
Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών
Τοµέας Μηχανολογικών Κατασκευών και Αυτοµάτου Ελέγχου
Εργαστήριο Αυτοµάτου Ελέγχου και Ρύθµισης Μηχανών και

Εγκαταστάσεων

Διπλωµατική Εργασία
Σχεδιασµός και Ανάπτυξη Συστήµατος

SLAM για την ταυτόχρονη χαρτογράφηση
και προσδιορισµό θέσης µε πολλαπλά

τροχοφόρα ροµπότ.

Συγγραφέας:
Νίκολαος Κούκης
A.M: 02111068

Επιβλέπων:
Καθηγητής Κωνσταντίνος

Κυριακόπουλος
Επιβλέπων:

Δρ. Γεώργιος Καρράς

Ιούνιος 2017

Ευχαριστίες

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κ. Κώστα
Κυριακόπουλο, για την πολύπλευρη συνεισφορά του καθ' όλη την διάρκεια της
διπλωµατικής καθώς και για την ευκαιρία που µου έδωσε να είµαι µέλος της οµάδας
του CSL.

Ευχαριστώ τον Γιώργο Καρρά για την πολύτιµη βοήθεια αλλά και για την συνολική
επίβλεψη αυτής της διπλωµατικής εργασίας καθώς και τους Σαχάµπ Χεσµάτι,
Πάνο Μαράντο και Χαράλαµπο Μπεχλιούλη για τις ενδιαφέρουσες συζητήσεις και
συµβουλές τους.

Ευχαριστώ τα µέλη του εργαστηρίου του CSL (και πλέον φίλους µου) Γιώργο, Χρήστο,
Μιχάλη, Κώστα, Παναγιώτη, Μπάµπη.

Ευχαριστώ επίσης τους φίλους µου Χρήστο, Κώστα, Πάνο, Άγγελο για την
καθηµερινή ενθάρρυνση και υποστήριξη τους.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς µου Λεωνίδα και Γιούλα και τα αδέλφια
µου Παναγιώτη, Χρήστο και Βαγγέλη για όλα όσα µου έχουν προσφέρει µέχρι
σήµερα. Τίποτα από όλα αυτά δεν θα ήταν εφικτό χωρίς εσάς. Ευχαριστώ.

3

Περίληψη

Η παρούσα έκθεση αποτελεί την αναφορά της διπλωµατικής εργασίας µε θέµα
"Σχεδιασµός και ανάπτυξη συστήµατος SLAM για την ταυτόχρονη χαρτογράφηση
και προσδιορισµό θέσης σε πολλαπλά τροχοφόρα ροµπότ". Κατά τη διάρκεια αυτής,
προχωρήσαµε στα παρακάτω:

• Μελέτη και σύγκριση βασικών αλγορίθµων SLAM (µε ένα ή πολλαπλά ροµποτ)
µε τελικό σκοπό την επιλογή της καλύτερης µε βάση τις συνθήκες υπό τις
οποίες θα εκτελέσουµε SLAM. Η µέθοδος SLAM ενός ροµποτ που επιλέχθηκε
και τελικά υλοποιήθηκε µε επιτυχία είναι το graphSLAM.

• Ανάπτυξη αλγορίθµων graphSLAM ενός ροµποτ µέσω του λογισµικού
ροµποτικής MRPT1. Συµπληρωµατικά υλοποιήθηκαν επεκτάσεις αυτού µε
χρήση του λογισµικού ROS2, για online χρήση των αλγορίθµων (εκτέλεση
του αλγορίθµου παράλληλα µε την απόκτηση των δεδοµένων από τους
αισθητήρες). Ο κώδικας που αναπτύχθηκε διατίθενται ως ανοιχτό λογισµικό
(open-source) στην σελίδα του MRPT και µέσω του github3.

• Υλοποίηση συστήµατος επικοινωνίας (ad-hoc) µεταξύ τροχοφόρων ροµπότ για
την αποτελεσµατική ανταλλαγή µετρήσεων/δεδοµένων και την συνεργατική
εκτέλεση SLAM.

• Υλοποίηση αλγορίθµου για την συνεργατική χαρτογράφηση και προσδιορισµό
θέσης πολλαπλών τροχοφόρων ροµπότ (Multi-robot SLAM).

• Ενδελεχής έλεγχος των αναπτυσσόµενων αλγορίθµων στο περιβάλλον
προσοµοίωσης Gazebo4 καθώς και σε πραγµατικές συνθήκες µέσω πειραµάτων
που πραγµατοποιήθηκαν µε ένα και µε περισσότερα ροµποτ.

1http://www.mrpt.org
2http://www.ros.org
3https://github.com/bergercookie/mrpt
4http://gazebosim.org

5

http://www.mrpt.org
http://www.ros.org
https://github.com/bergercookie/mrpt
http://gazebosim.org
http://www.mrpt.org
http://www.ros.org
https://github.com/bergercookie/mrpt
http://gazebosim.org

N T U A

S M E
S M D A C

C S L

Diploma Thesis
Design and Development of Single and

Multi-Robot Simultaneous Localization and
Mapping (SLAM) Algorithms

Author:
Nikolaos K
UIN: 02111068

Supervisor:
Professor Kostantinos

K
Supervisor:

Dr. George K

June 2017

Contents

1 Introduction 13
1.1 SLAM common applications and usages . 14

2 Literature Review 17
2.1 Single-Robot SLAM . 17

2.1.1 KF-SLAM . 19
2.1.2 PF-SLAM . 24
2.1.3 Artificial Intelligence SLAM - Topological SLAM 25
2.1.4 Graph-based approaches . 26

2.2 Multi-Robot SLAM . 31
2.2.1 Data manipulation and flow in multi-robot SLAM 31
2.2.2 Problems in multi-robot SLAM . 32
2.2.3 Solutions and notable works . 34

3 Single-robot SLAM development 37
3.1 Mathematical Background . 37

3.1.1 Iterative Closest Point (ICP) Algorithm 37
3.1.2 Robust Loop-Closure scheme . 39
3.1.3 Efficient Least-Squares problem solving - Levenberg-Marquardt Al-

gorithm . 43
3.2 GSoC Internship at MRPT - Library Design 47
3.3 Application interface . 50
3.4 SLAM evaluation metric . 53

3.4.1 Overview of metric - SLAM benchmarking 53
3.4.2 Formulation of metric . 53

3.5 Wrappers for usage in ROS - Online SLAM 55
3.5.1 Configuring a single SLAM agent 56

3.6 Experimental Results . 59
3.6.1 Ground-Truth acquisition strategy 59
3.6.2 Experiments - general information 60
3.6.3 Experiment #1 . 62
3.6.4 Experiment #2 . 63
3.6.5 Experiment #3 . 64

4 Inter-robot Communication 67

5 Multi-robot SLAM algorithm 69
5.1 Multi-hypothesis map-matching . 69

5.1.1 Algorithm overview . 69
5.1.2 Feature Extractions - Detectors . 72
5.1.3 Descriptors . 73

3

4 CONTENTS

5.1.4 Generation of correspondences- Evaluation of detector-descriptor
pairs . 74

5.1.5 Construction of the SOG - modified RANSAC 76
5.2 Implementation Insight . 77

5.2.1 Communication procedure . 77
5.2.2 map_merger_node . 78

5.3 Simulation . 79
5.3.1 Simulation setup . 79
5.3.2 Simulation results . 81

5.4 Experimental Results . 83
5.4.1 Configuring an agent for online multi-robot SLAM 84
5.4.2 Network Setup . 84
5.4.3 1st experiment - Conclusions . 87
5.4.4 2nd experiment - Conclusions . 89

6 Conclusions - Future Directions 91

Bibliography 93

A SLAM in Bayesian representation 99

B So ware setup 102
B.1 MRPT Installation . 102
B.2 Installation of ROS Packages . 102

List of Figures

1.1.1 SLAM in domestic applications . 15
1.1.2 STANLEY self-driving car . 15
1.1.3 NASA Planetary rovers . 16

2.1.1 Environment representation examples . 18
2.1.2 Appearance-based SLAM representation 18
2.1.3 UT mean and covariance propagation . 23
2.1.4 Pseudocode for the UKF algorithm [1] . 24
2.1.5 Predicted and actual virtual measurements 28
2.1.6 Multivariate Gaussian approximation - mean, covariance computation . . 30

3.1.1 ICP algorithm example . 39
3.1.2 Suggested data association scheme . 40
3.1.3 Sketches of a loop closure situation . 40
3.1.4 Levenberg-Marquardt pseudocode [2] . 44
3.1.5 Comparison of methods updating µ . 46
3.2.1 Hierarchy of graphslam-lib classes . 49
3.3.1 graphslam-engine visuals . 51
3.3.2 Loop closure edge effect . 52
3.4.1 Evaluation using suboptimal metric . 54
3.4.2 Situation prior to divergence. 55
3.4.3 Situation a er divergence . 55
3.6.1 Ground-Truth acquisition setup . 60
3.6.2 Aruco markers . 60
3.6.3 Robots used during overall experimentation 61
3.6.4 Laser scanner devices . 61
3.6.5 View of workspace in single-robot experiments 61
3.6.6 Experiment 1: graphSLAM results . 63
3.6.7 Experiment 2: graphSLAM results . 64
3.6.8 Experiment 3: graphSLAM results . 65

5.1.1 Map-matching method outline . 71
5.1.2 Measure of repeatability of detectors . 73
5.1.3 Examples of detected features . 73
5.1.4 Benchmark results from using various detector, descriptor pairs. 76
5.1.5 RANSAC pseudocode . 77
5.2.1 map_merger_node application - 2 robots, opposite direction, different rooms 78
5.2.2 map_merger_node application - 3 robots 79
5.3.1 Environment used during the simulations in Gazebo 79
5.3.2 Control panel . 80
5.3.3 Final occupancy grid maps . 82

5

6 LIST OF FIGURES

5.3.4 Situation prior and a er first incorporation of neighbor's nodes 83
5.4.1 Agents of multi-robot experiment . 84
5.4.2 Successful map-matching and integration of the received measurements. 88
5.4.3 Successful map-matching and integration of the received measurements.

Experiment was executed around the pool of the underwater lab at Ktirio
M. 89

A.0.1The SLAM problem in Bayesian representation 100

Listings

3.1 Example of a configuration file used to setup a SLAM agent 57

7

List of Algorithms

1 Example algorithm for modifying µ term - Discrete values 46
2 Example algorithm for modifying µ term - Smooth version 46

9

Nomenclature

EIF Extended Information Filter

EKF Extended Kalman Filter

ERD Edge Registration Decider

GRV Gaussian Random Variable

GSO GraphSLAM Optimizer

IF Information Filter

KF Kalman Filtering

LC Loop Closure

MR-SLAM Multi-Robot SLAM

MRPT Mobile Robot Programming Toolkit

NRD Node Registration Decider

PF Particle Filtering

RB Rao-Blackwellisation

ROS Robot Operating System

SEIF Sparse Extended Information Filter

SLAM Simultaneous Localization and Mapping

SR-SLAM Single-Robot SLAM

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filter

UT Unscented Transform

UUV Unmanned Underwater Vehicle

11

Chapter 1

Introduction

An autonomous robot needs to address two critical problems to survive and navigate
within its surroundings: mapping the environment and finding its relative location
within the map. Simultaneous localization and mapping (SLAM) is a process that aims
to localize an autonomous mobile robot in a previously unexplored environment while
constructing a consistent and incremental map of its environment [3]. While filtering
methods (extended Kalman filtering, information-form filtering, particle filtering) used
to dominate the SLAM literature, recently (~2006) graph-based approaches have made a
comeback. Introduced by Lu and Milios in 1997 [4] graph-based approaches formulate
SLAM as a least-squares minimization problem.

In the thesis at hand, we designed and implemented a generic algorithm for executing
graphSLAM in the MRPT1 robotics toolkit for single and multi-robot cases. The algorithm
has been tested in both, simulated datasets (generated either by the GridmapNavSimul2
tool or in the Gazebo3 simulator) and online setups for both the single and multi-robot
case. Wrapper code is also available for running graphSLAM as a native ROS4 applica-
tion.

In the following lines we offer a brief preview of the contents of the upcoming sections.
In sec. 1.1 we outline common situations and problems in which single as well as multi-
robot SLAM is o en deployed. In sec. 2 we begin with a historical overview of robotic
mapping and SLAM, and we introduce the major SLAM algorithms that have been used
so far, paying special a ention to the graphSLAM-related algorithms (sec. 2.1.4). We then
move on to the design and implementation of the single-robot part of our algorithm, sec. 3,
the communication strategy for multiple robot agents to exchange data, sec. 4, and the
extension of the single-robot algorithms to multiple agents in sec. 5. In sec. 6 we draw
conclusions and describe future directions and thoughts based on the work we conducted.
Finally we provide appendices that give insight into their respective subjects.

The LATEXsource code for this report is accessible here5

Keywords --- SLAM, graphSLAM, loop-closure, multi-robot, MRPT, ROS, Gazebo

1www.mrpt.org
2http://www.mrpt.org/list-of-mrpt-apps/application_gridmapnavsimul/
3http://www.gazebosim.org
4www.ros.org
5controlsystemslab.gr/code/bergercookie/mr-slam-thesis-text

13

www.mrpt.org
http://www.mrpt.org/list-of-mrpt-apps/application_gridmapnavsimul/
http://www.gazebosim.org
www.ros.org
www.mrpt.org
http://www.mrpt.org/list-of-mrpt-apps/application_gridmapnavsimul/
http://www.gazebosim.org
www.ros.org
controlsystemslab.gr/code/bergercookie/mr-slam-thesis-text

14 CHAPTER 1. INTRODUCTION

1.1 SLAM common applications and usages

Having a map of the environment and an accurate estimation of the robot's trajectory, is
a basic prerequisite for a variety of tasks in robotics (e.g., navigation, object manipulation
- interaction with environment). During the past decade SLAM algorithms have been
extensively utilized in the robotics research or in consumer applications. Among others,
SLAM has successfully been used in areas such as:

• Self-driving cars - Unmanned Ground Vehicles (UGV)

• Unmanned aerial vehicles (UAV)

• Underwater vehicles (UUV)

• Planetary rovers

• Domestic robots

• Biomedical applications

Below is a list of notable cases in which SLAM algorithms have been employed, either as
the central piece or as a supporting one.

• Autonomous (self-driving) cars is a standard field in which SLAM algorithms are
utilized. As an example, STANLEY (fig. 1.1.2), winner of the 2005 Grand Challenge of
DARPA performed SLAM as part of its autonomous driving system. It essentially
estimated its pose by acquiring information from various onboard sensors and feed-
ing the la er to a UKF filter, while simultaneously, using 5 SICK laser range finders,
built a map of the surrounding environment as well as non-drivable objects. Using
its estimated pose and map it could confidently execute obstacle avoidance and nav-
igate towards its goal [5].

• iRobot's cleaning robot, "Roomba" (fig. 1.1.1(a)) has integrated visual SLAM to effi-
ciently traverse the floor to be cleaned, as well as navigate back to its charging sta-
tion. On the other hand, Neato's cleaning robots (fig. 1.1.1(b)) also execute SLAM,
by utilizing information from an onboard laser range finder.

• To explore and map large portions of the planet surface in Mars, NASA has em-
ployed SLAM algorithm variants in its Planetary rovers (fig. 1.1.3).

• Instead of focusing on autonomous navigation, CSIRO (Australia’s national science
agency) developed GeoSLAM6, a 3D SLAM algorithm primarily focused on accu-
rate 3D measurement and mapping of the environment.

6http://www.geoslam.com/company/about-slam/

http://www.geoslam.com/company/about-slam/
http://www.geoslam.com/company/about-slam/

Multi-robot SLAM 15

(a) The Roomba cleaning robot. Latest mod-
els (most notably the Roomba 900) utilize visual
SLAM techniques to build a map of their envi-
ronment.

(b) The Neato cleaning robot. Utilizes informa-
tion from an onboard laser range finder to exe-
cute SLAM

Figure 1.1.1: SLAM has recently risen to popularity in domestic applications such as clean-
ing

Figure 1.1.2: The STANLEY self-driving car, winner of 2005 DARPA, used SLAM as part
of its driving system.

16 CHAPTER 1. INTRODUCTION

Figure 1.1.3: NASA Planetary rovers use SLAM to map the planet surface of mars.

Furthermore, using multiple robot agents in the mapping procedure instead of a single
one offers advantages, most notably:

Reduction in needed time
Since multiple agents are concurrently mapping the environment, the procedure as
a whole will finish in less time.

Improvement of overall accuracy
Since agents' gathered information and generated maps have a certain overlap, one
agent could potentially improve certain distortions in its own map by utilizing in-
formation sent by its neighbors, as implemented in [6].

Decentralization of SLAM Procedure
SLAM procedure is not entirely dependent on the performance of a single agent
and can be completed successfully even if one (or several) of the agents does not
execute mapping appropriately or a malfunction is caused. This adds to the overall
robustness and fault-tolerance of the mapping procedure.

Heterogeneity in group Multi-robot SLAM is not constrained in using robots of the same
type. As a result, heterogeneity in a group could assist in traversing larger portion of
the environment. For example, if we consider a combination of a ground vehicle and
a quadcopter, we notice that the quadcopter can scan and traverse different height
levels (not constraint by e.g., stairs, different floors) while the ground vehicle on
the other hand can traverse and map narrow crossings, or low ceilings at which the
quadcopter can't go to.

Chapter 2

Literature Review

2.1 Single-Robot SLAM

Due to the broad range of algorithms as well as applications in which SLAM has been
successfully employed, there are two criteria with which one could categorize the various
SLAM implementations [7]. These are outlined below:

Type of map representation

Feature-based SLAM
Artificial features either preexist (e.g., cylindrical obstacles of fixed radius) or
are extracted from raw sensor measurements. First SLAM implementations
made use of this technique to construct a landmarks map. Even though this
strategy is fairly lightweight with regards to its computational cost, it can
only be used in indoor environments where certain discrete features can be
extracted (e.g., wall corners, edges). Furthermore, in this map representation
(fig. 2.1.1(a)), information is lost prior to processing, since the SLAM algorithm
operates on the extracted landmarks only.

View-based SLAM
Raw sensor measurements are used to produce occupancy grid maps. In these
kinds of maps, the traversed environment is split into a grid of cells in which
each cell is assigned a number that corresponds to the possibility that it is occu-
pied by an obstacle. To build this kind of maps (fig. 2.1.1(b)) we o en employ
laser scanners. Even though this map representation o en demands higher
storage cost as well as more time to process, the generated maps are of much
higher detail than the ones generated by feature-based techniques.

Appearance-based SLAM
Appearance-based SLAM 2.1.2 is an effective method for the loop closure
problem and can also be used in combination with feature-based or view-
based techniques. In this method, new observations, either features or views,
are matched against available reference observations to identify a previously
observed location. (For instance, the ATLAS framework [8] provides occu-
pancy grid maps from outdoor urban environments using a laser range scanner
mounted on top of a car).

Polygon-based SLAM
In this method, planar segments, composed of infinite planes, are associated
with features of the environment. In contrast to the rest of the presented map

17

18 CHAPTER 2. LITERATURE REVIEW

(a) Individual landmarks from the environ-
ment are extracted and are used for SLAM

(b) View-based map representation. Sensors
that can associate the entire measurements
from different positions are employed (e.g.,
laser scanners)

Figure 2.1.1: Examples of 4 poses with the corresponding representation of their environ-
ment

representations, the advantage of the polygon-based SLAM is that it produces
highly detailed small-sized maps and is well-suited for higher-level tasks such
as interacting with the environment; however, the process of fi ing planar seg-
ments creates extra computational demand.

Data processing scheme
Comprises the main differentiation criterion. For that case these techniques are rig-
orously analysed in the rest of this section.

Figure 2.1.2: Example of an appearance-based slam representation, where the robot stores
an image for each node of a graph and graph edges connect similarly looking images [9].

The following is an overview of the existing methodologies that have been successfully
employed in single-robot SLAM situations. At first an overview of the Kalman filter and
its variants is presented (sec. 2.1.1). In sec. 2.1.2 particle-filtering techniques are exam-
ined while finally extra a ention is given to the variant of choice, that is the graph-based
strategies. (sec. 2.1.4).

Multi-robot SLAM 19

2.1.1 KF-SLAM

Formulation of SLAM in Bayesian representation (as is utilized in the Kalman Filter) is
provided in the appendix (appendix A), where the necessary terminology is also defined.
Current section contains an overview of the Kalman Filter-related techniques to solving
the SLAM problem. Notable works on this field include the following:

Extended Kalman Filter (EKF) [10]
The EKF constitutes the first a empt in handling both landmarks and the uncer-
tainty in robot movement simultaneously, by handling both as states in a Kalman-
filter formulation. The novelty resided in the extended term, since the non-
linearities of both the movement and observation models were handled by a prior
linearisation step.

The following analysis is based on the work in [11]. An excellent example of a sim-
ple EKF implementation along with the corresponding MATLAB code is available
in [12].

Solving SLAM in the Bayesian context (as in EKF-SLAM) depends on finding ap-
propriate expressions for the motion and observation models. First step to the EKF
method is to formulate the motion and observation models in suitable forms so that
the Kalman filter can handle them. In eqn. 2.1.1 f(·)f(·)f(·) models the vehicle kinematics,
while wwwk represents the additive, zero-mean uncorrelated Gaussian motion distur-
bances with covariance QQQk.

P (xxxk|xxxk1 ,uuuk)⇐⇒ xxxk = fff(xxxk−1,uuuk) +wwwk (2.1.1)

The observation model is defined as follows:

P (zzzk|xxxk1 ,mmm)⇐⇒ zzzk = hhh(xxxk,mmm) + vvvk, (2.1.2)

where hhh(·) describes the geometry of observation, while vvvk are the additive zero-
mean uncorrelated Gaussian observation disturbances with covariance RRRk.

Having defined the motion and observation models, we use the following formu-
las to compute the mean and covariance for the la er joint posterior distribution
P (xxxk,mmm|ZZZ0:k,UUU0:k,xxx0):

[
x̂xxk|k
m̂mm

]
= EEE

[
xxxk
m̂mmk
|ZZZ0:k

]
(2.1.3)

PPP k|k =

[
PPP xx PPP xm

PPP T
xm PPPmm

]
k|k

= EEE

(xxxk − x̂xxk
mmm− m̂mmk

) (
xxxk − x̂xxk
mmm− m̂mmk

)T

|ZZZ0:k

 (2.1.4)

We also have the following equations, which are used to model the time and obser-
vation update steps of the EKF algorithm:

Time update

20 CHAPTER 2. LITERATURE REVIEW

x̂xxk|k−1 = fff(x̂xxk−1|k−1,uuuk) (2.1.5)
PPP xx,k|k−1 = ∇fffPPP xx,k−1|k−1∇fT +QQQk (2.1.6)

where ∇fff is the Jacobian evaluated at the estimate x̂xxk−1|k−1. Notice that in there is
no need to perform this update for stationary landmarks[11].

Observation update

[
x̂xxk|k
m̂mmk

]
=

[
x̂xxk|k−1

m̂mmk−1

]
+WWW k

(
zzz(k)− hhh(x̂xxk|k−1, m̂mmk−1)

)
(2.1.7)

PPP k|k = PPP k|k−1 −WWW kSSSkWWW
T
k (2.1.8)

where

SSSk = ∇hPhPhP k|k−1∇hhhT +RRRk (2.1.9)
WWW k = PPP k|k−1∇hhhTSSS−1

k (2.1.10)

where∇hhh is the Jacobian evaluated at the estimate x̂xxk|k−1 and m̂mmk−1.

Finally, when it comes to using the EKF in SLAM applications, the following re-
marks should be made:

Convergence
Convergence of the position in the estimation of landmarks (map) is deter-
mined on the monotonic convergence of the:

• Determinant of the covariance matrix PPPmm,k

• Determinant of all landmark pair submatrices towards 0.

Computational Effort
In static environments, the motion update step affects only the current posi-
tion estimate (and not the map). However the observation step requires that
all landmark means and covariances be computed. In the simple EKF imple-
mentation, this makes the computational and storage cost quadratic to the total
number of landmarks N

Non-linearity
Even though KF-SLAM is the optimal state estimator when applied to linear
models, this doesn't hold for its non-linear counterpart, the EKF.EKF-SLAM
employs first-order Taylor linearisation to the non-linear motion and obser-
vation models. As discussed in [13] however, given highly non-linear models
this may lead to inevitable and sometimes dramatic inconsistencies in the com-
puted solutions.

Extended Information Filter (EIF)
Even though the information and standard covariance representation of the SLAM
problem are equivalent, by formulating it in the former, and by taking advantage of
its sparse nature, Thrun et al. [14] managed to reduce the computation time signifi-
cantly. A sparse information matrix can be stored in less memory and the sparsity
allows much faster recovery of the posterior mean and covariance [15]. Only draw-
back to this, from a theoretical point of view, was that the solution was merely an

Multi-robot SLAM 21

approximation and not a precise solution to the problem. Sparsity of the informa-
tion matrix was achieved via truncating non-diagonal elements of it, which can lead
to overconfident error bounds[16]. More specifically, while the state estimates are
only slightly overconfident when expressed in a local reference frame, they suffer
from an exaggerated global inconsistency [17].

Compressed Extended Kalman Filter (CEKF) [18] [19]
The CEKF is a method initially introduced in [18] and extended in [19] by adding
a data association step, the Relative Landmark Representation (RLR). Its goal is to re-
duce EKF SLAM requirements, both in terms of computational complexity as well
as memory. More specifically, by constraining the SLAM procedure in smaller areas
which containNα landmarks (Nα ≪ N , whereN is the total amount of landmarks in
the robot's global map), CEKF reduces the complexity of computations fromO(N2)
toO(N2

α). However, this doesn't hold in the situations that the robot is transitioning
from one local area to another where a full SLAM update is required, thus O(N2).
The la er corner case (which may be important when these transitions are frequent)
is dealt with by taking in account only the active/local states when executing the
full SLAM update. This essentially reduces the full SLAM update complexity to
O(N × Nb), where Nb is the number of landmarks in the active/local states (active
landmarks). The use of active states also reduces the memory requirements of the
procedure to N ×Nb [19].

Unscented Kalman Filter [1]
Despite the de facto solution for estimation/tracking problems, the EKF filter, due to
its handling of non-linearities (that is, linearisation around the current estimate), is
a reliable and robust solution only in situations that these non-linearities are mild.
UKF comprises a linear estimator which, instead of linearising the model dynamics,
uses a set of discretely sampled points that can appropriately parameterize the mean and
covariance [20].

To do that, the UKF utilizes the Unscented Transform, introduced in [20]. The un-
scented transformation (UT) is a method for calculating the statistics of a random
variable which undergoes a non-linear transformation: Consider propagating a ran-
dom variable xxx ∈ RL through a non-linear function yyy = g(xxx). Also assume that the
mean and covariance of xxx are x̄xx and PxPxPx respectively. If we were to use the EKF, yyy
would be approximated analytically by propagating xxx through the first-order lin-
earised model of g. Instead, UT calculates the statistics ofyyy by forming a matrixXXX of
2L+1 sigma vectorsXiXiXi, along with their respective weightsWiWiWi. These are calculated
according to the following equations:

22 CHAPTER 2. LITERATURE REVIEW

XXX0 = x̄̄x̄x (2.1.11)

XXXi = xxx+
(√

L+ λ)PxPxPx

)
i
, i = 1, · · · , L (2.1.12)

XXXi = xxx+
(√

L− λ)PxPxPx

)
i−L

, i = L+ 1, · · · , 2L (2.1.13)

WWW
(m)
0 =

λ

(L+ λ)
(2.1.14)

WWW
(c)
0 =

λ

(L+ λ)
+ (1− α2 + β) (2.1.15)

WWW
(m)
i =WWW

(c)
i =

1

2(L+ λ)
i = 1, · · · , 2L (2.1.16)

where,
λ = α2(L+ κ)− L is a scaling parameter,
α determines the spread of the sigma points and is usually set to a small positive value,
κ is a secondary scaling parameter, usually set to 0
β is used to incorporate prior knowledge of the distribution of xxx
(for Gaussian distributions β = 2 is optimal)

These sigma vectors are propagated through the following non-linear function:

YYY i = g(XXXi), i = 0, · · · , 2L (2.1.17)

The mean and covariance of yyy are finally approximated using a weighted sample
mean and covariance of the posterior sigma points, that is:

ȳyy ≈
2L∑
i=0

WWW
(m)
i YYY i (2.1.18)

PyPyPy ≈
2L∑
i=0

WWW
(c)
i (YYY i − ȳyy)(YYY i − ȳyy)T (2.1.19)

An example of how UKF computes the mean and covariance via the Unscented
Transform is also illustrated in fig. 2.1.3.

Until this point, the Unscented Transform was presented. To formulate it into a
filter, UKF applies the UT recursively to estimate the augmented SLAM state, that is
a concatenation of the original state and noise variables:

xxxαk =
[
xxxTk vvvTk nnnT

k

]T (2.1.20)

Notice that while the problem is of the same order as the EKF, no explicit computa-
tion of Jacobians or Hessians is needed [1].

Multi-robot SLAM 23

Figure 2.1.3: Example of the UT for mean and covariance propagation:
a. Actual
b. First-order linearization (EKF)
c. Unscented transform [1]

24 CHAPTER 2. LITERATURE REVIEW

Figure 2.1.4: Pseudocode for the UKF algorithm [1]

2.1.2 PF-SLAM

The formulation of SLAM in Bayesian representation (as is utilized in Particle Filtering)
is provided in the appendix(A), where the necessary terminology is also defined.

Particle filtering techniques rose to popularity in the SLAM scientific community with the
FastSLAM [21] and FastSLAM 2.0 [22] algorithms introduced by Montemerlo et al., in
2002 and 2003 respectively. While most efforts focused on improving the performance of
EKF-SLAM, while retaining its essential linear Gaussian assumptions, FastSLAM with its
basis on recursive Monte Carlo sampling was the first to directly represent the non-linear
process model and non-gaussian pose distribution 1. However, the dimensionality of the
SLAM problem still rendered the Particle-Filtering usage as computationally intractable.
The novelty of FastSLAM came from the reduction of sample-space by applying Rao-
Blackwellisation (RB) whereby a joint space is partitioned according to the product rule of
probabilities, P (xxx1,xxx2) = P (xxx2|xxx1)P (xxx1) and if P (xxx2|xxx1) can be represented analytically,
only P (x1x1x1) needs to be sampled xxx

(i)
1 ∼ P (xxx1). Therefore, the joint probability can be

represented by the set {xxx(i)1 , P (xxx2|xxx(i)1)}Ni and we can also find the total probability of xxx2
by marginalising out xxx(i)1 , ∀ i:

1Direct usage of the non-linear model was only implemented for the time update step. FastSLAM still
linearises the observation model

Multi-robot SLAM 25

P (xxx2) ≈
1

N

N∑
i

P (xxx2|xxx(i)1) (2.1.21)

Based on the above, the joint SLAM state may be factored into two separate probability
distributions, that is a vehicle component and a conditional map component.

P (XXX0:k,mmm|ZZZ0:k,UUU0:k,xxx0) = P (mmm|XXX0:k,ZZZ0:k)× P (XXX0:k|ZZZ0:k,UUU0:k,xxx0) (2.1.22)

Notice that in eqn. 2.1.22, the probability distribution is of the whole robot trajectory,
whereas in EKF it is only on the latest robot pose. In this case, the landmark positions
can be represented as independent Gaussians, because no marginalisation of robot poses
is made, thus no such information is actually encoded between the estimated landmark
positions. This is the key to the FastSLAM speed, since the map is now represented as
a set of independent Gaussians, with linear complexity, rather than a joint map covariance
with quadratic complexity. With regards to the trajectory, and using the RB filter, it is
represented by a set of particles, each having a weight and an estimation of the entire
robot trajectory.

Updating the map for the trajectory of a given particle X
(i)
0:k is trivial; it is done by per-

forming an EKF update on the observed landmarks, assuming that the robot trajectory
is known. With regards to propagating the pose particles, FastSLAM utilises a series of
steps which include:

Proposal distribution At each timestep for each particle a proposal distribution is drawn
conditioned on the particle prior poses, observations, and latest control input.

Sample weighting Samples are weighted according to an importance function

(Optional) resampling Resampling is accomplished by selecting particles with replace-
ment. A er resampling, their weights are reset→ w

(i)
k = 1

N , where N is the number
of particles a er this step.

For an in-detail analysis of the usage of RB filter as well as the FastSLAM algorithm itself,
refer to [11], [21]. Notable work on PF-SLAM is also done in [23], [24], in which the
authors implement a Rao-Blackwellised particle filter to build and maintain an occupancy
grid map of the surrounding environment. The la er is in contrast with the strategies in
FastSLAM, FastSLAM2.0, since Grise i et al. do not rely on predefined landmarks and
use raw laser scans to acquire the grid maps. This work is also released as open-source
so ware and is available via the popular ROS package gmapping.

2.1.3 Artificial Intelligence SLAM - Topological SLAM

Artificial Intelligence has also been recently employed in solving the SLAM problem. Im-
plementations so far are based on existing SLAM schemes (e.g. Particle filtering sec. 2.1.2)
which, however, are realized using AI algorithms. These algorithms most notably in-
clude:

• Neural networks

• Fuzzy logic techniques

.

26 CHAPTER 2. LITERATURE REVIEW

Even though not nearly as popular as EKF or Particle-Filtering, some papers exist demon-
strating their potential.

• In [25] a solution based on fuzzy logic is proposed to tune the covariance values of
the measurement mode.

• In [26] authors design and implement RatSLAM, a technique based on neural net-
works that executes SLAM by utilizing monocular camera and odometry measure-
ments. An open-source implementation is also presented in [27].

• Semantic approaches, such as SLAM++ [28] and topological methods, which are
based on the abstract information, have also been designed in the context of AI
SLAM. Notable topological solutions are presented in [29] as well as [30].

A review paper outlining works in the field of topological SLAM is available in [31].

2.1.4 Graph-based approaches

A graph-based (or smoothing) approach to SLAM concerns not only the most recent robot
pose, but the entire robot trajectory up to the current time. Optimizing over the whole robot
trajectory (in the naive version) gives graph-based SLAM an advantage in terms of accu-
racy and loop closing capabilities against traditional filtering methods. While at a first
glance this would seem to add up to the problem complexity, as more variables are added
overall, it actually simplifies it. The simplification arises from the fact that the smooth-
ing information matrix is naturally sparse, due to the incremental nature of the SLAM
problem. On the contrary, the information matrix in filtering approaches becomes dense
when marginalizing out previous robot poses [32]. This marginalization corresponds to
the observations from robot poses to landmarks being encoded as constraints between
the landmarks themselves.

When executing graphSLAM, one can consider exclusively the robot poses and thus execute
pose-graph SLAM. This is particularly suited to sensors that are able to yield pairwise con-
straints between nearby robot poses [33], such as laser scanners. This offers the advantage
of not being limited to generate one kind of map, as given the estimated trajectory, one
can a erwards align the measurements with corresponding acquisition positions and build
either a landmarks map or a occupancy grid map (mapping with known poses).

In graph-based SLAM approaches, the overall problem can be broken down into two
subparts, a frontend and a backend:

• The frontend is responsible for constructing the initial graph (either robot-poses
graph or considering both robot pose constraints and robot pose - landmark con-
straints) from raw sensor data. When it comes to identifying previous robot poses
or already observed landmarks, the frontend also has to deal with the data associa-
tion problem.

• Upon construction, the graph is passed on to the backend, which is a multivariate
optimization scheme, responsible for repositioning the graph nodes so that the er-
ror vector between the predicted state and the measurements is minimized. Most
backends depend on sparse versions of least squares solvers like Gauss-Newton,
or the Levenberg-Marquardt scheme. A more detailed analysis of the optimisation
process is provided in Stachniss' tutorial[34].

Multi-robot SLAM 27

Historical overview

The following comprises an outline of the most notable work in the field of graph-based
SLAM approaches 2.

• Lu and Milios [35] were the first to refine a map, by globally optimizing the system
of equations to reduce the error introduced by constraints.

• Gutman and Konolige [36] proposed an effective way for constructing such a net-
work and for detecting loop closures while running an incremental estimation al-
gorithm.

• Dellaert and Kaess [33] were the first to exploit sparse matrix factorizations in or-
der to solve the linearised problem in off-line SLAM. Based on this work, Kaess
presented iSAM [32] as well as iSAM2[37] algorithms which use an online incre-
mental version of the square root smoothing and mapping algorithm (SAM). iSAM
algorithms take advantage of partial reordering strategies to compute the sparse
factorization. iSAM is also implemented in single-robot 3D mapping applications
as well as in multiple-robot, heterogeneous setup (cooperation of mobile and aerial
vehicles).

• GraphSLAM [38] introduced by Thrun and Montemerlo in 2006 applies variable
elimination techniques to reduce the problem dimensionality, thus reducing prob-
lem complexity.

• The ATLAS framework[8] works on two-levels of graphs; To build the lower level
graphs a Kalman filter is used, while for the second level a global optimization
framework is used to align the constructed local maps. On a similar mindset,
Estrada et al. [39] uses a hierarchical approach, especially useful to reduce the di-
mensionality of the optimization problem when mapping larger environments.

• While the majority of previous techniques focused on the optimization scheme,
Olson focused on front-end algorithms and presented an outlier rejection scheme
based on spectral clustering [15]. More on Olson's work is presented in sec. 3.2 as
his work in [40] was used as a guideline to create a loop closing scheme for the single
robot graphSLAM algorithm.

• In terms of graph-based approaches in 3D mapping, Nüchter work [41] focuses on
a front-end that finds constraints between 3D poses and utilizes a variant of Lu and
Milios strategy[35] for optimizing the constructed graph.

Mathematical overview

The following comprises the mathematical formulation of a standard SLAM problem in
graph-based approaches, heavily based on [34], [42]. Analysis is conducted for the pose-
graph case, but is easily extensible to take discrete landmarks in account as well.

Let x = (x1, x2, · · ·xT)T be a set of positions that comprise the estimated robot trajectory
(i.e., graph nodes). Also let zi,j ,ΩΩΩi,j be the mean and information matrix of a virtual mea-
surement that associates two different nodes of that trajectory. In pose-graph SLAM, this
is the transformation from one node position to another. Such measurement can be ob-
tained from sensors such as laser scanners by storing a measurement with each recorded

2Section is heavily based on the introduction section of [34]

28 CHAPTER 2. LITERATURE REVIEW

node position and then comparing the measurements of two nodes (e.g., using the ICP al-
gorithm) to determine a transformation Ti,j from i to j. Given a rough estimation of those
node positions we can also obtain an initial estimation of that virtual measurement - i.e.,
ẑi,j . Usually this prediction is the relative transformation between the two nodes.

Given a virtual measurement and its corresponding prediction, one can define an error
multivariate function as follows:

e(xi, xj) = ei,j = zi,j − ẑi,j(xi, xj) (2.1.23)

Notice that the virtual measurement doesn't depend on the xi, xj positions but rather on
their corresponding recorded measurements. We provide an explanatory figure of the
virtual measurements in fig. 2.1.5

Furthermore, the log-likelihood of the virtual measurement can be defined as fol-
lows:

li,j ∝
[
zi,j − ẑi,j(xi, xj)

]T
ΩΩΩi,j

[
zi,j − ẑi,j(xi, xj)

]
= eTi,jΩΩΩi,j ei,j (2.1.24)

Figure 2.1.5: Representation of predicted and actual virtual measurements. Predicted
value is obtained by the relative node positions prior to the optimization. Error func-
tion is defined as the difference of the transformations of the actual and predicted virtual
measurements [34]

Finally, we define C as the set of pairs of indices i, j for which a virtual measurement
exists. Based on the above, the goal of the smoothing SLAM approach is to find the con-
figuration of the node positions x⋆ that maximizes the log-likelihood of all observations inC :

F(x) =
∑

⟨i,j⟩∈C

Fi,j =
∑

⟨i,j⟩∈C

eTi,jΩΩΩi,j ei,j (2.1.25)

To express this as a least-squares problem, instead of maximizing, we can minimize the
negative of the la er, thus:

x⋆ = argminxF(x) (2.1.26)

Multi-robot SLAM 29

Approximating the error function by its first order Taylor expansion we get the follow-
ing:

ei,j(x̆i +∆xi, x̆j +∆xj) = ei,j(x̆+∆x) ≈ ei,j + JJJ i,j∆x (2.1.27)

Fi,j(x̆+∆x) = ei,j(x̆+∆x)TΩΩΩi,jei,j(x̆+∆x) (2.1.28)
≈ (ei,j + JJJ i,j∆x)TΩΩΩi,j(ei,j + JJJ i,j∆x) (2.1.29)
= eTi,jΩΩΩi,jei,j︸ ︷︷ ︸

ci,j

+2 eTi,jΩΩΩi,jJJJ i,j︸ ︷︷ ︸
bi,j

∆x+∆xT JJJT
i,jΩΩΩi,jJJJ i,j︸ ︷︷ ︸

HHHi,j

∆x (2.1.30)

= ci,j + 2bi,j∆x+∆xTHHH i,j∆x (2.1.31)

Using the la er expression in eqn. 2.1.31, and by se ing:

c =
∑

ci,j (2.1.32)

b =
∑

bi,j (2.1.33)

HHH =
∑

HHH i,j (2.1.34)

we rewrite eqn. 2.1.25 as follows:

F(x̆+∆x) =
∑

⟨i,j⟩∈C

Fi,j(x̆+∆x) (2.1.35)

≈
∑

⟨i,j⟩∈C

[
ci,j + 2bi,j∆x+∆xTHHH i,j∆x

]
(2.1.36)

= c+ 2bT∆x+∆xTHHH∆x (2.1.37)

Given the quadratic form of eqn. 2.1.37 we now have to reach a formula suitable to solve
with a non-linear system optimization framework like the Gauss-Newton. To do that we
compute the partial derivative with regards to ∆x and set it to 0:

∂FFF (x+∆x)

∂∆x
=
(
HHH +HHHT

)
∆x+ 2b

H symmetricH symmetricH symmetric
=

= 2HHH∆x+ 2b = 0⇒
∆x⋆ = −HHH−1b (2.1.38)

Up to now we have described a generic least-squares approach to reach eqn. 2.1.383. How-
ever we haven't yet exploited the sparse and/or incremental nature of SLAM to facilitate
the problem solution.

HHH is the information matrix of the system, since it is obtained by projecting the mea-
surement error in the space of trajectories via the Jacobians. This matrix, (having not

3For the mathematic formulation of the Levenberg-Marquardt algorithm for solving the derived least-
squares non-linear problem in eqn. 2.1.38 see 3.1.3.

30 CHAPTER 2. LITERATURE REVIEW

marginalized out previous robot poses) is naturally sparse as it contains non-zero blocks
only between poses that are connected via a constraint. When the robot is actively explor-
ing (traversing previously unknown parts of the environment) new entries are added to
the end of the HHH matrix and b vector. Its sensors (e.g., laser scan) can associate its lat-
est measurement/pose (which corresponds to its latest inserted rows and columns) with
some of the poses that are relatively close to it. Thus, and assuming that there wasn't any
loop closure detected (that is, no constraint between latest and first nodes), HHH is going to
be a block diagonal matrix.

The linearised solution is obtained by adding the found differences to the initial estima-
tion:

x⋆ = x̆+∆∆∆x⋆ (2.1.39)

The algorithm is also illustrated in fig. 2.1.6

Figure 2.1.6: Pseudocode for computing the mean xxx⋆ and information matrix HHH⋆ of
the multivariate Gaussian approximation of the robot pose posterior from a graph of
constraints[34]

Dimensions of relevant terms

According to equations 2.1.33, 2.1.34 the matrixHHH and the vector bbb are computed by sum-
ming up a set of matrices and vectors, one for each constraint, that is each constraint
contributes to the system with an addend term. The structure of the la er depends only
on the Jacobian of the error function. Since the error function of a constraint depends only
on the values of two nodes, it has the following form:

JJJ i,j =

[
000 · · · 000 AAAi,j︸︷︷︸

node i

000 · · · 000 BBBi,j︸︷︷︸
node j

000 · · · 000
]

(2.1.40)

Multi-robot SLAM 31

where AAAi,j ,BBBi,j are derivatives of the error function with regards to xxxi and xxxj .

We also have the following forms for HHH i,j and bbbi,j

HHH i,j =

. . .
AAAT

i,jΩΩΩi,jAAAi,j · · · AAAT
i,jΩΩΩi,jBBBi,j

...
BBBT

i,jΩΩΩi,jAAAi,j · · · BBBT
i,jΩΩΩi,jBBBi,j

. . .

(2.1.41)

bbbi,j =

...
AAAT

i,jΩΩΩi,jeeei,j
...

BBBT
i,jΩΩΩi,jeeei,j

...

(2.1.42)

2.2 Multi-Robot SLAM

The current section is based on the excellent multiple robot review presented in [3]. Its
goal is to outline important challenges, problems and limitations that arise when extend-
ing SLAM from a single agent to a team of robots.

2.2.1 Data manipulation and flow in multi-robot SLAM

Data Communication
The capability of a system to share data among robots is a key requirement in
multiple-robot SLAM. Information between robots can be exchanged via commu-
nication channels that might not be available at all times, in all places. Bandwidth
and coverage of the communication network are two important factors for the per-
formance of SLAM.

Data Sharing
Sharing data among robots is a fundamental issue in multiple-robot SLAM. Past
approaches to collaborative SLAM can generally be categorized based on whether
they share raw sensor data [43] or processed data [44]. Raw sensor data means that
sensed information, such as laser ranger measurements and wheel odometry read-
ings, are not processed. In processed data, such as a map or poses of robots, sensor
readings are processed through filtering, smoothing or other methods. Sharing raw
sensor data results in more flexibility but requires higher bandwidth, stable com-
munication between the robots as well as more processing power. On the contrary,
sharing maps uses less bandwidth and there is no need to process raw data redun-
dantly; however, the performance is dependent on the quality of maps.

Data Distribution
Distribution of data can be further divided into the following categories:

32 CHAPTER 2. LITERATURE REVIEW

Centralized
In a centralized system, the computation for a task is performed by a prede-
fined robot of the team or by an external agent. The central agent processes the
incoming data and provides the required information and feedback to other
agents.

Decentralized
In a decentralized system, the computation for a task is performed by multi-
ple robots of the team. Obviously, this structure requires that the robots have
enough computational power to respond to the processing demands.

Distributed
In a distributed system, the computation for a task is divided among the robots
of the team.

Notice that these definitions depend on the corresponding task. As an example, the
computational model for the production of a global map of the environment may
be implemented in a central node, but the SLAM execution may also be distributed,
meaning that each agent does its own mapping and communicates accordingly with
its neighbors.

Data Processing
The choice of the strategy for estimating the poses of robots and the global map
depends on many factors, such as the available memory, the processing capabil-
ity and the type of the sensor data. The available SLAM implementations, such as
EKF, Particle Filtering or graphSLAM, have different demands and computational
complexity. The same holds for the corresponding extensions of each of the afore-
mentioned methods in multi-robot SLAM.

2.2.2 Problems in multi-robot SLAM

In this section, problems for multi-robot SLAM are listed and explained briefly. The list in-
cludes 10 major problems, along with a summary for each one [3]. Due to the nature of the
selected approach in this thesis, extra a ention is payed to graph-based strategies.

Relative Poses of Robots
One of the most critical issues in multi-robot SLAM is for a robot to decide what
is the relative transformation of its map/trajectory to that of its counterpart. In
multiple-robot SLAM, the map provided by each robot in its own reference coordi-
nates is called the local map. Each local map is generated from coordinated mea-
surements such as laser scans. Each robot tries to integrate all of the local maps pro-
vided by the other robots to generate a global map of the environment. However,
this is a difficult task, because the required alignments or transformation matrices,
which relate these maps to each other, are unknown in general. The problem of
the relative pose of the robot is coupled with the multiple-robot data association
problem. Knowledge of the one renders the other as a simple problem.

Uncertainty of the Relative Poses
Even in cases that one robot successfully finds a valid transformation from its own
origin to the origin of a neighboring robot, it hasn't yet placed this transformation
in a probabilistic context, meaning the uncertainty of this transformation is not con-
sidered. An example of this is the rendezvous technique used in [43] in which the
inter-robot transformation at rendezvous is considered certain and using that, each

Multi-robot SLAM 33

robot ``plays back'' the measurements received by its neighbors. However, not con-
sidering that uncertainty introduces errors during the playback of the received data.

Updating Maps and Poses
Once the relative transformation is found, a procedure is required to fuse local maps.
The resulting map should integrate all information from given local maps. As a re-
sult of updating the maps, poses of the robots should also be updated. This requires
considering the trajectory of the robots and new information received from other
maps. Because of the nature of multiple-robot SLAM, updating poses and maps is
a coupled problem. In feature-based SLAM, data association and finding the corre-
spondence between duplicate landmarks across the robots is an important part of
updating maps as well.

Complexity
Robotics applications are usually real time. Thus, it is very important to design an
algorithm capable of solving the previously mentioned problems with minimum
time and memory requirements. In multiple-robot SLAM,space complexity and
time complexity are two important issues and both affect the scalability of the op-
eration.

Communications
Communication is a key issue in multi-robot cooperation and as well as coordi-
nation tasks. Its significance increases when operating in networks with band-
width restrictions, limited communication range of each robot or even worse in
situations that no prior network infrastructure exists. While popular approaches
in multi-robot SLAM assume no restriction in the amount/frequency of data ex-
change [43], [32] certain works in the field [45], [6], [46] impose realistic constraints.
As an example, authors of [6] propose the exchange of condensed measurements as
a way of significantly reducing the data sent over the network ans also provide a
thorough analysis of the amount of data actually transferred over the wire.

Line-of-sight Observations
On some occasions, robots can see and detect one another. This may be imple-
mented using visual sensors and corresponding markers (e.g., monocular cameras
and Aruco markers). Each robot might already have an estimate of the pose of other
robots. However, when robots can see one another through line-of-sight and direct
observations, these estimates can be improved. This fact can help robots to reduce
mapping and localization error. In most applications and especially in close-range
localization, line-of-sight observations are much more reliable than other indirect
estimation techniques.

Heterogeneity in Vehicles and Sensors
An important advantage of team-based mapping is that different types of robots,
equipped with different sensors, can provide a be er model of the environment.
As an example, authors of [32] employed square-root information smoothing via the
iSAM module in a real-time experiment with a mobile and a quadcopter. Each robot
exploited different parts of the environment, that their counterpart could not have
traversed. Another example is the work in [47] in which a team of heterogeneous
robots, including a quadrotor and two ground robots, map a multi-floor earthquake-
damaged building collaboratively.

Synchronization
As a general rule, each acquired sensor reading should have a time stamp field,
which shows the time of the acquisition of the data. An important issue in a sys-

34 CHAPTER 2. LITERATURE REVIEW

tem of multiple agents and multiple sensors is the synchronization of the clocks.
Synchronization can be considered at two levels: first, local synchronization,which
means the sensors of each robot should be synchronized and second, global syn-
chronization, which means all robots on the team must have synchronized clocks.
To synchronize time on different robots the Chrony so ware[48], also utilised in
ROS middleware, is a suitable choice: Chrony supports online and offline time ad-
justment by two different applications. In the online case, a network time protocol
(NTP) daemon runs in the background and synchronizes the time with time servers.
For an isolated machine, one might enter the time periodically. The synchronized
time appears as a label in the header of each acquired data

Performance measure
In multiple-robot SLAM, evaluating the accuracy of results is a challenging prob-
lem due to the lack of the model of the environment and the actual trajectory of the
robots. Additionally, evaluating the accuracy of SLAM becomes more critical when
the robots rely on the SLAM to perform autonomous behaviors. Therefore, per-
formance measure is always required to determine the reliability of multiple-robot
SLAM.

2.2.3 Solutions and notable works

The following is list of papers that made an impact in the field of multi-robot SLAM. These
are sorted in ascending order:

• In [49] authors extend their single robot algorithm, the ``Constrained Local Submap
Filter'' [50], [51] in the context of multiple robots. Overall, it can be characterized as
a centralized landmark-based SLAM approach that can handle and update a global
map using local submaps from multiple agents. The la er is feasible since a trans-
formation from each robot to the global frame of reference is considered known.
Given the categorization of multi-robot SLAM problems the strategy at hand deals
with the following:

– Complexity

– Update of maps and poses

• In [52] due to the additivity property of the information form, information-based
SLAM is more suitable in the multi-robot context than its covariance-based coun-
terpart. As Ne leton et al. noticed in [53], updating maps is possible in time log-
arithmic in the number of the robots in the team. Adding to this, Thrun and Liu
implement a multi-robot SLAM scheme based on Sparse Information Filters (SEIF).
In their research they deal with two main problems, notably:

– Finding the relative poses

– Updating maps and poses

The former is possible by matching landmark features in the robot maps. Finding
landmark correspondences is also accelerated by storing them in a kd-tree form.
Once a rough estimate is calculated, it can be optimized by minimizing the quadratic
displacement of the features. Furthermore, handling the SLAM problem in informa-
tion form enables straightforward fusion of duplicate landmarks as well. Assume
that we have the following information matrix and vector of a map with four fea-

Multi-robot SLAM 35

tures as follows:
Ω1,1 Ω1,2 Ω1,3 Ω1,4

Ω2,1 Ω2,2 Ω2,3 Ω2,4

Ω3,1 Ω3,2 Ω3,3 Ω3,4

Ω4,1 Ω4,2 Ω4,3 Ω4,4

 ,

ζ1
ζ2
ζ3
ζ4

 (2.2.1)

As an example, if features 2 and 4 are duplicates, the corresponding matrix and
vector a er fusion will be as follows: Ω1,1 Ω1,2 +Ω1,4 Ω1,3

Ω2,1 +Ω4,1 Ω2,2 +Ω4,2 +Ω2,4 +Ω4,4 Ω2,3 +Ω4,3

Ω3,1 Ω3,2 +Ω3,4 Ω3,3

 ,

 ζ1
ζ2 + ζ4

ζ3

 4 (2.2.2)

• Zhou and Roumeliotis [54] are the first to utilize robot rendezvous (either random
ones, or prearranged) in the SLAM problem. Their approach comprises a feature-
based SLAM that uses EKF for filtering robot poses and landmark positions. In
robot rendezvous, four main problems of sec. 2.2.2 are addressed:

– Unknown relative poses

– Uncertainty of the relative poses

– Update of maps and poses

– Complexity

Notice that by imposing a rendezvous prior to utilising the data collected by the
neighbor robot, authors bypass the potentially costly computation of relative trans-
formation, and also ensure that an overlap of the robot maps and trajectories actu-
ally exists. Authors also employ the Sequential Nearest Neighbor Test for solving the
data-association and decide on potential duplicate landmarks.

• Howard in [43] proposes a particle filtering method using a view-based representa-
tion of the map. His approach solves the following problems:

– Relative poses of robots

– Update of maps and poses

– Closing loops

Robots without knowing their relative position with regards to their neighbors
start executing independent PF-SLAM. When robots meet, they compute an inter-
robot transformation of their current poses using onboard cameras and markers.
This way, and having exchanged all observations gathered so far, each robot plays
back the received measurements starting from the rendezvous point until the other
robot's initial position. However this approach utilizes only the first rendezvous of
two robot agents while it doesn't consider the uncertainty of the computed trans-
formation. These points are dealt with in [45] in which the authors also relax the
unlimited bandwidth assumption of Howard's paper.

• One of the most prominent graphSLAM multi-robot implementations was pro-
posed by Kim et al., in [32], via the extension of the iSAM algorithm to hetero-
geneous multi-robot SLAM. Robot trajectories are handled as independent pose

4Note that the mean and covariance of the EKF form are transformed into an information matrix ΩΩΩ and
an information vector Z using the equations Ωt = Σ−1

t , ζ = µTΣ−1
t

36 CHAPTER 2. LITERATURE REVIEW

graphs among which, connections are formed (inter-graph constraints) when there
is a direct or indirect robot encounter.5 Kim et al., also introduce the notion of an-
chor nodes, which are used to specify the offset of each trajectory with respect to a
common global frame. A er an encounter of two robot agents, their pose-graphs
can be optimized as a whole, since there are adequate constraints between them.

5We define a ``direct encounter'' as the case where one robot directly sees its counterpart, (e.g., via the
root onboard sensors and fiducial markers) whereas an indirect encounter is the measurement of an area
previously scanned by another agent.

Chapter 3

Single-robot SLAM development

Current section makes a thorough analysis of the single-robot graphSLAM algorithm that
was developed. More specifically, we analyze the work done for the MRPT organization
during the Google Summer of Code 2016 program (sec. 3.2). Details into the wrapper codes
for using the developed MRPT library in the Robot Operating System (ROS) (sec. 3.5), as
well as experimental results (sec. 3.6) are also provided.

3.1 Mathematical Background

Current section includes mathematical details on algorithms that are utilized in the single-
robot graphSLAM algorithms (sec. 3) as well as the multi-robot ones (sec. 5).

Overall the following are presented:

Iterative Closest Point - (sec. 3.1.1)
Algorithm used to associate two 2D/3D range scans and decide on a transformation
that maximally aligns one scan to the other.

Robust Loop Closure scheme - (sec. 3.1.2)
Association scheme that determines if a set of potential hypotheses are indeed valid
loop closure edges

Levenberg-Marquardt non-linear solver - (sec. 3.1.3)
Non-linear system solver used as the optimization module of choice in single and
multi-robot SLAM algorithms that have been developed during the thesis.

3.1.1 Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point, or Iterative Corresponding Point (ICP) is an algorithm used
to find a valid transformation with which one point cloud (source) is maximally aligned
to another (reference). ICP was first introduced in [55].

ICP is widely used for registering the outputs of 2D/3D scanners. ICP starts with two
point clouds / meshes as well as an initial guess for their relative rigid-body transform, and
iteratively refines the transform by repeatedly generating pairs of corresponding points
on the meshes and minimizing an error metric [56].

In our implementation, ICP is used to add additional edges/constraints between already
registered nodes in the graph by associating (finding a valid transform) between the laser

37

38 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

scans of those nodes. By doing so, it introduces additional , most-likely inter-conflicting,
constraints in the optimization stage of graphSLAM, thus a er optimization, improving
the final node positions. This is a very important step in the overall algorithm execution,
since odometry measurements can only introduce a constraint between consecutive node
positions.

Algorithm stages

Although many variants/modifications to the classic ICP have been introduced, we can
classify them according to the following stages [56]:

1. Selection of some set of points in one or both meshes.

2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs by looking at each pair individually or by considering an
entire set of pairs.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

A er minimizing the error metric and acquiring the corresponding transformation, the
target reference is transformed by the computed transform and ICP continues to the next
iteration.

For the MRPT implementation of the ICP algorithm (defined in the mrpt::slam::CICP
class) the following remarks can be made:

• Input: Two 2D/3D maps, (optional) initial estimation of the transform from one to
another.

Output: Probability density function (PDF) of the output transform for aligning the
given maps.

• In the case of 2D point maps (applicable in our implementation) and to accelerate
the nearest neighbor search, a KD-treee is also employed.

• Selection stage essentially comes down to the decimation of the given laser scans by
a factor given by the user of the class (by default decimation = 5).

• The error metric minimization is implemented as a least squares minimization be-
tween the matched points of the two decimated lists. 1

• A progressive refinement of the ICP estimation is also implemented using the α pa-
rameter (read Iterative Closest Point (ICP) and other matching algorithms in MRPT
for more information)

An example of using the ICP algorithm of MRPT to find the alignment transformation is
also visualized for a set of scans in fig. 3.1.1.

1For the mathematical part on finding the ideal rigid body transformation from a set of matched points,
see [57]

http://www.mrpt.org/Iterative_Closest_Point_%28ICP%29_and_other_matching_algorithms

Multi-robot SLAM 39

(a) 2D point maps prior to the ICP operation (b) 2D point maps a er the ICP operation. The
suggested transformation a er 32 iterations is
[4.278,−0.034, 0.361°].Elapsed time:1.399µs

Figure 3.1.1: Example of using the ICP algorithm of MRPT to align two point maps de-
rived from their respective laser scans

3.1.2 Robust Loop-Closure scheme

In the current section, we present the mathematical formulas that have been used for im-
plementing the robust hypotheses evaluation scheme in loop closure situations. Analysis
is heavily based on [40].

Purpose and usage advantages

We chose to implement Olson's robust loop closure scheme in the single-robot SLAM
context as it offered the following advantages:

• Does not require landmark covariances as the majority of data-association algo-
rithms do, so it can be combined with algorithms that don't explicitly store land-
mark covariances(e.g., FastSLAM, information filters).

• Computes the second best set of mutually consistent hypothesis which is orthogonal
to the first. So if both the 1st and 2nd hypotheses can interpret the data equally well,
we reject the hypothesis due to potential picket-fence problem.

• Can be executed in real-time and is adaptable to sensor modalities.

• It is a popular approach in the robotics community and is used in a variety of SLAM
applications.

Theory and Implementation details

Having parsed the sensor measurements and having constructed an initial graph from the
odometry constraints and from scan-matching of neighboring nodes, we need to identify
when and how to determine loop closing incidents. This is implemented based on [40]. We
present a figure of the approach in fig. 3.1.2 and we summarize the steps below:

• Instead of using Olson's proposed grouping method, we used Jose Luis Blanco's
hybrid metric-topological grouping approach[58] 2.

• Having assembled the groups of nodes, we find the groups that might contain loop
closure edges (these groups contain successive nodes with large difference in their

2Readers are encouraged to consult [58] for design and implementation details.

40 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

Figure 3.1.2: Suggested data association scheme

robot trajectory

#2

#3

#4
#5

#1

Group A

#91

#90 Group B

#89

#88

(a) Typical loop closure situation. Robot has re-
turned to its origin and acquires observations
of areas that it has already visited.

(b) Formation of one hypotheses group, con-
taining hypotheses to be evaluated and dĳkstra
links between nodes of the same node groups

Figure 3.1.3: Sketches of a loop closure situation

Multi-robot SLAM 41

IDs). These groups are then split into two subgroups A, B, with the former con-
taining the lower node IDs and the la er the higher. To minimize computational
cost as well as the possibility of wrong loop closure registration, we search for loop
closures only between the last nodes of group B and the first nodes of group A (see
fig. 3.1.3(a) for a schematic representation of the loop closure situation).

• Having identified the potential hypotheses in each graph subgroup, we test them
for local consistency. Based on[40] the potential loop closure edges are not eval-
uated individually but rather in sets. Hypotheses are grouped together spatially
and hypothesis sets are formed between dĳkstra odometry links and candidate hypotheses
links. By combining two candidate hypotheses with two odometry constraints we
can form a loop. If the aforementioned hypotheses are valid, then the composition
of the rigid body transformations around the loop should equal the identity matrix.
The pairwise consistency of hypotheses i, j is given by eqn. 3.1.1 and eqn. 3.1.2.

Ai,j = e−TΣTT ⊺
, (3.1.1)

where T is the composition of transforms of the two dĳkstra links and the hypothe-
ses i, j.

All the individual Ai,j can be merged into a consistency matrix A. The validation of
the hypothesis now comes down into finding a subset of hypotheses whose pairwise
consistency is, on average, the greatest [40]. Let u be an indicator vector such that
ui = 1 if the ith hypothesis is to be accepted, and ui = 0 otherwise. The average
pairwise consistency λ(u) for a subset of hypotheses u is: 3.

λ(u) =
u⊺Au

u⊺u
(3.1.2)

Now making the assumption that u is a continuous variable, we can find the look
for extrema of λ(u) by differentiating eqn. 3.1.2 and se ing the derivative to 0 with
respect to u. Doing that we end up with the following eigenvalue-eigenvector prob-
lem:

Au = λ(u)

Eqn. 3.1.2 is solved numerically using power iterations, and the first two eigenvalues
(orthogonal with each other) are computed.

Finally we convert u back to the discrete domain using a predetermined threshold
t. Let wi(t) be the discretized version

wi(t) =

{
1, if ui ≥ t

0, otherwise
(3.1.3)

The confidence of the hypothesis set can be measured by computing the ratio of the
largest two eigenvalues, λ1

λ2
. When this ratio is larger than a threshold, then we are

confident about the hypotheses set and it can be accepted. Otherwise we are in risk
of picket-fence problem and the hypotheses set is rejected.

• The potential hypotheses is finally tested for global consistency 4. Having con-
3for details on the derivation see [40]
4Step is not yet implemented in the CLoopCloserERD class

42 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

structed two local maps of its environment (e.g., A, B) at different points along its
trajectory, we should now determine whether the A, B represent the same location,
or whether they are two physically distinct places [40]. We begin by assuming that
we have some prior knowledge of the relative position of the two environments (as
in SLAM). This allows us to compute a bounding ellipse relative to area B in which
area A must be found. Naturally, if B is not contained within this ellipse, B cannot
be the same location as A. The more interesting case is when local map B is within
the ellipse that contains local map A. The main idea is that a local match is globally
consistent if two conditions are satisfied. The first condition requires that the local
match cover a spatial area that is comparable in size to the uncertainty ellipse. If the
uncertainty ellipse is large enough to contain two or more identical-looking regions
that might match area A, then we cannot be sure that area A is the same as area B.
Conversely, if the uncertainty ellipse is only large enough to hold one “copy” of the
locally matched region, then A and B must be the same location, since two distinct
regions of that size could not both exist within the uncertainty ellipse.

Inconsistencies in Olson's paper

Olson uses the following formula for evaluating the pairwise consistency between two
hypotheses i,j:

Ai,j = eTΣ−1
T T ⊺

(3.1.4)

Where:

• T is the rigid body transformation using the two hypotheses and the two Dĳkstra
Links connecting the nodes that form the hypotheses

• ΣT is the covariance matrix of the aforementioned rigid body transformation

However this formula is inconsistent with the rest of the paper explanations and mathe-
matical formulas:

• The author states that:

This quantity is proportional to the probability density that the rigid-body trans-
formation is the identity matrix, thus transformation matrix is a 03×1 vector (i.e.,
T = [0, 0, 0]T).

This is inconsistent with the given formula. Suppose that a wrong loop closure
is included in the Ai,j , therefore the pairwise-consistency element should have a
low value. For this to hold true, the exponent of the consistency element should be
small and, neglecting the covariance matrix of rigid-body transformation (e.g., unit
covariance matrix), TT ⊺ should be small. When a wrong loop closure is evaluated
the aforementioned quantity increases since the hypotheses do not form a correct
loop. Therefore the worse the rigid-body transformation the higher the exponent
term, therefore the higher the consistency element.

• Author uses the information matrix Σ−1
T in the exponential. However in the optimal

case (high certainty of two correct loop closure hypotheses) information matrix and
rigid body transformation vector T have opposite effects in the exponent term:

– Correct loop closure⇒ T → [0, 0, 0]⇒ exponent ↓

– Correct loop closure⇒ diagonal_terms(Σ−1
T) ↑⇒ exponent ↑

Multi-robot SLAM 43

3.1.3 Efficient Least-Squares problem solving - Levenberg-Marquardt Algo-
rithm

Assume a vector function f :Rn 7→ Rm with m ≥ n. Goal of non-linear system solvers is
to try and minimize

∥∥f(x)∥∥, or equivalently find:

x⋆ = argminx{F (x)}, (3.1.5)
where

F (x) =
1

2

m∑
i=1

(
fi(x)

)2
=

1

2

∥∥f(x)∥∥2 = 1

2
f(x)T f(x), F : Rn 7→ R (3.1.6)

Notice the 1
2 term in front of the sum in eqn. 3.1.6. This is used to avoid terms of 2 that arise

in later partial differentiations of this formula. Provided that f has continuous second
partial derivatives, we can write its Taylor expansion as follows:

f(x+ h) = f(x) +JJJ (x)h+O(∥h∥2) (3.1.7)
where JJJ ∈ Rm×x is the Jacobian matrix:

JJJ (x)i,j =
∂fi
∂xj

(x) (3.1.8)

Using eqn. 3.1.6 we also have:

∂F

∂xj
(x) =

m∑
i=1

fi(x)
∂fi
∂xj

(x). (3.1.9)

Thus, the gradient can be wri en as:

g ≡ F′(x) =

∂F
∂x1

(x)
...

∂F
∂xn

(x)

 (3.1.10)

In the following paragraphs we provide an analysis of the Levenberg-Marquardt non-
linear solver which we use extensively in both the single and multi-robot graphSLAM
implementations, in the rest of the thesis. Analysis is based on the work in [2]. We also
provide an overview of the Levenberg-Marquardt algorithm in fig. 3.1.4.

44 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

Figure 3.1.4: Levenberg-Marquardt pseudocode [2]

Originally published in 1944 by Kenneth Levenberg [59] and later rediscovered in 1963
by Donald Marquardt [60], the Levenberg-Marquardt algorithm (LMA) also known as
damped least-squares (DLS) method is used to solve non-linear least squares problems.
LMA an iterative technique that locates the minimum of a multivariate function that is
expressed as the sum of squares of non-linear real-valued functions [61].

It comprises a combination of the Gauss-Newton algorithm (GNA) and the steepest de-
scent. More specifically, the formula that computes the step towards the solution (i.e., hlm)
is provided by the following modification to the standard Gauss-Newton formula:(

JJJ TJJJ + µI
)
hlm = −g (3.1.11)

where the gradient is: g = JJJ T f
µ ≥ 0

In eqn. 3.1.11 JJJ and f are multivariate functions of the state x. Given the same equation,
we notice the following effect of the µ damping coefficient:

1. For all µ > 0 the coefficient matrix is positive definite and that ensures that hlm is a
descent direction

2. In case µ also has a large value:

hlm ≃ −
1

µ
g = − 1

µ
F′(x),

that is, a short step in the steepest descent direction.

3. If µ is very small (µ → 0), then hlm ≃ hgn. This is the strategy to use in the late
stages of the algorithm when the estimated state is close to the solution (i.e., x⋆).
Additionally if F(x⋆) ∝ 0 then the convergence speed is quadratic due to the nature
of GNA.

Multi-robot SLAM 45

4. From the previous 2 points, we conclude that the damping term affects both the
direction as well as the size of the step.

The choice of initial µ-value should be related to the size of the elements in the initial
estimation of A0 = JJJ TJJJ for x = x0. This is done by the following equation:

µ0 = τmaxiα
(0)
ii (3.1.12)

where τ is a user-defined variable5

We can further define the gain ratio. This quantity evaluates the quality of the current
linearised model and essentially constitutes a ratio of the actual to the predicted decrease
in function value, that is:

ρ =
F (x)− F (x+ hlm)

L(0)− L(hlm)
, (3.1.13)

where the denominator is the gain predicted by the linearised model of F . The la er is
derived from 1st order Taylor expansion of f, that is:

f(x+ h) ≃ ℓ(h) ≡ f(x) +J (x)J (x)J (x)h, (3.1.14)

F (x+ h) ≃ L(h) ≡ 1

2
ℓ(h)T ℓ(h)

=
1

2
fT f+ hTJT f +

1

2
hTJJJ TJJJ h

= F (x) + hTJJJ T f+
1

2
hTJJJ TJJJ h (3.1.15)

We can now compute the denominator of eqn. 3.1.13 as follows:

L(0)− L(hlm) = −hT
lmJJJ T f− 1

2
hT
lmJJJ TJJJ hlm

= −1

2
hT
lm

(
2g+ (JJJ TJJJ + µI− µI)hlm

)
=

1

2
hT
lm(µhlm − g) (3.1.16)

Note that since both hT
lmhlm and − hT

lmg are guaranteed to be positive, L(0) − L(hlm) is
also guaranteed to be a positive quantity.

Furthermore, we can differentiate based on the computed value of ρ as follows:

• A large value of ρ indicates that L(hlm) is a good approximation to F (x+ hlm) and
thus, we can decrease µ so that the next LMA step is closer to the corresponding
GNA. This is done so that we utilize the GNA quadratic speed close to the actual
solution.

• If ρ is small, maybe even negative, then L(hlm) is a poor approximation, and we
should increase µ with the twofold aim of ge ing closer to the steepest descent di-
rection and reducing the step length.

5LMA is not very sensitive to the choice of τ but as a rule of thumb, if x0 is a good approximation to x⋆,
this should be a small value (e.g., τ = 10−6) otherwise set it to 10−3 or even 1.

46 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

Figure 3.1.5: Full line: Updating µ - smooth version with ν = 2. Dashed line: Initial
suggested by Marquardt. [2]

Thus, based on the value of ρ one could modify µ to change the convergence proce-
dure. For example the following criterion, initially proposed by Marquardt, could be
used:

Algorithm 1 Example algorithm for modifying µ term - Discrete values
1 if ρ < 0.25 then
2 µ← µ× 2
3 else if ρ ≥ 0.75 then
4 µ← µ/3
5 end if

However this method is not sensitive to minor changes in the thresholds 0.25 and 0.75.
Experience in using this criterion, shows that the discontinuous changes across the thresh-
olds 0.25 and 0.75 can give rise to a flu er that slows down convergence. The criterion in
the next algorithm solves this problem. Comparison of the two criteria can be illustrated
in fig. 3.1.4.

Algorithm 2 Example algorithm for modifying µ term - Smooth version
1 if ρ > 0 then
2 µ← µ×max

{
1
3 , 1− (2ρ− 1)3

}
3 ν ← 2
4 else
5 µ← µ× ν
6 ν ← 2× ν
7 end if

The ν factor is initialized to ν = 2. Notice that a series of consecutive failures results in
rapidly increasing µ values.

We also need to define a stopping criterion for when the current solution is satisfac-
tory. For this purpose, one could check weather the gradient is essentially 0, that is
F′(x⋆) = g(x⋆) = 0: ∥∥g∥∥∞ ≤ ϵ1 (3.1.17)

where ϵ1 is a user-defined, small quantity.

Multi-robot SLAM 47

Another relevant stopping criterion would be to check the gradual change in the solution
of x.

∥xnew − x∥ ≤ ϵ2(∥x∥+ ϵ2) (3.1.18)

This expression is a function of the∥x∥ and thus ranges from ϵ22 for small values of∥x∥ to
respectively large thresholds for large values of∥x∥. Finally, as in all iterative processes,
we need to define a safeguard to break out of infinite loop situations:

k ≥ kmax (3.1.19)

Both ϵ2 and kmax the maximum allowed size of iterations are user-dependent.

3.2 GSoC Internship at MRPT - Library Design

As part of my internship in Google Summer of Code 2016 with Mobile Robot Program-
ming Toolkit (MRPT) we developed a complete graphSLAM strategy that could manage
offline datasets in the MRPT rawlog format.

The following, is a short summary of the work, so that the reader can get the necessary
information without jumping to external links. Theoretical analysis of the utilized strate-
gies are presented in sec. 3.1.

For a more information on this work refer to the following links:

• Project Discussion Page6

• Demo Video7

• Application Page8

• graphslam-engine technical report9

Goal of the internship was not to merely write one SLAM algorithm that would manage
a specific version of rawlog files but rather build a complete framework using which one
could:

• Experiment with new graph-based SLAM algorithms, either in the data-acquisition
part (frontend) or in the optimization part (backend),

• Use MRPT built-in frontend, backend algorithms to execute graphSLAM in prere-
corded offline datasets,

• Potentially execute graphSLAM in 3D datasets or in multi-robot setup

Having set these goals, we designed and programmed a set of classes that allows for a re-
configurable and extensible setup, offering the user both a set of ready-to-use graphSLAM
algorithms as well as the ability to develop and integrate their own. Building blocks of
the aforementioned strategy are outlined below 10.

6https://github.com/MRPT/GSoC2016-discussions/issues/2
7https://www.youtube.com/watch?v=Pv0yvlzrcXk&feature=youtu.be
8http://www.mrpt.org/list-of-mrpt-apps/application-graphslamengine/
9https://www.dropbox.com/s/u7phs612qf1l8bb/graphslam-engine-guide.pdf?dl=0

10mrpt-graphslam library design splits the frontend into a node registration scheme and an edge registra-
tion scheme. The former algorithm adds new nodes in the graph (this includes the corresponding constraint
between the last and the second to last inserted nodes) while the la er is the algorithm that adds edges
between non-consecutive nodes in the graph

https://summerofcode.withgoogle.com/archive/2016/projects/6025600208732160/
http://www.mrpt.org/MRPT_in_GNU/Linux_repositories
http://www.mrpt.org/MRPT_in_GNU/Linux_repositories
https://github.com/MRPT/GSoC2016-discussions/issues/2
https://www.youtube.com/watch?v=Pv0yvlzrcXk&feature=youtu.be
http://www.mrpt.org/list-of-mrpt-apps/application-graphslamengine/
https://www.dropbox.com/s/u7phs612qf1l8bb/graphslam-engine-guide.pdf?dl=0
https://github.com/MRPT/GSoC2016-discussions/issues/2
https://www.youtube.com/watch?v=Pv0yvlzrcXk&feature=youtu.be
http://www.mrpt.org/list-of-mrpt-apps/application-graphslamengine/
https://www.dropbox.com/s/u7phs612qf1l8bb/graphslam-engine-guide.pdf?dl=0

48 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

CGraphSlamEngine11

Class that manages the overall execution of graphSLAM.

CRegistrationDeciderOrOptimizer12

Common parent of all decider/optimizer classes.

CNodeRegistrationDecider (NRD)13

Node registration decider schemes add nodes to the graph according to a specific
criterion and should implement the CNodeRegistrationDecider abstract class. The
la er provides the basic methods that have to exist which are called from the main
CGraphSlamEngine instance.

For an example of inheriting from this class see CFixedIntervalsNRD14

Currently two specific node registration schemes have been implemented:

• CFixedIntervalsNRD15

Decider registers a new node in the graph if the distance or the angle difference
with regards to the previous registered node surpasses a corresponding fixed
threshold. Decider makes use only of the CObservationOdometry instances in
the rawlog file.

• CICPCriteriaNRD16

Decider registers a new node in the graph if the distance or the angle difference
with regards to the previous registered node surpasses a corresponding fixed
threshold. Decider measures the distance from the current position to the pre-
vious registered node using ICP (i.e., finds the relative pose transformation by
matching the current range scan against the range scan of the previous node).
In case of noisy 2D laser scans, decider can also use odometry information,if
available, to locally correct and smoothen the robot trajectory. Decider makes
use of CObservation2DRangeScans or CObservation3DRangeScans instances.
More on the Iterative Closest Point algorithm (ICP) is given in the (sec. 3.1.1).

Note: As a naming convention, all the implemented node registration deciders are
suffixed with the NRD acronym.

CEdgeRegistrationDecider (ERD)17

Edge registration decider schemes add edges between already added nodes in the
graph according to a specific criterion and should implement the CEdgeRegistra-
tionDecider abstract class. The la er provides the basic methods that have to exist
which are called from the main CGraphSlamEngine instance.

For an example of inheriting from this class see CICPCriteriaERD18.

Currently two specific edge registration schemes have been implemented:

• CICPCriteriaERD19

14http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_
intervals_n_r_d.html

15http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_
intervals_n_r_d.html

16http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_
criteria_n_r_d_1_1_t_params.html

18http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_
criteria_e_r_d.html

19http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_
criteria_e_r_d_1_1_t_params.html

http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1_c_graph_slam_engine_1_1_t_r_g_b_d_info_file_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1_c_registration_decider_or_optimizer.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_node_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_n_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_edge_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_n_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_n_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d_1_1_t_params.html

Multi-robot SLAM 49

Register new edges in the graph with the last inserted node. Criterion for
adding new edges should be the goodness of the candidate ICP edge. The
nodes for ICP are picked based on the distance from the last inserted node.
Decider makes use of 2DRangeScans or 3DRangeScans.

• CLoopCloserERD20

Evaluate sets of potential loop closure edges in the graph based on their pair-
wise consistency matrix.Decider first splits the graph into partitions based on
the 2D laser scans of the nodes and then searches for potential loop closure
edges within the partitions. Goal is to register only a subset of the potential
loop closure edges that maximally agree with each other. Decider is imple-
mented based on [58], [40]. A more detailed approach into the loop closure
scheme is given in sec. 3.1.2.

Note: As a naming convention, all the implemented edge registration deciders are
suffixed with the ERD acronym.

CGraphSlamOptimizer (GSO)21

Optimizer classes optimize an already constructed graph so that the registered
edges maximally agree with each other. They should implement the methods de-
fined in the CGraphSlamOptimizer abstract class.

For an example of inheriting from this class see CLevMarqGSO22.

Note: As a naming convention, all the implemented optimizer classes are suffixed
with the GSO acronym.

In fig. 3.2.1 a visual representation of the aforementioned classes structure is given.

Figure 3.2.1: Hierarchy of graphslam-lib classes. Notice that all deciders/optimizers in-
herit from a common parent CRegistrationDeciderOrOptimizer which sets the overall
behavior of all decider/optimizer classes (e.g., basic method calls, initialization of logging
instances) Also notice the CRangeScanEdgeRegistrationDecider interface as a middle-
ware between the ERD interface and the actual implementations. This comes in handy to
define methods and variables available to all range scan-based deciders which may not
be applicable though to deciders utilizing other measurements (e.g., camera).

20http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_loop_closer_
e_r_d.html

22http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_lev_marq_g_
s_o.html

http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_loop_closer_e_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_graph_slam_optimizer.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_lev_marq_g_s_o.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_loop_closer_e_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_loop_closer_e_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_lev_marq_g_s_o.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_lev_marq_g_s_o.html

50 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

3.3 Application interface

Users of the MRPT graphslam-engine application can make use of the corresponding
graphical user interface (GUI) to debug, interact and in general inspect the ongoing SLAM
operation. As a standard MRPT application the GUI was built on top of OpenGL23 and
wxWidgets2425.

As of the current implementation, the CGraphSlamEngine main class is responsible of the
visualization of the following in the GUI window:

Running time
Time is either imposed by the parsed dataset or, Wall-clock time if running online
(see online wrapper in sec. 3.5)

Names of used deciders/optimizer

Robot odometry path

Optimized Trajectory
This is essentially a series of node positions as computed a er the graph optimiza-
tion.

Ground-truth Trajectory
If the ground-truth trajectory of the robot agent is available, it will also be displayed
for reference. Users can currently support this via an external textfile.

Latest laser scan measurement

Rough estimation of generated map
An estimation of the generated map is also displayed as a cloud of points based on
the cached measurements and the optimized positions from which these measure-
ments were recorded at.

Overall SLAM execution statistics
Among others, these statistics include

• Total number of nodes

• Total number of edges as well as number of edges based on the type of sensor
they were registered by (e.g., odometry, 2D scan, 3D scan).

• Loop closure edges

Additionally, the graphslam-engine application offers hotkeys to toggle any of the vi-
sualized objects in the window on the fly (without restarting process). Finally, the
CRegistrationDeciderOrOptimizer class interface provides methods to

• Add new visualization features

• Associate hotkeys at which the implemented decider/optimizer will listen to and be
notified when one is pressed

This way user-defined decider/optimizer classes can also benefit and add visuals of their
own. Examples of implemented visual features along with their corresponding descrip-
tions are presented in fig. 3.3.1, fig. 3.3.2

23https://www.opengl.org
24https://www.wxwidgets.org
25As of the time of writing, MRPT developers are looking to transition to the Qt GUI Library26

https://www.opengl.org
https://www.wxwidgets.org
https://www.opengl.org
https://www.wxwidgets.org
https://github.com/MRPT/mrpt/wiki/Ideas-page-for-MRPT-Google-Summer-of-Code-2017#project-6-port-mrptgui-gui-classes-from-wxwidgets-to-qt

Multi-robot SLAM 51

(a) View of features initially added by the CGraphSlamEngine. On the le , running time, SLAM-
related statistics and current constraint type is provided. In the main window, the current laser
scan is depicted in cyan while the blue, orange and green lines correspond to the odometry, SLAM
and ground-truth trajectory respectively. Additionally the underlying graph is shown in a series
of black lines while the generated map as a cloud of (red) points.

(b) Graph partitioning. This is an essential
step in the detection of potential loop closures
since the la er may arise in groups that contain
nodes with large nodeID difference. Visualiza-
tion of groups is critical in the inspection of this
procedure

(c) Partitioning scheme has detected potential
loop closures Initial and last inserted nodes are
placed in the same partition

Figure 3.3.1: Examples of visualization features picked from various parts of the mrpt-
graphslam lib library.

52 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

(a) Situation prior to registration of loop-closing edge

(b) Situation a er registration of loop-closing edge. Notice how the black lines of the graph, along
with the estimated trajectory coincide with the ground-truth path

Figure 3.3.2: Effect of registering a loop closing edge in the graph

Multi-robot SLAM 53

3.4 SLAM evaluation metric

3.4.1 Overview of metric - SLAM benchmarking

to measure of the performance of the SLAM process, during both simulations as well as
possibly real-time experiments, a benchmark needs to be defined. For this purpose we
utilize a SLAM evaluation metric initially proposed in [62] [63]. Proposed metric instead
of evaluating the output of SLAM algorithm as a whole (map and trajectory) utilizes only
the SLAM estimated trajectory and compares it to the ground-truth trajectory or an esti-
mation of the la er. This approach offers multiple advantages including:

Invariant to map representation
Since we don't utilize map information explicitly, the SLAM algorithm is free to
choose its map representation, be it feature-based, an occupancy grid-map, or a
view-based one.

Invariant to the SLAM technique
Since the metric under discussion only utilises trajectory information, it is invariant
to the actual algorithm we use to solve the problem (e.g., EKF, PF, Graph-based).
That is due to the fact that all algorithms provide an estimate of the trajectory (which
is not the case for the environment/map estimation though). Based on this fact, it
can be used, as it is suggested, to benchmark the accuracy of the different kinds of
SLAM techniques as well.

3.4.2 Formulation of metric

Let x1:T be the poses of the estimated robot trajectory as given by the SLAM algorithm
for the timesteps 1 up to T , for which xt ∈ SE(2) or xt ∈ SE(3) depending on whether
its a 2D or 3D SLAM operation respectively. Additionally we define x⋆1:T as the reference
poses of the robot, that is the ground-truth path. A straightforward way of comparing
the SLAM trajectory to the ground-truth, is to utilize the following error metric:

ϵ(x1:T) =
T∑
t=1

(xt ⊖ x⋆t)
2 (3.4.1)

In eqn. 3.4.1 ⊕,⊖ are the standard transformation and inverse transformation compo-
sitions respectively. We can also define δi,j as the relative transformation that connects
poses of xi and xj (xi → xj)

27. Using the above, we can formulate eqn. 3.4.1 as fol-
lows:

ϵ(x1:T) =

T∑
t=1

(
(x1 ⊕ δ1,2 ⊕ · · · ⊕ δt−1,t)⊖ (x⋆1 ⊕ δ⋆1,2 ⊕ · · · ⊕ δ⋆t−1,t)

)2 (3.4.2)

However, as authors of [63] have claimed, this metric is suboptimal for measuring the
performance of a SLAM problem. This is because an error in the estimated SLAM trajec-
tory is propagated to all following poses considered in this analysis even when the robot
motion is locally accurate.28 An example of using this metric is illustrated in eqn. 3.4.1.

27Same goes for the starred version, δ⋆i,j
28By local accuracy we mean the relative transformation between two consecutive poses of the SLAM

trajectory compared to the corresponding transform between the corresponding poses of the ground-truth
trajectory.

54 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

Assume that the robot has estimated accurately its trajectory, except of a rotational er-
ror somewhere along the line, for example in the middle. Both prior and a er the error,
the robot computes the transformation between consecutive poses accurately. However,
when employing the metric of eqn. 3.4.1 the error increases as more nodes a er the error
are considered. Thus the error depends on the point in time that the robot made estimation
error without considering that it might not introduce any (further) error. The reason for
this is that the metric at hand, computes the error in global coordinates and considers the
trajectories as rigid bodies that have to be maximally aligned. In contrast, the authors
propose a metric based on the deformation energy that is needed to transfer the estimated
trajectory into the ground truth and by considering the relative displacement between
poses. That is, instead of comparing x to x⋆ in the global reference frame, we operate
based on δ and δ⋆ as follows:

ϵ(δ) =
1

N

∑
i,j

(δi,j ⊖ δ⋆i,j)
2

=
1

N

∑
i,j

(
trans(δi,j ⊖ δ⋆i,j)

2 + rot(δi,j ⊖ δ⋆i,j)
)2
, (3.4.3)

where,
N : number of relative relations
trans(·): Translation component of transform
rot(·): Rotational component of transform

Figure 3.4.1: The robot moves along a straight line and a er n poses, it makes a small an-
gular error (bold arrow) but then continues without any further error. Both parts (labeled
submap 1 and submap 2) are perfectly mapped and only the connection between both
submaps contains an error. According to eqn. 3.4.1, the error of this estimates increases
with every node added to submap 2 although the submap itself is perfectly estimated. Thus,
the error depends on the point in time where the robot made an estimation error without
considering that it might not introduce any (further) error. However, by using the metric
of eqn. 3.4.3 the error is accounted for only once.

The algorithm, as was defined in eqn. 3.4.3 doesn't specify which poses to consider when
evaluating the relative displacements δi,j . As an example one could use nearby (even
consecutive) poses to compute the δs

It should be noted that the metric presented here also has drawbacks. The most notable is
that it only evaluates the mean estimate of the SLAM algorithm and does not consider its
estimate of the uncertainty. Thus, it fails to align with the probabilistic context the whole
SLAM algorithm is set in.

An example of using it during an execution of the graphslam-engine application is also
illustrated in fig. 3.4.2 and fig. 3.4.3. We should remark that this is an inherent, to the

Multi-robot SLAM 55

application, feature that was executed simultaneously to the SLAM algorithm, and not an
offline calculation. Users have the option of toggling the visualization (as well as the
actual metric computation) ON or OFF.

(a) Estimated and Ground-Truth trajectory. (b) SLAM metric evaluation.

Figure 3.4.2: Situation prior to divergence.

(a) Estimated and Ground-Truth trajectory. (b) SLAM metric evaluation.

Figure 3.4.3: Situation a er divergence. Notice the zig-zag recorded at the end of the
estimated robot trajectory. This has a severe effect (large spikes towards the right) on
the SLAM metric which however adds this error only once, and doesn't reconsider this
for the rest of the pairs of ground-truth to estimated trajectory poses. We come to this
conclusion since the error doesn't continue upwards but reduces with the same rate as
prior the wrong registration.

3.5 Wrappers for usage in ROS - Online SLAM

Having successfully executed graphSLAM in multiple offline runs and simulated
datasets, we then developed wrapper code to utilize the mrpt-graphslam library in native
ROS applications, thus, make it possible to run graphSLAM in an online fashion (in par-
allel to data-acquisition from hardware sensors). Code for configuring an arbitrary robot

56 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

agent is available in the csl_hw_setup29 ROS package. Functionality is provided via a se-
ries of launchfiles, along with which, full documentation and instructions on using each
one is given.

3.5.1 Configuring a single SLAM agent

Our goal is to setup a single agent as part of an existing team of graphSLAM agents as fast
as possible and in an easy-to-grasp manner. By se ing up a SLAM agent, configuration
for the following, among other tasks, should be available:

• Setup the network communication for the agent to exchange information with a cen-
tral introspection node as well as with the other agents in multi-robot graphSLAM
setups.

• Start the various processes that are needed to control the robot movement (e.g.,
motor drivers, teleoperation nodes). Design should take in account that different
robots use different processes for e.g., robot movement (Youbot drivers, Pioneer
ARIA drivers) and some even custom ones (Poulias drivers for the modified Pio-
neer models).

• Start the processes that read information off hardware sensors (e.g., camera, laser
scans). Potential design should take in account that different types of sensors may
be used (e.g., SICK laser scanner instead of Hokuyo).

• Various utility ROS nodes (e.g., rosbag-player node for recording the measure-
ments).

To do that we have used a mixture of shell environment-se ing configuration files and
ROS launchfiles which can be summarized as follows:

1. Create (or use one of the preexisting) configuration files. This file contains directives
for starting up all the necessary ROS nodes in a single SLAM agent. An example
of such configuration file that was used during the single-robot experiments for a
youbot is shown in listing lst. 3.1

2. Source the aforementioned config file, either in the current shell or from the robot's
~/.bashrc file.

source /path/to/config/file.sh # Source it
echo <variable defined in latter file> # Make sure that file is
sourced correctly

3. Run corresponding porcelain launchfiles 30 according to the robot agent's task:
roslaunch csl_hw_setup setup_graphSLAM_agent.launch
roslaunch csl_hw_setup run_graphslam_real.launch

29www.github.com/bergercookie/csl_mr_slam/csl_hw_setup
30In the csl_hw_setup package, the launchfiles are split into porcelain and plumbing launchfiles Porcelain

directory launchfiles (as in git-porcelain commands) are to be launched directly by the ROS user to setup/ex-
ecute single or multi-robot SLAM. To do that they utilize launchfiles found in the corresponding plumbing/
directory. Plumbing directory, on the other hand (as in git-plumbing commands), contains roslaunch files
whose task is to actually start up the corresponding ROS nodes. Each one of these files has a very specific,
low-level, goal (e.g., start the Hokuyo laser node, given a set of ROS Server parameters).

www.github.com/bergercookie/csl_mr_slam/csl_hw_setup

Multi-robot SLAM 57

We should remark that the same launchfile run_graphslam_real.launch is used for
configuring the agent for both single and multi-robot graphSLAM. Behavior differs
based on the selected NRD, ERD, GSO classes issued in the shell environment con-
figuration file which is sourced prior to the launchfile call.

#!/usr/bin/env bash
2

Tue Nov 8 10:25:04 EET 2016, Nikos Koukis
4 # Single robot graphSLAM
Current configuration file was used during single-robot real-time

testing of
6 # of the graphSLAM algorithm
#

8 # Source this file on both the ubuntu machine and youbot
###

10

export MR_USE_MULTIMASTER=0
12

export MR_IS_MULTIROBOT_GRAPHSLAM=0
14 export MR_DISABLE_MRPT_VISUALS=0

16 # This is used only in the case the Poulias Pioneer drivers are used.
No need

to define it otherwise
18 #

Available options:
20 # - pioneer_3dx # yeah, its 2dx, but not worth changing code for this..

- pioneer_2at
22 # - youbot

export MR_ROBOT_MODEL="youbot"
24

ROS namespace under which all nodes are started
26 # NOTE: Previous convention was that the namespace would be

${MR_ROBOT_MODEL}_${MR_ROBOT_ID} but this was not handy in multi-
robot

28 # communication proc
export MR_ROBOT_NS="$(hostname)"

30

Record topics on current host?
32 export MR_RECORD_TOPICS=1

34 # Robot HW Drivers
Available options are:

36 # - youbot
- pioneer_poulias

38 # - aria
export MR_ROBOT_DRIVERS_NAME="youbot"

40

All nodes read this variable and output the messages accordingly
42 export MR_OUTPUT_MESSAGES_TO="screen"

44 # LaserScanner
export MR_USE_LASER=1

46

Available options are:
48 # - hokuyo

- sick
50 export MR_LASER_NAME="hokuyo"

58 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

52 # [!] WARNING
urg_node doesn't seem to work properly with the hokuyo laser scanners

available in the Control Systems lab
54 # It is *strongly* advised to set this to 0

export MR_LASER_USE_URG_NODE_PKG=0 # Use the urg_node ROS pkg instead
of the hokuyo_node

56

Option only available with the urg_node laserScans package - ignored
otherwise

58 export MR_LASER_SKIP_NUM_MESSAGES="1"

60 export MR_LASER_PORT="/dev/ttyACM0"

62 # Camera
export MR_USE_ONBOARD_CAMERA=0

64 export MR_ONBOARD_CAMERA_PORT="/dev/video0"

66 # Teleoperation
export MR_USE_JOYSTICK=1

68 export MR_JOYSTICK_PORT="/dev/input/js0"
Available options are:

70 # - poulias -- Custom poulias teleoperation
- non-holonomic

72 # - holonomic
export MR_JOYSTICK_CONFIG_FNAME="non-holonomic" # configuration files

are found in $(rospack find csl_common)/config/joystick
74 # Available options are:

- poulias
76 # - generic

export MR_JOYSTICK_FOR="generic"
78

Marker IDs for common origin and ground-truth paths
80 # These should exist even when no ground truth is acquired. This is

because the
names of the frames of the robots are initialized based on these.

82 export MR_ORIGIN_MARKER_ID="mf7"
Just for initializing the robot path at anchor_frame_ID - make sure

this is unique for every running agent
84 export MR_ROBOT_MARKER_ID="mf1"

86 # if true, Odd Aruco markers are used for tracking the agents' ground
truth

paths while even aruco markers for inter-robot meetings
88 export MR_USE_ODD_ARUCO_MARKERS_FOR_GT=1 # always needed.

90 # Read by the computer handling the ground-truth cameras - If True the
cameras

are initialized so that we have an estimation of the ground-truth of
the

92 # robot paths
export MR_COMPUTE_GROUND_TRUTH=1

94

Deciders/Optimizers to be used
96 export MR_NRD="CFixedIntervalsNRD"

export MR_ERD="CICPCriteriaERD"
98 export MR_GSO="CLevMarqGSO"

Listing 3.1: Example of a configuration file used to setup a SLAM agent

Multi-robot SLAM 59

3.6 Experimental Results

To verify the behavior of the algorithm in online datasets a series of experiments have been
executed. These experiments are listed in sectionssec. 3.6.3, sec. 3.6.4,and sec. 3.6.5. Each
experiment section holds the hardware and so ware configuration, the experimental re-
sults as well as the corresponding conclusions. Prior to that, in sec. 3.6.1 the ground-truth
acquisition strategy is analyzed and in sec. 3.6.2 general information regarding all three
experiments are given.

3.6.1 Ground-Truth acquisition strategy

To evaluate the performance of the single robot algorithm, a rough estimate of the ground-
truth trajectory of the agent must be available. For this reason, as in [64], a ground-truth
acquisition system based on visual monitoring of Aruco markers has been developed. In-
stead of just moving markers and fixed origin though, current implementation includes
a static aruco marker insteaed of the fixed origin.

Two ps3 eye cameras are placed on the ceiling of the room facing downwards 31(see
fig. 3.6.1(a)). Cameras are used in combination with the ar_sys ROS package so that they
can detect and track Aruco markers. Due to the fact that one of the cameras was free to
rotate around its axes, we did not use a static workspace origin (as the transformation from
that camera to the potential origin would have to be computed in every experiment. In-
stead we opted for a static Aruco marker placed between the two cameras. This way, the
transformation of the cameras to the origin can be computed dynamically, every time the
cameras ar_sys node detects the static marker.

The agent traversing the workspace carries another Aruco marker on top (see
fig.3.6.3(b)) facing upwards. Based on this hardware configuration, we developed mon-
itor_gt_paths.py32. This script automatically tracks and stores the path that an arbitrary
marker (except the one that acts as the origin) has traversed. This way, and keeping in
mind that this should be adapted to a multi-robot setup, we don't have to explicitly de-
fine, prior to the experiment, the marker IDs that are going to be used, but just make a
correlation of agent to Aruco marker so that a erwards we can visualize each path.

Furthermore because we will have to account for the inter-robot data-exchange we make
a distinction in the Aruco markers used, as follows 33:

• Odd marker IDs are used for tracking the agent ground-truth path and face upwards

• Even marker IDs are used for the robot to be identified by other running agents and
face towards the side of the agent they are mounted on. The ground-truth monitor-
ing script ignores these markers.34

Fig. 3.6.1(a) shows a preview of the cameras configuration while fig. 3.6.2 show a preview
of an Aruco marker as well as the marker that acts as the workspace origin.

31Placing two cameras instead of one adds to the area that the robot can traverse and thus, the area that
ground-truth path can be computed.

32https://github.com/bergercookie/catkin_ws/blob/master/ground_truth_fetcher/nodes/
monitor_gt_paths.py

33This distinction can be inversed - see the corresponding ROS parameter in the monitor_gt_paths.py
script

34Feature at hand is to be used for inter-robot meetings, a feature not yet implemented but accounted for
in the overall designed process for the multi-robot graphSLAM algorithm.

https://github.com/bergercookie/catkin_ws/blob/master/ground_truth_fetcher/nodes/monitor_gt_paths.py
https://github.com/bergercookie/catkin_ws/blob/master/ground_truth_fetcher/nodes/monitor_gt_paths.py
https://github.com/bergercookie/catkin_ws/blob/master/ground_truth_fetcher/nodes/monitor_gt_paths.py
https://github.com/bergercookie/catkin_ws/blob/master/ground_truth_fetcher/nodes/monitor_gt_paths.py

60 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

(a) Ceiling cameras used for tracking the Aruco markers.
Camera on the le is free to rotate around its axis so a fixed
common origin would not be appropriate.

(b) PlayStation Eye Camera

Figure 3.6.1: Ground-Truth acquisition setup

(a) Image of a typical aruco marker (b) Aruco marker that is used as the workspace
origin

Figure 3.6.2: Aruco markers

3.6.2 Experiments - general information

In the single-robot graphSLAM experiments a KUKA youbot (fig. 3.6.3(a)), and a Pioneer
2-AT(fig. 3.6.3(b)) were used (separately). The laser scanner device used was a Hokuyo
URG-04LX-UG01 (fig. 3.6.4(a)). We opted for the Hokuyo instead of the SICK LMS 500
due to its portability and ease in usage. In the cases in which the Youbot was used due
to the poor system specifications of the onboard computer, the sensor data was recorded
and played back on another machine along with the corresponding ground-truth data.
An overall view of the workspace that the single-robot experiments took place is given in
fig. 3.6.5.

Multi-robot SLAM 61

(a) The KUKA Youbot, used during the single-
robot graphSLAM experiment

(b) The Pioneer 2-AT, used during the single-
robot graphSLAM experiment

Figure 3.6.3: Robots used during overall experimentation

(a) The Hokuyo URG-04LX-UG01 (b) The SICK LMS 200

Figure 3.6.4: Laser scanner devices used during overall experimentation

Figure 3.6.5: View of the workspace that the single-robot graphslam experiments were
executed at. The bins, the table and the rectangular box were used as obstacles, while
the Aruco markers were used for a rough estimation of the ground-truth trajectory of the
robot.

62 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

Finally, videos of the experimental results are accessible here35, while the bulk data gath-
ered from the robot sensors and the ground-truth processes can be found from there36.
The la er can be useful so that one can reproduce the experiment using a different so -
ware setup (e.g., use a different node registration strategy altogether). Instruction on this
can be found in the mrpt_graphslam_2d application page

3.6.3 Experiment #1

Hardware configuration

Robot model: Youbot

Measurement types used: Robot odometry, laser scans

Teleoperation method: Joystick

Ground-Truth acquisition method: Monitoring of Aruco marker - see sec. 3.6.1

Miscellaneous:

• Laser scanner device: Hokuyo URG-04LX-UG01

So ware configuration

Node Registration Decider: CFixedIntervalsNRD

• Registration distance: 0.1m

• Registration angle: 5°

Edge Registration Decider: CLoopCloserERD

• Use Scan Mathing True

• Previous Nodes for ICP: 10

• Eigenvalue Threshold: 2

• Minimum Remote Nodes to consider Loop Closure: 2

graphSLAMOptimizer: CLevMarqGSO

• Optimization distance: 0.4m

Experimental Results

The following is the final outcome of the graphSLAM algorithm, where:

• Blue line→ Odometry-only trajectory

• Green line→ Ground-truth trajectory

• Orange line→ graphSLAM estimated trajectory

35https://www.dropbox.com/s/u7jvndtv6l7cuvo/presentation.pptx?dl=0
36https://www.dropbox.com/sh/habf5mnc5404i66/AACvbzmAQ6UrYB4ix-6aVIc9a?dl=0

https://www.dropbox.com/s/u7jvndtv6l7cuvo/presentation.pptx?dl=0
https://www.dropbox.com/sh/habf5mnc5404i66/AACvbzmAQ6UrYB4ix-6aVIc9a?dl=0
https://github.com/mrpt-ros-pkg/mrpt_slam/tree/master/mrpt_graphslam_2d#real-time-experiment---ground-truth-data-included
https://www.dropbox.com/s/u7jvndtv6l7cuvo/presentation.pptx?dl=0
https://www.dropbox.com/sh/habf5mnc5404i66/AACvbzmAQ6UrYB4ix-6aVIc9a?dl=0

Multi-robot SLAM 63

Figure 3.6.6: Experiment 1: graphSLAM results

Conclusions

Overall we can see that the mapping procedure is successful - there's a minor duplicate
wall on the le side o he map, while the estimated position of the placed obstacles, by vi-
sual introspection, seems accurate. With regards to the estimated robot trajectory we can
see that, especially a er the turn around the table, it matches the ground-truth trajectory
more closely compared to the odometry trajectory, even though the odometry divergence
isn't significant due to the small overall distance 37.

3.6.4 Experiment #2

Hardware configuration

Same as in sec. 3.6.3.

So ware configuration

Node Registration Decider: CICPCriteriaNRD

• Registration distance: 0.05m

• Registration angle: 15°

Edge Registration Decider: CICPCriteriaERD

• Distance to search for graph edges: 2.0m

graphSLAMOptimizer: CLevMarqGSO

37Steep straight line at the ground-truth trajectory is produced due to the robot turns around the trash
can and gets out of the camera scope. Furthermore the ground-truth zig-zag accounts for minor errors in the
ar_sys position estimation scheme.

64 CHAPTER 3. SINGLE-ROBOT SLAM DEVELOPMENT

• Optimization distance: 1.0m

Experimental Results

Figure 3.6.7: Experiment 2: graphSLAM results

Conclusions

Compared to the results of sec. 3.6.3, the fine map quality remains while the estimated
trajectory is still close to the ground-truth even though no odometry information was ex-
plicitly utilized. We can however detect rougher edges especially at the robot turns

3.6.5 Experiment #3

For the last single-robot experiment, a Pioneer 2-AT was used (see fig. 3.6.3(b)). This
is useful for testing the algorithm mapping in larger areas, since the robot at hand has
an embedded ba ery and thus, is capable of traversing larger distances. Due to faulty
odometry data from the (custom) pioneer robot drivers38 only the laser data was used for
graphSLAM. The following sections describe the overall hardware and so ware config-
uration:

Hardware configuration

Robot model: Pioneer 2-AT

Measurement types used: Laser scans

Teleoperation method: Joystick

38Current Pioneer model doesn't use the Aria library and its native control system since a custom one was
designed as part of Apostolos Poulias' diploma thesis in the Control Systems Lab. For more on this, see the
corresponding github repository: h ps://github.com/bergercookie/csl_pioneer_drivers

Multi-robot SLAM 65

Ground-Truth acquisition method: None

Miscellaneous

• Laser scanner device: Hokuyo URG-04LX-UG01

So ware configuration

Node Registration Decider: CICPCriteriaNRD

• Registration distance: 0.5

• Registration angle: 5°

Edge Registration Decider: CLoopCloserERD

• Previous nodes to search try registering constraints with: 10

graphSLAMOptimizer: CLevMarqGSO

• Optimization distance: 4m

Experimental Results

Figure 3.6.8: Experiment 3: graphSLAM results

Conclusions

Although there are minor duplicate walls (bo om), overall map is quite accurate.

Chapter 4

Inter-robot Communication

Communication between the SLAM agents is a key issue in multi-robot setups. Related
strategies are mainly categorised based on the type of information that the agents share:

• Raw sensor data [65]

Sensor data typically include odometry information, laser scans or camera data.
This brings more flexibility for every agent to evaluate the measurements in its own
way but also requires higher bandwidth, reliable communication means for the
robots to use as well as redundancy of computations (each agent separately eval-
uates the received data).

• Processed ready-to-use data [44].

Sharing processed data (e.g., graphs or grid maps) on the other hand, reduces the
bandwidth usage and overall computational cost but the mapping procedure of
each receiver robot is dependant on the accuracy of the exchanged information [3].

In our implementation we resort to a combination of the aforementioned strategies largely
based on [6]. A brief overview explaining the communication procedure between two
robot agents is given below.

• Each robot executes, independently, single robot graphSLAM

• When in close range they start exchanging their local maps; each robot transmits
the following information upon every new node addition in its own graph:

– Laser Scan measurement corresponding to the latest registered node in the
graph

– List of last X node positions of own graph. Due to graph optimization these po-
sitions are subject to change as new observations are being processed. During
experimentation the last 10 node positions were transmi ed.

• Receiver robots cache the transmi er's node positions as well as laser scans. How-
ever, as each robot doesn't know its starting position (and correspondingly its cur-
rent) with regards to its neighbors, the received information cannot yet be used as
they are taken with regards to the neighbor's frame of reference.

When enough nodes are both registered in own graph and have also been received
from the other agent, robot recreates other agent's graph and tries to find a valid trans-
formation (translation and rotation) with which own grid map and the recreated one

67

68 CHAPTER 4. INTER-ROBOT COMMUNICATION

are best aligned. For this, a modified RANSAC scheme explained in sec. 5.1 is uti-
lized.

• Even though the receiver can now directly add the new nodes, to simplify the inte-
gration step, it also asks the transmi er of a condensed graph that only contains the
nodes that the receiver is going to add in its own graph. This way the receiver just
has to merge the condensed local graph with its own using the grid map aligning
transformation as the inter-graph constraint. A er all, exchanging graph informa-
tion (nodes and edges) add li le overhead to the overall network usage (compared
to e.g., the laser scans).

This implementation also adds to the overall flexibility as the receiver robot can
alter the received node positions a er its own graph optimization step, in case they
contradict with its own registered nodes.

• A er first time integration, receiver has an estimation of the transformation between
its own and the transmi er's graph so when it receives new data from its counter-
part, it can directly incorporate them in its own graph. However, to account for
optimization of the node positions on the part of the transmi er, receiver incorpo-
rates new nodes in batches (of typically 5 nodes).

This implementation offers a couple of advantages, most notably:

• Minimization of overall used bandwidth, as the only large bulk of information trans-
mi ed is the laser scan, which happens on every new node registration. Validation
of this statement is provided in [6], since the information transmi ed is essentially
the same as in this case.

• Communication procedure is robust to limited bandwidth and is does not assume
any prior network infrastructure as agents communicate having predetermined a
prior ad-hoc network on which they publish their data to any available subscribers.

Chapter 5

Multi-robot SLAM algorithm

In this section we focus on extending the single-robot graphSLAM algorithm pieces (see
sec. 3) so that they can be employed in a multi-robot framework. Sec. 5.1 describes a map-
matching technique for deciding the relative transformation of two arbitrary robot agents
while sec. 5.2 offers insight into the implementation of the communication procedure us-
ing ROS and the multimaster_fkie package and the map_merger_node application. Fi-
nally sec. 5.3 presents the simulation setup and results while sec. 5.4 presents a real-time
experiment with 2 Pioneer-2dx models.

5.1 Multi-hypothesis map-matching

Current section offers insight in the grid map matching algorithm that we employ to align
the map of each robot with the map that it recreated using the measurements fetched from
a neighboring robot. By doing so, robot computes a rigit transformation between own and
neighbor map which can be used for integrating the received nodes and measurements
in its own graph. For more details on the algorithm, readers are encouraged to study the
original paper [66], on which this section is heavily baed on anyway.

Algorithm comprises a special instance of generic image registration as it tries to com-
pute a valid transform by finding correspondences between a set of sparse features de-
rived from the grid maps. To deal with the uncertainty and ambiguity from matching
grid maps, authors introduce a modified RANSAC algorithm which seraches for a dy-
namic number of internaly consistent subsets of feature pairings from which hypotheses
about the candidate translations and rotations between the maps are derived. Finally au-
thors provide test results from using a various combinations of detector and descriptor
algorithms, which illustrate the robustness of the algorithm at hand.

5.1.1 Algorithm overview

A central idea in the current algorithm design is the dual representation of the evaluated
maps where both occupancy grid maps as well as point maps are utilized. These maps
complement each other and maintaining them only requires updating both simultane-
ously using the same sensory data. Based on this dual representation, algorithm consists
of two discrete steps:

1. Grid maps are firstly matched without any a priory information

69

70 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

2. Having a rough alignment estimate from the first step, corresponding point maps
are aligned so that the matching is refined.

The second step is implemented using an ICP-variant and is a well studied problem, while
the first (grid-to-grid matching) is a far more challenging one since an initial estimate
for the transform is not available. Based on these remarks, the rest of the section deals
exclusively with the grid-to-grid matching.

We can classify image registration techniques into intensity-based and feature extraction-
based. Authors have chosen to follow the second approach (feature extraction) since is
computationally more efficient, thus a viable approach especially in real-time mapping
scenarios.

Furthermore, instead of returning just the single best matching hypothesis, algorithm
computes and reports matching hypotheses in the form of a Sum of Gaussians (SOG). This
can come in handy in mapping approaches that are based on the Bayesian probabilistic
framework and can utilize multiple-hypotheses (e.g., particle filtering).

An outline of the algorithm steps is given in fig. 5.1.1. A step-by-step analysis is also given
below:

1. Firstly map images are preprocessed to so en out the irregularities that are com-
monly found in grid maps and are due to high-frequency noise from the sensors
used.

2. Interest points are extracted using a certain detector scheme while their surround-
ing area is modelled using a descriptor. A er experimenting with various combi-
nations of detector and descriptor pairs the authors have concluded in using either
the Harris or Kanade-Lucas-Tomasi detectors along with a descriptor consisting of
a circular patch centered at the feature. These pairs offer the best combination of
both performance maximization and reduction in computational cost.

3. Set of candidate correspondences (i.e., C) between features in both images are gen-
erated. These correspondences are determined by means of a measure of similarity
between their descriptors.

4. Due to ambiguity a feature of one map may have multiple candidate features on the
other. From all those candidates a modified RANSAC algorithm obtains a subsets
of internally consistent hypotheses Ci ∈ C by imposing uniqueness, meaning that each
feature of one map must correspond up to just one in the other. Unlike the standard
RANSAC algorithm, authors choose to keep not only the single best solution but a
dynamic number of them.

5. As mentioned earlier, the potential transformation q between the two maps is mod-
elled as a Sum of Gaussians (SOG) and can be wri en down as:

p(q) =
∑
i

N
(
q;q⋆

i ,Qi

)
ωi (5.1.1)

where

ωi is the weight of a Gaussian kernel
(∑

i

ωi = 1
)

q⋆
i ,Qi, is the mean and covariance matrix of that kernel

The distribution can also be expanded using the law of total probability over all

Multi-robot SLAM 71

Figure 5.1.1: An overview of the proposed method for map-matching, which aligns a pair
of maps each comprising a grid map and a corresponding point map. It first registers the
grid maps to obtain a set of potential transformations qwhich are then refined by running
ICP-based alignment on the corresponding point maps.

72 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

potential correspondences Ci as follows:

p(q) =
∑
∀Ci

p
(
q|Ci

)
P (Ci) (5.1.2)

Comparing eqn. 5.1.1 and eqn. 5.1.2 it is clear that the authors choose P (Ci) as the
SOG weights and also, model the density of q given a set of correspondences as a
Gaussian distribution, that is 1:

p(q|Ci) = N
(
(q;q⋆

i ,Qi

)
(5.1.3)

6. A er the RANSAC stage, the computed SOG distributions are simplified. This is
an action towards reducing the cost of the upcoming refinement step, in which ICP
is applied to the corresponding point maps to improve the estimate of the mean
map transformation q⋆. Finally the resulting SOG is again tested for further po-
tential simplifications obtaining the final, possibly multi-model probability density
distribution for the map transformation.

5.1.2 Feature Extractions - Detectors

The most desirable property of any detector is its repeatability, that is, its ability to detect
a given feature when it appears in different images.

Overall the authors tested the following detector algorithms:

• The Harris detector which searches for points where the structure tensor 2 has two
large eigenvalues.

• The Kanade-Lucas-Tomasi (KLT) method that also relies on the structure tensor
but detects salient points where one of the eigenvalues exceeds a given threshold.

• The detection phase of the SIFT algorithm. This identifies scale-space extrema in
pyramids of difference-of-Gaussians. Method essentially aims at detecting blobs
instead of corners.

• The detection phase of the SURF algorithm based on the Hessian matrix.

Due to the nature of laser range scans (which is the main sensor used in our implemen-
tation) artifacts arise in the generated grid maps. If interpreted as high-frequency noise,
these can be cancelled out of the preprocessed image by first applying a Gaussian filter
followed by a median filter.

1Even though the authors have derived the parameters of eqn. 5.1.3 and have set the mathematical proofs
for expressing the uncertainty of a transformation, these parts are not included in current analysis since
in the our usage of the algorithm in the multi-robot SLAM, we are mostly interested in the mean of the
transformation.

2The structure tensor, also referred to as the second-moment matrix, is a matrix derived from the gradient
of a function. It summarizes the predominant directions of the gradient in a specified neighborhood of a
point, and the degree to which those directions are coherent

Multi-robot SLAM 73

Figure 5.1.2:]
A measure of the repeatability for each detector for different sizes of the Gaussian (Wg)

and the median filter (Wm). Brighter colors indicate a higher number of common
features detected in both maps Notice that the Harris and KLT detectors (i.e., corner

detectors) find most matchings a er preprocessing with small filter sizes while the exact
opposite can be said for the detector parts of the SIFT and SURF algorithms (i.e., for blob

detectors)

(a) Harris detector (b) SIFT detector

Figure 5.1.3: Examples of detected features in images a er the ideal, for the used detector,
image preprocessing

5.1.3 Descriptors

A er the detection phase, the features are assigned distinctive descriptors in order to
establish correspondences. Authors have studied the usage of the following 4 descrip-
tors:

SIFT: Method is based on histograms of image gradients, obtaining a 128-length descrip-
tor vector

SURF: Method is based on the responses of Haar-wavelets 3.
3The Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet

74 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

Intensity-domain spin images (Spin): A 2D histogram of intensities and distances, with
the maximum a radius from the nearest point determined by the parameter Rmax.
The usage of distances (disregarding angles), makes this descriptor invariant to ro-
tations.

Linear or logarithmic circular patches 4 Both (linear and logarithmic) map a circular re-
gion of radius Rmax centered at * the interest point into a 2D matrix (the descriptor)
of polar coordinates. Let this matrix be f(u, v) where the indices stand for different
values of the distance and angle of the feature respectively. Methods depend on
the extraction of a circular patch of the feature neighborhood in a representation not
invariant to rotations (rotations just become shi s in the angle dimension (u)). The
la er is also illustrated in fig. 5.1.4(b,c).

Similarity function of 2 descriptors

to compare two detected features (e.g., i, j) from two different maps, along with their
corresponding descriptors, fai fbj we need to define a metric. Judging solely on SIFT, SURF
and Spin descriptors, the most logical metric to use would be the Euclidean distance since
these representations do not take the rotation into account. However this is not the case
for the lin-polar and log-polar descriptors. As mentioned earlier two matching features
only differ by a shi in the angular dimensions. Therefore the authors propose to measure
the distance between two descriptors fiandfj by their Euclidean distance given a rotation
angle ∆ϕ:

d(fi, fj,∆ϕ) =

(∑
u

∑
v

∣∣∣fi(u, v)− fj(u, v +∆ϕ)
∣∣∣2)1/2

(5.1.4)

where the angular polar coordinate v is taken modulo the corresponding size of the ma-
trix.

This way we obtain a distance vector for each possible shi in orientation ∆ϕ. These
distance vectors have pronounced minima for the true orientation when two features do
really match, thus the proposed metric comes down to:

d(fi, fj) = min∆ϕ d(fi, fj,∆ϕ) (5.1.5)

5.1.4 Generation of correspondences- Evaluation of detector-descriptor
pairs

Having set up a similarity criterion the goal is to generate the needed set of correspon-
dences between detector/descriptor pairs for the pair of maps. Thus the ``goodness''
value, i.e., the validity, of each correspondence is to be evaluated.

The arguably simplest test for selecting matchings is using a threshold, which in our case
means to accept a potential match between fai , f

b
j only if the distance di,j between their de-

scriptors is below a fixed value Td [66]. However, this simple scheme has some drawbacks
in the context of grid matching, because distance values between actually corresponding

family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an
interval to be represented in terms of an orthonormal basis

Multi-robot SLAM 75

pairs may vary in a relatively large range. Thus, any permissive threshold Td which cov-
ers most of the good correspondences would suffer from a high rate of false positives.
Authors introduce a second condition for establishing candidate pairings; the associated
distance di,j must be not only below the threshold Td, but also sufficiently close to the best
matching of fai in map b, that is, the minimum of di,j for all values of j. This restriction is
characterized by a second threshold Tδ which states the maximum acceptable distance δ
between a potential pairing and the best one, that is, δi,j = di,j−minjdi,j . Notice that for
the extreme case Tδ = 0 each feature will be associated to only one in the other map: the
one with the closest descriptor.

Based on the above, the authors have set up a benchmark test using 10 pairs of submaps
(with known ground truth) for which they compute the aforementioned thresholdsTd and
Tδ. This operation executed for several combinations of the available detectors descrip-
tors, the criterion for determining the thresholds is the minimization of the probability
of misclassifying a correspondence as a valid or invalid candidate Perr The la er is given
by:

Perr = P (w)Perr(Td, Tδ|w) + P (v)Perr(Td, Tδ|v

= P (w)P (di,j < Td, di,j < Tδ|w) + P (v)
[
1− P (di,j < Td, di,j < Tδ|v)

]
(5.1.6)

where v, w stand for valid and wrong pairings respectively

The results of the benchmark are summarized in fig. 5.1.4 which shows the minimum
classification error Perr a ainable by each combination of feature detector and descriptor,
along the associated average computation time (for one whole submap). These times in-
clude detection, descriptor extraction and distance computations, but they do not include
the preprocessing filters discussed earlier. This would add an average of 10 to 200ms, with
larger computational burdens associated to SIFT and SURF since they require larger filter
kernels than the Harris or KLT methods.

Based on the benchmark results, using either the Harris or KLT detector along with a
circular patch lin-polar descriptor seems to produce the be er results in terms of reduction
in computational complexity as well as increase in performance.

76 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

Figure 5.1.4: Benchmark results from using various detector, descriptor pairs.

5.1.5 Construction of the SOG - modified RANSAC

Final step in computing a valid transformation between the two grid maps (prior to the
ICP refinement step) is to use a modified RANSAC scheme to reduce the generated pool of
correspondences into subsets of self-consistent ones5. Due to ambiguities in the grid map
matching procedure, authors choose to keep a number of valid transformations computed
by RANSAC, so that the final transformation, is a Sum of Gaussians instead.

Below we provide an outline of the steps of the proposed modified RANSAC algorithm
while in fig. 5.1.5 we present a pseudocode sample [66]:

• Two correspondences (minimum number to determine the distribution of the asso-
ciated transformation, p(q|Ci)) are randomly chosen from C to initialize a subset
Ci = {ck1, ck2}.

• Uniqueness constraint is applied to the la er subset, meaning that one feature can-
not appear in both correspondences ck1, ck2 simultaneously.

• Feasibility of this pair is tested by a chi-square test which detects inconsistencies
between the inter-feature spacial distance da and db measured in maps a and b re-
spectively.

• Number of inliers supporting the proposed hypothesis p(q|Ci)) is found for each set
of initial pairings Ci. This is achieved by establishing associations between all the
features in map b and those in a transformed by q. Notice that this is a stochastic

5It's important to note that the map-matching module consists of a modified RANSAC scheme, i.e., a non-
deterministic algorithm. Based on this, the algorithm guarantees that, given the maps under consideration
have a considerable overlap, it is likely that it will compute the correct transformation. Furthermore in case
an initial estimation of the transformation is not provided or the overlap is minimal, the probability of a
wrong match increases.

Multi-robot SLAM 77

Figure 5.1.5: Pseudocode of the RANSAC procedure applied to the pool of generated
correspondences. For computing the uncertainty of the optional transformation, users
are encouraged to read the original article [66]

data-association problem since all feature locations, and the transformation itself,
have associated uncertainties. Joint Compatibility Branch and Bound (JCBB) is o en
employed to deal with the la er problem, however in this case, the exponential
time complexity of JCBB make it unsuitable for use. Instead, the authors propose
the sequential incorporation of matches which optimize the integral of the prod-
uct of the two Gaussians, that is the matching likelihood of each the pairing at hand.
The incorporation of inliers stops when the next best pairing candidate (i, j) has a
squared Mahalanobis distance D2

M (i, j) above a given threshold χ2
c,2.

• The above process is repeated a number of times updated dynamically as new in-
liers are found. With regards to the weights of the SOG, each Gaussian mode is
initially assigned a unit weight, which is incremented each time the same subset of
correspondences is found in subsequent iterations (lines 6–8).

• Finally notice the existence of a minimum threshold of required inliers M for the
algorithm to accept a hypothesis. This was heuristically set by the authors to 15%
of the average number of features found in each map.

5.2 Implementation Insight

5.2.1 Communication procedure

As explained in sec. 4 communication is a key issue in multi-robot SLAM. To implement it
in an efficient way and make sure that the overall algorithm is independent of the number
of running SLAM agents we make use of the ROS multimaster_fkie package and the

78 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

multicast protocol. This allows every SLAM agent to run as an independent ROS node
process and on its own ROS core. This offers the following advantages:

• Using the master_discovery node of multimaster_ ie each ROS core dynamically
finds all the other available ROS cores running in the same network that it runs.
This adds to the robustness of the whole setup as any running agent can, at any
time, discover other agents that are in communication range.

• Using the master_sync node topics of one ROS core are available to all the rest,
i.e., every running SLAM agent can now subscribe to topics of the other agents that
it is interested in (e.g., list of updated node positions).

5.2.2 map_merger_node

To facilitate in the overall inspection of the multi-robot graphSLAM procedure, we im-
plemented the map_merger_node application.6 Using similar operations as a multi-robot
SLAM agent, the map_merger_node detects all running SLAM agents in its communica-
tion range and subscribes to their grid maps. When the operator is interested in ge ing an
update on the multi-robot SLAM operation, map_merger_node fetches all possible grid
maps and robot trajectories (with regards to the agent's respective frame of reference)
and using the grid map aligning scheme presented in sec. 5.1, aggregates all the maps in
a final version of the environment. Furthermore it transforms the corresponding trajec-
tories according to the grid map alignment operation so that all the robot trajectories are
displayed with regards to a common frame of reference, along with the aggregate map.
Examples of running it, with 2 and 3 robots respectively are given in figs. 5.2.1,5.2.2.

Figure 5.2.1: map_merger_node application - 2 robots, opposite direction, different rooms

6Application code is available as part of the mrpt_graphslam_2d package7.

https://github.com/bergercookie/mrpt_slam

Multi-robot SLAM 79

Figure 5.2.2: map_merger_node application - 3 robots

5.3 Simulation

5.3.1 Simulation setup

To verify the behavior of the multi-robot algorithm we setup a simulated world consist-
ing of two rooms (see fig. 5.3.1) along with an ample number of obstacles, and executed
graphSLAM for a varying number of agents. The simulation environment were setup
in Gazebo, along with the simulation of the vehicle dynamics, odometry, laser scans and
camera measurements.

Figure 5.3.1: Environment used during the simulations in Gazebo

To drive the robots around the environment, we use teleoperation with velocity com-
mands either using a keyboard/joystick or by recording a series of them and then playing

80 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

them back. 8

An image of the overall control panel during simulations is given below:

Figure 5.3.2: Control panel during simulations. Note that the number of corresponding
windows spawned (SLAM window, steering module) depends exclusively on the number
of agents the users has set up to run that is one SLAM window and one steering module
pointing to the correct velocity topic is going to be spawned automatically.

To make the simulation as similar to the real-time experiments as possible each graph-
SLAM agent was launched in a separate roscore. Along with it, a master_discovery and
a master_sync node were launched to make the agents' communication possible.

For all the simulated agents the used deciders/optimizer along with some of their impor-
tant configuration parameters are presented. For a full list of configuration parameters
consult the corresponding .ini configuration files in mrpt_graphslam_2d/config.

Node Registration Decider: CFixedIntervalsNRD_MR

• Registration distance: 0.4m

• Registration angle: 15deg

Edge Registration Decider: CLoopCloserERD_MR

• Distance to search for graph edges: 0.5m

• Use scan matching for latest node: YES

• Num of previous nodes for scan-matching: 10

graphSLAMOptimizer: CLevMarqGSO

• Optimization distance: 0.4m

Note: As a naming convention, all the deciders/optimizers suffixed with _MR are multi-
robot implementation of their corresponding single-robot counterpart.

To successfully configure and run a simulation in Gazebo we take the following
steps:

1. Setup the environment of the computer that the simulations are going to be executed
at. A configuration file should include directives such as:

• Number of robot agents to be spawned

8Last method may not workas the velocity commands playback does not guarantee that the robots would
traverse the exact trajectory that they did the time the commands were actually recorded. This is most likely
due to the stochastic nature of the simulated noise of the simulator that we are using.

Multi-robot SLAM 81

• Initial position of the la er

• Gazebo world to be used

• NRD/ERD/GSO classes for each one of the agents

An example of such configuration file is provided here9

source <path_to_configuration_file>

2. Setup the simulation environment, robot agents, as well as their corresponding sen-
sors:

roslaunch csl_robots_gazebo setup_simulation_env.launch

3. On a second terminal, run single- / multi-robot graphSLAM according to the envi-
ronment variables of the current shell:

rosrun csl_robots_gazebo graphslam_launcher.py

5.3.2 Simulation results

The following is an analysis of the results produced during simulations. With regards to
the map-matching scheme employed, the following remarks should also be made:

• As the original authors have suggested, during the map-matching procedure, a
combination of the Kanade-Lucas-Tomasi (KLT) detector as well as the lin-polar cir-
cular patches descriptor is used.

• As previously explained in sec. 4, each robot caches the nodes and laser scans of its
neighbors and when a minimum number of nodes and laser scans has been received,
robot a empts to find a valid transform for own and neighbor's map. However, this
strategy doesn't account for situations that robots may be in communication range,
but there is no overlap in their maps. Thus, to make the mapping procedure as ro-
bust as possible, application users can impose that a prior estimate of that transform
be available prior to map-matching. The la er can be estimated either in situations
where the initial robot positions are available (trivial scenario) or by utilizing ren-
dezvous of the agents (e.g., using a camera and an Aruco marker on each one of the
agents). In the simulations presented, having set a minimum of 25 nodes was an
adequate condition for the map-matching scheme to produce accurate results.

9https://github.com/bergercookie/csl_mr_slam/blob/master/csl_robots_gazebo/config/slam/
simulation_config.sh

https://github.com/bergercookie/csl_mr_slam/blob/master/csl_robots_gazebo/config/slam/simulation_config.sh
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_robots_gazebo/config/slam/simulation_config.sh
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_robots_gazebo/config/slam/simulation_config.sh

82 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

(a) Final occupancy grid map of 1st
agent

(b) Final occupancy grid map of 2nd
agent

Figure 5.3.3: Final occupancy grid maps of both graphSLAM agents a er the condensed
measurements constraints are added for each agent

Figs. 5.3.4(a), 5.3.4(b) show the situation prior and a er the map-matching algorithm and
the computation of the constraint between the robot's own origin and its neighbor's origin.
We notice that a er the computation of the inter-graph transformation, the integration of
the received nodes becomes a trivial task and the end result is successful.

As mentioned in sec. 4 a er the transformation is found, rest of the received nodes are
integrated in batches (during simulations batch size was 5 nodes.) so that the addi-
tion of scan-matching edges and optimization of the condensed measurements graph
is done on the transmi er's side. Final map and trajectory of each agent is depicted in
5.3.3(a), 5.3.3(b).

Multi-robot SLAM 83

(a) Situation prior to condensed measurements registration by map-matching

(b) Situation a er condensed measurements registration by map-matching. Thick green line indi-
cates the inter-graph constraint as computed by the grid map aligning algorithm. Green subgraph
is the condensed measurements graph of the nodes received by the other agent. Green points map
is a recreated version of the neighbors' map based only on the received incorporated nodes and
their corresponding measurements.

Figure 5.3.4: Situation prior and a er first incorporation of neighbor's nodes

A demo video of the simulation using two agents is provided here10.

5.4 Experimental Results

As a final step in the development of the multi-robot graphSLAM algorithm, we tested it
in a real-time environment, much similar to the single-robot experiments (sec. 3.6).

Similar to the simulation, purpose of the experiments was to verify that the communica-
tion strategy also worked real-time and the robots would successfully exchange and inte-
grate their counterparts measurements in their own map. To do that and to simplify the
overall operation, we use two robots (namely odroidxu3 and nickkoukubuntu from the
corresponding computer hostname) initially situated in two different and adjacent rooms.
These are to exchange graph information and measurements. One of them (odroidxu3)
traverses both rooms while nickkoukubuntu makes a short right turn in its own room.
A er their corresponding movements and each having cached the nodes and measure-
ments sent over the network by the other agent, they execute map-matching and integrate

10https://www.youtube.com/watch?v=4RKS2jrvsYE

https://www.youtube.com/watch?v=4RKS2jrvsYE
https://www.youtube.com/watch?v=4RKS2jrvsYE

84 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

the fetched nodes and measurements in their own map and graph. The successful inte-
gration can be verified from the fact that even though nickkoukubuntu doesn't traverse
the second room, it successfully creates a map of it from the information received from
odroidxu3. On the other hand, odroidxu3 rectifies the part of the environment that both
robots have traversed and mapped.

In fig. 5.4.1(a) the two robot agents used during multi-robot graphSLAM are de-
picted.

(a) Pioneer 2dx models along with their pro-
cessing units and data acquisition devices, as
used in the multi-robot experiments.

(b) Components of a graphSLAM agent along
with their corresponding explanation. We
should remark that the onboard camera was
used just as reference of the surrounding envi-
ronment of the robot (information not utilised
in the graphSLAM algorithm)

Figure 5.4.1: Agents of multi-robot experiment

5.4.1 Configuring an agent for online multi-robot SLAM

Configuration of a robot that is to run in a multi-robot graphSLAM framework is identical
to the single-robot case with the only difference being in the decider/optimizer classes that
are to be used. For more on this, see sec. 3.5.1.

5.4.2 Network Setup

For the multi-robot SLAM to take place, a communications system must be setup between
the agents. The requirements for such a system are as follows:

Reliability - Robustness to connection problems
It is assumed (as in real-time scenarios) that the communication links between the
agents are not reliable and that the agents are not necessarily connected at every step
during execution. For this to work the selected protocol must be decentralized, ro-
bust to network failures and broken communication links between arbitrary robotic
agents. This crosses out the possibility of master-slaves models where one robot
hands out the instructions and waits for feedback from the rest.

Easy to setup
For maximum efficiency and for the experimental setup to be established as fast as
possible the communication protocol has to be simple and straightforward.

Easy to introspect
An external operator, or Central Node, of the system should be able to query and
visualize both the individual agent trajectory and map as well as the aggregated

Multi-robot SLAM 85

results. This would provide insight into the algorithm functionality as well as assist
in the search for potential bugs of the algorithm.

Having laid out the basic prerequisites for the application we chose to implement the
following features:

Ad-hoc network setup
A standard predetermined ad-hoc network which all running agents as well as the
Central Node are going to use for communication.

DNS Server
To successfully exchange information over the ad-hoc network, agents should be
able to resolve the hostnames of their peers, that is be able to determine their IP
address based on their hostname. Thus a Domain Name System (DNS) service is to
be set up. We chose to setup the la er the Central Node of the operation.

World Wide Web access of agents [OPTIONAL]
An optional, but valuable, step in the management and configuration of the
robots (e.g., installation of precompiled packages, download of sources, trou-
bleshooting) nodes of the ad-hoc network are granted internet access using ap-
propriate firewall configuration in the Central node of the system (which is con-
nected to the world by a lan cable). See the access_internet.conf.template11, ac-
cess_internet_adhoc_prov.sh12 scripts for more on this.

Below, we provide instructions on how to reproduce such a setup.

Ad-Hoc Network

During the multi-robot experiments the following configuration was used:

Wireless Configuration

Mode: Ad-Hoc
ESSID: multi_robot_exp
Encryption: Off

IP Configuration

IP-Addresses range: 10.8.0.1-254
Netmask: 255.255.255.0
Broadcast address: 10.8.0.255
DNS Nameserver: 10.8.0.1

To configure an agent (i.e., a computer mounted the robotic platform) to participate in the
wireless Ad-Hoc network, see the setup_adhoc.py13 script. The la er registers an upstart
script on the node it is executed so that:

• Node at hand, automatically joins the network on startup with a predefined IP ad-
dress.

• Connection to the ad-hoc persists even a er reboots or a er restarting the corre-
sponding network interface (e.g., ejecting and reinserting the adapter)

• A DNS server entry is registered which can be quarried to resolve the names of the
other running agents in the common network.

11https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_
network/access_internet.conf.template

12https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_
network/access_internet.conf.template

13https://github.com/bergercookie/csl_mr_slam/tree/master/csl_hw_setup/scripts/ad_hoc_
network/setup_adhoc.py

https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/tree/master/csl_hw_setup/scripts/ad_hoc_network/setup_adhoc.py
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/blob/master/csl_hw_setup/scripts/ad_hoc_network/access_internet.conf.template
https://github.com/bergercookie/csl_mr_slam/tree/master/csl_hw_setup/scripts/ad_hoc_network/setup_adhoc.py
https://github.com/bergercookie/csl_mr_slam/tree/master/csl_hw_setup/scripts/ad_hoc_network/setup_adhoc.py

86 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

For the multi-robot experiment at hand the following hostname, IP address pairs were
utilised:

• csldesktop - 10.8.0.1 (central node)

• nickkoukubuntu - 10.8.0.16

• odroidxu3 - 10.8.0.17

DNS Server

A basic requirement to use a multimaster ROS configuration is that every agent (running
a roscore instance) knows the IP address and the corresponding hostname of every other
agent. This is handled by a DNS server running in one of the agents (or by multiple DNS
servers for setups with more agents) that handles the DNS queries of every other agent
in the network. To keep the level of complexity low, and since a basic setup is needed,
dnsmasq14 was used for this purpose. dnsmasq looks for the hostnames and correspond-
ing IP addresses in the /etc/hosts file. It is strongly advised that the localise-queries
flag is set in the dnsmasq configuration file (by default found in /etc/dnsmasq.conf), so
that the DNS server hands out the in-ad-hoc addresses first. 15

Setup the dnsmasq by issuing the following commands:
[sudo] apt-get install dnsmasq
[sudo] /etc/init.d/dnsmasq restart

Multimaster node configuration

By now every agent must have a unique IP address in the Ad-Hoc network which should
also be registered in the DNS server's /etc/hosts/ file.

We can verify this by pinging from one host to the other:

ping <another-address-in-ad-hoc> -I <ad-hoc-interface>

We can now use the multimaster_ ie ROS package for managing the individual roscores
in a consistent manner. For a detailed manual on using the multimaster_ ie package see
here16.

Note: For the master_discovery script to be effective IP forwarding must be enabled on the
host and the multicast traffic should also be routed through the wireless interface used in
the Ad-Hoc network. This can be implemented by following the procedure below:

1. Modify/append /etc/sysctl.conf so that:
net.ipv4.ip_forward=1
net.ipv4.icmp_echo_ignore_broadcasts=0

2. Reload sysctl configuration
$ sysctl -p

14http://www.thekelleys.org.uk/dnsmasq/doc.html
15Make sure that the other agents have set as a DNS server the host that dnsmasq runs on
16http://www.iri.upc.edu/files/scidoc/1607-Multi-master-ROS-systems.pdf

http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.iri.upc.edu/files/scidoc/1607-Multi-master-ROS-systems.pdf
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.iri.upc.edu/files/scidoc/1607-Multi-master-ROS-systems.pdf

Multi-robot SLAM 87

3. Route multicast traffic to the correct wireless interface: 17

route add -net 224.0.0.0 netmask 224.0.0.0 <ad-hoc-interface>

4. Ping the multicast address via the ad-hoc network interface to verify the correct
behavior: ping 224.0.0.1 -I <ad-hoc-interface>

If the above procedure works correctly, then a er launching the master_discovery and
master_sync processes on each agent, topics of one agent should be also be visible and
readable from another agent, that is:

agent1 $ rostopic pub /kalimera std_msgs/String -r 10 "kalimera!"
agent2 $ rostopic echo /kalimera # should print "data: kalimera!"

5.4.3 1st experiment - Conclusions

Results prior and a er the integration of received nodes, for one of the agents, are given in
fig. 5.4.2(a) and fig. 5.4.2(b). A video demonstration of the online multi-robot graphSLAM
experiment is also provided here18

17This is taken care of by the setup_ad_hoc.py script
18https://www.dropbox.com/s/zm2njljeprnsfaf/20170426_mr_graphslam_real_2.mp4?dl=0

https://www.dropbox.com/s/zm2njljeprnsfaf/20170426_mr_graphslam_real_2.mp4?dl=0
https://www.dropbox.com/s/zm2njljeprnsfaf/20170426_mr_graphslam_real_2.mp4?dl=0

88 CHAPTER 5. MULTI-ROBOT SLAM ALGORITHM

(a) Situation prior to the integration of the received measurements. Robot knows only about the
part that itself has traversed.

(b) Situation a er the successful map-matching and integration of the received measurements.
A er this, robot is aware of the area traversed by its peer.

Figure 5.4.2: Successful map-matching and integration of the received measurements.

Multi-robot SLAM 89

5.4.4 2nd experiment - Conclusions

A second experiment has been conducted in the basement of Ktirio M. The robots used
are identical to the previous experiment. Results prior and a er the registration of the
neighbor's nodes are provided in fig. 5.4.3(a) and fig. 5.4.3(b). A video demonstration of
the online multi-robot graphSLAM experiment is also provided here19

(a) Situation prior to the integration of the received measurements.

(b) Situation a er the successful map-matching and integration of the received measurements.
A er this, robot is aware of the area traversed by its peer.

Figure 5.4.3: Successful map-matching and integration of the received measurements.
Experiment was executed around the pool of the underwater lab at Ktirio M.

19https://www.dropbox.com/s/xx1mztrtddkm4ky/real_mr2.mp4?dl=0

https://www.dropbox.com/s/xx1mztrtddkm4ky/real_mr2.mp4?dl=0
https://www.dropbox.com/s/xx1mztrtddkm4ky/real_mr2.mp4?dl=0

Chapter 6

Conclusions - Future Directions

In the current section we sum up the work that we have conducted in the master the-
sis, and we set the goals for future works/projects that are to be implemented on top of
it.

As part of this master thesis we have:

• Conducted a thorough analysis of the dominant strategies, problems and current
trends in the field of single as well as multi-robot SLAM, specializing our research
in graph-based strategies, which show increased interest and potential at this stage.

• Implemented a framework for conducting single-robot graphSLAM using either
prerecorded datasets or real-time data. Code has been accepted and is publicly
available to use, as part of the popular open-source MRPT1 robotics toolkit. This
includes the implementation of a robust loop closing scheme initially devised and
published by Edwin Olson.

• Rigorously tested the single-robot algorithm both in simulations and in real-time
environments using a 4-wheeled Pioneer as well as a youbot platform.

• Implemented a multi-robot technique for robot agents to share part of their graph
so that they assist in their neighbor's SLAM procedure. Strategy was tested in simu-
lations specifically designed in the Gazebo environment as well as real-time online
experiments. Implementation includes the communication of the agents via a de-
centralized ad-hoc network and the utilization of the multicast protocol so that each
agent efficiently and robustly finds its neighbors in the common ad-hoc network.

• Utilized a map-matching algorithm for finding a valid transform between own
grid map and the grid map reconstructed from a neighbor's fetched measure-
ments and nodes. Multi-robot related algorithms are publicly available in
ros.org/mrpt_graphslam_2d2.

Based on this work, we suggest the following modifications/extensions to improve the
algorithm features, usability and overall efficiency:

Integration of 3rd party optimization framework
Modern optimization frameworks such as g2o3 or iSAM4 can exploit the sparse
and incremental nature of the SLAM problem. Thus integration of either of those

1http://www.mrpt.org
2http://wiki.ros.org/mrpt_graphslam_2d
3https://github.com/RainerKuemmerle/g2o
4http://people.csail.mit.edu/kaess/isam/

91

http://www.mrpt.org
http://wiki.ros.org/mrpt_graphslam_2d
https://github.com/RainerKuemmerle/g2o
http://people.csail.mit.edu/kaess/isam/
http://www.mrpt.org
http://wiki.ros.org/mrpt_graphslam_2d
https://github.com/RainerKuemmerle/g2o
http://people.csail.mit.edu/kaess/isam/

92 CHAPTER 6. CONCLUSIONS - FUTURE DIRECTIONS

schemes as a GraphSLAM Optimizer class in the mrpt-graphslam library is consid-
ered a major improvement. This will improve the overall efficiency in the optimiza-
tion procedure, as currently only a non-linear optimization framework based on the
Levenberg-Marquardt algorithm is available.

As of March 2017, the SE-Sync optimization algorithm [67] is also available as the
first certifiably correct, global optimizer for a system of non-linear constraints. Since
the vast majority of optimization modules so far, act on non-convex domains and
thus, locally optimize the given set of constraints, SE-Sync sets itself apart as the
first algorithm to act on a global scale by utilizing Special Euclidean Groups and
Riemannian manifolds.

Adaptive node registration decider
Every node registration decider class implemented thus far, adds new nodes in the
graph in fixed distance and angle intervals, using either odometry and/or laser scan
measurements. It would be useful especially in large areas mapping scenarios to
consider adding nodes only when new information is available to the robot, thus
reduce the overall complexity of the problem

Node reduction scheme
Pu ing an upper bound in the maximum number of nodes that can be registered
in a graph can potentially apply a bound in the computational complexity, storage
requirements and overall required resources of the entire algorithm. Notable works
in this field are presented in [68], [58], [69], [39].

Support for visual sensors
Current implementations of the mrpt-graphslam library can utilize odometry as
well as laser scan measurements. It would be valuable to extend the support of
available sensors such as 2D cameras, Kinect cameras either for 2D or 3D mapping.

Support for 3D mapping
Even though the main CGraphSlamEngine class already supports the construction
and management of 3D graphs as well, an edge registration decider that does so
hasn't been implemented yet. This would comprise a significant step towards ex-
tending the library support either for utilizatizing 3D measurements in 2D mapping
scenarios or directly using it in full 3D SLAM cases.

Support for active exploration
Active SLAM is a variant in which the robot itself navigates to places still unknown
its map to explore as much of its surrounding area as possible.

Additional suggested improvements in the algorithm are presented here5.

5https://github.com/MRPT/mrpt/milestone/9

https://github.com/MRPT/mrpt/milestone/9
https://github.com/MRPT/mrpt/milestone/9

Bibliography

[1] E. A. Wan and R. Van Der Merwe, ``The unscented Kalman filter for nonlinear esti-
mation,'' Technology, vol. v, pp. 153--158, 2000.

[2] K. Madsen, H. B. Nielsen, and O. Tingleff, ``IMM METHODS FOR NON-LINEAR
LEAST SQUARES PROBLEMS,'' 2004.

[3] S. Saeedi, M. Trentini, M. Seto, and H. Li, ``Multiple-Robot Simultaneous Localiza-
tion and Mapping: A Review,'' Journal of Field Robotics, 2016.

[4] F. Lu and E. Milios, ``Robot pose estimation in unknown environments by matching
2D range scans,'' IEEE Conference on Computer Vision and Pa ern Recognition, pp. 249-
-275, 1994.

[5] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pra ,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. Van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. E inger,
A. Kaehler, A. Nefian, and P. Mahoney, ``Stanley: The Robot that Won the DARPA
Grand Challenge,'' Journal of Field Robotics, vol. 23, no. 9, pp. 661--692, 2006.

[6] J. A. Castellanos, G. Grise i, and M. Lazaro, ``Multi-Robot SLAM using Condensed
Measurements,'' pp. 1069--1076, 2013.

[7] S. Saeedi, L. Paull, M. Trentini, and H. Li, ``Multiple robot simultaneous localization
and mapping,'' IEEE International Conference on Intelligent Robots and Systems, pp. 853-
-858, 2011.

[8] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, ``An Atlas
framework for scalable mapping,'' 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), vol. 2, no. September, pp. 1899--1906, 2003.

[9] G. Erinc and S. Carpin, ``Anytime merging of appearance based maps,'' inProceedings
- IEEE International Conference on Robotics and Automation, pp. 1656--1662, IEEE, may
2012.

[10] R. C. Smith and P. Cheeseman, ``On the Representation and Estimation of Spatial
Uncertainty,'' The International Journal of Robotics Research, vol. 5, no. 4, pp. 56--68,
1986.

[11] H. Durrant-Whyte and T. Bailey, ``Simultaneous localization and mapping: Part I,''
IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99--108, 2006.

[12] J. Sola, ``Simulataneous localization and mapping with the extended Kalman filter,''
unpublished. Available: h p://www. joansola. eu/JoanSola/eng/JoanSola. html, pp. 1--35,
2013.

93

94 BIBLIOGRAPHY

[13] S. J. Julier and J. K. Uhlmann, ``A counter example to the theory of simultaneous lo-
calization and map building,'' inProceedings - IEEE International Conference on Robotics
and Automation, vol. 4, pp. 4238--4243, IEEE, 2001.

[14] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte, ``Simul-
taneous Localization and Mapping with Sparse Extended Information Filters,'' The
International Journal of Robotics Research, vol. 23, no. 7, pp. 693--716, 2003.

[15] E. B. Olson, ``Robust and Efficient Robotic Mapping,'' Work, vol. 31, pp. 265--272,
2008.

[16] M. Walter, R. Eustice, and J. Leonard, ``A Provably Consistent Method for Imposing
Sparsity in Feature-Based SLAM Information Filters,'' in Robotics Research, pp. 214--
234, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[17] R. Eustice, M. Walter, and J. Leonard, ``Sparse extended information filters: insights
into sparsification,'' in 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3281--3288, IEEE, 2005.

[18] J. E. Guivant and E. M. Nebot, ``Optimization of the simultaneous localization and
map-building algorithm for real-time implementation,'' IEEE Transactions on Robotics
and Automation, vol. 17, no. 3, pp. 242--257, 2001.

[19] J. Guivant and E. Nebot, ``Solving Computational and Memory Requirements of Fea-
ture Based Simultaneous Localization and Map Building Algorithms,'' no. Cml, 2002.

[20] S. J. Julier and J. K. Uhlmann, ``A New Extension of the Kalman Filter to Nonlinear
Systems,''

[21] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, ``FastSLAM: A factored so-
lution to the simultaneous localization and mapping problem,'' Proc. of 8th National
Conference onArtificial Intelligence/14th Conference on Innovative Applications of Artificial
Intelligence, vol. 68, no. 2, pp. 593--598, 2002.

[22] M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, ``FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges,''ĲCAI International Joint Conference onArtificial Intelligence, pp. 1151--1156,
2003.

[23] G. Grise i, C. Stachniss, and W. Burgard, ``Improving grid-based SLAM with Rao-
Blackwellized particle filters by adaptive proposals and selective resampling,'' Pro-
ceedings - IEEE International Conference on Robotics and Automation, vol. 2005, pp. 2432-
-2437, 2005.

[24] G. Grise i, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, ``Fast and accu-
rate SLAM with Rao-Blackwellized particle filters,'' Robotics and Autonomous Systems,
vol. 55, no. 1, pp. 30--38, 2007.

[25] A. Cha erjee and Amitava, ``Differential evolution tuned fuzzy supervisor adapted
extended Kalman filtering for SLAM problems in mobile robots,'' Robotica, vol. 27,
p. 411, may 2009.

[26] M. J. Milford and G. F. Wyeth, ``Mapping a suburb with a single camera using a
biologically inspired SLAM system,'' IEEE Transactions on Robotics, vol. 24, no. 5,
pp. 1038--1053, 2008.

Multi-robot SLAM 95

[27] D. Ball, S. Heath, J. Wiles, G. Wyeth, P. Corke, and M. Milford, ``OpenRatSLAM: An
open source brain-based SLAM system,'' Autonomous Robots, vol. 34, no. 3, pp. 149--
176, 2013.

[28] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison,
``SLAM++: Simultaneous localisation and mapping at the level of objects,'' inProceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pa ern Recognition,
pp. 1352--1359, IEEE, jun 2013.

[29] H. Choset and K. Nagatani, ``Topological simultaneous localization and mapping
(SLAM): Toward exact localization without explicit localization,'' IEEE Transactions
on Robotics and Automation, vol. 17, no. 2, pp. 125--137, 2001.

[30] J. O. Wallgrun, ``Voronoi Graph Matching for Robot Localization and Mapping,''
Transactions on Computational Science Ix, vol. 6290, pp. 76--108, 2010.

[31] J. Boal, Á. Sánchez-Miralles, and Á. Arranz, ``Topological simultaneous localization
and mapping: a survey,'' Robotica, Cambridge University Press, vol. 32, no. 5, pp. 803--
821, 2014.

[32] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S. Teller, ``Multiple
relative pose graphs for robust cooperative mapping,'' Proceedings - IEEE International
Conference on Robotics and Automation, pp. 3185--3192, 2010.

[33] F. Dellaert and M. Kaess, ``Square Root SAM,'' IEEE Robotics and Automation Maga-
zine, vol. 13, no. 2, pp. 99--108, 2006.

[34] G. Grise i, R. Kummerle, C. Stachniss, and W. Burgard, ``A tutorial on graph-based
SLAM,'' IEEE Intelligent Transportation SystemsMagazine, vol. 2, no. 4, pp. 31--43, 2010.

[35] E. M. F. Lu, ``Globally Consisten Range Scan Alignment for Environment Mapping,''
Statewide Agricultural Land Use Baseline 2015, vol. 1, 1997.

[36] J.-S. Gutmann and K. Konolige, ``Incremental mapping of large cyclic environ-
ments,'' Proceedings 1999 IEEE International Symposium on Computational Intelligence
in Robotics and Automation. CIRA'99 (Cat. No.99EX375), pp. 318--325, 1999.

[37] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, ``iSAM2:
Incremental smoothing and mapping using the Bayes tree,'' The International Journal
of Robotics Research, vol. 31, no. 2, pp. 216--235, 2012.

[38] S. Thrun and M. Montemerlo, ``The GraphSLAM Algorithm with Applications to
Large-Scale Mapping of Urban Structures,''Robotics Research, The International Journal
of, vol. 25, no. 5-6, pp. 403--429, 2006.

[39] C. Estrada, J. Neira, and J. D. Tardós, ``Hierarchical SLAM: Real-time accurate map-
ping of large environments,'' IEEE Transactions on Robotics, vol. 21, no. 4, pp. 588--596,
2005.

[40] E. Olson, ``Recognizing places using spectrally clustered local matches,'' Robotics and
Autonomous Systems, vol. 57, no. 12, pp. 1157--1172, 2009.

[41] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann, ``6D SLAM with approx-
imate data association,'' in ICAR '05. Proceedings., 12th International Conference on Ad-
vanced Robotics, 2005., pp. 242--249, IEEE.

[42] C. Stachniss, ``Least Squares Approach to SLAM,'' tech. rep.

96 BIBLIOGRAPHY

[43] a. Howard, ``Multi-robot Simultaneous Localization and Mapping using Particle Fil-
ters,'' The International Journal of Robotics Research, vol. 25, no. 12, pp. 1243--1256, 2006.

[44] A. Birk and S. Carpin, ``Merging occupancy grid maps from multiple robots,'' Pro-
ceedings of the IEEE, vol. 94, no. 7, pp. 1384--1397, 2006.

[45] L. Carlone, M. K. Ng, J. Du, B. Bona, M. Indri, L. Carlone, M. K. Ng, J. Du, ·. B.
Bona, ·. M. Indri, B. Bona, M. Indri, M. Kaouk Ng, J. Du, B. Bona, and M. Indri,
``Simultaneous Localization and Mapping Using Rao-Blackwellized Particle Filters
in Multi Robot Systems,'' Journal of Intelligent & Robotic Systems, vol. 63, no. 2, pp. 283-
-307, 2010.

[46] L. A. A. Andersson and J. Nygårds, ``C-SAM: Multi-robot SLAM using square root
information smoothing,'' Proceedings - IEEE International Conference on Robotics and
Automation, pp. 2798--2805, 2008.

[47] N. Michael, S. Shen, K. Mohta, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi,
K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and S. Tadokoro, ``Collaborative map-
ping of an earthquake damaged building via ground and aerial robots,'' in Springer
Tracts in Advanced Robotics, vol. 92, pp. 33--47, Springer Berlin Heidelberg, 2014.

[48] H p://chrony.tuxfamily.org/, ``chrony – Introduction.''

[49] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, ``Towards multi-vehicle si-
multaneous localisation and mapping,'' Proceedings of the IEEE International Confer-
ence on Robotics and Automation, no. May 2002, pp. 2743--2748, 2002.

[50] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, ``An efficient approach to
the simultaneous localisation and mapping problem,'' in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, vol. 1, pp. 406--411, IEEE, 2002.

[51] S. B. Williams, ``Efficient Solutions to Autonomous Mapping and Navigation Prob-
lems,'' System, no. September, 2001.

[52] S. Thrun and Y. Liu, ``Multi-robot SLAM with Sparse Extended Information Filers,''
The International Journal of Robotics Research, vol. 15, pp. 254--266, 2005.

[53] E. Ne leton, P. Gibbens, and H. Durrant-Whyte, ``Closed form solutions to the
multiple-platform simultaneous localization and map building (SLAM) problem,''
in Proceedings of SPIE (B. V. Dasarathy, ed.), vol. 4051, p. 428, International Society
for Optics and Photonics, apr 2000.

[54] X. S. Zhou and S. I. Roumeliotis, ``Multi-robot SLAM with unknown initial corre-
spondence: The robot rendezvous case,'' IEEE International Conference on Intelligent
Robots and Systems, pp. 1785--1792, 2006.

[55] P. Besl and N. D. McKay, ``A method for registration of 3-D shapes,'' IEEETransactions
on Pa ern Analysis and Machine Intelligence, vol. 14, pp. 239--256, feb 1992.

[56] S. Rusinkiewicz and M. Levoy, ``Efficient Variants of the ICP Algorithm,''

[57] O. Sorkine-Hornung and M. Rabinovich, ``Least-Squares Rigid Motion Using SVD,''
2017.

[58] J. L. Blanco, J. Gonzalez, and J. A. Fern??ndez-Madrigal, ``Consistent observation
grouping for generating metric-topological maps that improves robot localization,''
Proceedings - IEEE International Conference on Robotics and Automation, vol. 2006,
no. May, pp. 818--823, 2006.

Multi-robot SLAM 97

[59] K. Levenberg, ``A Method for the solution of certain non-linear probles in least
squares.,'' Q. Appl. Math, vol. 11, no. 2, pp. 164--168, 1944.

[60] D. W. Marquardt, ``An Algorithm for Least-Squares Estimation of Nonlinear Param-
eters,'' Journal of the Society for Industrial and AppliedMathematics, vol. 11, pp. 431--441,
jun 1963.

[61] M. I. a. Lourakis, ``A Brief Description of the Levenberg-Marquardt Algorithm Im-
plemened by levmar,'' Matrix, vol. 3, p. 2, 2005.

[62] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grise i, C. Stachniss, and
A. Kleiner, ``On measuring the accuracy of SLAM algorithms,'' Autonomous Robots,
vol. 27, no. 4, pp. 387--407, 2009.

[63] W. Burgard, C. Stachniss, G. Grise i, B. Steder, R. Kümmerle, C. Dornhege,
M. Ruhnke, A. Kleiner, and J. D. Tardós, ``A Comparison of SLAM Algorithms Based
on a Graph of Relations,'' 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2009, pp. 2089--2095, 2009.

[64] A. Tsiamis, J. Tumova, C. P. Bechlioulis, G. C. Karras, D. V. Dimarogonas, and K. J.
Kyriakopoulos, ``Decentralized leader-follower control under high level goals with-
out explicit communication,'' IEEE International Conference on Intelligent Robots and
Systems, vol. 2015-Decem, pp. 5790--5795, 2015.

[65] a. Howard, M. J. Mataric, and G. S. Sukhatme, ``Pu ing the'I'in'Team': An ego-
centric approach to cooperative localization,'' Robotics and Automation, 2003. Proceed-
ings. ICRA'03. IEEE International Conference on, vol. 1, no. May, pp. 868--874, 2003.

[66] J.-l. Blanco, J. Gonz, and J.-a. Fern, ``A Robust , Multi-Hypothesis Approach to
Matching Occupancy Grid Maps,'' vol. 31, pp. 687--701, 2013.

[67] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, ``SE-Sync: A Certifiably
Correct Algorithm for Synchronization over the Special Euclidean Group *,'' 2017.

[68] H. Kretzschmar and C. Stachniss, ``Information-theoretic compression of pose
graphs for laser-based {SLAM},'' International Journal of Robotics Research, vol. 31,
no. 11, pp. 1219--1230, 2012.

[69] G. Grise i, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, ``Hierarchical
Optimization on Manifolds for Online 2D and 3D Mapping,''

Appendix A

SLAM in Bayesian representation

Current section presents the formulation of SLAM in the Bayesian context. This is the
first step in the mathematical formulation of strategies such as the EKF or the PF. Section
at hand is heavily based on [11].

Consider a mobile robot moving through its environment. Taking relative observations
of unknown landmark using onboard sensors, as illustrated in fig. A.0.1 At time instance
k the following quantities are defined:

xxxk The state vector describing the estimated pose (location and orientation) of the robot.

uuuk The control vector applied at time k − 1 to drive the vehicle to a state xxxk at time k.

mmmi A vector describing the location of the ith landmark. Its location is assumed to be time
invariant.

zzzik An observation of the ith landmark at timestep k. In case there are multiple landmark
observations bundled together at a specific timestep (as is o en the case), or when
the specific landmark is not relevant, the i index is dropped, thus zk.

We also define the following vectors:

The history of vehicle poses
XXX0:k = {xxx0,xxx1, · · · ,xxxk} = {XXX0:k−1,xxxk}

The history of control inputs
UUU0:k = {uuu0,uuu1, . . . ,uuuk} = {UUU0:k−1,uuuk}

The set of all landmarks
mmm = {mmm1,mmm2, · · ·mmmn}

The set of all landmark observations
ZZZ0:k = {zzz1, zzz2, · · ·zzzk} = {ZZZ0:k−1, zzzk}

99

100 APPENDIX A. SLAM IN BAYESIAN REPRESENTATION

Figure A.0.1: The SLAM problem in Bayesian representation. The robot positions and
landmark positions as estimated by the SLAM algorithm are given in yellow blue color
respectively. The ground-truth (real) robot and landmark positions are given as the trans-
parent icons. Notice that the la er cannot be known or directly measured at any stage of
the algorithm. Sensor information (observations) provide associate (provide an estima-
tion between) a robot and landmark position.

Having defined the corresponding notation, we move on to the Bayesian formulation. In
mathematical terms, SLAM problems come down to computing the following probability
distribution for all times k:

P (xxxk,mmm|ZZZ0:k,UUU0:k,xxx0)

The la er describes the joint posterior density of the landmark locations and latest robot
estimated pose (at time k) based on all recorded observations, and control inputs up
to time k as well as the assumption of the initial robot position xxx0. Notice that we are
looking to derive a recursive scheme, that is, starting with an estimate of the distribu-
tion P (xxxk−1,mmm|ZZZ0:k−1,UUU0:k−1) at time k−1 and using appropriate functions to model the
dynamics of movement and observation of the robot and sensors, we want to compute
P (xxxk,mmm|·).

Observation model
Describes the probability of a measurement, assuming that the landmarks (map) as
well as the origin of measurement (robot position) are known:

P (xxxk|xxxk−1,uuuk) (A.0.1)

Motion model
Assuming that the robot movement is a Markov process, the probability distribution
of the robot position at timestep k depends only on the pose at the previous timestep
k − 1 as well as the current control input uuuk:

P (xxxk|xxxk−1,uuuk) (A.0.2)

The SLAM algorithm thus comprises on a two-step recursion scheme based on a predic-
tion step (or time update) and a correction step (measurement update) which are given
by the following equations:

Time update

Multi-robot SLAM 101

P (xxxk,mmm|ZZZ0:k−1,UUU0:k,xxx0) =

∫
P (xxxk|xxxk−1,uuuk)× P (xxxk−1,mmm|ZZZ0:k−1,UUU0,k−1,xxx0)dxxxk−1

(A.0.3)

Measurement update

P (xxxk,mmm|ZZZ0:k,UUU0:k,xxx0) =
P (zzzk|xxxk,mmm)P (zzzk|xxxk,mmm|ZZZ0:k−1,UUU0:k,xxx0)

P (zzzk|ZZZ0:k−1,UUU0:k
(A.0.4)

Thus, using equations eqn. A.0.3,and eqn. A.0.4 we can compute the joint posterior
P (xxxk,mmm|ZZZ0:k,xxx0) for the robot state xxxk and the map mmm at a time k. Note that we can
also transform this task into one of mapping if we have an accurate estimate of the tra-
jectory for time 0tok, that is compute the probability P (mmm|XXX0:k,ZZZ0:k,UUU0:k). In the same
way we could formulate it into a localization problem, assuming that the landmark loca-
tions are roughly known and compute the conditional probability of the robot trajectory
P (XXX0:k|mmm,ZZZ0:k,UUU0:k).

Appendix B

So ware setup

In the current section the basic tools and so ware that need to be installed on the robotic
agents in order for the SLAM execution to take place successfully are outlined.

Warning: Notice that the packages mentioned exist both on github.com as well as the
server of the Control Systems Lab. For the stable version of the packages users should
refer to http://controlsystemslab.gr/code/bergercookie. However, for further de-
velopment, issue tracking as well as more frequent updates users should use packages of
http://github.com/bergercookie.

B.1 MRPT Installation

Detailed instructions on installing MRPT are given here1. However, to get the latest ver-
sion of the graphSLAM algorithm developed it is strongly suggested that user downloads
MRPT from the corresponding github fork2 and installs it from source. The la er can be
automated using this script, that sets up MRPT from the designated github repo along
with all its binary dependencies. 3

B.2 Installation of ROS Packages

For information, installation instructions on the individual packages refer to the
catkin_ws5 repository. The la er includes the sources of all the required packages needed
to run graphSLAM successfully both in simulations as well are real-time setups 6

Instructions on actually running single- or multi-robot graphSLAM either in sim-
ulations or in real-time experiments are provided in their corresponding sections
(5.3.1, 3.5.1).

1http://www.mrpt.org/MRPT_in_GNU/Linux_repositories
2http://github.com/bergercookie/MRPT
3Installing from source, requires that the wxWidgets 3.0 version is used instead of 2.8 (suggested by the

corresponding installation instructions here4.
5https://github.com/bergercookie/catkin_ws
6In case overall compilation fails, or a CMake dependency is missing, open an issue describing the prob-

lem in the Github page7.

http://controlsystemslab.gr/code/bergercookie
http://github.com/bergercookie
http://www.mrpt.org/MRPT_in_GNU/Linux_repositories
http://github.com/bergercookie/MRPT
https://gist.github.com/bergercookie/a41df61c0030a586922254bdb87680af
https://github.com/bergercookie/catkin_ws
http://www.mrpt.org/MRPT_in_GNU/Linux_repositories
http://github.com/bergercookie/MRPT
http://www.mrpt.org/Building_and_Installing_Instructions
https://github.com/bergercookie/catkin_ws
https://github.com/bergercookie/catkin_ws/issues

	Introduction
	SLAM common applications and usages

	Literature Review
	Single-Robot SLAM
	KF-SLAM
	PF-SLAM
	Artificial Intelligence SLAM - Topological SLAM
	Graph-based approaches

	Multi-Robot SLAM
	Data manipulation and flow in multi-robot SLAM
	Problems in multi-robot SLAM
	Solutions and notable works

	Single-robot SLAM development
	Mathematical Background
	Iterative Closest Point (ICP) Algorithm
	Robust Loop-Closure scheme
	Efficient Least-Squares problem solving - Levenberg-Marquardt Algorithm

	GSoC Internship at MRPT - Library Design
	Application interface
	SLAM evaluation metric
	Overview of metric - SLAM benchmarking
	Formulation of metric

	Wrappers for usage in ROS - Online SLAM
	Configuring a single SLAM agent

	Experimental Results
	Ground-Truth acquisition strategy
	Experiments - general information
	Experiment #1
	Experiment #2
	Experiment #3

	Inter-robot Communication
	Multi-robot SLAM algorithm
	Multi-hypothesis map-matching
	Algorithm overview
	Feature Extractions - Detectors
	Descriptors
	Generation of correspondences- Evaluation of detector-descriptor pairs
	Construction of the SOG - modified RANSAC

	Implementation Insight
	Communication procedure
	map_merger_node

	Simulation
	Simulation setup
	Simulation results

	Experimental Results
	Configuring an agent for online multi-robot SLAM
	Network Setup
	1st experiment - Conclusions
	2nd experiment - Conclusions

	Conclusions - Future Directions
	Bibliography
	SLAM in Bayesian representation
	Software setup
	MRPT Installation
	Installation of ROS Packages

