the leg’s 

actual external dimensions) and it is used to cast the foam core. Then, the core is transferred 

to the second mold, which is dimensioned correctly, the polyester resin is cast and the shell 

is formed. To fill the mold and make sure that no air bubbles are trapped inside, vacuum resin 

infusion is utilized. During this process, the part is covered and hermetically sealed, usually 

with plastic sheets, leaving only two openings. In the first a vacuum pump in connected, and 

in the second a pot that carries the resin. When the pump is activated the resin is slowly 

sucked in the part leaving no air bubbles, provided there is a smooth flow, and avoiding 

accumulation of excess resin in some points. 

Carbon fiber is also known to have been used in leg manufacturing. Perhaps the most 

indicative example is the ATRIAS monopod [10]. Since the robot’s design has to be as close 

to the SLIP model as possible, lightweight carbon fiber tubing has been used, both in the femur 

and the shank. We can also notice the same fiberglass leaf springs that were used in the 

BiMASC leg.  



 
86 

 

Figure 5-8. ATRIAS leg. 

Another known innovative quadruped in ANYmal [13]. This robot appeared just recently 

and it features legs made of carbon fibers and aluminum with 3 DOF on each, enabling full 

360 degrees rotation on hip and knee joints. However the most original element is the 

ANYdrive [34], a custom combination of brushless motor, gearbox, absolute encoder, spring 

and electronics, all included in a single cylindrical casing. Its extremely reduced weight (only 

0.9 Kg) allowed the knee motor to be placed on the knee rather than the body, as usual. This 

significantly simplifies the design, as there is no need to transmit motion through complex 

mechanisms. The incorporation of all aforementioned elements in a single module also allows 

for quick exchangeability of parts in case of failure, instead of time consuming disassembly of 

motors, belts and pulleys.  

Finally, it is worth mentioning some attempts that have been recorded to use 3D printed 

structural parts, like the MIT’s Super Mini Cheetah [2]. However this method, under the current 

technological limitations, would only apply to small sized robots (8-10 Kg) as it does not 

provide anywhere near the necessary strength to support a normal sized robot (30-40 Kg) 

without added reinforcement (e.g. fibers). For even smaller robots, like cockroaches, a new, 

innovative method that seems to be gaining ground in terms of popularity is SDM (Shape 

Deposition Manufacturing). It is a method reportedly used by both the MIT [9] and the Florida 

State University [6] and allows for complex sandwich type structures to be created, like layers 

of stainless steel and copper. This results in a more biomimetic design, as one can rarely 

observe limbs or organs entirely made up from a single material layer in nature. Nevertheless, 

to our knowledge, this method has not been applied yet in large scale projects like ours, and 

has yet to be developed and expanded before it is.    
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5.2 Laelaps quadruped robot  

Laelaps I is CSL’s second quadruped [47]. Designed for velocities up to 10 m/s, it emphasizes 

on performance rather than energy efficiency. This is the first essential difference compared 

to the first version.  

The other obviously is the transition to an articulated leg and body (spine) design. The 

first quadruped had a prismatic knee, a revolute actuated hip joint and a rigid torso. In fact the 

old quadruped’s leg is the same leg that we described previously in the case of the monopod 

robot.  

 

Figure 5-9. CSL’s first quadruped robot. 

 

Figure 5-10. Laelaps I quadruped robot. 

 Current design includes ten Maxon motors for the actuation (two for each leg, one for the 

spine and one for the tail) as well as an aluminum frame body. The femur is also a new part 

made of aluminum. Instead of a new shank (lower leg) design, the legs of the old quadruped 

were utilized, featuring the same springy prismatic joint.   

While hip joint is actuated directly, for reasons that we mentioned earlier, that was not an 

option for the knee joint. A push bar was used instead, forming a four bar linkage. This 

mechanism is designed to transfer maximum torque (forms a rectangle) when the femur-shank 
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angle is 40 degrees. This feature shall be transferred to the new design, as well. Finally, the 

leg has 90o motion width, limited with hard stops on the knee joint. 

 

Figure 5-11. Laelaps I leg design. 

5.3 Leg Design 

Note that in the case of Laelaps I leg, the femur joint was merged with the link design, as it 

was a compact aluminum part. For the Laelaps II quadruped, the basic design specification 

and target was to decouple the joint and link design. This way one can easily change each 

segment’s length according to the task at hand. For example, efficient bounding and trotting 

gaits require different lengths.  

5.3.1 Link design 

Using carbon fiber tubes as main link parts, like ATRIAS, offers easy exchangeability between 

pieces of different length while keeping the leg lightweight. In places where one tube cannot 

bear the load, there is also the possibility to use a second inside the first. Specifically the tubes 

available in our lab fit perfectly for that purpose as their inside and outside diameters match 

(30/28 for the outer and 28/26 for the inner tube). 

5.3.2 Joint design 

The joint parts should be designed so as to safely bind the tubes without damaging or 

destroying them. As far as the material was concerned a 7075-T6 aluminum was selected, an 

alloy with yield (430–480 MPa) and ultimate tensile (510–540 MPa) strength comparable to 

that of many steel alloys.  

The knee joint is comprised by two parts, upper and lower. The lower part is a modification 

of the Laelaps I design. A second protrusion was added to the opposite side of the first, as 

well as in the transmission arm on the hip, in case we want to use threads to transmit motion 

to the knee, e.g. Kevlar rope. Since the rope is flexible, in contrast to the pushing rod, it can 
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only pull so it must be attached on both sides. The tube is bound using a detachable cover 

and four M4 bolts. Same principles were used for the upper part, only it does not have any 

protrusions except those to bind it with the lower part. For that connection, the SFL606ZZ ball 

bearings and 6 mm, 1.1191/C45E steel shaft used on the current design were kept the same. 

The hard stops at 0-90o were also preserved. 

On the hip joint, besides the change that was already mentioned on the transmission arm, 

the femur link was essentially shrunk and modified in a similar manner with the knee joints in 

order to adapt the carbon tubes. The only difference is the utilization of M5 instead of M4 bolts 

because of the increased load that seemed to be exerted in the following simulations in 

comparison to the knee.  

5.3.3 Compliance and transmission 

The last things considered were the spring and force sensor-toe placement. A mechanism 

like the StarlETH leg was examined, with the spring inside the carbon tube, but since it was 

unclear how well the tube would react on resulting forces, it was decided to place the spring 

below the carbon tube, using a same mechanism with the old lower leg. A linear bushing is 

adapted and tied using a custom aluminum clamp. The spring is placed concentrically with a 

properly shaped shaft. At its lower end, either a rubber toe or a force sensor can be adapted.  

Finally, the push rod mechanism remained the same, as there was no reason suggesting 

a replacement was in order.  

5.3.4 Final design 

The complete new design is shown in Figure 5-12. It weighs about 300g less than the old 

(~1000 instead 1300g). The difference is actually increased to 450g if Kevlar rope is utilized 

instead of the push rod.  

The drawings of all parts are included in the CD that accompanies this thesis. 

 

Figure 5-12. Laelaps II new leg design. 
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5.4 Structural analysis  

The structural durability of the new parts in this design -links, joints and toe- were tested 

and verified in the extreme condition they would have to support the whole body weight. This 

is also the case of the rotary gallop, where only one leg is in contact with the ground at each 

moment. Four main simulations were conducted, three drop tests and a static analysis. Drop 

test is an analysis where the user defines a drop height or an impact velocity and can study 

the resultant stresses and displacements. 

The first was a drop test with the entire body weight, while femur and shank links are 

aligned, with the knee locked because of the 0o stop, for a 45o touchdown angle. To stress the 

design even more, the impact velocity was set to 9.7 m/s, which corresponds to the velocity 

the toe would acquire if the hip motor increased to its no load speed.  The second drop test 

was the same, only for vertical touchdown, in order to check the compressive durability of 

parts. The third drop test included the knee bent in 90o and again a 45o touchdown. The static 

analysis was similar to the third simulation only this time the hip motor was exerting its 

maximum possible torque on the leg, with the knee joint being fixed. These simulations are 

presented below, alongside a separate analysis for the toe.   

 

Figure 5-13. First simulation, drop test with a 45o touchdown angle and impact velocity of 9.7 
m/s. 
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Figure 5-14. Second simulation, drop test for vertical touchdown. 

 

Figure 5-15. Third simulation, drop test with a 45o touchdown angle. 

 



 
92 

 

Figure 5-16. Fourth simulation, static analysis stresses. 

 

 

Figure 5-17. Fourth simulation, static analysis displacements. 
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Figure 5-18. Toe setup structural analysis stresses. 

 

The simulations above verify the structural durability of the designed parts, as the stresses 

do not exceed the yield strength values at any point. The part which was most stressed was 

the carbon tube of the lower leg, so maybe the second smaller tube should be inserted inside 

the first, since it would not make the design much heavier; it weighs about 50 g. Finally, we 

could probably even refine and reduce the dimensions of the joint parts even more, since they 

do not seem to have any trouble bearing the loads, in order to further reduce the total weight.  
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6 Conclusion and Future Work  

6.1 Conclusion  

In the context of this thesis, the ROS platform was successfully employed to receive 

measurements from and command the actuators of our lab’s monopod robot. At first we 

introduced ROS and we mentioned its basic tools and capabilities. Additionally useful tools 

and capabilities were mentioned and their operation briefly presented. Gazebo was also 

introduced and described, as well as the path planning tool MoveIt!.  

To incorporate ROS, but also to upgrade system performance and ease of use, the active 

electronic system was substituted by Tiva microcontrollers and custom supply boards. The 

motor drive unit was replaced with a new one, more modern and simple to use. The structure 

of the control system that was built was presented and this system was tested on a model 

created especially for this purpose in Gazebo. There, besides gains and typical simulation 

parameters, we also tested and tuned the control loop and data transmission rates. These 

simulations were compared to those of Matlab and were found to be identical. They also 

seemed to approximate the behavior of the real robot quite accurately. Finally, an experiment 

with a high level controller was conducted. We managed to get a limited hopping motion of 

about five strides. To summarize, we moved from a dysfunctional and outdated experimental 

setup to a modern one, with handy tools that make the software development process less 

time consuming and complicated. This system has accurately defined inputs and outputs and 

therefore it can connect easily to any high level controller. 

Moving on to the lab’s treadmill, again the entire sensory system and electronics were 

replaced. The custom velocity Hall sensor was substituted by an incremental encoder. Α Tiva 

board was once more used to read measurements and a similar control system to that of the 

monopod was developed. In fact we modified the same low level PID controller to control the 

velocity which was used on the monopod to control the position. The system’s functionality 

and capability of reaching velocities up to 10 m/s were examined and verified by conducting 

velocity control experiments. 

Simultaneously with the aforementioned work, the new leg design method for 

performance running was also being developed and refined in our lab. After conclusive results 

were received, a new articulated leg was designed. This leg is lighter than the old one and 

seems to be able to withstand any stress that might occur while running. It also offers 

convenient features, like easy change of segment length and exchangeability between push 

bars and tendons.  

6.2 Future Work 

Future work could be divided into two separate branches, software and hardware.  



 
95 

As far as software is concerned, probably the most significant update, and worth of the 

time it requires, is the incorporation of the ros_control package. This is even more important 

now, that the new leg has two actuated DOF instead of one. This package’s complexity was 

deemed excessive for our project, but as the number of controlled joints increases (e.g. 

Laelaps has ten, including tail and spine revolute joints), it is more convenient to utilize 

ros_control instead of running several instances of the ros_pid package. It shall require a 

significant amount of time at start but then, the addition of new controllers will be greatly 

simplified.  

Also the utilization of MoveIt! would probably prove to be really convenient. Especially if 

ros_control is previously set up, the amount of time necessary to configure it would greatly 

decrease, as there exists a noticeable sum of information on their cooperation. Besides saving 

time from writing custom path planning codes for joints, it could be used to provide direction 

for the robot’s movement (e.g. move forward, backward) through a graphic environment, 

where one can even add feedback from cameras or other optical sensors and experiment with 

navigation and obstacle avoidance.  

Another suggestion would be to try and close the low level PID control loop on the Tiva 

boards, which should be more than capable to withstand the computational load. The high 

level control would remain on a main computer which, being relieved of the load of many 

different controllers, could be more efficient or even replaced by a device like a Raspberry Pi, 

something that was not possible so far, exactly because of the computational load.  

Finally, since no stable gait was achieved, the experiments should be run again, perhaps 

with better refinement of the parameters described and the initial conditions. We could even 

try to add a counterweight to reduce the motor load.  

On the hardware side, the most important task at hand is to manufacture and test the leg 

design of Chapter 5. Also a more analytical exploration of material options and manufacturing 

methods might has to be carried out, like 3D printed, plastic or resin parts in combination with 

carbon skinning.  

Moving on to the treadmill, a system like the one described needs to be constructed for 

the inclination counterpart. Since the first prototype seemed to work properly, the new one 

should be materialized using printed boards instead of flexible cable connections. Another 

idea would be to try not to use an external supply for the system, but use the incorporated 24V 

that the inverter provides instead.  
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Appendix A 

 
In this appendix, the various codes utilized during the work described are included. 

Hip_interface 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "stdio.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include "fcntl.h" 
#include <stdint.h> 
#include <inttypes.h> 
#include "ros/ros.h" 
#include "std_msgs/Float64.h" 
#include <sstream> 
 
// UDP buffer length 
#define BUFLEN 512 
 
// UDP port to receive from 
#define PORT 2015  
 
// UDP port to send data to 
#define PORT_BRD 2016  
                                             
// Asynchronous UDP communication 
#define ASYNC 
                                 
// Tiva Hip board IP 
#define BRD_IP "192.168.1.12"                                 
 
// Global variables 
bool gotMsg = false; // Flag set high when message is received from UDP 
int sock; // The socket identifier for UDP Rx communication 
int32_t encoderPos = 0;  // Place the received encoder value here 
int32_t pos = 0;  // Place the actual value here 
int32_t prevpos = 0;  // previous actual position 
int32_t prevencoderpos = 0;  //previous encoder position 
int msgs = 0; // Incoming message counter 
int msgss = 0; // Incoming message counter 
struct sockaddr_in si_pwm;  // Struct for UDP send data socket 
ssize_t SendPWMBytes = 2;  // Number of bytes to send for PWM command 
char SendBuffer[6];  // UDP Send Buffer 
int broad;  // The socket identifier for UDP Tx communication 
int slen=sizeof(si_pwm);  // Size of sockaddr_in strut 
float pi = 4.0*atan(1.0); 
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
    exit(1); 
} 
 
// Signal handler for asynchronous UDP 
void sigio_handler(int sig) 
{ 
 char buffer[BUFLEN]=""; 
    unsigned char val[4]; 
    struct sockaddr_in si_other; 
    unsigned int slen=sizeof(si_other); 
    ssize_t rcvbytes = 0; 
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    // Receive available bytes from UDP socket 
    if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1) 
  error("recvfrom()"); 
    else 
    { 
     // Parse data , 1 int32 value 
     if(buffer[0] == 0x42) 
     { 
   //ROS_INFO(" received"); 
      val[3] = (unsigned char)buffer[4]; 
      val[2] = (unsigned char)buffer[3]; 
      val[1] = (unsigned char)buffer[2]; 
      val[0] = (unsigned char)buffer[1]; 
   prevencoderpos = encoderPos ; 
   memcpy(&encoderPos, &val, 4); 
   if (((prevencoderpos < 50000) && (encoderPos > 50000)) || ((pos < 0) && 
(encoderPos < prevencoderpos)))  
   { 
         prevpos = pos ; 
         pos = encoderPos - 104000 ;  
   } 
      else  
      { 
         prevpos = pos ;   
         pos = encoderPos ;  
      } 
      if (encoderPos = 0)  
          pos = encoderPos ;  
      // Raise flag that we received a message 
      gotMsg = true; 
     } 
   } 
} 
 
// Function to enable asynchronous UDP communication 
int enable_asynch(int sock) 
{ 
  int stat = -1; 
  int flags; 
  struct sigaction sa; 
 
  flags = fcntl(sock, F_GETFL); 
  fcntl(sock, F_SETFL, flags | O_ASYNC);  
 
  sa.sa_flags = 0; 
  sa.sa_handler = sigio_handler; 
  sigemptyset(&sa.sa_mask); 
 
  if (sigaction(SIGIO, &sa, NULL)) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETOWN, getpid()) < 0) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETSIG, SIGIO) < 0) 
    error("Error:"); 
 
  return 0; 
} 
 
// Callback function for reception of PWM message from topic 
void PWMCallback(const std_msgs::Float64::ConstPtr& msg) 
{ 
  // Extract the duty cycle value and send it to the Tiva board via UDP 
  SendBuffer[1] = (int8_t) msg->data; 
  if (sendto(broad, SendBuffer, SendPWMBytes, 0, (struct sockaddr *)&si_pwm, slen)==-1) 
    error("sendto()"); 
  // Print-out for debugging 
  msgs++; 
  if(msgs == 10) 
  { 
    msgs = 0; 
    //ROS_INFO("I heard: [%f]", msg->data); 
  } 
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} 
 
// Main Function 
int main(int argc, char **argv) 
{ 
  struct sockaddr_in si_me, si_other; 
  int i, slen=sizeof(si_other), msg_count; 
  char buf[BUFLEN], strout[28]; 
   
  msg_count = 0; 
  memset(SendBuffer, 0, 6); 
   
  // Initialize UDP socket for data transmission 
  if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
       error("socket"); 
      
  memset((char *) &si_pwm, 0, sizeof(si_pwm)); 
  si_pwm.sin_family = AF_INET; 
  si_pwm.sin_port = htons(PORT_BRD); 
    
  if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) { 
       error("inet_aton() failed\n"); 
       exit(1); 
  } 
   
  SendBuffer[0] = 0x31; 
 
  // Initialize ROS node 
  ros::init(argc, argv, "Hip_interface"); 
  ros::NodeHandle n; 
  // Initialize the publisher for Encoder data post 
  ros::Publisher position_interface_pub = n.advertise<std_msgs::Float64>("/state", 1000); 
   
  // Initialize the subscriber for PWM data reception 
  ros::Subscriber pwm_sub = n.subscribe("control_effort", 1000, PWMCallback); 
 
  ros::Rate loop_rate(6000);  
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
   
  // Initialize UDP socket for data reception 
  if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
     error("socket"); 
 
  memset((char *) &si_me, 0, sizeof(si_me)); 
  si_me.sin_family = AF_INET; 
  si_me.sin_port = htons(PORT); 
  si_me.sin_addr.s_addr = htonl(INADDR_ANY); 
  if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1) 
      error("bind"); 
 
  enable_asynch(sock); 
   
  ROS_INFO("Starting communication with Tiva hip board."); 
  ROS_INFO("Communication with Tiva hip board established."); 
 
  std_msgs::Float64 state_msg; 
  state_msg.data = 0.0; 
 
  while (ros::ok()) 
  { 
    // If we got a new message, publish to topic and print values every 100 messages 
    if(gotMsg) 
 { 
     msg_count++; 
     state_msg.data = (float) pos; 
  position_interface_pub.publish(state_msg); 
     if(msg_count >= 2000) 
     { 
      msg_count = 0; 
      ROS_INFO("%i  angle", pos); 
     } 
     gotMsg = false; 
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    } 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

 
 
 

Knee_interface 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "stdio.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include "fcntl.h" 
#include <stdint.h> 
#include <inttypes.h> 
#include "ros/ros.h" 
#include "std_msgs/Float64.h" 
#include <sstream> 
#include "math.h" 
#include <ros/time.h> 
 
// UDP buffer length 
#define BUFLEN 512 
 
// UDP port to receive from 
#define PORT 2014 
 
// UDP port to send data to 
#define PORT_BRD 2013 
 
// Asynchronous UDP communication 
#define ASYNC 
 
// Tiva Knee board IP 
#define BRD_IP "192.168.1.11" 
 
// Global variables 
bool gotMsg = false; // Flag set high when message is received from UDP 
int sock; // The socket identifier for UDP Rx communication 
int msgs = 0; // Incoming message counter 
struct sockaddr_in si_pwm;  // Struct for UDP send data socket 
ssize_t SendPWMBytes = 2;  // Number of bytes to send for PWM command 
char SendBuffer[6];  // UDP Send Buffer 
int broad; // The socket identifier for UDP Tx communication 
int slen=sizeof(si_pwm);  // Size of sockaddr_in strut 
float pi = 4.0*atan(1.0); 
 
int32_t encoderPos = 0;  // Place the received encoder value here 
float angle, compression ; 
float l1 = 0.05 ;    // knee top link length 
float l2 = 0.065 ;    // knee bot link length 
float nl = 0.089 ;    // initial length 
float linit = sqrt(l1*l1 + l2*l2 - 2.0*l1*l2*cos(360.0*361/1999.0*pi/180.0) - 0.01*0.01) ; 
 
float norm_compression ; 
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
    exit(1); 
} 
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// Signal handler for asynchronous UDP 
void sigio_handler(int sig) 
{ 
  char buffer[BUFLEN]=""; 
  unsigned char val[4]; 
  struct sockaddr_in si_other; 
  unsigned int slen=sizeof(si_other); 
  ssize_t rcvbytes = 0; 
 
  // Receive available bytes from UDP socket 
  if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1) 
    error("recvfrom()"); 
  else 
  { 
    // Parse data , 1 int32 value 
    if(buffer[0] == 0x42) 
    { 
      //ROS_INFO(" received"); 
      val[3] = (unsigned char)buffer[4]; 
     val[2] = (unsigned char)buffer[3]; 
     val[1] = (unsigned char)buffer[2]; 
     val[0] = (unsigned char)buffer[1]; 
     memcpy(&encoderPos, &val, 4); 
      comrpession = (sqrt(l1*l1 + l2*l2 - 2.0*l1*l2*cos(360.0*encoderPos/1999.0*pi/180.0) - 
0.01*0.01)- linit) ; 
      // Raise flag that we received a message 
      gotMsg = true; 
    } 
  } 
} 
 
// Function to enable asynchronous UDP communication 
int enable_asynch(int sock) 
{ 
  int stat = -1; 
  int flags; 
  struct sigaction sa; 
 
  flags = fcntl(sock, F_GETFL); 
  fcntl(sock, F_SETFL, flags | O_ASYNC); 
 
  sa.sa_flags = 0; 
  sa.sa_handler = sigio_handler; 
  sigemptyset(&sa.sa_mask); 
 
  if (sigaction(SIGIO, &sa, NULL)) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETOWN, getpid()) < 0) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETSIG, SIGIO) < 0) 
    error("Error:"); 
 
  return 0; 
} 
 
 
// Main Function 
int main(int argc, char **argv) 
{ 
  struct sockaddr_in si_me, si_other; 
  int i, slen=sizeof(si_other), msg_count; 
  char buf[BUFLEN], strout[28]; 
 
  msg_count = 0; 
  memset(SendBuffer, 0, 6); 
 
  // Initialize UDP socket for data transmission 
  if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
       error("socket"); 
 
  memset((char *) &si_pwm, 0, sizeof(si_pwm)); 
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  si_pwm.sin_family = AF_INET; 
  si_pwm.sin_port = htons(PORT_BRD); 
 
  if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) { 
       error("inet_aton() failed\n"); 
       exit(1); 
  } 
 
  SendBuffer[0] = 0x31; 
 
  // Initialize ROS node 
  ros::init(argc, argv, "Knee_interface"); 
  ros::NodeHandle n; 
  // Initialize the publisher for compression data post 
  ros::Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000); 
 
  ros::Rate loop_rate(1000); 
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
 
  // Initialize UDP socket for data reception 
  if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
     error("socket"); 
 
  memset((char *) &si_me, 0, sizeof(si_me)); 
  si_me.sin_family = AF_INET; 
  si_me.sin_port = htons(PORT); 
  si_me.sin_addr.s_addr = htonl(INADDR_ANY); 
  if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1) 
    error("bind"); 
 
  enable_asynch(sock); 
 
  ROS_INFO("Starting communication with Tiva knee board."); 
  ROS_INFO("Communication with TiVa knee board established."); 
 
  std_msgs::Float64 compression_msg; 
 
  while (ros::ok()) 
  { 
    if(gotMsg) 
    { 
      msg_count++; 
      compression_msg.data = compression ; 
      compression_pub.publish(compression_msg); 
      if(msg_count >= 2000) 
      { 
      msg_count = 0; 
      ROS_INFO("%f  compression in m", compression); 
      } 
      gotMsg = false; 
    } 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

 

IMU_interface 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "stdio.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include "fcntl.h" 
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#include <stdint.h> 
#include <inttypes.h> 
#include "ros/ros.h" 
#include "legged_robot/AccGyro.h" 
#include <sstream> 
#include <ros/time.h> 
 
// UDP buffer length 
#define BUFLEN 512 
// UDP port to receive from 
#define PORT 2012 
 
// Asynchronous UDP communication 
#define ASYNC 
 
// Tiva IMU board IP 
#define BRD_IP "192.168.1.10" 
 
// Global variables 
bool gotMsg = false;   // Flag set high when message is received from UDP 
int sock;   // The socket identifier for UDP communication 
int msgs = 0;  // Incoming message counter 
int16_t acc[3] = {0,0,0};  // Place raw accelerometer data here 
int16_t gyro[3] = {0,0,0};  // Place raw gyroscope data here 
int imu_dev = 0; // 1 - ADIS16375 
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
    exit(1); 
} 
 
// Signal handler for asynchronous UDP 
void sigio_handler(int sig) 
{ 
   char buffer[BUFLEN]=""; 
   unsigned char val[2]; 
   struct sockaddr_in si_other; 
   unsigned int slen=sizeof(si_other); 
   ssize_t rcvbytes = 0; 
 
   // Receive available bytes from UDP socket 
   if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1) 
       error("recvfrom()"); 
   else 
   { 
    //ROS_INFO("%d bytes"); 
   // Parse data , 6 int16 values 
    if(buffer[0] == 0x43 && rcvbytes == 13) 
    { 
      imu_dev = 1; 
      val[1] = (unsigned char)buffer[2]; 
      val[0] = (unsigned char)buffer[1]; 
      memcpy(&acc[0], &val, 2); 
      val[1] = (unsigned char)buffer[4]; 
      val[0] = (unsigned char)buffer[3]; 
      memcpy(&acc[1], &val, 2); 
      val[1] = (unsigned char)buffer[6]; 
      val[0] = (unsigned char)buffer[5]; 
      memcpy(&acc[2], &val, 2); 
      val[1] = (unsigned char)buffer[8]; 
      val[0] = (unsigned char)buffer[7]; 
      memcpy(&gyro[0], &val, 2); 
      val[1] = (unsigned char)buffer[10]; 
      val[0] = (unsigned char)buffer[9]; 
      memcpy(&gyro[1], &val, 2); 
      val[1] = (unsigned char)buffer[12]; 
      val[0] = (unsigned char)buffer[11]; 
      memcpy(&gyro[2], &val, 2); 
     // Raise flag that we received a message 
      gotMsg = true; 
    } 
  } 
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} 
 
// Function to enable asynchronous UDP communication 
int enable_asynch(int sock) 
{ 
  int stat = -1; 
  int flags; 
  struct sigaction sa; 
 
  flags = fcntl(sock, F_GETFL); 
  fcntl(sock, F_SETFL, flags | O_ASYNC); 
 
  sa.sa_flags = 0; 
  sa.sa_handler = sigio_handler; 
  sigemptyset(&sa.sa_mask); 
 
  if (sigaction(SIGIO, &sa, NULL)) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETOWN, getpid()) < 0) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETSIG, SIGIO) < 0) 
    error("Error:"); 
  return 0; 
} 
 
// Main Function 
int main(int argc, char **argv) 
{ 
  struct sockaddr_in si_me, si_other; 
  int i, slen=sizeof(si_other), msg_count; 
  char buf[BUFLEN], strout[28]; 
  legged_robot::AccGyro accgyro_msg; 
  double realAcc[3], realGyro[3] ; 
 
  ros::Time prev_time; 
  ros::Duration delta_t; 
  msg_count = 0; 
 
  // Initialize ROS node 
  ros::init(argc, argv, "IMU_interface"); 
  ros::NodeHandle n; 
  // Initialize the publisher for Accelerometer and Gyroscope data post 
  ros::Publisher imu_interface_pub = n.advertise<legged_robot::AccGyro>("IMU_feedback", 1000); 
  ros::Rate loop_rate(1000); 
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
 
  // Initialize UDP communication 
  if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
     error("socket"); 
 
  memset((char *) &si_me, 0, sizeof(si_me)); 
  si_me.sin_family = AF_INET; 
  si_me.sin_port = htons(PORT); 
  si_me.sin_addr.s_addr = htonl(INADDR_ANY); 
  if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1) 
      error("bind"); 
 
  enable_asynch(sock); 
 
  ROS_INFO("Starting communication with IMU Tiva board."); 
  while (ros::ok()){ 
    // Initialize ROS message values 
    accgyro_msg.accX = 0; 
    accgyro_msg.accY = 0; 
    accgyro_msg.accZ = 0; 
    accgyro_msg.gyroX = 0; 
    accgyro_msg.gyroY = 0; 
    accgyro_msg.gyroZ = 0; 
    accgyro_msg.imu_dev = 0; 
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 // If we got a new message, publish to topic and print values every 500 messages 
    if(gotMsg) 
    { 
      msg_count++; 
      accgyro_msg.accX = acc[0]; 
      accgyro_msg.accY = acc[1]; 
      accgyro_msg.accZ = acc[2]; 
      accgyro_msg.gyroX = gyro[0]; 
      accgyro_msg.gyroY = gyro[1]; 
      accgyro_msg.gyroZ = gyro[2]; 
     accgyro_msg.imu_dev = imu_dev; 
      imu_interface_pub.publish(accgyro_msg); 
      if(msg_count >= 1) 
      { 
      msg_count = 0; 
      if(imu_dev == 1) 
        { 
       realAcc[0] = (accgyro_msg.accX*1.0)*0.8192*9.81/1000.0 ; 
       realAcc[1] = (accgyro_msg.accY*1.0)*0.8192*9.81/1000.0 ; 
       realAcc[2] = (accgyro_msg.accZ*1.0)*0.8192*9.81/1000.0 ; 
       realGyro[0] = (accgyro_msg.gyroX*1.0)*0.013108; 
       realGyro[1] = (accgyro_msg.gyroY*1.0)*0.013108; 
       realGyro[2] = (accgyro_msg.gyroZ*1.0)*0.013108; 
      } 
      } 
      gotMsg = false; 
    } 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

 

Read_setpoint 

#include "stdio.h" 
#include "string.h" 
#include "stdlib.h" 
#include <inttypes.h> 
#include "ros/ros.h" 
#include <iostream> 
#include <string> 
#include <sstream> 
#include "std_msgs/Float64.h" 
#include <dynamic_reconfigure/server.h> 
#include <legged_robot/ParamConfig.h> 
 
float rpos, prevpos ; 
float dt  ; 
 
using namespace std; 
 
void callback(legged_robot::ParamConfig &config, uint32_t level) 
{ 
 rpos =  config.setpoint; 
} 
 
// Global variables 
std_msgs::Float64 setpoint_msg; 
float pi = 4.0*atan(1.0); 
 
int main(int argc, char **argv) 
{ 
  prevpos = 0.0 ; 
  // Initialize ROS node 
  ros::init(argc, argv, "Read_setpoint"); 
  ros::NodeHandle nod; 
  // Publish for desired position message 
  ros::Publisher read_setpoint_pub = nod.advertise<std_msgs::Float64>("/setpoint", 1000); 
 
  dynamic_reconfigure::Server<legged_robot::ParamConfig> Read_setpoint; 
  dynamic_reconfigure::Server<legged_robot::ParamConfig>::CallbackType f; 
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  f = boost::bind(&callback, _1, _2); 
  Read_setpoint.setCallback(f); 
 
  ros::Rate loop_rate(1000); 
  setpoint_msg.data = 0.0; 
  ROS_INFO("Reading Setpoint."); 
 
  while (ros::ok()) 
  { 
 if (rpos != prevpos) 
 { 
 
  prevpos = rpos ; 
 } 
 setpoint_msg.data =  rpos ; 
 read_setpoint_pub.publish(setpoint_msg); 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

Tiva boards 

#include <stdint.h> 
#include <stdbool.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
#include "inc/hw_ints.h" 
#include "inc/hw_memmap.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
#include "drivers/pinout.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/rom.h" 
#include "driverlib/rom_map.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/uart.h" 
#include "utils/uartstdio.h" 
#include "driverlib/flash.h" 
#include "driverlib/systick.h" 
#include "utils/locator.h" 
#include "utils/lwiplib.h" 
#include "utils/ustdlib.h" 
#include "inc/hw_pwm.h" 
#include "driverlib/pwm.h" 
#include "inc/hw_qei.h" 
#include "driverlib/qei.h" 
#include "driverlib/timer.h" 
 
#include "main.h" 
 
#ifdef DEV_ADIS16375 
#include "ADIS16375.h" 
#endif 
#include "spi.h" 
 
//***************************************************************************** 
// 
// Defines for setting up the system clock. 
// 
//***************************************************************************** 
#define SYSTICKHZ               100 
#define SYSTICKMS               (1000 / SYSTICKHZ) 
 
//***************************************************************************** 
// 
// Interrupt priority definitions.  The top 3 bits of these values are 
// significant with lower values indicating higher priority interrupts. 
// 
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//***************************************************************************** 
#define SYSTICK_INT_PRIORITY    0x80 
#define ETHERNET_INT_PRIORITY   0xC0 
 
//***************************************************************************** 
// 
// The current IP address. 
// 
//***************************************************************************** 
uint32_t g_ui32IPAddress; 
//***************************************************************************** 
// 
// The system clock frequency. 
// 
//***************************************************************************** 
 
uint32_t g_ui32SysClock; 
 
#ifdef DEBUG 
void 
__error__(char *pcFilename, uint32_t ui32Line) 
{ 
} 
#endif 
 
#ifdef ENABLE_ETHERNET 
// Initialize the UDP receive pcb 
struct udp_pcb * udp_init_r(void); 
// Send data over UDP 
void udp_send_data(void* sbuf, u16_t len); 
// Callback for UDP data reception 
void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, u16_t 
port); 
// The variable that hold the UDP receive pcb 
struct udp_pcb *Rpcb; 
// Variables assgined to the controller pc IP and current board IP 
struct ip_addr controller_ip, board_ip; 
// Flag that is raised when the IP is assigned 
volatile uint8_t gotIP = 0; 
// Variables for lwip configuration 
unsigned long device_ip,device_subnet,device_gateway; 
#endif 
 
// Flags raised when events for encoder send and pwm set are active 
bool sendEncoder, setPWMvalue; 
// Variable for received PWM command 
int8_t pwmValue; 
 
#ifdef ENABLE_IMU 
 
#ifdef DEV_ADIS16375 
// Function that configures the interrupt detection of ADIS16375 IMU 
void ConfigureADIS16375Int(void); 
// ADIS16375 object 
ADIS16375 myIMU; 
#endif 
 
// Flag for IMU Data ready on interrupt 
uint8_t imuDataReady = 0; 
// Variables that hold the measurements received from the IMU 
int16_t accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z, delta_x, delta_y, delta_z, dv_x, dv_y, 
dv_z, temp_out; 
double dval_x, dval_y, dval_z, temp, deltaAccX, deltaAccY, deltaAccZ; 
#endif 
 
 
#ifdef ENABLE_ETHERNET 
// Display the input IP address on UART 
void DisplayIPAddress(uint32_t ui32Addr) 
{ 
    char pcBuf[16]; 
 
    // 
    // Convert the IP Address into a string. 
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    // 
    usprintf(pcBuf, "%d.%d.%d.%d", ui32Addr & 0xff, (ui32Addr >> 8) & 0xff, 
            (ui32Addr >> 16) & 0xff, (ui32Addr >> 24) & 0xff); 
 
    // 
    // Display the string. 
    // 
#ifdef ENABLE_UART 
    UARTprintf(pcBuf); 
#endif 
 
} 
#endif 
 
#ifdef ENABLE_ETHERNET 
// Ethernet lwip interrupt handler 
void lwIPHostTimerHandler(void) 
{ 
    uint32_t ui32Idx, ui32NewIPAddress; 
 
    // 
    // Get the current IP address. 
    // 
    ui32NewIPAddress = lwIPLocalIPAddrGet(); 
 
    // 
    // See if the IP address has changed. 
    // 
    if(ui32NewIPAddress != g_ui32IPAddress) 
    { 
        // 
        // See if there is an IP address assigned. 
        // 
        if(ui32NewIPAddress == 0xffffffff) 
        { 
            // 
            // Indicate that there is no link. 
            // 
            //UARTprintf("Waiting for link.\n"); 
        } 
        else if(ui32NewIPAddress == 0) 
        { 
            // 
            // There is no IP address, so indicate that the DHCP process is 
            // running. 
            // 
            //UARTprintf("Waiting for IP address.\n"); 
        } 
        else 
        { 
            // 
            // Display the new IP address. 
            // 
#ifdef ENABLE_UART 
            UARTprintf("IP Address: "); 
            DisplayIPAddress(ui32NewIPAddress); 
            UARTprintf("\n"); 
#endif 
            // Set the gotIP flag once IP is assigned 
            gotIP = 1; 
        } 
 
        // 
        // Save the new IP address. 
        // 
        g_ui32IPAddress = ui32NewIPAddress; 
 
        // 
        // Turn GPIO off. 
        // 
        MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1); 
    } 
 
    // 
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    // If there is not an IP address. 
    // 
    if((ui32NewIPAddress == 0) || (ui32NewIPAddress == 0xffffffff)) 
    { 
        // 
        // Loop through the LED animation. 
        // 
 
        for(ui32Idx = 1; ui32Idx < 17; ui32Idx++) 
        { 
 
            // 
            // Toggle the GPIO 
            // 
            MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, 
                    (MAP_GPIOPinRead(GPIO_PORTN_BASE, GPIO_PIN_1) ^ 
                     GPIO_PIN_1)); 
 
            SysCtlDelay(g_ui32SysClock/(ui32Idx << 1)); 
        } 
    } 
} 
#endif 
 
//***************************************************************************** 
// 
// The interrupt handler for the SysTick interrupt. 
// 
//***************************************************************************** 
void 
SysTickIntHandler(void) 
{ 
    // 
    // Call the lwIP timer handler. 
    // 
#ifdef ENABLE_ETHERNET 
    lwIPTimer(SYSTICKMS); 
#endif 
} 
 
#ifdef ENABLE_UART 
// Configure the UART peripheral 
void ConfigureUART(void) 
{ 
    // 
    // Enable the GPIO Peripheral used by the UART. 
    // 
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); 
 
    // 
    // Enable UART0 
    // 
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); 
 
    // 
    // Configure GPIO Pins for UART mode. 
    // 
    ROM_GPIOPinConfigure(GPIO_PA0_U0RX); 
    ROM_GPIOPinConfigure(GPIO_PA1_U0TX); 
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); 
 
    // 
    // Initialize the UART for console I/O. 
    // 
    UARTStdioConfig(0, 115200, g_ui32SysClock); 
 
#ifdef UART_BUFFERED 
    UARTEchoSet(false); 
#endif 
} 
#endif 
 
// Generic delay function 
void cyclesdelay(unsigned long cycles) 
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{ 
 MAP_SysCtlDelay(cycles); // Tiva C series specific 
} 
 
#ifdef ENABLE_MOTOR 
// Setup the PWM peripheral 
void SetupPWM() 
{ 
  SysCtlPWMClockSet(SYSCTL_PWMDIV_1); 
  SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0); 
  SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG); 
  GPIOPinConfigure(GPIO_PG0_M0PWM4); 
  GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_0); 
 
  PWMGenConfigure(PWM0_BASE, PWM_GEN_2, PWM_GEN_MODE_UP_DOWN | 
                    PWM_GEN_MODE_NO_SYNC); 
 
  // 
  // Set the PWM period to 1000Hz.  To calculate the appropriate parameter 
  // use the following equation: N = (1 / f) * SysClk.  Where N is the 
  // function parameter, f is the desired frequency, and SysClk is the 
  // system clock frequency. 
  // In this case you get: (1 / 20000Hz) * 120MHz = 6000 cycles.  Note that 
  // the maximum period you can set is 2^16. 
  // TODO: modify this calculation to use the clock frequency that you are 
  // using. 
  // 
  PWMGenPeriodSet(PWM0_BASE, PWM_GEN_2, 6000); 
 
  // Configure Direction pin 
  SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL); 
  MAP_GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_4); 
  MAP_GPIOPadConfigSet(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO_STRENGTH_8MA, 
                                GPIO_PIN_TYPE_STD_WPD); 
  MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, 0); 
 
} 
 
// Fucntion to set the PWM output given the duty cycle 
// PWM can range from -100 to 100, if the value is negative 
// we reverse the motion by setting the DIR pin low for the drive 
// positive direction correspond to DIR pin being high 
int8_t SetPWMDuty(int8_t duty) 
{ 
  // If duty cycle is 0 , disable the PWM generator and output 
  if(!duty) 
  { 
    PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, false); 
    PWMGenDisable(PWM0_BASE, PWM_GEN_2); 
  } 
  else 
  { 
    // Set DIR pin accordingly 
    if(duty < 0) 
    { 
      MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, 0); 
      duty = 100 - (100 + duty); 
    } 
    else 
      MAP_GPIOPinWrite(GPIO_PORTL_BASE, GPIO_PIN_4, GPIO_PIN_4); 
 
    if(duty == 100) 
      duty = 95; 
 
    // Set the PWM pulse width (duty cycle) 
    PWMPulseWidthSet(PWM0_BASE, PWM_OUT_4, 
                   (PWMGenPeriodGet(PWM0_BASE, PWM_GEN_2) / 100) * (uint32_t)duty); 
    PWMOutputState(PWM0_BASE, PWM_OUT_4_BIT, true); 
    PWMGenEnable(PWM0_BASE, PWM_GEN_2); 
  } 
  // Return the set duty cycle 
  return duty; 
} 
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// 5 KHz timer that sets the flag for encoder value transmission 
void 
Timer0IntHandler(void) 
{ 
    // 
    // Clear the timer interrupt. 
    // 
    ROM_TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
 
    // Set the flag 
    sendEncoder = true; 
 
} 
#endif 
 
#ifdef ENABLE_IMU 
 
#ifdef DEV_ADIS16375 
// ADIS16375 Interrupt handler 
void IntADIS16375(void) 
{ 
  uint32_t status; 
 
  // Clear the interrupt flag 
  status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true); 
 
  // Set the appropriate flag 
  imuDataReady = 1; 
 
  // Read the desired data from the IMU 
  ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z); 
  ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z); 
  //ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z); 
  //ADIS16375_readDeltaVel(&myIMU, &dv_x, &dv_y, &dv_z); 
 
  // Value conversion for delta angle displacement 
  // Delta angles need to be accumulated to get proper euler angle values 
  /*dval_x = (delta_x*1.0)*0.005493; 
  dval_y = (delta_y*1.0)*0.005493; 
  dval_z = (delta_z*1.0)*0.005493; 
 
  deltaAccX += dval_x; 
  deltaAccY += dval_y; 
  deltaAccZ += dval_z;*/ 
 
  GPIOIntClear(IMU_IRQ_PORT_BASE, status); 
} 
 
// Configure the ADIS16375 interrupt pin 
void ConfigureADIS16375Int(void) 
{ 
  SysCtlPeripheralEnable(IMU_IRQ_PERIPH); 
  GPIOPinTypeGPIOInput(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
  GPIOIntTypeSet(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN, GPIO_RISING_EDGE); 
  GPIOIntRegister(IMU_IRQ_PORT_BASE, IntADIS16375); 
  //GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
  IntEnable(IMU_IRQ_INT); 
} 
#endif 
 
 
#endif 
 
 
 
// Main application 
int main(void) 
{ 
   uint32_t status; 
   uint8_t printIMU = 0; 
   // UART buffer 
   uint8_t charUART[256]; 
   // The first time the IMU gives an interrupt we can set the BIAS NULL 
   // command for auto-bias correction on accelerometer and gyroscope data 
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   uint8_t firstIMU = 0; 
 
#ifdef ENABLE_UART 
    // Character that is used to receive commands from the UART 
    // Used only for debugging 
    unsigned char uCom = 0; 
#endif 
 
#ifdef ENABLE_ETHERNET 
    uint32_t ui32User0, ui32User1; 
    uint8_t pui8MACArray[8]; 
    // UDP Send buffer 
    uint8_t sendUDP[128]; 
    // Hold the number of transmission (used for debugging) 
    uint32_t sends = 0; 
#endif 
 
    // Variable to hold the read encoder value 
    int32_t encoderPos = 0; 
 
    // Initialize the application flags 
#ifdef ENABLE_MOTOR 
    sendEncoder = false; 
    setPWMvalue = false; 
    pwmValue = 0; 
#endif 
 
#ifdef ENABLE_ETHERNET 
    gotIP = 0; 
 
    // Set the proper values for lwip configuration based on board selection 
#if defined(BOARD_IMU) 
    // 192.168.1.10 
    device_ip = 0xC0A8010A; 
    IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0A); 
#elif defined(BOARD_KNEE) 
    // // 192.168.1.11 
    device_ip = 0xC0A8010B; 
    IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0B); 
#elif defined(BOARD_HIP) 
    // // 192.168.1.12 
    device_ip = 0xC0A8010C; 
    IP4_ADDR(&board_ip, 0xC0,0xA8,0x01,0x0C); 
#endif 
 
    // 255.255.255.0 
    device_subnet = 0xFFFFFF00; 
 
    // 192.168.1.1 
    device_gateway = 0xC0A80101; 
 
    // 192.168.1.22 
    IP4_ADDR(&controller_ip, 0xC0,0xA8,0x01,0x16); 
 
#endif 
 
    // Start the system clock (120 MHz) 
    SysCtlMOSCConfigSet(SYSCTL_MOSC_HIGHFREQ); 
 
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 
                                             SYSCTL_OSC_MAIN | 
                                             SYSCTL_USE_PLL | 
                                             SYSCTL_CFG_VCO_480), 120000000); 
 
    // TODO: Enable pins for relay signals -IN CASE OF TREADMILL BOARD 
            SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOK); 
            SysCtlDelay(10000); 
            GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_7); 
            GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_4); 
            GPIOPinTypeGPIOOutput(GPIO_PORTK_BASE, GPIO_PIN_5); 
         SysCtlDelay(10000000); 
            GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false);                //all on 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false); 
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         SysCtlDelay(10000000); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4);   //all off 
      GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5); 
         SysCtlDelay(10000000); 
            GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false);    //all on 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false); 
         SysCtlDelay(10000000); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true); 
         GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4);   //all off 
      GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5); 
 
#ifdef ENABLE_ETHERNET 
    // Set pins for ethernet functionality 
    PinoutSet(true, false); 
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1); 
    MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1); 
#else 
    PinoutSet(false, false); 
#endif 
 
#ifdef ENABLE_UART 
    ConfigureUART(); 
#endif 
 
#ifdef ENABLE_ETHERNET 
    // Initialize the SysTick timer 
    MAP_SysTickPeriodSet(g_ui32SysClock / SYSTICKHZ); 
    MAP_SysTickEnable(); 
    MAP_SysTickIntEnable(); 
 
    MAP_FlashUserGet(&ui32User0, &ui32User1); 
    if((ui32User0 == 0xffffffff) || (ui32User1 == 0xffffffff)) 
    { 
#ifdef ENABLE_UART 
        UARTprintf("No MAC programmed!\n"); 
#endif 
        while(1) 
        { 
        } 
    } 
 
#ifdef ENABLE_UART 
    UARTprintf("Waiting for IP.\n"); 
#endif 
 
    pui8MACArray[0] = ((ui32User0 >>  0) & 0xff); 
    pui8MACArray[1] = ((ui32User0 >>  8) & 0xff); 
    pui8MACArray[2] = ((ui32User0 >> 16) & 0xff); 
    pui8MACArray[3] = ((ui32User1 >>  0) & 0xff); 
    pui8MACArray[4] = ((ui32User1 >>  8) & 0xff); 
    pui8MACArray[5] = ((ui32User1 >> 16) & 0xff); 
 
    // lwIP stack initialization 
    //lwIPInit(g_ui32SysClock, pui8MACArray, 0, 0, 0, IPADDR_USE_DHCP); 
    lwIPInit(g_ui32SysClock, pui8MACArray, device_ip, device_subnet, device_gateway, 
IPADDR_USE_STATIC); 
 
    MAP_IntPrioritySet(INT_EMAC0, ETHERNET_INT_PRIORITY); 
#endif 
 
    MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY); 
 
    // Wait until an IP is assigned 
#ifdef ENABLE_ETHERNET 
    while(gotIP == 0) 
     SysCtlDelay(120); 
#endif 
 
#ifdef ENABLE_UART 
    UARTprintf("Initializing...\n"); 
#endif 
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    // Configure motor interface modules 
#ifdef ENABLE_MOTOR 
    // Setup the PWM generator 
    SetupPWM(); 
 
    // QEI Setup 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL); 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI0); 
    GPIOPinConfigure(GPIO_PL3_IDX0); 
    GPIOPinConfigure(GPIO_PL1_PHA0); 
    GPIOPinConfigure(GPIO_PL2_PHB0); 
    GPIOPinTypeQEI(GPIO_PORTL_BASE, GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3); 
 
    QEIConfigure(QEI0_BASE, (QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX | QEI_CONFIG_QUADRATURE | 
QEI_CONFIG_NO_SWAP), 52*2000-1);        QEIVelocityConfigure(QEI0_BASE, QEI_VELDIV_1, 8000000); 
    QEIVelocityConfigure(QEI0_BASE, QEI_VELDIV_1, 8000000); // for the treadmill 
 
 
    // 
    // Enable the quadrature encoder. 
    // 
    QEIEnable(QEI0_BASE); 
    QEIPositionSet(QEI0_BASE,0); 
    // 
    // Delay for some time... 
    // 
    SysCtlDelay(12000); 
#endif 
 
    // Initialize the UDP receive pcb 
#ifdef ENABLE_ETHERNET 
    Rpcb = udp_init_r(); 
#endif 
 
    // IMU Initializaztion 
#ifdef ENABLE_IMU 
 
#ifdef DEV_ADIS16375 
    ADIS16375_Init(&myIMU, cyclesdelay, IMU_CS, IMU_RST, init_spi16, SpiTransfer16); 
#ifdef ENABLE_UART 
    //UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU)); 
    //ADIS16375_write(&myIMU,ADIS16375_REG_GLOB_CMD,0x8000); 
#endif 
    //ADIS16375_debug(&myIMU); 
    ConfigureADIS16375Int(); 
    //status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true); 
 
    // Clear interrupt flag just to be safe 
    GPIOIntClear(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
    GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
 
    //ADIS16375_wake(&myIMU); 
    //init_spi16(); 
    //UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU)); 
#endif 
 
 
#endif 
 
    // Configure 5 KHz tier for encoder count acquisition 
#ifdef ENABLE_MOTOR 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); 
    TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC); 
    TimerLoadSet(TIMER0_BASE, TIMER_A, g_ui32SysClock/5000); //here the transmitting frequency is 
defined 
    IntEnable(INT_TIMER0A); 
    TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
    TimerEnable(TIMER0_BASE, TIMER_A); 
#endif 
 
    // Application Main Loop 
    while(1) 
    { 
#ifdef ENABLE_IMU 
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      // If data ready from IMU output the data 
      // On first interrupt only we check the product ID 
      // and are able to set the configuration for proper delta angle calculation 
      if(imuDataReady == 1) 
      { 
        if(!firstIMU) 
        { 
          firstIMU = 1; 
#ifdef DEV_ADIS16375 
          UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU)); 
#endif 
 
 
#ifdef DEV_ADIS16375 
          // Resore factory calibration on strat-up 
          ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x4000); 
          // Configure the ADIS16375 IMU 
          //MAP_SysCtlDelay(40000*100); 
 
          // Set the decimation coefficient 
          //ADIS16375_write(&myIMU, ADIS16375_REG_DEC_RATE, DECIMATION_COEF); 
 
          // Set configuration for the BIAS estimator 
          ADIS16375_write(&myIMU, ADIS16375_REG_NULL_CFG, 0x0A07); 
 
          // Load values for bias correction (BIAS NULL command) 
          //ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x0100); 
 
          //GPIOIntDisable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
#endif 
          imuDataReady = 0; 
          deltaAccX = deltaAccY = deltaAccZ = 0.0; 
        } 
        else 
        { 
          imuDataReady = 0; 
#ifdef ENABLE_ETHERNET 
#ifdef DEV_ADIS16375 
          sendUDP[0] = 0x43; 
#endif 
          memcpy(&sendUDP[1],(uint8_t*)(&accel_x),2); 
          memcpy(&sendUDP[3],(uint8_t*)(&accel_y),2); 
          memcpy(&sendUDP[5],(uint8_t*)(&accel_z),2); 
          memcpy(&sendUDP[7],(uint8_t*)(&gyro_x),2); 
          memcpy(&sendUDP[9],(uint8_t*)(&gyro_y),2); 
          memcpy(&sendUDP[11],(uint8_t*)(&gyro_z),2); 
          udp_send_data((void*)sendUDP,13); 
#endif 
          // Handle the recieved IMU measrements 
#ifdef ENABLE_UART 
          if(printIMU) 
          { 
            printIMU = 0; 
#ifdef DEV_ADIS16375 
            UARTprintf("ACC_X_OUT : %d 0x%X\n",accel_x,accel_x); 
            UARTprintf("ACC_Y_OUT : %d 0x%X\n",accel_y,accel_y); 
            UARTprintf("ACC_Z_OUT : %d 0x%X\n",accel_z,accel_z); 
 
            UARTprintf("GYRO_X_OUT : %d 0x%X\n",gyro_x,gyro_x); 
            UARTprintf("GYRO_Y_OUT : %d 0x%X\n",gyro_y,gyro_y); 
            UARTprintf("GYRO_Z_OUT : %d 0x%X\n",gyro_z,gyro_z); 
 
            dval_x = (gyro_x*1.0)*0.013108; 
            dval_y = (gyro_y*1.0)*0.013108; 
            dval_z = (gyro_z*1.0)*0.013108; 
 
            sprintf(charUART, "GYRO X : %lf\n", dval_x); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "GYRO Y : %lf\n", dval_y); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "GYRO Z : %lf\n", dval_z); 
            UARTprintf("%s",charUART); 
 
            dval_x = (accel_x*1.0)*0.8192; 
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            dval_y = (accel_y*1.0)*0.8192; 
            dval_z = (accel_z*1.0)*0.8192; 
 
            sprintf(charUART, "ACC X : %lf\n", dval_x); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "ACC Y : %lf\n", dval_y); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "ACC Z : %lf\n", dval_z); 
            UARTprintf("%s",charUART); 
 
            dval_x = (delta_x*1.0)*0.005493; 
            dval_y = (delta_y*1.0)*0.005493; 
            dval_z = (delta_z*1.0)*0.005493; 
 
            sprintf(charUART, "DELTA X : 0x%X %lf\n", delta_x, dval_x); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "DELTA Y : 0x%X %lf\n", delta_y, dval_y); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "DELTA Z : 0x%X %lf\n", delta_z, dval_z); 
            UARTprintf("%s",charUART); 
 
            dval_x = (dv_x*1.0)*3.0518; 
            dval_y = (dv_y*1.0)*3.0518; 
            dval_z = (dv_z*1.0)*3.0518; 
 
            sprintf(charUART, "DELTA VEL X : %lf\n", dval_x); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "DELTA VEL Y : %lf\n", dval_y); 
            UARTprintf("%s",charUART); 
            sprintf(charUART, "DELTA VEL Z : %lf\n", dval_z); 
            UARTprintf("%s",charUART); 
#endif 
 
          } 
        } 
#endif 
      } 
#endif 
      // UART command interface for debugging 
#ifdef ENABLE_UART 
#ifdef UART_BUFFERED 
      if(UARTRxBytesAvail()>0) 
      { 
        uCom = UARTgetc(); 
        UARTFlushRx(); 
      } 
#endif 
      switch(uCom) 
      { 
#ifdef ENABLE_IMU 
      case '1' : 
        // Get IMU product ID 
#ifdef DEV_ADIS16375 
        UARTprintf("Prod ID : 0x%X\n",ADIS16375_device_id(&myIMU)); 
#endif 
 
        break; 
      case '2': 
        // Reset IMU measurement data 
        imuDataReady = 0; 
        accel_x = accel_y = accel_z = 0; 
        deltaAccX = deltaAccY = deltaAccZ = 0.0; 
        status = GPIOIntStatus(IMU_IRQ_PORT_BASE, true); 
        GPIOIntClear(IMU_IRQ_PORT_BASE, status); 
        GPIOIntEnable(IMU_IRQ_PORT_BASE, IMU_IRQ_PIN); 
        break; 
      case '3': 
        // Get data directly from IMU without waiting for interrupt 
#ifdef DEV_ADIS16375 
        ADIS16375_readAccData(&myIMU, &accel_x, &accel_y, &accel_z); 
        ADIS16375_readGyroData(&myIMU, &gyro_x, &gyro_y, &gyro_z); 
        ADIS16375_readDeltaAngle(&myIMU, &delta_x, &delta_y, &delta_z); 
        ADIS16375_readDeltaVel(&myIMU, &dv_x, &dv_y, &dv_z); 
#endif 
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        dval_x = (gyro_x*1.0)*0.013108; 
        dval_y = (gyro_y*1.0)*0.013108; 
        dval_z = (gyro_z*1.0)*0.013108; 
 
        sprintf(charUART, "GYRO X : %lf\n", dval_x); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "GYRO Y : %lf\n", dval_y); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "GYRO Z : %lf\n", dval_z); 
        UARTprintf("%s",charUART); 
 
        dval_x = (accel_x*1.0)*0.8192; 
        dval_y = (accel_y*1.0)*0.8192; 
        dval_z = (accel_z*1.0)*0.8192; 
 
        sprintf(charUART, "ACC X : %lf\n", dval_x); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "ACC Y : %lf\n", dval_y); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "ACC Z : %lf\n", dval_z); 
        UARTprintf("%s",charUART); 
 
        dval_x = (delta_x*1.0)*0.005493; 
        dval_y = (delta_y*1.0)*0.005493; 
        dval_z = (delta_z*1.0)*0.005493; 
 
        sprintf(charUART, "DELTA X : %lf\n", dval_x); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA Y : %lf\n", dval_y); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA Z : %lf\n", dval_z); 
        UARTprintf("%s",charUART); 
 
        dval_x = (dv_x*1.0)*3.0518; 
        dval_y = (dv_y*1.0)*3.0518; 
        dval_z = (dv_z*1.0)*3.0518; 
 
        sprintf(charUART, "DELTA VEL X : %lf\n", dval_x); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA VEL Y : %lf\n", dval_y); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA VEL Z : %lf\n", dval_z); 
        UARTprintf("%s",charUART); 
        break; 
      case '4' : 
        // Output received IMU data 
        printIMU = 1; 
        break; 
#ifdef DEV_ADIS16375 
      case '5' : 
        // Read and display IMU internal temperature 
        temp_out = ADIS16375_temp(&myIMU); 
        temp = (temp_out*1.0)*0.00565 + 25.0; 
        sprintf(charUART, "%lf", temp); 
        UARTprintf("Temp : 0x%X %s\n",temp_out,charUART); 
        break; 
      case '6' : 
        // Output bias coefficients 
        UARTprintf("X_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_OFF_L)); 
        UARTprintf("X_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_OFF_H)); 
        UARTprintf("Y_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_OFF_L)); 
        UARTprintf("Y_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_OFF_H)); 
        UARTprintf("Z_GYRO_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_OFF_L)); 
        UARTprintf("Z_GYRO_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_OFF_H)); 
        UARTprintf("X_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACC_OFF_L)); 
        UARTprintf("X_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACC_OFF_H)); 
        UARTprintf("Y_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACC_OFF_L)); 
        UARTprintf("Y_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACC_OFF_H)); 
        UARTprintf("Z_ACC_OFF_L : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACC_OFF_L)); 
        UARTprintf("Z_ACC_OFF_H : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACC_OFF_H)); 
        UARTprintf("X_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_GYRO_SCALE)); 
        UARTprintf("Y_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_GYRO_SCALE)); 
        UARTprintf("Z_GYRO_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_GYRO_SCALE)); 



 
120 

        UARTprintf("X_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_X_ACCEL_SCALE)); 
        UARTprintf("Y_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Y_ACCEL_SCALE)); 
        UARTprintf("Z_ACC_SCALE : 0x%X\n",ADIS16375_read(&myIMU, 16, ADIS16375_REG_Z_ACCEL_SCALE)); 
        UARTprintf("GEN_CONFIG : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_GEN_CFG) & 
0x00FF)); 
        UARTprintf("NULL_CONFIG : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_NULL_CFG) & 
0x3FFF)); 
        UARTprintf("DEC_RATE : 0x%X\n",(ADIS16375_read(&myIMU, 16, ADIS16375_REG_DEC_RATE) & 0x07FF)); 
        break; 
      case '7': 
        // Load calibration values 
        ADIS16375_write(&myIMU, ADIS16375_REG_GLOB_CMD, 0x0100); 
        break; 
      case '8': 
        // Output delta angle from stored accumulated data 
        sprintf(charUART, "DELTA X : %lf\n", deltaAccX); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA Y : %lf\n", deltaAccY); 
        UARTprintf("%s",charUART); 
        sprintf(charUART, "DELTA Z : %lf\n", deltaAccZ); 
        UARTprintf("%s",charUART); 
        break; 
#endif 
      case 'w': 
        // IMU wakeup 
#ifdef DEV_ADIS16375 
        ADIS16375_wake(&myIMU); 
#endif 
 
        break; 
#endif 
      default : break; 
      } 
      uCom = 0; 
#endif 
 
#ifdef ENABLE_MOTOR 
      // If we received a PWM command set the corresponding PWM duty cyle and direction 
      if(setPWMvalue == true) 
      { 
        if (pwmValue == 103) 
         { 
               UARTprintf("enableccw"); 
              GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4); 
              GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, false); 
              UARTprintf("enableccw"); 
         } 
         if (pwmValue == 101) 
         { 
                UARTprintf("kill"); 
               GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, true); 
               GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, GPIO_PIN_4);  
 //all off 
               GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5); 
                UARTprintf("kill"); 
         } 
         if (pwmValue == 102) 
         { 
                UARTprintf("enable"); 
                GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_7, GPIO_PIN_7); 
               UARTprintf("enable"); 
          } 
          if (pwmValue == 104) 
         { 
                   UARTprintf("enablecw"); 
                GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_4, false); 
                   GPIOPinWrite(GPIO_PORTK_BASE, GPIO_PIN_5, GPIO_PIN_5); 
                   UARTprintf("enablecw"); 
          } 
         else 
          { 
          UARTprintf("else"); 
            SetPWMDuty(pwmValue); 
            UARTprintf("else"); 
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          } 
        setPWMvalue = false; 
      } 
 
      // If send encoder value event occurs, send data via UDP 
      if(sendEncoder == true) 
      { 
        //sends++; 
        encoderPos = (QEIPositionGet(QEI0_BASE)); 
        //encoderPos = (QEIVelocityGet(QEI0_BASE)); for the treadmill 
 
        //if(sends == 5000) 
        //{ 
          //UARTprintf("Position %d\n",encoderPos); 
          //sends = 0; 
        //} 
        sendEncoder = false; 
#ifdef ENABLE_ETHERNET 
        sendUDP[0] = 0x42; 
        memcpy(&sendUDP[1],(uint8_t*)(&encoderPos),4); 
        udp_send_data((void*)sendUDP,5); 
#endif 
      } 
#endif 
    } 
} 
 
#ifdef ENABLE_ETHERNET 
 
// Initializze the UDP receive pcb 
struct udp_pcb * udp_init_r(void) 
{ 
  //err_t err; 
  struct udp_pcb *pcb_r; 
  pcb_r = udp_new(); 
 
  // Bind to given port , receive from any IP 
  udp_bind(pcb_r, IP_ADDR_ANY, PORT_R); 
 
#ifdef ENABLE_UART 
  UARTprintf("UDP to receive at port %d...\n", PORT_R); 
#endif 
 
  // Set the receive data callback 
  udp_recv(pcb_r, udp_receive_data, NULL); 
 
  return pcb_r; 
} 
 
void udp_receive_data(void *arg, struct udp_pcb *pcb, struct pbuf *p, struct ip_addr *addr, u16_t 
port) 
{ 
    char * pPointer; 
 
    //struct pbuf *p1; 
 
    if (p != NULL) 
    { 
      //UARTwrite((char*)(p->payload), p->len); 
      //UARTprintf("R : %s\n",(char*)(p->payload)); 
 
      pPointer = (char*)(p->payload); 
 
     /* p1 = pbuf_alloc(PBUF_TRANSPORT,8,PBUF_RAM); 
      memcpy (p1->payload, pData, 8); 
      udp_send(pcb, p1); 
      pbuf_free(p1);*/ 
 
      /*if(pPointer[0] == 0x31) 
      { 
       udp_send_data((void*)pData, 68); 
      }*/ 
      // If we received PWM commnad (0x31 command byte) 
      // extract the transmitted value 
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      if(pPointer[0] == 0x31) 
      { 
        pwmValue = pPointer[1]; 
        setPWMvalue = true; 
      } 
 
      /*if(pPointer[0] == 0x32) 
      { 
        sendEncoder = true; 
      }*/ 
 
      pbuf_free(p); 
    } 
} 
 
// Send data over UDP to the defined port 
void udp_send_data(void* sbuf, u16_t len) 
{ 
  struct pbuf *p; 
  err_t err; 
 
  p = pbuf_alloc(PBUF_TRANSPORT,len,PBUF_RAM); 
  memcpy (p->payload, sbuf, len); 
  err = udp_sendto(Rpcb, p, &controller_ip, PORT_S); 
 
  pbuf_free(p); 
} 
 
#endif 

 

Joint_state_publisher 

#include <boost/algorithm/string.hpp> 
#include <gazebo_plugins/gazebo_ros_joint_state_publisher.h> 
#include <tf/transform_broadcaster.h> 
#include <tf/transform_listener.h> 
 
using namespace gazebo; 
 
GazeboRosJointStatePublisher::GazeboRosJointStatePublisher() {} 
 
// Destructor 
GazeboRosJointStatePublisher::~GazeboRosJointStatePublisher() { 
    rosnode_->shutdown(); 
} 
 
void GazeboRosJointStatePublisher::Load ( physics::ModelPtr _parent, sdf::ElementPtr _sdf ) { 
    // Store the pointer to the model 
    this->parent_ = _parent; 
    this->world_ = _parent->GetWorld(); 
 
    this->robot_namespace_ = parent_->GetName (); 
    if ( !_sdf->HasElement ( "robotNamespace" ) ) { 
        ROS_INFO ( "GazeboRosJointStatePublisher Plugin missing <robotNamespace>, defaults to \"%s\"", 
                   this->robot_namespace_.c_str() ); 
    } else { 
        this->robot_namespace_ = _sdf->GetElement ( "robotNamespace" )->Get<std::string>(); 
        if ( this->robot_namespace_.empty() ) this->robot_namespace_ = parent_->GetName (); 
    } 
    if ( !robot_namespace_.empty() ) this->robot_namespace_ += "/"; 
    rosnode_ = boost::shared_ptr<ros::NodeHandle> ( new ros::NodeHandle ( this->robot_namespace_ ) ); 
 
    if ( !_sdf->HasElement ( "jointName" ) ) { 
        ROS_ASSERT ( "GazeboRosJointStatePublisher Plugin missing jointNames" ); 
    } else { 
        sdf::ElementPtr element = _sdf->GetElement ( "jointName" ) ; 
        std::string joint_names = element->Get<std::string>(); 
        boost::erase_all ( joint_names, " " ); 
        boost::split ( joint_names_, joint_names, boost::is_any_of ( "," ) ); 
    } 
 
    this->update_rate_ = 100.0; 
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    if ( !_sdf->HasElement ( "updateRate" ) ) { 
        ROS_WARN ( "GazeboRosJointStatePublisher Plugin (ns = %s) missing <updateRate>, defaults to 
%f", 
                   this->robot_namespace_.c_str(), this->update_rate_ ); 
    } else { 
        this->update_rate_ = _sdf->GetElement ( "updateRate" )->Get<double>(); 
    } 
 
    // Initialize update rate stuff 
    if ( this->update_rate_ > 0.0 ) { 
        this->update_period_ = 1.0 / this->update_rate_; 
    } else { 
        this->update_period_ = 0.0; 
    } 
    last_update_time_ = this->world_->GetSimTime(); 
 
    for ( unsigned int i = 0; i< joint_names_.size(); i++ ) { 
        joints_.push_back ( this->parent_->GetJoint ( joint_names_[i] ) ); 
        ROS_INFO ( "GazeboRosJointStatePublisher is going to publish joint: %s", 
joint_names_[i].c_str() ); 
    } 
 
    ROS_INFO ( "Starting GazeboRosJointStatePublisher Plugin (ns = %s)!, parent name: %s", this-
>robot_namespace_.c_str(), parent_->GetName ().c_str() ); 
 
    tf_prefix_ = tf::getPrefixParam ( *rosnode_ ); 
    joint_state_publisher_ = rosnode_->advertise<sensor_msgs::JointState> ( "joint_states",1000 ); 
 
    last_update_time_ = this->world_->GetSimTime(); 
    // Listen to the update event. This event is broadcast every 
    // simulation iteration. 
    this->updateConnection = event::Events::ConnectWorldUpdateBegin ( 
                                 boost::bind ( &GazeboRosJointStatePublisher::OnUpdate, this, _1 ) ); 
} 
 
void GazeboRosJointStatePublisher::OnUpdate ( const common::UpdateInfo & _info ) { 
    // Apply a small linear velocity to the model. 
    common::Time current_time = this->world_->GetSimTime(); 
    double seconds_since_last_update = ( current_time - last_update_time_ ).Double(); 
    if ( seconds_since_last_update > update_period_ ) { 
 
        publishJointStates(); 
 
        last_update_time_+= common::Time ( update_period_ ); 
 
    } 
 
} 
 
void GazeboRosJointStatePublisher::publishJointStates() { 
    ros::Time current_time = ros::Time::now(); 
 
    joint_state_.header.stamp = current_time; 
    joint_state_.name.resize ( joints_.size() ); 
    joint_state_.position.resize ( joints_.size() ); 
    joint_state_.velocity.resize ( joints_.size() ); 
    joint_state_.effort.resize ( joints_.size() ); 
 
 
 
    for ( int i = 0; i < joints_.size(); i++ ) { 
        physics::JointPtr joint = joints_[i]; 
        math::Angle angle = joint->GetAngle ( 0 ); 
        double veloc = joint->GetVelocity ( 0 ); 
        double eff = joint->GetForce ( 0 ); 
 
 
        joint_state_.name[i] = joint->GetName(); 
        joint_state_.position[i] = angle.Radian () ; 
        joint_state_.velocity[i] = veloc ; 
        joint_state_.effort[i] = eff ; 
    } 
    joint_state_publisher_.publish ( joint_state_ ); 
} 



 
124 

simulation.world 

<?xml version='1.0'?> 
<sdf version='1.6'> 
 
  <world name="default"> 
 
    <physics type="ode"> 
      <gravity>0 0 -9.81</gravity> 
      <max_step_size>0.001</max_step_size> 
      <real_time_factor>1</real_time_factor> 
      <real_time_update_rate>10.0</real_time_update_rate> 
      <ode> 
        <solver> 
          <type>quick</type> 
          <iters>100</iters> 
          <sor>1.3</sor> 
        </solver> 
        <constraints> 
          <cfm>0</cfm> 
          <erp>0.2</erp> 
          <contact_max_correcting_vel>100.0</contact_max_correcting_vel> 
          <contact_surface_layer>0.001</contact_surface_layer> 
        </constraints> 
      </ode> 
    </physics> 
 
    <include> 
      <uri>model://ground_plane</uri> 
  </include> 
 
  <include> 
      <uri>model://Monopod</uri> 
  </include>  
 
    <!-- Global light source --> 
    <include> 
      <uri>model://sun</uri> 
    </include> 
 
    <gui fullscreen='0'> 
      <camera name='user_camera'> 
        <pose>4.927360 -4.376610 3.740080 0.000000 0.275643 2.356190</pose> 
        <view_controller>orbit</view_controller> 
      </camera> 
    </gui> 
 
  </world> 
</sdf> 

 

monopodplugin.cc 

#ifndef _MONOPOD_PLUGIN_HH_ 
#define _MONOPOD_PLUGIN_HH_ 
 
#include <gazebo/gazebo.hh> 
#include <gazebo/physics/physics.hh> 
#include <gazebo/transport/transport.hh> 
#include <gazebo/msgs/msgs.hh> 
#include <thread> 
#include "ros/ros.h" 
#include "ros/callback_queue.h" 
#include "ros/subscribe_options.h" 
#include "std_msgs/Float64.h" 
#include <boost/algorithm/string.hpp> 
#include <tf/transform_broadcaster.h> 
#include <tf/transform_listener.h> 
#include <boost/bind.hpp> 
#include <gazebo/gazebo.hh> 
#include <gazebo/physics/physics.hh> 
#include <gazebo/common/common.hh> 
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#include <stdio.h> 
#include <math.h> 
 
namespace gazebo 
{ 
  /// \brief A plugin to control a Monopod sensor. 
  class MonopodPlugin : public ModelPlugin 
  { 
    /// \brief Constructor 
    public: MonopodPlugin() {} 
 
    public: std::string joint_names ;  
 
    /// \brief The load function is called by Gazebo when the plugin is 
    /// inserted into simulation 
    /// \param[in] _model A pointer to the model that this plugin is 
    /// attached to. 
    /// \param[in] _sdf A pointer to the plugin's SDF element. 
 
    /// \brief A node use for ROS transport 
    private: std::unique_ptr<ros::NodeHandle> rosNode; 
 
    /// \brief A ROS subscriber 
    private: ros::Subscriber rosSub; 
 
    /// \brief A ROS callbackqueue that helps process messages 
    private: ros::CallbackQueue rosQueue; 
 
    /// \brief A thread the keeps running the rosQueue 
    private: std::thread rosQueueThread; 
 
    public: void SetJointPosition(const std::string &_jointName, double _position); 
 
    public: virtual void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf) 
    { 
 
      // Safety check 
      if (_model->GetJointCount() == 0) 
      { 
        std::cerr << "Invalid joint count, Monopod plugin not loaded\n"; 
        return; 
      } 
 
      // Store the model pointer for convenience. 
      this->model = _model; 
 
 
      if ( !_sdf->HasElement ( "jointName" ) ) { 
        ROS_ASSERT ( "Plugin missing jointNames to send commands to" ); 
      } else { 
        sdf::ElementPtr element = _sdf->GetElement ( "jointName" ) ; 
        joint_names = element->Get<std::string>(); 
        boost::erase_all ( joint_names, " " ); 
        boost::split ( joint_names_, joint_names, boost::is_any_of ( "," ) ); 
      } 
 
 
      // Initialize ros, if it has not already been initialized. 
      if (!ros::isInitialized()) 
      { 
        int argc = 0; 
        char **argv = NULL; 
        ros::init(argc, argv, "gazebo_client", 
        ros::init_options::NoSigintHandler); 
      } 
 
      // Create our ROS node. This acts in a similar manner to 
      // the Gazebo node 
      this->rosNode.reset(new ros::NodeHandle("gazebo_client")); 
 
      // Create a named topic, and subscribe to it. 
      ros::SubscribeOptions so = 
      ros::SubscribeOptions::create<std_msgs::Float64>( 
      "/" + this->model->GetName() + "/hip_torque_cmd", 
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      1, 
      boost::bind(&MonopodPlugin::OnRosMsg, this, _1), 
      ros::VoidPtr(), &this->rosQueue); 
      this->rosSub = this->rosNode->subscribe(so); 
 
      // Spin up the queue helper thread. 
      this->rosQueueThread = 
      std::thread(std::bind(&MonopodPlugin::QueueThread, this)); 
 
      model->GetJoint("hip")->SetPosition(0 , 0.0) ; 
      model->GetJoint("z")->SetPosition(0 , 0.1) ; //to set the initial height 
      model->GetJoint("x")->SetVelocity(0 , 0.0) ; //to set the initial velocity 
 
    } 
 
    /// \brief Set the hip torque  
    /// \param[in] _vel New target velocity 
    public: void SetTorque(const double &_trq) 
    { 
      model->GetJoint("hip")->SetForce( 0 ,_trq);     
    } 
 
    /// \brief Handle an incoming message from ROS 
    /// \param[in] _msg A float value that is used to set the velocity 
    /// of the Monopod 
    public: void OnRosMsg(const std_msgs::Float64ConstPtr &_msg) 
    { 
        this->SetTorque(_msg->data); 
 
    } 
 
    /// \brief ROS helper function that processes messages 
    private: void QueueThread() 
    { 
        static const double timeout = 0.01; 
        while (this->rosNode->ok()) 
      { 
        this->rosQueue.callAvailable(ros::WallDuration(timeout)); 
      } 
    } 
 
        /// \brief Pointer to the model. 
    private: physics::ModelPtr model; 
 
    private: std::vector<std::string> joint_names_; 
 
  }; 
 
  // Tell Gazebo about this plugin, so that Gazebo can call Load on this plugin. 
  GZ_REGISTER_MODEL_PLUGIN(MonopodPlugin) 
} 
#endif 

 

model.sdf 

<?xml version='1.0'?> 
<sdf version='1.6'> 
  <model name="Assem1"> 
    <static>false</static> 
 
  <link name="Lower_leg"> 
      <pose>0.3 0 0.2 0 0 0</pose> 
      <must_be_base_link>0</must_be_base_link>  
      <inertial> 
        <pose>0 0 0.00903 0 0 0</pose> 
        <mass>0.338</mass> 
        <inertia> 
          <ixx>0.00409816</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.00409816</iyy> 
          <iyz>0</iyz> 
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          <izz>0.00409816</izz> 
        </inertia> 
      </inertial> 
      <collision name="Lower_leg_collision"> 
        <geometry> 
           <cylinder> 
              <radius>.004</radius> 
              <length>.4</length> 
            </cylinder> 
        </geometry> 
        <surface> 
          <friction> 
            <ode> 
              <mu>10000.8</mu> 
              <mu2>10000.8</mu2> 
            </ode> 
          </friction> 
        </surface> 
      </collision> 
      <visual name="Lower_leg_visual"> 
        <material> 
          <ambient>10 0 0 10</ambient> 
          <diffuse>10 0 0 10</diffuse> 
        </material> 
        <geometry> 
           <cylinder> 
              <radius>.004</radius> 
              <length>.4</length> 
            </cylinder> 
        </geometry> 
      </visual> 
    </link> 
 
    <link name="Upper_leg"> 
      <pose>0.3 0 0.35 0 0 0</pose> 
      <must_be_base_link>0</must_be_base_link> 
      <inertial> 
        <pose>0 0 0.00193 0 0 0</pose> 
        <mass>0.513</mass> 
        <inertia> 
<!--           <ixx>0.0240557107408</ixx> 
 -->       
          <ixx>0.0240557107408</ixx>     
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.0240557107408</iyy> 
          <iyz>0</iyz> 
          <izz>0.0240557107408</izz> 
        </inertia> 
      </inertial> 
      <collision name="Upper_leg_collision"> 
        <geometry> 
            <cylinder> 
              <radius>.01</radius> 
              <length>.1</length> 
            </cylinder> 
        </geometry> 
      </collision> 
      <visual name="Upper_leg_visual"> 
        <material> 
          <ambient>10 0 0 10</ambient> 
          <diffuse>10 0 0 10</diffuse> 
        </material> 
        <geometry> 
           <cylinder> 
              <radius>.01</radius> 
              <length>.1</length> 
            </cylinder> 
        </geometry> 
      </visual> 
    </link> 
 
 
    <joint name="spring" type="prismatic"> 
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      <parent>Upper_leg</parent> 
      <child>Lower_leg</child> 
      <pose>0 0 0 0 0 0</pose> 
      <axis> 
        <xyz>0 0 1</xyz> 
      <dynamics> 
        <damping>0.05</damping>          
          <friction>0.2</friction>       
        <spring_reference>0.0</spring_reference> 
        <spring_stiffness>6279.0</spring_stiffness> 
      </dynamics> 
        <limit> 
          <upper>0.2</upper> 
          <lower>0.0</lower> 
          <effort>1</effort> 
        </limit> 
      </axis> 
    </joint> 
  
 
    <link name="Body"> 
      <pose>0.3 0 0.5 0 0 0</pose> 
      <inertial> 
        <mass>6.7</mass> 
        <inertia> 
          <ixx>0.002048</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.00182272</iyy> 
          <iyz>0</iyz> 
          <izz>0.00124928</izz> 
        </inertia> 
      </inertial> 
      <collision name="Body_collision"> 
        <geometry> 
           <box> 
            <size>0.3 0.3 0.3</size> 
          </box> 
        </geometry> 
      </collision> 
      <visual name="Body_visual"> 
        <material> 
          <ambient>1 0 0 1</ambient> 
          <diffuse>1 0 0 1</diffuse> 
        </material> 
        <geometry> 
           <box> 
            <size>0.3 0.3 0.3</size> 
          </box> 
        </geometry> 
      </visual> 
    </link> 
 
    <joint name="hip" type="revolute"> 
      <parent>Body</parent> 
      <child>Upper_leg</child> 
      <pose>0 0 0 0 0 0</pose> 
      <axis> 
        <xyz>1 0 0</xyz> 
        <dynamics> 
          <damping>0.005</damping> 
          <friction>0.1</friction> 
        </dynamics> 
        <limit> 
          <upper>0.5</upper> 
          <lower>-0.5</lower> 
          <effort>4.812</effort> 
        </limit> 
      </axis> 
    </joint> 
 
    <link name="Base4"> 
      <pose>0.125 0 0.575 0 0 0</pose> 
      <must_be_base_link>0</must_be_base_link> 
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      <inertial> 
        <mass>0.001</mass> 
        <inertia> 
          <ixx>0.00177083333333334</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.00208333333333333</iyy> 
          <iyz>0</iyz> 
          <izz>0.00177083333333334</izz> 
        </inertia> 
      </inertial> 
      <collision name="Base4_collision"> 
        <geometry> 
          <box> 
            <size>0.05 0.05 0.2</size> 
          </box> 
        </geometry> 
        <surface> 
          <friction> 
            <ode> 
              <mu>0.0</mu> 
              <mu2>0.0</mu2> 
            </ode> 
          </friction> 
        </surface> 
      </collision> 
      <visual name="Base4_visual"> 
        <material> 
          <ambient>1 0 0 1</ambient> 
          <diffuse>1 0 0 1</diffuse> 
        </material> 
        <geometry> 
           <box> 
            <size>0.05 0.05 0.2</size> 
          </box> 
        </geometry> 
      </visual> 
    </link> 
 
    <joint name="Base4-Body" type="fixed"> 
      <parent>Base4</parent> 
      <child>Body</child> 
      <pose>-0.15 0 0 0 0 0</pose> 
    </joint> 
 
     <link name="Base3"> 
      <pose>0 0 0.575 0 0 0</pose> 
      <must_be_base_link>0</must_be_base_link> 
      <inertial> 
        <mass>0.001</mass> 
        <inertia> 
          <ixx>0.00260416666666667</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.0060416666666667</iyy> 
          <iyz>0</iyz> 
          <izz>0.004166666666667</izz> 
        </inertia> 
      </inertial> 
      <collision name="Base3_collision"> 
        <geometry> 
          <box> 
            <size>0.2 0.05 0.05</size> 
          </box> 
        </geometry> 
        <surface> 
          <friction> 
            <ode> 
              <mu>0.0</mu> 
              <mu2>0.0</mu2> 
            </ode> 
          </friction> 
        </surface> 
      </collision> 
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      <visual name="Base3_visual"> 
        <material> 
          <ambient>1 0 0 1</ambient> 
          <diffuse>1 0 0 1</diffuse> 
        </material> 
        <geometry> 
           <box> 
            <size>0.2 0.05 0.05</size> 
          </box> 
        </geometry> 
      </visual> 
    </link> 
 
    <joint name="z" type="prismatic"> 
      <parent>Base3</parent> 
      <child>Base4</child> 
      <pose>-0.025 0 0 0 0 0</pose> 
      <axis> 
        <xyz>0 0 1</xyz> 
        <dynamics> 
          <damping>0.01</damping> 
          <friction>0.01</friction> 
        </dynamics> 
        <limit> 
          <upper>0.1</upper> 
          <lower>0.1</lower> 
          <effort>1</effort> 
        </limit> 
      </axis> 
    </joint> 
 
    <link name="Base2"> 
      <pose>0 0 0.525 0 0 0</pose> 
      <inertial> 
        <mass>12.5</mass> 
        <inertia> 
          <ixx>26.00520833333333334</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>26.0442708333334</iyy> 
          <iyz>0</iyz> 
          <izz>26.0442708333334</izz> 
        </inertia> 
      </inertial> 
      <collision name="Base2_collision"> 
        <geometry> 
          <box> 
            <size>.05 50 .05</size> 
          </box> 
        </geometry> 
        <surface> 
          <friction> 
            <ode> 
              <mu>0</mu> 
              <mu2>0</mu2> 
            </ode> 
          </friction> 
        </surface> 
      </collision> 
      <visual name="Base2_visual"> 
        <material> 
          <ambient>1 0 0 1</ambient> 
          <diffuse>1 0 0 1</diffuse> 
        </material> 
        <geometry> 
          <box> 
            <size>.05 50 .05</size> 
          </box> 
        </geometry> 
      </visual> 
    </link> 
 
    <joint name="x" type="prismatic"> 
      <parent>Base2</parent> 
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      <child>Base3</child> 
      <pose>0 0 -0.025 0 0 0</pose> 
      <axis> 
        <xyz>0 1 0</xyz> 
        <dynamics> 
          <damping>0.0</damping> 
          <friction>0.0</friction> 
        </dynamics> 
        <limit> 
          <upper>0</upper> 
          <lower>0</lower> 
          <effort>1</effort> 
        </limit> 
      </axis> 
    </joint> 
 
    <link name="Base1"> 
        <pose>0 0 0.25 0 0 0</pose> 
      <inertial> 
        <mass>1.25</mass> 
        <inertia> 
          <ixx>0.0263020833333333</ixx> 
          <ixy>0</ixy> 
          <ixz>0</ixz> 
          <iyy>0.0520833333333333</iyy> 
          <iyz>0</iyz> 
          <izz>0.0263020833333333</izz> 
        </inertia> 
      </inertial> 
      <collision name="Base1_collision"> 
        <geometry> 
          <box> 
            <size>.05 .05 .5</size> 
          </box> 
        </geometry> 
      </collision> 
      <visual name="Base1_visual"> 
        <material> 
          <ambient>1 0 0 1</ambient> 
          <diffuse>1 0 0 1</diffuse> 
        </material> 
        <geometry> 
          <box> 
            <size>.05 .05 .5</size> 
          </box> 
        </geometry> 
      </visual> 
    </link> 
 
    <joint name="Base1-Base2" type="fixed"> 
      <parent>Base1</parent> 
      <child>Base2</child> 
      <pose>0 0 -0.025 0 0 0</pose> 
    </joint> 
 
    <joint type="fixed" name="baseworld"> 
      <parent>world</parent> 
      <child>Base1</child> 
      <pose>0 0 -0.25 0 0 0</pose> 
    </joint> 
 
    <plugin name="joint_state_publisher" filename="libgazebo_ros_joint_state_publisher.so"> 
      <jointName>hip, spring</jointName> 
      <updateRate>1000.0</updateRate> 
      <alwaysOn>true</alwaysOn> 
    </plugin> 
 
    <plugin name="commands" filename="libtreadmill_plugin.so"/> 
 
 
  </model> 
</sdf> 
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gazebo_sim.launch 

<launch> 
 
    <!-- these are the arguments you can pass this launch file, for example paused:=true --> 
  <arg name="paused" default="true"/> 
  <arg name="use_sim_time" default="true"/> 
  <arg name="gui" default="true"/> 
  <arg name="headless" default="false"/> 
  <arg name="debug" default="false"/> 
 
  <!-- We resume the logic in empty_world.launch, changing only the name of the world to be launched -
-> 
  <include file="$(find gazebo_ros)/launch/empty_world.launch"> 
    <arg name="world_name" value="$(find monopod_exp_final)/worlds/simulation.world"/> 
    <arg name="debug" value="$(arg debug)" /> 
    <arg name="gui" value="$(arg gui)" /> 
    <arg name="paused" value="$(arg paused)"/> 
    <arg name="use_sim_time" value="$(arg use_sim_time)"/> 
    <arg name="headless" value="$(arg headless)"/> 
  </include> 
 
 
    <node name="position_controller" pkg="pid" type="controller" output="screen" > 
      <param name="node_name" value="position_controller" /> 
      <param name="Kp" value="0.3" /> 
      <param name="Ki" value="0.0" /> 
      <param name="Kd" value="0.2" /> 
      <param name="upper_limit" value="28" /> 
      <param name="lower_limit" value="-28" /> 
      <param name="windup_limit" value="10" /> 
      <param name="diagnostic_period" value="0.25" /> 
      <param name="max_loop_frequency" value="100.0" /> 
      <param name="min_loop_frequency" value="100.0" /> 
    </node> 
 
    <node name="Master" pkg="legged_robot" type="High_level_controller" output="screen" /> 
 
    <node name="Command_Interface" pkg="legged_robot" type="Gazebo_Actuation_Interface" 
output="screen" /> 
 
    <node name="State_Callback_Interface" pkg="legged_robot" type="Gazebo_Sensors_Interface" 
output="screen" /> 
 
    <node name="rqt_plot" pkg="rqt_plot" type="rqt_plot" 
    args="/state/data /setpoint/data" /> 
 
</launch> 

rosbag.m 

    clear all ;  
    bagfile = 'mybagfile.bag'; 
    bag = rosbag(bagfile); 
    % Dislpay Available Topics 
    bag.AvailableTopics 
    % Select each Topic 
    bagselect1 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/setpoint'); 
    bagselect2 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/state'); 
    bagselect3 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/control_effort'); 
%   bagselect4 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/botasys'); 
%   bagselect5 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/filtered_botasys'); 
    bagselect6 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/velocity_estimation'); 
%   bagselect7 = select(bag, 'Time',  [bag.StartTime bag.EndTime], 'Topic', '/IMU_feedback'); 
     
    % Store total number of messages for each topic 
    all_msgs1 = bagselect1.NumMessages; 
    all_msgs2 = bagselect2.NumMessages; 
    all_msgs3 = bagselect3.NumMessages; 
%   all_msgs4 = bagselect4.NumMessages; 
%   all_msgs5 = bagselect5.NumMessages; 
    all_msgs6 = bagselect6.NumMessages; 
%   all_msgs7 = bagselect7.NumMessages; 
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    % Read messages from bag 
    msgs1(1:all_msgs1) = readMessages(bagselect1, 1:all_msgs1); 
    msgs2(1:all_msgs2) = readMessages(bagselect2, 1:all_msgs2); 
    msgs3(1:all_msgs3) = readMessages(bagselect3, 1:all_msgs3); 
%   msgs4(1:all_msgs4) = readMessages(bagselect4, 1:all_msgs4); 
%   msgs5(1:all_msgs5) = readMessages(bagselect5, 1:all_msgs5); 
    msgs6(1:all_msgs6) = readMessages(bagselect6, 1:all_msgs6); 
%   msgs7(1:all_msgs7) = readMessages(bagselect7, 1:all_msgs7); 
         
     
    % Convert messages to data setpoint 
    for i = 1:all_msgs1; setpoint(i)= msgs1{i}.Data; end 
    % Convert messages to data state 
    for i = 1:all_msgs2; angle(i)= msgs2{i}.Data; end 
    % Convert messages to data control_effort 
    for i = 1:all_msgs3; control_effort(i)= msgs3{i}.Data; end 
    % Convert messages to data force sensor 
%   for i = 1:all_msgs4; Force_x(i)= msgs4{i}.wrench.force.x; end 
%   for i = 1:all_msgs4; Force_y(i)= msgs4{i}.wrench.force.y; end 
%   for i = 1:all_msgs4; Force_z(i)= msgs4{i}.wrench.force.z; end 
%   for i = 1:all_msgs4; Torque_x(i)= msgs4{i}.wrench.torque.x; end 
%   for i = 1:all_msgs4; Torque_y(i)= msgs4{i}.wrench.torque.x; end 
%   for i = 1:all_msgs4; Torque_z(i)= msgs4{i}.wrench.torque.x; end 
%   Convert messages to data filtered force sensor 
%   for i = 1:all_msgs5; Filtered_Force_x(i)= msgs5{i}.wrench.force.x; end 
%   for i = 1:all_msgs5; Filtered_Force_y(i)= msgs5{i}.wrench.force.y; end 
%   for i = 1:all_msgs5; Filtered_Force_z(i)= msgs5{i}.wrench.force.z; end 
%   for i = 1:all_msgs5; Filtered_Torque_x(i)= msgs5{i}.wrench.torque.x; end 
%   for i = 1:all_msgs5; Filtered_Torque_y(i)= msgs5{i}.wrench.torque.x; end 
%   for i = 1:all_msgs5; Filtered_Torque_z(i)= msgs5{i}.wrench.torque.x; end 
%   Convert messages to data compression 
    for i = 1:all_msgs6; velocity_est(i)= msgs6{i}.Data; end 
%   Convert messages to data IMU 
%   for i = 1:all_msgs7; acc_x(i)= msgs7{i}.accX; end 
%   for i = 1:all_msgs7; acc_y(i)= msgs7{i}.accY; end 
%   for i = 1:all_msgs7; acc_z(i)= msgs7{i}.accZ; end 
%   for i = 1:all_msgs7; gyro_x(i)= msgs7{i}.gyroX; end 
%   for i = 1:all_msgs7; gyro_y(i)= msgs7{i}.gyroY; end 
%   for i = 1:all_msgs7; gyro_z(i)= msgs7{i}.gyroZ; end 
     
     
    Time_setpoint = bagselect1.MessageList(:,1).Time; 
    Time_state = bagselect2.MessageList(:,1).Time; 
    Time_control_effort = bagselect3.MessageList(:,1).Time; 
%   Time_force = bagselect4.MessageList(:,1).Time; 
%   Time_fil_force = bagselect5.MessageList(:,1).Time; 
    Time_vel = bagselect6.MessageList(:,1).Time; 
%   Time_imu = bagselect7.MessageList(:,1).Time; 
  
    clear all_msgs1 all_msgs2 all_msgs3 all_msgs4 all_msgs5 all_msgs6 all_msgs7 ans bag bagfile i 
msgs1 msgs2 msgs3 msgs4 msgs5 msgs6 msgs7   bagselect1 bagselect2 bagselect3 bagselect4 bagselect5 
bagselect6 bagselect7  ;  
    save('mybagfile'); 
     
    clear all  
% end 

 
 

Gazebo_sensors_interface.cpp 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include <math.h>  
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#include "fcntl.h" 
#include <stdint.h> 
#include <inttypes.h> 
#include "stdio.h" 
#include <iostream> 
#include <string> 
#include <sstream> 
#include "ros/ros.h" 
#include "legged_robot/JointState.h" 
#include "std_msgs/Float64.h" 
 
using namespace std; 
// Global variables 
float pi = 4.0*atan(1.0); 
double gposition[90], gvelocity[90] ;  
float position, compression, hip_velocity, spring_velocity ;  
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
    exit(1); 
} 
 
// Callback function for reception of position anf spring compression value from gazebo joint_states 
topic 
void GazeboCallback(const legged_robot::JointState::ConstPtr& array1) 
{ 
 int i = 0; 
 for(std::vector<double>::const_iterator it = array1->position.begin(); it != array1-
>position.end(); ++it) 
 { 
  gposition[i] = *it; 
  i++; 
 } 
  i = 0; 
  for(std::vector<double>::const_iterator it = array1->velocity.begin(); it != array1->velocity.end(); 
++it) 
  { 
    gvelocity[i] = *it; 
    i++; 
  } 
 compression = (float) gposition[2]; 
 position = (float) gposition[0]; 
    spring_velocity = (float) gvelocity[2]; 
    hip_velocity =  (float) gvelocity[0]; 
return; 
} 
 
// Main Function 
int main(int argc, char **argv) 
{ 
 
  // Initialize ROS node 
  ros::init(argc, argv, "Gazebo_Actuation_Interface"); 
  ros::NodeHandle n; 
 
  ros::Subscriber Gazebo_sub = n.subscribe("/Assem1/joint_states", 1000, GazeboCallback); 
 
  ros::Publisher angle2_pub = n.advertise<std_msgs::Float64>("/angle", 1000); 
  ros::Publisher spring_vel_pub = n.advertise<std_msgs::Float64>("/spring_velocity", 1000); 
  ros::Publisher hip_vel_pub = n.advertise<std_msgs::Float64>("/hip_velocity", 1000); 
  ros::Publisher compression_pub = n.advertise<std_msgs::Float64>("/compression", 1000); 
  ros::Rate loop_rate(2000); // Control rate in Hz 
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
 
  std_msgs::Float64 pos; 
  std_msgs::Float64 comp; 
  std_msgs::Float64 svel, hvel; 
 
           
  while (ros::ok()) 
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  { 
 
 pos.data = position ;  
    angle2_pub.publish(pos); 
 
    svel.data = spring_velocity ; 
    spring_vel_pub.publish(svel); 
 
    hvel.data = hip_velocity ; 
    hip_vel_pub.publish(hvel); 
 
 comp.data = compression ;  
 compression_pub.publish(comp)  ; 
 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

Gazebo_actuation_interface.cpp 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include <math.h>  
#include "fcntl.h" 
#include <stdint.h> 
#include <inttypes.h> 
#include "stdio.h" 
#include <iostream> 
#include <string> 
#include <sstream> 
#include "ros/ros.h" 
#include "std_msgs/Float64.h" 
#include "std_msgs/Float32.h" 
 
 
using namespace std; 
// Global variables 
float pi = 4.0*atan(1.0); 
float command ;  
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
    exit(1); 
} 
 
// Callback function for reception of position anf spring compression value from gazebo joint_states 
topic 
void CommandCallback(const std_msgs::Float64& com) 
{ 
 command = com.data*4.8/28; 
return; 
} 
 
// Main Function 
int main(int argc, char **argv) 
{ 
 
  // Initialize ROS node 
  ros::init(argc, argv, "Gazebo_Actuation_Interface"); 
  ros::NodeHandle n; 
 
  ros::Subscriber command_sub = n.subscribe("/control_effort", 1000, CommandCallback); 
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  ros::Publisher command_pub = n.advertise<std_msgs::Float64>("/Assem1/hip_torque_cmd", 1000); 
 
  ros::Rate loop_rate(2000); // Control rate in Hz 
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
 
  std_msgs::Float64 new_command; 
           
  while (ros::ok()) 
  { 
 new_command.data = command; 
 command_pub.publish(new_command); 
 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

 

ros_speed.cpp 

#include "arpa/inet.h" 
#include "netinet/in.h" 
#include "stdio.h" 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "unistd.h" 
#include "string.h" 
#include "stdlib.h" 
#include "signal.h" 
#include "unistd.h" 
#include "fcntl.h" 
#include <stdint.h> 
#include <inttypes.h> 
#include "stdio.h" 
#include "string.h" 
#include "stdlib.h" 
#include <inttypes.h> 
#include "ros/ros.h" 
#include <sstream> 
#include <iostream> 
#include <string> 
#include "std_msgs/Float64.h" 
 
// UDP buffer length 
#define BUFLEN 512 
// UDP port to receive from 
#define PORT 2012                                             
// Asynchronous UDP communication 
#define ASYNC 
// UDP port to send data to 
#define PORT_BRD 2011                                           
// Tiva Back Left Leg board IP 
#define BRD_IP "192.168.1.82"                                    
 
using namespace std; 
// Global variables 
bool gotMsg = false; // Flag set high when message is received from UDP 
int sock; // The socket identifier for UDP Rx communication 
uint32_t encoderPos = 0;  // Place the received encoder value here 
int msgs = 0; // Incoming message counter 
struct sockaddr_in si_pwm;  // Struct for UDP send data socket 
ssize_t SendPWMBytes = 2;  // Number of bytes to send for PWM command 
char SendBuffer[6];  // UDP Send Buffer 
int broad; // The socket identifier for UDP Tx communication 
int slen=sizeof(si_pwm);  // Size of sockaddr_in strut 
 
// Generic error function 
void error(char *s) 
{ 
    perror(s); 
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    exit(1); 
} 
 
// Signal handler for asynchronous UDP 
void sigio_handler(int sig) 
{ 
  char buffer[BUFLEN]=""; 
  unsigned char val[4]; 
  struct sockaddr_in si_other; 
  unsigned int slen=sizeof(si_other); 
  ssize_t rcvbytes = 0; 
  // Receive available bytes from UDP socket 
  if ((rcvbytes = recvfrom(sock, &buffer, BUFLEN, 0, (struct sockaddr *)&si_other, &slen))==-1) 
    error("recvfrom()"); 
  else 
  { 
    // Parse data , 1 int32 value 
    if(buffer[0] == 0x42) 
    { 
      //ROS_INFO(" received"); 
      val[3] = (unsigned char)buffer[4]; 
      val[2] = (unsigned char)buffer[3]; 
      val[1] = (unsigned char)buffer[2]; 
      val[0] = (unsigned char)buffer[1]; 
      memcpy(&encoderPos, &val, 4); 
      // Raise flag that we received a message 
      gotMsg = true; 
    } 
  } 
} 
 
// Function to enable asynchronous UDP communication 
int enable_asynch(int sock) 
{ 
  int stat = -1; 
  int flags; 
  struct sigaction sa; 
  flags = fcntl(sock, F_GETFL); 
  fcntl(sock, F_SETFL, flags | O_ASYNC);  
  sa.sa_flags = 0; 
  sa.sa_handler = sigio_handler; 
  sigemptyset(&sa.sa_mask); 
 
  if (sigaction(SIGIO, &sa, NULL)) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETOWN, getpid()) < 0) 
    error("Error:"); 
 
  if (fcntl(sock, F_SETSIG, SIGIO) < 0) 
    error("Error:"); 
  return 0; 
} 
 
// Callback function for reception of PWM message from topic 
void freqCallback(const std_msgs::Float64::ConstPtr& msg) 
{ 
 // Extract the duty cycle value and send it to the Tiva board via UDP 
  SendBuffer[1] = (int8_t) msg->data; 
  if (sendto(broad, SendBuffer, SendPWMBytes, 0, (struct sockaddr *)&si_pwm, slen)==-1) 
   error("sendto()"); 
    // Print-out for debugging 
} 
 
// Main Function 
int main(int argc, char **argv) 
{ 
  struct sockaddr_in si_me, si_other; 
  int i, slen=sizeof(si_other), msg_count; 
  char buf[BUFLEN], strout[28]; 
  string inputS; 
     
  msg_count = 0; 
  memset(SendBuffer, 0, 6); 
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  // Initialize UDP socket for data transmission 
  if ((broad=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
    error("socket"); 
       
  memset((char *) &si_pwm, 0, sizeof(si_pwm)); 
  si_pwm.sin_family = AF_INET; 
  si_pwm.sin_port = htons(PORT_BRD); 
      
  if (inet_aton(BRD_IP, &si_pwm.sin_addr)==0) { 
    error("inet_aton() failed\n"); 
    exit(1); 
  } 
     
  SendBuffer[0] = 0x31; 
 
  // Initialize ROS node 
  ros::init(argc, argv, "ros_speed"); 
  ros::NodeHandle n; 
 
 
  // Initialize the publisher for Encoder data post 
  ros::Publisher motor_interface_pub = n.advertise<std_msgs::Float64>("state", 1000); 
  // Initialize the subscriber for PWM data reception 
  ros::Subscriber motor_pid_sub = n.subscribe("control_effort", 1000, freqCallback); 
     
  ros::Rate loop_rate(10000); 
 
  // Wait for ROS node to initialize 
  while (!ros::ok()); 
     
  // Initialize UDP socket for data reception 
  if ((sock=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP))==-1) 
    error("socket"); 
 
  memset((char *) &si_me, 0, sizeof(si_me)); 
  si_me.sin_family = AF_INET; 
  si_me.sin_port = htons(PORT); 
  si_me.sin_addr.s_addr = htonl(INADDR_ANY); 
  if (bind(sock, (struct sockaddr *)&si_me, sizeof(si_me))==-1) 
    error("bind"); 
 
  enable_asynch(sock); 
     
  ROS_INFO("Starting communication with TiVa board."); 
  ROS_INFO("Communication with TiVa board established."); 
 
  std_msgs::Float64 encoder_msg; 
  encoder_msg.data = 0.0; 
     
  while (ros::ok()) 
  { 
    // If we got a new message, publish to topic and print values every 100 messages 
    if(gotMsg) 
    { 
      encoder_msg.data = encoderPos*60.0*120000000.0/(8000000.0*2000.0)*(3.14/30.0)*0.125; // no need 
to add reduction, as we receive mesurements on the belt revolution axis 
      motor_interface_pub.publish(encoder_msg); 
      //ROS_INFO("I heard: [%f]", encoder_msg.data); 
      gotMsg = false; 
    } 
    ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
  return 0; 
} 

ros_read_vel.cpp 

#include "stdio.h" 
#include "string.h" 
#include "stdlib.h" 
#include <inttypes.h> 



 
139 

#include "ros/ros.h" 
#include <iostream> 
#include <string> 
#include <sstream> 
#include "std_msgs/Float64.h" 
 
using namespace std; 
 
// Global variables 
std_msgs::Float64 position_msg; 
 
int main(int argc, char **argv) 
{ 
  float rpos = 0.0; 
  string inputS; 
 
  // Initialize ROS node 
  ros::init(argc, argv, "ros_read_vel"); 
  ros::NodeHandle n; 
  // Publish for desired position message 
  ros::Publisher read_position_pub = n.advertise<std_msgs::Float64>("setpoint", 1000); 
  ros::Rate loop_rate(1); 
  position_msg.data = 0.0; 
  ROS_INFO("Reading Desired Velocity."); 
  while (ros::ok()) 
  { 
 // Read a line from standard input and parse the desired position 
 getline (cin,inputS); 
 if (inputS == "q") 
 { 
  rpos = 0.0; 
     position_msg.data = rpos; 
  read_position_pub.publish(position_msg);   
        break; 
    } 
    else if (inputS == "kill") 
    { 
  position_msg.data = -1; 
  read_position_pub.publish(position_msg); 
    } 
 else if (inputS == "enable") 
 { 
  position_msg.data = -2; 
  read_position_pub.publish(position_msg); 
 } 
    else if (inputS == "ccw") 
 { 
        position_msg.data = -3; 
  read_position_pub.publish(position_msg); 
 } 
 else if (inputS == "cw") 
 { 
  position_msg.data = -4; 
  read_position_pub.publish(position_msg); 
 } 
 else 
 {  
  stringstream ss; 
  ss<<inputS; 
  ss>>rpos; //convert string into int and store it in "asInt" 
  ss.str(""); //clear the stringstream 
  ss.clear();  
   
  if ((rpos != 0.0) || (rpos == 0.0 && inputS == "0")) 
  { 
   //cout << "Read : " << rpos << endl; 
   // Publish the received desired position 
   position_msg.data = rpos; 
   read_position_pub.publish(position_msg); 
  } 
 } 
 ros::spinOnce(); 
    loop_rate.sleep(); 
  } 
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  return 0; 
} 
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Appendix B 
 

This appendix contains information and datasheets of the various of-the-shelf components 

that were utilized for the purposes of this thesis.  
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